
THE PROGRAMMER’S
CP/M* HANDBOOK

Andy Johnson-Laird

Osborne/McGraw-Hill
Berkeley, California

Published by
Osborne/McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.
For information on translations and book distributors outside of the U.S.A.,
please write to Osborne/McGraw-Hill at the above address.
CP/M is a registered trademark of Digital Research, Inc.
CP/M-86, MP/M-86, and MP/M II are trademarks of

Digital Research, Inc.
Z80 is a registered trademark of Zilog, Inc.

THE PROGRAMMER’S CP/M® HANDBOOK
Copyright ©1983 by Osborne/McGraw-Hill. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a data base or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings may
be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

1234567890 DODO 89876543

ISBN 0-88134-103-7 (Paperback Edition)
ISBN 0-88134-119-3 (Hardcover Edition)

Mary Borchers, Acquisitions Editor
Ralph Baumgartner, Technical Editor
Susan Schwartz, Copy Editor
Judy Wohlfrom, Text Design
Yashi Okita, Cover Design

Dedication

Several years ago I was told that “Perfection is an English education, an
American salary, and a Japanese wife.”

Accordingly, I wish to thank the members of Staff at Culford School in
England, who gave me the English education, the people who work with me at
Johnson-Laird Inc. and Control-C Software and our clients, who give me my
American salary, and Mr. and Mrs. Kitagawa, who gave me Kay Kitagawa (who
not only married me but took over where my English grammar left off).

Acknowledgm ents

Although this book is not authorized or endorsed by Digital Research, I would
like to express my thanks to Gary Kildall and Kathy Strutynski of Digital
Research, and to Phil Nelson (formerly of Digital Research, now of Victor Tech
nology) for their help in keeping me on the path to truth in this book. I would also
like to thank Denise Penrose, Marty McNiff, Mary Borchers, and Ralph Baum
gartner at Osborne/ McGraw-Hill for their apparently inexhaustible patience.

ix

Contents

1 Introduction 1
2 The Structure of CP/M 5
3 The CP/M File System 17
4 The Console Command Processor (CCP) 45
5 The BASIC Disk Operating System 67
6 The BASIC Input/Output System 147
7 Building a New CP/M System 183
8 Writing an Enhanced BIOS 209
9 Dealing with Hardware Errors 295

10 Debugging a New CP/M System 319
11 Additional Utility Programs 371
12 Error Messages 449

A ASCII Character Set 465
B CP/M Command Summary 469
C Summary of BDOS Calls 479
D Summary of BIOS Calls 485

Index 487

Introduction

This book is a sequel to the Osborne CP/M® User Guide by Thom Hogan. It is
a technical book written mainly for programmers who require a thorough knowl
edge of the internal structure of CP/M— how the various pieces of CP/M work,
how to use CP/M as an operating system, and finally, how to implement CP/M on
different computer systems. This book is written for people who

• Have been working with microcomputers that run Digital Research’s CP/M
operating system.

• Understand the internals of the microprocessor world — bits, bytes, ports,
RAM, ROM, and other jargon of the programmer.

• Know how to write in assembly language for the Intel 8080 or Zilog Z80
Central Processing Unit (CPU) chips.

If you don’t have this kind of background, start by getting practical experience
on a system running CP/M and by reading the following books from Osborne/
McGraw-Hill:

• An Introduction to Microcomputers: Volume 1 — Basic Concepts
This book describes the fundamental concepts and facts that you need to

2 The CP/M Programmer’s Handbook

know about microprocessors in order to program them. If you really need
basics, there is a Volume 0 called The Beginner’s Book.

• 8080A/8085 Assembly Language Programming
This book covers all aspects of writing programs in 8080 assembly language,
giving many examples.

• Osborne CP/M® User Guide (2nd Edition)
This book introduces the CP/M operating system. It tells you how to use
CP/M as a tool to get things done on a computer.

The book you are reading now deals only with CP/M Version 2.2 for the 8080
or Z80 chips. At the time of writing, new versions of CP/M and MP/M (the
multi-user, multi-tasking successor to CP/M) were becoming available. CP/M-86
and MP/M-86 for the Intel 8086 CPU chip and MP/M-II for the 8080 or Z80 chips
had been released, with CP/M 3.0 (8080 or Z80) in the wings. The 8086, although
related architecturally to the 8080, is different enough to make it impossible to
cover in detail in this book; and while MP/M-II and MP/M-86 are similar to
CP/M, they have many aspects that cannot be adequately discussed within the
scope of this book.

O utline o f Contents

This book explains topics as if you were starting from the top of a pyramid.
Successive “slices” down the pyramid cover the same material but give more detail.

The first chapter includes a brief outline of the notation used in this book for
example programs written in Intel 8080 assembly language and in the C pro
gramming language.

Chapter 2 deals with the structure of CP/M, describing its major parts, their
positions in memory, and their functions.

Chapter 3 discusses CP/M’s file system in as much detail as possible, given its
proprietary nature. The directory entry, disk parameter block, and file organiza
tion are described.

Chapter 4 covers the Console Command Processor (CCP), examining the way
in which you enter command lines, the CP/M commands built into the CCP, how
the CCP loads programs, and how it transfers control to these programs.

Chapter 5 begins the programming section. It deals with the system calls your
programs can make to the high-level part of CP/M, the Basic Disk Operating
System (BDOS).

Chapters 6 through 10 deal with the Basic Input/Output System (BIOS). This is
the part of CP/M that is unique to each computer system. It is the part that you as a
programmer will write and implement for your own computer system.

Chapter 6 describes a standard implementation of the BIOS.

Chapter 1: Introduction 3

Chapter 7 describes the mechanism for rebuilding CP/M for a different
configuration.

Chapter 8 tells you how to write an enhanced BIOS.
Chapter 9 takes a close look at how to handle hardware errors—how to detect

and deal with them, and how to make this task easier for the person using the
computer.

Chapter 10 discusses the problems you may face when you try to debug your
BIOS code. It includes debugging subroutines and describes techniques that will
save you time and suffering.

Chapter 11 describes several utility programs, some that work with the features
of the enhanced BIOS in Chapter 8 and some that will work with all CP/M 2
implementations.

Chapter 12 concerns error messages and some oddities that you will discover,
sometimes painfully, in CP/M. Messages are explained and some probable causes
for strange results are documented.

The appendixes contain “ready-reference” information and summaries of
information that you need at your side when designing, coding, and testing
programs to run under CP/M or your own BIOS routines.

Notation

When you program your computer, you will be sitting in front of your terminal
interacting with CP/M and the utility programs that run under it. The sections that
follow describe the notation used to represent the dialog that will appear on your
terminal and the output that will appear on your printer.

Console Dialog
This book follows the conventions used in the Osborne CP/M User Guide,

extended slightly to handle more complex dialogs. In this book
• < name> means the ASCII character named between the angle brackets, <

and > . For example, < BEL> is the ASCII Bell character, and < H T> is the
ASCII Horizontal Tab Character. (Refer to Appendix A for the complete
ASCII character set.)

• < c r > m eans to press the CARRIAGE RETURN key.

• 123 or a number without a suffix means a decimal number.
• 100B or a number followed by B means a binary number.
• 0A5H or a number followed by H means a hexadecimal number. A hexa

decimal number starting with a letter is usually shown with a leading 0 to
avoid confusion.

4 The CP/M Programmer’s Handbook

• Ax m eans to ho ld the c o n t r o l (CTRL) key dow n w hile pressing the x key.

• Underline is keyboard input you type. Output from the computer is shown
without underlining.

Assembly Language Program Examples
This book uses Intel 8080 mnemonics throughout as a “lowest common

denominator”—the Z80 CPU contains features absent in the 8080, but not vice
versa. Output from Digital Research’s ASM Assembler is shown so that you can
see the generated object code as well as the source.

High-Level Language Examples
The utility programs described in Chapter 11 are written in C, a programming

language which lends itself to describing algorithms clearly without becoming
entangled in linguistic bureaucracy. Cryptic expressions have been avoided in
favor of those that most clearly show how to solve the problem. Ample comments
explain the code.

An excellent book for those who do not know how to program in C is The C
Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-Hall).
Appendix A of this book is the C Reference Manual.

Example Program s on Diskette

Example programs in this book have been assembled with ASM and tested
with DDT, Digital Research’s Dynamic Debugging Tool. C examples were com
piled using Leor Zolman’s BDS C Compiler (Version 1.50) and tested using the
enhanced BIOS described in Chapter 8.

All of the source code shown in this book is available on a single-sided,
single-density, 8-inch diskette (IBM 3740 format). Please do not contact Osborne/
McGraw-Hill to order this diskette. Call or write

Johnson-Laird, Inc.
Attn: The CP/M Programmer’s Handbook Diskette

6441 SW Canyon Court
Portland, OR 97221
Tel: (503) 292-6330

The diskette is available for $50 plus shipping costs.

CP/M from Digital Research
The Pieces of CP/M

CP/M Diskette Format
Loading CP/M
Console Command Processor
Basic Disk Operating System
Basic Input/Output System
CCP, BDOS, and BIOS

Interactions

The Structure
of CP/M

This chapter introduces the pieces that make up CP/M — what they are and
what they do. This bird’s-eye view of CP/M will establish a framework to which
later chapters will add more detailed information.

You may have purchased the standard version of CP/M directly from Digital
Research, but it is more likely you received CP/M when you bought your micro
processor system or its disk drive system. Or, you may have purchased CP/M
separately from a software distributor. In any case, this distributor or the com
pany that made the system or disk drive will have already modified the standard
version of CP/M to work on your specific hardware. Most manufacturers’ ver
sions of CP/M have more files on their system diskette than are described here for
the standard Digital Research release.

Some manufacturers have rewritten all the documentation so that you may not
have received any Digital Research CP/M manuals. If this is the case, you should
order the complete set from Digital Research, because as a programmer, you will
need to have them for reference.

5

6 The CP/M Programmer’s Handbook

CP/M from Digital Research

Digital Research provides a standard “vanilla-flavored” version of CP/M that
will run only on the Intel Microcomputer Development System (MDS). The
CP/M package from Digital Research contains seven manuals and an 8-inch,
single-sided, single-density standard IBM 3740 format diskette.

The following manuals come with this CP/M system:

• An Introduction to CP/M Features and Facilities. This is a brief description
of CP/M and the utility programs you will find on the diskette. It describes
only CP/M version 1.4.

• CP/M2.0 User's Guide. Digital Research wrote this manual to describe the
new features of CP/M 2.0 and the extensions made to existing CP/M 1.4
features.

• ED: A Context Editor for the CP/M Disk System. By today’s standards, ED
is a primitive line editor, but you can still use it to make changes to files
containing ASCII text, such as the BIOS source code.

• CP/M Assembler (ASM). ASM is a simple but fast assembler that can be
used to translate the BIOS source code on the diskette into machine code.
Since ASM is only a bare-bones assembler, many programmers now use its
successor, MAC (also from Digital Research).

• CPjM Dynamic Debugging Tool (DDT). DDT is an extremely useful pro
gram that allows you to load programs in machine code form and then test
them, executing the program either one machine instruction at a time or
stopping only when the CPU reaches a specific point in the program.

• CP/M Alteration Guide. There are two manuals with this title, one for CP/M
version 1.4 and the other for 2.0. Both manuals describe, somewhat crypti
cally, how to modify CP/M.

• CP/M Interface Guide. Again, there are two versions, 1.4 and 2.0. These
manuals tell you how to write programs that communicate directly with
CP/M.

The diskette supplied by Digital Research has the following files:

ASM.COM
The CP/M assembler.

BIOS.ASM
A source code file containing a sample BIOS for the Intel Microcomputer
Development System (MDS). Unless you have the MDS, this file is useful
only as an example of a BIOS.

Chapter 2: The Structure of CP/M 7

C BIOS. A SM
Another source code file for a BIOS. This one is skeletal: There are gaps so
that you can insert code for your computer.

DDT.COM
The Dynamic Debugging Tool program.

DEBLOCK.ASM
A source code file that you will need to use in the BIOS if your computer
uses sector sizes other than 128 bytes. It is an example of how to block and
deblock 128-byte sectors to and from the sector size you need.

DISKDEF.LIB
A library of source text that you will use if you have a copy of Digital
Research’s advanced assembler, MAC.

DUMP.ASM
The source for an example program. DUMP reads a CP/M disk file and
displays it in hexadecimal form on the console.

DUMP.COM
The actual executable program derived from DUMP.ASM.

ED.COM
The source file editor.

LOAD.COM
A program that takes the machine code file output by the assembler, ASM,
and creates another file with the data rearranged so that you can execute
the program by just typing its name on the keyboard.

MOVCPM.COM
A program that creates versions of CP/M for different memory sizes.

PIP.COM
A program for copying information from one place to another (PIP is
short for Peripheral Interchange Program).

STAT.COM
A program that displays statistics about the CP/M and other information
that you have stored on disks.

SUBMIT.COM
A program that you use to enter CP/M commands automatically. It helps
you avoid repeated typing of long command sequences.

SYSGEN.COM
A program that writes CP/M onto diskettes.

XSUB.COM
An extended version of the SUBMIT program. The files named previously

8 The CP/M Programmer’s Handbook

fall into two groups: One group is used only to rebuild CP/M, while the
other set is general-purpose programming tools.

The Pieces o f CP/M

CP/M is composed of the Basic Disk Operating System (BDOS), the Console
Command Processor (CCP), and the Basic Input/Output System (BIOS).

On occasion you will see references in CP/M manuals to something called the
FDOS, which stands for “Floppy Disk Operating System.” This name is given to
the portion of CP/M consisting of both the BDOS and BIOS and is a relic passed
down from the original version. Since it is rarely necessary to refer to the BDOS
and the BIOS combined as a single entity, no further references to the FDOS will
be made in this book.

The BDOS and the CCP are the proprietary parts of CP/M. Unless you are
willing to pay several thousand dollars, you cannot get the source code for them.
You do not need to. CP/M is designed so that all of the code that varies from one
machine to another is contained in the BIOS, and you do get the BIOS source code
from Digital Research. Several companies make specialized BIOSs for different
computer systems. In many cases they, as well as some CP/M hardware manufac
turers, do not make the source code for their BIOS available; they have put time
and effort into building their BIOS, and they wish to preserve the proprietary
nature of what they have done.

You may have to build a special configuration of CP/M for a specific computer.
This involves no more than the following four steps:

1. Make a version of the BDOS and CCP for the memory size of your
computer.

2. Write a modified version of the BIOS that matches the hardware in your
computer.

3. Write a small program to load CP/M into memory when you press the
RESET button on your computer.

4. Join all of the pieces together and write them out to a diskette.
These steps will be explained in Chapters 7, 8, and 9.
In the third step, you write a small program that loads CP/M into memory

when you press the RESET button on your computer. This program is normally
called the bootstrap loader. You may also see it called the “boot” or even the “cold
start” loader. “Bootstrap” refers to the idea that when the computer is first turned
on, there is no program to execute. The task of getting that very first program into
the computer is, conceptually, as difficult as attempting to pick yourself up off the
ground by pulling on your own bootstraps. In the early days of computing, this
operation was performed by entering instructions manually—setting large banks

Chapter 2: The Structure of CP/M 9

of switches (the computer was built to read the switches as soon as it was turned
on). Today, microcomputers contain some small fragment of a program in “non
volatile” read-only memory (ROM) — memory that retains data when the com
puter is turned off. This stored program, usually a Programmable Read Only
Memory (PROM) chip, can load your bootstrap program, which in turn loads
CP/M.

CP/M Diskette Format
The standard version of CP/M is formatted on an 8-inch, single-sided diskette.

Diskettes other than this type will probably have different layouts; hard disks
definitely will be different.

The physical format of the standard 8-inch diskette is shown in Figure 2-1. The

Figure 2-1. Floppy disk layout

1 0 The CP/M Programmer’s Handbook

Sector Track 0 Track 1

Bootstrap Loader

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Console
Command
Processor

(CCP)

Basic Disk
Operating

System
(BDOS)

(First Part)

Basic Disk
Operating

System
(BDOS)

(Last Part)

Basic
Input/Output

System
(BIOS)

Figure 2-2. Layout of CP/ M on tracks 0 and 1 of floppy disk

diskette has a total of 77 concentric tracks numbered from zero (the outermost) to
76 (the innermost). Each of these tracks is divided radially into 26 sectors. These
physical sectors are numbered from 1 to 26; physical sector zero does not exist.
Each sector has enough space for 128 bytes of data.

Even when CP/M is implemented on a large hard disk with much larger sector
sizes, it still works with 128-byte sectors. The BIOS has extra instructions that
convert the real sectors into CP/M-style 128-byte sectors.

A final note on physical format: The soft-sectored, single-sided, single-density,
8-inch diskette (IBM 3740 format) is the only standard format. Any other formats
will be unique to the hardware manufacturer that uses them. It is unlikely that you
can read a diskette on one manufacturer’s computer if it was written on another’s,
even though the formats appear to be the same. For example, a single-sided,
double-density diskette written on an Intel Development System cannot be read
on a Digital Microsystems computer even though both use double-density format.
If you want to move data from one computer to another, use 8-inch, single-sided,
single-density format diskettes, and it should work.

Chapter 2: The Structure of CP/M 11

In order to see how CP/M is stored on a diskette, consider the first two tracks
on the diskette, track 0 and track 1. Figure 2-2 shows how the data is stored on
these tracks.

Loading CP/M
The events that occur after you first switch on your computer and put the

CP/M diskette into a disk drive are the same as those that occur when you press the
RESET button — the computer generates a RESET signal.

The RESET button stops the central processor unit (CPU). All of the internals
of the CPU are set to an initial state, and all the registers are cleared to zero. The
program counter is also cleared to zero so that when the RESET signal goes away
(it only lasts for a few milliseconds), the CPU starts executing instructions at
location 0000H in memory.

Memory chips, when they first receive power, cannot be relied upon to contain
any particular value. Therefore, hardware designers arrange for some initial
instructions to be forced into memory at location 0000H and onward. It is this feat
that is like pulling yourself up by your own bootstraps. How can you make the
computer obey a particular instruction when there is “nothing” (of any sensible
value) inside the machine?

There are two common techniques for placing preliminary instructions into
memory:

Force-feeding
With this approach, the hardware engineer assumes that when the RESET
signal is applied, some part of the computer system, typically the floppy
disk controller, can masquerade as memory. Just before the CPU is un
leashed, the floppy disk controller will take control of the computer system
and copy a small program into memory at location 0000H and upward.
Then the CPU is allowed to start executing instructions at location 0000H.
The disk controller preserves the instructions even when power is off
because they are stored in nonvolatile PROM-based firmware. These
instructions make the disk controller read the first sector of the first track
of the system diskette into memory and then transfer control to it.

Shadow ROM
This is a variation of the force-feeding technique. The hardware manu
facturer arranges some ROM at location 0000H. There is also some
normal read/write memory at location 0000H, but this is electronically
disabled when the RESET signal has been activated. The CPU, unleashed
at location 0000H, starts to execute the ROM instruction. The first act of
the ROM program is to copy itself into read/write memory at some
convenient location higher up in memory and transfer control of the
machine up to this copy. Then the real memory at location 0000H can be
turned on, the ROM turned off, and the first sector on the disk read in.

12 The CP/M Programmer’s Handbook

With either technique, the result is the same. The first sector of the disk is read
into memory and control is transferred to the first instruction contained in the
sector.

This first sector contains the main CP/M bootstrap program. This program
initializes some aspects of the hardware and then reads in the remainder of track 0
and most of the sectors on track 1 (the exact number depends on the overall length
of the BIOS itself). The CP/M bootstrap program will contain only the most
primitive diskette error handling, trying to read the disk over and over again if the
hardware indicates that it is having problems reading a sector.

The bootstrap program loads CP/M to the correct place in memory; the load
address is a constant in the bootstrap. If you need to build a version of CP/M that
uses more memory, you will need to change this load address inside the bootstrap
as well as the address to which the bootstrap will jump when all of CP/M has been
read in. This address too is a constant in the bootstrap program.

The bootstrap program transfers control to the first instruction in the BIOS,
the cold boot entry point. “Cold” implies that the operation is starting cold from
an empty computer.

The cold boot code in the BIOS will set up the hardware in your computer.
That is, it programs the various chips that control the speed at which serial ports
transmit and receive data. It initializes the serial port chips themselves and
generally readies the computer system. Its final act is to transfer control to the first
instruction in the BDOS in order to start up CP/M proper.

Once the BDOS receives control, it initializes itself, scans the file directory on
the system diskette, and hands over control to the CCP. The CCP then outputs the
“A > ” prompt to the console and waits for you to enter a command. CP/M is then
ready to do your bidding.

At this point, it is worthwhile to review which CP/M parts are in memory,
where in memory they are, and what functions they perform.

This overview will look at memory first. Figure 2-3 shows the positions in
memory of the Console Command Processor, the Basic Disk Operating System,
and the Basic Input/Output System.

By touching upon these major memory components—the CCP, BDOS, and
BIOS—this discussion will consider which modules interact with them, how
requests for action are passed to them, and what functions they can perform.

Console Command Processor
As you can see in Figure 2-3, the CCP is the first part of CP/M that is

encountered going “up” through memory addresses. This is significant when you
consider that the CCP is only necessary in between programs. When CP/M is idle,
it needs the CCP to interact with you, to accept your next command. Once CP/M
has started to execute the command, the CCP is redundant; any console interac
tion will be handled by the program you are running rather than by the CCP.

Chapter 2: The Structure of CP/M 1 3

Locations in Locations in
Hexadecimal Decimal

FFFFH

FC80H

E680H

DE80H

0100H

0000H

Basic Input/Output System
(BIOS)

Basic Disk Operating System
(BDOS)

Console Command Processor
(CCP)

-65535

-64640

-59008

1-56960

Memory Available for ^
Programs

CP/M Reserved Area
"256

-0

Figure 2-3. Memory layout with CP/M loaded

Therefore, the CCP leads a very jerky existence in memory. It is loaded when you
first start CP/M. When you ask CP/M, via the CCP, to execute a program, this
program can overwrite the CCP and use the memory occupied by the CCP for its
own purposes. When the program you asked for has finished, CP/M needs to
reload the CCP, now ready for its interaction with you. This process of reloading
the CCP is known as a warm boot. In contrast with the cold boot mentioned
before, the warm boot is not a complete “start from cold”; it’s just a reloading of
the CCP. The BDOS and BIOS are not touched.

How does a program tell CP/M that it has finished and that a warm boot must
be executed? By jumping to location 0000H. While the BIOS was initializing itself
during the cold boot routine, it put an instruction at location 0000H to jump to the
warm boot routine, which is also in the BIOS. Once the BIOS warm boot routine

14 The CP/M Programmer’s Handbook

has reloaded the CCP from the disk, it will transfer control to the CCP. (The cold
and warm boot routines are discussed further in Chapter 6.)

This brief description indicates that every command you enter causes a pro
gram to be loaded, the CCP to be overwritten, the program to run, and the CCP to
be reloaded when the program jumps to location 0000H on completing its task.
This is not completely true. Some frequently needed commands reside in the CCP.
Using one of these commands means that CP/M does not have to load anything
from a diskette; the programs are already in memory as part of the CCP. These
commands, known as “intrinsic” or “resident” commands, are listed here with a
brief description of what they do. (All of them are described more thoroughly in
Chapter 4.) The “resident” commands are

DIR Displays which files are on a diskette

ERA Erases files from a diskette

REN Changes the names of files on diskette

TYPE Displays the contents of text files on the console

SAVE Saves some of memory as a file on diskette

USER Changes User File Group.

Basic Disk Operating System
The BDOS is the heart of CP/M. The CCP and all of the programs that you run

under CP/M talk to the BDOS for all their outside contacts. The BDOS performs
such tasks as console input/ output, printer output, and file management (creating,
deleting, and renaming files and reading and writing sectors).

The BDOS performs all of these things in a rather detached way. It is con
cerned only with the logical tasks at hand rather than the detailed action of getting
a sector from a diskette into memory, for example. These “low-level” operations
are done by the BDOS in conjunction with the BIOS.

But how does a program work with the BDOS? By another strategically placed
jump instruction in memory. Remember that the cold boot placed the jump to the
BIOS warm boot routine in location 0000H. At location 0005H, it puts a jump
instruction that transfers control up to the first instruction of the BDOS. Thus,
any program that transfers control to location 0005H will find its way into the
BDOS. Typically, programs make a CALL instruction to location 0005H so that
once the BDOS has performed the task at hand, it can return to the calling
program at the correct place. The program enlisting the BDOS’s help puts special
values into several of the CPU registers before it makes the call to location 0005 H.
These values tell the BDOS what operation is required and the other values needed
for the specific operation.

Chapter 2: The Structure of CP/M 1 5

Basic Input/Output System
As mentioned before, the BDOS deals with the input and output of informa

tion in a detached way, unencumbered by the physical details of the computer
hardware. It is the BIOS that communicates directly with the hardware, the ports,
and the peripheral devices wired to them.

This separation of logical input/output in the BDOS from the physical input/
output in the BIOS is one of the major reasons why CP/M is so popular. It means
that the same version of CP/M can be adapted for all types of computers,
regardless of the oddities of the hardware design. Digital Research will tell you
that there are over 200,000 computers in the world running CP/M. Just about all of
them are running identical copies of the CCP and BDOS. Only the BIOS is
different. If you write a program that plays by the rules and only interacts with the
BDOS to get things done, it will run on almost all of those 200,000 computers
without your having to change a single line of code.

You probably noticed the word “almost” in the last paragraph. Sometimes
programmers make demands of the BIOS directly rather than the BDOS. This
leads to trouble. The BIOS should be off limits to your program. You need to know
what it is and how it works in order to build a customized version of CP/M, but
you must never write programs that talk directly to the BIOS if you want them to
run on other versions of CP/M.

Now that you understand the perils of talking to the BIOS, it is safe to describe
how the BDOS communicates with the BIOS. Unlike the BDOS, which has a
single entry point and uses a value in a register to specify the function to be
performed, the BIOS has several entry points. The first few instructions in the
BIOS are all independent entry points, each taking up three bytes of memory. The
BDOS will enter the BIOS at the appropriate instruction, depending on the
function to be performed. This group of entry points is similar in function to a
railroad marshalling yard. It directs the BDOS to the correct destination in the
BIOS for the function it needs to have done. The entry point group consists of a
series of JUMP instructions, each one three bytes long. The group as a whole is
called the BIOS jump table, or jump vector. Each entry point has a predefined
meaning. These points are detailed and will be discussed in Chapter 6.

CCP, BDOS, and BIOS Interactions
Figure 2-4 summarizes the functions that the CCP, BDOS, and BIOS perform,

the ways in which these parts of CP/M communicate among themselves, and the
way in which one of your programs running under CP/M interacts with the
BDOS.

16 The CP/M Programmer’s Handbook

Basic
Input/Output

System
(BIOS)

Basic
Disk

Operating
System

(BDOS)

Console
Command
Processor

(CCP)

Handles all physical I/O to
console, printer, serial I/O
and disks (customized by user) Entry Points

in JMP Table

Handles all logical I/O to
console, printer, serial I/O
including file management on
disk system.
(Not changed by user)

Handles communication with console;
accepts command lines; has some
commands built-in, or loads them
from disk (Not changed by user)

Program running
under CP/M

----- CALL 5 to make CP/M
requests

---- JMP 0 when finished
processing

L oca tion
5 JMP BDOS

JMP RESTART

Figure 2-4. CP/ M’s functional breakdown

The CP/M File
System

This chapter gives you a close look at the CP/M file system. The Basic Disk
Operating System (BDOS) is responsible for this file system: It keeps a directory
of the files on disk, noting where data are actually stored on the disk. Because the
file system automatically keeps track of this information, you can ignore the
details of which tracks and sectors on the disk have data for a given file.

How CP/M Views the Disk

To manage files on the disk, CP/M works with the disk in logical terms rather
than in physical terms of tracks and sectors. CP/M treats the disk as three major
areas.

These are the reserved area, which contains the bootstrap program and CP/M
itself; the file directory, containing one or more entries for each file stored on the
disk; and the data storage area, which occupies the remainder of the disk. You will

17

18 The CP/M Programmer’s Handbook

be looking at how CP/M allocates the storage to the files as your programs create
them.

The Basic Input/Output System (BIOS) has built-in tables that tell CP/M the
respective sizes of the three areas. These are the disk definition tables, described
later in this chapter.

Allocation Blocks
Rather than work with individual 128-byte sectors, CP/M joins several of these

sectors logically to form an allocation block. Typically, an allocation block will
contain eight 128-byte sectors (which makes it 1024 or 1K bytes long). This makes
for easier disk manipulation because the magnitude of the numbers involved is
reduced. For example, a standard 8-inch, single-density, single-sided floppy disk
has 1950 128-byte sectors; hard disks may have 120,000 or more. By using
allocation blocks that view the disk eight sectors at a time, the number of storage
units to be managed is substantially reduced. The total number is important
because numeric information is handled as 16-bit integers on the 8080 and Z80
microprocessors, and therefore the largest unsigned number possible is 0FFFFH
(65,535 or 64K decimal).

Whenever CP/M refers to a specific allocation block, all that is needed is a
simple number. The first allocation block is number 0, the next is number 1, and so
on, up to the total remaining capacity of the disk.

The typical allocation block contains 1024 (IK) bytes, or eight 128-byte
sectors. For the larger hard disks, the allocation block can be 16,384 (16K) bytes,
which is 128 128-byte sectors. CP/M is given the allocation via an entry in the disk
definition tables in the BIOS.

The size of the allocation block is not arbitrary, but it is a compromise. The
originator of the working BIOS for the system—either the manufacturer or the
operating system’s designer—chooses the size by considering the total storage
capacity of the disk. This choice is tempered by the fact that if a file is created with
only a single byte of data in it, that file would be given a complete allocation block.
Large allocation blocks can waste disk storage if there are many small files, but
they can be useful when a few very large files are called for.

This can be seen better by considering the case of a 1 K-byte allocation block. If
you create a very small file containing just a single byte of data, you will have
allocated an entire allocation block. The remaining 1023 bytes will not be used.
You can use them by adding to the file, but when you first create this one-byte file,
they will be just so much dead space. This is the problem: Each file on the disk will
normally have one partly filled allocation block. If these blocks are very large, the
amount of wasted (unused) space can be very large. With 16K-byte blocks, a
10-megabyte disk with only 3 megabytes of data on it could become logically full,
with all allocation blocks allocated.

On the other hand, when you use large allocation blocks, CP/M’s performance
is significantly improved because the BDOS refers to the file directory less

Chapter 3: The CP/M File System 1 9

frequently. For example, it can read a 16K-byte file with only a single directory
reference.

Therefore, when considering block allocation, keep the following questions in
mind:

How big is the logical disk?
With a larger disk, you can tolerate space wasted by incomplete allocation
blocks.

What is the mean file size?
If you anticipate many small files, use small allocation blocks so that you
have a larger “supply” of blocks. If you anticipate a smaller number of large
files, use larger allocation blocks to get faster file operations.

When a file is first created, it is assigned a single allocation block on the disk.
Which block is assigned depends on what other files you already have on the disk
and which blocks have already been allocated to them. CP/M maintains a table of
which blocks are allocated and which are available. As the file accumulates more
data, it will fill up the first allocation block. When this happens, CP/M will extend
the file and allocate another block to it. Thus, as the file grows, it occupies more
blocks. These blocks need not be adjacent to each other on the disk. The file can
exist as a series of allocation blocks scattered all over the disk. However, when you
need to see the entire file, CP/M presents the allocation blocks in the correct order.
Thus, application programs can ignore allocation blocks. CP/M keeps track of
which allocation blocks belong to each file through the file directory.

The File Directory
The file directory is sandwiched between the reserved area and the data storage

area on the disk. The actual size of the directory is defined in the BIOS’s disk
definition tables. The directory can have some binary multiple of entries in it, with
one or more entries for each file that exists on the disk. For a standard 8-inch
floppy diskette, there will be room for 64 directory entries; for a hard disk, 1024
entries would not be unusual. Each directory entry is 32 bytes long.

Simple arithmetic can be used to calculate how much space the directory
occupies on a standard floppy diskette. For example, for a floppy disk the formula
is 64 X 32 = 2048 bytes = 2 allocation blocks of 1024 bytes each.

The directory entry contains the name of the file along with a list of the
allocation blocks currently used by the file. Clearly, a single 32-byte directory entry
cannot contain all of the allocation blocks necessary for a 5-megabyte file,
especially since CP/M uses only 16 bytes of the 32-byte total for storage of
allocation block numbers.

Extents
Often CP/M will need to control files that need many allocation blocks. It does

this by creating more than one directory entry. Second and subsequent directory

20 The CP/M Programmer’s Handbook

entries have the same file name as the first. One of the other bytes of the directory
entry is used to indicate the directory entry sequence number. Each new directory
entry brings with it a new supply of bytes that can be used to hold more allocation
block numbers. In CP/M jargon, each directory entry is called an extent. Because
the directory entry for each extent has 16 bytes for storing allocation block
numbers, it can store either 16 one-byte numbers or 8 two-byte numbers. There
fore, the total number of allocation blocks possible in each extent is either 8 (for
disks with more than 255 allocation blocks) or 16 (for smaller disks).

File Control Blocks
Before CP/M can do anything with a file, it has to have some control informa

tion in memory. This information is stored in a file control block, or FCB. The
FCB has been described as a motel for directory entries — a place for them to
reside when they are not at home on the disk. When operations on a file are
complete, CP/M transforms the FCB back into a directory entry and rewrites it
over the original entry. The FCB is discussed in detail at the end of this chapter.

As a summary, Figure 3-1 shows the relationships between disk sectors,
allocation blocks, directory entries, and file control blocks.

The Making of a File

To reinforce what you already know about the CP/M file system, this section
takes you on a “walk-through” of the events that occur when a program running
under CP/M creates a file, writes data to it, and then closes the file.

Assume that a program has been loaded in memory and the CPU is about to
start executing it. First, the program will declare space in memory for an FCB and
will place some preset values there, the most important of which is the file name.
The area in the FCB that will hold the allocation block numbers as they are
assigned is initially filled with binary 0’s. Because the first allocation block that is
available for file data is block 1, an allocation block number of 0 will mean that no
blocks have been allocated.

The program starts executing. It makes a call to the BDOS (via location
0005 H) requesting that CP/M create a file. It transfers to the BDOS the address in
memory of the FCB. The BDOS then locates an available entry in the directory,
creates a new entry based on the FCB in the program, and returns to the program,
ready to write data to the file. Note that CP/M makes no attempt to see if there is
already a file of the same name on the disk. Therefore, most real-world programs
precede a request to make a file with a request to delete any existing file of the same
name.

The program now starts writing data to the file, 128-byte sector by 128-byte
sector. CP/ M does not have any provision for writing one byte at a time. It handles
data sector-by-sector only, flushing sectors to the disk as they become full.

Chapter 3: The CP/M File System 21

Physical
Sectors

Diskette Allocation Blocks Containing
Reserved Area File Directory File Data and Unused Blocks

Figure 3-1. The hierarchical relationship between sectors, allocation blocks,
directory entires, and FCBs

The first time a program asks CP/M (via a BDOS request) to write a sector
onto the file on the disk, the BDOS finds an unused allocation block and assigns it
to the file. The number of the allocation block is placed inside the FCB in memory.
As each allocation block is filled up, a new allocation block is found and assigned,
and its number is added to the list of allocation blocks inside the FCB. Finally,
when the FCB has no more room for allocation block numbers, the BDOS

• Writes an updated directory entry out to the disk.

22 The CP/M Programmer’s Handbook

• Seeks out the next spare entry in the directory.
• Resets the FCB in memory to indicate that it is now working on the second

extent of the file.
• Clears out the allocation block area in the FCB and waits for the next sector

from the program.

Thus the process continues. New extents are automatically opened until the
program determines that it is time to finish, writes the last sector out to the disk,
and makes a BDOS request to close the file. The BDOS then converts the FCB
into a final directory entry and writes to the directory.

Directory Entry
The directory consists of a series of 32-byte entries with one or more entries for

each file on the disk. The total number of entries is a binary multiple. The actual
number depends on the disk format (it will be 64 for a standard floppy disk and
perhaps 2048 for a hard disk).

Figure 3-2 shows the detailed structure of a directory entry. Note that the
description is actually Intel 8080 source code for the data definitions you would
need in order to manipulate a directory entry. It shows a series of EQU instruc
tions— equate instructions, used to assign values or expressions to a label, and in
this case used to access an entry. It also shows a series of DS or define storage
instructions used to declare storage for an entry. The comments on each line
describe the function of each of the fields. Where data elements are less than a byte
long, the comment identifies which bits are used.

As you study Figure 3-2, you will notice some terminology that as yet has not
been discussed. This is described in detail in the sections that follow.

File User Number (Byte 0) The least significant (low order) four bits of byte 0 in the
directory entry contain a number in the range 0 to 15. This is the user number in
which the file belongs. A better name for this field would have been file group
number. It works like this: Suppose several users are sharing a computer system
with a hard disk that cannot be removed from the system without a lot of trouble.
How can each user be sure not to tamper with other users’ files? One simple way
would be for each to use individual initials as the first characters of any file names.
Then each could tell at a glance whether a file was another’s and avoid doing
anything to anyone else’s files. A drawback of this scheme is that valuable
character positions would be used in the file name, not to mention the problems
resulting if several users had the same initials.

The file user number is prefixed to each file name and can be thought of as part
of the name itself. When CP/M is first brought up, User 0 is the default user—the
one that will be chosen unless another is designated. Any files created will go into
the directory bearing the user number of 0. These files are referred to as being in
user area 0. However, with a shared computer system, arrangements must be made

Chapter 3: The CP/M File System 23

for multiple user areas. The USER command makes this possible. User numbers
and areas can range from 0 through 15. For example, a user in area 7 would not be
able to get a directory of, access, or erase files in user area 5.

This user-number byte serves a second purpose. If this byte is set to a value of
0E5H, CP/M considers that the file directory entry has been deleted and com
pletely ignores the remaining 31 bytes of data. The number 0E5H was not chosen
whimsically. When IBM first defined the standard for floppy diskettes, they chose
the binary pattern 11100101 (0E5H) as a good test pattern. A new floppy diskette
formatted for use has nothing but bytes of 0E5H on it. Thus, the process of erasing
a file is a “logical” deletion, where only the first byte of the directory entry is
changed to 0E5H. If you accidentally delete a file (and provided that no other
directory activity has occurred) it can be resurrected by simply changing this first
byte back to a reasonable user number. This process will be explained in Chapter
1 1 .

File Name and Type (Bytes 1 - 8 and 9 - 11) As you can see from Figure 3-2, the file name
in a directory entry is eight bytes long; the file type is three. These two fields are
used to name a file unambiguously. A file name can be less than eight characters
and the file type less than three, but in these cases, the unused character positions
are filled with spaces.

Whenever file names and file types are written together, they are separated by a
period. You do not need the period if you are not using the file type (which is the
same as saying that the file type is all spaces). Some examples of file names are

READ. ME
LONGNAME.TYP
1
1.2

0000 = FDE*USER EQU 0 ;File user number (LS 4 bits)
0001 = FDE$NAME EQU 1 ;F^ile name (8 bytes)
0009 = FDEiTYP EQU 9 jFile type

;0ffsets for bits used in type
0009 = FDE$RO EQU 9 jBit 7 = 1 - Read only
000A = FDE*SYS EQU 10 jBit 7 = 1 - System status
000B = FDE$CHANGE EQU 11 ;Bit 7 = 0 = File Written To

000C » FDESEXTENT EQU 12 ;Extent number
;13, 14 reserved for CP/M

000F = FDESRECUSED EQU 15 jRecords used in this extent
0010 = FDE♦ABUSED EQU 16 jAllocation blocks used

0000 FD$USER: DS ;File user number
0001 FD$NAME: DS 8 jFile name
0009 FD^TYP: DS 3 ;File type
oooc FD^EXTENTs DS 1 ;Extent
000D FD$RESVs DS 2 ;Reserved for CP/M
000F FD$RECUSED: DS 1 jRecords used in this extent
0010 FD$ABUSED: DS 16 ^Allocation blocks used

Figure 3-2. Data declarations for CP/M’s file directory entries

24 The CP/M Programmer’s Handbook

A file name and type can contain the characters A through Z, 0 through 9, and
some of the so-called “mark” characters such as “/ ” and You can also use
lowercase letters, but be careful. When you enter commands into the system using
the CCP, it converts all lowercases to uppercases, so it will never be able to find
files that actually have lowercase letters in their directory entries. Avoid using the
“mark” characters excessively. Ones you can use are

! @ # $ % () - + /

Characters that you must not use are

< > . , ; : = ?*[]

These characters are used by CP/M in normal command lines, so using them in file
names will cause problems.

You can use odd characters in file names to your advantage. For example, if
you create files with nongraphic characters in their names or types, the only way
you can access these files will be from within programs. You cannot manipulate
these files from the keyboard except by using ambiguous file names (described in
the next section). This makes it more difficult to erase files accidentally since you
cannot specify their names directly from the console.

Ambiguous File Names CP/M has the capability to refer to one or more file names by
using special “wild card” characters in the file names. The “?” is the main wildcard
character. Whenever you ask CP/M to do something related to files, it will match a
“?” with any character it finds in the file name. In the extreme case, a file name and
type of “????????.???” will match with any and all file names.

As another example, all the chapters of this book were held in files called
“CHAP1.DOC,” “CHAP2.DOC,” and so on. They were frequently referred to,
however, as “CHAP77.DOC.” Why two question marks? If only one had been
used, for example, “CHAP7.DOC,” CP/M would not have been able to match this
with “CHAP10.DOC” nor any other chapter with two digits. The matching that
CP/M does is strictly character-by-character.

Because typing question marks can be tedious and special attention must be
paid to the exact number entered, a convenient shorthand is available. The asterisk
character “* ” can be used to mean “as many ?’s as you need to fill out the name or
the type field.” Thus, “????????.???” can be written “*.*” and “CHAP77.DOC”
could also be rewritten “CHAP*.DOC.”

The use of “*” is allowed only when you are entering file names from the
console. The question mark notation, however, can be used for certain BDOS
operations, with the file name and type field in the FCB being set to the “7” as
needed.

File Type Conventions Although you are at liberty to think up file names without
constraint, file types are subject to convention and, in one or two cases, to the
mandate of CP/M itself.

Chapter 3: The CP/M File System 25

The types that will cause problems if you do not use them correctly are

.ASM
Assembly language source for the ASM program

.MAC
Macro assembly language

.HEX
Hexadecimal file output by assemblers

.REL
Relocatable file output by assemblers

.COM
Command file executed by entering its name alone

.PRN
Print file written to disk as a convenience

.LIB
Library file of programs

.SUB
Input for CP/M SUBMIT utility program

Examples of conventional file types are
.C

C source code
.PAS

Pascal source code
.COB

COBOL source code
.FTN

FORTRAN source code
.APL

APL programs
.TX T

Text files
.DOC

Documentation files
.INT

Intermediate files
.DTA

Data files

26 The CP/M Programmer’s Handbook

.IDX
Index files

.$$$
Temporary files

The file type is also useful for keeping several copies of the same file, for
example, “TEST.001,” “TEST.002,” and so on.

File Status Each one of the states Read-Only, System, and File Changed requires only a
single bit in the directory entry. To avoid using unnecessary space, they have been
slotted into the three bytes used for the file type field. Since these bytes are stored
as characters in ASCII (which is a seven-bit code), the most significant bit is not
used for the file type and thus is available to show status.

Bit 7 of byte 9 shows Read-Only status. As its name implies, if a file is set to be
Read-Only, CP/M will not allow any data to be written to the file or the file to be
deleted.

If a file is declared to be System status (bit 7 of byte 10), it will not show up
when you display the file directory. Nor can the file be copied from one place to
another with standard CP/M utilities such as PIP unless you specifically ask the
utility to do so. In normal practice, you should set your standard software tools
and application programs to be both Read-Only and System status / Read-Only, so
that you cannot accidentally delete them, and System status, so that they do not
clutter up the directory display.

The File Changed bit (bit 7 of byte 11) is always set to 0 when you close a file to
which you have been writing. This can be useful in conjunction with a file backup
utility program that sets this bit to 1 whenever it makes a backup copy. Just by
scanning the directory, this utility program can determine which files have changed
since it was last run. The utility can be made to back up only those files that have
changed. This is much easier than having to remember which files you have
changed since you last made backup copies.

With a floppy disk system, there is less need to worry about backing up on a
file-by-file basis — it is just as easy to copy the whole diskette. This system is useful,
however, with a hard disk system with hundreds of files stored on the disk.

File Extent (Byte 12) Each directory entry represents a file extent. Byte 12 in the directory
entry identified the extent number. If you have a file of less than 16,384 bytes, you
will need only one extent—number 0. If you write more information to thie file,
more extents will be needed. The extent number increases by 1 as each new extent
is created.

The extent number is stored in the file directory because the directory entries
are in random sequence. The BDOS must do a sequential search from the top of
the directory to be sure of finding any given extent of a file. If the directory is large,
as it could be on a hard disk system, this search can take several seconds.

Chapter 3: The CP/M File System 27

Reserved Bytes 13 and 14 These bytes are used by the proprietary parts of CP/M’s file
system. From your point of view, they will be set to 0.

Record Number (Byte 15) Byte 15 contains a count of the number of records (128-byte
sectors) that have been used in the last partially filled allocation block referenced
in this directory entry. Since CP/M creates a file sequentially, only the most recent
ly allocated block is not completely full.

Disk Map (Bytes 16-31) Bytes 16-31 store the allocation block numbers used by each
extent. There are 16 bytes in this area. If the total number of allocation blocks (as
defined by you in the BIOS disk tables) is less than 256, this area can hold as many
as 16 allocation block numbers. If you have described the disk as having more than
255 allocation blocks, CP/M uses this area to store eight two-byte values. In this
case allocation blocks can take on much larger values.

A directory entry can store either 8 or 16 allocation block numbers. If the file
has not yet expanded to require this total number of allocation blocks, the unused
positions in the entry are filled with zeros. You may think this would create a
problem because it appears that several files will have been allocated block 0 over
and over. In fact, there is no problem because the file directory itself always
occupies block 0 (and depending on its size several of the blocks following). For all
practical purposes, block 0 “does not exist,” at least for the storage of file data.

Note that if, by accident, the relationship between files and their allocation
blocks is scrambled—that is, either the data in a given block is overwritten, or two
or more active directory entries contain the same block number—CP/M cannot
access information properly and the disk becomes worthless.

Several commercially available utility programs manipulate the directory. You
can use them to inspect and change a damaged directory, reviving accidentally
erased files if you need to. There are other utilities you can use to logically remove
bad sectors on the disk. These utilities find the bad areas, work backward from the
track and sector numbers, and compute the allocation block in which the error
occurs. Once the block numbers are known, they create a dummy file, either in
user area 15 or, in some cases, in an “impossible” user area (one greater than 15),
that appears to “own” all the bad allocation blocks.

A good utility program protects the integrity of the directory by verifying that
each allocation block is “owned” by only one directory entry.

Disk Definition Tables

As mentioned previously, the BIOS contains tables telling the BDOS how to
view the disk storage devices that are part of the computer system. These tables are
built by you. If you are using standard 8-inch, single-sided, single-density floppy

28 The CP/M Programmer’s Handbook

diskettes, you can use the examples in the Digital Research manual CPjM 2
Alteration Guide. But if you are using some other, more complex system, you must
make some careful judgments. Any mistakes in the disk definition tables can
create serious problems, especially when you try to correct diskettes created using
the erroneous tables. You, as a programmer, must ensure the correctness of the
tables by being careful.

One other point before looking at table structures: Because the tables exist and
define a particular disk “shape” does not mean that such a disk need necessarily be
connected to the system. The tables describe logical disks, and there is no way for
the physical hardware to check whether your disk tables are correct. You may have
a computer system with a single hard disk, yet describe the disk as though it were
divided into several logical disks. CP/M will view each such “disk” independently,
and they should be thought of as separate disks.

Disk Parameter Header Table

This table is the starting point in the disk definition tables. It is the topmost
structure and contains nothing but the addresses of other structures. There is one
entry in this table for each logical disk that you choose to describe. There is an
entry point in the BIOS that returns the address of the parameter header table for a
specific logical disk.

An example of the code needed to define a disk parameter header table is
shown in Figure 3-3.

Sector Skewing (Skewtabie) To define sector skewing, also called sector interlacing,
picture a diskette spinning in a disk drive. The sectors in the track over which the
head is positioned are passing by the head one after another—sector 1, sector 2,
and so on — until the diskette has turned one complete revolution. Then the
sequence repeats. A standard 8-inch diskette has 26 sectors on each track, and the
disk spins at 360 rpm. One turn of the diskette takes 60/360 seconds, about 166
milliseconds per track, or 6 milliseconds per sector.

Now imagine CP/M loading a program from such a diskette. The BDOS takes
a finite amount of time to read and process each sector since it reads only a single
sector at a time. It has to make repeated reads to load a program. By the time the
BDOS has read and loaded sector n, it will be too late to read sector n + 1. This
sector will have already passed by the head and will not come around for another
166 milliseconds. Proceeding in this fashion, almost 4 ^ seconds are needed to read
one complete track.

This problem can be solved by simply numbering the sectors logically so that
there are several physical sectors between each logical sector. This procedure,
called sector skewing or interlace, is shown in Figure 3-4. Note that unlike physical
sectors, logical sectors are numbered from 0 to 25.

Figure 3-4 shows the standard CP/M sector interlace for 8-inch, single-sided,
single-density floppy diskettes. You see that logical sector 0 has six sectors between

Chapter 3: The CP/M File System 29

DPBA SE: ¡Base of the parameter header
; (used to access the headers)

0000 1000 DW SKEWTABLE ¡Pointer to logical-to-physical
¡ sector conversion table

0002 0000 DU 0 ¡Scratch pad areas used by CP/M
0004 0000 DW 0
0006 0000 DW 0
0008 2A00 DW DIRBUF ¡Pointer to Directory Buffer

¡ work area
000A AAOO DW DPBO ¡Pointer to disk parameter block
OOOC B900 DW WACD ¡Pointer to work area (used to

¡ check for changed diskettes)
OOOE C900 DW ALVECO ¡Pointer to allocation vector

¡
The following equates would normally be derived from

; values found in the disk parameter Block.
; They are shown here only for the sake of completeness.

003F = NODE EQU 63 ¡Number of directory entries 1
OOF 2 = NOAB EQU 242 ¡Number of allocation blocks

?
Example data definitions for those objects pointed

r to by the disk parameter header

SKEWTABLE: ¡Sector skew table.
¡ Indexed by logical sector

0010 01070D13 DB 01,07,13,19 ¡Logical sectors 0,1,2,3
0014 19050B11 DB 25,05,11,17 ¡4,5,6,7
0018 1703090F DB 23,03,09,15 ¡8,9,10,11
001C 1502080E DB 21,02,08,14 ¡12,13,14,15
0020 141A060C DB 20,26,06,12 ¡16,17,18,19
0024 1218040A DB 18,24,04,10 ¡20,21,22,23
0028 1016 DB 16,22 ¡24,25

002A DIRBUF: DS 128 ¡Directory buffer
OOAA DPBOs DS 15 ¡Disk parameter block

¡This is normally a table of
¡ constants.
¡A dummy definition is shown
¡ here

00B9 MACD: DS (N O D E + D / 4 ¡Work area to check directory
¡Only used for removable media

00C9 ALVECO: DS (NOAB/8)+1 ¡Allocation vector #0
¡Needs 1 bit per allocation
¡ block

Figure 3-3. Data declarations for a disk parameter header

it and logical sector 1. There is a similar gap between each of the logical sectors, so
that there are six “sector times” (about 38 milliseconds) between two adjacent
logical sectors. This gives ample time for the software to access each sector.
However, several revolutions of the disk are still necessary to read every sector in
turn. In Figure 3-4, the vertical columns of logical sectors show which sectors are
read on each successive revolution of the diskette.

The wrong interlace can strongly affect performance. It is not a gradual effect,
either; if you “miss” the interlace, the perceived performance will be very slow. In
the example given here, six turns of the diskette are needed to read the whole
track — this lasts one second as opposed to 4x/i without any interlacing. But don’t
imagine that you can change the interlace with impunity; files written with one
interlace stay that way. You must be sure to read them back with the same interlace
with which they were written.

Some disk controllers can simplify this procedure. When you format the
diskette, they can write the sector addresses onto the diskette with the interlace
already built in. When CP/M requests sector n, the controller’s electronics wait
until they see the requested sector’s header fly by. They then initiate the read or
write operation. In this case you can embed the interlace right into the formatting
of the diskette.

Because the wrong interlace gives terrible performance, it is easy to know when
you have the right one. Some programmers use the time required to format a
diskette as the performance criterion to optimize the interlace. This is not good
practice because under normal circumstances you will spend very little time
formatting diskettes. The time spent loading a program would be a better arbiter,
since far more time is spent doing this. You might argue that doing a file update
would be even more representative, but most updates produce slow and sporadic
disk activity. This kind of disk usage is not suitable for setting the correct interlace.

Hard disks do not present any problem for sector skewing. They spin at 3600
rpm or faster, and at that speed there simply is no interlace that will help. Some

30 The CP/M Programmer’s Handbook

Figure 3-4. Physical to logical sector skewing

Chapter 3: The CP/M File System 31

tricks can be played to improve the performance of a hard disk—these will be
discussed in the section called “Special Considerations for Hard Disks,” later in
this chapter.

To better understand these theories, study an example of the standard inter
lace table, or skexvtable. Bear in mind that the code that will access this table will
first be given a logical sector. It will then have to return the appropriate physical
sector.

Figure 3-5 shows the code for the skew table and the code that can be used to
access the table. The table is indexed by a logical sector and the corresponding
table entry is the physical sector. You can see that the code assumes that the first
logical sector assigned by CP/M will be sector number 0. Hence there is no need to
subtract 1 from the sector number before using it as a table subscript.

Unused Areas in the Disk Parameter Header Table The three words shown as O s in
Figure 3-3 are used by CP/M as temporary variables during disk operations.

Directory Buffer (DIRBUF) The directory buffer is a 128-byte area used by CP/M to store a
sector from the directory while processing directory entries. You only need one
directory buffer; it can be shared by all of the logical disks in the system.

Disk Parameter Block (DPBO) The disk parameter block describes the particular charac
teristics of each logical disk. In general, you will need a separate parameter block
for each type of logical disk. Logical disks can share a parameter block only if their

0000 01070D13
SKEWTABLE:

DB 01,07,13,19
Logical sector
0,1,2,3

0004 19050B11 DB 25,05,11,17 4,5,6,7
0003 1703090F DB 23,03,09,15 8,9,10,11
OOOC 1502080E DB 21,02,08,14 12,13,14,15
0010 141A060C DB 20,26,06,12 16,17,18,19
0014 1213040A DB 18,24,04,10 20,21,22,23
0018 1016 DB 16,22 24,25

The code to translate logical sectors to physical
sectors is as follows:

On entry, the logical sector will be transferred from
CP/M as a 16-bit value in registers BC.
CP/M also transfers the address of the skew table
in registers DE (it finds the skew table by looking in
the disk parameter header entry).

On return, the physical sector will be placed
in registers HL.

001A
00 IB

EB
09

SECTRAN:
XCHG
DAD B

HL -> skew table base address
HL -> physical sector

001C 6E MOV L, M
entry in skew table

L = physical sector
00 ID 60 MOV H, 0 HL = Physical Sector
00 IE C9 RET Return to BDOS

Figure 3-5. Data declarations for the standard skewtable for standard diskettes

32 The CP/M Programmer’s Handbook

characteristics are identical. You can, for example, use a single parameter block to
describe all of the single-sided, single-density diskette drives that you have in the
system. However, you would need another parameter block to describe double
sided, double-density diskette drives. It is also rare to be able to share parameter
blocks when a physical hard disk is split up into several logical disks. You will
understand why after looking at the contents of a parameter block, described later
in this chapter.

Work Area to Check for Changed Diskettes (WACD) One of the major problems that
CP/M faces when working with removable media such as floppy diskettes is that
the computer operator, without any warning, can open the diskette drive and
substitute a different diskette. On early versions of CP/M, this resulted in the
newly inserted diskette being overwritten with data from the original diskette.

With the current version of CP/M, you can request that CP/M check if the
diskette has been changed. Given this request, CP/M examines the directory
entries whenever it has worked on the directory and, if it detects that the diskette
has been changed, declares the whole diskette to be Read-Only status and inhibits
any further writing to the diskette. This status will be in effect until the next warm
boot operation occurs. A warm boot occurs whenever a program terminates or a
CONTROL-C is entered to the CCP, resetting the operating system.

The value of WACD is the address of a buffer, or temporary storage area, that
CP/M can use to check the directory. The length of this buffer is defined (some
what out of place) in the disk parameter block.

Allocation Vector (ALVECO) CP/M views each disk as a set of allocation blocks, assign
ing blocks to individual files as those files are created or expanded, and relinquish
ing blocks as files are deleted.

CP/M needs some mechanism for keeping track of which blocks are used and
which are free. It uses the allocation vector to form a bit map, with each bit in the
map corresponding to a specific allocation block. The most significant bit (bit 7) in
the first byte corresponds to the first allocation block, number 0. Bit 6 corresponds
to block 1, and so on for the entire disk.

Whenever you request CP/M to use a logical disk, CP/M will log in the disk.
This consists of reading down the file directory and, for each active entry or extent,
interacting with the allocation blocks “owned” by that particular file extent. For
each block number in the extent, the corresponding bit in the allocation vector is
set to 1. At the end of this process, the allocation vector will accurately represent a
map of which blocks are in use and which are free.

When CP/M goes looking for an unused allocation block, it tries to find one
near the last one used, to keep the file from becoming too fragmented.

In order to reserve enough space for the allocation vector, you need to reserve
one bit for each allocation block. Computing the number of allocation blocks is
discussed in the section “Maximum Allocation Block Number,” later in this
chapter.

Chapter 3: The CP/M File System 33

Disk Parameter Block
The disk parameter block in early versions of CP/M was built into the BDOS

and was a closely guarded secret of the CP/M file system. To make CP/M
adaptable to hard disk systems, Digital Research decided to move the parameter
blocks out into the BIOS where everyone could adapt them. Because of the
proprietary nature of CP/M’s file system, you will still see several odd-looking
fields, and you may find the explanation given here somewhat superficial. How
ever, the lack of explanation in no way detracts from your ability to use CP/M as a
tool.

Figure 3-6 shows the code necessary to define a parameter block for 8-inch,
single-sided diskettes. This table is pointed to by—that is, its address is given
in—an entry in the disk parameter header. Each of the entries shown in the disk
parameter block is explained in the following sections.

Sectors Per Track This is the number of 128-byte sectors per track. The standard diskette
shown in the example has 26 sectors. As you can see, simply telling CP/M that
there are 26 sectors per track does not indicate whether the first sector is num
bered 0 or 1. CP/M assumes that the first sector is 0; it is left to a sector translate
subroutine to decipher which physical sector this corresponds to.

Hard disks normally have sector sizes larger than 128 bytes. This is discussed in
the section on considerations for hard disks.

Block Shift, Block Mask, and Extent Mask These mysteriously named fields are used
internally by CP/M during disk file operations. The values that you specify for
them depend primarily on the size of the allocation block that you want.

Allocation block size can vary from 1024 bytes (IK) to 16,384 bytes (16K).
There is a distinct trade-off between these two extremes, as discussed in the section
on allocation blocks at the beginning of this chapter.

An allocation block size of 1024 (IK) bytes is suggested for floppy diskettes
with capacities up to 1 megabyte, and a block size of 4096 (4K) bytes for larger
floppy or hard disks.

0000 1A00
DPBO:

DW 26 ïSectors per track
0002 03 DB 3 ;Bloqk shift
0003 07 DB 7 ; Block mask
0004 03 DB 3 ^Extent mask
0005 F200 DW 242 ;Max. allocation block number
0007 3F00 DW 63 ;Number of directory entries 1
0009 CO DB 1100*0000B ;Bit map for allocation blocks
000A 00 DB 0000$0000B j used for directory
000B 1000 DW 16 jNo. of bytes in dir. check buffer
OOOD 0200 DW 2 ;No. of tracks before directory

Figure 3-6. Data declarations for the disk parameter block for standard diskettes

34 The CP/M Programmer’s Handbook

If you can define which block size you wish to use, you can now select the
values for the block shift and the block mask from Table 3-1.

Table 3-1. Block Shift and Mask Value

Allocation Block Size Block Shift Block Mask

1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

Select your required allocation block size from the left-hand column. This tells
you which values of block shift and mask to enter into the disk parameter block.

The last of these three variables, the extent mask, depends not only on the
block size but also on the total storage capacity of the logical disk. This latter
consideration is only important for computing whether or not there will be fewer
than 256 allocation blocks on the logical disk. Just divide the chosen allocation
block size into the capacity of the logical disk and check whether you will have
fewer than 256 blocks.

Keeping this answer and the allocation block size in mind, refer to Table 3-2
for the appropriate value for the extent mask field of the parameter block. Select
the appropriate line according to the allocation block size you have chosen. Then,
depending on the total number of allocation blocks in the logical disk, select the
extent mask from the appropriate column.

Table 3-2. Extent Mask Value

Allocation Block Size
Number of Allocation Blocks

1 to 255 256 and Above

1,024 0 (Impossible)
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

Maximum Allocation Block Number This value is the number of the last allocation
block in the logical disk. As the first block number is 0, this value is one less than
the total number of allocation blocks on the disk. Where only a partial allocation
block exists, the number of blocks is rounded down.

Chapter 3: The CP/M File System 35

Figure 3-7 has an example for standard 8-inch, single-sided, single-density
diskettes. Note that CP/M uses two reserved tracks on this diskette format.

Number of Directory Entries Minus 1 Do not confuse this entry with the number of files
that can be stored on the logical disk; it is only the number of entries (minus one).
Each extent of each file takes one directory entry, so very large files will consume
several entries. Also note that the value in the table is one less than the number of
entries.

On a standard 8-inch diskette, the value is 63 entries. On a hard disk, you may
want to use 1023 or even 2047. Remember that CP/M performs a sequential scan
down the directory and this takes a noticeable amount of time. Therefore, you
should balance the number of logical disks with your estimate of the largest file size
that you wish to support.

As a final note, make sure to choose a number of entries that fits evenly into
one or more allocation blocks. Each directory entry needs 32 bytes, so you can
compute the number of bytes required. Make sure this number can be divided by
your chosen allocation block size without a remainder.

Allocation Blocks for the Directory This is a strange value; it is not a number, but a bit
map. Looking at Figure 3-6, you see the example value written out in full as a
binary value to illustrate how this value is defined. This 16-bit value has a bit set to
1 for each allocation block that is to be used for the file directory.

This value is derived from the number of directory entries you want to have on
the disk and the size of the allocation block you want to use. One given, or

Physical characteristics: Calculate:
77 Tracks/ Diskette 77 Tracks/ Diskette
26 Sectors/Track - 2 Tracks Reserved for CP/M

128 Bytes/ Sector 75 Tracks for File Storage
2

1024
Tracks Reserved for CP/M
Bytes/^Allocation Block

X26 Number of Sectors
1950 Sectors for File Storage

X 128 Bytes per Sector
249,600 Bytes for File Storage

-r- 1024 Bytes/Allocation Block
243.75 Total Number of

Allocation Blocks
242 Number of the last

allocation block
(rounded and based on
first block being Block 0)

Figure 3-7. Computing the maximum allocation block number for standard diskettes

36 The CP/M Programmer’s Handbook

constant, in this derivation is that the size of each directory entry is 32 bytes.
In the example, 64 entries are required (remember the number shown is one

less than the required value). Each entry has 32 bytes. The total number of bytes
required for the directory thus is 64 times 32, or 2048 bytes. Dividing this by the
allocation block size of 1024 indicates that two allocation blocks must be reserved
for the directory. You can see that the example value shows this by setting the two
most significant bits of the 16-bit value.

As a word of warning, do not be tempted to declare this value using a DW
(define word) pseudo-operation. Doing so will store the value byte-reversed.

Size Of Buffer for Directory Checking As mentioned before in the discussion of the disk
parameter header, CP/M can be requested to check directory entries whenever it is
working on the directory. In order to do this, CP/M needs a buffer area, called the
work area to check for changed diskettes, or WACD, in which it can hold working
variables that keep a compressed record of what is on the directory. The length of
this buffer area is kept in the disk parameter block; its address is specified in the
parameter header. Because CP/M keeps a compressed record of the directory, you
need only provide one byte for every four directory entries. You can see in Figure
3-6 that 16 bytes are specified to keep track of the 64 directory entries.

Number of Tracks Before the Directory Figure 3-8 shows the layout of CP/M on a
standard floppy diskette. You will see that the first two tracks are reserved,
containing the initial bootstrap code and CP/M itself. Hence the example in
Figure 3-6, giving the code for a standard floppy disk, shows two reserved tracks
(the number of tracks before the directory).

This track offset value, as it is sometimes called, provides a convenient method
of dividing a physical disk into several logical disks.

Special Considerations for Hard Disks
If you want to run CP/M on a hard disk, you must provide code and build

tables that make CP/M work as if it were running on a very large floppy disk. You
must even include 128-byte sectors. However, this is not difficult to do.

To adapt hard disks to the 128-byte sector size, you must provide code in the
disk driver in your BIOS that will present the illusion of reading and writing
128-byte sectors even though it is really working on sectors of 512 bytes. This code
is called the blocking/deblocking routine.

If hard disks have sector sizes other than 128 bytes, what of the number of
sectors per track, and the number of tracks?

Hard disks come in all sizes. The situation is further confused by the disk
controllers, the hardware that controls the disk. In many cases, you can think of
the hard disk as just a series of sectors without any tracks at all. The controller,
given a relative sector number by the BIOS, can translate this sector number into
which track, read/write head (if there is more than one platter), and sector are
actually being referenced.

Chapter 3: The CP/M File System 37

Logical
Sector

Tracks

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

0

Bootstrap

Console
Command
Processor

(CCP)

1 2

Basic
Disk

Operating
System

(BDOS)

Allocation
Block

#0

File I
A "

Directory

Alloc
Bl<

#

1
nation
3ck
1

Basic
Input/
Output
System
(BIOS)

Allocation
Block

#2

1

■i b
3 76

i b

Allocation
Block

#3

Allocation
Block
#240

Allocation
Block

#4

Allocation
Block
#241

Allocation
Block

#5

Allocation
Block

#6

Allocation
Block
#242

Unused
Sectors

Figure 3-8. Layout of standard diskette

Furthermore, most hard disks rotate so rapidly that there is nothing to be
gained by using a sector-skewing algorithm. There is just no way to read more than
one physical sector per revolution; there is not enough time.

In many cases it is desirable to divide up a single, physical hard disk into
several smaller, logical disks. This is done mainly for performance reasons:
Several smaller disks, along with smaller directories, result in faster file operations.

The disk parameter header will have 0’s for the skewtable entry and the pointer
to the WACD buffer. In general, hard disks cannot be changed, at least not without
turning off the power and swapping the entire disk drive. If you are using one of
the new generation of removable hard disks, you will need to use the directory
checking feature of CP/M.

The disk parameter block for a hard disk will be quite different from that used
for a floppy diskette. The number of sectors per track needs careful consideration.
Remember, this is the number of 128-byte sectors. The conversion from the
physical sector size to 128-byte sectors will be done in the disk driver in the BIOS.

38 The CP/M Programmer’s Handbook

If you have a disk controller that works in terms of sectors and tracks, all you
need do is compute the number of 128-byte sectors on each track. Multiply the
number of physical sectors per track by their size in bytes and then divide the
product by 128 to give the result as the number of 128-byte sectors per physical
track.

But what of those controllers that view their hard disks as a series of sectors
without reference to tracks? They obscure the fact that the sectors are arranged on
concentric tracks on the disk’s surface. In this case, you can play a trick on CP/M.
You can set the “sectors per track” value to the number of 128-byte sectors that will
fit into one of the disk’s physical sectors. To do this, divide the physical sector size
by 128. For example, a 512-byte physical sector size will give an answer of four
128-byte sectors per “track.” You can now view the hard disk as having as many
“tracks” as there are physical sectors. By using this method, you avoid having to do
any kind of arithmetic on CP/M’s sector numbers; the “track” number to which
CP/M will ask your BIOS to move the disk heads will be the relative physical
sector. Once the controller has read this physical sector for you, you can look at the
128-byte sector number, which will be 0,1,2, or 3 (for a 512-byte physical sector) in
order to select which 128 bytes need to be moved in or out of the disk buffer.

The block shift, block mask, and extent mask will be computed as before. Use
a 4096-byte allocation block size. This will yield a value of 5 for the block shift, 31
for the block mask, and given that you will have more than 256 allocation blocks
for each logical disk, an extent mask value of 1.

The maximum allocation block number will be computed as before. Keep
clear in your mind whether you are working with the number of physical sectors
(which will be larger than 128 bytes) or with 128-byte sectors when you are
computing the storage capacity of each logical disk.

The number of directory entries (less 1) is best set to 511 for logical disks of 1
megabyte and either 1023 or 2047 for larger disks. Remember that under CP/M
version 2 you cannot have a logical disk larger than 8 megabytes.

The allocation blocks for the directory are also computed as described for
floppy disks.

As a rule, the size of the directory check buffer (WADC) will be set to 0, since
there is no need to use this feature on hard disk systems with fixed media.

The number of tracks before the directory (track offset) can be used to divide
up the physical disk into smaller logical disks, as shown in Figure 3-9.

There is no rule that says the tracks before a logical disk’s directory cannot be
used to contain other complete logical disks. You can see this in Figure 3-9. CP/M
behaves as if each logical disk starts at track 0 (and indeed they do), but by
specifying increasingly larger numbers of tracks before each directory, the logical
disks can be staggered across the available space on the physical disk.

Figure 3-10 shows the calculations involved in the first phase of building disk
parameter blocks for the hard disk shown in Figure 3-9. The physical characteris
tics are those imposed by the design of the hard disk. As a programmer, you do not
have any control over these; however, you can choose how much of the physical

Chapter 3: The CP/M File System 39

Track Track Track Track Track
0 10 58 211 363

Logical Disk A Logical Disk 3 Logical Disk C

C
211----------------------------- * 4

A
'H-10H

Reserved
Tracks

B
■58-

Figure 3-9. Dividing hard disks into logical disks

disk is assigned to each logical disk, the allocation block size, and the number of
directory entries. You can see that logical disk A is much smaller than disks B and
C, and that B and C are the same size. Disk A will be the systems disk from which
most programs will be loaded, so its smaller directory size will make program
loading much faster. The allocation block size for disk A is also smaller in order to
reduce the amount of space wasted in partially filled allocation blocks.

Figure 3-10 also shows the calculations involved in computing the maximum
allocation block number. Again, note that once the total number of allocation
blocks has been computed, it is necessary to round it down in the case of any
fractional components and then subtract 1 to get the maximum number (the first
block being 0).

Figure 3-11 shows the actual values that will be put into the parameter blocks.
It is assumed that the disk controller is one of those types that view the physical
disk as a series of contiguous sectors and make no reference to tracks; the internal
electronics and firmware in the controller take care of these details. For this
reason, CP/M is told that each physical sector is a “track” in CP/M’s terms. Each
“track” has 512 bytes and can therefore store four 128-byte sectors. You can see this
is the value that is in the sectors/“track” field.

The block shift and mask values are obtained from Table 3-1, using the
allocation block size previously chosen. Then, with both the allocation block size
and the maximum number of allocation blocks (see Figure 3-10), the extent mask
can be obtained from Table 3-2. You can see in Figure 3-11 that extent mask values
of 1 were obtained for all three logical disks even though two different allocation
block sizes have been chosen, and even though disk A has less than 256 blocks and
disks B and C have more.

40 The CP/M Programmer’s Handbook

Physical Characteristics: Calculate:
364 Tracks/Disk
20 Sectors/Track A: B: and C:

512 Bytes/Sector 48 153 Tracks assigned to Disk
10,240 Bytes/Track X 10,240 X 10,240 Bytes/Track

491,520 1,566,720 Bytes/Disk
-î- 2048 + 4096 Bytes/Allocation Block

Chosen Logical Characteristics: 240 382.5 Number of Allocation Blocks

Allocation 239 381 Maximum Block Number
Tracks ¿lock Size

Reserved Area 10 n/a
Disk A: 48 2048
Disk B: 153 4096
Disk C: 153 4096

Figure 3-10. Computing the maximum allocation block number for a hard disk

DPBAs DPBB: DPBC:
4 4 4
4 5 5
15 31 31
1 1 1
239 381 381
255 1023 1023
11110000B 11111111B 11111111B
OOOOOOOOB OOOOOOOOB OOOOOOOOB
0 0 0
(10) (58) (211)
200 1160 4220

¡128-byte sectors/"track"
;Block shift
¡Block mask
;Extent mask
;Max. all. block #
;No. of directory entries
¡Bit Map for allocation blocks
¡ used for directory
¡No. of bytes in dir.check buffer
¡Actual tracks before directory
¡"Tracks" before directory

Figure 3-11. Disk parameter tables for a hard disk

The bit map showing how many allocation blocks are required to hold the file
directory is computed by multiplying the number of directory entries by 32 and
dividing the product by the allocation block size. This yields results of 4 for disk A
and 8 for disks B and C. As you can see, the bit maps have the appropriate number
of bits set.

Since most of the hard disks on the market today do not have removable
media, the lengths of the directory checking buffer are set to 0.

The number of “tracks” before the directory requires a final touch of skull
duggery. Having already indicated to CP/M that each “track” has four sectors, you
need to continue in the same vein and express the number of real tracks before the
directories in units of 512-byte physical sectors.

As a final note, if you are specifying these parameter blocks for a disk
controller that requires you to communicate with it in terms of physical tracks and
128-byte sectors, then the number of sectors per track must be set to 80 (twenty

Chapter 3: The CP/M File System 41

512-byte sectors per physical track). You would also have to change the number of
tracks before the directory by stating the number of physical tracks (shown in
parentheses on Figure 3-11).

Adding Additional Information to the Parameter Block
Normally, some additional information must be associated with each logical

disk. For example, in a system that has several physical disks, you need to identify
where each logical disk resides. You may also want to identify some other physical
parameters, disk drive types, I/O port numbers, and addresses of driver sub
routines.

You may be tempted to extend the disk parameter header entry because there is
a separate header entry for each logical disk. But the disk parameter header is
exactly 16 bytes long; adding more bytes makes the arithmetic that we need to use
in the BIOS awkward. The best place to put these kinds of information is to prefix
them to the front of each disk parameter block. The label at the front of the block
must be left in the same place lest CP/M become confused. Only special additional
code that you write will be “smart” enough to look in front of the block in order to
find the additional parameter information.

File O rganizations

CP/M supports two types of files: sequential and random. CP/M views both
types as made up of a series of 128-byte records. Note that in CP/M’s terms, a
record is the same as a 128-byte sector. This terminology sometimes gets in the
way. It may help to think of 128-byte sectors as physical records. Applications
programs manipulate logical records that bear little or no relation to these
physical records. There is code in the applications programs to manipulate logical
records.

CP/M does not impose any restrictions on the contents of a file. In many cases,
though, certain conventions are used when textual data is stored. Each line of text
is terminated by ASCII c a r r ia g e r e t u r n and l in e f e e d . The last sector of a
text file is filled with ASCII SUB characters; in hexadecimal this is 1 AH.

File Control Blocks
In order to get CP/M to work on a file, you need to provide a structure in which

both you and the BDOS can keep relevant details about the file, its name and type,
and so on. The file control block (FCB) is a derivative of the file directory entry, as
you can see in Figure 3-12. This figure shows both a series of equates that can be
used to access an entry and a series of DB (define byte) instructions to declare an
example.

The first difference you will see between the file directory entry and the FCB is
that the very first byte is serving a different purpose. In the FCB, it is used to

42 The CP/M Programmer’s Handbook

specify on which disk the file is to be found. You may recall that in the directory,
this byte indicates the user number for a given entry. When you are actually
processing files, the current user number is set either by the operator in a command
from the console or by a BDOS function call; this predefines which subset of files
in the directory will be processed. Therefore, the FCB does not need to keep track
of the user number.

The disk number in the FCB’s first byte is stored in an odd way. A value of 0
indicates to CP/M that it should look for the file on the current default disk. This
default disk is selected either by an entry from the console or by making a specific
BDOS call from within a program. In general, the default disk should be preset to
the disk that contains the set of programs with which you are working. This avoids
unnecessary typing on the keyboard when you want to load a program.

A disk number value other than 0 represents a letter of the alphabet based on a
simple codification scheme of A = 1, B = 2, and so on.

As you can see from Figure 3-12, the file name and type must be set to the
required values, and for sequential file processing, the remainder of the FCB can
be set to zeros. Strictly speaking, the last three bytes of the FCB (the random
record number and the random record overflow byte) need not even be declared if
you are never going to process the file randomly.

This raises a subtle conceptual point. Random files are only random files
because you process them randomly. Though this sounds like a truism, what it
means is that CP/M’s files are not intrinsically random or sequential. What they
are depends on how you choose to process them at any given point. Therefore,

0000 FCBESDISK EQU 0 {Disk drive (0 = default, 1=A)
0001 = FCBE$NAME EQU 1 {File name (8 bytes)
0009 = FCBE$TYP EQU 9 {File type

{Offsets for bits used in type
0009 = FCBE$RO EQU 9 {Bit 7 = 1 - read only
OOOA = FCBESSYS EQU 10 {Bit 7 = 1 - system status
OOOB = FCBESCHANGE EQU 11 ;Bit 7 = 0 - file written to

OOOC = FCBE$EXTENT EQU 12 ;Extent number
;13, 14 reserved for CP/M

OOOF = FCBE$RECUSED EQU 15 {Records used in this extent
0010 = FCBESABUSED EQU 16 {Allocation blocks used
0020 = FCBE*SEQREC EQU 32 {Sequential rec. to read/write
0021 = FCBEÎRANREC EQU 33 {Random rec. to read/write
0023 = FCBESRANRECO EQU 35 {Random rec. overflow byte (MS)

0000 00 FCB*DISK: DB 0 {Search on default disk drive
0001 46494C454EFCB*NAME! DB 'FILENAME' {File name
0009 545950 FCB$TYPs DB 'TYP' {File type
OOOC 00 FCB*EXTENT: DB 0 {Extent
OOOD 0000 FCB*RESVs DB 0,0 {Reserved for CP/M
OOOF 00 FCB$RECUSED : DB 0 {Records used in this extent
0010 0000000000FCB*ABUSED! DB 0,0,0,0,,0,0,0,0 {Allocation blocks used
0018 0000000000 DB 0,0,0,0, 0,0,0,0
0020 00 FCBSSEQREC: DB 0 {Sequential rec. to read/write
0021 0000 FCB*RANRECs DW 0 {Random rec. to read/write
0023 00 FCB*RANRECO: DB 0 {Random rec. overflow byte (MS)

Figure 3-12. Data declarations for the FCB

Chapter 3: The CP/M File System 43

while the manner in which you process them will be different, there is nothing
special built into the file that predicates how it will be used.

Sequential Files
A sequential file begins at the beginning and ends at the end. You can view it as

a contiguous series of 128-byte “records.”
In order to create a sequential file, you must declare a file control block with

the required file name and type and request the BDOS to create the file. You can
then request the BDOS to write, “record” by “record” (really 128-byte sector by
128-byte sector) into the file. The BDOS will take care of opening up new extents
as it needs to. When you have written out all the data, you must make a BDOS
request to close the file.

To read an existing file, you also need an FCB with the required file name and
type declared. You then make a BDOS request to open the file for processing and a
series of Read Sequential requests, each one bringing in the next “record” until
either your program detects an end of file condition (by examining the data
coming in from the file) or the BDOS discovers that there are no more sectors in
the file to read. There is no need to close a file from which you have been reading
data — but do close it. This is not necessary if you are going to run the program
only under CP/M, but it is necessary if you want to run under MP/M (the
multiuser version of CP/M).

What if you need to append further information to an existing file? One option
is to create a new file, copy the existing file to the new one, and then start adding
data to the end of the new file. Fortunately, with CP/M this is not necessary. In the
FCB used to read a file, the name and the type were specified, but you can also
specify the extent number. If you do, the BDOS will proceed to open (if it can find
it) the extent number that you are asking for. If the BDOS opens the extent
successfully, all you need do is check if the number of records used in the extent
(held in the field FCB$RECUSED) is less than 128 (80H). This indicates the extent
is not full. By taking this record number and placing it into the FCBSSEQREC
(sequential record number) byte in the FCB, you can make CP/M jump ahead and
start writing from the effective end of the file.

Random Files
Random files use a simple variation of the technique described above. The

main difference is that the random record number must be set in the FCB. The
BDOS automatically keeps track of file extents during Read/Write Random
requests. (These requests are explained more fully in Chapter 5.)

Conceptually, random files need a small mind-twist. After creating a file as
described earlier, you must set the random record number in the FCB before each
Write Random request. This is the two-byte value called FCBSRANREC in
Figure 3-12. Then, when you give the Write Random request to the BDOS, it will

44 The CP/M Programmer’s Handbook

look at the record number; compute in which extent the record must exist; if
necessary, create the directory entry for the extent; and finally, write out the data
record. Using this scheme, you can dart backward and forward in the file putting
records at random throughout the file space, with CP/M creating the necessary
directory entries each time you venture into a part of the file that has not yet been
written to.

The same technique is used to read a file randomly. You set the random record
number in the FCB and then give a system call to the BDOS to open the correct
extent and read the data. The BDOS will return an error if it cannot find the
required extent or if the particular record is nonexistent.

Problems lie in wait for the unwary. Before starting to do any random reading
or writing, you must open up the file at extent 0 even though this extent may not
contain any data records. For a new file, this can be done with the Create File
request, and for an existing file with the normal Open File request. If you create a
sparse file, one that has gaps in between the data, you may have some problems
manipulating the file. It will appear to have several extents, each one being
partially full. This will fool some programs that normally process sequential files;
they don’t expect to see a partial extent except at the end of a file, and may treat the
wrong spot as the end.

Functions of the CCP
Editing the CCP Command Line

Built-In Commands
Program Loading

Base Page
Memory Dumps of the Base Page
Processing the Command Tail
Available Memory
Communicating with the BIOS
Returning to CP/M

The Console
Command Processor
(CCP)

The Console Command Processor processes commands that you enter from
the console. As you may recall from the brief overview in Chapter 2, the CCP is
loaded into memory immediately below the BDOS. In practice, many programs
deliberately overwrite the CCP in order to use the memory it normally occupies.
This gives these programs an additional 800H bytes (2K bytes).

When one of these “transient programs” terminates, it relinquishes control to
the BIOS, which in turn reloads a fresh copy of the CCP from the system tracks of
the disk back into memory and then transfers control to it. Consequently, the CCP
leads a sporadic existence—an endless series of being loaded into memory,
accepting a command from you at the console, being overwritten by the program

45

46 The CP/M Programmer’s Handbook

you requested to be loaded, and then being brought back into memory when the
program terminates.

This chapter discusses what the CCP does for you in those brief periods when it
is in memory.

Functions o f the CCP

Simply put, once the CCP has control of the machine, so do you. The CCP
announces its presence by displaying a prompt of two characters: a letter of the
alphabet for the current default disk drive and a “greater than” sign. In the
example A >, the A tells you that the default disk drive is currently set to be logical
drive A, and the “> ,” that the message was output by the CCP.

Once you see the prompt, the CCP is ready for you to enter a command line. A
command line consists of two major parts: the name of the command and,
optionally, some values for the command. This last part is known as the command
tail.

The command itself can be one of two things: either the name of a file or the
name of one of the frequently used commands built into the CCP.

If you enter the name of one of the built-in commands, the CCP does not need
to go out to the disk system in order to load the command for execution. The
executable code is already inside the CCP.

If the name of the command you entered does not match any of the built-in
commands (the CCP has a table of their names), the CCP will search the
appropriate logical disk drive for a file with a matching name and a file type of
“COM’’(which is short for command). You do not enter “.COM” when invoking a
command — the CCP assumes a file type of “COM.”

If you do not precede the name of the COM file with a logical disk drive
specification, the CCP will search the current default drive. If you have prefixed
the COM file’s name with a specific logical drive, the CCP will look only on that
drive for the program. For example, the command M YPROG will cause the CCP
to look for a file called “MYPROG.COM” on the current default drive, whereas
C:M YPROG would make the CCP search only on drive C.

If you enter a command name that matches neither the CCP’s built-in com
mand table nor the name of any COM file on the specified disk, the CCP will
output the command name followed by a question mark, indicating it is unable to
find the file.

Editing the CCP Command Line
The CCP uses a line buffer to store what you type until you strike either a

CARRIAGE RETU RN or a LINE FEED. If you make an error or change your mind, you
can modify the incomplete command, even to the point of discarding it.

Chapter 4: The Console Command Processor (CCP) 47

You edit the command line by entering control characters from the console.
Control characters are designated either by the combination of keys required to
generate them from the keyboard or by their official name in the ASCII character
set. For example, c o n t r o l -j is also known as c a r r ia g e r e t u r n or CR.

Whenever CP/M has to represent control characters, the convention is to
indicate the “control” aspect of a character with a caret (“A”). For example,
c o n t r o l -a will appear as “A A”, c o n t r o l -z as “ A z ”, and so on. But if you press the
c o n t r o l key with the normal shift key and the “6” key, this will produce a
CONTROL-A or “AA”. The representation of control keys with the caret is only
necessary when outputting to the console or the printer—internally, these charac
ters are held as their appropriate binary values.

CONTROL-C: Warm Boot If you enter a CONTROL-C as the first character of a command
line, the CCP will initiate a warm boot operation. This operation resets CP/M
completely, including the disk system. A fresh copy of the CCP is loaded into
memory and the file directory of the current default disk drive is scanned,
rebuilding the allocation bit map held in the BIOS (as discussed in Chapter 3).

The only time you would initiate a warm boot operation is after you have
changed a diskette (or a disk, if you have removable media hard disks). Thus,
CP/M will reset the disk system.

Note that a CONTROL-C only initiates a warm boot if it is the first character on a
command line. If you enter it in any other position, the CCP will just echo it to the
screen as “A C”. If you have already entered several characters on a command line,
use CONTROL-U or CONTROL-X to cancel the line, and then use CONTROL-C to
initiate a warm boot. You can tell a warm boot has occurred because there will be a
noticeable pause after the CONTROL-C before the next prompt is displayed. The
system needs a finite length of time to scan the file directory and rebuild the
allocation bit map.

CONTROL-E: Physical End-of-Line The CONTROL-E command is a relic of the days of the
teletype and terminals that did not perform an automatic carriage return and line
feed when the cursor went off the screen to the right. When you type a CONTROL-E,
CP/M sends a CARRIAGE r e t u r n / l i n e f e e d command to the console, but does
not start to execute the command line you have typed thus far. CONTROL-E is, in
effect, a physical end-of-line, not a logical one.

As you can see, you will need to use this command only if your terminal either
overprints (if it is a hard copy device) or does not wrap around when the cursor
gets to the right-hand end of the line.

CONTROL-H: Backspace The CONTROL-H command is the ASCII backspace character.
When you type it, the CCP will “destructively” backspace the cursor. Use it to
correct typing errors you discover before you finish entering the command line.
The last character you typed will disappear from the screen. The CCP does this by
sending a three-character sequence of backspace, space, backspace to the console.

48 The CP/M Programmer’s Handbook

The CCP ignores attempts to backspace over its own prompt. It also takes care
of backspacing over control characters that take two character positions on the
line. The CCP sends the character sequence backspace, backspace, space, space,
backspace, backspace, erasing both characters.

CONTROL-J: Line Feed/CONTROL-M: Carriage Return The CONTROL-J command is
the ASCII LINE FEED character; CONTROL-M is the CARRIAGE RETURN. Both of
these characters terminate the command line. The CCP will then execute the
command.

CONTROL-P: Printer Echo The CONTROL-P command is used to turn on and off a feature
called printer echo. When it is turned on, every character sent to the console is also
sent to CP/M’s list device. You can use this command to get a hard copy of
information that normally goes only to the console.

CONTROL-P is a “toggle.’’The first time you type CONTROL-P it turns on printer
echo; the next time you type CONTROL-P it turns off printer echo. Whenever
CP/M does a warm boot, printer echo is turned off.

There is no easy way to know whether printer echo is on or off. Try typing a few
c a r r ia g e r e t u r n s , and see whether the printer responds; if it does not, type
CONTROL-P and try again.

One of the shortcomings in most CP/M implementations is that the printer
drivers (the software in the BIOS that controls or “drives” the printer) do not
behave very intelligently if the printer is switched off or not ready when you or your
program asks it to print. Under these circumstances, the software will wait forever
and the system will appear to be dead. So if you “hang” the system in this way
when you type a CONTROL-P, check that the printer is turned on and ready.
Otherwise, you may have to reset the entire system.

CONTROL-R: Repeat Command Line The CONTROL-R command makes the CCP repeat
or retype the current input line. The CCP outputs a “#” character, a CARRIAGE
RETURN/LINE FEED, and then the entire contents of the command line buffer. This
is a useful feature if you are working on a teletype or other hard copy terminal and
have used the RUB or DEL characters. Since these characters do not destructively
delete a character, you can get a visually confusing line of text on the terminal. The
CONTROL-R character gives you a fresh copy of the line without any of the logically
deleted characters cluttering it up. In this way you can see exactly what you have
typed into the command line buffer.

See the discussion of the RUB and DEL characters for an example of CONTROL-
R in use.

CONTROL-S: Stop Screen Output The c o n t r o l -s command is the ASCII x o f f (also
called DC3) character; XOFF is an abbreviation for “Transmit Off.” Typing
CONTROL-S will temporarily stop output to the console. In a standard version of

Chapter 4: The Console Command Processor (CCP) 49

CP/M, the CCP will resume output when any character is entered (including
another CONTROL-S) from the console. Thus, you can use CONTROL-S as a toggle
switch to turn console output on and off.

In some implementations of CP/M, the console driver itself (the low-level code
in the BIOS that controls the console) will be maintaining a communication
protocol with the console; therefore, a better way of resuming console output after
pausing with a CONTROL-S is to use CONTROL-Q, the ASCII XON or “Transmit On”
character. Entering a CONTROL-Q instead of relying on the fact that any character
may be used to continue the output is a fail-safe measure.

The commands CONTROL-S and CONTROL-Q are most useful when you have
large amounts of data on the screen. By “riding” the CONTROL-S and CONTROL-Q
keys, you can let the data come to the screen in small bursts that you can easily
scan.

CONTROL-U or CONTROL-X: Undo Command Line The commands CONTROL-U and
CONTROL-X perform the same function: They erase the current partially entered
command line so that you can undo any mistakes and start over. The CONTROL-U
command was originally intended for hard copy terminals. The CCP outputs a “#”
character, then a CARRIAGE RETURN/LINE FEED, and then some blanks to leave
the cursor lined up and ready for you to enter the next command line. It leaves
what you originally entered in the previous line on the screen. The CONTROL-X
command is more suited to screens; the CCP destructively backspaces to the
beginning of the command line so that you can reenter it.

RUB or DEL: Delete Last Character The rubout or delete function (keys marked RUB,
RUBOUT, DEL, or d e l e t e) nondestructively deletes the last character that you
typed. That is, it deletes the last character from the command line buffer and
echoes it back to the console.

Here is an example of a command line with the last few characters deleted
using the RUB key:

A>RUN PAYROLLLLORYAPSALES
A A A A A A A

DELeted

You can see that the command line very quickly becomes unreadable. If you
lose track of what are data characters and what has been deleted, you can use
CONTROL-R to get a fresh copy of what is in the command line buffer.

The example above would then appear as follows:

A>RUN PAYROLLLLORYAPSALES#
RUN SALES..

The “#” character is output by the CCP to indicate that the line has been

50 The CP/M Programmer’s Handbook

repeated. The represents the position of the cursor, which is now ready to
continue with the com m and line.

Built-In Com m ands

When you enter a com m and line and press either CARRIAGE RETURN or LINE
FEED, the CCP will check if the com m and name is one o f the set o f built-in
com m ands. (It has a small table of com m and names embedded in it, against which
the entered com m and name is checked.) If the com m and name matches a built-in
one, the CCP executes the com m and immediately.

The next few sections describe the built-in com m ands that are available;
however, refer to O sborne C P/M User Guide, second edition by Thom Hogan
(Berkeley: Osborne/M cG raw-H ill, 1982) for a more com prehensive discussion
with exam ples of the various forms of each com m and.

X: — Changing Default Disk Drives The default drive is the currently active drive that
CP/M uses for all file access whenever you do not nom inate a specific drive. If you
wish to change the default drive, simply enter the new default drive’s identifying
letter followed by a colon. The CCP responds by changing the name of the disk
that appears in the prompt line.

On hard disks, this simple operation may take a second or two to com plete
because the BD O S, requested by the CCP to log in the drive, must read through
the disk directory and rebuild the allocation vector for the disk. If you have a
diskette or a disk that is removable, changing it and performing a warm boot has
the same effect o f refreshing C P/M ’s image of which allocation blocks are used and
which are available. It takes longer on a hard disk because, as a rule, the directories
are much larger.

DIR — Directory Of Files In its simplest form , the DIR com m and displays a listing o f the
files set to Directory status in the current user number (or file group) on the current
default drive. Therefore, when you do not ask for any files after the DIR com m and,
a file name o f is assum ed. This is a total wildcard, so all files that have not
been given System status will be displayed. This is the only built-in com m and
where an omitted file name reference expands to “all file names, all file types.”

You can display the directory of a different drive by specifying the drive in the
same com m and line as the DIR com m and.

You can qualify the files you want displayed by entering a unique or ambiguous
file name or extension. Only those files that match the given file name specification
will be displayed, and even then, only those files that are not set to System status
will appear on the screen. (The standard CP/M utility program STAT can be used
to change files from SYS to DIR status.)

Chapter 4: The Console Command Processor (CCP) 51

Another side effect of the DIR command and files that are SYS status is best
illustrated by an example. Imagine that the current logical drive B has two files on it
called SYSFILE (which has SYS status) and NONSYS (which does not). Look at
the following console dialog, in which user input is underlined:

B>DIR<cr>
B: NONSYS SYSFILE does not show
B>PIR JUNK<cr>
NO FILE JUNK does not exist
B>PIR SYSFILE<cr>
B>

Do you see the problem? If a file is not on the disk, the CCP will display NO
FILE (or NOT FOUND in earlier versions of CP/M). However, if the file does
exist but is a SYS file, the CCP does not display it because of its status; nor does
the CCP say NO FILE. Instead it quietly returns to the prompt. This can be
confusing if you are searching for a file that happens to be set to SYS status. The
only safe way to find out if the file does exist is to use the STAT utility.

ERA — Erase a File The ERA command logically removes files from the disk (logically
because only the file directory is affected; the actual data blocks are not changed).

The logical delete changes the first byte of each directory entry belonging to a
file to a value of 0E5 H. As you may recall from the discussion on the file directory
entry in Chapter 3, this first byte usually contains the file user number. If it is set to
0E5H, it marks the entry as being deleted.

ERA makes a complete pass down the file directory to logically delete all of the
extents of the file.

Unlike DIR, the ERA command does not assume “all files, all types” if you
omit a file name. If it did, it would be all too easy to erase all of your files by
accident. You must enter to erase all files, and even then, you must reassure
the CCP that you really want to erase all of them from the disk. The actual dialog
looks like the following:

A>er a b ; *K cr>
ALL (Y7Nl?x<cr>
A>_

If you change your mind at the last minute, you can press “n”and the CCP will
not erase any files.

One flaw in CP/M is that the ERA command only asks for confirmation when
you attempt to erase all of your files using a name such as “* .* ” or “*.???”. Consider
the impact of the following command:

A>ERA **. C??<cr>
A>

The CCP with no hesitation has wiped out all files that have a file type starting
with the letter “C” in the current user number on logical disk A.

52 The CP/M Programmer’s Handbook

If you need to use an ambiguous file name in an ERA command, check which
files you will delete by first using a STAT command with exactly the same
ambiguous file name. STAT will show you all the files that match the ambiguous
name, even those with SYS status that would not be displayed by a DIR command.

There are several utility programs on the market with names like UNERA or
WHOOPS, which take an ambiguous file name and reinstate the files that you may
have accidentally erased. A design for a version of UNERASE is discussed in
Chapter 11.

If you attempt to erase a file that is not on the specified drive, the CCP will
respond with a NO FILE message.

REN — Rename a File The REN command renames a file, changing the file name, the file
type, or both. In order to rename, you need to enter two file names, the new name
and the current file name.

To remember the correct name format, think of the phrase new = old. The
actual command syntax is

A>ren newf i le , t yp=oldfjLle. t yp<cr>
A>_

You can use a logical disk drive letter to specify on which drive the file exists. If
you specify the drive, you only need to enter it on one of the file names. If you enter
the drive with both file names, it must be the same letter for both.

Unlike the previous built-in command, REN cannot be used with ambiguous
file names. If you try, the CCP echoes back the ambiguous names and a question
mark, as in the following dialog:

A>ren chap«. doc=chapter*. doc<cr>
CHAP*.bdc=CHAPTER*.DOC?
A>_

If the REN command cannot find the old file, it will respond NO FILE. If the
new file already exists, the message FILE EXISTS will be displayed. If you receive
a FILE EXISTS message and want to check that the new file does exist, remember
that it is better to use the STAT command than DIR. The extant file may be
declared to be SYS status and therefore will not appear if you use the DIR
command.

TYPE-Type a Text File The TYPE command copies the specified file to the console. You
cannot use ambiguous file names, and you will need to press c o n t r o l -s if the file
has more data than pan fill one screen. With the TYPE command, the data in the
file will fly past on the screen unless you stop the display by pressing CONTROL-S.
Be careful, because if you type any other character, the TYPE command will abort
and return control to the CCP.

Chapter 4: The Console Command Processor (CCP) 53

Once you have had time to see what is displayed on the screen, you can press
CONTROL-Q to resume the output of data to the console. With standard CP/M
implementations, you will discover that any character can be used to restart the
flow of data; however, use CONTROL-Q as a fail-safe measure. CONTROL-s (X-OFF)
and CONTROL-Q (x-ON) conform to the standard protocol which should be used.

If you need to get hard copy output of the contents of the file, you should type a
CONTROL-P command before you press the CARRIAGE RETURN at the end of the
TYPE command line.

As you may have inferred, the TYPE command should only be used to output
ASCII text files. If for some reason you use the TYPE command with a file that
contains binary information, strange characters will appear on the screen. In fact,
you may program your terminal into some state that can only be remedied by
turning the power off and then on again. The general rule therefore is only use the
TYPE command with ASCII text files.

SAVE — Save Memory Image on Disk The SAVE command is the hardest of the CCP’s
commands to explain. It is more useful to the programmer than to a typical end
user. The format of this command is

A>SAVE n FILENAME.TYP<cr>
A>_

The SAVE command creates a file of the specified name and type (or over
writes an existing file of this name and type), and writes into it the specified
number n of memory pages. A page in CP/M is 256 (100H) bytes. The SAVE
command starts writing out memory from location 100H, the start of the Transient
Program Area (TPA). Before you use this command, you will normally have
loaded a program into the TPA. The SAVE command does just what its name
implies: It saves an image of the program onto a disk file.

More often than not, when you use the SAVE command the file type will be
“.COM.” With the file saved in this way, the CCP will be able to load and execute
the file.

USER — Change User Numbers As mentioned before, the directory of each logical disk
consists of several directories that are physically interwoven but logically separated
by the user number. When you use a specific user number, those files that were
created when you were in another user number are logically not available to you.

The USER command provides a way for you to move from one user number to
another. The command format is

A>USER n<cr>
A>_

where n can be any number from 0 to 15. Any other number will provoke the CCP
to echoing back your entry, followed by a question mark.

54 The CP/M Programmer’s Handbook

But once you have switched back and forth between user numbers several
times, it is easy to become confused about which user number you are in. The
STAT command can be used to find the current user number. If you are in a user
number that does not make a copy of STAT available to you however, all you can
do is use the USER command to set yourself to another user number. You cannot
find out which user number you were in; you can only tell the system the user
number you want to go to.

In the custom BIOS systems discussed later, there is a way of displaying the
current user number each time a warm boot occurs. If you are building a system in
which you plan to utilize CP/M’s user number features, you should give this
display of the current user number serious thought. If you are in the wrong user
number and erase files, you can create serious problems.

Some implementations of CP/M have modified the CCP so that the prompt
shows the current user number as well as the default drive (similar to the prompt
used in MP/M). However, this use of a nonstandard CCP is not a good practice.
As a rule, customization should be confined to the BIOS.

Program Loading

The first area to consider when loading a program is the first 100H bytes of
memory, called the base page. Several fields — units in this area of memory—are
set to predetermined values before a program takes control.

To aid in this discussion, imagine a program called COPYFILE that copies one
file to another. This program expects you to specify the source and destination file
names on the command line. A typical command would read

A>copyfile tofile.typ fromfile.typ display

Notice the word “display.” COPYFILE will, if you specify the “display” option,
output the contents of the source file (“fromfile.typ”) on the console as the transfer
takes place.

When you press the CARRIAGE RETURN key at the end of the command line,
the CCP will search the current default drive (“A” in the example) and load a file
called COPYFILE.COM into memory starting at location 100H. The CCP then
transfers control to location 100H—just past the base page—and COPYFILE
starts executing.

Base Page
The base page normally starts from location 0000H in memory, but where

there is other material in low memory addresses, it may start at a higher address.
Figure 4-1 shows the assembly language code you will need to access the base page.
RAM is assumed to start at location 0000H in this example.

Chapter 4: The Console Command Processor (CCP) 55

0000 = RAM EQU 0 ;Start of RAM (and the base page)
;You may need to change this to
; some other value (e.g. 4300H)

0000 • ORG RAM ;Set location counter to RAM base
0000 WARMBOOT: DS 3 ;Contains a JMP to warm boot entr

; iri BIOS Jump vector table

0002 = BIOSPAGE EQU RAM+2 ;BI0S Jump vector page

0003 IGBYTE: DS 1 ;Input/output redirection byte

0004 CURUSER: DS 1 ;Current user (bits 7-4)
0004 = CURDISK EQU CURUSER ;Default logical disk (bits 3-0)

0005 BD OS E: DS 3 :Contains a JMP to BDOS entry
0007 = TOPRAM EQU BDOSE+2 ;Top page of usable RAM

0005C
:

ORG RAM+5CH ;Bypass unused locations

005C FCBl : DS 16 jFile control block #1
;Note: if you use this FCB here
; you will overwrite FCB2 below.

006C FCB2: DS 16 jFile control block #2
iYou must move this to another
; place before using it

0080
»
COMTAILs

ORG RAM+80H ;Bypass unused locations

;Complete command tail
0080 COMT AIL*COUNT: DS 1 jCount of the number of chars

; in command tail (CR not incl.)
0081 COMT AIL$CHARS: DS 127 ;Characters in command tail

; converted to uppercase and
j without trailing carriage ret.

0080
»

ORG RAM+80H ;Redefine command tail area

0080 DMABUFFER: DS 128 ;Default "DMA" address used
i as a 128-byte record buffer

0100
TPA:

ORG RAM+100H ;Bypass unused locations
jStart of transient program area
? into which programs are loaded.

Figure 4-1. Base page data declarations

Some versions of CP/M, such as the early Heathkit/Zenith system, have ROM
from location 0000H to 42FFH. Digital Research, responding to market pressure,
produced a version of CP/M that assumed RAM starting at 4300H. If you have
one of these systems, you must add 4300H to all addresses in the following
paragraphs except for those that refer to addresses at the top of memory. These
will not be affected by the presence of ROM in low memory.

The individual values used in fields in the base page are described in the
following sections.

WarmbOOt The three-byte warmboot field contains an instruction to jump up to the high
end of RAM. This JM P instruction transfers control into the BIOS and triggers a
warm boot operation. As mentioned before, a warm boot causes CP/M to reload
the CCP and rebuild the allocation vector for the current default disk. If you need

56 The CP/M Programmer’s Handbook

to cause a warm boot from within one of your assembly language programs, code

JMP 0 ;Warm Boot

BIOSPAGE The BIOS has several different entry points; however, they are all clustered
together at the beginning of the BIOS. The first few instructions of the BIOS look
like the following:

JMP ENTRY1
JMP ENTRY2
JMP ENTRY3 ?and so on

Because of the way CP/M is put together, the first jump instruction always
starts on a page boundary. Remember that a page is 256 (100H) bytes of memory,
so a page boundary is an address where the least significant eight bits are zero. For
example, the BIOS jump vector (as this set of JMPs is called) may start at an
address such as F200H or E600H. The exact address is determined by the size of
the BIOS.

By looking at the BIOSPAGE, the most significant byte of the address in the
warmboot JM P instruction, the page address of the BIOS jump vector can be
determined.

IOBYTE CP/M is based on a philosophy of separating the physical world from CP/M’s
own logical view of the world. This philosophy also applies to the character-
oriented devices that CP/M supports.

The IOBYTE consists of four two-bit fields that can be used to assign a physical
device to each of the logical ones. It is important to understand that the IOBYTE
itself is just a passive data structure. Actual assignment occurs only when the
physical device drivers examine the IOBYTE, interpreting its contents and select
ing the correct physical drive for the cooperation of the BIOS. These device drivers
are the low-level (that is, close to machine language) code in the BIOS that actually
interfaces and controls the physical device.

The four logical devices that CP/M knows about are
1. The console. This is the device through which you communicate with

CP/M. It is normally a terminal with a screen and a keyboard. The console
is a bidirectional device: It can be used as a source for information (input)
and a destination to which you can send information (output).

In CP/M terminology, the console is known by the symbolic name of
“CON:”. Note the —this differentiates the device name from a disk file
that might be called “CON.”

2. The list device. This is normally a printer of some sort and is used to make
hard copy listings. CP/M views the printer as an output device only. This
creates problems for printers that need to tell CP/M they are busy, but this

Chapter 4: The Console Command Processor (CCP) 57

problem can be remedied by adding code to the low-level printer driver.
CP/M’s name for this logical device is “LST:”.

3. The paper tape reader. It is unusual to find a paper tape reader in use today.
Originally, CP/M ran on an Intel Microcomputer Development System
called the MDS-800, and this system had a paper tape reader. This device
can be used only as a source for information.

CP/M calls this logical device “RDR:”.
4. The paper tape punch. This, too, is a relic from CP/M’s early days and the

MDS-800. In this case, the punch can be used only for output.
The logical device name used by CP/M is “PUN:”.

The physical arrangement of the IOBYTE fields is shown in Figure 4-2.
Each two-bit field can take on one of four values: 00, 01, 10, and 11. The

particular value can be interpreted by the BIOS to mean a specific physical device,
as shown in Table 4-1.

Although the actual interpretation of the IOBYTE is performed by the BIOS,
the STAT utility can set the IOBYTE using the logical and physical device names,
and PIP (Peripheral Interchange Program) can be used to copy data from one
device to another. In addition, you can write a program that simply changes the

Bit Number

Logical Device List Punch Reader Console

Figure 4-2. Arrangement of the IOBYTE

Table 4-1. IOBYTE Values

Logical Device
Physical Device

00 01 10 11

Console (CON:) TTY: CRT: BAT: UC1:
Reader (RDR:) TTY: PTR: UR1: UR2:
Punch (PUN:) TTY: PTP: UP1: UP2:
List (LST:) TTY: CRT: LPT: UL1:

58 The CP/M Programmer’s Handbook

contents of the IOBYTE. But be careful: Changes in the IOBYTE take effect
immediately.

The values in the IOBYTE have the following meanings:

Console (CON:)
00 Teletype driver (TTY:)

This driver is assumed to be connected to a hard copy device being used
as the main console.

01 CRT driver (CRT:)
The driver is assumed to be connected to a CRT terminal.

10 Batch mode (BAT:)
This is a rather special case. It is assumed that appropriate drivers will be
called so that console input comes from the logical reader (RDR:) and
console output is sent to the logical list device (LST:).

11 User defined console (UC1:)
Meaning depends on the individual BIOS implementation. If, for exam
ple, you have a high-resolution graphics screen, you could arrange for
this setting of the IOBYTE to direct console output to it. You might
make console input come in from some graphic tablet, joystick, or other
device.

Reader (RDR:)
00 Teletype driver (TTY:)

This refers to the paper tape reader device that was often found on
teletype consoles.

01 Paper tape reader (PTR:)
This presumes some kind of high-speed input device connected to the
system. Modern systems rarely have such a device, so this setting is often
used to connect the logical reader to the input side of a communications
line.

10 User defined reader #1 (UR1:)
11 User defined reader #2 (UR2:)

Both of these settings can be used to direct the physical driver to some
other specialized devices. These values are included only because they
would otherwise have been unassigned. They are rarely used.

Punch (PUN:)
00 Teletype driver (TTY:)

This refers to the paper tape punch that was often found on teletype
consoles.
Paper tape punch (PTP:)01

Chapter 4: The Console Command Processor (CCP) 59

CURUSER

CURDISK

BDOSE

This presumes that there is some kind of high-speed paper tape punch
connected to the system. Again, this is rarely the case, so this setting is
often used to connect the logical punch to the output side of a communi
cations line.

10 User defined punch #1 (UPL)
11 User defined punch #2 (UP2:)

These two settings correspond to the two user defined readers, but they
are practically never used.

List (LST:)
00 Teletype driver (TTY:)

Output will be printed on a teletype.
01 CRT driver (CRT:)

Output will be directed to the screen on a CRT terminal.
10 Line printer driver (LPT:)

Output will go to a high-speed printing device. Although the name line
printer implies a specific type of hardware, it can be any kind of printer.

11 User defined list device (UL1:)
Whoever writes the BIOS can arrange for this setting to cause logical list
device output to go to a device other than the main printer.

To repeat: The IOBYTE is not actually used by the main body of CP/M. It is
just a passive data structure that can be manipulated by the STAT utility. Whether
the IOBYTE has any effect depends entirely on the particular BIOS implementa
tion.

The CURUSER field is the most significant four bits (high order nibble) of its
byte. It contains the currently selected user number set by the CCP USER
command, by a specific call to the BDOS, or by a program setting this nibble to the
required value. This last way of changing user numbers may cause compatibility
problems with future versions of CP/M, so use it only under controlled conditions.

The CURDISK field is the least significant four bits of the byte it shares with
CURUSER. It contains a value of 0 if the current disk is A:, 1 if it is B:, and so on.

The CURDISK field can be set from the CCP, by a request to the BDOS, or by
a program altering this field. The caveat given for CURUSER regarding compatibility
also applies here.

This three-byte field contains an instruction to jump to the entry point of the
BDOS. Whenever you want the BDOS to do something, you can transfer the
request to the BDOS by placing the appropriate values in registers and making a
CALL to this JM P instruction. By using a CALL, the return address will be

60 The CP/M Programmer’s Handbook

placed on the stack. The subsequent JM P to the BDOS does not put any
additional information onto the stack, which operates on a last-in, first-out basis;
so when the system returns from the BDOS, it will return directly to your
program.

TOPRAM Because the BDOS, like the BIOS, starts on a page boundary, the most
significant byte of the address of the BDOS entry tells you in which page the
BDOS starts. You must subtract 1 from the value in TOPRAM to get the highest
page number that you can use in your program. Note that when you use this
technique, you assume that the CCP will be overwritten since it resides in memory
just below the BDOS.

FCB1 and FCB2 As a convenience, the CCP takes the first two parameters that appear in
the command tail (see next section), attempts to parse them as though they were
file names, and places the results in FCB1 and FCB2. The results, in this context,
mean that the logical disk letter is converted to its FCB representation, and the file
name and type, converted to uppercase, are placed in the FCB in the correct bytes.
In addition, any use of“*” in the file name is expanded to one or more question
marks. For example, a file name of “abc*.*” will be converted to a name of
“ABC?????” and type of “???”.

Notice that FCB2 starts only 16 bytes above FCB1, yet a normal FCB is at least
33 bytes long (36 bytes if you want to use random access). In many cases, programs
only require a single file name. Therefore, you can proceed to use FCB1 straight
away, not caring that FCB2 will be overwritten.

In the case of the COPYFILE program example on previous pages, two file
names are required. Before FCB1 can be used, the 16 bytes of FCB2 must be
moved into a skeleton FCB that is declared in the body of COPYFILE itself.

COMTAIL The command tail is everything on the command line other than the command
name itself. For example, the command tail in the COPYFILE command line is
shown here:

A>copyfile tof i le. t ype f rornf i le. t yp display

The CCP takes the command tail (converted to uppercase) and stores it in the
COMTAIL area.

COMTAIL$COUNT This is a single-byte binary count of the number of characters in the
command tail. The count does not include a trailing CARRIAGE RETURN or a blank
between the command name and the command tail. For example, if you enter the
command line

A>PRINT ABC*.*

Chapter 4: The Console Command Processor (CCP) 61

the COMTAILSCOUNT will be six, which is the number of characters in the
string “ABC*.*”.

COMTAIL$CHARS These are the actual characters in the command tail. This field is not
blank-filled, so you must use the COMTAILSCOUNT in order to detect the end of
the command tail.

DMA$BUFFER In Figure 4-1, the DMASBUFFER is actually the same area of memory as
the COMTAIL. This is a space-saving trick that works because most programs
process the contents of the command tail before they do any disk input or output.

The DMASBUFFER is a sector buffer (hence it has a length of 128 bytes). The
use of the acronym DMA (direct memory access) refers back to the Intel MDS-
800. This system had hardware that could move data to and from diskettes by
going directly to memory, bypassing the CPU completely. The term is still used
even though you may have a computer system that does not use DMA for its disk
I/O. You can substitute the idea of “the address to/from which data is read/writ
ten” in place of the DMA concept.

You can request CP/M to use a DMA address other than DMASBUFFER, but
whenever the CCP is in control, the DMA address will be set back here.

TPA This is the transient program area into which the CCP loads programs. The
TPA extends up to the base of the BDOS.

The TPA is also the starting address for the memory image that is saved on disk
whenever you use the CCP SAVE command.

Memory Dumps of the Base Page
The following are printouts showing the contents of the base page (the first

100H bytes of memory) as the COPYFILE program will see it.
This is an example of the first 16 bytes of memory:

OOOO: C3 03 F2 95 00 C3 00 C2 FF F6 F5 FF F3 F2 FF FO

Arbitrary data left
from system startup
JMP to BDOS Entry Point
(Note 0C200H is starting page of BDOS)
Current default disk (0 = A, 1 = B)
Current User (User = 0)
Settings of the IOBYTE
JMP WARMBOOT
(Note that the BIOS Jump Vector is at 0F200H)

62 The CP/M Programmer’s Handbook

The command line, as you recall, was

A>copyfile tofile.typ fromfile.typ display

The FCB1 and FCB2 areas will be set by the CCP as follows:

Logical Disk Logical Disk

005Cs 00 54 4F 46
T 0 F /»I— .

0060: 49 4C 45 20 20 54 59 50 00 00 00 00 00 46 52 4F
I L E T Y P . F R 0

0070: 4D 46 49 4C 45 54 59 50 00 00 00 00 00 F2 34 F3
M F I L E T Y P 4

Since the logical disks were not specified in the file names in the command line,
the CCP has set the disk code in both FCB1 and FCB2 to 00H, meaning “use the
default disk.” The file name and type have been converted to uppercase, separated,
and put into the FCBs in their appointed places.

The complete command tail has been stored in COMTAIL as follows:

31 in decimal

Residue------

0080: IF 54 4F 46 49 4C 45 2E 54 59 50 20 46 52 4F 4D
T 0 F I L E T Y P F R 0 M

0090: 46 49 4C 45 2E 54 59 50 20 44 49 53 50 4C 41 59
F I L E T Y P D I s P L A Y

00 AO: 00 43 32 43 4B 20 20 20 20 43 4F 4D 00 00 00 0A<*-
C R C K c. 0, M

OOBOs 9B 9C 00 00 00 00 00 00 00 00 00 00 00 00 00 00

OOCO: E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5

OODO: E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5

OOEO: E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5

OOFO: E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5

01 00; 01 F9

Program Start

You can see that the command tail length is 01FH (31 decimal). This is followed
immediately by the command tail characters themselves. Note that the command
tail stops at location 9 FH. The remainder of the data that you can see is the residue
of some previous directory operation by the CCP. You can see the file name
CRCK.COM in a directory entry, followed by several 0E5Hs that are unused
directory space.

Finally, at location 0100H are the first two bytes of the program.

Chapter 4: The Console Command Processor (CCP) 63

Processing the Command Tail
One of the first problems facing you if you write a program that can accept

parameters from the command tail is to process the command tail itself, isolating
each of the parameters. You should use a standard subroutine to do this. This
subroutine splits the command line into individual parameters and returns a count
of the number of parameters, as well as a pointer to a table of addresses. Each
address in this table points in turn to a null-byte-terminated string. Each parame
ter is placed in a separate string.

Figure 4-3 contains the listing of this subroutine, CTP (Command Tail Pro
cessor).

0100 ORG 100H
0100 CD3601 START: CALL CTP ;Test bed for CTP
0103 00 NOP

? Remainder of your program

; This subroutine breaks the command tail apart, placing
; each value in a separate string area.

Return parameters:
A = 0 - No error (Z flag set)
B = Count of number of parameters
HL -> Table of addresses

; If t oo
; If a g

0080 = COMTAIL EQU
0080 = COMT AIL*C0UNT EQU
0001 = CTP*TMP EQU
0002 = CTP*PTL EQU

;
PTABLE:

0104 0C01 DM PI
0106 1A01 DW P2
0108 2801 DW P3

; <
010A 0000 DU 0

Each address points to a null-byte-
terminated parameter string,

many parameters are specified, then A = TMP
ven parameter is too long, then A * PTL
and D points to the first character of the
offending parameter in the COMTAIL area.

80H jCommand tail in base page
COMTAIL ;Count of chars, in command tail
1 jToo many parameters error code
2 ^Parameter too long error code

jTable of pointers to parameters
; Parameter 1
; Parameter 2
; Parameter 3

Add more parameter addresses here
; Terminator

Parameter strings.
The first byte is 0 so that unused parameters appear
to be null strings.
The last byte of each is a 0 and is used to detect
a parameter that is too long.

oioc. 0001010101P I : DB 0, 1, 1, 1, 1, 1, 1, 1,,1,1,1,1,1,0 ;Param. 1 & terminator
011A 0001010101P2: DB 0, 1, 1, 1, 1, 1, 1, 1,,1,1,1,1,1,0 ;Param. 2 & terminator
0128 0001010101P3: DB 0, 1, 1, 1, 1, 1, 1, 1, 1,1,1,1, 1,0 jParam. 3 & terminator

; <---- Add more parameter strings here

CTP: ?Main entry point <<<<<
0136 210401 LX I H,PTABLE ;HL -> table of addresses
0139 0E00 MV I C.,0 ;Set parameter count
013B 3A8000 LDA COMT AIL$C0UNT ;Character count
013E B7 ORA A jCheck if any params.
013F C8 RZ ;Exit (return params. already set)
0140 E5 PUSH H jSave on top of stack for later
0141 47 MOV B, A ; B = COMTAIL char, count
0142 218100 LX I H,COMTAIL+1 ;HL -> Command tail chars.

Figure 4-3. Command Tail Processor (CTP)

64 The CP/M Programmer’s Handbook

CTP$NEXTPs ¡Next parameter loop
0145 E3 XTHL ;HL -> Table of addresses

¡Top of stack = COMTAIL ptr.
0146 5E MOV E, M ¡Get LS byte of param. addr.
0147 23 INX H ¡Update address pointer
0148 56 MOV D, M ¡Get MS byte of param. addr.

;DE -> Parameter string (or is 0)
0149 7A MOV A, D ¡Get copy of MS byte of addr.
014A B3 ORA E ¡Combine MS and LS byte
014B CA8001 JZ CTP$TMPX ¡Too many parameters— exit
014E 23 INX H ;Update pointer to next address
014F E3 XTHL ¡HL -> comtail

¡Top of stack— update addr. ptr.
¡At this point , we have
j HL -> next byte in command tail
; DE -> first byte of next parameter string

CTP*SKIPB:
0150 7E MOV A, M ¡Get next parameter byte
0151 23 INX H ;Update command tail ptr.
0152 05 OCR B ¡Check if characters still remain
0153 FA7301 MB CTPX ¡No, so exit
0156 FE20 CPI ' ■' ¡Check if blank
0158 CA5001 JZ CTP$SKIPB ¡Yes, so skip blanks
015B OC I NR C ;Increment parameter counter

CTP$NEXTC:
015C 12 STAX D ¡Store in parameter string
015D 13 INX D ;Update parameter string ptr.
015E 1A LDAX D ¡Check next byte
015F B7 ORA A ¡Check if terminator
0160 CA7A01 JZ CTPSPTLX ¡Parameter too long exit
0163 AF XRA A ¡Float a 00-byte at end of param.
0164 12 STAX D ¡Store in param. string
0165 7E MOV A, M ¡Get next character from tail
0166 23 INX H ¡Update command tail pointer
0167 05 OCR B ¡Check if characters still remain
0168 FA7301 JM CTPX jNo, so exit
016B FE20 CPI jCheck if parameter terminator
016D CA4501 JZ CTP$NEXTP ;Yes, so move to next parameter
0170 C35C01 JMP CTP*NEXTC ;No, so store it in param. string

CTPX: ¡Normal exit
0173 AF XRA A ;A = 0 & Z-flag set

CTPCX ¡Common exit code
0174 El POP H ¡Balance stack
0175 210401 LXI H,PTABLE ¡Return ptr. to param. addr. table
0178 B7 ORA A ¡Ensure Z-flag set appropriately
0179 C9 RET

CTP*PTLX: ¡Parameter too long exit
017A 3E02 MV I A,CTP*PTL ¡Set error code
017C EB XCHG ¡DE -> offending parameter
017D C37401 JMP CTPCX ¡Common exit

CTP$TMPX: ¡Too many parameters exit
0180 3E01 MV I A,CTP*TMP ¡Set error code
0182 C37401 JMP CTPCX ¡Common exit

0185 END START

Figure 4-3. Command Tail Processor (CTP) (continued)

Available Memory
Many programs need to use all of available memory, and so very early in the

program they need to set the stack pointer to the top end of the available RAM. As
mentioned before, the CCP can be overwritten as it will be reloaded on the next
warm boot.

Chapter 4: The Console Command Processor (CCP) 65

Figure 4-4 shows the code used to set the stack pointer. This code determines
the amount of memory in the TPA and sets the stack pointer to the top of available
RAM.

Communicating with the BIOS
If you are writing a utility program to interact with a customized BIOS, there

will be occasions where you need to make a direct BIOS call. However, if your
program ends up on a system running Digital Research’s MP/M Operating
System, you will have serious problems if you try to call the BIOS directly. Among
other things, you will crash the operating system.

If you need to make such a call and you are aware of the dangers of using direct
BIOS calls, Figure 4-5 shows you one way to do it.

Remember that the first instructions in the BIOS are the jump vector—a
sequence of JM P instructions one after the other. Before you can make a direct
call, you need to know the relative page offset of the particular JM P instruction
you want to go to. The BIOS jump vector always starts on a page boundary, so all
you need to know is the least significant byte of its address.

0007 = TOPRAM EQU 7

0000 3A0700 LDA TOPRAM
0003 3D DCR A
0004 2EFF MV I L,OFFH
0006 67 MOV H, A
0007 F9 SPHL

;Most significant byte of
BDOS entry point

;Get MS byte of BDOS entry point
;Back off one page
;Set LS byte of final address
;HL = XXFFH
;Set stack pointer from HL

Figure 4-4. Setting stack pointer to top of available RAM

Use this technique only for CP/M utility programs.
MP/M programs do not permit this.

0009 = CONIN EQU 09H ;Get console input character
; (It's the 4th jump in the vector)

0002 = BIOSPAGE EQU 2 ; Address of BIOS page

At th is point you make a direct CONIN
CALL.

0000 2E09 MV I L,CONIN ; Get LS byte of CONIN entry point
0002 CD0500 CALL BIOS ;Go to BIOS entry subroutine

BIOS:

the rest of your program...

0005 3A0200 LDA BIOSPAGE;Get BIOS jump vector page
0008 67 MOV H,A ;HL -> entry point

; (You set LS byte before coming here)
0009 E9 PCHL ;"Jump" to BIOS

; Your return address is already
; on the stack

Figure 4-5. Making a direct BIOS call

66 The CP/M Programmer’s Handbook

Note : This example assumes you have not
overwritten the CCP.

0100 ORG 100H ;Start at TPA
START:

0100 210000 LX I H,0 ;Save CCP's stack pointer
0103 39 DAD SP ;By adding it to 0 in HL
0104 220F01 SHLD CCP*ST ACK
0107 314101 LX I S P , L0CAL$STAC-K

The 1main body of your program is here

... and when you are ready to return
to the C C P . ..

010A 2A0F01 LHLD CCPSSTACK :Get CCP's stack pointer
010D F9 SPHL ;Restore SP
010E C9 RET ;Return to the CCP

010F CCP*STACK: DS 2 ;Save area for CCP SP
0111 DS 43 ;Local stack

LOCAL$STACK:
0141 END START

Figure 4-6. Returning to CCP at program end

Returning to CP/M
Once your program has run, you will need to return control back to CP/M. If

your program has not overwritten the CCP and has left the stack pointer as it was
when your program was entered, you can return directly to the CCP using a RET
instruction.

Figure 4-6 shows how a normal program would do this if you use a local stack,
one within the program. The CCP stack is too small; it has room for only 24 16-bit
values.

The advantage of returning directly to the CCP is speed. This is true especially
on a hard disk system, where the time needed to perform a warm boot is quite
noticeable.

If your program has overwritten the CCP, you have no option but to transfer
control to location 0000H and let the warm boot occur. To do this, all you need do
is execute

EXIT: JMP 0 ; Warm Boot

(As a hint, if you are testing a program and it suddenly exits back to CP/M, the
odds are that it has inadvertently blundered to location 0000H and executed a
warm boot.)

The Basic Disk
Operating System

The Basic Disk Operating System is the real heart of CP/M. Unlike the
Console Command Processor, it must be in memory all the time. It provides all of
the input/output services to CP/M programs, including the CCP.

As a general rule, unless you are writing a system-dependent utility program,
you should use the BDOS for all of your program’s input/ output. If you circum
vent the BDOS you will probably create problems for yourself later.

67

68 The CP/M Programmer’s Handbook

W hat the BDO SDoes

The BDOS does all of the system input / output for you. These services can be
grouped into two types of functions:

Simple Byte-by-Byte I IO
This is sending and receiving data between the computer system and its
logical devices—the console, the “reader” and “punch” (or their substi
tutes), and the printer.

Disk File / / O
This covers such tasks as creating new files, deleting old files, opening
existing files, and reading and writing 128-byte long “records” to and from
these files.

The remainder of this chapter explains each of the BDOS functions, shows
how to make each operating system request, and gives additional information for
each function. You should also refer to Digital Research’s manual, CP/M 2
Interface Guide, for their standard description of these functions.

BDOS Function C alls

The BDOS function calls are described in the order of their function code
numbers. Figure 5-1 summarizes these calls.

Naming Conventions
In practice, whenever you write programs that make BDOS calls, you should

include a series of equates for the BDOS function code numbers. We shall be
making reference to these values in subsequent examples, so they are shown in
Figure 5-2 as they will appear in the programs.

The function names used to define the equates in Figure 5-2 are shorter than
those in Figure 5-1 to strike a balance between the abbreviated function names
used in Digital Research’s documentation and the need for clearer function
descriptions.

Making a BDOS Function Request
All BDOS functions are requested by issuing a CALL instruction to location

0005H. You can also request a function by transferring control to location 0005H
with the return address on the stack.

In order to tell the BDOS what you need it to do, you must arrange for the
internal registers of the CPU to contain the required information before the CALL
instruction is executed.

Chapter 5: The Basic Disk Operating System 69

Function Description
Code

Simple Byte-by-Byte I/O

0
1

Overall system and BDOS reset
Read a byte from the console keyboard

2 Write a byte to the console screen
3 Read a byte from the logical reader device
4 Write a byte to the logical punch device
5 Write a byte to the logical list device
6 Direct console I/O (no CCP-style editing)
7* Read the current setting of the IOBYTE
8* Set a new value of the IOBYTE
9 Send a “$”-terminated string to the console

10 Read a string from the console into a buffer
11 Check if a console key is waiting to be read
12 Return the CP/M version number

Disk File I/O

13 Reset disk system
14 Select specified logical disk drive
15 Open specified file for reading/writing
16 Close specified file after reading/writing
17 Search file directory for first match with filename
18 Search file directory for next match with filename
19 Delete (erase) file
20 Read the next “record” sequentially
21 Write the next “record” sequentially
22 Create a new file with the specified name
23 Rename a file to a new name
24 Indicate which logical disks are active
25 Return the current default disk drive number
26 Set the DMA address (read/write address)
27 Return the address of an allocation vector
28* Set specified logical disk drive to Read-Only status
29 Indicate which disks are currently Read-Only status
30 Set specified file to System or Read-Only status
31 Return address of disk parameter block (DPB)
32* Set/Get the current user number
33 Read a “record” randomly
34 Write a “record” randomly
35 Return logical file size (even for random files)
36 Set record number for the next random read/write
37 Reset specified drive
40 Write a “record” randomly with zero fill *These do not

work under M P/M .

Figure 5-1. BDOS function calls

70 The CP/M Programmer’s Handbook

0000 = B$SYSRESET EQU 0 System Reset
0001 = B*CQNIN EQU 1 Read Console Byte
0002 = B$CONOUT EQU 2 Write Console Byte
0003 = BÍREADIN EQU 3 Read "Reader" Byte
0004 = B$PUNOUT EQU 4 Write "Punch" Byte
0005 = B$LISTOUT EQU 5 Write Printer Byte
0006 = B$DIRCONIO EQU 6 Direct Console I/O
0007 = B*GETIO EQU 7 Get IOBYTE
0008 = BSSETIO EQU 8 Set IOBYTE
0009 = B$PRINTS EQU 9 Print Console String
000A = B$READCONS EQU 10 Read Console String
000B = B$CONST EQU 11 Read Console Status
000C = B$GETVER EQU 12 Get CP/M Version Number
000D = B$DSKRESET EQU 13 Disk System Reset
000E = B$SELDSK EQU 14 Select Disk
000F = B$OPEN EQU 15 Open File
0010 = B$CLOSE EQU 16 Close File
0011 = BUSEARCHF EQU 17 Search for First Name Match
0012 = B$SEARCHN EQU 18 Search for Next Name Match
0013 = B$ERASE EQU 19 Erase (delete) File
0014 = BSREADSEQ EQU 20 Read Sequential
0015 = B$WRITESEQ EQU 21 Write Sequential
0016 = B$CREATE EQU 22 Create File
0017 = B$RENAME EQU 23 Rename File
0018 = B$GETACTDSK EQU 24 Get Active (Logged-in) Disks
0019 = B*GETCURDSK EQU 25 Get Current Default Disk
001A = B$SETDMA EQU 26 Set DMA (Read/Write) Address-
00 IB = B$GETALVEC EQU 27 Get Allocation Vector Address
001C = B$SETDSKRO EQU 28 Set Disk to Read Only
00 ID = B*GETRODSKS EQU 29 Get Read Only Disks
00 IE = B$SETFAT EQU 30 Set File Attributes
0 0 IF -= B$GETDPB EQU 31 Get Disk Parameter Block Address
0020 = B$SETGETUN EQU 32 Set/Get User Number-
0021 = B$READRAN EQU 33 Read Random
0022 = B $ W R ITERAN EQU 34 Write Random
0023 = B*GETFSIZ EQU 35 Get File Size
0024 = B$SETRANREC EQU 36 Set Random Record Number-
0025 = B*RESETD EQU 37 Reset Drive
0028 = BÍWRITERANZ EQU 40 Write Random with Zero-Fill

Figure 5-2. Equates for BDOS function code numbers

The function code number of the specific function call you want performed
must be in register C.

If you need to hand a single-byte value to the BDOS, such as a character to be
sent to the console, then you must arrange for this value to be in register E. If the
value you wish to pass to the BDOS is a 16-bit value, such as the address of a buffer
or a file control block (FCB), this value must be in register pair DE.

When the BDOS hands back a single-byte value, such as a keyboard character
or a return code indicating the success or failure of the function you requested, it
will be returned in register A. When the BDOS returns a 16-bit value, it will be in
register pair HL.

On return from the BDOS, registers A and L will contain the same value, as
will registers B and H. This odd convention stems from CP/M’s origins in PL/ M
(Programming Language/ Microprocessor), a language used by Intel on their
MDS system. Thus, PL/ M laid the foundations for what are known as “register
calling conventions.”

Chapter 5: The Basic Disk Operating System 71

The BDOS makes no guarantee about the contents of the other registers. If you
need to preserve a value that is in a register, either store the value in memory or
push it onto the stack. The BDOS uses its own stack space, so there is no need to
worry about it consuming your stack.

To sum up, when you make a function request to the BDOS that requires a byte
value, the code and the required entry and exit parameters will be as follows:
MVI C rFUNCTIQN$CQDE jC = function code
MVI E rSINGLE$BYTE ;E = single byte value
CALL BDOS ;Location 5

?A = return code or value
;or HL = return value

For those function requests that need to have an address passed to the BDOS,
the calling sequence is
MVI C,FUNCTION*CODE • ?C = function code
LX I D rADDRESS ;DE = address
CALL BDOS ;Location 5

;A = return code or value
;or HL = return value

If a function request involves disk files, you will have to tell the BDOS the
address of the FCB that you have created for the file. (Refer back to Chapter 3 for
descriptions of the FCB.)

Many file processing functions return a value in register A that is either OFFH,
indicating that the file named in the FCB could not be found, or equal to a value of
0, 1, 2, or 3. In the latter case, the BDOS is returning what is called a “directory
code.” The number is the directory entry number that the BDOS matched to the
file name in your FCB. At any given moment, the BDOS has a 128-byte sector
from the directory in memory. Each file directory entry is 32 bytes, so four of them
(numbered 0, 1, 2, and 3) can be processed at a time. The directory code indicates
which one has been matched to your FCB.

References to CP/M “records” in the following descriptions mean 128-byte
sectors. Do not confuse them with the logical records used by applications
programs. Think of CP/M records as 128-byte sectors throughout.

Function 0: System Reset
Function Code: C = 00H
Entry Parameters: None
Exit Parameters: Does not return

Example

0000
0005

B$SYSRESET EQU 0
BDOS EQU 5

jSystem Reset
?BDOS entry point

MVI C,B$SYSRESET
JMP BDOS

0000 OEOO
0002 C30500

;Set function code
;Note: you can use a JMP since
; you don't get control back

72 The CP/M Programmer’s Handbook

Purpose The system reset function makes CP/M do a complete reset, exactly the same
as the warm boot function invoked when you transfer control to the WARM-
BOOT point (refer to Figure 4-1).

In addition to resetting the BDOS, this function reloads the CCP, rebuilds the
allocation vectors for the currently logged disks, sets the DMA address (used by
CP/M to address the disk read/write buffer) to 80H, marks all disks as being
Read/Write status, and transfers control to the CCP. The CCP then outputs its
prompt to the console.

Notes This function is most useful when you are working in a high-level language that
does not permit a jump instruction to an absolute address in memory. Use it when
your program has finished and you need to return control back to CP/M.

Function 1: Read Console Byte
Function Code: C = 01H
Entry Parameters: None
Exit Parameters: A = Data byte from console

Example
0001 ss BtCONIN EQU 1 jConsole input
0005 = BDOS EQU 5 ;BDOS entry

0000 0E01 MVI C,B*CONIN jGet function code
0002 CD0500 CALL BDOS

Purpose This function reads the next byte of data from the console keyboard and puts it
into register A. If the character input is a graphic character, it will be echoed back
to the console. The only control characters that are echoed are CARRIAGE RETURN,
LINE FEED, b a c k s p a c e , and TAB. In the case of a TAB character, the BDOS outputs
as many spaces as are required to move the cursor to the next multiple of eight
columns. All of the other control characters, including CONTROL-C, are input but
are not echoed.

This function also checks for CONTROL-S (x o f f) to see if console output should
be suspended, and for CONTROL-P (printer echo toggle) to see if console output
should also be sent to the list device. If CONTROL-s is found, further output will be
suspended until you type another character. C o n t r o l -p will enable the echoing of
console output the first time it is pressed and disable it the second time.

If there is no incoming data character, this function will wait until there is one.

Notes This function ofteh hinders rather than helps, because it echoes the input.
Whenever you need console input at the byte-by-byte level, you will usually want
to suppress this echo back to the console. For instance, you may know that the
“console” is actually a communications line such as a modem. You may be trying
to accept a password that should not be echoed back. Or you may need to read a

Chapter 5: The Basic Disk Operating System 73

cursor control character that would cause an undesirable side effect on the
terminal if echoed there.

In addition, if you need more than a single character from the console, your
program will be easier to use if the person at the console can take full advantage of
the CCP-style line editing. This can best be done by using the Read Console String
function (code 10, OAH).

Read Console String also is more useful for single character input, especially
when you are expecting a “Y” or “N” (yes or no) response. If you use the Read
Console Byte function, the operator will have only one chance to enter the data.
When you use Read Console String, however, users have the chance to type one
character, change their minds, backspace, and type another character.

Function 2: Write Console Byte
Function Code: C = 02H
Entry Parameters: E = Data byte to be output
Exit Parameters: None

Example

0002 = B*CONOUT EQU 2 ;Urite Console Byte
0005 = BDOS EQU 5 ;BDOS entry

0000 0E02 MV I C ,B4C0N0UT ;Function code
0002 1E2A MV I Er jE - data byte to be output
0004 CD0500 CALL BDOS

Purpose This function outputs the data byte in register E to the console. As with
function 1, if the data byte is a TAB character, it will be expanded by the BDOS to
the next column that is a multiple of eight. The BDOS also checks to see if there is
an incoming character, and if there is, checks to see if it is a CONTROL-S (in which
case console output is suspended) or c o n t r o l -P (in which case echoing of console
output to the printer is toggled on or ofi).

Notes You may have problems using this function to output cursor-addressing
control sequences to the console. If you try to output a true binary cursor address
to position 9, the BDOS will interpret this as a TAB character (ASCII code 9) and
dutifully replace it with zero to eight blanks. If you need to output binary values,
you must set the most significant bit of the character (use an ORI 80H, for
example) so that it will not be taken as the ASCII TAB.

Here are two general-purpose subroutines that you will need for outputting
messages. The first one, shown in Figure 5-3, outputs a null-byte-terminated
message from a specified address. The second, in Figure 5-4, does essentially the
same thing except that the message string follows immediately after the call to the
subroutine.

74 The CP/M Programmer’s Handbook

;MSGOUT (message■ out)
;0utput nul 1-byte-terrninated me ss ag e.

; Calling sequence
: MESSAGE: DB •'Message-' r 0

• LX I H,MESSAGE
; CALL MSGOUT

jExit Parameters
; HL -> Null byte terminator

0002 s B*C0N0UT EQU 2 ;Write Console Byte
0005 = BOOS EQU 5 ? BDOS entry point

MSGOUT:
0000 7E MOV A, M ;Get next byte for output
0001 B7 ORA A
0002 C8 RZ jReturn when null-byte
0003 23 INX H ;Update message pointer
0004 E5 PUSH H ;Save updated pointer
0005 5F MOV E, A ;Ready for BDOS
0006 0E02 MV I C,B$C0N0UT
0008 CD0500 CALL BDOS
000B El POP H jRecover message pointer
OOOC C30000 JMP MSGOUT ;Go back for next character

Figure 5-3. Write console byte example, output null-byte terminated message from
specified address

;MSGOUTI (message out in-line)
;Output null-byte-terminated message that
; follows the CALL to MSGOUTI.

; Cal ling sequence
; CALL MSGOUTI
; DB 'Message',0
; ... next instruction

jExit Parameters
: HL -> instruction following message

0002 = BtCONOUT EQU 2 ; Write Console Byte
0005 = BDOS EQU 5 ;BDOS entry point

MSGOUTI:
0000 El POP H ;HL -> message
0001 7E MOV A, M ;Get next data byte
0002 23 INX H jUpdate message pointer
0003 B7 ORA A ; Check if null byte
0004 C20S00 JNZ MSGOUTIC ;No, continue
0007 E9 PCHL ;Yes, return to next instruction

; after in-line message

MSGOUTIC:
0008 E5 PUSH H ïSave message pointer
0009 5F MOV E, A : Ready for BDOS"
000A 0E02 MV I C,B*C0N0UT ? Function code
OOOC CD0500 CALL BDOS
000F C30000 JMP MSGOUTI jGo back for next char.

Figure 5-4. Write console byte example, output null-byte terminated message
following call to subroutine

Chapter 5: The Basic Disk Operating System 75

Function 3: Read “Reader” Byte

Example

Function Code: C = 03H
Entry Parameters: None
Exit Parameters: A = Character input

0003 =
0005 =

B*READIN
BDOS

EQU 3
EQU 5

;Read "Reader" Byte
;BDOS entry

0000 0E03
0002 CD0500

MV I
CALL

C,B$READIN
BDOS

;Function code
;A = reader byte

Purpose This function reads the next character from the logical “reader” device into
register A. In practice, the physical device that is accessed depends entirely on how
your BIOS is configured. In some systems, there is no reader at all; this function
will return some arbitrary value such as 1 AH (the ASCII CONTROL-Z character,
used by CP/M to denote “End of File”).

Control is not returned to the calling program until a character has been read.

Notes Since the physical device (if any) used when you issue this request depends
entirely on your particular BIOS, there can be no default standard for all CP/M
implementations. This is one of the weaker parts of the BDOS.

You should “connect” the reader device by means of BIOS software to a serial
port that can be used for communication with another system. This is only a
partial solution to the problem, however, because this function call does not return
control to your program until an incoming character has been received. There is
no direct way that you can “poll” the reader device to see if an incoming character
has been received. Once you make this function call, you lose control until the next
character arrives; there is no function corresponding to the Read Console Status
(function code 11, OBH) that will simply read status and return to your program.

One possible solution is to build a timer into the BIOS reader driver that
returns control to your program with a dummy value in A if a specified period of
time goes by with no incoming character. But this brings up the problem of what
dummy value to use. If you ever intend to send and receive files containing pure
binary information, there is no character in ASCII that you might not encounter in
a legitimate context. Therefore, any dummy character you might choose could
also be true data.

The most cunning solution is to arrange for one setting of the IOBYTE (which
controls logical-device-to-physical-device mapping) to connect the console to the
serial communication line. This done, you can make use of the Read Console
Status function, which will return not the physical console status but the serial line
status. Your program can then act appropriately if no characters are received
within a specified time. Figure 5-11 shows a subroutine that uses this technique in
the Set IOBYTE function (code 8, 08H).

76 The CP/M Programmer’s Handbook

Figure 5-5 shows an example subroutine to read lines of data from the reader
device. It reads characters from the reader, stacking them in memory until either a
LINE FEED or a specified number of characters has been received. Note that
CARRIAGE r e t u r n s are ignored, and the input line is terminated by a byte of 00H.
The convention of OOH-byte terminated strings and no CARRIAGE r e t u r n s is used
because it makes for much easier program logic. It also conforms to the conven
tions of the C language.

;RL$RDR
;Read line from reader device
jCarriage returns are ignored , and input terminates
;when specified number of characters have been read
;or a line feed is input.

yNote: Potential weakness is that there is no
;timeout in this. subroutine. It will wait forever
;if no more characters arrive at the reader device.

; Cal ling sequence
; LX 1 H,BUFFER
; LX I B,MAXCOUNT
; CALL RL*RDR

;Exit Parameters
; HL -> OOH byte terminating string
; BC = residual count (0 if max. chars, read)
; E = last character read

0003 = BUREADIN EQU 3 ;Reader input
0005 = BDGS EQU 5 ; BDOS entry point

OOOD = CR EQU ODH ;Carriage return
OOOA = LF EQU OAH ;Line feed (terminator)

RLfRDR:
0000 79 MOV A, C ;Check if count 0
0001 BO ORA B ;If count 0 on entry, fake
0002 5F MOV E, A ; last char, read (OOH)
0003 CA2000 JZ RL$RDRX ;Yes, exit
0006 C5 PUSH B ; Save max. chars, count
0007 E5 PUSH H jSave buffer pointer

RL$RDRI: ;Loop back here to ignore
0008 0E03 MVI C,BURE ADIN
OOOA CD0500 CALL BDOS ;A = character input
OOOD 5F MOV E, A ;Preserve copy of chars.
OOOE FEOD CPI CR ;Check if carriage return
0010 CA0800 JZ RL*RDRI ;Yes, ignore it
0013 El POP H ^Recover buffer pointer
0014 Cl POP B ;Recover max. Count
0015 FEOA CPI LF ;Check if line feed
0017 CA2000 JZ RL$RDRX ;Yes, exit
001A 77 MOV M, A ;Nc>, store char, in buffer
0 0 IB 23 INX H ;Update buffer pointer
001C OB DCX B ;Downdate count
0 0 ID C30000 JMP RLÍRDR ;Loop back for next char.

RLSRDRX:
0020 3600 MVI M, 0 ;Nul1-byte-terminate buffer
0022 C9 RET

Figure 5-5. Read line from reader device

Chapter 5: The Basic Disk Operating System 77

Function 4: Write “Punch” Byte
Function Code: C = 04H
Entry Parameters: E = Byte to be output
Exit Parameters: None

0004 = B*PUNOUT EQU 4 ;Write "Punch" Byte
0005 * BDOS EQU 5

0000 0E04 MVI C,B*PUN0UT ?Function code
0002 1E2A MVI E r'*' ;Data byte to output
0004 CD0500 CALL BOOS

This function is a counterpart to the Read “Reader” Byte described above. It
outputs the specified character from register E to the logical punch device. Again,
the actual physical device used, if any, is determined by the BIOS. There is no set
standard for this device; in some systems the punch device is a “bit bucket,” so
called because it absorbs all data that you output to it.

The problems and possible solutions discussed under the Read “Reader” Byte
function call also apply here. One difference, of course, is that this function
outputs data, so the problem of an indefinite loop waiting for the next character is
less likely to occur. However, if your punch device is connected to a communica
tions line, and if the output hardware is not ready, the BIOS line driver will wait
forever. Unfortunately, there is no legitimate way to deal with this problem since
the BDOS does not have a function call that checks whether a logical device is
ready for output.

Figure 5-6 shows a useful subroutine that outputs a OOH-byte terminated string
to the punch. Wherever it encounters a LINE FEED, it inserts a CARRIAGE r e t u r n
into the output data.

Function 5: Write List Byte
Function Code: C = 05 H
Entry Parameters: E = Byte to be output
Exit Parameters: None

Example
0005 = BSLSTOUT EQU 5 jWrite List Byte
0005 = BDOS EQU 5

0000 0E05 MV I C,B*LSTOUT ? Function code
0002 1E2A MV I E r ;Data byte to output
0004 CD0500 CALL BDOS

Purpose This function outputs the specified byte in register E to the logical list device.
As with the reader and the punch, the physical device used depends entirely on the
BIOS.

Example

Purpose

Notes

78 The CP/M Programmer’s Handbook

Figure 5-6.

Notes

{WL*PUN
{Write line to punch device. Output terminates
{when a 00H byte is encountered.
;A carriage return is output when a line feed is
{encountered.

{Calling sequence
{ LX I H,BUFFER
; CALL WL$PUN

{Exit parameters
; HL -> 00H byte terminator

0004 = B$PUNOUT EQU 4
0005 = BDOS EQU 5

000D = CR EQU ODH ;Carriage return
000A = LF EQU OAH ;Line feed

WL*PUN:
0000 E5 PUSH H {Save buffer pointer
0001 7E MOV A, M {Get next character
0002 B7 ORA A ;Check if OOH
0003 CA2000 JZ WLSPUNX {Yes, exit
0006 FEOA CPI LF ;Check if line feed
0008 CCI600 CZ WL$PUNLF {Y e s , 0/P CR
000B 5F MOV E, A ;Character to be output
OOOC 0E04 MV I C,B$PUNOUT ;Function code
OOOE CD0500 CALL BDOS {Output character
0011 El POP H ;Recover buffer pointer
0012 23 INX H ;Increment to next char
0013 C30000 JMP WL$PUN {Output next char

WL*PUNLF: ;Line feed encountered
0016 0E04 MV I C,B$PUNOUT {Function code
0018 1E0D MV I E , CR {Output a CR
001A CD0500 CALL BDOS
00 ID 3E0A MV I A, LF {Recreate line feed
00 IF C9 RET {Output LF

WL $PUNX: {Exit
0020 El POP H {Balance the stack
0021 C9 RET

Write line to punch device

One of the major problems associated with this function is that it does not deal
with error conditions very intelligently. You cannot be sure which physical device
will be used as the logical list device, and most standard BIOS implementations
will cause your program to wait forever if the printer is not ready or has run out of
paper. The BDOS has no provision to return any kind of error status to indicate
that there is a problem with the list device. Therefore, the BIOS will have to be
changed in order to handle this situation.

Figure 5-7 is a subroutine which outputs data to the list device. As you can see,
this is essentially a repeat of Figure 5-6, which performs the same function for the
logical punch device.

Chapter 5: The Basic Disk Operating System 79

;WLSLST
;Write line to list device. Output terminates
;when a 00H byte is encountered.
?A carriage return is output when a line feed is
;encountered.

;Calling sequence
; LXI H,BUFFER
; CALL WLSLST

;Exit parameters
; HL -> 00H byte terminator

0005 = BSLSTOUT EQU 5
0005 = BDOS EQU 5

000D = CR EQU ODH yCarriage return
000A = LF EQU OAH ;Line feed

WLSL ST:
0000 E5 PUSH H ;Save buffer pointer
0001 7E MOV A, M ;Get next character
0002 B7 ORA A ;Check if OOH
0003 CA2000 JZ WLSLSTX ;Yes, exit
0006 FEOA CPI LF jCheck if line feed
0008 CCI600 CZ WLSLSTLF ;Y e s , G/P CR
000B 5F MOV E, A ?Character to be output
OOOC 0E05 MV I C,B$LSTOUT ;Function code
OOOE CD0500 CALL BDOS jOutput character
0011 El POP H ^Recover buffer pointer
0012 23 INX H ;Update to next char.
0013 C30000 JMP WLSLST ;Output next char.

WLSLSTLF: ;Line feed encountered
0016 0E05 MV I C,B*LSTOUT ;Function code
0018 1E0D MVI E, CR ?Output a CR
001A CD0500 CALL BDOS
00 ID 3E0A MVI A, LF jRecreate line feed
00 IF C 9 RET ;Output LF

WLSLSTX: ; Ex i t
0020 El POP H ^Balance the stack
0021 C9 RET

Figure 5-7. Write line to list device

Function 6: Direct Console I/O
Function Code: C = 06H
Entry Parameters: E = OFFH for Input

E = Other than OFFH for output
Exit Parameters: A = Input byte or status

Example

0006 = B*DIRCONIO EQU 6 ;Direct Craw) Console I/O
0005 = BDOS EQU 5 ;BDOS entry point

;Example of console input

0000 0E06 MVI C,B$DIRCONIO ;Function code
0002 1EFF MVI E ,OFFH ;0FFH means input
0004* CD0500 CALL BDOS ;A = 00 if no char. wai t in'

;A * NZ if character input

80 The CP/M Programmer’s Handbook

¡Example of console output

0007 0E06 MVI C,B*DIRC0NI0 ?Function code
0009 1E2A MV I E, ¡Not 0FFH means output char.
000B CD0500 CALL BD0S

Purpose This function serves double duty: it both inputs and outputs characters from
the console. However, it bypasses the normal control characters and line editing
features (such as CONTROL-P and c o n t r o l -s) normally associated with console
I/ O. Hence the name “direct” (or “unadorned” as Digital Research describes it). If
the value in register E is not OFFH, then E contains a valid ASCII character that is
output to the console. The logic used is most easily understood when written in
pseudo-code:
if this is an input request (E = OFFH)

if console status indicates a character is waiting
{
read the char from the console and
return to caller with char in A
}

else (no input character waiting) and
return to caller with A = 00

1
else (output request)

{
output the char in E to the console and
return to caller
}

Notes This function works well provided you never have to send a value of OFFH or
expect to receive a value of 00 H. If you do need to send or receive pure binary data,
you cannot use this function, since these values are likely to be part of the data
stream.

To understand why you might want to send and receive binary data, remember
that the logical “reader” does not have any method for you to check its status to see
if an incoming character has arrived. All you can do is attempt to read a character
(Read Reader Byte, function code 3). However, the BDOS will not give control
back to you until a character arrives (which could be a very long time). One
possibility is to logically assign the console to a communications line by the use of
the IOBYTE (or some similar means) and then use this Direct 1/ O call to send and
receive data to and from the line. Then you could indeed “poll” the communica
tions line and avoid having your program go into an indefinite wait for an
incoming character. An example subroutine using this technique is shown in
Figure 5-11 under Set IOBYTE (function code 8).

Figure 5-8 shows a subroutine that uses the Direct Console Input and Output.
Because this example is more complex than any shown so far, the code used to
check the subroutine has also been included.

Function 7: Get IOBYTE Setting
Function Code: C = 07H
Entry Parameters: None
Exit Parameters: A = IOBYTE current value

Chapter 5: The Basic Disk Operating System 81

0100
0100

0103
0104
0103
0109
010A
010F

0 1 1 1
0114
0117
Oil A
01 IB
01 IE
0 1 2 1

0001
0002
0004
0008

0006
0005

0003
OOOD

TESTBED CODE
Because of the complexity of this subroutine, the
actual testbe d code has been left in this example.
It assumes that DDT or ZSID
will De used for checkout.

IF ¡Change to IF 0 to disable testbed
0RG 100H

C31101 JMP START ¡Bypass "variables" setup by DDT

00 OPTIONS DB 0 ¡Option flags
41454900 TERMS: DB y A ' , ' E 0 ;Terminators
05 BUFFER DB 5 ;Max. characters in buffer
00 DB 0 ;Actual count
6 3 6 3 6 3 6 3 6 3 DB 99,99, 99,99,99 ;Da t a bytes
6 3 6 3 DB 99,99

START:
210301 LX I H,BUFFER ;Get address of buffer
110401 LX I D,TERMS ¡Address of terminator table
3A0301 LDA OPTIONS ¡Get options set by DDT
47 MOV B, A ; Put in correct register
CD2B01 CALL RCS 7 Enter subroutine
CD3800 CALL 38H ; Force DDT breakpoint
C31101 JMP START ;Test again

ENDIF ; End of testbed

;RCS: Read console string (using raw input)
¡Reads a string of characters into a memory
; buffer using raw input.

;Supports options:
7 o to echo characters or not (when echoing,
; a carriage return will be echoed followed
; by line feed)
; o warm boot on input of control-C or not
7 o terminating input either on:
; o max. no of chars input
; o matching terminator character

Calling Sequence
LX I H,BUFFER

Buffer has structure:
BUFFER: DB 10 Max. size

DB 0 Actual Read
DS 10+1 Buffer area

MV I B,OPTIONS Options required
(see equates)

LX I D,TERMS Pointer to OOH-byte
terminated Chars,
any one of which is a
terminator.

CALL RCS

Exit Parameters
BUFFER: Updated with data bytes and actual

character count input.
(Does not include the terminator).

A = Terminating Code
0 =
NZ =

Maximum number of characters
Terminator character found.

input.

RCS*ECHG
RCS*AB0RT
RCS*F0LD
RCS*TERM

EQU
EQU
EQU
EQU

0000 *0 00IB ;Input characters to be echoed
0000*001OB 7 Abort on Control-C
0000*01003 ;Fold lowercase to uppercase
0000*1000B ;DE -> term. char, set

B*DIRC0NI0
BDOS

EQU
EQU

6 ;Direct console I/O
5 ;BDOS entry point

CTL*C
CR

EQU
EQU

03H ;Control-C
ODH jCarriage return

Figure 5-8. Read/write string from/to console using raw I/O

82 The CP/M Programmer’s Handbook

000A = LF EQU 0AH
0008 = BS EQU OSH

RCS*ST:
0124 0D DB 0DH
0125 0A DB 0AH
0126 00 DB 0

RCS$BSSi
0127 08200800 DB B S , ' ',B S ,0

RCS:
012B 23 INX H
012C 3600 MVI M, 0
012E 2B DCX H

RCS*L:
012F E5 PUSH H
0130 CD9201 CALL RCS*GC

0133 El POP H
0134 3E0S MVI A,RCS$TERM
0136 AO ANA B
0137 C23D01 JNZ RCSSUST
013A 112401 LX I D,RCS*ST

RC S* US T:
013D CDD401 CALL RCS$CT
0140 CA4C01 JZ RCS$N0TT
0143 47 MOV B, A

RCS$MCI:
0144 0E00 MVI C.,0
0146 CD7F01 CALL RCSfSC
0149 78 MOV A, B
014A B7 'ORA A
014B C9 RET

RCS*N0TT:
014C 3E08 MVI A, BS
014E B9 CMP C

014F CA6001 JZ RCS$BS
0152 CD7F01 CALL RCS$SC
0155 CD8B01 CALL RCS*UC
0158 C22F01 JNZ RCS$L
015B 0600 MVI B, 0
015D C34401 JMP RCS*MCI

RCS$BS:
0160 E5 PUSH H
0161 23 INX H
0162 35 DCR M
0163 FA7A01 JM RCS*NBS
0166 212701 LX I H,RCS*BSS
0169 3E01 MVI A,RCS$ECH0
016B AO ANA B
016C: CA 7 0 0 1 JZ RCS*BSNE
016F 23 INX H

RCS*BSNE:
0170 C5 PUSH B
0171 D5 PUSH D
0172 CDF601 CALL WCS
0175 D1 POP D
0176 Cl POP B
0177 C37B01 JMP RCS$BSX

RCS$NBS:
017A 34 INR M

RCS$BSX:
017B El POP H
017C C32F01 JMP RCS$L

{Line feed
;Backspace

;Internal standard terminator table
{Carriage return
{Line feed
{End of table

{Destructive backspace sequence

<<<<< Main entry
HL -> actual count
Reset to initial state
HL -> max. count

{Save buffer pointer
{Get character and execute:
; ECHO, ABORT, and FOLD options
;C = character input
{Recover buffer pointer
{Check if user-specified terminator
{B = options
{User specified terminators
{Standard terminators

{Check for terminator
{Not terminator
{Preserve terminating char.

{(Max. char, input shares this code)
{Terminate buffer
{Save character
;Recover terminating char.
{Set flags

;Not a terminator
;Check for backspace

;Backspace entered
;Save character in buffer
;Update count
{Not max. so get another char.
{Fake terminating char.
;A = 0 for max. chars, input

{Backspace entered
;Save buffer pointer
;HL -> actual count
{Back up one
;Check if count negative
;HL -> backspacing sequence
;No, check if echoing
;BS will have been echoed if so
{No, input BS not echoed
{Bypass initial backspace

{Save options and character
{Save terminator table pointer
{Write console string
;Recover terminator table pointer
{Recover options and character
;Exit from backspace logic

{Reset count t6 0

{Recover buffer pointer
{Get next character

Figure 5-8. (Continued)

Chapter 5: The Basic Disk Operating System 8 3

RCS$SC:

017F D5 PUSH D
0180 E5 PUSH H
0181 23 INX H
0182 5E MOV E, M
0183 1C I NR E
0184 1600 MV I D, 0
0186 19 DAD D
0187 71 MOV M, C
0188 El POP H
0189 D1 POP D

018A C9 RET

RCS$UC:

018B E5 PUSH H
018C 7E MOV A, M
018D 23 INX H
018E 34 I NR M
018F BE CMP M
0190 El POP H
0191 C9

RCS*GC:

RET

0192 D5 PUSH D
0193 E5 PUSH H
0194 C5

RC S$ WT:

PUSH B

0195 0E06 MV I C,B*DIRC0NI0
0197 1EFF MV I E,OFFH
0199 CD0500 CALL BDOS
019C B7 ORA A
019D CA9501 JZ RCS*WT
01A0 Cl POP B
01A1 4F MOV C, A
01A2 3E02 MV I A,RCS*ABORT
01 A4 A0 ANA B
01A5 CAAE01 JZ RCS$NA
01A8 3E03 MV I A,CTL$C
01AA B9 CMP C
01AB CA0000

RCS*NA:

JZ 0

01AE 3E04 MV I A,RCS*F0LD
01B0 A0 ANA B
01B1 C4E501 CNZ TOUPPER
01B4 3E01 MV I A ,RCSfECHO
01B6 A0 ANA B
01B7 C A D 101 JZ RCS$NE
01 BA C5 PUSH B
01BB 59 MOV E,C
01BC 0E06 MV I C,B*DIRC0NI0
01BE CD0500 CALL BDOS
01C1 Cl POP B
01C2 3E0D MV I A, CR
01C4 B9 CMP C
01C5 C2D101 JNZ RCS$NE
01C8 C5 PUSH B
01C9
01CB

0E06
1E0A

MV I
MV I

C,B$DIRC0NI0
E, LF

01 CD CD0500 CALL BDOS
01D0 Cl

RCS*NE:

POP B

01D1 El POP H
01D2 D1 POP D
01D3 C9 RET

{Save character in C in buffer
;HL -> buffer pointer
{Save terminator table pointer
{Save buffer pointer
{HL -> actual count in buffer
{Get actual count
{Count of 0 points to first data byte
{Make word value of actual count
;HL -> next free data byte
;Save data byte away
;Recover buffer pointer
{Recover terminator table
{ pointer

;Update buffer count and check for max.
;Return Z set if = to max., NZ
i if not HL -> buffer on entry
{Save buffer pointer
{Get max. count
{HL -> actual count
{Increase actual count
{Compare max. to actual
{Recover buffer pointer
iZ-flag set

{Get character and execute
{ ECHO, ABORT and FOLD options
{Save terminator table pointer
{Save buffer pointer
{Save option flags

{Function code
{Specify input

{Check if data waiting
{Go back and wait
{Recover option flags
{Save data byte
{Check if abort option enabled

{No abort
{Check for control-C

{Warm boot

{Check if folding enabled

{Convert to uppercase
{Check if echo required

{No echo required
{Save options and character
{Move character for output
{Function code
{Echo character
{Recover options and character
{Check if carriage return

{No
{Save options and character
{Function code
{Output line feed

{Recover options and character

{Recover buffer pointer
{Recover terminator table
{Character in C

Figure 5-8. (Continued)

84 The CP/M Programmer’s Handbook

RC S$ CT: ¡Check for terminator
¡C = character just input
¡DE -> 00-byte character
i string of term, chars.
¡Returns Z status if no
; match found, NZ if found
; (with A = C = terminating
; character)

01D4 D5 PUSH D ¡Save table pointer

RCS*CTL:
01D5 1A LDAX D ¡Get next terminator character
01D<$ B7 ORA A ¡Check for end of table
01D7 CAE201 JZ RCS*CTX ¡No terminator matched
01 DA B9 CMP C ¡Compare to input character
01DB CA E201 JZ RCS*CTX ¡Terminator matched
01 DE 13 INX D ¡Move to next terminator
01DF C3D501 JMP RCS*CTL ¡ loop to try next character in table

RCS*CTX: ¡Check terminator exit
01E2 B7 ORA A ¡At this point, A will either

; be 0 if the end of the
¡ table has been reached, or
; NZ if a match has been
¡ found. The Z-flag will be
¡ se t.

01E3 D1 POP D ¡Recover table pointer
01E4 C9 RET

;TOUPPER - Fold lowercase letters to upper
; C = Character on entry and exit

TOUPPER:
01E5 3E60 MV I A, 'a '-1 ¡Check if folding needed
01E7 B9 CMP C ¡Compare to input char.
01E8 D2F501 JNC TOUPX .¡No, char, is < or = "a"-l
01EB 3E7A MV I A, ' z ' ¡Maybe, char, is = or > "a"
01ED B9 CMP C
01 EE DAF501 JC TOUPX ¡No, char, is > "z"
01F1 3EDF MV I A,ODFH ¡Fold character
01F3 A1 ANA C
01F4 4F MOV C, A ¡Return folded character

TOUPX:
01F5 C9 RET

;WCS - Write console string (using raw I/O)
¡Output terminates when a OOH byte is encountered.
¡A carriage return is output when a line feed is
; encountered

¡Calling sequence
; LX I H,BUFFER
; CALL WCS

¡Exit parameters
; HL - > OOH byte terminator

WCS:
01F6 ES PUSH H ¡Save buffer pointer
01F7 7E MOV A, M ¡Get next character
01F8 B7 ORA A ¡Check if OOH
01F9 CA1602 JZ WCSX ¡Yes, exit
01FC FEOA CPI LF ¡Check if line feed
01FE CC0C02 CZ WCSLF ¡Yes, output a carriage return
0201 5F MOV E, A ¡Character to be output
0202 0E06 MV I C,B*DIRCONIO ¡Function code
0204 CD0500 CALL BDOS ¡Output character
0207 El POP H ¡Recover buffer pointer
0208 23 INX H ¡Update to next char.
0209 C3F601 JMP WCS ¡Output next char.

WC SL F: ¡Line feed encountered
020C 0E06 MV I C,B*DIRCONIO ¡Function code

Figure 5-8. (Continued)

Chapter 5: The Basic Disk Operating System 85

020E 1E0D MV I E, CR »Output a CR
0210 CD0500 CALL BDOS
0213 3E0A MV I A, LF »Recreate line feed
0215 C9 RET »Output LF

WCSXs »Exit
0216 El POP H »Balance the stack
0217 C9 RET

Figure 5-8. (Continued)

Example

0007 *
0005 =

0000 0E07
0002 CD0500

Purpose

Notes
devices (console, reader, punch, and list) with the physical devices supported by a
particular BIOS. Use of the IOBYTE is completely optional. CP/M, to quote from
the Digital Research CP/M 2.0 Alteration Guide, “...tolerate[s] the existence of the
IOBYTE at location 0003H.”

In practice, the STAT utility provided by Digital Research does have some
features that set the IOBYTE to different values from the system console.

Figure 5-9 summarizes the IOBYTE structure. A more detailed description
was given in Chapter 4.

Each two-bit field can take on one of four values: 00,01,10, and 11. The value
can be interpreted by the BIOS to mean a specific physical device, as shown in
Table 4-1.

Figure 5-10 has equates that are used to refer to the IOBYTE. You can see that
the values shown are declared using the SHL (shift left) operator in the Digital
Research Assembler. This is just a reminder that the values are structured this way
in the IOBYTE itself.

B*GETI0
BOOS

EQU
EQU

îGet IOBYTE
;BDOS entry point

MV I
CALL

Cr B$GETI0
BOOS

îFunction code
ïA = IOBYTE

This function places the current value of the IOBYTE in register A.

As we saw in Chapter 4, the IOBYTE is a means of associating CP/M’s logical

Bit No.
+------- +— -----
! 7 : 6 ! 5 ï 4

-+-------- +-------- +
3 : 2 I 1 : o :

Logical Device List Punch Reader Console

Figure 5-9. The IOBYTE structure

86 The CP/M Programmer’s Handbook

{IOBYTE equates
{These are for accessing the IOBYTE.

{Mask values to isolate specific devices,
i(These can also be inverted to preserve all BUT the
{ specific device)

0003 = I0*C0NM EQU 0000*001 IB ;Console mask
OOOC = I0*RDRM EQLI 0 0 0 0 * 1 100B ;Reader mask
0030 = IO*PUNM EQU 0011*00006 ;Punch mask
OOCO = I0*LSTM EQU 1100*0000B {List mask

{Console values
0000 = I0*CTTY EQU 0 {Console -> TTY:
0001 = I0*CCRT EQU 1 {Console -> CRT:
0002 = I0*CBAT EQU 2 {Console input <- RDR:

{Console output -> LST:
0003 = I0*CUC1 EQU 3 {Console -> UC1: (user console 1)

{Reader values
0000 = I0*RTTY EQU 0 SHL 2 {Reader <- TTY:
0004 = I0*RRDR EQU 1 SHL 2 {Reader <- RDR:
0008 = I0*RUR1 EQU 2 SHL 2 {Reader <- UR1: (user reader 1)
OOOC = I0*RUR2 EQU 3 SHL 2 {Reader <- UR2: (user reader 2)

{Punch values
0000 = I0*PTTY EQU 0 SHL 4 {Punch -> TTY:
0010 = IOSPPUN EQU 1 SHL 4 {Punch -> PUN:
0020 = I0*PUP1 EQU 2 SHL 4 {Punch -> UP1: (user punch 1)
0030 = I0*PUP2 EQU 3 SHL 4 {Punch -> UP2: (user punch 2)

{List values
0000 = I0*LTTY EQU 0 SHL 6 {List -> TTY:
0040 = I0$LCRT EQU 1 SHL 6 {List -> CRT:
0080 = IOSLLPT EQU 2 SHL 6 {List -> LPT: (physical line printer)
OOCO = I0*LUL1 EQU 3 SHL 6 {List -> UL1: (user list 1)

Figure 5-10. IOBYTE equates

Function 8: Set IOBYTE
Function Code: C = 08H
Entry Parameters: E = New IOBYTE value
Exit Parameters: None

Example This listing shows you how to assign the logical reader device to the BIOS’s
console driver. It makes use of some equates from Figure 5-10.

0007 = B$GETI0 EQU 7 ; Get IOBYTE
0008 as B*SETI0 EQU 8 ; Set IOBYTE
0005 = BDOS EQU 5 ; BDOS entry point

OOOC - I0*RDRM EQU 0000*1100B {Reader bit mask
0008 a I0*RUR1 EQU 2 SHL 2 {User reader select

{This example shows how to assign the logical
;reader to the user-defined reader #1 (UR1:)

0100 ORG 100H
0100 0E07 MVI C,B*GETI0 {First, get current IOBYTE

Chapter 5: The Basic Disk Operating System 87

0102
0105

CD0500
E6F3

CALL
AN I

BOOS
(NOT IO*RDRM) AND OFFH jPreserve all 1

0107 F608 OR I I0*RUR1 ; OR in
; reader bits
new setting

0109 5F MOV E,A ; Ready for set IOBYTE
010A 0E08 MV I C,B*SETIO ïSet new value
010C CD0500 CALL BOOS

Purpose This function sets the IOBYTE to a new value which is given in register E.
Because of the individual bit fields in the IOBYTE, you will normally use the Get
IOBYTE function, change some bits in the current value, and then call the Set
IOBYTE function.

Notes You can use the Set IOBYTE, Get IOBYTE, and Direct Console I/ O functions
together to create a small program that transforms your computer system into a
“smart” terminal. Any data that you type on your keyboard can be sent out of a
serial communications line to another computer, and any data received on the line
can be sent to the screen.

Figure 5-11 shows this program and illustrates the use of all of these functions.
For this program to function correctly, your BIOS must check the IOBYTE

and detect whether the logical console is connected to the physical console (with
the IOBYTE set to TTY:) or to the input side of the serial communications line
(with the IOBYTE set to RDR:).

Figure 5-11 shows how to use the Get and Set IOBYTE functions to make a
simple terminal emulator. For this example to work, the BIOS must detect the
Console Value as 3 (IOSCUC1) and connect Console Status, Input, and Output
functions to the communications line.

0006 _ B*DIRCONIO EQU 6 jDirect console input/output
0007 = B$GETIO EQU 7 ;Get IOBYTE
0008 = B*SETIO EQU 8 ;Set IOBYTE
OOOB = B*CONST EQU 11 jGet console status (sneak preview)
0005 = BDOS EQU 5 iBDOS entry point

0003 = IO*CONM EQU 0000*001 IB ;Console mask for IOBYTE
0001 = IO$CCRT EQU 1 ;Console -> CRT:
0003 = I0$CUC1 EQU 3 ;Console -> user console #1

TERM:
0000 CD2A00 CALL SETCRT ;Connect console -> CRT:

TERMSCKS:
0003 CD5200 CALL CONST ;Get CRT status
0006 CA2400 JZ TERMÎNOKI ;No console input
0009 CD4B00 CALL CON IN ;Get keyboard character
OOOC CD3000 CALL SETCOMM ;Connect console -> comm, line
OOOF CD4500 CALL CONOUT ;Output to comm, line

TERM*CCS: ;Check comm, status
0012 CD5200 CALL CONST jGet "console" status
0015 CAOOOO JZ TERM ;No incoming comm, character
0018 CD4B00 CALL CON IN ;Get incoming comm, character

Figure 5-11. Simple terminal emulator

88 The CP/M Programmer’s Handbook

0 0 IB CD2A00 CALL SETCRT ;Connect console -> CRT:
0 0 IE CD4500 CALL CONOUT ;Output to CRT
0021 C30300 JMP TERMSCKS ;Loop back to check keyboard status

TERMSNOKI:
0024 CD3000 CALL SETCOMM ; Connect console -> comrn. line
0027 C31200 JMP TERMSCCS ;Loop back, to check comm, status

SETCRT: ;Connect console -> CRT:
002A F5 PUSH PSW jSave possible data character
002B 0601 MV I B,IO*CCRT ;Connect console -> CRT:
002D C33300 JMP SETCON ;Common code

SETCOMM ;Connect console -> comm, line
0030 F5 PUSH PSW ;Save possible data character
0031 0603 MV I B,I0*CUC1 ;Connect console -> comm, line

:Drop into SETCON

SETCON: ;Set console device
;New code in B (in bits 1,0)

0033 C5 PUSH B ySave code
0034 0E07 MV I C,B*GETIO ;Get current IOBYTE
0036 CD0500 CALL BOOS
0039 E6FC AN I (NOT IOSCONM) AND OFFH ;Preserve all but console
003B Cl POP B ;Recover required code
003C BO ORA B ;OR in new bits
003D 5F MOV E, A :Ready for setting
003E 0E08 MV I C,B*SETIO ;Function code
0040 CD0500 CALL BOOS
0043 FI POP PSW ;Recover possible data character
0044 C9 RET

CON0UT:
0045 5F MOV E, A ;Get data byte for output

0046 0E06 MV I C rB*DIRCONIO ?Function code
0043 C30500 JMP BDOS ;BDOS returns to CONOUT's caller

CONIN:
004B 0E06 MV I C,B*DIRCONIO ;Function code
004D 1EFF MV I E,OFFH ; Indicate console input
004F C30500 JMP BDOS ;BD0S returns to CONIN's caller

CO NS T:
0052 OEOB MV I C,B*CONST }Function code
0054 CD0500 CALL BDOS
0057 B7 ORA A ;Set Z-flag to result
0058 C9 RET

Figure 5-11. (Continued)

Function 9: Display “$”-Terminated String
Function Code: C = 09H
Entry Parameters: DE = Address of first byte of string
Exit Parameters: None

Example
0009 = BSPRINTS EQU 9 ;Print ^-Terminated String
0005 = BDOS EQU 5 7BDOS entry point

000D = CR EQU ODH ;Carriage return
000A = LF EQU OAH :Line feed
0009 = TAB EQU 09H ?Horizontal tab

Chapter 5: The Basic Disk Operating System 89

Purpose

Notes

0000 0D0A095468MESSAGE : DB CR,LF,TAB,'This is a message',CR,LF, V

0017 0E09
0019 110000
001C CD0500

MVI C,B$PRINTS ;F u n d ion code
LXI D,MESSAGE ?Pointer to message
CALL BOOS

This function outputs a string of characters to the console device. The address
of this string is in registers DE. You must make sure that the last character of the
string is the BDOS uses this character as a marker for the end of the string.
The “$” itself does not get output to the console.

While the BDOS is outputting the string, it expands tabs as previously de
scribed, checks to see if there is an incoming character, and checks for CONTROL-S
(XOFF, which stops the output until another character is entered) or CONTROL-P
(which turns on or off echoing of console characters to the printer).

One of the biggest drawbacks of this function is its use of “$” as a terminating
character. As a result, you cannot output a string with a in it. To be truly
general-purpose, it would be better to use a subroutine that used an ASCII NUL
(OOH) character as a terminator, and simply make repetitive calls to the BDOS
CONOUT function (code 2). Figure 5-3 is an example of such a subroutine.

Figure 5-12 shows an example of a subroutine that outputs one of several
messages. It selects the message based on a message code that you give it as a
parameter. Therefore, it is useful for handling error messages; the calling code can
pass it an 8-bit error code. You may find it more flexible to convert this subroutine
to using OOH-byte-terminated messages using the techniques shown in Figure 5-3.

;0M (Output message)
yThis subroutine selects one of several messages based on
; the contents of the A register on entry. It then displays
; this message on the console.

;Each message is declared with a as its last character.
; If the A register contains a value larger than the number
; of messages declared, OM will output "Unknown Message".

jAs an option, OM can output carriage return / line feed
; prior to outputting the message text.

yEntry parameters
y HL -> message table
; This has the form :

DB 3 ;¡Number of messages in table
DU MSGO i¡Address of text (A = 0)
DU MSG1 !i(A = 1)
DU MSG2 5:(A = 2)

DB 'Message
...etc.

text*'

A = Message code (from 0 on up)
B = Output C-R/LF if non-zero

Figure 5-12. Display $-terminated message on console

90 The CP/M Programmer’s Handbook

Cal ling sequence
LX I H,MSG$TABLE
LDA MSGCODE
M V I B,0 3
CALL OM

¡Suppress CR/LF

0009 = B*PRINTS EQU 9 ;¡Print ^-terminated string
0005 = BOOS EQU 5 ;¡BDOS entry point

000D = CR EQU ODH 3¡Carriage return
OOOA = LF EQU OAH ;¡Line feed

0000 0D0A24 C m C R L F ; DB CR,LF, '$■
0003 556E6B6E6FGM$UM: DB 'Unknown Message*-'

OM;
0013 F5 PUSH PSW ;3 Save message code
0014 E5 PUSH H !¡Save message table pointer
0015 78 MOV A, B :¡Check if CR/LF required
0016 B7 ORA A
0017 CA2200 JZ OMSNOCR ; No
001A 110000 LX I D,GM*CRLF ¡Output CR/LF
001D 0E09 MV I C,B$PRINTS
00 IF CD0500 CALL BDOS

OM$NOCR:
0022 El POP H ¡Recover message table pointer
0023 FI POP PSW ¡Recover message code
0024 BE CMP M ¡Compare message to max. value
0025 D23700 JNC OM$ERR ¡Error-code not <= max.
0023 23 INX H ¡Bypass max. value in table
0029 87 ADD A ¡Message code * 2
002A 5F MOV E, A ¡Make (code « 2) a word value
002B 1600 MV I D, 0
002D 19 DAD D ¡HL -> address of message text
002E 5E MOV E, M ¡Get LS byte
002F 23 INX H ¡HL -> MS byte
0030 56 MOV D, M ¡Get MS byte

¡DE -> message text itself

OM*PS: ¡Print string entry point
0031 0E09 MV I C,B*PRINTS ¡Function code
0033 CD0500 CALL BDOS
0036 C9 RET ¡Return to caller

OM*ERR: ¡Error
0037 110300 LX I D,OM$UM ¡Point to "Unknown Message"
003A C33100 JMP OMÎPS ¡Print string

Figure 5-12. (Continued)

Function 10: Read Console String
Function Code: C = OAH
Entry Parameters: DE = Address of string buffer
Exit Parameters: String buffer with console bytes in it

Example

OOOA =
0005 =

B*READCONS
BDOS

EQU 10 ¡Read Console String
EQU 5 ;BDOS entry point

Chapter 5: The Basic Disk Operating System 91

0050 = BUFLEN EQU 80 jBuffer length

BUFFER: jConsole input buffer
0000 50 BUFMAXCH: DB BUFLEN jMax. no. of characters in

; buffer
0001 00 BUFACTCH: DB 0 ;Actual no. of characters input
0002 BUFCH: DS BUFLEN jBuffer characters

0052 OEOA MV I C.,B*READCONS ;Function code
0054 110000 LXI D ,BUFFER ;Pointer to buffer
0057 CD0500 CALL BDOS

Purpose This function reads a string of characters from the console device and stores
them in a buffer (address in DE) that you define. Full line editing is possible: the
operator can backspace, cancel the line and start over, and use all the normal
control functions. What you will ultimately see in the buffer is the final version of
the character string entered, without any of the errors or control characters used to
do the line editing.

The buffer that you define has a special format. The first byte in the buffer tells
the BDOS the maximum number of characters to be accepted. The second byte is
reserved for the BDOS to tell you how many characters were actually placed in the
buffer. The following bytes contain the characters of the string.

Character input will cease either when a c a r r ia g e r e t u r n is entered or when
the maximum number of characters, as specified in the buffer, has been received.
The c a r r ia g e r e t u r n is not stored in the buffer as a character—it just serves as a
terminator.

If the first character entered is a CARRIAGE RETURN, then the BDOS sets the
“characters input” byte to 0. If you attempt to input more than the maximum
number of characters, the “characters input” count will be the same as the
maximum value allowed.

Notes This function is useful for accepting console input, especially because of the
line editing that it allows. It should be used even for single-character responses,
such as “Y/N” (yes or no), because the operator can type “Y”, backspace, and
overtype with “N”. This makes for more “forgiving” programs, tolerant of humans
who change their minds.

Figure 5-13 shows an example subroutine that uses this function. It accepts
console input, matches the input against a table, and transfers control to the
appropriate subroutine. Many interactive programs need to do this; they accept an
operator command and then transfer control to the appropriate command proces
sor to deal with that command.

This example also includes two other subroutines that are useful in their own
right. One compares null-byte-terminated strings (FSCMP), and the other con
verts, or “folds,” lowercase letters to uppercase (FOLD).

92 The CP/M Programmer’s Handbook

RSA
Return subprocessor address
This subroutine returns one of several addresses selected
from a table by matching keyboard input against specified
strings. It is normally used to switch control to a
particular subprocessor according to an option entered
by the operator from the keyboard.

Character string comparisons are performed with case-folding;
that is, lowercase letters are converted to uppercase.

If the operator input fails to match any of the specified
strings, then the carry flag is set. Otherwise, it is
cl ea re d.

Entry parameters
HL -> Subprocessor select table

This has the form ;
DU TEXTO,SUBPROCO
DU TE X T 1,SUBP RO C1
DU 0 ;Terminator

TEXTO; DB 'add',0 ;OOH-byte terminated
TE X T 1: DB 'subtract',0
SUBPROCO:

Code for processing ADD function.
SU BP RQ C1:

Code for processing SUBTRACT function.

Exit parameters
DE -> operator input string (OOH-terminated

input string).
Carry Clear, HL -> subprocessor.
Carry Set, HL = 0000H.

Calling sequence
LX I H ,SUBPROCTAB ; Subprocessor table
CALL RSA
JC ERROR ; Carry set only on error
LX I D,RETURN ;Fake CALL instruction
PUSH D ;Push return address on stack
PCHL
RETURN:

;"CALL" to subprocessor

000A = B$READCONS EQU 10 ;Read console string into buffer
0005 = BDOS EQU 5 ;BDOS entry point

0050 = RSA$BL EQU 80 ; Buffer length
0000 50 RSA$BUF: DB RSA*BL ;Max. no. of characters
0001 00 RSASACTC: DB 0 ; Actual no. of characters
0002 RSA$BUFC: DS RSA*BL ; Buffer characters
0052 00 DB 0 ;Safety terminator

RSA:
0053 2B DCX H ; Adjust Subprocessor pointer
0054 2B DCX H ; for code below
0055 E5 PUSH H ;Top of stack (TOS) -> subproc. tab]
0056 OEOA MV I C,B*READCONS ; Function code
0058 110000 LX I D,RSA*BIJF ;DE -> huffer
005B CD0500 CALL BDOS ;Read operator input and

; Convert to OOH-terminated
005E 210100 LX I H,RSA$ACTC ;HL -> actual no. of chars, input
0061 5E MOV E, M ;Get actual no. of chars, input
0062 1600 MV I D, 0 ;Make into word value
0064 23 INX H ;HL -> first data character
0065 19 DAD D ; HL -> first UNUSED character in bui
0066 3600 MV I M, 0 ;Make input buffer 00H terminated

RSA$ML: ; Compare input to specified values
; Main 1oop

0068 El POP H ; Recover subprocessor table pointer
0069 23 INX H ;Move to top of next entry
006A 23 INX H ;HL -> text address
006B 5E MOV E, M ;Get text address

Figure 5-13. Read console string for keyboard options

Chapter 5: The Basic Disk Operating System 93

006C 23 INX H
006D 56 MOV D, M ;DE -> text

006E 7A MOV A, D ;Check if at end of subprocessor table
006F B3 ORA E
0070 CA8500 JZ RSAÎNFND ;Match not found

0073 23 INX H ;HL -> subprocessor address
0074 E5 PUSH H ; Save ptr. to subprocessor table
0075 210200 LX I H,RSA$BUFC ;HL -> input characters
0078 CD8A00 CALL FSCMP ^Folded string compare
007B C26800 JNZ RSA$ML ;No match, move to next entry
007E El POP H ;Match found, recover subprocessor ptr.
007F 5E MOV E, M ;Get actual subprocessor address
0080 23 INX H
0031 56 MOV D, M ;DE -> Subprocessor code
0082 EB XCHG ;HL -> Subprocessor code
0083 B7 ORA A ;Clear carry (match found)
0084 C9 RET

RSA$NFND:
0085 210000 LX I H, 0 ;Indicate no match found
0088 37 STC ;Set carry
0089 C9

FSCMP

RET

Compare folded (lowercase to upper) string.
pThis subroutine compares two OOH-byte terminated
■strings and returns with the condition flags set
to indicate their relationship.

Entry parameters
DE -> string 1
HL -> string 2

Exit parameters
Flags set (based on string 1 - string 2, on a
character-by-character basis)

FS C M P :
008A 1A LDAX D ;Get string 1 character
008B CD9E00 CALL FOLD ;Fold to uppercase
008E F5 PUSH PSW ;Save string 1 character
008F 7E MOV A, M ;Get string 2 character
0090 CD9E00 CALL FOLD ;Fold to uppercase
0093 47 MOV B, A ;Save string 2 character
0094 FI POP PSW ;Recover string 1 character
0095 B3 CMP B ;String 1 - string 2
0096 CO RNZ ;Return if not equal
0097 B7 ORA A ;Equal, so check if end of strings
0098 C8 RZ ; Yes
0099 13 INX D ;No, update string 1 pointer
009A 23 INX H ; and string 2 pointer
009B C3SA00

FOLD

JMP FSCMP ;Check next character

; Folds a lowercase letter (a-z) to up pe rc as e (A-Z)
;The character to be folded is in A on entry and on exit.

FOLD:
009E 4F MOV C, A ;Preserve input character
009F 3E60 MV I A t 'a'-l jCheck if folding needed
00 A 1 B9 CMP C ;Compare to input character
00A2 D2AF00 JNC FOLDX ;No, char, is <= "a"
00A5 3E7A MV I A , ' z ' ;Check if < "z"
00A7 B9 CMP C
00A3 DAAFOO JC FOLDX ;No, char, is > "z"
OOAB 3EDF MV I A tODFH ;Fold character
OOAD A1 ANA C
OOAE C9 RET

FO LD X:
OOAF 79 MOV A, C ;Recover original input char.
OOBO C9 RET

Figure 5-13. (Continued)

94 The CP/M Programmer’s Handbook

Function 11: Read Console Status
Function Code: C = OBH
Entry Parameters: None
Exit Parameters: A = 00H if no incoming data byte

A = OFFH if incoming data byte

Example

OOOB =
0005 =

BSCONST
BOOS

EQU 11 ;Get Console Status
EQU 5 ;BDOS entry point

0000 OEOB
0002 CD0500

MVI C t B$CONST ;Function code
CALL BOOS ;A = 00 if no character waiting

;A = OFFH if character waiting

Purpose This function tells you whether a console input character is waiting to be
processed. Unlike the Console Input functions, which will wait until there is input,
this function simply checks and returns immediately.

Notes Use this function wherever you want to interrupt an executing program if a
console keyboard character is entered. Just put a Console Status call in the main
loop of the program. Then, if the program detects that keyboard data is waiting, it
can take the appropriate action. Normally this would be to jump to location
OOOOH, thereby aborting the current program and initiating a warm boot.

Figure 5-11 is an example subroutine that shows how to use this function.

Function 12: Get CP/M Number
Function Code: C = OCH
Entry Parameters: None
Exit Parameters: HL = Version number code

Example

oooc = BSGETVER EQU 12 ;Get CP/M Version Number
0005 = BOOS EQU 5 ;BD0S entry point

0000 OEOC MV I C,B*GETVER ;Function code
0002 CD0500 CALL BOOS ? H = 00 for CP/M

;L = version (e.g. 22H for 2.2)

Purpose This function tells you which version of CP/M you are currently running. A
two-byte value is returned:

H = 00H for CP/M, H = 01H for M P/M
L = 00H for all releases before CP/M 2.0
L = 20H for CP/M 2.0,21H for 2.1,22H for 2.2, and so on for any subsequent

releases.

Notes

Function

Chapter 5: The Basic Disk Operating System 95

This information is of interest only if your program has some version-specific
logic built into it. For example, CP/M version 1.4 does not support the same
Random File Input/Output operations that CP/M 2.2 does. Therefore, if your
program uses Random 1/ O, put this check at the beginning to ensure that it is
indeed running under the appropriate version of CP/M.

Figure 5-14 is a subroutine that checks the current CP/M version number, and,
if it is not CP/M 2.2, displays an explanatory message on the console and does a
warm boot by jumping to location 0000H.

13: Reset Disk System
Function Code: C = ODH
Entry Parameters: None
Exit Parameters: None

; CCPM
¡Check if CP/M
¡This subroutine determines the version number of the
¡operating system and, if not CP/M version 2, displays
¡an error message and executes a warm boot.

¡Entry and exit parameters
; None

;Calling sequence
CALL CCPM ; Warm boots if not CP/M 2

0009 = B$PRINTS EQU 9 ¡Display ♦ - terminated string
OOOC = B$GETVER EQLI 12 ¡Get version number
0005 BOOS EQU 5 ¡BDOS entry point

000D = CR EQU ODH ;Carriage return
000A = LF EQU OAH ¡Line feed

0000 ODOA CCPMM: DB CR, LF
0002 5468697320 DB 'This program can only run under CP/M version
0031 0D0A24

CCPM:

DB CR,LF,

0034 OEOC MV I C,B$GETVER ¡Get version number
0036 CD0500 CALL BDOS
0039 7C MOV A, H ? H must be 0 for CP/M
003A B7 ORA A
003B C24700 JNZ CCPME ;Must be MP/M
003E 7D MOV A, L ¡L = version number of CP/M
003F E6F0 AN I OFOH ¡Version number in MS nibble
0041 FE20 CPI 20H ¡Check if version 2
0043 C24700 JNZ CCPME ¡Must be an earlier version
0046 C9 RET ¡Yes, CP/M version 2

CCPME: ¡Error
0047 0E09 MV I C,B$PRINTS ¡Display error message
0049 110000 LX I D,CCPMM
004C CD0500 CALL BDOS
004F C.30000 JMP 0 ¡Warm boot

Figure 5-14. Determine the CP/M version number

96 The CP/M Programmer’s Handbook

Example

Purpose

Notes

000D *
0005 =

B*DSKRESET
BOOS

EQU 13 ;Reset Disk System
EQU 5 ;BDOS entry point

0000 OEOD
0002 CD0500

MVI C,B*DSKRESET ; Function code
CALL BDOS

This function requests CP/M to completely reset the disk file system. CP/M
then resets its internal tables, selects logical disk A as the default disk, resets the
DMA address back to 0080H (the address of the buffer used by the BDOS to read
and write to the disk), and marks all logical disks as having Read/Write status.

The BDOS will then have to log in each logical disk as each disk is accessed.
This involves reading the entire file directory for the disk and rebuilding the
allocation vectors (which keep track of which allocation blocks are free and which
are used for file storage).

This function lets you change the diskettes under program control. If the
operator were to simply change diskettes, without CP/M knowing about it, the
next access to the (now different) diskette would force CP/M to declare the disk
Read-Only, thwarting any further attempts to write on the diskette. If you need to
reset one or two disks, rather than the entire disk system, look ahead to the Reset
Disk function (code 37) described at the end of this chapter.

Figure 5-15 shows a simple subroutine that outputs a message on the console,
requesting that the diskette in a specified drive be changed. It then issues a Reset
Disk function call to make sure that CP/M will log in the diskette on the next
access to the drive.

CDISK
Change disk
This subroutine displays a message requesting the
user to change the specified logical disk, then waits
for a carriage return to be pressed. It then issues
a Disk Reset and returns to the caller.

Entry parameters
A = Logical disk to be changed (A = 0 , B = 1)

Exit parameters
None

Calling sequence
MV I A, 0 ;Change drive A:

; CALL CDISK

GOOD = B$DSKRE3ET EQU 13 ;Disk Reset function code
0009 = B$PRINTS EQU 9 ;Print $-terminated string
0001 = B$CONIN EQU 1 ;Get console input
0005 = BDOS EQU 5 ;BDOS entry point

Figure 5-15. Reset requested disk drive

Chapter 5: The Basic Disk Operating System 97

OOOD CR EQU ODH
OOOA = LF EQU OAH

0000 ODOA4 36 861CD IS KM: DB CR,LF, •'Change logical disk '
0016 00 CDISKD: DB 0
0017 3A20616E64 DB ■' : and press Carriage Return to continue*'

CDISK:
003F C640 ADI ' A ' -1 ?Convert to letter
0041 321600 STA CDISKD jStore in message
0044 0E09 MV I C,B$PRINTS ^Display message
0046 110000 LX I D,CDISKM
0049 CD0500

CDISKW:

CALL BDOS

004C 0E01 MV I C,B*CONIN jGet keyboard character
004E CD0500 CALL BDOS
0051 FEOD CPI CR
0053 C24C00 JNZ CDISKW
0056 OEOD MV I C,B*DSKRESET ?Now reset disk system
0058 CD0500 CALL BDOS
005B C9 RET

Figure 5-15. Reset requested disk drive (continued)

Function 14: Select Logical Disk
Function Code: C = OEH
Entry Parameters: E = Logical Disk Code

00 H = Drive A
01H = Drive B and so on

Exit Parameters: None

Example

OOOE =
0005 =

B*SELDSK
BDOS

EQU 14 ; Select Logical Disk
EQU 5 ?BD0S entry point

0000 OEOE
0002 1E00
0004 CD0500

M V I C,B*SELDSK ; Function code
M V I E r0 }E * 0 for A:, 1 for 6: etc.
CALL BDOS

Purpose This function makes the logical disk named in register E the default disk. All
subsequent references to disk files that do not specify the disk will use this default.

When you reference a disk file that does have an explicit logical disk in its name
you do not have to issue another Select Disk function; the BDOS will take care of
that for you.

Notes Notice the way in which the logical disk is specified in register E. It is not the
same as the disk drive specification in the first byte of the file control block. In the
FCB, a value of 00H is used to mean “use the current default disk” (as specified in
the last Select Disk call or by the operator on the console). With this function, a

98 The CP/M Programmer’s Handbook

value of 00H in register A means that A is the selected drive, a value of 01H means
drive B, and so on to OFH for drive P, allowing 16 drives in the system.

If you select a logical disk that does not exist in your computer system, the
BDOS will display the following message:
BOOS Err on Js Select

If you type a CARRIAGE r e t u r n in order to proceed, the BDOS will do a warm
boot and transfer control back to the CCP. To avoid this, you must rely on the
computer operator not to specify nonexistent disks or build into your program the
knowledge of how many logical disk drives are on the system.

Another problem with this function is that you cannot distinguish a logical
disk for which the appropriate tables have been built into the BIOS, but for which
there is no physical disk drive. The BDOS does not check to see if the drive is
physically present when you make the Select Disk call. It merely sets up some
internal values ready to access the logical disk. If you then attempt to access this
nonexistent drive, the BIOS will detect the error. What happens next is completely
up to the BIOS. The standard BIOS will return control to the BDOS, indicating an
error condition. The BDOS will output the message
BDOS Err on Cs Bad Sector

You then have a choice. You can press CARRIAGE RETURN, in which case the BDOS
will ignore the error and attempt to continue with whatever appears to have been
read in. Or you can enter a CONTROL-C, causing the program to abort and CP/M to
perform a warm boot.

Note that the Select Disk function does not return any values. If your program
gets control back, you can assume that the logical disk you asked for at least has
tables declared for it.

Function 15: Open File
Function Code: C = OFH
Entry Parameters: DE — Address of file control block
Exit Parameters: A = Directory code

Example

OOOF B$0PEN EQU
0005 * BDOS EQU

FCB:
0000 00 FCB$DISK: DB
0001 46494C454EFCB*NAMEi DB
0009 545950 FCBSTYP: DB
OOOC 00 FCB*EXTENTs DB
OOOD 0000 FCB*RESV: DB
OOOF 00 FCB*RECUSED: DB
0010 0000000000FCB*ABUSED: DB
0018 0000000000 DB
0020 00 FCBSSEQRECs DB

15 ;Open File
5 jBDOS entry point

?File control block
0 jSearch on default disk drive
"FILENAME" ;File name
"TYP" ;File type
0 ;Extent
O rO ;Reserved for C-P/M
0 jRecords used in this extent
0,0,O r0,0,0,0,0 ¡Allocation blocks used
OrOrOrOr OrOrOrO
0 ;Sequential rec. to read/write

Chapter 5: The Basic Disk Operating System 99

Purpose

Notes

0021 0000 FCB*RANREC: DW 0 ;Random rec. to read/write
0023 00 FCB*RANRECOs DB 0 ;Random rec. overflow byte (MS)

0024 OEOF MV I C,B$0PEN ;Function code
0026 110000 LXI D, FCB ;DE -> File control block
0029 CD0500 CALL BDOS jA = OFFH if file not found

This function opens a specified file for reading or writing. The FCB, whose
address must be in register DE, tells CP/M the user number, the logical disk, the
file name, and the file type. All other bytes of the FCB will normally be set to 0.

The code returned by the BDOS in register A indicates whether the file has
been opened successfully. If A contains OFFH, then the BDOS was unable to find
the correct entry in the directory. If A = 0,1,2, or 3, then the file has been opened.

The Open File function searches the entire file directory on the specified
logical disk looking for the file name, type, and extent specified in the FCB; that is,
it is looking for an exact match for bytes 1 through 14 of the FCB. The file name
and type may be ambiguous; that is, they may contain “?” characters. In this case,
the BDOS will open the first file in the directory that matches the ambiguous name
in the FCB. If the file name or type is shorter than eight or three characters
respectively, then the remaining characters must be filled with blanks.

When the BDOS searches the file directory, it expects to find an exact match
with each character of the file name and type, including lowercase letters or
nongraphic characters. However, the BDOS uses only the least significant seven
bits of each character—the most significant bit is used to indicate special file status
characteristics, or attributes.

By matching the file extent as well as the name and type, you can, if you wish,
open the file at some point other than its beginning. For normal sequential access,
you would not usually want to do this, but if your program can predict which file
extent is required, this is a method of moving directly to it.

It is also possible to open the same file more than once. Each instance requires
a separate FCB. The BDOS is not aware that this is happening. It is really only safe
to do this when you are reading the file. Each FCB can be used to read the file
independently.

Once the file has been found in the directory, the number of records and the
allocation blocks used are copied from the directory entry into the FCB (bytes 16
through 31). If the file is to be accessed sequentially from the beginning of the file,
the current record (byte 32) must be set to zero by your program.

The value returned in register A is the relative directory entry number of the
entry that matched the FCB. As previously explained, the buffer that CP/M uses
holds a 128-byte record from the directory with four directory entries numbered 0,
1, 2, and 3. This directory code is returned by almost all of the file-related BDOS
functions, but under normal circumstances you will be concerned only with
whether the value returned in A is OFFH or not.

Figure 5-16 shows a subroutine that takes a OOH-byte terminated character

100 The CP/M Programmer’s Handbook

string, creates a valid FCB, and then opens the specified file. Shown as part of this
example is the subroutine BF (Build FCB). It performs the brunt of the work of
converting a string of ASCII characters into an FCB-style disk, file name, and
type.

;OPENF
¡Open File

¡Given a pointer to a OOH-byte-terminated file name,
¡and an area that can be used for a file control
¡block, this subroutine builds a valid file control
¡block and attempts to open the file.

¡If the file is opened, it returns with the carry flag clear.
¡If the file cannot be opened, this subroutine returns
¡with the carry flag set.

;Entry parameters
¡ DE -> 36-byte area for file control block
; HL -> OOH-byte terminated file name of the
; form {disk:} Name C.typ}
; (disk and typ are optional)

¡Exit parameters
? Carry clear : File opened correctly.
; Carry set s File not opened.

;Calling Sequence
; LXI D, FCB

LXI H,FNAME
■ CALL OPENF

JC ERROR
:where
¡FCB: DS 36 ¡Space for file control block
¡FNAME: DB 'A:TESTFILE. DAT'', 0

OOOF = B*0PEN EQU 15 ¡File Open function code
0005 = BDOS EQU 5 ¡BDOS entry point

OPENF:
0000 D5 PUSH D ¡Preserve pointer to FCB
0001 CD0C00 CALL BF ¡Build file control block
0004 OEOF MV I C,B*0PEN
0006 D1 POP D ¡Recover pointer to FCB
0007 CD0500 CALL BDOS
000A 17 RAL ¡If A=0FFH, carry set

¡otherwise carry clear
000B C9 RET

; BF
¡Build file control block
¡This subroutine formats a OOH-byte-terminated string
¡(presumed to be a file name) into an FCB, setting
¡the disk and file name and type and clearing the
¡remainder of the FCB to 0's.

¡Entry parameters
¡ DE -> file control block (36 Bytes)
¡ HL -> file name string (OOH-byte-terminated)

¡Exit parameters
¡ The built file control block
¡Calling sequence

LXI D,FCB
; LXI H,FILENAME
: CALL BF

BF:

Figure 5-16. Open file request

Chapter 5: The Basic Disk Operating System 101

oooc 23 INX H ; Check if 2nd char, is "s"
OOOD 7E MOV A, M ïGet character from file name
OOOE 2B DCX H jHL -> now back at 1st char.
OOOF FE3A CPI ;If then disk specified
0011 C.21C00 JNZ BF*ND ?No disk
0014 7E MOV A, M ;Get disk letter
0015 E61F ANI 0001$1111B ; A (41H) -> 1, B (42H) -> 2 ...
0017 23 INX H ;Bypass disk letter
0013 23 INX H ; Bypass ":"
0019 C31D00 JMP BF*SD ;Store disk in FCB

BF$ND: jNo disk present
001C AF

BF4SD:

XRA A ; Indicate default disk

00 ID 12 STAX D ;Store disk in FCB
001E 13 INX D jDE -> 1st char, of name in FCB
00 IF 0E08 MVI C, 8 ;File name length
0021 CD3700 CALL BF*GT ;Get token

?Note — at this point, BF$GT
;will have advanced the string
^pointer to either a or
;OOH byte

0024 FE2E CPI •'. ' ;Check terminating character
0026 C22A00 JNZ BF*NT jNo file type specified
0029 23

BF*NT:

INX H ; Bypass "." in file name

002A 0E03 MVI C, 3 ;File type length
002C CD3700 CALL BF*GT ;Get token

;Note — if no file type is
jpresent BF$GT will merely
jspacefill the FCB

002F 0600 MVI B, 0 ï 0 — f ill the remainder of the FCB
0031 0E18 MVI C, 24 ;36 - 12 (disk, name, type = 12 chars.)
0033 CD6400 CALL BF$FT ; Re-use fill token S/R
0036 C9

;BF$GT

RET

; Bu i1d FCB — get token

; Thi s subroutine scans a file name string,
jplacing characters into a file control block.
;0n encountering a terminator character ("." or OOH),
;the remainder of the token1 is space filled.
; If an is encountered, the remainder of the token
; is filled with

; Entry parameters
DE -> Into file control block
HL -> Into file name string
C = Maximum no. of characters in token

;Exit parameters
File control block contains next token
A = Terminating character

BF $G T:
0037 7E MOV A, M ;Get next string character
0038 B7 ORA A ;Check if end of string
0039 CA5700 JZ BF$SFT ;Yes, space fill token
003C FE2A CPI ;Check if ?-fill required
003E C.A5C00 JZ BF*QFT ;Y e s , fill with ?
0041 FE2E CPI ;Assume current token is file

; name
;Check if file type coming up
;(If current token is file
;type this check is
jbenignly redundant)

0043 CA5700 JZ BF$SFT ;Yes, space fill token
0046 12 STAX D ;None of the above, so store

;in FCB
0047 13 INX D ;Update FCB pointer
0048 23 INX H ;Update string pointer

Figure 5-16. (Continued)

102 The CP/M Programmer’s Handbook

0049 0D DCR C i Countdown on token length
004A C23700 JNZ BF*GT ;St ill more characters to go

BFSSKIP ;Skip chars, until or 00H
004D 7E MOV A, M ?Get next string character
004E B7 ORA A ;Check if 00H
004F C8 RZ ; Yes
0050 FE2E CPI ;Check if "."
0052 C8 RZ ; Yes
0053 23 INX H ;Update string pointer (only)
0054 C34D00 JMP BFÎSKIP ;Try next character

BFSSFT: ;Space fill token
0057 0620 MV I B, ' '
0059 C36400 JMP BFSFT ;Common fill token code

;BF$FT returns to caller

BF$Q FT: fQuestion mark fill token
005C 063F MV I B, •'?■-
005E CD6400 CALL BFSFT ;Common fill token code
0061 C34D00 JMP BF*SKIP jBypass multiple etc.

BF*FT: 5 F i11 token
0064 F5 PUSH PSW ; Save terminating character
0065 78 MOV A, B ;Get fill characer

BF$FTL: ;Inner loop
0066 12 STAX D ;Store in FCB
0067 13 INX D ;Update FCB Pointer
0068 OD DCR C jDowndate residual count
0069 C26600 JNZ BFSFTL ;Keep going
006C FI POP PSW ;Recover terminating character
006D C9 RET

Figure 5-16. (Continued)

Function 16: Close File
Function Code:
Entry Parameters:
Exit Parameters:

C = 10H
DE = Address of file control block

A = Directory code

Example
0010 = ENCLOSE EQU 16 ;Close File
0005 = BOOS EQU 5 ;BDOS entry point

0000 FCB: DS 36 jFile control block

0024 0E10 MVI C tB$CL0SE ?Function code
0026 110000 LX I D r FCB ;DE -> File control block
0029 CD0500 CALL BDOS ;A = 0 , lr2,3 if successful

;A = OFFH if file name not
; in directory

Purpose This function terminates the processing of a file to which you have written
information. Under CP/M you do not need to close a file that you have been
reading. However, if you ever intend for your program to function correctly under
MP/M (the multi-user version of CP/M) you should close all files regardless of
their use.

Chapter 5: The Basic Disk Operating System 103

The Close File function, like Open File, returns a directory code in the A
register. Register A will contain OFFFL if the BDOS could not close the file
successfully. If A is 0, 1, 2, or 3, then the file has been closed.

Notes When the BDOS closes a file to which data has been written, it writes the
current contents of the FCB out to the disk directory, updating an existing
directory entry by matching the disk, name, type, and extent number in the same
manner that the Open File function does.

Note that the BDOS does not transfer the last record of the file to the disk
during the close operation. It merely updates the file directory. You must arrange
to flush any partly filled record to the disk. If the file that you have created is a
standard CP/M ASCII text file, you must arrange to fill the unused portion of the
record with the standard 1AH end-of-file characters as CP/M expects, as
explained in the section on the Write Sequential function (code 21).

Function 17: Search for First Name Match
Function Code: C = 1 1 H
Entry Parameters: DE = Address of file control block
Exit Parameters: A = Directory code

Example
0011 = B*SEARCHF EQU ,17
0005 = BDOS EQU 5 ;1

FCB: ; 1
0000 00 FCB$DISKs DB 0 ;
0001 46494C453FFCBSNAME : DB •'FILE????
0009 543F50 FCB$TYP: DB 'T?P' ;
oooc 00 FCB*EXTENT: DB 0 ;
000D 0000 FCB*RESV: DB 0,0 ;
000F 00 FCBSRECUSED: DB 0
0010 0000000000FCBSABUSED: DB 0,0,0,0,0
0018 0000000000 DB 0,0,0,0,0
0020 00 FCBSSEQREC: DB 0 :
0021 0000 FCB$RANREC: DW 0 ; 1
0023 00 FCBSRANRECO: DB 0 ; 1

0024 <OEll MV I C,B*SIEARCHF ; 1
0026 110000 LX I D, FCB ;]
0029 CD0500 CALL BDOS * (

Search First

;Ambiguous file name

Random rec. overflow byte (MS)

Or 1 , 2 , 3 .
;(A * 32) + DMA -> directory
; entry
jA = OFFH if file name not
; found

Purpose This function scans down the file directory for the first entry that matches the
file name, type, and extent in the FCB addressed by DE. The file name, type, and
extent may contain a “?” (ASCII 3FH) in one or more character positions. Where
a “?” occurs, the BDOS will match any character in the corresponding position in
the file directory. This is known as ambiguous file name matching.

The first byte of an FCB normally contains the logical disk number code. A
value of 0 indicates the default disk, while 1 means disk A, 2 is B, and so on up to a

1 0 4 The CP/M Programmer’s Handbook

Notes

possible maximum of 16 for disk P. However, if this byte contains a “?”, the BDOS
will search the default logical disk and will match the file name and type regardless
of the user number. This function is normally used in conjunction with the Search
Next function (which is described immediately after this function). Search First, in
the process of niktching a file, leaves certain variables in the BDOS set, ready for a
subsequent Search Next.

Both Seardli First and Search Next return a directory code in the A register.
With Search First, A = OPi^H when no files match the FCB; if a file match is
found, A will have a value of 0, 1, 2, or 3.

To locate the particular directory entry that either the Search First or Search
Next function matched, multiply the directory code returned in A by the length of
a directory entry (32 bytes). This is easily done by adding the A register to itself five
times (see the code in Figure 5-17 near the label GNFC). Then add the DMA
address to get the actual address where the matched directory entry is stored.

There are many occasions when you may need to write a program that will
accept an ambiguous file name and operate on all of the file names that match it.
(The DIR and ERA commands built into the CCP are examples that use ambigu
ous file names.) To do this, yotl must use several BDOS functions: the Set DMA
Address function (code 26, described later in this chapter), this function (Search
First), and Search Next (code 18). All of this is shown in the subroutine given in
Figure 5-17.

; GNF
,This subroutine returns an FCB setup with either the
yfirst file matched by an ambiguous file name, or (if
;specified by entry parameter) the next file name.

;Note : this subroutine is context sensitive. You must
; not have more than one ambiguous file name
; sequence in process at any given time.

?>>> Warning : This subroutine changes the DMA address
;>>> inside the BDOS.

;Entry parameters
i DE -> Possibly ambiguous file name
; (OO-byte terminated)
; (Only needed for FIRST request)
; HL -> File control block
; A = 0 : Return FIRST file name that matches
; = NZ s Return NEXT file name that matches

iExit parameters
;Carry set : A = FF, no file name matches
; A not = OFFH, error in input file name
iCarry clear : FCB setup with next name
; HL -> Directory entry returned
* by Search First/Next

¡Calling sequence
; LXI D,FILENAME
; LXI H,FCB

Figure 5-17. Search first/ next calls for ambiguous file name

Chapter 5: The Basic Disk Operating System 105

0011

; MV I
* CALL

B$SEARCHF

A r 0 ; or MVI
GNF

EQU 17

A, 1 for NEXT

jSearch for first file name
0012 = B$SEARCHN EQU 18 jSearch for next file name
001A = B$SETDMA EQU 26 jSet up DMA address
0005 = BDOS EQU 5 jBDOS entry point

0080 = GNFDMA EQU 80H jDefault DMA address
000D = GNFSVL EQU 13 jSave length (no. of chars to move)
0024 = GNFFCL EQU 36 jFile control block length
0000 GNFSVs DS GNFSVL jSave area for file name/type

OOOD E5
GNF :

PUSH H jSave FCB pointer
OOOE D5 PUSH D jSave file name pointer
OOOF F5 PUSH PSW jSave first/next flag

0010 118000 LXI D,GNFDMA jSet DMA to known address
0013 0E1A MV I C,B*SETDMA jFunction code
0015 CD0500 CALL BDOS
0018 FI POP PSW jRecover first/next flag
0019 El POP H ;Recover file name pointer
001A D1 POP D jRecover FCB pointer
00 IB D5 PUSH D ;Resave FCB pointer

001C B7 ORA A jCheck if FIRST or NEXT
00 ID C23E00 JNZ GNFN j NEXT
0020 CD9300 CALL BF jBuild file control block
0023 El POP H jRecover FCB pointer (to balance stack)
0024 D8 RC jReturn if error in file name
0025 E5 PUSH H jResave FCB pointer

0026 110000 LXI D,GNFSV

jMove ambiguous file name to
;save area
;HL -> FCB
jDE -> save area

0029 OEOD MV I C,GNFSVL ;Get save length
002B CDSAOO CALL MOVE
002E D1 POP D jRecover FCB pointer
002F D5 PUSH D jand resave

0030 0 E 1 1 MV I C,B*SEARCHF jSearch FIRST
0032 CD0500 CALL BDOS
0035 El POP H jRecover FCB pointer
0036 FEFF CPI OFFH jCheck for error
0038 CA7D00 JZ GNFEX jError exit
003B C35D00 JMP GNFC j Common code

003E CD7F00

GNFNs

CALL GNFZF

jExecute search FIRST to re-
jestablish contact with
jprevious file
jUser's FCB still has
jname/type in it
jZero-fill all but file name/type

0041 D1 POP D jRecover FCB address
0042 D5 PUSH D jand resave
0043 0E11 MV I C,B*SEARCHF j Re-f ind the file
0045 CD0500 CALL BDOS
0048 D1 POP D jRecover FCB pointer
0049 D5 PUSH D jand resave
004A 210000 LXI H,GNFSV jMove file name from save area

004D OEOD MV I C,GNFSVL
j into FCB
jSave area length

004F CDSAOO CALL MOVE

0052 0E12 MV I C,B*SEARCHN jSearch NEXT
0054 CD0500 CALL BDOS
0057 El POP H jRecover FCB address
0058 FEFF CPI OFFH jCheck for error
005A CA7D00 JZ GNFEX jError exit

005D E5
GNFCs

PUSH H jSave FCB address
005E 87 ADD A jMultiply BDOS return code * 32

Figure 5-17. (Continued)

106 The CP/M Programmer’s Handbook

005F 87 ADD A 4
0060 87 ADD A 3
0061 87 ADD A 16
0062 87 ADD A ; * 32
0063 218000 LX I H,GNFDMA ;HL -> DMA address
0066 5F MOV E, A ;Make (code * 32) a word value

; in DE
0067 1600 MV I El, 0
0069 19 DAD D ? HL -> file's directory entry

;Move file name into FCB

006A D1 POP D ;Recover FCB address
006B E5 PUSH H ?Save directory entry pointer
006C D5 PUSH D ;and resave
006D OEOD MV I C,GNFSVL ;Length of save area
006F CD8A00 CALL MOVE
0072 3A0000 LDA GNFSV ;Get disk from save area
0075 D1 POP D ;Recover FCB address
0076 12 STAX D ^Overwrite user number in FCB

;Set up to zero-fill tail end
;of FCB

0077 CD7F00 CALL GNFZF ;Zero-fill
007A El POP H jRecover directory entry

;pointer
007B AF XRA A ;Clear carry
007C C9 RET

GNFEX:
007D 37 STC jSet carry to indicate error
007E C9 RET

;GNFZF
;Get next file — zero fill
;This subroutine zero-fills the bytes that follow the
;f i le name and type in an FCB.

ïEntry parameters
; DE -> file control block

GNFZF:
007F 210D00 LX I H,GNFSVL ; Bypass area that holds file name
0082 19 DAD D ;HL -> FCB + GNFSVL
0083 54 MOV D, H ;DE -> FCB + GNFSVL
0084 5D MOV E, L
0085 13 INX D ;DE -> FCB + GNFSVL + 1
0086 3600 MVI M, 0 ;FCB + GNFSVL = 0
0088 0E17 MVI C,GNFFCL-GNFSVL ^Remainder of file control block

î Drop into MOVE
; Spread O's through remainder
; of FCB

; MOVE
;This subroutine moves C bytes from HL to DE.

MOVE:
008A 7E MOV A, M ;Get source byte
008B 12 STAX D ;Save destination byte
008C 13 INX D ; Increment destination pointer
008D 23 INX H ; Increment source pointer
008E OD DCR C ; Decrement count
008F C28A00 JNZ MOVE ; Go back for more
0092 C9 RET

; BF
; Build file control block

;This subroutine formats a 00H -byte terminated string

; (presumed to be a file name) into an FCB, setting the
;disk and file name and type, and clearing the
jremainder of the FCB to T) ' s .

Figure 5-17. (Continued)

Chapter 5: The Basic Disk Operating System 107

;Entry parameters
; DE -> File control block (36 bytes)
; HL -> File name string (OOH-byte-terminated)

jExit parameters
; The built file control block

jThis subroutine is shown in full in Figure 5-16

0093 C9 BF: RET ;Dummy subroutine for this example

Figure 5-17. (Continued)

Function 18: Search for Next Name Match
Function Code: C = 12H
Entry Parameters: None (assumes previous Search First call)
Exit Parameters: A = Directory code

Example

0012 = BSSEARCHN EQU 18 ;Search Next
0005 = BDOS EQU 5 ;BD0S entry point

0000 0E12 MV I C,B*SEARCHN ;Function code
;Note: No FCB pointer
; You must precede this call
? with a call to Search First

0002 CD0500 CALL BDOS jA = 0, 1,2,3
;(A * 32) + DMA -> directory
; entry
jA = OFFH if file name not
; found

Purpose This function searches down the file directory for the next file name, type, and
extent that match the FCB specified in a previous Search First function call.

Search First and Search Next are the only BDOS functions that must be used
together. As you can see, the Search Next function does not require an FCB
address as an input parameter—all the necessary information will have been left in
the BDOS on the Search First call.

Like Search First, Search Next returns a directory code in the A register; in
this case, if A = OFFH, it means that there are no more files that match the file
control block. If A is not OFFH, it will be a value of 0, 1, 2, or 3, indicating the
relative directory entry number.

Notes There are two ways of using the Search First/ Next calls. Consider a simple file
copying program that takes as input an ambiguous file name. You could scan the
file directory, matching all of the possible file names, possibly displaying them on
the console, and storing the names of the files to be copied in a table inside your
program. This would have the advantage of enabling you to present the file names

108 The CP/M Programmer’s Handbook

to the operator before any copying occurred. You could even arrange for the
operator to select which files to copy on a file-by-file basis. One disadvantage
would be that you could not accurately predict how many files might be selected.
On some hard disk systems you might have to accommodate several thousand file
names.

The alternative way of handling the problem would be to match one file name,
copy it, then match the next file name, copy it, and so on. If you gave the operator
the choice of selecting which files to copy, this person would have to wait at the
terminal as each file was being copied, but the program would not need to have
large table areas set aside to hold file names. This solution to the problem is
slightly more complicated, as you can see from the logic in Figure 5-17.

The subroutine in Figure 5-17, Get Next File (GNF), contains all of the
necessary logic to search down a directory for both alternatives described. It does
require that you indicate on entry whether it should search for the first or next file
match, by setting A to zero or some nonzero value respectively.

You can see from Figure 5-17 that whenever the subroutine is called to get the
next file, you must execute a Search First function to re-find the previous file. Only
then can a Search Next be issued.

As with all functions that return a directory code in A, if this value is not
OFFH, it will be the relative directory entry number in the directory record
currently in memory. This directory record will have been read into memory at
whatever address was specified at the last Set DMA Address function call (code
26,1 AH). Notwithstanding its odd name, the DMA Address is simply the address
into which any record input from disk will be placed. If the Set DMA Address
function has not been used to change the value, then the CP/M default DMA
address, location 0080H, will be used to hold the directory record.

The actual code for locating the address of the particular directory entry
matched by the Search First / Next functions is shown in Figure 5-17 near the label
GNFC. The method involves multiplying the directory code by 32 and then adding
this product to the current DMA address.

Function 19: Erase (Delete) File

Function Code: C = 13H
Entry Parameters: DE = Address of file control block
Exit Parameters: A = Directory code

Example

0013 = BSERASE EQU 19 ;Erase File
0005 = BOOS EQU 5 ;BD0S entry point

FCB: ;File control block
0000 00 FCB*DISK: DB 0 ?Search on default disk drive
0001 3F3F4C454EFCB*NAME: DB •'77LENAME' ;Ambiguous file name
0009 3F5950 FCB*TYP; DB •' ?YP ' ¡Ambiguous file type
000C 00 FCB$EXTENT: DB 0 ? Extent

Chapter 5: The Basic Disk Operating System 109

0000 0000 FCB*RESV: DB 0, 0 ;Reserved for CP/M
000F 00 FCB*RECUSED: DB 0 jRecords used in this extent
0010 OOOOOOOOOOFCB$ABUSED: DB 0, 0,0,0,0,0,0,0 jAllocation blocks used
0018 0000000000 DB o r0,0,0,0,0,0,0
0020 00 FCB*SEQREC: DB 0 jSequential rec. to read/write
0021 0000 FCB$RANREC: DUI 0 jRandom rec. to read/write
0023 00 FCBSRANRECO: DB 0 ;Random rec. overflow byte (MS)

0024 0E13 MV I C,B*ERASE ;Function code
0026 110000 LXI D, FCB ;DE -> file control block
0029 CD0500 CALL BDOS ;A = OFFH if file not found

Purpose This function logically deletes from the file directory files that match the FCB
addressed by DE. It does so by replacing the first byte of each relevant directory
entry (remember, a single file can have several entries, one for each extent) by the
value 0E5H. This flags the directory entry as being available for use.

Notes Like the previous two functions, Search First and Search Next, this function
can take an ambiguous file name and type as part of the file control block, but
unlike those functions, the logical disk select code cannot be a “?”.

This function returns a directory code in A in the same way as the previous file
operations.

Function 20: Read Sequential
Function Code: C = 14H
Entry Parameters: DE = Address of file control block
Exit Parameters: A = Directory code

Example
0014 = B$READSEQ EQU 20 ;Read Sequential
0005 = BDOS EQU 5 ;BDOS entry point

FCB: ;File control block
0000 00 FCBSDISK: DB 0 jSearch on default disk drive
0001 46494C454EFCB$NAME: DB 'FILENAME' ;file name
0009 545950 FCB*TYP: DB 'TYP' îFile type
OOOC DS 24 ;Set by file open

0024 0E14 MV I C,B*READSEQ

;Record will be read into
; address set by prior SETDMA
; cal 1
;Function code

0026 110000 LXI D, FCB jDE -> File control block
0029 CD0500 CALL BDOS ;A = 00 if operation successful

;A = nonzero if no data in
-, file

Purpose This function reads the next record (128-byte sector) from the designated file
into memory at the address set by the last Set DMA function call (code 26,1 AH).
The record read is specified by the FCB’s sequential record field (FCBSSEQREC
in the example listing for the Open File function, code 15). This field is incre
mented by 1 so that a subsequent call to Read Sequential will get the next record
from the file. If the end of the current extent is reached, then the BDOS will

110 The CP/M Programmer’s Handbook

; GETC
?This subroutine gets the next character from a
jsequential disk file. It assumes that the file has
;already been opened.

; >>> Note this subroutine changes CP/M's DMA address.

; Entry parameters
DE -> file control block

;Exit parameters
A = next character from file

; (= OFFH on physical end of file)
Note : 1AH is normal EOF character for

ASCII Files.

;Calling sequence
LX I DE,FCB
CALL GETC
CPI 1 AH
JZ EOFCHAR
CPI OFFH
JZ ACTUALEOF

0014 = BUREAD 3EQ EQU 20 ;Read sequential
001A = B$SETDMA EQU 26 jSet DMA address
0005 = BDOS EQU 5 ;BDOS entry point

0080 = GETCBS EQU 128 ^Buffer size
0000 GETCBF DS GETCBS ;Declare buffer
0080 00 GETCCC : DB 0 ;Char. count (initially

; "empty")

GETC:
0081 3A8000 LDA GETCCC ;Check if buffer is empty
0084 B7 ORA A
0085 CA9900 JZ GETCFB jYes, fill buffer

GETCRE jRe-entry point after buffer filled
0088 3D DCR A ;No, downdate count
0089 328000 STA GETCCC ; Save downdated count

008C 47 MOV B, A ;Compute offset of next
;character

008D 3E7F MV I A,GETCBS-1 ;By subtracting
008F 90 SUB B ; (buffer size — downdated count)
0090 5F MOV E, A ;Make result into word value
0091 1600 MV I D, 0
0093 210000 LX I H,GETCBF ;HL -> base of buffer
0096 19 DAD D ;HL -> next character in buffer
0097 7E MOV A, M jGet next character
0098 C9

GETCFB

RET

;F i 11 buffer
0099 D5 PUSH D ;Save FCB pointer
009A 110000 LX I D,GETCBF ;Set DMA address to buffer
009D 0E1A MV I C,B$SETDMA ;function code
009F CD0500 CALL BDOS
00A2 D1 POP D ;Recover FCB pointer
00A3 0E14 MV I C,B$READSEQ ;Read sequential "record" (sector)
00A5 CD0500 CALL BDOS
00A8 B7 ORA A ;Check if read unsuccessful (A = NZ)
00 A9 C2B400 JNZ GETCX ; Yes
OOAC 3E80 MV I A,GETCBS ;Reset count
OOAE 328000 STA GETCCC
00B1 C38800 JMP GETCRE ;Re-enter subroutine

GE TC X: jPhysical end of file
00B4 3EFF MV I A,OFFH ; Indicate such
00B6 C9 RET

Figure 5-18. Read next character from sequential disk file

Chapter 5: The Basic Disk Operating System 1 11

automatically open the next extent and reset the sequential record field to 0, ready
for the next Read function call.

The file specified in the FCB must have been readied for input by issuing an
Open File (code 15, OFH) or a Create File (code 22, 16H) BDOS call.

The value 00H is returned in A to indicate a successful Read Sequential
operation, while a nonzero value shows that the Read could not be completed
because there was no data in the next record, as at the end of file.

Notes Although it is not immediately obvious, you can change the sequential record
number, FCBSSEQREC, and within a given extent, read a record at random. If
you want to access any given record within a file, you must compute which extent
that record would be in and set the extent field in the file control block (FCB$EX-
TENT) before you open the file. Thus, although the function name implies
sequential access, in practice you can use it to perform a simple type of random
access. If you need to do true random access, look ahead to the Random Read
function (code 33), which takes care of opening the correct extent automatically.

Figure 5-18 shows an example of a subroutine that returns the data from a
sequential file byte-by-byte, reading in records from the file as necessary. This
subroutine, GETC, is useful as a low-level “primitive” on which you can build
more sophisticated functions, such as those that read a fixed number of characters
or read characters up to a c a r r ia g e r e t u r n / l i n e f e e d combination.

When you read data from a CP/M text file, the normal convention is to fill the
last record of the file with 1 AH characters (CONTROL-Z). Therefore, two possible
conditions can indicate end-of-file: either encountering a 1AH, or receiving a
return code from the BDOS function (in the A register) of OFFH. However, if the
file that you are reading is not an ASCII text file, then a 1 AH character has no
special meaning—it is just a normal data byte in the body of the file.

Function 21: Write Sequential
Function Code: C = 15H
Entry Parameters: DE = Address of file control block
Exit Parameters: A = Directory code

Example
0015 = BSWRITESEQ EQU 21 ;Write Sequential
0005 = BDOS EQLI 5 ;BD0S entry point

FCB: ;File control block
0000 00 FCB$DISK: DB 0 jSearch on default disk drive
0001 46494C454EFCB$NAME: DB 'FILENAME-' jfile name
0009 545950 FCB$TYP: DB 'TYP' ;File type
OOOC DS 24 ;Set by Open or Create File

jRecord must be in address
; set by prior SETDMA call

0024 0E15 MV I C,B*WRITESEQ ïFunction code
0026 110000 LX I D, FCB ;DE -> File control block
0029 CD0500 CALL BDOS ;A = 00H if operation

; successful
;A = nonzero if disk full

1 1 2 The CP/M Programmer’s Handbook

Purpose This function writes a record from the address specified in the last Set DMA
(code 26, 1 AH) function call to the file defined in the FCB. The sequential record
number in the FCB (FCBSSEQREC) is updated by 1 so that the next call to Write
Sequential will write to the next record position in the file. If necessary, a new
extent will be opened to receive the new record.

This function is directly analogous to the Read Sequential function, writing
instead of reading. The file specified in the FCB must first be activated by an Open
File (code 15, OFH) or create File call (code 22, 16H).

A directory code of 00H is returned in A to indicate that the Write was
successful; a nonzero value is returned if the Write could not be completed be
cause the disk was full.

Notes As with the Read Sequential function (code 20 ,14H), you can achieve a simple
form of random writing to the file by manipulating the sequential record number
(FCBSSEQREC). However, you can only overwrite existing records in the file,
and if you want to move to another extent, you must close the file and reopen it
with the FCBSEXTENT field set to the correct value. For true random writing to
the file, look ahead to the Write Random function (code 34,22H). This takes care
of opening or creating the correct extent of the file automatically.

The only logical error condition that can occur when writing to a file is
insufficient room on the disk to accommodate the next extent of the file. Any
hardware errors detected will be handled by the disk driver built into the BIOS or
BDOS.

Figure 5-19 shows a subroutine, PUTC, to which you can pass data a byte at a
time. It assembles this data into a buffer, making a call to Write Sequential
whenever the buffer becomes full. You can see that provision is made in the entry
parameters (by setting register B to a nonzero value) for the subroutine to fill the
remaining unused characters of the buffer with 1 AH characters. You must do this
to denote the end of an ASCII text file.

Function 22: Create (Make) File

Function Code: C = 16H
Entry Parameters: DE = Address of file control block
Exit Parameters: A = Directory code

Example

0016 = BSCREATE EQU 22 jFile Create
0005 = BDOS EQU 5 r •BDOS entry point

FCB: ;File control block
0000 00 FCBSDISK: DB 0 ^Search on default disk
0001 46494C454EFCBSNAME: DB 'FILENAME' ;file name
0009 545950 FCBSTYP: DB 'TYP' ;File type
OOOC 00 FCBSEXTENT: DB 0 ; Extent

Chapter 5: The Basic Disk Operating System 113

000D OOOO FCB$RESV:
OOOF 00 FCB*RECUSED:
0010 OOOOOOOOOOFCB*ABUSED:
0013 0000000000
002 0 00
0021 0000
0023 00

0024 0E16
0026 110000
0029 CD0500

FCB*SEQREC:
FCB*RANREC:
FCBSRANRECO:

MV I
LX I
CALL

DB 0,0 ;Reserved for CP/M
DB 0 ;Records used in this extent
DB 0,0,0,0,0,0,0,0 ;Allocation blocks used
DB 0,0,0,0,0,0,0,0
DB 0 ;Sequential rec. to read/write
DW 0 ;Random rec. to read/write
DB 0 ;Random rec. overflow byte (MS)

C, B*CREATE
D, FCB
BDOS

Note : file to be created
must not already exist....
Function code
DE -> file control block
A = 0,1,2,3 if operation
successful

A = OFFH if directory full

PUTC
This subroutine either puts the next chararacter out
to a sequential file, writing out completed "records"
(128-byte sectors) or, if requested to, will fill the
remainder of the current "record" with 1AH s to
indicate end of file to CP/M.

Entry parameters
DE -> File control block
B = 0, A = next data character to be output
B /= 0, fill the current "record" with lAH's

Exit parameters
n o n e .

Calling sequence
LX I D, FCB
MV I B, 0 ;Not end of file
LDA CHAR
CALL PUTC

; or
LX I D, FCB
MV I B, 1 ;Indicate end of file
CALL PUTC

0015 = B$WRITE SEQ EQU 21 ;Write sequential
001A = B*SETDMA EQU 26 jSet DMA address
0005 = BDOS EQU 5 ;BDOS entry point

0080 = PUTCBS EQU 128 ;Buffer size
0000 PU TC BF: DS PUTCBS ;Declare buffer
0080 00 PUTCCC: DB 0 ;Char. count (initially "empty")

PUTC:
0081 D5 PUSH D ;Save FCB address
0082 F5 PUSH PSW ;Save data character
0083 78 MOV A, B ;Check if end of file requested
0084 B7 ORA A
0085 C29900 JNZ PUTCEF ; Yes
0088 CDC300 CALL PUTCGA ;No, get address of next free byte

pHL -> next free byte
?E = Current char, count (as
pwell as A)

008B FI POP PSW {Recover data character
008C- 77 MOV M, A pSave in buffer
008D 7B MOV A, E ?Get current character count
008E 3C I NR A ;Update character count
008F FE80 CPI PUTCBS pCheck if buffer full
0091 CAA900 JZ PUTCWB pYes, write buffer
0094 328000 STA PUTCCC pNo, save updated count
0097 D1 POP D ;Dump FCB address for return
0098 C9 RET

Figure 5-19. Write next character to sequential disk file

114 The CP/M Programmer’s Handbook

PUTCEF: {End of file
0099 FI POP PSW ;Dump data character
009A CDC300 c.a L l PUTC6A {HL -> next free byte

?A = current character count

PIJTCCE: {Copy EOF character
009D FE30 CPI PIJTCBS {Check for end of buffer
009F CAA900 JZ PUTCWB {Yes, write out the buffer
00A2 361A MV I M, 1 AH {No, store EOF in buffer
00A4 3C I NR A ;Update count
00A5 23 INX H {Update buffer pointer
00A6 C39D00 JMP PUTCCE {Continue until end of buffer

PUTCWB: {Write buffer
00A9 AF XRA A {Reset character count to 0
OOAA 328000 STA PUTCCC
OOAD 110000 LX I D,PUTCBF {DE -> buffer
OOBO 0E1A MV I C,B$SETDMA {Set DMA address -> buffer
00B2 CD0500 CALL BDOS
00B5 D1 POP D {Recover FCB address
00B6 0E15 MV I C ,B$WRITESEQ {Write sequential record
00B8 CD0500 CALL BDOS
OOBB B7 ORA A {Check if error
OOBC C2C000 JNZ PUTCX {Yes if A = NZ
OOBF C9 RET {No, return to caller

PUTCX: {Error exit
OOCO 3EFF MV I A,OFFH { Indicate such
00C2 C9 RET

PUTCGAs {Return with HL -> next free char.
{and A = current char, count

00C.3 3A8000 LDA PUTCCC {Get current character count
00C6 5F MOV E, A {Make word value in DE
OOC-7 1600 MV I D, 0
00C9 210000 LX I H,PUTCBF {HL -> Base of buffer
OOCC 19 DAD D {HL -> next free character
OOCD C9 RET

Figure 5-19. Write next character to sequential disk file (continued)

Purpose This function creates a new file of the specified name and type. You must first
ensure that no file of the same name and type already exists on the same logical
disk, either by trying to open the file (if this succeeds, the file already exists) or by
unconditionally erasing the file.

In addition to creating the file and its associated file directory entry, this
function also effectively opens the file so that it is ready for records to be written
to it.

This function returns a normal directory code if the file creation has completed
successfully or a value of OFFH if there is insufficient disk or directory space.

Notes Under some circumstances, you may want to create a file that is slightly more
“secure” than normal CP/M files. You can do this by using either lowercase letters
or nongraphic ASCII characters such as ASCII NUL (00H) in the file name or
type. Neither of these classes of characters can be generated from the keyboard; in
the first case, the CCP changes all lowercase characters to uppercase, and in the
second, it rejects names with odd characters in them. Thus, computer operators

Chapter 5: The Basic Disk Operating System 115

cannot erase such a file because there is no way that they can create the same file
name from the CCP.

The converse is also true; the only way that you can erase these files is by using
a program that can set the exact file name into an FCB and then issue an Erase File
function call.

Note that this function cannot accept an ambiguous file name in the FCB.
Figure 5-20 shows a subroutine that creates a file only after it has erased any

existing files of the same name.

Function 23: Rename File
Function Code: C = 17H
Entry Parameters: DE = Address of file control block
Exit Parameters: A = Directory code

Example

0017 = B$RENAME EQU
0005 = BOOS EQU

FCBi
0000 00 DB
0001 4F4C444E41 DB
0009 545950 DB
OOOC 00000000 DB

23 ;Rename file
5 ;BDOS entry point

;File control block
0 ;Search on default disk drive
'QLDNAME ' ;File name
'TYP' ;File type
0 , 0 , 0,0

;CF
;Create file
;This subroutine creates a file. It erases any
^previous file before creating the new one.

;Entry parameters
; DE -> File control block for new file

;Exit parameters
; Carry clear if operation successful

(A = 0,1,.2,3)
; Carry set if error (A = OFFH)

;Calling sequence
; LX I D, FCB
; CALL CF
; JC ERROR

0013 = B$ERASE EQU 19 ;Erase file
0016 = B$CREATE EQU 22 ;Create file
0005 = BDOS EQU 5 jBDOS entry point

CF:
0000 D5 PUSH D jPreserve FCB pointer
0001 0E13 MV I C,B$ERASE ;Erase any existing file
0003 CD0500 CALL BDOS
0006 D1 POP D ;Recover FCB pointer
0007 0E16 MV I C,B$CREATE ;Create (and open new file)
0009 CD0500 CALL BDOS
OOOC FEFF CPI OFFH ;Carry set if OK, clear if error
OOOE 3F CMC ;Complete to use Carry set if Error
OOOF C9 RET

Figure 5-20. Create file request

116 The CP/M Programmer’s Handbook

0010 oo
0011 4E45574E41
0019 545950
001C 00000000

DB 0 tFCB + 16
DB 'NEWNAME ;File name
DB ✓TYP' ;File type
DB 0, 0,0,0

0020 0E17
0022 110000
0025 CD0500

MV I C,B*RENAME ; F u n d ion code
LXI D,FCB ;DE -> file control block
CALL BOOS ïA = 00H if operation succesful

•A a OFFH if file not found

Purpose This function renames an existing file name and type to a new name and type.
It is unusual in that it uses a single FCB to store both the old file name and type (in
the first 16 bytes) and the new file name and type (in the second 16 bytes).

This function returns a normal directory code if the file rename was completed
successfully or a value of OFFH if the old file name could not be found.

Notes The Rename File function only checks that the old file name and type exist; it
makes no check to ensure that the new name and type combination does not
already exist. Therefore, you should try to open the new file name and type. If you
succeed, do not attempt the rename operation. CP/M will create more than one file
of the same name and type, and you stand to lose the information in both files as
you attempt to sort out the problem.

For security, you can also use lowercase letters and nongraphic characters in
the file name and type, as described under the File Create function (code 22 ,16H)
above.

Never use ambiguous file names in a rename operation; it produces strange
effects and may result in files being irreparably damaged. This function will
change all occurrences of the old file name to the new name.

Figure 5-21 shows a subroutine that will accept an existing file name and type
and a new name and type and rename the old to the new. It checks to make sure
that the new file name does not already exist, returning an error code if it does.

Function 24: Get Active Disks (Login Vector)
Function Code: C = 18H
Entry Parameters: None
Exit Parameters: HL = Active disk map (login vector)

Example
0018 = BSGETACTDSK EQU 24 ;Get Active Disks
0005 = BDOS EQU 5 ;BDOS entry point

;Example of getting active
0000 0E18 MV I C ,B$GETACTDSK ; disk function code
0002 CD0500 CALL BDOS ;HL = active disk bit map

;Bits are = 1 if disk active
ïBits 15 14 13 ... 2 1 0
îDisk P 0 N ... C B A

Purpose This function returns a bit map, called the login vector, in register pair HL,
indicating which logical disk drives have been selected since the last warm boot or

Chapter 5: The Basic Disk Operating System 1 1 7

; RF
¡Rename file
¡This subroutine renames a file.
;It uses the BF (build FCB) subroutine shown in Figure 5.16

¡Entry parameters
; *** No case-folding of file names occurs ***
7 HL -> old file name (00-byte terminated)
¡ DE -> new file name (00-byte terminated)

¡Exit parameters
i Carry clear if operation successful
¡ (A * 0,1,2,3)
; Carry set if error
7 A = OFEH if new file name already exists
7 A = OFFH |f old file name does not exist

;Calling sequence
LX I H,OLDNAME ¡HL -> old name
LX I D,NEWNAME ;DE -> new name
CALL RF
JC ERROR

000F = BfOPEN EQU 15 ¡Open file
0017 = B$RENAME EQU 23 ¡Rename file
0005 = BOOS EQU 5 ;BD0S entry point

0000 0000000000RFFCB: DW 0,0,0,0,0,0,0,0 •, 1 1/2 FCB's long
0010 0000000000 DW 0,0,0,0,0,0,0,0
0020 0000000000 DW 0,0,0,0,0,0,0,0
0030 000000 DW 0,0,0

RF:
0036 D5 PUSH D ¡Save new name pointer
0037 110000 LX I D,RFFCB ;Bui Id old name FCB

;HL already -> old name
003A CD5D00 CALL BF

003D El POP H ;Recover new name pointer
003E 111000 LX I D,RFFCB+16 ;Bui Id new name in second part of file
0041 CD5D00 CALL BF ¡control block

0044 111000 LXI D,RFFCB+16 ¡Experimentally try
0047 OEOF MV I C,B*0PEN ¡to open the new file
0049 CD0500. CALL BDOS ¡to enifire it does
004C FEFF CPI OFFH ¡not already exist
004E 3EFE MV I A,OFEH ;Assume error (flags unchanged)
0050 D8 RC ¡Carry set if A was 0,1,2,3

0051 110000 LXI D,RFFCB ¡Rename the file
0054 0E17 MV I C,B*RENAME
0056 CD0500 CALL BDOS
0059 FEFF CPI OFFH ¡Carry set if OK, clear if error
005B 3F CMC ¡Invert to use carry, set if error
005C C9 RET

BF
Build file control block
This subroutine formats a OOH-byte terminated string
(presumed to be a file name) into an FCB, setting the
disk and the file name and type, and clearing the
remainder of the FCB to 0's.

Entry parameters
DE -> file control block (36 bytes)
HL -> file name string (OOH-byte terminated)

Exit parameters
The built file control block.

Calling sequence
LXI
LXI
CALL

D, FCB
H,FILENAME
BF

005D C9
BF:

RET ¡Dummy subroutine : see Figure 5.16,

Figure 5-21. Rename file request

118 The CP/M Programmer’s Handbook

Reset Disk function (code 13, ODH). The least significant bit of L corresponds to
disk A, while the highest order bit in H maps disk P. The bit corresponding to the
specific logical disk is set to 1 if the disk has been selected or to 0 if the disk is not
currently on-line.

Logical disks can be selected programmatically through any file operation
that sets the drive field to a nonzero value, through the Select Disk function (code
14, OEH), or by the operator entering an “X:” command where “X” is equal to A,
B, ..., P.

Notes This function is intended for programs that need to know which logical disks
are currently active in the system—that is, those logical disks which have been
selected.

Function 25: Get Current Default Disk
Function Code: C = 19H
Entry Parameters: None
Exit Parameters: A = Current disk

(0 = A, 1 = B, ..., F = P)

Example
0019 =
0005 =

B*GETCURDSK EQU 25
BDOS EQU 5

; Get Current Disk
;BD0S entry point

0000 0E19
0002 CD0500

MVI C,B$GETCURDSK ; Function code
CALL BDOS ;A = O if A ï , 1 if B:

Purpose This function returns the current default disk set by the last Select Disk
function call (code 14, OEH) or by the operator entering the “X:”command (where
“X” is A, B, ..., P) to the CCP.

Notes This function returns the current default disk in coded form. Register A = 0 if
drive A is the current drive, 1 if drive B, and so on. If you need to convert this to the
corresponding ASCII character, simply add 41H to register A.

Use this function when you convert a file name and type in an FCB to an
ASCII string in order to display it. If the first byte of the FCB is OOH, the current
default drive is to be used. You must therefore use this function to determine the
logical disk letter for the default drive.

Function 26: Set DMA (Read/Write) Address
Function Code: C = 1AH
Entry Parameters: DE = DMA (read/write) address
Exit Parameters: None

Example
001A = B*SETDMA EQU 26 ;Set DMA Address
0005 = BDOS EQU 5 ; BDOS entry point

Chapter 5: The Basic Disk Operating System 119

0000 SECBUFF

0080 0E1A
0082 110000
0085 CD0500

DS 128

MVI C,B$SETDMA
LX I D,SECBUFF
CALL BDOS

; Sector buffer

; Function code
jPointer to buffer

Purpose This function sets the BDOS’s direct memory access (DMA) address to a new
value. The name is an historic relic dating back to the Intel Development System
on which CP/M was originally developed. This machine, by virtue of its hardware,
could read data from a diskette directly into memory or write data to a diskette
directly from memory. The name DMA address now applies to the address of the
buffer to and from which data is transferred whenever a diskette Read, Write, or
directory operation is performed.

Whenever CP/M first starts up (cold boot) or a warm boot or Reset Disk
operation occurs, the DMA address is reset to its default value of 0080H.

Notes No function call can tell you the current value of the DMA address. All you can
do is make a Set DMA function call to ensure that it is where you want it.

Once you have set the DMA address to the correct place for your program, it
will remain set there until another Set DMA call, Reset Disk, or warm boot
occurs.

The Read and Write Sequential and Random operations use the current
setting of the DMA address, as do the directory operations Search First and
Search Next.

Function 27: Get Allocation Vector
Function Code: C = 1BH
Entry Parameters: None
Exit Parameters: HL = Address of allocation vector

Example

00 IB = B$GETALVEC EQU 27 ;Get Allocation Vector Address
0005 = BDOS EQU 5 ;BD0S entry point

0000 0E1B MV I C,B$GETALVEC ; Function code
0002 CD0500 CALL BDOS ;HL -> Base address of

; allocation vector

Purpose This function returns the base, or starting, address of the allocation vector for
the currently selected logical disk. This information, indicating which parts of the
disk are assigned, is used by utility programs and the BDOS itself to determine
how much unused space is on the logical disk, to locate an unused allocation block
in order to extend a file, or to relinquish an allocation block when a file is deleted.

Notes Digital Research considers the actual layout of the allocation vector to be
proprietary information.

120 The CP/M Programmer’s Handbook

Function 28: Set Logical Disk to Read-Only Status
Function Code: C = 1CH
Entry Parameters: None
Exit Parameters: None

Example

OOIC B*SETDSKRO EQU 28 :Set disk to Read Only

0005 » BDOS EQU 5
» function code
:BDOS entry Point

0000 0E1C MVI C.B9SETDSKR0

:Sets disk selected by prior
:Select disk function call
;Function code

0002 CD0500 CALL BDOS

Purpose This function logically sets the currently selected disk to a Read-Only state.
Any attempts to execute a Write Sequential or Write Random function to the
selected disk will be intercepted by the BDOS, and the following message will
appear on the console:
BDOS Err on Xs R/O

where X: is the selected disk.

Notes Once you have requested Read-Only status for the currently selected logical
disk, this status will persist even if you proceed to select other logical disks. In fact,
it will remain in force until the next warm boot or Reset Disk System function call.

Digital Research documentation refers to this function code as Disk Write
Protect. The Read-Only description is used here because it corresponds to the
error message produced if your program attempts to write on the disk.

Function 29: Get Read-Only Disks
Function Code: C = 1DH
Entry Parameters: None
Exit Parameters: HL = Read-Only disk map

Example

001D s B*GETRODSKS EQU 29 ;Get Read Only disks
0005 * BDOS EQU 5 »BDOS entry point

0000 0E19 MVI C,BtGETRODSKS »Function code
0002 CD0500 CALL BDOS »HL ■ Read Only disk bit map

»Bits ere * 1 if disk Reed Only
»Bits 15 14 13 ... 2 1 0
»Disk P 0 N ... C B A

Purpose This function returns a bit map in registers H and L showing which logical
disks in the system have been set to Read-Only status, either by the Set Logical

Chapter 5: The Basic Disk Operating System 121

Disk to Read-Only function call (code 28,1CH), or by the BDOS itself, because it
detected that a diskette had been changed.

The least significant bit of L corresponds to logical disk A, while the most
significant bit of H corresponds to disk P. The bit corresponding to the specific
logical disk is set to 1 if the disk has been set to Read-Only status.

Function 30: Set File Attributes
Function Code: C = 1EH
Entry Parameters: DE = Address of FCB
Exit Parameters: A = Directory code

Example
OOIE K BtSETFAT EQU 30 ?Set File Attribute
0005 = BDOS EQU 5 ;BD0S entry point

FCB: jFile control block
0000 00 FCB*DISK: DB 0 ;Search on default disk drive
0001 46494C454EFCB*NAME! DB 'FILENAME' jFile name
0009 04 FCB*TYP: DB 'T '+80H ;Type with R/0

; attribute
000A 5950 DB 'YP'
OOOC 0000000000 DU

OOOO o o o o o o o

0022 0E1E MV I C,B*SETFAT ? Function code
0024 110000 LX I D, FCB :DE -> file control block

:MS bits set in file name/type
0027 CD0500 CALL BDOS jA = OFFH if file not found

Purpose This function sets the bits that describe attributes of a file in the relevant
directory entries for the specified file. Each file can be assigned up to 11 file
attributes. Of these 11, two have predefined meanings, four others are available for
you to use, and the remaining five are reserved for future use by CP/M.

Each attribute consists of a single bit. The most significant bit of each byte of
the file name and type is used to store the attributes. The file attributes are known
by a code consisting of the letter “f ’ (for file name) or “t” (for file type), followed by
the number of the character position and a single quotation mark. For example,
the Read-Only attribute is tl'.

The significance of the attributes is as follows:
• f l 'to f4 '
• f5 'to f8 '
• t l '
• t2'
• t3'

Available for you to use
Reserved for future CP/M use
Read-Only File attribute
System File attribute
Reserved for future CP/M use

Attributes are set by presenting this function with an FCB in which the
unambiguous file name has been preset with the most significant bits set appro
priately. This function then searches the directory for a match and changes the
matched entries to contain the attributes which have been set in the FCB.

122 The CP/M Programmer’s Handbook

Notes

The BDOS will intercept any attempt to write on a file that has the Read-Only
attribute set. The DIR command in the CCP does not display any file with System
status.

You can use the four attributes available to you to set up a file security system,
or perhaps to flag certain files that must be backed up to other disks. The Search
First and Search Next functions allow you to view the complete file directory
entry, so your programs can test the attributes easily.

The example subroutines in Figures 5-22 and 5-23 show how to set file
attributes (SFA) and get file attributes (GFA), respectively. They both use a bit
map in which the most significant 11 bits of the HL register pair are used to
indicate the corresponding high bits of the 11 characters of the file name/type
combination. You will also see some equates that have been declared to make it
easier to manipulate the attributes in this bit map.

: SFA
;Set file attributes
;This subroutine takes a compressed bit map of all the
;file attribute bits, expands them into an existing
;file control block and then requests CP/M to set
;the attributes in the file directory.

jEntry parameters
; DE -> file control block
; HL = bit map. Only the most significant 11
; bits are used. These correspond directly
; with the possible attribute bytes.

jExit parameters
; Carry clear if operation successful (A = 0,1,2,3)
; Carry set if error (A = OFFH)

;Cal ling sequence
LX I D, FCB
LX I H,0000*0000$1100$0000B j Bi t Map
CALL SFA
JC ERROR

; Fi le Attribute Equates

8000 = FA*F1 EQU 1000$0000$0000$0000B ; FI •' - F4"-
4000 = FA*F2 EQU 0100$0000$0000$0000B ;Available for use by
2000 = FA*F3 EQU 0010$0000$0000$0000B ; application programs
1000 = FA*F4 EQU 0001$0000$0000$0000B

0800 = FA*F5 EQU 0000$1000$0000$0000B ?F5' - F8'
0400 = FA*F6 EQU 0000 $0100$0000$0000B ;Reserved for CP/M
0200 = FA*F7 EQU 0000*0010$0000$0000B
0100 = FA*F3 EQU 0000$0001$0000$0000B

0080 = FA*T1 EQU 0000*0000$1000$0000B ; T1 ■' — read/only file
0080 = FA*R0 EQU FA$T1
0040 = FA*T2 EQU 0000*0000*0100*0000B ;T2-' — system files
0040 = FA*SYS EQU FA*T2
0020 = FA*T3 EQU 0000*0000*0010*0000B ;T3-' — reserved for CP/M

00 IE = B*SETFAT EQU 30 ? Set file attributes
0005 = BDOS EQU 5 ;BDOS entry point

Figure 5-22. Set file attributes

Chapter 5: The Basic Disk Operating System 123

SFA:
0000 D5 PUSH D (Save FCB pointer
0001 13 I NX D (HL -> 1st character of file name
0002 OEOB MV I C, 8+3 (Loop count for file name and type

SFAL: (Main processing loop
0004 AF XRA A jClear carry and A
0005 29 DAD H (Shift next MS bit into carry
0006 CEOO AC I 0 i A = 0 or 1 depending on carry
0008 OF RRC (Rotate LS bit of A into MS bit
0009 47 MOV B, A ;Save result (00H or 80H)
000A EB XCHG iHL -> FCB character
000B 7E MOV A, M (Get FCB character
OOOC E67F AN I 7FH (Isolate all but attribute bit
000E BO ORA B (Set attribute with result
000F 77 MOV M, A (and store back into FCB
0010 EB XCHG (DE -> FCB, HL = remaining bit map
0011 13 INX D (DE -> next character in FCB
0012 OD DCR C (Downdate character count
0013 C20400 JNZ SFAL (Loop back for next character
0016 0E1E MV I C,B$SETFAT (Set file attribute function code
0018 D1 POP D (Recover FCB pointer
0019 CD0500 CALL BDOS
001C FEFF CPI OFFH (Carry set if OK, clear if error
00 IE 3F CMC (Invert to use carry set if error
00 IF C9 RET

Figure 5-22. Set file attributes (continued)

(GFA
(Get file attributes
(This subroutine finds the appropriate file using a
(search for First Name Match function rather than opening
(the file. It then builds a bit map of the file attribute
(bits in the file name and type. This bit map is then ANDed
(with the input bit map, and the result is returned in the
;zero flag. The actual bit map built is also returned in case
(more complex check is required.

;>>> Note: This subroutine changes the CP/M DMA address.

(Entry parameters
i DE -> File control block
(HL = Bit map mask to be ANDed with attribute
; results

Exit parameters
Carry clear, operation successful

Nonzero status set to result of AND between
input mask and attribute bits set.
HL = Unmasked attribute bytes set.

Carry set, file could not be found

00 1A = B$SETDMA EQU 26 (Set DMA address
0011 = B$SEARCHF EQU 17 (Search for first entry to match
0005 = BDOS EQU 5 (BDOS entry point
0080 = GFADMA EQU 80H (Default DMA address

Calling sequence
LXI D,FCB
LX I H,0000*0000$1100$0000B (Bit map
CALL GFA
JC ERROR

8000
4000

(File attribute equates

FA$F1 EQU 1000$0000$0000$0000B ;F1' - F5'
FA*F2 EQU 0100$0000$0000$0000B (Available for use by

Figure 5-23. Get file attributes

124 The CP/M Programmer’s Handbook

2000 . FA*F3 EQU 0010*0000*0000*00006 ;Application programs
1000 - FA*F4 EQU 0001$0000*0000*00006

0800 = FA*F5 EQU 0000*1000*0000*0000B ; F 6 ' - F 8 '
0400 = FA*F6 EQU 0000*0100*0000*00006 ;Reserved for CP/M
0200 = FA*F7 EQU 0000*0010*0000*00006
0100 = FA*F8 EQU 0000*0001*0000*00003

0080 = FA*T1 EQU 00 00*0000*1000*0000B ;T 1 ' — read/only file
0080 = FA*RO EQU FA*T1
0040 = FA*T2 EQU 0000*0000*0100*00006 ;T2' — system files
0040 = FA*SYS EQU FA*T2
0020 = FA*T3 EQU 0000*0000*0010*0000B ;T3' — reserved for CP/M

GFA:
0000 E5 PUSH H iSave AND-mask
0001 D5 PUSH D ;Save FOB pointer
0002 O E 1A MV I C,B*SETDMA ;Set DMA to default* address
0004 118000 LX I D,GFADMA ;DE -> DMA address

0007 CD0500 CALL BDOS

OOOA D1 POP D ;Recover FCB pointer
OOOB 0E11 MV I C, B*SEARCHF ySearch for match with name
OOOD CD0500 CALL BDOS
0010 FEFF CPI OFFH jCarry set if OK, clear if error
0012 3F CMC ;Invert to use set carry if error
0013 DA4100 JC GFAX jReturn if error

jMultiply by 32 to get offset into DMA buffer
0016 87 ADD A ?* 2
0017 87 ADD A ;* 4
0018 87 ADD A j* 8
0019 87 ADD A ;* 16
001A 87 ADD A 32
00 IB 5F MOV E, A ;Make into a word value
001C 1600 MV I D,0
001E 218000 LX I H,GFADMA ;HL -> DMA address
0021 19 DAD D ;HL -> Directory entry in DMA buffer
0022 23 INX H ;HL -> 1st character of file name
0023 EB XCHG ;DE -> 1st character of file name

0024 OEOB MV I C, 8+3 ;Count of characters in file name and type
0026 210000 LX I H,0 ;Clear bit map

GFAL: ;Main loop
0029 1A LDAX D iGet next character of file name
002A E680 AN I 80H ;Isolate attribute bit
002C 07 RLC ;Move MS bit into LS bit
002D B5 ORA L ;0R in any previously set bits
002E 6F MOV L, A ;Save result
002F 29 DAD H ;Shift HL left one bit for next time
0030 13 INX D iDE -> next character in file name, type
0031 OD DCR C ;Downdate count
0032 C22900 JNZ GFAL jGo back for next character

0035 29 DAD H ;Left justify attribute bits in HL
0036 29 DAD H ;MS attribute bit will already be in
0037 29 DAD H ;bit 11 of HL, so only 4 shifts are
0038 29 DAD H ;necessary

0039 D1 POP D ;Recover AND-mask
003A 7A MOV A, D ;Get MS byte of mask
003B A4 ANA H ;AND with MS byte of result
003C 47 MOV B, A ;Save interim result
003D 7B MOV A, E ;Get LS byte of mask
003E A5 ANA L ;AND with LS byte of result
003F BO ORA B jCombine two results to set Z flag

0040 C9 RET

G F A X : yError exit
0041 El POP H ;Balance stack
0042 C9 RET

Figure 5-23. Get file attributes (continued)

Chapter 5: The Basic Disk Operating System 1 2 5

Function 31: Get Disk Parameter Block Address
Function Code: C = 1FH
Entry Parameters: None

;Get Disk Parameter Block
; Address
;BDOS entry point

;Returns.DPB address of
; logical disk previously
? selected with a Select
? Disk function.
;Function code
?HL -> Base address of current
j disk's parameter block

Purpose This function returns the address of the disk parameter block (DPB) for the
last selected logical disk. The DPB, explained in Chapter 3, describes the physical
characteristics of a specific logical disk—information mainly of interest for system
utility programs.

Notes The subroutines shown in Figure 5-24 deal with two major problems. First,
given a track and sector number, what allocation block will they fall into? Con
versely, given an allocation block, what is its starting track and sector?

These subroutines are normally used by system utilities. They first get the DPB
address using this BDOS function. Then they switch to using direct BIOS calls to
perform their other functions, such as selecting disks, tracks, and sectors and
reading and writing the disk.

The first subroutine, GTAS (Get Track and Sector), in Figure 5-24, takes an
allocation block number and converts it to give you the starting track and sector
number. GMTAS (Get Maximum Track and Sector) returns the maximum track
and sector number for the specified disk. GDTAS (Get Directory Track and
Sector) tells you not only the starting track and sector for the file directory, but
also the number of 128-byte sectors in the directory.

Note that whenever a track number is used as an entry or an exit parameter, it is
an absolute track number. That is, the number of reserved tracks on the disk before
the directory has already been added to it.

GNTAS (Get Next Track and Sector) helps you read sectors sequentially. It
adds 1 to the sector number, and when you reach the end of a track, updates the
track number by 1 and resets the sector number to 1.

GAB (Get Allocation Block) is the converse of GTAS (Get Track and Sector).
It returns the allocation block number, given a track and sector.

Finally, Figure 5-24 includes several useful 16-bit subroutines to divide the HL
register pair by DE (DIVHL), to multiply HL by DE (MULHL), to subtract DE
from HL (SUBHL —this can also be used as a 16-bit compare), and to shift HL
right one bit (SHLR). The divide and multiply subroutines are somewhat
primitive, using iterative subtraction and addition, respectively. Nevertheless, they
do perform their role as supporting subroutines.

Exit Parameters: HL = Address of DPB

Example 00lF = b *g e t d p b e q u 31

0005 = BDOS EQU 5

0000 0E1F MVI C,B*GETDPB
0002 CD0500 CALL BDOS

126 The CP/M Programmer’s Handbook

jUseful subroutines for accessing the data in the
jdisk parameter block

000E = BSSELDSK EQU 14 ^Select Disk function code
00 IF = B*GETDPB EQU 31 ;Get DPB address
0005 = BD0S EQU 5 ;BD0S entry point

;It makes for easier, more compact code to copy the
jspecific disk parameter block into local variables
jwhile manipulating the information.
;Here are those variables —

0000 0000
DPB:
DPBS PT: DW 0

;Disk parameter block
; 128-byte sectors per track

0002 00 DPBBS: DB 0 ;Block shift
0003 00 DPBBM: DB 0 ; Block mask
0004 00 DPBEM: DB 0 jExtent mask
0005 0000 DPBMAB: DW 0 ; Maximum allocation block number
0007 0000 DPBN OD: DW 0 ; Number of directory entries - 1
0009 0000 DPBDAB: DW 0 ; Directory allocation blocks
000B 0000 DPBCBS: DW 0 ; Check buffer size
000D 0000 DPBTBD: DW 0 ;Tracks before directory (reserved

000F = DPBSZ EQU $-DPB ;Disk parameter block size

;GETDPB
;Gets disk parameter block
jThis subroutine copies the DPB for the specified
; logical disk into the local DPB variables above.

;Entry parameters
; A = Logical disk number (A: = 0, B: = 1...)

;Exit parameters
Local variables contain DPB

GETDPB:
000F 5F MOV E, A ;Get disk code for select disk
0010 0E0E MV I C,B$SELDSK ;Select the disk
0012 CD0500 CALL BDOS
0015 0E1F MV I C.,B*GETDPB ;Get the disk parameter base address
0017 CD0500 CALL BDOS ;HL -> DPB
001A OEOF MV I C,DPBSZ ;Set count
001C 110000 LX I D, DPB ;Get base address of local variables

GDPBL: ;Copy DPB into local variables
00 IF 7E MOV A, M ;Get byte from DPB
0020 12 STAX P ;Store into local variable
0021 13 INX D jUpdate local variable pointer
0022 23 INX H ; Update DPB pointer
0023 OD DCR C ;Downdate count
0024 C21F00 JNZ GDPBL ;Loop back for next byte
0027 C9 RET

; GT AS
;Get track and sector (given allocation block number)

;This subroutine converts an allocation block into a
i track and sector number — note that this is based on
;128-byte sectors.

!>>>>> Note: You must call GETDPB before
;>>>>> you call this subroutine

;Entry parameters
; HL = allocation block number

jExit parameters
i HL = track number
; DE = sector number

jMethod :
;In mathematical terms, the track can be derived from:
;Trk = ((allocation block * sec. per all. block) / sec. per trk)
j + tracks before directory

Figure 5-24. Accessing disk parameter block data

Chapter 5: The Basic Disk Operating System 127

jThe sector is derived from:
;Sec = ((allocation block * sec . per all. block) modulo/
; sec. per trk) + 1

GTAS:
0028 3A0200

GTASS:

LDA DPBBS ;Get block shift — this will be 3 to
;7 depending on allocation block size
5 It will be used as a count for shifting

002B 29 DAD H ;Shift allocation block left one place
002C 3D DCR A ;Decrement block shift count
002D C22B00 JNZ GTASS ;More shifts required
0030 EB XCHG ;DE = all. block * sec. per block

ïi.e. DE = total number of sectors
0031 2A0000 LHLD DPBSPT ;Get sectors per track
0034 EB XCHG ;HL = sec. per trk, DE - tot. no. of sec.
0035 CD8F00 CALL DIVHL ;BC = HL/DE, HL = remainder

îBC = track, HL = sector
0038 23 INX H ^Sector numbering starts from 1
0039 EB XCHG ;DE = sector, HL = track
003A 2A0D00 LHLD DPBTBD jTracks before directory
003D 09 DAD B ;DE = sector, HL = absolute track
003E C9

; GMTAS

RET

;Get maximum track and sector

; Th i s is just a call to GTAS with the maximum
; allocation block as the input parameter

; » » > Note: You must call GETDPB before
;>>>>> you call this subroutine

; Entry parameters: none

; Exi t parameters:

•
HL = maximum track numb
DE = maximum sector

er

GMTAS:
003F 2A0500 LHLD DPBMAB ;Get maximum allocation block
0042 C32800

;GDTAS

JMP GTAS ; Return from GTAS with parameters in HL and DE

; Get d irectory track and sector

;This returns the START track and sector for the
; f i le directory, along with the number of sectors
i in the directory.

? > > > » Note: You must call GETDPB before
:>>>>> you call this subroutine

; Entry parameters: none

; Ex i t iparameters:
BC = number of sectors in directory
DE = directory start sector
HL = directory start track

GDTAS:
0045 2A0700 LHLD DPBN0D jGet number of directory entries - 1
0048 23 INX H ;Make true number of entries

;Each entry is 32 bytes long, so to
jconvert to 128 byte sectors, divide by 4

0049 CDD000 CALL SHLR ;/ 2 (by shifting HL right one bit)
004C CDDOOO CALL SHLR ;/ 4
004F E5 PUSH H jSave number of sectors
0050 210000 LX I H,0 jDirectory starts in allocation block 0
0053 CD2800 CALL GTAS ;HL = track, DE = sector
0056 Cl POP B ;Recover number of sectors
0057 C9 RET

Figure 5-24. (Continued)

128 The CP/M Programmer’s Handbook

GNTAS
Get NEXT track and sector

This subroutine updates the input track and sector
by one, incrementing the track and resetting the
sector number as required.

>>>>> Note: You must call GETDPB before
>>>>> you call this subroutine

Note: you must check for end of disk by comparing
the track number returned by this subroutine
to that returned by by GMTAS + 1. When
equality occurs, the end of disk has been reached.

Entry parameters
HL = current track number
DE = current sector number

Exit parameters
HL = updated track number
DE = updated sector number

GNTAS:

0058 E5 PUSH H
0059 13 INX D
005A 2A0000 LHLD DPBSPT
005D CDC900 CALL SUBHL
0060 El POP H
0061 DO RNC
0062 23 INX H
0063 110100 LX I D, 1
0066 C9 RET

; Save track
;Update sector
;Get sectors per track
;HL = HL - DE
jRecover current track
jReturn if updated sector <= sec.
;Update track if upd. sec > sec.
;Reset sector to 1

GAB
Get allocation block

This subroutine returns an allocation block number
given a specific track and sector. It also returns
the offset down the allocation block at which the
sector will be found. This offset is in units of
128-byte sectors.

>>>>> Note: You must call GETDPB before
>>>>> you call this subroutine

Entry parameters
HL = track number
DE = sector number

Exit parameters
HL = allocation block number

Method
The allocation block is formed from:
AB = (sector + ((track - tracks before directory)

* sectors per track)) / log2 (sectors per all. block)

The sector offset within allocation block is formed from:
Offset = (sector + ((track - tracks before directory)

* sectors per track)) / AND (sectors per all. block - 1)

GAB:
0067 D5 PUSH D
0068 EB XC-HG
0069 2A0D00 LHLD DPBTBD
006C EB XC-HG
006D CDC900 CALL SUBHL

0070 EB XC-HG
0071 2A0000 LHLD DPBSPT
0074 CDA400 CALL MULHL

0077 EB XC-HG

;Save sector
;DE = track
jGet no. of tracks before directory
jDE = no. of tracks before dir. HL =
;HL = HL - DE
jHL = relative track within logical
;DE = relative track
;Get sectors per track
;HL = HL * DE
;HL = number of sectors
;DE = number of sectors

>r trk,
trk.

track

disk

Figure 5-24. (Continued)

Chapter 5: The Basic Disk Operating System 129

0078 El POP H ;Recover sector
0079 2B DCX H ;Make relative to 0
007A 19 DAD D ;HL = relative sector
007B 3A0300 LDA DPBBM ?Get block mask
007E 47 MOV B, A ?Ready for AND operation
007F 7D MOV A, L ?Get LS byte of relative sector
0080 AO ANA B ;AND with block mask
0081 F5 PUSH PSW ;A = sector displacement
0082 3A0200 LDA DPBBS ;Get block shift
0085 4F MOV C, A ;Make into counter

GABS: ;Sh i f t 1 oop
0086 CDDOOO CALL SHLR ;HL shifted right (divided by 2)
0089 OD DCR C ;Count down
008A C28600 JNZ GABS jShift again if necessary
008D FI POP PSW ;Recover offset
008E C9 RET

;Utility subroutines
; These perform 16-bit arithmetic on the HL register pair.

;DIVHL
; Divides HL by DE using an iterative subtract.
;In practice it uses an iterative ADD of the complemented divisor.

;Entry parameters
HL = dividend

r DE = divisor

îExit aarameters
; BC = quot ient

HL = remainder

DIVHL:
008F D5 PUSH D ;Save divisor

;Note : 2 ' s complement is formed by
;inverting all bits and adding 1.

0090 7B MOV A, E jComplement divisor (for iterative
0091 2F CMA :ADD later on)
0092 5F -MOV E, A
0093 7A MOV A, D ;Get MS byte
0094 2F CMA ;Complement it
0095 57 MOV D, A
0096 13 INX D ;Make 2's complement

;Now, subtract negative divisor until
:dividend goes negative, counting the number
;of times the subtract occurs

0097 010000
DIVHLS:

LX I B, 0 i n i t i a l i z e quotient
jSubtract loop

009A 03 INX B ;Add 1 to quotient
009B 19 DAD D ;"Subtract" divisor
009C DA9A00 JC DIVHLS jDividend not yet negative

;Dividend now negative, quotient 1 too large
009F OB DCX B ;Correct quotient

;Compute correct remainder
OOAO EB XCHG ;DE = remainder - divisor
00A1 El POP H ;Recover positive divisor
00A2 19 DAD D ;HL = remainder
00A3 09

;MULHL

RET ; BC = quotient, HL = remainder

; M u 11 i p 1 y HL * DE using iterative ADD.

; Entry parameters
; HL = mult iplicand

9 DE = multiplier

;Exit parameters
HL = product
DE = mult iplier

MULHL:
00A4 C5 PUSH B ;Save user register

;Check if either multiplicand
: or multiplier is 0

Figure 5-24. (Continued)

130 The CP/M Programmer’s Handbook

00A5 7C MOV A, H
00A6 B5 ORA L
00A7 CAC400 JZ MULHLZ ;Yes, fake product
OOAA 7A MOV A, D
OOAB B3 ORA E
00AC CAC400 JZ MULHLZ jYes, fake product

;This routine will be faster if
; the smaller value is in DE

OOAF 7A MOV A, D ;Get MS byte of current DE value
OOBO BC CMP H ;Check which is smaller
00B1 DAB500 JC MULHLN ;C set if D < H, so no exchange
00B4 EB XCHG

MULHLN
00B5 42 MOV B, D ;BC = multiplier
00B6 4B MOV C, E
00B7 54 MOV D, H ;DE = HL = multiplicand
00B8 5D MOV E, L
00B9 OB DC-X B ;Adjust count as

;1 * multiplicand = multiplicand

MULHLA ;ADD loop
OOBA 78 MOV A, B ;Check if all iterations completed
OOBB B1 ORA C
OOBC CAC-700 JZ MULHLX ;Yes, exit
OOBF 19 DAD D ;HL = multiplicand + multiplicand
OOCO OB DCX B ;Countdown on multiplier - 1
00C1 C3BA00 JMP MULHLA ;Loop back until all ADDs done

MULHLZ
00C4 210000 LX I H, 0 ;Fake product as either multiplicand

; or multiplier is 0

MULHLX:
00C7 Cl POP B ;Recover user register
00C8 C-9 RET

;SUBHL
; Subtract HL - DE

; En t r y parameters
• HL = subtrahend

DE = subtracter

»Exit 1aarameters
HL = difference

SUBHL:

00C9 7D MOV A, L ;Get LS byte
OOCA 93 SUB E ;Subtract without regard to carry
OOCB 6F MOV L, A jPut back into difference
OOCC 7C MOV A, H ;Ge t MS byte
OOCD 9A SBB D ;Subtract including carry
OOCE 67 MOV H, A ;Move back into difference
OOCF C9 RET

; SHLR
;Sh i f t HL right one place (dividing HL by 2)

; Entry parameters
HL = value to be shifted

îExit parameters
HL = value/2

SHLR:
OODO B7 ORA A ;Clear carry
O O D 1 7C MOV A, H ;Get MS byte
00D2 IF RAR ;Bit 7 set from previous carry,

; bit 0 goes into carry
00D3 67 MOV H, A ;Put shift MS byte back
00D4 7D MOV A, L ;Get LS byte
00D5 IF RAR ;Bit 7 = bit 0 of MS byte
00D6 6F MOV L, A jPut back into result
00D7 C-9 RET

Figure 5-24. (Continued)

Chapter 5: The Basic Disk Operating System 131

Function 32: Set/Get User Number
Function Code: C = 20H
Entry Parameters: E = OFFH to get user number, or

E = 0 to 15 to set user number
Exit Parameters: A = Current user number if E was OFFH

Example
0020 = B*SETGETUN EQU 32 îSet/Get User Number
0005 = BOOS EQU 5 ;BDOS entry point

;To set user number
0000 0E20 MV I C,B*SETGETUN îFunction code
0002 1E0F MV I E, 15 îRequired user number
0004 CD0500 CALL BDOS ?To get user number
0007 0E20 MV I C,B*SETGETUN îFunction code
0009 1EFF MV I E,OFFH îIndicate request to GET
000B CD0500 CALL BDOS ?A = Current user no. (0

Purpose This subroutine either sets or gets the current user number. The current user
number determines which file directory entries are matched during all disk file
operations.

When you call this function, the contents of the E register specify what action is
to be taken. If E — OFFH, then the function will return the current user number in
the A register. If you set E to a number in the range 0 to 15 (that is, a valid user
number), the function will set the current user number to this value.

Notes You can use this function to share files with other users. You can locate a file by
attempting to open a file and switching through all of the user numbers. Or you can
share a file in another user number by setting to that number, operating on the file,
and then reverting back to the original user number.

If you do change the current user number, make provisions in your program to
return to the original number before your program terminates. It is disconcerting
for computer operators to find that they are in a different user number after a
program. Files can easily be damaged or accidentally erased this way.

Function 33: Read Random
Function Code: C = 21H
Entry Parameters: DE = Address of FCB
Exit Parameters: A = Return code

Example
0021 = BSREADRAN EQU 33 ; Read Random
0005 = BDOS EQU 5 ï BDOS entry point

FCB: :File control block
0000 00 FCB$DISK: DB 0 îSearch on default <
0001 46494C454EFCB*NAME: DB 'FILENAME' ;File name
0009 545950 FCBSTYP: DB TYP •File type

132 The CP/M Programmer’s Handbook

oooc. 00 FCB*EXTENT; BB 0 ;i Extent
GOOD 0000 FCB*RESV: DB 0,0 ;Reserved for C-P/M
GOOF 00 FCB*RECUSED: DB 0 ;¡Records used in this extent
G010 0000000000FCB*ABUSED: DB 0,0,0,0,0,0,0,0 ; A1locat ion blocks used
0018 0000000000 DB 0,0,0,0,0,0,0,0
0020 00 FCB*SEQREC: DB 0 ;¡Sequential rec. to read/write
0021 0000 FCB*RANREC; DU 0 i¡Random rec. to read/write
0023 00 FCB$RANRECO: DB 0 ;¡Random rec. overflow byte (MS)

0024 D204 RANRECNO: DU 1234 ;Example random record number
Record will be read into
address set by prior
SETDMA call

0026 2A2400 LHLD RANRECNO Get random record number
0029 222100 SHLB FCBSRANREC: Set up file control block
002C 0E21 MVI C,B*READRAN Function code
002E noooo LXI D, FCB DE ->.file control block
0031 CD0500 CALL BDOS A = 00 if operation successful

A = nonzero if no data in
i file specifically;
iA = 01 — attempt to read
; unwritten record
? 03 — CP/M could not
? close current extent
; 04 — attempt to read
? unwritten extent
; 06 — attempt to read
; beyond end of disk

Purpose This function reads a specific CP/M record (128 bytes) from a random file—
that is, a file in which records can be accessed directly. It assumes that you have
already opened the file, set the DMA address using the BDOS Set DMA function,
and set the specific record to be read into the random record number in the FCB.
This function computes the extent of the specified record number and attempts to
open it and read the correct CP/M record into the DMA address.

The random record number in the FCB is three bytes long (at relative bytes 33,
34, and 35). Byte 33 is the least significant byte, 34 is the middle byte, and 35 the
most significant. CP/M uses only the most significant byte (35) for computing the
overall file size (function 35). You must set this byte to 0 when setting up the FCB.
Bytes 33 and 34 are used together for the Read Random, so you can access from
record 0 to 65535 (a maximum file size of 8,388,480 bytes).

This function returns with A set to 0 to indicate that the operation has been
completed successfully, or A set to a nonzero value if an error has occurred. The
error codes are as follows:

A = 01 (attempt to read unwritten record)
A = 03 (CP/M could not close current extent)
A = 04 (attempt to read unwritten extent)
A = 06 (attempt to read beyond end of disk)
Unlike the Read Sequential BDOS function (code 20 ,14H), which updates the

current (sequential) record number in the FCB, the Read Random function leaves
the record number unchanged, so that a subsequent Write Random will replace
the record just read.

You can follow a Read Random with a Write Sequential (code 21, 15H). This

Chapter 5: The Basic Disk Operating System 133

will rewrite the record just read, but will then update the sequential record number.
Or you may choose to use a Read Sequential after the Read Random. In this case,
the same record will be reread and the sequential record number will be incre
mented. In short, the file can be sequentially read or written once the Read
Random has been used to position to the required place in the file.

Notes To use the Read Random function, you must first open the base extent of the
file, that is, extent 0. Even though there may be no actual data records in this
extent, opening permits the file to be processed correctly.

One problem that is not immediately obvious with random files is that they can
easily be created with gaps in the file. If you were to create the file with record
number 0 and record number 5000, there would be no intervening file extents.
Should you attempt to read or copy the file sequentially, even using CP/M’s file
copy utility, only the first extent (and in this case, record 0) would get copied. A
Read Sequential function would return an “end of file” error after reading record
0. You must therefore be conscious of the type of the file that you try and read.

See Figure 5-26 for an example subroutine that performs Random File Reads
and Writes. It reads or writes records of sizes other than 128 bytes, where necessary
reading or writing several CP/M records, prereading them into its own buffer
when the record being written occupies only part of a CP/M record. It also
contains subroutines to produce a 32-bit product from multiplying HL by DE
(MLDL—Multiply double length) and a right bit shift for DE, HL (SDLR—Shift
double length right).

Function 34: Write Random
Function Code: C = 22H
Entry Parameters: DE = Address of file control block
Exit Parameters: A == Return code

Example
0022 ss B*WR H E R A N EQU
0005 = BDOS EQU

FCBs
0000 00 FCB*DISK: DB
0001 46494C454EFCB$NAME : DB
0009 545950 FCB*TYPs DB
OOOC 00 FCB*EXTENT: DB
000D 0000 FCB*RESV; DB
000F 00 FCB*RECUSED: DB
0010 0000000000FCB*ABUSED: DB
0018 0000000000 DB
0020 00 FCB*SEQREC: DB
0021 0000 FCBSRANRECs DW
0023 00 FCB*RANRECO: DB

0024 D204 RANRECNO: DW

34 ;Write Random
5 ; BDGS entry point

jFile control block
0 ;Search on default disk drive
'FILENAME' ;File name
TYP' ;File type

O ;Extent
0,0 ;Reserved for CP/M
0 jRecords used in this extent
0,O,0,0,0,0,O,0 Allocation blocks used
0,0,0,0,0,0,0,0
0 jSequential rec. to read/write
0 ?Random rec. to read/write
0 iRandom rec. overflow byte (MS)

1234 ;Example random record number

;Record will be written from
; address set by prior
; SETDMA call

134 The CP/M Programmer’s Handbook

Purpose

Notes

0026 2A2400 LHLD RANRECNO Get random record number
0029 222100 SHLD FCB*RANREC Set up file control block
002C 0E22 MV I C,B*WRITERAN Function code
002E 110000 LX I D, FCB DE -> file control block
0031 CD0500 CALL BDOS A = 00 if operation successful

A = nonzero if no data in file
specifically:

A = 03 — CP/M could not
close current extent

05 — directory full
06 — attempt to write

beyond end of disk

This function writes a specific CP/M record (128 bytes) into a random file. It is
initiated in much the same way as the companion function, Read Random (code
33,21H). It assumes that you have already opened the file, set the DMA address to
the address in memory containing the record to be written to disk, and set the
random record number in the FCB to the specified record being written. This
function also computes the extent in which the specified record number lies and
opens the extent (creating it if it does not already exist). The error codes returned in
A by this call are the same as those for Read Random, with the addition of error
code 05, which indicates a full directory.

Like the Read Random (but unlike the Write Sequential), this function does
not update the logical extent and sequential (current) record number in the FCB.
Therefore, any subsequent sequential operation will access the record just written
by the Read Random call, but these functions will update the sequential record
number. The Write Random can therefore be used to position to the required
place in the file, which can then be accessed sequentially.

In order to use the Write Random, you must first open the base extent (extent
0) of the file. Even though there may be no data records in this extent, opening
permits the file to be processed correctly.

As explained in the notes for the Read Random function, you can easily create
a random file with gaps in it. If you were to create a file with record number 0 and
record number 5000, there would be no intervening file extents.

Figure 5-25 shows an example subroutine that creates a random file (CRF) but
avoids this problem. You specify the number of 128-byte CP/M records in the file.
The subroutine creates the file and then writes zero-filled records throughout. This
makes it easier to process the file and permits standard CP/M utility programs to
copy the file because there is a data record in every logical record position in the
file. It is no longer a “sparse” file.

Figure 5-26 shows a subroutine that ties the Read and Write Random func
tions together. It performs Random Operations (RO). Unlike the standard BDOS
functions that operate on 128-byte CP/M records, RO can handle arbitrary record
size from one to several thousand bytes. You specify the relative record number of
your record, not the CP/M record number (RO computes this). RO also prereads a
CP/M record when your logical record occupies part of a 128-byte record, either
because your record is less than 128 bytes or because it spans more than one

Chapter 5: The Basic Disk Operating System 135

j CRF
{Create random file
■This subroutine creates a random file. It erases any previous
{file before creating the new one, and then writes O-filled
;records throughout the entire file.

{Entry parameters
{ DE -> file control block for new file
{ HL = Number of 128-byte CP/M records to be
5 zero-filled.

? E >: i t parameters
; Carry clear if operation successful (A = 0,1,2,3)

Carry set if error

{Calling sequence
; LX I D, FCB

CALL CRF
JC ERROR

0013 = BSERASE EQU 19
0016 = B$CREATE EQU 22
001A = BfSETDMA EQU 26
0015 = BiWRITESEQ EQU 21
0005 = BDOS EQU 5

CRFB UF:
0000 0000000000 DW 0,0,0,0,0,0

0,0,0
0032 0000000000 DW 0,0,0,0,0,0

0,0,0
0064 0000000000 DW 0,0, 0,0,0,0

0080 0000 CRFRC: DW 0

CRF:
0082 228000 SHLD CRFRC
0085 D5 PUSH D
0086 0E13 MV I C,B$ERASE
0088 CD0500 CALL BDOS
008B D1 POP D
008C D5 PUSH D
008D 0E16 MV I C,B$CREATE
008F CD0500 CALL BDOS
0092 FEFF CPI OFFH
0094 3F CMC
0095 D1 POP D
0096 D8 RC
0097 D5 PUSH * D

0098 0E1A MV I C,B$SETDMA
009A 110000 LX I D,CRFBUF
009D CD0500 CALL BDOS
00A0 D1

CRFL :

POP D

00A1 2A8000 LHLD CRFRC
00A4 7D MOV A, L
00A5 B4 ORA H
00A6 C3 RZ
00A7 2B DCX H
00A8 228000 SHLD CRFRC
00AB D5 PUSH D
00AC 0E15 MV I C,B*WRITESE
00AE CD0500 CALL BDOS

00B1 D1 POP D
00B2 C3A100 JMP CRFL

(A = OFFH)

{Erase file
iCreate file
{Set DMA address
{Write sequential record
{BDOS entry point

;Zero-filled buffer
, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

,0 ,0 ,0 ,0 ,0 ,0 ,0,0

;Record count

{Save record count
;Preserve FCB pointer
{Erase any existing file

;Recover FCB pointer
5 and resave
;Create (and open new file)

;Carry set if OK, clear if error
{Complete to use carry set if error
;Recover FCB address
;Return if error
;Resave FCB pointer

{Set DMA address to 0-buffer

;Recover FCB pointer

{Get record count

;Check if count now zero
{Yes, exit
jDowndate count
{Save count
;Resave FCB address
{Write sequentially

{Recover FCB
{Write next record

Figure 5-25. Create random file

136 The CP/M Programmer’s Handbook

128-byte sector. The subroutine suppresses this preread if you happen to use a
record size that is some multiple of 128 bytes. In this case, your records will fit
exactly onto a 128-byte record, so there will never be some partially occupied
128-byte sector.

This example also contains subroutines to produce a 32-bit product from
multiplying HL by DE (MLDL—Multiply double length) and a right bit shift for
DE, HL (SDLR—Shift double length right).

; RO
; Random operation (read or write)

;This subroutine reads or writes a random record from a file.
jThe record length can be other than 128-bytes. This
;subroutine computes the start CP/M record (which
j is 128 bytes), and, if reading, performs a random read
;and moves the user-specified record into a user buffer.
?If necessary, more CP/M records will be read until the complete
;user-specified record has been input.
jFor writing, if the size of the user-specified record is not an exact
;multiple of CP/M records, the appropriate sectors will be preread.
;It is not necessary to preread when the user-specified record
;is an exact CP/M record, nor when subroutine is processing
jCP/M records entirely spanned by a user-specified record.

Entry parameters
HL -> parameter block

DB 0
DW FCB
DW REC-NO
DW RECSZ
DW BUFFER

the form:
yOFFH when reading, 00H for write
^Pointer to FCB
jUser record number
;User record size
jPointer to buffer of
? RECSZ bytes in length

Exit parameters
A = 0 if operation completed (and user record

copied into user buffer)
1 if attempt to read unwritten CP/M record
3 if CP/M could not close an extent
4 if attempt to read unwritten extent
5 if CP/M could not create a new extent6 if attempt to read beyond end of disk

Calling sequence
; LX I H,PARAMS
i CALL R0
; ORA A
; JNZ ERROR

0021 = FCBE$RANREC EQU 33
001A = B$SETDMA EQU 26
0021 = B$READRAN EQU 33
0028 = B$WRITERANZ EQU 40

0005 = BDOS EQU 5

ROPBs
0000 00 ROREAD: DB 0
0001 0000 ROFCB: DW 0
0003 0000 RQURN: DW 0
0005 0000 ROURLi DW 0
0007 0000 ROUBs DW 0
0009 = ROPBL EQU *-R0PB

0009 0000 ROFRPs DW 0

;HL -> parameter block

; Check if error

jOffset of random record no. in FCB
îSet the DMA address
;Read random record
; Write random record with zero-fill
; previously unallocated allocation
; blocks
ïBDOS entry point

; Parameter block image
;NZ when reading, Z when writing
^Pointer to FCB
;User record number
;User record length
^Pointer to user buffer
^Parameter block length

^Pointer to start of user record fragment
? in first CP/M-record read in

Figure 5-26. Read/Write variable length records randomly

Chapter 5: The Basic Disk Operating System 137

000B 00 ROFRL: DB 0 ^Fragment length
OOOC 0000 RORNP: DW 0 ^Record number pointer (in user FCB)
OOOE 00 ROWECR: DB 0 ;NZ when writing user records that are an

j exact super-multiple of CP/M-record (and
; therefore no preread is required)

OOOF RO BU F: DS 128 ; Buffer for CP/M record

RO:
008F 110000 LX I D,ROPB ?DE -> local parameter block
0092 0E09 MV I C,ROPBL ^Parameter block length
0094 CDFE01 CALL MOVE ;Move C bytes from HL to DE

;To compute offset of user record in CP/M record,
* compute the relative BYTE offset of the start
? of the user record within the file (i.e.
; user record number * record size). The least
f significant 7 bits of this product give the
1 byte offset of the start of the user record.
; The product / 128 (shifted left 7 bits) gives the
; CP/M record number of the start of the user record.

0097 2A0500 LHLD ROURL îGet user record length
009A 7D MOV A, L ;Get LS bytes of user rec. length
009B E67F AN I 7FH ;Check if exact multiple of 128
009D B7 ORA A ;(i.e. exact CP/M records)
009E 3E00 MV I A, 0 ;A = 0, flags unchanged
OOAO C2A400 JNZ RONE jNot exact C-P/M records
00A3 3D

RONE:-

DOR A ; A =FF

00A4 320E00 STA ROWECR ;Set write-exact-CP/M-records flag
00A7 EB XCHG •DE = user record length
00A8 2A0300 LHLD ROLIRN ;Get user record number
OOAB CDB801 CALL MLDL ; D E , HL = HL * DE

;DE,HL = user-record byte offset in file
00 AE D5 PUSH D ;Save user-record byte offset
OOAF E5 PUSH H
OOBO 7D MOV A, L ;Get LS byte of product
00B1 E67F AN I 7FH ;Isolate byte offset within

00B3 4F MOV C, A ;CP/M record
00B4 0600 MV I B, 0 jMake into word value
00B6 210F00 LX I H,ROBUF ;Get base address of local buffer
00B9 09 DAD B ;HL -> Start of fragment in buffer
OOBA 220900 SHLD ROFRP ; Save fragment pointer

;Compute maximum fragment length that could reside in
;remainder of CP/M record, based on the offset in the
; CP/M record where the fragment starts.

OOBD 47 MOV B, A ;Take copy of offset in CP/M record
OOBE 3E80 MV I A, 128 ;CP/M record size
OOCO 90 SUB B ;Compute 128 - offset
00C1 320B00 STA ROFRL ;Assume this is the fragment length

;If the user record length is less than the assumed
t fragment length, use it in place of the result above

00C4 47 MOV B, A ;Get copy of assume frag, length
00C5 3A0600 LDA ROURL+1 ;Get MS byte of user record length
00C8 B7 ORA A 5If NZ, rec. len. must be > 128
00C9 C2D600 JNZ RQFLOK ;So fragment length is OK
OOCC 3A0500 LDA ROURL ;Still a chance that rec. len.
OOCF B8 CMP B ; less than fragment len.
OODO D2D600 JNC ROFLOK ;NC if user rec. len. => frag. len.
00D3 320B00 STA ROFRL jUser rec. len. < frag. len. so

; reset fragment length to smaller

RGFLOK:
00D6 3A0E00 LDA ROWECR ;Get exact CP/M record flag
00D9 47 MOV B, A ;for ANDing with READ flag
OODA 3A0000 LDA ROREAD ;Get read operation flag
OODD 2F CMA ;Invert so NZ when writing

Figure 5-26. (Continued)

138 The CP/M Programmer’s Handbook

CODE AO ANA B ;Form logical AND
OODF 320E00 STA ROWECR ;Save back in flag

^Recover the double length byte offset within the file
;of the start of the user record. Shift 7 places right
;to divide by 128 and get the CP/M record number for
;the start of the user record.

00E2 El POP H ;Recover user rec. byte offset
00E3 D1 POP D
00E4 0E07

ROS:

MV I C, 7 jCount for shift right

00E6 C D F 101 CALL SDLR ?DE,HL = DE, HL / 2
00E9 OD DCR C
OOEA C2E600 JNZ ROS

OOED 7A MOV A, D ;Error if DE still NZ after
OOEE B3 ORA E ; division by 128.
OOEF C2AC01 JNZ ROERO

;Set CP/M record number in FCB
00F2 EB XCHG ;DE = CP/M record number
00F3 2A0100 LHLD ROFCB ;Get pointer to FCB
00F6 012100 LX I B,FCBEÍRANREC jOffset of random record no. in FCB
00F9 09 DAD B jHL -> ran. rec. no. in FCB
OOFA 220C00 SHLD RORNP ySave record number pointer
OOFD 73 MOV M, E ;Store LS byte
OOFE 23 INX H
OOFF 72 MOV M, D jStore MS byte

0100 0E1A MV I C,B$SETDMA jSet DMA address to local buffer
0102 110F00 LX I D ,ROBUF
0105 CD0500 CALL BDOS

0108 3A0E00 LDA •ROWECR ;Bypass preread if exact sector write
010B B7 ORA A
010C C21F01 JNZ ROMNF

010F 2A0100 LHLD ROFCB ;Get pointer to FCB
0112 EB XCHG j DE -> FCB
0113 0E21 MV I C,B$READRAN ;Read random function

0115 CD0500 CALL BDOS

0118 FE05 CPI 5 ;Check if error code < 5
011A DCAF01 CC ROCIE jYes, check if ignorable error

; (i.e. error reading unwritten part
; of file for write operation preread)

01 ID B7 ORA A ;Check if error
01 IE CO RNZ ; Yes

R O MN F: ;Move next fragment
01 IF 2A0700 LHLD ROUB ;Get pointer to user buffer
0122 EB XCHG ;DE -> user buffer
0123 2A0900 LHLD ROFRP ;HL -> start of user rec. in local buffer
0126 3A0B00 LDA ROFRL ;Get fragment length
0129 4F MOV C, A ;Ready for MOVE

012A 3A0000 LDA ROREAD :Check if reading
012D B7 ORA A
012E C23201 JNZ R0RD1 ;Yes, so leave DE, HL unchanged
0131 EB

R0 RD 1:

XCHG ;Writing, so swap source and destination
;DE -> start of user rec. in local buffer
;HL -> user buffer

0132 CDFE01 CALL MOVE ;Reading - fragment local -> user buffer
;Writing - fragment user -> local buffer

0135 3A0000 LDA ROREAD ;Check if writing
0138 B7 ORA A
0139 CA3D01 JZ R0WR1 ;Writing, so leave HL -> user buffer
013C EB

R0WR1:

XCHG ;HL -> next byte in user buffer

013D 220700 SHLD ROUB ?Save updated user buffer pointer
0140 3A0000 LDA ROREAD ;Check if reading

Figure 5-26. (Continued)

Chapter 5: The Basic Disk Operating System 139

0143 B7 ORA A
0144 C25001 JNZ R0RD3 {Yes, bypass write code

0147 0E28 MV I C,B*WRITERANZ ;Write random
014? 2A0100 LHLD ROFCB {Get address of FCB
014C EB XCHG ;DE -> FCB
014D CD0500 CALL BDOS

R0RD3: ; Compute residual length of user record as yet unmoved.
{If necessary (because more data needs to be transferred)
i more CP/M records will be read. In this case
{ the start of the fragment will be offset 0. The fragment
; length depends on whether the user record finishes within
; the next sector or spans it. If the residual length of the
; user
; 128.

record is > 128, the fragment length will be set to

0150 2A0500 LHLD ROURL ;Get residual user rec. length
0153 3A0B00 LDA ROFRL {Get fragment length just moved
0156 5F MOV E,A {Make into a word value
0157 1600 MV I D, 0
0159 CDEA01 CALL SUBHL ;Compute ROURL - ROFRL
015C 7C MOV A, H {Check if result 0
015D B5 ORA L
015E C8 RZ ;Return when complete USER

i record has been transferred
015F 220500 SHLD ROURL {Save downdated residual rec. length
0162 4D MOV C, L ;Assume residual length < 128
0163 118000 LX I D, 128 {Check if residual length is < 128
0166 CDEA01 CALL SUBHL {HL = HL - DE
0169 FA6E01 JM R0LT128 {negative if < 128
016C 0E80 MV I C, 128 {=> 128, so set frag.length to 128

R0LT128:
016E 79 MOV A, C
016F 32OB00 STA ROFRL {Fragment length now is either 128

{ if more than 128 bytes left to input
{ in user record, or just the right
; number of bytes (< 128) to complete
{ the user record.

0172 210F00 LX I H ,ROBUF {All subsequent CP/M records will start
0175 220900 SHLD ROFRP { at beginning of buffer

;Update random record number in FCB
0178 2A0C00 LHLD RORNP {HL -"> random record number in user FCB
017B 5E MOV E, M iIncrement the random record number
017C 23 INX H {HL -> MS byte of record number
017D 56 MOV D, M {Get MS byte
017E 13 INX D {Update record number itself
017F 7A MOV A, D ;Check if record now 0
0180 B3 ORA E
0181 C28701 JNZ ROSRN {No, so save record number
0184 3E06 MV I A, 6 ;Indicate "seek past end of disk"
0186 C9 RET {Return to user

R O SR N:
0187 72 MOV M, D {Save record number
0188 2B DCX H {HL -> LS byte
0189 73 MOV M, E

{If writing, check if preread required
018A 3A0E00 LDA ROWECR {Check if exact CP/M record write
018D B7 ORA A
018E C21F01 JNZ ROMNF {Yes, go move next fragment

0191 3A0000 LDA ROREAD {If reading, perform read unconditionally
0194 B7 ORA A
0195 C2A001 JNZ R0RD2

0198 3A0B00 LDA ROFRL {For writes, bypass preread if
019B FE80 CPI 128 { whole CP/M-record is to be overwritten
019D CA1F01 JZ ROMNF { (fragment length = 128)

R0RD2!
01 AO 0E21 MV I C,B$READRAN {Read the next CP/M record
01A2 2A0100 LHLD ROFCB { in sequence

Figure 5-26. (Continued)

140 The CP/M Programmer’s Handbook

01A5 EB XCHG
fcDOS

jDE -> FCB
01A6 CD0500 CALL
01A9 C31F01 JMP ROMNF ;Go back to move next fragment

ROEROs ;Error because user record number
j * User record length / 128 gives
; a CP/M record number > 65535.

01AC 3E04 MV I A, 4 sindícate "attempt to read unwritten
01AE 09 RET S extent"

ROCIES sCheck ignorable error (preread
S for write operation)

01AF 47 MOV B, A ;Save original error code
01B0 3A0000 LDA ROREAD sCheck if read operation
01B3 B7 ORA A
01B4 78 MOV A, B sRestore original error code but

S leave flags unchanged
01B5 CO RNZ sReturn if reading
01B6 AF XRA A sFake "no error" indicator
01B7 09

sMLDL

RET

jMultiply HL * DE using iterative ADD with product
; returned in DE,HL.

î Entry parameters
; HL = multipiicand
ï DE = multiplier

; Exit parameters
; DE,HL = product

DE = mult iplier

MLDLs
01B8 010000 LX I B, 0 sPut 0 on top of stack
01BB 05 PUSH B S to act as MS byte of product

sCheck if either multiplicand
S or multiplier is 0

01BC 70 MOV A, H
01BD B5 ORA L
01BE CAE501 JZ MLDLZ sYes, fake product
01C1 7A MOV A, D
01C2 B3 ORA E
01C3 CAE501 JZ MLDLZ sYes, fake product

sThis routine will be faster if
S the smaller value is in DE

0106 7A MOV A, D sGet MS byte of current DE value
01C7 BC CMP H sCheck which is smaller
0108 DACC01 JO MLDLNX SC set if D < H, so no exchange
01CB EB

MLDLNX
XCHG

0100 42 MOV B, D S BC = multiplier
01 CD 4B MOV C, E

01 CE 54 MOV D, H sDE = HL = multiplicand
01 CF 5D MOV E, L

OIDO OB DCX B S Adjust count as
S 1 * multiplicand = multiplicand

MLDLAs 5 ADD loop
01D1 78 MOV A, B sCheck if all iterations completed
01D2 B1 ORA C
01D3 CAE801 JZ MLDLX sYes, exit
01DÓ 19 DAD D sHL = multiplicand + multiplicand
01D7 E3 XTHL sHL = MS bytes of result, TOS = part prod.
01D8 7D MOV A, L sGet LS byte of top half of product
01D9 CEOO AC I 0 sAdd one if carry set
01DB 6F MOV L, A sReplace
OIDO 70 MOV A, H sRepeat for MS byte
01 DD CEOO AC I 0
01 DF 67 MOV H, A
01E0 E3 XTHL
01E1 OB DCX B sCountdown on multiplier - 1
01E2 C3D101 JMP MLDLA sLoop back until all ADDs done

Figure 5-26. (Continued)

Chapter 5: The Basic Disk Operating System 141

MLDLZ:
01E5 210000

ML DL X:

LX I H, 0 iFake product as either multipli
; or multiplier is 0

01E8
01E9

D1
C9

POP
RET

D ;Recover MS part of product

;SUBHL
; Subtract HL - DE.

jEntry parameters
; HL = subtrahend

DE = subtractor

yExit parameters
; HL = difference

SUBHL:
01EA 7D MOV A, L ;Get LS byte
01EB 93 SUB E ;Subtract without regard to carry
01EC 6F MOV L, A ;Put back into difference
01ED 7C MOV A, H ;Get MS byte
01EE 9A SBB D ^Subtract including carry
01EF 67 MOV H, A ;Move back into difference
01F0 C-9 RET

; SDLR
; Shi ft DE,HL right one place (dividing DE,HL by 2)

jEntry parameters
; DE, HL. = value to be shifted

;Exit parameters
; DE,HL. '= value / 2

SDLR:
01F1 B7 ORA A jClear carry
01F2 EB XCHG iShift DE first
01F3 CDF701 CALL SDLR2
01F6 EB XCHG ;Now shift HL

;Drop into SDLR2 with carry
; set correctly from LS bit
; of DE

SDLR2: ;Shi ft HL right one place
01F7 7C MOV A, H ;Get MS byte
01F8 IF RAR ;Bit 7 set from previous carry,

jBit 0 goes into carry
01F9 67 MOV H, A ;Put shift MS byte back
01FA 7D MOV A, L jGet LS byte
01FB IF RAR ;Bit 7 = bit 0 of MS byte
01FC 6F MOV L, A jPut back into result
01FD C9 RET

; MOVE
; Moves C bytes from HL to DE

MOVE:
01FE 7E MOV A, M ;Get source byte
01FF 12 STAX D ;Store in destination
0200 13 INX D ;Update destination pointer
0201 23 INX H ;Update source pointer
0202 OD DCR C ;Dc>wndate count
0203 C2FE01 JNZ MOVE ;Get next byte
0206 C9 RET

Figure 5-26. (Continued)

142 The CP/M Programmer’s Handbook

Function 35: Get File Size
Function Code: C = 23H
Entry Parameters: DE = Address of FCB
Exit Parameters: Random record field set in FCB

Example
0023 = B*GETFSIZ EQU 35 ;Get Random File LOGICAL size
0005 = BOOS EQU 5 ? BDOS entry point

FCB: ?File control block
OOOO 00 FCB*DISK: DB 0 ;Search on default disk drive
0001 46494C454EFCB*NAME s DB FILENAME :File name
0009 545950 FCBSTYP: DB T Y P * ;File type
OOOC 00 FCB*EXTENT: DB 0 ? Extent
OOOD 0000 FCB*RESV: DB 0,0 ?Reserved for CP/M
OOOF 00 FCBSRECUSED: DB 0 :Records used in this extent
0010 0000000000FCB*ABUSED: DB 0,0,0,0,>0,0,0,0 ¡Allocation blocks used
0018 0000000000 DB 0,0,0,0,,0,0,0,0
0020 00 FCB*SEQRECs DB 0 ¡Sequential rec. to read/write
0021 0000 FCB*RANREC: DU 0 ¡Random rec. to read/write
0023 00 FCB*RANRECO: DB 0 ;Random rec. overflow byte (MS)

0024 0E23 MV I C,B$GETFSIZ ;Function code
0026 110000 LX I D, FCB ;DE -> file control block
0029 CD0500 CALL BDOS
002C 2A2100 LHLD FCBSRANREC ¡Get random record number

?HL = LOGICAL file size
; i.e. the record number of the
? last record

Purpose This function returns the virtual size of the specified file. It does so by setting
the random record number (bytes 33-35) in the specified FCB to the maximum
128-byte record number in the file. The virtual file size is calculated from the
record address of the record following the end of the file. Bytes 33 and 34 form a
16-bit value that contains the record number, with overflow indicated in byte 35. If
byte 35 is 01, this means that the file has the maximum record count of 65,536.

If the function cannot find the file specified by the FCB, it returns with the
random record field set to 0.

You can use this function when you want to add data to the end of an existing
file. By calling this function first, the random record bytes will be set to the end of
file. Subsequent Write Random calls will write out records to this preset address.

Notes Do not confuse the virtual file size with the actual file size. In a random file, if
you write just a single CP/M record to record number 1000 and then call this
function, it will return with the random record number field set in the FCB to
1000—even though only a single record exists in the file.

For sequential files, this function returns the number of records in the file. In
this case, the virtual and actual file sizes coincide.

Function 36: Set Random Record Number
Function Code: C = 24H
Entry Parameters: DE = Address of FCB
Exit Parameters: Random record field set in FCB

Chapter 5: The Basic Disk Operating System 143

Example

Purpose

Notes

Function 37:

Example

0024 - BSSETRANREC EQU
0005 ~ BDOS EQU

FCB:
0000 00 FCB$DISK: DB
0001 46494C454EFCB*NAME: DB
0009 545950 FCB*TYP: DB
OOOC 00 FCB$EXTENT: DB
000D 0000 FCB$RESV: DB
000F 00 FCB*RECUSED: DB
0010 0000000000FCB*ABUSED s DB
0018 0000000000 DB
0020 00 FCBfSEQREC: DB
0021 0000 FCBSRANREC: DU
0023 00 FCB$RANRECO: DB

36 ;Set Random Record Number
5 ;BDOS entry point

;File control block
0 ;Search on default disk drive
FILENAME :File name
•TYP' ;File type
0 sExtent
0,0 ;Reserved for CP/M
0 jRecords used in this extent
0,0,0,0,0,0,0,0 jAllocation blocks used
0,0,0,0,0,0,0,0
0 ;Sequential rec. to read/write
0 jRandom rec. to read/write
0 ;Random rec. overflow byte (MS)

;... file opened and read
; or written sequentially...

0024 0E24 MV I C,B*SETRANREC. ïFunction code
0026 110000 LX I D, FCB ;DE -> file control block
0029 CD0500 CALL BDOS
002C 2A2100 LHLD FCBSRANREC ;Get random record number

;HL = random record number
; that corresponds to the
? sequential progress down
; the file.

This function sets the random record number in the FCB to the correct value
for the last record read or written sequentially to the file.

This function provides you with a convenient way to build an index file so that
you can randomly access a sequential file. Open the sequential file, and as you read
each record, extract the appropriate key field from the data record. Make the
BDOS Set Random Record request and create a new data record with just the key
field and the random record number. Write the new data record out to the index
file.

Once you have done this for each record in the file, your index file provides a
convenient method, given a search key value, of finding the appropriate CP/M
record in which the data lies.

You can also use this function as a means of finding out where you are currently
positioned in a sequential file—either to relate a CP/M record number to the
position, or simply as a place-marker to allow a repositioning to the same place
later.

Reset Logical Disk Drive
Function Code: C = 25 H
Entry Parameters: DE = Logical drive bit map
Exit Parameters: A = 00H

0025 = B*RESETD EQU 37 ;Reset Logical Disks
0005 = BDOS EQU 5 ;BD0S entry point

144 The CP/M Programmer’s Handbook

Purpose

Notes

Function 40:

Example

;DE = Bit map of disks to be
; reset
;Bits are = 1 if disk to be
î reset
;Bits 15 14 13 ... 2 1 0
; Disk P 0 N ... C B A

0000 110200
0003 0E25
0005 CD0500

LXI D,0000*0000*0000*00106 ;Reset drive Bs
MVI C,B*RESETD ; Function code
CALL BD0S

This function resets individual disk drives. It is a more precise version of the
Reset Disk System function (code 13,ODH), in that you can set specific logical
disks rather than all of them.

The bit map in DE shows which disks are to be reset. The least significant bit of
E represents disk A, and the most significant bit of D, disk P. The bits set to 1
indicate the disks to be reset.

Note that this function returns a zero value in A in order to maintain compati
bility with MP/M.

Use this function when only specific diskettes need to be changed. Changing a
diskette without requesting CP/M to log it in will cause the BDOS to assume that
an error has occurred and to set the new diskette to Read-Only status as a
protective measure.

Write Random with Zero-fill
Function Code: C = 28H
Entry Parameters: DE = Address of FCB
Exit Parameters: A = Return Code

0028 = B*WRITERANZ EQU
0005 = BDOS EQU

FCB:
0000 00 FCB*DISK: DB
0001 46494C454EFCB*NAME: DB
0009 545950 FCB*TYP: DB
OOOC 00 FCB*EXTENT: DB
000D 0000 FCB*RESV: DB
000F 00 FCB*RECUSED : DB
0010 0000000000FCB*ABUSED; DB
0018 0000000000 DB
0020 00 FCB*SEQREC: DB
0021 0000 FCB*RANREC: DW
0023 00 FCB*RANRECO: DB

0024 D204 RANRECNOs DW

40 ;Write Random with Zero-Fill
5 ;BDOS entry point

iFile control block
0 jSearch on default disk drive
FILENAME ?File name
TYP' ;File type

0 ;Extent
0,0 ;Reserved for CP/M
0 ?Records used in this extent
0,0,0,0,0,0,0,0 jAllocation blocks used
0,0,0,0,0,0,0,0
0 ;Sequential rec. to read/write
0 jRandom rec. to read/write
0 ;Random rec. overflow byte (MS)

1234 ;Example random record number

0026 2A2400 LHLD RANRECNO
0029 222100 SHLD FCB*RANREC
002C 0E28 MVI C ,B*WRITERANZ
002E 110000 LXI D , FCB
0031 CD0500 CALL BDOS

Record will be written from
address set by prior
SETDMA call

Get random record number
Set up file control block
Function code
DE -> file control block
A = 00 if operation successful

Chapter 5: The Basic Disk Operating System 145

Purpose

Notes

;A = nonzero if no data in file
? specifically s
? A - 03 — CP/M could not
j close current extent
; 05 — directory full
; K>6 — attempt to write
; beyond end of disk

This function is an extension to the Write Random function described pre
viously. In addition to performing the Write Random, it will also fill each new
allocation block with OOH’s. Digital Research added this function to assist Micro
soft with the production of its COBOL compiler—it makes the logic of the file
handling code easier. It also is an economical way to completely fill a random file
with OOH’s. You need only write one record per allocation block; the BDOS will
clear the rest of the block for you.

Refer to the description of the Write Random function (code 34).

The BIOS Components
The BIOS Entry Points
Bootstrap Functions
Character Input/Output Functions
Disk Functions
Calling the BIOS Functions Directly
Example BIOS

The Basic
Inpul/Output System

This chapter takes a closer look at the Basic Input/Output System (BIOS). The
BIOS provides the software link between the Console Command Processor
(CCP), the Basic Disk Operating System (BDOS), and the physical hardware of
your computer system. The CCP and BDOS interact with the parts of your
computer system only as logical devices. They can therefore remain unchanged
from one computer system to the next. The BIOS, however, is customized for your
particular type of computer and disk drives. The only predictable part of the BIOS
is the way in which it interfaces to the CCP and BDOS. This must remain the same
no matter what special features are built into the BIOS.

147

148 The CP/M Programmer’s Handbook

The BIOS C om ponents

A standard BIOS consists of low-level subroutines that drive four types of
physical devices:

• Console: CP/M communicates with the outside world via the console.
Normally this will be a video terminal or a hard-copy terminal.

• “Reader” and “punch”: These devices are normally used to communicate
between computer systems—the names “reader” and “punch” are just his
torical relics from the early days of CP/M.

• List: This is a hard-copy printer, either letter-quality or dot-matrix.
• Disk drives: These can be anything from the industry standard single-sided,

single-density, 8-inch floppy diskette drives to hard disk drives with capaci
ties of several hundred megabytes.

The BIOS Entry Points

The first few instructions of the BIOS are all jump (JMP) instructions. They
transfer control to the 17 different subroutines in the BIOS. The CCP and the
BDOS, when making a specific request of the BIOS, do so by transferring control
to the appropriate JM P instruction in this BIOS jump table or jump vector. The
BIOS jump vector always starts at the beginning of a 256-byte page, so the address
of the first jump instruction is always of the form xxOOH, where “xx” is the page
address. Location 0000H to 0002H has a jump instruction to the second entry of
the BIOS jump vector—so you can always find the page address of the jump
vector by looking in location 0002H.

Figure 6-1 shows the contents of the BIOS jump vector along with the
page-relative address of each jump. The labels used in the jump instructions have
been adopted by convention.

The following sections describe the functions of each of the BIOS’s main
subroutines. You should also refer to Digital Research’s manual CP/M2.0 Altera
tion Guide for their description of the BIOS routines.

Bootstrap Functions

There are two bootstrap functions. The cold bootstrap loads the entire CP/M
operating system when the system is either first turned on or reset. The warm
bootstrap reloads the CCP whenever a program branches to location 0000H.

Chapter 6: The Basic Input/ Output System 149

xxOOH JMP BOOT ¡"Cold" (first time) bootstrap
xx03H JMP WBOOT ¡"Warm" bootstrap
XX06H JMP CONST ¡Console input status
XX09H JMP CON IN ¡Console input
xxOCH JMP CONOUT ¡Console output
xxOFH JMP LIST ¡List output
X X 12H JMP PUNCH ¡"Punch" output
X X 15H JMP READER ¡"Reader" input
xxlSH JMP HOME ¡Home disk heads (to track 0)
xxlBH JMP SELDSK ¡Select logical disk
xxlEH JMP SETTRK ¡Set track number
XX21H JMP SETSEC ¡Set sector number
XX24H JMP SETDMA ¡Set DMA address
xx27H JMP READ ¡Read (12Q-byte> sector
XX2AH JMP WRITE ¡Write (128-byte) sector
XX2DH JMP LISTST ¡List device output status
xx30H JMR SECTRAN ¡Sector translate

Figure 6-1. Layout of the standard BIOS jump vector

BOOT: “Cold” Bootstrap
The BOOT jump instruction is the first instruction executed in CP/M. The

bootstrap sequence must transfer control to the BOOT entry point in order to
bring up CP/M. In general, a PROM receives control either when power is first
applied or after you press the RESET button on the computer. This reads in the
CP/M loader on the first sector of the physical disk drive chosen to be logical disk
A. This CP/M loader program reads the binary image of the CCP, BDOS, and
BIOS into memory at some predetermined address. Then it transfers control to the
BOOT entry point in the BIOS jump vector.

This BOOT routine must initialize all of the required computer hardware. It
sets up the baud rates for the physical console (if this has not already been done
during the bootstrap sequence), the “reader,” “punch,” and list devices, and the
disk controller. It must also set up the base page of memory so that there is a jump
at location 0000H to the warm boot entry point in the BIOS jump vector (at
xx03H) and a jump at location 0005H to the BDOS entry point.

Most BOOT routines sign on by displaying a short message on the console,
indicating the current version of CP/M and the computer hardware that this BIOS
can support.

The BOOT routine terminates by transferring control to the start of the CCP
+ 6 bytes (the CCP has its own small jump vector at the beginning). Just before the
BOOT routine jumps into the CCP, it sets the C register to 0 to indicate that logical
disk A is to be the default disk drive. This is what causes “A > ” to be the CCP’s
initial prompt.

The actual CCP entry point is derived from the base address of the BIOS. The
CCP and BDOS together require 1E00H bytes of code, so the first instruction of
the CCP starts at BIOS — 1E00H.

150 The CP/M Programmer’s Handbook

WBOOT: “Warm” Bootstrap
Unlike the “co ld ” bootstrap entry point, which executes Only once, the WBOOT

or warm boot routine will be executed every time a program terminates by
jum ping to location 0000H, or whenever you type a CONTROL-C on the console as
the first character o f an input line.

The WBOOT routine is responsible for reloading the CCP into memory.
Programs often use all of memory up to the starting point of the BDOS, overwrit
ing the CCP in the process. The underlying philosophy is that while a program is
executing, the CCP is not needed, so the program can use the memory previously
occupied by the CCP. The CCP occupies 800H (2048) bytes of memory—and this
is frequently just enough to make the difference between a program that cannot
run and one that can.

A few programs that are self-contained and do not require the BDOS’s
facilities will also overwrite the BDOS to get another 1600H (5632) bytes of
memory. Therefore, to be really safe, the WBOOT routine should read in both the
CCP and the BDOS. It also needs to set up the two JMPs at location 0000H (to
WBOOT itself) and at location 0005H (to the BDOS). Location 0003H should be
set to the initial value of the IOBYTE if this is implemented in the BIOS.

As its last act, the WBOOT routine sets register C to indicate which logical disk
is to be selected (C = 0 for A, 1 for B, and so on). It then transfers control into the
CCP at the first instruction in order to restart the CCP. Again, the actual address
is computed based on the knowledge that the CCP starts 1E00H bytes lower in
memory than the base address of the BIOS.

Character Input/O utput Functions

Character input/output functions deal with logical devices: the console,
“reader,” “punch,” and list devices. Because these logical devices can in practice be
connected by software to one of several physical character I/O devices, many
BIOS’s use CP/M’s IOBYTE features to assign logical devices to physical ones.

In this case, each of the BIOS functions must check the appropriate bit fields of
the IOBYTE (see Figure 4-2 and Table 4-1) to transfer control to the correct
physical device driver (program that controls a physical device).

CONST: Console Input Status
CONST simply returns an indicator showing whether there is an incoming

character from the console device. The convention is that A = 0FFH if a character
is waiting to be processed, A = 0 if one is not. Note that the zero flag need not be set
to reflect the contents of the A register—it is the contents that are important.

CONST is called by the CCP whenever the CCP is in the middle of an
operation that can be interrupted by pressing a keyboard character.

Chapter 6: The Basic Input/Output System 1 5 1

The BDOS will call CONST if a program makes a Read Console Status
function call (B$CONST, code 11, OBH). It is also called by the console input BIOS
routine, CONIN (described next).

CONIN: Console Input
CONIN reads the next character from the console to the A register and sets the

most significant (parity) bit to 0.
Normally, CONIN will call the CONST routine until it detects A = OFFH.

Only then will it input the data character and mask off the parity bit.
CONIN is called by the CCP and by the BDOS when a program executes a

Read Console Byte function (BSCONIN, code 1).

CONOUT: Console Output
CONOUT outputs the character (in ASCII) in register C to the console. The

most significant (parity) bit of the character will always be 0.
CONOUT must first check that the console device is ready to receive more

data, delaying if necessary until it is, and only then sending the character to the
device.

CONOUT is called by the CCP and by the BDOS when a program executes a
Write Console Byte function (BSCONOUT, code 2).

LIST: List Output
LIST is similar to CONOUT except that it sends the character in register C to

the list device. It too checks first that the list device is ready to receive the character.
LIST is called by the CCP in response to the CONTROL-P toggle for printer echo

of console output, and by the BDOS when a program makes a Write Printer Byte
or Display String call (BSLISTOUT and BSPRINTS, codes 5 and 9).

PUNCH: “Punch” Output
PUNCH sends the character in register C to the “punch” device. As mentioned

earlier, the “punch” is rarely a real paper tape punch. In most BIOS’s, the PUNCH
entry point either returns immediately and is effectively a null routine, or it outputs
the character to a communications device, such as a modem, on your computer.

PUNCH must check that the “punch” device is indeed ready to accept another
character for output, and must wait if it is not.

Digital Research’s documentation states that the character to be output will
always have its most significant bit set to 0. This is not true. The BDOS simply
transfers control over to the PUNCH entry point in the BIOS; the setting of the
most significant bit will be determined by the program making the BDOS function
request (BSPUNOUT, code 4). This is important because the requirement of a zero

152 The CP/M Programmer’s Handbook

would preclude being able to send pure binary data via the BIOS PUNCH
function.

READER: “Reader” Input
As with the PUNCH entry point, the READER entry point rarely connects to

a real paper tape reader.
The READER function must return the next character from the reader device

in the A register, waiting, if need be, until there is a character.
Digital Research’s documentation again says that the most significant bit of

the A register must be 0, but this is not the case if you wish to receive pure binary
information via this function.

READER is called whenever a program makes a Read “Reader” Byte function
request (BSREADIN, code 3).

Disk Functions

All of the disk functions that follow were originally designed to operate on the
128-byte sectors used on single-sided, single-density, 8-inch floppy diskettes that
were standard in the industry at the time. Now that CP/M runs on many different
types of disks, some of the BIOS disk functions seem strange because most of the
new disk drives use sector sizes other than 128 bytes.

To handle larger sector sizes, the BIOS has some additional code that makes
the BDOS respond as if it were still handling 128-byte sectors. This code is referred
to as the blocking/deblocking code. As its name implies, it blocks together several
128-byte “sectors” and only writes to the disk when a complete physical sector has
been assembled. When reading, it reads in a physical sector and then deblocks it,
handing back several 128-byte “sectors” to the BDOS.

To do all of this, the blocking/deblocking code uses a special buffer area of the
same size as the physical sectors on the disk. This is known as the host disk buffer
or HSTBUF. Physical sectors are read into this buffer and written to the disk
from it.

In order to optimize this blocking/deblocking routine, the BIOS has code in it
to reduce the number of times that an actual disk read or write occurs. A side effect
is that at any given moment, several 128-byte “sectors” may be stored in the
HSTBUF, waiting to be written out to the disk when HSTBUF becomes full. This
sometimes complicates the logic of the BIOS disk functions. You cannot simply
select a new disk drive, for example, when the HSTBUF contains data destined for
another disk drive. You will see this complication in the BIOS only in the form of
added logical operations; the BIOS disk functions rarely trigger immediate physi
cal operations. It is easier to understand these BIOS functions if you consider that

Chapter 6: The Basic Input/Output System 153

they make requests — and that these requests are satisfied only when it makes
sense to do so, taking into account the blocking/deblocking logic.

HOME: Home Disk
HOME sets the requested track and sector to 0.

SELDSK: Select Disk
SELDSK does not do what its name implies. It does not (and must not)

physically select a logical disk. Instead, it returns a pointer in the HL register pair
to the disk parameter header for the logical disk specified in register C on entry.
C = 0 for drive A, 1 for drive B, and so on. SELDSK also stores this code for the
requested disk to be used later in the READ and WRITE functions.

If the logical disk code in register C refers to a nonexistent disk or to one for
which no disk parameter header exists, then SELDSK must return with HL set to
0000H. Then the BDOS will output a message of the form
"BOOS Err on X: Select"

Note that SELDSK not only does not select the disk, but also does not indicate
whether or not the requested disk is physically present —merely whether or not
there are disk tables present for the disk.

SELDSK is called by the BDOS either during disk file operations or by a
program issuing a Select Disk request (BSSELDSK, code 14).

SETTRK: Set Track
SETTRK saves the requested disk track that is in the BC register pair when

SETTRK gets control. Note that this is an absolute track number; that is, the
number of reserved tracks before the file directory will have been added to the
track number relative to the start of the logical disk.

The number of the requested track will be used in the next BIOS READ or
WRITE function (described later in this chapter).

SETTRK is called by the BDOS when it needs to read or write a 128-byte
sector. Legitimate track numbers are from 0 to OFFFFH (65,535).

SETSEC: Set Sector
SETSEC is similar to SETTRK in that it stores the requested sector number

for later use in BIOS READ or WRITE functions. The requested sector number is
handed to SETSEC in the A register; legitimate values are from 0 to OFFH (255).

The sector number is a logical sector number. It does not take into account any
sector skewing that might be used to improve disk performance.

SETSEC is called by the BDOS when it needs to read or write a 128-byte
sector.

154 The CP/M Programmer’s Handbook

SETDMA: Set DMA Address
SETDMA saves the address in the BC register pair in the requested DMA

address. The next BIOS READ or WRITE function will use the DMA address as
a pointer to the 128-byte sector buffer into which data will be read or from which
data will be written.

The default DMA address is 0080H. SETDMA is called by the BDOS when it
needs to READ or WRITE a 128-byte sector.

READ: Read Sector
READ reads in a 128-byte sector provided that there have been previous BIOS

function calls to
SELDSK — “select” the disk
SETDMA — set the DMA address
SETTRK — set the track number
SETSEC — set the sector number.
Because of the blocking/ deblocking code in the BIOS, there are frequent

occasions when the requested sector will already be in the host buffer (HSTBUF),
so that a physical disk read is not required. All that is then required is for the BIOS
to move the appropriate 128 bytes from the HSTBUF into the buffer pointed at by
the DMA address.

Only during the READ function will the BIOS normally communicate with
the physical disk drive, selecting it and seeking to read the requested track and
sector. During this process, the READ function must also handle any hardware
errors that occur, trying an operation again if a “soft,” or recoverable, error occurs.

The READ function must return with the A register set to 00H if the read
operation is completed successfully. If the READ function returns with the A
register set to 01H, the BDOS will display an error message of the form
BDOS Err on X: Bad Sector

Under these circumstances, you have only two choices. You can enter a
CARRIAGE r e t u r n , ignore the fact that there was an error, and attempt to make
sense of the data in the DMA buffer. Or you can type a CONTROL-C to abort the
operation, perform a warm boot, and return control to the CCP.

As you can see, CP/M’s error handling is not particularly helpful, so most
BIOS writers add more sophisticated error recovery right in the disk driver. This
can include some interaction with the console so that a more determined effort can
be made to correct errors or, if nothing else, give you more information as to what
has gone wrong. Such error handling is discussed in Chapter 9.

If you are working with a hard disk system, the BIOS driver must also handle
the management of bad sectors. You cannot simply replace a hard disk drive if one
or two sectors become unreadable. This bad sector management normally requires

Chapter 6: The Basic Input/Output System 155

that a directory of “spare” sectors be put on the hard disk before it is used to store
data. Then, when a sector is found to be bad, one of the spare sectors is substituted
in its place. This is also discussed in Chapter 9.

WRITE: Write Sector
WRITE is similar to READ but with the obvious difference that data is

transferred from the DMA buffer to the specified 128-byte sector. Like READ,
this function requires that the following function calls have already been made:

SELDSK—“select” the disk
SETDMA — set the DMA address
SETTRK —set the track number
SETS EC — set the sector number.

Again, it is only in the WRITE routine that the driver will start to talk directly
to the physical hardware, selecting the disk unit, track, and sector, and transferring
the data to the disk.

With the blocking/deblocking code, the BDOS optimizes the number of disk
writes that are needed by indicating in register C the type of disk write that is to be
performed:

0 = normal sector write
1 = write to file directory sector
2 = write to sector of previously unused allocation block.

Type 0 occurs whenever the BDOS is writing to a data sector in an already used
allocation block. Under these circumstances, the disk driver must preread the
appropriate host sector because there may be previously stored information on it.

Type 1 occurs whenever the BDOS is writing to a file directory sector—in this
case, the BIOS must not defer writing the sector to the disk, as the information is
too valuable to hold in memory until the HSTBUF is full. The longer the
information resides in the HSTBUF, the greater the chance of a power failure or
glitch, making file data already physically written to the disk inaccessible because
the file directory is out of date.

Type 2 occurs whenever the BDOS needs to write to the first sector of a
previously unused allocation block. Unused, in this context, includes an allocation
block that has become available as a result of a file being erased. In this case, there
is no need for the disk driver to preread an entire host-sized sector into the
HSTBUF, as there is no data of value in the physical sector.

As with the READ routine, the WRITE function returns with A set to 00H if
the operation has been completed successfully. If the WRITE function returns
with A set to 01H, then the BDOS will display the same message as for READ:

BDOS Err on X: Bad Sector

156 The CP/M Programmer’s Handbook

You can see now why most BIOS writers add extensive error-recovery and
user-interaction routines to their disk drivers.

For hard disk systems, some disk drivers are written so that they automatically
“spare out” a failing sector, writing the data to one of the spare sectors on the disk.

LISTST: List Status
As you can tell from its position in the list of BIOS functions, the LISTST

function was a latecomer. It was added when CP/M was upgraded from version 1.4
to version 2.0.

This function returns the current status of the list device, using the IOBYTE if
necessary to select the correct physical device. It sets the A register to OFFH if the
list device can accept another character for output or to 00H if it is not ready.

Digital Research’s documentation states that this function is used by the
DESPOOL utility program (which allows you to print a file “simultaneously” with
other operations) to improve console response during its operation, and that it is
acceptable for the routine always to return 00H if you choose not to implement it
fully.

Unfortunately, this statement is wrong. Many other programs use the LISTST
function to “poll” the list device to make sure it is ready, and if it fails to come
ready after a predetermined time, to output a message to the console indicating
that the printer is not ready. If you ever make a call to the BDOS list output
functions, Write Printer Byte and Print String (codes 5 and 9), and the printer is
not ready, then CP/M will wait forever—and your program will have lost control
so it cannot even detect that the problem has occurred. If LISTST always returns a
00H, then the printer will always appear not to be ready. Not only does this make
nonsense out of the LISTST function, but it also causes a stream of false “Printer
not Ready” error messages to appear on the console.

SECTRAN: Sector Translate
SECTRAN, given a logical sector number, locates the correct physical sector

number in the sector translate table for the previously selected (via SELDSK)
logical disk drive.

Note that both logical and physical sector numbers are 128-byte sectors, so if
you are working with a hard disk system, it is not too efficient to impose a sector
interlace at the 128-byte sector level. It is better to impose the sector interlace right
inside the hard disk driver, if at all; in general, hard disks spin so rapidly that CP/M
simply cannot take advantage of sector interlace.

The BDOS hands over the logical sector number in the BC register pair, with
the address of the sector translate table in the DE register pair. SECTRAN must
return the physical sector number in HL.

If SECTRAN is to be a null routine, it must move the contents of BC to HL
and return.

Chapter 6: The Basic Input/Output System 157

Calling the BIOS Functions Directly

As a general rule, you should not make direct calls to the BIOS. To do so makes
your programs less transportable from one CP/M system to the next. It precludes
being able to run these programs under MP/M, which has a different form of BIOS
called an extended I/O system, or XIOS.

There are one or two problems, however, that can only be solved by making
direct BIOS calls. These occur in utility programs that, for example, need to make
direct access to the CP/M file directory, or need to access some “private” jump
instructions which have been added to the standard BIOS jump vector.

If you really do need direct access to the BIOS, Figure 6-2 shows an example
subroutine that does this. It requires that the A register contain a BIOS function
code indicating the offset in the jump vector of the jump instruction to which
control is to be passed.

; Equates for use with BIOS subroutine

0003 = WBOOT EQU 03H ;Warrn boot
0006 = CONST EQU 06H 7 Console status000? = CON IN EQU 09H ;Console input
000C = CQNOUT EQU OCH ;Console output000F = LIST EQU OFH ;Output to list device0012 = PUNCH EQU 12H ;Output to punch device
0015 = READER EQU 15H 7 Input from reader
0018 = HOME EQU 18H ;Home selected disk to
00 IB = SELDSK EQU 1BH ;Select disk
00 IE = SETTRK EQU 1EH ;Set track
0021 = SETSEC EQU 21H ;Set sector
0024 = SETDMA EQU 24H ;Set DMA address
0027 = READ EQU 27H ;Read 128-byte sector
002A = WRITE EQU 2AH ;Write 128-byte sector
002D = LISTST EQU 2DH ;Return list status
0030 = SECTRAN EQU 30H 7 Sector translate

jAdd further "private" BIOS codes here

BIOS
This subroutine transfers control to the appropriate
entry in the BIOS Jump Vector, based on a code number-
handed to it in the L register.

Entry parameters

L = Code number (which is in fact the page-relative
address of the correct JMP instruction within
the jump vector)

All other registers are preserved and handed over to
the BIOS routine intact.

Exit parameters

Figure 6-2. BIOS equates

158 The CP/M Programmer’s Handbook

This routine does not CALL the BIOS routine, therefore
when the BIOS routine RETurns, it will do so directly
to this routine's caller.

Calling sequence

MV I L ,Code$Number
CALL BIOS

BIOS:
0000 F5 PUSH PSW ? Save user 's A register
0001 3A0200 LDA 0002H ? Get BIOS JMP vector page from

; warm boot JMP
0004 67 MOV H, A ;HL -> BIOS JMP vector entry
0005 FI POP PSW ; Recover user 's A register
0006 E9 PCHL ; Transfer control into the BIOS

Figure 6-2. BIOS equates (continued)

Line Numbers Functional Component or Routine

0072-0116 BIOS Jump Vector
0120-0270 Initialization Code
0275-0286 Display Message
0289-0310 Enter CP/M
0333-0364 CONST - Console Status
0369-0393 CONIN - Console Input
0397-0410 CONOUT - Console Output
0414-0451 LISTST - List Status
0456-0471 LIST - List Output
0476-0492 PUNCH - Punch Output
0496-0511 READER - Reader Input
0516-0536 IOBYTE Driver Select
0540-0584 Device Control Tables
0589-0744 Low-level Drivers for Console, List,etc.
0769-0824 Disk Parameter Header Tables
0831-0878 Disk Parameter Blocks
0881-0907 Other Disk data areas
0910-0955 SELDSK - Select Disk
0958-0964 SETTRK - Set Track
0967-0973 SETSEC - Set Sector
0978-0984 SETDMA - Set DMA Address
0987-1025 Sector Skew Tables
1028-1037 SECTRAN - Logical to Physical Sector translation
1041-1056 HOME - Home to Track 0
1059-1154 Deblocking Algorithm data areas
1157-1183 READ - Read 128-byte sector
1185-1204 WRITE - Write 128-byte sector
1206-1378 Deblocking Algorithm
1381-1432 Buffer Move
1435-1478 Deblocking subroutines
1481-1590 8" Floppy Physical Read/Write
1595-1681 5 1/4" Floppy Physical Read/Write
1685-1764 WBOOT - Warm Boot

Figure 6-3. Functional Index to Figure 6-4

Chapter 6: The Basic Input/Output System 159

Example BIOS

The remainder of this chapter is devoted to an example BIOS listing. This
actual working BIOS shows the overall structure and interface to the individual
BIOS subroutines.

Unlike most BIOS’s, this one has been written specifically to be understood
easily. The variable names are uncharacteristically long and descriptive, and each
block of code has commentary to put it into context.

Each source line has been sequentially numbered (an infrequently used option
that Digital Research’s Assembler, ASM, permits). Figure 6-3 contains a func
tional index to the BIOS as a whole so that you can find particular functions in the
listing in Figure 6-4 by line number.

0001 <■— Line Number f Figure 6- 4.
0002
0003 f it*»***:******-**
0004 • * *
0005 5 * Simple BIOS Listing *
0006 ?* »
0007 ;***»*********:*
0008
0009 *
0010 3030 = VERSION EQU ■'00'' ¡Equates used in the sign on message
0011 3730 = MONTH EQU '07'
0012 3531 = DAY EQU '15'
0013 3238 = YEAR EQU '82'
0014 ;
0015 ? t t * t t K * * K * * * * K * * K t t * K * * K K K * K * K * * t t * * K * * * * K * * K * * * * K K » t t K * K * K K K * » K K K t t t t * * t t * K K * » : *
0016 * * *
0017 J * This BIOS is for a computer system with the following *
0018 ; K hardware configuration s *
0019 ; * *
0020 • * - 8080 CPU *
0021 * * - 64KBytes of RAM *
0022 • * - CRT/keyboard controller that transfers data *
0023 ** as though it were a serial port (but requires *
0024 »« no baud rate generator or USART programming) *
0025 ** - A serial port, used for both list and "reader"/ *
0026 Ï * "punch" devices. The serial port chip is an *
0027 i* Intel 8251A with an 8253 baud rate generator. *
0028 • * - Two 5 1/4" mini-floppy, double-sided, double *
0029 ; * density drives. These drives use 512-byte sectors. *
0030 • * These are used as logical disks A: and B : . *
0031 • * - Two 8" standard diskette drives (128-byte sectors). *
0032 ?* These are used as logical disks C: and D : . *
0033 ?* *
0034 ?* Two intelligent disk controllers are used, one for a
0035 ?* each diskette type. These controllers access memory a
0036 • K directly, both to read the details of the *
0037 ?* operations they are to perform and also to read a
0038 Ï * and write data from and to the diskettes.
0039 ?* «
0040 • * *
0041
0042
0043
0044
0045

? Equates for defining memory size and the base address and
; length of the system components.

Figure 6-4. Simple BIOS listing

160 The CP/M Programmer’s Handbook

0046 ;
0047 0040 ■ MemoryfSize EQU 64 ¥ Number of Kbytes of RAM
0048 ;
0049 ¥ The BIOS Length must be determined by inspection.
0050 ¥ Comment out the ORG BIOS$Entry line below by changing the first
0051 ¥ character to a semicolon. (This will make the Assembler start
0052 5 the BIOS at location 0.) Then assemble the BIOS and round up to
0053 ¥ the nearest 100H the address displayed on the console at the end
0054 ; of the assembly
0055 ¥
0056 0900 = BIOS$Length EQU 0900H
0057 ;
0058 0800 = CCPiLength EQU 0800H ¥ Constant
0059 0E00 = BDOS*Length EQU 0E00H ¥ C o nstant
0060 •
0061 0008 = OveralISLength EQU ((CCP*Length + BDOS*Length + BIOS*Length) / 1024) + 1
0062 ;
0063 EOOO SS CCP*Entry EQU (Memory$Size - Overall$Length) * 1024
0064 E806 = BDOS*Entry EQU CCP*Entry + CCP*Length + 6
0065 F600 = BIOS*Entry EQU CCPiEntry + CCP*Length + BDOS*Length
0066
0067
0068
0069
0070 F600 ORG BIOS*Entry ¥Assemble code at BIOS address
0071
0072 ¥ BIOS jump vector
0073 ¥ Control will be transferred to the appropriate entry point
0074 ¥ from the CCP or the BDOS, both of which compute the relative
0075 ¥ address of the BIOS jump vector in order to locate it.
0076 ¥ Transient programs can also make direct BIOS calls transferring
0077 ¥ control to location xxOOH, where xx is the value in location
0078 ¥ 0 0 0 2 H .
0079
0080 F600 C3F9F6 JMP BOOT ¥Cold boot — entered from CP/M bootstrap loader
0081 War mtBoot $En try: ¥ Labelled so that the initialization code can
0082 ¥ put the warm boot entry address down in location
0083 ¥ 0 0 0 1H and 0002H of the base page
0084 F603 C329FE JMP WBOOT ¥Warm boot — entered by jumping to location 0000H.
0085 ¥ Reloads the CCP which could have been
0086 ¥ overwritten by previous program in transient
0087 ¥ program area
0088 F606 C362F8 JMP CONST ¥Console status — returns A = OFFH if there is a
0089 ¥ console keyboard character waiting
0090 F609 C378F8 JMP CON IN ;Console input — returns the next console keyboard
0091 ¥ character in A
0092 F60C C386F8 JMP CONOUT ¥ Console output — outputs the character in C to
0093 ¥ the console device
0094 F60F C3ACF8 JMP LIST ;List output — outputs the character in C to the
0095 ¥ list device
0096 F612 C3BCF8 JMP PUNCH ¥Punch output — outputs the character in C to the
0097 ¥ logical punch device
0098 F615 C3CDF8 JMP READER ¥Reader input — returns the next input character from
0099 ¥ the logical reader device in A
0100 F618 C3D3FB JMP HOME ¥ Homes the currently selected disk to track 0
0101 F61B C32BFB JMP SELDSK ¥Selects the disk drive specified in register C and
0102 ¥ returns the address of the disk parameter header
0103 F61E C358FB JMP SETTRK ¥Sets the track for the next read or write operation
0104 ¥ from the BC register pair
0105 F621 C35EFB JMP SETSEC ¥Sets the sector for the next read or write operation
0106 ¥ from the A register
0107 F624 C365FB JMP SETDMA ¥Sets the direct memory address (disk read/write)
0108 ¥ address for the next read or write operation
0109 ¥ from the DE register pair
0110 F627 C3FBFB JMP READ ¥Reads the previously specified track and sector from
0111 ¥ the selected disk into the DMA address
0112 F62A C315FC JMP WRITE ¥Writes the previously specified track and sector onto
0113 ¥ the selected disk from the DMA address
0114 F62D C394F8 JMP LISTST ¥Returns A = OFFH if the list device can accept
0115 ¥ another output character
0116 F630 C3CDFB JMP SECTRAN ¥Translates a logical sector into a physical one
0117
0118
0119
0120 ¥ The cold boot initialization code is only needed once.

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 161

0121 ¡ It can be overwritten once it has been executed.
0122 Therefore, it is "hidden" inside the main disk buffer.
0123 f When control is transferred to the BOOT entry point, this
0124 ; code will be executed, only being overwritten by data from
0125 ¡ the disk once the initialization procedure is complete.
0126
0127 ; To Tide code in the buffer, the buffer is first declared
0128 t normally. Then the value of the location counter following
0129 ? the buffer is noted. Then, using an ORG (ORiGin) statement, the
0130 ; location counter is "wound back" to the start of the buffer
0131 * again and the initialization code written normally.
0132 ; At the end of this code, another ORG statement is used to
0133 * set the location counter back as it was after the buffer had
0134 ; been declared.
0135
0136
0137 0200 = Physical*Sector$Size EQU 512 ¡This is the actual sector size
0138 »for the 5 1/4" mini-floppy diskettes.
0139 ¡The 8" diskettes use 128-byte sectors.
0140 ¡Declare the physical disk buffer for the
0141 ¡5 1/4" diskettes
0142 F633 Disk*buffers DS Physical$Sector*Size
0143 ;
0144 ¡Save the location counter
0145 F833 = After*Disk*Buffer EQU % ;$ = Current value of location counter
0146 ;
0147 F633 ORG Disk$Buffer ¡Wind the location counter back
0148
0149 Initialize*Streams ¡This stream of data is used by the
0150 ¡initialize subroutine. It has the following
0151 ¡formats
0152
0153 ¡ DB Port number to be initialized
0154 ¡ DB Number of bytes to be output
0155 ¡ DB xx,xx,xx,xx data to be output
0156 • •
0157 ¡ :
0158 ; DB Port number of 00H terminator
0159
0160 ¡Note : On this machine, the console port does
0161 ¡ not need to be initialized. This has
0162 ¡ already been done by the PROM bootstrap code.
0163
0164 ¡Initialize the 8251A USART used for
0165 ¡ the list and communications devices.
0166 F633 ED DB Communication*Status$Port ¡Port number
0167 F634 06 DB 6 ¡Number of bytes
0168 F635 00 DB 0 ¡Get chip ready to be programmed by
0169 F636 00 DB 0 ; sending dummy data out to it
0170 F637 00 DB 0
0171 F638 42 DB 0100*00106 ¡Reset and raise data terminal ready
0172 F639 6E DB G1$10*11$10B ¡1 stop bit, no parity, 8 bits per character
0173 ¡ baud rate divide factor of 16.
0174 F63A 25 DB 0010$0101B ¡Raise request to send, and enable
0175 ¡ transmit and receive.
0176
0177 ¡Initialize the 8253 programmable interval
0178 ¡ timer used to generate the baud rate for
0179 ¡ the 8251A USART
0180 F63B DF DB Communication$Baud$Mode ¡Port number
0181 F63C 01 DB 1 ¡Number of bytes
0182 F63D B6 DB 10$11$011$0B ¡Select counter 2, load LS byte first,
0183 ¡ Mode 3 (for baud rates), binary count.
0184 ;
0185 F63E DE DB Communication$Baud$Rate ¡Port number
0186 F63F 02 DB 2 ¡Number of bytes
0187 F640 3800 DW 0038H ¡1200 baud (based on 16X divide-down selected
0188 ¡ in the 8251A USART)
0189
0190 F642 00 DB 0 ¡Port number of 0 terminates
0191 •
0192 •
0193 Equates for the sign-on message
0194
0195 OOOD CR EQU 0DH ¡Carriage return

Figure 6-4. (Continued)

162 The CP/M Programmer’s Handbook

0196 000A _ LF EQU OAH ;Line feed
0197
0198 Signon$Message: ¡Main sign-on message
0199 F643 43502F4D20 DB 'CP/M 2.2. -'
0200 F64C 3030 DW VERSION ¡Current version number
0201 F64E 20 DB •' ■'
0202 F64F 3037 DW MONTH ¡Current date
0203 F651 2F DB •'/•'
0204 F652 3135 DW DAY
0205 F654 2F DB
0206 F655 3832 DW YEAR
0207 F657 ODOAOA DB CR,LF,LF
0208 F65A 53696D706C DB 'Simple BIOS',CR,LF,LF
0209 F668 4469736B20 DB 'Disk configuration :',CR,LF,LF
0210 F67F 2020202020 DB As 0.35 Mbyte 5" Fl op py',CR,LF
0211 F69D 2020202020 DB ' B: 0.35 Mbyte 5" F l o p p y ',CR,LF,LF
0212 F6BC 2020202020 DB Cs 0.24 Mbyte 8" Floppy'',CR,LF
0213 F6DA 2020202020 DB D: 0.24 Mbyte 8" Fl op py ',CR,LF
0214
0215 F6F8 00 DB 0
0216
0217 0004 * Default$Disk EQU 0004H ¡Default disk in base page
0218
0219 BOOTS ¡Entered directly from the BIOS JMP vector.
022 0 ¡Control will be transferred here by the CP/M
0221 ¡ bootstrap loader.
022 2 ¡The initialization state of the computer system
0 2 2 3 s will be determined by the
022 4 ¡ PROM bootstrap and the CP/M loader setup .
0225 ;
0226 ¡Initialize system.
022 7 ¡This routine uses the InitializefStream
022 8 ¡ declared above.
0 2 2 9 F6F9 F3 DI ¡Disable interrupts to prevent any
0230 ¡ side effects during initialization.
0231 F6FA 2133F6 LX I H, Init ial izefStrearn ¡HL -> Data stream
0232
0233 Initiali z etLo op:
0234 F6FD 7E MOV A,M ¡Get port number
0235 F6FE B7 ORA A ¡If 00H, then initialization complete
0236 F6FF CA13F7 JZ Initialize$Complete
0237 F702 320AF7 STA InitializetPort ¡Set up OUT instruction
0238 F705 23 INX H ¡HL -> Count of number of bytes to output
0239 F706 4E MOV C,M ¡Get byte count
0240
0241 Init ialize$Next$Bytes
0242 F707 23 INX H ¡HL -> Next data byte
0243 F703 7E MOV A,M ¡Get next data byte
0244 F709 D3 DB OUT ¡Output to correct port ■—
0245 Init ial ize$Port s
0246 F70A 00 DB 0 ¡<- Set above
0247 F70B OD DCR C ¡Count down
0248 F70C C207F7 JNZ Initialize$Next$Byte ¡Go back if more bytes
0249 F70F 23 INX H ¡HL -> Next port number
0250 F710 C3FDF6 JMP Initialize$Loop ¡Go back for next port initialization
0251 ;
0252 Init ialize$Complete:
0253
0254
0255 F713 3E01 MV I A,00*00*0090IB ¡Set IOBYTE to indicate terminal
0256 F715 320300 STA IOBYTE ¡ is to act as console
0257
0258 F718 2143F6 LX I H,Signon$Message ¡Display sign-on message on console
0259 F71B CD33F8 CALL Di s p lay9Message
0260 *
0261
0262 F71E AF XRA A ¡Set default disk drive to A:
0263 F71F 320400 STA DefaultSDisk
0264 F722 FB El ¡Interrupts can now be enabled
0265
0266 F723 C340F8 JMP EnterfCPM ¡Complete initialization and enter
0267 ¡ CP/M by going to the Console Command
0268 ¡ Processor.
0269
0270 ; End of cold boot initialization code
0271

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 163

0272 F833 ORG After*Disk$Buffer jReset location counter
0273 ;
0274 ;
0275 Di splay$Message: Displays the specified message on the console.
0276 On entry, HL points to a stream of bytes to be
0277 output. A OOH-byte terminates the message.
0273 F833 7E MOV A, M ;Get next message byte
0279 F834 B7 ORA A : Check if terminator
0280 F835 C8 RZ ;Yes, return to caller
0281 F836 4F MOV C, A ; Prepare for output
0282 F837 E5 PUSH H ;Save message pointer
0283 F338 CD86F8 CALL CONOUT ;Go to main console output routine
0284 F83B El POP H ^Recover message pointer
0285 F83C 23 INX H ;Move to next byte of message
0286 F83D C333F8 JMP Display$Message ;Loop until complete message output
0287
0288 ;
0289 EnteriCPM: ;This routine is entered either from the cold or warm
0290 ï boot code. It sets up the JMP instructions in the
0291 base page, and also sets the high-level disk driver's
0292 ; input/output address (also known as the DMA address).
0293 ;
0294 F840 3EC3 MV I A, JMP ;Get machine code for JMP
0295 F842 320000 STA 0000H ;Set up JMP at location 0000H
0296 F845 320500 STA 0005H ï and at location 0005H
0297
0298 F848 2103F6 LX I H,Warm*Boot*Entry ;Get BIOS vector address
0299 F84B 220100 SHLD 0 0 0 1H ;Put address at location 0001H
0300
0301 F84E 2106E8 LX I H,BDQS$Entry ;Get BDOS entry point address
0302 F851 220600 SHLD 6 :Put address at location 0005H
0303 •
0304 F854 018000 LX I B, 80H ;Set disk I/O address to default
0305 F857 CD65FB CALL SETDMA ;Use normal BIOS routine
0306
0307 F85A FB El ïEnsure interrupts are enabled
0308 F85B 3A0400 LDA Default$Disk ^Transfer current default disk to
0309 F85E 4F MOV C, A ï Console Command Processor
0310 F85F C300E0 JMP CCP$Entry ; Transfer to CCP
0311
0312
0313 ; Serial input/output drivers
0314
0315 î These drivers all look at the IOBYTE at location
0316 î 0003H, which will have been set by the cold boot routine.
0317 ; The IOBYTE can be modified by the STAT utility, by
0318 : BDOS calls, or by a program that puts a value directly
0319 ; into location 0003H.
0320
0321 î All of the routines make use of a subroutine, Select$Routine,
0322 ? that takes the least significant two bits of the A register
0323 ; and uses them to transfer control to one of the routines whose
0324 ; address immediately follows the call to Select$Routine.
0325 ? A second entry point, Select*Routine$21, uses bits
0326 ; 2 and 1 to do the same job — this saves some space
0327 ? by avoiding an unnecessary instruction.
0328
0329 0003 = IOBYTE EQU 0003H ;I/0 redirection byte
0330 ;
0331 ;
0332 ;
0333 CONST: Get console status
0334 Entered directly from the BIOS JMP vector
0335 and returns a parameter that reflects whether
0336 there is incoming data from the console.
0337
0338 A = 00H (zero flag set) if no data
0339 A = OFFH (zero flag clear) if data
0340
0341 CONST will be called by programs that
0342 make periodic checks to see if the computer
0343 operator has pressed any keys — for example,
0344 to interrupt an executing program.
0345
0346 F862 CD6AF8 CALL Get$Console$Status ^Return A = zero or nonzero
0347 jAccording to status, then convert

Figure 6-4. (Continued)

164 The CP/M Programmer’s Handbook

0348 to return parameter convention.
0349 F865 B7 ORA A Set flags to reflect status
0350 F866 C8 RZ If 0, no incoming data
0351 F867 3EFF MV I A,OFFH Otherwise return A = OFFH to
0352
0353

F869 C9 RET indicate incoming data

0354 Get*Console*Status:
0355 F86A 3A0300 LDA IOBYTE Get I/O redirection byte
0356 Console is selected according to
0357 bits 1,0 of IOBYTE
0358 F86D CDDCF8 CALL Select*Rout ine Select appropriate routine
0359 ; These routines return to the caller
0360 ; of Get*Console$Status.
0361 F870 F6F8 DW Telet ype*In$Status ;00 <- IOBYTE bits 1,0
0362 F872 FCF8 DW Terminal*In*Status ;01
0363 F874 02F9 DW Communieation*In*Status ; 10
0364
0365
0366
0367
0368

F876 08F9 DW DummyInStatus 5 11

0369 CONIN: ;Get console input character
0370 ; Entered directly from the BIOS JMP vector;
0371 ; returns the next data character from the
0372 ; Console in the A register. The most significant
0373 ; bit of the data character will be 0, except
0374 ; when ''reader" (communication port) input has
0375 ; been selected. In-this case, the full eight bits
0376 ; of data are returned to permit binary data to be
0377 ? received.
0378
0379 ^Normally, this routine will be called after
0380 ; a call to CONST has indicated that a data character
0381 ; is ready, but whenever the CCP or the BDOS can
0382 ; proceed no further until console input occurs.
0383 ; then CONIN will be called without a preceding
0384 ; CONST cal 1.
0385
0386 F878 3A0300 LDA

;
IOBYTE ;Get I/O redirection byte

0387 F87B CDDCF8 CALL Select*Routine ;Select correct CONIN routine
0388 ;These routines return directly
0389 ; to C O NI N■'s caller.
0390 F87E 20F9 DW Teletype$Input ?00 <- IOBYTE bits 1,0
0391 F880 26F9 DW Terminai*Input ; 01
0392 F882 2FF9 DW Communication*Input ; 10
0393
0394
0395
0396

F884 35F9 DW Dummy*Input ; 1 1 ^

0397 CONOUTs ; Console output
0398 ; Entered directly from BIOS JMP vector;
0399 ; outputs the data character in the C register
0400 7 to the appropriate device according to bits
0401 7 1,0 O f IOBYTE
0402
0403 F886 3A0300 LDA IOBYTE ;Get I/O redirection byte
0404 F889 CDDCF8 CALL Select*Routine ;Select correct CONOUT routine
0405 ;These routines return directly
0406 ; to CONO UT's caller.
0407 F88C 38F9 DW Telet ype*Output ;00 <- IOBYTE bits 1,0
0408 F88E 3EF9 DW Terminal$Output ;01
0409 F890 44F9 DW Cornmunicat ion*0utput ; 10
0410
0411
0412
0413

F392 4AF9 DW Dummy*Output ; 11

0414 LI ST ST: ;List device (output) status
0415 ; Entered directly from the BIOS JMP vector;
0416 ; returns in A list device status that
0417 ; indicates whether the list device can accept
0418 ; another output character. The IOBYTE^s bits
0419 ; 7,6 determine the physical device used.
0420
0421 ; A = 00H (zero flag set): cannot accept data
0422 ; A = OFFH (zero flag clear): can accept data
0423 "

Figure 6-4. (Continued)

Chapter 6: The Basic Input/ Output System 165

0424 ;Digital Research's documentation indicates
0425 ; that you can always return with A = OOH
0426 • ("Cannot accept data") if you do not wish to
0427 : implement the LISTST routine. This is NOT TRUE.
0428 jlf you do not wish to implement the LISTST routine
0429 ; always return with A = OFFH ("Can accept data").
0430 ?The LIST driver will then take care of things rather
0431 7 than potentially hanging the system.
0432 ■
0433 F894 CD9CF8 CALL Get*List*Status jReturn A = zero or nonzero
0434 ; according to status, then convert
0435 ; to return parameter convention
0436 F897 B7 ORA A ;Set flags to reflect status
0437 F898 C8 R2 ;If 0, cannot accept data for output
0438 F899 3EFF MV I A,OFFH jOtherwise return A = OFFH to
0439 F89B C9 RET ; indicate can accept data for output
0440
0441 Get*List$Status:
0442 F89C 3A0300 LDA IOBYTE ;Get I/O redirection byte
0443 F89F 07 RLC ;Move bits 7,6 to 1,0
0444 F8A0 07 RLC
0445 F8A1 CDDCF8 CALL Select$Routine ;Select appropriate routine
0446 ?These routines return directly
0447 ; to Get$List$Status's caller.
0448 F8A4 0BF9 DU Telet ypeOutStatus ;00 <- IOBYTE bits 1,0
0449 F8A6 11F9 DW Terminal$Out*Status ;01
0450 F8A3 17F9 DM Communication$Out*Status ;10
0451 F8AA 1DF9 DW Dummy$Out*Status ;11
0452
0453
0454
0455
0456 LIST: ;List output
0457 ;Entered directly from BIOS JMF' vector;
0458 ; outputs the data character in the C register
0459 ; to the appropriate device according to bits
0460 ; 7,6 of IOBYTE
0461
0462 F 8 AC 3A0300 LDA IOBYTE ;Get I/O redirection byte
0463 F8AF 07 RLC ;Move bits 7,6 to 1,0
0464 F8B0 07 RLC
0465 F8B1 CDDCF8 CALL Select$Routine ;Select correct LIST routine
0466 ;These routines return directly
0467 ; to LIST'S caller.
0468 F8B4 38F9 DW Teletype*0utput ;00 <- IOBYTE bits 1,0
0469 F8B6 3EF9 DW TerminaliOutput ;01
0470 F8B8 44F9 DW CommunicationiOutput ;10
0471 F8BA 4AF9 DW Dummy$Output ;11
0472
0473
0474
0475
0476 PUNCH: ;Punch output
0477 ;Entered directly from BIOS JMP vector;
0478 ; outputs the data character in the C register
0479 ; to the appropriate device according to bits
0480 ; 5,4 of IOBYTE
0481 •
0482 F8BC 3A0300 LDA IOBYTE ;Get I/O redirection byte
0483 F8BF OF RRC ;Move bits 5,4 to 2,1
0484 F8C0 OF RRC
0485 F8C1 OF RRC
0486 F8C2 CDDDF3 CALL Select$Routine$21 ;Select correct PUNCH routine
0487 ;These routines return directly
0488 ; to PUNCH'S caller.
0489 F8C5 38F9 DW Telet ype$0utput ;00 <- IOBYTE bits 1,0
0490 F8C7 4AF9 DW Dummy$Output ;01
0491 F8C9 44F9 DW Communication^Output ;10
0492 F8CB 3EF9 DW Terminal$Qutput ;11
0493
0494
0495
0496 READER: ;Reader input
0497 ;Entered directly from BIOS JMP vector;
0498 ; inputs the next data character from the
0499 ; reader device into the A register

Figure 6-4. (Continued)

166 The CP/M Programmer’s Handbook

0500
0501

The appropriate device is selected according
to bits 3,2 of I0BYTE.

0502
0503 F8CD 3A0300 LDA IOBYTE ;Get I/O redirection byte
0504 F8D0 OF RRC ;Move bits 3,2 to 2,1
0505
0506
0507

F8D1 CDDDF8 CALL Select*Rout ine*21* ;Select correct READER routine
?These routines return directly
; to READER'S caller.

0508 F8D4 38F9 DW Telet ype*Output ;00 <- IOBYTE bits 1,0
0509 F8D6 4AF9 DW Dummy*Output ;01
0510 F8D8 44F9 DU Communicat ion*0utput ; 10
0511
0512

F8DA 3EF9 DW Terminal*Output ; 11

0513
0514
0515
0516
0517
0518

0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568

OOEC
0001
0002

0001
0002
0001
0002

OOED
OOEC
0001
0002

OODF
OODE

Select*Rout ine: ^Transfers control to a specified address
; following its calling address according to
; the value of bits 1,0 in A.

0519 F8DC 07 RLC ;Shift select values into bits 2,1
0520
0521

; in order to do word arithmetic

0522 Select*Rout ine*21: ;Entry point to select routine selection
0523 ; are already in bits 2,1
0524 F8DD E606 AN I 0000*011OB ;Isolate just bits 2,1
0525 F8DF E3 XTHL ;HL -> first word of addresses after
0526 j CALL instruction
0527 F8E0 5F MOV E, A ?Add on selection value to address table
0528 F8E1 1600 MV I D, 0 ; base
0529 F8E3 19 DAD D ;HL -> selected routine address
0530 ;Get routine address into HL
0531 F8E4 7E MOV A, M ;LS byte
0532 F8E5 23 I NX H ;HL -> MS byte
0533 F8EÓ 66 MOV H, M ;MS byte
0534 F8E7 6F MOV L, A ;HL -> routine
0535 F8E8 E3 XTHL ;Top of stack -> routine
0536
0537
0538
0539

F8E9 C9 RET ;Transfer to selected routine

0540 ; Input/Output Equates
0541
0542 OOED * Teletype*Status*Port EQU OEDH

Telet ype*Data*Port
Teletype*Output*Ready
Teletype*Input*Ready

Terminal*Status*Port
Terminal*Data*Port
Terminal*Output*Ready
Terminal*Input*Ready

Communication*Status*Port EQU
Communicat ion*Data*Port
Communication*Output*Ready EQU
Communication*Input*Ready EQU

Communication*Baud*Mode EQU ODFH
Communication*Baud*Rate EQU ODEH

OECH
EQU
EQU

EQU
02H
EQU
EQU

OEDH
EQU OEC
00 00 *0 00IB
0000*001OB

0000 *0 00IB
0000*001OB

00 00*000IB
0000*001OB

;Status mask
jStatus mask

;Status mask
;Status mask

;Status mask
;Status mask

;Mode Select
;Rate Select

Serial device control tables

; In order to reduce the amount of executable code,
; the same low-level driver code is used for all serial ports.
» On entry to the low-level driver, HL points to the
; appropriate control table.

Teletype*Table:
0569 F8EA ED DB Teletype*Status*Port
0570 F8EB EC DB Teletype*Data*Port
0571 F8EC 01 DB Teletype*Qutput*Ready
0572 F8ED 02 DB Telet ype*Input*Ready
0573
0574 Terminal*Table:
0575 F8EE 01 DB Terminal*Status*Port

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 167

0576 F8EF 02 DB Terminal»Data»Port
0577 F8F0 01 DB Terminal»Output»Ready
0578 F8F1 02 DB Terminal»Input»Ready
0579
0580 Communieat ion»Table:
0581 F8F2 ED DB Communication»Status»Port
0582 F8F3 EC DB Communication*Data»Port
0583 F8F4 01 DB Communication»Output»Ready
0584 F8F5 02 DB Communication»Input»Ready
0585
0586
0587
0588
0589 The following routines are "called" by Select»Routine
0590 to perform the low-level input/output
0591
0592 Teletype»In»Status:
0593 F8F6 21EAF8 LXI H,Teletype»Table ;HL -> control table
0594 F8F9 C34BF9 JMP Input»Status ;Note use of JMP. Input»Status
0595 ; will execute the RETurn.
0596
0597 Terminal»In»Status:
0598 F8FC 21EEF8 LXI H,Terminal» T able jHL -> control table
0599 F8FF C34BF9 JMP Input»Status ;Note use of JMP. InputiStatus
0600 ; will execute the RETurn.
0601
0602 Communicat ion»In»Status:
0603 F902 21F2F8 LXI H,Communication»Table jHL -> control table
0604 F905 C34BF9 JMP Input»Status yNote use of JMP. Input»Status
0605 ; will execute the RETurn.
0606
0607 Dummy»In»Status: ;Dummy status, always returns
0608 F908 3EFF M V I A,OFFH j indicating incoming data is ready
0609 F90A C9 RET
0610
0611
0612 TeletypeiOut«Status:
0613 F90B 21EAF8 LXI H, Teletype»Table ;HL -> control table
0614 F90E C356F9 JMP Output»Status ;Note use of JMP. Output»Status
0615 ; will execute the RETurn.
0616
0617 Terminal»Out»Status:
0618 F 9 1 1 21EEF8 LXI H,Terminal»Table ;HL -> control table
0619 F914 C356F9 JMP Output»Status ;Note use of JMP. Output»Status
0620 ; will execute the RETurn.
0621
0622 Communicat ion»Out»Status:
0623 F917 21F2F8 LXI H,Communication»Table ;HL -> control table
0624 F91A C356F9 JMP Output»Status ;Note use of JMP. Output»Status
0625 i will execute the RETurn.
0626
0627 Dummy»0ut »St at us : ;Dummy status, always returns
0628 F91D 3EFF M V I A,OFFH ; indicating ready for output
0629 F91F C9 RET
0630
0631
0632 T e let ype»Input :
0633 F920 21EAF8 LXI H, Teletype»Table ;HL -> control table
0634 F923 C360F9 JMP Input»Data jNote use of JMP. Input»Data
0635 ; will execute the RETurn.
0636
0637 Terminal»Input:
0638 F926 21EEF8 LXI H,Terminal»Table ;HL -> control table
0639 ; will execute the RETurn.
0640 F929 CD60F9 CALL Input»Data ;*** Special case
0641 ;Input»Data will return here
0642 F92C E67F ANI 7FH ; so that parity bit can be set 0
0643 F92E C9 RET
0644
0645 Communicat ion»Input :
0646 F92F 21F2F8 LXI H,Communication»Table ;HL -> control table
0647 F932 C360F9 JMP Input»Data ;Note use of JMP. Input»Data
0648 ; will execute the RETurn.
0649
0650 Dummy»Input: ;Dummy input, always returns
0651 F935 3E1A M V I A,1AH ; indicating CP/M end of file

Figure 6-4. (Continued)

168 The CP/M Programmer’s Handbook

0652 F937 C9 RET
0653
0654
0655
0656
0657 TeletypefOutput s
0658 F938 21EAF8 LXI H,Teletype$Table jHL -> control table
0659 F93B C370F9 JMP Output$Data ;Note use of JMP. Output$Data
0660 ; will execute the RETurn.
0661
0662 Terminal$0utput:
0663 F93E 21EEF8 LXI H,Terminal*Table ;HL -> control table
0664 ? will execute the RETurn.
0665 F941 C370F9 JMP Output»Data iNote use of JMP. Qutput$Data
0666 ? will execute the RETurn.
0667
0668 Communication$0utput:
0669 F944 21F2F8 LXI H,Communication$Table ?HL -> control table
0670 F947 C370F9 JMP Output*Data ;Note use of JMP. Output$Data
0671 ? will execute the RETurn.
0672
0673 Du mmySOutput: ;Dummy output, always discards
0674 F94A 09 RET ; the output character
0675
0676
0677
0678
0679 These are the general purpose low-level drivers.
0680 On entry, HL points to the appropriate control table.
0681 For output, the C register contains the data to be output.
0682
0683 Input*Statuss jReturn with A = 00H if no incoming data,
0684 ; otherwise A = nonzero.
0685 F94B 7E MOV A,M ;Get status port
0686 F94C 3250F9 STA Input$Status$Port ;*** Self-modifyin4 code ****
0687 F94F DB DB IN ;Input to A from correct status port
0688
0689 Input$Status$Port:
0690 F950 00 DB 00 ;<- Set above
0691 F951 23 INX H ;Move HL to point to input data mask
0692 F952 23 INX H
0693 F953 23 INX H
0694 F954 A6 ANA M ;Mask with input status
0695 F955 C9 RET
0696 i
0697 5 _____
0698 Output$Status: ?Return with A = 00H if not ready for output
0699 ; otherwise A = nonzero.
0700 F956 7E MOV A,M jGet status port
0701 F957 325BF9 STA Output*Status$Port ?*** Self-modifying code ***
0702 F95A DB DB IN ; Input to A from correct status port
0703
0704 Output$Status$Port s
0705 F95B 00 DB 00 ;<- Set above
0706 F95C 23 INX H iMove HL to point to output data mask
0707 F95D 23 INX H
0708 F95E A6 ANA M ;Mask with output status
0709 F95F C9 RET
0710
0711 ;
0712 Input$Data: ^Return with next data character in A.
0713 ;Wait for status routine to indicate
0714 ; incoming data.
0715 F960 E5 PUSH H ;Save control table pointer
0716 F961 CD4BF9 CALL Input$Status jGet input status in zero flag
0717 F964 El POP H jRecover control table pointer
0718 F965 CA60F9 JZ InputfData ;Wait until incoming data
0719 F968 23 INX H jHL -> data port
0720 F969 7E MOV A, M ;Get data port
0721 F96A 326EF9 STA Input*Data$Port ?*#* Self-modifying code ***
0722 F96D DB DB IN ?Input to A from correct data port
0723
0724 Input$Data$Port:
0725 F96E 00 DB 0 ;<- Set above
0726 F96F C9 RET
0727

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 169

0728
0729
0730
0731
0732
0733
0734
0733
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803

Output$Data: »Output the data character in the C register.
»Wait for status routine to indicate device
» ready to accept another character

F970 E5 PUSH H »Save control table pointer
F971 CD56F9 CALL 0utput*Status »Get output status in zero flag
F974 El POP H »Recover control table pointer
F975 CA70F9 JZ OutputtData »Wait until ready for output
F978 23 INX H »HL -> output port
F979 7E MOV A, M »Get output port
F97A 327FF9 STA Out put $Dat a$Por t ;*** Self-modifying code
F97D 79 MOV A, C »Get data character to be output
F97E D3 DB OUT »Output data to correct port

0utput*Data$Port:
F97F 00 DB 0 » <- Set above
F980 C9 RET

;
»
» High level diskette drivers

» These drivers perform the following functions:

» SELDSK Select a specified disk and return the address of
the appropriate disk parameter header

SETTRK Set the track number for the next read or write
SETSEC Set the sector number for the next read or write
SETDMA Set the DMA (read/write) address for the next read or write.
SECTRAN Translate a logical sector number into a physical
HOME Set the track to 0 so that the next read or write will

be on Track 0

» In addition, the high-level drivers are responsible for making
» the 5 1/4" floppy diskettes that use a 512-byte sector appear
; to CP/M as though they used a 128-byte sector. They do this
» by using what is called blocking/deblocking code,
» described in more detail later in this listing,
? just prior to the code itself.

» Disk parameter tables

» As discussed in Chapter 3, these describe the physical
? characteristics of the disk drives* In this example BIOS,
» there are two types of disk drives» standard single-sided,
» single-density 8", and double-sided, double-density 5 1/4”
» diskettes.

» The standard 8" diskettes do not need to use the blocking/
? deblocking code, but the 5 1/4" drives do. Therefore an additional
» byte has been prefixed to the disk parameter block to
» tell the disk drivers each logical disk's physical
» diskette type, and whether or not it needs deblocking.

» Disk definition tables

; These consist of disk parameter headers, with one entry
» per logical disk driver, and disk parameter blocks, with
» either one parameter block per logical disk or the same
; parameter block for several logical disks.

Disk$Parameter$Headers: »Described in Chapter 3

»Logical Disk A: (5 1/4" Diskette)
F981 6BFB DW Floppy*5$Skewtable »5 1/4" skew table
F983 0000000000 DW 0,0,0 »Reserved for CP/M
F989 C1F9 DW Directory$Buffer
F98B 42FA DW Floppy5Parameter$Block
F98D 61FA DW DiskAWorkarea
F98F C1FA DW DiskAAllocationtVector

»
»Logical Disk B: (5 1/4" Diskette)

F991 6BFB DW Floppy5Skewtable »Shares same skew table as A;

Figure 6-4. (Continued)

170 The CP/M Programmer’s Handbook

0804 F993 0000000000 DW 0,0,0 ; Reserved for CP/M
0805 F999 C1F9 DW Directory$Buf fer ; Share same buffer as A:
0806 F99B 42FA DW Floppy5Parameter$Block ; Same DPB as A:
0807 F99D 81FA DW Disk«B*Workarea ;Private work area
0808 F99F D7FA DW Disk*B$AllocationfVector ;Private allocation vector
0809 ;
0810 jLogical Disk C: (8" Floppy)
0811 F9A1 B3FB DW Floppy3Skewtable ;3" skew table
0812 F9A3 OOOOOOOOOC DW 0,0,0 ;Reserved for CP/M
0813 F9A9 C1F9 DW Directory$Buf fer ;Share same buffer as A:
0814 F9AB 52FA DW Floppy$8*Parameter$Block
0815 F9AD A1FA DW Di sk*C*Workarea ;Private work area
0816 F9AF EDFA DW DiskCAllocation$Vector ^Private allocation vector
0817
0818 ;Logical Disk D: (8" Floppy)
0819 F9B1 6BFB DW Floppy5Skewtable ;Shares same skew table as A:
0820 F9B3 0000000000 DW 0,0,0 ; Reserved for CP/M
0821 F9B9 C1F9 DW Directory*Buffer ;Share same buffer as A:
0822 F9BB 52FA DW Floppy8Parameter$Block jSame DPB as Cs
0823 F9BD B1FA DW Di skDWorkarea i Private work area
0824 F9BF OCFB DW DiskDAllocation$Vector jPrivate allocation vector
0825
0826 ;
0827 ;
0828 F9C1 Directory$Buf fer : DS 128
0829
0830
0832
0833 ; Disk Types
0834
0835 0001 = Floppy$5 EQU 1 ;5 1/4" mini floppy
0836 0002 = FloppyfS EQU 2 ;8" floppy (SS SD)
0837
0838 ; Blocking/deblocking indi cat or
0839
0840 0080 = Need$Deblocking EGU 1000$0000B ;Sector size > 128 bytes
0841
0842
0843 ; Disk parameter blocks
0844
0845 • 5 1/4" mini floppy
0846
0847 jExtra byte prefixed to indicate
0848 ; disk type and blocking required
0849 FA41 81 DB Floppy$5 + Need$Deblocking
0850 Floppy5Parameter$Block:
0851 FA42 4800 DW 72 ?128-byte sectors per track
0852 FA44 04 DB 4 ;Block shift
0853 FA45 OF DB 15 ;Block mask
0854 FA46 01 DB 1 ;Extent mask
0855 FA47 AEOO DW 174 ^Maximum allocation block number
0856 FA49 7F00 DW 127 ;Number of directory entries - 1
0857 FA4B CO DB 1100$0000B ;Bit map for reserving 1 alloc, block
0858 FA4C 00 DB 0000$0000B j for file directory
0859 FA4D 2000 DW 32 ;Disk changed work area size
0860 FA4F 0100 DW 1 ;Number of tracks before directory
0861
0862
0863 ; Standard 8" Floppy
0864 ;Extra byte prefixed to DPB for
0865 ; this version of the BIOS
0866 FA51 02 DB Floppy$8 ;Indicates disk type and the fact
0867 ; that no deblocking is required
0868 Floppy*8$Parameter$Block!
0869 FA52 1AOO DW 26 ^Sectors per track
0870 FA54 03 DB 3 ;Block shift
0871 FA55 07 DB 7 ;Block mask
0872 FA56 00 DB 0 jExtent mask
0873 FA57 F200 DW 242 ;Maximum allocation block number
0874 FA59 3F00 DW 63 ;Number of directory entries - 1
0875 FA5B CO DB 1100*0000B ;Bit map for reserving 2 alloc, blocks
0876 FA5C 00 DB 0000$0000B ; for file directory
0877 FA5D 1000 DW 16 ;Disk changed work area size
0878 FA5F 0200 DW 2 ;Number of tracks before directory
0879 ;
0880

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 171

0881 Disk work areas
0882
0883 These are used by the BDOS to detect any unexpected
0884 change of diskettes. The BDOS will automatically set
0885 such a changed diskette to read-only status.
0886
0887 FA61 DiskAWorkarea: DS 32 ; A:
0888 FA81 Disk*B*Workarea: DS 32 ; B:
0889 FAA1 DiskCWorkarea: DS 16 ; C:
0890 FAB1 DiskDWorkarea: DS 16 ; D:
0891
0892
0893 Disk allocation vectors
0894
0895 These are used by the BDOS to maintain a bit map of
0896 which allocation blocks are used and which are free.
0897 One byte is used for eight allocation blocks, hence the
0898 expression of the form (allocation blocks/8)+l.
0899
0900 FAC1 Disk*A$Allocation*Vector DS (174/8)+l ; A:
0901 FAD7 DiskBAllocation$Vector DS (174/8)+l ï B:
0902
0903 FAED Disk*C*Allocat ion*Vector DS (242/8)+l ; C:
0904 FBOC DiskDAllocation$Vector DS (242/8)+l ï Ds
0905
0906
0907 0004 = Number*of$Logical$Disks EQU 4
0908
0909
0910 SELDSK: {Select disk in C
0911 ;C = 0 for drive A, 1 for B, etc.
0912 {Return the address of the appropriate
0913 i disk parameter header in HL, or 0000H
0914 { if the selected disk does not exist.
0915 •
0916 FB2B 210000 LX I H,0 {Assume an error
0917 FB2E 79 MOV A,C {Check if requested disk valid
0918 FB2F FE04 CPI NumberofLogical$Disks
0919 FB31 DO RNC {Return if > maximum number of disks
0920 i
0921 FB32 32EAFB STA Selected$Disk ;Save selected disk number
0922 {Set up to return DPH address
0923 FB35 6F MOV L,A ;Make disk into word value
0924 FB36 2600 MVI H, 0
0925 jCompute offset down disk parameter
0926 { header table by multiplying by
0927 { parameter header length (16 bytes)
0928 FB38 29 DAD H ; »2
0929 FB39 29 DAD H ; «4
0930 FB3A 29 DAD H ; »3
0931 FB3B 29 DAD H { *16
0932 FB3C 1181F9 LX I D,Disk$Parameter$Headers {Get base address
0933 FB3F 19 DAD D ;DE -> Appropriate DPH
0934 FB40 E5 PUSH H {Save DPH address
0935
0936 {Access disk parameter block
0937 i to extract special prefix byte that
0938 { identifies disk type and whether
0939 5 deblocking is required
0940 •
0941 FB41 110A00 LXI D , 10 ;Get DPB pointer offset in DPH
0942 FB44 19 DAD D {DE -> DPB address in DPH
0943 FB45 5E MOV E,M {Get DPB address in DE
0944 FB46 23 INX H
0945 FB47 56 MOV D, M
0946 FB48 EB XCH6 ;DE -> DPB
0947 FB49 2B DCX H ;DE -> prefix byte
0948 FB4A 7E MOV A,M ;Get prefix byte
0949 FB4B E60F ANI OFH {Isolate disk type
0950 FB4D 32FAFB STA Disk$Type {Save for use in low-level driver
0951 FB50 7E MOV A,M ;Get another copy of prefix byte
0952 FB51 E680 ANI Need$Deblocking {Isolate deblocking flag
0953 FB53 32F9FB STA Deblocking$Required {Save for use in low-level driver
0954 FB56 El POP H {Recover DPH pointer
0955 FB57 C9 RET
0956 *

Figure 6-4. (Continued)

172 The CP/M Programmer’s Handbook

0957
0958 Set logical track for next read or write
0959
0960 SETTRKs
0961 FB58 60 MOV H,B ;Selected track in BC on entry
0962 FB59 69 MOV L, C
0963 FB5A 22EBFB SHLD Selected$Track ;Save for low-level driver
0964 FB5D C9 RET
0965
0966
0967 Set logical sector for next read or write
0968
0969
0970 SETSEC: ;Logical sector in C on entry
0971 FB5E 79 MOV A, C
0972 FB5F 32EDFB STA Selected$Sector ;Save for low-level driver
0973 FB62 C9 RET
0974
0975
0976 Set disk DMA (input/output) address for next read or write
0977
0978 FB63 0000 DMASAddresss DW 0 5 DMA address
0979
0980 SETDMA: ;Address in BC on entry
0981 FB65 69 MOV L,C 5 Move to HL to save
0982 FB66 60 MOV H, B
0983 FB67 2263FB SHLD DMA$Address 5 Save for low-level driver
0984 FB6A C9 RET
0985
0986
0987 Translate logical sector number to physical
0988
0989 ! Sector translation tables
0990 These tables are indexed using the logical sector number.
0991 and contain the corresponding physical sector number.
0992
0993 Floppy5Skewtable: ;Each physical sector contains four
0994 ; 128-byte sectors.
0995 5 Physical 128b Logical 128b Physical 512-byte
0996 FB6B 00010203 DB 00,01,02,03 500,01,02,03 0)
0997 FB6F 10111213 DB 16,17,18,19 ;04,05,06,07 4 >
0998 FB73 20212223 DB 32,33,34,35 508,09,10,11 8)
0999 FB77 OCODOEOF DB 12,13,14,15 ;12,13,14,15 3) Head
1000 FB7B 1C1D1E1F DB 28,29,30,31 516,17,18,19 7) 0
1001 FB7F 08090A0B DB 08,09,10,11 ;20,21,22,23 2)
1002 FB83 18191A1B DB 24,25,26,27 524,25,26,27 6)
1003 FB87 04050607 DB 04,05,06,07 528,29,30,31 1)
1004 FB8B 14151617 DB 20,21,22,23 532,33,34,35 5)
1005 !!
1006 FB8F 24252627 DB 36,37,38,39 536,37,38,39 0 3
1007 FB93 34353637 DB 52,53,54,55 540,41,42,43 4 3
1008 FB97 44454647 DB 68,69,70,71 544,45,46,47 8 3
1009 FB9B 30313233 DB 48,49,50,51 548,49,50,51 3 3 Head
1010 FB9F 40414243 DB 64,65,66,67 552,53,54,55 7 3 1
1011 FBA3 2C2D2E2F DB 44,45,46,47 556,57,58,59 2 3
1012 FBA7 3C3D3E3F DB 60,61,62,63 560,61,62,63 6 3
1013 FBAB 28292A2B DB 40,41,42,43 564,65,66,67 1 3
1014 FBAF 38393A3B DB 56,57,58,59 568,69,70,71 5 3
1015 ¡!
1016 !;
1017 Floppy*S$Skewtable¡ ;Standard 8" Driver
1018 » 01,02,03,04,05,06,07,08,09,10 Logical sectors
1019 FBB3 01070D1319 DB 01,07,13,19,25,05,11,17,23,03 5Physical sectors
1020
1021 11,12,13,14,15,16,17,18,19,20 Logical sectors
1022 FBBD 09 0 F 150208 DB 09,15,21,02,08,14,20,26,06,12 sPhysical sectors
1023 ;
1024 ; 21,22,23,24,25,26 Logical sectors
1025 FBC7 1218040A10 DB 18,24,04,10,16,22 5Physical sectors
1026
1027
1028 SECTRANl: 5 Translate logical sector into physical
1029 50n entry, BC » logical sector number
1030 5 DE -> appropriate skew table
1031 5
1032 5 on exit, HL - physical sector number

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 173

1033 FBCD EB XCHG jHL -> skew table base
1034 FBCE 09 DAD B :Add on logical sector number
1035 FBCF 6E MOV L, M ?Get physical sector number
1036 FBD0 2600 MVI H, 0 ;Make into a 16-bit value
1037
1038

FBD2 C9 RET

1039
1040
1041 HOME: jHome the selected logical disk
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

iBefore doing this, a check must be made to see
; if the physical disk buffer has information
; that must be written out. This is indicated by
j a flag, Must$Write$Buffer, set in the
; deblocking code.

FBD3 3AE9FB LDA Must$Write$Buffer ;Check if physical buffer must
FBD6 B7 ORA A ; be written out to disk
FBD7 C2DDFB JNZ H0MENoWrite
FBDA 32E8FB STA DataInDi sk$Buf fer ;No, so indicate that buffer

? is now unoccupied.
H0MENoWr:ite:

FBDD 0E00 MVI C,0 ;Set to track 0 (logically —
FBDF CD58FB CALL SETTRK ; no actual disk operation o o
FBE2 C9 RET

1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087

1105
1106
1107
1108

Data written to or read from the mini-floppy drive is transferred
via a physical buffer that is actually 512 bytes long (it was
declared at the front of the BIOS and holds the "one-time"
initialization code used for the cold boot procedure).

The blocking/deblocking code attempts to minimize the amount
of actual disk 1/0 by storing the disk, track, and physical sector
currently residing in the Physical Buffer. If a read request is for
a 128-byte C-P/M "sector" that already is in the physical buffer,
then no disk access occurs.

2043
18
Physical$Sec t or $S i z e /123
CPMSecPer$Phys ical*Phys ical$SecPerTrack
CPMSecPer$Phys ical-1
2 ;L0G2(CPMSecPer$Physical)

These are the values handed over by the BD0S
when it calls the WRITE operation.

The allocated/unallocated indicates whether the
BD0S is set to write to an unallocated allocation
block (it only indicates this for the first
128-byte sector write) or to an allocation block
that has already been allocated to a file.

The BD0S also indicates if it is set to write to
the file directory.

1071 0800 = Allocat ion$Block$Si ze EQU
1072 0012 = PhysicalSecPer$Track EQU
1073 0004 = CPM$Sec*Per*Physical EQU
1074 0048 = CPM*Sec$Per*Track EQU
1075 0003 = Sector$Mask EQU
1076 0002 = Sect or $B i t $Sh i f t EQU

1088 0000 = Write$Allocated EQU 0
1089 0001 = Wr ite$Directory EQU 1
1090 0002 = WritefUna1 located EQU 2
1091
1092 FBE3 00 Write$Type: DB 0
1093
1094
1095
1096
1097
1093 FBE4 00

In$Buffer$Dk*Trk$Sec:

In$Buffer$Disk: DB 0
1099 FBE5 0000 In$Buffer$Track: DW 0
1100 FBE7 00 In$Buffer$Sector: DB 0
1101
1102 FBE8 00 DataInDisk$Buffer: DB 0
1103
1104 FBE9 00 MustfcWr i te$Buf fe r: DB 0

jContains the type of write
; indicated by the BDGS.

Variables for physical sector
currently in Disk$Buffer in memory
These are moved and compared
as a group, so do not alter
these lines.

When nonzero, the disk buffer has
data from the disk in it.

Nonzero when data has been
written into Disk$Buffer but
not yet written out to disk

Seleeted*Dk*Trk*Sec: jVariables for selected disk, track, and sector

Figure 6-4. (Continued)

174 The CP/M Programmer’s Handbook

1109
1110 FBEA 00 Selected$Disk: DB

(Selected by
0

SELDSK, SETTRK,and SETSEC)
; These are moved and

1111 FBEB 0000 SelectedfcTrack: DW 0 ; compared as a group so
1112 FBED 00 Selected$Sector: DB 0 ; do not alter order.
1113
1114 FBEE 00 Selected$Phys ical$Sector: DB 0 ^Selected physical sector
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

FBEF 00

FBFO 00

1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

1155
1156
1157
1158
1159
1160
1161
1162
1163

Selected$Disk$Type: DB 0

Selected$Disk$Deblock: DB 0

1126
1127
1128 FBF1 00

UnallocatedDkTrk$Sec:

Unallocated$Di sk: DB

; 1

0
1129 FBF2 0000 Unallocated$Track: DW 0
1130 FBF4 00 Unallocated$Sector: DB 0
1131
1132 FBF5 00 Unallocated$Record$Count: DB 0

D i s k *Er r or $F 1 a g :

;Flags used inside the deblocking code

Must$Preread$Sector: DB 0

from selected (CP/M) sector by
shifting it right the number of
of bits specified by
Sector$Bi t$Shift

Set by SELDSK to indicate either
8" or 5 1/4" floppy

Set by SELDSK to indicate whether
deblocking is required.

-s for writing to a previously
unallocated allocation block.

These are moved and compared
as a group so do not alter
these lines.

:Number of unallocated "records"
; in current previously unallocated
; allocation block.

Nonzero to indicate an error
that could not be recovered
by the disk drivers. BDGS will
output a "bad sector" message.

Nonzero if a physical sector must
be read into the disk buffer
either before a write to an
allocated block can occur, or
for a normal CP/M 128-byte
sector read

1149
1150

FBF8 00 Read$0perat ions DB 0 Nonzero when a CP/M 128-byte
sector is to be read

1151
1152

FBF9 00 Deblock ing$Required: DB 0 Nonzero when the selected disk
needs deblocking (set in SELDSK)

1153
1154

FBFA 00 Di sK$T ype: DB 0 Indicates 8" or 5 1/4" floppy
; selected (set in SELDSK).

Read in the 128-byte CP/M sector specified by previous calls
to select disk and to set track and sector. The sector will be read
into the address specified in the previous call to set DMA address.

If reading from a disk drive using sectors larger than 128 bytes,
deblocking code will be used to "unpack" a 128-byte sector from
the physical sector.

1164 READ:
1165 FBFB 3AF9FB LDA
1166 FBFE B7 ORA
1167 FBFF CA52FD JZ

Deblocking$Required
A
Read*No$Deblock

1168
1169
1170
1171
1172
1173

;Check if deblocking needed
;(flag was set in SELDSK call)
;No, use normal nondeblocked

1174 FC02 AF XRA A
1175 FC03 32F5FB STA Unallocated$Record$C
1176 FC06 3C INR A
1177 FC07 32F8FB STA Read*Qperat ion
1178
1179

FC0A 32F7FB STA Must$Preread$Sector

1180 FC0D 3E02 MV I A,Write$Unallocated
1181
1182

FC0F 32E3FB STA Wr ite*Type

1183 FC12 C36EFC JMP Perform$Read$Write

jThe deblocking algorithm used is such
? that a read operation can be viewed
T up until the actual data transfer as
; though it was the first write to an
; unallocated allocation block.

Set the record count to 0
; for first "write"
Indicate that it is really a read

that is to be performed
and force a preread of the sector
to get it into the disk buffer

Fake deblocking code into responding
as if this is the first write to an
unallocated allocation block.

Use common code to execute read

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 175

1184
1185 Write a 128-byte sector from the current DMA address to
1186 the previously selected disk, track, and sector.
1187
1183 On arrival here, the BDOS will have set register C to indicate
1189 whether this write operation is to an already allocated allocation
1190 block (which means a preread of the sector may be needed),
1191 to the directory (in which case the data will be written to the
1192 disk immediately), or to the first 128-byte sector of a previously
1193 unallocated allocation block (in which case no preread is required).
1194
1195 Only writes to the directory take place immediately. In all other
1196 cases, the data will be moved from the DMA address into the disk
1197 buffer , and only written out when circumstances force the
1198 transfer. The number of physical disk operations can therefore
1199 be reduced considerably.
1200
1201 WRITE:
1202 FC15 3AF9FB LDA Deblocking$Required ;¡Check if deblocking is required
1203 FC18 B7 ORA A ;! (flag set in SELDSK call)
1204
1205

FC19 CA4DFD JZ Write NoDe block

1206 FC1C AF XRA A ;¡Indicate that a write operation
1207 FC1D 32F8FB STA Read$0peration ;i is required (i.e. NOT a read)
1208 FC20 79 MOV A, C !¡Save the BDOS write type
1209 FC21 32E3FB STA Wr ite$Type
1210 FC24 FE02 CPI Write$Unallocated j¡Check i1f the first write to an
1211 îi unallocated allocation block
1212 FC26 C237FC JNZ Check$Unallocated$Block ;¡No, check if in the middle of
1213 s writing to an unallocated block
1214 ¡Yes, first write to unallocated
1215 allocation block — initialize
1216 variables associated with
1217 unallocated writes.
1218 FC29 3E10 MVI A,A1locat ion$Block$Size/128 Get number of 128-byte
1219 sectors and
1220
1221

FC2B 32F5FB STA Unallocated$Record$Count set up a count.

1222 FC2E 21EAFB LX I H,Selected$Dk*Trk*Sec Copy disk, track, and sector
1223 FC31 11F1FB LX I D,UnallocatedDkTrk$Sec into unallocated variables
1224
1225

FC34 CD35FD CALL MoveDkTrk*Sec

1226 Check if this is not the first write to an unallocated
1227 allocation block — if it is, the unallocated record count
1228 has just been set to the number of 128-byte sectors in the
1229 allocation block.
1230
1231 Check*Unallocated$Block:
1232 FC37 3AF5FB LDA Unallocated$Record$Count
1233 FC3A B7 ORA A
1234 FC3B CA66FC JZ Request$Preread No, this is a write to an
1235 allocated block
1236 Yes, this is a write to an
1237 unallocated block
1238 FC3E 3D DCR A Count down on number of 128-byte sectors
1239 left unwritten to in allocation block
1240
1241

FC3F 32F5FB STA Unallocated$Record$Count ? and store back new value.

1242 FC42 21EAFB LX I H,Selected*Dk*Trk*Sec ¡¡Check if the selected disk, track,
1243 FC45 11F1FB LX I D,UnallocatedDkTrk$Sec;p and sector are the same as for
1244 FC48 CD29FD CALL Compare$Dk*Trk$Sec ; those in the unallocated block.
1245 FC4B C266FC JNZ RequestiPreread pNo, a preread is required
1246 pYes, no preread is needed.
1247 p Now i s a convenient time to
1248 p update the current sector and see
1249 ? if the track also needs updating.
1250
1251 ;By design, CompareDkTrk$Sec
1252 P returns with
1253 ? DE -> !Unallocated$Sector
1254 FC4E EB XCHG ? HL -> 1UnallocatedfSector
1255 FC4F 34 I NR M ; Update Unallocated$Sector
1256 FC50 7E MOV A, M ; Check if sector now > maximum
1257 FC51 FE48 CPI CPM$Sec*Per$Track ? on a track
1258 FC53 DA5FFC JC No$Track$Change ;No (A < M)
1259 ; Yes,

Figure 6-4. (Continued)

176 The CP/M Programmer’s Handbook

1260 FC56 3600 MV I M, 0 Reset sector to 0
1261 FC58 2AF2FB LHLD Unallocated$Track ;Increase track by 1
1262 FC5B 23 INX H
1263 FC5C 22F2FB SHLD Unallocated$Track
1264
1265 No$Track$Change :
1266 Indicate to later code that
1267 no preread is needed.
1268 FC5F AF XRA A
1269 FC60 32F7FB STA Must$Preread$Sector ;Must$Preread$Sector=0
1270 FC63 C-36EFC JMP Per f orm$Read$Wr i t e
1271 ;
1272 Request$Preread:
1273 FC66 AF XRA A Indicate that this is not a write
1274 FC67 32F5FB STA Unallocated$Record$Count ? into an unallocated block.
1275 FC6A 3C I NR A
1276 FC6B 32F7FB STA Must$Preread$Sector ;Indicate that a preread of the
1277 physical sector is required.
1278
1279
1280 Perform$Read$Wri te: Common code to execute both reads and
1281 writes of 128-byte sectors.
1282 FC6E AF XRA A ;Assume that no disk errors will
1283 FC6F 32F6FB STA Disk$Error$Flag occur
1284
1285 FC72 3AEDFB LDA Selected$Sector Convert selected 128-byte sector
1286 FC75 IF RAR into physical sector by dividing by 4
1287 FC76 IF RAR
1288 FC77 E63F ANI 3FH Remove any unwanted bits
1289 FC79 32EEFB STA Selected$Physical$Sector
1290
1291 FC7C 21E8FB LX I H,Data$In*Disk$Buffer ;Check if disk buffer already has
1292 FC7F 7E MOV A, M data in it.
1293 FC80 3601 MVI M, 1 (Unconditionally indicate that
1294 ! the buffer now has data in it)
1295 FC82 B7 ORA A ¡Did it indeed have data in it?
1296 FC83 CAA3FC JZ Read$Sector$into$Buffer ;¡No, proceed to read a physical
1297 sector into the buffer.
1298
1299 The buffer does have a physical sector
1300 in it.
1301 Note: The disk, track, and PHYSICAL
1302 sector in the buffer need to be
1303 checked, hence the use of the
1304 CompareDkTrk subroutine.
1305
1306 FC86 11E4FB LX I D,In$Buffer$DkTrkSec j¡Check if sector in buffer is the
1307 FC89 21EAFB LX I H,SelectedDkTrk$Sec ;; same as that selected earlier
1308 FC8C CD24FD CALL CompareDkTrk ¡Compare ONLY disk and track
1309 FC8F C29CFC JNZ SectorNotIn*Buffer i¡No, it must be read in
1310
1311 FC92 3AE7FB LDA In$Buf fer$Sector ¡Get physical sector in buffer
1312 FC95 21EEFB LX I H,Selected$Physical$Sector
1313 FC9S BE CMP M ¡Check if correct physical sector
1314 FC99 CAB1FC JZ SectorInBuf fer ¡Yes, it is already in memory
1315
1316 SeetorNotIn$Buffer:
1317 ¡No, it will have to be read in
1318 ! over current contents of buffer
1319 FC9C 3AE9FB LDA Must$Write$Buffer ;¡Check if buffer has data in that
1320 FC9F B7 ORA A ! must be written out first
1321 FCAO C495FD CNZ Wr ite$Physical ¡Yes, write it out
1322 ;
1323 Read*Sector$into$Buffer :
1324 FCA3 CD11FD CALL Set$In*Buffer$Dk$Trk*Sec ;Set in buffer variables from
1325 selected disk, track, and sector
1326 to reflect which sector is in the
1327 buffer now
1328 FCA6 3AF7FB LDA Must$Preread$Sector In practice, the sector need only
1329 FCA9 B7 ORA A be physically read in if a preread
1330 is required
1331 FCAA C49AFD CNZ Read$Physical Yes, preread the sector
1332 FCAD AF XRA A Reset the flag to reflect buffer
1333 FCAE 32E9FB STA Must $W ri te$Buf fer contents.
1334
1335 SectorInBuffer : ; Selected sector on correct track and

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 177

1336 i disk is already in the buffer.
1337 ^Convert the selected CP/M (128-byte)
1338 ‘ sector into a relative address down
1339 ; the buffer.
1340 FCB1 3AEBFB LOA Selected*Sector ¡?Get selected sector number
1341 FCB4 E603 AN I SectorfMask ¡;Mask off only the least significant bits
1342 FCB6 6F MOV L, A ifMultiply by 128 by shifting 16-bit value
1343 FCB7 2600 MV I H, 0 !t left 7 bits
1344 FCB9 29 BAB H !;* 2
1345 FCBA 29 BAB H ;:» 4
1346 FCBB 29 BAB H ir* 8
1347 FCBC 29 BAB H !!* 16
1348 FCBD 29 BAB H !; * 32
1349 FCBE 29 DAB H ;!* 64
1350 FCBF 29 DAD H i!* 128
1351 }
1352 FCC-0 1133F6 LX I D,Disk$Buf fer Get base address of disk buffer
1353 FCC3 19 DAB B Add on sector number # 128
1354 HL -> 128-byte sector number start
1355 address in disk buffer
1356 FCC4 EB XCHG BE -> sector in disk buffer
1357 FCC5 2AÓ3FB LHLB BMA*Address Get BMA address set in SETBMA call
1358 FCC8 EB XCHG Assume a read operation, so
1359 BE -> BMA address
1360 HL -> sector in disk buffer
1361 FCC9 0E10 MV I C , 128/8 Because of the faster method used
1362 to move data in and out of the
1363 disk buffer, (eight bytes moved per
1364 loop iteration) the count need only
1365 be l/8th of normal.
1366 At this point -
1367 C = loop count
1368 BE -> BMA address
1369 HL -> sector in disk buffer
1370 FCCB 3AF8FB LBA Read$Operat ion Betermine whether data is to be moved
1371 FCCE B7 ORA A out of the buffer (read) or into the
1372 FCCF C2B7FC JNZ Buf fer$Move buffer (write)
1373 Writing into buffer
1374 ; (A must be 0 get here)
1375 FCD2 3C I NR A ;Set flag to forge a write
1376 FCD3 32E9FB STA Must$Write$Buffer ; of the disk buffer later on.
1377 FCD6 EB XCHG ;Make BE -> sector in disk buffer
1378 ; HL -> BMA address
1379
1380
1381 BufferíMove: ¡;The folowing foove loop moves eight bytes
1382 ! at a time from (HL) to (BE), C contains
1383 : the loop count.
1384 FCD7 7E MOV A, M ¡¡Get byte from source
1385 FCD8 12 STAX B i:Put into destination
1386 FCD9 13 INX B ;¡Update pointers
1387 FCBA 23 INX H
1388 FCDB 7E MOV A, M ;¡Get byte from source
1389 FCBC 12 STAX B ;¡Put into destination
1390 FCBB 13 INX B ;¡Update pointers
1391 FCBE 23 INX H
1392 FCBF 7E MOV A,M ;Get byte from source
1393 FCEO 12 STAX B ;¡Put into destination
1394 FCE1 13 INX B ; Update pointers
1395 FCE2 23 INX H
1396 FCE3 7E MOV A, M !¡Get byte from source
1397 FCE4 12 STAX B j¡Put into destination
1398 FCE5 13 INX B ;¡Update pointers
1399 FCE6 23 INX H
1400 FCE7 7E MOV A, M ;¡Get byte from source
1401 FCE8 12 STAX B ;¡Put into destination
1402 FCE9 13 INX B ;Update pointers
1403 FCEA 23 INX H
1404 FCEB 7E MOV A, M ;Get byte from source
1405 FCEC 12 STAX B ;¡Put into destination
1406 FCEB 13 INX B ;Update pointers
1407 FCEE 23 INX H
1408 FCEF 7E MOV A, M ;Get byte from source
1409 FCFO 12 STAX B ;Put into destination
1410 F C F 1 13 INX B ;Update pointers

Figure 6-4. (Continued)

178 The CP/M Programmer’s Handbook

1411 FCF2 23 INX H
1412 FCF3 7E MOV A, M ;Get byte from source
1413 FCF4 12 STAX D ;Put into destination
1414 FCF5 13 INX D ;Update pointers
1415 FCF6 23 INX H
1416
1417 FCF7 OD DCR C ;Count down on loop counter
1418 FCF8 C2D7FC JNZ Buffer$Move ;Repeat until CP/M sector moved
1419
1420 FCFB 3AE3FB LDA Write$Type ;If write to directory, write out
1421 FCFE FE01 CPI Write$Directory ï buffer immediately
1422 FDOO 3AF6FB LDA Disk$Error$Flag ;Get error flag in case delayed write or read
1423 FD03 CO RNZ Return if delayed write or read
1424
1425 FD04 B7 ORA A ;Check if any disk errors have occurred
1426 FD05 CO RNZ Yes, abandon attempt to write to directory
1427
1428 FD06 AF XRA A ;Clear flag that indicates buffer must be
1429 FD07 32E9FB STA MustfcWrite$Buffer ; written out
1430 FDOA CD95FD CALL Write$Physical ;Write buffer out to physical sector'
1431 FOOD 3AF6FB LDA Disk$Error$Flag ;Return error flag to caller
1432 FD10 C9 RET
1433 ;
1434
1435 Set*In*Buffer$Dk*Trk$Sec: ;Indicate selected disk, track, and
1436 ; sector now residing in buffer
1437 F D 1 1 3AEAFB LDA Selected$Di sk
1438 FD14 32E4FB STA In$Buffer$Disk
1439
1440 FD17 2AEBFB LHLD SelectediTrack
1441 FD1A 22E5FB SHLD In$Buf fer$Track
1442
1443 FD1D 3AEEFB LDA SelectediPhys icalfcSector
1444 FD20 32E7FB STA In$Buffer$Sector
1445
1446 FD23 C9 RET
1447
1448 CompareDkTrk: Compares just the disk and track
1449 pointed to by DE and HL
1450 FD24 0E03 MV I C, 3 Disk (1), track (2)
1451 FD26 C32BFD JMP CompareDkTrkSecLoop ;Use common code
1452
1453 CompareDkTrk$Sec: ;Compares the disk, track, and sector
1454 variables pointed to by DE and HL
1455 FD29 0E04 MV I C, 4 ;Disk (1), track (2), and sector (1)
1456 Comp are$Dk $Tr k $Se c$Lcop :
1457 FD2B 1A LDAX D ;Get comparitor
1458 FD2C BE CMP M ;Compare with comparand
1459 FD2D CO RNZ Abandon comparison if inequality found
1460 FD2E 13 INX D ;Update comparitor pointer
1461 FD2F 23 INX H ;Update comparand pointer
1462 FD30 OD DCR C ;Count down on loop count
1463 FD31 C8 RZ Return (with zero flag set)
1464 FD32 C32BFD JMP CompareDkTrkSecLoop
1465
1466
1467 MoveDkTrk$Sec: ;Moves the disk, track,and sector
1468 variables pointed at by HL to
1469 those pointed at by DE
1470 FD35 0E04 MV I C, 4 ;Disk (1), track (2), and sector (1)
1471 MoveDkTrkSecLoop ;
1472 FD37 7E MOV A, M ;Get source byte
1473 FD38 12 STAX D ;¡Store in destination
1474 FD39 13 INX D ;¡Update pointers
1475 FD3A 23 INX H
1476 FD3B OD DCR C !¡Count down on byte count
1477 FD3C C8 RZ ¡Return if all bytes moved
1478 FD3D C337FD JMP MoveDkTr kSecLoc«p
1479
1480
1482
1483 There are two "smart" disk controllers on this system, one
1484 for the 8" floppy diskette drives, and one for the 5 1/4"
1485 m in i-diskette drives.
1486
1487 The controllers are "hard-wired" to monitor certain locations

Figure 6-4. (Continued)

Chapter 6: The Basic Input/Output System 179

1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563

■ in memory to detect when they are to perform some disk
; operation. The 8 “ controller monitors location 0040H, and
? the 5 1/4" controller monitors location 0045H. These are
? called their disk control bytes. If the most significant
; bit of a disk control byte is set, the controller will
• look at the word following the respective control bytes.
j This word must contain the address of a valid disk control
; table that specifies the exact disk operation to be performed.

■ Once the operation has been completed, the controller resets
j its disk control byte to 00H. This indicates completion
; to the disk driver code.

; The controller also sets a return code in a disk status block —
; both controllers use the SAME location for this; 0043H.
; If the first byte of this status block is less than 80H, then
; a disk error has occurred. For this simple BIOS, no further details
; of the status settings are relevant. Note that the disk controller
? has built-in retry logic — reads and writes are attempted ten
; times before the controller returns an error.

; The disk control table layout is shown below. Note that the
; controllers have the capability for control tables to be
; chained together so that a sequence of disk operations can
• be initiated. In this BIOS this feature is not used. However,
; the controller requires that the chain pointers in the
; disk control tables be pointed back to the main control.bytes
; in order to indicate the end of the chain.

0040 = Di sk$Control$8 EQU 40H ;8" control byte
0041 = Command$Block$8 EQLI 41H jControl table pointer

0043 = Di sk$Status$Block EQU 43H ;8" AND 5 1/4" status block

0045 = Di sk$Control$5 EQU 45H ;5 1/4" control byte
0046 = Command$Block$5 EQU 46H jControl table pointer

Floppy Disk Control Tables

FD40 00 Floppy$Command: DB <5 ;Command
0001 = Floppy$Read$Code EQU 01H
0002 as Floppy$Wri te$Code EQU 02H
FD41 00 Floppy$Un i t : DB 0 ;Unit (drive) number = 0 or 1
FD42 00 Floppy$Head: DB (!> ;Head number = 0 or 1
FD43 00 Floppy$Track: DB 0 ;Track number
FD44 00 Floppy*Sector: DB 0 ;Sector number
FD45 0000 Floppy*Byte*Count; DW 0 ^Number of bytes to read/write
FD47 0000 Floppy *DMA$Ad dress: DW 0 yTransfer address
FD49 0000 Floppy$Next*Status$Block: DW 0 ;Pointer to next status block

; if commands are chained.
FD4B 0000 Floppy*Next*Control$Location: DW 0 jPointer to next control byte

;
; if commands are chained.

?
Wr i te*No$Deblock : Write contents of disk buffer to

correct sector.
FD4D 3E02 M V I A,Floppy*Write*Code Get write function code
FD4F C354FD JMP Common*No$Deblock Go to common code

Read*No$Deb1o c k : Read previously selected sector
into disk buffer.

FD52 3E01 M V I A,Floppy$Read$Code Get read function code
CommonNoDeblock:

FD54 3240FD STA Floppy$Command ?Set command function code
;Set up nondeblocked command table

FD57 218000 LX I H, 128 jBytes per sector
FD5A 2245FD SHLD Floppy$Byte*Count
FD5D AF XRA A ;8" floppy only has head 0
FD5E 3242FD STA Floppy$Head

*
FD61 3AEAFB LDA Selected$Disk ;8" Floppy controller only has information

; on units 0 and 1 so Selected$Disk must
; be converted

FD64 E601 AN I 01H »Turn into 0 or 1
FD66 3241FD STA Floppy$Un i t ?Set unit number

Figure 6-4. (Continued)

180 The CP/M Programmer’s Handbook

1564 »
1565 FD69 3AEBFB LDA Selected*Track
1566 FD6C 3243FD STA Floppy$Track »Set track number
1567 *
1568 FD6F 3AEDFB LDA Selected*Sector
1569 FD72 3244FD STA Floppy$Sector »Set sector number
1570 ;
1571 FD75 2A63FB LHLD DMAfcAddress »Transfer directly between DMA address
1572 FD78 2247FD SHLD Floppy*DMA*Address »and 8" controller.
1573
1574 »The disk controller can accept chained
1575 ; disk control tables, but in this case,
1576 » they are not used, so the "Next" pointers
1577 » must be pointed back at the initial
1578 » control bytes in the base page.
1579 FD7B 214300 LX I H,Disk$Status*Block »Point next status back at
1580 FD7E 2249FD SHLD Floppy$Next$Status$Block ? main status block
1581 »
1582 FD81 214000 LXI H,Disk*Control*8 »Point next control byte
1583 FD84 224BFD SHLD Floppy*Next$Control$Location » back at main control byte
1584 »
1585 FD87 2140FD LXI H,Floppy$Command »Point controller at control table
1586 FD8A 224100 SHLD Comma n d $ B 1oc k $8
1587
1588 FD8D 214000 LXI H,Disk*Control*8 »Activate controller to perform
1589 FD90 3680 MV I M, 80H ; operation.
1590 FD92 C3F7FD JMP WaitForDisk$Complete
1591
1592
1593 ;
1594
1595 Wr i te$Phys ical: Write contents of disk buffer to
1596 correct sector.
1597 FD95 3E02 MV I A,Floppy$Wr ite$Code Get write function code
1598 FD97 C39CFD JMP Common$Ph y s i c a 1 Go to common code
1599 Read$Physical: Read previously selected sector
1600 into disk buffer.
1601 FD9A 3E01 MV I A,Floppy$Read$Code Get read function code
1602
1603 Common$Physical !
1604 FD9C 3240FD STA Floppy$Command ;Set command table
1605
1606
1607 FD9F 3AFAFB LDA Disk$Type (Get disk type (set in SELDSK)
1608 FDA2 FE01 CPI Floppy$5 ¡Confirm it is a 5 1/4" Floppy
1609 FDA4 CAADFD JZ Correct$Disk$Type »Yes
1610 FDA7 3E01 MV I A, 1 »No, indicate disk error
1611 FDA9 32F6FB STA Disk$Error$Flag
1612 FDAC C9 RET
1613 Correet$Disk*Type: Set up disk control table
1614
1615 FDAD 3AE4FB LDA In*Buffer$Disk Convert disk number to 0 or 1
1616 FDBO E601 AN I 1 for disk controller
1617 FDB2 3241FD STA F loppy»Unit
1618
1619 FDB5 2AE5FB LHLD In*Buffer$Track Set up track number
1620 FOBS 7D MOV A, L Note: This is single byte value
1621 FDB9 3243FD STA Floppy$Track for the controller.
1622
1623 The sector must be converted into a
1624 head number and sector number.
1625 Sectors 0 - 8 are head 0, 9 - 1 7
1626 !i are head 1
1627 FDBC 0600 MV I B, 0 »Assume head 0
1628 FDBE 3AE7FB LDA In*Buffer$Sector »Get physical sector number
1629 FDC1 4F MOV C, A ¡Save copy in case it is head 0
1630 FDC2 FE09 CPI 9 »Check if < 9
1631 FDC4 DACBFD JC Head*0 »Yes it is < 9
1632 FDC7 D609 SU I 9 ¡No, modify sector number back
1633 ! in the 0 - 8 range.
1634 FDC9 4F MOV C, A »Put sector in B
1635 FDCA 04 I NR B ¡Set to head 1
1636 HeadfO:
1637 FDCB 78 ^ MOV A, B ¡Set head number
1638 FDCC 3242FD STA Floppy$Head
1639 FDCF 79 MOV A, C ¡Set sector number

Figure 6-4. (Continued)

Chapter 6: The Basic Input/ Output System 181

1640 FDD0 3C I NR A » (physical sectors start at 1)
1641 FDD1 3244FD STA Floppy*Sector
1642
1643 FDD4 210002 LX I H,Physical$Sector$Size »Set byte count
1644 FDD7 2245FD SHLD Floppy$Byte$Count
1645
1646 FDDA 2133F6 LX I H,Disk$Buffer »Set transfer address to be
1647 FDDD 2247FD SHLD Floppy$DMA*Address ; disk buffer
1648
1649 ;As only one control table is in
1650 ; use, close the status and busy
1651 » chain pointers back to the
1652 ; main control bytes.
1653 FDE0 214300 LX I H,Disk$Status$Block
1654 FDE3 2249FD SHLD Floppy*Next$Status$Block
1655 FDE6 214500 LX I H,Disk$Control$5
1656 FDE9 224BFD SHLD Floppy$Next$Control$Locat ion
1657
1658 FDEC 2140FD LXI H,Floppy$Command »Set up command block pointer
1659 FDEF 224600 SHLD Command$Block$5
1660
1661 FDF2 214500 LXI H,Disk*Control$5 »Activate 5 1/4" disk controller
1662 FDF5 3680 MV I M,80H
1663
1664 WaitForDisk$Complete: »Wait until Disk Status Block indicates
1665 » operation complete, then check
1666 ? if any errors occurred.
1667 »On entry HL -> disk control byte
1668 FDF7 7E MOV A, M »Get control byte
1669 FDF8 B7 ORA A
1670 FDF9 C2F7FD JNZ WaitForDisk$Complete »Operation still not yet done
1671 ■
1672 FDFC 3A4300 LDA Disk*Status*Block »Complete — now check status
1673 FDFF FE80 CPI 80H »Check if any errors occurred
1674 FE01 DA09FE JC Disk$Error »Yes
1675 FE04 AF XRA A ; No
1676 FE05 32F6FB STA Di sk$Error$Flag »Clear error flag
1677 FE08 C9 RET
1678 Disk$Error
1679 FE09 3E01 MV I A, 1 »Set disk-error flag nonzero
1680 FE0B 32F6FB STA Disk$Error$Flag
1681 FE0E C9 RET
1682
1683
1684
1685 Disk control table images for iwarm boot
1686
1687 Boot$Control$Part$l:
1688 FE0F 01 DB 1 »Read function
1689 FE10 00 DB 0 »Unit (drive) number
1690 FEI 1 00 DB 0 »Head number
1691 FE12 00 DB 0 »Track number
1692 FE13 02 DB 2 »Starting sector number
1693 FE14 0010 DW 8*512 »Number of bytes to read
1694 FE16 00E0 DW CCP*Entry »Read into this address
1695 FE18 4300 DW Di sk$Status$Block »Pointer to next status block
1696 FE1A 4500 DW Disk$Control$5 »Pointer to next control table
1697 Boo t $Con t r o 1$Par 12:
1698 FE1C 01 DB 1 »Read function
1699 FE1D 00 DB 0 »Unit (drive) number
1700 FEIE 01 DB 1 »Head number
1701 FE1F 00 DB 0 »Track number
1702 FE20 01 DB 1 »Starting sector number
1703 FE21 0006 DW 3*512 »Number of bytes to read
1704 FE23 OOFO DW CCP$Entry + (8*512) »Read into this address
1705 FE25 4300 DW Disk*Status*Block »Pointer to next status block
1706 FE27 4500 DW Disk $Con t r o 1$5 »Pointer to next control table
1707
1708
1709
1710
1711 WB O O T : »Warm boot entry
1712 ;0n warm boot, the CCP and BD0S must be reloaded
1713 ; into memory . In this BIOS, only the 5 1/4"
1714 ; diskettes will be used. Therefore this code

Figure 6-4. (Continued)

182 The CP/M Programmer’s Handbook

1715 * is hardware specific to the controller. Two
1716 ; prefabricated control tables are used.
1717 FE29 318000 LX I S P ,80H
1718 FE2C H O F F E LX I D,Boot$ControlfPart1 !¡Execute first read of warm boot
1719 FE2F CB3BFE CALL Warm$Boot$Read ;¡Load drive 0, track 0,
1720 ! head 0, sectors 2 to 8
1721 FE32 111CFE LX I D,Boot$Control$Part2 !¡Execute second read
1722 FE35 CD3BFE CALL Warm$Boot$Read !¡Load drive 0, track 0,
1723 i head 1, sectors 1 - 3
1724 FE38 C340F8 JMP Enter*CPM ;¡Set up base page and enter CCP
1725
1726 Warm$Boot$Read: ;¡On entry, DE -> control table image
1727 ¡This control table is moved into
1728 the main disk control table and
1729 i then the controller activated.
1730 FE3B 2140FD LX I H,Floppy$Command i¡HL -> actual control table
1731 FE3E 224600 SHLD Command$Block$5 ;¡Tell the controller its address
1782 ¡Move the control table image
1733 into the control table itself
1734 F E 4 1 OEOD MV I C, 13 ;¡Set byte count
1735 WarmiBoot $M ov e:
1736 FE43 1A LDAX D ;¡Get image byte
1737 FE44 77 MOV M, A ;¡Store into actual control table
1738 FE45 23 INX H ;¡Update pointers
1739 FE46 13 INX D
1740 FE47 OD OCR C ;Count down on byte count
1741 FE48 C243FE JNZ Warm$Boot$Move !¡Continue until all bytes moved
1742
1743 FE4B 214500 LX I H,Disk$Control$5 ;¡Activate controller
1744 FE4E 3680 MV I M, 80H
1745 WaitForBoot$Complete:
1746 FE50 7E MOV A, M !¡Get status byte
1747 FE51 B7 ORA A ;¡Check if complete
1748 FE52 C250FE JNZ Wait$For*Boot*Complete ;i No
1749 ¡Yes, check for errors
1750 FE55 3A4300 LDA Di sk$Status$Block
1751 FE58 FE80 CPI 80H
1752 FE5A DA5EFE JC Warm$Boot$Error ;¡Yes, an error occurred
1753 FE5D C9 RET
1754
1755 Warm$Boot$Error :
1756 FE5E 2167FE LX I H,Warm$Boot$Error$Message
1757 FE61 CD33F8 CALL Di splay$Message
1758 FE64 C329FE JMP WBOOT ;Restart warm boot
1759
1760 Warm$Boot$Error$Message:
1761 FE67 0D0A576172 DB CR,.LF, 'Warm Boot Error - retry ing CR, LF, 0
1762 ;
1763
1764 FE89 END ; Of simple BIOS listing

Figure 6-4. (Continued)

The Major Steps
Building Your First System
Using SYSGEN to Write

CP/M to Disk
Using DDT to Build the

CP/M Memory Image
The CP/M Bootstrap Loader
Using MOVCPM to Relocate the

CCP and BDOS
Putting It All Together

Building a New
CP/M System

This chapter describes how to build a version of CP/M with your own BIOS
built into it. It also shows you how to put CP/M onto a floppy disk and how to
write a bootstrap loader to bring CP/M into memory.

The manufacturer of your computer system plays a significant role in building
a new CP/M system. Several of CP/M’s utility programs may be modified by
manufacturers to adapt them to individual computer systems. Unfortunately, not
all manufacturers customize these programs. You should therefore invest some
time in studying the documentation provided with your system to see what and
how much customizing may have already been done. You should also assemble
and print out listings of all assembly language source files from your CP/M r elease
diskette.

It is impossible to predict the details of customization and special procedures
that the manufacturer may have installed on your particular system. Therefore,
this chapter describes first the overall mechanism of building a CP/M system, and

183

184 The CP/M Programmer’s Handbook

second the details of building a CP/M system around the example BIOS shown in
the previous chapter as Figure 6-4.

The Major Steps

Building a new CP/M system consists of the following major steps:
• Create a new or modified BIOS with the appropriate device drivers in it.

Assemble this so that it will execute at the top end of memory (by using an
origin statement (ORG) to set the location counter).

• Create new versions of the CCP and BDOS with all addresses in the
instructions changed so that they will be correctly located in memory just
below the new BIOS. Digital Research provides a special utility called
MOVCPM to do this.

• Create or modify a CP/M bootstrap loader that will be loaded by the
firmware that executes when you first switch on your computer (or press the
RESET button). Normally, the CP/M bootstrap loader executes in the low-
address end of memory. The exact address and the details of any hardware
initialization that it must perform will depend entirely on your particular
computer system.

• Using Digital Research standard utility programs, bring the bootstrap loader,
the CCP and BDOS, and the BIOS together in the low part of memory. Then
write this new version of CP/M onto a disk in the appropriate places. Again,
depending on the design of your computer system, you may be able to use the
standard utility program, SYSGEN, to write the entire CP/M image onto
disk. Otherwise you may have to write a special program to do this.

When CP/M is already running on your computer system and you want to add
new features to the BIOS, all you need to do is change the BIOS and rebuild the
system. The CCP and BDOS will need to be moved down in memory if the changes
expand the BIOS significantly. If this happens, you will have to make minor
changes in the bootstrap loader so that it reads the new CP/M image into memory
at a lower address and transfers control to the correct location (the first instruction
of the BIOS jump vector).

Build ing Your First System

The first time that you build CP/M, it is a good idea to make no changes to the
BIOS at all. Simply reassemble the BIOS source code and proceed with the system
build. Then, if the new system does not run, you know that it must be something in
the procedure you used rather than any new features or modification to the BIOS

Chapter 7: Building a New CP/M System 185

source code. Changes in the BIOS could easily obscure any problems you have
with the build procedure itself.

The Ingredients

To build CP/M, you will need the following files and utility programs:
• The assembly language source code for your BIOS. Check your CP/M

release diskette for a file with a name like CBIOS. ASM (Customized Basic
Input/Output System). Some manufacturers do not supply you with the
source code for their BIOS; it may be sold separately or not released at all. If
you cannot get hold of the source code, the only way that you can add new
features to the BIOS is by writing the entire BIOS from scratch.

• The source code for the CP/M bootstrap loader. This too may be on the
release diskette or available separately from your computer’s manufacturer.

• The Digital Research assembler, which converts source code into machine
language in hexadecimal form. This program, called ASM.COM, will be on
your CP/M release diskette. Equivalent assemblers, such as Digital Research’s
macro-assemblers MAC and RMAC or Microsoft’s M80, can also be used.

• The Digital Research utility called MOVCPM, which prepares a memory
image of the CCP and BDOS with all addresses adjusted to the right values.

• The Digital Research debugging utility, called DDT (Dynamic Debugging
Tool), or the more enhanced version for the Z80 CPU chip, ZSID (Z80
Symbolic Interactive Debugger). DDT is used to read in the various pro
gram files and piece together a memory image of the CP/M system.

• The Digital Research utility program SYSGEN. This writes the composite
memory image of the bootstrap, CCP, BDOS, and BIOS onto the disk.
SYSGEN was designed to work on floppy disk systems. If your computer
uses a hard disk, you may have a program with a name like PUTCPM or
WRITECPM that performs the same function.

The Ultimate Goal

In Figure 6-4, lines 0044 to 0065, you can see the equates that define the base
addresses for the CCP, the BDOS, and the BIOS. Figure 7-1 shows how the top of
memory will look when this version of CP/M has been loaded into memory.

Life would be simple if you could build this image in memory at the addresses
shown and write the image out to disk. Building this image, however, would
probably overwrite the version of CP/M that you were operating since it too lives
at the top of memory. Therefore, the goal is to create a replica of this image lower
down in memory, but with all the instruction addresses set to execute at the
addresses shown in Figure 7-1.

186 The CP/M Programmer’s Handbook

BIOS

OFFFFH (Top of 64K RAM)

BDOS

OF400H

CCP

^ OECOOH

* * ' OE400H

Figure 7-1. Memory layout of CP/M

Using SYSGEN to W rite CP/M to Disk

The SYSGEN utility writes a memory image onto a specified logical disk. It
can use a memory image that you arrange to be in memory before you invoke
SYSGEN, or you can direct SYSGEN to read in a disk file that contains the image.
You can also use S YSGEN to transport an existing CP/M system from one diskette
to another by directing it to load the CP/M image from one diskette into memory
and then to write that image out to another diskette.

Check the documentation supplied by your computer’s manufacturer to make
sure that you can use SYSGEN on your system. SYSGEN, as released by Digital
Research, is constructed to run on 8-inch, single-sided, single-density diskettes. If
your system does not use these standard diskettes, SYSGEN must be customized
to your disk system.

When SYSGEN loads a CP/M image into memory, it will place the bootstrap,
CCP, BDOS, and BIOS at the predetermined addresses shown in Figure 7-2,
regardless of where this CP/M originated.

Chapter 7: Building a New CP/M System 187

Currently
executing

version
of CP/M

4 / r
T' r

BIOS

BDOS

CCP

Bootstrap

SYSGEN

*

OFFFFH (Top of 64K RAM)

0E400H (approximate)

2880H

1F80H

1180H

0980H

0900H

0100H

0000H

BIOS = 2304 (900H) bytes
(this will vary from
version to version)

BDOS = 3584 (0E00H) bytes

CCP = 2048 (800H) bytes

Bootstrap = 128 (80H) bytes

SYSGEN = xxx (xxxH) bytes

Figure 7-2. SYSGEN’s memory layout

188 The CP/M Programmer’s Handbook

You can see that the relative arrangement between the components has not
changed; the whole image has simply been moved down in memory well below the
currently executing version of CP/M. The bootstrap has been added to the picture
just beneath the CCP.

The SYSGEN utility writes this image onto a floppy diskette starting at sector
1 of track 0 and continuing to sector 26 on track 1. Refer back to Figure 2-2 to see
the layout of CP/M on a standard 8-inch, single-sided, single-density diskette.

If you request SYSGEN to read the memory image from a file (which you do by
calling SYSGEN with the file name on the same line as the SYSGEN call), then
SYSGEN presumes that you have previously created the correct memory image
and saved it (with the SAVE command). SYSGEN then skips over the first 16
sectors of the file so as to avoid overwriting itself.

Here is an example of how to use SYSGEN to move the CP/M image from one
diskette to another:

A>SYSGEN<CR>
SYSGEN VER 2.0
SOURCE DRIVE NAME (OR RETURN TO SKIP) A
SOURCE ON A:, THEN TYPE RETURN <cr>
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT) B
DESTINATION ON Bs THEN TYPE RETURN <cr>
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT) <cr>
A>__

As you can see, SYSGEN gives you the choice of specifying the source drive
name or typing c a r r i a g e r e t u r n . If you enter a CARRIAGE r e t u r n , SYSGEN
assumes that the CP/M image is already in memory. Note that you need to call up
SYSGEN only once to write out the same CP/M image to more than one disk.

A larger than standard BIOS can cause difficulties in using SYSGEN. The
standard SYSGEN format only allows for six 128-byte sectors to contain the
BIOS, so if your BIOS is larger than 768 (300H) bytes, it will be a problem. The
CP/M image will not fit on the first two tracks of a standard 8-inch diskette.

Nowadays it is rare to find an 8-inch floppy diskette system where you must
load CP/M from a single-sided, single-density diskette. Most systems now use
double-sided or double-density diskettes as the normal format, but can switch to
single-sided, single-density diskettes to interchange information with other com
puter systems.

Because there is no “standard” format for 8-inch, double-sided and double
density diskettes, you probably won’t be able to read diskettes written on systems
of a different make or model. Therefore, you need only be concerned about using a
disk layout that will keep your disks compatible with other machines that are
exactly the same as yours.

This is also true if you have 5 1/4-inch diskettes. There is no industry standard
for these either, so your main consideration is to place the file directory in the same

Chapter 7: Building a New CP/M System 189

place as it will be on diskettes written by other users of your model of computer.
You must also be sure to use the same sector skewing. Otherwise, you will get a
garbled version whenever you try to read files originating on other systems.

With the higher capacity diskettes, you can reserve more space to hold the
CP/M image on the diskette. For example, in the case of the BIOS shown in Figure
6-4, the CP/M image is written to a 5 1/4-inch, double-sided, double-density
diskette using 512-byte sectors. Figure 7-3 shows the layout of this diskette. Note
that the bootstrap loader is placed in a 512-byte sector all by itself. Doing so makes
the bootstrap code and warm boot code in the BIOS much simpler.

The memory image must be altered to reflect the fact that the bootstrap now
occupies an entire 512-byte sector. Rather than change all of the addresses, the
bootstrap is loaded into memory 384 (180H) bytes lower, so that it ends at the same
address as before. Figure 7-4 shows the revised memory image.

Writing a PUTCPM Utility
Because the example system uses 5 1/4-inch floppy diskettes with 512-byte

sectors, the standard version of SYSGEN cannot be used to write the CP/M image
onto a diskette. You will have to use a functional replacement provided by your
computer’s manufacturer or develop a small utility program to do the job.

Track 0

Head

0

1

10 11 12 13 14 15 16 17 18

Track 1

Head

0

Sector

Sector
5 6

File Directory Allocation Blocks

Sector

1 2 3 4 5 6 7 8 9

Boot CCP BDOS

BDOS BIOS

Figure 7-3. Disk layout for example BIOS on 5 1/4-inch diskettes

190 The CP/M Programmer’s Handbook

Currently
executing
version
of CP/M ------------

r
^ r U

BIOS

BDOS

CCP

^ - - -

Bootstrap
^ ------------

OFFFFH (Top of 64K RAM)

0E400H (approximate)

2880H BIOS = 2304 (900H) bytes
(this will vary from
version to version)

1F80H
BDOS = 3584 (0E00H) bytes

CCP = 2048 (800H) bytes

1180H

Bootstrap = 512 (200H) bytes
0980H

0780H

Figure 7-4. Addresses for example BIOS image

Figure 7-5 shows an example of such a program. It is written in a general-
purpose way, so that you may be able to use it for your system by changing the
equates at the front of the program to reflect the specifics of your disk drives.

Note that there are two problems to be solved. First, the area of the disk on
which the CP/M image resides cannot be accessed by the BDOS, as it is outside the
file system area on the disk. Second, it is rare to write the CP/M image onto the
disk with any kind of sector skewing; to do so would slow down the loading
process. In any case, skewing would be redundant, since the loader is doing no
processing other than reading the disk and can therefore read the disk without
skewing.

Chapter 7: Building a New CP/M System 191

3130 =

3730 =
3432 =
3238 =

0040 =

0900 =

0200 «
0800 =
0E00 =

1F00 *

0780 =
2100 =

This program writes out the CP/M cold boot loader,
CCP, BDGS, and BIOS to a floppy diskette. It runs
under CP/M as a normal transient program.

Version EQU •01-' ¡Equates used in the sign-on
; message

Month EQU ■'07-'
Day EQU '24'
Year EQU ■'82'

1 The actual PUTCPMF5.COM program consists of this code,
? Plus the B00TF5.HEX, CCP, BBOS, and BIOS.

$ When this program executes, the memory image should
? look like this:

Component
BIOS
BOOS
CCP
B00TF5

Base Address
1F80H
1180H
0980H
0780H

The components are produced as follows:

BIOS.HEX
BOOS)
CCP >
B00TF5.HEX

By assembling source code
From a CPMnn.COM file output

by MOVCPM and SAVEd on disk
By assembling source code

The components are pieced together using DDT with the
following commands:

DDT CPMnn.COM
IPUTCPMF5.HE X
R
IB00TF5.HEX
R680
IBIQS.HEX
R2980
GO
SAVE 40 PUTCPMF5.COM

(Reads in this program)

(Reads in BOOT at 0780H)

(Reads in BIOS at 1F80H)
(Exit from DDT)
(Create final .COM file)

The actual layout of the diskette is as follows:

Track

Head

0
1

+----
2

-+•------+■
3

Sector
4 5 6

— +------+------+----
7

— +----
8

— +----
onno

9

1
+---- -+------+■ — + ------+•------+----— +----

D T no

JdUU o —

H-----
10

-+•------+■
11 12

--+------+------+----
13 14 15

fcSIUo
— +—

16
— +-----

17
— +
18

Sector

* Equates for defining memory size and the base address and
; length of the system components

Memory»Si ze EQU 64 ;Number of Kbytes of RAM

; The BIOS Length must match that declared in the BIOS.

BIOS*Length EQU 0900H

Boot$Length EQU 512
CCP*Length EQU 0800H ; Con s t an t
BDOS*Length EQU OEOOH ; Constant

Length*In*Bytes EQU CCP*Length + BDOS*Length + BIOS»Length

Startflmage EQU 980H - Boot»Length ;: Address of CP/M image
Length$Image EQU Length»In$Bytes + Boot»Length

Figure 7-5. Example PUTCPM

192 The CP/M Programmer’s Handbook

0001
0012
0009
0200

0001

0000
0001
0011

0009
0005

0100

0100

000D
000A

0103
0119
01 IB
0123
0125
0126
0128
0129
012B
012C
012E

0045
0046
0043

Disk characteristics

These equates describe the physical characteristics of
the floppy diskette so that the program can move from
one sector to the next, updating the track and resetting
the sector when necessary.

= First«Sector*on«Track EQU 1
= Last«Sector«on«Track EQU 18
= Last«Sector«on«Head«0 EQU 9
= Sector«Size EQU 512

Controller characteristics

On this computer system, the floppy disk controller can write
multiple sectors in a single command. However, in order
to produce a more general example it is shown only reading one
sector at a time.

Sectors«Per«Wri te EQU 1

Cold boot characteristics

= Start«Track EQU C> ïInitial values for CP/M image
- Start«Sector EQU 1
= Sec t or s «To«Wr i t e EQU (Length«Image + Sector«Size - 1) / Sector«Size

¿«PRINTS EQU 9 ;Print string terminated by «
BD0S EQU 5 ;BDOS entry point

0RG 100H
Put«CPU:

C33F01 JMP Main«Code Enter main code body
For reasons of clarity, the main

data structures are shown before the
executable code.

= CR EQU ODH Carriage return
= LF EQU OAH Line feed

Signon«Message:
0D0A507574 DB CR,LF, 'Put CP/M on Diskette'
0D0A DB CR, LF
5665727369 DB ■'Version '
3031 DW Version
20 DB
3037 DW Month
2F DB
3234 DW Day
2F DB
3832 DW Year
0D0A24 DB C R ,L F ,

; Disk control tables

Di sk«Control«5 EQU 45H ;;5 1/4" control byte
= Command«Block«5 EQU 46H ^Control table pointer
= Disk«Status EQU 43H ; Complet ion status

The command table track and DMA«Address can also be used
as working storage and updated as the load process
continues. The sector in the command table cannot be
used directly as the disk controller requires it to be
the sector number on the specified head»(l — 9) rather
than the sector number on track. Hence a separate variable
must be used.

Figure 7-5. (Continued)

Chapter 7: Building a New CP/M System 193

0131 01 Sectors DB Start$Sector

0132 02 Command*Table: DB 02H ;Command — Write
0133 00 Units DB 0 ;Unit (drive) number = 0 or 1
0134 00 Head: DB 0 jHead number = 0 or 1
0135 00 Tracks DB Start*Track ;Used as working variable
0136 00 Sector4on4head: DB 0 jConverted by low-level driver
0137 0002 BytefCount s DW Sector$Size * Sectors$Per4Write
0139 8007 DMA4Address: DW Start$Image
013B 4300 NextfStatus: DW DiskSStatus jPointer to next status block

; if commands are chained
013D 4500 NextfControls DW Disk$Control$5 jPointer to next control byte

? if commands are chained

Main$Code:
013F 310001 LX I SP,Put*CPM ? Stack grows down below code

0142 110301 LXI D,SignonSMessage ;Sign on
0145 0E09 MV I C,B4PRINTS sPrint string until *
0147 CD0500 CALL BDOS

014A 213201 LXI H,Command4Table jPoint the disk controller at

014D 224600 SHLD Command4Block45 ? the command block

0150 0 E 1 1 MV I C ,Sec t or s4To$Wr i t e ;3et sector count
Write4Loop:

0152 CD7C01 CALL Put4CPM4Write sWrite data onto diskette
0155 0D DOR 0 sDowndate sector count
0156 CA0000 JZ 0 ;Warm boot

0159 213101 LXI H,Sector ;Update sector number
015C 3E01 MV I A ,Sec t or s4Per 4Wr i t e ; by adding on number of sectors
015E 86 ADD M ; by controller
015F 77 MOV M,A ?Save result
0160 3E13 MV I A,Last$Sector*Gn$Track + 1 sCheck if at end of track
0162 BE CMP M
0163 C26F01 JNZ Not4End*Track

0166 3601 MV I M,First4Sector*0n4Track jYes, reset to beginning
0168 2A3501 LHLD Track ;Update track number
016B 23 INX H
0160 223501 SHLD Track

Not4End*Track:
016F 2A3901 LHLD DMA«Address ;Update DMA address
0172 110002 LXI D,SectorfSize * Sectors*Per4Write
0175 19 DAD D
0176 223901 SHLD DMA*Address
0179 035201 JMP Write4Loop jWrite next block

Pu 14CPM4Wr i t e : sAt this point, the description of the
? operation required is in the variables
; contained in the command table, along
; with the sector variable.

0170 05 PUSH B ;Save sector count in C

;------- Change this routine to match the disk controller in use -------

017D 0600 MV I B, 0 ;Assume head 0
017F 3A3101 LDA Sector ;Get requested sector
0182 4F MOV 0, A jTake a copy of it
0183 FE0A CPI L a s t4Sector4on4Head*0+1 sCheck if on head 1
0185 DA8C01 JO Head$0 ; No
0188 D609 SU I La s t*Sector4on$Head40 ;Bias down for head 1
018A 4F MOV 0, A ;Save copy
018B 04 I NR B SSet head 1

Head«0:
0180 78 MOV A, B ;Get head
018D 323401 STA Head
0190 79 MOV A, 0 ;Get sector
0191 323601 STA Sector$0n4Head

Figure 7-5. (Continued)

194 The CP/M Programmer’s Handbook

0194 214500 LXI H,Disk*Control*5 {Activate controller
0197 3680 MVI M, 80H

Wait *For *Booincomplete:
0199 7E MOV A, M {Get status byte
019A B7 ORA A {Check if complete
019B C29901 JNZ Wa i t *For 4Boo t $C om p1e t e {No

{Yes, check for errors
019E 3A4300 LDA DiskSStatus
01A1 FE80 CPI 80H
01 A3 DAA801 JC Put$CPM*Error {Yes, an error occurred

---------End of physical write routine —

01A6 Cl POP B {Recover sector count in C
01A7 C9 RET

PutnCPMÍError:
01A8 11B301 LXI D,Put*CPM$ErrornMessage
01 AB 0E09 MVI C,B9PRINTS {Print string until %

01 AD CD0500 CALL BDOS {Output error message
01 BO C33F01 JMP MainfCode {Restart the loader

Put CPMError$Me ssage:
01B3 0D0A457272 DB CR,LF,"Error in writing CP/M - r e t r y i n g . CR,LF,
01DB END PutnCPM

Figure 7-5. (Continued)

Using DDT to Build the CP/M Memory Image

DDT, the Digital Research debug program, is used to read files of type
“.COM” and “.HEX” into memory. Understanding the internal structure of these
file types is important, both to understand what DDT can do and to understand
how the MOVCPM utility can effectively change a machine code file so that it can
be executed at a new address in memory.

“.COM” File Structure

A COM file is a memory image. It is a replica of the bit patterns that are to be
created when the file is loaded into memory. COM files are normally designed to
load at location 100H upwards. No internal structure to the file requires this,
however, so if you know what the contents of a COM file are, there is nothing to
preclude you from loading it into memory starting at some address other than
100H.

As you may recall from the description of the CCP in Chapter 4, the SAVE
command built into the CCP allows you to create a COM file by specifying the
number of 256-byte “pages” of memory and the name of the file. The CCP will
write out an exact image of memory from location 100H up.

Chapter 7: Building a New CP/M System 195

“.HEX” File Structure
HEX files are output by the assembler. They contain an ASCII character

representation of hexadecimal values. For example, the contents of a single byte of
memory with the binary value 10101111 would be represented by two ASCII
characters, A F, in a HEX file.

The HEX file has a higher level structure than just a series of ASCII charac
ters however. Each line of ASCII characters is terminated by c a r r ia g e
r e t u r n / l in e FEED. The overall structure is shown in Figure 7-6.

The most important aspect of a HEX file is that each line contains the address
at which the data bytes are loaded. Each line is processed independently, so the
load addresses of succeeding lines need not be in order.

DDT can read in a HEX file at an address different from the address where the
code must be in order to execute. For example, you can read in the HEX file of the
BIOS at the correct place for the memory image (shown in Figure 7-4). There are
two ways of using DDT to read in a COM or HEX file. You can specify the name of
the file on the same command line with DDT. For example:

A>DDT Bs XYZ.HEX<cr>
DDT VERS 2.0
NEXT PC
0180 0100

<- Call up DDT with file name
<- DDT signs on

<- ... and displays next free byte
and entry point address

<- ... and prompts for a eommmand

The advantage of this method of loading a file is that you can specify which
logical disk is to be searched for the file. The second way of using DDT is to load
DDT first, and then, when it has given its prompt, specify the file name and request
that DDT load it like this:

-If ilename.t yp<cr> <- Enter the file name and type
-R<cr> <- Read in the file

The “I” command initializes the default file control block in the base page (at
location 005CH) with the file name and type; it does not set up the logical disk. If
you need to do this, you must set the first byte of the default FCB manually like
this:

-If ilename.t yp<cr> \ —
-S5C:<cr> <-
005C 00 02<cr> <-
005D 41 .<cr> <-
-R<cr> <-

Specify file name
"S"et location 5C
Was 00r you enter 02<cr>
Enter to terminate
Read in the file

Location 005CH should be set to 01H for Drive A, 02H for B, and so on.
The “R” command will read in HEX files to the execution addresses specified

in each line of the HEX file, so be careful—if you forget to put an ORG (origin)

196 The CP/M Programmer’s Handbook

: 04 0158 00 64 00 01 80 BE

Check sum formed by adding up all of the values 04, 01, 58, 00,
64, 00, 01 and 80 and then subtracting their sum from 00H

Data bytes to be loaded at the specified address

Record (line) type, normally 00
Load address for the data bytes on this line
Number of data bytes on this line (ASM uses 10H bytes)
Beginning of line marker (colon)

N ote: HEX files do not have embedded blank characters; the example above is shown with
gaps between individual fields only for clarity.

Figure 7-6. Example line from HEX file

statement at the front of the assembly language source code, reading in the
resultant HEX file will overwrite location 0000H on up, destroying the contents of
the base page. Similarly, if you were trying to read in the HEX file for a BIOS,
there is an excellent chance that you will overwrite the currently executing CP/M
system.

DDT reacts to the file type you enter as part of the file name. For file types
other than .HEX, DDT loads the file starting at location 0100H on up.

The “R” command can also be used to read files into memory at different
addresses. You do this by typing a hexadecimal number immediately after the R,
with no intervening punctuation. For HEX files, the number that you enter is
added to the address in each line of the HEX file and the sum is used as the address
into which the data bytes are loaded. The data bytes themselves are not changed,
just the load address.

For COM files, the number that you enter is added to 0100H and the sum is
used as the starting address for loading the file.

The sum is performed as 16-bit, unsigned arithmetic with any carry ignored, so
you can load a BIOS HEX file into low memory by using the “R” command with
what is called an “offset value.”

If a HEX file has been assembled to execute at address “exec,” and you need to
use DDT to read in this file to address “load,” you need to solve the following
equation:

offset = load — exec.

DDT’s “H” command performs hexadecimal arithmetic. It calculates and
displays the sum of and difference between two hexadecimal values. For example,

Chapter 7: Building a New CP/M System 197

the BIOS in Figure 6-4 has been assembled to execute at location 0F600H, but
needs to be loaded into memory at location 1F80H. Here is how to compute the
correct offset for the “R” command:

-H1F80, F600<cr> <- Use the H command
1580,2980 <- Sum, difference

Thus, to read in the BIOS HEX file called FIG6-4.HEX at location 1F80H,
you would enter the following commands to DDT:

-IFIG6-4.HEX<cr> <- Specify file name and type
-R2?80<cr> <- Load at 0F600H + 2980H (= 1F80H)

In this way, using DDT, you can read in the HEX files for both the BIOS and
the bootstrap loader.

The CP/M Bootstrap Loader

The bootstrap loader is brought into memory by PROM-based firmware in
the computer system. It loads in the CCP, BDOS, and BIOS and then transfers
control to the cold boot entry point in the BIOS—the first jump instruction in the
BIOS jump vector.

The bootstrap loader is a stand-alone program; it cannot make use of any
CP/M functions because no part of CP/M is in memory when the bootstrap loader
is needed. The firmware in the PROM that loaded the bootstrap may contain some
subroutines that can be used by the bootstrap, but this will vary from system to
system.

Figure 7-7 shows the bootstrap code for the example BIOS (from Figure 6-4).
This code has been written in a general way, so that you can adapt it to your
system. The disk controller on the example system can in fact read in multiple
sectors from the disk, but for generality the code shown reads in only one sector at
a time. This considerably increases the time it takes to load CP/M, but does make
the bootstrap loader more general.

Note that almost the first thing that the bootstrap does is to output to the
console a sign-on message. Not only does this confirm the version number, but it
shows that the bootstrap has been successfully loaded.

The PROM-based code has been designed to load the CP/M bootstrap into
location 100 H, allowing the code to be debugged as though it were a normal
transient program, albeit with minor changes to the address at which it loads the
CP/M image from disk. Clearly, this feature is not very helpful if CP/M is being
brought up for the first time on a computer system. It helps a great deal, however, if
you need to modify the bootstrap or add the capability to boot your system from a
new type of disk drive.

198 The CP/M Programmer’s Handbook

Example CP/M cold bootstrap loader

? This program is written out to track 0, head 0, sector 1
j by the PUTCPMF5 program.
; It is loaded into memory at location 100H on up by the
i PROM-based bootstrap mechanism that gets control of the
? CPU on power up or system reset.

3130 = Version EQU •01 jEquates used in the sign-on message
3730 = Month EQU -07-'
3432 = Day EQU -'24-'
3238 = Year EQU -"82-'

0000 * Debug EQU 0 ;Set nonzero to debug as nornval
j transient program

The actual layout of the diskette is as follows :

; Track 0 Sector
; 1 2 3 4 5 6 7 8 9
; Head +---- +•------ + ------+•------+------ +•------+------+------- -*------ +
; 0 ! Boot !<======== CCP ========>!<======= BOOS ========!. +---- +------+----- +----- +------+----- -̂-----+------+----- +

10 11 12 13 14 15 16 17 18
Sector

Equates for defining memory size and the base address and
length of the system components.

0040 = Memory$Si ze EQU 64 ;¡Number of Kbytes of RAM

? The BIOS Length must match that declared in the BIOS.

0900 = BI0S*Length EQU 0900H

0800 = CCP*Length EQU 0800H ;iConstant
0E00 = BD0S*Length EQU 0E00H ;iConstant

0008 = LengthInK EQU C(CCPfLength + BD0S$Length + BI0S$Length) / 1024) +
1F 00 = LengthInBytes EQU CCP$Length + BDOSSLength + BIOS$Length

IF NOT Debug
E000 = CCP*Entry EQU (Memory$Size - Length$In$K) * 1024

END IF
IF Debug

CCP*Entry EQU 3980H Read into a lower address.
This address is chosen to be above

the area into which DDT initially loads
and the 980H makes the addresses similar
to the SYSGEN values so that the memory
image can be checked with DDT.

END IF

E806 = BD0S$Entry EQU CCP$En try + CCP*Length + 6
F600 BI0S*Entry EQU CCP$Entry + CCPSLength + BDOS$Length

Disk characteristics

These equates describe the physical characteristics of
the floppy diskette so that the program can move from
one sector to the next, updating the track and resetting

; the sector when necessar y •

0001 = First$Sector$on$Track EQU 1
0012 = Last$Sector$on$Track EQU 18
0009 = Last$Sector$on$Head$0 EQU 9
0200 = Sector$Si ze EQU 512

Controller characteristics

Figure 7-7. Example CP/M cold bootstrap loader

Chapter 7: Building a New CP/M System 199

; On this computer system, the floppy disk controller can read
; multiple sectors in a single command. However, in order to
! produce a more general example it is shown only reading one
; sector at a time.

0001 = Sectors»Per»Read EQU 1

; Cold boot characteristics

0000 Start*Track EQU 0 ; Initial values for CP/M image
0002 = Start»Sector EQU 2 ■= •• =
0010 Sectors»To»Read EQU (Length»In»Bytes + Sector»Sise - 1) / SeetoriSise

0100 ORG 100H
CoId»Boot»Loader :

0100 C34001 JMP Main»Code ;Enter main code body
;For reasons of clarity, the main
; data structures are shown before the
; executable code.

000D = CR EQU ODH ; Carriage return
OOOA = LF EQU OAH ;Line feed

Si gnon»Message:
0103 0D0A43502F DB CR,LF, 'CP/M Bootstrap Loader'

IF Debug
DB ■' (Debug)'
END IF

011A ODOA DB CR, LF
o n e 5665727369 DB 'Version •'
0124 3031 DW Version
0126 20 DB
0127 3037 DU Month
0129 2F DB '/■'
012A 3234 DW Day
012C 2F DB •' / '
012D 3832 DW Year
012F ODOAOO DB C R ,L F ,0

; Disk Control Tables

0045 = Di sk»Control»5 EQU 45H ;5 1/4" control byte
0046 = Command»Block»5 EQU 46H ^Control table pointer
0043 = Disk»Status EQU 43H :Complet ion status

; The command table track and DMA»Address can also be used
? as working storage and updated as the load process
; continues. The sector in the command table cannot be
* used directly as the disk controller requires it to be
? the sector number on the specified head (1 — 9) rather
; than the sector number on track. Hence a separate variable
; must be u s e d .

0132 02 Sector : DB Start»Sector

0133 01 Command»Table: DB 01H ; Command — read
0134 00 Unit: DB 0 ;Unit (drive) number = 0 or 1
0135 00 Head: DB 0 ;Head number = 0 or 1
0136 00 Track: DB Start»Track ;Used as working variable
0137 00 Sector»on»head: DB 0 jConverted by low-level driver
0138 0002 By te»Count : DW Sector»Sise * Sectors»Per»Read
013A OOEO DMA»Address: DW CCP»Entry
013C 4300 Next»Status: DW Disk»Status jPointer to next status block

y if commands are chained.
013E 4500 Next»Control : DW Disk»Control»5 jPointer to next control byte

; if commands are chained.

Main»Code:
0140 310001 LX I SP,Cold»Boot»Loader ; Stack grows down below code

Figure 7-7. (Continued)

200 The CP/M Programmer’s Handbook

0143
0146

014?
014C

014F

0151
0154

0155

0158
015B
015D
0 1 5E
0 1 5F
0161
016 2

0165
0167
0 1 6 A
016B

016E
0171
0174
0175
0173

017B

017C
017E
0181
0182
0184
0187
0189
018A

018B
0180
018F
0190

0193
0196

0198
0199
019A

019D
01 AO
01A2

210301 LX I H,Signon$Message ¡Sign on
CDD901 CALL Bi splaythessage

213301 LX I H,Command$Table ¡Point the disk controller at
224600 SHLD Command$Block*5 ; the command block

0E10 MV I C,SectorsToRead ¡Set sector count
Load$Loop:

CD7B01 CALL Cold$Boot$Read ;Read data into memory
OB BCR C ¡Bowndate sector count

IF NOT Bebug
CA00F6 JZ

ENBIF
BIOS*Entry ;Enter BIOS when load done

IF Bebug
JZ
ENBIF

0 ¡Warm boot

213201 LX I H,Sector Update sector number
3E01 MV I A,SectorsPerRead by adding on number of sectors
86 ABB M by controller
77 MOV M, A Save result
3E13 MV I A,Last$Sector$Qn$Track + 1 ;Check if at end of track
BE CMP M
C26E01 JNZ NotEndTrack

3601 MV I M,First$Sector$On$Track ;¡Yes, reset to beginning
2A3601 LHLB Track ;¡Update track number
23 INX H
223601 SHLB Track

NotEndTrack¡
2A3A01 LHLB BMA$Address ;¡Update BMA Address
110002 LX I B,Sector$Size * Sectors$Per$Read
19 BAB B
223A01 SHLB BMA$Address
035101 JMP Load$Loop]¡Read next block

Cold$Boot$Reads ¡At this point, the description of the
* operation required is in the variables
; contained in the command table, along
; with the sector variable.

05 PUSH B ¡Save sector count in 0

Change this routine to match the disk controller in use

0600 MV I B, 0 ¡Assume head 0
3A3201 LBA Sector ¡Get requested sector
4F MOV C, A ¡Take a copy of it
FE0A CPI Last $Sec t or$on$Head$0+1 ¡Check if on head 1
BA8B01 JC Head$0 ¡No
B60? SU I Last$Sector*on$Head$0 ¡ Bias down for head 1
4F MOV C, A ¡ Save copy
04 I NR B ¡Set head 1

Head$0:
78 MOV A, B ¡Get head
323501 STA Head
79 MOV A, C ¡Get sector
323701 STA SectorOnHead

214500 LX I H,Bisk$Control$5 ¡Activate controller
3680 MVI M, 80H

Wait ForBoot $C om p1e t e :
7E MOV A, M ¡Get status byte
B7 ORA A ¡Check if complete
C29801 JNZ Wai tForBoot$Complete ¡No

Bisk$Staius
¡Yes, check for errors

3A4300 LBA
FE80 CPI 80H
BAA701 JC Cold$Boot $Er r or ¡Yes, an error occurred

---------End of physical read routine

Figure 7-7. (Continued)

Chapter 7: Building a New CP/M System 201

01A5 Cl POP B ;Recover sector count in C
01AÓ C9 RET

Cold»Boot»Error:
01A7 216001 LXI H,Cold»Boot»Error»Message
01AA CDD901 CALL Display»Message ¡Output error message
01AD C34001 JMP Main»Code ;Restart the loader

Cold»Boot»Error»Message
01B0 0D0A426F6F DB C R ,L F , 'Bootstrap Loader Error - retrying... ',CR,LF,0

¡ Equates for Terminal Output

0001 = Terminal»Status»Port EQU 01H
0002 = Terminal»Data»Port EQU 02H

0001 = Terminai»Output»Ready EQU 0000$0001B

Display»Message: ¡Displays the specified message on the console.
¡On entry, HL points to a stream of bytes to be
¡output. A OOH-byte terminates the message.

01D9 7E MOV A, M ¡Get next message byte
OIDA B7 ORA A ¡Check if terminator
01DB C8 RZ ¡Yes, return to caller
01DC 4F MOV C,A ¡Prepare for output

Output»Not»Ready :
01DD DB01 IN Terminal*Status»Port ¡Check if ready for output
01DF E601 AN I Terminal»Output»Ready
01E1 CA D D O 1 JZ Output»Not»Ready ¡No, wait
01E4 79 MOV A, C ¡Get data character
01E5 D302 OUT Terminal»Data»Port ¡Output to screen

01E7 23 INX H ¡Move to next byte of message
01E8 C3D901 JMP DisplaySMessage ¡Loop until complete message output

¡The PROM-based bootstrap loader checks
¡ to see that the characters "CP/M"
¡ are on the diskette bootstrap sector
¡ before it transfers control to it.

02E0 ORG 2E0H
02E0 43502F4D DB 'CP/M'
02E4 END Cold»Boot»Loader

Figure 7-7. (Continued)

In this case, the bootstrap code must be loaded at location 0780H, not the
normal 0980H, because the bootstrap takes a complete 512-byte sector (200H).
The same principle applies in determining the offset value to be used with DDT’s
“R” command to read the bootstrap HEX file, namely:

offset = load address — execution address.

In this case, the values are the following:
0680H = 0780H - 0100H

Using MOVCPM to Relocate the CCP and BDOS

MOVCPM builds a CP/M memory image at the correct locations for
SYSGEN, but with the instructions modified to execute at a specific address.
Inside MOVCPM is not only a complete replica of CP/M, but also enough

202 The CP/M Programmer’s Handbook

information to tell MOVCPM which bytes of which instructions need be changed
whenever the execution address of the image needs to be moved.

MOVCPM, as released from Digital Research, contains the bootstrap and
BIOS for an Intel MDS-800 computer along with the generic CCP and BDOS.
Unless you have an MDS-800, all you use is the CCP and BDOS. Some manufac
turers have customized MOVCPM to include the correct bootstrap and BIOS for
their own computers; consult their documentation to see if this applies to your
computer system.

When you invoke MOVCPM, you have the following options:

• MOVCP M <cr>
MOVCPM will relocate its built-in copy of CP/M to the top of available
memory and will then transfer control to this new image of CP/M. Unless
your manufacturer has included the correct BIOS into MOVCPM, using this
option will cause an immediate system crash.

• MOVCPM nn<cr>
This is similar to the option above, except that MOVCPM assumes that nnK
bytes of memory are available and will relocate the CP/M image to the top of
that before transferring control. Again, this will crash the system unless the
correct BIOS has been installed into MOVCPM.

• MOVCPM * * < Cr>
MOVCPM will adjust all of the internal addresses inside the CP/M image so
that the image could execute at the top of available memory, but instead of
actually putting this image at the top of memory, MOVCPM will leave it in
low memory at the correct place for SYSGEN to write it onto a disk. The
SAVE command could also preserve the image on a disk.

• MOVCPM nn *<cr>
MOVCPM proceeds as above for the “* *” option except that the CP/M
image is modified to execute at the top of nnK.

MOVCPM has a fundamental problem. The nn value indicates that the top of
available memory is computed, assuming that your BIOS is small—less that 890
(380H) bytes. If your BIOS is larger (as is the case with the example in Figure 6-4),
then you will have to reduce the value of “ww” artificially.

Figure 7-8 shows the relationship between the size of the BIOS and the “nn”
value to use with MOVCPM. It also shows, for different lengths of BIOS, the BIOS
base address, the offset value to be used in DDT to read in the BIOS to location
1F80H (preparatory to using SYSGEN or PUTCPM to write it out), and also the
base addresses for the CCP and the BDOS. The base address of the BDOS
indicates how much memory is available for loading transient programs, as the
CCP can be overwritten if necessary.

The numbers in Figure 7-8 are based on the assumption that you have 64K of
memory in your computer system. If this is not the case, then proceed as follows:

Chapter 7: Building a New CP/M System 203

1. Convert the amount of memory in your system to hex. Remember that 1K is
1024 bytes.

2. Determine the length of your BIOS in hex.
3. Locate the line in Figure 7-8 that shows a BIOS length equal to or greater

than the length of your BIOS.
4. Using the “H” command in DDT, compute the BIOS Base Address using the

formula:
Memory in system — BIOS length from Figure 7-8

5. Find the line in Figure 7-8 that shows the same BIOS Base Address as the
result of the computation above. Use this line to derive the other relevant
numbers.

It is helpful to use DDT to examine a CP/M image in memory to check that all
of the components are correctly placed, and, in the case of the CCP and BDOS,
correctly relocated.

Figure 7-9 shows an example console dialog in which DDT is used first to
examine the memory image produced by MOVCPM and second to examine the
image built into the PUTCPMF utility shown in Figure 7-5.

BIOS BIOS DDT MOVCPM CCP BDOS
Length Base Offset ‘nn’ Base Base

600 FAOO 2580 64 E400 ECOO
A00 F600 2980 63 EOOO E800
E00 F200 2D80 62 DCOO E400
1200 EEOO 3180 61 B800 EOOO
1600 EAOO 3580 60 D400 DCOO
1A00 E600 3980 59 DOOO D800
1E00 E200 3D80 58 CCOO D400
2200 DEOO 4180 57 C800 DOOO
2600 DAOO 4580 56 C400 CCOO
2A00 D600 4980 55 COOO C800
2E00 D200 4D80 54 BCOO C400
3200 CEOO 5180 53 B800 COOO
3600 CAOO 5580 52 B400 BCOO
3A00 C600 5980 51 BOOO B800
3E00 C200 5D80 50 ACOO B400
4200 BEOO 6180 49 A800 BOOO
4600 BAOO 6580 48 A400 ACOO
4A00 B600 6980 47 AOOO A800
4E00 B200 6D80 46 9C00 A400
5200 AEOO 7180 45 9800 AOOO
5600 AAOO 7580 44 9400 9COO
5A00 A600 7980 43 9000 9800
5E00 A200 7D80 42 8000 9400
6200 9E00 8180 41 8800 9000
6600 9A00 8580 40 8400 3C00
6A00 9600 8980 39 8000 8800

Apart from the MOVCPM ‘nn’ value all other values are in hexadecimal

Figure 7-8. CP/M addresses for different BIOS lengths

204 The CP/M Programmer’s Handbook

Call up MOVCPM requesting a ' 6 3 V , ' system
and the image to be left in memory.

A>Movcpm 63 *<cr>
CONSTRUCTING 63k~CP/M vers 2.2
READY FOR "SYSGEN" OR
"SAVE 34 CPM63.COM"

Save the image from location 100H up. By
convention, the file name is CPMnn.COM, so
in this case it will be CPM63.COM

A>Save 34 cprn6 3 . com<cr>

Call up DDT and request that it read in
CPM63.COM

A>ddt cpm63.com<cr>
DDT VERS 2” 2
NEXT PC
2300 0100

Display memory to show the first few bytes of
the CCP. Note the two JMP (C3H) instructions,
followed by 7FH, 00H, 20H s, and the Digital
Research Copyright notice. These identify the
code as being the CCP. Note that the first
JMP instruction is to 35C-H into the CCP — you
can therefore infer the base address of the
CCP. In this case the JMP is to locat-on E35C,
therefore this version of the CCP has been
configured to execute based at E000H.

-d980,9cf <cr>
0980 C3 5C E3 C3 58 E3 7F 00 20 20 20 20 20 20 20 20 .\..X...
0990 20 20 20 20 20 20 20 20 43 4F 50 59 52 49 47 48 COPYRIGH
09A0 54 20 28 43 29 20 31 39 37 39 2C 20 44 49 47 49 T (C) 1979, DIGI
09B0 54 41 4C 20 52 45 53 45 41 52 43 48 20 20 00 00 TAL RESEARCH . .
09C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Display the first few bytes of the BDOS. Note
the JMP instruction at 1186. This is the
instruction to which control is transferred
by the JMP in location 5.

-dJ180x 118F<cr>
liéÖ 00 16 00 00 09 85 C3 11 E8 99 E8 A5 E8 AB E8 Bl

Displaying further up in the BDOS identifies
it unambiguously — there are some ASCII error-
messages .

-dl.23gi_126f<cr_>.
1230 E8 21 DC E8 CD E5 E8 C3 00 00 42 64 6F 73 20 45 . 1Bdos E
1240 72 72 20 4F 6E 20 20 3A 20 24 42 61 64 20 53 65 rr On : $Bad Se
1250 63 74 6F 72 24 53 65 6C 65 63 74 24 46 69 6C 65 ctor*Select*File
1260 20 52 2F 4F 24 E5 CD C9 E9 3A 42 EB C6 41 32 C6 R/ 0* ..

Display the first few bytes of the BIOS.
Notice the BIOS JMP v e c t o r — the series of C3H
instructions. Normally the first instruction
in the vector can be used to infer the base
address of the BIOS? in this case it is
F600H. But there is no rule that says that
the cold boot code must be close to the BIOS
JMP vector - SO 1this is only a rough gu id e.

-dlfS0<cr>
1F80 C3 B3 F6 C3 C-3 F6 C-3 61 F7 C3 64 F7 C-3 6A F7 C3 , . . a . .d .. j . .
1F90 6D F7 C3 72 F7 C3 75 F7 C3 78 F7 C3 7D F7 C3 A7 m . . , . u . . x . .}. . .
IF AO F7 C3 AC F7 C3 BB F7 C3 Cl F7 C3 CA F7 C3 70 F7 . .p.
1FB0 C3 Bl F7 82 F6 00 00 00 00 00 00 6E F8 73 F6 OD n . s . .
1FC0 F9 EE F8 82 F6 00 00 00 00 00 00 6E F8 73 F6 3C- n . s . <
1FD0 F9 ID F9 82 F6 00 00 00 00 00 00 6E F8 73 F6 6B n . s. k
1FE0 F9 4C F9 82 F6 00 00 00 00 00 00 6E F8 73 F6 9A .L. n . s . .
1FF0 F9 7B F9 1A 00 03 07 00 F2 00 3F 00 CO 00 10 00 . {. ...
2000 02 00 01 07 OD 13 19 05 OB 11 17 03 09 OF 15 02
2010 08 OE 14 1A 06 OC 12 18 04 OA 10 16 OD OA OA 36 . . .6
2020 33 6B 20 43 50 2F 4D 20 76 65 72 73 20 32 2E 32 3k CP/M vers 2.2
2030 OD OA 00 31 00 01 21 9C F6 CD D3 F7 AF 32 04 00 . 12. .

Figure 7-9. Using DDT to check CP/M images

Chapter 7: Building a New CP/M System 205

In contrast, load DDT and request that it
load the PUTCPMF5.COM program.

A>ddt. putcpmf5.com<crJ>
DDT VERS "2.2
NEXT PC
2900 0100

Display the special bootstrap loader that
starts at location 0780H (compared to the
MDS-800 bootstrap which is at 0 9 S0 H). Note
the sign-on message.

“d 780 al<c r>
0780 C3 40 01 0D 0A 43 50 2F 4D 20 42 6F 6F 74 73 74 .0...CP/M Bootst
0790 72 61 70 20 4C 6F 61 64 65 72 0D 0A 56 65 72 73 rap Loader..Vers
07A0 69 6F 6E 20 30 31 20 30 37 2F 32 34 2F 38 32 0D ion 01 07/24/82.

Confirm that the CCP is loaded in the correct
place. Check the address of the first JMP
i n s t rue t i on (0E35 CH).

-d 9 8 0 ,9bf <cr>
0980 C 3 5 C E3 C3 58 E3 7F 00 20 20 20 20 20 20 20 20 .\..X...
0990 20 20 20 20 20 20 20 20 43 4F 50 59 52 49 47 48 C0PYRIGH
09A0 54 20 28 43 29 20 31 39 37 39 2C 20 44 49 47 49 T (C) 1979, DIGI
09B0 54 41 4C 20 52 45 53 45 41 52 43 48 20 20 00 00 TAL RESEARCH ..

Confirm that the BDOS is also in place.
-d 1180,118f<cr>
1180 00 16 00 00 09 85 C3 11 E8 99 E8 A5 E8 AB E3 Bl

Confirm that the BIOS has been loaded in the
correct place. Check the first JMP to get
some idea of the BIOS base address. Note the
sign-on message.

- d 1f80<cr>
1F80 C3 F9 F6 C3 OC FE C3 62 F8 C3 78 F3 C3 S6 F8 C3 b .. >i.... .
1F90 A4 F8 C3 B4 F8 C3 C5 F8 C3 B6 FB C3 OE FB C3 3B
IF AO FB C3 41 FB C3 48 FB C3 DE FB C3 F8 FB C3 94 F8 ..A . .H...........
1FB0 C3 BO FB ED 06 00 00 00 42 6E 25 DF 01 B6 DE 02Bn 7.......
1FC0 38 00 00 43 50 2F 4D 20 32 2E 32 2E 30 30 20 30 S..CP/M 2.2.00 0
1FD0 37 2F 31 35 2F 38 32 OD OA OA 53 69 6D 70 6C 65 7/15/82...Simple
1FE0 20 42 49 4F 53 OD OA OA 44 69 73 6B 20 43 6F 6E BI OS ...Disk Con
1FF0 66 69 67 75 72 61 74 69 6F 6E 20 3A OD OA OA 20 f igurat ion :.. .
2000 20 20 20 20 41 3A 20 30 2E 33 35 20 4D 62 79 74 A; 0.35 Mbyt
2010 65 20 35 22 20 46 6C 6F 70 70 79 OD OA 20 20 20 e 5" Fl op py..
2020 20 20 42 3A 20 30 2E 33 35 20 4D 62 79 74 65 20 B: 0.35 Mbyte
2030 35 22 20 46 6C 6F 70 70 79 OD OA OA 20 20 20 20 5" F l op py...
- AC
A>_

Figure 7-9. Using DDT to check CP/M images (continued)

Putting it a ll Together

Figure 7-10 shows an annotated console dialog for the complete generation of
a new CP/M system. Note that the following file names appear in the dialog:

Figure 6-4.
Figure 7-5.
Figure 7-7.

BI0S1.ASM
PUTCPMF5.ASM
B00TF5.ASM

206 The CP/M Programmer’s Handbook

O a s m boot f 5. cez<cr>
CP/M ASSEMBLER - VER 2.0
02E4
004H USE FACTOR
END OF ASSEMBLY

Assemble the CP/M Bootstrap Loader,
with the source code and HEX file
on drive C : , no listing output.

O a s m putcpmf5.ccz<cr>
CP/M ASSEMBLER - VER 2.0
01DB
003H USE FACTOR
END OF ASSEMBLY

Assemble the PUTCPMF5 program (that
writes CP/M onto the disk), with
the source code and HEX file on
drive C s , no listing output.

O a s m b i o s l . ccz<cr>
CP/M ASSEMBLER - VER 2.0
FE6C
0 1 1H USE FACTOR
END OF ASSEMBLY

Assemble the BIOS with the source
code and HEX file on drive C : , no
listing output.

O d d t cpm63. com<cr>
DDT VERS 2.2
NEXT PC
2300 0100

Start piecing the CP/M image
together. Load DDT and ask it to
read in the file previously SAVEd
after a MOVCPM 63 ».

-r<cr>
NEXT PC
2300 0100

Indicate the file name of
PUTCPMF5.HEX, and read in without
any offset (i.e. it will load at
100H because of the ORG 100H it
contains). -iputcprnf 5. hex<cr>

-ibootf5.hex<cr>
-r680<cr>
NEXT PC
2300 0100

Indicate the file name of
B00TF5.HEX and read in with an
offset of 680H to make it load at
780H on up (it contains ORG 100H
t o o).

-ib ios1.hex<cr>
-r2980<cr>
NEXT PC
27EC 0000

Indicate the file name of the BIOS
HEX file, and read it in with an
offset of 2980 such that it will
load at 1F80H (it contains an ORG
0F 60 0H).

-qO<cr>

Exit from DDT by going to location
0000H and executing a warm boot.

O s a v e 40 putcpmf5.com<cr>

Save the complete CP/M image on
disk. Saving 40 256-byte pages from
location 100H to 2900H.

Figure 7-10. Console dialog for system build

Chapter 7: Building a New CP/M System 207

Figure 7-10.

Load and execute the PUTCPMF5
program.

C > putcprnf 5<cr>

PUTCPMF5 signs on
Put CP/M on Diskette
Version 01 07/24/82

and writes the CP/M image to
d i s k .

C>

Console dialog for system build (continued)

BIOS Enhancements
Character Input/Output
Data Structures
Disk Input/Output
Custom Patches to CP/M
An Enhanced BIOS

Writing An
Enhanced BIOS

This chapter describes ways in which you can enhance your BIOS to make
CP/M easier to use, faster, and more versatile.

Get a standard BIOS working on your computer system, and then install the
additional features. Although you can write an enhanced BIOS from the outset, it
will take considerably longer to get it functioning correctly.

A complete listing of an enhanced BIOS is included at the end of this chapter. It
is quite large: approximately 4500 lines of source code, with extensive comments
and long variable names to make it more understandable.

The sections that follow describe the main concepts embodied in the enhanced
BIOS listing.

209

210 The CP/M Programmer’s Handbook

BIOS Enhancem ents

BIOS enhancements fall into two classes: those that add new capabilities and
those that extend existing features.

Some enhancements are normally accompanied by utility programs that allow
you to select the enhancement option from the console. For example, when the
BIOS is enhanced to include a real time clock, you need a utility program to set the
clock to the correct time. Other enhancements will not require supporting utilities.
For example, if the disk drivers are improved to read and write data faster, the
enhancement is “transparent.” As a user, you are aware of the results of the
enhancement but not of the enhancement itself.

Viewed at its simplest, the BIOS deals with two broad classes of input/output:

Character input/output
This includes the console, auxiliary, and list devices.

Disk input/output
This can accommodate several types of floppy and hard disks.

Enhancements in these areas do not fundamentally change the way that the
BDOS and CCP interact with these devices. Instead, enhancements improve the
way in which the device drivers deal with the devices. They can improve the speed
of manipulating data, the way of handling external devices, or the user’s control
over the behavior of the system.

The example enhanced BIOS has capabilities not found in standard CP/M
systems. These can be grouped in several main categories:

Character input/output
This area probably benefits most from enhancement. This is partly because
such a wide range of peripheral devices needs to be supported and partly
because this is the most visible area of interaction between you and your
computer. Any improvements here will therefore be immediate and obvious
to you as a user.

Error handling
CP/M’s error handling is, at best, startling in its simplicity. Enhanced error
handling gives you more information about the nature of the failure, and
then gives you the options of retrying the operation, ignoring the error, or
aborting the program. This topic is covered in detail in Chapter 9.

System date and time
This is the ability to maintain a time-of-day clock and the current date. It
allows your programs to set and access the date and time. In addition, your
system can react to the passing of time, and you can move certain opera
tions into the time domain. For example, you can set upper limits on the

Chapter 8: Writing an Enhanced BIOS 211

number of seconds, or milliseconds, that each operation should take, and
arrange for emergency action if the operation takes too long.

Logical-to-physical device assignment
CP/M’s logical-to-physical device assignment is primitive. With enhance
ments, you can use any character input/output device as the system
console, and output data to several devices at the same time.

Disk input I output
CP/M only knows about the 128-byte sector. Even with the deblocking
routines shown in Figure 6-4, overall disk performance can be slow.
Performance can be improved dramatically by “track buffering” (in which
entire tracks are read and written at one time) or by using a memory disk
(that is, using large areas of RAM as though they were a disk). These have a
cost, though, in increased memory requirements.

Public files
CP/M’s user number system needs improvements to function well in
conjunction with large hard disks.

Preserving User-Settable Options
A by-product of adding features to the BIOS is that many of these features have

options that you can alter, either from the console using a utility program or from
within one of your programs.

Each of these options, once set according to your preferences, or to the
requirements of your hardware, do not normally change from day to day. There
fore, the BIOS should be designed so that options set by the user can be “frozen” or
preserved on the disk by using a utility program, FREEZE. All of the variables
recording these options are gathered into a single area and then this area is written
out to the disk.

This area is called the configuration block. In practice, there are two configura
tion blocks: one short term and the other long term. The short term block is not
preservable — you can set options within it, but they cannot be preserved after you
switch your computer off. The system date, for example, is normally set each time
you turn your computer on, and therefore is kept in the short term block. The baud
rate for your printer, on the other hand, is kept in the long term block so that it can
be saved permanently.

An extra BIOS entry point, CBGet Address, has been built into the enhanced
BIOS so that utility programs can locate variables in both configuration blocks.
For example, when a utility needs to know where the date is kept in memory,
it calls CBGetAddress using a code number (specific for date) in a register.

CBGet Address returns the address of the date in memory. If a new version of the
BIOS is produced with the date in a different location, CBGetAddress will still
hand the correct, although different, address back to the utility program.

212 The CP/M Programmer’s Handbook

Two other variables that CBGetAddress can access pertain to the con
figuration block itself. One is the relative address of the start of the long term
configuration block. The other is the length of the long term block. These are used
by the FREEZE utility when it needs to preserve the long term block on a disk.
FREEZE must (1) read in the sectors containing the long term block from the
CP/M BIOS image on the reserved area of the disk, (2) copy the current RAM-
resident version of the long term block over the disk image version, and then (3)
write the sectors back onto the disk.

Figure 8-1 shows how the long term block appears on disk and in memory. The

Figure 8-1. Saving the long term configuration block

Chapter 8: Writing an Enhanced BIOS 213

size of the CCP and BDOS do not change, even if the BIOS does. Therefore, the
sector containing the start of the BIOS will not change. The formula (using
decimal numbers)

BIOS Start Sector + INT(Relative LTB Address / 128)

then gives the start sector number to be read in. The number of sectors to read is
calculated as follows:

(Long Term Block Length + 127)/ 128

The relative address and length can be used to locate the long term block in the
BIOS executing in RAM.

Character Input/O utput

The character I/O drivers shown in the example BIOS, Figure 8-10, have been
enhanced to have the following features:

• A single set of driver subroutines controlling all character devices
• Preservation of option settings
• Flexible redirection of input / output between logical and physical devices
• Interrupt-driven input drivers, to get user “type-ahead” capability
• Support of several different protocols to avoid loss of data during high

speed output to printers or other operations
• Forced input of characters into the console input stream, allowing automatic

commands at system start-up
• Conversion of terminal function keys into useful character strings
• Ability to recognize “escape sequences” output to the console and to take

special action as a result
• Ability to read the current time and date as though they were typed on the

console
• “Timeout” signaling when the printer is busy for too long.

Each of these features is discussed in the following sections, as an introduction
to the actual code example.

Single Set of Driver Subroutines
In the following examples, only a single set of subroutines is used to process the

input and output for all of the physical devices in the system.
This is made possible by grouping all of the individual device’s characteristics

214 The CP/M Programmer’s Handbook

into a table called the device table. For example, in order to get a character from
the current console device, the address of its device table will be handed over to the
subroutines. These in turn will use the appropriate values from the device table
when they need to access a port number or any unique attribute of that device.

In our example, the drivers assume that all of the physical devices use serial
input/output. To support a device with parallel input/output, you would need to
extend the device table to include a field that would enable the drivers to detect
whether they were operating on a serial or parallel device. You would probably
also have to add different device initialization and input/output routines more
suited to the problems of dealing with a parallel port.

The device table structure consists of a series of equate (EQU) instructions.
These define the relative offset of each field in the table. Each definition is
expressed by referencing the preceding field so that you can insert additional fields
without revising the definitions for all the other fields.

Individual instances of device tables are then defined as a series of define byte
(DB) and define word (DW) lines. The drivers are given the base address of the
device table whenever they need to do something with a device. By adding the base
address to the relative address (defined by the equate), the drivers can determine
the actual address in memory that contains the required value. The detailed
contents of the device table are described later in this chapter.

Permanent Setting of Options
About the only options that need preserving in the long term configuration

block are the values used to initialize the hardware chips. Other options can be set
during automatic execution of the command file when CP/M is first loaded.

Redirection of Input/Output Between Devices
As you recall, the BDOS only “knows about” the logical devices console,

reader, punch, and list. Using the IOBYTE at location 0003H in conjunction with
the STAT utility, you can redirect the BDOS to assign the logical devices to specific
physical devices. However, the redirection provided by CP/M is rather primitive. It
permits only four physical devices per logical device. Input and output of a logical
device must always come from the same physical device. Output data can only be
sent to a single destination, or (using the CONTROL-P toggle) to the console and the
list device.

The system in Figure 8-10 supports up to 16 physical devices. Any one of these
devices can act as the console, reader, punch, or list device. Input can come from
any single device. Output can be sent to any or all of the devices. Each logical
device’s input and output are separate—that is, console input can come from
physical device X while the output can be sent to physical devices Y and Z.

Device redirection can be done dynamically, either from within a program or
by using a system utility program. For example, if you have some special input

Chapter 8: Writing an Enhanced BIOS 215

device, your program can momentarily switch over to reading input from this
device as though it were the console, and then revert back to reading data from the
“real” console.

This redirection scheme is achieved by defining a 16-bit word, called the
redirection word, in the long term configuration block for each of the following
logical devices:

• Console input
• Console output
• Auxiliary (reader/punch) input
• Auxiliary (reader/punch) output
• List input (printers need to send data, too)
• List output.

Each bit in a given redirection word is assigned to a physical device. For input,
the drivers use the device corresponding to the first 1 bit that they find in the
redirection word. For output, the drivers send the character to be output to all of
the devices for which the corresponding bit is set.

The example code does not select a different driver for each bit set — it selects a
specific device table and then hands over the base address of this table to the
common driver used for all character operations.

Interrupt-Driven Input Drivers
With a standard CP/M BIOS, character data is read from the hardware chips

only when control is transferred to the CONIN or READER subroutines. If this
character data arrives faster than the BIOS can handle, data overrun occurs and
incoming characters are lost.

By using interrupts, the hardware can transfer control to the appropriate
interrupt service routine whenever an incoming character arrives. This routine
reads the data character and places it into a buffer area to wait for the next CONIN
or READER call, which will get the character from the buffer and feed it into the
incoming data stream.

User programs and the CCP are “unaware” of this process, perceiving only
that data characters are available. However, users will become aware of the
process; they will be able to enter data characters from the keyboard before the
program is ready for them. This gives the technique its other name — “type-
ahead.” Although this technique does not alter the speed of execution of any
programs running under CP/M, it does create the illusion of greater speed, since
pauses while a program accepts data vanish completely. The user can enter data at
a rate convenient to the tasks or thoughts at hand, without regard to the rate at
which the program can accept that data.

216 The CP/M Programmer’s Handbook

The example contains the code necessary to handle arriving characters under
interrupt control. In order to be of general applicability, the code assumes a “flat”
interrupt structure: that is, all character input interrupts cause control to be
transferred to the same address in memory. The address is determined by the
actual hardware interrupt architecture.

The simplest interrupt schemes use the restart (RST) instructions built into the
8080 CPU chip. In the RST scheme, the external hardware interrupts what the
CPU chip is doing and forces one of the eight RST instructions into the processor.
Each RST instruction causes the processor to execute what is, in effect, a CALL
instruction to a predetermined address in memory.

In more complicated systems, a specific interrupt controller chip (such as the
Intel 8259A) will be used. In addition to providing very sophisticated (and
complicated) prioritization of interrupts, the interrupt controller can transfer
control to a different address depending on which physical device causes the
interrupt. It does this by forcing the CPU to execute a CALL instruction to a
different address for each device.

In both architectures, it is the responsibility of the BIOS writer to initialize all
the hardware chips so that an interrupt occurs under the correct circumstances.
The BIOS writer also must plant instructions at the correct places in memory to
receive control from an RST instruction or from the fake CALL instruction
emitted by the interrupt controller.

Some hardware requires that the interrupt service subroutine inform it as soon
as the interrupt has been serviced and the character has been input. The example
drivers provide for this.

This section deals with using interrupts for the input drivers, not the output
drivers. All of today’s microcomputers can output data much faster than external
peripherals can handle. After the first few minutes of output, the computer will fill
any reasonably sized buffer — and from this point there is no advantage in having
a buffered output system. The computer still must slow down to the peripheral’s
data rate for each character, although now it is waiting to put the character in the
output buffer rather than out to the peripheral.

One exception to this is where you have a large amount of “spare” memory and
a “slow” printer (which most of them are). Increasing numbers of systems have
more than 64K of RAM. The 8080 or Z80 can’t address more than this, but a
“bank switched” memory system can switch blocks of memory in and out of that
64K address space.

Using this trick, you can access memory “unknown” to CP/M, store some
characters in it, switch back to the normal 64K memory, and return control to the
caller of the BIOS output routine. When the physical device is ready to accept
another output data character from the CPU, it will generate an interrupt. The
interrupt service routine then will access the “secret” buffer, output the characters
to the device, and switch back to the normal memory.

For example, if you have a printer that prints at 80 characters per second and

Chapter 8: Writing an Enhanced BIOS 217

Figure 8-2. Circular buffer type-ahead

you can afford to use 64K of bank switched memory, you can squirrel away 13
minutes of printing—or even more if you design a scheme to compress blanks,
storing them in the hidden buffer as a special control sequence.

From the point of view of software, interrupt-driven input drivers are divided
into two major groups: the interrupt service routine that reads the characters and
stacks them in a buffer, and the non-interrupt routines that get the characters from
the buffer and handle the other BIOS functions such as returning console status.

The input character buffer serves as a transfer mechanism between the two
groups of subroutines, although the device table also plays an important role.

The example code uses a circular buffer, as shown in Figure 8-2.
The drivers start putting data into the beginning of the buffer. When the last

character in the buffer has been reached, the drivers reset to the beginning of the
buffer and start over. This, of course, assumes that the non-interrupt drivers have
been getting data from the front of the buffer, thus creating space for additional
incoming data.

Each device table contains the address of the input buffer, a “put” pointer (for
the interrupt service routine), and a “get” pointer (for the non-interrupt service
routine). It also contains two character counts: the total number of characters and
the number of control characters in the input buffer. You can see how the put and

218 The CP/M Programmer’s Handbook

get pointers operate asynchronously. The put pointer is used every time an
incoming character generates an interrupt. The get pointer is used for each
CONIN call.

The get and put pointers are only single-byte values and are more accurately
described as “relative offsets.” That is, they contain a value which, when converted
to a word and added to the base address of the buffer, will point directly to the
appropriate position inside the buffer.

By making the buffer a binary number of characters long — 32 characters, for
example — a programming trick can be used to make the buffer appear circular.
The device tables contain a mask value formed from the buffer’s length minus one
(length — 1). Whenever the get or put pointers are incremented by one (to “point”
to the next character position), the updated value is ANDed with this (length— 1)
mask. In this example, if the get value goes from 31 (the relative address of the last
character in the buffer) to 32 (which would be “off the end”), the masking
operation will reset it to zero (the relative address of the first character of the
buffer). This avoids having to compare pointers to know when to reset them.

It is also simpler to use a count of the number of characters in the buffer, rather
than comparing the get and put pointers, to distinguish between an empty and a
full buffer. To support different serial protocols, the driver must be able to react
when the buffer is within five characters of being full and when it drops below half
empty. Both of these conditions are much easier to detect using a simple count that
is incremented as a character is put into the buffer and decremented as a character
is retrieved from the buffer.

The count of control characters is used to deal with a class of programs that
incessantly “gobble” characters, thereby rendering any type-ahead useless. An
example is Microsoft’s BASIC interpreter. When it is interpreting a program, you
can enter a CONTROL-C from the keyboard and the interpreter will come to an
orderly stop. It does this by constantly making calls to CONST (console status). If
it ever detects an incoming character, it makes a call to CONIN to input the
character. A character that is not CONTROL-C is discarded without further ado.
Thus, any characters that are input are consumed, destroying the effect of type-
ahead.

To deal with this problem, the CONST routine shown in the example can be
told to “lie” about the console’s status. In this mode, CONST will only indicate that
characters are waiting in the input buffer if a control character is received. It uses
the control character count to determine whether there are control characters in
the buffer; this count is incremented by the interrupt service routine when it detects
one, and decremented by the CONIN routine when it gets a control character from
the buffer.

Protocol Support
In this context, a protocol is a scheme to avoid loss of data that would

otherwise occur if a device sent data faster than the receiving device could handle

Chapter 8: Writing an Enhanced BIOS 219

it. For example, protocols are used to prevent the CPU sending data out to a
printer faster than the printer can print the characters and move the paper. The
drivers also support input protocols, indicating to a transmitting device when the
input buffer gets close to being full.

Two basic methods are used to implement protocols. The first uses the control
lines found in the normal RS-232C serial interface cables. For data being output by
the computer, the data terminal ready (DTR) signal is used, and for incoming data,
the request to send (RTS) signal. These signals conform to the electrical standards
for the RS-232C interface; they are considered true when they are at some positive
voltage between +3 and +12 volts, and false when they are between —3 and —12
volts.

The second method uses ASCII control characters instead of control signals.
Two separate protocols are supported by this method. One uses the ASCII
characters XON and XOFF. Before the sending device (the computer or some
peripheral device) sends a data character, it checks to see if an XOFF character has
been received. If so, the sender will wait for an XON character. The receiving device
will only send an XON when it is ready to receive more data.

The second protocol uses the characters ETX (end of transmission) and ACK
(acknowledge). This method is normally used only when transmitting data from
the computer to a buffered printer. A message length (usually half the printer’s
buffer size) is defined. When this number of characters has been output, the
computer will send an ETX character. No further output will occur until the
computer receives an ACK character from the printer.

The example drivers support the DTR high-to-send, the XON/XOFF, and the
ETX/ACK protocols for output data. For input, they support RTS high-to-receive
and XON/XOFF.

The input protocols are invoked when the input buffer gets within five charac
ters of being full. Then the drivers output an XOFF character or lower the RTS
signal voltage, or do both. Only when the input buffer has been emptied to 50%
capacity will the drivers send XON or raise the RTS line, or both.

As an emergency measure, if the input buffer becomes completely full, not
withstanding protocols, the drivers will output a predetermined character (defined
in the device table) each time they discard an incoming character. This is normally
the ASCII BEL (bell) character. When you type too far ahead, the terminal will
start beeping to tell you that data is being dropped.

Forced Input into the Console Stream
All application languages provide a means of reading data from the console

keyboard. This makes the console input stream a useful gateway to the system. A
simple enhancement to the CONIN/CONST routines makes it easy to “fool” the
system into acting as if data had been input from the keyboard when in fact the
data is coming in from a character string in memory.

220 The CP/M Programmer’s Handbook

Figure 8-3. CO NIN uses forced input data if pointer points to nonzero byte

In the enhanced BIOS, both CONIN and CONST are extended to check a
pointer in the long term configuration block, as shown in Figure 8-3.

If this pointer is pointing at a nonzero byte, then that byte is returned as though
it had come from the console keyboard. The forced input pointer is then moved up
one byte in memory. The process of forcing input continues until a zero byte is
encountered.

Forced input serves several purposes. It can be used to force a command or
commands into the system when the system first starts up. In conjunction with a
utility program, it can allow the user to enter several CP/M commands on a single
command line, injecting the characters as each of the commands is executed. It
also makes possible the features described in the next two sections.

Support of Terminal Function Keys
Many terminals on the market today have special function keys on their

keyboards. When you press one of these keys, the terminal will emit several
characters, the first of which is normally the ASCII ESC (escape) character. The
remaining one or two characters identify the specific function key that was
pressed.

For these function keys to be of any practical use, an applications program
must detect the incoming escape sequence and take appropriate action. The
problem is that not all terminal manufacturers support the ANSI standard escape
sequences.

Chapter 8: Writing an Enhanced BIOS 221

The example drivers avoid this problem by providing a general-purpose
method, shown in Figure 8-4, of detecting escape sequences and of substituting a
user-defined character string that is injected into the console input stream as
though it had been entered from the keyboard.

This scheme permits function keys to be used very flexibly, even for off-the-
shelf programs that have not been designed specifically to accept function key
input.

There is, however, one stumbling block. When an ESCAPE character is received,
the progam must detect whether this is the start of a function key sequence or the
user pressing the ESCAPE key on the terminal’s keyboard. In the former case, the

Input Buffer

Program Input Buffer

Figure 8-4. CONIN decodes terminal function keys

222 The CP/M Programmer’s Handbook

driver must wait to determine whether a function key string must be substituted
for the escape sequence. In the latter case, the driver must input the ESCAPE
character as it would other incoming data characters.

This recognition can only be done by moving into the time domain. When the
CONIN routine (the non-interrupt routine) gets an ESCAPE character from the
input buffer, it delays for approximately 90 milliseconds, enough time for a
terminal-generated character sequence to arrive. CONIN then checks the input
buffer to see if it contains at least two characters. If it does, the driver checks for a
match in a function key table in the long term configuration block. If the charac
ters match a defined function key, then the string associated with the function key
will be injected into the console stream by pointing the forced input pointer at it. If
the characters do not match anything in the function key table, then the ESCAPE
and subsequent characters are handed over as normal data characters.

If after the 90-millisecond delay no further characters have arrived, the ESCAPE
character is handed over as a normal character, on the basis that it must have been
a manually entered ESCAPE character rather than part of a terminal-generated
sequence.

The example drivers show the necessary code and tables for function keys that
emit three characters. You could modify them easily for two-character sequences,
or, if you are fortunate enough to have a keyboard that uses all eight bits of a byte,
to recognize single incoming characters.

Processing Output Escape Sequences
The output side of the console driver, the CONOUT routine, can also be

enhanced to recognize escape sequences. It uses a vectored JM P instruction to
keep track of the current state of affairs. The CONOUT driver gets an address
from the vector and transfers control to it. Normally this vector is set to direct
control to the output byte routine. However, if an ESCAPE character is detected in
the output stream, the vector is changed to transfer control to a routine that will
recognize the character following the ESCAPE. If recognition does not occur, the
driver will output an ESCAPE followed by the character that arrived after it.

If the second character is recognized, then the driver can transfer control to the
correct escape-sequence processor. This processor can then take whatever action
is appropriate. It must also make sure that when all processing is finished, the
console output vector is set to process normal output characters again.

This technique is described in more practical detail in the next section, where it
is used to preset and read the date and time. You can easily extend the recognition
tables in the long term configuration block to perform any special processing that
you need, ranging from altering the I/O redirection words to changing any other
variable in the system or programming special hardware in your computer.

Be careful not to embed any pure binary values in the sequence of characters
going out to the CONOU T routine. If you attempt to send a value of 09H (the TAB

Chapter 8: Writing an Enhanced BIOS 223

character) out via the BDOS, it will gratuitously expand the tab out to some
number of blanks. If you need to send out a bit pattern, such as the I/O redirection
word, split it up into a series of 7-bit long values. Then send it out with each byte
having the most significant bit set to 1. A value of 09H will then become 89H,
preventing the BDOS from expanding it to blanks.

Reading Date and Time From Console
For the moment, set aside the question of how the date and time get into the

system. Since the date and time are stored in the short term configuration block
(there being no need to save them from one work session to the next), all that the
BIOS needs to be able to do is recognize a request from an applications program to
read either the date or the time and then set the forced input pointer to the appro
priate string in memory. Both the date and time strings are terminated by a LINE
f e e d followed by a 00 byte.

This sequence of events is shown in Figure 8-5.
You can see that the characters “ ESC d” output to CONOUT cause it to point

the forced input pointer at the date in memory. Subsequent calls to CONIN bring
the characters in the date into the program as though they were being entered on
the keyboard.

Figure 8-5. Escape sequences sent to CONOUT allow the date to be read by CONIN

224 The CP/M Programmer’s Handbook

“Watchdog” Timeout on Printer
There is no provision in CP/M to deal with a hardware device that for one

reason or another is permanently unavailable. Unless special steps are taken in the
drivers, the system will screech to a halt in a loop, reading status and testing for the
peripheral to be ready.

The example enhancement code shows a scheme, using a real time clock, that
can detect when a device such as a printer fails to come ready for more than 30
seconds. On detecting this situation, the code outputs a message to all of the
console devices that are not also being used as printers. This type of output is
needed to avoid “deadly embraces” where a printer not being ready generates a
message that cannot be output because the printer is not ready.

The code that performs the timing function is knofwn as a watchdog timer.
Each time the real time clock “ticks,” the interrupt service routine checks the
watchdog count. If the count is nonzero, it is decremented. If the watchdog timer
reaches zero, exceeding the time allowed, the drivers will display a message on the
console indicating that the printer has been busy for too long. The user then has
the option of making the printer ready and trying again to output data, ignoring
the error and carrying on, or aborting the program by doing a BDOS System Reset
(function 0).

Although sending an error message to the console sounds simple, it is compli
cated if console output is directed to the offending printer itself. The drivers
attempt to solve this problem by sending the message only to those devices being
used as consoles and not as printers. If all consoles are being used as printer
devices as well, the driver will send the message to device 0 — normally the main
console.

Keeping Time and Date
CP/M does not have provision for keeping the current time and date in the

system. The example enhancement shows how to keep the time of day and the
current date in the short term configuration block by using escape sequences
output to the console (1) to set them to the correct values and (2) to “read” them
from the console input stream.

The example presupposes that the system has a hardware chip that can be
programmed to generate an interrupt every l/60th of a second (16.666 millisec
onds). This provides a divide-down counter to measure seconds elapsed. Of
course, if your computer has a true real time clock that you can read and get the
current time in hours, minutes, and seconds, your code will be very simple. You
still will need to have the clock generate a periodic interrupt, however, in order to
use the watchdog feature for timing printer and disk operations.

Actual time is kept as ASCII characters, using another ASCII control table to
determine when “carry and reset to zero” should occur. By changing two bytes in
this table, the time can be kept in 12- or 24-hour format.

Chapter 8: Writing an Enhanced BIOS 225

The date is simply stored as a string. The example code does not attempt to
make sure that the date is valid, nor to update when midnight rolls around. This
could be done easily by the BIOS — but it would take a fairly large amount of code.

Watchdog Timer
Having a periodic source of interrupts also opens the door to building in an

emergency or watchdog timer. This is nothing more than a 16-bit counter. Each
time the real time clock interrupts, or ticks, the interrupt service routine checks the
watchdog count. If it is already at zero, nothing more happens — the watchdog is
not in use. If it is nonzero, the routine decrements the count by one. If this results in
a zero value, the interrupt service routine CALLs a predetermined address. This
will be the address of some emergency interrupt service routine that can then take
special action, such as investigating the cause of the timeout.

The watchdog routine has a non-interrupt-level subroutine associated with it.
Calling this set watchdog subroutine provides a means of setting the count to a
predetermined number of real time clock “ticks” and setting the address to which
control should be transferred if the count reaches zero.

Having called the set watchdog subroutine, the driver can then sit in a status
loop, with interrupts enabled, waiting for some event to occur. If the event happens
before the watchdog count hits zero, the driver must call the set watchdog routine
again to set the count back to zero, thereby disabling the watchdog mechanism.

The watchdog timer can be used to detect printers that are busy for too long or
disk drives that take too long to complete an action either because of a hardware
failure or because the user has not loaded the disk into the drive.

Data Structures

As already stated, each character I/O device has its own device table that
describes all of its unique characteristics.

The other major data structure is the configuration blocks — both short and
long term.

This section describes each field in these data structures.

Device Table
Figure 8-6 shows the contents of a device table. More correctly, it shows a series

of equates that define the offsets of each field in the device table. The drivers are
given the base address of a specific device table. They then access each field by
adding the required offset to this base address.

The first part of the device table is devoted to the physical aspect of the device,
defining which port numbers are to be used to communicate with it. The drivers
need to know several different port numbers since each one is used for a particular

226 The CP/M Programmer’s Handbook

The drivers use a device table for each
physical device they service. The equates that follow
are used to access the various fields within the
device table.

Port numbers and status bits
0000 = DT*Status*Port EQU 0 ?Device status port number
0001 = DT*Data*Port EQU DT*Status*Port+l

;E»evice data port number
0002 = DT*Output*Ready EQU DT*Datapert+1

;0utput ready status mask ;
0003 = DT*Input*Ready EQU DT*Output*Ready+l

; Input ready status mask
0004 = DT*DTR*Ready EQU DT*Input*Ready+l

;DTR ready to send mask
0005 DT$Reset*Int*Port EQU DT*DTR*Ready+l

jPort number used to reset an
; interrupt

0006 - DT*Reset*Int*Value EQU DT *Re se t * In t *Por t + 1
;Value output to reset interrupt

0007 DT$Detect *Error*Port EQU DT*Reset*Int*Value+l
;Port number for error detect

0008 = DT*Detect*Error*Value EQU DT*Detect*Error*Port+l
;Mask for detecting error (parity etc.)

0009 = DT*Reset*Error*Port EQU DT*Detect*Error*Value+l ^
;Output to port to reset error

Q00A = DT*Reset*Error*Value EQU DT*Reset*Error*Port+l
;Value to output to reset error

000B * DT*RTS*Control*Port EQU DT*Reset*Error*Value+l
;Control port for lowering RTS

OOOC = DT*Drop*RTS*Value EQU DT*RTS*Con t r o 1*Por t +1
;Value, when output, to drop RTS

000D DT*Raise*RTS*Value

; Device

EQU

logical

DT*Drop*RTS*Value+l
;Value, when output, to raise RTS

status (incl. protocols)
000E DT*Status EQU DT*Rai se*RTS*Value + l

;Status bits
0001 = DT*Output*Suspend EQU 00 00 *0 00IB ;¡Output suspended pending

! protocol action
0002 = DT*Input$Suspend EQU 0000*0010B ;¡Input suspended until

buffer empties
0004 = DT*Output*DTR EQU 0000 *0100B ;¡Output uses DTR-high-to-send
0008 = DT*Output*Xon EQU 0000*10006 ;¡Output uses Xon/Xoff
0010 = DT*0ut put *Et x EQU 0001*00006 ;¡Output uses Etx/Ack
0020 = DT*Output*T imeout EQU 0010*00006 i¡Output uses Timeout
0040 = DT*Input*RTS EQU 0100*00006 ;¡Input uses RTS-high-to-receive
0080 = DT*Input*Xon EQU 1000*00006 s¡Input uses Xon/Xoff

000F = DT*Status*2 EQU DT*Status+l Secondary status byte
0001 DT*Fake*T ypeahead EQU 0000*000IB Requests Input*Status to

return "Data Ready" when
control characters are in
input buffer

0010 = DT*Et x*Count EQU DT*Status*2+l
;No. of chars.sent in Etx protocol

0012 DT*Et x*Message*Length EQU

Input

DT*Etx*Count+2
;Specified message length

buffer values
0014 = DT*Buf fer*Base EQU DT*Et x*Message*Li

;Address
sngth+2
of input buffer

0016 = DT*Put*0ffset EQU DT*Buf fer*Base+2
;Off set for putting chars, into buffer

0017 = DTGet0f fset EQU DT*Put*0f f set + 1
;0ffset for getting chars, from buffer

0018 = DT*Buf fer*Length*Mask EQU DT*Get*0ffset+1
;Length of buffer - 1
;Note: Buffer length must always be
; a binary number; e.g. 32, 64, or 128,
;This mask then becomes:
; 32 -> 31 (0001*111 IB)
; 64 -> 63 (0011*1liIB)
; 128 -> 127 (0111*11116)

Figure 8-6. Device table equates

Chapter 8: Writing an Enhanced BIOS 227

0019 DT $Ch aracter$Coun t EQU

{After the get/put offset has been
{ incremented it is ANDed with the mask
{ to reset it to zero when the end of
; the buffer has been reached.

DTiBuf fer$Length$Mask+l

001A DT$Stop$Input$Count EQU

;Count of the number of characters
{ currently in the buffer

DT$Character$Count+l

001B DT$Resume$ Input$Count EQU

{Stop input when the count reaches
{ this value

DT$Stop$Input$Count+1

001C DT$Control$Count EQU

;Resume input when the count reaches
; this value

DT$Resume$Input$Count+1

00 ID DT$Funct ion$Delay EQU

{Count of the number of control
{ characters in the buffer

DT$Control$Count+l

00 IE DT$Init ialize$Stream EQU

{Number of clock ticks to delay to
{ allow all characters after function
{ key lead-in to arrive

DT$Funct ion$Delay + l
{Address of byte stream necessary to
{ initialize this device

Figure 8-6. Device table equates (continued)

function. Depending upon your hardware, each port number could be different;
however, with standard Intel or Zilog chips, you will often find that the same port
number is used for several functions. The drivers also need to know what bit
patterns to expect when they read some ports and what values to output to ports in
order to obtain particular results.

The layout of the device table and the manner in which the equates are declared
are designed to make it easy for you to change the contents of the table to meet
your own special requirements. The fields in this first section of the device table are
discussed in the sections that follow.

DT$Status$Port The driver reads this port to determine whether the hardware chip has
incoming data ready to be input to the computer or whether the chip is capable of
accepting another data character for output to the physical device.

DT$Data$Port The driver reads from this port to access the next data character from the
physical device. The driver also writes to this port to output the next data
character to the device.

If your computer hardware requires that the input data port be a different
number from the output data port, you will have to alter the coding in the device
table equates as well as make the necessary changes in the input and output
subroutines in the body of the code.

DT$Output$Ready This is the bit mask that the driver will AND with the current device
status (obtained by reading the DT$Status$Port) to see whether the device is ready
to accept another output character. It assumes that the device is ready if the result
of the AND instruction is nonzero. You may have to change some JNZ (jump

228 The CP/M Programmer’s Handbook

nonzero) instructions to JZ (jump zero) instructions if your hardware device uses
inverted logic, with bits in the status byte set to 0 to indicate that the device can
accept another character for output.

Note that this status check relates only to the output chip — it is completely
separate from the question of whether the peripheral itself is ready to accept data.

DT$lnput$Ready This is the bit mask that the driver will AND with the current device
status to see if there is an incoming data character. The drivers again presume that
if the result of the AND is nonzero, then an incoming data character is waiting to
be read from the data port. You will need to make changes similar to those for the
output subroutines described in the previous section if your hardware uses
inverted logic (0 bit means incoming data).

DTDTRReady DTR stands for data terminal ready. It refers to one of the control lines
connected from the actual peripheral device to the I/O chip (via several other
integrated circuits). The drivers, as an option, will only output data to the device
when the DTR signal is at a positive voltage. If the peripheral, in order to stop the
flow of data characters being output to it, lowers the DTR signal to a negative
voltage, the drivers will wait. Once DTR goes positive again, the drivers will
resume sending data. Many hard-copy devices use this scheme to give themselves a
chance to print out data received from the computer. They may have to lower DTR
for several seconds, while they perform paper movement, for example.

The value in this field is a bit mask that the drivers use on the device status to
determine the state of the data-terminal-ready control signal.

DT$Reset$lnt$Port Since the input side of the drivers uses interrupts, when an incoming
character is ready to be input by the CPU, the hardware generates an interrupt
signal, and control is transferred to the interrupt service routine. This routine
“services” the interrupt by reading the incoming data character, saving it in
memory, and then transferring control back to whatever was being executed
when the interrupt occurred.

The more complicated interrupt controller chips (such as the Intel 8259A)
must be told as soon as a given interrupt has been serviced so that they can permit
servicing of any lower priority interrupts that may be waiting.

This field contains the port number that will be used to “reset” the interrupt, or
more correctly, to indicate the end of the previous interrupt’s servicing.

DT$Reset$lnt$Value This is the value that will be output to the DT$Reset$Int$Port to tell
the hardware that the previous interrupt service has been completed.

DT$Detect$Error$Port Before the driver attempts to read any incoming data from the
DTSDataSPort, it checks to see if any hardware errors have occurred. It does so by
reading status from this port.

Chapter 8: Writing an Enhanced BIOS 229

DT$Detect$Error$VaIue The status byte that is input from the DT$Detect$Error$Port is
ANDed with this value. If the result is nonzero, the driver assumes that an error
has occurred.

DT$Reset$Error$Port If an error has occurred, the driver outputs an error reset value to
this port number.

DT$Reset$Error$Value This is the value that will be output to the DT$Reset$Error$Port
to reset an error.

DTRTSControl$Port The drivers use this port number to control the request-to-send line
if the RTS protocol option is selected.

DT$Drop$RTS$Value This value is output to the RTS control port to lower the RTS line
so that some external device will stop sending data to the computer.

DT$Raise$RTS$Value This value is output to raise the RTS line so that the external device
will resume sending data to the computer.

DT$Status This is the first of two status bytes. It contains bit flags that are set to a 1 bit to
indicate the following conditions:

D T$ Outputs Suspend
Because of protocol, the device is currently suspended from receiving any
further output characters.

DT$ InputS Suspend
Because of protocol, the device has been requested not to send any more
input characters.

DT$ Outputs DTR
T he driver w ill m aintain D TR -high-to-send p ro toco l for output data.

DT$ Outputs Xon
The driver will maintain XON/XOFF protocol for output data.

DT$ Outputs Etx
The driver will maintain ETX/ACK protocol for output data.

DTSInputSRTS
The driver will maintain RTS-high-to-receive protocol for input data.

DTSInputSXon
The driver will maintain XON/XOFF protocol for input data.

DT$Status$2 This is another status byte, also with the following bit flag:
DT$ FakeS Type ahead

CONST will “lie” about the availability of incoming console characters. It

230 The CP/M Programmer’s Handbook

w ill on ly ind icate that data is w aitin g if there are co n tro l characters o ther than
c a r r ia g e RETURN, l in e FEED, or TAB in the input buffer.

DTEtxCount This value is only used for ETX/ACK protocol. It is a count of the number of
characters sent in the current message. When this count reaches the defined
message length, then the driver will send an ETX character and suspend any further
output.

DTEtxMessage$Length This value is the defined message length for the ETX/ACK
protocol. It is used to reset the DTEtxCount.

DT$Buffer$Base This is the address of the first byte of the device’s input buffer.

DTPutOffset This byte contains the relative offset indicating where the next incoming
character is to be “put” in the input buffer. This byte must then be converted into a
word value and added to the DT$Buffer$Base address to get the absolute memory
location.

DTGetOffset This byte contains the relative offset indicating where the next character is
to be “got” in the input buffer. ,

DT$Buffer$Length$Mask This byte contains the length of the buffer minus one. The
length of the buffer must always be a binary number (8, 16, 32, 64...). Therefore,
one less than the length forms a mask value. Both the get and put offsets, after
being incremented, are masked with this value. When the offset reaches the end of
the buffer, this masking operation will “automatically” reset the offset to zero.

DT$Character$Count This is a count of the total number of characters in the buffer. It is
incremented by the interrupt service routine each time a character is placed in the
buffer, and decremented by the CON1N routine each time it gets a character from
the buffer.

CONST uses this value to determine whether any characters are available for -
input.

DT$Stop$lnput$Count When the interrupt service routines detect that the DTSCharac-
terSCount is equal to this value (normally buffer length minus five), the drivers will
invoke the selected input protocol, lowering RTS or sending XOFF, to shut off the '
incoming data stream.

DT$Resume$lnput$Count When the CONIN routine detects that the DT$Character$-
Count has become equal to this value, the drivers will again invoke the selected
input protocol, either raising RTS or sending XON to resume receiving input data.

DT$Control$Count This is a count of the number of control characters in the input buffer.
C a r r ia g e r e t u r n , l in e f e e d , and ta b characters are not included in th is count.

Chapter 8: Writing an Enhanced BIOS 231

It is incremented by the interrupt service routine and decremented by CONIN.
CONST uses the count when the DT$Fake$Typeahead mode is active; it will only
indicate that characters are waiting in the input buffer if the control count is
nonzero.

DT$Function$Delay This is the number of clock ticks that should be allowed to elapse
after the first character of an incoming escape sequence has been detected. It
allows time for the remaining characters in the escape sequence to arrive, assum
ing that these are being emitted by a terminal at maximum baud rate. Normally,
this will correspond to a delay of approximately 90 milliseconds.

DT$lnitialize$Stream This is the address of the first byte of a string. This string has the
following format:

DB ppH Port number
DB nnH Number of bytes to be output
DB vvH,vvH... Initialization bytes to be output to the specified port number

This sequence can be repeated as many times as is necessary, with a “port”
number of 00H acting as a terminator.

Disk Input/Output

The example drivers show three main disk I/O enhancements:
• Full track buffering
• Using memory as an ultra-fast disk
• Improved error handling.

Full Track Buffering
The 5 1/4" diskettes used in the example system are double-sided. Each side has

a separate read/write head in the disk drive. The disk controller is fast enough that,
if so commanded, it can read in a complete track’s worth of data from one side of
the diskette in a single revolution of the diskette.

The drivers have been modified to do just this. The main disk buffer has been
dramatically enlarged to accommodate nine 512-byte sectors.

In the earlier standard BIOS, CP/M was configured for tracks of 18 512-byte
sectors. The data from each head on a given track was laid “end-to-end” to create
the illusion of a single surface with twice as much data on it. For track buffering,
performance would be reduced if each read required two revolutions of the
diskette, and so in this BIOS the tables and the low-level driver logic have been
changed. Each surface is separated, with even numbered tracks on head 0, odd on
head 1.

232 The CP/M Programmer’s Handbook

The track number given to the low-level drivers serves two purposes. The least
significant bit identifies the head number. When the track number is shifted one bit
right, the result is the physical track number to which the head assembly must be
positioned.

The deblocking algorithm has also been modified by deleting references to
sectors. The code is now concerned only with whether the correct disk and track
are in the buffer. If this is true, the correct sector must, by definition, be in the
buffer.

The deblocking code no longer takes any note when the BDOS indicates that it
is writing to an unallocated allocation block—knowledge it used to bypass a sector
preread in the standard BIOS. The track size in this enhanced BIOS is much larger
than an allocation block, and so the question is meaningless; the whole track must
be preread to write just a single sector.

This enhancement really excels when the BDOS is doing directory operations,
which always involve a series of sequential reads. The entire directory can be
brought into memory, updated, and written back in just two disk revolutions.

One point to watch out for is what is known as “deferred writes.” Imagine a
program instructed to write on a sector on track 20. The drivers will read in track
20, copy the contents of the designated sector into the track buffer, and return to
the program without actually writing the data to the disk. The program could
“write” to all of the sectors on this track without any actual disk writes. During all
this time, this data would exist only in memory and not on the disk drive, so if a
power failure occurred, several thousand bytes of data would be lost. Writing to
the directory is an exception. The drivers always physically write to the disk when
the BDOS indicates that it is writing to a directory sector.

In reality, the increased risk is small. Most programs are constantly reading
and writing files, so that the track buffer will be written out frequently in order to
read in another track. When programs end, they close output files. This in turn
triggers directory writes that force data tracks onto the disk.

If high security is a requirement for your computer, you could extend the
watchdog routine to include another separate timer. You could preset this timer
for, say, a ten-second delay each time you write into the track buffer but do not
write the buffer to the disk. When the count expires, it would set a flag that could
be tested by all of the felOS entry points. If set, they would initiate a write of the
track buffer to the disk.

Using Memory as an Ultra-Fast Disk
As you can see from the preceding section, increased performance tends to go

hand in hand with increased memory requirements. This is certainly true with a
“memory disk,” commonly called a RAM-disk or M-disk. In fact, to have an
M-disk with reasonable storage capacity, your computer must have at least 128K
bytes of additional memory.

Chapter 8: Writing an Enhanced BIOS 233

Since the 8080 or Z80 can only address 64K of memory at one time, to get
access to any of this additional memory, some part of your computer’s “normal”
memory must be removed from the 64K address space and the additional memory
must be switched in. This is known as bank-switched memory.

Figure 8-7 shows the memory organization that is supported by the example
M-disk drivers.

You can see that the system has a total of 256K bytes of RAM, organized with
the top 16K, from 64K down to 48K, being “common”—that is, switched into the
address space all the time. The lower 48K can be selected from five banks,
numbered 0 to 4. Bank 0 is switched in for normal CP/M operations.

The M-disk parameter blocks describe a disk with eight “tracks,” numbered 0
to 7. The least significant bit of the track number determines whether the base
address of the track will be 0000H or 6000H. Shifting the track number right one
bit gives the bank number. Each track consists of 192 sectors. To get the relative
address of a sector within its “track,” shift the sector number eight bits left, thus
multiplying it by 128.

The M-disk is referenced by logical disk M:. A few special-case instructions are
required to return the special M-disk parameter header in SELDSK.

One problem, fortunately easily solved, is that the user’s DMA address coex
ists in the address space with the M-disk image itself. There is no direct way to
move data between bank 0 and any other bank. The M-disk uses an intermediary
buffer in common memory (above 48K), moving data into this, switching banks,
and then moving the data down again. Figure 8-8 shows an example of this
sequence, as used when reading from the M-disk.

6 4 K -

CP/M

48K —

Trk Trk Trk Trk
1 3 5 7

- 24K

Trk Trk Trk Trk
0 2 4 6

Bank Number — 0 1 2 3 4

Figure 8-7. Memory organization for M-disk

234 The CP/M Programmer’s Handbook

Intermediary
Buffer

#2: Select bank 0
move to user’s

DMA buffer

User’s DMA Sector in M-Disk

Bank Number — 0 2

Figure 8-8. Reading a sector from the M-disk image

During cold boot initialization, the M-disk driver checks the very first direc
tory entry (in bank 1) to see if it matches a dummy entry for a file called “M$Disk.”
If this entry is present, the M-disk is assumed to contain valid information. If the
entry is absent, the initialization code makes this special directory entry and fills
the remainder of the directory with 0E5H, making it appear empty. The dummy
entry makes it appear that the “MSDisk” file is in user 15, marked System status
and Read-Only—all of which are designed to prevent its accidental erasure.

Custom Patches to CP/M

Two features shown in the enhanced BIOS, one in the CCP and one in the
BDOS, require changes to CP/M itself. These features are implemented by modify
ing the CCP and BDOS to transfer control to the BIOS at specific points, execute a
few instructions in the BIOS, and then return to CP/M. The patches could be made
by modifying the MOVCPM program to install the changes permanently. The
changed version of MOVCPM, however, must be used with a specific version of
the BIOS. Therefore, patching CP/M “on the fly” ensures that there will be no
mismatch between the BIOS and the rest of CP/M.

Both of these patches were produced with the assistance of Digital Research.

Chapter 8: Writing an Enhanced BIOS 235

User 0 Files Made Public
The first change permits files created in user area 0 to be accessible from all

other user numbers. This feature comes into its own only with hard disk systems.
On a hard disk, user numbers can partition the disk, but the frequently used
utilities must then be duplicated in each user area. Allowing files in user area 0 to
be public means that these files will be accessible from all the other user numbers.
Hence the files need not be copied into each user area.

The public files feature alters the way that the BDOS performs the Search Next
function, allowing access to files declared in user area 0 even when the current user
number is not 0. However, the feature is a double-edged sword—user 0 files can be
accidentally erased or damaged as well as accessed. Therefore, user 0 files should
be declared as System status and Read-Only to protect them. As an additional
precaution, public files can be turned off by a control flag in the long term
configuration block. This flag is set to an initial state that disables public files.

Modified User Prompt
This modification makes the CCP display the current user number as well as

the default disk. For example,
3B>

indicates that you are currently in user number 3, with disk B: as the default. In
addition, if you have enabled public files, the prompt is preceded by the letter “P”
to serve as a reminder:
P3B>

An Enhanced BIOS

The remainder of this chapter consists of the assembly language source code
for the enhanced BIOS described here. It is rather a daunting listing, but will be
well worth your study. The copious commentary has been written to make this
study easier, and emphasis has been placed on explaining why as well as what
things are done.

As with the standard BIOS, each line is numbered so that you can use the
functional index in Figure 8-9 to find areas of interest in the listing. Note that the
line numbers are not contiguous. They jump several hundred at the start of each
major section or subroutine. This facilitates minor changes in the listing without
revision of the functional index. The full listing is given in Figure 8-10.

236 The CP/M Programmer’s Handbook

Start Line

00001
00200
00400
00800
00900
01100
01200
01300
01500
01700
01800
02000
02100
02200
02500
02700
02900
03000
03100
03200
03300
03400
03500
03600
03656
03800
04000
04200
04400
04600
04800
04900
05000
05300
05400
05500
05700
05900
06000
06200
06300
06400
06600
06800
07000
07100

Functional Component or Routine

Introductory Comments and Equates
BIOS Jump Table with Additional Private Entries
Long Term Configuration Block
Interrupt Vector
Device Port Numbers and Other Equates
DisplaySMessage Subroutine
Enter$CPM Setup
Device Table Equates
Device Table Declarations
General Device Initialization
Specific Device Initialization
Output Byte Stream
CONST Routine
CONIN Routine with Function Key Processing
Console Output
CONOUT Routine with Escape Sequence Processing
AUXIST—Auxiliary Input Status Routine
AUXOST—Auxiliary Output Status Routine
AUXIN—Auxiliary Input Routine
AUXOUT—Auxiliary Output Routine
LISTST—List Status Routine
LIST—List Output Routine
Request User Choice—Request Action After Error
Output Error Message
Get Composite Status from Selected Output Devices
Multiple Output of Byte to All Output Devices
Check Output Device Logically (Protocol) Ready
Process ETX/ACK Protocol
Select Device Table from I/O Redirection Bit Map
Get Input Character from Input Buffer
Introductory Comments for Interrupt-Driven Drivers
Character Interrupt Service Routine
Service Device—Puts Character into Input Buffer
Get Address of Character in Input Buffer
Check if Control Character (not cr , lf, tab)
Output Data Byte
Input Status Routine
Set Watchdog Timer Routine
Real Time Clock Interrupt Service Routine
Shift HL Right One Bit Routine
Introductory Comments for High-Level Disk Drivers
Disk Parameter Headers
Disk Parameter Blocks
SELDSK—Select Disk Routine
SETTRK—Set Track Routine
SETSEC—Set Sector Routine

Figure 8-9. Functional index for listing in Figure 8-10

Chapter 8: Writing an Enhanced BIOS 237

07200 SETDMA—Set DMA Routine
07300 Skew Tables for Sector Translation
07400 SECTRAN—Sector Translation Routine
07500 HOME—Home Disk to Track and Sector 0
07600 Equates for Physical Disk and Deblocking Variables
07800 READ—Sector Read Routine
07900 WRITE—Sector Write Routine
08000 Common Read/Write Code with Deblocking Algorithm
08300 Move$8 Routine—Moves Memory in 8-Byte Blocks
08500 Introductory Comments for Disk Controllers
08700 Nondeblocked Read and Write
08900 M-Disk Driver
09100 Select Memory Bank Routine
09200 Physical Read/Write to Deblocked Disks
09400 Disk Error Handling Routines
09700 Disk Control Tables for Warm Boot
09800 WBOOT—Warm Boot Routine
10000 Ghost Interrupt Service
10100 Patch CP/M for Public Files and Prompt Changes
10300 Get Configuration Block Addresses
10400 Addresses of Objects in Configuration Blocks
10500 Short Term Configuration Block
10700 Note on Why Uninitialized Buffers are at End of BIOS
10800 Cold Boot Initialization Hidden in Disk Buffer Followed by All Uninitialized Buffers

FIGURE 8-9. Functional index for listing in Figure 8-10 (continued)

00001 This is a skeletal example of an enhanced BIOS.
00010 It includes fragments of the standard BIOS
00011 shown as Figure 6-4 in outline, so as to
00012 avoid cluttering up the enhancements with the
00013 supporting substructure. Many of the original
00014 comment blocks have been abbreviated or deleted
00015 ent irely.
00016
00017 < — NOTE: The line numbers at the left are included
00018 to allow reference to the code from the text.
00019 There are deliberate discontinuities in the
00020 numbers to allow space for expansion.
00021

3030 = 00022 VERSION EQU '00' ;Equates used in the sign-on message
3230 = 00023 MONTH EQU '02'
3632 = 00024 DAY EQU '26
3338 = 00025 YEAR EQU '83'

00026 ;
00027)
00028 ;r * *
00029 ;■ * This BIOS is for a computer system with the following *
00030 ;t * hardware configuration : **
00031 ; * *
00032 i‘ * — 8080 CPU Ä
00033 it * — 64K bytes of RAM »
00034 * * — 3 serial 1/0 ports (using signetics 2651) for: *
00035 ; * console, communications and list **
00036 ; * — Two 5 1/4" mini floppy, double-sided, double «
00037 ; * density drives. These drives use 512-byte sectors. *
00038 • Ä These are used as logical disks A: and B : . *
00039 i * Full track buffering is supported. *

Figure 8-10. Enhanced BIOS listing

238 The CP/M Programmer’s Handbook

00040 » * — Two 8 " standard diskette drives (128-byte sectors) «
00041 ; « These are used as logical disks C: and D : . *
00042 ** — A memory-based disk (M-disk) is supported. *
00043 * * *
00044 * * Two intelligent disk controllers are used, one for «
00045 ; * each diskette type. These controllers access memory *
00046 ; » dir5iztly, both to read the details of the *
00047 • * operations they are to perform and also to read «
00048 ; * and write data from and to the diskettes. *
00049 ; * *
00050 * * **
00051
00052
00053
00054 ; Equates for characters in the ASCII character set
00055 ;

0011 = 00056 XON EQU 11H pReenables transmission of data
0013 = 00057 XOFF EQU 13H ;iDisables transmission of data
0003 = 00058 ETX EQU 03H ifEnd of transmission
0006 = 00059 ACK EQU 06H ;Acknowledge
000D = 00060 CR ’EQU ODH ;Carriage return
OOOA - 00061 LF EQU OAH ;Line feed
0009 = 00062 TAB EQU 09H ;Horizontal tab
0007 00063

00064
00065

BELL EQU 07H :Sound terminal's bell

00066 ; Equates for defining memory size and the base address and
00067 ; length of the system components
00068

0040 = 00069 Memory$Size EQU 64 ; Number of Kbytes of RAM
00070
00071 ; The BIOS length must be determined by inspection.
00072 ; Comment out the ORG BIOS$Entry line below by changing the first
00073 ; character to a semicolon (this will make the assembler start
00074 ; the BIOS at location 0). Then assemble the BIOS and round u p to
00075 ; the nearest 100H the address displayed on the console at the end
00076 ; of the assembly.
00077

2500 = 00078 BIOSÍLength EQU 2500H ;<— Revised to an approximate value
00079
00080

; to reflect enhancements

0800 = 00081 CCP*Length EQU 0800H ; Constant
OEOO = 00082 BDOS*Length EQU 0E00H ; Constant

00083 ;
OOOF = 00084 Overall$Length EQU (CCPSLength + BDOSSLength + BIOS$Length + 1023) / 1024

00085
C400 = 00086 CCP$Entry EQU (Memory$Size - Overall$Length) « 1024
CC06 = 00087 BDOS$En try EQU CCPSEntry + CCPSLength + 6
DAOO = 00088 BIOS$Entry EQU CCPSEntry + CCP$Length + BDOS$Length

00089 ;
0005 = 00090 BDOS EQU 0005H ;BDGS entry point (used for making

00091
00092
00200 ;#

; system reset requests)

00201
00202

; ORG BI0S*Entt-y :Assemble code at BIOS address

00203
00204

; BIOS jump vector

0000 C31311 00205 JMP BOOT Cold boot — entered from CP/M bootstrap loader
00206 Warm$Boot$En try: Labelled so that the initialization code can
00207 put the warm boot entry address in location
00208 0001H and 0002H of the base page

0003 C3750E 00209 JMP WBOOT Warm boot — entered by jumping to location 0000H
00210 Reloads the CCP, which, could have been
00211 overwritten by previous program in transient
00212 program area

0006 C32D03 00213 JMP CONST Console status — returns A = OFFH if there is a
00214 console keyboard character waiting

0009 C33A03 00215 JMP CON IN Console input — returns the next console keyboard '
00216 character in A

OOOC C3D703 00217 JMP CONOUT Console output — outputs the character in C. to
00218 the console device

OOOF C3F504 00219 JMP LIST List output — outputs the character in C to the
00220 list device

0012 C3CE04 00221 JMP AUXOUT Auxiliary output — outputs the character in C to the
00222 logical auxiliary device

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 239

0015 C3A104 00223 JMP AUXIN Auxiliary input — returns the next input character from
00224 the logical auxiliary device in A

0018 C3160A 00225 JMP HOME Homes the currently selected disk to track 0
00 IB C 36309 00226 JMP SELDSK Selects the disk drive specified in register C and

00227 returns the address of the disk parameter header
00 IE C39B09 00228 JMP SETTRK Sets the track for the next read or write operation

00229 from the BC register pair
0021 C3A109 00230 JMP SETSEC Sets the sector for the next read or write operation

00231 from the A register
0024 C3A809 00232 JMP SETDMA Sets the direct memory address (disk read/write)

00233 address for the next read or write operation
00234 from the DE register pair

0027 C3370A 00235 JMP READ Reads the previously specified track and sector from
00236 the selected disk into the DMA address

002A C34B0A 00237 JMP WRITE Writes the previously specified track, and sector onto
00238 the selected disk from the DMA address

002D C3D704 00239 JMP LISTST Returns A = OFFH if the list device(s) are
00240 logically ready to accept another output byte

0030 C3100A 00241
00242

JMP SECTRAN Translates a logical sector into a physical one

00243 Additional "private" BIOS entry points
00244

0033 C38F04 00245 JMP AUX IST Returns A = OFFH if there is input data for
00246 the logical auxiliary device

0036 C39B04 00247 JMP AUXOST Returns A = OFFH if the auxiliary device(s) are
00248 logically ready to accept another output byte

0039 C3FA02 00249 JMP Spec ific*C10*Initialization
00250 •Initializes character device whose device
00251 number is in register A on entry

003C C36D08 00252 JMP Set*Watchdog
00253 jSets up watchdog timer to CALL address specified
00254 in HL, after BC clock ticks have elapsed

003F C33C0F 00255 JMP CB*Get*Address
00256 Configuration block get address
00257 Returns address in HL of data element whose
00258
00259
00400 #

code number is specified in C

00401 Long term configuration block
00402
00403 Long*Term*CB:
00404
00405
00406 Publie files (files in user 0 accessible from all
00407 other user numbeirs) enabled when this flag is set
00408
00409

nonzero

0042 00 00410 CB*Public*Files : DB 0 ; D e fault is OFF
00411
00412
00413 The for ced input pointer is initialized to point to the
00414 following string of characters. These are injected into
00415 the console input stream on system start-up.
00416

0043 5355424D4900417 CB*Startup: DB 'SUBMIT STARTUP ’,L F , 0,0,0, 0,0, 0
00418

\ 00419 Logical to physical device redirection
; 00420

00421 Each logical device has a 16-bit word associated
00422 with it. Each bit in the word is assigned to a
00423 specif ic physical device. For input, only one bit
00424 can be set — input will be read from the
00425 corresponding physical device. Output can be
00426 directed to several devices, so more than one
00427
00428

bit can 1be set.

00429 The following equates are used to indicate
00430
00431

specif ic physical devices.

00432 1 1 1 1 1 1 >
00433 5432 1098 7654 3210)<- Device number

0001 = 00434 Device*0 EQU 0000*0000*0000*0001B
0002 = 00435 Device*l EQU 0000*0000*0000*001OB
0004 = 00436 Device*2 EQU 0000*0000*0000*0100B

00437 ;
00438 : The following words are tested by the logical
00439 ; device d rivers to transfer control to

Figure 8-10. (Continued)

240 The CP/M Programmer’s Handbook

00440
00441

the appropriate physical device drivers

0058 0100 00442 CB*Console*Input: DW Device*0
005A 0100 00443 CB*Console*Output: DW Device*0

00444
005C 0200 00445 CB *A uxi 1iary*Input: DW Device*l
005E 0200 00446 CB*Auxi1iary*Output: DW Device*!

00447
0060 0400 00448 CB*List*Input: DW Device*2
0062 0400 00449 CB*List*Output : DW Device*2

00450
00451 The table below relates specific bits in the
00452 redirection words above to specific device
00453 tables used by the physical drivers
00454
00455 CB*Dev ice *T ab1e*Addres se s :

0064 8E02 00456 DW DT*0
0066 AE02 00457 DW DT*1
0068 CE02 00458 DW DT*2
006A 000000000000459 DW 0,0,0,0,0,0,0,0,0,0,0,0,0 ; Unassigned

00460
00461
00462 Device initialisation byte streams
00463
00464 These initialisation streams are output during the device
00465 initialisation phase, or on request whenever the baud rate
00466 needs to be changed. They are defined in the long term
00467 configuration block so as to "freeze" their contents from one
00468
00469

system startup until the next.

00470 The address of each stream is contained in each device table.
00471
00472 The stream format is:
00473
00474 DB x x i¡Port number (00H terminates)
00475 DB nn !¡Number of bytes to output to port
00476
00477

DB vv,vv,vv.. !¡Values to be output

00478 D0*lnitialize*Stream: ¡Example data for an S251A chip
0084 ED 00479 DB 0EDH ;¡Port number for 8251A
0085 06 00480 DB 6 !¡Number of bytes
0086 000000 00481 DB 0,0,0 i¡Dummy bytes to get chip ready
0089 42 00482 DB 0100*001OB ;¡Reset and raise DTR
008A 6E 00483 DB 01 *1 0* 11*10B ;¡1 stop, no parity, 8 bits/char,

00484 ; divide down of 16
008B 25 00485 DB 0010*0101B ;¡RTS high, enable Tx/Rx

00486 ; Example data for an 8253 chip
008C DF 00487 DB ODFH Port number for 8253 mode
008D 01 00488 DB 1 Number of bytes to output
008E 76 00489 DB 01*11*011*0B Select:

00490 Counter 1
00491 Load LS byte first
00492 Mode 3, binary count

008F DE 00493 DB ODEH Port number for counter
0090 02 00494 DB 2 Number of bytes to output

00495 DO*Baud*Rate*Constant: Label used by utilities
0091 0700 00496 DW 0007H 9600 Baud (based on 16x divider)
0093 00 00497

00498
DB 0 Port number of 00 terminates stream

00499 Dl*Initialize*Stream: ¡Example data for an 8251A chip
0094 DD 00500 DB ODDH :¡Port number for 8251A
0095 06 00501 DB 6 ;¡Number of bytes
0096 000000 00502 DB 0,0,0 l¡Dummy bytes to get chip ready
0099 42 00503 DB 0100*001OB ¡Reset and raise DTR
009A 6E 00504 DB 01*10*11*10B ¡1 stop, no parity, 8 bits/char,

00505 ¡ divide down of 16
009B 25 00506

00507
DB 0010*0101B ¡RTS high, enable Tx/Rx

00508 ; Example data for an 8253 chip
009C DF 00509 DB ODFH Port member for 8253 mode
009D 01 00510 DB 1 Number of bytes to output
009E B6 00511 DB 10*11*011*0B Sele ct:

00512 Counter 2
00513 Load LS byte first
00514 Mode 3, binary count

009F DE 00515 DB ODEH Port number for counter
00A0 02 00516 DB 2 Number of bytes to output

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 241

00517 Dl*Baud*Rate*Constant:
00A1 3800 00518 DW 0038H ;1200 baud (based on 16x divider)
00A3 00 00519

00520
DB 0 ;Port number of 00 terminates stream

00521 D2*Initialize*Stream: jExample data for an 8251A chip
00A4 DD 00522 DB ODDH yPort number for 8251A
00A5 06 00523 DB 6 ;Number of bytes
00A6 000000 00524 DB 0,0,0 ;Dummy bytes to get chip ready
00A9 42 00525 DB 0100*001OB yReset and raise DTR
00AA 6E 00526 DB 01*10*11*10B ;1 stop, no parity, 8 bits/char.

00527 ; divide down of 16
00AB 25 00528

00529
DB 0010*0101B ;RTS high, enable Tx/Rx

00530 ^Example data for an 8253 chip
00AC DF 00531 DB ODFH ;Port number for 8253 mode
00AD 01 00532 DB 1 ;Number of bytes to output
00AE F6 00533 DB 11*11*011*0B ;Sele ct:

00534 ; Counter 3
00535 ; Load LS byte first
00536 ; Mode 3, binary count

00AF DE 00537 DB ODEH ;Port number for counter
00B0 02 00538 DB 2 ;Number of bytes to output

00539 D2*Baud*Rate*Constant:
00B1 3800 00540 DU 0038H ; 1200 baud (based on 16x divider)
00B3 00 00541 DB 0 ;Port number of 00 terminates stream

00542
00543
00544
00545
00546
00547
00548
00549
00550
00551
00552
00553
00554
00555

This following table is used to determine the maximum
value for each character posit-ion in the ASCII time
value above (except the ":"). Note — this table is
in the long term configuration block so that the clock
can be set "permanently" to eitither 12 or 24 hour format.

00B4 00 00556
00557

DB
C B * 12*24*Clock:

0

00B5 3334 00558 DB '34
00B7 FF 00559 DB OFFH
00B8 363A 00560 DB •'6: '
00BA FF 00561 DB OFFH
00BB 363A 00562 DB •'6: • '

00563
00564
00565
00566
00567
00568

NOTE: The table is processed backwards — to correspond
with the ASCII time.
Each character represents the value for the corresponding
character in the ASCII time at which a carry-and-reset-to-zero
should occur.

;"Terminator"

;Change to '23' for a 12-hour clock
:"Skip" character
;Maximum minutes are 59
;"Skip" character
;Maximum seconds are 59
;Used when updating the timeUpdate$Time$End:

Variables for the real time clock and watchdog
t imer

OOBD 3C 00569 RTC*Ticks*per*Second DB 60 Number of real time clock

OOBE 3C
00570
00571 RTC*Tick*Count DB 60

t icks
Residual

per elapsed second
count before next

OOBF Q Q O f y
00572
00573 RTC*Watchdog*Count DW 0

second
Watchdog

will elapse
timer tick count

00C1 0000
00574
00575 RTC*Watchdog*Address DW 0

(0 = no
Address

watchdog timer set)
to which control

00576
00577
00578
00579
00580
00581
00582
00583
00584
00585
00586
00587
00588
00589
00590
00591
00592
00593

will be transferred
watchdog count hits

Function key table

This table consists of a series of entries, each one having the
following structure:

DB Second character of sequence emitted by
terminal 's function key

(DB Third character of sequence — NOTE: this
(field will not be present if the source code
(has been configured to accept only two characters
(in function key sequences.
(NOTE: Adjust the equates for;
(Function*Key*Length
(Three*Character*Function

Figure 8-10. (Continued)

242 The CP/M Programmer’s Handbook

00 IB
0003

00594
00595
00596
00597
00598
00599
00600
00601
00602
00603
00604
00605
00606
00607
00608
00609
00610
00611
00612
00613
00614

A character string to be forced into the console
input stream when the corresponding function key
is pressed. The last byte of this string must be
00H to terminate the forced input.

FunctionKeyLead v
Funct ionKeyLength

EQU
EQU

Three$Character$Funct ion

1BH ¡¡Signals function key sequence
Number of characters in function

key input sequence (NOTE: this
can only be 3 or 2 characters).

The logic associated with function
key recognition is made easier with
the following equate

EQU Funct ic*nKeyLength - 2
Three$Character$Function will be TRUE if the

function keys emit a three character
sequence, FALSE if they emit a two character-
sequence .

00615 ; Each entry in the table must be the same length, as defined by
00616

0013 = 00617 CB$Funct ion$K'ey$Entr y$Si se EQU 16 + 1 + FunctionKeyLength -
00618 *
00619 ! !
00620 Maximum length of substitute ! Lead character
00621 string ! in table entry
00622 For the terminating 00H
00623
00624 ; The last ent ry in the table is marked by a 00-byte.
00625
00626 ; The example values shown below are for a VT-100 terminal.
00627
00628 CB$Funct ion$Key$Table:
00629 123456789.1234 5 6 7 <- Use to check length

00C3 4F5046756E00630 DB O', "P", "Function Key l',LF,0,0
00D6 4F5146756E00631 DB "O', ' Q ■', 'Function Key 2",LF,0,0
00E9 4FS246756E00632 DB 'O', "R", Function Key 3,LF,0,0
OOFC 4F5346756E00633 DB "0", "S', Function Key 4,LF,0,0

00634
00635 123456789.1

01 OF 5B4155702000636 DB " C ", 'A', "Up Arrow', LF, 0,0,0,0, 0, 0, 0,0
0122 5B42446F7700637 DB ' C ', "B",•"Down Arrow ', LF, 0,0,0,0,0,0
0135 5B4352696700638 DB ' C ', X", 'Right Arrow ',LF,0,0,0,0,0
0148 5B444C656600639 DB ' C ', "D", 'Left Arrow",LF,0,0,0,0,0,0 '

015B
016E
0181
0194
01A7
01 BA
01 CD
0 1E 0
01F3
0206

00640
000000000000641
000000000000642
000000000000643
000000000000644
000000000000645
000000000000646
000000000000647
000000000000648
000000000000649
000000000000650

00651
FFFF 00652

00653
00654
00655
00656
00657
00658
00659
00660
00661
00662
00663
00664

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 , 0 ,0 ,0 ,0 ,0 ,0,0
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 , 0 ,0,0
0 ,0 , 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0,0
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 , 0 ,0,0
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 , 0 ,0,0
0 ,0 , 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 , 0 ,0 ,0 ,0 ,0 ,0,0
0 , 0 ,0 ,0 ,0 ,0 ,0 , 0 ,0 ,0 ,0 ,0 ,0 , 0 ,0 ,0 ,0 ,0 , o
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0,0

;Spare entries

OFFH,OFFH ;Terminator for utility that preprograms
; function key sequence

Console output escape sequence control table

This table is referenced after a FunctionKeyLead character
has been detected in the CQNOUT routine. The next character
to be output to the console is compared to the first byte
in each 3-byte table entry. If a match is found, then control
is transferred to the address following the byte that matched.

CQNOUT*Escape$Table :
02 IB 74 00665 DB ' t ' ;Read current time
021C 4804 00666 DU C0N0UT$T irne
021E 64 00667 DB ' d ' ;Read current date
02 IF 4104 00668 DU CONOUTSDate
0221 75 00669 DB ■' u •' ;Set current time
0222 5D04 00670 DU CQNOUT $Se t $T i me

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 243

0224 65 00671 DB 'e' jSet current date
0225 4E04 00672 DM CONOUT *Se t *Da t e

00673
0227 00 00674 DB 0 ;Terminator

00675
00676 Long$Term*CB*End:
00677
00800 ; #
00801
00802 ; Interrupt vector
00803
00804 j Control is transferred here by the programmable interrupt
00805 ; controller -- an Intel S259A.
00806
00807 ï NOTE: The interrupt controller chip requires that the
00808 interrupt vector table start on a paragraph
00809 boundary. This is achieved by the following ORG line

0240 00810 ORG (* AND OFFEOH) + 20H
00811 Interrupt*Vector:
00812 ïInterrupt number

0240 C37808 00813 JMP RTC*Interrupt ;0 — clock
0243 00 00814 DB 0 ;Skip a byte
0244 C3E806 00815 JMP Character*Interrupt yl — character I/O
0247 00 00816 DB 0
0248 C3D80E 00817 JMP Ghost*Interrupt ;2 — not used
024B 00 00818 DB 0
024C C3D80E 00819 JMP Ghost$Interrupt ?3 — not used
024F 00 00820 DB 0
0250 C3D80E 00821 JMP Ghosttlnterrupt ?4 — not used
0253 00 00822 DB 0
0254 C3D80E 00823 JMP Ghost$Interrupt ;5 — not used
0257 00 00824 DB 0
0258 C3D80E 00825 JMP Ghostilnterrupt ;6 — not used
025B 00 00826 DB 0
025C C3D80E 00827 JMP Ghost*Interrupt ;7 — not used

00828 ;
00900 ; #
00901
00902 ; Device port numbers and other equates
00903

0080 = 00904 CI0*Base*Port EQU 80H ;Base port number
00905

0080 = 00906 D0*Base*Port EQU CIO*Base*Port ;Device 0
0080 = 00907 DO*Data*Port EQU DO*Base*Port
0081 = 00908 DO*Status*Port EQU DO*Base*Port + 1
0082 s 00909 D0*Mode*Port EQU DO*Base*Port + 2
0083 = 00910 DO*Command*Por t EQU DO*Base*Port + 3

00911
00912

0084 - 00913 Dl*Base*Port EQU CIO$Base$Port + 4 ?Device 1
0084 = 00914 Dl*Data*Port EQU Dl*Base$Port
0085 = 00915 Dl*Status*Port EQU Dl*Base*Port + 1
0086 = 00916 Dl*Mode*Port EQU Dl*Base*Port + 2
0087 = 00917 Dl*Command*Port EQU Dl*Base$Port + 3

00913
0088 = 00919 D2*Base*Port EQU CIO$Base*Por t 8 ; Device 2
0088 = 00920 D2*Data*Port EQU D2$Base$Por t
0089 = 00921 D2*Status*Port EQU D2*Base*Port + 1
008A - 00922 D2*Mode*Port EQU D2*Base*Port + 2
008B = 00923 D2*Command*Por t EQU D2$Base*Port + 3

00924
004E = 00925 D*Mode*Value*l EQU 01 *00*11*10B

00926 ;1 stop bit, no parity
00927 ;8 bits, Async. 16x rate

003C = 00928 D*Mode*Value*2 EQU 00*11*11006
00929 ;Tx/Rx on internal clock
00930 ;9600 baud

0027 = 00931 D*Command*Va1ue EQU 00*1001118
00932 ;Normal mode
00933 ;Enable Tx/Rx
00934 jRTS and DTR active

0038 = 00935 D*Error EQU 0011*10008
0037 = 00936 D*Error*Reset EQU 00*11011 IB

00937 ; Same as command value plus error reset
0001 = 00938 D*0utput*Ready EQU 0000*000IB
0002 = 00939 D*Input*Ready EQU 0000*001OB
0080 = 00940 D*DTR*High EQU 1000*0000B ;Note; this is actually the

Figure 8-10. (Continued)

244 The CP/M Programmer’s Handbook

0027
0007

00941
00942
00943
00944
00945
00946
00947
00948
00949

D$Raise$RTS
D$Drop$RTS

EQU
EQU

00$1$0011 IB
00$0$0011 IB

data-set-ready pin
on the chip. It is connected
to the DTR pin on the cable

Raise RTS, Tx/Rx enable
Drop RTS, Tx/Rx enable

Interrupt controller ports (Intel 8259A)

00950 Note : these equates are placed here so that they
00951 follow the definition of the interrupt vector
00952 and thus avoid P ' (phase) errors in ASM.
00953

00D9 = 00954 [C$0CWl$Port EQU 0D9H ;Operational control word 1
00D8 = 00955 IC$0CW2$Por t EQU 0D8H {Operational control word 2
OODS = 00956 IC$0CW3$Port EQU 0D8H {Operational control word 3
00D8 = 00957 IC$ICWl$Port EQU 0D8H {Initialization control word 1
00D9 = 00958 [C$ICW2$Port EQU 0D9H {Initialization control word 2

00959 -

0020 = 00960 IC$E0I EQU 20H {Nonspecific end of interrupt
00961

0056 = 00962 IC$ICW1 EQU (Interrupt$Vector AND 1110$0000B) + 000$1011<
00963 {Sets the A7 - A5 bits of the interr*
00964 { vector address plus:
00965 { Edge triggered
00966 { 4-byte interval
00967 { Single 8259 in system
00968 { No ICW4 needed

0002 = 00969 IC$ICW2 EQU Interrupt$Vector SHR 8
00970 {Address bits A15 - A8 of the interri.
00971 ; vector address. Note the interrupi
00972 ; vector is the first structure in
00973 { the long term configuration block
00974

OOFC = 00975 tc$ocwi EQU 1111$1100B {Interrupt mask
00976 {Interrupt 0 (clock) enabled
00977 {Interrupt 1 (character input) enable
00978
01100 #
01101
01102
01103 Display$Message {Displays the specified message on the conso!
01104 {On entry, HL points to a^ stream of bytes to
01105 {output. A OOH-byte terminates the message.

025F 7E 01106 MOV A, M {Get next message byte
0260 B7 01107 ORA A {Check if terminator
0261 C8 01108 RZ {Yes, return to caller
0262 4F 01109 MOV C, A {Prepare for output
0263 E5 O H I O PUSH H {Save message pointer
0264 CDD703 01111 CALL CONOLIT {Go to main console output routine
0267 El 01112 POP H {Recover message pointer
0268 23 01113 INX H {Move to next byte of message
0269 C35F02 01114 JMP Display$Message {Loop until complete message output

01115
01200 #
01201
01202 Enter$CPM: {This routine is entered either from the cold or warr
01203 ; boot code. It sets up the JMP instructions in the
01204 ; base page, and also sets the high-level disk drive*
01205 ; input/output address (the DMA address).
01206 ;

026C 3EC3 01207 MV I A, JMP {Get machine code for JMP
026E 320000 01208 STA 0000H {Set up JMP at location 0G00H
0271 320500 01209 STA 0005H { and at location 0005H

01210
0274 210300 01211 LX I H,Warm$Boot$Entry {Get BIOS vector address
0277 220100 01212 SHLD 0 0 0 1H {Put address at location 0 0 0 1H

01213
027A 2106CC 01214 LX I H,BD0S$Entry ;Get BDOS entry point address
027D 220600 01215 SHLD 6 {Put address at location 0005H

01216
0280 018000 01217 LX I B , 80H {Set disk I/O address to default
0283 CDA809 01218 CALL SETDMA {Use normal BIOS routine

01219
0286 FB 01220 El {Ensure interrupts are enabled
0287 3A0400 01221 LDA Default$Disk {Handover current default disk to
028A 4F 01222 MOV C, A { console command processor

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 245

028B C300C4 01223 JliP CCP$Entry ;Transfer to CCP
01224
01300 #
01301
01302 Device table equates
01303 The drivers use a device table for each
01304 physical device they service. The equates that follow
01305 are used to access the various fields within the
01306 device table.
01307
01308 Port numbers and status bits

0000 = 01309 DT$Status$Port EQU 0 ;Device status port number
0001 = 01310 DT$Data$Port EQU DT$Status$Port+l

01311 ;Device data port number
0002 = 01312 DT$Output$Ready EQU DT$Dat aPor t +1

01313 ;Output ready status mask
0003 * 01314 DT$Input$Ready EQU DT$Output$Ready+l

01315 ; Input ready status mask
0004 = 01316 DTDTRReady EQU DT$Input$Ready+l

01317 ;DTR ready to send mask
0005 = 01318 DT$Reset$Int$Port EQU DT$DTR*Ready+l

01319 ;Port number used to reset an
01320 ; interrupt

0006 = 01321 DT$Reset$Int$Value EQU DT$ResetIntPc>r t + 1
01322 ;Value output to reset interrupt

0007 = 01323 DT$Detect$Error$Port EQU DT$Reset$Int*Value+l
01324 jPort number for detecting error

0008 = 01325 DT$De t e c t $Er r or $V a 1ue EQU DT$Detect$ErroriF‘ort + l
01326 jliask for detecting error (parity etc.)

0009 = 01327 DT$Reset$Error$Port EQU DT$Detect$Error$Value+l
01328 ;Output to port to reset error

000A = 01329 DT$Reset$Error$Value EQU DT$Reset$Error$Port+l
01330 ;Value to output to reset error

OOOB = 01331 DTRTSControl$Port EQU i}T$Reset$Error$Value + l
01332 iControl port for lowering RTS

OOOC = 01333 DT$Drop$RTS$Value EQU DT*RTS*Con t r o 1$Por t +1
01334 ;Value, when output, to drop RTS

OOOD = 01335 DT$Raise$RTS$Value EQU DT$DropRTSVa1ue + 1
01336 ;Value, when output, to raise RTS
01337 ;
01338 :; Device logical status (incl. protocols)

OOOE = 01339 DT$Status EQU DT$Raise$RTS*Value+l
01340 ;Status bits

0001 = 01341 DT$Output$Suspend EQU 0000^000IB ;0utput suspended pending
01342 ; protocol action

0002 = 01343 DT$Input$Suspend EQU 0000$0010B {Input suspended until
01344 { buffer empties

0004 = 01345 DT$Gutput$DTR EQU 0000$0100B {Output uses DTR-high-to-send
0008 = 01346 DT$Output$Xon EQU 0000$1OOOB {Output uses XON/XOFF
0010 = 01347 DT$Output$Etx EQU 0001$0000B {Output uses ETX/ACK
0020 = 01348 DT$Output$Timeout EQU 0010$0000B {Output uses timeout
0040 = 01349 DT$Input$RTS EQU 0100$0000B {Input uses RTS-high-to-receive
0080 = 01350 DT$Input$Xon EQU 1000$0000B {Input uses XON/XOFF

01351 ;
OOOF = 01352 DT$Status$2 EQU DT$Status+l {Secondary status byte
0001 = 01353 DT$Fake$Typeahead EQU 0000$0001B {Requests Input$Status to

01354 { return "Data Ready" when
01355 { control dharacters are in
01356 { input buffer
01357 ;

0010 = 01358 DTEtxCount EQU DT $S t a t u s $2+1
01359 {No. of chars, sent in Etx protocol

0012 = 01360 DTEtxMessage$Length EQU DT$Etx$C:ount+2
01361 {Specified message length
01362 ;
01363 ; Input buffer values

0014 = 01364 DT$Buffer$Base EQU DT$Et x$Message$Length+2
01365 {Address of Input buffer

0016 = 01366 DTPutOffset EQU DT$Buf fer$Base+2
01367 {Offset for putting chars, into buffer

0017 = 01368 DTGetOffset EQU DTPut0ff set + 1
01369 {Offset for getting chars, from buffer

0018 = 01370 DT$Buffer$Length$Mask EQU DT$Get$0ffset+1
01371 {Length of buffer - 1
01372 {Note: Buffer length must always be
01373 ; a binary number: e.g. 32, 64 or 128

Figure 8-10. (Continued)

246 The CP/M Programmer’s Handbook

0019

01374
01375
01376
01377
01378
01379
01380
01381
01382 DT*Character*Count r EQU DT*Buffe

This mask then becomes:
32 -> 31 (0001»1111B)
64 -> 63 (0011»1111B)

128 -> 127 <0111*111 IB)
After the get/put offset has been

incremented, it is ANDed with the mask
to reset it to zero when the end of
the buffer has been reached

•»Length*Mask+l

001A

01383
01384
01385 DT*Stop»Input$Count EQU DT*Chara<

Count of the number of characters
currently in the buffer

rter»Count+1

00 IB

01386
01387
01388 DT*Resurne*Input*Count EQU

;Stop input when the count reaches
; this value

DT»Stop»Input»Count+1

001C

01389
01390
01391 DT*Control»Count EQU

;Resume input when the count reaches
; this value

DT»Re s urne » I n p u t »Cou n t +1

00 ID

01392
01393
01394 DT*Function*Delay EQU

;Count of the number of control
; characters in the buffer

DT »Con t r o 1»Count +1

00 IE

01395
01396
01397
01398 DT»Init ial ize*Strearn EQU DT»Funct:

Number of clock ticks to delay to
allow all characters after function
key lead-in to arrive

Lon*Delay+l

028E 81

01399
01400
01401
01500
01501
01502
01503
01504
01505

; #

DT»0:

Device

DB

tables

D0*St a t u s »For t

;Address of byte stream necessary to
; initialize this device

;Status port (8251A chip)
028F 80 01506 DB D0»Data»Port ;Data port
0290 01 01507 DB D»Output»Ready ;Output data ready
0291 02 01.508 DB D»Input$Ready ; Input data ready
0292 80 01509 DB D»DTR»High ;DTR ready to send
0293 D8 01510 DB I C*QCW2*F'or t ;Reset interrupt port (00H is an unused port)
0294 20 01511 DB IC»E0I ;Reset interrupt value (nonspecific E0I)
0295 81 01512 DB D0*Status*Port ;Detect error port
0296 38 01513 DB D*Error ;Mask: framing, overrun, parity errors
0297 83 01514 DB DO»Command»Port ;Reset error port
0298 37 01515 DB D*Error*Reset ;Reset error: RTS high, reset, Tx/Rx enable
0299 83 01516 DB DO*Command*Port ;Drop/raise RTS port
029A 07 01517 DB D*Drop*RTS ;Drop RTS Value (keep Tx & Rx enabled)
029B 27 01518 DB D$Rai se$RTS ;Raise RTS value (keep Tx & Rx enabled)
029C CO 01519 DB DT»Input$Xon + DT»Input»RTS ; Protocol and status
029D 00 01520 DB 0 : Status #2
029E 0004 01521 DW 1024 ;Etx/Ack message count
02 AO 0004 01522 DW 1024 ?Etx/Ack message length
02A2 2422 01523 DW D0»Buffer ;Input buf fer
02A4 00 01524 DB 0 ;Put offset into buffer
02A5 00 01525 DB 0 ;Get offset into buffer
02A6 IF 01526 DB D0»Buffer»Length -1 jBuffer length mask
02A7 00 01527 DB 0 ;Count of characters in buffer
02A8 IB 01528 DB D0»Buff er»Length - 5 ;Stop input when count hits this value
02A9 10 01529 DB D0»Buffer»Length / 2 ;Resume input when count hits this value
02AA 00 01530 DB 0 ;Count of control characters in buffer
02AB 06 01531 DB 6 ;Number of 16.66ms ticks to allow function

02AC 8400
01532
01533 DW

? key sequence to arrive (approx. 90rns)
D0»lnitialize»Stream jAddress of initialization stream

02AE 85

01534
01535
01536

DT*1 :
DB Dl»Status»Port ;Status port (8251A chip)

02AF 84 01537 DB Dl»Data»Port ;Data port
02B0 01 01538 DB D»Output»Ready ;0utput data ready
02B1 02 01539 DB D»Input»Ready jInput data ready
02B2 80 01540 DB D$DTR»High ;DTR ready to send
02B3 D8 01541 DB IC»0CW2»Port ;Reset interrupt port (00H is an unused port)
02B4 20 01542 DB IC»E0I iReset interrupt value (nonspecific E0I)
02B5 85 01543 DB Dl»Status»Port ;Detect ierror port
02B6 38 01544 DB D»Error ;Mask: framing, overrun, parity errors
02B7 87 01545 DB D 1»Command»Por t ;Reset error port
02B8 37 01546 DB D»Error»Reset jReset error: RTS high, reset, Tx/Rx enable
02B9 87 01547 DB Dl»Command»Port ;Drop/raise RTS port
02BA 07 01548 DB D»Drop»RTS jDrop RTS value (keep Tx & Rx enabled)

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 247

02BB 27 01549 DB D$Raise$RTS ;Raise RTS value (keep Tx & R>: enabled)
02BC CO 01550 DB DT$InputiXon + DT$Input$RTS ; Protocol and status
02BD 00 01551 DB 0 ;Status #2
02BE 0004 01552 DM 1024 ;Etx/Ack message count
02C0 0004 01553 DM 1024 ;Etx/Ack message length
02C2 4422 01554 DM DliBuffer ;Input buffer
02C4 00 01555 DB 0 ;Put offset into buffer
02C5 00 01556 DB 0 ;Get offset into buffer
02C6 IF 01557 DB Dl$Buf fer$Length -1 ¡Buffer length mask
02C7 00 01558 DB 0 ;Count of characters in buffer
02CS IB 01559 DB Dl$Buf fer$Length - 5 ¡Stop input when count hits this value
02C9 10 01560 DB Dl$Buf f er$Length / 2 ¡Resume input when count hits this value
02CA 00 01561 DB 0 Count of control characters in buffer
02CB 06 01562 DB 6 Number of 16.66ms ticks to allow function

01563 key sequence to arrive (approx. 90ms)
02CC 9400 01564

01565
01566

DM Dl$Initialize$Sti■earn ¡Address of initialization stream

01567 DT*2;
02CE 89 0156S DB D2*Status*Port Status port (8251A chip)
02CF 88 01569 DB D2$Data*Port Data port
02D0 01 01570 DB D$Output$Ready Output data ready
02D1 02 01571 DB D$Input$Ready Input data ready
02B2 80 01572 DB D*DTR*High DTR ready to send
02D3 D8 01573 DB IC$0CM2*Port Reset interrupt port (00H is an unused port)
02D4 20 01574 DB IC*E0I Reset interrupt value (nonspecific E0I)
02D5 89 01575 DB D2*Status*Port Detect error port
02D6 38 01576 DB D$Error Mask: framing, overrun, parity errors
02D7 SB 01577 DB D2$Command$F‘or t Reset error port
02D8 37 01578 DB D$Error$Reset Reset error: RTS high, reset, Tx/Rx enable
02D9 SB 01579 DB D2$Cornrnand$Por t Drop/raise RTS port
02DA 07 01580 DB D*Drop*RTS Drop RTS value (keep Tx & Rx enabled)
02DB 27 01581 DB D$Raise$RTS Raise RTS value (keep Tx Rx enabled)
Ö2DC CO 015S2 DB DT$Input$Xon + DT$Input$RTS ; Protocol and status
02DD 00 01583 DB 0 Status #2
02DE 0004 01584 DM 1024 Etx/Ack message count
02E0 0004 01585 DM 1024 Etx/Ack message length
02E2 6422 01586 DM D2$Buf fer Input buffer
02E4 00 01587 DB 0 Put offset into buffer
02E5 00 01588 DB 0 Get offset into buffer
02E6 IF 01589 DB D2$Buf fertLength -1 ¡Buffer length mask
02E7 00 01590 DB 0 Count of characters in buffer
02E8 IB 01591 DB D2$Buf fer$Length - 5 ¡Stop input when count hits this value
02E9 10 01592 DB D2$Buffer$Length / 2 ¡Resume input when count hits this value
02EA 00 01593 DB 0 Count of control characters in buffer
02EB 06 01594 DB 6 Number of 16.66ms ticks to allow function

01595 Key sequence to arrive (approx. 90rns)
02EC A400 01596 DM D2$Initialize$Strearn ¡Address of initialization stream

01597
01700 #
01701 General character I/O device initialization
01702
01703 This routine will be called from the main CP/M
01704 initialization code.
01705
01706 It makes repeated calls to the specific character I/O
01707 device initialization routine.
01708
01709 GeneralCIGInit ial iz'at ion:

02EE AF 01710 XRA A Set device number (used to access the
01711 table of device table addresses in the
01712 configuration block)

02EF 4F 01713 MOV C, A Match to externally CALLable interface
01714 GCI $Ne x t $De vice

02F0 CDFA02 01715 CALL Specific$CI0$Initialization ¡Initialize the device
02F3 3C 01716 I NR A Move to next device
02F4 FE10 01717 CPI 16 Check if all possible devices (0 - 15)
02F6 CS 01718 RZ have been initialized
02F7 C3F002 01719

01720
JMP GC I $Ne x t $De v i c e

01S00
01801

#

01802 Spec i f ic character I/O initialization
01803
01S04 This routine outputs the specified byte values to the specified
01805 ports as controlled by the initialization streams in the
01806 configuration block. Eachi device table contains a pointer to

Figure 8-10. (Continued)

248 The CP/M Programmer’s Handbook

01807 these streams. The device table itself is selected according
01808 to the device NUMBER — this is an entry parameter for this
01809 rout ine.
01810 This routine will be called either from the general device
01811 initialization routine above, or directly by a BIOS call from
01812 a system utility executing in the TPA.
01813
01814 Entry parameters
01815
01816 C = device number
01817
01818 Exit parameters
01819
01820 A = Device number (preserved)
01821
01822
01823 SpecificCIOInitialization: ¡<=== BIOS entry point (private)
01824 ==============

02FA 79 01825 MOV A,C ¡Get device number
02FB F5 01826 PUSH PSW ¡Preserve device number
02FC- S7 01827 ADD A ¡Make device number into word pointer
02FD 4F 01828 MOV C, A
02FE 0600 01S29 MV I B,0 ¡Make into a word
0300 216400 01S30 LX I H,CB$Device$Table$Addresses ;Get table base
0303 09 01831 DAD B ¡HL -> device table address
0304 5E 01832 MOV E, M ;Get L$ byte
0305 23 01833 INX H
0306 56 01834 MOV D,M ;Get MS byte: DE -> device table

01835
0307 7 A 01836 MOV A,D ¡¡Check if device table address = 0
0308 B3 01837 ORA E
0309 CA1703 01838 JZ SCI$Exit ¡Yes, device table nonexistent

01839 s '
030C 211E00 01840 LX I H,DT$In i t iali ze$Stream
030F 19 01841 DAD D ;HL -> initialization stream address
0310 5E 01842 MOV E, M ¡Get LS byte
0311 23 01S43 INX H
0312 56 01844 MOV D ,M ;Ge t MS b y t e
0313 EB 01845 XCHG ;HL -> initialization stream itself
0314 C D 1903 01846 CALL Qutput$Byte$Stream ¡Output byte stream to various

01847 ' ; ports
01848 !
01849 SCISExit:

0317 FI 01850 POP PSW ¡Recover user 's device number in C-
0318 C9 01851 RET

01852
02000 #
02001- Output byte stream
02002
02003 This routine outputs initialization bytes to port
02004 numbers. The byte stream has the following format:
02005
02006 DB ppH Port number
020.07 DB nn Number of bytes to output
02008 DB vvH,vvH... Bytes to be output
02009
02010 : Repeated
02011
02012 DB 00H Port number of 0 terminates
02013
02014 Entry parameters
02015
02016 HL -> Byte stream
02017
02018 Output$Byte*St ream:
02019 0BS$Loop:

0319 7E 02020 MOV A,M ;Get port number
031A B7 02021 ORA A ¡Check if 00H (terminator)
031B C-8 02022 RZ ¡¡Exit if at end of stream
031C 322503 02023 STA 0BS$Port ¡Store in port number below
031F 23 02024 INX H ¡HL -> count of bytes
0320 4E 02025 MOV C,M ¡Get count
0321 23 02026 INX H ¡HL -> first initialization byte

02027
02028 OBS$Next*Byte:

0322 7E 02029 MOV A,M ¡Get next byte
0323 23 02030 INX H ¡HL -> next data byte (or port number)

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 249

02031
0324 D3 02032 DB OUT

02033 OBSSPort:
0325 00 02034 DB 0 ;<- Set up in instruction above
0326 OD 02035 DCR C ; Count down on byte counter
0327 C22203 02036 JNZ OBS$Next$Byte ;0utput next data byte
032A C31903 02037 JMP GBS*Loop ;Go back for next port number

02038
02100 #
02101 CONST - Console status
02102
02103 This routine checks both the forced input pointer and
02104 the character count for the appropriate input buffer.
02105 The A register is set to indicate whether or not there
02106 is data waiting.
02107
02108 Entry parameters: none.
02109
02110 Exit parameters
02111
02112 A = 000H if there is no data waiting
02113 A = OFFH if there is data waiting
02114
02115
02116 :ONST: :<=== BIOS entry point (standard)
02117

032D 2A5800 02118 LHLD CB$Console$Input ;¡Get redirection word
0330 116400 02119 LX I D,CB*Device$Table*Addresses
0333 CD6F06 02120 CALL Select$Device$Table Get device table address
0336 C34708 02121 JMP Get$Input*Status Get status from input device

02122 and return to caller
02200 #
02201
02202 CONIN — console input
02203
02204 !! This routine returns the next character for the console input
02205 stream. Depending on the circumstances, this can be a character
02206 from the console input buffer, or from a previously stored
02207 string of characters to be "forced" into the input strearnfcfor
02208 the automatic execution of system initialization routines.
02209 The "forced input" can come from any previously stored character
02210 string in memory. It is used to inject the current time and date
02211 or a string associated with a function key into the console
02212 stream. On system startup, a string of "SUBMIT STARTUP" is
02213 forced into the console input stream to provide a mechanism.
02214
02215 Normal ("unforced") input comes from whichever physical device
02216 is specified in the console input redirection word (see the
02217 configuration block).
02218

0339 00 02219 CONIN*Delay$Elapsed: BB 0 Flag used during function key
02220 processing to indicate that
02221 a predetermined delay has
02222 elapsed
02223
02224
02225 CONIN: ;<=== BIOS entry point (standard)
02226

033A 2A8D0F 02227 LHLD CB$Forced$Input ;Get the forced input pointer
033D 7E 02228 MOV A,M pGet the next character of input
033E B7 02229 ORA A :Check if a null
033F CA4703 02230 JZ C0NIN*No*FI ;Yes, no forced input
0342 23 02231 INX H ;Yes, update the pointer
0343 228D0F 02232 SHLD CB$Forced$Input i and store it back
0346 C9 02233 RET

02234
02235 CONINNoFI ;No forced input

0347 2A5800 02236 LHLD CB$Console*Input jGet redirection word
034A 116400 02237 LXI D,CB*Device*Table$Addresses
034D CD6F06 02238 CALL Select*Device$Table ■Get device table address
0350 CD9106 02239 CALL Get$Input*Character jGet next character from input device

02240
02241 ;Function key processing

0353 FE1B 02242 CPI Function*Key*Lead Check if first character of function
02243 key sequence (normally escape)

0355 CO 02244 RNZ Return to BIOS caller if not
0356 F5 02245 PUSH PSW Save lead in character

Figure 8-10. (Continued)

250 The CP/M Programmer’s Handbook

0357 211D00 02246 LX I H,DT$Function$Delay :¡Get delay time constant for
02247 ; delay while waiting for subsequent
02248 * characters of function key sequence
02249 ; to arrive

035A 19 02250 DAD D
035B 4E 02251 MOV C, M !¡Get delay value
035C 0600 02252 MV I B, 0 :(Make into word value
035E AF 02253 XRA A ;¡Indicate timer not yet out of time
035F 323903 02254 ' STA CONIN*Delay$Elapsed
0362 217B03 02255 LX I H,CONINSetDelay$Elapsed : Address to resume at after delay
0365 CD6D08 02256 CALL Set$Watchdog Sets up delay based on real time

02257 clock such that control will be
02258 transferred to specified address
02259 after time interval has elapsed
02260 CONIN$Wai t$for$Delay: Wait here until delay has elapsed

0368 3A3903 02261 LDA CONIN$Delay$Elapsed Check flag set by watchdog routine
036B B7 02262 ORA A
036C CA6803 02263 JZ CONIN$Wait$for*Delay

02264
02265 CQNIN$Check$for*Function:

036F 211900 02266 LX I H,DT$Character$Count ;¡Now check if the remaining characters
02267 ;; of the sequence have been input

0372 19 02268 DAD D
0373 7E 02269 MOV A, M ;¡Get count of characters in buffer
0374 FE02 02270 CPI FunctionKeyLength - 1
0376 D28103 02271 JNC CONIN$Check$Funct ion ¡¡Enough characters in buffer for

02272 i possible function key sequence
0379 FI 02273 POP PSW ;¡Insufficient characters in buffer

02274 r ;! to be a function key. so return
02275 ! to caller with lead character

037A C9 02276 RET
02277
02278
02279 ; The following routine is called by the watchdog routine
02280 ; when the specified delay has elapsed. |
02281
02282 CONIN$Set*Delay*Elapsed:

037B 3EFF 02283 MV I A,OFFH ;Indicate watchdog timer out of time
037D 323903 02284 STA CONIN$Delay$Elapsed
0380 C9 02285 RET ;Return to watchdog routine

02286
02287
02288 CONIN$Check$Funct ion:

0381 211700 02289 LX I H,DT$Get*Offset ;Save the current "get pointer"
0384 19 02290 DAD D ; in the buffer
0385 7E 02291 MOV A, M ;Get the pointer
0386 F5 02292 PUSH PSW ;Save pointer on the stack

02293
0387 211700 02294 LX I H,DTGetOffset jCheck the second (and possibly third)
038A CDF007 02295 CALL Get$Address$in$Buf f er ; character in the sequence
038D 46 02296 MOV B, M ;Get the second character

02297
02298 IF Three$Character$Funct ion

038E C5 02299 PUSH B ;Save for later use
038F 211700 02300 LX I H,DTGetOffset ^Retrieve the third character
0392 CDF007 02301 CALL Get$Address$in$Buf fer
0395 Cl 02302 POP B ;Recover second character
0396 4E 02303 MOV C, M ;Now BC = Char 2, Char 3

02304 END IF
02305

0397 D5 02306 PUSH D ;Save device table pointer
0398 21B000 02307 LX I H,CB$Function$Key*Table - CB$Function$Key$Entry$Sise

02308 ;Get pointer to function key table
02309 ; in configuration block

039B 111300 02310 LX I D,CB$Function$Key$Entry$Size ;Get entry sise ready for loop
02311 C O N IN$Ne xt $Func t ion:

039E 19 02312 DAD D ;Move to next (or first) entry
039F 7E 02313 MOV A, M ;Get second character of sequence
03A0 B7 02314 ORA A yCheck if end of function key table
03A1 CAC203 02315 JZ CONINNotFunct ion •Yes — it is not a function key
03A4 B8 02316 CMP B ;Compare second characters
03A5 C29E03 02317 JNZ C O N IN$Ne x t $Func tion ;No match, so try next entry in table

02313
02319 IF Three$Character$Funct ion

03AS 23 02320 INX H ;HL -> third character
03A9 7E 02321 MOV A, M ;Get third character of sequence
03AA 2B 02322 DCX H ;Simplify logic for 2 & 3 char. seq.

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 251

03AB B9 02323 CMP C Compare third characters
03AC C29E03 02324 JNZ C0NIN$Next$Funct ion No match, so try next entry in table
03AF 23 02325 INX H When match found, compensate for

02326 extra decrement
02327 END IF
02328

03B0 23 02329 INX H HL -> first character of substitute
02330 string of characters (00-byte term

03B1 22SD0F 02331 SHLD CB$Forced$Input Make the C0NIN routine inject the
02332 substitute string into the input
02333 stream
02334
02335 Now that a function sequence has beei
02336 identified, the stack must be
02337 balanced prior to return

03B4 D1 02338 POP D Get the device table pointer
03B5 FI 02339 POP PSW Dump the "get" offset value
03B6 FI 02340 POP PSW Dump the function sequence lead char

02341
03B7 211900 02342 LX I H,DT$Character$Count Downdate the character count
03BA 19 02343 DAD D to reflect the characters removed

02344 from the buffer
03BB 7E 02345 MOV A, M Get the count
03BC D602 02346 SUI FunctionKeyLength -1 (the lead character has already
03BE 77 02347 MOV M, A been deducted)
03BF C33A03 02348 JMP CON IN Return to C0NIN processing to get

02349 the forced input characters
02350 C0NINNotFunc t ion:
02351 jAttempts to recognise a function key sequence
02352 ; have failed. The "get" offset pointer must
02353 ; restored to its previous value so that
02354 ; the character(s) presumed to be part of
02355 ; the function sequence are not lost.
02356

03C2 D1 02357 POP D ;¡Recover device table pointer
03C3 FI 02358 POP PSW ;[Recover previous "get" offset
03C4 211700 02359 LX I H,DTGet0ffset
03C7 1? 02360 DAD D ;[HL -> "get" offset in table
03CS 77 02361 MOV M, A ;[Reset "get" offset as it was after

02362 ! the lead character was detected
03C9 FI 02363 POP PSW ;[Recover lead character
03CA C9 02364 RET [Return the lead character to the user

03CB 00

03CC DB03

02365
02500
02501
02502
02503
02504
02505
02506
02507
02508
0250?
02510
02511
02512
02513
02514
02515
02516
02517
02518
02519
02520
02521
02522
02523
02524
02525
02526
02527
02528
02529
02530
02531
02532
02533

Console output

This routine outputs data characters to the console device(s).
It also "traps" escape sequences being output to the console,
triggering specific actions according to the sequences.
A primitive "state-machine" is used to step through escape
sequence recognition.
In addition to outputting the next character to all of the
devices currently selected in the console output redirection word,
it checks to see that output to the selected device has not been
suspended by X0N/X0FF protocol, and that DTR is high if
it should be.
Once the character has been output, if ETX/ACK protocol is in use,
and the specified length of message has been output, an Etx
character is output and the device is flagged as being suspended.

' Entry parameters

C = character to be output

C0N0UT storage variables

C0NGUT $Ch ar ac t e r : DB 0

C0N0UT*Processor: DW

Save area for character to be output

C0N0UT$String*Pointer: DW

CONOUTiNormal
This is the address of the piece of

code that will process the next
character. The default case is
CONOUTSNorrnal

This points to a string (normally
in the configuration block) that
is being preset by characters from
the console output stream

Figure 8-10. (Continued)

252 The CP/M Programmer’s Handbook

03D0 00 02534 CONOUT*String*Length: DB 0 ;This contains the maximum number of
02535 ; characters to be preset into a
02536 ; from the console output stream
02537
02538
02539 *** WARNING **«
02540 The output error message routi ne shares the code in this
02541 subroutine. On entry here, the data byte to be output

- 02542 will be on the stack, and the DE registers set up correctly*
02543
02544
02545 CONOUTGEMEn t r y :

03D1 32CB03 02546 STA CONOUTfCharacter ;Save data byte
03D4 C3E803 02547 •JMP C0N0UT$Entry2 ;HL already has special bit map

02548
02549
02550 CONO UT: ; <=== BIOS entry point (standard)
02551

03D7 2ACC03 02552 LHLD CONOUT $Processor ;Get address of processor to handle
02553 ; the next character to be output
02554 ; (Default is CONOUT$Norrna 1)

03DA E9 02555 PCHL ;Transfer control to the processor
02556
02557
02558 CONOUTSNor m a 1 ;Normal processor for console output

03DB 79 02559 MOV A, C jCheck if possible start of escape
03DC FE1B 02560 CPI Funct ionKeyLead ; sequence
03DE CA1204 02561 JZ CONOUT$Escape$Found ;Perhaps

02562 CONOUT$Forced:
03E1 79 02563 MOV A, 0 jForced output entry point
03E2 32CB03 02564 STA CONOUT 4»Ch arac t e r ;Not escape sequence — Save data byte

02565
03E5 2A5A00 02566 LHLD CB$Console$Output jGet console redirection word

02567 :
02568 C0N0UT$Entry2: ; <== = output error message entry point
02569 :

03E8 116400 02570 LX I D,CB$Device$Table$Addresses jAddresses of dev. tables
03EB D5 02571 PUSH D ;Put onto stack ready for loop
03EC E5 02572 PUSH H

02573
02574 CGNQUT$Next$Device:

03ED El 02575 POP H ;Recover redirection bit map
03EE D1 02576 POP D ;Recover device table addresses pointer.
03EF CD6F06 02577 CALL Select$Device$Table jGet device table in DE
03F2 B7 02578 ORA A ;Check if a device has been

02579 ; selected (i.e. bit map not all zero)
03F3 CA0D04 02580 JZ C0N0UT$Exit ; N o , exit
03F6 05 02581 PUSH B ;Yes - B . . ;Save redirection bit map
03F7 E5 02582 PUSH H ;Save device table addresses pointer

02583 CONOUTSWa i t :
03F8 CD0F06 02584 CALL Check$Gutput$Ready ;Check if device not suspended and

02585 ; (if appropriate) DTR is high
03FB CAF803 02586 JZ CONOUTSWait ;N o , wait

02587
03FE F3 02588 DI TInterrupts off to avoid

02589 ; involuntary re-entrance
03FF 3ACB03 02590 LDA CONOUT $Char acter ;Recover the data byte
0402 4F 02591 MOV C, A ;Ready for output
0403 CD2608 02592 CALL Output $Dat afBy t e ;Output the data byte
0406 FB 02593 El

02594
0407 CD3A06 02595 CALL ProcessiEtx$Protocol ;Deal with Etx/Ack protocol
040A C3ED03 02596 JMP C0N0UT$Nex t $Dev i ce ;Loop back for next device

02597
02598 iCONOUT$Ex it:

040D 3ACB03 02599 LDA CONOUT $Ch ar ac t er ;Recover data character
0410 79 02600 MOV A, C ;CP/M "convention"
0411 09 02601 RET

02602 •
02603 C-ONOUT$Escape$Found: jPossible escape sequence

0412 211904 02604 LXI H,CONOUT$Process$Escape ;Vector processing of next character
02605 CONOUT$Se t $Proc es sor :

0415 220003 02606 SHLD C0N0UT$Processor ;Set vector address
0418 09 02607 RET îReturn to BIOS caller

02700 ; #
02701
02702 ; Console output: escape sequence processing

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 253

02703 .
02704 C0N0UT*Process*Escape: ;Control arrives here with character
02705 ; after escape in C

0419 211B02 02706 LX I H,CONQUT$Escape$Table ;Get base of recognition table
02707 CONOUT *Ne x t $En try:

041C 7E 02708 MOV A, M ;Check if at end of table
04 ID B7 02709 ORA A
04 IE CA2B04 02710 JZ CONOUT$No*Match jYes, no match found
0421 B9 02711 CMP C ;Compare to data character
0422 CA3B04 02712 JZ CONOUT $Ma t c h jThey match
0425 23 02713 INX H ;Move to next entry in table
0426 23 02714 INX H
0427 23 02715 INX H
0428 C31C04 02716 JMP CGNOUT*Next*Entry :Go back and check again

02717
02718 CONOUT *No*Ma t ch ?No match found, so original
02719 ; escape and following character
02720 ; must be output

042B C5 02721 PUSH B ;Save character after escape
042C 0E1B 02722 MV I C,Function*Key*Lead ;Get escape character
042E CDE103 02723 CALL CONOU T*Forced jOutput to console devices
0431 Cl 02724 POP B ;Get character after escape
0432 CDE103 02725

02726
CALL CONOUT *For c e d ;Output it, too

02727 CONOUT*Se t $N or ma1:
0435 21DB03 02728 LX I H,CONOUT$Normal jSet vector back to normal
0438 C31504 02729 JMP CONOUTSetProcessor ; for subsequent characters

02730
02731
02732 CONOUTSMatch:

043B 23 02733 INX H ;HL -> LS byte of subprocessor
043C 5E 02734 MOV E, M ;Get LS byte
043D 23 02735 INX H
043E 56 02736 MOV D, M ;Get MS byte
043F EB 02737 XCHG ;HL -> subprocessor
0440 E9 02738 PCHL ; Go to s ub pr oce s s or

02739
02740 CQNOUT$Date: Subprocessor to inject current date
02741 into console input stream (using
02742 forced input)

0441 218F0F 02743 LX I H,Date
02744 CQNQUT*Set$Forced$Input:

0444 228D0F 02745 SHLD CB*Forced$Input
0447 C9 02746

02747
RET ¡Return to BIOS caller

02748 CONOUT$T ime: !Subprocessor to inject time into
02749 : console input stream

0448 21990F 02750 LX I H,T ime*In$ASCII
044B C34404 02751 JMP CONOUTSetForced$Input

02752
02753 CONOUT *Se t *Da t e : Subprocessor to set the date by taking
02754 the next 8 characters of console output
02755 and storing them in the date string

044E 21A30F 02756 LX I H, Time$Date*Flags ;Set flag to indicate that the
0451 3E02 02757 MV I A,Date$Set ; date has been set by program
0453 B6 02758 ORA M
0454 77 02759 MOV M, A
0455 3E0S 02760 MV I A, 8 ;Set character count
0457 218F0F 02761 LX I H,Date ;Set address
045A C36C04 02762 JMP CONOUT$Set*Str ing*Pointer

02763
02764
02765 CONOUT$Se t $T i m e ¡ Subprocessor to set the time by taking
02766 the next 8 characters of console output
02767 and storing them in the time string

045D 21A30F 02768 LX I H,Time*Date*Flags ;Set flag to indicate that the
0460 3E01 02769 MVI A,T ime*Set j time has been set by program
0462 B6 02770 ORA M
0463 77 02771 MOV M, A
0464 3E08 02772 MVI A,8 ;Set character count
0466 21990F 02773 LX I H,T ime$in*ASCII ;Set address
0469 C36C04 02774 JMP CONOUT*Set *St r i ng*Po inter

02775
02776 CONOUTSSe t $St ring*Po inter: ; HL -> string, A = count

046C 32D003 02777 STA CONOUT$String$Length ;Save count
046F 22CE03 02778 SHLD CONOUT$String*Pointer ;Save address
0472 217804 02779 LX I H,CONOUT*Process*String jVector further output

Figure 8-10. (Continued)

254 The CP/M Programmer’s Handbook

0475 C31504 02780 JMP CQNOUT$Se t $Process or
02781
02782 C0N0UT$Proce s s$String: Control arrives here for each character-
02783 in the string in register C. The
02784 characters are stacked into the
02785 receiving string until either a 00-byte
02786 is encountered or the specified number
02787 of characters is stacked.

0478 2ACE03 02788 LHLD C0N0UT$StringfPointer {Get current address for stacking chars
047B 79 02789 MOV A, C ; Check if current character is 00H
047C B7 02790 ORA A
047D CA3504 02791 JZ CONOUTSetNormal ; Revert to normal processing
0480 77 02792 MQV M, A {Otherwise, stack character
0481 23 02793 INX H {Update pointer
0482 3600 02794 MV I M, 00H ;Stack fail-safe terminator
0484 22CE03 02795 SHLD C0N0UT$String$Pointer ; Save updated pointer
0487 21D003 02796 LX I H,CONOUTtString$Length {Downdate count
048A 35 02797 OCR M
048B CA3504 02798 JZ CONOUTSetNormal ; Revert to normal processing

02799 { if count hits 0
048E C9 02800 RET {Return with output vectored back

02801 { to CONOUT$Process$String
02802 i

02900 #
02901
02902 Auxiliary input status
02903
02904 This routine checks the character count in the
02905 appr opriate 'input buffer
02906 The A register is set to indicate whether or not
02907 dat a is waiting.
02908
02909 Entr y parameters: none.
02910
02911 Exit parameters
02912
02913 A = 000H if there is no data waiting
02914 A = OFFH if there is data waiting
02915
02916
02917 A U X 1ST: ;<=== BIOS entry point (Private)
02918

048F 2A5C00 02919 LHLD CB $A ux i1iaryfInput {Get redirection word
0492 116400 02920 LX I D, CB$Device$Table$Addresses { and table pointer
0495 CD6F06 02921 CALL Select$Device$Table {Get device table address
0498 C34708 02922 JMP Get*Input$Status {Get status from input device

02923 { and return to caller
02924
03000 #
03001
03002 Auxiliary output status
03003
03004 This routine sets the A register to indicate whether the
03005 Aux iliary device(s) is/are ready to accept output data.
03006 As more than one device can be used for auxiliary output, this
03007 routine returns a Boolean AND of all of their statuses.
03008
03009 Entr y parameters: none
03010
03011 Exit parameters
03012
03013 A = 000H if one or more list devices are not ready
03014 A = OFFH if all list devices are ready
03015
03016
03017
03018 MIX OST: {<=== BIOS entry point (Private)
03019 ======

049B 2A5E00 03020 LHLD CB$Auxi1iary$0utput ;Get list redirection word
049E C37905 03021 JMP Get$Compos itefStatus

03022
03100 #
03101
03102 Auxiliary input (replacement for READER)
03103
03104 This routine returns the next input character from the

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 255

03105
03106
03107
03103
03109
03110
03111
03112
03113
03114
03115

04A 1 2A5C00 03116
04A4 116400 03117
04A7 CD6F06 03118
04AA C 39106 03119

03120
03121
03200
03201
03202
03203
03204
03205
03206
03207
0320S
03209
03210
03211
03212

04AD 0D0A07417503213
03214
03215
03216
03217

04CE 2A5E00 03218
04D1 11AD04 03219

03220
04D4 C3A205 03221

03222
03300
03301
03302
03303
03304
03305
03306
03307
03308
03309
03310
03311
03312
03313
03314
03315
03316
03317
03318
03319

04D7 2A6200 03320
04DA C37905 03321

03322
03400
03401
03402
03403
03404
03405
03406
03407
03408
03409
03410
03411
03412

appropriate logical auxiliary device.

Entry parameters: none.

Exit parameters

A = data character

AUXIN: ;<=== BIOS entry point (standard)

LHLD CB$Auxi1iary$Input ;Get redirection word
LX I D,CB$Device$Table$Addresses ; and table pointer
CALL Select$Device$Table ;Get device table address
JMP Get$Input$Character ;Get next input character

; and return to caller

; #
; Auxiliary output (replaces PUNCH)

; This routine outputs a data byte to the auxiliary device(s).
; It is similar to C0N0UT except that it uses the watchdog
; timer to detect if a device stays busy for more than
; 30 seconds at a time. It outputs a message to the console
; if this happens.

; Entry parameters

; C = data byte

AUX0UT$Busy$Message: DB CR,LF,7 , 'Auxi1iary device not Ready? ,CR,

AUX0UT: ;<=== BIOS entry point (standard)

LHLD CB$Auxi1iarytOutput ;Get aux. redirection word
LXI D,AUXOUT$Busy$Message ;Message to be output if time

; runs out
JMP Multiple$Gutput$Byte

#

List status

This routine sets the A register to indicate whether the
List Device(s) is/are ready to accept output data.
As more than one device can be used for list output, this
routine returns a Boolean AND of all of their statuses.

Entry parameters: none

Exit parameters

A = 000H if one or more list devices are not ready
A = 0FFH if all list devices are ready

L I ST ST: ;<=== BIOS entry point (standard)

LHLD CB*List$0utput ;Get list redirection word
JMP Get$Composite$Status

#
List output

This routine outputs a data byte to the list device.
It is similar to C-0N0UT except that it uses the watchdog
timer to detect if the printer stays busy for more
than 30 seconds at a time. It outputs a message to the console
if this happens.

Entry parameters

C = data byte

0

Figure 8-10. (Continued)

256 The CP/M Programmer’s Handbook

04DD 0D0A07507203413 LIST*Busy*Message: BB CR,LF ,7, 'Printer not R e a d y ? % CR,LF,0
03414
03415
03416 LIST: ; <== = BIOS entry point (standard)
03417

04F5 2A6200 03418 LHLD CB$List$Output ;Get list redirection word
04F8 11DD04 03419 LX I D,LIST$Busy$Message jMessage to be output if time

03420 ; runs out
04FB C3A205 03421 JMP Mult iple$Gutput$Byte

03422
03500 #
03501 Request user choice
03502
03503 This routine displays an error message, requesting
03504 a choice of:
03505
03506 R — Retry the operation that caused the error
03507 I — Ignore the error and attempt to continue
03508 A — Abort the program and return to CP/M
03509
03510 This routine accepts a character from the console.
03511 converts it to uppercase and returns to the caller
03512 with the response in the A register.
03513 /
03514 RUCSMessage:

04FE ODOA 03515 DB CR,LF
0500 202020202003516 DB Enter R - Retry, I - Ignore, A - Abort : ,0

03517
03518
03519 Request$User$Choice:

052F CD2D03 03520 CALL CONST ;Gobble up any type-ahead
0532 CA3B05 03521 JZ RUC*Buffer$Empty
0535 CD3A03 03522 CALL CONIN
0538 C32F05 03523 JMP Request$User$Choice

03524
03525 RUC$Buf fer$Ernpty:

053B 21FE04 03526 LX I H,RUC$Message jDisplay prompt
053E CD5305 03527 CALL Output$Error$Message

03528
0541 C-D3A03 03529 CALL CONIN ;Get console character
0544 CD3B0E 03530 CALL A$To*UpPer ;Make uppercase for comparisons
0547 32B00D 03531 STA Disk$Aetion$Confirm ; Save in confirmatory message
054A F5 03532 PUSH PSW ;Save for later

03533
054B 21B00D 03534 LX I H,Disk$Act ion$Confirm
054E CD5305 03535 CALL Output$Error$Message

03536
0551 FI 03537 POP PSW ;Recover action code
0552 C9 03538 RET

03539
03600 #
03601
03602 Output error message
03603
03604 This routine outputs an error message to all the currently
03605 selected console devices except those being used to receive
03606 LIST output as well. This is to avoid "deadly embrace" situations
03607 where the printer's being busy for too long causes an error message
03608 to be output — and console output is being directed to the
03609 printer as well.
03610
03611 This subroutine makes use of most of the C0N0UT subroutine.
03612 For memory economy it enters CQN0UT using a private
03613 entry point.
03614
03615 Entry parameters
03616
03617 HL -> 00-byte terminated error message
03618
03619 Gutput$Error$Message:

0553 E5 03620 PUSH H ;Save message address
0554 2A5A00 03621 LHLD CB*Console*0utput ;Get console redirection bit map
0557 EB 03622 XCHG
0558 2A6200 03623 LHLD CB*List*0utput ;Get list redirection bit map

03624 : HL = list, DE = console
03625 ;Now set to 0 all bits in the console

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 257

03626 bit map that are set to 1 in the \
03627 list bit map

055B 7C 03628 MOV A, H Get MS byte of list
055C 2F 03629 CMA Invert
055D A2 03630 ANA D Preserve only bits with O s
055E 67 03631 MOV H, A Save result
055F 7D 03632 MOV A, L Repeat for LS byte of list
0560 2F 03633 CMA
0561 A3 03634 ANA E
0562 6F 03635 MOV L, A HL now has only pure console

03636 devices
0563 B4 03637 ORA H Ensure that at least one device
0564 CA6A05 03638 JZ OEM$Device$Present is selected
0567 210100 03639 LX I H ,0001H Otherwise use default of device 0

03640 OEM$Device$Present:
03641 0EM*Next»Character:

056A D1 03642 POP D ;¡Recover message address into DE
056B 1A 03643 LDAX D :¡Get next byte of message
056C 13 03644 INX D :¡Update message pointer
056D B7 03645 ORA A !¡Check if end of message
056E C8 03646 RZ ¡Yes, exit
056F D5 03647 PUSH D ;¡Save message address for later
0570 E5 03648 PUSH H , :¡Save special bit map

03649 ¡Data character is in A
0571 CDD103 03650 CALL CQNOUT OEMEn try ;¡Enter shared code
0574 El 03651 POP H i¡Recover special bit map
0575 C36A05 03652

03653
03654
03655

JMP OEM*Next$Character

03656 Get composite status
03657
03658 This routine sets the A register to indicate whether the
03659 output device(s) is/are ready to accept output data.
03660 As more than one device can be used for output, this
03661
03662

rout ine returns a Boolean AND of all of their statuses.

03663 Entry parameters
03664
03665
03666

HL = I/O redirection bit map for output device(s)

03667 Exit parameters
03668
03669 A = OOOH if one or more list devices are not ready
03670 A = OFFH if all list devices are ready
03671

0578 00 03672 CS«Status: DB 0 {Composite status of all devices
03673
03674
03675 Get$Composite$Status:

0579 3EFF 03676 MV I A,OFFH ;Assume all devices are ready
057B 327805 03677

03673
STA GCS*Status {Preset composite status byte

057E 116400 03679 LX I D,CB*Device$Table$Addresses {Addresses of dev. tables
0581 D5 03680 PUSH D ;Put onto stack ready for loop
0582 E5 03681 PUSH H ;Save bit map

03682 GCS*Ne x t $De vice;
0583 El 03683 POP H ;Recover redirection bit map
0584 D1 03684 POP D ;Recover device table addresses pointer
0585 CD6F06 03685 CALL Select$Device$Table ;Get device table in DE
0588 B7 03686 ORA A ;Check if a device has been

03687 selected (i.e. bit map not all zero)
0589 CA9905 03688 JZ GCS*Exi t •N o , exit
058C C5 03689 PUSH B {Yes - B . . ;Save redirection bit map
058D E5 03690 PUSH H ;Save device table addresses pointer
058E CD0F06 03691 CALL Check$Output*Ready ;Check if device ready
0591 217805 03692 LX I H,GCS*Status ;AND together with previous devices
0594 A6 03693 ANA M ; status
0595 77 03694

03695
MOV M, A ;Save composite status

0596 C38305 03696
03697 ;

JMP GCS$Next$Device jLoop back for next device

03693 GCS*Exit:
0599 3A7805 03699 LDA GCS$Status {Return with composite status
059C B7 03700 ORA A
059D C9 03701 RET

Figure 8-10. (Continued)

258 The CP/M Programmer’s Handbook

03702
03800 #
03801
03802 Multiple output byte
03803
03804 This routine outputs a data byte to the all of the
03805 devices specified in the I/O redirection word.
03806 It is similar to CQNGUT except that it uses the watchdog
03807 timer to detect if any of the devices stays busy for more
03808 than 30 seconds at a time. It outputs a message to the console
03809 if this happens.
03810
03811 Entry parameters
03812
03813 HL = 1/0 redirection bit map
03814 DE -> Message to be output if time runs out
03815 C = data byte
03816

0708 3 03817 MOB«Maximum«Busy EQU 1800 Number of clock ticks (each at
03818 16.666 milliseconds) for which the
03819 device might be busy

059E 00 03820 MOB«Ch aracter: DB 0 Character to be output
059F 0000 03821 MOB«Busy«Message: DW 0 Address of message to be

03S22 Output if time runs out
05 A 1 00 03823 MGB«Need«Me s sage: DB 0 Flag used to detect that the

03824 watchdog timer timed out
03825
03826 Nuit iple«0utput«Byte :

05A2 79 03827 MOV A,C pGet data byte
05A3 320807 03828 STA M0B«Maximum«Busy :pSave copy
05A6 EB 03829 XCHG ipHL -> timeout message
05A7 229F05 03830 SHLD MOB«Busy«Message pSave for later use
05AA EB 03831 XCHG !pHL = bit map again

03832
05AB 116400 03833 LXI D,CB«Device«Table«Addresses ^Addresses of dev. tables
05AE D5 03834 PUSH D pSave on stack ready for loop
05AF E5 03835 PUSH H pSave I/O redirection bit map

03836 1MGB«Next«Device:
05B0 El 03837 POP H pRecover redirection bit map
05B1 D1 03838 POP D pRecover device table addresses pointer
05B2 CD6F06 03839 CALL Select«Device«Table ?Get device table in DE
05B5 B7 03840 ORA A ?Check if any device selected
05B6 CAEC05 03841 JZ M0B«Ex i t

03842
05B9 C5 03843 PUSH B ?<- Yes : B pSave device table addresses pointer
05BA E5 03844 PUSH H pSave redirection bit map

03845
03846 M0B«St art «Wat ch do g:

05BB AF 03847 XRA A pReset message needed flag
05BC 32A105 03848 STA MOB«Need«Message
05BF 010807 03849 LXI B,MOB«Maximum«Busy ?Time delay
05C2 210906 03850 LXI H,MOB«Not«Ready ?Address to go to
05C5 CD6D08 03851 CALL Set«Watchdog ?Start timer

03852 y

03S53 M0B«Wait: •
05C8 3AA105 03854 . LDA MOB«Need«Message pCheck if watchdog timed out
05CB B7 03855 ORA A
05CC C2EE05 03856 JNZ M0B«0utput«Message pYes, output warning message
05CF CD0F06 03857 CALL Check«Output«Ready pCheck if device ready
05D2 CAC805 03858 JZ M0B«Wai t ;No, wait

03859
05D5 F3 03860 DI pInterrupts off to avoid

03861 ? involuntary reentrance
05D6 010000 03862 LXI B,0 pTurn off watchdog
05D9 CD6D08 03863 CALL Set«Watchdog p (HL setting is irrelevant)

03864
05DC 3A9E05 03865 LDA MOB«Character ?Get data byte
05DF 4F 03866 MOV C,A
05E0 CD2608 03867 CALL Output«Data«Byte pOutput the data byte
05E3 FB 03868 El
05E4 CD3A06 03869 CALL Process«Etx«Protocol p Deal with ETX/ACK protocol
05E7 C3B005 03870 JMP M0B«Ne x t «De vice

03871 ;
03872 MOB«Ignore«Exit: ?Ignore timeout error

05EA El 03873 POP H pBalance the stack
05EB D1 03874 POP D

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 259

03875
03876 M0B»Exit:

05EC 79 03877 MOV A, C ;CP/M "convention"
05ED C9 03878

03879
RET

03880 MOB»Output»Message:
05EE 2A9F05 03881 LHLD MGB»Bus y»Me s sage jDisplay warning message
05F1 CD5305 03882 CALL Output»Error»Message j on selected console devices

03883 MOB»Request»Choice:
05F4 CD2F05 03884 CALL Request»User»Choice ^Display message and get

03885 ; action character
05F7 FE52 03886 CPI R •' ;Re t r y
05F9 CABB05 03887 JZ M0B»Start»Watchdog jRestart watchdog and try again
05FC FE49 03888 CPI ;Ignore
05FE CAEA05 03889 JZ MOB»Ignore»Ex i t
0601 FE41 03890 CPI 'A' ;Abort
0603 CA360E 03891 JZ System»Reset ; Give BDOS function 0
0606 C3F405 03892

03893
JMP MOB»Request»Choice

03894 MOB»Not»Ready : ;Watchdog timer routine will call this
03895 ; routine if the device is busy
03896 ; for more than approximately 30 seconds
03897 ; Note: Thil is an interrupt service routine

0609 3EFF 03898 MV I A,OFFH jSet request to output message
060B 32A105 03899 STA MOB»Nee¿J»Message
060E C9 03900

03901
RET ;Return to the watchdog routine

04000 #
04001
04002

Check output ready

04003 This routine checks to see if the specified device is ready
04004 to receive output data.
04005 It does so by checking to see if the device has been suspended
04006 for protocol reasons and if DTR is low.
04007
04008 NOTE: This routine does NOT check if the USART itself is ready.
04009
04010

This test is done in the output data byte routine itself.

04011
04012

Entry parameters

04013 DE -> device table
04014
04015
04016

Exit parameters

04017 A = 000H (Zero-flag set) : Device not ready
04018 A = OFFH (Zero-flag clear) : Device ready
04019
04020 Check»Output»Ready :

060F 210E00 04021 LXI H,DT»Status ;Get device status
0612 19 04022 DAD D ;HL -> status byte
0613 7E 04023 MOV A, M ;Get status byte
0614 47 04024 MOV B, A ;Take a copy of the status byte
0615 E601 04025 AN I DT»0utput»Suspend ;Check if output is suspended
0617 C23806 04026

04027
JNZ C0R»Not »Read y ;Yes, indicate not ready

061A 3E04 04028 MV I A,DT»Output»DTR yCheck if DTR must be high to send
061C AO 04029 ANA B ;Mask with device status from table
06 ID CA3406 04030

04031
JZ C0R»Ready ;No, device is logically ready

0620 210000 04032 LXI H,DT»Status»Port y Set u p to read device status
0623 19 04033 DAD D
0624 7E 04034 MOV A, M ;Get status port number
0625 322906 04035

04036
STA COR»Status»Port ;Set u p instruction below

0628 DB 04037 DB IN
04038 COR»Status»Port:

0629 00 04039 DB 0 ;<— Set u p by instruction above
062A 4F 04040

04041
MOV C, A ; Save hardware status

062B 210400 04042 LXI H,DT»DTR»Ready ;Yes, set up to check chip status
062E 19 04043 DAD D ; to see if DTR is high
062F 7E 04044 MOV A, M ;Get DTR high status mask
0630 A1 04045 ANA C ;Test chip status
0631 CA3806 04046

04047 ;
JZ C-0R»No t »Re ad y ;DTR low, indicate not ready

04048 C0R»Ready:

Figure 8-10. (Continued)

260 The CP/M Programmer’s Handbook

0634 3EFF 04049 MV I A,OFFH ;Indicate device ready for output
0636 B7 04050 ORA A
0637 C9 04051

04052
RET

04053 COR»Not»Readys 5 Indicate device not ready for output
0638 AF 04054 XRA A
0639 C9 04055

04056
RET

04200
04201

#

04202
04203

Procès s ETX/ACK protocol

04204 This routine maintains ETX/ACK protocol.
04205 After a specified number of data characters have been output
04206 to the device, an ETX character is output and the device
04207 put into output suspended state. Only when an incoming
04208 ACK character is received (under interrupt control) will
04209 output be resumed to the device.
04210
04211 Entry parameters
04212
04213
04214

DE -> device table

04215 Exit parameters
04216
04217 Message count downdated (and reset if necessary)
04218
04219 ProcessiEt «»Protocol :

063A 210E00 04220 LX I H,DT»Status ?Check if ETX/ACK protocol enabled
063D 19 04221 DAD D
063E 7E 04222 MOV, A, M
063F E610 04223 AN I DT»Output»Etx
0641 C8 04224 RZ ;No, so return immediately
0642 211000 04225 LX I H,DT»Etx»Count jYes, so downdate count
0645 19 04226 DAD D
0646 E5 04227 PUSH H iSave address of count for later
0647 4E 04228 MOV C, M ;Get LS byte
0648 23 04229 INX H
0649 46 04230 MOV B, M ;Get MS byte
064A OB 04231 DCX B
064B 78 04232 MOV A, B
064C B1 04233 ORA C ;Check if count now zero
064D C25706 04234 JNZ PEP»Save»Count ; No
0650 211200 04235 LX I H,DT»Etx»Message»Length ; Yes, reset to message length
0653 19 04236 DAD D
0654 4E 04237 MOV C, M ;Get LS byte
0655 23 04238 INX H
0656 46 04239 MOV B, M ;Get MS byte

04240 PEP*Save»Count
0657 El 04241 POP H ;Recover address of count
0658 71 04242 MOV M, C ;Save count back in table
0659 23 04243 INX H
065A 70 04244

04245
MOV M, B

065B B7 04246 ORA A jReestablish whether count hit 0
065C CO 04247 RNZ ;No, no further processing required
065D OE03 04248 MV I C, ETX ;Yes, send ETX to device
065F F3 04249 DI ;Avoids involuntary reentrance
0660 CD2608 04250 CALL Gutput»Data»Byte
0663 FB 04251 El
0664 210E00 04252 LX I H,DT»Status jFlag device as output suspended
0667 19 04253 DAD D
0668 F3 04254 DI ?Avoid interaction with interrupts
0669 7E 04255 MOV A, M ;Get status byte
066A F601 04256 OR I DT»0utput»Suspend ;Set bit
066C 77 04257 MOV M, A ;Save back in table
066D FB 04258 El
066E C9 04259

04260
RET

04400 #
04401
04402
04403

Select device table

04404 This routine scans a 16-bit word, and depending on which is the
04405 first 1-bit set, selects the corresponding device table address.
04406

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 261

04407
04408

Entr y parameters

04409 HL = Bit map
04410 DE -> Table of device table addresses
04411 The first address in the list is called
04412 if the least significant bit of the bit map is
04413
04414

nonzero, and so on.

04415
04416

Exit parameters

04417 BC -> Current entry in device table addresses
04418 DE = Selected device table address
04419 HL = Shifted bit map
04420 Nonzero if a 1-bit was found
04421 - Zero if bit map now entirely 0000
04422
04423 Nfcte : If HL is OOOOH on input, then the first entry in the
04424 devi ce table addresses will be returned in DE.
04425
04426 Select$Device$Table:

066F 7C 04427 MOV A, H ;Get most significant byte of bit map
0670 B5 04428 ORA L ;Check if HL completely 0
0671 C8 04429 RZ ;Return indicating no more bits set
0672 70 04430 MOV A, L ;Check if the LS bit is nonzero
0673 E601 04431 AN I 1
0675 C28006 04432 JNZ SDTBitSet ;Yes, return corresponding address
0678 13 04433 INX D ;No, update table pointer
0679 13 04434 INX D
067A CDDB08 04435 CALL SHLR ;Shift HL right one bit
067D C36F06 04436 JMP Select$Device$Table ;Check next bit

04437 SDT$Bit*Set:
0680 E5 04438 PUSH H ;Save shifted bit map
0681 42 04439 MOV B, D ;Take copy of table pointer
0682 4B 04440 MOV C , E
0683 EB 04441 XCHG ;HL -> address in table
0684 5E 04442 MOV E, M
0685 23 04443 INX H
0686 56 04444 MOV D, M DE -> selected device table

04445 Set up registers for another
04446 entry

0687 El 04447 POP H Recover shifted bit map
0688 CDDBOS 04448 CALL SHLR Shift bit map right one bit
068B 03 04449 INX B Update DT address table pointer to
063C 03 04450 INX B entry
068D 3E01 04451 MVI A, 1 Indicate that a one bit was found
068F B7 04452 ORA A and registers are set up correctly
0690 C9 04453

04454
RET

04600
04601

#

04602
04603

Get :input character

04604 This routine gets the next input character from the device
04605 specified in the device table handed over as an input
04606 parameter.
04607
04608 Get$Input$Character:

0691 211900 04609 LX I H,DT$Character$Count ;Check if any characters have
0694 19 04610 DAD D ; been stored in the buffer

04611 GIC$Wait:
0695 FB 04612 El ;Ensure that incoming chars, will

04613 ; be detected
0696 7E 04614 MOV A, M ;Get character count
0697 B7 04615 ORA A
0698 CA9506 04616 JZ GIC*Wait ;No characters, so wait
069B 35 04617 DCR M ;Down date character count for

04618 ; the character about to be
04619 ; removed from the buffer

069C 211700 04620 LX I H,DT$Get*Offset ;Use the get offset to access
069F CDF007 04621 CALL Get$Address$in$Buffer ;Returns HL -> character

04622 ; and with get offset updated
06A2 7E 04623 MOV A, M ;Get the actual data character
06A3 F5 04624

04625
PUSH PSW ;Save until later

06A4 211900 04626 LX I H, DT$Charac-ter$Count ; Check downdated count of chars, in
06A7 19 04627 DAD D ; buffer, checking if input should be

Figure 8-10. (Continued)

262 The CP/M Programmer’s Handbook

0702 11CE02 04921 LX I D,DT*2 {Device 2
0705 C D 1607 04922 CALL Service$Device

04923
0708 3E20 04924 MV I A,IC$E0I {Tell the interrupt controller chip
070A D3D8 04925 OUT IC*0CW2*Port { that the interrupt- has been serviced
070C D1 04926 POP D {Restore registers
070D Cl 04927 POP B
070E FI 04928 POP PSW
070F 2A8422 04929 LHLD PI$User$Stack {Switch back to user's stack
0712 F9 04930 SPHL
0713 El 04931 POP H
0714 FB 04932 El iRelenable interrupts in the CPU
0715 C9 04933 RET {Resume pre-interrupt processing

04934
05000
05001
05002
05003
05004
05005
05006
05007
05008
05009
05010
05011
05012
05013
05014
05015
05016

Serv ce device

This routine performs the device interrupt servicing,
checking to see if the device described in the specified
device table (address in DE) is actually interrupting,
and if so, inputs the character. Depending on which data character
is input, this routine will either stack it in the input buffer
(shutting off the input stream if the buffer is nearly full),
or will suspend or resume the output to the device.

Entry parameters

DE -> device table

ServiceîDevice :
0716 210000 05017 LX I H,DT*Status$Port {Check if this device is really
0719 19 05018 DAD D { interrupting
071A 7E 05019 MOV A, M {Get status port number
07 IB 321F07 05020

05021
STA SD*Status$Port {Store in instruction below

07 IE DB 05022 DB IN {Input status
05023 SD$Status$Port :

07 IF 00 05024
05025

DB 0 {<— Set up by instruction above

0720 210300 05026 LX I H,DT$Input$Ready {Check if status indicates data ready
0723 19 05027 DAD D
0724 A6 05028 ANA M {Mask with input ready value
0725 C8 05029 RZ {No, return to interrupt service

05030 {Check if any errors have occurred
0726 210700 05031 LX I H,DT*Detect$Error*Port {Set up to read error status
0729 19 05032 DAD D i interrupting
072A 7E 05033 MOV A, M {Get status port number
072B 322F07 05034

05035
STA SD$Error$Port {Store in instruction below

072E DB 05036 DB IN {Input error status
05037 SD$Error$Port:

072F 00 05038
05039

DB 0 {<— Set u p by instruction above

0730 210800 05040 LX I H,DT$Detect$Error$Value {Mask with error bit(s)
0733 19 05041 DAD D
0734 A6 05042 ANA M
0735 CA4707 05043 JZ SDNoError {No bit(s) set
0738 210900 05044 LX I H,DT$Reset$Error$Port {Set up to reset error
073B 19 05045 DAD D
073C 7E 05046 MOV A, M {Get reset port number
073D 324607 05047 STA SD$Reset$Error$Port {Store in instruction below
0740 210A00 05048 LX I H,DT*Reset$Error$Value
0743 19 05049 DAD D
0744 7E 05050

05051
MOV A, M {Get reset interrupt value

0745 D3 05052 DB OUT
05053 SD$Reset$Error$Por t :

0746 00 05054
05055

DB 0 {<— Set up in instruction above

05056 SDNoError:
0747 210100 05057 LX I H,DT$Data$Port {Input the data character (this may
074A 19 05058 DAD D { be garbled if an error occurred)
074B 7E 05059 MOV A, M {Get data port number
074C 325007 05060 STA SD$Data$Port {Store in instruction below

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 263

05061
074F DB 05062 DB IN ;Input data character

05063 SD«Data«Port:
0750 00 05064 DB 0 ?<— Set up by instruction above

05065
0751 47 05066 MOV B, A jTake copy of data character above
0752 210E00 05067 LX I H,DT«Status ;Check if either XON or ETX protocols
0755 19 05068 DAD D j is currently active
0756 7E 05069 MOV A, M jGet protocol byte
0757 E618 05070 ANI DT«Output«Xon + DT«Output«Etx
0759 CA8107 05071 JZ SD«No«Protocol ;Neither is active
075C E608 05072 ANI DT«Output«Xon ;Check if XON/XOFF is active
075E C26E07 05073 JNZ SD«Check«if«Xon ;Yes, check if XON char, input

05074 ;No, assume ETX/ACK active
0761 3E06 05075 MV I A, ACK ;Check if input character is ACK
0763 B8 05076 CMP B
0764 C28107 05077 JNZ SD«No*Protocol jNo, process character as data

05078 SD«Gutput«Desuspend: ?Yes, device now ready
05079 ; to accept more data, so indicate
05080 ; output to device can resume
05081 ;The non interrupt driven output
05082 ; routine checks the suspend bit

0767 7E 05083 MOV A, M ;Get status/protocol byte again
0768 E6FE 05084 ANI OFFH AND NOT DT«Qutput*Suspend ;Preserve all bits BUT suspend
076A 77 05085 MOV M, A ;Save back with suspend = 0
076B C3D907 05086 JMP SD«Exit ;Exit to interrupt service without

05087 ; saving data character
05088 ;
05089 SD«Check«if«Xon jXON/XOFF protocol active, so
05090 ; if XOFF received, suspend output
05091 ; if XON received, resume output
05092 ;The noninterrupt driven output
05093 ; routine checks the suspend bit

076E 3 E 1 1 05094 MV I A, XON jCheck if XON character input
0770 B8 05095 CMP B
0771 CA6707 05096 JZ SD«Output«D esuspend ;Yes, enable output to device
0774 3E13 05097 MV I A rXOFF ;Check if XOFF character input
0776 B8 05098 CMP B
0777 C28107 05099 JNZ SD«No«Protocol ;No, process character as data /

05100 SD*Gutput«Suspend: yDevice needs pause in output of
05101 ; data, so indicate output suspended

077A 7E 05102 MOV A, M ;Get status/protocol byte again
077B F601 05103 ORI DT«Output«Suspend ;Set suspend bit to 1
077D 77 05104 MOV M, A ;Save back in device table
07/E C3D907 05105 JMP SD«Ex i t ;Exit to interrupt service without

05106 ; saving the input character
05107 ;
05108 SD«No«Protocol:

0781 211800 05109 LX I H,DT«Buffer«Length«Mask ;Check if there is still space
0784 19 05110 DAD D ; in the input buffer
0785 7E 05111 MOV A, M :Get length - 1
0786 3C 05112 I NR A ;Update to actual length
0787 211900 05113 LX I H,DT«Character«Count ;Get current count of characters
078A 19 05114 DAD D ; in buffer
078B BE 05115 CMP M ;Check if count = length
078C CAEB07 05116 JZ SD«Buf fer«Ful1 jYes, output bell character
07SF C5 05117 PUSH B ;Save data character
0790 211600 05118 LX I H,DT«Put«Of f set jCompute address of character in

05119 : input buffer
0793 CDF007 05120 CALL Get«Address«In«Buf fer ;HL -> character position
0796 Cl 05121 POP B ;Recover input character
0797 70 05122 MOV M, B ;Save character in input buffer

05123 ;Update number of characters in input
05124 ; buffer, checking if input should
05125 ; be temporarily halted

0798 211900 05126 LX I H,DT«Character«Count
079B 19 05127 DAD D
079C 34 05128 I NR M ;Update character count
079D 7E 05129 MOV A, M ;Get updated count
079E 211A00 05130 LX I H,DT«Stop«Input«Count ;Check if current count matches
07A 1 19 05131 DAD D ; buffer-full threshold
07A2 BE 05132 CMP M
07A3 C2CE07 05133 JNZ SD«Check«Control ;Not at threshold, check if control

05134 ; character input
07A6 210E00 05135 LX I H,DT«Status ;At threshold, check which means
07A9 19 05136 DAD D ; for pausing input are to be used

Figure 8-10. (Continued)

264 The CP/M Programmer’s Handbook

07AA 7E 05137 MOV A, M ;Get status/protocol byte
07AB F602 05138 OR I D T « Input«Suspend ; Indicate input is suspended
07AD 77 05139 MOV M, A ;Save updated status in table
07AE F5 05140 PUSH PSW ;Save for later use
07AF E640 05141 AN I DT$Input$RTS ;Check if clear to send to be dropped
07B1 CAC307 05142 JZ SD$Check$Input$Xon j No
07B4 210B00 05143 LX I H ,DT«RTS$Con t r o 1$Por t ;Yes, get control port number
07B7 19 05144 DAB D
07B8 7E 05145 MOV A, M
07B9 32C207 05146 STA SD*Drop$RTS*Port ;Store in instruction below
07BC 210C00 05147 LX I H,DT«BropRTSValue
07BF 19 05148 DAD D
07C0 7E 05149 MOV A, M ;Get value needed to drop RTS

05150
07C1 D3 05151 DB OUT

05152 SD$Drop$RTS$Port:
07C2 OQ. 05153 DB 0 ;<- Set up in instruction above

05154 jDrop into input XON test
05155 SD*Check*Input$Xon: ; Check if XON/XOFF protocol being used
05156 ; to temporarily suspend input

07C3 FI 05157 - POP PSW ;Recover status/protocol byte
07C4 E680 05158 AN I DT$Input$Xon ;Check if XON bit set
07C6 CACE07 05159 JZ SD$Check$Control ;No, see if control char, input
07C9 0E13 05160 MV I C,XOFF ;Yesr output XOFF character
07CB CD2608 05161 CALL Output«Data«Byte ; Output' data byte

05162
05163 SD$Check$Control: ; Check if control character (other than
05164 ; CR, LF, or TAB) input, and update

~ 05165 ; count of control characters in buffer
07CE CD0808 05166 CALL Check$Control$Char ; Check if control character
07D1 CAD907 05167 JZ SDSExit ;No,it is not a control character
07D4 211C00 05168 LX I H,DT*Control«Count
07D7 19 05169 DAD D
07D8 34 05170 I NR M ; Update count of control chars.

05171
05172 SD$Exi t : ; Reset hardware interrupt system

07D9 210500 05173 LX I H,DT«Reset«Int«Port
07BC 19 05174 DAD D “■
07DD 7E 05175 MOV A, M ;Get reset port number
07DE B7 05176 ORA A ;Check if port specified

05177 ; (assumes it will always be NZ)
07DF CS 05178 RZ ;Bypass reset if no port specified
07E0 32E907 05179 STA SD«Reset«Int«Port ; Store in instruction below
07E3 210600 05180 LX I H,DT«Reset«Int«Value
07E6 19 05181 DAD D
07E7 7E 05182 MOV A, M ;0et reset interrupt value

05183
07E8 D3 05184 DB OUT

05185 SD$Reset*Int*Port:
07E9 00 05186 DB 0 ;<— Set up in instruction above
07EA C9 05187 RET jReturn to interrupt service routine

05188 i
05189 SD$Buf fer$Ful1: ; Input buffer completely full

07EB 0E07 05190 MV I C,BELL ;Send bell character as desperate
07ED C 32608 05191 JMP Output«DataSByte ; measure. Note JMP return to

05192 ; caller will be done by subroutine
05193
05300 #
05301
05302 Get address in buffer
05303
05304 This routine computes the address of the next character to
05305 access in a device buffer.
05306
05307 Entry parameters
05308
05309 DE -> appropriate device table
05310 HL = offset in the device table of either the
05311 Get«Off set or ithe Put«Offset
05312
05313 Exit parameters
05314
05315 DE unchanged
05316 HL -> address in character buffer
05317
05318 Get$Address$In$Buffer :

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 265

07F0 19 05319 DAD D ;HL -> get/put offset in dev. table
07F1 E5 05320 PUSH H ;Preserve pointer to table
07F2 4E 05321 MOV C, M ;Get offset value
07F3 0600 05322 MV I B, 0 ;Make into word value

05323 ; Update offset value, resetting to
05324 ; 0 at end of buffer

07F5 79 05325 MOV A, C ;Get copy of offset
07F6 3C 05326 I NR A ;Update to next position
07F7 211800 05327 LX I H,DT$Buf fer$Length$Mask
07FA 19 05328 DAD D
07FB A6 05329 ANA M ;Mask LS bits with length - 1
07FC El 05330 POP H ;Recover pointer to offset in table
07FD 77 05331 MOV M, A ;Save new value (set to 0 if n e c.)
07FE 211400 05332 LX I H,DT*Buffer$Base ;Get base address of input buffer
0801 19 05333 DAD D ; HL -> address of buffer in table
0802 7E 05334 MOV A, M ;Get LS byte of address
0803 23 05335 INX H ;HL -> MS byte of address
0804 66 05336 MOV H, M ;H = MS byte
0805 6F 05337 MOV L, A ; L = LS byte
0806 09 05338 DAD B ;Add on offset to base
0807 C9 05339

05340
05341
05400
05401

#

RET

05402 Check control character
05403
05404 This routine checks the character in A to see if it is a
05405 control character other than CR , LF, or TAB. The result is
05406 returned in the Z-flag.
05407
05408 Entry parameters
05409
05410 A = character to be checked
05411
05412
05413

Exit parameters

05414 Zero status if A does not contain a control character
05415
05416

or if it is C R , LF, or TAB

05417 Nonzero if A contains a control character other than
05418 CR, LF, or TAB.
05419 Check$Control$Char:

0808 3E1F 05420 MV I A, ' ' - 1 ;Space is first noncontrol char.
080A B8 05421 CMP B
080B DA2408 05422 JC CCC*No ;Not a control character
080E 3E0D 05423 MV I A, CR ;Check if carriage return
0810 B8 05424 CMP B
0811 CA2408 05425 JZ CCC$No ;Not really a control character
0814 3E0A 05426 MV I A, LF ;Check if LF
0816 B8 05427 CMP B
0817 CA2408 05428 JZ CCC$No ;Not really a control character
081A 3E09 05429 MV I A, TAB ;Check if horizontal tab
081C B8 05430 CMP B
08 ID CA2408 05431 JZ CCC$No ;Not really a control character
0820 3E01 05432 l*!VI A, 1 ;Indicate a control character
0822 B7 05433 ORA A
0823 C9 05434 RET

05435 CCC*No: ;Indicate A does not contain
0824 AF 05436 XRA A ; a control character
0825 C9 05437

05438
05500
05501

#

RET

05502 Output data byte
05503
05504 This is a simple polled output routine that outputs a single
05505 char acter (in register C on entry) to the device specified in
05506 the device table.
05507 Preferably, this routine would have been re-entrant; however
05508 it does have to store the port numbers. Therefore, to use it
05509 from code executed with interrupts enabled, the instruction
05510 sequence must be:
05511
05512 DI ; Interrupts off
05513 CALL Output$Data$Byte

Figure 8-10. (Continued)

266 The CP/M Programmer’s Handbook

05514
05515

El ; Inte rrupts on

05516 Failure to do this may cause involuntary re-entrance.
05517
05518
05519

Entry parameters

05520 C = character to be output
05521
05522

DE -> device table

05523 Output$Data*Byte:
0826 C5 ' 05524 PUSH B ;Save r e g i s t e r s .
0827 210200 05525 LX I H,DT$Output$Ready jGet output ready status mask
082A 19 05526 DAD D
0S2B 46 05527 MOV B, M
082C 210000 05528 LX I H,DT$Status$Port ;Get status port number
082F 19 05529 DAD D
0830 7E 05530 MOV A, M
0831 323508 05531 STA ODB$Status$Port ; Store in instruction below

05532 GDB$Wa i t $un t i1$Re ad y :
05533 '

0834 DB 05534 DB IN yRead status
05535 ODB*Status$Port:

0835 00 05536
05537

DB 0 ;<— Set up in instruction above

0836 AO 05538 ANA B ; Check if ready for output
0837 CA3408 05539 JZ 0DB$Wa i t $ u nti 1«Ready ; No
083A 210100 05540 LX I H,DT$Data*Port ;Get data port
083D 19 05541 DAD D
083E 7E 05542 MOV A, M
083F 324408 05543 STA GDB$Data$Port ; Store in instruction below
0842 79 05544

05545
MOV A, C ;Get character to output

0843 B3 05546 DB OUT
05547 ODB$Data$Port

0844 00 05548
05549

DB 0 ;<— Set up in instruction above

0845 Cl 05550 POP B ;Restore registers
0846 C9 05551

05552
RET

05700 #
05701
05702
05703
05704

Input status routine

05705 This routine returns a value in the A register indicating whether
05706 one or more data characters is/are waiting in the input buffer.
05707 Some products, such as Microsoft BASIC, defeat normal type-ahead
05708 by constantly "gobbling" characters in order to see if an incoming
05709 Control-S, -Q or -C has been received. In order to preserve
05710 '’ type- ahead under these circumstances, the input status return
05711 can, as an option selected by the u s e r , .return "data waiting" only
05712 if the input buffer contains a Control'-S, -Q or -C. This fools
05713 Microsoft BASIC into allowing type-ahead.
05714
05715
05716

Entry parameters

05717
05718

DE -> device table

05719
05720

Exit parameters

05721 A = 000H if no characters are waiting in the input
05722
05723
05724

buffer

05725 Get*Input$Status!
0847 210F00 05726 LX I H,DT*Status*2 ;Check if fake mode enabled
084A 19 05727 DAD D ;HL -> status byte in table
084B 7E 05728 MOV A, M ;Get status byte
084C E601 05729 AN I DT«Fake«Typeahead ;Isolate status bit
084E CA5B08 05730

05731
JZ GIS*True$Status

;
;Fake mode disabled

05732 jFake mode — only indicates data
05733 ; ready if control chars, in buffer

0851 211C00 05734 LX I H, DT«Control«Count jCheck if any control characters
0S54 19 05735 DAD D ; in the input buffer
0855 AF 05736 XRA A ;Cheap 0

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 267

0856 B6 05737 ORA M ;Set flags according to count
0857 C8 05738 RZ ^Return indicating zero

05739 GIS»Data$Ready:
0858 AF 05740 XRA A ;Cheap 0
0859 3D 05741 DCR A ;Set A = 0FFH and flags NZ
085A 09 05742

05743
RET ;Return to caller

05744 GIS$True$Status ?
05745 ; True status, based on any characters
05746 ;ready in input buffer

085B 2A8D0F 05747 LHLD CB$Forced$Input jCheck if any forced input waiting
085E 7E 05748 MOV A, M ;Get next character of forced input
085F B7 05749 ORA A jCheck if nonzero
0860 025808 05750

05751
JNZ GIS$Data$Ready ;Yes, indicate data waiting

0863 211900 05752 LX I H ,DT*Ch arac t e r *Coun t ;Check if any characters
0866 19 05753 DAD D ; in buffer
0867 7E 05754 MOV A, M jGet character count
0868 B7 05755 ORA A
0869 08 05756 RZ ;Empty buffer, A = 0, Z-set
086A 035808 05757

05758
05759
05900
05901

#

JMP GIS*Data$Ready

05902 Real time clock processing
05903
05904 Control is transferred to the RTC»Interrupt routine each time
05905 the real time clock ticks. The tick count is downdated to see
05906 if a complete second has elapsed. If so, the ASCII time in
05907 the configuration block is updated.
05908
05909 With each tick, the watchdog count is downdated to see if control
05910 must be "forced" to a previously specified address on return
05911 from the RTC- interrupt. The watchdog timer can be used to pull
05912 control out of what would otherwise be an infinite loop, such
05913 as wa iting for the printer to come ready.
05914
05915
05916 Set watchdog
05917
05918 This i s a noninterrupt level subroutine that simply sets the
05919 watchdog count and address
05920
05921 Entry parameters
05922
05923 BC = number of clock ticks before watchdog should
05924 "time out"
05925 HL = address to which control will be transferred when
05926
05927

watchdog times» out

05928 Set*Watchdogs
086D F3 05929 DI ;Avoid interference from interrupts
086E 220100 05930 SHLD RTC*Watchdog»Address ;Set address
0871 60 05931 MOV H, B
0872 69 05932 MOV L, C
0873 22BF00 05933 SHLD RTC»Watchdog»Count ;Set count
0876 FB 05934 El
0877 09 05935

05936
05937

RET

06000
06001

/

06002 ;Control is received here each time the
06003 ; real time clock ticks
0&004 RTC$Interrupt :

0878 F5 06005 PUSH PSW ;Save other registers
0879 228622 06006 SHLD PI»User»HL jSwitch to local stack
087C 210000 06007 LX I H, 0
087F 39 06008 DAD SP ;0et user's stack
0880 228422 06009 SHLD PI*User»Stack ;Save it
0883 31B022 06010 LX I SP,PI»Stack jSwitch to local stack
0886 05 06011 PUSH B
0887 D5 06012

06013
PUSH D

0888 21BE00 06014 LX I H,RTC»Tick»Count ;Downdate tick count

Figure 8-10. (Continued)

268 The CP/M Programmer’s Handbook

038B 35 06015 DCR M
088C C2B008 06016 JNZ RTC$Check$Watchdog ;Is not at 0 yet

06017 ;Qne second has elapsed so
088F 3ABD00 06018 LDA RTC$Ticks$per$Second ; reset to original value
0892 77 06019 MOV M, A

06020 ;Update ASCII real time clock
0893 11A10F 06021 LX I D,Time*in*ASCII$End ;DE -> 1 character after ASCII time
0896 21BD00 06022 LXI H,Update$T ime$End ;HL -> 1 character after control table

06023 RTC*Update$Dig it:
0899 IB 06024 OCX D »Downdate pointer to time in ASCII
089A 2B 06025 OCX H »Downdate pointer to control table
089B 7E 06026 MOV A, M ;Get next control character
089C B7 06027 ORA A ;Chi»ck if end of table and therefore
089D CAB008 06028 JZ RTC$Clock*Updated ; all digits of clock updated
OSAO FA9908 06029 JM RTC*Update$Digit »Skip over in ASCII time
08A3 1A 06030 LDAX D ;Get next ASCII time digit
08A4 3C 06031 I NR A ;Update it
08A5 12 06032 STAX D » and store it back
08A6 BE 06033 CMP M ;Compare to maximum value
08A7 C2B008 06034 JNZ RTC*Clock*Updated ;No carry needed so update complete
08AA 3E30 06035 MV I A, 'O' ;Reset digit to ASCII 0
08AC 12 06036 STAX D S and store back in ASCII time
OSAD C39908 06037 JMP RTC*Update$Digit jGo back for next digit

0603S
06039 RTC$Clock*Updated:
06040 RTC*Check*Watchdog:

08B0 2ABF00 06041 LHLD RTC$Watchdog$Count ;Get current watchdog count
08B3 2B 06042 OCX H sDowndate it
08B4 7C 06043 MOV A, H SCheck if it is now OFFFFH
08B5 B7 06044 ORA A
08B6 FACB08 06045 JM RTC*Dog$Not*Set ;It must have been 0 beforehand
08B9 B5 06046 ORA L ;Check if it is now 0
08BA C2C808 06047 JNZ RTCDogNZ ;No, it is not out of time

06048
06049 ;Watchdog time elapsed, so "call"
06050 } appropriate routine

08BD 21C508 06051 LXI H,RTC*Watchdog*Return jSet up return address
08C0 E5 06052 PUSH H i ready for return
08C1 2AC100 06053 LHLD RTC*Watchdog*Address ;Transfer control as though by CALL
08C4 E9 06054 PCHL

06055 RTC*Watchdog$Returns ?Control will come back here from
06056 ; the user's watchdog routine

08C5 C3CB08 06057 JMP RTC*Dog*Not*Set i Behave as though watchdog not active
06058
06059 RTC*Dog*NZ s

08C8 22BF00 06060 SHLD RTC*Watchdog*Couf»t ;Save downdated count
06061 RTC*Dog*Not*Set: j (Leaves count unchanged)

08CB 3E20 06062 MV I A,IC*EOI ;Reset the interrupt controller chip
08CD D3D8 06063 OUT IC*0CW2*Port

06064
08CF D1 06065 POP D »Restore registers from local stack
08D0 Cl 06066 POP B
08D1 2A8422 06067 LHLD PI*User*Stack »Switch back to user's stack
08D4 F9 06068 SPHL
08D5 2A8622 06069 LHLD PI*User*HL »Recover user's registers
08D8 FI 06070 POP PSW
08D9 FB 06071 El »Re-enable interrupts
08DA C9 06072 RET

06073.
06200 ;#
06201
06202 Shift HL Right one bit
06203 ✓ -

06204 SHLR:
080B B7 06205 ORA A »Clear carry
08DC 7C 06206 MOV A,H »Qet MS byte
08DD IF 06207 RAR »Bit 7 set from previous carry

06208 »Bit 0 goes into carry
08DE 67 06209 MOV H, A »Put shifted MS byte back
08DF 7D 06210 MOV A, L ;Get LS byte
08E0 IF 06211 RAR »Bit 7 = bit 0 of MS byte
08E1 6F 06212 MOV L, A »Put back into result
08E2 C9 06213 RET

06214
06215
06300 ?#

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 269

06301 »
06 3 0 2 ;
0 6 3 0 3 ;
06304 »
06305 »
06306 ;
06307 »
06308 »
06309 »
06310 »
06311 ;
06312 ;
06313 ;
06314 »
06315 ;
06316 »
06317 ;
06318 ;
06319
06320 ;
06321 ?
06322 ;
06323 ;
06324 ;
06325 ;
06326 ;
06327 ;
06328 ;
06329 »
06330 ;
06331 »
06332 »
06333 »
06334 »
06335 »
06336 ;
06337 ;
06338 ?
06339 ;
06340 ?
06341 ;
06342 ;
06343 »
06344 ;
06400 »#
06401 »
06402 Disk*Parameter*Headerss »Described in Chapter 3
06403 ;
06404 »Logical disk A ï (5 1/4” diskette)

08E3 AE09 06405 DU Floppy$5*Skewtable \»5 1/4" skew table
08E5 000000000006406 DU 0,0,0 !»Reserved for CP/M
08EB B022 06407 DU Directory*Buffer
08ED 3409 06408 DU Floppy$5*Parameter$Block
08EF B023 06409 DU DiskAUorkarea
08F1 1024 06410 DU DiskAAllocat ion$Vector

06411 ?
06412 »Logical disk B: (5 1/4" diskette)

08F3 AE09 06413 DU Floppy*5$Skewtable \¡Shares same skew table as A:
08F5 000000000006414 DU 0,0,0 !»Reserved for CP/M
08FB B022 06415 DU Directory$Buffer »Shares same buffer as A:
08FD 3409 06416 DU Floppy 5Par ame t e r $ B 1oc k »Same DPB as A:
08FF D023 06417 DU DiskBUorkarea »Private work area
0901 2624 06418

06419 ?
DU DiskBAl locat i o n W e c t o r »Private allocation vector

06420 »Logical disk Cs (8" floppy)
0903 F609 06421 DU Floppy8Skewtable ;8" skew table
0905 000000000006422 DU 0,0,0 »Reserved for CP/M
090B B022 06423 DU Directory$Buffer »Shares same buffer as As
090D 4409 06424 DU Floppy8Parameter$Block
090F F023 06425 DU Disk*C*Uorkarea »Private work area
0911 3C24 06426

06427 ?
DU Disk$C*Allocat ion*Vector »Private allocation vector

06428 »Logical disk D: (8" floppy)
0913 AE09 06429 DU Floppy *5$Skewt able »Shares same skew table as A:
0915 000000000006430 DU 0,0,0 »Reserved for CP/M
09 IB B022 06431 DU Directory*Buffer »Shares same buffer as A:

High level diskette drivers

These drivers perform the following functions:

SELDSK Select a specified disk and return the address of
the appropriate disk parameter header

SETTRK Set the track number for the next read or write
SETSEC Set the sector number for the next read or write
SETDMA Set the DMA (read/write) address for the next read or write
SECTRAN Translate a logical sector number into a physical
HOME Set the track to 0 so that the next read or write will

be on Track 0

In addition, the high level drivers are responsible for making
the 5 1/4” floppy diskettes that use a 512-byte sector appear
to CP/M as though they used a 128-byte sector. They do this
by using blocking/deblocking code. This blocking/deblocking
code is described in more detail later in this listing,
just prior to the code itself.

Disk parameter tables

As discussed in Chapter 3, these describe the physical
character1stics of the disk drives. In this example BIOS,
there are two types of disk drives? standard single-sided,
single-density 8", and double-sided, double-density 5 1/4"
mini-diskettes.

The standard 8" diskettes do not need to use the blocking/
deblocking code, but the 5 1/4" drives do. Therefore an additional
byte has been prefixed onto the disk parameter block to,
tell the disk drivers what each logical disk's physical
diskette type is, and whether or not it needs deblocking.

Disk definition tables

These consist of disk parameter headers, with one entry
per logical disk driver, and disk parameter blocks with
either one parameter block per logical disk, or the same
parameter block for several logical disks.

Figure 8-10. (Continued)

270 The CP/M Programmer’s Handbook

09 ID 4409 06432 DW Floppy*8*Parameter*Block {Same DPB as Cs
091F 0024 06433 DU DiskfDfUorkarea {Private work area
0921 5B24 06434 DU DiskfDfAllocationfVector {Private allocation vector

06435
06436 ; Logical disk M: (memory disk)
06437 M*Di$k*DPH:

0923 0000 06438 DU 0 {No skew required
0925 000000000006439 DU 0,0,0 ;Reserved for CP/M
092B B022 06440 DU DirectoryfBuffer
092D 5409 06441 DU MfDiskfParameterfBlock
092F 0000 06442 DU 0 ¡Disk cannot be changed, therefore

06443 i no work area is required
0931 7A24 06444 DU MfDisktAllocationfVector

06445
06446

*
*

06447 * Equates for disk parameter block
06448
06449
06450

t
!
;

Disk Types

0001 = 06451 Floppy*5 EQU 1 {5 1/4" mini floppy
0002 = 06452 Floppy*8 EQU 2 ?8" floppy <SS SD)
0003 a 06453 M*Disk EQU 3 ? Memory disk

06454 ?
06455 ; Blocking/deblocking indicator
06456 ;

0080 a 06457 NeedfDeblocking EQU 100040000B »Sector size > 128 bytes
06458 t
06600
06601
06602
06603

;«

;
t

Disk parameter blocks

06604 1 5 1/4" mini floppy
06605
06606

T
(Extra byte prefixed to indicate

06607 > disk type and blocking required
0933 81 06608 DB Floppy$5 + NeedfDeblocking

06609 The parameter block has been amended
06610 J to reflect the new layout of one
06611 track per diskette side, rather
06612 î than viewing one track as both
06613 sides on a given head position.
06614 fit has also been adjusted to reflect
06615 , one "new" track more being used for
06616 the CP/M image, with the resulting
06617 change in the number of allocation
06618 blocks and the number of reserved
06619 tracks.
06620 Floppy*5$Par ameterfBlock:

0934 2400 06621 DU 36 128-byte sectors per track
0936 04 06622 DB 4 Block shift
0937 OF 06623 DB 15 Block mask
0938 01 06624 DB 1 Extent mask
0939 ABOO 06625 DU 171 Maximum allocation block number
093B 7F00 06626 DU 127 Number of directory entries - 1
093D CO 06627 DB 1lOOfOOOOB Bit map for reserving 1 alloc, block
093E 00 06628 DB OOOOf0000B for file directory
093F 2000 06629 DU 32 Disk-changed work area size
0941 0300 06630

06631
06632

DU 3 Number of tracks before directory

06633 Standard 8 ” Floppy
06634 {Extra byte prefixed to DPB for
06635 ; this version of the BIOS

0943 02 06636 DB Floppyf8 ;Indicates disk type and the fact
06637 { that no deblocking is required
06638 Floppy8Parameter$Block :

0944 1AOO 06639 DU 26 !{Sectors per track
0946 03 06640 DB 3 1{Block shift
0947 07 06641 DB 7 !{Block mask
0948 00 06642 DB 0 !{Extent mask
0949 F 200 06643 DU 242 ;{Maximum allocation block number
094B 3FOO 06644 DU 63 ;{Number of directory entries - 1
094D CO 06645 DB 1100*00006 {Bit map for reserving 2 alloc, blocks
094E 00 06646 DB OOOOfOOOOB ; for file directory
094F 1000 06647 DU 16 {Disk-changed work area size
0951 0200 06648 DU 2 {Number of tracks before directory

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 271

06649
06650 M*Disk
06651
06652 ¡The M$Disk presumes that 4 x 48K memory
06653 7 banks are available. The following
06654 ; table describes the disk as having
06655 7 8 tracks: two tracks per memory bank
06656 * with each track having 192 128-byte
06657 : sectors.
06658 ; The track number divided by 2 will be
06659 ; used to select the bank

0953 03 06660 DB M$Disk ¡Type is M$Disk, no deblocking
06661 M*Disk$Parameter*Block:

0954 COOO 06662 DW 192 ¡Sectors per "track". Each track is
06663 ; 24K of memory

0956 03 06664 DB 3 ¡Block shift (1024 byte allocation)
0957 07 06665 DB 7 ;Block mask
0958 00 06666 DÇ 0 ¡Extent mask
0959 COOO 06667 DW 192 ¡Maximum allocation block number
095B 3F00 06668 DW 63 ¡Number of directory entries -1
095D CO 06669 DB 1100$0000B ¡Bit map for reserving 2 allocation blocks
095E 00 06670 DB 0000$0000B ; for file directory
095F 0000 06671 DW 0 ¡Disk cannot be changed, therefore no

06672 ; work area
0961 0000 06673 DW 0 ¡No reserved tracks

06674 ;
0004 = 06675 NumberofLogical$Disks EQU 4

06676
06800 7 #
06801
06802 SELDSK: ; Select disk in register C
06803 ? C = 0 for drive A, 1 for B, etc.
06804 ; Return the address of the appropriate
06805 ; disk parameter header in HL, or 0000H
06806 ; if the selected disk does not exist.
06807 ;

0963 210000 06808 LX I H r 0 ;Assume an error
0966 79 06809 MOV A,C ¡Check if requested disk valid

06810
0967 FEOC 06811 CPI ' M ' - 'A ' ¡Check if memory disk
0969 CA9509 06812 JZ SELDSKMDisk ; Yes

06813
096C FE04 06814 CPI NumberofLogical$Disks
096E DO 06815 RNC ¡Return if > maximum number of disks

06816
096F 322D0A 06817 STA Selected$Disk ¡Save selected disk number

06818 ¡Set up to return DPH address
0972 6F 06819 MOV L, A ¡Make disk into word value
0973 2600 06820 MV I H,0

06821 ¡Compute offset down disk parameter
06822 ? header table by multiplying by
06823 j parameter header length (16 bytes)

0975 29 06824 DAD H ¡«2
0976 29 06825 DAD H 7 »4
0977 29 06826 DAD H ;*8
0978 29 06827 DAD H ¡*16
0979 11E30S 06828 LX I D,Disk$Parameter$Headers ;Get base address
097C 19 06829 DAD D ;DE -> appropriate DPH
097D E5 06830 PUSH H ¡Save DPH address

06831
06832 ¡Access disk parameter block to
06833 ; extract special prefix byte that
06834 ; identifies disk type and whether
06835 ; deblocking is required
06836 ;

097E 110A00 06837 LX I D, 10 ¡Get DPB pointer offset in DPH
0981 19 06838 DAD D ;DE -> DPB address in DPH
0982 5E 06839 MOV E,M ;Get DPB address in DE
0983 23 06840 INX H
0984 56 06841 MOV D, M
0985 EB 06842 XCHG ;DE -> DPB

06843
06844 SELDSKSetDisk*Types

0986 2B 06845 DCX H ;DE -> prefix byte
0987 7E 06846 MOV A, M ;Get prefix byte
0988 E60F 06847 AN I OFH ; Isolate disk type

Figure 8-10. (Continued)

272 The CP/M Programmer’s Handbook

098A 32360A
098D 7E
098E E680
0990 32350A
0993 El
0994 C9

0995 212309
0998 C38609

099B 60
099C0 69
099D 222E0A
09A0 C9

09A 1 79
09A2 32300A
09A5 C9

09A6 0000

09A8 69
09A9 60
09AA 22A609
09AD C9

09AE 00010203
09B2 10111213
09B6 20212223
09BA 0C0D0E0F
09BE 1C1D1E1F
09C2 08090A0B
09C6 18191A1B
09CA 04050607
09CE 14151617

09D2 24252627
09D6 34353637
09DA 44454647
09DE 30313233
09E2 40414243
09E6 2C2D2E2F
09EA 3C3D3E3F
09EE 28292A2B
09F2 38393A3B

Selected$Disk$Type {Save for use in low level driver
06849 MOV A, M {Get another copy of prefix byte
06850 ANI Need$Deblocking ;Isolate deblocking flag
06851 STA Selected$Disk$Deblock {Save for use in low level
06852 POP H {Recover DPH pointer
06853 RET
06854 •
06855 SELDSK*M$D i s k : {M$Disk selected
06856 LX I H,M*Disk$DPH {Return correct parameter 1
06857 JMP SELDSKSetDisk$Type {Resume normal processing
06858
07000 i#
07001
07002 Set logical track for next read or write
07003
07004 SETTRK:
07005 MOV H, B {Selected track in BC on entry
07006 MOV L, C
07007 SHLD Selected$Track {Save for low level driver
07008 RET
07009
07100 #
07101
07102 Set logical sector for next read or write
07103
07104
07105 SETSEC; {Logical sector in C on entry
07106 MOV A, C
07107 STA Selected*Sector {Save for low level driver
07108 RET
07109
07200 !#
07201
07202 Set disk DMA (Input/Output) address for next read or write
07203
07204 DMA$Addresss o c o {DMA address
07205
07206 SETDMAs {Address in BC on entry
07207 MOV L, C {Move to HL to save
07208 MOV H, B
07209 SHLD1 DMA$Address {Save for low level driver
07210 RET
07211
07300 *
07301
07302
07303
07304
07305
07306
07307

Translate logical sector number to physical

Sector translation tables
These tables are indexed using the logical sector number,
and contain the corresponding physical sector number.

07308 Floppy5Skewtable: {Each physical sector contains four
07309 { 128- byte sectors.
07310 • Physical 128b Logical 128b Physical 512-byt.
07311 DB 00,01,02,03 {00,01,02,03 0 >
07312 DB 16,17,18,19 {04,05,06,07 4)
07313 DB 32,33,34,35 {08,09,10,11 8)
07314 DB 12,13,14,15 {12,13,14,15 3) Head
07315 DB 28,29,30,31 -, 16, 17, 18, 19 7) 0
07316 DB 08,09,10,11 {20,21,22,23 2 >
07317 DB 24,25,26,27 {24,25,26,27 6)
07318 DB 04,05,06,07 {28,29,30,31 1 >
07319 DB 20,21,22,23 {32,33,34,35 5)
07320
07321 DB 36,37,38,39 {36,37,38,39 0- 3
07322 DB 52,53,54,55 {40,41,42,43 4 3
07323 DB 68,69,70,71 •44,45,46,47 8 3
07324 DB 48,49,50,51 {48,49,50,51 3 3 Head
07325 DB 64,65,66,67 {52,53,54,55 7 3 1
07326 DB 44,45,46,47 {56,57,58,59 2 3
07327 DB 60,61,62,63 {60,61,62,63 6 3
07328 DB 40,41,42,43 {64,65,66,67 1 3
07329 DB 56,57,58,59 {68,69,70,71 5 3
07330
07331
07332 Floppy8Skewtable: ; Standard 8" Driver

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 273

07333 » 01,02,03,04,05,06,07,08,09,10 Logical sectors
09F6 010 7 0 D 131907334 DB 01,07,13,19,25,05,11,17,23,03 »Physical sectors

07335 ;
07336 t 11,12,13,14,15,16,17,18,19,20 Logical sectors

0A00 09 0 F 15020807337 DB 09,15,21,02,08,14,20,26,06,12 »Physical sectors
07338 ;
07339 ; 21,22,23,24,25,26 Logical sectors

OAOA 1218040A1007340 DB 18,24,04,10,16,22 »Physical sectors
07341
07400 »#
07401 ;
07402 SECTRAN: »Translate logical sector into physical
07403 »On entry, BC = logical sector number
07404 » DE -> appropriate skew table
07405 »
07406 »on exit, HL = physical sector number

0A10 EB 07407 XCHG ;HL -> skew table base
0 A 1 1 09 07408 DAD B »Add on logical sector number
0A12 6E 07409 MOV L,M »Get physical sector number
0A13 2600 07410 MV I H,0 »Make into a 16-bit value
0A15 C9 07411 RET

07412
07500 »#
07501
07502 ;
07503 HOMES »Home the selected logical disk to track 0
07504 »Before doing this, a check must be made to see
07505 » if the physical disk buffer has information in
07506 » it that must be written out. This is indicated by
07507 ; a flag, Must*Write$Buffer, that is set in the
07508 ; deblocking code.
07509 ;

0A16 3A2C0A 07510 LDA Must*Write$Buffer »Check if physical buffer must
0A19 B7 07511 ORA A » be written to a disk
0A1A C2200A 07512 JNZ HOME*No*Write
0A1D 322B0A 07513 STA Data$In*Disk$Buffer »No, so indicate that buffer

07514 » is now unoccupied
07515 HOMENoWrite:

0A20 OEOO 07516 MV I C,0 »Set to track 0 (logically,
0A22 CD9B09 07517 CALL SETTRK » no actual disk operation occurs)
0A25 C9 07518 RET

07519
07520
07600 ; #
07601 1 Data written to or read from the mini-floppy drive is transferred
07602 » via ai physical buffer that is one complete track in length,
07603 » 9 * 512 bytes. It is declared at the end of the BIOS, and has
07604 » some small amount of initialization code "hidden” in it.
07605 »
07606 ? The blocking/deblocking code attempts to minimize the amount
07607 ? of actual disk I/O by storing the disk and track
07608 I currently residing in the physical buffer.
07609 1 If a read request occurs of a 128-byte CP/M "sector"
07610 1 that already is in the physical buffer, no disk access occurs
07611 ; If a write request occurs if and the 128-byte CP/M 'sector"
07612 ; is already in the physical buffer, no disk access will occur,
07613 ? UNLESS the BDOS indicates that it is writing to the directory.
07614 » Directory writes cause an immediate write to disk of the entire
07615 ? track in the physical buffer.
07616
07617

0800 = 07618 Allocation*Block*Size EQU 2048
0009 * 07619 Physical*Sec*Per4Track EQU 9 ; Adjusted to reflect a "new"

07620 » track is only one side of the
07621 » disk

0200 = 07622 Physical*Sector4Size EQU 512 ;This is the actual sector size
07623 » for the 5 1/4" mini-floppy diskettes
07624 »The 8" diskettes and memory disk
07625 » use 128-byte sectors
07626 »Declare the physical disk buffer for the
07627 » 5 1/4" diskettes

0004 = 07628 CPM*Sec*Per*Physical EQU Physical*Sector$Size/128
0024 = 07629 CPM$Sec*Per*Track EQU CPM*Sec*Per*Physical*Physical*Sec*Per$Track
1200 « 07630 Bytes*Per*Track EQU Physical*Sec*Per*Track*Physical*Sector*Size
0003 = 07631 Sector*Mask EQU CPM*Sec*Per*Physical-l
0002 » 07632 Sector*Bit*Shift EQU 2 »L0G2(CPM*Sec*Per*Physical)

Figure 8-10. (Continued)

274 The CP/M Programmer’s Handbook

07633 »
07634 ; These are the values handed over by the BDOS
07635 l when it calls the write operation.
07636 »The allocated/unallocated indicates whether the
07637 » BDOS wishes to write to an unallocated allocation
07638 » block (it only indicates this for the first
07639 » 128-byte sector write), or to an allocation block
07640 » that has already been allocated to a file.
07641 »The BDOS also indicates if it wishes to write to
07642 » the file directory.
07643 »

0000 07644 Write$Allocated EQU 0
0001 = 07645 Write*Directory EQU 1
0002 = 07646 Write*Unallocated EQU 2 »<«■ ignored for track buffering

07647 »
0A26 00 07648 WritetTypes DB 0 »Contains the type of write

07649 » indicated by the BDOS
07650 ;
07651 J
07652 In*Buffer*Dk*Trk: »Variables for physical sector currently
07653 » in DiskfBuffer in memory

0A27 00 07654 In*BufferfDisk: DB 0 ;) These are moved and compared
0A28 0000 07655 In*Buffer*Track: DU 0 ») as a group, so do not alter

07656 » these lines
0A2A 00 07657 In$Buf fer*Disk$Types DB 0 »Disk type for sector in buffer

07658 »
0A2B 00 07659 Data*In*Disk*Buffers DB 0 »When nonzero, the disk buffer has

07660 » data from the disk in it
0A2C 00 07661 Must*Write*Buffers DB 0 »Nonzero when data has been written

07662 » into Disk*Buffer but not yet
07663 » written out to disk
07664 »
07665 Selected*Dk*Trk: »Variables for selected disk, track and sector
07666 » (Selected by SELDSK, SETTRK and SETSEC)

0A2D 00 07667 Selected$Disk: DB 0 ») These are moved and compared
0A2E 0000 07668 Selected*Tracks d w 0 ») as a group so do not alter order

07669
0A30 00 07670 S e 1ec t ed*Sect o r : DB 0 »Not partv of group but needed here

07671
0A31 00 07672 Selected*Physical*Sectori DB 0 »Selected physical sector derived

07673 » from selected (CP/M) sector by
07674 » shifting it right the number of
07675 » bits specified by SectorBitShift
07676
07677 ;
07678

0A32 00 07679 Disk*Error*Flag: DB 0 »Nonzero to indicate an error
07680 » that could not be recovered
07681 » by the disk drivers. The BDOS
07682 » will output a "Bad Sector" message

0A33 00 07683 DisktHungtFlag: DB 0 »Nonzero if a watchdog timeout
07684 » occurs

0258 a 07685 DisktTimer EQU 600 »Number of 16.66 ms clock ticks
07686 » for a 10 second timeout
07687 •
07688 »Flags used inside the deblocking code
07689

0A34 00 07690 ReadSOperations DB 0 »Nonzero when a CP/M 128-byte
07691 » sector is to be read

0A35 00 07692 Selected*Disk*Deblocks DB 0 »Nonzero when the selected disk
07693 » needs deblocking (set in SELDSK)

0A36 00 07694 SelectedfDisktType: DB 0 »Indicates 8" or 5 1/4" floppy or
07695 » IttDisfe selected, (set in SELDSK)
07696 ;
07800 »#
07801
07802 » Read in the 128 -byte CP/h sector specified by previous calls
07803 1 to Select Disk, Set Track and Sector. The sector will be read
07804 l into the address specified in the previous Set DMA Address call.
07805 ;
07806 l If reading from a disk drive using sectors larger than 128 bytes,
07807 î deblocking code will be1 used to "unpack" a 128-byte sector from
07808 S the physical sector.
07809 READ:

0A37 3A350A 07810 LDA Selected$Disk*Deblock »Check if deblocking needed
0A3A B7 07811 ORA A » (flag was set in SELDSK call)

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 275

0A3B CA2F0B 07812 JZ Read*No*Deblock »No, use normal nondeblocked
07813
07814 ;The deblocking algorithm used is such
07815 ; that a read operation can be viewed
07816 » until the actual data transfer as though
07817 » it was the first write to an unallocated
07818 » allocation block

0A3E 3E01 07819 MV I A, 1 »Indicate that a read actually
0A40 32340A 07820 STA ReadfOperat ion » is to be performed

07821
0A43 3E00 07822 MV I A,Write*Allocated »Fake deblocking code into believing
0A45 32260A 07823 STA Write$Type » that this is a write to an

07824 ; allocated allocation block
0A48 C35C0A 07825 JMP Perform*Read*Write »Use common code to execute read

07826 •
07900 »#
07901 ; Write a 128-byte sector from the current DMA address to
07902 » the previously selected disk, track and sector.
07903 ;
07904 » On arrival here, the BOOS will have-set register C to indicate
07905 » whether this write operation is to an already allocated allocation
07906 ; block (which means a preread of the sector may be needed), or
07907 to the directory (in which case the data will be written to the
07908 disk immediately).
07909
07910 Only writes to the directory take place immediately. In all other
07911 ? cases, the data will be moved from the DMA address into the disk
07912 ; buffer , and only be written out when circumstances force the
07913 ; transfer. The number of physical disk operations can therefore
07914 » be reduced considerably.
07915 ;
07916 WRITE:

0A4B 3A350A 07917 LDA Selected*Disk*Deblock »Check if deblocking is required
0A4E B7 07918 ORA A » (flag set in SELDSK call)
OA4F CA2A0B 07919 JZ Wr i t e*No*Deb1ock

07920
0A52 AF 07921 XRA A »Indicate that a write operation
0A53 32340A 07922 STA ReadfOperation » is required (i.e NOT a read)
0A56 79 07923 MOV A, C »Save the BDOS write type
0A57 E601 07924 AN I 1 » but only distinguish between

07925 » write to allocated block or
0A59 32260A 07926 STA Wr i te*Type » directory write

07927 ?
07928 ;
08000 Ï#
08001 »
08002 Perform*Read*Writes ; Common code to execute both reads and
08003 ; writes of 128¡-byte sectors.

0A5C AF 08004 XRA A ? Assume that no disk errors will
0A5D 32320A 08005 STA Disk*Error*Flag » occur

08006
0A60 3A300A 08007 LDA Selected*Sector »Convert selected 128-byte sector
0A63 IF 08008 RAR » into Physical sector by dividing by 4
0A64 IF 08009 RAR
0A65 E63F 08010 AN I 3FH »Remove any unwanted bits
0A67 3231OA 08011 STA Selected*Physical*Sector

08012 »
0A6A 212B0A 08013 LX I H,Data*In*Di sk*Buf fer »Check if disk buffer already has
0A6D 7E 08014 MOV A, M » data in it
0A6E 3601 08015 MV I M, 1 »(Unconditionally indicate that

08016 » the buffer now has data in it)
0A70 B7 08017 ORA A »Did it indeed have data in it?
0A71 CA870A 08018 JZ Read*Track*into*Buffer »No, proceed to read a physical

08019 » track into the buffer
08020 ;
08021 »The buffer does have a physical track
08022 » in it . Check if it is the right one
08023 ?

0A74 11270A 08024 LXI D,In*Buffer*Dk*Trk »Check if track in buffer is the
0A77 212D0A 08025 LX I H,Selected*Dk*Trk ; same as that selected earlier
0A7A CDE10A 08026 CALL Compare*Dk*Trk »Compare ONLY disk and track
0A7D CA910A 08027 JZ Track*In*Buffer »Yes*, it is already in buffer

08028
08029 »No, it will have to be read in
08030 » over current contents of buffer

0A80 3A2C0A 08031 LDA Must$Write*Buffer »Check if buffer has data in that

Figure 8-10. (Continued)

276 The CP/M Programmer’s Handbook

0A83 B7 08032 ORA A ? must be written out first
0A84 C4E50B 08033 CNZ Write*Physical »Yes, write it out

08034 •
08035 Read*Track*into*Buffer:

0A87 CDCEOA 08036 CALL Set*In*Buffer*Dk*Trk »Set in buffer variables from
08037 » selected disk, track
08038 l to reflect which track is in the
08039) buffer now

0A8A CDEAOB 08040 CALL Read*Physical »Read the track into the buffer
0A8D AF 08041 XRA A »Reset the flag to reflect buffer
0A8E 322C0A 08042 STA Must*Write*Buffer » contents

08043 ■
08044 Track*In*Buffer »Selected track and
08045 ; disk is already in the buffer
08046 »Convert the selected CP/M (128-byte)
08047 » sector into a relative address down
08048 » the buffer

0A91 3A300A 08049 LDA Select ed*Sec tor »Get selected sector number
0A94 6F 08050 MOV L, A »Multiply by 128 by shifting 16-bit value
0A95 2600 08051 MV1 H, 0 »left 7 bits
0A97 29 08052 DAD H »« 2
0A98 29 08053 DAD H »« 4
0A99 29 08054 DAD H »* 8
0A9A 29 08055 DAD H ;* 16
0A9B 29 08056 DAD H »« 32
0A9C 29 08057 DAD H ;* 64
0A9D 29 08058 DAD H ;* 128

08059 >
0A9E 11A40F 08060 LXI D,DiskSBuffer »Oet base address of disk buffer
OAAl 19 08061 DAD D »Add on sector number * 128

08062 >HL -> 128-byte sector number start
08063 » address in disk buffer

OAA2 EB 08064 XCHO >DE -> sector in disk buffer
0AA3 2AA609 08065 LHLD DMA*Address »Oet DMA address set in SETDMA call
0AA6 EB 08066 XCHO »Assume a read operation, so

08067 » DE -> DMA address
08068 » HL -> sector in disk buffer

0AA7 OEIO 08069 MV I C r128/8 »Because of the faster method used
08070 » to move data in and out of the
08071 » disk buffer, (eight bytes moved'per
08072 » loop iteration) the count need only
08073 » be 1/8 of normal
08074 »At this point?
08075 » C » loop count
08076 » DE -> DMA address
08077 » HL -> sector in disk buffer

0AA9 3A340A 08078 LDA Read*Operat ion »Determine whether data is to be moved
OAAC B7 08079 ORA A » out of the buffer (read) or into the
OAAD C2B50A 08080 JNZ Buf fer*Move » buffer (write)

08081 »Writing into buffer
08082 » (A must be 0 get here)

OABO 3C 08083 INR A »Set flag to force a write
0AB1 322C0A 08084 STA Must*Write*Buffer ; of the disk buffer later on.
OAB4 EB 08085 XCHO »Make DE — > sector in disk buffer

08086 ? HL -> DMA address
08087 !
08088 j
08089 Buf fer*Move:

0AB5 CDF80A 08090 CALL Move*8 »Moves 8 bytes * C times from (HL)
08091 ; to (DE)
08092
08093 »

0AB8 3A260A 08094 LDA Write*Type »If write to directory, write out
OABB FEOl 08095 CPI Write*Directory » buffer immediately
OABD 3A320A 08096 LDA Di sk*Error*Flag »Get error flag in case delayed write or read
OACO CO 08097 RNZ »Return if delayed write or read

08098 ;
OAC1 B7 08099 ORA A »Check if any disk errors have occured
0AC2 CO 08100 RNZ »Yes, abandon attempt to write to directory

08101 »
0AC3 AF 08102 XRA A »Clear flag that indicates buffer must be
OAC4 322C0A 08103 STA Must*Write*Buffer » written out
0AC7 CDE50B 08104 CALL Wri te*Physical »Write buffer out to physical track
OACA 3A320A 08105 LDA Disk*Error*Flag »Return error flag to caller
OACD C9 08106 RET

08107 ;

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 277

08108
08109
08110 SetInBuffer*Dk*Trk¡ ¡ Indicate selected disk, track
08111 ; now residing in buffer

OACE 3A2D0A 08112 LDA Selected$Disk
OAD1 32270A 08113 STA InfcBuffer$Disk

08114
0AD4 2A2E0A 08115 LHLD Selected$Track
0AD7 22280A 08116 SHLD In$Buf fer*Track

08117
OADA 3A360A 08118 LDA Selected$Disk$Type ïAlso reflect disk type
OADD 322A0A 08119 STA In$Buffer$Disk$Type

08120
OAEO C9 08121

08122
08123

RET

08124 CompareDkTrk: ;Compares just the disk and track
08125 7 pointed to by DE and HL

OAE1 0E03 08126 MV I C, 3 ¡Disk (1), track (2)
08127 CompareDkTrk$Loops

0AE3 1A 08128 LDAX D ¡Get comparitor
OAE4 BE 08129 CMP M ;Compare with comparand
0AE5 CO 08130 RNZ ¡Abandon comparison if inequality found
0AE6 13 08131 INX D ¡Update comparitor pointer
0AE7 23 08132 INX H ;Update comparand pointer
0AE8 OD 08133 DCR C ¡Count down on loop count
0AE9 C8 08134 RZ ¡Return (with zero flag set)
OAEA C3E30A 08135 JMP C-ompareDkTrk$Loop

08136
08137
08138 MoveDkTrk: ¡Moves the disk, track
08139 7 variables pointed at by HL to
08140 * those pointed at by DE

OAED 0E03 08141 MV I C, 3 ;D isk (1), Track (2)
08142 MoveDkTrk$Loop:

OAEF 7E 08143 MOV A, M ¡Get source byte
OAFO 12 08144 STAX D ¡Store in destination
OAF 1 13 08145 INX D ; Update pointers
0AF2 23 08146 INX H
0AF3 OD 08147 DCR C ; Count down on byte count
0AF4 C8 08148 RZ ¡Return if all bytes moved
0AF5 C3EF0A 08149 JMP MoveDkTrk$Loop

08150
08300
08301

#

08302 Move eight bytes
08303
08304 This rout ine moves eight bytes in a block, C times, from
08305 (HL) to (DE). It uses "drop through" coding to speed
08306 up execution.
08307
08308 Entry Parameters
08309
08310 ! C = number of 8-byte blocks to move
08311 DE -> destination address
08312
08313

HL -> source address

08314 Move$8:
0AF8 7E 08315 MOV A, M ;Get byte from source
0AF9 12 08316 STAX D ¡Put into destination
OAFA 13 08317 INX D ¡Update pointers
OAFB 23 08318 INX H
OAFC 7E 08319 MOV A, M ¡Get byte from source
OAFD 12 08320 STAX D ¡Put into destination
OAFE 13 08321 INX D ¡Update pointers
OAFF 23 08322 INX H
OBOO 7E 08323 MOV A, M ¡Get byte from source
OBOl 12 08324 STAX D ¡Put into destination
0B02 13 08325 INX D ¡Update pointers
0B03 23 08326 INX H
0B04 7E 08327 MOV A, M ¡Get byte from source
0B05 12 08328 STAX D ¡Put into destination
0B06 13 08329 INX D ¡Update pointers
0B07 23 08330 INX H
0B08 7E 08331 MOV A, M ¡Get byte from source
0B09 12 08332 STAX D ¡Put into destination

Figure 8-10. (Continued)

278 The CP/M Programmer’s Handbook

0B0A 13 08333 INX D
0B0B 23 08334 I NX H
0B0C 7E 08335 MOV A, M
0B0D 12 08336 STAX D
OBOE 13 08337 INX D
0B0F 23 08338 INX H
0 B 10 7E 08339 MOV A, M
0 B 1 1 12 08340 STAX D
0B12 13 08341 INX D
0 B 13 23 08342 INX H
0B14 7E 08343 MOV A, M
0 B 15 12 08344 STAX D
0B16 13 08345 INX B
0B17 23 08346

08347
INX H

OB 18 OD 08348 DCR C
OB 19 C2F80A 08349 JNZ Move$8
0B1C C9 08350

08351
RET

08352
08500
08501
08502
08503
08504
08505
08506
08507
08508
08509
08510
0S511
08512
08513
08514
08515
08516
08517
08518
08519
08520
08521
08522
08523
08524
08525
08526
08527
08528
08529
08530
08531
08532
08533
08534
08535
08536
08537

¡Update pointers

¡Get byte from source
¡Put into destination
¡Update pointers N

¡Get byte from source
¡Put into destination
¡Update pointers

?Get byte from source
¡Put into destination
¡Update pointers

¡Count down on loop counter
¡Repeat until done

Introduction to the disk controllers on this computer system*.

There are two "smart" disk controllers on this system, one
for the 8" floppy diskette drives, and one for the 5 1/4"
mini-diskette drives.

The controllers are "hard-wired" to monitor certain locations
in memory to detect when they are to perform some disk
operation. The 8" controller looks at location 0040H, and
the 5 1/4" controller looks at location 0045H. These are
called their disk control bytes. If the most significant
bit of a disk control byte is set, the controller will then
look at the word following the respective control bytes.
This word must contain the address of a valid disk control
table that specifies the exact disk operation to be performed.

Once the operation has been completed, the controller resets
its disk control byte to 00H, and this indicates completion
to the disk driver code.

The controller also sets a return code in a disk status block.
Both controllers use the same location (0043H) for this.
If the first byte of this status block is less than 80H, then
a disk error has occurred. For this simple BIOS, no further details
of the status settings are relevant. Note that the disk controller
has built-in retry logic, reads and writes are attempted ten
times before the controller returns an error.

The disk control table layout is shown below. Note that the
controllers have the capability for control tables to be
chained together so that a sequence of disk operations can
be initiated. In this BIOS this feature is not used. However,
the controller requires that the chain pointers in the
disk control tables be pointed back to the main control bytes
in order to indicate the end of the chain.

0040 = 08538 Disk$Control$8 EQU 40H y8" control byte
0041 = 08539 Command$Block$8 EQU 41H ¡Control table pointer

08540 •
0043 = 08541 Disk$Status$Block EQU 43H ¡8" AND 5 1/4" status block

08542 •
0045 = 08543 Disk$Control$5 EQU 45H ¡5 1/4" control byte
0046 = 08544 Command$Block$5 EQU 46H ¡Control table pointer

08545
08546
08547 y Floppy Disk Control Tables
08548

OBID 00 08549 FloppyfCommand: DB 0 ¡Command
0001 = 08550 Floppy$Read$Code EQU 01H
0002 = 08551 Floppy$Wr i te$Code EQU 02H
OBIE 00 08552 Floppy$Uni t: DB 0 ¡Unit (drive) number
OBIF 00 08553 Floppy$Head: DB 0 ¡Head number = 0 or
0B20 00 08554 Floppy$Track: DB 0 ¡Track number
0B21 00 08555 FloppyfSector: DB 0 ¡Sector number

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 279

0B22
0B24
0B26

0B28

0B2A
0B2C

0B2F

0B31

0B34
0B37
0B39

0B3C
0B3F
0B42
0B43

0B4Ó

0B49
0B4B

0B4E
0B51

0B54
0B57

0B5A
0B5D

0B60
0B63

0B66
0B69

0B6C
0B6F

0B72
0B75
0B77

0000 08556 Floppy$Byte$Count : DW 0 Number of bytes to read/write
0000 08557 FloppyDMAAddress: DU 0 Transfer address
0000 08558

08559
Floppy$Next$Status$Block: DW 0 Pointer to next status block

if commands are chained.
0000 08560

08561
08562
08700
08701
08702

Floppy$Next$Control$Locat ion:

; #

DU 0 Pointer to next control byte
if commands are chained

08703 Ur i teNoDeblock : {Write contents of disk buffer to
08704 ; correct sector

3E02 08705 MVI A,Floppy$WritefCode {Get write function code
C3310B 08706 JMP CommonNoDeblock {Go to common code

08707 Read*No$Deblock: {Read previously selected sector
08708 { into disk buffer.

3E01 08709 MVI A,Floppy$Read$Code {Get read function code
08710 CommonNoDeblock :

321DOB 08711 STA Floppy^Command {Set command function code
08712 {Set up nondeblocked command table
08713

3A360A 08714 LDA Selected$Disk$Type {Check if memory disk operation
FE03 08715 CPI M$Disk
CA7A0B 08716 JZ M$Di sk$Transfer {Yes, it is M$Disk

08717
08718 No$Deblock $Re try: {Re-entry point to retry after error

218000 08719 LXI H, 128 {Bytes per sector
22220B 08720 SHLD FloppyUByte$Count
AF 08721 XRA A {8" floppy only has head 0
321FOB 08722 STA FloppyfHead

08723 {
3A2D0A 08724 LDA Selected$Disk {8" floppy controller only knows about

08725 i units 0 and 1 so SelectedfDisk must
08726 { be converted

E601 08727 ANI 01H {Turn into 0 or 1
321E0B 08728 STA Floppy$Unit {Set unit number

08729 {
3A2E0A 08730 LDA SelectediTrack
32200B 08731 STA Floppy$Track {Set track number

08732
3A300A 08733 LDA Selected$Sector
32210B 08734 STA Floppy$Sector {Set sector number

08735 {
2AA609 08736 LHLD DMA*Address {Transfer directly between DMA Address
22240B 08737 SHLD FloppyDMAAddress { and 8" controller.

08738 {
08739
08740
08741
08742
08743

214300 08744
22260B 08745

08746
214000 08747
22280B 08748

08749
211B0B 08750
224100 08751

08752
214000 08753
3680 08754
C33B0C 08755

08756
08757 ;
08900 { #
08901 ;
08902 ;
08903 ;
08904 {
08905 ;
08906 ;
08907 ;
08908 ;
08909 ;
08910 ;

{The disk controller can accept chained
i disk control tables, but in this case,
; they are not used, so the "Next" pointers
j must be pointed back at the initial
{ control bytes in the base page.

LX I H,Disk$StatustBlock {Point next status back at
SHLD Floppy$Next$Status$Block { main status block

LX I H,Disk$Control$8
SHLD Floppy$Next*Control$Locat ion

Point next control byte
back at main control byte

LXI H,Floppy$Command {Point controller at control table
SHLD Command$Block$8

LXI H,Disk$Control*8 {Activate controller to perform
MVI M,80H { operation
JMP WaitForDisk*Complete

Memory disk driver

This routine must use an intermediary buffer, since the
DMA address in bank ("track") 0 occupies the same
place in the overall address space as the M$Disk itself.
The M$Disk$Buffer is above the 48K mark, and therefore
remains in the address space regardless of which bank/track
is selected.

Figure 8-10. (Continued)

280 The CP/M Programmer’s Handbook

08911 For writing, the 128-byte sector must be processed:
08912
08913 1. Move sector DMA*Address -> M$Disk$Buffer
08914 2. Select correct track (+1 to get bank number)
08915 3. Move sector M*Disk$Buffer -> M$Disk image
08916
08917

4. Select bank 0

08918 For reading, the processing iss
08919
08920 1. Select correct track/bank /
08921 2. Move sector M$Disk image -> M$Disk$Buffer
08922 3. Select Bank 0
08923
08924

4. Move sector M$Disk$Buffer -> DMA$Address

08925 If there is any risk of any interrupt causing control
08926 to be transferred to an address below 48K, interrupts must
08927 be disabled when any bank other than 0 is selected.
08928
08929 M$Disk$Transfer

0B7A 3A300A 08930 LDA SelectedfSector »Compute address in memory
0B7D 6F 08931 MOV L, A » by muliplying sector * 128
0B7E 2600 08932 MV I H, 0
0B80 29 08933 DAD H »* 2
0B81 29 08934 DAD H »* 4
0B82 29 08935 DAD H »« 8
0B83 29 08936 DAD H ;* 16
OB84 29 08937 DAD H ;* 32
0B85 29 08938 DAD H »* 64
0B86 29 08939

08940
DAD H »» 128

0B87 3A2E0A 08941 LDA Selected$Track »Compute which half of bank sector
08942 » is in by using LS bit of track

0B8A 47 08943 MOV B, A »Save copy for later
0B8B E601 08944 AN I 1 »Isolate lower/upper indicator
0B8D CA940B 08945 JZ M$Disk$Lower$Half

08946
0B90 110060 08947 LX I D , (48 * 1024) / 2 »Upper half, so bias address
0B93 19 08948

08949
DAD D

08950 M$Disk$Lower$Halfs »HL -> sector in memory
0B94 78 08951 MOV A, B »Recover selected track
0B95 IF 08952 RAR »Divide by 2 to get bank number
0B96 30 08953 INR A »Bank 1 is first track
OB97 47 08954

08955
MOV B, A »Preserve for later use

0B98 3A1D0B 08956 LDA Floppy$Command »Check if reading or writing
0B9B FE02 08957 CPI F 1op p y $Wr i t e $Code
0B9D CABEOB 08958 JZ M$Disk*Write »Writing

08959
08960

»Reading

OBAO CDDDOB 08961 CALL Select$Bank »Select correct memory bank
0BA3 113023 08962 LX I D,M$Disk*Buffer ;DE -> M$Disk$Buffer, HL -> M$Disk image
OBA6 0E10 08963 MV I C , 128/8 »Number of 8-byte blocks io move
0BA8 CDF80A 08964

08965
CALL Move$8

OBAB 0600 08966 MV I B, 0 »Revert to normal memory bank
OBAD CDDDOB 08967

08968
CALL Select*Bank

OBBO 2AA609 08969 LHLD DMA$Address »Get user's DMA address
0BB3 113023 08970 LX I D,M$Disk$Buffer
0BB6 EB 08971 XCHG »DE -> User's DMA, HL — > M$Disk buffer
OBB7 0E10 08972 MV I C , 128/8 »Number of 8-byte blocks to move
0BB9 CDF80A 08973

08974
CALL Move$S

OBBC AF 08975 XRA A »Indicate no error
OBBD 09 08976

08977
RET

08978 M*Disk$Write» »Writ ing
OBBE E5 08979 PUSH H »Save sector's address in M$Disk image
OBBF 2AA609 08980 LHLD DMA*Address »Move sector into M$Disk$Buffer
OBC-2 113023 08981 LX I D,M*Disk$Buffer
0BC5 0E10 08982 MV I C , 128/8 »Number of 8-byte blocks to move
0BC7 CDF80A 08983 CALL Move$8 »(Does not use B register)

08984 »B = memory bank to select
OBCA CDDDOB 08985

08986
CALL Select$Bank

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 281

OBCD D1 08987 POP D {Recover sector's M$Disk image address
OBCE 213023 08988 LX I H,M*Disk$Buffer
0BD1 0E10 08989 MV I C , 128/3
0BD3 CDF80A 08990

08991
CALL Move$8 {Move into M$Disk image

0BD6 0600 08992 MV I B, 0 {Select bank 0
0BD8 CDDDOB 08993

08994
CALL Select$Bank

OBDB AF 08995 XRA A {Indicate no error
OBDC C9 08996

08997
09100 #

RET

09101 Select bank
09102
09103 This routine switches in the required memory bank.
09104 Note that the hardware port that controls bank selection

0040
00F8

OBDD DB40
OBDF E6F8
OBEI BO
0BE2 D340
0BE4 C9

09105
09106
09107
09108
09109
09110
09111
09112
09113
09114
09115
09116
09117
09118
09119
09120
09121
09200
09201
09202

also has other bits in it. These are preserved across
bank selections.

Entry parameter

B = bank number

Bank*Con t rol$Port
Bank*Mask

EQU
EQLI

40H
1111$1000B {To preserve other bits

Select$Bank s
IN
AN I
ORA
OUT
RET

Bank$Control$Port
Bank*Mask

Bank*Control$Port

{Get current setting in port
{Preserve all other bits
{Set bank code
{Select the bank

09203 Write$Physical: {Write contents of disk buffer to
09204 { correct sector

0BE5 3E02 09205 MV I A,Floppy$WritefCode {Get write function code
0BE7 C3EC0B 09206 JMP Common$Physical {Go to common code

09207 ReadfcPhys ical : {Read previously selected sector
09208 { into disk buffer

OBEA 3E01 09209 MV I A,Floppy$Read$Code {Get read function code
09210
09211 Common$Phys ical

OBEC 321DOB 09212 STA Floppy$Command {Set command table
09213
09214
09215 Deblock$Retry! {Re-entry point to retry after error

OBEF 3A2A0A 09216 LDA In$Buffer*Disk$Type {Get disk type currently in buffer
0BF2 FE01 09217 CPI Floppy$5 {Confirm it is a 5 1/4" floppy
0BF4 CAFDOB 09218 JZ Correct$Disk*Type {Yes
0BF7 3E01 09219 MV I A, 1 {No, indicate disk error
0BF9 32320A 09220 STA Disk*Error*Flag
OBFC C9 09221 RET

09222 Corr eet*Disk$Type: {Set up disk control table
09223 •

OBFD 3A270A 09224 LDA In*Buffer*Disk {Convert disk number to 0 or 1
OCOO E601 09225 AN I 1 { for disk controller
0C02 321E0B 09226 STA Floppy*Uni t

09227
0C05 2A280A 09228 LHLD In*Buffer$Track {Set up head and track number
0C08 7D 09229 MOV A, L {Even numbered tracks will be on
0C09 E601 09230 AN I 1 { head 0, odd numbered on head 1
OCOB 321FOB 09231 STA Floppy*Head {Set head number

09232
OCOE 7D 09233 MOV A, L {Note: this is single byte value
OCOF IF 09234 RAR { /2 for track (carry off from ANI above)
OCIO 32200B 09235 STA Floppy$Track

09236
0C13 3E01 09237 MV I A, 1 {Start with sector 1 as a whole
0C15 3221OB 09238 STA Floppy$Sector { track will be transferred

09239
0C13 210012 09240 LX I H,BytesPerTrack {Set byte count for complete
0C1B 22220B 09241 SHLD Floppy$Byte$Count { track to be transferred

Figure 8-10. (Continued)

282 The CP/M Programmer’s Handbook

0C1E 21A40F 09243 LX I H,Disk$Buffer Set transfer address to be
OC21 22240B 09244 SHLD Floppy DMAAd'dr e s s disk buffer

09245
09246 As only one control table is in
09247 use, close the status and busy
09248 chain pointers back to the
09249 main control bytes

0C24 214300 09250 LX I H,Di sk$Status$Block
0C27 22260B 09251 SHLD Floppy$Ne>:t$St at us$Block
OC2A 214500 09252 LX I H,Disk$Control$5
0C2D 22280B 09253 SHLD Floppy$Next$Controi$Locat ion

09254
0030 211DOB 09255 LXI H,Floppy$Command ;¡Set up command block pointer
0033 224600 09256 SHLD Command$Block$5

09257
0036 214500 09258 LXI H,Disk$Control$5 ;¡Activate 5 1/4" disk controller
0039 3680 0925^ MV I M , 80H

09260
09261 MaitForDisk$Complete: ;Mait until disk status block indicates
09262 ; operation has completed, then check
09263 ; if any errors occurred.
09264 ;0n entry HL -> disk control byte

0C3B AF 09265 XRA A ;¡Ensure hung flag clear
0030 32330A 09266 STA Di sk$Hung$Flag

09267
0C3F 215700 09268 LXI H,Di sk$T imed$0ut !¡Set up watchdog timer
0042 015802 09269 LXI B,Disk$Timer ;¡Time delay
0045 CD6D08 09270 CALL Set$Matchdog

09271 Disk$Wait$Loop:
0048 7E 09272 MOV A, M !¡Get control byte
0049 B7 09273 ORA A
0C4A CA5D0C 09274 JZ Disk$Complete ;¡'Operation done

09275
0C4D 3A330A 09276 LDA Disk$Hung*Flag !¡Also check if time expired
0050 B7 09277 ORA A
0051 C2B40D 09278 JNZ Disk$Error !¡Mill be set to 40H

09279
0054 C34S0C 09280 JMP Disk $Ma i t $Loop

09281
09282 Di sk$Timed$Qut: ; Control arrives here from watchdog
09283 ? routine itself — so this is effectively
09284 ; part of the interrupt service routine.

0057 3E40 09285 MV I A, 40H Set disk hung error code
0059 32330A 09286 STA Di sk$Hung$Flag into error flag to pull

09287 control out of loop
0050 09 09288 RET Return to watchdog routine

09289
09290 Disk$Complete:

0C5D 010000 09291 LXI B, 0 !;Reset watchdog timer
09292 i HL is irrelevant here

0060 CD6D08 09293 CALL Set$Matchdog
09294

0063 3A4300 09295 LDA Disk$Status$Block i;Complete, now check status
0066 FE80 09296 CPI 80H \Check if any errors occurred
0068 DAB40D 09297 JC Disk$Error ? Yes

09298
09299 Disk$Error$ Ignore:

0C6B AF 09300 XRA A ; No
0060 32320A 09301 STA Disk$Error$Flag fClear error flag
0C6F 09 09302 RET

09303
09304
09400 ; #
09401 ; Disk error message handling
09402
09403
09404 Di sk$Error$Messages: jThis table is scanned, comparing the
09405 ; disk error status with those in the
09406 ; table . Given a match, or even when
09407 ; then 'end of the table is reached, the
09408 j address following the status value
09409 ; points to the correct message text.

0070 40 09410 DB 40H
0071 9D0C 09411 DM DiskMsg40
0073 41 09412 DB 4 1H
0074 A20C 09413 DM Disk*Msg*41

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 283

0C76 42 09414 DB 42H
0C77 ACOC 09415 DU Disk*Msg$42
0C79 21 09416 DB 21H
0C7A BCOC 09417 DW DiskMsg21
0C7C 22 09418 DB 22H
OC7D C10C 09419 DW Di skMsg22
0C7F 23 09420 DB 23H
0C80 C80C 09421 DW Disk$Msg*23
0C82 24 09422 DB 24H
0C83 DAOC 09423 DW Disk*Msg*24
0C85 25 09424 DB 25H
0C86 E60C 09425 DW Disk*Msg*25
0C88 11 09426 DB 11H
0C89 F90C 09427 DW Disk*Msg*ll
0C8B 12 09428 DB 12H
0C8C 070D 09429 DW Disk*Msg$12
0C8E 13 09430 DB 13H
0C8F 140D 09431 DW Di skMsg13
0C91 14 09432 DB 14H
0C92 220D 09433 DW Disk*Msg$14
0C94 15 09434 DB 15H
0C95 310D 09435 DW Disk*Msgi15
0C97 16 09436 DB 16H
0C98 3D0D 09437 DW DiskMsg16
0C9A 00 09438 DB 0 ;<== Terminator
0C9B 4D0D 09439 DW DiskMsgUnknown ; Unmatched code

09440 ;
0003 = 09441 DEM$Entry$Size EQU 3 ?Disk error message table entry size

09442
09443
09444

; Message texts

0C9D 48756E670009445 DiskMsg40: DB 'Hung',0 ;Timeout message
0CA2 4E6F74205209446 DiskMsg41: DB 'Not R e a d y ',0
OCAC 577269746509447 Disk*Msg$42s DB 'Write Protected',0
OCBC 446174610009448 Disk*Msg*21s DB 'Data',0
OCC1 466F726D6109449 Di skMsg22: DB 'Format',0
0CC8 4D6973736909450 Disk*Msg*23: DB 'Missing Data Mark',0
OCBA 427573205409451 Disk$Msg*24: DB 'Bus Timeout',0
0CE6 436F6E747209452 Disk*Msg$25: DB 'Controller Time ou t',0
0CF9 447269766509453 Di skMsgl1 : DB 'Drive Address',0
0D07 486561642009454 Disk*Msg$12: DB 'Head Address',0
OD14 5 4 72 61636B09455 DiskMsg13: DB 'Track Address',0
0D22 536563746F09456 Disk*Msg*14: DB 'Sector Address',0
0D31 427573204109457 Disk*Msg*15: DB 'Bus Address',0
0D3D 496C6C656709458 Disk$Msg«16: DB 'Illegal Comm an d',0
0D4D 556E6B6E6F09459 Disk*Msg*Unknown: DB 'Unknown',0

09460
09461 Disk*EM$l: ;Main disk error message -— part 1

0D55 070D0A 09462 DB BELL,CR,LF
0D58 4469736B2009463 DB 'Disk ',0

09464
09465 ;Error text output next
09466
09467

;
Disk*EM*2: ;Main disk error message -— part 2

0D5E 204572726F09468 DB ' Error ('
OD66 0000 09469 DiskEMStatus: DB 0,0 ;Status code in Hex.
0D68 290D0A202009470 DB ')',C R ,L F ,' Drive '
0D76 00 09471 Disk$EMÍDrive: DB 0 ; Disk drive code, A,B...
0D77 2C2048656109472 DB ', Head '
OD7E 00 09473 Disk*EM*Head: DB 0 ;Head number
0D7F 2C2054726109474 DB ', Track '
0D87 0000 09475 Di sk*EM$Tracks DB 0,0 jTrack number
0D89 2C2053656309476 DB ', Sector '
0D92 0000 09477 Di skEMSector: DB 0,0 ; Sector number
0D94 2C204F706509478 DB ', Operation - '
0DA2 00 09479 DB 0 ;Terminator

09480 ;
0DA3 52 6 5 6 1642E09481 DiskEMRead: DB 'Read.',0 ; Operation names
0DA9 577269746509482 Disk$EM«Write: DB 'Write.',0

09483
09484 [

09485 Disk*Act ion$Conf irms
ODBO 00 09486 DB 0 jSet to character entered by user
ODB1 ODOAOO 09487 DB CR,LF,0

09488
09489 ? Disk error processor

Figure 8-10. (Continued)

284 The CP/M Programmer’s Handbook

09490
09491 { This routine builds and outputs an error message.
09492 ; The user is then given the opportunity to:
09493
09494 * R — retry the operation that caused the error
09495 ; I — ignore the error and attempt to continue
09496 { A — abort the program and return to CP/M.

ODB4 F5

09497
09498
09499

Disk$Error:
PUSH PSW {Preserve error code from controller

0DB5 21660D 09500 LX I H,Disk*EM*Status ;Convert code for message
0DB8 CD440E 09501 CALL CAH {Converts A to hex.

ODBB 3A270A
09502
09503 LDA In$Buf fer$Disk {Convert disk id. for message

ODBE C641 09504 ADI 'A' {Make into letter
ODCO 32760D 09505 STA Disk*EM*Drive

0DC3 3A1F0B
09506
09507 LDA Floppy$Head {Convert head number

0DC6 C630 09508 ADI ' 0 '
0BC8 327E0D 09509 STA Disk«EM$Head

ODCB 3A200B
09510
09511 LDA Floppy*Track {Convert track number

ODCE 21870D 09512 LX I H,Disk*EM$Track
ODDI CD440E 09513 CALL CAH

0DD4 3A210B
09514
09515 LDA Floppy$Sector {Convert sector number

ODD7 21920D 09516 LX I H, Di skEMSector
ODDA CD440E 09517 CALL CAH

ODDD 21550D
09518
09519 LX I H,Disk$EM*l {Output first part of message

ODEO CD5305 09520 CALL Output$Error$Message

0DE3 FI
09521
09522 POP PSW {Recover error status code

0DE4 47 09523 MOV B, A {For comparisons
0DE5 216D0C 09524 LX I H,Disk$Error$Messages -■ DEM$Entry*Size

0DE8 110300
09525
09526 LX I D,DEM$Entry$Size

{HL -> table - one entry
{Get entry size for loop below

ODEB 19
09527
09528

Disk$Error*Next$Code!
DAD D {Move to next (or first) entry

ODEC 7E
09529
09530 MOV A, M {Get code number from table

ODED B7 09531 ORA A {Check if end of table
ODEE CAF80D 09532 JZ Disk$Error$Matched {Yes, pretend a match occurred
0DF1 B8 09533 CMP B {Compare to actual code
0DF2 CAF80D 09534 JZ Disk*Error$Matched {Yes, exit from loop
0DF5 C3EB0D 09535 JMP Disk$Error*Next$Code {Check next code

0DF8 23

09536
09537
09538

DiskfErrorfMatched!
INX H {HL -> address of text

0DF9 5E 09539 MOV E, M {Get address into DE
ODFA 23 09540 INX H
ODFB 56 09541 MOV D, M
ODFC EB 09542 XCHG {HL -> text
ODFD CDS305 09543 CALL Output$Error$Message {Display explanatory text

OEOO 215E0D
09544
09545 LX I H,Disk*EM*2 {Display second part of message

0E03 CD5305 09546 CALL Output$Error$Message

0E06 21A30D
09547
09548 LXI H,DiskEMRead {Choose operation text

0E09 3A1D0B
09549
09550 LDA Floppy$Command

{ (assume a read)
{Get controller command

OEOC FE01 09551 CPI Floppy$Read$Code
OEOE CA140E 09552 JZ Disk$Error$Read {Yes
0 E 1 1 21A90D 09553 LXI H,Disk*EM*Write {No, change address in HL

0E14 CD5305
09554
09555

Di sk*Error*Read :
CALL Output*Error*Message {Display operation type

09556
09557

!
Di sk$Error$Request*Act ion! {Ask the user what to do next

0E17 CD2F05 09558 CALL Request*User»Choice {Display prompt and wait for input

0E1A FE52
09559
09560 CPI 'R'

{ Returns with A = uppercase char.
{Retry?

0E1C CA2C0E 09561 JZ Disk$Error*Retry
0E1F FE41 09562 CPI 'A' {Abor t
0E21 CA360E 09563 JZ System$Reset
0E24 FE49 09564 CPI ' I ' {Ignore
0E26 CA6B0C 09565 JZ Disk*Error*Ignore

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 285

0E29 C3170E 09566 JMP Di sk$Error$Request$Action
09567
09568 Disk$Error$Retry: {The decision on where to return
09569 j depends on whether the operation
09570 ; failed on a deblocked or
09571 i nondeblocked drive.

0E2C 3A350A 09572 LDA Selected$Disk$Deblc<ck
0E2F B7 09573 ORA A
0E30 C2EF0B 09574 JNZ Deblock$Retry
0E33 C33C0B 09575 JMP No$D eb1ock$Re try

09576
09577 System$Reset: {This is a radical approach, but
09578 i it does cause CP/M to restart.

0E36 OEOO 09579 MV I C,0 {System reset
0E38 CD0500 09580

09581
09582
09583

CALL BDOS

09584
09585

A to upper

09586 Converts the contents of the A register to an upper-
09587 case letter if it is currently a lowercase letter.
09588
09589
09590

Entry parameters

09591
09592

A = character to be converted

09593 Exit parameters
09594
09595
09596

A = converted character

09597 AToUpper:
0E3B FE61 09598 CPI •'a-' {Compare to lower limit
0E3D D8 09599 RC {No need to convert
0E3E FE7B 09600 CPI ' z ' + 1 {Compare to upper limit
0E40 DO 09601 RNC {No need to convert
O E 4 1 E65F 09602 AN I 5FH {Convert to uppercase
0E43 C9 09603

09604
RET

09605 Convert A register to hexadecimal
09606
09607 This subroutine converts the A register to hexadecimal.
09608
09609
09610

Entry parameters

09611 A = value to be converted and output
09612 !
09613

1 HL -> buffer area to receive two characters of output

09614
09615

Exit parameters

09616 HL -> byte following last hex byte output
09617
09618 CAH:

0E44 F5 09619 PUSH PSW {Take a copy of the value to be converted
0E45 OF 09620 RRC {Shift A right four places
0E46 OF 09621 RRC
0E47 OF 09622 RRC
0E48 OF 09623 RRC
0E49 CD4D0E 09624 CALL CAH$Convert {Convert to ASCII
0E4C FI 09625 POP PSW {Get original value again

09626 {Drop into subroutine, which converts
09627 { and returns to caller
09628 CAH$Convert:

OE4D E60F 09629 AN I 0000$1111B {Isolate LS four bits
OE4F CÓ30 09630 ADI ' 0 ' {Convert to ASCII
0E51 FE3A 09631 CPI ' 9 ' + 1 {Compare to maximum
0E53 DA580E 09632 JC CAH$Numer ic {No need to convert to A -> F
0E56 C607 09633 ADI 7 {Convert to a letter

09634 CAH$Numeric:
0E58 77 09635 MOV M, A {Save character
0E59 23 09636 INX H {Update character pointer
0E5A C9 09637

09638
09639

RET

09640
09700 #

Figure 8-10. (Continued)

286 The CP/M Programmer’s Handbook

09701
09702 Disk control table images for warm boot
09703
09704 Boot$Control$Part$l:

0E5B 01 09705 DB 1 ;Read function
0E5C 00 09706 DB 0 {Unit (drive) number
0E5D 00 09707 DB 0 {Head number
0E5E 00 09708 DB 0 ;Track number
0E5F 02 09709 DB 2 ;Starting sector number
0E60 0010 09710 DU 8*512 ;Number of bytes to read
0E62 00C4 09711 DU CCPSEntry {Read into this address
0E64 4300 09712 DU Di sk$Status$Block {Pointer to next status block
0E6 6 4500 09713 DU Disk*Control$5 {Pointer to next control table

09714 Boot $Cont r o 1$Par 12:
0E68 01 09715 DB 1 {Read function
0E69 00 09716 DB 0 {Unit (drive) number
0E6A 01 09717 DB 1 {Head number
0E6B 00 09718 DB 0 {Track number
0E6C 01 09719 DB 1 {Starting sector number
0E6D 0006 09720 DU 3*512 {Number of bytes to read
0E6F 00D4 09721 DU CCPSEntry + (8*512) {Read into this address
OE71 4300 09722 DU Di sk$Status$Block {Pointer to next status block
0E73 4500 09723

09724
09725
09726

DU Di skfControl$5 {Pointer to next control table

09800
09801

#

09802 W B OO T: {Warm boot entry
09803 {On warm boot, the CCP and BDOS must be reloaded
09804 ; into memory. In this BIOS, only the 5 1/4"
09805 ; diskettes will be used, therefore this code
09806 ; is hardware specific to the controller. Two
09807 ; prefabricated control tables are used.

0E75 318000 09808 LX I SP,80H
0E78 1 15B0E 09809 LX I D,Boot$Control$Part1 Execute first read of warm boot
OE7B CD8A0E 09810 CALL Uarm$Boot$Read Load drive 0, track 0,

09811 head 0, sectors 2 - 8
' OE7E 11680E 09812 LX I D,Boot$Control$Part2 Execute second read
0E81 CD8A0E 09813 CALL Warm$Boot $Read Load drive 0, track 0,

09814 head 1, sectors 1 - 3
0E84 CDDFOE 09815 CALL Patch$CPM Make custom enhancements patches
0E87 C36C02 09816

09817 !
JMP EnterfCPM Set up base page and enter CCP

09818 Warm$Boot$Read: ;0n entry, DE -> control table image
09819 {This control table is moved into
09820 * the main disk control table and
09821 ; then the cont-roller activated.

0E8A 211D0B 09822 LX I H,Floppy$Command ;HL -> actual control table
0E8D 224600 09823 SHLD Command$Block$5 Tell the controller its address

09824 Move the control table image
09825 into the control table itself.

0E90 OEOD 09826 MV I C, 13 {Set byte count
09827 Warm$Boot$Move:

0E92 1A 09828 LDAX D {Get image byte
0E93 77 09829 MOV M, A ; Store into actual control table
0E94 23 09830 INX H ; Update pointers
0E95 13 09831 INX D
0E96 OD 09832 DCR C ; Count down on byte count
0E97 C2920E 09833 JNZ Warm$Boot$Move ;Continue until all bytes moved

09834
0E9A 214500 09835 LX I H,Disk$Control$5 {Activate controller
0E9D 3680 09836 MV I M, 80H

09837 Wai tForBoot$Complete:
0E9F 7E 09838 MOV A, M ;Get status byte
OEAO B7 09839 ORA A {Check if complete
OEA1 C29F0E 09840 JNZ Uai t*For$Boot$Complete ; No

09841 {Yes, check for errors
OEA4 3A4300 09842 LDA Disk*Status$Block
0EA7 FE80 09843 CPI 80H
0EA9 DAADOE 09844 JC Warm$BootlError {Yes, an error occurred
OEAC C9 09845

09846 !
RET

09847 Warm$Boot»Error
OEAD 21B60E 09848 LX I H,Uarm$Boot$Error*Message
OEBO CD5F02 09849 CALL Di splay$Message

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 287

0EB3 C3750E 09850 JMP WBOOT ; Restart warm boot
09851
09852 Warm$Boot$Error$Message :

0EB6 0D 0A 57 617209853 DB CR,LF,'Warm Boot Error - r e t r y i n g . CR,LF,0
09854
09855
10000 #
10001
10002 Ghost$Interrupt: ^Control will only arrive here under the most
10003 ; unusual circumstances, as the interrupt
10004 ; controller will have been programmed to
10005 ; suppress unused interrupts.
10006

0ED8 F5 10007 PUSH PSW ;Save pre-interrupt registers
0ED9 3E20 10008 MVI A,IC$E0I ;Indicate end of interrupt
OEDB D3D8 10009 OUT IC*0CW2$Port
OEDD FI 10010 POP PSW
OEDE C9 10011 RET

10012
10013
10100 #
10101
10102 Patch CP/M
10103
10104 This routine makes some very special patches to the
10105 CCP and BDOS in order to make some custom enhancements
10106
10107 Public files:
10108 On large hard disk systems it is extremely useful
10109 to partition the disk using the user number features.
10110 However, it becomes wasteful of disk space because
10111 multiple copies of common programs must be stored in
10112 each user area. This patch makes User 0 public —
10113 accessible from any other user area.
10114 *** WARNING **«
10115 Files in User 0 MUST be set to system and read/only
10116 status to avoid their being accidentally damaged.
10117 Because of the side effects associated with public
10118 files, the patch can be turned on or off using
10119 a flag in the long term configuration block.
10120
10121 User prompt:
10122 When using CP/M's USER command and user numbers
10123 in general, it is all too easy to become confused
10124 and forget which user number you are "in." This
10125 patch modifies the CCP to display a prompt which
10126 ; shows not only the default disk id., but also the
10127 f current user number, and an indication of whether
10128 ; public files are enabled:
10129
10130 ; P3B> or 3B>
10131
10132 ; When public files are enabled.
10133 !
10134 ; Equates for public files
10135

D35E = 10136 PF*BDOS$Exit$Point EQU BDOS$Entry + 758H
D37C = 10137 PF$BDOS$Char*Matches EQU BDOS$Entry + 776H
D3Ó1 = 10138 PF$BDOS*Resume$Point EQU BDOS$Entry + 75BH
OOOD = 10139 PF*BDOS$Unused$Bytes EQU 13

10140
10141
10142 Equates for user prompt
10143

C788 = 10144 UPCCPExit«Point EQU CCP*Entry + 388H
C78B = 10145 UP*CCP*Resume$Point EQU CCP*Entry + 38BH
C513 = 10146 UP*CCP$Get*User EQU CCP*Entry + 113H
C5D0 = 10147 UP$CCP*Get$Disk$Id EQU CCP$Entry + 1D0H
C48C = 10148 UP*CCP*C0N0UT EQU CCP*Entry + SCH

10149
10150
10151 Set up the intervention points
10152
10153 Patch$CPM:

OEDF 3EC3 10154 MVI A,JMP ; Set u p opcode
OEE1 325ED3 10155 STA PF*BD0S$Exit$Point

Figure 8-10. (Continued)

288 The CP/M Programmer’s Handbook

OEE4 3288C7 10156 STA UP$CCP*Exit*Point
0EE7 21F40E 10157 LXI H,Public*Patch
OEEA 225FD3 10158 SHLD PF*BDOS*Exit$Point + 1
OEED 2111OF 10159 LXI H,Prompt$Patch •Get address of intervening code
OEFO 2289C7 10160 SHLD UP*CCP*Exit$Point + 1

10161
0EF3 C9 10162 RET {Return to enter CP/M

10163
10164
10165
10166 Public$Patch: {Control arrives here from the BDOS
10167 {The BDOS is in the process of scanning
10168 ; down the target file name in the
10169 { search next function
10170 ; HL -> the name of the file searched for
10171 ; DE -> directory entry
10172 i B = character count
10173

0EF4 3A4200 10174 LDA CB*Public*Files jCheck if public files are to be enabled
OEF7 B7 10175 ORA A
0EF8 CAOBOF 10176 JZ NofPublic$Files ; No

10177
OEFB 78 10178 MOV A,B ;Get character count
OEFC B7 10179 ORA A ;Check if looking at first byte

10180 ; (that contains the user number)
OEFD C20B0F 10181 JNZ No$Public$Flies ;No, ignore this patch

10182
OFOO 1A 10183 LDAX D ?Get user number from directory entry
OFOl FEES 10184 CPI 0E5H ;Check if active directory entry
0F03 CAOBOF 10185 JZ NofcPublic$F iles ;Yes, ignore this patch

10186
0F06 7E 10187 MOV A, M ;Get user number
0F07 B7 10188 ORA A ;Check if User 0
0F08 CA7CD3 10189 JZ PF$BDOS$Char$Matches ; Force character match

10190
10191 No$Public$Files ;Replaced patched out code

OFOB 78 10192 MOV " A, B ;Check if count indicates that
OFOC FEOD 10193 CPI PF$BDOS$Unused$Bytes ; registers are pointing at

10194 ; unused bytes field of FCB
OFOE C361D3 10195 JMP PF$BBOS$Resume$Point ; Return to BDOS

10196
10197 Prompt$Patchî jControl arrives here from the CCP
10198 ;The CCP is just about to get the
10199 ; drive id. when control gets here.
10200 ?The CCP-'s version of CGNOUT is used
10201 i so that the CCP can keep track of
10202 ; the cursor position.
10203

O F 11 3A4200 10204 LDA CB$Public$Files ;Check if public files are enabled
O F 14 B7 10205 ORA A
O F 15 CA1DOF 10206 JZ UP$Pr ivate$Files ; No

10207
O F 18 3E50 10208 MV I A , ' P y
OF1A CD8CC4 10209 CALL UP*CCP*CONOUT {Use CCP's CGNOUT routine

10210
10211 UP*Private$Filess

OFID CD13C5 10212 CALL UP*CCP*Get*User ;Get current user number
0F20 FEOA 10213 CPI 9 ♦ 1 {Check if one or two digits
0F22 D2300F 10214 JNC UP2Digits
0F25 C630 10215 ADI ■'O'' {Convert to ASCII

10216 UP*l$Digit:
0F27 CD8CC4 10217 CALL UP$CCP*CONOUT {Output the character
OF2A CDD0C5 10218 CALL UP*CCP*Get$Disk$Id {Get disk identifier
OF2D C38BC7 10219 JMP l»P*CCP$Resume$Point ; Return to CCP

10220
10221 UP2Digitss

OF30 C626 10222 ADI •'0' - 10 {Subtract 10 and convert to ASCII
0F32 F5 10223 PUSH PSW {Save converted second digit
0F33 3E31 10224 MV I a , ' r {Output leading
0F35 CD8CC4 10225 CALL UP*CCP*CONOUT
OF38 FI 10226 POP PSW {Recover second digit
0F39 C3270F 10227 JMP UP$l*Digit {Output remainder of prompt and return to

10228 { the CCP
10229
10230
10300 •#

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 289

10301
10302 ; Configuration block get address
10303
10304 ? This routine is called by utility programs running in the TPA.
10305 ; Given a specific code number, it returns the address of a specific
10306 ? object in the configuration block.
10307 •
10308 J By using this routine, utility programs need not know the exact
10309 ; layout of the configuration block.
10310 »
10311 * Entry parameters
10312 ï
10313 C = Object identity code (in effect, this is the
10314 1 subscript of the object's address in the
10315 i table below)
10316
10317 • ===============
10318 CB*Get«Address: ;<=== BIOS entry point (private)
10319 •=-===— ======- ========— =-

0F3C F5 10320 PUSH PSU ?Save user's registers
OF3D C5 10321 PUSH B
0F3E D5 10322 PUSH D

10323
OF3F 69 10324 MOV L,C ;Make code into a word
0F40 2600 10325 MV I H, 0
0F42 29 10326 DAD H jConvert code into word offset
0F43 114FOF 10327 LX I D,CB«0bject«Table jGet base address of table
0F46 19 10328 DAD D ïHL -> object's address in table
0F47 5E 10329 MOV E, M ; Get LS byte
0F48 23 10330 I NX H
0F49 56 10331 MOV D, M ;Get MS byte
0F4A EB 10332 XCHG ;HL = address of object

10333
0F4B D1 10334 POP D jRecover user's registers
0F4C Cl 10335 POP B
0F4D FI 10336 POP PSU

10337
0F4E 09 10338 RET

10339
10400 ;#
10401
10402 CB«0bj ec t « T ab1e
10403 Code
10404 vv

0F4F 8F0F 10405 DU Date ;01 date in ASCII
0F51 990F 10406 DU T ime«In*ASCII ; 02 time in ASCII
0F53 A30F 10407 DU T ime«Date«Flags ;03 flags indicated if time/date set
OF55 8D0F 10408 DU CB«Forced«Input ;04 forced input pointer
0F57 4300 10409 DU CB*Startup ?05 system startup message

10410 ; Redirection words
0F59 5800 10411 DU CB«Console«Input ; 06
0F5B 5A00 10412 DU CB«Console«Output ; 07
0F5D 5C00 10413 DU CB «A ux i1iary«Input î 08
0F5F 5E00 10414 DU CB«Auxi1 iary«Output ; 09
0F61 6000 10415 DU CB«List«Input ; 10
0F63 6200 10416 DU CB«Li st«0utput ; ll

10417
0F65 6400 10418 DU CB«Device«Table«Addresses ; 12
0F67 B500 10419 DU CB« 12«24«C- lock ; 13 Selects 12/24 hr. format clock
0F69 BDOO 10420 DU RTC«Ticks«per«Second ; 14
0F6B BFOO 10421 DU RTC«Uatchdog«Count * 15
0F6D Cl00 10422 DU RTC«Uatchdog«Address ; 16
0F6F C300 10423 DU CB«Funct ion«Key«Table ; 17
0F 71 1B02 10424 DU CONOUT«Escape«Table ; 13

10425
0F73 8400 10426 DU D0«Init ialize«Stream ; 19
0F75 9100 10427 DU DO«Baud«Rate«Constant ; 20
0F77 9400 10428 DU Dl*Init ialize«Stream ; 21
0F79 A 100 10429 DU Dl«Baud«Rate«Constant ; 22
0F7B A400 10430 DU D2«Init ialize«Stream ; 23
0F7D B100 10431 DU D2«Baud«Rate«Constant ; 24
0F7F 4002 10432 DU Interrupt«Vector ; 25
0F81 890F 10433 DU LTCB*0ffset ; 26
0F83 8B0F 10434 DU LTCB*Length ï 27
0F85 4200 10435 DU CB«Public«Files ; 30

Figure 8-10. (Continued)

290 The CP/M Programmer’s Handbook

0F87 A421 10436 DW Multi*Command*Buffer ;3i
10437
10500 #
10501 The short term configuration block.
10502
10503 This contains variables that can be set once CP/M
10504 has been initiated, but that are never preserved
10505 from one loading of CP/M to the next. This part of
10506 the configuration block form the last initialized bytes
10507 in the BIOS.
10508
10509 The two values below are used by utility programs that
10510 need to read in the long term configuration block from disk.
10511 The BIOS starts on a 256-byte page boundary, and therefore
10512 will always be on a 128-byte sector boundary in the reserved
10513 area on the disk. A utility program can then, using the
10514 CB*Get*Address Private BIOS call, determine how many 128-byte
10515 sectors need to be read in by the formula:
10516
10517 (LCTB*Qffset + LTCB*Length> / 128
10518
10519 The LTCB*Offset is the offset from the start of the BIOS to
10520 where the first byte of the long term configuration block
10521 starts. Using the offset and the length, the utility can
10522 copy the RAM version of the LTCB over the disk image
10523 that it has read from the disk, and then write the
10524 updated LTCB back onto the disk.
10525

0F89 BED9 10526 LTCB*Of fset : DW BIOS*Entry - Long*Term*CB
0F8B E601 10527 LTCB*Length: DW Long*Term*CB*End - Long*Term*CB

10528
10529 Forced input pointer
10530
10531 If CONIN ever finds that this pointer is pointing to a nonzero
10532 î! byte, then this byte will be injected into the console input
10533 stream as though it had been typed on the console. The
10534 pointer is then updated to the next byte in memory.
10535

0F8D 4300 10536 CB*Forced*Input: DW CB*Startup
10537
10538
10539 Date: jCurrent system date

0F8F 3130 2F 313710540 DB '10/17/82',LF jUnless otherwise set to the contrary
10541 ; this is the release date of the system
10542 jIMormally, it will be set by the DATE utility

0F98 00 10543 DB 0 jOO-byte terminator
10544
10545 Time*in*ASCII : jCurrent system time

0F99 3030 10546 YfH: DB '00' ; Hours
0F9B 3A 10547 DB ': '
0F9C 3030 10548 f1M: DB '00' jMinutes
0F9E 3A 10549 DB ' : '
0F9F 3030 10550 SS: DB '00 ' ; Seconds

10551 Time*in*ASCII*End: ;Used when updating the time
OFA1 OA 10552 DB LF
0FA2 00 10553 DB 0 ;00-byte terminator

10554 í
10555
10556 Time*Date*Flags: »This byte contains two flags that are used
10557 ? to indicate whether the time and/or date
10558 ; have been set either pr ogrammâtical1 y or
10559 ; by using the TIME and DATE utilities. These
10560 ; flags can be tested by utility programs that
10561 ; need to have the correct time and date set.

OF A3 00 10562 DB 0
OOOl = 10563 Time*Set EQU 0000*000IB
0002 = 10564 Date*Set EQU 0000*001OB

10565
10566
10700 #
10701 Uninitialized buffer areas
10702
10703 With the exception of the main Disk*Buffer, which contains a few
10704 bytes of code, all of the other uninitialized variables
10705 occur here. This has the effect of reducing the number of
10706 bytes that need be stored in the CP/M image on the disk,

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 291

10707 ï since uninitialized areas do not need to be kept on the disk.
10708 ;
10709 ;
10800 ;#
10801 ;
10802 ; The cold boot initialization code is only needed once.
10803 ï It can be overwritten once it has been executed.
10804 ; Therefore, it is "hidden'' inside the main disk buffer.
10805 ;
10806 ;

OF A4 10807 Disk$buffer: DS Physical$Sector*Size * Physical*Sec*Per*Track
10808 ;
10809 ;Save the location counter

21 A4 = 10810 After*Disk*Buffer EQU ♦ = current value of location counter
10811 ;

OF A4 10812
10813 ;

ORG Disk$Buffer jUind the location counter back

10814 Init ialize$Stream: jThis stream of data is used by the
10815 ; Initialize subroutine. It has the following
10816 ; f or ma t:
10817
10818 F DB Port number to be initialized
10819 DB Number of byte to be output
10820
10821

? DB xx,xx,xx,xx data to be output

10822
10823
10824
10825
10826 ;

!
DB Port number of 00H terminates

10827 ï Initialization stream declared here
OFA4 D8 10828 DB IC*IC.Ul*Port ;Program the 8259 interrupt controller
0FA5 01 10829 DB 1
0FA6 56 10830

10831
DB ICtICUl

0FA7 D9 10832 DB IC$ICU2$Port
0FA8 01 10833 DB 1
0FA9 02 10834

10835
DB IC*ICU2

OF A A D9 10836 DB IC*OCUl*Port
OFAB 01 10837 DB 1
OFAC FC 10838

10839
DB IC50CU1

OFAD 83 10840 DB 83H ;Program the 8253 clock generator
OFAE 01 10841 DB 1
OFAF 34 10842

10843
DB 00$11$010*0B jCounter 0, periodic interrupt, mode 2

OFBO 80 10844 DB 80H ;RTC uses channel 0
OFB1 02 10845 DB 2
0FB2 0146 10846 DU 17921 ;19721 * 930 nanoseconds =

10847 ; 16.666 milliseconds). 60 ticks/sec.
0FB4 00 10848

10849 ;
10850 ;

DB 0 yPort number of 0 terminates

10851 Signon$Message:
0FB5 43502F4D2010852 DB 'CP/M 2.2.'
OFBE 3030 10853 DU VERSION ?Current version number
OFCO 20 10854 DB
OFC1 3032 10855 DU MONTH jCurrent date
0FC3 2F 10856 DB
0FC4 3236 10857 DU DAY
0FC6 2F 10858 DB ' / '
0FC7 3833 10859 DU YEAR
0FC9 ODOAOA 10860 DB CR,LF,LF
OFCC 456E68616E10861 DB 'Enhanced B I O S ',CR,LF,LF
OFDC 4469736B2010862 DB •'Disk Configuration s',CR,LF,LF
0FF3 202020202010863 DB ' A: 0.35 Mbyte 5" F l o p p y ',CR,LF
1011 202020202010864 DB B: 0.35 Mbyte 5" F l o p p y ' , CR,LF,LF
1030 202020202010865 DB C: 0.24 Mbyte 8" F l o p p y ' , CR,LF
104E 202020202010866 DB Ds 0.24 Mbyte 8" F l o p p y ',CR,LF
106C 202020202010867 DB ' Ms 0.19 Mbyte Memory D i s k ',CR,LF,LF

10868 ;
108D 00 10869

10870 ;
DB 0

10871 ; Messages for M$Disk
10872 ;

Figure 8-10. (Continued)

292 The CP/M Programmer’s Handbook

10873 M$Disk$Setup$Messages
108E 202020202010874 DB M$Disk already contains valid information.',CR,LF,0

108?5 M$Di sk*Not*Setup$Message :
1000 202020202010876 DB ' MfDisk has been initialized to empty s t a t e . CR,LF,0

10877 ;
10878 M*Disk*Dir*Entry: ; Dummy directory entry used to determine
10879 ; if the M*Disk contains valid information

10F3 OF 10880 DB 15 ; User 15
10F4 4D2444697310881 DB 'MÍDisk '
10FC A0A020 10882 DB ' ■'+80H, •' ' +8 0 H ,' ' jSystem and read/only
10FF 00000000 10883 DB 0,0,0,0
1103 000000000010884 DB 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0

10885 ;
0004 = 10886 Default$Di sk EQU 0004H ;Default disk in base page

10887 •
10888 BOOT: ;Entered directly from the BIOS JMP Vector
10889 ^Control will be transferred here by the CP/M
10890 î bootstrap loader
10891
10892 Initialize system
10893 This routine uses the Initialize$Stream
10894 declared above
10895

1113 F3 10896 DI jDisable interrupts to prevent any
10897 ; side effects during initialization

1114 21A40F 10898 LX I H , Initialize$Stream ;HL -> data stream
1117 C D 1903 10899 CALL OutputfByte$Stream jOutput it to the specified

10900 ; ports
10901

111A CDEE02 10902 CALL Oeneral*CIO*Initialization ? Initialize character devices
10903

H I D 21B50F 10904 LX I H,SignoniMessage ;Display sign-on message on console
1120 CD5F02 10905 CALL Display$Message

10906 ;
1123 CDDFOE 10907 CALL Patch*CPM ;Make necessary patches to CCP and BDOS

10908 ; for custom enhancements
10909
10910 i n i t i a l i z e M$Disk
10911 jlf the M$Disk directory has the
10912 ; special reserved file name "M$disk"
10913 ; (with lowercase letters and marked
10914 ; SYS and R/0), then the MSDisk is
10915 ; assumed to contain valid data.
10916 ;If the ”M*Di sk" file is absent, the
10917 ; M*Disk Directory entry is moved into
10918 ; the M$Disk image, and the remainder of
10919 j the directory set to 0E5H.

1126 0601 10920 MV I B, 1 ^Select bank 1
1128 CDDDOB 10921 CALL Select$Bank ; which contains the M$Disk directory

10922
10923 ;Check if M$Disk directory entry present

112B 210000 10924 LX I H, 0 ;Start address for first directory
112E 11F310 10925 LX I D,M*Disk*Dir$Entry
1131 0E20 10926 MVI C, 32 jLength to compare

10927 M$Di skfTest :
1133 1A 10928 LDAX D ;Get byte from initialized variable
1134 BE 10929 CMP M ;Compare with M$Disk image
1135 C24F11 10930 JNZ M*D i s k $No t $Se t up ;Match fails
1138 13 10931 INX D
1139 23 10932 INX H
113A OD 10933 DCR C
1 13B CA4111 10934 JZ M$Di sk$Setup ;A11 bytes match
113E C33311 10935 JMP M$Disk*Test

10936 j
10937 M$Di sk$Setup:

1141 218E10 10938 LX I H,M$Disk$Setup*Message ; Inform user
10939
10940 M$Di sk$Setup$Done:

1144 CD5F02 10941 CALL Di splayfMessage
10942

1147 AF 10943 XRA A ;Set default disk drive to A:
1148 320400 10944 STA Default*Di sk
1 14B FB 10945 El i n t e r r u p t s can now be enabled

10946
114C C36C02 10947 JMP EnteriCPM ;Go into CP/M

10948

Figure 8-10. (Continued)

Chapter 8: Writing an Enhanced BIOS 293

10949 MfDiskfNotfSetup:
114F 110000 10950 LX I D,0 ;Move MfDisk directory entry into
1152 21F310 10951 LXI H,MfDi skfDirfEntry ? MfDisk image
1155 0E04 10952 MVI C,32/8 ;Number of 8-byte blocks to move
1157 CDF80A 10953

10954
10955

CALL Move$8

■DE -> next byte after MfDisk directory
10956 ; entry in image

115A 3EE5 10957 MOI A,0E5H jSet up to do memory fill
1 15C 12 10958 STAX D jStore first byte in "source" area
1150 62 10959 MOV H,D ;Set HL to DE +1
115E 6B 10960 MOV L,E
115F 23 10961 INX H
1160 OEFC 10962 MVI C , ((2 * 1024) - 32) / 8 ;Two allocation blocks

10963 ; less 32 bytes for MfDisk entry
1162 CDF80A 10964

10965
CALL Move$8 ;Use MovefS to do fill operation

1165 21C O 10 10966 LX I H,MfDiskfNotfSetupfMessage
1168 C34411 10967 JMP MfDiskfSetupfDone ; Output message and enter CP/M

10968
10969 [

116B 00 10970 DB 0 ; Dummy
10971
10972

Lastfinit ializedfByte: .<== address of last initialized byte

10973 ; End of cold boot initialization code
10974

21 A4 10975 ORG AfterfD i skfBuffer ;Reset location counter
10976

21 A4 10977 Mult i fCommandfBuffers DS 128 ;This can be used to insert long
10978 j command sequences into the
10979 ; console input stream by setting
10980
10981

j the forced input pointer here

0020 = 10982 DOfBuf ferfLength EQU 32 jMust be binary number
2224 10983

10984
DOfBuffer: DS DOfBufferfLength

0020 = 10985 DlfBufferfLength EQU 32 ;Must be binary number
2244 10986

10987
DlfBuf fe r : DS DlfBufferfLength

0020 = 10988 D2fBufferfLength EQU 32 ;Must be binary number
2264 10989 D2fBuf fer : DS D2fBufferfLength

10990
10991
10992

? Data areas for the character drivers

2284 10993 PIfUserfStack: DS 2 jStorage area for user's stack pointer
10994 ; when an interrupt occurs

2286 10995 PIfUserfHL: DS 2 ;Save area for user's HL
2288 10996 DS 40 ;Stack area for use by interrupt service

10997 PIfStack: j routines to avoid overflowing the
10998
10999

; user's stack area

22B0 11000
11001

DirectoryfBuf fer :
;

DS 128 ;Disk directory buffer

2330 11002 Mf DiskfBuffer: DS 128 ;Intermediary buffer for
11003
11004
11005 ; Disk work areas

; MfDisk

11006
11007 ; These are used by the BDOS to detect any unexpected
11008 î change of diskettes. The BDOS will automatically set
11009
11010

j such a changed diskette to read-only status.

23B0 11011 Di skfAfWorkarea: DS 32 : A:
23D0 11012 Di skfBfWorkarea: DS 32 ; B:
23F0 11013 DiskfCfWorkarea: DS 16 ; C:
2400 11014

11015
11016

Di skfDfWorkarea: DS 16 ; D:

11017
11018

; Disk allocation vectors

11019 ; These are used by the BDOS to maintain a bit map of
11020 ; which allocation blocks are used and which are free.
11021 ; One byte is used for eight allocation blocks, hence the
11022 ; expression of the form (allocation blocks/8)+l.
11023

2410 11024 DiskfAfAllocat ionfVector DS (174/8)+l ; A:

Figure 8-10. (Continued)

294 The CP/M Programmer’s Handbook

2426 11025
11026

DiskBAllocat ion$Vector DS (174/8)+1 ; B:

243C 11027 DiskCAllocat ion$Vector DS (242/8)+1 j Cs
245B 11028

11029
Di sk*D$Alloeat ion$Vector DS (242/8)+1 ; D:

247A 11030
11031

M*Di sk$Alloeat ion$Vector DS (192/8)+1 ; M$Disk

2493 11032 END jof enhanced BIOS 1i st ing

Figure 8-10. (Continued)

Classes of Errors
BIOS Error-Handling Functions
Practical Error Handling
Character I/O Errors
Disk Errors
Improving Error Messages

Dealing with
Hardware Errors

This chapter describes the enhancements you can make to improve CP/M’s
somewhat primitive error handling. It covers the general classes of errors that the
BIOS may have to handle. It describes some of the underlying philosophical
aspects of errors, how to detect them, and how to correct them or otherwise make
the best of the situation.

At the end of the chapter are some example error-handling subroutines. Some
of these have already been shown in the previous chapter as part of the enhanced
BIOS (Figure 8-10); they are repeated here so that you can see them in isolation.

Classes of Errors

Basically, the user perceives only two classes of errors — those that are user-
correctable and those that are not. There is a third, almost invisible class of
errors—those that are recoverable by the hardware or software without the user’s
intervention.

295

296 The CP/M Programmer’s Handbook

The possible sources for hardware errors vary wildly from one computer
system to another, since error detection is heavily dependent on the particular
logic in the hardware. The BIOS can detect some hardware-related errors — mainly
errors caused when something takes too long to happen, such as when a recalci
trant printer does not react in a specified length of time.

The BDOS has no built-in hardware detection code. It can detect system errors,
such as an attempt to write to a disk file that is marked “Read-Only” in the file
directory or attempts to access files that are not on the disk. These BDOS-detected
errors, however, generally are unrelated to the well-being of the hardware. For
example, a disk controller with a hardware problem could easily overwrite a sector
of the directory, thereby deleting several files. This error would not show up until
the user tried to use one of the now-departed files.

BIOS Error-Handling Functions

The error-handling code in the BIOS has to serve the following functions:
• Detection
• Analysis
• Indication
• Correction.

Error Detection

Clearly, before any later steps can be taken, an error must be detected. This can
be done by the software alone or by the BIOS interacting with error-detecting logic
in the hardware. In general, the only errors that the BIOS can detect unassisted are
caused when certain operations take longer to complete than expected. Because
the writer of the BIOS knows the operating environment of the specific peripherals
in the system, the code can predict how long a particular operation should take
and can signal an error when this time is exceeded. This would include such
problems as printers that fail to react within a specified time period.

The BIOS can work in cooperation with the hardware to determine whether
the hardware itself has detected an error. Armed with the hardware’s specifica
tions, the BIOS can input information on controller or device status to trigger
error-detecting logic. How this should be done depends heavily on the peripheral
devices in your computer system and the degree to which these devices have
“smart” controllers capable of processing independently of the computer. Un
fortunately, many manufacturers document the significance of individual status
bits that indicate errors, but not combinations of errors, or what to do when a
particular error occurs.

Chapter 9: Dealing with Hardware Errors 297

Error Analysis

Given that your BIOS has detected an error, it must first determine the class of
error; that is, whether or not the error can be corrected by simply trying the
operation again. Some errors appear at first to be correctable, but retrying the
operation several times still fails to complete it. An example would be a check-sum
error while reading a disk sector. If several attempts to read the sector all yield an
error, then it becomes a “fatal” error. The code in your BIOS must be capable of
initial classification and then subsequent reclassification if remedial action fails.

Other types of errors can be classified immediately as fatal errors—nothing
can be done to save the situation. For example, if the floppy disk controller
indicates that it cannot find a particular sector number on a diskette (due to an
error in formatting), there is nothing that the BIOS can do other than inform the
user of the problem and supply other helpful information.

Analysis of errors may require some basic research, such as inducing failures in
the hardware and observing combinations of error indicators. For example, some
printers (interfaced via a parallel port) indicate that they are “Out of Paper” or
“Busy” when, in fact, they are switched off. The BIOS should detect this condition
and tell the user to switch the printer on, not load more paper.

Error Indication

An incomplete or cryptic error message is infuriating. It is the functional
equivalent of saying, “There has been an error. See if you can guess what went
wrong!”

An error message, to be complete, should inform the recipient of the following:
• The fact that an error has occurred.
• Whether or not automatic recovery has been attempted and failed.
• The details of the error, if need be in technical terms to assist a hardware

engineer.
• What possible choices the user has now.

To put these points into focus, consider the error message that can be output by
CP/M after you have attempted to load a program by entering its name into the
CCP. What you see on the console is the following dialog:

A>r&zf>ro.a^cr>.
BAD LOAD
A>

All you know is that there has been an error, and you must guess what it is, even
though the specific cause of the error was known to CP/M when it output the
message. This error message is output by the CCP when it attempts to load a

298 The CP/M Programmer’s Handbook

“.COM” file larger than the current transient program area. The message “BAD
LOAD” is only understandable after you know what the error is. Even then, it does
not tell you what went wrong, whether there is anything you can do about it, and
how to go about doing it.

To be complete, this error message could say something like this:

yP"MYPROG- COM“ exceeds the available memory space by
1,024 bytes, and therefore cannot be loaded under the
current version of CP/M.

Notice how the message tells you what the problem is, and even quantifies it so
that you can determine its severity (you need to get 1K more memory or reduce the
program’s size). It also tells you how you stand—you cannot load this program
under the current version of CP/M, so retrying the operation is futile.

Not many systems programmers like to output messages like the example
above. They argue that such a message is too long and too much work for
something that does not happen often. Admittedly, the message is too long. It
could be shortened to read

(131) Program 1,024 bytes too large to load.

This conveys the same information; the number in parentheses can serve as a
reference to a manual where the full impact of the message should be described.

The major problem with the way error messages are designed is that they
usually are written by programmers to be read by nontechnical lay users, and
programmers are notoriously bad at guessing what nonexperts need to know.

Error indications you design should address the following issues, from the
point of view of the user:

• The cause of the error
• The severity of the error
• The corrective action that has and can be taken.

Examine the error messages in the error processor for the example BIOS in
Figure 8-10, from line 03600 onward. Although these are an improvement on the
BDOS all-purpose

BOOS Error on As Bad Sector

even these messages do not really meet all of the requirements of a good error
message system.

Another often overlooked aspect of errors is that most hardware errors form a
pattern. This pattern is normally only discernible to the trained eye of a hardware
maintenance engineer. When these engineers are called to investigate a problem,

Chapter 9: Dealing with Hardware Errors 299

they will quiz the user to determine whether a given failure is an isolated incident
or part of an ongoing pattern. This is why an error message should contain
additional technical details. For example, a disk error message should include the
track and sector used in the operation that resulted in an error. Only with these
details can the engineer piece together the context of a failure or group of failures.

Error Correction
Given that a lucid error message has been displayed on the console, the user is

still confronted with the question: “Now what do I do?” Not only can this be
difficult for the user to answer, but also the particular solution decided upon can
be hard for the BIOS to execute.

Normally, there are three possible options in response to errors:
• Try the operation again
• Ignore the error and attempt to continue
• Abort the program causing the error and return to CP/M.

For some errors, retrying can be effective. For example, if you forget to put the
printer on-line and get a “Printer Timeout” error message, it is easy to put the
printer back on-line and ask the BIOS to try again to send data to the printer.

Seldom can you ignore an error and hope to get sensible results from the
machine; many disk controllers do not even transfer data between themselves and
the disk drive if an error has been detected. Only ignorant users, or brave ones in
desperation, ignore errors.

Aborting the program causing the error is a drastic measure, although it does
escape from what could otherwise be a “deadly embrace” situation. For example, if
you misassign the printer to an inactive serial port and turn on printer echoing
(with the CONTROL-P toggle), you will send the system into an endless series of
“Printer Timeout” messages. If you abort the program, the error handler in the
BIOS executes a System Reset function (function 0) in the BDOS, CP/M warm
boots, and control is returned to the CCP. In the process, the printer toggle is reset
and the circle is broken.

Practical Error Handling

This section discusses several errors, describing their causes and the way in
which the BIOS and the user can handle them when they occur.

Character I/O Errors
At the BIOS level, most detectable errors related to character input or output

will be found by the hardware chips.

300 The CP/M Programmer’s Handbook

Parity Error
Parity, in this context, refers to the number of bits set to 1 in an 8-bit character.

The otherwise unused eighth bit in ASCII characters can be set to make this
number always odd, or alternatively, always even. Your computer hardware can be
programmed to count the number of 1 bits in each character and to generate an
error if the number is odd (odd parity) or, alternatively, if it is even (even parity). If
the hardware on the other end of the line is programmed to operate in the same
mode, parity checking provides a primitive error-detection mechanism—you can
tell that a character is bad, but not what it should have been.

CP/M does not provide a standard mechanism for reporting a parity error, so
your only option is to reset the hardware and substitute an ASCII DEL (7FH;
delete) character in the place of the erroneous character.

If your BIOS is operating in a highly specialized environment, you may need to
count the number of such parity errors so that a utility program can report on the
overall performance of the system.

Framing Error
When an 8-bit ASCII character is transmitted over a serial line, the eight bits

are transmitted serially, one after the other. A start bit is transmitted first, followed
by the data character and then a stop bit. If the hardware fails to find the stop and
start bits in the correct positions, a framing error will occur. Again, the only option
available to the BIOS is to reset the hardware chip and substitute an ASCII DEL.

Overrun Error
This error occurs when incoming data characters arrive faster than the pro

gram can handle them, so that the last characters overrun those being processed by
the hardware chip. This error can normally be avoided by the use of serial line
protocols, such as those in the example BIOS in Figure 8-10.

An overrun error implies that the protocol has broken down. As with the
parity and framing errors, almost the only option is to reset the hardware and
substitute a d e l character.

Printer Timeout Error
This is one of the few errors where the BIOS can sensibly attempt an error

recovery. The error occurs when the BIOS tries to output a character to a serial
printer and finds that the printer is not ready for more than, say, 30 seconds. The
most common cause of this error is that the user forgets to put the printer on-line.
Many printers require that they be off-line during a manual form feed, and users
will often forget to push the on-line button afterward.

After a 30-second delay, the BIOS can send a message to the console device(s)
informing the user of the error and asking the user to choose the appropriate
course of action. Note that console output can be directed to more than one device.

Chapter 9: Dealing with Hardware Errors 301

Parallel Printers
Printers connected to your system by means of a parallel port can indicate their

status to the computer much more easily than can serial printers. They can
communicate such error states as “Out of Paper,” “End of Ribbon,” and “Off-line.”

These single-error indicators can also be used in combination to indicate
whether the printer cable is connected, or even whether the printer is receiving
power. You need to experiment, deliberately putting the printer into these states
and reading status in order to identify them. It is misleading to indicate to the
inexperienced user that the printer is “Out of Paper” when the problem is that the
data cable has inadvertently become disconnected.

However, each of these errors can be dealt with in the same way as the serial
printer’s timeout problem: display an error message and request the user’s choice
of action.

Example Printer Error Routine

Figure 9-1 shows an example of a program that handles printer errors. It
consists of several subroutines, including

• The error detection classification and indication routine
• The error correction routine.

It uses other subroutines that are omitted from the figure to avoid obscuring
the logic. These subroutines are listed in full in the example BIOS in Figure 8-10.

? This example shows, in outline form, how to handle the
; situation when a serial printer remains busy for too long.
; It is intended that this generic example show how to
; deal with this class of errors.

; The example presupposes the existence of a clock interrupt
? every 16.666 milliseconds (l/60th of a second), and that
? control will be transferred to the Real Time Clock service
; routine each time the clock "ticks".

; Figure 8-10 shows a more complete example, installed in a real
i BIOS.

0000 = B*Sy s t em$Reset EQU 0 jBDOS system reset function
0005 = BOOS EQU 5 jBDOS entry point

0000 00
t
Printer*Timeout*Flag: DB 0 jThis flag is set by the interrupt

1 service subroutine that is called
» when the watchdog timer subroutine
i count hits zero (after having
; counted down a 30-second delay)

0708 Printer$Delay$Count EQU 1800 ;Given a clock period of 16.666 ms
; this represents a delay of 30 secs

Figure 9-1. Serial printer error handling

302 The CP/M Programmer’s Handbook

OOOD = CR EQU ODH s¡Carriage return
OOOA = LF EQU OAH ;Line feed

i
Printer*Busy*Message:

OOOl ODOA DB CR, LF
0003 5072696E74 DB •'Printer has been busy for too long,",CR,LF
0028 436865636B DB "Check that it is on-line and r e a d y C R , L F , 0

004E 00 Printer$Character: DB 0 !¡Save area for the data character

i

i to be output

LIST: !<=== Main BIOS entry point
<=== I/O redirection code occurs here

004F 79 MOV A, C !¡Save the data character
0050 324EOO STA Printer$Character

Printer$Retry:
0053 010807 LX I B,Printer$Delay$Count This is the count of the number

of clock ticks before the watchdog
subroutine call

0056 217E00 LX I H,Pr inter*Timed$Out <== this address
0059 CDA300 CALL Set*Watchdog Sets the watchdog running

Printer$Waiti
005C CDA300 CALL Get*Printerestatus ¡See if the printer is ready to

; accept a character for output
3 This includes checking if the printer
; is "Busy" because the driver is
■ waiting for XON, ACK, or DTR to
; come high

005F C26C00 JNZ PrinteriReady \¡The printer is now ready

0062 3A0000 LDA Printer$Timeout$Flag \¡Check if the watchdog timer has
; hit zero (if it does, the
; watchdog routine will call
t the Printer$Timed$Out code
; that sets this flag)

0065 B7 ORA A
0066 C28400 JNZ Display*Busy$Message ;¡Yes, so display message to

; indicate an error has occurred
0069 C35C00 JMP Printer$Wait \¡Otherwise, check if printer is

now not busy

Printer$Readys ¡The printer is now ready to output
i a character, but before doing so,
» the watchdog timer must be reset

006C F3 DI ¡Ensure no false timeout occurs
006D 010000 LX I B, 0 s¡This is done by setting the count
0070 CDA300 CALL SetfWatchdog \ to zero
0073 FB El

0074 3A4E00 LDA Printer$Character jGet character to output
0077 11A300 LX I D,Printer*Device*Table ;DE -> device table for printer
007A CDA300 CALL Output$Data$Byte ;¡Output the character to the printer

007D C9 RET jReturn to the BIOS's caller

Pr inter$Timed$Out: Control arrives here from the
watchdog routine if the
watchdog count ever hits zero
This is an interrupt service
routine

jAll registers have been saved
!! before control arrives here

007E 3EFF MVI A,OFFH !¡Set printer timeout flag
0080 320000 STA Printer*T imeout$Flag
0083 C9 RET ¡Return back to the watchdog

¡Interrupt service routine

Figure 9-1. (Continued)

Chapter 9: Dealing with Hardware Errors 303

Display*Busy*Messages ;Printer has been busy for
; 30 seconds or more

0084 AF XRA A ;Reset timeout flag
0085 320000 STA Pr inter$Timeout$Flag

0088 210100 LX I H,Printer$Busy$Message ; Output error message
008B CDA300 CALL Output$Error$Message

008E CDA300 CALL Request$User$Choice ;Displays a Retry, Abort, Ignore?
; prompt, accepts a character from
i the keyboard, and returns with the
? character, converted to upper
; case in the A register

0091 FE52 C P I ' R ' ;Check if Retry

0093 CA5300 JZ Printer$Retry
0096 FE41 CPI 'A' ;Check if Abort
0098 CA9E00 JZ Pr inter$Abort
009B FE49 CPI ' l ' ;Check if Ignore
009D C8 RZ

Pr inter$Abort:
009E 0E00 MV I C,B$System$Reset ;Issue system reset
00A0 C30500 JMP BDOS ;No need to give call as

; control will not be returned

; Dummy subrout ines
; These are shown in full in Figure 8-10. The line numbers in
; Figure 8-10 are shown in the ■comment field below

Printer$Device$Table: jLine 01300 (example layout)
Request$User*Choice: ;Line 03400
Output*Error$Messages jLine 03500
Get$Printer$Statuss jLine 03900 (similar code)
Output$Data$Byte: jLine 05400 (similar code)
Set$Watchdog: jLine 05800

Figure 9-1. Serial printer error handling (continued)

Disk Errors

Disks are much more complicated than character I/O devices. Errors are
possible in the electronics and in the disk medium itself. Most of the errors
concerned with electronics need only be reported in enough detail to give a
maintenance engineer information about the problem. This kind of error is rarely
correctable by retrying the operation. In contrast, media errors often can be
remedied by retrying the operation or by special error processing software built
into the BIOS. This chapter discusses this class of errors.

Media errors occur when the BIOS tries to read a sector from the disk and the
hardware detects a check-sum failure in the data. This is known as a cyclical
redundancy check (CRC) error. Some disk controllers execute a read-after-write
check, so a CRC error can also occur during an attempt to write a sector to the
disk.

304 The CP/M Programmer’s Handbook

With floppy diskettes, the disk driver should retry the operation at least ten
times before reporting the error to the user. Then, because diskettes are inexpen
sive and replaceable, the user can choose to discard the diskette and continue with
a new one.

With hard disks, the media cannot be exchanged. The only way of dealing with
bad sectors is to replace them logically, substituting other sectors in their place.

There are two fundamentally different ways of doing this. Figure 9-2 shows the
scheme known as sector sparing—substituting sectors on an outer track for a
sector that is bad.

The advantage of this scheme is that it is dynamic. If a sector is found to be bad
in a read-after-write check, even after several retries, then the data intended for the
failing sector can be written to a spare sector. The failing sector’s number is placed
into a spare-sector directory on the disk. Thereafter, the disk drivers will be
redirected to the spare sector every time an attempt is made to read or write the
bad sector.

The disadvantage of this system is that the read/ write heads on the disk must
move out to the spare sector and then back to access the next sector. This can be a
problem if you attempt to make a high-speed backup on a streaming tape drive
(one that writes data to a tape in a single stream rather than in discrete blocks). The
delay caused by reading the spare sector interrupts the data flow to the streaming
tape drive.

You need a special utility program to manipulate the spare-sector directory,
both to substitute for a failing sector manually and to attempt to rewrite a spare
sector back onto the bad sector.

Track 0 Track n

Figure 9-2. Sector sparing

Chapter 9: Dealing with Hardware Errors 305

Figure 9-3 shows another scheme for dealing with bad sectors. In this method,
bad sectors are skipped rather than having sectors substituted for them.

The advantage of sector skipping is that the heads do not have to perform any
long seeks. The failing sector is skipped, and the next sector is used in its place.
Because of this, sector skipping can give much better performance. Data can be
read off the disk fast enough to keep a streaming tape drive “fed” with data.

The disadvantage of sector skipping is that it does not lend itself to dynamic
operation. The bad sector table is best built during formatting. Once data has been
written to the disk, if a sector goes bad, all subsequent sectors on the disk must be
“moved down one” to make space to skip the bad sector. On a large hard disk, this
could take several minutes.

Example Bad Sector Management
Sector sparing and sector skipping use similar logic. Both require a spare-

sector directory on each physical disk, containing the sector numbers of the bad
sectors. This directory is read into memory during cold start initialization. There
after, all disk read and write operations refer to the memory-resident table to see if
they are about to access a bad sector.

For sector sparing, if the sector about to be read or written is found in the spare
directory, its position in the directory determines which spare sector should be
read.

104 105
Skip

106 107

Bad
Sector

Spare Directory
Sector

Marks sector bad. Add 1 to all sector
numbers greater or equal to 106 in order
to get the correct physical sector.
Add 2 (this is the second entry in the
directory) to all sectors greater or equal to
207.

Figure 9-3. Sector skipping

306 The CP/M Programmer’s Handbook

In the case of sector skipping, every access to the disk makes the driver check
the bad sector directory. The directory is used to tell how many bad sectors exist
between the start of the disk and the failing bad sector. This number must be added
to the requested track and sector to compensate for all the bad sectors.

The physical low-level drivers need four entry points:
• Read the specified sector without using bad sector management. This is used

to read in the spare directory itself.
• Write the specified sector without using bad sector management. This is

used to write the spare directory onto the disk, both to initialize it and to
update it.

• Read and write the sector using bad sector management. These entry points
are used for normal disk input/output.

Figure 9-4 shows the code necessary for both sector sparing and (using
conditional code) sector skipping.

This example shows the modifications to be made in order
to implement bad sector management using sector sparing
and sector skipping.

0000 = False EQU 0
FFFF = True EQU Not False

0000 = Sector$Sparing EQU False
FFFF = SectorfSkipping EQU Not SectoriSparing

S
t Additional equates and def ini t ions

Spare$Directories: ? Table of spare directory addresses
?Note: The directories themselves
; are declared at the end of the
i BIOS

0000 D500 DW Spare$Directory*0 jPhysical disk 0
0002 9701 DW Spare$Directory$l j Physical disk 1

f
Spare$Dir*In$Memory: ; Flags used to indicate whether spare

0004 00 DB 0 ; directory for a given physical disk
0005 00 DB 0 ; has been loaded into memory. Set by SELDSK

0000 _ Spare$Track EQU 0 jTrack containing spare directory
; sectors

0004 = SparefSector EQU 4 jSector containing directory
0005 = First*Spare*Sector EQU Spare*Sector + 1

j Variables set by SELDSK

Selected$Spare$Directory:
0006 0000 DW 0 jPointer to directory
0008 00 Selected$Disk: DB 0 ¡Logical disk number
0009 00 DiskfType: DB 0 ;Floppy/hard disks
000A 00 Deblocking$Required: DB 0 jDeblocking flag
000B 00 Selected*Physical$Disk : DB 0 ;Physical disk number

OOOC 0000 Disk$Track: DW 0 jl These variables are part of the command
000E 00 DiskiSector: DB 0 ;> block handed over to the disk controller

Figure 9-4. Bad sector management

Chapter 9: Dealing with Hardware Errors 307

8000
0012
0000

0010
0020
0030
0040

0070
000F

0080

OOOF

0 0 1 0

0004

0011
0014

0015
0017

= Maxi mum*T rack EQU 32768 yUsed as a terminator
= Sectors*Per*Track EQU 18
= First*Sector*0n*Track EQU 0

Disk*Parameter*Headers:

Standard DPH Declarations

Equates for disk parameter block

The special disk parameter byte that precedes each disk
parameter block, needs to be rearranged so that a
physical disk drive number can be added.

Disk types

vvvv--- Physical disk number
= Floppy*5 EQU 0*001*0000B y5 1/4" mini floppy
= Floppy*8 EQU 0*010*0000B y8" floppy (SS SD>
= M*Di sk EQU 0 * 0 1 1*0000B yMemory disk
= H*Di sk*10 EQU 0*100*0000B yHard disk - 10 megabyte

: Di sk*T ype**Mask
Phys ical*Disk*Mask

EQU 0*111*0000B y Masks to isolate values
EQU 0*000*111 IB

; Blocking/deblocking indicator

Need$Deblocking EQU 1*000*00008 ; Sector size > 128 bytes

Disk parameter blocks

Standard DPB s for A; and B:

yLogical disk C:
yExtra byte indicates disk type
y deblocking requirements and physical
; disk drive.

CO DB H*Disk*10 + Need*Deblocking + 0 ; Physical drive 0
Hard*5*Parameter*Block*C:

Standard format parameter block

CO DB H*Disk*10 + Need*Deblocking + 0 ; Physical drive 0
Hard*5*Parameter*Block*Ds

Standard format parameter block

Number*of*Logical*Di sks EQU 4

SELDSKï

210000 LX I
7 9 MOV

FE04 CPI
DO RNC

ySelect disk in register C
yC = 0 for drive A, 1 for B, etc.
yReturn the address of the appropriate
y disk parameter header in HL, or 0000H
; if the selected disk does not exist.

H,0 ; Assume an error
A,C ; Check if requested disk valid

Number*of*Logical*Disks
y Return if > maximum number of disks

Figure 9-4. (Continued)

308 The CP/M Programmer’s Handbook

0018 320800 STA SelectedfDi sk ; Save selected disk number
;Set up to return DPH address

00 IB 6F MOV L, A ;Make disk into word value
001C 2600 MV I H, 0

;Compute offset down disk parameter
5 header table by multiplying by
; parameter header length (16 bytes)

001E 29 DAD H ; *2
00 IF 29 DAD H ; *4
0020 29 DAD H ; »8
0021 29 DAD H ; «16
0022 110F00 LX I D,D i sk$Parameter$Headers ;Get base address
0025 19 DAD D ;DE -> appropriate DPH
0026 E5 PUSH H ySave DPH address

jAccess disk parameter block in order
; to extract special prefix byte that
; identifies disk type and whether
; deblocking is required

0027 110A00 LX I D, 10 ;Get DPB pointer offset in DPH
002A 19 DAD D ;DE -> DPB address in DPH
002B 5E MOV E, M ;Get DPB address in DE
002C 23 INX H
002D 56 MOV D,M
002E EB XCHG ;DE -> DPB

SELDSKSetDisk$Type:
002F 2B DCX H ;DE -> prefix byte
0030 7E MOV A, M ;Get prefix byte
0031 E670 AN I Di sk$Type$Mask ;Isolate disk type
0033 320900 STA Disk$Type ;Save for use in low-level driver
0036 7E MOV A, M ;Get another copy of prefix byte
0037 E680 AN I Need$Deblock ing ;Isolate deblocking flag
0039 320A00 STA DeblockIngfRequired ;Save for use in low-level driver

^Additional code to check if spare
; directory for given disk has already
; been read in.

003C 7E MOV A, M ;Get physical disk number
003D E60F AN I Physical$Disk$Mask
003F 320B00 STA Selected$Physical$Disk ; Save for low-level drivers

0042 5F MOV E, A ;Make into word
0043 1600 MV I D, 0
0045 210400 LX I H,SpareDirIn$Memory ;Make pointer into table
0048 19 DAD D

0049 7E MOV A, M ;Get flag
004A B7 ORA A
004B C27700 JNZ DirInMemory ; Spare directory already in memory
004E 34 I NR M ; Set flag

004F 210000 LX I H,Spare$Directories ;Create pointer to spare
0052 19 DAD D ; spare directory (added twice
0053 19 DAD D ; as table has word entries)

;HL -> word containing directory addr.
0054 5E MOV E, M
0055 23 INX H
0056 56 MOV D, M ;Spare directory address in D E
0057 EB XCHG ;HL -> spare directory

0058 220600 SHLD Selected$Spare$Directory jSave for use in physical
; drivers later on

005B 110000 LX I D,Spare$Track ;Track containing spare directory
005E 3A0B00 LDA Selected$Physical$Disk
0061 47 MOV B, A
0062 3E04 MV I A,Spare$Sector jSector containing spare directory
0064 0E18 MV I C,Spare$Length/8 ;Number of bytes in spare directory / 8
0066 CDD500 CALL AbsoluteiRead ;Read in spare directory - without

; using bad sector management

Figure 9-4. (Continued)

Chapter 9: Dealing with Hardware Errors 309

0069 2A0600 LHLD Selected$Spare$Directory pSet end marker
006C 11C000 LXI D,Spare*Length i at back end of spare directory
006F 19 DAD D
0070 110080 LXI D,Max imum$Track ¡Use maximum track number
0073 73 MOV M, E
0074 23 I NX H
0075 3602 MV I M, D

DirInMemory:
0077 El POP H ; Recover DPH pointer
0078 C9 RET

In the low-level disk drivers,, the following code must be
inserted just before the disk controller is activated to
execute a read or a write command.

0079 2A0C00 LHLD Disk$Track pGet track number from disk
; controller command table

007C EB XCHG p DE = track
007D 2A0600 LHLD Selected$Spare$Directory ;HL -> spare directory
0080 2B DCX H pBack up one entry
0081 2B DCX H p (3 bytes)
0082 2B DCX H

0083 3A0E00 LDA Di sk$Sector pGet sector number
0086 4F MOV C, A pSave for later

0087 06FF MV I B,OFFH pSet counter (biased -1)

Cheek$Next$Entry:
0089 23 INX H pUpdate to next (or first) entry

Check$Next*Entry 1 :
008A 23 INX H

Check$Next$Entry,2:
008B 23 INX H

008C 04 I NR B ;Update count

IF Sector$Spar ing
?If sparing is used, the
; end of the table is indicated
p by an entry with the track number
? = to maximum track number

LXI D,Max imum$Track pGet maximum track number
CALL CMPM pCompare DE to (HL), (HL+1)
JZ NotBadSector pEnd of table reachec)
END IF

Note: For sector skipping
the following search loop will
terminate when the requested track
is less than that in the table.

This will always happen when the
maximum track number is encountered
at the end of the table.

008D EB XCHG DE -> table entry
008E 2A0C00 LHLD Disk$Track Get requested track
0091 EB XCHG DE = req. track, HL -> table entry
0092 CDCDOO CALL CMPM Compare req. track to table entry

IF Sector$Sparing Use the following code for
sector sparing

JNZ Check*Next$Entry Track does not match
INX H HL -> MS byte of track
INX H HL -> sector
MOV A, C Get requested sector
CMP M Compare to table entry
JNZ Check $Ne x t $En t r y 2 Sector does not match

Track and sector match, so
substitute spare track and
appropriate sector

Figure 9-4. (Continued)

310 The CP/M Programmer’s Handbook

LXI H,Spare»Track 5¡Get track number used for spare
sectors

SHLD Disk»Track J¡Substitute track

MV I A,First»Spare*Sector ;¡Get first sector number
ADD B ;¡Add on matched directory

entry number
STA
END IF

Disk*Sector J¡Substitute sector

IF Sector»Skipping Use the following code for
sector skipping

The object is to find the

i

entry in the table which
is greater or equal to the

i requested sector/track

0095 CA9E00 JZ Tracks»Match !; Possible match of track and sector
0098 D2AC00 JNC Compute»Increment ¡Requested track < table entry
009B C38900 JMP Check»Next»Entry ¡Requested track > table entry

Tracks»Match:
009E 23 INX H ¡HL - > MS byte of track
009F 23 INX H ¡HL - > sector
00A0 77 MOV M, A ¡Get sector from table

00A1 B9 CMP c :¡Compare with requested sector
00A2 CAABOO JZ Sectors»Match i; Track/sector matches
00A5 D2AC00 JNC Compute»Increment ;¡Req. trk/sec < spare trk/sec
00A8 C38B00 JMP Check»Next»Entry2 \¡Move to next table entry

Sectors»Match:
OOAB 04 I NR B !¡If track and sectors match with

! a table entry, then an additional
; sector must be skipped

Compute»Increment :
jB contains number of cumulative
i number of sectors to skip

OOAC 79 MOV A, C j¡Get requested sector
OOAD 80 ADD B ;¡Skip required number
00AE 0612 MV I B,Sectors»Per»Track i¡Determine final sector number

\ and track increment
OOBO CDC300 CALL DIV»A»BY»B !¡Returns C = quotient, A = remainder
00B3 320E00 STA Disk»Sector ;¡A = new sector number

00B6 59 MOV E, C i¡Make track increment a word
00B7 1600 MV I D, 0
00B9 2A0C00 LHLD Disk»Track \¡Get requested track
OOBC 19 DAD D j¡Add on increment
OOBD 220C00 SHLD

END IF
Di sk»Track s¡Save updated track

Not »Bad»Sec t o r :
Either track/sector were not bad,

or requested track and sector have
been updated.

OOCO C3D500 JMP Read»Wr i te»Di sk Go to physical disk read/write

IF Sector»Skipping
¡Subroutine required for skipping
¡ routine

DIV»A»BY»B
Divide A by B

This routine divides A by B, returning the quotient in C
and the remainder in A.

Entry parameters

A = dividend
B = divisor

Exit parameters

Figure 9-4. (Continued)

Chapter 9: Dealing with Hardware Errors 311

; A = remainder
; C = quotient

DIV*A*BY$B:
00C3 0E00 MV I C,0 ;Initialize quotient

DIV*ABYB$Loop:
00C5 OC I NR C ;Increment quotient
00C6 90 SUB B ;Subtract divisor
00C7 F2C500 JP DIV*A*BY*B$Lo o p ;Repeat if result still
OOCA 0D DCR C ;Correct quotient
OOCB 80 ADD B ;Correct remainder
OOCC C9 RET

END IF

CMPM
Compare memory

This subroutine compares the contents of DE to (HL) and (HL+1)
returning with the flags as though the subtraction (HL) - DE
were performed.

Entry parameters

HL -> word in memory
DE = value to be compared

Exit parameters

Flags set for (HL) - DE

CMPM:
00CD 7E MOV A, M ;Get MS byte
00CE BA CMP D
00CF CO RNZ ^Return now if MS bytes unequal
00D0 23 INX H ;HL -> LS byte
00D1 7E MOV A, M ;Get LS byte
00D2 BB CMP E
00D3 2B DCX H ;Return with HL unchanged
00D4 C9 RET

Absolute$Read

Entry

;The absolute read (and write) routines
; access the specified sector and track
; without using bad sector management.

parameters

HL -> Buffer
DE = Track
A = Sector
B = Physical disk drive number
C = Number of bytes to read / 8

Set up disk controller command block with parameters in
registers, then initiate read operation by falling through
into Read$Write$Disk code below.

Read$Wr i te$Disk:

The remainder of the low level disk drivers follow,
reading the required sector and track.

; Spare directory declarations

; Note: The disk format utility creates an initial spare
; directory with track/sector entries for those track/sectors
j that it finds are bad. It fills the remainder of the
? directory with OFFH's (these serve to terminate the
$ searching of the directory).

Figure 9-4. (Continued)

312 The CP/M Programmer’s Handbook

ooco = Spare*Length EQU 64 » 3

Spare$Directory$0:

?64 Entries, 3 bytes each
; Byte 0 , 1 = track
; Byte 2 = sector

00D5 DS Spare$Length Spare directory itself
0195 DS 2

SparefDirectory$l :

Set to maximum track number by SELDSK as
a safety precaution. The FORMAT utility
puts the maximum track number into all
unused entries in the spare directory.

0197 DS Spare$Length !;Spare directory itself
0257 DS 2 !;End marker

Figure 9-4. Bad sector management (continued)

Improving Error Messages

The final extension to BIOS error handling discussed here is in disk-driver
error-message handling. The subroutine shown in the example BIOS in Figure
8-10, although a significant improvement on the messages normally output by the
BDOS, did not advise the user of the most suitable course of action for each error.
Figure 9-5 shows an improved version of the error message processor.

; This shows slightly more user-friendly error processor
; for disk errors than that shown in the enhanced BIOS
; in Figure 8-10.
; This version outputs a recommended course of action
j depending on the nature of the error detected.
; Code that remains unchanged from Figure 8-10 has been
? abbreviated.

Dummy equates and data declarations needed to get
an error free assembly of this example.

0001 _ Floppy$Read$Code EQU 01H ;Read command for controller
0002 = Floppy$Wr i te$Code EQU 02H ;Write command for controller

0000 00 Di sk$Hung$Flag: DB 0 ;Set NZ when watchdog timer times
; out

0258 = Disk$T imer EQU 600 ; 10-second delay (16.66ms tick)

0043 = Disk$Status$Block EQU 43H ;Address in memory where controller
; returns status
;Values from controller command table

0001 00 F 1opp y$Command! DB 0
0002 00 FloppyiHeadï DB 0
0003 00 FloppyfTrack: DB 0
0004 00 FloppytSector: DB 0

Figure 9-5. User-friendly disk-error processor

Chapter 9: Dealing with Hardware Errors 313

0005 00. Deblocking$Requireds DB 0 jFlag set by SELDSK according
; to selected disk type

0006 00 Di sk$Error$Flag: DB 0 ;Error flag returned to BD0S

0007 00 In$Buffer$Disk: DB 0 ;Logical disk Id. relating to current
; disk sector in deblocking buffer

Equates for Messages

0007 = BELL EQU 07H ;Sound terminal bell
000D = CR EQU ODH ;Carriage return
000A = LF EQU OAH ;Line feed

0005 = BDOS EQU 5 ;BD03 entry point (for

No $D eb1oc k $Re try:

Omitted code to set up disk controller command table
and initiate the disk operation

0008 C31500 JMP WaitForDisk*Complete

000B 3E02

Wr i te$Physical

MV I

;Write contents of disk buffer to
; correct sector

A,Floppy$Write$Code ;Get write function code

000D C31200

0010 3E01

0012 320100

JMP Common$Physical jGo to common code
ReadiPhysical: ;Read previously selected sector

; into disk buffer
MVI A,Floppy$Read$Code ;Get read function code

Common$Physical:
STA Floppy$Command ;Set command table

Deblock$Retry: ;Re-entry point to retry after error

Omitted code sets up disk controller command block
and initiates the disk operation

WaitForDisk$Complete: ;Wait until disk status block indicates
; operation has completed, then check
; if any errors occurred
jOn entry HL -> disk control byte

0015 AF XRA A ;Ensure hung flag clear
0016 320000 STA Disk$Hung$Flag

0019 213100 LX I H,Disk$Timed$Out ;Set up watchdog timer
001C 015802 LX I B,Di sk$Timer ;Time delay
00 IF CD3B03 CALL Set$Watchdog

Di sk$Wai tfLoop:
0022 7E MOV A, M ;Get control byte
0023 B7 ORA A
0024 CA3700 JZ DisktComplete ;Operation done

0027 3A0000 LDA Disk$Hung$Flag ;Also check if timed out
002A B7 ORA A
002B C29F02 JNZ Disk$Error ;W i 11 be set to 40H

002E C32200 JMP Disk$Wait$Loop

Disk$Timed$Gut: Control arrives here from watchdog
rout ine itself — so this is effectively
part of the interrupt service routine*

0031 3E40 MVI A, 40H ;Set disk hung error code
0033 320000 STA Di sk$Hung$Flag ; into error flag to pull

; control out of loop
0036 C9 RET jReturn to watchdog routine

Figure 9-5. (Continued)

314 The CP/M Programmer’s Handbook

Di sk»Complete:
0037 010000 LX I B, 0 ;Reset watchdog timer

;HL is irrelevant here
003A CD3B03 CALL Set»Watchdog

003D 3A4300 LDA Disk»Status»Block jComplete — now check status
0040 FE80 CPI 80H ;Check if any errors occurred

0042 DA9F02 JC Disk»Error ; Yes

Disk*Error»Ignore:
0045 AF XRA A ; No
0046 320600 STA Disk»Error»Flag ;Clear error flag

0049 C9 RET

r

; Disk error message handling

;
Disk$Error»Messages: This table is scanned, comparing the

disk error status with those in the
table. Given a match, or even when
the end of the table is reached, the"
address following the status val ue
points to the correct advisory message text.
Following this is the address of an
error description message.

004A 40 DB 4 OH
004B B O O 19500 DW Disk»Advicel, Disk»Msg»40
004F 41 DB 41H
0050 C9019A00 DW Disk»Advice2,Disk»Msg»41
0054 42 DB 42H
0055 E301A400 DW Disk*Advice3,Disk»Msg»42
0059 21 DB 21H
005A 0702B400 DW Disk»Advice4,Disk»Msg»21
005E 22 DB 22H
005F 1B02B900 DW Di sk»Advice5,Di sk»Msg»22
0063 23 DB 23H
0064 1B02C000 DW Disk»Advice5,Di sk»Msg»23
0068 24 DB 24H
0069 3D02D200 DW Disk»Advice6,Di sk»Msg»24
006D 25 DB 25H
006E 3D02DE00 DW Disk»Advice6,Disk«Msg$25
0072 11 DB 11H
0073 5302F100 DW Disk*Advice7,Disk*Msg$l1
0077 12 DB 12H
0078 5302FF00 DW Disk»Advice7,Di skMsg12
007C 13 DB 13H
007D 53020C01 DW Disk»Advice7,Disk»Msg$13
0081 14 DB 14H
0082 53021A O 1 DW Disk»Advice7,Di sk$Msg»14
0086 15 DB 15H
0087 53022901 DW Di sk»Advice7,Di sk»Msg$15
008B 16 DB 16H
008C 53023501 DW Disk»Advice7r Disk»Msg»16
P090 00 DB 0 :<== Terminator
0091 53024501 DW Disk»Advice7,Disk»Msg»Unknown ; Unmatched code

0005 = DEM»Entry»Size EQLI 5 ;Entry size in error message table

; Message texts

0095 48756E6700Di sk»Msg»40: DB ''Hung ' , 0 ; Timeout message
009A 4E6F742052Di s k *M s g * 4 1s DB 'Not R e a d y ',0
00 A 4 5772697465DÎ skMsg42: DB 'Write Protected',0
00B4 4461746100DÎ sk$Msg»21: DB 'Data',0
00B9 466F726D61Disk*Msg*22: DB 'Format' ,0
OOCO 4D69737369Di sk*Msg$23: DB 'Missing Data Ma rk ',0
00D2 4275732054Disk$Msg*24: DB 'Bus Ti me ou t',0
OODE 436F6E7472Di s k *Msg*25: DB 'Controller Ti me ou t',0
OOF 1 4472697665Disk*Msg*ll: DB 'Drive Address',0
OOFF 4865616420Di sk»Msg$12: DB 'Head Address',0
010C 547261636BDisk*Msg*13: DB 'Track Address',0

Figure 9-5. (Continued)

Chapter 9: Dealing with Hardware Errors 315

0 1 IA 536563746FDÎskMsg14: DB
0129 4275732041Disk*Msg*15: DB
0135 496C6C6567Disk*Msg*16: DB
0145 556E6B6E6FDisk*Msg*Unknown:

?
DiskEMl:

014D 070D0A DB
0150 4469736B20 DB

"Sector Address",0
"Bus Address",0
"Illegal Command",0
DB "Unknown",0

;Main disk error message — part 1
BELL,CR,LF
"Disk ",0

?

Disk$EM«2:
0156 204572726F DB
015E 0000 Di skEMStatus: DB
0160 290D0A2020 DB
016E 00 DiskEMDrive: DB
016F 2C20486561 DB
0176 00 DiskEMHead: DB
0177 2C20547261 DB
017F 0000 Disk*EM*Track: DB
0181 2C20536563 DB
018A 0000 Disk$EM*Sector: DB
018C 2C204F7065 DB
019A 00 DB

:Error text output next

;Main disk error message — part 2
" Error ("
0,0 ¡Status code in hex
")",C R ,L F," Drive "
0 ¡Disk drive code, A,B...
", Head "
0 ¡Head number
", Track "
0,0 ;Track number
", Sector "
0,0 ¡Sector number
", Operation - "
0 ¡Terminator

019B 526561642EDisk$EMfRead: DB
01A1 5772697465Disk*EM*Write: DB

•
01A8 0D0A202020Disk$Advice0: DB
01BO 436865636BD i sktAdv i c e 1 : DB
01C9 506F737369Disk$Advice2: DB
01E3 5772697465Disk*Advice3: DB
0207 5265747279Disk*Advice4: DB
0 2 IB 5265666F72Disk$Advice5: DB
023D 4861726477Disk*Advice6: DB
0253 4861726477Disk$Advice7: DB

"Read.",0 ¡Operation names
"Write.",0

C R ,L F ," ",0
"Check disk loaded. Retry",0
"Possible hardware problem",0
"Write enable if correct disk, Retry",0
"Retry several times",0
"Reformat disk or use another disk",0
"Hardware error, R e t r y ',0
"Hardware or Software error, Retry",0

0275 2C206F7220Disk$Advice9: DB or call for help if error persists",CR,LF

029B 00
029C 0D0A00

Disk$Act ion*Conf irmi
DB
DB

0 ¡Set to character entered by user
C R ,L F ,0

; Disk error processor

This routine builds and outputs an error message.
The user is then given the opportunity to:

029F F5

:

;
Disk$Error:

PUSH

R — retry the operation that caused the error
I — ignore the error and attempt to continue
A — abort the program and return to CP/M

PSW ;Preserve error code from controller
02A0 215E01 LX I H,Disk*EM$Status îConvert code for message
02A3 CD3B03 CALL CAH ^Converts A to hex

02A6 3A0700 LDA In*Buffer$Disk îConvert disk id. for message
02A9 C641 ADI "A" ;Make into letter
02AB 326E01 STA Disk$EM*Drive

02AE 3A0200 LDA FloppyfHead ; Convert head number
02B1 C630 ADI "0"
02B3 327601 STA Di skEMHead

02B6 3A0300 LDA Floppy$Track ; Convert track number
02B9 217F01 LX I H,DiskEMTrack
02BC CD3B03 CALL CAH

02BF 3A0400 LDA Floppy$Sector ; Convert sector number
02C2 218A01 LX I H,DiskEMSector
02C5 CD3B03 CALL CAH

02C8 214D01 LX I H,Disk*EM*l ;0utput first part of message
02CB CD3B03 CALL Qutput$Error$Message

Figure 9-5. (Continued)

316 The CP/M Programmer’s Handbook

02CE FI POP PSW {Recover error status code
02CF 47 MOV B, A ?For comparisons
02D0 214500 LX I H,Disk$Error$Messages - DEM*Entry$Size

;HL -> table — one entry
02D3 110500 LX I D,DEM*Entry*Size

Disk$Error$Next$Code:
jFor loop below

02D6 19 DAD D ;Move to next (or first) entry

02D7 7E MOV A, M ;Ge\ code number from table
02D8 B7 ORA A ;Check if end of table
02D9 CAE302 JZ Disk$Error*Matched jYes, pretend a match occurred
02DC B8 CMP B ;Compare to actual code
02DD CAE302 JZ Disk$Error$Matched jYes, exit from loop
02E0 C3D602 JMP Disk$Error$Next$Code ;Check next code

Disk$Error$Matched:
02E3 23 INX H ;HL -> advisory text address
02E4 5E MOV E, M
02E5 23 INX H
02E6 56 MOV D, M ;DE -> advisory test
02E7 D5 PUSH D {Save for later

02E8 23 INX H {HL -> message text address
02E9 5E MOV E, M {Get address into DE
02EA 23 INX H
02EB 56 MOV D, M

02EC EB XCHG {HL -> text
02ED CD3B03 CALL Output$Error$Message {Display explanatory text

02F0 215601 LX I H,Disk*EM*2 {Display second part of message
02F3 CD3B03 CALL Output$Error*Message

02F6 219B01 LX I H , D i s k EMRe ad {Choose operation text
{ (assume a read)

02F9 3A0100 LDA Floppy$Command {Get controller command
02FC FE01 CPI, Floppy$Read$Code
02FE CA0403 JZ Disk$Error$Read {Yes
0301 21A101 LX I

Disk$Error$Readi
H,Disk*EM*Write iNor change address in HL

0304 CD3B03 CALL Output*Error$Message {Display operation type

0307 21A801 LX I H,Di sk$AdviceO {Display leading blanks
030A CD3B03 CALL Output*Error$Message

030D El POP H {Recover advisory text pointer
030E CD3B03 CALL Output$Error$Message

0311 217502 LX I H,Di sk*Advice9 {Display trailing component
0314 CD3B03 CALL Output$Error$Message

Disk$Error*Request$Act ion: {Ask the user what to do next
* 0317 CD3B03 CALL Request$User$Choice {Display prompt and get single

{ character response (folded to
{ uppercase)

031A FE52 CPI ' R ' {Retry
031C CA2C03 JZ Disk$Error$Retry
031F FE41 CPI ' A ' {Abort?
0321 CA3603 JZ System$Reset
0324 FE49 CPI ' 1 ' {Ignore?
0326 CA4500 JZ Di sk$Error$ Ignore
0329 C31703 JMP Disk$Error$Request$Act ion

Disk$Error*Retry: {The decision on where to return to
{ depends on whether the operation
{ failed on a deblocked or
{ nondeblocked drive

032C 3A0500 LDA Deblock ing$Required
032F B7 ORA A
0330 C21500 JNZ Deblock$Retry
0333 C30800 JMP No$Deblock$Retry

Figure 9-5. (Continued)

Chapter 9: Dealing with Hardware Errors 317

System$Reset

0336 0E00
0338 CD0500

MV I
CALL

C,0
BOOS

This is a radical approach, but
it does cause CP/M to restart

System reset

033B 0 9

Omitted subroutines (listed in full in Figure 8-10)

Set$Watchdog:

CAH:

Output$Error$Message

Request$User$Choice:

RET

Set watchdog timer (to number of "ticks" in BC, and
to transfer control to (HL) if timer hits zero).

Convert A to two ASCII hex characters, storing
the output in (HL) and (HL+1)

Display the 00-byte terminated error message
pointed to by HL. Output is directed only to
those console devices not being used for list
output as well.

Display prompt "Enter R, A, I..." and return
single keyboard character (uppercase) in A

Dummy

Figure 9-5. User-friendly disk-error processor (continued)

Basic Debugging Techniques
Debug Subroutines
Software Tools for Debugging
Bringing Up CP/M for the First Time
Debugging the CP/M Bootstrap

Loader
Debugging the BIOS
Live Testing a New BIOS

Debugging A New
CP/M System

This chapter deals with some of the problems you will face bringing up CP/M
on a computer system for the first time or enhancing it once it is up and running on
your system.

In the first case, when CP/M does not yet run on your computer, you may be
writing the complete BIOS yourself, although you can model what you do on the
example BIOS provided on the CP/M release diskette and the example code from
Chapter 6.

In the second case, you can extend the existing BIOS by adding code—from
the examples in Chapters 8 and 9, code from computer magazines, or code you
create yourself. To do this, you will need access to the BIOS source code—a
problem if the manufacturer of your computer does not make it available. In
general, however, the BIOS source code is included with the system or can be
obtained at nominal or no cost. If you cannot obtain the source code, you can, of

319

320 The CP/M Programmer’s Handbook

course, take the bull by the horns and reimplement CP/M on your system. This
may require many hours of disassembling the current BIOS machine code to find
out how to access all the various ports and how to control the devices to which they
are connected.

Although the BIOS is the major component of a new CP/M implementation,
remember that it is only the beginning — you can spend the same amount of time
and effort getting the bootstrap loader and all the utilities to function.

Basic Debugging Techniques

Before getting involved in the details of how to debug a CP/M implementation,
it is worth considering the nature of the task. Some quotations that are appropri
ate here:

“Program testing can be used to show the presence of bugs, but never to show
their absence.” — Dijkstra
“We call them bugs because to call them mistakes would be psychologically
unacceptable.” — Hopkins
“Constants aren’t, variables won’t.” —Osborne

Debugging is the name we give to the process of executing programs and
ascertaining whether the programs are running correctly. “Correctly” means in
accordance with the mental model we have built of how the program should
behave, subject to the constraints imposed by the physical hardware. Therein lies
the first of the problems; you and the hardware are the arbiters of correct
performance. The hardware is usually unforgiving; if there is a flaw in the way you
program it, it will either be dramatically “uncooperative” or not work at all. As for
how you perceive the system, several fairly simple tests, along with attempts to use
the system for useful work for a few days, will shake the system down fairly well.
The most difficult problems will be with intermittent failures or logical con
tradictions.

Computers are deterministic. That is, if you start from a known state and
perform a known series of operations, the computer will always yield the same
results. To achieve a known state is not so difficult — resetting the system and
clearing memory will do it. Performing a known series of operations just means
running the program again, although if you are using interrupts, you cannot
truthfully say that exactly the same operations are being performed, because the
interrupts will not happen at exactly the same time as before.

The “Orville Wright” Approach
Your role in debugging a new CP/M system is comparable to the popular,

though untrue, idea of the way the Wright brothers developed flying machines:

Chapter 10: Debugging a New CP/M System 321

build a machine, take it to the top of a hill, throw it off, and, when it crashes,
examine the debris to discover what went wrong.

Each time you do an assembly and test, you are building the aircraft and
lobbing it off the edge of a cliff. Each time it crashes, you examine the wreckage
and try to determine the possible cause.

This is a highly inferential process. With the wreckage as a starting point, you
use inference and intuition to extrapolate the real problem and the correction for
it.

Built-In Debug Code
The single most important concept that you will need in testing CP/M systems

is the same as that used in the modern day “black box” flight recorder. This device
is essentially a multi-channel tape recorder that records all of the relevant condi
tions of the aircraft, its height, altitude, throttle settings, flap settings, and even the
voice communications among crew members. If the airplane crashes, investigators
can replay the information and understand what happened during the flight.

Applying this concept to debugging CP/M means that you must build into
your code some method for recording what it is doing, so that if the system crashes,
you can see what it was doing. Make the code tell you what went wrong.

The debug code should be designed at the same time as the rest of the program.
Plan the debugging code while the design is still on the drawing board. The source
code for debugging should be a permanent part of the BIOS. Use conditional
assembly to “IF” out most of the debug code from the final version, or make the
code sensitive to a flag in the configuration block so that you can re-enable the
debug code at a moment’s notice if the system begins to behave strangely.

The more meaningful the debug output data, the less you will have to guess at
what is wrong, and therefore the less painful and time-consuming the debugging
process will be. Make the output intelligible to others who may use it or yourself
several months hence. Data that tells you what is happening is more useful than
internal hexadecimal values, particularly if someone else must interpret it or relay
it to you over the telephone.

Debug Subroutines

Many programmers do their debugging on a casual “catch as catch can” basis
because they are overwhelmed by the task of building the necessary tools. Others
are too eager to start on a new program to take a few extra hours or days to build
debug subroutines.

To help solve this problem, the following section provides some ready-made
debugging tools that can be used “asis.” Each of these routines has been thor

322 The CP/M Programmer’s Handbook

oughly debugged (there’s nothing worse than debug code with bugs in it!) and has
been used in actual program testing.

Overall Design Philosophy
Some common methods run through the examples that follow. These include

displaying meaningful “captions” (including the specific address that called the
debug routine), grouping all debugging code together, preserving the contents of
all registers, and setting up the stack area in a standard way.

Debug Code Captions When the contents of registers or memory are output as part of a
debugging process, a caption of explanatory text describing the values should be
displayed. For example, rather than displaying the contents of the A register like
this,
a = IF

you can use a meaningful caption such as:
Transaction Code A = IF.

When you write additional debugging code, especially if you need to add it to
an existing routine, it is cumbersome to have to write the call to the debug routine
and then search through the source code to find a convenient place to put an
ASCII caption string. A caption string several pages removed from the point
where it is referenced makes for problems when you want to relate the debug
output on the screen or listing to the source code itself. Therefore, all of the
routines that follow allow you to declare the caption strings “in-line” like this:
IF DEBUG
CALL Debug$Routine
DB 'Caption string here',CR,LF,0
END IF

MV I ;Next instruction

All of the following routines that output a caption recognize one specific 8-bit
value in the caption string. If they encounter a value of OADH (mnemonic for
ADdress), they will output the address of the byte following the call to the debug
routine. For example,
0210 CALL Debug*Routine
0213 DB OADH,'Caption string',0

will cause the routine to display the following:
0213 Caption string

This identifies the point in your program from which the debug routine was
called, and thus avoids any possible ambiguity between different calls to the same
debug routine with similar captions.

Chapter 10: Debugging a New CP/M System 323

Grouping Debug Code Grouping all the debug code together lends itself to using con
ditional assembly with IF/ENDIF statements.

Setting Up the Stack Area All of the following routines preserve the CPU registers so
that there are no side effects from using them. All of them assume that they can use
the stack pointer and that there is sufficient room in the stack area. Hence you will
need to declare adequate stack space for your main code and for the debug
routines. Fill the stack area with a known pattern like this:

DW 9999H,9999H,9999H,9999H,9999Hr 9999H,9999H,9999H
DW 9999H,9999H,9999H,9999H,9999H,9999H,9999H,9999H
DW 9999H,9999H,9999H,9999H , 9999H,9999H,9999H,9999H

StackSArea: 5Label the upper end of the area

Then, during debugging, you can examine the stack area and determine how
much of it is unused. For example, if you looked at the stack area you might see
something like this:

"Low-water mark"
V

99 99 99 99 99 99 99 99 99 99 99 99 09 15 43 42
01 29 00 00 IA 2B 10 FF FF 39 02 ED 11 01 37 44
DD 00 00 11 1A 23 31 00 41 AE FE 00 01 10 70 C9

Stack area overflow can give arcane bugs; the program seems to leap off into
space in a nondeterministic way. By setting up the stack area in this way, you can
recognize an overflow condition easily.

Debug Initialization Before you can execute any of the debug subroutines in this chapter,
you must make a call to the initialization subroutine, DBSInit. The DBSInit
routine sets up some of the internal variables needed by the debug package. You
may need to add some of your own initialization code here.

Console Output
Normally, you can use the CONOUT functions either via the BDOS (Function

2), or via the BIOS by calling the jump vector directly. You cannot do this when you
need to debug console routines themselves, nor when you need to debug interrupt
service routines. In the latter case, if an interrupt pulled control out of the
CONOUT routine in the BIOS, you would get unwanted re-entrancy if the debug
code again entered the CONOUT driver to display a caption. Therefore, the debug
routines have been written to call their own local CONOUT routine, which is called
DBSCONOUT. DBSCONOUT can be changed to call the BDOS, the BIOS, or a
“private” polled output routine.

A counterpart DBSCONIN routine for console input is provided for essen
tially the same reasons.

324 The CP/M Programmer’s Handbook

Controlling Debug Output
All output of debug routines in this chapter is controlled by a single master

flag, DBSFlag. If this flag is nonzero, debug output will occur; if zero, all output is
suppressed.

This flag can be set and cleared from any part of the program you are testing. It
is especially useful when you need to debug a subroutine that is called many times
from many different places. You can write additional code to enable debug output
when certain conditions prevail; for example, when a particular track or sector is
about to be written or when a character input buffer is almost full.

Two subroutines, DB$On and DB$Off, are shown that access the debug
control flag. These, as their names suggest, turn debug output on and off.

Turning the debug output on and off from within the program can create a
confusing display of debug output, lacking any apparent continuity. DBSOff gives
you the option of outputting a character string indicating that debug output has
been turned off.

Pass Counters
Another method of controlling debug output is to use a pass counter, enabling

debug output only after control has passed through a particular point in the code a
specific number of times.

Two subroutines are provided for this purpose. DBSetPass sets the pass
counter to a specific value. DBSPass decrements this pass count each time control
is transferred to it. When the pass count hits zero, the debug control flag DBSFlag
is nonzero and debug output begins.

Using pass counter techniques can save you time and effort in tracking down a
problem that occurs only after the code has been running for several minutes.

Displaying Contents of Registers and Memory
Figure 10-2 shows a series of display subroutines, the primary one of which is

DBSDisplay. It takes several parameters, depending on the information you want
displayed. The generic call to DBS Display is as follows:

CALL DBSDisplay
DB Code <- Indicates the data to be

displayed
{DW Optional additional parameters}
DB 'Caption string rO

The codes that can be used in this call are shown in Table 10-1.
The only function that uses additional parameters is DBSMemory. This dis

plays bytes from memory in hexadecimal and ASCII, using the start and finish

Chapter 10: Debugging a New CP/M System 325

addresses following the call. Here is an example:
CALL DBSDisplay
DB DB$liernory
DW Start$Address„End$Address
DB •' Cap t i on string^ 0

Table 10-1. Codes for DB$ Display

Code Value displayed

8-bit registers

DB$F Condition Flags
DB$A Register A
DB$B Register B
DB$C Register C
DB$D Register D
DB$E Register E
DB$H Register H
DB$L Register L

Memory

DB$ Memory
Bytes starting and ending at the addresses
specified by the two word values following
the code value.

16-bit registers

DB$BC Register pair BC
DBSDE Register pair DE
DB$HL Register pair HL
DB$SP Stack Pointer

Byte values

DBBBC Byte addressed by BC
DBBDE Byte addressed by DE
DBBHL Byte addressed by HL

Word values

DBWBC Word addressed by BC
DBWDE Word addressed by DE
DBWHL Word addressed by HL

326 The CP/M Programmer’s Handbook

Debugging Program Logic
In addition to displaying the contents of registers and memory, you need to

display the program’s execution path, not in terms of addresses, but in terms of the
problem. You can do this by displaying debug messages that indicate what deci
sions have been made by the program as it executes. For example, if your BIOS
checks a particular value to see whether the system should read or write on a
particular device, the debug routine should display a message like this:
Entering Disk Read Routine

This is more meaningful than just displaying the function code for the drivers —
although you may want to display this as well, in case it has been set to some
strange value.

Two subroutines are provided to display debug messages. They are DB$MSG
and DBSMSGI. Both of these display text strings are terminated with a byte of
00H. You can see the difference between the two subroutines if you examine the
way they are called.

DBSMSG is called like this:
LXI H, Message$Text ; HL -> text string
CALL DB*MSG

DBSMSGI is called like this:
CALL DB*MSG
DB ODH,OAH,'Message Text T O ;In-line

DBSMSGI is more convenient to use. If you decide that you need to add a
message, you can declare the message immediately following the call. This also
helps when you look at the listing, since you can see the complete text at a glance.

Use DBSMSG when the text of the message needs to be selected from a table.
Get the address of the text into HL and then call DBSMSG to display it.

Creating Your Own Debug Displays
If you need to build your own special debug display routines, you may find it

helpful to incorporate some of the small subroutines in the debug package. The
following are the subroutines you may want to use:

DBSCONOUT
Displays the character in the C register.

DBS CON IN
Returns the next keyboard character in A.

DBSCONINU
Returns the next keyboard character in A, converting lowercase letters to
uppercase.

Chapter 10: Debugging a New CP/M System 327

DB$DHLH
Displays contents of HL in hexadecimal.

DB$DAH
Displays contents of A in hexadecimal.

DB$CAH
Converts contents of A to hexadecimal and stores in memory pointed at
by HL.

DBSNibble $ To$Hex
Converts the least significant four bits of A into an ASCII hexadecimal
character in A.

DBSCRLF
Displays a c a r r ia g e r e t u r n / l in e f e e d .

DBS Colon
* Displays the string “ : ”.

DBS Blank
Displays a single space character.

DBS FlagS SaveS On
Saves the current state of the debug output control flag and then sets the
flag “on” to enable debug output.

DBS FlagS Restore
Restores the debug output control flag to the state it was in when the
DB$Flag$Save$On routine was last called.

DBSGHV
Gets a hexadecimal value from the keyboard, displaying a prompt message
first. From one to four characters can be specified as the maximum number
of characters to be input.

DBS AS ToS Upper
If the A register contains a lowercase letter, this converts it to an uppercase
letter.

Debugging I/O Drivers
Debugging low-level device drivers creates special problems. The major one is

that you do not normally want to read and write via actual hardware ports while
you are debugging the code —either because doing so would cause strange things
to happen to the hardware during the debugging, or because you are developing
and debugging the drivers on a system different from the target hardware on
which the drivers are to execute.

Before considering the solution, remember that the input and output instruc
tions (IN and OUT) are each two bytes long. The first byte is the operation code

328 The CP/M Programmer’s Handbook

(ODBH for input, 0D3H for output), and the second byte is the port number to
“input from” or “output to.”

Debug subroutines are provided here to intercept all IN and OUT instructions,
displaying the port number and either accepting a hexadecimal value from the
console and putting it into the A register (in the case of IN), or displaying the
contents of the A register (for the OUT instruction).

IN and OUT instructions can be “trapped” by changing the operation code to
one of two RST (restart) instructions. An RST is effectively a single-byte CALL
instruction, calling down to a predetermined address in low memory. The debug
routines arrange for JM P instructions in low memory to receive control when the
correct RST is executed. The code that receives control can pick up the port
number, display it, and then accept a hex value for the A register (for IN) or display
the current contents of the A register (for OUT). The example subroutines shown
later in this chapter use RST 4 in place of IN instructions, RST 5 for OUT.

Wherever you plan to use IN, use the following code:
IF Debug
RST 4
END IF
IF NOT Debug
DB IN
END IF
DB Port$Number

Note that you can use the IN operation code as the operand of a DB statement. The
assembler substitutes the correct operation code.

Use the following code wherever you need to use an OUT instruction:
IF Debug
RST 5
END IF
IF NOT Debug
DB OUT
END IF
DB Port♦Number

When the RST 4 (IN) instruction is executed, the debug subroutine displays
1AB3 : Input from Port 01 : _

The “1AB3” is the address in memory of the byte containing the port number. It
serves to pinpoint the IN instruction in memory. You can then enter one or two
hexadecimal digits. These will be converted and put into the A register before
control returns to the main program at the instruction following the byte contain
ing the port number.

When the RST 5 (OUT) instruction is encountered, the debug subroutine
displays
1AB5 : Output to Port 01 : FF

This identifies where the OUT instruction would normally be as well as the port
number and the contents of the A register when the RST 5 (OUT) is executed.

Chapter 10: Debugging a New CP/M System 329

Debugging Interrupt Service Routines
You can use a technique similar to that of the RST instruction just described to

“fake” an interrupt. You preset the low-memory address for the RST instruction
you have chosen for the jump into the interrupt service routine under test.

When the RST instruction is executed, control will be transferred into the
interrupt service routine just as though an interrupt had occurred. You will need to
intercept any IN or OUT instructions as described above — otherwise the code
probably will go into an endless loop.

Before executing the RST instruction to fake the interrupt, load all the
registers with known values. For example:
MVI A,OAAH
LX I B,OBBCCH
LXI D,ODDEEH
LX I H,C>1122H
RST 6 ;Fake interrupt
NOP

When control returns from the service routine, you can check to see that it restored
all of the registers to their correct values. An interrupt service routine that does not
restore all the registers can produce bugs that are very hard to find.

Check, too, that the stack pointer register has been restored and that the
service routine did not require too many bytes on the stack.

You also can use the CALL instruction to transfer control to the interrupt
service routine in order to fake an interrupt. RST and CALL achieve the same
effect, but RST is closer to what happens when a real interrupt occurs. As it is a
single-byte instruction, it also is easier to patch in.

Subroutine Listings
Figure 10-1 is a functional index to the source code listing for the debug

subroutines shown in Figure 10-2. The listing’s commentary defines precisely how
each debug subroutine is called.

Figure 10-3 shows the output from the debug testbed.

Software Tools fo r Debugging

In addition to building in debugging subroutines, you will need one of the
following proprietary debug programs:

DDT (Dynamic Debugging Tool)
This program, included with the standard CP/M release, allows you to
load programs, set and display memory and registers, trace through your
program instruction by instruction, or execute it at full speed, but stopping

330 The CP/M Programmer’s Handbook

Start Line Functional Component or Routines

00001 Debug subroutine’s Testbed
00100 Test register display
00200 Test memory dump display
00300 Test register pair display
00400 Test byte indirect display
00500 Test DB$On/Off
00600 Test DBSetPass and DBSPass
00700 Test debug input / output
00800 Debug subroutines themselves
01100 DBSInit - initialization
01200 DBSCONINU - get uppercase keyboard character
01300 DBSCONIN - get keyboard character
01400 DB$CONOUT - display character in C
01500 DB$On - enable debug output
01600 DB$Off - disable debug output
01700 DBSSetSPass - set pass counter
01800 DBSPass - execute pass point
01900 DBSDisplay - main debug display routine
02200 Main display processing subroutines
02500 DB$Display$CALLA - display CALL’S address
02600 DBSDHLH - display HL in hexadecimal
02700 DB$DAH - display A in hexadecimal
02800 DBSCAH - convert A to hexadecimal in memory
02900 DB$Nibble$To$Hex - convert LS 4 bits of A to hex.
02930 DB$CRLF - display Carriage Return, Line Feed
02938 DBSColon - display “ : ”
02946 DBSBlank - display “ ”
03100 DB$MSGI - display in-line message
03147 DBS MSG - display message addressed by HL
03300 DBSInput - debug INput routine
03500 DBSOutput - debug OUTput routine
03700 DBSFlagSSaveSOn - save debug flag and enable
03800 DBSFlagSRestore - restore debug control flag
03900 DBSGHV - get hexadecimal value from keyboard
04100 DBSASToSUpper - convert A to upper case

Figure 10-1. Functional index for Figure 10-2

at certain addresses (called breakpoints). It also has a built-in mini
assembler and disassembler so you do not have to hand assemble any
temporary code “patches” you add.

SID (Symbolic Interactive Debug)
Similar to DDT in many ways, SID has enhancements that are helpful if
you use Digital Research’s MAC (Macro Assembler) or RMAC (Relocat
ing Macro Assembler). Both of these assemblers can be told to output a file

Chapter 10: Debugging a New CP/M System 331

00001
00002
00003
00004 Debug Subroutines
00005
00006 <---- NOTE:
00007 The line numbers at the extreme !left are included purely
00008 to reference the code from the text.
00009 There are deliberately induced discont inuit ies
00010 in the numbers in order to allow space for expansion.
00011
00012 Because of the need to test these routines thoroughly,
00013 and in case you wish to make any changes, the testbed
00014 rout ine for the debug package itself has been left in
00015 in this f igure.
00016
00017 Debug testbed
00018
00019 0100 ORG 100H
00020 STARTs
00021 0100 316B03 LX I SP,Test$Stack pSet up local stack
00022 0103 CDEA04 CALL DB$Init pInitialize the debug package
00023 0106 C D 1505 CALL DB$0n pEnable debug output
00024 Simple test of A register display
00025 0109 3EAA MV I A ,0AAH Preset a value in the A register
00026 010B 01CCBB LX I B,OBBCCH Prefill all other registers, partly
00027 010E 11EEDD LX I D,ODDEEH to check the debug display, but
00028 0111 211 IFF LX I H, OF F1 1H also to check register save/restore
00100 #
00101 Test register display
00102
00103 0114 B7 ORA A pSet M-flag, clear Z-flag, set E-flag
00104 0115 37 STC pSet carry
00105 0116 CD5205 CALL DBfDisplay pCall the debug routine
00106 0119 00 DB DB*F
00107 011A 4Ó 6C 616773 DB 'Flags",0
00108
00109 0120 CD5205 CALL DB$Di splay pCall the debug routine
00110 0123 02 DB DB*A
00111 0124 4120526567 DB 'A R e g is te r',0
00112
00113 012F CD5205 CALL DB^Display pCall the debug routine
00114 0132 04 DB DB$B
00115 0133 4220526567 DB "B R e g i s t e r , 0
00116
00117 013E CD5205 CALL DB$Di s p lay pCall the debug routine
00118 0141 06 DB DB$C
00119 0142 4320526567 DB "C R e gi st er',0
00120
00121 014D CD5205 CALL DB$Display pCall the debug routine
00122 0150 08 DB DB$D
00123 0151 4420526567 DB "D Re g i s t e r ',0
00124
00125 015C CD5205 CALL DB$Display pCall the debug routine
00126 015F OA DB DB*E
00127 0160 4520526567 DB "E Register",©
00128
00129 016B CD5205 CALL DB$Bisplay (Call the debug routine
00130 016E OC DB DB*H
00131 016F 4820526567 DB "H Register",©
00132
00133 017A CD5205 CALL DB$Di splay pCall the debug routine
00134 0 1 7D OE DB DB$L
00135 017E 4C20526567 DB "L Register",0
00200 #
00201 Test Memory Dump Display
00202
00203 0189 CD5205 CALL DB$Di splay
00204 018C 18 DB DB*M Dump memory
00205 018D 08012801 DU 108H,128H Check start/end at nonmultiples
00206 0191 4D656D6F72 DB "Memory Dump #1",0 of 10H
00207
00208 01 AO CD5205 CALL DB$Display
00209 01 A3 18 DB DB$M Dump memory
00210 01 A4 00 0 1 1F01 DU 100H,11FH Check start and end on displayed
00211 01A8 4D656D6F72 DB "Memory Dump #2", 0 line boundaries
00212

Figure 10-2. Debug subroutines

332 The CP/M Programmer’s Handbook

00213 01B7 CD5205 CALL DB$Di splay
00214 01BA 18 DB DB«M ;Dump memory
00215 01BB 01010001 DW 101H,100H ;Check error handling where
00216 01BF 4D656D6F72 DB "Memory Dump #3",0 j start > end address
00217 ;
00218 01CE CD5205 CALL DB$Display
00219 01D1 18 DB DB*M ;Dump memory
00220 01D2 00010001 DW 100H,100H ;Check end-case of single byte
00221 01D6 4D656D6F72 DB "Memory Dump #4",0 j output
00300 ; #
00301 Test register pair display
00302
00303 01E5 CD5205 CALL DB$Display ;Call the debug routine
00304 01E8 10 DB DB$BC
00305 01E9 4243205265 DB "BC Register",0
00306 ;
00307 01F5 CD5205 CALL DBtDisplay ;Call the debug routine
00308 01F8 12 DB DB$DE
00309 01F9 4445205265 DB "DE Reg ister",0
00310 •
00311 0205 CD5205 CALL DB$Display ;Call the debug routine
00312 0208 14 DB DB*HL
00313 0209 484C205265 DB "HL Register ",0
00314 •
00315 0215 CD5205 CALL DB$Display ;Call the debug routine
00316 0218 16 DB DB*SP
00317 0219 5350205265 DB "SP Register",0
00318 ;
00319 0225 013203 LX I B,Byte$BC ;Set up registers for byte tests
00320 0228 113303 LX I D,l3y te$DE
00321 022B 213403 LX I H,Byte$HL
00400 S«
00401 9 Test byte indirect display
00402 9
00403 022E CD5205 CALL DBfDisplay ;Call the debug routine
00404 0231 1A' DB DB«B*BC
00405 0232 4279746520 DB "Byte at CBC>',0
00406 i
00407 023F CD5205 CALL DB$Di splay ;Call the debug routine
00408 0242 1C DB DBBDE
00409 0243 4279746520 DB "Byte at (DE)",0

00410 f
00411 0250 CD5205 CALL DB$Display ;Call the debug routine
00412 0253 IE DB DB«B$HL
00413 0254 4279746520 DB "Byte at (HL)",0
00414 ;

00415 0261 013503 LX I B,Word*BC ?Set up the registers for word tests
00416 0264 113703 LX I D,Word*DE
00417 0267 213903 LX I H,Word$HL
00418
00419 026A CD5205 CALL DB*Display ;C-all the debug routine
00420 026D 20 DB DBWBC
00421 026E 576F726420 DB "Word at (BC)",0
00422 •
00423 027B CD5205 CALL DB$Display ;Call the debug routine
00424 027E 22 DB DB*W*DE
00425 027F 576F726420 DB "Word at (DE)",0
00426
00427 028C CD5205 CAj_L DB$Display ;Call the debug routine
00428 028F 24 DB DB«W$HL
00429 0290 576F726420 DB "Word at (HL)",0
00500 ; #
00501 ; Test DB*0n/0ff
00502 ;
00503 029D CD1D05 CALL DB*Off ;Disable debug output
00504 02A0 CDD607 CALL DB*MSGI ;Display in-line message
00505 02A3 0D0A546869 DB ODH,OAH,"This message should NOT appear",0
00506
00507 02C4 C D 1505 CALL DB$On
00508 02C7 CDD607 CALL DBiMSGI
00509 02CA 0D0A446562 DB ODH,OAH,"Debug output has been re-enabled.",0
00600 ;#
00601 Test pass count logic
00602

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 333

00603 02EE CD1D05 CALL DB$Gf f ;Disable debug output
00604 02F1 CD2405 CALL DB«Set«Pass ;Set pass count
00605
00606

02F4 1E00 Dkl 30

00607 02F6 3E22 MV I A, 34 ;Set loop counter greater than pass
00608
00609 Test$Pass$Loop:

; counter

00610 02F8 CD3505 CALL DB$Pass ;Decrement pass count
00611 02FB CDD607 CALL DB$MSGI ;Display in-line message
00612 02FE 0D0A546869 DB 0DH,0AH 'This message should display 5 times',0
00613 0324 3D DCR A
00614 0325 C2F802 JNZ Test$Pass$Loop
00700 ;#
00701 j Test debug input/output
00702
00703 0328 CD1D05 CALL DB*0ff ;Check that debug IN/GUT
00704 y must still occur when debug
00705 ; output is disabled.
00706 032B E7 RST 4 ;Debug input
00707 032C 11 DB 11H ;Port number
00708 032D EF RST 5 ;Debug output (value return from input)
00709
00710

032E 22 DB 22H ;Port number

00711
00712
00713

032F C30000 JMP 0 ;Warm boot at end of testbed

00714 ; Dummy values for byte and word1 displays
00715 0332 BC Byte$BC: DB OBCH
00716 0333 DE Byte$DE: DB ODEH
00717
00718

0334 FI Byte*HL: DB 0F1H

00719 0335 OCOB WordiBC: DW OBOCH
00720 0337 OEOD Word$DE: DUI ODOEH
00721
00722

0339 01OF Word$HLs DUI 0F01H

00723 033B 9999999999 DUI 9999H,9999H,9999H,9999H,9999H,9999H,9999H,9999H
00724 034B 9999999999 DU 9999H,9999H,9999H,9999H,9999H,9999H,9999H,9999H
00725 035B 9999999999 DUI 9999H,9999H,9999H,9999H,9999H,9999H,9999H,9999H
00726
00727
00728
00729

Test$Stacks

00730 0400 ORG 400H ;To avoid unnecessary listings
00731
00732

; when only the testbed changes

;#00800
00801
00802 ; Debug subroutines
00803
00804
00805 ; Equates for DB$Display codes
00806 ; These equates are the offsets down the table of addresses
00807 ; for various subroutines to be used.
00808
00809 0000 = DB$F EQU 00 ; Flags
00810 0002 = DB$A EQU 02 ■ A regi ster
00811 0004 = DB*B EQU 04 ; B
00812 0006 = DB«C EQU 06 ïC
00813 0008 = DB«D EQU 08 ; D
00814 OOOA = DB*E EQU 10 ;E
00815 OOOC = DB«H EQU 12 ;H
00816 OOOE = DB«L EQU 14 ; L
00817 0010 = DB$BC EQU 16 ; BC
00818 0012 = DB$DE EQU 18 ; DE
00819 0014 = DBSHL EQU 20 ; HL
00820 0016 = DB*SP EQU 22 îStack pointer
00821 0018 = DB*M EQU 24 ; Memory
00822 001A = DB«B$BC EQU 26 ; (BC)
00823 001C = DB*B*DE EQU 28 ? (DE)
00824 00 IE = DB*B*HL EQU 30 ; (HL)
00825 0020 = DB*U*BC EQU 32 ; (BC+1) , (BC)
00826 0022 = DB*W$DE EQU 34 ; (DE+1) , (DE)
00827
00828
00829

0024 = DB*W*HL EQU

;

36 ï (HL+1) , (HL)

00830 f Equates
00831 0020 = RST4 EQU 20H ;Address for RST 4 - SN instruction

Figure 10-2. (Continued)

334 The CP/M Programmer’s Handbook

00832 0028 = RST5 EQU 28H Address for RST 5 - OUT instruction
00833 {
00834 0001 = B4C0NIN EQU 1 ;BDOS CONIN function code
00835 0002 - B*CONOUT EQU 2 ;BDOS CONOUT function code
00836 OOOA - BÍREADCONS EQU 10 ;BDOS read console function code
00837 0005 = BDOS EQU 5 {BDOS entry point
00838 ;
00839 0000 = False EQU 0
00840 F F F F '= True EQU NOT False
00841 ;
00842 ;Equates to specify how DB*C0N0UT
00843 ? and DB*C0NIN should perform
00844 ; their input/output
00845 0000 = DB*Polled$IO EQU False)
00846 0000 = DB$BIOS$IO EQU False j> Only one must be true
00847 FFFF = DB*BDOS*IO EQU True ; >
00848 •
00849 {Equates for polled I/O
00850 0001 = DB*Status*Port EQU 01H {Console status port
00851 0002 = DB*Data*Port EQU 02H {Console data port
00852 ;
00853 0002 = DB*Input*Ready EQU 0000$0010B ; Incoming data ready
00854 0001 = DB*Output$Ready EQU 0000*000IB ; Ready for output
00855 •
00856 {Data for BIOS I/O
00857 0400 C3 BIOS*CONIN! DB JMP {The initialization routine sets these
00858 0401 0000 DW 0 { two JMP addresses into the BIOS
00859 0403 C3 BIOS*CONOUT: DB JMP
00860 0404 0000 DW ' 0
00861
00862 ; Main debug vari ables and constants
00863
00864 0406 00 DB*Flag: DB 0 Main debug control flag
00865 When this flag is nonzero, all debug
00866 output will be made. When zero, all
00867 debug output will be suppressed.
00868 It is altered either directly by the user
00869 or using the routines DB*0n, DB*0ff and
00870 DBSPass.
00871 ;
00872 0407 0000 DB*Pass*Count: DW 0 !¡Pass counter
00873 i When this is nonzero, calls to DB*Pass
00874 ! decrement it by one. When it reaches
00875 ! zero, the debug control flag, DB$Flag,
00876 i is set nonzero, thereby enabling
00877 ■ debug output.
00878 ; x
00879 DB*Save$HL: ¡Save area for HL
00880 0409 00 DB$Save$L: DB 0
00881 040A 00 DB*Save*H: DB 0
00882
00883 040B 0000 DB«Save$SP: DW 0 i¡Save area for stack pointer
00884 040D 0000 DB*Save*RA: DW 0 !¡Save area for return address
00885 040F 0000 DB$Call*Address DW <5 {Starts out the same as DB*Save$RA
00886 f but DB*Save*RA gets updated during
00887 ; debug processing. This value is
00888 f output ahead of the caption
00889 DB*Start*Addresss ¡Start address for memory display
00890 0411 0000 DW 0
00891 DB$End*Addresss ¡End address for memory display
00892 0413 0000 DW 0
00893 DB*Di splay*Code ¡Display code requested
00894 0415 00 DB 0
00895 ;
00896 ;
00897 ¡Stack area
00898 0416 9999999999 DW 9999H,9999H,9999H,9999H,9999H,9999H,9999H,9999H
00899 0426 9999999999 DW 9999H,9999H,9999H,9999H,9999H,9999H,9999H,9999H
00900 0436 9999999999 DW 9999H,9999H,9999H,9999H,9999H,9999H,9999H,9999H
00901 0446 00 DB«Save«E: DB 0 E register
00902 0447 00 DB$Save$Ds DB 0 D register
00903 0448 00 DB$Save$Cs DB 0 C. register
00904 0449 00 DB$Save*B: DB 0 B register
00905 044A 00 DB*Save*F! DB 0 Flags
00906 044B 00 DB$Save«A: DB 0 A register
00907 DB*Stack: Debug stack area
00908 The registers in the stack area are PUSHed
00909 onto the stack and accessed directly.

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 335

00910
00911 ; Register caption messages
00912 *
00913 ; The table below, indexed by the Display$Code is used to access
00914 ; the register caption string.
00915 •
00916 DB*Register*Capt ions:
00917 044C 7204 DW DB*F*RC ¡Flags
00918 044E 7804 DW DB*A*RC ¡A register
00919 0450 7A04 DW DB*B*RC ¡B
00920 0452 7C04 DW DB*C*RC ¡ c
00921 0454 7E04 DW DB*D*RC ¡D
00922 0456 8004 DW DB*E*RC ¡E
00923 0458 8204 DW DB*H*RC ¡H
00924 045A 8404 DW DB*L*RC ¡L
00925 045C 8604 DW DB*BC*RC ¡BC
00926 045E 8904 DW DB*DE*RC ¡DE
00927 0460 8C04 DW DB*HL*RC ¡HL
00928 0462 8F04 DW DB*SP*RC ¡Stack pointer
00929 0464 9204 DW DB*M*RC ¡Memory
00930 0466 A604 DW DB*B*BC*RC * (BC)
00931 0468 AB04 DW DB*B*DE*RC ¡ (DE)
00932 046A B004 DW DB*B*HL*RC *, (HL)
00933 046C B504 DW DB*W*BC*RC ¡ (BC+1),(BC)
00934 046E Cl04 DW DB*W*DE*RC ¡ (DE+1),(DE)
00935 0470 CD04 DW DB*W*HL*RC ¡ (HL+1), (HL)
00936 r
00937 0472 466C616773DB*F*RCs DB "Flags', 0 ¡Flags
00938 0478 4100 DB*A*RC: DB ' A ' , 0 ¡A register
00939 047A 4200 DB*B*RCs DB 'B', 0 ¡B
00940 047C 4300 DB*C*RCs DB 'C',0 ¡ c
00941 047E 4400 DB*D*RCï DB 'D', 0 ¡D
00942 0480 4500 DB*E*RC: DB 'E', 0 ¡E
00943 0482 4800 DB*H*RC: DB 'H', 0 ¡H
00944 0484 4C00 DB*L*RCs DB 'L', 0 ¡L
00945 0486- 424300 DB*BC*RCs DB 'BC',0 ¡BC
00946 0489 444500 DB*DE*RC: DB •' DE ', 0 ¡DE
00947 048C 484C00 DB*HL*RC: DB 'H L ",0 7 HL
00948 048F 535000 DB*SP*RCs DB 'SP",0 ¡Stack pointer
00949 0492 5374617274DB*M*RCs DB 'Start, End Address ',0 ¡Memory
00950 04A6 2842432900DB*B*BC*RC: DB "(B C)",0 ¡ (BC)
00951 04AB 2844452900DB*B*DE*RC; DB " C D E)",0 -, (DE)
00952 04B0 28484C2900DB*B*HL*RC: DB "(H L)",0 ¡ (HL)
00953 04B5 2842432B31DB*W*BC*RC: DB '(BC-H), (BC) ',0 ¡ (BC+1),(BC)
00954 04C1 2844452B31DB*W*DE*RCs DB "(DE+1), (D E)",0 ¡ (DE+1),(DE)
00955 04CD 28 484C2B31DB*W*HL*RC: DB •' (HL+1) , (H L)",0 ¡ (HL+1),(HL)
00956
00957 Flags message
00958
00959 04D9 43785A784DDB*Flags*Msg: DB "CxZxMxExIx",0 ¡Compatible with DDT's display
00960
00961 Flags masks used to test user's flag byte
00962
00963 DB*Flag*Masks
00964 04E4 01 DB 0000$0001B ¡Carry
00965 04E5 40 DB 0100*00006 ¡Zero
00966 04E6 80 DB 1000*00006 ¡Minus
00967 04E7 04 DB 00 00 *0100B ¡Even parity
00968 04E8 10 DB 0001*0000B ¡Interdigit carry (aux carry)
00969 04E9 00 DB 0 ¡Terminator
01100 ; #
01101 DB*Ini t
01102 This routine initializes the debug package.
01103
01104 DB*Ini t :
01105 IF DB*BIQS*I0 ¡Use BIOS for CONIN/CONOUT
01106 LHLD 1 ¡Get warm boot address from base
01107 ¡ page. H = BIOS jump vector page
01108 MV I L, 09H ¡Get CONIN offset in jump vector
01109 SHLD BIOS*CQNIN + 1 ¡Set up address
o i i i o MV I L, OCH ¡Get CONOUT offset in jump vector
01111 SHLD BIOS*CONOUT + 1
01112 END IF
01113
01114 ¡Set up JMP instructions to receive control
01115 ¡ when an RST instruction is executed
01116 04EA 3EC3 MV I A, JMP ¡Set JMP instructions at RST points

Figure 10-2. (Continued)

336 The CP/M Programmer’s Handbook

01117 04EC 322000 STA RST4
01118 04EF 322800 STA RST5
01119 04F2 211A08 LX I H,DB$Input ¡Address of fake input routine
01120 04F5 222100 SHLD RST4 + 1
01121 04F8 216C08 LX I H,DBÍOutput ;Address of fake output routine
01122 04FB 222900 SHLD RST5 + 1
01123
01124 04FE C9 RET
01200 ;#
01201 DB*CONINU
01202 This routine returns the next character from the console.
01203 but converting "a" to "z " to uppercase letters.
01204
01205 DBÍCONINU:
01206 04FF CD0505 CALL DBÜC0NIN ;Get character from keyboard
01207 0502 C31B09 JMP DB*AToUpper ¡Fold to upper and return
01300 ¡ #
01301 DBSCONIN
01302 This routine returns the next character from the console.
01303 According to the setting of equates, it uses simple
01304 ¡ polled I/O, the BDOS (function 2) or the BIOS.
01305
01306 Exit parameters
01307
01308 A = character from console
01309
01310 DBÍCONIN:
01311 IF DB$Polled*IO ¡Simple polled input
01312 IN DB$Status*Port ¡Check if incoming data
01313 AN I DB$Input$Ready
01314 JZ DB9C0NIN ; No
01315 IN DB$Data*Port ;Input data character
01316 PUSH PSW ;Save data character
01317 MOV C, A ;Ready for output
01318 CALL DB$C0N0UT ¡Echo it back
01319 POP PSW ^Recover data character
01320 RET
01321 END IF
01322
01323 IF DB$BD0S*I0 ;Use BDOS for input
01324 0505 0E01 MV I C,B9C0NIN ¡Read console
01325 0507 C30500 JMP BDOS ;BD0S returns to our caller
01326 END IF
01327
01328 IF DB*BI0S*I0 ¡Use BIOS for input
01329 JMP BI0S4C0NIN ¡This was set up during BIOS
01330 ¡ initialization
01331 ' END IF
01332
01400 ¡#
01401 DB4C0N0UT
01402 This routine outputs the character in the C register to the
01403 console , using simple polled I/O, the BDOS or the BIOS.
01404
01405 Entry parameters
01406 A = byte to be output
01407
01408 DB9C0N0UT:
01409 050A 3A0604 LDA DB$Flag ¡Check if debug output enabled
01410 050D B7 ORA A
01411 050E C8 RZ ¡Ignore output if disabled
0 1 4 1 2
01413 IF DB*Polled*IO ¡Use simple polled output
0 1 414 IN DB*Status*Port ¡Check if ready for output
01415 AN I DB$0ut put$Read y
01 4 1 6 JZ DB4C0N0UT ¡ No
01417 MOV A, C ¡Get data byte
0 1 418 OUT DB*Data*Port
01419 RET
0 1 420 END IF
01421
0 1 422 IF DB*BD0S«I0 ¡Use BDOS for output
0 1 423 050F 59 MOV E, C ¡Move into correct register
01424 0 5 1 0 0E02 MV I C,B9C0N0UT
01425 0 5 1 2 C 30500 JMP BDOS ¡BDOS returns to our caller
01426 END IF
01427
01428 IF DB$BI0S$I0 ¡Use BIOS for output

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 337

01429 MOV A, C {Move into correct register
01430 JMP BI0S4C0N0UT {Set up during debug initialization
01431 END IF
01500 ; #
01501 ;
01502 ; DB«On
01503 ; This routine enables all debugi output by setting the
01504 { DBSFlag nonzero.
01505 ;
01506 DB*0n:
01507 0515 F5 PUSH PSW {Preserve registers
01503 0516 3EFF MV I A,OFFH
01509 0518 320604 STA DB*Flag {Set control flag on
01510 0 5 IB FI POP PSW
01511 051C C9 RET
01600 ;#
01601 ■
01602 ; DB*0ff
01603 • This routine disables all debug output by setting the
01604 { DB*Flag to zero.
01605 •

01606 DB$0 ff:
01607 0 5 ID F5 PUSH PSW {Preserve registers
01608 0 5 IE AF XRA A
01609 0 5 IF 320604 STA DBSFlag {Clear control flag
01610 0522 FI POP PSW
01611 0523 C9 RET
01700 {#
01701 ;
01702 ; DBSetPass
01703 • This routine sets the pass counter. Subsequent calls to DB$Pass
01704 { decrement the count, and when it reaches 0, debug output
01705 ; is enabled.
01706 {
01707 ; Calling sequence
01708 •
01709 f CALL DB*Set*Pass
01710 ; DW Pass$Count$Value
01711 ;
01712 DB«Set$Pass:
01713 0524 220904 SHLD DB$Save$HL {Preserve user's HL
01714 0527 El POP H {Recover return address
01715 0528 D5 PUSH D {Preserve user's DE
01716 0529 5E MOV E, M {Get LS byte of count
01717 052A 23 INX H {Update pointer
01718 052B 56 MOV D, M {Get MS byte
01719 052C 23 INX H {HL points to return address
01720 052D EB XCHG {HL = pass counter
01721 052E 220704 SHLD DB$Pass$Count {Set debug pass counter
01722 0531 EB XCHG {HL points to return address
01723 0532 D1 POP D {Recover user's DE
01724 0533 E3 XTHL {Recover user's HL and set
01725 { return address on top of stack
01726 0534 C9 RET
01800 {#
01801 ;
01802 ; DB*Pass
01803 ; This routine decrements the debug pass counter -
01804 * if the result is negative , it takes no further action.
01805 ; If the result is zero, it sets the debug control flag nonzero
01806 ; to enable-debug output.
01807 •
01808 DB*Pass:
01809 0535 F5 PUSH PSW {Save user's registers
01810 0536 E5 PUSH H
01811 0537 2A0704 LHLD DBSPass»Count {Get pass count
01812 053A 2B DCX H
01813 053B 7C MOV A, H {Check if count now negative
01814 053C B7 ORA A
01815 053D FA4705 JM DB$Pass*x {Yes, take no further action
01816 0540 220704 SHLD DB$Pass$Count {Save downdated count
01817 0543 B5 ORA L {Check if count now zero
01818 0544 CA4A05 JZ DB$Pass*ED {Yes, enable debug
01819 DB$Pass$xs •
01820 0547 El POP H {Recover user's registers
01821 0548 FI POP PSW
01822 0549 C9 RET

Figure 10-2. (Continued)

338 The CP/M Programmer’s Handbook

01823
01824 DB$Pass«Ed: ;Enable debug
01825 054A 3EFF MV I A,OFFH
01826 054C 320604 STA DB*Flag ;Set debug control flag
01827 054F C34705 JMP DB«Pass«x
01900 #
01901
01902 DB«Display
01903 This is the primary debug display routine.
01904
01905 Calling sequence
01906
01907 CALL DB*Display
01908 DB Display«Code
01909 DB 'Caption String' ,0
01910
01911 Display code identifies which register(s) are to be
01912 displayed.
01913
01914 When the display code specifies a block of memory
01915 the sequence is:
01916
01917 CALL DB«Display
01918 DB Display«Code
01919 DW Start*Address,End«Address
01920 DB 'Caption String' ,0
01921
01922 DB«Display :
01923
01924 DB$Display«Enabled:
01925 0552 220904 SHLD DB«Save«HL ;Save user's HL
01926
01927 0555 E3 XTHL jGet return address from stack
01928 0556 220D04 SHLD DB«Save«RA ;This gets updated by debug code
01929 0559 E5 PUSH H ;Save return address temporarily
01930 055A 2B DCX H ;Subtract 3 to address call instruction
01931 055B 2B DCX H ; itself
01932 055C 2B DCX H
01933 055D 220F04 SHLD DB«Call«Address jSave actual address of CALL
01934 0560 El POP H ;Recover return address
01935
01936 0561 F5 PUSH PSW ^Temporarily save flags to avoid
01937 ; them being changed by DAD SP
01938 0562 210000 LX I H, 0 jPreserve stack pointer
01939 0565 39 DAD SP
01940 0566 23 " INX H ;Correct for extra PUSH PSW needed
01941 0567 23 INX H ; to save the flags
01942 0568 220B04 SHLD DB«Save«SP
01943 056B FI POP PSW jRecover flags
01944
01945 056C 314C04 LX I SP,DB«Stack jSwitch to local stack
01946
01947 056F F5 PUSH PSW jSave other user's registers
01948 0570 05 PUSH B jThe stack area is specially laid
01949 0571 D5 PUSH D ; out to access these registers
01950
01951 0572 2A0D04 LHLD DB«Save«RA jGet return address
01952 0575 7E MOV A, M ;Get display code
01953 0576 321504 STA DB«Display«Code
01954 0579 23 INX H ;Update return address
01955
01956 057A FE18 CPI DB«M ;Check if memory to be displayed
01957 0570 029105 vJNZ DB«Not«Memory
01958 057F 5E MOV E, M ;Get DE = start address
01959 0580 23 INX H
01960 0581 56 MOV D, M
01961 0582 23 INX H
01962 0583 EB XCHG ;HL = start address
01963 0584 221104 SHLD DB$Start«Address
01964 0587 EB XCHG ;HL -> end address
01965 0588 5E MOV E, M ;Get DE = end address
01966 0589 23 INX H
01967 058A 56 MOV D, M
01968 058B 23 INX H
01969 0580 EB XCHG rHL = end address, DE -> caption
01970 058D 221304 SHLD DB«End*Address
01971 0590 EB XCHG ;HL -> caption string

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 339

01972
01973
01974
01975
01976
01977
01978
01979
01980
01981
01982
01983
01984
01985
01986
01987
01988
01989
01990

DB$Not »Memor y :

Output preamble and caption string
The format for everything except memory display is;

nnnn : Caption String : RC = vvvv

Call Address ! Value
Register Caption (A, B, C . ..)

A carriage return, line feed is output at the start of the
message - but NOT at the end.

Memory displays look like :

nnnn : Caption String : Start, End ssss, eeee
ssss : hh hh hh hh hh hh hh hh hh hh hh hh hh hh hh hh cccc cccc cccc cccc

01991 0591 E5 PUSH H ¡Save pointer to caption string
01992 0592 CDC107 CALL DB$CRLF ¡Display carriage return, line feed
01993
01994

0595 CD7C07 CALL DB$Di sp1ay$CALLA ¡Display DB»Call»Address in hex.

01995 0598 E1 POP H ¡Recover pointer to caption string
01996 DB*Display«Caption: ¡HL -> caption string
01997 0599 7E MOV A, M ¡Get character
01998 059A 23 INX H
01999 059B B7 ORA A ¡Check if end of string
02000
02001

059C CAA805 JZ DBEndCapt ion ¡Yes

02002 059F E5 PUSH H ¡Save string pointer
02003 05A0 4F MOV C, A ¡Ready for output
02004 05A1 CD0A05 CALL DB*C0N0UT ¡Display character
02005 05A4 E1 POP H ¡Recover string pointer
02006
02007
02008

05A5 C39905 JMP

DB*End»Cap t i on :

DB»Di splay»Capt ion ¡Go back for next character

02009
02010

05A8 220D04 SHLD DB»Save»RA ¡Save updated return address

02011
02012
02013

05AB CDC807 CALL DB»Colon ¡Display " : '

¡Display register caption
02014 05AE 3A1504 LDA DB»Display»Code ¡Get user-'s display code
02015 05B1 5F MOV E, A ¡Make display code into word
02016 05B2 1600 MVI D, 0
02017
02018

05B4 D5 PUSH D ¡Save word value for later

02019 05B5 FE18 CPI DB»M ¡Memory display is a special case
02020
02021

05B7 CACF05 JZ DB»Di splay»Mem»Caption ¡Yes

02022 05BA 214C04 LX I H,DB»Regi ster»Capt ions ¡Make pointer to address in table
02023
02024

05BD 19 DAD D ¡HL -> word containing address of
¡ register caption

02025 05BE 5E MOV E, M ¡Get LS byte of address
02026 05BF 23 INX H
02027 05C0 56 MOV D, M ¡DE -> register caption string
02028 05C1 EB XCHG ¡HL -> register caption string-
02029
02030

05C2 CDEE07 CALL DB»MSG ¡Display message addressed by HL

02031 05C5 CDD607 CALL DB»MSGI ¡Display in-line message
02032 05C8 203D2000 DB ' = ,0
02033
02034

05CC C3ED05 JMP DB»Select»Rout ine ¡Go to correct processor

02035
02036
02037

DB»Display»Mem*Capt ion: ¡The memory display requires a speci-
¡ caption with the start and end
¡ addresses

02038 05CF 219204 LX I H,DB»M»RC ¡Display specific caption
02039 05D2 CDEE07 CALL DB$MSG
02040
02041

05D5 CDC.807 CALL DB»Colon ¡Display ' : '

02042 05D8 2A1104 LHLD DB»Start»Address ¡Display start address
02043
02044

05DB CB8707 CALL DB»DHLH ¡Display HL in hex.

02045 05DE CDD607 CALL DB»MSGI ¡Display in-line message
02046
02047

05E1 2C2000 DB •', , 0

02048 05E4 2A1304 LHLD DB»End»Address ¡Get end address

Figure 10-2. (Continued)

340 The CP/M Programmer’s Handbook

02049 05E7 CD8707 CALL DBSDHLH ;Display HL in hex.
02050 OSEA CDC107 CALL DB*CRLF ;Display carriage return, line feed
02051 jDrop into select routine
02052 DB$Select$Rout ine:
02053 05ED D1 POP D ;Recover word value Display$C-ode
02054 05EE 210A06 LX I H,DB$Display*Table
02055 05F1 19 DAD D ;HL -> address of code to process
02056 ; display requirements
02057 05F2 5E MOV E, M jGet LS byte of address
02058 05F3 23 INX H ^Update pointer
02059 05F4 56 MOV D r M ;Get MS byte of address
02060 05F5 EB(XCHG ;HL -> code
02061
02062 05F6 11FB05 LX I D,DB*Exit ;Fake link on stack
02063 05F9 D5 PUSH D

02064 05FA E9 PCHL ;"CALL" display processor
02065
02066 DB$Exit: jReturn to the user
02067 05FB D1 POP D ;Recover user's registers saved
02068 05FC Cl POP B ; on local debug stack
02069 05FD FI POP PSU
02070 05FE 2A0B04 LHLD DB$Save$SP jRevert to user's stack
02071 0601 F9 SPHL
02072 0602 2A0D04 LHLD DB*Save*RA ;Get updated return address (bypasses
02073 ; in-line parameters)
02074 0605 E3 XTHL ;Replace on top of user's stack
02075 0606 2A0904 LHLD DB*Save$HL ;Get user's HL
02076 0609 C9 RET ^Transfer to correct return address
02077
02078
02079 DB$Di splay$Tables
02080 060A 3006 DU DP$F Flags
02081 060C 5406 DU DP*A A register
02082 060E 5A06 DU DP*B B
02083 0610 6006 DU DP$C C
02084 0612 6606 DU DP*D D
02085 0614 6C06 DU DP$E E
02086 0616 7206 DU DP$H H
02087 0618 7806 DU DP*L L
02088 061A 7E06 DU DP*BC BC
02089 061C 8406 DU DP$DE DE
02090 0 6 IE 8A06 DU DP*HL HL
02091 0620 9006 DU DP*SP Stack pointer
02092 0622 9606 DU DP$M Memory
02093 0624 4907 DU DP*B*BC (BC)
02094 0626 5007 DU DP$B*DE (DE)
02095 0628 5707 DU DP*B*HL (HL)
02096 062A 5E07 DU DP*U$BC (BC+1), (BC)
02097 062C 6807 DU DPUDE (DE+1),(DE)
02098 062E 7207 DU DP*U$HL (HL+1),(HL)
02200 ;#
02201 ; Debug display processing rout ines
02202 ;
02203 DP$F: i Flags
02204 ;The flags are displayed in the same way that
02205 t DDT uses: C1Z0M0E0I0
02206 0630 3A4A04 LDA DB$Save$F pGet flags
02207 0633 47 MOV B, A ;?Preserve copy
02208 0634 21DA04 LX I H,DB$Flags$Msg + 1 ;HL -> first 0/1 in message
02209 0637 11E404 LX I D,DB$Flag$Masks ;;DE -> table of flag mask values
02210 DB$F*Next:
02211 063A 1A LDAX D ?Get next flag mask
02212 063B B7 ORA A ;Check if end of table
02213 063C CA4E06 JZ DBFDisplay ;Y e s , display the results
02214
02215 063F AO ANA B ;Check if this flag is set
02216 0640 3E31 MV I A f'l' jAssume yes
02217 0642 C24706 JNZ DBFNZ f Yes,it is set
02218 0645 3E30 MV I A,'0' ;Nor it is clear
02219 DB*F*NZ:
02220 0647 77 MOV M, A ;Store '0' or 1' in message text
02221 0648 23 INX H t Update pointer to next 0/1
02222 0649 23 INX H
02223 064A 13 INX D ^Update flag mask pointer
02224 064B C33A06 JMP DB*F$Next
02225 DB$F*Displays ;Display results
02226 064E 21D904 LX I H,DB*Flags$Msg

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 341

02227 0651 C3EE07 JMP DB*MSG sDisplay message and return
02228
02229 DP* As SA register
02230 0654 3A4B04 LDA DB*Save*A sGet saved value
02231 0657 039107 JMP DB*DAH sDisplay it and return
02232 ;
02233 DP*B: sB
02234 065A 3A4904 LDA DB*Save*B sGet saved value
02235 065D 039107 JMP DB*DAH sDisplay it and return
02236
02237 DP*C: sc
02238 0660 3A4804 LDA DB*Save*C sGet saved value
02239 0663 039107 JMP DB*DAH sDisplay it and return
02240 ;
02241 DP*D: ; D
02242 0666 3A4704 LDA DB*Save*D sGet saved value
02243 0669 039107 JMP DB*DAH sDisplay it and return
02244
02245 DP*E: ;E
02246 0660 3A4604 LDA DB*Save*E SGet saved value
02247 066F 039107 JMP DBSDAH sDisplay it and return
02248
02249 DP*H: S H
02250 0672 3A0A04 LDA DB*Save*H sGet saved value
02251 0675 039107 JMP DB*DAH sDisplay it and return
02252 ;
02253 DP*Ls ; L
02254 0678 3A0904 LDA DB*Save*L sGet saved value
02255 067B 039107 JMP DB*DAH sDisplay it and return
02256
02257 DP*BC: SBC
02258 067E 2A4804 LHLD DB*Save*C- sGet saved word value
02259 0681 038707 JMP DB*DHLH sDisplay it and return
02260 •
02261 DP *D E: SDE
02262 0684 2A4604 LHLD DB*Save*E sGet saved word value
02263 0687 C38707 JMP DB*DHLH sDisplay it and return
02264
02265 DP*HL: ;HL
02266 068A 2A0904 LHLD DB*Save*HL sGet saved word value
02267 068D C38707 JMP DB*DHLH sDisplay it and return
02268 •
02269 DP*SP: S Stack Pointer
02270 0690 2A0B04 LHLD DB*Save*SP sGet saved word value
02271 0693 C38707 JMP DB*DHLH sDisplay it and return
02272 •
02273 DP*M: S Memory
02274 0696 2A1304 LHLD DB*End*Address S Increment end address to make
02275 0699 23 INX H s arithmetic easier
02276 069A 221304 SHLD DB*End*Address
02277
02278 069D 2A1104 LHLD DB*Star t *Addre s s
02279 06A0 CD3A07 CALL DB*M*Check*End S Compare HL to End*Address
02280 06A3 D A D 106 JO DB*M*Address*OK sEnd > start
02281 06A6 CDD607 CALL DB*MSGI SError start > end
02282 06A9 0D0A2A2A20 DB ODH, OAH, ERROR - Start Address > End ** \ 0
02283 06CD 09 RET
02284
02285 DB*M*Next*Line:
02286 06CE CDC107 CALL DB*CRLF sOutput carriage return,, line feed
02287 DB*M*Address*OK: ;Bypass OR,LF for first line
02288 06D1 CDD607 CALL DB*MSGI 5 Indent line
02289 06D4 202000 DB ' ' , 0
02290 06D7 2A1104 LHLD DB*Start*Address sGet start of line address
02291 06DA CD8707 CALL DB*DHLH sDisplay in hex
02292
02293 06DD CDC807 CALL DB*Colon sDisplay ' s '
02294
02295 06E0 2A1104 LHLD DB*St ar t *Addre s s
02296 DB*M*Ne xt*Hex*Byte!
02297 06E3 E5 PUSH H sSave memory address
02298 06E4 CDD007 CALL DB*Blank sOutput a blank
02299 06E7 El POP H sRecover current byte address
02300 06E8 7E MOV A, M sGet byte from memory
02301 06E9 23 INX H sUpdate memory pointer
02302 06EA E5 PUSH H sSave for later
02303 06EB CD9107 CALL DB*DAH sDisplay in hex.
02304 06EE El POP H sRecover memory updated address

Figure 10-2. (Continued)

342 The CP/M Programmer’s Handbook

02305 06FF CD3A07 CALL DB*M*Check*End ;Compare HL vs. end address
02306 06F2 CAFE06 JZ DB*M*Di splay*ASCII jYes, end of area
02307 06F5 7D MOV A, L ;Check if at start of new line.
02308 06F6 E60F AN I 0000$1111B f (is address XXXOH?)
02309 06F8 CAFE06 JZ DB*M*Display*ASCII T Yes
02310 06FB C3E306 JMP DB*M*Ne x t «He x «B y t e ;No, loop back for another
02311 ;
02312 DB*M*Disp1a y«ASC11 ! ;Display bytes in ASCII
02313 06FE CDC807 CALL DB*Colon ;Display ' : "
02314 0701 2A1104 LHLD DB*Start«Address ;Start ASCII as beginning of line
02315 DB*M*Ne x t « A SC11«By t e ï
02316 0704 7E MOV A, M jGet byte from memory
02317 0705 E5 PUSH H ;Save memory address
02318 0706 E67F AN I 0111*111 IB ;Remove parity
02319 0708 4F MOV C, A ;Prepare for output
02320 0709 FE20 CPI ;Check if non-graphic
02321 070B D21007 JNC DB*M*Display*Char jChar >= space
02322 070E 0E2E MV I C , ' ;Display non-graphic as
02323 DB*M*Display*Chars
02324 0710 FE7F CPI 7FH jCheck if DEL (may be non-graphic)
02325 0712 C21707 JNZ DB*M*No t «DEL jNo, it is graphic
02326 0715 0E2E MV I C , ' . ' f Force to '.'
02327 ;
02328 DB*M*Not*DELî
02329 0717 CD0A05 CALL DB«CONOUT jDisplay character
02330 071A El POP H t Recover memory address
02331 0 7 IB 23 INX H ;Update memory pointer
02332 071C 221104 SHLD DB«Start«Address jUpdate memory copy
02333 0 7 IF CD3A07 CALL DB*M«Check«End iCheck if end of memory dump
02334 0722 CA3707 JZ DB«M«Ex i t ;Yesr done
02335 0725 7D MOV A, L ;Check if end of line
02336 0726 E60F AN I 0 0 00 «111 IB ; by checking address = XXXOH
02337 0728 CACE06 JZ DB«M«Ne x t «L i ne ;Yes, start next line
02338 072B 7D MOV A, L ;Check if extra blank needed
02339 072C E603 AN I 0000*001 IB ; if address is multiple of 4
02340 072E C20407 JNZ DB*M*Ne x t *AS C II*Byte •No — go back for next character
02341 0731 CDD007 CALL DB*Blank ;Yes, output blank
02342 0734 C30407 JMP DB*M*Nex t *A S C 11«B y t e ;Go back for next character
02343
02344 f
02345 DB*M*Exit!
02346 0737 C3C107 JMP DB*CRLF ;0utput carriage return, line feed
02347 ; and return
02348 •
02349 DB*M*Check*End: ;Compares HL vs End$Address
02350 073A D5 PUSH D ;Save DE (defensive programming)
02351 073B EB XCHG ;DE = current address
02352 073C 2A1304 LHLD DB*End*Address ;Get end address
02353 073F 7A MOV A, D ;Compare MS bytes
02354 0740 BC CMP H
02355 0741 C24607 JNZ DB*M*Check«End*X ;Exit now as they are unequal
02356 0744 7B MOV A,E jCompare LS bytes
02357 0745 BD CMP L
02358 DB*M*Check*End*Xs
02359 0746 EB XCHG ;HL = current address
02360 0747 D1 POP D ;Recover DE
02361 0748 C9 RET jReturn with condition flags set
02362 ;
02363 DP*B*BCs ; (BC)
02364 0749 2A4804 LHLD DB*Save*C ;Get saved word value
02365 074C 7E MOV A, M ; Get byte addressed by it
02366 074D C39107 JMP DB*DAH jDisplay it and return
02367 ;
02368 DP*B*DEî } (DE)
02369 0750 2A4604 LHLD DB*Save*E ;Get saved word value
02370 0753 7E MOV A, M ï Get byte addressed by it
02371 0754 C39107 JMP DB*DAH ;Display it and return
02372
02373 DP*B*HL: ; (HL)
02374 0757 2A0904 LHLD DB*Save*HL ?Get saved word value
02375 075A 7E MOV A, M î Get byte addressed by it
02376 075B C39107 JMP DB*DAH ;Display it and return
02377 ;
02378 DP*W*BC: ; (BC.+ 1), (BC)
02379 075E 2A4804 LHLD DB*Save*C ;Get saved word value
02380 0761 5E MOV E, M ; Get word addressed by it
02381 0762 23 INX H

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 343

02382 0763 56 MOV D, M
02383 0764 EB XCHG jHL = word to be displayed
02384 0765 C38707 JMP DB9DHLH »Display it and return
02385
02386 DP $W $D E: ? CDE+1),(DE>
02387 0768 2A4604 LHLD DB$Save*E »Get saved word value
02388 076B 5E MOV E, M »Get word addressed by it
02389 076C 23 INX H
02390 076D 56 MOV D, M
02391 076E EB XCHG ;HL = word to be displayed
02392 076F C38707 JMP DB*DHLH »Display it and return
02393
02394 DP*W$HLs ; (HL+1),(HL)
02395 0772 2A0904 LHLD DB$Save$HL »Get saved word value
02396 0775 5E MOV E, M »Get word addressed by it
02397 0776 23 INX H
02398 0777 56 MOV D, M
02399 0778 EB XCHG ;HL = word to be displayed
02400 0779 C38707 JMP DB*DHLH »Display it and return
02401
02500 *
02501 DB$D i sp1a y$CALLA
02502 This routine displays the DB$Call$Address in hexadecimal,
02503 followed by " :
02504
02505 DB*Display*CALLA:
02506 077C E5 PUSH H »Save caller's HL
02507 077D 2A0F04 LHLD DB$Call$Address »Get the call address
02508 0780 CD8707 CALL DB*DHLH »Display HL in hex.
02509 0783 El POP H »Recover caller's HL
02510 0784 C3C807 JMP DB$Colon »Display " : " and return
02511
02600 ;#
02601 f
02602 DBÎDHLH
02603 Display HL in hex.
02604
02605 Entry parameters
02606
02607 HL = value to be displayed
02608
02609 DB$DHLH:
02610 0787 E5 PUSH H »Save input value
02611 0788 7C MOV A, H »Get MS byte first
02612 0789 CD9107 CALL DB$DAH »Display A in hex.
02613 078C El POP H »Recover input value
02614 078D 7D MOV A, L »Get LS byte
02615 078E C39107 JMP DB$DAH »Display it and return
02616 i
02700 #
02701
02702 DB$DAH
02703 Display A register in hexadecimal
02704
02705 Entry parameters
02706
02707 A = value to be converted and output
02708
02709 DB$DAH:
02710 0791 F5 PUSH PSW »Take a copy of the value to be converted
02711 0792 OF RRC »Shift A right four places
02712 0793 OF RRC
02713 0794 OF RRC
02714 0795 OF RRC
02715 0796 CDB407 CALL DB$Nibble$To*Hex ; Convert LS 4 bits to ASCII
02716 0799 CD0A05 CALL DB$C0N0UT »Display the character
02717 079C FI POP PSW »Get original value again
02718 079D CDB407 CALL DB$Nibble$To*Hex »Convert LS 4 bits to ASCII
02719 07AO C30A05 JMP DB*CONOUT »Display and return to caller
02800 »#
02801
02802 » DB*CAH
02803 » Convert A register to hexadecimal ASCII and store in
02804 9 specified address.
02805
02806 Entry parameters
02807

Figure 10-2. (Continued)

344 The CP/M Programmer’s Handbook

02808 A = value to be converted and output
02809 HL -> buffer area to receive two characters of output
02810
02811 Exit parameters
02812
02813 HL -> byte following last hex.byte output
02814
02815 DB*CAH:
02816 07A3 F5 PUSH PSW »Take a copy of the value to be converted
02817 07A4 OF RRC »Shift A right four places
02818 07A5 OF RRC
02819 07A6 OF RRC
02820 07A7 OF RRC
02821 07A8 CDB407 CALL DB*Nibble*To*Hex ;Convert to ASCII hex.
02822 07AB 77 MOV M,A »Save in memory
02823 07AC 23 INX H »Update pointer
02824 07AD FI POP PSW »Get original value again
02825 07AE CDB407 CALL DB*Nibble*To*Hex »Convert to ASCII hex.
02826 07B1 77 MOV M, A »Save in memory
02827 07B2 23 INX H »Update pointer
02828 07B3 C9 RET
02900 #
02901
02902 Minor subroutines
02903
02904 -
02905 DB*Nibble*To*Hex
02906 This is a minor subroutine that converts the least
02907 significant four bits of the A register into an ASCII
02908 hex. character in A and C
02909
02910 Entry parameters
02911
02912 i! A = nibble to be converted in LS 4 bits
02913 !
02914 Exit parameters
02915
02916 A,C = ASCII hex. character
02917
02918 DB*Nibble*To*Hex:
02919 07B4 E60F ANI 00 00*111IB »Isolate LS four bits
02920 07B6 C630 ADI ' 0 ' »Convert to ASCII
02921 07B8 FE3A CPI ' 9 ' + 1 »Compare to maximum
02922 07BA DABF07 JC DB*NTH*Numeric »No need to convert to A -> F
02923 07BD C607 ADI 7 »Convert to a letter
02924 DB*NTH*Numeric:
02925 07BF 4F MOV C, A »For convenience of other routines
02926 07C0 C9 RET
02927
02928
02929
02930 DB*CRLF
02931 Simple routine to display carriage return, line feed.
02932
02933 DB*CRLFs
02934 07C1 CDD607 CALL DB*MSGI »Display in-line message
02935 07C4 ODOAOO DB ODH,OAH,0
02936 07C7 C9 RET
02937 i'
02938 1t DB*Colon
02939 Simple routine to display ' : '.
02940 !;
02941 DB*Colon:
02942 07C8 CDD607 CALL DB*MSGI »Display in-line message
02943 07CB 203A2000 DB ' i ' , 0
02944 07CF C9 RET
02945
02946 DBiBlank
02947 Simple routine to display '
02948
02949 DB*Blank:
02950 07D0 CDD607 CALL DB*MSGI »Display in-line message
02951 07D3 2000 DB ' ' , 0
02952 07D5 C9 RET
03100 ;#
03101 »
03102 f Message processing subroutines

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 345

03103
03104 DB*MSGI (message in-line)
03105 Output null-byte terminated message that follows the
03106 CALL to MSGOUTI
03107
03108 Calling sequence
03109
03110 CALL DB*MSGI
03111 DB "Message ',0
03112 ... next instruction
03113
03114 Exit parameters
03115 HL -> instruction following message
03116
03117
03118 DB $M SG I:
03119 {Get return address of stack, save
03120 { user's HL on top of stack
03121 07D6 E3 XTHL {HL -> message
03122
03123 07D7 F5 PUSH PSW •Save all user's registers
03124 07D8 C5 PUSH B
03125 07D9 D5 PUSH D
03126 DB*MSGI$Nexts
03127 07DA 7E MOV A, M {Get next data byte
03128 07DB 23 INX H ;Update message pointer
03129 07DC B7 ORA A {Check if null byte
03130 07DD C2E507 JNZ DB$MSGIC {No, continue
03131
03132 07E0 D1 POP D ^Recover user's registers
03133 07E1 Cl POP B
03134 07E2 FI POP PSW
03135 07E3 E3 XTHL {Recover user's HL from stack, replacing
03136 { it with updated return address
03137 07E4 C9 RET {Return to address after 00-byte
03138 i after in-line message
03139 DB$MSGIC:
03140 07E5 E5 PUSH H {Save message pointer
03141 07E6 4F MOV C, A {Ready for output
03142 07E7 CD0A05 CALL DB$C0N0UT
03143 07EA El POP H {Recover message pointer
03144 07EB C3DA07 JMP DB*MSGI$Next {Go back for next char.
03145
03146
03147 DB$MSG
03148 Output null-byte terminated message
03149
03150 Calling sequence
03151
03152 MESSAGE DB 'Message',0
03153
03154 LXI H,MESSAGE
03155 CALL DB$MSG
03156
03157 Exit parameters
03158 HL -> null byte terminator
03159
03160
03161 DB*MSG:
03162 07EE F5 PUSH PSW {Save user's registers
03163 07EF C5 PUSH B
03164 07F0 D5 PUSH D
03165 DBMSGNext:
03166 07F1 7E MOV A, M {Get next byte for output
03167 07F2 B7 ORA A {Check if 00-byte terminator
03168 07F3 CA0008 JZ DB*MSG*X {Exit
03169 07F6 23 INX H {Update message pointer
03170 07F7 E5 PUSH H {Save updated pointer
03171 07F8 4F MOV C, A {Ready for output
03172 07F9 CD0A05 CALL DB*C0N0UT
03173 07FC El POP H {Recover message pointer
03174 07FD C3F107 JMP DBMSGNext {Go back for next character
03175
03176 DB*MSG$X:
03177 0800 D1 POP D {Recover user's registers
03178 0801 Cl POP B
03179 0802 FI POP PSW

Figure 10-2. (Continued)

346 The CP/M Programmer’s Handbook

03180 0803 C9 RET
03300 #
03301
03302 Debug input routine
03303
03304 This routine helps debug code in which input instructions
03305 would normally occur. The opcode of the IN instruction
03306 must be replaced by a value of 0E7H (RST 4).
03307
03308 This routine picks up the port number contained in the byte
03309 following the RST 4, converts it to hexadecimal, and
03310 displays the messages
03311
03312 Input from port XX :
03313
03314 It then accepts two characters (in hex.) from the keyboard.
03315 converts these to binary in A, and then returns control
03316 to the byte following the port number
03317
03318 *******
03319 WARNING - This routine uses both DB*C0N0UT and BDOS calls
03320 *******
03321
03322 0804 496E707574DBIN*Message: DB 'Input from Port '
03323 0814 5858203A20DBIN*Port: „ DB 'XX : ',0
03324
03325
03326 DB$Input s
03327 081A 220904 SHLD DB$Save*HL ¡Save user's HL
03328 0 8 ID El POP H ¡Recover address of port number
03329 0 8 IE 2B DCX H ;Backup to point to RST
03330 0 8 IF 220F04 SHLD DB$Call$Address ¡Save for later display
03331 0822 23 INX H ¡Restore to point to port number
03332 ¡Note: A need not be preserved
03333 0823 7E MOV A, M ¡Get port number
03334 0824 23 INX H ¡Update return address to bypass port number
03335 0825 220D04 SHLD DB*Save$RA ¡Save return address
03336 0828 C5 PUSH B ¡Save remaining registers
03337 0829 D5 PUSH D
03338 082A F5 PUSH PSW ¡Save port number for later
03339
03340
03341 082B CDB108 CALL DB*Flag$Save*On ¡Save current state of debug flag
03342 ¡ and enable debug output
03343
03344 082E CDC107 CALL DB$CRLF ¡Display carriage return, line feed
03345 0831 CD7C07 CALL DB$Di splay$CALLA? Display call address
03346 0834 FI POP PSW ¡Recover port number
03347 0835 211408 LX I H,DBIN*Port
03348 0838 CDA307 CALL DBSCAH ¡Convert to hex. and store in message
03349 083B 210408 LX I H,DBIN$Message ¡Output prompting message
03350 083E CDEE07 CALL DB*MSG
03351 0841 0E02 MV I C, 2 ¡Get 2 digit hex. value
03352 0843 CDCFOS CALL DB*GHV ¡Returns value in HL
03353 0846 7D MOV A, L ¡Get just single byte
03354
03355 0847 CDBF08 CALL DB*Flag*Restore ¡Restore debug output to previous state
03356
03357 084A D1 POP D ¡Recover registers
03358 084B Cl POP B
03359 084C 2A0904 LHLD DB$Save$HL ¡Get previous HL
03360 084F E5 PUSH H ¡Put on top of stack
03361 0850 2A0D04 LHLD DB*Save$RA ¡Get return address
03362 0853 E3 XTHL ¡T0S = return address, HL = previous value
03363 0854 C9 RET
03500 #
03501
03502 Debugi output routine
03503
03504 This routine helps debug code in which output instructions
03505 would1 normally occur. The opcode of the OUT instruction
03506 must be replaced by a value of 0EFH (RST 5).
03507
03508 This routine picks up the port number contained in the byte
03509 following the RST 5, converts it to hexadecimal, and
03510 displays the message:
03511

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 347

03512 Output to port XX : AA
03513
03514 where AA is the contents of the A register prior to the
03515 RST 5 being executed.
03516
03517

Control is then returned to the byte following the port number.

03518 *»«**»*
03519 WARNING - This routine uses both DBÎC0N0UT and BDOS calls
03520
03521
03522
03523 0855 4F75747075DB0$Me s sage : DB 'Output to Port '
03524 0864 5858203A20DB0$Port: DB 'XX : '
03525 0869 414100 DB0$Value: DB 'AA',0
03526
03527
03528 DB$Gutput:
03529 086C 220904 SHLD DB$Save$HL ;Save user's HL
03530 086F El POP H ;Recover address of port number
03531 0870 2B DCX H ;Backup to point to RST
03532 0871 220F04 SHLD DB$Call$Address {Save for later display
03533 0874 23 INX H {Restore to point at port number
03534 0875 324B04 STA DB$Save$A {Preserve value to be output
03535 0878 7E MOV A, M {Get port number
03536 0879 23 INX H {Update return address to bypass port number
03537 087A 220D04 SHLD DB*Save$RA {Save return address
03538 087D C5 PUSH B {Save remaining registers
03539 087E D5 PUSH D
03540
03541

087F F5 PUSH PSW {Save port number for later

03542 0880 CDB108 CALL D B $ F 1ag$Save$0n {Save current state of debug flag
03543
03544

{ and enable debug output

03545 0883 CDC107 CALL DB*CRLF {Display carriage return, line feed
03546 0886 CD7C07 CALL DB*Display$CALLA {Display call address
03547 0889 FI POP PSW {Recover port number
03548 088A 216408 LX I H,DB0$Por t
03549
03550

088D CDA307 CALL DB*CAH {Convert to hex.and store in message

03551 0890 3A4B04 LDA DB*Save$A
03552 0893 216908 LX I H,DBO«Value {Convert value to be output
03553
03554

0896 CDA307 CALL DB$CAH {Convert to hex. and store in message

03555 0899 215508 LX I H,DBO$Message {Output prompting message
03556
03557

089C CDEE07 CALL DB*MSG

03558
03559

089F CDBF08 CALL D B $ F 1ag$Re store {Restore debug flag to previous state

03560 08A2 D1 POP D {Recover registers
03561 08A3 Cl POP B
03562 08A4 2A0904 LHLD DB*Save*HL {Get previous HL
03563 08A7 E5 PUSH H {Put on top of stack
03564 08A8 2A0D04 LHLD DB«Save$RA {Get return address
03565 08AB E3 XTHL ;T0S = return address, HL = previous value
03566 08AC 3A4B04 LDA DB*Save$A {Recover A (NOTE: FLAG NOT RESTORED)
03567 08AF C9 RET
03700
03701

#

03702 DB*Flag*Save*On
03703 ; This routine is only used for DB*IN/0UT.
03704 It saves the current state of the debug control flag,
03705 D*Flag, and then enables it to make sure that
03706 DB*IN/0UT output always goes out.
03707
03708 08B0 00 DB$Flag*Previous: DB 0 {Previous flag value
03709
03710 DB$Flag$Save$On:
03711 08B1 F5 PUSH PSW {Save caller's registers
03712 08B2 3A0604 LDA DB$Flag {Get current value
03713 08B5 32B008 STA D B * F 1ag*Prev i ou s {Save it
03714 08B8 3EFF MV I A,OFFH {Set flag
03715 08BA 320604 STA DB$Flag
03716 08BD FI POP PSW
03717 08BE C9 RET
03800
03801

#

Figure 10-2. (Continued)

348 The CP/M Programmer’s Handbook

DB*Flag*Restore
03803 » This routine is only used for DB*IN/0UT.
03804 » It restores the debug control flag, DB*Flag, to
03805 » its former state.
03806 ;
03807 D B $ F 1ag$Restore:
03808 08BF F5 PUSH PSW
03809 08C0 3AB008 LDA D B $ F 1ag $Pr e v i ou s »Get previous setting
03810 08C3 320604 STA DB*Flag »Set debug control flag
03811 08C6 FI POP PSW
03812 08C7 C9 RET
03813
03814
03900
03901
03902
03903
03904
03905
03906
03907
03908
03909
03910
03911
03912
03913
03914
03915
03916
03917
03918
03919
03920
03921
03922
03923

Get hex. value

This subroutine outputs a prompting message, and then reads
the keyboard in order to get a hexadecimal value.
It is somewhat simplistic in that the first non-hex value
terminates the input. The maximum number of digits to be
converted is specified as an input parameter. If more than the
maximum number is entered, only the last four are significant.

* * * * » « « * * X » * * * * * » * * * * * * X * * * X * X * * * X * » * » * * » » * * * * * * X » » * * * * » X « * » * » * »

W A R N I N G
DB$GHV will always use the BD0S to perform a read console
function (#10). Be careful if you use this routine from
within an executing BIOS.

» X X X X X X X X X X X X X x i t * * * * * » » * * » * * * * * * » » * * * * » * » * * * * » * * * * * « » * * » * » * » » « * *

Entry parameters

HL -> 00-byte terminated message to be output
C = number of hexadecimal digits to be input

03924 DB*GHV$Buffer: »Input buffer for console characters
03925 DB*GHV$Max»Count :
03926 08C8 00 DB 0 ; Set to the maximum number of chars.
03927 » to be input
03928 DBGHVInput*Count:
03929 08C9 00 DB 0 ; Set by the BDOS to the actual number
03930 » of chars, entered
03931 DBGHVDa t a$By t e s
03932 08CA DS 5 ; Buffer space for the characters
03933
03934
03935 DB$GHV:
03936 08CF 79 MOV A, C ;Get maximum characters to be input
03937 08D0 FE05 CPI 5 ;Check against maximum count
03938 08D2 DAD708 JC DBGHVCount$OK ;Carry set if A < 5
03939 08D5 3E04 MVI A,4 jForce to only four characters
03940 DB$GHV*Count*OK:
03941 08D7 32C808 STA DBGHVMax$Count ;Set up maximum count in input buffer
03942 08BA CDEE07 CALL DB$MSG ;Output prompting message
03943 08DD 11C808 LX I D,DB$GHV*Buffer »Accept characters from console
03944 08E0 0E0A MVI C,B*READCONS ;Function code
03945 08E2 CD0500 CALL BDOS
03946
03947 08E5 0E02 MVI C,BÍC0N0UT »Output a line feed
03948 08E7 1E0A MVI E, OAH
03949 08E9 CD0500 CALL BDOS
03950
03951 08EC 210000 LX I H, 0 ;Initial value
03952 08EF 11CA08 LX I D ,DBGHVDat a*By tes »DE -> data characters
03953 08F2 3AC908 LDA DB*GHV*Input $Coun t ;Get count of characters input
03954 08F5 4F MOV C, A »Keep count in C
03955 DB*GHV*Lo o p :
03956 08F6 OD DCR C »Downdate count
03957 08F7 F8 RM ;Return when all done (HL has value)
03958 08F8 1A LDAX D »Get next character from buffer
03959 08F9 13 INX D »Update buffer pointer
03960 08FA CD1B09 CALL DB$A*To*Upper ?Convert A to uppercase if need be
03961 08FD FE30 CPI ' 0 ' »Check if less than 0
03962 08FF D8 RC »Yes, terminate
03963 0900 FE3A CPI ' 9 ' + 1 »Check if > 9
03964 0902 D A 1009 JC DB$GHV*Hex$Digit »No, it must be numeric

Figure 10-2. (Continued)

Chapter 10: Debugging a New CP/M System 349

03965 0905 FE41 CPI ' P s ' ¡Check if < •'A-'
03966 0907 D8 RC ¡Yes, terminate
03967 0908 FE47 CPI ' F ' + 1 ¡Check if > ' F '
03968 090A DO RNC ¡Yes, terminate
03969 090B D637 SUI 'A' - 10 ¡Convert A through F to numeric
03970 090D C31209 JMP DBGHVShift*Left*4 ¡Combine with current result
03971 ;
03972 DBGHVHex*Digit:
03973 0910 D630 SUI ' 0 ' ¡Convert to binary
03974 DB*GHV*Sh i f t *Le f t $4:
03975 0912 29 DAD H ¡Shift HL left four bits
03976 0913 29 DAD H
03977 0914 29 DAD H
03978 0915 29 DAD H
03979 0916 85 ADD L ¡Add binary value in LS 4 bits of A
03980 0917 6F MOV L, A ¡Put back into HL total
03981 0918 C3F608 JMP DB*GHV$Loop ¡Loop back for next character
04100 ; #
04101
04102 ; A to upper
04103 ; Converts the contents of the A register to an uppercase
04104 ; letter if it is currently a lowercase letter
04105
04106 ; Entry parameters
04107
04108 A = character to be converted
04109
04110 ! Exit parameters
04111 ;
04112 A = converted character
04113 ;
04114 DB*A*To*Upper :
04115 0 9 IB FE61 CPI "a" ¡Compare to lower limit
04116 091D D8 RC ¡No need to convert
04117 0 9 IE FE7B CPI ' z ' + 1 ¡Compare to upper limit
04118 0920 DO RNC ¡No need to convert
04119 0921 E65F ANI 5FH ¡Convert to uppercase
04120 0923 C9 RET

Figure 10-2. Debug subroutines (continued)

B>ddi i l a lg-2« hinaus
DDT VERS 2.0
NEXT PC
0924 0000
-alQPlcr^

Olió : Flags i Flags = C1Z0M1E1I0
0120 : A Register s! A = AA
012F s B Register :: B = BB
013E : C Register :! C = CC
014D s D Register s! D = DD
015C s E Register j! E = EE
016B : H Register :! H = FF
017A s L Register :! L = 11
0189 s Memory Dump #1 : Start, End Address : 0108, 0128

0108 s 05 3E AA 01 CC BB 11 EE : .>*. L;: . n
0110 : DD 21 11 FF B7 37 CD 52 05 00 46 ÓC 61 67 73 00 : 3!.. 77MR . .FI ag s.
0120 : CD 52 05 02 41 20 52 65 67 ¡ M R . .. A Re g

01A0 : Memory Dump #2 : Start, End Address 0100, 01 IF
0100 : 31 6B 03 CD EA 04 CD 15 05 3E AA 01 CC BB 11 EE : lk.M j.M. . >*. L ;. n
0110 s DD 21 11 FF B7 37 CD 52 05 00 46 6C 61 67 73 00 a 3!.. 77MR . .FI ags.

01B7 : Memory Dump #3 ï Start, End Address ! 0101, 0100

** ERROR - Start Address > End ttK
01 CE : Memory Dump #4 : Start, End Address : 0100, 0100

0100 : 31 : 1

Figure 10-3. Console output from debug testbed run

350 The CP/M Programmer’s Handbook

01E5 : BC Register BC = BBCC
01F5 : DE Register DE = DDEE
0205 s HL Register HL * F F 11
0215 : SP Register SP = 0369
022E : Byte at (BC) : (BC) = BC
023F ; Byte at (DE) ! (DE) = DE
0250 : Byte at (HL) : (HL) = Fl
026A s Word at (BC) : (BC+1),(BC) = OBOC
027B : Word at (DE) : (DE+1) , (DE) = ODOE
028C : Word at (HL) : (HL+1) , (HL) = 0F01
Debug1 output has been re-enabled.
This message should display 5 times
This message should display 5 times
This message should display 5 times
This message should display 5 times
This message should display 5 times
032B : Input from Port 11 : aa

032D : Output to Port 22 s AA

Figure 10-3. Console output from debug tested run (continued)

containing all of the symbols in your program, along with their
respective addresses. Once the program has been loaded by SID, you can
refer to the memory image of your program not by address, but by the
actual symbol name from your source code. SID also supports the “pass
count” concept when using breakpoints.

ZSID (Z80 Symbolic Debug)
This is the Z80 CPU’s version of SID. The mini-assembler/disassembler
uses Zilog instruction mnemonics rather than those used by Intel.

Bringing Up CP/M fo r the First Time

It is much harder to bring up CP/M on a new computer system than to debug
an enhanced version on a system already running CP/M. You will often find
yourself staring at a programmatic “brick wall” with no adequate debugging tools
to assist you.

For example, you install the CP/M system on a diskette (using another CP/M-
based computer system), put the diskette into the new computer, and press the
RESET button. The disk head loads on the disk, and then — nothing! You cannot
use any programs such as DDT or SID because you do not yet have CP/M up and
running on the new computer. Or can you?

The answer is, wherever possible, debug the code for the new machine on an
existing CP/M system. You may have to “fake” some aspects of the new bootstrap
or BIOS so that the act of testing it on the host machine does not interact with the
CP/M already running on it.

This scheme permits you to be fairly sure of your program logic before loading
the diskette into the new machine. It will help pin down problems caused by
hardware problems on the new computer.

Chapter 10: Debugging a New CP/M System 351

The hardest situation of all is if you have only the new computer and the release
diskettes from Digital Research. Your only option is to find a way of reading the
CP/M image on the release diskette into memory, hand patch in new console and
disk drivers (not a trivial task), write the patched image back onto a diskette, and
resort to Orville Wright testing.

If you value your time, it is always more cost-effective to use another system
with CP/M already installed. This is true even if the two systems do not have the
same diskette format. You can still do the bootstrap and build the CP/M image on
the host machine. Then download the image directly into the memory of the new
machine and write it out to a diskette.

This downloading process does require, however, that the new computer have a
read-only memory (ROM) monitor program. Depending on the capability of this
ROM monitor program, you may have to hand patch into the new machine’s
memory a primitive “download” program that reads 8-bit characters from a serial
port, stacking them up in memory and returning control to the monitor program
when you press a keyboard character on the new machine’s console. In fact, some
ROM monitor programs have a downloading program built in.

Debugging the CP/M Bootstrap Loader

The CP/M bootstrap loader, as you may recall, is written on one of the
outermost tracks on a diskette or hard disk. On a standard 8-inch single-sided,
single-density diskette, CP/M’s bootstrap loader is stored on the first sector of the
first track. The loader is brought into memory by firmware that gets control of the
CPU when you turn your machine on or press the RESET button.

The bootstrap has to be compact, as the diskette space on which it is stored is
limited: no more than 128 bytes for standard 8-inch diskettes. This tends to rule
out the use of the debug subroutines already described, so you have to fall back to
more primitive techniques.

Testing the Bootstrap Under CP/M
A bootstrap is best developed on a CP/M-based system. The task is easiest of

all if you already have CP/M running on your new machine and are simply
preparing an enhanced version of the bootstrap loader. In this case, you can test
most of the code as though it were a user program running in the transient
program area (TPA).

Most bootstraps get loaded into memory at location 0000H, so at the front of
the code to be debugged you must put a temporary origin line that reads

ORG 100H

352 The CP/M Programmer’s Handbook

If you omit this and ask DDT to load the HEX file output by the assembler, it
will load at the true origin, 0000H, and wipe out the contents of the base page for
the version of CP/M that you are running. This will cause a system crash; you will
have to press the r e s e t button and reload CP/M. When this happens, DDT does
not tell you directly that anything is amiss; it just displays a “?” after your request to
load the HEX file. You will discover that the system has “gone away” only when
you try to do something else.

You also will need to adjust the addresses into which the bootstrap tries to load
the CP/M image. If you do not, you will overwrite the version of CP/M presently
running.

With these adjustments made, you can load the bootstrap under DDT and
watch it execute, confirming that it does load the correct image into the correct
addresses for debugging and transfer control to the BIOS jump vector. When
everything appears to be functioning correctly, use the IF instruction to disable the
debug code, reassemble the bootstrap, and write it onto a diskette. Then put the
diskette into drive A and press RESET.

Was the Bootstrap Loaded?
At this point you must establish whether the bootstrap is being loaded into

memory when the machine is turned on or RESET is pressed. The best way of doing
this, and one that you can leave in place permanently, is to output a sign-on
message as soon as the loader gets control. This requires hardware set up to
prepare the USART (Universal Synchronous/Asynchronous Receive/Transmit)
chip to output data, although some manufacturers write this initialization code
into the firmware that loads the bootstrap. A suitable sign-on message would be
the following:
CP/M Bootstrap Loader : Vn 1.0 11/18/32

If you do not see this message, assume that control is not being transferred to
the bootstrap loader. This will be useful in the future if someone should call you
with a complaint that CP/M cannot be loaded. If this message does not appear,
they probably do not have CP/M on the disk.

Did the Bootstrap Load CP/M?
This is a harder question to answer than whether the bootstrap itself has been

loaded, especially if the bootstrap loader sign-on is displayed and then the system
crashes. A sign-on message early in the BIOS cold boot processing can confirm the
correct transfer of control into the BIOS.

If the problems with the bootstrap program are severe, you may have to adapt
the memory-dump debugging subroutine, dumping the contents of memory to the
console in order to see what information the bootstrap loader is placing in
memory. Display 100H bytes starting from the front of the BIOS jump vector. This

Chapter 10: Debugging a New CP/M System 353

table has an immediately recognizable pattern of 0C3H values every three bytes.
You should also check to see that the bootstrap is loading the correct number

of sectors from the disk into memory. If it loads too few, CP/M may sign on only to
crash a few moments later because it attempts either to execute code or access a
constant at the end of the BIOS. If the bootstrap loads too many sectors from the
disk, the excess may “wrap around” the top of memory and overwrite the boot
strap itself, down at location 0000H, before it has completed its task. In this case,
you would see only the sign-on for the bootstrap, not for the BIOS.

Debugging the BIOS

Rather than try to debug the BIOS as a single piece of code, debug it as a series
of separate functional modules.

Notwithstanding current “top-down” philosophies of dealing with overall
structure first, it can be quicker to debug the low-level subroutines in a device
driver first. This gives you a solid base on which to build.

The BIOS can be divided up into its constituent modules as follows:
Character input

Interrupt service
Non-interrupt service

Character output
Interrupt routines

Real time clock
Watchdog timers

Disk drivers
High-level (deblocking)
Low-level (physical I/O)

Plan to write a testbed program for each of these modules. This testbed code
serves two purposes; first, it provides a means of transferring control into the
module under test in a controlled way. Second, it includes the necessary modules
or dummy modules to “fool” the module under test into responding as if it were
running in a complete BIOS under CP/M.

Using the testbed, you can check every part of the module’s logic except the
part that may be time-critical. Problems caused by timing, such as interrupts
disabled for too long or code that is too slow or too fast for a particular peripheral
controller chip, tend to show up only when you are testing on the final hardware
and when you are running your new BIOS under CP/M.

354 The CP/M Programmer’s Handbook

What You Should Test for in the BIOS
Describing fully how to debug each module in the BIOS ould fill several books.

Remember that you are trying to establish the absence of errors using a technique
that, by its very nature, tends to show only their presence.

There are two basic approaches to debugging. One is the plodding method,
checking every aspect of the code to ensure that every feature really does work.
The second is to try to do something useful with the code.

Plan to use both. Start with the plodding method, testing each feature under
control of the testbed until you are sure that it is working in vitro. When all of the
BIOS modules have been tested individually, build a CP/M system and try to do
some useful work with it. Trying to use the system for actual work testing in vitro
can be a good test.

Feature Checklist
Make a list of the specific features included in the various BIOS modules. Then

devise specific test sequences that will show that each of the features is working
correctly.

The same testbed code can often test all of the features of a driver module. If it
cannot, create a new testbed for the more exotic features.

Keep the testbed routines. Experience shows that they are most often needed
shortly after you have erased them. Even after you have tested the BIOS, the
testbed routines will come in handy if you decide to enhance a particular driver
later on. You can extract the driver code from the BIOS, glue it together with the
testbed, and test the new feature code in isolation from the BIOS.

The following sections show example testbeds for the various drivers, along
with example checklists. These checklists were used to test the example BIOS
routines shown in earlier chapters.

Character Drivers
Figure 10-4 shows the code for an example testbed routine for character I/O

drivers in the BIOS. This code would be followed by the actual character I/O
drivers, exactly as they would appear in the BIOS except that all IN and OUT
instructions would be replaced with RST 4’s and 5’s respectively (see Figure 10-2)
so that you could enter input values and inspect output values on the console.

This example contains the initialization code for the debug package shown in
Figure 10-2 and the code setting up an RST 6 used to “fake” incoming character
interrupts.

The main testbed loop consists of a faked incoming character interrupt fol
lowed by optional calls to CONIN or CONOUT, the return of control to DDT, ora
loop back to fake another character interrupt. You can only return control to DDT
if you used DDT to load the testbed and driver programs in the first place.

Chapter 10: Debugging a New CP/M System 355

Testbed for character I/0 drivers in the BIOS

The complete source file consists of three components:

1. The testbed code shown here
2. The character I/O drivers destined for the BIOS
3. The debug package shown in Figure 10-2.

FFFF rRUE EQU OFFFFH
0000 = FALSE EQU NOT TRUE

FFFF = DEBUG EQU TRUE ;For conditional assembly of RST
; instructions in place of IN and
; OUT instructions in the drivers

0030 = RST6 EQU 30H ;Use RST 6 for fake incoming character
j interrupt

0100 ORG 100H
START:

0100 31D101 LX I SP,Test*Stack ;Use a local stack
0103 C D D 101 CALL DB*Init ;Initialize the debug package
0106 3EC3 MV I A, JMP jSet up RST 6 with JMP opcode
0108 323000 STA RST6
010B 21D101 LX I H,Character$Interrupt ;Set up RST 6 JMP address
010E 223100 SHLD RST6 + 1

Make repeated entry to character interrupt routine
to ensure that characters can be captured and stored in
an input buffer

festbed$Loop
0111 3EAA MV I A,OAAH :Set registers to known pattern
0113 01CCBB LXI B,OBBCCH
0116 11EEDD LX I D,ODDEEH
0119 211 IFF LXI H,0FF11H
011C F7 RST 6 ;Fake interrupt for incoming character

011D C D D 101 CALL DB$MSGI ;Display in-line message
0120 0D0A456E74 DB ODH,OAH, 'Enter I to Input Char., 0 to Output, D to enter
0152 444454203A DB •'DDT : ',0

0159 CDD101 CALL DB*C0NINU ;Get uppercase character
015C FE49 CPI ' l ' jCONIN?
015E CA7201 JZ Go*C0NIN
0161 FE44 CPI 'D' j DDT?
0163 CA6E01 JZ Go*DDT
0166 FE4F CPI ' 0 ' ;CONOUT?
0168 CA9101 JZ Go$C0N0UT
0168 C31101 JMP TestbediLoop ;Loop back to interrupt again

Go*DDT:
016E FF RST 7 ;Enter DDT (RST 7 set up by DDT)
016F C31101 JMP TestbediLoop

Go*C0NIN:
0172 CDD101 CALL CONST ;Get console status
0175 CA1101 JZ Testbed$Loop ;No data waiting
0178 C D D 101 CALL CON IN ;Get data from buffer

017B CDD101 CALL DB$Display ;Display character returned
017E 02 DB DB$A ; in A register
017F 434F4E494E DB •'CONIN returned ',0

018E C37201 JMP Go*C0NIN ;Repeat CONIN loop until no chars.
; waiting

Go $CONOUT:
0191 CDD101 CALL CONST ;Get console status
0194 CA1101 JZ Testbed$Loop 1;No data waiting
0197 CDD101 CALL CON IN
019A 4F MOV C, A ;Ready for output
019B C D D 101 CALL CONOUT jOutput to console
019E C39101 JMP GoiCONOUT ;Repeat while there is still data

01A1 9 9 9 9 9 9 9 9 9 9 ' DW 9999H,9999H,9999H,9999H,9999H,9999H,9999H, 9999H
01B1 9999999999 DU 9999H,9999H,9999H,9999H,9999H,9999H,9999H,9999H
01C1 9999999999 DU 9999H,9999H,9999H,9999H,9999H,9999H,9999H,9999H

Figure 10-4. Testbed for character I/O drivers in the BIOS

356 The CP/M Programmer’s Handbook

TestSStack:

Dummy routines for those shown in other figures

; BIOS rout ines (Figure 8-10)

CONST:
CONIN:
CONOUT:
CharacterSInterrupt:

;BI0S console status
;BI0S console input
;BI0S console output;
;Interrupt service routine for incoming chars

; Debug rout ines (Figure 10-2)

0002 =

DBSInit:
DBSliSG I :
DBSCONINU:
DBSDisplay:
DBSA EQU 02

;Debug initialization
;Display message in-line
;Get uppercase character from keyboard
;liain debug display routine
;Display code for DBSDisplay

Figure 10-4. Testbed for character IJO drivers in the BIOS (continued)

Executing an RST 7 without using DDT will cause a system crash, as DDT sets up
the necessary JM P instruction at location 0038H in the base page.

The faked incoming character interrupt transfers control directly to the inter
rupt service routine in the BIOS (see the example in Figure 8-10, line 04902, label
CharacterSInterrupt). This reads the status ports of each of the character devices;
you can enter the specific status byte values that you want. If you enter a value that
indicates that a data character is “incoming,” you will be prompted for the actual
8-bit data value to be “input. ” You can make the interrupt service routine appear to
be inputting characters and stacking characters up in the input buffer. For debug
ging purposes, reduce the size of the input buffer to eight bytes. Making it larger
means you will have to input more characters to test the buffer threshold logic. To
check the interrupt service routine, you will pass through the main testbed loop
doing nothing but faking incoming character interrupts and entering status and
data values. The data characters will then be stacked up in the input buffer.

To check the correct functioning of the interrupt service routines, you can stay
in control with DDT from the outset. Alternatively, you can just use DDT to load
the testbed/driver HEX file, loop around inputting several characters, and then
request that the testbed return control to DDT. Then you can use DDT to inspect
the contents of the device table(s) and input buffers.

Another possibility is to create debugging routines that display the contents of
the device table in a meaningful way, with each field captioned like this:
DEVICE TABLE O

Status Port 81 Data Port 80
Output Ready 01 Input Ready 02
DTR high 40
Reset Int. Prt D8 Reset Int. Val. 20

Status Byte 1
Output Suspended
Output Xon Enabled

Chapter 10: Debugging a New CP/M System 357

Buffer Base
Put Offset
Char. Count
Data Buffer
41 42 43 44

0E8C
05 Get Offset
04 Con t r o 1 Count

45 00 00 00

01
00

This display device table routine will require a fair amount of effort to code and
debug — but it will pay dividends. You can obtain a complete “snapshot” of the
device table without having to decode hexadecimal memory dumps and individual
bits. Constant values in the device tables are also displayed, so that if a bug in your
code corrupts the table, you will know about it immediately.

The next section shows examples of the specific tests you need to make, along
with a description of the strategy you can use.

Interrupt Service Routine Checklist In a functioning BIOS, control is transferred to the
interrupt service module whenever an incoming character causes an interrupt. In
the example BIOS in Figure 8-10 (line 4900), the code scans each character device
in turn to determine which one is causing the interrupt.

When you are debugging the interrupt service routines using the “fake” input /
output instructions, you will have to enter specific status byte values. Refer to the
device table declarations in Figure 8-10, line 1500, to determine what values you
must enter to make the service routine think that an incoming character is arriving
or that data terminal ready (DTR) is high or low.

Start the debugging process using the first device table. Then repeat the tests on
the other device tables.

The following is a checklist of features that should be checked in debugging the
interrupt service routine:

Are all registers restored correctly on exit from the interrupt servicing?
Using DDT, start execution from the beginning of the testbed. Set a

breakpoint (with the G100,nnnn command) to get control back imme
diately before the CALL CharacterSInterrupt. Use the X command to
display all of the registers, and then, by using the G,nnnn command, you
set a breakpoint at the instruction that immediately follows the CALL
Character$Interrupt. The character drivers will prompt you for the status
values. Enter 00 (which indicates that no character is incoming). Display
the registers again — their values should be the same. Remember to check
the value of the stack pointer and the amount of the stack area that has
been used.

N o te : D o not be too surprised if you lose control of the machine
when you first try this test. You may have some fundamental logic errors
initially. If the system crashes, reset it, reload CP/M, and then start the test
again. This time, rather than setting the second breakpoint at the
instruction following the CALL CharacterSInterrupt, venture down into
the CharacterSInterrupt code and go through the code a few instructions

358 The CP/M Programmer’s Handbook

at a time, setting breakpoints before any instructions that could cause a
transfer of control. Find out how far you are getting into the driver before
it either jumps off into space or settles into a loop.

Does the service routine push a significant number o f bytes onto the stack
after an interrupt has occurred?

When you get control back after the CALL CharacterSInterrupt, use
the D (dump) command to dump the stack area’s memory on the console.
Check how far down the stack came by looking for the point where the
constants that used to fill the stack area are overwritten by other data.

The example BIOS in Figure 8-10 saves only the contents of the HL
register pair on the pre-interrupt stack. It then switches over to a private
BIOS stack to save the contents of the rest of the registers and service the
interrupt.

Are data characters added to the input buffer correctly?
“Input” a noncontrol character via the CharacterSInterrupt routine.

Then check the contents of the appropriate device table. The character
count and the put offset should both be set to one. Then check the contents
of the input buffer itself; does it contain the character that you
“input?”

Are control characters added to the input buffer correctly?
“Input” a control character such as 01H. Do not use ETX, ACK, XON, or

XOFF (03H, 06H, 11H, and 13H, respectively); these may cause side effects
if you have errors in the protocol handling logic. Check that the character
is stored in the next byte of the input buffer and that the character and
control counts are set to two and one, respectively. The put offset should
also be set to two.

When the input buffer fu ll threshold is reached, does the driver output the
correct protocol character?

Set the first status byte in the first device table to enable input XON
or RTS protocol, or both. Then go round the main testbed loop putting
characters into the input buffer. Check the console display to see if the
drivers output the correct values when the buffer is almost full (the default
threshold is when five bytes remain). The driver should then drop the RTS
line or output an XOFF character or both, according to the input protocol
that you enabled.

When the input buffer is completely full, does the driver respond correctly?
This is an extension of the test above. Input one more character than

can fit into the buffer. Check to see that the drivers do not stack the
character into the input buffer and that a BELL character (07H) is output to
the data port.

Chapter 10: Debugging a New CP/M System 359

Are protocol characters X O N / X O F F recognized and the necessary controlflags
set or reset?

Reload the testbed and drivers. Set the status byte to enable the output
XON/XOFF protocol. Then use the Characters Interrupt routine to input an
XOFF character (13H). Check to see that the XOFF character has not been
put into the input buffer. Instead, the status byte should be set to indicate
that output has indeed been suspended.

Input an XON and check to see that the output suspended flag has
been reset.

Does the driver detect and reset hardware errors correctly?
Proceed as though you were going to input a character into the input

buffer, but instead enter a status byte value that indicates that a hardware
error has occurred (enter the value given in the device table for
DT$ Detect $ Err or$ Value).

Check that the driver detects the error status and outputs the correct
error-reset value to the appropriate control port.

Non-interrupt Service Routine Checklist In a “live” BIOS, non-interrupt service routines
are accessed via the CONIN and CONST entry points in the BIOS jump vector.
During debugging, the testbed can call the CONIN and CONST code directly.

Is input redirection functioning? Does control arrive in the driver with the
correct device table selected?

This is best tested directly with DDT. Use the Gnnnn,bbbb command to
transfer control into the CONIN code with a breakpoint at the RET
instruction at the end of the Select$Device$Table routine (see Figure 8-10,
line 04400). Check that the DE register pair is pointing at device table 0. If it
is not, you will have to restart the test. Use the Tn command to make DDT
trace through the Select$Device$Table subroutine to find the bug.

Are characters returned correctly from the buffer?
Use the testbed to “input” a character or two. Then use the testbed to

make several entries into CONIN. Check the characters returned from the
buffer.

Are the data character and control character counts correctly decremented?
After each character has been removed from the buffer by CONIN, use

DDT to examine the device table and check that the data character and
control character counts have been decremented correctly. Also check that
the get pointer has moved up the input buffer.

When the buffer“almost empty ” threshold is reached, does the driver emit the
correct protocol character or manipulate the request to send (R T S) line
correctly?

Use DDT to enable the input RTS or XON protocol or both. Then input
characters into the input buffer until it reaches the buffer full threshold (the

360 The CP/M Programmer’s Handbook

default is when only five spare bytes remain in the buffer). Confirm that
“buffer almost full” processing occurs. Then make repetitive calls to
CONIN to flush data out of the buffer. Check that the “buffer emptying”
processing occurs when the correct threshold is reached. For RTS protocol,
the driver should output a raise RTS value to the specified RTS control port.
For x o n , the driver should output an x o n character to the data port (after
first having read the status port to ensure that the hardware can output
the character).

Does the driver handle buffer “wraparound” correctly?
Input characters to the input buffer until it becomes completely full.

Then make a single CONIN call to remove the first character from the
buffer. Follow this by inputting one more character to the buffer. Check
that the get pointer is set to one and the put pointer set to zero.

Next, make successive CONIN calls to empty the buffer. Then input
one more character to the buffer. Check that this last character is put into
the first byte of the input buffer.

Can the driver handle “forced input ” correctly?
Using DDT, set the forced, input pointer to point to a 00-byte-

terminated string; for example, use one of the function key decode default
strings. (In Figure 8-10, the forced input pointer is initialized to point to a
“startup string”—this is declared at the beginning of the configuration
block at line 00400.)

Using DDT, call the CONST routine and check that it returns with A =
0FFH (indicating that there appears to be input data waiting).

Make successive calls to CONIN and confirm that the data bytes in the
forced input string are returned. Check that the forcing of input ends when
the OOH-byte is detected.

Does the console status routine operate correctly when it checks for data
characters in the buffer, control characters in the buffer, and forced input?

Input a single noncontrol character, such as 41H, into the input buffer.
Using DDT, check that the second status byte in the device table has the
fake type-ahead flag set to zero. Call the CONST routine — it should return
with A = 0FFH (meaning that there is data in the buffer). Then set the fake
type-ahead bit in the second status byte and call CONST again. It should
return with A = 00H (meaning that there is now “no data” in the buffer).
Input a single control character into the buffer. Now CONST should return
with A = 0FFH because there is a control character in the buffer.

Does the driver recognize escape sequences incoming from keyboardfunction
keys?

This is a difficult feature to test when the real time clock routine is not
running. The driver uses the watchdog timer to wait until all characters in

Chapter 10: Debugging a New CP/M System 361

the escape sequence have arrived. You will therefore have to modify the
code in CONIN so that the watchdog timer appears to time out
immediately, rather than waiting for the real time clock to tick. To make
this change, refer to Figure 8-10, line 2200; this is the start of the CONIN
routine. Look for the label CONIN$Wait$For$Delay. A few instructions
later there is a JNZ CONIN$Wait$For$Delay. Using DDT, set all three
bytes of this JNZ to 00 H.

Then, using the testbed, input the complete escape sequence into the
input buffer. For example, input hexadecimal values 1B, 4F, 51 (ESCAPE, O,
P), which correspond to the characters emitted on a VT-100 terminal when
FUNCTION KEY l (PF1) is pressed.

Next, use the testbed to make successive calls to CONIN. You should
see the text associated with the function key (f u n c t io n k e y l, l in e f e e d)
being returned by CONIN.

Repeat this test using different function key sequences, including a
sequence that does not correspond to any of the preset function keys.
Check that the escape sequence itself is returned by CONIN without being
changed into another string.

Can the driver differentiate between a function key and the same escape
sequence generated by discrete key strokes?

This is almost the same test as above. Make the same patch to the
CONIN code, only this time do not enter the complete escape sequence into
the buffer. Enter only the hex characters 1B and 4F. Make sure that the
CONIN routine does not substitute another string in place of this quasi
escape sequence.

This test only mimics the results of manually entering an escape
sequence. You could not press the keys on a terminal fast enough to get all
three characters into the input buffer within the time allowed by the
watchdog timer.

Character Output Checklist Can the driver output a character?
The CONOUT option in the testbed calls CONIN first to get a charac

ter. To start with, you may want to use DDT to set the C register to some
graphic ASCII character such as 41H (A), and transfer control into
CONOUT directly. Check that CONOUT reads the US ART’s status, waits
for the output ready value, and then outputs the data to the data port. Note
that the testbed will output all characters waiting in the input buffer (or
forced input) when you select its CONOUT option. This is a convenience
for advanced testing of the drivers—for initial testing you may want to
modify the testbed to make only one call to CONIN and CONOUT and
then return to the top of the testbed loop.

362 The CP/M Programmer’s Handbook

Does the driver suspend output when a protocol control flag indicates that
output is to be suspended?

Using DDT, set the status byte in the device table to enable output
x o n / x o f f protocol. Then input an XOFF character and confirm that the
output suspended bit in the status byte is set. Output a single character, and
using DDT, confirm that the driver will remain in a status loop waiting for
the output suspended bit to be cleared. Clear the bit using DDT and check
that the character is output correctly.

When using e t x / a c k protocol does the driver output an E T X after the
specified number o f characters have been output, then indicate that output
is suspended?

For debugging purposes, alter the ETX message count value in the
device table to three bytes. Then output three bytes of data via CONOUT.
Check that the driver sends an ETX character (03 H) after the three bytes
have been output and that the output suspended flag in the status byte has
been set.

Then input an ACK character (06H). Check that this character is not
stored in the input buffer and that the output suspended flag is cleared.

Does the driver recognize and output escape sequences?
Input an ESCAPE, “t” (1BH, 74H) into the input buffer. Then output

them via CONOUT. Using DDT, check that the CONOUT routine
recognizes that an escape sequence is being output and selects the correct
processing routine. In this case, the forced input pointer should be set to
point at the ASCII time of day in the configuration block.

Does each o f the escape sequence processors function correctly? Can the time
and date be set to specified values using escape sequences?

Repeat the test above using all of the other escape sequences to make
sure that they can be recognized and that they function correctly.

Real Time Clock Routines
A separate testbed program, shown in Figure 10-5, is used to check these

routines. It calls the interrupt service routine directly to simulate a real time clock
“tick,” and then displays the time of day in ASCII on the console.

As you can see, the testbed makes a call into the debug package’s initialization
routine, DBSInit, and then uses an RST 6 to generate fake clock “ticks.”

There is a JM P instruction in the testbed that bypasses a call to SetSWatchdog.
Remove this JMP, either by editing it out or by using DDT to change it to NO
OPERATIONS (NOP, 00H) when you are ready to test the watchdog routines.

Real Time Clock Test Checklist Is the clock running at all?
Using DDT, trace through the interrupt service routine logic. Check

that the seconds are being updated.

Chapter 10: Debugging a New CP/M System 363

? Testbed for real time clock driver in the BIOS.

i The complete sour.ce file consists of three components:

1. The testbed code shcvm here
2. The real time clock driver destined for the BIOS.

f 3. The debug package shown in Figure 10-2.

FFFF = TRUE EQU OFFFFH
0000 = FALSE EQU NOT TRUE

FFFF = DEBUG EQU TRUE {For conditional assembly of RST
{ instructions in place of IN and
; OUT instructions in the drivers.

0030 = RST6 EQU 30H {Use RST 6 for fake clock tick.

0100 ORG 100H
START:

0100 318B01 LX I SP,Test*Stack {Use local stack
0103 CD8B01 CALL DBSInit i n i t i a l i z e the debug package
0106 3EC3 MVI A,JMP ?Set up RST 6 with JMP opcode
0108 323000 STA RST6
010B 218B01 LX I H,RTCilnterrupt {Set up RST 6 JMP address
010E 223100 SHLD RST6 + 1

0111 C31D01 JMP Testbed*Loop { <=== REMOVE THIS JMP MHEN READY TO
{ TEST MATCHDOG ROUTINES

0114 013200 LX I B,50 {50 ticks before timeout
0117 214201 LX I H,MD$Timeout ;Address to transfer to
011A CD8B01 CALL SetfMatchdog ;Set the watchdog timer

Make repeated entry to RTC interrupt routine
to ensure that clock is correctly updated

TestbediLoop:
01 ID 3EAA MVI A,0AAH ;Set registers to known pattern
01 IF 01CCBB LX I B,OBBCCH
0122 11EEDD LX I D,ODDEEH
0125 2 1 1 IFF LX I H, O F F 11H
0128 F7 RST 6 {Fake interrupt clock

0129 CD8B01 CALL DB$MSGI ;Display in-line message
012C 436C6F636B DB "Clock , 0

0134 218B01 LX I H,TimeInASCII ;Get address of clock in driver
0137 CD8B01 CALL DBfMSG ;Display current clock value

; (Note: Time*In*ASCII already has
; a line feed character in it)

013A CD8B01 CALL DBSMSGI jDisplay in-line message
013D 0D00 DB 0DH,0 jCarriage return

013F C31D01 JMP Testbed$Loop
f
t Control arrives here when the watchdog timer times
t out
WD*Timeout:

0142 CD8B01 CALL DBiMSGI
0145 0D0A576174 DB 0DH,0AH,"Matchdog timed out",0
015A C9 RET jReturn to watchdog routine

015B 9 9 9 9 9 9 9 9 9 9 ’ DM 9999H,9999H,9999H,9999H,9999H,9999H,9999H,9999H
016B 9 9 9 9 9 9 9 9 9 9 DM 9999H,9999H,9999H,9999H,9999H,9999H,9999H,9999H
017B 9 9 9 9 9 9 9 9 9 9 DM 9999H, 9999H,9999H,9999H,9999H,9999H,9999H,9999H

Test$Stack:

?
'

Dummy routines for those shown in other figures

BIOS routines (Figure 8-10)
t
RTC$Interrupt ; Interrupt service routine for clock tick
Set*Matchdog: ;Set watchdog timer
Time$In*ASCII jASCII string of HH:MM:S S f LF, 0

Debug routines (Figure 10-2)

DBilnit! ; Debug initialization
DBÍMSGI! ;Display message in-line
DB$M SG: ;Display message

Figure 10-5. Testbed for real-time-clock driver in the BIOS

364 The CP/M Programmer’s Handbook

Are the hours, minutes, and seconds carrying over correctly?
Let the testbed code run at full speed. You should see the time being

updated on the console display — although it will be updated much more
rapidly than real time.

Use DDT to set the minutes to 58 and then let the clock run again. Does
it correctly show the hour and reset the minutes to 00? Then set the hours to
11 and the minutes to 58 and let the clock run. Do minutes carry over into
hours and are hours reset to 0?

Repeat these tests with the clock update constants set for 24-hour
format.

Is the clock interrupt service routine restoring the registers correctly?
Using DDT, check that the registers are still set correctly on return from

the clock interrupt service routine.
How much o f a load on the pre-interrupt stack is the service routine imposing?

Check the “low water mark” of the preset values remaining in the
testbed stack area to see how much of a load the interrupt service routine is
imposing on the stack.

Can the watchdog timer be set to a nonzero value? Can it be set back to zero?
Using the second part of the testbed, call the SetSWatchdog routine,

and then monitor the testbed’s execution as the watchdog timer times out.
Check that the registers and stack pointer are set correctly when control is
transferred to the timeout routine. Also check that control is returned
properly from this routine, and thence from the interrupt service routine.

Disk Drivers
It is only feasible to check the low-level disk drivers in isolation from a real

BIOS, as the BDOS interface to the deblocking code is very difficult to simulate.
The testbed shown in Figure 10-6 serves only as a time-saver. It does not test the
interface to the subroutines. Use DDT to set up the disk, track, and sector
numbers, and then monitor the calls into SELDSK, SETTRK, SETSEC,
SETDMA, and the read/write routines.

Unless you have the same disk controller on the host system as you do on the
target machine, you will have to use the fake input / output system described earlier
in this chapter, rather than attempt to read and write on real disks.

You can see that the testbed, after initializing the debugging package, makes
calls to SELDSK, SETTRK, SETSEC, and SETDMA. It then calls a low-level
read or write routine. The low-level routine called depends on which driver you
wish to debug. For the standard floppy diskette driver shown in Figure 8-10, use
ReadNoDeblock and WriteNoDeblock. For the 5 1/4-inch diskettes, use
ReadSPhysical and Write$Physical. You will have to use DDT to set up some of
the variables required by the low-level drivers that would normally be set up by the
deblocking code.

Chapter 10: Debugging a New CP/M System 365

Testbed for disk I/O drivers in the BIOS

The complete source file consists of three components:

1. The testbed code shown here
2. The Disk I/O drivers destined for the BIOS
3. The debug package shown in Figure 10-2.

FFFF rRUE EQU OFFFFH
0000 = FALSE EQU NOT TRUE

FFFF = DEBUG EQU TRUE ;For conditional assembly of RST
; instructions in place of IN and
: OUT instructions in the drivers.

0100 ORG 100H
START:

0100 314704 LX I SP,Test*Stack ;Use a local stack
0103 CD4704 CALL DB$Init ; Initialize the debug package

Make calls to SELDSK, SETTRK, SETSEC and SETDMA,
then either a read or write routine.

festbed$Loop
0106 314704 LX I SP,Test$Stack jUse local stack

0109 3A1202 LDA Logical$Disk ; Set u p for SELDSK call
010C 4F MOV C, A
010D CD4704 CALL SELDSK

0110 CD4704 -CALL DB$Di splay ;Display return value in HL
0113 14 DB DB4HL
0114 53454C4453 DB 'SELDSK returned ' ,0

0124 223201 SHLD DPH*Start ;Set up to display disk parameter header
0127 111000 LX I D, 16 ;Compute end address
012A 19 DAD D
012B 223401 SHLD DPH*End ;Store into debug call

012E CD4704 CALL DB$Di splay ;Display DPH
0131 18 DB DB*M ;Memory

DPHfStart:
0132 0000 DW 0

DPHSEnd:
0134 0000 DM 0
0136 53656C6563 DB 'Selected DPH',0

0143 2A1302 LHLD Track ;C a 11 SETTRK
0146 E5 PUSH H
0147 Cl POP B ;SETTRK needs track in BC
0148 CD4704 CALL SETTRK

014B 3A1502 LDA Sector ;Cal 1 SETSEC
014E 4F MOV C, A ?SETSEC need sector in C
014F CD4704 CALL SETSEC

0152 011702 LX I B,Test*Buffer ;Set DMA address
0155 CD4704 CALL SETDMA
0158 3A1602 LDA WritetDisk ;Check if reading or writing
015B B7 ORA A
015C C2D101 JNZ TestfWri te

015F CD4704 CALL ReadNoDeblock ; *** or Read*Physical depending on which
» * * * drivers you are testing

0162 CD4704 CALL DB«Display :Display return code
0165 02 DB DB*A
0166 5465737420 DB 'Test Read returned',0

0179 CD0102 CALL CheckiRipple jCheck if ripple pattern in buffer
017C CA0601 JZ TestbedfLoop ;Yes, it is correct

017F CD4704 CALL DBÎMSGI ? Indicate problem
0182 14 DB DB«HL ;Display HL (points to offending byte)
0183 526970706C DB 'Ripple pattern incorrect. HL - > failure.',0

01 AC CD4704 CALL DB$Display ;Display test buffer
01AF CD1800 CALL DB*M ;Memory
01B2 1702 DM Test*Buffer

Figure 10-6. Testbed for disk I/O drivers in the BIOS

366 The CP/M Programmer’s Handbook

01B4 0002 DW Test$Buffer$Size
01B6 436F6E7465 DB 'Contents of Test$Buffe r ',0

01CE C30601 JMP Testbed$Loop

Test$Write:
01D1 CDF201 CALL FilltRipple ¡Fill the test buffer with ripple pattern
01D4 CD4704 CALL Write NoDe block ¡»** or Write*Physical depending on which

;*** drivers you are te s t i n g ^

01D7 CD4704 CALL DB$Display ¡Display return code
01DA 02 DB DB$A
01DB 5465737420 DB 'Test Write returned',0

01EF C30601 JMP Testbed$Loop

Fill*Ripple: ¡Fills the TesttBuffer with a pattern
; formed by putting into each byte, the
; least significant 8-bits of the byte's
; address.

01F2 010002 LX I B,Test$Buf fer$Si ze
01F5 211702 LX I H,Test*Buf f er

FR$Loop:
01F8 75 MOV M, L ¡Set pattern value into buffer
01F9 23 INX H ¡Update buffer pointer
01FA OB DCX B ¡Down date count
01FB 79 MOV A, C ¡Check if count zero
01FC BO ORA B *
01FD C2F801 JNZ FR*L o o p ¡Repeat until zero
0200 C9 RET

T
Check$Ripple: ¡Check that the buffer is filled with the

correct ripple p a t t e r n s
Returns with zero status if this is true,
nonzero status if the ripple is not
correct. HL point to the offending byte
(which should = L)

0201 010002 LX I B,Test$Buffer$Size
0204 211702 LX I H,Test*Buffer

CR$Loop:
0207 7D MOV A, L ¡Get correct value
0208 BE CMP M ¡Compare to that in the buffer
0209 CO RNZ ¡Mismatch, nonzero already indicated
020A 23 INX H ¡Update buffer pointer
020B OB DCX B ¡Downdate count
020C 79 MOV A, C ¡Check count zero
020D BO ORA B
020E C20702 JNZ CR$Loop ¡Repeat until zero
0211 C9 RET ¡Zero flag will already be set

¡ Testbed variables

0212 00 Logical*Disk: DB 0 ¡A = 0, B = 1,...
0213 0000 Tr ac k: DW 0 ¡Disk track number
0215 00 Sect or: DB 0 ¡Disk sector number
0216 00 Wr i te$Di sk: DB 0 ¡NZ to write to disk

0200 = Test$Buf fer$Si ze EQU 512 ¡<=== Alter as required
0217 TestiBuffer : DS Test*Buffer$Size

0417 9 9 9 9 9 9 9 9 9 9 DW
0427 9 9 9 9 9 9 9 9 9 9 DW
0437 9999999999 DW

Test*Stack:

9999H,9999H,9999H,9999H,9999H,9999H,9999H,9999H
9999H,9999H,9999H,9999H,9999H,9999H,9999H,9999H
9999H,9999H,9999H,9999H,9999H,9999H,9999H,9999H

Dummy routines for those shown in other figures

BIOS routines (Figure 8-10)

SELDSK:
SETTRK:
SETSEC:
SETDMA:
ReadIMoDeblock:
Read$Physical i
Write NoDeblock:
Wr i te$Phys ical:

;Select logical disk
¡Set track number
¡Set sector number
¡Set DMA address
¡Driver read routines

¡Driver write routines

Figure 10-6. (Continued)

Chapter 10: Debugging a New CP/M System 367

Debug routines (Figure 10-2)

DB$Init:
DB*MSGIs

Debug initialization
Display message in-line
Main debug display routine
Display codes for DB$Display0002 =

0014 =
0018 =

DB$Display:
DB$A EQU
DB*HL EQU
DB*M EQU

02
20
24

Figure 10-6. Testbed for disk I/O drivers in the BIOS (continued)

Before issuing the write call, the testbed fills the disk buffer with a known
pattern. This pattern is checked on return from a read operation.

For both reading and writing, the testbed shows the contents of the A register.
If you have added the enhanced disk error handling described in the previous
chapter, the return value in A must always be zero.

Disk Driver Checklist Does SELDSK return the correct address and set up the required
system variables?

Check that the correct disk parameter header address is returned for
legitimate logical disks. Check, too, that it returns an address of 0000H for
illegal disks.

Check that any custom processing, such as setting the disk type and
deblocking requirements from extra bytes on the disk parameter blocks, is
performed correctly.

Does the SETTRK and SETSEC processing function correctly?
Using DDT, check that the correct variables are set to the specified

values.
Does the driver read in the spare-sector directory correctly?

Set up to execute a physical read and, using DDT, trace the logic of the
READ entry point. Check that the spare-sector directory would be loaded
into the correct buffer. If you are using fake input/output, use DDT to
patch in a typical spare-sector directory with two or three “spared-out”
sectors.

Does the driver produce the correct spare sector in place o f a bad one?
Continuing with the physical read operation, check that, for “good”

track/ sectors, the sector-sparing logic returns the original track and sector
number, and for “bad” track/ sectors, it substitutes the correct spare track
and sector. If you are using sector skipping, check that the correct number
of sectors is skipped.

Can a sector be read in from the disk?
Continuing further with the physical read, check that the correct sector

is read from the specified disk and track. If you are using real I/O (as

368 The CP/M Programmer’s Handbook

opposed to faking it), the “ripple pattern” set by the testbed can be used, or
you can fill the disk buffer area with some known pattern (using DDT’s F
command) so you can tell if any data gets read in.

Make sure you do not have any disks or diskettes in the computer
system that are not write-protected — you may inadvertently write on a
disk rather than read it during the early stages of testing.

Can a sector be written to the disk?
Using DDT, set up to write to a particular disk, track, and sector.

Remove any write protection that you put on the target disk during earlier
testing. You can either use the testbed’s ripple pattern or fill the disk buffer
area with a distinctive pattern. Write this data onto the disk, fill the buffer
area with a different pattern, and read in the sector that you wrote. Check
that the disk buffer gets changed back to the pattern written to the disk.

Does the driver display error messages correctly?
Rather than deliberately damaging a diskette to create errors, use DDT

to temporarily sabotage the disk driver’s logic. Make it return each of the
possible error codes in turn, checking each time that the correct error
message is displayed.

For each error condition in turn, check that the disk driver performs
the correct recovery action, including interacting with the user and offering
the choice of retrying, ignoring the error, or aborting the program.

Live Testing a New BIOS

Given that the drivers have passed all of the testing outlined above, you are
ready to pull all of the BIOS pieces together and build a CP/M image.

For your initial testing, disable the real time clock, and use simple, polled I/O
for the console driver if you can. It is important to get something up and running as
soon as possible, and it is easier to do this without possible side effects from
interrupts.

Prepare a complete listing of the BIOS and plan to spend at least an hour
checking through it. Take a dry run through the console and disk driver — if there
are any serious bugs left in these two drivers, CP/M may not start up. Remember
that once the BIOS cold boot code has been executed and control is handed over to
the CCP, the BDOS will be requested to log in the system disk, and this involves
reading in the disk’s directory.

Pay special attention to checking some of the major data structures. Make
certain that everything is at a reasonable place in memory; for example, if the last
address used by the BIOS is greater than OFFFFH, you will need to move the
entire CP/M image down in memory.

Chapter 10: Debugging a New CP/M System 369

Then build a system disk, load it into the machine, and press the RESET button.
You should see the bootstrap sign on, then the BIOS, and after a pause of about
one second, the A> prompt (or 0A> if you have included the special feature that
patches the CCP).

If you see both sign-on messages but do not get an A> prompt, a likely cause of
the problem is in the disk drivers. Alternatively, the directory area on the disk may
be full of random data rather than 0E5H’s.

If you cannot see what is wrong with the system, you might try faking the disk
drivers to return a 128-byte block of 0E5H’s for each read operation. The CCP
should then sign on.

Once you do have the A> prompt, you can proceed with the system checkout.
Start by checking that the warm boot logic works. Type a CONTROL-C. There
should be a slight pause, and the A> prompt should be output again.

Next, check that you can read the disk directory by using the DIR command. If
you have an empty directory, you should get a NO FILE response. If you get
strange characters instead, you either forgot to initialize the directory area or the
disk parameter block is directing CP/M to the wrong part of the disk for the file
directory. If the system crashes, there is a problem with the disk driver.

Check that you can write on the disk by entering the command SAVE 1 TEST.
Then use the DIR command to confirm that file TEST shows up in the file
directory. If it does, use the ERA command ERA TEST and do another DIR
command to confirm that TEST has indeed been erased.

If TEST either does not show up on the disk or cannot be erased, then you have
a problem with the disk driver WRITE routine.

Put a standard CP/M release diskette into drive B and use the DIR command
to check that you can access the drive and display a disk directory. If you do, then
load the DDT utility and exit from it by using a GO (G, zero) command. This
further tests if the disk drivers are functioning correctly.

To test the deblocking logic (if you are using disks that require deblocking), use
the command:
PIP A:=B:*.*CV3

This copies all files from drive B to drive A using the verify option. It is a
particularly good test of the system, and if you have any problems with the
high-level disk drivers and deblocking code, you will get a Verify Error message
from PIP. You can also get this message if you have hardware problems with the
computer’s memory, so run a memory test if you cannot find anything obviously
wrong with the deblocking algorithm.

To completely test the deblocking code, you need to use PIP to copy a file of
text larger than the amount of memory available. Thus, you may have to create a
large text file using a text editor just to provide PIP with test data.

With the disk driver functioning correctly, rebuild the system with the real time
clock enabled. Bring up the new system and check that the ASCII time of day is

370 The CP/M Programmer’s Handbook

being updated in the configuration block; use DDT to inspect this in memory. Set
the clock to the current time, let it run for five minutes, and see if it is still accurate.
You may have to adjust one of the initialization time constants for the device that is
providing the periodic interrupts for the clock.

Rebuild the system yet again, this time with the real interrupt-driven console
input and the real console output routines. Check that the system comes up
properly and that the initial forced-input startup string appears on the console.

Check that when you type characters on the keyboard they are displayed as
you type them. If not, there could be a problem with either the CONIN or
CONOUT routines. Experimentally type in enough characters to fill the input
buffer. If the terminal’s bell starts to sound, the interrupt service routine is
probably not the culprit. Check the CONOUT routine again.

Check that the function key decode logic is working correctly. With the A>
prompt displayed, press a function key. The CONIN driver should inject the
correct function key string and it should appear on the terminal. For example,
with the BIOS in Figure 8-10, pressing PF1 on the VT-100 terminal should produce
this on the display:
A>Function Keyl
Function?
A >

The CCP does not recognize “Function” as a legitimate command name, nor is
there such a COM file — hence the question mark.

Using DDT, write a small program that outputs ESCAPE, “t” to the console, and
check that the ASCII time of day string appears on the console. This checks that
the escape sequence has been recognized.

Library Functions
Reading or W riting Using the BIOS

Accessing the File Directory
Utility Program s Enhancing

Standard CP/M
Utility Program s for the Enhanced BIOS

Additional
Utility Programs

This chapter contains the narrated source code for several useful utility
programs. Two groups of such programs are included—those that supplement
Digital Research’s standard utility programs, and those that work in conjunction
with features shown in the enhanced BIOS (Figure 8-10).

To avoid unnecessary detail, the programs shown in this chapter are all written
in the C language. C is a good language to use for such purposes since it can show
the overall logic of a program without the clutter of details common in assembly
language.

In order to reuse as much source code as possible, this chapter includes a
“library” of all the general-purpose C functions that can be called from within any
of the utility programs. This file, called “LIBRARY.C”, is shown in Figure 11-1.
Once a utility program has been compiled, the necessary functions from the
library can be linked with the utility’s binary output to form the “.COM” file.

371

372 The CP/M Programmer’s Handbook

/« Library of commonly-used functions «/

#include <LIBRARY.H> /« Standard defines and structures «/

/« Configuration block access «/

char
«get_cba(code) /« Get configuration block address «/

/« This function makes a call to a "private" entry in the BIOS
jump vector to return the address of a specific data object in
the BIOS. The code indicates which object is required.
Each program using this function could make a direct call to
the BIOS using the b i o s h O function provided by BBS C. This
function provides a common point to which debugging code can
be added to display the addresses returned. «/

/« Entry parameters «/
int code; /« Code that specifies the object

whose address is required «/
/« Exit Parameters

Address returned by the BIOS routine «/

{
char «retval; /« Value returned by the BIOS «/

retval = biosh(CBGABDR,code);
/« pr intf ("\nget_cba : code ’/.d address */.4x" , code, ret val >; «/

return retval;
1 /« End of get_cba(code) «/

a

/« Character manipulation functions «/

strscn(string,key) /« String scan «/

/« This function scans a OO-terminated character string looking
for a key string in it. If the key string is found within the
string, the function returns a pointer to it. Otherwise it
returns a value of zero. «/

/« Entry parameters «/
char «string; /« String to be searched «/
char «key; /« Key string to be searched for «/

/« Exit parameters
Pointer to key string within searched string, or
zero if key not found

«/

€
while («string) /« For all non

{
if ((«string == «key) &&

(sstrcmp(string,key) == 0)

return string;

str ing++;
}

return 0;
} /« End of strscn «/

■null chars, in string «/

/« First char, matches «/
/« Perform substring

compare on rest «/

/« Substring matches,
return pointer «/

/« Move to next char, in string

/« Indicate no match found «/

«/

b

ustrcmp(stringl,string2) /« Uppercase string compare «/

/« This function is similar to the normal strcmp function;
it differs only in that the characters are compared as if they
were all uppercase characters — the strings are left
unaltered. «/

Figure 11-1. LIBRARY.C, commonly used functions, in C language

Chapter 11: Additional Utility Programs 373

/« Entry Parameters «/
char «stringl; /* Pointer to first string «/
char «string2; /« Pointer to second string «/

/« Exit parameters
0 - if string 1 = string 2
-ve integer if string 1 > string 2
+ve integer if string 1 < string 2

«/

f
int count; /« Used to access chars, in both strings «/

count = 0; /« Start with the first character of both «/

/« While string 1 characters are non-null, and
match their counterparts in string 2. «/

while (stringl[count 3 == string2Ccount3)
€
if (stringl[++count3 == 'NO') /« Last char, in string 1 «/

return 0; /« Indicate equality »/
3

return string2Ccount3 - stringl[count 3; /» "Compare" chars. «/

} /« End of sstrcrnp «/

sstrcmptstring,substring) /« Substring compare «/

/« This function compares two strings. The first, string, need not
be 00-terminated. The second, substring, must be O0-terminated.
It is similar to the standard function strc^p, except that the
length of the substring controls how many characters are compared. «/

/« Entry parameters «/
char «string; /« Pointer to main string «/
char «substring; /« Pointer to substring «/

/« Exit parameters
0 - substring matches corresponding characters in string
-ve integer if char, in string is > char, in substring
+ve integer if char, in string is < char, in substring

«/

int count; /« Used to access chars, in string and substring «/

count = 0; /« Start with the first character of each «/

/« While substring characters are non-null, and
match their counterparts in string. «/

while (string[count 3 == substring[count 3)
£

if (substring[++count3 == 'NO') /« Last char in substring «/
return 0; /« Indicate equality «/

3
return substringicount3 - stringfcount3; /« "Compare" chars. «/

3 /« End of sstrcrnp «/

d

usstrcmp(string,substring) /« Uppercase substring compare «/

/» This function compares two strings. The first, string, need not
be 00-terminated. The second, substring, must be 00-terminated.
It is similar to the substring compare above except all
characters are made uppercase. «/

/« Entry parameters */
char «string; /« Pointer to main string «/
char »substring; /» Pointer to substring «/

/» Exit parameters
0 — substring matches corresponding characters in string

Figure 11-1 (Continued)

374 The CP/M Programmer’s Handbook

-ve integer if char, in string is > char, in substring
+ve integer if char, in string is < char, in substring

«/

{
int count; /« Used to access chars in string and substring «/

count = 0; /* Start with the first character of each «/

/« While substring characters are non-null, and
match their counterparts in string. «/

while (toupper(stringCcount3) == toupper(substringCcount3))
€
if (substringC++count3 == '\0') /« Last char, in substring «/

return 0; /« Indicate equality «/
>

return substringCcount3 - stringCcount3; /« "Compare" chars. «/
} /« End of usstrcmp «/

comp_fname(scb,name) /« Compare file names «/

/« This function compares a possibly ambiguous file name
to the name in the specified character string. The number of
bytes compared is determined by the number of characters in
the mask.
This function can be used to compare file names and types,
or, by appending an extra byte to the mask, the file names,
types, and extent numbers.
For file directory entries, an extra byte can be prefixed to
the mask and the function used to compare user number, file
name, type, and extent.
Note that a "?" in the first character of the mask will NOT
match with a value of 0xE5 (this value is used to indicate
an inactive directory entry). «/

/« Entry parameters «/
struct _scb «scb; /« Pointer to search control block «/
char «name; /« Pointer to file name «/

/« Exit parameter
NAME_EQ if the names match the mask
NAME_LT if the name is less than the mask
NAME_GT if the name is greater than the mask
NAME_NE if the name is not equal to the mask (but the outcome

is ambiguous because of the wildcards in the mask)
«/ f
£
int count; /« Count of the number of chars, processed «/
short ambiguous; /« NZ when the mask is ambiguous «/
char «mask; /« Pointer to bytes at front of SCB «/

/« Set pointer to characters at beginning of search control block «/
mask = scb;

/« Ambiguous match on user number, matches
only users 0 - 15, and not inactive entries «/

if (maskC03 == ' ? ')
{
if (nameC03 == 0xE5)

return NAME_NE; /« Indicate inequality «/
>

else /* First char, of mask is not "?" «/
£
if (maskCOl != namet03) /* User numbers do not match «/

return NAME_NE; /« Indicate inequality «/
}

/« No, check the name (and, if the length is such, the extent) «/
for (count = 1 ; /« Start with first name character «/

count <= scb -> scb_length; /« For all required characters «/
count++) /« Move to next character «/

£
if (masktcount3 == /« Wildcard character in mask «/ T

Figure 11-1. (Continued)

Chapter 11: Additional Utility Programs 375

{
ambiguous = 1 ; /« Indicate ambiguous name in mask «/
continue; /« Do not make any comparisons «/
}

if (maskCcount3 != (nameCcount] & 0x7F))
{ /* Mask char, not equal to FCB char. «/
if (ambiguous) /« If previous wildcard, indicate NE «/

return NAME_NE;
else

}

/« Compare chars, to determine relationship «/
return (maskCcount1 > nameCcount! ?

NAME_LT : NAME_GT);

/* If control reaches here, then all characters of the
mask and name have been processed, and either there
were wildcards in the mask, or they all matched. «/

return NAME_EQ; /« Indicate mask and name are "equal” «/

} /* End of comp_fname «/

f

/«==«/
conv_fname(fcb,fn) /« Convert file name for output «/

/« This function converts the contents of a file control
block into a printable string "D:FILENAME.TYP." */

/* Entry parameters «/
struct _fcb «fcb; /« Pointer to file control block «/
char «fn; /« Pointer to area to receive name «/

{
/« If the disk specification in the

FCB is 0, use the current disk «/
«fn++ = (fcb -> fcb disk) ? (fcb -> fcb disk + ('A'-l)) :

(bdos(GETDISK) + 'A');

«fn++ = ' :

movmem(&fcb -> f cb_f name, f n, 8) ;
fn += 8;
«f n++ = •'. ' ;
movmem(&fcb -> f cb_f name+8, f n, 3) ;
«fn++ 8«= 0x7F;
*fn++ 8c= 0x7F;
«fn++ «.= 0x7F ;
*fn = '\0';

Î /« End of conv_fname «/

/« Insert disk id. delimiter «/

/« Move file name «/
/« Update pointer «/
/« Insert file name/type delimiter «/
/« Move file type «/
/« Remove any attribute bits «/
/« Remove any attribute bits «/
/* Remove any attribute bits «/
/« Terminator «/

g

/*=============================== = === ===== =========== = =:== =======*■:/
conv_dfname(disk,dir,fn) /« Convert directory file name for output «/

/« This function converts the contents of a file directory entry
block into a printable string "DsFILENAME.TYP,- «/

/« Entry parameters «/
short disk;
struct _dir «dir;
char «fn;

I
/« Convert user number and disk id. «/

sprintf(fn,"%2d/%c;" ,dir -> de_userno,disk + 'A);
fn += 5; /« Update pointer to file name «/

/» Disk id. (A = 0, B = 1) «/
/« Pointer to file control block «/
/« Pointer to area to receive name «/

movmem(&dir -> de_fname,fn,8)
fn += 8;
«f n++ = '

/« Move file name «/
/« Update pointer «/
/« Insert file name/type delimiter «/

movmem(8cdir ->
*fn++ &= 0x7F;
«fn++ 8c= 0x7F;
«fn++ &= 0x7F;
«fn = ' \ 0 ' ;

de_fname+8,fn,3); /« Move file type «/
/« Remove any attribute bits */
/« Remove any attribute bits */
/« Remove any attribute bits «/
/« Terminator «/

h

Figure 11-1 (Continued)

376 The CP/M Programmer’s Handbook

} /* End of conv_dfname */ Jh

get_nfn(amb_fname,next_fname) /* Get next file name */

/* This function sets the FCB at ”next_fname" to contain the
directory entry found that matches the ambiguous file name
in "amb_fname."
On the first entry for a given file name, the most significant
bit in the FCB's disk field must be set to one (this causes a
search first BDOS call to be made). */

/* Entry parameters «/
struct _fcb *amb_fnamej /* Ambiguous file name */
struct _fcb *next_fname;/* First byte must have ms bit set for

first time entry)**/

/* Exit parameters
0 = No further name found
1 = Further name found (and set up in next_fname)

*/

{
char bdo5_func; /» Set to either search first or next */
char *pfname; /* Pointer to file name in directory entry */

/* Initialize
setmem(&next_fname ->

tail-end of next file FCB to zero */
fcb_extent,FCBSIZE-12,0);

bdos_func = SEARCHF i /* Assume a search first must be given */

if (!(next_fname -> fcb_disk & 0x80)) /* If not first time */
t

/* search first on previous name */
srch_file(next_fname,SEARCHF);
bdos_func = SEARCHN; /* Then do a search next */
J

else /* First time **/
next_fname -> fcb_disk 8<= 0x7F; /* Reset first-time flag */

/ * Refresh next_fname from ambiguous file name
(move disk, name, type) */

movmem(amb_fname,next_fname, 12);

/* If first time, issue search first, otherwise
issue a search next call. "srch_file" returns
a pointer to the directory entry that matches
the ambiguous file name, or 0 if no match »/

if ('(pfname = srch_file(next_fname,bdos_func)))
C
return 0; /* Indicate no match */
>
/» Move file name and type */

movmem(pf name,8«next_f name -> f cb_f na m e , 11);
return 1; /* Indicate match found */

1 /* End of get_nfn »/

char *srch_file(fc b,bdos_code) /* Search for file «/

/* This function issues either a search first or search next
BDOS call. */

/* Entry Parameters »/
struct _fcb «fcbj /« pointer to file control block */
short bdos_code; /« either SEARCHF or SEARCHN */

/* Exit parameters
0 = no match found
NZ = pointer to entry matched (currently in buffer)

*/

Figure 11-1. (Continued)

Chapter 11: Additional Utility Programs 377

i
unsigned r_code? /* Return code from search function

This is either 255 for no match, or 0, 1, 2, or 3
being the ordinal of the 32-byte entry in the
buffer that matched the name */

char *dir_entry? /* Pointer to directory entry «/

/* The BDS C compiler always sets the BOOS DMA
to location 0x80 */

r_code = bdos(bdos_code,fcb); /* Issue the BDOS call */
if (r_code == 255) /* No match found */

return 0;

/* Set a pointer to the matching
entry by multiplying return code by 128
and adding onto the buffer address (0x80),
also add 1 to point to first character of name */

return (r_code << 5) + 0x81?

}/* End of srch_file */

rd_disk(drb) /* Read disk (via BIOS) «/

/* This function uses the parameters previously set up in the
incoming request block, and, using the BIOS directly,
executes the disk read. */

/* Entry parameters */
struct _drb *drb? /* Disk request block (disk, track, sector, buffer) */

/# Exit parameters
0 = No data available
1 = Data available

*/

{
if (!set_disk(drb))

return 0?

if (bios(DREAD))
return 0?

/* Call SELDSK, SETTRK, SETSEC */
/* If SELDSK fails, indicate

no data available */
/* Execute BIOS read */
/* Indicate no data available if error returned */

return 1 /* Indicate data available */

k

1 /* End of rd_disk */

/*==*/
wrt_disk(drb) /* Write disk (via BIOS) */

/* This function uses the parameters previously set up in the
incoming request block, and, using the BIOS directly,
executes the disk write. */

/* Entry parameters */
struct _drb »drb? /* Disk request block (disk, track, sector, buffer) «/

/* Exit parameters
0 = Error during write
1 = Data written OK

*/

C
if (!set_disk(drb))

return 0;
if (bios(DWRITE))

return 0?

/*
/*
/*
/*

Call SELDSK, SETTRK, SETSEC,
If SELDSK fails, indicate no
Execute BIOS write «/
Indicate error returned */

SETDMA */
data written */

return 1? /* Indicate data written */

} /* End of wrt_disk */

Figure 11-1 (Continued)

378 The CP/M Programmer’s Handbook

short set_disk(drb) /» Set disk parameters »/

/» This function sets up the BIOS variables in anticipation of
a subsequent disk read or write. «/

/» Entry parameters »/
struct _drb »drb; /» Disk request block (disk, track, sector, buffer) »/

/» Exit parameters
0 = Invalid disk (do not perform read/write)
1 = BIOS now set up for read/write

*/

{
/» The sector in the disk request block contains a

LOGICAL sector. If necessary (as determined by the
value in the disk parameter header), this must be
converted into the PHYSICAL sector.
NOTE: skewtab is declared as a pointer to a pointer to
a short integer (single byte). »/

short »»skewtab; /« Skewtab -> disk parameter header -> skew table »/
short phy_sec; /« Physical sector »/

/» Call the SELDSK BIOS entry point. If this returns
a 0, then the disk is invalid. Otherwise, it returns
a pointer to the pointer to the skew table »/

if (»(skewtab = biosh(SELDSK,drb -> dr_disk)))
return 0; /* Invalid disk »/

bios(SETTRK,drb -> dr_track>; /* Set track »/

/» Note that the biosh function puts the sector into
registers BC, and a pointer to the skew table in
registers HL. It returns the value in HL on exit
from the BIOS */

Phy_sec = biosh(SECTRN,drb -> dr_sector,»skewtab); /» Get physical sector »/
bios(SETSEC,phy_sec); /* Set sector »/
bios(SETDMA,drb -> dr_buffer); /» Set buffer address */

return 1; /* Indicate no problems »/

) /» End of setp_disk »/

/» Directory Management Functions »/

/»==*/
get_nde(dir_pb) /» Get next directory entry »/

/» This function returns a pointer to the next directory entry.
If the directory has not been opened, it opens it.
When necessary, the next directory sector is read in.
If the current sector has been modified and needs to be written back
onto the disk, this will be done before reading in the next sector. »/

/» Entry parameters »/
struct _dirpb »dir_pb; /* Pointer to the disk parameter block »/

/» Exit Parameters
Returns a pointer to the next directory entry in the buffer.
The directory open and write sector flags in the parameter
block are reset as necessary.

»/

f
if(!dir_pb -> dp_open) /» Directory not yet opened »/

C
if (!open_dir(dir_pb)) /» Initialize and open directory »/

C
err_dir(0_DIR,dir_pb); /» Report error on open »/
e x i t ();
}
/» Deliberately set the directory entry pointer to the end

of the buffer to force a read of a directory sector »/

Figure 11-1. (Continued)

Chapter 11: Additional Utility Programs 379

dir_pb -> dp_entry = dir_pb -> dp_buffer + DIR_BSZ;
dir_pb -> dp_write = 0; /ft Reset write-sector flag ft/
>

/ft Update the directory entry pointer to the next entry in
the buffer. Check if the pointer is now "off the end"
of the buffer and another sector needs to be read. «/

if (++dir_pb -> dp_entry < dir_pb -> dp_buffer + DIR_BSZ)
£
return dir_pb -> dp_entry; /ft Return pointer to next entry ft/
}

/* Need to move to next sector and read it in «/

/ft Do not check if at end of directory or move to
the next sector if the directory has just been
opened (but the opened flag has not yet been set) «/

if (!dir_pb -> dp_open)
dir_pb -> dp_open = 1 ? /ft Indicate that the directory is now open «/

else
{
/ft Check if the sector currently in the buffer needs to be

written back out to the disk (having been changed) ft/
if (dir_pb -> dp_write)

f
dir_pb -> dp_write = 0; /ft Reset the flag ft/
if(!rw_dir(W_DIR,dir_pb)) /ft Write the directory sector ft/

£

err_dir(W_DIR,dir_pb)? /ft Report error on writing ft/
e x i t O ?1

/ft Count down on number of directory entries left to process,
always four 32-byte entries per 128-byte sector ft/

dir_pb -> dp_entrem —= 4;

/« Set directory-end flag true
if (dir_pb -> dp_entrem == 0)

€
dir_pb -> dp_end = 1?
dir_pb -> dp_open = 0?
return 0?

/ft Update sector (and if need be track and sector) ft/
if (++dir_pb -> dp_sector == dir_pb -> dp_sptrk)

£
++dir_pb -> dp_track; /* Update track ft/
dir_pb -> dp_sector = 0; /* Reset sector ft/
>

if(!rw_dir(R_DIR,dir_pb))
£
err_dir(R_DIR,dir_pb)j
exi t ();
>

/* Reset directory-entry pointer to first entry in buffer ft/
return dir_pb -> dp_entry = dir_pb -> dpjbuffer;

} /* End of get_nde ft/

/ft Read next directory sector ft/

/ft Report error on reading ft/

if number of entries now < 0 ft/
/ft now at end of directory ft/

/ft Indicate end ft/
/ft Indicate directory now closed ft/
/ft Indicate no more entries ft/

open_dir(dir_pb) /ft Open directory ft/
/ i t = s = = = = = s = = = = = r = = s = = r = = = s = = = = = = s 5 = s = = : = = = = = = = = = = = = : = : = = = = = = = = = 5 S = = = : = s s = = s = : = = = * /

/ft This function "opens" up the file directory
on a specified disk for subsequent processing
by rw_dir, next_dir functions, ft/

/ft Entry parameters »/
struct _dirpb ftdir_pb? /ft Pointer to directory parameter block ft/

Figure 11-1 (Continued)

380 The CP/M Programmer’s Handbook

/* Exit parameters
0 = Error, directory not opened
1 = Directory open for processing

*/

€
struct _dpb *dpby /* CP/M disk parameter block */

/* Get disk parameter block address for the disk specified in
the directory parameter block */

if <(dpb = get_dpb(dir_pb -> dp_disk)) == 0)
return 0; /* Return indicating no DPB for this disk */

/* Set the remaining fields in the parameter block */
> dp_sptrk » dpb -> dpb_sptrky /* Sectors per track */
> dp_track * dpb -> dpb_trkoffy /* Track offset of the directory */
> dp_sector = Oy /* Beginning of directory */
> dp_nument = dpb -> dpb_maxden+ly /* No. of directory entries */
> dp_entrem = dir_pb -> dp_numenty /* Entries remaining to process */
> dp_end = 0 y /* Indicate not at end */

/* Set number of allocation blocks per directory entry to
8 or 16 depending on the number of allocation blocks */

dir_pb -> dp_nabpde = (dpb -> dpb_maxabn > 255 ? 8 i 16) y
/* Set number of allocation blocks (one more than number of

highest block) */
dir_pb -> dp_nab = dpb -> dpb_maxabny

/* Set the allocation block size based on the block shift.
The possible values are: 3 = lk, 4 * 2K, 5 = 4K, 6 = 8K, 7 = 16K.
So a value of 16 is shifted right by (7 - bshift) bits. */

dir_pb -> dp_absize = 16 » (7 - dpb -> dpb_bshift)y

return 1; /* Indicate that directory now opened */

} /* End of open_dir */

dir_pb -
dir_pb -
dir_pb -
dir_pb -
dir_pb -
dir pb -

O

rw_dir(read_op,dir_pb) /* Read/write directory *//*=======:a!========================s==== ======ss=====s===== = ===:====s==»/
/* This function reads/writes the next 128-byte

sector from/to the currently open directory. */

/* Entry parameters */
short read_opy / * True to read, false (0) to write */
struct _dirpb *dir_pby /* Directory parameter block */

/* Exit parameters
0 = error — operation not performed
1 = operation completed

*/

{
struct _drb drb? /* Disk request (for BIOS read/write) */

P
drb.dr_disk = dir_pb -> dp_disk? /* Set up disk request */
drb.dr_track = dir_pb -> dp_tracky
drb.dr_sector = dir_pb -> dp_sectory
drb.dr_buffer = dir_pb -> dp_buffery

if (read_op)
C
if (lrd_disk(&drb))

return 0»
}

else
{
if (!wrt_disk(*«drb))

}
return ly

return Oy

/* Issue read command */
/* Indicate error — no data available */

/* Issue write command «/
/* Indicate error — no data written */

/* Indicate operation complete */

} /* End of rd_dir */

Figure 11-1. (Continued)

Chapter 11: Additional Utility Programs 381

err_dir(opcode,dir_pb) /* Display directory error
/*==«*================*/
/* This function displays an error message to report an error

detected in the directory management functions open_dir and rw_dir. */
/* Entry parameters */
short opcode; /* Operation being attempted */
struct _dirpb *dir_pb; /* Pointer to directory parameter block */

{
pr i n t f ("\n\007Error during ");

switch(opcode)
t
case R_DIRs

printf("Reading");
break;

case W_DIR:
printf("Writ ing");
break;

case 0_DIR;
printf("Opening");
break;

de fa ul t:
printf("Unknown Operation (%d) o n " ,opcode);

J

printf (" Directory on disk 7.cs. ",dir _pb -> dp_disk + •'A');

1 /* End of err_dir */

setscb(scb,fname,user,extent,length) /* Set search control block */

/* This function sets up a search control block according
to the file name specified. The file name can take the
following forms;

f ilename
f ilename.typ
d:f ilename.typ
* ; filename.typ (meaning "all disks")
AB C D . ..NOP;filename.typ (meaning "just the specified disks")

The function sets the bit map according to which disks should be
searched . For each selected disk, it checks to see if an error is
generated when selecting the disk (i.e. if there are disk tables
in the BIOS for the disk). */

/» Entry parameters */
struct _scb *scb;
char *fname;
short user;
short extent;
int length;

/* Exit parameters
None.

*/

f
int disk;
unsigned adisks;

adisks = 0;

if (strscn(fname,"i"))
(
if (*fname ==

€
adisks = OxFF FF; /* Set all bits «/
i

else /* Set specific disks */
C
while(*fname != ' t ') /* Until reached */

/* Pointer to search control block */
/« Pointer to the file name */
/* User number to search for */
/* Extent number to search for */
/ * Number of bytes to compare */

/* Disk number currently being checked */
/ * Bit map for active disks */

/* Assume no disks to search */

/* Check if "i" in file name */

' * ') /* Check if "all disks" «/

Figure 11-1. (Continued)

382 The CP/M Programmer’s Handbook

/* Build the bit map by getting the next disk
id. (A - P), converting it to a number in
the range 0 - 15, shifting a 1-bit left
that many places, and OR-ing it into the
current active disks. */

adisks != 1 << (toupper(*fname) - -'A')*
++fname; /* Move to next character */
Î

++fname; /* Bypass colon */
>

>
else /* Use only current default disk */

{
/* Set just the bit corresponding to the current disk */

adisks = 1 << bdos(GETDISK);
1

setfcb(scb,fname); /* Set search control block as though it
were a file control block. */

/* Make calls to the BIOS SELDSK routine to make sure that
all of the active disk drives have disk tables for them
in the BIOS. If they don't, turn off the corresponding r
bits in the bit map. */

for (disk = 0; /* Start with disk A: */
disk < 16; /* Until disk P: */
disk++) /* Use next disk */

C
if (!((1 << disk) 8. adisks))

continue; /* Avoid selecting unspecified disks */
if (biosh(SELDSK,disk) == 0) /* Make BIOS SELDSK call */

{ /* Returns 0 if invalid disk */
/* Turn OFF corresponding bit in mask

by AND-ing it with bit mask having
all the other bits set = 1 */

adisks 8«= ((1 << disk) A OxFFFF) ;
}

1

scb -> scb _adisks = adisks; /* Set bit map in SCB */
scb -> scb _userno = user; /* Set user number */
scb -> scb _extent = extent; /* Set extent number */
scb -> scb _length = length; /* Set number of bytes to compare */

1 /* E n d setscb */

dm_clr(disk_map) /* Disk map clear (to zeros) «/

/* This function clears all elements of the disk map to zero. */

/* Entry Parameters */
unsigned disk_mapC163C183; /* Address of array of unsigned integers */

/* Exit parameters
N o n e . S

*/

{
/* WARNING — The 576 in the setmem call below is based on

the disk map array being C161C183 — i.e. 288 unsigned
integers, hence 576 bytes. */

setmem(disk_map,5 7 6 , '\0'); /* Fill array with zeros */

> /* End of dm_clr */ —

dm_disp(disk_map,adisks) /* Disk map display */

/* This function displays the elements of the disk map, showing
the count in each element. A zero value-element is shown as
blanks. For example:

Figure 11-1. (Continued)

Chapter 11: Additional Utility Programs 383

O 1 2 3 4 5 6 7 8 9 10 1 i 12 13 14 15 Used Free
As 123 20 98 202 199 101 211 954 70

Lines will only be printed for active disks (as indicated by
the bit map). */

/* Entry parameters */
unsigned disk_mapC163C183?
unsigned adisks;

/* Pointer to disk map array */
/* Bit map of active disks * f

i
»define USED_C0UNT 16
»define FREE_CQUNT 17

/* "User" number for used entities */
/* "User" number for free entities */

int disk? /* Current
int userno; /* Current
unsigned dsum; /* Sum of «

printf("\n 0 1 2 3 4 5 6

for (disk = 0; /* Start w
disk < 16; /* Until d
disk++) /* Next dii

{
if (U a d i s k s 8« (1 << disk))) /*

continue? /* No — s<

disk number */
user number */
rntries for given disk */

7 8 9 10 11 12 13 14 15 Used Free")

ith disk As »/
isk Ps «/
,k */

Check if disk is active * /
> bypass this one */

printf ("\nXcs "»disk + •'A'); /* Display disk number «/

dsum = 0?
for (userno = 0?

userno < 16!
userno++)

l

/* Reset sum for this disk */
/* Start with user 0 */
/* Until user 15 */
/* Next user number */

dsum += disk_mapCdisk3Cuserno3; /* Build sum */
}

if (dsum) /* Check if any output for this disk,
and if not, display d: None a /

l
/* Print either number or blanks */
for (userno = 0? /* Start with user 0 */

userno < 16? /* Until user 15 «/
userno++) /* Next user number **/

i

if (disk_mapCdisklCusernol)
printf("%4d",disk_mapCdisk3Cuserno])?

else

else
>

{
pr i n t f (
>

pr i n t f (" ")?1
/* No output for this disk */

" — None —

pr i n t f (" 7.4d */.4d "»disk _map Z d i s k 1 Z USED_C0UNT 3, d i s k _map C d i s k 3 C FREE_C0UNT 3) ?
i

3 /* End dm_disp */

t

get_dpb(disk) /* Get disk parameter block address */

/* This function returns the address of the disk parameter
block (located in the BIOS). */

/* Entry parameters */
char disk; /* Logical disk for which DPB address is needed * /

/* Exit parameters
0 = Invalid logical disk
NZ = Pointer to disk parameter block

*/

f
if (biosh(SELDSK,disk) == 0) /* Make BIOS SELDSK call */

return 0; /* Invalid disk */

Figure 11-1. (Continued)

384 The CP/M Programmer’s Handbook

bdos(SETDISK,disk) ;
return bdos(GETDPARM);

} /« End of get_dpb «/

/« Use BDOS SETDISK function */
/« Get the disk parameter block «/ JU

/« Code table functions «/

/« Most programs that interact with a user must
accept parameters from the user by name and translate
the name into some internal code value.
They also must be able to work in reverse, examining
the setting of a variable, and determing what (ASCII
name) it has been set to.

An example is setting baud rates. The user may want to
enter "19200," and have this translated into a number
to be output to a chip. Alternatively, a previously
set baud rate variable may have to be examined and the
string "19200" generated to display its current
setting to the user.

A code table is used to make this task easier.
Each element in the table logically consists of:

A code value (unsigned integer)
An ASCII character string (actually a pointer to it) «/

ct_init(entry,code,string) /« Initialize code table «/

/« This function initializes a specific entry in a code table
with a code value and string pointer.

"); NOTE: By convention, the last entry in a given
code table will have a code value of CT_SNF (string not found). «/

/« Entry parameters */
struct _ct «entry;
int code;
char «string;

/« Exit parameters
N o n e .

»/

{
entry -> _ct_code = code;
entry -> _ct_sp = string;
) /* end of ct_inti «/

/« Set _ct_code «/
/« Set string pointer «/

/« Pointer to code table entry «/
/« Code value to store in entry «/
/« Pointer to string for entry «/

unsigned
ct_parc(table,string) /« Parameter - return code «/

/* This function searches the specified table for a
matching string, and returns the code value that corresponds to it.
If only one match is found in the table, then this function returns
that code value. If no match or more than one match is found,
it returns the error value, CT_SNF (string not found).
This function is specifically designed for processing
parameters on a command tail.
Note that the comparison is done after conversion to uppercase
(i.e. "STRING" matches "string"). A substring compare is used so
that only the minimum number of characters for an unambiguous
response need be entered. For example, if the table contained:

Code Value
1 "APPLES"
2 "ORANGES"
3 "APRICOTS"

A response of "0" would return code = 2, but "A" or "AP" would
be ambiguous. "APR” or "APP" would be required. «/

struct _ct «table; /« Pointer to table «/
char «string; /« Pointer to key string «/

V

w

Figure 11-1. (Continued)

Chapter 11: Additional Utility Programs 385

int meode;
int mcount;

/« Matched code to return «/
/« Count of number of matches found «/

meode = CT_SNF;
mcount = 0;

/« Assume error «/
/« Reset match count «/

while(table -> _ct code != CT_SNF) /» Not at end of table «/
{
/« Compare keyboard response to table entry using

uppercase substring compare- */
if (usstrcmp(table -> _ct_sp,string) == 0)

C
mcount++; /* Update match count «/
mcode = table -> _ct_code; /« Save code */
>

table++; /« Move to next entry «/
J

if (mcount == 1)
return mcode;

else
return CT_SNF;

/« Only one match found «/
/« Return matched code «/
/« Illegal or ambiguous «/

} /* End ct_parc */

unsigned
ct_code(table,string) /* Return code for string «/

/« This function searches the specified table for the
specified string. If a match occurs, it returns the
corresponding code value. Otherwise it returns CT_SNF
(string not found).
Unlike ct_parc, this function compares every character in the
key string, and will return the code on the first match found. «/

/* Entry parameters */
struct _ct «table; /* Pointer to table */
char «string; /« Pointer to string «/

/« Exit parameters
Code value — if string found
CT_SNF — if string not found

«/

{
whileitable -> _ct_code != CT_SNF) /« For all entries in table «/

i
if (ustremp(table -> _ct_sp,string) == 0) /« Compare strings «/

return table -> _ct_code; /« Return code «/
table++; /« Move to next entry «/
>

return CT_SNF; /« String not found «/

} /« End ct_code «/

X

ct_disps(table) /« Displays all strings in specified table «/

/« This function displays all of the strings in a given table.
It is used to indicate valid responses for operator input. «/

/« Entry parameters «/
struct _ct «table; /« Pointer to table «/

/« Exit Parameters
None.

«/

{
while(table -> _ct_code != CT_SNF) /» Not end of table «/

C
pr i n t f ("\n\t\t%s",table -> _ct_sp); /* Print string »/
table++; /« Move to next entry «/
>

y

Figure 11-1. (Continued)

386 The CP/M Programmer’s Handbook

putchar('\n')?

} /» End of ct_disps */

/« Add final return «/

/*===== ========================== ================= === = = =:= ==== ==:=*/
ct_index(table,string) /» Returns index for a given string */

/» This function searches the specified table, and returns
the INDEX of the entry containing a matching string.
All characters of the string are used for the comparison,
after they have been made uppercase. «/

/» Entry parameters «/
struct _ct «table; /» Pointer to table «/
char »string; /« Pointer to string «/

/» Exit parameters
Index of entry matching string, or
CT_SNF if string not found.

C
int index; /» Current value of index «/

index = 0; /» Initialize index «/

while(table -> _ct_code != CT_SNF) /» Not at end of table »/

t
if (ustrcmp(table -> _ct_sp,string) == 0)

return index; /» Return index »/
table++; /» Move to next table entry »/
index++; /» Update index »/
>

return CT_SNF; /» String not found »/

char «ct_stri(table,index) /» Get string according to index »/

/» This function returns a pointer to the string in the
table entry specified by the

/» Entry parameters »/
struct _ct «table;
int index;

{
struct _ct «entry;

entry = tablet index!;
return entry -> _ct_sp;

index. «/

/* Pointer to table «/
/» Index into table »/

/» Entry pointer «/
/« Point to entry «/
/« Return pointer to string «/

} /» End of ct_stri »/

aa

char «ct__strc(table,code) /« Get string according to code value »/

/» This function searches the specified table and returns a
pointer to the character string in the entry with the
matching code value or a pointer to a string of "unknown"
if the code value is not found. «/

/« Entry parameters «/
struct _ct «table; /« Pointer to table »/
unsigned code; /» Code value */

€
while(table -> _ct_code != CT_SNF)

f
if (table -> _ct_code == code)

return table -> _ct_sp
table++;

/» Until end of table «/

/» Check code matches */
/« Yes, return ptr. to str. «/
/* No, move to next entry «/

bb

r v

Figure 11-1. (Continued)

Chapter 11: Additional Utility Programs 387

} ' V
return "Unknown";
}

/* Bit vector functions */

/ * These functions manipulate bit vectors. A bit vector is a group
of adjacent bits, packed eight per byte. Each bit vector has the
structure defined in the LIBRARY.H file.

Bit vectors are used primarily to manipulate the operating
system's allocation vectors and other values that can best
be represented as a series of bits. */

bv_make(bv,bytes) /* Make a bit vector and clear to zeros */

/* This function uses C's built-in memory allocation, alloc,
to allocate the necessary amount of memory, and then
sets the vector to zero-bits. */

/* Entry parameters */
struct Jbv *bv; /* Pointer to a bit vector */
unsigned bytes; /* Number of bytes in bit vector */

/* Exit parameter
NZ = vector created
0 = insufficient memory to create vector

*/

C
i f (!(bv -> bv_bits = alloc(bytes)))

return 0;

bv -> bv_bytes = bytes;
bv -> bv_end = bv -> bvjbits + bytes;

bv_f ill(bv,0);
return 1;

} /* End bv_make */

/* Request memory */
/* Request failed */

/* Set length */
/* Set pointer to end */

/* Fill with 0's */

c c

bv _ f i 11(bv,value) /* Fill bit vector with value */

/* This function fills the specified bit vector with the
specified value.
This function exist only for consistency's sake and
to isolate the main body of code from standard
functions like setmem. */

/* Entry parameters */
struct _bv *bv; /* Pointer to bit vector */
char value; /* Value to fill vector with */

/* Exit parameters
None.

*/

{
/* address length value «/
setmem(bv -> bv_bits,bv -> bv_bytes,value);
}

bv_set(bv,bitnum) /* Set the specified bit number */

/* This function sets the specified bit number in the bit vector
to one-bit. */

/* Entry parameters */
struct _bv #bv; /* Pointer to bit vector */
unsigned bitnum; /* Bit number to be set */

d d

e e

Figure 11-1. (Continued)

388 The CP/M Programmer’s Handbook

/* Exit parameters
None.

«/

€
unsigned byte_offset? /« Byte offset into the bit vector «/

if ((byte_offset = bitnum >> 3) > bv -> bv_bytes)
return 0; /« Bitnum is "off the end" of the vector «/

/« Set the appropriate bit in the vector. The byte offset
has already been calculated. The bit number in the byte
is calculated by AND ing the bit number with 0x07.
The specified bit is then OR ed into the vector «/

bv -> bv_bitsCbyte_offset] != (1 << (bitnum S. 0x7))?

return 1? /« Indicate completion «/

/« End of bv_set «/

bv_test(bv,bitnum) /« Test the specified bit number «/

/* This function returns a value that reflects the current
setting of the specified bit. «/

/« Entry parameters «/
struct _bv »bv? /* Pointer to bit vector «/
unsigned bitnum; /* Bit number to be s e t . «/

/» Exit parameters
None.

»/

unsigned byte_offset? /» Byte offset into the bit vector »/

if ((byte_offset = bitnum >> 3) > bv -> bv_bytes)
return 0; /» Bitnum is "off the end" of the vector «/

/« Set the appropriate bit in the vector. The byte offset
has already been calculated. The bit number in the byte
is calculated by AND ing the bit number with 0x07.
The specified bit is then OR ed into the vector */

return bv -> bv_bitsCbyte_offset] St (1 << (bitnum S< 0x7))?

} /» End of bv -t es ts */

/*==*/
bv_nz(bv) /* Test bit vector nonzero */

/* This function tests each byte in the specified vector,
and returns indicating whether any bits are set in
the vector. */

/* Entry parameters */
struct _bv *bv? /* Pointer to bit vector */

/* Exit Parameters
NZ = one or more bits are set in the vector
0 = all bits are off

*/

/* Pointer to bits in bit vector */
€
char «bits?

bits = bv -> bv_bits;

while (bits != bv -> bv_end)
{
if (*bits++)

return bits— ?

/« Set working pointer «/

/« For entire bit vector «/

/ « I f nonzero «/
/« Return pointer to NZ byte «/

gg

Figure 11-1. (Continued)

Chapter 11: Additional Utility Programs 389

j
return O? /« Indicate vector is zero «/

> /« End of b y _ n z */ Jgg

bv_and(bv3,bvl,bv2) /* bv3 = bvl & bv2 «/

/« This function perforins a boolean AND between the bytes
of bit vector 1 and 2, storing the result in bit vector 3. «/

/« Entry parameters «/
struct _bv «bvl; /«
struct _bv «bv2; /«

/« Exit parameters «/
struct _bv «bv3; /«

C
char «bitsl, «bits2, «bits3; /«

bitsl = bvl -> bv_bits; /«
bits2 = bv2 -> bv_bits;
bits3 = bv3 -> bv_bits;

Pointer to input bit vector «/
Pointer to input bit vector «/

Pointer to output bit vector »/

Working pointers to bit vectors «/

Initialize working pointers «/

/* AND ing will proceed until the end of any one of the bit
vectors is reached «/

while (bitsl != bvl -> bv_end
bits2 != bv2 -> bv_end &&
bits3 != bv3 -> bv_end)
{

*bits3++ = «b i t s 1 ++• & «bits2++; /« bv3 = bvl & bv2 */
1

} /« End of b v _ a n d */

hh

bv_or<bv3,bvl,bv2) /« bv3 = bvl or bv2 «/

/* This function performs a boolean inclusive OR between the bytes
of bit vectors 1 and 2, storing

/« Entry parameters «/
struct _bv «bvl; /«
struct _bv «bv2; /«

/« Exit parameters «/
struct _bv «bv3; /«

i
char «bitsl, «bits2, «bits3; /«

bitsl = bvl -> bv_bits; /«
bits2 = bv2 -> bv_bits;
bits3 = bv3 -> bv_bits;

the result in bit vector 3. «/

Pointer to input bit vector »/
Pointer to input bit vector «/

Pointer to output bit vector «/

Working pointers to bit vectors «/

Initialize working pointers «/

/« The OR ing will proceed until the end of any one of the bit
vectors is reached. «/

while (bitsl »= bvl -> bv_end &&
bits2 != bv2 -> bv_end &&
bits3 != bv3 -> bv_end)
C

*bits3++ = «bitsl++ I «bits2++; /« bv3 = bvl or bv2 «/
>

J /« End of bv _o r «/

ii

/*=========:=============:=== ====== = ======= ====:=== === =============«/
bv_disp(title,bv) /« Bit vector display «/
/K===a===s==:s=s=ss=s==s====s=:===s=s=====ss======sr====== :====:=—«/

/* This function displays the contents of the specified bit vector
in hexadecimal. It is normally only used for debugging. «/

/« Entry parameters «/
char «title; /« Title for the display «/
struct _bv «bv; /« Pointer to the bit vector «/

Figure 11-1. (Continued)

390 The CP/M Programmer’s Handbook

/« Exit parameters
None.

*/

Working pointer */
Count used for formatting display */
Count for processing bits in a byte */

/* Value to be displayed */

/* Display title */

/* Set working pointer */
/* Initialize count */

/* For the entire vector */

/* Check if new line */
/* Display bit number */

pr in tf("\nX4d : ",byte_count << 3);

byte_value = *bits++; /* Get the next byte from the vector */

for <bit_count = 0; bit count < 8? bit_count++)
{
/* Display the leftmost bit, then shift the value

left one bit */
if (bit_count == 4) putcharC' '); /* Separator */
putc ha r((byte_value & 0x80) ? ' I ' : '0');
byte_value <<= 1; /* Shift value left */
>

p r i n t f C "); /* Separator */

byte_count++j /* Update byte count */
}

> /» E n d o f b v _ d i s p * /

/« End of LIBRARY.C */

char «bits; /»
unsigned byte_count; /*
unsigned bit_count; /«
char byte_value;

pr intf < "\nBit Vector : 5Cs", title);

bits = bv -> bv_bits;
byte_count = 0;

while (bits != bv -> bv_end)
{
if (byte_count X 5 «* 0)

< w

jj

Figure 11-1. (Continued)

Associated with the library of functions is another section of source code called
“LIBRARY.H”, shown in Figure 11-2. This “header” file must be included at the
beginning of each program that calls any of the library functions.

For reasons of clarity, this chapter describes the simplest functions first,
followed by the more complex, and finally by the utility programs that use the
functions.

Several functions in the library and some definitions in the library header are
not used by the utilities shown in this chapter. They have been included to illustrate
techniques and because they might be useful in other utilities you could write.

#define LIBVN “1.0" /* Library version number */

/* This file contains groups of useful definitions.
It should be included at the beginning of any program
that uses the functions in LIBRARY.C. */

/« Definition to make minor language modification to C. »/
#define short char /* Short is not supported directly */

Figure 11-2. LIBRARY.H, code to be included at the beginning of any program that
calls LIBRARY functions in Figure 11-1

Chapter 11: Additional Utility Programs 391

/* One of the functions (bvjmake) in the library uses the BDS C
function, alloc, to allocate memory. The following definitions
are provided for alloc. */

struct _header
€
struct _header *_ptr
unsigned _size;
}?

struct _header _base;
struct _header *_allocp»

/* Header for block of memory allocated */

/* Pointer to the next header in the chain */
/* Number of bytes in the allocated block */

/* Declare the first header of the chain */
/* Used by a l l o c O and f r e e O functions */

b

/* BDOS function call numbers */

•define SETDISK 14 /* Set (select) disk */
«define SEARCHF 17 /* Search first */
»define SEARCHN 18 /* Search next */
«define DELETEF 19 /* Delete file */
«define GETDISK 25 / * Get default disk (currently logged in)
«define SETDMA 26 /* Set DMA (Read/Write) Address */
«define QETDPARM 31 /* Get disk parameter block address */
«def ine OETUSER 32 /* Get current user number */
•define SETUSER 32 /* Set current user nlumber */

C

/« Direct BIOS calls
These definitions are for direct calls to the BIOS.
WARNING: Using these makes program less transportable.
Each symbol is related to its corresponding jump in the
BIOS jump vector.
Only the more useful entries are defined. */

«define CONST 2 /* Console status */
«define CONIN 3 /* Console input */
«define CONOUT 4 /* Console output */
«def ine LIST 5 /* List output */
«define AUXOUT 6 /* Auxiliary output */
«define AUXIN 7 /* Auxiliary input */

«define HOME 8 /* Home disk */
•define SELDSK 9 /* Select logical disk */
•define SETTRK 10 /* Set track */
•define SETSEC 11 / * Set sector */
•def ine SETDMA 12 /* Set DMA address */
•define DREAD 13 /* Disk read */
•define DWRITE 14 /* Disk write */
•define LISTST 15 /* List status */
•define SECTRN 16 /* Sector translate */
•define AUXIST 17 /* Auxiliary input status */
•define AUXOST 18 /* Auxiliary output status */

/* "Private" entries in jump vector «/
•define CIOINIT 19 /* Specific character I/O initialization
•define SETDOG 20 /* Set watchdog timer */
•define CBGADDR 21 /* Configuration block, get address */

/* Definitions for accessing the configuration block */

•define CB GET 21 /*
•define DEV_INIT 19 /*

•define CB DATE 0 /*
•define CB TIMEA 1 / *
•define CB DTFLAGS 2 /*
•define TIME SET 0x01 /*
•define DATE_SET 0x02 /*

•define CB_FIP 3 /*
•def ine CB_SUM 4 /*

•define CB Cl 5 /*
•define CB CO 6 / *
•define CB_AI 7 / *
•define CB AO 8 / *

BIOS jump number to access routine */
BIOS jump to initialize device */

Date in ASCII */
Time in ASCII */
Date, time flags */
This bit NZ means date has been set */
This bit NZ means time has been set */

Forced input pointer */
System start-up message */

Console input */
Console output */
Auxiliary input */
Auxiliary output «/

e

Figure 11-2. (Continued)

392 The CP/M Programmer’s Handbook

♦define CB LI 9 /*
♦define CBJ-0 10 /*

♦define CB DTA 11 /*
♦define CB Cl224 12 /*
♦def ine CB_RTCTR 13 /*

♦define CB_WDC 14 /*
♦define CB_WDA 15 /*

♦define CB FKT 16 /*
♦def ine CB_C0ET 17 /*

♦define CB DO IS 18 /*
♦def ine CB_D0_BRC 19 /*

♦define CB_D1_IS 20 /*
♦define C B _ D 1_BRC 21 /*

♦define CB_D2_IS 22 /*
♦define CB_D2_BRC 23 /*

♦def ine CB IV 24 /*
♦def ine CB LTCBO 25 /*
♦def ine CBJ-TCBL 26 /*

♦define CB PUBF 27 / *

♦def ine CB_MCBUF 28 /*
♦define CB_P0LLC 29 /*

List input */
List output */

Device table addresses */
Clock 12/24 format flag */
Real time clock tick rate (per

Watchdog count */
Watchdog address */

Function key table */
Console output escape table */

Device 0 initialization stream
Device 0 baud rate constant */

Device 1 initialization stream
Device 1 baud rate constant */

Device 2 initialization stream
Device 2 baud rate constant */

Interrupt vector */
Long term config. block offset
Long term config. block length

Public files flag */
Multi-command buffer «/
Polled console flag */

second)

*/

*/

#/

*/
* /

* /

e

/* Device numbers and names for physical devices */
/« NOTE* Change these definitions for your computer system */

♦define T_DEVN 0
♦define M_DEVN 1
♦define P_DEVN 2

/* Terminal */
/* Modem */
/* Printer */

♦define MAXPDEV 2 /* Maximum physical device number */

/* Names for the physical devices */

♦define PN_T "TERMINAL"
♦define PN_M "MODEM"
♦define PN_P "PRINTER"

/* Structure and definitions for function keys */

♦define FK_ILENGTH 2 /*

♦define FK LENGTH 16 /*
♦def ine FKJENTRIES 18 /*

struct fkt
C
char fk_inputCFK_

/*

.1 LENGTH I t
char fk_output CFK_LENGTH3*
char fk_term?
1*

No. of chars, input when func. key pressed
NOTE* This does NOT include the ESCAPE. */
Length of string (not including fk_term) */
Number of function key entries in table */

Function key table */

/* Lead-in character is not in table «/
/* Output character string */
/* Safety terminating character */

f

g

h

/* Definitions and structure for device tables */

/* Protocol bits */
/* Note: if the most significant bit is

set = i, then the set_proto function
will logically OR in the value. This
permits Input DTR to co-exist with
XON or ETX protocol. */

♦define DT_ODTR 0x8004
♦define DTJDXON 0x0008
♦define DT_0ETX 0x0010

/* Output DTR high to send (OR ed in) */
/* Output XON */
/* Output ETX/ACK */

♦define DT_IRTS 0x8040 /* Input RTS (OR-ed in) */
♦define DT_IXON 0x0080 /* Input XON */

Figure 11-2. (Continued)

Chapter 11: Additional Utility Programs 393

r V
♦define ALLPROTO OxDC /* All protocols combined */

struct _dt /* Device table */

char dt flC143; /* Filler */
char dt_stl; /* Status byte 1 — has protocol flags */ 1

char dt st2; /* Status byte 2 */
unsigned dt f2; /* Filler */
unsigned dt etxml; /* ETX/ACK message length */
char dt_f3C123;
1 ;

/* Filler */

/* Values returned by the comp_fname (compare file name) */

♦define NAME EQ 0 /* Names equal */ j♦define NAME LT 1 /* Name less than mask »/
♦define NAMEJ3T 2 /* Name greater than mask */
♦define NAME NE 3 /* Name not equal (and comparison ambiguous) **/

/* Structure for standard CP/M file control block */

♦define FCBSIZE 36 /« Define the overall length of an FCB */

struct _fcb

short fcb disk; /* Logical disk (0 = default) */
char fcb fnameClil' /* File name, type (with attributes) «/
short fcb extent; /* Current extent */
unsigned fcb si2; /* Reserved for CP/M */ k
short fcb_reccnt; /* Record count used in current extent */
union /* Allocation blocks can be either */

{ /* Single or double bytes »/
short fcbab_shortC163 ;
unsigned fcbab_longC83;
} _fcbab ;

short fcb_currec; /» Current record within extent «/
char fcb_ranrecC33;
1;

/* Record for random read/write */

/# Parameter block used for calls to the directory management routines */

♦define DIR_BSZ 128 /* Directory buffer size «/

struct _dirpb

short dp_open; / * 0 to request directory to be opened */
short dp_end; /* NZ when at end of directory */
short dp write; /* NZ to write current sector to disk */
struct _dir *dp_entry; /* Pointer to directory entry in buffer */
char dp buffer CDIR_BSZ3; /* Directory sector buffer «/

1

char dp_disk; /* Current logical disk »/
int dp_track; /» Start track */
int dp_sector; /« Start sector «/
int dp_nument; /* Number of directory entries */
int dp_entrem; /* Entries remaining to process «/
int dp_sptrk; /» Number of sectors per track */
int dp_nabpde; /» Number of allocation blocks per dir. entry */
unsigned dp_nab; / * Number of allocation blocks */
int dp absize;
1;

/* Allocation block size (in Kbytes) */
—

/* The err_dir function is used to report errors found by the
directory management routines, open_dir and rw_dir.
Err_dir needs a parameter to define the operation being
performed when the error occurred. The following definitions

mrepresent the operations possible. */

♦define W DIR 0 /* Writing directory */
♦define R DIR 1 /* Reading directory */
♦define 0 DIR 2 /* Opening directory »/

Figure 11-2. (Continued)

394 The CP/M Programmer’s Handbook

/* Disk parameter block maintained by CRM */

struct _dpb
{
unsigned dpb_sptrk;
short dpb_bshift;
short dpb_bmaskj
short dpb_emask;
unsigned dpb_maxabn;
unsigned dpb_maxden;
short dpb_rabOj
short dpb_rabl;
unsigned dpb_diskca?
unsigned dpb_trkoffj
>;

/* Sectors per track */
/* Block shift */
/* Block mask */
/* Extent mask »/
/* Maximum allocation block number */
/* Maximum directory entry number */
/* Allocation blocks reserved for */
/* directory blocks */
/* Disk changed workarea */
/* Track offset */

n

/* Disk directory entry format * /

struct dir C
char de_userno;
char de_fnameC113
int de_extent;
int de_reccntj

union
C

/* User number or 0xE5 if free entry */
/* File name C83 and type C33 */
/* Extent number of this entry */
/* Number of 128-byte records used in last

allocation block */
/* Allocation blocks can be either */
/* single or double bytes */

short de _shortC163j
unsigned de_longC83;
1 _dirab;

o

/* Disk request parameters for BIOS-level read/writes */

struct _drb
i
short dr_diskj
unsigned dr_trackj
unsigned dr_sector
char *dr_buffer;
} ;

/* Logical disk A = 0, B = 1... */
/* Track (for SETTRK) */
/* Sector (for SETSEC) */
/* Buffer address (for SETDMA) */

P

/* Search control block used by directory scanning functions */

struct _scb
€
short scb_userno; /*
char scb_fnameC113 ; /*
short scb_extent? /*
char unusedC193; /*

short scb_length; /*
short scb_diskj /*
unsigned scb_adisks; /*

User number(s) to match */
File name and type */
Extent number */
Dummy bytes to make this look like

a file control block */
Number of bytes to compare */
Current disk to be searched */
Bit map of disks to be searched.

the rightmost bit is for disk A:. */

/* Code table related definitions */

#def ine CT_SNF OxFFFF /* String not found */

struct _ct /* Define structure of code table */
{
unsigned _ct_code; /* Code value */
char *_ct_sp? /* String pointer */
U

Figure 11-2. (Continued)

Chapter 11: Additional Utility Programs 395

/* Structure for bitvectors */

struct _b v

unsigned bv_bytes; /* Number of bytes in the vector
char *bv_bits; /* Pointer to the first byte in the vector */ S
char *bv end;
} ;

/* Pointer to byte following bit vector */

/* End of LIBRARY.H */ -

Figure 11-2. (Continued)

Library Functions

This section describes the library functions and the sections from the header
file that must be included at the beginning of each utility program.

A Minor Change to C Language
One minor problem with the BDS C Compiler is that it does not support

“short” integers, or integers that are only a single byte long. It is convenient to
declare certain values as short to serve as a reminder of the standard type
definition. Therefore, the BDS C compiler must be “fooled” by declaring these
values to be single characters. To do this, the library header file contains the
declaration
#define short char.

shown in Figure 11-2, section a.
The “#define” tells the first part of the C compiler, the preprocessor, to

substitute the string “char” (which declares a character variable) whenever it
encounters the string “short” (which would ordinarily declare a short integer in
standard C).

Note that character strings enclosed in “/*” and “*/ ” are regarded as comments
and are ignored by the compiler.

BDOS Calls
The standard library of functions that comes with the BDS C compiler

includes a function to make BDOS calls, called “bdos.” It takes two parameters,
and a typical call is of the following form:
bdos(c,de):

The “c” parameter represents the value that will be placed into the C register. This
is the BDOS function code number. The “de” is the value that will be placed in the
DE register pair.

396 The CP/M Programmer’s Handbook

The library header contains definitions (#define declarations) for BDOS func
tions 14 through 32, making these functions easier to use (Figure 11-2, c). Function
32 (Get/Set Current User Number) has two definitions; the “de” parameter is used
to differentiate whether a get or a set function is to be performed.

BIOS Calls
The BDS C standard library also contains two functions that make direct

BIOS calls. These are “bios” and “biosh.” They differ only in that the bios function
returns the value in the A register on return from the BIOS routine, whereas biosh,
as its name implies, returns the value in the HL register pair. Examples of their use
are
b ios(j ump_number,be);

and
biosh Cj ump_number,be,de);

Both functions take as their first parameter the number of the jump instruction
in the BIOS jump vector to which control is to be transferred. For example, the
console-status entry point is the third JM P in the vector. Numbering from 0, this
would be jump number 2.

The library header file contains #defines for BIOS jumps 2 through 21 (Figure
11-2, d). The last group of these #defines (19 through 21) is for the “private”
additions to the standard BIOS jump vectors described in Chapter 8.

Remember, though, that using direct BIOS calls makes programs more diffi
cult to move from one system to another.

BIOS Configuration Block Access
As you may recall, the configuration block is a collection of data structures in

the BIOS. These structures are used either to store the current settings of certain
user-selectable options, or to point to other important data structures in the BIOS.

One of the “private” jumps appended to the standard BIOS jump vector
transfers control to a routine that returns the address in memory of a specified data
structure. For example, if a utility program needs to locate the word in the BIOS
that determines from which physical device the console input is to read, it can
transfer control to jump 21 in the BIOS jump vector (actually the 22nd jump) with
a code value of 5 in the C register. This jump transfers control to the CBGet-
Address code, which on its return will set HL to the address of the console input
redirection vector. The utility program can then read from or write into this
variable. The library header file contains #define declarations relating the code
values to mnemonic names (Figure 11-2, e).

You will need to refer to the source code in Figure 8-10 to determine whether
the address returned by the BIOS function is the address of the data element or the

Chapter 11: Additional Utility Programs 397

address of a higher-level table that in turn points to the data element.
In order to access the current system date, for example, you would include the

following code:
char *ptr_to_date; /* declare date pointer*/
ptr_to_date = biosh (CB__DATE> ? /* get address */

The ptr_to_date can then be used to access the date directly.
During initial debugging of a utility, it is useful to be able to intercept all such

accesses to the configuration block, partly to reassure yourself that the utility
program is working as it should, and partly to ensure that the BIOS routine is
returning the correct addresses to the data structures. Therefore, the utility library
contains a function, “get_cba,” that gets a configuration block address (Figure
11-1, a).

At first, it appears that get_cba is declared as a function that returns a pointer
to characters. This is not strictly true. Sometimes the address it returns will point
to characters, sometimes to integers, and sometimes to structures (such as the
function key table).

The “printf” instruction has been left in the function in anticipation of debug
ging a utility. If you need to see some debug output whenever the get_cba function
is used, delete the “/*” and “*/ ” surrounding the “printf” and recompile the library.

BIOS Function Key Table Access
The BIOS shown in Figure 8-10 contains code to recognize when an incoming

escape sequence indicates that one of the terminal’s function keys has been
pressed. Instead of returning just the escape sequence, the console driver injects a
previously programmed string of characters into the console input stream. For
example, on a DEC VT-100 terminal, when the PFl function key is pressed, the
terminal emits the following character sequence: ESCAPE, “O”, “P”. The function
key table contains the “OP” and a OOH-byte-terminated string of characters to be
injected into the console input stream. In Figure 8-10, the example string is
“FUNCTION KEY 1”, l i n e FEED. The library header file contains a declaration
for the structure of the function key table (Figure 11-2, h).

Note the use of “#define” to declare the length of the incoming characters
emitted by the terminal as well as the length of the output string.

In order to access a function key table entry, you must declare a pointer to a
“_fkt” structure like this:
struct _fkt *ptr_to_fkt; /* Declare pointer */
ptr_to_fkt = get_cba(CB_FKT>? /* Set pointer */
printf(“Display the first string : Xs",

ptr_jto_fkt -> fk_output)?
++ptr_to_fkt? /* Move to next entry */

The get_cba function is used to return the address of the first entry in the
function key table and set a pointer to it. Then the printf function (part of the

398 The CP/M Programmer’s Handbook

standard BDS C library) is used to print out the first string, which gets substituted
for the “%s” in the quoted string. Note that the statement

v
++ptr_to_fkt

does not just add one to the pointer to the function key table—it adds whatever it
takes to move the pointer to the next entry in the table.

BIOS Device Table Access
The device tables are important structures for the serial devices served by the

console, auxiliary, and list device drivers in the BIOS. They are declared at line
1500 in Figure 8-10.

The get—cba function does not return a pointer to a specific device table, but a
pointer to a table of device table addresses. Each entry in the address table
corresponds to a specific device number. If there is no device table for a specific
device number, then the corresponding entry in the table will be set to zero, the
library header file contains definitions for the device table (Figure 11-2, i).

The device tables contain, among other things, the current serial line protocols
used to synchronize the transmission and reception of data by the device drivers
and the physical devices. An example utility, PROTOCOL, is shown later in the
chapter. The example #define declarations and structure definition shown here are
modeled on the requirements of this utility. The only relevant bytes are the two
status bytes dt_st 1 and dt_st2 and the message length used with the ETX/ACK
protocol, dt_etxml. The #defines shown are for the specific bits in the device table’s
status bytes. The PROTOCOL utility uses the most significant bit to indicate
whether a given protocol setting can coexist with others.

To access these fields, use the following code:
struct _ppdt

{
char »peltC163;
} »ppdt;

struct _dt »dt;

/» Array of 16 pointers to device tables »/
/» Pointer to array of 16 pointers »/
/» Pointer to device table »/

ppdt = get__cba(CB_DTA); /» Set pointer to array of pointers »/
dt = ppdt -> pdtCdevice_no3; /» Set pointer to specified device

table »/

if (! dt)
printf("\nError - no device table for this device.");

dt -> dt_etxml * 0; /» Clear ETX message length »/

BIOS Disk Parameter Block Access
Several of the utility programs shown in this chapter must access the file

directory on a given logical disk. The disk parameter block (DPB) indicates the
size and location of the file directory. The library header contains a structure
definition that describes the DPB (Figure 11-2, n).

To locate the DPB, you can make a direct BIOS call to the SELDSK routine,
which returns the address of the disk parameter header (DPH). You then can
access the DPB pointer in the DPH. Alternatively, using the BDOS, you can make
the required disk the default disk and then request the address of its DPB. The
code for the latter method is shown in the get_dpb function included in the utility
library (Figure 11-1, u).

The get_dpb function uses a BIOS SELDSK function first to see if the
specified disk is legitimate. Only then does it use the BDOS.

Chapter 11: Additional Utility Programs 399

Reading or W riting a Disk Using the BIOS

When you write a program that uses direct BIOS calls, you increase the
possibility of problems in moving the program from one system to another.
However, in certain circumstances it is necessary to use the BIOS. Reading and
writing the file directory is one of these; the BDOS cannot be used to access the
directory directly. The library header contains a structure declaration for a
parameter block that contains the details of an “absolute” disk read or write
(Figure 11-2, p).

Note the pointer to the 128-byte data buffer used to hold one of CP/M’s
“records.”

The disk read and write functions are rd_disk (Figure 11-1, k) and wrt_disk
(Figure 11-1,1). Both of them take a_drb as an input parameter, and both call the
set-disk function to make the individual BIOS calls to SELDSK, SETTRK, and
SETSEC.

Of special note is the code in set-disk (Figure 11-1, m) that converts a logical
sector into a physical sector using the sector translation table and the SECTRAN
entry point in the BIOS.

File Directory Entry Access
All of the utility programs that access a disk directory share the same basic

logic regardless of their specific task. This logic can be described best in pseudo
code:

while (not at the end of the directory)
{
access the next directory entry
if (this entry matches the current search criteria)

{
process the entry
1

There are two ways of implementing this logic. The first uses the BIOS to read
the directory. Entries are presented to the utility exactly as they occur in the file

400 The CP/M Programmer’s Handbook

directory. The second uses the BDOS functions Search First and Search Next and
accesses the directory file-by-file rather than by entry. This latter method is more
suited to utilities that process files rather than entries. The ERASE utility, de
scribed later in this chapter, illustrates this second method.

Three groups of functions are provided in the library: to access the next entry
in the directory, to match the name in the current entry against a search key, and to
assist with processing the directory.

Directory Accessing Functions
A number of functions involve access to the file directory. The first group of

such functions performs the following:
get_nde (get next directory entry; Figure 11-1, n)

This function returns a pointer to the next directory entry, or returns zero if
the end of the directory has been reached.

open_dir (open directory; Figure 11-1, o)
This function is called by get_nde to open up a directory for processing.

rw_dir (read/write directory; Figure 11-1, p)
This function reads or writes the current directory sector.

err_dir (error on directory; Figure 11-1, q)
This general-purpose routine displays an error message if the BIOS indi
cates that it had problems either reading or writing the directory.

All of these functions use a directory parameter block to coordinate their
activity. The library header contains the definitions for this structure (Figure 11-2,
1), as well as #define declarations for operation codes used by the directory
accessing functions (Figure ll-2r m).

Before calling get_nde, the calling program needs to set dp_open to zero
(forcing a call to open_dir) and the dp_disk field to the correct logical disk. The
open_dir function sets up all of the remaining fields, using get_dpb to access the
disk parameter block for the disk specified in dp_disk.

Of the remaining flags, dp_end will be set to true, when the end of the directory
is reached, and dp_write must be nonzero for rw_dir to write the current sector
back onto the disk.

The get_nde function includes all of the necessary logic to move from one
directory entry to the next, reading in the next sector when necessary, and writing
out the previous sector if the dp_write flag has been set to a nonzero value by the
calling program. It also counts down on the number of directory entries processed,
detecting and indicating the end of the directory.

The code at the beginning of the function calls open_dir if the dp_open flag is
false. Note the code at the end of open_dir that sets the number of allocation blocks
per directory entry (dp_nabpde). This number is computed from the maximum

Chapter 11: Additional Utility Programs 401

allocation block number in the disk parameter block. If it is larger than 255, each
allocation block must occupy a word, and there will be eight blocks per directory
entry. If there are 255 or fewer allocation blocks, each will be one byte long and
there will be 16 per entry. The allocation block size, in Kbytes, is computed from a
simple formula.

In the early stages of debugging utilities, comment out the line that makes the
call to wrt_disk. This will prevent the directory from being overwritten. You then
can test even those utilities that attempt to erase entries from the directory without
any risk of damaging any data on the disk.

The last function in this group, err_dir, is a common error handling function
for taking care of errors while reading or writing the directory.

Directory Matching Functions

The second group of functions that access the file directory matches each direc
tory entry against specific search criteria. These include the following functions:

setscb (set search control block; Figure 11-1, r)
A search control block (SCB) is a structure that defines the entries in the
directory that are to be selected for processing.

comp-fname (compare file name; Figure 11-1, f)
This function compares the file name in the current directory entry with the
one specified in the search control block.

The library header contains the structure definition for the search control
block (Figure 11 -2, q). This SCB is a hybrid structure. The first part of it is a cross
between a file control block (FCB) and a directory entry. The last three fields,
scb_length, scb_disk, and scb_adisks, are peculiar to the search control block.
Note that its overall length is the same as an FCB’s so that the standard BDS C
function seLicb can be used. This function sets the file name and type into an
FCB, replacing “*” with as many “?” characters as are required, and clears all
unused bytes to zero.

The scb_length field indicates to the comp_fname (compare file name) func
tion how many bytes of the structure are to be compared. This field will be set to 12
to compare the user number, file name, and type, or to 13 to include the extent
number.

Note that scb_ disk is the current disk to be searched, whereas scb_ adisks is a
bit map with a 1 bit corresponding to each of the 16 possible logical disks that must
be searched.

The search control block is initialized by the setscb function.
Note the form of the file name that setscb expects to receive. This is described

in the comments at the beginning of the function.
Several of the utility programs use their own special versions of setscb,

402 The CP/M Programmer’s Handbook

renaming it ssetscb (special setscb) to avoid the library version being linked into
the programs.

The complementary function comp_fname is used to compare the first few
bytes of the current directory entry to the corresponding bytes of the SCB.

The comp_fname function performs a specialized string match of the user
number, the file name, the file type, and, optionally, the extent number. A “?”
character in the search control block file name, type, and extent will match with
any character in the file directory entry. However, in the SCB user number, a “?”
will only match a number in the range 0 to 15; it will not match a directory entry
that has the user number byte set to E5H (or 0xE5, as hexadecimal notation in C).

This function also returns one of several values to indicate the result of the
comparison. These values are defined in the library header file (Figure 11-2, j).

Directory Processing Functions
The final group of functions that access the directory are those that help

process the directory entries themselves. These functions use a structure definition
to access each directory entry (Figure 11-2, o).

A union statement is used for the allocation block numbers. These can be
single- or two-byte entries, depending on the maximum number of allocation
blocks that must be represented. The union statement tells the BDS C compiler
whether there will be a 16-byte array of short integers (characters) or an array of
eight unsigned two-byte integers.

The functions contained in this group can be divided into three subgroups:
• Those that deal with converting directory entries for display on the console.
• Those that deal with a “disk map”—a convenient array for representing

logical disks and the user numbers they contain.
• Those that deal with “bit vectors”—a convenient representation of which

allocation blocks on a logical disk are in use or available.

The library contains only one function to convert a directory-entry file name
into a suitable form for display on the console. This is the conv_dfname function
(Figure 11-1, h). It takes the information from the specified directory entry (or, as a
convenience, a search control block) and formats it into a string of the form

uu/d:f ilename.typ

The “uu” specifies the user number and the “d” specifies the disk identification.
The repetitive code at the end of the function is necessary to make sure that the

characters in the file type do not have their high-order bits set. These bits are the
file attributes. If they are set, they can render the characters nondisplayable on
some terminals.

Chapter 11: Additional Utility Programs 403

The second subgroup of functions, those that manipulate a “disk map,”
produce an array that looks like this:
Disks

i9
v User Numbers — > -Totals-
A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Used Free
B

P

This disk map is used by several utility programs. For example, the SPACE
utility displays a disk map that shows, for each logical disk in the system, and for
each user on each logical disk, how many Kbytes of disk space are in use. The
totals at the right show the total of used and free space. In another example, the
FIND utility shows how many files on each disk and in each user number match
the search name.

Each utility program that uses a disk map is coded:
unsigned disk_mapC163C183j

Two functions are provided in the library to deal with the disk map:
dm_clr (disk map clear; Figure 11-1, s)

This function fills the entire disk map with zeros.
dm_disp (disk map display; Figure 11-1, t)

This function displays the horizontal and vertical caption lines for the disk
map and then converts each element of the disk map to a decimal number.

The first function, dm_clr, uses one of the standard BDS C functions to set a
block of memory to a specific value. It presumes that the disk map is 16 X 18
elements, each two bytes long.

The second function, dm_disp, prints horizontal lines only for those disks
specified in the bit map parameter. Here is an example of its output:

0 1 2 3 4 10 11 12 13 14 15 Used Free
A: 1 1 15 241
B: 66 20 74 50 3 245 779
Cs — None — 0 1024
(NOTE: All user groups would be shown on the terminal.)

The final subgroup deals with processing “bit vectors.” A bit vector is a string
of bits packed eight bits per byte. Each bit is addressed by its relative number along
the vector; the first bit is number 0.

An example of why bit vectors are used is a utility program that needs to scan
the directory of a disk and build a structure showing which allocation blocks are in
use. It can do this by accessing each active directory element and, for each nonzero
allocation block number, setting the corresponding bit number in a bit vector.

The library header has a structure definition for a bit vector (Figure 11-2, s).

404 The CP/M Programmer’s Handbook

This vector contains the overall length of the bit vector in bytes, and two pointers.
The first points to the start of the vector, the second to the end. The bytes that
contain the vector bits themselves are allocated by the alloc function — one of the
standard BDS C functions.

The following bit vector functions are provided in the library:
bv_make (bit vector make; Figure 11-1, cc)

This function allocates memory for the bit vector (using the standard
mechanism provided by BDS C) and sets all of the bits to zero.

bv_fill (bit vector fill; Figure 11-1, dd)
This fills a specified vector, setting each byte to a specified value.

bv_set (bit vector set; Figure 11-1, ee)
This sets the specified bit of a vector to one.

bv_test (bit vector test; Figure 11-1, ff)
This function returns a value of zero or one, reflecting the setting of the
specified bit in a bit vector.

bv_nz (bit vector nonzero; Figure 11-1, gg)
This returns zero or a nonzero value to reflect whether any bits are set in
the specified bit vector.

bv_and (bit vector AND; Figure 11-1, hh)
This function performs a Boolean AND between two bit vectors and places
the result into a third vector.

bv_or (bit vector OR; Figure 11-1, ii)
This is similar to bv_and, except that it performs an inclusive OR on the
two input vectors.

bv_disp (bit vector display; Figure 11-1, jj)
This function displays a caption line and then prints out the contents of the
specified bit vector as a series of zeros and ones. Each byte is formatted to
make the output easier to read.

The bv_make function uses the alloc function to allocate a block from the
unused part of memory between the end of a program and the base of the BDOS.
It requires that two data structures be declared at the beginning of the program.
These structures are declared in the library header file (Figure 11-2, b).

The bv_fill function uses the standard BDS C setmem function.
The bv_set function converts the bit number into a byte offset by shifting the

bit number right three places. The least significant three bits of the original bit
number specify which bit in the appropriate byte needs to be ORed in.

The bv_test function is effectively the reverse of bv_set. It accesses the specified
bit and returns its value to the calling program.

The bv_nz function scans the entire bit vector looking for the first nonzero

i

Chapter 11: Additional Utility Programs 405

byte. If the entire vector is zero, it returns a value of zero. Otherwise, it returns a
pointer to the first nonzero byte.

Both bv_and and bv__or functions take three bit vectors as parameters. The
first vector is used to hold the result of either ANDing or ORing the second and
third vectors together. Both of these functions assume that the output vector has
already been created using bv_make. The shortest of the three vectors will termi
nate the bv_and or bv_or function; that is, these functions will terminate when
they reach the end of the first (shortest) vector.

The final function, bv_disp, displays the title line specified by the calling
program, and then displays all of the bits in the vector, with the bit number of the
first bit on each line shown on the left.

None of the utility programs uses bv_disp—it has been left in the library purely
as an aid to debugging.

Here is an example of bv_disp’s output:

lit Vector : A1location Blocks in Use
0 0000 0000 0001 1000 1000 0001 n i l n i l n i l n n

40 1111 1111 m i m i n i l i n i 1110 i o n 0000 0000
80 1100 0000 1111 1100 n i l 1001 1100 0000 1001 n n
120 1110 1100 0001 n i l 0000 0000 1101 1000 0001 1110
160
200

1111
1111

1111
0010

1110 n i l 1110 n i l 0000 0111 0000 0111

Checking User-Specified Parameters
The C language provides a mechanism for accessing the parameters specified

in the “command tail.” It provides a count of the number of parameters entered,
“argc” (argument count), and an array of pointers to each of the character strings,
“argv” (argument vector). At the beginning of the main function of each program
you must define these two variables like this:

main(argc,argv)
C
int argc? /* Argument count */
char *argvC3? /* Array of pointers to char, strings */

: /* Remainder of main function */

}

Consider the minimum case—a command line with just the program name on
it:

A>command

The convention is that the first argument on the line is the name of the program
itself. Hence argc would be set to one, and argv[0] would be a pointer to the
program name, “command.”

406 The CP/M Programmer’s Handbook

Next consider a more complex case—a command line with parameters like the
following:
A>command paraml 123

In this case, argc will be three; argv[l] will be a pointer to paraml; and
argv[l][0] will access the 0 (th^ first) character of argv[l]—in this case the
character “p.”

To detect whether the second parameter is present and numeric, the code will
be
if (isdigit targvC13C03))

c
/* Process digit */

}
else

{
/« Parameter either not present or has

alpha character at the front */
1

In most of the utilities, you will get a much “friendlier” program if the user need
only specify enough characters of a parameter to distinguish the value entered
from the other possible values. For example, consider a program that can have as a
parameter one of the following values: 300, 600, 1200, 2400,4800,9600, or 19200.
It would be convenient if the user needed to type only the first digit, rather than
having to enter redundant keystrokes. However, the values 1200 and 19200 would
then be ambiguous. The user would have to enter 12 or 19. Novice users often
prefer to specify the entire parameter for clarity and security.

The standard C library provides a character string* comparison function,
strcmp. Unfortunately, this function does not provide for the partial matching just
described. Therefore, the library includes two special functions that do make this
possible: sstrcmp (substring compare, Figure. 11-1, d) and usstrcmp (uppercase
substring compare, Figure 11-1, e). The latter function is necessary when you need
to compare a substring that could contain lowercase characters; it converts
characters to uppercase before the comparison.

To assist with character string manipulation, two additional functions have
been included in the library. These are strscn (string scan, Figure 11-1, b) and
ustrcmp (uppercase string compare, Figure 11-1, c).

Using Code Tables
A code table is a simple structure used by all of the utility programs that accept

parameters that can have any of several values. The library header contains a
structure definition for a code table (Figure 11-2, r).

A code table entry contains an unsigned code value and a pointer to a character
string. It is used in the utility programs wherever there is a need to relate some
arbitrary code number or bit pattern to an ASCII character string. For example,

Chapter 11: Additional Utility Programs 407

to program a serial port baud-rate-generator chip to various baud rates requires
different time constants for each rate. Users do not need to know what these
numbers are; they only need to be able to specify the baud rate as an ASCII string.

Thus, a code table is set up as follows:

A utility program now needs to be able to perform various operations using the
code table:

• Given the input parameter on the command tail, the utility must check
whether the ASCII string is in the code table, display all of the legal options
on the console if it is not, and return the code value for subsequent processing
if it is.

• Given the current baud rate constant (held in the BIOS), the utility must scan
the code table and display the corresponding ASCII string to tell the user the
current baud rate setting.

The library includes specialized functions to do this, plus some additional
functions to make code tables more generally usable. These functions are

ct_init (code table initialize; Figure 11-1, v)
This function initializes a specific entry in a code table, setting the code
value and the pointer to the character string.

ct_parc (code table parameter return code; Figure 11-1, w)
This performs an uppercase substring match on the specified key string,
returning either an error (the value CT_SNF — string not found) or a code
value.

ct_code (code table return code; Figure 11-1, x)
This function is similar to ct_parc in that it scans a code table and returns
the corresponding code. It differs in the way that the comparison is done.
The entire search string is compared with the string in the code table entry.
A match only occurs when all characters are the same.

ct_disps (code table display strings; Figure 11-1, y)
This function displays all strings in a given code table. It is used either when
the user has entered an invalid string, or when the utility program is
requested to show what options are available for a parameter.

ct_index (code table return index; Figure 11-1, z)
This function, given a string, searches the code table and returns the index

Baud Rate Constant User’s Name
0x35
0x36
0x37
0x3A
0x3C
0x3E
0x3F

“300”
“600”

“ 1200”

“2400”
“4800”
“9600”

“19200”

408 The CP/M Programmer’s Handbook

of the entry that has a string matching the search string. The index is not the
code value; it is the number of the entry in the table.

ct_stri (code table string index; Figure 11-1, aa)
This function, given an entry index number, returns a pointer to the string
in that entry.

ct_strc (code table string code; Figure 11-1, bb)
This function, given a code number, returns a pointer to the string in the
entry that has a matching code number.

Accessing a Directory via the BDOS
One problem associated with accessing the file directory directly, as illustrated

by earlier functions, is that the program is presented with directory entries in
exactly the order that they occur in the directory. For some programs, such as
those that process groups of files, it is better to use the BDOS Search First and
Search Next functions to access the directory.

Using the BDOS, the program can process the first file name to match an
ambiguous search key, then go back to the BDOS to get the name of the next file,
and so on. The library header contains a structure definition for a standard CP/M
file control block (Figure 11-2, k).

Notice that the first byte of the FCB is a disk number rather than the user
number of the directory entry. Note also the use of a union statement to describe
the allocation block numbers.

The standard BDS C library contains a function, setfcb, that is given the
address of an FCB and a pointer to a string containing a file name. It converts any
“*” in the name to the appropriate number of “?”, and fills the remainder of the
FCB with zeros.

The example library contains the following functions designed for BDOS file
directory access:

get_nfn (get next file name; Figure 11-1, i)
This function is given a pointer to an ambiguous file name and a pointer to
an FCB. It returns with the FCB set up to access the next file that matches
the ambiguous file name.

srch_file (search for file; Figure 11-1, j)
This function, used by get_nfn, issues either a Search First or a Search
Next BDOS call.

conv_fname (convert file name; Figure 11-1, g)
This function converts a file name from an FCB into a form suitable for
display on the console. It is similar to the conv_dfname function described
earlier except that it outputs only the disk, file name, and type (not the user
number) in the form

ds f ilename.typ

Chapter 11: Additional Utility Programs 409

To signal the get_nfn function that you want the first file name, you must set
the most significant bit of the first byte, the disk number.

Here is an example showing how to use the geL_nfn function:
struct _fcb fcb; /* Declare a file control block */

setmemCfcb,FCB_SIZE,0); /* Clear FCB to zeros */
fcb.fcb_disk = 0x80? /* Mark FCB for "first time" */

while <get_nfn(fcb,"B:XYZ*. *"))
/« Until

C
get_nfn returns a zero

while
{

}

}

/* Open the file using FCB */
(/* Not at end of file */)

/* Process next record or
Character in file*/

/* Close the file */

* /

The quoted string “B:XYZ*.*” could also be just a pointer to a string, or a
parameter on the command line, argv[n].

The last function for BDOS processing of the file directory, conv_fname, is
used to convert a file name for output to a terminal. Again, the repetitive code at
the end clears the file attribute bits to avoid any side effects from the terminal.

Utility Programs Enhancing Standard CP/M

This group of utilities is designed to enhance those supplied by Digital Research.
They do not take advantage of any special features of the enhanced BIOS in Figure
8-10 and can be used on any CP/M Version 2.2 installation.

With the exception of the ERASE utility, all of the utilities scan down the file
directory using BIOS calls, as described earlier in this chapter.

ERASE — A Safer Way to Erase Files

There are two disadvantages to the Console Command Processor’s built-in
ERA command. First, it will unquestioningly erase groups of files. Second, if you
have a file name with nongraphic or lowercase characters, you cannot use the ERA
command, as the CCP converts the command tail characters to uppercase and
terminates a file name on encountering any strange character in the string.

The ERASE utility shown in Figure 11-3 erases groups of files, but it asks the
user for confirmation before it erases each file.

Rather than use the BIOS to access each directory entry, it uses the get_nfn
function, which then calls the BDOS. Thus ERASE functions equally well for files

410 The CP/M Programmer’s Handbook

that have multiple entries in the directory. It can use the BDOS Delete File
function to erase all extents of a given file.

Here is an example console dialog showing ERASE in operation:
F3A>erase<CR>
ERASE Version 1.0 02/23/83 (Library 1.0)
Usage :

ERASE id:}file_name.typ

P3A>erase *.com<CR>
ERASE Version 1.0 02/23/83 (Library 1.0)

Searching for
Erase
Erase
Erase
Erase
Erase
Erase

Erasing files

file(s) matchii
A:UNERASE .COM
A:TEMPI .COM
A: TEMP2 .COM
A:TEMPS .COM
A:TEMP4 .COM
As ERASE .COM

now...

As ????????.COM
y/n? n
y/n? L <== W i n
y/n? n
y/n? n
y/n? * <== Will
y/n? n

be Erased!

be Erased!

File As TEMPI .COM erased.
File AsTEMP4 .COM erased.

#def ine VN "1.0 02/24/83'

/* ERASE
This utility erases the specified filets) logically
by using a BDOS delete function. **/

include <LIBRARY.H>

struct _fcb amb_fcb;
struct _fcb fcb;

char file_nameC203;
short cur_disk;

»define MAXERA 1024
struct _fcb era_fcbCMAXERA3j
int ecount?
int count?

/* Ambiguous name file control block */
/* Used for BDOS search functions */

/* Formatted for display: d :FILENAME.TYP */
/* Current logical disk at start of program »/
/* ERASE saves the FCB's of the all the

files that need to be erased in the
following array */

/» Count of number of files to be erased */
/* Used to access era_fcb during erasing */

maintargc,argv)
short argc? /* Argument count */
char »argvClj /* Argument vector (pointer to an array of char . */
{

pr i n t f ("\nERASE Version */.s
chk_use(argc);
cur_disk = bdos(GETDISK);

(Library V . s) " , VN, LIBVN) ;
/* Check usage */
/* Get current default disk */

ecount = 0; /* Initialize count of files to /

setfcb(amb_fcb,argvC13); /* Set ambiguous file name */
if (amb_fcb.fcb_disk) /* Check if default disk to be used */

{
bdos(SETDISK,amb_fcb.fcb_disk + 1); /* Set to specified disk */
>

Figure 11-3. ERASE.C, a utility that requests confirmation before erasing

Chapter 11: Additional Utility Programs 411

/* Convert ambiguous file name for output */
conv_fname(amb_fcb,file_name);
printf ("\n\nSearching for file(s) matching V . s . ", f i le_name);

/* Set the file control block to indicate a "first" search */
fcb.fcb_disk {= 0x80; /* OR in the ms bit */

/* While not at the end of the directory, set the FOB
to the next name that matches */

while(get_nfn(amb_fcb,fcb))
{
conv_fname(fcb,f ile_name);

/* Ask whether to erase file or not #/
pr i n t f ("\n\tErase %s y/n? ",file_name);
if (toupper(getchar()) ==

l
p r i n t f C <== Will be erased!");

/* add current fcb to array of FCB's */
movmem(f cb, *»era_f cb Cecount++3, FCBSIZE);

/* Check that the table is not full */
if (ecount == MAXERA)

{
p r in tf("\nWarning : Internal table now full. No more files can be erased");
printf("\n until those already specified have been erased.");
break; /* Break out of while loop */
1

1
} /* All directory entries processed */

if (ecount)
pr i n t f ("\n\nErasing files now...");

/* now process each FCB in the array, erasing the files */
for (count = 0; /* Starting with the first file in the array «/

count < ecount; /* Until all active entries processed */
count++) /* Move to next FCB */

{
conv_fname(&era_fcbtcountD,f ile_name);
if (bdos(DELETEF,&era_fcbCcount 1) == -1) /* error? */

printf ("\n\007Error trying to erase 7.s", f i le_name);
else /* File erased */

printf (“\n\tFile 7.s erased. ” , f ile_name);
}

bdos(SETDISK,cur_disk); /* reset to current disk */
}

chk_use(argc) /« Check usage */
/« This function checks that the correct number of

parameters has been specified, outputting instructions if not. */

/* Entry parameter */
int argc; /* Count of the number of arguments on the command line */

{
/« The minimum value of argc is 1 (for the program name itself),

so argc is always one greater than the number of parameters
on the command line */

if (argc != 2)
€
p r i n t f ("\nUsage :");
printf("\n\tERASE id;Ifile_name.typ");
e x i t O ;
>

1

Figure 11-3. (Continued)

412 The CP/M Programmer’s Handbook

UNERASE — Restore Erased Files
UNERASE, as its name implies, can be used to “revive” an accidentally erased

file. Only files whose allocation blocks have not been reallocated to other files can
be revived. The UNERASE utility shown in Figure 11-4 builds a bit vector of all
the allocation blocks used by active directory entries. Then it builds a bit vector for
all the allocation blocks required by the file to be UNERASEd. If a Boolean AND
between the two vectors yields a nonzero vector, then one or more blocks that
originally belonged to the erased file are now allocated to other files on the disk.

#def ine VN "1.0 02/12/83"

/* UNERASE —
This utility does the inverse of ERASE: it restores
specified files to the directory by changing the first byte of
their directory entries from 0xE5 back to the specified user
number. */

^include <LIBRARY.H>

struct _dirpb dir_pb; /*
struct _dir *dir_entry; /*
struct _scb scb; /*
struct _scb scba; /*
struct _dpb dpb; /*
struct _bv inuse_bv; /*
struct _bv file_bv; /*
struct _bv extents; /*

char file_nameC203; /*

short icur_disk; /*

int count; /*

int user; /*

Directory management parameter block */
Pointer to directory entry */
Search control block */
SCB set up to match all files */
CP/M's disk parameter block */
Bit vector for blocks in use */
Bit vector for file to be unerased */
Bit vector for those extents unerased */

Formatted for display : u n / d :FILENAME.TYP */

Current logical disk at start of program
NZ * show map of number of files */

Used to access the allocation block numbers
in each directory entry */

User in which the file is to be revived «/

main(argc,argv)
short argc; /* Argument count */
char *argvC3; /* Argument vector (pointer to an array of chars.) */

C
printf ("\nUNERASE Version 7.s (Library 7.s) ", VN, LI BV N);
chk_use(argc)? /* Check usage */
cur_disk = bdos(GETDISK); /* Get current default disk */

/* Using a special version of the set search-control-block utility,
set the disk, name, type (no ambiguous names), the user number
to match only erased entries, and the length to compare
the user, name, and type.
This special version also returns the disk_id taken from
the file name on the command line. */

if ((dir_pb.dp_disk = ssetscb(scb,argvCl3,0x E5 ,12)) == 0)
t /* Use default disk */
dir_pb.dp_disk = cur_disk;
>

else
C /* make disk A = 0, B = 1 (for SELDSK) */
dir _pb.dp_disk— ;
3

pr in tf("\nSearching disk % d . M ,dir_pb.dp_disk);

if(strscn(scb,"?")) /* Check if ambiguous name */
{
pr i n t f ("\nError — UNERASE can only revive a single file at a time.");
e x i t O ;

Figure 11-4. UNERASE.C, a utility program that “revives” erased files

Chapter 11: Additional Utility Programs 413

}

/* Set up a special search control block that will match with
all existing files. */

s s e t s c b (s c b a , 12); /* Set file name and initialize SCB */

if (argc == 2) /* No user number specified */
user = bdos(GETUSER,OxFF); /* Get current user number «/

else
{

user = atoi(argvC23); /* Get specified number **/
if (user > 15)

{
p r i n t f ("\nUser number can only be 0 - 15.");
e x i t ();
3

}

/* Build a bit vector that shows the allocation blocks
currently in use. SCBA has been set up to match all
active directory entries on the disk. */

build_bv(inuse_bv,scba);

/* Build a bit vector for the file to be restored showing
which allocation blocks will be needed for the file. */

if (!build_bv(file_bv,scb>)
l
printf ("\nNo directory entries found for file 7.s.",

argvClD);
e x i t O ;
3

/* Perform a boolean AND of the two bit vectors. */
bv_and(f ile_bv,inuse_bv,f ile_bv);

/* Check if the result is nonzero — if so, then one or more
of the allocation blocks required by the erased file is
already in use for an existing file and the file cannot
be restored. */

if (bv_nz(file_bv))
l

printf("\n--- This file cannot be restored as some parts of it");
printf("\n have been re-used for other files! ----");
exit ();

}

/* Continue on to restore the file by changing all the entries
in the directory to have the specified user number.
Note: There may be several entries in the directory for
the same file name and type, and even with the same extent
number. For this reason, a bit map is kept of the extent
numbers unerased — duplicate extent numbers will not be
unerased. */

/* Set up the bit vector for up to 127 unerased extents «/
bv_make(extents,16); /* 16 * 8 bits */

/* Set the directory to "closed", and force the getjnde
function to open it. */

dir_pb.dp_open = 0;

/* While not at the end of the directory, return a pointer to
the next entry in the directory. **/

while(dir_entry = get_nde(dir_pb))
{

/* Check if user = 0xE5 and name, type match */
if (comp_fname(scb,dir_entry) == NAME_EQ)

C
/* Test if this extent has already been

unerased */
if (bv_test(extents,dir_entry -> de_extent))

C /* Yes it has */
printf ("\n\t\tExtent #7.d of 7.s ignored.",

dir_entry -> de_extent,ar gv C13) ;
continue; /* Do not unerase this one */
3

Figure 11-4. (Continued)

414 The CP/M Programmer’s Handbook

else /* Indicate this extent unerased */
£
bv_set(extents, dir_entry -> de_extent);
dir_entry -> de_userno = user; /* Unerase entry * /
dir_pb.dp_write = 1; /* Need to write sector back */
printf (H\n\tExtent #7.d of y.s unerased.",

dir_entry -> de_extent,a r gv C11);

printf ("\n\nFi le */.s unerased in User Number 7.d.",
argvC13,user);

bdos(SETDISK,cur_disk) ; /* Reset to current disk */
J

build_bv(bv,scb) /* Build bit vector (from directory) »/
/* This function scans the directory of the disk specified in

the directory parameter block (declared as a global variable),
and builds the specified bit vector, showing all the allocation
blocks used by files matching the name in the search control
block. */

/* Entry parameters «/
struct _bv *bv; /* Pointer to the bit vector «/
struct _scb *scb; /* Pointer to search control block «/
/* Also uses : directory parameter block (dir_pb) */

/* Exit parameters
The specified bit vector will be created, and will have 1-bits
set wherever an allocation block is found in a directory
entry that matches the search control block.
It also returns the number of directory entries matched. */

€
unsigned abno; /* Allocation block number */
struct _dpb «dpb; /* Pointer to the disk parameter block in the BIOS */
int mcount; /* Match count of dir. entries matched */

mcount = 0; /* Initialize match count */
dpb = get_dpb(dir_pb.dp_disk); /* Get disk parameter block address */

/* make the bit vector with one byte for each eight allocation
blocks + 1 */

if (!(bv_make(bv,(dpb -> dpb_maxabn >>3)+l)))
£
pr i n t f ("\nError — Insufficient memory to make a bit vector.");
e x i t ();
}

/* Set directory to "closed" to force the get_nde
function to open it. */

dir _pb.dp_open = 0 ;

/* Now scan the directory building the bit vector */
while(dir_entry = get_nde(dir_pb))

£
/* Compare user number (which can legitimately be

0xE5), the file name and the type). »/
if (comp_fname(scb,dir_entry) =*= NAME_EQ)

£
++mcount; /* Update match count */
for (count = 0; /* Start with the first alloc, block */

count < dir_pb.dp_nabpde; /* For number of alloc, blks. per dir. entry */
count++)

£
/* Set the appropriate bit number for

each nonzero allocation block number */
if (dir_pb.dp_nabpde == 8) /* assume 8 2-byte numbers */

£
abno = dir_entry -> _dirab.de_longCcountl;
}

else /* Assume 16 1-byte numbers */
£

Figure 11-4. (Continued)

Chapter 11: Additional Utility Programs 415

return mcount;
1

abno = dir_entry -> _dirab.de_short[count3?
}

if (abno) bv_set(bv,abno); /* Set the bit */

/* Return number of dir. entries matched */

chk_use(argc) /* Check usage */
/* This function checks that the correct number of

parameters has been specified, outputting instructions
if not. */

/* Entry parameter «/
int argc; /* Count of the number of arguments on the command line */
C

/* The minimum value of argc is 1 (for the program name itself),
so argc is always one greater than the number of parameters
on the command line */

if (arge == 1 !! argc > 3)
£
p r in tf("\nUsage :");
p r i n t f ("\n\tUNERASE id;Ifilename.typ {user)");

p r in tf("\n\tOnly a single unambiguous file name can be used.)");
e x i t O ;
}

} /* end chk_use */

ssetscbCscb,fname,user,length) /* Special version of set search control block */
/* This function sets up a search control block according

to the file name, type, user number, and number of bytes
to compare.
The file name can take the following forms :

f ilename
f ilename.typ
d:f ilename.typ

It sets the bit map according to which disks should be searched.
For each selected disk, it checks to see if an error is generated
when selecting the disk (i.e. if there are disk tables in the BIOS
for the disk). */

/* Entry parameters */
struct _scb *scb;
char *fname;
short user;
int length;

/* Exit parameters
Disk number to be searched. (A = 1, B = 2...)

*/
£
short disk_id; /* Disk number to search */

/* Pointer to search control block */
/* Pointer to the file name */
/* User number to be matched */
/* Number of bytes to compare */

setfcb(scb,fname); /* Set search control block as though it
were

disk_id = scb -> scb_userno; /*

scb -> scb_userno = user; /*
scb -> scb_length = length; /*
return disk_id;
) /* end setscb */

i file control block. */
Set disk_id before it gets overwritten

by the user number */
Set user number */
Set number of bytes to compare «/

Figure 11-4. (Continued)

416 The CP/M Programmer’s Handbook

A further complication occurs if two or more directory entries of the erased file
have the same extent number. This can happen if the file has been created and
erased several times. Under these circumstances, UNERASE revives the first entry
with a given extent number that it encounters, and displays a message on the
console both when an extent is revived and when one is ignored.

Because of the complicated nature of the UNERASE process, the utility can
process only a single, unambiguous filename.

The following console dialog shows UNERASE in operation:
F3A>dir «,com<CR>
As UNERASE COM : TEMP2 COM s TEMP3 COM s ERASE COM

P3A>unerase<CR>
UNERASE Version 1.0 02/12/83 (Library 1.0)
Usage :

UNERASE id;}filename.typ {user}
Only a single unambiguous file name can be used.

P3A>unerase tempi■com<CR>
UNERASE Version 1.0 02/12/83 (Library 1.0)
Searching disk A.

Extent #0 of TEMP1.COM unerased.
Extent #0 of TEMP1.COM ignored.

File TEMP1.COM unerased in User Number 3.

P3A>dir *.com<CR>
As UNERASE COM s TEMPI COM s TEMP2 COM s TEMP3 COM
As ERASE COM

P3A>unerase tempS.com<CR>
UNERASE Version 1.0 02/12/83 (Library 1.0)
Searching disk A.
No directory entries found for file TEMP5.COM.

FIN D -Find “Lost” Files
The FIND utility shown in Figure 11-5 searches all user numbers on specified

logical disks, matching each entry against an ambiguous file name. It can then
display either a disk map showing how many matching files were found in each
user number for each disk, or the user number, file name, and type for each
matched directory entry.

You can use FIND to locate a specific file or group of files, as shown in the
following console dialog:
P3B>f ind<CR>
FIND Version 1.0 02/11/83 (Library 1.0)
Usage :

FIND d:filename.typ {NAMES!
*:filename.typ (All disks)
ABCD..OP:filename.typ (Selected Disks)

NAMES option shows actual names rather than map.

P3B>find aba*.*<CR>
FIND Version 1.0 02/11/83 (Library 1.0)

Chapter 11: Additional Utility Programs 417

Searching disk s A
Searching disk : B

Numbers show files in each User Number.
---User Numbers — Dir. Entries

0 i 2 3 4 5 11 12 13 14 15 Used Free
A: 1 1 8 23 233
B: 66 20 74 55 3 252 772

P3B>f ind *:*. com<CR>
FIND Version 1.0 02/11/83 (Library 1.0)
Searching disk : A
Searching disk : B
Searching disk : C

---User Numbers — Dir. Entries
0 i 2 3 4 5 11 12 13 14 15 Used Free

A: 5 23 233
Bi 61 5 4 13 252 772
Cs — None -— 16 112

P3B>find «.com names<CR>
FIND Version 1.0 02/11/83 (Library 1.0)
Searching disk : B
0/BsCC .COM 0/B:CC2 .COM 0/B:CLINK .COM 2/B:CLIB .COM
l/BsCPM61 .COM 1/B:MOVCPM .COM l/B-.PSWX .COM 0/B:SUBMIT .COM
2/BsCDB .COM 1/B:CPM60 .COM 0/B:DDT .COM 0/B:EREMOTE .COM
0/B: SPEEDSP .COM 0/B:PIP .COM 0/B:PROTOSP .COM 0/B:RX .COM
0/BsTXA .COM 0/B:EPUB .COM 0/B:EPRIV .COM 0/B:WSC .COM
0/BsX .COM 0/B:CRCK .COM 0/B:XSUB .COM 0/B:DU .COM
0/BiQERA .COM 0/B:FINDALL .COM 0/B:MOVEF .COM 0/B:REMOTE .COM
0/B:LOCAL .COM 0/B:DUMP .COM 0/B:MRESET .COM 0/B:ELOCAL .COM
0/B: PUTCPMF5 .COM 0/B:TEST .COM 0/B:FDUMP .COM 0/B:INVIS .COM
O/BsLSO -COM 0/B:LIST .COM 0/B:PUB .COM 0/B:LOAD .COM
0/BsMAC .COM 0/B:SCRUB .COM 0/B:RXA .COM 0/B:STAT .COM
0/B:TX .COM 0/B:ERASEALL..COM 0/B:WM .COM 0/B:MSFORMAT .COM
0/B:STATUS .COM 0/6:UNERA .COM 0/B:MSINIT .COM 0/B:VIS .COM
0/B:WSVTIP .COM 0/B:XD .COM 0/B:NEWVE .COM 0/B:DDUMP .COM
0/B:FORMATMA -COM 0/B:PRIV .COM 0/B:FCOMP .COM 0/B:DDUMPA .COM
0/B:PUTSYSlC .COM 0/B:DDUMPNI .COM 0/B:DSTAT .COM 0/B:ASM .COM
2/B:CDBTEST .COM 0/B:OLDSYS .COM 0/B: E .COM 2/B:F/C .COM
3/B:ERASE .COM 3/B:FUNKEY .COM 3/B:DATE .COM 3/B:FIND .COM

Press Space Bar to continue....
3/B:SPACE .COM 3/B:UNERASE .COM 3/B:MAKE -COM 3/B:MOVE .COM
1/B:PUTSYSWX .COM 3/B:TIME .COM 3/B:ASSIGN .COM 3/B:SPEED .COM
3/B:PROTOCOL .COM 0/B:PRINTC .COM 3/B: T .COM

»define VN "1.0 02/11/33”

/* FIND - This utility can display either a map showing on which disks
and in which user numbers files matching the specified ambiguous
file name are found, or the actual names matched. */

»include CLIBRARY.H>

struct _dirpb dir_pbj
struct _dir *dir_entry

struct _scb scbj

/* Directory management parameter block */
/* Pointer to directory entry (somewhere in

dir_pb) */
/* Search control block */

char file_nameC20D? /* Formatted for display ! un/dsFILENAME.TYP */

Figure 11-5. FIND.C, a utility program that locates specific files or groups of files

418 The CP/M Programmer’s Handbook

short cur_disk
int mcount;
int dmcount;
int lcount;

/* Current logical disk at start of program */
/ * Match count (no. of file names matched) */
/* Per disk match count */
/* Line count (for lines displayed) */

int map_flag /* 0 = show file names of matched files.
NZ * show map of number of files */

/* The array below is used to tabulate the results for each
disk drive, and for each user number on the drive.
In addition, two extra "users" have been added for "free"
and "used" values. */

unsigned disk.mapC163C183
«define USED_COUNT 16
«define FREE_COUNT 17

/* Disk A -> P, ysers 0 -> 15, free, used */
/* "User" number for used entities */
/* "User" number for free entities */

main(argc,argv)
short argc; /* Argument count */
char »argvt3; /* Argument vector (pointer to an array of ch ar s.) */
{

printf ("XnF.IND Version */.s (Library y.s)",VN,LIBVN) ;
chk_use(argc); /* Check usage */
cur_disk = bdos(GETDISK); /* Get current default disk */

dm_clr(disk_map); /* Reset disk map */

/* Set search control block
disks, name, type, user number, extent number,
and number of bytes to compare — in this case, match all users,
but only extent 0 */

s e t s c b (s c b , a r g v C l l , , 0 , 13); /* Set disks, name, type */

map_flag = usst rc mp("NAMES",argvE23); /* Set flag for map option */

lcount = dmcount = mcount = 0; /* Initialize counts »/

for (scb.scb_disk = 0? /* Starting with logical disk Ai «/
scb.scb_disk < 16; /* Until logical disk Pi */
scb.scb_disk++) /* Move to next logical disk */

{

/* Check if current disk has been selected for search */
if (! (scb.scb_adisks 8« (1 << scb. scb_disk)))

continue; /* No,so bypass this disk «/

p r in tf("\nSearching disk : X c " , (scb.scb_disk + 'A'));
- lcount++; /* Update line count */

dir^pb.dp_disk = scb.scb_disk; /* Set to disk to be searched»/
dmcount = 0; /* Reset disk matched count */

if (!map_flag) /» If file names are to be displayed */
putchar (''Xn-'); /* Move to column 1 */

/ * Set the directory to "closed", and force the get_nde
function to open it */

dir_pb.dp_open = 0;

/* While not at the end of the directory, set a pointer to the
next directory entry */

while(dir_entry = get_nde(dir_pb))
{
/* Check if entry in use, to update

the free/used counts */

if (dir_entry -> de_userno == 0xE5) /* Unused */
disk _mapCscb.scb_disk3C FREE_C0UNT3++;

else /* In use */
d i sk_mapC sc b.scb_d i sk 3 CUSED_C0UNT3++;

/ * Select only those active entries that are the
first extent (numbered 0) of a file that matches
the name supplied by the user */

Figure 11-5. (Continued)

Chapter 11: Additional Utility Programs 419

(dir_entry -> de_userno != 0xE5) &&
(dir_entry -> de_extent == 0) &&
(comp_fname(scb, dir_entry) == NAME_EQ>

C

mcount++; /* Update matched counts */
dmcount++; /* Per disk count */

if (map_flag) /* Check map option */
{

/* Update disk map */
disk_mapCscb.scb_diskDCdir_entry -> de_usernol++;
}

else /* Display names */
C
conv_dfname(scb.scb_disk,dir_entry,f ile_name);
printf("7.s ", f i lejname);

/* Check if need to start new line */
if (! (dmcount 7. 4))

C
pu tc ha r('\nx);

if

1

}
3

1 /* End of directory
/* All disks searched */

1

*/

<++lcount > 18)
C
lcount = 0;
p r in tf("\nPress Space Bar to continue
getc ha r()?
putc ha r('\n') ;
}

if (map_flag)
C
printf("\n Numbers show files in each user number.");
printf("\n --- User Numbers --- Dir. Entries");

dm_disp(disk_map,scb.scb_adisks); /* Display disk map */
1

if (mcount == 0)
pr i n t f ("\n --- File Not Found --- ");

bdos(SETDISK,cur_disk); /* Reset to current disk */
}

ch k_ us e(arge) /* check usage */
/ * This function checks that the correct number of

parameters has been specified, outputting instructions
if not.

*/

/* Entry parameter */
int arge; /* Count of the number of arguments on the command line * /

l

/* The minimum value of arge is 1 (for the program name itself),
so arge is always one greater than the number of parameters
on the command line a /

if (arge == 1 ! I arge > 3)
€
pr i n t f ("\nUsage :");
p r i n t f ("\n\tFIND d:filename.typ {NAMES}");
printf("\n\t * : f ilename.typ (All disks)");
printf("\n\t AB CD ..O P ;f ilename.typ (Selected Disks)");
pr i n t f ("\n\tNAMES option shows actual names rather than map.");
e x i t ();
>

}

Figure 11-5. (Continued)

420 The CP/M Programmer’s Handbook

SPACE — Show Used Disk Space
The SPACE utility shown in Figure 11-6 scans the specified logical disks and

displays a disk map that shows, for each user number on each logical disk, how
many Kbytes of storage have been used. It also displays the total number of Kbytes
used and free on each logical disk.

Here is an example console dialog showing SPACE in operation:
P3B>space<CR>
SPACE Version 1.0 02/11/83 (Library 1.0)
Usage :

SPACE * (All disks)
SPACE ABCD..0P (Selected Disks)

P3B>space «<CR> 1
SPACE Version 1.0 02/11/83 (Library 1.0)
Searching disk : A
Searching disk : B
Searching disk : C

Numbers show space used in kilobytes.
--- User Numbers --- Space (Kb)

0 1 2 3 4 5 . . . 10 11 12 13 14 15 Used Free
A: 18 202 38 258 1196
Bs 692 432 656 548 36 2364 996
C: 140 140 204

«define VN ”1.0 02/11/83"

/* SPACE — This utility displays a map showing on the amount of space
(expressed as relative percentages) occupied in each user number
for each logical disk . It also shows the relative amount of space
free. */

«include <LIBRARY.H>

struct _dirpb dir_pb;
struct _dir *dir_entry
struct _scb scb;
struct _dpb dpb;

char file_nameC20D;

/* Directory management parameter block */
/* Pointer to directory entry */
/* Search control block «/
/* CP/M's disk parameter block */

/* Formatted for display ; un/d:FILENAME.TYP */

short cur_disk

int count;

int user;

/* Current logical disk at start of program
NZ = show map of number of files */

/* Used to access the allocation block numbers
in each directory entry */

/* Used to access the disk map when calculating */

/* The array below is used to tabulate the results for each
disk drive, and for each user number on the drive.
In addition, two extra "users" have been added for "free"
and "used" values.

*/
unsigned d i s k _ m a p [1 6 K 181; /* Disk A -> P, users 0 -> 15, free, used */
«define USED_C0UNT 16 /* "User" number for used entities */
«define FREE_C0UNT 17 /* "User" number for free entities */

main(argc,argv)
short argc; /* Argument count */
char *argvC3; /* Argument vector (pointer to an array of chars.) */
C

Figure 11 -6. SPACE.C, a utility that displays how much disk storage is used or available

Chapter 11: Additional Utility Programs 421

print f("\nSPACE Version Xs (Library X s) ", VN, LI BV N)?
chk_use(argc)? /* Check usage */
cur_disk = bdos(GETDISK)? /* Get current default disk */

dm_clr(disk_map); /* Reset disk map */

ssetscb(scb,argvC13); /* Special version ? set disks,
name, type */

for (scb.scb_disk - 0?
scb.scb_disk < 16;
scb.scb_disk++)

t

/* Starting with logical disk A: */
/* Until logical disk P ï »/
/* Move to next logical disk */

/* Check if current disk has been selected for search */
if (!(scb.scb_adisks & (1 << scb.scb_disk)))

continue? /* No, so bypass this disk */

p r i n t f C X n S e a r c h i n g disk : Xc",(scb.scb_disk ♦ 'A'))?
dirjpb.dp_disk = scb.scb_disk? /* Set to disk to be searched */

/* Set the directory to "closed", and force the get_nde
function to open it */

dir_pb.dp_open = 0?

7 * While not at the end of the directory, set a pointer
to the next entry in the directory */

while (dir_entry = get_nde(dir_pb))
C
if (dir_entry -> de_userno == 0xE5)

continue? /* Bypass inactive entries */

for (count = 0? /* Start with the first alloc, block */
count < dir_pb.dp_nabpde? /* For number of alloc, blks. per dir. entry */
count++)

C
if (dir_pb.dp_nabpde == 8) /* Assume 8 2-byte numbers */

C
disk_mapCscb.scb_disk3Cdir_entry -> de_userno3

+= (dir_entry -> _dirab.de_longtcount3 > 0 ? 1 : 0)?
}

else /* Assume 16 1-byte numbers */
{
disk_maptscb.scb_disk3tdir_entry -> de_usernol

+= (dir_entry -> _dirab.de_shortCcount3 > 0 ? 1 : 03?
1

3 / » A l l allocation blocks processed */
1 /* End of directory for this disk */

/» Compute the storage used by multiplying the number of
allocation blocks counted by the number of Kbytes in
each allocation block. «/

for (user = 0? /* Start with user 0 */
user < 16? / * End with user 15 */
user ++) /* Move to next user number */

{
/* Compute size occupied in Kbytes «/

disk_mapCscb.scb_disk3Cuser3 *= dir_pb.dp_absize;
/* Build up sum for this disk */

disk_mapCscb.scb_disk3CUSED_COUNT3 + = disk_mapCscb.scb_disk.3Cuser3;
}

/* Free space = (# of alloc, blks * # of kbyte per blk)
- used Kbytes
- (directory entries * 32) / 1024 ... or divide by 32 */

disk_mapCscb.scb_disk3CFREE_CGUNT3 = (dir_pb.dp_nab * dir_pb.dp_absize)
- disk_mapCscb.scb_disk3CUSED_CGUNT3
- (dir_pb.dp_nument >> 5)? /* Same as / 32 */

3 /* All disks processed */

printf("\n Numbers show space used in kilobytes.")?
printf("\n --- User Numbers --- Space (Kb)")?

dm_disp(disk_map,scb.scb_adisks); /* Display disk map */

Figure 11-6. (Continued)

422 The CP/M Programmer’s Handbook

bdos(SETDISK,cur_disk);
}

: /« Reset to current disk «/

ssetscb(scb,ldisks) /« Special version of set search control block »/

/» This function sets up a search control block according
to just the logical disks specified. The disk are specified as
a single string of characters without any separators. An
asterisk means "all disks." For example —

ABGH (disks A:, B : , G: and H:)
* (all disks for which SELDSK has tables)

It sets the bit map according to which disks should be searched.
For each selected disk, it checks to see if an error is generated
when selecting the disk (i.e. if there are disk tables in the BIOS
for the disk).
The file name, type, and extent number are all set to "?" to match
all possible entries in the directory. »/

/* Entry parameters «/
struct _scb *scb;
char »ldisks;

/* Pointer to search control block «/
/» Pointer to the logical disks */

\
/« Exit parameters

None.
*/
£
int disk;
unsigned adisks;

/* Disk number currently being checked «/
/* Bit map for active disks «/

adisks = 0; . /* Assume no disks to search »/

if («ldisks)
£
if («ldisks ==

£

/» Some values specified */

' * ') /* Check if "all disks" «/

adisks = OxFFFF; /* Set all bits */
î

else /» Set specific disks «/
€
w h i le(«ldisks) /» Until end of disks reached «/

C

Î
>

/» Build the bit map by getting the next disk
id. (A - P), converting it to a number
in the range 0 - 15, and shifting a 1-bit
left that many places and OR ing it into
the current active disks.

«/
adisks != 1 << (toupper(«ldisks) - A);
++ldisks; /* Move to next character */
}

else /« Use only current default disk »/
€
/» Set just the bit corresponding to the current disk «/
adisks = 1 << bdos(GETDISK);
}

/» Set the user number, file name, type, and extent to
so that all active directory entries will match */

/« 0123456789012 »/
strcpy(&scb -> scb_userno,"?????????????");

/« Make calls to the BIOS SELDSK routine to make sure that
all of the active disk drives have disk tables for them
in the BIOS. If they don't, turn off the corresponding
bits in the bit map. »/

for (disk = 0;
disk < 16;
disk++)

/« Start with disk A: «/
/» Until disk Ps «/
/» Use next disk */

C
if (!((1 << disk) & adisks))

continue? /« Avoid selecting unspecified disks «/

Figure 11-6. (Continued)

Chapter 11: Additional Utility Programs 423

if (b i o s h (SE LD SK, d i s k) == O) /* Make BIOS SELDSK call »/
{ /* Returns 0 if invalid disk */
/* Turn OFF corresponding bit in mask

by AND-ing it with bit mask having
all the other bits set = 1. «/

adisks &= ((1 << disk) A OxFFFF);
}

}

scb -> scb_adisks = adisks; /* Set bit map in scb */

} /* End ssetscb */

chk_use(argc) /* Check usage */
/* This function checks that the correct number of

parameters has been specified, outputting instructions
if not. «/

/* Entry parameter */
int argc; /* Count of the number of arguments on the command line */
i

/ * The minimum value of argc is 1 (for the program name itself),
so argc is always one greater than the number of parameters
on the command line */

if (argc != 2)
C
pr i n t f ("\nUsage ;");
printf("\n\tSPACE * (All disks)");
p r in tf(”\n\tSPACE ABCD..OP (Selected Disks)");
e x i t ();
}

} /* End chk_use */

Figure 11-6. (Continued)

MOVE — Move Files Between User Numbers
The MOVE utility shown in Figure 11-7 moves files from one user number to

another on the same logical disk. The movement is achieved by changing the user
number in all the relevant directory entries. This is much faster than copying the
files. It also avoids having multiple copies of the same file on the disk.

Here is a console dialog showing MOVE in operation:

P3B>move<CR>
MOVE Version 1.0 02/10/83 (Library 1.0)
Usage :

MOVE d:filename.typ to_user {from_user> {NAMES}*
*:filename.typ (All disks)
ABCD..OP:filename.typ (Selected Disks)

NAMES option shows names of files moved.

P3B>dir *.com<CR>
B: ERASE COM : FUNKEY COM : DATE COM : FIND COM
B: SPACE COM : UNERASE COM : MAKE COM : MOVE COM
B: TIME COM : ASSIGN COM : SPEED COM : PROTOCOL COM

P3B>move «.com 0 names<CR>
MOVE Version 1.0 02/10/83 (Library 1.0)

Moving file(s) 3/B:????????.COM -> User 0.

424 The CP/M Programmer’s Handbook

0/B:ERASE .COM
O/B:SPACE .COM
O/B:TIME .COM

P3B>user 0<CR>
POB>dir
B: ERASE COM ;
B: SPACE COM :
B: TIME COM :

O/B:FUNKEY .COM
O/B:UNERASE .COM
O/B:ASSIGN .COM

FUNKEY COM :
UNERASE COM :
ASSIGN COM :

O/B:DATE .COM
O/B:MAKE .COM
O/B:SPEED .COM

O/B:FIND .COM
O/B:MOVE .COM
O/B:PROTOCOL.COM

DATE COM
MAKE COM
SPEED COM

FIND COM
MOVE COM
PROTOCOL COM

#def ine VN "1.0 02/10/83"

/* MOVE — This utility transfers filets) from one user number to
another, but on the SAME logical disk. Files are not actually
copied — rather, their directory entries are changed. */

include <LIBRARY.H> /

struct _dirpb dir_pb;
struct _dir *dir_entry
struct _scb scb;

/* Directory management parameter block */
/* Pointer to directory entry */
/* Search control block */

#def ine DIR_BSZ 128
char dir_buffe r CDIR_BSZD ;

/* Directory buffer size */
/* Directory buffer */

char file_nameC203
short name_flag;

/* Formatted for display : un/d:FILENAME.TYP */
/* NZ to display names of files moved */

short cur_disk
int from_user;
int to_user;

/* Current logical disk at start of program */
/* User number from which to move files */
/* User number to which files will be moved */

int mcount;
int dmcount
int lcount;

/* Match count (no. of file names matched) */
/* Per-disk match count */
/* Line count (for lines displayed) */

main(argc,argv)
short argc;
char *argvC3;
C

printf ("\nM0VE Version 7.s (Library */.s) ", VN,LIBVN) ;

chk_use(argc); /* Check usage */

to_user = atoi(argvC23); /* Convert user no. to integer */
/* Set and check destination user number */

if(to_user > 15)
€
p r i n t f ("\nError — the destination user number cannot be greater than 15.");
}

/* Set the current user number */
from_user = bdos(GETUSER,OxFF);

/* Check if source user number specified »/
if (isdigit(argvC3DC03))

l
/ * Set and check source user number */

i f ((from_user = at oi(argvC3D)) > 15)
{
p r in tf("\nError — the source user number cannot be greater than 15.");
e x i t O ;
}
/« Set name suppress flag from parameter #4 */

name_flag = usst rc mp("NAMES",argvC43);
}

else /* No source user specified */
i

/* Argument count */
/ * Argument vector (pointer to an array of chars.) */

Figure 11-7. MOVE.C, a utility program that changes files’ user numbers

Chapter 11: Additional Utility Programs 425

/* Set name suppress flag from parameter #3 */
name_flag = usst rc mp("NAMES",argvC33);
}

/* To simplify the logic below, name_flag must be made
NZ if it is equal to NAME_EQ, 0 if it is any other value */

name_flag = (name_flag == NAME_EQ ? 1 : 0);

if (to_user == from_user) /* To = from */
{
printf ("\nError - •'to' user number is the same as from' user number.");
e x i t O ;
J

/* Set the search control block file name, type, user number,
extent number, and length — length matches user number, file
name, and type. As the extent number does not enter into the
comparison, all extents of a given file will be found. */

set scb(scb,argvC13,from_user, ,13);

cur_disk = bdos(GETDISK); /* Get current default disk */
lcount = dmcount = mcount = 0; /* Initialize counts */

for (scb.scb_disk = 0; /* Starting with logical disk As */
scb.scb_disk < 16; /* Until logical disk P: */
scb.scb_disk++) /* Move to next logical disk */

£
/* Check if current disk has been selected for search */

if (!(scb.scb_adisks & (1 << scb.scb_disk)))
continue; /* No* so bypass this disk */
/* convert search user number and name for output */

conv_dfname(scb.scb_disk,scb,f ile_name);
printf ("\n\nMoving file(s) %s -> User V . d . ", f ile_name, to_user) ;

lcount++; /* Update line count */

dir_pb.dp_disk = scb.scb_disk; /* Set to disk to be searched*/
dmcount = 0; /* Reset disk matched count */

if (name_flag) /* If file names are to be displayed */
put char (•'\n'>; /* Move to column 1 */

/* Set the directory to "closed" to force the get_nde
function to open it. */

dir_pb.dp_open = 0;

/* While not at the end of the directory, set a pointer
to the next directory entry */

while(dir_entry = get_nde(dir_pb))
£

/* Match those entries that have the correct
user number, file name, type, and any
extent number. */

if (
(dir_entry -> de_userno != 0xE5) &&
(comp_fname(scb,dir_entry) == NAME_EQ>

>
£

dir_entry -> de_userno = to_user; /* Move to new user */
/* Request sector to be written back */

dir_pb.dp_write * 1;

mcount++; /* Update matched counts */
dmcount++; /* Per-disk count */

if (name_flag) /* Check map option */
£
conv_dfname(scb.scb_disk,dir_entry,f ile_name);

p r i n t f C X s " , f i le_name);

/* Check if need to start new line */
if (! (dmcount ’/. 4))

£
putchar (\ n -') ;
if (-•-+lcount > 18)

Figure 11-7. (Continued)

426 The CP/M Programmer’s Handbook

{
lcount = 0?
pr i n t f ("\nPress Space Bar to continue....")?
ge tc ha r();
putchar (''Xn•') ;
}

if (mcount == 0)
printf("\n --- No Files Moved --- ")?

bdos(SETDISK,cur_disk)? /* Reset to current disk */
1

chk_use(argc) /* Check usage */
/* This function checks that the correct number of

parameters has been specified, outputting instructions
if not «/

/* Entry parameter */
int argc? /* Count of the number of arguments on the command line »/

/* The minimum value of argc is 1 (for^the program name itself),
so argc is always one greater than the number of parameters
on the command line */

if (argc == 1 iI argc > 5)
l
printf ("\nllsage ?")?
pr i n t f ("\n\tM0VE d:filename.typ to_user {from_user} {NAMES}")?
pr in tf("\n\t * : f ilename.typ (All disks)");
printf("\n\t AB CD ..OP :f ilename.typ (Selected Disks)")?
pr i n t f ("\n\tNAMES option shows names of files moved.")?
e x i t () ?
I

}

Figure 11-7. (Continued)

Other Utilities
The utility programs described in this section are by no means a complete set.

You may want to develop many other specialized utility programs. Some possibili
ties are:

FILECOPY
A more specialized version of PIP could copy ambiguously specified
groups of files. Of special importance would be the ability to read a file
containing the names of the files to be copied. A useful option would be the
ability to detect the setting of the unused file attribute bit and copy only
files that have been changed.

PROTECT/ UNPROTECT
This pair of utilities would allow you to “hide” files in user numbers greater
than 15. Files so hidden could not be accessed other than by UNPRO-
TECTing them, thereby moving them back into the normal user number
range.

Chapter 11: Additional Utility Programs 427

RECLAIM
This utility would read all sectors on a disk (using the BIOS). Any bad
sectors encountered could then be logically removed by creating an entry in
the file directory, with allocation block numbers that would effectively
“reserve” the blocks containing the bad sectors.

OWNER
This utility, given a track or sector number, would access the directory and
determine which file or files were using that part of the disk. This is useful if
you have a bad sector or track on a disk. You then can determine which files
have been damaged.

Utility Programs for the Enhanced BIOS

This section describes several utility programs that work with the enhanced
BIOS shown in Figure 8-10. Several of these utilities work directly with the
physical devices on the computer system, which can vary from computer to
computer. The library header contains #define declarations for device numbers
and names for physical devices (Figure 11-2, f and Figure 11-2, g).

These #define statements are used to build a physical-device code table. If you
have more physical devices or want to change the names by which you refer to the
devices, you will need to change these definitions.

All of these utilities share some common features in the way that they are
invoked. If they are called without any parameters, they display instructions on
the console regarding what parameters are available. If they are called with the
word “SHOW” (or “S”, “SH”, and so forth) as a parameter, they display the
current settings of whatever attribute the utility controls.

M AKE-M ake Files “Invisible” or ‘Visible”
The MAKE utility shown in Figure 11-8 is designed to operate in conjunction

with the public files option implemented in the enhanced BIOS of Figure 8-10. It
has two modes of operation — making files “invisible” or “visible.”

An invisible file is one in user 0 which has been set to Read-Only and System
status. When the public files option is enabled, these files cannot be seen when you
use the DIR command, nor can they be erased accidentally.

A visible file is one that has been set to Read/Write and Directory status.
When files are made invisible, they are transferred from the current user

number to user 0. When files are made visible, they are transferred from user 0 to
the current user number.

Here is an example console dialog showing MAKE in operation:

P3B>make<CR>
MAKE Version 1.0 02/12/83 (Library 1.0)

428 The CP/M Programmer’s Handbook

Usage :
MAKE d:filename.typ INVISIBLE £ NAMES}

VISIBLE
*:filename.typ (All disks)
ABCD..OP:filename.typ (Selected Disks)

NAMES option shows names of files processed.

P3B>dir «.com<CR>
B: ERASE COM : UNERASE COM : ASSIGN COM : PROTOCOL COM

P3B>make *, corn invisible names<CR>
MAKE Version 1.0 02/12/83 (Library 1.0)

Moving files from User 3 to 0 and making them Invisible.
Searching disk : B

0/B:ERASE COM made Invisible in User 0
0/B:UNERASE .COM made Invisible in User 0
0/B:ASSIGN .COM made Invisible in User 0
0/B:PROTOCOL. COM made Invisible in User 0

P3B>make erase.com visible names<CR>
MAKE Version lTo 02/12/83 (^ibrary 1.0)

Moving files from User 0 to 3 and making them Visible.
Searching disk : B

3/B:ERASE .COM made Visible in User 3.

»define VN "1.0 02/12/83"

/* MAKE - This utility is really two very similar programs;
which one depends on the parameter specified on the command
line.

INVISIBLE finds all of the specified files, moves them
to user number 0, and sets them to be System and Read Only
status. These files can then be accessed from user numbers
other than 0 when the public files feature is enabled in the
BIOS.

VISIBLE is the opposite in that the specified files are
moved to the current user number and changed to Directory
and Read/Write status. */

»include <LIBRARY.H>

struct _dirpb dir_pb;
struct _dir *dir_entry;
struct _scb scb;
short to_user;
short from_user;

char file_nameC203;
short name_flag;

short cur_disk;

int mcount;

short invisible;
char «operation;

main(argc,argv)
short argc; /« Argument count «/
char «argvtl; /« Argument vector (pointer to an array of chars.) «/

/« Directory management parameter block «/
/« Pointer to directory entry «/
/« Search control block «/
/* User number to which files will be set «/
/« User number from which files will be moved «/

/» Formatted for display : un/d:FILENAME.TYP */
/« NZ to display names of files moved «/

/» Current logical disk at start of program «/

/« Match count (no. of file names matched) «/

/» NZ when parameter specifies invisible «/
/* Pointer to either "invisible" or "visible" «/

Figure 11-8. MAKE.C, a utility that makes files “invisible” and protected or makes
them “visible,” accessible, and unprotected

Chapter 11: Additional Utility Programs 429

c

print f ("\nMAKE Version 7.s (Library X s) ", VN,LIBVN);
chk_use(argc); /* Check usage */
cur_disk = bdos(GETDISK); /* Get current default disk */
mcount = O; /* Initialize count */

/* Set the invisible flag according to the parameter */
invisible = usst rc mp("VISIBLE",argvC21);

/* Set the from_user and to_user numbers depending on which
program is to be built, and the parameters specified. */

if (invisible)
£
from_user = bdos(GETUSER,OxFF); /* Get current user number */
to_user = 0; /* Always move files to user 0 */
operation = "Invisible"* /* Set pointer to string */
}
/* visible */
i

from_user = 0; /* Always move from user 0 «/
to_user = bdos(GETUSER,OxFF)? /* Get current user */
operation = "Visible"; /* Set pointer to string */
Î

/* Set search control block disks, name, type, user number,
extent number, and number of bytes to compare — in this
case, match the "from" user, all extents. */

s e t s c b (s c b , a r g v E ! D , f r o m _ u s e r , 13); /* Set disks, name, type */

name_flag = usst rc mp("NAMES",argvC33); /* Set name-suppress flag from param. 3 */

/* To simplify the logic below, name_flag must be made
NZ if it is equal to NAME_EQ, 0 if it is any other value */

name_flag = (name_flag == NAME_EQ ? 1 : 0);

/* Convert search user number and name for output */
conv_dfname(scb.scb_disk,scb,file_name);
pr intf ("\n\nMoving files from User V .d to */.d and making them 7.s.",

from_user,to_user,operat ion);

for (scb.scb_disk = 0; /* Starting with logical disk As */
scb.scb_disk < 16; /* Until logical disk Ps »/
scb.scb_disk++) /* Move to next logical disk */

C

/* Check if current disk has been selected for search */
if (!(scb.scb_adisks & (1 << sc b.scb_disk)))

continue; /* No — so bypass this disk */

pr i n t f ("\nSearching disk : X c " , (scb.scb_disk + 'A'));

dir_pb.dp_disk = scb.scb_disk; /* Set to disk to be searched»/

if (name_flag) /* If file names are to be displayed */
putchar (x\n-') ; /* Move to column 1 */

/* Set the directory to "closed", and force the getjnde
function to open it. */

dir_pb.dp_open = 0;

/« While not at the end of the directory,
set a pointer to the next directory entry. */

while(dir_entry = get_nde(dir_pb))
C

/* Match those entries that have the correct
user number, file name, type, and any
extent number. */

if (
(dir_entry -> de_userno != 0xE5) &&
(comp_fname(scb,dir_entry) == NAME_EQ)

)
€

Figure 11-8. (Continued)

430 The CP/M Programmer’s Handbook

mcount++; /* Update matched counts */

if (invisible)
C /* Set ms bits */
dir_entry -> de_fnameC81 != 0x80;
dir_entry -> de_fnameC93 5= 0x80;
)

else /* Visible */
{ /* Clear ms bits */
dir_entry -> de_fnameC83 &= 0x7F;
dir_entry -> de_fnameC93 &= 0x7F;
1

/* Move to correct user number */
dir_entry -> de_userno = to_user;

/* Indicate sector to be written back */
dir_pb.dp_write = 1;

}

/* Check if name to be displayed */
if (name_flag)

{
conv_dfnameiscb.scb_disk,dir_entry,f ile_name);
printf ("\n\t7.s made 7.s in User */.d.",

f ile_name,operation,to_user);
>1

} /» All directory entries processed */
/* All disks processed */

if (mcount == 0)
p r i n t f (“\n --- No Files Processed --- ");

bdos(SETDISK,cur_disk)» /* Reset to current disk */
>

chk_use(argc) /* Check usage */
/* This function checks that the correct number of

parameters has been specified, outputting instructions
if not.

*/
/« Entry parameter */
int argc; /* Count of the number of arguments on the command line */
f

/* The minimum value of argc is 1 (for the program name itself),
so argc is always one greater than the number of parameters
on the command line */

if (argc = * 3 1 1 argc == 4)
return;

else
{
p r in tf(”\nUsage *");
printf(M\n\tMAKE d:filenamc.typ INVISIBLE {NAMES}");
printf(M\n\t VISIBLE");
printf("\n\t *:filename.typ (All disks)");
printf("\n\t ABCD..OP;filename.typ (Selected Disks)");
printf("\n\tNAMES option shows names of files processed.");
exit();
}

>

Figure 11-8. (Continued)

Chapter 11: Additional Utility Programs 431

SPEED —Set Baud Rates
The SPEED utility shown in Figure 11-9 sets the baud rate for a specific serial

device. Here is an example console dialog that shows several of the options:
F3B>speed<CR>
SPEED 1.0 02/17/83
The SPEED utility sets the baud rate speed for each physical device.
Usage is : SPEED physical-device baud-rate, or

SPEED SHOW (to show current settings)

Valid physical devices are:
TERMINAL
PRINTER
MODEM

Valid baud rates are:
300
600
1200
2400
4800
9600
19200

P3B>speed show<CR>
SPEED 1.0 02/17/83
Current Baud Rate settings are :

TERMINAL set to 9600 baud.
PRINTER set to 9600 baud.
MODEM set to 9600 baud.

P3B>speed m 19<CR>
SPEED 1.0 02/17/83
Current Baud Rate settings are :

TERMINAL set to 9600 baud.
PRINTER set to 9600 baud.
MODEM set to 19200 baud.

P3B>speed xyz 12<CR>
SPEED 1.0 02/17/83
Physical Device •"XYZ' is invalid or ambiguous.
Legal Physical Devices are :

TERMINAL
PRINTER
MODEM

♦define VN "\nSPEED 1.0 02/17/83"

/* This utility sets the baud rate speed for each of the physical
devices. */

♦include <LIBRARY.H>

struct _ct ct_pdevCMAXPDEV + 23; /* Physical device table */

/* Hardware specific items */

Figure 11-9. SPEED.C, a utility that sets the baud rate for a specific device

432 The CP/M Programmer’s Handbook

«define B300 0x35
«define B600 0x36
«define B1200 0x37
«define B2400 0x3A
«define B4800 0x3C
«define B9600 0x3E
«define B19200 0x3F
struct _ct ct_brC103i

/* Baud rates for serial ports */
/* 300 baud »/
/* 600 baud */
/* 1200 baud */
/* 2400 baud */
/* 4800 baud */
/* 9600 baud */
/* 19200 baud */

/* Code table for baud rates < + spare entries) */

/* Parameters on the command line */
«define PDEV argvlll /* Physical device */
«define BAUD argvC23 /* Baud rate */

main(argc,argv)
int argc;
char *argvC3;
i
printf(VN); /* Display sign-on message */
s e t u p O ; /* Set up code tables */
chk_use(argc)» /* Check correct usage */

/* Check if request to show current settings */
if (usstrcmp(“SH OW ",ar gv C13))

C /* No — assume setting is required */
set_baud(get_pdev(PDEV),get_baud(BAUD)); /* Set baud rate */
>

show_baud(); /* Display current settings */

} /* end of program */

s e t u p O /* set up the code tables for this program */
l

/* Initialize the physical device table */
ct_init(ct_pdevC03,T_DEVN,PN_T); /* Terminal */
ct_init (ct_pdevt13,P_DEVN,PN JP); /* Printer */
ct_init (ct__pdevC23 , M_DEVN,PN_M); /* Modem */
ct_init(ct_pdevC33,C T _ S N F ,); /* Terminator */

/* Initialize the baud rate table */
ct_init(ct_brC03,B3 00 ,"300");
ct_ini t(ct_brE13,B600, "600");
ct_init(ct_brE23,B1 20 0,"1200")»
ct_init(ct_brE33,B2 40 0,"2400");
c t _i n i t (c t _br E 4 3,B4 80 0,"4800")»
ct_init(ct_brE53,B9 60 0,"9600");
ct_init(ct_brE63,B19200,"19200")»
ct_init(ct_brE73,CT_SNF,"*")» /* Terminator */
}

unsigned
get_pdev(ppdev) /* Get physical device */
/* This function returns the physical device code

specified by the user in the command line. */
char *ppdev? /* Pointer to character string */
€
unsigned retval; /* Return value «/

retval = ct_parc(ct_pdev,ppdev); /* Get code for ASCII string */
if (retval == CT_SNF) /* If string not found */

€
printf<"\n\007Physical Device '7.s ' is invalid or ambiguous.",

pp de v);
pr i n t f ("\nLegal Physical Devices are : ");
ct_disps(ct_pdev); /* Display all values */
e x i t O ;
>

return retval; /* Return code */
3

unsigned
get_baud(pbaud)
/* This function returns the baud rate time constant for

the baud rate specified by the user in the command line */

Figure 11-9. (Continued)

Chapter 11: Additional Utility Programs 433

char *pbaud; /* Pointer to character string */
i
unsigned retval; /* Return value */
retval = ct_parc(ct J a r ,pbau d); /* Get code for ASCII string */
if (retval « CT_SNF) /* If string not found */

{
print f ("\n\007Baud Rate ' V . s y is invalid or ambiguous.",

pbaud >;
pr i n t f ("\nLegal Baud Rates are : ");
ct_disps(ct_br); /* Display all values */
e x i t ()?
>

return retval; / * Return code */
}

set Jaaud(pdevc,baudc) /* Set the baud rate of the specified device */
int pdevc; /* Physical device code */
short baudc; /* Baud rate code */

/* On some systems this may have to be a
two-byte (unsigned) value */

{
short *baud_rc; /* Pointer to the baud rate constant */

/* On some systems this may have to be a
two-byte (unsigned) value */

/* Note: the respective codes for accessing the baud rate constants
via the get_cba (get configuration block address) function are:

Device #0 = 19, «1 - 21, #2 = 23. This function uses this
mathematical relationship */

/* Set up pointer to the baud rate constant */
baud_rc = get_cba(CB_DO_BRC + (pdevc << 1));

/* Then set the baud rate constant */
*baud_rc = baudc;

/* Then call the BIOS initialization routine */
bios(CI0INIT,pdevc);
>

show b a u d O /*
{

int pdevn; /*
short baudc; /*

/ *

short *baud_rc; /*
/*

/* Show current baud rate */

* Baud rate code */
On some systems this may have to be a
two-byte (unsigned) value */
Pointer to the baud rate constant */
On some systems this may have to be a
two-byte (unsigned) value */

/* Note: the respective codes for accessing the baud rate constants
via the get_cba (get configuration block address) function are:

Device #0 = 19, #1 » 21, #2 = 23. This function uses this
mathematical relationship */

p r i n t f ("\nCurrent baud rate settings are :");

for (pdevn — 0; pdevn <= MAXPDEV; pdevn ++) /* All physical devices */
€

/* Set up pointer to the baud rate constant —
the code for the get_cba function is computed
by adding the physical device number *2 to
the Baud Rate code for device #0 */

baud_rc = get_cba(CB_DO_BRC (pdevn << D) ;

/* Then set the baud rate constant */
baudc = *baud_rc;

printf ("\n\t7.s set to */.s baud. 11,
ct_strc(ct_pdev,pdevn), /* Get ptr. to device name */
ct_strc(ct_br,baudc)); /* Get ptr. to baud rate */

chk_use(arge) /* Check correct usage */
int arge; /* Argument count */
C

Figure 11-9. (Continued)

434 The CP/M Programmer’s Handbook

if (argc == 1)
C
prin tf("\nThe SPEED utility sets the baud rate speed for each physical device.");
prin tf("\nUsage is ; SPEED physical-device baud rate, or");
prin tf("\n SPEED SHOW (to show current settings)");
pr in tf("\n\nValid physical devices are; ");
ct_disps(ct _pdev);
pr in tf("\nValid baud rates are; ");
ct_disps(ct_br);
e x i t ();
}

1

Figure 11-9. (Continued)

PROTOCOL—Set Serial Line Protocols
The PROTOCOL utility shown in Figure 11-10 is used to set the protocol fora

specific serial device.
The drivers for each physical device can support several serial line protocols.

The protocols are divided into two groups, depending on whether they apply to
data output by or input to the computer.

Note that the output DTR and input RTS protocols can coexist with other
protocols. The strategy is first to set the required character-based protocol and
then to set the DTR/RTS protocol. There is an example of this in the following
console dialog:
P3B>protocol<CR>
PROTOCOL Vn 1.0 02/17/83
PROTOCOL sets the physical device's serial protocols.

PROTOCOL physical-device direction protocol {message-length!

Legal physical devices are :
TERMINAL
PRINTER
MODEM

Legal direction/protocols are :
Output DTR
Output XON
Output ETX
Input RTS
Input XON

Message length can be specifed with Output ETX.

P3B>protocol show<CR>
PROTOCOL Vn 1.0 02/17/83

Protocol for TERMINAL - None.
Protocol for PRINTER - Output XON
Protocol for MODEM - Input RTS

P3B>protocol rn o e 128<CR>
PR0T0C0L Vn 1.0 02/17/83

Protocol for TERMINAL - None.
Protocol for PRINTER - Output XON

Chapter 11: Additional Utility Programs 435

Protocol for MODEM - Output ETX Message Length 128 bytes.

P3B>protocol m o d<CR>
PROTOCOL Vn 1.0 02/17/83

Protocol for TERMINAL - None.
Protocol for PRINTER - Output XON
Protocol for MODEM - Output DTR Output ETX Message Length

128 bytes.

#def ine VN "NnPROTOCOL Vn 1.0 02/17/83"
/* PROTOCOL — This utility sets the serial port protocol for the

specified physical device. Alternatively, it displays the
current protocols for all of the serial devices. */

»include <LIBRARY.H>

/* Code tables used to relate ASCII strings to code values */
struct _ct ct_iprotot33y /* Code table for input protocols */
struct _ct ct_oprotoC43y /* Code table for output protocols */
struct _ct ct_dprotoC73y /* Code table for displaying protocols »/
struct _ct ct_pdevCMAXPDEV + 23y/* Physical device table */
struct _ct ct_ioE33y /* Input, output */

/* Parameters on the command line */
»define PDEV argvtlD
»define 10 argvC23
»define PROTO argvC33
»define PROTOL argvC43

/* Physical device */
/* Input/output */
/* Protocol */
/* Protocol message length */

main(argc,argv)
int argcy
char *argvC3;
l
printf(VN)y /* Display sign-on message */
s e t u p O y /* Set up code tables */
chk_use(argc)y /* Check correct usage */

/* Check if request to show current settings */
if (usstrcmpC'SHOW",argvCID))

f / * No — assume a set is required */
setjprototgetjpdev(PDEV), / * Physical device */

/* Input/output and protocol */
get_proto(get_ioCIO),PROTO),
PROTOL)y /* Protocol message length */

>
show _proto()y

> /* end of program */

s e tu p() /* Set up the code tables for this program */f
/* Initialize the physical device table */

ct_init(ct_pdevC03,0,PN_T)y /* Terminal */
ct_init(ct_pdevC11,1,PN_P)y /« Printer */
ct _init(ct_pdevC23,2,PN_M)y /* Modem */
ct_init(ct_pdevC3D,CT _S NF ,"*")y /* Terminator */

/* Initialize the input/output table */
ct_init(ct_ioC03,0,"INPUT”)y
ct _init(ct_ioC13,1,"OUTPUT")y
ct_init(ct_ioC2D,CT_SNF,"»")y /* Terminator */

/* Initialize the output protocol table */
ct_init(ct_oprotoC03,DT_0DTR,"D T R ")y
ct_init(ct_oprotoC13,DT_0X0N,"XON")y
ct_init(ct_oprotoC23,DT_0ETX,"ETX")y

Figure 11-10. PROTOCOL.C, a utility that sets the protocol governing input and
output of a specified serial device

436 The CP/M Programmer’s Handbook

ct_init(ct_oprotoC33,C T _ S N F ,)j /* Terminator */

/* Initialize the input protocol table */
ct_init(ct_iprotoC03, DT_IRTS,"RTS");
ct_init(ct_iprotoC1 1 , DT_IXON,"XON");
ct_init(ct_iprotoC23,CT_SNF,"«"); /* Terminator */

/* Initialize the display protocol */
ct_init(ct_dprotoC03,DT_ODTR,"Output D T R ");
ct_init(ct_dprotoC13,DT_OXON,"Output XON");
ct_init(ct_dprotoC2i,DT_OETX,"Output E T X ");
ct_init(ct_dprotoC33,DT_IRTS,"Input RT S");
ct_init(ct_dprotoC43,DT_IXON,"Input XON");
ct_init(ct_dprotoC53, CT_SNF,"*");
}

unsigned
get_pdev(ppdev) /* Get physical device */
/* This function returns the physical device code

specified by the user in the command line. */
char *ppdev; /* Pointer to character string * /
i
unsigned retval; /* Return value */

retval = ct_parc(ct_pdev,ppdev); /« Get code for ASCII string */
if (retval == CT_SNF) /* If string not found */

l
p r in tf("\n\007Physical Device ' V . s ' is invalid or ambiguous.",

pp de v);
pr intf ("\nl_egal Physical Devices are ; ");
ct_disps(ct_pdev); /* Display all values */
e x i t O ;
1

return retval; /* Return code */

unsigned
get_io(pio) /* Get input/output parameter */
char *pio; /* Pointer to character string */
{
unsigned retval; /* Return value */

retval = ct_parc(ct_io,pio); /*
if (retval == CT_SNF) /*

{
print f ("\n\007Input/Output

P i o) ;
p r i n t f ("\nLegal values are
ct_disps(ct io); /*
e x i t O ;
>

return retval; /»
}

Get code for ASCII string */
If string not found */

direction '7.s ' is invalid or

: ");
Display all values */

Return code */

am biguous.",

unsigned

get_proto(output,pproto)
/* This function returns the protocol code for the

protocol specified by the user in the command line. */
int output; /* =1 for output, =0 for input */
char «pproto; /* Pointer to character string */

f
unsigned retval; /* Return value */

if (output) /* OUTPUT specified */
{

/« Get code for ASCII string */
retval = ct_parc(ct_oproto,pproto);
if (retval == CT_SNF) /* If string not found «/

C
print f ("\n\0070utput Protocol ' V . s ' is invalid or ambiguous.",

pproto);
pr i n t f ("\nLegal Output Protocols are : ");
ct_disps(ct_oproto); /* Display valid protocols «/
e x i t O ;
}

Figure 11-10. (Continued)

Chapter 11: Additional Utility Programs 437

else
}

C
/« INPUT specified */

/« Get code for ASCII string »/
retval = ct_parc(ct_iproto,pproto);
if (retval == CT_SNF) /« If string not found «/

€
printf ("\n\007Input Protocol 'V . s ' is invalid or ambiguous.'1,

pproto);
p r in tf(M\nLegal Input Protocols are s ");
ct_disps(ct_iproto); /« Display valid protocols «/
e x i t ();
}

return retval; /* Return code »/
3

set_proto(pdevc,protoe,pplength)/*
int pdevc; /»
unsigned protoc; /«
char «pplength; /«
l

Set the protocol for physical
Physical device code */
Protocol byte «/
Pointer to protocol length «/

device «/

struct _ppdt
l
char *pdtC16D; /« Array of 16 pointers to the device tables */
3 ;
struct jppdt «ppdt; /« Pointer to the device table array «/
struct _dt «dt; /* Pointer to a device table «/

ppdt = get_cba(CB_DTA); /« Set pointer to array of pointers */
dt = ppdt -> pdtCpdevcl;

if (!dt) /* Check if pointer in array is valid */
€
printf ("\nError — Array of Device Table Addresses is not set for device #’/.d.",

pd ev c);
e x i t O ;
>

if (protoc

{
dt
3

else
C
dt
>

& 0x8000)

-> dt _s t1

-> dt _s t1

/* Check if protocol byte to be set
directly or to be OR ed in */

/* OR ed */
(protoc 8< 0 x 7F);

/* Set directly */
(protoc 8, 0x7F);

if

1

((protoc 8. 0 x 7 F) == DT_0ETX) /* If ETX/ACK, check for message
length */

l
if (isdigit(»pplength)) /* Check if length present

{
/* Convert length to binary and set device

table field. */
dt -> dt_etxml = atoi(pplength);
3

*/

show_proto()
€
struct _ppdt
C
char »pdtC161;
3 ;
struct _ppdt «ppdt;
struct _dt «dt;
int pdevc;
struct _ct «dproto;

/« Show the current protocol settings «/

/* Array of 16 pointers to the device tables «/

/« Pointer to the device table array «/
/* Pointer to a device table «/
/« Physical device code «/
/« Pointer to display protocols «/

ppdt = get_cba(CB_DTA); /« Set pointer to array of pointers «/

/« For all physical devices «/

Figure 11-10. (Continued)

438 The CP/M Programmer’s Handbook

for (pdevc = 0? pdevc <= MAXPDEV? pdevc++)
{

/* Set pointer to device table */
dt = ppdt -> pdtCpdevcl;

if (dt) /* Check if pointer in array is valid */
C
p r in tf("\n\tProtocol for 7 . s - ", ct _strc (ct_pdev, pdev c));

/* Check if any protocols set */
if (!(dt -> dt _ s t 1 & ALLPR0T0))

C
pr i n t f ("None.");
cont inue;
)

)
)

/* Set pointer to display protocol table */
dproto = ct_dproto;
while (dproto -> _ct_code != CT_SNF)

if

}

{
/* Check if protocol bit set */

if (dproto -> _ct_code & dt -> dt_stl)
{ /* Display protocol */
printf (”7.s ", dproto -> _ct_sp)j
1

++dprotoj /* Move to next entry */
)

Check if ETX/ACK protocol and
message length to be displayed */

(dt -> dt _s t1 & DT _0 ET X)
printf (" Message length 7 .6 bytes.",

dt -> dt_etxml);

chk_use(argc) / * Check for correct usage */
int argc; /* Argument count on commmand line */
t
if (argc == 1)

t
printf("XnPROTOCOL sets the physical device's serial protocols.");
printf("\n\tPROTOCOL physical-device direction protocol {message-length}");
pr i n t f ("\n\nl_egal physical devices are :");
ct_disps(ct_pdev);
pr in tf("\nLegal direction/protocols are :");
ct_disps(ct_dproto);
p r in tf("\n\tMessage length can be specifed with Output ETX.Xn");
e x i t O ;
>

Figure 11-10. (Continued)

ASSIGN—Assign Physical to Logical Devices
The ASSIGN utility shown in Figure 11-11 sets the necessary bits in the

physical input/output redirection bits in the BIOS. It assigns a logical device’s
input and output to physical devices. Input can only be derived from a single
physical device, while output can be directed to multiple devices.

Here is an example console dialog showing ASSIGN in action:
P3B>assign<CR>
ASSIGN Vn 1.0 02/17/83
ASSIGN sets the Input/Output redirection.

ASSIGN logical-device INPUT physical-device
ASSIGN logical-device OUTPUT physical-devl tphy__dev2. . }
ASSIGN SHOW (to show current assignments)

Chapter 11: Additional Utility Programs 439

Legal logical devices are :
CONSOLE
AUXILIARY
LIST

Legal physical devices are :
TERMINAL
PRINTER
MODEM

P3B>assign show<CR>
ASSIGN Vn 1.0 02/17/83
Current Device Assignments are :

CONSOLE INPUT is assigned to - TERMINAL
CONSOLE OUTPUT is assigned to - TERMINAL
AUXILIARY INPUT is assigned to - MODEM
AUXILIARY OUTPUT is assigned to - MODEM
LIST INPUT is assigned to - PRINTER
LIST OUTPUT is assigned to - PRINTER

P3B>assjgn a o t m p <CR>
ASSIGN Vn 1.0 02/17/83
Current Device Assignments are :

CONSOLE INPUT is assigned to - TERMINAL
CONSOLE OUTPUT is assigned to - TERMINAL
AUXILIARY INPUT is assigned to - MODEM
AUXILIARY OUTPUT is assigned to - TERMINAL PRINTER MODEM
LIST INPUT is assigned to - PRINTER
LIST OUTPUT is assigned to - PRINTER

«define VN "\nASSIGN Vn 1.0 02/17/83"

«include <LIBRARY.H>

struct _ct ct_pdevCMAXPDEV + 23; /* Physical device table */

/* Names of logical devices */
«define LN_C "CONSOLE"
«define LN_A "AUXILIARY"
«define LN_L "LIST"
struct _ct ct_ldevE43; /* Logical device table */

struct _ct ct_ioC33; /* Input, output »/

/» Parameters on the command line */
«define LDEV argvC13 /* Logical device */
«define 10 argvC23 /* Input/output **/

ma i n (ar gc,a r gv)
int argc;
char *argvC3;
i

printf(VN); /* Display sign-on message */
s e t u p O ; /* Set up code tables */
chk_use(argc); /* Check correct usage */

/* Check if request to show current settings */
if (usstrcmp("SHOW",ar gv C13))

{ /* No, assume a set is required */

Figure 11-11. ASSIGN.C, a utility that assigns a logical device’s input and output to two
physical devices

440 The CP/M Programmer’s Handbook

/* NOTE : the number of physical devices to
process is given by argc - 3 */

set__assign(get_ldev(LDEV),g et_io(10),argc - 3,argv);
>

show_assign();

>

s e t u p O /* Set up the code tables for this program */
i

/* Initialize the physical device table */
ct_init (ct_pdev[03,0,PN_T) ; /* Terminal */
ct_init(ctjpdevC13,1,PN_P); /* Printer */
ct_init(ct_pdevC23,2,PN _M); /* Modem */
ct_init(ct_pdevC31,CT_SNFr"*"); /* Terminator */

/* Initialize the logical device table */
ct_init(ct_ldevE03,0,LN_C) ; /* Terminal */
ct_init(ct_ldevC11,1,LN_A); /* Auxiliary */
ct_init(ct_ldevC21,2,LN_L); /* List */
ct_init(ct_ldevC33,CT_SNF,"*"); /* Terminator */

/* Initialize the input/output table «/
ct_init(ct_iot03,0, "INPUT");
ct_init(ct_ioC13,1,"OUTPUT");
ct_init(ct_ioC23,C T _ S N F ,); /* Terminator */

1

unsigned
get_ldev(pldev) /* Get logical device */
/* This function returns the logical device code

specified by the user in the command line. */
char *pldev; /* Pointer to character string */
f
unsigned retval; /* Return value »/
retval = ct_parc(ct_ldev,pldev) ; /* Get code for ASCII string */
if (retval == CT_SNF) /« If string not found */

€
p r in tf("\n\007Logical device ' V . s ' is invalid or ambiguous.",

pldev);
p r i n t f ("\nLegal logical devices are s ");
ct_disps(ct_ldev); /« Display all values */
e x i t O ;
i

return retval; /* Return code */
}

unsigned
get_io(pio)
char *pio;
i
unsigned retval

/* Get input/output parameter */
/* Pointer to character string **/

/* Return value */

retval = ct _parc(ct_io,pio); /*
if (retval == CT_SNF) /*

€
p r in tf("\n\007Input/output

pio) ;
p r in tf("\nLegal values are
ct_disps(ct_io); /*
e x i t O ;
}

return retval; /*
}

Get code for ASCII string */
If string not found */

direction ' V . s ' is invalid or

• ") ;
Display all values */

Return code */

am biguous.",

set_assign(1devc,output,argc,argv)
int ldevc; /*
int output; /*
int argc; /*
char *argvE3; /*

unsigned *redir; /*
int pdevc; /*
unsigned rd_val; /*

/* Set assignment (I/O redirection) */
Logical device code */
I/O redirection code */
count of arguments to process */
Replica of parameter to main function */

Pointer to redirection word */
Physical device code */
Redirection value */

/* Get the address of the I/O redirection word.

Figure 11-11. (Continued)

Chapter 11: Additional Utility Programs 441

This code assumes that get_cba code values
are ordered:

Device #0, input & output
Device #1, input & output
Device #2, input & putput

The get_cba code is computed by multiplying the
logical device code by 2 (that is, shift left 1)
and added onto the code for Device #0, input
Then the output variable (0 = input, 1 = output)
is added on */

redir = get_cba(CB_CI + (ldevc << 1) + output);

rd_val = 0; /* Initialize redirection value */

do

/* For output, assignment can be made to several physical
devices, so this code may be executed several times */

£
/* Get code for ASCII string */
/* NOTE: the physical device parameters start

with parameter #3 (argvC33). However argc
is a decreasing count of the number of physical
devices to be processed, Therefore, argc ♦ 2
causes them to be processed in reverse order
(i.e. from right to left on the command line) */

pdevc = ct_parc(ct_pdev,argvCargc + 21);

if (pdevc == CT_SNF) /* If string not found */
£
pr i n t f ("\n\007Physical device '5is' is invalid or ambiguous.” ,
argvCargc + 23);
printf ("\nl_egal physical devices are : ");
ct_disps(ct_pdev); /* Display all values */
e x i t O ;
1
/* Repeat this loop for as long as there are

more parameters (for output only) */
else

£
/* Build new redirection value by OR ing in

a one-bit shifted left pdevc places. */
rd_val i= (1 << pdevc);
>

1 while (— argc && output);

redir = rd_val; / Set the value into the config. block */
}

show_assign()
£
int rd_code;
int ldevn;
int pdevn;
unsigned rd_val;
unsigned *prd_val;

/* Show current baud rate */

/* Redirection code for get_cba */
/* Logical device number */
/* Physical device number */
/* Redirection value */
/* Pointer to the redirection value */

/* Note; the respective codes for accessing the redirection values
via the get_cba (get configuration block address) function are:

Device #0 console input — 5
Device #0 console putput — 6
Device #1 auxiliary input — 7
Device #1 auxiliary output — 8
Device #2 list input — 9
Device #2 list output — 10

This function uses this mathematical relationship */

p r in tf("\nCurrent device assignments are :");

/* For all get_cba codes */
for (rd_code = CB_CI; rd_code <= CB_L0; rd_code++)

£
/* Set pointer to redirection value */

prd_val = get_cba(rd_code);
/* Get the input redirection value «/

Figure 11-11. (Continued)

442 The CP/M Programmer’s Handbook

rd_val = *prd_val? /* This also performs byte reversal */

/* Display device name. The rd_code is converted to a
device number by subtracting the first code number
from it and dividing by 2 (shift right one place).
The input/output direction is derived from the
least significant bit of the rd_code. */

printf ("\n\t*/.s */.s is assigned to - ",
ct_strc(ct_ldev,(rd_code - CB_CI> >> 1),
ct_strc(ct_io, ((rd_code & 0x01) A 1)));

/* For all physical devices */
for (pdevn = 0? pdevn < 16? pdevn++)

C
/* Check if current physical device is assigned

by AND ing with a 1-bit shifted left pdevn times */
if (rd_val & (1 << pdevn)) /* Is device active? */

{ /* Display physical device name */
p r i n t f C 7.s",ct_strc(ct_pdev,pdevn))?
>

>

chk_use(argc) /* Check for correct usage */
int argc? /* Argument count on commmand line */
{
if (argc == 1)

£
pr i n t f ("\nASSIGN sets the Input/Output redirect ion.")?
p r in tf("\n\tASSIGN logical-device INPUT physical-device")?
p r in tf("\n\tASSIGN logical-device OUTPUT physical-devl Cphy_dev2..I")?
pr i n t f ("\n\tASSIGN SHOW (to show current assignments)")?
printf ("\n\nl_egal logical devices are :")?
ct_disps(ct_ldev)?
p r in tf("\nLegal physical devices are :")?
ct_disps(ct_pdev)?
e x i t O ?
>

Figure 11-11. (Continued)

DATE — Set the System Date
The DATE utility shown in Figure 11-12 sets the system date in the configura

tion block, along with a flag that indicates that the DATE utility has been used.
Other utility programs can use this flag as a primitive test of whether the system
date is current.

Here is an example console dialog:
F3B>date<CR>
DATE Vn 1.0 02/18/83
DATE sets the system date. Usage is :

DATE mm/dd/yy
DATE SHOW (to display current date)

P3B>date show<CR>
DATE Vn 1.0 02/18/83

Current Date is 12/18/82

P3B>date 2/23/83<CR>
DATE Vn 1.0 02/18/83

Current Date is 02/23/83

Chapter 11: Additional Utility Programs 443

«define VN "\nDATE Vn 1.0 02/18/83"

/* This utility accepts the current date from the command tail,
validates it, and set the internal system date in the BIOS.
Alternatively, it can be requested just to display the current
system date. */

«include <LIBRARY.H>

char «date;
char *date_flag?
int mm,dd,yy;
int mcount?
int count?

m a i n (arge,argv)
int arge;
char *argvC3;
€
printfCVN); /* Display sign-on message */
date = get_cba(CB_DATE)? /* Set pointer to date */
date_flag = get_cba(CB_DTFLAGS)?/* Set pointer to date-set flag */

if (arge != 2) /* Check if help requested (or needed) */
show_use(); /* Display correct usage and exit */

if (usstrcmp("SH0W",argvC13)) /* Check if not SHOW option */
{

/* Convert specified time into month, day, year */
mcount = sscanf (argvC 13, ,,m/ . ö / V . d / 7 . d " , &mm, &dd, & y y);
if (mcount != 3) /* Input not numeric */

show_use(); /* Display correct usage and exit */

/* NOTE: The following validity checking is
simplistic, but could be expanded to accommodate
more context-sensitive checking: days in the month,
leap years, etc. */

if (mm > 12 !! mm < 1) /* Check valid month, day, year */
€
p r in tf("\nMonth = %d is i1legal.M ,mm) ;
show_use(>? /* Display correct usage and exit */
3

if (dd > 31 !! dd < 1)
{
printf ("\nDay = */.d is i 1 legal.", dd) ;
show_use(>? /* Display correct usage and exit */
3

if (yy > 90 ! i yy < 83) /* <=== NOTE ! */
l

printf ("\nYear = y.d is i 1 legal.", yy);
show_use(); /* Display correct usage and exit */
>

/* Convert integers back into a formatted string */
sprintf (date, "%2d/7.2d/*/.2d",m m ,d d , yy) ;
dateCSD = OxOA; /* Terminate with line feed */
dateC93 = '\0X; /* New string terminator */

/* Change " 1/ 2/ 3" into "01/02/03" «/
for (count = 0; count < 7; count+=3)

{
if (dateCcountl == " ')

dateCcountl = ' O ' ;
1

/* Turn flag on to indicate that user has set date */
*date_flag != DATE_SET;
}

printf ("\n\tCurrent Date is 7.s",date);
3

show_use() /* Display correct usage and exit */
{
p r i n t f ("\nDATE sets the system date. Usage is :");
p r i n t f ("\n\tDATE mm/dd/yy");
p r i n t f ("\n\tDATE SHOW (to display current date)\n")?
e x i t O ;
3

/* Pointer to the date in the config. block */
/* Pointer to date-set flag */
/* Variables to hold month, day, year */
/* Match count of numeric values entered */
/* Count used to add leading 0's to date */

Figure 11-12. DATE.C, a utility that makes the current date part of the system

444 The CP/M Programmer’s Handbook

TIME—Set the System Time
The TIME utility shown in Figure 11-13 sets the current system time. Like

DATE, TIME sets a flag so that other utilities can test that the system time is likely
to be current.

Here is an example console dialog:
P3B>time<CR>
TIME Vn 1.0 02/18/83
TIME sets the system time. Usage is :

TIME hhismmC:ssJ}
TIME SHOW (to display current time)

F3B>t ime show<CR>
TIME Vn 1.0 02/18/83

Current Time is 13:08:44

P3B>t ime 5:47<CR>
TIME Vn 1.0 02/18/83

Current Time is 05:47:00

#def ine VN "\nTIME Vn 1.0 02/18/83“

/* This utility accepts the current time from the command tail,
validates it, and sets the internal system time in the BIOS.
Alternatively, it can just display the current system time. */

#include <LIBRARY.H>

char «time? /*
char *time_set; /*
int hh,mm,ssf /*
int recount; /*
int count; /*

mainiargc,argv)
int argc;
char »argvtl;
{
printf(VN); /*
time = get_cba(CB_TIMEA);
t ime_flag = get_cba(CB_DTFLAGS); /* Set pointer t© the

time-set flag */
hh = mm = ss = 0; /* Initialize the time if seconds or

minutes are not specified */

if targe != 2) /* Check if help requested tor needed) */
show_uset); /* Display correct usage and exit */

if tusstrempt“SHOW",argvCll)> /* Check if not SHOW option */
l

/* Convert time into hours, minutes, seconds */
mcount = sscanf targvdl, "y.ds%d;%d”,fchh,S<mm,ScSs) ;
if tlmcount) /* Input not numeric */

show_uset>; /* Display correct usage and exit */

if thh > 12) /« Check valid hours, minutes, seconds */
{
printft"\n\007Hours = %d is illegal.",hh);
show_uset); /* Display correct usage and exit */
>

Pointer to the time in the config. block */
Pointer to the time set flag */
Variables to hold hours, minutes, seconds */
Match count of numeric values entered */
Count used to add leading zeros to time */

Display sign-on message */
/* Set pointer to time */

Figure 11-13. TIME.C, a utility that makes the current time part of the system

Chapter 11: Additional Utility Programs 445

if (mm > 59)
€

p r in tf("\n\007Minutes = 7.d is i 1 l e g a l m m) s
show_use()j /* Display correct usage and exit */
>

if (ss > 59)
l
show_use(); /* Display correct usage and exit */
printf ("\n\007Seconds = 7.d is i 1 l e g a l s s) ;
3

/* Convert integers back into formatted string */
spr i nt f (t i m e , "7.2d * X2d s 7.2d ",h h ,m m ,s s);
timeC83 = OxOA? /» Terminate with line feed */
timeC9D = '\0'j /* New string terminator */

/* Convert " 1*. 2i 3" into ,'01s02!03" «/
for (count = 0» count < 7* count+=3)

{
if (timeCcountl «■ " ')

time[count 3 = ' 0 ' t
1
/# Turn bit on to indicate that the time has been set */

*t ime_flag 1= TIME_SET;
1

pr i n t f ("\n\tCurrent Time is %s",time)j
3

show_use() /* Display correct usage and exit */
«
pr i n t f ("\nTIME sets the system time. Usage is :");
p r i n t f ("\n\tTIME hh fimmC*ss))")*
p r i n t f ("\n\tTIME SHOW (to display current time)\n");
e x i t ();
3

Figure 11-13. TIME.C, a utility that makes the current time part of the system (continued)

FUNKEY-Set the Function Keys
The FUNKEY utility shown in Figure 11-14 sets the character strings asso

ciated with specific function keys. In the specified character string, the character
“< ” is converted into a LINE FEED character. Here is an example console dialog:
P3B > funkey<CR>
FUNKEY sets a specific function key string.

FUNKEY key-number "string to be programmed<"
(Note : is changed to line feed.)
(key-number is from 0 to 17.)
(string can be up to 16 chars.

FUNKEY SHOW
)

(displays settings for all keys)

P3B>funkey show<CR>
FUNKEY Vn 1.0 02/13/83

Key #0 = 'Function Key K '
Key #1 = 'Function Key 2<

P3B>f unkey 0 "PIP B; «As «. «CV3<I,<CR>

P3B>funkey show<CR>
FUNKEY Vn 1.0 02/18/83

Key #0 = 'PIP B:=A:*.*CV3<'
Key #1 = 'Function Key 2<'

446 The CP/M Programmer’s Handbook

#def ine VN "\nFUNKEY Vn 1.0 02/18/83"

«include <LIBRARY.H>

int fnum; /* Function key number to be programmed */
char fstringt20]; /* String for function key * /
struct _fkt *pfk; /* Pointer to function key table */

main(argc,argv)
int argc;
char *argv[];
{

if (argc = = 1 1 ! argc > 3)
show_use();

pfk = get_cba(CB_FKT); /* Set pointer to function key table */

if (usstrcmp("SHOW",ar gv C13))
l
if (!isdigit(argvC1]C0]))

C
p r i n t f ("\n\007x%s^ is an illegal function key.",

ar gv C1]);
show_use();
>

fnum = atoi(argvC1]>; /* Convert function key number */

if (fnum > FK_ENTRIES>
C
printf ("\n\007Funct ion key number */.d too large.",fnum);
show_use();
>

if (get_fs(fstring) > FK_LENGTH)
C
p r in tf("\n\007Function key string is too long.");
show_use();
>

pfk += fnum; /* Update pointer to string */
/* Copy string into function key table */

/* Check if function key input present */
if (I (pfk -> f k_input C O D)

C
printf ("\n\007Error : Function Key #*/.d is not set u p to be programmed.
show_use();
>

strcpy(pfk -> fk_output,fstring);
>

else /* SHOW function specified */
C
printf(VN); /* Display sign--on message */
show_fun();
}

}

get_fs(string)
char s t r i n g d ;
€
char «tail;
short tcount;
int slen;

/* Get function string from command tail */
/* Pointer to character string */

/* Pointer to command tail */
/* Count of TOTAL characters in command tail */
/* String length */

tail = 0x80;
tcount = *tail++i
slen = 0;

/* Command line is in memory at 0080H */
/* Set TOTAL count of characters in command tail */
/* Initialize string length */

whileitcount—) /* For all characters in the command tail */
€
if (*tail++ == '"') /* Scan for first quotes */

break;

Figure 11-14. FUNKEY.C, a utility that sets the character strings associated with
specific function keys

,fnum);

Chapter 11: Additional Utility Programs 447

if (Itcount) /* No quotes found «/
€
pr i n t f ("\n\007No leading quotes found.");
show_use();
}

++tcount; /» Adjust tail count «/
while(tcount—) /« For all remaining characters in tail «/

C
if (»tail ==

€
stringCslenl = '\0'; /» Add terminator «/
break; /» Exit from loop «/
>

stringCslenl = »tail++; /« Move char, from tail into string «/

if (stringCslenl == ' < ')
stringCslenl = OxOA;

++slen;
i

if (Itcount) /» No terminating quotes found */
C
pr i n t f ("\n\007No trailing quotes found.");
show_use();
}

return slen; /« Return string length »/
1

show_fun()
t
struct _fkt *p fk t;
int count;
char *lf;

/» Display settings for all function keys «/

/* Local pointer to function keys */
/» Count to access function keys */
/* Pointer to "<" character (LINE FEED) */

pfkt = get_cba(CB_FKT); /* Set pointer to function key table */
for (count = 0; count <= FK_ENTRIES; count++)

{
if (pfkt -> fk_inputC01) /* Key is programmed */

C
/» Check if at physical end of table */

if (pfkt -> fk_input == OxFF)
break; /* Yes — break out of for loop

strcpyifstring,pfkt -> fk_output);
/* Convert all OxOA chars to "<" */

while (If = strsen(fstring,"\012"))
£
«If = '<';
}

*/

printf ("\n\tKey #*/.d = '7.s'", c o un t, f str ing);
>

++pfkt; /* Move to next entry »/
}

show_use()
I
p r i n t f ("\nFUNKEY sets a specific function key string.");
pr i n t f ("\n\tFUNKEY key-number \042string to be programmed<\042 ");
printf("\n\t (Note : ' < ' is changed to line feed.)");
printf("\n\t (

FK _ENTRIES-1) ;
Printf("\n\t (

FK_LENGTH) ;
pr i n t f ("\n\tFUNKEY SHOW
e x i t O ;
}

key-number is from 0 to */.d.)"

string can be up to */.d chars.)"

(displays settings for all keys)");

Figure 11-14. (Continued)

448 The CP/M Programmer’s Handbook

Other Utilities
Because of space limitations, not all of the possible utility programs for the

BIOS features can be shown in this chapter. Others that would need to be
developed in order to have a complete set are

PUBLIC/PRIVATE
This pair of utilities would turn the public files flag on or off, making the
files in user 0 available from other user numbers or not, respectively.

SETTERM
This program would program the CONOUT escape table, setting the
various escape sequences as required. It could also program the characters
in the function key table that match with those emitted by the terminal
currently in use.

SAVESYS
This utility would save the current settings in the long term configuration
block.

LOADSYS
This would load the long term configuration block from a previously saved
image.

DO
This utility would copy the command tail into the multi-command buffer,
changing “\ ” into LINE FEED, and then set the forced input pointer to the
multi-command buffer. As a result, characters from the multi-command
buffer would be fed into the console input stream as though they had been
typed one command at a time.

SPARE
This utility would work in conjunction with the hard-disk bad-sector
management in your disk drivers. It would spare out bad sectors or tracks
on the hard disk. This done, all subsequent references to the sectors or
tracks would be redirected to a different part of the disk.

Error Messages

This chapter lists the error messages that emanate from standard CP/M and its
utility programs. It does not include any error messages from the BIOS; these
messages, if any, are the individualized product of the programmers who wrote
the various versions of the BIOS.

The error messages are shown in alphabetical order, followed (in parentheses)
by the name of the program or CP/M component outputting the message. Mes
sages are shown in uppercase even if the actual message you will see contains
lowercase letters. Additional characters that are displayed to “pretty up” the
message have been omitted. For example, the message “** ABORTED **” will be
listed as “ABORTED”.

Following each message is an explanation and, where possible, some informa
tion to help you deal with the error.

The last section of the chapter deals with known errors or peculiarities in
CP/M and its utilities. Read this section so that you will recognize these problems
when they occur.

449

450 The CP/M Programmer’s Handbook

Error Messages Displayed

? (CCP)
The CCP displays a question mark if you enter a command name and there is

no corresponding “command.COM” file on the disk.
It is also displayed if you omit the number of pages required as a parameter in

the SAVE command.

? (DDT)
DDT outputs a question mark under several circumstances. You must use

context (and some guesswork) to determine what has gone wrong. Here are some
specific causes of problems:

• DDT cannot find the file that you have asked it to load into memory. Exit
from DDT and investigate using DIR or STAT (the file may be set to System
status and therefore invisible with DIR).

• There is a problem with the data in the HEX file that you have asked DDT to
load. The problem could be a bad check-sum on a given line or an invalid
field somewhere in the record. Try typing the HEX file out on a console, or
use an editor to examine it. It is rare to have only one or two bad bits or bytes
in a HEX file; large amounts of the file are more likely to have been
corrupted. Therefore, you may be able to spot the trouble fairly readily. If
you have the source code for the program, reassemble it to produce another
copy of the HEX file. If you do not have the source code, there is no reliable
way around this problem unless you are prepared to hand-create the HEX
file—a difficult and tedious task.

• DDT does not recognize the instruction you have entered when using the “A”
(assemble) command to convert a source code instruction into hexadecimal.
Check the line that you entered. DDT does not like tabs in the line (although
it appears to accept them) or hexadecimal numbers followed by “H”. Check
that the mnemonic and operands are valid, too.

?? = (DDT)
This cryptic notation is used by DDT when you are using the “L” (list

disassembled) command to display some part of memory in DDT’s primitive
assembly language form. DDT cannot translate all of the 256 possible values of a
byte. Some of them are not used in the 8080 instruction set. When DDT encoun
ters an untranslatable value, it displays this message as the instruction code,
followed by the actual value of the byte in hexadecimal.

You will see this if you try to disassemble code written for the Z80 CPU, which

Chapter 12: Error Messages 451

uses unassigned 8080 instructions. You will also see it if you try to disassemble
bytes that contain ASCII text strings rather than 8080 instructions.

ABORTED (STAT)
If you enter any keyboard character while STAT is working its way down the

file directory setting files to $DIR (Directory), $SYS (System), $R/W (Read/
Write), or $R/ O (Read-Only) status, then it will display this message, stop what it
is doing, and execute a warm boot.

By contrast, if you enter the command
A>stat *,*<cr>

to display all of the files on a disk, there is no way that the process can be aborted.

ABORTED (PIP)
This message is displayed if you press any keyboard character while PIP is

copying a file to the list device.

BAD DELIMITER (STAT)
If your BIOS uses the normal IOBYTE method of assigning physical devices to

logical devices, you use STAT to perform the assignment. The command has this
format:
STAT RDR:=PTR:

STAT displays this message if it cannot find the “= ” in the correct place.

BAD LOAD (CCP)
This is probably the most obscure error message that emanates from CP/M.

You will get this message if you attempt to load a COM file that is larger than the
transient program area. Your only recourse is to build a CP/M system that has a
larger TPA.

BAD PARAMETER (PIP)
PIP accepts certain parameters in square brackets at the end of the command

line. This message is displayed if you enter an invalid parameter or an illegal
numeric value following a parameter letter.

BDOS ERROR ON d: BAD SECTOR (BDOS)
The BDOS displays this message if the READ and WRITE functions in your

BIOS ever return indicating an error. The only safe response to this message is to
type CONTROL-C. CP/M will then execute a warm boot. If you type CARRIAGE
RETURN, the error will be ignored—with unpredictable results.

452 The CP/M Programmer’s Handbook

A well-implemented BIOS should include disk error recovery and control so
that the error will never be communicated to the BDOS. If the BIOS gives you the
option of ignoring an error, do so only when you are reasonably sure of the
outcome or have adequate backup copies so that you can recreate your files.

BDOS ERROR ON d: FILE R/O (BDOS)
You will see this message if you attempt to erase (ERA) a file that has been set

to Read-Only status. Typing any character on the keyboard causes the BDOS to
perform a warm boot operation. Note that the BDOS does not tell you which file is
creating the problem. This can be a problem when you use ambiguous file names in
the ERA command. Use the STAT command to display all the files on the disk; it
will tell you which files are Read-Only.

This message is also displayed if a program tries to delete a Read-Only file.
Again, it can be difficult to determine which file is causing the problem. Your only
recourse is to use STAT to try to infer which of the Read-Only files might be
causing the problems.

BDOS ERROR ON d: R/O (BDOS)
This looks similar to the previous message, but it refers to an entire logical disk

instead of a Read-Only file. However, it is rarely output because you have declared
a disk to be Read-Only. Usually, it occurs because you changed diskettes without
typing a CONTROL-C; CP/M will detect the new diskette and, without any external
indication, will set the disk to Read-Only status.

If you or a program attempts to write any data to the disk, the attempt will be
trapped by the BDOS and this message displayed. Typing any character on the
keyboard causes a warm boot—then you can proceed.

BDOS ERROR ON d: SELECT (BDOS)
The BDOS displays this message if you or a program attempts to select a

logical disk for which the BIOS lacks the necessary tables. The BDOS uses the
value returned by SELDSK to determine whether a logical disk “exists” or not.

If you were trying to change the default disk to a nonexistent one, you will have
to press the RESET button on your computer. There is no way out of this error.

However, if you were trying to execute a command that accessed the nonexis
tent disk, then you can type a CONTROL-C and CP/M will perform a warm boot.

BREAK x AT y (ED)
This is another cryptic message whose meaning you cannot guess. The list that

follows explains the possible values of “x.” The value “y” refers to the command
ED was executing when the error occurred.

Chapter 12: Error Messages 453

x Meaning
Search failure. ED did not find the string you asked it to search for.
? Unrecognized command.
0 File not found.
> ED’s internal buffer is full.
E Command aborted.
F Disk or directory full. You will have to determine which is causing the problem.

CANNOT CLOSE, READ/ONLY? (SUBMIT)
SUBMIT displays this message if the disk on which it is trying to write its

output file, “$$$.SUB”, is physically write protected. Do not confuse this with the
disk being logically write protected.

The standard version of SUBMIT writes the output file onto the current
default disk, so if your current default disk is other than drive A:, you may be able
to avoid this problem if you switch the default to A: and then enter a command of
the form

A>submit bs subf ile<cr>

CANNOT CLOSE DESTINATION FILE (PIP)
PIP displays this message if the destination disk is physically write protected.

Check the destination disk. If it is write protected, remove the protection and
repeat the operation.

If the disk is not protected, you have a hardware problem. The directory data
written to the disk is being written to the wrong place, even the wrong disk, or is
not being recorded on the medium.

CANNOT CLOSE FILES (ASM)
ASM displays this message if it cannot close its output files because the disk is

physically write protected, or if there is a hardware problem that prevents data
being written to the disk. See the paragraph above.

CANNOT READ (PIP)
PIP displays this message if you attempt to read information from a logical

device that can only output. For example:

A>pip d i skf ile= L S T:< c r>

PIP also will display this message if you confuse it sufficiently, as with the
following instruction:

A>pip filel=file2;file3<cr>

454 The CP/M Programmer’s Handbook

CANNOT WRITE (PIP)
PIP displays this message if you attempt to output (write) information to a

logical device that can only be used for input, such as the RDR: (reader, the
anachronistic name for the auxiliary input device).

CHECKSUM ERROR (LOAD)
LOAD displays this message if it encounters a line in the input HEX file that

does not have the correct check sum for the data on the line.
LOAD also displays information helpful in pinpointing the problem:

CHECKSUM ERROR
LOAD ADDRESS 0110 <- First address on line in file
ERROR ADDRESS 0112 <- Address of next byte to be loaded
BYTES READ:
0110:
0110: 00 33 22 2B 02 21 27 02 <- Bytes preceding error

Note that LOAD does not display the check-sum value itself. Use TYPE or an
editor to inspect the HEX file in order to see exactly what has gone wrong.

CHECKSUM ERROR (PIP)
If you ask PIP to copy a file of type HEX, it will check each line in the file,

making sure that the line’s check sum is valid. If it is not, PIP will display this
message. Unfortunately, PIP does not tell you which line is in error—you must
determine this by inspection or recreate the HEX file and try again.

COMMAND BUFFER OVERFLOW (SUBMIT)
SUBMIT displays this message if the SUB file you specified is too large to be

processed. SUBMIT’s internal buffer is only 2048 bytes. You must reduce the size
of the SUB file; remove any comment lines, or split it into two files with the last line
of the first file submitting the second to give a nested SUBMIT file.

COMMAND TOO LONG (SUBMIT)
The longest command line that SUBMIT can process is 125 characters. There

is no way around this error other than reducing the length of the offending line.
You will have to find this line by inspection—SUBMIT does not identify the line.

One way that you can remove a few characters from a command line is to
rename the COM file you are invoking to a shorter name, or use abbreviated
names for parameters if the program will accept these.

CORRECT ERROR, TYPE RETURN OR CTL-Z (PIP)
This message is a carryover from the days when PIP used to read hexadecimal

data from a high-speed paper tape reader. If PIP detected the end of a physical roll

Chapter 12: Error Messages 455

of paper tape, it would display this message. The user could then check to see if the
paper tape had torn or had really reached its end. If there was more tape to be read,
the user could enter a c a r r ia g e r e t u r n to resume reading tape or enter a
CONTROL-z to serve as the end-of-file character.

Needless to say, it is unlikely that you will see this message if you do not have a
paper tape reader.

DESTINATION IS R/O, DELETE (Y/N)? (PIP)
PIP displays this message if you try to overwrite a disk file that has been set to

Read-Only status. If you type “Y” or “y”, PIP will overwrite the destination file. It
leaves the destination file in Read/Write status with its Directory/System status
unchanged. Typing any character other than “Y” or “y” makes PIP abandon the
copy and display the message

** NOT DELETED»«

You can avoid this message altogether if you specify the “w” option on PIP’s
command line. For example:

A>pip dest f ile=srcf ileCw3<cr>

PIP will then overwrite Read-Only files without question.

DIRECTORY FULL (SUBMIT)
This message is displayed if the BDOS returns an error when SUBMIT tries to

create its output file, “$$$.SUB”. As a rough and ready approximation, use “STAT
.” to see how many files and extents you have on the disk. Erase any unwanted
ones. Then use “STAT DSK:” to find out the maximum number of directory
entries possible for the disk.

You may also see this message if the file directory has become corrupted or if
the disk formatting routine leaves the disk with the file directory full of some
pattern other than E5H.

You can assess whether the directory has been corrupted by using “STAT
USR:’\ STAT then displays which user numbers contain files. If the directory is
corrupt, you will normally see user numbers greater than 15.

It is not easy to repair a corrupted directory. “ERA *.*”erases only the files for
the current user number, so you will have to enter the command 16 times, once for
each user number from 0 to 15. Alternatively, you can reformat the disk.

DISK OR DIRECTORY FULL (ED)
Self-explanatory.

456 The CP/M Programmer’s Handbook

DISK READ ERROR (PIP)
DISK WRITE ERROR (SUBMIT)
DISK WRITE ERROR (PIP)

These messages will normally be preceded by a BIOS error message. They will
only be displayed if the BIOS returns indicating an error. As was described earlier,
this is unlikely if the BIOS has any kind of error recovery logic.

END OF FILE, CTL-Z? (PIP)
PIP displays this message if, while copying a HEX file, it encounters a

CONTROL-Z (end of file). Again, the underlying idea is based on the concept of
physical paper tape. When you saw this message, you could look at the tape in the
reader, and if it really was at the end of the roll, enter a CONTROL-Z on the keyboard
to terminate the file. Given any other character, PIP would read the next piece of
tape.

ERROR : CANNOT CLOSE FILES (LOAD)
LOAD displays this message if you have physically write protected the disk on

which it is trying to write the output COM file.

ERROR : CANNOT OPEN SOURCE (LOAD)
LOAD displays this message if it cannot open the HEX file that you specified

in the command tail.

ERROR : DISK READ (LOAD)
ERROR : DISK WRITE (LOAD)

These two messages would normally be preceded by a BIOS error message. If
your BIOS includes disk error recovery, you would not normally see these mes
sages; the error would have been handled by the BIOS.

ERROR : INVERTED LOAD ADDRESS (LOAD)
LOAD displays this message if it detects a load address less than 0100H in the

input HEX file. It also displays the actual address input from the file, so you can
examine the HEX file looking for this address to determine the likely cause of the
problem.

Note that DDT, when asked to load the same HEX file, will do so without any
error—and will probably damage the contents of the base page in so doing.

ERROR : NO MORE DIRECTORY SPACE (LOAD)
Self-explanatory.

Chapter 12: Error Messages 457

ERROR ON LINE N (SUBMIT)
SUBMIT displays this message if it encounters a line in the SUB file that it does

not know how to process. Most likely you have a file that has type .SUB but does
not contain ASCII text.

The first line of the SUB file is number 001.

FILE EXISTS (CCP)
The CCP displays this message if you attempt to use the REN command to

rename an existing file to a name already given to another file.
Use “STAT *.*” to display all of the files on the disk. DIR will show only those

files that have Directory status, and you may not be able to see the file causing the
problem.

FILE IS READ/ONLY (ED)
ED displays this message if you attempt to edit a file that has been set to

Read-Only status.

FILE NOT FOUND (STAT)
FILENAME NOT FOUND (PIP)

STAT and PIP display their respective messages if you specify a nonexistent
file. This applies to both specific and ambiguous file names.

INVALID ASSIGNMENT (STAT)
STAT can be used to assign physical devices to logical devices using the

IOBYTE system described earlier. It will display this message if you enter an il
logical assignment. Use the “STAT VAL: ” command to display the valid assignments.

INVALID CONTROL CHARACTER (SUBMIT)
SUBMIT is supposed to be able to handle a control character in the SUB

file—the notation being “Ax”, where “x” is the control letter. In fact, the standard
release version of SUBMIT cannot handle this notation. A patch is available from
Digital Research to correct this problem.

Given that this patch has been installed, SUBMIT will display this message if a
character other than “A” to “Z” is specified after the circumflex character.

INVALID DIGIT (PIP)
PIP displays this message if it encounters non-numeric data where it expects a

numeric value.

458 The CP/M Programmer’s Handbook

INVALID DISK ASSIGNMENT (STAT)
STAT displays this message if you try to set a logical disk to Read-Only status

and you specify a parameter other than “R/ O.” Note that there is no leading “$” in
this case (as there is when you want to set a file to Read-Only).

INVALID DRIVE NAME (USE A, B, C, OR D) (SYSGEN)
SYSGEN displays this message if you attempt to load the CP/M system from,

or write the system to, a disk drive other than A, B, C, or D.

INVALID FILE INDICATOR (STAT)
STAT outputs this message if you specify an erroneous file attribute. File

attributes can only be one of the following:

$DIR Directory
$SYS System
$ R /0 Read-Only
$R/W Read/Write

INVALID FORMAT (PIP)
PIP displays this message if you enter a badly formatted command; for

example, a “+ ” character instead of an “= ” (on some terminals these are on the
same key).

INVALID HEX DIGIT (LOAD)
LOAD displays this message if it encounters a nonhexadecimal digit in the

input HEX file, where only a hex digit can appear. LOAD then displays additional
information to tell you where in the file the problem occurred:

INVALID HEX DIGIT
LOAD ADDRESS 0110 <- First address on line in file
ERROR ADDRESS 0112 <- Address of byte containing non-hex
BYTES READ:
0110:
0110: 00 33 <- Bytes preceding error

INVALID MEMORY SIZE (MOVCPM)
MOVCPM displays this message if you enter an invalid memory size for the

CP/M system size you want to construct.

INVALID SEPARATOR (PIP)
PIP displays this message if you try to concatenate files using something other

than a comma between file names.

Chapter 12: Error Messages 459

INVALID USER NUMBER (PIP)
PIP displays this message if you enter a user number outside the range 0 to 15

with the “[gn]” option (where “n” is the user number).

NO ‘SUB’ FILE PRESENT (SUBMIT)
SUBMIT displays this message if it cannot find a file with the file name that

you specified and with a type of .SUB.

NO DIRECTORY SPACE (ASM)
NO DIRECTORY SPACE (PIP)

Self-explanatory.

NO FILE (CCP)
The CCP displays this message if you use the REN (rename) command and it

cannot find the file you wish to rename.

NO FILE (PIP)
PIP displays this message if it cannot find the file that you specified.

NO MEMORY (ED)
ED displays this message if it runs out of memory to use for storing the text

that you are editing.

NO SOURCE FILE ON DISK (SYSGEN)
This error message is misleading. SYSGEN does not read source code files.

The message should read “INPUT FILE NOT FOUND”.

NO SOURCE FILE PRESENT (ASM)
In this case, ASM really does mean that the source code file cannot be found.

Remember that ASM uses a strange form of specifying its parameters. ASM uses
the file name that you enter and then searches for a file of that name, but with file
type .ASM. The three characters of the file type that you specify are used to repre
sent the logical disks on which the source, hex, and list files, respectively, are to be

. placed.

NO SPACE (CCP)
The CCP displays this message if you use the SAVE command and there is

insufficient room on the disk to accommodate the file.

460 The CP/M Programmer’s Handbook

NOT A CHARACTER SOURCE (PIP)
PIP displays this message if you attempt to copy characters from a character

output device, such as the auxiliary output device (known to PIP as PUN:).

OUTPUT FILE WRITE ERROR (ASM)
ASM will display this message if the BDOS returns an error from a disk write

operation. If your BIOS has disk error recovery logic, you should never see this
message.

PARAMETER ERROR (SUBMIT)
SUBMIT uses the to mark points where parameter values are to be

substituted. If you have a single “$”followed by an alphabetic character, SUBMIT
will display this message. Use “$$” to represent a real

PERMANENT ERROR, TYPE RETURN TO IGNORE (SYSGEN)
S Y SGEN displays this message if the BIOS returns an error from a disk read or

write operation. If your BIOS has disk error recovery logic, you should never see
this message.

QUIT NOT FOUND (PIP)
PIP displays this message when it cannot find the string specified in the

“[Qcharacter stringAZ]” option, meaning “Quit copying when you encounter this
string.”

READ ERROR (CCP)
The CCP displays this message if the BIOS returns an error from a disk read or

write operation. If your BIOS includes disk error recovery logic, you should not
see this error message.

RECORD TOO LONG (PIP)
PIP displays this message if it encounters a line longer than 80 characters while

copying a HEX file. Inspect the HEX file using the TYPE command or an editor.

REQUIRES CP/M 2.0 OR NEWER FOR OPERATION (PIP)
REQUIRES CP/M VERSION 2.0 OR LATER (XSUB)

Self-explanatory.

Chapter 12: Error Messages 461

SOURCE FILE INCOMPLETE (SYSGEN)
k SYSGEN displays this message if the file that you have asked it to read is too

short. Use STAT to check the length of the file.

SOURCE FILE NAME ERROR (ASM)
ASM displays this message if you specify an ambiguous file name: that is, one

that contains either or

SOURCE FILE READ ERROR (ASM)
ASM displays this message if it encounters problems reading the input source

code file. Check the input file using the TYPE command or an editor.

START NOT FOUND (PIP)
PIP displays this message when it cannot find the string specified in the

“[Scharacter stringAZ]” option, meaning “Start copying when you encounter this
string.”

SYMBOL TABLE OVERFLOW (ASM)
ASM displays this message when you have too many symbols in the source

code file. Your only recourse is to split the source file into several pieces and
arrange for ORG (origin) statements to position the generated object code so that
the pieces fit together.

SYNCRONIZATION ERROR (MOVCPM)
Apart from the spelling error, this message is designed to be cryptic. MOVCPM

displays it when the Digital Research serial number embedded in MOVCPM does
not match the serial number in the version of CP/M that you are currently running.

SYSTEM FILE NOT ACCESSIBLE (ED)
ED displays this message if you attempt to edit a file that has been set to System

status. Use STAT to set the file to Directory status.

TOO MANY FILES (STAT)
STAT displays this message if there is insufficient memory available to sort and

display all of the files on the specified disk. Try limiting the number of files it has to
sort by judicious use of ambiguous file names.

UNRECOGNIZED DESTINATION (PIP)
PIP displays this message if you specify an “illegal” destination device.

462 The CP/M Programmer’s Handbook

VERIFY ERROR (PIP)
If you use the “[v]” (verify) option of PIP when copying to a disk file, PIP will

write a sector to the disk, read it back, and compare the data. PIP displays this
message if the data does not match.

If there is a problem with your disk system, you should have seen some form of
disk error message preceding this one. If there is no preceding message, then you
have a problem with the main memory on your system.

Wrong CP/M Version (Requires 2.0) (STAT)
Self-explanatory.

(XSUB ACTIVE) (XSUB)
This is not really an error message, but you may mistake it for one. XSUB is the

extended SUBMIT program. Without it, SUBMIT can only feed command lines
to the Console Command Processor. XSUB allows character-by-character input
into any program that uses the BDOS to read console input.

XSUB is initiated by being the first command in a SUB file. Once initiated it
stays in memory until the end of the SUB file has been reached. Until that happens,
XSUB will output this message every time a warm boot occurs as a reminder that it
is still in memory.

XSUB Already Present (XSUB)
XSUB will display this message if it is already active and you attempt to load it

again.

Miscellaneous Errors

This section deals with errors that are not accompanied by any error message.
It is included here to help you recognize a problem after it has already occurred.

The errors are shown grouped by product.

ASM: Fails to Detect Unterminated IF Clause
If you use the IF pseudo-operation, it must be followed by a matching ENDIF.

ASM fails to detect the case that the end of the source file is encountered before the
ENDIF.

If the condition specified on the IF line is false, you could have a situation in
which ASM would ignore the majority of the source file without comment.

Chapter 12: Error Messages 463

ASM: Creates HEX File That Cannot Be Loaded
If you omit the ORG statement at the front of a source file, ASM will assemble

the code origined at location 0000H. This file will crash the system if you try to load
it with DDT. The message “ERROR: INVERTED ADDRESS” will be shown from
LOAD.

CP/M: Signs On and Then Dies Without A > Prompt
After the BIOS has signed on, it transfers control to the Console Command

Processor. The CCP then attempts to log in the system disk, reading the file
directory and building the allocation vector. If your file directory has been badly
corrupted, it can cause the system to crash. Use another system disk and try to
display the directory on the bad disk.

DDT: Loads HEX File and Then Crashes the System
DDT does not check the addresses specified in a HEX file. If you have

forgotten to put an ORG statement at the front of the source file, or more subtly, if
your source program has “wrapped around” by having addresses up at OFFFFH
and “above,” the assembler will start assembling at 0000H again.

DIR: Shows Odd-Looking File Names
If you have odd-looking file names, or the vertical lines o f“:” that DIR uses to

separate the file names are misaligned, then the file directory has been corrupted.
One strategy is to format a new disk, copy all of the valid files to it, and discard the
corrupted disk.

DIR: Shows More than One Entry with the Same Name
This can happen if you use a program that creates a new file without asking the

BDOS to delete any existing files of the same name. It can also happen if you use
the custom MOVE utility carelessly.

To remedy the situation proceed as follows:
• Use PIP to copy the specific file to another disk. Do not use an ambiguous

file name; specify the duplicated file name exactly. PIP will copy the first
instance of the file it encounters in the directory.

• Use the ERA command to erase the duplicated file. This will erase both
copies o f the file .

• Use PIP to copy back the first instance of the file.

464 The CP/M Programmer’s Handbook

STAT: User Numbers > 15
If you use the “STAT USR:” command to display which user numbers contain

active files, and user numbers greater than 15 are displayed, then the file directory
on the disk has been corrupted.

Use PIP to copy the valid files from legitimate user numbers, and then discard
the corrupted disk.

SUBMIT: Fails to Start Submit Procedure
There are several reasons why SUBMIT will not initiate a SUB file:

• You are using the standard release version of SUBMIT and your current
default disk is other than drive A:. SUBMIT builds its “$$$.SUB”file on the
default disk, but the CCP only looks on drive A: for “$$$.SUB”. Use the
following procedure to modify SUBMIT to build its “$$$.SUB” file on drive
A:
A>DDT SUBMIT.COM<cr>
DDT VERS 2.2
NEXT PC
0600 0100
-s5bb <- Change 5bb
05BB 01 00<cr> <- from 00 (default drive)
05BC 24 . <cr> to 01 (drive As)
- AjC
A>SAVE 5 SUBMIT.COM<cr>
A>_

• If you forgot to terminate the last line of the SUB file with a CARRIAGE
RETURN.

• If your SUB file contains a line with nothing but a CARRIAGE RETURN on it
(that is, a blank line). -

ASCII Character Set
The American Standard Code for Information Interchange (ASCII) consists

of a set of 96 displayable characters and 32 nondisplayed characters. Most CP/M
systems use at least a subset of the ASCII character set. When CP/M stores
characters on a diskette as text, the ASCII definitions are used.

Several of the CP/M utility programs use the ASCII Character Code. Text
created using ED is stored as ASCII characters on diskette. DDT, when displaying
a “dump” of the contents of memory, displays both the hexadecimal and ASCII
representations of memory’s contents.

ASCII does not use an entire byte of information to represent a character.
ASCII is a seven-bit code, and the eighth bit is often used for parity. Parity is an
error-checking method which assures that the character received is the one trans
mitted. Many microcomputers and microcomputer devices ignore the parity bit,
while others require one of the following two forms of parity:

Even Parity
The number of binary l ’s in a byte is always an even number. If there is an
odd number of 1 ’s in the character, the parity bit will be a 1; if there is an
even number of l ’s in the character, the parity bit is made a 0.

Odd Parity
The number of binary l ’s in a byte is always an odd number. If there is an

465

466 The CP/M Programmer’s Handbook

even number of l ’s in the character, the parity bit will be a 1; if there is an
odd number of l ’s in the character, the parity bit is made a 0.

Alternative ways of coding the information stored by the computer include the
8-bit EBCDIC (Extended Binary Coded Decimal Interchange Code), used by
IBM, and a number of packed binary schemes, primarily used to represent
numerical information.

Table A-1. ASCII Character Codes

b7----► 0 0 0 0 1 1 1 1
b6----- 0 0 1 1 0 0 1 1
b5----- 0 1 0 1 0 1 0 1

b3 b2 bl Col.
R o w S ^ 0 1 1 2 3 4 5 6 7

0 0 0 0 NUL DLE SP 0 @ P P
0 0 1 1 SOH DC1 t 1 A Q a q
0 1 0 2 STX DC2 " 2 B R b r
0 1 1 3 ETX DC3 # 3 C S c s
1 0 0 4 EOT DC4 $ 4 D T d t
1 0 1 5 ENQ NAK % 5 E U e u
1 1 0 6 ACK SYN & 6 F V f V

1 1 1 7 BEL ETB ' 7 G W g w
0 0 0 8 BS CAN (8 H X h X

0 0 1 9 HT EM) 9 I Y i y
0 1 0 10 LF SUB * J Z j z
0 1 1 11 VT ESC + ■ K [k {
1 0 0 12 FF FS ' < L \ 1 1
1 0 1 13 CR GS - = M] m }
1 1 0 14 SO RS > N A n
1 1 1 15 SI US / ? O - 0 DEL

NUL Null DC1 Device control 1
SOH Start of heading DC2 Device control 2
STX Start of text DC3 Device control 3
ETX End of text DC4 Device control 4
EOT End of transmission NAK Negative acknowledge
ENQ Enquiry SYN Synchronous idle
ACK Acknowledge ETB End of transmission block
BEL Bell or alarm CAN Cancel
BS Backspace EM End of medium
HT Horizontal tabulation SUB Substitute
LF Line feed ESC Escape
VT Vertical tabulation FS File separator
FF Form feed GS Group separator
CR Carriage return RS Record separator
SO Shift out US Unit separator
SI Shift in SP Space
DLE Data link escape DEL Delete

Appendix A: ASCII Character Set 467
Table A-2. ASCII Character Codes in Ascending Order

Hexadecimal Binary A S C I I Hexadecimal Binary ASCII

00 0 0 0 0 0 0 0 N U L 30 011 0000 0
01 0 0 0 0001 S O H 31 o n o o o i 1
02 0 0 0 0 0 1 0 S T X 32 o n o o i o 2
03 0 0 0 0011 E T X 33 o n o o n 3
04 0 0 0 0 1 0 0 E O T 34 o n o i o o 4
05 0 0 0 0101 E N Q 35 o n o i o i 5
06 0 0 0 0 1 1 0 A C K 36 O i l 0110 6
07 0 0 0 0111 B E L 37 o n o n i 7
08 0 0 0 1000 B S 38 o n looo 8
09 0 0 0 1001 H T 39 o n l o o i 9
0 A 0 0 0 1010 L F 3 A o n l o i o
OB 0 0 0 1011 V T 3B o n i o n
OC 0 0 0 1100 F F 3C o n n o o <
OD 0 0 0 1101 C R 3 D o n n o i =
OE 0 0 0 1110 s o 3E o n m o >
OF 0 0 0 1111 SI 3 F o n i n i ?

10 001 0 0 0 0 D L E 40 100 0000
11 001 0001 D C 1 41 100 0001 A
12 001 0 0 1 0 D C 2 42 100 0010 B
13 001 0011 D C 3 43 100 0011 C
14 001 0 1 0 0 D C 4 44 100 0100 D
15 001 0101 N A K 45 100 0101 E
16 001 0 1 1 0 S Y N 46 100 0110 F
17 001 0111 E T B 47 1000111 G
18 001 1000 C A N 48 100 1000 H
19 001 1001 E M 49 100 1001 I
1A 001 1010 S U B 4 A 100 1010 J
IB 001 1011 E S C 4 B 100 1011 K
1C 001 1100 F S 4 C 100 1100 L
I D 001 1101 G S 4 D 100 1101 M
IE 001 1110 R S 4 E 100 1110 N
I F o o i m i U S 4 F lo o i n i 0

20 0 1 0 0 0 0 0 S P 50 101 0000 P
21 0 1 0 0001 j 51 101 0001 Q
22 0 1 0 0 0 1 0 52 101 0010 R
23 0 1 0 0 0 1 1 # 53 101 0011 S
24 0 1 0 0 1 0 0 $ 54 101 0100 T
25 0 1 0 0 1 0 1 % 55 101 0101 U
26 0 1 0 0 1 1 0 & 56 101 0110 V
27 0 1 0 0 1 1 1 ’ 57 101 0111 W
28 0 1 0 1000 (58 101 1000 X
29 0 1 0 1001) 59 101 1001 Y
2 A 0 1 0 1010 * 5 A 101 1010 Z
2B 0 1 0 1011 + 5B 101 1011 [
2C 0 1 0 1100 5C 101 1100 \
2D 0 1 0 1101 - 5 D 101 1101]
2E 0 1 0 1110 5E 101 1110 A

2F o i o m i / 5 F i o i m i -

468 The CP/M Programmer’s Handbook

Table A-2. ASCII Character Codes in Ascending Order (Continued)

Hexadecimal Binary ASCII Hexadecimal Binary ASCII

60 110 0000 70 111 0000 p
61 110 0001 a 71 111 0001 q
62 110 0010 b 72 111 0010 r
63 110 0011 c 73 111 0011 s
64 110 0100 d 74 111 0100 t
65 1100101 e 75 111 0101 u
66 1100110 f 76 111 0110 V
67 1100111 g 77 111 0111 w
68 110 1000 h 78 111 1000 X
69 110 1001 i 79 111 1001 y
6A 110 1010 j 7A 111 1010 z
6B 110 1011 k 7B 111 1011 {
6C 110 1100 1 1C 111 1100 1
6D 110 1101 m 7D 111 1101 }
6E 110 1110 n 7E 111 1110 —
6F n o m i 0 IF i n m i DEL

CP/M Command
Summary

This appendix summarizes the command line format and the function of
each CP/M built-in and transient command. The commands are listed in
alphabetical order.

ASM Command Lines

ASM filename<cr> Assembles the file filename. ASM; uses the currently logged disk for
all files.

ASM filename.opt<cr> Assembles the file filename.ASM on drive o: (A:,B^v?P0-
Writes HEX file on drive p: (A:,B-v,P-)? or skips if p: is Z:.

Writes PRN file on drive t: (A:,B*.,•••,?'•)> sends to console if p: is X:, or
skips if p: is Z:.

469

470 The CP/M Programmer’s Handbook

DDT Command Lines

DDT<cr> Loads DDT and waits for DDT commands.

DDT x:filename.typ<cr> Loads DDT into memory and also loads filename.typ from
drive x: into memory for examination, modification, or execution.

DDT Command Summary

Assss Enters assembly language statements beginning at hexadecimal address ssss.

D Displays the contents of the next 192 bytes of memory.

Dssss.ffff Displays the contents of memory starting at hexadecimal address ssss and
finishing at hexadecimal address ffff.

Fs$ss,ffff,cc Fills memory with the 8-bit hexadecimal constant cc starting at hexadecimal
address ssss and finishing with hexadecimal address ffff.

G Begins execution at the address contained in the program counter.

G,bbbb Sets a breakpoint at hexadecimal address bbbb, then begins execution at the
address contained in the program counter.

G,bbbb,cccc Sets breakpoints at hexadecimal addresses bbbb and cccc, then begins

Gssss

execution at the address contained in the program counter.

Begins execution at hexadecimal address ssss.

Gssss.bbbb Sets a breakpoint at hexadecimal address bbbb, then begins execution at
hexadecimal address ssss.

Hx,y Hexadecimal sum and difference of x and y.

Ifilename.typ Sets up the default file control block using the name filename.typ.

L Lists the next eleven lines of assembly language program disassembled from
memory.

Lssss Lists eleven lines of assembly language program disassembled from memory
starting at hexadecimal address ssss.

Lssss.ffff Lists the assembly language program disassembled from memory starting at
hexadecimal address ssss and finishing at hexadecimal address ffff.

Appendix B: CP/M Command Summary 471

Mssss,ffff,dddd Moves the contents of the memory block starting at hexadecimal address
ssss and ending at hexadecimal address ffff to the block of memory starting at
hexadecimal address dddd.

R Reads a file from disk into memory (use “I” command first).

Rnnnn Reads a file from disk into memory beginning at the hexadecimal address
nnnn higher than normal (use “I” command first).

Sssss Displays the contents of memory at hexadecimal address ssss and optionally
changes the contents.

Tnnnn Traces the execution of (hexadecimal) nnnn program instructions.

Unnnn Executes (hexadecimal) nnnn program instructions, then stops and displays
the CPU register’s contents.

X Displays the CPU register’s contents.

Xr Displays the contents of CPU or Flag r and optionally changes them.

DIR Command Lines
DIR x:<cr> Displays directory of all files on drive x:. Drive x: is optional; if omitted, the

currently logged drive is used.

DIR x:filename.typ<cr> Displays directory of all files on drive x: whose names match the
ambiguous or unambiguous filename.typ. Drive x: is optional; if omitted, the
currently logged drive is used.

DUMP Command Line
DUMP x:filename.typ <cr> Displays the hexadecimal representations of each byte stored

in the file filename.typ on drive x:. If filename.typ is ambiguous, displays the
first file which matches the ambiguous file name.

ED Command Line
ED x:filename.typ <cr> Invokes the editor, which then searches for filename.typ on drive

x: and creates a temporary file x:filename.$$$ to store the edited text. The
filename.typ is unambiguous. Drive x: is optional; if omitted, the currently
logged drive is assumed.

ED Command Summary
NOTE: Non-alphabetic commands follow the “Z” command.

472 The CP/M Programmer’s Handbook

nA Append lines. Moves “n” lines from original file to edit buffer. 0 A moves lines
until edit buffer is at least half full.

+/-B Begin/Bottom. Moves CP.
+B moves CP to beginning of edit buffer
—B moves CP to end of edit buffer.

+/—nC Move by characters. Moves CP by “n” character positions.
+ moves forward
— moves backward.

+/—nD Delete characters. Deletes “n” characters before or after the CP in the edit
buffer.

+ deletes before the CP
— deletes after the CP.

E End. Ends edit, closes files, and returns to CP/M; normal end.

nFstringAZ Find string. Finds the “n”th occurrence of string, beginning the search after
the CP.

H Move to head of edited file. Ends edit, renames files, and then edits former
temporary file.

l<cr> Enter insert mode. Text from keyboard goes into edit buffer after the CP; exit
with CONTROL-Z.

lstringAZ Insert string. Inserts string in edit buffer after the CP.

lstring<cr> Insert line. Inserts string and CRLF in the edit buffer after the CP.

nJfindstringAZinsertstringAZendstringAZ Juxtaposition. Beginning after the CP, finds
findstring, inserts insertstring after it, then deletes all following characters up

+ /—nK

to but not including endstring; repeats until performed “n” times.

Kill lines. Deletes “n” lines.
+ deletes after the CP
— deletes before the CP.

+/—nL Move by lines. Moves the CP to the beginning of the line it is in, then moves
the CP “n” lines forward or backward.

+ moves forward
— moves backward.

nMcommand$tringAZ Macro command. Repeats execution of the ED commands in

Appendix B: CP/M Command Summary 473

commandstring “n” times. “n” = 0, “n” = 1, or “n” absent repeats execution
until error occurs.

nN$tringAZ Find string with autoscan. Finds the “n”th occurrence of string, automatically
appending from original file and writing to temporary file as necessary.

O Return to original file. Empties edit buffer, empties temporary file, returns to
beginning of original file, ignores previous ED commands.

+/—nP Move CP and print pages. Moves the CP forward or backward one page, then
displays the page following the CP. “nP” displays “n” pages, pausing after
each.

Q Quit edit. Erases temporary file and block move file, if any, and returns to
CP/M; original file is not changed.

R<cr> Read block move file. Copies the entire block move file X$$$$$$$.LIB from
disk and inserts it in the edit buffer after the CP.

Rfilename<cr> Read library file. Copies the entire file filename with extension LIB from
the disk and inserts it in the edit buffer after the CP.

nSfindstringAZreplacestringAZ Substitute string. Starting at the CP, repeats “n” times:
finds findstring and replaces it with replacestring.

+/—nT Type lines. Displays “n” lines.
+ displays the “n” lines after the CP
— displays the “n” lines before the CP.

If the CP is not at the beginning of a line
0T displays from the beginning of the line to the CP
T displays from the CP to the end of the line
OTT displays the entire line without moving the CP.

+/-U Uppercase translation. After +U command, alphabetic input to the edit
buffer is translated from lowercase to uppercase; after —U, no translation
occurs.

ov Edit buffer free space/size. Displays the decimal number of free (empty) bytes
in the edit buffer and the total size of the edit buffer.

+/-V Verify line numbers. After +V, a line number is displayed with each line
displayed; ED’s prompt is then preceded by the number of the line containing
the CP. After —V, line numbers are not displayed, and ED’s prompt is

474 The CP/M Programmer’s Handbook

nW Write lines. Writes first “n” lines from the edit buffer to the temporary file;
deletes these lines from the edit buffer.

nX Block transfer (Xfer). Copies the “n” lines following the CP from the edit
buffer to the temporary block move file X$$$$$$$.LIB; adds to previous
contents of that file.

nZ Sleep. Delays execution of the command which follows it. Larger “n” gives
longer delay, smaller “n” gives shorter delay.

n: Move CP to line number “n.” Moves the CP to the beginning of the line
number “n” (see “+ / - V ”).

:m Continue through line number “m.” A command prefix which gives the
ending point for the command which follows it. The beginning point is the
location of the CP (see “+ / - V ”).

+ /-n Move and display one line. Abbreviated form of + /—nLT.

ERA Command Lines

ERA x:filename.typ<cr> Erases the file filename.typ on the disk in drive x:. The filename
and/or typ can be ambiguous. Drive x: is optional; if omitted, the currently
logged drive is used.

ERA X:*<cr> Erases all files on the disk in drive x:. Drive x: is optional; if omitted,
the currently logged drive is used.

Line Editing Commands

CONTROL-C Restarts CP/M if it is the first character in command line. Called warm start.

CONTROL-E Moves to the beginning of next line. Used for typing long commands.

CONTROL-H or BACKSPACE Deletes one character and erases it from the screen (CP/M
version 2.0 and newer).

CONTROL-J or LINE FEED Same as c a r r ia g e r e t u r n (CP/M version 2.0 and newer).

CONTROL-M Same as c a r r ia g e r e t u r n (<cr>).

CONTROL-P Turns on the list device (usually your printer). Type it again to turn off the list
device.

Appendix B: CP/M Command Summary 475

CONTROL-R Repeats current command line (useful with version 1.4); it verifies the line is
corrected after you delete several characters (CP/M version 1.4 and newer).

CONTROL-S Temporarily stops display of data on the console. Press any key to continue.

CONTROL-U or CONTROL-X Cancels current command line (CP/M version 1.4 and newer).

RUBOUT (RUB) or DELETE (DEL) Deletes one character and echoes (repeats) it.

Load Command Line
LOAD x:filenam e<cr> Reads the file filename.HEX on drive x: and creates the execut-

able program file filename.COM on drive x:.

MOVCPM Command Lines
MOVCPM<cr> Prepares a new copy of CP/M which uses all of memory; gives control to

the new CP/M, but does not save it on disk.

MOVCPM nn<cr> Prepares a new copy of CP/M which uses “nn” K bytes of memory;
gives control to the new CP/M, but does not save it on disk.

MOVCPM * * < c r> Prepares a new copy of CP/M that uses all of memory, to be saved
with SYSGEN or SAVE.

MOVCPM nn * < c r> Prepares a new copy of CP/M that uses “nn” K bytes of memory, to
be saved with SYSGEN or SAVE.

The “nn” is an integer decimal number. It can be 16 through 64 for CP/M
1.3 or 1.4. For CP/M 2.0 and newer “nn” can be 20 through 64.

PIP Command Lines
PIP<cr> Loads PIP into memory. PIP prompts for commands, executes them, then

prompts again.

PIP pipcommandline<cr> Loads PIP into memory. PIP executes the command pip-
commandline, then exits to CP/M.

PIP Command Summary
x:new.typ=y:old.typ[p]<cr> Copies the file old.typ on drive y: to the file new.typ on

drive x:, using parameters p.

x:new.typ=y:olcM.typ[p],z:old2.typ[q]<cr> Creates a file new.typ on drive x: that

476 The CP/M Programmer’s Handbook

consists of the contents of file old 1 .typ on drive y: using parameters p followed
by the contents of file old2.typ on drive z: using parameters q.

x:filename.typ=dev:[p]<cr> Copies data from device dev: to the file filename.typ on
drive x:.

dev:=x:filename.typ[p]<cr> Copies data from filename.typ on drive x: to device dev:.

dst:=src:[p]<cr> Copies data to device dst: from device src:.

PIP Parameter Summary

B Specifies block mode transfer.
Dn Deletes all characters after the “n”th column.
E Echoes the copying to the console as it is being performed.
F Removes form feed characters during transfer.
Gn Directs PIP to copy a file from user area “n.”
H Checks for proper Intel Hex File format.
I Ignores any :00 records in Intel Hex File transfers.
L Translates uppercase letters to lowercase.
N Adds a line number to each line transferred.
O Object file transfer (ignores end-of-file markers).
Pn Issues page feed after every “n”th line.
QsAZ Specifies quit of copying after the string “s” is encountered.
R Directs PIP to copy from a system file.
SsAZ Specifies start of copying after the string “s” is encountered.
Tn Sets tab stops to every “n”th column.
U Translates lowercase letters to uppercase.
V Verifies copy by comparison after copy finished.
W Directs PIP to copy onto an R/O file.
Z Zeroes the “parity” bit on ASCII characters.

PIP Destination Devices

CON: PUN: LST: Logical devices
TTY: PTP: LPT:
CRT: UP1: UL1:
UC1: UP2: Physical devices
OUT: PRN: Special PIP devices

Appendix B: CP/M Command Summary 477

PIP Source Devices
CON: RDR: Logical devices
TTY: PTR:
CRT: UR1:
UC1: UR2: Physical devices
NUL: EOF: INP: Special PIP devices

REN Command Line
REN newname.typ=Oldname.typ<cr> Finds the file oldname.typ and renames it

newname.typ.

SAVE Command Line
SAVE nnn x:filename.typ<cr> Saves a portion of the Transient Program Area of

memory in the file filename.typ on drive x: where nnn is a decimal number
representing the number of pages of memory. Drive x: is the option drive
specifier.

STAT Command Lines
STAT<cr> Displays attributes and amount of free space for all diskette drives accessed

since last warm or cold start.

STAT x:<c r> Displays amount of free space on the diskette in drive x:.

STAT x:filename.typ<cr>(CP/M 2.0 and newer) Displays size and attributes of file(s)
filename.typ on drive x:. filename.typ may be ambiguous, x: is optional; if
omitted, currently logged drive is assumed.

STAT x:filename.typ $atr<cr> Assigns the attribute atr to the file(s) filename.typ on drive
x:. File filename.typ may be ambiguous. Drive x: is optional; if omitted,
currently logged drive is assumed.

STAT DEV:<cr> Reports which physical devices are currently assigned to the four logical
devices.

STAT VAL:<cr> Reports the possible device assignments and partial STAT command line
summary.

STAT log :=phy:<cr> Assigns the physical device phy: to the logical device log: (may be
more than one assignment on the line; each should be set off by a comma).

STAT USR:<cr> (CP/M 2.0 and newer) Reports the current user number as well as all user
numbers for which there are files on currently logged disks.

478 The CP/M Programmer’s Handbook

STAT x:DSK<cr> (CP/M 1.4 and newer) Assigns a temporary write-protect status to
drive x:.

SUBMIT Command Lines
SUBMIT filenam e<cr> Creates a file $$$.SUB which contains the commands listed in

filename.SUB; CP/M then executes commands from this file rather than the
keyboard.

SUBMIT filename parameters<cr> Creates a file $$$.SUB which contains commands
from the file filename.SUB; certain parts of the command lines in filename.
SUB are replaced by parameters during creation of $$$.SUB. CP/M then gets
commands from this file rather than the keyboard.

SYSGEN Command Line
SYSGEN<cr> Loads the SYSGEN program to transfer CP/M from one diskette to

another.

TYPE Command Line
TYPE x:filename.typ<cr> Displays the contents of file filename.typ from drive x: on the

console.

USER Command Line
USER n <c r> Sets the User Number to “n,” where “n” is an integer decimal number from

0 to 15, inclusive.

x: Command Line
x:<cr> Changes the currently logged disk drive to drive x:. Drive x: can be “A”

through “P.”

Summary of BDOS
Calls

Table C-1. BDOS Function Definitions for CP/M-80 Version 2.2

Function Entry Exit Explanation
No. Name Parameter(s) Parameter(s)

00 SYSTEM
RESET

None None Restarts CP/ M-80 by returning control to the
the CCP after reinitializing the disk subsystem.

01 CONSOLE
INPUT

None A = ASCII
character

Returns the next character typed to the
character calling program.

Any non-printable character is echoed to the
screen (like b a c k s p a c e , t a b , or c a r r ia g e
r e t u r n). Execution does not return to the
calling program until a character has been
typed. Standard CCP control characters are
recognized and their actions performed
(c o n t r o l -p begins or ends printer echoing
and so on).

479

480 The CP/M Programmer’s Handbook

Tab le C-1. (Continued)

Function Entry Exit Explanation
No. Name Parameter(s) Parameter(s)

02 CONSOLE E = ASCII None Displays the character in the E register on
OUTPUT character the console device. Standard CCP control

characters are recognized and their actions
performed (control-p begins or ends printer
echoing and so on.).

03 READER None A = ASCII Returns the next character received from the
INPUT character reader device to the calling program.

Execution does not return to the calling
program until a character is received.

04 PUNCH E = ASCII None Transmits the character in the E register to
OUTPUT character the punch device.

05 LIST E = ASCII None Transmits the character in the E register to
OUTPUT character the list device.

06 DIRECT E = FF hex A = ASCII If register E contains an FF hex, the console
CONSOLE device is interrogated to see if a character is
IN ready. If no character is ready, a 00 is
DIRECT E = ASCII None returned to the calling program in register A;
CONSOLE character otherwise the character detected is returned
OUT in register A. If register E contains any char

acter other than an FF hex, that character is
passed to the console display. All CCP con
trol characters are ignored. The user must
protect the program against nonsensical
characters being sent from or received by the
console device.

07 GET None A = Places a copy of the byte stored at location
IOBYTE IOBYTE 0003 hex in the A register before returning

control to the calling program.
08 SET E = IOBYTE None Places a copy of the value in register E into

IOBYTE the memory location of 0003 hex before
returning control to the calling program.

09 PRINT DE = String None Sends the string of characters stored
STRING address beginning at the address stored in the DE

register pair to the console device. All
characters in subsequent addresses are sent
until BDOS encounters a memory location
which contains a 24 hex (an ASCII “$”). The
CCP control characters are checked for and
performed if encountered.

N ote: CP/ M-80 always copies the contents of the H register in the A register if nothing is to be
specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of
such information to reduce movement of information between the H and A registers.

Ta b le C-1. (Continued)
Appendix C: Summary of BDOS Calls 481

Function Entry Exit Explanation
No. Name Parameter(s) Parameter(s)

OA READ
CONSOLE
BUFFER

DE = Buffer
address

Data in
buffer

This function performs essentially the same
as the CCP would in that it takes the
characters the user types and stores them
into the buffer that begins at the address
stored in the DE register pair. The first byte
in the buffer pointed to by the DE pair must
be the maximum length of the command;
BDOS will place the number of characters
encountered in the second byte, with the
typed command beginning with the third
byte pointed to by the DE pair. All standard
CCP editing characters are recognized during
the command entry.

OB GET
CONSOLE
STATUS

None A = Status BDOS checks the status of the console
device and returns a 00 hex if no character is
ready, FF hex if a character has been typed.

OC GET
VERSION
NUMBER

None HL =
Version

If the byte returned in the H register is 00
hex then CP/M is present, if 01, then MP/M
is present. The byte returned in the L register
is 00 if the version is previous to CP/M 2.0,
20 hex if the version is 2.0, 21 hex if 2.1 and
so on.

OD RESET
DISK
SYSTEM

None Used to tell CP/ M to reset the disk subsystem.
Should be used any time diskettes are
changed.

OE SELECT
DISK

E = Disk
number

None Selects the disk to be used for subsequent
disk operations. A 00 hex in the E register
indicates disk A, a 01 hex indicates
disk B, etc.

OF OPEN
FILE

DE = FCB
address

A = ‘Found’/
not found
code

Used to activate a file on the current disk
drive and current user area. BDOS scans the
first 14 bytes of the designated FCB block
and attempts to find a match to the filename
in the block. A 3F hex (ASCII “?”) can be
used in any of the filename positions to indi
cate a “don’t care” character.

If a match is found, the relevant informa
tion about that file is filled into the rest of
the FCB by CP/ M-80. A value of 00 hex to
03 in register A upon return indicates the
open operation was successful, while an FF
hex indicates that the file could not be found.
If question marks are used to identify a file,
the first matching entry is used.

Note: CP/ M-80 always copies the contents of the H register in the A register if nothing is to be
specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of
such information to reduce movement of information between the H and A registers.

The CP/M Programmer’s Handbook

Ta b le C-1. (Continued)

Function Entry Exit Explanation
No. Name Parameter(s) Parameter(s)

10 CLOSE
FILE

DE = FCB
address

A = ‘Found’/
not found
code

Performs the opposite of the open file
function. A close file function must be
performed upon completion of use of any file
which has had information written
into it.

11 SEARCH
FOR
FIRST

DE = FCB
address

A = ‘Found’/
not found
code

Performs the same as the open file function
with the difference being that the current
disk buffer is filled with the 128-byte record
which is the directory entry of the matched
file.

12 SEARCH
FOR
NEXT

None A = ‘Found’/
not found
code

Performs the same as search for first function
except that the search continues on from
the last matched entry.

13 DELETE
FILE

DE = FCB
address

A = ‘Found’/
not found
code

Changes a flag on the directory entry for the
file pointed to by the FCB so that CP/ M-80
no longer recognizes it as a valid file. No
information is actually erased when this
function is performed, although subsequent
writes to diskette may use some of the area
previously associated with the “deleted” file.

14 READ
SEQUEN
TIAL

DE = FCB
address

A = Error
code

If a file has been activated for use by an open
file or make file function, the read sequential
function reads the next 128-byte block into
memory at the current DM A address. The
value of 00 hex is returned in the A register if
the read was successful, while any nonzero
value in the A register indicates failure.

15 WRITE
SEQUEN
TIAL

DE = FCB
address

A = Error
i code

If a file has been activated for use by an
open file or make file function, the write
sequential function writes the 128-byte block
of memory at the current DM A address to
the next 128-byte record of the named file.

16 MAKE
FILE

DE = FCB
address

A = DIR
code

Creates a new file with the information
(name) indicated by the FCB. CP/M -80 does
not check to see if the file indicated already
exists, so you must first check to see if the
file exists (or delete it). A newly created file
need not be opened, as the make file function
also performs the necessary opening
operations.

17 RENAME
FILE

DE = FCB
address

A = DIR
code

Changes the name of the file referenced by
the first 16 bytes of the FCB to the name in
the second 16 bytes.

Note: CP/ M-80 always copies the contents of the H register in the A register if nothing is to be
specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of
such information to reduce movement of information between the H and A registers.

Ta b le C-1. (Continued)
Appendix C: Summary of BDOS Calls 483

Function Entry Exit Explanation
No. Name Parameter(s) Parameter(s)

18 RETURN
LOGIN
VECTOR

None HL = Disk
login

The bits in the HL register are used to
specify which disk drives are active. The first
bit in the L register refers to drive A, the last
bit in the H register corresponds to drive P,
the highest possible drive. A bit value of 1
indicates active status, a zero denotes an
inactive drive.

19 RETURN
CURRENT
DISK

None A = Current
disk

The numbers 0 through 15 are used to
represent the current default disk drive upon
return from this function.

1A SET DMA
'a d d r e s s

DE = DMA None Used to select the 128-byte memory block to
be used for buffering all disk transfers. Upon
system or disk reset, cold or warm start, the
buffer is reset to 0080 hex on a normal
CP/M -80 system.

IB GET
ALLOC
ADDRESS

None H L = Alloca
tion address

Returns the starting address of the allocation
vector, a table which is maintained in
memory for each on-line disk drive that indi
cates the portions of the diskette which
are in use.

1C WRITE
PROTECT
DISK

None None Provides temporary write protection for the
diskette in the current default disk drive.

ID G E T R /O
VECTOR

None HL = Disk
R/O

Returns a 16-bit value in the HL registers
which indicate which drives on the system
are write protected. The drives are assigned
as in the LOGIN VECTOR, with a value 1
indicating write-protection.

IE SET FILE
ATTRI
BUTES

DE = FCB
address

A = DIR
code

Sets the file attributes that indicate system/
directory and R /O or R/W file status for the
file pointed to by the FCB address.

IF GET DISK
PARMS

None HL = DPB
address

Retrieves the disk parameter block for the
current active disk drive. These parameters
can be used to determine space available on a
diskette or to change the characteristics of
the disk drive under user control.

20 GET USER
CODE

E = FF A = Current
User or

If the E register contains an FF hex, the
current user number is returned in the A reg

SET USER
CODE

E = User
code

None ister. To reset the user number, the appro
priate user code is placed in the E register.
While the USER command allows user
numbers in the range 0-15, this BDOS func
tion can set user numbers in the range
of 0-31.

Note: CP/ M-80 always copies the contents of the H register in the A register if nothing is to be
specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of
such information to reduce movement of information between the H and A registers.

484 The CP/M Programmer’s Handbook

Ta b le C-1. (Continued)

Function Entry Exit Explanation
No. Name Parameter (s) Parameter(s)

21 READ
RANDOM

DE = FCB
address

A = Error
code

Reads the random record number contained
in the 33rd, 34th, and 35th byte (a 24-bit
address) of the FCB pointed to.

22 WRITE
RANDOM

DE = FCB
address

A = Error
code

Writes information from the current DMA
address to the random record pointed to by
the number contained in the 33rd, 34th, and
35th bytes of the indicated FCB.

23 COMPUTE
FILE SIZE

DE = FCB
address

RRF set Returns the current size of the random
record file in the three bytes that constitute
the random record field of the FCB. If the
third byte contains a 1, then the file contains
the maximum record count of 65536, other
wise the value in the first two bytes is a 16-bit
value that represents the file size.

24 SET
RANDOM
RECORD

DE = FCB
address

RRF set Returns the next random record (fills in the
random record field of the FCB) after the
last sequentially read record. Digital
Research suggests that this function is most
appropriate to file indexing.

25 RESET
DRIVE

DE = Reset
drive bits

A = Error
code

Forces the specified drives to be reset to the
drive bits initial non-logged status.

28 WRITE
RANDOM
(ZERO)

DE = FCB
address

A = Error
code

Writes a record of all zeros to diskette before
a record is written; useful for identifying
unused random records (an unused record
would contain zeros instead of data).

N ote: CP/ M-80 always copies the contents of the H register in the A register if nothing is to be
specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of
such information to reduce movement of information between the H and A registers.

Summary of BIOS
Calls

Ta b le D-1. CP/M-80 BIOS Routine Definitions

Label in
Jump Table

Entry
Parameter(s)

Exit
Parameter(s) Explanation

COLDSTART None
/

C = 0 Your routine should perform all the
necessary start-up operations, including
initializing all the values in the base page.
Before exiting, the C register must be set
to zero.

WARMSTART None C = Drive Your routine should perform all the
necessary restart operations but does not
need to reinitialize the base page. The C
register, on exit, should contain the cur
rent drive number.

CONSOLE
STATUS
(CONST)

None A = Status

CONSOLE*
INPUT

None A = Character

485

486 The CP/M Programmer’s Handbook

Ta b le D-1. (Continued)

Label in
Jump Table

Entry
Parameter(s)

Exit
Parameter(s) Explanation

READER*
INPUT

None A = Character Your routine should wait for a character
to be entered at the appropriate device
and then return the character in the
A register.

CONSOLE*
OUTPUT

C = Character None

LIST*
OUTPUT

C = Character None

PUNCH*
OUTPUT

C = Character None Your routine should take the character in
the C register and display it on the
appropriate device.

HOME DISK None None The head of the disk drive should be
returned to the home position (track 0,
sector 0).

SELECT DISK C = Drive HL = DHA Your routine should select the drive indi
cated by the number in the C register.
The HL register on return should contain
the address of the disk parameter header.

SET TRACK C = Track None The track indicated by the C register
value should be set as the next track to be
accessed by the disk drive.

SET SECTOR C = Sector None The sector indicated by the C register
value should be set as the next track to be
accessed by the disk drive.

SET DMA BC = DMA None The DMA address indicated by the BC
ADDRESS address register pair should be set as the address

to use for all information transfers from
memory to diskette and vice versa.

READ DISK None A = Status Read the current track and sector and
transfer the data to the DMA address
already set. A 01 hex should be returned
if there was an error during transfer.

WRITE DISK None A — Status Write the current track and sector from
the data at the DMA address.

SECTOR BC = Logical
sector

HL = Physical
sector

TRANSLATION DE — Sector
map address

A special routine used for systems which
maintain data in other than 128-byte
blocks. The logical sector on entry is
changed to reflect the appropriate actual
sector on the diskette.

LIST STATUS None A -■ Status Your routine should interrogate the
appropriate device to see if a character is
ready and return a 00 hex in the A regis
ter if not ready, or a FF hex if ready.

* All console and device I/O should be done by first looking at the IOBYTE (0003 hex) to determine
which device is selected.

Index

A
ANSI Standard Escape sequences:
Support via BIOS, 220
ASCII:
Updating the time in ASCII, 224
ASM:
Assembler, 185
Manual, 6
AUX:
Logical Auxiliary (Reader/Punch) device, 56
Allocation block:
Choosing size, 18
Concepts, 18
In file directory entry, 26
Maximum number in disk parameter block, 34
Prereading used block prior to writing, 155
Reserving in disk parameter block, 35
Allocation vector:
Finding address of, 119
Pointer in disk parameter header, 32
Ambiguous file names:
Avoidance in Rename File, 116
Concepts and restrictions, 24
Example processing, 401
Suggestion for utility program, 426
Used in BDOS Open File, 99
Used in DIR, 50
Used in ERA, 52
Used in Search for First Name Match, 103
Argc, argv:
C Functions for command parameters, 405
Assign:
C program, assigns logical to physical devices, 439
Attributes:
In file directory entry, 26
Available RAM:
Finding amount available, 65

B
BASIC:
Problems with “gobbling” characters, 218
BDOS:
Accessing file directory, C functions, 408
Entry Point, in base page, 59
Errors detected, 296

BDOS Function:
0, System Reset, 71
1, Read Console Byte, 72
2, Write Console Byte, 73
3, Read Reader Byte, 75
4, Write Punch Byte, 77
5, Write List Byte, 77
6, Direct Console I/O, 79
7, Get IOBYTE Setting, 80
8, Set IOBYTE, 86
9, Display $-Terminated String, 88
10, Read Console String, 90
11, Read Console Status, 94
12, Get CP/M Version Number, 94
13, Reset Disk System, 95
14, Select Logical Disk, 97
15, Open File, 98
16, Close File, 102
17, Search for First Name Match, 103
18, Search for Next File Name Match, 107
19, Erase (Delete) File, 108
20, Read Sequential, 109
21, Write Sequential, 110
22, Create (Make) File, 112
23, Rename File, 115
24, Get Active Disks, 116
25, Get Current Default Disk, 118
26, Set DMA (Read/Write) Address, 118
27, Get allocation vector, 119
28, Set Logical Disk Read-Only, 120
29, Get Read-Only Disks, 120
30, Set File Attributes, 121
31, Get Disk Parameter Block Address, 125
32, Set/Get User Number, 131
33, Read Random, 131
34, Write Random, 133
35, Get File Size, 142
36, Set Random Record Number, 142
37, Reset Logical Disk Drive, 143
40, Write Random with Zero-fill, 144

BDOS Function codes: 69
In LIBRARY.H, 391
Initialization concepts, 12
Interface to other software, 15
Introduction to function calls, 20
Making a function request, 68
Making calls in C, 395

487

488 The CP/M Programmer’s Handbook

BDOS Function codes (co n tin u ed)

Naming conventions, 68
Register conventions for function requests, 70
Use of Function 0 after hardware error, 299
Use of Function 0 after printer error, 224
Use of location 0005 H, 14
What the BDOS does, 67

BDOS Error:
Bad Sector, 98, 154
R/O, 120
Select, 98, 153

BIOS:
Blocking/Deblocking, 152
Bootstrap functions, 148
CONIN, console input, 151
CONOUT, console output, 151
CONST, console input status, 150
Character drivers, debugging, 354
Components, 147
Configuration Block, accessing from C, 396
Debugging, 353
Debugging interrupts service routines, 357
Device table, accessing from C, 398
Different types of disk write, 155
Direct BIOS calls, example code, 156
Direct calls, examples, 65
Direct calls to read/write disk from C, 399
Disk Parameter Block, accessing from C, 398
Enhanced BIOS listing, 235
Enhanced data structures, 225
Enhancements, 209
Enhancements to support different protocols, 218
Entry points, 148
Example code for standard BIOS, 158
Feature checklist for debugging, 354
Finding the jump vector in RAM, 56
Function key table, accessing from C, 397
HOME disk heads, 153
Hardware error handling functions, 296
Host Buffer, HSTBUF, 152
Initialization concepts, 12
Interface to other software, 15
Jump numbers in LIBRARY.H, 391
Jump vector, 15, 56
Keeping the current date, 224
Keeping the current time, 224
LIST, list output, 151
LISTST, list device output status, 156
Live testing, 368
Logical Input/Output, 15
Making calls in C, 396

BIOS (co n tin u ed)

PUNCH (Auxiliary) output, 151
Preparing a special version, 184
READ sector, 154
READER input, 152
SECTR AN, logical to physical sector translation, 156
SELDSK, select disk, 153
SETDMA, set DMA address, 154
SETSEC, set sector, 153
SETTRK, set track, 153
Sequence of operations for sector write, 155
Support of function keys, 210
Using PIP to test, 369
WRITE sector, 155
What needs to be tested, 354
When to avoid direct calls, 15
Backspace:
CONTROL-H, 47
Bad sector management: 303
In the BIOS, 154
Suggestion for utility program, 426, 448
Base page:
Current user number, 59
Example memory dumps, 61
Set by the CCP for loaded program, 54
Basic Debugging for a BIOS: 320
Basic Disk Operating System:
See BDOS
Baud rates:
Speed, C program to set Baud rates, 431
Bit Bucket:
If no Punch driver used, 77
Bit map:
See Allocation vector
Bit vector:
As used in C functions, 402
Boolean AND, bv_and, Code, 389, Narrative, 404
Definition of structure in LIBRARY.H, 395
Display, bv_disp, Code, 389, Narrative, 404
Fill, bv_fill, Code, 387, Narrative, 404
Inclusive OR, bv__or, Code, 389, Narrative, 404
Make, bv_make, Code, 387, Narrative, 404
Set bit, bv_set, Code, 387, Narrative, 404
Test bit, bv__test, Code, 388, Narrative, 404
Test bit non-zero, Code, 388, Narrative, 404
Block mask:
In disk parameter block, 33
Block shift:
In disk parameter block, 33
Blocking/Deblocking:
Concepts, 36

Index 489
Blocking/Deblocking (co n tin u ed)

Disk write types from BDOS to BIOS, 155
In the BIOS, 152
Bootstrap loader:
Building a new version, 184
Debugging, 351
Example code, 197
Overview, 8
Buffer overflow:
Debugging character driver, 358
Buffer thresholds:
Debugging character driver, 359
Buffer wraparound:
Debugging character driver, 360
Building a new CP/M system:
Example console dialog, 206
The major steps, 183
Building an index file:
Using Set Random Record Number, 143
Building your first CP/M system: 138
Built-in commands:
In the CCP, 46
Built-in debug code: 321
B v_ and:
Bit vector, boolean AND, Code, 389, Narrative, 404
Bv.disp:
Bit vector, display, Code, 389, Narrative, 404
Bv_fill:
Bit vector, fill, Code, 387, Narrative, 404
B v_ make:
Bit vector, make, Code, 387, Narrative, 404
Bv_nz:
Bit vector, test bit non-zero, Code, 388, Narrative, 404
Bv_or:
Bit vector, inclusive OR, Code, 389, Narrative, 404
Bv_set:
Bit vector, set bit, Code, 387, Narrative, 404
Bv_test:
Bit vector, test bit, Code, 388, Narrative, 404

C
C Language:
Reference manuals, 4
Use for utility programs, 371
C programs:
ASSIGN, assigns logical to physical devices, 439
DATE, sets the date, 442
ERASE, a safer way to erase files, 409

C programs (co n tin u ed)

FIND, finds lost files, 416
FUNKEY, sets the function keys, 445
MAKE, makes files visible/invisible, 427
MOVE, moves files between user numbers, 423
PROTOCOL, sets serial line protocols, 434
SPACE, shows used/free disk space, 420
SPEED, sets Baud rates, 431
TIME, sets the time, 442
UNERASE, restores erased files, 412
CBIOS.ASM:
An ingredient for a new system, 185
CCP:
Base page, set for program loaded, 185
Built-in commands, 50
Command Line Editing, 46
Control characters and their effects, 47
Default DMA buffer in base page, 61
Details, 45
ERA, erase (delete) files, 51
Example memory dumps of base page, 61
Functions, 46
Initialization concepts, 12
Interface to other software, 15
Logical devices, 56
Modifying the prompt to show the user number, 235
Overview, 12
Overwriting to gain memory, 45
Program loading, 54
Prompt, 46
REN, rename file, 52
Reloading on warm boot, 45
Resident commands, 14
Returning without warm boot, 66
SAVE, save memory image on disk, 53
Setting of command tail in base page, 60
Setting of default FCB’s in base page, 60
TYPE, type an ASCII file, 52
USER, changing user number, 53

CCPM:
Example of Get CP/M Version Number, 95
CDISK:
Example of Reset Disk System, 96
COM file structure: 194
COM files:
Loaded by the CCP, 46
CON:
Logical console, 16
CONIN:
Accessing the date and time, 223

CONIN (con tin u ed)

Console input, in the BIOS, 151
Recognizing incoming function key characters, 221
Use with forced input, 219

CONOUT:
Console output, in the BIOS, 151
Escape sequences to input date and time, 223
Processing output escape sequences, 222
CONST:
Console input status, in the BIOS, 50
Problems with programs that “gobble” characters, 218
Use with forced input, 219
CP/M:
Bringing up a new system, 350
CP/M 128-byte “records”: 41
CP/M file system:
Concepts, 17
CP/M records as 128-byte sectors: 71
CRC:
See Cyclic Redundancy Check
CRF:
Example of Random Write, 135
Cancel command line:
CONTROL-U, 49
Captions:
For debug subroutines, 322
CARRIAGE RETURN:
CONTROL-M, 48
Changed diskette:
Size of buffer for detection, in disk parameter block, 36
Work area in disk parameter header, 32
Changing disks:
Need to force disk log-in, 96
Changing user number:
USER, 53
Character drivers:
Example testbed, 355
Character I/O:
Enhancements, 213
In the BIOS, 150
Interrupts for input, 215
Practical handling of errors, 299
Choosing allocation block size: 18
Circular buffer:
For interrupt-driven input, 217
Structure in device table, 226
Close File:
BDOS Function 16, 102

490 The CP/M Programmer’s Handbook

Code table:
Definition of structure in LIBRARY. H, 394
Display all strings, ct__disps, Code, 385, Narrative,

407
Get string for code, ct__strc, Code, 386, Narrative, 407
Get string for index, ct__stri, Code, 386, Narrative, 407
Initialize, ct__init, Code, 384, Narrative, 407
Prompt and return code, ct__pare, Code, 384, Narrative,

407
Return code, ct_code, Code, 385, Narrative, 407
Return index, ct__index, Code, 386, Narrative, 407
Used for command tail parameters, 406
Cold Boot:
BIOS functions, 149
Concepts, 12
Command line:
Canceling, c o n t r o l -u , 49
Deleting last character typed, 49
Repeating, c o n t r o l -r , 49
Command Line Editing:
By the CCP, 46
Command tail:
Code tables, C functions, 405
Example program to process parameters, 63
In base page, 60
Input to the CCP, 46
Processing, C functions, 405
Communications:
Using Reader/Punch (Auxiliary), 151
Comp_fname:
Compare file name, Code, 374, Narrative, 401
Compare file name:
Comp__fname, Code, 374, Narrative, 401
Configuration Block:
Accessing from C, 396
Concepts, 211
Suggestion for utility program, 448
Variable codes in LIBRARY.H, 391
Console Command Processor:
See CCP

Console output:
From debug subroutines, 323
Temporary pause, c o n t r o l -s , 47
Console output to printer:
CONTROL-P, 48
Console status:
Debugging character driver, 360
Control characters:
Used in CCP command line editing, 47

Index 491

Default disk:
Changing, 50
In base page, 59
In CCP prompt, 46
Default File Control Blocks:
In base page, 60
Deferred writes:
In conjunction with track buffering, 231
Delete character:
Rubout/Del, 49
Deleting files:
ERA, 51
Device table:
Accessing from C, 398
Displaying for debugging, 356
Structure, 225
Digital Research:
Manuals, 6
Direct BIOS calls:
Example code, 156
Examples, 65
When to avoid, 15
Directory code:
As returned by BDOS calls, 71
As returned from Create (Make) File, 114
As returned from Rename File, 116
Returned by BDOS Close File, 103
Returned by BDOS Open File, 99
Returned by Search for First Name Match, 103
Returned by Search for Next Name Match, 107
Directory entry: 99
Definition in LIBRARY.H, 394
Directory Parameter Block:
Definition in LIBRARY. H, 393
Disk Drivers:
Debugging, 364
Disk I/O :
Enhancements, 231
In the BIOS, 152
Disk Map:
In file directory entry, 26
Disk Parameter Block:
Accessing from C, 398
Adding extra information, 41
Block shift, mask, and extent mask, 33
Definition in LIBRARY.H, 394
Details, 33
Finding the address of, 125
Maximum allocation block number, 34

Disk Parameter Block (co n tin u ed)
Number of directory entries — 1,35
Number of tracks before directory, 36
Pointer in disk parameter header, 31
Reserving allocation blocks for file directory, 35
Sectors per track, 33
Size of buffer for detecting changed diskettes, 36
Worked example for hard disk, 39
Disk Parameter Header:
Details, 28
Disk buffer, 31
Disk parameter block, 31
Pointer to allocation vector, 32
Sector skewing, 28
Work area for changed diskette detection, 32
Disk buffer:
In disk parameter header, 31
Disk definition tables:
Concept, 18
Details, 27
Disk drivers:
Example testbed code, 365
Disk errors:
Strategy, 303
Disk full:
Error returned from Sequential Write, 112
Disk layout:
CP/M on diskettes, 189
Disk map:
As used in C functions, 402
Disk map clear:
Dm_clr, Code, 382, Narrative, 403
Disk map display:
Dm__disp, Code, 382, Narrative, 403
Diskette:
Layout of standard CP/M diskette, 37
Diskette format:
Concepts, 9
Display $-Terminated String:
BDOS Function 9, 88
Display directory error:
Err__dir, Code, 381, Narrative, 400
Displaying an ASCII file:
TYPE, 52
Displaying current user number: 54
D m .clr:
Disk map clear, Code, 382, Narrative, 403
D m .disp:
Disk map display, Code, 382, Narrative, 403

Control characters (co n tin u ed)

CONTROL-C:

Used to abort after BDOS error, 98
c o n t r o l -p :
Errors generated, 299
CONTROL-Z:
If no Reader driver in BIOS, 75
Used to indicate end of file, 110
Used to terminate prior to BDOS Close File, 103
Conv_dfname:
Convert directory file name, Code, 375, Narrative, 402
Conv—fname:
Convert file name, Code, 375, Narrative, 408
Convert directory file name:
Conv__dfname, Code, 375, Narrative, 402
Convert file name:
Conv__fname, Code, 375, Narrative, 408
Create (Make) file:
BDOS Function 22, 112
C t_ code:
Code table, return code, Code, 385, Narrative, 407
Ct_disps:
Code table, display all strings, Code, 385, Narrative,

407
Ct^Jndex:
Code table, return index, Code, 386, Narrative, 407
Ct—mit:
Code table, initialize, Code, 384, Narrative, 407
Ct^parc:
Code table, prompt and return code, Code, 384, Narra

tive, 407
Ct_strc:
Code table, get string for code, Code, 386, Narrative,

407
C t_ stri:
Code table, get string for index, Code, 386, Narrative,

407
Current default drive: 97
Current logical disk:
In base page, 59
Current record number:
In FCB, unchanged for Random Read, 132
In FCB, unchanged for Random Write, 132
Current user number:
Displaying, 54
In base page, 59
Customization:
Of CP/M, an overview, 8

492 The CP/M Programmer’s Handbook

Cyclic Redundancy Check:
As used in disk errors, 303

D
DDT:
Dynamic Debug Tool, 185, 329
Manual, 6
I Command used for building new CP/M system, 195
R Command used for building new CP/M system, 195
Used for checking CP/M images, 204
Used for debugging character drivers, 354
Used to create CP/M memory image, 194
Used to debug disk drivers, 364
DESPOOL:
Use of LISTST BIOS entry, 156
DIR:
Display directory of files, 50
DMA buffer:
Default in base page, 60
DPB:
See Disk Parameter Block
DPH:
See Disk Parameter Header
DTR:
PROTOCOL, C program to set protocols, 434
See Data Terminal Ready
Data storage area:
Concept, 17
Data Terminal Ready:
Explanation of DTR protocol, 219
DATE:
C program, sets the date, 442
Date:
Keeping the current date in the BIOS, 224
Reading the date from the console driver, 223
Debug output:
Controlling when it occurs, 324
Debug subroutines: 322
Overall design philosophy, 322
Debugging a new CP/M system, 319
Debugging checklist:
Character output, 361
Disk drivers, 367
Interrupt service routines, 359
Non-interrupt service routine, 359
Real Time Clock, 362
Default DMA Address: 118
Default DMA buffer:
In base page, 60

Index 493
DO:
Suggestion for utility program, 448
DPB:
See Disk Parameter Block
DPH:
See Disk Parameter Header

E
ED:
Editor, manual, 6
ERA:
Erase (delete) files, 51
Echoing of keyboard characters:
Read Console Byte, 72
End of File:
Detection using Read Sequential, 110
Erase (Delete) File:
BDOS Function 19, 108
ERASE:
C program, a safer way to erase files, 409
Erased files:
Unerasing them, 26
Erasing a file:
ERA, 51
Logical deletion only, 23
Err_dir:
Display directory error, Code, 381, Narrative, 400
Error messages:
Debugging disk drivers, 368, Chapter 12
Errors:
Dealing with hardware errors, 295
Example printer error routine, 301
Handling disk errors, 303
Hardware, analysis, 297
Hardware, correction, 299
Hardware, detection strategy, 296
Hardware, indication, 297
Improved disk error messages, 312
Practical handling, character I/O, 299
Escape sequences:
Function keys, debugging character driver, 360
Incoming, debugging character driver, 360
Processing output sequences, 222
Recognizing function key sequences, 222
Suggestion for utility program, 448
Support via device table, 226
Etx/Ack:
Debugging character drivers, 358, 362
Explanation of protocol, 219

Etx/Ack (co n tin u ed)
Protocol, C program to set protocols, 434
Example programs:
Ordering diskette, 4
Extent:
In file directory entry, 26
Of files, concepts, 18
Extent mask:
In disk parameter block, 33

F
FCB:
Default FCB’s in base page, 60
See File Control Block
FDOS:
Rarely used term for BDOS/CCP combined
File Attributes: 99
Setting, 121
See File status
File Control Block:
Creating one from an ASCII file name, 100
Concepts, 18
Definition in LIBRARY.H, 393
Structure, 41
Used for random file operations, 43 *
Used for sequential file operations, 43
Used in BDOS Open File, 99
Used in BDOS Requests, 71
File Directory:
Accessing entries directly, 399
Processing, C functions, 402
File Organizations:
Concepts, 41
File Protection:
Special characters in file name, 114
File changed:
File status bit in file directory entry, 26
File directory:
Accessing, C functions, 400
Accessing, via BDOS & C functions, 408
Concept, 17
Details, 18
Disk map, 26
Displaying contents, DIR, 50
Entry structure, 22
Erasing files, ERA, 51
File extent, 26
File name and type in entry, 27
Matching names, C functions, 401
Number of entries — 1, in disk parameter block, 35

494 The CP/M Programmer’s Handbook

File directory (con tin u ed)

Number of tracks before, 36
Record number, 27
Status (attribute) bits, 26
User number in entry, 22
File extent:
Concepts, 18
In file directory entry, 26
Manipulation to achieve Random I/O, 110-12
Opening extent 0 for Random I/O, 133-34
File name/type:
In file directory entry, 23
File protection:
Suggestion for utility program, 426
File status:
In file directory entry, 26
File system:
Concepts, 17
File type:
Conventions for actual types, 24
Filecopy:
Suggestion for utility program, 426
Files:
Creating, sequence of operations, 20
Displaying a directory, DIR, 50
Find:
C program, finds lost files, 416
Flushing buffers:
Prior to BDOS Close File, 103
Forced input:
Concepts, 219
Debugging character driver, 360
Suggestion for utility program, 448
Framing error:
Character I/O, handling, 300
Function Key table:
Accessing from C, 397
Function keys:
Structure in LIBRARY.H, 392
Support with enhanced BIOS, 220
Testing in a live BIOS, 370
FUNKEY:
C program, sets the function keys, 445

G
GETC:
Example of Read Sequential, 111
GETDPB:
Example of Get Disk Parameter Block Address, 126

GFA:
Example of Get File Attributes, 122
GNF:
Example of Search First/Next File Name Match, 104
Get CP/M Version Number:
BDOS Function 12, 94
Get Current Default Disk:
BDOS Function 25, 118
Get Disk Parameter Block Address:
BDOS Function 31, 125
Get Disk Parameter Block Address:
Get__dpb, Code, 383
Get File Size:
BDOS Function 35, 142
Get IOBYTE Setting:
BDOS Function 7, 80
Get Read-Only Disks:
BDOS Function 29, 120
Get allocation vector:
BDOS Function 27, 119
Get configuration block address:
Get_cba, 372
Get next directory entry:
Get__nde, Code, 378, Narrative, 400
Get next file name:
Get__nfn, Code, 376, Narrative, 408
Get _ cba:
Get configuration block address, 372
Get _ dpb:
Get Disk Parameter Block Address, Code, 383
Get _ nde:
Get next directory entry, Code, 378, Narrative, 400
Get_nfn:
Get next file name, Code, 376, Narrative, 408

H
HEX file structure: 195
HOME:
Home disk heads, in the BIOS, 153
HSTBUF:
In the BIOS, 152
Hard disk:
Division into several logical disks, 39
Special considerations, 36
Hardware errors:
Dealing with, 295, Chapter 9
Hardware reset:
Debugging character driver, 359

Index 495
HeattyZenith:
Special version of CP/M, 55
Host Buffer:
In the BIOS, 152
Host sector size:
In the BIOS, 152

I
I/O Redirection:
Assign, C program to assign physical devices, 439
Concepts, 214
IOBYTE Structure, 57
IF/ENDIF directives:
Used for debug subroutines, 323
IOBYTE:
Equates for bit fields, 86
Structure, 57
Use for polling communications line, 75
Use with Direct Console I/O for communications, 80
Initialization of debug subroutines: 323
Input redirection:
Debugging character driver, 359
Input/Output:
Fake I/O for debugging purposes, 327
Interactions:
Between CCP, BDOS, and BIOS, 15
Interlace:
See Sector skewing
Interrupt service routines:
Debugging checklist, 357
Interrupts:
Architecture, 216
Circular buffers, 217
Dealing with buffer overflow, 219
Debugging service routines, 329
Use for character input drivers, 215

J
Johnson-Laird Inc.:
Ordering diskette, 4
Jump vector:
Use for entering the BIOS, 15

L
LIBRARY.C:
Utility function library, 372
LIBRARY.H:
Header for LIBRARY.C functions, 390
LIST:
List output, in the BIOS, 151

LISTST:
List device output status, in the BIOS, 156
LST:
Logical list device, 56
Line editing:
Using Read Console String, 91
Line feed:
CONTROL-J, 48
List Device Errors:
Problems with BDOS Function 5, 78
Loading CP/M:
Overview, 11
Loading programs:
Via the CCP, 54
Loadsys:
Suggestion for utility program, 448
Location 0000H:
Use for warm boot, 13
Location 0005H:
Simple examples of use, 20
Use for BDOS function calls, 14
Logging in a disk:
Using BDOS Reset Disk System, 96
Logical deletion of files, 23
ERA, 51
Logical devices:
CON:, LST:, AUX:, RDR:, PUN:, 56
Logical disk:
As represented in File Control Block, 42
Division of hard disk into several logical disks, 39
Selecting, 97
Logical Input/Output:
As afforded by the BIOS, 15
Logical records:
Concepts, 41
Logical sectors to physical: 28
SECTRAN, in the BIOS, 156
Login Vector:
See BDOS Function 24, 116
Lowercase letters in file name: 114
M-disk:
Using memory as an ultra-fast disk, 232
M80:
Macro Assembler, 185
MAC:
Macro Assembler, 185
MAKE:
C program, makes files visible/invisible, 427

496 The CP/M Programmer’s Handbook

MOVE:
C program, moves files between user numbers, 423
MOVCPM:
In conjunction with patches to CP/M, 234
Relocating the CCP and BDOS, 201
Use in building a new CP/M system, 182
MSGOUT:
Example of Write Console Byte, 74
MSGOUTI:
Example of Write Console Byte, 74
Manuals:
From Digital Research, 6
Maximum allocation block number:
In disk parameter block, 34
Memory:
Displaying in debug subroutines, 324
Finding size of area available for programs, 65
Use of hidden memory for buffers, 216
Used as an ultra-fast disk, 232
Memory dumps:
Base page, 61
Memory image:
Checking a new system, 204
Of new CP/M system, 185
Memory layout:
For example BIOS, 190
For input to SYSGEN, 187
With CP/M loaded, 13
Messages:
As an aid to debugging, 326

N
Notation:
For example console dialog, 3
Number of file directory entries:
In disk parameter block, 35

o
OM:
Example of Display $-Terminated String, 89
OPENF:
Example of Open File, 100
Open File:
BDOS Function 15, 98
Open directory:
Open_dir, Code, 378, Narrative, 400
Open _ dir:
Open directory, Code, 378, Narrative, 400
Orville Wright approach to debugging: 320

Output Escape sequence:
Debugging character output driver, 362
Overrun error:
Character I/O, handling, 300
Overwriting the CCP:
To gain memory, 45
Owner:
Suggestion for utility program, 426

P
PIP:
Used to test a new BIOS, 369
PROM Bootstrap:
Used to load CP/M, 11
PUN:
Logical Punch, 56
PUNCH:
Punch (Auxiliary) output, in the BIOS, 151
PUTC:
Example of Write Sequential, 113
PUTCPM:
Example program, 191
Writing a utility, 189
Parallel printers:
Error handling, 301
Parameters:
Example program to process command tail, 63
Parity error:
Character I/O, handling, 300
Pass counters:
Use in debug subroutines, 324
Patching CP/M:
General techniques, 234
Performance:
Effect of sector skewing, 29
Physical end of line:
CONTROL-E, 47
Physical sectors:
Relative, on a hard disk, 38
Polled Reader Input:
Problems and solutions, 75
Polled communications:
Using Direct Console I/O, 80
Printer echo:
CONTROL-P, 48
Printer errors:
Example routine, 301
Use of watchdog timer, 224

Index 497
Printer timeout error:
Handling, 300
Program loading:
Via the CCP, 54
Program termination:
Returning to CP/M, 66
Prompt:
From the CCP, 46
Protect/Unprotect:
Suggestion for utility program, 426
PROTOCOL:
C program, sets serial line protocols, 434
Protocol:
See a lso Data Terminal Ready, Request to Send,

Xon/Xoff, Etx/Ack
Definitions in LIBRARY.H, 392
Support in enhanced BIOS, 218
Support via device table, 226
Xon/Xoff, used by TYPE, 52
Public files:
Patches to create this feature, 235
Suggestion for utility program, 448
Public/Private:
Suggestion for utility program, 448

R
RAM-disk:
Using memory as an ultra-fast disk, 232
RCS:
Example of Direct Console I/O, 81
RDR:
Logical Reader, 56
READ:
Read Sector, in the BIOS, 154
READER:
Reader input, in the BIOS, 152
REN:
Rename file, 52
RF:
Example of Rename File, 117
RL$RDR:
Example of Read Reader Byte, 76
RMAC:
Relocatable Macro Assembler, 185
RO:
Example of Random File I/O, 136
RSA:
Example of Read Console String, 92

RST7:
Use for debugging drivers, 356
RTS:
See a lso Buffer thresholds, Request to Send
Protocol, C program to set protocols, 434
Random Read:
Using Read Sequential, 110
Random Write:
Using Write Sequential, 112
Random files:
Concepts, 43
Creating an empty file, 144
Problem of sparse files, 44
Virtual size, 142
Random record number:
In FCB, set for Random Read, 132
In FCB, set for Random Write, 132

Rd_disk:
Read disk (via BIOS), Code, 377, Narrative, 400
Read Console Byte:
BDOS Function 1, 72
Read Console Status:
BDOS Function 11, 94
Read Console String:
BDOS Function 10, 90
Read Random:
BDOS Function 33, 131
Read Reader Byte:
BDOS Function 3, 75
Read Sequential:
BDOS Function 20, 109
Read disk (via BIOS):
Rd_disk, Code, 377, Narrative, 400

Read-Only:
Automatic setting after changing diskettes, 32
File status bit in file directory entry, 26

Read-Only Disks: 120
Read-Only File:
Attribute bit, 121
Read/write directory:
Rw_dir, Code, 380, Narrative, 400
Reading/Writing disk:
Direct BIOS calls from C, 399
Real Time Clock:
Debugging, 362
Example testbed code, 363
TIME, C program to set the time, 444

498 The CP/M Programmer’s Handbook

Reclaim:
Suggestion for utility program, 426
Record number:
In file directory entry, 26
Manipulation to achieve Random I/O, 110, 112
Registers:
Displaying in debug subroutines, 324
Relative page offset:
Use for making direct BIOS calls, 65
Relative physical sectors:
On a hard disk, 38
Release diskettes:
Files from Digital Research, 6
Rename File:
BDOS Function 23, 115
Renaming a file:
REN, 52

Repeat command line:
CONTROL-R, 48
Request to Send:
Explanation of RTS protocol, 219
Reserved area:
Concept, 17
Reset:
Signal used to start loading of CP/M, 11
Reset Disk System:
BDOS Function 13, 95
Reset Logical Disk Drive:
BDOS Function 37, 143
Resident CCP commands: 14
Restoring registers:
In interrupt service routine, 356
R w — dir:
Read/write directory, Code, 380, Narrative, 400

$
SAVE:
Save memory image in disk file, 53
Use in building new CP/M system, 194
SECTRAN:
Logical sector to physical, in the BIOS, 156
SELDSK:
Debugging disk drivers, 367
Select disk, in the BIOS, 153
SETDMA:
Set DMA Address, in the BIOS, 154
SETSEC:
Set Sector, in the BIOS, 153

SETTRK:
Set Track, in the BIOS, 153
SETTRK/SEC:
Debugging disk drivers, 367
SFA:
Example of Set File Attributes, 122
SID:
Debugging tool, 330
STAT:
Use for displaying current user number, 54

SYSGEN:
System Generator, 185
Writing a new system to disk, 186
Savesys:
Suggestion for utility program, 448
Saving memory on disk:
SAVE, 53
Search First/Next:
Example use together, 107
Search for file:
Srch__file, Code, 376, Narrative, 408
Search for Next File Name Match:
BDOS Function 18, 107
Require for Search for First, 104

Sector interlace:
See Sector skewing
Sector size:
Host, in the BIOS, 152

Sector skewing:
Effect on performance, 29
For CP/M image on disk, 190
In disk parameter header, 28
Sector skipping:
Concepts, 304
Sector sparing:
Concepts, 304

Sectors:
Use in allocation blocks, 18
Sectors per track:
In disk parameter block, 33
Select Logical Disk:
BDOS Function 14, 97
Sequential Files:
Concepts, 43
Set DMA (Read/Write) Address:
BDOS Function 26, 118
Required by Search for First Name Match, 104

Index 499
Set File Attributes:
BDOS Function 30, 121
Set IOBYTE:
BDOS Function 8, 86
Set Logical Disk Read-Only:
BDOS Function 28, 120
Set Random Record Number:
BDOS Function 36, 142
Set disk parameters for rd/wrt_disk:
Set__disk, Code, 378, Narrative, 400
Set search control block:
Setscb, Code, 381, Narrative, 401
Set/Get User Number:
BDOS Function 32, 131
Set_disk:
Set disk parameters for rd/wrt__disk, Code, 378,

Narrative, 401
Setscb:
Set search control block, Code, 381, Narrative, 401
Setterm:
Suggestion for utility program, 448
Shadow PROM:
Used to load CP/M, 11
Short:
Minor change to C Language, 395
Single-density, single-sided:
Diskette format, 10
Single disk reset, 143
Skewing:
See Sector skewing
Skipping: '
Skipping bad sectors on disk, 304
SPACE:
C program, shows used/free disk space, 420
Spare:
Suggestion for utility program, 448
Spare directory:
Debugging disk drivers, 367
Sparing:
Use of spare sectors on disk, 304
Sparse Random Files:
Problem, 44
Special version of CP/M:
Heath/Zenith, 55
SPEED:
C program, sets baud rates, 431
Srch_ file:
Search for file, Code, 376, Narrative, 408

Sstrcmp:
Substring compare, 373
Stack:
Filling with known pattern, 323
Stack overflow:
In interrupt service routine, 358
Standard BIOS:
Example code, 158
String scan:
Strscn, 372
String scan, uppercase:
Ustrscn, 372
Strscn:
String scan, 372
Structure:
Of CP/M, 5
Subroutine:
CCPM, Check if CP/M Version 2, 95
CDISK, Change Disk, 96
CRF, Create Random File, 135
DB$Blank, Display a blank, 344
DB$CAH, Convert A to ASCII Hex., 343
DBSCRLF, Display Carriage Return, Line Feed, 344
DBSColon, Display a colon, 344
DBSConin, Debug console input, 336
DB$Conout, Debug console output, 336
DB$DAH, Display A in Hex., 343
DBSDHLH, Display HL in Hex., 343
DB$Display$CALLA, Display call address, 343
DB$Display, Main debug display, 338
DB$GHV, Get Hex. Value, 348
DB$Init, Debug initialize, 335
DBSInput, Debug Port Input, 346
DB$MEMORY, Debug display of memory/registers,

325
DB$MSG, Display Message, 345
DBSMSGI, Display Message (In-line), 345
DB$Off, Turn debug output off, 337
DB$On, Turn debug output on, 337
DBSOutput, Debug Port Output, 347
DBSPass, Decrement the pass counter, 337
DBSetPass, Set pass counter, 337
DIVHL, Divide HL by DE, 129
FOLD, Fold lowercase to upper, 93
FSCMP, Folded String Compare, 93
GAB, Get Allocation Block given Track/Sector, 128
GDTAS, Get Directory Track/Sector, 127
GETC, Get Character from Sequential File, 111
GETDPB, Get Disk Parameter Block Address, 126
GFA, Get File Attributes, 122
GMTAS, Get Maximum Track/Sector, 127

500 The CP/M Programmer’s Handbook

Subroutine (con tin u ed)

GNF, Get Next File matching ambiguous name, 104
GNTAS, Get Next Track/Sector, 128
GTAS, Get Track/Sector from Allocation block No.,

126
MSGOUT, Message Output, 74
MSGOUTI, Message Output In-Line, 74
MULHL, Multiply HL by DE, 129
OM, Output Message selected by A register, 89
OPENF, Open File given ASCII file name, 100
PUTC, Put Character to Sequential File, 113
RCS, Read Console String, 81
RF, Rename File, 117
RL$RDR, Read Line from Reader, 76
RO, Random File I/O (non-128-byte records), 136
RSA, Return Subprocessor Address, 93
SDLR, Shift DE,HL one bit right, 141
SFA, Set File Attributes, 122
SHLR, Shift HL right one bit, 130
SUBHL, Subtract DE from HL, 130
TERM, Terminal Emulator, 87
TOUPPER, Fold lowercase to upper, 84
WLSLST, Write Line to List Device, 79
WL$PUN, Write Line to Punch, 78
Substring compare:
Sstrcmp, 373
Uppercase: Usstrcmp, 373
System file:
Attribute bit, 121
File status bit in file directory entry, 26
Not displayed by DIR, 51
System Reset:
BDOS Function 0, 71

T
TERM:
Example of Set/Get IOBYTE, 87
TIME:
C program, sets the time, 442
TYPE:
Type an ASCII file, 52
Tab:
Interaction of tab characters and escape sequences, 222
Tab expansion:
Supported by Write Console Byte, 73
Using Display $-Terminated String, 89
Termination of programs, returning to CCP: 45
Testbed:
Use for new drivers, 353

Time:
Correct display during debugging, 364
Keeping the current time in the BIOS, 224
Reading the time from the console driver, 223
Top of RAM:
Finding, via base page, 60
Track buffering:
Enhancement to disk I/O, 231
Track offset:
S ee Tracks before directory
Tracks before directory:
In disk parameter block, 36
Transient Program Area:
Finding available size, 65
Typeahead: '
Concepts, 217
Dealing with buffer overflow, 219

U
Undo command line:
CONTROL-U, 49
UNERASE:
C program, restores erased files, 412
User Number:
Changing under program control, 131
Changing using USER, 53
Displaying, 54
In base page, 59
In file directory entry, 22 ,
Patches to make this appear in CCP prompt, 235
Suggestion for utility program, 426
Usstrcmp: _
Uppercase substring compare, 373
Ustrcmp:
Uppercase string scan, 372
Utility programs: 371

v
Variable record lengths:
Processing in Random Files, 133, 134

w
WLSLST:
Example of Write List Byte, 79
WLSPUN:
Example of Write Punch Byte, 78
WRITE:
Write sector, in the BIOS, 155
Warm Boot:
After BDOS Error, 98

Index 501
Warm Boot (co n tin u ed)

BIOS functions, 150
Initiated by c o n t r o l -c , 47
Initiated by pressing a key, 94
Initiated by System Reset BDOS Function, 72
JMP at location 0000H, 55
Reloading the CCP, 45
Resetting Read-Only disks, 120
Setting default DMA Address, 118
Technique for avoiding, 66
Use of location 0000H, 13
Watchdog timer:
Concepts, 225
Debugging Real Time Clock, 364
Use for detecting printer errors, 224
Write Console Byte:
BDOS Function 2, 73
Write List Byte:
BDOS Function 5, 77
Write Punch Byte:
BDOS Function 4, 77
Write Random:
BDOS Function 34, 133
Write Random with Zero-fill:
BDOS Function 40, 144

Write Sequential:
BDOS Function 21, 110
Write disk (via BIOS):
Wrt__disk, Code, 377, Narrative, 400
Wrt_disk:
Write disk (via BIOS), Code, 377, Narrative, 400

x
Xoff:
CONTROL-S, 48
Xon:
CONTROL-Q, 49
Xon/Xoff:
Debugging character driver, 358, 362
Explanation of protocol, 240
PROTOCOL, C program to set protocols, 434
Supported by Read Console Byte, 72
Use by TYPE, 53

z
ZSID:
Z80 Symbolic Interactive Debugger, 185, 350

/

	THE PROGRAMMER’S CP/M HANDBOOK
	Dedication
	Acknowledgments

	Contents
	1 Introduction
	2 The Structure of CP/M
	3 The CP/M File System
	4 The Console Command Processor (CCP)
	5 The BASIC Disk Operating System
	6 The BASIC Input/Output System
	7 Building a New CP/M System
	8 Writing an Enhanced BIOS
	9 Dealing with Hardware Errors
	10 Debugging a New CP/M System
	11 Additional Utility Programs
	12 Error Messages
	A ASCII Character Set
	B CP/M Command Summary
	C Summary of BDOS Calls
	D Summary of BIOS Calls
	Index

