Programmer’s Utilities Guide

For the
CP/M® Family of
Operating Systems

10
DIGITAL
RESEARCH"

Programmer’s Utilities Guide

For the
CP/M® Family of
Operating Systems

COPYRIGHT

Copyright © 1982 by Digital Research. All rights reserved. No part of this publica-
tion may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the
prior written permission of Digital Research, Post Office Box 579, Pacific Grove,
California, 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted permission
to include the example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Digital Research reserves the right to revise this
publication and to make changes from time to time in the content hereof without
obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research. ASM, DDT, LIB-80, LINK-80,
MAC, MP/M 11, PL/I-80, RMAC, and SID are trademarks of Digital Research. XREF
is a utility of Digital Research. Intel is a registered trademark of Intel Corporation.
Microsoft is a registered trademark of Microsoft Corporation. Z80 is a registered
trademark of Zilog, Inc.

The Programmer’s Utilities Guide for the CP/M Family of Operating Systems was
prepared using the Digital Research TEX Text Formatter and printed in the United
States of America.

First Edition: September 1982

Foreword

This manual describes several utility programs that aid the programmer and system
designer in the software development process. Collectively, these utilities allow you
to assemble 8080 assembly language modules, link them together to form an execut-
able program, and generate a cross-reference listing of the variables used in a pro-
gram. With these utilities, you can also create and manage your own libraries of
object modules, as well as create large programs by breaking them into separate
overlays.

The Programmer’s Utilities Guide assumes you are familiar with the CP/M® or
MP/M II™ Operating System environment. It also assumes you are familiar with the
basic elements of assembly language programming as described in the 8080 Assembly
Language Programming Manual, published by Intel®,

MAC™, the CP/M macro assembler, translates 8080 assembly language statements
and produces a hex format object file suitable for processing in the CP/M environ-
ment. MAC is upward compatible with the standard CP/M nonmacro assembler,
ASM™. (See the CP/M documentation published by Digital Research.)

MAC facilities include assembly of Intel 8080 microcomputer mnemonics, along with
assembly-time expressions, conditional assembly, page formatting features, and a pow-
erful macro processor compatible with the standard Intel definition. MAC also accepts
most programs prepared for the Processor Technology Software #1 assembler, requiring
only minor modifications. This revision is not compatible with previous versions.

MAC is supplied on a standard disk, along with a number of library files. MAC
requires about 12K of machine code and table space, along with an additional 2.5K
of I/O buffer space. Because the BDOS portion of CP/M is coresident with MAC, the
minimum usable memory size for MAC is about 20K. Any additional memory adds
to the available Symbol Table area, allowing larger programs to be assembled.

Sections 1 through 5 describe the simple assembler facilities of MAC: 8080 mne-
monic forms, expressions, and conditional assembly. These facilities are similar to
those of the CP/M assembler (ASM). If you are familiar with ASM, you might want
to skip Sections 1 through § and begin with Section 6.

Sections 6 through 8 describe MAC macro facilities in detail. Section 7 describes
inline macros, and Section 8 explains the definition and evaluation of stored macros.
If you are familiar with macros, briefly skim these sections, referring primarily to the
examples. Section 9 explains macro applications, common macro forms, and pro-
gramming practices. Skim the examples and refer back to the explanations for a
detailed discussion of each program.

Sections 10 through 13 describe other features of macro assembler operation. Sec-
tion 10 details assembly parameters. Section 11 introduces iterative improvement, a
common debugging practice used in developing macros and macro libraries. Section
12 defines MAC’s symbol storage requirements.

Section 13 explains the differences between MAC and RMAC™, the CP/M Relo-
cating Macro Assembler.

Section 14 details XREF, an assembly language cross-reference program used with
MAC and RMAC.

Section 16 describes LINK-80™, the linkage editor that combines relocatable object
modules into an absolute file ready to run under CP/M or MP/M II. Section 17
describes how to use LINK-80, in conjunction with the PL/I-80™ compiler, to pro-
duce overlays. Section 18 explains how to use LIB-80™, the software librarian for
creating and manipulating library files containing object modules.

The appendixes contain a complete list of error messages output by each of the
utility programs.

iv

5

Table of Contents

Macro Assembler Operationc.oveiiieiiiiiiiiiinniiinnnnn.
Program Format.cuiiniiuiiniintniieeeeneenenesnsnennanns

Forming the Operand

70 N 717 (A
3.2 Numeric CoNnStantsoevereeneneeneneeneaneneseeneannns
3.3 Reserved Wordsovviiiiiiii i e
3.4 String CoONStantsooeueeuneeneeeneeneenneesossoessasans
3.5 Arithmetic, Logical, and Relational Operators
3.6 Precedence of Operatorsv.oeeeeviueeeennneeeennnneennn

Assembler Directives

4.1 The ORG Directive ...ivviiiiiiiiiiiiiiiiiiiiiieeeeeeeinnns
4.2 The END Dir€Ctive . ..uuviiiriiiiieeeteeeiiiiinaneeennnns
4.3 The EQU Dir€Ctive'uutrunrrreeeeeeeeeeeenennnninnnnnnns
4.4 The SET DIrective . ..uviittiriiiiiiieeeeeereninnneennn.
4.5 The IF, ELSE, and ENDIF Directivescovvuuuuunennn..
4.6 The DB DireCtive . .uvvnviiiiiiiiiiieneeeeeeeeeaaannnnns
4.7 The DW DIr€CtiVe .. .vvvieeeeetrriiianeeeeeeennennnnnnnns
4.8 The DS DIreCtIVE v vuviieetttetii ittt ettt iiiianeeeeens
4.9 The PAGE and TITLE Directivesvvvvieeeeeiennnnnnns
4.10 A Sample Program Using Pseudo Operations

Operation Codes

5.1 Jumps, Calls, and Returnscoviiiiieiiinneennnnnnnn.
5.2 Immediate Operand Instructionscovvveeennnnnnn.

Table of Contents (continued)

5.3 Increment and Decrement Instructionscccevveennenn
5.4 Data Movement Instructionsc.ceveueeneenenennencens
5.5 Arithmetic Logic Unit Operationscoeeeeeeeeeeeeenns
5.6 Control INStrUCtIONS . .vvvvvttiieerieeerineeennneeeennnanens

An Introduction to Macro Facilities

Inline Macros

7.1 The REPT-ENDM Groupccoutuiiiiineeeeeeeeeennnnnnns
7.2 The IRPC-ENDM GIOUP +.vvvvtreeeeeerenenennnnnnnneeeeeens
7.3 The IRP-ENDM GIOUDP . .vvviiiittititiiiiinaaaeneeeeenennnns
7.4 The EXITM Statementeeeeeeeeeeeeeennennnnnnnneeens
7.5 The LOCAL Statementeveerunineennneeensneeennnaanns

Definition and Evaluation of Stored Macros

8.1 The MACRO-ENDM GIoupuvvieiiuuerennneeenannneeens
8.2 Calling a Macrovviiiiitieteeennnnneeannanneeeeeeens
8.3 Testing Empty Parametersccoiiiiiiiiiiiiiiiinnnn,
8.4 Nested Macro Definitionscoiiiiiiiiiiinreneeeeeenns
8.5 Redefinition of Macrosevieiiiiiinnnnnnnnnnneeeeens
8.6 Recursive Macro Invocationciiiiiiiieiiiienniennnn
8.7 Parameter Evaluation Conventionscovveeuieeeeennns
8.8 The MACLIB Statementeevveieennnnnneneeeeeeeenns

Macro Applications

9.1 Special Purpose Languagesccoviiiiiiiiiiiirieiaiiaaas
9.2 Machine Emulation ...ttt

10

11

12

13

14

15

Table of Contents (continued)

9.3 Program Control Structuresccciiiiiiiiiiieinnaann
9.4 Operating System Interfaceooiiiiiiiiiiiiiient,

Assembly Parameters
Debugging Macros
Symbol Storage Requirements

RMAC, Relocating Macro Assembler

13.1 RMAC Operationcc.oeeeiuuineeeunnecenneeeenieeennnes

13.2 EXPIESSIONS . .uvvvvuuuunnneneeeseetaennnnseseeeeeeensnnnnnns

13.3 Assembler DIrectivesovivieerriieeenieneernneeennnaennns
13.3.1 The ASEG DIrectivevvvvrririiiieneeeeeennanns
13.3.2 The CSEG DIirective . ..vvvverrrrriiiinnnneeeennnnnns
13.3.3 The DSEG Directiveovvviiinnneeeeeennnnnns
13.3.4 The COMMON Directiveovviiiiiieniieenennnas
13.3.5 The PUBLIC Dir€ctiveccevvurrereeeeeeneennnns
13.3.6 The EXTRN DireCtive ...vvvvrerereeeeennnnnnnnnnnns
13.3.7 The NAME Dir€ctivecviviriiirrireeeeeeeeennnns

XREF

LINK-80

15.1 IntroduCtion . .vvviiiiit ettt

15.2 LINK-80 Operationcvveeieeeenneeeeonesssansesanns

15.3 Multiline Commandscciiiiiiiiii e

vii

Table of Contents (continued)

15.4 LINK-80 Switchesc.ooiiiiiiiiiiiiiiiiiiiiii s 239
15.4.1 The Additional Memory (A) Switch 239

“ 15.4.2 The Data Origin (D) Switch 240
15.4.3 The Go (G) Switch ..., 240
15.4.4 The Load Address (L) Switch 240
15.4.5 The Memory Size (M) Switchcoat. 241
15.4.6 The No List (NL) Switchccoooiiiinn.... 241
15.4.7 The No Recording of Symbols (NR) Switch 241
15.4.8 The Output COM File (OC) Switch 241
15.4.9 The Output PRL File (OP) Switch 241
15.4.10 The Program Origin (P) Switch 241
15.4.11 The ? Symbol (Q) Switch, 242
15.4.12 The Search (S) Switcho, 242

15.5 The $ Switch ... i i i, 242
15.5.1 $Cd—Consoleviiiiiiiiiiiiii i 243
15.5.2 S$ld—Intermediatecciiiiiiiiiiiiiiiia, 243
15.5.3 SLd—Libraryciiiiiiii i i e 243
15.5.4 $Od—Objectiiiiiiiii e e e e 243
15.5.5 $Sd—Symbol ... e 243
15.5.6 Command Line Specificationccovvivinunnnn. 244

15.6 Creating MP/M II PRL Filescccvviiiiiiiiiniennnnnn.. 244
15.7 The Request Itemoiiiiiiiniiiii it iiiieanennns 245
15.8 REL File Formatoiviiiiteiiiiiiiiiiieeiiinaeannns 246
15.9 IRL File Formatoouvtiiiiiieiiiiieeeneineeennnnaneenns 248

16 Overlays

16.1 Introductionovviiiineeeeeiineerenioeeeeniaesenannnaonns 251
16.2 Using Overlays in PL/I Programsccevveeeeeenannnns 252
16.221 Overlay Method 1 ... 252
16.2.2 Overlay Method 2ciiiiiiiiiiiii ittt iiiiieninin, 254

16.3 Specifying Overlays in the Command Line 255
16.4 Sample LINK-80 EXecutionceeeeeviuuerrnninnceennns 256

+ 15.4.2 The BIOS Link Switch - all following got 15.4.(n+1) numbering

fritz
Textfeld
*

fritz
Textfeld

fritz
Textfeld

fritz
Textfeld
*

17

Table of Contents (continued)

16.5 Other Overlay Systemsc.cuuiienireieinirerannnenreeeenns 259
LIB-80

17.1 Introductioniiieiiiiiiiii e e 261
17.2 LIB-80 Operationceuereennerenoeseeeoasstoooassonnnes 261
17.3 LIB-80 SWItChes . .vvvtttttetteriieennnnannnennoasoesesaanns 263

ix

m m O 0O % »

Table of Contents (continued)

Appendixes
MAC/RMAC Error Messages . v.oovvueerennnneennneeeanneenennnaans 265
XREF Error MeSSageSvvvvrneteeneeoneenneeneenneennesnnennnns 269
LINK-80 Error Messagesc.ciieiiieiennrennnnneennnneeannnns 271
Overlay Manager Run-time Error Messagesccccovnvenn.. 275
LIB-80 Error Messagesc.couuiinnneneeeeenronnnnnnnaanenns 277
8080 CPU INStruCtiONSuuvtetiennuterennueeeronueesennnnenns 279

Table of Contents (continued)

List of Tables

8080 Registers and Valuesciiiiiiiiiineeerreeeinnnns 7
() 0= 1o - 9
Equivalent Forms of Relational Operatorsccocvivinn. 12
Pseudo OPerationseeveeeeenurrorsseceerosiossesnnees 13
KDF-11 Operation Codesccvviiniiiiiiieiiiieeennnne, 120
Assembly Parameterscciiiiiiiiiiei ittt 221
LIB-80 Switchesiiviiiiiiiiiiiiiiiiiiineenneonnocanenes 263
MAC/RMAC Error Messagescccveviienseeenenceenensens 265
Terminal Error Conditionsevviiiitivinreeeennnneeecnnnss 267
XREF Error Messagesoveveeenreeneeneeonetosoanssasssansas 269
LINK-80 Error Messagescveveviieierornnennnneasianoees 271
Run-time Error Messagescuueiiiiiiiiinnneeeoaneeccanes 275
LIB-80 Error Messagesccveuveeeennoesonnnsesoanassennns 277
8080 CPU INSEIUCLIONS +\vvvvvrrvereerenrenrennensonnonnoaeenns 279

List of Figures

IRLFile IndeX ...viviniiiriiiiiii ittt ennnneenannnss 248
Tree-structured Overlay Systemccoviiiiiiiiiiinnnnneen., 251
Separate Overlay Systemcccveeeiiveiiiiirioennceneneenns 258

List of Listings

Sample ASM, PRN, SYM, and HEX files from MAC 1
Conditional Assembly with TTY Trueccoiviiiiiiiinnnnn 17
Conditional Assembly with TTY Falseccvviiiiinnnn. 18
Conditional Assembly Using ELSE for Alternate 19
Sample Program Using Nested IF, ELSE, and ENDIF 21
TYPER Program Listingcciviiieinerenernneenernnennnans 26
Assembly Showing Jumps, Calls, Returns, and Restarts 31
Assembly Using Immediate Operand Instructions 33
Assembly Containing Increment and Decrement Instructions 34
Assembly Using Various Register/Memory Moves 36
Assembly Showing ALU Operationscoeeeviirrernnnnnes 38

xi

6-1.
6-2.
7-1.
7-2a.
7-2b.
7-3.
7-4.
7-5a.
7-5b.

Qo
1 T
EOOENAN D RN

\oooooooo.ooooooooo

grEer

\O \O \© \O \© \O
1)))) 1)
@

>

9-5a.
9-5b.
9-6.
9-7.
9-8.
9-9,
9-10.
9-11.
9-12.
9-13.
9-14.
9-15.
9-16.

Table of Contents (continued)

A Sample Macro Library ..ot 43
A Sample Assembly Using the MACLIB Facility 45
A Sample Program Using the REPT Groupcccovn.... 50
Original ((ASM) File with IRPC Example 52
Resulting (.PRN) file with IRPC Example 53
A Sample Program Using IRPcoiiiiiiiiiiineninnennnn. 57
Use of the EXITM Statement in Macro Processing 59
Assembly Program Using the LOCAL Statement 62
Output from Program of Listing 7-53.curuuieeeeeeeenennn. 63
Example of Macro Definition and Invocation 69
Sample Message Printout Macrooovviiiiineinnnennn.. 71
Sample Program Using the NUL Operator 74
Sample Program Showing a Nested Macro Definition 78
Sample Program Showing Macro Redefinition 80
Sample Program Showing a Recursive Macro 83
Macro Parameter Evaluation Exampleoo... 87
Parameter Evaluation Using Bracketed Notation 89
Examples of Macro Parameter Evaluation 91
Macro Library for Basic Intersectioncoovvveeennnnenns 98
Macro Library for Treadle Controlccovvviiiiininn.n. 100
Macro Library for Corner Pushbuttons 100
Traffic Control Algorithm Using -M Option 102
Intersection Algorithm with *M in Effectccovvnun... 103
Algorithm with Generated Instructionscovvevvnune... 104
Library Segment with Debug Facility 106
Sample Intersection Program with Debug 107
Debug Trace Printoutvvvveirerevnnrereennnereeennneens 107
A-D Averaging Program Using Stack Machine 110
Stack Machine Opcode Macrosccovviiiiiininennnnennnn. 111
Averaging Program with Expanded Macros 114
Averaging Program with Debugging Statements 117
Sample Execution of AVER Using DDTcoovviiinininnennnn 119
Stack Machine Macro Librarycciiiiiiiiiiiiiiinnnnnnns 121
Program for Tool Travel Computationccvvvuevennn. 139
Sample Execution of Distance Using DDTccovvvnnnn 143
Partial Listing of Distance with Full Trace 144
Simple I/0 Macro Libraryovviiiiiiiiiiiiniiniennenne. 147
Macro Library for Simple Comparison Operations 148

Xii

9-17a.

9-17b.

9-18.
9-19a

9-1%.

9-20.
9-21a.

9-21b.

9-22.
9-23a.

9-23b.
9-24a.
9-24b.
9-25a.
9-25b.

9-25c¢.
9-26.
9-27.
9-28.
9-29.
9-30.
9-31.
9-32.
16-1.
16-2.

Table of Contents (continued)

Single Character Processing using COMPARE..................... 150
Partial Trace of Listing 9-17a with Macro Generation 152
Expanded NCOMPARE Comparison Operators 153
Sample Program using NCOMPARE Library 156
Segment of Listing 9-19a with +M Optionc....... 157
Macro Library for the WHEN Statement 161
Sample WHEN Program with -M in Effect 162
Partial Listing of Listing 9-21a with +M Option 163
Macro Library for the DOWHILE Statement 165
An Example Using the DOWHILE Statement 167
Partial Listing of Listing 9-23a with Macro Generation 168
Macro Library for SELECT Statementccvvvennn.. 171
Library for SELECT Statementcoiiiiiiinnnnennnn.. 172
Sample Program Using SELECT with -M +S Options 174
Segment of Listing 9-25a with Mnemonics 175
Segment of Listing 9-25a with +M Option 176
Program Using WHEN, DOWHILE, and SELECT 179
Lower- to Upper-case Conversion Program 186
Sequential File Input/Output Library 188
Sample FILE Expansion Segmentccoviiieeennnnn... 202
Program for Line Printer Page Formatting 208
File Merge Programcoiiieiiiiieeinnnieneiiineeeennns. 211
Sample MERGE Disk Filesccoiiiiiiiiiiiiiiiin.... 219
LINK-80 Console Interactionccuviivieninneennnnnn.. 258
Console Interaction with ROOTccoiiiiinneinn... 258

Xiii

Section 1
Macro Assembler Operation

Start MAC with a command of the form:
MAC filename

where filename corresponds to the assembly language file with an assumed filetype
ASM. During the translation process, MAC creates a file called filename.HEX con-
taining the machine code in the Intel hexadecimal format. You can subsequently load
or test this HEX file. (See the LOAD command and the Dynamic Debugging Tool,
DDT™, in the CP/M documentation.) MAC also creates a file named filename.PRN
containing an annotated source listing, along with a file called filename.SYM contain-
ing a sorted list of symbols defined in the program.

Listing 1-1 provides an example of MAC output for a sample assembly language
program stored on the disk under the name SAMPLE.ASM. Type MAC SAMPLE
followed by a carriage return to execute the macro assembler. The PRN, SYM, and
HEX files then appear as shown in the listing. The assembler listing file (PRN)
includes a 16-column annotation at the left showing the values of literals, machine
code addresses, and generated machine code. Note that an equal sign (=) is used to
denote literal values to avoid confusion with machine code addresses. (See Section
4.3.) Output files contain tab characters (ASCII CTRL-I) whenever possible to con-
serve disk space.

Source Program (SAMPLE.ASM)

org 100h itransient Prodram area
bdos equ 000Sh ibdos entry pPoint
wchar eQqu 2 jwrite character function

enter with ccpP’s return address in the stack
write a sindle character (?) and return

-

mui cswchar jwrite character function
mui es’?’ jcharacter to write

call bdos iwrite the character

ret ireturn to the cce

end 100h istart address is 100h

Listing 1-1. Sample ASM, PRN, SYM, and HEX files from MAC

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 1

] UONDIS

1 Macro Assembler Operation

0100
0005
0002

0100
0102
0104
0107
0108

0E02
1E3F
CD0S00
c9

0005 BDOS

ORG
BDO
WCH

- e

Programmer’s Ultilities Guide

Assembler Listing File (SAMPLE.PRN)

100H iTRANSIENT PROGRAM AREA
S EQU 0005H iBDOS ENTRY POINT
AR EQU 2 FWRITE CHARACTER FUNCTION

ENTER WITH CCP’S RETURN ADDRESS IN THE STACK
WRITE A SINGLE CHARACTER (?) AND RETURN

MUI C+WCHAR SWRITE CHARACTER FUNCTION
MVI Esy'?’ iCHARACTER TO WRITE

CALL BDOS iWRITE THE CHARACTER

RET iRETURN TO THE CCP

END 100H iSTART ADDRESS IS 100H

Assembler Sorted Symbol File (SAMPLE.SYM)

0002 WCHAR

Assembler Hex Output File (SAMPLE.HEX)

:080100000E021E3FCDOS00CIEF
:00010000FF

Listing 1-1. (continued)

End of Section 1

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 2
Program Format

A program acceptable as input to the macro assembler consists of a sequence of
statements of the form

line# label operation operand comment

where any or all of the elements can be present in a particular statement. Each
assembly language statement terminates with a carriage return and line-feed. Note
that the ED program automatically inserts the line-feed when you enter a carriage
return. You can also terminate an assembly language statement by typing the excla-
mation point (!) character. MAC treats this character as an end-of-line. You can
write multiple assembly language statements on the same physical line if you separate
them with exclamation points.

A sequence of one or more blank or tab characters delimits statement elements.
Tab characters are preferred because they conserve source file space and reduce the

listing file size. The tab characters are not expanded until the file is printed or typed
at the console.

The line# is an optional decimal integer value representing the source program
line number. It is allowed on any source line. The assembler ignores the optional
line#.

The label field takes the form:

identifier
or
identifier:
The label field is optional, except where noted in particular statement types.

The identifier is a sequence of alphanumeric characters: alphabetics, question marks,

commercial at-signs, and numbers, the first character of which is not numeric. You

can use identifiers freely to label elements such as program steps and assembler
directives, but identifiers cannot exceed 16 characters in length.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 3

wn
0]
8]
=
0o
3
N

2 Program Format Programmer’s Utilities Guide

All characters are significant in an identifier, except for the embedded dollar sign
($) that you can use to improve name readability. Further, MAC treats all lower-case
alphabetics in an identifier as though they were upper-case. Note that the colon (:)
following the identifier in a label is optional. The following examples are all valid
labels:

X Xy londgéname

X7 xyl: londer$named$data
Xx1x2 @123: ?7@RBabcDEF

Gamma BGAMMA PAREWEHERE?

x23445678%9012%3456:

The operation field contains an assembler directive (pseudo operation), 8080 machine
operation code, or a macro invocation with optional parameters. The pseudo opera-
tions and machine operation codes are described in Section 5. Macro calls are dis-
cussed in Section 6.

The operand field of the statement contains an expression formed from constant
and label operands, with arithmetic, logical, and relational operations on these oper-
ands. Properly formed expressions are detailed in Section 3.

A leading semicolon character denotes the comment field, which contains arbitrary
characters until the next carriage return or exclamation point character. MAC reads,
lists, and otherwise ignores comment fields. To maintain compatibility with other
assemblers, MAC also treats statements that begin with an asterisk (*) in column one
as comment lines.

The assembly language program is thus a sequence of statements of the form
described above, terminated optionally by an END statement. The assembler ignores
all statements following the END.

End of Section 2

4 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 3
Forming the Operand

Expressions in the operand field consist of simple operands—Ilabels, constants, and
reserved words—combined into properly formed subexpressions by arithmetic and
logical operators. MAC carries out expression computation as the assembly proceeds.
Each expression produces a 16-bit value during the assembly. The number of signifi-
cant digits in the result must not exceed the intended use. That is, if an expression is
to be used in a byte move immediate (see the MVI instruction), the absolute value of
the operand must fit within an 8-bit field. Instructions for each expression give the
restrictions on expression significance.

3.1 Labels

A label is an identifier of a statement. The label’s value is determined by the type
of statement it precedes. If the label occurs on a statement that generates machine
code or reserves memory space, such as a MOV instruction or a DS pseudo opera-
tion, then the label is given the value of the program address it labels. If the label
precedes an EQU or SET, then the label is given the value that results from evaluat-
ing the operand field. In a macro definition, the label is given a text value, a sequence
of ASCII characters, that is the body of the macro definition. With the exception of
the SET and MACRO pseudo operations, an identifier can label only one statement.

When a nonmacro label appears in the operand field, the assembler substitutes its
16-bit value. This value can then be combined with other operands and operators to
form the operand field for an instruction. When a macro identifier appears in the
operation field of the statement, the text stored as the value of the macro name is
substituted for the name. In this case, the operand field of the statement contains
actual parameters. These are substituted for dummy parameters in the body of the
macro definition. Later sections give the exact mechanisms for defining, calling, and
substituting macro text.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 5

wn
g
N
=
o
-]
W

3.2 Numeric Constants Programmer’s Utilities Guide

3.2 Numeric Constants

A numeric constant is a 16-bit value in a number base. A trailing radix indicator
denotes the base, called the radix of the constant. The radix indicators are

binary constant (base 2)

octal constant (base 8)

octal constant (base 8)

decimal constant (base 10)
hexadecimal constant (base 16)

IZIOOOw

Q is an alternate radix indicator for octal numbers because the letter O is easily
confused with the digit 0. Any numeric constant that does not terminate with a radix
indicator is assumed to be a decimal constant.

A constant is composed of a sequence of digits, followed by an optional radix
indicator, where the digits are in the appropriate range for the radix. Binary con-
stants must be composed of 0 and 1 digits. Octal constants can contain digits in the
range 0-7. Decimal constants contain decimal digits. Hexadecimal constants contain
decimal digits and hexadecimal digits A through F, corresponding to the decimal
numbers 10 through 15.

Note that the leading digit of a hexadecimal constant must be a decimal digit to
avoid confusing a hexadecimal constant with an identifier. A leading 0 prevents
ambiguity. A constant composed in this manner produces a binary number that can
be contained within a 16-bit counter, truncated on the right by the assembler. Like
identifiers, embedded $ symbols are allowed within constants to improve readability.

Finally, the radix indicator translates to upper-case if a lower-case letter is encoun-
tered. The following examples are valid numeric constants:

1234 1234D 11008 11114$0000%1111400008B
1234H OFFFEH 33770 338774220
33770 Ofe3h 12344 Offffh

6 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 3.3 Reserved Words

3.3 Reserved Words

Several reserved character sequences have predefined meanings in the operand field
of a statement. The names of 8080 registers and their values are given in Table 3-1.

Table 3-1. 8080 Registers and Values

symbol value symbol value
A 7 B 0
C 1 D 2
E 3 H 4
L 5 M 6
SP 6 PSW 6

Lower-case names have the same values as their upper-case equivalents. Machine
instructions can also be used in the operand field, resulting in their internal codes.
For instructions that require operands, where the operand is a part of the binary bit
pattern of the instruction (e.g., MOV A,B), the value of the instruction is the bit
pattern of the instruction, with zeros in the optional fields. For example, the statement

LXI H.,MOV

assembles an LXI H instruction with an operand equal to 40H, the value of the
MOV instruction with zeros as operands.

When the $ symbol appears in the operand field—not embedded within identifiers

and numbers—its value is the address of the beginning of the current instruction. For
example, the two statements

X JMP X

and

JMP ¢
produce a jump instruction to the current location. As an exception, the $ symbol at

the beginning of a logical line can introduce assembly formatting instructions. (See
Section 10.) ’

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 7

3.4 String Constants Programmer’s Ultilities Guide

3.4 String Constants

String constants represent sequences of graphic ASCII characters, enclosed in apos-
trophes (’). All strings must be fully contained within the current physical line, with
the exclamation point (!) character within strings treated as an ordinary string char-
acter. Each individual string must not exceed 64 characters in length, or MAC reports
an error. The apostrophe character can be included in a string by typing two apos-
trophes (”). The assembler reads the two apostrophes as a single apostrophe.

Note that particular operation codes can require the string length to be no longer
than one or two characters. The LXI instruction, for example, accepts a character
string operand of one or two characters. The CPI instruction accepts only a one-
character string. The DB instruction, however, allows strings zero through 64 char-
acters long in its list of operands. In the case of single-character strings, the value is
the 8-bit ASCII code for the character, without case translation. Two-character strings
produce a 16-bit value with the second character as the low-order byte and the first
character as the high-order byte. For example, the string constant ‘A’ is equivalent to
41H. The two-character string ‘AB’ produces the 16-bit value 4142H. The following
are valid strings in MAC statements:

IAI IABI Iabl ICI 1 ¢ s lshe Said llhellolll

Note: You can use the ampersand (&) character to cause evaluation of dummy
arguments within macro expansions inside string quotes. Section 8 details the substi-
tution process.

3.5 Arithmetic, Logical, and Relational Operators

MAC can combine the operands described above in algebraic notation using prop-
erly formed operands, operators, and parenthesized expressions. The operators MAC
recognizes in the operand field are listed below.

a+b produces the arithmetic sum of a and b; +b is b.
a—b produces the arithmetic difference between a and b; —b is 0—b.

a*b is the unsigned multiplication of a by b.

a MOD b is the remainder after division of a by b.

]

[

=

® a/b is the unsigned division of a by b.

]

® a SHL b produces a shifted left by b, with zero right fill.

8 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

® a SHR b produces a shifted right by b, with zero left fill.
NOT b is the bit-by-bit logical inverse of b.

a EQ b produces true if a equals b, false otherwise.

a LT b produces true if a is less than b, false otherwise.

a GT b produces true if a is greater than b, false otherwise.

a XOR b produces the logical exclusive OR of a and b.
HIGH b is identical to b SHR 8 (high-order byte of b).
LOW b is identical to b AND OFFH (low-order byte of b).

3.5 Operators

a LE b produces true if a is less than or equal to b, false otherwise.

a GE b produces true if a is greater than or equal to b, false otherwise.
a AND b produces the bitwise logical AND of a and b.
a OR b produces the bitwise logical OR of a and b.

The letters a and b represent operands that are treated as 16-bit unsigned quantities
in the range 0-65535. All arithmetic operators produce a 16-bit unsigned arithmetic
result. Relational operators produce a true (OFFFFH) or false (0000H) 16-bit result.
Logical operators operate bit-by-bit on their operands producing a 16-bit result of
16 individual bit operations. The HIGH and LOW functions always produce a 16-
bit result with a high-order byte of zero. Table 3-2 lists arithmetic, logical, and

relational operators.

Table 3-2. Operators

arithmetic relational logical

+ EQ NOT
- LT AND
* LE OR
/ GT XOR

MOD GE

SHL NE

SHR

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9

3.5 Operators Programmer’s Utilities Guide

MAC performs all computations during the assembly process as 16-bit unsigned
operations, as described above. The resulting expression must fit the operation code
in which it is used. For example, the expression used in an ADI (add immediate)
instruction must fit into an 8-bit field. Thus, the high-order byte must be zero. If the
computed value does not fit the field, the assembler produces a value error for that
statement.

As an exception to this rule, negative 8-bit values are allowed in 8-bit fields under
the following conditions: if the program attempts to fill an 8-bit field with a 16-bit
value that has all Is in the high-order byte, and the sign bit is set, then the high order
byte is truncated, and no error is reported. This condition arises when a negative
sign is placed in front of a constant. For example, the value -2 is defined and com-
puted as 0-2, producing the 16-bit value OFFFEH, where the high-order byte (OFFH)
contains extended sign bits that are all 1s, and the low-order byte (OFEH) has the
sign bit set. The following instructions do not produce value errors in MAC:

ADI -1 ADI -15 ADI -127 ADI -128 ADI OFF80H

The following instructions produce value errors:

ADI 256 ADI 32768 ADI -129 ADI OFF7FH

The special operator NUL is used in conjunction with macro definition and expan-
sion operations. The NUL operator takes a single operand. NUL must be the last
operator in the operand field.

Expressions can be formed from simple operands such as labels, numeric con-
stants, string constants, and machine operation codes, or from fully enclosed paren-
thesized expressions such as

10420,

10H+37Q

L1/3:

(LZ + 4) SHR 3

(‘a’ and Sfh) + ‘07,

(‘'BB’ + B) OR (PSW + M),
(1+ (2+4C)) shr (A-(B +1))
(HIGH A) SHR 3

where blanks and tabs are ignored between the operators and operands of the
expression.

10 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 3.6 Precedence of Operators

3.6 Precedence of Operators

MAC assumes operators have a relative precedence of application allowing expres-
sions to be written without nested parentheses. The resulting expression has assumed
parentheses that are defined by this relative precedence. The order of application of
operators in unparenthesized expressions is listed below. Operators listed first have
highest precedence. These are applied first in an unparenthesized expression. Opera-
tors listed last have lowest precedence and are applied last. Operators listed on the
same line have equal precedence and are applied from left to right as they are
encountered in an expression:

/ MOD SHL SHR
+ -
EQ LT LE GT GE NE
NOT
AND
OR XOR
HIGH LO

The following expressions are equivalent:

OR b AND NOT ¢ + d SHL e produces
OR (b AND (NOT (c + (d SHL e))))

a * b + c produces (a * b) + ¢

a+ b % c produces a + (b * c)

a MOD b # ¢ SHL d produces ((a MOD b) % ¢) SHL D
a

a

Balanced parenthesized subexpressions can always override the assumed parenthe-
ses. The last expression above can be rewritten to force application of operators in a
different order, as shown below:

(a OR b) AND (NOT c¢) + d4 SHL e

resulting in the assumed parentheses

(a OR b) AND ((NOT c) + (d SHL e))

Note that an unparenthesized expression is well formed only if the expression that
results from inserting the assumed parentheses is well formed.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 11

3.6 Precedence of Operators Programmer’s Utilities Guide

Relational operators can be expressed in either of two forms, as shown in Table
3-3.

Table 3-3. Equivalent Forms
of Relational Operators

< LT
<= LE
= EQ
<> NE
>= GE
> GT

End of Section 3

12 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 4
Assembler Directives

Assembler directives set labels to specific values during assembly, perform condi-
tional assembly, define storage areas, and specify starting addresses in the program.
Each assembler directive is denoted by a pseudo operation that appears in the oper-

w
ation field of the statement. Table 4-1 lists the acceptable pseudo operations. ®
=
3
Table 4-1. Pseudo Operations &
Directive Meaning
ORG sets the program or data origin.
END terminates the physical program.
EQU performs a numeric equate.
SET performs a numeric set or assignment.
IF begins a conditional assembly.
ELSE is an alternate to a previous IF.
ENDIF marks the end of conditional assembly.
DB defines data bytes or strings of data.
DwW defines words of storage (double bytes).
DS reserves uninitialized storage areas.
PAGE defines the listing page size for output.
TITLE enables page titles and options.

In addition to those listed above, several pseudo operations are used in conjunction
with the macro processing facilities. MACRO, EXITM, ENDM, REPT, IRPC, IRP,
LOCAL, and MACLIB are reserved words. They are fully described in Sections 7
and 8. The nonmacro pseudo operations are detailed below.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 13

4.1 The ORG Directive Programmer’s Utilities Guide

4.1 The ORG Directive
The ORG statement takes the form
label ORG expression

where label is an optional program label—an identifier followed by an optional
colon (:)—and expression is a 16-bit expression consisting of operands defined before
the ORG statement. The assembler begins machine code generation at the location
specified in the expression. There can be any number of ORG statements within a
program. There are no checks to ensure that you are not redefining overlapping
memory areas. Note that most programs written for CP/M begin with an ORG 100H
statement that causes machine code generation to begin at the base of the CP/M
Transient Program Area. Programs assembled with RMAC and linked with LINK-80
do not need an ORG 100H statement. (See Sections 13 and 15.)

If the ORG statement has a label, then the label takes on the value given by the
expression. The expression is the next machine code address to assemble. This label
can then be used in the operand field of other statements to represent this expression.

4.2 The END Directive

The END statement is optional in an assembly language program; if present, it
must be the last statement. All statements following the END are ignored. The two
forms of the END statement are

label END
label END expression

where the label is optional. If the first form is used, the assembly process stops, and
the default starting address of the program is taken as 0000. Otherwise, the expres-
sion is evaluated and becomes the program starting address. This starting address is
included in the last record of the Intel format machine code hex file resulting from
the assembly. Most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H, the beginning of the Transient
Program Area.

14 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 4.3 The EQU Directive

4.3 The EQU Directive

The EQU (equate) statement names synonyms for particular numeric values. The
directive takes the form:

label EQU expression

The label must be present, and it must not label any other statement. The assembler
evaluates the expression and assigns this value to the identifier given in the label field.
The identifier is usually a name describing the value in a more human-oriented man-
ner. You can use this name throughout the program as a parameter for certain
functions. Suppose, for example, that data received from a teletype appears on an
input port, and data is sent to the teletype through the next output port in sequence.
The series of equate statements that can define these ports for a particular hardware
environment is shown below.

TTYBASE EQU 10H iBASE TTY PORT
TTYIN EQU TTYBASE iTTY DATA IN
TTYOUT EQU TTYBASE+1 iTTY DATA OUT

At a later point in the program, the statements that access the teletype could appear
as

IN TTYIN iREAD TTY DATA TO A
ouT TTYOUT iWRITE DATA FROM A

making the program more readable than the absolute /O port addresses. If the
hardware environment is later redefined to start the teletype communications ports
at 7FH instead of 10H, the first statement need only be changed to

TTYBASE EQU 7FH iBASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 15

4.4 The SET Directive Programmer’s Utilities Guide

4.4 The SET Directive
The SET statement is similar to the EQU, taking the form
label SET expression

except that the label, taken as a variable name, can occur on other SET statements
within the program. The expression is evaluated and becomes the current value
associated with the label. Thus, unlike the EQU statement, where a label takes on a
single value throughout the program, the SET statement can assign different values
to a name at different parts of the program. In particular, the SET statement gives
the label a value that is valid from the current SET statement to the point where the
label occurs on the next SET statement. The use of SET is similar to the EQU, except
that SET is used more often to control conditional assembly within macros.

4.5 The IF, ELSE, and ENDIF Directives

The IF, ELSE, and ENDIF directives define a range of assembly language state-
ments to be included or excluded during the assembly process. The IF and ENDIF
statements alone can bound a group of statements to be conditionally assembled, as
shown in the following example:

IF expression
statement#1
statement#2

statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression following
the IF. All operands in the expression must be defined ahead of the IF statement. If
the expression evaluates to a nonzero value, then statement#1 through statement#n
are assembled. If the expression evaluates to zero, then the statements are listed but
not assembled.

Conditional assembly is often used to write a single generic program that includes
a number of possible alternative subroutines or program segments, where only a few
of the possible alternatives are to be included in any given assembly. Listings 4-1 and
4-2 give an example of such a program.

16 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 4.5 IF, ELSE, and ENDIF

Assume that a console device, either a teletype or a CRT, is connected to an 8080
microcomputer through I/O ports. Due to the electronic environment, the current
loop teletype is connected through ports 10H and 11H, while the RS-232 CRT is
connected through ports 20H and 21H. The program continually loops, reading and
writing console characters. The program shown below operates either with a teletype
or a CRT, depending on the value of the symbol TTY.

Listing 4-1 shows an assembly for the teletype environment. Listing 4-2 shows the
assembly for a CRT-based system. Note that the assembler leaves the leftmost 16
columns blank when statements are skipped due to a false condition.

CP/M MACRO ASSEM 2.0 #001 Teletyrpe Echo Prodram
FFFF = TRUE EQU OFFFFH iDEFINE TRUE
0000 = FALSE EQU NOT TRUE 3DEFINE FALSE
FFFF = TTY EQU TRUE iSET TTY ON
0010 = TTYBASE EQU 10H iBASE OF TTY PORTS
0020 = CRTBASE EQU 20H iBASE OF CRT PORTS
IF TTY iASSEMBLE TTY PORTS
TITLE ‘Teletype Echo Program’
0010 = CONIN EQU TTYBASE iCONSOLE INPUT
0011 = coNouT EQU TTYBASE+1 iCONSOLE OuTt
ENDIF
IF NOT TTY SFASSEMBLE CRT PORTS
TITLE 'CRT Echo Program’
CONIN EQU CRTBASE iCONSOLE IN
CONOUT EQU CRTBASE+1 iCONSOLE OuT
ENDIF
i
0000 DB10O ECHO: IN CONIN iREAD CONSOLE
CHARACTER
0002 D311~ out coNouT iWRITE CONSOLE
CHARACTER
0004 C30000 JMP ECHO
0007 END

Listing 4-1. Conditional Assembly with TTY True

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 17

4.5 IF, ELSE, and ENDIF Programmer’s Utilities Guide

CP/M MACRO ASSEM 2.0 #001 CRT Echo Prodram
FFFF = TRUE EQU OFFFFH iDEFINE TRUE
0000 = FALSE EQU NOT TRUE DEFINE FALSE
0000 = TTY EQU FALSE iSET CRT ON
0010 = TTYBASE EQU 10H iBASE OF TTY PORTS
0020 = CRTBASE EQU 20H iBASE OF CRT PORTS
IF TTY iASSEMBLE TTY PORTS
TITLE ‘Teletypre Echo Program’
CONIN EQU TTYBASE iCONSOLE INPUT
CONOUT EQU TTYBASE+1 iCONSOLE 0OuT
ENDIF
IF NOT TTY iASSEMBLE CRT PORTS
TITLE ‘CRT Echo Program’
0020 = CONIN EQU CRTBASE iCONSOLE 1IN
0021 = CONOUT EQU CRTBASE+1 FCONSOLE OuT
ENDIF
i
0000 DB20 ECHO: IN CONIN iREAD CONSOLE
CHARACTER
0002 D321 ouT CONOUT iWRITE CONSOLE
CHARACTER
0004 C30000 JMP ECHO
0007 END

Listing 4-2. Conditional Assembly with TTY False

18 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

4.5 IF, ELSE, and ENDIF

The ELSE statement can be used as an alternative to an IF statement. The ELSE
statement must occur between the IF and ENDIF statements. The form is

IF expression
statement#1
statement#2
statement#n
ELSE
statement#n + 1
statement#n + 2
statement#m
ENDIF

If the expression produces a nonzero (true) value, then statements 1 through n are
assembled as before. However, the assembly process skips statements n+1 through
m. When the expression produces a zero value (false)) MAC skips statements 1
through n and assembles statements n+1 through m. For example, the conditional
assembly shown in Listings 4-1 and 4-2 can be rewritten as shown in Listing 4-3.

CP/M MACRO ASSEM 2.0 #001
FFFF = TRUE EQU
0000 = FALSE EQU
0000 = TTY EQU
0010 = TTYBASE EOQU
0020 = CRTBASE EOQU

IF
TITLE
CONIN EQU
CONOUT EQU
ELSE
TITLE
0020 = CONIN EQU
0021 = CONOUT EQU
ENDIF
i
0000 DB20 ECHO: IN
0002 D321 ouT
0004 C30000 JMP
0007 END

CRT Echo Prodram

OFFFFH SDEFINE TRUE

NOT TRUESDEFINE FALSE

FALSE iSET CRT ON

10H iBASE OF TTY PORTS

20H iBASE OF CRT PORTS

TTY iASSEMBLE TTY PORTS

‘Teletyre Echo Program’

TTYBASE iCONSOLE INPUT

TTYBASE+1 iCONSOLE OuT
iASSEMBLE CRT PORTS

‘CRT Echo Prodram’

CRTBASE iCONSOLE 1IN

CRTBASE+! iCONSOLE OuT

CONIN iREAD CONSOLE CHARACTER
CONOUT iWRITE CONSOLE CHARACTER
ECHO

Listing 4-3. Conditional Assembly Using ELSE for Alternate

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

19

4.

IF, ELSE, and ENDIF Programmer’s Utilities Guide

roperly balanced IF, ELSE, and ENDIF statements can be completely contained

within the boundaries of outer encompassing conditional assembly groups. The struc-

ture outlined below shows properly nested IF, ELSE, and ENDIF statements:

G

1S

IF exp#1
group#1

IF exp#2
group#2
ELSE
group#3
ENDIF
group#4
ELSE
group#5

IF exp#3
group#6
ENDIF
group#7
ENDIF

oups 1 through 7 are sequences of statements to be conditionally assembled, and

exp#1 through exp#3 are expressions that control the conditional assembly. If exp#1

true, then group#1 and group#4 are always assembled, and groups 5, 6, and 7

are skipped. Further, if exp#1 and exp#2 are both true, then group#2 is also included

in

the assembly. Otherwise, group#3 is included. If exp#1 produces a false value,

groups 1, 2, 3, and 4 are skipped, and groups 5 and 7 are always assembled. If
exp#3 is true under these circumstances, then group#6 is also included with § and

7.
Li

Otherwise, it is skipped in the assembly. A structure similar to this is shown in
sting 4-4, where literal true/false values show conditional assembly selection.

20 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

4.5 IF, ELSE, and ENDIF Programmer’s Utilities Guide

There can be up to eight pending IFs or ELSEs with unresolved ENDIFs at any
point in the assembly, but the assembly usually becomes unreadable after two or
three levels or nesting. The nesting level restriction also holds, however, for pending
IFs and ELSEs during macro evaluation. Nesting level overflow produces an error
during assembly.

FFFF = TRUE EQU OFFFFH iDEFINE TRUE
0000 = FALSE EQU NOT TRUE iDEFINE FALSE
IF FALSE
MUI Al
IF TRUE
MUI A2
ELSE
MVI Ay3
ENDIF
MVI Ad
ELSE
0000 3EO0S MUI AsS
IF TRUE
0002 3E06 MVI A+6
ELSE
MVUI A7
ENDIF
0004 3E08 MVI A8
ENDIF
END

Listing 4-4. Sample Program Using Nested IF, ELSE, and ENDIF

4.6 The DB Directive

The DB directive defines initialized storage areas in single-precision (byte) format.
The statement form is
label DB e#l, e#2, ..., e#n

where the label is optional, and e#1 through e#n are either expressions that produce
8-bit values (the high-order eight bits are zeros, or the high-order nine bits are ones),
or are ASCII strings no longer than 64 characters each. There is no practical restric-
tion on the number of expressions included on a single source line. The assembler
evaluates expressions and places them into the machine code sequentially following
the last program address generated.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 21

4.6 The DB Directive Programmer’s Ultilities Guide

String characters are similarly placed into memory, starting with the first character
and ending with the last character. Strings longer than two characters cannot be used
as operands in more complicated expressions. They must stand alone between the
commas. Note that ASCII characters are always placed in memory with the high-
order (parity) bit reset to zero. Further, recall that there is no translation from lower
to upper-case within strings. The optional label can be used to reference the data
area throughout the program. The following are examples of valid DB statements:

dataz: DB 041+2+3+44+546
DB data and Offh+5:377Q0,1+2+3+4
sidgnon: DB ‘please tvyPe vour name:’‘scrsl1f 0

DB ‘AB’ SHR 8y ‘C’y ‘DE’ AND 7FH
DB HIGH datas LOW (signon GT data)

4.7 The DW Directive

The DW statement is similar to the DB statement except double-precision (two-
byte) words of storage are initialized. The form of the DW statement is

label DW e#1, e#2, ..., e#n

where the label is optional, and e#1 through e#n are expressions that produce 16-
bit values. Note that ASCII strings one or two characters long are allowed, but
strings longer that two characters are disallowed. In all cases, the data storage is
consistent with the 8080 processor; the least significant byte of the expression is
stored first in memory, followed by the most significant byte. The following are
examples of properly formed DW statements:

doub: DW Offefh, doub+d4, signon-$,255+255
DW ‘a’y 3¢ ‘AB’y ‘CD’y doub LT sidnon

22 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 4.8 The DS Directive

4.8 The DS Directive
The DS statement reserves an area of uninitialized memory and takes the form
label DS expression

where the label is optional. The assembler begins subsequent code generation after
the area reserved by the DS. Thus, the DS statement given above has exactly the
same effect as the statement sequences:

label: EQU § ;CURRENT CODE LOC
ORG $+expression ;MOVE PAST AREA

4.9 The PAGE and TITLE Directives

The PAGE and TITLE pseudo operations give you control over the output format-
ting that is sent to the PRN file or directly to the printer device. The forms for the
PAGE statement are

PAGE
PAGE expression

If the PAGE statement stands alone, an ASCII CTRL-L (form-feed) is sent to the
output file after the PAGE statement has been printed. The PAGE command is often
issued directly ahead of major sections of an assembly language program, such as a
group of subroutines, to cause the next statement to appear at the top of the follow-

ing page.

The second form of the PAGE command specifies the output page size. In this case,
the expression following the PAGE pseudo operation determines the number of out-
put lines to be printed on each page. If the expression is zero, there are no page
breaks. The print file is simply a continuous sequence of annotated output lines. If
the expression is nonzero, then the page size is set to the value of the expression.
Form-feeds are issued to cause page ejects when this count is reached for each page.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TG DIGITAL RESEARCH 23

4.9 PAGE and TITLE Directives Programmer’s Utilities Guide

The assembler initially assumes that

PAGE 56

is in effect, producing a page eject at the beginning of the listing and at each 56-line
increment.

The TITLE directive takes the form
TITLE string-constant

where the string-constant is an ASCII string enclosed in apostrophes, not exceeding
64 characters in length. If a TITLE pseudo operation is given during the assembly,
each page of the listing file is prefixed with the title line, preceded by a standard
MAC header. The title line thus appears as

CP/M MACRO ASSEM n.n #ppp string-constant

where n.n is the MAC version number, #ppp is the page number in the listing, and
string-constant is the string given in the TITLE pseudo operation. MAC initially
assumes that the TITLE operation is not in effect. When specified, the title line and
the blank line following the title are not included in the line count for the page. No
more than one TITLE statement is included in a program. Similarly, only one PAGE
statement with the expression option is included.

If a TITLE statement is included, and the Symbol Table is being appended to the
PRN file (see Section 10), then the SYM file also contains the title at the beginning
of the symbol listing with page breaks given by either the default or specified value
of the PAGE statement.

24 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 4.10 A Sample Program

4.10 A Sample Program Using Pseudo Operations

The program in Listing 4-5 demonstrates the pseudo operations available in MAC.
The sample program, called TYPER, operates in the CP/M environment by selecting
one of three messages for output at the console. This program is created using the
ED program, assembled using MAC, and then placed into COM file format using
the CP/M LOAD function. After these steps have been accomplished, TYPER exe-
cutes at the Console Command Processor level of CP/M by typing one of the
commands:

TYPER A
TYPER B
TYPER C

to select message A, B, or C for printing. The TYPER program loads under the CCP
and jumps to the label START where the 8080 stack is initialized. The TYPER
program then prints its sign-on message:

‘tvper’ version 1.0

The program then retrieves the first character typed at the console following the
command TYPER. This character should be A, B, or C. If one of these letters is not
specified, then TYPER reboots the CP/M system to give control back to the CCP. If
a valid letter is provided, TYPER selects one of the three messages (MESS@A,
MESS@B, or MESS@C) and prints it at the console before returning to CP/M.

The TITLE and PAGE statements produce a title at the beginning of each page;
page size is 33 lines, excluding the title lines. Form-feeds are suppressed. A number
of EQU statements at the beginning improve program readability. Note that through-
out the program the exclamation point allows several simple assembly language
statements on the same line. Although multiple statements make the program more
compact, they often decrease the overall readability of the source program. Note also
that the program terminates without the END statement. The END statement is
necessary only if a starting address is specified. The END statement is often included,
however, to maintain compatibility with other assemblers.

The DB statements labeled by SIGNON contain simple strings of characters and
expressions that produce single-byte values. The DW statement following TABLE
defines the base address of each string, corresponding to A, B, and C. Finally, the DS
statement at the end of the program reserves space for the stack defined within the
TYPER program.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 25

4.10 A Sample Program Programmer’s Utilities Guide

CP/M MACRO ASSEM 2.0 #001 Typer Prodram

TITLE ‘Typer Prodram’

PAGE 33

i PRINT THE MESSAGE SELECTED BY THE INPUT COMMAND AsBs OR C \
000A = VERS EQU 10 FiVERSION NUMBER N.N
0000 = BooT EQU 0000H iREBOOT ENTRY POINT
0005 = BDOS EQU 0005H iBDOS ENTRY POINT
005C = TFCB EQU 005CH iDEFAULT FILE CONTROL BLOCK (GET A:B:s OR C)
0002 = WCHAR EQU 2 FiWRITE CHARACTER FUNCTION
000D = CR EQU ODH iCARRIAGE RETURN CHARACTER
000A = LF EQU 0AH iLINE FEED CHARACTER
0010 = STKSIZ EQU 16 iSIZE OF LOCAL STACK (IN DOUBLE BYTES)

1)
0100 ORG 100H iORIGIN AT BASE OF TPA
0100 C31201 JMP START iJUMP PAST THE MESSAGE SUBROUTINE

)

WMESSAGE:

FWRITE THE STRING AT THE ADDRESS GIVEN BY HL ‘TIL 00

0103 7EB7CB MOV AyM! ORA A! RZ SRETURN IF AT 00
0106 SFOEOZES MOV EsA! MVI C,WCHAR! PUSH H SREADY TO PRINT
010A CDOSOOEL CALL BDOS! POP H iCHARACTER PRINTED: GET NEXT
010E 23C30301 INX H! JMP WMESSAGE

1)

START: SENTER HERE FROM THE CCP, RESET TO LOCAL STACK N’
0112 31C101 LXI SPSTACK iSET TO LOCAL STACK
0115 213701 LXI H+SIGNON iWRITE THE MESSAGE
0118 CD0301 CALL WMESSAGE i‘TYPER' VERSION NN

1
0118 3AS5D0O LDA TFCB+1 iGET FIRST CHAR TYPED AFTER NAME
011E DB41 Sul ‘A’ iNORMALIZE T0 0412
0120 FEO3 CPI TABLEN SCOMPARE WITH THE TABLE LENGTH
0122 D20000 JNC BOOT iREBOOT IF NOT VALID

COMPUTE INDEX INTO ADDRESS TABLE BASED ON A’S VALUE

Listing 4-5. TYPER Program Listing

26 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Ultilities Guide

0125
0126
0128
0128
012C
012D
012E
012F
0130
0131
0134

0137
0147
014A

014D
0003
0153
0167
0182

01A1

CP/M MACRO ASSEM 2.0

SF

1600

214001

19

19

SE

23

56

EB

CD0301

C30000
i
i
SIGNON:

2774797065

312E30

0D0A00

i
TABLE:

5301670182

= TABLEN
i

7468697320MESSEA:

796F752073MESSEB:

7468697320MESSEC:

Y

STACK:

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

MOV
MVI
LXI
DAD
DAD
MoV
INX
Mov
XCHG
CALL
JMP

DATA
DB

DB
DB

4.10 A Sample Program

#002 Tyrper Prodram
EA iLOW ORDER INDEX
D0 SEXTENDED TO DOUBLE PRECISION
H)»TABLE iBASE OF THE TABLE TO INDEX
D iSINGLE PRECISION INDEX
D sDOUBLE PRECISION INDEX
E M iLOW ORDER BYTE TO E
H
DM iHIGH ORDER MESSAGE ADDRESS TO DE
iREADY FOR PRINTOUT
WMESSAGE SMESSAGE WRITTEN TO CONSOLE
BOOT {REBOOT,» GO BACK TO CCP LEVEL
AREAS
‘‘’'typer’’ version '
VERS/10+°0'y '+'y VERS MOD 10 +'0'
CR+LF+0 3END OF MESSAGE

i0F MESSAGE BASE ADDRESSES

DW
EQU

DB
DB
DB

DS

STACK

MESSEA yMESSEB yMESSEC

($-TABLE) /2 SLENGTH OF TABLE

‘this is message a’sCRILF 40

‘vyou selected b this time’»CRsLF 0

‘this messade comes out for c’»CRsLF+0

STKSIZ#2 iRESERVES AREA FOR
Listing 4-5. (continued)

End of Section 4

27

Section 5
Operation Codes

Operation codes, found in the operation field of the statement, form the principal
components of assembly language programs. MAC accepts all the standard mnemon-
ics for the Intel 8080 microcomputer. These standard mnemonics are detailed in the
8080 Assembly Language Programming Manual, published by Intel. Labels are optional
on each input line and, if included, take the value of the instruction address immedi-
ately before the instruction is issued by the assembler. The individual operators are
listed briefly in the following sections. See the Intel documentation for exact operator
details. In this section, operation codes are categorized for discussion; a sample assembly
shows the hexadecimal codes produced for each operation. The following notation is
used throughout:

e3 represents a 3-bit value in the range 0-7 that usually takes one of the
predefined register values A, B, C, D, H, L, M, SP, or PSW

e8 represents an 8-bit value in the range 0-255; signed 8-bit values are
also allowed in the range —128 through +127

elé represents a 16-bit value in the range 0-65535
where €3, €8, and e16 can be formed from an arbitrary combination of operands

and operators in a well-formed expression. In some cases, the operands are restricted
to particular values within the range, such as the PUSH instruction.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TQ DIGITAL RESEARCH 29

wn
(9}
(g
.
o
)
%]

5.1 Jumps, Calls, and Returns Programmer’s Utilities Guide

5.1 Jumps, Calls, and Returns

In some cases, the condition flags are tested to determine whether or not to take
the jump, call, or return. The forms are shown below. The jump instructions are

JMP el6 JNZ e16 JZ el6
JNC el6 JC e16 JPO el6
JPE e16 JP el16 JM el6

The call instructions are

CALL el6 CNZ el6 CZ el6
CNC el6 CCelé6 CPO el6
CPE el6 CP el6 CM el6

The return instructions are

RET RNZ RZ
RNC RC RPO
RPE RP RM

The restart instruction takes the form:
RST e3

and performs exactly the same function as the instruction CALL e3*8 except that
RST e3 requires only one byte of memory.

Listing 5-1 shows the hexadecimal codes for each instruction, along with a short
comment on each line describing the function of the instruction.

30 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

0000
0003
0006
0009
000C
000F
0012
0015
0018

0018
001E
0021
0024
0027
002A
0020
0030
0033

0036
0037

0038
0039
003A
0038
003C
003D
003E
003F
0040

0002

0041

CP/M MACRD ASSEM 2.0 #001 8080 JUMPS, CALLS: AND RETURNS

C31B00
€25C00
CA0001
D21F00
DA4142
E21700
EAODOO
F24100
FA1BOO

CD3600
€43800
CC0001
D43A00
DC0000
E43200
EC0900
F44100
FC4100

Cc7
DF

c9
Co
c8
DO
D8
EOQ
E8
FO
F8

L) 3X e

-
—

- -

w
—

- as we

AMMA:

TITLE ‘8080 JUMPS, CALLS+ AND RETURNS'’

JUMPS ALL REQUIRE A 16-BIT OPERAND

JMP L1 $JUMP UNCONDITIONALLY TO LABEL
JNZ L1+’A’ §JUMP ON NON ZERO TO LABEL

JZ 100H iJUMP ON ZERO CONDITION TO LABEL
JNC Li+4d iJUMP ON NO CARRY TO LABEL

JC ‘AB’ iJUMP ON CARRY TO LABEL

JPO $+8 iJUMP ON PARITY 0ODD TO LABEL

JPE L1/2 iJUMP ON EVEN PARITY TO LABEL

JP GAMMA iJUMP ON POSITIVE RESULT TO LABEL
JM LOW L1 §JUMP ON MINUS TO LABEL

CALL OPERATIONS ALL REQUIRE A 16-BIT OPERAND

CALL S1 iCALL SUBROUTINE UNCONDITIONALLY
CNZ S1+X iCALL SUBROUTINE IF NON ZERO FLAG
cz 100H iCALL SUBROUTINE IF ZERO FLAG

CNC S1+4 iCALL SUBROUTINE IF NO CARRY FLAG
cc S1 MOD 3iCALL SUBROUTINE IF CARRY FLAG
CPO $+8 iCALL SUBROUTINE IF PARITY 0DD
CPE S1-% iCALL SUBROUTINE IF PARITY EVEN
cp GAMMA iCALL SUBROUTINE IF POSITIVE

CM GAM$MA SCALL SUBROUTINE IF MINUS FLAG

PROGRAMMED RESTART (RST) REQUIRES 3-BIT OPERAND
(RST X IS EQUIVALENT TO CALL X#8)

RST 0 iRESTART TO LOCATION 0O

RST X+1

RETURN INSTRUCTIONS HAVE NO OPERAND

RET iRETURN FROM SUBROUTINE
RNZ iRETURN IF NON ZERO

RZ iRETURN IF ZERO FLAG SET
RNC iRETURN IF NO CARRY FLAG
RC iRETURN IF CARRY FLAG SET
RPO iRETURN IF PARITY IS 0ODD
RPE iRETURN IF PARITY IS EVEN
RP iRETURN IF POSITIVE RESULT
RM iRETURN IF MINUS FLAG SET
EQU 2

END

Listing 5-1. Assembly Showing Jumps, Calls, Returns, and Restarts

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH

5.1 Jumps, Calls, and Returns

31

5.2 Immediate Operand Instructions Programmer’s Utilities Guide

5.2 Immediate Operand Instructions

Several instructions load single- or double-precision registers or single-precision
memory locations with constant values. Other instructions perform immediate arith-
metic or logical operations on the accumulator (register A). The move immediate
instruction takes the form:

MVI e3,e8
where e3 is the register to receive the data given by the value e8. The expression €3
must produce a value corresponding to one of the registers A, B, C, D, E, H, L, or

the memory location M, which is addressed by the HL register pair.

The accumulator immediate operations take the form:

ADI 8 ACI €8 SUI 8 SBI 8
ANI 8 XRI €8 ORI €8 CPI €8

where the operation is always performed on the accumulator using the immediate
data value given by the expression e8.

The load extended immediate instructions take the form:
LXI e3,el6
where e3 designates the register pair to receive the double-precision value given by

el6. The expression e3 must produce a value corresponding to one of the double-
precision register pairs B, D, H, or SP.

32 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 5.2 Immediate Operand Instructions

Listing 5-2 shows the accumulator immediate operations in an assembly language
program and briefly describes each instruction.

CP/M MACRO ASSEM 2.0 #001 IMMEDIATE OPERAND INSTRUCTIONS

TITLE ‘IMMEDIATE OPERAND INSTRUCTIONS’

MVUI USES A REGISTER (3-BIT) OPERAND AND 8-BIT DATA
0000 OBFF MUI B+25S iMOVE IMMEDIATE A+B+C+DsE+HsL M

ALL REMAINING IMMEDIATE OPERATIONS USE A REGISTER

0002 C601 ADI 1 iADD IMMEDIATE TO A W/0 CARRY

0004 CEFF ACI OFFH $ADD IMMEDIATE TO A WITH CARRY

0006 D613 Sul L1+3 iSUBTRACT FROM A W/0 BORROW (CARRY)
0008 DE10 SB1 LOW L1 $SSUBTRACT FROM A WITH BORROW (CARRY)
000A EB02 ANI $ AND 7 SLOGICAL AND WITH IMMEDIATE DATA
000C EE3C XRI 1111$00B5LOGICAL XOR WITH IMMEDIATE DATA
000E FBFD ORI -3 iLOGICAL OR WITH IMMEDIATE DATA

’ L1:

0010 END

Listing 5-2. Assembly Using Immediate Operand Instructions

5.3 Increment and Decrement Instructions

The 8080 set includes instructions for incrementing or decrementing single- and
double-precision registers. The instruction forms for single-precision registers are

INR e3 DCR €3
where €3 produces a value corresponding to register A, B, C, D, H, L, or M. These
registers correspond to the byte value at the memory location addressed by HL. The
double-precision instructions are

INX e3 DCXe3

where 3 must be equivalent to one of the double-precision register pairs B, D, H, or
SP.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 33

5.3 Increment and Decrement Programmer’s Utilities Guide

Listing 5-3 shows a sample assembly language program using both single- and
double-precision increment and decrement operations.

CP/M MACRO ASSEM 2.0 #001 INCREMENT AND DECREMENT INSTRUCTIONS

TITLE ‘INCREMENT AND DECREMENT INSTRUCTIONS'

i INSTRUCTIONS REQUIRE REGISTER (3-BIT) OPERAND
0000 1IC INR E iBYTE INCREMENT A+BC+DsE+HsL M
0001 3D DCR A iBYTE DECREMENT A B +C+DsEsHsL M
0002 33 INX SP i16-BIT INCREMENT B.DsH,SP
0003 OB DCX B i16-BIT DECREMENT B/D+H,SP
0004 END

Listing 5-3. Assembly Containing Increment
and Decrement Instructions

5.4 Data Movement Instructions

A number of 8080 instructions move data from memory to the CPU and from the
CPU to memory. Data movement instructions also include a number of register-to-
register move operations. The single-precision move register instruction takes the
form:

MOV e3, e3

where the e3 and e 3’ expressions each produce a single-precision register A, B, C,D, E, H,
L, or M, where the M register corresponds to the memory location addressed by HL. The
register named by e3 always receives the 8-bit value given by the register expression e3'.
The instruction is often read as move to register €3 from register 3. The instruction
MOV B,H would thus be read as move to register B from register H. Note that the
instruction MOV M,M is not allowed.

The single-precision load and store extended operations take the form:
LDAX e3 STAX e3
where €3 is a register expression that must produce one of the double-precision

register pairs B or D. The 8-bit value in register A is either loaded from (LDAX) or
stored to (STAX) the memory location addressed by the specified register pair.

34 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH

Programmer’s Utilities Guide 5.4 Data Movement Instructions

The load and store direct instructions operate on either the A register for single-
precision operations, or on the HL register pair for double-precision operations.
Load and store direct instructions take the form:

LHLD elé6 SHLD el6 LDA el6 STA el6

where €16 is an expression that produces the memory address to obtain (LHLD,
LDA) or store (SHLD, STA) the data value.

The stack pop and push instructions perform double-precision load and store oper-
ations, with the 8080 stack as the implied memory address. The forms are

POP e3 PUSH e3

where €3 must evaluate to one of the double-precision register pairs PSW, B, D, or
H.

The input and output instructions are also in this category, even though they
receive and send their data to the electronic environment external to the 8080 pro-
cessor. The input instruction reads data to the A register; the output instruction sends
data from the A register. In both cases, the data port is given by the data value that
follows the instruction. The forms are

IN e8 OUT e8

A set of instructions transfers double-precision values between registers and the
stack. These instructions are

XTHL PCHL SPHL XCHG

Listing 5-4 lists these instructions in an assembly language program and briefly describes
them.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 35

5.4

0000

0001
0002

0003
0006
0009
000C

000F
0010

0011
0013

0015
0016
0017
0018

0019
0018
0004
0010

36

Data Movement Instructions

Programmer’s Utilities Guide

CP/M MACRO ASSEM 2.0 #001 DATA/MEMORY/REGISTER MOVE OPERATIONS

78

2A1900
221800
3A1900
326400

F1
Cs

DBOB
D3FE

E3
E9
F9
EB

TITLE ‘DATA/MEMORY/REGISTER MOVE OPERATIONS'’

THE MOV INSTRUCTION REQUIRES TWO REGISTER OPERANDS

(3-BITS) SELECTED FROM A+B:C+sD+EsHsy OR M (MM INVALID)

MoV A4B iMOVE DATA TO FIRST REGISTER FROM
iSECOND

LOAD/STORE EXTENDED REQUIRE REGISTER PAIR B OR D
LDAX B iLOAD ACCUM FROM ADDRESS GIVEN BY BC
STAX D iSTORE ACCUM TO ADDRESS GIVEN BY DE

LOAD/STORE DIRECT REQUIRE MEMORY ADDRESS

LHLD D1 iLOAD HL DIRECTLY FROM ADDRESS D1
SHLD Di1+2 iSTORE HL DIRECTLY TO ADDRESS D1+2
LDA D1 iLOAD THE ACCUMULATOR FROM DI

STA D1 SHL 23iSTORE THE ACCUMULATOR TO D1 SHL 2

PUSH AND POP REQUIRE PSW OR REGISTER PAIR FROM B.D.H
PoP PSHW iLOAD REGISTER PAIR FROM STACK
PUSH B iSTORE REGISTER PAIR TO THE STACK

INPUT/0UTPUT INSTRUCTIONS REQUIRE 8-BIT PORT NUMBER
IN K+2 iREAD DATA FROM PORT NUMBER TO A
out OFEH iWRITE DATA TO THE SPECIFIED PORT

MISCELLANEOUS REGISTER MOVE OPERATIONS

KTHL iEXCHANGE TOP OF STACK WITH HL
PCHL iPC RECEIVES THE HL VALUE

SPHL iSP RECEIVES THE HL VALUE

XCHG iEXCHANGE DE AND HL

END OF INSTRUCTION LIST

DS 2 iDOUBLE WORD TEMPORARY
DS 2 iANOTHER TEMPORARY
EQU 4 iLITERAL VALUE

END

Listing 5-4. Assembly Using Various Register/Memory Moves

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 5.5 ALU Operations

5.5 Arithmetic Logic Unit Operations

The 8080 set includes instructions that operate between the accumulator and sin-
gle-precision registers, including operations on the A register and carry flag. The
accumulator/register instructions are

ADD e3 ADC e3 SUB e3 SBB €3
ANA e3 XRA e3 ORA e3 CMP €3

where €3 produces a value corresponding to one of the single-precision registers A,
B, C, D, E, H, L, or M, where the M register is the memory location addressed by
the HL register pair.

The accumulator/carry operations given below operate upon the A register, or
carry bit, or both.

DAA CMA STC CMC
RLC RRC RAL RAR

The function of each instruction is listed in the comment line shown in Listing 5-5.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 37

5.5 ALU Operations Programmer’s Utilities Guide

0000
0001
0002
0003
0004
0005
0006
0007

0008

0009
000A
0008
000C
000D
000E
000F
0010

0011

CP/M MACRD ASSEM 2.0 #001 ARITHMETIC LOGIC UNIT OPERATIONS

80
80
94
29
Al
AF
BO
BC

09

27
2F
37
3F
07
OF
17
1F

TITLE ‘ARITHMETIC LOGIC UNIT OPERATIONS'

ASSUME OPERATION WITH ACCUMULATOR AND REGISTER
WHICH MUST PRODUCE Ay By Cy» D» E» Hy Ly OR M

- ws e e

ADD B iADD REGISTER TO A W/0 CARRY
ADC L iADD TO A WITH CARRY INCLUDED
suB H iSUBTRACT FROM A W/0 BORROW
SBB B+1 iSUBTRACT FROM A WITH BORROW
ANA C iLOGICAL AND WITH REGISTER
XRA A FLOGICAL XOR WITH REGISTER
ORA B iLOGICAL OR WITH REGISTER

CMP H iCOMPARE REGISTER+ SETS FLAGS

i DOUBLE ADD CHANGES HL PAIR ONLY
DAD B iDOUBLE ADD B,D»H,SP TO HL

i REMAINING OPERATIONS HAVE NO OPERANDS

DAA iDECIMAL ADJUST REGISTER A USING LAST OF
CMA iCOMPLEMENT THE BITS OF THE A REGISTER
STC iSET THE CARRY FLAG TO 1
CMC SCOMPLEMENT THE CARRY FLAG
RLC i8-BIT ACCUM ROTATE LEFT+ AFFECTS CY
RRC i8-BIT ACCUM ROTATE RIGHT: AFFECTS CY
RAL i9-BIT CY/ACCUM ROTATE LEFT
RAR i9-BIT CY/ACCUM ROTATE RIGHT

1]
END

Listing 5-5. Assembly Showing ALU Operations

The double-precision add instruction performs a 16-bit addition of a register pair
(B, D, H, or SP) into the 16-bit value in the HL register pair. This addition produces
the 16-bit (unsigned) sum of the two values. Th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>