
SL5 SYSTEM REFERENCE MANUAL

Information contained in this manual is disclosed in confidence and may
not be duplicated in fu l l or in part by any person wi thout prior vritten
approval of The Stackvorks. Its sole purpose is to provide the user w i th
adequately detailed documentation so as to efficiently install, operate, and
maintain the system supplied. The use of this document for all other purposes
is specifically prohibited.

COPYRIGHT 1980
By The Stackworks

321 £ Kirkvood Avenue
P.p. Box 1596

Bloomineton IN 47402
(812) 336-1600

References are made throughout this manual to -the CP/M operating system, to
the Z80 microprocessor, and to the 8080 microprocessor. CP/M is a registered
trademark of Digital ^search of Pac i f ic Grove CA. Z80 is a registered
trademark of Zilog Inc. 8080 is a registered trademark of Intel Corp

Statement of Warranty

SuperSoft disclaims all warranties with
regard to the software contained on discette,
tape, or printed form, including all warranties of
merchantability and fitness; and
express warranties are in lieu of all
or liability on the part of SuperSoft
including but not limited to special,
consequential damages arising out

any stated
obligations

for damages,
indirect or
of or in

connection with the
software licensed.

use or performance of the

Transferability

SuperSoft software and manuals are sold on an
individual CPU basis and NO rights for duplication
are granted. _ „ ^

Title and ownership of the software and
manual shall at all times remain with SuperSoft

It is understood that acceptance of this
software product implies agreement with the above
policies.

Application Mote #1
(Z80 Version)

Branching to Externals

Sometimes it becomes necessary to branch to (or "CALL") an external
assembly language rout ine f r o m a word and re turn to that word a f t e r some
action is preformed. This note will illustrate two ways in which this can
be accompl i shed by the use of an addi t iona l code word. The assembler is
assumed to be present in the following examples.

The f i rs t example branches to a specif ied address EXAD, where the
following code exists.

EXAD: LD A,20H
OUT (OD1H),A ;SEND A BLANK TO PORT Dl.
RET ;RETUEN TO CALLER.

In the SL5 portion of the program, the following words are defined.

F600 CONSTANT EXAD (address of routine)

CODE BRANCH-EXAD EXX DE PUSH HL PUSH EXAD CALL
HL POP DE POP $NEXTHL JP EDOC

Whenever the word BRANCE-EXAD is executed, the alternate register pairs
DE & HL are saved on the stack before and are restored after calling EXAD.

The second example to be given is slightly more complex then the previous
one, because it branches to an address placed on the stack and passes
parameters to and f r o m the external. This example wi l l assume that the
following assembly language routines exist starting at F605.

EXAD2: LD A , C ;LOAD A WITH THE DATA.
OUT (OD1H),A ;SEND IT TO PORT Dl.
RET ;RETURN TO CALLER.

EXAD3: IN A,(OD2H) ;READ FROM PORT D2.
RET

In the SL5 portion of the program the following words are present.

F605 CONSTANT EXAD2 (ADDRESS OF EXAD2)
F609 CONSTANT EXAD3 (ADDRESS OF EXAD3)

CODE BRANCH HL POP BC POP
EXX DE PUSH HL PUSH EXX
HERE 5 + DE LD DE PUSH (HL) JP
EXX HL POP DE POP EXX
A L LD 0 H LD SPUSH JP EDOC

: TEST1 " A EXAD2 BRANCH DROP ;
: TEST2 0 EXAD3 BRANCH . ;

Whenver TEST1 is executed, the letter A (41 hexidecimal) will be sent to
port Dl. Whenever TEST2 is executed, port D2 is read and the value is
displayed via the ".".

The ABCÜ Character Sec

hex dee char hex dec char hex dec char hex dec char

0
1
2
3
4
5
6
7
8
9
A
Z
C
D

n
T

10
11
12
13
14
15
16
17
18
19
1A
[B
1C
ID
IE
IF

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

null
s oh
stx
etx
eot
enq
ack
bell
bs
ht
If
vt
ff
er
so
si
die
del
dc2
dc3
dc4
nak
syn
ecb
can
em
sub
esc
fs
gs
rs
US

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

I
n

#
$
Z
&
f

(
)
*
+
»
-
*

/
0
1
2
3
4
5
6
7
8
9
•
i
<

->
?

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
A

60
61
62
63

96
97
98
99

a
b
c
d
e
f

64 100
65 101
66 102
67 103 g
68 104 h *
69 105 i
6A 106 j
6B 107 k
6C 108 1
6D 109 m
6E 110 n
6F 111 o
70 112 p
71 113 q
72 114 r
73 115 s
74 116 t
75 117 u
76 118 v
77 119 w
78 120 x
79 121 y
7A 122 z
7B 123 {
7C 124 |
7D 125 }
7E 126
7F 127 rubout

Preface

SL5 is more than a language; it is a complete approach to small systems
programming. The distributed CP/M compatible diskette contains every line of
source code for the system.

We believe SL5 vill greatly enhance the development of software for the
nicro-processor/small system of the "80s. It is self-contained and can be
completely regenerated at any time. Subsets of the development system can be
created using a minimum of 2K bytes of storage. Thus, a complete end user
oriented package can be developed at a high level, debugged, and then
implemented in EPROMs or very small memory systems.

This feature should really impact OEMs who market micro-based products
and are now using assembly code. SL5 is not likely to increase memory useage,
and on large programs is l ikely to need less space due to its threaded list
structure. In any case programming-debugging-modif icat ion t ime vill be
dramatically reduced.

Since SL5 is vritten in SL5 it vill be easy to change to a nev CPU in
the future. Controllers nov using a Z80 could be svitched to a 6809 vithout
huge software changes. In addition the system is easily extensible and can be
enhanced to meet your needs at any time. Want a simpler I/O structure than

v ^M? All the hooks are in the SL5 source to make the change.

~ All of the SL5 system can be moved to a nev CPU by redoing the kernel for
that CPU and its operating system I/O. As part of this manual, ve have
provided documentation on how the kernel vorks, and all of its source code is
included vith the system.

Where does the system go next? In large measure that depends on vhere
you want it to go. We are committed to both implementing the systea on more
C P U s / o p e r a t i n g s y s t e m s , and a lso add ing more poverful features and
enhancements. We are already working on an AM9511 compatible floating point
package and a character string handling package. We have a MC6809 version
nearly ready and ve vill consider doing other standard CPUs as veil. We are
defini te ly interested in having a version for the MC68000 in the coming
months.

We want to establish a broad base of users/developers who can expand the
system even futher. The simplicity of structure inherent in the SL5 syntax
coupled vith its compact production code, fast speed, high-level coding, and
in-line assembly code capability make this system among the best available.

/-""n arriving at the final vocabulary choices we have varied from the 1977 Forth
'indard only vhere ve felt chat its structure vas not poverful enough or not
iadable enough.

We look forvard to an exciting decade for small systems ,and ve are
confident that you have purchased a product that vill allow you to keep up
with the fast pace of the '80s. We think that as you continue to vork vith
this poverful system you vill share this confidence.

We are available as an additional resource for programming problems,
bugs, special problems, etc. Feel free to contact us at any time.

Go vith it...

Mike Brothers
Larry Mongin
Dave DeLauter

Getting Started , .. :li:

SL5 is distributed as a set of C P / M text and COM fi les on a single '.::-
d i ske t t e . Its a good idea to make one or more backup copies of the .,: •
distribution disk before using the system. PIP the files over to a disk vhich ; ' - , :
has been SYSGESed wi th a copy of your CP/M system. The text f i le SL5.DOC
contains a description of each file on the diskette. If you are familiar vith
Forth type languages, brovse through the Reference Section list the SL5.DOC ,: .. r
file and go to it. New users should read the Tutorial Section and work through :, '
the examples first. ^ • ; v ,, , - - .

- - • • ̂ . ~i- ,,' '- "".1."

To bring up SL5: • ;. : • .- -• „ • - - ;...

1. Enter cntl-C or reset the system to bring up CP/M . . - - • • . :•*. 1,^.-,

2. Enter SL5<cr> * " " • - ' ! J' ; ;̂
jf >

The prompt > should appear on your screen. If it doesn't try again, then
give us a call.

using SL5

SL5 can be used it a. variety of ways depending on your needs« The
development system car be used interactively to test out simple procedures,
debug a new piece of hardware, or wri te a. s imple test driver for a device.
New words(procedures)can be defined, but will disappear on a reset. New words
are said to be "compiled" which actually means that & symbol table entry is
made and a threaded list of pointers to the words in the definition is created
for later execution. Thus, the compiled code segment is extremely compact.

Execution of SL5 words is accomplished by an inner interpreter which
fetches word addresses from the threaded list and executes each word in turn.
The overhead for each word is about equivalent to a subroutine call and
return. Most coding is done using the stack for parameter storage for both
input and output to a word. There are also arrays, variables, and constants
defined in the language. For most programs a 256 byte stack is more than
sufficient and careful structure of code allows for a ROM based system
implementation with very small BAH and ROM requirements.

(4 Complex programming is usually done by writing the SL5 colon or code
< ^ iefinitions onto a file using an editor. This file is then compiled on top of

the development system by using the word FLO AD. Each defined word can be
checked for proper execution starting from the simple definitions and working
up to the more complex words.

When the file(program) is debugged, there are several options:

1) Bo nothing.. . that is load the program each t ime it is
used by loading SL5 and then FLOAD the program.

2) C r e a t e a m e m o r y image of the work ing version of the
program that can then be saved on disk. The COKMOD procedure
does this.

3) Create a RAM or ROM image of the program (with all or part of
the SL5 system included) starting f rom a minimal IK system
with s imple user I/O to a 1 OK development system plus the
working program. The SYSMAK routine is used to create these
modules. The Object Modules Section describes how these

/- x systems are created in some detail.

- The SL5 system is extensible, adaptable, collapseable, and well
documented making it a very powerful, self-contained programming tool.

^ ^

t
Jt

Table of Contents

Tutorial

1. In t roduct ion 1
DECIMAL

2. N u m b e r s 1

3. Simple Stack and Arithmetic Operators . . . i
DUP SWA? + - *

4. Displaying a Message
T1' " C£

5. Colon Definitions.„Creating New Words ... 2
• •• >
Word Names

6. Program Control Words 3
BEGIN END
IF ELSE ENDIF
DO ..LOOP

(- FORGET

7 7. Cons tan ts , Var iab les 4
^ CONSTANT

VARIABLE
@ (f e t c h)
! (store)
B@ B!

8. • Wr i t i ng a Program...a Simple Example 5

1 ^

Reference

1. Introduction 1

2. The Stack 1
Stack Operators

3. Numbers . 2

4. Variables and Constants 3
Constants
Variables
Memory operators

5. Ari thmetic and Logical Operators 4

6. Conditional Operators 6

7. Outer Interpreter 7

S. : Definitions 7
f Inner Interpreter

(9. Branching 8
IF..ELSE..ENDIF
CASE..NOCASZ..CASEND

10. Loops 9
BEGIN,.END
BEGIN..WHILE..REPEAT
DO..LOOP
+LOOP, EXIT
Loop indexes (I,J,K)
RECURSE

11. Arrays 12
ARRAY
BARRAY

12. I/O 12
Introduction

('A INTILE, ODTFILE
•^9 FALLOC, NAMIT

OPENS,, OPENW, FLUSH, CLOSE
GCE, TCE, T", TYPE
CIN, COÜT, C"
RCH, WCH
EBYTE. WBYTE
READ, WRITE
DELETE, RENAME
ININIT, OUTINIT
EOF
WORD
Numeric input
Numeric output
FLOAD, [end-of-file]

13. user Defined Code St ruc tures 17

; CODE

14. The Dic t iona ry18
Symbol Table
Vocabularies
Chaining
FIND
FORGET
' , 'B, 'S, COMPILE

15. CODE W o r d s 19

16. S y s t e m Var iab les 20

17. Error messages 21

Assembler

1. Introduction 1 ,.—.

i
' '^ 2. Execution of CODE Words 1

3. Creation of CODE Words 1

1. Using the Assembler 1
2. Exiting from a Code Word . 2
3. Branching Within CODE Definitions . . .3

Forward Branching
Looping

4. Assembler Mnemonics -7

5. Register Usage.11

6. Examples of CODE Definitions.11

Debug

1. Introduction. 1

2. DUMP - Memory Dump. 1

3. MODIFY - Memory Modify. .1

£•. PSDMP, RSDMP - Stack Dumping 1

5. »BREAK*, *DB* - Breakpointing 3

6. SYM', SYMDUMP - Dictionary Examination 3

CP/M Interface

1. Introduction « 1

2. Loading SL5 object files 1

3. FLOAD 1

4. CALLCPM 2

5. Serial I/O 2

6. l>isk I/O 2

7. OPENR, OPEN¥ 3

Object Modules ' *)
V

1. Introduction ...1

2. Compiling a Subset of the SL5 Kernel 1

Outer Interpreter
Compiler
Console I/O
File System
user I/O
The Symbol Table
Deleting a Section of the Kernel

••a* '

3. Generating a ROM Based Controller Program . ' . . 4
•i *

4. Generating a RAM COM Module with SYSMAKE 6

5. SYSMAKZ Errors and Parameters7

6. Generating a COM module with COMMOD 7 ' ̂ J

Creating Disk COM File
Creating a COM File With an Initialization Routine
Creating a COM File Without a Symbol Table

Structure

1. Introduction l

2. Memory Organization. . . „ 1

3. Compilation of Words 3

1. Colon Definitions. „ 3

1. Literals 4
2. 7" 4
3. Branching 5

XF..ELSE..ENDIF
BEGIN..END
RECURSE
;: and ;CODE

2. CODE Definitions 10

3. CONSTANTS .10

4. VARIABLES 11

5. Arrays11
»

4. The Dictionary .12

1. The CURRENT & CONTEXT Pointers 12

2. Vocabularies 12
Their Internal Structure
Vocabulary Chaining

3. Dictionary Reduction .15

Glossaries

SL5 Glossary 1 Q

Assembler Glossary 17

File System Glossary 18

Debug Glossary 20

Tutorial

Introduction

This sec t ion descr ibes hov to do s imple SL5 programming and includes
examples of some of the p r e d e f i n e d SL5 p r o c e d u r e s , cal led words . SL5
Programs are developed by defining new words using the predefined ones. For
the most e f f e c t i v e learning try the examples as you read. Bring up the SL5
system now, as described in the Interface Section.

The p r o m p t character ">" on the CRT indica tes t h a t SL5 is wa i t ing for
input. Keyboard entries are terminated by a carriage re turn which in the
early examples is indicated by the symbols <cr>. In later examples the <cr>
is o m i t t e d , but a carriage re turn is a s sumed a f t e r each entry. For example
the predefined word DECIMAL can be entered to tell the SL5 system that numbers
entered are in base 10. Make this entry now.

Type: DECIMAL <cr>

DECIMAL and many other predefined words are described in the Reference Section
and also in the Glossary.

p • HcBbers

SL5 has two primary structures, words(procedures) and numbers. Numbers
are stored as 16 bit integers in memory.

Enter a: 2 <cr>

Not much seems to have happened, but the system has recognized the number
2 and stored it in the primary storage area, the "Push Down Stack". Much like
a pile of plates, the last number entered on the Stack will be the first to be
removed. The Stack concept is the heart of the SL5 system and will become
more obvious in the examples that follow.

Nov enter a: 3

The 3 is s tored on the Top of the Stack(TOS) w i t h the 2 being pushed Next on
the Stack(NOS). A period is predefined to mean remove and display the TOS.

Type:

' removes the TOS and displays i t (the 3 in this case) on the CRT. This
_ es the value 2 remaining on the TOS.

Type:

Now the 2 is displayed leaving the Stack empty.

Type:

The error m e s s a g e "Stack U n d e r f l o w Abort" indicates an empty Stack. Try
entering several numbers and then displaying them with the period.

O

Tutorial - 1

Simple Stack and Arithmetic Operators

Many of the predefined words use the Stack for their input data and leave
their results on the Stack when they finish. DUP and SWAP are two of the most
used words . DUP means create a copy of the TOS and put it on the TOS(the
original is now KOS). SWAP means reverse the top number wi th the one under
it.

Try:
anc also:

4 6 DUP
4 6 SWAP

This same use of the Stack for input and output carries over to the
arithmetic operators as well.

Try: 2 3 + . ' Vs* T '•*'

Plus removes and adds the top 2 Stack entries and puts the sum back on the
Stack. Try some more experiments with other operators including:

8 2 3 * . (result«2)

This notation is slightly confusing, but more than o f f se t by the ease of
defining nev vords, the execution speed, and the simplicity of structure.

Lisp laying a Message

Type: T" This is a message

Anything between the T" and the " will be displayed. Note that a " will
not display using this technique. The space af ter the T" is mandatory«
Another useful word in this context is CR.

Try: T" line one " CR T" line two " CR "\ ' "". ;

Try some variations of the above example. f

Colon Definitions—Creating Bev Vords

New words can be defined by using the two words colon and semi-colon.

Type: : MESSAGE T" This is a test " CR ;

The predefined word colon(:) creates a symbol table entry for the WOT
MESSAGE.

Now type:
Try:

MESSAGE
: SUM T" TEE SUM IS CR

This word SUM expects two numbers to be on the Stack when it is called. It
adds them, displays a message, displays the TOS, and then does a carriage
return. >

Type:
Type:

2 3
20 -3

SUM
SUM

Tutorial - 2

Kev word definitions consist of a co lon , a one word n a m e , a list of
a l r eady defined words or numbers, and a terminating semi-colon. Fairly
complex high level words are possible with each word being defined in terms of
lower levels until the b o t t o m level words are def ined c o m p l e t e l y by the
predefined words supplied with the system.

Word names can be any sequence of non-blank characters. Some examples
are: + 1+ Q QQQ*T TEIS-IS-A-LONG-WORD and so on. Some care is
necessary to avoid confusing names. Since most programmers work in base 16,
the names FF AB CD 1BAD and so en w o u l d be valid, but ambiguous w i t h
valid hex numbers. The sys tem f i rs t checks a CRT input to see it it is z.

valid word , then tries to interpret it as a number .

A comple te program is usually def ined as a single word w h i c h , when
executed invokes nany other words to accompish & task. The words can be
tes ted individually by entering them in the same manner as SUK and MESSAGE
were entered. Try defining some words using either the words ment ioned in
this section or in the SL5 Glossary Section.

Program Control Words...

There are several ways for SL5 programs to loop and branch. The
predefined words BEGIN END IF ELSE ENDIF DO and LOOP will be discussed
in this section. For & more complete list see the Glossary Section and the
Reference Section. The most simple loop words are the combination of BEGIN
and END. END is predef ined to remove the TOS and if it is t r u e C n o t zero) ,
terminate the loop. If the TOS is falseCzero), control transfers back to the
BEGIN. For example, the Sequence BEGIN 0 END never ends while the sequence
BEGIN 1 END executes only once.

The words IF ELSE and ENDIF are used for most common branching. If
the TOS is true(non-zero), words following an IF will be executed. If the TOS
is false(zero), words following ELS E (ELSE is optional and may be omitted)will
be executed. In either case control wi l l t r ans fe r to the words fo l lowing
ENDIF .

Try: : ATEST IF T" true " ELSE T" false " ENDIF MESSAGE CR ;

Note: the SL5 system allows use of some words such as BEGIN END IF ELSE
ENDIF and so on only within a colon definition. Attempts to use them
otherwise will leave the Stack in an unknown state.

Ty: l ATEST
_.nd: 0 ATEST , ^

Most languages have some built-in procedures to do common kinds of
branching such as DO and CASE statements. SL5 has these procedures predefined
and a more complete description can be found in the Reference Section. Here
is an example of a simple DO statement to display the numbers 0 to 4.

Type: : DOTEST 5 0 DO I . LOOP CR ;

The predefined word I puts the inside—most loop counter on the TOS.

Type: DOTEST ' .

Tutorial - 3

The w o r d DO expec ts two va lues on the Stack: the TOS is the s tar t va lue
for the loop and the stop value less 1 is NOS. LOOP increments the count by 1
and continues the loop until the stop value is reached.

Now t ype : : DOTEST 0 DO I . LOOP CR ;

The system responds with a sessage E.EDEF DOTEST indicating that the word
DOTEST has been r sde f ined . The f i r s t d e f i n i t i o n is s t i l l s tored in m e m o r y ,
but f u t u r e r e f e r e n c e s to DOTEST wi l l use the nev one. This second vers ion
requires a stop value to be on the TOS when it is invoked. ^ .

Type: 7 DOTEST

For a still more general DOTEST put both DO parameters on the Stack.

Type: : DOTEST DO I . LOO? CR ; j ,'

Once again DOTEST is redefined and there are now three versions. The latest
one will be executed..

Type: 8 1 DOTEST

Try some more experiments. There is a convenient predefined word FORGET to
allow returning to an old definition. Caution: FORGET will throw away all
word definitions until it reaches the word specified.

c

Type: FORGET DOTEST ' ,,., '.-, „.r.

The second version of DOTEST is now active. Test it.... >, , "

Then Type: FORGET ATEST

This causes the system to forget ATEST and all words defined since ATEST, in
this case DOTEST versions two and one. Test it. ^ _ ,

Type: DOTEST ' ' -̂

The error message DOTEST ? indicates that DOTEST is unknown to the
system.. ATEST is gone too. FORGET is most useful during the debugging phase
of program development. Each new load is preceded by a FORGET of the old
version.

_» . ä

Constant:» and Variables

In complex programs it is convenient to have access to storage s7 .as
other than the Stack for commonlv used data. In SL5 there are four predefined
words for this purpose: CONSTANT VARIABLE ARRAY and BARRAY. (byte array).

The word CONSTANT defines a name which when executed will leave a 16 bit
value on the Stack. U s u a l l y , this va lue remains unchanged during execution
and i't is considered as a rommable memory area. By convention Values that
might be changed are s tored in variables. The word VARIABLE def ines a name
which leaves the 16 bit address of a 16 bit value on the Stack,

The p r e d e d i n e d word @ (f e t c h) removes the TOS, a s s u m e s it to be an
address , and leaves the data f rom that address on the TOS. The predefined
w o r d ! (s to re) removes an address (TOS) and a da ta va lue (N O S) f r o m the
Stack, and s to res the data in the locat ion speci f ied by the address .

Tutorial - 4

Type: 1 CONSTANT ONI
and: 2 VARIABLE VARTEMP
and: VARTEM? U .

to display the current value of VARTEM?.

and: ONE .

to display the value of ONE.

Try: 6 VARTEM? !
and: VARTEM? (? .
and: VARTEMP (§ ONE SUM

Try defining some variables and experiment with them. Note that the use
of (? and ! is not limited to variables» If you wish to read the contents
of memory locat ion zero, 0 @ wi l l leave that value on the Stack. For
example,

: ZAP 100 0 DO 0 I B! LOOP ;

wou ld set memory locations f r o m 0 to 99 to zero upon execution of ZAP. The
words B(? and B! f e t ch and store bytes. (Warning: setting low memory
cells to zero is likely to crash most operating systems).

Writing a Prograau~a Simple Example

A very short sample program to do inventory cont ro l is out l ined b e l o w .
The top level word (ICP) calls a word to initialize variables, tables, and so
on. Then it begins a loop wh ich looks fo r a CRT ent ry , does the appropr ia te
action, and continues to loop until a termination is requested. The top line
enclosed by parenthesis is a comment.

Once the top level word is completely defined, each of its words can be
def ined , either as a test s tub, or in a more comple te form. This process
cont inues until all words are defined. As each b o t t o m level word gets
defined, it can be checked out immediately. By the time the checkout reaches
the topmost levels most bugs are fixed.

«

(ICP Inventory Control Program)
: ICP INITIALIZE BEGIN

DISPLAYMENÜ ANYINPUTYET DUP IF
PROCESSOPTION

ENDIF
END ;

This definition leaves INITIALIZE, DISPLAYMENU, ANYINPUTYET, and
PROCESSOPTION yet to be defined. Suppose we define DISPLAYMENU as

: DISPLAYMENU CR
T" Select an option: " CR
T" 1 New Entry " CR .
T" 2 Update Previous Entry " CR
T" 3 Display Current Data " CR
T" 4 Stop Execution " CR ;

This definition could be checked immediately as all of its words are
already defined. ' The word ANYINPUTYET as used in the definition of ICP will
check to see if there is a keyboard entry and leave the data entered on the
TOS, or a 0 if there is no entry yet. The entry is duplicated and checked
with the IF, and if it is1a zero(false), the duplicate will cause END to

Tutorial - 5

C

branch to BEGIN. The predefined word CIN might be used in AKYINPUTYET.

The word PROCESSOPTION Ls the heart of ICP. It must do the fi le I/O and
d i sp lays as r eques t ed , and leave a. t rue(non-zero) va lue on the S tack for
s topping the p rogram, if requested. The predef ined words CASE and NOCASE
could be used very effectively in PROCESSOPTION. During the development stage
of ICP this word migh t be def ined as a s tub for test ing and then f i l l ed in
piece by piece later. For example:

: PEOCESSQPTICN (test stub for debugging)
T" PEOC " DUP . 4 - IF

1 ELSE 0 (leave a 1 for terminate)
ENDIF ;

Careful choice of word names, a fev comments , and some sort of
indentation convention will make programs almost self-documenting and easy to
change. Avoid the temptation to save space by using obscure names or writing
the definitions run together, i.e.

: ICP UN BEGIN INP DUP IF PROC ENDIF END ; This def ini t ion is not very
easy to read and not recommended.

There are many ways to write ICP that are equivalent to the above
example. Avoid doing clever and tricky Stack manipulations or other shortcuts
unt i l the program is debuggedCi f at all) . SL5 programs are f a s t and may »
fine without further tweaking. Even faster execution speed can be obtained •""/
substituting CODE definitions(see the Assembler Section) for a few key words.

During normal program development SL5 programs are written directly on
disk f i l e s using an edi tor and then loaded using the predefined word FLOAD.
See the Reference Section for more information about loading. The SYSGEN
program included with SL5 can be used to create a CP/M COM module or a stand-
alone ROMMABLE module. See the SYSGEN Section for more details about these
options.

This concludes the Tutorial Section. Many other examples of SL5 programs
can be found in other sections of this manual. Perhaps the best resource for
SL5 examples is SL5 itself. Host of the system is written in SL5 and all
source code is included with -the system.

Tutorial - 6

c

Reference

1. Introduction

This sec t ion decr ibes the SL5 progressing l anguage . I t is l oose ly
organised by class of operator, and is intended to bridge the gap between tne
Tutorial section and the Glossary. Two central elesents of the SL5 programming
sys tes are a push down s tack and R?K (r e v e r s e po l i sh n o t a t i o n) logic.
Programmers unfaciliar with either of these concepts are urged to review the
m a t e r i a l i n t he Tu to r i a l sec t ion , and e x p e r i m e n t w i t h t he s y s t e m u s i n g the
console interpreter. Many examples in this section i l lus t ra te the use of SL5
o p e r a t o r s f r o m the conso le i n t e r p r e t e r (see e x a m p l e 1 b e l o v) . Each l ine c f
input is terminated wi th a carriage return. Number s are pushed onto the stack
for use by ope ra to r s t h a t f o l l o w . D o t / p e r i o d (.) causes the t t p o f the s t a c k
to be p r i n t e d on the CRT. The r igh t a r row (>) is a s y s t e m p r o m p t for m o r e
input. All numbers in the examples are decimal unless otherwise specified.

Example 1:

>3 4 5 (put 3 numbers on the stack)
>. . . (p r in t 3 s tack e l e m e n t s)

_ 5 4 3 >4 3 + 2 * .
14 > (result is 14 if base is decimal)

2. The Stack

The stack is the primary mechanism for data t ransfer in SL5. Operands are
pushed onto the stack for subsequent processing by words (procedures) invokt-.d
f r o m t h e outer i n t e r p r e t e r , o r e x e c u t e d f r o m c o m p i l e d words . RPN (r e v e r s e
p o l i s h n o t a t i o n) log ic h o l d s b e t w e e n w o r d s , a l t h o u g h >nf ix i s used t o o r d e r
m u l t i p l e ope rand w o r d s (e.g. + , - , R O T) . The s t a c k i s f o r m a l l y d e f i n e d as £
last-in first-out queue. Use cf the stack to t ransfer parameters between words
a l l o w s the n a t u r a l gene ra t i on of reen t ran t and recurs ive code, and clean
handling of interrupts.

>5 .
5>5 DUP . .
5 5 >10 5 SWAP .
10 5 >3 4 5 ROT
3 5 4 >3 4 2DUP
4 3 4 3 >

Stack, operators

The table below describes the SL5 stack operators. The top of stack is on
:he right in the diagrams.

Reference

Operand

DU?

DKG?

SWAP

OVER

ROT

n ROLL

3 ROLL

n -ROLL
3 -ROLL

n PICK
3 PICK

2DUP

2DROP

2SWAP

Function

Copv top of stack
(TOS) 1

"
Remove TOS

Reverse TOS, TOS-1

Copy TOS-1

Move TOS-2 to TOS

TOS-n to TOS
Fill vacated positioi

; (same as ROT)

opposite of ROLL

Copy TOS-n to TOS

D-p TOS h TOS-1

Drop TOS S TOS-1

1 Swap TOS. TOS-1 with
TOS-2, TOS-3

StacK * 1
before ! after 1

i
a aa i

1
- - 1

! aß a l
i

ao oa I
1

ao aoa I
1

abc bca 1
1
1

is 1
abc bca 1

I
1

abc cab 1
!
1

abc abca 1
i

ab abac 1
1

aao a 1
1

! i
abed cdab 1

1 1

3. Numbers

Signed numbers are s tored as 15 bit in tegers , w i t h the top bit used for
the sign. A 16 bit word is also used to store unsigned numbers. There is no
internal difference between signed and unsigned numbers. The type of operator
determines how the number is handled . O v e r f l o w is not checked by run ie
routines. The usual result is truncation.

(Base

The var iable BASE contains the current Radix used by input and ou tpu t
routines. Changing the base does not affect numbers already stored in memory,
only the Radix w i th which the number is printed. DECIMAL, OCTAL, and HEX are
predefined words to set the Radix.. Other bases may be used but the output m&y
look strange.

>DECIMAL 10 HEX .
A >HEX 10 DECIMAL . ; -
16 >

Reference - 2

4. Variables and constants

Constants

A cons t an t is & w o r d that pushes its va lue on the s tack when executed .
Constants are stored as 16 bit integers.

>10 CONSTANT XX
>xx .
10 >

The value of a constant can be changed by manipulating the dictionary and
code segment, but that's & poor programming practice in RAM based systems. The
/slue of a constant cannot be changed in ROM based code because the value is
stored in the ROM section of memory. Use variables if you want to change the
value at run time.

Variables

A variable is a word that pushes the address of a 16 bit memory location
an the stack. SL5 has 2 types of variables, RAM and ROM. Variables created
during normal program development are RAM variables. The variable is stored is
the code segment. A flag variable ROMF determines whether a system is created
with ROM (ROMF-1) or RAM (ROMF-0) variables by the SYSGEN program. When ROMF «
1 the code segment contains a pointer tc a memory location in a user defined
RAH area..

«

>10 -VARIABLE XX

10 >15 XX !
>X2 (? .
15 >

Memory operators

Memory words assume that an address is on the TOS. An additional operand
may be r e q u i r e d (e.g. !}.

Reference - 3

operator

I <§
! i

Bl~

B!

<§x

1 + !

1-!

*!

example

q C«

m p !

q BIS

m p 3 !

q @X

p If!

p 1-!

m p •*•!

i function

TOS * Contents of adar q

Store m at address of p

Fetch 1 byte from memory

Store byte m at aadr of p

Fetch a word and swap bytes

increment contents of p ay 1

decrement contents of p by 1

! add m to contents of p

>10 VARIABLE TEST
XTEST .
4000 > (address of TEST returned)
>TEST I? .
10 >5 TEST !
>TEST (? .
5 >TEST 1+!
>TEST @ .
6 > -

5. Arithmetic and logical operators

(

9

All of the arithmetic and logical operators take their operands from the
stack, and return the result to tne stack. Logic is E.PN so precedence, s
implied by the order. ~ ̂

operator I eracp. runcticn

*
1+
-
1-

*

/

/MOD

MOD

KIN

MAX

ABS

MINUS

COM

6

1

Xi

<-L
1
!
i ->L
i

E

m

E

0

B

n

E

a

0

1 B

1 B

m

1 0

i m
1

s
i

B

1

&

1

a
1
1
! m
1

n +

1 +
!

n -

1-

n —

s *

r /

n /MOD

1

n MOD

n MIN

n MAX

ABS

MINUS

COM

n ö

D 1

n Xj

n <-L

n >-L

ade o and n, result on TOS

add 1 co TOS

subtract c free E (n-c;

subrracc i rroc TOS

1 subtract - (a-n) » (n-m)

Multiply n by m

Integer divide o by n
quotient on TOS

Integer divide m by n
quotient on TOS
remainder TOS-1

Remainder of m/n on TOS

Leaves smaller of in n on TOS

i Leaves larger (m,nj on TCS

Leave absolute value on TOS

1 Negate by taking 2' s compi

[1's complement

16 bit logical AND

16 bit inclusive OR
!
16 bit exclusive OR

left shift c n bits i
end off

'
1 rt shift B n bits, end off
I

Examples: Arithmetic and logical operators

>5 3 + .
8 >5 1* .
6 >5 3 * .
15 >1 0 i .
0 >1 1 4 .
1 >0 1 Xi .
1 >0 0 XI .
1 >1 1 I .
1 >3 5 + 2 *
16 >0 1 I 0 &
0 >

Reference - 5

6. Conditional Operators

Conditionals take their operands from the stack and return logical true
or logical f a l s e as the resu l t on the top of the stack. In SL5 a logica l TRUE
is de f ined as a. non-zero value on TOS. A logical f a l se is a zero TOS. Four
unsigned operators are included so that 16 bit numbers like addresses can be
eoouared.

operator 1 e
!

0« I
1

0< !
1

0> 1
1

NOT 1
1
1
I

<> 1
I

< 1
!

> 1ii
<• i

. 1
>« !

1
LT> 1

1
IX 1

!
U>- 1

1
IK- !

1

xampie

a 0=

m 0<

o 0>

a NOT

a n =

m n <>

m n <

m n >

B n <*

B a > =

B n ü>

o n ü<

o n IP-

IB n U<*

1 function
1
1 TRUE if B • 0
I
1 TRUE if B less than 0
1
1 TRUE if m greater than 0
!
1 equivalent to 0=

1 TRUE if B - n
1

I TRUE if m not equal to n

1 TRUE if a less than n
i
1 TRUE if B greater than n

1 TRUE if B LT or egual to n
1
1 TRUE if o GT or eouai to n
!
1 Unsigned greater than test 1
1 ' I
i unsigned less than test i
1 i
i Unsigned GT or equal
1
i Unsigned LT or eoual
I

Examples: Conditional operators

>1 0= .
0 >0 0- .
1 >0 0< .
0 >5 3 « .
0 >5 5 - .
1 >5 5 o .
0 >

Reference - 6

7. The Outer Interpreter

The outer interpreter is the 'main-loop' of the SL5 programming system.
I t f u n c t i o n s as the c o n s o l e e x e c u t i v e , i n t e r p r e t e r , and p r i m a r y d a t a e n t r y
system. This seven word colon definition is a classic example of the power of
the Forth programming language .

The SL5 visable to the user oc the crt screen is the outer interpreter. A
line of text is collected, then processed. Colon definitions, variables, and
constants are ent-ered into the dictionary — which is a linked list of defined
w o r d s . P r e v i o u s l y d e f i n e d words tha t are nor p a r t of a new d e f i n i t i o n are
executed immediately. Strings not found in the dictionary are treated as data.
NUMBER is called to convert the ASCII string according to the current radix.
If NUMBER fails an undefined abort occurs. Valid numbers are pushed onto the
stack if executing, or entered into the dictionary as literals if compiling.

Compilat ion is a special case of in terpret ing (see : defini t ions 8.).
Colon sets the system variable STATE to compile. Subsequent words in the input
stream are compiled until the word ; resets STATE. A few words (e.g. ', T", IF
etc .) are executed even though SL5 is in the c o m p i l e s ta te . These are
-ailed immediate words or compiler directives.

8. Colon Definitions

Compiling is a special case of interpreting the input stream. When & : is
encountered the system variable STATE is set. The words that fol low up to a ;
are used to create a new word in the dictionary.

There is a class of w o r d s tha t e x e c u t e s during c o m p i l a t i o n . They are
compiler directives, or words that act on the input strear (', T"\ Tokens in
the input.stream that are not found in the dictionary are converted to numbers
and s tored as l i t e ra l s in the d ic t ionary . A convers ion f a i l u r e resu l t s in a
call to UNDEFINED.

/" Colon creates an entry in the symbol table w i t h a pointer to the f i r s t
* _ a t r y for that word in the code segment. The start of every colon definition

^s c c a l l to the w o r d S: to set up a context s w i t c h . The rest of the
d e f i n i t i o n is a list of addresses , and l i teral values . The addresses are
pointers to the entry points of other words. The last entry is the address of
S; which restores the context.

EXAMPLE:
l

: 2TIMES 2 * ;

Reference - 7

I

5:

adar LIT

OOC2 i

addr

adcir S;

Semicolon pu ts the address of $; in the d ic t ionary , and resets STATE.
SL5 r e sumes executing unt i l another colon de f in i t i on is found. A colon
definition is a list of addresses of other words. Each word is executed until
$; flags the context restore process.

The Inner Interpreter
r\

NEXT is an SL5 code word that proce.sses the list of addresses in a :
definition. It maintains an instruction counter (IP). The IP is similar to the
PC in the cpu. NEXT is cal led at the end of every code word. Machine code
sequences are executed directly by the cpu as assembly language routines. NEXT
provides the linkage between words. A SL5 program can be viewed as an inverted
pyramid wi th machine code pr imit ives at the bot tom and levels of SL5 words
above. 5: and $; handle the context switching between colon definitions, sad
NEXT links the words.

9. Branching

Conditional branching in SL5 is done with the IF..ENDIF and CASE..CASEKD
s t r u c t u r e s . These w o r d s g e n e r a t e tes t and b ranch ins t ruc t ions in compi l j
SL5 w o r d s . They can only be used inside of colon d e f i n i t i o n s They are nt~J)
defined in the context of interpreted code.

IF

The words IF ELSE and ENDIF are compi led into test and oranch
instructions. In the compiled code SIF tests the top of stack. A TRUE TOS (<>
0) causes the words fol lowing IF to be executed. A FALSE TOS (0) causes a jump
over the words following IF to the words fo lowing ELSE or tc ENDIF if no ELSE
clause is present.

Reference - 8

>: TEST IF 1 . ELSE 0
>0 TEST
0 >1 TEST
1 >FF TEST
1 >

ENDIF ;

IF statements may be nested several levels deep, but the clauses nust be
balanced. Everv IF must have £ ENDIF statement to close the structure.

X g IF
Y g IF

X (f Y (? / Z !
ENDIF

ENDIF

CASE

SL5 uses a. CASE statement similar to the PASCAL CASE statement. This
!: Diätes from 'standard' Forth, but it is z. much more readable structure. Any
11 »e structure must have a logical equivalent to a nested IF structure, but it
av..sen't need to be visible at the source code level. The verb CASE causes the
contents of the TOS to be compared with test values specified ic the case
body. If a match is found that element is executec, and the I? set to the word
after CASEND. The NOCASE clause if present, is executed when the TOS does not
match any of the test values.

EXAMPLE; keyboard input

: KEYIK
"(OD= <CR>, 08= backspace, IB» escape)

GCE CASE
OD *: 1 KRDY ! TEUF g TBUFMAX 1 CR ;;"
OS <=: 20 TCH 08 TCE 20 TCH TBUF 1-! ;;
IB =: TBSTRT (? TBDF ! T" *ESC* " CR ;;

DÜP NOCASE -: DUP TCH TBUF (? ! TBUF 1 + ! ;;
CASEND :

10. LOOPS

Iteration operators are a central part of a high level programing
language. SL5 has three types of structures for repetitive execution;
BEGIN..2KB, DO..LOOP, and RECURSE. BEGIN..END is repeat until test condition
is TRUE, DO..LOOP is repeat n times, and RECURSE is a structure to allow a
word to call itself.

Reference - 9

C

BEGIN..END

BEGIN is a compiler vord that pushes the contents of the IP oc the stack.
Words between BEGIN and END are compiled. END causes a test instruction with
conditional branch to be compiled into the word. If the TCS is TRUE (<>0) the
vord fol lowing END is executed next. A FALSE TOS results in a juap back to the
word following BEGIN, and the loop is repeated.

: WAIT-FOR-CR BEGIN GCE OD « END ;
this loop will repeat until a CR is typed

BEGIK..WHILE..REPEAT

T h e B E G I N . . E N D s t r u c t u r e h a s a t e s t a t t h e e n d o f t h e l o o p .
BEGIN..WHILE..REPEAT t e s t s for i t e r a t i o n a t the beg inn ing of the loop. W E I L E
generates code to test the TOS, and jump to the word following REPEAT if TOS
is FALSE. REPEAT generates an unconditional juap back to BEGIN, and the TOS is
t e s t ed again.

DO..LOOP

The DO LOO? is similar to the same s t ruc tu re in PASCAL or FORTRAN. The
body of the loop is repeated n times. DO takes 2 parameters ; linit + 1 and
start. Note chat the first parameter is 1 greater than the limit.

>: DO-TEST 10 0 DO I . LOOP
>DO-TEST

+LOOP, EXIT

The DO..LOOP was s h o w n i n c r e m e n t i n g the loop counter by 1 on eat—•Q
iteration. +LOOP al lows the counter to be incremented by any positive integer.
It does not have to be an even mult iple of the total count.

>: DO-TEST 10 0 DO I . 3 + LOOP ;
>DO-TEST
0 3 6 9 > ,

The word EXIT causes termination of a DO..LOOP at the end of the current
i t e ra t ion . I t does no t cause the w o r d s b e t w e e n EXIT and LOOP to be sk ipped
though.

Reference - 10

CRT-OUT
TBUFKAX 1* TBSTRT DO (loop from stare to max)

I @ DU? OD * IF
DROP CR EXIT (f o u n d end of line)
ELSE TCE

ENDIF
LOOP :

Loop indexes

I, J, and K are words that push the current loop index on the stack. I is
:ha index of th innermost loop , J and K are indexes for the next 2 loops. DO
.OOP's can be nested many levels deep but indexes are only provided for the
:hree inner loops. See the Structure manual for DO LOOP implementation details
„£ you need an index on another level.

: MATRIZ
3 0 DO

2 0 DO
2 J * I + .

LOOP CR
LOOP ;

0 1
2 3
4 5

EECURSE

SL5 is a stack language. Reentrant and recurs ive«code is a natural
-yproduct of the language. Normally a word must be compiled before it can be
.sec. R.ECUR.SE puts the address of the word being compiled into tne dictionary,
hus generating recursive code. SL5 has & f ixed length stack (u s u a l l y 256

jytes) . See the Sysgen section for details on how to increase the stack size.
f

* — i FIB
DUP 60 < IF

DUP . SWAP OVER + RECURSE
ELSE 2DROP

ENDIF ;

>0 1 FIB
1 1 2 3 5 8 13 21 3^ 55 >

Reference - 11

11. Arrays

The SL.5 vocabulary has one-dimensional word and byte arrays. The index is
0 based; a 10 element array has indexes of 0 to 9. Both RAM and ROM arrays are
ava i l ab le . The s to rage for RAM a r r a y s is l o c a t e d in the code segment a l o n g
v i t h Che d e f i n i n g code. The s t o r a g e for a R C K a r r ay is put in £ user d e f i n e d
m e m o r y a r a a , along v i t b ROM v a r i a b l e s . The code segseat f o r z ROH array
c o n t a i n s s. oointer to the f i r s t e l e m e n t of the a r rsv in m e m o r v .

A R R A Y

100 ARRAY BUFFER

A 100 element array of 16 bit words is allocated and a word BUFFER
defined in the current vocabulary. When an array word is referenced the sun of
the TOS and the base address of the array is put on the stack.

(assume BUFFER is at address 3000H)
>10 BUFFER .
3010 >10 BUFFER (? .
nnnn > (where nnnn is contents of llth word)

C

BAR.RAY f u n c t i o n s like ARRAY e x c e p t an e l e m e n t is a by te i n s t ead of a
word . 100 BARJIAY VECI al locates 100 8 bit by te s of s torage. W o r d operat ions
like <? i ns tead of B(r can be useo on a BARRAY. The a d d r e s s r e t u r n e d is the
first byte used. The second byte is computed by the operation.

>100 BARRAY VECI
>10 1 VECI B!
>1 VECI BCC .
10 >

12.0 I/O

The SL5 programming system inferfaces to a number of commonly available
disk operating systems. In general the specific operating system is
transparent to the user. Exceptions are noted in the Interface section. Serial
and disk I/O in SL5 is performed through a uniform library of procedures. The
code is designed to be synetric so that the specific device is transparent to
most routines. Files and devices are assignee to channels using NAMIT. All I/O
except serial output is buffered. The device driver routines are imbedded in
logical record routines called by character I/O words.

Reference

INFILE, OUTFILE

There are 2 d e f a u l t channels or data s t r e a m s de f ined . A s s o c i a t e d w i t h
JITILE and OUTFILE are SL5 c o n t r o l b y t e s , l og i ca l r eco rd b u f f e r s , and an
perating system dependent control area. At coldstart INFILE and OUTFILE are
:iitialized to the console device.

FALLOC, NAMIT

channels can be allocated with FALLOC. FALLOC
buffers and control fields, and assigns a nai

Additional I/O channels can be allocated with FALLOC. FALLOC reserves
pace in memory for buffers and control fields, and assigns a name to the
res.

€

FALLOC INFILE
FALLOC FILZ1

SL5 has a FALLOC INFILE to set up that channel. FALLOC FILE1 would set up
nother channel addressed by the name F1LE1. Most of the I/O library can be
sed with additional channels. GCH, TCH, T", CIN, GOUT, C" can only be used

the default data streams INFILE, and OUTFILE.

NAKIT links a filename or a device to a channel. Subsequent calls to
PSNR or OPENV establish the link between the channel and the operating
/stem.

INFILE KAMI7 test.cxt
INFILE NAMIT «CRT
OUTFILE NAKIT ?CRT
OUTFILE NAMIT *LIST

OPE2DL, OPEHV, FLUSH, CLOSE

OPINE enables a channel for input. If the name is a disk file, the open
ommand is passed on to the operating system. A serial device is opened by
etting a parameter in the control field for the channel. OPENW opens a
nannel for output. SL5 does not permit concurrent reads and writes on the
ame channel. FLUSH writes asy bytes left in the buffer out to the file or
evice. CLOSE resets the channel status and issues a call to the operating
vstem that updates the directory for the file associated with the channel.
'. T*"E and CLOSE should always be invoked before attempting to reuse a channel.
% _

GCE, TCH, T", TTPE

GCH reads the next cha rac t e r f r o m the d e f a u l t input channel INFILE.
a f f e r i n g of log ica l r eco rds is handled by the I /O sys t em. The ASCII EOF
naracter 1A is returned on end of file. This character is normally control-2
n the k e y b o a r d . TCE t r a n s m i t s a cha rac t e r to the d e f a u l t ou tpu t channel
"JTFILE. T" t r a n s m i t s a s t r ing cf cha rac t e r s to the o u t p u t channel OUTFILE.
ne s p a c e m u s t f o l l o w T" b e f o r e the s tr ing starts. " t e rmina tes the s t r ing ,
:ic one space must precede the ". TYPE outputs a string to the output device.
nnr. TYPE causes the s t r ing at addres s nnnn to be o u t p u t . The f i r s t by re of
nfc string contains the string length.

>T" this is 3. message " CR
this is a message

Reference - 13

READ, WEITE

READ reads a physical sector froe the selected channel into a system
uffer. Disk sectors are 128 or 256 bytes depending on the operating system. A
ine is treated as g physical record if a serial device is attached to the
hansel. V7RITE writes one physical record to the file or device attached to
ne selected channel. The user should be faailar with disk I/O conventions and
he host operating system before calling READ arid WRITE directly. The SL5
haracter level words (GCE, RCE, RSYTE etc.) call READ and WRIT!.

DELETE

Channel-name DELETE removes the f i l e associated with the channel fron the
p e r a t i n g sy s t en d i r e c t o r y , and r e t u r n s the space o c c u p i e d by the f i l e .

,hannel-name NAMIT must be invoked before DELETE to set the filename.

ININIT, OÜTINIT

ININIT, and OUTINIT init ialize the d e f a u l t input and output channels
I N F I L E and OUTFILE) to the console device . These w o r d s are ca l led on

C Mstart. If used to reassign the channel, FLUSH and CLOSE should be called
.?t to empty the buffer , and update the directory.

EOF

The word EOF returns a 0 while there is mere data in the file and a 1
hen the physical end of file is reached. The character I/O words also return
ne ASCII end of file character 1A continuing to read characters from a
nannel after the end of file is reached results in a fatal error, and a
vstea restart.

WORD

The SL5 word WORD scans the current svstem inout b u f f e r , and gets theThe SL5 word WORD scans the current system input bui rer , and gets the
•axe token froc the buf fe r . The variable DELIMITER contains the character used
o separate strings of characters. The user can set DELIMITER before calling
OE.D. W O R D r e se t s D E L I M I T E R to b lank (2 0 H) b e f o r e r e tu rn ing . WORD pu t s the
:nng length and string of the next token at the end of the dictionary. HERE
£ nt.s to the l e n g t h , and HERE 1* is the loca t ion of the f i r s t character in
V string.

EXAMPLE: get a filename from the console

: GET-NAME
T" Enter filename (1-7 chars) " cr
WORD
T" The current file is "
HERE <? I* 0 DO

HERE IT I T B(? DUP TCH I KÄME B! LOOP CR ;

>GET-NAME
Enter filename (1-7 chars)
SL5
The current file is SL5

Reference - 15

Numeric inuut

NUMBER can be used after WORD is called to convert the string WORD
leaves in the dictionary to a number. The radix is defined by BASE (see
Numbers above). If the number input is larger than the masimun value tnat can
be stored in 16 bits, high order digits are lost. AFFFF converted as a HEX
number results in FFFF returned by number. T , ,

Numeric output

The Forth vocabulary has several words to print numbers on the output
device. The word . (dot/period) prints the top of the stack as a signed
integer. It is printed according to the current radix stored in BASE.

10 > -3
-3 >EEX
256 >

100 DECIMAL . HE7.

X. prints the top of the stack as an unsigned 16 bit integer. It is used
for addresses and other numbers that are stored as 16 bit unsigned nunbers,
instead of 15 bit signed numbers. B. prints a byte (£ bits) instead cf a 16
bit word. B. is used in the dump routine. .

>AAAA X.
AAAA >88 B.
88 >9988 B.
38 > (note that the high order byte is lost

FLOAD, IEHD-OF-FIL£J

FLOAD loads an SL5 source f i le . The input s t ream is swi t ched f rom the
console device to the disk f i le specified af ter FLOAD. The text is interpreted
and compiled into the cictionary. A Dhysical end of f i le switcnes input bacV.
to the console. The wora [END—OF-FILZ] car. be used to create & logical end of
f i l e at anv p lace in the source text. This can oe h e l p f u l when one v i snes to
deoug part of a program.

Reference - 16

EXAMPLZ: 'BARRAY

: BARRAY EERI 5 + CON STAKT DP+!

>20 BARRÄY TEST
>100 l TEST B!
>1 TEST Bf? .
100 >

is a co lon d e f i n i t i o n that c r ea t e s by t e a r rays in
causes a 20 by te ar ray named TEST to be set up.

references, to test invoke the code between ;: and : in BARRAY.

BARRAY
BARRAY TEST

m e m o r y . 20
S u b s e q u e n t

I CODE

The ;: word creates new classes of s t ruc tu re s that execute vords.
Occasionally the new word class must be faster than : definitions allov. ;CODE
creates new vords t h a t invoke assembly language sequences (see A s s e m b l y
language section).

14.0 The Dictionary

Symbol Table

SL5 has a symbol table separate from the code segment. The symbol table
is a linked list of the symbols def ined in vocabular ies , a f lag byte , and a
pointer to the f i rs t word of the code body in -the code segment. The symbol
table links are relative so the table car be moved. It grows down toward the
code segment.

c Vocabularies

A vocabulary is a set of words l inked together. System vocabularies—'
inc lude FORTE, ASSEMBLER, DEBUG, and SYSGEN. A vocabulary is created by the
w o r d VOCABULARY. W o r d s are added to i t w i t h DEFINITIONS. Invoking the
vocabulary name causes it to be the context vocabulary, or the vocabulary
searched by FIND.

VOCABULARY ALFA define the SL5 vocabulary

.ALFA - ALFA is the context vocabulary.

ALFA DEFINITIONS - declare SL5 as the current vocabulary
New definitions are added to SL5.

Two sys t em va r i ab l e s CONTEXT and CURRENT poin t the heads cf

Reference - 18

v o c a b u l a r i e s . CONTEXT po in t s to the las t v o c a b u l a r y invoked. I t is used by
FIND for dictionary searches. CURRENT -oints to the vocabulary that is being
a d d e d to when nev w o r d s are de f ined . The t w o p o i n t e r s can poin t to the sane
vocabulary as when & user vocabulary is being built.

c

Chaining -

V o c a b u l a r i e s can be chained t o g e t h e r , to extend the scope of the
dictionary search. FORT- is always the base vocabulary. Other vocabularies are
cha ined to FORTE (e.g. ASSEMBLER, EDITOR) . This chain can be e x t e n d e d in to
tree structures to develop separate sections of programs, or limit the length
of a d i c t i o n a r y search. The chain links th rough vocabu la ry heads so w o r d s
defined in a vocabulary a f te r it is chained are still within the scope of the
search.

The SL5 word FIND searches ehe symbol table for a match with the string
tha t WORD l e f t at the end of the dict ionary. It links through chained

abularies searching from the last word defined. FIND returns false (0) if
search f a i l s . If a w o r d is m u l t i p l y d e f i n e d in the d ic t ionary the last

definition is found.

FORGET

ssss FORGZT erases all words in a vocabulary from the wore ssss. This is
E sequential erase. The vocabulary head is set to the word before ssss, if
sny.

' *B 'S COMPILE

These w o r d s return a po in te r to the code segment of a word . ' nnnn
returns the address of the first word in 2 colon definition, or the parameter
f i e l d of a variable or constant. It can be used to change the value of a
constant, or the address of a variable, but the practice isn't recommended. *E
r^'urns the address of the code f i e l d of a w o r d . 'S is the same as *B during

en generation. COMPILE is ['B , 3. It gets the address of the entry point
word., and compiles it into the dictionary. All of these words can be used

L Ö p roduce t r i c k y , obscure code. I t is r ecommended that their use be
restrictec to the few systems programming applications where they are really

See the source of the SL5 kernel for examples of their use.

15.0 Code words

A code word is an assembly language routine w i t h a symbol table entry. It
. s s i m i l a r to an a s s e m b l y l a n g u a g e s u b r o u t i n e excep t t h a t the l a s t
i n s t r u c t i o n is a j u m p to NEXT, the inner i n t e r p r e t e r , i n s t ead of £ re tur r .
. n s t r u c t i o n . Manv of the w o r d s de f ined in the F o r t h v o c a b u l a r v are code

Reference - 19

words.

A sice strategy for program development is to write an entire application
in SL5 cclon definitions, debug it, and then recede a few words as code words
where sp«ed requirements and frequency of use dictate. Colon definitions have
a fair «mount of overhead. NEXT is called between every word in the
definition. Also, $: is called to switch context on entry, and $; is invoked
to switct contest on exit from the colon definition. This overnead ranges from
100 micrc5seconds on sn 3080 to a few microseconds on s. 68000. Code words are
difficult to write, debug, modify, and they are not machine independent (see
ASSEMBLY language section).

16.0 Syste» -variables

The SL5 programming system has several variables that contain important
information for the operating system. System variables can be accessed and
changed by any word. The user must understand the SL5 system before modifying
system variables. The table below describes system variables.

Reference - 20

VARIABLE

DP

CURRENT

CONTEXT

CVOC

SYKT?

SYMPTR

RSIZE

SSIZE

RESTARTAD

GOQIAD

STATE

BASE

UPPER

DELIMITER

S S TACK

RSTACK

INFOF

!

FUNCTION !

current dictionary pointer'

head of current vocabulary

points to context vocabulary

current vocabulary pointer

Top of Symbol table

last entry in symbol table

return stack size (constant)

data stack size (constant)

addr. RESTART (SYSGEN)

addr. outer interpreter (SYSGEN)

(^interpret , l«cotnpile

numoer racix

upper/ lowered » upper only=l

delimiter cnaracter used by WORD

Parameter stack (a BARRAY)

Return stack (a BARRAY)

information control byte
Bit 0 ON - REDEF message printed
Bit 2 OK - Print source during

FLOAD
all bits default to ON.

V
' * 17.0 Error Messages

During the execution or compilation of programs, a variety of error
conditions are checked for. These can be classified into 3 groups, (1)
those which are informative, (2) general fatal conditions, and (2) fatal
conditions in the file system. When and error of type 2 or 3 occurs, the
word RESTART is executed after the message is displayed'.

REDEF nnnn

Informative messages (type 1)

T h e w o r d nnnn w a s j u s t r e d e f i n e d , w i t h t h e
previous d e f i n i t i o n now being i n acce s s ib l e .
This message can be turned off by setting bit 0
of the variable INFOF to 0.

Reference - 21

Genera.1 fatal error messages (type 2)

nnnn ? -

D/0 ABORT -

T*VT*.TTOT*T f*n *T5r*^T?T ™
UA-UiiL: I*U* AOUid **

RLTURN STACK UNDERFLOW ABORT -

UNBALANCED NESTING ABORT -

The word nnnn could nor be executed or
compiled because it is not defined.

The crevious division (/, /MOD, MOD,
U/MOD) operation was undefined (division
by zero).

The parameter stack is in an underflov
state, i.e. more items were removed than
there were placed on the stack.

The return stack is in an underflov
state. _ _

The w o r d jus t def ined did not contain
p r o p e r b a l a n c i n g o f I F . . E N D I F ,
BEGIN. .END, DO..LOOP, CASE..CASEND
constructions.

Fatal error messages

READ PAST EOF.

from the file system (type 3)

- An attempt to read beyond the end rc a
file just failed.

FILE NOT OPENED FOR READING. - A request to read (RCE, RBYTE, or READ)
fron a file not opened for reading
failed.

FILE NOT OPENED FOR WRITING. - A request to write (WCfi, WBYTE, or
WRITE) onto a file not opened for

s~

FILE DOESN'T EXIST. -

FILZ CAN'T BE CREATED,

DISK WRITI ERROR.

writing failed.

The f i l e spec i f i ed on the last OPEKR
doesn't exist in the file system. Files
b e i n g o p e n e d via O P E N R h a v e t o be
previously created (OPENW does this).

An attempt to create a new file via the
O P E N W rout ine f a i l e d due to a lack of
disk space or directory space.

The p r e v i o u s w r i t e command failed.
because of a system error. '--J\

Reference - 22

Assembler

c

Assembler a* •
<• *•

1. Introduction

In the previous sections you were shown hov to define a proce*
in terms of other, previously defined processes or words, and this was
a "colon" def in i t ion . There is another m e t h o d of defining words in .
m a c h i n e language of the part icular processer being used. This is called s,
"code definition", hany of the SL5 primitives (such as SWAP, +, *, etc...)
are defined in this manner.

NOTE: This manual a s s u m e s that the reader is f ami l i a r w i t h the Z80
assembly language.

2. Execution of CODE definition«

The execution of code definitions is very different from the way in which
colon definitions are executed. The main difference is that the body of the

r \e word is executed directly by the CPU while colon bodies are interpreted
V the inner interpreter.

3. Creation of CODE Bords

One of the major differences between CODE words and colon (:) definitions
is that the code segment is created through the execution of words which place
machine instructions in the code segment wh i l e w i t h colon definit ions
addresses are placed in the code segment by the compiler.

CODE nnnn ... words ... EDOC „.

Figure 3-1. Format of CODE definitions.

Shown in Figure 3-1 is the format of CODE definitions. Upon execution of
word CODE , nnnn is added tc the dictionary and CONTEXT is set to the

a" Ambler. The words which follow may place machine instructions in the code
s^ment which will be executed when "nnnn" is subsequently executed. The
final part of a CODE definition (EDOC) resets the CONTEXT vocabulary to the
CURRENT vocabulary so that the newly defined word may be used immediately.

3.1. Using the Assembler

During the writing of CODE definitions, the machine instructions which
coapose the definition can be specified by placing the actual opcodes in the
code segment or by using the SL5 assembler mnemonics. To place the opcodes in

Assembler - 1

seinem., t.ne u v o w o r a s , anü b, m a y De usec. The vo rd "," w i l l
„-e a rford (16 b i t s) in the code a rea w h i l e "B," w i l l s t o r e a b y t e (t h e low

a er 8 bits of & word).
iOTE: e re word "," reverses the bytes before storing then)

EXAMPLE: The word "+" could be def ined as:

CODE + Cl B, El B 5 09 B, C3 B, SPUSE , EDOC

Cl , El , and 09 are the ZSC opcodes w h i c h w h e n execu ted w i l l pop tne BC
and EL registers off of the stack and add them together. The "C2 S'PUSE" will
then j u m p to the inner i n t e r p r e t e r and push the sun w h i c h is in HL on to the
stack. The memory image of the word "+" ü shown below.

entry point —>

JP SPUSE (C3

ADD HL,SC

' POP HL

POP 3C

1
$?USH) i

!
1

(09) !ii
!

(El) 1

1
(Cl) 1

1

Another , store readable me thod of assembling opcodes is by using Che
•mnemonic assembler . To use the -mnemonic a s s e m b l e r , you mus t f i r s t load it
(the mnenotiic assembler occupies approximately 4000 decimal bytes):

>FLOAD ASSEM.SL5 <cr>

You can now define CODE words by using the-SL5 mnemonics to specify
machine instructions (see Appendix A for further details on the mnemonics).

EXAMPLE: The definition of the word "+" can now
be written as:

CODE + BC POP HL POP BC HL ADD SPUSE JP EDOC

2.2. Exiting From a CODE Word

After a code definition has finished executing, it needs to return to the
control o.: the calling word. Since code definitions are normally called from
colon definitions, the return must be made to the colon definition or rather
the "inner interpreter" which executes colon definitions.

Assembler - 2

Returning control to the inner in terpreter is no rma ly accompl i shed by
branching to one of the entry points listed in figure 3-2.

entry name description

The standard exit from a code
word. The inner interpreter
Continues executing where it was
before.

SPUSE Push the register pair HL on the
parameter stack and branch to
SNEXT.

Similar to SNEXT, except that
the alternate register set is
selected.

Figure 3-2. Summary of inner interpreter entry points.

EXAMPLE: The code definition of a word which adds 3 to
the value on the top of the stack and pushes the
sum might be written:

CODE 3+ HL POP
EL PUSH

3 BC LD
SNEXT JP

BC HL ADD
EDOC

When the above example is executed, the sum is pushed onto the s tack
before the inner interpreter is invoked. The same thing could have been
written as:

CODE 3+ HL POP
SPÜSE JP

3 BC LD
EDOC

BC HL ADD

-^ i 3.3. Branching Within CODE Definition«

There are three assembler constructions which enable you to branch within
a CODE word. In order to use these words , the mnemonic assembler must be
present. '

Fowsrd Branching

In colon definitions, the words IF , ELSE , and ENDIF composed the
f o r w a r d branching construction. In code def in i t ions , the words are IF, ,
ELSE, , and ENDIF,. The difference between the two constructions (outside of
the trailing ",") is the assembler word IF, tests a Z80 condition code (cc)
during execution rather than & boolean stack value.

Assembler - 3

CE IF, . .true part . . {ELSE, . . fa l se par:..} ENDIF,

Figure 3-3. Format of the IF, . .ELSE,. .ENDIF, conditional.

The fo rmat fo r the condit ional branch is shown above (the port ioa
enc losed by the "{)" is op t iona l) . The cc part is the c o n d i t i o n code
(C , N C , Z , N Z , F , h , ? 0 or PE) w h i c h if true at execu t ion t ine wi l l cause the
sschine in s t ruc t ions b e t w e e n the IF, and the ELSE, to be execu t ed . If cc
isn't t r u e the code f o l l o w i n g the ELSE, (if p r e s e n t) w i l l be executed.. In
both cases, the code following the ENDIF, is executed.

addr2

addrl

entry point —>

JP SPUSH

LD HL,0

JR addr2

LD HL,1

JE Z,addrl

OR H

LD A ,L

POP HL

Figure 3—4. Menory diagram of the word 0<>.

EXAMPLE: CODE 00 HL POP L A LD H OR KZ IF,
1 HL LD
ELSE, 0 HIT LD

ENDIF, SPESH JP EDOC

The memory image of the above example is given in figure 3-4. When the
wore 0<> is executed the top of the stack is tested for a non-zero value. If
it is non-zero , a 1 is loaded in to the register pair HL. If the top of s t a c ^
is zero, K 0 is loaded into EL. The inner interpreter entry point SPUSB thetT
p l a c e s the va lue of EL on the s t ack and drops into SNEXT. Another way of
writing the above example would bet

CODE 00 HL POP L A LD H OR NZ IF,
1 HL LD

ENDIF, SPUSH JP EDOC

In this version the fact that the register pair HL already contains the
fa l se va lue (0) if the TOS is zero is taken advantage of.

Assembler -

Looping

There are two types of loop constructions which can be utilized in CODE
words. The first type is the conditional loop and its format is shown below
(figure 3-5). The BEGIN,..END, assembler construction is very similar to the
BEGIN..END construction used in colon definitions with the exception that
END, tests a Z80 condition code (cc) rather than a boolean stack value before
looping again. The code between BEGIN, and END, is executed repeatedly until
the condition code (C,NC,Z,NZ,P,M,PC, or ?E; is true when END, is executed.

BEGIN, cc END,

Figure 3-5. Format of the BEGIN,..END, construct.

An example of the conditional loop is shown below with the memory image
o£ she example given in figure 3-7.

CODE BMOVE BC POP DE POP HL POP BEGIN,
(HL) A LD A (DE) LD EL INC

f DE INC BC DEC B A LD C OR
Z END, $NEZT JP EDOC

Figure 3-6. Example using the BEGIN,..END, conditionals
to define the word BMOVE.

C

addrl

entry point —>

Figure 3—7. Memory

JP SNEZT

JR NZ.aeidrl

OR C

LD A,B

DEC BC

INC DE

INC HL

LD (DE),A

LD A,(HL)

POP HL

POP DE

POP BC

image of the BMOVE example,

Assembler - 5

In Che example, the code between the BEGIN, and the Z EKE, is executed
repeatedly until the register pair BC becomes zero. Not ice that if BC is
initially zero, the loop is executed 65536 times instead of not executing at
a l l » wh ich is not what we wanted to do. To cure this, a. pre-test is needed,
and this is shown in figure 3-S.

CODE BM07T BC POP DE POP HL POP B A LD C OR
N2 IF,

BEGIN,
(HL) A LD A (DE) LD HL INC
DE INC BC DEC C A LD B OR

Z END,
ENDIF, SNEXT JP EDOC

Figure 3-8« The BMOVE example with a pre-test for
zero.

The format of the other type of loop, the unconditional loop, is given is
figure 3-9 and an example of its usage is shown in figure 3-10.

BEGIK, . REPEAT, i
i*.

Figure 3-9. Fomat of the unconditional assembler loop.

CODE WAIT BC POP BEGIK,
20 IK C CP Z IF,

SNEXT JP
ENDIF,

REPEAT, EDOC

Figure 3-10. Example using BEGIN,..REPEAT,.

In the above example the code between the BEGIN, and the REPEAT, is
executed until the data read from port 20 is equal to the TOS upon entry of
WAIT. Notice that no code follows the REPEAT,. This is because it normallj^
would not be executed.)

Assembler - 6

4. Assembler Mnemonics

This appendix compares the 5L5 assembler mnemonics wi th the ZILOG
mnemonics. Refer to the "MUSTEK 280 PROGRAMMING MANUAL" for more details on
the operation and usage of the ZBO instruction set.

In the f i r s t part of this appendix the fo rmat of the SL5 mnemonics is
discussed and in the second part the SL5 mnemonics are listed with their ZILOG
counterparts in alphabetic order.

The SL5 mnemonics differ from their ZILOG counterparts as fol lows:

(1) Because of the na tu re of SL5 , the
operands must precede the mnemonic.

EXAMPLE: the instruction: LD C,3
is vritten as: 3 C LD

(2) Certain operand types have been
changed so as to keep the assembler
clean. These differences are listed in
figure A-l (where two forms are shown,
either may be used).

SL5

adr "
adr

ClX+n) c

C

(IY+n) n IY+
IY+ n

(n) n ~
" n

I ' IR

Figure A-l. Operand differences.

Assembler - 7

Notation

- , r l , r2
rpl
rp2
rp3

cc

b
T> 1 TO

• S — >•»«•

nn
adr

any of the 280 registers < A , B , C , D , E , B , L , (H L) } . «
asy of the register pairs {BC,DE,HL,SP}.
any of the register pairs {BC,DE,EL,AF}.
any of the register pairs {BC,DE, IX,S?} .
any of the register pairs {BC,DE,IY,SP}.
any of the condition codes {C,NC,Z,NZ,PO,PE,P,M}.

a 3 bit integer.
au 8 bit integer,
a 16 bit integer,
a 16 bit address.

The f o l l o w i n g is an a lphabe t i ca l ly sor ted list of assembler mnenon.its
comparing the ZILOG f o r m w i t h the SL5 fo rm. Any dupl icat ions which appear
imply that either form shown may be utilized.

ZILOG SL5

ADC
ADC
ADC
ADC
ADC
ADD
ADD
ADD
ADD
ADD
ADD
ADD
AND
AKD
AND
AND
BIT
BIT
BIT
CALL
CALL
CCT
CP
CP
CP
c?
CPD
CPDR
CPI
CPIR
CPL
DAA
DEC
DEC
DEC
DEC
DI

r
n
EL, rpl
(IXft)
(IY+n)
r
n
EL, rpl
IX,rP3
IY,rp4
(IX+n)
(IY+n)
r
n
(IX+n)
(IY+n)
b , r
b , (IX+n)
b , (I Y + n)
adr
c c. , adr

r
n
(IXi-n)
(IY*n)

r
rp
IX
IY

rpl
n
n

rpl
rp3
rp4
n
n

n
n
r

n IX*
n IY+

adr

c
n

r
n
EL
IX*
IYf
r
n
EL
IX
IY
IX*
IY+
r
n

IX*
IY*

b
b
b

adr
cc

r
n

IX*
IY+

r
P̂
IX
IY

ADC
ADC
ADC
ADC
ADC
ADD
ADD
ADD
ADD
ADD
ADD
ADD
AND
AND
AND
AND
BIT
BIT
BIT
CALL
CALL
CCF
CP
CP
CP
CP
CPD
CPDR
CPI
CPIR
CPL
DAA
DEC
DEC
DEC
DEC
DI

Assembler - 8

DJNZ
EI
EI
EX
EX
EX
EI
EU
HALT
IMO
Du
IM2
IN
IN
IN
INC
INC
IND
INDR
INI
INIE
JP
JP
J?
JP
JP
JE
JE
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LDD
LDDR
LDI
LDIE

n

AT, AT'
DE, EL
(SP),EL
(SP),IX
(S?),IY

A, (n)
A,(n)
r.(C)
r
rp

adr
cc,adr
(EL)
(12)
(IT)
n
cc,n
rl,r2
r, n
r,(IX+n)
r,(IT*n)
(IX+n),r
(IT+n),r
(IX+nl),D
(IT+nl),n
A,(BC)
A, (DE)
A, (adr)
(BC),A
(DE), A
(adr), A
A,I
A, E
I,A
R, A
rplfnn
IX, nn
ITfnn
rpl, (adr)
IX, (adr)
IT, (adr)
(adr), rpl
(adr), IX
(adr), II
SP,EL
SP,II
SP,IT

n

. AT* AT
HL DE

EL (SP)
IX (SP)
II (SP)

n
n * A
(O r

r
rp

adr
adr cc

(EL)
(IX)
(IT)

n
n cc

r2 rl
n r

n IX* r
n IT* r
r n IX+
r D IT+

a2 nl IX+
n2 al IY+

(BC) A
(DE) A

adr * A
A (BC)
A (DE)

A adr ~
IR A
£ A

A IE
A E

nn rpl
nn IX
nn IT

adr " rpl
adr * IX
adr " IT

rpl adr "
IX adr "
IT adr *

HL SP
IX SP
IT SP

DJN2
EI
EX
EX
EX
EX
EX
EXX
HALT
IMO
DU
IM2
IN
IN
IN
INC
INC
IND
INDE
INI
INIE
JP
JP
JP
JP
JP
JE
JE
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
•LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LDD
LDDR
LDI
LDIE

Assembler - 9

NEC
NOP
OS
OR
OR
OR
OTDR
OTIR
OUT
OUT
OUT
OUTD
OUTI
POP
PUSH
RES
RES
RES
RET
RET
RET1
RETN
RST
Rl
RL
Rl
RLA
RLC
ELC
RLC
RLCA
RLD
ER
RR
RR
REC
REC
REC
ERA
RECA
RED
SBC
SBC
SBC
SBC
SBC
scr
SET
SET
SET
SLA
SLA
SLA
SRA
SRA
SRA
SRI
SRL
SRL
SUB
SUB
SUB

•r

n
(IX+n)
(lY+n)

(n),A
Cn),A
(C),r

rp
r?
b,r
b,(LX+n)
b.UY+n)

cc

n
r
(IX+n)
(IY+n)

r
(IX+n)
(n+n)

4.

(IX+n)
ClY+n)
r
(LX+n)
(17+n)

r
n
HL.rpl
(LX+n)
(IYfn)

b,r
b.ClXi-n)
b,(IY+n)
r
(IX+n)
(lY+n)
r
(IXfn)
(lYfn)
r
(IX*n)
(lY+n)
r
n
C IX +n)

r
n

n IX*
n IT*

n
A " n
r (C)

rp
rp

r b
n IX* b
n lY-c b

cc

n
r

n IX+
n IY+

r
n IX*
n IY+

r
n IX*
n IY+

r
n IX*
n IY*

•••

r
n

rpl EL
n IX*
n IY+

r b
n IX+ b
n 17* b

T
n IX*
n 17*

r
n IX*
n 17+

i»

n IX*
n 17+

r
n

n IX*

KEG
NOP
OR
OR
OR
OR
OTDR
OTIR
OUT
OUT
OUT
OUTD
OUTI
POP
PUSH
RES
RES
RES
RET
RET
RETI
RETN
RST
RL
RL
RL
RLA
RLC
RLC
RLC
RLCA
RLD
RR
RH
RR
RRC
RRC
RRC
RRA
RRCA
RED
SBC
SBC
SBC
SBC
SBC
SCF
SET
SET
SET
SLA
SLA
SLA
SRA
SRA
SRA
SRL
SRL
SRL
SUB
SUB
SUB

Assembler - 1C

SÜB
SOP.
XOR
XOR
XOR

(ir+n)
n
r
(IX*n)
(IY+n)

n IY+ SUB
n XOR
r XOR

n IX* XOR
n IY+ XOR

5. Legister Usage

Figure B-l is a list of the Z80 registers and their usage. Any register
^signated as unused may be altered within a, code word. Any register which is
^served (SP, DE' and HI") may also be used inside a code definition, if its
ontents is saved upon entry and restored upon exiting from the code word.

A
BC
DE
HL
IX
IY

SP

unused 8 bit register.
unused 16 bit register pair.
unused 16 bit register pair.
unused 16 bit register pair.
Unused 16 bit register.
Dnused 16 bit register.

Parameter stack pointer.

Alternate register set

A' - unused 8 bit register.
BC* - unused 16 bit register pair.
DE' - Return stack pointer.
EL' - Interpreter pointer (IP).

Figure B-l. Register usage.

6. Exanples of CODE Definitions

The first example multiplies the top of the stack by 2 and pushes the
•oduct OB the data stack. The equivalent colon definition would be:

: 2* Du? •+• ;

CODE 2* HL POP HL HL ADD SPUSB JP EDOC

The next example tests the top of the stack to see if it is negative. If
s negative, the value 1 is returned, otherwise the value 0 is returned.

CODE 0< HL POP B 7 BIT NZ IF,
l HL LD
ELSE, 0 HL LD

ENDIF, SPUSH JP EDOC

Assembler - 11

The p a r a m e t e r is popped , its s ign bit is then checked and if it is set
(indica t ing a nega t ive number) a 1 is loaded into the r eg i s t e r pair EL,
o therwise a 0 is loaded into EL. Then SPDSE is j u m p e d to which wil l push EL
oe the stack and continue.

The word 0< could have been written several different ways which are more
efficient in terms of speed and memory usage. One of these is shown below.

CODE C'< BC POP 0 EL LD B 7 BIT NZ IF,
HL INC

ENDir, 5PUSE J? EDOC , -'

The f ina l example polls port ^0 cont inously until a non-zero value
appears. Then port 41 is read and the data is pusned on the stack.

CODE IH41 BEGIN,
40 IK A OE

N2 END, 41 IN A L LD O B LD
$POSE JP EDOC

For more examples of CODE def in i t ions , examine the definitions of the""
words (SWA?, •+•, DUP ...etc.) in the kernel.

Assembler - 12

Debug •

Debug

1. Introduction

The debugging utilities are provided to aid the programmer in discovering
and fixing the "bugs" which ail their programs. The debugging routines may
be loaded a: any time by executing:

>FLDAD DEBUG.SL5 <cr>

The words which are described in this section are nov loaded and ready to
be used.

2. DUMP

The DUMP utility allows you to examine any portion of your CPU's memory.
The fora of DUMP is:

f,.. e s DUMP

f Vhere "s" is the s tar t ing memory address and "e" is the final address.
L .»P will then display 16 bytes of memory on a line with the starting address
given f i rs t fol lowed by the 16 bytes in numeric and ASCII character form (any
codes b e t w e e n 0-20 hex are shown as a "."). All numbers are displayed in
hexadecimal notation.

EXAMPLE: >120 100 DUMP <cr>

0100 C3 4£ 06 E5 D9 4E 23 46 23 C5 D5 C9 El 5E 23 56 CK.eYN#F#EYIa~*V
0110 D5 C3 04 01 C3 04 01 CD OC 01 82 67 CD OC 01 84 UC. .C. .M.. .gM.. .

3. MODIFY

£• The word "MODIFY" lets you examine and alter the contents of memory on a
t _ e to byte basis starting at a selected address. The form of the modify
comaand is:

s MODIFY

MODIFY will then proceed by displaying the contents of 16 bytes starting
at the address

(1)

(2)

(3)

's" and ask for input, which can be

A two digi t hexadecimal number which w i l l
replace the byte which is shown above it.

A "carriage-return" w h i c h causes m o d i f y to
proceed to the next 16 bytes.

An "ESCAPE", which takes you out of MODIFY back

Debug - 1

to the outer interpreter.

(A) Any other charac te r , w h i c h causes MODIFY to
proceed to the next byte.

EXAMPLE: If you executed the following:

>100 MODI7Y <cr>

0100 C3 4E 06 E5 D9 4E 23 46 23 C5 D9 C9 El 5E 23 56 CN.eYH£F#EYIa*#V
0100 U. 22. 31 _ _ 44 <er>
0110 D5 C3 04 01 C3 04 01 CD OC 01 82 67 CD OC 01 84 DC. .C. .M.. .gH...
0110 40 4J. 42 _ 43_ 44 _ 45. 46. _ IE <escat>e>

>120 100 DUMP <er>

0100 11 22 33 E5 D9 4E 44 46 23 C5 D9 C9 El 5E 23 56 ."3eYNDF#EYIa'#V
0110 40 41 42 01 43 44 01 45 46 01 IB 67 CD OC 01 84 <?AB.CD.EF. .gM...

4. PSDMP and RSBMP - Stack

The words PSDMP and RSDMP allow you to examine the contents of either the
data stack or the return stack easily. The contents are displayed as 2 bytes
to a line in both hexadecimal form and character form. The top of the stack
is shown first while the bottom is shown last.

EXAMPLE: If the parameter stack contained the values
2 , 96 , and 4463 (h e x a d e c i m a l) , then
executing:

>PSDMP
0002 ..
0096 ..
4463 DC

<er>

5. *BREAK* sad *UB* - Breakpoint ing.
t ^ "•>

Breakpoints can be set anywhere within colon definitions by inserting the
word "»BREAK*" into the definition. When the breakpoint subsequently
executes, control is passed to the outer interpeter so that you may examine or
alter the environment (the stacks, variables, etc). To continue execution
after the breakpoint, you only need to execute the word "*UB*".

Debug - 2

EXAMPLE: suppose we defined a word called "EXI" which
added ehe two numbers on the stack and
displayed the sun, afterwards.

: EXI + . ;

To set a breakpoint before displaying the
sue., we only need to alter the definition so
as to resemble:

: EXI + *BREAK* . ;

Now when »he word EXI is executed:

>2 3 EXI <cr>
BREAK: EXI 1139
>DUP . <cr>
5
>*UB* <er >
5

When the breakpoint occurred in the above example, the word in which the
reakpoint occurred was shown along with the breakpoint address (in this case,
"XI 1139"). The top of s tack was then examined by execut ing "DUP .".
.jntrol was then re turned to the word f o l l o w i n g the "*BREAK*" in EXI by the

execution of "*UB*"c The top of stack was then displayed via the "." in "EXI.,

6. STM", STMDDMP - Dictionary Examination

There are two w o r d s , which are included in the debugging package , that
let you examine the symbol table. The first to be described is "SYM*", which
displays the entry of a particular wore,.

EXAMPLE: >SYK" LEMMOK <cr>

9067 F39A 7376 2011 00 LEMMON

In the above example, the address of the dictionary entry was first shpvn
5067), f o l l o w e d by the relative link address (F39A) and the absolute link
dress (7876). The execution address was then displayed (2011), followed by

klis flags (00) and the word itself. All numbers are displayed in hexadecimal
notation, regardless of the current radix.

The other d i c t iona ry examinat ion tool is called "SYMDUMP". This word,
when executed, displays the whole dictionary starting at CONTEXT in the same
f o r m a t as "SYM"1.

Debug - 3

•-££-

Interface
% i

CP/M Interface

Introduction

C P / M f rom Digital Research is a. general purpose microcompute r disk
operat ing system. It contains 4 modules : BIOS, BDOS, CCP, and TPA. BIOS
contains the device drivers for disk and serial I/O units. BDOS is the program
level interface to CP/M, and also contains the kernel of the operating system.
CCP is the console executive. The TPA is the execution area for user programs.

SL5 is loaded into the TPA like any compi ler or program ut i l i ty . On
initial load SL5 initializes stack pointers, registers, and system variables.
The boot routine also relocates the symbol table into high memory overwriting
the CCP area. Boot obtains the relocation address from CP/M at memory address
6, so it alvays uses all of available memory regardless of the system that SL5
vas generated on.

The SL5 I/O subsys t em (see 1.12 REFERENCE) is designed to run under a
number of disk operat ing sys tems bes ides C F / M . User calls to I /O words are
t r a n s l a t e d into C P / M cal ls and passed on to the BDOS. W h i l e the SL5 I/O

•" tructure is similar to CP/M calls, there are differences. Systems programmers
-«• aou ld consul t the SL5 Refe rence section, and C F / M Interface Guide b e f o r e
Citing code to call BDOS directly.

The user of the SL5 I/O subsystem does not have to have a vorking
knowledge of BDOS. Character and file I/O can be done by using SL5 I/O words.
C P / M traps some fatal errors, issues & message and reboots. The C P / M manual
lists these error messages. SL5 traps and reports additional errors (see
Reference 1.12).

Loading SL5 Object Files

SL5 object modules are created by SY.SGEN and COMMOD as standard CP/M COM
files. They are loaded and executed by entering the filename from the console
whi le in CP/M. Since the CCP section is overwrit ten by SL5 programs, a warm
boot must be executed to go back to CP/M. The modules are loaded into the TPA
at address 100H. SL5 does not use the area f r o m 0 th 100K, or the C P / M BDOS,
BIOS areas.

î
* User programs can overlay BDOS and BIOS; no bounds checking is done by
>~3. If the user program subsequently attempts to use the SL5 I/O subsystem or
BOOS, the results are unpredictable, and usually undesirable. Programmers can
write code to call BDOS and BIOS directly, but a thorough knowledge of CP/M
aad SL5 I/O is required. The SL5 I/O subsystem should be sufficient for most
applications.

7LOAD- Loading SL5 Source Files

There are several files on the SL5 distribution disk. SL5.DOC describes
each file, and how it is used. SL5.COM is the compiled kernel. DEV.COM is the
compiled kernel plus the assembler and debugging vocabulary. With FLOAD the

Interface -

user can compile additional source files or libraries into the TPA. New files
are c o m p i l e d , extending the symbol t ab le and code segment . A f a t a l error
occurs if the symbol table collides vith the code segment.

Examp1e:
A>DEV - load DEV from CP/M
>FLOAD USER1.SL5 - load another program fron SL5
> - continue executing in SL5

SL5 has 2 sys tems for creating new COM f i les . After a nev l ibrary or
application program is debugged it can be saved as an executable file. COMHOD
saves the memory image after compressing out the free space between the code
segment and the symbol table. On initial load the symbol table is re loca ted
into high memory . The C P / M SAVE u t i l i ty stores the ob jec t f i le . The second
system, SYSGEK, compiles the kernel and user code directly onto a disk file.
SYSGEK is used to create new kernels , appl ica t ions programs wi thou t the
development words, and rommable object files (see Object Module section).

CA1LCPM - - - - =• -
£ f

. \
v ** *•'

The in ter face be tween SL5 I/O and CP/M's BDOS is th rough an SL5
word, which is an assembly language routine.

„" *T

CODE CALLCPM - '
BC POP DE POP 05 CALL 0 H LD A L LD '•'•
SPUSH J? EDOC -< -l

On entry the TOS contains a function code which is put into the C
register. The NOS is an information block address (FCB addre'ss). Location 5
contains a jump to a location in CP/M that is the entry point of the program
I/O handler. On return the A register contains a status byte. $PUSE J? pushes
the status on the parameter stack, and executes SNEZT- the inner loop of SL5.

•*>
-i. '.

Serial I/O

SL5 uses 4 C P / M serial character funct ions: check console status, read
console character, write console character, and write character to the l.7^)
device . These 4 f u n c t i o n s map into the c h a r a c t e r « I / O words described in t^
R e f e r e n c e section. Since al l charac te r I /O is per formed through C P / M , SL5
programs are easily transported across different machines running under CP/M.

Serial devices:
#CRT - console input and output
vList- printer output

Disk I/O

The CP/M interface contains a number of functions for disk I/O including
open, close, read, write, create, rename etc. These functions map into SL5

Interface - 2

disk I /O w o r d s described in the R e f e r e n c e section. The func t ion calls and
details of CP/M BDOS interface are transparent to the user for the most part.
C P / M t raps and handles & fev disk I /O errors i n c l u d i n g f a t a l read and wr i t e
errors. The error codes are described in the CP/M manual. CP/M usual ly must be
r e b o o t e d a f t e r one of these errors. The SL5 I /O s u b s y s t e m t r aps some
add i t i ona l errors described in the Reference section (1.12). The SL5 error
message is displayed on the console, and RESTART- the warm start routine is
executed.

OPEH3L, OPZH¥

CP/M has one open routine, and allows concurrent reads and vrites on the
same file. Most other microcomputer operating systems require that a file be
opened for either reading or writing, but not both. SL5 has separate open read
and open w r i t e words . The user can easi ly m o d i f y the kernel to a l low
concurrent reads and writes, but the code will not be transportable to other
opera t ing sys t ems SL5 is implemented on. OPENV executes a delete funct ion
before open to prevent fi le name duplication in the directory.

Getting Started

SL5 is distributed as a set of C P / M text and COM fi les on a single
i s k e t t e . I t s a g o o d idea to m a k e one o r m o r e b a c k u p c o p i e s o f the

sistribution disk before using the system. PIP the files over to a disk which
has been SYSGENed wi th a copy of your CP/M sys tem. The text f i l e SL5.DOC
contains a description of each file on the diskette. If you are familiar vith
Forth type languages, browse through the Reference Section list the SL5.DOC
file and go to it. New users should read the Tutorial Section and vork through
the examples first.

To bring up SL5:

1. Eater cntl-C or reset the system to bring up CP/M

2. Enter SL5<cr>
*•

The prompt > should appear on your screen. If it doesn't try again, then
give us a call.

Interface - 3

v,
s-/;

c

Object Modules

Object Modales

Introduction

The S15 system disk has 2 routines for creating complete execution files
or object modules, the COMMOD routine and the SYSMAKE routine. This section
conta ins a d i scuss ion of ways to r e c r e a t e , ex tend , or co l lapse the SL5
d e v e l o p m e n t s y s t e m along w i t h c u s t o m code to c r ea t e a s y s t e m tai lored to a
par t icu la r product or application. This could be anything f r o m adding a.
library of words to expand the development environment, to a small subset of
the system for an EPROM based controller. COMMOD is used to create a memory
image t h a t is then "saved" as a C P / M o b j e c t m o d u l e . SYSMAKE is a cross-
compiler and creates an entirely new system wi th a new synbol table. The new
system can be ROM based and may be collapsed as desired.

2. Compiling a. Subset of the SL3 Kernel

The SL5 kernel, wr i t t en in SL5, can be divided into 6 sections: SL5
primitive words, the interpreter, the compiler, console I /O, the file system,
and user I/O. Compiler directives IFTRUE..OTHERWISE..I7END control compilation
of each section based on the value of constants defined in the kernel source.

The SL5 primitive library is a set of 70 SL5 words and system variables.
M o s t of these words are needed in every kernel . The library occupies about
1400 bytes in the code segment. The other f ive sections can be compiled or
l e f t out depending on the appl icat ion. If a user program references a word
that is left out of the kernel an undefined error message is printed.

Section

Primitive library

Interpreter

Compiler

Console I/O

File System

user I/O

Size(bytes)

1400

IK

IK

500

1.5K

100

Function I
1

basic function library

outer interpreter

commie new words
'

console I/O wcrds

interface to disk
operating system

direct I/O words

Outtsr Interpreter

The outer in terpreter is the main loop of SL5. It p rocesses input
c o m m a n d s f r o m the conso le , conver ts s t r ings to n u m b e r s , and execu tes words
def ined in the dict ionary. It m u s t be c o m p i l e d in any sys tem that needs to

Object Modules - 1

access the dictionary. The outer interpreter can be used in an application or
control program to process commands and select different drivers. Functions
like WORD, NUMBER, and FIND can reduce the amount of custom programming needed
to implement control functions. The outer interpreter section requires console
I/O and either the file system or user I/O section.

Compiler

The compiler section is a IK library of words that supports creation of
new SL5 words and vocabularies. It is needed in a development system. It can
be de le ted f rom sys t ems that do not need to create new words at execution
time. - -

Console I/O ,.

The console I/O library is a set of about 20 words that input and output
characters, numbers, and messages on the CRT. It must be included in a system
that contains the interpreter or compiler. It requires either the file system
or a user I/O section.

' File Syste»
r

The SL5 file system is the link to the host disk operating system. It
also contains channel I/O providing buffered input and output to serial
devices. This section can be deleted from a kernel chat does not use the disk
system, but a user I/O section must be added if the console I/O or outer
interpreter section is compiled.

User I/O
. * *-

The SL5 file system and the host DOS take up several thousand bytes of
memory. In many cases the host DOS cannot ae executed from ROM. A user I/O
section can be substituted for the file system to support console I/O. *
sample user I/O section is listed below. The direct I/O words CIN, COÜT, aL_
CIS are installation dependent. The I/O address and status mask depend ot.
hardware addresses and the UAB.I used.

(OWNIO SECTION)

70WNIO IFTRUE

80 BARRAY TSÜF7
0 VARIABLE T3UF?
0 VARIABLE BUFSI2E

Object Modules - 2

: COÜT BEGIN (8251 character output word - device addr ED control EC data
OED 2 IN 1 &

END DEC ZOUT ;

: CIN BEGIN (serial input - device addr ED control EC data)
OED ZIN 2 &

END OEC ZIS 7F & DUP COUT ;

: CIS ;

(CTYPE, $C")

: CTYPE DÜ? IF
0 DO

DUP B@ COUT 1+
LOOP DROP
ELSE 2DROP

END I? ;

: $C" R> DUP B@ SWAP 1+ SWAP 2DUP + >R CTYPE ; (type string to console)

^ *3 COUT ;

: TGET " > COUT 0 TBUF? ! BEGIN
CIN DUP TBUFP @ TBUFF B! CASE

OD - TBUFP 1*1 OA COUT 1 ;; (CR)
IB - C" *ESC*" OD COUT OA COUT 0 TBUFP ! 0 ;; (ESC)
08 - TBUTP @ IF (BS)

TBDFP 1-!
ENDIF 0 ;;

NOCASE -: TBDFP 1*! 0 ;;
CAS END

END TBUFP @ BUFSIZE ! 0 TBDFP ! ;

: GCH T3UFP @ BUFSIZE @ >- IF
TGET RECURSE
ELSE TBUF? @ TBUFF B@ TBUFP 1*!

ENDIF ;

: DGCH GCE ;

" -»UTINIT ;
:-_IIHIT 0 TBUFP ! 0 BUFSIZE ! ;

IFEND

(END OWNIO SECTION)

The Symbol Table

The SL5 symbol table is s. linked list of the symbol 'names and code
segment addresses of all the words in the dictionary. The symbol table is
used by the outer interpreter and compiler. The symbol table occupies

Object Modules - 3

approximately 252 of the space used by an SL5 program. It can be removed in
SYSMAKE by responding with a "N" to the question: "Do you want a symbol table
(Y / N) ?". In C O M M O D , the var iable 7SYMTAB shou ld be set to 0 if the symbol
t a b l e isn't needed.

Deleting a Section of the Kernel

I Compiler Control Constants
1
1 ? INTER?
i
1 ? COMPILE
I
1 ?CRT
1
! 7FILESYS
1
! 70WNIO
1

Compile interpreter words

Compile compiler words

Compile console I/O woras

Compile tne SL5 file system

Compile user I/O words i

The standard SL5 kernel is compiled with 7INTERP, 7COMPILE, 7FILESYS, and
7CRT on (set to 1). 70WNIO is set to 0. Compiler words can be deleted without
effecting the rest of the kernel. The compiler library requires the
interpreter, the file system and the CRT words. The interpreter library
requires the CRT and either the file system or user I/O section. The CRT
library needs the file system or a user I/O library.

3. Generating a ROM Based Controller Frogx:

(See example 1 below) _

1,

•>

Write the application program on a file.

Debug the program using DEV.COM and FLOAD.

Compile a RAM system with SYSMAKE.COM and test.

Write user I/O words and debug with DEV.COM

Add OWNIO section to KERNEL.SL5 - * - -«• * - ,..--*.
Set 7COMPILE, 7I2TTERP, 7FILESYS to 0
Set 70WNIO to 1 (edit KERNEL.SL5 source to change these constants)

Compile a ROM system with SYSMAKE.COM
Set the variable GOQIAD to the address of the driver word.

: DRIVER (your driver word) ;
'B DRIVER GOQIAD T!

When the program is loaded f r o m d i sk or j u m p e d to on co lds ta r t the
driver program will be executeo after initialization of SL5.

Load the program from disk and test.

Object Modules - 4

8. Blase ehe object code into EPROM and test.

NOTE: The words T I and T@ should be used in SYS MAKE when storing values in
variables or memory locations during SYSMAKE execution. The words f§ and !
should still be used when compiling.

EXAMPLE: 0 VARIABLE XYZ
99 m T!
: TEST 99 SYZ

The program should be tested and debugged using DEV.COM before compiling
with SYSMAKE.COM. The ROM object file can be loaded and tested using the DOS
before blasting EPROMS. After the program is tested, generate the production
•ersion with SYSMAKE.COM.

NOTEi The examples that follow include prompts, output messages and console
input as displayed on the console CRT during execution.

Example 1 : Generating a ROM module DRIVES..COM

t
.. SYSMAKE (load compiler program from CP/M)

Sysmake version 1.2 Z80 - CP/M
(C) Copyright 1980 The Stackworks

Enter 'STAT' to examine parameters
Enter 'RAMGEN" co generate a RAM based system
Enter 'ROMGEN* to generate & ROM based system

>1 infof !
>romgen
Enter first address in ROM >4000
Enter higest RAM address >eOOO

(turn off compiler source listing)

Enter object file name >driver.com
Enter Kernel source file name >kernel.sl5 (compile kernel.s 15)

kernel.s 15 is compiled onto driver.com

Mora input (Y/N) ? y
Enter source file name >driver.s!5 (compile driver.s 15)

driver.s 15 is compiled onto driver.com

More input (Y/N) ? n
Do you want a symbol table (Y/N) ? n (do not generate symbol table)

Successful compilation

Object Modules - 5

Program size - CF1 / 3313
Variable space used - 2C6 / 1736
Total memory used » FB7 / 5049

A>

(hex / decimal notation)

(back to cp/m)

C

4. Generating a RAM COM module with STSMAKI

1. Write the program. *. '•>..'

2. Compile and debug it using DEV.COM.

3. Compile using SYSMAKE and all of KERNEL.SL5 and test.

4. Set conditional compile switches to delete unneeded sections of the
kernel.

5. Compile with SYSMAKE, load and test.

NOTE: The vords Tl and T@ should be used in SYS HAKE when storing values in
variables or memory locations during SYS MAKE execution. The vords @ and 1
should still he used when compiling.

EXAMPLE: 0 VARIABLE XYZ
99 XYZ T!
: TEST 99 XYZ ! ;

A>SYSMAKE

Example 2 : A RAH based COM file with SYSMAKE

(load SYSMAKE program from CP/M)

Sysmake version 1.2 Z80 - CP/M
(C) Copyright 1980 The Stackworks

Enter 'STAT' to examine parameters
Enter 'RAMGEN' to generate a RAM based system
Enter 'ROMGEN' to generate a ROM based system

>1 infof !
>ramgen

(turn off compiler source listing)

Enter object file name >myprog.com
Enter Kernel source file name >kernel.s!5 (compile kernel.s!5)

kernel.s15 is compiled onto myprog.com

More input (Y/N) ? y
Enter source fi le name >myprog.sl5 (compile aiyprog.slS)

myprog.slS is compiled onto myprog.com

Object Modules - 6

lore input (Y/N) ? n
jo you want a symbol table (Y/N) ? y (do not generate symbol table)

luccessful compilation

••rsgras size - 1F4B / SOU
Dictionary size - AF3 / 2803
Total memory used « 2A3E / 10814

(Uex / decimal notation }

(back to cp/m)

5. STSMAKZ Errors and Parameters

There are a few error m e s s a g e s tha t are gene ra t ed by SYSMAKE when an
f i n e d ac t ion takes p l a c e or one of SYSMAKE's data s t r u c t u r e s o v e r f l o w s ,
of these are described here along with a remedy. Most error conditions

zause the system to abort to the operating system after the message is issued.

r

TARGET REDEF nnnn

aaan IS UNDEFINED

General SYSMAO Errors

This in format ive m e s s a g e is the same as the
compila t ion message "REDEF nnnn", wh ich means
that the w o r d nnnn was jus t r edef ined in the
vocabulary. No adverse action takes place.

This i n f o r m s you that the word nnnn was used
without being previously defined.

:OMP. BUFFER OVERFLOW

Data Structure Overflows

A special b u f f e r inside SYS MAKE called the
"compiler b u f f e r " o v e r f l o w e d because a large
word was j u s t de f ined« There are two ways to
resolve this problem, (1) separate the word into
one or more smaller de f in i t ions , (2) re-enter

SYS ERSOR # 1

£YS ERROR v 2

SYS ERROR # 3

SYSMAKE and set the
larger value than it's

va r i ab l e "CB-SIZE" to a
initial value.

This message is g e n e r a t e d when the number of
defined var iab les exceeds the number allowed.
Re-enter SYSMAKE and increase the value of the
variable "TVAR-NUM" before compiling.

Re-enter SYSMAKE and increase the value of the
variable TSYMSP before compiling.

This message is generated when more memory is
requ i red to c o m p l e t e compi la t ion . I f more
memory is not a v a i l a b l e , re-enter SYSMAKE and
cry d e c r e a s i n g the v a l u e s of the v a r i a b l e s CB-
SIZE, TVAR-NUM, and TSYMSP.

Object Modules - 7

Setting SYSMA2Z Parameters .„-,*

The f o l l o w i n g ou tpu t demons t r a t e s how to examine and m o d i f y SYSMAKE
parameters. All user input is underlined for clarity.

* ' X-v

A>SYSMAKZ (load SYSMAKZ program from CP/M)

Sysmake version 1.2 Z80 - CP/M
(C) Copyright 1980 The Stackworks

Ester 'STAT' to examine parameters
Enter 'RAMGEH' to generate a RAM based system
Enter 'ROMGEN' to generate a ROM based system « .-•

>stat - _ - , •

All values are shown in hex/decimal form ,, ä .
Maximum number of variables (VAR-MAX) - 4 0 / 6 4
Temporary symbol table space (TSYMS?) • 200 / 512
Compiler buffer size (CB-SIZZ) - 200 / 512
Starting program address (TCP) » 100 / 256 (auto, set during ROMGEN)

>60 var-max ! (set maximum number of variables to 60 hex) - '
>400 tdp ! " (set starting address to 400 hex)
>ramgen ' (now generate a ram based system)

6. Generating a COM Module with COMMOD

The C O M M O D program provides a qu ick , easy way to generate COM modules
for execution. C O M M O D can discard the symbol tab le if desired, or it can
leave it intact to be used along with the outer interpreter. COMMOD can also
execute an ini t ial izat ion rout ine which wou ld display a. message and or
initialize variables before entering the outer interpreter.

func t iona l and an entry point for the program should be specified as the
initialization routine.

NOTE: If the symbol t a b l e is discarded, the outer in te rpre te r is not

J
<.*

ParaBeters For COMMOD

COMMOD has two parameters, 7SYMTAB and USERPAD. These are variables and
can be set after COMMOD.SL5 has been loaded.

7SYMTAB - If set to 0, the symbol table is discarded,
otherwise it is preserved. Default » 1

ÜSERJPAD - This can be set to point to an initialization
rout ine . On d e f a u l t i t po in ts to a d u m m y
routine.

Object Modules - 8

Example 3 : Create a disk com file vich COMMOD.SL5

A>sl5 (load the kernel object f i le from CP/M)
>1 infof ! (turn off source listing)

>£load TEST.SL5 (load user program on top of kernel)

>fload COMMOD.SL5 (load the coianod program)

Set the variable 7SYMTAB to 0 if the symbol table isn't needed. . .
Execute 'MAKECOM program.com' when ready.

>makecota TEST.COM ^ (generate program on TEST.COM)

Program size - 2D09 /11529 (size shown in hexadecimal/decimal format)
A> (SL5 returns to C?/M af te r saving TEST.COM)

Example 4: Create a disk COM f i le with a user initialization
routine

i i',5 , (load the kernel object file from CP/M)

>:j.oad TEST.SL5 (load user program on top of kernel)
•

*

: MYINIT CR T" WELCOME TO MY PROGRAM VERSION 1.0" CR ;

>fload COMMOD.SL5 (load the consnod program)

Set the variable 7SYMTAB to 0 if the symbol table isn't needed.
Execute 'MAKECOM program.com"" when ready.

"D myinit userpad ! (set initialization address to myinit)

Xnakecom TEST2.COM (generate program on TESTE.COM)

rrograzn size * 2D09 / 11529 (size shown in hexadecimal/ decimal format)
'.> (SL5 returns to CP/M after saving TEST2.COM)
A>TEST2
*•- COME TO MY PROGRAM VERSION 1.0

Object Modules - 9

Example 5: using COMMOD to create a disk COM file without a symbol
table.

A>sl5

>fload TE2T3.SL5

(load the kernel object file from CP/M)

r iload user program oc top of kernel }

: DRIVER BEGIN C your main loop) 0 END ;

>fload COMMOD.SL5 (load the commod program)

Set the variable 7SYMTAS to 0 if the symbol table isn't needed.
Execute 'MAKLCQM program.com' when ready.

>0 Tsymtab !

>'b DRIVER userpad !

>makecom TEST3.COM

Program size - 2D09 / 11529
A>

(symbol table will be discarded)

(set initialization routine to DRIVER)

(generate program on TEST3.COM)

(size shown in hexadecimal/ decimal format)
(SL5 returns to CP/M after saving TEST3.COM)

Object Modules - 10

r

Structure

Structure

l. Introduction

In the first part of this manual, you were shovn bow to create and use
ords and structures. This section describes what actually goes on when you
rests and use words and structures.

2. Memory Organization

Given in figure 1 is a typical memory layout for a RAM-based system and
n figure 2 for ROM-based systems. See the Interface Section for the actual
ocation of these areas in your system.

Top of memory

BIOS

A
I I

100E

BDOS ,

Symbol table (dictionary)

Code It data area
code segments

variable & arrav storage
I/O buffers
stacks

buffers & data

Bottom of memorv

Figure 2-1. Typical memory layout for RAM-based systems,

Structure - 1

The symbol table (or dictionary) is a downward growing linked list of all
the d e f i n e d words along vi tbthe code segment a d d r e s s and a f l ag byte .

The code and data area contains the code segments of defined words, the
10 b u f f e r s , and the stacks (return and parameter) . This area grows upward
towards the dictionary. If they collide, a fatal error results.

The parameter stack is a stack which grows downward as more values are
p laced onto i t and contracts upward when va lues are removed f r o m it . The
return stack is used for storing the interpreter pointers, and loop indexes.

Top of memory

/ \

100H

BIOS

BDOS

Data area

variable & array storage
I/O buffers

stacks

Symbol table (dictionary)

Code area

Code segments

buffers & data

Bottom of memory _ ... , ''•

Figure 2-2. Memory layout for ROM-based systems.

In a ROM environment, the data area is separated f rom the code area so
that the values of var iables can be al tered. The code segment area lies in
ROM while the dictionary and data area must be in RAM. The dictionary may be
ommitted for systems where the outer interpreter isn't used.

Structure - 2

3. Compilation of Words

Whenever a new word is defined, a search is first performed on the
ONTEXT vocabulary to see if the word has been previously defined. If the
•crd is found, the message "REDEF nnnn" is displayed to inform you that you
re redefining that word. This message is only an informative one. Thee the
ord is added to the end of the CURRENT vocabulary and the CONTEXT vocabulary
s set to the CUPJIENT vocabulary except for CODE words in which case CONTEXT
s set to the ASSEMBLER vocabulary. What happens next varies for COLON (:),
ODE, CONSTANT, VARIABLE, and ARRAY definitions.

3.1. Colon Definitions

When a colon (:) definition is defined, a CALL $: machine instruction is
cored at the start of the new word's code segment. The variable STATE is set
o 1 to indicate compile mode. During compile mode the code segment address

ords referenced inside the definition will be stored in the code segment
he word being defined unless the referenced word has it's precedence bit

Some words have a precedence bit set to force execution during compile
ode. One of these words is semi-colon (;). It resets the STATE to 0
sxeeution mode), updates the CONTEXT vocabulary so that the word just defined
s accessible, and places the address of ;$ in the code body (see figure 3-1).

address of $;

addresses of more
words

C I address of 2nd word

i .

address of 1st word

! CALL $:
entry point —> I

Figure 3-1. Memory format of colon definitions.

When the new word is executed, a jump to the entry point is made which
2uses the CPU to execute the CALL $: instruction. S: pushes the value of
ne interpreter pointer on the return stack and sets the IP to the memory

Structure - 3

location following the CALL S: instruction. The inner interpreter will nov
execute (jump to) the addresses in the colon definition. When $; is executed,
tne previous value of the intepreter pointer is popped fron the return stack.

3.1.1. Literals

During execution, literals are numbers which you type in and are pushed
onto the stack. During compilation, literals are processed in & different vay
so that the number will be pushed on the stack when the word is executed,
rather than when it is defined. The address of LIT and the value is compiled
into the code segment.

address of LIT I I the number

Figure 3-2. Compiled literals.
f **

i, ' "
L Upon execution of LIT, the l i teral is placed on the stack and the
™ interpreter pointer is incremented to the memory location past the number so "•*'

tnat the inaer interpreter won't execute the number.

3.1.2. T"

What happens with T" during compilation is similar to what was described
for literals. The address of the word $T" is placed in the code segment along
with the string and tne string's length.

EXAMPLE: If T" purple" appeared in a colon Definition,
the following would be placed in the body:

I address o f ST" I I 6 ! p l u l r l p l l l e
r

When executed $T" will print

purple

and increment the interpreter pointer to the location
following the e in purple.

Structure - 4

3.1.3» Branching Within Colon Definitions

la this sec t ion , the internal s t r u c t u r e of some of the branching
constructions is described,. The constructions discussed here should give you
some insight into the structures which are not described in this section.

IT..ELSE..ENDIF

When IF..ELSE..ENDIF is compi l ed IF ELSE and ENDIF are a c t u a l l y
.•xecuted rather than their addreses being compiled into the definition because
oeir precedence bit is set. IF ELSE and ENDIF put addresses of words and
r a n s f e r addresses in the colon body so that when the word is executed the
roper branching will occur.

EXAMPLE: NINE-

: NINE- 9 • IF 1 ELSE 0 ENDIF . ;

i
which when executed will test the value on the top of the stack and type

i if it is a 9 or a 0 if the top of stack is anything else. The definition
ody would then resemble:

address2

address 1

r

entry point

address of $;

address of .

address of LIT

address!

addr. of SELSE

address of LIT

address1

address of 5IJ

address of -

address of LIT

CALL $:

Structure - 5

When KIKE- is executed and the top of stack (TOS) is 9, $IF will
increment the interpreter pointer co skip over addressl, LIT will push the 1
on the stack, $ELSZ vill then set the interpreter pointer to address2 to avoid
execution of the false part of the branch, and "." will print the TOS which is
a 1. If the numher which was on the top of the stack upon entry of NIKE» was
not a 9, $IF will set the interpreter pointer to addressl and LIT will push a
0 onto the stack which "." will print.

BEGIB..EHE

BEGIN-END executes during compilation and places addresses along wi th
data in the code segment.

: H-l. BEGIN DUP . 1- DDP 0« END DROP ;

When N-l. is executed it wi l l print all the numbers starting f rom the
value on top of the stack down to 1.

EXAMPLE:
will produce:

>9 N-l. <CR>
9 8 7 6 5 4 3 2 1

address!

address of $;

addr. of DROP

addressl

entry point —>

!
addressl

addr.

addr.

addr.

addr.

addr.

addr.

of

of

of

of

or

of

CALL

5IF

0-

DÜP

1-

•

DUP

$:

Figure 3-3. Memory diagram of the word N-l

Structure - 6

Figure 3-3 shows the memory image of the N-l . The word END pucs the
address of $IF followed by the loop address in the code segment. The word
SIF w i l l set the IP to address2 when the TOS is true(non-sero) at the end of
the loop.

2ECDZSZ

When the compiler directive RECURSE is encountered during the compilation
of a w o r d , i t executes i m m e d i a t e l y and places the address of the w o r d under
cons t ru c t i on in the defini t ion. This enables the word to call i tself
recursively during execution.

: : N-l. DUP IF
DÜ? . 1- RZCURSE
ELSE DROP

ESDI? ;

f~ Execution of N-l. will cause the numbers starting from the value on the
A s tack on entry of N-l. down to "1" to be typed.

EXAMPLE: >7 N-l. <CR>
will produce: 7 8 6 5 4 3 2 1

address3

address!

entry point
(addressl) ->

addr. of $;

addr. of DROP

address3

addr. of SELSE

addr. of N-l.
(addressl)

addr. of 1-

aacr, or .

addr. of DUP

address2

addr. of $IF

addr. of DUP

CALL S:

Figure 3-4. Illustration of N-l. using RECURSE.

Structure - 7

H-l. cannot be used instead of RECURSE because the CONTEXT dictionary
(see section 4.1) does not contain the word N-l. until the ";" is processed'.
The logic behind this is that it is often desirable to be able to redefine &
word using the previous definition.

3.1.4. ;: and ;CODE Construction«

The most common way to terminate a colon definition is by the use of the
word ";"'. Two other words can be used - ;: and ;code.

When the compiler directive ;: is used, it places two things in the word
under definition before terminating compilation. The first is the address of
a word $;: and the second is the machine instruction CALL S: .

EXAMPLE: The definition of the word BARRAY:

: BARRAY HERE 5 * CONSTANT D P + ! ; : < ? + ;

Which when used:

9 BARRAY BEX1 " ^ ,

will define a new word called BEX1 . Figure 3-5 shows the memory image
of these two words.

BARRAY

addr. of S;

addr. of

adar. of

CALL S:

addr. of 5;:

addr. of DP*!

address of
CONSTANT

addr. of LIT

CALL S:

adoressi

BEX1

array
elements

address3

address!
aadress3

CALL addressl

Figure 3-5. Illustration of BARRAY & BEX1.

Structure - S

When S;: is executed address! is placed in the address f ie ld of the CALL
in s t ruc t i on in BEX1 and execut ion of BAB.S.AY is t e rmina ted . When BEX1 is
s u b s e q u e n t l y e x e c u t e d , CALL add re s s l v i l l push adc re s s2 on the stack and
branch to add re s s l . CALL S: at add re s s l w i l l in turn set the in t e rp re t e r
pointer up and start executing, as if it were a colon definition.

The compiler directive tCODE is identical tc ;: except that it defines a
CODE sequence instead of a colon sequence. Thus the form:

: nnnn . . .words.. . ;CODE ...machine instructions... EDOC

produces the memory images shovs in the figure below.

nnnn

~ machine ~
*" instructions

ft. I I addressl
0 £ I TI&QSZffi

S;CODE I

addresses of ~ parameters
words °" ~

I addressl I

CALL S: | I CALL addressl

Figure 3-6. Memory format of ;-CODE constructions,

3.2. CODE Definitions

5 When you define a code word, SL5 remains in the execution mode (STATE-0)
9 .like colon definitions where you are in compilation mode (STATE»1). Words

' re assembled into the code segment to be executed by the CPU. Upon execution
• of the word "EDOC", CONTEXT is reset to the CURRENT vocabulary, which enables

you to reference the new word immediately.

I machine
I instructions

entry point —> !

Figure 3-7. Memory format for CODE definitions.

Structure - 9

3.3. CONSTANT

A constant pushes it's value onto the stack. When you define a CONSTANT,
the memory image resembles that of figure 3-8, Vhsn the constant is executed,
ehe word SCONSIANT picks up "convalue" and pushes it on the stack.

entry point —>

cocvalue

CALL $CONSTAKT

Figure 3-8. Memory format for constants.

3.4. VALIAELE

When a nev variable is defined, a code segment of the form shown in
figure 3-9 is created. Subsequent execution of the variable results iß
addressl being placed on the parameter stack to be used by words such as "!" .
"g" , "1*!" ...etc.

addressl —>
varvalue

addressl

r CALL SCONSTAKT

entry point —-

Figure 3-9. Format of variables.

3.5. Arrays

In this section, the term "arrays" refers to the structures which are
defined via the word ARRAY. Structures which are defined through the word
BARRAY are identical to those of ARRAY with the exception chat the size of the
elements in a BARRAY are 8 bits while those of an ARRAY are 16 bits.

Structure - 10

The memory image of an array is given in figure 3-10 for RAM-based
systeas. In a ROM-based systea ehe elements would lie in the data area. When
the array is accessed the address of the desired element is left on the stack..
The address is computed as "2*n + addressl" where n is the element number.

addressl

element6

addressl

CALL SARRAY

Figure 3-10. Memory image of arrays.

A. The Dictionary

4.1. The CUE2ENT & CONTEXT Pointers

When you type in words at the top level, a search is made in a vocabulary
for the word It is executed or compiled depending on the value of the variable
STATE. The CONTEXT vocabulary is the vocabulary searched. The variable CONTEXT
points (a negative offset from the variable SYMTP) to the first entry in the
vocabulary list. The CONTEXT vocabulary is set by executing:

nnnn *•'

c

where nnnn is the name of a vocabulary such as ASSEMBLER or FORTH.

New words are added to the CURRENT vocabularv. There is a variable named
"RRENT which points to a memory location which in turn points to the last

* - ?d defined in the CURRENT vocabulary. The CURRENT vocabulary is set when
.J.UU execute:

nnnn DEFINITIONS ~ '

where nnnn is the name of the new CURRENT vocabulary. Note that the
CONTEXT vocabulary is also set by executing nnnn. The CURRENT and CONTEXT
pointers can refer to the same vocabulary.

Structure - 11

Vocabularies x < , „• •> 51
£ . " * " ,

• n«»".
Every word that is defined in SL5 has an entry in a vocabulary . A

vocabulary is a linked list of these entries w i th the f i rs t element of that
list being the most recently defined word in that vocabulary.

The Internal Structure of Vocabularies

There are two d i f fe ren t types of entries found in vocabular ies . The
first and most common is the symbol entry which contains the symbol, the
execution address, and a flag byte. a-

increasing meaory addresses

1 byte I 2 bytes I 2 bytes I 1 byte I "length" bytes

flags j link I address I length I name

r
V

figure 4-1. A symbol entry.

I 0 I F78A I 2091 I 5 I grape I

Figure 4-2. Example of a symbol entry for the word "grape".

Every symbol entry has a f l ag byte (f igure 4-3) f o l l o w e d by a two byte
link f i e ld (which when added to the value of the variable SYMTP gives the
address of the next entry in the vocabulary), fo l lowed by the execution
address, the length" of the word, and the synool. - \ 'j".

MSB LSB

1 7 1 6 1 5 1 4 I 3 I 2 I 1 I 0 I .„. . <:•

' • . •,. ,41

(" bit usage " * „ -1 - rv. * r'

0-3 unused. j
4 unused but reserved.
5 unused but reserved.
6 unused but reserved.
7 precedence bit . If set (1), the word

will be executed regardless of the value - ~ *
of STATE. . .

NOTE: All bits default to the value 0.

Figure 4-3. Explanation of the flag bits.

Structure - 12

The other type of entry found in s vocabulary is the vocabulary base
which appears only once in each vocabulary. For every vocabulary except FORTE
the format of this header is given in figure 4-4. The FORTH vocabulary is not
chained to any vocabulary» so its 'Vlink" field is set to 0.

increasing memory addresses >

I 1 byte2 bytes

0

Figure 4-4. Vocabulary base format.

Vocabulary Chaining

When a new vocabulary is defined, it is chained to the CURRENT
«."' 'abulary. Chaining enables the words in the CURRENT vocabulary (and the
•̂ bulary it vas chained to, if present) to be referenced while using the new

abulary.

When the nev vocabulary is created (VOCABULARY nnnn), a vocabulary base
(see figure 4-4) is created in the new vocabulary with the vlink field
pointing to the head of the CURRENT vocabulary. An example of vocabulary
chaining is shown in figure 4-5 with the ASSEMBLER and the USERV vocabularies
chained to the FORTE vocabulary.

Structure 13

bead of the
ASSEMBLER bead of USE?

last vord in
the ASSEMBLER
vocabulary

i last word in
I the USEEV
I vocabulary

more ASSEMBLER
definitions

ASSEMBLER base

more DSERV
definitions

DSERV base

*

bead of FORTH I <-

last word in
the FORTH
vocabulary

more FORTE
definitions

FORTE base

f
"&

Figure 4-5. Diagram of chained vocabularies.

4.3. Dictionary Redaction

In the course of debugging programs, it is often necessary to free up
memory which is occupied by previous versions of the program. FORGET deletes
definitions from the symbol table(dictionary).

EXAHPLZ: >FORGE1 <cr>

Structure - 14

In the above example a l l words d e f i n e d s ince and inc luding the w o r d
lenmon will be removed from Che dictionary. Their code segments are also
discarded. If the word lemnon does not exist, the informative message

lesnaon ?

•«•ill appear , w i t h o u t any words being removed f r o o the d ic t ionary . FORGET
should be used cautiously, for it can produce undesirable and/or f a t a l e f fec t s
if two or more vocabularies are intertwined.

r

Structure - 15

r

Glossary

In this glossary the words are described in a semi-alphabetic orde:
following notation is used for each entry:

The

nnnn paras nnnn parms
description

> values (chars)

where: nnnn is the name of the word being described.

parms are the word's parameters (parameters
which appear before the word are assumed
to be on the stack while parameters
appearing after the word are parsed from
the input buffer) .

values are the values returned.

chars are characteristics of the word.

description is a verbal description of what the word
does.

not every word will have paraoeters/values/characteristics.

Parameter Notation:

e g m n
-- p q r

: u v
' -x y 2

nenn

a seven bit ASCII character code.

a b o o l e a n f l a g . F a l s e « 0; T r u e « n o n - z e r o . All
words which re turn a f l a g (0« , <» ...etcÖ return
FALSE - 0, TRUE - 1.

a 16 bit integer.

a name of a word which consists of 1-255 non-blank char-
a c t e r s d e l i m i t e d on the r i g h t by a b l a n k or a
carriage-return.

Glossary

Characteristics

C The word may only be used within a colon definition.

P The w o r d has its p recedence bit set and is executed
immediately, even in compilation mode.

V The word is a variable. The defaul t value :

is shown following the V in decimal notation.

K The word is a constant.

r

V
C

C.ossary

BS p !
Store m at address p.

p (? — > m
Fetch the contents of address p and put it on the stack.

p gX > m
Fetch the contents of the word at address p and reverse the
order of the bytes before placing it on the stack.

" c > n (P)
The ASCII value of the character that follows is returned.

' nnnn > p (P)
A compiler directive that fetches the address of the parameter
f i e l d of the word nnnn. The parameter f i e l d is the f i rs t word
in a colon definition after the code field.

'B nnnn > addr (P)
Returns the execution address of the word nnnn. It is similar
to ' except that the address is 3 less.

'S nnnn > addr (P)
Returns the address of the symbol table entry of the word nnnn.

(ssss) (P)
Ignore & comment that will be delimited by a right parenthesis
or a carriage return.

m n + ——> p
16 bit signed addition. p«m+n

4*.*

m n - ——> p
16 bit signed integer subtraction. p*m-n

m n — — > p
16 bit signed integer subtraction. p«n-m

* m n * > p
16 bit signed integer multiply. p-m*n

/ m n / p
16 bit integer divide. The quotient is truncated to 16 bits and
the remainder is dropped. p~m/n

/MOD m n /MOD > p q
16 bit integer divide. Quotient is on top of s tack , remainder
below it. Remainder haß sign of dividend m. p«m/n

SL5 Glossary - 3

m n I —> p
16 bit Logical inclusive OR of m and n.

ja n & --•• > p
16 bit logical AND of a and n.

->L m n ->L ——> p
Logical right shift of m by n bits.

<-L m n <-L — > p
Logical left shift of a by n bits.

IB 1+ —> n
Add one to the value on top of stack.

1+1 p 1+1 •
Increment the value stored at p by one.

l- m 1- > n
Subtract 1 from m.

1-! p 1-!
Decrement the value stored at p by one.

+ ! m p +!m p +!
Add the integer value m to the value stored at address p.

m ,
Store o into the dictionary at the location specified by the
dictionary pointer (DP). Increment^the dictionary pointer by
•>

-ROLL n -ROLL
Move the top of stack into the nth position in the stack. Ti>«
rest of the stack moves up. (3 -ROLL « ROT ROT) _/

Switch state from compile to interpret (see] below). Words in
a colon defination up to] are interpreted instead of compiled.

]
Swi t ch STATE f r o m interpret back to compile. Words be tween [
and j are interpreted even though the machine state is compile.

m .
Display the top of the stack as a 16 bit signed numbe:
according to the current radix specified by the variable BASE.

SL5 Glossary - 4

? p ?
Display the contents of address p ÖD the console according to
the current radix.

2DROP m n' 2DROP
Remove the top two stack elements.

2DU? m n 2DUT —> m n m n
Duplicate the top tvo stack elements.

2SWAP m n p q 2SWAP > p q m n
Swap the top tvo pairs of stack elements.

: : nnnn
Create a nev word (entry) in the dictionary wi th the label
nnnn. Set the system variable STATE to compile (1). Subsequent
words up to ; wi l l be compiled into the dictionary instead of
executed (interpreted).

Y

- ; ; (CP)
Terminate a colon def in i t ion , update the dict ionary linked
list, and set the variable STATE to 0 (interpret mode).

;: ;: (CP)
Used to create a user defined data or code structure. ;: causes
the words between ;: and the next ; to be compiled and their
address specified in the code segment of any words created by
nnnn.

;CODE ;CODI (CP)
;CODE has the same effect as ;: above, except that the code
defined is assembly language instead of_SL5.

0< n 0< > f
f is true if m is negative

* ̂ 0» m 0- > f
f is true if m • 0.

0> m 0> > f
True if m is greater than zero.

< m n < > f
f is returned as true if m is less than n.

<» m n <= > f
f is true if m is less than or equal to m.~

SL5 Glossary - 5

m n = ——> f
True if m is equal to n.

m n <> —-> f
f is true if m is not equal to n.

a s > •—> f
True if m is greater than n.

m n >- •> f
True if m is greater than or equal to m.

ABORT ABORT
Common word for fatal error exits. The message "ABORT" is
displayed before RESTART is executed.

AES m ABS > n
Absolute value of m.

ARRAY n ARRAY nnnn -
Define a vord nnnn and allocate n words of storage. Subsequent
references to nnnn cause the top of stack to be added to the
base address of the defined storage area and placed on the top
of the stack.

ASSEMBLER ASSEMBLER - - J

Set the contest vocabulary to the ASSEMBLER vocabulary.

B! E p B!
Store Che byte (low 8 bits of m) at address p.

B (? p B(? > m
Fetch the contents of the byte at address p and put it on the
top of the stack.

B, a B, ^.
Store the byte m into the dictionary at the address of the DP.
Increment the dictionary pointer by one.

B. m B.
Display m as an unsigned 8 bit hexidecimal number.

BARRAY n BARRAY nenn
Same as ARRAY, with the exception that the cells are one byte
in length instead of two bytes.

BASE BASE (VI6)
A system variable that contains the current conversion radix.

SL5 Glossary - 6

BEGIN BEGIN ... END (CP)
A compiler directive chat defines the start of a, loop. The word
END tests the top of stack, and branches back to begin if the
TOS is false (0), or to the word following END if true. The
word WHILE can be used for a pretest as in BEGIN... WHILE...
REPEAT.

BLANK n q BLANK
Fill n bytes of memory starting at address q with the space
character (20E).

BMOVE p q m BMOVE
Move m bytes starting at address p into the area specified by
address q.

BSWA? n BSWAP > m
Swap the order of the two bytes of n and place the result on
the stack.

CASE CASE
1 -:

(CP)

3 *:
DUP NOCASE'-: ... ;;
CAS END
The case statement is a one of n execution select. It deviates
from the standard Forth case statement which is really a nested
if statement. NOCASE is executed if the TOS does not match any
of the values in the case body.

CASEND CASEND (CP)
Terminates a CASE statement seauence. See the word "CASE".

CHECK CHECK
Test for return or parameter stack underflow. Abort is called
on underflow.

GIN CIS > c
Read a. character from the keyboard and return its ASCII value
c. The character is checked before returning it to see if it
is one of the special characters.

CIS CIS
The keyboard is checked for input and if a character has been
typed, the character is read and examined to see if it is one
of the special characters. This routine is very useful as a
realtime breakpoint utility.

SL5 Glossarv - 7

CODE CODE nnnn
Define a word nnnn which is written in assembly language using
Che SL5 system assembler. Creates a dictionary entry, and sets
the context vocabulary to ASSEMBLER. (See the Assemble!
glossary).

COM n COM > n
One's complement of a.

COMPILE COMPILE nnnn (P)
Compile the address of the word nnnn into the code segment .
This is useful for compiling words which have their precedence
bit set by IMP or IMMEDIATE.

CONSTANT n CONSTANT nnnn
Create a word nnnn which when executed places the value n on
the top of the stack.

CONTEXT CONTEXT (V)
A pointer to the Context vocabulary, where dictionary searches
begin. (See the word "FIND").

COUNT p COUNT • > m n
Returns the byte address m and the length n of the ASCII string
at address p. COUNT assumes that the first byte at address p
contains the string length.

COUT c COUT
The character whose ASCII value corresponds to c is displayed
on the console.

CR CR
Output a carriage return - line fee«!'' sequence to the output
file designated by OUTTILE.

CTTPE m n CTTPE
Output a string of n characters starting at address m to
console.

C" C" ssss" (P)
Output the string ssss to the console. One space must precede
the string.

CURRENT CURRENT (V)
A variable pointing to the CURRENT vocabulary, which is the
vocabulary which new words are added to.

C70C CVOC
CURRENT vocabulary pointer.

(V)

SL5 Glossary - 8

DECIMAL DECIMAL
Set the number radix to base 10.

DEFINITIONS nnnn DEFINITIONS
Set the current vocabulary to nnnn. New words vill be added to
the nnnn vocabulary.

DELIMITER DELIMITER (732)
A variable that contains the current character used as a string
delimiter by string routines (WORD).

DO m n DO ... LOOP CP (C?)
m n DO ... o +LOOP
Def ines an i t e ra t ive loop that is executed m - n times. The
upper l imit m is one greater than the terminal value, o +LOOP
increments the loop index by o each t ime through the loop, o
does not have to be an integral value of the count.

DP DP
A v a r i a b l e p o i n t i n g to
dictionary or code segment,

the
(V)

n e x t a v a i l a b l e w o r d i n t he

DP+! m DP*!
Increment the value of the d ic t ionary pointer (DP) by m and
store the result in DP „

DROP m DROP
Remove the top element of the stack.

DU? m DUP > m m
Duplicate the top element of the stack.

ELSE IT ... ELSE ... ENDIF (C?)
Defines the sta.rt of the false part of a IF
clause.

.. ELSE ... ENDIF

* D BEGIN ... END (CP)
Harks the end of a BEGIN .. END loop. The top of stack is
tested upon execution of END for a zero value (false). If it
is zero, execution resumes with the word following the
corresponding BEGIN statement. If it is non-zero (truth)
execution continues with the word following the END statement.

ENDIF IF .. ELSE ... ENDIF (CP)
Marks tne end of a IF statement.

EXECUTE p EXECUTE
A word used in the outer interpreter to execute/compile the
word pointed to by address p, depending on the value of tne
variable "STATE" and the precedence bit of the word, p is a
pointer to the word's symbol table entry.

SL5 Glossary - 9

EXIT DO ... EXIT .. LOOP (C)
Force terminat ion of the current loop on this i te ra t ion , by
increasing the loop index to the terminal value.

FILL m p n FILL
Store the value n into n bytes starting at address p.

FIND FIND - > n 1 / 1
Search the symbol t a b l e s tar t ing at CONTEXT for a m a t c h w i t h
the string at the dictionary pointer . The string is usua l ly
left by WORD. If found return the code address, and a 1 on TOS.
Otherwise re turn a 0 to f l a g that the symbol isn't in the
dictionary.

FLOAD

FORGET

FLOAD nnnn
Open the f i l e nnnn and s w i t c h the input s t ream to disk input
from that file. On EOF or [END-OF-FILE] return to the console
for input. Generally used to compile code edited into a source
file and saved on disk.

FORGET nnnn (P)
Delete nnnn and all subsequent dictionary entries.

FORTE FORTH
Sets the CONTEXT vocabulary to FORTH, which is the central
vocabulary.

GCH GOT > c
Read a character f rom the system input f i le and return its
ASCII character code.

GO

GOQIAD

n GO
Branch to the address n. If n Ls the address of a colon
definit ion or a code defini t ion which returns to the inner
interpreter, GO functions more as a "call" statement.

GOQIAD (V)
A variable pointing to the outer interpreter word. Can be set
so that any word can be branched to after a RESTART other than
the outer interpreter (INTRLP).

GO-OPSYS GO-OPSYS
to the operating system. *-H

HERE HERE > p
Returns the value of the dictionary pointer (DP)

HEX HEX
Set the radix to base 16 (hexidecimal).

SL5 Glossary - 10

DO ... I ... LOOP (C)
Returns the value of the innermost loop index.

IF IF .. ELSE .. ENDIF (C?)
The start of a conditional clause. Code is compiled to test
the top of the stack, and branch to the true part (I?), the
false part (ELSE), or ENDIF.

IMMEDIATE IMMEDIATE
Sets the precedence bit of the word which was just defined.

IMP IMP nnnn
Mark the word nnnn as immedia te . nnnn wi l l be executed
wheneve r it is encountered. Spec i f i c a l l y it is executed w h e n
£TATE»1 or during compilation.

INFILE INFILE
The system input file's fib. This can be altered so the input
(such as GCE) will be taken from a device or a disk file.

INFOF IKFOF (V)
Information control byte. When bit 0 is on the system the
system prints an error message when a word is redefined. Bit 2
on enables listing of source text during FLOAD. INFOF defaults
to all bits being set.

ININIT ININIT
Reset the system input file (INFILE) to the console.

INTEL? IKTRLP
The outer-increpreter loop.

r

J (C)
Returns the value of the next outer do loop index.

K (C)
Returns the value of the third do loop index.

LINK n LINK
Adds a new word to the symbol table, and the active vocabulary
chain. The name of the word is pointed to by DP and n is the
execution address of the word. The flag byte is initialized to
0.

LIT LIT
A word that is compiled into the code segment before every
literal. Contains code to push the next word onto the stack at
execution time, and move the I? to the following word.

SL5 Glossary - 11

LITERAL n LITERAL
If STATE=1 (compilation mode) , the word LIT is compiled along
w i t h c so that n is p l a c e d on the s t ack upon execut ion of LIT,
If STATZ=0 (interpreter mode) , n is left on the stack.

LOOP DO ... LOOP (CP)
Increment the loop indez by 1 and exit from the loop if the
index is greater than or equal to the limit.

•»•LOOP m +LOOP (CP)
Add m to the loop index. The loop is exited when the value of
the index is equal to or greater than the limit.

MAX o n MAX —~> q - •
Leaves the greater of the two signed integers m and n on the
stack.

r
MIN m n MIN > q

Leaves the lesser of the two signed integers m and n on the .-
stack. —/

MINUS m MINDS > n
Leave the two's complement of m on Che stack.

MOD B n MOD -—> r
Remainder of m/n with same sign as m.

NOCASE CASE ... NOCASE... CASEND
An o therwise branch for the case s ta tement
"CASE".

See the word

NOT m NOT
Equivalent to 0-.

> f

NUMBER NUMBER • > n 1 / 0
The cha rac te r s t r ing l e f t by word is converted to a number
according to the current radix defined in the variable base.
NUMBER converts signed and unsigned 16 bit integers. The result
is left on the stack with a 1 on TOS if the conversion suceeds.
A 0 is left on the stack if the number cannot be converted with
the current radix.

OCTAL OCTAL
Set the I/O number radix to octal.

OUTFILE OÜTFILE
The system output file's fib. This can be changed so as to re-

* route all system output to a device or a disk file. OUTFILE
defaults to the console.

SL5 Glossary - 12

OUTINIT OUTIKIT
The system output file (OOTFILE) is set to the console.

OVER n n OVER — > m n n
Duplicate the second stack element, and put it on the TOS

PICK m PICK > n
Copy the mth stack value onto the TOS (2 PICK * OVER).

R> R> > n
Pop the top value from the return stack and push it onto the
oaraneter stack.

>R m >R
Move TOS to the top of the return stack.

RECURS£ RECURSE (CP)
Causes the word under construction to be executed at execution
time.

REPEAT BEGIN ... WHILE ... REPEAT (CP)
Compile an unconditional jump back to BEGIN. See BEGIN

RESTART RESTART
The stacks are cleared, STATE is set to interpret, INFILE and
OUTFILE are set to the crt, and the outer interpreter is
invoked.

XESTARTAD RZSTAZIAD (V)
A variable pointing to the address of the system restart
routine.

SMOTE p q m RMOVE
Move m bytes in memory from address p to address q. The move
is carried out from the last byte in the vector to the first.

KuLL n ROLL
F e t c h t h e n t h s t a c k e l e m e n t a n d p u s h i t o n t o t h e TOS.
(3 ROLL - ROT)

ROT m n p ROT —> n p m
Rotate the top 3 stack elements.

RP(S > n
Push the value of the return stack pointer onto the parameter
stack.

SL5 Glossary - 13

RP! n RP!
Set Che return stack pointer to a.

RSIZE RSIZZ (K)
The size of the return stack which is implemented as a BARRAY
in SL5.

SET m p SET nnnn
Define a word nnnn which when executed will cause the value IE
to be stored at address p.

SP(§ SP@ > n
Push the value of the parameter stack pointer onto the stack.

SP! n SP!
Set the parameter stack pointer to n.

SPACE SPACE
' Output a space character (20H) to the system output file.

SPACES n SPACES
Output n space characters to the system output file.

•Jf

SWAP m n SWA? ——> n m
Exchange the top two elements on the stack.

SSI2E SSIZE (K)
Returns the size of the parameter stack which is implemented as
a, BARRAY in SL5.

c

STATE

SYKTP

STATE (VOr-''
A va r i ab l e .that de te rmines whe the r a w o r d is in te rpre ted
(S T A T E - 0) o r c o m p i l e d (S T A T E = 1) . W o r d s t ha t have their
precedence bit set are executed when STATE»!,

SYKTP (V)
The address of the top of the symbol table.

SYMPTR

TCE

TYPE

SYMPTR (V)SYMPTR CV;
A pointer to the last entry in the symbol table.

c TCB
The ASCII character associated w i t h c
output fi le.

m n TYPE

is sent to the sy s t em

m n TYPE
Output a string of n characters starting at address in to t
system output file.

he

SL5 Glossary - 14

r« ssss*. « «* «^ ws

Output the string ssss to the system output file. One space
must precede the string.

u< m n U< —-> f
Unsigned 16 bit integer comparisons. Used to compare addresses
and other 16 bit integers that are treated as unsigned numbers.

UPPER UPPER (VI)
When UPPER is set to 1, the routine "WORD" converts characters
to upper case. UPPER defaults to 1.

UNDEFINED UNDEFINED
The string left by WORD is displayed along with the undefined
message on the console. RESTART is then executed.

VARIABLE
<*

wr

m VARIABLE nnnn
A word that creates a dict ionary entry for the word nnnn,
allocates a word in memory and initializes that memory word to
m. See @ and ! *

VLIST VLIST
List the dictionary starting at CONTEXT,, Every entry has its
execution address, flag byte and name displayed on a separate
line.

VOCABULARY VOCABULARY
Creates a vocabulary chain vvvv w i t h the head linked to the
current vocabulary , vvw DEFINITIONS makes vvvv the current
vocabulary into which new definitions are added.

WHILE

f ,

WORD

BEGIN ... WHILE ... REPEAT (CPf
A pretest for loop iteration. A true TOS (<>0) causes the words
between WHILE and REPEAT to be executed. REPEAT generates an
unconditional jump back to BEGIN. A false TOS (0) results in a
jump to the word following REPEAT.

WORD
Scan the input buffer for the next token, which is the string
of characters up to a delimiter. The delimiter is the character
in the variable DELIMITER. WORD resets DELIMITER to blank
(20H). The string is stored in a system area, with the size,
followed by the string.

X. a X.
Print the top element
integer in base 16.

on the stack as an unsigne'd 16 bit

m n XI —> o
Logical exclusive OR of m and n.

SL5 Glossary - 15

ZIN p ZIE > n
i Read value n frons port p (Z80 version only)

ZOÜT n p ZOUT
Output a to port p (Z8C version only).

c

J

SL5 Glossary - 16

BEGIN, BEGIN,
Mark the beginning of an assembler loop.

CODE CODE nnns
Crea te a dict ionary entry for a code word nnnn and set the
CONTEXT vocabulary to ASSEMBLER.

EDOC EDOC
Terminate a code def in i ton and set the CONTEXT vocabulary to
the CURRENT vocabulary.

ELSE, ELSE,
Mark the beginning of the false part of an "IF," construction.
The code which f o l l o w s is executed only if the condition
specified at the "IF," is false.

END, cc END,
Mark the end of a condi t ional loop. If cc is "true" during
execution, the loop will not be re-executed.

ENDIF, ENDIF,
Mark the end of a conditional foward branch.

cc IF,
Assemble a conditional branch which wi l l execute the code
f o l l o w i n g "IF," only if cc is true, otherwise a branch to the
code following "ENDIF," or "ELSE," is made.

REPEAT, REPEAT,
Mark the end of an unconditional loop.

Assembler Glossary - 17

[Ein>-0?-FILE] [EN&-OF-FILE]
Terminate compilation of a file which was loaded via FLOAT),

BUFAD fib* BUFAD > n
Return the buffer address associated with fib'

BUFLEN fib" BUFLEN > n
Return the address of the buffer length associated vith fib".

BUFP fib" BUFP > n
The address of the buffer pointer associated with fib" is
returned.

BUFSIZE BDFSIZI > n " (K)
A predefined constant whose value is the size of all the
buffers.

CLOSE fib" CLOSE
Close the file designated by fib" which was previously opened
or created.

DELETE fib" DELETE
The file designated in fib" is removed from the directory.

EOF fib" EOF > f
The boolean f l ag f is returned as true (1) if the end-of-f i le
was reached on the f i l e specified by fib". If the EOF hasn't
been processed yet, the false value (0) is returned.

EOFCHR EOFCHE > n (K)
A constant which determines the end-o£-file character which RCH
looks for .

v
-T"'

FALLOC FALLOC nnnn
Create a FIB which can be subsequently referenced by the name
nnnn.

FCB fib" FCB > n
Return the address of the FCB associated vith fib".

FLOAD FLOAD filename
Load the file specified by filename from the disk.

FLUSH fib" FLUSH
Flush the buffer associated with fib". The buffer is written
out to disk if the buffer pointer associated with the file is
non-zero, otherwise no action is performed.

File System Glossary - 18

NAMIT fib" NAMIT nnnn
The file name associated with fib" is set to nnnn. nnnn is in
the fo rm of d : f £ f £ f f f f . e e e where "d" is the drive (A-Z)
fol lowed by a colon, " f f f f f f f f " is the fi le name, and "eee"
is the extension name. The "d" and the "eee" f i e l d s are not
mandatory . Serial devices are spec i f ied ehen " f f f f f f f f " is
one of the following:

#CRT - console/keybosrd.
vLST - printer/keyboard.

OPENR fib" OPENR
Open the file designated by fib" for reading.

OPENW •' fib* OPENW
Create a new f i l e which is des igna ted in f ib" and open it for
writing. The previous version of the file is deleted from the
d i rec tory , if ic existed. If the opera t ion f a i l s , an error
message is issued and an abort to RESTART is made.

S RBYTE fib" RBYTE > n
«C The next byte is read from the file designated by fib" and
'̂^ returned.

RCE fib" RGB > c
The next ASCII character is read from the file described by
fib".

READ fib" READ
The next sector is read f r o m the f i l e designated by fib" into
the file's b u f f e r .

RENAME ofib" afib" RENAME
The f i l e wh ich is descr ibed by o f i b " is renamed to the f i l e
specified nfib" in the directory.

RESET fib" RESET
f The f i l e associated wi th f ib" is reset. This means that the

file is rewound and the EOF flag is reset.;,j^-

WBTTE n fib" WBTTE
1 The byte n is written onto the file described in fib".

WCH c fib" WCE
The ASCII character c is wr i t t en to the f i le designated by
fib".

WRITE fib" WRITE
The buffer associated with fib" is written onto the file
designated by fib". If the file is a serial device, BUF?
should contain the size of the buffer which is to be written
out.

File System Glossary - 19

DUMP s DUMP
Dump memory from s to e on the terminal (or which device is
selected via ochan#). The dump is displayed as lines composed
of an address followed by the 16 bytes which start at that
address in their numeric value followed by the 16 bytes
displayed in their ASCII code. All numbers are displayed in
hexadecimal notation.

MODIFY c MODIFY
Modify memory starting at address s.

PS DM? PSDMP
Dump the data stack. The top of s tack is d i sp l ayed f i r s t and
the bottom is displayed last.

c

RSDM?

SYMDUMP

RSDMP
Dump the return stack. The top of the return stack is
displayed first and the bottom of the return stack last.

SYMDDMP
Dump the symbol table (the dict ionary) s tar t ing f rom context
proceeding to the first definition. Each symbol is displayed
on one line wi th the address of the entry in the symbol table
first followed by the link being displayed as relative to SYKT?
and its absolute locat ion in memory. The address of the
code/colon body is then displayed followed by the length of the
symbol's name and the symbol. All numbers are displayed in
hexadecimal notation.

SYK' STH" nnnn
Display the word nnnn as it would be shown in SYMDUMP.

BR£AK *BREAK*
Cause a breakpoint to occur.

* (C2)

DB *UB*
Return from a breakpoint.

Debug Glossary - 20

Stackwork's FORTH

Review by Arne Henden

Stackwork's FORTH (SL5) is one
of the more unusual and interesting
implementations of FORTH that I've
seen. It matches FORTH-77 (with
some minor differences) instead of
FORTH-79. While double precision
integer arithmetic operations are not
included, many normally optional
features such as arrays and case
statements are available. The SL5
copy that I have is over a year old so
this review does not include any re­
cent changes.

File Access
As opposed to 280 FORTH, which

is tied to CP/M but treats the disk
just like traditional FORTH (as 250
1024-byte blocks, randomly ac­
cessed); SL5 uses sequential access,
record oriented files exclusively and
has no block structure.

This means that SL5 does not re­
serve 1024-byte memory blocks to
buffer data from the disk, leaving
more memory space for application
software. One input and one output
file can be open simultaneously with
the basic system, and more files can
easily be added if necessary. SL5 can
perform character or buffered read/
write operations. Rather than
LOAD one application screen at a
time, it loads the entire application
file.

FORTHwords continued

The next couple of columns will
discuss benchmark results for the
five FORTHs mentioned in this col­
umn, a very accurate harqware
timer using CTC#O, and discuss
several screens of utility software.
Also, there'll be a review of HART­
FORTH.

Meanwhile, please send me your
questions and comments about
FORTH. I would very much like to
help you use this unique program­
mer's language to its fullest advan­
tage!

•••

What you get
The 5 L5 disk comes with one of

the best manuals I've seen. Its major
entries include a tutorial (6 pages),
reference (22 pages), the 280 as­
sembler (12 pages) and a glossary (20
pages).

The disk includes the kernel (both
.ASM and .COM files), the debug
package (DEBUG.SL5), and the as­
sembler (ASSEM.SL5). SL5 itself re­
quired no modifications and worked
the first time. One of the major ad­
vantages of SL5 is that all of the
source code is included, making sys­
tem modification simple.

Disk I/O
SL5's non-FORTHian file struc­

ture makes SL5 appear quite differ­
ent from other versions of FORTH.
No editor is included because all files
can be entered with any standard
editor such as ED. This means that
debugging changes are not interac­
tive.

Because you cannot examine
source files easily while in SL5 (no
LIST commands), errors during
loading are hard to trace down. You
cannot incrementally load your pro­
gram. More disk activity is necessary
since source code is brought in one
sector at a time and no extensive buf­
fering is included. At the same time,
the ability to manipulate source files
with standard editors and other lan­
guage compilers is an advantage.
Leaving out the screen buffers pro­
vides more application program­
ming space.

The compiler and assembler
Another advantage of SL5 is that a

cross-compiler is built-in. You can
easily produce ROMabie code for
dedicated applications. SL5 does
this by separating code and data
areas from the symbol table. You can
create headerless code by simply re­
moving the symbol table while
cross-compiling. Variables and ar­
rays can be stored separately from
code segments, easing the problem
of creating ROMabie FORTH.

New system configurations can be
of two types: user applications load­
ed on top of SL5, creating a new

Micro Cornucopia, Number 4, February 1982

SL5.COM file; and creating entirely
new systems using the cross com­
piler, perhaps modifying the kernel
or burning a small application into
ROM.

The assembler is excellent. Not
only are 2ilog mnemonics sup­
ported, but high level structures
such as IF-ELSE-ENDIF and BE­
GIN-END are available. Stackworks
is careful to point out system register
usage to prevent loss of pointers by
assembly code produced by the
user.

Conclusion
My major complaint with SL5 is its

file structure. When you lose the
FORTH block/screen, you lose many
of the advantages of FORTH. In­
teractive debugging is hampered,
more disk I/O occurs, and less stor­
age space is available on any given
disk. SL5 is not easily upgradable to
FORTH-79 because of the file struc­
ture.

Also, no double precision integer
words are included, and floating
point is not available as an option.

In all, I think SL5 is a good lan­
guage that is well documented and
comes with a lot of usually optional
features. Its unique implementation
of FORTH is interesting, but at the
same time prevents me from recom­
mending it to a user who wants to
learn standard FORTH.

•••

Name: SL5
Authors: The Stackworks

Mike Brothers
Larry Mongin
Dave DeLauter

Type: FORTH for the Z80
Distributor: Supersoft Associates

P. O. Box 1628
Champaign, IL 61820

Price: $175
Requires: CP/M operating system

Z80 processor
24K bytes RAM

Manual: 110 page 8 1/2 x 11 n

spiral bound

13

fritz
Kommentar
From:

https://archive.org/details/micro-cornucopia-magazine-1982-02

	SL5 SYSTEM REFERENCE MANUAL
	Application Note

