SL5 STSTEM REFERENCE MANUAL

Information contained in this wmanusl is disclosed in confidence and may
not be duplicated in full or im part by any persom without prior written
spproval of The Stackvorks. Its sole purpose is to provide the user with
adequately detailed documentatiot so as to efficiently imstall, operate, and

mgintain the system supplied. The use of this document for all other purposes
is specifically prohibited,

4

"-_." 12,05

COPTEIGET 1980
By The Stackworks
321 E RKirkwood Avenne
P.0. Box 15096
Bloomington IN 47402
(812) 336~1600

References are made throughout this manual to the CP/M operating system, to
the Z80 microprocessor, and to the 8080 microprocesser. CP/M is a registered
trademark of Digital Research of Pacific Grove CA. 280 is g registered
tracemark of Zilog Imc. 8080 is s registered trademark of Intel Corp.

Statement of Warranty

Super3Seft diseclaims all warranties with
regard to¢ the scoftware c¢ontalned on discette,
tape, or printed form, including all warranties eof
merchantability and fitness; and any stated
expreas warranties are in lieu of a2ll obligations
or liability on the part of Super3cft for damages,
inciuding but not limited to special, indirect or
consequential damages arising out of or in
connection with the use or performance of the
software licensed.

Transferability

SuperSoft software sand manuals are sold on an
individual CPU basis and NO rights for duplication
are granted. X N feth

Title and ownership of the software and
manual shall at all times remain with SuperScft

It is understood that acceptance of this
software product implies agreement with the above
policles.

Application Note #1
(Z80 Version)}

Branching to Externzls

Sometimes it becomes necessary to branch te (or "CALL") an external
assembly language routine from 8 word and return to that word after some
action is preformed, This note will iliustrate two ways in which this cap
be accomplished by the use of an additional code word. The assembler is
assumed to be present in the following examples,

The first example branches to a specified address EXAD, where the
following code exists,

EXAD: LD A,20H
ouT (CD1IH) ,A ;SERD A BLANK TO PORT D1i.
RET ;RETUEN TO CALLEE,
In the SL5 portion of the program, the following words are defined.
F600 CONSTANT EXAD (address of routine)
CODE BRANCH-EXAD EXX DE PUSH HL PUSE EXAD CALL
HL PCP DE POP SNEXTHL JP EDOC

Whenever the word BRANCH-EXAD is executed, the alternate register pairs
DE & HL are saved on the stack before and are restored after calling EXAD,

The second example to be given is slightly more complex then the previous
one, because it branches to amn address placed on the stack and passes
parameters to and from the external. This example will assume that the
following assembly language routines exist starting at F605.

EXAD2: LD A,C ;LOAD A4 WITH THE DATA.
oUT (OD1H) ,A ;SEND IT TO PORT DIl.
RET ;RETURN TOD CALLER.

EXAD3: IN A,(OD2H) ;READ FROM PORT D2.
RET

In the SL5 portion of the program the following words are present.

F605 CONSTANT EXAD2 (ADDRESS OF EXAD2)
F609 CONSTANT EXAD3 (ADDRESS OF EXAD3)
CODE BRANCH HL POP BC POP
EXX DE PUSH HL PUSE EXX
HERE 5 + DE LD DE PUSH (HL) JP
EXX HL POP DE POP EXX
41l LD 0 B LD $PUSH JP EDOC
: TESTI " A EXAD2 BRANCH DROP ;

¢ TEST2 O EXAD3 BRANCH , ;
Whenver TEST1 is executed, the letter A (4] hexidecimal) will be sent to

port D1, Whenever TEST2 is executed, port D2 is read and the value is
displayed via the ".".

o
]
H]

L}

N
-
ONMHMUOY> W~ L WN—O

[d
P

P B Bt e o Bt B b s b 2 bes e e
MU Omd Do~ W

—
b

Nl#NNNMBNNNHHr—HHHHH [o
W o =~} h ua b RO W~ W OWOo WL LR D 2

La W
e O

char

zull
sgh
8LX
etx
eot
eng
ack
bell
bs
ht
1f
vt
£f
cr
B0
si
dle
del
de
del
dcéd
nak
2yn
ethb

em
sub
esc
fs
g8
TS
us

hex

20
21
22

24
25
26
27
28
29

28
2C

2E

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

The Ascii Character Set

dec

32
33
34
35
36
37
38
39
40
41
42
43
b
45
&6
47
48
49
50
31
52
53
54
35
56
57
58
59
60
61
62
63

char

T v + %~ Avth M0

LURRY . I, BN - LRV B A VURY RO L o R S

[IRV BV .S

hex

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
SE
SF

dec

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
B6
87
88
89
90
91
92
93
94
95

n
=2
mn
H

— N H TS WOoOwOoORRXCPR LU OMMMN OO > mw

hex

60
61
62
63
64
€5
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
19
74
78
7¢C
7D
7E
7F

deg

96 .

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

char

s

4

ot e N Y M E L4 2 v DD O P H HRRFOMHTR MO AN OD
L

Tubout

Preface

SL5 is more than 2 language; it is a complete approach to small systems
srogramming. The distributed CP/M compatible diskette contains every line of
source code for the system.

We believe SLS will greatly enbance the development cf software for the
micro-processor/small system of the “80s, It is self-contained and can be
completely regenerated at amy time. Subsets of the development system can be
created using a minimum of 2K bytes of storage. Thus, a complete end user
oriented package can be developed at a high level, debugged, and then
.mplemented in EPROMs or very small memory systems.

This feature should rezlly impact OEMs who market micro-based products
apd are nov using assembly code. SL5 is not likely to increase memory usesge,
and on large programs is likely to need less space due t0 its threaded 1ist
structure, Ip any case programming-debugging-modification time will be
dramatically reduced.

Since SLS is8 written in SL5 it will be easy to change to & nevw CPU in
the future. Controllers pow using a Z80 could be switched to & 6809 without
huge software changes. In addition the system is easily extensible and can be
snbanced to meet your needs at any time, Want a simpler 1/0 structure thano
\ ¥M? All the books are in the SL5 source to make the change.
= All of the SL5 system can be moved to & new CPU by redoing the kernel for
that CPU and its operating system 1/0. As part of this manual, we have
provided documentation or how the kernel works, and all of its source code is
included with the system.

Where does the system go next? In large measure that depends on where
you want it to go. We are committed to both implementing the system on more
CPUs/operating systems, &pd also adding more powerful features and
enhancemenrs. We are already working oo an AMS51]1 compatible floating poiant
package and a character string handling package. We have a MC6809 version
nearly ready and we will comsider doing other stapdard CPUs as well. We are
definitely interested in having a version for the MC68000 in the coming
months,

We want to establish a broad base of users/developers who can expand the
system evenr futher. The simplicity of structure inherent in the SL3 syntax
coupled with its compact productiom code, fast speed, high-level coding, ard
in-line assembly code capability make this system among the best available.

('n arriving at the £imnal vocabulary chboices we have varied from the 1977 Forth
"andard only where we felt that its struccure was not powverful enough or not
:adable enough.

We look forward to an exciting decade for small systems ,and we are
confident that you have purchased a product that will allow you to keep up
with the fast pace of the "80s. We think that as you continue to work with
this powerful system you will share this confidence.

We are available as an additional resource for programming problems,
bugs, special problems, etc, Feel free to contact us at any time.

Go with ifae..
Mike Brothers

Larry Moopgin
Dave Delauter

Gettz.ng Started _) R - A

SLE is distributed as a set of CP/M text and COM files on & single
diskette. Its a good idea to make one or more backuyp copies of the -, -
distribution disk before using the system. PIP the files over to a disk which
has been SYSGENed with a copy of your CP/M system. The text file SL5.DOC
contains a description of each £ile on the diskette, 1f you are familiar with
Forth type languages, browse through the Reference Section list the SL5.DOC . . .
file and go to 1it, New users should read the Tutorial Section and work through

the examples first. L AR ol
To bring up SL5: o _ kY ; C R, : L
1. Enter cntl~C or reset the system to bring up CP/M L ,“
2. Eater SL5<cr> ' * . ; - “op

_ The prompt > should appear on your screen. Lf it doesn’t try again, then -
give us & call. , ,

- -
-

R

(
(

—

-

{

Using SL5

SL5 can be used it a variety of ways depepnding o vour needs. The
development systex caz be used imteractively to test out simple procedures,
debug & newv piece of hardwzare, or write a3 simple test driver for 3 device.
New words(procedures)can be defined, but will disappear om a reset. HNew words
are said to be "compiled” which actually means that a symbol table entry is
made and a threaded list of poipters to the words ino the definition is created
for later execution. Thus, the compiled code segment is extremely compact.

Execution of SL5 words is accomplished by an inper interpreter which
fetches word addresses from the threaded list and executes each wvord in turn.
The overbead for each word is about equivalent to a subroutine call and
return, Most coding is done using the stack for parameter storage for both
input ané output to a word., There are also arrays, variables, and constants
defined in the language. For most programs a 256 byte stack is more than
sufficient and careful structure of code allows for a ROM based system
implementation with very small RAM and ROM requirements.

Complex programming is usually done by writing the SL5 colon or code
iefinitions onto & f£ile using am editor. This file is then compiled on top of
the development system by using the word FLOAD. Each defined word can be
checked for proper execution starting from the simple definitioms and working
up to the more complex words.

When the file(program) is debugged, tbhere are several options:

1) Do nothing...that is load the program each time it is
used by loading SL5 and then FLOAD the program.

2} Create 2 memory image of the working version of the
program that can then be saved on disk. The COMMOD procedure
does this.

3) Create a RAM or ROM image of the program (with all or part of
the SL5 system includeg)starting from a minimal 1K system
wvith simple user 1/0 to a 10K development system plus the
wvorking program. The SYSMAK routine is used tp create these
modules. The Object Modules Section describes how these

N systems are created in some detail.

o~ The SL5 system is extensible, adaptable, collapseable, and well

documented making it 2 very powerful, self-contained programming tool.

-

L

>

e

N
t i
*
Ll
w4
~
,
s %
2
A
sha
v
N
o
[
-
*
L -

oy

=3

-

[39

r

£

1.

Table of Contents

-

Tutorial
IRETOodUuCEiOl e + 4 o v 4 s e o e 5 e o a
DECTIMAL
Numbers L3 - - L] L] L] - L) - . - . [- . o °

Simple Stack and Arithmetic Operators ..
DUP SWAP + - =*

Dlspla?ung a Message . +« ¢« v ¢ o & ¢ » o

Colon Definitions...Creating New Words . .
P
Word Names

Program Control Words . . . « « ¢+ « & « &
BEGIK END
IF ELSE ENDIF
D0..LOOP
FORGET

Comszants, Variables ¢ ¢ « + « &
CONSTANT
VARIABLE
@ (fetekr)
!' (store)
BE B!

Writing a2 Program...a Simple Example . . .

)

—

90

10,

11.

12.

Reference

Introduetiol o 4 ¢ 4 & s 6 + % os e & 8 s s

The Stack « o s s = & s 5 s 8 & © ® e & ¢ =
Stack Operators

Nunbe:s * ® . . * - ® L) . * L] L] - - - - L]
Variables and CODSLANLE . ¢ o o « « o = ¢ » o
Constants
Variables
Memory operators
Arithmetic and Logical Operators
Conditional OPEZABLOTSE « v ¢ o o o o ¢ « o & &«

Quter Interpreter e £ 5 s a4 s s o 4 s s s a

:Definitions P 8 s & & & 4 & = » & & » a @
Ipner Interpreter

Brapcking
I¥..ELSE..ENDIF
CASE..NOCASE. .CASEND

Loops . . ¢ ¢ ¢ i e b e st e e s e e e e
BEGIK..END
BEGIN..WHILE., .REPEAT
DO ., LOOP
+L0OP, EXIT
Loop indexes (I,J,K)
RECURSE

A:’ra?s L] L] L] * * ; . L] L] - . & @ » " 4 & & &
ARRAY .
BARRAY

I!O.a-ae-aon-oo-.c--ccc-
Introduction
INFILE, OUTFILE
FALLOC, NAMIT
OPENR, OPENW, FLUSE, CLOSE
GCB, TCHE, T", TYPE
CIN, corT, C"
RCE, WCH
REYTE. WBYTIE
READ, WRITE
DELETE. RENAME
ININIT, OUTINIT
EOF
WORD
Numeric input
Numeric output
FLOAD, [end—of=file}

L]
-~ ~ o

A2

A2

[

13.

id,

15.
1.
17.

User Defined Code STructures . ¢ « « + « « » o

: CODE

The DICLiOBETY + o & o o o & o 1 = &
Symbel Table
Vocabularies
Chaining
FIND
FORGZT
“, "B, °S, COMPILE

CODE Words . . ¢ o ¢ ¢ 4 ¢ o« o &+ ¢ o ¢ o« »
System Variables . . . « v v v ¢ 4 & o o o

ETTOr WEeSEATES . o + o ¢ & o o o 2 6 4 o o o o

Introducetiol ¢ &+ ¢« o ¢ ¢ & ¢ ¢ & o« s e s o »
Execurion of CODE Wozds . o « 4 o« o o o o «

Creation of CODEI Words c B o s o ¢ b e s »

Using the Assembler
Exiting from a Code Word
Branching Within CODE Definitions
Forward Branching
Looping

1
2
3

s & o

Assembler MRemomics . « « « « + « s « = o &
Register Usage. . + + v v ¢ & s » & & « o o

Exampies of CODE Defimitions.« . « . .

Debug

Introductiol, . . &« « « 4+ v 4 o & 4 & v . . .
DUMP - Memory Dump. . . ¢ + ¢ & & & « & o o &
MODIFY =~ Memory Modify. . . .« . . . + + + « .
PSDMP, RSDMP - Stack Dumpimg. . « « « « « . .
BREAK, *UB* - Breakpointing

SYM®, SYMDUMP - Dictiomary Ixamination. . . .

- .18

.19
.20
W21

.1
.3

o~

CP/M Interface

l. Imtroduction .« ¢« ¢ v ¢ v ¢ o 5 0 s ¢ s o « o ¢ &
2. Loadipg SL3 object files . « v v ¢ o o o o o o =
3, TLOAD « ¢ v ¢ ¢ 4 o s o s « o« & s« s » a s « &
G CALLCPM , . . v 4 4 ¢t c ¢ o =+ 2 o o « = o« » «
5. Serial 170 « 4 v o v 6 b b h h a6 e e e e e e
B. Digk I/0 . o ¢ 4 ¢ o o o o o b o s a4 e e o e e s
7. OPENR, OPENW . o ¢ « 2 s « ¢ s o s s s « 5 o » &

Object Modules

1. INtToduetion .« o« o« 4 o o & 4 s 4 s b6 2w e e
2. Compiling a Subset of the SL5 Kermel.

Quter Interpreter

Compiler

Consele 1/0

FTile Systen

User 1/0

The Symbol Table

Delating a Section of the Kernel

3. Gemerating a ROM Based Concroller Program . . .

[Generating a2 RAM COM Module with SYSMAKE . . .

5. SISMAKE Errors and Parameters . . . <« « « o o+ o

6. Generating a COM module with COMMOD
Creating Disk COM File

Creating a COM File With an Initialization
Creating a COM File Without a Symboel Table

L
w [] [] (8]

.
ST S

Routine

AT S

1S
P

1.

2.

3.

4,

Structure

ln:roduCtion » ° a . L] L] Ll - L] . * a L] L] L

Memory Organizafioh. . +« . + ¢ « o « « ¢ + &

Compilatior of Words . o v + v ¢ & o o & =« &

1. Colon Defimitiems. . « « o« o« . =

l. Literals « . + + . . .
2. T"] L - - L] L) + L] L L]
3. Branching . .

IF..ZLSE. .ENDIF

BEGIN..END

RECURSE

;¢ aod ;CODE
2 L] CGDE De:’ ini L ions L] L - -, a L] . - -
3. CONSTANTSs. . & 2 ¢ & ¢ & & o =& = =
4 + VARIABLES * [] L] - L - - - ® L] - - -

5. ATTEYS + ¢ v 4 4 4 s e 6 s e e e

Ihe Di ctionary Ll L] L] - * - L 3 » » [] [] L] - L 2 -
1. The CURRENT & CORTEXT Pointers . .
2. vOCabulariES - - . L] - . . - L] L]
Their Internal Structure
Vocabulzry Chaining

3. Dictiomary Reduction . « . « + . .

Glossaries
SLS Glossary + « + 4 o + s o s 4 4 4 e 0 4 s
Assembler GloSsaTy . + ¢« ¢ ¢ 4 . s e e o o .
File System GlossSary . . « &+ o 4 o « o o & =

Debug Glossazry . . . « v o v ¢ ¢ ¢« v« . .

L]
[E R0 o w L

.10
.10
1l
.11

Jd2
12

'12

- 1
A7
.18

i~

)

Tutorial

Introduction

This section describes how to do simplie SLS programming and includes
examples of some of the predefined SLS procedures, called words. SL3S
Programs ace developed by defining new words using the predefined omnes. For

the most effective learning try the exanples 28 vou read. Bring up the 5L35
gystem now, as described in the Interface Sectio:n,

The prompt character ">" on the CRT indicates that SL5 is waiting for
input. Keyboard entries are terminated by a cerriage return which in the
early examples is indicared by the symbols <er>. In later examples the <er>
is omitcted, but 8 carriage returt is assumed after each entry. For example
the predefined word DECIMAL can be entered teo tell the SLJ system that numbers
entered are it base 10. Make this entry pow.

Type: DECIMAL <ezr> -

DECIMAL snd many other predefined words are described in the Reference Section
and also in the Glossary.

(? Bumbers

N

SL5 has two primary structures, words(procedures) and numbers. Numbers
are stored as lé bit integers in memory.

Enter a: 2 <er> »

Not much seems to have happened, but the system has recognized the number
2 and stored it in the primary storage area, the "Push Down Stack"™. Much like
a pile of plates, the last number entered on the Stack will be the first to be
temoved. The Stack concept is the heart of the SL5 system and will become
more obvious it the examples that follow.

Now enter a: 3

The 3 is stored on the Top of the Stack(T0S) vith the 2 being pushed Hext on
the Stack(N0S). 4 periocd 1s predefined to mean remove and display the TOS.

Type: .

g" removes the TOS and displays it(the 3 iz this case) on the CRT. This
- 5 the value 2 remaining on the TOS.

Tvpe: .
Now the 2 is displayed leavimg the Stack empty.
Type: .

The error message "Stack Underflow Abort" indicates an empty Stack. Iry
entering several numbers and then displaying them wiidb the period.

Tutorial -~ 1

J

O

Simple Stack and Arithmetic Operators

Many of the predefined words use the Stack for their input data and leave
their results on the Stack when they finish., DUP and SWAP are two of the most
used worés. DUP means create a copy of the TOS and put it on the TOS(the
original is now NCS). SWAP means reverse the top number with the one under
it.

Try: 4 & DUP . . .) . *
anc alse: & & GSWAP ., .) ’

3 4

LY R

This same use of the Stack for inputr and output carries over to the
arithmetic operators as well. . 2
o = sy
Iry: 2 3 + - toREs o~ L
Plus removes and adds the top 2 Stack entries apd puts the sum back on the
Stack. Try some more experiments with other operators includinmg:

-~ A
s

& 2 3 * - {result=2) A4
This notation is slightly confusing, but more than offset by the ease of
defining new words, the execution speed, and the simplicity of structure, -

Displaying a Message -
b

P .
1] o

2

Type: T This is = message

~ (. .
- - +

i

Anything betwveer the T" and the " will be displaved. Note tbat a " will
not display using this technique. The space after the T" is mandatory.
Another useful word in this context is CR.

Try: T line onme " CR T" lipe two " CR , E
Iry some variations of the above exanmple. 'j o L BR e
Colorn Definitions..Creating New Words ©e

New words can be defined Dy using the two wards color and semi-colon.

Type: : MESSAGE T" This is a test " CR ;

The predefined word colomn(:) creates a symbol table entry for the wvor
MESSAGE. ~

Now type: MESSAGE “gv
Try: : SUM <+ T THESUMIS " . CR ;

This word SUM expects two numbers to be on the Stack when it is called. It
adds them, displays a message, displays the T0S, and then does a carriage
return.)

2
T

Type: 2 3 SUM . - AT 3
Type: 20 <3 SUM

<z

Tuterial - 2

L4]

Stackwork’s FORTH)

Review by Arne Henden

Stackwork’s FORTH (SL5) is one
of the more unusual and interesting
implementations of FORTH thatI've
seen. It matches FORTH-77 (with
some minor differences) instead of
FORTH-79. While double precision
integer arithmetic operations are not
included, many normally optional
features such as arrays and case
statements are available. The SL5
copy that I have is over a year old so
this review does not include any re-
cent changes.

File Access

As opposed to Z80 FORTH, which
is tied to CP/M but treats the disk
just like traditional FORTH (as 250
1024-byte blocks, randomly ac-
cessed); SL5 uses sequential access,
record oriented files exclusively and
has no block structure.

This means that SL5 does not re-
serve 1024-byte memory blocks to
buffer data from the disk, leaving
more memory space for application
software. One input and one output
file can be open simultaneously with
the basic system, and more files can
easily be added if necessary. SL5 can
perform character or buffered read/
write operations. Rather than
LOAD one application screen at a
time, it loads the entire application
file.

FORTHuwords continued

The next couple of columns will
discuss benchmark results for the
five FORTHs mentioned in this col-
umn, a very accurate hardware
timer using CTC#0, and discuss
several screens of utility software.
Also, there’ll be a review of HART-
FORTH.

Meanwhile, please send me your
questions and comments about
FORTH. I would very much like to
help you use this unique program-
mer’s language to its fullest advan-
tage!

What you get

The SL5 disk comes with one of
the best manuals I've seen. Its major
entries include a tutorial (6 pages),
reference (22 pages), the Z80 as-
sembler (12 pages) and a glossary (20
pages).

The disk includes the kernel (both
.ASM and .COM files), the debug
package (DEBUG.SL5), and the as-
sembler (ASSEM.SL5). SL5 itself re-
quired no modifications and worked
the first time. One of the major ad-
vantages of SL5 is that all of the
source code is included, making sys-
tem modification simple.

Disk I/O

SL5’s non-FORTHian file struc-
ture makes SL5 appear quite differ-
ent from other versions of FORTH.
No editor is included because all files
can be entered with any standard
editor such as ED. This means that
debugging changes are not interac-
tive.

Because you cannot examine
source files easily while in SL5 (no
LIST commands), errors during
loading are hard to trace down. You
cannot incrementally load your pro-
gram. More disk activity is necessary
since source code is brought in one
sector at a time and no extensive buf-
fering is included. At the same time,
the ability to manipulate source files
with standard editors and other lan-
guage compilers is an advantage.
Leaving out the screen buffers pro-
vides more application program-
ming space.

The compiler and assembler

Another advantage of SL5is thata
cross-compiler is built-in. You can
easily produce ROMable code for
dedicated applications. SL5 does
this by separating code and data
areas from the symbol table. You can
create headerless code by simply re-
moving the symbol table while
cross-compiling. Variables and ar-
rays can be stored separately from
code segments, easing the problem
of creating ROMable FORTH.

New system configurations can be
of two types: user applications load-
ed on top of SL5, creating a new

SL5.COM file; and creating entirely
new systems using the cross com-
piler, perhaps modifying the kernel
or burning a small application into
ROM.

The assembler is excellent. Not
only are Zilog mnemonics sup-
ported, but high level structures
such as IF-ELSE-ENDIF and BE-
GIN-END are available. Stackworks
is careful to point out system register
usage to prevent loss of pointers by
assembly code produced by the
user.

Conclusion

My major complaint with SL5is its
file structure. When you lose the
FORTH block/screen, you lose many
of the advantages of FORTH. In-
teractive debugging is hampered,
more disk I/O occurs, and less stor-
age space is available on any given
disk. SL5 is not easily upgradable to
FORTH-79 because of the file struc-
ture.

Also, no double precision integer
words are included, and floating
point is not available as an option.

In all, I think SL5 is a good lan-
guage that is well documented and
comes with a lot of usually optional
features. Its unique implementation
of FORTH is interesting, but at the
same time prevents me from recom-
mending it to a user who wants to

learn standard FORTH.
HENE

Name: SLS

Authors: The Stackworks

Mike Brothers
Larry Mongin
Dave DelLauter
Type: ~ FORTH for the Z80
Distributor: Supersoft Associates
P. 0. Box 1628
Champaign, IL 61820
Price: $175
Requires: CP/M operating system
280 processor
24K bytes RAM
110 page 8 1/2 x 11"
spiral bound

Manual:

Micro Cornucopia, Number 4, February 1982

13

fritz
Kommentar
From:

https://archive.org/details/micro-cornucopia-magazine-1982-02

	SL5 SYSTEM REFERENCE MANUAL
	Application Note

