
A
(Ada) Compiler

User's Manual
Release 3.00

Copyright © 1984 by
Maranatha Software Systems

and

SuperSoft, Inc.

Ada is a trademark of the Department of Defense (Ada Joint Program Office)

Copyright © 1984
Maranatha Software Systems

All Rights Reserved Worldwide

No part of this publication or the A compiler may be reproduced, transmit-
ted or translated into any language, in any form or by any means, electronic, mechani-
cal, optical, chemical, manual or otherwise, in whole or in part without the prior consent
of SuperSoft, Inc. or Maranatha Software Systems. The software computer program(s)
described in this manual are furnished to the purchaser under a license for use on a sin-
gle computer system, and may not be used in any other manner, except as may other-
wise be provided in writing by SuperSoft, Inc. or Maranatha Software Systems.

/
Disclaimer

SuperSoft, Inc. and Maranatha Software Systems make no representations or
warranties with respect to the contents herein. While every precaution has been taken
in the preparation of this manual, no responsibility is assumed for errors or omissions.
Further, no liability is assumed for damages resulting from the use of this product. Su-
perSoft, Inc. and Maranatha Software Systems reserve the right to revise this publica-
tion and to make changes from time to time without obligation to notify any person of
such revision or changes.

SOFTWARE NON-DISCLOSURE AGREEMENT

As with all SuperSoft software, acceptance of this or other products, both in machine and human
readable form, implies agreement with the principles and concepts below.

1. All software is sold on an individual CPU basis. Usage on secondary machines without permission
constitutes a violation of this agreement.

2. Five (5) backup copies may be made by the user. These are for the protection of user's investment
only.

3. The ideas, concepts and machine/human interface of software are all considered the property of
SuperSoft Inc. and its authors.

4. The user agrees to non-disclosure of the following:

• Underlying concepts
• Documentation
• Code and code fragments (in both source and object)
« User Interface
• Any and all aspects of software which SuperSoft developed.

5. All software is non-transferable and may not be re-sold without permission.
6. User modification of software completely removes SuperSoft Inc. from any liability regarding the

operation or reliability of the software.

STATEMENT OF WARRANTY

SuperSoft disclaims all warranties with regard to the software contained on diskette, tape, or in
printed form, including all warranties of merchantability and fitness; and any stated express warranties
are in lieu of all obligations or liability on the part of SuperSoft for damages, including, but not limited
to special, indirect or consequential damages arising out of or in connection with the use or
performance of the software licensed.

Title and ownership shall at all times remain with SuperSoft and its authors.

Guide to the A Software Package

• What you get
i

In your Maranatha A package you should have recieved this Guide, a User's
Manual, a Language Reference Manual, the government document MIL-STD-1815A, and
2 or more disks containing the soft-ware outlined in section 1.2 of the User's Manual

« How to use this Package

You should first buy a good book on Ada; I recommend "Software Engineer-
ing with Ada" by Grady Booch (see bibliography, Appendix B of the User's Manual).
While writing an Ada program, you will probably be referring to your book, the A
Language Reference Manual, and (to a lesser extent) the MTL-STD-1815A While com-
piling and linking programs, you only need to refer to the User's ManuaL

• Optimization Hints

The following bints are provided for those who wish their programs to run as
fast as possible, or take up as little space as possible. Note that, in some eases, these
hints go against many good programming practices, and so they should be used with
caution. They are listed here so users may take advantage of the particular way A has
been implemented.

• Use the pragma RECURSION(off). This may have a disastrous effect when
used with a recursive subprogram such as a factorial program, so be sure that none of
the subprograms are recursive. It does provide excellent results in that variables can be
accessed more efficiently.

• Use the pragma OPTIMIZE(tixne). This, in effect, forces the optimizer to to
optimize the intermediate code twice. Sometimes this will have no effect, other times it
will have only a minimal effect. The only trade-off is compile-time versus run-time, so
for those programs you do not expect to have to re-compile often, use of this pragma
can't hurt.

• Use address specifications for arrays. Because of the way arrays are imple-
mented, the RECURSION pragma cannot place arrays in the local data area. Use an
address specification to declare the start location of an array that is used often. Be sure
it does not interfere with the program or system (CP/M) code!

• Use declared constants instead of attributes. For example, use declared con-
stants instead of array'first..array'last to loop through an array. The attribute takes up
run-time to evaluate, whereas the constant does not.

• Re-write TEXT_IO. The present TEXT_IO package contains more code than
you will probably use. For example, a short program to print "hello" will link in the en-
tire TEXT JO package, including all file i/o operations (over 16K!). Write a new I/O
package that contains only those procedures you will need for your program. Alterna-
tively, the i/o operations from version 2 of the compiler are still embedded in the system
(for compatibility). For such short programs, which only do minimal:i/o (i.e., integer or
string input/output), it is entirely possible to leave out the "with TEXTJO" at the be-
ginning of the program, since these inherent routines are contained in ADALIB. This is
bad programming practice, of course, since it goes against the philosophy of Ada pack-
ages. These routines will be removed sometime in the future without notice, but may
be used temporarily.

• Avoid numerous procedure calls. Because of the large amount of overhead in
calling a subprogram, avoid them when possible. A must keep track of a large amount
of data when a subprogram is called such as return addresses, exception data, dynamic
and static links, return values, heap pointers, etc. Again, this is bad programming prac-
tice; so only use this technique when you are desperate for speed or space. u ,

% .
• The Prime Number Benchmark , ,-,, i '

The prime number benchmark program appears as a sample program, and is
taken from the Byte prime number benchmark article(s). I've worked very hard to pro-
vide as much optimization as possible, and the result is a benchmark that ranks among
the top languages available for CP/M systems. On a Z80 system running at 4 MHz, the
benchmark clocks in at 17.5 seconds! Compare this to your favorite language; A does
fairly well.

i

• The Maranatha Bulletin Board System

A computerized bulletin-board system has been set up dedicated to Marana-
tha A in Seattle, Washington. It is currently on-line 24 hours/day, 7 days a week (300
baud only). It is an RCPM/RBBS system with 2 600K floppies filled with Ada informa-
tion. I hope to create a public domain database of Ada programs compatible with
Maranatha A. Send in your favorite program and help me to make this service a suc-
cess. Dial (206)939-6179.

— David Norris
— Author, Maranatha A

COPY THE MASTER DISK
As with all master disks the first thing you should do is make copies of the original Factory Master
Disks you received from SuperSoft then use the copy not the original disk

You are allowed under the user agreement to make a maximum of 5 working copies for your use
only. Put the factory disk 4fj£y after making copies and only get it out again if something disasterous
happens to your working disk

Make the copy on a new and freshly formatted disk If you have programs that check the integrity
of the surface media, such as the Disk Doctor set of utilities offered by SuperSoft, use those be-
fore copying

Then format the new disk and copy the system tracks from your own master onto the new disk

CARE OF FLOPPY DISKS
Floppy disks are durable, long-lasting and are among the most reliable mass storage devices
known They are something of a cross between a phonograph record and a cassette tape, with the
speed of the former and the sensitivity and ease of use of the tape But they require careful handling
Do NOT-

—touch the magnetic surface
—bend the disks, even though they are pliable
—expose them to excessive heat or cold
—allow them to come near magnetic substances or fields such as those generated by television

sets, transmitters, or medium sized electric motors
—leave them out of their protective sleeves for any longer than necessary
—store them in a dirty or dusty environment, as motes of dust can permanently damage the

disk surface

If you want to write on a disk cover, use a soft-tip pen, it's a much better idea to write on the self-
stick label that comes with new disks before putting the label on the disk

"BACK1NG-UP" DATA DISKS
If this program uses continuing data disks which are regularly updated, as is the practice in most
business and financial programs, it is a prudent and useful process to make back-up copies of those
disks.

A number of completely uncontrollable events can cause irreparable damage to a disk, such as a
line surge while the disk drives are active, a power outage during certain internal memory manipu-
lations, a bad sector on disk media, accidental disconnect of the machine, (or some helpful soul
turning it off because it didn't appear to be doing anything) and similar occurences that have noth-
ing to do with the integrity of your machine or the quality of the software you are using.

In all of the above cases, the data probably will be lost forever and the time and expense of recon-
structing it may be almost prohibitive.

Making regular back-up copies of your updated files takes no longer than photocopying an import-
ant document. Get in the habit of making back-up copies of your working disks regularly, at the end
of each computer session, or even every half-hour or so during a long session where much data is
being entered.

It is also a good idea to produce hard-copy (paper) printouts of key data files as another form of
back-up.

Preface

Thank you in advance for purchasing this our third major release of the
Maranatha A compiler. Additions to this version include:

Packages
Subunits
Linking Loader
Separate Run-time Library
Relocatable Run-time modules
Exceptions
Shorter Run-time programs
Faster, more optimized programs
Upgraded to ANSI Standard Ada syntax (MIL-STD-1815A)
Membership Tests
Short-circuit conditionals
Reformatter

Maranatha A (Ada) User's Manual

Table of Contents Page -N

Preface 3

Table of Contents . .4

1.0 Introduction 5
1.1 Forward 5
1.2 Contents of the Distribution Disk 6 ,

2.0 Compiler Operation 7
2.1 Compile Time System Requirements 7 ;
2.2 Run Time System Requirements 7 ...-.
2.3 Invocation , 7 ,

2.3.1 Lexical Analyzer , f ,, «.
2.3.2 Parser ' .., ; ",'•,':. ;K • \ ' • - - • ; $ '. - . ' '"'.". . •
2.3.3 Optimizer '"''"" E 8 ^,
2.3.4 Code Generator 8 ^J

3.0 Linking Loader Operation 10
3.1 Invoking the Linker 10
3.2 Loader Switches . 10
3.3 Order of Elaboration 12

4.0 Refonnatter Operation 14
4.1 Refonnatter Invocation 14
4.2 Options 14
4.3 Examples of Reformatting 15 '

A. Error Messages 16

8. Selected Bibliography 29

C. Unimplemented ANSI Standard Ada 31

D. Format of Relocatable (.REL) files 32

E. Writing assembly language programs 33

4
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User' s Manual

1.0 Introduction

The User's Manual describes the Maranatha Software Systems implemenia-
tion of the Ada language for microcomputers in the CP/M operating system environ-
ment; i.e., how to compile, load and run an Ada program. While this manual does
describe what standard Ada constructs are not yet implemented in this release, it is not
intended to serve as a tutorial to the Ada programming language. Users are referred to
the bibliography section for tutorial and historic information on the subject. The
Language Reference Manual describes specifically what has been implemented and gives
some examples.

1.1 Forward

In 1975, the Department of Defense, plagued with ballooning software
development costs began a program to create a new language for all embedded military
software systems. Many other languages were evaluated and none were found that
could fill all of the DOD's rigid requirements; included in the languages tested were Pas-
cal, Algol, PL/I, Jovial, Fortran and Cobol. The new language was named Ada in honor
of Augusta Ada Byron, the first computer programmer.

Ada has many problems despite its backing by the U.S. Government and
years of language development behind it. Ada is one of the largest languages (in terms
of syntax) of any language yet developed; its sheer size makes it a language difficult to
implement, especially on a microcomputer. Some say Ada is too loose and inefficient for
the purpose for which it was created. The input/output facilities are extremely awk-
ward for formatted I/O. Even so, its strong support from the DoD, its accomplishment
of a recognized standard and the fact that it is a well-rounded language for use in sys-
tems programming and structured language instruction will make Ada the language of
the 1680's.

Maranatha Software Systems is dedicated to making our implementation one
of the most complete and usable Ada language systems for CP/M computers. This, the
third major release, contains most of the constructs which make A & usable language
system and stand out from other microcomputer languages such as Pascal and Basic.

5
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

1.2 Content* Of The Distribution Dbk

On the distribution disk you will find the following compiler tools:

ACOM
A2.COM
A3.COM
A4.COM
L.COM
PUTREL.COM
REFORMAT.COM

• A lexical analyzer (scanner)
• A syntactical/semantical analyzer (parser)
• A optimizer
• A 8080/8O code generator
• A Linking Loader
• Relocatable file printer
• the Ada source text reformatter

The following compiler programs are also required:

ADALIB.REL
ERRORS.TXT
INIT.REL

• The A Standard Library
• text file containing A error messages
• The initial start-up module

The following libraries and demonstration programs have been included in
source form, and need to be compiled before use:

ASCH.ADA
CALCADA
FACT.ADA
IOEXCEPT.ADA
MATHBODY.ADA
MATHLIB.ADA
PRIMES.ADA
QUEENS.ADA
SHELL .ADA
SORT.ADA
STRINGS.ADA
TERMIO.ADA
TERMBODY.ADA
TtLX.TBODY.ADA
TEXTIO.ADA
TOUPPER.ADA
TOWERS .ADA

. limited package with ASCII constants
• RPN calculator program
• function to compute n!
• The package IOJEXCEPTIONS
• Ada math library package body
• Ada library of math functions (used by CALC ADA)
• Ada benchmark program
• solves "Eight Queens" problem
• badly formatted program (demo for Reformatter)
. demonstration of three sorting techniques in Ada
• demonstrates Ada string manipulation capability
• Terminal i/o driver package specification
• Terminal i/o driver package body (Televideo 950)
• The package body TEXTJO
• The package specification TEXT_IO
• program that prints any text file in upper case
• solves "Towers of Hanoi" problem

6
Copyright <c) 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

2.0 Compiler Operation

2.1 Compile-Time System Requirements

The A compiler requires an 8080, 8085 or Z80 CPU running the CP/M
operating system. The four main compiler files (ACOM, A2.COM, A3.COM,
and A4.COM) should all be resident on the current disk, although source files may
exist on other disks. The A error file "ERRORS.TXT" should be with the main com-
piler files but is optional. If it is not on the same disk as the main compiler, only the er~
ror number will be printed, along with the offending line number (check Appendix A for
the error numbers and corresponding explanations). The compiler itself requires 50K of
transient program area. A 64K system is recommended, although small programs can
be compiled in as little as a 56K system.

For systems with extremely limited disk space, the four compiler passes can
be executed separately. Each pass will output an error when it is finished if the next
pass is not on the disk, but will leave the intermediate file (.TOKj JNT, or .OPT) in-
tact. Run the next pass with the intermediate file as an argument, Le.:

A>A2 TEST.TOK

2.2 Run-Time System Requirements

The code generator indicates the number of bytes of object code it has gen-
erated. The total program contains code generated by the main subprogram, packages
and subunits, plus various routines as needed from the A library ADALEB. Note that
the amount of "white space" (comments, blank lines, etc.) in the source code does not
affect the amount of actual coae produced, since Ada comments are filtered during pars-
ing and produce no run-time code. Variable storage is allocated within the stack which
is automatically set at the top of the transient program area (TPA) and is not included
in the above figure.

2.3 Compiler Invocation

To execute the A compiler type:

A <filename>[JU>A]

Examples:

B>A CALC

A>A B:TOWERSADA

A>B:A TEST ; This it invalid, the compiler will abort after the first past!

Note that the file extension "ADA" b automatically appended unless anoth-
er file extension has been provided by the user. The only compiler toggles presently
available are through pragmas and no compiler switches are available in the command
line.

7
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

2.3.1 Lexical Analyser (A.COM)

The first pass lexically analyzes the source text and divides it into lexical
chunks called tokens (see Figure 1) such as the Ada keywords, identifiers, special sym-
bob, etc. The output is placed into a ".TOR" file. The lexical analyzer is responsible
for processing all pragmas. This pass has its own set of error messages for lexical errors;
they are described in Appendix A.

""* *

2.3.2 Parser (A2.COM)

The stream of tokens in the ".TOK" file is then processed by the parser.
The parser is the workhorse of the compiler, checking for syntax and semantic errors. It
produces a ".INT* intermediate code file. The errors which may be produced by the
parser are luted in Appendix A The parser may have to read symbol tables generated
by other program units; these files have CP/M extensions of ".SYM."

2.3.3 Optimizer (A3.COM)

The intermediate code, which resembles the Forth language, is processed by
the optimizer. The optimizer searches through the code generated by the parser and at-
tempts to reduce redundant operations, eliminate unneeded code, and increase the speed
and efficiency of the resulting program. Normally, once the compiler has reached this
pass, they code is considered error-free, and no error messages should occur. However,
both the optimizer and the code generator contain code that checks the internal opera-
tion of the compiler to insure there are no internal errors. If a message such as "Inter-
nal compiler error" is printed, contact us. Note that the optimizer will not be executed
if the optimize pragma has been turned off.

2.3.4 Code Generator (A4.COM)

The file produced by the optimizer (".OPT*) is processed by the code gen-
erator to produce a relocatable object ".REL" file. The code generator converts the op-
timized intermediate code into machine code, attempting to make the best use of the
8080/8085/Z80 register set. The code generator may print a table overflow error if the
program is too large, in which case it will have to be broken down into smaller chunks.
The first pass of the code generator resolves all internal references and completes inter-
nal tables. The second pass actually outputs the object code and requires more time
than any of the other compiler phases.

8
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

Ada source program

ACOM
(lexical analysis)

lexical units (.TOK file)

Library unit symbol tables
(.SYM files)

A2.COM
(Syntactical analysis)

intermediate code (.INT file)

A3.COM
(Optimization)

optimized intermediate code
(.OPT files)

A4.COM
(Code Generation)

Relocatable Object
Module

(.REL file)

Figure 1.
A Compiler Operation

9
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

3.0 Linking Loader Operation

The Maranatha A compiler generates .REL files which are not executable.
To create an executable file, you need to invoke the Linking Loader and link the result-
ing ".REL" file with a number of other ".REL" files in a particular order to produce an
executable ".COM" object file.

i -

3.1 Invoking the Loader

To invoke the loader, type "L" followed by a carriage return. The linking
loader will print a sign-on message, then the prompt "*". Commands to the loader con-
sist of strings of filenames and switches separated by commas; i.e.:

*filename/2\vitch,filename,filename/switch,/switch etc.

When a filename is used, that file is loaded from the disk into memory (a de- /
fault extension of .REL is assumed). The file can optionally be searched (as in ADALDB)
by using the /S switch.

3.2 Loader Switches

There are several switches available to specify actions which affect the load-
ing process:

/E - Exit the Linker and return to CP/M. If the /N switch has been
used, the .COM file will be written to the disk before exit.

/M - List global data map of defined and undefined globals.

/N - If < filename >/N is entered, the program will be saved on the disk
with the specified name (with a default extension of .COM if no
extension has been provided) when the Linker is exited.

th t

/R - Reset the Linker to its initial state. "̂

/S - If <filename>/S is entered, the file specified by <filename> will
be searched, loading only those modules which are currently
undefined.

/U - List undefined globals, origin and end of the program.

10
Copyright © 1984, Maranatha Software Systems

%T^^?.̂ gT^5^^ y.̂ -'S^^y^ T^'P^-'V-^^iV^n^^-T''" •

Maranatha A (Ada) User' s Manual

Relocatable Object
Modules

(.REL files)

^
t

L.COM
(Linking Loader)

\
Executable Object

Module
(.COM file)

Figure 2.
Linking Loader Operation

11
Copyright <c) 1984, Maranatha Software Systems

Maranatha A (Ada) User' s Manual

3.3 Order of Elaboration

The order in which A relocatable modules are loaded is all-important. Pack-
ages must be elaborated before they are used or undesirable side-effects will occur. For
the simplest program, which is not dependent on any packages, the following link se-
quence can be used:

*IMT, <program> ,ADALIB/S

* < program > /N/E

INIT must always be the first module loaded. It is the kernel Ada program
which sets up the stack and initializes the environment for all Ada programs. ADAIJB
must always be the last link item loaded (or searched). It contains all of the run-time
math routines, relational subroutines, stack and heap manipulation routines, etc. Note
that all ADAIJB modules begin with a dollar sign; i.e., $IML (integer multiply).

••N
In a more complicated example, let's compile and link the demo program J

CALC. Since CALC requires four packages (TEXTJO, TERM JO, ASCII, and
MATHJjIB), they must be compiled first. The following tree shows the dependency
between the units; the names in parentheses indicate the CP/M file name corresponding
to the package body of a particular package:

CALC

TERM IO
(TERMBODY)

ASCH MATHLffi
(MATHBODY)

TEXTJO
(TEXTBODY)

KLEXCEPTIONS
This order requires us to compile IO EXCEPTIONS first, then TEXT IO,

and then TERMJO, ASCII, and MATHJJB in~any order (the package bodies can be
compiled after all of the specifications have been compiled). CALC is compiled last. To
link the entire program together, the following order should be used:

*INIT
*IOEXCEPT
*TEXTIO,TEXTBODY

. *TERiVnO,TERMBODY,MATHLIB,MATHBODY
*CALC
*ADALffi/S
*CALC/N/E

12
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

Why this order? INIT must always be loaded first. TEXTJO cannot be
loaded next because it is dependent on the package IOJEXCEPTIONS. Since
IO_EXCEPTIONS does not depend on another package, it can be loaded. Packages
that do not depend on other packages can be loaded in any order. Since the package
TEXTJO has two parts, the specification and the body, the specification TEXTIO must
be loaded first, because the body depends on it. Next the package body TEXTBODY
can be loaded. Next, the package specifications TERM JO, ASCII, and MATHJLEB can
be loaded in any order, followed by their respective package bodies (ASCII has no pack-
age body). Since all of the required packages have been loaded, the main subprogram
CALC can be loaded. As of this release, a subprogram that is a library unit is automat-
ically considered the main program. Lastly, the A library (ADALIB) is searched for
undefined externals and the .COM file created. Observe carefully the undefined symbols
during loading to insure the correct loading sequence and that all required packages
have been loaded. The only undefined globals that should appear are ADALIB modules
(begin with a dollar sign), and labels belonging to as yet unlinked sub units. If an
undefined global appears that belongs to a package, the loading order is incorrect and
the entire linking process must be done over. Such undefined globals always begin with
the name of the package.

In this particular case, the package specification ASCII does not actually
have to be loaded, because it contains extraneous code. Package specifications which
contain only subprogram declarations or constant declarations (where the initialization
expression is a single primary) do not need to be loaded.

Subunits may be loaded after everything else has been loaded, but before
ADALIB has been searched. If a subunit has been declared, but never used, the Linker
does not require that it be loaded.

13
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

4.0 Reformatter

The reformatter is a language design tool that is similar to other "pretty-
printer" utilities. It takes as input any Ada program, and produces as output the same
program re-justified, following the informal indentation rules presented in the MIL-
STD-1815A-

1) Reserved words appear in lower case , t

2) Identifiers appear in upper case
* j

3) Indentation follows examples presented in Ada LRM

The reformatter can be an invaluable tool to point out hard-to-find syntax
errors and make plain embedded "nesting" mistakes which may cause the compiler to
print an erroneous error message in the wrong place. The Ada program does not have
to be syntactically correct, although an incorrect program may cause some unexpected
results.

/• *

4.1 Invocation . . ,
' V * "•" f

To invoke the reformatter, type:

REFORMAT sourceJile_name[ADA] [Soptionsl

Examples: . , |, i '
A>reformat sqrt.ada

B> reformat c:towers $t2

The default file extension is "ADA" and need not be included. The last ex-
ample demonstrates the use of one of the reformatter options.

4.2 Options

To use a reformatter option, use the dollar ($) sign following the reformatter
invocation, followed by any of the following:

Tn - Define n as tab length (default = 4)
For indentation purposes (Le, between begin-end), this
option defines the number of spaces to be used for tabs. .

N - Print nest level
Instructs reformatter to print nest level at the beginning
of each line of source text. A valid Ada program will
have a nest level of "1" for the last line of text.

14
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User' s Manual

4.3 Examples of Reformatting

The following valid Ada program appears on the distribution disk as
SHELL.ADA (not meant to be directly compiled). This program is an actual portion of
Ada source code, and is "included" in the demonstration program SORT ADA with the
INCLUDE pragma:

A> type shell.ada

procedure shell_sort(a : in out sort_array) is done : boolean; jump : integer;
begin jump := a'length; while jump > a'first loop jump := jump/2; loop
done := true; for j in a'first..a'length-jump loop declare
i : integer := j-f-jump; begin if a(j)>a(i) then swap(a(j),a(i)); done := false;
end if; end; end loop; exit when done; end loop; end loop; end shell_sort;

Now, if you are prone to write programs in this way, you probably deserve
what you get. At any rate, it would obviously be difficult to find the "mis-matched
end" types of errors in a program that is so badly formatted. The Refonnatter can
make plain the begin-end relationships:

A>reformat shell.ada

procedure SHELL SORT(A : in out SORT ARRAY) is
DONE : BOOLEAN;
JUMP : INTEGER;

begin
JUMP := A'LENGTH;
while JUMP>ATIRST loop

JUMP := JUMP/2;
loop

DONE := TRUE;
for J in ATIRST.A'LENGTH-JUMP loop

declare
I: INTEGER := J+JUMP;

begin
if A(J)>A(I) then

SWAP(A(JIA(I));
DONE := FALSE;

end if;
end;

end loop;
exit when DONE;

end loop;
end loop;

end SHELL.SORT;

The output of the Reformatter clearly shows the logical flow of the program,
and the "end" constructs are easily matched up with their identically indented counter-
parts. Errors in control flow will become much more evident.

15
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

Appendix A
Error Messages -

Lexical analyzer error messages:

Invalid digit -
A digit '0'..'9' was expected in a numeric literal.

Letter or digit expected following '_' -
Identifiers cannot end with an underscore.

Invalid character -
A character was read that does not conform to the basic graphic
character set. A likely cause of this error is text produced by
a word processing program that sets the 8th bit of a character.

Digit expected following underscore -
Numbers cannot end with an underscore.

; ' . - • . - . . • • --. • • . • .

Single quote expected following character literal -
A character literal must be followed by a quote.

Pragma identifier expected -
Self-explanatory.

Include file name expected -
A file name is required for the include pragma.

Left parenthesis expected - J

Self-explanatory. .

Unable to open include f i le - • • ? , , . . ' . - • ! • -
Self-explanatory.

Identifier expected -
Self-explanatory.

Illegal pragma argument-
Self-explanatory. 1 '• - •

• • ? ' . ,
Right parenthesis expected - ..

Setf-explanatory.

Semicolon expected - o
Self-explanatory. •

18
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User' s Manual

The syntax/semantic errors are contained in the file "ERRORS.TXT." If
this file is not present on the same disk as the compiler, only the offending line number
and error number will be printed.

2. Intermediate file not found -

This error should not normally appear; it means the compiler was unable to
Cod the output of the previous pass. If you invoked the parser directly with a tokenized
file (".TOK"), insure the name was correct or that the file actually existed.

3. Discrete type__mark expected for discrete..range -

When the form "type_mark [range..constraint]" is used for a discrete_range,
the type_mark must be discrete; that is, an enumeration or integer type.

4. Label already exists -

You have tried to re-define a label which already exists in the current se-
quence of statements.

5. "»" Expected -

Self-explanatory.

6. Left parenthesis expected -

Self-explanatory.

7. Record must have at least one component -

Self-explanatory.

8. Right parenthesis expected -

Self-explanatory.

9. Semicolon expected -

Self- explanatory.

10. Subtype_indication expected -

Self-explanatory.

11. Package not visible -

For a use_clause, the given package not has not been used in a with_clause
or does not appear in a visible declarative part.

17
Copyright © 1984, Maranatha'Software Systems

Maranatha A (Ada) User's Manual

12. Procedure or function expected -

A subprogram must begin with one of these keywords. You probably have
either misspelled the keyword, or have submitted a non-Ada program for compilation.

13. "Is" expected -

Self-explanatory.

14. "End" expected -

Self-explanatory.

15. Designator or semicolon expected -

Following the final "end" of a subprogram, the subprogram designator or a
terminating semicolon should be used.

16. No return statement found within subprogram body -

Every function must have at least one return statement.

17. Mis-match of begin and end designators -

The subprogram designator used after the terminating "end" does not match
the initial designator. If you are sure it does, insure there are the correct number of
"ends" within the program. The Reformatter may help.

18. Ellipsis (..) expected -

Self-explanatory.
> \ < •

19. Constraint error -

A range_constraint can only be used on an enumerated or integer type.

20. Not enough index constraints -

When constraining an array type, all of the indices must be constrained. In-
sure that an index_constraint exists for each index.

21. Index type mismatch -

The type of the index_constraint did not match the type of the correspond-
ing index of the array type you are constraining.

1 . •
22. Illegal index constraint for this type -

You cannot constrain an array type that has already been constrained.

18
Copyright <c) 1984, Maranatha Software Systems

\
I

Maranatha A (Ada) User's Manual

23. Too many index constraints (5 maximum) -

Maranatha A allows for a maximum of 5 indices.

24. Comma or colon expected -

Self-explanatory.

25. Too many identifiers in identifier list -

You have tried to do too much at once by using too many identifiers in the
same declaration. Break the declaration into two or more separate declarations.

26. Identifier expected -

Self-explanatory.

27. Undeclared type -

You have tried to use a type_mark which has not been declared.

28. Expression type mismatch -

The type of a processed expression did not match the required type.

29. Two different logical operators used within expression -

You may not mix logical operators. Use parentheses to resolve ambiguities.

30. Boolean relation expected -

Logical operators can only work on boolean operands.

31. Simple expression type mismatch in relation -

Simple expressions used as operands in a relation must have the same type.

32. Invalid relational operator, use "/==" instead -

You are probably a Pascal programmer. "<>" is the Pascal symbol for ine-
quality, Ada uses "/=". The "<>" is called a "box" in Ada and has different uses.

33. Invalid relational operator for this type -

The relational operator is not defined for the operand type used.

34. Invalid unary operator for this type -

The unary operator is not defined for the operand type used.

19
Copyright © 1984, Maranatha- Software Systems

'

Maranatha A (Ada) User's Manual

35. Boolean term expected following unary NOT - . .

Following the unary NOT operator, the type of the term must be boolean.

36. Invalid adding operator for this type -

The adding operator is not defined for the operand type used.

37. Invalid operands for concatenation -

Self-explanatory.

38. Invalid multiplying operator for this type -

The multiplying operator is not defined for the operand type used.

39. Integer factors expected for MOD and REM -

MOD and REM are defined only for integer factors. ^

40. Invalid type for exponentiation -

The " **" operator can only be used on integer and floating point numbers.

41. Invalid primary -

A primary must be an integer, real, character, or string constant, begin with
a left parenthesis, or start with a non-keyword identifier. Otherwise it is invalid.

42. Integer constant illegally used - •

The integer constant does not match the existing expression type.

43. Floating point constant illegally used -

The floating point constant does not match the existing expression type. \

44. String constant illegally used -

The string constant does not match the existing expression type.

45. Character constant illegally used -

The character constant does not match the existing expression type.

46. Name type mismatch -

A name processed in a primary must be a function, variable or constant.

20
Copyright (c) 1984, Maranatha Software Systems

- 3 - . , . .

Maranatha A (Ada) User's Manual

47. Invalid identifier used in name processing -

The first identifier in a name must be a variable, constant, type_mark, or
function name.

48. Left parenthesis or single quote expected following type name -

Following a type_mark used in a name, a left parenthesis (indicating
type_conversion) or a single quote (indicating qualified expression) must be used.

49. Left parenthesis or identifier expected -

Self-explanatory.

50. Enumerated literal type mismatch -

The enumerated literal used did not match the existing expression type.

51. Undeclared identifier •

Self-explanatory.

52. Invalid type conversion -

Conversion to the type_mark given in the type conversion is not allowed or
is not defined.

53. Function not found -

A function used in a primary was not declared. Check the designator spel-
ling, the number and types of parameters.

54. Comma or right parenthesis expected -

Self-explanatory.

55. Illegal attribute -

The attribute identifier used is not implemented or is not defined. See Ap-
pendix A for a list of implemented attributes and how to use them.

56. Invalid attribute -

The attribute is not defined for the object it is used against. See Appendix
A

57. Invalid left parenthesis -

Self-explanatory.

21
Copyright <c) 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

58. Too many indices -

You have used too many indices in an indexed component. Check the de-
claration of the array.

59. Comma or left parenthesis expected -

Self-explanatory.

60. Comma expected, not enough indices -

You have not indexed the array sufficiently. Check the array declaration.

61. Invalid selected component •

You cannot select the component of the record given. Either the object is
not a record or the selected component was not declared in the record type declaration.

62. Designator expected -

Self-explanatory.

63. Invalid binding modes for function parameters -

Only "IN" mode parameters are allowed for functions.

64. Subtype indication expected in function specification -

A return clause is expected to declare the type of a function.

65. Invalid subtype indication found in procedure specification -

Procedures do not return values and do not have return clauses.

66. Right parenthesis or semicolon expected -

Self-explanatory.

67. Bad order in declarative part -

In the declarative_part, declarative_items precede
representation^specifications, which are then followed by program components. You
have mixed the order of the declarative_part.

68. Invalid declarative item -

A declarative item begins with the reserved word "TYPE" or "SUBTYPE",
or a non-keyword identifier which begins an object_declaration.

22
Copyright © 1984, Maranatha Software Systems

. , •; , •** -~ •>

Maranatha A (Ada) User's Manual

69. Semicolon or ":=" expected -

Self-explanatory.

70. Identifier expected -

Self-explanatory.

71. Invalid type definition -

The type_definition used has not yet been implemented or is not defined.

72. Identifier expected for enumeration literal -

Self-explanatory.

73. Index expected -

In an array_type_definition, an index cannot be followed by a dbcrete_range.
The array indices must all be unconstrained.

74. Discrete range expected -

In an array_type_definition, when an index_constraint is used, an index can-
not be substituted for a discrete_range. All of the indices must be constrained.

75. Illegal goto -

The goto statement illegally tried to goto this label. See section 5.9 for rules
regarding gcto statements.

76. "OP expected -

Self-explanatory.

77. "Record" expected -

Self-explanatory.

78. Recursive record type definition not allowed -

A component of a record_type_definition cannot be the record type itself.

79. Statement expected -

In every sequence_of_statements, at least one statement must appear. If no
action is to be performed, use the null statement.

80. Syntax error -

You have used an unrecognizable token to begin a statement.

23
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User' s Manual

81. Illegal function call as statement -

Only procedure calls may be used as statements; functions return values and
are used in expressions.

82. Block or loop expected following block/loop identifier -

A block/loop identifier was used (identifier.) without a block or loop state-
ment.

83. Invalid assignment to constant -

Assignments to constants are not allowed. Loop identifiers are considered
constants, as are "IN" mode parameters.

84. Assignment operator expected -

Self-explanatory.

85. "Then" expected -

Self-explanatory.

88. "End if expected -

Self-explanatory.

87. "End loop" expected -

Self-explanatory.

88. Mis-match of begin and end loop identifier -

The loop identifier given following the terminating end does not match the
initial label.

89. Loop identifier or semicolon expected -

Self-explanatory.

00. Loop identifier not declared for this loop statement -

A loop identifier was given following the terminating end, but none was pro-
vided at the start of the loop.

91. Loop identifier expected -

The loop identifier given at the start of the loop statement must appear fol-
lowing the terminating end.

24
Copyright © 1984, Maranatha Software Systems

* -* r~* - '

Maranatha A (Ada) User's Manual

92. "Loop"5 expected -

Self-explanatory.

93. "In" expected -

Self-explanatory.

94. "Begin" expected -

Self-explanatory.

95. Block name expected -

The block identifier given at the start of the block must appear following the
terminating end.

96. Mis-match of begin and end block identifier -

The block identifier given following the terminating end does not match the
initial label.

97. Loop identifier, "when*", or semicolon expected -

The token following the keyword "exit" is invalid.

98. '"When" or semicolon expected -

The token following "exit loop.Jdentifier" is invalid.

99. No enclosing loop for exit statement -

An exit statement was used without an enclosing loop statement.

100. Loop identifier not found -

The loop identifier given in the exit statement was not found.

101. Labels referenced but not declared -

In the sequence of statements of the preceding subprogram body, a goto
statement referenced a label that was not declared (or not visible).

102. Return expression expected for function -

Aa expression must follow the return statement used within a function which
has the type of the function.

103. Return expression not expected for procedure -

An expression was illegally used for a return statement used within a pro-
cedure, which does not return a value.

25
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

104. Discrete type expected for case expression -

The type of the expression in a case statement must be discrete; that is,
enumerated or integer.

105. "=>" or "|" expected -

Self-explanatory.

106. "End case" expected - " ~

Self-explanatory.

107. Invalid "when" found after choice "others" used -

You may not use any more choices in a case statement after the choice oth-
ers has been used; it must be the last choice in the case statement construct.

108. Procedure not found -

" Self-explanatory.

109. Semicolon or left parenthesis expected -

Self-explanatory.

110. GET undefined for this type -

Self-explanatory.

111. PUT undefined for this type -

Self-explanatory.

112. READ undefined for this type -

Self-explanatory.

113. Comma expected -

•Self-explanatory.

114. WRITE undefined for this type -

Self-explanatory. x

115. ABS undefined for this type -

Self-explanatory.

26
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

116. Unexpected end of file -

The compiler unexpectedly ran out of source text. Insure each procedure,
function, and compound statement have a proper terminating end. The Reform atter
may help to find such errors.

117. Fatal error - compilation aborted -

The compiler is unable to continue at this point. Correct the offending
errors) and re-compile.

118. Incomplete type definition for declaration -

An unconstrained array cannot be used in an object declaration; it must be
constrained first.

110. Illegal actual parameter modes in procedure call -

The modes of the actual parameters did not match the binding modes of the
formal parameters.

120. Symbol table overflow •

You have overflowed the symbol table. You need to get more memory,
reduce the number of declarations in your program, or go buy a CRAY-1.

121. A3.COM (Optimizer) not found -

The optimizer was not found on the current disk. If it was aceidently
erased, you can continue compilation by using a backup copy and typing "ADAS
progname!NT."

122. Illegal prior reference to this label -

A goto statement used earlier in the program used this label illegally. See
section 5.9 for rules regarding goto's.

123. "Use" expected -

Self-explanatory.

124. "AT" expected •

Self-explanatory.

125. Integer literal expected -

Self-explanatory.

127. "OTHERS" must be its^only choice -

• In case statements or in an exception handler, other choices may not be used
in conjunction with OTHERS. It must be used alone.

27
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

128. Exception name expected -

Self-explanatory.

129. Package body is not a basic declarative item •

A package body may not appear in a package specification.

130. Invalid address specification -

Address specifications can only be used with variables and constants.

131. Subunit not found -

Self-explanatory. *

132. Subprogram body not found for subprogram declaration(s) -

Subprogram body or bodies were not found for corresponding subprogram
declarations in this declarative part (or package specification if in a package body).

133. Package specification required before package body -

Package specifications must be compiled before package bodies.

134. Undefined package body or bodies hi declarative part -

One or more package specifications exist which require package bodies to
fulfill subprogram declarations. The package bodies were not found.

135. Package bodies may not be separate. •

Self-explanatory.

136. Symbol table for ancestor unit not found -

The library unit of a subunit must be compiled before the subunit so its
symbol table file may be accessed. Either the unit has not been compiled, or the symbol
table file has been misplaced.

28
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

Appendix B
Selected Bibliography

The following is a list of selected textbooks and articles on Ada. While this
list is for end-user information only and appearance in the list does not necessarily con-
stitute endorsement, we strongly recommend Booch's book, "Software Engineering with
Ada."

Barnes, J.G.P.
Programming in Ada
Addkon-Wesley, 1982
(ISBN 0-201-13793-3, hardback)
(ISBN 0-201-13793-5, paperback)

Booch, Grady
Software Engineering with Ada
Benjamin/Cummings, 1983
(ISBN 0-8053-0600-5, paperback)

"Computer" magazine
June 1981
(Issue devoted to Ada)

Downes, Valerie A. and Goldsack, Stephen
Programming Embedded Systems with Ada
(both of the University of London)
400 pp., illustrated (April 1982)
Price: appr. $16.95

Freedman, Roy S.
Programming Concepts with the Ada Language
Petrocelli Books, Inc.
1101 State Road, Princeton, NJ 08540
Price: $12.00
(ISBN 089433-190-6)

Gehani, Narain H.
Ada: An Advanced Introduction
Prentice-Hall, 1983
Price: $18.95

Habermann, A. N., and Perry, DeWayne E.
Ada for Experienced Programmers
Addison-Wesley, 1983
(ISBN 0-201-11481-X, paperback)

Hibbard, P.; Hisgen, A.; Rosenberg, JL; Shaw, M. and Sherman, M.
Studies in Ada Style
Springer-Veriag, 1981
$11.20
(ISBN 0-387-90628-2)

29
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

Katzan, Harry Jr.
Invitation to Ada & Ada Reference Manual (July 1980)
Petrocelli Books, New York, 1982
(ISBN 089433-132-9)

Ledgar, Henry
Ada: An Introduction
Springer-Verlag
$12.95

Lewis, William E.
Problem Solving Principles for Ada Programmers: Applied Logic,
Psychology, and Grit
Mail Request:
Dept. #CD 82
Hayden Book Company, Inc.
50 Essex St. Rochelle Park, NJ 07662 >
(Ada version, request #5211) *-s
Price:. $9.95
(Toll free: 1-800-631-0856)

Mayoh, Brian
Problem Solving with Ada
John Wiley & Sons, Ltd., 1982
(ISBN 0-471-10025-0)

Pyle, Ian C.
The Ada Programming Language
Prentice-Hall International, 1981
(ISBN 0-13-003921-7)

Stratford-Collins, Michael J.
Ada A Programmer's Conversion Course
John Wiley & Sons, New York, 1982
(ISBN 0-85312-250-4)

Wegner, Peter
Programming with Ada: An Introduction by Means of Graduated Examples
Prentice-Hall, January 1980
(ISBN 0-13-73-0697-0)

Wiener, Richard and Sincovec, Richard
Programming in Ada
John Wiley & Sons, New York, 1983
(ISBN 0-471-87089-7, hardback)

Young, S.J.
An Introduction to Ada
Ellis Horwood, Chichester, 1983
(ISBN 0-85312-535-X, paperback)

30
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

Appendix C
Unimplemented ANSI Standard Ada

Currently, Maranatha A fully implements 63% of the MIL-STD-1815A
language, partially implementing another 1%, more than any other Ada compiler avail-
able for CP/M based microcomputers. The unimplemented syntax is broken down as
follows:

10% - Generics

9% - Tasking

3% - Representation Specifications

3% - Variant Records and Discriminants

3% - Floating/fixed point implementation

2% - Access types

The remaining catagories each total 1% or less and include renaming de-
clarations, aggregates, operator overloading, deferred constant declarations, private type
declarations and slices.

These figures are based on the number of the Backus-Naur productions of
the language that have been implemented. There are 342 such productions in standard
Ada; Maranatha A fully implements 215 and partially implements 4. In comparison,
Unix (tm) V7 "C" has 166 total productions, most standard Pascal implementations
have about 100, and Modula-2 has 82. Appendix E of the Language Reference Manual
mirrors Appendix E of the MEL-STD-1815A; compare the two for yourself.

31
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

Appendix D
Format of Relocatable (.REL) files

The relocatable modules produced by the Maranatha A compiler are similar
but not identical to the Microsoft relocatable format. Differences between the two are:

1) The Maranatha Linker cannot accept all of the link items introduced in
the full relocatable format, including: C>

item 1 - Select COMMON block
item 3 - Request library search
item 4 - Extension link items
item 5 - Define COMMON size
item 8 - External - offset
item 9 - External + offset
item 12 - Chain address

N
\

2) For link items requiring a "B-field", names with 1..7 characters are as the ^
standard; however, since very long names may be required by the nature of Ada pro-
grams, long identifiers are used by declaring the "zzz" field to be zero (0), followed by
the ASCII characters of the symbol and terminated by 16#FF#.

In spite of these differences, the format is very close. In fact, if your Ada
program has a short program name and does not depend on any packages with long
names, it is entirely possible to use the Microsoft or Digital Research linking loaders.
(See note in Appendix E about using assembly language routines)

32
Copyright (c) 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

Appendix E
Writing Assembly Language Programs

Using assembly language programs with Maranatha A can best be demon-
strated by example. Given the following program:

procedure t is
y : integer;
function inp(port : integer) return integer is separate;

begin
loop

get(y);
put(inp(y));

end loop;
end t;

If rinp" is to be an assembly language program which returns the value of
the input port specified by the parameter "port", a suitable assembly language program
would appear as follows.

Unfortunately, this method requires that the program name and function name have a
combined length of only 4 or 5 characters. This is because standard CP/M assemblers
only allow 6 or 7 characters for labels, and the A compiler adds two characters to create
special labels for these routines. This will be remedied in a future release, probably by
implementing the code statement.

33
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

; function inp(port : integer) return integer,
; begin
; return m port;
; end inp;

'; ROM-able code to fetch value from input port,

public t.inp,t.mp?,t.inp$

extra $rtp,$base

t.inp:
Ihld
Ixi
dad
mov
inx
mov
xchg
mov h,m

Sbase
d,-6
d
e,m
h
d,m

start of routine

fetch pointer to port number

; fetch port number

; construct "mini-routine" on stack: IN <port>; RET

Ixi d,OOC9H
push d
mvi 1,ODBH
push h

h,0
sp
d,inpl

Ixi
dad
Ixi
push d
pchl

inpl: Ihld $base
Ixi d,4
dad d
mov m,a
inx h
mvi m,0

; return from function

t.inp?:
mvi a,l
call $rtp

F

t.inpS:

_2

end

construct RET; NOP

construct IN <port>; !

compute calling address of mini-routine

create return address from mini-routine
"call" mini-routine

hi -> return value

stuff return value
into function return value location

exception handler address (no exceptions)

return from the function

<name>$ contains the 2's complement of the
amount of storage needed.
storage space required (one parameter)

34
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) User's Manual

We must first declare the symbols used externally in the program. $RTP is
a routine in the A standard library (ADALIB.REL) which accomplishes a return from a
procedure, recovering stack space, resetting links, etc. $BASE is a global variable that
points to the static link in the current subprogram's activation record, and is used as an
offset to all parameters and variables.

Using SBASE, we find the pointed) the input port by subtracting an onset
corresponding to the parameter, using the formula:

offset = -4 - (2 * pointer #)

Scalar values have one pointer; composite values (arrays and records) have
two pointers, one to data and the other to & special component which describes the
data. To compute the pointer number, you must add up the number of pointers re-
quired by any previous parameters. Since our routine only has one scalar parameter, it
will be the first pointer.

After we have the pointer to the parameter, we can fetch the port number
into the H register (most significant byte ignored).

The next few lines use a programming trick to create ROM-able yet self-
modifying code. The code to input from the port number given in the H register is
stored onto the stack and called like a subroutine. An artificial return address is also
stored on the stack. Upon return, the value from the input port is in the A register.

After fetching the contents of the input port, it is stored into the return
value of the function. This address is computed by adding 4 to the value of $BASE.
You must ALWAYS return from a subprogram by using the $RTP instruction. Using
a "ret" will cause your program to crash.

Three external symbols are provided by the routine. All begin with the
name of the procedure in selected form: <parent_name>.<subunitjiame>. This
form by itself forms the label for the program. The name followed by & question mark
indicates the exception handler for the program; for assembly language programs this
should be used immediately before the exit sequence. The name followed by a dollar
sign indicates a label pointing to the two's complement of the amount of storage re-
quired for parameters and local variables. For assembly language programs, only the
amount of storage space for parameters need be included here, since there will be no lo-
cal variable lookup.

Note: when writing assembly language routines, be careful not to use constructs that
will create link items unacceptable to the Linking Loader, such as "external plus offset"
operands. The Linker will report an error message when it finds such a construct. See
Appendh, i) for a list of link items that cannot be processed.

Example:

Ixi h,$base-f4 ; invalid, external + offset

35
Copyright (c) 1684, Maranatha Software Systems

J

A
(Ada) Compiler

Language Reference Manual
Release 3.00

Copyright © 1984 by
Maranatha Software Systems

and

SuperSoft Inc.

Ada is a trademark of the Department of Defense (Ada Joint Program Office)

Copyright © 1984
Maranatha Software Systems

All Rights Reserved Worldwide

of this publication or the A compiler may be reproduced, transmit-
ted or translarea into any language, in any form or by any means, electronic, mechani-
cal, optical, chemical, manual or otherwise, in whole or in part without the prior consent
of SuperSoft, Inc. or Maranatha Software Systems. The software computer program(s)
described in this manual are furnished to the purchaser under a license for use on a sin-
gle computer system, and may not be used in any other manner, except as may other-
wise be provided in writing by SuperSoft, Inc. or Maranatha Software Systems.

Disclaimer

SuperSoft, Inc. and Maranatha Software Systems make no representations or
warranties with respect to the contents herein. While every precaution has been taken
in the preparation of this manual, no responsibility is assumed for errors or omissions.
Further, no liability is assumed for damages resulting from the use of this product. Su-
perSoft, Inc. and Maranatha Software Systems reserve the right to revise this publica-
tion and to make changes from time to time without obligation to notify any person of
such revision or changes.

--•?•?•

. . , . .

Maranatha A (Ada) Language Reference Manual

Table of Contents Page

1.0 Introduction 6

2.0 Lexical Elements 7
2.1 Character Set 7
2.2 Elements, Separators, and Delimiters 8
2.3 Identifiers 9
2.4 Numeric Literals 9

2.4.1 Decimal Literals 9
2.4.2 Based Literals 10

2.5 Character Literals 10
2.6 String Literals 11
2.7 Comments 11
2.8 Pragmas 12
2.9 Reserved Words 13
2.10 Allowable Replacements of Characters 13

3.0 Declarations and Types 14
3.1 Declarations 14
3.2 Objects and Named Numbers 15

3.2.1 Object Declarations 15
3.3 Types and Subtypes 16

3.3.1 Type Declarations 16
3.3.2 Subtype Declarations 17
3.3.3 Classification of Operations 17

3.4 Derived Types 18
3.5 Scalar Types 18

3.5.1 Enumeration Types 19
3.5.2 Character Types 19
3.5.3 Boolean Types 19
3.5.4 Integer Types 20
3.5.5 Operations of Discrete Types 20
3.5.6 Real Types 21
3.5.7 Floating Point Types 21
3.5.8 Operations of Floating Point Types 21

3.6 Array Types 22
3.6.1 Index Constraints and Discrete Ranges 23
3.6.2 Operations of Array Types 23
3.6.3 The Type String 23

3.7 Record Types 24
3.7.3 Variant Parts 24
3.7.4 Operations of Record Types 24

3.9 Declarative Parts 25

3
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

4.0 Names and Expressions - 26
4.1 Names 26

4.1.1 Indexed Components 26
4.1.3 Selected Components 27
4.1.4 Attributes 27

4.2 Literals 27
4.4 Expressions 28
4.5 Operators and Expression Evaluation 28

4.5.1 Logical Operators and
Short-Circuit Control Forms 29

4.5.2 Relational Operators and Membership Tests 29
4.5.3 Binary Adding Operators 29
4.5.4 Unary Adding Operators 29
4.5.5 Multiplying Operators 2t|.
4.5.6 Highest Precedence Operators 30

4.6 Type Conversions 34
4.7 Qualified Expressions 30

5.0 Statements 31
5.1 Simple and Compound Statements

- Sequences of Statements 31
5.2 Assignment Statement 31

5.2.1 Array Assignments 31
5.3 If Statements 32
5.4 Case Statements 33
5.5 Loop Statements 34
5.6 Block Statements 36
5.7 Exit Statements 37
5.3 Return Statements 37
5.9 Goto Statements 37

6.0 Subprograms 38
6.1 Subprogram Declarations 38
6.2 Formal Parameter Modes 38
6.3 Subprogram Bodies 39

8.3.1 Conformance Rules ' 39
6.4 Subprogram Calls 39

6.4.1 Parameter Associations 40
6.5 Function Subprograms 40
6.6 Parameter and Result Type Profile •

Overloading of Subprograms 40

7.0 Packages 41
7.1 Package Structure 41
7.2 Package Specifications and Declarations 41
7.3 Package Bodies 42

8.0 Visibility Rules 43
8.1 Declarative Region 43
8.2 Scope of Declarations 43
8.3 Visibility 44
8.4 Use Clauses 45
8.6 The Package Standard 45
8.7 The Context of Overload Resolution 45

4
Copyright © 1984, Maranatha Software Systems

Maranatha A (Ada) Language Reference Manual

10.0 Program Structure and Compilation Issues 46
10.1 Compilation Units - Library Units 46

10.1.1 Context Clauses - With Clauses 46
10.2 Subunits of Compilation Units 46
10.3 Order of Compilation 47
10.4 The Program Library 47
10.5 Elaboration of Library Units 47
10.6 Program Optimization 47

11.0 Exceptions 48
11.1 Exception Declarations 48
11.2 Exception Handlers 48
11.3 Raise Statements 49
11.4 Exception Handling 49

11.4.1 Exceptions Raised During
the Execution of Statements 49

11.4.2 Exceptions Raised During
the Elaboration of Declarations 50

13.0 Representation Clauses and Implementation-Dependent
Features 51
13.1 Representation Clauses 51
13.5 Address Clauses 51

14.0 Input-Output 52
14.1 External Files and File Objects 52"
14.2 Sequential and Direct Files 52

14.2.1 File Management 53
14.3 Text Input-Output 55

14.3.4 Operations on Columns, Lines, and Pages 55
14.3.5 Get and Put Procedures 57
14.3.6 Input-Output of Characters and Strings 58
14.3.7 Input-Output for Integer Types 60
14.3.8 Input-Output for Real Types 61
14.3.10 Specification of the Package Text_IO 62

14.4 Exceptions in Input-Output 65
14.5 Specification of the Package lOJExceptions 65

Annexes

A. Predefined Language Attributes 66

B. Predefined Language Pragmas 68

C. Predefined Language Environment 69

Appendices

D. Glossary 72

E. Syntax Summary 75

F. Implementation Dependent Characteristics 85

5
Copyright © 1984, Maranatha Software Systems

