

SCO XENIX* System V
Operating System

XENIX Reference

The Santa Cruz Operation, Inc.

© 1983-1991 The Santa Cruz Operation, Inc.
© 1980-1991 Microsoft Corporation.
© 1989-1991 AT&T.
All Rights Reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the
prior written permission of the copyright owner, The Santa Cruz Operation, Inc., 400
Encinal, Santa Cruz, California, 95061, U.S.A. Copyright infringement is a serious
matter under the United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User
only for use in strict accordance with the End User License Agreement, which should
be read carefully before commencing use of the software. Information in this document
is subject to change without notice and does not represent a commitment on the part of
The Santa Cruz Operation, Inc.

The following legend applies to all contracts and subcontracts governed by the Rights
in Technical Data and Computer Software Clause of the United States Department of
Defense Federal Acquisition Regulations Supplement:

R ESTR IC TED RIGH TS LEG EN D : Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 52.227-7013. The
Santa Cruz Operation, Inc., 400 Encinal Street, Santa Cruz, California 95061, U.S.A.

SCO and the SCO logo are registered trademarks and the Santa Cruz Operation is a trademark
of the Santa Cruz Operation, Inc.
Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of AT&T in the U.S.A. and other countries.

Document Version: 2.3.4C
Date: 28 March 1991

Preface

The complete set of XENIX manual pages are distributed as individual
reference sections in the various volumes of the XENIX Operating, Text
Processing, and Development Systems. The following table lists the
name, content, and location of each reference section.

Section Description XENIX Volume

ADM

C

CP

CT

DOS

F

Administrative Commands - used XENIX Reference
for system administration.

Commands - used with the XENIX XENIX Reference
Operating System.

Programming Commands - used Programmer’s Reference
with the Development System.

Text Processing Commands - used Text Processing Guide
with the Text Processing System.

Routines - used with the Programmer’s Reference
Development System

File Formats - description of XENIX Reference
various system files not defined in
section M.

HW Hardware specific manual pages - XENIX Reference
information about XENIX
procedures specific to your
computer.

M Miscellaneous - information used XENIX Reference
for access to devices, system
maintenance, and communi­
cations.

S System Calls and Library Programmer’s Reference
Routines - available for C and
assembly language programming.

In the manual pages, a given command, routine, or file is referred to by
name and section. For example, the programming command “cc”, which
is described in the Programming Commands (CP) section, is listed as
cc(CP).

The alphabetized table of contents given on the following pages is a
complete listing of all XENIX commands, system calls, library routines,
and file formats. The permuted index, found at the end of the XENIX
Reference and the the end of the XENIX Programmer’s Reference, is
useful in matching a desired task with the manual page that describes it.

Alphabetized List
Commands, Systems Calls, Library Routines and File Formats

80287 80287(HW) awk.............awk(C)
80387 80387(HW) backup.......backup (ADM)
86rel86rel(F) backup....... backup (F)
a641a64l(S) badtrk........badtrk (ADM)
a.out...........a.out(F) banner banner (C)
abortabort(S) basenamebasename (C)
ab s..............abs(S) batch........... at(C)
accept........ accept (C) b ebciC)
accessaccess(S) bdiff..........................bdiffiQ
acct.............................acct(F) bdos............bdos(DOS)
acct............acct(S) bessel bessel (S)
acctcom...... ... acctcom (ADM) b fs...............bfs(C)
accton........accton (ADM) boot............ boot(HW)
acostrig (S) brksbrk(S)
adbadb(C P) brkctl brkctl (S)
adfmt......... adfmt (ADM) bsearch....... bsearch(S)
admin.........admin (CP) calcal(C)
alarmalarm(S) calendar..... calendar (C)
aliases aliases (M) calloc malloc(S)
aliases.hash aliases (M) cancel IpiC)
aliashash aliashash(ADM) capinfo....... capinfo (C)
a r ar(C) c a tcat(C)
a r ar(F) cbd>(CP)
archive....... archive (F) c ccc(C P)
ascii............ascii (M) c dcd(C)
asctime ctime(S) edecdc(CP)
asin trigiS) ceil.............. floor(S)
asktime...... asktime (ADM) cflow........... cflow (CP)
assertassert (S) egets.................... cg£te(DOS)
assign.........assign (C) charactereqnchar(C T)
a sxö̂ jc(CP) charmapcharmap(CT)
a tat(C) chdir........... chdir (S)
a tan trigiS) checkcwcvKCT)
atan2.......... trigiS) checkeq eqn(C T)
atof.............atof(S) checklistchecklist (F)
atof.............strtod(S) checkmmcheckmm(CT)
ato i.............atof{ S) chgrp chgrpiC)
atoi............................ strtol(S) chmod......... ,.......... chmod (C)
ato l.............atofiS) chmod........ chmod(S)
atoi............................strtol(S) chown chown(C)
autoboot..... .. autoboot(ADM) chown......... chown(S)

l

chrootchroot (ADM)
chroot.......................chroot(S)
chrtbl...................... chrtbl (M)
chsize chsize (S)
clear clear (C)
clearerrferror (S)
clock.......................... clock (F)
clock............................... clock (S)
close................................ close (S)
closedirdirectory (S)
c lri..................................... clri (ADM)
coltbl coltbl (M)
cmchk......................cmchk(C)
cm os...................... cmos(HW)
cmp cmp (C)
coffconv coffconv(M)
co l.......................................col (CT)
comb............................... comb (CP)
comm....................... comm(C)
compress compress (C)
configconfig(ADM)
configure.....configure (ADM)
console.................console (M)
contains......................eqnchar (CT)
conv............................... conv(S)
convkeymapkey(M)
copy copy(C)
core................................ core(F)
cos.................................... trig(S)
coshsinh(S)
c p cp(C)
cpiocpio(C)
cpiocpio(F)
ep pepp (CP)
eprintf cprintf(DOS)
cputs..............................cputs(DOS)
creat creat(S)
creatsem.............. creatsem(S)
cref............................... cref(C P)
cron................................cron(C)
crypt crypt (C)
cscanf..........................cscanfi DOS)
cshcsh(C)
csplit............................. csplit(C)
ct ct(C)
ctags........................ cf<2gs(CP)

ctermid ctermid (S)
ctim e........... ctime (S)
ctype............ ctype (S)
CUcu(C)
curses curses (S)
cuserid........ cuserid (S)
custom custom (ADM)
cut cut (CT)
cwov(CT)
cwcheckcw (CT)
exref cxref(CP)
daemon.mn ..,... daemon.mn(M)
date............................date(C)
dbminit.......dbm(S)
d edciC)
d ddd(C)
deassign....... assign(C)
default......... default (F)
definitions....eqnchar (CT)
defopen....... defopen (S)
defread....... defopen (S)
deletedbm{ S)
delta............ delta (CP)
deroff.......... derojf(CT)
devices........ devices (F)
devnm......... devnm(C)
d fdf(C)
dial dial(ADM)
d ia l..............dial(S)
dialcodesdialcodes (F)
dialers dialers (F)
diction........ diction (CT)
diff...............diffiC)
difl3............. diß(C)
diffinkdiffmk(CT)
d irdir(F)
diremp........ diremp (C)
directorydirectory (S)
direntdirent (F)
dirname....... dirname (C)
disable........ disable (C)
diskemp...... diskep (C)
diskep diskep (C)
divvy...........divvy (ADM)
dmesg.......... dmesg (ADM)
d o s.............................. dos(C)

11

doscat........dos(C) ev gindev.....ev gindev (S)
doscp.........dos(C) ev getemask ev gtemsk(S)
dosdir........ ev init ev init(S)
dosexterrdosexter (DOS) ev open ev open(S)
dosformat....................dos(C) ev_pop ev_pop(S)
dosld.......... dosld(C P) ev read ev read(S)
dosls..........dos(C) ev resume.... ev resume (S)
dosmkdirdos(C) ev setemaskev stemsk (S)
dosrm........dos(C) ev suspend........... ev susp(S)
dosrmdirdos(C) e xex(C)
dparam......dparam(ADM) execl...........................exec (S)
drand48 drand48(S) execle............exec (S)
dtype..........dtype (C) execlpexec (S)
d u du(C) execseg......... execseg (S)
dump backup (ADM) execvexec (S)
dumpdir.... dumpdir(ADM) execve exec(S)
d u pdup(S) execvp exec(S)
dup2..........dup(S) exit exit (DOS)
echo........................... echo(C) exitexit(S)
ecvt............ £CV/(S) exitexit(S)
e d ed(C) e xpexp(S)
edataend(S) explain.......... explain (CT)
egrep.........grep(C) exp r.............. expr(C)
enable........ enable (C) fabs............... floor(S)
end.............end(S) factor...................... factor (C)
endgrent.... getgrent(S) faliases......... aliases (M)
endpwent............ getpwent(S) false........................... false(C)
endutent.... getut(S) fclosefclose (DOS)
env.............env(C) fclose............ fclose (S)
environ environ (M) fcloseall........fclose (DOS)
eof..............eo/(DOS) fcntlfcntl(S)
eqn.............eqn(C T) fcvt................ ecvt(S)
eqn eqnchar (CT) fd /<i(HW)
eqnchar eqnchar (CT) fdisk fdisk (ADM)
eqncheckeqn (CT) fdopen.......... fopen(S)
erand48 drand48(S) fdswapfdswap(ADM)
e r ferf(S) fe o f............... ferror(S)
erfcetf(S) ferror ferror (S)
errnoperror(S) fetchdbm(S)
errorerror (M) fflush............. fclose (S)
etext...........end(S) fgetc fgetc (DOS)
ev block ev block (S) fgetc getc(S)
ev close ev close (S) fgetchar........ fgetc (DOS)
ev count ev count (S) fgets..............gets(S)
ev flush..... ev_ßush(S) fgrep............. grep(C)
ev getdev ev getdev (S) fileße(C)

filelength fileleng(DOS)
fileno ferror(S)
filesysfilesys (F)
filesystem filesystem (F)
find.................................. find (CT)
finger............................ finger (C)
firstkey dbm(S)
fixhdrfixhdr(C)
fixpad................... capinfo {C)
fixperm.......... fixperm (ADM)
floor floor(S)
flushall flushall (DOS)
fmod............................... floor (S)
fopen............................fopen (S)
for eqnchar(CT)
forkfork(S)
format format(C)
fp_off.......................... fp_seg(DOS)
fprintf....................... printf{S)
fp_seg................ fp_seg(DOS)
fputc fputc(DOS)
fputc............................putc(S)
fputchar......................... fputc (DOS)
fpu ts............................... puts(S)
freadfread(S)
free.......................... malloc(S)
freopen.......................... fopen (S)
frexp......................... frexp(S)
fsave................... /yöv^(ADM)
fscanf......................... scanf(S)
fsck fsck(ADM)
fsdb fsdb(ADM)
fseek............................... fseek (S)
fsname.............fsname(ADM)
fsphoto fsphoto(ADM)
fstab fstab(F)
fsta t..............................stat(S)
fstatfs statfs(S)
ftell................................. fseek (S)
ftime time(S)
ftok.............................. stdipci S)
ftw /^ (S)
fwrite.........................fread(S)
fxlist............................xlist(S)
gamma....................gamma(S)
gCVt£CV/(S)

g e t...............geHC P)
getc.............................getc{ S)
getch getch(DOS)
getchar........getc(S)
getche.......... getche {DOS)
getcwd........ getcwd (S)
getdents...... getdents (S)
getegid........ getuid {S)
getenvgetenv (S)
geteuid........ getuid (S)
getgid.......... getuid (S)
getgrent...... getgrent(S)
getgrgid...... getgrent (S)
getgrnam.... getgrent (S)
getlogin getlogin (S)
getopt......... getopt (C)
getopt.......... getopt (S)
getpass........ getpass (S)
getpgrp....... getpid (S)
getpid getpid(S)
getppid........ getpid (S)
getpw..........getpw (S)
getpwent.....getpwent (S)
getpwnamgetpwent (S)
getpwuidgetpwent (S)
gets.............. gets (CP)
getsgets(S)
getty............ getty (M)
gettydefs..... gettydefs (F)
getuid getuid (S)
getut............ getut (S)
getutent....... getut (S)
getutid getut (S)
getutline...... getut (S)
getw............getc{ S)
gmtimectime (S)
grepgrep(C)
group group{ F)
grpcheck.....grpcheck (C)
gsignal........ ssignal (S)
haltsys........haltsys (ADM)
hashcheck spell (CT)
hashmake spell{CT)
hcreate hsearch (S)
h dhd(C)
h d hd(HW)

IV

hdestroyhsearch(S)
hdinstall hdinstall (ADM)
hdrhdr(CP)
head........................... head(C)
hello.................................hello (C)
help.............................helpiC)
helphelp (CP)
hsearch..................hsearch(S)
hwconfig............. hwconfig(C)
hyphen................hyphen (CT)
hypot......................... hypot(S)
i d id(C)
idleout.......................... idleout (ADM)
inirinit(M)
in it....................................init(M)
inittab inittab(F)
inode.............................. inode (F)
inp mp (DOS)
install install (ADM)
int86.............................. int86(DOS)
int86x..................int86x(DOS)
intdos...........................intdos(DOS)
intdosx............. intdosx(DOS)
intro................. Intro (ADM)
intro................................ Intro (C)
intro Intro(CP)
intro....................... Intro (CT)
introintro (DOS)
intro.............................. Intro(F)
intro Intro(HW)
intro...............................Intro(M)
intro........................... Intro(S)
ioctl.................................. ioctl (S)
ipbs..................................... zps (ADM)
ipcrm ipcrm (ADM)
ip cs....................... ipcs(ADM)
ipripr(C)
ip s ips (ADM)
isalnum...........................ctype (S)
isalpha ctype (S)
isascii ctype (S)
isattywafty(DOS)
isatty......................ttyname(S)
isbs ips (ADM)
iscntrl............................. ctype (S)
isdigit ctype (S)

isgraph.......................ctype (S)
islower ctype (S)
isprint ctype (S)
ispunct ctype (S)
isspace....................... ctype (S)
isupper.......................ctype (S)
isxdigit ctype (S)
itoa/fcw* (DOS)
itrolf........................itroff(CT)
jObessel (S)
j l bessel (S)
jnbessel (S)
join join(C)
jrand48.................drand48(S)
kbhit................... kbhit(D OS)
kbmode kbmode(ADM)
keyboard....... keyboard (HW)
killkill(C)
k ill......................................kill (S)
kmem mem(F)
k shksh(C)
1 ls(C)
13tol l3tol(S)
164aa64l(S)
la b s labs (DOS)
lastlast(C)
l c ls(C)
lcong48drand48(S)
I d .. ld(M)
Id ...ld(CP)
ldexp............................. frexp(S)
lexlex (CP)
lfind lsearch(S)
line............................... line(C)
link.................................. link(S)
lint......................................lint (CP)
In //2(C)
locale............................. locale (Ml)
localtimectime (S)
lock lock(C)
lock................................. lock(S)
lockf...............................lockf(S)
locking....................locking (S)
lo gexp(S)
loglO............................. exp(S)
login login(M)

lognamelogname (C) memchr...... memory (S)
logname....... logname (S) mememp memory (S)
longjmp setjmp(S) memepy memory (S)
look look(CT) memset....... memory (S)
lorder lorder (CP) m esg...........mesg(C)
1P.................. lp(C) messages.....messages (M)
1Plp(HW) mestbl........ mestbl (M)
ip «Ip (HW) mienet........ micnet(F)
i p i //? (HW) mkdev........mkdev (ADM)
Ip2................. //? (HW) mkdir......... mkdir (C)
lpadmin lpadmin(ADM) mkdirmkdir (DOS)
lpinitlpinit (ADM) mkfs mkfs (ADM)
lpmove......... .. lpsched(ADM) mkinittab... telinit (ADM)
lp r lp(C) mknod........mknod(C)
lprint............ lprint(C) mknod........ mknod (S)
lpsched lpsched (ADM) mkstr mkstr (CP)
lpshut........... .. lpsched(ADM) mktemp mktemp (S)
lpstat lpstat (C) mkuser.......mkuser (ADM)
Irand48........ drand48(S) mmmm(C T)
l sls(C) mmcheck checkmm(CT)
lsearch......... lsearch (S) mmt............ mmt(CT)
lseek.............lseek (S) mnt mnt(C)
ltoa............... ltoa (DOS) mnttab........mnttab (F)
ltol3l3tol(S) m odf...........frexp(S)
m 4..............................m4(CP) monitor monitor (S)
machine machine (HW) m ore...........more(C)
mailmail(C) mount.........mount(ADM)
make...................... make (CP) mount........ mount(S)
makekey....... makekey (ADM) mouse......... mouse (HW)
maliases....... aliases (M) movedata movedata (DOS)
maliases.hash aliases (M) montbl montbl (M)
malloc.......... malloc (S) mrand48..... drand48(S)
m an..............man(C) mscreen...... mscreen (M)
mapchanmapchan (F) msgctl msgctl (S)
mapchan mapchan (M) msgget........ msgget(S)
mapkey........ mapkey (M) msgop.........msgop(S)
mapscrn mapkey (M) multiscreen multiscreen (M)
m apstr......... mapkey (M) mvmv(C)
m asm masm (CP) m vdir.........mvdir (ADM)
master master (F) napnap(S)
matherr....... matherr (S) nbwaitsemwaitsem(S)
maxuuscheds. maxuuscheds(F) ncheckncheck (ADM)
maxuuxqts.... maxuuxqts (Je) neqn eqn(CT)
mcconfig......mcconfig (F) neqn neqn (CT)
mem mem(F) netutilnetutil (ADM)
memccpy...... memory (S) newform..... newform(C)

VI

newgrp........ newgrp (C)
news..........................news(C)
nextkeydbm(S)
nicenice (C)
nice..............nice(S)
n l «/(C)
nlist.............nlist (S)
n mnm(C)
nohupnohup (C)
nrand48 drand48(S)
nroff............ nroff(C T)
null..............null(F)
numtbl numtbl (M)
odod(C)
oldipr..........ipr(C)
open............. open(S)
opendir....... directory (S)
opensem...... opensem (S)
outp............. outp(DOS)
p ackpack(C)
parallelparallel (HW)
passwd......... passwd(C)
passwd........ passwd(F)
paste............ paste (CT)
pausepause (S)
p a xpax(C)
p eat.............pack(C)
pclose.......... popen(S)
pepio............ pepio (C)
permissions permissions (F)
perror perror (S)
Pgpg(C)
Pipepipe(S)
plock plock (S)
poll..............................poll (F)
popen popen(S)
pow..............exp(S)
p rpr(C)
prepprep (CT)
printf.......................printf(S)
proctl proctl (S)
pro f.............. prof (CP)
profil............ profil (S)
profile profile (M)
prs prs(CP)
P Sps(C)

pstat...........................pstat(C)
ptarptar(C)
ptrace...................... ptrace(S)
ptxp/jt(CT)
putc................................ putc(S)
putch...................putch (DOS)
putchar.......................... putc(S)
putenv..................... putenv(S)
putpwent.............putpwent(S)
puts..............................puts(S)
pututlinegetut(S)
putw............................... putc(S)
pwadmin......pwadmin(ADM)
pwcheck..............pwcheck(C)
pwdpwd(C)
queuedefs queuedefs(F)
qsort qsort(S)
quot quot(C)
ramdisk ramdisk(HW)
randrand{S)
random..................random(C)
ranlibranlib(C)
ratfor......................ratfor(CP)
reprcp(C)
rdchk........................ rdchkiß)
read read(S)
readdir...............directory (S)
reallocmallociS)
reboot haltsys(ADM)
reded(C)
regempregemp (CP)
regemp regex(S)
regex......................... regex (S)
regexp......................regexp (S)
reject accept(C)
remoteremote (C)
rename............rename {DOS)
restorrestore (ADM)
restore restore(ADM)
rewind fseek (,S)
rewinddir............ directory (S)
rmrm(C)
rmdel............................rmdel(CP)
rmdir rm(C)
rm dir......................... rmdir(D OS)
rmuser............ rmuser{ ADM)

Vll

rshrsh(C)
runbig.............. runbig(ADM)
sact............................ sact(CP)
sb rksb?~k(S)
scanf.......................... scanf(S)
sccsdiff...............sccsdiff(CP)
sccsfile....................... sccsfile(F)
schedule....... schedule (ADM)
scopatchscopatch lADM)
screen screen (HW)
sc si.......................... scsi (HW)
sdbsdb(CP)
sddate.............. sddate(ADM)
sdentersdenter(S)
sdfree sdget(S)
sdget.......................... sdget(S)
sdgetv........................... sdgetv (S)
sdiff............................sdiff(C)
sdleave.........................sdenter (S)
sdwaitv..........................sdgetv (S)
sedsed(C)
seed48drand48(S)
seekdirdirectory (S)
sfm t..................... sfmt(ADM)
segread segread(DOS)
select select (S)
semctl........................... semctl (S)
semget........................semget(S)
semop..........................semop(S)
serial................... serial (HW)
setbuf....................... setbuf(S)
setclock.......... setclock (ADM)
setcolor.....................setcolor(C)
setgid........................ setuid (S)
setgrent.................getgrent(S)
setjmp setjmp(S)
setkey...................... setkey (C)
setlocale.................... setlocale (S)
setmnt...........................setmnt (ADM)
setmode........... setmode (DOS)
setpgrpsetpgrp{S)
setpwent................. getpwent(S)
settime......................... settime (ADM)
setuid setuid(S)
setutent..........................getut(S)
setvbuf......................setbuf(S)

viii

sgetl................................. spwr/ (S)
s h sh(C)
sh l..................................shl(C)
shmctl shmctliS)
shmget.....................shmget(S)
shmop..........................shmopl S)
shutdn......................shutdn(S)
shutdown.....shutdown(ADM)
signal signal(S)
sigsem.........................sigsem(S)
s intrig(S)
sinh................................. sinh(S)
size^/z^(C)
sleep sleep {C)
sleep................................ sleep (S)
soelim....................soelim\ CT)
sopenÄöp^(DOS)
sortsort(C)
spawnl............... spa wn (DOS)
spawnvp............ spawn(DOS)
specialeqnchar(CT)
spell................................. spell (CT)
spellin spell (CT)
spline............................. spline (CP)
split.................................. split (C)
sprintf....................... printf(S)
sputl sputl(S)
sq r t exp(S)
srand48.......................... rand(S)
sscanf........................ scanf(S)
ssignalssignal(S)
stat................................... stat(F)
stat................................stat(S)
statfs.......................... statfs(S)
stdio stdio(S)
stime............................... stime (S)
storedbm(S)
strcat........................ string(S)
strchr string (S)
strcmp...................... string (S)
strcpy string (S)
strcspn string (S)
strdup....................... string (S)
string........................ string (S)
Strings^rm^(C)
strip jrnp(CP)

strlenstrlen (DOS)
strlwr^r/wr(DOS)
strncat...................... string (S)
strncmpstring (S)
strncpy..................... string (S)
strpbrk..................... stjing(S)
strrchr string (S)
strrev...................^rr^v(DOS)
strsetstrset (DOS)
strspn string (S)
strtod........................ strtodiS)
strtok........................ string (S)
strtol.......................... strtol(S)
strupr.................strupr(D OS)
sttystty(C)
style........................style (CT)
su su(C)
sumsum(C)
swab.............................. swab(S)
swapadd............... swapadd(S)
s x t (M)
sync yyAic (ADM)
sync.............................5yA2c(S)
sysadmin......sysadmin (ADM)
sysadmsh.....sysadmsh(ADM)
sys_errlist.............. perror(S)
sys_nerr.................. perror(S)
sysfilessysfiles(F)
sysi86....................... sysi86(S)
system..................... system(S)
systemid systemid(F)
systems...................systems (F)
systty....................... ^rry(M)
tailtail(C)
tantrig(S)
tanh sinh(S)
tape.................................tape(C)
tape.........................tape (HW)
tapedump tapedump(C)
ta rtar(C)
t a r tar(F)
tb l................................tbl(CT)
tdelete.................... tsearch(S)
tee..................................tee(C)
telinittelinit(ADM)
te il.......................... teil (DOS)

telldir directoiy (S)
tempnam.... tmpnam (S)
term term (CT)
termterm(F)
termcap termcap (M)
terminal..... terminal (HW)
terminals....terminals (M)
terminfo terminfo (F)
terminfo..... terminfo (M)
terminfo terminfo (S)
termio........ termio (M)
test..............test(C)
tfind........... tsearch (S)
tgetent....... termcap (S)
tgetflag....... termcap (S)
tgetnum...... termcap (S)
tgetstr......... termcap (S)
tgoto termcap (S)
t ie ftc(C)
tid tid(C)
time time (CP)
tim e............time (S)
times........... times (S)
timtbl......... timtbl (M)
tmpfile tmpfile (S)
tmpnam...... tmpnam(S)
toascii......... conv(S)
toascii......... ctype{ S)
tolower....... conv(S)
tolower....... ctype(S)
to ptop{ F)
top.nexttop(F)
touchtouch (C)
toupper...... conv(S)
toupper...... ctype(S)
tput.............tput(C)
tputs termcap (S)
t rHC)
translate..... translate (C)
trehan........ trehan (M)
troff.........................troffiCT)
truetrue(C)
tsearch....... tsearch (S)
tset..............tset(C)
tsort tsort (C P)
t t y ttyiC)

tty r/y(M) uuscheduusched (ADM)
ttyname....... ttyname (S) uustatuustat (C)
ttys...............ttys(F) uutouuto(C)
tty slot.......... tty slot (S) uutry........ uutry (ADM)
twalk........... tsearch (S) u u xuux(C)
types............types (F) uuxqt uuxqt (ADM)
T Z*z(M) v a l..............................val (CP)
tzset ctime (S) varargs varargs(S)
uadmin........ uadmin(S) vedit.........W(Q
ulimit ulimit (S) vfprintf..... vprintf (S)
ultoa............ ultoa (DOS) vivi'(C)
umask umask (C) vidi...........vidi (C)
umask.........umask(S) viewvi (C)
umount umount(ADM) vmstat....... vmstat (C)
umount........ umount(S) vprintf....................vprintf (S)
uname......... uname (C) vsh vsh(C)
uname......... uname (S) vsprintf..... vprintf (S)
uncompresscompress (C) w w(C)
unget........... unget (C P) wait..........wait(C)
ungetc......... ungetc (S) wait wait(S)
ungetch........ ungetch(DOS) waitsem.... waitsem (S)
uniquniq(C) w all.......... wa//(ADM)
units............units (C) w c wc(C)
unlink......... unlink (S) what.........what(C)
unpack........ pack(C) who...........who(C)
uptime.........uptime (C) whodo whodo (C)
usemouse usemouse (C) write.........write (C)
u stat............ ustat (S) w rite........write (S)
utime utime (S) wtmp........ utmp(F)
utmputmp(F) xargsxargs (C)
utmpname getut(S) xlist..........xlist (S)
uuchat......... dial (ADM) xref...........xref (CP)
uucheck uucheck (ADM) xstrxsrr(CP)
uucico.........uucico (ADM) y obessel(S)
uuclean uuclean (ADM) y ibessel (S)
uucp............uucp(C) yacc..........yacc (CP)
uudemon.admiu. uudemon (ADM) yes............yes(C)
uudemon.clean. uudemon(ADM) yn.............................bessel (S)
uudemon.hour. uudemon(ADM) zcat.......... compress (C)
uudemon.poll. uudemon(ADM)
uudemon.polH. uudemon(ADM)
uuencode........... uuencode (C)
uuinstalluuinstall (ADM)
uulog......................... uucp(C)
uunameuucp(C)
uupick.......................uuto(C)

Contents
System Administration (A D M)

intro
acctcom
accton
adfmt
aliashash
asktime
autoboot
backup, dump
badtrk
chroot
clri
config
configure
custom
dial
divvy
dmesg
dparam
dumpdir
fdisk
fdswap
fixperm
fsave
fsck
fsdb
fsname
fsphoto
haltsys, reboot
hdinstall
idleout
install
ipcrm
ipcs
kbmode

Introduction to system administration.
Searches for and prints process accounting files.
Turns on accounting.
Formats SCSI hard disks.
Micnet alias hash table generator.
Prompts for the correct time of day.
Automatically boot system.
Performs incremental file system backup.
Disk flaws, scans for flaws and creates bad track
table.
Changes root directory for command.
Clears inode.
Configures a XENIX system.
XENIX configuration program.
Installs specific portions of the XENIX System.
Establish an outgoing terminal line connection.
Divides disk partitions.
Displays the system messages on the console.
Displays/changes hard disk characteristics.
Prints the names of files on a backup archive.
Maintain disk partitions.
Swaps default boot floppy drives.
Correct or initialize file permissions and ownership.
Interactive, error-checking file system backup.
Checks and repairs file systems.
File system debugger.
Prints or changes the name of a file system.
Performs periodic semi-automated system backups.
Closes out the file systems and shuts down the
system
Places newly-created kernel in default location.
Logs out idle users.
Installation shell script.
Removes a message queue, semaphore set or shared
memory ID.
Reports the status of inter-process communication.
Tests or configures keyboard support.

l

lpadmin
lpinit
lpsched, Ipshut,
lpmove
makekey
mkdev
mkfs
mkuser
mount
mvdir
ncheck
netutii
pwadmin
restore, restor
rmuser
runbig

schedule
scopatch
sddate
setclock
setmnt
settime
sfmt
shutdown
sync
sysadmin
sysadmsh
telinit, mkinittab
umount
uucheck
uucico
uuclean
uudemon:
uudemon.admin,
uudemon.clean,
uudemon.hour,
uudemon.poll,
uudemon.poll2
uuinstall
uusched
uutry
uuxqt
wall

Configures the lineprinter spooling system.
Adds, reconfigures and maintains lineprinters.

Starts/stops the lineprinter.
Generates an encryption key.
Calls scripts to add peripheral devices.
Constructs a file system.
Adds a login ID to the system.
Mounts a file structure.
Moves a directory.
Generates names from inode numbers.
Administers the Micnet network.
Performs password aging administration.
Invokes incremental file system restorer.
Removes a user account from the system.
Runs a command that may require more memory
than normal.
Database for automated system backups.
Applies kernel patches.
Prints and sets backup dates.
Sets system real time clock.
Establishes /etc/mnttab table.
Changes the access and modification dates of files.
Performs special formatting.
Terminates all processing.
Updates the super-block.
Performs file system backups and restores files.
Menu driven system administration utility.
Alternative method of turning terminals on and off.
Dismounts a file structure.
Checks the uucp directories and permissions file.
File transport program for the uucp system.
UUCP spool directory clean-up.

UUCP administrative scripts.
Administers UUCP control files.
The scheduler for the uucp file transport program.
Tries to contact remote system with debugging on.
Executes remote command requests.
Writes to all users.

it

INTRO (ADM) INTRO (ADM)

Name
intro - Introduction to system administration commands.

Description
This section contains the commands that are used to administrate and
maintain the XENIX operating system. These commands are largely
root-only, meaning that they can only be executed by the super-user
(root).

28 March 1991 Page 1

ACCTCOM (ADM) ACCTCOM (ADM)

Name

acctcom - Searches for and prints process accounting files.

Syntax

acctcom [[options][file]]. . .

Description

acctcom reads file, the standard input, or /usr/adm/pacct, in the form
described by acct{F) and writes selected records to die standard out­
put. Each record represents the execution of one process. The output
shows the COMMAND NAME, USER, TTYNAME, START TIME, END
TIME, REAL (SEC), CPU (SEC), MEAN SIZE(K), and optionally, F (the
forklexec flag: 1 for fork without exec) and STAT (the system exit
status).

The command name is prepended with a # if it was executed with
super-user privileges. If a process is not associated with a known ter­
minal, a ? is printed in the TTYNAME field.

If no files are specified, and if the standard input is associated with a
terminal or /dev/null (as is the case when using & in the shell),
/usr/adm/pacct is read, otherwise the standard input is read.

If any file arguments are given, they are read in their respective order.
Each file is normally read forward, i.e., in chronological order by pro­
cess completion time. The file /usr/adm/pacct is usually the current
file to be examined; a busy system may need several files, in which
case all but the current file will be found in /usr/adm/pacct?. The
options are:

-b Reads backwards, showing latest commands first.

-f Prints the fork /exec flag and system exit status columns in
the output.

-h Instead of showing mean memory size, it shows the frac­
tion of total available CPU time consumed by the process
during its execution. This “hog factor” is computed as:

(total CPU time)/(elapsed time).

-i Prints columns containing the I/O counts in the output.

-k Instead of memory size, shows total kcore-minutes.

28 March 1991 Page 1

ACCTCOM (ADM) ACCTCOM (ADM)

-m

-r

-t
-v

-1 line

-u user

-g group

-d mm/dd

-s time

-e time

-n pattem

-H factor

-I number

-O time

-C time

Shows mean core size (the default).

Shows CPU factor (user time/(system-time + user-time).)

Shows separate system and user CPU times.

Excludes column headings from the output.

Shows only processes belonging to terminal Idevlline.

Shows only processes belonging to user that may be
specified by a user ED, a login name that is then converted
to a user ID, a # which designates only those processes
executed with super-user privileges, or ? which designates
only those processes associated with unknown user IDs.

Shows only processes belonging to group. The group
may be designated by either the group ID or group name.

Any time arguments following this flag are assumed to
occur on the given month and day, rather than during the
last 24 hours. This is needed for looking at old files.

Shows only those processes that existed on or after time,
given in the form hrimimsec. The :sec or iminisec may
be omitted.

Shows only those processes that existed on or before time.
Using the same time for both -s and -e shows the pro­
cesses that existed at time.

Shows only commands matching pattern that may be a
regular expression as in ed (C) except that + means one or
more occurrences.

Shows only processes that exceed factor, where factor is
the “hog factor” as explained in option -h above.

Shows driver processes transferring more characters than
the cutoff number.

Shows only those processes with operating system CPU
time that exceeds time.

Shows only those processes that exceed time (the total
CPU time).

Multiple options have the effect of a logical AND.

28 March 1991 Page 2

ACCTCOM (ADM) ACCTCOM (ADM)

Files
/etc/passwd

/usr/adm/pacct

/etc/group

See Also
accton(ADM), ps(C), su(C), acct(S), acct(F), utmp(F)

Notes
acctcom only reports on processes that have terminated; use ps (C) for
active processes.

28 March 1991 Page 3

ACCTON (ADM) ACCTON (ADM)

Name

accton - Tbrns on accounting.

Syntax

accton [file]

Description

accton turns on and off process accounting. If no file is given then
accounting is turned off. If file is given, die kernel appends process
accounting records. (See acct (S) and acct (F)).

Files

/etc/passwd

Aisr/adm/pacct

/usr/adm/sulogin

/etc/wtmp

Used for login name to user ID conversions

Current process accounting file

Super-user login history file

Login/logout history file

See Also

acctcom(ADM), acct(S), acct(F), su(C), utmp(F)

28 March 1991 Page 1

ADFMT (ADM) ADFMT (ADM)

Name

adfmt - Formats SCSI hard disks.

Syntax

/etc/adfmt device name

Description

The adfmt command issues a format command to the SCSI disk de­
vice _name. device jiame should be the character-special device
representing the whole SCSI disk, for example, /dev/rhdlO.

Notes

This utility is only applies to
XENIX-386 distributions.

SCSI disks with embedded controllers are formatted as part of the
manufacturing test procedure. Using adfmt on these disks is unneces­
sary.

Files

/dev/rhd?0

See Also

scsi(HW)
hd(HW)

28 March 1991 Page 1

ALIASHASH (ADM) ALIASHASH (ADM)

Name

aliashash - Micnet alias hash table generator.

Syntax

aliashash [-v] [-o output-file] [input-file]

Description

The aliashash command reads the input-file and generates an output-
file containing a hash table of alias definitions for a Micnet network.
The input-file must name a file containing alias definitions in the form
described for the aliases file (see aliases (M)). If the -o option is not
used to specify an output-file, the command creates a file with the
same name as the input-file but with .hash appended to it. If no
input-file is given, the command reads the file named
/usr/lib/mail/aliases and creates the file named
/usr/lib/mail/aliases.hash.

If invoked with the -v option, the command lists information about the
hash table.

The output-file will contain both the alias definitions given in the
input-file and the new hash table. The hash table appears at the begin­
ning of the file and is separated from the alias definitions by a blank
line. The hash table has three or more lines. The first line is:

#<hash>

The second line has 4 entries: the bytes per table entry, the maximum
number of items per hash value, the number of entries in the table, and
the offset (in bytes) from the beginning of the file to the beginning of
the alias definitions.

The next lines (up to the end of the hash table) contain the hash table
entries. Each line has 8 entries (separated by spaces) and each entry
has 2 fields. The first field (1 byte) is a checksum (represented as a
printable character); the second field is a pointer (in bytes) to the alias
definition. The pointer is represented as a hexadecimal number with
leading blanks if necessary and is always relative to the start of the
definitions.

The aliashash command is normally invoked by the install option of
the netutil command. If the alias definitions of a network must be
changed, the definitions in the aliases file should be changed and a
new aliases.hash file created using the aliashash command. The new
aliases.hash file must then be copied to all other computers in the net­
work.

28 March 1991 Page 1

ALIASHASH (ADM) ALIASHASH (ADM)

Files

/usr/lib/mail/aliashash
/usr/lib/mail/aliases
/usr/lib/mail/aliases.hash
/usr/lib/mail/maliases.hash
/usr/lib/mail/maliases

See Also

aliases(M), netutil(ADM)

Warning

Do not use the aliashash command to create the aliases.hash file
while the network is running. If necessary, create a temporary output
file, aliases.hash+ , using the -o option, then enter:

mv aliases.hash+ aliases.hash

This will prevent disruption of the network.

28 March 1991 Page 2

ASKTIME (ADM) ASKTIME (ADM)

Name

asktime - Prompts for the correct time of day.

Syntax

/etc/asktime

Description

This command prompts for the time of day. You must enter a legal
time according to the proper format as defined below:

[\yy]mmdd]hhmm

Here the first mm is the month number, dd is the day number in the
month; hh is the hour number (24-hour system); the second mm is the
minute number, yy is the last 2 digits of the year number and is
optional. The month and day are also optional, as a group with with
the year. The current year is the default if no year is mentioned.

Examples

This example sets the new time, date, and year to “ 11:29 Aug 31,
1992”.

Current system time is Mon Aug 24 14:36:23 PST 1992
Enter time ([yymmdd]hhmm>: 9208311129

Diagnostics

If you enter an illegal time, asktime prompts with:

Try again:

Notes

asktime is normally performed automatically by the system startup file
/etc/rc immediately after the system is booted; however, it may be
executed at any time. The command is privileged, and can only be
executed by the super-user.

28 March 1991 Page 1

ASKTIME (ADM) ASKTIME (ADM)

Systems which autoboot will invoke asktime automatically on reboot.
On these systems, if you don’t enter a new time or press return within
1 minute of invoking asktime, the system will use the time value it
has. If RETURN alone is entered, the time is unchanged.

28 March 1991 Page 2

AUTOBOOT (ADM) AUTOBOOT (ADM)

Name

autoboot - Automatically boots the system.

Description

The system can be set up to go through the boot stages automatically
(as defined in /etc/default/boot) when the computer is turned on
(booted), provided no key is pressed at the boot(HW) prompt.

If boot times out and LOADXENIX=YES, then XENIX is passed the
word “auto” in its boot string and init{M) /sc/:(ADM), and
asktime (ADM) are passed a -a flag.

In addition, the TIMEOUT entry can be set to specify the number of
seconds to wait before timing out.

The autoboot procedure checks the file /etc/default/boot for the fol­
lowing instructions on autobooting:

LOADXENEX=YES or NO

FSCKFIX=YES or NO

MULTIUSER^YES or NO

PANICBOOT=YES or NO

RONLYROOT=YES or NO

DEFBOOTSTR=bootstring

Whether or not boot(HW) times out
and loads XENIX, boot looks for this
variable in the /etc/default/boot file
on its default device.

Whether or not fsck(ADM) fixes any
root system problems by itself. If the
variable is set to YES, then
fsck(ADM) is run on the root filesys­
tem with the -rr flag.

Whether or not init{M) invokes
sulogin or proceeds to multiuser
mode.

Whether or not the system reboots
after a panic(). This variable is read
from /etc/default/boot by init.

Whether or not the root filesystem is
mounted readonly. This must be
used only during installation, and not
for a normal boot. It will effectively
prevent writing to the filesystem.

Set default bootstring to bootstring.
This is the string used by boot when
the user presses <RETURN> only to
the “Boot:” prompt, or when boot
times out.

28 March 1991 Page 1

AUTOBOOT (ADM) AUTOBOOT (ADM)

SYSTTY=jc If x is 1, the system console device is
set to the serial adapter at COM1. If
x is 0, the system console is set to the
main display adapter.

TIMEOUT=rt where n is the number of seconds to
timeout at the “Boot:” prompt
before booting the kernel (if
LOADXENEX=YES). If TIMEOUT is
unspecified, defaults to one minute.

If either the /etc/default/boot file or the variable needed cannot be
found, the variable is assumed to be NO. However, if the filesystem
cannot be found, PANICBOOT is set to YES.

The /etc/default/boot file is shipped with the following default figura­
tion:

LOADXENEX=YES
FSCKFTX=YES
MULTIUSER ̂YES
PANICBOOT=NO

A scratch file is needed by fsck to check large filesystems. The user is
informed during the installation of XENIX if the system needs a
scratch file to fsck the root filesystem. If necessary, the installation
procedure creates the filesystem /dev/scratch to write the fsck tem­
porary file, fsck uses the file named on the /etc/default/boot line:

SCRATCH=

as a scratch file. If the installation procedure creates the scratch
filesystem, the entry in the /etc/default/boot is automatically made.

SCRATCH need only be specified if the root filesystem is large enough
to need a temporary file. If a file is specified, it is always passed to
fsck when checking the root filesystem, even if the system is booted
manually. The only exception is the first time XENIX is booted from
the hard disk, when the user must specify the scratch file. The file
specified as SCRATCH must not be on the filesystem being checked by
fsck. SCRATCH also cannot be on an unmounted filesystem.

If the XENIX mail system, mail(C), is installed on the system, the out­
put of each autoboot sequence is mailed to root. Otherwise, the sys­
tem administrator should check the file /etc/bootlog for the boot
sequence output. The output of fsck {ADM) is temporarily saved in
the file /dev/recover before it is moved to /etc/bootlog and finally
may be sent to the system administrator via mail.

Other boot options which take affect during autoboot are documented
on the boot{HW) manual page.

28 March 1991 Page 2

AUTOBOOT (ADM) AUTOBOOT (ADM)

Files
/etc/bootlog
/etc/default/boot
/etc/rc

boot output log for autobooting systems
boot parameter file
instructions for entering multiuser mode,
including mounting and checking additional
filesystems

/bin/sulogin executed at startup, prompts the user to press
Ctrl-d for multiuser mode or to enter the root
password for maintenance mode

/dev/recover
/dev/scratch

allows saving offsck output
temporary/sc& file for large filesystems

See Also
boot(HW), fsck(ADM), init(M)

Notes
The utilities invoked during the boot procedure are passed the -a flag
and time out only when the system autoboots. For example,
asktime (ADM) times out after one minute when the system autoboots,
but waits for a response from the user any other time it is invoked.

The previous boot modes of AUTO=CLEAN, DIRTY, NEVER have
been retained for backwards compatibility, but are ignored if any of
the newer modes are present.

28 March 1991 Page 3

BACKUP (ADM) BACKUP (ADM)

Name
backup, dump - Performs incremental filesystem backup.

Syntax
backup [key [arguments] filesystem]

Description
backup copies all files changed after a certain date in the filesystem.
dump is a link to backups they refer to the same utility. The key speci­
fies the date and other options about the backup, where a key consists
of characters from the set 0123456789kfusd. The meanings of these
characters are described below:

f Places the backup on file specified by the next argument instead
of the default device.

u If the backup completes successfully, writes the date of the
beginning of the backup to the file /etc/ddate. This file records
a separate date for each filesystem and each backup level.

0-9 This number is the “backup level” . Backs up all files modified
since the last date stored in the file /etc/ddate for the same
filesystem at lesser levels. If no date is determined by the level,
the beginning of time is assumed; thus the option 0 causes the
entire filesystem to be backed up.

s This is the size of the tape in feet. The number of feet is taken
from the next argument. When the specified size is reached,
backup will wait for reels to be changed. The default size is
2,300 feet.

d This is the density of the tape, expressed in BPI, is taken from
the next argument. This is used in calculating the amount of
tape used per write. The default is 1600.

k The size (in K-bytes) of the volume being written is taken from
the next argument. If the k argument is specified, any s and d
arguments are ignored. The default is to use s and d.

If no arguments are given, the key is assumed to be 9u and a default
filesystem is backed up to the default device.

The first backup should be a full level-0 backup:

backup Ou

Next, periodic level 9 backups should be made on an exponential

28 March 1991 Page 1

BACKUP (ADM) BACKUP (ADM)

progression of tapes or floppies:

backup 9u

This progression is shown as follows:

1 2 1 3 1 2 1 4...

where backup 1 is used every other time, backup 2 every fourth,
backup 3 every eighth, etc.) When the level-9 incremental backup
becomes unmanageable because a tape is full or too many floppies are
required, a level-1 backup should be made:

backup lu

After this, the exponential series should progress as if uninterrupted.
These level-9 backups are based on the level-1 backup, which is based
on the level-0 füll backup. This progression of levels of backups can
be carried as far as desired.

The default filesystem and the backup device depend on the settings of
the variables DISK and TAPE, respectively, in the file
/etc/default/backup.

Files
/etc/ddate Records backup dates of filesystem/level

/etc/default/backup Default backup information

See Also
XENIX System Administrator's Guide
cpio(C), default(F), dumpdir(ADM), restore(ADM), sddate(C),
backup(F)

Diagnostics
If the backup requires more than one volume (where a volume is likely
to be a floppy disk or tape), you will be asked to change volumes.
Press RETURN after changing volumes.

28 March 1991 Page 2

BACKUP (ADM) BACKUP (ADM)

Notes
Sizes are based on 1600 BPI for blocked tape. Although the s and d
options are used by default, they are not commonly used; the k option
is more popular because it specifies size in K-bytes. Write errors to
the backup device are usually fatal. Read errors on the filesystem are
ignored.

If the default archive medium specified in /etc/default/backup or /etc/default/restor is block structured, (example: floppy disk) then the
volume size in Kbytes must be specified on the command line. Nei­
ther utility works correctly without this information. For example,
using the default device (below) with the backup command, enter the
following:

backup k 360
The default device entry for /etc/default/backup (tape=/dev/xxx) and /etc/default/restor (archive=/dev/xxx) is /dev/rfd02.
It is not possible to successfully restore an entire active root filesys­
tem.

Warning
When backing up to floppy disks, be sure to have enough formatted
floppies ready before starting a backup. You must also be sure to close
the floppy door when inserting floppy disks. If you fail to do so in a
multi-floppy backup, the entire backup will fail and you will have to
begin again.

You should never backup more than one filesystem to the tape devices /dev/nrctO and /dev/nrct2. This is because, although backup can
write more than one filesystem to /dev/nrctO or /dev/nrct2, restore
may not be able to restore more than one filesystem from diese de­
vices.

28 March 1991 Page 3

BADTRK (ADM) BADTRK (ADM)

Name
badtrk - Scans fixed disk for flaws and creates bad track table.

Syntax

badtrk [-e] [-s qtdn] [-f /dev/rhd*]

Description

Used chiefly during system installation, badtrk scans the media sur­
face for flaws, creates a new bad track table, prints the current table,
and adds and deletes entries to the table.

WARNING: The -e flag should not be invoked by the user. It is called
by hdinit during installation to change the space allocated for bad
tracks. Use of the -e flag at any other time may restructure the hard
disk, rendering the information stored on it unusable.

To use badtrk, you must be in single user mode. (See
shutdown (ADM)). To address the active XENIX partition on your
primary fixed disk, enter:

badtrk -f /dev/rhdOa

To address the active XENIX partition on your secondary fixed disk,
enter:

badtrk -f /dev/rhdla

WARNING: badtrk must be applied to a partition, not a whole disk,
division, or filesystem.

Usage
When badtrk is executed, the program first displays the main menu:

1. Print Current Bad Track Table
2. Scan Disk (You may choose Read-Only or Destructive later)
3. Add Entries to Current Bad Track Table by Cylinder/Head Number
4. Add Entries to Current Bad Track Table by Sector Number
5. Delete Entries Individually From Current Bad Track Table
6. Delete All Entries Fran Bad Track Table

Enter your choice or 'q' to quit:

28 March 1991 Page 1

BADTRK (ADM) BADTRK (ADM)

You are prompted for option numbers, and, depending upon the option,
more information may be queried for later.

A bad track table (option ‘ 1 ’) might look like this:

Defective Tracks
Cylinder Head Sector Number(s)

1. 190 3 12971-12987

Press <RETURN> to continue.

Option “2” scans the disk for flaws. If badtrk thinks changes may
have been made to your bad track table since entering badtrk or updat­
ing your table, you will be asked if you want to update the device with
the new table before scanning. You should answer “y” to save your
changes, ‘n’ if you don’t want to save changes made up to this point.
Next you are prompted for the type of scan: all or part of the disk, a
thorough or quick scan, and whether it is destructive or not. After you
respond to these prompts, badtrk begins its scan. You can interrupt a
scan by typing “q” at any time. You are then prompted to continue
the scan or return to the main menu.

As the program finds flawed tracks, it displays the location of each
bad track. Here is an example error message:

wd: ERROR : on fixed disk ctlr=0 dev=0/47 block=31434 crrd=00000020
status=00005180, sector = 62899, cylinder/head = 483/4

(You may see this kind of message if there is a read or write error dur­
ing the scanning procedure.)

When the scan is complete, the main menu reappears. The program
automatically enters any detected flaws in the bad track table.

If there are no entries in your bad track table and a scan does not
reveal any flaws, but your disk is furnished with a flaw map, you
should enter these flaws into the bad track table. To add flaw loca­
tions to an existing bad track table, select either option “3” or option
“4”, depending upon the format of the flaw map furnished with your
disk. Enter the defective tracks, one per line. (This should only be
done on non-remapped drives; see cautions under Notes.)

When you are satisfied that badtrk contains a table of the desired
flaws, quit the badtrk program by entering “q” at the main menu.

28 March 1991 Page 2

BADTRK (ADM) BADTRK (ADM)

If badtrk was invoked with the -e option (which should only occur
when called by hdinit, during the XENIX installation procedure), if
you are reinstalling and you have a valid disk division table, the fol­
lowing message is displayed prior to the badtrk menu:

This device contains a valid division table. Additional
(non-root) filesystems can be preserved across this reinstallation.
If you wish to be able to preserve these file systems later, you must
not change the current limit of the bad track table, which is
n bad tracks. Do you wish to leave it unchanged? <y/n>:

If you respond “y”, you will not be prompted later to enter a new limit
for the size of your bad track table. You can add or delete entries, but
you will not be allowed to increase the maximum number of bad
tracks allocated. If you respond “n” and the size of your bad track
table is changed, your disk division table will be destroyed.

If you do not have a valid disk division table or you selected “n” when
prompted, you are prompted for the number of bad tracks to allocate.
There will be a recommended number of replacement tracks to allo­
cate based on the number of known bad tracks plus an allowance for
tracks that will go bad in the future. You should choose to allocate at
least as many as the recommended number of replacement tracks.
Make your choice carefully, because if you want to change this
amount later, you will have to reinstall XENIX.

At this point, you are asked if you want to update the table, meaning if
you wish to save the changes made. You should answer “y” to save
your changes, “n” to leave the bad track table as it was when last
updated.

Arguments
-f name

Opens the partition name and reads the bad track table associated
with that partition. The default is /dev/rhdOa.

-s options
Invokes badtrk non-interactively. Valid options for this flag are:

[q]uick
[thorough
[destructive
[n]on-destructive

The -s flag takes two options at a time. Choose quick or thorough scan,
and destructive or non-destructive scan.

28 March 1991 Page 3

BADTRK (ADM) BADTRK (ADM)

Notes
This utility only applies to standard disk controllers and not SCSI host
adapters or SMS-OMTI controllers.

badtrk can only be used in single-user mode.

If a bad spot develops in the boot blocks or system tables at the very
beginning of the fdisk partition, reinstallation is required.

Some disk controllers support alternate modes known as "translation,"
"mapping" or "63-sector" modes that change the apparent shape of the
drive. Ibis is often used to make a drive that has more than 1024
cylinders appear to have less cylinders in order to make it compatible
with MS-DOS. If your drive has been formatted using one of these
options, do not use options 3 and 4 to manually add entries to the bad
track.

Files
/etc/badtrk

28 March 1991 Page 4

CHROOT (ADM) CHROOT (ADM)

Name

chroot - Changes root directory for command.

Syntax

chroot newroot command

Description

The given command is executed relative to the new root. The mean­
ing of any initial slashes (/) in pathnames is changed for a command
and any of its children to newroot. Furthermore, the initial working
directory is newroot.

Notice that:

chroot newroot command >x

creates the file x relative to the original root, not the new one.

This command is restricted to the super-user.

The new root pathname is always relative to the current root even if a
chroot is currently in effect. The newroot argument is relative to the
current root of the running process. Note that it is not possible to
change directories to what was formerly the parent of the new root
directory; i.e., the chroot command supports the new root as an abso­
lute root for the duration of the command. This means that “A.” is
always equivalent to

See Also

chdir(S)

Notes

Exercise extreme caution when referencing special files in the new
root file system.

command must be under newroot or command is reported:
command: not found

28 March 1991 Page 1

CLRI (ADM) CLRI (ADM)

Name
clri - Clears inode.

Syntax

/etc/clri file-system i-number...

Description

clri writes zeros on the 64 bytes occupied by the inode numbered /-
number. File-system must be a special filename referring to a device
containing a file system. After clri is executed, any blocks in the
affected file will show up as “missing” if the file system is checked
with fsck(ADM). Use clri only in emergencies and exercise extreme
care.

Read and write permission is required on the specified file-system de­
vice. The inode becomes allocatable.

The primary purpose of this routine is to remove a file which, for some
reason, does not appear in a directory. If you use clri to destroy an
inode which does appear in a directory, track down the entry and
remove it. Otherwise, when the inode is reallocated to some new file,
the old entry will still point to this file. At that point removing the old
entry will destroy the new file. The new entry will again point to an
unallocated inode, so the whole cycle is likely to be repeated again
and again.

See Also
fsck(ADM), ncheck(ADM)

Notes
If the file is open, clri is likely to be ineffective.

28 March 1991 Page 1

CONFIG (ADM) CONFIG (ADM)

Name
config - Configures a XENIX system.

Syntax

/usr/sys/conf/config [-i] [-c file] [-s] -m master dfile

Description

config takes a description of a XENIX system and generates compil­
able files that define the configuration tables for the various devices
on the system.

Options include:

-m Specifies the name of the file that contains all the information
regarding supported devices; /usr/sys/conf/master is the stan­
dard name. This file is supplied with the XENIX system and
should not be modified by the user. The configure(ADM) utility
should be used to update /usr/sys/conf/master and dfile.

-i Requests assembly-language output, instead of the default C
language output.

-c Specifies the name of the configuration table file. c.c is the
default names unless the -i option is given, in which case the
default name is c.asm.

-s Specifies the name of the parameters file. space.c is the default
name; if the -i option is used, the default name is spaceanc.

dfile contains system device information and is divided into two parts.
The first contains physical device specifications. The second contains
system-dependent information. Any line with an asterisk (*) in
column 1 is a comment. A standard dfile is provided as
/usr/sys/conf/xenixconf. The configure(ADM) utility should also be
used to update /usr/sys/conf/xenixconf.

All configurations are assumed to have a set of required devices, such
as the system clock, which must be present to run XENIX. These de­
vices must not be specified in dfile.

28 March 1991 Page 1

CONFIG (ADM) CONFIG (ADM)

First Part of dfile

Each line contains two fields, delimited by spaces and/or tabs in the
following format:

devname number

where devname is the name of the device, and number is the number
(decimal) of devices associated with the corresponding controller.
The device name can be any name given in part 1 of the /usr/sys/conf/master file, or any alias given in part 3 of the same file;
number is optional, and if omitted, a default value which is the max­
imum value for that controller is used.

There are certain drivers that may be provided with the system that are
actually pseudo-device drivers; that is, there is no real hardware asso­
ciated with the driver. If the system has such drivers, they are
described in section M of the XENIX User's Reference.

Second Part of dfile

The second part contains three different types of lines. Note that all
specifications of this part are required, although their order is arbi­
trary.

1. root/pipe device specification

Two lines, each having three fields:

root devname minorpipe devname minor

where devname is the name of the device, and minor is the minor de­
vice number (in octal). The device name can be any name given in
part 1 of the /usr/sys/conf/master file, or any alias given in part 3 of
the same file.

2. swap device specification

One line that contains five fields as follows:

swap devname minor swplo nswap

where devname is the name of the device, minor is the minor device
number (in octal), swplo is the lowest disk block (decimal) in the
swap area, and nswap is the number of disk blocks (decimal) in the
swap area. The device name can be any name given in part 1 of the /usr/sys/conf/master file, or any alias given in part 3 of the same file.

28 March 1991 Page 2

CONFIG (ADM) CONFIG (ADM)

3. Parameter specification

One or more lines, each having two fields as follows:

name number

where name is a tunable parameter name, and number is the desired
value (in decimal) for the given parameter. Only names that have
been defined in part 4 of the /usr/sys/conf/master file
can be used; number overrides the default value for the given parame­
ter.

A complete list of kernel parameters is found in “Tuning System Per­
formance” in the System Administrator's Guide. Note that the param­
eters listed by configure are in uppercase and the values in
/usr/sys/conf/master are in lowercase.

Files

/usr/sys/conf/master default input master device table
c.c default output driver configuration table file
space.c default output resource configuration table file
c.asm default driver configuration in assembly language
space.inc default resource configuration in assembly language

See Also

configure(ADM), master(F)

Diagnostics

Diagnostics are routed to the standard output and are self-explanatory.

Notes

The value on the right-hand side of a parameter specification must be
a double-quoted character string, an integer, the name of another
parameter defined within the master{F) file, or some arithmetical com­
bination of integers and defined parameter names. Only the “+ ”,

and “/” operators can be used in an arithmetical expression.
Expressions are interpreted left-to-right: if operator precedence is in
doubt, parenthesize.

28 March 1991 Page 3

CONFIGURE (ADM) CONFIGURE (ADM)

Name
configure - xenix configuration program.

Syntax
configure [options] [parm=val...]

Description
The configure program determines and alters different kernel
resources. For end users, configure is easier than modifying the sys­
tem configuration files directly. For device driver writers, configure
avoids the difficulties of editing configuration files that have already
been edited by an earlier driver configuration script.

Resources are modified interactively or with command-line argu­
ments. Adding or deleting device driver components requires the
command line options.

The next paragraphs discuss how to use configure interactively. Com­
mand line options are discussed in the “Options” section.

Interactive Usage
configure functions interactively when no options are given, or when -f is the only option specified on the command line.

When you invoke configure interactively, you first see a category
menu that looks something like this:

1. Disk Buffers
2. Character Buffers
3. Files, Inodes, and Filesystems
4. Processes, Memo r y Management & Swapping
5 . Clock
6. Multiscreens
7 . Message Queues
8 . Semaphores
9 . Shared Data
10. System Name
11. Streams Data
12. Event Queues and Devices
13. Hardware Dependent Parameters

Select a para m e t e r category to reconfigure by
t y p i n g a number from 1 to 13, or type 'q' to quit:

28 March 1991 Page 1

CONFIGURE (ADM) CONFIGURE (ADM)

To choose a category, enter its number, (e.g. “ 1” for “Disk Buffers”)
then press RETURN.

Each category contains a number of configurable resources. Each
resource is presented by displaying its true name, a short description,
and its current value. For example, for the “Disk Buffers” category
you might see:

NBUF: total disk buffers. Currently determined at system start up:
NSABUF: system-addressable (near) disk buffers. Currently 10:
NHBUF: hash buffers (for disk block sorting). Currently 128:

To keep the current value, simply press RETURN. Otherwise, enter an
appropriate value for the resource, then press RETURN, configure
checks each value to make sure that it is within an appropriate range.
If not, configure will warn you that the value is inappropriate and con­
firm that you wish to override the recommended value.

To exit from configure enter ’q’ at the category menu prompt. If any
changes are made, configure asks if it should update the configuration
files with the changes. To keep the old configuration values, enter ’n’
at this prompt, and no changes are made. Otherwise, enter ’y’ and con­
figure updates the required system configuration files. After config­
ure has completed, the kernel is ready for linking.

To link the kernel, enter:

cd /usr/sys/conf ,/linkxenix
Linking may take a few minutes. After the kernel is linked, enter the
following commands to place a copy of the new kernel (xenix.new) in
the root directory and reboot the system:

cp /usr/sys/conf/xenix /xenix.new /etc/shutdown
Eventually, you see the boot prompt:

B o o t

To test the new kernel, enter the following at the boot prompt:

xenix.new
The system is now running the new kernel. When you are satisfied
with die performance of the new kernel, enter the following command
to install the new kernel on the hard disk:

28 March 1991 Page 2

CONFIGURE (ADM) CONFIGURE (ADM)

/usr/sys/conf/hdinstall

The hdinstall(ADM) program backs up the old /xenix and copies
lusrlsyslconflxenix to!xenix.

Remove xenix.new by entering the following command:

rm /xenix.new

Reboot the system to run the new kernel.

Options

The command line options are designed for writers of driver-installa­
tion shell scripts. You can configure drivers, remove driver definitions
from the configuration files, and modify some driver attributes, all
from the command line. There are also options for querying the
current driver configuration, querying kernel resources, and modifying
these resources.

configure uses the following options:

-a [fund func2 ...]
-d [fund fund ...]
-b
-c
-d [fund func2 ...]
-f master Jile [dfile]
-g dev_name handler I dev_name
-j [prefix] [NEXTMAJOR]
-1 priorityJevel
-m major
-n
-q
-r
-t
-v interrupt vector [interrupt_vector2...]
-w
-x
-y resource

m, -b, and -c
These options are used to define which driver is being referenced.
Following -m must be the major device number of die driver. If
you are configuring a block driver, -b must appear; if you are con­
figuring a character driver, -c must appear. Both are used when
configuring a driver with both kinds of interfaces.

-a and -d
Each option is followed by a list of functions to add or delete,
respectively. These are the names of the functions that appear

28 March 1991 Page 3

CONFIGURE (ADM) CONFIGURE (ADM)

within bdevsw[] or cdevsw[], as appropriate, plus the names of the
initialization, clock poll, halt and interrupt routines, if present, plus
the names of the tty, stream, and tab structure pointers, configure
enforces the rules that all of a driver’s routines must have a com­
mon prefix, and that the prefix be 2-4 characters long.

-j When followed by a prefix used by a driver, the major device num­
ber is displayed. When followed by NEXTMAJOR, the smallest
unused major device number is displayed.

-r This option forces a rewrite of the configuration files regardless of
whether or not the command changed the configuration.

-v This option modifies the system’s notion of the vectors on which
this device can interrupt. A device may interrupt on up to 4 vec­
tors.

-1 This sets the interrupt priority level of the device, which is almost
always the same as the type of spl() call used: a driver that inter­
locks using spl5() almost always has an interrupt priority level of
5.

-q If the -q option is given, no qswtch{) is possible after returning
from the device interrupt. Use of this option in new drivers is not
recommended.

-f The configuration is maintained in two data files, whose default
names are master and xenixconfi The -f option can be used to
specify alternate names. Note that if -f is the only option present,
the program is still interactive.

-n If -n is present, the two configuration data files are modified, but no
‘.o’ files are produced. This option is useful when configuring a
driver package containing multiple drivers.

-w This option suppresses warning messages.

-x This dumps all the resource prompts known to configure. These
reveal the name, description and current value of each parameter
capable of being reconfigured. Category prompts are not dumped.

-y The -y option prints out the current value of the requested resource.

-t This option prints out nothing (except possibly error messages).
However, it has a return value of 1 if a driver corresponding to the
given combination of -m, -b, -c and options is already configured,
and returns 0 if no such driver is present.

-g This option is used to add or remove graphics input (GIN) device
handlers. Devices such as mice, bitpads, and keyboards may have
handlers to turn their input data into “events.” The -g flag may be
given one argument that is interpreted as a device name. That GIN

28 March 1991 Page 4

CONFIGURE (ADM) CONFIGURE (ADM)

device is removed from the configuration files. If the -g flag has
two arguments, the second is a handler for that device, and the de­
vice is added to the files. If it was already present, its handler is
updated and the user is informed. Multiple devices may be added
or removed by specifying -g multiple times.

Setting Command-line Parameters
Any number of arguments can be given on the command line of the
form resource-value. These arguments can be given at the same time
as an add or delete driver request, but must follow all the driver-con-
figuration arguments on the command line.

Some resources have values that are character strings. In this case
their values must be enclosed within the characters \" . The quotes are
syntactically necessary for them to be used as C-language strings, and
the backslashes protect the quotes from being removed by the shell.

Examples
Print out the current value of NCLIST:

configure -y NCLIST
Return 1 if character major device 7 and vector 3 are available:

configure -t -v 7 -m 3 -c
Add a clock-time polling and initialization routine to the already con­
figured “foo” driver, a hypothetical character driver at major device
#17:

configure -a foopoll fooinit -c -m 17
Delete the “foo” driver:

configure -m 17 -d -c
Add a new “hypo” driver, a block driver with a character interface. It
absorbs 3 different interrupt vectors, at priority 6:

configure -a hypoopen hypoclose hyporead hypowrite hypoioctl\ hypostrategy hypotab hypointr -b -c -16 -v 17 42 49

Notes
Kernel Data Space Restrictions (XENIX-286 only)

28 March 1991 Page 5

CONFIGURE (ADM) CONFIGURE (ADM)

If the total size of all the allocated resources grows too large, the
group will not fit within the kernel’s 64k near data segment. You will
not see messages about excessive size from configure, but you may
see them from the linker when you attempt to link the kernel.

Files
Aisr/sys/conf/master
/usr/sys/conf/xenixconf
/usr/sys/conf/config
/usr/sys/conf/space.o
/usr/sys/conf/c.o

See Also
master(F), config(ADM), event(M), hdinstall(ADM)

28 March 1991 Page 6

CUSTOM (ADM) CUSTOM (ADM)
Name

custom - Installs specific portions of the XENIX System

Syntax

custom [-odt] [-irl [package]] [-m device] [-f [file]]

Description

With custom you can create a custom installation by selectively in­
stalling or deleting portions of the XENIX system, custom is execut­
able only by the super-user and is either interactive or can be invoked
from the command line with several options.

Files are extracted or deleted in packages. A package is a collection
of individual files. Packages are grouped together in sets.

Three default sets are always available:

Operating System
Development System
Text Processing System

You can also install additional sets. You can list the available pack­
ages by using the custom command as described next.

Usage
To use custom interactively, enter:

custom

You see a list of sets. For example:

1. Operating System
2. Development System
3. Text Processing System
4. Add a Supported Product

The program prompts you to choose a set from which to work. If the
data files for that set are not already installed on the hard disk, custom
prompts you for the floppy which contains these data files and installs
them. You may also see menu items for each product that has been
previously added using the “Add a Supported Product” option. If you
are adding a new product, you will be prompted for volume 1 of the
new product distribution and custom will extract the product informa­
tion necessary to support it.

28 March 1991 Page 1

CUSTOM (ADM) CUSTOM (ADM)

When you select a valid set, you see a menu like this:

1. Install one or more packages
2. Remove one or more packages
3. List the files in a package
4. Install a single file
5. Select a new set to customize
6. Display current disk usage
7. Help

When you enter a menu option, you are prompted for further informa­
tion. This is what the options prompt, and what action occurs:

1. Install
Prompts for one or more package names.

Calculates which installation volumes (distribution media) are
needed, then prompts for the correct volume numbers. If multiple
packages are specified, the names should be separated by spaces on
the command line.

This option, as well as “2” and “3,” displays a list of all available
packages in the currently selected set. Each line describes the pack­
age name, whether the package is fully installed, not installed or par­
tially installed, the size of the package (in 512 byte blocks), and a one
line description of the package contents.

2. Remove
Prompts for one or more package names.

Deletes the correct files in the specified package. If multiple pack­
ages are specified the names should be separated by spaces on the
command line.

Displays available packages (see option “ 1”).

3. List files in a package
Lists all files in the specified package.

Prompts for one or more package names. Enter the name of the
desired package(s).

Displays available packages (see option “ 1”).

28 March 1991 Page 2

CUSTOM (ADM) CUSTOM (ADM)

4. Install a single file
Extract the specified file from the distribution set.

Filename should be a full pathname relative to the root directory

5. Select a new set

Allows you to work from a different set than the current one.

6. Display current disk usage

Tells you your current disk usage.

7. Help

Prints a page of instructions to help you use custom.

Options
Three arguments are required for a completely non-interactive use of
custom:

A set identifier (-0, -d, or -t),
A command (-i, -r, -1, or -f),
And either one or more package names, or a file name

If any information is missing from the command line, custom prompts
for the missing data.

Only one of -o, -d, or -t may be specified. These stand for:

-o Operating System

-d Development System

-t Text Processing System

Only one of -i, -r, -1, or -f may be specified, followed by an argument
of the appropriate type (one or more package names, or a file name).
These options perform the following:

28 March 1991 Page 3

CUSTOM (ADM) CUSTOM (ADM)

-i Install the specified package(s)

-r Remove the specified package(s)

-1 List the files in the specified package(s).

-f Install the specified file.

The -m flag allows the media device to be specified. The default is
/dev/install (which is always the 0 device, as in /dev/fdO). This is very
usefül if the system has a 5.25-inch drive on /dev/fdO and a 3.5-inch
floppy on /dev/fdl, and it is necessary to install 3.5-inch media. For
example:

custom -m /dev/rfdl96ds9

this will override the default device and use the one supplied with the
-m flag.

Files

/etc/base.perms
/etc/soft.perms
/etc/text.perms
/etc/perms/*

See Also

fixperm(ADM), df(C), du(C), install(ADM)

Notes

If you upgrade any part of your system, custom detects if you have a
different release and prompts you to insert the floppy volume that
updates the custom data files. Likewise, if you insert an invalid prod­
uct or a volume out of order, you will be prompted to reinsert the
correct volume.

28 March 1991 Page 4

DIAL (ADM) DIAL (ADM)

Name

dial, uuchat - Dials a modem.

Syntax
/usr/lib/uucp/dialX ttyname telno speed /usr/lib/uucp/dialX -h ttyname speed /usr/lib/uucp/uuchat ttyname speed chat-script

Description
/usr/lib/uucp/diaLX dials a modem attached to ttyname. (X is a dialer
name, such as HA1200.) The -h option is used to hang up the modem.

uucico{ADM), ct(C), and cu(C) use /usr/lib/uucp/dialX. A number
of dialer binaries are distributed (there may be differences between
XENIX-286 and XENIX-386 distributions):

Binary File Modem
dialHA12
dialHA24
dialHA96V
dialMUL
dialVA3450
dialVA96
dialTBIT

Hayes Smartmodem 1200 or compatible
Hayes Smartmodem 2400 or compatible
Hayes Smartmodem 9600 or compatible
Multitech Multimodem 224 EH
Racal Vadic 3451 modem
Racal Vadic 9600 modem
Telebit Trailblazer Modem

Source for these is provided in their respective .c files.

uucico (ADM) invokes dial, with a ttyname, telno (phone number),
and speed. dial attempts to dial the phone number on the specified
line at the given speed. When using dialHA12 or dialHA24, speed
can be a range of baud rates. The range is specified with the form:

lowrate - highrate

where lowrate is the minimum acceptable connection baud rate and
highrate is the maximum. The dial program returns the status of the
attempt through the following dial return codes:

bit 0x80 = 1
The connection attempt failed.

28 March 1991 Page 1

DIAL (ADM) DIAL (ADM)

bits OxOf =
If bit 0x80 is a 1, then these bits are the dialer error code:

0 general or unknown error code.

1 line is being used.

2 a signal has aborted the dialer.

3 dialer arguments are invalid.

4 the phone number is invalid.

5 the baud rate is invalid or the dialer could not
connect at the requested baud rate.

6 can’t open the line.

7 ioctl error on the line.

8 timeout waiting for connection.

9 no dialtone was detected.

10 unused.

11 unused.

12 unused.

13 phone is busy.

14 no carrier is detected.

15 remote system did not answer.

Error codes 12-15 are used to indicate that the problem is at the
remote end.

If bit 0x80 is a 0, then these bits are used to indicate the actual con­
nection baud rate. If 0, the baud rate is the same as the baud rate used
to dial the phone number or the highest baud rate if a range was
specified. Otherwise, these four bits are the CB AUD bits in the struct termio c_flag and the struct sgttyb sg ispeed and sg_ospeed tty ioctl
structures.

You can copy and modify one of the files /usi7lib/uucp/dialHA12.c
etc., to use a different modem. There is a makefile in /usr/lib/uucp
which should be modified for the new dialer, and can be used to com­
pile the new program.

28 March 1991 Page 2

DIAL (ADM) DIAL (ADM)

If you create a dial program for another modem, send us the source.
User generated dial programs will be considered for inclusion in
future releases.

The dial program to be used on a particular line is specified in the fifth
field of the entry for that line in /usr/lib/uucp/Devices. If there is no
dial program of that name, then uucico, ct, and cu use a built-in dialer,
together with the chat-script of that name in /usr/lib/uucp/Dialers.

dial -h is executed by getty when it is respawned on a line shared
between dial-in and dial-out. If there is no dial program, then getty
uses /usr/tib/uucp/uuchat, passing it the & chat-script from
/usr/lib/uucp/Dialers.

Files

/usr/lib/uucp/Devices
/usr/lib/uucp/dial* .c
/usr/lib/uucp/dialH A12
/usr/lib/uucp/dialHA24
/usr/lib/uucp/makefile
/usr/lib/uucp/dialTBIT
/usr/lib/uucp/uuchat

Dialer source files
Hayes Smartmodem 1200/1200B dialer
Hayes Smartmodem 2400 dialer
Makefile to compile new dialer
Telebit Trailblazer dialer

See Also

ct(C), cu(C), uucico (ADM), dialers(F), getty (M)

Notes

You must have the Development System installed in order to compile
and install a new dial program.

28 March 1991 Page 3

DIVVY (ADM) DIVVY (ADM)

Name

divvy - Disk dividing utility

Syntax

divvy -b block_device -c character_device [-v virtual_drive]
[-p physical_drive] [-i] [-m]

Description

divvy divides an/disk (ADM) partition into a number of separate areas
known as “divisions”. A division is identified by unique major and
minor device numbers and can be used for a filesystem, swap area, or
for isolating bad spots on the device.

With divvy you can:

- Divide an /disk partition into separate devices.

- Create new filesystems.

- Change the device names of filesystems.

- Change the size of filesystems.

- Remove filesystems.

Options

Options to divvy are:

-b blockdevice
Major device number of block interface.

-c character device
Major device number of character interface.

-v fdiskpartition
For dividing an fdisk partition (also known as a “virtual drive”).

-p physical drive
For dividing one of several physical disks that share the same con­
troller.

-i Disk being divided will contain a root filesystem on division 0.

-m Disk being divided should be made into a number of mountable
file systems.

28 March 1991 Page 1

DIVVY (ADM) DIVVY (ADM)

Usage
The device being divided must be a block device with a character
interface. For example, to use divvy on a device with a block-
interface major number 1 and character interface number of 1, enter:

divvy -b 1 -c 1

The -v option specifies which /disk partition (virtual drive) to divide.
The default is the active drive. Virtual drive numbers are determined
with the fdisk (ADM) utility.

The -p option allows division of one of several physical disks sharing
a controller, divvy defaults to the first physical device numbered “0.”
To access a second physical disk, use the -p 1 option.

The -i option specifies the device being divided will contain a root
filesystem. With this option, device nodes are created relative to the
new root, generally a hard disk, instead of the current root, often an
installation floppy. A root filesystem and a recover area are created.
divvy prompts for the size of the swap area. If the disk is large enough,
then divvy prompts for a separate /u (user) filesystem, divvy also
prompts for block-by-block control over the layout of the
filesystem(s). If the root filesystem is large enough to require a
scratch division, (more than 40,000 blocks) then divvy will prompt for
whether one should be created, divvy is invoked with the -i option dur­
ing XENIX installation.

The -m option is used for initial installation on devices that will not
be used as the root. It causes the user to be prompted for a number of
filesystems.

When divvy is invoked from the command line, you see a main menu:

n[ame] Name or rename a division,
c[reate] create a new filesystem on this division.
p[revent] Prevent a new filesystem from being created on this division.
s[tart] Start a division on a different block.
e[nd] End a division on a different block.
r[estore] Restore the original partition table.£ l<=£>L.u.Lej rseauu-Lt; uats uj.JLy.Lacu. pai. u j.u j.ua uc
P l e a s e e n t e r y o u r c h o ic e o r 'q ' t o q u i t :

To choose a command, enter the first letter of the command, then press
RETURN.

28 March 1991 Page 2

DIVVY (ADM) DIVVY (ADM)

The divvy division table might look something like this:

Name New File System? # First Block Last Block
root no, exists 0 0 13754
swap no, exists 1 13755 15135
u no, exists 2 15136 25135

no 3 — —
no 4 — —
no 5 — —

recover no, exists 6 25136 25145
dl057all no 7 0 25546

25146 blocks for divisions, 400 blocks reserved for the system

divvy also displays information about block allocation for system
tables and bad tracks.

If you select option ‘n\ you can change the name of the device, divvy
prompts you for the division number (from the divvy table displayed
above), then for a new name.

Option ‘c’ causes a given division to become a new, empty filesystem
when you exit from divvy. After using the ‘c’ option, you will see a
‘yes’ in the ‘New File System?’ column. If you use option ‘p,’ the
‘yes’ in the ‘New File System?’ column will change to a ‘no’, and the
contents of the division will not change.

With the ‘s’ or ‘start’ command, you can start a division on a different
block number. With the ‘e’ or ‘end’ command, you can end a division
on a different block number.

You can use these two commands to change the size of a division. For
example, if your disk is similar to the one in the sample divvy table
above, and you want to make the root filesystem larger and the swap
area smaller, do this:

1. Make the swap area smaller with the ‘s’ command.

2. Use the ‘e’ command to make the root division bigger.

Changing the size of an existing filesystem destroys any existing data
on that filesystem. Note that if any of the divisions overlap, divvy will
complain when you try to exit and put you back in the menus to
correct the situation.

The ‘r’ or ‘restore’ command restores the original partition table. This
is useful if you make a serious mistake and want to return to where
you started.

When you exit from divvy, you are prompted whether you want to
save any changes you made, or exit without saving the changes. At
this time, you can also go back to the divvy menu, and may also have

28 March 1991 Page 3

DIVVY (ADM) DIVVY (ADM)

the option to reinstall the original, default division table.

See Also
badtrk(ADM), fdisk(ADM), fsck(ADM), hd(HW), mkdev(C), mkfs(C),
mknod(C)

Notes
divvy requires kernel level support from the device driver. If divvy
lists the size of a disk as “0” blocks, or displays the following error
messages, the device may not support dividing:

cannot read division table

or:

cannot get drive parameters

These errors may also occur if the prerequisite programs /disk and
badtrk are not run correctly.

If you change the size of filesystems (such as lu) after you have
installed a XENIX filesystem, you will have to run mkfs on the filesys­
tem and reinstall the files that are kept there. This is because the free
list for that filesystem has changed. Be sure to backup the files in any
filesystem you intend to change, using backup(C), tar{C), or cpio(C),
before you run divvy . After XENIX is installed, the bounds of file root
filesystem must not be changed.

During installation, if the filesystem on division 0 (generally root)
becomes or remains large enough to require a scratch area duringfsck,
and one does not already exist, divvy prompts for whether one should
be created. (The resulting filesystem, /dev/scratch, is used by auto­
boot if it runs fsck. /dev/scratch should also be entered when fsck
prompts for a scratch file name, provided that the filesystem being
checked is not larger than the root filesystem.) If all disk divisions
have been used up, divvy will not prompt for a scratch filesystem, even
if the root filesystem is large enough to require one.

This utility uses IK blocks.

28 March 1991 Page 4

DMESG (ADM) DMESG (ADM)

Name

dmesg - Displays the system messages on the console.

Syntax

dmesg [-]

Description

The dmesg command displays all the system messages that have been
generated since the last time the system was booted. If the option —
is specified, it displays only those messages that have been generated
since the last time the dmesg command was performed.

dmesg can be invoked periodically by placing instructions in the file
/usr/lib/crontab . It can also be invoked automatically by /etc/rc
whenever the system is booted. See “Notes”, below.

dmesg logs all error messages it prints in /usr/adm/messages. If
dmesg is invoked automatically, the messages file continues to grow
and can become very large. The system administrator should occa­
sionally erase its contents.

Files

/etc/dmesg
/usr/adm/messages
/usr/adm/msgbuf

Notes

dmesg is included in this release for backwards compatibility only.
The device /dev/error provides a more flexible means of logging error
messages, and is recommended over dmesg. See error(M) for more
information.

See Also

cron(C), error(M), messages(M)

28 March 1991 Page 1

DPARAM (ADM) DPARAM (ADM)

Name
dparam - Displays/changes hard disk characteristics.

Syntax
dparam [-w]dparam /dev/rhd[OI 1]0 [characteristics]

Description
The dparam command displays or changes the hard disk characteris­
tics currently in effect. These changes go into effect immediately and
are also written to the master boot block for subsequent boots. If a
non-standard hard disk is used, this utility must be called before
accessing the drive.

The -w option causes a copy of /etc/masterboot to be copied to disk to
ensure that non-standard hard disks are supported for the specified
drive. This call must precede a call to write non-standard disk param­
eters for the desired parameters to be saved correctly in the master-
boot block.

When called without options or disk characteristics, dparam prints the
current disk characteristics (on the standard output) for the specified
hard disk. These values are printed in the same order as the argument
list.

When writing characteristics for the specified hard disk, dparam
changes the current disk controller status and updates the masterboot
block. The argument ordering is critical and must be entered as speci­
fied below. All characteristics must be entered when writing disk
characteristics, otherwise an error is returned. Hard disk characteris­
tics (in respective order) are:

number of cylinders

number of heads
reduced write current cylinder

write precompensation cylinder

total number of
cylinders on the hard
disk
number of heads
hardware specific, con­
sult your hardware
manual
hardware specific, con­
sult your hardware
manual

28 March 1991 Page 1

DPARAM (ADM)

ecc

control

landing zone cylinder

number of sectors per track

DPARAM (ADM)

number of bits of error
correction on I/O
transfers, consult your
hardware manual
very hardware specific,
consult your hardware
manual
where to park heads
after shutting down the
system
number of sectors per
track on the hard disk

Examples
dparam -w

dparam /dev/rhdlO

dparam /dev/rhdOO 700 4 256 180 5 0 640 17

Notes
This utility changes the kernel’s view of the hard disk parameters. It
may be subject to restrictions imposed by the hardware configuration.

dparam is called automatically during XENIX installation and by
mkdev hd.

28 March 1991 Page 2

DUMPDIR (ADM) DUMPDIR (ADM)

Name

dumpdir - Prints the names of files on a backup archive.

Syntax

dumpdir [f filename]

Description

dumpdir is used to list the names and inode numbers of all files and
directories on an archive written with the backup command. This is
most useful when attempting to determine the location of a particular
file in a set of backup archives.

The f option causes filename to be used as the name of the backup de­
vice instead of the default. The default backup device depends on the
setting of the variable TAPE in the file /etc/default/dumpdir. The de­
vice specified as TAPE can be any type of backup device supported by
the system (for example, a floppy drive or cartridge tape drive).

Files

/tmp/rst*
/etc/default/dumpdir

Temporary files
Default backup device

See Also

backup(ADM), restore(ADM), default(F)

28 March 1991 Page 1

FDISK (ADM) FDISK (ADM)

Name

fdisk - Maintain disk partitions.

Syntax

fdisk [[-p] [-ad partition] [-c partition start size] [-f devicename]]

Description

fdisk displays information about disk partitions, fdisk also creates and
deletes disk partitions and changes the active partition, fdisk func­
tionality is a superset of the MS-DOS command of the same name.
fdisk is usually used interactively from a menu.

The hard disk has at most four partitions. Only one partition is active
at any given time. It is possible to assign a different operating system
to each partition. Once a partition is made active, the operating sys­
tem resident in that partition boots automatically once the current op­
erating system is halted.

To use XENIX, at least one partition must be assigned to XENIX.

The fdisk utility does not allocate the first track or the last cylinder on
the hard disk when the “Use Entire Disk for XENIX” option is used.
The first track on the hard disk is reserved for masterboot and the last
cylinder is generally used when running hard disk diagnostics. You
should not allocate the last cylinder if you plan to run diagnostics on
your hard disk.

For example, if a disk has 2442 tracks, fdisk reports these as tracks 0-
2441. If your hard disk has 4 heads, fdisk will assign (using the “Use
Entire Disk for XENIX” option) tracks 1-2437. (Track 0 is reserved
for masterboot.) The last cylinder (tracks 2438-2441) is not assigned
with the “Use Entire Disk for XENIX” option.

Partitions are defined by a “partition table” at the end of the master
boot block. The partition table provides the location and size of the
partitions on the disk. The partition table also defines the active parti­
tion. Each partition can be assigned to XENIX, DOS, or some other
operating system. Once a DOS partition is set up, DOS files and
directories resident in the DOS partition may be accessed while run­
ning XENIX by means of the dos(C) commands. DOS may be booted
without the DOS partition being active via the “boot:dos” command.
See boot(HW).

Arguments

28 March 1991 Page 1

FDISK (ADM) FDISK (ADM)

-p, -a, -d, -c
These flags are used to invoke /disk non-interactively:

-p prints out the disk partition table.
-a number activates the specified partition number.
-d number deletes the specified partition number.
-c number start size creates partition with specified start and size.

-f name
Open device name and read the partition table associated with that
device’s partition. The default is /dev/rhdOO.

Options

The fdisk command displays a prompt and a menu of five options.
Updates to the disk are not made until you enter “q” from the main
menu.

1. Display Partition Table.
This option displays a table of information about each partition on
the hard disk. The PARTITION column gives the partition num­
ber. The STATUS column tells whether the partition is active (A)
or inactive (I). TYPE tells whether the partition is XENIX, DOS,
or “other”. The option also displays file starting track, ending
track and total number of tracks in each partition.

2. Use Entire Disk for XENIX.
fdisk creates one partition that includes all the tracks on the disk,
except the first track and the last cylinder. This partition is
assigned to XENIX and is designated the active partition.

3. Create XENIX Partition
This option allows the creation of a partition by altering the parti­
tion table, fdisk reports the number of tracks available for each
partition and the number of tracks in use. fdisk prompts for the
partition to create, the starting track and size in tracks. The change
is written to the operating system and the hard disk when you enter
“q” from the main menu.

4. Activate Partition
This option activates the specified partition. Only one partition
may be active at a time. The change is not effective until you exit.
The operating system residing in the newly activated partition
boots once the current operating system is halted.

5. Delete Partition
This option requests which partition you wish to delete, fdisk
reports the new available amount of disk space in tracks. The
change is not effective until you exit.

28 March 1991 Page 2

FDISK (ADM) FDISK (ADM)

Exit the /disk program by typing a ‘q’ at the main /disk menu. Your
changes are now written to the operating system and the hard disk.

Notes

The minimum recommended size for a XENIX partition is 5 mega­
bytes.

Since /disk is intended for use with DOS, it may not work with all op­
erating system combinations.

See also

dos(C), hd(HW).

28 March 1991 Page 3

FDSWAP (ADM) FDSWAP (ADM)

Name

fdswap - Swaps default boot floppy drive.

Syntax

fdswap [onl off]

Description

fdswap tells the CMOS to swap the default floppy drive used to read
boot information at boot time. For example, if your computer defaults
to read boot information on drive A, fdswap on changes the default
drive to drive B.

fdswap with no arguments reports the current fdswap state, on or off.
fdswap off switches the drive setting back to the default configura­
tion. Changing the drives takes effect on the next boot of the system.

Notes

This utility is only included on
XENIX-386 distributions.

Support for this functionality is only available on a small number of
machines. The ROMs must recognize and interpret the CMOS flag
that specifies that the floppy drives are swapped.

28 March 1991 Page 1

FIXPERM (ADM) FIXPERM (ADM)

Name

fixperm - Correct or initialize file permissions and ownership.

Syntax

fixperm [-cfgilnsvwDS [-d package]] specfile

Description

For each line in the specification file specfile, fixperm makes the
listed pathname conform to a specification, fixperm is typically used
to configure a XENIX system upon installation.

The specification file has the following format: Each non-blank line
consists of either a comment or an item specification. A comment is
any text from a pound sign “#” up to the end of the line. There is one
item specification per line. User and group id numbers must be speci­
fied at the top of the specification file for each user and group men­
tioned in the file. The syntax for the definition section is simple: the
first field indicates the type of id (either uid or gid), the second con­
tains the name reference for the id, and the third is die corresponding
numeric id. Example:

uid root 0

An item specification consists of a package specifier, a permission
specification, owner and group specifications, die number of links on
the file, the file name, and an optional volume number.

The package specifier is an arbitrary string which is the name of a
package within a distribution set. A package is a set of files.

After the package specifier is a permission specification. The permis­
sion specification consists of a file type, followed by a numeric per­
mission specification. The item specification is one of the following
characters:

x Executable.

a Archive.

e Empty file (create if -c option given),

b Block device,

c Character device.

28 March 1991 Page 1

FIXPERM (ADM) FIXPERM (ADM)

d Directory.

f Text file.

P Named pipe,

If the item specification is used as an upper-case letter, then the file
associated with it is optional, and fixperm will not return an error mes­
sage if it does not exist.

The numeric permission conforms to the scheme described in
chmodiC). The owner and group are in the third column separated by
a slash: e.g.,: “bin/bin”. The fourth column indicates the number of
links. If there are links to the file, the next line contains the linked
filename with no other information. The fifth column is a pathname.
The pathname must be relative, i.e., not preceded by a slash The
sixth column is only used for special files, giving the major and minor
device numbers, or volume numbers.

Options
The following options are available from the command line:

-c Create empty files and missing directories. Also creates (or
modifies) device files.

-g Instructs fixperm to list devices as specified in the permlist (similar
to the -f flag, which lists files on standard output). No changes are
made as a result of this flag.

-d package
Process input lines beginning with given package specifier string
(see above). For instance, -dBASE processes only items specified
as belonging to the Basic utilities set. The default action is to pro­
cess all lines.

-u package
Like -d, but processes items that are not part of the given package.

-f List files only on standard output. Does not modify target files.

-i Check only if the selected packages are installed. Return values
are:

0: package completely installed
3: package not found
4: package not installed
5: package partially installed

28 March 1991 Page 2

FIXPERM (ADM) FIXPERM (ADM)

-1 List files and directories on standard output. Does not modify tar­
get files.

-n Report errors only. Does not modify target files.

-D List directories only on standard output. Does not modify target
files.

-v Verbose, in particular, issues a complaint if executable files are
word swapped, not fixed stack, not separate I and D, or not
stripped.

-s Modify special device files in addition to the rest of the permlist.

-w Lists where (what volume) the specified files or directories are
located.

-S Issues a complaint if files are not in x.out format.

The following two lines make a distribution and invoke tar(C) to
archive only die files in /etc/perms/inst on /dev/sample:

/etc/fixperm -f /etc/perms/inst > list
tar cfF /dev/sample list

This example reports BASE package errors:

/etc/fixperm -nd BASE

Notes

Usually fixperm is only run by a shell script at installation.

See Also

custom (ADM)

28 March 1991 Page 3

FSAVE (ADM) FSAVE (ADM)

Name
fsave - Interactive, error-checking filesystem backup

Synopsis
fsave filesystem [dumpinfo] [mediainfo] [sitename]

Description
fsave is used by fsphoto (ADM) to provide a semi-automated interface
to backup (ADM) for backing-up XENIX filesystems. Human inter­
vention is required to mount and dismount tapes or floppies at the
appropriate times, but is kept to a minimum to reduce the potential for
error.

The operator is prompted each time some action is required, such as
mounting or unmounting a tape or floppy. These prompts, and their
possible selections, are described below.

For all prompts, an answer of h, H, or ? will display a short summary
of the possible answers.

Filesystem dump (backup)
The following prompt displays the defaults (gleaned from the sched­
ule database file) and presents options to alter them:

Level dumplevel dump of filesystem filesystem, date
media size: size feet [or Kb]
media drive: drive

This media will be saved for howlong, and is howvital.

M)ounted volume, P)ostpone, C)heck or F)ormat volumes, R)
Retension or H)elp:

The values displayed dictate the following instructions: filesystem is
to be backed-up using size-foot long magtapes (or size -kilobyte big
floppies) mounted on drive drive. The media will be saved for how-
long (“ 1 year,” “2 months,” etc.), and being a level dumplevel dump,
is howvital (“critical,” “precautionary,” etc.).

The menu options are:

m A volume of the asked for size has been mounted (write-
enabled), so begin the dump.

mnewsize Insufficient volumes of the originally asked for size are
available, so a newsize big volume has been mounted
instead. If the dump extends across more than one volume,

28 March 1991 Page 1

FSAVE (ADM) FSAVE (ADM)

each volume must be of the same size.
p Postpone this backup until later (fsphoto will automatically

retry this filesystem next time it is run).

c Recheck the volumes used to backup filesystem for errors.
This answer is useful when a dump mysteriously fails and
/save is starting over from the beginning, but the operator
doesn’t believe there really is a problem (for example, the
tape drive was accidentally left offline or the floppy door
was left open), and wants to check the volumes again.

f Format the currently mounted volume (useful mainly for
floppies).

r Retension cartridge tape using /usr/bin/tape.

If multiple volumes are required, backup will pause for the next vol­
ume to be mounted. Be certain to keep track of the volume order.

Format check
The format of “critical” volumes are checked using dumpdir(ADM):

Check vital volumes for format errors
M)ounted first volume, S)kip format check, or H)elp:

The menu options are:

m The first volume has been (or still is) mounted, and dump-
dir can now check the volume format.

s Skip checking the volume format, and continue on to the
read error check (below).

The format is not always checked, but when it is, the first volume writ­
ten must be mounted.

Read error check
All volumes are read using restore (ADM), which checks for errors
during reading. If an error occurs, the dump is declared unsuccessful
and is retried from the beginning.

Check vital volumes for read errors
M)ounted which volume, E)rror on previous volume, D)one, S)kip
checks, or H)elp:

The menu options are:

28 March 1991 Page 2

FSAVE (ADM) FSAVE (ADM)

m The which (“first” or “next”) volume has been mounted on
the drive and is ready to be checked for read errors.

e An error occurred on the last volume checked, and the
dump should be retried.

d All volumes have been checked and no errors occurred, so
the filesystem has been successfully backed-up; This
backup is done.

s Don’t bother (skip) checking the rest of the volumes for
read errors.

Every volume should be checked for read errors; restore requires the
volumes to be checked in first-to-last order. Volumes that produce
read errors should be marked “ suspect,” discarded and the dump run
once again.

After the backup has been successfully performed, instructions are
given on how to label the volumes.

Arguments

fsave is normally run by fsphoto, which passes all the proper argu­
ments based on the schedule (ADM) database.

filesystem
The filesystem to be backed-up.

dumpinfo
A set of blank-separated strings that give some optional informa­
tion about this backup:

dumplevel size savetime importance marker

Each of these component strings may be quoted and can thus con­
tain spaces.

dumplevel The level of the dump to be performed. This is a single
digit from 0 to 9 (passed to dump), or the letter x (which
means no dump is to be done). The default is to per­
form a level 0 dump.

size The size of the media volumes that should be used.
This should be in feet for tapes and kilobytes for
floppies. A size of - means to use the first size listed in
mediainfo. This is the default.

savetime How long this backup is to be saved (for example, “3
months”). Default is “ 1 year.”

28 March 1991 Page 3

FSAVE (ADM) FSAVE (ADM)

importance
How important is this backup? (For example, “critical’ ’
or “precautionary.”) Those which are “critical” have
their format checked by dumpdir. Default is “ impor­
tant.”

marker Either “none” (the default) or an additional label to
place on each volume (for example, “a pink sticker”).

A typical dumpinfo might look like:

9 1200 "2 weeks" useful "a blue X"

which specifies that a level 9 dump is to be done on a 1200 foot
tape (or 1200 kilobyte floppy) which will be saved for 2 weeks and
is to be marked with a blue cross (in addition to a more descriptive
label). This backup is merely considered “useful” and thus will
not be checked by dumpdir.

mediainfo
A set of blank-separated strings that give some optional informa­
tion about this the media to be used:

drive d density sizes... [format]
drive k sizes... [format]

drive The name of backup device to use. The default is
/dev/rmtO.

k sizes... If k is specified, drive is assumed to be a floppy, and
the list of sizes which follow define the allowable
capacities of the floppies that can be used (in kilo­
bytes).

d density sizes...
Otherwise, d must be specified. In this case, drive is
assumed to be a magtape at density BPI, in one of
the possible sizes (in feet).

format The XENIX command used to format the tape or
floppy so described.

A mediainfo describing 9-track magtape would be:

media /dev/rmtO d 1600 2400 1200 600
media /dev/rmt2 d 800 1400 1200 600

which specifies that idev/rmtO is a 1600 BPI magtape capable of
handling 2400, 1200, and 600 foot reels, and that /dev/rmt2 is the
800 BPI device.

28 March 1991 Page 4

FSAVE (ADM) FSAVE (ADM)

A floppy might be described with:

media /dev/fdO k 1024 format /dev/fdO

which describes device /dev/fdO as a megabyte (1024 kilobytes)
floppy formatted by the command:

format /dev/fdO

sitename
Where this backup was made (for example, the name of the com­
pany or which building). Note that the uucp(C) nodename from
letc/systemid is automatically placed on the volume labels.

Only the super-user can execute the/save command.

Files

/etc/systemid
Name of this machine.

/etc/ddate
Damp-maintained record of last time each filesystem was backed-
up.

/dev/tty
Always-existent character-special device.

See Also

fsphoto(ADM), schedule(ADM), backup(ADM), dumpdir(ADM),
restore(ADM), basename(C)

Diagnostics

A successful backup exits successfully (0), but errors generate a com­
plaint and an exit status of 1. fsave complains about illegal or
incorrect arguments, and exits with a status of 2.

If the backup of filesystem is postponed, fsave exits with a status of 3.

28 March 1991 Page 5

FSCK (ADM) FSCK (ADM)

Name
fsck - Checks and repairs filesystems.

Syntax

/bin/fsck [options] [filesystem]...

Description

fsck audits and interactively repairs inconsistent conditions for XENIX
System V filesystems. If the filesystem is consistent, the number of
files, the number of blocks used, and the number of blocks free are
reported. If the filesystem is inconsistent, the operator is prompted for
concurrence before each correction is attempted. It should be noted
that most corrective actions result in some loss of data. The amount
and severity of the loss may be determined from the diagnostic output.
(An experienced operator can resolve discrepancies manually using
fsdb(ADM), the filesystem debugger.) The default action for each
consistency correction is to wait for the operator to respond “yes” or
“no”. If the operator does not have write permission fsck defaults to
the action of the -n option.

The following flags are interpreted by fsck:

-y Assumes a yes response to all questions asked by fsck.

-n Assumes a no response to all questions asked by fsck; do not
open the filesystem for writing.

-s cylinder.gapsize
Ignore the actual free list and (unconditionally) reconstruct a
new one by rewriting the super block of the file system. The
filesystem must be unmounted while this is done; if this is not
possible, care should be taken that the system is quiescent and
that it is rebooted immediately afterwards. This precaution is
necessary so that the old, bad, in-core copy of the super block
will not continue to be used, or written on the file system. If
cylinder.gapsize is not given, the values used when the file
system was created are used.

-S Conditionally reconstructs the free list. This option is like -
scylinder.gapsize above except that the free list is rebuilt only
if there are no discrepancies discovered in the filesystem.
Using -S forces a “no” response to all questions asked by fsck.
This option is useful for forcing free list reorganization on
uncontaminated filesystems.

28 March 1991 Page 1

FSCK (ADM) FSCK (ADM)

-t I ff sek cannot obtain enough memory to keep its tables, it uses
a scratch file. If the -t option is specified, the file named in the
next argument is used as the scratch file, if needed. Make cer­
tain you leave a space between the -t and the filename, or fsck
will use the entire filesystem as a scratch file and erase the
entire disk. If you created a scratch filesystem during installa­
tion then you can use /dev/scratch as the filename, provided
that the filesystem being checked is no larger than the root
filesystem. Without the -t flag, fsck prompts the operator for
the name of the scratch file. The file chosen should not be on
the filesystem being checked, and if it is not a special file or
did not already exist, it is removed when fsck completes. If the
system has a large hard disk there may not be enough space on
another filesystem for the scratch file. In such cases, if the sys­
tem has a floppy drive, use a blank, formatted floppy in the
floppy drive with (for example) /dev/fdO specified as the
scratch file.

-q Quiet fsck. Do not print size-check messages in Phase 1.
Unreferenced FIFO files will selectively be removed. II fsck
requires it, counts in the superblock will be automatically fixed
and the free list salvaged.

-D Directories are checked for bad blocks. Useful after system
crashes.

-f Fast check. Check block and sizes (Phase 1) and check the
free list (Phase 5). The free list will be reconstructed (Phase 6)
if it is necessary.

-rr Recovers and remounts the root filesystem. The required
filesystem argument must refer to the root filesystem, and
preferably to the block device (normally /dev/root). This
switch implies -y and overrides -n.

-c Causes any supported filesystem to be converted to the type of
the current filesystem. The user is prompted to verify the
request for each filesystem that requires conversion unless the
-y option is specified. It is recommended that every filesystem
be checked with this option while unmounted if it is to be used
with the current version of XENIX. To update the active root
filesystem, it should be checked with:

fsck -c -rr /dev/root

If no filesystems are specified, fsck reads a list of default filesystems
from the file /etc/checklist.

28 March 1991 Page 2

FSCK (ADM) FSCK (ADM)

Inconsistencies checked are as follows:

Blocks claimed by more than one inode or the free list

Blocks claimed by an inode or the free list outside the range of
the filesystem

Incorrect link counts

Size checks:
Incorrect number of blocks
Directory size not 16-byte aligned

Bad inode format

Blocks not accounted for anywhere

Directory checks:
File pointing to unallocated inode
Inode number out of range

Super block checks:
More than 65536 inodes
More blocks for inodes than there are in the filesystem

Bad free block list format

Total free block or free inode count incorrect

Orphaned files and directories (allocated but unreferenced) are, with
the operator’s concurrence, reconnected by placing them in the lost+found directory. The name assigned is the inode number. The
only restriction is that the directory lost+found must preexist in the
root of the filesystem being checked and must have empty slots in
which entries can be made. This is accomplished by making lost+found, copying a number of files to the directory, and then
removing them (before/sc& is executed).

Files
/etc/checklist Contains default list of filesystems to check
/etc/default/boot Automatic boot control

See Also
autoboot(ADM), fsdb(ADM), checklist(F), filesystem(F), init(M)

28 March 1991 Page 3

FSCK (ADM) FSCK (ADM)

Notes

fsck will not ran on a mounted non-raw filesystem unless the filesys­
tem is the root filesystem or unless the -n option is specified and no
writing out of the filesystem will take place. If any such attempt is
made, a warning is displayed and no further processing of the filesys­
tem is done for Sie specified device.

Although checking a raw device is almost always faster, there is no
way to tell if the filesystem is mounted. And cleaning a mounted
filesystem will almost certainly result in an inconsistent superblock.

Warning

File systems created under XENIX-86 version 3.0 are not supported
under XENIX System V because the word ordering in type long vari­
ables has changed, fsck is capable of auditing and repairing XENIX
version 3.0 file systems if the word ordering is correct.

For the root filesystem, “fsck -rr /dev/root” should be ran. For all
other filesystems, “fsck /dev/??” on the unmounted block device
should be used.

Diagnostics

Initialization Phase

Command syntax is checked. Before the filesystem check can be per­
formed, fsck sets up certain tables and opens some files. The fsck ter­
minates on initialization errors.

General Errors

Three error messages may appear in any phase. While they seem to
offer the option to continue, it is generally best to regard them as fatal,
end the ran, and investigate what may have caused the problem.

CAN NOT SEEK: BLK B (CONTINUE?)
The request to move to a specified block number B in the
filesystem failed. The occurrence of this error condition
indicates a serious problem (probably a hardware failure)
that may require additional help.

CAN NOT READ: BLK B (CONTINUE?)
The request for reading a specified block number B in the
filesystem failed. The occurrence of this error condition
indicates a serious problem (probably a hardware failure)
that may require additional help.

28 March 1991 Page 4

FSCK(ADM) FSCK (ADM)

CAN NOT WRITE: BLK B (CONTINUE?)
The request for writing a specified block number B in the
filesystem failed. The disk may be write-protected.

Meaning of Yes/No Responses

Prompt n(no) y(yes)

CONTINUE? Terminates program.
(This is the recom­
mended response.)

Attempts to continue to
run filesystem check.
Often, however, the
problem persists. The
error condition does not
allow a complete check
of the filesystem. A
second run of fsck
should be made to
recheck this filesystem.

Phase 1: Check Blocks and Sizes

This phase checks the inode list.

Meaning of Yes/No Responses—Phase 1

Prompt n(no) y(yes)
CONTINUE? Terminates the pro­

gram.
(Recommended
response.)

Continues with the pro­
gram.
This error condition
means that a complete
check of the filesystem
is not possible. A
second run of fsck
should be made to
recheck this filesystem.

CLEAR? Ignores the error condi­
tion.
A NO response is only
appropriate if the user
intends to take other
measures to fix the
problem.

Deallocates i-node I by
zeroing its contents.
This may invoke the
UNALLOCATED error
condition in Phase 2 for
each directory entry
pointing to this i-node.

Phase 1 Error Messages

UNKNOWN FILE TYPE 1=1 (CLEAR?)

28 March 1991 Page 5

FSCK (ADM) FSCK (ADM)

The mode word of the i-node I suggests that the i-node is not
a pipe, special character i-node, regular i-node, or directory
i-node.

LINK COUNT TABLE OVERFLOW (CONTINUE?)
An internal table for fsck containing allocated i-nodes with a
link count of zero has no more room.

B BAD 1=1
I-node I contains block number B with a number lower than
the number of the first data block in the filesystem or greater
than the number of the last block in the filesystem. This
error condition may invoke the EXCESSIVE BAD BLKS
error condition in Phase 1 if i-node I has too many block
numbers outside the filesystem range. This error condition
invokes the BAD/DUP error condition in Phase 2 and Phase
4.

EXCESSIVE BAD BLOCKS 1=1 (CONTINUE?)
There is more than a tolerable number (usually 10) of blocks
with a number lower than the number of the first data block
in the filesystem or greater than the number of the last block
in the filesystem associated with i-node /.

B DUP 1=1
I-node I contains block number £, which is already claimed
by another i-node. This error condition may invoke the
EXCESSIVE DUP BLKS error condition in Phase 1 if
i-node / has too many block numbers claimed by other
i-nodes. This error condition invokes Phase IB and the
BAD/DUP error condition in Phase 2 and Phase 4.

EXCESSIVE DUP BLKS 1=1 (CONTINUE?)
There is more than a tolerable number (usually 10) of blocks
claimed by other i-nodes.

DUP TABLE OVERFLOW (CONTINUE?)
An internal table in fsck containing duplicate block numbers
has no more room.

POSSIBLE FILE SIZE ERROR 1=1
The i-node I size does not match the actual number of blocks
used by the i-node. This is only a warning. If the -q option
is used, this message is not printed.

DIRECTORY MISALIGNED 1=1
The size of a directory i-node is not a multiple of 16. This is
only a warning. If the -q option is used, this message is not
printed.

28 March 1991 Page 6

FSCK(ADM) FSCK (ADM)

PARTIALLY ALLOCATED INODE 1=1 (CLEAR?)
I-node I is neither allocated nor unallocated.

Phase IB: Rescan for More DUPS

When a duplicate block is found in the filesystem, the filesystem is
rescanned to find the i-node that previously claimed that block. When
the duplicate block is found, the following information message is
printed:

B DUP 1=1
I-node I contains block number B , which is already claimed
by another i-node. This error condition invokes the
BAD/DUP error condition in Phase 2. I-nodes with overlap­
ping blocks may be determined by examining this error con­
dition and the DUP error condition in Phase 1.

Phase 2: Check Path Names

This phase removes directory entires pointing to bad inodes found in
Phase 1 and phase IB.

Meaning of Yes/No Responses—Phase 2

Prompt it (no) y(yes)

FIX? Terminates the program
since fsck will be
unable to continue.

In Phase 2, a y(yes)
response to the FIX?
prompt says: Change
the root i-node type to
“directory.”
If the root i-node data
blocks are not directory
blocks, a very large
number of error condi­
tions are produced.

(Continued)

28 March 1991 Page 7

FSCK (ADM) FSCK (ADM)

Prompt n(no) y(yes)

CONTINUE? Terminates the pro­
gram.

Ignores DUPS/BAD
error condition in root
i-node and attempt to
continue to run the
filesystem check.
If root i-node is not
correct, then this may
result in a large number
of other error condi­
tions.

REMOVE? Ignores the error condi­
tion.
A NO response is only
appropriate if the user
intends to take other
measures to fix the
problem.

Removes duplicate or
unallocated blocks.

Phase 2 Error Messages

ROOT INODE UNALLOCATED. TERMINATING
The root i-node (always i-node number 2) has no allocate
mode bits. The occurrence of this error condition indicates a
serious problem. The program stops.

ROOT INODE NOT DIRECTORY (FIX?)
The root i-node (usually i-node number 2) is not directory
i-node type.

DUPS/BAD IN ROOT INODE (CONTINUE?)
Phase 1 or Phase IB found duplicate blocks or bad blocks in
the root i-node (usually i-node number 2) for the filesystem.

I OUT OF RANGE 1=1 NAME=F (REMOVE?)
A directory entry F has an i-node number I that is greater
than the end of the i-node list.

UNALLOCATED 1=1 0WNER=0 MODE=M SIZE=S
MTIME=T NAME=F (REMOVE?)

A directory entry F has an i-node / without allocate mode
bits. The owner O, mode M, size S9 modify time T, and
filename F are printed. If the filesystem is not mounted and
the -n option was not specified, the entry is removed auto­
matically if the i-node it points to is character size 0.

DUP/BAD 1=1 0WNER=0 MODE=M SIZE=S MTIME=T

28 March 1991 Page 8

FSCK (ADM) FSCK (ADM)

DIR=F (REMOVE?)
Phase 1 or Phase IB found duplicate blocks or bad blocks
associated with directory entry F, directory i-node /. The
owner O, mode Af, size S, modify time 7, and directory name
F are printed.

DUP/BAD 1=1 0WNER=0 MODE=M SIZE=S MTIME=T
FILE=F (REMOVE?)

Phase 1 or Phase IB found duplicate blocks or bad blocks
associated with file entry F, i-node /. The owner 0 , mode M,
size S, modify time 7, and filename F are printed.

BAD BLK B IN DIR 1=1 0WNER=0 MODE=M SIZE=S
MTIME=T

This message only occurs when the -D option is used. A bad
block was found in DIR i-node /. Error conditions looked
for in directory blocks are nonzero padded entries, incon­
sistent and entries, and embedded slashes in the
name field. This error message means that the user should at
a later time either remove the directory i-node if the entire
block looks bad or change (or remove) those directory
entries that look bad.

Phase 3: Check Connectivity

This phase is concerned with the directory connectivity seen in Phase

Meaning of Yes/No Responses—Phase 3

Prompt it (no) y(yes)

RECONNECT? Ignores the error condi­
tion.
This invokes the
UNREF error condition
in Phase 4.
A NO response is only
appropriate if the user
intends to take other
measures to fix the
problem.

Reconnects directory
i-node I to the filesys­
tem in directory for lost
files (usually
lost+found).
This may invoke a
lost+found error condi­
tion if there are prob­
lems connecting direc­
tory i-node I to
lost+found.
This invokes CON­
NECTED information
message if link was
successful.

28 March 1991 Page 9

FSCK (ADM) FSCK (ADM)

Phase 3 Error Messages

UNREF DIR 1=1 0WNER=0 MODE=M SIZE=S MTIME=T
(RECONNECT?)

The directory i-node / was not connected to a directory entry
when the filesystem was traversed. The owner O, mode M,
size S, and modify time T of directory i-node I are printed.
The fsck program forces the reconnection of a nonempty
directory.

SORRY. NO lost+found DIRECTORY
There is no lost+found directory in the root directory of the
filesystem; fsck ignores the request to link a directory in
lost+found. This invokes the UNREF error condition in
Phase 4. Possible problem with access modes of lost+found.

SORRY. NO SPACE IN lost+found DIRECTORY
There is no space to add another entry to the lost+found
directory in the root directory of the filesystem; fsck ignores
the request to link a directory in lost+found. This invokes
the UNREF error condition in Phase 4. Clean out unneces­
sary entries in lost+found or make lost+found larger.

DIR 1=11 CONNECTED. PARENT WAS 1=12
This is an advisory message indicating a directory i-node II
was successfully connected to the lost+found directory. The
parent i-node 12 of the directory i-node II is replaced by the
i-node number of the lost+found directory.

28 March 1991 Page 10

FSCK (ADM) FSCK (ADM)

Phase 4: Check Reference Counts

This phase checks the link count information seen in Phases 2 and
3.

Meaning of Yes/No Responses—Phase 4

Prompt n(no) y(yes)

RECONNECT? Ignores this error con­
dition.
This invokes a CLEAR
error condition later in
Phase 4.

Reconnect i-node I to
filesystem in the direc­
tory for lost files (usu­
ally lost+found).
This can cause a
lost+found error condi­
tion in this phase if
there are problems con­
necting i-node I to
lost+found.

CLEAR? Ignores the error condi­
tion.
A NO response is only
appropriate if the user
intends to take other
measures to fix the
problem.

Deallocates the i-node
by zeroing its contents.

ADJUST? Ignores the error condi­
tion.
A NO response is only
appropriate if the user
intends to take other
measures to fix the
problem.

Replaces link count of
file i-node I with Y.

FDC? Ignores the error condi­
tion.
A NO response is only
appropriate if the user
intends to take other
measures to fix the
problem.

Replaces count in
super-block by actual
count.

Phase 4 Error Messages

UNREF FILE 1=1 0WNER=0 MODE=M SIZE=S MTIME=T
(RECONNECT?)

I-node I was not connected to a directory entry when the
filesystem was traversed. The owner O, mode Af, size 5, and

28 March 1991 Page 11

FSCK (ADM) FSCK (ADM)

modify time T of i-node I are printed. If the -n option is
omitted and the filesystem is not mounted, empty files are
cleared automatically. Nonempty files are not cleared.

SORRY. NO lost+found DIRECTORY
There is no lost+found directory in the root directory of the
filesystem; fsck ignores the request to link a file in
lost+found. This invokes the CLEAR error condition later
in Phase 4. Possible problem with access modes of
lost+found.

SORRY. NO SPACE IN lost+found DIRECTORY
There is no space to add another entry to the lost+found
directory in the root directory of the filesystem; fsck ignores
the request to link a file in lost+found. This invokes the
CLEAR error condition later in Phase 4. Check size and
contents of lost+found.

(CLEAR)
The i-node mentioned in the immediately previous UNREF
error condition cannot be reconnected.

LINK COUNT FILE 1=1 0WNER=0 MODE=M SIZE=S
MTIME=T COUNT=X SHOULD BE Y (ADJUST?)

The link count for i-node /, which is a file, is X but should be
Y. The owner 0, mode M, size S, and modify time T are
printed.

LINK COUNT DIR 1=1 0WNER=0 MODE=M SIZE=S
MTIME=T COUNT=X SHOULD BE Y (ADJUST?)

The link count for i-node /, which is a directory, is X but
should be Y. The owner 0 , mode M, size 5, and modify time
T of directory i-node I are printed.

LINK COUNT F 1=10WNER=0 MODE=M SIZE=S MTIME=T
COUNT=X SHOULD BE Y (ADJUST?)

The link count for F i-node I is X but should be Y. The
filename F, owner 0, mode M, size S, and modify time T are
printed.

UNREF FILE 1=1 0WNER=0 MODE=M SIZE=S MTIME=T
(CLEAR?)

I-node /, which is a file, was not connected to a directory
entry when the filesystem was traversed. The owner 0,
mode M, size 5, and modify time T of i-node / are printed. If
the -n option is omitted and the filesystem is not mounted,
empty files are cleared automatically. Nonempty files are
not cleared.

28 March 1991 Page 12

FSCK (ADM) FSCK(ADM)

UNREF DIR 1=1 0WNER=0 MODE=M SIZE=S MTIME=T
(CLEAR?)

I-node /, which is a directory, was not connected to a direc­
tory entry when the filesystem was traversed. The owner 0,
mode Af, size 5, and modify time T of i-node I are printed. If
the -n option is omitted and the filesystem is not mounted,
empty directories are cleared automatically. Nonempty
directories are not cleared.

BAD/DUP FILE 1=1 0WNER=0 MODE=M SIZE=S MTIME=T
(CLEAR?)

Phase 1 or Phase IB found duplicate blocks or bad blocks
associated with file i-node /. The owner 0 , mode Af, size S,
and modify time T of i-node I are printed.

BAD/DUP DIR 1=1 0WNER=0 MODE=M SIZE=S MTIME=T
(CLEAR?)

Phase 1 or Phase IB found duplicate blocks or bad blocks
associated with directory i-node /. The owner 0, mode Af,
size 5, and modify time T of i-node I are printed.

FREE INODE COUNT WRONG IN SUPERBLK (FIX?)
The actual count of the free i-nodes does not match the
count in the super-block of the filesystem. If the -q option is
specified, the count will be fixed automatically in the super­
block.

Phase 5: Check Free List

This phase checks the free-block list.

Meaning of Yes/No Responses—Phase 5

Prompt n(no) y(yes)

CONTINUE? Terminates the pro­
gram.

Ignores rest of the
free-block list and con­
tinue execution offscL
This error condition
will always invoke
BAD BLKS IN FREE
LIST error condition
later in Phase 5.

(Continued)

28 March 1991 Page 13

FSCK(ADM) FSCK (ADM)

Prompt n(no) y(yes)

FIX? Ignores the error condi­
tion.
A NO response is only
appropriate if the user
intends to take other
measures to fix the
problem.

Replaces count in
super-block by actual
count.

SALVAGE? Ignores the error condi­
tion.
A NO response is only
appropriate if the user
intends to take other
measures to fix the
problem.

Replaces actual free-
block list with a new
free-block list.
The new free-block list
will be ordered accord­
ing to the gap and
cylinder specs of the -s
or -S option to reduce
time spent waiting for
the disk to rotate into
position.

Phase 5 Error Messages

EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE?)
The free-block list contains more than a tolerable number
(usually 10) of blocks with a value less than the first data
block in the filesystem or greater than the last block in the
filesystem.

EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE?)
The free-block list contains more than a tolerable number
(usually 10) of blocks claimed by i-nodes or earlier parts of
die free-block list.

BAD FREEBLK COUNT
The count of free blocks in a free-block list is greater than
50 or less than 0. This error condition will always invoke
the BAD FREE LIST condition later in Phase 5.

X BAD BLKS IN FREE LIST
X blocks in the free-block list have a block number lower
than the first data block in the filesystem or greater than the
last block in the filesystem. This error condition will always
invoke the BAD FREE LIST condition later in Phase 5.

28 March 1991 Page 14

FSCK (ADM) FSCK (ADM)

X DUP BLKS IN FREE LIST
X blocks claimed by i-nodes or earlier parts of the free-block
list were found in the free-block list. This error condition
will always invoke the BAD FREE LIST condition later in
Phase 5.

X BLK(S) MISSING
X blocks unused by the filesystem were not found in the
free-block list. This error condition will always invoke the
BAD FREE LIST condition later in Phase 5.

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX?)
The actual count of free blocks does not match the count in
the super-block of the filesystem.

BAD FREE LIST (SALVAGE?)
This message is always preceded by one or more of the
Phase 5 information messages. If the -q option is specified,
the free-block list will be salvaged automatically.

Phase 6: Salvage Free List

This phase reconstructs the free-block list. It has one possible error
condition that results from bad blocks-per-cylinder and gap values.

Phase 6 Error Messages

DEFAULT FREE-BLOCK LIST SPACING ASSUMED
This is an advisory message indicating the blocks-to-skip
(gap) is greater than the blocks-per-cylinder, the blocks-to-
skip is less than 1, the blocks-per-cylinder is less than 1, or
the blocks-per-cylinder is greater than 500. The values of 7
blocks-to-skip and 400 blocks-per-cylinder are used.

Cleanup Phase

Once a filesystem has been checked, a few cleanup functions are per­
formed. The cleanup phase displays advisory messages about the
filesystem and status of the filesystem.

Cleanup Phase Messages

X files Y blocks Z free
This is an advisory message indicating that the filesystem
checked contained X files using Y blocks leaving Z blocks
free in the filesystem.

* * * * * REMOUNTING THE ROOT FILESYSTEM * * * * *

28 March 1991 Page 15

FSCK (ADM) FSCK (ADM)
This is an advisory message indicating the root filesystem
was remounted. Appears when the -rr option was specified.

* * * * * FILE SYSTEM WAS MODIFIED * * * * *
This is an advisory message indicating that the current
filesystem was modified by fsck.

28 March 1991 Page 16

FSDB (ADM) FSDB (ADM)

Name

fsdb - File system debugger.

Syntax

/etc/fsdb special [-]

Description

fsdb can be used to patch up a damaged file system after a crash. It
has conversions to translate block and i-numbers into their corre­
sponding disk addresses. Also included are mnemonic offsets to
access different parts of an i-node. These greatly simplify the process
of correcting control block entries or descending the file system tree.

fsdb contains several error-checking routines to verify i-node and
block addresses. These can be disabled if necessary by invoking fsdb
with the optional - argument or by the use of the O symbol, (fsdb
reads the i-size and f-size entries from the superblock of the file sys­
tem as the basis for these checks.)

Numbers are considered decimal by default. Octal numbers must be
prefixed with a zero. During any assignment operation, numbers are
checked for a possible truncation error due to a size mismatch
between source and destination.

fsdb reads a block at a time and will therefore work with raw as well
as block I/O. A buffer management routine is used to retain commonly
used blocks of data in order to reduce the number of read system calls.
All assignment operations result in an immediate write-through of the
corresponding block.

The symbols recognized by fsdb are:

absolute address
i convert from i-number to i-node address
b convert to block address
d directory slot offset
+,- address arithmetic
q quit
>,< save, restore an address
= numerical assignment
=+ incremental assignment
=- decremental assignment
=" character string assignment
O error checking flip flop
p general print facilities

28 March 1991 Page 1

FSDB (ADM) FSDB (ADM)

f
B
W
D

file print facility
byte mode
word mode
double word mode
escape to shell

The print facilities generate a formatted output in various styles. The
current address is normalized to an appropriate boundary before print­
ing begins. It advances with the printing and is left at the address of
the last item printed. The output can be terminated at any time by typ­
ing the delete character. If a number follows the p symbol, that many
entries are printed. A check is made to detect block boundary
overflows since logically sequential blocks are generally not physi­
cally sequential. If a count of zero is used, all entries to the end of the
current block are printed. The print options available are:

i print as i-nodesd print as directorieso print as octal words
e print as decimal words
c print as charactersb print as octal bytes

The f symbol is used to print data blocks associated with the current
i-node. If followed by a number, that block of the file is printed.
(Blocks are numbered from zero.) The desired print option letter fol­
lows the block number, if present, or the f symbol. This print facility
works for small as well as large files. It checks for special devices and
that the block pointers used to find the data are not zero.

Dots, tabs, and spaces may be used as function delimiters but are not
necessary. A line with just a new-line character will increment the
current address by the size of the data type last printed. That is, the
address is set to the next byte, word, double word, directory entry or
i-node, allowing the user to step through a region of a file system. In­
formation is printed in a format appropriate to the data type. Bytes,
words and double words are displayed with the octal address followed
by the value in octal and decimal. A .B or .D is appended to the
address for byte and double word values, respectively. Directories are
printed as a directory slot offset followed by the decimal i-number and
the character representation of the entry name. I-nodes are printed
with labeled fields describing each element.

The following mnemonics are used for i-node examination and refer to
the current working i-node:

md modeIn link countuid user ID numbergid group ID number

28 March 1991 Page 2

FSDB (ADM) FSDB (ADM)
sz file size
a#
atmt
maj
min

data block numbers (0 - 12) access time
modification time
major device number
minor device number

Examples
386i prints i-number 386 in an i-node format. This now

becomes the current working i-node.
ln=4 changes the link count for the working i-node to 4.
ln=+l increments the link count by 1.
fc prints, in ASCII, block zero of the file associated

with the working i-node.
2i.fd prints the first 32 directory entries for the root i-node of this file system.
d5i.fc changes the current i-node to that associated with

the 5th directory entry (numbered from zero)
found from the above command. The first logical
block of the file is then printed in ASCII.

512B.pOo prints the superblock of this file system in octal.
2i.aOb.d7=3 changes the i-number for the seventh directory slot

in the root directory to 3. This example also
shows how several operations can be combined on
one command line.

2i.aOb.p3d prints the first 3 entries in the root directory. This
example also shows how several operations can be
combined on one command line.

d7.nm="name" changes the name field in the directory slot to the
given string. Quotes are optional when used with
nm if the first character is alphabetic.

a2b.p0d prints the third block of the current i-node as directory entries.

28 March 1991 Page 3

FSDB (ADM) FSDB (ADM)

See Also
fsck(ADM), dir(F), filesystem(F).

28 March 1991 Page 4

FSNAME (ADM) FSNAME (ADM)

Name

fsname- Prints or changes the name of a file system.

Syntax

fsname [-p] [-s name] / d I device

Description

The letclfsname utility is used to print or change the name of a filesys­
tem. The options are:

-p Select the “pack” name field instead of the filesystem
name field.

-s name Changes the specified field in the superblock.

The default action is to print the name of the filesystem.

See Also

mkfs(C), ustat(S), filesystem (F)

28 March 1991 Page 1

FSPHOTO (ADM) FSPHOTO (ADM)

Name

fsphoto - Performs periodic semi-automated system backups

Syntax

fsphoto [-i] schedule [drive]

Description

fsphoto, in conjunction with fsave (ADM), provides a semi-automated
interface to backup (C) for backing-up XENIX filesystems. A human
operator is required to mount and dismount tapes or floppies at the
appropriate times, so some interaction is necessary, but all such
interaction is kept to a minimum to reduce the potential for human
error.

The selection and timing of backups for all filesystems is governed by
the schedule (ADM) database. The system administrator must set up
this file, and make arrangements to run fsphoto on the implicitly
defined schedule (normally once per weekday), fsphoto can be
invoked most easily from the sysadmin(ADM) menu, fsphoto inter­
prets schedule, and for each filesystem that should be backed-up on
that day, runs fsave to interact with the operator and backup the
filesystem without error.

The optional argument drive specifies the magtape or floppy device to
use; the default is specified in the schedule file.

Backups may be postponed (via fsave) or interrupted. The resulting
“partial” backups are automatically resumed the next time fsphoto is
run: Any missed filesystems are backed-up as if the original backup
had not been delayed. The -i flag ignores any pending partial backups.

If there is a pending partial backup, the normally scheduled backups
are not done. This means that if a partial backup is resumed, and the
normally scheduled backups are to be done, fsphoto must be run twice.

You must be the super-user to use this program.

Files

/usr/lib/sysadmin/schedule
Database describing which filesystems are to be backed-up when,
and at what dump level.

/dev/tty
Source of interactive input.

28 March 1991 Page 1

FSPHOTO (ADM) FSPHOTO (ADM)

/usr/lib/sysadmin/past
Record of filesystems successfully backed-up in the pending par­
tial backup.

/tmp/backup##
Temporary file for recording successfully backed-up filesystems.

See Also

fsave(ADM), schedule(ADM), backup(C), basename(C)

Diagnostics

fsphoto complains of syntax errors in schedule, and exits with a status
of 1.

fsphoto complains about illegal or incorrect arguments, and exits with
a status of 1.

An interrupt will cause an exit status of 2.

Notes

If a drive is explicitly given, the “raw” (/dev/r*) form of the device
should be used.

28 March 1991 Page 2

HALTSYS (ADM) HALTSYS (ADM)

Name
haltsys, reboot - Closes out the file systems and shuts down the sys­
tem.

Syntax
/etc/haltsys/etc/reboot

Description
The haltsys utility performs a uadmin() system call (see uadmin(S)) to
flush out pending disk I/O, mark the file systems clean, and halt the
processor, haltsys takes effect immediately, so user processes should
be killed beforehand. shutdown(ADM) is recommended for normal
system shutdown, since it warns users, terminates processes, then calls
haltsys. Use haltsys directly only if you cannot run shutdown; for
example, because of some system problem.

The reboot command performs the same function as haltsys, except
the system is rebooted automatically afterwards.

Only the super-user can execute haltsys or reboot.

Notes
haltsys locks hard disk heads.

See Also
shutdn(S), uadmin(S), shutdown(ADM)

28 March 1991 Page 1

HDINSTALL (ADM) HDINSTALL (ADM)

Name

hdinstall - places newly-created kernel in default location.

Syntax

hdinstall

Description

When a new kernel is created with the Link Kit, hdinstall must be
invoked to place the new kernel in /xenix. hdinstall moves the “old”
txenix to a file called /xenix.old and copies /usr/sys/confixenix to
Ixenix , the default location.

Files

/usr/sys/conf/xenix
/xenix
/xenix.old

Notes

Any kernel patches applied using scopatch{ADM) are added to hdin­
stall (XENDC-386 only).

See Also

configure(ADM), config(ADM), scopatch(ADM)

28 March 1991 Page 1

IDLEOUT (ADM) IDLEOUT (ADM)

Name
idleout - Logs out idle users.

Syntax
idleout [minutes I hours:minutes]

Description
The idleout command monitors line activity and logs out users whose
terminal remains idle longer than a specified period of time. Minutes
are assumed; if a colon appears in the number, hours are assumed.

The utility uses a default file, /etc/default/idleout, to indicate the inter­
val a user’s terminal may remain idle before being logged out. This
file has one entry:

IDLETIME=r/me

The time format is identical to that used on the command line. The
time specified in the default file is overridden by idletime if idletime
is specified on the command line. Note that, if idletime is zero, no
monitoring takes place and idle users are not logged out. You can
either run idleout from the command line, or, to have continuous cov­
erage, you must add the program name in /etc/rc.d/8/userdef to see to
it that the program is run each time the system is rebooted.

Files
/etc/default/idleout
/etc/utmp
/etc/wtmp

See Also
who(C), getut(S), kill(S)

28 March 1991 Page 1

INSTALL (ADM) INSTALL (ADM)
Name

install - Installation shell script.

Syntax
/etc/install [device]

Description
/etc/install is the sh (C) script used to install XENIX distribution (or
application program) floppies. It performs the following tasks:

- Prompts for insertion of floppies.

- Extracts files using the tar(C) utility.

- Executes /once/init.* programs on each floppy
after they have been extracted.

- Removes any /once/init.* programs when the
installation is finished.

The optional argument to the command specifies the device used. The
default device is /dev/install.

Files
/etc/install

/once/init.*

28 March 1991 Page 1

IPCRM (ADM) IPCRM (ADM)

Name

ipcrm - Removes a message queue, semaphore set or shared memory
ID.

Syntax

ipcrm [options]

Description

ipcrm removes one or more specified messages, a semaphore or
shared memory identifiers. The identifiers are specified by the fol­
lowing options:

-q msqid removes the message queue identifier msqid from the
system and destroys the message queue and data struc­
ture associated with it.

-m shmid removes the shared memory identifier shmid from the
system. The shared memory segment and data structure
associated with it are destroyed after the last detach.

-s semid removes the semaphore identifier semid from the sys­
tem and destroys the set of semaphores and data struc­
ture associated with it.

-Q msgkey removes the message queue identifier, created with key
msgkey, from the system and destroys the message
queue and data structure associated with it.

-M shmkey removes the shared memory identifier, created with key
shmkey, from the system. The shared memory segment
and data structure associated with it are destroyed after
the last detach.

-S semkey removes the semaphore identifier, created with key
semkey, from the system and destroys the set of sema­
phores and data structure associated with it.

The details of the removes are described in msgctl(S), shmctl{S), and
semctl(S). The identifiers and keys may be found by using
ipc.s(ADM).

See Also

ipcs(ADM), msgctl(S), msgget(S), msgop(S), semctl(S), semget(S),
semop(S), shmctl(S), shmget(S), shmop(S)

28 March 1991 Page 1

IPCRM (ADM) IPCRM (ADM)

Note

ipcrm cannot be used to remove semaphores created using
creatsem(S) or to remove shared memory created using sdget(S).

28 March 1991 Page 2

IPCS (ADM) IPCS (ADM)

Name

ipcs - Reports the status of inter-process communication facilities.

Syntax

ipcs [options]

Description

ipcs prints certain information about active inter-process communica­
tion facilities. Without options, information is printed in short format
for message queues, shared memory, and semaphores that are
currently active in the system. Otherwise, the information that is dis­
played is controlled by die following options:

-q Print information about active message queues.
-m Print information about active shared memory segments.
-s Print information about active semaphores.

If any of the options -q, -m, or -s are specified, information about only
those indicated are displayed. If none of the three options are
specified, information about all three are displayed.

-b Print biggest allowable size information (maximum number of
bytes in messages on queue for message queues, size of segments
for shared memory, and number of semaphores in each set for
semaphores). See below, for the meaning of columns in a listing.

-c Print creator’s login name and group name. See below.
-o Display information on outstanding usage (number of messages on

queue, total number of bytes in messages on queue, and the number
of processes attached to shared memory segments).

-p Display process number information. (Process ID of last process to
send a message and process ID of last process to receive a message
on message queues. It displays the process ID of the creating pro­
cess and the process ID of the last process to attach or detach on
shared memory segments.) See below.

-t Print time information. (Time of the last control operation that
changed the access permissions for all facilities. Time of last
msgsnd and last msgrcv on message queues, last shmat and last
shmdt on shared memory, and last semop(S) on semaphores.) See
below.

-a Use all print options. (This is a shorthand notation for -b, -c, -o,
-p, and -t.)

-C corefile
Use the file corefile in place of /dev/kmem.

-N namelist
The argument will be taken as the name of an alternate namelist
(/xenix is the default).

28 March 1991 Page 1

IPCS (ADM) IPCS (ADM)

The column headings and the meaning of the columns in an ipcs list­
ing are given below; the letters in parentheses indicate the options that
cause the corresponding heading to appear; all means that the heading
always appears. Note that these options only determine what informa­
tion is provided for each facility; they do not determine which facili­
ties will be listed.

T (all) Type of the facility:
q message queue;
m shared memory segment;
s semaphore.

ID (all) The identifier for the facility entry. Note that ID is
“X” for facilities created using creatsem(S) or
sdget(S).

KEY (all) The key used as an argument to msgget, semget, or
shmget to create the facility entry. (Note: The
key of a shared memory segment is changed to
IPC_PRIVATE from when the segment has been
removed until all processes attached to the seg­
ment detach it.)

MODE (all) The facility access modes and flags: The mode
consists of 11 characters that are interpreted as
follows:
The first two characters are:

R if a process is waiting on a msgrcv;
S if a process is waiting on a msgsnd;
D if the associated shared memory segment

has been removed. It will disappear when
the last process attached to the segment
detaches it;

C if the associated shared memory segment
is to be cleared when the first attach is
executed;
if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets
of three bits each. The first set refers to the
owner’s permissions; the next to permissions of
others in the user-group of the facility entry; and
the last to all others. Within each set, the first
character indicates permission to read, the second
character indicates permission to write or alter the
facility entry, and the last character is currently
unused.

28 March 1991 Page 2

IPCS (ADM)

OWNER (all)
GROUP (all)

CREATORS,c)
CGROUP (a,c)

CBYTES (a,o)

QNUM (a,o)

QBYTES (a,b)

LSPID (a,p)

LRPID (a,p)

STIME (a,t)

RTIME (a,t)

CTIME (a,t)

NATTCH (a,o)

SEGSZ (a,b)

CPID (a,p)

LPID (a,p)

ATIME (a,t)

DTIME (a,t)

NSEMS (a,b)

OTIME (a,t)

28 March 1991

IPCS (ADM)

The permissions are indicated as follows:

r if read permission is granted;
w if write permission is granted;
a if alter permission is granted;

if the indicated permission is not granted.
The login name of the owner of the facility entry.
The group name of the group of the owner of the
facility entry.
The login name of the creator of the facility entry.
The group name of the group of the creator of die
facility entry.
The number of bytes in messages currently out­
standing on the associated message queue.
The number of messages currently outstanding on
the associated message queue.
The maximum number of bytes allowed in mes­
sages outstanding on the associated message
queue.
The process ID of the last process to send a mes­
sage to the associated queue.
The process ID of the last process to receive a
message from the associated queue.
The time the last message was sent to the associ­
ated queue.
The time the last message was received from the
associated queue.
The time when the associated entry was created or
changed.
The number of processes attached to the associ­
ated shared memory segment.
The size of the associated shared memory seg­
ment.
The process ID of the creator of the shared mem­
ory entry.
The process ID of the last process to attach or
detach the shared memory segment.
The time the last attach was completed to the
associated shared memory segment.
The time the last detach was completed on the
associated shared memory segment.
The number of semaphores in the set associated
with the semaphore entry.
The time the last semaphore operation was com­
pleted on the set associated with the semaphore
entry.

Page 3

IPCS (ADM) IPCS (ADM)

Files

/xenix system namelist
/dev/kmem memory
/etc/passwd usernames
/etc/group group names

See Also

creatsem(S), msgop(S), sdget(S), semop(S), shmop(S)

Notes

Things can change while ipcs is running; the picture it gives is only a
close approximation.

28 March 1991 Page 4

KBMODE (ADM) KBMODE (ADM)

Name
kbmode - Set keyboard mode or test keyboard support.

Syntax
kbmode command [file]

Description
This command can be used to determine if your system keyboard sup­
ports AT mode. If it does, this utility can change the keyboard mode
between AT mode and PC/XT compatibility mode.

If the file argument is specified, it should be a tty device of one of the
multiscreens of the keyboard’s group.

Valid commands are:

test - determine if keyboard supports AT mode

at - set keyboard to AT mode

xt - set keyboard to PC/XT compatibility mode

Notes
Some keyboards look like an AT keyboard but do not support AT
mode. Setting such a keyboard to AT mode will render it useless,
unless it can be set to XT mode from another (serial) terminal.

See Also
keyboard(HW)

28 March 1991 Page 1

LP ADMIN (ADM) LPADMIN (ADM)

Name
lpadmin - Configures the lineprinter spooling system.

Syntax
/usr/lib/lpadmin -p printer [options...] /usr/lib/lpadmin -xdest /usr/lib/lpadmin -d[dest]

Description
lpadmin configures the lineprinter spooling system to describe print­
ers, classes, and devices. It is used to add and remove destinations,
change membership in classes, change devices for printers, change
printer interface programs, and to change the system default destina­
tion. System managers may also use Ipinit(ADM) to add new printing
destinations to the system, lpadmin may not be used when the
lineprinter scheduler, Ipsched (ADM), is running, except where noted
below.

Exactly one of the -p, -d, or -x options must be present for every legal
invocation of lpadmin.

-d [dest] Makes dest, an existing destination, the new system
default destination. If dest is not supplied, then there is
no system default destination. This option may be used
when Ipsched (ADM) is running. No other options are
allowed with -d.

-xdest Removes destination dest from the LP system. If dest is a
printer and is the only member of a class, then the class
will be deleted, too. No other options are allowed with - x.

-pprinter Names a printer to which all of the options below refer.
If printer does not exist then it will be created.

The following options are only useful with -p and may appear in any
order. For ease of discussion, the printer will be referred to as p
below.

-cclass Inserts printer p into the specified class. Class will be
created if it does not already exist.

-^printer Copies an existing printer's interface program to be the
new interface program for p.

28 March 1991 Page 1

LP ADMIN (ADM) LPADMIN (ADM)

-h Indicates that the device associated with p is hardwired.
This option is assumed when creating a new printer
unless the -1 option is supplied.

-iinterface Establishes a new interface program for p. Interface is
the pathname of the new program.

-1 Indicates that the device associated with p is a login ter­
minal. The lineprinter scheduler, Ipsehed(ADM), dis­
ables all login terminals used as printers automatically
each time it is started. Before re-enabling p, its current
device should be established using Ipadmin.

-mmodel specifies model interface program to be used (See
“Models”).

-rclass Removes printer p from the specified class. If p is the
last member of the class, then file class will be removed.

-vdevice Associates a new device with printer p. Device is the
pathname of a file that is writable by the print system
manager, Ip. Note that there is nothing to stop a print
system manager from associating the same device with
more than one printer. If only the -p and -v options are
supplied, then Ipadmin may be used while the scheduler
is running.

Restrictions
When creating a new printer, the -v option and one of the -e, -i, or -m
options must be supplied. Only one of the -e, -i, or -m options may be
supplied. The -h and -1 keyletters are mutually exclusive. Printer and
class names may be no longer than 14 characters and must consist
entirely of the characters A - Z , a - z , 0 - 9 and _ (underscore).

Models
Model printer interface programs are shell procedures which interface
between Ipsched(ADM) and devices. Models reside in the directory /usr/spool/lp/model and may be used as is with Ipadmin -m. Models
should have 644 permission if owned by Ip & bin, or 664 permission if
owned by bin & bin. System managers may modify copies of models
and then use Ipadmin -i to associate them with printers. If printers
have special options, these can be included in the interface program.
Users can then choose an option with the Ip -o command.

Several model interface programs are supplied.

28 March 1991 Page 2

LP ADMIN (ADM) LPADMIN (ADM)

Serial printers that need delays or other special stty (C) options (such
as mapping CR to newline) should have this string included in the
model interface program:

stty [options ...] 0<&1

Files
/usr/spool/lp/*

See Also
accept(C), enable(C), lp(C), lpinit(ADM), lpsched(ADM), lpstat(C)

28 March 1991 Page 3

LPINIT (ADM) LPINIT (ADM)

Name
lpinit - Adds, reconfigures and maintains printers.

Syntax
/etc/lpinit

Description

lpinit is a shell script for configuring and adding new lineprinters to a
system, and for maintaining and reconfiguring existing printers. It
should only be executed by the system manager.

lpinit asks a series of questions for which the default answers are dis­
played. You can press RETURN to accept the default value or type in
a new value.

lpinit displays a menu with the following options:
1) Add a new printer
2) Remove a printer
3) Reconfigure an existing printer
4) Assign a system default printer
5) Print lp status information

When reconfiguring an existing printer the following options are
given:

1) Insert a printer into a class
2) Remove a printer from a class
3) Install a new interface program for a printer
4) Associate a new device with a printer

Information which the system manager may be asked to supply
includes:

- The printer device (e.g. /dev/IpO).
- The printer character mode. (The default value is non-

interpretive. See “Notes” below for more information.)
- The printer name (default is printer).
- The pathname of the interface program (several example pro­

grams are supported).
- The name of a class into which to insert or remove a printer.
- Whether the printer being added or reconfigured is a parallel,

serial, or remote printer.
- Whether the printer being added or reconfigured requires special

handling for carriage returns and line feeds.

The printer name can be any combination of up to 14 alphanumeric
characters or underscores. A printer interface program can be a shell
script, C program, or any executable program; or the model interface

28 March 1991 Page 1

LP IN IT (ADM) LP IN IT (ADM)

program, /usr/spool/lp/model/dumb, can be copied and modified.
(See the “Models” section of the lpadmin(ADM) manual page.)

When adding a new printer, Ipinit changes the acceptance status of the
new lineprinter to “accept,” and enables it to print files, /etc/Ipinit
then asks if the new printer will be the default printing destination.
All nonspecific print requests are routed to the default destination (see
lp(Q).

If the line printer scheduler is running when Ipinit is invoked, the user
is reminded that any jobs which are printing may be interrupted and
the user is asked if he wants to continue. The scheduler is restarted
when Ipinit exits only if it was running when Ipinit was invoked or if a
new printer was added.

The steps to configure a new printer can be taken separately, (see
lpadmin(ADM), accept(C), enable(C), and Ipsched(ADM) for more
information).

Files
/usr/lib/mkdev/lp
/etc/lpinit

Notes
Some printers (principally Tandy) require conversions for line-feeds,
tabs and form-feeds. In interpretive mode, the system sends line-feeds
as carriage-returns, tabs as the appropriate number of spaces, and
form-feeds as the appropriate number of carriage-returns. In non-
interpretive mode (the default value), the system sends every charac­
ter to the printer unmodified.

If you are adding a parallel printer you are asked, after the menu of
interface scripts, if the printer requires conversions for line-feed, tab
and form-feed. If the printer does not, press RETURN. If the printer
does, press y. This selects interpretive mode and assigns the device
/dev/lp[0\21f to the printer.

If you choose interpretive mode, note the following:

You must be sure that the printer’s actual top-of-form corresponds
to top-of-form as interpreted by the printer driver.

If you run a program that does any non-standard line spacing, such
as half-line feeds or 8 lines per inch, the printer’s top-of-form will
be out of place in subsequent output.

If your output contains characters that are not uniformly spaced,
the tab translation may not work properly.

28 March 1991 Page 2

LPINIT (ADM) LPINIT (ADM)

Note that if your printer can be set (for example, with dip switches) to
treat line-feed as newline and carriage-return as carriage-return
(without a line-feed), and if the printer can do its own tabs and form­
feeds, you should select non-interpretive mode. If your printer cannot
automatically do tabs, you can still use non-interpretive mode by
using the -e option of the pr(C) command when printing files that con­
tain tabs.

See Also
accept(C), enable(C), lp(C), lpadmin(ADM), lpsched(ADM), pr(C)

28 March 1991 Page 3

LPSCHED (ADM) LPSCHED (ADM)

Name

lpsched, lpshut, lpmove - Starts/stops the lineprinter request scheduler
and moves requests.

Syntax

/usr/lib/lpsched
/usr/lib/lpshut
/usr/lib/lpmove requests destination
/usr/lib/lpmove destl dest2

Description

lpsched schedules requests taken by lp(C) for printing on lineprinters.

lpshut shuts down the lineprinter scheduler. All printers that are print­
ing at the time lpshut is invoked will stop printing. Requests that were
printing at the time a printer was shut down will be reprinted in their
entirety after lpsched is started again. All lineprinter commands per­
form their functions even when lpsched is not running.

lpmove moves requests that were queued by lp(C) between lineprinter
destinations. This command may be used only when lpsched is not
running. The first form of the command moves the named requests to
the lineprinter destination. Requests are request IDs as returned by
lp(C). The second form moves all requests for destination destl to
destination dest2. As a side effect, lp(C) will reject requests for
destl.

Note that lpmove never checks the acceptance status for the new desti­
nation when moving requests (see accept {C)).

Files

/usr/spool/lp/*

See Also

accept(C), enable(C), lp(C), lpadmin(ADM), lpinit(ADM), lpstat(C)

28 March 1991 Page 1

MAKEKEY (ADM) MAKEKEY (ADM)

Name
makekey - Generates an encryption key.

Syntax
/usr/lib/makekey

Description
makekey improves the usefulness of encryption schemes by increasing
the amount of time required to search the key space. It reads 10 bytes
from its standard input, and writes 13 bytes on its standard output.
The output depends on the input in a way that is intended to be diffi­
cult to compute (i.e., to require a substantial fraction of a second).

The first 8 input bytes (the input key) can be arbitrary ASCII charac­
ters. The last 2 input bytes (the salt) are best chosen from the set of
digits, dot (.), slash (/), and uppercase and lowercase letters. The salt
characters are repeated as the first 2 characters of the output. The
remaining 11 output characters are chosen from the same set as the
salt and constitute the output key.

The transformation performed is essentially the following: the salt is
used to select one of 4,096 cryptographic machines all based on the
National Bureau of Standards DES algorithm, but broken in 4,096 dif­
ferent ways. Using the input key as the key, a constant string is fed
into the machine and recirculated. The 64 bits that come out are dis­
tributed into the 66 output key bits in the result.

Notes
Distribution of the encryption libraries and utilities is regulated by the
U.S. Government and are not available to sites outside of the United
States and its territories. Because we cannot control the destination of
the software, these utilities are not included in the standard product. If
your site is within the U.S. or its territories, you can obtain the encryp­
tion software through your product distributor or reseller.

See Also
passwd(F)

28 March 1991 Page 1

MKDEV{ ADM) MKDEV (ADM)

Name
mkdev - Calls scripts to add peripheral devices.

Syntax
/etc/mkdev lp /etc/mkdev hd /etc/mkdev serial /etc/mkdev fs [device file] /etc/mkdev fd /etc/mkdev tape /etc/mkdev shl
/etc/mkdev mouse

Description
mkdev calls the scripts to create the requested type of device file(s).
mkdev calls scripts found in the directory /usr/lib/mkdev. If no argu­
ments are listed, mkdev prints a usage message.

letc/mkdev Ip creates device files for use with line printers. (See
Ipinit(ADM).)

/etc/mkdev hd creates device files for use with a peripheral hard disk.
The device files for an internal hard disk already exist, hdinit invokes
the following utilities, where appropriate: dparam(ADM),
badtrk(ADM),fdisk(ADM), and dzvyy(ADM).

/etc/mkdev serial creates device files for use with serial cards. The de­
vice files for the first and second ports already exist. Additional de­
vice files must be created for the ports added when expansion cards
are added to the system. The /etc/ttys and /etc/ttytype files are
updated.

letc/mkdev fs performs the system maintenance tasks required to add
a new filesystem to the system once the device is created (mknod(C))
and the filesystem is made (mkfs(ADM)). It creates the /file and //z/e/lost+found directories, reserves slots in the lost+found directory,
(if either already exist, they are used unmodified) and modifies /etc/checklist, /etc/default/filesys and /etc/default to check
(/k?£(ADM)) and mount (mount(ADM), mnt(C)) the filesystem as
appropriate. It is usually used in conjunction with mkdev hd when
adding a second hard disk to the system or with mkdev fd when creat­
ing a mountable filesystem on a floppy, but can be used on any addi­
tional filesystem (for example, on a large internal hard disk).

/etc/mkdev fd creates bootable and root file system floppy disks. The
three basic options are: boot and root on a single disk (96 or 135 tpi
only), boot and root pair (48 tpi) or filesystem only. Use with mkdev

28 March 1991 Page 1

MKDEV (ADM) MKDEV (ADM)

fs when creating a filesystem-only floppy.

Several boot and/or root floppies can be created during a single mkdev
fd session, but mkdev does not display a prompt to remove the first
floppy and insert the next one. Insert the next floppy when mkdev
prompts “Would you like to format the floppy first? (y/n).”

I etc! mkdev tape configures the tape driver in preparation for linking a
new kernel that includes tape support. It adds a standard quarter-inch
cartridge tape driver and/or a mini-cartridge tape driver.

The current driver configurations can be displayed, and changed if
necessary. A zero in any of the fields means the driver automatically
detects the type of tape device installed and uses the built-in values
for that device. If the autoconfiguration values are not correct for your
drive, refer to your hardware manual for the correct values, configure
the driver and relink the new kernel, mkdev tape can also be used to
remove a tape driver from the existing kernel.

/etc/mkdev shl initializes necessary devices and configures kernel
parameters associated with the number of shell layers sessions avail­
able on the system.

I etc! mkdev mouse initializes necessary devices and configures the sys­
tem to use any supported mouse.

Once the driver is configured, you are prompted for re-linking the ker­
nel. The appropriate devices in /dev are created.

The various init scripts prompt for the information necessary to create
the devices.

Files

/usr/lib/mkdev/*

See Also

badtrk(ADM), divvy(ADM), dparam(ADM), fd(HW), fdisk(ADM),
filesys(F), format(C), hd(HW), lp(HW), lpinit(ADM), mkfs(ADM),
mknod(C), mount(ADM), serial(HW), usemouse(C), tape(HW).

28 March 1991 Page 2

MKFS (ADM) MKFS (ADM)

Name

mkfs - Constructs a file system.

Syntax
/etc/mkfs [-y] [-n] special blocks[: inodes] [gap inblocks] /etc/mkfs [-y] [-n] special proto [gap inblocks][-s blocks [: inodes]]

Description
mkfs constructs a file system by writing on the special file special ,
according to the directions found in the remainder of the command
line.

If it appears that the special file contains a file system, operator con­
firmation is requested before overwriting the data. The -y “yes”
option overrides this, and writes over any existing data without ques­
tion. The -n option causes mkfs to terminate without question if the
target contains an existing file system. The check used is to read
block one from the target device (block one is the super-block) and
see whether the bytes are the same. If they are not, this is taken to be
meaningful data and confirmation is requested.

If the second argument is given as a string of digits, mkfs builds a file
system with a single empty directory on it. The size of the file system
is the value of blocks interpreted as a decimal number. The boot pro­
gram is left uninitialized. If the number of inodes is specified, then
this number should be the same as the estimated number of files in the
file system. If the optional number of inodes is not given, the number
of inodes is calculated as a function of the system file size.

If the second argument is a file name that can be opened, mkfs
assumes it to be a prototype file, proto, and takes its directions from
that file. The prototype file contains tokens separated by spaces or
newlines. The first token is the name of a file to be copied onto block
zero as the bootstrap program. The bootstrap program specified
should already be stripped of the header (see strip (CP)). If the header
has not been stripped from the bootstrap program, then mkfs issues a
warning. The second token is a number specifying the size of the cre­
ated file system. Typically, it will have been the number of blocks on
the device, perhaps diminished by space for swapping. The next token
is the i-list size in blocks. The next set of tokens comprise the specifi­
cation for the root file. File specifications consist of tokens giving the
mode, the user ID, the group ID, and the initial contents of the file.
The syntax of the contents field depends on the mode.

28 March 1991 Page 1

MKFS (ADM) MKFS (ADM)

The mode token for a file is a 6 character string. The first character
specifies the type of the file. (The characters -bed specify regular,
block special, character special and directory files respectively.) The
second character of the type is either u or - to specify set-user-ID
mode or not. The third is g or - for the set-group-ID mode. The rest of
the mode is a three digit octal number giving the owner, group, and
other read, write, execute permissions; see chmod(C).

Two decimal number tokens come after the mode; they specify the
user and group ID’s of the owner of the file.

If the file is a regular file, the next token is a pathname whose con­
tents and size are copied. If the file is a block or character special file,
two decimal number tokens follow which give the major and minor
device numbers. If the file is a directory, mkfs makes the entries . and
.. and then reads a list of names and (recursively) file specifications
for the entries in the directory. The scan is terminated with the token
$.

A sample prototype specification follows:

/stand/diskboot
4872 110
d-777 3 1
usr d-777 3 1

sh —755 3 1 /bin/sh
ken d—755 6 1

$
bO b—644 3 1 0 0
c0 c—644 3 10 0
$

$

In the second version of the command the -s option is a command-line
override of the size and number of inodes in the proto file.

In both commands, the disk interleaving factors, gap and inblocks ,
can be specified. The interleaving factors are a disk hardware func­
tion and are described in detail in the XENIX System Administrator's
Guide.

See Also

chmod(C), filesystem(F), dir(F), strip(CP)

Notes

There is no way to specify links when using a prototype file. If the
number of inodes is specified on the command line, then the max­
imum number of inodes in the file system is 65500. This utility uses
IK blocks.

28 March 1991 Page 2

MKUSER (ADM) MKUSER (ADM)

Name
mkuser - Adds a login ID to the system.

Syntax
/etc/mkuser

Description
mkuser is used to add more user login IDs to the system. It is the pre­
ferred method for adding new users to the system, since it handles all
directory creation and password file updating. To add a new user to
the system, mkuser requires six pieces of information:

• login name

• user ID

• group ID

• user’s login shell

• initial password

• comment string for the /etc/passwd file (optional).

The login name is checked against certain criteria (i.e., it must be at
least three characters and begin with a lowercase letter). The pass­
word must follow standard XENIX conventions (see passwd(F)). The
password file comment field can be up to 35 characters of information.

mkuser prompts for the shell type to assign to the new user. The selec­
tion of shells is determined by the number of shells installed on the
system. The shells included in the Run Time System are the standard
(Bourne) shell, sh, and the restricted shell, rsh. Each installed shell is
represented by a subdirectory /usr/lib/mkuser/^//, which is installed
along with the given shell package (see custom (ADM)). The shell
subdirectory contains the files needed to set up the user’s environment
to use that shell. These files are mkuser.defs and mkuser.init, plus
any additional files that are specific to a given shell. (For example, /usr/lib/mkuser/csh/cshrc and /usr/Iib/mkuser/csh/login are the
standard .cshrc and .login files used by the csh and are copied to the
user’s home directory when mkuser is run.) The C shell and Korn
shell (XENIX-386 only) are additional shells that can be loaded on the
system with custom(ADM).

mkuser takes some of its parameters from a default file,
/etc/default/mkuser. An example default file is:

28 March 1991 Page 1

MKUSER (ADM) MKUSER (ADM)

HOME=/usr
HOMEMODE=0755
PROFMODE=0640
MAILMODE=0640

The HOME entry is the user’s home directory, the HOMEMODE entry
is the permissions for the user’s home directory, the PROFMODE
entry is the permissions for the .login, .profile and .cshrc files or other
shell-specific files, and the MAILMODE entry specifies the permis­
sions of the user’s mailbox.

This file can be edited by the super-user to change these defaults.
These defaults can also be defined on a per-shell basis by adding simi­
lar entries to the appropriate /usr/lib/mkuserMe///inkuser.def file.
In addition, there are other files in /usr/lib/mkuser that can be cus­
tomized. These include /usr/lib/mkuser/lib/mail, which is the stan­
dard mail message sent to new users, /usr/lib/mkuser/lib/help, which
is the explanation displayed by mkuser at startup, /usr/lib/mkuser/s/2£///mkuser.init, and any of the shell related files.

mkuser allocates user IDs starting at 200, or the largest number used in
the password file. (The operator can also assign a specific user ID to a
new user. It must be greater than or equal to 200 and must not already
exist.) The default group ID for new users is 50. The minimum group
ID allowed for user accounts is 50. The operator is given the choice of
assigning the user to the default group or another existing group (only
those groups with IDs greater than or equal to 50 are displayed, but
any group can be selected). In addition, a new group can be created, in
which case the operator may specify the name or ID (or both). If only
the name is specified, the next available number is assigned.

mkuser can only be executed by the super-user.

The minimum length of a legal password, and the minimum and max­
imum number of weeks used in password aging are specified in /etc/default/passwd by the variables PASSLENGTH, MINWEEKS and
MAXWEEKS. For example, these variables might be set as follows:

PASSLENGTH=6
MINWEEKS=2
MAXWEEKS=6

Files
/etc/passwd

/ust/spool/mail/username

/etc/default/mkuser

28 March 1991 Page 2

MKUSER (ADM) MKUSER (ADM)

/etc/default/passwd

/usr/Iib/mkuser/mkuserAib/help

/usr/lib/mkuser/mkuserAib/mail

/usr/lib/mkuserA/i^///mkuser.defs

/usr/Iib/mkuserM^///mkuser.init

/usr/Iib/mkuserIshelllshell files

See Also
chmod(C), custom(ADM), sh(C), csh(C), ksh(C), rsh(C), vsh(C),
group(F), passwd(F), pwadmin(ADM), rmuser(ADM)

28 March 1991 Page 3

MOUNT (ADM) MOUNT (ADM)

Name
mount - Mounts a file structure.

Syntax
/etc/mount [[-r] special-device directory] [readonly]

Description
mount announces to the system that a removable file structure is
present on special-device. The file structure is mounted on directory.
The directory must already exist; it becomes the name of the root of
the newly mounted file structure, directory should be empty. If direc­
tory contains files, they will appear to have been removed while the
directory is mounted and reappear when the directory is unmounted.

The mount and umount commands maintain a table of mounted de­
vices. If each special device is invoked without any arguments, mount
displays the name of the device, and the directory name of the
mounted file structure, whether the file structure is read-only, and the
date it was mounted.

The -r option mounts the device read-only. Physically write-protected
file structures must be mounted in this way or errors occur when
access times are updated, whether or not any explicit write is
attempted.

umount removes the removable file structure previously mounted on
device special-device.

Files
/etc/mnttab Mount table

/etc/default/filesys Filesystem data

See Also
umount(ADM), mnt(C), mount(S), mnttab(F), default(F)

Diagnostics
mount issues a warning if the file structure to be mounted is currently
mounted under another name.

28 March 1991 Page 1

MOUNT (ADM) MOUNT (ADM)

Busy file structures cannot be dismounted with umount. A file struc­
ture is busy if it contains an open file or some user’s working direc­
tory.

Notes
Only the super-user can use the mount command.

Some degree of validation is done on the file structure, however it is
generally unwise to mount corrupt file structures.

Be warned that when in single-user mode, the commands that look in /etc/mnttab for default arguments (for example df, ncheck, quot,
mount, and umount) give either incorrect results (due to a corrupt /etc/mnttab from a non-shutdown stoppage) or no results (due to an
empty mnttab from a shutdown stoppage).

When multi-user, this is not a problem; /etc/rc initializes /etc/mnttab
to contain only /dev/root and subsequent mounts update it appropri­
ately.

The mount{ADM) and umount(ADM) commands use a lock file to
guarantee exclusive access to /etc/mnttab. The commands which just
read it (those mentioned above) do not, so it is possible that they may
hit a window, which is corrupt. This is not a problem in practice since
mount and umount are not frequent operations. Block devices must be
used, not raw (character) devices.

When mounting a file system on a floppy disk you need not use the
same directory each time. However, if you do, the full pathnames for
the files are consistent with each use.

Floppy disks must be unprotected (no write-protect tab) to be mounted
as a filesystem unless the -r option is used. If floppy disks are write-
protected, they must be mounted with the -r or readonly flag.
Always unmount filesystems on floppy disks before removing them
from the floppy drive. Failure to do so requires running fsck the next
time the disk is mounted.

28 March 1991 Page 2

MVDIR (ADM) MVDIR (ADM)

Name

mvdir - Moves a directory.

Syntax

/etc/mvdir dimame name

Description

mvdir moves directories within a file system. The directory (dir-
name) must be a directory. If there is already a directory or file with
the same name as name, mvdir fails.

Neither name may be a sub-set of the other. For example, you cannot
move a directory named /x/y to /x/y/z, and vice versa.

Notes

You must be root to use mvdir.

See Also
mkdir(C)

28 March 1991 Page 1

NCHECK (ADM) NCHECK (ADM)

Name

ncheck - Generates names from inode numbers.

Syntax

ncheck [-i numbers] [-a] [-s] [filesystem]

Description

ncheck with no argument generates a pathname and inode number list
of all files on the set of file systems specified in /etc/mnttab. The two
characters “/.” are appended to the names of directory files. The -i
option reduces the report to only those files whose inode numbers fol­
low. The -a option allows printing of the names . and .., which are
ordinarily suppressed. The -s option reduces the report to special files
and files with set-user-ID mode; it is intended to discover concealed
violations of security policy. A single filesystem may be specified
rather than the default list of mounted file systems.

Files

/etc/mnttab

See Also

fsck(ADM), sort(C)

Diagnostics

When the file system structure is improper, ?? denotes the “parent” of
a parentless file and a pathname beginning with... denotes a loop.

Notes

See Notes under mount(ADM).

28 March 1991 Page 1

NETUTIL (ADM) NETUTIL (ADM)

Name
netutil - Administers the Micnet network.

Syntax
netutil [option] [-x] [-e]

Description
The netutil command allows the user to create and maintain a network
of XENIX machines. A Micnet network is a link through serial lines of
two or more XENIX systems. It is used to send mail between systems
with the mail (C) command, transfer files between systems with the
rcp(C) command, and execute commands from a remote system with
the remote (C) command.

The netutil command is used to create and distribute the data files
needed to implement the network. It is also used to start and stop the
network. The option argument may be any one of install, save, restore, start, stop, or the numbers 1 through 5 respectively. The -x
option logs transmissions and the -e option logs errors. The -x and -e
options work only when they are used in conjunction with start, stop
or their decimal equivalents (4 and 5).

The install option interactively creates the data files needed to run the
network. The save option saves these files on floppy or hard disks,
allowing them to be distributed to the other systems in the network. If
you save the micnet files to the hard disk, you can then use uucp(C) to
transfer the files to the other machines. This option specifies the
name of the backup device and prompts for whether this is the desired
device to use. The user can specify an alternate device, including a
file on the hard disk. The name of the default backup device is
located in the file /etc/default/micnet. This can be changed depend­
ing on system configuration. The restore option copies die data files
from floppy disk back to a system. The start option starts the net­
work. The stop option stops the network. An option may also be any
decimal digit in the range 1 to 5. If invoked without an option, the
command displays a menu from which to choose one. Once an option
is selected, it prompts for additional information if needed.

28 March 1991 Page 1

NETUTIL (ADM) NETUTIL (ADM)

A network must be installed before it can be started. Installation con­
sists of creating appropriate configuration files with the install option.
This option requires the name of each machine in the network, the
serial lines to be used to connect the machines, the speed of transmis­
sion for each line, and the names of the users on each machine. Once
created, the files must be distributed to each computer in the network
with the save and restore options. The network is started by using the
start option on each machine in the network. Once started, mail and
remote commands can be passed along the network. A record of the
transmissions between computers in a network can be kept in the net­
work log files. Installation of the network is described in the XENIX
System Administrator’s Guide.

Files

/bin/netutil
/etc/default/micnet

See Also

aliases(M), aliashash(ADM), mail(C), micnet(F), remote(C). rcp(C),
systemid(F), top(F).

28 March 1991 Page 2

PWADMIN (ADM) PWADMIN (ADM)

Name
pwadmin - Performs password aging administration.

Syntax
pwadmin [-min weeks -max weeks] options

Description
pwadmin is used to examine and modify the password aging informa­
tion in the password file.

The options are as follows:

-d user Displays the password aging information for the user.
-f user Forces the user to change his password at the next login.
-c user Prevents the user from changing his password.
-a user Enables password aging for the given user. This option sets

the minimum number of weeks that the user must wait before
changing his password and the maximum number of weeks
that a user can keep his current password to the values
defined by the MINWEEKS and MAXWEEKS variables in the
/etc/default/passwd file. If the file is not found or the defined
values are not in the range 0 to 63, the default values 2 and 4
are used.

-n user Disables password aging for the user.
-min weeks

Enables password aging and sets the minimum number of
weeks before a password can be changed.

-max weeks
Enables password aging and sets the number of weeks a pass­
word can be used.

Files
/etc/passwd

/etc/default/passwd

See Also
passwd(C), passwd(F)

28 March 1991 Page 1

PWADMIN (ADM) PW ADMIN (ADM)

Notes

The user must not attempt to force a new password by setting both the -min and -max values to zero. To force a password, use the -f option.
The user must not attempt to prevent further password changes by set­
ting the -min value greater than the -max value. To prevent changes,
use the -c option.

28 March 1991 Page 2

RESTORE (ADM) RESTORE (ADM)

Name
restore, restor - Invokes incremental file system restorer.

Syntax
restore key [arguments]

restor key [arguments]

Description
restore is used to read archive media backed up with the
backup(ADM) command.

The key specifies what is to be done. Key is one of the characters cC,rR, tT, or xX optionally combined with k and/or f or F. restor is an
alternate spelling for the same command.

c,C
Verify (check) a dump tape. Used after a dump is made to make
sure die tape has no I/O errors or bad checksums. C is the same as
c except that it provides a higher level of checking.

f Uses the first argument as the name of the archive (backup device
/dev/*) instead of the default.

F F is the number of the first file on the tape to read. All files up to
that point are skipped.

k Follow this option with the size of the backup volume. This allows
for reading multivolume dumps from media such as floppies.

r,R
The archive is read and loaded into the file system specified in
argument. This should not be done lightly (see below). If the key
is R, restore asks which archive of a multivolume set to start on.
This allows restore to be interrupted and then restarted (an fsck
must be done before the restart).

t Prints the date the archive was written and the date the file system
was backed up.

T Prints a full listing of a dump tape. Similar to t.
x Each file on the archive named by an argument is extracted. The

filename has all “mount” prefixes removed; for example, if /usr is
a mounted file system, /usr/bin/lpr is named /bin/lpr on the
archive. The extracted file is placed in a file with a numeric name
supplied by restore (actually the inode number). In order to keep

28 March 1991 Page 1

RESTORE (ADM) RESTORE (ADM)

the amount of archive read to a minimum, the following procedure
is recommended:

1. Mount volume 1 of the set of backup archives.

2. Type the restore command with the appropriate key and argu­
ments.

3. restore will check dumpdir, then announce whether or not it
found the files, give the numeric name that it will assign to the
file, and in the case of a tape, rewind to the start of the archive.

4. It then asks you to “mount the desired tape volume”. Type the
number of the volume you choose. On a multivolume backup,
the recommended procedure is to mount the last through the
first volumes, in that order, restore checks to see if any of the
requested files are on the mounted archive (or a later archive,
thus the reverse order). If the requested files are not there,
restore doesn’t read through the tape. If you are working with a
single-volume backup or if the number of files being restored is
large, respond to the query with 1 and restore will read the
archives in sequential order.

X Same as x except that files are replaced in original location. When
you use this option, omit the initial slash (/) in the filename on the
restore command line.

The r option should only be used to restore a complete backup archive
onto a clear file system, or to restore an incremental backup archive
onto a file system so created. It should not be used to restore a backup
archive onto the root file system. Thus:

/etc/mkfs /dev/hdl 10000
restore r /dev/hdl

is a typical sequence to restore a complete backup. Another restore
can be done to get an incremental backup in on top of this.

A backup followed by a mkfs and a restore is used to change the size
of a file system.

Files
rst* Temporary files

/etc/default/restor Name of default archive device

The default archive unit varies with installation.

28 March 1991 Page 2

RESTORE (ADM) RESTORE (ADM)

Notes
It is not possible to successfully restore an entire active root file sys­
tem.

Note also that restore may be unable to restore more than one filesys­
tem from the tape devices /dev/nrctO and /devlnrct2.

Diagnostics
There are various diagnostics involved with reading the archive and
writing the disk. There are also diagnostics if the i-list or the free list
of the file system is not large enough to hold the dump.

If the dump extends over more than one disk or tape, restor may ask
you to change disks or tapes. Reply with a newline when the next unit
has been mounted.

See Also
backup(ADM), dumpdir(ADM), fsck(ADM), mkfs(ADM),
sddate(ADM)

28 March 1991 Page 3

RMUSER (ADM) RMUSER (ADM)

Name

rmuser - Removes a user account from the system.

Syntax

/etc/rmuser

Description

rmuser removes users from the system. It begins by prompting for a
user name; after receiving a valid user name as a response, it then
deletes the named user’s entry in the password file, and removes the
user’s mailbox file, the .profile file, and the entire home directory. It
will also remove the users group entiy in /etc/group if the user was
the only remaining member of that group, and the group ID was
greater than 50.

Before removing a user ID from the system, make sure its mailbox is
empty and that all files belonging to that user ID have been saved or
deleted as required.

The rmuser program will refuse to remove a user ID or any of its files
if one or more of the following checks fails:

- The user name given is one of the “system” user names such as
root, sys, sysinfo, cron, or uucp. All user IDs less than 200 are con­
sidered reserved for system use, and cannot be removed using
rmuser. Likewise, all group IDs less than 50 are not removable
using rmuser.

- The user’s mailbox exists and is not empty.

- The user’s home directory contains files other than .profile.

rmuser can only be executed by the super-user.

Files

/etc/passwd

/yxsT/spool/msallusername

$HOME

See Also

mkuser(ADM), backup(C)

28 March 1991 Page 1

RUNBIG (ADM) RUNBIG (ADM)

Name

runbig - Runs a command that may require more memory than normal.

Syntax

runbig command [arguments]

Description

runbig executes commands that may require more memory than is
normäly available to a user process. While runbig is executing the
specified command, it ignores the restriction on the default of memory
available to the user process. The command will run normally until it
grows to be larger than the amount of memory available to a user pro­
cess. It is then locked in core memory and not swapped until it either
exits or shrinks to a size less than or equal to the size of a default user
process.

The removal of the process size restriction during execution of runbig
will be preserved during an exec (S) system call, but not for a. fork (S)
system call.

See Also

exec(S), fork(S)

Notes

Running programs greater than the default process size, and therefore,
possibly greater than the size of the disk swap area, may severely
impact system performance.

runbig has no effect on systems whose memory size is much less than
the size of the disk swap area.

28 March 1991 Page 1

SCHEDULE (ADM) SCHEDULE (ADM)

Name
schedule - Database for automated system backups.

Description
The schedule database is used in conjunction with fsphoto (ADM) to
partially automate system-wide backups. For each filesystem to be
backed-up, a cyclical schedule of backup (ADM) levels is specified.

This cyclical schedule (or cycle) is a list of backup levels to perform
(including no backup at all) and a pointer to the last-used element of
that list. The pointer is advanced to the next element of the list on a
regular basis (each time fsphoto is run, usually once per day), starting
over at the beginning each time it falls off the end. It is advanced,
however, only on success - the desired backup must have been suc­
cessful.

Each entry in the file is on a separate line. Blank and comment lines
(beginning with “#”) may be placed anywhere. Several keywords are
recognized:

site sitename
Sitename is passed to fsave as a description to place on each tape
label. Usually, sitename is the name of the company or a building
number.

media drive k sizes... [format]
Device drive is a floppy capable of handling volumes with any of
the listed sizes (in kilobytes). If specified, format is the XENIX
command used to format the described floppies. This also applies
to standard cartridge tapes.

media drive d density sizes... [format]
Device drive is a density BPI magtape capable of handling tapes of
any of the indicated sizes (in feet). Like floppies, format is the
optional XENIX command used to format the described tape.

[0-9] size savetime importance marker
Description of each backup level, as described in fsave (ADM).
The possible values are:

Level Size Savetime
0 - "1 year"
1 - "3 months'
2...7 - "1 month"
8 - "2 weeks"
9 - "1 week"

Importance Marker
critical none
necessary none
important none
useful none
precautionary none

28 March 1991 Page 1

SCHEDULE (ADM) SCHEDULE (ADM)

All four fields must be specified. On XENIX-386 distributions, only
levels 0, 1, 2 and 3 are used in the default schedule file. On XENIX-
286 distributions, levels 0,1,8 and 9 are used.

A size of - means to use the first size listed in the appropriate media
sizes list.

Keywords should be placed before any filesystem backup schedules.
A filesystem backup schedule is of the form:

/dev/rfilesys cycle
The filesystem resident on device /dev/rfilesys is to be backed-up
according to cycle, which is a space-separated list of backup levels
(die digits 0 to 9, passed to backup), or the letter x, meaning no
backup should occur. The specified device should be the raw
(character) device associated with the filesystem.

A backup cycle must have at least one member, but it may be of any
length. Different filesystems may have cycles of different lengths.

The default schedule file differs slightly under XENIX-286; the backup
device is the floppy drive and the Schedule Table uses levels 0, 1, 8,
and 9. Here is the default schedule file for XENIX-386:

SYSTEM BACKUP SCHEDULE
site mymachine

Media Entries
#
96 tpi 1.2 MB floppy 0
media /dev/rfd096dsl5 k 1200 format /dev/rfd096dsl5
96 tpi 1.2 MB floppy 1
media /dev/rfdl96dsl5 k 1200 format /dev/rfdl96dsl5
135 tpi 1.44 MB floppy 0
media /dev/rfd0135dsl8 k 1440 format /dev/rfd0135dsl8
135 tpi 1.44 MB floppy 1
media /dev/rfdll35dsl8 k 1440 format /dev/rfdll35dsl8
Cartridge tape 1
media /dev/rctO k 60000 125000 150000 tape erase
Mini cartridge drive (10MB)
media /dev/rctmini k 8800 format /dev/rctmini
Mini cartridge drive (20MB)
media /dev/rctmini k 17200 format /dev/rctmini
Mini cartridge drive (40MB)
media /dev/rctmini k 37500 format /dev/rctmini
9-track tape drive
media /dev/rratO d 1600 2400 1200 600
Backup Descriptor Table
Backup Vol. Save for Vitality Label
level size how long (importance) marker

28 March 1991 Page 2

SCHEDULE (ADM) SCHEDULE (ADM)

0 - "1 year" critical "a red sticker"
1 - "4 months" necessary "a yellow sticker'
2 - "3 weeks" useful "a blue sticker"
3 - "1 week" precautionary none

Schedule Tctble
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
Filesystem M T W T F M T W T F M T W T F M T W T F
/dev/rroot 0 x 3 x 3 2 x 3 x 3 1 x 3 x 3 2 x 3 x 3
/dev/ru 3 0 3 3 3 3 2 3 3 3 3 1 3 3 3 3 2 3 3 3

/dev/rroot is backed-up using a level 0 backup the first time fsphoto is
run (on a Monday), and if that backup is successful, the next (second)
time it runs (Tbesday), no backup is performed. If doing nothing is
successful, the third time (Wednesday) a level 3 backup occurs. If that
backup succeeds, no backup occurs the fourth time (Thursday), but the
fifth time fsphoto is run (Friday), a level 3 backup is made.

Each time a successful backup at the specified level happens, the
pointer advances so that the next run of fsphoto (on the next weekday)
will do the next backup scheduled for that filesystem. If however, a
backup fails (or is interrupted or postponed by the operator) die
pointer is not advanced; hence, the next time fsphoto is attempted, the
same level backup will again be tried so the sequence will not be bro­
ken (but the timing may be off).

The larger and more rapidly changing filesystem /dev/ru is backed-up
more frequently (each time fsphoto is run - once a day - instead of
every other time), and the levels used are staggered to prevent having
to perform two full-scale backups (like levels 0 or 1) of the large
filesystems on the same day. The backup cycle period is also shorter,
two weeks instead of four.

See Also

fsphoto(ADM), fsave(ADM), backup(ADM)

Notes

Keywords and filesystem names must not be preceded by any spaces
or tabs.

It is not necessary to specify the name of the “raw” (/dev/r*) device
for each filesystem, but the backups are faster if this is done.

28 March 1991 Page 3

SCOPATCH (ADM) SCOPATCH (ADM)

Name
scopatch - Applies kernel patches.

Syntax
/etc/scopatch patchfile

Description
scopatch applies a kernel patch named patchfile found in /usr/lib/scopatch. Any patches applied are added to hdinstall(ADM)
to ensure that they are retained in subsequent relinks.

A list of current patches available is contained in the Release Notes.

Notes

This utility only applies to XENIX-
386 distributions.'

Files
/usr/lib/scopatch
/usr/lib/patchlog

Patch source directory
Patch log file

See Also
hdinstall(ADM)

28 March 1991 Page 1

SDDATE (ADM) SDDATE (ADM)

Name
sddate - Prints and sets backup dates.

Syntax
sddate [name lev date]

Description
If no argument is given, the contents of the backup date file /etc/ddate
are printed. The backup date file is maintained by backup (ADM) and
contains the date of the most recent backup for each backup level for
each filesystem.

If arguments are given, an entry is replaced or made in /etc/ddate.
name is the last component of the device pathname, lev is the backup
level number (from 0 to 9), and date is a time in the form taken by
date(C):

mmddhhmmfyy]

Where the first mm is a two-digit month in the range 01-12, dd is a
two-digit day of the month, hh is a two-digit military hour from 00-23,
and the final mm is a two-digit minute from 00-59. An optional two-
digit year, yy, is presumed to be an offset from the year 1900, i.e.,
19yy.

Some sites may wish to back up file systems by copying them verba­
tim to backup media, sddate could be used to make a “level 0” entry
in /etc/ddate, which would then allow incremental backups.

For example:

sddate rhdO 5 10081520

makes an /etc/ddate entry showing a level 5 backup of /dev/rhdO on
October 8, at 3:20 PM.

Files
/etc/ddate

28 March 1991 Page 1

SDDATE (ADM) SDDATE (ADM)

See Also
backup(ADM), restore(ADM), date(C)

Diagnostics
bad conversion If the date set is syntactically incorrect.

28 March 1991 Page 2

SETCLOCK (ADM) SETCLOCK (ADM)

Name

setclock - Sets the system real-time (time of day) clock.

Syntax

setclock [time]

Description

The setclock file sets the battery-powered, real-time time of day clock
to the given time. If time is not given, the current contents of the
battery-powered clock are displayed. The time must be a combination
of digits with the form:

MMddhhmmyy

where MM is the month, dd is the day, hh is the hour, mm is the
minute, and yy is the last two digits of the year. If yy is not given, it is
taken from the current system time. For example, the command:

082615092

sets the time of day clock to 15:03 on August 26,1992.

Files

/etc/setclock

See Also

clock(F)

Notes

Not all computers have battery-powered real-time time of day clocks.
Refer to your computer’s hardware reference manual.

28 March 1991 Page 1

SETMNT (ADM) SETMNT (ADM)

Name

setmnt - Establishes /etc/mnttab table.

Syntax

/etc/setmnt

Description

setmnt creates the /etc/mnttab table (see mnttab (¥)), which is needed
for both the mount (ADM) and umount (ADM) commands, setmnt
reads the standard input and creates a mnttab entry for each line.
Input lines have the format:

filesys node

where filesys is the name of the file system’s special file (e.g., “hdO”)
and node is the root name of that file system. Thus filesys and node
become the first two strings in the mnttab(F) entry.

Files

/etc/mnttab

See Also

mnttab(F)

Notes

Iffilesys or node are longer than 128 characters, errors can occur.

setmnt silently enforces an upper limit on the maximum number of
mnttab entries.

setmnt is normally invoked by /etc/rc when the system boots up.

28 March 1991 Page 1

SETTIME (ADM) SETTIME (ADM)

Name

settime - Changes the access and modification dates of files.

Syntax

settime [mmddhhmm [yy]] [-f fname] name ...

Description

Sets the access and modification dates for one or more files. The
dates are set to the specified date, or to the access and modification
dates of the file specified via -f. Exactly one of these methods must
be used to specify the new date(s). The first mm is the month number;
dd is the day number in the month; hh is the hour number (24 hour sys­
tem); the second mm is the minute number; yy is the last two digits of
the year and is optional. For example:

settime 1008004583 ralph pete

sets the access and modification dates of files ralph and pete to Oct 8,
12:45 AM, 1983. Another example:

settime -f ralph john

This sets the access and modification dates of the file john to those of
the file ralph.

Notes

Use of touch in place of settime is encouraged.

28 March 1991 Page 1

SFMT (ADM) SFMT (ADM)

Name

sfmt - Performs special formatting.

Syntax

/etc/sfmt device name

Description

The sfmt command performs a low-level formatting, initializes non­
standard disk parameters, and performs initial processing of manufac­
turer-supplied defect lists of the disk devicejiame. device jiam e
should be the character-special device representing the whole disk, for
example, /dev/rhdlO.

The sfmt command must be issued from the Boot: prompt, and should
be used only if the “type=E” banner appears during power-up.

Low-level disk formatting is usually performed on bundled systems
before delivery. If this formatting has not been done, you must format
the disk before installing it. You must know the hard disk parameters
before you invoke sfmt.

Files

/dev/rhd?0

28 March 1991 Page 1

SHUTDOWN (ADM) SHUTDOWN (ADM)

Name

shutdown - Terminates all processing.

Syntax

/etc/shutdown [time] [su]

Description

The primary function of shutdown is to terminate all currently running
processes in an orderly and cautious manner, shutdown goes through
the following steps:

1. All users logged on the system are notified to log off the system
by a broadcast message.

2. /etc/init is called to perform the the actual shutdown.

the time argument is the number of minutes before a shutdown will
occur. The optional su argument lets the user go single-user, without
completely shutting down the system.

You must be super-user to execute the shutdown command.

See Also

sync(ADM), umount(ADM), wall(ADM), boot(HW)

Diagnostics

The most common error diagnostic that will occur is device busy.
This diagnostic appears when a particular file system could not be
unmounted. See umount(ADM).

Notes

Once shutdown has been invoked, it must be allowed to run to comple­
tion and must not be interrupted by pressing BREAK or DEL.

shutdown does not work when executed from within a shell layer.

shutdown locks the hard disk heads.

28 March 1991 Page 1

SYNC (ADM) SYNC (ADM)

Name
sync - Updates the super-block.

Syntax
sync

Description
sync executes the sync system primitive. If the system
stopped, sync must be called to ensure file system integrity.
shutdown (ADM) automatically calls sync before shutting
system.

See Also
sync(S)

is to be
Note that
down the

28 March 1991 Page 1

SYSADMIN (ADM) SYSADMIN (ADM)

Name
sysadmin - Performs file system backups and restores files.

Syntax
/etc/sysadmin

Description
sysadmin is a utility for performing filesystem backups and for restor­
ing files from backup volumes, and includes several options. Its main
function is to act as a front-end for the fsphoto(ADM) utility, which
performs backups according to an established schedule. Depending on
the day of the week, a daily incremental backup (level 9), or a periodic
full backup (level 0) is automatically selected, sysadmin can also be
invoked to do an unscheduled backup. It can provide a listing of the
files backed up and also has facilities for restoring individual files and
complete filesystems from backups.

The main sysadmin menu appears as follows:

Filesystem Maintenance Options

1. Perform a scheduled backup
2. Perform an unscheduled backup
3. List the contents of an archive
4. Restore backed up file(s)
5. Restore an entire filesystem
6. Check backup archive integrity

Enter an option or enter q to quit:

Any supported archive medium may be used to create backups. Any
filesystem may be backed up. Menus of these devices are created for
each option from the files /tmp/backup.list, /etc/default/archive, and /etc/default/fllesys.
You must be the super-user to use this program.

Files
/tmp/backup.list
/etc/default/archive
/etc/default/filesys

28 March 1991 Page 1

SYSADMIN (ADM) SYSADMIN (ADM)

See Also
fsphoto(ADM), mkfs(ADM), backup(C), dumpdir(C), restore(C),
archive(F), filesys(F)

Notes
/tmp/backup.list, /etc/default/archive and /etc/default/filesys may
be edited to add devices, or to delete entries for devices that are no
longer used.

Warning
You should never backup more than one filesystem to the tape devices
/dev/nrctO and Idev/nrct2. This is because, although backup can write
more than one filesystem to fdev/nrctO or /dev/nrct2, restore may not
be able to restore more than one filesystem from these devices.

You must also be sure to close the floppy door when inserting floppy
disks during a backup. If you fail to do so in a multi-floppy backup,
the entire backup will fail and you will have to begin again.

28 March 1991 Page 2

SYSADMSH (ADM) SYSADMSH (ADM)

Name

sysadmsh - Menu driven system administration utility

Syntax

sysadmsh

Description

sysadmsh is an easy-to-use menu interface designed to provide novice
users with the tools needed for day-to-day system administration of
the XENIX system.

WARNING: sysadmsh does not replace the XENIX documentation. It
provides an overview of available system administration features and
a reminder of tasks which need to be performed regularly. An under­
standing of the XENIX Installation Guide, the XENIX System
Administrator's Guide, and the XENIX User's Guide is necessary to
use sysadmsh.

Usage

To use this utility enter:

sysadm

at the login prompt. This sets your login shell to be the sysadmsh
menu hierarchy. You may access many useful commands and sub­
menus, all presented in simple, descriptive terms.

Alternately, sysadmsh menus may also be invoked by logging in as the
super-user (root) and entering:

sysadmsh

at the shell prompt.

Once you are in sysadmsh, on-line instructions for its use may be
obtained by selecting the <F1> key.

Some sysadmsh options must be run from the system console device.
Some options must be run while in single user (system maintenance)
mode. Check the documentation manual page referenced by the menu
selection for more information.

28 March 1991 Page 1

SYSADMSH (ADM) SYSADMSH (ADM)

Files
See Also

XENIX System Administrator’s Guide
XENIX User’s Guide
XENIX Installation Guide

acctcom(ADM), accton(ADM), alias(M), asktime(ADM), at(C),
badtrk(ADM), checklist(F), chgrp(C), chmod(S), chown(C), config-
ure(ADM) copy(C), cron(C), csh(C), custom(ADM), df(C), diff(C),
dircmp(C), disable(C), diskcmp(C), diskcp(C), dmesg(ADM), dos(C),
dtype(C), du(C), enable(C), fdisk(ADM), find(C), fmger(C),
fixperm(ADM), format(C), fsck(ADM), fstab(F), grpcheck(C),
init(M), kill(C), login(M), lp(C), lpadmin(ADM), lpinit(ADM),
lpstat(C), mail(C), mkdev(ADM), mkuser(ADM), more(C),
mount(ADM), netutil(ADM), ps(C), pwadmin(ADM), pwcheck(C),
quot(C), rmuser(ADM), shutdown(ADM), sysadmin(ADM),
systemid(F), tar(C), ttys(F), umount(ADM), uuinstall(ADM), vi(C),
wall(ADM), who(C), write(C)

Notes
A knowledge of v/(C) is assumed for file edit selections, although the
SCO Lyrix®) editor is used when available.

Acknowledgements
This utility takes its design from the SCO Lyrix Word Processing Sys­
tem.

28 March 1991 Page 2

TELINIT (ADM) TELINIT (ADM)

Name
telinit, mkinittab - Alternative method of turning terminals on and off.

Syntax
telinit state mkinittab [ttysfile]...

Description
telinit directs the actions of init(M). It is an alternative to using
enable (C) and disable (C) to allow and disallow logins on terminals.

telinit generates a new /etc/ttys file from the /etc/inittab file. Only
those lines from inittab (F) which apply in state are converted to their
ttys(F) equivalent. Init is then signaled to allow or disallow logins on
terminals according to /etc/ttys.
The recognized state arguments are:

0-6
Generate /etc/ttys using the lines in /etc/inittab which apply to the
specified state.

q, Q
Do not generate a new /etc/ttys file, but signal Init to examine the
existing /etc/ttys file.

s, S
Signal Init to enter System Maintenance (single-user) mode.

Only the superuser can run telinit. Users currently logged onto termi­
nals that are disabled are abruptly killed. Logins are not allowed on
terminals not listed in /etc/ttys.
mkinittab writes on the standard output an inittab-iormdX file gen­
erated from the specified ttysfiles. Each ttysfile must be in ttys format.
If no ttysfile is specified, the standard input is read.

Files
/etc/ttys

/etc/inittab

28 March 1991 Page 1

TELINIT (ADM) TELINIT (ADM)

See Also
disable(C), enable(C), getty(M), init(M), inittab(F), login(M), ttys(F)

Notes
inittab is provided for users more familiar with the telinit approach to
terminal administration, as opposed to the standard XENIX enable and
disable approach.

28 March 1991 Page 2

UMOUNT (ADM) UMOUNT (ADM)

Name

umount - Dismounts a file structure.

Syntax

/etc/umount special-device

Description

umount announces to the system that the removable file structure pre­
viously mounted on device special-device is to be removed. Any
pending I/O for the file system is completed, and the file structure is
flagged clean. For a detailed explanation of the mounting process, see
mount (ADM).

Files

/etc/mnttab Mount table

See Also

mount(ADM), mount(S), mnttab(F)

Diagnostics

device busy An executing process is using a file on the named
filesystem, often caused by a user working in the
filesystem.

28 March 1991 Page 1

UUCHECK (ADM) UUCHECK (ADM)

Name

uucheck - Checks the uucp directories and permissions file.

Syntax

/usr/lib/uucp/uucheck [-v] [-x debug_level]

Description

uucheck checks for the presence of the uucp system required files and
directories. It also checks for some obvious errors in die Permissions
file (/usr/lib/uucp/Permissions). When executed with the -v option,
it gives a detailed explanation of how the uucp programs will interpret
the Permissions file. The -x option is used for debugging, debug-
option is a single digit in the range 1-9; the higher the value, the
greater the detail.

Note that uucheck can only be used by the super-user or uucp.

Files

/usr/lib/uucp/Systems
Aisr/lib/uucp/Permissions
Aisr/lib/uucp/Devices
/usr/lib/uucp/Maxuuscheds
Aisr/lib/uucp/Maxuuxqts
/usr/spool/uucp/*
/usr/spool/uucppublic/*

See Also

uucico(ADM), uusched(ADM), uucp(C), uustat(C), uux(C)

Notes

The program does not check file/directory modes or some errors in the
Permissions file such as duplicate login or machine name.

28 March 1991 Page 1

UUCICO (ADM) UUCICO (ADM)

Name

uucico - File transport program for the UUCP system.

Syntax

/usr/lib/uucp/uucico [-r role_number] [-x debug__level]
[-i interface] [-d spool_directory] [-s] [-S] system_name

Description

uucico is the file transport program for uucp work file transfers. Role
numbers for -r are the digit 1 for master mode or 0 for slave mode
(default). The -r option should be specified as the digit 1 for master
mode when uucico is started by a program or cron, uux and uucp both
queue jobs that will be transferred by uucico. It is normally started by
die scheduler, uusched , but can be started manually; this is done for
debugging. For example, the shell uutry starts uucico with debugging
turned on. The -x option specifies the level of debugging (1-9), with 9
displaying the most information.

The -i option defines the interface used with uucico. This interface
only affects slave mode. Known interfaces are UNIX (default), TLI
(basic Transport Layer Interface), and TLIS (Transport Layer Interface
with Streams modules, read/write); only the default, UNIX, is applica­
ble in this release.

The -d option can be used to specify the spool directory: the default is
/usr/spool/uucp.

If -s is specified, a call to the specified site is made even if there is no
work for site sitename in the spool directory, but the call is made only
when times in the Systems file permit it. This is useful for polling
sites that do not have the hardware to initiate a connection.

The -S option can be used to specify the system name, overriding the
call schedule given in the Systems file. For example, -S can be used
to call a system which is listed as “Never” to be called in the Systems
file.

Changing Packet Parameters

An additional feature is the ability to change two specialized parame­
ters contained in the uucico program without having to recompile the
source. (The uucico binary is provided unstripped so that patches can
be applied using scopatch(ADM). The first is a parameter called win­
dows, which specifies the size of window that the sliding-window pro­
tocol should use (how many packets it can send before getting any
ack/nack’s from the remote site), windows can be changed using the

28 March 1991 Page 1

UUCICO (ADM) UUCICO (ADM)

following command:

scopatch windows
You are prompted for the new value. In addition, the parameter pktime can be altered. This is the number of seconds uucico should
wait before giving up and re-transmitting the packet being sent sent.
This interval can be as long as 35 seconds, which can be costly with
overseas phone connections, pktime can be changed in same way as windows by using pktime as the argument to the scopatch command.
You are prompted for a new value for the parameter.

Files
/usr/lib/uucp/Systems
/usr/Ub/uucp/Permissions
/usr/lib/uucp/Devices
Aisr/lib/uucp/Maxuuxqts
/usr/lib/uucp/Maxuuscheds
/usr/spool/uucp/*
/usr/spoolAmcppublic/*

See Also
scopatch(ADM), uusched(ADM), uutry(ADM), cron(C), uucp(C),
uustat(C), uux(C)

28 March 1991 Page 2

UUCLEAN (ADM) UUCLEAN (ADM)

Name

uuclean - UUCP spool directory clean-up.

Syntax

/usr/lib/uucp/uuclean [-Ctime] [-Dtime] [-Wtime] [-Xtime]
[-mstring] [-otime] [-ssystem] [-xdebug_level]

Description

uuclean will scan the UUCP spool directories for old files and take
appropriate action to remove them in a useful way:

Inform the requestor of send/receive requests for systems that cannot
be reached.

Return mail, which cannot be delivered, to the sender.

Delete or execute rnews for mews type files (depending on where the
news originated-locally or remotely).

Remove all other files.

In addition, there is provision to warn users of requests that have been
waiting for a given number of days (default 1). Note that uuclean will
process as if all option times were specified to the default values
unless time is specifically set.

The following options are available.

-Ctime Any C. files greater or equal to time days old will be
removed with appropriate information to the requestor,
(default 7 days)

-Dtime Any D. files greater or equal to time days old will be
removed. An attempt will be made to deliver mail mes­
sages and execute mews when appropriate, (default 7
days)

-Wtime Any C. files equal to time days old will cause a mail mes­
sage to be sent to the requestor warning about the delay in
contacting the remote. The message includes the JO BID,
and in the case of mail, the mail message. The adminis­
trator may include a message line telling whom to call to
check the problem (-m option), (default 1 day)

-Xtime Any X, files greater or equal to time days old will be
removed. The D. files are probably not present (if they
were, the X. could get executed). But if there are D. files,

28 March 1991 Page 1

UUCLEAN (ADM) UUCLEAN (ADM)

they will be taken care of by D. processing, (default 2
days)

-mstring This line will be included in the warning message gen­
erated by the -W option. The default line is "See your
local administrator to locate the problem".

-otime Other files whose age is more than time days will be
deleted, (default 2 days)

-ssystem Execute for system spool directory only.

-xdebuglevel
The -x debug level is a single digit between 0 and 9; higher num­
bers give more detailed debugging information.

This program is typically started by the shell uudemon.clean, which
should be started by cron{C). uuclean can only be executed by the
super user or uucp.

Files

/usr/lib/uucp directory with commands used by uuclean
internally

/usr/spool/uucp spool directory

See Also

cron(C), uucp(C), uux(C).

28 March 1991 Page 2

UUDEMON(ADM) UUDEMON (ADM)

Name
uudemon: uudemon.admin, uudemon.clean, uudemon.hour,
uudemon.poll, uudemon.poll2 - UUCP administrative scripts.

Description
UUCP communications and file maintenance can be automated with
the use of the uudemon.hour, uudemon.poll, uudemon.poll2, uudemon.admin, and uudemon.clean shell scripts. While in multi­
user mode, cron scans files in /usr/spool/cron/crontabs once each
minute for entries to execute at this time. An example crontabs file,
crontab.eg, is provided to activate these daemons. The system
administrator should copy these from /usr/lib/uucp to /usr/spool/cron/crontabs/uucp. To do this, log in as user uucp, edit
the crontab.eg file to make any changes, and then enter the following
command:

crontab crontab.eg
This will replace the original crontab entry.

uudemon.admin
The uudemon.admin shell script, as delivered, runs the uustat com­
mand with -p and -q options. The -q reports on the status of work files
(C.), data files (D.), and execute files (X.) that are queued. The -p
prints process information for networking processes listed in the lock
files (Aisr/spool/locks). It sends resulting status information to the
UUCP administrative login (uucp) via mail.

The default crontab entry for uudemon.admin is:
48 10,14 * * 1-5 /bin/su uucp -c \

"/usr/lib/uucp/uudemon.admin" > /dev/null

This runs daily at 10:48 AM and 2:48 PM.

uudemonxlean
The uudemonxlean shell script, as delivered, takes log files for indi­
vidual machines from the /usr/spool/.Log directory, merges them, and
places them in the /usr/spool/.Old directory with other old log infor­
mation. If log files get large, the ulimit may need to be increased. It
also removes work files (C.) 7 days or older, data files (D.) 7 days old
or older, and execute files (X.) 2 days old or older from the spool files, uudemonxlean mails a summary of the status information gathered
during the current day to the UUCP administrative login (uucp).

March 28,1991 Page 1

UUDEMON(ADM) UUDEMON (ADM)

The default crontab entry for uudemonxlean is:
4 5 2 3 * * * u l i m i t 5 0 0 0 ; / b i n / s u u u c p - c \

" / u s r / l i b / u u c p / u u d e m o n . c l e a n " > / d e v / n u l l

This runs daily at 11:45 PM.

uudemon.hour
The uudemon.hour shell script calls the uusched program to search
the spool directories for work files (C.) that have not been processed
and schedules these files for transfer to a remote machine. It then
calls the uuxqt daemon to search the spool directories for execute
files (X.) that have been transferred to your computer and were not
processed at the time they were transferred.

This is the default root crontab entry for uudemon.hour :
3 9 , 9 * * * * / u s r / l i b / u u c p / u u d e m o n . h o u r > / d e v / n u l l

This script runs twice per hour (at 39 and 9 minutes past).

uudemon.poll
uudemon.poll uses the Poll (or the alternative PolLhour and PolLday) file (see poll(F)) for polling remote computers. The uudemon.poll script controls polling but does not actually perform
the poll. It merely sets up a polling file (C.sysnxxxx) in the
fusr/spool/uucp/nodename directory, where nodename is replaced by
the name of the machine. This file will in turn be acted upon by the
scheduler (started by uudemon.hour). The uudemon.poll script is
scheduled to run twice an hour just before uudemon.hour so that the
work files will be there when uudemon.hour is called. The default
root crontab entry for uudemon.poll is as follows:

1 , 3 0 * * * * ” / u s r / l i b / u u c p / u u d e m o n . p o l l > / d e v / n u l l "

This runs twice per hour (at 1 and 30 minutes past). uudemon.poll2 is
an alternative to uudemon.poll, which uses a different scheme and
different poll files. Listing a site in the Poll file gives you control
over the lower bound on number-of-calls-per-day (at least as many as
you specify in Poll), but still no control on the upper bound. (This is
because uudemon.poll uses the the time field of the Systems file,
which is not suited to the purposes of polling). uudemon.poll2 per­
mits much more precise control of scheduling. To use uudemon.poll2, you must remove the call to uusched from uudemon.hour, and run uudemon.poll2 in place of uudemon.poll
from cron.

March 28,1991 Page 2

UUDEMON (ADM) UUDEMON (ADM)

uudemon.poll2 reads PolLhour (or PolLday if called with the -d
option) to determine whom to poll much like uudemon.poll, but calls
uucico directly, using the -S option, thus overriding the time field of
the Systems file.

Files

/usr/lib/uucp/Systems
/usr/lib/uucp/uudemon.admin
/usr/lib/uucp/uudemon.clean
/usr/lib/uucp/uudemon.hour
Aisr/lib/uucp/uudemon.poll
/usr/lib/uucp/uudemon.poll2
Aisr/lib/uucp/Poll
Aisr/lib/uucp/Poll.hour
Aisr/lib/uucp/Poll.day

See Also

uusched(ADM) uucico(ADM), uuclean(ADM), cron(C), uucp(C),
poll(F), systems(F)

March 28, 1991 Page 3

UUINSTALL (ADM) UUINSTALL (ADM)

Name
uuinstall - Administers UUCP control files.

Syntax

/etc/uuinstall [-r]

Description

The uuinstall program is used to manage the content of the control
files used by die uucp communications system. It allows the user to
change the contents of these files without using a text editor. The user
need not know the detailed format of each of the control files,
although he must be familiar with the function of the various fields
within the files. These details are explained in the XENIX System
Administrator's Guide .

The uuinstall program can only be executed by the super-user. When
invoked with the optional -r flag, uuinstall will not allow any of the
files to be modified whether or not the user has made changes to the
files.

If uuinstall finds any of the required uucp control files missing from
the system, it will create them with the correct access permissions and
ownership.

Files

/etc/systemid
/usr/lib/uucp/Systems
/usr/lib/uucp/Permissions
Aisr/lib/uucp/Devices

See Also

mkuser(ADM)

28 March 1991 Page 1

UUSCHED (ADM) UUSCHED (ADM)

Name

uusched - The scheduler for the uucp file transport program.

Syntax

/usr/lib/uucp/uusched [-x debugjevel] [-u debugjevel]

Description

uusched is the uucp file transport scheduler. It is usually started by
the daemon uudemon.hour that is started by cron(C) from an entry in
lusrlspoollcron!crontabsfroot:

39,9 * * * * /bin/su uucp -c '’Aisr/Ub/uucpAiudemon.hour” > /dev/null

The two options are for debugging purposes only; -x debugjevel will
output debugging messages from uusched and -u debugjevel will be
passed as -x debugjevel to uucico. The debugjevel is a number
between 0 and 9; higher numbers give more detailed information.

Files

/usr/lib/uucp/Systems
/usr/lib/uucp/Permissions
/usr/lib/uucp/Devices
Aisr/lib/uucp/Maxuuscheds
Aisr/spool/uucp/*
/usr/spool/uucppublic/*

See Also

uucico(ADM), cron(C), uucp(C), uustat(C), uux(C).

28 March 1991

UUTRY (ADM) UUTRY (ADM)

Name
uutry - Tries to contact remote system with debugging on.

Syntax
/usr/lib/uucp/uutry [-x debug_level] [-r] system

Description
The uutry program is a shell script that invokes uucico to call a
remote site. Debugging is automatically enabled at default level 5; -x
overrides this value. If uutry successfully connects to the remote sys­
tem, uutry stores the debugging output in the file Itmp I system, where
system is the name of the remote system. In addition, uutry uses tail -f to print the last 10 lines of the debugging output to the standard out­
put.

To break out of the shell created by uutry , press DELETE or BREAK .
This returns control to the terminal while uucico continues to run,
sending the output to Itmplsystem.

The -r option overrides the retry time in the Systems file.

Files
/usr/lib/uucp/Systems
Aisr/lib/uucp/Permissions
/usr/lib/uucp/Devices
/usr/lib/uucp/Maxuuscheds
Aisr/lib/uucp/Maxuuxqts
Aisr/spool/uucp/*
/usr/spool/uucppublic/*
/imp/system

See Also
uucico(ADM), uucp(C), uux(C).

28 March 1991 Page 1

UUXQT(ADM) UUXQT (ADM)

Name

uuxqt - Executes remote command requests.

Syntax

/usr/llb/uucp/uuxqt [-s system] [-x debugjevel]

Description

uuxqt is the program that executes remote job requests from remote
systems generated by the use of the uux command. (Mail uses uux for
remote mail requests), uuxqt searches the spool directories looking
for X. files. For each X. file, uuxqt checks to see if all the required
data files are available and accessible, and file commands are permit­
ted for the requesting system. The Permissions file is used to validate
file accessibility and command execution permission.

There are two environment variables that are set before the uuxqt
command is executed:

UU_MACHINE is the machine that sent the job (the previous one).

UU_USER is the user that sent the job.

These can be used in writing commands that remote systems can exe­
cute to provide information, auditing, or restrictions.

The -x debugjevel is a single digit between 0 and 9. Higher numbers
give more detailed debugging information.

Files

/usr/lib/uucp/Permissions
/usr/lib/uucp/Maxuuxqts
/usr/spool/uucp/*

See Also

uucico(ADM), uucp(C), uustat(C), uux(C), mail(C).

28 March 1991 Page 1

WALL (ADM) WALL (ADM)

Name
wall - Writes to all users.

Syntax
/etc/wall

Description
wall reads a message from the standard input until an end-of-file. It
then sends this message to all users currently logged in preceded by
“Broadcast Message from ...”. wall is used to warn all users, for
example, prior to shutting down the system.

The sender should be super-user to override any protections the users
may have invoked.

Files
/dev/tty*

See Also
mesg(C), write(C)

Diagnostics
Cannot send to ... The open on a user’s tty file has failed.

28 March 1991 Page 1

Contents
Commands (C)

intro Introduces XENIX commands.
accept, reject Allows/prevents print requests to a lineprinter or

class of printers.
ar Maintains archives and libraries.
assign, deassign Assigns and deassigns devices.
at, batch Executes commands at a later time.
awk Searches for and processes a pattem in a file.
banner Prints large letters.
basename Removes directory names from pathnames.
be Invokes a calculator.
bdiff Compares files too large for diff.
bfs Scans big files.
cal Prints a calendar.
calendar Invokes a reminder service.
capinfo Converts termcap descriptions into terminfo

descriptions.
cat Concatenates and displays files.
cd Changes working directory.
chgrp Changes group ID.
chmod Changes the access permissions of a file or directory.
chown Changes owner ID.
clear Clears a terminal screen.
cmchk Reports hard disk block size.
emp Compares two files.
comm Selects or rejects lines common to two sorted files.
compress,
uncompress, zcat Compresses data for storage, uncompresses, displays

a stored file.
copy Copies groups of files.
cp Copies files.
cpio Copies file archives in and out.
cron Executes commands at specified times.
crypt Encodes/decodes.
esh Invokes a shell command interpreter with C-like

syntax.
esplit Splits files according to context.
ct Spawns getty to a remote terminal.

i

cu
date
dc
dddevnm
df
diff
diflB
dircmp
dirname
disable
diskcp, diskcmp
dos, doscat,
doscp, dosdir,
dosformat, dosls,
dosmkdir, dosrm,
dosrmdir
dtype
du
echo
ed
enable
env
ex
expr
factor
false
file
find
finger
fixhdr
format
getopt
grep, egrep, fgrep
grpcheck
hd
hdr
head
hello
help
hwconfig
id

Calls another XENIX system.
Prints and sets the date.
Invokes an arbitrary precision calculator.
Converts and copies a file.
Identifies device name.
Reports number of free disk blocks.
Compares two text files.
Compares three files.
Compares directories.
Delivers directory part of pathname.
Huns off terminals and printers.
Copies or compares floppy disks.

Accesses DOS files.
Determines disk type.
Summarizes disk usage.
Echoes arguments.
Invokes the ed text editor.
Hirns on terminals and line printers.
Sets or displays environment for command
execution.
Invokes the ex text editor.
Evaluates arguments as an expression.
Factor a number.
Returns with a nonzero exit value.
Determines file type.
Finds files.
Finds information about users.
Changes executable binary file headers.
Formats floppy disks.
Parses command options.
Searches a file for a pattern.
Checks group file.
Displays files in hexadecimal format.
Displays selected parts of an object file.
Prints the first few lines of a stream.
Sends a message to another user.
Asks for help with UNIX commands and SCCS error
messages.
Displays hardware configuration information.
Prints user and group IDs and names.

li

join
kill
ksh, rksh
last
line
In
lock
logname
lp, lpr, cancel
lprint
lpstat
ls,l, lc
mail
man
mesg
mkdir
mknod
mnt
more
mv
newform
newgrp
news
nice
nl
nm
nohup
od
pack, peat,
unpack
passwd
pax
pepio
Pg
Pi­pspstat
ptar
pwcheck
pwd
quot
random
ranlib
rep

Joins two relations.
Terminates a process.
KomShell, a command and programming language.
Indicate last logins of users and teletypes.
Reads one line.
Makes a link to a file.
Locks a user’s terminal.
Gets login name.
Sends/cancels requests to lineprinter.
Prints to a printer attached to the user’s terminal.
Prints lineprinter status information.
Gives information about contents of directories.
Sends, reads, or disposes of mail.
Prints reference pages in this guide.
Permits or denies messages sent to a terminal.
Makes a directory.
Builds special files.
Mounts a filesystem.
Views a file one screen full at a time.
Moves or renames files.
Changes the format of a text hie.
Logs users into a new group.
Print news items.
Runs a command at a different priority.
Adds line numbers to a file.
Prints name list.
Runs a command immune to hangups nd quits.
Displays files in octal format.

Compresses and expands files.
Changes login password.
Portable archive exchange.
Copy file archives in and out.
Paginates display for soft-copy terminals.
Prints files on the standard output.
Reports process status.
Reports system information.
Process tape archives.
Checks password file.
Prints working directory name.
Summarizes file system ownership.
Generates a random number.
Converts archives to random libraries.
Copies files across XENIX systems.

Ill

remote Executes commands on a remote XENIX system.
rm, rmdir Removes files or directories.
rsh Invokes a restricted shell (command interpreter).sdiff Compares files side-by-side.
sed Invokes the stream editor.
setcolor Sets screen color.
setkey Assigns the function keys.sh Invokes the shell command interpreter.shl Manages shell layers.
size Prints the size of an object file.
sleep Suspends execution for an interval.
sort Sorts and merges files.
split Splits a file into pieces.
strings Finds the printable strings in an object file.
stty Sets the options for a terminal.
su Makes the user a super-user or another user.
sum Calculates checksum and counts blocks in a file.
tail Delivers the last part of a file.
tape Maintains tape drives
tapedump Dumps magnetic tape to output file.
tar Archives files.
tee Creates a tee in a pipe.
test Tests conditions.
tic Compiles terminfo descriptions.
tid Decompiles terminfo descriptions.
touch Updates access and modification times of a file.
tput Queries the terminfo database.
tr Translates characters.
translate Translates files from one format to another.
true Returns with a zero exit value.
tset Sets terminal modes.
tty Gets the terminal’s name.
umask Sets file-creation mode mask.
uname Prints the name of the current XENIX system.
uniq Reports repeated lines in a file.
units Converts units.
uptime Displays information about the system activity.
usemouse Maps mouse input to keystrokes for use with non­

mouse based programs.
uucp, uulog,
uuname Copies files from XENIX to XENIX.
uuencode,
uudecode Encodes/decodes a binary file for transmission via

mail

IV

uustat
uuto, uupick
uux
vi, view, vedit
vidi
vmstatvsh
w
wait
wc
what
who
whodo
write
xargs
yes

Displays UUCP status and controls UUCP jobs.
Copies files across UUCP network.
Executes command on remote XENIX.
Invokes a screen-oriented display editor.
Sets the font and video mode for a video device.
Reports virtual memory statistics.
Menu-driven visual shell.
Displays information about who is on the system and
what they are doing.
Awaits completion of background processes.
Counts lines, words and characters.
Identifies files.
Lists who is on the system.
Determines who is doing what.
Writes to another user.
Constructs and executes commands.
Prints string repeatedly.

v

INTRO (C) INTRO (C)

Name

intro - Introduces XENIX commands.

Description

This section describes use of the individual commands available in the
XENIX Operating System. Each individual command is labeled with
either a C ,a CP, or a CT for easy reference from other volumes. The
letter “C” stands for “command”. The letters “P” and “T” stand for
commands that come with the optional XENIX Development System
(Programming) and the XENIX Text Processing System, respectively.
For example, the reference date(C) indicates a reference to a discus­
sion of the date command in the C section; the reference cc(CP) indi­
cates a reference to a discussion of the cc command in the XENIX De­
velopment System; and the reference spell (CT) indicates a reference
to a discussion of the spell command in the XENIX Text Processing
System. The Text Processing and Development Systems are optional
supplemental packages to the standard Operating System.

The “M” Miscellaneous section contains miscellaneous information
including a great deal of system maintenance information. Other
reference sections include the “S” System Services section, the
“DOS” Routines section, the “F” File Format section, and the
“ADM” sysem administration section.

Syntax

Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

name [option(s)] [cmdarg(s)\

where:

name Is the name of an executable file.

option - noargletter (s) or,
- argletter ooptarg
where <> is optional whitespace.

noargletter Is a single letter representing an option without an
argument.

argletter Is a single letter representing an option requiring an
argument.

28 March 1991 Page 1

INTRO (C) INTRO (C)

optarg Is an argument (character string) satisfying preceding
argletter.

cmdarg Is a pathname (or other command argument) not
beginning with -. - by itself usually indicates the stan­
dard input.

See Also
getopt(C), getopt(S)

Diagnostics
Upon termination, each command returns 2 bytes of status, one sup­
plied by the system and giving the cause for termination, and (in the
case of “normal” termination) one supplied by the program (see
wait(S) and exit(S)). The former byte is 0 for normal termination; the
latter is customarily 0 for successful execution and nonzero to indicate
troubles such as erroneous parameters, bad or inaccessible data. It is
called variously “exit code”, “exit status”, or “return code”, and is
described only where special conventions are involved.

Notes
Not all commands adhere to the syntax described here.

28 March 1991 Page 2

ACCEPT (C) ACCEPT (C)

Name
accept, reject - Allows/prevents print requests to a lineprinter or class
of printers.

Syntax

/usr/lib/accept destinations
/usr/lib/reject [-r[reason]] destinations

Description

accept allows lp(C) to accept requests for the named destinations. A
destination can be either a printer or a class of printers. Use IpstatiC)
to find the status of destinations.

reject prevents lp(C) from accepting requests for the named destina­
tions. A destination can be either a printer or a class of printers. Use
lpstat(C) to find the status of destinations. The following option is
useful with reject:

-r[reason] Associates a reason with disabling (using disable (C))
the printer. The reason applies to all printers listed up to
the next -r option. If the -r option is not present or the -r
option is given without a reason, then a default reason is
used. Reason is reported by Ipstat(C). Please see
disable(C) for an example of reason syntax.

Files
/usr/spool/lp/*

See Also

enable(C), lp(C), lpadmin(ADM), lpinit(ADM), lpsched(ADM),
lpstat(C), disable(C).

28 March 1991 Page 1

AR(C) AR(C)

Name
ar - Maintains archives and libraries.

Syntax
ar key [posname] afile names ...

Description
ar maintains groups of files combined into a single XENIX format
archive file. Its main use is to create and update library files as used
by the link editor though it can be used for any similar purpose.

key is one character from the set drqtpmx, optionally concatenated
with one or more of vuaibcln. afile is the archive file. The names are
constituent files in the archive file. The posname is the name of a
constituent file, and is required when certain keys are used. The
meanings of the key characters are:

d Deletes the named files from the archive file.

r Replaces the named files in the archive file. If the optional charac­
ter u is used with r, then only those files with modified dates later
than the archive files are replaced. If an optional positioning char­
acter from the set abi is used, then the posname argument must be
present and specifies that new files are to be placed after (a) or
before (b or i) posname. Otherwise new files are placed at the end.

q Quickly appends the named files to the end of the archive file.
Optional positioning characters are invalid. The command does
not check whether the added members are already in the archive.
Useful only to avoid quadratic behavior when creating a large
archive piece by piece.

t Prints a table of contents of the archive file. If no names are given,
all files in the archive are tabled. If names are given, only those
files are tabled.

p Prints the named files in the archive.

m Moves the named files to the end of the archive. If a positioning
character is present, then the posname argument must be present
and, as in r, specifies where the files are to be moved.

x Extracts the named files. If no names are given, all files in the
archive are extracted. Unless the optional character n is used with x, an extracted file’s modification date will be set to the date stored
in that file’s archive header. In neither case does x alter the
archive file.

28 March 1991 Page 1

AR(C) AR(C)

v Verbose. Under the verbose option, ar gives a file-by-file descrip­
tion of the making of a new archive file from the old archive and
the constituent files. When used with t, it gives a long listing of all
information about the files. When used with x, it precedes each
file with a name.

c Create. Normally ar will create afile when it needs to. The create
option suppresses the normal message that is produced when afile
is created.

I Local. Normally ar places its temporary files in the directory
/tmp. This option causes them to be placed in the local directory.

n New. When used with the key character x it sets the extracted file’s
modification date to the current date.

When ar creates an archive, it always creates the header in XENIX
format (see <zr(F)).

Files

/tmp/v* Temporary files

See Also

ld(CP), lorder(CP), ar(F)

Notes

If the same file is mentioned twice in an argument list, it may be put in
the archive twice.

Failure to process a library with ranlib, or failure to reprocess a
library with ranlib, will cause Id to fail. Because generation of a
library by ar and randomization by ranlib are separate, phase errors
are possible. The loader Id warns when the modification date of a
library is more recent than the creation of its dictionary; but this
means you get the warning even if you only copy the library.

28 March 1991 Page 2

ASSIGN (C) ASSIGN (C)

Name

assign, deassign - Assigns and deassigns devices.

Syntax

assign [-u] [-v] [-d] [device]...

deassign [-u] [-v] [device]...

Description

assign attempts to assign device to the current user. The device argu­
ment must be an assignable device that is not currently assigned. An
assign command without an argument prints a list of assignable de­
vices along with the name of the user to whom they are assigned.

deassign is used to “deassign” devices. Without any arguments, deas­
sign will deassign all devices assigned to the user. When arguments
are given, an attempt is made to deassign each device given as an
argument.

With these commands you can exclusively use a device, such as a tape
drive or floppy drive. This keeps other users from using the device.
They have a similar effect to chown(C) and chmod(C), although they
only act on devices in /dev. Other aspects are discussed further on.

Available options include:

-d Performs the action of deassign. The -d option may be embedded
in device names to assign some devices and deassign others.

-v Gives verbose output.

-u Suppresses assignment or deassignment, but performs error check­
ing.

The assign command will not assign any assignable devices if it can­
not assign all of them, deassign gives no diagnostic if the device can­
not be deassigned. Devices may be automatically deassigned at
logout, but this is not guaranteed. Device names may be just the
beginning of the device required. For example,

assign fd

should be used to assign all floppy disk devices. Raw versions of de­
vice will also be assigned, e.g., the raw floppy disk devices /dev/rfd?
would be assigned in the above example.

28 March 1991 Page 1

ASSIGN (C) ASSIGN (C)

Note that in many installations the assignable devices such as floppy
disks have general read and write access, so the assign command may
not be necessary. This is particularly true on single-user systems. De­
vices supposed to be assignable with this command should be owned
by the user asg. The directory /dev should be owned by bin and have
mode 755. The assign command (after checking for use by someone
else) will then make the device owned by whoever invokes the com­
mand, without changing the access permissions. This allows the sys­
tem administrator to set up individual devices that are freely avail­
able, assignable (owned by asg), or nonassignable and restricted (not
owned by asg and with some restricted mode).

Note that the first time assign is invoked, it builds the assignable de­
vices table /etc/atab . This table is used in subsequent invocations to
save repeated searches of the /dev directory. If one of the devices in /dev is changed to be assignable (i.e., owned by asg), then /etc/atab
should be removed (by the super-user) so that a correct list will be
built the next time the command is invoked.

Return Values
Exit code 0 returned if successful, 1 if problems, 2 if device cannot be
assigned.

28 March 1991 Page 2

AT (C) AT{ C)

Name
at, batch - Executes commands at a later time.

Syntax
at time [date] [+ increment]

at -r job...
at -1[job ...]
at -q [letter] time [date] [job...]

Description
at and batch read commands from the standard input to be executed at
a later time, {batch has the same options shown for at.) at allows you
to specify a time when the commands should be executed, while batch
executes jobs when the system load level permits.

Standard output and standard error output are mailed to the user unless
they are redirected elsewhere. The shell environment variables,
current directory, umask, and ulimit are retained when the commands
are executed. Open file descriptors, traps, and priorities are lost.

A user is permitted to use at if their login name appears in the file /usr/lib/cron/at.allow. If that file does not exist, the file /usr/lib/cron/at.deny is checked to determine if the user should be
denied access to at. If neither file exists, only root is allowed to sub­
mit a job. If only the at.deny file exists, global usage is permitted.
The allow/deny files consist of one user name per line.

The options are:

time The time may be specified as 1, 2, or 4 digits. One- and two-
digit numbers are taken to be hours, four digits to be hours and
minutes. The time may alternately be specified as two numbers
separated by a colon, meaning hour:minute. A suffix am or pm
may be appended; otherwise a 24-hour clock time is understood.
The suffix zulu may be used to indicate GMT. The special
names noon, midnight, now, and next are also recognized.

date An optional date may be specified as either a month name fol­
lowed by a day number (and possibly year number preceded by
an optional comma) or a day of the week (fully spelled or abbre­
viated to three characters). Two special “days”, today and tomorrow, are recognized. If no date is given, today is
assumed if the given hour is greater than the current hour and tomorrow is assumed if it is less. If the given month is less

28 March 1991 Page 1

AT (C) AT(C)

than the current month (and no year is given), next year is
assumed.

increment
The optional increment is simply a number suffixed by one of
the following: minutes, hours, days, weeks, months, or years.
(The singular form is also accepted.) Thus, legitimate com­
mands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

-r Removes jobs previously scheduled by the at or
batch command. Unless you are the super-user, you can only
remove your own jobs.

-I Lists all the jobs currently scheduled for the invoking user.

-q letter
Places the specified job in a queue denoted by letter, where
letter is any letter from “a” to “z” (not uppercase). The queue
letter is appended to the job number. The following letters have
special significance:

a at queue
b batch queue
c cron queue

at and batch write the job number and schedule time to standard error.
batch submits a batch job. It is almost equivalent to “at now,” but
with a difference: batch goes into a different queue; at now will
respond with the error message “too late.”

Examples
The at and batch commands read the commands to be executed at a
later time from the standard input, sh (C) provides different ways of
specifying standard input. Within your commands, it may be useful to
redirect standard output.

The following sequence can be used at a terminal:

batch
nrofffilename > outfile
<Ctrl-D> (press “Ctrl” and press “D”)

28 March 1991 Page 2

AT (C) AT(C)

This sequence, which demonstrates redirecting standard error to a pipe
(I), is useful in a shell procedure (the sequence of output redirection
specifications is significant):

batch « !
nrofffilename 2>&1 >outfile I mail
loginid
t

To have a job reschedule itself, invoke at from within the shell pro­
cedure by including code similar to the following within the shell file:

echo “ sh shell file” I at 1900 thursday next week

The most simple use of at is to specify that a given command or regu­
lar file containing commands, file, be run on the date specified:

at date < file

Files
/usr/lib/cron

/usr/lib/cron/at.allow

/usr/lib/cron/at.deny

/usr/lib/cron/queue

main cron directory

list of allowed users

list of denied users

scheduling information

/usr/spool/cron/atjobs spool area

See Also
cron(C), kill(C), mail(C), nice(C), ps(C), sh(C), queuedefs(F).

Diagnostics
Complains about syntax errors and times out of range.

28 March 1991 Page 3

AWK(C) AWK (C)

Name

awk — Pattern scanning and processing language.

Syntax

awk [—F re] [parameter...] [’prog’] [—f progfile] [file...]

Description

The —F re option defines the input field separator to be the regular
expression re.

Parameters, in the form x=... y=... may be passed to awk, where x and
y are awk built-in variables (see list below).

awk scans each input file for lines that match any of a set of patterns
specified in prog. The prog string must be enclosed in single quotes
(’) to protect it from the shell. For each pattern in prog there may be
an associated action performed when a line of a file matches the pat­
tern. The set of pattern-action statements may appear literally as prog
or in a file specified with the —f progfile option.

Input files are read in order; if there are no files, the standard input is
read. The file name — means the standard input. Each input line is
matched against the pattern portion of every pattern-action statement;
the associated action is performed for each matched pattern.

An input line is normally made up of fields separated by white space.
(This default can be changed by using the FS built-in variable or the
—F re option.) The fields are denoted $1, $2, ...; $0 refers to the
entire line.

A pattern-action statement has the form:

pattem { action }

Either pattem or action may be omitted. If there is no action with a
pattern, the matching line is printed. If there is no pattern with an
action, the action is performed on every input line.

Patterns are arbitrary Boolean combinations (!, | |, &&, and
parentheses) of relational expressions and regular expressions. A rela-

28 March 1991 Page 1

AWK(C) AWK(C)

tional expression is one of the following:

expression relop expression
expression matchop regular expression

where a relop is any of the six relational operators in C, and a matchop
is either ~ (contains) or ! ~ (does not contain). A conditional is an
arithmetic expression, a relational expression, the special expression

var in array,

or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control
before the first input line has been read and after the last input line has
been read respectively.

Regular expressions are as in egrep (see grep(C)). In patterns they
must be surrounded by slashes. Isolated regular expressions in a pat­
tern apply to the entire line. Regular expressions may also occur in
relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all
lines between an occurrence of the first pattern and next occurrence of
the second pattern.

A regular expression may be used to separate fields by using the —F
re option or by assigning the expression to the built-in variable FS .
The default is to ignore leading blanks and to separate fields by blanks
and/or tab characters. However, if FS is assigned a value, leading
blanks are no longer ignored.

Other built-in variables include:

ARGC
ARGV
FILENAME
FNR
FS
NF
NR
OFMT
OFS
ORS
RS

command line argument count
command line argument array
name of the current input file
ordinal number of the current record in the current file
input field separator regular expression (default blank)
number of fields in the current record
ordinal number of the current record
output format for numbers (default %.6g)
output field separator (default blank)
output record separator (default new-line)
input record separator (default new-line)

28 March 1991 Page 2

AWK (C) AWK (C)

An action is a sequence of statements. A statement may be one of the
following:

if (conditional) statement [else statement]while (conditional) statementdo statement while (conditional)for (expression ; conditional ; expression) statementfor (var in array) statementdelete array [subscript]breakcontinue
{ [statement] ... }
expression # commonly variable = expression print [expression-list] [Expression] printf format [, expression-list] [Expression] next # skip remaining patterns on this input lineexit [expr] # skip the rest of the input; exit status is expr return [expr]

Statements are terminated by semicolons, new lines, or right braces.
An empty expression-list stands for the whole input line. Expressions
take on string or numeric values as appropriate, and are built using the
operators +, —, * , / ,%, and concatenation (indicated by a blank). The
C operators + + ,----- , +=, —=, *=, /=, and %= are also available in
expressions. Variables may be scalars, array elements (denoted x[i]),
or fields. Variables are initialized to the null string or zero. Array
subscripts may be any string, not necessarily numeric; this allows for a
form of associative memory. String constants are quoted (").

The print statement prints its arguments on the standard output, or on
a file if Expression is present, or on a pipe if | cmd is present. The
arguments are separated by the current output field separator and ter­
minated by the output record separator. The printf statement formats
its expression list according to the format (see printf{S) in the
Programmer's Reference Manual).

awk has a variety of built-in functions: arithmetic, string,
input/output, and general.

The arithmetic functions are: atan2, cos, exp, int, log, rand, sin, sqrt,
and srand. int truncates its argument to an integer, rand returns a ran­
dom number between 0 and 1. srand (expr) sets the seed value for
rand to expr or uses the time of day if expr is omitted.

The string functions are:

gsubifor, repl, in)
behaves like sub (see below), except that it replaces
successive occurrences of the regular expression
(like the ed global substitute command).

28 March 1991 Page 3

AWK (C) AWK (C)

indexes, t) returns the position in string s where string t first
occurs, or 0 if it does not occur at all.

length(s) returns the length of its argument taken as a string, or
of the whole line if there is no argument.

matches, re) returns the position in string s where the regular
expression re occurs, or 0 if it does not occur at all.
RSTART is set to the starting position (which is the
same as the returned value), and RLENGTH is set to
the length of the matched string.

split(s, a,fs) splits the string s into array elements a[l], a[2], a[n],
and returns n. The separation is done with the regu­
lar expression fs or with the field separator FS if fs is
not given.

sprintfifmt, expr, expr,...)
formats the expressions according to the printf{S)
format given by fmt and returns the resulting string.

sub(for, reply in) substitutes the string repl in place of the first
instance of the regular expression for in string in and
returns the number of substitutions. If in is omitted,
awk substitutes in the current record ($0).

substr(s, m, n) returns the «-character substring of s that begins at
position m.

The input/output and general functions are:

closeffilename) closes the file or pipe named filename.

cmd\ getline pipes the output of cmd into getline; each successive
call to getline returns the next line of output from
cmd.

getline sets $0 to the next input record from the current input
file.

getline <file sets $0 to the next record from file.

getline var sets variable var instead.

getline var <file sets var from the next record of file.

system(cmd) executes cmd and returns to its exit status.

All forms of getline return 1 for successful input, 0 for end of file, and
—1 for an error.

28 March 1991 Page 4

AWK(C) AWK(C)

awk also provides user-defined functions. Such functions may be
defined (in the pattern position of a pattern-action statement) as

function name(args,...) { stmts }
func name(args,...) { stmts }

Function arguments are passed by value if scalar and by reference if
array name. Argument names are local to the function; all other vari­
able names are global. Function calls may be nested and functions
may be recursive. The return statement may be used to return a
value.

Examples
Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and tabs:

BEGIN { FS = ",[\t]*[\t]+")
{ print $2, $1 }

Add up the first column, print sum and average:

{ s += $1 }
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0 ; ----- i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

28 March 1991 Page 5

AWK(C) AWK(C)

Simulate echo{C):

BEGIN {
for (i = 1; i < ARGC; i++)

printf "%s", ARGV[i]
printf "\n"
exit

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++; }
{ print }

command line: awk —f program n=5 input

See Also

grep(C), sed(C).
lex(CP), printf(S) in the Programmer1 s Reference Manual.

Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To
force an expression to be treated as a number add 0 to it; to force it to
be treated as a string concatenate the null string ("") to it.

28 March 1991 Page 6

BANNER (C) BANNER (C)

Name

banner - Prints large letters.

Syntax

banner strings

Description

banner prints its arguments (each up to 10 characters long) in large
letters on the standard output. This is useful for printing names at the
front of printouts.

See Also

echo(C)

28 March 1991 Page 1

BASENAME (C) BASENAME (C)

Name
basename - Removes directory names from pathnames.

Syntax
basename string [suffix]

Description
basename deletes any prefix ending in / and the suffix (if present in
string) from string, and prints the result on the standard output. The
result is the “base” name of the file, i.e., the filename without any
preceding directory path and without an extension. It is used inside
substitution marks (v N) in shell procedures to construct new
filenames.

The related command dirname deletes the last level from string and
prints the resulting path on the standard output.

Examples
The following command displays the filename memos on the standard
output:

basename /usr/johnh/memos.old .old

The following shell procedure, when invoked with the argument /usr/src/cmd/cat.c, compiles the named file and moves the output to a
file named cat in the current directory:

cc $1
mv a.out v basename $1 .cv

See Also
dimame(C), sh(C)

28 March 1991 Page 1

BC (C) BC (C)

Name

be - Invokes a calculator.

Syntax
be [-c] [-1] [file ...]

Description
be is an interactive processor for a language that resembles C but pro­
vides unlimited precision arithmetic. It takes input from any files
given, then reads the standard input. The -I argument stands for the
name of an arbitrary precision math library. The syntax for be pro­
grams is as follows: L means the letters a-z, E means expression, S
means statement.

Comments:

Enclosed in /* and */

Names:

Simple variables: L
Array elements: L [E]
The words “ ibase”, “obase”, and “scale”

Other operands:

Arbitrarily long numbers with optional sign and decimal point
(E)
sqrt (E)
length (E) Number of significant decimal digits
scale (E) Number of digits right of decimal point
L (E , ..., E)

Additive operators:

+

Multiplicative operators:
*
/
% (remainder)
" (exponentiation)

28 March 1991 Page 1

BC (C) BC (C)

Unary operators:

++
(prefix and postfix; apply to names)

Relational operators:

<=
> =
!=
<
>

Assignment operators:

= +

=*
= /

Statements:

E
{ S ; ; S }
if (E) S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions:

define L (L ,..., L) {
auto L , ..., L
S ; ... S
return (E)

}

28 March 1991 Page 2

BC (C) BC (C)

Functions in -I math library:

s(x) Sine
c(x) Cosine
e(x) Exponential
l(x) Log
a(x) Arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the
main operator is an assignment. Either semicolons or newlines may
separate statements. Assignment to scale influences the number of
digits to be retained on arithmetic operations in the manner of dc(C).
Assignments to ibase or obase set the input and output number radix
respectively.

The same letter may be used as an array, a function, and a simple vari­
able simultaneously. All variables are global to the program. “Auto”
variables are pushed down during function calls. When using arrays
as function arguments or defining them as automatic variables, empty
square brackets must follow the array name.

be is actually a preprocessor for dc(C), which it invokes automatical­
ly, unless the -c (compile only) option is present. If the -c option is
present, the dc input is sent to the standard output instead.

Example

The following defines a function to compute an approximate value of
the exponential function:

scale = 20
define e(x){

auto a, b, c, i, s
a= 1
b= 1
s = 1
for(i=l; 1==1; i++){

a = a*x
b = b*i
c = a/b
if(c == 0) retum(s)
s = s+c

28 March 1991 Page 3

BC (C) BC(C)

The following prints the approximate values of the exponential func­
tion of the first ten integers:

for(i=l; i<=10; i++) e(i)

Files
/usr/lib/lib.bc Mathematical library

/usr/bin/dc Desk calculator proper

See Also
dc(C)
The XENIX Users Guide

Notes
A For statement must have all three E’s.

Quit is interpreted when read, not when executed.

Trigonometric values should be given in radians.

28 March 1991 Page 4

BDIFF (C) BDIFF (C)

Name
bdiff - Compares files too large for diff.

Syntax
bdiff file 1 file2 [n] [-s]

Description
bdiff compares two files, finds lines that are different, and prints them
on the standard output. It allows processing of files that are too large
for diff. bdiff splits each file into a-line segments, beginning with the
first nonmatching lines, and invokes diff upon the corresponding seg­
ments. The arguments are:

n The number of lines bdiff splits each file into for processing. The
default value is 3500. This is useful when 3500-line segments are
too large for diff.

-s Suppresses printing of bdiff diagnostics. Note that this does not
suppress printing of diagnostics from diff.

Iffilel (or file2) is a dash (-), the standard input is read.

The output of bdiff is exactly that of diff. Line numbers are adjusted to
account for the segmenting of the files, and the output looks as if the
files had been processed whole.

Files
/tmp/bd?????

See Also
diff(C)

Notes
Because of the segmenting of the files, bdiff does not necessarily find a
smallest sufficient set of file differences.

Specify the maximum number of lines if the first difference is too far
down in the file for diff and an error is received.

28 March 1991 Page 1

BFS (C) BFS(C)

Name

bfs - Scans big files.

Syntax
bfs [-] name

Description
bfs is like ed (C) except that it is read-only and processes much larger
files. Files can be up to 1024K bytes and 32K lines, with up to 255
characters per line, bfs is usually more efficient than ed for scanning
a file, since the file is not copied to a buffer. It is most useful for iden­
tifying sections of a large file where csplit(C) can be used to divide it
into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of
any file written with the w command. The optional dash (-)
suppresses printing of sizes. Input is prompted for with an asterisk (*)
when “P” and RETURN are typed. The “P” acts as a toggle, so
prompting can be turned off again by entering another “P” and a
RETURN. Note that messages are given in response to errors only if
prompting is turned on.

All address expressions described under ed are supported. In addition,
regular expressions may be surrounded with two symbols other than
the standard slash (/) and (?): A greater-than sign (>) indicates down­
ward search without wraparound, and a less-than sign (<) indicates
upward search without wraparound. Note that parentheses and curly
braces are special and need to be escaped with a backslash (\). Since
bfs uses a different regular expression-matching routine from ed, the
regular expressions accepted are slightly wider in scope (see
regex (S)). Differences between ed and bfs are listed below:

+ A regular expression followed by + means one or more times.
For example, [0-9]+ is equivalent to [0-9][0-9]*.

\{m\) \{m,\} \{m,u\)
Integer values enclosed in \{ \) indicate the number of times
the preceding regular expression is to be applied, m is the
minimum number and u is a number, less than 256, which is
the maximum. If only m is present (e.g., \{m\}), it indicates
the exact number of times the regular expression is to be
applied. \{m,\} is analogous to \{m,infinity\}. The plus (+)
and star (*) operations are equivalent to \{1,\} and \{0,\j
respectively.

28 March 1991 Page 1

BFS (C) BFS (C)

(. . .)$n The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+1 Jth argument
following the subject argument. At most ten enclosed regular
expressions are allowed, regex makes its assignments uncon­
ditionally.

(. . .) Parentheses are used for grouping. An operator, e.g. *, +,
\{ \), can work on a single character or a regular expression
enclosed in parenthesis. For example, \ (a*\ (cb+\)*\)$0.

There is also a slight difference in mark names: only the letters “a”
through “z” may be used, and all 26 marks are remembered.

The e, g, v, k, p, q, w, =, ! and null commands operate as described
under ed except that e doesn’t remember filenames and g and v when
given no arguments return the line after the line you were on. Com­
mands such as ---, +++-, +++=, -12, and +4p are accepted. Note that l,10p and 1,10 will both print the first ten lines. The f command only
prints the name of the file being scanned; there is no remembered
filename. The w command is independent of output diversion, trunca­
tion, or crunching (see the xo, xt and xc commands, below). The fol­
lowing additional commands are available:

xf file
Further commands are taken from the named file. When an
end-of-file is reached, an interrupt signal is received, or an error
occurs, reading resumes with the file containing the xf. xf com­
mands may be nested to a depth of 10.

xo [file]
Further output from the p and null commands is diverted to the
named file. If file is missing, output is diverted to the standard
output. Note that each diversion causes truncation or creation
of the file.

: label
This positions a label in a command file. The label is ter­
minated by a newline, and blanks between the : and the start of
the label are ignored. This command may also be used to insert
comments into a command file, since labels need not be refer­
enced.

(. , .)xb/regular expression/label
A jump (either upward or downward) is made to label if the
command succeeds. It fails under any of the following condi­
tions:

1. Either address is not between 1 and $.

2. The second address is less than the first.

28 March 1991 Page 2

BFS (C) BFS(C)

3. The regular expression doesn’t match at least one line
in the specified range, including the first and last lines.

On success, dot (.) is set to the line matched and a jump is made
to label. This command is the only one that doesn’t issue an
error message on bad addresses, so it may be used to test
whether addresses are bad before other commands are executed.
Note that the command

xb/7 label

is an unconditional jump.

The xb command is allowed only if it is read from somewhere
other than a terminal. If it is read from a pipe only a downward
jump is possible.

xt number
Output from the p and null commands is truncated to a max­
imum of number characters. The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digit following the xv.
xv5100 or xv5 100 both assign the value 100 to the variable 5.
xv61,100p assigns the value l,100p to the variable 6. To refer­
ence a variable, put a % in front of the variable name. For
example, using the above assignments for variables 5 and 6:

l,%5p
1,%5
%6

prints the first 100 lines.

g/%5/p

globally searches for the characters 100 and prints each line
containing a match. To escape the special meaning of %, a \
must precede it. For example,

g/".A%[cds]/p

could be used to match and list lines containing printf charac­
ters, decimal integers, or strings.

Another feature of the xv command is that the first line of output
from a XENIX command can be stored into a variable.

28 March 1991 Page 3

BFS (C) BFS (C)

The only requirement is that the first character of value be a !.
For example,

xv5! cat junk
!rm junk
!echo "%5"
xv6!expr %6 + 1

puts the current line in variable 5, prints it, and increments the
variable 6 by one. To escape the special meaning o f ! as the first
character of value, precede it with a \. For example,

xv A! date

stores the value !date into variable 7.

xbz label

xbn label
These two commands test the last saved return code from the
execution of a XENIX command (!command) or nonzero value,
respectively, and jump to the specified label. The two examples
below search for the next five lines containing the string size:

xv55
:1
/size/
xv5!expr %5 -1
!if0%5 != 0 exit 2
xbn 1
xv45
:1
/size/
xv4!expr %4 - 1
!if 0%4 = 0 exit 2
xbz 1

xc [switch]
If switch is 1, output from the p and null commands is crunched;
if switch is 0, it is not. Without an argument, xc reverses switch.
Initially switch is set for no crunching. Crunched output has
strings of tabs and blanks reduced to one blank and blank lines
suppressed.

See Also

csplit(C), ed(C), umask(C)

Diagnostics

? for errors in commands if prompting is turned off. Self-explanatory

28 March 1991 Page 4

BFS(C) BFS(C)

error messages when prompting is on.

28 March 1991 Page 5

CAL (C) CAL (C)

Name
cal - Prints a calendar.

Syntax

cal [[month] year]

Description
cal prints a calendar for the specified year. If a month is also speci­
fied, a calendar for that month only is printed. If no arguments are
specified, the current, previous, and following months are printed,
along with the current date and time. The year must be a number
between 1 and 9999; month must be a number between 1 and 12 or
enough characters to specify a particular month. For example, May
must be given to distinguish it from March, but S is sufficient to
specify September. If only a month string is given, only that month of
the current year is printed.

Notes
Beware that “cal 84” refers to the year 84, not 1984.

The calendar produced is that for England and her colonies. Note that
England switched from the Julian to the Gregorian calendar in Sep­
tember of 1752, at which time eleven days were excised from the year.
To see the result of this switch, try “cal 9 1752”.

28 March 1991 Page 1

CALENDAR (C) CALENDAR (C)

Name
calendar - Invokes a reminder service.

Syntax
calendar [-]

Description
calendar consults the file calendar in the user’s current directory and
mails him lines that contain today’s or tomorrow’s date. Most reason­
able month-day dates, such as “Sep. 7,” “September 7”, and “9/7”, are
recognized, but not “7 September”, “7/12” or “07/12”.

On weekends “tomorrow” extends through Monday. Lines that con­
tain the date of a Monday will be sent to the user on the previous Fri­
day. This is not true for holidays.

When an argument is present, calendar does its job for every user who
has a file calendar in his login directory and sends the result to the
standard output. Normally this is done daily, in the early morning,
under the control of cron (C).

Files
calendar

/usr/lib/calprog To figure out today’s and tomorrow’s dates

/etc/passwd

/tmp/cal*

See Also
cron(C), mail(C)

Notes
To get reminder service, a user’s calendar file must have read permis­
sion for all.

28 March 1991 Page 1

CAPINFO (C) CAPINFO (C)

Name
capinfo, fixpad - convert termcap descriptions into terminfo descrip­
tions.

Syntax
capinfo capfile infofile fixpad

Description
capinfo invokes an ex(C) script to begin the conversion of a termcap
terminal description into the equivalent terminfo description, capinfo
calls fixpad to convert the padding specifications. The conversion
needs to be completed by hand. The following should be given spe­
cial attention:

- Many terminfo capabilities do not have termcap equivalents.
The XENIX extensions to termcap do not have terminfo
equivalents.

- The termcap capabilities cr, nl, and ht
are noted in the ex script as being problematical.

See Also
termcap(M), terminfo(M), terminfo(F), tic(C)

28 March 1991 Page 1

CAT(C) CAT(C)

Name
cat - Concatenates and displays files.

Syntax
cat [-u] [-s] [-v] [-t] [-e] file ...

Description
cat reads each file in sequence and writes it on the standard output. If
no input file is given, or if a single dash (-) is given, cat reads from the
standard input. The options are:

-s Suppresses warnings about nonexistent files.

-u Causes the output to be unbuffered.

-v Causes non-printing characters (with the exception of tabs, new­
lines, and form feeds) to be displayed. Control characters are dis­
played as “"X” (Ctrl-X), where X is the key pressed with the Ctrl
key (for example, Ctrl-M is displayed as AM). The DEL character
(octal 0177) is printed as Non-ASCII characters (with the
high bit set) are printed as “M -x,” where x is the character
specified by the seven low order bits.

-t Causes tabs to be printed as “T ’ and form feeds as “X ”. This
option is ignored if the -v option is not specified.

-e Causes a “$” character to be printed at the end of each line (prior
to the new-line). This option is ignored if the -v option is not set.

No input file may have the same name as the output file unless it is a
special file.

Examples
The following example displays file on the standard output:

cat file

28 March 1991 Page 1

CAT (C) CAT (C)

The following example concatenates filel and file2 and places the
result in file3:

cat filel file2 >file3

The following example concatenates filel and appends it to file2:

cat filel » file2

See Also

cp(C), pr(C)

Warning
Command lines such as:

cat filel file2 > filel

will cause the original data in filel to be lost; therefore, you must be
careful when using special shell characters.

28 March 1991 Page 2

CD (C) CD (C)

Name

cd - Changes working directory.

Syntax
cd [directory]

Description

If specified, directory becomes the new working directory; otherwise
the value of the shell parameter $HOME is used. The process must
have search (execute) permission in all directories (components)
specified in the full pathname of directoiy.

Because a new process is created to execute each command, cd would
be ineffective if it were written as a normal command; therefore, it is
recognized and executed by the shell.

If the shell is reading its commands from a terminal, and the specified
directory does not exist (or some component cannot be searched),
spelling correction is applied to each component of directory, in a
search for the “correct” name. The shell then asks whether or not to
try and change directory to the corrected directory name; an answer of
n means “no”, and anything else is taken as “yes”.

Notes

Wildcard designators will work with the cd command.

See Also

pwd(C), sh(C), chdir(S)

28 March 1991 Page 1

CHGRP (C) CHGRP (C)

Name
chgrp - Changes group ID.

Syntax
chgrp group file ...

Description
chgrp changes the group ID of each file to group. The group may be
either a decimal group ID or a group name found in the file /etc/group.

Files
/etc/passwd

/etc/group

See Also
chown(C), chown(S), passwd(F), group(F)

Notes
Only the owner or the super-user can change the group ID of a file.

28 March 1991 Page 1

CHMOD (C) CHMOD (C)

Name

chmod - Changes the access permissions of a file or directory.

Syntax

chmod mode file ...
chmod [who] +-= [permission ...] file ...

Description

The chmod command changes the access permissions (or mode) of a
specified file or directory. It is used to control file and directory
access by users other than the owner and super-user. The mode may
be an expression composed of letters and operators (called symbolic
mode), or a number (called absolute mode).

A chmod command using symbolic mode has the form:

chmod [who\ +-= [permission ..] filename

In place of who you can use one or any combination of the following
letters:

a Stands for “all users”. If who is not indicated on the command line,
a is the default. The definition of “all users” depends on the user’s
umask. See umask{C).

g Stands for “group”, all users who have the same group ID as the
owner of the file or directory.

o Stands for “others”, all users on the system.

u Stands for “user”, the owner of the file or directory.

The operators are:

+ Adds permission

- Removes permission

= Assigns the indicated permission and removes all other permis­
sions (if any) for that who. If no permission is assigned, existing
permissions are removed.

Permissions can be any combination of the following letters:

x Execute (search permission for directories)

28 March 1991 Page 1

CHMOD (C) CHMOD (C)

r Read

w Write

s Sets owner or group ID on execution of the file to that of the owner
of the file. The mode “u+s” sets the user ID bit for the file. The
mode “g+s” sets the group ID bit. Other combinations have no
effect.

t Saves text in memory upon execution. (“Sticky bit” , see
chmod(S)). Only the mode “u+t” sets the sticky bit. All other
combinations have no effect. This mode can only be set by the
super-user.

1 Advisory locking calls on the file will automatically be promoted
to mandatory locking. Applies only to normal files (not direc­
tories, special devcie files, etc.).

Mandatory file and record locking refers to locking the read or write
permissions while a program is accessing that file. Under advisory
locking, processes are expected to cooperate by not reading or writing
sections of a file unless a lock can be obtained. The system will not
prevent processes from violating these cooperative procedures as it
does with mandatory locking. A file cannot have group execution per­
mission and be able to be locked on execution. In addition, it is not
possible to turn on the set-group-ID and enable a file to be locked on
execution at the same time. The following examples show illegal uses
of chmod and will generate error messages:

chmod g+x,+l filename

chmod g+s,+l filename

A chmod command using absolute mode has the form:

chmod mode filename

where mode is an octal number constructed by performing logical OR
on the following:

4000 Set user ID on execution

20#0 Set group ID on execution if “#” is 7,5,3, or 1 and enable
mandatory locking if “#” is 6,4,2, or 0.

1000 Sets the sticky bit (see chmod(S))

0400 Read by owner

0200 Write by owner

28 March 1991 Page 2

CHMOD (C)

0100 Execute (search in directory) by owner

0040 Read by group

0020 Write by group

0010 Execute (search in directory) by group

0004 Read by others

0002 Write by others

0001 Execute (search in directory) by others

0000 No permissions

Examples
Symbolic Mode

CHMOD (C)

The following command causes advisory locking calls on file to be
promoted to mandatory locking:

chmod +xfile

Multiple symbolic modes may be given, separated by commas, on a
single command line. The following command removes read and
write permission for group and others from file:

chmod go-rw file

The following command gives other users read and write permission
for file:

chmod o+rw file

The following command gives read permission to group and other:

chmod g+r,o+r file

Absolute Mode

The following command gives all users read, write and execute per­
mission for file:

chmod 0777 file

The following command gives read and write permission to all users
for file:

28 March 1991 Page 3

CHMOD (C) CHMOD (C)

chmod 0666 file

The following command gives read and write permission to the owner
of file only:

chmod 0600 file

The following example causes the file to be locked on access:

chmod +1 file

See Also

ls(C), chmod(S), locking(S), lockf(S), fcntl(S)

Notes

The setuid, setgid, and sticky bit settings are only useful for binary
executable files. They have no effect on shell scripts.

28 March 1991 Page 4

CHOWN (C) CHOWN (C)

Name
chown - Changes owner ID.

Syntax
chown owner file ...

Description
chown changes the owner ID of the files to owner. The owner may be
either a decimal user ID or a login name found in the file /etc/passwd.

Files
/etc/passwd

/etc/group

See Also
chgrp(C), chown(S), group(F), passwd(F)

Notes
Only the owner or the super-user can change a file’s owner or group
ID.

28 March 1991 Page 1

CLEAR (C) CLEAR (C)

Name

clear - Clears a terminal screen.

Syntax

clear [term]

Description

The clear command clears the screen. If term is not specified, the ter­
minal type is obtained from the TERM environment variable.

If a video terminal does not have a clear screen capability, newlines
are output to scroll the screen clear. If the terminal is a hardcopy, the
paper is advanced to the top of the next page.

Files

/etc/termcap

See Also

environ(M), termcap(M), tput(C)

Notes

If the standard output is not a terminal, clear issues an error message.

28 March 1991 Page 1

CMCHK (C) CMC HK (C)

Name
cmchk - Reports hard disk block size.

Syntax
cmchk

Description
Reports the hard disk block size (BSIZE) in bytes.

28 March 1991 Page 1

CMP (C) CMP (C)

Name

cmp - Compares two files.

Syntax

cmp [-I] [-s] filel file2

Description

cmp compares two files and, if they are different, displays the byte and
line number of the differences. If filel is -, the standard input is used.

The options are:

-1 Prints the byte number (decimal) and the differing bytes (octal)
for each difference.

-s Returns an exit code only, 0 for identical files, 1 for different
files and 2 for inaccessible or missing file(s).

This command should be used to compare binary files; use diff(C) or
dijß (C) to compare text files.

See Also

comm(C), difl(C), diff3(C)

Diagnostics

Exit code 0 is returned for identical files, 1 for different files, and 2 for
an inaccessible or missing argument.

28 March 1991 Page 1

COMM (C) COMM (C)

Name
comm - Selects or rejects lines common to two sorted files.

Syntax
comm [- [123]] filel file2

Description
comm reads filel and file2, which should be ordered in ASCII collat­
ing sequence (see sort (C)), and produces a three-column output: lines
only in file l; lines only in file! ; and lines in both files. The filename
- means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints only the lines common to the two files; comm -23
prints only lines in the first file but not in the second; comm -123 is a
no-op.

See Also
cmp(C), diff(C), sort(C), uniq(C)

28 March 1991 Page 1

COMPRESS (C) COMPRESS (C)

Name

compress - compress data for storage,
uncompress - uncompress a stored file,
zcat - display a stored file.

Syntax

compress [-dtfFqc] [-b bits] file
uncompress [-fqc] file
zcat file

Description

compress takes a file and compresses it to the smallest possible size,
creates a compressed output file, and removes the original file unless
the -c option is present. Compression is achieved by encoding com­
mon strings within the file, uncompress restores a previously
compressed file to its uncompressed state and removes the
compressed version, zcat uncompresses and displays a file on the stan­
dard output. When zcat is used to display a file, the file is
uncompressed and concatenated on the screen or standard output, and
the compressed version of the file is not removed.

If no file is specified on the command line, input is taken from the
standard input and the output is directed to the standard output. Output
defaults to a file with the same filename as the input file with the suf­
fix “ .Z” or it can be directed through the standard output. The output
files have the same permissions and ownership as the corresponding
input files or the user’s standard permissions if output is directed
through the standard output.

If no space is saved by compression, the output file is not written
unless die -F flag is present on the command line.

Options

The following options are available from the command line:

-d Decompresses a compressed file.

-c Writes output on the standard output and does not remove
original file.

-bbits Specifies the maximum number of bits to use in encoding.

-f Overwrites previous output file.

28 March 1991 Page 1

COMPRESS (C) COMPRESS (C)

-F Writes output file even if compression saves no space,

-q Generates no output except error messages, if any.

See Also
pack(C), pcat(C), ar(C), tar(C), cat(C)

28 March 1991 Page 2

COPY (C) COPY (C)

Name

copy - Copies groups of files.

Syntax

copy [option]... source ... dest

Description

The copy command copies the contents of directories to another direc­
tory. It is possible to copy whole file systems since directories are
made when needed.

If files, directories, or special files do not exist at the destination, then
they are created with the same modes and flags as the source. In addi­
tion, the super-user may set the user and group ID. The owner and
mode are not changed if the destination file exists.

Note that there may be more than one source directory. If so, the
effect is the same as if the copy command had been issued for each
source directory with the same destination directory for each copy.

Options do not have to be given as separate arguments, and may
appear in any order, even after the other arguments. The options are:

-a Asks the user before attempting a copy. If the response does
not begin with a “y”, then a copy is not done.

-1 Uses links instead whenever they can be used. Otherwise a
copy is done. Note that links are never done for special files
or directories.

-n Requires the destination file to be new. If not, then the copy
command does not change the destination file. The -n flag is
meaningless for directories. For special files an -n flag is
assumed (i.e., the destination of a special file must not
exist).

-o If set then every file copied has its owner and group set to
those of the source. If not set, then the file’s owner is the
user who invoked the program.

-m If set, then every file copied has its modification time and
access time set to that of the source. If not set, then the
modification time is set to the time of the copy.

-r If set, then every directory is recursively examined as it is
encountered. If not set then any directories that are found
are ignored.

28 March 1991 Page 1

COPY (C) COPY (C)

-ad Asks the user whether a -r flag applies when a directory is
discovered. If the answer does not begin with a “y”, then
the directory is ignored.

-v If the verbose option is set messages are printed that reveal
what the program is doing.

Arguments to copy are:

source This may be a file, directory or special file. It must exist. If
it is not a directory, then the results of the command are the
same as for the cp command.

dest The destination must be either a file or directory that is
different from the source.

If the source and destination are anything but directories, then copy
acts just like a cp command. If both are directories, then copy copies
each file into the destination directory according to the flags that have
been set.

Examples

This command line verbosely copies all files in the current directory
to /tmp/food:

copy -v . /tmp/food

The next command line copies all files, except for those that begin
with a period (.), and copies the immediate contents of any child
directories:

copy * /tmp/logic

This command is the same as the previous one, except that it recur­
sively examines all subdirectories, and it sets group and ownership
permissions on the destination files to be the same as the source files:

copy -ro * /tmp/logic

Notes

Special device files can be copied. When they are copied, any data
associated with the specified device is not copied.

28 March 1991 Page 2

CP(C) CP(C)

Name

cp - Copies files.

Syntax

cp filel file2

cp files directory

Description

There are two ways to use the cp command. With the first way, filel
is copied to file2. Under no circumstance can filel and file2 be ident­
ical. With the second way, directory is the location of a directory into
which one or more files are copied.

See Also

copy(C), cpio(C), ln(C), mv(C), rm(C), chmod(S)

Notes

Special device files can be copied. If the file is a named pipe, then the
data in the pipe is copied to a regular file. Similarly, if the file is a de­
vice, then the file is read until the end-of-file is reached, and that data
is copied to a regular file. It is illegal to copy a directory to a file.

28 March 1991 Page 1

CPIO (C) CPIO(C)

Name

cpio - Copy file archives in and out.

Syntax

cpio -o [acBvV] [-C bufsize] [[-O file] [-K volumesize] [-M mes­
sage]]

cpio -i [BcdmrtTuvVfsSb6k] [-C bufsize] [[-1 file] [-K volumesize]
[-M message]] [pattem ...]

cpio -p [adlmuvV] directory

Description

cpio -o (copy out) reads the standard input to obtain a list of path
names and copies those files onto the standard output together with
path name and status information. Output is padded to a 512-byte
boundary by default.

NOTE: The following table lists options that are not available on
XENIX-286 distributions:

Options Related options
-o,-p -V
-i -T, -S, -6, -k
Other -K, -I, -M, -C

cpio 4 (copy in) extracts files from the standard input, which is
assumed to be the product of a previous cpio -o. Only files with
names that match patterns are selected, patterns are regular expres­
sions given in the filename-generating notation of sh(C). In patterns,
metacharacters ?, *, and [. . .] match the slash (/) character, and
backslash (\) is an escape character. A ! metacharacter means not.
(For example, the !abc* pattem would exclude all files that begin with
abc.) Multiple patterns may be specified and if no patterns are speci­
fied, the default for patterns is * (i.e., select all files). Each pattern
must be enclosed in double quotes; otherwise the name of a file in the
current directory is used. Extracted files are conditionally created and
copied into the current directory tree based upon the options described
below. The permissions of the files will be those of the previous cpio
-o . The owner and group of the files will be that of the current user
unless the user is super-user, which causes cpio to retain the owner
and group of the files of the previous cpio -o . NOTE: If cpio 4 tries
to create a file that already exists and the existing file is the same age
or newer, cpio will output a warning message and not replace the file.
(The -u option can be used to unconditionally overwrite the existing
file.)

28 March 1991 Page 1

CPIO(C) CPIO (C)

cpio -p (pass) reads the standard input to obtain a list of path names of
files that are conditionally created and copied into the destination
directory tree based upon the options described below. Archives of
text files created by cpio are portable between implementations of
UNIX System V.

The meanings of the available options are:

-a Reset access times of input files after they have been copied.
Access times are not reset for linked files when cpio -pla is
specified.

-b Reverse the order of the bytes within each word. Use only with the
-i option.

-B Input/output is to be blocked 5,120 bytes to the record. The default
buffer size is 512 bytes when this and the -C options are not used.
(-B does not apply to the pass option; -B is meaningful only with
data directed to or from a character-special device, e.g.,
/dev/rfd096dsl5.)

-c Write header information in ASCII character form for portability.
Always use this option when origin and destination machines are
different types.

-C bufsize
Input/output is to be blocked bufsize bytes to the record, where buf­
size is replaced by a positive integer. The default buffer size is 512
bytes when this and -B options are not used. (-C does not apply to
the pass option; -C is meaningful only with data directed to or
from a character-special device, e.g., /dev/rctO.) When used with
the -K option, bufsize is forced to be a IK multiple.

-d directories are to be created as needed.
-f Copy in all files except those in patterns. (See the paragraph on

cpio -/ for a description of patterns.)
-I file

Read the contents of file as input. If file is a character-special de­
vice, when the first medium is full, replace the medium and type a
carriage return to continue to the next medium. Use only with the
-i option.

-k Attempt to skip corrupted file headers and I/O errors that may be
encountered, ff you want to copy files from a medium that is cor­
rupted or out of sequence, this option lets you read only those files
with good headers. (For cpio archives that contain other cpio
archives, if an error is encountered, cpio may terminate prema­
turely. cpio will find the next good header, which may be one for a
smaller archive, and terminate when the smaller archive’s trailer is
encountered.) Used only with the -i option.

-1 Whenever possible, link files rather than copying them. Usable
only with the -p option.

-m
Retain previous file modification time. This option is ineffective
on directories that are being copied.

-K volumesize
Specifies the size of the media volume. Must be in IK blocks. For
example, a 1.2 MB floppy disk has a volumesize of 1200. Must

28 March 1991 Page 2

CPIO (C) CPIO (C)

include the -C option with a bufsize multiple of IK.
-M message

Define a message to use when switching media. When you use the
-O or -I options and specify a character-special device, you can
use this option to define the message that is printed when you
reach the end of the medium. One %d can be placed in the mes­
sage to print the sequence number of the next medium needed to
continue.

-Ofile
Direct the output of cpio to file. If file is a character-special de­
vice, when the first medium is full, replace the medium and type a
carriage return to continue to the next medium. Use only with the
-o option.

-r Interactively rename files. If the user types a null line, the file is
skipped. If the user types a the original pathname will be
copied. (Not available with cpio -p.)

-s swap bytes within each half word. Use only with the -i option.
-S Swap halfwords within each word. Use only with the -i option.
-T Truncate long filenames to 14 characters. Use only with the -i

option.
-t Print a table of contents of the input. No files are created.
-u Copy unconditionally (normally, an older file will not replace a

newer file with the same name).
-v verbose: causes a list of file names to be printed. When used with

the -t option, the table of contents looks like the output of an Is -1
command [see fa(C)].

-V Special Verbose: print a dot for each file seen. Useful to assure the
user that cpio is working without printing out all file names.

-6 Process an old (i.e., UNIX System Sixth Edition format) file. Use
only with the -i option.

NOTE: cpio assumes 4-byte words.

If cpio reaches end of medium (end of a diskette for example) when
writing to (-o) or reading from (-i) a character-special device, and -O
and -I are not used, cpio will print the message:

If you want to go on, type device!file name when ready.

To continue, you must replace the medium and type the character-
special device name (/dev/rfd096dsl5 for example) and a carriage
return. You may want to continue by directing cpio to use a different
device. For example, if you have two floppy drives, you may want to
switch between them so cpio can proceed while you are changing the
floppies. (A carriage return alone causes the cpio process to exit.)

28 March 1991 Page 3

CPIO (C) CPIO (C)

Examples

The following examples show three uses of cpio.
When standard input is directed through a pipe to cpio -o, it groups the
files so they can be directed (>) to a single file (..1 newfile). The -c
option insures that the file will be portable to other machines. Instead
of ls(C), you could use find(C), echo(C), cat(C), etc., to pipe a list of
names to cpio. You could direct the output to a device instead of a
file.

Is | cpio -oc >../newfile
cpio -i uses the output file of cpio -o (directed through a pipe with cat
in the example), extracts those files that match the patterns (memo/al,
memo/b*), creates directories below the current directory as needed
(-d option), and places the files in the appropriate directories. The -c
option is used when the file is created with a portable header. If no
patterns were given, all files from newfile would be placed in the
directory.

cat newfile | cpio -icd "memo!al" "memo!b*"

cpio -p takes the file names piped to it and copies or links (-1 option)
those files to another directory on your machine (newdir in the exam­
ple). The -d options says to create directories as needed. The -m
option says retain the modification time. [It is important to use the
-depth option of find{C) to generate path names for cpio. This elim­
inates problems cpio could have trying to create files under read-only
directories.]

find . -depth -print | cpio -pdlmv newdir

See Also

cat(C), echo(C), find(C), ls(C), tar(C), cpio(F)

Notes

1) Path names are restricted to 256 characters.
2) Only the super-user can copy special files.
3) Blocks are reported in 512-byte quantities.
4) If a file has 000 permissions, contains more than 0 characters of data,

and the user is not root, the file will not be saved or restored.

28 March 1991 Page 4

CRON (C) CRON (C)

Name

cron - Executes commands at specified times.

Syntax

/etc/cron
crontab [file]
crontab -r
crontab -1

Description

cron is the clock daemon that executes commands at specified dates
and times according to the instructions in the files located in
/usr/spool/cron/crontabs. Regularly scheduled commands can be
specified according to instructions found in crontab files; users can
submit their own crontab file via the crontab command. Commands
which are to be executed only once may be submitted via the at(C)
command. Because cron never exits, it should be executed only once.

crontab copies the specified file, or standard input if no file is speci­
fied, into a directory that holds all users’ crontabs. The crontab file in
the crontabs directory is given the user’s login name. The -r option
removes a user’s crontab from the crontab directory, crontab -1 will
list the crontab file for the invoking user.

A user is permitted to use crontab if their name appears in the file
/usr/lib/cron/cron.allow. If that file does not exist, the file
/usr/lib/cron/cron.deny is checked to determine if the user should be
denied access to crontab. If neither file exists, only root is allowed to
submit a job. Global usage is permitted by the existence of an empty
cron.deny file, cron.deny is checked only if cron.allow does not
exist. The allow/deny files consist of one user name per line.

The crontabs files consist of lines of six fields each. The fields are
separated by spaces or tabs. The first five are integer patterns that
specify the minute (0-59), hour (0-23), day of the month (1-31), month
of the year (1-12), and day of the week (0-6, with 0=Sunday). Each of
these patterns may contain:

- A number in the (respective) range indicated above

- Two numbers separated by a minus (indicating an inclusive range)

28 March 1991 Page 1

CRON (C) CRON (C)

- A list of numbers separated by commas (meaning all of these num­
bers)

- An asterisk (meaning all legal values)

Note that the specification of days may be made by two fields (day of
the month and day of the week). If both are specified as a list of ele­
ments, both are adhered to. For example, 0 0 1,15 * 1 would run a
command on the first and fifteenth of each month, as well as on every
Monday. To specify days by only one field, the other field should be
set to * (for example, 0 0 * * 1 would run a command only on Mon­
days).

The sixth field is a string that is executed by the shell at the specified
time(s). A % in this field is translated into a newline character. Only
the first line (up to a % or end-of-line) of the command field is exe­
cuted by the shell. The other lines are made available to the command
as standard input.

The shell is invoked from your $HOME directory with an argO of sh.
Users who desire to have their .profile executed must explicitly do so
in the crontab file, cron supplies a default environment for every
shell, defining HOME, LOGNAME, SHELL (=/bin/sh), and
PATH (=:/bin:/usr/bin).

cron examines the crontabs directory periodically to see if it has
changed; if it has, cron reads it. Thus it takes only a short while for
entries to become effective.

crontab exits and returns a value of 55 if it cannot allocate enough
memory. If it exits for any other reason, it returns a value of 1.

Examples

An example crontabs file follows:

30 4 * * * /etc/sa -s > /dev/null
0 4 * * * calendar -
15 4 * * * find /usr/preserve -rrttime +7 -a -exec rm -f {} ;
40 4 * * * find / -name '#*' -atime +3 -exec rm -f {} ;
1,21,41 * * * * (echo -n ' date; echo) >/dev/console

A history of all actions by cron can be recorded in /usr/lib/cron/log.
This logging occurs only if the variable CRONLOG in
/etc/default/cron is set to YES. By default this value is set to NO and
no logging occurs. If logging should be turned on, be sure to monitor
the size of /usr/lib/cron/log so that it doesn’t unreasonably consume
disk space.

28 March 1991 Page 2

CRON (C) CRON (C)

Files

Aisr/lib/cron
/usr/spool/cron/crontabs/*
/usr/lib/cron/log
/usr/lib/cron/cron.allow
/usr/lib/cron/cron .deny
/usr/lib/cron/.proto
/usr/lib/cron/queuedefs
/etc/default/cron

main cron directory
spool area
accounting information
list of allowed users
list of denied users
cron environment information
cron data file
cron logging default information

See Also

at(C), sh(C), queuedefs(F).

Notes

cron reads the files in the crontabs directory only when there is a
change, but it reads the in-core version of the tables periodically.

Users should remember to redirect the standard output and standard
error of their commands, otherwise any generated output or errors will
be mailed to the user.

crontab will overwrite any previous entry with the same name. To
modify an existing crontab file, use crontab -/ to copy it to a file, edit
the file, then resubmit it with crontab.

28 March 1991 Page 3

CRYPT(C) CRYPT(C)

Name

crypt - Encode/decode.

Syntax

crypt [password]
crypt [-k]

Description

The crypt command reads from the standard input and writes to the
standard output. The password is a key that selects a particular
transformation. If no argument is given, crypt demands a key from the
terminal and turns off printing while the key is being typed in. If the
-k option is used, crypt will use the key assigned to the environment
variable CRYPTKEY. The crypt command encrypts and decrypts with
the same key:

crypt key <clear >cypher
crypt key <cypher | pr

Files encrypted by crypt are compatible with those treated by the edi­
tors ed(C), edit(C), ex(C), and vz(C) in encryption mode.

The security of encrypted files depends on three factors: the funda­
mental method must be hard to solve; direct search of the key space
must be infeasible; “sneak paths” by which keys or clear text can
become visible must be minimized.

The crypt command implements a one-rotor machine designed along
the lines of the German Enigma, but with a 256-element rotor.
Methods of attack on such machines are known, but not widely; more­
over the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, i.e., to take a substantial frac­
tion of a second to compute. However, if keys are restricted to (say)
three lower-case letters, then encrypted files can be read by expending
only a substantial fraction of five minutes of machine time.

If the key is an argument to the crypt command, it is potentially visi­
ble to users executing ps(C) or a derivative. To minimize this possi­
bility, crypt takes care to destroy any record of the key immediately
upon entry. The choice of keys and key security are the most vulner­
able aspect of crypt.

28 March 1991 Page 1

CRYPT(C) CRYPT(C)

Files

/dev/tty for typed key

See Also

ed(C), edit(C), ex(C), makekey(C), ps(C), stty(C), vi(C)

Notes

If two or more files encrypted with the same key are concatenated and
an attempt is made to decrypt the result, only the contents of the first
of the original files will be decrypted correctly.

Distribution of the crypt libraries and utilities is regulated by the U.S.
Government and are not available to sites outside of the United States
and its territories. Because we cannot control the destination of the
software, these utilities are not included in the standard product. If
your site is within the U.S. or its territories, you can obtain the crypt
software through your product distributor or reseller.

28 March 1991 Page 2

CSH (C) CSH (C)

Name

csh - Invokes a shell command interpreter with C-like syntax.

Syntax

csh [-cefinstvVxX] [arg ...]

Description

csh is a command language interpreter. It begins by executing com­
mands from the file .cshrc in the home directory of the invoker. If
this is a login shell, it also executes commands from the file .login
there. In the normal case, the shell begins reading commands from the
terminal, prompting with % . Processing of arguments and the use of
the shell to process files containing command scripts will be described
later.

The shell then repeatedly performs the following actions: a line of
command input is read and broken into words. This sequence of words
is placed on the command history list and then parsed. Finally, each
command in the current line is executed.

When a login shell terminates, it executes commands from the file
.logout in the user’s home directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the fol­
lowing exceptions. The characters &, I,;, <, >, (,), form separate
words. If doubled in &&, I I, « , or » , these pairs form single words.
These parser metacharacters may be made part of other words, or their
special meaning prevented, by preceding them with \ . A newline pre­
ceded by a \ is equivalent to a blank.

In addition, strings enclosed in matched pairs of quotations, ' , ' or ”,
form parts of a word; metacharacters in these strings, including blanks
and tabs, do not form separate words. These quotations have seman­
tics to be described subsequently. Within pairs o f ' or" characters, a
newline preceded by a \ gives a true newline character.

When the shell’s input is not a terminal, the character# introduces a
comment which continues to the end of the input line. It does not
have this special meaning when preceded by\ or placed inside the
quotation marks \ ', or ”

28 March 1991 Page 1

CSH (C) CSH (C)

Commands

A simple command is a sequence of words, the first of which specifies
the command to be executed. A simple command or a sequence of
simple commands separated by I characters forms a pipeline. The out­
put of each command in a pipeline is connected to the input of the
next. Sequences of pipelines may be separated b y a n d are then exe­
cuted sequentially. A sequence of pipelines may be executed without
waiting for it to terminate by following it with a &. Such a sequence
is automatically prevented from being terminated by a hangup signal;
the nohup command need not be used.

Any of the above may be placed in parentheses to form a simple com­
mand (which may be a component of a pipeline, etc.) It is also possi­
ble to separate pipelines with I I or && indicating, as in the C lan­
guage, that the second is to be executed only if the first fails or
succeeds respectively. (See Expressions.)

Substitutions

The following sections describe the various transformations the shell
performs on die input in the order in which they occur.

History Substitutions

History substitutions can be used to reintroduce sequences of words
from previous commands, possibly performing modifications on these
words. Thus, history substitutions provide a generalization of a redo
function.

History substitutions begin with the character! and may begin any­
where in the input stream if a history substitution is not already in
progress. The ! may be preceded by a \ to prevent its special meaning;
a ! is passed unchanged when it is followed by a blank, tab,
newline, =, or (. History substitutions may also occur when an input
line begins with A. This special abbreviation will be described later.

Any input line which contains history substitution is echoed on the
terminal before it is executed as it could have been entered without
history substitution.

Commands input from the terminal which consist of one or more
words are saved on the history list, the size of which is controlled by
the history variable. The previous command is always retained. Com­
mands are numbered sequentially from 1.

28 March 1991 Page 2

CSH (C) CSH (C)

For example, enter the command:

history

Now, consider the following output from the history command:

9 w r i t e m i c h a e l
10 e x w r i t e . c
11 c a t o l d w r i t e . c
12 d i f f * w r i t e . c

The commands are shown with their event numbers. It is not usually
necessary to use event numbers, but the current event number can be
made part of the prompt by placing a ! in the prompt string.

Events can be referred by event number (example: 111), or relatively
(example: !-2), or by prefix of a command word (example: !d for event
12), or by a string (example: !?mic? for event 9). These forms,
without further modification, simply reintroduce the words of the
specified events, each separated by a single blank. As a special
case !! refers to the previous command; thus !! alone is essentially a
redo. The form !# references the current command (the one being
entered). It allows a word to be selected from further left in the line,
to avoid retyping a long name, as in !#:1.

To select words from an event, we can follow the event specification
by a : and a designator for the desired words. The words of an input
line are numbered from 0, the first (usually command) word being 0,
the second word (first argument) being 1, and so on. The basic word
designators are:

0 First (command) word

n nth argument

First argument, i.e. 1

$ Last argument

% Word matched by (immediately preceding) ?s ? search

*-y
Range of words

-y Abbreviates 0-y

* Abbreviates "-$, or nothing if only 1 word in event

x * Abbreviates x -$

28 March 1991 Page 3

CSH (C) CSH (C)

x - Like x * but omitting word $

The : separating the event specification from the word designator can
be omitted if the argument selector begins with a A, $, *, - or %. After
the optional word designator, a sequence of modifiers can be placed,
each preceded by a :. The following modifiers are defined:

h Removes a trailing pathname component

r Removes a trailing .xxx component

sMr I
Substitutes r for /

t Removes all leading pathname components

& Repeats the previous substitution

g Applies the change globally, prefixing the above

p Prints the new command but does not execute it

q Quotes the substituted words, preventing further substitutions

x Like q, but breaks into words at blanks, tabs, and newlines

Unless preceded by a g, the modification is applied only to the first
modifiable word, fn any case it is an error for no word to be applica­
ble.

The left sides of substitutions are not regular expressions in the sense
of the editors, but rather strings. Any character may be used as the de­
limiter in place of /; a \ quotes the delimiter within the / and r strings.
The character & in the right side is replaced by the text from the left.
A \ quotes & also. A null / uses the previous string either from a / or
from a contextual scan string s in lls l. The trailing delimiter in the
substitution may be omitted if a newline follows immediately as may
the trailing ? in a contextual scan.

A history reference may be given without an event specification,
e.g., !$. In this case the reference is to the previous command unless a
previous history reference occurred on the same line in which case
this form repeats the previous reference. Thus !?foo?A!$ gives the first
and last arguments from the command matching ?foo?.

A special abbreviation of a history reference occurs when the first
nonblank character of an input line is a A. This is equivalent to !:sA,
providing a convenient shorthand for substitutions on the text of the
previous line. Thus AlbAlib fixes the spelling of lib in the previous
command. Finally, a history substitution may be surrounded with {
and } if necessary to insulate it from the characters that follow. Thus,
after Is -Id ~paul we might do !{l}a to do Is -Id ~paula, while !la would

28 March 1991 Page 4

CSH(C) CSH (C)

look for a command starting la.

Quotations With ' and "

The quotation of strings by ' and ” can be used to prevent all or some
of the remaining substitutions. Strings enclosed in ' are prevented any
further interpretation. Variable and command expansion occurs in
strings enclosed in M. Since ! substitution occurs before quoting, !
must be escaped with \ within quotes, to prevent history substitution.

In both cases, the resulting text becomes (all or part of) a single word;
only in one special case (see Command Substitution below) does a ”
quoted string yield parts of more than one word; ' quoted strings never
do.

Alias Substitution

The shell maintains a list of aliases which can be established, dis­
played and modified by the alias and unalias commands. After a com­
mand line is scanned, it is parsed into distinct commands and the first
word of each command, left-to-right, is checked to see if it has an
alias. If it does, then the text which is the alias for that command is
reread with the history mechanism available as though that command
were the previous input line. The resulting words replace the com­
mand and argument list. If no reference is made to the history list,
then the argument list is left unchanged.

Thus if the alias for Is is “ Is -1” the command “Is /usr” would map to
“Is -1 /usr”. Similarly if the alias for “ lookup” was
“grep \P /etc/passwd” then “lookup bill” would map to
“grep bill /etc/passwd”.

If an alias is found, the word transformation of the input text is per­
formed and the aliasing process begins again on the reformed input
line. Looping is prevented if the first word of the new text is the same
as the old by flagging it to prevent further aliasing. Other loops are
detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyn­
tax. Thus we can alias print “ 'pr\!* I lpr' ” to make a command that
paginates its arguments to the lineprinter.

There are four csh aliases distributed. These are pushd, popd, swapd,
and flipd. These aliases maintain a directory stack.

pushd dir
Pushes the current directory onto the top of the directory stack,
then changes to the directory dir.

28 March 1991 Page 5

CSH (C) CSH (C)

popd
Changes to the directory at the top of the stack, then removes
(pops) the top directory from the stack, and announces the current
directory.

swapd
Swaps the top two directories on the stack. The directory on the
top becomes the second to the top, and the second to the top direc­
tory becomes the top directory.

flipd
Flips between two directories, the current directory and the top
directory on the stack. If you are currently in dirl,and dir2 is on
the top of the stack, when flipd is invoked, you change to dir2 and dirl is replaced as the top directory on die stack. When flipd is
again invoked, you change to dirl and dir2 is again the top direc­
tory on the stack.

Variable Substitution

The shell maintains a set of variables, each of which has a list of zero
or more words as its value. Some of these variables are set by the
shell or referred to by it. For instance, the argv variable is an image of
the shell’s argument list, and words of this variable’s value are
referred to in special ways.

The values of variables may be displayed and changed by using the set
and unset commands. Of die variables referred to by the shell a num­
ber are toggles; the shell does not care what their value is, only
whether they are set or not. For instance, the verbose variable is a tog­
gle which causes command input to be echoed. The setting of this
variable results from the -v command line option.

Other operations treat variables numerically. The at-sign (@) com­
mand permits numeric calculations to be performed and the result
assigned to a variable. However, variable values are always
represented as (zero or more) strings. For the purposes of numeric
operations, the null string is considered to be zero, and the second and
subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is
executed, variable substitution is performed, keyed by dollar sign ($)
characters. This expansion can be prevented by preceding the dollar
sign with a backslash (\) except within double quotation marks (")
where it always occurs, and within single quotation marks (') where it
never occurs. Strings quoted by back quotation marks (') are inter­
preted later (see Command substitution below) so dollar sign substitu­
tion does not occur there until later, if at all. A dollar sign is passed
unchanged if followed by a blank, tab, or end-of-line.

28 March 1991 Page 6

CSH (C) CSH (C)

Input and output redirections are recognized before variable expan­
sion, and are expanded separately. Otherwise, the command name and
entire argument list are expanded together. It is thus possible for the
first (command) word to generate more than one word, the first of
which becomes the command name, and the rest of which become
arguments.

Unless enclosed in double quotation marks or given the :q modifier,
the results of variable substitution may eventually be subject to com­
mand and filename substitution. Within double quotation marks ("), a
variable whose value consists of multiple words expands to a portion
of a single word, with the words of the variable’s value separated by
blanks. When the :q modifier is applied to a substitution, the variable
expands to multiple words with each word separated by a blank and
quoted to prevent later command or filename substitution.

The following sequences are provided for introducing variable values
into the shell input. Except as noted, it is an error to reference a vari­
able which is not set.

$name
${name}

Are replaced by the words of the value of variable name, each
separated by a blank. Braces insulate name from following
characters which would otherwise be part of it. Shell variables
have names consisting of up to 20 letters, digits, and under­
scores.

If name is not a shell variable, but is set in the environment, then that
value is returned (but: modifiers and the other forms given below are
not available in this case).

$name[selector]
${name[selector]}

May be used to select only some of the words from the value of
name. The selector is subjected to $ substitution and may con­
sist of a single number or two numbers separated by a -. The
first word of a variable’s value is numbered 1. If the first num­
ber of a range is omitted it defaults to 1. If the last member of a
range is omitted it defaults to $#name. The selector * selects all
words. It is not an error for a range to be empty if the second
argument is omitted or in range.

$#name
${#name}

Gives the number of words in the variable. This is useful for
later use in a [selector].

$0 Substitutes the name of the file from which command input is being
read. An error occurs if the name is not known.

28 March 1991 Page 7

CSH (C) CSH (C)

$number
${number}

Equivalent to $argv[number].

$* Equivalent to $argv[*].

The modifiers :h, :t, :r, :q and :x may be applied to the substitutions
above as may :gh, :gt and :gr. If braces { } appear in the command
form then the modifiers must appear within the braces. Only one :
modifier is allowed on each $ expansion.

The following substitutions may not be modified with : modifiers.

$?name
${?name}

Substitutes the string 1 if name is set, 0 if it is not.

$?0 Substitutes 1 if the current input filename is known, 0 if it is not.

$$ Substitutes the (decimal) process number of the (parent) shell.

Command and Filename Substitution

Command and filename substitution are applied selectively to the
arguments of built-in commands. This means that portions of expres­
sions which are not evaluated are not subjected to these expansions.
For commands which are not internal to the shell, the command name
is substituted separately from the argument list. This occurs very late,
after input-output redirection is performed, and in a child of the main
shell.

Command Substitution

Command substitution is indicated by a command enclosed in back
quotation marks (‘). The output from such a command is normally
broken into separate words at blanks, tabs and newlines, with null
words being discarded. This text then replaces the original string.
Within double quotation marks, only newlines force new words;
blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note
that it is possible for a command substitution to yield only part of a
word, even if the command outputs a complete line.

Filename Substitution

If a word contains any of the characters *, ?, [or { or begins with the
character ~, then that word is a candidate for filename substitution,
also known as globbing. This word is then regarded as a pattern, and
is replaced with an alphabetically sorted list of filenames which match
the pattern. In a list of words specifying filename substitution it is an

28 March 1991 Page 8

CSH (C) CSH (C)

error for no pattem to match an existing filename, but it is not required
for each pattem to match. Only the metacharacters *, ?, and [imply
pattern matching. The characters ~ and { are more akin to abbrevia­
tions.

In matching filenames, the character. at the beginning of a filename or
immediately following a /, as well as the character / must be matched
explicitly. The character * matches any string of characters, including
the null string. The character? matches any single character. The
sequence within square brackets [] matches any one of the characters
enclosed. Within square brackets [], a pair of characters separated
by - matches any character lexically between the two.

The character ~ at the beginning of a filename is used to refer to home
directories. Standing alone, it expands to the invoker’s home directory
contained in the variable HOME. When followed by a name consist­
ing of letters, digits and _ characters the shell searches for a user with
that name and substitutes their home directory; thus "ken might
expand to /usr/ken and "ken/chmach to /usr/ken/chmach. If the
character ~ is followed by a character other than a letter or /, or if it
does not appear at the beginning of a word, it is left unchanged.

The metanotation a{b,c,d}e is a shorthand for abe ace ade. Left to
right order is preserved, with results of matches being sorted
separately at a low level to preserve this order. Thus
"source/sl/{oldIs,ls}.c expands to /usr/source/sl/oldls.c
/usr/source/sl/ls.c, whether or not these files exist, assuming that the
home directory for source is /usr/source. Similarly ../{memo,*box}
might expand to ../memo ../box ../mbox. (Note that memo was not
sorted with the results of matching *box.) As a special case {, }
and {} are passed unchanged. This construct can be nested.

Spelling Checker

If the local variable cdspell has been set, the shell checks spelling
whenever you use cd to change directories. For example, if you
change to a different directory using cd and misspell the directory
name, the shell responds with an alternative spelling of an existing
directory. Enter “y” and press RETURN (or just press RETURN) to
change to the offered directory. If the offered spelling is incorrect,
enter “n”, then retype the command line. In this example the csh(C)
response is boldfaced:

cd /u sr /sp o l/u u c p
/ u s r / s p o o l / u u c p ? y
o k

28 March 1991 Page 9

CSH(C) CSH (C)

Input/Output

The standard input and standard output of a command may be
redirected with the following syntax:

< name
Opens file name (after variable, command and filename expan­
sion) as the standard input.

« word
Reads the shell input up to a line which is identical to word.
Word is not subjected to variable, filename or command substi­
tution, and each input line is compared to word before any sub­
stitutions are done on this input line. Unless a quoting
backslash, double, or single quotation mark, or a back quotation
mark appears in word, variable and command substitution is
performed on the intervening lines, allowing \ to quote $, \ and \
Commands which are substituted have all blanks, tabs, and new­
lines preserved, except for the final newline which is dropped.
The resulting text is placed in an anonymous temporary file
which is given to the command as standard input.

> name
>! name
>& name
>&! name

The file name is used as standard output. If the file does not
exist, then it is created; if the file exists, it is overwritten.

If the variable noclobber is set, then an error results if the file
already exists or if it is not a character special file (e.g., a termi­
nal or /dev/null). This helps prevent accidental destruction of
files. In this case, the ! forms can be used to suppress this check.

The forms involving & route the standard error into the
specified file as well as the standard output. Name is expanded
in the same way as < input filenames are.

» name
» & name
» ! name
» & ! name

Uses file name as standard output like > but places output at the
end of the file. If the variable noclobber is set, then it is an error
for the file not to exist unless one of the ! forms is given. Other­
wise similar to >.

If a command is run in the background (followed by &) then the
default standard input for the command is the empty file /dev/null.
Otherwise, the command receives the input and output parameters
from its parent shell. Thus, unlike some previous shells, commands
run from a file o f sh e ll com m ands have no access to the text of the

28 March 1991 Page 10

CSH (C) CSH (C)

commands by default; rather they receive the original standard input
of the shell. The « mechanism should be used to present inline data.
This permits shell command scripts to function as components of pipe­
lines and allows the shell to block read its input.

Standard error can be directed through a pipe with the standard output.
Simply use the form I & rather than just I.

Expressions

A number of the built-in commands (to be described later) take
expressions, in which the operators are similar to those of C, with the
same precedence. These expressions appear in the @, exit, if, and
while commands. The following operators are available:

I I && I ~ & == !=<=>=<> « »

Here the precedence increases to the right, == and !=, <=, >=, <,
and > ,« and » , + and -, * / and % being, in groups, at the same
level. The == and != operators compare their arguments as strings, all
others operate on numbers. Strings which begin with 0 are considered
octal numbers. Null or missing arguments are considered 0. The
result of all expressions are strings, which represent decimal numbers.
It is important to note that no two components of an expression can
appear in the same word unless a word is adjacent to components of
expressions which are syntactically significant to the parser
(& I < > ()), in which case it should be surrounded by spaces.

Also available in expressions as primitive operands are command exe­
cutions enclosed in { and } and file enquiries of the form -/ name
where / is one of:

r Read access
w Write access
X Execute access
e Existence
0 Ownership
z Zero size
f Plain file
d Directory

Command and filename expansion is applied to the specified name,
then the result is tested to see if it has the specified relationship to the
real user. If the file does not exist or is inaccessible then all enquiries
return false, i.e. 0. Command executions succeed, returning true,
i.e. 1, if the command exits with status 0, otherwise they fail, returning
false, i.e. 0.

If more detailed status information is required then the command
should be executed outside of an expression and the variable status
examined.

28 March 1991 Page 11

CSH(C) CSH (C)

Control Flow

The shell contains a number of commands which can be used to regu­
late the flow of control in command files (shell scripts) and (in limited
but useful ways) from terminal input. Due to the implementation,
some restrictions are placed on the word placement for the for each,
switch, and while statements, as well as the if-then-else form of the if
statement. Please pay careful attention to these restrictions in the
descriptions in the next section.

If the shell’s input is not seekable, the shell buffers up input whenever
a loop is being read and performs seeks in this internal buffer to
accomplish the rereading implied by the loop. (To the extent that this
allows, backward goto commands will succeed on nonseekable
inputs.)

Built-In Commands

Built-in commands are executed within the shell. If a built-in com­
mand occurs as any component of a pipeline except the last, then it is
executed in a subshell.

aliasalias name alias name wordlist
The first form prints all aliases. The second form prints the alias
for name. The final form assigns the specified wordlist as the
alias of name; wordlist is a command, and filename substitution
is applied to wordlist. Name is not allowed to be alias or
unalias.

break
Causes execution to resume after the end of the nearest enclos­
ing foreach or while statement. The remaining commands on
the current line are executed. Multilevel breaks are thus possi­
ble by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
This is part of the switch statement discussed below.

cdcd name chdirchdir name
Changes the shell’s working directory to directory name. If no
argument is given, it then changes to the home directory of the
user. If name is not found as a subdirectory of the current direc­
tory (and does not begin with /,./, or../), then each component of
the variable cdpath is checked to see if it has a subdirectory

28 March 1991 Page 12

CSH(C) CSH (C)

name. Finally, if all else fails but name is a shell variable
whose value begins with /, then this is tried to see if it is a direc­
tory.

If cdspell has been set, the shell runs a spelling check as follows. If
the shell is reading its commands from a terminal, and the specified
directory does not exist (or some component cannot be searched),
spelling correction is applied to each component of directory in a
search for the “correct” name. The shell then asks whether or not to
try and change the directory to the corrected directory name; an
answer of n means “no,” and anything else is taken as “yes.”

continue
Continues execution of the nearest enclosing while or foreach.
The rest of the commands on the current line are executed.

default:
Labels the default case in a switch statement. The default
should come after all case labels.

echo wordlist
The specified words are written to the shell’s standard output.
A\c causes the echo to complete without printing a newline.
A\n in wordlist causes a newline to be printed. Otherwise the
words are echoed, separated by spaces.

else
end
endif
endsw

See the description of the foreach, if, switch, and while state­
ments below.

exec command
The specified command is executed in place of the current shell.

exit
exit(expr)

The shell exits either with the value of the status variable (first
form) or with the value of the specified expr (second form).

foreach name (wordlist)

end
The variable name is successively set to each member of
wordlist and the sequence of commands between this command
and the matching end are executed. (Both
foreach namefwordlist) and end must appear alone on separate
lines.)

28 March 1991 Page 13

CSH (C) CSH (C)

The built-in command continue may be used to continue the
loop prematurely and the built-in command break to terminate it
prematurely. When this command is read from the terminal, the
contents of the loop are read by prompting with ? until end is
typed before any statements in the loop are executed.

glob wordlist
Like echo but no \ escapes are recognized and words are delim­
ited by null characters in the output. Useful for programs which
wish to use the shell to apply filename expansion to a list of
words.

goto word
Filename and command expansion is applied to the specified
word to yield a string of the form label:. The shell rewinds its
input as much as possible and searches for a line of the form
label: possibly preceded by blanks or tabs. Execution continues
after the specified line.

history
Displays the history event list,

if (expr) command
If the specified expression evaluates true, then the single com­
mand with arguments is executed. Variable substitution on
command happens early, at the same time it does for the rest of
the if command. Command must be a simple command, not a
pipeline, a command list, or a parenthesized command list.
Input/output redirection occurs even if expr is false, and com­
mand is not executed.

if (expr) then

else if (expr2) then

else

endif
If the specified expr is true then the commands before the first
else are executed; else if expr2 is true then the commands after
the second then and before the second else are executed, etc.
Any number of else-if pairs are possible; only one endif is
needed. The else part is likewise optional. (The words else and
endif must appear at the beginning of input lines; the if (expr)
then must appear alone on its input line or after an else.)

logout
Terminates a login shell. The only way to log out if ignoreeof is
set.

28 March 1991 Page 14

CSH (C) CSH (C)

nice
nice +number
nice command
nice -fnumber command

The first form sets the nice for this shell to 4. By default, com­
mands run under C-Shell have a “nice value” of 0. The second
form sets the nice to the given number. The final two forms run
command at priority 4 and number respectively. The super-user
may specify negative niceness by using “nice -number” The
command is always executed in a subshell, and the restrictions
placed on commands in simple //statements apply.

nohup
nohup command

The first form can be used in shell scripts to cause hangups to be
ignored for the remainder of the script. The second form causes
the specified command to be run with hangups ignored. Unless
the shell is running in the background, nohup has no effect. All
processes running in the background with & are automatically
nohupc d.

onintr
onintr -
onintr label

Controls the action of the shell on interrupts. The first form
restores the default action of the shell on interrupts which is to
terminate shell scripts or to return to the terminal command
input level. The second form, onintr -, causes all interrupts to
be ignored. The final form causes the shell to execute a goto
label when an interrupt is received or a child process terminates
because it was interrupted.

In any case, if the shell is running in the background, interrupts
are ignored whether any form of onintr is present or not.

rehash
Causes the internal hash table of the contents of the directories
in the path variable to be recomputed. This is needed if new
commands are added to directories in the path while you are
logged in.

repeat count command
The specified command, which is subject to the same restric­
tions as the command in the simple if statement above, is exe­
cuted count times. I/O redirection occurs exactly once, even if
count is 0.

set
set name
set name=word

28 March 1991 Page 15

CSH (C) CSH (C)

set name [index]=word set name=(wordlist)
The first form of the command shows the value of all shell vari­
ables. Variables which have other than a single word as value
print as a parenthesized word list. The second form sets name to
the null string. The third form sets name to the single word. The
fourth form sets the indexth component of name to word; this
component must already exist. The final form sets name to the
list of words in wordlist. Command and filename expansion is
applied in all cases.

These arguments may be repeated to set multiple values in a
single set command. Note however, that variable expansion
happens for all arguments before any setting occurs.

setenv name value
Sets the value of the environment variable name to be value,
which must be a single string. Two useful environment vari­
ables are TERM, the type of your terminal and SHELL, the shell
you are using.

shift
shift variable

In the first form, the members of argv are shifted to the left, dis­
carding argv[l]. It is an error for argv not to be set or to have
less than one word as a value. The second form performs the
same function on the specified variable.

source name
The shell reads commands from name. Source commands may
be nested, but if they are nested too deeply, the shell may run
out of file descriptors. An error in a source at any level ter­
minates all nested source commands, including the csh process
from which source was called. If source is called from the login
shell, it is logged out. Input during source commands is never
placed on the history list.

switch (string) case strl:

breaksw
default:

breakswendsw
Command and filename substitution is applied to string. Then
each case label is successively matched against the result. Vari­
able expansion is also applied to the case labels, so the file
metacharacters *, ?, and [...] can be used. If none of the labels
match before a default label is found, then the execution begins
after the default label. Each case label and the default label

28 March 1991 Page 16

CSH (C) CSH (C)

must appear at the beginning of a line. The command breaksw
causes execution to continue after the endsw. Otherwise control
may fall through case labels and default labels, as in C. If no
label matches and there is no default, execution continues after
the endsw.

timetime command
With no argument, a summary of CPU time used by this shell
and its children is printed. If arguments are given, the specified
simple command is timed and a time summary as described
under the time variable is printed. If necessary, an extra shell is
created to print the time statistic when the command completes.
command has the same restrictions as the simple if statement
described above.

umask umask value
The file creation mask is displayed (no arguments) or set to the
specified value (one argument). The mask is given in octal.
Common values for the mask are 002 giving all access to the
group and read and execute access to others, or 022 giving read
and execute access to users in the group and all other users.

unalias pattern
All aliases whose names match the specified pattern are dis­
carded. Thus, all aliases are removed by unalias *. It is not an
error for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of executed pro­
grams is disabled.

unset pattern
All variables whose names match the specified pattern are
removed. Thus, all variables are removed by unset *; this has
noticeably distasteful side-effects. It is not an error for nothing
to be unset.

wait
All child processes are waited for. If the shell is interactive,
then an interrupt can disrupt the wait, at which time the shell
prints names and process numbers of all children known to be
outstanding.

while (expr)

end
While the specified expression evaluates nonzero, the com­
mands between the while and the matching end are evaluated.
Break and continue may be used to terminate or continue the

28 March 1991 Page 17

CSH(C) CSH (C)

loop prematurely. (The while (expr) and end must appear alone
on their input lines.) Prompting occurs here the first time
through the loop as for the foreach statement if the input is a ter­
minal.

@
@ name = expr
@ name [index] = expr

The first form prints the values of all the shell variables. The
second form sets the specified name to the value of expr. If the
expression contains <,>, & or I then at least this part of the
expression must be placed within (). The third form assigns the
value of expr to the indexth argument of name. Both name and
its indexth component must already exist.

The operators *=, +=, etc. are available as in C. The space
separating the name from the assignment operator is optional.
Spaces are mandatory in separating components of expr which
would otherwise be single words. The space between® and
name is also mandatory.

Special postfix++ and-- operators increment and decrement
name respectively, i.e. @ i++.

Predefined Variables

The following variables have special meaning to the shell. Of these,
argv, child, home, path, prompt, shell and status are always set by the
shell. Except for child and status this setting occurs only at initializa­
tion; these variables will not be modified unless done explicitly by the
user.

The shell copies the environment variable PATH into the variable
path, and copies the value back into the environment whenever path is
set. Thus it is not necessary to worry about its setting other than in the
file .login because inferior csh processes will import the definition of
path from the environment.

argv Set to the arguments to the shell, it is from this vari­
able that positional parameters are substituted,
i.e., $1 is replaced by $argv[l], etc. argv[0] is not
defined, but $0 is.

cdpath Gives a list of alternate directories searched to find
subdirectories in cd commands.

child The process number of the last command forked
with&. This variable is unset when this process
terminates.

28 March 1991 Page 18

CSH (C)

echo

histchars

history

home

ignoreeof

mail

noclobber

28 March 1991

CSH (C)

Set when the -x command line option is given.
Causes each command and its arguments to be
echoed just before it is executed. For nonbuilt-in
commands all expansions occur before echoing.
Built-in commands are echoed before command and
filename substitution, since these substitutions are
then done selectively.

Can be assigned a two-character string. The first
character is used as a history character in place o f !,
the second character is used in place of the ~ substi­
tution mechanism. For example, set histchars=",;"
will cause the history characters to be comma and
semicolon.

Can be given a numeric value to control the size of
the history list. Any command which has been
referenced in this many events will not be dis­
carded. A history that is too large may run the shell
out of memory. The last executed command is
always saved on the history list.

The home directory of the invoker, initialized from
the environment. The filename expansion of ~
refers to this variable.

If set, the shell ignores end-of-file from input de­
vices that are terminals. This prevents a shell from
accidentally being terminated by pressing Ctrl-D.

The files where the shell checks for mail. This
check is executed after each command completion.
The shell responds with, “You have new mail” if
the file exists with an access time not greater than
its modify time.

If the first word of the value of mail is numeric, it
specifies a different mail checking interval: in
seconds, rather than the default, which is 10
minutes.

If multiple mail files are specified, then the shell
responds with “New mail in name”, when there is
mail in the file name.

As described in the section Input!Output, restric­
tions are placed on output redirection to insure that
files are not accidentally destroyed, and that »
redirections refer to existing files.

Page 19

CSH{ C)

noglob

nonomatch

path

prompt

shell

status

28 March 1991

CSH(C)

If set, filename expansion is inhibited. This is most
useful in shell scripts which are not dealing with
filenames, or after a list of filenames has been
obtained and further expansions are not desirable.

If set, it is not an error for a filename expansion to
not match any existing files; rather, the primitive
pattern is returned. It is still an error for the primi­
tive pattern to be malformed, i.e., echo [still gives
an error.

Each word of the path variable specifies a directory
in which commands are to be sought for execution.
A null word specifies the current directory. If there
is no path variable, then only full pathnames will
execute. The usual search path is /bin, /usr/bin,
and ., but this may vary from system to system. For
the super-user, the default search path is /etc, /bin
and /usr/bin. A shell which is given neither the -c
nor the -t option will normally hash the contents of
the directories in the path variable after reading
.cshrc, and each time the path variable is reset. If
new commands are added to these directories while
the shell is active, it may be necessary to give the
rehash command, or the commands may not be
found.

The string which is printed before reading each
command from an interactive terminal input. If a !
appears in the string, it will be replaced by the
current event number unless a preceding \ is given.
Default is % , or # for the super-user.

The file in which the shell resides. This is used in
forking shells to interpret files which have execute
bits set, but which are not executable by the system.
(See the description of Nonbuilt-In Command Exe­
cution below.) Initialized to the home of the shell.

The status returned by the last command. If it ter­
minated abnormally, then 0200 is added to the
status. Built-in commands which fail return exit
status 1, otherwise these commands set status to 0.

Page 20

CSH (C) CSH(C)

time Controls automatic timing of commands. If set,
then any command which takes more than this
many cpu seconds will cause a line to be sent to the
screen displaying user time, system time, real time,
and a utilization percentage which is the ratio of
user plus system times to real time.

verbose Set by the -v command line option, causes the
words of each command to be printed after history
substitution.

Nonbuilt-In Command Execution

When a command to be executed is not a built-in command, the shell
attempts to execute the command via exec{S). Each word in the vari­
able path names a directory from which the shell will attempt to exe­
cute the command. If it is given neither a -c nor a -t option, the shell
will hash the names in these directories into an internal table so that it
will only try an exec in a directory if there is a possibility that the
command resides there. This greatly speeds command location when
a large number of directories are present in the search path. If this
mechanism has been turned off (via unhash), or if the shell was given a
-c or -t argument, and for each directory component of path which
does not begin with a /, the shell concatenates each directory com­
ponent of path with the given command name to form a pathname of a
file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus
(cd; pwd); pwd

prints the home directory but leaves you in the original directory,
while

cd; pwd
moves you to the home directory.

If the file has execute permissions but is not an executable binary to
the system, then it is assumed to be a file containing shell commands
and a new shell is spawned to read it.

If there is an alias for shell then the words of the alias are prepended
to the argument list to form the shell command. The first word of the
alias should be the full pathname of the shell (e.g. $shell). Note that
this is a special, late occurring, case of alias substitution, and only
allows words to be prepended to the argument list without
modification.

28 March 1991 Page 21

CSH (C) CSH (C)

Argument List Processing

If argument 0 to the shell is - then this is a login shell. The flag argu­
ments are interpreted as follows:

-c Commands are read from the (single) following argument which
must be present. Any remaining arguments are placed in argv.

-e The shell exits if any invoked command terminates abnormally
or yields a nonzero exit status.

-f The shell will start faster, because it will neither search for nor
execute commands from the file .cshrc in the invoker’s home
directory.

-i The shell is interactive and prompts for its top-level input, even
if it appears to not be a terminal. Shells are interactive without
this option if their input and output are terminals.

-n Commands are parsed, but not executed. This may aid in syn­
tactic checking of shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A \ may be used to
escape the newline at the end of this line and continue onto
another line.

-v Causes the verbose variable to be set, with the effect that com­
mand input is echoed after history substitution.

-x Causes the echo variable to be set, so that commands are echoed
immediately before execution.

-V Causes the verbose variable to be set even before .cshrc is exe­
cuted.

-X Causes the echo variable to be set even before .cshrc is exe­
cuted.

After processing the flag arguments, if arguments remain but none of
the -c, -i, -s, or -t options were given, the first argument is taken as the
name of a file of commands to be executed. The shell opens this file,
and saves its name for possible resubstitution by $0. On a typical sys­
tem, most shell scripts are written for the standard shell (see sh(C)).
The C shell will execute such a standard shell if the first character of
the script is not a # (i.e. if the script does not start with a comment).
Remaining arguments initialize the variable argv.

28 March 1991 Page 22

CSH (C) CSH (C)

Signal Handling

The shell normally ignores quit signals. The interrupt and quit signals
are ignored for an invoked command if the command is followed
by &; otherwise the signals have the values which the shell inherited
from its parent. The handling of interrupts can be controlled by
onintr. By default, login shells catch the terminate signal; otherwise
this signal is passed on to children from the state in the shell’s parent.
In no case are interrupts allowed when a login shell is reading the file
.logout.

Files

7.cshrc Read at by each shell at the beginning
of execution

/etc/cshrc Systemwide default cshrc file

7.1ogin Read by login shell, after .cshrc at login

7.1ogout Read by login shell, at logout

/bin/sh Shell for scripts not starting with a #

/tmp/sh* Temporary file for «

/dev/null Source of empty file

/etc/passwd Source of home directories for ~name

Limitations
Words can be no longer than 512 characters. The number of argu­
ments to a command which involves filename expansion is limited to
1/6 the number of characters allowed in an argument list, which is
5120, less the characters in the environment. The length of any argu­
ment of a command after filename expansion cannot exceed 159 char­
acters. Also, command substitutions may substitute no more charac­
ters than are allowed in an argument list.

To detect looping, the shell restricts the number of alias substitutions
on a single line to 20.

See Also

access(S), exec(S), fork(S), pipe(S), signal(S), umask(S), wait(S),
a.out(F), environ(M)

28 March 1991 Page 23

CSH (C) CSH (C)

Credit
This Utility was developed at the University of California at Berkeley
and is used with permission.

Notes
Built-in control structure commands like foreach and while cannot be
used with I, & or

Commands within loops, prompted for by ?, are not placed in the his­
tory list.

It is not possible to use the colon (:) modifiers on the output of com­
mand substitutions.

The C-shell has many built-in commands with the same name and
functionality as Bourne shell commands. However, the syntax of
these C-shell and Bourne shell commands often differs. Two examples
are the nice and echo commands. Be sure to use the correct syntax
when working with these built-in C-shell commands.

When a C-shell user logs in, the system reads and executes commands
in /etclcshrc before executing commands in the user’s $HOME/.cshrc
and $HOME/login. You can, therefore, modify the C-shell environ­
ment for all users on the system by editing /etclcshrc.

During intervals of heavy system load, pressing the delete key while
at a C-shell prompt (%) may cause the shell to exit. If csh is the login
shell, the user is logged out.

csh attempts to import and export the PATH variable for use with reg­
ular shell scripts. This only works for simple cases, where the PATTI
contains no meta-characters.

28 March 1991 Page 24

CSPLIT (C) CSPLIT (C)

Name

csplit - Splits files according to context.

Syntax

csplit [-s] [-k] [-f prefix] file argl [. . . argn]

Description

csplit reads file and separates it into n+1 sections, defined by the
arguments argl. . . argn. By default the sections are placed in xxOO
. . . xxn (n may not be greater than 99). These sections get the fol­
lowing pieces of file:

00: From the start of file up to (but not including) the line refer­
enced by arg l.

01: From the line referenced by argl up to the line referenced by
arg2.

n+1: From the line referenced by argn to the end of file.

The options to csplit are:

-s csplit normally prints the character counts for each file creat­
ed. If the -s option is present, csplit suppresses the printing
of all character counts.

-k csplit normally removes created files if an error occurs. If
the -k option is present, csplit leaves previously created files
intact.

-f prefix If the -f option is used, the created files are named prefix00
. . . prefixn. The default is xxOO . . . xxn.

The arguments (argl . . . argn) to csplit can be a combination of the
following:

Irexpl A file is to be created for the section from the current line up
to (but not including) the line containing the regular expres­
sion rexp. The current line becomes the line containing
rexp. This argument may be followed by an optional +or -
some number of lines (e.g., /Page/-5).

%rexp% This argument is the same as Irexpl, except that no file is
created for the section.

28 March 1991 Page 1

CSPLIT (C) C SPLIT (C)

Inno A file is to be created from the current line up to (but not
including) Inno. The current line becomes Inno.

{num} Repeat argument. This argument may follow any of the
above arguments. If it follows a rexp type argument, that
argument is applied num more times. If it follows Inno, the
file will be split every Inno lines (num times) from that
point.

Enclose all rexp type arguments that contain blanks or other charac­
ters meaningful to the shell in the appropriate quotation marks. Regu­
lar expressions may not contain embedded newlines, csplit does not
affect the original file; it is the user’s responsibility to remove it.

Examples

csplit-f cobol file "/procedure division/' /par5./ /pari6./

This example creates four files, cobolOO . . . cobol03. After editing
the “split” files, they can be recombined as follows:

cat cobol0[0-3] > file

Note that this example overwrites the original file,

csplit-k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines.
The -k option causes the created files to be retained if there are less
than 10,000 lines; however, an error message would still be printed.

csplit-k prog.c "%main(%" T }/+1' {20}

Assuming that prog.c follows the normal C coding convention of end­
ing routines with a } at the beginning of the line and that main() is the
first function in proc.c this example will create a file containing each
separate C routine (up to 21) in prog.c.

See Also

ed(C), sh(C), regex(S)

Diagnostics

Self-explanatory except for “arg - out of range,” which means that the
given argument did not reference a line between the current position
and the end of the file.

28 March 1991 Page 2

CT{ C) CT (C)

Name
ct - spawn getty to a remote terminal

Syntax
ct [-wn] [-xn] [-h] [-v] [-sspeed] telno ...

Description
ct dials the telephone number of a modem that is attached to a termi­
nal, and spawns a getty process to that terminal. Telno is a telephone
number, with equal signs for secondary dial tones and minus signs for
delays at appropriate places. (The set of legal characters for telno is 0
thru 9, -, =, *, and #. The maximum length telno is 58 characters). If
more than one telephone number is specified, ct will try each in suc­
cession until one answers; this is useful for specifying alternate dial­
ing paths.

ct will try each ACU line listed in the file /usr/lib/uucp/Devices until
it finds an available line with appropriate attributes or runs out of
entries. If there are no free lines, ct will ask if it should wait for one,
and if so, for how many minutes it should wait before it gives up. ct
will continue to try to open the dialers at one-minute intervals until
the specified limit is exceeded. The dialogue may be overridden by
specifying the -w/z option, where n is die maximum number of
minutes that ct is to wait for a line.

The -xn option is used for debugging; it produces a detailed output of
the program execution on stderr. The debugging level, /z, is a single
digit; -x9 is the most useful value. If the -v option is used, ct will
send a running narrative to the standard error output stream.

Normally, ct will hang up the current line, so the line can answer the
incoming call. The -h option will prevent this action. The -h option
will also wait for the termination of the specified ct process before
returning control to the user’s terminal.

The data rate may be set with the -s option, where speed is expressed
in baud. The default rate is 1200.

After the user on the destination terminal logs out, ct prompts, Recon­nect? If the response does not begin with the letter y, the line will be
dropped; otherwise, getty will be started again and the login: prompt
will be printed.

To log out properly, the user must type control D.

28 March 1991 Page 1

CT(C) CT (C)

Of course, the destination terminal must be attached to a modem that
can answer the telephone.

Files
/usr/lib/uucp/De v ices /usr/lib/uucp/LCK. .(tty-device)
/usr/adm/ctlog

See Also
cu(C), login(M), uucp(C), getty(M).

Notes
In hangup mode (-h not specified), when a suitable dialer has been
allocated, ct prompts “Proceed to hang-up?” If the response does not
begin with the letter y, the program simply exits. If you are logged in
on a computer through a local terminal and you want to connect a
remote terminal to the computer, you should use nohup with ct to
accomplish this:

nohup ct -h -sspeed phone

After the command is executed, a login prompt is displayed on the
remote terminal. The user can then log in and work on the computer
just as on a local terminal.

28 March 1991 Page 2

CU(C) CU(C)

Name

cu - Call another XENIX/UNIX system.

Syntax

cu [-sspeed] [-lline] [-h] [-t] [-xn] [-o I -e I -oe] [-n] telno
cu [-s speed] [-h] [-xn] [[-o I -e I -oe] -1 line [dir]
cu [-h] [-xn] [-o I -e I -oe] systemname

Description

cu calls up another UNIX system, a terminal, or possibly a non-UNIX
system. It manages an interactive conversation with possible transfers
of ASCII files.
cu accepts the following options and arguments:

-sspeed Specifies the transmission speed (150, 300, 600, 1200,
2400, 4800, 9600, 19200, 38400). The default value is
“Any” speed which will depend on the order of the
lines in the /usr/lib/uucp/Devices file. A speed range
can also be specified (for example, -si200-4800).

-1 line Specifies a device name to use as the communication
line. This can be used to override the search that would
otherwise take place for the first available line having
the right speed. When the -I option is used without the
-s option, the speed of a line is taken from the Devices
file. When the -1 and -s options are both used together,
cu will search the Devices file to check if the requested
speed for the requested line is available. If so, the con­
nection will be made at the requested speed; otherwise
an error message will be printed and the call will not be
made. The specified device is generally a directly con­
nected asynchronous line (e.g., /dev/ttyab) in which
case a telephone number {telno) is not required. The
specified device need not be in the /dev directory. If
the specified device is associated with an auto dialer, a
telephone number must be provided. Use of this option
with systemname rather than telno will not give the
desired result (see systemname below).

-h Emulates local echo, supporting calls to other computer
systems which expect terminals to be set to half-duplex
mode.

-t Used to dial an ASCII terminal which has been set to
auto answer. Appropriate mapping of carriage-return to
carriage-return-line-feed pairs is set.

28 March 1991 Page 1

CU(C) a / (C)

-x« Causes diagnostic traces to be printed; it produces a
detailed output of the program execution on stderr. The
debugging level, n, is a single digit; -x9 is the most
useful value.

-n For added security, will prompt the user to provide the
telephone number to be dialed rather than taking it
from the command line.

telno When using an automatic dialer, the argument is the
telephone number with equal signs for secondary dial
tone or minus signs placed appropriately for delays of 4
seconds.

systemname A UUCP system name may be used rather than a tele­
phone number. In this case, cu will obtain an appropri­
ate direct line or telephone number from
/usr/lib/uucp/Systems. Note: the systemname option
should not be used in conjunction with the -1 and -s
options as cu will connect to the first available line for
the system name specified, ignoring the requested line
and speed.

dir The keyword dir can be used with cu -1 line, in order to
talk directly to a modem on that line, instead of talking
to another system via that modem. This can be useful
when debugging or checking modem operation. Note:
only users with write access to the Devices file are per­
mitted to use cu -1 line dir.

In addition, cu uses the following options to determine communica­
tions settings:

-o If the remote system expects or sends 7-bit with odd parity.

-e If the remote system expects or sends 7-bit with even parity.

-oe
If the remote system expects or sends 7-bit, ignoring parity and
sends 7-bit with either parity.

By default, cu expects and sends 8-bit characters without parity. If the
login prompt received appears to contain incorrect 8-bit characters, or
a correct login is rejected, use the 7-bit options described above.

After making the connection, cu runs as two processes: the transmit
process reads data from the standard input and, except for lines begin­
ning with ”, passes it to the remote system; the receive process accepts
data from the remote system and, except for lines beginning with ”,
passes it to the standard output. Normally, an automatic XON/XOFF
protocol is used to control input from the remote so the buffer is not
overrun. Lines beginning with ” have special meanings.

28 March 1991 Page 2

CU(C) CU(C)
The transmit process interprets the following user initiated com­
mands:

terminate the conversation.

escape to an interactive shell on the local sys­
tem.

~lcmd... run cmd on the local system (via sh -c).
~$cmd... run cmd locally and send its output to the

remote system.

~+cmd... runs cmd on the local system (via sh -c), with
both standard input and standard output of
cmd redirected to the remote system.

~%cd change the directory on the local system.
Note: !cd will cause the command to be run
by a sub-shell, probably not what was
intended.

~%take from [to] copy file from (on the remote system) to file
to on the local system. If to is omitted, the
from argument is used in both places.

~%put from [to] copy file from (on local system) to file to on
remote system. If to is omitted, the from
argument is used in both places.

For both '%take and ~%put commands, as
each block of the file is transferred, consecu­
tive single digits are printed to the terminal.

" line send the line “line to the remote system.

break transmit a BREAK to the remote system
(which can also be specified as ~%b).

~% debug toggles the -x debugging level between 0 and 9 (which can also be specified as ”%d).
"t prints the values of the termio structure vari­

ables for the user’s terminal (useful for
debugging).

'1 prints the values of the termio structure vari­
ables for the remote communication line
(useful for debugging).

28 March 1991 Page 3

CU(C) CU(C)

”%nostop toggles between XON/XOFF input control
protocol and no input control. This is useful
in case the remote system is one which does
not respond properly to the DC3 and DC1
characters.

The receive process normally copies data from the remote system to
its standard output. Internally the program accomplishes this by ini­
tiating an output diversion to a file when a line from the remote begins
with Data from the remote is diverted (or appended, if » is used)
to file on the local system. The trailing "> marks the end of the diver­
sion.

The use of "%put requires stty (C) and cat{C) on the remote side. It
also requires that the current erase and kill characters on the remote
system be identical to these current control characters on the local
system. Backslashes are inserted at appropriate places.

The use of ~%take requires the existence of echo(S) and cat(C) on the
remote system. Also, tabs mode (See stty(C)) should be set on the
remote system if tabs are to be copied without expansion to spaces.
These commands must be executed at a shell prompt on the remote
system.

When cu is used on systeml to connect to system.2 and subsequently
used on systeml to connect to system!, commands on system2 can be
executed by using Executing a tilde command reminds the user of
the local system uname. For example, uname can be executed on sys­
tems 1,2, and 3 as follows:

uname
system3
~sy stem 1! uname
systeml
~~system2! uname
system2

In general, " causes the command to be executed on the original ma­
chine, ~~ causes the command to be executed on the next machine in
the chain.

Examples

To dial a system whose telephone number is 9 201 555 1212 using
1200 baud (where dialtone is expected after the 9):

cu -si200 9=12015551212

If the speed is not specified, “Any” is the default value.

28 March 1991 Page 4

CU (C) CU(C)

To login to a system connected by a direct line:

cu -1 /dev/ttyXX

or

cu -1 ttyXX

To dial a system with the specific line and a specific speed:

cu -si200 -1 ttyXX

To dial a system using a specific line associated with an auto dialer:

cu -1 ttyXX 9=12015551212

To use a system name:

cu systemname

To talk directly to an ACU (connect directly with the modem and
enter modem commands manually):

cu -IttyXX dir

Files

/usr/lib/uucp/Systems
/usr/lib/uucp/Devices /usr/lib/uucp/LCK. .(tty-device)

See Also

cat(C), ct(C), echo(S), stty(C), uucp(C), uname(C)

Diagnostics

Exit code is zero for normal exit, otherwise, one.

28 March 1991 Page 5

CU(C) CU(C)
Warnings

The cu command does not do any integrity checking on data it
transfers. Data fields with special cu characters may not be transmit­
ted properly. Depending on the interconnection hardware, it may be
necessary to use a to terminate the conversion even if stty 0 has
been used. Non-printing characters are not dependably transmitted
using either the “%put or "%take commands.

Notes

There is an artificial slowing of transmission by cu during the ~%put
operation so that loss of data is unlikely.

28 March 1991 Page 6

DATE(C) DATE (C)

Name

date - Prints and sets the date.

Syntax

date [mmddhhmm [yy]] [+format]

Description

If no argument is given, or if the argument begins with +, the current
date and time are printed as defined by the locale. Otherwise, the
current date is set. The first mm is the month number, dd is the day
number in the month; hh is the hour number (24-hour system); the
second mm is the minute number, yy is the last 2 digits of the year
number and is optional. For example:

date 10080045

sets the date to Oct 8,12:45 AM, if the local language is set to English.
The current year is die default if no year is mentioned. The system
operates in GMT. date takes care of the conversion to and from local
standard and daylight time.

If the argument begins with +, the output of date is under the control
of the user. The format for die output is similar to that of the first
argument to printf(S). All output fields are of fixed size (zero padded
if necessary). Each field descriptor is preceded by a percent sign (%)
and will be replaced in the output by its corresponding value. A single
percent sign is encoded by doubling the percent sign, i.e., by specify­
ing All other characters are copied to die output without
change. The string is always terminated with a newline character.

Field Descriptors:

n Inserts a newline character

t Inserts a tab character

m Month of year - 01 to 12

d Day of month-01 to 31

y Last 2 digits of year - 00 to 99

D Date as mm/dd/yy

H Hour - 00 to 23

28 March 1991 Page 1

DATE{C) DATE(C)

M Minute - 00 to 59

S Second - 00 to 59

T Time as HH:MM:SS

j Julian date - 001 to 366

w Day of the week - Sunday = 0

a Abbreviated weekday - Sun to Sat

h Abbreviated month - Jan to Dec

r Time in AM/PM notation

Example

The line

date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

generates output similar to this:

DATE: 0 8 / 0 1 / 9 0
TIM E: 1 4 : 4 5 : 0 5

Diagnostics

no permission You aren’t the super-user and you are trying to
change the date.

bad conversion The date set is syntactically incorrect.

bad format character The field descriptor is not recognizable.

28 March 1991 Page 2

DC (C) DC (C)

Name

dc - Invokes an arbitrary precision calculator.

Syntax

dc [file]

Description

dc is an arbitrary precision arithmetic package. Ordinarily it operates
on decimal integers, but you may specify an input base, output base,
and a number of fractional digits to be maintained. The overall struc­
ture of dc is a stacking (reverse Polish) calculator. If an argument is
given, input is taken from that file until its end, then from the standard
input. The following constructions are recognized:

number
The value of the number is pushed on the stack. A number is
an unbroken string of the digits 0-9. It may be preceded by an
underscore (_) to input a negative number. Numbers may con­
tain decimal points.

+ ■ / * %
The top two values on the stack are added (+), subtracted (-),
multiplied (*), divided (/), remaindered (%), or exponentiated
Q. The two entries are popped off the stack; the result is
pushed on the stack in their place. Any fractional part of an
exponent is ignored.

sx The top of the stack is popped and stored into a register named
x, where x may be any character. If the s is capitalized, x is
treated as a stack and the value is pushed on it.

\x The value in register x is pushed on the stack. The register x is
not altered. All registers start with zero value. If the 1 is capi­
talized, register x is treated as a stack and its top value is
popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains
unchanged.

P Interprets the top of the stack as an ASCII string, removes it,
and prints it.

f All values on the stack are printed.

28 March 1991 Page 1

DC (C) DC (C)

q Exits the program. If executing a string, the recursion level is
popped by two. If q is capitalized, the top value on the stack is
popped and the string execution level is popped by that value.

x Treats the top element of the stack as a character string and
executes it as a string of dc commands.

X Replaces the number on the top of the stack with its scale fac­
tor.

[...] Puts the bracketed ASCII string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and compared.
Register x is evaluated if they obey the stated relation.

v Replaces the top element on the stack by its square root. Any
existing fractional part of the argument is taken into account,
but otherwise the scale factor is ignored.

! Interprets the rest of the line as a XENIX command.

c All values on the stack are popped.

i The top value on the stack is popped and used as the number
radix for further input.

I Pushes the input base on the top of the stack.

o The top value on the stack is popped and used as the number
radix for further output.

O Pushes the output base on the top of the stack.

k The top of the stack is popped, and that value is used as a non­
negative scale factor; the appropriate number of places are
printed on output, and maintained during multiplication, divi­
sion, and exponentiation. The interaction of scale factor, input
base, and output base will be reasonable if all are changed
together.

z The stack level is pushed onto the stack.

Z Replaces the number on the top of the stack with its length.

? A line of input is taken from the input source (usually the ter­
minal) and executed.

; : Used by be for array operations.

28 March 1991 Page 2

DC (C) DC (C)

Example
This example prints the first ten values of n!:

[la 1 +dsa *pla 10>y] sy
Osal
lyx

See Also
bc(C)

Diagnostics
x is unimplemented The octal number x corresponds to a character

that is not implemented as a command

stack empty Not enough elements on the stack to do what
was asked

Out of space The free list is exhausted (too many digits)

Out of headers Too many numbers being kept around

Out of pushdown Too many items on the stack

Nesting Depth Too many levels of nested execution

Notes
be is a preprocessor for dc, providing infix notation and a C-like syn­
tax which implements functions and reasonable control structures for
programs. For interactive use, be is preferred to dc .

28 March 1991 Page 3

DD (C) DD(C)

Name

dd - Converts and copies a file.

Syntax

dd [option=value] ...

Description

dd copies the specified input file to the specified output with possible
conversions. TTie standard input and output are used by default. The
input and output block size may be specified to take advantage of raw
physical I/O.

Option Value

if=file Input filename; standard input is default

of =file Output filename; standard output is default

\bs=n Input block size n bytes (default is 1024)

obs=n Output block size (default is 1024)

bs=n Sets both input and output block size, superseding ibs
and obs; also, if no conversion is specified, it is par­
ticularly efficient since no in-core copy needs to be
done

cbs-n Conversion buffer size

skip=n Skips n input records before starting copy

seek=A2 Seeks n records from beginning of output file before
copying

counts Copies only n input records

conv=ascii Converts EBCDIC to ASCII

conv=ebcdic Converts ASCII to EBCDIC

conv=ibm Slightly different map of ASCII to EBCDIC

conv=lcase Maps alphabetics to lowercase

28 March 1991 Page 1

DD (C) DD(C)

Option

conv=ucase

conv=swab

conv=sync

Value

Maps alphabetics to uppercase

Swaps every pair of bytes

Pads every input record to ibs

conv=".
Several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number
may end with k, b, or w to specify multiplication by 1024, 512, or 2
respectively; a pair of numbers may be separated by x to indicate a
product.

Cbs is used only if ascii or ebcdic conversion is specified. In the
former case cbs characters are placed into the conversion buffer, con­
verted to ASCII, and trailing blanks trimmed and newline added before
sending the line to the output. In the latter case ASCII characters are
read into the conversion buffer, converted to EBCDIC, and blanks
added to make up an output record of size cbs.

After completion, dd reports the number of whole and partial input
and output blocks.

Examples

This command reads an EBCDIC tape, blocked ten 80-byte EBCDIC
card images per record, into the ASCII file outfile:

dd if=/dev/rctO of=outfile ibs=800 cbs=80 conv=ascii,lease

dd is especially suited to I/O on raw physical devices because it
allows reading and writing in arbitrary record sizes.

See Also

copy(C), cp(C), tar(C)

Diagnostics

f+p records in(out) Numbers of full and partial records
read(written)

28 March 1991 Page 2

DD (C) DD (C)

Notes

The ASCII/EBCDIC conversion tables are taken from the 256-
character standard in the CACM Nov, 1968. The ibm conversion cor­
responds better to certain IBM print train conventions. There is no
universal solution.

Newlines are inserted only on conversion to ASCII; padding is done
only on conversion to EBCDIC.

When using dd with a raw device, specify the block size as a multiple
of IK. For example, to use a 9K block size, enter:

dd if=file of=/dev/rfdO bs=18b

You could also enter:

dd if=file of=/dev/rfdO bs=9K

28 March 1991 Page 3

DEVNM (C) DEVNM (C)

Name

devnm - Identifies device name.

Syntax

/etc/devnm [names]

Description

Devnm identifies the special file associated with the mounted file sys­
tem where the argument name resides.

This command is most commonly used by /etc/rc to construct a mount
table entry for the root device.

Examples

Be sure to type full pathnames in this example:

/etc/devnm /u

If /dev/hdl is mounted on /u, this produces:

hdl /u

Files

/dev/* Device names

/etc/rc XENIX startup commands

See Also

setmnt(ADM)

28 March 1991 Page 1

DF (C) D F(C)

Name

df - Report number of free disk blocks.

Syntax

df [-t] [-f] [-v -i] [filesystems]

Description

df prints out the number of free blocks and free inodes available for
on-line filesystems by examining the counts kept in the super-blocks;
filesystems may be specified by device name (e.g., /dev/root). If the
filesystems argument is unspecified, the free space on all of the
mounted filesystems is sent to the standard output. The list of
mounted file systems is given in /etc/mnttab.

Options include:

-t Causes total allocated block figures to be reported as well as
number of free blocks.

-f Reports only an actual count of the blocks in the free list (free
inodes are not reported). With this option, df reports on raw de­
vices.

-v Reports the percent of blocks used as well as the number of
blocks used and free.

-i Reports the percent of inodes used as well as the number of
inodes used and free. Use the -i option with the -v option to dis­
play counts of blocks and inodes free as well as the percentage
of inodes and blocks used.

The -v and -i options can not be used with other df options.

Files

/dev/*
/etc/mnttab

See Also

mount(ADM), fsck(ADM), mnttab(F)

28 March 1991 Page 1

DF (C) DF (C)

Notes

See Notes under mount (ADM).

This utility reports sizes in 512 byte blocks. This means a file of 500
bytes uses 2 blocks, df will report 2 blocks less free space, rather than
1 block, because the file uses one system block of 1024 bytes.

28 March 1991 Page 2

DIFF (C) DIFF (C)

Name

diff - Compares two text files.

Syntax

diff [-efbh] filel file2

Description

diff tells what lines must be changed in two files to bring them into
agreement. If filel or file2 is a dash (-), the standard input is used. If
filel or file2 is a directory, diff uses the file in that directory that has
the same name as the file (file2 or filel respectively) it is compared to.
For example:

diff /tmp dog

compares the file named dog, that is in the Itmp directory, with the file
dog in the current directory.

The normal output contains lines of these forms:

nl a n3,n4
nl,n2 d n3
nl,n2 c n3,n4

These lines resemble ed commands to convert filel into file2. The
numbers after the letters pertain to file2. In fact, by exchanging a for
d and reading backward, one may ascertain equally how to convert
file2 into filel. As in ed, identical pairs where nl =n2 or n3 = n4 are
abbreviated as a single number.

Following each of these lines come all the lines that are affected in the
first file flagged by <, then all the lines that are affected in the second
file flagged by >.

The -b option causes trailing blanks (spaces and tabs) to be ignored
and other strings of blanks to compare equal.

The -e option produces a script of a, c and d commands for the editor
ed, which will recreate file2 from filel. The -f option produces a simi­
lar script, not useful with ed, in the opposite order. In connection with
-e, the following shell procedure helps maintain multiple versions of a
file:

(shift; cat $*; echo 'l,$p') I ed - $1

28 March 1991 Page 1

DIFF (C) DIFF(C)

This works by performing a set of editing operations on an original
ancestral file. This is done by combining the sequence of ed scripts
given as all command line arguments except the first. These scripts
are presumed to have been created with diff in the order given on the
command line. The set of editing operations is then piped as an edit­
ing script to ed where all editing operations are performed on the
ancestral file given as the first argument on the command line. The
final version of the file is then printed on the standard output. Only an
ancestral file ($1) and a chain of version-to-version ed scripts
($2,$3,...) made by diff need be on hand.

Except in rare circumstances, diff finds the smallest sufficient set of
file differences.

The -h option does a fast, less-rigorous job. It works only when
changed stretches are short and well separated, but also works on files
of unlimited length. The -e and -f options cannot be used with the -h
option.

Files

/tmp/d?????

/usr/lib/diflh for -h

See Also

cmp(C), comm(C), ed(C)

Diagnostics

Exit status is 0 for no differences, 1 for some differences, 2 for errors.

Notes

Editing scripts produced under the -e or -f option do not always work
correctly on lines consisting of a single period (.).

28 March 1991 Page 2

DIFF3 (C) DIFF3 (C)

Name

diff3 - Compares three files.

Syntax

diff3 [-ex3] filel file2 file3

Description

diff3 compares three versions of a file, and publishes disagreeing
ranges of text flagged with these codes:

===== All three files differ

====1 Filel is different

= = = 2 File2 is different

====3 File3 is different

The type of change suffered in converting a given range of a given file
to some other range is indicated in one of these ways:

f'-n l a Text is to be appended after line number nl in
file/, where/= 1,2, or 3.

f : n l , m2 c Text is to be changed in the range line nl to
line n2. If nl = «2, the range may be abbrevi­
ated to n l .

The original contents of the range follows immediately after a c indi­
cation. When the contents of two files are identical, the contents of
the lower-numbered file is suppressed.

Under the -e option, dijß publishes a script for the editor ed that will
incorporate into filel all changes between file2 and file3, i.e., the
changes that normally would be flagged ==== and ====3. The -x
option produces a script to incorporate changes flagged with “====”.
Similarly, the -3 option produces a script to incorporate changes
flagged with “====3”. The following command applies a resulting
editing script to filel:

(cat script; echo 'l,$p') I ed - filel

28 March 1991 Page 1

DIFF3 (C) DIFF3 (C)

Files

/tmp/d3*

/usr/lib/difBprog

See Also

diff(C)

Notes

diff3 does not work properly for lines consisting of a single period.

The input file size limit is 64K bytes.

28 March 1991 Page 2

DIRCMP (C) DIRCMP (C)

Name

dircmp - Compares directories.

Syntax

dircmp [-d] [-s] [-wn] dirl dir2

Description

dircmp examines dirl and dir2 and generates tabulated information
about the contents of the directories. Listings of files that are unique
to each directory are generated in addition to a list that indicates
whether the files common to both directories have the same contents.

There are three options available:

-d Performs a full diff on each pair of like-named files if the
contents of the files are not identical.

-s Suppresses output of identical filenames.

-wn Changes the width of the output line to n characters. The
default width is 72.

See Also

cmp(C), diff(C).

28 March 1991 Page 1

DIRNAME (C) DIRNAME (C)

Name

dimame - Delivers directory part of pathname.

Syntax

dirname string

Description

dirname delivers all but the last component of the pathname in string
and prints the result on the standard output. If there is only one com-
ponent in the pathname, only a “dot” is printed. It is normally used
inside substitution marks (v N) within shell procedures.

The companion command basename deletes any prefix ending in a
slash (/) and the suffix (if present in string) from string, and prints the
result on the standard output.

Examples

The following example sets the shell variable NAME to /usr/src/cmd:

NAME=v dimame /usr/src/cmd/cat.c v

This example prints /a/b/c on the standard output:

dimame /a/b/c/d

This example prints a “dot” on the standard output:

dimame file.ext

See Also

basename(C), sh(C)

28 March 1991 Page 1

DISABLE (C) DISABLE (C)

Name

disable - Turns off terminals and printers.

Syntax

disable tty...
disable [-c][-r [reason]] printers

Description

For terminals, this program manipulates the /etc/ttys file and signals
init to disallow logins on a particular terminal. For printers, disable
stops print requests from being sent to the named printer. The follow­
ing options can be used:

-c Cancels any requests that are currently printing.

-r[reason] Associates a reason with disabling the printer. The rea­
son applies to all printers listed up to the next -r option.
If the -r option is not present or the -r option is given
without a reason, then a default reason is used. Reason
is reported by lpstat(C).

Examples

In this example, a printer named linepr is disabled because of a paper
jam:

disable -r"paper jam" linepr

Files

/dev/tty*

/etc/ttys

/usr/spool/lp/*

See Also

login(M), enable(C), ttys(F), getty(M), init(M), lp(C), lpinit(ADM),
lpstat(C), ungetty(M)

28 March 1991 Page 1

DISKCP (C) DISKCP (C)

Name

diskcp, diskcmp - Copies, compares floppy disks.

Syntax

diskcp [-f] [-d] [-s] [-48ds9] [-96ds9] [-96dsl5] [-135ds9] [-135dsl8]
diskcmp [-d] [-s] [-48ds9] [-96ds9] [-96dsl5] [-135ds9] [-135dsl8]

Description

diskcp is used to make an image (exact copy) of a source floppy disk
on a target floppy disk. On machines with one floppy drive diskcp
temporarily transfers the image to the hard disk until a blank “target”
floppy is inserted into the floppy drive. On machines with two floppy
drives diskcp immediately places the image of the source floppy
directly on the target floppy.

The options are:

-f Format the target floppy disk before the image is copied (<diskcp
only).

-d The computer has dual floppy drives, diskcp copies the image
directly onto the target floppy.

-s Uses sum(C) to compare the contents of the source and target
floppies; gives an error message if the two do not match.

-48ds9
This setting is for low density 48tpi (360K) floppies. It is the
default setting.

-96ds9
This setting is for medium density 96tpi (720K) floppies.

-96dsl5
This setting is for high density 96tpi (1200K) floppies.

-135ds9
This setting is for low density 135tpi (720K) 3.5 inch floppies.

-135dsl8
This setting is for high density 135tpi (1440K) 3.5 inch floppies.

28 March 1991 Page 1

DISKCP (C) DISKCP (C)

When using the -96ds9 and -96dsl5 options of diskcp, if the first tar­
get disk is unformatted, the program will note it, format it and make
the copy. If another copy is requested and another unformatted target
disk is inserted, diskcp exits with a “System Error.” Quit, format the
floppy, and reinvoke diskcp to make another copy.

diskcmp functions similarly to diskcp. It compares the contents of one
floppy disk with the contents of a second floppy disk using the cmp
utility.

Examples

To make a copy of a floppy, place the source floppy in the drive and
type:

diskcp

When diskcp is finished copying to the hard disk, it prompts you to
insert the target floppy in the drive. If you specify the -f flag when you
invoke diskcp , the program formats the target floppy. When the copy
is finished, diskcp prompts if you would like to make another copy of
the same source disk. If you enter ‘n\ it prompts if you would like to
copy another source disk.

Specify the -d flag on the command line if you have two floppy drives:

diskcp -d

Notes

If diskcp encounters a write error while copying the source image to
the target disk, it formats the disk and tries to write the source image
again. This happens most often when an unformatted floppy is used
and the -f flag is not specified.

Files

/usr/bin/diskcp
/usr/bin/diskcmp
/tmp/disk$$

See Also

cmp(C), dd(C), sum(C)

28 March 1991 Page 2

DOS (C) DOS (C)

Name

dos: doscat, doscp, dosdir, dosformat, dosmkdir, dosls, dosrm,
dosrmdir - Access to and manipulation of DOS files.

Syntax

doscat [-r I -m] file ...

doscp [-r I -m] filel file2

doscp [-r I -m] file ... directory

dosdir directory ...

dosformat [-fqv] drive

dosls directory ...

dosmkdir directory ...

dosrm file ...

dosrmdir directory ...

Description

The dos commands provide access to the files and directories on MS-
DOS floppy disks and on a DOS partition of a hard disk. Note that in
order to use these commands on a DOS partition of a hard disk, the
partition must be bootable, although not active.

The dos commands perform the following actions:

doscat Copies one or more DOS files to the standard output. If
-r is given, the files are copied without newline conver­
sions. If -m is given, the files are copied with newline
conversions (see “Conversions” below).

doscp Copies files between a DOS disk and a XENIX filesys­
tem. If filel and file2 are given, filel is copied to filel.
If a directory is given, one or more files are copied to
that directory. If -r is given, the files are copied
without newline conversions. If -m is given, the files
are copied with newline conversions (see “Conver­
sions” below).

dosdir Lists DOS files in the standard DOS style directory for­
mat.

28 March 1991 Page 1

DOS (C) DOS (C)

dosformat Creates a DOS 2.0 formatted diskette. The drive may
be specified in either DOS drive convention, using the
default file /etc/default/msdos, or using the XENIX spe­
cial file name, dosformat cannot be used to format a
hard disk. The -f option suppresses the interactive fea­
ture. The -q (quiet) option is used to suppress informa­
tion normally displayed during dosformat . The -q
option does not suppress the interactive feature. The -v
option prompts the user for a volume label after the
diskette has been formatted. The maximum size of the
volume label is 11 characters.

dosls Lists DOS directories and files in a XENIX format (see
ls{ Q).

dosrm Removes files from a DOS disk.

dosmkdir Creates a directory on a DOS disk.

dosrmdir Deletes directories from a DOS disk.

The file and directoiy arguments for DOS files and directories have the
form:

device:name

where device is a XENIX pathname for the special device file contain­
ing the DOS disk, and name is a pathname to a file or directory on the
DOS disk. The two components are separated by a colon (:). For
example, the argument:

/dev/fdO:/src/file.asm

specifies the DOS file, file.asm, in the directory, /src, on the disk in the
device file /dev/fdO. Note that slashes (and not backslashes) are used
as filename separators for DOS pathnames. Arguments without a de­
vice: are assumed to be XENIX files.

For convenience, the user configurable default file,
/etc/default/msdos, can define DOS drive names to be used in place of
the special device file pathnames. For example, it can contain lines
with the following format:

A=/dev/fd0
C=/dev/hd0d
D=/dev/hdld

The drive letter “A” may be used in place of special device file path­
name /dev/fdO when referencing DOS files (see “Examples” below).
The drive letter “C” or “D” refers to the DOS partition on the first or
second hard disk.

28 March 1991 Page 2

DOS (C) DOS (C)

The commands operate on the following kinds of disks:

DOS partitions on a hard disk
5 1/4 inch DOS
3 1/2 inch DOS
8,9,15, or 18 sectors per track
40 or 80 tracks per side
1 or 2 sides
DOS versions 1.0,2.0 or 3.0

Conversions

In the case of doscp, certain conversions are performed when copying
a XENIX file. Filenames with a basename longer than eight characters
are truncated. Filename extensions (the part of the name following
separating period) longer than three characters are truncated. For
example, the file 123456789.12345 becomes 12345678.123. A mes­
sage informs the user that the name has been changed and the altered
name is displayed. Filenames containing illegal DOS characters are
stripped when writing to the MS-DOS format. A message informs the
user that characters have been removed and displays the name as writ­
ten.

All DOS text files use a carriage-retum/linefeed combination, CR-LF ,
to indicate a newline. XENIX files use a single newline LF character.
When the doscat and doscp commands transfer DOS text files to the
XENIX filesystem, they automatically strip the CR. When text files
are transferred to DOS , the commands insert a CR before each LF
character.

Under some circumstances the automatic newline conversions do not
occur. The -m option may be used to ensure the newline conversion.
The -r option can be used to override the automatic conversion and
force the command to perform a true byte copy regardless of file type.

Examples

doscat /dev/fd0 :/docs/memo.txt
doscat /tmp/f 1 /tmp/f2 /dev/fdO:/src/file.asm

dosdir /dev/fd0 :/src
dosdir A:/src A:/dev

doscp Autoexec.bat /u/naomib/test.txt
doscp /u/naomib/test.txt Artest.txt
dosformat /dev/fdO

dosls /dev/fd0 :/src
dosls B:

dosmkdir /dev/fd0 :/usr/docs

28 March 1991 Page 3

DOS (C) DOS (C)

dosrm /dev/fdO:/docs/memo.txt
dosrm A:/docs/memol.txt

dosrmdir /dev/fdO:/usr/docs

Files

/etc/default/msdos
/dev/fd*
/dev/hd*

Default information
Floppy disk devices
Hard disk devices

See Also

assign(C), dtype(C), mkfs(ADM) and “Using DOS and OS/2” in the
XENIX System Administrator’s Guide

Using the DOS utilities, is not possible to refer to DOS files with wild
card specifications. The programs mentioned above cooperate among
themselves so no two programs will access the same DOS disk. Only
one process will access a given DOS disk at any time, while other pro­
cesses wait. If a process has to wait too long, it displays the error
message, “can’t seize a device,” and exits with an exit code of 1 .

You cannot use the dosformat command to format device A: because
it is aliased to /dev/install, which cannot be formatted. Use /dev/rfdO/
instead.

The following hard disk devices:

/dev/hdOd
/dev/rhdOd
/dev/hd Id
/dev/rhdld

are similar to /dev/hdOa in that the disk driver determines which parti­
tion is the DOS partition and uses that as hd?d. This means that soft­
ware using the DOS partition does not need to know which partition is

The Development System supports the creation of DOS executable
files, using cc (CP). Refer to the C User’s Guide and C Library Guide
for more information on using your XENIX system to create programs
suitable for DOS systems.

All of the DOS utilities leave temporary files in ftmp. These files are
automatically removed when the system is rebooted. They can also be
manually removed.

Notes

DOS.

28 March 1991 Page 4

DOS (C) DOS (C)

You must have DOS 3.3 or earlier. Extended DOS partitions are not
supported.

28 March 1991 Page 5

DTYPE (C) DTYPE (C)

Name

dtype - Determines disk type.

Syntax

dtype [-s] device ...

Description

dtype determines type of disk, prints pertinent information on the stan­
dard output unless the silent (-s) option is selected, and exits with a
corresponding code (see below). When more than one argument is
given, the exit code corresponds to the last argument.

Disk Exit Message
Type Code (optional)
Misc. 60 error (specified)

61 empty or unrecognized data
Storage 70 dump format, volume n

71 tar format[, extent e of n]
72 cpio format
73 cpio character (-c) format

MS-DOS 80 DOS 1 .x, 8 sec/track, single sided
81 DOS 1.x, 8 sec/track, dual sided
90 DOS 2.x, 8 sec/track, single sided
91 DOS 2.x, 8 sec/track, dual sided
92 DOS 2.x, 9 sec/track, single sided
93 DOS 2.x, 9 sec/track, dual sided
94 DOS 2.x, fixed disk
1 1 0 DOS 3.x, 9 sec/track, dual sided

XENIX 1 2 0 XENIX 2.x filesystem [needs cleaning]
130 XENIX 3.x or later filesystem [needs cleaning]

Notes

word-swapped refers to byte ordering of long words in relation to the
host system.

XENIX file systems and dump and cpio binary formats may not be
recognized if created on a foreign system. This is due to such system
differences as byte and word swapping and structure alignment.

This utility only works reliably for floppy diskettes.

28 March 1991 Page 1

DU(C) DU(C)

Name

du - Summarizes disk usage.

Syntax

du [-afrsu] [names]

Description

du gives the number of blocks contained in all files and (recursively)
directories within each directory and file specified by the names argu­
ment. The block count includes the indirect blocks of the file. If
names is missing, the current directory is used.

The optional argument -s causes only the grand total (for each of the
specified names) to be given. The optional argument -a causes an
entry to be generated for each file. Absence of either causes an entry
to be generated for each directory only.

The -f option causes du to display the usage of files in the current file
system only. Directories containing mounted file systems will be
ignored. The -u option causes du to ignore files that have more than
one link.

du is normally silent about directories that cannot be read, files that
cannot be opened, etc. The -r option will cause du to generate mes­
sages in such instances.

A file with two or more links is only counted once.

Notes

If the -a option is not used, nondirectories given as arguments are not
listed.

If there are too many distinct linked files, du will count the excess
files more than once.

Files with holes in them will get an incorrect block count.

This utility reports sizes in 512 byte blocks.

28 March 1991 Page 1

ECHO (C) ECHO (C)

Name

echo - Echoes arguments.

Syntax

echo [a rg] ...
/bin/echo [arg]...

Description

echo writes its arguments separated by blanks and terminated by a
newline on the standard output, echo also understands C-like escape
conventions. The following escape sequences need to be quoted so
that the shell interprets them correctly:
\b Backspace
\c Prints line without newline
\f Form feed
\n Newline
\r Carriage return
\t Tab
\v Vertical tab
\\ Backslash
\n The 8 -bit character whose ASCII code is a 1, 2 or 3-digit octal

number. In all cases, n must start with a zero. For example:

echo "\07" - Echoes Ctl-G.
echo "\007" - Also echoes Ctl-G.
echo "M)65" - Echoes the number “5”.
echo "M)065" - Also echoes the number “5”.
echo "\0 1 0 1 " - Echoes the letter “A”.

echo is useful for producing diagnostics in command files and for
sending known data into a pipe.

See Also

sh(C)

Notes

The csh(C) has a built-in echo utility which has a different syntax than
this echo. Be aware that users running under csh will get the built-in
echo unless they specify /bin/echo .

28 March 1991 Page 1

ED(C) ED{C)

Name

ed, red - Invokes the ed text editor.

Syntax

ed [-] [-p string] [file]

red [-] [-p string] [file]

Description

ed is the standard text editor. If the file argument is given, ed simu­
lates an e command (see below) on the named file; that is to say, the
file is read into ed's buffer so that it can be edited, ed operates on a
copy of the file it is editing; changes made to the copy have no effect
on the file until a w (write) command is given. The copy of the text
being edited resides in a temporary file called the buffer. There is
only one buffer.

red is a restricted version of ed(C). It will only allow editing of files
in the current directory. It prohibits executing sh(C) commands via
the ! command, red displays an error message on any attempt to
bypass these restrictions.

In general, red does not allow commands like

!date

or

!sh

Furthermore, red will not allow pathnames in its command line. For
example, the command:

red /etc/passwd

when the current directory is not /etc causes an error.

Options

The options to ed are:

Suppresses the printing of character counts by the e, r, and w
commands, of diagnostics from e and q commands, and the !
prompt after a \shell command.

28 March 1991 Page 1

ED(C) ED{ C)

-p Allows the user to specify a prompt string.

ed supports formatting capability. After including a format specifica­
tion as the first line of file and invoking ed with your terminal in stty
-tabs or stty tab3 mode (see stty (C)), the specified tab stops will auto­
matically be used when scanning file. For example, if the first line of
a file contained:

<:t5,10,15 s72:>

tab stops would be set at columns 5, 10, and 15, and a maximum line
length of 72 would be imposed. NOTE: While inputing text, tab char­
acters are expanded to every eighth column as the default.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed
by parameters to that command. These addresses specify one or more
lines in the buffer. Every command that requires addresses has default
addresses, so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain com­
mands allow the input of text. This text is placed in the appropriate
place in the buffer. While ed is accepting text, it is said to be in input
mode. In this mode, no commands are recognized; all input is merely
collected. Input mode is left by entering a period (.) alone at the
beginning of a line.

ed supports a limited form of regular expression notation; regular
expressions are used in addresses to specify lines and in some com­
mands (e.g., s) to specify portions of a line that are to be substituted.
A regular expression specifies a set of character strings. A member of
this set of strings is said to be matched by the regular expression. The
regular expressions allowed by ed are constructed as follows:

The following one-character regular expressions match a single char­
acter:

1.1 An ordinary character {not one of those discussed in 1.2 below)
is a one-character regular expression that matches itself.

1.2 A backslash (\) followed by any special character is a one-
character regular expression that matches the special character
itself. The special characters are:

a. ., *, [, and \ (dot, star, left square bracket, and backslash,
respectively), which are otherwise special, except when they
appear within square brackets ([]); see 1.4 below).

b. * (caret), which is special at the beginning of an entire regu­
lar expression (see 3.1 and 3.2 below), or when it immedi­
ately follows the left of a pair of square brackets ([]) (see
1.4 below).

28 March 1991 Page 2

ED (C) ED (C)

c. $ (dollar sign), which is special at the end of an entire regu­
lar expression (see 3.2 below).

d. The character used to bound (i.e., delimit) an entire regular
expression, which is special for that regular expression (for
example, see how slash (/) is used in the g command below).

1.3 A period (.) is a one-character regular expression that matches
any character except newline.

1.4 A nonempty string of characters enclosed in square brackets ([])
is a one-character regular expression that matches any one char­
acter in that string. If, however, the first character of the string is
a caret (A), the one-character regular expression matches any
character except newline and the remaining characters in the
string. The star (*) also has this special meaning only if it occurs
first in the string. The dash (-) may be used to indicate a range of
consecutive ASCII characters; for example, [0-9] is equivalent to
[0123456789]. The dash (-) loses this special meaning if it
occurs first (after an initial caret (A), if any) or last in the string.
The right square bracket (]) does not terminate such a string
when it is the first character within it (after an initial caret (A), if
any); e.g., []a-f] matches either a right square bracket (]) or one
of the letters “a” through “f” inclusive. Dot, star, left bracket,
and the backslash lose their special meaning within such a string
of characters.

Ranges of characters (characters separated by -) are treated according
to the current locale’s collation sequence (see locale {M)). Therefore,
if the collation sequence in use is A, a, B, b, C, c, then the expression
[a-d] is equivalent to the expression [aBbCcDd].

To specify a collation item within a class, the item must be enclosed
between [. and .] . Two character to one collation item mappings must
be specified this way. For example, if the current collation rules
specify that the characters “Ch” map to one character for collation
purposes (as in Spanish), then this collation item would be specified as [.Ch.] .
To specify a group of collation items, which are classified as equal
unless all other collation items in the string also match, in which case
a secondary “weight” becomes significant, a single member of that
group must be enclosed between [= and =] . For example, if the char­
acters A and a are in the same group then the class expressions
[[=a=]b], [[=A=]b] and [Aab] are all equivalent.

The ctype classes can also be specified within regular expressions.
These are enclosed between [: and :] . The possible ctype classes are:

28 March 1991 Page 3

ED(C) ED(C)

[:alpha:] Matches
[:upper:] Matches
[:lower:] Matches
[:digit:] Matches
[:alnum:] Matches
[:space:] Matches
[:print:] Matches
[:punct:] Matches
[:graph:] Matches
[:cntrl:] Matches

alphabetic characters
upper case characters
lower case characters
digits
alphanumeric characters
white space
printable characters
punctuation marks
graphical characters
control characters

The following rules may be used to construct regular expressions from
one-character regular expressions:

2.1
A one-character regular expression followed by a star (*) is a regu­
lar expression that matches zero or more occurrences of the one-
character regular expression. If there is any choice, the longest
leftmost string that permits a match is chosen.

2.2
A one-character regular expression followed by \{m\}, \{m,\}, or
\{m,Az\} is a regular expression that matches a range of occurren­
ces of the one-character regular expression. The values of m and n
must be nonnegative integers less than 255; \{m\} matches exactly
m occurrences; \{m,\} matches at least m occurrences; \{m,«\}
matches any number of occurrences between m and n, inclusive.
Whenever a choice exists, the regular expression matches as many
occurrences as possible.

2.3
The concatenation of regular expressions is a regular expression
that matches the concatenation of the strings matched by each
component of the regular expression.

2.4
A regular expression enclosed between the character sequences \(
and \) is a regular expression that matches whatever the unadorned
regular expression matches. See 2.5 below for a discussion of why
this is useful.

2.5
The expression \n matches the same string of characters as was
matched by an expression enclosed between \(and \) earlier in the
same regular expression. Here n is a digit; the subexpression
specified is that beginning with the n-th occurrence of \(counting
from the left. For example, the expression *\(.*\)\1$ matches a
line consisting of two repeated appearances of the same string.

Finally, an entire regular expression may be constrained to match
only an initial segment or final segment of a line (or both):

28 March 1991 Page 4

ED{ C) ED(C)

3.1 A caret (A) at the beginning of an entire regular expression con­
strains that regular expression to match an initial segment of a
line.

3.2 A dollar sign ($) at the end of an entire regular expression con­
strains that regular expression to match a final segment of a line.
The construction * entire regular expression % constrains the
entire regular expression to match the entire line.

The null regular expression (e.g., //) is equivalent to the last regular
expression encountered.

To understand addressing in ed , it is necessary to know that there is a
current line at all times. Generally speaking, the current line is the last
line affected by a command; the exact effect on the current line is dis­
cussed under the description of each command. Addresses are con­
structed as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. 'x addresses the line marked with the mark name character x,
which must be a lowercase letter. Lines are marked with the k
command described below.

5. A regular expression enclosed by slashes (/) addresses the first
line found by searching forward from the line following the
current line toward the end of the buffer and stopping at the first
line containing a string matching the regular expression. If
necessary, the search wraps around to the beginning of the buffer
and continues up to and including the current line, so that the
entire buffer is searched.

6 . A regular expression enclosed in question marks (?) addresses
the first line found by searching backward from the line preced­
ing the current line toward the beginning of the buffer and stop­
ping at the first line containing a string matching the regular
expression. If necessary, the search wraps around to the end of
the buffer and continues up to and including the current line. See
also the last paragraph before Files below.

7. An address followed by a plus sign (+) or a minus sign (-) fol­
lowed by a decimal number specifies that address plus or minus
the indicated number of lines. The plus sign may be omitted.

8 . If an address begins with + or -, the addition or subtraction is
taken with respect to the current line; e.g, -5 is understood to
mean .-5.

28 March 1991 Page 5

ED (C) ED(C)

9. If an address ends with + or -, then 1 is added to or subtracted
from the address, respectively. As a consequence of this rule and
of rule 8 immediately above, the address - refers to the line
preceding the current line. (To maintain compatibility with ear­
lier versions of the editor, the character * in addresses is entirely
equivalent to -.) Moreover, trailing + and - characters have a
cumulative effect, so — refers to the current line less 2 .

10. For convenience, a comma (,) stands for the address pair 1,$,
while a semicolon (;) stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands that
require no addresses regard the presence of an address as an error.
Commands that accept one or two addresses assume default addresses
when an insufficient number of addresses is given; if more addresses
are given than such a command requires, the last address(es) are used.

Typically, addresses are separated from each other by a comma (,).
They may also be separated by a semicolon (;). In the latter case, the
current line (.) is set to the first address, and only then is the second
address calculated. This feature can be used to determine the starting
line for forward and backward searches (see rules 5 and 6 above). The
second address of any two-address sequence must correspond to a line
that follows, in the buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown
in parentheses. The parentheses are not part of the address.

It is generally illegal for more than one command to appear on a line.
However, any command (except c ,/ , r, or w) may be suffixed by p or
by 1, in which case the current line is either printed or listed, respec­
tively, as discussed below under the p and / commands.

(•)a
<text>

The append command reads the given text and appends it after the
addressed line; dot is left at the address of the last inserted line, or,
if there were no inserted lines, at the addressed line. Address 0 is
legal for this command: it causes the “appended” text to be placed
at the beginning of the buffer.

(.)c
<text>

The change command deletes the addressed lines, then accepts
input text that replaces these lines; dot is left at the address of the
last line input, or, if there were none, at the first line that was not
deleted.

The delete command deletes the addressed lines from the buffer.
The line after the last line deleted becomes the current line; if the

28 March 1991 Page 6

ED{ C) ED (C)

lines deleted were originally at the end of the buffer, the new last
line becomes the current line.

eflle
The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; dot is set to the last
line of the buffer. If no filename is given, the currently remem­
bered filename, if any, is used (see the / command). The number
of characters read is typed, file is remembered for possible use as
a default filename in subsequent e, r, and w commands. If file
begins with an exclamation (!), the rest of the line is taken to be a
shell command. The output of this command is read for the e and r
commands. For the w command, the file is used as the standard
input for the specified command. Such a shell command is not
remembered as the current filename.

E file
The Edit command is like e, except the editor does not check to
see if any changes have been made to the buffer since the last w
command.

f file
If file is given, the / ilename command changes the currently
remembered filename to file; otherwise, it prints the currently
remembered filename.

(1 , $)gjregular-expression /command list
In the global command, the first step is to mark every line that
matches the given regular expression. Then, for every such line,
the given command list is executed with . initially set to that line.
A single command or the first of a list of commands appears on the
same line as the global command. All lines of a multiline list
except the last line must be ended with a \; a, /, and c commands
and associated input are permitted; the . terminating input mode
may be omitted if it would be the last line of the command list. An
empty command list is equivalent to the p command. The g, G, v,
and V commands are not permitted in the command list. See also
Notes and the last paragraph before Files below.

(1, $)Glregular-expression /
In the interactive Global command, the first step is to mark every
line that matches the given regular expression. Then, for every
such line, that line is printed, dot (.) is changed to that line, and
any one command (other than one of the a, c, /, g, G, v, and V
commands) may be input and is executed. After the execution of
that command, the next marked line is printed, and so on. A new-
line acts as a null command. An ampersand (&) causes the re-
execution of the most recent command executed within the current
invocation of G. Note that the commands input as part of the exe­
cution of the G command may address and affect any lines in the
buffer. The G command can be terminated by entering an INTER­
RUPT (pressing the DEL key).

28 March 1991 Page 7

ED{ C) ED (C)

The help command gives a short error message that explains the
reason for the most recent ? diagnostic.

H
The Help command causes ed to enter a mode in which error mes­
sages are printed for all subsequent ? diagnostics. It will also
explain the previous diagnostic if there was one. The H command
alternately turns this mode on and off. It is initially off.

(.)1
<text>

The insert command inserts the given text before the addressed
line; dot is left at the address of the last inserted line, or if there
were no inserted lines, at the addressed line. This command differs
from the a command only in the placement of the input text.
Address 0 is not legal for this command.

(. , .+ l) j
The y’oin command joins contiguous lines by removing the
appropriate newline characters. If only one address is given, this
command does nothing.

(.)k *
The mark command marks the addressed line with name x, which
must be a lowercase letter. The address x then addresses this line.
Dot is unchanged.

(. , .) 1
The / ist command prints the addressed lines in an unambiguous
way: a few nonprinting characters (e.g., tab, backspace) are
represented by mnemonic overstrikes, all other nonprinting charac­
ters are printed in octal, and long lines are folded. An / command
may be appended to any command other than e j , r, or w.

(., .)m<2
The move command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed
line(s) to be moved to the beginning of the file. It is an error if
address a falls within the range of moved lines. Dot is left at the
last line moved.

(*,.)n
The number command prints the addressed lines, preceding each
line by its line number and a tab character. Dot is left at the last
line printed. The n command may be appended to any command
other than e ,f , r, or w.

(,) P
The print command prints the addressed lines. Dot is left at the
last line printed. The p command may be appended to any

28 March 1991 Page 8

ED(C) ED(C)

command other than e, / , r, or w; for example, dp deletes the
current line and prints the new current line.

The editor will prompt with a * for all subsequent commands. The
P command alternately turns this mode on and off. It is initially off

The quit command causes ed to exit. No automatic write of a file
is done.

Q
The editor exits without checking if changes have been made in
the buffer since the last w command.

($)r file
The read command reads in the given file after the addressed line.
If no filename is given, the currently remembered filename, if any,
is used (see e and / commands). The currently remembered
filename is not changed unless file is the very first filename men­
tioned since ed was invoked. Address 0 is legal for r and causes
the file to be read at the beginning of the buffer. If the read is suc­
cessful, the number of characters read is typed. Dot is set to the
address of the last line read in. If file begins with !, the rest of the
line is taken to be a shell command whose output is to be read.
Such a shell command is not remembered as the current filename.

(. , .)slregular-expression /replacement / or

(. , .)slregular-expression /replacement Ig or

(. , .)slregular-expression /replacement In n-1-512

The substitute command searches each addressed line for an oc­
currence of the specified regular expression. In each line in which
a match is found, all nonoverlapped matched strings are replaced
by replacement if the global replacement indicator g appears after
the command. If the global indicator does not appear, only the first
occurrence of the matched string is replaced. It is an error for the
substitution to fail on all addressed lines. Any character other than
space or newline may be used instead of / to delimit regular-
expression and replacement. Dot is left at the address of the last
line on which a substitution occurred.

The n character represents any number between one and 512. This
number indicates the instance of the pattern to be replaced on each
addressed line.

An ampersand (&) appearing in replacement is replaced by the
string matching the regular-expression on the current line. The
special meaning of the ampersand in this context may be
suppressed by preceding it with a backslash. The characters \n,

28 March 1991 Page 9

ED(C) ED(C)

where n is a digit, are replaced by the text matched by the n-th reg­
ular subexpression of the specified regular expression enclosed
between \(and \). When nested parenthesized subexpressions are
present, n is determined by counting occurrences of \(starting
from the left. When the character % is the only character in
replacement, the replacement used in the most recent substitute
command is used as the replacement in the current substitute com­
mand. The % loses its special meaning when it is in a replace­
ment string of more than one character or when it is preceded by a

A line may be split by substituting a newline character into it. The
newline in the replacement must be escaped by preceding it with a
\. Such a substitution cannot be done as part of a g or v command
list.

(.,.) ta
This command acts just like the m command, except that a copy of
the addressed lines is placed after address a (which may be 0). Dot
is left at the address of the last line of the copy.

u
The undo command nullifies the effect of the most recent com­
mand that modified anything in the buffer, namely the most recent
a , c, d, g, /,7 , m, r, s , t, v, G, or V command.

(1 , $)\ I regular-expression Icommand list
This command is the same as the global command g except that
the command list is executed with dot initially set to every line
that does not match the regular expression.

(1 , $)\lregular-expression /
This command is the same as the interactive global command G
except that the lines that are marked during the first step are those
that do not match the regular expression.

(15 $ file
The write command writes the addressed lines into the named file.
If the file does not exist, it is created with mode 6 6 6 (readable and
writeable by everyone), unless the umask setting (see sh(C)) dic­
tates otherwise. The currently remembered filename is not
changed unless file is the very first filename mentioned since ed
was invoked. If no filename is given, the currently remembered
filename, if any, is used (see e and / commands), and dot remains.
If the command is successful, the number of characters written is
displayed. If file begins with an exclamation (!), the rest of the
line is taken to be a shell command to which the addressed lines
are supplied as the standard input. Such a shell command is not
remembered as the current filename.

28 March 1991 Page 10

ED{ C) ED(C)

($)=
The line number of the addressed line is typed. Dot is unchanged
by this command.

Ishell command
The remainder of the line after the ! is sent to the XENIX shell
(sh(C)) to be interpreted as a command. Within the text of that
command, the unescaped character % is replaced with the remem­
bered filename. If a ! appears as the first character of the shell
command, it is replaced with the text of the previous shell com­
mand. Thus, !! will repeat the last shell command. If any expan­
sion is performed, the expanded line is echoed. Dot is unchanged.

(.+ 1)
An address alone on a line causes the addressed line to be printed.
A RETURN alone on a line is equivalent to .+lp. This is useful for
stepping forward through the editing buffer a line at a time.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ques­
tion mark (?) and returns to its command level.

ed has size limitations: 512 characters per line, 256 characters per
global command list, 64 characters per filename, and 128K characters
in the buffer. The limit on the number of lines depends on the amount
of user memory.

When reading a file, ed discards ASCII NUL characters and all charac­
ters after the last newline. Files (e.g., a.out) that contain characters
not in the ASCII set (bit 8 on) cannot be edited by ed.

If the closing delimiter of a regular expression or of a replacement
string (e.g., /) would be the last character before a newline, that delim­
iter may be omitted, in which case the addressed line is printed. Thus,
the following pairs of commands are equivalent:

s/sl/s2 s/sl/s2 /p
g/sl g/sl/p
?sl ?sl?

Files

/tmp/e# Temporary; # is the process number

ed.hup Work is saved here if the terminal is hung up

See Also

coltbl(M), grep(C), locale(M), sed(C), sh(C), stty(C), regexp(S)

28 March 1991 Page 11

ED(C) ED (C)

Diagnostics

? Command errors
? file An inaccessible file

Use the help and Help commands for detailed explanations.

If changes have been made in the buffer since the last w command that
wrote the entire buffer, ed warns the user if an attempt is made to de­
stroy ed's buffer via the e or q commands by printing ? and allowing
you to continue editing. A second e or q command at this point will
take effect. The dash (-) command-line option inhibits this feature.

Notes

An exclamation (!) command cannot be subject to a g or a v com­
mand.

The ! command and the ! escape from the e, r, and w commands can­
not be used if the the editor is invoked from a restricted shell (see
sh(Q).

The sequence \n in a regular expression does not match any character.

The / command mishandles DEL.

Because 0 is an illegal address for the w command, it is not possible to
create an empty file with ed.

If the editor input is coming from a command file (i.e., ed file < ed-
cmd-file), the editor will exit at the first failure of a command in the
command file.

28 March 1991 Page 12

ENABLE (C) ENABLE (C)

Name

enable - Turns on terminals and line printers.

Syntax

enable tty...
enable printers

Description

For terminals this program manipulates the /etc/ttys file and signals
init to allow logins on a particular terminal.

For line printers, enable activates the named printers and enables them
to print requests taken by lp(C). Use lpstat(C) to find the status of the
printers.

Examples

A simple command to enable ttyOl follows:

enable ttyOl

Files

/dev/tty*

/etc/ttys

/usr/spool/lp/*

See Also

disable(C), getty(M), init(M), login(M), lp(C), lpstat(C), ttys(F)

28 March 1991 Page 1

ENV(C) ENV(C)

Name

env - Sets environment for command execution.

Syntax

env [-] [name=value]... [command args]

Description

env obtains the current environment, modifies it according to its argu­
ments, then executes the command with the modified environment.
Arguments of the form name-value are merged into the inherited
environment before the command is executed. The - flag causes the
inherited environment to be ignored completely, so that the command
is executed with exactly the environment specified by the arguments.

If no command is specified, the resulting environment is printed, one
name-value pair per line.

See Also

sh(C), exec(S), profile(F), environ(M)

28 March 1991 Page 1

This page intentionally left blank.

EX(C) EX(C)

Name

ex, edit - Invokes a text editor.

Syntax

ex [-s] [-v] [-t tag] [-r file] [-L] [-R] [-c command] name ...

edit [-r] [-x] [-C] name ...

Description

ex is the root of the editors ex and vi. ex is a superset of ed, with the
most notable extension being a display editing facility. Display based
editing is the focus of vi.

edit is a variant of the text editor ex recommended for new or casual
users who wish to use a command-oriented editor. It operates pre­
cisely as ex(C) with the following options automatically set:

novice ON
report ON
showmode ON
magic OFF

These options can be turned on or off via the set command in ex(C).

Refer to the v/(C) page for a complete description of the ex com­
mands.

See Also

awk(C), ctags(CP), ed(C), grep(C), sed(C), termcap(F), vi(C)

Files

/etc/termcap
$HOME/.exrc
/tmp/Exn/wnn
/tmp/RxAwnAM
Aisr/preserve

/usr/lib/ex3.7 strings
/usr/lib/ex3.7recover
/usr/lib/ex3.7preserve

Error messages
Recover command
Preserve command
Describes capabilities of terminals
Editor startup file
Editor temporary
Named buffer temporary
Preservation directory

28 March 1991 Page 1

EX(C) EX (C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

28 March 1991 Page 2

EXPR (C) EXPR (C)

Name

expr - Evaluates arguments as an expression.

Syntax

expr arguments

Description

The arguments are taken as an expression. After evaluation, the result
is written on the standard output. Terms of the expression must be
separated by blanks. Characters special to the shell must be escaped.
Note that zero is returned to indicate a zero value, rather than the null
string. Strings containing blanks or other special characters should be
quoted. Integer-valued arguments may be preceded by a unary minus
sign. Internally, integers are treated as 32-bit, 2’s complement num­
bers.

The operators and keywords are listed below. Characters that need to
be escaped are preceded by \. The list is in order of increasing pre­
cedence, with equal precedence operators grouped within braces ({
and }).

expr | expr
Returns the first expr if it is neither null nor 0, otherwise
returns the second expr.

expr & expr
Returns the first expr if neither expr is null nor 0, otherwise
returns 0 .

expr { =, >, >=, <, <=, != } expr
Returns the result of an integer comparison if both arguments
are integers, otherwise returns the result (that is, 0 for false, 1
for true) of a lexical comparison, as defined by the locale.

expr { +, - } expr
Addition or subtraction of integer-valued arguments.

expr { * , / , % } expr
Multiplication, division, or remainder of the integer-valued
arguments.

expr : expr
The matching operator : compares the first argument with the
second argument, which must be a regular expression; regular
expression syntax is the same as that of ed{C), except that all
patterns are “anchored” (i.e., begin with a caret O) and there­
fore the caret is not a special character in that context. (Note

28 March 1991 Page 1

EXPR (C) EXPR (C)

that in the shell, the caret has the same meaning as the pipe
symbol (I).) Normally the matching operator returns the num­
ber of characters matched (zero on failure). Alternatively, the
\(...\) pattern symbols can be used to return a portion of the
first argument.

Examples

1 . a=vexpr $a + lv

Adds 1 to the shell variable a.

2. # For $a ending in "/file"
expr $a :

Returns the last segment of a pathname (i.e., file). Watch out
for the slash alone as an argument: expr will take it as the divi­
sion operator (see Notes).

3. expr $VAR :

Returns the number of characters in $VAR.

See Also

coltbl(M), ed(C), locale(M), sh(C), awk(C), bc(C)

Diagnostics

As a side effect of expression evaluation, expr returns the following
exit values:

0 If the expression is neither null nor zero
1 If the expression is null or zero
2 For invalid expressions

Other diagnostics include:

syntax error For operator/operand errors, including unset vari­
ables

nonnumeric argument
If arithmetic is attempted on a nonnumeric string

28 March 1991 Page 2

EXPR (C) EXPR (C)

Notes

After argument processing by the shell, expr cannot tell the difference
between an operator and an operand except by the value. If $a is an
equals sign (=), the command:

expr $a = =

looks like:

expr = = =

The arguments are passed to expr and will all be taken as the = opera­
tor. The following permits comparing equals signs:

expr X$a = X=

28 March 1991 Page 3

FACTOR (C) FACTOR (C)

Name

factor - Factor a number.

Syntax

factor [number]

Description

When factor is invoked without an argument, it waits for a number to
be typed in. If you type in a positive number less than 246 (about
7.2xl013) it will factor the number and print its prime factors; each
one is printed the proper number of times. Then it waits for another
number. It exits if it encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above
and then exits.

The time it takes to factor a number, n, is proportional to fn. It usu­
ally takes longer to factor a prime or the square of a prime, than to fac­
tor other numbers.

Diagnostics

factor returns an error message if the supplied input value is greater
than 2 46 or is not an integer number.

28 March 1991 Page 1

FALSE (C) FALSE (C)

Name

false - Returns with a nonzero exit value.

Syntax

false

Description

false does nothing except return with a nonzero exit value. true(C),
false's counterpart, does nothing except return with a zero exit value.
“False” is typically used in shell procedures such as:

until false
do

command
done

See Also

sh(C), true(C)

Diagnostics

false is any non-zero value.

28 March 1991 Page 1

FILE (C) FILE (C)

Name

file - Determines file type.

Syntax

file [-m] file ...

file [-m] -f namesfile

Description

file performs a series of tests on each argument in an attempt to clas­
sify it. If an argument appears to be ASCII, file examines the first 512
bytes and tries to guess its language.

If the -f option is given, file takes the list of filenames from namesfile.
If the -m option is gw tn, file sets the access time for the examined file
to the current time. Otherwise, the access time remains unchanged.

Several object file formats are recognized. For a.out and x.out format
object files, file reports “ separate” if the file was linked with cc -i,
“pure” if the file was linked with cc -n, and “not stripped” if the file
was not linked with cc -s or if strip(CP) was not run.

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

file makes errors; in particular it often mistakes command files for C
programs.

The file command can only distinguish English text. If an 8 bit char­
acter (a character not in the English alphabet) is found, then the text
will be defined as “8 bit text” .

28 March 1991 Page 1

FIND (C) FIND (C)

Name
find - Finds files.

Syntax
find pathname-list expression

Description
find recursively descends the directory hierarchy for each pathname in
the pathname-list (one or more pathnames), seeking files that match a
Boolean expression written in the primaries (options) given below. In
the descriptions, the argument n is used as a decimal integer where +n
means more than n, -n means less than n and n means exactly n.

-depth Always true; causes descent of the directory
hierarchy to be done so that all entries in a direc­
tory are acted upon before the directory itself.
This can be useful when used with cpio(C) to
transfer files located in directories without write
permission.

-name file True if file matches the current file name. Normal
shell argument syntax may be used if escaped
(watch out for the left bracket ([), the question
mark (?) and the asterisk (*)).

[-perm] -onum True if the file permission flags exactly match the
octal number onum [see chmod(C)]. If onum is
prefixed by a minus sign, only the bits that are set
in onum are compared with the file permission
flags, and the expression evaluates true if they
match.

-type x True if the type of the file is x, where c is b, c, d, p, or f for block special file, character special file,
directory, FIFO (first-in-first-out), or plain file
respectively.

-links n True if the file has n links.

-inum num True if the file’s inode is num. This is useful for
locating files with matching inodes.

-user uname True if the file belongs to the user uname. If
uname is numeric and does not appear as a login
name in the /etc/passwd file, it is taken as a user
ID.

28 March 1991 Page 1

FIND (C) FIND (C)

-group gname

-size n

-atime n

-intime n

-ctime n

-exec and

-ok and

-cpio device

-print

-newer file

(expression)

True if the file belongs to the group gname. If
gname is numeric and does not appear in the
7etc/group file, it is taken as a group ID.

True if the file is n blocks long (512 bytes per
block).

True if the file has been accessed in the past n
days.

True if the file has been modified in the past n
days.

True if the file was created in the past n days.

True if the executed cmd returns a zero value as
exit status. The end of cmd must be punctuated by
an escaped semicolon. A command argument { }
is replaced by the current path name.

Like -exec except that the generated command
line is printed with a question mark first, and is
executed only if the user responds by typing y.

Always true; write the current file on device in
cpio(F) format (5120-byte records).

Always true; causes the current path name to be
printed.

True if the current file has been modified more
recently than the argument file.

True if the parenthesized expression is true
(parentheses are special to the shell and must be
escaped).

The primaries may be combined using the following operators (in
order of decreasing precedence):

negation The negation of a primary is specified with the
exclamation (!) unary not operator.

AND The AND operation is implied by the juxtaposition
of two primaries.

OR The OR operation is specified with the -o operator
given between two primaries.

28 March 1991 Page 2

FIND (C) FIND (C)

Example

The following command searches for files named chapterl in the
current directory and all directories below it and sends the pathname
of any such files it finds to the standard output:

find . -name chapterl -print

The following removes all files named core or a.out that have not
been accessed for a week:

find / \ (-name core -name a.out\) -atime +7 -exec rm {} \ ;

Files

/etc/passwd
/etc/group

See Also

cpio(C), sh(C), stat(S), test(C)

Notes

If none of the -print, -exec, -ok, or -cpio primaries are given, find
locates the specified files but nothing is done.

28 March 1991 Page 3

FINGER (C) FINGER (C)

Name
finger - Finds information about users.

Syntax
finger [-bfilpqsw] [login 1 [login2 ...]]

Description

By default finger lists the login name, full name, terminal name and
write status (as a “ * ” before the terminal name if write permission is
denied), idle time, login time, office location, and phone number (if
they are known) for each current XENIX user. (Idle time is minutes if
it is a single integer, hours and minutes if a colon (:) is present, or
days and hours if a “d” is present.)

A longer format also exists and is used by finger whenever a list of
names is given. (Account names as well as first and last names of
users are accepted.) This is a multiline format; it includes all the in­
formation described above as well as the user’s home directory and
login shell, any plan which the person has placed in the file .plan in
their home directory, and the project on which they are working from
the file .project which is also in the home directory.

finger options are:

-b Briefer long output format of users.

-f Suppresses the printing of the header line (short format).

-i Quick list of users with idle times.

-I Forces long output format.

-p Suppresses printing of the .plan files.

-q Quick list of users.

-s Forces short output format.

-w Forces narrow format list of specified users.

Files

/etc/utmp

/etc/passwd

Who file

User names, offices, phones,
login directories, and shells

28 March 1991 Page 1

FINGER (C) FINGER (C)

$HOME/.plan

$HOME/.project

Plans

Projects

See Also

who(C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Only the first line of the .project file is printed.

Entries in the /etc/passwd file have the following format:

login name :user password(coded): user ID .group ID .comments: home
directory:login shell

The comment field corresponds to configurable columns in the finger
output. For example, in the following /etc/passwd entry:

blf :Tg6bLFzOwgfbA:47:5:Brian Foster, Mission, x70, 767-1234
: /u/blf: /bin/sh

the comment field, “Brian Foster, Mission, x70, 767-1234” , contains
data for the “In Real Life” , “Office” , and “Home Phone” columns of
the finger listings.

Idle time is computed as the elapsed time since any activity on the
given terminal. This includes previous invocations of finger which
may have modified the terminal’s corresponding device file /dev/tty??.

Notes

28 March 1991 Page 2

FIXHDR (C) FIXHDR (C)

Name
fixhdr - Changes executable binary file headers.

Syntax

fixhdr option files

Description

fixhdr changes the header of output files created by link editors or
assemblers. The kinds of modifications include changing the format of
the header, the fixed stack size, the standalone load address, and sym­
bol names.

Using fixhdr allows the use of binary executable files, created under
other versions or machines, by simply changing the header informa­
tion so that it is usable by the target cpu.

These are the options to fixhdr :

-xa Change the x.out format of the header to the a.out format.

-xb Change the x.out format of the header to the b.out format.

-x4 Change the x.out format of the header to the 4.2BSD a.out
format.

-x5 [-n] Change the x.out format of the header to 5.2 (UNIX™
System V release 2) a.out format. The -n flag causes
leading underscores on symbol names to be passed with
no modifications.

-ax -c [11,86]
Change the a.out format of the header to the x.out format.
The -c flag specifies the target cpu. 11 specifies a PDP-11
cpu. 86 specifies one of the 8086 family of cpus (8086,
8088,80186,80286 or 80386).

-bx Change the b.out format of the header to the x.out format.

-5x [-n] Change the 5.2 (UNIX System V release 2) a.out format
of the header to the x.out format. The -n flag causes lead­
ing underscores on symbol names to be passed with no
modifications.

-86x Add the x.out header format to the 86rel object module
format. See 86rel{F).

28 March 1991 Page 1

FIXHDR (C) FIXHDR (C)

-F num Add (or change) the fixed stack size specified in the x.out
format of the header, num must be a hexadecimal num­
ber.

-A num Add (or change) the standalone load address specified in
the x.out format of the header, num must be a hexade­
cimal number.

-M[smlh] Change the model of the x.out or 86rel format. Model
refers to the compiler model specified when creating the
binary, s refers to small model, m refers to medium
model, 1 refers to large model, and h refers to huge model.

-v [2,3,5,7] Change the version of XENIX specified in the header.
XENIX version 2 was based on UNIX Version 7.

-s sl=s2 [-s s3=s4]
Change symbol names, where symbol name si is changed

-r
to s2.

Ensure that the resolution table is of non-zero size.

-C cpu Set the cpu type, cpu can be 186,286,386,8086, others.

Files

/usr/bin/fixhdr

See Also

a.out(F), 86rel(F)

Notes

Give fixhdr one option at a time. If you need to make more than one
kind of modification to a file, use fixhdr on the original file. Then use it
again on the fixhdr output, specifying the next option. Copy the origi­
nal file if you need an unmodified version as fixhdr makes the
modifications directly to the file.

28 March 1991 Page 2

FORMAT (C) FORMAT (C)

Name
format - format floppy disks

Syntax
format [-n] [-v] [-e] [-f] [-q] [device] [-i interleave]

Description
format formats diskettes for use with XENIX. It may be used either
interactively or from the command line. The default drive is /dev/rfdO, as defined in /etc/default/format.

Options
The following command line options are available:

-f Suppresses the interactive feature. The format program does not
wait for user-confirmation before starting to format the diskette.
Regardless of whether or not you run format interactively, track
and head information is displayed.

-e Erases the servo information on a mini-cartridge. This option
applies only to QIC-40 drives. Note that formatting mini­
cartridges is not recommended; for best results use preformatted
cartridges.

device
This specifies the device to be formatted. The default device is /dev/rfdO.

-i interleave
Specifies the interleave factor.

-q Quiet option. Suppresses the track and head output information
normally displayed. Although this option does not suppress the
interactive prompt, it would typically be used with -f to produce no
output at all.

-v Specifies format verification.

-n Specifies that the diskette is not to be verified (overrides verify
entry in /etc/default/format).

The file /etc/default/format is used to specify the default device to be
formatted and whether or not each diskette is to be verified. The
entries must be in the format DEVICE=/dev/rfd/j/m and
VERIFY = [yYnN], as in the following example:

28 March 1991 Page 1

FORMAT (C) FORMAT (C)

DEVICE=/dev/rfd096ds 15
VERIFY=y

The device must be a character (raw) device.

Usage
To mn format interactively, enter:

format

followed by any of the legal options except -f, and press RETURN.
When you run format interactively, you see the prompt:

insert diskette in drive and press return when ready

When you press RETURN at this prompt, format begins to format the
diskette.

If you specify the -f option, you do not see this prompt. Instead, the
program begins formatting immediately upon invocation.

Unless you specify the -q option, format displays which track and
head it is currently on:

track # head #

The number signs above are replaced by the actual track and head in­
formation.

Files

/etc/default/format

/dev/rfd[0-n]

See Also
fd(HW)

Notes
The format utility does not format floppies for use under DOS; use the
dosformat command documented in dos(C).

XENIX requires error free floppies.

28 March 1991 Page 2

FORMAT (C) FORMAT (C)

It is not advisable to format a low density (48tpi) diskette on a high
density (96tpi) floppy drive. Diskettes written on a high density drive
should be read on high density drives. A low density diskette written
on a high density drive may not be readable on a low density drive.

28 March 1991 Page 3

GETOPT(C) GETOPT (C)

Name

getopt - Parses command options.

Syntax

set — 'getopt optstring $*'

Description

getopt is used to check and break up options in command lines for
parsing by shell procedures. Optstring is a string of recognized option
letters (see getopt (S)). If a letter is followed by a colon, the option is
expected to have an argument which may or may not be separated
from it by whitespace. The special option — is used to delimit the end
of the options, getopt will place — in the arguments at the end of the
options, or recognize it if used explicitly. The shell arguments
($1 $2...) are reset so that each option is preceded by a dash (-) and in
its own shell argument; each option argument is also in its own shell
argument.

Example

The following code fragment shows how one can process the argu­
ments for a command that can take the options a and b, and the option
o, which requires an argument:

s e t — ' g e t o p t a b o :
i f [$? != 0]
t h e n

e c h o $USAGE
e x i t 2

f i
f o r i i n $*
do

c a s e $ i i n
- a | -b)
-o)
--)
e s a c

do ne

$ * '

FLAG=$i; s h i f t ; ;
OARG=$2; s h i f t ; s h i f t ; ;
s h i f t ; b r e a k ; ;

This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd -a -o arg file file
cmd -oarg -a file file
cmd -a -oarg -- file file

28 March 1991 Page 1

GETOPT{ C) GETOPT(C)

See Also

sh(C), getopt(S)

Diagnostics

getopt prints an error message on the Standard error when it
encounters an option letter not included in optstring.

Notes

The “Syntax” given for this utility assumes the user has an sh(C)
shell.

28 March 1991 Page 2

GREP (C) GREP (C)

Name
grep, egrep, fgrep - Searches a file for a pattern.

Syntax
grep [-bchlnsvy] [-e expression] [files]

egrep [-bchlnv] [-e expression] [files]

fgrep [-bclnvxy] [-f expfile] [files]

Description
Commands of the grep family search the input files (or standard input
if no files are specified) for lines matching a pattem. Normally, each
matching line is copied to the standard output. If more than one file is
being searched, the name of the file in which each match occurs is
also written to the standard output along with the matching line
(unless the -h option is used, see below).

grep patterns are limited regular expressions in the style of ed(C).
grep uses a compact nondeterministic algorithm, egrep patterns are
full regular expressions; it uses a fast deterministic algorithm that
sometimes needs exponential space, fgrep patterns are fixed strings,
fgrep is fast and compact. The following options are recognized:

-v All lines but those matching are displayed.

-x Displays only exact matches of an entire line, (fgrep only.)

-c Only a count of matching lines is displayed.

-1 Only the names of files with matching lines are displayed,
separated by newlines.

-h Prevents the name of the file containing the matching line from
being prepended to that line. Used when searching multiple
files. (This option works with grep and egrep only.)

-n Each line is preceded by its relative line number in the file.

-b Each line is preceded by the block number on which it was
found. This is sometimes useful in locating disk block num­
bers by context.

-s Suppresses error messages produced for nonexistent or unread­
able files, (grep only). Note that the -s option will not
suppress error messages generated by the -f option.

28 March 1991 Page 1

GREP (C) GREP(C)

-y Tüms on matching of letters of either case in the input so that
case is insignificant. Conversion between uppercase and
lowercase letters is dependent on the locale setting, -y does
not work with egrep.

-e expression or strings
Same as a simple expression argument, but useful when the
expression begins with a dash (-).

-f expfile
The regular expression for grep or egrep, or strings list for
fgrep is taken from the expfile.

In all cases (except with -h) the filename is output if there is more
than one input file. Care should be taken when using the characters $,
*, [,A, | , (,), and \ in expression, because they are also meaningful to
the shell. It is safest to enclose the entire expression or strings argu­
ment in single quotation marks. For example:

grep ’[Ss]omeone’ text, file

This command would find all lines containing the word “someone” in
the file text.file, whether the initial “s” is uppercase or lowercase.

Multiple strings can be specified in fgrep without using a separate
strings file by using the quoting conventions of the shell to imbed
newlines in the string argument. For example, if you were using the
Bourne shell (sh(C)) you might enter the following on the command
line:

fgrep "Someone
someone" text.file

This would have the same effect as the grep example above. See the
csh (C) manual page for ways to imbed newlines in a string when
using csh(C).

egrep accepts regular expressions as in ed(C), with the addition of the
following:

- A regular expression followed by a plus sign (+) matches one or
more occurrences of the regular expression.

- A regular expression followed by a question mark (?) matches 0 or
1 occurrences of the regular expression.

- Two regular expressions separated by a vertical bar (I) or by a
newline match strings that are matched by either regular expres­
sion.

28 March 1991 Page 2

GREP (C) GREP (C)

- A regular expression may be enclosed in parentheses () for group­
ing. For example:

egrep '([Ss]omel [Aa]ny)one' text, file

This example displays all lines in textfile containing the words
“ someone” or “anyone”, whether or not they are spelled with initial
capital letters. Without the parentheses, this example would display
all lines containing the words “some” or “anyone” (because the verti­
cal bar (|) operator is of lower precedence than concatenation, see
below).

Because of the algorithm used, egrep does not support extended
ranges as in ed(C): Ranges like [a-z] are interpreted on the basis of
the machine’s collating sequence, not the collating sequence defined
by the locale, grep supports col(C) extended ranges.

The \(and \) operators, supported by ed(C), are not supported by
egrep.

The order of precedence of operators is [], then * ? +, then concatena­
tion, then backslash (\) with newline or vertical bar (|).

See Also
col(C), coltbl(M), ed(C), locale(M), sed(C), sh(C)

Diagnostics
Exit status is 0 if any matches are found, 1 if no matches are found,
and 2 for syntax errors or inaccessible files.

Notes
Ideally there should be only one grep, but there isn’t a single algo­
rithm that spans a wide enough range of space-time tradeoffs.

Lines are limited to 256 characters. Longer lines are truncated.

When using grep with the -y option, the search is not made totally
case insensitive in character ranges specified within brackets.

28 March 1991 Page 3

GRPCHECK (C) GRPCHECK (C)

Name

grpcheck - Checks group file.

Syntax

grpcheck [file]

Description

grpcheck verifies all entries in the group file. This verification
includes a check of the number of fields, group name, group ID, and
whether all login names appear in the password file. The default group
file is /etc/group.

Files

/etc/group

/etc/passwd

See Also

pwcheck(C), group(F), passwd(F)

Diagnostics

Group entries in /etc/group with no login names are flagged.

28 March 1991 Page 1

HD (C) HD (C)

Name

hd - Displays files in hexadecimal format.

Syntax

hd [-format...] [-s offset] [-n count] [file]...

Description

The hd command displays the contents of files in hexadecimal, octal,
decimal, and character formats. Control over the specification of
ranges of characters is also available. The default behavior is with the
following flags set: “-abx -A”. This says that addresses (file offsets)
and bytes are printed in hexadecimal and that characters are also
printed. If no file argument is given, the standard input is read.

Options include:

-s offset Specify the beginning offset in the file where printing is
to begin. If no ‘file’ argument is given, or if a seek fails
because the input is a pipe, ‘offset’ bytes are read from
the input and discarded. Otherwise, a seek error will
terminate processing of the current file.

The offset can be given in decimal, hexadecimal (pre­
ceded by ‘Ox’), or octal (preceded by a ‘0’). It is option­
ally followed by one of the following multipliers: w, l,
b, or k; for words (2 bytes), long words (4 bytes), half
kilobytes (512 bytes), or kilobytes (1024 bytes). Note
that this is the one case where “b” does not stand for
bytes. Since specifying a hexadecimal offset in blocks
would result in an ambiguous trailing ‘b’, any offset and
multiplier can be separated by an asterisk (*). (The
asterisk might need to be enclosed in quotation marks
to protect it from the shell.)

-n count Specify the number of bytes to process. The count is in
the same format as offset, above.

28 March 1991 Page 1

HD (C) HD (C)

Format Flags

Format flags can specify addresses, characters, bytes, words (2 bytes)
or longs (4 bytes) to be printed in hex, decimal, or octal. Two special
formats can also be indicated: text or ascii. Format and base specifiers
can be freely combined and repeated as desired in order to specify
different bases (hexadecimal, decimal or octal) for different output for­
mats (addresses, characters, etc.). All format flags appearing in a sin­
gle argument are applied as appropriate to all other flags in that argu­
ment.

acbwlA
Output format specifiers for addresses, characters, bytes, words,
longs and ascii respectively. Only one base specifier will be used
for addresses; the address will appear on the first line of output that
begins each new offset in the input.

The character format prints printable characters unchanged, spe­
cial C escapes as defined in the language, and the remaining values
in the specified base.

The ascii format prints all printable characters unchanged, and all
others as a period (.). This format appears to the right of the first of
other specified output formats. A base specifier has no meaning
with the ascii format. If no other output format (other than
addresses) is given, bx is assumed. If no base specifier is given, all
of xdo are used.

xdo
Output base specifiers for hexadecimal, decimal and octal. If no
format specifier is given, all of acbwl are used.

t Print a text file, each line preceded by the address in the file. Nor­
mally, lines should be terminated by a \n character, but long lines
will be broken up. Control characters in the range 0x00 to Oxlf are
printed as <A@ ’ to ‘A_\ Bytes with the high bit set are preceded by
a tilde (~) and printed as if the high bit were not set. The special
characters (A, ", \) are preceded by a backslash (\) to escape their
special meaning. As special cases, two values are represented
numerically as M77’ and ‘\377\ This flag will override all output
format specifiers except addresses.

28 March 1991 Page 2

HDR (C) HDR (C)

Name
hdr - Display selected parts of an object file.

Syntax

hdr [-dhprsSt] file ...

Description

hdr displays executable binary file headers, symbol tables, and text or
data relocation records in human-readable formats. It also prints out
seek positions for the various segments in the executable binary file.

a.out, x.out, and x.out segmented formats and archives are under­
stood.

The symbol table format consists of six fields. In a.out formats the
third field is missing. The first field is the symbol’s index or position
in the symbol table, printed in decimal. The index of the first entry is
zero. The second field is the type, printed in hexadecimal. The third
field is the sjseg field, printed in hexadecimal. The fourth field is the
symbol’s value in hexadecimal. The fifth field is a single character
which represents the symbol’s type as in nm(C\ except C common is
not recognized as a special case of undefined. The last field is the
symbol name.

If long form relocation is present, the format consists of six fields.
The first is the descriptor, printed in hexadecimal. The second is the
symbol ID, or index, in decimal. This field is used for external reloca­
tions as an index into the symbol table. It should reference an unde­
fined symbol table entry. The third field is the position, or offset,
within the current segment at which relocation is to take place; it is
printed in hexadecimal. The fourth field is the name of the segment
referenced in the relocation: text, data, bss or EXT for external. The
fifth field is the size of relocation: byte, word (2 bytes), or long. The
last field will indicate, if present, that the relocation is relative.

If short form relocation is present, the format consist of three fields.
The first field is the relocation command in hexadecimal. The second
field contains the name of the segment referenced; text or data. The
last field indicates the size of relocation: word or long.

28 March 1991 Page 1

HDR (C) HDR (C)

Options and their meanings are:

-d Causes the data relocation records to be printed out.

-h Causes the executable binary file header and extended header to be
printed out. Each field in the header or extended header is labeled.
This is the default option.

-p Causes seek positions to be printed out as defined by macros in the
include file, <a.out.h>.

-r Causes both text and data relocation to be printed.

-s Prints the symbol table.

-S Prints the file segment table with a header. (Only applicable to
x.out segmented executable files.)

-t Causes the text relocation records to be printed out.

See Also

a.out(F), nm(C)

28 March 1991 Page 2

HEAD (C) HEAD (C)

Name
head - Prints the first few lines of a stream.

Syntax
head [-count] [file ...]

Description
This filter prints the first count lines of each of the specified files. If
no files are specified, head reads from the standard input. If no count
is specified, then 10 lines are printed.

See Also
tail(C)

Credit
This utility was developed at the University of California at Berkeley
and is used with permission.

28 March 1991 Page 1

HELLO (C) HELLO (C)

Name
hello - Send a message to another user.

Syntax
hello user [tty]

Description

hello sends messages from one user to another. When first called,
hello displays the following message:

Message from sender’s-system! sender s-name sender’s-tty
The recipient of the message should write back at this point. Commu­
nication continues until an interrupt is sent. (On most terminals, press­
ing the Del key sends an interrupt.) At that point hello prints “EOT”
on the other terminal, and exits.

To write to a user who is logged in more than once, the user can
employ the tty argument to specify the appropriate terminal name.
The who(C) command can be used to determine the correct terminal
name.

Permission to write may be allowed or denied by the recipient, using
the mesg command. Writing is allowed by default. Certain com­
mands, such as nroff and pr, prohibit messages in order to prevent
disruption of output.

If the character ! is found at the beginning of a line, hello calls the
shell to execute the rest of the line as a command.

The following protocol is suggested for using hello. When first writ­
ing to another user, the sender should wait for that user to write back
before sending a message. Each party should end each message with a
signal indicating that die other may reply: o for “over” is conven­
tional. The signal oo for “over and out” is suggested when conversa­
tion is about to be terminated.

Files

/etc/utmp
/bin/sh

See Also

mesg(C), who(C), mail(C), write(C)

28 March 1991 Page 1

HELP (C) HELP (C)

Name

help - Asks for help with XENIX commands and SCCS error messages.

Syntax

help [command] [imessagenumber]

Description

help provides on-line explanations of most commonly-used XENIX
commands, help also displays information explaining SCCS error
messages. Multiple arguments can be supplied. If no arguments are
given, help will prompt for one.

The arguments may be XENIX command names or SCCS message
numbers. Message numbers are displayed at the end of SCCS error
messages. SCCS message numbers come in two forms: numbers and
letter-number combinations (for example, ge6 or 212).

When all else fails, try “help stuck”.

Files

/usr/lib/help Directory containing files of message text

28 March 1991 Page 1

HWCONFIG (C) HWCONFIG (C)

Name
hwconfig - Display hardware configuration information.

Syntax
/etc/hwconftg [-f filename] [-chlnq] [field=value] [field] ...

Description
hwconfig displays hardware configuration information as reported by
device drivers during system bootup, from the file /usr/adm/hwconfig
or a specified file. Using combinations of the remaining options, the
user can select which devices to report on as well as what information
to report about these devices, hwconfig can also be used to detect
conflicts in device settings.

Two display formats are available. By default, hwconfig displays a
series of field=value entries for each recognized device. The fields
include (but are not restricted to) name, base I/O address, offset (num­
ber of consecutive I/O addresses used), interrupt vector, DMA chan­
nel, and fields specific to each device. This format is easily inter­
preted by programs.

In the default format, an argument of field=value causes only lines
with a matching field to be displayed. A field argument without a
value causes only the specified fields of the selected lines to display,
and selects only those lines which contain that field.

Using the -h option, the hwconfig display looks similar to this:

device address vec dma comment

floppy 0x3f2-0x3f7 06 2 unit=0 type=96dsl5
serial 0x210-0x217 03 - unit=l type=DIGIBQARD nports=4
console - - - unit=vga type=0
disk 0xlf0-0xlf7 36 - type=W0 unit=0 cyls=1023 hds=8 secs=52

Options
The following options are available:

-f filename use filename instead of /usr/adm/hwconfig.
-h Display tabular format with headers, rather than

field-value pairs. If field-value or field arguments are
included, only lines matching all such arguments are dis­
played. (The complete line is always displayed.)

28 March 1991 Page 1

HWCONFIG (C) HWCONFIG (C)

-c Check for device conflicts, including I/O addresses, DMA
channels and interrupt vectors which are being used by
more than one driver.

-q Check quietly for device conflicts; display nothing. When
both -c and -q are given, display conflicts only.

-n Display names; same as a field argument of name.
-I Display all fields, even if field selectors have been given.

field=value Display all devices with a field matching the stated value.

field Display only the matching fields of selected devices.
With -h, display whole lines with a matching field.

Examples
hwconfig The entire contents of the file /usr/adm/hwconfig is

printed.

hwconfig base
prints all base values found in /usr/adm/hwconfig.

hwconfig -f conf base=300 vec=31
prints all entries in conf that match the base and vec
values given.

hwconfig name=floppy base
prints the base values for any floppy entries in

hwconfig -n base dma
displays name, base and dma of all entries in /usr/adm/hwconfig with base and dma values.

hwconfig base dma vec=4
displays the base and dma values of all/usr/adm/hwconfig entries with base and dma values and
vec=4.

hwconfig -1 base dma
displays in full all entries in /usr/adm/hwconfig with both
base and dma values.

hwconfig -ch
displays /usr/adm/hwconfig in an easy-to-read tabular
format and checks for device conflicts.

28 March 1991 Page 2

HWCONFIG (C) HWCONFIG (C)

Files

/etc/hwconfig
/usr/lib/hwcon fig.awk
/usr/adm/hwconfig

program file
awk program which hwconfig uses
default source file

Diagnostics

hwconfig returns 0 for success, 1 for conflicts detected, 2 for invalid
arguments.

Notes

Information about conflicts is purely advisory because hwconfig can
only report about hardware devices which have been correctly recog­
nized by a kernel driver.

/usr/adm/hwconfig is not normally readable by users, but can be
made so by the System Administrator.

/usr/adm/hwconfig is written by the error logger daemon. The logger
daemon does not run while in System Maintenance mode. This means
that the hwconfig report is not valid until the system is brought into
multi-user mode.

28 March 1991 Page 3

ID (C) ID (C)

Name
id - Prints user and group IDs and names.

Syntax
id

Description
Id writes a message on the standard output, giving the user and group
IDs and the corresponding names of the invoking process. If the effec­
tive and real IDs do not match, both are printed.

See Also
logname(C), getuid(S)

28 March 1991 Page 1

JOIN (C) JOIN (C)

Name
join - Joins two relations.

Syntax

join [options] filel file2

Description

join forms, on the standard output, a join of the two relations specified
by the lines of filel and file2. If filel is a dash (-), the standard input
is used.

Filel and file2 must be sorted in increasing ASCII collating sequence
on the fields on which they are to be joined, normally the first in each
line.

There is one line in the output for each pair of lines in filel and file2
that have identical join fields. The output line normally consists of
the common field, then the rest of the line from file l, then the rest of
the line from file2.

Fields are normally separated by blank, tab or newline. In this case,
multiple separators count as one, and leading separators are discarded.

These options are recognized:

-aw In addition to the normal output, produces a line for each
unpairable line in file /2, where n is 1 or 2.

-e s Replaces empty output fields by string s.

-jn m Joins on the mth field of file n. If n is missing, uses the
/wth field in each file.

-o list Each output line comprises the fields specified in list,
each element of which has the form n.m, where n is a file
number and m is a field number.

-tc Uses character c as a separator (tab character). Every
appearance of c in a line is significant.

28 March 1991 Page 1

JOIN (C) JOIN (C)

See Also

awk(C), comm(C), sort(C)

Notes

With default field separation, the collating sequence is that of sort -b.
With -t, the sequence is that of a plain sort.

28 March 1991 Page 2

KILL (C) KILL (C)

Name

kill - Terminates a process.

Syntax

kill [-signo] processid ...

Description

kill sends signal 15 (terminate) to the specified processes. This will
normally kill processes that do not catch or ignore the signal. The
process number of each asynchronous process started with & is
reported by the shell (unless more than one process is started in a pipe­
line, in which case the number of the last process in the pipeline is
reported). Process numbers can also be found by using ps(C).

For example, if process number 0 is specified, all processes in the pro­
cess group are signaled.

The killed process must belong to the current user unless he is the
super-user.

If a signal number preceded by - is given as the first argument, that
signal is sent instead of the terminate signal (see signal(S)). In partic­
ular “kill -9 . . .” is a sure kill.

See Also

ps(C), sh(C), kill(S), signal(S)

28 March 1991 Page 1

KSH(C) KSH (C)

Name

ksh, rksh - Korn Shell, a standard/restricted command and program­
ming language.

Syntax

ksh [+aefhiknoprstuvx] [±o option] . . . [-c string] [arg ...]
rksh [±aefhiknoprstuvx] [±o option] . . . [-c string] [arg ...]

Description

ksh is a command and programming language that executes com­
mands read from a terminal or a file, rksh is a restricted version of the
command interpreter ksh; it is used to set up login names and execu­
tion environments whose capabilities are more controlled than those
of the standard shell. See Invocation below for the meaning of argu­
ments to the shell.

Definitions

A metacharacter is one of the following characters:

; & () | < > new-line space tab

A blank is a tab or a space. An identifier is a sequence of letters,
digits, or underscores starting with a letter or underscore. Identifiers
are used as names lor functions and named parameters. A word is a
sequence of characters separated by one or more non-quoted meta­
characters .

A command is a sequence of characters in the syntax of the shell lan­
guage. The shell reads each command and carries out the desired
action either directly or by invoking separate utilities. A special com­
mand is a command that is carried out by the shell without creating a
separate process.

Commands

A simple-command is a sequence of blank separated words which may
be preceded by a parameter assignment list. (See Environment
below). The first word specifies the name of the command to be exe­
cuted. Except as specified below, the remaining words are passed as
arguments to the invoked command. The command name is passed as
argument 0 (see exec (S)). The value of a simple-command is its exit
status if it terminates normally, or (octal) 20CU-status if it terminates
abnormally (see signal(S) for a list of status values).

28 March 1991 Page 1

KSH(C) KSH(C)

A pipeline is a sequence of one or more commands separated by | .
The standard output of each command but the last is connected by a
pipe(S) to the standard input of the next command. Each command is
run as a separate process; the shell waits for the last command to ter­
minate. The exit status of a pipeline is the exit status of the last com­
mand.

A list is a sequence of one or more pipelines separated by &, &&,
or | | , and optionally terminated by &, or | &. Of these five sym­
bols, &, and | & have equal precedence, which is lower than that
of && and | | . The symbols && and | | also have equal precedence.
A semicolon (;) causes sequential execution of the preceding pipe­
line; an ampersand (&) causes asynchronous execution of the preced­
ing pipeline (i.e., the shell does not wait for that pipeline to finish).
The symbol | & causes asynchronous execution of die preceding com­
mand or pipeline with a two-way pipe established to the parent shell.
The standard input and output of the spawned command can be writ­
ten to and read from by the parent shell using the -p option of the spe­
cial commands read and print described later. The symbol && (| |)
causes the list following it to be executed only if the preceding pipe­
line returns a zero (non-zero) value. An arbitrary number of new-lines
can appear instead of a semicolon in a list, to delimit a command.

A command is either a simple-command or one of the following.
Unless otherwise stated, the value returned by a command is that of
the last simple-command executed in the command.

for identifier [in word ...] ;do list ;done
Each time a for command is executed, identifier is set to the next
word taken from the in word list. If in word ... is omitted, then
the for command executes the do list once for each positional
parameter that is set (see Parameter Substitution below). Execu­
tion ends when there are no more words in the list.

select identifier [in word...] ;do list ;done
A select command prints on standard error (file descriptor 2), the
set of words, each preceded by a number. If in word ... is omit­
ted, then the positional parameters are used instead (see Parameter
Substitution below). The PS3 prompt is printed and a line is read
from the standard input. If this line consists of the number of one
of the listed words, then the value of the parameter identifier is set
to the word corresponding to this number. If this line is empty the
selection list is printed again. Otherwise the value of the parame­
ter identifier is set to null. The contents of the line read from stan­
dard input is saved in the parameter REPLY. The list is executed
for each selection until a break or end-of-file is encountered.

case word in [[(̂ pattern [| pattern] . . .) lis t ;;] ... esacA case command executes the list associated with the first pattern
that matches word. The form of the patterns is the same as that
used for file-name generation (see File Name Generation below).

28 March 1991 Page 2

KSH (C) KSH (C)

if list ;then list [; elif list ;then list] ... [;else list] ;fi
The list following if is executed and, if it returns a zero exit status, the list
following the first then is executed. Otherwise, the list following elif is
executed and, if its value is zero, the list following the next then is exe­
cuted. Failing that, the else list is executed. If no else list or then list is
executed, then the if command returns a zero exit status.

while list ;do list ;done until list ;do list ;done
A while command repeatedly executes the while list and, if the
exit status of the last command in the list is zero, executes the do
list; otherwise the loop terminates. If no commands in the do list
are executed, then the while command returns a zero exit status; until may be used in place of while to negate the loop termination
test.

(list)
Executes list in a separate environment. Note, that if two adjacent
open parentheses are needed for nesting, a space must be inserted
to avoid arithmetic evaluation as described below.

{ list;}
list is simply executed. Note that unlike the metacharacters (and
), { and } are reserved words and must be at the beginning of a line
or after a ; in order to be recognized.

[[expression]]
Evaluates expression and returns a zero exit status when expres­
sion is true. See Conditional Expressions below, for a description
of expression.

function identifier { lis t;}
identifier () { lis t;}

Defines a function which is referenced by identifier. The body of
the function is the list of commands between { and }. (See Func­
tions below).

time pipeline
The pipeline is executed and the elapsed time as well as the user
and system time are printed on standard error.

The following reserved words are only recognized as the first word of
a command and when not quoted:

if then else elif fi case esac for while until do done
{ } function select time [[]]

Comments

A word beginning with # causes that word and all the following char­
acters up to a new-line to be ignored.

28 March 1991 Page 3

KSH (C) KSH(C)

Aliasing

The first word of each command is replaced by the text of an alias if
an alias for this word has been defined. The first character of an alias
name can be any non-special printable character, but the rest of the
characters must be the same as for a valid identifier. The replacement
string can contain any valid shell script including the metacharacters
listed above. The first word of each command in the replaced text,
other than any that are in the process of being replaced, will be tested
for aliases. If the last character of the alias value is a blank then the
word following the alias will also be checked for alias substitution.
Aliases can be used to redefine special builtin commands but cannot
be used to redefine the reserved words listed above. Aliases can be
created, listed, and exported with the alias command and can be
removed with the unalias command. Exported aliases remain in effect
for scripts invoked by name, but must be reinitialized for separate
invocations of the shell (See Invocation below).

Aliasing is performed when scripts are read, not while they are exe­
cuted. Therefore, for an alias to take effect the alias definition com­
mand has to be executed before the command which references the
alias is read.

Aliases are frequently used as a short hand for full path names. An
option to the aliasing facility allows the value of the alias to be auto­
matically set to the full pathname of the corresponding command.
These aliases are called tracked aliases. The value of a tracked alias
is defined the first time the corresponding command is looked up and
becomes undefined each time the PATH variable is reset. These
aliases remain tracked so that the next subsequent reference will
redefine the value. Several tracked aliases are compiled into the shell.
The -h option of the set command makes each referenced command
name into a tracked alias.

The following exported aliases are compiled into the shell but can be
unset or redefined: autoload= Typeset -ftT

false='let 0' functions= Typeset -r hash=alias -t' history =Tc -1" integer= Typeset -i' nohup= nohup'
r=Tc -e true=Ytype='whence -v'

The alias of nohup with a trailing space allows nohup to be used with
aliases.

28 March 1991 Page 4

KSH (C) KSH(C)

Tilde Substitution

After alias substitution is performed, each word is checked to see if it
begins with an unquoted If it does, then the word up to a / is
checked to see if it matches a user name in the /etc/passwd file. If a
match is found, the " and the matched login name are replaced by the
login directory of the matched user. This is called a tilde substitution.
If no match is found, the original text is left unchanged. A “ by itself,
or in front of a /, is replaced by the value of the HOME parameter. A "
followed by a + or - is replaced by $PWD and $OLDPWD respec­
tively.

In addition, tilde substitution is attempted when the value of a vari­
able assignment parameter begins with a ".

Command Substitution

The standard output from a command enclosed in parenthesis pre­
ceded by a dollar sign ($ ()) or a pair of grave accents (vv) may be
used as part or all of a word; trailing new-lines are removed. In the
second (archaic) form, the string between the quotes is processed for
special quoting characters before the command is executed. (See
Quoting below). The command substitution $(cat file) can be
replaced by the equivalent but faster $(<file). Command substitutions
of most special commands that do not perform input/output redirection
are carried out without creating a separate process.

An arithmetic expression enclosed in double parentheses preceded by
a dollar sign ($(())) is replaced by the value of the arithmetic expres­
sion within the double parentheses.

Parameter Substitution

A parameter is an identifier, one or more digits, or any of the charac­
ters *, @, #, ?, -, $, and !. A named parameter (a parameter denoted
by an identifier) has a value and zero or more attributes. Named
parameters can be assigned values and attributes by using the
typeset special command. The attributes supported by the shell are
described later with the typeset special command. Exported parame­
ters pass values and attributes to the environment.

The shell supports a one-dimensional array facility. An element of an
array parameter is referenced by a subscript. A subscript is denoted
by a [, followed by an arithmetic expression (see Arithmetic evalua­
tion below) followed by a]. To assign values to an array, use
set -A name value__ The value of all subscripts must be in the
range of 0 through 1023. Arrays need not be declared. Any reference
to a named parameter with a valid subscript is legal and an array will
be created if necessary. Referencing an array without a subscript is
equivalent to referencing the element zero.

28 March 1991 Page 5

KSH (C) KSH (C)

The value of a named parameter may also be assigned by writing:

name rvalue [name=value] ...

If the integer attribute, -i, is set for name the value is subject to arith­
metic evaluation as described below.
Positional parameters, parameters denoted by a number, may be
assigned values with the set special command. Parameter $0 is set
from argument zero when the shell is invoked.

The character $ is used to introduce substitutable parameters.
^{parameter}

The shell reads all the characters from ${ to the matching } as part
of the same word even if it contains braces or metacharacters. The
value, if any, of the parameter is substituted. The braces are
required when parameter is followed by a letter, digit, or under­
score that is not to be interpreted as part of its name or when a
named parameter is subscripted. If parameter is one or more digits
then it is a positional parameter. A positional parameter of more
than one digit must be enclosed in braces. If parameter is * or @,
then all the positional parameters, starting with $1, are substituted
(separated by a field separator character). If an array identifier
with subscript * or @ is used, then the value for each of the ele­
ments is substituted (separated by a field separator character).

${#parameter}
If parameter is * or @, the number of positional parameters is sub­
stituted. Otherwise, the length of the value of the parameter is
substituted.

${#identifier[*]}
The number of elements in the array identifier is substituted.

%{parameter :-word}
If parameter is set and is non-null then substitute its value; other­
wise substitute word.

${parameter :=word}
If parameter is not set or is null then set it to word; the value of
the parameter is then substituted. Positional parameters may not
be assigned to in this way.

%{parameterilword}
If parameter is set and is non-null then substitute its value; other­
wise, print word and exit from the shell. If word is omitted then a
standard message is printed.

${parameter :+word}
If parameter is set and is non-null then substitute word; otherwise
substitute nothing.

%{parameter Spattern }
${parameter##pattern }

If the shell pattern matches the beginning of the value of parame­
ter, then the value of this substitution is the value of the parameter
with the matched portion deleted; otherwise the value of this
parameter is substituted. In the first form the smallest matching
pattern is deleted and in the second form the largest matching pat­
tern is deleted.

28 March 1991 Page 6

KSH (C) KSH (C)

%{parameter %pattern }
$(parameter % %pattern }

If the shell pattem matches the end of the value of parameter, then
the value of this substitution is the value of the parameter with the
matched part deleted; otherwise substitute the value of parameter.
In the first form the smallest matching pattern is deleted and in the
second form the largest matching pattern is deleted.

In the above, word is not evaluated unless it is to be used as the substi­
tuted string, so that, in the following example, pwd is executed only if d is not set or is null:

echo ${d:-$(pwd)}

If the colon (:) is omitted from the above expressions, then the shell
only checks whether parameter is set or not.

The following parameters are automatically set by the shell:
$ 0 -$.* 2

Positional parameters.
The number of positional parameters in decimal.
- Flags supplied to the shell on invocation or by the set com­

mand.
? The decimal value returned by the last executed command.
$ The process number of this shell.
_ Initially, the value _ is an absolute pathname of the shell or

script being executed as passed in the environment. Subse­
quently it is assigned the last argument of the previous com­
mand. This parameter is not set for commands which are asyn­
chronous. This parameter is also used to hold the name of the
matching MAIL file when checking for mail.

! The process number of the last background command invoked.
ERRNO

The value of errno as set by the most recently failed system
call. This value is system dependent and is intended for debug­
ging purposes.

LINENO
The line number of the current line within the script or function
being executed.

OLDPWD
The previous working directory set by the cd command.

OPTARG
The value of the last option argument processed by the getopts
special command.

OPTIND
The index of the last option argument processed by the getopts
special command.

PPID
The process number of the parent of the shell.

PWD
The present working directory set by the cd command.

28 March 1991 Page 7

KSH (C) KSH (C)

RANDOM
Each time this parameter is referenced, a random integer, uni­
formly distributed between 0 and 32767, is generated. The
sequence of random numbers can be initialized by assigning a
numeric value to RANDOM.

REPLY
This parameter is set by the select statement and by the read
special command when no arguments are supplied.

SECONDS
Each time this parameter is referenced, the number of seconds
since shell invocation is returned. If this parameter is assigned
a value, then the value returned upon reference will be the
value that was assigned plus the number of seconds since the
assignment.

The following parameters are used by the shell:
CDPATH

The search path for the cd command.
COLUMNS

If this variable is set, the value is used to define the width of the
edit window for the shell edit modes and for printing select
lists.

EDITOR
If the value of this variable ends in emacs, gmacs, or vi and the
VISUAL variable is not set, then the corresponding option (see
Special Command set below) will be turned on.

ENV
If this parameter is set, then parameter substitution is per­
formed on the value to generate the pathname of the script that
will be executed when the shell is invoked. (See Invocation
below.) This file is typically used for alias and function
definitions.

FCEDIT
The default editor name for the fc command.

FPATH
The search path for function definitions. This path is searched
when a function with the -u attribute is referenced and when a
command is not found. If an executable file is found, then it is
read and executed in the current environment.

IFS
Internal field separators, normally space, tab, and new-line that
is used to separate command words which result from com­
mand or parameter substitution and for separating words with
the special command read. The first character of the IFS
parameter is used to separate arguments for the "$ *" substitu­
tion (See Quoting below).

HISTFELE
If this parameter is set when the shell is invoked, then the value
is the pathname of the file that will be used to store the com­
mand history. (See Command re-entry below.)

28 March 1991 Page 8

KSH (C) KSH (C)

HISTSIZE
If this parameter is set when the shell is invoked, then the num­
ber of previously entered commands that are accessible by this
shell will be greater than or equal to this number. The default
is 128.

HOME
The default argument (home directory) for the cd command.

LINES
If this variable is set, the value is used to determine the column
length for printing select lists. Select lists will print vertically
until about two-thirds of LINES lines are filled.

MAIL
If this parameter is set to the name of a mail file and the MAIL-
PATH parameter is not set, then the shell informs the user of
arrival of mail in the specified file.

MAILCHECK
This variable specifies how often (in seconds) the shell will
check for changes in the modification time of any of the files
specified by the MAILPATH or MAIL parameters. The default
value is 600 seconds. When the time has elapsed the shell will
check before issuing the next prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set
then the shell informs the user of any modifications to the
specified files that have occurred within the last MAILCHECK
seconds. Each file name can be followed by a ? and a message
that will be printed. The message will undergo parameter sub­
stitution with the parameter, $_ defined as the name of the file
that has changed. The default message is you have mail in $_.

PATH
The search path for commands (see Execution below). The
user may not change PATH if executing under rksh (except in
.profile).

PS1
The value of this parameter is expanded for parameter substitu­
tion to define the primary prompt string which by default is
“$ ”. The character ! in die primary prompt string is replaced
by the command number (see Command Re-entry below).

PS2
Secondary prompt string, by default “> ”.

PS3
Selection prompt string used within a select loop, by default
“#? ”

PS4
The value of this parameter is expanded for parameter substitu­
tion and precedes each line of an execution trace. If omitted,
the execution trace prompt is “+ ”.

SHELL
The pathname of the shell is kept in the environment. At invo­
cation, if the basename of this variable matches the pattern *r*sh, then the shell becomes restricted.

28 March 1991 Page 9

KSH (C) KSH (C)

TMOUT
If set to a value greater than zero, the shell will terminate if a
command is not entered within the prescribed number of
seconds after issuing the PS1 prompt.

VISUAL
If the value of this variable ends in emacs, gmacs, or vi then the
corresponding option (see Special Command set below) will be
turned on.

The shell gives default values to PATH, PSI, PS2, MAELCHECK,
TMOUT and IFS, while HOME, SHELL, ENV and MAIL are not set
at all by the shell (although HOME, MAIL, and SHELL are set by
login (M)).

Blank Interpretation

After parameter and command substitution, the results of substitutions
are scanned for the field separator characters (those found in IFS)
and split into distinct arguments where such characters are found. Ex­
plicit null arguments (" " or ") are retained. Implicit null arguments
(those resulting from parameters that have no values) are removed.

File Name Generation

Following substitution, each command word is scanned for the char­
acters *, ?, and [unless the -f option has been set. If one of these
characters appears then the word is regarded as a pattern. The word is
replaced with lexicographically sorted file names that match the pat­
tem. If no file name is found that matches the pattem, then the word is
left unchanged. When a pattern is used for file name generation, the
character . at the start of a file name or immediately following a /, as
well as the character / itself, must be matched explicitly. In other
instances of pattern matching the / and. are not treated specially.

* Matches any string, including the null string.
? Matches any single character.
[. . .]

Matches any one of the enclosed characters. A pair of charac­
ters separated by - matches any character lexically between the
pair, inclusive. If the first character following the opening "["
is a "! " then any character not enclosed is matched. A - can be
included in the character set by putting it as the first or last
character.

A pattern-list is a list of one or more patterns separated by each other
with a | . Composite patterns can be formed with one or more of the
following:

1 (pattern-list)
Optionally matches any one of the given patterns.

28 March 1991 Page 10

KSH (C) KSH (C)

*(pattern-list)
Matches zero or more occurrences of the given patterns.

-^(pattern-list)
Matches one or more occurrences of the given patterns.

@(pattern-list)
Matches exactly one of the given patterns.

\(pattern-list)
Matches anything, except one of the given patterns.

Quoting

Each of the metacharacters listed above (See Definitions above) has a
special meaning to the shell and causes termination of a word unless
quoted. A character may be quoted (i.e., made to stand for itself) by
preceding it with a \. The pair \new-line is ignored. All characters
enclosed between a pair of single quote marks (") , are quoted. A sin­
gle quote cannot appear within single quotes. Inside double quote
marks (" "), parameter and command substitution occurs and \ quotes
the characters \, \ ", and $. The meaning of $* and $@ is identical
when not quoted or when used as a parameter assignment value or as a
file name. However, when used as a command argument, "$ *" is
equivalent to "ld2d...", where d is the first character of the IFS
parameter, whereas "$@" is equivalent to "$1" "$2" Inside
grave quote marks (v v) \ quotes the characters \, N, and $. If the grave
quotes occur within double quotes then \ also quotes the character ".

The special meaning of reserved words or aliases can be removed by
quoting any character of the reserved word. The recognition of func­
tion names or special command names listed below cannot be altered
by quoting them.

Arithmetic Evaluation

An ability to perform integer arithmetic is provided with the special
command let. Evaluations are performed using long arithmetic. Con­
stants are of the form [base#]n where base is a decimal number
between two and thirty-six representing the arithmetic base and n is a
number in that base. If base is omitted then base 10 is used.

An arithmetic expression uses the same syntax, precedence, and asso­
ciativity of expression of the C language. All the integral operators,
other than ++, --, ?:, and , are supported. Named parameters can be
referenced by name within an arithmetic expression without using the
parameter substitution syntax. When a named parameter is refer­
enced, its value is evaluated as an arithmetic expression.

An internal integer representation of a named parameter can be
specified with the -i option of the typeset special command. Arith­
metic evaluation is performed on the value of each assignment to a
named parameter with the -i attribute. If you do not specify an

28 March 1991 Page 11

KSH (C) KSH(C)

arithmetic base, the first assignment to the parameter determines the
arithmetic base. This base is used when parameter substitution
occurs.

Since many of the arithmetic operators require quoting, an alternative
form of the let command is provided. For any command which begins
with a ((, all the characters until a matching)) are treated as a quoted
expression. More precisely, ((...)) is equivalent to let " . . .".

Prompting

When used interactively, the shell prompts with the value of PS1
before reading a command. If at any time a new-line is typed and
further input is needed to complete a command, then the secondary
prompt (i.e., the value of PS2) is issued.

Conditional Expressions

A conditional expression is used with the [[compound command to
test attributes of files and to compare strings. Word splitting and file
name generation are not performed on the words between [[and]].
Each expression can be constructed from one or more of the following
unary or binary expressions:
-a file

True, if file exists.
-bfile

True, if file exists and is a block special file.
-c file

True, if file exists and is a character special file.
-d file

True, if file exists and is a directory.
4 file

True, if file exists and is an ordinary file.
-g file

True, if file exists and is has its setgid bit set.
-k file

True, if file exists and is has its sticky bit set.
-n string

True, if length of string is non-zero.
-o option

True, if option named option is on.
-P file

True, if file exists and is a FIFO (first-in-first-out) special file or a
pipe.

-rfile
True, if file exists and is readable by current process.

-s file
True, if file exists and has size greater than zero.

28 March 1991 Page 12

KSH (C) KSH (C)

-t fildes
True, if file descriptor number fildes is open and associated with a
terminal device.-u file
True, if file exists and is has its setuid bit set.-w file
True, if file exists and is writable by current process.

-xfile
True, if file exists and is executable by current process. If file
exists and is a directory, then the current process has permission to
search in the directory.-z string
True, if length of string is zero.

-O file
True, if file exists and is owned by the effective user id of this pro­
cess.

-G file
True, if file exists and its group matches the effective group id of
this process.

filel -nt file2
True, if filel exists and is newer than file2.

filel -ot filel
True, if filel exists and is older than file2.

filel -ef file!
True, if filel and file2 exist and refer to the same file.

string = pattern
True, if string matches pattern.

string != pattern
True, if string does not match pattern.

stringl < string2
True, if stringl comes before string2 based on ASCII value of their
characters.

stringl > string2
True, if stringl comes after string2 based on ASCII value of their
characters.

expl -eq exp2
True, if expl is equal to exp2.

expl -ne exp2
True, if expl is not equal to exp2.

expl -It exp2
True, if expl is less than exp2.

expl -gt exp2
True, if expl is greater than exp2.

expl -le exp2
True, if expl is less than or equal to exp2.

expl -ge exp2
True, if expl is greater than or equal to exp2.

In each of the above expressions, if file is of the form /dev/fd/n, where
n is an integer, then the test is applied to the open file whose descrip­
tor number is n.

28 March 1991 Page 13

KSH (C) KSH(C)

A compound expression can be constructed from these primitives by
using any of the following, listed in decreasing order of precedence.
(expression)

True, if expression is true. Used to group expressions.
! expression

True if expression is false.
expression1 && expression2

True, if expressionl and expression2 are both true.
expression1 | | expressionl

True, if either expressionl or expression2 is true.

Spelling Checker

By default, the shell checks spelling whenever you use cd to change
directories. For example, if you change to a different directory using
cd and misspell the directory name, the shell responds with an alterna­
tive spelling of an existing directory. Enter “y” and press RETURN
(or just press RETURN) to change to the offered directory. If the
offered spelling is incorrect, enter “n”, then retype the command line.
In this example the user input is boldfaced:

cd /usr/spol/uucp
/usr/spool/uucp? y
ok

The spell check feature is controlled by the CDSPELL environment
variable. The default value of CDSPELL is set to the string “cdspell”
whenever a ksh session is run. A user can change it to any value,
including the null string, but the value is immaterial, if CDSPELL is
set to any value, the spell check feature is engaged.

To disable the spelling checker, enter the following at the ksh prompt:

unset CDSPELL

When the user does a set at the ksh prompt, CDSPELL is not listed if
the unset was successful.

Input/Output

Before a command is executed, its input and output may be redirected
using a special notation interpreted by the shell. The following may
appear anywhere in a simple-command or may precede or follow a
command and are not passed on to the invoked command. Command
and parameter substitution occurs before word or digit is used except
as noted below. File name generation occurs only if the pattern
matches a single file and blank interpretation is not performed.

28 March 1991 Page 14

KSH (C) KSH (C)

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1).
If the file does not exist then it is created. If the file
exists, and the noclobber option is on, this causes an
error; otherwise, it is truncated to zero length.

>| word Sames as >, except that it overrides the noclobber
option.

»w ord Use file word as standard output. If the file exists
then output is appended to it (by first seeking to the
end-of-file); otherwise, the file is created.

ow ord Open file word for reading and writing as standard
input.

« [-]word The shell input is read up to a line that is the same as
word, or to an end-of-file. No parameter substitu­
tion, command substitution or file name generation is
performed on word. The resulting document, called
a here-document, becomes the standard input. If any
character of word is quoted, then no interpretation is
placed upon the characters of the document; other­
wise, parameter and command substitution occurs,
\new-line is ignored, and \ must be used to quote the
characters \, $,v, and the first character of word. If -
is appended to « , then all leading tabs are stripped
from word and from the document.

<&digit The standard input is duplicated from file descriptor
digit (see dup{S)). Similarly for the standard output
using >& digit.

<&- The standard input is closed. Similarly for the stan­
dard output using >&-.

<&p The input from the co-process is moved to standard
input.

>&p The output to the co-process is moved to standard
output.

If one of the above is preceded by a digit, then the file descriptor num­
ber referred to is that specified by the digit (instead of the default 0 or
1). For example:

... 2>&1
means file descriptor 2 is to be opened for writing as a duplicate of file
descriptor 1.

28 March 1991 Page 15

KSH(C) KSH(C)

The order in which redirections are specified is significant. The shell
evaluates each redirection in terms of the (file descriptor .file) associ­
ation at the time of evaluation. For example:

... 1 >fname 2>&1

first associates file descriptor 1 with file fname. It then associates file
descriptor 2 with the file associated with file descriptor 1 (i.e. fname).
If the order of redirections were reversed, file descriptor 2 would be
associated with the terminal (assuming file descriptor 1 had been) and
then file descriptor 1 would be associated with file fname. File
descriptor 0 is used for standard input, 1 for standard output, and 2 for
standard error.

Environment

The environment (see environ (M)) is a list of name-value pairs that is
passed to an executed program in the same way as a normal argument
list. The names must be identifiers and the values are character
strings. The shell interacts with the environment in several ways. On
invocation, the shell scans the environment and creates a parameter
for each name found, giving it the corresponding value and marking it
export. Executed commands inherit the environment. If the user
modifies the values of these parameters or creates new ones, using the
export or typeset -x commands they become part of the environment.
The environment seen by any executed command is thus composed of
any name-value pairs originally inherited by the shell, whose values
may be modified by the current shell, plus any additions which must
be noted in export or typeset -x commands.

The environment for any simple-command or function may be aug­
mented by prefixing it with one or more parameter assignments. A
parameter assignment argument is a word of the form
identifier-value. Thus:

TERM=vtlOO cmd args

and

(export TERM; TERM=vtlOO; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

If the -k flag is set, all parameter assignment arguments are placed in
the environment, even if they occur after the command name. The fol­
lowing first prints a=b c and then c:

echo a=b c
set -k
echo a=b c

28 March 1991 Page 16

KSH(C) KSH(C)

This feature is intended for use with scripts written for early versions
of the shell and its use in new scripts is strongly discouraged. It is
likely to disappear someday.

Functions

The function reserved word, described in the Commands section
above, is used to define shell functions, shell functions are read in and
stored internally. Alias names are resolved when the function is read.
Functions are executed like commands with the arguments passed as
positional parameters. (See Execution below).

Functions execute in the same process as the caller and share all files
and present working directory with the caller. Traps caught by the
caller are reset to their default action inside the function. A trap con­
dition that is not caught or ignored by the function causes the function
to terminate and the condition to be passed on to the caller. A trap on EXIT set inside a function is executed after the function completes in
the environment of the caller. Ordinarily, variables are shared
between the calling program and the function. However, the typeset
special command used within a function defines local variables whose
scope includes the current function and all functions it calls.

The special command return is used to return from function calls.
Errors within functions return control to the caller.

Function identifiers can be listed with the -f or +f option of the typeset
special command. The text of functions will also be listed with -f.
Function can be undefined with the -f option of the unset special com­
mand.

Ordinarily, functions are unset when the shell executes a shell script.
The -xf option of the typeset command allows a function to be
exported to scripts that are executed without a separate invocation of
the shell. Functions that need to be defined across separate invoca­
tions of the shell should be specified in the ENV file with the -xf
option of typeset.

Execution

If the command name matches one of the Special Commands listed
below, it is executed within the current shell process. Next, the com­
mand name is checked to see if it matches one of the user defined
functions. If it does, the positional parameters are saved and then
reset to the arguments of the function call. When the function com­
pletes or issues a return, the positional parameter list is restored and
any trap set on EXIT within the function is executed. The value of a
function is the value of the last command executed. A function is also
executed in the current shell process. If a command name is not a spe­
cial command or a user defined function, a process is created and an

28 March 1991 Page 17

KSH(C) KSH (C)

attempt is made to execute the command via exec (S).

The shell parameter PATH defines the search path for the directory
containing the command. Alternative directory names are separated
by a colon (:). The default path is /bin:/usr/bin: (specifying /bin,
/usr/bin, and the current directory in that order). The current direc­
tory can be specified by two or more adjacent colons, or by a colon at
the beginning or end of the path list. If the command name contains a
/ then the search path is not used. Otherwise, each directory in the
path is searched for an executable file. If the file has execute permis­
sion but is not a directory or an a.out file, it is assumed to be a file
containing shell commands. A sub-shell is spawned to read it. All
non-exported aliases, functions, and named parameters are removed in
this case. A parenthesized command is executed in a sub-shell
without removing non-exported quantities.

Command Re-entry

The text of the last HISTSIZE (default 128) commands entered from
a terminal device is saved in a history file. The file
$HOME/.sh_history is used if the HISTFILE variable is not set or is
not writable. A shell can access the commands of all interactive
shells which use the same named HISTFILE. The special command
fc is used to list or edit a portion of this file. The portion of the file to
be edited or listed can be selected by number or by giving the first
character or characters of the command. A single command or range
of commands can be specified. If you do not specify an editor pro­
gram as an argument to fc then the value of the parameter FCEDIT is
used. If FCEDIT is not defined then /bin/ed is used. The edited
command(s) is printed and re-executed upon leaving the editor. The
editor name - is used to skip the editing phase and to re-execute the
command. In this case a substitution parameter of the form old-new
can be used to modify the command before execution. For example, if
r is aliased to 7c -e then typing ‘r bad=good c’ will re-execute the
most recent command which starts with the letter c, replacing the first
occurrence of the string bad with the string good.

In-line Editing Options

Normally, each command line entered from a terminal device is sim­
ply typed followed by a new-line (‘RETURN’ or ‘LINE FEED’). If
any of the emacs, gmacs, or vi options are active, the user can edit the
command line. To be in either of these edit modes set the corre­
sponding option. An editing option is automatically selected each
time the VISUAL or EDITOR variable is assigned a value ending in
either of these option names.

The editing features require that the user’s terminal accept ‘RETURN’
as carriage return without line feed and that a space (‘ ’) must
overwrite the current character on the screen.

28 March 1991 Page 18

KSH (C) KSH (C)

The editing modes implement a concept where the user is looking
through a window at the current line. ITie window width is the value
of COLUMNS if it is defined, otherwise 80. If the line is longer than
the window width minus two, a mark is displayed at the end of the
window to notify the user. As the cursor moves and reaches the win­
dow boundaries the window will be centered about the cursor. The
mark is a > (<, *) if the line extends on the right (left, both) side(s) of
the window.

The search commands in each edit mode provide access to the history
file. Only strings are matched, not patterns, although a leading A in the
string restricts the match to begin at the first character in the line.

Emacs Editing Mode

This mode is entered by enabling either the emacs or gmacs option.
The only difference between these two modes is the way they handle
AT. To edit, the user moves the cursor to the point needing correction
and then inserts or deletes characters or words as needed. All the edit­
ing commands are control characters or escape sequences. The nota­
tion for control characters is caret (A) followed by the character. For
example, AF is the notation for control F. This is entered by depress­
ing ‘f while holding down the ‘CTRL’ (control) key. The ‘SHIFT’
key is not depressed. (The notation A? indicates the DEL (delete)
key.)

The notation for escape sequences is M- followed by a character. For
example, M-f (pronounced Meta f) is entered by depressing ESC fol­
lowed by ‘F. (M-F would be the notation for ESC followed by
‘SHIFT’ (capital) ‘F’.)

All edit commands operate from any place on the line (not just at the
beginning). Neither the "RETURN” nor the "LINE FEED" key is
entered after edit commands except when noted.

F
M-f

AB
M-b
AA
AE
*]char
M-*]char
AXAX
erase

D

Move cursor forward (right) one character.
Move cursor forward one word. (The emacs editor’s idea
of a word is a string of characters consisting of only
letters, digits and underscores.)
Move cursor backward (left) one character.
Move cursor backward one word.
Move cursor to start of line.
Move cursor to end of line.
Move cursor forward to character char on current line.
Move cursor back to character char on current line.
Interchange the cursor and mark.
(User defined erase character as defined by the stty (C)
command, usually AH or#.) Delete previous character.
Delete current character.

28 March 1991 Page 19

KSH (C) KSH (C)

M-d
M-H
M-h
M -?

T

AC
M-c
M-I
K

w
M-p
kill

Y

L
@

M-space
J
M

eof
p

M-<
M->
AN

AR string

O

Delete current word.
(Meta-backspace) Delete previous word.
Delete previous word.
(Meta-DEL) Delete previous word (if your interrupt char­
acter is A? (DEL, the default) then this command will not
work).
Transpose current character with next character in emacs
mode. Transpose two previous characters in gmacs mode.
Capitalize current character.
Capitalize current word.
Change the current word to lower case.
Delete from the cursor to the end of the line. If preceded
by a numerical parameter whose value is less than the
current cursor position, then delete from given position up
to the cursor. If preceded by a numerical parameter
whose value is greater than the current cursor position,
then delete from cursor up to given cursor position.
Kill from the cursor to the mark.
Push the region from the cursor to the mark on the stack.
(User defined kill character as defined by the stty com­
mand, usually AU or @.) Kill the entire current line. If
two kill characters are entered in succession, all kill char­
acters from then on cause a line feed (useful when using
paper terminals).
Restore last item removed from line. (Yank item back to
the line.)
Line feed and print current line.
(Null character) Set mark.
(Meta space) Set mark.
(New line) Execute the current line.
(Return) Execute the current line.
End-of-file character, normally AD, is processed as an
End-of-file only if the current line is null.
Fetch previous command. Each time AP is entered the
previous command back in time is accessed. Moves back
one line when not on the first line of a multi-line com­
mand.
Fetch the least recent (oldest) history line.
Fetch the most recent (youngest) history line.
Fetch next command line. Each time AN is entered the
next command line forward in time is accessed.
Reverse search history for a previous command line con­
taining string. If a parameter of zero is given, the search
is forward. String is terminated by a ’’RETURN" or
"NEW LINE". If string is preceded by a A, the matched
line must begin with string. If string is omitted, then the
next command line containing the most recent string is
accessed. In this case a parameter of zero reverses the
direction of the search.
Operate - Execute the current line and fetch the next line
relative to current line from the history file.

28 March 1991 Page 20

KSH (C) KSH(C)

M-digits

M-letter

M-]letter

M-.

M-
M-*

M-ESC

M-=

U
\

AV
M-#

(Escape) Define numeric parameter, the digits are taken
as a parameter to the next command. The commands that
accept a parameter are AF, AB, erase, AC, AD, AK, AR, AP,
N,], M-., M-A], M- , M-b, M-c, M-d, M-f, M-h M-l and

M-H.
Soft-key - Your alias list is searched for an alias by the
name Jetter and if an alias of this name is defined, its
value will be inserted on the input queue. The letter must
not be one of the above meta-functions.
Soft-key - Your alias list is searched for an alias by the
name__letter (two underscores followed by letter) and if
an alias of this name is defined, its value will be inserted
on the input queue. This can be used to program functions
keys on many terminals.
The last word of the previous command is inserted on the
line. If preceded by a numeric parameter, the value of
this parameter determines which word to insert rather
than the last word.
Same as Mk.
Attempt file name generation on the current word. An
asterisk is appended if the word doesn’t match any file or
contain any special pattern characters.
File name completion. Replaces the current word with
the longest common prefix of all filenames matching the
current word with an asterisk appended. If the match is
unique, a / is appended if the file is a directory and a space
is appended if the file is not a directory.
List files matching current word pattern if an asterisk
were appended.
Multiply parameter of next command by 4.
Escape next character. Editing characters, the user’s
erase, kill and interrupt (normally A?) characters may be
entered in a command line or in a search string if pre­
ceded by a \. The \ removes the next character’s editing
features (if any).
Display version of the shell.
Insert a # at the beginning of the line and execute it. This
causes a comment to be inserted in the history file.

Vi Editing Mode

There are two typing modes. Initially, when you enter a command you
are in the input mode. To edit, the user enters control mode by typing
ESC and moves the cursor to the point needing correction and then
inserts or deletes characters or words as needed. Most control com­
mands accept an optional repeat count prior to the command.

When in vi mode on most systems, canonical processing is initially
enabled and the command will be echoed again if the speed is 1200
baud or greater and it contains any control characters or less than one
second has elapsed since the prompt was printed. The ESC character

28 March 1991 Page 21

KSH (C) KSH(C)

terminates canonical processing for the remainder of the command
and the user can then modify the command line. This scheme has the
advantages of canonical processing with the type-ahead echoing of
raw mode.

If the option viraw is also set, the terminal will always have canonical
processing disabled.

" Input Edit Commands"

By default the editor is in input mode.
erase (User defined erase character as defined by the stty

command, usually AH or#.) Delete previous character.
AW Delete the previous blank separated word.
AD Terminate the shell.
AV Escape next character. Editing characters, the user’s

erase or kill characters may be entered in a command
line or in a search string if preceded by a AV. The AV
removes the next character’s editing features (if any).

\ Escape the next erase or kill character.
" Motion Edit Commands"

These commands will move the cursor.
[count] 1 Cursor forward (right) one character.
[count] w Cursor forward one alpha-numeric word.
[count] W Cursor to the beginning of the next word that follows a

blank.
[count]e Cursor to end of word.
[count]E Cursor to end of the current blank delimited word.
[count] h Cursor backward (left) one character.
[count]b Cursor backward one word.
[count]B Cursor to preceding blank separated word.
[count] | Cursor to column count.
[count]ic Find the next character c in the current line.
[count]Fc Find the previous character c in the current line.
[count]tc Equivalent to f followed by h.
[count]Tc Equivalent to F followed by I.
[count]; Repeats count times, the last single character find

command, f, F, t, or T.
[count], Reverses the last single character find command count

times.
0 Cursor to start of line.
A Cursor to first non-blank character in line.
$ Cursor to end of line.

" Search Edit Commands"

These commands access your command history.
[count]k Fetch previous command. Each time k is entered the

previous command back in time is accessed.

28 March 1991 Page 22

KSH (C) KSH (C)

[count]-
[county

[couni\+
[count] G

/string

?string

n

N

Equivalent to k.
Fetch next command. Each time j is entered the next
command forward in time is accessed.
Equivalent to j.
The command number count is fetched. The default is
the least recent history command.
Search backward through history for a previous com­
mand containing string. String is terminated by a
’’RETURN” or "NEW LINE". If string is preceded by
a A, the matched line must begin with string. If string
is null the previous string will be used.
Same as / except that search will be in the forward
direction.
Search for next match of the last pattern to / or ? com­
mands.
Search for next match of the last pattern to / or ?, but
in reverse direction. Search history for the string
entered by the previous / command.

Text Modification Edit Commands"

These commands will modify the line.
a Enter input mode and enter text after the current char­

acter.
A Append text to the end of the line. Equivalent to $a.
[count]cmotion
c[count]motion

Delete current character through the character that
motion would move the cursor to and enter input
mode. If motion is c, the entire line will be deleted
and input mode entered.

C Delete the current character through the end of line
and enter input mode. Equivalent to c$.

S Equivalent to cc.
D Delete the current character through the end of line.

Equivalent to d$.
[count]dmotion
d[count]motion

Delete current character through the character that
motion would move to. If motion is d , the entire line
will be deleted.

i Enter input mode and insert text before the current
character.

I Insert text before the beginning of the line. Equivalent
toOi.

[count] P Place the previous text modification before the cursor.
[count]p Place the previous text modification after the cursor.
R Enter input mode and replace characters on the screen

with characters you type overlay fashion.
[counterc Replace the count characters) starting at the current

cursor position with c, and advance the cursor.

28 March 1991 Page 23

KSH (C) KSH (C)

[count]x Delete current character.
[<count]X
[count].
[count]"

Delete preceding character.
Repeat the previous text modification command.
Invert the case of the count character(s) starting at the

[count]_
current cursor position and advance the cursor.
Causes the count word of the previous command to be
appended and input mode entered. The last word is
used if count is omitted.

* Causes an * to be appended to the current word and
file name generation attempted. If no match is found,
it rings the bell. Otherwise, the word is replaced by

\
the matching pattern and input mode is entered.
Filename completion. Replaces the current word with
the longest common prefix of all filenames matching
the current word with an asterisk appended. If the
match is unique, a / is appended if the file is a direc­
tory and a space is appended if the file is not a direc-
tory.

Other Edit Commands"

Miscellaneous commands.

Yanks current character through character that motion

Y

would move the cursor to and puts them into the delete
buffer. The text and cursor are unchanged.
Yanks from current position to end of line. Equivalent
toy$.

u
U

Undo the last text modifying command.
Undo all the text modifying commands performed on
the line.

[country Returns the command fc -e
${VISUAL:-${EDITOR:-vi}} count in the input buffer.
If count is omitted, then the current line is used.

X Line feed and print current line. Has effect only in
control mode.

i (Newline) Execute the current line, regardless of
mode.§

II

(Return) Execute the current line, regardless of mode.
Sends the line after inserting a # in front of the line.
Useful for causing the current line to be inserted in the
history without being executed.
List the file names that match the current word if an

@letter
asterisk were appended it.
Your alias list is searched for an alias by the name
Jetter and if an alias of this name is defined, its value
will be inserted on the input queue for processing.

28 March 1991 Page 24

KSH(C) KSH(C)

Special Commands

The following simple-commands are executed in the shell process.
Input/Output redirection is permitted. Unless otherwise indicated, the
output is written on file descriptor 1 and the exit status, when there is
no syntax error, is zero. Commands that are preceded by one or two t
are treated specially in the following ways:
1. Parameter assignment lists preceding the command remain in

effect when the command completes.
2. I/O redirections are processed after parameter assignments.
3. Errors cause a script that contains them to abort.
4. Words, following a command preceded by t t that are in the format

of a parameter assignment, are expanded with the same rules as a
parameter assignment. This means that tilde substitution is per­
formed after the = sign and word splitting and file name generation
are not performed.

t : [arg ...]
The command only expands parameters,

t .file [a rg ...]
(period-space-file) Read the complete file then execute the com­
mands. The commands are executed in the current shell environ­
ment. The search path specified by PATH is used to find the direc­
tory containing file. If any arguments arg are given, they become
the positional parameters. Otherwise the positional parameters are
unchanged. The exit status is the exit status of the last command
executed.

t t alias [-tx] [name[rvalue]] ...
Alias with no arguments prints the list of aliases in the form
name=value on standard output. An alias is defined for each name
whose value is given. A trailing space in value causes the next
word to be checked for alias substitution. The -t flag is used to set
and list tracked aliases. The value of a tracked alias is the füll
pathname corresponding to the given name. The value becomes
undefined when the value of PATH is reset but the aliases
remained tracked. Without the -t flag, for each name in the argu­
ment list for which no value is given, the name and value of the
alias is printed. The -x flag is used to set or print exported aliases.
An exported alias is defined for scripts invoked by name. The exit
status is non-zero if a name is given, but no value, for which no
alias has been defined.

t break [n]
Exit from the enclosing for, while, until, or select loop, if any. If
n is specified then break n levels.

t continue [n]
Resume the next iteration of the enclosing for, while, until, or select loop. If n is specified then resume at the n-th enclosing
loop.

28 March 1991 Page 25

KSH (C) KSH(C)

cd [arg]
cd old new

This command can be in either of two forms. In the first form it
changes the current directory to arg. If arg is - the directory is
changed to the previous directory. The shell parameter HOME is
the default arg. The parameter PWD is set to the current direc­
tory. The shell parameter CDPATH defines the search path for the
directory containing arg. Alternative directory names are
separated by a colon (:). The default path is <null> (specifying
the current directory). Note that the current directory is specified
by a null path name, which can appear immediately after the equal
sign or between the colon delimiters anywhere else in the path list.
If arg begins with a / then the search path is not used. Otherwise,
each directory in the path is searched for arg.

The second form of cd substitutes the string new for the string old
in the current directory name, PWD and tries to change to this new
directory.

The cd command may not be executed by rksh.

echo [arg . . .]
See echo(C) for usage and description,

t eval [arg ...]
The arguments are read as input to the shell and the resulting
command(s) executed.

t exec [arg ...]
If arg is given, the command specified by the arguments is exe­
cuted in place of this shell without creating a new process.
Input/output arguments may appear and affect die current process.
If no arguments are given die effect of this command is to modify
file descriptors as prescribed by the input/output redirection list. In
this case, any file descriptor numbers greater than 2 that are opened
with this mechanism are closed when invoking another program.

t exit [n]
Causes the shell to exit with the exit status specified by n. If n is
omitted then the exit status is that of the last command executed.
An end-of-file will also cause the shell to exit except for a shell
which has the ignoreeof option (See set below) turned on.

t t export [name[rvalue]] ...
The given names are marked for automatic export to the environ­
ment of subsequently-executed commands.

fc [-e ename] [-nlr] [first [last]]
fc -e - [old-new] [command]

In the first form, a range of commands from first to last is selected
from the last HISTSIZE commands that were typed at the termi­
nal. The arguments first and last may be specified as a number or

28 March 1991 Page 26

KSH (C) KSH(C)

as a string. A string is used to locate the most recent command
starting with the given string. A negative number is used as an
offset to the current command number. If the flag -1, is selected,
the commands are listed on standard output. Otherwise, the editor
program ename is invoked on a file containing these keyboard
commands. If ename is not supplied, then the value of the parame­
ter FCEDIT (default /bin/ed) is used as the editor. When editing is
complete, the edited command(s) is executed. If last is not
specified then it will be set to first. If first is not specified the
default is the previous command for editing and -16 for listing.
The flag -r reverses the order of the commands and the flag -n
suppresses command numbers when listing. In the second form the
command is re-executed after the substitution old-new is per­
formed.

getopts optstring name [arg ...]
Checks arg for legal options. If arg is omitted, the positional
parameters are used. An option argument begins with a + or a -.
An option not beginning with + or - or the argument - - ends the
options, optstring contains the letters that getopts recognizes. If a
letter is followed by a :, that option is expected to have an argu­
ment. The options can be separated from the argument by blanks.

getopts places the next option letter it finds inside variable name
each time it is invoked with a + prepended when arg begins with a
+. The index of the next arg is stored in OPTIND. The option
argument, if any, gets stored in OPTARG.

A leading : in optstring causes getopts to store the letter of an
invalid option in OPTARG, and to set name to ? for an unknown
option and to : when a required option is missing. Otherwise, getopts prints an error message. The exit status is non-zero when
there are no more options.

kill [-sig]job ...kill -1
Sends either the TERM (terminate) signal or the specified signal to
the specified jobs or processes. Signals are either given by number
or by names (as given in /usr/include/signaLh, stripped of the
prefix “SIG”). If the signal being sent is TERM (terminate) or
HUP (hangup), then the job or process will be sent a CONT (con­
tinue) signal if it is stopped. The argument job can be the process
id of a process that is not a member of one of the active jobs. In
the second form, kill -1, the signal numbers and names are listed.

let arg ...
Each arg is a separate arithmetic expression to be evaluated. See
Arithmetic Evaluation above, for a description of arithmetic
expression evaluation.

The exit status is 0 if the value of the last expression is non-zero,
and 1 otherwise.

28 March 1991 Page 27

KSH (C) KSH (C)

t newgrp [arg ...]
Equivalent to exec /bin/newgrp arg

print [-RnprsuO]] [arg ...]
The shell output mechanism. With no flags or with flag - or -- the
arguments are printed on standard output as described by echoiC).
In raw mode, -R or -r, the escape conventions of echo are ignored.
The -R option will print all subsequent arguments and options
other than -n. The -p option causes the arguments to be written
onto the pipe of the process spawned with |«& instead of standard
output. The -s option causes the arguments to be written onto the
history file instead of standard output. The -u flag can be used to
specify a one digit file descriptor unit number n on which the out­
put will be placed. The default is 1. If the flag -n is used, no new- line is added to the output.

pwd
Equivalent to print -r - $PWD

read [-prsu[n]] [namelprompt] [name ...]
The shell input mechanism. One line is read and is broken up into
fields using the characters in IFS as separators. In raw mode, -r, a \
at the end of a line does not signify line continuation. The first
field is assigned to the first name, the second field to the second
name, etc., with leftover fields assigned to the last name. The -p
option causes the input line to be taken from the input pipe of a
process spawned by the shell using | &. If the -s flag is present, the
input will be saved as a command in the history file. The flag -u
can be used to specify a one digit file descriptor unit to read from.
The file descriptor can be opened with the exec special command.
The default value of n is 0. If name is omitted then REPLY is
used as the default name. The exit status is 0 unless an end-of-file
is encountered. An end-of-file with the -p option causes cleanup
for this process so that another can be spawned. If the first argu­
ment contains a ?, the remainder of this word is used as a prompt
on standard error when the shell is interactive. The exit status is 0
unless an end-of-file is encountered.

t t readonly [name[rvalue]] ...
The given names are marked readonly and these names cannot be
changed by subsequent assignment.

t return [n]
Causes a shell function to return to the invoking script with the
return status specified by n. If n is omitted then the return status is
that of the last command executed. If return is invoked while not
in 2l function or a . script, then it is the same as an exit.

set [±aefhknopstuvx] [± o option] . .. [± A name] [arg ...]
The flags for this command have meaning as follows:

28 March 1991 Page 28

KSH (C) KSH (C)

-A Array assignment. Unset the variable name and assign
values sequentially from the list arg. If +A is used, the
variable name is not unset first.-a All subsequent parameters that are defined are automati­
cally exported.-e If a command has a non-zero exit status, execute the
ERR trap, if set, and exit. This mode is disabled while
reading profiles.-f Disables file name generation.-h Each command becomes a tracked alias when first
encountered.-k All parameter assignment arguments are placed in the
environment for a command, not just those that precede
the command name.-n Read commands and check them for syntax errors, but do
not execute them. Ignored for interactive shells.-o The following argument can be one of the following
option names:
allexport

Same as -a. errexit Same as -e.bgnice All background jobs are run at a lower priority.
This is the default mode.emacs Puts you in an emacs style in-line editor for
command entry.gmacs Puts you in a gmacs style in-line editor for
command entry, ignoreeof
The shell will not exit on end-of-file. The com­
mand exit must be used, keyword Same as -k. markdirs
All directory names resulting from file name
generation have a trailing / appended, noclobber
Prevents redirection > from truncating existing
files. Require > | to truncate a file when turned
on.noexec Same as -n. noglob Same as -f.nolog Do not save function definitions in history file.

nounset Same as -u.privileged
Same as -p. trackall Same a s -h. verbose Same as -v.vi Puts you in insert mode of a vi style in-line edi­
tor until you hit escape character 033. This
puts you in move mode. A return sends the
line.

28 March 1991 Page 29

KSH (C) KSH(C)

viraw Each character is processed as it is typed in vi
mode.

xtrace Same as -x. If no option name is supplied then
the current option settings are printed.

-p Disables processing of the $HOME/.profile file and uses
the file /etc/suid_profile instead of the ENV file. This
mode is on whenever the effective uid (gid) is not equal
to the real uid (gid). Turning this off causes the effective
uid and gid to be set to the real uid and gid.

-s Sort the positional parameters lexicographically.
-t Exit after reading and executing one command.
-u Treat unset parameters as an error when substituting.
-v Print shell input lines as they are read.
-x Print commands and their arguments as they are exe­

cuted.
Tüms off -x and -v flags and stops examining arguments
for flags.
Do not change any of the flags; useful in setting $1 to a
value beginning with -. If no arguments follow this flag
then the positional parameters are unset.

Using + rather than - causes these flags to be turned off. These
flags can also be used upon invocation of the shell. The current set
of flags may be found in $-. Unless -A is specified, the remaining
arguments are positional parameters and are assigned, in order, to
$1 $ 2__ If no arguments are given then the names and values of
all named parameters are printed on the standard output. If the
only argument is +, the names of all named parameters are printed.

t shift [n]
The positional parameters from $n+1 ... are renamed 1. . . , default
/2 is 1. The parameter n can be any arithmetic expression that
evaluates to a non-negative number less than or equal to $#.

t times
Print the accumulated user and system times for the shell and for
processes run from the shell.

t trap [arg] [sig] ...
arg is a command to be read and executed when the shell receives
signal(s) sig. (Note that arg is scanned once when the trap is set
and once when the trap is taken.) Each sig can be given as a num­
ber or as the name of the signal. Trap commands are executed in
order of signal number. Any attempt to set a trap on a signal that
was ignored on entry to the current shell is ineffective. If arg is
omitted or is -, then all trap(s) sig are reset to their original values.
If arg is the null string then this signal is ignored by die shell and
by the commands it invokes. If sig is ERR then arg will be exe­
cuted whenever a command has a non-zero exit status. If sig is
DEBUG then arg will be executed after each command. If sig is 0
or EXIT and the trap statement is executed inside the body of a
function, then the command arg is executed after the function

28 March 1991 Page 30

KSH (C) KSH (C)

completes. If sig is 0 or EXIT for a trap set outside any function
then the command arg is executed on exit from the shell. The trap
command with no arguments prints a list of commands associated
with each signal number.

t t typeset [±LRZfllrtux[ft]] [name[rvalue]] . . .
Sets attributes and values for shell parameters. When invoked
inside a function, a new instance of the parameter name is created.
The parameter value and type are restored when the function com­
pletes. The following list of attributes may be specified:
-L Left justify and remove leading blanks from value. If n is non­

zero it defines the width of the field, otherwise it is determined
by the width of the value of first assignment. When the param­
eter is assigned to, it is filled on the right with blanks or trun­
cated, if necessary, to fit into the field. Leading zeros are
removed if the -Z flag is also set. The -R flag is turned off.

-R Right justify and fill with leading blanks. If n is non-zero it
defines the width of the field, otherwise it is determined by the
width of the value of first assignment. The field is left filled
with blanks or truncated from the end if the parameter is reas­
signed. The-L flag is turned off.

-Z Right justify and fill with leading zeros if the first non-blank
character is a digit and the -L flag has not been set. If n is non­
zero it defines the width of the field, otherwise it is determined
by the width of the value of first assignment.-f The names refer to function names rather than parameter
names. No assignments can be made and the only other valid
flags are -t, -u and -x. The flag -t turns on execution tracing for
this function. The flag -u causes this function to be marked
undefined. The FPATH variable will be searched to find the
function definition when the function is referenced. The flag -x
allows the function definition to remain in effect across shell
procedures invoked by name.

-i Parameter is an integer. This makes arithmetic faster. If n is
non-zero it defines the output arithmetic base, otherwise the
first assignment determines the output base.

-1 All upper-case characters converted to lower-case. The upper­
case flag, -u is turned off.

-r The given names are marked readonly and these names cannot
be changed by subsequent assignment.

-t Tags the named parameters. Tags are user definable and have
no special meaning to the shell.

-u All lower-case characters are converted to upper-case charac­
ters. The lower-case flag, -1 is turned off.

-x The given name s are marked for automatic export to the
environment of subsequently-executed commands.

Using + rather than - causes these flags to be turned off. If no
name arguments are given but flags are specified, a list of names
(and optionally the values) of the parameters which have these
flags set is printed. (Using + rather than - keeps the values from
being printed.) If no name s and flags are given, the names and

28 March 1991 Page 31

KSH (C) KSH(C)

attributes of all parameters are printed,

ulimit [-HS] [limit]
Display or set the limit on the number of 512-byte blocks on files
written by child processes (files of any size may be read). The
limit is set when limit is specified. The value of limit can be a
number or the value unlimited. The H and S flags specify whether
the hard limit or the soft limit is set. A hard limit cannot be
increased once it is set. A soft limit can be increased up to the
value of the hard limit. If neither the H or S options is specified,
the limit applies to both. The current limit is printed when limit is
omitted. In this case the soft limit is printed unless H is specified.

umask [mask]
The user file-creation mask is set to mask (see umask{C)). mask
can either be an octal number or a symbolic value as described in
chmod(C). If a symbolic value is given, the new umask value is
the complement of the result of applying mask to the complement
of the previous umask value. If mask is omitted, the current value
of the mask is printed.

unalias name ...
The parameters given by the list of names are removed from the
alias list.

unset [-f] name ...
The parameters given by the list of names are unassigned, i.e.,
their values and attributes are erased. Readonly variables cannot
be unset. If the flag, -f, is set, then the names refer to function
names. Unsetting ERRNO, LINENO, MAILCHECK,
OPTARG, OPTIND, RANDOM, SECONDS, TMOUT, and_
causes removes their special meaning even if they are subse­
quently assigned to.

t wait [job]
Wait for the specified job and report its termination status. If job is
not given then all currently active child processes are waited for.
The exit status from this command is that of the process waited for.

whence [-pv] name ...
For each name, indicate how it would be interpreted if used as a
command name.

The flag, -v, produces a more verbose report.

The flag, -p, does a path search for name even if name is an alias, a
function, or a reserved word.

Invocation

If the shell is invoked by exec (S), and the first character of argument

28 March 1991 Page 32

KSH (C) KSH(C)

zero ($0) is -, then the shell is assumed to be a login shell and com­
mands are read from /etc/profile and then from either .profile in the
current directory or $HOME/.profile, if either file exists. Next, com­
mands are read from the file named by performing parameter substitu­
tion on the value of the environment parameter ENV if the file exists.
If the -s flag is not present and arg is, then a path search is performed
on the first arg to determine the name of the script to execute. The
script arg must have read permission and any setuid and setgid set­
tings will be ignored. Commands are then read as described below;
the following flags are interpreted by the shell when it is invoked:

-c string If the -c flag is present then commands are read from
string.

-s If the -s flag is present or if no arguments remain then
commands are read from the standard input, shell output,
except for the output of the Special commands listed
above, is written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are
attached to a terminal (as told by ioctl (S)) then this shell
is interactive. In this case TERM is ignored (so that kill 0
does not kill an interactive shell) and INTR is caught and
ignored (so that wait is interruptible). In all cases, QUIT
is ignored by the shell.

-r If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set com­
mand above.

rksh Only

rksh is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell. The
actions of rksh are identical to those of ksh, except that the following
are disallowed:

changing directory (see cd(C)),
setting the value of SHELL, ENV, or PATH,
specifying path or command names containing /,
redirecting output (>, > |, < > , and ») .

The restrictions above are enforced after .profile and the ENV files
are interpreted.

When a command to be executed is found to be a shell procedure, rksh
invokes ksh to execute it. Thus, it is possible to provide to the end-
user shell procedures that have access to the full power of the standard
shell, while imposing a limited menu of commands; this scheme
assumes that the end-user does not have write and execute permissions
in the same directory.

28 March 1991 Page 33

KSH (C) KSH(C)

The net effect of these rules is that the writer of the .profile has com­
plete control over user actions, by performing guaranteed setup
actions and leaving the user in an appropriate directory (probably not
the login directory).

The system administrator often sets up a directory of commands
(example: /usr/rbin) that can be safely invoked by rksh.

Diagnostics

Errors detected by the shell, such as syntax errors, cause the shell to
return a non-zero exit status. Otherwise, the shell returns the exit
status of the last command executed (see also the exit command
above). If the shell is being used non-interactively then execution of
the shell file is abandoned. Run time errors detected by the shell are
reported by printing the command or function name and the error con­
dition. If the line number that the error occurred on is greater than
one, then the line number is also printed in square brackets ([]) after
the command or function name.

Files

/etc/passwd
/etc/profile
/etc/suid_profile
$HOME/.profile
/tmp/sh*
/dev/null

See Also

cat(C), cd(C), chmod(C), cut(C), echo(C), env(C), newgrp(C),
paste(C), stty(C), test(C), umask(C), vi(C), dup(S), exec(S), fork(S),
ioctl(S), lseek(S), pipe(S), signal(S), umask(S), ulimit(S), wait(S),
rand(S), a.out(F), profile(M), environ(M).

Notes

If a command which is a tracked alias is executed, and then a com­
mand with the same name is installed in a directory in the search path
before the directory where the original command was found, the shell
will continue to exec the original command. Use the -t option of the
alias command to correct this situation.

Some very old shell scripts contain a A as a synonym for the pipe char­
acter (|).

28 March 1991 Page 34

KSH(C) KSH (C)

Using the fc built-in command within a compound command will
cause the whole command to disappear from the history file.

The built-in command . file reads the whole file before any commands
are executed. Therefore, alias and unalias commands in the file will
not apply to any functions defined in the file.

Traps are not processed while a job is waiting for a foreground pro­
cess. Thus, a trap on CHLD won’t be executed until the foreground
job terminates.

28 March 1991 Page 35

LAST (C) LAST(C)

Name

last - indicate last logins of users and teletypes

Syntax

last [-n limit] [-1 tty] [-v] [name]

Description

Last checks the wtmp file, which records all logins and logouts for in­
formation about a user, a tty line or any group of users and lines.
Arguments specify a user name and/or tty.

last -1 ttyOl root

would list all “root” sessions as well as all sessions on /dev/ttyOl.
last prints the sessions of the specified users and ttys, including login
name, the line used, the device name, the process ID, plus start time
and elapsed time.

last with no arguments prints a record of all logins and logouts, in
reverse order.

The options behave as follows:

-n limit
limits the report to n lines.

-1 line
specifies the tty.

-v prints header (verbose option).

Files

/etc/wtmp login data base

See Also

finger(C), utmp(M), accton(ADM), acctcom(ADM), acct(F)

March 29,1991 Page 1

LINE(C) LINE (C)

Name
line - Reads one line.

Syntax
line

Description
line copies one line (up to a newline) from the standard input and
writes it on the standard output. It returns an exit code of 1 on end-
of-file and always prints at least a newline. It is often used within
shell files to read from the user’s terminal.

See Also
gets(CP), sh(C)

28 March 1991 Page 1

LN(C) LN(C)

Name
ln - Makes a link to a file.

Syntax

ln filel file2
ln filel ... directory

Description

A link is a directory entry referring to a file; the same file (together
with its size, all its protection information, etc), may have several
links to it. There is no way to distinguish a link to a file from its origi­
nal directory entry. Any changes to the file are effective independent
of the name by which the file is known.

In the first case, In creates a link to the existing file, filel. The file2
argument is a new name referring to the same file contents as filel.

In the second case, directory is the location of a directory into which
one or more links are created with corresponding file names.

You cannot link directories or link across filesystems.

See Also

cp(C), mv(C), rm(C)

28 March 1991 Page 1

LOCK (C) LOCK (C)

Name
lock - Locks a user’s terminal.

Syntax
lock [-v] [-number]

Description
lock requests a password from the user, requests it again for verifica­
tion, then locks the terminal until the password is reentered. If a
-number is specified in the lock command, the terminal is automati­
cally logged out and made available to another user after that number
of minutes has passed.

This command uses the file !etc!default!lock. This file has two entries:

DEFLOGOUT = number
MAXLOGOUT = number

DEFLOGOUT specifies the default time in minutes a terminal will
remain locked before the user is logged out. This default value is
overridden if the -number option is used on the command line. If
DEFLOGOUT and -number are not specified, the MAXLOGOUT
value is used.

MAXLOGOUT is the maximum number of minutes a user is permit­
ted to lock a terminal. If a user attempts to lock a terminal for longer
than this time, lock will issue a warning to the user that it is using the
system maximum time limit. If DEFLOGOUT and -number and
MAXLOGOUT are not specified, users are not logged out.

DEFLOGOUT and MAXLOGOUT are configured by the system
administrator to reflect the demand for terminals at the site.

The lock may be terminated by killing the lock process. Only the
superuser and the user who invoked lock may do so.

Options
-number Sets the time limit for lock to number of minutes, instead

of the system default.

-v Specifies verbose operation.

Files
/etc/default/lock

28 March 1991 Page 1

LOCK (C) LOCK (C)

Notes
The file /etc/default!lock is shipped with the following default values:

DEFLOGOUT = 30
MAXLOGOUT = 60

28 March 1991 Page 2

LOGNAME (C) LOGNAME (C)

Name
logname - Gets login name.

Syntax
logname

Description
logname returns the user’s login name as found in letclutmp. If no log­
in name is found, logname returns the user’s user ID number.

See Also
env(C), id(C), getlogin(S), getuid(S), login(M), logname(S)

28 March 1991 Page 1

LP (C) LP(C)

Name

lp, lpr, cancel - Send/cancel requests to lineprinter.

Syntax

lp [options...][name...] lpr [options...][name...]
cancel [request ID s] [printers]

Description

Ip causes the named files and associated information (collectively
called a “request”) to be printed by a lineprinter. Ip and Ipr are
equivalent commands and may be used interchangeably. If no file
names are mentioned, the standard input is assumed. The file name -
stands for the standard input and may be supplied on the command
line in conjunction with named files. The order in which files appear
is the same order in which they will be printed.

Ip associates a unique request ID with each request and prints it on the
standard output. This request ID can be used later to cancel (see can­
cel) or find the status of the request (see lpstat(C)).
The following options to Ip may appear in any order and may be inter­
mixed with file names:

-c Makes copies of the files to be printed immediately when
Ip is invoked. Normally, files will not be copied, but will
be linked whenever possible. If the -c option is not given,
then the user should be careful not to remove any of the
files before the request has been printed in its entirety; any
changes made to the named files after the request is made
but before it is printed will be reflected in the printed out­
put.

-ddest Chooses dest as the printer or class of printers to do the
printing. If dest is a printer, then the request will be
printed only on that specific printer. If dest is a class of
printers, then the request will be printed on the first avail­
able printer that is a member of the class. Under certain
conditions (for example, printer unavailability or file space
limitation), requests for specific destinations may not be
accepted (see accept (C) and lpstat(C)). By default, dest is
taken from the environment variable LPDEST (if it is set).
Otherwise, a default destination (if one exists) for the com­
puter system is used. Destination names vary between sys­
tems (see lpstat(C)).

28 March 1991 Page 1

LP(C) LP(C)

-m Sends mail (see mail (C)) after the files have been printed.
By default, no mail is sent upon normal completion of the
print request.

-nnumber Prints number of copies of the output. The default is one.

-ooption Specifies printer-dependent or class-dependent options.
Several such options may be collected by specifying the -o
key letter more than once. For more information about
what is valid for options, see lpadmin(ADM).

-r Removes file after sending it.

-s Suppresses messages from lp(C) such as “request id is ...”.

-ttitle Prints title on the banner page of the output.

-T Local printing option. Sends print job to printer attached to
the terminal.

-w Writes a message on the user’s terminal after the files have
been printed. If the user is not logged in, then mail is sent
instead.

The file /etc/default/lpd contains the setting of the variable
BANNERS, whose value is the number of pages printed as a banner
identifying each printout. This is normally set to either 0 or 1.

Cancel cancels line printer requests that were made by the lp(C) com­
mand. The command line arguments may be either request IDs (as
returned by lp(C)) or printer names (for a complete list, use lpstat(C)).
Specifying a request ID cancels the associated request even if it is
currently printing. Specifying a printer cancels the request which is
currently printing on that printer. In either case, the cancellation of a
request that is currently printing frees the printer to print its next
available request. User identification and accounting data spool area
contains BANNERS setting.

Files
/etc/passwd
/usr/spool/lp/*
/etc/default/lpd

See Also
enable(C), lpstat(C), mail(C), accept(C), lpadmin(ADM),
lpsched(ADM)

28 March 1991 Page 2

LP(C) LP(C)

Notes

The file’s directory and all directories in the path must also be publicly
readable. The following are three possible workarounds:

pr filename I lp

cat filename I lp

lp -c filename

28 March 1991 Page 3

LPRINT (C) LPRINT (C)

Name
lprint - print to a printer attached to the user’s terminal

Syntax
lprint [-]flle

Description
Iprint(C) accepts a filename to print or - to read from the keyboard. If
the terminal has local printing abilities, it will then print the file to a
printer attached to the printer port of the terminal.

This command uses the file /etc/termcap.

Options
Tells lprint to use the standard input for printing.

Files
/etc/termcap

Notes
The only terminals currently supported with entries in /etc/termcap are
Tandy’s DT-100 and DT-1, and Hewlett-Packard’s HP-92.

To add attached printer capability to the termcap file for a different
terminal, add entries for PN (start printing) and PS (end printing) with
the appropriate control or escape characters for your terminal.

Terminal communications parameters (such as baud rate and parity)
must be set up on the terminal by the user.

See Also
termcap (M), “Using Printers” in the XENIX System Administrator s
Guide.

28 March 1991 Page 1

LPSTAT (C) LPSTÄT (C)

Name
lpstat - prints lineprinter status information

Syntax

lpstat [options...]

Description

lpstat prints information about the current status of the lineprinter sys­
tem.

If no options are given, then lpstat prints the status of all requests
made to lp(C) by the user. Any arguments that are not options are
assumed to be request IDs (as returned by Ip), lpstat prints the status
of these requests. Options may appear in any order and may be
repeated and intermixed with other arguments. Some of the following
options may be followed by list which can be in one of two forms: a
list of items separated from one another by a comma, or a list of items
enclosed in double quotes and separated from one another by a comma
and/or one or more spaces. For example:

-u“userl, user2, user3”

The omission of a list following such options causes all information
relevant to the option to be printed, for example:

lpstat -o

prints the status of all output requests.

-a[list] Prints acceptance status (with respect to Ip) of destinations
for requests. List is a list of intermixed printer names and
class names.

-c[list] Prints class names and their members. List is a list of class
names.

-d Prints the system default destination for Ip.

-o[list] Prints the status of output requests. List is a list of inter­
mixed printer names, class names, and request IDs.

-p[list] Prints the status of printers. List is a list of printer names.

-r Prints the status of the lineprinter scheduler, Ipsched.

28 March 1991 Page 1

LPSTAT(C) LPSTAT(C)

-s Prints a status summary, including the status of the lineprint-
er scheduler, the system default destination, Prints a status
summary, including the system default destination, a list of
class names and their members, and a list of printers and
their associated devices.

-t Prints all status information.

- u [t o] Prints status of output requests for users. List is a list of log­
in names.

-v[list] Prints the names of printers and the pathnames of the de­
vices associated with them. List is a list of printer names.

Files

/usr/spool/lp/*

See Also

enable(C), lp(C)

28 March 1991 Page 2

LS(C) LS (C)

Name

Is, lc, 1 - Gives information about contents of directories.

Syntax

Is [-ACFRabcdfgilmnopqrstux] [names]
lc [-1 ACFRabcdfgilmnopqrstux] [names]
1 [-ACFRabcdfgilmnopqrstu] [names]

Description

For each directory named, Is lists the contents of that directory; for
each file named, Is repeats its name and any other information
requested. By default, the output is sorted alphabetically. When no
argument is given, the current directory is listed. When several argu­
ments are given, the arguments are first sorted appropriately, file argu­
ments are processed before directories and their contents.

There are three major listing formats. The default format is to list one
entry per line, the -C and -x options enable multi-column formats, and
the -m option enables stream output format in which files are listed
across the page, separated by commas. In order to determine output
format for the -C, -x, and -m options, Is uses an environment variable,
COLUMNS, to determine the number of character positions available
on one output line. If this variable is not set, the termcap database is
used to determine the number of columns, based on the environment
variable TERM. If this information cannot be obtained, 80 columns
are assumed.

There are many options:

-A List all entries. Entries whose name begin with a period (.) are
listed. Does not list current directory (.) and directory above
(..).

-a Lists all entries. Entries whose name begin with a period (.) are
listed.

-R Recursively lists subdirectories encountered.

-d If an argument is a directory, lists only its name (not its con­
tents); often used with -1 to get the status of a directory.

-C Multi-column output with entries sorted down the columns.

-x Multi-column output with entries sorted across rather than down
the page.

28 March 1991 Page 1

LS(C) LS (C)

-m Stream output format.

-1 Lists in long format, giving mode, number of links, owner,
group, size in bytes, and time of last modification for each file
(see below). If the file is a special file, the size field will contain
the major and minor device numbers, rather than a size.

-n The same as -1, except that the owner’s UID and group’s GID
numbers are printed, rather than the associated character strings.

-o The same as -I, except that the group is not printed.

-g The same as -1, except that the owner is not printed.

-r Reverses the order of sort to get reverse alphabetic or oldest
first, as appropriate.

-t Sorts by time modified (latest first) instead of by name.

-u Uses time of last access instead of last modification for sorting
use with the -t option.

-c Uses time of last modification of the inode (file created, mode
changed, etc.) for sorting use with -t option.

-p Puts a slash (/) after each filename if that file is a directory.

-F Puts a slash (/) after each filename if that file is a directory and
puts an asterisk (*) after each filename if that file is executable.

-b Forces printing of non-graphic characters to be in the octal \ddd
notation.

-q Forces printing of non-graphic characters in file names as the
character (?).

-i For each file, prints the inode number in the first column of the
report.

-s Gives size in blocks, including indirect blocks, for each entry.

-f Forces each argument to be interpreted as a directory and lists
the name found in each slot. This option turns off -1, -t, -s, and -r, and turns on -a. The order is the order in which entries
appear in the directory.

28 March 1991 Page 2

LS (C) LS (C)

The mode printed under the -1 option consists of 11 characters. The
first character is:

If the entry is an ordinary file.

d If the entry is a directory.

b If the entry is a block special file.

c If the entry is a character special file.

p If the entry is a named pipe.

s If the entry is a semaphore.

m If the entry is a shared data (memory) file.

The next 9 characters are interpreted as 3 sets of 3 bits each. The first
set refers to the owner’s permissions; the next to permissions of others
in the user-group of the file; and the last to all others. Within each set,
the 3 characters indicate permission to read, to write, and to execute
the file as a program, respectively. For a directory, “execute” permis­
sion is interpreted to mean permission to search the directory for a
specified file.

The permissions are indicated as follows:

r If the file is readable.

w If the file is writable.

x If the file is executable.

If the indicated permission is not granted.

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise, the user-execute permission character is
given as s if the file has set-user-ID mode. The last character of the
mode (normally x or -) is t if the 1000 (octal) bit of the mode is on.
See chmod(C) for the meaning of this mode. The indications for set-
ID and the 1000 bit of the mode are capitalized if the corresponding
execute permission is not set.

When the sizes of the files in a directory are listed, a total count of
blocks including indirect blocks is printed.

28 March 1991 Page 3

LS(C) LS (C)

Files
/etc/passwd Gets user IDs for Is -1 and Is -o

/etc/group Gets group IDs for Is -1 and Is -g

/etc/termcap Gets terminal information

See Also
chmod(C), coltbl(M), find(C), 1(C), lc(C), locale(M), termcap(F)

Notes
Sorts according to the collating sequenced defined by the locale.

Newline and tab are considered printing characters in filenames.

Unprintable characters in filenames may confuse the columnar output
options.

This utility reports sizes in 512 byte blocks.

28 March 1991 Page 4

MAIL (C) MAIL (C)

Name

mail - Sends, reads or disposes of mail.

Syntax

mail [[-u user] [-f mailbox]] [-e] [-R] [-i] [users ...]

mail [-s subject] [-i] [user ...]

Description

mail is a mail processing system that supports composing of mes­
sages, and sending and receiving of mail between multiple users.
When sending mail, a user is the name of a user or of an alias assigned
to a machine or to a group of users.

Options include:

-u user
Tells mail to read the system mailbox belonging to the specified
user.

-f mailbox
Tells mail to read the specified mailbox instead of the default
user’s system mailbox.

-e Allows escapes from compose mode when input comes from a file.

-R Makes the mail session “read-only” by preventing alteration of the
mailbox being read. Useful when accessing system-wide mail­
boxes.

-i Tells mail to ignore interrupts sent from the terminal. This is use­
ful when reading or sending mail over telephone lines where
“noise” may produce unwanted interrupts.

-s subject
Specifies subject as the text of the Subject: field for the message
being sent.

Sending mail

To send a message to one or more other people, invoke mail with
arguments which are the names of people to send to. You are then
expected to type in your message, followed by a Ctrl-D at the begin­
ning of a line.

28 March 1991 Page 1

MAIL (C) MAIL (C)

Reading Mail

To read mail, invoke mail with no arguments. This will check your
mail out of the system-wide directory so that you can read and dispose
of the messages sent to you. A message header is printed out for each
message in your mailbox. The current message is initially the last
numbered message and can be printed using the print command
(which can be abbreviated p). You can move among the messages
much as you move between lines in ed, with the commands + and -
moving backwards and forwards, and simple numbers typing the
addressed message.

If new mail arrives during the mail session, you can read in the new
messages with the restart command.

Note that you can configure your environment so that you are notified
whenever new mail is sent to you. To do so, you would have to set the
MAIL environment variable if you are using the Bourne shell or the mail shell variable if you are using the C-shell. For more information,
see “The Shell” chapter of the XENIX User’s Guide and csh(C) in the
XENIX User’s Reference.

Disposing of Mail

After examining a message, you can delete (d) the message or reply (r) to it. Deletion causes the mail program to forget about the mes­
sage. This is not irreversible, the message can be undeleted (u) by
giving its number, or the mail session can be aborted by giving the exit (x) command. Deleted messages will, however, disappear.

Specifying Messages

Commands such as print and delete often can be given a list of mes­
sage numbers as arguments to apply to a number of messages at once.
Thus “delete 1 2” deletes messages 1 and 2, while “delete 1-5”
deletes messages 1 through 5. The special name addresses all
messages, and “$” addresses the last message; thus the command top
which prints the first few lines of a message could be used in “top * ”
to print the first few lines of all messages.

Replying to or Originating Mail

You can use the reply command to set up a response to a message,
sending it back to the person who sent it. Then you can enter in the
text of the reply, and press Ctrl-D to send it. While you are composing
a message, mail treats lines beginning with a tilde (~) as special. For
instance, typing “~m” alone on a line, places a copy of the current
message into the response, right shifting it by one tabstop. Other
escapes set up subject fields, add and delete recipients to the message,
and allow you to escape to an editor to revise the message or to a shell

28 March 1991 Page 2

MAIL (C) MAIL (C)
to run some commands. (These options are given in the summary
below.)

Ending a Mail Session

You can end a mail session with the quit (q) command. Messages that
have been examined go to your mbox file unless they have been
deleted, in which case they are discarded. Unexamined messages go
back to the post office. The -f option causes mail to read in the con­
tents of your mbox (or the specified file) for processing; when you quit, mail writes undeleted messages back to this file. The -i option
causes mail to ignore interrupts.

Using Aliases and Distribution Lists

It is also possible to create a personal distribution list. For instance,
you can send mail to “cohorts” and have it go to a group of people.
Such lists can be defined by placing a line like

alias cohorts bill bob barry bobo betty beth bobbi

in the file .mailrc in your home directory. The current list of such
aliases can be displayed by the alias (a) command in mail. System-
wide distribution lists can be created by editing /usr/lib/mail/aliases,
see aliases (M); these are kept in a slightly different syntax. In mail
you send, personal aliases will be expanded in mail sent to others so
that they will be able to reply to the recipients. System-wide aliases
are not expanded when the mail is sent, but any reply returned to the
machine will have the system-wide alias expanded.

mail has a number of options which can be set in the .mailrc file to
alter its behavior; thus “set askcc” enables the “askcc” feature.
(These options are summarized below.)

Summary
Each mail command is entered on a line by itself, and may take argu­
ments following the command word. The command need not be
entered in its entirety; the first command which matches the typed
prefix is used. For the commands that take message lists as argu­
ments; if no message list is given, then the next message forward that
satisfies the command’s requirements is used. If there are no messages
forward of the current message, the search proceeds backwards, and if
there are no messages at all, mail types “No applicable messages” and
aborts the command.

Goes to the previous message and prints it out. If given
a numeric argument n, goes to the nth previous mes­
sage and prints it.

28 March 1991 Page 3

MAIL (C) MAIL (C)

RETURN

9

t

$

alias

Alias users

cd

delete

dp

echo path

edit

exit

file

Goes to the next message and prints it out. If given a
numeric argument n, goes to the nth next message and
prints it.

Goes to the next message and prints it out.

Prints a brief summary of commands.

Executes the shell command which follows.

Prints out the current message number.

Prints out the first message.

Prints out the last message.

(a) With no arguments, prints out all currently-defined
aliases. With one argument, prints out that alias. With
more than one argument, adds the users named in the
second and later arguments to the alias named in the
first argument.

Prints system-wide list of aliases for users. At least one
user must be specified.

(c) Changes the user’s working directory to that
specified, if given. If no directory is given, then
changes to the user’s login directory.

(d) Takes a list of messages as an argument and marks
them all as deleted. Deleted messages are not retained
in the system mailbox after a quit, nor are they avail­
able to any command other than the undelete command.

Deletes the current message and prints the next mes­
sage. If there is no next message, mail says “no more
messages.”

Expands shell metacharacters.

(e) Takes a list of messages and points the text editor at
each one in turn. On return from the editor, the message
is read back in.

(x) Effects an immediate return to the shell without
modifying the user’s system mailbox, his mhox file, or
his edit file in -f.

(fi) Prints the name of the file mail is reading. If it is a
mailbox, the name of the owner is returned.

28 March 1991 Page 4

MAIL (C) MAIL (C)

forward (f) Forwards the current message to the named users.
Current message is indented within forwarded message.

Forward (F) Forwards the current message to the named users.
Current message is not indented within forwarded mes­
sage.

headers (h) Lists the current range of headers, which is an 18
message group. If a “+” argument is given, then the
next 18 message group is printed, and if a argument
is given, the previous 18 message group is printed.
Both “+” and may take a number to view a particu­
lar window. If a message-list is given, it prints the
specified headers.

hold (ho) Takes a message list and marks each message
therein to be saved in the user’s system mailbox instead
of in mbox. Use only when the switch autombox is set.
Does not override the delete command.

list Prints list of mail commands.

lpr (l) Prints out each message in a message-list on the
lineprinter.

mail (m) Takes as arguments login names and distribution
group names and sends mail to those people.

mbox (mb) Marks messages in a message list so that they are
saved in the user mailbox after leaving mail.

move mesg-list mesg-num
Places the messages specified in mesg-list after the
message specified in mesg-num. If mesg-num is 0,
mesg-list moves to the top of the mailbox.

next

print

quit

(n like + or RETURN) Goes to the next message in
sequence and prints it. With an argument list, types the
next matching message.

(p) Prints out each message in a message-list on the ter­
minal display.

(q) Terminates the session, retaining all undeleted,
unsaved messages in the system mailbox and removing
all other messages. Messages marked with a star (*) are
saved; messages marked with an “M” are saved in the
user mailbox. If new mail has arrived during the ses­
sion, the message “You have new mail” is given. If
given while editing a mailbox file with the -f flag, then
the mailbox file is rewritten. The user returns to the
shell, unless the rewrite of the mailbox file fails, in

28 March 1991 Page 5

MAIL (C) MAIL (C)

reply
which case the user can escape with the exit command.

(r) Takes a message list and sends mail to each mes­
sage author. The default message must not be deleted.

Reply (R) Takes a message list and sends mail to each mes­
sage author and each member of the message just like
the mail command. The default message must not be
deleted.

restart Reads in messages that arrived during the current mail
session.

save (s) Takes a message list and a filename and appends
each message in turn to the end of the file. The
filename, in quotation marks, followed by the line
count and character count is echoed on the user’s termi­
nal.

set (se) With no arguments, prints all variable values. Oth­
erwise, sets option. Arguments are of the form
“option=value” or “option”.

shell (sh) Invokes an interactive version of the shell.

size (si) Takes a message list and prints out the size in char­
acters of each message.

source (so) Reads mail commands from the file given as its
only argument,

string string mesg-list
Searches for string in mesg-list. If no mesg-list is

top

specified, all undeleted messages are searched. Case is
ignored in search.

(t) Takes a message list and prints the top few lines of
each. The number of lines printed is controlled by the
variable toplines and defaults to six.

undelete (u) Takes a message list and marks each one as not
being deleted.

unset (uns) Takes a list of option names and discards their
remembered values; the inverse of set.

visual (v) Takes a message list and invokes vi on each mes­
sage.

whois Looks up a list of target mail recipients and prints the
real names or descriptions of each recipient. If the first
character of the first argument is alphabetic, the

28 March 1991 Page 6

MAIL (C) MAIL (C)

arguments are looked up without change. Otherwise,
the arguments are assumed to be a message list, in the
format specified in the Mail User's Guide. For each
message in the list, the “From” person is extracted from
the header and added to the list of users to be searched.

If a target mail recipient contains a machine and user
name, nothing is printed. If it is a private alias,
“private alias” is printed. If it is a global alias, the
name or description of the recipient is printed (contents
of the $n field in the alias file). If all of the above fail,
the user is looked up in /etc/passwd; if the user is a
local user, “ local user” is printed. Finally, if none of
the above tests and searches succeed, “unknown” is
printed.

write filename
(w) Saves the body of the message in the named file.

Here is a summary of the compose escapes, which are used when com­
posing messages to perform special functions. Compose escapes are
only recognized at the beginning of lines.

~string Inserts the string of text in the message prefaced by a
single tilde (~). If you have changed the escape charac­
ter, then you should double that character instead.

-? Prints out help for compose escapes.

’ • Same as Ctrl-D on a new line.

~land Executes the indicated shell command, then returns to
the message.

~\cmd Pipes the message through the command as a filter. If
the command gives no output or terminates abnormally,
retains the original text of the message.

mail-command
Executes a mail command, then returns to compose
mode.

mail-command
Executes a mail command, then returns to compose
mode.

'alias Prints list of private aliases

alias alias name
Prints names included in private aliasname.

28 March 1991 Page 7

MAIL (C) MAIL (C)

'Alias Performs aliasing by first examining private aliases and
then system-wide aliases using all three global alias
files (aliases.hash, faliases, and maliases). Only the
final result is printed (non-local mail recipients will
have the complete delivery path printed). The user list
is taken from header fields.

'Alias users Performs aliasing by first examining private aliases and
then system-wide aliases using all three global alias
files (aliases.hash, faliases, and maliases). Only the
final result is printed (non-local mail recipients will
have the complete delivery path printed). At least one
user must be specified.

~b name... Adds the given names to the list of blind carbon copy
recipients.

~c name... Adds the given names to the list of carbon copy reci­
pients.

~cc name... Same as "c above.

d Reads the file deacUetter from your home directory into
the message.

~e Invokes the text editor on the message collected so far.
After the editing session is finished, you may continue
appending text to the message.

h Edits the message header fields by typing each one in
turn and allowing the user to append text to the end or
modify the field with the current terminal erase and kill
characters.

in mesg-list Reads the named messages into the message buffer,
shifted right one tab. If no messages are specified,
reads the current message.

M mesg-list Reads the named messages into the message buffer,

~P

with no indentation. If no messages are specified, reads
the current message.

Prints out the messages collected so far, prefaced by the
message header fields.

'Print Prints the real names or descriptions (in parentheses)
after each recipient in a header field.

~q Aborts the message being sent, copying the message to
dead.letter in your home directory if save is set.

28 March 1991 Page 8

MAIL (C) MAIL (C)

> filename Reads the named file into the message buffer.

"Return name
Adds the given names to the Retum-receipt-to field.

"s string Causes the named string to become the current subject
field.

"t name ... Adds the given names to the direct recipient list.

"v Invokes a visual editor (defined by the VISUAL option)
on the message buffer. After you quit the editor, you
may resume appending text to the end of your message.

"w filename Writes the body of the message to the named file.

Options are controlled with the set and unset commands. An option
may be either a switch, in which case it is either on or off, or a string,
in which case the actual value is of interest. The switch options
include the following:

askcc

asksubject

autombox

Causes you to be prompted for additional carbon
copy recipients at the end of each message.
Responding with a newline indicates your satisfac­
tion with the current list.

Causes mail to prompt you for the subject of each
message you send. If you respond with simply a
newline, no subject field is sent.

Causes all examined messages to be saved in the
user mailbox unless deleted or saved.

autoprint Causes the delete command to behave like dp -
thus, after deleting a message, the next one will be
entered automatically.

chron Causes messages to be displayed in chronological
order.

dot Permits use of dot (.) as the end of file character
when composing messages.

execmail Causes the underbar prompt to return before mail is
finished being sent. This frees the user to continue
while mail performs mailing functions in back­
ground.

ignore Causes interrupt signals from your terminal to be
ignored and echoed as at-signs (@).

28 March 1991 Page 9

MAIL (C) MAIL (C)

mchron Causes messages to be listed in numerical order
(most recently received first), but displayed in chro­
nological order.

metoo Usually, when a group is expanded that contains the
sender, the sender is removed from the expansion.
Setting this option causes the sender to be included
in the group.

nosave Prevents aborted messages from being appended to
the file dead.letter in your home directory on
receipt of two interrupts (or a ”q).

quiet Suppresses the printing of the version header when
first invoked.

verify Causes each target mail recipient to be verified in
the manner described in the whois command. This
option permits errors made while composing mes-
sages to be corrected or ignored.

The following options have string values:

EDITOR Pathname of the text editor to use in the edit com-

SHELL

mand and ~e escape. If not defined, then a default
editor (/bin/ed) is used.

Pathname of the shell to use in the ! command and
the ~! escape. A default shell (/binlsh) is used if this
option is not defined.

VISUAL Pathname of the text editor (/bin/vi) to use in the
visual command and ~v escape.

escape If defined, the first character of this option gives the
character to use in the place of the tilde (~) to
denote escapes.

page=Ai Specifies the number of lines (n) to be printed in a
“page” of text when displaying messages.

record If defined, gives the pathname of the file used to
record all outgoing mail. If not defined, then outgo­
ing mail is not saved.

toplines If defined, gives the number of lines of a message to
be printed out with the top command; normally, the
first six lines are printed.

28 March 1991 Page 10

MAIL (C) MAIL (C)

Files

/usr/spool/mail/* System mailboxes

$HOME/dead.letter File where undeliverable mail is depo­
sited

$HOME/mbox Your old mail

$HOME/.mailrc File giving initial mail commands

/usr/lib/mail/aliases System-wide aliases

/usr/lib/mail/aliases.hash System-wide alias database

/usr/lib/mail/faliases Forwarding aliases for the local ma­
chine

/usr/lib/mail/maliases Machine aliases

/usr/lib/mail/mailhelp.cmd Help file

Aisr/lib/mail/mailhelp.esc Help file

/usr/lib/mail/mailhelp.set Help file

/usr/lib/mail/mailrc System initialization file (defaults)

/usr/bin/mail The mail command

See Also
aliases(M), aliashash(ADM), netutil(ADM)
The “Mail” chapter in the XENIX User's Guide.

Credit
This utility was developed at the University of California at Berkeley
and is used with permission.

28 March 1991 Page 11

MAN (C) MAN(C)

Name

man - Prints reference pages in this guide.

Syntax

man [-afbcw] [-tproc] [-ppager] [-ddir] [-
T term] [,section] [title]

Description

The man program locates and prints the named title from the desig­
nated section in the XENIX Reference. For historical reasons, “page” is
often used as a synonym for “entry” in this context.

Since XENIX commands are given in lowercase, the title is always
entered in lowercase. If no section is specified, the whole guide is
searched for title and the first occurrence of it is printed. You can
search for a group of sections by separating the section names with
colons (:) on the command line.

The options and their meanings are:

-a “All” mode. Displays all matching titles. Incompatible
with f mode.

-f “First” mode. Displays only the first matching title.
Incompatible with a mode. This is the default mode for
man.

-b Leaves blank lines in output. nroffiCY) pads entries with
blank lines for line printer purposes, man normally filters
out these excess blank lines. Normally, man does not dis­
play more than 2 consecutive blank lines. The -b flag
leaves blank lines in the CRT output.

-c Causes man to invoke col(CT). Note that col is invoked
automatically by man unless term is one of the follow­
ing: 300,300s, 450,37,4000a, 382,4014, tek, 1620, and
X.

-w Prints on the standard output only the pathnames of the
entries.-tproc Indicates that if an unprocessed manual page is avail­
able, it is to be passed to proc for formatting, proc can be
any command script in /usr/man/bin or an absolute
filename of a text processing program elsewhere on the
system, for example /bin/nroff.

28 March 1991 Page 1

MAN(C)

The scripts in /usr/man/bin invoke the actual processing
programs with the correct flags and arguments. The
default processor is /usr/man/bin/nr, which invokes /bin/nroff and produces output that safely prints on any
terminal. The text is also preprocessed by eqn(CT) and
tbl(CT) as a default.
Selects paging program pager to display the entry. Pag­
ing systems such as more(C), pg{C), cat(C), or any cus­
tom pagers that you may have are valid arguments for
this flag. The default pager, pg(C), is set in /etc/default/man.
Specifies directory dir to be added to the search path for
entries. You can specify several directories to be
searched for entries by separating the directory names
with colons (:) on the command line.
Format the entry and pass the given term value to the
processing program, then print it on the standard output
(usually, the terminal); term is the terminal type (see
term(M) and the explanation below); for a list of the
recognized values of term, type help term2. The default
value of term is 450.

Section Names
The names and general descriptions of the available manual sections
are:

C Commands
M Miscellaneous
F File Formats
HW Hardware Dependent
CT Text Processing Commands
S Subroutines and Libraries
CP Programming Commands
DOS DOS Subroutines and Libraries
UCB University of California, Berkeley, Utilities
LOCAL Local utilities for your system

MAN (C)

VPager

-d dir

-T term

You can add other section names as you desire. Each new section,
however, must follow the standard section directory structure. The
UCB and LOCAL directories are shipped to you without contents, as
no LOCAL or UCB manual pages are included with XENIX.

/usr/man Directory Structure
The source files for the man program are kept in the directory /usr/man. Each man section is comprised of two directories, and there
is a directory called bin for programs and shell scripts related to man.
There is also an index file called index in /usr/man. This index is a list
of all XENIX commands and their sections.

28 March 1991 Page 2

MAN (C) MAN (C)

Each manual section has two directories in /usr/man. These direc­
tories are called man and cat, plus the name of the section as a suffix.
For example, the C manual section is comprised of two directories, man.C and cat.C, both located in /usr/man.
The unprocessed source text is in the man directory and the printable
processed output is in the cat directory. When a title is requested, both
directories are checked. The most recent copy of the manual page is
used as the current copy. If the most recent title is in the source text
directory and it is processed by the default processor with the default
terminal type, a display copy of the output is placed in the cat direc­
tory for future use. Note that a file that must be processed takes longer
to appear on the screen than a display copy.

Environment Variables
There is a shell environment variable for use with the man utility. This
variable is called MANPATH and it is used to change or augment the
path man searches for entries. Multiple directories set with this vari­
able must be delimited by colon characters (:). If the MANPATH
environment variable is present, the directories are searched in the
order that they appear, /usr/man must appear in the MANPATH list
to be included. If you set this environment variable, it supercedes the MANPATH entry in the /etc/default/man file. Alternate subdirec­
tories are expected to have the same form as the default directories in /usr/man.
/etc/default/man
There is a file called man in the /etc/default directory that contains
the default settings for the man utility. The following options are set in /etc/default/man:

PAGER=pg

MANPATH=/usr/man

TERM=lp

ORDER=C:S:CP:CT:M:F:HW:DOS:UCB:LOCAL

MODE=FIRST

PROC=nr

You can select a different paging system, search path, terminal type,
search order, mode, and processor for the man system by changing the
information in this file.

To change the search order for manual sections, edit the list following
the ORDER variable. Be certain the section names are separated with
colons (:). Section names not present in ORDER are searched in

28 March 1991 Page 3

MAN (C) MAN (C)

arbitrary order after those specified in /etc/default/man.
Creating New Manual Entries
You can create new manual pages for utilities and scripts that you
have developed. Use an existing manual page as an example of manu­
al page structure. Use the man macros to format your manual page.
For more information, refer to the nroffiCT) manual page.

You must be logged in as root (the “Super-User”) to place a new man­
ual page in your /usr/man directory structure. Place your new page in /usr/man/man.LOCAL while logged in as root and view it using the
man command, since only root has write permission for the eatable
directories. Once man has produced the eatable output, any user can
view the new page in the same manner as any other on line manual
page.

Additionally, you can create your own custom sections by creating
another manual directory and putting it in the MANPATH. For exam­
ple, if subdirectories man.X and cat.X are present, then man recog­
nizes that X is a valid manual section.

If you wish to use another text processing program (such as trojfiCT))
to process your custom manual pages, use the -tproc flag of man. proc
can be any shell script in /usr/man/bin. To place a eatable copy of the
manual page in the cat directory, use the tee(C) command to send the
output to a file, as well as to the standard output. Your command
should have the form:

man -tproc filename I tee pathname

In the above example, proc is the text processing script, filename is the
manual page source file, and pathname is the path of the directory for
the eatable output.

Custom manual sections can have an index, if the format is the same
as the index in /usr/man. man uses the index to locate multiple com­
mands that are listed on the same page as well as commands that have
pages in several different sections.

28 March 1991 Page 4

MAN(C) MAN(C)

The man Macro Package

The man macro package is located in /usr/lib/macros/an. There are
15 basic macros in the package. Here is a table of the macros and brief
descriptions of their functions:

Macro Description

.TH title Title Heading

.SH title Section Heading

.SS title Subsection Heading

.SM text Reduce Point Size

.PP New Paragraph

.IP Indented Paragraph

.HP Hanging Paragraph

.TP Tagged Paragraph

.DA date Date of Document

.RS n Relative Indent

.RE Release Relative Indent

.1 text Italic Font

.B text Bold Font

.R text Roman Font

.PM Proprietary Mark (copyright)

.PM Proprietary Mark (copyright)

See Also

eqnchar(CT), nroff(CT), tbl(CT), troff(CT), environ(M), term(CT).

Notes

All entries are supposed to be reproducible either on a typesetter or on
a terminal. However, on a terminal some information, such as
eqn(CT) and tbl(CT) output, is either lost or approximated as it cannot
be exactly reproduced.

The man macros, nroffiCT), troffiCT), and other (CT) commands are
components of the Text Processing System.

28 March 1991 Page 5

MESG(C) MESG (C)

Name
mesg - Permits or denies messages sent to a terminal.

Syntax

mesg [n] [y]

Description

mesg with argument n forbids messages via write (C) by revoking
nonuser write permission on the user’s terminal, mesg with argument
y reinstates permission. All by itself, mesg reports the current state
without changing it.

Files

/dev/tty*

See Also

write(C)

Diagnostics

Exit status is 0 if messages are receivable, 1 if not, 2 on error.

28 March 1991 Page 1

MKDIR (C) MKDIR (C)

Name
mkdir - Makes a directory.

Syntax
mkdir dimame ...

Description
mkdir creates directories. The Standard entries “dot” (.), for the direc­
tory itself, and “dot dot” (..), for its parent, are made automatically.

mkdir requires write permission in the parent directory. The permis­
sions assigned to the new directory are modified by the current file
creation mask set by umask(C).

See Also
rmdir(C), umask(C)

Diagnostics
mkdir returns exit code 0 if all directories were successfully made;
otherwise, it prints a diagnostic and returns nonzero.

28 March 1991 Page 1

MKNOD (C) MKNOD (C)

Name

mknod - Builds special files.

Syntax

/etc/mknod name [c] [b] major minor

/etc/mknod name p

/etc/mknod name s

/etc/mknod name m

Description

mknod makes a directory entry and corresponding inode for a special
file. The first argument is the name of the entry. In the first case, the
second argument is b if the special file is block-type (disks, tape) or c
if it is character-type (other devices). The last two arguments are
numbers specifying the major device type and the minor device (e.g.,
unit, drive, or line number), which may be either decimal or octal.

The assignment of major device numbers is specific to each system.
Major device numbers can be found in the system source file c.c.

mknod can also be used to create named pipes with the p option;
semaphores with the s option; and shared data (memory) with the m
option.

Only the super-user can use the first form of the syntax.

System Compatibility

The s and m options can only be used to create XENIX version 3.0
semaphores and shared data, not XENIX System V semaphores and
shared data.

See Also

mknod(S)

28 March 1991 Page 1

MNT (C) MNT(C)

Name
mnt - mount a filesystem

Syntax
/etc/mnt [-urat] [directory]

/etc/umnt directory

Description
mnt allows users other than the super-user to access the functionality
of the mount{ADM) command to mount selected filesystems. The
super-user can define how and when a filesystem mount is permitted
via special entries in the tetc/default/filesys file.

The filesystem requirements are the same as defined for mount(ADM).

umnt removes the removable filesystem previously mounted at the
mount point directory .

mnt is invoked from /etc/rc with the -r and possibly the -a flag to
mount filesystems when the system comes up multi-user. The -a flag
is used when the system has autobooted. Neither of these flags should
be specified during normal use.

The -t flag displays the contents of /etc/default/filesys.

The -u flag forces mnt to behave like umnt.

Options
The following options can be defined in the /etc/default/filesys entry
for a filesystem:

bdev=/dev/device Name of block device associated with the
filesystem.

cdev=/dev/device Name of character (raw) device associated
with the filesystem.

mountdir^/directory The directory the filesystem is to be mounted
on.

desc=name A string describing the filesystem.

28 March 1991 Page 1

MNT(C) MNT(C)

passwd=string An optional password prompted for at mount
request time. Cannot te a simple string; must
be in the format of /etc/passwd. (See Notes.)

fsck=yes, no, dirty, prompt
If “yes” or “no”, tells explicitly whether or
not to run fsck. If “dirty”, fsck is run only if
the filesystem requires cleaning. If “prompt”,
the user is prompted for a choice. If no entry
is given, the default value is “dirty”.

fsckflags=y7ag ̂ Any flags to be passed to fsck.

rcfsck=yes, no, dirty, prompt
Similar to fsck entry, but only applies when
the -r flag is passed.

maxcleans=Az The number of times to repeat cleaning of a
dirty filesystem before giving up. If
undefined, default is 4.

mount=yes, no, prompt
If “yes” or “no”, users are allowed or disal­
lowed to mount the filesystem, respectively.
If “prompt”, the user is queried to mount the
filesystem.

rcmount=yes, no, prompt
If “yes”, the filesystem is mounted by letclrc
when the system comes up multiuser. If
“no”, the filesystem is never mounted by
letclrc. With “prompt”, a query is displayed
at boot time to mount the filesystem.

mountflags=yZag5 Any flags to be passed to mount.

prep=yes, no, prompt Indicates whether any prepcmd entry should
always be executed, never executed, or exe­
cuted as specified by the user.

prepcmd=command An arbitrary shell command to be invoked
immediately following password check and
prior to running fsck.

init=yes, no, prompt Indicates whether an initcmd entry should
always be executed, never be executed, or
executed as specified by user.

initcmd=command An optional, arbitrary shell command to be
invoked immediately following a successful
mount.

28 March 1991 Page 2

MNT (C) MNT(C)

Any entries containing spaces, tabs, or newlines must be contained in
double quotes (").

The only mandatory entries in I etc! default!filesys are bdev and mountdir. The prepcmd and initcmd options can be used to execute
another command before or after mounting the filesystem. For exam­
ple, initcmd could be defined to send mail to root whenever a given
filesystem is mounted.

When invoked without arguments, mnt attempts to mount all filesys­
tems that have the entries mount=yes or mount=prompt.

Examples
The following is a sample !etc!default!filesys file:

bdev=/dev/root cdev=/dev/rroot mountdir=/ \
desc='The Root Filesystem" rcmount=no mount=no

bdev=/dev/u cdev=/dev/ru mountdir=/u rcmount=yes \
fsckflags=-y desc="The User Filesystem"

bdev=/dev/x cdev=/dev/rx mountdir=/u rcmount=no \
mount=yes fsckflags=-y desc="The Extra Filesystem"

Of the examples above, only !x is mountable by the user.

Files
/etc/default/filesys Filesystem data

See Also
mount(ADM), default(M)

Diagnostics
mnt will fail if the filesystem to be mounted is currently mounted
under another name.

Busy filesystems cannot be dismounted with umnt. A filesystem is
busy if it contains an open file or if a user’s present working directory
resides within the filesystem.

Notes
Some degree of validation is done on the filesystem, however it is gen­
erally unwise to mount corrupt filesystems.

28 March 1991 Page 3

MNT{ C) MNT(C)

In order to create a password for a filesystem, you must create a
dummy account in /etc/passwd and define a password for it. You can
then edit the /etc/passwd file and transfer the encrypted password into
the password entry for the filesystem in /etc!default/filesys.

28 March 1991 Page 4

MORE (C) MORE (C)

Name

more - Views a file one screen full at a time.

Syntax

more [-cdflrsuvw] [- «] [+linenumber] [+/pattem] [name ...]

Description

This filter allows examination of a continuous text one screen full at a
time. It normally pauses after each full screen, displaying:

—More—

at the bottom of the screen. If the user then presses a carriage return,
one more line is displayed. If the user presses the SPACE bar, another
full screen is displayed. Other possibilities are described below.

The command line options are:

-n An integer which is the size (in lines) of the window which more
will use instead of the default.

-c more draws each page by beginning at the top of the screen and
erasing each line just before it draws on it. This avoids scrolling
the screen, making it easier to read while more is writing. This
option is ignored if the terminal does not have the ability to clear
to the end of a line.

-d more prompts with the message “Hit space to continue, Rubout to
abort" at the end of each full screen. This is useful if more is being
used as a filter in some setting, such as a class, where many users
may be inexperienced.

-f This option causes more to count logical, rather than screen lines.
That is, long lines are not folded. This option is recommended if
nroff output is being piped through ul, since the latter may generate
escape sequences. These escape sequences contain characters that
would ordinarily occupy screen positions, but do not print when
they are sent to the terminal as part of an escape sequence. Thus
more may think that lines are longer than they actually are and fold
lines erroneously.

-1 Does not treat Ctrl-L (form feed) specially. If this option is not
given, more pauses after any line that contains a Ctrl-L, as if the
end of a full screen has been reached. Also, if a file begins with a
form feed, the screen is cleared before the file is printed.

28 March 1991 Page 1

MORE (C) MORE (C)

-r Causes carriage returns to be printed as “~M”.

-s Squeezes multiple blank lines from the output, producing only one
blank line. Especially helpful when viewing nroff output, this
option maximizes the useful information present on die screen.

-u Normally, more handles underlining, such as that produced by nroff
in a manner appropriate to the particular terminal: if the terminal
can perform underlining or has a stand-out mode, more outputs
appropriate escape sequences to enable underlining or stand-out
mode for underlined information in the source file. The -u option
suppresses this processing.

-v Normally, more ignores control characters that it does not interpret
in some way. The -v option causes these to be displayed as "C
where C is the corresponding printable ASCII character. Non­
printing non-ASCII characters (with the high bit set) are displayed
in the format M-C, where C is the corresponding character without
the high bit set. If output is not going to a terminal, more does not
interpret control characters.

-w Normally, more exits when it comes to the end of its input. With -
w however, more prompts and waits for any key to be struck before
exiting.

+linenumber
Starts up at linenumber.

+/pattern
Starts up two lines before the line containing the regular expres­
sion pattern.

more looks in the file /etc/termcap to determine terminal characteris­
tics, and to determine the default window size. On a terminal capable
of displaying 24 lines, the default window size is 22 lines.

more looks in the environment variable MORE to preset any flags
desired. For example, if you prefer to view files using the -c mode of
operation, the shell command “MORE=-c” in the .profile file causes
all invocations of more to use this mode.

If more is reading from a file, rather than a pipe, a percentage is dis­
played along with the “-M ore-” prompt. This gives the fraction of
the file (in characters, not lines) that has been read so far.

Other sequences which may be entered when more pauses, and their
effects, are as follows (/ is an optional integer argument, defaulting to
1 where not specified otherwise):

/ <space>
Displays / more lines, (or another full screen if no argument is
given).

28 March 1991 Page 2

MORE (C) MORE (C)

/ Ctrl-D
Displays 11 more lines (a “scroll”). If / is given, then the scroll
size is set to /.

/ d Same as Ctrl-D.

/ z Same as entering a space except that /, if present, becomes the
new window size.

/ s Skips / lines and displays a full screen of lines,

i f Skips / full screens and displays a full screen of lines,

qor Q
Exits from more.

= Displays the current line number.

v Starts up the screen editor vi at the current line. Note that vi may
not be available with your system. Also, this sequence does not
work if the input is piped through more.

hor ?
Help command; Gives a description of all the more commands.

i lexpr
Searches for the / th occurrence of the regular expression expr. If
there are less than / occurrences of expr, and the input is a file
(rather than a pipe), then the position in the file remains
unchanged. Otherwise, a full screen is displayed, starting two
lines before the place where the expression was found. The user’s
erase and kill characters may be used to edit the regular expres­
sion. Erasing back past the first column cancels the search com­
mand.

in Searches for the /th occurrence of the last regular expression
entered.

’ (Single quotation mark) Goes to the point from which the last
search started. If no search has been performed in the current file,
this command goes back to the beginning of the file.

!command
Invokes a shell with command. The characters % and ! in “com­
mand” are replaced with the current filename and the previous
shell command respectively. If there is no current filename, % is
not expanded. The sequences “\%” and “\ !” are replaced by
and “ !” respectively.

i :n
Skips to the / th next file given in the command line (skips to last
file if / doesn’t make sense).

28 March 1991 Page 3

MORE (C) MORE (C)

/:p
Skips to the i th previous file given in the command line. If this
command is given in the middle of printing out a file, more goes
back to the beginning of the file. If / doesn’t make sense, more
skips back to the first file. If more is not reading from a file, the
bell rings and nothing else happens.

:f Displays the current filename and line number.

:q or :Q
Exits from more (same as q or Q).

. Repeats the previous command.

The commands take effect immediately. It is not necessary to enter a
carriage return. Up to the time when the command character itself is
given, the user may enter the line kill character to cancel the numeri­
cal argument being formed. In addition, the user may enter the erase
character to redisplay the More—(xr%)” message.

The terminal is set to noecho mode by this program so that the output
can be continuous. What you enter will not show on your terminal,
except for the slash (/) and exclamation (!) commands.

If the standard output is not a teletype, more acts just like cat, except
that a header is printed before each file (if there is more than one).

A sample usage of more in previewing nr off output would be

nrofif -ms +2 doc.n I more -s

Files

/etc/termcap Terminal data base

/usr/lib/more.help Help file

See Also

csh(C), sh(C), environ(M)

Credit
This utility was developed at the University of California at Berkeley
and is used with permission.

28 March 1991 Page 4

MORE (C) MORE (C)

Notes
The vi and help options may not be available.

Before displaying a file, more attempts to detect whether it is a non-
printable binary file such as a directory or executable binary image. If
more concludes that a file is unprintable, it refuses to print it. How­
ever, more cannot detect all possible kinds of non-printable files.

28 March 1991 Page 5

MV(C) MV (C)

Name

mv - Moves or renames files and directories.

Syntax

mv [-f] filel file2

mv [-f] file ... directory

Description

mv moves (changes the name of) filel to file2 .
If file2 already exists, it is removed before filel is moved. If file2 has
a mode which forbids writing, mv prints the mode (see chmodiS)) and
reads the standard input to obtain a line. If the line begins with y, the
move takes place; if not, mv exits.

In the second form, one or more files are moved to the directory with
their original filenames.

No questions are asked when the -f option is given (y is assumed).

mv refuses to move a file onto itself.

mv can only rename directories, not physically move them.
mvdir(ADM) should be used to move directories within a filesystem.

See Also

cp(C), chmod(S), copy(C)

Notes

Iffilel and file2 lie on different filesystems, mv must copy the file and
delete the original. In this case the owner name becomes that of the
copying process and any linking relationship with other files is lost.

28 March 1991 Page 1

NEWFORM (C) NEWFORM (C)

Name

newform - Changes the format of a text file.

Syntax

newform [-itabspec] [-otabspec] [-In] [-bn] [-en] [-cchar] [-pn] [-an]
[-«] [-s] [file...]

Description

newform reads lines from the named files, or the standard input if no
input file is named, and reproduces the lines on the standard output.
Lines are reformatted in accordance with command line options in
effect.

Except for -s, command line options may appear in any order, may be
repeated, and may be intermingled with files. Command line options
are processed in the order typed. This means that option sequences
like “-el5 -160” will yield results different from “-160 -el5”. Options
are applied to all files on the command line.

-itabspec Input tab specification: expands tabs to spaces, according
to the tab specifications given. Tabspec recognizes all tab
specification forms described below. In addition, tabspec
may be - , in which newform assumes that the tab specifi­
cation is to be found in the first line read from the stan­
dard input. If no tabspec is given, tabspec defaults to -8.
A tabspec of -0 expects no tabs; if any are found, they are
treated as -1.

-otabspec Output tab specification: replaces spaces by tabs, accord­
ing to the tab specifications given. The tab specifications
are the same as for -itabspec. If no tabspec is given,
tabspec defaults to -8. A tabspec of -0 means that no
spaces will be converted to tabs on output.

-In Sets the effective line length to n characters. If n is not
typed, -1 defaults to 72. The default line length without
the -1 option is 80 characters. Note that tabs and back­
spaces are considered to be one character (use -i to
expand tabs to spaces).

28 March 1991 Page 1

NEWFORM (C) NEWFORM (C)

-bn Truncates n characters from the beginning of the line
when the line length is greater than the effective line
length (see An). The default is to truncate the number of
characters necessary to obtain the effective line length.
The default value is used when -b with no n is used. This
option can be used to delete the sequence numbers from a
COBOL program as follows:

newform -11 -b7 file-name

The option -11 must be used to set the effective line length
shorter than any existing line in the file so that the -b
option is activated.

-e/z Truncates n characters from the end of the line.

-ck Changes the prefix/append character to k. Default charac­
ter for & is a space (see options -p and -a).

-pn Prefixes n characters (see -ck) to the beginning of a line
when the line length is less than the effective line length.
The default is to prefix the number of characters neces­
sary to obtain the effective line length.

-an Appends n characters to the end of a line. The default is
to append the number of characters necessary to get the
effective line length.

-f Writes the tab specification format line on the standard
output before any other lines are output. The tab specifi­
cation format line which is printed will correspond to the
format specified in the last -o option. If no -o option is
specified, the line which is printed will contain the default
specification of -8.

-s Shears off leading characters on each line up to the first
tab and places up to 8 of the sheared characters at the end
of the fine. If more than 8 characters (not counting the
first tab) are sheared, the eighth character is replaced by a
* and any characters to the right of it are discarded. The
first tab is always discarded.

An error message and program exit will occur if this
option is used on a file without a tab on each line. The
characters sheared off are saved internally until all other
options specified are applied to that line. The characters
are then added at the end of the processed line.

Tabs

Four types of tab specification are accepted for tabspec: “canned,”
repetitive, arbitrary, and file. The lowest column number is 1. For

28 March 1991 Page 2

NEWFORM (C) NEWFORM (C)

tabs, column 1 always refers to the leftmost column on a terminal,
even one whose column markers begin at 0, e.g. the DASI 300, DASI
300S, and DASI450.

The “canned” tabs are given as -code where code (and its meaning) is
from the following list:

-a 1,10,16,36,72
Assembler, IBM S/370, first format

-a2 1,10,16,40,72
Assembler, IBM S/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using
this code, the first typed character corresponds to card
column 7, one space gets you to column 8, and a tab
reaches column 12. Files using this tab setup should
include a format specification as follows:

<:t-c2 m6 s66 d:>

-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with
more tabs than COBOL -c2. This is the recommended
format for COBOL. The appropriate format specification
is:

<:t-c3 m6 s66 d:>

-f 1,7,11,15,19,23
FORTRAN

-p 1,5,9,13,17,21,25,29,33,37,41,45,53,57,61
PL/I

-s 1,10,55
SNOBOL

-u 1,12,20,44
UNTVAC 1100 Assembler

In addition to these “canned” formats, three other types exist:

-n A repetitive specification requests tabs at columns l+n,
1+2*«, etc. Note that such a setting leaves a left margin of
n columns on TermiNet terminals only. Of particular
importance is the value -8: this represents the XENIX sys­
tem “standard” tab setting, and is the most likely tab set­
ting to found at a terminal. It is required for use with
nroffiCY) -h option for high-speed output. Another

28 March 1991 Page 3

NEWFORM (C) NEWFORM (C)
special case is the value -0, implying no tabs at all.

nl,n2,... The arbitrary format permits the user to type any chosen
set of number, separated by commas, in ascending order.
Up to 40 numbers are allowed. If any number (except the
first one) is preceded by a plus sign, it is taken as an incre­
ment to be added to the previous value. Thus, the tab lists
1,10,20,30 and 1,10,+10,+10 are considered identical.

- -file
If the name of a file is given, newform reads the first line
of the file, searching for a format specification. If it finds
one there, it sets the tab stops according to it, otherwise it
sets them as -8. This type of specification may be used to
make sure that a tabbed file is printed with correct tab set­
tings.

Any of the following may be used also; if a given flag occurs more
than once, the last value given takes effect:

-T type
newform usually needs to know the type of terminal in
order to set tabs and always needs to know the type to set
margins, type is a name listed in term (CT). If no -T flag
is supplied, newform searches for the $TERM value in
the environment (see environ (M)). If no type can be
found, newform tries a sequence that will work for many
terminals.

+mn The margin argument may be used for some terminals. It
causes all tabs to be moved over n columns by making
column /2+1 the left margin. If +m is given without a
value of /2, the value assumed is 10. For a TermiNet, the
first value in the tab list should be 1, or the margin will
move even further to the right. The normal (leftmost)
margin on most terminals is obtained by +m0. The mar­
gin for most terminals is reset only when the +m flag is
given explicitly.

Example
In the following example, newform converts a file named text with
leading digits, one or more tabs, and text on each line to a file begin­
ning with tiie text and the leading digits placed at the end of each line
in column 73 (-s option). All tabs after the first one are expanded to
spaces (-i option). To reach the line length of 72 characters (-1 option),
spaces are appended to each line up to column 72 (-a option) or lines
are truncated at column 72 (-e option). To reformat the sample file text in this manner, enter:

newform -s -i -1 -a -e text

28 March 1991 Page 4

NEWFORM (C) NEWFORM (C)

Exit Codes

0 - normal execution
1 - for any error

See Also

csplit(C)

Diagnostics

All diagnostics are fatal.
usage: ...
not -s format
can* t open file
internal line too long

tabspec in error

newform was called with a bad option.
There was no tab on one line.
Self-explanatory.
A line exceeds 512 characters after being
expanded in the internal work buffer.
A tab specification is incorrectly format­
ted, or specified tab stops are not ascend­
ing.

tabspec indirection illegal A tabspec read from a file (or standard
input) may not contain a tabspec referenc­
ing another file (or standard input).

Notes

newform normally only keeps track of physical characters; however,
for the -i and -o options, newform will keep track of backspaces in
order to line up tabs in the appropriate logical columns.

newform will not prompt the user if a tabspec is to be read from the
standard input (by use of -i,— or -o—).

If the -f option is used, and the last -o option specified was “-o~” , and
was preceded by either “-o~” or a “-i~” , the tab specification format
line will be incorrect.

28 March 1991 Page 5

NEWGRP (C) NEWGRP (C)

Name

newgrp - Logs user into a new group.

Syntax

newgrp [group]

Description

newgrp changes the group identification of its caller. The same per­
son remains logged in, and the current directory is unchanged, but cal­
culations of access permissions to files are performed with respect to
the new group ID.

newgrp without an argument changes the group identification to the
group in the password file. This changes the caller’s group identifica­
tion back to the original group. When most users log in, they are
members of the group named group.

If a group has a password, any user can become a member of that
group by entering the password when prompted by newgrp. If a group
does not have a password, a user can become a member of it only if
the user is listed in /etc/group as a member of the group. Therefore,
group security is stronger if group passwords are not used.

Files

/etc/group

/etc/passwd

See Also

login(M), group(F), passwd(F)

Notes

A password must be added to the /etc/group file manually; see
group{F) for details. The newgrp command executes, but does not
fork, a new shell. If your login shell is a C shell and you invoke
newgrp , you will have to press CTRL-D when you wish to log out.
Typing die csh (C) logout command will result in an error message.
Note also that the newgrp command causes the csh history list to start
again at 1.

28 March 1991 Page 1

NEWS(C) NEWS (C)

Name

news - Print news items.

Syntax

news [-a] [-n] [-s] [items]

Description

news is used to keep the user informed of current events. By conven­
tion, these events are described by files in the directory /usr/news.

When invoked without arguments, news prints the contents of all
current files in /usr/news, most recent first, with each preceded by an
appropriate header, news stores the “currency” time as the modifica­
tion date of a file named .news time in the user’s home directory (the
identity of this directory is determined by the environment variable
$HOME); only files more recent than this currency time are con­
sidered “current.”

The -a option causes news to print all items, regardless of currency.
In this case, the stored time is not changed.

The -n option causes news to report the names of the current items
without printing their contents, and without changing the stored time.

The -s option causes news to report how many current items exist,
without printing their names or contents, and without changing the
stored time.

All other arguments are assumed to be specific news items that are to
be printed.

If the INTERRUPT key is struck during the printing of a news item,
printing stops and the next item is started. Another INTERRUPT
within one second of the first causes the program to terminate.

Files

/usr/news/*
$HOME/.news_time

28 March 1991 Page 1

NEWS (C) NEWS (C)

See Also

profile(M), environ(M).

Notes

This is not an interface for USENET news.

28 March 1991 Page 2

NICE (C) NICE (C)

Name

nice - Runs a command at a different priority.

Syntax

nice [-increment] command [arguments]

Description

nice executes command with a lower CPU scheduling priority. Priori­
ties range from 0 to 39, where 0 is the highest priority and 39 is the
lowest. By default, commands have a ’’nice value" of 20. If an -incre­
ment argument is given where increment is in the range 1-19, incre­
ment is added to the default priority of 20 to produce a numerically
higher priority, meaning a lower scheduling priority. If no increment
is given, an increment of 10 to produce a priority of 30 is assumed.

The super-user may run commands with priority higher than normal
by using a double negative increment. For example, an argument of
—10 would decrement the default to produce a nice value of 10, which
is a higher scheduling priority than the default of 20.

See Also

nohup(C), csh(C), nice(S)

Diagnostics

nice returns the exit status of the subject command.

Notes

An increment larger than 19 is equivalent to 19.

Note also that this description of nice applies only to programs run
under the Bourne Shell. The C-Shell has its own nice command,
which is documented in csh(C).

28 March 1991 Page 1

NL(C) NL(C)

Name
nl - Adds line numbers to a file.

Syntax
nl [-htype] [-btype] [-ftype] [-vstart#] [-iincr] [-p] [-lnum] [-ssep]
[-wwidth] [-nformat] file

Description
nl reads lines from the named file, or the standard input if no file is
named, and reproduces the lines on the standard output. Lines are
numbered on die left in accordance with the command options in
effect.

nl views the text it reads in terms of logical pages. Line numbering is
reset at the start of each logical page. A logical page consists of a
header, a body, and a footer section. Empty sections are valid. Dif­
ferent line numbering options are independently available for header,
body, and footer (e.g. no numbering of header and footer lines while
numbering blank lines only in the body).

The start of logical page sections is signaled by input lines containing
nothing but the following combinations of backslashes (\) and colons
(:):

Page Section Line Contents

Header \:\:\:

Body \:\:

Footer \:

Unless signaled otherwise, nl assumes the text being read is in a sin­
gle logical page body.

Command options may appear in any order and may be intermingled
with an optional filename. Only one file may be named. The options
are:

-btype Specifies which logical page body lines are to be num­
bered. Recognized types and their meaning are: a, num­
ber all lines; t, number lines with printable text only; n,
no line numbering; pstring, number only lines that con­
tain the regular expression specified in string. Default
type for logical page body is t (text lines numbered).

28 March 1991 Page 1

NL(C) NL(C)

-h type

-fftype

■P

-xstart#

•iincr

-ssep

-xvwidth

-nformat

-\num

See Also
pr(C)

Same as -btype except for header. Default type for logi­
cal page header is n (no lines numbered).

Same as -btype except for footer. Default for logical page
footer is n (no lines numbered).

Does not restart numbering at logical page delimiters.

Start# is the initial value used to number logical page
lines. Default is 1.

Incr is the increment value used to number logical page
lines. Default is 1.

Sep is the character(s) used in separating the line number
and the corresponding text line. Default sep is a tab.

Width is the number of characters to be used for the line
number. Default width is 6.

Format is the line numbering format. Recognized values
are: In, left justified, leading zeroes suppressed; rn, right
justified, leading zeroes suppressed; rz, right justified,
leading zeroes kept. Default format is rn (right justified).

Num is the number of blank lines to be considered as one.
For example, -12 results in only the second adjacent blank
being numbered (if the appropriate -ha, -ba, and/or -fa
option is set). Default is 1.

28 March 1991 Page 2

NM(C) NM(C)

Name

nm - Prints name list.

Syntax

nm [-acgnoOprsSuv] [+offset] [file ...]

Description

nm prints the name list (symbol table) of each object file in the argu­
ment list. If an argument is an archive, a listing for each object file in
the archive will be produced, nm works transparently on COFF files
and XENIX generated object files, nm translates all possible COFF
symbols into standard XENIX object symbols.

If no file is given, the symbols in a.out are listed.

Each symbol name is preceded by its value in hexadecimal (blanks if
undefined) and one of the letters U (undefined), A (absolute), T (text
segment symbol), D (data segment symbol), B (bss segment symbol), S
(segment name), C (common symbol), K (8086 common segment), or
S (segment name). If the symbol table is in segmented format, symbol
values are displayed as segment:offset. If the symbol is local (non-
external), the type letter is in lowercase. The output is sorted alpha­
betically.

Options are:

-a Attempt to print the namelist of all modules in an archive
library. Normally, nm silently ignores any library members
which are not valid object modules. Using this option causes
nm to report an error for all such modules. Note that the first
member in any library which has been processed by ranlib(C) is
called____ .SYMDEF and is not a valid object module, thus
the -a option will always produce at least one error message
when used on such a library.

-c Print only C program symbols (symbols which begin with *_’) as
they appeared in the C program.

-g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-o Prepend file or archive element name to each output line rather
than only once.

28 March 1991 Page 1

NM(C)

Print symbol values in octal.

Don’t sort; print in symbol-table order.

Sort in reverse order.

NM (C)

-O

-P

-r
-s Sort by size of symbol and display each symbol’s size instead of

value. The last symbol in each text or data segment may be
assigned a size of 0. This implies the -n option.

-S Switch the display format. If the symbol table is in segmented
format, print values in non-segmented format. If not segmented,
print values in segmented format. Segment offsets in 386 object
modules and executable files are 32 bits rather than 16 bits.

-u Print only undefined symbols.

-v Also describe the object file and symbol table format.

Files
a.out

See Also
ar(C), ar(F), a.out(F)

28 March 1991 Page 2

NOHUP (C) NOHUP (C)

Name
nohup - Runs a command immune to hangups and quits.

Syntax
nohup command [arguments]

Description
nohup executes command with hangups and quits ignored. If output is
not redirected by the user, it will be sent to nohup.out. If nohup.out
does not have write permission in the current directory, output is
redirected to $HOME/nohup.out.

See Also
nice(C), signal(S)

28 March 1991 Page 1

OD (C) OD(C)

Name
od - Displays files in octal format.

Syntax

od [-bcdox] [file] [[+]offset[.][b]]

Description

od displays file in one or more formats as selected by the first argu­
ment. If die first argument is missing, -o is the default. The meanings
of the format options are:

-b Interprets bytes in octal.

-c Interprets bytes in ASCII. Certain nongraphic characters
appear as C escapes: null=\0, backspace=\b, form feed=\f,
newline=\n, retum=\r, tab=\t; others appear as 3-digit octal
numbers.

-d Interprets words in decimal.

-o Interprets words in octal.

-x Interprets words in hex.

The file argument specifies which file is to be displayed. If no file
argument is specified, the standard input is used.

The offset argument specifies the offset in the file where displaying is
to start. This argument is normally interpreted as octal bytes. I f . is
appended, the offset is interpreted in decimal. If b is appended, the
offset is interpreted in blocks. If the file argument is omitted, the
offset argument must be preceded by +.

The display continues until end-of-file.

See Also
hd(C), adb(CP)

28 March 1991 Page 1

PACK (C) PACK (C)

Name

pack, peat, unpack - Compresses and expands files.

Syntax

pack [-] name ...

peat name ...

unpack name ...

Description
pack attempts to store the specified files in a compressed form. Wher­
ever possible, each input file name is replaced by a packed file
nameji with the same access modes, access and modified dates, and
the owner of name. If pack is successful, name will be removed.
Packed files can be restored to their original form using unpack or
peat.

pack uses Huffman (minimum redundancy) codes on a byte-by-byte
basis. If the - argument is used, an internal flag is set that causes pack
to display information about the file compression. Additional occur­
rences of - in place of name will cause the internal flag to be set and
reset.

The amount of compression obtained depends on the size of the input
file and the character frequency distribution. Because a decoding tree
forms the first part of each .z file, it is usually not worthwhile to pack
files smaller than three blocks, unless the character frequency distri­
bution is very scattered, which may occur with printer plots or pic­
tures.

Typically, text files are reduced to 60-75% of their original size. Load
modules, which use a larger character set and have a more uniform
distribution of characters, show little compression, the packed ver­
sions being about 90% of the original size.

pack returns a value that is the number of files that it failed to
compress.

No packing will occur if:

- The file appears to be already packed

- The filename has more than 12 characters

28 March 1991 Page 1

PACK (C) PACK (C)

- The file has links

- The file is a directory

- The file cannot be opened

- No disk storage blocks will be saved by packing

- A file called name.z already exists

- The .z file cannot be created

- An I/O error occurred during processing

The last segment of the filename must contain no more than 12 char­
acters to allow space for the appended .z extension. Directories can­
not be compressed.

Peat does for packed files what cat{C) does for ordinary files. The
specified files are unpacked and written to the standard output. Thus
to view a packed file named name.z use:

peat name.z

or just:

peat name

To make an unpacked copy, say nnn, of a packed file named name.z
without destroying name.z, enter the command:

peat name >nnn

Peat returns the number of files it was unable to unpack. Failure may
occur if:

- The filename (exclusive of the .z) has more than 12 characters

- The file cannot be opened

- The file does not appear to be the output of pack

unpack expands files created by pack. For each file name specified in
the command, a search is made for a file called name.z (or just name,
if name ends in .z). If this file appears to be a packed file, it is
replaced by its expanded version. The new file has the .z suffix
stripped from its name, and has the same access modes, access and
modification dates, and owner as those of the packed file.

28 March 1991 Page 2

PACK (C) PACK (C)

unpack returns a value that is the number of files it was unable to
unpack. Failure may occur for the same reasons that it may in peat, as
well as in a file where the “unpacked” name already exists, or if the
unpacked file cannot be created.

28 March 1991 Page 3

PASSWD (C) PASSWD (C)

Name

passwd - Changes login password.

Syntax

passwd name

Description

This command changes (or installs) a password associated with the
login name.

The program prompts for the old password (if any) and then for the
new one (twice). The user must supply these. Passwords can be of
any reasonable length, but only the first eight characters of the pass­
word are significant. The minimum number of characters allowed in a
new password is determined by the PASSLENGTH variable. Although
the minimum can be 3, a minimum of 5 characters is strongly recom­
mended since passwords shorter than this are much easier to guess or
discover by trial and error.

Only the owner of the name or the super-user may change a password;
the owner must prove he knows the old password. Only the super-user
can create a null password.

The password file is not changed if the new password is the same as
the old password, or if the password has not “aged” sufficiently. See
passwd(F).

The minimum length of a legal password, and the minimum and max­
imum number of weeks used in password aging are specified in
/etc/default/passwd by the variables PASSLENGTH, MINWEEKS and
MAXWEEKS. If not explicitly set, the default values for these vari­
ables are:

PASSLENGTH=5
MINWEEKS=2
MAXWEEKS=4

MINWEEKS and MAXWEEKS values must be in the range 0 to 63. If
PASSLENGTH is not in the range 3 to 8, it is set to 5.

Notes

When a user changes his or her password, that user’s group becomes
the group assigned to /etc/passwd. This can be verified by entering the
following command after successfully using passwd:

1 /etc/passwd

28 March 1991 Page 1

PASSWD (C) PASSWD (C)
Files

/etc/default/passwd
/etc/passwd

See Also

default(F), login(M), passwd(F), pwadmin(ADM)

28 March 1991 Page 2

PAX(C) PAX{C)

NAME
pax - Portable archive exchange.

Syntax
pax [-cimopuvy] [-f archive] [-s replstr] [-t device] [pattern...]

pax-r [-cimnopuvy] [-f archive] [-s replstr] [-t device] [pattern...]

pax -w [-adimuvy] [-b blocking] [-f archive] [-s replstr] [-t device]
[-xformat] [pathname...]

pax -rw [-ilmopuvy] [-s replstr] [pathname...] directory

Description
pax reads and writes archive files which conform to the Archive/Interchange File Format specified in IEEE Std. 1003.1-
1988. pax can also read, but not write, a number of other file formats
in addition to those specified in the Archive/Interchange File For­mat description. Support for these traditional file formats, such as V7
tar and System V binary cpio format archives, is provided for back­
ward compatibility and to maximize portability.

pax will also support traditional cpio and System V tar interfaces if
invoked with the name “cpio” or “tar” respectively. See the cpio (C)
or tar(C) manual pages for more details.

Combinations of the -r and -w command line arguments specify
whether pax will read, write or list the contents of the specified
archive, or move the specified files to another directory.

The command line arguments are:

-w writes the files and directories specified by pathname operands
to the standard output together with the pathname and status in­
formation prescribed by the archive format used. A directory
pathname operand refers to the files and (recursively) subdirec­
tories of that directory. If no pathname operands are given,
then the standard input is read to get a list of pathnames to
copy, one pathname per line. In this case, only those path­
names appearing on the standard input are copied.

-r pax reads an archive file from the standard input. Only files
with names that match any of the pattern operands are selected
for extraction. The selected files are conditionally created and
copied relative to the current directory tree, subject to the
options described below. By default, the owner and group of
selected files will be that of the invoking process, and the

28 March 1991 Page 1

PAX(C) PAX(C)

permissions and modification times will be the sames as those
in the archive.

The supported archive formats are automatically detected on
input. The default output format is ustar, but may be overrid­
den by the -x format option described below.

-rw pax reads the files and directories named in the pathname
operands and copies them to the destination directory. A direc­
tory pathname operand refers to the files and (recursively) sub­
directories of that directory. If no pathname operands are
given, the standard input is read to get a list of pathnames to
copy, one pathname per line. In this case, only those path­
names appearing on the standard input are copied. The direc­
tory named by the directory operand must exist and have the
proper permissions before the copy can occur.

If neither the -r or -w options are given, then pax will list the contents
of the specified archive. In this mode, pax lists normal files one per
line, hard link pathnames as

pathname == linkname

and symbolic link pathnames (if supported by the implementation) as

pathname -> linkname

where pathname is the name of the file being extracted, and linkname
is the name of a file which appeared earlier in the archive.

If the -v option is specified, then pax list normal pathnames in the
same format used by the Is utility with the -1 option. Hard links are
shown as

<ls -/ listing> == linkname

and symbolic links (if supported) are shown as

<ls -/ listing> -> linkname

pax is capable of reading and writing archives which span multiple
physical volumes. Upon detecting an end of medium on an archive
which is not yet completed, pax will prompt the user for the next vol­
ume of the archive and will allow the user to specify the location of
the next volume.

Options
The following options are available:

28 March 1991 Page 2

PAX(C) PAX(C)

-a The files specified by pathname are appended to the
specified archive.

-b blocking Block the output at blocking bytes per write to the
archive file. A k suffix multiplies blocking by 1024, a b
suffix multiplies blocking by 512 and a m suffix multi­
plies blocking by 1048576 (1 megabyte). If not
specified, blocking is automatically determined on input
and is ignored for -rw.

-c Complement the match sense of the the pattern
operands.

-d Intermediate directories not explicitly listed in the
archive are not created. This option is ignored unless
the -r option is specified.

-f archive The archive option specifies the pathname of the input
or output archive, overriding the default of standard
input for -r or standard output for -w.

-i Interactively rename files. Substitutions specified by -s
options (described below) are performed before request­
ing the new file name from the user. A file is skipped if
an empty line is entered and pax exits with an exit status
of 0 if EOF is encountered.

-1 Files are linked rather than copied when possible.

-m File modification times are not retained.

-n When -r is specified, but -w is not, the pattern argu­
ments are treated as ordinary file names. Only the first
occurrence of each of these files in the input archive is
read. The pax utility exits with a zero exit status after
all files in the list have been read. If one or more files in
the list is not found, pax writes a diagnostic to standard
error for each of the files and exits with a non-zero exit
status, the file names are compared before any of the -i,
-s, or -y options are applied.

-0 Restore file ownership as specified in the archive. The
invoking process must have appropriate privileges to
accomplish this.

-P Preserve the access time of the input files after they have
been copied.

-s replstr File names are modified according to the substitution
expression using the syntax of ed(C) as shown:

-s lold/new/[gp]

28 March 1991 Page 3

PAX (C) PAX(C)

-t device

Any non null character may be used as a delimiter (a / is
used here as an example). Multiple -s expressions may
be specified; the expressions are applied in the order
specified terminating with the first successful substitu­
tion. The optional trailing p causes successful mappings
to be listed on standard error. The optional trailing g
causes the old expression to be replaced each time it
occurs in the source string. Files that substitute to an
empty string are ignored both on input and output.

The device option argument is an implementation-
defined identifier that names the input or output archive
device, overriding the default of standard input for -r
and standard output for -w.

-u Copy each file only if it is newer than a pre-existing file
with the same name. This implies -a.

-v List file names as they are encountered. Produces a ver­
bose table of contents listing on the standard output
when both -r and -w are omitted, otherwise the file
names are printed to standard error as they are encoun­
tered in the archive.

-xformat Specifies the output archive format. The input format,
which must be one of the following, is automatically
determined when the -r option is used. The supported
formats are:

cpio The extended CPIO interchange format specified in Extended CPIO Format in IEEE Std. 1003.1-1988.

ustar The extended TAR interchange format specified in Extended TAR Format in IEEE Std. 1003.1-1988. This
is the default archive format.

-y Interactively prompt for the disposition of each file.
Substitutions specified by -s options (described above)
are performed before prompting the user for disposition. EOF or an input line starting with the character q
caused pax to exit. Otherwise, an input line starting
with anything other than y causes the file to be ignored.
This option cannot be used in conjunction with the -i
option.

Only the last of multiple -f or -t options take effect.

When writing to an archive, the standard input is used as a list of path­
names if no pathname operands are specified. The format is one path­
name per line. Otherwise, the standard input is the archive file, which
is formatted according to one of the specifications in Archive/Interchange File format in IEEE Std. 1003.1-1988, or some

28 March 1991 Page 4

PAX(C) PAX(C)

other implementation-de fined format.

The user ID and group ID of the process, together with the appropriate
privileges, affect the ability of pax to restore ownership and permis­
sions attributes of the archived files. (See format-reading utility in
Archive/Interchange File Format in IEEE Std. 1003.1-1988.)

The options -a, -c, -d, -i, -1, -p, -t, -u, and -y are provided for func­
tional compatibility with the historical cpio and tar utilities. The
option defaults were chosen based on the most common usage of these
options, therefore, some of the options have meanings different than
those of the historical commands.

Operands

The following operands are available:

directory The destination directory pathname for copies when
both the -r and -w options are specified. The directory
must exist and be writable before the copy or and error
results.

pathname A file whose contents are used instead of the files named
on the standard input. When a directory is named, all of
its files and (recursively) subdirectories are copied as
well.

pattern A pattern is given in the standard shell pattern matching
notation. The default if no pattern is specified is *,
which selects all files.

Examples

The following command

pax -w -f /dev/rmtO .

copies the contents of the current directory to tape drive 0.

The commands

mkdir newdir
cd olddir
pax -rw. newdir

copies the contents of olddir to newdir .

The command

pax -r -s \//*usr//*„’ -f pax.out

28 March 1991 Page 5

PAX(C) PAX(C)

reads the archive pax.out with all files rooted in "/usr" in the archive
extracted relative to the current directory.

Files
/dev/tty used to prompt the user for information when the -i or -y

options are specified.

See Also
cpio(C), find(C), pcpio(C), tar(C), tar(F)

Diagnostics
pax will terminate immediately, without processing any additional
files on the command line or in die archive.

pax will exit with one of the following values:

0 All files in the archive were processed successfully.

>0 pax aborted due to errors encountered during operation.

Notes
Special permissions may be required to copy or extract special files.

Device, user ID, and group ID numbers larger than 65535 cause addi­
tional header records to be output. These records are ignored by some
historical version of cpio(C) and tar(C).

The archive formats described in Archive/Interchange File Format
have certain restrictions that have been carried over from historical
usage. For example, there are restrictions on the length of pathnames
stored in the archive.

When getting an “ Is -1” style listing on tar format archives, link
counts are listed as zero since the ustar archive format does not keep
link count information.

Copyright
Copyright (c) 1989 Mark H. Colburn.
All rights reserved.

28 March 1991 Page 6

PAX(C) PAX(C)

Redistribution and use in source and binary forms are permitted pro­
vided that the above copyright notice is duplicated in all such forms
and that any documentation, advertising materials, and other materials
related to such distribution and use acknowledge that the software was
developed by Mark H. Colburn and sponsored by The USENIX Asso­
ciation.

THE SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTI-
BILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Author
Mark H. Colburn
NAPS International
117 Mackubin Street, Suite 1
St. Paul, MN 55102
mark@jhereg.MN.ORG

Sponsored by The USENIX Association for public distribution.

28 March 1991 Page 7

mailto:mark@jhereg.MN.ORG

PCPIO (C) PCPIO (C)

NAME

pcpio - Copy file archives in and out.

Syntax
pcpio -o[Bacv]pcpio -i[Bcdfmrtuv] [pattern...] pcpio -p[adlmruv] directory

Description
The pcpio utility produces and reads files in the format specified by
the cpio Archive/Interchange File Format specified in IEEE Std.
1003.1- 1988,

The pcpio -i (copy in) utility extracts files from the standard input,
which is assumed to be the product of a previous pcpio -o . Only files
with names that match patterns are selected. Multiple patterns may
be specified and if no patterns are specified, the default for patterns is
selecting all files. The extracted files are conditionally created and
copied into the current directory, and possibly any levels below, based
upon the options described below and the permissions of the files will
be those of the previous pcpio -o . The owner and group of the files
will be that of the current user unless the user has appropriate
privileges, which causes pcpio to retains the owner and group of the
files of the previous pcpio -o .
The pcpio -p (pass) utility reads the standard input to obtain a list of
path names of files that are conditionally created and copied into the
destination directory based upon the options described below.

If an error is detected, the cause is reported and the pcpio utility will
continue to copy other files, pcpio will skip over any unrecognized
files which it encounters in the archive.

The following restrictions apply to the pcpio utility:

1 Pathnames are restricted to 256 characters.

2 Appropriate privileges are required to copy special files.

3 Blocks are reported in 512-byte quantities.

Options
The following options are available:

28 March 1991 Page 1

PCPIO (C) PCPIO (C)

-B Input/output is to be blocked 5120 bytes to the record. Can
only be used with pcpio -o or pcpio -i for data that is directed
to or from character special files.

-a Reset access times of input files after they have been copied.
When the -1 option is also specified, the linked files do not have
their access times reset. Can only be used with pcpio -o or pcpio - i .

-c Write header information in ASCII character for for portability.
Can only be used with pcpio -i or pcpio -o . Note that this
option should always be used to write portable files.

-d Creates directories as needed. Can only be used with pcpio -i
or pcpio -p .

-f Copy in all files except those in patterns . Can only be used
with pcpio - i .

-1 Whenever possible, link files rather than copying them. Can
only be used with pcpio -p .

-m Retain previous modification times. This option is ineffective
on directories that are being copied. Can only be used with pcpio -i or pcpio -p .

-r Interactively rename files. The user is asked whether to rename
pattern each invocation. Read and write permissions for /dev/tty are required for this option. If the user types a null
line, the file is skipped. Should only be used with pcpio -i or pcpio -o .

-t Print a table of contents of the input. No files are created. Can
only be used with pcpio - i .

-u Copy files unconditionally; usually an older file will not
replace a new file with the same name. Can only be used with pcpio -i or pcpio -p .

-v Verbose: cause the names of the affected files to be printed.
Can only be used with pcpio -i . Provides a detailed listing
when used with the -t option.

28 March 1991 Page 2

PCPIO (C) PCPIO (C)

Operands
The following operands are available:

patterns Simple regular expressions given in the name-generating
notation of the shell.

directory The destination directory.

Exit Status
The pcpio utility exits with one of the following values:

0 All input files were copied.

2 The utility encountered errors in copying or accessing files or
directories. An error will be reported for nonexistent files or
directories, or permissions that do not allow the user to access
the source or target files.

It is important to use the -depth option of the find utility to generate
pathnames for pcpio . This eliminates problems pcpio could have try­
ing to create files under read-only directories.

The following command:

Is I pcpio -o > ../newfile

copies out the files listed by the Is utility and redirects them to the file newfile.
The following command:

cat newfile I pcpio -id Mmemo/al" "memo/b*"

uses the output file newfile from the pcpio -o utility, takes those files
that match the patterns memo/al and memo/b* , creates the direc­
tories below the current directory, and places the files in the appropri­
ate directories.

The command

find. -depth -print I pcpio -pdlmv newdir

takes the file names piped to it from the find utility and copies or links
those files to another directory named newdir , while retaining the
modification time.

28 March 1991 Page 3

PCPIO (C) PCPIO (C)

Files

/dev/tty used to prompt the user for information when the -i or -r
options are specified.

See Also

find(C), pax(C), tar(C), tar(F)

Copyright
Copyright (c) 1989 Mark H. Colburn.
All rights reserved.

Redistribution and use in source and binary forms are permitted pro­
vided that the above copyright notice is duplicated in all such forms
and that any documentation, advertising materials, and other materials
related to such distribution and use acknowledge that the software was
developed by Mark H. Colburn and sponsored by The USENIX Asso­
ciation.

THE SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTI-
BILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Author
Mark H. Colburn
NAPS International
117 Mackubin Street, Suite 1
St. Paul, MN 55102
mark@jhereg.MN.ORG

Sponsored by The USENIX Association for public distribution.

28 March 1991 Page 4

mailto:mark@jhereg.MN.ORG

PG (C) PG(C)

Name

pg - Paginates display for soft-copy terminals.

Syntax

pg [- number] [-p string] [-cefns] [+ linenumber] [+/ pattern /]
[files ...]

Description

The pg command is a filter which allows the examination of files one
screenful at a time on a soft-copy terminal. (The dash (-) command
line option and/or NULL arguments indicate that pg should read from
the standard input.) Each screenful is followed by a prompt. If you
press the RETURN key, another page is displayed; other possibilities
are listed below. This command is different from previous paginators
because it allows you to back up and review something that has
already passed.

To determine terminal attributes, pg scans the termcap(M) data base
for the terminal type specified by the environment variable TERM. If
TERM is not defined, the terminal type dumb is assumed.

The command line options are:

-.number

•p string

-c

Specifies the size (in lines) of the window that pg is to
use instead of the default. (On a terminal containing 24
lines, the default window size is 23.)

Causes pg to use string as the prompt. If the prompt
string contains a “%d”, the first occurrence of “%d” in
the prompt will be replaced by the current page number
when the prompt is issued. The default prompt string is
a colon (:).

Homes the cursor and clears the screen before display­
ing each page. This option is ignored if cl is not
defined for this terminal type in the termcapiM) data
base.

-e Causes pg not to pause at the end of each file.

-f Inhibits pg from splitting lines. In the absence of the -f
option, pg splits lines longer than the screen width, but
some sequences of characters in the displayed text (for
example, escape sequences for underlining) give
undesirable results.

28 March 1991 Page 1

PG (C) PG (C)

-n

-s

Normally, commands must be terminated by pressing
the RETURN key (ASCII newline character). This
option causes an automatic end of command as soon as
a command letter is entered.

Causes pg to display all messages and prompts in stan­
dout mode (usually inverse video).

+linenumber Starts up at linenumber.

+lpatternl Starts up at the first line containing the regular expres­
sion pattern.

The responses that may be entered when pg pauses can be divided into
three categories: those that cause further perusal, those that search,
and those that modify the perusal environment.

Commands which cause further perusal normally take a preceding
address (an optionally signed number indicating the point from which
further text should be displayed), pg interprets this address in either
pages or lines depending on the command. A signed address specifies
a point relative to the current page or line, and an unsigned address
specifies an address relative to the beginning of the file. Each com­
mand has a default address if no address is provided.

The perusal commands and their defaults are as follows:

(+l)RETURNkey
Causes one page to be displayed. The address is specified in
pages.

(+1)1
With a signed address, causes pg to simulate scrolling the screen,
forward or backward, the number of lines specified. With an
unsigned address this command displays a fiill screen of text
beginning at the specified line.

(+1) d or Ctrl-D
Simulates scrolling half a screen forward or backward.

The following perusal commands take no address :

. or Ctrl-L
Causes the current page of text to be redisplayed.

$ Displays the last windowfull of text in the file. Use with caution
when the input is a pipe.

The following commands are available for searching for text patterns
in the text. The regular expressions described in ed(C) are available.
They must always be terminated by a newline character, even if the -n
option is specified.

28 March 1991 Page 2

PG (C) PG (C)

i/pattern I
Search forward for the ith (default /=1) occurrence of pattern.
Searching begins immediately after the current page and continues
to the end of die current file, without wrap-around.

^pattern
/?pattern!

Search backwards for the ith (default /=1) occurrence of pattern.
Searching begins immediately before the current page and contin­
ues to the beginning of the current file, without wrap-around. The
caret O notation is useful for terminals which will not properly
handle file question mark (?).

After searching, pg displays the line found at the top of the screen.
You can modify this by appending m or b to the search command to
leave the line found in the middle or at the bottom of the window from
now on. Use the suffix t to restore the original situation.

The following commands modify the environment of perusal:

in Begins perusing the ith next file in the command line. The
default value of / is 1.

/w Displays another window of text. If / is present, set the win­
dow size to /.

s filename
Saves the input in the named file. Only the current file being
perused is saved. The white space between the s and filename
is optional. This command must always be terminated by a
newline character, even if the -n option is specified.

h Help displays abbreviated summary of available commands.

qorQ Quitpg.

!command
command is passed to the shell, whose name is taken from the
SHELL environment variable. If this is not available, the
default shell is used. This command must always be ter­
minated by a newline character, even if the -n option is
specified.

At any time when output is being sent to the terminal, the user can
press the quit key (normally Ctrl-\) or the INTERRUPT (BREAK) key.
This causes pg to stop sending output, and display the prompt. The
user may then enter one of the above commands in the normal manner.
Unfortunately, some output is lost when this is done, because any
characters waiting in the terminal’s output queue are flushed when the
quit signal occurs.

28 March 1991 Page 3

PG(C) PG(C)

If the Standard output is not a terminal, then pg acts just like cat{C),
except that a header is printed before each file (if there is more than
one).

Example

To use pg to read system news, enter:

news I pg -p “(Page %d):”

Files

/etc/termcap Terminal information data base

/tmp/pg* Temporary file when input is from a pipe

See Also

ed(C), grep(C), termcap(M)

Notes

If terminal tabs are not set every eight positions, undesirable results
may occur.

When using pg as a filter with another command that changes the ter­
minal I/O options terminal settings may not be restored correctly.

While waiting for terminal input, pg responds to BREAK and DEL by
terminating execution. Between prompts, however, these signals
interrupt pg’s current task and place you in prompt mode. Use these
signals with caution when input is being read from a pipe, since an
interrupt is likely to terminate the other commands in the pipeline.

The z and f commands used with more are available, and the final
slash (/), caret O , or question mark (?) may be omitted from the
searching commands.

28 March 1991 Page 4

PR(C) PR(C)

Name

pr - Prints files on the Standard output.

Syntax
pr [options] [files]

Description

pr prints the named files on the standard output. If file is -, or if no
files are specified, the standard input is assumed. By default, the list­
ing is separated into pages, each headed by the page number, date and
time, and the name of the file.

By default, columns are of equal width, separated by at least one
space; lines which do not fit are truncated. If the -s option is used,
lines are not truncated and columns are separated by the separation
character.

If the standard output is associated with a terminal, error messages are
withheld until pr has completed printing.

Options may appear singly or combined in any order. Their meanings
are:

+k Begins printing with page k (default is 1).

-k Produces k-column output (default is 1). The options -e and -i
are assumed for multicolumn output.

-a Prints multicolumn output across the page.

-m Merges and prints all files simultaneously, one per column
(overrides the -&, and -a options).

-d Double-spaces the output.

-eck Expands input tabs to character positions k+1, 2*&+l, 3*£+l,
etc. If k is 0 or is omitted, default tab settings at every 8th posi­
tion are assumed. Tab characters in the input are expanded into
the appropriate number of spaces. If c (any nondigit character)
is given, it is treated as the input tab character (default for c is
the tab character).

-ick In output, replaces whitespace wherever possible by inserting
tabs to character positions /:+1, 2*&+l, 3*&+l, etc. If k is 0 or
is omitted, default tab settings at every 8th position are
assumed. If c (any nondigit character) is given, it is treated as
the output tab character (default for c is the tab character).

28 March 1991 Page 1

PR (C) PR (C)

-nek Provides Är-digit line numbering (default for k is 5). The number
occupies the first /:+1 character positions of each column of nor­
mal output or each line of -m output. If c (any nondigit charac­
ter) is given, it is appended to die line number to separate it
from whatever follows (default for c is a tab).

-wk Sets the width of a line to k character positions (default is 72 for
equal-width multicolumn output, no limit otherwise).

-ok Offsets each line by k character positions (default is 0). The
number of character positions per line is the sum of the width
and offset.

-Ik Sets the length of a page to k lines (default is 66).

-h Uses the next argument as the header to be printed instead of
the filename.

-p Pauses before beginning each page if the output is directed to a
terminal (pr will ring the bell at the terminal and wait for a car­
riage return).

-f Uses the form feed character for new pages (default is to use a
sequence of linefeeds). Pauses before beginning the first page if
the standard output is associated with a terminal.

-r Prints no diagnostic reports on failure to open files.

-t Prints neither the 5-line identifying header nor the 5-line trailer
normally supplied for each page. Quits printing after the last
line of each file without spacing to the end of the page.

-sc Separates columns by the single character c instead of by the
appropriate number of spaces (default for c is a tab).

Examples

The following prints filel mdfile2 as a double-spaced, three-column
listing headed by “ file list” :

pr -3dh "file list” filel file2

28 March 1991 Page 2

PR(C) PR(C)

The following writes fllel on file2, expanding tabs to columns 10, 19,
28,3 7 ,...:

pr -e9 -t <filel >file2

See Also

cat(C)

28 March 1991 Page 3

PS(C) PS(C)

Name

ps - Reports process status.

Syntax

ps [options]

Description

ps prints certain information about active processes. Without options,
information is printed about processes associated with the current ter­
minal. Otherwise, the information that is displayed is controlled by
the following options:

-e Prints information about all processes.

-d Prints information about all processes, except process
group leaders.

-a Prints information about all processes, except process
group leaders and processes not associated with a ter­
minal.

-f Generates a full listing. (Normally, a short listing con­
taining only process ID, terminal (“tty”) identifier,
cumulative execution time, and the command name is
printed.) See below for meaning of columns in a full
listing.

-1 Generates a long listing. See below.

-c corefile Uses the file corefile in place of /dev/mem.

-s swapdev Uses the file swapdev in place of /dev/swap. This is
useful when examining a corefile.

-n namelist The argument is taken as the name of an alternate
namelist (/xenix is the default).

-t tlist Restricts listing to data about the processes associated
with the terminals given in tlist, where tlist can be in
one of two forms: a list of terminal identifiers
separated from one another by a comma, or a list of ter­
minal identifiers enclosed in double quotes and
separated from one another by a comma and/or one or
more spaces.

28 March 1991 Page 1

PS(C) PS(C)

-p plist Restricts listing to data about processes whose process
ID numbers are given in plist, where plist is in the same
format as tlist.

-u ulist Restricts listing to data about processes whose user ID
numbers or login names are given in ulist, where ulist
is in the same format as tlist. In the listing, the numeri­
cal user ID is printed unless the -f option is used, in
which case the login name is printed.

-g glist Restricts listing to data about processes whose process
groups are given in glist, where glist is a list of process
group leaders and is in the same format as tlist.

The column headings and the meaning of the columns in a ps listing
are given below; the letters f and 1 indicate the option (full or long)
that causes the corresponding heading to appear; all means that the
heading always appears. Note that these two options only determine
what information is provided for a process; they do not determine
which processes will be listed.

F (1)

S (1)

A status word consisting of flags associated with
the process. Each flag is associated with a bit in
the status word. These flags are added to form a
single octal number. Process flag bits and their
meanings are:

01 m core;
02 system process;
04 locked in core (e.g., for physical
10 being swapped;
20 being traced by another process.

The state of the process:
0 non-existent;
S sleeping;
W waiting;
R running;
I intermediate;
Z terminated;
T stopped;
B waiting.

UID (f,D The user ID number of the process owner; the log­
in name is printed under the -f option. Login
names are truncated after 7 characters.

PID (all) The process ED of the process; it is possible to kill
a process if you know this number.

PPID (f,l) The process ID of the parent process.
C (f,0 Processor utilization for scheduling.
STIME (f) Starting time of the process.
PRI (1) The priority of the process; higher numbers mean

lower priority.

28 March 1991 Page 2

PS(C) PS(C)

NI (1)
ADDR (1)

SZ (1)

WCHAN(l)

TTY (all)
TIME (all)
CMD (all)

Nice value; used in priority computation.
The memory address of the process, if resident;
otherwise, the disk address.
The size in blocks of the core image of the pro­
cess, but not including the size of text shared with
other processes. Since this size includes the
current size of the stack, it will vary as the stack
size varies.
The event for which the process is waiting or
sleeping; if blank, the process is running.
The controlling terminal for the process.
The cumulative execution time for the process.
The command name; the full command name and
its arguments are printed under the -f option. A
process that has exited and has a parent, but has
not yet been waited for by the parent, is marked
<defunct>.

Under the -f option, ps tries to determine the command name and
arguments given when the process was created by examining memory
or the swap area. Failing this, the command name, as it would appear
without the -f option, is printed in square brackets.

Files

/xenix system namelist

/dev/mem memory

/dev searched to find swap device and terminal (“tty”) names.

See Also

kill(C), nice(C)

Notes

Things can change while ps is running; the picture it gives is only a
close approximation to reality.

Some data printed for defunct processes are irrelevant.

28 March 1991 Page 3

PST AT (C) PSTAT(C)

Name

pstat - Reports system information.

Syntax

pstat [-aixpf] [-u ubase] [-c corefile] [-n namelist] [file]

Description

pstat interprets the contents of certain system tables, pstat searches
for these tables in /dev/mem and /dev/kmem.

Options

The available options are as follows:

-a Under -p, describe all process slots rather than just active
ones.

-i Print the inode table with these headings:
LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

L Locked
U Update time
A Access time must be corrected
M File system is mounted here
W Wanted by another process (L flag is on)
T Contains a text (executable image) file
C Changed time must be corrected

CNT Number of open file table entries for this inode.
DEV Major and minor device number of file system in

which this inode resides.
INO I-number within the device.
MODE Mode bits, see chmod(S).
NLK Number of links to this inode.
UID User ID of owner.
SIZ/DEV

Number of bytes in an ordinary file, or major and
minor device of special file.

-x Prints the text (executable code segment) table with these
headings (XENIX-286 only):
LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

T ptrace (S) in effect
W Text not yet written on swap device

28 March 1991 Page 1

PSTAT(C) PSTAT (C)

L Loading in progress
K Locked
w Wanted (L flag is on)

DADDR Disk address in swap, measured in multiples of
BSIZE bytes.

CADDR Core address, measured in units of memory
management resolution.

SIZE Size of text segment, measured in units of memory
management resolution.

EPTR Core location of corresponding inode.
CNT Number of processes using this text segment.
CCNT Number of processes in core using this text seg­

ment.

-p Prints process table for active processes with these head­
ings:
LOC The core location of this table entry.
S Run state encoded thus:

0 No process
1 Waiting for some event
3 Runnable
4 Being created
5 Being terminated
6 Stopped under trace

F Miscellaneous state variables, ORed together:
01 Loaded
02 The scheduler process
04 Locked010

Swapped out
020

Traced
040

Used in tracing 0100
Locked in by lock(S).

PRI Scheduling priority, see nice(S).
SIGNAL Signals received (signals 1-16 coded in bits 0-15).
UID Real user ID.
TIM Time resident in seconds; times over 127 coded as

127.
CPU Weighted integral of CPU time, for scheduler.
NI Nice level, see nice(S).
PGRP Process number of root of process group (the

opener of the controlling terminal).
PID TTie process ID number.
PPID The process ID of parent process.
ADDR1, ADDR2

If in core, the physical page frame numbers of the
u-area of the process. These numbers can be
translated into the addresses of the u-area, which
is split and stored in two pages. If swapped out,

28 March 1991 Page 2

PSTAT(C) PSTAT(C)

the position in the swap area is measured in multi­
ples of BSIZE bytes.

WCHAN
Wait channel number of a waiting process.

LINK Link pointer in list of runnable processes.
TEXTP If text is pure, pointer to location of text table

entry (286 only).
INODP Pointer to location of shared inode (386 only).
CLKT Countdown for alarm(S) measured in seconds.

-t Print table for terminals with these headings:
RAW Number of characters in raw input queue.
CAN Number of characters in canonicalized input

queue.
OUT Number of characters in output queue.
IMODE Corresponds to cjflag field in termio structure,

see tty (M).
OMODE Corresponds to c_oflag field in termio structure,

see tfy(M).
CMODE Corresponds to c_cflag field in termio structure,

see tfy(M).
LMODE Corresponds to cjflag field in termio structure,

see tfy(M).
ADDR Physical device address.
DEL Number of delimiters (newlines) in canonicalized

input queue.
COL Calculated column position of terminal.
STATE Miscellaneous state variables:

W waiting for open to complete
O open
S has special (output) start routine
C carrier is on
B busy doing output
A process is awaiting output
X open for exclusive use
H hangup on close

PGRP Process group for controlling terminal.

-f Print the open file table with these headings:
LOC The core location of this table entry.
FLG Miscellaneous state variables:

R Open for reading
W Open for writing
P Pipe

CNT Number of processes that know this open file.
INO The location of the inode table entry for this file.
OFFS The file offset, see lseek{S).

-u ubase
Print information about a user process, ubase is the hexade­
cimal location of the process in main memory. The address
can be obtained by using the long listing (-1 option) of the
ps(C) command.

28 March 1991 Page 3

PSTAT(C) PSTAT(C)

-c corefile
Use the file corefile in place of /dev/kmem.

-n namelist
Use the file namelist as an alternate namelist in place of
/xenix.

file Source or tables as an alternate to /dev/mem.

Files

/xenix Namelist

/dev/mem Default source of tables

See Also

ps(C), stat(S), filesystem(F)

28 March 1991 Page 4

PTAR (C) PTAR (C)

Name
ptar - Process tape archives.

Syntax
ptar -c[bfvw] device block filename...ptar -r[bvw] device block [filename...]ptar -t[fv] deviceptar -u[bvw] device blockptar -x[flmovw] device filename...]

Description
Tar reads and writes archive files which conform to the Archive/Interchange File Format specified in IEEE Std. 1003.1-
1988.

Options
The following options are available:

-c Creates a new archive; writing begins at the beginning
of the archive, instead of after the last file.

-r Writes names files to the end of the archive.

-t Lists the names of all of the files in the archive.

-u Causes named files to be added to the archive if they are
not already there, or have been modified since last writ­
ten into the archive. This implies the -r option.

-x Extracts named files from the archive. If a named file
matches a directory whose contents had been written
onto the archive, that directory is recursively extracted.
If a named file in the archive does not exist on the sys­
tem, the file is create with the same mode as the one in
the archive, except that the set-user-id and get-group-id
modes are not set unless the user has appropriate
privileges.

If the files exist, their modes are not changed except as described
above. The owner, group and modification time are restored if possi­
ble. If no filename argument is given, the entire contents of the
archive is extracted. Note that if several files with the same name are
in the archive, the last one will overwrite all earlier ones.

28 March 1991 Page 1

PTAR (C) PTAR (C)

-b Causes ptar to use the next argument on the command
line as the blocking factor for tape records. The default
is 1; the maximum is 20. This option should only be
used with raw magnetic tape archives. Normally, the
block size is determined automatically when reading
tapes.

-f Causes ptar to use the next argument on the command
line as the name of the archive instead of the default,
which is usually a tape drive. If - is specified as a
filename ptar writes to the standard output or reads from
the standard input, whichever is appropriate for the
options given. Thus, ptar can be used as the head or tail
of a pipeline.

-1 Tells ptar to report if it cannot resolve all of the links to
the files being archived. If -1 is not specified, no error
messages are written to the standard output. This
modifier is only valid with the -c, -r and -u options.

-m Tells ptar not to restore the modification times. The
modification time of the file will be the time of extrac­
tion. This modifier is invalid with th -t option.

-o Causes extracted files to take on the user and group
identifier of the user running the program rather than
those on the archive. This modifier is only valid with the
-x option.

-v Causes ptar to operate verbosely. Usually, ptar does its
work silently, but the v modifier causes it to print the
name of each file it processes, preceded by the option
letter. With the -t option, v gives more information
about the archive entries than just the name.

-w Causes ptar to print the action to be taken, followed by
the name of the file, and then wait for the user’s
confirmation. If a word beginning with y is given, the
action is performed. Any other input means “no”. This
modifier is invalid with the -t option.

Files
/dev/tty used to prompt the user for information when the -i or -y

options are specified.

See Also
cpio(C), dd(C), find(C), pax(C), pcpio(C)

28 March 1991 Page 2

PTAR (C) PTAR (C)

Copyright

Copyright (c) 1989 Mark H. Colbum.
All rights reserved.

Redistribution and use in source and binary forms are permitted pro­
vided that the above copyright notice is duplicated in all such forms
and that any documentation, advertising materials, and other materials
related to such distribution and use acknowledge that the software was
developed by Mark H. Colbum and sponsored by The USENIX Asso­
ciation.

THE SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTI-
BILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Author

Mark H. Colbum
NAPS International
117 Mackubin Street, Suite 1
St. Paul, MN 55102
mark@jhereg.MN.ORG

Sponsored by The USENIX Association for public distribution.

28 March 1991 Page 3

mailto:mark@jhereg.MN.ORG

PW CHECK (C) PWCHECK (C)

Name
pwcheck - Checks password file.

Syntax
pwcheck [file]

Description
pwcheck scans the password file and checks for any inconsistencies.
The checks include validation of the number of fields, login name,
user ID, group ID, and whether the login directory and optional pro­
gram name exist. The default password file is /etc/passwd.

Files
/etc/passwd

See Also
grpcheck(C), group(F), passwd(F)

28 March 1991 Page 1

PWD (C) PWD (C)

Name
pwd - Prints working directory name.

Syntax
pwd

Description
pwd prints the pathname of the working (current) directory.

See Also
cd(C)

Diagnostics
“Cannot open ..” and “Read error in ..” indicate possible file system
trouble. In such cases, see the XENIX System Administrator s Guide
for information on fixing the file system.

28 March 1991 Page 1

QUOT (C) QUOT (C)

Name
quot - Summarizes file system ownership.

Syntax
quot [option]... [filesystem]

Description
quot prints the number of blocks in the named filesystem currently
owned by each user. If no filesystem is named, the file systems given
in /etc/mnttab are examined.

The following options are available:

-n Processes standard input. This option makes it possible to produce
a list of all files and their owners with the following command:

ncheck filesystem I sort +0n I quot -n filesystem

-c Prints three columns giving file size in blocks, number of files of
that size, and cumulative total of blocks in that size or smaller file.
Data for files of size greater than 499 blocks are included in the
figures for files of exactly size 499.

-f Prints a count of the number of files as well as space owned by
each user.

Files
/etc/passwd Gets user names

/etc/mnttab Contains list of mounted file systems

See Also
cmchk(C), du(C), ls(C), machine(M)

Notes
Holes in files are counted as if they actually occupied space. Blocks
are reported in 512 byte blocks. See also Notes under mount(ADM).

28 March 1991 Page 1

RANDOM (C) RANDOM (C)

Name

random - Generates a random number.

Syntax

random [-s] [scale]

Description

random generates a random number on the standard output, and
returns the number as its exit value. By default, this number is either
0 or 1 (i.e., scale is 1 by default). If scale is given a value between 1
and 255, then the range of the random value is from 0 to scale. If scale
is greater than 255, an error message is printed.

When the -s , “silent” option is given, the random number is returned
as an exit value but is not printed on the standard output. If an error
occurs, random returns an exit value of zero.

See Also

rand(S)

Notes

This command does not perform any floating point computations.

random uses the time of day as a seed.

28 March 1991 Page 1

RANLIB (C) RANLIB (C)

ranlib - Converts archives to random libraries.

Syntax
ranlib archive...

Description
ranlib converts each archive to a form which can be loaded more
rapidly by the loader, by adding a table of contents named__.SYM-
DEF to the beginning of the archive. It uses ar(C) to reconstruct the
archive, so sufficient temporary file space must be available in the file
system containing the current directory.

See Also
ld(CP), ar(C), copy(C), settime(ADM)

Notes
Failure to process a library with ranlib, or failure to reprocess a
library with ranlib, will cause Id to fail. Because generation of a
library by ar and randomization by ranlib are separate, phase errors
are possible. The loader Id warns when the modification date of a
library is more recent than the creation of its dictionary; but this
means you get the warning even if you only copy the library.

28 March 1991 Page 1

RCP (C) RCP(C)

Name

rep - Copies files across XENIX mienet networks.

Syntax

rep [options] [srcmachine:]srcfile [destmachine:]destfile

Description

rep copies files between systems in a Micnet network. The command
copies the srcmachine:srcfile to destmachine:destfile , where srema-
chine: and destmachine: are optional names of systems in the net­
work, and srcfile and destfile are pathnames of files. If a machine
name is not given, the name of the current system is assumed. If - is
given in place of srcfile, rep uses the standard input as the source.
Directories named on the destination machine must have write per­
mission, and directories and files named on a remote source machine
must have read permission.

The available options are:

-m
Mails and reports completion of the command, whether there is an
error or not.

-u [machine:]user
Any mail goes to the named user on machine. The default ma­
chine is the machine on which the rep command is completed or
on which an error was detected. If an alias for user exists in the
system alias files on that machine, the mail will be redirected to
the appropriate mailbox(es). Since system alias files are usually
identical throughout the network, any specified machine will most
likely be overridden by the aliasing mechanism. To prevent alias­
ing, user must be escaped with at least two \ characters (at least
four if given as a shell command).

28 March 1991 Page 1

RCP(C) RCP(C)

rep is useful for transferring small numbers of files across the network.
The network consists of daemons that periodically awaken and send
files from one system to another. The network must be installed using
netutil (ADM) before rep can be used.

Also, to enable transfer of files from a remote system, either:

This line should be in /etc/default/micnet on the systems in the net­
work:

rcp=/usr/bin/rcp

Or, these lines should be in that file:

executeall
execpath=P ATH= path

where path must contain lusr/bin.

Example
rep -m machine 1 :/etc/mnttab /tmp/vtape

See Also
mail(C), micnet(F), netutil(ADM), remote(C)

Diagnostics
If an error occurs, mail is sent to the user.

Notes
Full pathnames must be specified for remote files.

rep handles binary data files transparently, no extra options or proto­
cols are needed to handle them. Wildcards are not expanded on the
remote machine.

28 March 1991 Page 2

REMOTE (C) REMOTE (C)

Name
remote - Executes commands on a remote XENIX system over a mic-
net network.

Syntax
remote [-] [-f file] [-m] [-u user] machine
command [arguments]

Description
remote is a limited networking facility that permits execution of
XENIX commands across serial lines. Commands on any connected
system may be executed from the host system using remote. A com­
mand line consisting of command and any blank-separated arguments
is executed on the remote machine. A machine’s name is located in
the file /etc/systemid. Note that wild cards are not expanded on the
remote machine, so they should not be specified in arguments. The
optional -m switch causes mail to be sent to the user telling whether
the command is successful.

The available options follow:

A dash signifies that standard input is used as the standard
input for command on the remote machine. Standard
input comes from the local host and not from the remote
machine.

-ffile Use the specified file as the standard input for command
on the remote machine. The file exists on the local host
and not on the remote machine.

-m Mails the user to report completion of the command. By
default, mail reports only errors.

-u user Any mail goes to the named user on machine. The default
machine is the machine on which an error was detected,
or on which the remote command was completed. The
mail will be redirected to the appropriate mailbox(es), if
an alias for user exists in the system alias files on that ma­
chine . Since system alias files are usually identical
throughout the network, any specified machine will most
likely be overridden by the aliasing mechanism. To
prevent aliasing, user must be escaped with at least two \
characters (at least four if given as a shell command).

28 March 1991 Page 1

REMOTE (C) REMOTE (C)

Before remote can be successfully used, a network of systems must
first be set up and the proper daemons initialized using netutil (ADM).
Also, entries for the command to be executed using remote must be
added to the I etc/default/micnet files on each remote machine.

Example
The following command executes an Is command on the directory /tmp of the machine machinel:

remote machinel Is /tmp

See Also
rcp(C), mail(C), netutil(ADM), micnet(F)

Notes
The mail command uses the equivalent of remote to send mail
between machines.

28 March 1991 Page 2

RM(C) RM(C)

Name
rm, rmdir - Removes files or directories.

Syntax
rm [-fri] file ...

rmdir dir...

Description
rm removes the entries for one or more files from a directory. If an
entry was the last link to the file, the file is destroyed. Removal of a
file requires write permission in its directory, but neither read nor
write permission on the file itself.

If a file has no write permission and the standard input is a terminal,
its permissions are printed and a line is read from the standard input.
If that line begins with y, the file is deleted, otherwise the file
remains. No questions are asked when the -f option is given or if the
standard input is not a terminal.

If a designated file is a directory, an error comment is printed unless
the optional argument -r has been used. In that case, rm recursively
deletes the entire contents of the specified directory, and the directory
itself.

If the -i (interactive) option is in effect, rm asks whether to delete
each file, and if the -r option is in effect, whether to examine each
directory.

The special option ” can be used to delimit options. For example, a
file named “-f” could not be removed by rm because the hyphen is
interpreted as an option; the command rm -f would do nothing, since
no file is specified. Using rm - -f removes the file successfully.

rmdir removes empty directories.

Diagnostics
Generally self-explanatory. It is forbidden to remove the file .. to
avoid the consequences of inadvertently doing something like:

rm -r .*

It is also forbidden to remove the root directory of a given file system.

28 March 1991 Page 1

RM(C) RM (C)

No more than 17 levels of subdirectories can be removed using the -r
option.

28 March 1991 Page 2

RSH(C) RSH(C)

Name
rsh - Invokes a restricted shell (command interpreter).

Syntax

rsh [flags] [name [argl ...]]

Description
rsh is a restricted version of the standard command interpreter sh(C).
It is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell. The
actions of rsh are identical to those of sh, except that changing direc­
tory with cd, setting the value of $PATH, using command names con­
taining slashes, and redirecting output using > and » are all disal­
lowed.

When invoked with the name -rsh, rsh reads the user’s .profile (from $HOME/.profile). It acts as the standard sh while doing this, except
that an interrupt causes an immediate exit, instead of causing a return
to command level. The restrictions above are enforced after .profile
is interpreted.

When a command to be executed is found to be a shell procedure, rsh
invokes sh to execute it. Thus, it is possible to provide to the end user
shell procedures that have access to the full power of the standard
shell, while restricting him to a limited menu of commands; this
scheme assumes that the end user does not have write and execute per­
missions in the same directory.

The net effect of these rules is that the writer of the .profile has com­
plete control over user actions, by performing guaranteed setup
actions, then leaving the user in an appropriate directory (probably not
the login directory).

rsh is actually just a link to sh and any flags arguments are the same
as for sh(C).

The system administrator often sets up a directory of commands that
can be safely invoked by rsh.

Notes
Simply making a user’s login shell rsh does not necessarily make the
account safe from a security standpoint.

28 March 1991 Page 1

RSH(C) RSH (C)

See Also
sh(C), profile(M)

28 March 1991 Page 2

SDIFF (C) SDIFF (C)

Name

sdiff - Compares files side-by-side.

Syntax

sdiff [options ...] filel file2

Description

sdiff uses the output of diff(C) to produce a side-by-side listing of two
files indicating those lines that are different. Each line of the two files
is printed with a blank gutter between them if the lines are identical, a
< in the gutter if the line only exists in file l, a > in the gutter if the
line only exists in file2, and a | for lines that are different.

For example:

x I y
a a
b <
c <
d d

> c

The following options exist:

-w n Uses the next argument, n, as the width of the output
line. The default line length is 130 characters.

-1 Only prints the left side of any lines that are identical.

-s Does not print identical lines.

-o output Uses the next argument, output, as the name of a third
file that is created as a user-controlled merging of filel
and file2. Identical lines of filel and file2 are copied to
output. Sets of differences, as produced by diff{C), are
printed; where a set of differences share a common
gutter character. After printing each set of differences,
sdiff prompts the user with a % and waits for one of the
following user-typed commands:

1 Appends the left column to the output file

r Appends the right column to the output file

s Turns on silent mode; does not print identi­
cal lines

28 March 1991 Page 1

SDIFF (C) SDIFF (C)

v Turns off silent mode

e 1
Calls the editor with the left column

e r
Calls the editor with the right column

e b
Calls the editor with the concatenation of
left and right

e Calls the editor with a zero length file

q Exits from the program

On exit from the editor, the resulting file is concatenated
on the end of the output file.

See Also

diff(C), ed(C)

28 March 1991 Page 2

SED (C) SED (C)

Name

sed - Invokes the stream editor.

Syntax

sed [-n] [-e script] [-f sfile] [files]

Description

sed copies the named files (standard input default) to the standard out­
put, edited according to a script of commands. The -e option causes
the script to be read literally from the next argument, which is usually
quoted to protect it from the shell. The -f option causes the script to
be taken from file sfile; these options accumulate. If there is just one
-e option and no -f options, the flag -e may be omitted. The -n option
suppresses the default output. A script consists of editing commands,
one per line, of the following form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern
space (unless there is something left after a D command), applies in
sequence all commands whose addresses select that pattern space,
and at the end of the script copies the pattern space to the standard
output (except under -n) and deletes the pattern space.

A semicolon (;) can be used as a command delimiter.

Some of the commands use a hold space to save all or part of the pat­
tern space for subsequent retrieval.

An address is either a decimal number that counts input lines cumula­
tively across files, a $ that addresses the last line of input, or a context
address, i.e., a /regular expression/ in the style of ed(C) modified as
follows:

- In a context address, the construction \?regular expression?, where
? is any character, is identical to /regular expression/. Note that
in the context address \xabc\xdefx, the second x stands for itself,
so that the regular expression is abcxdef.

- The escape sequence \n matches a newline embedded in the pat­
tern space.

- A period . matches any character except the terminal newline of
the pattern space.

28 March 1991 Page 1

SED (C) SED (C)

- A command line with no addresses selects every pattern space.

- A command line with one address selects each pattern space that
matches the address.

- A command line with two addresses separated by a comma selects
the inclusive range from the first pattern space that matches the
first address through the next pattern space that matches the
second. (If the second address is a number less than or equal to the
line number first selected, only one line is selected.) Thereafter,
the process is repeated, looking again for the first address.

Editing commands can be applied only to nonselected pattern spaces
by use of the negation function ! (below).

In the following list of functions, the maximum number of permissible
addresses for each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of
which end with backslashes to hide the newlines. Backslashes in text
are treated like backslashes in the replacement string of an s com­
mand, and may be used to protect initial blanks and tabs against the
stripping that is done on every script line. The rfile or wfile argument
must terminate the command line and must be preceded by exactly
one blank. Each wfile is created before processing begins. There can
be at most 10 distinct wfile arguments.

d) a \
text Appends text, placing it on the output before reading the

next input line.

(2) b label Branches to the : command bearing the label. If label is
empty, branches to the end of the script.

(2)c\
text Changes text by deleting the pattern space and then

appending text. With 0 or 1 address or at the end of a 2-
address range, places text on the output and starts the next
cycle.

(2) d Deletes the pattern space and starts the next cycle.

(2)D Deletes the initial segment of the pattern space through
the first newline and starts the next cycle.

(2) g Replaces the contents of the pattern space with the con­
tents of the hold space.

(2)G Appends the contents of the hold space to the pattern
space.

28 March 1991 Page 2

SED (C) SED (C)

(2) h Replaces the contents of the hold space with the contents
of the pattern space.

(2)H Appends the contents of the pattern space to the hold
space.

(1) i\
text Insert. Places text on the standard output.

(2) 1 Lists the pattern space on the standard output with
nonprinting characters spelled in two-digit ASCII and long
lines folded.

(2) n Copies the pattern space to the standard output. Replaces
the pattern space with the next line of input.

(2) N Appends the next line of input to the pattern space with an
embedded newline. (The current line number changes.)

(2) p Prints (copies) the pattern space on the standard output.

(2)P Prints (copies) the initial segment of the pattern space
through the first newline to the standard output.

(1) q Quits sed by branching to the end of the script. No new
cycle is started.

(2) r rfile Reads the contents of rfile and places them on the output
before reading the next input line.

(2)s/regular expression!replacement!flags
Substitutes the replacement string for instances of the
regular expression in the pattern space. Any character
may be used instead of /. For a more detailed description,
see ed(C). Flags is zero or more of:

n n=l-512. Substitute for just the nth occurrence of the
regular expression.

g Globally substitutes for all nonoverlapping instances
of the regular expression rather than just the first one.

p Prints the pattern space if a replacement was made.

w wfile
Writes the pattern space to wfile if a replacement was
made.

(2) t label Branches to the colon (:) command bearing label if any
substitutions have been made since the most recent read­
ing of an input line or execution of a t command. If label
is empty, t branches to the end of the script.

28 March 1991 Page 3

SED (C) SED (C)

(2) w wfile Writes the pattem space to wfile.

(2) x Exchanges the contents of the pattem and hold spaces.

(2) y/string 11 string! /
Replaces all occurrences of characters in stringl with the
corresponding characters in string2. The lengths of
stringl and string2 must be equal.

(2)! function
Applies the function (or group, if function is {) only to

(0): label

lines not selected by the address(es).

This command does nothing; it bears a label for b and t
commands to branch to.

(D = Places the current line number on the standard output as a
line.

(2){ Executes the following commands through a matching }
only when the pattern space is selected.

(0) An empty command is ignored.

See Also

awk(C), ed(C), grep(C)

Notes

This command is explained in detail in XENIX Text Processing Guide.

28 March 1991 Page 4

SETCOLOR(C) SETCOLOR(C)
Name

setcolor, setcolour - Set screen color.

Syntax
setcolor -[nbrgopc] argument [argument]

Description
setcolor allows the user to set the screen color on a color screen. Both
foreground and background colors can be set independently in a range
of 16 colors, setcolor can also set the reverse video and graphics
character colors, setcolor with no arguments produces a usage mes­
sage that displays all available colors, then resets the screen to its pre­
vious state.

For example, the following strings are possible colors.

blue magenta brown black
lt_blue lt_magenta yellow gray
cyan white green red
lt_cyan hi_white lt_green lt_red

The following flags are available. In the arguments below, “color” is
taken from the above list.

-n Set the screen to “normal” white characters on black background.

color [color]
Set the foreground to the first color. Sets background to second
color if a second color choice is specified.

-b color
Set the background to the specified color.

-r color [color]
Set the foreground reverse video characters to the first color. Set
reverse video characters ’ background to second color.

-g color [color]
Set the foreground graphics characters to the first color. Set graph­
ics characters’ background to second color.

-o Set the color of the screen border (overscan region). This option
applies only to CGA adapters.

28 March 1991 Page 1

SETCOLOR (C) SETCOLOR (C)

-p pitch duration
Set the pitch and duration of the bell. Pitch is the period in
microseconds, and duration is measured in fifths of a second.
When using this option, a control-G (bell) must be echoed to the
screen for the command to work. For example:

setcolor -p 2500 2
echo ~G

-cfirst last
Set the first and last scan lines of the cursor. (For more informa­
tion see screen^HW).)

Notes
The ability of setcolor to set any of these described functions is ulti­
mately dependent on the ability of devices to support them, setcolor
emits an escape sequence that may or may not have an effect on mono­
chrome devices.

Occasionally changing the screen color can help prolong the life of
your monitor.

See Also
screen(HW), console(HW)

28 March 1991 Page 2

SETKEY(C) SETKEY(C)

Name

setkey - Assigns the function keys.

Syntax

setkey keynum string

Description

The setkey command assigns the given ANSI string to be the output
of the computer function key given by keynum. For example, the
command:

setkey 1 date

assigns the string "date" as the output of function key 1. The string
can contain control characters, such as a newline character, and
should be quoted to protect it from processing by the shell. For exam­
ple, the command:

setkey 2 "pwd; lcNn"

assigns the command sequence "pwd ; lc" to function key 2. Notice
how the newline character is embedded in the quoted string. This
causes the commands to be carried out when function key 2 is pressed.
Otherwise, the Enter key would have to be pressed after pressing the
function key, as in the previous example.

Files

/bin/setkey

See Also

keyboard(HW)

Notes

setkey works only on the console keyboard.

The string mapping table is where the function keys are defined. It is
an array of 512 bytes (typedef strm apj) where null terminated strings
can be put to redefine the function keys. The first null terminated
string is assigned to the first string key, the second to the second string
key, and so on. There is one string mapping table per multiscreen.

28 March 1991 Page 1

SETKEY(C) SETKEY(C)
Although the size of the setkey string mapping table is 512 bytes,
there is a limit of 30 characters that can be assigned to any individual function key.
Assigning more than 512 characters to the string mapping table causes the function key buffer to overflow. When this happens, the sequences sent by the arrow keys are overwritten, effectively disabling them. Once the function key buffer overflows, the only way to enable the arrow keys is to reboot the system.
The table below lists the keynum values for the function keys:

Function key keynum Function key keynum
FI 1 Ctrl-F10 34F2 2 Ctrl-Fl 1 35F3 3 Ctrl-Fl 2 36F4 4 Ctrl-Shift-Fl 37F5 5 Ctrl-Shift-F2 38F6 6 Ctrl-Shift-F3 39F7 7 Ctrl-Shift-F4 40F8 8 Ctrl-Shift-F5 41
F9 9 Ctrl-Shift-F6 42
F10 10 Ctrl-Shift-F7 43Fl 1 11 Ctrl-Shift-F8 44F12 12 Ctrl-Shift-F9 45Shift-Fl 13 Ctrl-Shift-F10 46Shift-F2 14 Ctrl-Shift-Fl 1 47Shift-F3
Shift-F4

15
16

Ctrl-Shift-F12 48
Shift-F5
Shift-F6

17
18 Numeric Key-Pad keynum

Shift-F7 19 7 49Shift-F8 20 8 50
Shift-F9 21 9 51
Shift-F10 22 - 52Shift-Fl 1 23 4 53Shift-Fl 2 24 5 54Ctrl-Fl 25 6 55Ctrl-F2 26 + 56Ctrl-F3 27 1 57Ctrl-F4 28 2 58Ctrl-F5 29 3 59Ctrl-F6 30 0 60
Ctrl-F7 31
Ctrl-F8 32
Ctrl-F9 33

28 March 1991 Page 2

SH (C) SH (C)

Name

sh - Invokes the shell command interpreter.

Syntax

sh [-aceiknrstuvx] [args]

Description

The shell is the standard command programming language that exe­
cutes commands read from a terminal or a file. See Invocation below
for the meaning of arguments to the shell.

Commands

A simple-command is a sequence of nonblank words separated by
blanks (a blank is a tab or a space). The first word specifies the name
of the command to be executed. Except as specified below, the
remaining words are passed as arguments to the invoked command.
The command name is passed as argument 0 (see exec (S)). The value
of a simple-command is its exit status if it terminates normally, or
(octal) 1000^status if it terminates abnormally. See signal (S) for a
list of status values.

A pipeline is a sequence of one or more commands separated by a
vertical bar (I). (The caret (*), is an obsolete synonym for the
vertical bar and should not be used in a pipeline; scripts that use a
caret to represent a pipe will be incompatible with ksh(C).) The stan­
dard output of each command but the last is connected by a pipe (S) to
the standard input of the next command. Each command is run as a
separate process; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by ;, &, &&,
or 11 , and optionally terminated by ; or & . Of these four symbols,;
and & have equal precedence, which is lower than that of && and 11.
The symbols && and 11 also have equal precedence. A semicolon (;)
causes sequential execution of the preceding pipeline; an ampersand
(&) causes asynchronous execution of the preceding pipeline (i.e., the
shell does not wait for that pipeline to finish). The symbol && (11)
causes the list following it to be executed only if the preceding pipe­
line returns a zero (nonzero) exit status. An arbitrary number of new­
lines may appear in a list, instead of semicolons, to delimit com­
mands.

28 March 1991 Page 1

SH(C) SH (C)

A command is either a simple-command or one of the following com­
mands. Unless otherwise stated, the value returned by a command is
that of the last simple-command executed in the command:

for name [in word ...] do
listdone
Each time a for command is executed, name is set to the next word
taken from the in word list. If in word is omitted, then the for com­
mand executes the do list once for each positional parameter that is
set (see Parameter Substitution below). Execution ends when there
are no more words in the list.

case word in
[pattern [I pattern] . . .) list

;;]...esac
A case command executes the list associated with the first pattern
that matches word. The form of the patterns is the same as that used
for filename generation (see Filename Generation below).

if list then
list

[elif list then
list]

[else list] fi
The list following if is executed and, if it returns a zero exit status, the
list following the first then is executed. Otherwise, the list following elif is executed and, if its value is zero, the list following the next then is executed. Failing that, the else list is executed. If no else list
or then list is executed, dien the if command returns a zero exit status.

while list do
listdone
A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list; oth­
erwise the loop terminates. If no commands in the do list are exe­
cuted, then the while command returns a zero exit status; until may be
used in place of while to negate the loop termination test.

(list)
Executes list in a subshell.

{list;}
list is simply executed.

28 March 1991 Page 2

5 //(C) 5 //(C)

name () {list;}
Define a function which is referenced by name. The body of functions
is the list of commands between { and }. Execution of functions is
described later (see Execution.)

The following words are recognized only as the first word of a com­
mand and when not quoted:

if then else elif fi case esac for while until do done { }

Comments

A word beginning with # causes that word and all the following char­
acters up to a newline to be ignored.

Command Substitution

The standard output from a command enclosed in a pair of grave
accents (") may be used as part or all of a word; trailing newlines are
removed.

No interpretation is done on the command string before the string is
read, except to remove backslashes (\) used to escape other characters.
Backslashes may be used to escape grave accents (') or other
backslashes and are removed before the command string is read.
Escaping grave accents allows nested command substitution. If the
command substitution lies within a pair of double quotes (” ' ..." "),
backslashes used to escape a double quote (\") will be removed; other­
wise, they will be left intact.

If a backslash is used to escape a newline character, both the
backslash and the newline are removed (see the section on “Quot­
ing”). In addition, backslashes used to escape dollar signs (\$) are
removed. Since no interpretation is done on the command string
before it is read, inserting a backslash to escape a dollar sign has no
effect. Backslashes that precede characters other than \ , ', ", newline,
and $ are left intact.

Parameter Substitution

The character $ is used to introduce substitutable parameters. There
are two types of parameters, positional and keyword. If parameter is a
digit, it is a positional parameter. Positional parameters may be
assigned values by set. Keyword parameters, (also known as vari­
ables) may be assigned values by writing:

name rvalue [name rvalue] ...

28 March 1991 Page 3

SH (C) SH (C)

Pattern-matching is not performed on value. There cannot be a func­
tion and a variable with the same name.

%{parameter}
A parameter is a sequence of letters, digits, or underscores (a
name), a digit, or any of the characters *, @, #, ?, -, $, and !. The
value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its name. A name
must begin with a letter or underscore. If parameter is a digit then
it is a positional parameter. If parameter is * or @, then all the
positional parameters, starting with $1, are substituted (separated
by spaces). Parameter $0 is set from argument zero when the shell
is invoked.

%{parameter\-word}
If parameter is set and is not a null argument, substitute its value;
otherwise substitute word.

${parameter :=word}
If parameter is not set or is null, then set it to word; the value of
the parameter is then substituted. Positional parameters may not
be assigned to in this way.

%{parameter:lword}
If parameter is set and is not a null argument, substitute its value;
otherwise, print word and exit from the shell. If word is omitted,
the message “parameter null or not set” is printed.

${parameter :+word}
If parameter is set and is not a null argument, substitute word; oth­
erwise substitute nothing. In the above, word is not evaluated
unless it is to be used as the substituted string, so that in the fol­
lowing example, pwd is executed only if d is not set or is null:

echo ${d:-vpwdv }

If the colon (:) is omitted from the above expressions, then the shell
only checks whether parameter is set.

The following parameters are automatically set by the shell:

The number of positional parameters in decimal

- Flags supplied to the shell on invocation or by the set command

? The decimal value returned by the last synchronously executed
command

$ The process number of this shell

28 March 1991 Page 4

SH (C) SH (C)

! The process number of the last background command invoked

The following parameters are used by the shell:

CDPATH
Defines search path for the cd command. See the section Special
Commands, “cd”.

HOME
The default argument (home directory) for the cd command

PATH
The search path for commands (see Execution below)

MAIL
If this variable is set to the name of a mail file, then the shell
informs the user of the arrival of mail in the specified file

MAILCHECK
This parameter specifies how often (in seconds) the shell will
check for the arrival of mail in the files specified by the
MAILPATH or MAIL parameters. The default value is 600
seconds (10 minutes). If set to 0, the shell will check before each
prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set, the
shell informs the user of the arrival of mail in any of the specified
files. Each file name can be followed by % and a message that
will be printed when the modification time changes. The default
message is you have mail.

PS1
Primary prompt string, by default “$ ”

PS2
Secondary prompt string, by default “> ”

IFS
Internal field separators, normally space, tab, and newline

SHELL
When the shell is invoked, it scans the environment (see Environ­
ment below) for this name. If it is found and there is an ‘r’ in the
file name part of its value, the shell becomes a restricted shell.

The shell gives default values to PATH, PSI, PS2, and IFS, while
HOME and MAIL are not set at all by the shell (although HOME is set
by login (M)).

28 March 1991 Page 5

SH(C) SH (C)

Blank Interpretation

After parameter and command substitution, the results of substitution
are scanned for internal field separator characters (those found in IFS)
and split into distinct arguments where such characters are found. Ex­
plicit null arguments (” ” or ") are retained. Implicit null arguments
(those resulting from parameters that have no values) are removed.

Filename Generation

Following substitution, each command word is scanned for the char­
acters *, ?, and [. If one of these characters appears, the word is
regarded as a pattern. The word is replaced with alphabetically sorted
filenames that match the pattem. If no filename is found that matches
the pattem, the word is left unchanged. The character . at the start of a
filename or immediately following a /, as well as the character / itself,
must be matched explicitly. These characters and their matching pat­
terns are:

* Matches any string, including the null string.

? Matches any single character.

[. . .]
Matches any one of the enclosed characters. A pair of characters
separated by - matches any character lexically between the pair,
inclusive. If the first character following the opening bracket ([) is
an exclamation mark (!), then any character not enclosed is
matched.

Quoting

The following characters have a special meaning to the shell and
cause termination of a word unless quoted:

; & () ! " < > newline space tab

A character may be quoted (i.e., made to stand for itself) by preceding
it with a \. The pair \newline is ignored. All characters enclosed
between a pair of single quotation marks { ' ') , except a single quota­
tion mark, are quoted. Inside double quotation marks (" ”), parameter
and command substitution occurs and \ quotes the characters \, v, ”,
and $. ”$ *” is equivalent to ”$1 $2 .. ”, whereas “$@” is equivalent
to ”$ l” ”$2" ...

Prompting

When used interactively, the shell prompts with the value of PS1
before reading a command. If at any time a newline is typed and

28 March 1991 Page 6

SH (C) SH (C)

further input is needed to complete a command, the secondary prompt
(i.e., the value of PS2) is issued.

Spelling Checker

When using cd(C) the shell checks spelling. For example, if you
change to a different directory using cd and misspell the directory
name, the shell responds with an alternative spelling of an existing
directory. Enter “y” and press RETURN (or just press RETURN) to
change to the offered directory. If the offered spelling is incorrect,
enter “n”, then retype the command line. In this example the user
input is boldfaced:

$ cd /usr/spol/uucp
c d / u s r / s p o o l / u u c p ? y
o k

InputfOutput

Before a command is executed, its input and output may be redirected
using a special notation interpreted by the shell. The following may
appear anywhere in a simple-command or may precede or follow a
command. They are not passed on to the invoked command; substitu­
tion occurs before word or digit is used:

<word

>word

»w ord

« [-]word

Use file word as standard input (file descriptor 0).

Use file word as standard output (file descriptor 1).
ff the file does not exist, it is created; otherwise, it is
truncated to zero length.

Use file word as standard output, ff the file exists,
output is appended to it (by first seeking the
end-of-file); otherwise, the file is created.

The shell input is read up to a line that is the same as
word, or to an end-of-file. The resulting document
becomes the standard input, ff any character of word
is quoted, no interpretation is placed upon the char­
acters of the document; otherwise, parameter and
command substitution occurs, (unescaped) \newline
is ignored, and \ must be used to quote the characters
\, $, v, and the first character of word. ff - is
appended to « , all leading tabs are stripped from
word and from the document.

<&digit The standard input is duplicated from file descriptor
digit (see dup(S)). Similarly for the standard output
using >.

28 March 1991 Page 7

SH(C) SH (C)

<&- The standard input is closed. Similarly for the stan­
dard output using >.

If one of the above is preceded by a digit, the file descriptor created is
that specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

creates file descriptor 2 that is a duplicate of file descriptor 1.

If a command is followed by &, the default standard input for the
command is the empty file /dev/null. Otherwise, the environment for
the execution of a command contains the file descriptors of the invok­
ing shell as modified by input/output specifications.

Environment

The environment (see environ (M)) is a list of name-value pairs that is
passed to an executed program in the same way as a normal argument
list. The shell interacts with the environment in several ways. On
invocation, the shell scans the environment and creates a parameter
for each name found, giving it the corresponding value. Executed
commands inherit the same environment. If the user modifies the
values of these parameters or creates new ones, none of these affect
the environment unless the export command is used to bind the shell’s
parameter to the environment. The environment seen by any executed
command is composed of any unmodified name-vaiue pairs originally
inherited by the shell, minus any pairs removed by unset, plus any
modifications or additions, all of which must be noted in export com­
mands.

The environment for any simple-command may be augmented by
prefixing it with one or more assignments to parameters. Thus:

TERM=wy60 cmd args

and

(export TERM; TERM=wy60; cmd args)

are equivalent (as far as the above execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the environ­
ment, even if they occur after the command name.

Signals

The INTERRUPT and QUIT signals for an invoked command are
ignored if the command is followed by &; otherwise signals have the
values inherited by the shell from its parent, with the exception of

28 March 1991 Page 8

SH (C) SH (C)

signal 11. See the trap command below.

Execution

Each time a command is executed, the above substitutions are carried
out. If the command name does not match a Special Command, but
matches the name of a defined function, the function is executed in the
shell process (note how this differs from the execution of shell pro­
cedures). The positional parameters $1, $2,... are set to the arguments
of the function. If the command name matches neither a Special Com-
mand nor the name of a defined function, a new process is created and
an attempt is made to execute the command via exec{S).

The shell parameter PATH defines the search path for the directory
containing the command. Alternative directory names are separated
by a colon (:). The default path is :/bin:/usr/bin (specifying the
current directory, /bin, and /usr/bin, in that order). Note that the
current directory is specified by a null pathname, which can appear
immediately after the equal sign or between the colon delimiters any­
where else in the path list. If the command name contains a /, then the
search path is not used. Otherwise, each directory in the path is
searched for an executable file. If the file has execute permission but
is not an a.out file, it is assumed to be a file containing shell com­
mands. A subshell (i.e., a separate process) is spawned to read it. A
parenthesized command is also executed in a subshell.

Shell procedures are often used by users running the csh. However, if
the first character of the procedure is a # (comment character), csh
assumes the procedure is a csh script, and invokes /bin/csh to execute
it. Always start sh procedures with some other character if csh users
are to run the procedure at any time. This invokes the standard shell
Ikinlsh.

The location in the search path where a command was found is
remembered by the shell (to help avoid unnecessary execs later). If
the command was found in a relative directory, its location must be
re-determined whenever the current directory changes. The shell for­
gets all remembered locations whenever the PATH variable is changed
or the hash -r command is executed (see hash in next section).

Special Commands

Input/output redirection is permitted for these commands:

: No effect; the command does nothing. A zero exit code is
returned.

.file
Reads and executes commands from file and returns. The search
path specified by PATH is used to finH the directory containing file.

28 March 1991 Page 9

SH (C) SH (C)

break [n]
Exits from the enclosing for, while, or until loop, if any. If n is
specified, it breaks n levels.

continue [n j
Resumes the next iteration of the enclosing for, while, or until
loop. If n is specified, it resumes at the w-th enclosing loop.

cd [arg]
Changes the current directory to arg. The shell parameter HOME
is the default arg. The shell parameter CDPATH defines the
search path for the directory containing arg. Alternative directory
names are separated by a colon (:). The default path is <null>
(specifying the current directory). Note that the current directory
is specified by a null path name, which can appear immediately
after the equal sign or between the colon delimiters anywhere else
in the path list. If arg begins with a /, the search path is not used.
Otherwise, each directory in the path is searched for arg.

If the shell is reading its commands from a terminal, and the
specified directory does not exist (or some component cannot be
searched), spelling correction is applied to each component of
directory, in a search for the “correct” name. The shell then asks
whether or not to try and change directory to the corrected direc­
tory name; an answer of n means “no”, and anything else is taken
as “yes”.

echo [arg]
Writes arguments separated by blanks and terminated by a newline
on the standard output. Arguments may be enclosed in quotes.
Quotes are required so that the shell correctly interprets these spe­
cial escape sequences:

\b Backspace
\c Prints line without newline.
\f Formfeed
\n Newline
\r Carriage return
\t Tab
\v Vertical tab
\\ Backslash
\n The 8-bit character whose ASCII code is the 1, 2 or 3-digit octal
number n which must start with a zero

eval [arg . . .]
The arguments are read as input to the shell and the resulting
command(s) executed.

28 March 1991 Page 10

SH (C) 5 //(C)

exec [arg ...]
The command specified by the arguments is executed in place of
this shell without creating a new process. Input/output arguments
may appear and, if no other arguments are given, cause die shell
input/output to be modified.

exit [n]
Causes the shell to exit with the exit status specified by n. If n is
omitted, the exit status is that of the last command executed. An
end-of-file will also cause the shell to exit.

export [name ...]
The given names are marked for automatic export to the environ­
ment of subsequently executed commands. If no arguments are
given, a list of all names that are exported in this shell is printed.

getopts
Used in shell scripts to support command syntax standards (see
intro (C)); it parses positional parameters and checks for legal
options. See getopts (C) for usage and description.

hash [-r] [name ...]
For each name, the location in the search path of the command
specified by name is determined and remembered by the shell. The
-r option causes the shell to forget all remembered locations. If no
arguments are given, information about remembered commands is
presented. Hits is the number of times a command has been
invoked by the shell process. Cost is a measure of the work
required to locate a command in the search path. There are certain
situations which require that the stored location of a command be
recalculated. Commands for which this will be done are indicated
by an asterisk (*) adjacent to the hits information. Cost will be
incremented when the recalculation is done.

newgrp [arg . . .]
Equivalent to exec newgrp arg ...

pwd
Print the current working directory. See pwd(C) for usage and
description.

read [name . . .]
One line is read from the standard input and the first word is
assigned to the first name, the second word to the second name,
etc., with leftover words assigned to the last name. The return
code is 0 unless an end-of-file is encountered.

readonly [name ...]
The given names are marked readonly and the values of these
names may not be changed by subsequent assignment. If no argu­
ments are given, a list of all readonly names is printed.

return [n]
Causes a function to exit with the return value specified by n. If n
is omitted, the return status is that of the last command executed.

28 March 1991 Page 11

SH(C) SH (C)

set [-aefhknuvx [arg ...]]
-a Mark variables which are modified or created for export.
-e If the shell is noninteractive, exits immediately if a command

exits with a nonzero exit status.
-f Disables file name generation.
-h Locates and remembers function commands as functions are

defined (function commands are normally located when the
function is executed). For example, /bin/tty would be added to
the hash table if, say, showtty() { tty } is declared. If -h was
unset, it would not be added to the hash table until showtty is
called.

-k Places all keyword arguments in the environment for a com­
mand, not just those that precede the command name.

-n Reads commands but does not execute them.
-u Treats unset variables as an error when substituting.
-v Prints shell input lines as they are read.
-x Prints commands and their arguments as they are executed.

Although this flag is passed to subshells, it does not enable trac­
ing in those subshells.

-- Does not change any of the flags; useful in setting $1 to -.

Using + rather than - causes these flags to be turned off. These
flags can also be used upon invocation of the shell. The current
set of flags may be found in $-. The remaining arguments are
positional parameters and are assigned, in order, to $1, $2, ...
If no arguments are given, the values of all names are printed.

shift [n]
The positional parameters from $2 ... are renamed $1 ... If n is
specified, shift them by places, shift is the only way to access
positional parameters above $9.

test
Evaluates conditional expressions. See test{C) for usage and
description.

times
Prints the accumulated user and system times for processes run
from the shell.

trap [arg] [n] ...
arg is a command to be read and executed when the shell receives
signal(s) n. (Note that arg is scanned once when the trap is set and
once when die trap is taken.) Trap commands are executed in
order of signal number. The highest signal number allowed is 16.
Any attempt to set a trap on a signal that was ignored on entry to
the current shell is ineffective. An attempt to trap on signal 11
(memory fault) produces an error. If arg is absent, all trap(s) n are
reset to their original values. If arg is die null string, this signal is
ignored by the shell and by the commands it invokes. If n is 0, the
command arg is executed on exit from the shell. The trap

28 March 1991 Page 12

SH(C) SH(C)

command with no arguments prints a list of commands associated
with each signal number.

type [name ...]
For each name, indicate how it would be interpreted if used as a
command name.

ulimit [n]
imposes a size limit of n blocks on files written by the shall and its
child processes (files of any size may be read). Any user may
decrease the file size limit, but only the super-user (root) can
increase the limit. With no argument, the current limit is printed.

unset [name ...]
For each name, remove the corresponding variable or function.
The variables PATH, PSI, PS2, MAILCHECK and IFS cannot be
unset.

umask [ooo]
The user file-creation mask is set to the octal number ooo where o
is an octal digit (see umask(C)). If ooo is omitted, the current
value of the mask is printed.

wait [n]
Waits for the specified process to terminate, and reports the termi­
nation status. If n is not given, all currently active child processes
are waited for. The return code from this command is always 0.

Invocation

If the shell is invoked through exec (S) and the first character of argu­
ment 0 is -, commands are initially read from /etc/profile and then
from $HOME/.profile, if such files exist. Thereafter, commands are
read as described below, which is also the case when the shell is
invoked as /bin/sh. The flags below are interpreted by the shell on
invocation only; note that unless the -c or -s flag is specified, the first
argument is assumed to be the name of a file containing commands,
and the remaining arguments are passed as positional parameters to
that command file:

-c string If the -c flag is present, commands are read from string.
-s If the -s flag is present or if no arguments remain, com­

mands are read from the standard input. Any remaining
arguments specify the positional parameters. Shell output
is written to file descriptor 2.

-t If the -t flag is present, a single command is read and exe­
cuted, and the shell exits. This flag is intended for use by
C programs only and is not useful interactively.

-i If the -i flag is present or if the shell input and output are
attached to a terminal, this shell is interactive. In this
case, TERMINATE is ignored (so that kill 0 does not kill
an interactive shell) and INTERRUPT is caught and
ignored (so that wait is interruptible). In all cases, QUIT

28 March 1991 Page 13

SH (C) SH (C)

is ignored by the shell.
-r If the -r flag is present, the shell is a restricted shell (see

rsh(C)).

The remaining flags and arguments are described under the set com­
mand above.

Exit Status

Errors detected by the shell, such as syntax errors, cause the shell to
return a nonzero exit status. If the shell is being used noninterac-
tively, execution of the shell file is abandoned. Otherwise, the shell
returns the exit status of the last command executed. See the exit com­
mand above.

Files

/etc/profile
$HOME/.profile
/tmp/sh*
/dev/null

system default profile
read by login shell at login
temporary file for «
source of empty file

See Also

cd(C), env(C), login(M), newgrp(C), rsh(C), test(C), umask(C),
dup(S), exec(S), fork(S), pipe(S), signal(S), umask(S), wait(S),
a.out(F), profile(M), environ(M)

Notes

If « is used to provide standard input to an asynchronous process
invoked by &, the shell gets mixed up about naming the input docu­
ment; a garbage file /tmp/sh* is created and the shell complains about
not being able to find that file by another name.

If a command is executed, and a command with the same name is
installed in a directory in the search path before the directory where
the original command was found, the shell will continue to exec the
original command. Use the hash command to correct this situation.

If you move the current directory or one above it, pwd may not give
the correct response. Use the cd command with a full path name to
correct this situation.

When a sh(C) user logs in, the system reads and executes commands
in /etc/profile before executing commands in the user’s
$HOME/.profile. You can, therefore, modify the environment for all
sh(C) users on the system by editing /etc/profile.

28 March 1991 Page 14

SH (C) SH (C)

The shell doesn’t treat the high (eighth) bit in the characters of a com­
mand line argument specially, nor does it strip the eighth bit from the
characters of error messages. Previous versions of the shell used the
eighth bit as a quoting mechanism.

Existing programs that set the eighth bit of characters in order to quote
them as part of the shell command line should be changed to use of the
standard shell quoting mechanisms (see the section on “Quoting”).

Words used to filenames in input/output redirection are not interpreted
for filename generation (see die section on “File Name Generation”).
For example, cat filel > a* will create a file named a*.
Because commands in pipelines are run as separate processes, vari­
ables set in a pipeline have no effect on the parent shell.

If you get the error message:
fork failed - too many processes

try using the wait(C) command to clean up your background pro­
cesses. ff this doesn’t help, the system process table is probably full or
you have too many active foreground processes (there is a limit to the
number of processes that can associated with your login, and to the
number the system can keep track of). These limits are associated
with the kernel parameters NPROC and MAXUPRC.

Warnings
Not all processes of a 3- or more-stage pipeline are children of the
shell, and thus cannot be waited for.

For wait n, if n is not an active process id, all your shell’s currently
active background processes are waited for and the return code will be
zero.

28 March 1991 Page 15

SHL (C) SHL (C)

Name

shl - Shell layer manager

Syntax

shl

Description

shl allows a user to interact with more than one shell from a single ter­
minal. The user controls these shells, known as layers, using the com­
mands described below.

The current layer is the layer that can receive input from the key­
board. Other layers attempting to read from the keyboard are blocked.
Output from multiple layers is multiplexed onto the terminal. To have
the output of a layer blocked when it is not current, the stty(C) option
loblk may be set within the layer.

The stty character swtch (set to "Z if NUL) is used to switch control to
shl from a layer, shl has its own prompt, » > , to help distinguish it
from a layer.

A layer is a shell that has been bound to a virtual tty device
(/dev/sxt???). The virtual device can be manipulated like a real tty
device using stty(C) and ioctl (S). Each layer has its own process
group id.

Definitions

A name is a sequence of characters delimited by a blank, tab or new-
line. Only the first eight characters are significant. The names (1)
through (7) cannot be used when creating a layer. They are used by
shl when no name is supplied. They may be abbreviated to just the
digit.

Commands

The following commands may be issued from the shl prompt level.
Any unique prefix is accepted.

create name
Create a layer called name and make it the current layer. If no
argument is given, a layer will be created with a name of the form
(#) where # is the last digit of the virtual device bound to the layer.
The shell prompt variable PS1 is set to the name of the layer fol­
lowed by a space, or, if superuser, the name followed by a sharp (#)

28 March 1991 Page 1

SHL (C) SHL (C)

and a space. A maximum of seven layers can be created,

block name [name ...]
For each name, block the output of the corresponding layer when it
is not the current layer. This is equivalent to setting the stty option loblk within the layer.

delete name name ...
For each name, delete the corresponding layer. All processes in
the process group of the layer are sent the SIGHUP signal (see sig­
nal (2)).

help (or ?)
Print the syntax of the shl commands,

layers -1 name ...
For each name, list the layer name and its process group. The -1
option produces a ps(l)-\\kt listing. If no arguments are given, in­
formation is presented for all existing layers.

resume name
Make the layer referenced by name the current layer. If no argu­
ment is given, the last existing current layer will be resumed.

toggle
Resume the layer that was current before the last current layer,

unblock name [name...]
For each name, do not block the output of the corresponding layer
when it is not the current layer. This is equivalent to setting the
stty option loblk within the layer.

quit
Exit shl. All layers are sent the SIGHUP signal.

name
Make the layer referenced by name the current layer.

Files
/dev/sxt??? Virtual tty devices
$SHELL Variable containing path name of the shell to

use (default is /bin/sh).

See Also
ioctl(S), mkdev(ADM), sh(C), signal(S), stty(C), sxt(M)

28 March 1991 Page 2

SHL (C) SHL (C)

Note
It is inadvisable to kill shl.

If shl does not run properly on a particular terminal, you may have to
set istrip for that terminal’s line by entering the following command
at the terminal:

stty istrip
By default, XENIX is configured for one shell layer session at a time.
To increase this single session limit, enter the command:

mkdev shl
This executes a script which prompts you for the number of sessions
desired. The script also allows you to relink the kernel. The new ses­
sion limit becomes effective after the kernel is rebooted. (For more in­
formation, see mkdev(ADM).)

28 March 1991 Page 3

SIZE (C) SIZE (C)

Name

size - Prints the size of an object file.

Syntax

size [object...]

Description

size prints the (decimal) number of bytes required by the text, data,
and bss portions, and their sum in decimal and hexadecimal, of each
object-file argument. If no file is specified, a.out is used.

See Also

a.out(F)

28 March 1991 Page 1

SLEEP (C) SLEEP (C)

Name

sleep - Suspends execution for an interval.

Syntax

sleep time

Description

sleep suspends execution for time seconds. It is used to execute a
command after a certain amount of time as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

command
sleep 37

done

See Also

alarm(S), sleep(S)

Notes

It is recommended that time be less than 65536 seconds.

28 March 1991 Page 1

SORT(C) SORT (C)

Name

sort - Sorts and merges files.

Syntax

sort [-emu] [-ooutput] [-ykmem] [-zrecsz] [-dfiMnr] [-b] [-tx]
[+posl] [-pos2] [files]

Description

sort sorts lines of all the named files together and writes the result on
the standard output. The standard input is read if - is used as a file
name or if no input files are named.

Comparisons are based on one or more sort keys extracted from each
line of input. By default, there is one sort key, the entire input line,
and ordering is determined by the collating sequence defined by the
locale (see locale (M)).

The following options alter the default behavior:

-c Check that the input file is sorted according to the ordering
rules; give no output unless the file is out of sort.

-m Merge only, the input files are already sorted.

-u Unique: suppress all but one in each set of lines having equal
keys. This option can result in unwanted characters placed at
the end of the sorted file.

-o output
The argument given is the name of an output file to use instead
of the standard output. This file may be the same as one of the
inputs. There may be optional blanks between -o and output.

-ykmem
The amount of main memory used by the sort has a large impact
on its performance. Sorting a small file in a large amount of
memory is a waste. If this option is omitted, sort begins using a
system default memory size, and continues to use more space as
needed. If this option is presented with a value, kmem, sort will
start using that number of kilobytes of memory, unless the
administrative minimum or maximum is violated, in which case
the corresponding extremum will be used. Thus, -yO is
guaranteed to start with minimum memory. By convention, -y
(with no argument) starts with maximum memory.

28 March 1991 Page 1

SORT (C) SORT (C)

-zrecsz
Causes sort to use a buffer size of recsz bytes for the merge
phase. Input lines longer than the buffer size will cause sort to
terminate abnormally. Normally, the size of the longest line
read during the sort phase is recorded and this maximum is used
as the record size during the merge phase, eliminating the need
for the -z option. However, when the sort phase is omitted (-c or
-m options) a system default buffer size is used, and if this is not
large enough, die -z option should be used to prevent abnormal
termination.

The following options override the default ordering rules.

-d “Dictionary” order: only letters, digits and blanks (spaces and
tabs) are significant in comparisons. Dictionary order is defined
by the locale setting (see locale (M)).

-f Fold lower case letters into upper case. Conversion between
lowercase and uppercase letters are governed by the locale set­
ting (see locale {M)).

-i Ignore non-printable characters in non-numeric comparisons.
Non-printable characters are defined by the locale setting (see
locale {M)).

-M Compare as months. The first three non-blank characters of the
field are folded to upper case and compared so that “JAN” <
“FEB” < ... < “DEC”. Invalid fields compare low to “JAN”.
The -M option implies the -b option (see below).

-n An initial numeric string, consisting of optional blanks, an
optional minus sign, and zero or more digits with optional
decimal point, is sorted by arithmetic value. The -n option
implies the -b option (see below). Note that the -b option is
only effective when restricted sort key specifications are in
effect.

-r Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifica­
tions, the requested ordering rules are applied globally to all sort keys.
When attached to a specific sort key (described below), the specified
ordering options override all global ordering options for that key.

The notation +posl -pos2 restricts a sort key to one beginning at posl
and ending at pos2. The characters at positions posl and pos2 are
included in the sort key (provided that pos2 does not precede posl). A
missing -pos2 means the end of the line.

28 March 1991 Page 2

SORT(C) SORT (C)

Specifying posl and pos2 involves the notion of a field (a minimal
sequence of characters followed by a field separator or a newline). By
default, the first blank (space or tab) of a sequence of blanks acts as
the field separator. All blanks in a sequence of blanks are considered
to be part of the next field; for example, all blanks at the beginning of
a line are considered to be part of the first field. The treatment of field
separators can be altered using the options:

-tx Use x as the field separator character; x is not considered to be
part of a field (although it may be included in a sort key). Each
occurrence of x is significant (e.g., xx delimits an empty field).

-b Ignore leading blanks when determining the starting and ending
positions of a restricted sort key. If the -b option is specified
before the first +posl argument, it will be applied to all +posl
arguments. Otherwise, the b flag may be attached indepen­
dently to each +posl or -pos2 argument (see below).

Posl and pos2 each have the form m.n optionally followed by one or
more of the flags b, d, f, i, n, or r. A starting position specified by
+m.n is interpreted to mean the n+1st character in the m+lst field. A
missing .n means .0, indicating the first character of the m+lst field. If
the b flag is in effect, n is counted from the first non-blank in the
m+lst field; +m.0b refers to the first non-blank character in the m+lst
field.

A last position specified by -m.n is interpreted to mean the nth charac­
ter (including separators) after the last character of the mth field. A
missing .n means .0, indicating the last character of the mth field. If
the b flag is in effect, n is counted from the last leading blank in the
m+lst field; -m.l b refers to the first non-blank in the m+lst field.

When there are multiple sort keys, later keys are compared only after
all earlier keys compare equal. Lines that otherwise compare equal
are ordered with all bytes significant.

Examples
Sort the contents of infile with the second field as the sort key:

sort +1 -2 infile

Sort, in reverse order, the contents of infile 1 and infile2, placing the
output in outfile and using the first character of the second field as the
sort key:

sort -r -o outfile +1.0 -1.2 infilel infile2

Sort, in reverse order, the contents of infilel and infile2 using the first
non-blank character of the second field as the sort key:

28 March 1991 Page 3

SORT (C) SORT(C)

sort -r +1.0b -1.1b infilel infile2

Print the password file (passwd(F)) sorted by the numeric user ID (the
third colon-separated field):

sort -t: +2n -3 /etc/passwd

Print the lines of the already sorted file infile, suppressing all but the
first occurrence of lines having the same third field (the options -um
with just one input file make the choice of a unique representative
from a set of equal lines predictable):

sort -urn +2 -3 infile

Files

/usr/tmp/stm???

See Also

coltbl(M), comm(C), join(C), locale(M), uniq(C)

Diagnostics

Comments and exits with non-zero status for various trouble condi­
tions (e.g., when input lines are too long), and for disorders discovered
under the -c option. When the last line of an input file is missing a
newline character, sort appends one, prints a warning message, and
continues.

28 March 1991 Page 4

SPLIT (C) SPLIT (C)

Name

split - Splits a file into pieces.

Syntax

split [-n] [file [name]]

Description

split reads file and writes it in as many «-line pieces as necessary
(default 1000), onto a set of output files. The name of the first output
file is name with aa appended, and so on lexicographically. If no out­
put name is given, x is default.

If no input file is given, or if a dash (-) is given instead, the standard
input file is used.

See Also

bfs(C), csplit(C)

28 March 1991 Page 1

STRINGS (C) STRINGS (C)

Name

strings - Find the printable strings in an object file.

Syntax

strings [-] [-o] [-number] filename ...

Description

strings looks for ASCII strings in a binary file. A string is any
sequence of four or more printing characters ending with a newline or
a null character. Unless die - flag is given, strings only looks in the
initialized data space of object files. If the -o flag is given, then each
string is preceded by its decimal offset in the file. If the -number flag
is given then number is used as the minimum string length rather than
4.

strings is useful for identifying random object files and many other
things.

See Also

hd(C), od(C)

Credit
This utility was developed at the University of California at Berkeley
and is used with permission.

28 March 1991 Page 1

STTY (C) STTY(C)

Name

stty - Sets the options for a terminal.

Syntax

stty [-a] [-g] [options]

Description

stty sets certain terminal I/O options for the device that is the current
standard input; without arguments, it reports the settings of certain
options. With the -a option, stty reports all of the option settings; with
the -g option, it reports current settings in a form that can be used as
an argument to another stty command. Detailed information about the
modes listed in the first four groups may be found in termio(M).
options in the last group are implemented using options in the previ­
ous groups. Refer to vidi(C) for hardware specific information that
describes control modes for the video monitor and other display de­
vices.

Common Control Modes

parenb (-parenb)
Enables (disables) parity generation and detection.

parodd (-parodd)
Selects odd (even) parity.

cs5 cs6 cs7 cs8
Selects character size (see #y(M)).

0 Hangs up phone line immediately.

50 75 110 134150 200 300 600
12001800 2400 4800 9600 exta extb

Sets terminal baud rate to the number given, if possible, exta and
extb are not defined for the built-in serial driver, but are often used
by 3rd-party serial port drivers to specify 19200 and 38400 bits per
second.

hupcl (-hupcl)
Hangs up (does not hang up) phone connection on last close,

hup (-hup)
Same as hupcl (-hupcl).

28 March 1991 Page 1

STTY (C) STTY(C)

cstopb (-cstopb)
Uses two(one) stop bits per character,

cread (-cread)
Enables (disables) the receiver,

clocal (-clocal)
Assumes a line without (with) modem control,

ctsflow (-ctsflow)
Enables CTS protocol for a modem line,

rtsflow (-rtsflow)
Enables RTS signaling for a modem line.

Input Modes

ignbrk (-ignbrk)
Ignores (does not ignore) break on input,

brkint (-brkint)
Signals (does not signal) INTERRUPT on break,

ignpar (-ignpar)
Ignores (does not ignore) parity errors,

loblk (-loblk)
block (do not block) output from a non-current layer,

parmrk (-parmrk)
Marks (does not mark) parity errors (see fty(M)).

inpck (-inpck)
Enables (disables) input parity checking,

istrip (-istrip)
Strips (does not strip) input characters to 7 bits,

inlcr (-inlcr)
Maps (does not map) NL to CR on input,

igncr (-igncr)
Ignores (does not ignore) CR on input,

icrnl (-icrnl)
Maps (does not map) CR to NL on input,

iuclc (-iuclc)
Maps (does not map) uppercase alphabetics to lowercase on input.

28 March 1991 Page 2

STTY (C) STTY (C)

ixon (-ixon)
Enables (disables) START/STOP output control. Output is stopped
by sending an ASCII DC3 and started by sending an ASCII DC1.

ixany (-ixany)
Allows any character (only DC1) to restart output,

ixoff (-ixoff)
Requests that the system send (not send) START/STOP characters
when the input queue is nearly empty/full.

Output Modes

opost (-opost)
Post-processes output (does not post-process output; ignores all
other output modes).

olcuc (-olcuc)
Maps (does not map) lowercase alphabetics to uppercase on out­
put.

onlcr (-onlcr)
Maps (does not map) NL to CR-NL on output,

ocrnl (-ocrnl)
Maps (does not map) CR to NL on output,

onocr (-onocr)
Does not (does) output CRs at column zero,

onlret (-onlret)
On the terminal NL performs (does not perform) the CR function,

ofill (-ofill)
Uses fill characters (uses timing) for delays,

ofdel (-ofdel)
Fill characters are DELETES (NULs).

crO crl cr2 cr3
Selects style of delay for RETURNS (see tty(M)).

nlO n il
Selects style of delay for LINEFEEDS (see tty(M)).

tabO tabl tab2 tab3
Selects style of delay for horizontal TABs (see tty(M)).

bsO bsl
Selects style of delay for BACKSPACES (see tfy(M)).

28 March 1991 Page 3

STTY(C) STTY (C)
ffOffl

Selects style of delay for FORMFEEDS (see tty (M)).

vtO vtl
Selects style of delay for Vertical TABs (see tfy(M)).

Local Modes

isig (-isig)
Enables (disables) the checking of characters against the special
control characters INTERRUPT and QUIT.

icanon (-icanon)
Enables (disables) canonical input (ERASE and KILL processing),

xcase (-xcase)
Canonical (unprocessed) upper/lowercase presentation,

echo (-echo)
Echoes back (does not echo back) every character typed,

echoe (-echoe)
Echoes (does not echo) ERASE character as a SPACEBAR string.
Note: this mode will erase the ERASE character on many CRT ter­
minals; however, it does not keep track of column position and, as
a result, may be confusing on escaped characters, TABs, and
BACKSPACES.

echok (-echok)
Echoes (does not echo) NL after KILL character,

lfkc (-like)
The same as echok (-echok); obsolete.

echonl (-echonl)
Echoes (does not echo) NL.

noflsh (-noflsh)
Disables (enables) flush after INTERRUPT or QUIT.

Control Assignments

control-character c
set control-character to c, where control-character is erase, kill, intr, quit, swteh, eof, or eol. If c is preceded by an (escaped from
the shell) caret Q , then the value used is the corresponding CTRL
character (e.g., “Ad” is a CTRL-d); “*?” is interpreted as DEL and
“A-” is interpreted as undefined.

28 March 1991 Page 4

S77Y (C) SI7Y (C)

min i, time i (0</<127)
When -icanon is set, and one character has been received, read
requests are not satisfied until at least min characters have been
received or the timeout value time has expired and one character
has been received. See tty(C).

line i
Sets the line discipline to i (0 < i < 127).

Combination Modes

evenp or parity
Enables parenb and cs7.

oddp
Enables parenb, cs7, and parodd.

-parity, -evenp, or -oddp
Disables parenb, and sets cs8.

raw (-raw or cooked)
Enables (disables) raw input and output (no ERASE, KILL, INTER­
RUPT, QUIT, EOF, EOL, or output post-processing).

nl (-nl)
Unsets (sets) icrnl, onlcr. In addition -nl unsets inlcr, igncr,
ocrnl, and onlret.

lease (-lease)
Sets (unsets) xcase, iuclc, and olcuc.

LCASE (-LCASE)
Same as lease (-lease).

tabs (-tabs or tab3)
Preserves (expands to spaces) tabs when printing.

ek Resets ERASE and KILL characters back to normal CTRL-H and
CTRL-U.

sane
Resets all modes to some reasonable values. Useful when a
terminal’s settings have been hopelessly scrambled.

28 March 1991 Page 5

STTY (C) STTY(C)

term
Sets all modes suitable for the terminal type, TERM.

See Also
console(M), ioctl(S), vidi(C), tty(M), termio(M)

Notes
Many combinations of options make no sense, but no checking is per­
formed.

28 March 1991 Page 6

SU(C) SU (C)

Name

su - Makes the user a super-user or another user.

Syntax

su [-] [name [arg . . .]]

Description

su allows you to become another user without logging off. The
default user name is root (i.e., super-user).

To use su, the appropriate password must be supplied (unless you are
already a super-user). If die password is correct, su will execute a
new shell with the real and effective user ID set to that of the specified
user. The new shell will be the optional program named in the shell
field of the specified user’s password file (/bin/sh if none is specified
(see sh(C)). To restore normal user ID privileges, press EOF (Ctrl-D)
to the new shell.

Any additional arguments given on the command line are passed to
the program invoked as the shell. When using programs like sh(C), an
arg of the form -c string executes string via the shell and an arg of -r
gives the user a restricted shell.

The following statements are true only if the optional program named
in the shell field of the specified user’s password file entry is like
sh(C). If the first argument to su is a -, the environment is changed to
what would be expected if the user actually logged in as the specified
user. This is done by invoking the program used as the shell with an
argO value whose first character is -, thus causing first the system’s
profile (/etc/profile) and then the specified user’s profile (.profile in
the new HOME directory) to be executed. Otherwise, the environ­
ment is passed along with the possible exception of $PATH, which is
set to /bin:/etc:/usr/bin for root. Note that if the optional program
used as the shell is /bin/sh, the user’s .profile can check argO for -sh
or -su to determine if it was invoked by login(M) or su(C), respec­
tively. If the user’s program is other than /bin/sh, then .profile is
invoked with an argO of -program by both login(M) and su(C).

28 March 1991 Page 1

517(C) SU(C)

The file /etc/default/su can be used to control several aspects of how
su is used. Several entries can be placed in /etc/default/su:
SULOG Name of log file to record all attempts to use su. Usually /usr/adm/sulog. If not set, no logfile is kept. (See exam­

ple below.)

PATH The PATH environment variable to set for non-root users.
If not set, it defaults to “ :/bin:/usr/bin”. The current
PATH environment variable is ignored.

SUPATH When invoked by root, the path is set by default to
“/bin:/usr/bin:/etc”, unless this variable is defined. The
current PATH is ignored.

CONSOLE Attempts to use su are logged to the named file, indepen­
dently of SULOG.

For example, if you want to log all attempts by users to become root,
create the file /etc/default/su. In this file, place a string similar to
SULOG=/usr/adm/sulog. This causes all attempts by any user to
switch user IDs to be recorded in the file /usr/adm/sulog. This
filename is arbitrary. The su logfile records the original user, Sie UID
of the su attempt, and the time of the attempt. If the attempt is suc­
cessful, a plus sign (+) is placed on the line describing the attempt. A
minus sign (-) indicates an unsuccessful attempt.

Examples
To become user bin while retaining your previously exported environ­
ment, enter:

subin

To become user bin but change the environment to what would be
expected if bin had originally logged in, enter:

su - bin

To execute command with the temporary environment and permissions
of user bin, enter:

su - bin -c “command args”

Files
/etc/passwd
/etc/default/su
/etc/profile
$HOME/.profile

The system password file
Optional file containing control options
The system profile
The user profile

28 March 1991 Page 2

SU (C) SU(C)

See Also
env(C), environ(M), login(M), passwd(F), profile(M), sh(C)

28 March 1991 Page 3

SUM (C) SUM(C)

Name

sum - Calculates checksum and counts blocks in a file.

Syntax

sum [-r] file

Description

sum calculates and prints a 16-bit checksum for the named file, and
also prints the number of blocks in the file. It is typically used to look
for bad spots, or to validate a file communicated over a transmission
line. The option -r causes an alternate algorithm to be used in com­
puting the checksum.

See Also

cmchk(C), machine(M), wc(C)

Diagnostics

“Read error” is indistinguishable from end-of-file on most devices;
check the block count.

Notes

This utility uses 1024-byte blocks.

28 March 1991 Page 1

TAIL (C) TAIL (C)

Name

tail - Delivers the last part of a file.

Syntax

tall [±[number][lbc] [-f]] [file]

Description

tail copies the named file to the standard output beginning at a desig­
nated place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number
from the end of the input (if number is null, the value 10 is assumed).
Number is counted in units of lines, blocks, or characters, according to
the appended option 1, b, or c. When no units are specified, counting
is by lines.

With the -f (“follow”) option, if the input file is not a pipe, the pro­
gram will not terminate after the last line of the input file has been
copied, but will enter an endless loop, wherein it sleeps for a second
and then attempts to read and copy further records from the input file.
Thus it may be used to monitor the growth of a file that is being writ­
ten by some other process. For example, the command:

tail -f file

will print the last ten lines of file, followed by any lines that are
appended to file between the time tail is initiated and killed.

See Also

dd(C)

Notes

Tails relative to the end of the file are kept in a buffer, and thus are
limited in length. Unpredictable results can occur if character special
files are “tailed” .

28 March 1991 Page 1

TAPE (C) TAPE (C)

Name
tape, mcart - Magnetic tape maintenance program.

Syntax
tape [-csfSi] [-a arg] command [device]

mcart command [device]

Description
tape sends commands to and receives status from the tape subsystem.
tape can communicate with QIC-02 cartridge tape drives, SCSI tape
drives, and QIC-40, QIC-80 and Irwin mini-cartridge tape drives.
(The mcart program is automatically invoked by tape when options
specific to the Irwin driver are used.)

tape reads /etc/default/tape to find the default device name for send­
ing commands and receiving status. For example, the following line
in /etc/default/tape will cause tape to communicate with the QIC-02
cartridge tape device:

device = /dev/xctO

If a device name is specified on the command line, it overrides the
default device, tape queries the device to determine its device type.
If the device does not respond to the query, for example if the car­
tridge tape driver is from an earlier release, tape will print a warning
message and assume the device is a QIC-02 cartridge tape.

You can explicitly specify the type of the device by using the device
type flags, as follows:

-c QIC-02 cartridge tape
-s SCSI tape
-f QIC-40 mini-cartridge tape
-8 QIC-80 mini-cartridge tape
-i Irwin mini-cartridge tape

The -a flag allows you to pass an argument to commands that can use
them. The only command that currently can take an argument is the format command, and a format argument is only valid with QIC-40
and QIC-80 tape drives.

28 March 1991 Page 1

TAPE (C) TAPE (C)

The following commands can be used with the various tape drivers
supported under XENIX. The letters following each description indi­
cate which drivers support each command:

A All drivers
C QIC-02 cartridge tape driver
S SCSI tape driver
F QIC-40 and QIC-80 mini-cartridge tape drivers
I Irwin mini-cartridge tape driver

amount
Report amount of data in current or last transfer. (C,S,F)

erase
Erase and retension the tape cartridge. (C,S,F)

load
Loads the tape cartridge. (S)

reset
Reset tape controller and tape drive. Clears error conditions and
returns tape subsystem to power-up state. (C,S,F)

reten
Retension tape cartridge. Should be used periodically to remedy
slack tape problems. Tape slack can cause an unusually large
number of tape errors. (A)

rewind
Rewind to beginning of tape. (A)

status
The status output looks like this:

s t a t u s : status message
s o f t e r r o r s : n
u n d e r r u n s : m

status message is a report of the current status of the drive; “no
cartridge,” “write protected,” or “beginning of tape” are typical
status messages.

soft errors is the number of recoverable errors that occurred during
the last tape operation. A recoverable error is one which is
correctable by the drive or controller. An example of a non-
recoverable “hard” error is an attempt to write to a write-protected
cartridge. Note that if the number of soft errors greatly exceeds
the manufacturer’s specifications, the drive may require service or
replacement, or you may be using defective tape.

28 March 1991 Page 2

TAPE (C) TAPE (C)

underruns is the number of times the tape drive had to stop and
restart due to tape buffer underflows. Underruns are not errors, but
an indication that the data transfer did not occur at the drive’s max­
imum data transfer rate. The number of underruns can be affected
by system load. (C,S,F)

unload
Unloads the tape cartridge. (S)

format
Format the tape cartridge. Floppy controller-based tapes must be
formatted before they can be used. This command takes approxi­
mately one minute per megabyte of tape capacity. If an argument
is provided with the -a flag, the number of tracks specified by the
argument will be formatted. Only even numbers less than or equal
to the number of tracks on the tape are allowed. (See tape(HW)
for more information.) If no argument is given, the entire tape will
be formatted. Preformatted tapes are available and are highly
recommended. They are more reliable than user-formatted tapes.
Before reformatting a used tape, it must be erased with a bulk
eraser. Proper use of a bulk eraser is essential; refer to the docu­
mentation for your bulk eraser before attempting to use it. (F,I)

getbb
Prints a list of bad tape blocks detected during the last tape opera­
tion. This listing can be saved in a file for use by the putbb com­
mand. (F)

putbb
Reads a list of bad tape blocks from the standard input and adds
them to the bad block table on the tape. The format expected by putbb is the same as generated by the getbb command. (F)

rfm
Wind tape forward to the next file mark. (C,S)

wfm
Write a file mark at the current tape position. (C,S)

28 March 1991 Page 3

TAPE (C) TAPE (C)

Irwin-specific Commands

The following commands are all specific to Irwin drives,

drive
displays information about the Irwin driver and the tape drive. An
example display is:

S p e c i a l f i l e : / d e v / r c t m i n i
D r i v e r v e r s i o n : 1 . 0 . 6 a
D r i v e t y p e : 285X L
D r i v e f i r m w a r e : AO
C o n t r o l l e r t y p e : SYSFDC
U n i t s e l e c t (0 - 3) : 3

Special file is the name of the special file used to access the driver.

Driver version is the version of the driver linked with the kernel.

Drive type is an “equivalent” tape drive model number as deter­
mined by the MC driver. Since the exact model number of the tape
drive depends on the drive’s form factor and whether the drive is
mounted in its own cabinet, the equivalent model number may not
be the exact model of the installed tape drive. The following is a
list of equivalent drives:

110: 110,310,410
120[XL]: 120,220,320,420,720,2020
125: 125,225,325,425,725
145[XL]: 145,245,345,445,745,2040
165: 165,265,465,765
285XL: 285,485,785,2080
287XL: 287,487,787,2120

The brackets in the 120[XL] and 145[XL] mean the letters “XL”
may or may not be present. When the letters “XL” appear, the
drive is capable of servo writing extra long (i.e., 307.5 foot
DC2120) tapes.

Note: When this field displays “ 125/145,” either a 125 drive or an
early model 145 drive with a DC1000 is present, the driver can’t
distinguish between the two. A 125 drive will only accept a
DC1000 cartridge (a DC2000 or DC2120 will not fit). A 145 drive
will accommodate DC1000, DC2000, or DC2120 cartridges.

Drive firmware is the firmware part number and revision level.
This line is present only for drives which report this information.

28 March 1991 Page 4

TAPE (C) TAPE (C)

Controller type: is a mnemonic for the floppy controller to which
the tape drive is attached:

Mnemonic Description________________________
SYSFDC System floppy controller
ALTFDC Alternate floppy controller
4100MC Irwin 4100MC Micro Channel controller
4100MCB Second 4100MC Micro Channel controller
4100 Irwin 4100 PC Bus controller
4100B Second 4100 PC Bus controller

Unit select (0-3) gives the controller’s unit select, in the range 0
through 3. The unit select selects the drive.

info
displays Irwin cartridge information. For example:

C a r t r i d g e s t a t e : F o r m a t t e d
C a r t r i d g e f o r m a t : 1 4 5
W r i t e p r o t e c t s l i d e r p o s i t i o n : RECORD

Cartridge state is the current state of the cartridge’s format.

Cartridge format indicates the format on the cartridge’s tape. The
format is given in a code which is the same as the drive model on
which the cartridge was originally formatted (see drive and
tape(HW) for details). When the cartridge is blank, the code has
the format which would be applied by the format command.

Write protect slider position is RECORD or PROTECT.

capacity
cartridge capacity in 512-byte blocks,

kapacity
cartridge capacity in 1024-byte blocks.

These two commands give the total usable data storage capacity of
a formatted tape cartridge. Variations in cartridge capacity are due
to differing numbers of bad blocks.

28 March 1991 Page 5

TAPE (C) TAPE (C)

Files

/dev/rStpO
/dev/nrStpO
/dev/xStpO
/dev/rftO
/dev/xftO

/dev/rctO
/dev/nrctO
/dev/rct2
/dev/nrct2
/dev/xctO

/dev/erctO
/dev/xctO
/dev/rctmini
/dev/xctmini
/dev/raicO

/dev/rmcl
/dev/mcdaemon

/etc/default/tape

Include files:

Aisr/include/sys/tape.h
Aisr/include/sys/ct.h
Aisr/include/sys/ft.h
Aisr/include/sys/ir.h

See Also

backup(ADM), cpio(C), dd(C), restore(ADM), tape(HW), tar(C),
mcdaemon(F)

Notes

See tape (HW) and your Release Notes for a list of supported tape
drives.

The amount and reset commands can be used while the tape is busy
with other operations. All other commands wait until the currently
executing command has been completed before proceeding.

When you are using the non-rewinding tape device or the tape com­
mands rfm and wfm, the tape drive fight remains on after the com­
mand has been completed, indicating that more operations may be
performed on the tape. The tape rewind command may be used to
clear this condition.

For more information on device files, (listed above), see the tape(HW)
manual page.

The amount command doesn’t work with QIC-40 mini-cartridge tape
devices.

28 March 1991 Page 6

TAPEDUMP (C) TAPEDUMP (C)

Name

tapedump - dumps magnetic tape to output file.

Syntax

tapedump [-al-e] [-ol-h] [-btsn/iwm] tape_device output Jile

Description

tapedump dumps the contents of magnetic tapes according to the
options specified. Options include conversion from input format to
user specified output format, specification of input and output block-
size, and the ability to specify that the dump begin at a specific start
block on the tape and proceed for a specified number of blocks.

Options

Option Value

tapejdevice The input tape device.

-a Convert from EBCDIC input to ASCII output.

-e Convert from ASCII input to EBCDIC output.

-0 Display tape output in octal format.

-h Display tape output in hexadecimal format.

-b num skips n input records before starting dump.

-t num Specify which tape file to begin dump from,
where num is the tape file sequence number.

-s num Specify tape block address from which to start dump.

-n num Specify dump of only num blocks.

output Jile The output filename; standard output is the default.

Examples

This command reads a tape starting at block 400 and outputs the
results in hexadecimal format into a user specified file called
/tmp/hex.dump:

28 March 1991 Page 1

TAPEDUMP (C) TAPEDUMP (C)

tapedump -M OO -h IdevIrctO /tm p lh ex d u m p

This command reads an EBCDIC tape and converts the standard out­
put to ASCII:

tapedump -a IdevIrctO

See Also

sysadmsh(ADM), dd(C), hd(C), od(C), tape(C)

Notes

The output file may be specified to be another tape device.

28 March 1991 Page 2

TAR(C) TAR(C)

Name

tar - Archives files.

Syntax

tar [key] [files]

Description

tar saves and restores files to and from an archive medium, which is
typically a storage device such as floppy disk or tape, or a regular file.
Its actions are controlled by the key argument. The key is a string of
characters containing at most one function letter and possibly one or
more function modifiers. Valid function letters are c, t, x, and e.
Other arguments to the command are files (or directory names) speci­
fying winch files are to be backed up or restored. In all cases, appear­
ance of a directory name refers to the files and (recursively) subdirec­
tories of that directory. The r and u options cannot be used with tape
devices.

The function portion of the key is specified by one of the following
letters:

r ' The named files are written to the end of an existing archive.

x The named files are extracted from the archive. If a named
file matches a directory whose contents had been written
onto the archive, this directory is (recursively) extracted.
The owner, modification time, and mode are restored (if pos­
sible). If no files argument is given, the entire contents of
the archive are extracted. Note that if several files with the
same name are on the archive, the last one overwrites all
earlier ones.

t The names of the specified files are listed each time that
they occur on the archive. If no files argument is given, all
the names on the archive are listed.

u The named files are added to the archive if they are not
already there, or if they have been modified since last writ­
ten on that archive.

c Creates a new archive; writing begins at the beginning of the
archive, instead of after the last file.

28 March 1991 Page 1

TAR(C) TAR (C)

The following characters may be used in addition to the letter that
selects the desired function:

0,...,9999
This modifier selects the drive on which the archive is
mounted. The default is found in the file /etc/default/tar.

v Normally, tar does its work silently. The v (verbose) option
causes it to display the name of each file it treats, preceded
by the function letter. With the t function, v gives more in­
formation about the archive entries than just the name.

w Causes tar to display the action to be taken, followed by the
name of the file, and then wait for the user’s confirmation. If
a word beginning with y is given, the action is performed.
Any other input means “no”.

f Causes tar to use the next argument as the name of the
archive instead of the default device listed in /etc/default/tar. If the name of the file is a dash (-), tar
writes to the standard output or reads from the standard
input, whichever is appropriate. Thus, tar can be used as the
head or tail of a pipeline, tar can also be used to move
hierarchies with the command:

cd fromdir, tar cf - . I (cd todir; tar xf -)

b Causes tar to use the next argument as the blocking factor
for archive records. The default is 1, the maximum is 20.
This option should only be used with raw magnetic tape
archives (see f above). The block size is determined auto­
matically when reading tapes (key letters x and t).

F Causes tar to use the next argument as the name of a file
from which succeeding arguments are taken.

1 Tells tar to display an error message if it cannot resolve all
of the links to die files being backed up. If 1 is not specified,
no error messages are displayed.

m Tells tar to not restore the modification times. The
modification time of the file is the time of extraction.

k Causes tar to use the next argument as the size of an archive
volume in kilobytes. The minimum value allowed is 250.
Very large files are split into “extents” across volumes.
When restoring from a multivolume archive, tar only
prompts for a new volume if a split file has been partially
restored. To override the value of k in the default file,
specify k as 0 on the command line.

28 March 1991 Page 2

TAR (C) TAR (C)

e Prevents files from being split across volumes (tapes or
floppy disks). If there is not enough room on the present vol­
ume for a given file, tar prompts for a new volume. This is
only valid when the k option is also specified on the com­
mand line.

n Indicates the archive device is not a magnetic tape. The k
option implies this. Listing and extracting the contents of an
archive are sped because tar can seek over files it wishes to
skip. Sizes are printed in kilobytes instead of tape blocks.

p Indicates that files are extracted using their original permis­
sions. It is possible that a non-super-user may be unable to
extract files because of the permissions associated with the
files or directories being extracted.

A Suppresses absolute filenames. Any leading “/ ’’characters
are removed from filenames. During extraction arguments
given should match the relative (rather than the absolute)
pathnames. With the c, r, u options the A option can be
used to inhibit putting leading slashes in the archive
headers.

q During extraction, causes tar to exit immediately after each
file on the command line has been extracted, rather than
continuing to look for additional files of the same name.

tar reads /etc/default/tar to obtain default values for the device,
blocking factor, volume size, and the device type (tape or non-tape).
If no numeric key is specified on the command, tar looks for a line in
the default file beginning with the string archive=. Following this
pattern are 4 blank separated strings indicating the values for the de­
vice, blocking factor, volume size and device type, in that order. A
volume size of ‘0’ indicates infinite volume length. This entry should
be modified to reflect the size of the tape volumes used.

For example, the following is the default device entry from /etc/default/tar :

archive=/dev/fd096dsl5 10 1200 n

The n in the last field means that this device is not a tape. Use y for
tape devices. Any default value may be overridden on the command
line. The numeric keys (by default 0-7) select the line from the
default value beginning with archive#=, where # is the numeric key.
When the f key letter is specified on the command line, the entry
"archivef- " is used. In this case, the default file entry must still con­
tain 4 strings, but the first entry (specifying the device) is not signifi­
cant. The default file /etc/default/tar need not exist if a device is
specified on the command line.

28 March 1991 Page 3

TAR (C) TAR(C)

Notes

A critical consideration when creating a tar volume involves the use
of absolute or relative pathnames. Consider the following tar com­
mand examples, as executed from the directory /u/target:

tar cv /u/target/arrow

tar cv arrow
The first command creates a tar volume with the absolute pathname:
/u/target/arrow. The second yields a tar volume with a relative path­
name: ./arrow. (The ./ is implicit and shown here as an example; ./
should not be specified when retrieving the file from the archive.)
When restored, die first example results in the file arrow being writ­
ten to the directory /u/target (if it exists and you have write permis­
sion) no matter what your working directory. The second example
simple writes the file arrow to your present working directory.

Absolute pathnames specify the location of a file in relation to the root
directory (/); relative pathnames are relative to the current directory.
This must be taken into account when making a tar tape or disk.
Backup volumes use absolute pathnames so that they can be restored
to the proper directory. Use relative pathnames when creating a tar
volume where absolute pathnames are unnecessary.

Examples
If the name of a floppy disk device is /dev/fdl, then a tar format file
can be created on this device by entering:

assign /dev/fd
tar cvfk /dev/fdl 360 files

where files are the names of files you want archived and 360 is the
capacity of the floppy disk in kilobytes. Note that arguments to key
letters are given in the same order as the key letters themselves, thus
the fk key letters have corresponding arguments /dev/fdl and 360.
Note that if a file is a directory, the contents of the directory are recur­
sively archived. To display a listing of the archive, enter:

tar tvf /dev/fdl

At some later time you will likely want to extract the files from the
archive floppy. You can do this by entering:

tar xvf /dev/fdl

The above command extracts all files from the archive, using the exact
same pathnames as used when the archive was created. Because of
this behavior, it is normally best to save archive files with relative
pathnames rather than absolute ones, since directory permissions may
not let you read the files into the absolute directories specified. (See

28 March 1991 Page 4

TAR(C) TAR(C)

the A flag under Options.)

In the above examples, the v verbose option is used simply to confirm
the reading or writing of archive files on the screen. Also, a normal file
could be substituted for the floppy device /dev/fdl shown in the exam­
ples.

Files

/etc/default/tar

/tmp/tar*

Default devices, blocking and
volume sizes, device type

Diagnostics

Displays an error message about bad key characters and archive
read/write errors.

Displays an error message if not enough memory is available to hold
the link tables.

Notes

There is no way to ask for the nth occurrence of a file.

tar does not verify the selected media type.

The u option can be slow.

The limit on filename length is 100 characters.

When archiving a directory that contains subdirectories, tar will only
access those subdirectories that are within 17 levels of nesting. Sub­
directories at higher levels will be ignored after tar displays an error
message.

When using tar with a raw device, specify the block size with the b
option as a multiple of IK. For example, to use a 9K block size, enter:

tar cvfb /dev/rfdO 18 file

Do not enter:

tar xfF - -

28 March 1991 Page 5

TAR(C) TAR (C)

This would imply taking two things from the standard input at the
same time.

Use error-free floppy disks for best results with tar.

28 March 1991 Page 6

TEE(C) TEE{C)

Name

tee - Creates a tee in a pipe.

Syntax

tee [-i] [-a] [-u] [file]...

Description

tee transcribes the standard input to the standard output and makes
copies in the files. The -i option ignores interrupts; the -a option
causes the output to be appended to the files rather than overwriting
them. The -u option causes the output to be unbuffered.

Examples

The following example illustrates the creation of temporary files at
each stage in a pipeline:

grep ABC I tee ABC.grep I sort I tee ABC.sort I more

This example shows how to tee output to the terminal screen:

grep ABC I tee /dev/tty I sort I uniq >final.file

28 March 1991 Page 1

TEST(C) TESTiC)

Name

test - Tests conditions.

Syntax

test expr

[expr]

Description

test evaluates the expression expr, and if its value is true, returns a
zero (true) exit status; otherwise, test returns a nonzero exit status if
there are no arguments. The following primitives are used to con­
struct expr:

-r file True if file exists and is readable.

-w file True if file exists and is writable.

•xfile True if file exists and is executable.

-ffile True if file exists and is a regular file.

•A file True if file exists and is a directory.

-c file True if file exists and is a character special file.

-b file True if file exists and is a block special file.

-ufile True if file exists and its set-user-ID bit is set.

-g file True if file exists and its set-group-ID bit is set.

-k file True if file exists and its sticky bit is set.

-sfile True if file exists and has a size greater than zero.

-t [fildes] True if the open file whose file descriptor number is
fildes (1 by default) is associated with a terminal de­
vice.

-z si True if the length of string si is zero. Possible null
length strings must be enclosed in double quotation
marks (").

-n si True if the length of string si is nonzero. Possible null
length strings must be enclosed in double quotation
marks (”).

28 March 1991 Page 1

TEST(C)

True if strings si and s2 are identical.

True if strings si and s2 are not identical.

True if si is not the null string.

TEST(C)

si =s2

si != s2

si

nl -eq n2 True if the integers nl and n2 are algebraically equal.
Any of the comparisons -ne, -gt, -ge, -It, and -le may
be used in place of -eq.

These primaries may be combined with the following operators:

Unary negation operator

Binary and operator

Binary or operator (-a has higher precedence than
-o)

(expr) Parentheses for grouping

Notice that all the operators and flags are separate arguments to test.
Notice also, that parentheses are meaningful to the shell and, there­
fore, must be escaped.

I

-a

-o

See Also

find(C), sh(C)

Notes

In the second form of the command (that is, the one that uses [], rather
than the word test), the square brackets must be delimited by blanks.
That form of the command also requires that the expression si = s2
contain a space on each side of the “= ” and si /= s2 contain a space
before the “!” and after the “= ”.

28 March 1991 Page 2

TIC (C) 77C(C)

Name

tic - Terminfo compiler.

Syntax

tic [-v [n] [-p permlist]] file ...

Description

tic translates terminfo files from the source format into the compiled
format. The results are placed in the directory /usr/lib/terminfo.

If the environment variable TERMINFO is set, the results are placed
there instead of /usr/lib/terminfo.

The -v (verbose) option causes tic to output trace information showing
its progress. If the optional digit n is appended, the level of verbosity
can be increased.

The -p option directs tic to create a permissions file permlist for use
with fixperm(ADM).

tic compiles all terminfo descriptions in the given files. When a use=
field is discovered, tic first searches the current file and then the mas­
ter file Vterminfo^rc.

Some limitations: the total size of a description cannot exceed 4096
bytes; the name field cannot exceed 128 bytes.

Files

/usr/lib/terminfo/*/* -Compiled terminal capability database.

See Also

terminfo(M), terminfo(S), terminfo(F), tid(C)

Notes

Use of the -p option is not recommended. The functionality may
change in future versions of XENIX.

28 March 1991 Page 1

TID (C) TID (C)

Name

tid - Terminfo decompiler.

Syntax

tid [term]

Description

tid decompiles the description of terminal term originally compiled by
tic (C). If term is not specified, the setting of the TERM environment
variable is used.

Files

/usr/lib/terminfo/*/* - Compiled terminal descriptions.

See Also

tic(C), terminfo(F), terminfo(M).

Notes

The output of tid is not acceptable input to tic; a great deal of editing
is required.

28 March 1991 Page 1

TOUCH (C) TOUCH (C)

Name

touch - Updates access and modification times of a file.

Syntax

touch [-amc] [mmddhhmm[yy]] files

Description

touch causes the access and modification times of each argument to
be updated. If no time is specified (see date(C)) the current time is
used. The first mm refers to the month, dd refers to the day, hh refers
to the hour, the second mm refers to the minute, and yy refers to the
year. The -a and -m options cause touch to update only the access or
modification times respectively (default is -am). The -c option
silently prevents touch from creating the file if it did not previously
exist.

The return code from touch is the number of files for which the times
could not be successfully modified (including files that did not exist
and were not created).

See Also

date(C), utime(S)

28 March 1991 Page 1

TPUT(C) TPUT (C)

Name

tput - Queries the terminfo database.

Syntax

tput [-Ttype] attribute

Description

The command tput uses the terminfo database to make the values of
terminal-dependent attributes available to the shell, tput outputs a
string if the terminal attribute is of type string, or an integer if the
attribute is of type integer. If the attribute is of type Boolean, tput
simply sets the exit code (0 for true if the terminal has the capability,
1 for false if it does not) and produces no output.

The -T flag indicates the type of the terminal. Normally this option is
unnecessary, as the default is taken from the environment variable
TERM.

attribute is the terminal capability name from the terminfo database.

Examples

tput clear Echo dear-screen sequence for the current ter­
minal.

tput cols Print the number of columns for the current ter­
minal.

tput -TvtlOO cols Print the number of columns for the vtlOO ter­
minal.

bold=‘tput smso‘
offbold=‘tput rmso‘ Set the shell variables “bold” to begin standout

mode sequence and “offbold” to end standout
mode sequence for the current terminal. This
might be followed by a prompt, such as:

echo "${bold}Name: ${offbold}\cM

tput he Set exit code to indicate if the current terminal
is a hardcopy terminal.

28 March 1991 Page 1

TPUT(C) TPUT (C)

Files

/usr/lib/terminfo/*/* -Compiled terminal capability database.

See Also

terminfo(M), terminfo(S), tic(C), stty(C)

Notes

If the attribute is of type boolean, a value of 0 is returned for TRUE
and a value of 1 for FALSE.

If the attribute is of type string or integer, a value of 0 is returned upon
successful completion. Any other value returned indicates an error.
For example, the specification of a bad attribute (any capability name
that is not found in the terminfo database) produces an error.

28 March 1991 Page 2

77? (C) 77? (C)

Name

tr - Translates characters.

Syntax

tr [-cds] [stringl [string2]]

Description

tr copies the standard input to the standard output with substitution or
deletion of selected characters. Input characters found in stringl are
mapped into the corresponding characters of stringl. Any combina­
tion of the options -cds may be used:

-c Complements the set of characters in stringl with respect to
the universe of characters whose ASCII codes are 001
through 377 octal

-d Deletes all input characters in stringl

-s Squeezes all strings of repeated output characters that are in
string2 to single characters

The following abbreviation conventions may be used to introduce
ranges of characters or repeated characters into the strings:

[a-z] Stands for the string of characters whose ASCII codes run
from character a to character z, inclusive.

[si*n] Stands for n repetitions of a. If the first digit of n is 0, n is
considered octal; otherwise, n is taken to be decimal. A
zero or missing n is taken to be huge; this facility is useful
for padding stringl.

The escape character \ may be used as in the shell to remove special
meaning from any character in a string. In addition, \ followed by 1,2,
or 3 octal digits, stands for the character whose ASCII code is given by
those digits.

28 March 1991 Page 1

77? (C) 77? (C)

The following example creates a list of all the words in filel, one per
line in file2, where a word is taken to be a maximal string of alphabet -
ics. The strings are quoted to protect the special characters from
interpretation by the shell; 012 is the ASCII code for newline:

tr -cs M[A-Z][a-z]" "|\012*]" <filel >file2

See Also
ed(C), sh(C), ascii(M)

Notes
tr won’t handle ASCII NUL in stringl or string! ; always deletes NUL
from input.

28 March 1991 Page 2

TRANSLATE (C) TRANSLATE (C)

Name
translate - translates files from one format to another

Syntax
translate option [infile] [outfile]

Description
translate translates files according to the options specified. Transla­
tion is done according to the options defined below.

format is assumed to be a file in the directory /usr/lib/mapchan/translate if a full pathname is not provided.

translate uses standard input and standard output unless otherwise
specified via the optional filename arguments.

Options
-ea From EBCDIC to ASCII.

-ae From ASCH to EBCDIC.

-fft format From a user defined format to EBCDIC format.

-fa format From a user defined format to ASCII format.

■ effformat From EBCDIC format to a user defined format.

-afformat From ASCII format to a user defined format.

-bm From binary/object code to mailable ASCII
uuencode format.

-mb From mailable ASCII uuencode format to
original binary.

Files
/usr/lib/mapchan/translate/*

See Also
uuencode(C), dd(C), mapchan(M), sysadmsh(ADM)

28 March 1991 Page 1

TRANSLATE (C) TRANSLATE (C)

Notes
The -bm and -mb options are, for example, used to translate execut­
able object code format to ASCII for transfer across communications
networks.

The syntax for the user defined format file is the same as the syntax
for the mapping files for mapchan(M) and trchan.

Use dd to convert character and file formats (especially tapes) to the
format specified. Example:

dd if=/dev/rmtO of=outfile ibs=800 cbs=80 conv=ascii,lease

This command reads an EBCDIC tape, blocked ten 80-byte EBCDIC
card images per record, into the ASCII file outfile. For more informa­
tion on conversion options, refer to dd(C).

28 March 1991 Page 2

TRUE (C) TRUE(C)

Name
true - Returns with a zero exit value.

Syntax
true

Description
true does nothing except return with a zero exit value, false (C), true's
counterpart, does nothing except return with a nonzero exit value.
true is typically used in shell procedures such as:

while true
do

command
done

See Also
sh(C), false (C)

Diagnostics
true has exit status zero.

28 March 1991 Page 1

TSET(C) TSET(C)

Name
tset - Sets terminal modes.

Syntax
tset [-] [-hrsuIQS] [-e[c]] [-E[c]] [-k[c]]
[-m [ident] [test baudrate]:type] [type]

Description
tset causes terminal dependent processing such as setting erase and
kill characters, setting or resetting delays, and the like. It is driven by
the /etc/ttytype and /etc/termcap files.

The type of terminal is specified by the type argument. The type may
be any type given in /etc/termcap. If type is not specified, the termi­
nal type is the value of the environment variable TERM, unless the -h
flag is set or any -m argument is given. In this case, the type is read
from /etc/ttytype (the port name to terminal type database). The port
name is determined by a ttyname (S) call on the diagnostic output. If
the port is not found in /etc/ttytype the terminal type is set to
unknown.

Ports for which the terminal type is indeterminate are identified in /etc/ttytype as dialup, plugboard, etc. The user can specify how these
identifiers should map to an actual terminal type. The mapping flag, -m, is followed by the appropriate identifier (a four-character or
longer substring is adequate), an optional test for baud rate, and the
terminal type to be used if the mapping conditions are satisfied. If
more than one mapping is specified, the first correct mapping prevails.
A missing identifier matches all identifiers. Baud rates are specified
as with stty(C), and are compared with the speed of the diagnostic out­
put. The test may be any combination of: >, =, <, and !. (Note: @
is a synonym for = and ! inverts the sense of the test. Remember that
escape characters are meaningful to the shell.)

If the type as determined above begins with a question mark, the user
is asked if he really wants that type. A null response means to use that
type; otherwise, another type can be entered which will be used
instead. (The question mark must be escaped to prevent filename
expansion by the shell.)

tset is most useful when included in the .login (for csh(Q) or .profile
(for sh(C)) file executed automatically at login, with -m mapping used
to specify the terminal type you most frequently dial in on.

28 March 1991 Page 1

TSET(C) TSET(C)

Options

-e [c\
This option sets the erase character to the named character, c, with
c defaulting to Ctrl-H.

-E [c]
This flag is identical to -e except that it only operates on terminals
that can backspace.

-k [c]
This option sets the kill character to the named character, c, with c
defaulting to Ctrl-U. In all of these flags, “"X” where X is any
character is equivalent to Ctrl-X.

- This option prints the terminal type on the standard output; this can
be used to get the terminal type by entering:

set termtype = Stset

If no other options are given, tset operates in “fast mode” and only
outputs the terminal type, bypassing all other processing.

-h Forces tset to search /etc/ttytype for information and to overlook
the environment variable, TERM.

-s This option outputs “ setenv” commands (if your default shell is
csh(C) or “export” and assignment commands (if your default
shell is sh(C));

For the -s option with the Bourne or Korn shell, enter:

tset -s ... > /tmp/tset$$
. ./tmp/tset$$
rm/tmp/tset$$

-S This option only outputs the strings to be placed in the environ­
ment variables.

If you are using csh, enter:
set noglob
set term=(‘tset -S‘)
setenv TERM $term[l]
setenv TERMCAP "$term[2]"
unset term
unset noglob

-r This option displays the terminal type on the diagnostic output.

-Q This option suppresses displaying the “Erase set to” and “Kill set
to” messages.

28 March 1991 Page 2

TSET{ C) TSET(C)

-I This option suppresses outputting the terminal initialization
strings.

-m [ident] [test baudrate]: type
Allows a user to specify how a given serial port is is to be mapped
to an actual terminal type. The option applies to any serial port in /etc/ttytype whose type is indeterminate (e.g., dialup, etc.). The
type specifies the terminal type to be used, and ident identifies the
name of the indeterminate type to be matched. If no ident is given,
all indeterminate types are matched. The test baudrate defines a
test to be performed on the serial port before the type is assigned.
The baudrate must be as defined in stty(C). The test may be any
combination of: >, =, <, @, and !. If the type begins with a ques­
tion mark, the user is asked if he really wants that type. A null
response means to use that type; otherwise, another type can be
entered which will be used instead. The question mark must be
escaped to prevent filename expansion by the shell. If more than
one -m option is given, the first correct mapping prevails.

tset is most useful when included in the .login [for csh(C)] or .profile
[for s/z(C)] file executed automatically at login, with -m mapping used
to specify the terminal type you most frequently dial in on.

Examples
tset gt42

Sets the terminal type to gt42.

tset -mdialup\>300:adm3a -mdialup:dw2 -Qr -e#

If the entry in /etc/ttytype corresponding to the login port is
“dialup”, and the port speed is greater than 300 baud, set the termi­
nal type to adm3a. If the /etc/ttytype entry is “dialup” and the
port speed is less than or equal to 300 baud, set the terminal type to
dw2. Set the erase character to “#”, and display the terminal type
(but not the erase character) on standard error.

tset -m dial:ti733 -m plug:\?hp2621 -m unknown:\? -e -k~U

If the /etc/ttytype entry begins with “dial” , the terminal type
becomes ti733. If the entry begins with “plug”, tset prompts with:

TERM = (hp2621)

Enter the correct terminal type if it is different than that shown. If
the entry is “unknown”, tset prompts with:

TERM = (unknown)

In any case, erase is set to the terminal’s backspace character, the

28 March 1991 Page 3

TSET(C) TSET(C)

kill character is set to Ctrl-U, and the terminal type is displayed on
standard error.

Files
/etc/ttytype Port name to terminal type map database

/etc/termcap Terminal capability database

See Also
tty(M), termcap(M), stty(C)

Credit
This utility was developed at the University of California at Berkeley
and is used with permission.

28 March 1991 Page 4

TTY (C) TTY (C)

Name
tty - Gets the terminal’s name.

Syntax
tty [-s]

Description
The tty command prints the pathname of the user’s terminal on the
standard output. The -s option inhibits printing, allowing you to test
just the exit code.

Exit Codes
0 if the standard input is a terminal, 1 otherwise.

Diagnostics
notatty If the standard input is not a terminal and -s is not

specified

28 March 1991 Page 1

UMASK (C) UM ASK (C)

Name
umask - Sets file-creation mode mask.

Syntax
umask [ooo]

Description
The user file-creation mode mask is set to ooo. The three octal digits
refer to read/write/execute permissions for owner, group, and others,
respectively. Only the low-order 9 bits of cmask and the file mode
creation mask are used. The value of each specified digit is “ sub­
tracted” from the corresponding “digit” specified by the system for
the creation of any file (see umask(S) or creat{S)). This is actually a
binary masking operation, and thus the name “umask”. In general,
binary ones remove a given permission, and zeros have no effect at
all. For example, umask 022 removes group and others write permis­
sion (files normally created with mode 111 become mpde 755 ; files
created with mode 666 become mode 644).

If ooo is omitted, the current value of the mask is printed.

umask is recognized and executed by the shell. By default, login
shells have a umask of 022.

See Also
chmod(C), sh(C), chmod(S), creat(S), umask(S)

28 March 1991 Page 1

UNAME (C) UNAME (C)

Name

uname - Prints the name of the current X E N IX system.

Syntax

uname [-snrmvdupX]

Description

uname prints the current system name of the XENIX system on the
standard output file. It is primarily used to determine which system
you are using. The options cause selected information returned by
uname{S) to be printed:

-s Prints the system name (default).

-n Prints the nodename (the nodename may be a name that the sys­
tem is known by to a communications network).

-r Prints the operating system release.

-m Manufacturer: prints original supplier (number) of XENIX sys­
tem.

-v Prints the operating system version.

-d Distributor: prints OEM (number) for the system.

-u Prints user serial number.

-p Prints processor of the machine.

-a Prints all the above information.

-X Prints all the above information, plus OEM number, kernel ID,
bus type, serial number, processor, license (2-user or unlimited),
origin number, and number of CPUs.

Notes

The -m, -d, -X options apply only to XENIX-386 distributions.

See Also

uname(S)

28 March 1991 Page 1

UNIQ (C) UNIQ (C)

Name
uniq - Reports repeated lines in a file.

Syntax
uniq [-udc [+n] [-n]] [input [output]]

Description
uniq reads the input file and compares adjacent lines. In the normal
case, the second and succeeding copies of repeated lines are removed;
the remainder is written on the output file. Input and output should
always be different. Note that repeated lines must be adjacent in order
to be found; see sort(C). If the -u flag is used, just the lines that are
not repeated in the original file are output. The -d option specifies
that one copy of just the repeated lines is to be written. The normal
mode output is the union of the -u and -d mode outputs.

The -c option supersedes -u and -d and generates an output report in
default style but with each line preceded by a count of the number of
times it occurred.

The n arguments specify skipping an initial portion of each line in the
comparison:

-n The first n fields together with any blanks before each are
ignored. A field is defined as a string of nonspace, nontab
characters separated by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before
characters.

See Also
comm(C), sort(C)

28 March 1991 Page 1

UNITS (C) UNITS (C)

Name
units - Converts units.

Syntax
units

Description
units converts quantities expressed in various standard scales to their
equivalents in other scales. It works interactively in this fashion:

You have: inch
You want: cm

* 2.540000e+00
/ 3.937008e-01

A quantity is specified as a multiplicative combination of units
optionally preceded by a numeric multiplier. Numbers are displayed
in scientific notation; powers are indicated by suffixed positive
integers, division is shown by the usual sign:

You have: 15 lbs force/in2
You want: atm

* 1.020689e+00
/9.797299e-01

units only does multiplicative scale changes; thus it can convert Kel­
vin to Rankine, but not Centigrade to Fahrenheit. Most familiar units,
abbreviations, and metric prefixes are recognized, as well as the fol-
lowing:

Pi Ratio of circumference to diameter

c Speed of light

e Charge on an electron

g Acceleration of gravity

force Same as g
mole

Avogadro’s number

water
Pressure head per unit height of water

28 March 1991 Page 1

UNITS (C) UNITS (C)

au Astronomical unit

Pound is not recognized as a unit of mass; lb is. Compound names are
run together, (e.g. lightyear). British units that differ from their US
counterparts are prefixed with “br”. For a complete list of units, enter:

cat /usr/lib/unittab

Files
/usr/lib/unittab

28 March 1991 Page 2

UPTIME (C) UPTIME (C)

Name
uptime - Displays information about system activity.

Syntax
uptime

Description
uptime prints the current time of day, the length of time the system has
been up, the number of users logged onto die system, and load aver­
ages. Load averages are the number of processes in the run queue
averaged over 1, 5, and 15 minutes. All of this information is also
contained in the first line of the w(C) command.

See Also
w(C)

28 March 1991 Page 1

USEMOUSE (C) USEMOUSE (C)

Name
usemouse - Maps mouse input for use with non-mouse based pro­
grams.

Syntax
usemouse [-f conffile] [-t type] [-h horiz_sens] [-v vert_sens].-

[-c cmd] [-b] parameters

Description
This utility allows you to use a mouse with any program that would
otherwise accept only keyboard input.

For example, you can use a mouse with v/(C) to move the cursor
around the screen and generate your most commonly used vi com­
mands. The usemouse(C) command translates mouse input into spe­
cific keystrokes required by a program. You can use any of several
predefined mouse keystroke sets (called maps) that correspond to dif­
ferent popular programs. You can also define your own maps with
keystrokes that match different mouse movements and mouse buttons.

Options
The options are:

-f conffile
The -f flag may be used to select an alternate configuration file.
The alternate configuration file, conffile, should use the format of /etc/default/usemouse and be entered as an absolute pathname on
the command line. For example:

usemouse -f /u/daniel/mouseconf
is the correct form to specify an alternate configuration file. The -f
and -t flags are mutually exclusive.

-t type
The -t flag may be used to select a predefined configuration file.
type can be the name of any file in /usr/lib/mouse, such as vi,
rogue, or any others the system administrator chooses to place
there. These files are identical in format to /etc/default/usemouse.

-h horiz_sens
Defines the horizontal sensitivity. Horizontal mouse movements
smaller than this threshold are ignored. Mouse movements that are
multiples of this value generate multiple strings. The sensitivity

28 March 1991 Page 1

USEMOUSE (C) USEMOUSE (C)

defaults to 5 units. The minimum value is 1 unit, and the max­
imum is 100 units. The lower the value, the more sensitive your
mouse is to motion. Note that setting a high value may cause your
mouse to behave as though it is not functioning, due to the large
motion required to generate a signal.

-v vert_sens
Defines the vertical sensitivity. Vertical mouse movements
smaller than this threshold are ignored. Mouse movements that are
multiples of this value generate multiple strings. The sensitivity
defaults to 5 units. The minimum value is 1 unit, and the max­
imum is 100 units. The lower the value, the more sensitive your
mouse is to motion. Note that setting a high value may cause your
mouse to behave as though it is not functioning, due to the large
motion required to generate a signal.

-c cmd
This option selects a command for usemouse to run. This defaults
to the shell specified in the SHELL environment variable. If SHELL is unspecified, /bin/sh is used. Note that the command
given with this flag can contain blank spaces if the entire command
is placed within double quotes. For example:

usemouse -c "vi /etc/termcap"
-b Suppresses bell (~G) for the duration of mouse usage. Useful with

v/(C).

parameters
These are name=value pairs indicating what ASCII string to insert
into the tty input stream, when the given event is received. Valid
parameters include:

rbu=string
rbd=string
mbu ̂ string
mbd ̂ string
lbu=string
lbd-string
rt=string
It=string
up-string
dn -string
ul-string
ur=string
dr=string
d\=string
hsens=num

String to generate on right button up
String to generate on right button down
String to generate on middle button up
String to generate on middle button down
String to generate on left button up
String to generate on left button down
String to generate on mouse right
String to generate on mouse left
String to generate on mouse up
String to generate on mouse down
String to generate on mouse up-left
String to generate on mouse up-right
String to generate on mouse down-right
String to generate on mouse down-left
Sensitivity to horizontal motion

28 March 1991 Page 2

USEMOUSE (C) USEMOUSE (C)
vsens=num Sensitivity to vertical motion
bells -yes! no Whether to remove "G characters

Parameters may be specified in any order. They may contain octal
escapes. They may be quoted with single or double quotes if they con­
tain blank spaces. Any parameters may be omitted and their value, if
any, is taken from the configuration file.

The usemouse(C) Command
To start using the mouse with a text program, enter the command:

usemouse
This command sets the mouse for use with the default map, which is
found in /etc/default/mouse. Alternate map files can be found in the
directory /usr/lib/mouse. You can create your own alternate map files
and place them in this directory or in your own custom map file direc­
tory. The default map file has the following values:

Mouse Keystroke
Left Button vi top of file (1G) command
Middle Button vi delete character (x) command
Right Button vi bottom of file (G) command
Up Up Arrow Key
Down Down Arrow Key
Left Left Arrow Key
Right Right Arrow Key
Up and Left not defined
Up and Right not defined
Down and Left not defined
Down and Right not defined
Bells no

Invoking the usemouse command without specifying any options
makes the mouse ready for use with a wide variety of programs or
applications. Invoking usemouse with no options causes the mouse to
use the default keystroke map. Invoking the mouse in this way creates
a new command shell. You can continue to use the mouse for the dura­
tion of the shell. To terminate usemouse, simply enter Ctrl-D.

You can also invoke usemouse for the duration of a specific command:

usemouse -c command

This puts you in the program specified by command using the mouse.
When you leave the program, mouse input is terminated.

28 March 1991 Page 3

USEMOUSE (C) USEMOUSE (C)

Using the Mouse with Specific Programs

You can use any of several predefined maps that are set up specifically
for use with different programs. (These maps are found in
/usr/lib/mouse.) For example:

usemouse -t vi

This invokes the vz-specific map, which includes mapping the tradi­
tional h-j-k-1 direction keys to the mouse movements. The terminal
bell is automatically silenced by the vi map entry bells=no. This is
done to prevent the bell being activated continuously when the user
generates a spurious command with the mouse. (There is also a -b
option that can be used on the usemouse command line to do the same
thing.)

You can combine a command with a selected map file by putting both
on the command line. For example:

usemouse -t vi -c vi filename

This invokes the vi map along with the command; when you quit out
of vi the mouse disengages.

Setting Up Abbreviated (Aliased) Mouse Commands

If you plan to use the mouse frequently, you can substitute short, easy
to use commands that will call up the longer command lines. This is
known as command aliasing.

Specifying Map Keystrokes on the Command Line

You can also specify the characters to be generated by mouse motions
on the usemouse command line. You can specify button actions or
motion actions to supplement or replace a definition from a map file.
For example, assume you want to use the default usemouse file, but
you want to redefine the middle mouse button mbd (middle button
down) as the vi “ i” (insert) instead of the “x” (delete character) com­
mand. The following command line does this:

usemouse -c vi mbd=i

The mouse operations are defined by a series of acronyms that are the
same as used in the actual map file:

28 March 1991 Page 4

USEMOUSE (C) USEMOUSE (C)

Parameter Mouse Operation Default

rbu right button up not used
rbd right button down 1G
mbu middle button up not used
mbd middle button down X
lbu left button up not used
lbd left button down G
ul mouse up-left \033[A\033[C
ur mouse up-right \033[A\033[D
dr mouse down-left \033[B\033[C
dl mouse down-right \033[B\033[D
rt mouse right \033[C
It mouse left \033[D
up mouse up \033[A
dn mouse down \033[B
hsens horiz. sensitivity 5
vsens vert, sensitivity 5

Creating Customized Maps
You can create your own personal map files for use with the mouse.
The easiest way to do this is to copy the default map in /etc/default/usemouse and edit it. You can use quoted strings or the
octal sequences found in the ascii(M) page. The mouse
direction/button parameters are defined in the usemouse table above.
For example, after placing a customized file, mine, in your home
directory, you would invoke the following command to use it with the
program prog:

usemouse -f mine -c prog
How usemouse Works

usemouse merges data from a mouse into the input stream of a tty. The
mouse data is translated to arrow keys or any other arbitrary ASCII
strings. Mouse movements up, down, left right, up-left, up-right,
down-left, and down-right, as well as individual up and down button
transitions, are programmable. This permits the mouse to be used
with programs that are not designed to accept mouse input.

By default, the usemouse utility gets value configurations from the file /etc/default/usemouse .
After running the utility, provided a mouse is available, the user will
be running a command with mouse motions and button events
translated to ASCII strings and merged into their tty input stream. By
default, the command is a shell.

28 March 1991 Page 5

USEMOUSE (C) USEMOUSE (C)

Files

/dev/mouse
/dev/mouse/bus [0-1]
/dev/mouse/vpix [0-1]
/dev/mouse/microsoft_ser
/dev/mouse/logitech_ser
/dev/mouse/mousesys_ser
/dev/mouse/ttyp[0-7]
/dev/mouse/ptyp[0-7]
/etc/default/usemouse
/usr/lib/event/devices
/usr/lib/event/ttys
/usr/lib/mouse/*

Directory for mouse-related special device files.
Bus mouse device files,
vpix-mouse device files.
Microsoft serial mouse device files.
Logitech serial mouse device files.
Mousesys serial mouse device files.
Special pseudo-tty files for mouse input.
Special pseudo-tty files for mouse input.
Default map file for mouse-generated characters.
File containing device information for mice.
File listing ttys eligible to use mice.
Alternate map files for mice.

See Also

mouse(HW)

28 March 1991 Page 6

UUCP (C) UUCP(C)

Name
uucp, uulog, uuname - UNIX-to-UNIX system copy

Syntax
uucp [options] source-files destination-fileuulog [options] -s systemuulog [options] systemuulog [options] -fsystemuuname [-1] [-c]

Description
uucp

uucp copies files named by the source-file arguments to the
destination-file argument. A file name may be a path name on your
machine, or may have the form:

system-name! path-name

where system-name is taken from a list of system names that uucp
knows about. The system-name may also be a list of names such as

system-name! system-name!...! system-name! path-name

in which case an attempt is made to send the file via the specified
route, to the destination. Care should be taken to ensure that inter­
mediate nodes in the route are willing to forward information (see
Warnings restrictions).

The shell metacharacters ?, * and [.. .] appearing in path-name will
be expanded on the appropriate system. These characters may need to
be escaped to prevent expansion by the local shell.

Path names may be one of:

(1) a full path name;

(2) a path name preceded by ”user where user is a login name
on the specified system and is replaced by that user’s login
directory;

(3) a path name preceded by ~/destination where destination is
appended to /usr/spool/uucppublic; (NOTE: This destina­
tion will be treated as a file name unless more than one file is
being transferred by this request or the destination is already
a directory. To ensure that it is a directory, follow the desti­
nation with a For example 7dan/ as the destination will

28 March 1991 Page 1

UUCP (C) UUCP(C)

make the directory /usr/spool/uucppublic/dan if it does not
exist and put the requested file(s) in that directory).

(4) anything else is prefixed by the current directory.

If the result is an erroneous path name for the remote system the copy
will fail. If the destination-file is a directory, the last part of the
source-file name is used.

uucp preserves execute permissions across the transmission and gives
0666 read and write permissions (see chmod(C)).

The following options are interpreted by uucp:

-c Do not copy local file to the spool directory for transfer to
the remote machine (default).

-C Force the copy of local files to the spool directory for
transfer.

-d Make all necessary directories for the file copy (default).

-f Do not make intermediate directories for the file copy.

-ggrade Grade is a single letter/number; lower ascii sequence
characters will cause the job to be transmitted earlier dur­
ing a particular conversation.

-j Output the job identification ASCII string on the standard
output. This job identification can be used by uustat to
obtain the status or terminate a job.

-m Send mail to the requester when the copy is completed.

-nuser Notify user on the remote system that a file was sent.

-r Do not start the file transfer, just queue the job.

-s file Report status of the transfer to file. Note that the file must
be a full path name.

-xdebugjevel
Produce debugging output on standard output. The
debug Jevel is a number between 0 and 9; higher numbers
give more detailed information.

uulog
uulog queries a log file of uucp or uuxqt transactions in a file

28 March 1991 Page 2

UUCP (C) UUCP(C)

/usr/spool/uucp/.Log/uucico/system or /usrlspoo\/uucp/.Log/uuxqtlsystem.

The options cause uulog to print logging information:

-ssystem Print information about file transfer work involving sys­
tem sys.

-fsystem Does a “tail -f” of the file transfer log for system. (You
must press DELETE or BREAK to exit this function.)

Other options used in conjunction with the above:

-x Look in the uuxqt log file for the given system, instead of the
uucico log file (default).

-,number
Indicates that a “tail” command of number lines should be exe­
cuted.

uuname
uuname lists the names of systems known to uucp. The -c option
returns the names of systems known to cu. (The two lists are the
same, unless your machine is using different Systems files for cu and
uucp. See the Sysfiles file.) The -1 option returns the local system
name.

Files
/usr/spool/uucp spool directories
/usr/spool/uucppublic/*public directory for receiving and sending
/usr/lib/uucp/* other data and program files

See Also
mail(C), uustat(C), uux(C), uuxqt(C), chmod(S)

Warnings
The domain of remotely accessible files can (and for obvious security
reasons, usually should) be severely restricted. You will very likely
not be able to fetch files by path name; ask a responsible person on the
remote system to send them to you. For the same reasons you will
probably not be able to send files to arbitrary path names. As distrib­
uted, the remotely accessible files are those whose names begin /usr/spool/uucppublic (equivalent to 7).

28 March 1991 Page 3

UUCP (C) UUCP (C)

All files received by uucp will be owned by uucp.

The -m option will only work sending files or receiving a single file.
Receiving multiple files specified by special shell characters ? * [...]
will not activate the -m option.

The forwarding of files through other systems may not be compatible
with the older (non-HoneyDanBer) versions of uucp. If forwarding is
used, all systems in the route must have the same version of uucp.

Notes
Protected files and files that are in protected directories that are owned
by the requester can be sent by uucp. However, if the requester is
root, and the directory is not searchable by “other” or the file is not
readable by “other,” the request will fail.

28 March 1991 Page 4

UUENCODE (C) UUENCODE (C)

Name
uuencode, uudecode - encode/decode a binary file for transmission via
mail

Syntax
uuencode [source] remotedest I mail sysl!sys2!..! decode uudecode [file]

Description
uuencode and uudecode are used to send a binary file via uucp (or
other) mail. This combination can be used over indirect mail links.

uuencode takes the named source file (default standard input) and pro­
duces an encoded version on the standard output. The encoding uses
only printing ASCII characters, and includes the mode of the file and
the remotedest for recreation on the remote system.

uudecode reads an encoded file, strips off any leading and trailing
lines added by mailers, and recreates the original file with the speci­
fied mode and name.

The encode file has an ordinary text form and can be edited by any
text editor to change the mode or remote name.

See Also
uucp(C), uux(ADM), mail(C)

Restrictions
The file is expanded by 35% (3 bytes become 4 plus control informa­
tion) causing it to take longer to transmit.

The user on the remote system who is invoking uudecode (often uucp)
must have write permission on the specified file.

28 March 1991 Page 1

UUSTÄT(C) UUSTAT (C)

Name

uustat - uucp status inquiry and job control

Syntax

uustat [-a]
uustat [-m]
uustat [-p]
uustat [-q]
uustat [-kjobid]
uustat [-rjobid]
uustat [-ssystem] [-uuser]

Description

uustat will display the status of, or cancel, previously specified uucp
commands, or provide general status on uucp connections to other sys­
tems. Only one of the following options can be specified with uustat
per command execution:

-a Output all jobs in queue.
-m Report the status of accessibility of all machines.
-p Execute a “ps -flp” for all the process-ids that are in the

lock files.
-q List the jobs queued for each machine. If a status file

exists for the machine, its date, time and status informa­
tion are reported. In addition, if a number appears in ()
next to the number of C or X files, it is the age in days of
the oldest C./X. file for that system. The Retry field
represents the number of hours until the next possible call.
The Count is the number of failure attempts. NOTE: for
systems with a moderate number of outstanding jobs, this
could take 30 seconds or more of real-time to execute. As
an example of the output produced by the -q option:

e a g l e 3C 0 4 /0 7 -1 1 :0 7 NO DEVICES AVAILABLE
m h3bs3 2C 0 7 /0 7 -1 0 :4 2 SUCCESSFUL

The above output tells how many command files are wait­
ing for each system. Each command file may have zero or
more files to be sent (zero means to call the system and
see if work is to be done). The date and time refer to the
previous interaction with the system followed by the
status of the interaction.

-kjobid Kill the uucp request whose job identification is jobid.
The killed uucp request must belong to the person issuing
the uustat command unless one is the super-user.

28 March 1991 Page 1

UUSTAT (C) UUSTÄT(C)

-rjobid Rejuvenate jobid. The files associated with job id are
touched so that their modification time is set to the
current time. This prevents the cleanup daemon from
deleting the job until the jobs modification time reaches
the limit imposed by the daemon.

Either or both of the following options can be specified with uustat:

-ssystem Report the status of all uucp requests for remote system
system.

-uuser Report the status of all uucp requests issued by user.

Output for both the -s and -u options has the following format:

eaglenOOOO
eagleNlbd7

4/07-11:01:03
4/07-11:07

(POLL)
S eagle dan 522 /usr/dan/A

eagleClbd8 4/07-11:07 S eagle dan 59 D.3b2al2ce4924
4/07-11:07 S eagle dan rmail mike

With the above two options, the first field is the jobid of the job. This
is followed by the date/time. The next field is either an ’S ’ or ’R’
depending on whether the job is to send or request a file. This is fol­
lowed by the user-id of the user who queued the job. The next field
contains the size of the file, or in the case of a remote execution (
rmail - the command used for remote mail), the name of the command.
When the size appears in this field, the file name is also given. This
can either be the name given by the user or an internal name (e.g.,
D.3b2alce4924) that is created for data files associated with remote
executions (rmail in this example).
When no options are given, uustat outputs the status of all uucp
requests issued by the current user.

Files

/usr/spool/uucp/* spool directories

See Also

uucp(C).

28 March 1991 Page 2

UUTO (C) UUTO (C)

Name
uuto, uupick - public UNIX-to-UNIX system file copy

Syntax
uuto [options] source-files destination uupick [-s system]

Description
uuto sends source-files to destination, uuto uses the uucp(C) facility
to send files, while it allows the local system to control the file access.
A source-file name is a path name on your machine. Destination has
the form:systemloser
where system is taken from a list of system names that uucp knows
about (see uuname). User is the login name of someone on the speci­
fied system.

Two options are available:

-p Copy the source file into the spool directory before transmis­
sion.-m Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to /usr/spool/uucppublic on system. Specifically the files are sent to

/usr/spool/uucppublic/receive/wser/mysy.stem/files.

The destined recipient is notified by mail(C) of the arrival of files.

uupick accepts or rejects the files transmitted to the user. Specifical -
ly, uupick searches /usr/spool/uucppublic for files destined for the
user. For each entry (file or directory) found, the following message is
printed on the standard output:from system: [file file-name] [dir dir name] ?

uupick then reads a line from the standard input to determine the
disposition of the file:

<new-line> Go on to next entry.

d Delete the entry.

m [dir] Move the entry to named directory dir. If dir is not
specified as a complete path name (in which
$HOME is legitimate), a destination relative to the

28 March 1991 Page 1

UUTO (C) UUTO (C)

current directory is assumed. If no destination is
given, the default is the current directory.

a [dir] Same as m except moves all the files sent from
system.

P Print the content of the file.

q Stop.

EOT (control-d) Same as q.

!command Escape to the shell to do command.

Print a command summary.

uupick invoked with the -ssystem option will only search
/usr/spool/uucppublic for files sent from system.

See Also

mail(C), uucp(C), uustat(C), uux(C), uuclean(ADM).

Warnings

In order to send files that begin with a dot (e.g., .profile) the files must
by qualified with a dot. For example: .profile, .prof*, .profil? are
correct; whereas *prof*, ?profile are incorrect.

Files

/usr/spool/uucppublic public directory

28 March 1991 Page 2

UUX(C) UUX(C)

Name
uux - UNIX-to-UNDC system command execution

Syntax
uux [options] command-string

Description
uux will gather zero or more files from various systems, execute a
command on a specified system and then send standard output to a file
on a specified system.

NOTE: For security reasons, most installations limit the list of com­
mands executable on behalf of an incoming request from uux, permit­
ting only the receipt of mail (see permissions (F)). (Remote execution
permissions are defined in /usr/lib/uucp/Permissions.)
The command-string is made up of one or more arguments that look
like a shell command line, except that the command and file names
may be prefixed by system-name!. A null system-name is interpreted
as the local system.

File names may be one of

(1) a full path name;

(2) a path name preceded by ~xxx where xxx is a login name on
the specified system and is replaced by that user’s login
directory;

(3) anything else is prefixed by the current directory.

As an example, the command

uux M!difFusg!/usr/dan/filel pwba!/a4/dan/file2 > r/dan/file.diff'

will get the filel and file2 files from the “usg” and “pwba” machines,
execute a diffiC) command and put the results in file.diff in the local /usr/spool/uucppublic/dan directory.

Any special shell characters such as <>; | should be quoted either by
quoting the entire command-string, or quoting the special characters
as individual arguments.

uux will attempt to get all files to the execution system. For files that
are output files, the file name must be escaped using parentheses. For
example, the command

28 March 1991 Page 1

UUX(C) UUX(C)

uux altail b!/usr/file\(c!/usr/file\)

gets /usr/file from system “b” and sends it to system “a,” performs a
tail command on that file and sends the result of the tail command to
system “c.”

uux will notify you if the requested command on the remote system
was disallowed. This notification can be turned off by the -n option.
The response comes by remote mail from the remote machine.

The following options are interpreted by uux:

The standard input to uux is made the standard input to
the command-string.

-mame Use name as the user identification replacing the initiator
user-id. (Notification will be returned to the user.)

-b Return whatever standard input was provided to the uux
command if the exit status is non-zero.

-c Do not copy local file to the spool directory for transfer to
the remote machine (default).

-C Force the copy of local files to the spool directory for
transfer.

-:ggrade Grade is a single letter/number; lower ASCII sequence
characters will cause the job to be transmitted earlier dur­
ing a particular conversation.

-j Output the jobid ASCII string on the standard output
which is the job identification. This job identification can
be used by uustat to obtain the status or terminate a job.

-n Do not notify the user if the command fails.

-p Same as -: The standard input to uux is made the standard
input to the command-string.

-r Do not start the file transfer, just queue the job.

-s file Report status of the transfer in file.

-xdebugjevel
Produce debugging output on the standard output. The
debug Jevel is a number between 0 and 9; higher numbers
give more detailed information.

-z Send success notification to the user.

28 March 1991 Page 2

UUX(C) UUX(C)

Files

/usr/spool/uucp/*
/usr/lib/uucp/Permissions
/usr/lib/uucp/*

spool directories
remote execution permissions
other data and programs

See Also

mail(C), uucp(C), uustat(C).

Warnings
Only the first command of a shell pipeline may have a system-name!.
All other commands are executed on the system of the first command.
The use of the shell metacharacter * will probably not do what you
want it to do. The shell tokens « and » are not implemented.

The execution of commands on remote systems takes place in an exe­
cution directory known to the uucp system. All files required for the
execution will be put into this directory unless they already reside on
that machine. Therefore, the simple file name (without path or ma­
chine reference) must be unique within the uux request. The follow­
ing command will NOT work:

uux "a!difFb!/usr/dan/xyz c!/usr/dan/xyz > Ixyz.difF'

but the command

uux "aldifFal/usr/dan/xyz c!/usr/dan/xyz > Ixyz.difF'

will work. (If diff is a permitted command.)

Protected files and files that are in protected directories that are owned
by the requester can be sent in commands using uux. However, if the
requester is root, and the directory is not searchable by “other,” the
request will fail.

Notes

28 March 1991 Page 3

VI (C) VI (C)

Name

vi, view, vedit - Invokes a screen-oriented display editor.

Syntax

vi [-option...] [command...] [filename ...]

view [-option ...] [command ...] [filename ...]

vedit [-option ...] [command ...] [filename ...]

Description

vi offers a powerful set of text editing operations based on a set of
mnemonic commands. Most commands are single keystrokes that
perform simple editing functions, vi displays a full screen “window”
into the file you are editing. The contents of this window can be
changed quickly and easily within vi. While editing, visual feedback
is provided (the name vi itself is short for “visual”).

The view command is the same as vi except that the read-only option
(-R) is set automatically. The file cannot be changed with view.

The vedit command is the same as vi except for differences in the
option settings, vedit uses novice mode, turns off the magic option,
sets the option report=l and turns on the options showmode and
redraw.

The showmode option informs the vedit user, in a message in the
lower right hand comer of the screen, which mode is being used. For
instance after the ESC-i command is used, the message reads
“INSERT MODE”.

Note that you can not set the novice option from within vi or ex. If
you want to use the novice option you must use the vedit utility. (It is
possible to set the nonovice option from within vedit.)

vi and the line editor ex are one and the same editor: the names vi and
ex identify a particular user interface rather than any underlying func­
tional difference. The differences in user interface, however, are quite
striking, ex is a powerful line-oriented editor, similar to the editor ed.
However, in both ex and ed, visual updating of the terminal screen is
limited, and commands are entered on a command line, v/, on the
other hand, is a screen-oriented editor designed so that what you see
on the screen corresponds exactly and immediately to the contents of
the file you are editing. In the following discussion, vi commands and
options are printed in boldface type.

28 March 1991 Page 1

V7(C) VI (C)

Options available on the vi command line include:

-x Encryption option; when used, the file will be encrypted as it is
being written and will require an encryption key to be read, vi
makes an educated guess to determine if a file is encrypted or not.
See crypt (C).

-C Encryption option; the same as -x except that vi assumes files are
encrypted.

-c command
Begin editing by executing the specified editor command
(usually a search or positioning command).

-t tag Equivalent to an initial tag command; edits the file con­
taining tag and positions the editor at its definition.

-rfile Used in recovering after an editor or system crash,
retrieves the last saved version of the named file.

-1 Specific to editing LISP, this option sets the showmatch
and lisp options.

-L List the names of all files saved as a result of an editor or
system crash. Files may be recovered with the -r option.

-wrt Sets the default window size to n. Useful on dialups to
start in small windows.

-R Sets a read-only option so that files can be viewed but not
edited.

The Editing Buffer

vi performs no editing operations on the file that you name during
invocation. Instead, it works on a copy of the file in an “editing
buffer.”

When you invoke vi with a single filename argument, the named file is
copied to a temporary editing buffer. The editor remembers the name
of the file specified at invocation, so that it can later copy the editing
buffer back to the named file. The contents of the named file are not
affected until the changes are copied back to the original file.

Modes of Operation

Within vi there are three distinct modes of operation:

28 March 1991 Page 2

V7(C) V7(C)

Command Mode

Insert Mode

ex Escape Mode

Within command mode, signals from the
keyboard are interpreted as editing com­
mands.

Insert mode can be entered by typing any
of the vi insert, append, open, substitute,
change, or replace commands. Once in
insert mode, letters typed at the key­
board are inserted into the editing buffer.

The vi and ex editors are one and the
same editor differing mainly in their user
interface. In vi , commands are usually
single keystrokes. In ex, commands are
lines of text terminated by a RETURN.
vi has a special “escape” command that
gives access to many of these line-
oriented ex commands. To use the ex
escape mode, type a colon (:). The colon
is echoed on the status line as a prompt
for the ex command. An executing com­
mand can be aborted by pressing INTER­
RUPT. Most file manipulation com­
mands are executed in ex escape mode
(for example, the commands to read in a
file and to write out the editing buffer to
a file).

Special Keys

There are several special keys in vi. The following keys are used to
edit, delimit, or abort commands and command lines.

ESC Used to return to vi command mode or to cancel par­
tially formed commands.

RETURN Terminates ex commands when in ex escape mode.
Also used to start a newline when in insert mode.

INTERRUPT Often the same as the DEL or RUBOUT key on many
terminals. Generates an interrupt, telling the editor to
stop what it is doing. Used to abort any command that
is executing.

/ Used to specify a string to be searched for. The slash
appears on the status line as a prompt for a search
string. The question mark (?) works exactly like the
slash key, except that it is used to search backward in a
file instead of forward.

28 March 1991 Page 3

V7(C) V7(C)

The colon is a prompt for an ex command. You can
then type in any ex command, followed by an ESC or
RETURN, and the given ex command is executed.

The following characters are special in insert mode:

BKSP Backs up the cursor one character on the current line. The
last character typed before the BKSP is removed from the
input buffer, but remains displayed on the screen.

Ctrl-U Moves the cursor back to the first character of the inser­
tion and restarts insertion.

Ctrl-V Removes the special significance of the next typed char­
acter. Use Ctrl-V to insert control characters. Linefeed
and Ctrl-J cannot be inserted in the text except as newline
characters. Ctrl-Q and Ctrl-S are trapped by the operating
system before they are interpreted by v/, so they too can­
not be inserted as text.

Ctrl-W Moves the cursor back to the first character of the last
inserted word.

Ctrl-T During an insertion, with the autoindent option set and at
the beginning of the current line, entering this character
will insert shiftwidth whitespace.

Ctrl-@ If entered as the first character of an insertion, it is
replaced with the last text inserted, and the insertion ter­
minates. Only 128 characters are saved from the last
insertion. If more than 128 characters were inserted, then
this command inserts no characters. A Ctrl-@ cannot be
part of a file, even if quoted.

Starting and Exiting vi

To enter vi, enter:

vi

vi file

vi +123 file

vi +45 file

vi +/word file

vi +/tty file

Edits empty editing buffer

Edits named file

Goes to line 123

Goes to line 45

Finds first occurrence of “word”

Finds first occurrence of “tty”

28 March 1991 Page 4

VI (C) VI (C)
There are several ways to exit the editor:

ZZ The editing buffer is written to the file only if any changes were
made.

:x The editing buffer is written to the file only if any changes were
made.

:q! Cancels an editing session. The exclamation mark (!) tells vi to
quit unconditionally. In this case, the editing buffer is not writ­
ten out.

vi Commands
vi is a visual editor with a window on the file. What you see on the
screen is v/’s notion of what the file contains. Commands do not
cause any change to the screen until the complete command is
entered. Most commands may take a preceding count that specifies
repetition of the command. This count parameter is not given in the
following command descriptions, but is implied unless overridden by
some other prefix argument. When vi gets an improperly formatted
command, it rings a bell.

Cursor Movement

The cursor movement keys allow you to move your cursor around in a
file. Note in particular the direction keys (if available on your termi­
nal), the h, j, k, and 1 cursor keys, and SPACEBAR, BKSP, Ctrl-N, and
Ctrl-P. These three sets of keys perform identical functions.

Forward Space -1, SPACEBAR, or right direction key
Syntax: 1SPACEBAR right direction key
Function: Moves the cursor forward one character. If a count is

given, move forward count characters. You cannot move
past the end of the line.

Backspace - h, BKSP, or left direction key
Syntax: hBKSPleft direction key
Function: Moves cursor backward one character. If a count is given,

moves backward count characters. Note that you cannot
move past the beginning of the current line.

28 March 1991 Page 5

W(C) VI (C)

Next Line - +, RETURN, j , . Ctrl-N, LF and Down Arrow Key"

Syntax: +RETURN
Function: Moves the cursor down to the beginning of the next line.

Syntax: jCtrl-N

Function:

LFdown direction key
Moves the cursor down one line, remaining in the same
column. Note the difference between these commands
and the preceding set of next line commands which move
to the beginning of the next line.

Previous Line - k, Ctrl-P, and up direction key
Syntax: kCtrl-Pup direction key
Function: Moves the cursor up one line, remaining in the same

column. If a count is given, the cursor is moved count
lines.

Syntax: -

Function: Moves the cursor up to the beginning of the previous line.
If a count is given, the cursor is moved up count lines.

Beginning of Line - 0 andA
Syntax:

Function:

0

Moves the cursor to the beginning of the current line.
Note that 0 always moves the cursor to the first character
of the current line. The caret (A) works somewhat
differently: it moves to the first character on a line that is
not a tab or a space. This is useful when editing files that
have a great deal of indentation, such as program texts.

28 March 1991 Page 6

V7(C) V7(C)

End of Line - $

Syntax: $

Function: Moves the cursor to the end of the current line. Note that
the cursor resides on top of the last character on the line.
If a count is given, the cursor is moved forward count-1
lines to the end of the line.

Goto Line - G

Syntax: [linenumber] G

Function: Moves the cursor to the beginning of the line specified by
linenumber. If no linenumber is given, the cursor moves
to the beginning of the last line in the file. To find the line
number of the current line, use Ctrl-G.

Column - i
Syntax: [column] |

Function: Moves the cursor to the column in the current line given
by column. If no column is given, the cursor is moved to
the first column in the current line.

Word Forward - w and W

Syntax: w
W

Function: Moves the cursor forward to the beginning of the next
word. The lowercase w command searches for a word
defined as a string of alphanumeric characters separated
by punctuation or whitespace (i.e., tab, newline, or space
characters). The uppercase W command searches for a
word defined as a string of nonwhitespace characters.

Back Word - b and B

Syntax: b
B

Function: Moves the cursor backward to the beginning of a word.
The lowercase b command searches backward for a word
defined as a string of alphanumeric characters separated
by punctuation or whitespace (i.e., tab, newline, or space
characters). The uppercase B command searches for a
word defined as a string of non-whitespace characters. If
the cursor is already within a word, it moves backward to
the beginning of that word.

28 March 1991 Page 7

V7(C) VI (C)

End - e and E

Syntax: e
E

Function: Moves the cursor to the end of a word. The lowercase e
command moves the cursor to the last character of a word,
where a word is defined as a string of alphanumeric char­
acters separated by punctuation or whitespace (i.e., tab,
newline, or space characters). The uppercase E moves the
cursor to the last character of a word where a word is
defined as a string of nonwhitespace characters. If the
cursor is already within a word, it moves to the end of that
word.

Sentence - (and)

Syntax: (

Function:

)

Moves the cursor to the beginning (left parenthesis) or
end of a sentence (right parenthesis). A sentence is
defined as a sequence of characters ending with a period
(.), question mark (?), or exclamation mark (!), followed
by either two spaces or a newline. A sentence begins on
the first nonwhitespace character following a preceding
sentence. Sentences are also delimited by paragraph and
section delimiters. See below.

Paragraph - { and }

Syntax: }

Function:

{

Moves the cursor to the beginning ({) or end (}) of a para­
graph. A paragraph is defined with the paragraphs
option. By default, paragraphs are delimited by the nroff
macros “ .IP”, “ .LP”, “ .P”, “ .QP”, and “ .bp”. Paragraphs
also begin after empty lines.

Section - [[and]]

Syntax:]]

Function:

[[

Moves the cursor to the beginning ([[) or end (]]) of a sec­
tion. A section is defined with the sections option. By
default, sections are delimited by the nroff macros “ .NH”
and “ .SH”. Sections also start at formfeeds (Ctrl-L) and at
lines beginning with a brace ({).

28 March 1991 Page 8

VI (C) VI (C)

Match Delimiter - %
Syntax: %

Function: Moves the cursor to a matching delimiter, where a delim­
iter is a parenthesis, a bracket, or a brace. This is useful
when matching pairs of nested parentheses, brackets, and
braces.

Home - H
Syntax: [offset]H

Function: Moves the cursor to the upper left comer of the screen.
Use this command to quickly move to the top of the
screen. If an offset is given, the cursor is homed offset A
number of lines from the top of the screen. Note that the
command “dH” deletes all lines from the current line to
the top line shown on the screen.

Middle Screen - M
Syntax: M
Function: Moves the cursor to the beginning of the screen’s middle

line. Use this command to quickly move to the middle of
the screen from either the top or the bottom. Note that the
command “dM” deletes from the current line to the line
specified by the M command.

Lower Screen - L
Syntax: [offset] L

Function: Moves the cursor to the lowest line on the screen. Use
this command to quickly move to the bottom of the
screen. If an offset is given, the cursor is homed offset-l
number of lines from the bottom of the screen. Note that
the command “dL” deletes all lines from the current line
to the bottom line shown on the screen.

Previous Context -" and "
Syntax:

'character

' character

Function: Moves the cursor to previous context or to context marked
with the m command. If the single quotation mark or
back quotation mark is doubled, the cursor is moved to
previous context. If a single character is given after either

28 March 1991 Page 9

VI (C) VI (C)

quotation mark, the cursor is moved to the location of the
specified mark as defined by the m command. Previous
context is the location in the file of the last “nonrelative”
cursor movement. The single quotation mark (') syntax
is used to move to the beginning of the line representing
the previous context. The back quotation mark (') syntax
is used to move to the previous context within a line.

The Screen Commands

The screen commands are not cursor movement commands and cannot
be used in delete commands as the delimiters of text objects. How­
ever, the screen commands do move the cursor and are useful in pag­
ing or scrolling through a file. These commands are described below:

Scroll- Ctrl-U and Ctrl-D

Syntax: |>/z<?]Ctrl-U
[size]Qtr\-D

Function: Scrolls the screen up a half window (Ctrl-U) or down a
half window (Ctrl-D). If size is given, the scroll is size
number of lines. This value is remembered for all later
scrolling commands.

Page - Ctrl-F and Ctrl-B

Syntax: Ctrl-F
Ctrl-B

Function: Pages screen forward and backward. Two lines of con­
tinuity are kept between pages if possible. A preceding
count gives the number of pages to move forward or back­
ward.

Status - Ctrl-G

Syntax: BELL
Ctrl-G

Function: Displays vi status on status line. This gives you the name
of the file you are editing, whether it has been modified,
the current line number, file number of lines in the file,
and the percentage of the file (in lines) that precedes the
cursor.

Zero Screen - z

Syntax: [linenumber]z[size]RETVKN
[linenumber]z[size].
[linenumber]z[size] -

28 March 1991 Page 10

VI (C) VI (C)

Function: Redraws the display with the current line placed at or
“zeroed” at the top, middle, or bottom of the screen,
respectively. If you give a size, the number of lines dis­
played is equal to size. If a preceding linenumber is
given, the given line is placed at the top of the screen. If
the last argument is a RETURN, the current line is placed
at the top of the screen. If the last argument is a period
(.), the current line is placed in the middle of the screen.
If the last argument is a minus sign (-), the current line is
placed at the bottom of the screen.

Redraw - Ctrl-R or Ctrl-L

Syntax: Ctrl-R
Ctrl-L
(Command depends on terminal type.)

Function: Redraws the screen. Use this command to erase any sys­
tem messages or line noise that may scramble your
screen. Note that system messages do not affect the file
you are editing.

Text Insertion

The text insertion commands always place you in insert mode. Exit
from insert mode is always done by pressing ESC. The following
insertion commands are “pure” insertion commands; no text is deleted
when you use them. This differs from the text modification com­
mands, change, replace, and substitute, which delete and then insert
text in one operation.

Insert - i and I

Syntax: i[text]ESC
l[text]ESC

Function: Insert text in editing buffer. The lowercase i command
places you in insert mode. Text is inserted before the
character beneath the cursor. To insert a newline, press a
RETURN. Exit insert mode by typing the ESC key. The
uppercase I command places you in insert mode, but
begins text insertion at the beginning of the current line
(at the first non-blank character), rather than before the
cursor.

Append - a and A

Syntax: a[tex/]ESC
K[text\ESC

28 March 1991 Page 11

VI (C) VI (C)

Function: Appends text to the editing buffer. The lowercase a com­
mand works exactly like the lowercase i command, except
that text insertion begins after the cursor and not before.
This is the one way to add text to the end of a line. The
uppercase A command begins appending text at the end of
the current line rather than after the cursor.

Open New Line - o and O
Syntax: o[te;tf]ESC

0[text]ESC

Function: Opens a new line and inserts text. The lowercase o com­
mand opens a new line below the current line; uppercase
0 opens a new line above the current line. After the new
line has been opened, both these commands work like the
1 command.

Text Deletion

Many of the text deletion commands use the SM d key as an operator.
This operator deletes text objects delimited by the cursor and a cursor
movement command. Deleted text is always saved away in a buffer.
The delete commands are described below:

Delete Character - x and X
Syntax: x

X

Function: Deletes a character. The lowercase x command deletes
the character beneath the cursor. With a preceding count,
count characters are deleted to the right beginning with
the character beneath the cursor. This is a quick and easy
way to delete a few characters. The uppercase X com­
mand deletes the character just before the cursor. With a
preceding count, count characters are deleted backward,
beginning with the character just before the cursor.

Delete - d and D
Syntax: d cursor-movementdd D
Function: Deletes a text object. The lowercase d command takes a

cursor-movement as an argument. If the cursor-movement
is an intraline command, deletion takes place from the
cursor to the end of the text object delimited by the
cursor-movement. Deletion forward deletes the character

28 March 1991 Page 12

VI (C) VI (C)

beneath the cursor; deletion backward does not. If the
cursor-movement is a multi-line command, deletion takes
place from and including the current line to the text object
delimited by the cursor-movement.

The dd command deletes whole lines. The uppercase D command
deletes from and including the cursor to the end of the current line.

Deleted text is automatically pushed on a stack of buffers numbered 1
through 9. The most recently deleted text is also placed in a special
delete buffer that is logically buffer 0. This special buffer is the
default buffer for all (put) commands using the double quotation mark
(") to specify the number of the buffer for delete, put, and yank com­
mands. The buffers 1 through 9 can be accessed with the p and P (put)
commands by appending the double quotation mark (") to the number
of the buffer. For example:

"4p

puts the contents of delete buffer number 4 in your editing buffer just
below the current line. Note that the last deleted text is “put” by
default and does not need a preceding buffer number.

Text Modification

The text modification commands all involve the replacement of text
with other text. This means that some text will necessarily be deleted.
All text modification commands can be “undone” with the u com­
mand:

Undo - u and U

Syntax: u
U

Function: Undoes the last insert or delete command. The lowercase
u command undoes the last insert or delete command.
This means that after an insert, u deletes text; and after a
delete, u inserts text. For the purposes of undo, all text
modification commands are considered insertions.

The uppercase U command restores the current line to its
state before it was edited, no matter how many times the
current line has been edited since you moved to it.

Repeat - .

Syntax:

Function: Repeats the last insert or delete command. A special case
exists for repeating the p and P “put” commands. When
these commands are preceded by the name of a delete

28 March 1991 Page 13

VI (C) V7(C)

buffer, successive u commands display the contents of the
delete buffers.

Change - c and C

Syntax: ccursor-movement text ESC
C text ESC
cctext ESC

Function: Changes a text object and replaces it with text . Text is
inserted as with the i command. A dollar sign ($) marks
the extent of the change. The c command changes arbi­
trary text objects delimited by the cursor and a cursor-
movement . cc affects whole lines while C affects from the
cursor to the end of the line.

Replace - r and R

Syntax: r char
Rtext ESC

Function: Overstrikes character or line with char or text , respec­
tively. Use r to overstrike a single character and R to
overstrike a whole line. A count multiplies the replace­
ment text count times.

Substitute - s and S

Syntax: stext ESC
Stext ESC

Function: Substitutes current character or current line with text. Use
s to replace a single character with new text. Use S to
replace the current line with new text. If a preceding
count is given, text substitutes for count number of char­
acters or lines depending on whether the command is s or
S, respectively.

Filter -!

Syntax: leursor-movement cmd RETURN

Function: Filters the text object delimited by the cursor and cursor-
movement through the XENIX command, cmd. For exam­
ple, the following command sorts all lines between the
cursor and the bottom of the screen, substituting the
designated lines with the sorted lines:

ILsort

Arguments and shell metacharacters may be included as
part of cmd; however, standard input and output are

28 March 1991 Page 14

V7(C) VI (C)

always associated with the text object being filtered. !!
affects the current line.

Join Lines - J

Syntax: J

Function: Joins the current line with the following line. If a count is
given, count lines are joined.

Shift - < and >

Syntax: >[cursor-movement]
^cursor-movement]
»
«

Function: Shifts text right (>) or left (<). Text is shifted by the value
of the option shiftwidth, which is normally set to eight
spaces. Both the > and < commands shift all lines in the
text object delimited by the current line and cursor-
movement . The » and « commands affect whole lines.
All versions of the command can take a preceding count
that acts to multiply the number of objects affected.

Text Movement

The text movement commands move text in and out of the named
buffers a-z and out of the delete buffers 1-9. These commands either
“yank” text out of the editing buffer and into a named buffer or “put”
text into the editing buffer from a named buffer or a delete buffer. By
default, text is put and yanked from the “unnamed buffer”, which is
also where the most recently deleted text is placed. Thus it is quite
reasonable to delete text, move your cursor to the location where you
want the deleted text placed, and then put the text back into the edit­
ing buffer at this new location with the p or P command.

The named buffers are most useful for keeping track of several chunks
of text that you want to keep on hand for later access, movement, or
rearrangement. These buffers are named with the letters a through z.
To refer to one of these buffers (or one of the numbered delete buffers)
in a command, use a quotation mark. For example, to yank a line into
the buffer named a, enter:

"ayy

To put this text back into the file, enter:

Map

28 March 1991 Page 15

V7(C) VI (C)

If you delete text in the buffer named A rather than a , text is appended
to the buffer named a (A and a refer to the same buffer but are handled
differently).

Note that the contents of the named buffers are not destroyed when
you switch files. Therefore, you can delete or yank text into a buffer,
switch files, and then do a put. Buffer contents are destroyed when you
exit the editor, so be careful.

Put - p and P

Syntax: ["alphanumeric]p
["alphanumeric]P

Function: Puts text from a buffer into the editing buffer. If no buffer
name is specified, text is put from the unnamed buffer.
The lowercase p command puts text either below the
current line or after the cursor, depending on whether the
buffer contains a partial line or not. The uppercase P
command puts text either above the current line or before
the cursor, again depending on whether the buffer contains
a partial line or not.

Yank - y and Y

Syntax: [" letter\y cursor-movement
["letter\yy
["letter]Y

Function: Copies text in the editing buffer to a named buffer. If no
buffer name is specified, text is yanked into the unnamed
buffer. If an uppercase letter is used, text is appended to
the buffer and does not overwrite and destroy the previous
contents. When a cursor-movement is given as an argu­
ment, the delimited text object is yanked. The Y and yy
commands yank a single line, or, if a preceding count is
given, multiple lines can be yanked.

Searching

The search commands search either forward or backward in the edit­
ing buffer for text that matches a given regular expression.

Search - / and ?

Syntax: l[pattern]l[offset]RETUKN
l[pattern]RET\]RN
? [pattern] ? [offset] RETURN
?[pattern]RETl]RN

28 March 1991 Page 16

vn c) VI (C)

Function: Searches forward (/) or backward (?) for pattern. A string
is actually a regular expression. The trailing delimiter is
not required. If no pattern is given, then the last pattern
searched for is used. After the second delimiter, an offset
may be given, specifying the beginning of a line relative
to the line on which pattern was found. For example:

/word/-

finds the beginning of the line immediately preceding the
line containing “word” and the following command:

/word/+2

finds the beginning of the line two lines after the line con­
taining “word”. See also the ignorecase and magic
options.

Next String - n and N

Syntax: n
N

Function: Repeats the last search command. The n command
repeats the search in the same direction as the last search
command. The N command repeats the search in the
opposite direction of the last search command.

Find Character - f and F

Syntax: fchar
Fchar

Function: Finds character char on the current line. The lowercase f
searches forward on the line; the uppercase F searches
backward. The semicolon (;) repeats the last character
search. The comma (,) reverses the direction of the
search.

To Character - 1 and T

Syntax: t char
Tchar

Function: Moves the cursor up to but not on char. The semicolon
(;) repeats the last character search. The comma (,) rev­
erses the direction of the search.

28 March 1991 Page 17

VI (C) VHC)

Mark - m

Syntax: m letter

Function: Marks a place in the file with a lowercase letter. You can
move to a mark using the “to mark” commands described
below. It is often useful to create a mark, move the cur­
sor, and then delete from the cursor to the mark “a” with
the following command:

d'a

To Mark - ' and'
Syntax: 'letter

"letter

Function: Move to letter. These commands let you move to the
location of a mark. Marks are denoted by single lower­
case alphabetic characters. Before you can move to a
mark, it must first be created with the m command. The
back quotation mark (') moves you to the exact location
of the mark within a line; the forward quotation mark (')
moves you to the beginning of the line containing the
mark. Note that these commands are also legal cursor
movement commands.

Exit and Escape Commands

There are several commands that are used to escape from vi command
mode and to exit the editor. These are described in the following sec­
tion.

ex Escape - :
Syntax: :

Function: Enters ex escape mode to execute an ex command. The
colon appears on the status line as a prompt for an ex
command. You then can enter an ex command line ter­
minated by either a RETURN or an ESC and the ex com­
mand will execute. You are then prompted to type
RETURN to return to vi command mode. During the input
of the ex command line or during execution of the ex
command, you may press INTERRUPT to stop what you
are doing and return to vi command mode.

Exit Editor - ZZ

28 March 1991 Page 18

VI (C) V7(C)

Syntax: ZZ

Function: Exit vi and write out the file if any changes have been
made. This returns you to the shell from which you
started vi.

Quit to ex -Q

Syntax: Q

Function: Enters the ex editor. When you do this, you will still be
editing the same file. You can return to vi by entering the
vi command from ex.

ex Commands

Entering the colon (:) escape command when in command mode pro­
duces a colon prompt on the status line. This prompt is for a command
available in the line-oriented editor, ex. In general, ex commands let
you write out or read in files, escape to the shell, or switch editing
files.

Many of these commands perform actions that affect the “current” file
by default. The current file is normally the file that you named when
you started vz, although the current file can be changed with the “ file”
command, f, or with the “next” command, n. In most respects, these
commands are identical to similar commands for the editor, ed. All
such ex commands are aborted by either RETURN or ESC. We shall
use RETURN in our examples. Command entry is terminated by typ­
ing INTERRUPT.

Command Structure

Most ex command names are English words, and initial prefixes of the
words are acceptable abbreviations. In descriptions, only the abbrevi­
ation is discussed, since this is the most frequently used form of the
command. The ambiguity of abbreviations is resolved in favor of the
more commonly used commands. As an example, the command sub­
stitute can be abbreviated s , while the shortest available abbreviation
for the set command is se.

Most commands accept prefix addresses specifying the lines in the file
that they are to affect. A number of commands also may take a trail­
ing count specifying the number of lines to be involved in the com­
mand. Counts are rounded down if necessary. Thus, the command
“ 10p” displays the tenth line in the buffer while “move 5” moves the
current line after line 5.

28 March 1991 Page 19

VI (C) VI (C)

Some commands take other information or parameters, stated after the
command name. Examples might be option names in a set command,
such as “set number”, a filename in an edit command, a regular
expression in a substitute command, or a target address for a copy
command. For example:

1,5 copy 25

A number of commands have variants. The variant form of the com­
mand is invoked by placing an exclamation mark (!) immediately after
the command name. Some of the default variants may be controlled
by options; in this case, the exclamation mark turns off the meaning of
the default.

In addition, many commands take flags, including the characters “p”
and “1”. A “p” or “1” must be preceded by a blank or tab. In this
case, the command abbreviated by these characters is executed after
the command completes. Since ex normally displays the new current
line after each change, p is rarely necessary. Any number of plus (+)
or minus (-) characters may also be given with these flags. If they
appear, the specified offset is applied to the current line value before
the printing command is executed.

Most commands that change the contents of the editor buffer give
feedback if the scope of the change exceeds a threshold given by the
report option. This feedback helps to detect undesirably large
changes so that they may be quickly and easily reversed with the undo
command. After commands with global effect, you will be informed if
the net change in the number of lines in the buffer during this com­
mand exceeds this threshold.

Command Addressing

The following specifies the line addressing syntax for ex commands:

The current line. Most commands leave the current
line as the last line which they affect. The default
address for most commands is the current line, thus

is rarely used alone as an address.

$

n The nth line in the editor’s buffer, lines being num­
bered sequentially from 1.

The last line in the buffer.

% An abbreviation for “ 1,$”, the entire buffer.

+n or -n An offset, n relative to the current buffer line. The
forms “ .+3” “+3” and “+++” are all equivalent. If
the current line is line 100 they all address line 103.

28 March 1991 Page 20

V7(C) VI (C)

I pattern! or ?pattern?
Scan forward and backward respectively for a text
matching the regular expression given by pattern.
Scans normally wrap around the end of the buffer.
If all that is desired is to print the next line contain­
ing pattern, the trailing slash (/) or question mark
(?) may be omitted. If pattern is omitted or explic­
itly empty, the string matching the last specified
regular expression is located. The forms
“RETURN” and “7RETURN” scan using the last
named regular expression. After a substitute,
“RETURN” and “??RETURN” would scan using
that substitute’s regular expression.

" or 'x Before each nonrelative motion of the current line
dot (.), the previous current line is marked with a
label, subsequently referred to with two single quo­
tation marks (")• This makes it easy to refer or
return to this previous context. Marks are esta­
blished with the vi m command, using a single
lowercase letter as the name of the mark. Marked
lines are later referred to with the following nota­
tion:

'x.

where x is the name of a mark.

Addresses to commands consist of a series of addresses, separated by
a comma (,) or a semicolon (;). Such address lists are evaluated left to
right. When addresses are separated by a semicolon (;) the current
line (.) is set to the value of the previous addressing expression before
the next address is interpreted. If more addresses are given than the
command requires, all but the last one or two are ignored. If the com­
mand takes two addresses, the first addressed line must precede the
second in the buffer. Null address specifications are permitted in a list
of addresses, the default in this case is the current line thus
“ ,100” is equivalent to “ .,100”. It is an error to give a prefix address
to a command which expects none.

Command Format

The following is the format for all ex commands:

[address] [command] [!] [parameters] [count] [flags]

All parts are optional depending on the particular command and its
options. The following section describes specific commands.

28 March 1991 Page 21

V7(C) VI (C)

Argument List Commands

The argument list commands allow you to work on a set of files, by
remembering the list of filenames that are specified when you invoke
vi. The args command lets you examine this list of filenames. The
file command gives you information about the current file. The n
(next) command lets you either edit the next file in the argument list
or change the list. The rewind command lets you restart editing the
files in the list. All of these commands are described below:

args The members of the argument list are displayed, with
the current argument delimited by brackets.
For example, a list might look like this:

filel file2 [file3] file4 file5

The current file is file3.

f Displays the current filename, whether it has been
modified since the last write command, whether it is
read-only, the current linenumber, the number of
lines in the buffer, and the percentage of the buffer
that you have edited. In the rare case that the current
file is “ [Not edited]” , this is noted also; in this case
you have to use w! to write to the file, since the edi­
tor is not sure that a w command will not destroy a
file unrelated to the current contents of the buffer.

f file The current filename is changed to file which is con­
sidered “ [Not edited]” .

n The next file in the command line argument list is
edited.

n! This variant suppresses warnings about the
modifications to the buffer not having been written
out, discarding irretrievably any changes that may
have been made.

n [+command\filelist
The specified filelist is expanded and the resulting
list replaces the current argument list; the first file in
the new list is then edited. If command is given (it
must contain no spaces), then it is executed after
editing the first such file.

rew The argument list is rewound, and the first file in the
list is edited.

rew! Rewinds the argument list discarding any changes
made to the current buffer.

28 March 1991 Page 22

V7(C) VI (C)

If you use C-Shell and set the prompt variable to output a prompt for
non-interactive shells, the prompt is interpreted as a filename when
you use these commands. This causes unexpected problems. To avoid
these problems, use the default prompt value as specified in
lusr/lib/mkuser/mkuser.cshrc.

Edit Commands

To edit a file other than the one you are currently editing, you will
often use one of the variations of the e command.

In the following discussions, note that the name of the current file is
always remembered by vi and is specified by a percent sign (%). The
name of the previous file in the editing buffer is specified by a number
sign (#).

The edit commands are described below:

e file Used to begin an editing session on a new file. The edi­
tor first checks to see if the buffer has been modified
since the last w command was issued. If it has been, a
warning is issued and the command is aborted. The
command otherwise deletes the entire contents of the
editor buffer, makes the named file the current file, and
displays the new filename. After ensuring that this file
is sensible, (i.e., that it is not a binary file, directory, or
a device), the editor reads the file into its buffer. If the
read of the file completes without error, the number of
lines and characters read is displayed on the status line.
If none of these errors occurred, the file is considered
edited. If the last line of the input file is missing the
trailing newline character, it is supplied and a com­
plaint issued. The current line is initially the first line
of the file.

el file This variant form suppresses the complaint about
modifications having been made and not written from
the editor buffer, thus discarding all changes that have
been made before editing the new file.

e +nfile Causes the editor to begin editing at line n rather than
at the first line. The argument n may also be an editor
command containing no spaces; for example, ‘^/pat­
tern”.

Ctrl-" This is a shorthand equivalent for “ :e #RETURN”,
which returns to the previous position in the last edited
file. If you do not want to write the file, you should use
“ :e! #RETURN” instead.

28 March 1991 Page 23

V7(C) *7(0

Write Commands

The write commands let you write out all or part of your editing buffer
to either the current file or to some other file. These commands are
described below:

w file Writes changes made back to file, displaying the num­
ber of lines and characters written. Normally, file is
omitted and the buffer is written to the name of the
current file. If file is specified, text is written to that
file. The editor writes to a file only if it is the current
file and is edited, or if the file does not exist. Other­
wise, you must give the variant form w! to force the
write. If the file does not exist it is created. The
current filename is changed only if there is no current
filename; the current line is never changed.

If an error occurs while writing the current and edited
file, the editor displays:

No write since last change

even if the buffer had not previously been modified.

v t»file Appends the buffer contents at the end of an existing
file. Previous file contents are not destroyed.

w! name Overrides the checking of the normal write command,
and writes to any file that the system permits.

w [command
Writes the specified lines into command. A blank or
tab before the exclamation mark is necessary. Note the
difference in spacing between

w! file

which overrides checks and

w lemd

which writes to a command. The output of this com­
mand is displayed on the screen and not inserted in the
editing buffer.

Read Commands

The read commands let you read text into your editing buffer at any
location you specify. The text you read in must be at least one line
long, and can be either a file or the output from a command.

28 March 1991 Page 24

V7(C) V/(C)

r file Places a copy of the text of the given file in the editing
buffer after the specified line. If no file is given, the
current filename is used. The current filename is not
changed unless there is none, in which case the file
becomes the current name. If the file buffer is empty
and there is no current name, this is treated as an e
command.

Address 0 is legal for this command and causes the file
to be read at the beginning of the buffer. Statistics are
given as for the e command when the r successfully ter­
minates. After an r the current line is the last line read.

r !command Reads the output of command into the buffer after the
specified line. A blank or tab before the exclamation
mark (!) is mandatory.

Quit Commands

There are several ways to exit vz. Some abort the editing session,
some write out the editing buffer before exiting, and some warn you if
you decide to exit without writing out the buffer. All of these ways of
exiting are described below:

q Exits vz. No automatic write of the editor buffer to a file
is performed. However, vz displays a warning message if
the file has changed since the last w command was issued,
and does not quit, vz also displays a diagnostic if there are
more files in the argument list left to edit. Normally, you
will wish to save your changes, and you should enter a w
command. If you wish to discard them, enter the q! com­
mand variant.

q! Quits from the editor, discarding changes to the buffer
without complaint.

wq name Like a w and then a q command.

wq! name Overrides checking normally made before execution of
the w command to any file. For example, if you own a file
but do not have write permission turned on, the wq!
allows you to update the file anyway.

x name If any changes have been made and not written, writes the
buffer out and then quits. Otherwise, it just quits.

Global and Substitute Commands

The global and substitute commands allow you to perform complex
changes to a file in a single command. Learning how to use these

28 March 1991 Page 25

V7(C) V7(C)

commands is a must for an experienced vi user,

g/pattern/cmds
The g command has two distinct phases. In the first
phase, each line matching pattern in the editing buffer is
marked. Next, the given command list is executed with
the current line, dot (.), initially set to each marked line.

The command list consists of the remaining commands on
the current input line and may continue to multiple lines
by ending all but the last such line with a backslash (\).
This multiple-line option will not work from within v/,
you must switch to ex to do it. The vi command “Q” can
be used to exit to ex and the ex command “vi” returns to
visual mode. If cmds (or the trailing slash (/) delimiter) is
omitted, each line matching pattern is displayed.

The g command itself may not appear in cmds. The
options autoprint and autoindent are inhibited during a
global command and the value of the report option is
temporarily infinite, in deference to a report for the entire
global. Finally, the context mark (') or (') is set to the
value of the current line (.) before the global command
begins and is not changed during a global command.

The following global commands, most of them substitu­
tions, cover the most frequent uses of the global com­
mand.

g/sl/p This command simply prints all lines that contain
the string “ s i ” .

g/sl/s//s2/ This command substitutes the first occurrence of
“s i ” on all lines that contain it with the string “s2”.

g/sl/s//s2/g This command substitutes all occurrences of “s i ”
with the string “s2”. This includes multiple occur­
rences of “ s i ” on a line.

g/sl/s//s2/gp This command works the same as the preceding
example, except that in addition, all changed lines
are displayed on the screen.

g/sl/s//s2/gc This command prompts you to confirm that you
want to make each substitution of the string “s i ”
with the string “s2”. If you enter a Y , the given
substitution is made, otherwise it is not.

g/s0/s/sl/s2/g This command marks all those lines that contain the
string “sO”, and then for those lines only, substi­
tutes all occurrences of the string “s i ” with “s2”.

28 March 1991 Page 26

VI (C) VI (C)

gl/pattern/cmds This variant form of g runs cmds at each line not
matching pattern.

g/7s// /g This command inserts blank spaces at the beginning
of each line in a file.

sIpatternl replloptions
On each specified line, the first instance of text
matching the regular expression pattern is replaced
by the replacement text repl. If the global indicator
option character g appears, all instances on a line
are substituted. If the confirm indication character
c appears, before each substitution the line to be
substituted is printed on the screen with the string
to be substituted marked with caret (A) characters.
By entering Y , you cause the substitution to be per­
formed; any other input causes no change to take
place. After an s command, the current line is the
last line substituted.

vIpatternlcmds A synonym for the global command variant g!, run­
ning the specified cmds on each line that does not
match pattern.

Text Movement Commands

The text movement commands are largely superseded by commands
available in vi command mode. However, the following two com­
mands are still quite useful:

co addr flags A copy of the specified lines is placed after addr,
which may be “0”. The current line addresses
the last line of the copy.

[range]maddr The m command moves the lines specified by range
after the line given by addr. For example, m+
swaps the current line and the following line, since
the default range is just the current line. The first of
the moved lines becomes the current line (dot).

Shell Escape Commands

You will often want to escape from the editor to execute normal
XENIX commands. You may also want to change your working direc­
tory so that your editing can be done with respect to a different work­
ing directory. These operations are described below:

cd directory The specified directory becomes the current direc­
tory. If no directory is specified, the current value
of the home option is used as the target directory.

28 March 1991 Page 27

VI (C) VI (C)

After a cd , the current file is not considered to have
been edited so that write restrictions on preexisting
files still apply.

sh A new shell is created. You may invoke as many
commands as you like in this shell. To return to vi,
enter a Ctrl-D to terminate the shell.

!command The remainder of the line after the exclamation (!)
is sent to a shell to be executed. Within the text of
command , the characters “%” and “#” are
expanded as the filenames of the current file and the
last edited file and the character “ !” is replaced
with the text of the previous command. Thus, in
particular, “ !! ” repeats the last such shell escape. If
any such expansion is performed, the expanded line
is echoed. The current line is unchanged by this
command.

If there has been “ [No write]” of the buffer contents since the last
change to the editing buffer, a diagnostic is displayed before the com­
mand is executed, as a warning. A single exclamation (!) is displayed
when the command completes.

If you use C-Shell and set the prompt variable to output a prompt for
non-interactive shells, the prompt is interpreted as an argument for
command in shell escapes. This causes unexpected problems. To
avoid these problems, use the default prompt value as specified in
lusr/lib/mkuser/mkuser.cshrc.

Other Commands

The following command descriptions explain how to use miscellane­
ous ex commands that do not fit into the above categories.

The abbr, map, and set commands can also be defined with the
EXINIT environment variable, which is read by the editor each time it
starts up. For more information, see environ^M). Alternatively, these
commands can be placed in a .exrc file in your home directory, which
the editor reads if EXINIT is not defined.

abbr Maps the first argument to the following string. For exam­
ple, the following command

:abbr rainbow yellow green blue red

maps “rainbow” to “yellow green blue red”. Abbrevia­
tions can be turned off with the unabbreviate command,
as in:

:una rainbow

28 March 1991 Page 28

VI (C) vnc)

map, map! Maps any character or escape sequence to a command
sequence. For example, the following command maps the
C TR L-A key to a shell escape that runs the clear (C) com­
mand:

map "A :!clearÄM

To include the C T R L-A and C T R L-M characters in the
mapping, you must use vi ’s C T R L-V escape.

Characters mapped with map work in command mode,
while characters mapped with map! work in insert mode.
Characters mapped with map! cannot be unmapped using
unmap.

nu Displays each specified line preceded by its buffer line
number. The current line is left at the last line displayed.
To get automatic line numbering of lines in the buffer, set
the number option.

preserve The current editor buffer is saved as though the system
had just crashed. This command is for use only in emer­
gencies when a w command has resulted in an error and
you do not know how to save your work.

= Displays the line number of the addressed line. The
current line is unchanged.

recover file
Recovers file from the system save area. The system
saves a copy of the editing buffer only if you have made
changes to the file, the system crashes, or you execute a
preserve command. When you use preserve, you are
notified by mail when a file is saved.

set argument
With no arguments, set displays those options whose
values have been changed from their defaults; with the
argument all, it displays all of the option values.

Giving an option name followed by a question mark (?)
causes the current value of that option to be displayed.
The question mark is unnecessary unless the option is a
Boolean value. Switch options are given values either
with:

set option

to turn them on or:

set no option

28 March 1991 Page 29

V7(C) V7(C)

to tum them off. String and numeric options are assigned
with:

set option=v2i\m

More than one option can be given to set; all are inter­
preted from left to right. See “Options” for a complete
list and descriptions.

tag label The focus of editing switches to the location of label. If
necessary, vi will switch to a different file in the current
directory to find label. If you have modified the current
file before giving a tag command, you must first write it
out. If you give another tag command with no argument,
the previous label is used.

Similarly, if you press Ctrl-], vi searches for the word
immediately after the cursor as a tag. This is equivalent
to entering “ :tag”, the word following the cursor, and then
pressing the RETURN key.

The tags file is normally created by a program such as
ctags, and consists of a number of lines with three fields
separated by blanks or tabs. The first field gives the name
of the tag, the second the name of the file where the tag
resides, and the third gives an addressing form which can
be used by the editor to find the tag. This field is usually a
contextual scan using / pattern / to be immune to minor
changes in the file. Such scans are always performed as if
the nomagic option was set. The tag names in the tags
file must be sorted alphabetically.

unmap Unmaps any character or escape sequence that has been
mapped using the map command.

Options

There are a number of options that can be set to affect the vi environ­
ment. These can be set with the ex set command while editing, with
the EXINIT environment variable, or in the vi start-up file, .exrc. This
file normally sets the user’s preferred options so that they do not need
to be set manually each time you invoke vi.

The first thing that must be done before you can use vi, is to set the
terminal type so that vi understands how to talk to the particular termi­
nal you are using.

There are only two kinds of options: switch options and string options.
A switch option is either on or off. A switch is turned off by prefixing
the word no to the name of the switch within a set command. String
options are strings of characters that are assigned values with the

28 March 1991 Page 30

VI (C) VI (C)

syntax options string. Multiple options may be specified on a line, vi
options are listed below:

autoindent, ai default: noai
Can be used to ease the preparation of structured program text. For
each line created by an append, change, insert, open, or substitute
operation, vi looks at the preceding line to determine and insert an
appropriate amount of indentation. To back the cursor up to the
preceding tab stop, press Ctrl-D. The tab stops going backward are
defined as multiples of the shiftwidth option. You cannot back­
space over the indent, except by pressing Ctrl-D.

Specially processed in this mode is a line with no characters added
to it, which turns into a completely blank line (the whitespace pro­
vided for the autoindent is discarded). Also, specially processed
in this mode are lines beginning with a caret (*) and immediately
followed by a Ctrl-D. This causes the input to be repositioned at
the beginning of the line, but retains the previous indent for the
next line. Similarly, a “0” followed by a Ctrl-D, repositions the
cursor at the beginning without retaining the previous indent.
Autoindent doesn’t happen in global commands.

autoprint ap default: ap
Causes the current line to be displayed after each ex copy, move,
or substitute command. This has the same effect as supplying a
trailing “p” to each such command. Autoprint is suppressed in
globals, and only applies to the last command on a line.

autowrite, aw default: noaw
Causes the contents of the buffer to be automatically written to the
current file if you have modified it when you give a next, rewind,
tag, or! command, or a Ctrl-" (switch files) or Ctrl-] (goto tag) com­
mand.

beautify, bf default: nobeautify
Causes all control characters except tab, newline and formfeed to
be discarded from the input. A complaint is registered the first
time a backspace character is discarded. Beautify does not apply
to command input.

directory, dir default: dir=/tmp
Specifies the directory in which vi places the editing buffer file. If
the directory does not have write permission, the editor will exit
abruptly when it fails to write to the buffer file.

edcompatible default: noedcompatible
Causes the presence or absence of g and c suffixes on substitute
commands to be remembered, and to be toggled on and off by
repeating the suffixes. The suffix r causes the substitution to be like
the tilde O command, instead of like the ampersand command
(&).

28 March 1991 Page 31

VI (C) VI (C)

errorbells, eb default: noeb
Error messages are preceded by a bell. If possible, the editor
always places the error message in inverse video instead of ringing
the bell.

hardtabs, ht default: ht=8
Gives the boundaries on which terminal hardware tabs are set or on
which tabs the system expands.

ignorecase, ic default: noic
Maps all uppercase characters in the text to lowercase in regular
expression matching. In addition, all uppercase characters in regu­
lar expressions are mapped to lowercase except in character class
specifications enclosed in brackets.

lisp default: nolisp
Autoindent indents appropriately for LISP code, and the () { } [[
and]] commands are modified to have meaning for LISP.

list default: nolist
All printed lines are displayed, showing tabs and end-of-lines.

magic default: magic
If nomagic is set, the number of regular expression metacharacters
is greatly reduced, with only up-arrow Q and dollar sign ($) hav­
ing special effects. In addition, the metacharacters and in
replacement patterns are treated as normal characters. All the nor­
mal metacharacters may be made magic when nomagic is set by
preceding them with a backslash (\).

mesg default: nomesg
Causes write permission to be turned off to the terminal while you
are in visual mode, if nomesg is set. This prevents people writing
to your screen with the XENIX write command and scrambling
your screen as you edit.

number, n default: nonumber
Causes all output lines to be printed with their line numbers.

open default: open
If set to noopen, the commands open and visual are not permitted
from ex. This is set to prevent confusion resulting from accidental
entry to open or visual mode.

optimize, opt default: optimize
Output of text to the screen is expedited by setting the terminal so
that it does not perform automatic carriage returns when displaying
more than one line of output, thus greatly speeding output on ter­
minals without addressable cursors when text with leading whi­
tespace is printed.

28 March 1991 Page 32

V7<C) V/(C)

paragraphs, para default: para =IPLPPPQPP TPbp
Specifies paragraph delimiters for the { and } operations. The pairs
of characters in the option’s value are the names of the nroff mac­
ros that start paragraphs.

prompt default: prompt
ex input is prompted for with a colon (:). If noprompt is set, when
ex command mode is entered with the Q command, no colon
prompt is displayed on the status line.

redraw default: noredraw
The editor simulates (using great amounts of output), an intelligent
terminal on a dumb terminal. Useful only at very high speed.

remap default: remap
If on, mapped characters are repeatedly tried until they are
unchanged. For example, if o is mapped to O and O is mapped to /,
o will map to I if remap is set, and to O if noremap is set.

report default: report=5
Specifies a threshold for feedback from commands. Any command
that modifies more than the specified number of lines will provide
feedback as to the scope of its changes. For global commands and
the undo command, the net change in the number of lines in the
buffer is presented at the end of the command. Thus notification is
suppressed during a g command on the individual commands per­
formed.

scroll default: scroll^/i window
Determines the number of logical lines scrolled when Ctrl-D is
received from a terminal input in command mode, and the number
of lines displayed by a command mode z command (double the
value of scroll).

sections default: sections=SHNHH HU
Specifies the section macros for the [[and]] operations. The pairs
of characters in the option’s value are the names of the nroff mac­
ros that start sections.

shell, sh default: sh=/bin/sh
Gives the pathname of the shell forked for the shell escape com­
mand (!), and by the shell command. The default is taken from
SHELL in the environment, if present.

shiftwidth, sw default:sw=8
Gives the width of a software tab stop, used in reverse tabbing with
Ctrl-D when using autoindent to append text, and by the shift com­
mands.

showmatch, sm default: nosm
When a) or } is typed, moves the cursor to the matching (or { for
one second if this matching character is on the screen.

28 March 1991 Page 33

V7(C) VI (C)

showmode default: noshowmodeCauses the message “INPUT MODE” to appear on the lower right comer of the screen when insert mode is activated.
slowopen default: noslowopen

Postpones update of the display during inserts.

tabstop, ts default: ts=8
The editor expands tabs in the input file to be on n boundaries for
the purposes of display.

taglength, tl default: tl=0
The first n characters in a tag name are significant, but all others
are ignored. A value of zero (the default) means that all characters
are significant.

tags default: tags=tags /usr/lib/tags
A path of files to be used as tag files for the tag command. A
requested tag is searched for in the specified files, sequentially. By
default, files named tags are searched for in the current directory
and in /usr/lib.

term default=value of shell TERM variable
The terminal type of the output device.

terse default: noterse
Shorter error diagnostics are produced for the experienced user,

timeout, to default: noto
Eliminates the 1 second time limit for maps (character mappings),

warn default: warn
Warn if there has been “ [No write since last change]” before a
shell escape command (!).

window default: window = speed dependent
This specifies the number of lines in a text window. The default is
8 at slow speeds (600 baud or less), 16 at medium speed (1200
baud), and the full screen (minus one line) at higher speeds.

w300, wl200, w9600
These are not true options but set window (above) only if the
speed is slow (300), medium (1200), or high (9600), respectively.

wrapscan, ws default: ws
Searches, using the regular expressions in addressing, will wrap
around past the end of the file.

wrapmargin, wm default: wm=0
Defines the margin for automatic insertion of newlines during text
input. A value of zero specifies no wrap margin.

28 March 1991 Page 34

V7(C) VI (C)

writeany, wa default: nowa
Inhibits the checks normally made before write commands, allow­
ing a write to any file that the system protection mechanism will
allow.

Regular Expressions

A regular expression specifies a set of strings of characters. A
member of this set of strings is said to be “matched” by the regular
expression, vi remembers two previous regular expressions: the pre­
vious regular expression used in a substitute command and the previ­
ous regular expression used elsewhere, referred to as the previous
scanning regular expression. The previous regular expression can
always be referred to by a null regular expression: e.g., “//” or “??” .

The regular expressions allowed by vi are constructed in one of two
ways depending on the setting of the magic option. The ex and vi
default setting of magic gives quick access to a powerful set of regu­
lar expression metacharacters. The disadvantage of magic is that the
user must remember that these metacharacters are magic and precede
them with the backslash (\) to use them as “ordinary” characters.
With nomagic set, regular expressions are much simpler, there being
only two metacharacters. The power of the other metacharacters is
still available by preceding the now ordinary character with a “\ ” .
Note that “\ ” is always a metacharacter. In this discussion, the magic
option is assumed. With nomagic , the only special characters are the
caret Q at the beginning of a regular expression, the dollar sign ($) at
the end of a regular expression, and the backslash (\). The tilde (~)
and the ampersand (&) also lose their special meanings related to the
replacement pattern of a substitute.

The following basic constructs are used to construct magic mode reg­
ular expressions.

char An ordinary character matches itself. Ordinary characters are
any characters except a caret (") at the beginning of a line, a
dollar sign ($) at the end of line, an asterisk (*) as any character
other than the first, and any of the following characters:

. \ r
These characters must be preceded by a backslash (\) if they are
to be treated as ordinary characters.

At the beginning of a pattern, forces the match to succeed only
at the beginning of a line.

$ At the end of a regular expression, forces the match to succeed
only at the end of the line.

28 March 1991 Page 35

VZ(C) VI (C)

. Matches any single character except the newline character.

\< Forces the match to occur only at the beginning of a “word” ;
that is, either at the beginning of a line, or just before a letter,
digit, or underline and after a character not one of these.

\> Similar to “\<”, but matching the end of a “word”, i.e., either
the end of the line or before a character which is not a letter, a
digit, or the underline character.

[string]
Matches any single character in the class defined by string.
Most characters in string define themselves. A pair of charac­
ters separated by a dash (-) in string defines the set of characters
between the specified lower and upper bounds, thus “ [a-z]” as a
regular expression matches any single lowercase letter. If the
first character of string is a caret (") then the construct matches
those characters which it otherwise would not. Thus “ ["a-z]”
matches anything but a lowercase letter or a newline. To place
any of the characters caret, left bracket, or dash in string they
must be escaped with a preceding backslash (\).

The concatenation of two regular expressions first matches the left­
most regular expression and then the longest string that can be recog­
nized as a regular expression. The first part of this new regular
expression matches the first regular expression and the second part
matches the second. Any of the single character matching regular
expressions mentioned above may be followed by an asterisk (*) to
form a regular expression that matches zero or more adjacent occur­
rences of the characters matched by the prefixing regular expression.
The tilde (~) may be used in a regular expression to match the text that
defined the replacement part of the last s command. A regular expres­
sion may be enclosed between the sequences “X” and “\)” to
remember the text matched by the enclosed regular expression. This
text can later be interpolated into the replacement text using the fol­
lowing notation:

\digit

where digit enumerates the set of remembered regular expressions.

The basic metacharacters for the replacement pattern are the amper­
sand (&) and the tilde (~); these are given as “\& ” and “\~” when
nomagic is set. Each instance of the ampersand is replaced by the
characters matched by the search pattem. In the replacement pattem,
the tilde stands for the text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always
introduced by a backslash (\). The sequence “\/?” is replaced by the
text matched by the nth regular subexpression enclosed between “\ (”
and “\) ’\ When nested, parenthesized subexpressions are present, n is
determined by counting occurrences of “\ (” starting from the left.

28 March 1991 Page 36

V7(C) V7(C)

The sequences “\u” and “\1” cause the immediately following char­
acter in the replacement to be converted to uppercase or lowercase,
respectively, if this character is a letter. The sequences “\U ” and
“\L ” tum such conversion on, either until “\E ” or “\e ” is encoun­
tered, or until the end of the replacement pattern.

Files

/tmp

/usr/lib/terminfo/? /*

/usr/lib/.COREterm/?/*

default directory where temporary work
files are placed; it can be changed using
the directory option (see the ex(C) set
command.).

compiled terminal description database

subset of compiled terminal description
database

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

The /usr/lib/ex3.7preserve program can be used to restore vi buffer
files that were lost as a result of a system crash. The program searches
the /tmp directory for vi buffer files and places them in the directory
/usr/preserve. The owner can retrieve these files using the -r option.

The /usr/lib/ex3.7preserve program must be placed in the system
startup file, /etc/rc, before the command that cleans out the /tmp
directory. See the XENIX System Administrator’s Guide for more in­
formation on /etc/rc.

Two options, although they continue to be supported, have been re­
placed in the documentation by the options that follow the Command
Syntax Standard (see intro(C)). A -r option that is not followed with
an argument has been replaced by -L and +command has been re­
placed by -c command.

vi does not strip the high bit from 8 bit characters read in from text
files, text insertion, and editing commands. It does not look for magic
numbers of object files when reading in a text file. It also writes out
text and displays text without stripping the high bit.

vi uses the LC_CTYPE environment variable to determine if a char­
acter is printable, displaying the octal codes of non-printable 8 bit
characters. It also uses LC CTYPE and LANG to convert between

28 March 1991 Page 37

W(C) VI (C)

upper and lowercase characters for the tilde command and for the ig-
norecase option.

When the percent sign (%) is used in a shell escape from vi via the
exclamation mark (!) the % is replaced with the name of the file being
edited. In previous versions of vi, each character in this replacement
had the high bit set to 1 to quote it; in the current version of vi it is left
alone.

Warnings

Tampering with the entries in /usr/lib/.COREterm/?/* or
/usr/iib/terminfo/? /* (for example, changing or removing an entry)
can affect programs such as vi that expect all entries to be present and
correct. In particular, removing the “dumb” terminal entry may cause
unexpected problems.

Software tabs using "T work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert
and delete operations in the terminal.

Refer to the crypt(C) page for information about restrictions on the
availability of encryption options.

28 March 1991 Page 38

VIDI (C) VIDI (C)

Name

vidi - Sets the font and video mode for a video device.

Syntax

vidi [-d] [-f fontfile] font

vidi mode

Description

vidi has two functions: it loads/extracts a font or sets the video mode
for the current standard input device. Without arguments, it lists all of
the valid video mode and font commands.

Font Options

Some video cards support changeable character fonts. Available fonts
are font8x8, font8xl4, and font8xl6. The font options are used as fol­
lows:

vidi font loads font from /usr/lib/vidi//o«r.

vidi -d font writes font to the standard output,

vidi -d -f font fontfile writes font to fontfile.

vidi -f fontfile font loads font from fontfile instead of default
directory.

Mode Options

vidi also sets the mode of the video adapter connected to the standard
input. The modes are:

mono move current screen to the monochrome adapter.

cga move current screen to the Color Graphics adapter.

ega move current screen to the Enhanced Graphics adapter.

vga move current screen to the Video Graphics adapter.

internal activate the internal monitor on portable with a plasma
screen.

28 March 1991 Page 1

VIDI (C) VIDI (C)
external activate the external monitor on portable with a plasma

screen.

Text and Graphics Modes

The following tables list the available modes.
Text ModesMode Cols Rows Font Adapter

c40x25 40 25 8x8e40x25 40 25 8x14v40x25 40 25 8x16m80x25 80 25 8x14c80x25 80 25 8x8em80x25 80 25 8x14e80x25 80 25 8x14vm80x25 80 25 8x16v80x25 80 25 8x16e80x43 80 43 8x14

CGA (EGA VGA)
EGA (VGA)
VGA
MONO (EGA_MONO VGA_MONO)
CGA (EGA VGA)
EGA.MONO (VGA.MONO)
EGA (VGA)
VGA_MONO
VGA
EGA (VGA)_______________________

Graphics Modes
Mode Pixel Resolution Colors Adapter
mode5 320x200 4 CGA (EGA VGA)mode6 640x200 2 CGA (EGA VGA)modeD 320x200 16 EGA (VGA)modeE 640x200 16 EGA (VGA)modeF 640x350 2 (mono) EGA (VGA)mode 10 640x350 16 EGA (VGA)mode 11 640x480 2 VGAmode 12 640x480 16 VGAmode 13 320x200 256 VGA

See Also

screen(HW)

Notes

The internal and external commands do not work with all types of
portables.

28 March 1991 Page 2

VMSTAT (C) VMSTAT (C)

Name

vmstat - Report paging and system statistics.

Syntax

vmstat [-fs] [-n namelist] [-c corefile] [-1 lines] [interval
[count]]

Description

vmstat reports some statistics kept by the system on processes,
demand paging, and cpu and trap activity. Three types of reports are
available:

(default)
A summary of the number of processes in various states, paging
activity, system activity, and cpu cycle consumption.

-f Number offork(SYs done.

-s A verbose listing of paging and trap activity.

If no internal or count is specified, the totals since system bootup are
displayed.

If an interval is given, the number of events that have occurred in the
last interval seconds is shown. If no count is specified, this display is
repeated forever every interval seconds. Otherwise, when a count is
also specified, the information is displayed count times.

Other flags that may be specified include:

-c corefile
Uses the file corefile in place of /dev/kmem.

-n namelist
Use file namelist as an alternate symbol table instead of /xenix.

-1 lines
For the default display, repeat the header every lines reports
(default is 20).

The fields in the default report are:

procs
The number of processes which are:

28 March 1991 Page 1

VMSTAT(C) VMSTAT(C)

r In the run queue,

b Blocked waiting for resources,

w Swapped out.

These values always reflect the current situation, even if the totals
since boot are being displayed.

paging
Reports on the performance of the demand paging system. Unless
the totals since boot are being displayed, this information is aver­
aged over the proceeding interval seconds:

si Number of processes swapped in.

so Number of processes swapped out.

ch Page cache hits.

cm
Page cache misses,

ffr Filesystem page reads,

swr
Swap area page reads,

sww
Swap area page writes.

rec
Number of pages reclaimed from the free list.

shf
Number of pages shared as copy-on-write after fork.

she
Number of pages shared due to cache hits.

cpy
Number of shared pages copied,

pf Number of page faults,

system
Reports on the general system activity. Unless the totals since
boot are being shown, these figures are averaged over the last
interval seconds:

28 March 1991 Page 2

VMSTAT(C) VMSTAT(C)

in Number of (non-clock) device interrupts,

sy Number of system calls,

cs Number of context switches,

cpu
Percentage of cpu cycles spent in various operating modes:

us User,

su System,

id Idle.

The -f and -s reports are a series of lines of the form:
number description

which means that number of the items described by description hap­
pened (either since boot or in the last interval seconds, as appropri­
ate). These reports should be self-explanatory.

Files

/xe nix
Default namelist,

/dev/kmem
Default source of statistics.

Notes

This utility is only available on
XENIX-386 distributions.

See Also

fork(S), ps(C), pstat(C)

28 March 1991 Page 3

VSH(C) VSH(C)

Name

vsh - menu driven visual shell

Syntax

vsh

Description

vsh is a highly interactive, visually oriented shell which eases many
XENIX activities. The vsh features both standard and customizable
XENIX command menus and on-line help. The vsh displays informa­
tion and menus in windows on the screen. To enter vsh, simply enter:

vsh

from a shell prompt, vsh can also be made a user’s default shell by
changing their shell entry in /etc/passwd (the last colon-separated
field). Help is available from all menus by typing the question mark
character.

The very last line of the screen is a status line. The status line dis­
plays the current pathname, the date, time and operating system name.
If you have new mail, the status line will indicate so. Above the status
line is the message line, which displays messages, error or otherwise,
from vsh.

A command menu is displayed at the bottom of the screen. The stan­
dard menu contains a range of commonly used XENIX commands.
Above the command menu is the output window. This window con­
tains a scrolling display of the output from commands. This window
is not visible at start-up, but is displayed while running certain com­
mands such as ‘= ’.

In the top of the screen is a window with a listing of the current work­
ing directory. To alter the size of this window, use the Window com­
mand from the main command menu. Items in the listing window may
be selected using standard key commands (q.v.). Two special key
commands are used with the listing window. The equals sign 4=’
(‘SHOW’) key, displays the contents of the currently selected file or
directory. The minus sign ‘-’ (‘GOAWAY’) key, returns you to the
listing window.

28 March 1991 Page 1

VSH (C) VSH(C)

Commands may be invoked in one of two ways. A command can be
selected by pressing the first letter of its name. Alternatively, press
the space bar. Each time the space bar is pressed, the next menu item
is highlighted. This highlighting indicates that the command has been
selected. Backspace moves to the previous selection.

Once a command is selected, press the return key. A menu is dis­
played which gives the valid arguments for the particular command.
The default choice is shown in parentheses, e.g.:

recursive: Yes (No)

To send the output to another program, you may enter a vertical bar in
the “output:” field of the commands’ menu.

When the menu is filled in, press RETURN to start the command.

Main Menu Commands

The following menu options are available from the standard main
menu. Certain sub-commands are available under the Options selec­
tion. These are described in the next section.

Copy
Copy a file to a new file. Copy the contents of a directory to a new
directory.

Delete
Delete a file or directory.

Edit
Invoke an editor for a file. Default is the visual editor v/(C).

Help
Get help on diverse topics. A menu is displayed at the bottom of
the screen of available help topics.

Mail
Send or read XENIX mail.

Name
Rename a directory or file.

Options
Perform various commands. See OPTIONS section.

Print
Print file or files on systems’ lineprinter.

28 March 1991 Page 2

VSH(C) VSH(C)

Quit
Quit the visual shell.

Run
Run a specified XENIX command or applications program.

View
View a specified file or directory listing. This file or directory list­
ing will be displayed in the upper window. Use the vsh scrolling
commands to move around (see KEY COMMANDS Section).

Window
Reset upper window ‘redraw’ characteristics and height.

Options Subcommand

The Options selection on the main menu has several important com­
mands grouped under the selections Directory, Filesystem, Output,
and Permissions. These are as follows:

Directory

Make
Make a directory under current working directory.

Usage
Display disk usage by number of blocks in current working direc­
tory.

Filesystem

Create
Create a filesystem.

FilesCheck
Check file system consistency.

Mount
Mount a file system on a specified mount-point.

SpaceFree
Report number of disk blocks available on all or some mounted file
systems.

Unmount
Unmount specified file system if it is not currently busy.

28 March 1991 Page 3

VSH(C) VSH(C)

Output

VShell
Echo vsh commands in output window (default).

XENIX
Echo actual XENIX commands in output window. For instance, if
running “Options Filesystem FilesCheck”, the command fsck will
be displayed in the output window if “Options Output Xenix” is
set.

Permissions
Change permissions on a file or directory.

Key Commands
The following keyboard commands allow editing of menus and fields,
and give access to various vsh features.

<Ctrl-E>
Move the cursor up one line.

<Ctrl-X>
Move the cursor down one line.

<Ctrl-S>
Move the cursor left one character.

<Ctrl-D>
Move the cursor right one character.

<Ctrl-RxCtrl-E>
Scroll page up.

<Ctrl-RxCtrl-X>
Scroll page down.

<Ctrl-RxCtrl-S>
Scroll page left.

<Ctrl-RxCtrl-D>
Scroll page right.

<Ctrl-Q>
Home. Go to start of menu.

28 March 1991 Page 4

VSH(C) VSH(C)

<Ctrl-Z>
End. Go to the end of menu.

<Ctrl-C>
Cancel. Stop present operation and return to the main command
menu.

<RETURN>
Start the present command.

<TAB>, <Ctrl-I>, or <Ctrl-A>
Move to and select entire contents of next field in command line.

<SPACE>
Select next item in menu.

<BACKSPACE> or <Ctrl-H>
Select previous menu item. In editing command lists, deletes char­
acter. Replacement text may then be typed.

<Ctrl-Y> or
Delete selected character.

<Ctrl-L>
Move to next character to right of current cursor position.

<Ctrl-K>
Move to next character to left of current cursor position.

<Ctrl-P>
Move to next word to right of current cursor position.

<Ctrl-0>
Move to next word to left of current cursor position.

? Help. Request information about the selected command or com­
mand in progress at the time of the request.

= Show. Display sub-directory listings and text files in directory list­
ings. Display submenus for commands in main menu.

- Goaway. Return listing window to current or parent directory after
a show command.

@ Display the Modify menu.

! Redraw the screen.

I Display filter menu.

28 March 1991 Page 5

VSH(C) VSH (C)

Files
menu.def

.mnu

/usr/lib/vsh/V SHELL.HPP

/usr/lib/vsh/V SHELL.HPT

standard menu definition file.

extension for customized command
menus.

help file

yet another help file

Notes

The use of wildcard characters (*,[,], and ?) to specify file names is
not supported by vsh. (Wildcard characters are discussed in the XENIX
Tutorial.)

The swtch character is reset by vsh. It is not possible to switch to the
session manager, shl(C), while running vsh.

It is necessary to run vsh as superuser and select “help” in order to ini­
tialize the help files. If this is not done, help is not available.

28 March 1991 Page 6

W(C) W(C)

Name
w - Displays information about who is on the system and what they
are doing.

Syntax

w [-hlqtw] [-n namelist] [-s swapdev] [-c corefile] [-u utmpfile]
[users...]

Description

w prints a summary of the current activity on the system, including
what each user is doing. The heading line shows the current time of
day, how long the system has been up, the number of users logged
onto the system, and load averages. Load averages are the number of
processes in the run queue averaged over 1,5, and 15 minutes.

The options are:

-h Don’t print the heading or title lines.

-1 Long format (default): For each user, w outputs the user’s login
name, the terminal or pseudo terminal the user is currently using,
when the user logged onto the system, the number of minutes the
user has been idle (how much time has expired since the user last
typed anything), the CPU time used by all processes and their chil­
dren attached to the terminal, the CPU time used by the currently
active process, and the name and arguments of the currently active
process.

-q Quick format: For each user, w outputs the user’s login name, the
terminal or pseudo terminal the user is currently using, the number
of minutes the user has been idle, and the name of the currently
active process.

-t Only the heading line is output (equivalent to uptime(C)).

-w Both the heading line and the summary of users is output.

-n namelist
The argument is taken as the name of an alternate namelist
(Ixenix is the default).

-s swapdev
Uses the file swapdev in place of tdev!swap. This is useful when
examining a corefile.

28 March 1991 Page 1

W(C) W(C)

-ccorefile
Uses the file corefile in place of Idev/kmem.

-u utmpfile
The file utmpfile is used instead of /etc/utmp as a record of who is
currently logged in.

If any users are given, the user summary is restricted to reporting on
those users.

Files
/xenix
/etc/utmp
/dev/kmem
/dev/swap

See Also
date(C), finger(C), ps(C), uptime(C), who(C), whodo(C)

Notes
The “currently active process” is only an approximation and is not
always correct. Pipelines can produce strange results, as can some
background processes. If w is completely unable to guess at the
currently active process, it prints

28 March 1991 Page 2

WAIT (C) WAIT (C)

Name
wait - Awaits completion of background processes.

Syntax
wait

Description
Waits until all background processes started with an ampersand (&)
have finished, and reports on abnormal terminations.

Because the wait(S) system call must be executed in the parent pro­
cess, the shell itself executes wait, without creating a new process.

See Also
sh(C)

Notes
Not all the processes of a pipeline with three or more stages are chil­
dren of the shell, and thus cannot be waited for.

28 March 1991 Page 1

WC(C) WC(C)

Name

wc - Counts lines, words and characters.

Syntax

wc [-lwc] [names]

Description

wc counts lines, words and characters in the named files, or in the
standard input if no names appear. It also keeps a total count for all
named files. A word is a maximal string of characters delimited by
spaces, tabs, or newlines.

The options I, w, and c may be used in any combination to specify that
a subset of lines, words, and characters are to be reported. The default
is -lwc.

When names are specified on the command line, they are printed
along with the counts.

28 March 1991 Page 1

WHAT{C) WHAT (C)

Name
what - Identifies files.

Syntax

what files

Description

what searches the given files for all occurrences of the pattern @(#)
and prints out what follows until the first tilde (~), greater-than sign
(>), new-line, backslash (\) or null character. The SCCS command
get {CP) substitutes this string as part of the @(#) string.

For example, if the shell procedure in file print contains

@(#)this is the print program
@(#)syntax: print [files]
pr $* I lpr

then the command

what print

displays the name of the file print and the identifying strings in that
file:

print:
this is the print program
syntax: print [files]

what is intended to be used with the get {CP) command, which auto­
matically inserts identifying information, but it can also be used where
the information is inserted manually.

See Also
admin(CP), get(CP)

28 March 1991 Page 1

WHO (C) WHO (C)

Name

who - Lists who is on the system.

Syntax

who [-uTIHqdtas] [file]

who am i

who am I

Description

who can list the user’s name, terminal line, login time, and the elapsed
time since activity occurred on the line; it also lists the process ID of
the command interpreter (shell) for each current XENIX system user.
It examines the /etc/utmp file to obtain its information. If file is
given, that file is examined. Usually, file will be /etc/wtmp, which
contains a history of all the logins since the file was last created.

who with the am i or am I option identifies the invoking user.

Except for the default -s option, the general format for output entries
is:

name [state] line time activity pid [comment] [exit]

With options, who can list logins, logoffs, reboots, and changes to the
system clock, as well as other processes spawned by the init process.
These options are:

-u This option lists only those users who are currently logged in.
The name is the user’s login name. The line is the name of the
line as found in the directory /dev. The time is the time that
the user logged in. The activity is the number of hours and
minutes since activity last occurred on that particular line. A
dot (.) indicates that the terminal has seen activity in the last
minute and is therefore “current” . If more than twenty-four
hours have elapsed or the line has not been used since boot
time, the entry is marked old. This field is useful when trying
to determine whether a person is working at the terminal or
not. The pid is the process ID of the user’s shell. The comment
is the comment field. It can contain information about where
the terminal is located, the telephone number of the dataset,
the type of terminal if hard-wired, etc.

-T This option is the same as the -u option, except that the state of
the terminal line is printed. The state describes whether some­
one else can write to that terminal. A plus character (+)

28 March 1991 Page 1

WHO (C) WHO (C)

appears if the terminal is writable by anyone; a minus charac­
ter (-) appears if it is not. Root can write to all lines having a
plus character (+) or a minus character (-) in the state field. If
a bad line is encountered, a question mark (?) is displayed.

-I This option lists only those lines on which the system is wait­
ing for someone to login. The name field is LOGIN in such
cases. Other fields are the same as for user entries except that
the state field does not exist.

-H This option displays column headings above the regular output.

-q This is a quick who, displaying only the names and the number
of users currently logged on. When this option is used, all
other options are ignored.

-d This option displays all processes that have expired and have
not been respawned by init. The exit field appears for dead
processes and contains the termination and exit values (as
returned by wait(S)), of the dead process. This can be useful in
determining why a process terminated.

-t This option indicates the last change to the system clock (via
the date(C) command) by root. See su(C).

-a This option processes the /etc/utmp file or the named file with
all options turned on.

-s This option is the default and lists only the name, line, and
time fields.

Files
/etc/utmp
/etc/wtmp
/etc/ttys

See Also
date(C), login(M), mesg(C), su(C), utmp(F), ttys(F), wait(S)

Notes
The options -A, -b, -p, and -r are listed in the usage message and are
accepted as legal options by who but do not do anything.

28 March 1991 Page 2

WHODO (C) WHODO (C)

Name
whodo - Determines who is doing what.

Syntax
/etc/whodo

Description
whodo produces merged, reformatted, and dated output from the
who(C) and ps(C) commands.

See Also
ps(C), who(C)

28 March 1991 Page 1

WRITE (C) WRITE (C)

Name

write - Writes to another user.

Syntax

write user [tty]

Description

write copies lines from your terminal to that of another user. When
first called, it sends the message:

Message from your-logname your-tty ...

The recipient of the message should write back at this point. Commu­
nication continues until an end-of-file is read from the terminal or an
interrupt is sent. At that point, write displays:

(end of message)

on the other terminal and exits.

If you want to write to a user who is logged in more than once, the tty
argument may be used to indicate the appropriate terminal.

Permission to write may be denied or granted by use of the mesg(C)
command. At the outset, writing is allowed. Certain commands, in
particular nroJf(CT) and pr(C), disallow messages in order to prevent
messy output.

If the character ! is found at the beginning of a line, write calls the
shell to execute the rest of the line as a command. Output from the
command is sent to the terminal; it is not sent to remote users.

The following protocol is suggested for using write: when you first
write to another user, wait for him or her to write back before starting
to send. Each party should end each message with a distinctive signal
((o) for “over” is conventional), indicating that the other may reply;
(oo) for “over and out” is suggested when conversation is to be ter­
minated.

28 March 1991 Page 1

WRITE (C) WRITE (C)

Files
/etc/utmp To find user

/bin/sh To execute !

See Also
hello(C), mail(C), mesg(C), who(C)

28 March 1991 Page 2

XARGS (C) XARGS (C)

Name

xargs - Constructs and executes commands.

Syntax

xargs [flags] [command [initial-arguments]]

Description

xargs combines the fixed initial-arguments with arguments read from
the standard input to execute the specified command one or more
times. The number of arguments read for each command invocation
and the manner in which they are combined are determined by the
flags specified.

Command, which may be a shell file, is searched for using the shell
$PATH variable. If command is omitted, /bin/echo is used.

Arguments read in from standard input are defined to be contiguous
strings of characters delimited by one or more blanks, tabs, or new­
lines; empty lines are always discarded. Blanks and tabs may be
embedded as part of an argument if escaped or quoted: Characters
enclosed in quotes (single or double) are taken literally, and the de­
limiting quotes are removed. Outside of quoted strings, a backslash (\)
will escape the next character.

Each argument list is constructed starting with the initial-arguments,
followed by some number of arguments read from standard input
(exception: see -i flag). Flags -i, -I, and -n determine how arguments
are selected for each command invocation. When none of these flags
are coded, the initial-arguments are followed by arguments read con­
tinuously from standard input until an internal buffer is full, and com­
mand is executed with the accumulated args. This process is repeated
until there are no more args. When there are flag conflicts (e.g., -1 vs.
-n), the last flag has precedence. Flag values are:

-\number Command is executed for each number lines of
nonempty arguments from the standard input. This is
instead of the default single line of input for each com­
mand. The last invocation of command will be with
fewer lines of arguments if fewer than number remain.
A line is considered to end with the first newline unless
the last character of the line is a blank or a tab; a trail­
ing blank/tab signals continuation through the next
nonempty line. If number is omitted, 1 is assumed.
Option -x is forced.

28 March 1991 Page 1

XARGS (C)

-i replstr

-nnumber

-t

■P

-x

-ssize

-eeofstr

XARGS (C)

Insert mode: command is executed for each line from
the standard input, taking the entire line as a single arg,
inserting it in initial-arguments for each occurrence of
replstr. A maximum of 5 arguments in initial-
arguments may each contain one or more instances of
replstr. Blanks and tabs at the beginning of each line
are thrown away. Constructed arguments may not grow
larger than 255 characters, and option -x is also forced.
{ } is assumed for replstr if not specified.

Executes command, using as many standard input argu­
ments as possible, up to the number of arguments max­
imum. Fewer arguments are used if their total size is
greater than size characters, and for the last invocation
if there are fewer than number arguments remaining. If
option -x is also coded, each number of arguments must
fit in the size limitation, or xargs terminates execution.

Trace mode: The command and each constructed argu­
ment list are echoed to file descriptor 2 just prior to
their execution.

Prompt mode: The user is prompted whether to execute
command at each invocation. Trace mode (-t) is turned
on to display the command instance to be executed, fol­
lowed by a ? ... prompt. A reply of y (optionally fol­
lowed by anything), will execute the command; any­
thing else, including a carriage return, skips that partic­
ular invocation of command.

Causes xargs to terminate if any argument list would
be greater than size characters; -x is forced by the
options -i and -1. When neither of the options -i, -I, or
-n are coded, the total length of all arguments must be
within the size limit.

The maximum total size of each argument list is set to
size characters; size must be a positive integer less than
or equal to 470. If -s is not coded, 470 is taken as the
default. Note that the character count for size includes
one extra character for each argument and the count of
characters in the command name.

Eofstr is taken as the logical end-of-file string. Under­
score (_) is assumed for the logical EOF string if -e is
not coded, -e with no eofstr coded turns off the logical
EOF string capability (underscore is taken literally).
xargs reads standard input until either end-of-file or the
logical EOF string is encountered.

28 March 1991 Page 2

XARGS (C) XARGS (C)

xargs terminates if it either receives a return code of -1 from, or if it
cannot execute, command. When command is a shell program, it
should explicitly exit (see sh(C)) with an appropriate value to avoid
accidentally returning with -1.

Examples
The following will move all files from directory $1 to directory $2,
and echo each move command just before doing it:

Is $1 I xargs -i -t mv $l/{ } $2/{ }

The following will combine the output of the parenthesized com­
mands onto one line, which is then echoed to the end of file log:

(logname; date; echo $0 $*) I xargs » lo g

The user is prompted to enter which files in the current directory are to
be printed and prints them one at a time:

Is I xargs -p -1 lpr

Or many at a time:

Is I xargs -p -1 I xargs lpr

The following will execute diff(C) with successive pairs of arguments
originally entered as shell arguments:

echo $* I xargs -n2 difif

28 March 1991 Page 3

YES (C) YES(C)

Name

yes - Prints string repeatedly.

Syntax

yes [string]

Description

yes repeatedly outputs “y”, or if a single string argument is given, arg
is output repeatedly. The command will continue indefinitely unless
aborted. Useful in pipes to commands that prompt for input and
require a “y” response for a yes. In this case, yes terminates when the
command it pipes to terminates, so that no infinite loop occurs.

28 March 1991 Page 1

Contents
File Formats (F)

intro Introduction to file formats.
86rel Intel relocatable format for object modules.
a.out Format of assembler and link editor output.
acct Format of per-process accounting file.
ar Archive file format.
archive Default backup device information.
backup Incremental dump tape format.
Checklist List of file systems processed by fsck.
clock System real time clock.
core Format of core image file.
cpio Format of cpio archive.
default Default program information directory.
devices Format of UUCP devices file.
dialcodes Format of UUCP Dialcode abbreviations file.
dialers Format of UUCP Dialers file.
dir Format of a directory.
filesys Default information for mounting file systems.
filesystem Format of a system volume.
fstab File system mount and check commands.
gettydefs Terminal speeds and settings.
group Format of the group file.
inittab Alternative login terminals file.
inode Format of an inode.
mapchan Format of tty device mapping files.
master Master device information table.
maxuuscheds UUCP uusched(ADM) limit file.
maxuuxqts UUCP uuxqt(C) limit file.
mcconfig Irwin tape driver parameters.
mem,kmem Memory image file.
micnet The Micnet default commands file.
mnttab Format of mounted file system table.
null The null file.
passwd The password file.
permissions
poll: Poll,
PolLhour,

Format of UUCP Permissions file.

Poll.day Format of UUCP Poll files.

i

queuedefs
sccsfile
stat
sysfiles
systemld
systems
tar
term
terminfo
top, top.next
ttys
typesutmp, wtmp

Scheduling information for cron queues.
Format of an SCCS file.
Data returned by stat system call.
Format of UUCP Sysfiles file.
The Micnet system identification file.
Format of UUCP Systems file.
Archive format.
Terminal driving tables for nroff.
Format of compiled terminfo file.
The Micnet topology files.
Login terminals file.
Primitive system data types.
Formats of utmp and wtmp entries.

l i

INTRO (F) INTRO (F)

Name

intro - Introduction to file formats.

Description

This section outlines the formats of various files. Usually, these struc­
tures can be found in the directories /usr/include or/usr/include/sys.

28 March 1991 Page 1

86REL (F) 86REL (F)

Name

86rel - Intel 8086 Relocatable Format for Object Modules.

Syntax

#include <sys/relsym86.h>

Description

Intel 8086 Relocatable Format, or 86rel, is the object module format
generated by masm(CP), and the input format for the linker Id (CP).
The include file relsym86.h specifies appropriate definitions to access
86rel format files from C. For the technical details of the 86rel for­
mat, see Intel 8086 Object Module Format External Product Specifi­
cation .

An 86rel consists of one or more variable length records. Each record
has at least three fields: the record type, length, and checksum. The
first byte always denotes the record type. There are thirty-one dif­
ferent record types. Only eleven are used by ld(CP) and masm(CP).
The word after the first byte is the length of the record in bytes,
exclusive of the first three bytes. Following the length word are typi­
cally one or more fields. Each record type has a specific sequence of
fields, some of which may be optional or of varying length. The very
last byte in each record is a checksum. The checksum byte contains
the sum modulo 256 of all other bytes in the record. The sum modulo
256 of all bytes in a record, including the checksum byte, should equal
zero.

With few exceptions, 86rel strings are length prefixed and have no
trailing null. The first byte contains a number between 0 and 40,
which is the remaining length of the string in bytes. Although the
Intel specification limits the character set to upper case letters, digits,
and the characters “?”, “@ ”, and masm(CP) uses the
complete ASCII character set.

The Intel Object Module Format (OMF) specification uses the term
“index” to mean a positive integer either in the range 0 to 127, or 128
to 32,768. This terminology is retained in this document and else­
where in the 86rel literature. An index has one or two bytes. If the
first byte has a leading 0 bit, the index is assumed to have only one
byte, and the remainder of the byte represents a positive integer
between 0 and 127. If the second byte has a leading 1 bit, the index is
assumed to take up two bytes, and the remainder of the word
represents a positive integer between 128 and 32,768.

28 March 1991 Page 1

86REL (F) 86REL (F)

Following is a list of record types and the hexadecimal value of their
first byte, as defined in relsym86.h.

#define MRHEADR
#define MREGINT
#defme MREDATA
#define MRIDATA
#define MOVLDEF
#define MENDREC
#defme MBLKDEF
#define MBLKEND
#define MDEBSYM
#defme MTHEADR

#define MLHEADR
#define MPEDATA
#defme MPIDATA

#define MCOMENT
#define MMODEND
#define MEXTDEF
#defme MTYPDEF
#defme MPUBDEF
#define MLOCSYM
#define MLINNUM
#define MLNAMES
#define MSEGDEF
#define MGRPDEF
#define MFIXUPP
#define MNONE1
#define MLEDATA
#define MLIDATA

#defme MLIBHED
#defme MLffiNAM
#define MLEBLOC
#defme MLffiDIC
#defme M386END
#defme MPUB386
#define MLOC386
#define MLIN386
#define MSEG386
#define MFIX386
#defme MLED386
#define MLID386

0x6e /*rel module header/*
0x70 /*register initialization*/
0x72 /*explicit (enumerated) data image*/
0x74 /*repeated (iterated) data image*/
0x76 /*overlay definition*/
0x78 /*block or overlay end record*/
0x7a /*block definition*/
0x7c /*block end*/
0x7e /*debug symbols*/
0x80 /*module header,

/*usually first in a rel file*/
0x82 /*link module header*/
0x84 /*absolute data image*/
0x86 /*absolute repeated (iterated)

data image/
0x88 /*comment record*/
0x8a /*module end record*/
0x8c /*extemal definition*/
0x8e /*type definition*/
0x90 /*public definition*/
0x92 /*local symbols*/
0x94 /*source line number*/
0x96 /*name list record*/
0x98 /*segment definition*/
0x9a /*group definition*/
0x9c /*fix up previous data image*/
0x9e /* none*/
OxaO /*logical data image*/
0xa2 /*logical repeated (iterated)

data image/
0xa4 /*library header*/
0xa6 /*library names record*/
0xa8 /*library module locations*/
Oxaa /*library dictionary*/
0x86 /*32 bit module end record*/
0x91 /*32 bit public definition*/
0x93 /*32 bit logical symbols*/
0x95 /*32 bit source line number*/
0x99 /*32 bit segment definition*/
0x9d /*fix up previous 32 bit data image*/
Oxal /*32 bit logical data image*/
0xa3 /*32 bit logical repeated (iterated) data image*/

In the following discussion, the salient features of each record type are
given. If the record is not used by either masm(CP) or ld(CP), it is not
listed.

28 March 1991 Page 2

86REL(F)

THEADR

COMENT

MODEND

EXTDEF

TYPDEF

PUBDEF

LNAMES

28 March 1991

86REL (F)

The record type byte is 0x80. The THEADR record
specifies the name of the source module at assembly­
time (see Notes). The sole field is the T-MODULE
NAME , which contains a length-prefixed string
derived from the base name of the source module.

The record type byte is 0x88. The COMENT record
may contain a remark generated by the compiler sys­
tem. mams (CP) inserts the string “XENIX 8086
ASSEMBLER

The record type byte is 0x8a. The MODEND record
terminates a module. It can specify whether the
current module is to be used as the entry point to the
linked executable. If the module is an entry point, the
MODEND record can then specify the address of the
entry point within the executable.

The record type byte is 0x8c. The EXTDEF record
contains the names and types of symbols defined in
other modules by a PUBDEF record (see below). This
corresponds to the C storage class “extern.” The
fields consist of one or more length-prefixed strings,
each with a following type index. The indices refer­
ence a TYPDEF record seen earlier in the module.
masm(CP) generates only one EXTDEF per exterior
symbol.

The record type byte is 0x8e. The TYPDEF record
gives a description of the type (size and storage
attributes) of an object or objects. This description
can then be referenced by EXTDEF , PUBDEF , and
other records.

The record type byte is 0x90. The PUBDEF record
gives a list of one or more names that may be refer­
enced by other modules at link-time (“publics”). The
list of names is preceded by a group and segment
index, which reference the location of the start of the
list of publics within the current segment and group.
If the segment and group indices are zero, a frame
number is given to provide an absolute address in the
module. The list consists of one or more of length-
prefixed strings, each associated with a 16-bit oflset
within the current segment and a type index referring
to a TYPDEF.

The record type byte is 0x96. The LNAMES record
gives a series of length-prefixed strings which are
associated with name indices within the current
module. Each name is indexed in sequence given
starting with 1. The names may then be referenced

Page 3

86REL(F)

SEGDEF

GRPDEF

FIXUPP

LEDATA

See Also
as(CP), ld(CP)

86REL (F)

within the current module by successive SEGDEF and
GRPDEF records to provide strings for segments,
classes, overlays or groups.

The record type byte is 0x98. The SEGDEF record pro­
vides an index to reference a segment, and informa­
tion concerning segment addressing and attributes.
This index may be used by other records to refer to the
segment. The first word in the record after the length
field gives information about the alignment, and about
combination attributes of the segment. The next word
is the segment length in bytes. Note that this restrains
segments to a maximum 645,536 bytes in length. Fol­
lowing this word is an index (see above) for the seg­
ment. Lastly, the SEGDEF may optionally contain
class and/or overlay index fields.

The record type is 0x9a. The GRPDEF record provides
a name to reference several segments. The group
name is implemented as an index (see above).

The record byte is 0x9c. The FIXUPP record specifies
one or more load-time address modifications
(“ fixups”). Each fixup refers to a location in a preced­
ing LEDATA (see below) record. The fixup is
specified by four data; a location, a mode, a target and
a frame. The frame and target may be specified ex­
plicitly or by reference to an already defined fixup.

The record type byte is OxaO. This record provides a
contiguous text or data image which the loader Id (CP)
uses to construct a portion of an 8086 run-time execut­
able. The image might require additional processing
(see FIXUPP) before being loaded into the executable.
The image is preceded by two fields, a segment index
and an enumerated data offset. The segment index
(see INDEX) specifies a segment given by a previously
seen SEGDEF . The enumerated data offset (a word)
specifies the offset from the start of this segment.

28 March 1991 Page 4

86REL (F) 86REL(F)

Notes

If you attempt to load a number of modules assembled under the same
basename, the loader will try to put them all in one big segment. In
286 programs, segment size is limited to 64K. In a large program the
resulting segment size can easily exceed 64K. A large model code
executable results from the link of one or more modules, composed of
segments that aggregate into greater than 64K of text.

Hence, be sure that the assembly-time name of the module has the
same basename as the source. This can occur if the source module is
preprocessed not by cc(CP), but, for example, by hand or shell script,
prior to assembly. The following example is incorrect:

#incorrect
cc -E modulel.c I filter > x.c
cc x.c
mvx.o module l.o
cc -E module2.c I filter > x.c
cc x.c
mv x.o module2.o
cc -E module3.c I filter > x.c
cc x.c
mv x.o module3.o
Id module l.o module2.o module3.o

To avoid this, each of the modules should have a unique name when
assembled, as follows:

#correct
cc -E modulel.c I filter > x.c
cc -S x.c
mv x.s module l.s
as modulel.s

Id module l.o module2.o module3.o

28 March 1991 Page 5

A.OUT { F) A.OUT (F)

Name

a.out - Format of assembler and link editor output.

Description

A.out is the output file of the assembler masm and the link editor Id.
Both programs will make a.out executable if there were no errors in
assembling or linking, and no unresolved external references.

The format of a.out, called the x.out or segmented jc.out format, is
defined by the files /usr/include/a.out.h and
/usr/include/sys/relsym.h. The a.out file has the following general
layout:

1. Header.

2. Extended header.

3. File segment table (for segmented formats).

4. Segments (Text, Data, Symbol, and Relocation).

In the segmented format, there may be several text and data segments,
depending on the memory model of the program. Segments within the
file begin on boundaries which are multiplies of 512 bytes as defined
by the file’s pagesize.

Format

/*
* The main and extended header structures.
* For x.out segmented (XE_SEG):
* 1) fields marked with (s) must contain sums of xs_psize for
* non-memory images, or xs_vsize for memory images.
* 2) the contents of fields marked with (u) are undefined.

struct xexec { / * x.out header * /
unsigned short x_magic; / * magic number * /
unsigned short x_ext; / * size of header extension * /
long x_text; / * size of text segment (s) * /
long x_data; /* size of initialized data (s) * /
long x_bss; /* size of uninitialized data (s) * /
long x_syms; /* size of symbol table (s) * /
long x_reloc; /* relocation table length (s) * /
long x_entry; /* entry point, machine dependent */

28 March 1991 Page 1

A.OUT(F) A.OUT(F)

char x_cpu; / * cpu type & byte/word order * /
char x_relsym; / * relocation & symbol format (u) * /
unsigned

};
short x_renv; /* run-time environment * /

struct xext { / * x.out header extension * /
long xe_trsize; / * size of text relocation (s) * /
long xe_drsize; / * size of data relocation (s) * /
long xe_tbase; / * text relocation base (u) * /
long xe_dbase; / * data relocation base (u) * /
long xe_stksize; / * stack size (if XE_FS set) * /

/ * the following must be present if XE_SEG */
long xe_segpos; / * segment table position * /
long xe_segsize; / * segment table size * /
long xe_mdtpos; / * machine dependent table position * /
long xe_mdtsize;/* machine dependent table size * /
char xe_mdttype; /* machine dependent table type * /
char xe_pagesize; / * file pagesize, in multiples of 512 * /
char xe_ostype; / * operating system type * /
char xe_osvers; / * operating system version * /
unsigned short xe_eseg; / * entry segment, machine dependent * /
unsigned short xe_sres; / * reserved * /

};

struct xseg { / * x.out segment table entry * /
unsigned short xs_type; / * segment type * /
unsigned short xs_attr; / * segment attributes * /
unsigned short xs_seg; / * segment number * /
char xs_align; /* log base 2 of alignment * /
char xs_cres; / * unused * /
long xs_filpos; / * file position * /
long xs_psize; / * physical size (in file) * /
long xs_vsize; / * virtual size (in core) * /
long xs_rbase; / * relocation base address/offset * /
unsigned short xs_nofF,/* segment name string table offset * /
unsigned short xs_sres;/* unused ♦ /
long

};
xs_lres; / * unused * /

struct xiter { / * x.out iteration record * /
long xi_size; / * source byte count * /
long xi_rep; / * replication count * /
long xi_offset; / * destination offset in segment * /

};

28 March 1991 Page 2

A.OUT{ F) A.OUT (F)

struct xlist { / * xlist structure for xlist(3). * /
unsigned short xl_type; / * symbol type * /
unsigned short xl_seg; / * file segment table index * /
long xl_value; / * symbol value * /
char *xl_name; / * pointer to asciz name */

struct aexec {
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short

/* a.out header * /
xa_magic; / * magic number * /
xa_text; / * size of text segment * /
xa_data; / * size of initialized data * /
xa_bss; / * size of uninitialized data * /
xa_syms; / * size of symbol table * /
xa_entry; / * entry point * /
xa_unused; / * not used * /
xa_flag; / * relocation info stripped * /

struct nlist { / * nlist structure for nlist(3). * /
char n_name[8]; / * symbol name ♦ /
int n_type; /* type flag * /
unsigned n value; / * value * /

);

struct bexec { / * b.out header *1
long xb_magic; 1* magic number * /
long xb_text; / * text segment size * /
long xb_data; / * data segment size */
long xb_bss; / * bss size * /
long xb_syms; / * symbol table size * /
long xb_trsize; / * text relocation table size * /
long xb_drsize; / * data relocation table size * /
long xb_entry; / * entry point * /

See Also

masm(CP), ld(CP), nm(CP), strip(CP), xlist(S).

28 March 1991 Page 3

ACCT(F) ACCT (F)

Name

acct - Format of per-process accounting file.

Description

Files produced as a result of calling acct{S) have records in the form
defined by <sys/acct.h>.

In ac J l a g , the AFORK flag is turned on by each fork (S) and turned off
by an exec(S). The ac_comm field is inherited from the parent pro­
cess and is reset by any exec. Each time the system charges the pro­
cess with a clock tick, it also adds the current process size to acjnem
computed as follows:

(data size) + (text size) / (number of in-core processes using text)

The value of acjnem lac stime can be viewed as an approximation to
the mean process size, as modified by text-sharing.

See Also

acctcom(ADM), acct(S)

Notes

The acjnem value for a short-lived command gives little information
about the actual size of the command, because acjnem may be incre­
mented while a different command (e.g., the shell) is being executed
by the process.

28 March 1991 Page 1

AR (F) AR(F)

Name

ar - Archive file format.

Description

The archive command ar is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link editor
I d i C) .

A file produced by ar has a magic number at the start, followed by the
constituent files, each preceded by a file header. The magic number is
0177545 octal (or 0xff65 hexadecimal). The header of each file is
declared in /usr/include/ar.h.

Each file begins on a word boundary; a null byte is inserted between
files if necessary. Nevertheless the size given reflects the actual size
of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

See Also

ar(CP), ld(CP)

28 March 1991 Page 1

ARCHIVE (F) ARCHIVE (F)

Name

archive - Default backup device information.

Description

I etc! default! archive contains information on system default backup de­
vices for use by sysadmin(ADM). The device entries are in the fol­
lowing format:

name=value [name=value] ...

value may contain white spaces if quoted, and newlines may be
escaped with a backslash.

The following names are defined for!etc!default!archive:

bdev Name of the block interface device.

cdev Name of the character interface device.

size Size of the volume in either blocks or feet.

density Volume density, such as 1600. If this value is miss­
ing or null, then size is in blocks; otherwise the size
is in feet.

format Command used to format the archive device.

blocking Blocking factor.

desc A description of the device, such as “Cartridge
Tape.”

See Also

sysadmin(ADM)

28 March 1991 Page 1

BACKUP (F) BACKUP (F)

Name
backup - Incremental dump tape format.

Description
The backup and restore commands are used to write and read incre­
mental dump magnetic tapes.

The backup tape consists of a header record, some bit mask records, a
group of records describing file system directories, a group of records
describing file system files, and some records describing a second bit
mask.

The header record and the first record of each description have the for­
mat described by the structure included by:

#include <dumprestor.h>
Fields in the dumprestor structure are described below.

NTREC is the number of 512 byte blocks in a physical tape record.
MLEN is the number of bits in a bit map word. MSIZ is the number of
bit map words.

The TS_ entries are used in the c type field to indicate what sort of
header this is. The types and their meanings are as follows:

TSJTYPE Tape volume label.

TSJNODE A file or directory follows. The c dinode field is a
copy of the disk inode and contains bits telling what
sort of file this is.

TS_BITS A bit mask follows. This bit mask has one bit for each
inode that was backed up.

TS_ADDR A subblock to a file (TSJNODE). See the description
of c count below.

TS.END End of tape record.

TS_CLRI A bit mask follows. This bit mask contains one bit for
all inodes that were empty on the file system when
backed up.

MAGIC All header blocks have this number in c jn ag ic .

CHECKSUM Header blocks checksum to this value.

28 March 1991 Page 1

BACKUP (F) BACKUP (F)

The fields of the header structure are as follows:

cjype The type of the header.

cdate The date the backup was taken.

c__ddate The date the file system was backed up.

cvolume The current volume number of the backup.

c_tapea The current block number of this record. This is count­
ing 512 byte blocks.

c_inumber The number of the inode being backed up if this is of
type TSJNODE.

cm agic This contains the value MAGIC above, truncated as
needed.

cchecksum This contains whatever value is needed to make the
block sum to CHECKSUM.

cdinode This is a copy of the inode as it appears on the file sys­
tem.

ccount The following count of characters describes the file.
A character is zero if the block associated with that
character was not present on the file system; other­
wise, the character is nonzero. If the block was not
present on the file system no block was backed up and
it is replaced as a hole in the file. If there is not
sufficient space in this block to describe all of the
blocks in a file, TS_ADDR blocks will be scattered
through the file, each one picking up where the last
left off.

c_addr This is the array of characters that is used as described
above.

Each volume except the last ends with a tapemark (read as an end of
file). The last volume ends with a TS_END block and then the tape-
mark.

The structure idates describes an entry of the file where backup his­
tory is kept.

See Also

backup(ADM), restore(ADM), filesystem(F)

28 March 1991 Page 2

CHECKLIST (F) CHECKLIST (F)

Name

checklist - List of file systems processed by fsck.

Description

The /etc/checklist file contains a list of the file systems to be checked
when fsck(ADM) is invoked without arguments. The list contains at
most 15 special file names. Each special file name must be on a
separate line and must correspond to a file system.

See Also

fsck(ADM)

28 March 1991 Page 1

CLOCK (F) CLOCK (F)

Name

clock - The system real-time (time of day) clock.

Description

The clock file provides access to the battery-powered, real-time time
of day clock. Reading this file returns the current time; writing to the
file sets the current time. The time, 10 bytes long, has the following
form:

MMddhhmmyy
where MM is the month, dd is the day, hh is the hour, mm is the
minute, and yy is the last two digits of the year. For example, the time:

0826150385 is 15:03 on August 26,1985.

Files

/dev/clock

See Also

setclock(ADM)

Notes

Not all computers have battery-powered real-time time of day clocks.
Refer to your computer’s hardware reference manual.

28 March 1991 Page 1

CORE (F) CORE (F)

Name

core - Format of core image file.

Description

XENIX writes out a core image of a terminated process when any of
various errors occur. See signal (S) for the list of reasons; the most
common are memory violations, illegal instructions, bus errors, and
user-generated quit signals. The core image is called core and is writ­
ten in the process’ working directory (provided it can be; normal
access controls apply). A process with an effective user ID different
from the real user ID will not produce a core image.

The first section of the core image is a copy of the system’s per-user
data for the process, including the registers as they were at the time of
the fault. The size of this section depends on die parameter usize,
which is defined in /usr/include/sys/param.h. The remainder
represents the actual contents of the user’s core area when the core
image was written. If the text segment is read-only and shared, or
separated from data space, it is not dumped.

The format of the information in the first section is described by the
user structure of the system, defined in /usr/include/sys/user.h. The
locations of registers, are outlined in /usr/include/sys/reg.h.

See Also

adb(CP), setuid(S), signal(S)

28 March 1991 Page 1

CPIO (F) CPIO (F)

Name

cpio - Format of cpio archive.

Description

The header structure, when the c option is not used, is:

struct {
short h_magic,

h_dev,
h_ino,
h_mode,
h_uid,
h_gid,
h_nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_filesize[2];

char h_name[h_namesize rounded to word];
} Hdr;

When the c option is used, the header information is described by the
statement below:

sscanf(Chdr,"%6o%6o%6o%6o%6o%6o%6o%6o%l llo%6o%l llo%s",
&Hdr.h_magic,&Hdr.h_dev,&Hdr.h_ino,&Hdr.h_mode,
&Hdr.h_uid,&Hdr.h_gid,&Hdr.h_nlink,&Hdr.h_rdev,
&Longtime,&Hdr.h_namesize,&Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.hjntime and
Hdr.hjilesize, respectively. The contents of each file is recorded in
an element of the array of varying length structures, archive, together
with other items describing the file. Every instance of hjnagic con­
tains the constant 070707 (octal). The items h_dev through hjntime
have meanings explained in stat(S). The length of the null-terminated
pathname hjiam e, including the null byte, is given by hjiamesize.

The last record of the archive always contains the name TRAILER!!!.
Special files, directories, and the trailer are recorded with hjilesize
equal to zero.

See Also

cpio(C), fmd(C), stat(S)

28 March 1991 Page 1

DEFAULT (F) DEFAULT (F)

Name

default - Default program information directory.

Description

The files in the directory /etc/default contain the default information
used by system commands such as backup(ADM) and remote(C).
Default information is any information required by die command that
is not explicitly given when the command is invoked.

The directory may contain zero or more files. Each file corresponds to
one or more commands. A command searches a file whenever it has
been invoked without sufficient information. Each file contains zero
or more entries which define the default information. Each entry has
the form:

keyword

or

keyword=value

where keyword identifies the type of information available and value
defines its value. Both keyword and value must consist of letters,
digits, and punctuation. The exact spelling of a keyword and the
appropriate values depend on the command and are described with the
individual commands.

Any line in a file beginning with a number sign (#) is considered a
comment and is ignored.

Files

/etc/default/archive
/etc/default/backup
/etc/default/boot
/etc/default/cron
/etc/default/dumpdir
/etc/default/dumpsrv
/etc/default/filesys
/etc/default/format
/etc/default/login
/etc/default/lpd
/etc/default/man
/etc/default/mail
/etc/default/mapchan
/etc/default/micnet
/etc/default/mkuser
/etc/default/msdos

28 March 1991 Page 1

DEFAULT (F) DEFAULT (F)

/etc/default/passwd
/etc/default/restor
/etc/default/su
/etc/default/tar
/etc/default/usemouse

See Also

archive(F), backup(ADM), boot(HW), cron(C), dos(C),
dumpdir(ADM), filesys(F), login(M), lp(C), mapchan(M),
mapchan(F), micnet(F), mkuser(ADM), pwadmin(ADM), remote(C),
restore(ADM), su(C), sysadmin(ADM), tar(C)

Note

Not all commands use /etc/default files. Please refer to the manual
page for a specific command to determine if /etc/default files are
used, and what information is specified.

28 March 1991 Page 2

DEVICES (F) DEVICES (F)

Name

devices - Format of UUCP devices file.

Description

The Devices file (/usr/lib/uucp/Devices) contains information for all
the devices that can be used to establish a link to a remote computer.
These devices include automatic call units, direct links, and network
connections. This file works closely with the Dialers, Systems, and
Dialcodes files.

Each entry in the Devices file has the following format:

type ttyline dialerline speed dialer-token

where:

type can contain one of two keywords (direct or ACU),
the name of a Local Area Network switch, or a sys­
tem name.

ttyline contains the device name of the line (port) associ­
ated with the Devices entry. For example, if the
Automatic Dial Modem for a particular entry is
attached to the /dev/ttyll line, the name entered in
this field is ttyll.

dialerline is useful only for 801 type dialers, which do not
contain a modem and must use an additional line.
If you do not have an 801 dialer, enter a hyphen (-)
as a placeholder.

speed is the speed or speed range of the device. It may
contain an indicator for distinguishing different
dialer classes.

dialeMoken contains pairs of dialers and tokens. Each
represents a dialer and an argument to be passed to
it. The dialer portion can be the name of an
automatic dial modem, or it may be a direct for a
direct link device.

For best results, dialer programs are preferred over Dialers entries.
The following entry is an example of an entry using a dialer binary:

ACU ttywi - 300-2400 /usr/lib/uucp/dialHA24

Note all lines must have at least 5 fields. Use for unused fields.
Types that appear in the 5th field must be either built-in functions
(801, Sytek, TCP, Unetserver, DK) or standard functions whose name

28 March 1991 Page 1

DEVICES (F) DEVICES (F)

appears in the first field in the Dialers file.

Two escape characters can be used in this file:

\D which means don’t translate the phone /token

\T translate the phone /token using the Dialcodes file

Both refer to the phone number field in the Systems file (field 5). \D
should always be used with entries in the Dialers file, since the
Dialers file can contain a T to expand the number if necessary. \T
should only be used with built-in functions that require expansion.

Note that if a phone number is expected and a\D or\T is not present a
\T is used for a built-in, and \D is used for an entry referencing the
Dialers file.

Examples
The following are examples of common Devices files.

Standard modem line
ACU t ty O O - 1 2 0 0 8 0 1
ACU t ty O O - 1 2 0 0 p e n r i l
o r
ACU t ty O O - 1 2 0 0 p e n r i l \D

A direct line

This example will allow cu -IttyOO to work. This entry could also be
used for certain modems in manual mode.

D i r e c t t ty O O - 4 8 0 0 d i r e c t

A ventel modem on a develcon switch

“vent” is the token given to the develcon to reach the ventel modem.

ACU t ty O O - 1 2 0 0 d e v e l c o n v e n t v e n t e l
ACU t ty O O - 1 2 0 0 d e v e l c o n v e n t v e n t e l \D

To reach a system on the local develcon switch

D e v e l c o n t ty O O - A ny d e v e l c o n \D

28 March 1991 Page 2

DEVICES (F) DEVICES (F)

A direct connection to a system

s y s t e m x t ty O O - A ny d i r e c t

STREAMS Network Examples

A STREAMS network that conforms to the AT&T Transport Interface
with a direct connection to login service (i.e., without explicitly using
the Network Listener Service dial script):

n e t w o r k x , e g d e v i c e x - - T L IS \D

The Systems file entry looks like:

sy s te m x Any n e tw o rk x - a d d r e s s x i n : — i n : n u u c p w ord : n u u cp

You must replace systemx, networkx, addressx, and devicex with sys­
tem name, network name, network address and network device,
respectively. For example, entries for machine “sffo” on a STARLAN
NETWORK might look like:

s f f o o Any STARLAN - s f f o o i n : — i n : n u u cp w o rd : n u u cp

and:

STARLAN, e g s t a r l a n - - T L IS \D

To use a STREAMS network that conforms to the AT&T Transport
Interface and that uses the Network Listener Service dial script to
negotiate for a server:

n e t w o r k x , e g d e v i c e x - - T L IS \D n l s

To use a non-STREAMS network that conforms to the AT&T Trans­
port Interface and that uses the Network Listener Service dial script to
negotiate for a server:

n e t w o r k x , e g d e v i c e x - - T L I \D n l s

See Also

uucico(ADM), uucp(C), uux(C), uuxqt(C), dialers(F)

Notes

Blank lines and lines that begin with a <space>, <tab>, or are
ignored, protocols can be specified as a comma-subfield of the device
type either in the Devices file (where device type is field 1) or in the
Systems file (where it is field 3).

28 March 1991 Page 3

DIALCODES (F) DIALCODES (F)

Name

dialcodes - Format of UUCP Dialcode abbreviations file.

Description

The Dialcodes file (/usr/lib/uucp/Dialcodes) contains the Dialcode
abbreviations that can be used in the Phone field of the Systems file.
This feature allows you to create a standard Systems file for distribu­
tion among several sites that have different phone systems and area
codes.

If two remote sites in a network need to link with the same sites, but
have different internal phone systems each site can share the same
Systems file, but have different entries in a Dialcodes file. Each entry
has the following format:

abb dial-seq

where:

abb is the abbreviation used in the Systems file phone
field

dial-seq is the dial sequence that is passed to the dialer
when that particular Systems file entry is accessed.

The following entry would be set up to work with a phone field in the
Systems file such as jt7867:

j t 9 = 8 4 7 -

When the entry containing jt7867 is encountered, the following
sequence is sent to the dialer if the token in the dialer-token-pair is \T

9 = 8 4 7 - 7 8 6 7

The phone number is made up of an optional alphabetic abbreviation
and a numeric part. If an abbreviation is used, it must be one that is
listed in the Dialcodes file.

NY 9 = 1 2 1 2 5 5 5

See Also

uucico(ADM), uucp(C), uux(C), uuxqt(C), systems(F)

28 March 1991 Page 1

DIALERS (F) DIALERS (F)

Name

dialers - Format of UUCP Dialers file.

Description

The Dialers file (/usr/lib/uucp/Dialers) specifies the initial conversa­
tion that must take place on a line before it can be made available for
transferring data. This conversation is usually a sequence of ASCII
strings that is transmitted and expected, and it is often used to dial a
phone number using an ASCII dialer (such as the Automatic Dial
Modem).

A modem that is used for dialing in and out may require a second
Dialers entry. This is to reinitialize the line to dial-in after it has been
used for dial-out. The name of the dial-in version of a dialer must
begin with an ampersand. For example, the Dialers file contains a
hayes2400 and a &hayes2400 entry.

The fifth field in a Devices file entry is an index into the Dialers file
or a special dialer type. Here an attempt is made to match the fifth
field in the Devices file with the first field of each Dialers file entry.
In addition, each odd numbered Devices field starting with the seventh
position is used as an index into the Dialers file. If the match
succeeds, the Dialers entry is interpreted to perform the dialer nego­
tiations. Each entry in the Dialers file has the following format:

dialer substitutions expect-send...

The dialer field matches the fifth and additional odd numbered fields
in the Devices file. The substitutions field is a translate string: the
first of each pair of characters is mapped to the second character in the
pair. This is usually used to translate = and - into whatever the dialer
requires for “wait for dialtone” and “pause.”

The remaining expect-send fields are character strings. Below are
some character strings distributed with the UUCP package in the
Dialers file.

28 March 1991 Page 1

DIALERS (F) DIALERS (F)

Dialers file entries

penril =W-P "" \d > s\p9\c)-W\p\r\ds\p9\c-) y\c : \E\TP > 9\c OK
ventel =&-% "" \r\p\r\c $ <K\T%%\r>\c ONLINE!
hayes \dAT\r\c OK\r \EATDT\T\r\c CONNECT
rixon =&-% "" \d\r\r\c $ s9\c)-W\r\ds9\c-) s\c : \T\r\c $ 9\c LINE
vadic =K-K "" \005\p *-\005\p-*\005\p-* D\p BER? \E\T\e \r\c LINE
develcon' \pr\ps\c est:\007 \E\D\e \007
miccm
direct

.... "" \s\c NAME? \D\r\c GO

att2212c =+-, "" \r\c :— : atol2=y,T\T\r\c red
att4000 =,-, "" \033\r\r\c DEM: \033s0401\c \006 \033s0901\c \

\006 \033sl001\c \006 \033sll02\c \006 \033dT\T\r\c \006
att2224 =+-, \r\c T\T\r\c red
nls '" "" NLPS:000:001:l\N\c

The meaning of some of the escape characters (those beginning with
“\ ”) used in the Dialers file are listed below:

\p pause (approximately XA to Vi second)
\ d delay (approximately 2 seconds)
\D phone number or token without Dialcodes translation
\ T phone number or token with Dialcodes translation
\ K insert a BREAK
\ E enable echo checking (for slow devices)
\e disable echo checking
\ r carriage return
\ c no new-line or carriage return
\n send new-line
\nnn send octal number.

Additional escape characters that may be used are listed in the section
discussing the Systems file.

The penril entry in the Dialers file is executed as follows. First, the
phone number argument is translated, replacing any = with a W (wait
for dialtone) and replacing any - with a P (pause). The handshake
given by the remainder of die line works as follows:

it it Wait for nothing.

\ d Delay for 2 seconds.
> Wait for a >.

28 March 1991 Page 2

DIALERS (F) DIALERS (F)

s \ p 9 \ c Send an s, pause for Vi second, send a 9,
send no terminating new-line

) - W \ p \ r \ d s \ p 9 \ c -) Wait for a). If it is not received, process
the string between the - characters as
follows. Send a W, pause, send a
carriage-return, delay, send an s, pause,
send a 9, without a new-line, and then
wait for the).

y \ c Send a y.
Wait for a :.

\ E \ T P Enable echo checking. (From this point
on, whenever a character is transmitted,
it will wait for the character to be
received before doing anything else.)
Then, send the phone number. The \T
means take the phone number passed as
an argument and apply the Dialcodes
translation and the modem function
translation specified by field 2 of this
entry. Then send a P.

> Wait for a >.
9 \ c Send a 9 without a new-line.

OK Waiting for the string OK.

See Also

dial(ADM), uucico(ADM), uucp(C), uux(C), uuxqt(C), devices(F)

Notes

Dialer binaries (located in /usr/lib/uucp) are preferred over Dialers
entries. Binaries are more reliable. Refer to the dial man page for
more information on creating your own dialer binaries.

28 March 1991 Page 3

DIR (F) DIR (F)

Name

dir - Format of a directory.

Syntax

#include <sys/dir.h>

Description

A directory behaves exactly like an ordinary file, except that no user
may write into a directory. The fact that a file is a directory is indi­
cated by a bit in the flag word of its inode entry (see filesystem (F)).
The structure of a directory is given in the include file
/usr/include/sys/dir.h.

By convention, the first two entries in each directory are“ dot” (.) and
“dotdot” (..)• The first is an entry for the directory itself. The second
is for the parent directory. The meaning of dotdot is modified for the
root directory of the master file system; there is no parent, so dotdot
has the same meaning as dot.

See Also

filesystem(F)

28 March 1991 Page 1

FILESYS(F) FILESYS (F)

Name

filesys - Default information for mounting filesystems.

Description

I etc! default!filesys contains information for mounting filesystems in
the following format:

name=value [name=value] ...

value may contain white spaces if quoted, and newlines may be
escaped with a backslash.

mnt (see mnt(Q) and sysadmin(ADM) use the information in the
!etc!default!filesys when the system comes up multiuser. The follow­
ing names are defined for!etc!default!filesys:

bdev Name of the block interface device.

cdev Name of the character interface device.

size Size in blocks.

mountdir Directory on which the filesystem is mounted.

desc A description of the filesystem. For example, “User
filesystem."

mountflags Any flags passed to the mount(ADM) command,

fsckflags Any flags passed to the fsck(ADM) command.

remount Whether or not to mount the filesystem when the
system goes multiuser. Can be “yes”, “no” or
“prompt”. If set to “prompt”, you are prompted
when it is time to mount the filesystem.

See Also

mount(ADM), mnt(C), sysadmin(ADM)

28 March 1991 Page 1

FILESYSTEM (F) FILESYSTEM (F)

Name

filesystem - Format of a system volume.

Syntax

#include <sys/filsys.h>
#include <sys/types.h>
#include <sys/param.h>

Description

Every file system storage volume (for example, a hard disk) has a
common format for certain vital information. Every such volume is
divided into a certain number of 1024 byte blocks. Block 0 is unused
and is available to contain a bootstrap program or other information.

Block 1 is the super-block. The format of a super-block is described
in /usr/include/sys/filesys.h. In that include file, S_isize is the
address of the first data block after the i-list. The i-list starts just after
the super-block in block 2; thus the i-list is sisize-2 blocks long.
SJsize is the first block not potentially available for allocation to a
file. These numbers are used by the system to check for bad block
numbers. If an “ impossible” block number is allocated from the free
list or is freed, a diagnostic is written on the console. Moreover, the
free array is cleared so as to prevent further allocation from a presum­
ably corrupted free list.

The free list for each volume is maintained as follows. The sjree
array contains, in sJree [1],..., sjree [sjifree-1], up to 99 numbers of
free blocks. S jree [0] is the block number of the head of a chain of
blocks constituting the free list. The first short in each free-chain
block is the number (up to 100) of free-block numbers listed in the
next 100 longs of this chain member. The first of these 100 blocks is
the link to the next member of the chain. To allocate a block: decre­
ment sjifree , and the new block is s Jree [sjifree]. If the new block
number is 0, there are no blocks left, so give an error. If sjifree
becomes 0, read in the block named by the new block number, replace
sjifree by its first word, and copy the block numbers in the next 100
longs into the sjree array. To free a block, check if sjifree is 100; if
so, copy sjifree and the sjree array into it, write it out, and set
sjifree to 0. In any event set s Jree [sjifree] to the freed block’s
number and increment sjifree.

Sjfree is the total free blocks available in the file system.

Sjiinode is the number of free i-numbers in the sjnode array. To
allocate an inode: if sjiinode is greater than 0, decrement it and
return sjnode [sjiinode]. If it was 0, read the i-list and place the
numbers of all free inodes (up to 100) into the sjnode array, then try

28 March 1991 Page 1

FILESYSTEM (F) FILESYSTEM (F)

again. To free an inode, provided sjiinode is less than 100, place its
number into s_inode[sjiinode] and increment sjiinode. If sjiinode
is already 100, do not bother to enter the freed inode into any table.
This list of inodes only speeds up the allocation process. The informa­
tion about whether the inode is really free is maintained in the inode
itself.

Sjinode is the total free inodes available in the file system.

SJlock and s_ilock are flags maintained in the core copy of the file
system while it is mounted and their values on disk are immaterial.
The value of s Jm od on disk is also immaterial, and is used as a flag to
indicate that the super-block has changed and should be copied to the
disk during the next periodic update of file system information.

S_ronly is a read-only flag to indicate write-protection.

Sjim e is the last time the super-block of the file system was changed,
and is a double precision representation of the number of seconds that
have elapsed since 00:00 Jan. 1, 1970 (GMT). During a reboot, the
sjim e of the super-block for the root file system is used to set the
system’s idea of the time.

I-numbers begin at 1, and the storage for inodes begins in block 2.
Also, inodes are 64 bytes long, so 16 of them fit into a block. There­
fore, inode i is located in block (/+31)/16, and begins
64x((/+31) (mod 16)) bytes from its start. Inode 1 is reserved for
future use. Inode 2 is reserved for the root directory of the file system,
but no other i-number has a built-in meaning. Each inode represents
one file. For the format of an inode and its flags, see inode (F).

Files
/usr/include/sys/filsys.h

/usr/include/sys/stat.h

See Also
fsck(ADM), mkfs(ADM), inode(F)

28 March 1991 Page 2

FSTAB (F) FSTAB (F)

Name

fstab - File system mount and check commands.

Description

fstab is an ASCII text file containing information that is passed to the
mount (ADM) and fsck (ADM) commands that are executed from
/etc/rc. A typical /etc/fstab file might look like this:

/ d e v / u / u f s c k f l a g s = ” - y - D ”
/ d e v / a r c h i v e / a r c h i v e m o u n t f l a g s = " - r " f s c k f l a g s = ” - f "

The first column lists the device to be mounted and the second column
gives the mount point (directory) for the device.

The third column lists any optional flags. Optional flags are:

fsckflags - Flags that are passed to fsck.
mountflags - Flags that are passed to mount.
prompt - If set to “y”, prompts whether or not to

mount filesystem. Default is “n”.

Comment lines start with a number sign (#).

See Also

fsck(ADM), mount(ADM)

28 March 1991 Page 1

GETTYDEFS (F) GETTYDEFS (F)

Name

gettydefs - Speed and terminal settings used by getty.

Description

The /etc/gettydefs file contains information used by getty (M) to set up
the speed and terminal settings for a line. It supplies information on
what the login prompt should look like. It also supplies the speed to
try next if the user indicates the current speed is not correct by typing
a BREAK character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-label [# log-
in-program]

Each entry must be followed by a carriage return and a blank line.
The various fields can contain quoted characters of the form \b, \n, \c,
etc., as well as \nnn, where nnn is the octal value of the desired char­
acter. The various fields are:

label Identifies the /etc/gettydefs entry to getty. This could
be a letter or number. The label corresponds to the line
mode field in /etc/ttys. Init passes the line mode as an
argument to getty.

initial-flags Sets the initial ioctl (S) settings if a terminal type is not
specified to getty. The flags that getty understands are
the same as the ones listed in tty(M). Normally only
the speed flag is required in the initial-flags. Getty au­
tomatically sets the terminal to raw input mode and
takes care of most of the other flags. The initial-flag
settings remain in effect until getty executes login (M).

final-flags Sets the same values as the initial-flags. These flags
are set just prior to getty executing login-program. The
speed flag is again required. The composite flag SANE
is a composite flag that sets the following termioQA)
parameters:

modes set:
CREAD BRKINT IGNPAR ISTRIP ICRNL IXON
ISIGICANON ECHO ECHOK OPOST ONLCR

modes cleared*
CLOCAL IGNBRK PARMRK INPCK INLCR IUCLC
IXOFF XCASE ECHOE ECHONL NOFLSH OLCUC
OCRNL ONOCR ONLRET OFILL OFDEL NLDLY
CRDLY TABDLY BSDLY VTDLY FFDLY

28 March 1991 Page 1

GETTYDEFS (F) GETTYDEFS (F)

The other two commonly specified final-flags are TAB3, so that tabs are sent to the terminal as spaces, and HUPCL, so that the line is hung up on the final close.
login-prompt Contains login prompt message that greets users.

Unlike the above fields where white space is ignored (a
space, tab, or new-line), it is included in the login-
prompt field. The ‘@ ’ in the login-prompt field is
expanded to the first line in /etc/systemid (unless the
‘@ ’ is preceded by a ‘V). Several character sequences
are recognized, including:
\n Linefeed
Nr Carriage return
\v Vertical tab
\nnn (3 octal digits) Specify ASCII character
\t Tab
\f Form feed
\b Backspace

next-label Identifies the next entry in gettydefs for getty to try if
the current one is not successful. Getty tries the next
label if a user presses the BREAK key while attempting
to log in to the system. Groups of entries, for example,
for dial-up lines or for TTY lines, should form a closed
set so that getty cycles back to the original entry if
none of the entries is successful. For instance, 2400
linked to 1200, which in turn is linked to 300, which
finally is linked to 2400.

login-program
The name of the program that actually logs the user
onto XENIX. The default program is /etc/login. If pre­
ceded by the keyword AUTO, getty will not prompt for
a username, but instead uses its first argument as the
username and executes the login-program immediately.

If getty is called without a second argument, then the first entry of /etc/gettydefs is used, thus making the first entry of /etc/gettydefs the
default entry. The first entry is also used if getty can not find the
specified label. If /etc/gettydefs itself is missing, there is one entry
built into the command which will bring up a terminal at 300 baud.

After modifying /etc/gettydefs, run it through getty with the check
option to be sure there are no errors.

Files
/etc/gettydefs

28 March 1991 Page 2

GETTYDEFS (F) GETTYDEFS(F)

See Also

stty(C), ioctl(S), getty(M), login(M)

28 March 1991 Page 3

GROUP (F) GROUP (F)

Name

group - Format of the group file.

Description

group contains the following information for each group:

- Group name

- Encrypted password (optional)

- Numerical group ID

- Comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each group is
separated from the next by a newline. Here is an example file:

r o o t : x : 0 : r o o t
c r o n : x : 1 : c r o n
b i n : x : 3 : b i n , l p
u u c p : x : 4 : u u c p
a s g : x : 6 : a s g
s y s i n f o : x : 1 0 : u u c p
n e t w o r k : x : 1 2 : n e t w o r k
l u s e r s : : 1 0 0 : s a m , z u r s c h , l a n d y
c p o : C y T v n lP X jO p : 5 0 : f o r b i n , k u p r i n , c l e o m

An x in the password field represents an unmatchable password; these
groups are not normally joined. If the password field is empty, no
password is demanded by the newgrp(C) command.

You can add a group password by creating a dummy user account and
putting the encrypted password into the /etc/group file. (Be sure and
remove the dummy account after you are finished.)

This file resides in directory /etc. Because of the encrypted pass­
words, it can and does have general read permission and can be used,
for example, to map numerical group IDs to names.

Files

/etc/group

See Also

newgrp(C), passwd(C), passwd(F)

28 March 1991 Page 1

INITTAB (F) INITTAB (F)

Name

inittab - Alternative login terminals file.

Description

telinit(ADM) reads inittab and converts it into a ttys (F)-format file.
init(M) reads /etc/ttys to determine for which terminals logins are
allowed.

Each line in inittab has the form:
id: run-levels: action: /etc/getty tty mode

id A one- to four-character name that uniquely identifies this line. It
is recommended that if tty is ttyxc that the id then be “jo: ”.

run-levels
A list of digits ranging from 0 to 6. This list specifies which telinit
states are concerned with this line. If the run-levels list is empty,
then it is assumed to be “0123456” (all states).

action
Whether or not logins are allowed on tty:

off
Logins are not allowed in any of the listed run-levels.

respawn
Logins are allowed only in the listed run-levels.

ondemand
Identical to “respawn”.

tty The filename of a character device special file. Only the filename
is supplied; the path is assumed to be /dev.

mode
A single character supplied as an argument to the getty (M) pro­
gram. It defines the line characteristics (such as the baud rate) for
die terminal, and must match one of the names listed in
/etc/gettydefs.

Exactly one space must separate ttys from ...:/etc/getty and from
mode. No other spaces or tabs are allowed.

28 March 1991 Page 1

IN1TTAB (F) INITTAB (F)

Files

/etc/inittab

See Also

disable(C), enable(C), init(M), getty(M), gettydefs(F), telinit(ADM),
ttys(F)

Notes

inittab is provided for users more familiar with the telinit approach to
terminal administration, as opposed to the standard XENIX
enable!disable approach.

28 March 1991 Page 2

INODE (F) INODE (F)

Name

inode - Format of an inode.

Syntax

#include <sys/types.h>
#include <sys/ino.h>

Description

An inode for a plain file or directory in a file system has the structure
defined by <sys/ino.h>. For the meaning of the defined types offjt
and tim ej see types (F).

Files

/usr/include/sys/ino.h

See Also

stat(S), filesystem(F), types(F)

28 March 1991 Page 1

MAPCHAN (F) MAPCHAN (F)

Name

mapchan - Format of tty device mapping files.

Description

mapchan configures the mapping of information input and output of
XENIX.

Each unique channel map requires a multiple of 1024 bytes (a IK
buffer) for mapping the input and output of characters. No buffers are
required if no channels are mapped. If control sequences are speci­
fied, an additional IK buffer is required.

A method of sharing maps is implemented for channels that have the
same map in place. Each additional, unique map allocates an addi­
tional buffer. The maximum number of map buffers available on a
system is configured in the kernel, and is adjustable via the link kit
NEMAP parameter (see config (ADM) and configure (ADM)).
Buffers of maps no longer in use are returned for use by other maps.

Example of a Map File

The internal character set used by XENIX is defined by the right
column of the input map, and the first column of the output map in
place on that line. The default internal character set is the 8-bit ISO
8859/1 character set, which is also known as dpANS X3.4.2 and
ISO/TC97/SC2. It supports the Latin alphabet and can represent most
European languages.

Any character value not given is assumed to be a straight mapping,
only the differences are shown in the mapfile. The left hand columns
must be unique. More than one occurrence of any entry is an error.
Right hand column characters can appear more than once. This is
“many to one” mapping. Nulls can be produced with compose
sequences or as part of an output string.

It is recommended that no mapping be enabled on the channel used to
create or modify the mapping files. This prevents any confusion of the
actual values being entered due to mapping. It is also recommended
that numeric rather than character representations be used in most
cases, as these are not likely to be subject to mapping. Use comments
to identify the characters represented. Refer to the ascii (M) manual
page and the hardware reference manual for the device being mapped
for the values to assign.

28 March 1991 Page 1

MAPCHAN (F) MAPCHAN (F)

#
sharp/pound/cross-hatch is the comment character
however, a quoted # (’#’) is 0x23, not a comment
beep, input, output, dead, compose and# control are special keywords and should appear as shown.
#

beep # sound the bell when errors occur
input

a b
c d
dead p
q r # p followed by q yields r.
s t # p followed by s yields t.
dead u
v w # u followed by v yields w.
compose x # x is the compose key (only one allowed).
y i A
B C D # x followed by B and C yields D.
output
* f # e is mapped to /.
8 h i j # g is mapped to hij - one to many.
k l m n o # k is mapped to Imno.
control # The control sections must be last
input
E 1 # The character E is followed by 1 more

unmapped character
output
FG 2 # The characters FG are followed by 2

more unmapped characters

All of the single letters above preceding the “control” section must be
in one of these formats:

56 # decimal
045 # octal
Oxfa # hexadecimal
’b’ # quoted char
^076’ # quoted octal
’\x4a’ # quoted hex

All of the above formats are translated to single byte values.

The control sections (which must be the last in the file) contain spe­
cifications of character sequences which should be passed through to
or from the terminal device without going through the normal map-
chan processing. These specifications consist of two parts: a fixed

28 March 1991 Page 2

MAPCHAN (F) MAPCHAN (F)

sequence of one or more defined characters indicating the start of a
no-map sequence, followed by a number of characters of which the
actual values are unspecified.

To illustrate this, consider a cursor-control sequence which should be
passed directly to the terminal without being mapped. Such a
sequence would typically begin with a fixed escape sequence instruct­
ing the terminal to interpret the following two characters as a cursor
position; the values of the following two characters are variable, and
depend on the cursor position requested. Such a control sequence
would be specified as:

\E= 2 # Cursor control: escape = <x> <y>

There are two subsections under control: the input section is used to
filter data sent from the terminal to XENIX, and the output section is
used to filter data sent from XENIX to the terminal. The two fields in
each control sequence are separated by white space, that is the SPACE
or TAB characters. Also the ’#’ (HASH) character introduces a com­
ment, causing the remainder of the line to be ignored. Therefore, if
any of these three characters are required in the specification itself,
they should be entered using one of alternative means of entering
characters, as follows:

*x The character produced by the terminal on pressing the CONTROL
and x keys together.

\Eor\e
The ESCAPE character, octal 033.

V Where c is one of b, f, 1, n, r or t, produces BACKSPACE , FORM
FEED, LINE FEED, NEWLINE, CARRIAGE RETURN or TAB char­
acters respectively.

NO Since the NULL character can not be represented, this sequence is
stored as the character with octal value 0200, which behaves as a
NULL on most terminals.

\nn or \tnn
Specifies the octal value of the character directly.

\ followed by any other character is interpreted as that character.
This can be used to enter SPACE, TAB , or HASH characters.

Diagnostics

mapchan performs these error checks when processing the mapfile:

• More than one compose key.

28 March 1991 Page 3

MAPCHAN (F) MAPCHAN (F)

• Characters mapped to more than one thing.

• Syntax errors in the byte values.

• Missing input or output keywords.

• Dead or compose keys also occurring in the input section.

• Extra information on a line.

• Mapping a character to null.

• Starting an output control sequence with a character that is
already mapped.

If characters are displayed as the 7-bit value instead of the 8-bit value,
use stty -a to verify that -istrip is set. Make sure input is mapping to
the 8859 character set, output is mapping from the 8859 to the device
display character set. dead and compose sequences are input map­
ping and should be going to 8859.

Files

/etc/default/mapchan
/usr/lib/mapchan/*

See Also

ascii(M), keyboard(HW), lp(C), lpadmin(ADM), mapchan(M),
trchan(M), mapkey(M), parallel(HW), screen(HW), serial(HW),
setkey(M), tty(M)

Notes

Some non-U.S. keyboards and display devices do not support charac­
ters commonly used by XENIX command shells and the C program­
ming language. Do not attempt to use such devices for system
administration tasks.

Not all terminals or printers can display all the characters that can be
represented using this utility. Refer to the device’s hardware manual
for information on the capabilities of the peripheral device.

Warnings

Use of mapping files that specify a different “ internal” character set
per-channel, or a set other than the 8-bit ISO 8859 set supplied by
default can cause strange side effects. It is especially important to

28 March 1991 Page 4

MAPCHAN (F) MAPCHAN (F)

retain the 7-bit ASCII portion of the character set (see ascii (M)).
XENIX utilities and applications assume these values. Media trans­
ported between machines with different internal code set mappings
may not be portable as no mapping is performed on block devices,
such as tape and floppy drives, trchan can be used to “translate” from
one internal character set to another.

Do not set ISTRIP (see stty(C)) on channels that have mapping that
includes eight bit characters.

28 March 1991 Page 5

MASTER (F) MASTER(F)

Name

master - Master device information table.

Description

master contains device information used by config (ADM) to generate
the configuration files. The file consists of 5 parts, each separated by
a line with a dollar sign ($) in column 1.

- Part 1 contains device information.
- Part 2 contains the line discipline table.
- Part 3 contains names of devices that have aliases.
- Part 4 contains tunable parameter information.
- Part 5 contains the event devices table.

Any line with an asterisk (*) in column 1 is treated as a comment.

Part 1

This part contains definitions for the system devices. Each line has 14
fields with the fields delimited by tabs and/or blanks:

Field 1: Device name (8 chars, maximum).
Field 2: Number of interrupt vectors.
Field 3: Device mask (octal). Each “on” bit indicates that

the driver has the corresponding handler or struc­
ture:

002000 Process swtch() time routine.
001000 streamtab structure.
000400 tty structure.
000200 Halt routine.
000100 Initialization handler.
000040 Clock time poll routine.
000020 Open handler.
000010 Close handler.
000004 Read handler.
000002 Write handler.
000001 Ioctl handler.

The clock time poll routine, if present in the driver, is called every
clock tick in which the clock interrupted task-time processing.

If the streamtab bit is on, the device is a stream module with an
fmodsw entry, unless the character special bit is set in the type
indicator (Field 4). If this is the case, the device is a stream end
driver with a cdevsw entry.
Field 4: Device type indicator (octal):

000200 Not used
000100 No qswtch on interrupt.
000040 Not used.

28 March 1991 Page 1

MASTER(F) MASTER(F)

000020 Required device.
000010 Block device.
000004 Character device.
000002 Not used.
000001 Not used.

Field 5: Handler prefix (4 chars, maximum). Usually same
as Field 1. The routines of dev.c should begin dev...
The tty structure of dev.c should be named devjty.

Field 6: Not used.
Field 7: Major device number for block-type device.
Field 8: Major device number for character-type device.
Field 9: Maximum number of devices per controller.
Field 10: The spl level (1 - 7) at which the device’s interrupt

routine should be called.
Fields 11-14: Maximum of four interrupt vector addresses (octal).

Each address is followed by a unique letter or a
blank.

Devices that are not interrupt-driven have an interrupt vector size of
zero. Devices that generate interrupts but are not of the standard char­
acter or block device mold, should be specified with a type (field 4)
which has neither the block nor character bits set.

Part 2

This part contains definitions for the system line discipline. Each line
has 9 fields. Each field is a maximum of 8 characters delimited by a
blank if less than 8:

Field 1: Device associated with this line.
Field 2: Open routine.
Field 3: Close routine.
Field 4: Read routine.
Field 5: Write routine.
Field 6: Ioctl routine.
Field 7: Receiver interrupt routine.
Field 8: Transmitter interrupt routine.
Field 9: Modem control interrupt routine.

Part 3

This part contains definitions for device aliases. Each line has 2
fields:

Field 1: Alias name of device (8 chars, maximum).
Field 2: Reference name of device as given in part 1 (8

chars, maximum).

28 March 1991 Page 2

MASTER (F) MASTER(F)

Aliases may be used in place of actual device names when creating
the config(ADM) description file.

Part 4

This part contains the names and default values for tunable parame­
ters. Each line has 2 or 3 fields:

Field 1: Parameter name to be used in the configiADM)
description file (20 chars, maximum).

Field 2: Parameter name as it will appear in the resulting c.c
file (20 chars, maximum).

Field 3: Default parameter value (20 chars, maximum).

If a parameter has no default value, an explicit specification for the
parameter must be given in the description file. See config(ADM) for
a list of the tunable parameters.

Part 5

This part contains device names and handler routines for all devices
used to generate events.

See Also

config(ADM), configure(ADM)

28 March 1991 Page 3

MAXUUSCHEDS (F) MAXUUSCHEDS (F)

Name
maxuuscheds - UUCP uusched(ADM) limit file.

Description
The Maxuuscheds (/usrllib/uucp!Maxuuscheds) file contains a numeri­
cal string to limit the number of simultaneous uusched programs run­
ning. Each uusched running will have one uucico associated with it;
limiting the number will directly affect the load on the system. The
limit should be less than the number of outgoing lines used by UUCP
(a smaller number is often desirable). This file is delivered with a
default entry of 2. Again, this may be changed to meet the needs of
the local system. However, keep in mind that the load on the system
increases with the number of uusched programs running.

See Also
uucico(ADM), uucp(C), uusched(ADM), uux(C), uuxqt(C)

28 March 1991 Page 1

MAXUUXQTS (F) MAXUUXQTS (F)

Name
maxuuxqts - UUCP uuxqt(C) limit file.

Description

The Maxuuxqts (/usr/lib!uucplMaxuuxqts) file contains an ASCII
number to limit the number of simultaneous uuxqt programs running.
This file has a default entry of 2. If there is a lot of traffic from mail,
you can increase this number to reduce the time it takes for the mail to
leave your system. Keep in mind that the load on the system increases
with the number of uuxqt programs running.

See Also
uucico(ADM), uucp(C), uux(C), uuxqt(C)

28 March 1991 Page 1

MCCONFIG (F) MCCONFIG (F)

Name
mcconfig - Irwin tape driver parameters.

Description

I etc! default! mcconfig contains information on Irwin tape driver param­
eters. mcconfig entries are in the following format:

variable=parameterlist

variable is a case insensitive character string that names a configura­
tion parameter, parameterlist is a string of one or more parameter
values, in formats that vary depending on the variable used.

The following variables are defined:

IROPT
IRDBG
SYSFDC
ALTFDC
4100
4100B
IRDRV
IRSRCH
4251

driver options
debugging aids
system floppy controller parameters
alternate controller parameters
Irwin 4100 PC bus controller parameters
second 4100 PC bus controller parameters
drive searching sequence (old method 2.00)
drive searching sequence (new method 2.02)
4251 address

When configuring parameters, space and tab characters can not be
used. For example,

irdrv=3 is correct, while
irdrv = 3 is incorrect and will be ignored.

Parameters are passed to the tape driver by the daemon program
/etc/mcdaemon. Configuration parameters are given on separate lines.
The pound sign character (#) may be used open a comment. Com­
ments are terminated by a newline. For example the mcconfig file
might contain:

this is a comment in the mcconfig file
iropt=F
4251=31f

Changes made to the mcconfig file do not take effect until the system
is rebooted.

IROPT: Configuration Option String

The tape driver configuration variable IROPT may be used override
certain default or automatically determined configuration parameters.

28 March 1991 Page 1

MCCONFIG (F) MCCONFIG (F)

Multiple values can be specified, for example:

ir o p t = B d f
The values for IROPT are as follows:

B/b: 64K DMA Boundary Present/Absent
B This computer’s hardware architecture has a 64K DMA mem­

ory boundary. Tape data transfer buffers may not cross a 64K
physical boundary. This is the case for most PC and AT com­
patible machines.

b This computer’s hardware architecture does not have a 64K
DMA physical memory boundary. Tape data transfer buffers
may be allocated any where in memory. This is true for PS/2s
with the Micro Channel Architecture.

When neither (B) nor (b) is set, configuration is based upon the result
of Micro Channel presence determination (see the M/m option). In a
Micro Channel machine, (b) is assumed, otherwise (B) is used.

D/d: Use Demand/Single Byte DMA with Controllers Having a
FIFO
D When running in PC or AT class machine and using a controller

which has a first-in-first-out (FIFO) buffer, use demand mode DMA
transfers. Both the Intel 82072 and 82077 floppy controller chips
(the later is used in the 4100PC) have a 16 byte FIFO.

d When running in a PC or AT class machine use the standard single
byte DMA transfer mode regardless of the floppy controller type.

When neither (D) nor (d) is set, automatic configuration determines
whether a floppy controller chip with a FIFO is present on a per con­
troller basis. When a controller having a FIFO is found (e.g., Intel
82072/82077 parts return a positive response to the CONFIGURE
command), DMA transfers with respect to that controller are setup
using the demand mode. Using demand mode decreases the portion of
the bus bandwidth consumed by tape read/write transfers and
improves system performance during tape access.

F/f: Floating/Pulled-Up Drive Search
F When searching for drives on the system controller, use a special

“floating track 0” drive search. The “ floating” drive search
assumes the track 0 floppy interface line floats (can be high or low)
when no drive is attached. This algorithm works in all machines
but can’t locate a drive which is executing a load-point operation.
The floating search is required on certain Adaptec controllers.

28 March 1991 Page 2

MCCONFIG (F) MCCONFIG (F)

f When searching for drives on the system controller, use the stan­
dard “pulled-up track 0” drive search. The standard algorithm
assumes the floppy interface’s track 0 line is pulled up (is high)
when no tape drive is attached. When the standard search is
employed on a controller which “floats” the track 0 line, a drive
may be erroneously detected at a line where none is present. To
deal with this condition either the IRDRV configuration variable
may be set to specify the drive line (preferred) or the “floating
track 0” drive search (F) may be specified.

When neither (F) nor (f) is set, automatic configuration of this option
is performed by examining the model information returned from the
BIOS “Get Machine Configuration” service (int 15, AH = CO). The
following model uses the “floating” drive search (F):

Model Type Sub-type PS/2 Model
F8 0D 24 MHz Model 70

All other models use the “pulled-up track 0” search (f).

H/h: Do/Don’t Test for 4100 PC Bus Controller Signature
H Test for Irwin 4100 PC Bus controller (default),

h No 4100 PC controller present.

In the PC or AT (not Micro Channel) hardware environment (see the
M/m option), when testing for the presence of a 4100 PC controller,
the driver reads a byte from a signature port on the controller and
compares this against the value 45 hexadecimal. The I/O port address
of the signature port is found by adding six to the board’s base port
address (see the controller configuration section). For a 4100 PC Bus
controller with switches set to “as shipped from the factory” posi­
tions, the signature port address is 0370 (hexadecimal) + 6. If the byte
compares the 4100 PC is present. Otherwise it isn’t. This option is
intended to be used when peeking at the factory set (0376 hexade­
cimal) signature port causes the disruption of some other adapter
which is present at this address. Note that the driver can be instructed
to find the controller at a different address by setting the 4100 parame­
ter.

I/i: Do/Don’t Wait-for-index
I Wait-for-index before data transfer of each tape block.

i No need to wait-for-index before data transfer.

When neither (I) nor (i) is set, wait-for-index is enabled by default
only when an Olivetti Micro Channel machine is present, otherwise
wait-for-index is disabled.

28 March 1991 Page 3

MCCONFIG (F) MCCONFIG (F)

If the following symptoms are experienced, after installing the MC
driver in certain Micro Channel machines, the wait-for-index algo­
rithm may need to be enabled:

• On the first backup this message is seen:

me tape write error: Defect list has unrecoverable error

• If tape format gives the error:

Formatting failed: Block 0 medium error :
phase: CERTIFICATION, track: 0, cylinder: 0

• Extremely poor performance is experienced while listing the content
of or restoring a previously written tape.

A condition exists in some Micro Channel computers which causes
errors reading the first sector of each tape block. Included are the IBM
models 50,60, and 80, and the Olivetti P-500.

These machines employ 72065 (except for the Olivetti which has a
765) floppy controllers and data separators with certain characteris­
tics. The 72065 differs from other controllers in that it does not inhibit
VCO SYNC when an INDEX signal is received. Characteristically
the data separator circuit will: 1) have a phase lock loop (PLL) which
totally loses synchronization when confronted with a 50/50 duty cycle
read data signal and 2) be slow to re-synchronize while in the “data
following mode.” Most Irwin drives generate a read data signal with
the 50/50 duty cycle when transiting servo headers.

When these factors are combined, the following sequence of events
occurs during a tape read operation: A servo header crosses the head.
The drive sends a 50/50 duty cycle 250 KHz signal on the read data
line. The PLL loses sync (that is, the loop control voltage goes to a
rail). The end of the servo header crosses the head and the drive gives
an INDEX pulse. No corresponding VCO SYNC inhibit is generated
by the 72065 (this would normally put the PLL back on track). Sector
1 crosses the head but the PLL is still too far off to read the sector.
The 72065 generates a record-not-found error.

Some Irwin drives are fitted with a data compensator board. This
board has a circuit which alters the 50/50 duty cycle to a value which
allows most of these controllers to maintain PLL synchronization.
One exception is certain Model 80s.

For Micro Channel systems which don’t have the compensator (and
certain Model 80s which do), this problem can be circumvented by
software. The technique relies on a feature of the 72065 (and other
controllers in the 765 class): A VCO SYNC inhibit is generated just
after the last byte of a READ command is sent to the controller. Inhi­
biting the VCO SYNC pin (which is normally telling the PLL to lock
on incoming read data) causes the VCO’s input to be switched to a

28 March 1991 Page 4

MCCONFIG (F) MCCONFIG (F)

reference. This results in quickly returning the PLL to a state in which
it will be nearly synchronized with the “real” read data. VCO SYNC
inhibition results from programming the floppy controller using a
“wait-for-index” algorithm.

The wait-for-index algorithm sends all but the last byte of the data
transfer command to the 72065. It then waits for a logical high to low
transition of the floppy INDEX signal. The wait is accomplished by
polling a special I/O port (at address 03F0h) provided by the Micro
Channel floppy controller. The wait is used to delay the writing of the
last byte of the 72065 transfer command until after the INDEX transi­
tion. As a result, the 72065 generates an inhibit pulse on VCO SYNC
after INDEX, but with sufficient lead time to allow the PLL to achieve
synchronization. Thus, sector one’s ID can be correctly read.

As no index interrupt is available, wait-for-index polls to accomplish
its task. The sought INDEX event is time critical. A high priority dae­
mon is awakened to poll for the index transition. Using the wait-for-
index algorithm has the following drawback: All other system task
time processing is stopped until index polling is complete. This
means the user will see sluggish system performance at certain times.
Typically a 3 or 4 second dead period at tape track switch time. This
may prove unacceptable in certain installations.

M/m: Micro-Channel-Architecture/PC-Bus
M This computer has a Micro Channel Architecture bus.

m This machine doesn’t have a Micro Channel Architecture.

When neither (M) nor (m) is set, automatic configuration determines if
Micro Channel Architecture hardware is present. The M/m option is
used for automatic configuration of the B/b, I/i, and P/p options.

If the string “EISA” is found at physical memory location 0xflfd9,
(BIOS ROM location F000:FFD9) this is not a Micro Channel Archi­
tecture. Otherwise if all 8 bits of the I/O port at address 0x0080
(DMA page register 0 in an AT compatibles) can be modified this is an
AT 286/386 compatible. Otherwise this is a Micro Channel Architec­
ture.

O/o: System Controller Does/Doesn’t Support 1-Meg Transfers
O The system controller supports one Megabit data transfers.

o One Megabit transfers are not supported by the system controller.

When neither (0) nor (o) is set, automatic configuration determines
whether the system controller supports 1-Megabit transfer rates. This
is important when a 2120 is attached to the system controller. If the
controller does not support 1- Megabit transfers, 500-Kilobit transfers
are used for 80 and 120 Megabyte tapes. The driver detects the

28 March 1991 Page 5

MCCONFIG (F) MCCONFIG (F)

presence of the following 1-Megabit controllers: Intel 82072 and
82077. 80 and 120 Megabyte drives do not work if the driver thinks
the hardware is capable of 1-Megabit transfers and it is not. In the
reverse situation, transfer performance is degraded.

P/p: 4251 Is/Isn’t Present
P A 4251 board is present in the system and has its jumpers config­

ured to address die 4251 digital output register (DOR) at 0372h.
When present the tape driver echoes commands sent to the system
floppy controller’s DOR (at I/O port address 03F2h) to the 4251
DOR. This address can be configured using the 4251 parameter.

p No 4251 board present.

When neither (P) nor (p) is set, and when running in a PC-bus (non-
Micro Channel) machine (see the M/m option), automatic configura­
tion determines the presence of a 4251 board by reading I/O port
0372h and comparing the input byte to the signature of the 4251. The
4251 signature byte is 42h. This address can be configured using the
4251 parameter.

Q/q: Compaq Portable m Piggy Back Tape Unit Is/Isn’t Present
Q A Compaq Portable HI piggy back tape unit is present.

q No Compaq Portable HI piggy back tape unit is present.

When neither (Q) nor (q) is set, the algorithm used to test for presence
of an alternate (Compaq Portable HI piggy back) controller does the
following: First the model byte is checked to see if the machine is
other than an 8086 class machine (that is, the model byte must be less
than FE). If this test passes, the BIOS address F000:FFEA is checked
for the string ’COMPAQ’. When a match is found, the I/O port at
0374 (that is, the alternate floppy controller chip status port) is read
and the three low order bits are tested. If all three bits are zero, the
alternate controller is present.

When an alternate floppy controller is present, the following port
addresses are used by default:

765 765Base DOR Stat Data Clock___________________________
03F0 03F2 03F4 03F5 03F7 Primary FLOPPY controller
0370 0372 0374 0375 0377 Alternate TAPE controller

See the Controller Parameter Configuration section for information on
reconfiguration of the default base address.

28 March 1991 Page 6

MCCONFIG (F) MCCONFIG (F)

X/x: One Megabit Transfers Are/Aren’t Allowed
X Allow 1 Megabit transfers when conditions permit,

x Never allow 1 Megabit transfers.

By default, 1 Megabit transfers (X) are allowed. If 1 Megabit
transfers overload the system bus, the (x) option should be configured.

IRDBG: Debugging Options
Several debugging flags are available:

s Drive search debug

When (s) is set, the result of the tape drive search (presence test) is
shown. The following shows an example:

4100MC:3=CTLRNOTFND :2=CTLRNOTFND :l=CTLRNOTFND :0=CTLRNOTFND
4100MCB: 3=CTURNOTEM) : 2<TTLRNOTE,ND : l=CTLRNOTFND : 0<n*LRNOTFND
4100:3=DRVNOTFND :2=tapedrive :l=DRVNOTFND :0=DRVNOTFND
4100B:3KrTLRNOTF'ND :2<^nLRNOTEM) :l=CTLRNOTFND :0=CTLRNOTFND
AIHFIX:3K^TLRNOTFND : 2=CTLRNOTFND : l=CTLRNOTFND :0=CTLRNOTFND
SYDFDC:3=DRVNOTFND :2=tapedrive :l=nottested

The order of drive presence testing is shown left to right and top to
bottom. On a given line, the left most field has a symbol which
represents a controller. Numeric fields preceded by a colon (:) give
the unit select in the range 0 through 3. Fields preceded by an equal
sign (=) have a symbol which represents result of tape drive presence
testing for the controller and unit. These fields normally have a upper
case symbol which represents a driver error code. Two special strings
are used: “tapedrive” if a drive was found, or “nottested” if drive
presence was not tested.

i Initialization value debug

When (i) is set, certain initialization values are displayed. The fol­
lowing is an example:

hz=60 12_us_scaler=12 scaler_loqps=27510 model=0xlFC
is64kdma=l demanddma_ok=1
isuchannel=0 port_4251=3F0
timers=[0 1 2 1 2 7 19 37 181 235]

r Interrupt debug

28 March 1991 Page 7

MCCONFIG (F) MCCONFIG (F)

When (r) is set, a character is displayed for each interrupt processed
by the driver’s finite state machine. In addition, reset cycles are
shown. The following lists the characters and their meanings:

Character Meaning___
N Floppy controller (NEC) interrupt
T Timer Interrupt
R Reset sent to floppy controller (start of reset)
r Reset complete

x Data transfer debug

When (x) is set the status of a transfer request is displayed at interrupt
time. The display is similar to that shown below:

Cylinder
DMA
Overruns

Track
I
I
I
I

+— + ■

Positional
Retries
I
| Interrupt
| Status

T= 2 C= 42 0=12 R= 0 CRC

Alternating
Asterisk

| Sector Map
I -|------------------------------ +
I I I
* [-c— —-Cs--- M-O- —]

Track (T^decimal number) has the transfer request’s track number.

Cylinder (C^decimal number) has the transfer request’s cylinder num­
ber (tape block for the given track).

DMA Overruns (0=decimal number) has a count of DMA overruns
(excluding, if indicated by in the Interrupt Status, the current DMAO-
VERRUN).

Positional Retry (R^decimal number) has the current positional retry
number for the request. Note that a “free” retry is allowed under the
following conditions: 1) A track switch was performed. 2) The tape is
moving logically forward, this transfer request’s target head, cylinder,
and sector addresses match current values, but there is some positional
uncertainty because this transfer request was not not started on the
completion thread of the previous request (That is, the period of time
the tape has been moving between requests is not known). 3) A DMA
overrun has occurred during the previous pass for a given
read/write/verify request.

Interrupt Status has the current reason for the interrupt displayed sym­
bolically.

28 March 1991 Page 8

MCCONFIG (F) MCCONFIG (F)

Alternating Asterisk (*). This one character field is alternately set
with an asterisk (*) and a space (’ ’) character so that screen updates
may be distinguished.

Sector Map displays a visual indication of the status of each sector
when an error occurs. For example:

([- c -----C s ----M-0- —])

Each printing character in the sector map represents the status of a
sector. Before the start of a transfer, each entry is set to (s). On suc­
cessful transfer of a sector, the corresponding entry is set to a hyphen
(-). The following is a list of characters which appear in the sector
map and their meanings:

Character Interrupt Error
_________ Num Symbol

- 0
c 12
c 13
s 14
M 16
0 17
? other

IE_NOERR
IE_CRC
IEJDCRC
IE.RECNOTFND
ffi.DATAMARK
ffiJDMAOVERRUN
unexpected

Description_______
No error
Data CRC error
ID CRC error
Record not found
No data address mark
DMA overrun
Unexpected value

IRDRV, IRSRCH: Drive Search Control
IRDRV drive searching sequence (old method)
IRSRCH drive searching sequence (new method)

The tape driver uses a default drive searching sequence to test for the
presence of tape drives. The default sequence may be replaced with a
user configured sequence using either the IRDRV or IRSRCH vari­
ables. This is useful in situations where tape drives are erroneously
detected by the default sequence, or where multiple tape drives are
supported and a different mapping of logical to physical drives is
desired. For example:

IRSRCH=SYSFDC:3,4100:2

This searches for a tape drive at unit select 3 on the system floppy
controller, and unit select 2 on an Irwin 4100 PC bus controller.

The equivalent IRDRV specification is:

IRDRV=04,43

or alternately:

28 March 1991 Page 9

MCCONFIG (F) MCCONFIG (F)

IRDRV=4,43

IRDRV specifications use a 2-digit number to specify a controller and
unit select. The high-order digit gives the controller, and the low-
order the unit select. If the high-order digit is missing, 0 (for the sys­
tem floppy controller) is assumed. Note that the unit select used by
IRDRV is in the range 1-4 while the unit select used by IRSRCH is in
the range 0-3.

The following is a list of controllers supported by IRSRCH and
IRDRV:

IRSRCHName IRDRVHigh Digit
SYSFDC 0 System floppy
ALTFDC 1 Alternate floppy
4100MC 2 Irwin 4100 Micro Channel
4100MCB 3 Second 4100 Micro Channel
4100 4 Irwin 4100 PC Bus
4100B 5 Second 4100 PC Bus

The syntax of an IRSRCH drive search sequence specification is:

JRSRCH=searchlist

searchlist =

searchspec =

controller =

unitlist =

searchspec
searchspec,searchlist

controllerunitlist

SYSFDC (System floppy controller)
ALTFDC (Alternate controller)
4100MC (Irwin 4100 Micro Channel tape controller)
4100MCB (Second 4100 Micro Channel controller)
4100 (Irwin 4100 PC Bus tape controller)
4100B (Second 4100 PC Bus controller)

unit
unit:unitlist

unit = 0
1
2
3

The syntax of an IRDRV drive search sequence specification is:

IRDRV=searchlist

28 March 1991 Page 10

MCCONFIG (F) MCCONFIG (F)

searchlist =

searchspec =

controllerdigit =

unitdigit =

searchspec
searchspec searchlist

controllerdigit unitdigit

0 (System floppy controller, may be omitted)
1 (Alternate controller)
2 (Irwin 4100 Micro Channel tape controller)
3 (Second 4100 Micro Channel controller)
4 (Irwin 4100 PC Bus tape controller)
5 (Second 4100 PC Bus controller)

1
2
3
4

SYSFDC, ALTFDC, 4100,4100B: Controller Parameter Configu­ration
Certain variables may be set to specify tape controller specific param­
eters. For example:

4100=P:370,1:6/0:2,T:2,T:0

says an Irwin 4100 PC bus controller is installed and configured with a
base I/O Port address (P) 0370 hexadecimal, using IRQ (I) 6, DMA
channel (D) 2, and has two tape units (T), one wired for physical unit
select number 2, and the other 0.

The general form for controller parameter specifications is:

controller=parandist

paramlist = parameter
parameter paramlist

parameter = nameivalue

controller = SYSFDC (System floppy controller)
ALTFDC (Alternate controller)
4100 (Irwin 4100 PC Bus controller)
4100B (Second 4100 PC Bus controller)

name = P (Base I/O Port address)
I (Interrupt Request line (IRQ))

28 March 1991 Page 11

MCCONFIG (F) MCCONFIG (F)

D (DMA channel)
T (Tape unit number [0-3])

value = [0123456789abcefABCDEF]+ (Hexadecimal number)

4100 PC Configuration Switch Settings

The following tables contain the 4100 PC bus switch settings. (4100
Micro Channel settings are modified with the PS/2 reference (setup)
diskette.

Base
Address SWl SW2 SW3 SW4

300 ON ON ON ON
310 off ON ON ON
320 ON off ON ON
330 off off ON ON
340 ON ON off ON
350 off ON off ON
360 ON off off ON

*370 off off off ON
380 ON ON ON off
390 off ON ON off
3a0 ON off ON off
3b0 off off ON off
3c0 ON ON off off
3d0 off ON off off
3e0 ON off off off
3f0 off off off off

DMA
Channel SW5 SW6 SW7 SW8
1 ON off ON off
2* off ON off ON

IRQ SW9 SW10
3 ON off
6* off ON

* factory setting

4251: Floppy Extender Address Configuration

The Irwin 4251 adapter board augments the system floppy controller.
It extends the total number of drives which may be attached from 2 to
4, and allows for the attachment of an external drive. The 4251 uses a
single drive select I/O port. By design, the 4251 I/O port partially
mimics the functionality of the system floppy controller’s drive select
port. The system controller’s drive select port is called the Digital
Output Register (DOR). When written with certain values, both the

28 March 1991 Page 12

MCCONFIG (F) MCCONFIG (F)

system controller’s DOR and the 4251 drive select port activate a
drive select line at the floppy interface. In the standard “as shipped
from the factory” configuration, the 4251 port is addressed at 03F2
hexadecimal. The same address is used by system floppy controller’s
DOR. Thus, in the standard configuration, the 4251 monitors (that is,
listens to and uses) bytes written to the system’s DOR to select a drive.
The 4251 uses unit selects 2 and 3. Unit selects are used by the soft­
ware and should not be confused with the DRIVE SELECT jumpers
on the tape drive which are almost always set to DRIVE SELECT 2.
In certain hardware environments, the standard 4251 configuration
either doesn’t detect the presence of or fails to write tapes in a tape
drive.

When a 4251 is configured for the standard address and is connected
to:

• a DTC controller, data is never written to tape. The reason:
DTC controllers disable the floppy interface WRITE GATE sig­
nal when unit selects 2 or 3 (the third and fourth) selects are
activated. This means the tape drive’s write circuitry is never
enabled.

• an Adaptec suffix ’B’ controller (e.g., ACB-2xxxB or 1542B
SCSI controllers), driver software never detects the presence of
a tape drive. The reason: Adaptec suffix ’B ’ controllers drive
the TRACK 0 line active for unit selects 2 or 3. The TRACK 0
line is the line used by the drive to return the results of status
requests and motion commands issued by the driver software.

The conditions listed in the above three paragraphs can be overcome.
Typically reconfiguring the 4251 to use the recommended alternate
address by installing the A7 jumper allows the tape drive to function
correctly. When this is done, the 4251 I/O address moves from 3F2 to
372 hexadecimal.

When configuring the address of the Irwin 4251, the board address
jumpers are changed from the “as shipped” AO, A2, A3 position. Nor­
mally the change involves reinstalling a jumper stored on one pin of
the A7 pin pair to connect the “A7” pin pair. This selects the address
372. However, when a secondary floppy controller (such as the Irwin
4100) or other adapter is present the 372 address may be in conflict.
In general, a secondary floppy controller uses addresses in the range
370 through 377, which includes the alternate “372” address of file
4251. To resolve this conflict, the 4251 can be re-addressed. In addi­
tion, the tape driver software must be informed of the new address.

The following information is given to aid in understanding of the rela­
tionship of the 4251 and tape driver software, the meaning of the 4251
jumpers AO through A9, and an example of a non-standard configura­
tion.

28 March 1991 Page 13

MCCONFIG (F) MCCONFIG (F)

At initialization, the tape driver software tests for the presence of a
4251 at an alternate address. By default, the alternate address is 372
hexadecimal. (To select the 372 address on the 4251 install jumpers
across the AO, A2, A3, and A7 pin pairs.) The test reads a byte from
the alternate address and compares die byte with the signature. When
the 4251 select port is read, a signature byte (42 hexadecimal) is
returned. If the signature compares, the driver sends select bytes to
both the system’s DOR and the 4251 port. The default alternate
address may overridden by using the variable named “4251.” For
example,

4251=31f

tells the driver to test and use, if present, the port at 3 IF hexadecimal.

The 4251 port uses a single 10-bit I/O port address. The address is set
using the jumper pin pairs labeled AO through A9. Each jumper pin
pair corresponds directly with an I/O port address bit. When a jumper
pin pair is connected, the corresponding address bit is set to a logical
0. When the pin pair is disconnected, the address bit is set to a logical
1.

For example, to address the 4251 at 3 IF (an address which is unlikely
to conflict with standard adapters), connect jumper pin pairs A5, A6,
and A7.

Files
/etc/default/mcconfig
/etc/mcdaemon

See Also
tape(C), tape(HW)

28 March 1991 Page 14

MEM (F) MEM (F)

Name
mem, kmem - Memory image file.

Description
The mem file provides access to the computer’s physical memory.
All byte addresses in the file are interpreted as memory addresses.
Thus, memory locations can be examined in the same way as individu­
al bytes in a file. Note that accessing a nonexistent location causes an
error.

The kmem file is the same as mem except that it corresponds to ker­
nel virtual memory rather than physical memory.

In rare cases, the mem and kmem files may be used to write to mem­
ory and memory-mapped devices. Such patching is not intended for
the naive user and may lead to a system crash if not conducted prop­
erly. Patching device registers is likely to lead to unexpected results
if the device has read-only or write-only bits.

Files
/dev/mem

/dev/kmem

28 March 1991 Page 1

MICNET { F) MICNET { F)

Name
micnet - The Micnet default commands file.

Description
The micnet file lists the system commands that may be executed
through the remote command. The file is required for each system in
a Micnet network. Whenever a remote command is received through
the network, the Micnet programs search the micnet file for the sys­
tem command specified with the remote command. If found, the com­
mand is executed. Otherwise, the command is ignored and an error
message is returned to the system which issued the remote command.

The file may contain one or more lines. If all commands may be exe­
cuted, only the line

executeall

is required in the file. Otherwise, the commands must be listed indi­
vidually. A line that defines an individual command has the form:

command=commandpath

Command is the command name to be specified in a remote command. Commandpath is the full pathname of the command on the specified
system. The equal sign (=) separates the command and commandpath.
For example, the line:

cat=/bin/cat

defines the command name cat (used in the remote command) to refer
to the system command cat in the /bin directory.

When executeall is set, commands are sought in a series of default
directories. Initially, the directories are /bin and /usr/bin. The
default directories can be explicitly defined in the file by including a
line of the form:

execpath=P ATH=directory [rdirectory]...

28 March 1991 Page 1

MICNET (F) MICNET { F)

The first part of the line, execpath=PATH=, is required. Each direc­
tory must be a valid pathname. The colon is required to separate
directories. For example, the line:

execpath=PATH=/bin:/usr/bin:/usr/bobf/bin

sets the default directories to /bin, /usr/bin, and /usr/bobf/bin.

Files

/etc/default/micnet

See Also

aliases(M), netutil(ADM), systemid(F), top(F)

Notes

The rep command cannot be executed from a remote system unless
the micnet file contains either executeall, or the line

rcp=/usr/bin/rcp

28 March 1991 Page 2

MNTTAB (F) MNTTAB (F)

Name

mnttab - Format of mounted file system table.

Syntax

#include <stdio.h>
#include <mnttab.h>

Description

The /etc/mnttab file contains a table of devices mounted by the
mount(ADM) command.

Each table entry contains the pathname of the directory on which the
device is mounted, the name of the device special file, the read/write
permissions of the special file, and the date on which the device was
mounted.

The maximum number of entries in mnttab is based on the system
parameter NMOUNT located in /usr/sys/conf/space.c, which defines
the number of allowable mounted special files.

See Also

mount(ADM)

28 March 1991 Page 1

NULL (F) NULL (F)

Name
null - The null file.

Description
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

Files
/dev/null

28 March 1991 Page 1

PASSWD (F) PASSWD (F)

Name

passwd - The password file.

Description

Passwd contains the following information for each user:

-Login name

-Encrypted password

-Numerical user ID

-Numerical group ID

-Comment

-Initial working directory

-Program to use as shell

Refer to finger (C) for information in the required format of the com­
ment field for finger(C) to display the information. Each user is
separated from the next by a newline. If the password field is null, no
password is demanded; if the shell field is null, sh (C) is used.

This file resides in the directory /etc. Because the passwords are
encrypted, the file has general read permission and can be used, for
example, to map numerical user IDs to names.

The encrypted password consists of 13 characters chosen from a 64-
character alphabet (., /, 0-9, A-Z, a-z), except when the password is
null, in which case the encrypted password is also null. Password
aging is in effect for a particular user if his encrypted password in the
password file is followed by a comma and a nonnull string of charac­
ters from the above alphabet. (Such a string must be introduced by the
super-user.) The first character of the age denotes the maximum num­
ber of weeks for which a password is valid. A user who attempts to
log in after his password has expired will be forced to supply a new
one. The next character denotes the minimum period in weeks which
must expire before the password may be changed. The remaining char­
acters define the week (counted from the beginning of 1970) when the
password was last changed. (A null string is equivalent to zero.) The
first and second characters must have numerical values in the range
0-63, where the dot (.) is equal to 0 and lowercase z is equal to 63. If
the numerical value of both characters is 0, the user will be forced to
change his password the next time he logs in. If the second character
is greater than the first, only the super-user will be able to change the
password.

28 March 1991 Page 1

PASSWD (F) PASSWD (F)

Files

/etc/passwd

See Also

login(M), passwd(C), a641(S), getpwent(S),
pwadmin(ADM).

group(F),

28 March 1991 Page 2

PERMISSIONS (F) PERMISSIONS (F)

Name

permissions - Format of UUCP Permissions file.

Description

The Permissions file (/usr/lib/uucp/Permissions) specifies the per­
missions for remote computers concerning login, file access, and com­
mand execution. In the Permissions file, you can specify the com­
mands that a remote computer can execute and restrict its ability to
request or receive files queued by the local site.

Each entry is a logical line with physical lines terminated by a \ to
indicate continuation. Entries are made up of options delimited by
white space. Each option is a name-value pair in the following for­
mat:

name=value

Note that no white space is allowed within an option assignment.

Comment lines begin with a pound sign (#) and they occupy the entire
line up to a newline character. Blank lines are ignored (even within
multi-line entries).

There are two types of Permissions file entries:

LOGNAME specifies the permissions that take effect when a
remote computer calls your computer.

MACHINE specifies permissions that take effect when your
computer calls a remote computer.

Options

This section describes each option, specifies how they are used, and
lists their default values.

REQUEST -yes! no
Specifies whether the remote computer can request to set
up file transfers from your computer. When a remote
computer calls your computer and requests to receive a
file, this request can be granted or denied, no value is the
default value. It will be used if the REQUEST option is
not specified. The REQUEST option can appear in either
a LOGNAME (remote calls you) entry or a MACHINE
(you call remote) entry.

28 March 1991 Page 1

PERMISSIONS (F) PERMISSIONS (F)

SENDFTLES=yes/a*//
Specifies whether your computer can send the work
queued for the remote computer. When a remote com­
puter calls your computer and completes its work, it may
attempt to take work your computer has queued for it. The
call value is the default for the SENDFILE option. This
option is only significant in LOGNAME entries since
MACHINE entries apply when calls are made out to
remote computers. If this option is used with a
MACHINE entry, it will be ignored.

READ and WRITE
Specify the various parts of the file system that uucico can
read from or write to. The READ and WRITE options can
be used with either MACHINE or LOGNAME entries.

The default for both the READ and WRITE options is the
uucppublic directory as shown in the following example:

READ=/usr/spool/uucppublic
WRITE=/usr/spool/uucppublic

Supplying as a pathname gives permission to access
any file that can be read by UUCP. Multiple entries must
be separated by a colon. The READ option is for request­
ing files, and die WRITE option for depositing files. One
of the values must be the prefix of any full path name of a
file coming in or going out.

Note that the READ and WRITE options do not effect the
actual permissions of a file or directory. You should be
careful what directories you make accessible for reading
and writing by remote systems.

NOREAD and NO WRITE
Specify exceptions to the READ and WRITE options or
defaults. NOWRITE works in the same manner as the
NOREAD option. The NOREAD and NOWRITE can be
used in both LOGNAME and MACHINE entries.

CALLBACK
Specifies in LOGNAME entries that no transaction will
take place until the calling system is called back. There
are two examples of when you would use CALLBACK.
From a security standpoint, if you call back a machine you
can be sure it is the machine it says it is. If you are doing
long data transmissions, you can choose the machine that
will be billed for the longer call. The default for the
COMMAND option is no. The CALLBACK option is
rarely used. If two sites have this option set for each
other, a conversation will never get started.

28 March 1991 Page 2

PERMISSIONS (F) PERMISSIONS (F)

COMMANDS
Specifies the commands in MACHINE entries that a
remote computer can execute on your computer. This
affects the security of your system; use it with extreme
care.

The uux program will generate remote execution requests
and queue them to be transferred to the remote computer.
Files and a command are sent to the target computer for
remote execution. Note that COMMANDS is not used in
a LOGNAME entry; COMMANDS in MACHINE entries
define command permissions whether you call the remote
system or it calls you.

The default command that a remote computer can execute
on your computer is rmail. If a command string is used in
a MACHINE entry, the default commands are overridden.
Full pathnames can also be used. Including the ALL value
in the list means that any command from the remote com­
puter specified in the entry will be executed. If you use
this value, you give the remote computer full access to
your computer. So, be careful; this allows far more access
than normal users have. The VALIDATE option should be
used with the COMMANDS option whenever potentially
dangerous commands like cat and uucp are specified with
the COMMANDS option. Any command that reads or
writes files is potentially dangerous to local security when
executed by the UUCP remote execution daemon (uuxqt).

VALIDATE
Used in conjunction with the COMMANDS option when
specifying commands that are potentially dangerous to
your computer’s security. It provides a certain degree of
verification of the caller’s identity. The use of the VALI­
DATE option requires that privileged computers have a
unique login/password for UUCP transactions. An impor­
tant aspect of this validation is that the login/password
associated with this entry be protected. If an outsider gets
that information, that particular VALIDATE option can no
longer be considered secure. (VALIDATE is merely an
added level of security to the COMMANDS option,
though it is a more secure way to open command access
than ALL.)

Entries for OTHER Systems

You may want to specify different option values for machines or log­
ins that are not mentioned in specific MACHINE or LOGNAME
entries. This may occur when there are many computers calling in
that have the same set of permissions. The special name OTHER for
the computer name can be used in a MACHINE or LOGNAME entry

28 March 1991 Page 3

PERMISSIONS (F) PERMISSIONS (F)

as follows:

MACHINE=OTHER \
COMMANDS=rmail:/usr/local/bin/lc
LOGNAME=OTHER \
REQUEST=yes SENDFILES=yes \
READ=/usr/spool/uucppublic \
WRITE=/usr/spool/uucppublic

All options that can be set for specific machines or logins can be used
with the OTHER value, although the use of the VALIDATE option
makes little sense.

Example
This entry is for public login. It provides the default permissions.
Note that use of this type of anonymous login is not encouraged.

LOGNAME=nuucp \
MACHINE=OTHER \
READ=/usr/spool/uucppublic \
WRITE=/usr/spool/uucppublic \
SENDFILES=call REQUEST=no \
COMMAND S=/bin/ rmail

See Also
uucico(ADM), uucp(C), uux(C), uuxqt(C)

28 March 1991 Page 4

POLL (F) POLL (F)

Name
poll: Poll, PolLhour, Poll.day - Format of UUCP Poll files.

Description
The Poll file (/usr/lib/uucp/Poll) contains information for polling
remote computers. Each entry in the Poll file contains the name of a
remote computer to call, followed by a tab character, and the hours the
computer should be called. The hours must be integers in the range
0-23.

Poll file entries have the following format:

sysname^TAB>hour...

The following entry provides polling of computer gorgon every four
hours:

gorgon 0 4 8 12 16 20

The uudemon.poll (see uudemon(ADM)) script uses the Poll file to
set up the polling. Alternatively, uudemon.poll2 uses the files PolLhour and PolLday to perform similar, but more precise functions.
The format of these files is identical to Poll.

See Also
uucico(ADM), uudemon(ADM), uucp(C), cron(C), crontab(C)

28 March 1991 Page 1

QUEUEDEFS (F) QUEUEDEFS (F)

Name
queuedefs - Scheduling information for cron queues.

Description

The queuedefs file is read by the clock daemon, cron, and controls
how jobs submitted with at, batch, and crontab are executed. Every
job submitted by one of these programs is placed in a certain queue,
and the behavior of these queues is defined in
/usr/lib/cron/queuedefs. Queues are designated by a single, lower­
case letter. The following queues have special significance:

a at queue
b batch queue
c cron queue

For a given queue, the queuedefs file specifies the maximum number
of jobs that may be executing at one time (njobs), the priority at which
jobs will execute {nice), and the how long cron will wait between
attempts to run a job (wait). If njobs jobs are already running in a
given queue when a new job is scheduled to begin execution, cron will
reschedule the job to execute wait seconds later. A typical file might
look like this:

a. 4jin
b. 2j2n90w

Each line gives parameters for one queue. The line must begin with a
letter designating a queue, followed by a period (.) . This is followed
by the numeric values for njobs, nice, and wait, followed respectively
by the letters “j ”, “n”, and “w”. The values must appear in this order,
although a value and its corresponding letter may be omitted entirely,
in which case a default value is used. The default values are njobs =
100, nice = 2, and wait = 60.

The value for nice is added to the default priority of the job (a higher
numerical priority results in a lower scheduling priority - see nice (Q).
wait is given in seconds.

Files

/usr/lib/cron/queuedefs queuedefs file

28 March 1991 Page 1

SCCSFILE (F) SCCSFILE (F)

Name
sccsfile - Format of an SCCS file.

Description
An SCCS file is an ASCII file. It consists of six logical parts: the
checksum, the delta table (contains information about each delta),
user names (contains login names and/or numerical group IDs of users who may add deltas), flags (contains definitions of internal keywords),
comments (contains arbitrary descriptive information about the file),
and the body (contains the actual text lines intermixed with control
lines). Each logical part of an SCCS file is described in detail below.
Throughout an SCCS file there are lines which begin with the ASCII
SOH (start of heading) character (octal 001). This character is
hereafter referred to as the control character and will be represented
graphically as @. Any line described below which is not depicted as
beginning with the control character is prevented from beginning with
the control character. Entries of the form DDDDD represent a five
digit string (a number between 00000 and 99999).

Checksum

The checksum is the first line of an SCCS file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except those of
the first line. The @hR provides a magic number of (octal) 064001.

Delta Table

The delta table consists of a variable number of entries of the form:
@s DDDDD/DDDDD/DDDDD
@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD @i DDDDD...
@x DDDDD...
@g DDDDD...
@m <MR number>

@c <comments> ...

(a)e

28 March 1991 Page 1

SCCSFILE (F) SCCSFILE (F)

The first line (@s) contains the number of lines
inserted/deleted/unchanged respectively. The second line (@d) con­
tains the type of the delta (currently, normal: D, and removed: R), the
SCCS ID of the delta, the date and time of creation of the delta, the
login name corresponding to the real user ID at the time the delta was
created, and the serial numbers of the delta and its predecessor,
respectively.

The @i, @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

The @m lines (optional) each contain one MR number associated with
the delta; the @c lines contain comments associated with the delta.

The @e line ends the delta table entry.

User Names

The list of login names and/or numerical group IDs of users who may
add deltas to the file, separated by new-lines. The lines containing
these login names and/or numerical group IDs are surrounded by the
bracketing lines @u and @U. An empty list allows anyone to make a
delta.

Flags

Keywords used internally (see admin (CP) for more information on
their use). Each flag line takes the form:

@f <flag> coptional text>

The following flags are defined:

@ ft ctype of program>
@fv <program name>
@ fi
@fb
@fm cmodule name>
@ ff <floor>
@fc <ceiling>
@fd <default-sid>
@fn
@ fj
@ fl <lock-releases>
@fq cuser defined>

The t flag defines the replacement for the identification keyword.
The v flag controls prompting for MR numbers in addition to com­
ments; if the optional text is present it defines an MR number validity

28 March 1991 Page 2

SCCSFILE (F) SCCSFILE (F)

checking program. The i flag controls the waming/error aspect of the
“No id keywords” message. When the i flag is not present, this mes­
sage is only a warning; when the i flag is present, this message will
cause a “fatal” error (the file will not be gotten, or the delta will not
be made). When the b flag is present the -b option may be used with
the get command to cause a branch in the delta tree. The m flag
defines the first choice for the replacement text of the sccsfile.F iden­
tification keyword. The f flag defines the “floor” release; the release
below which no deltas may be added. The c flag defines the “ceiling”
release; the release above which no deltas may be added. The d flag
defines the default SID to be used when none is specified on a get
command. The n flag causes delta to insert a “null” delta (a delta
that applies no changes) in those releases that are skipped when a
delta is made in a new release (e.g., when delta 5.1 is made after delta
2.7, releases 3 and 4 are skipped). The absence of the n flag causes
skipped releases to be completely empty. The j flag causes get to
allow concurrent edits of the same base SID. The 1 flag defines a list
of releases that are locked against editing (ge/(CP) with the -e option).
The q flag defines the replacement for the identification keyword.

Comments

Arbitrary text surrounded by the bracketing lines @t and @T. The
comments section typically contains a description of the file’s pur­
pose.

Body

The body consists of text lines and control lines. Text lines don’t
begin with the control character, control lines do. There are three
kinds of control lines: insert, delete, and end, as follows:

@1DDDDD
@D DDDDD
@EDDDDD

The digit string (DDDDD) is the serial number corresponding to the
delta for the control line.

See Also

admin(CP), delta(CP), get(CP), prs(CP)

XENIX Programmer's Guide

28 March 1991 Page 3

STAT(F) STAT(F)
Name

stat - Data returned by stat system call.

Syntax

#include <sys/stat.h>

Description

The sys/stat.h include file contains the definition for the structure
returned by the stat and fstat functions. The structure is defined as:

struct stat{
dev_t st_dev; /*

ino_t st_ino; /* inode number */
ushort sh_mode; /* file mode */
short st_nlink; /* # of links */
ushort st_uid; /* owner uid */
ushort st_gid; /* owner gid */
dev_t st_rdev; /*

off_t st_size; /* file size in bytes */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last data modification */
time_t st_ctime; /* time of last file status ’change’ */

Note that the st_atime, stjmtime, and st_ctime values are measured in
seconds since 00:00:00 (GMT) on January 1,1970.

The stjmode value is actually a combination of one or more of the fol­
lowing file mode values:
S IFMT 0170000 /* type of file */
S IFDIR 0040000 /* directory */
S IFCHR 0020000 /* character special */
S IFBLK 0060000 /* block special */
S IFREG 0100000 /* regular */
S IFIFO 0010000 /* fifo */
S IFNAM 0050000 /* name special entry */
S INSEM 01 /* semaphore */
S INSHD 02 /* shared memory */
S ISUID 04000 /* set user id on execution */

28 March 1991 Page 1

STAT(F) STAT(F)

S IGUID
S ISVTX
S IREAD
S IWRITE
S.ffiXEC

02000 /* set group id on execution */
01000 /* save swapped text even after use */
00400 /* read permission, owner */
00200 /* write permission, owner */
00100 /* execute/search permission, owner */

Files

/usr/include/sys/stat.h

See Also

stat(S)

28 March 1991 Page 2

SYSFILES (F) SYSFILES (F)

Name
sysfiles - Format of UUCP Sysfiles file.

Description
The /usr/lib/uucp/Sysfiles file lets you assign different files to be
used by uucp(C) and cu(C) as Systems, Devices, and Dialers files.

You can use different Systems files so that requests for login services
can be made to different addresses than UUCP services.

With different Dialers files you can use different handshaking for cu
and uucp. Multiple Systems, Dialers, and Devices files are useful if
any one file becomes too large.

An active Sysfiles file is not included in the distribution. Instead a Sysfiles.eg file is included, which contains comments and commented
examples of how such a file can be used. This is done because UUCP
runs faster without reading this file.

The format of the Sysfiles file is

service=w systems=x:x dialers-y:y devices=z:z

where w is replaced by uucico(ADM), cm, or both separated by a
colon; x is one or more files to be used as the Systems file, with each
file name separated by a colon and read in the order presented; y is
one or more files to be used as the Dialers file; and z is one or more
files to be used as the Devices file. Each file is assumed to be relative
to the /usr/lib/uucp directory, unless a full path is given. A
backslash-carriage return (\<CR>) can be used to continue an entry on
to the next line.

An example of using a local Systems file in addition to the usual Sys­
tems file follows:

s e r v i c e = u u c i c o : c u s y s t e m s = S y s t e m s : L o c a l _ S y s t e m s

If this is in I usr/lib/uucp/Sysfiles, then both uucico and cu will first
look in /usr/lib/uucp/Systems. If the system they’re trying to call
doesn’t have an entry in that file, or if the entries in the file fail, then
they’ll look in /usr/lib/uucp/Local_Systems.

When different Systems files are defined for uucico and cu services,
your machine will store two different lists of Systems. You can print
the uucico list using the uuname command or the cu list using the
uuname -c command.

28 March 1991 Page 1

SYSFILES (F) SYSFILES (F)

Examples

The following example uses different Systems and Dialers files to
separate the uucico and cw-specific info, with information that they
use in common still in the “usual” Systems and Dialers files.

s e r v ic e = u u c ic o s y s te m s = S y s te m s .c ic o :S y s te m s \
d i a l e r s = D i a l e r s . c i c o : D i a l e r s

s e r v ic e = c u sy s te m s = S y s te m s . c u : S y s tem s \
d i a l e r s = D i a l e r s . c u :D i a l e r s

This next example uses the same systems files for uucico and cu, but
has split the Systems file into local, company-wide, and global files.

s e r v ic e = u u c ic o sy s te m s = S y s te m s . l o c a l : S y s te m s . com pany: S y s tem s
s e r v ic e = c u sy s te m s = S y s te m s . l o c a l : S y s te m s . com pany: S y s tem s

See Also

uucico(ADM), uucp(C), systems(F)

28 March 1991 Page 2

SYSTEMID (F) SYSTEMID (F)

Name
systemid - The Micnet system identification file.

Description
The systemid file contains the machine and site names for a system in
a Micnet network. A machine name identifies a system and distin­
guishes it from other systems in the same network. A site name iden­
tifies the network to which a system belongs and distinguishes the net­
work from other networks in the same chain.

The systemid file may contain a site name and up to four different
machine names. The file has the form:

[site-name]
[machine-name 1]
[machine-name2]
[machine-name3]
[machine-name4]

The file must contain at least one machine name. The other machine
names are optional, serving as alternate names for the same machine.
The file must contain a site name if more than one machine name is
given or if the network is connected to another through a uucp link.
The site name, when given, must be on the first line.

Each name can have up to eight letters and numbers but must always
begin with a letter. There is never more than one name to a line. A
line beginning with a pound sign (#) is considered a comment line and
is ignored.

The Micnet network requires one systemid file on each system in a
network with each file containing a unique set of machine names. If
the network is connected to another network through a uucp link, each
file in the network must contain the same site name.

The systemid file is used primarily during resolution of aliases. When
aliases contain site and/or machine names, the name is compared with
the names in the file and removed if there is a match. If there is no
match, the alias (and associated message, file, or command) is passed
on to the specified site or machine for further processing.

28 March 1991 Page 1

SYSTEMID (F) SYSTEMID (F)

Files

/etc/systemid

See Also

aliases(M), netutil(ADM), top(F)

28 March 1991 Page 2

SYSTEMS (F) SYSTEMS (F)

Name
systems - Format of UUCP Systems file.

Description

The Systems file (/usr/lib/uucp/Systems) contains the information
needed by the uucico daemon to establish a communication link to a
remote computer. Each entry in the file represents a computer that
your computer can call. You can configure the Systems file to prevent
unauthorized computers from logging in on your computer. More than
one entry may be present for a particular computer. These additional
entries represent alternative communication paths which the computer
tries in sequential order.

Each entry in the Systems file has the following format:

sitename schedule device speed phone login-script

sitename field contains the node name of the remote com­
puter.

schedule field is a string that indicates the day-of-week and
time-of-day when the remote computer can be
called.

device is the device type that should be used to establish
the communication link to the remote computer.

speed indicates the transfer speed of the device used in
establishing the communication link.

phone provides the phone number of the remote com­
puter for automatic dialers. If you wish to create a
portable Systems file that can be used at a number
of sites where the dialing prefixes differ, see the
dialcodes(F) man page.

login-script contains login information (also known as a “chat
scrip t”).

See Also
uucico(ADM), uucp(C), devices(F), dialers(F)

28 March 1991 Page 1

m (F) TAR (F)

Name

tar - Archive format.

Description

The command tar(C) dumps files to and extracts files from backup
media or the hard disk.

Each file is archived in contiguous blocks, the first block being occu­
pied by a header, whose format is given below, and the subsequent
blocks of the files occupying the following blocks. All headers and
file data start on 512 byte block boundaries and any spare unused
space is padded with garbage. The format of a header block is as fol­
lows:

♦ define TBLOCK 512
♦ define NBLOCK 20
♦ define NAMSIZ 100
u n io n h b lo c k {

c h a r dumny[TBLOCK]/
s t r u c t h e a d e r {

c h a r name [NAMSIZ];
c h a r mode [8] ;
c h a r u i d [8] ;
c h a r g i d [8] ;
c h a r s i z e [1 2] ;
c h a r m tim e [12] ;
c h a r c h k su m [8];
c h a r l i n k f l a g ;
c h a r l in k n a m e [NAMSIZ];
c h a r e x tn o [4] ;
c h a r e x t o t a l [4] ;
c h a r e f s i z e [1 2] ;

} d b u f ;
} d b lo c k ;

The name entry is the path name of the file when archived. If the path­
name starts with a zero word, the entry is empty. It is at most 100
bytes long and ends in a null byte. Mode, uid, gid, size, and time modi­
fied are die same as described under i-nodes (refer to filesystem (F)).
The checksum entry has a value such that the sum of the words of the
directory entry is zero.

If the entry corresponds to a link, then linkname contains the path­
name of the file to which this entry is linked and linkflag gives a count
of the links. No data is put in the archive file.

See Also
filesystem(F), tar(C)

28 March 1991 Page 1

TERM (F) TERM (F)

Name

term - Terminal driving tables for nroff.

Description

nroff(CT) uses driving tables to customize its output for various types
of output devices, such as printing terminals, special word-processing
printers (such as Diablo, Qume, or NEC Spinwriter mechanisms), or
special output filter programs. These driving tables are written as C
programs, compiled, and installed in /usr/lib/term/tabnam^, where
name is the name for that terminal type as shown in term(CT).

The structure of the tables is as follows. Sizes are in 240ths of an
inch.

#define INCH 240

struct termtable tip ; { * lp is the name of the term, A
int bset; * modify with new name, such as tnew A
int breset;
int Hor;
int Vert;
int Newline;
int Char;
int Em;
int Halfline;
int Adj;
char *twinit;
char *twrest;
char *twnl;
char *hlr;
char *hlf;
char *flr;
char *bdon;
char *bdoff;
char *iton;
char *itoff;
char *ploton;
char *plotoff;
char *up;
char *down;
char *right;
char *left;
char *codetab[256-32];
char *zzz;

The meanings of the various fields are as follows:

28 March 1991 Page 1

TERM (F) TERM (F)

bset bits to set in termio.c_oflag see tty(M) and termio(M)).
after output.

breset bits to reset in termio.c_oflag before output.

Hor horizontal resolution in fractions of an inch.

Vert vertical resolution in fractions of an inch.

Newline space moved by a newline (linefeed) character in frac­
tions of an inch.

Char quantum of character sizes, in fractions of an inch, (i.e.,
characters are multiples of Char units wide. See codetab
below.)

Em size of an em in fractions of an inch.

Halfline space moved by a half-linefeed (or half-reverse-linefeed)
character in fractions of an inch.

Adj quantum of white space for margin adjustment in the
absence of the -e option, in fractions of an inch, (i.e.,
white spaces are a multiple of Adj units wide)

Note: if this is less than the size of the space character (in
units of Char; see below for how the sizes of characters
are defined), nroff will output fractional spaces using plot
mode. Also, if the -e switch to nroff is used, Adj is set
equal to Hor by nroff.

twinit set of characters used to initialize the terminal in a mode
suitable for nroff.

twrest set of characters used to restore the terminal to normal
mode.

twnl set of characters used to move down one line.

hlr set of characters used to move up one-half line.

hlf set of characters used to move down one-half line.

flr set of characters used to move up one line.

bdon set of characters used to turn on hardware boldface mode,
if any. Nroff assumes that boldface mode is reset auto­
matically by the twnl string, because many letter-quality
printers reset the boldface mode when they receive a car­
riage return; the twnl string should include whatever char­
acters are necessary to reset the boldface mode.

28 March 1991 Page 2

TERM (F) TERM (F)

bdoff set of characters used to turn off hardware boldface mode,
if any.

iton set of characters used to turn on hardware italics mode, if
any.

itoff set of characters used to turn off hardware italics mode, if
any.

ploton set of characters used to turn on hardware plot mode (for
Diablo-type mechanisms), if any.

plotoff set of characters used to turn off hardware plot mode (for
Diablo-type mechanisms), if any.

up set of characters used to move up one resolution unit
(Vert) in plot mode, if any.

down set of characters used to move down one resolution unit
(Vert) in plot mode, if any.

right set of characters used to move right one resolution unit
(Hor) in plot mode, if any.

left set of characters used to move left one resolution unit
(Hor) in plot mode, if any.

codetab Array of sequences to print individual characters. Order
is nr offs internal ordering. See the file
/usr/lib/term/tabuser.c for the exact order.

in a zero terminator at the end.

The codetab sequences each begin with a flag byte. The top bit indi­
cates whether the sequence should be underlined in the .ul font. The
rest of the byte is the width of the sequence in units of Char.

The remainder of each codetab sequence is a sequence of characters
to be output. Characters with the top bit off are output as given; char­
acters with the top bit on indicate escape into plot mode. When such
an escape character is encountered, nr off shifts into plot mode, emit­
ting ploton, and skips to the next character if the escape character was
\ 200\

When in plot mode, characters with the top bit off are output as given.
A character with the top bit on indicates a motion. The next bit indi­
cates coordinate, with 1 being vertical and 0 being horizontal. The
next bit indicates direction, with 1 meaning up or left. The remaining
five bits give the amount of the motion. An amount of zero causes exit
from plot mode.

28 March 1991 Page 3

TERM (F) TERM (F)

When plot mode is exited, either at the end of the string or via the
amount-zero exit, plotoff is emitted followed by a blank.

All quantities which are in units of fractions of an inch should be
expressed as INCH*num/denom, where num and denom are respec­
tively the numerator and denominator of the fraction; that is, 1/48 of
an inch would be written as “INCH/48”.

If any sequence of characters does not pertain to the output device,
that sequence should be given as a null string.

The XENIX Development System must be installed on the computer to
create a new driving table. The source code for a generic output de­
vice is in the file /usr/lib/term/tabuser.c Copy this file and make the
necessary modifications, including the name of the termtable struct.
Refer to the hardware manual for the codes needed for the output de­
vice (terminal, printer, etc.). Name the file according to the conven­
tion explained in term(CT). The makefile, /usr/lib/term/makefile,
should be updated to include the source file to the new driving table.
.When the files are prepared, enter the command :

make

(See make(CP)). The source to the new driving table is linked with the
object file mkterm.o, and the new driving table is created and installed in
the proper directory.

FILES

/usr/lib/term/tabrttfme driving tables
/usr/lib/term/tabuser.c generic source for driving tables
/usr/lib/term/makefile makefile for creating driving tables
/usr/lib/term/mkterms.olinkable object file for creating driving tables

SEE ALSO

nroff(CT), term(CT).

Notes
The XENIX Development System must be installed on the computer
to create new driving tables.

Not all XENIX facilities support all of these options.

28 March 1991 Page 4

TERMINFO (F) TERMINFO(F)

Name
terminfo - Format of compiled terminfo file.

Description
Compiled terminfo descriptions are placed under the directory /usr/lib/terminfo. In order to avoid a linear search of a huge XENIX
system directory, a two-level scheme is used: /usr/lib/terminfo/c/name where name is the name of the terminal,
and c is the first character of name. Thus, act4 can be found in the file /usr/lib/terminfo/a/act4. Synonyms for the same terminal are imple­
mented by multiple links to the same compiled file.

The format has been chosen so that it will be the same on all hard­
ware. An 8- or more-bit byte is assumed, but no assumptions about
byte ordering or sign extension are made.

The compiled file is created with the tic(C) program, and read by the
routine setupterm in terminfo(S). The file is divided into six parts:
the header, terminal names, boolean flags, numbers, strings, and string
table.

The header section begins the file. This section contains six short
integers in the format described below. These integers are (1) the
magic number (octal 0432); (2) the size, in bytes, of the names sec­
tion; (3) the number of bytes in the boolean section; (4) the number of
short integers in the numbers section; (5) the number of offsets (short
integers) in the strings section; (6) the size, in bytes, of the string
table.

Short integers are stored in two 8-bit bytes. The first byte contains the
least significant 8 bits of the value, and the second byte contains the
most significant 8 bits. (Thus, the value represented is
256*second+first.) The value -1 is represented by 0377, 0377; other
negative values are illegal. The -1 generally means that a capability is
missing from this terminal. Note that this format corresponds to the
hardware of the VAX and PDP-11. Machines in which this does not
correspond to the hardware read the integers as two bytes and compute
the result.

The terminal names section comes next. It contains the first line of
the terminfo description, listing the various names for the terminal,
separated by the ‘I’ character. The section is terminated with an
ASCII NUL character.

The boolean flags have one byte for each flag. This byte is either 0 or
1, as the flag is present or absent. The capabilities are in the same
order as the file <term.h>.

28 March 1991 Page 1

TERMINFO(F) TERMINFO(F)

Between the boolean section and the number section, a null byte will
be inserted, if necessary, to ensure that the number section begins on
an even byte. All short integers are aligned on a short-word boundary.

The numbers section is similar to the flags section. Each capability
takes up two bytes, and is stored as a short integer. If the value
represented is -1, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short
integer, in the format above. A value of -1 means the capability is
missing. Otherwise, the value is taken as an offset from the beginning
of the string table. Special characters in "X or\c notation are stored in
their interpreted form, not the printing representation. Padding infor­
mation $<nn> and parameter information %x are stored intact in unin­
terpreted form.

The final section is the string table. It contains all the values of string
capabilities referenced in the string section. Each string is null-
terminated.

Note that it is possible for setupterm to expect a different set of capa­
bilities than are actually present in the file. Either the database may
have been updated since setupterm was recompiled (resulting in extra
unrecognized entries in the file) or the program may have been recom­
piled more recently than the database was updated (resulting in miss­
ing entries). The routine setupterm must be prepared for both possibil­
ities; this is why the numbers and sizes are included. Also, new capa­
bilities must always be added at the end of the lists of boolean, num­
ber, and string capabilities.

28 March 1991 Page 2

TERMINFO(F) TERMINFO(F)

As an example, an octal dump of the description for the Microterm
ACT 4 is included:

m ic r o t e r m | a c t 4 I m ic r o t e r m a c t i v ,
cr= ~ M , c u d l = ~ J , in d = ~ J , b e l= ~ G , am , c u b l= ~ H ,
e d = ~ _ , e l = ~ ~ , c l e a r = ~ L , cup=~T% pl% c% p2% c,
c o l s # 8 0 , l i n e s # 2 4 , c u f l = ~ X , c u u l= ~ Z , h o m e = ~] ,

000 032 001 \o 025 \0 \b \o 212 \o " \0 m i c r
020 o t e r m 1 a c t 4 1 m i c r o
040 t e r m a c t i V \o \0 001 \o \o
060 \0 \o \o \0 \0 \o \o \o \o \o \o \0 \0 \o \0 \o
100 \o \0 P \o 377 377 030 \o 377 377 377 377 377 377 377 377
120 377 377 377 377 \o \o 002 \o 377 377 377 377 004 \o 006 \o
140 \b \o 377 377 377 377 \n \o 026 \o 030 \o 377 377 032 \o
160 377 377 377 377 034 \0 377 377 036 \o 377 377 377 377 377 377
200 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

520 377 377 377 377 \o 377 377 377 377 377 377 377 377 377 377
540 377 377 377 377 377 377 007 \o \r \o \f \o 036 \o 037 \o
560 024 % P 1 % c % P 2 % c \o \n \o 035 \o
600 \b \o 030 \o 032 \0 \n \o

Some limitations: the total size of a compiled description cannot
exceed 4096 bytes; the name field cannot exceed 128 bytes.

Files
/usr/lib/terminfo/*/* compiled terminal capability data base

See Also
terminfo(M), terminfo(S), tic(C)

28 March 1991 Page 3

TOP (F) TOP (F)

Name
top, top.next - The Micnet topology files.

Description

These files contain the topology information for a Micnet network.
The topology information describes how the individual systems in the
network are connected, and what path a message must take from one
system to reach another. Each file contains one or more lines of text.
Each line of text defines a connection or a communication path.

The top file defines connections between systems. Each line lists the
machine names of the connected systems, the serial lines used to make
the connection, and the speed (baud rate) of transmission between the
systems. Each line has the following format:

machine 1 tty la machine2 tty2a speed

machinel and machine2a are the machine names of the respective sys­
tems (as given in the systemid files). The ttys are the device names
(e.g., tty la) of the connecting serial lines. The speed must be an
acceptable baud rate (e.g., 110,300,..., 19200).

The top.next file contains information about how to reach a particular
system from a given system. There may be several lines for each sys­
tem in the network. Each line lists the machine name of a system, fol­
lowed by the machine name of a system connected to it, followed by
the machine names of all the systems that may be reached by going
through the second system. Such a line has the form:

machinel machine2 machine3 [machine4]...

The machine names must be the names of the respective systems (as
given by the first machine name in the systemid files).

The top.next file must be present even if there are only two computers
in the network. In such a case, the file must be empty.

In the top and top.next files, any line beginning with a number sign
(#) is considered a comment, and is ignored.

Files

/usr/lib/mail/top

/usr/lib/mail/top.next

28 March 1991 Page 1

TOP (F) TOP (F)

See Also

aliases(M), netutil(ADM), systemid(F), top(F)

28 March 1991 Page 2

TTYS (F) TTYS (F)

Name

ttys - Login terminals file.

Description

The /etc/ttys file contains a list of the device special files associated
with possible login terminals, and defines which files are to be opened
by the init(M) program on system start-up.

The file contains one or more entries of the form

v state mode name

The name must be the filename of a device special file. Only the
filename may be supplied, the path is assumed to be /dev. If state is
“ 1”, the file is enabled for logins; if “0”, the file is disabled. The
mode is used as an argument to the getty (M) program. It defines the
line speed and type of device associated with the terminal. A list of
arguments is provided in getty (M).

For example, the entry “ lmtty02” means the serial line tty02 is to be
opened for logging in at 9600 baud.

Files

/etc/ttys

See Also

disable(C), enable(C), getty(M), init(M), terminal(HW), terminals(M),
tty(M)

Notes

The /etc/ttys file should only be edited when the system is in system
maintenance mode. If it is edited when the system is in multi-user
mode, the changes will not take effect until signal 2 is sent to init or
an enable or disable command is given. (Enter the following com­
mand as root to send signal 2 to init: kill -2 1.) Rebooting the system
will also cause the changes to take effect. See the XENIX System
Administrator’s Guide.

28 March 1991 Page 1

TYPES (F) TYPES (F)

Name
types - Primitive system data types.

Syntax

#include <sys/types.h>

Description

The data types defined in the include file <sys/types.h> are used in
XENIX system code; some data of these types are accessible to user
code.

The form daddrj is used for disk addresses except in an inode on
disk, see filesystem (F). Times are encoded in seconds since 00:00:00
GMT, January 1, 1970. The major and minor parts of a device code
specify kind and unit number of a device and are installation-
dependent. Offsets are measured in bytes from the beginning of a file.
The labelJ variables are used to save the processor state while
another process is running.

See Also

filesystem(F)

28 March 1991 Page 1

UTMP (F) UTMP (F)

Name
utmp, wtmp - Formats of utmp and wtmp entries.

Syntax
#include <sys/types.h>#include <utmp.h>

Description
These files, which hold user and accounting information for such com­
mands as who(C), write (C), and login(M), have the following struc­
ture as defined by <utmp.h>:
#define UTMP_FILE “ /etc/utmp”
#define WTMP.FILE “/etc/wtmp”
#define ut_name ut_user

struct utmp {
char ut_user[8];
char ut_id[4];
char ut_line[12];
short ut_pid;
short ut_type;
struct exit_status {

short e_termination;
short e_exit;

} ut_exit;

time_t ut_time;

/ * User login name */
/ * usually line # */
/ * device name (console, lnxx) */
/ * process id */
/ * type of entry */

/* Process termination status * /
/ * Process exit status * /
/ * The exit status of a process

marked as DEAD_PROCESS. * /
/ * time entry was made */

/ * Definitions for ut_type */

#define EMPTY 0
#define R U N LV L
#define BOOT TIME 2
#define OLD_TIME 3
#define NEW.TIME 4
#define INIT.PROCESS 5
#define LOGIN.PROCESS 6
#define USER.PROCESS 7
#define DEAD.PROCESS
#define ACCOUNTING 9
#defme UTMAXTYPE ACCOUNTING /* Largest legal value of ut_type */

/ * Process spawned by "init" * /
/ * A "getty" process waiting for login */
/* A user process * /8

/ * Special strings or formats used in the "ut_line" field when * /
/* accounting for something other than a process * /
/ * No string for the ut_line field can be more than 11 chars + */
/* a NULL in length * /
#define RUNLVL.MSG "run-level %c"
#define BOOT_MSG "system boot"

28 March 1991 Page 1

UTMP (F) UTMP (F)

#defme OTIME_MSG "old time"
#define NTIME_MSG "new time"

Files

/usr/include/utmp.h
/etc/utmp
/etc/wtmp

See Also

getut(S), login(C), who(C), write(C)

28 March 1991 Page 2

Contents
Hardware Dependent (HW)

intro Introduction to miscellaneous features and files.
80287 Math co-processor.
80387 Math co-processor.
boot XENIX boot program.
cmos Displays and sets the configuration data base.
fd Floppy devices.
hd Internal fixed disk drive.
keyboard Name and function of special keyboard keys.
lp, IpO, lp l, lp2 Line printer device interfaces.
machine Description of host machine.
mouse Mouse or other graphic input device.
parallel Interface to parallel ports.
ramdisk Memory block device.
screen, tty[01-n],
color,
monochrome,
ega, pga Display adapter and video monitor.
scsi Small computer systems interface.
serial, ttyl[a-h],
ttyl[A-H],
tty2[a-h],
tty2[A-H] Interfaces to serial ports.
tape Cartridge tape device.
terminal Login terminal.

INTRO (HW) INTRO (HW)

Name
intro - Introduction to machine related miscellaneous features and
files.

Description
The hardware-dependent section (HW) contains information useful in
maintaining the system. Included are descriptions of files, devices,
tables and programs that are important in maintaining the entire sys­
tem that are directly related to the kind of computer on which the sys­
tem runs.

28 March 1991

80287 (HW) 80287 (HW)

Name
80287 - Math coprocessor.

Description
The 80287 is the INTEL math co-processor for the 80286. The kernel
tests for the presence of an 80287 at startup.

If your system has an 80287, you must turn off a switch on the main
system board in order to enable 80287 interrupts. Check your hard­
ware manual to determine the proper switch and setting. If your sys­
tem does not have an 80287, or the switch is on, die kernel will run a
set of emulator routines which are much slower.

The C compiler available with the program development package gen­
erates the appropriate 8087 (or 80287) opcodes. C routines compiled
with this compiler have run as much as 200 times as fast as the emu­
lated code. In particular, the standard math library routines run con­
siderably faster if you have an 80287.

The overflow, division by zero, and invalid operand exceptions return
a SIGFPE signal. This signal can be caught. The rest of the 80287
floating point exceptions (underflow, denormalized operand, and pre­
cision error) are masked.

Notes
The emulator returns meaningless information on divide by zero.

There is no obvious way to tell which 80287 exception generated the
SIGFPE.

28 March 1991 Page 1

80387(HW) 80387 (HW)

Name

80387 - Math coprocessor.

Description

The 80387 is the INTEL math co-processor for the 80386. The kernel
tests for the presence of an 80387 at startup.

If your system has an 80387, you must turn off a switch on the main
system board in order to enable 80387 interrupts. Check your hard­
ware manual to determine the proper switch and setting. If your sys­
tem does not have an 80387, or the switch is on, the kernel will run a
set of emulator routines which are much slower.

The C compiler available with the program development package gen­
erates the appropriate 80387 opcodes. C routines compiled with this
compiler have run as much as 200 times as fast as the emulated code.
In particular, the standard math library routines run considerably fas­
ter if you have an 80387.

The overflow, division by zero, and invalid operand exceptions return
a SIGFPE signal. This signal can be caught. The rest of the 80387
floating point exceptions (underflow, denormalized operand, and pre­
cision error) are masked.

Notes

The emulator returns meaningless information on divide by zero.

There is no obvious way to tell which 80387 exception generated the
SIGFPE.

Because of design defects in Intel’s 80386 chip (B1 stepping), the
Intel 80387 math co-processor may not operate correctly in some com­
puters. The problem causes the CPU to hang when
DMA/paging/coprocessor accesses are occurring. A workaround for
this problem has been engineered that is engaged by using a special
string at boot time:

Boot
: xenix mulbug

This workaround may not work on all machines; some hardware is
designed such that it will not work. The bootstring can also be added
to the end of the default bootstring (DEFBOOTSTR) found in
/etc/default/boot.

28 March 1991 Page 1

80387(HW) 80387(HW)

If you cannot use this workaround, you have two options. You may
replace the 386 chip with a newer release of the 386 chip (a D-step
part), or you can bypass the 387 chip by adding the ignorefpu keyword
in your boot command as follows:

Boot
: xenix ignorefpu

This means that the operating system will not use the 387 chip, but
you need not remove it physically; the coprocessor is still usable from
DOS. To automatically bypass the 387 chip every time you boot your
system, add the ignorefpu keyword to the /etcldefault/boot file. See
boot(HW) for more information.

For further information, see the Intel publication: Intel 80387
Programmer's Reference Manual.

28 March 1991 Page 2

BOOT (HW) BOOT (HW)

Name
boot - XENIX boot program.

Description

boot is an interactive program used to load and execute standalone
XENIX programs. It is used primarily for loading and executing the
XENIX kernel, but can load and execute any other programs that are
linked for standalone execution, boot is a required part of the XENIX
Operating System and must be present in the root directory of the root
file system to ensure successful loading of the XENIX kernel.

The boot program is invoked by the system each time the computer is
started. To restart the system without going through lengthy shutdown
procedures, you can use the reboot command. This causes the system
to reboot after shutting down without waiting for keyboard input. See
haltsys (ADM) for more information.

For diskette boot, the procedure has three stages:

1. The ROMs load the boot block from sector 0 of the floppy, where
sector 0 of the disk is the same as sector 0 of the filesystem.

2. The boot block-loads /boot from the floppy filesystem.

3. /boot executes and prompts the user.

For fixed disk boot, the procedure has five stages:

1. The ROMs load in the masterboot block from sector 0 on the hard
disk.

2. The masterboot block then loads the partition boot block (bootO)
from sector 0 of the active partition (see fdisk(ADM)).

3. Then, assuming the XENIX partition is active, bootl is loaded from
IK into the active partition in a 2.2 or later XENIX installation. If
the disk was installed with a pre-2.2 XENIX release, then bootl is
assumed to begin at 3K into the active partition. Bootl spans 20
physically contiguous IK blocks on the disk.

4. bootl loads /boot from the XENIX file system.

5. /boot executes and prompts the user.

/boot and /xenix may lie on tracks that have been mapped by
badtrk(ADM). masterboot, bootO, and bootl cannot lie on bad tracks.

28 March 1991 Page 1

BOOT (HW) BOOT (HW)

The fixed disk boot procedure is invoked if the diskette drive is empty.

When first invoked, boot prompts for the location of a program to load
by displaying the message:

XENIX System V

Boot

To specify the location of a program, a device and filename must be
given. The filename must include the full pathname of the file con­
taining the standalone program. You can display a list of the current
allowable device names by typing a question mark (?).

The format for the device and pathname is as follows:

xx(m,o)filename
or

xx(m)filename

where:
xx = device name

(‘hd’ for the hard disk or 4fd’ for diskette device)
m = minor device number

(40 for the root filesystem on the hard disk)
o = offset in the partition (usually 0). This is optional,
filename = standard XENIX pathname. Must start with a
slash if the program is not in the root directory.

All numbers are in decimal. See the manual pages for hd(HW) and
fd(HW) for minor device numbers of these devices. Specifying the
offset is optional. The location of the program to be loaded must
always be entered first on the command line and be present if other
boot options are specified either on the command line or in
/etc/default/boot.

If you want boot to pause and wait for a <RETURN> before executing
the program that it loads, enter the word “prompt” on the command
line. For example, if you enter “prompt” and press <RETURN>, boot
prints the following message and waits for you to press the return key
again:

Loaded, press <RETURN>.

The prompt can be changed to another string as in this example:

prompt="change diskettes now*'

boot loads xenix from the diskette, prints the message “change
diskettes now”, and waits for <RETURN> to be pressed. No other char­
acters can appear between prompt, the “=” sign and the prompt string,

28 March 1991 Page 2

BOOT(HW) BOOT (WH)

although string may contain spaces. When you press <RETURN>,
xenix will begin execution. “Prompt” can be set either on the com­
mand line or in /etc/default/boot. If a prompt is not specified, boot
executes the loaded program without pausing.

If you have just loaded the boot program from the distribution
diskette, simply press <RETURN> and boot defaults to the correct
values.

To load XENIX from a hard disk, enter:

hd(40,0)xenix

To use the default boot string specified in /etc/default/boot, simply
press <RETURN> when the system displays the boot prompt, and boot
uses the values specified by DEFBOOTSTR in /etc/default/boot.

If nothing is typed after a short while and LOADXENIX is set to YES
in the default root file system’s /etc/default/boot file, boot times out
and behaves as though a <RETURN> had been pressed, except that an
“auto” is added to the boot string. (If, in addition to
LOADXENEX=YES, TTMEOUT=/i is defined, boot waits n seconds
before timing out.) boot proceeds through the boot procedure, and
init(M) is passed a -a flag with no “prompt”.

It is recommended that you install DOS on the hard disk before
XENIX. See the manual page for dos(C). However, once you install
DOS you can boot it at the XENIX “Boot” prompt by entering “dos”.

During XENIX installation, a custom masterboot is placed on the hard
disk. If a non-standard disk is specified, its parameters are stored and
enabled in this masterboot.

Configuring The Kernel

boot passes any boot string typed at the boot prompt to the kernel,
except for the “prompt” string.

The kernel reads the boot string to determine which peripherals are
the root, pipe and swap devices. If no devices are specified in either
the /etc/default/boot description or on the command line, the default
devices compiled into the kernel are used.

28 March 1991 Page 3

BOOT (HW) BOOT(HW)

Additional arguments in the boot string can alter this default action.
These arguments have the form:

dev=xx(m,o)
or

dev=xx(m)
where:

dev = The desired system device (root[dev], pipe[dev],
or swap[dev])

xx, m, o = same as for the boot device

If any combination of root, pipe or swap is specified, then those sys­
tem devices will reside on that device, with the unspecified system de­
vices using the defaults compiled in the kernel. Setting one device
does not affect the default values for the other system devices.

Selecting The System Console

You can select the system console at boot time either by entering the
command systty=x at the boot prompt, or by placing the keywords
Sy s t t y =jc in die file /etc/default/boot. The letter x represents either
a number or a string parameter.

If you use the systty=jc command at boot time, boot uses the string
parameter x to pass the selected console device to the kernel. The
values of the boot string parameter systty are:

sio Serial port COM1
scm Display adapter

For example, to assign the system console to the serial port at COM1,
enter this command at the boot prompt:

systty=sio

If you do not specifically set the system console at boot time, the boot
program follows these steps to determine the system console:

boot reads /etc/default/boot and looks for the keywords
Sy s t t Y=jc where x is a number that specifies the system con­
sole device.

1 indicates the serial adapter at COM1.
0 indicates the display adapter.

If SYSTTY is not found or /etc/default/boot is unreadable, boot
checks for a display adapter and assigns it as the system con­
sole.

28 March 1991 Page 4

£ 0 0 7 (HW) £ 0 0 7 (HW)
If no display adapter is found, boot looks for COM1, sets the
serial port to 9600 baud, 8 data bits, 1 stop bit, and no parity,
and uses it as the system console.

Thus, to have boot automatically set the system console to the serial
port at COM1, enter this line in /etc/default/boot:

SYSTTY=1

Aliasing
A set of system devices can be aliased to a single keyword by defining
the keyword in the file /etc/default/boot. This keyword can then be
entered on the “Boot” command line and the boot program then reads
the corresponding system devices from /etc/default/boot and pass
them to the kernel. An alias has the following form:

key=file [root=xx(m) pipe=xx(m) swap=xx(m) prompt[="string"]]

In all cases, the device specification can also have the format
dev=xx(m,o), where o is the offset.

For example, if you have a root file system on a second hard disk and
want to use it, but want to boot using the xenlx located on the first
hard disk, enter the following line into the /etc/default/boot descrip­
tion:

disk2=hd(40,0)xenix root=hd(104,0) prompt=MUsing second disk"

The next time you boot the system from the first hard disk, enter
“disk2” in response to the “Boot” prompt, xenix will be loaded from
the first hard disk, and when you see the message, “Using second
disk”, press <RETURN> . xenix will now boot and use the root file
system on the second hard disk. Note that you must edit the /etc/default/boot file in the root file system on the device from which
boot will be read, in this case the first hard disk.

Another example: suppose you want to boot off the second drive
(hdlO) and use the root filesystem and swap space of the second drive.
At the boot prompt, use the following bootstring:

hd(104)xenix root=hd(104) pipe=hd(104) swap=hd(105)
Once booted, you must create the device nodes for the second drive
for use by the utilities:

fixperm -c -dHDl /etc/perms/inst

Boot options
Boot options can be changed via keywords in /etc/default/boot. The
following keywords are recognized by boot:

28 March 1991 Page 5

BOOT (HW) BOOT (HW)

LOADXENIX=YES

DEFBOOTSTR=string

SYSTTY=jc

RONLYROOT=NO

FSCKFIX=YES or NO

If YES, boot automatically loads
XENIX after a delay time specified by the
TIMEOUT parameter. The default value is
60 seconds.

string is used as the default boot string for
timeouts and for no input on the command
line. There can be no white space between
DEFBOOTSTR, the “=” sign and string.

If x is one (1), the system console device is
set to the serial adapter at COM1. If x is
zero (0), the system console is set to the
main display adapter.

Whether or not the root filesystem is to be
mounted readonly. This should only be set
to “yes” during installation.

Whether or not fsck(ADM) fixes any root
system problems by itself. If the variable is
set at YES, then fsck(ADM) is run on the
root filesystem with the -rr flag.

MULTIUSER=YES or NO Whether or not init(M) invokes sulogin or
proceeds to multiuser mode.

PANICBOOT=YES or NO Whether or not the system reboots after a
panic(). This variable is read from
/etc/default/boot by init.

TIMEOUT=n n is the number of seconds to wait at boot
before timing out (if LOADXENIX is set to
YES).

Diagnostics

If an error occurs, masterboot displays an error message, and locks the
system. The following is a list of the most common messages and
their meanings:

10 ERR
An error occurred when masterboot tried to read in the partition
boot of the active operating system.

BAD TBL
The bootable partition indicator of at least one of the operating
systems in the fdisk table contains an unrecognizable code.

28 March 1991 Page 6

BOOT (HW) BOOT (HW)

NO OS
There was an unrecoverable error that prevented the active operat­
ing system’s partition boot from executing.

When boot displays error messages, it returns to the “Boot” prompt.
The following is a list of the most common messages and their mean­
ings:

bad magic number
The given file is not an executable program,

can’t open <pathname>
The supplied pathname does not correspond to an existing file, or
the device is unknown.

Stage 1 boot failure
The bootstrap loader cannot find or read the boot file. You must
restart the computer and supply a file system disk with the boot file
in the root directory.

not a directory
The specified area on the device does not contain a valid XENIX
filesystem.

zero length directory
Although an otherwise valid filesystem was found, it contains a
directory of apparently zero length. This most often occurs when a
pre- System V XENIX filesystem (with incorrect, or incompatible
word ordering) is in the specified area.

fload:read(;t)=y
An attempted read of x bytes of the file returned only y bytes. This
is probably due to a premature end-of-file. It could also be caused
by a corrupted file, or incorrect word ordering in the header.

Files

/boot
/etc/default/boot
/etc/masterboot
/etc/hdbootO
/etc/hdbootl

See Also

autoboot(ADM), badtrk(ADM), fd(HW), fdisk(ADM), haltsys(ADM),
hd(HW), init(M), sulogin(M)

28 March 1991 Page 7

BOOT (HW) BOOT (HW)

Notes
The computer tries to boot off any diskette in the drive. If the diskette
does not contain a valid bootstrap program, errors occur.

The boot program cannot be used to load programs that have not been
linked for standalone execution. To create standalone programs, the
-A option of the XENIX linker (ld(CP)) and special standalone
libraries must be used.

Standalone programs can operate in real or protected mode, but they
must not be large or huge models. Programs in real mode can use the
input/output routines of the computer’s startup ROM.

RONLYROOT should only be set to “yes” for installation. If it is set
to “yes” during day-to-day operations, it will prevent you making
changes to the root filesystem. You will then be required to boot from
the floppy drive, edit the /etc/default/boot file and reboot.

28 March 1991 Page 8

CMOS (HW) CMOS (HW)

Name

cmos - Displays and sets the configuration data base.

Syntax

cmos [address [value]]

Description

The cmos command displays and/or sets the values in the CMOS con­
figuration data base. This battery-powered data base stores configura­
tion information about the computer that is used at power up to define
the system hardware configuration and to direct boot procedures. The
data base is 64 bytes long and is reserved for system operation. Refer
to your computer hardware manual for more information.

The cmos command is typically used to alter the current hardware
configuration when new devices are added to the system. When only
address is given, the command displays the value at that address. If
both address and a value are given, the command assigns the value to
that address. If no arguments are given, the command displays the
entire contents of the data base.

The CMOS configuration data base may also be examined and modi­
fied by reading from and writing to /dev/cmos file. Because success­
ful system operation depends on correct configuration information, the
data base should be modified by experienced system administrators
only.

The computer manufacturer’s diagnostic diskette should be run before
setting the CMOS data base.

Files

/etc/cmos
/dev/cmos

Notes

Not all computers have a CMOS configuration data base. Some com­
puters use switches on the main system board to configure the system.
Refer to your computer hardware reference manual to determine
whether you have a configuration data base.

28 March 1991 Page 1

FD (HW) FD (HW)

Name

fd - floppy devices

Description
The fd devices implement the XENIX interface with floppy disk
drives. Typically, the tar(C), cpio(C) or dd(C) commands are used to
read or write floppy disks. For instance,

tar tvf /dev/fdO

tabulates the contents of the floppy disk in drive 0 (zero).

The block special fd devices are also block-buffered. The floppy
driver can read or write IK bytes at a time using raw i/o. Note that
block transfers are always a multiple of the IK disk block size.

The floppy devices are named /dev/fdO and /dev/fdl (see Notes,
below, for more information about device naming procedure).

The corresponding character special (raw) devices, /dev/rfdO and /dev/rfdl, afford direct, unbuffered transmission between the floppy
and the user’s read or write transfer address in the user’s program.

For information about formatting, see format (C).

The minor device number determines what kind of physical device is
attached to each device file (see Notes).

Files
/dev/fdO /dev/rfd048ds8
/dev/fdl /dev/rfdl48ds8
/dev/rfdO /dev/rfd048ds9
/dev/rfdl /dev/rfdl48ds9

/dev/rfd096dsl5
/dev/rfdl96dsl5
/dev/rfd096ds9
/dev/rfdl96ds9
/dev/rfd048ss8
/dev/rfdl48ss9

/dev/rfdO 135ds9
/dev/rfdl 135ds9
/dev/rfdO 135ds 18
/dev/rfdl 135dsl8

Notes
When accessing the character special floppy devices, the user’s buffer
must begin on a word boundary. The count in a read(S), write (S), or
lseek(S) call to a character special floppy device must be a multiple of
IK bytes.

Device names determine the particular drive and media configuration.
The device names have the form:

28 March 1991 Page 1

FD (HW) FD (HW)

fd048ds9

Where:

fdO = drive number (0,1,2 or 3)
48 = number of disk tracks per inch (48 or 96)
ds = single or double sided floppy (ss or ds)
9 = number of sectors on the floppy (8 or 9)

For instance, /dev/fd048ss9 indicates a 48 track per inch, single sided,
9 sector floppy disk device in drive 0.

The minor device numbers for floppy drives depend on the drive and
media configuration. The most common are:

ds/8
48tpi

ds/9 ss/8 ss/9
96tpi

ds/15 ds/8
135tpi

ds/9 ds/18
Drive Minor Device Number

0 12 4 8 0 52 44 36 60
1 13 5 9 1 53 45 37 61
2 14 6 10 2 54 46 38 62
3*

* reserved for special, non-floppy devices connected to the floppy
controller as unit #3.

The scheme for creating minor device numbers is as follows. When
interpreted as a binary number, each bit of the minor device number
represents some aspect of the device/media configuration.

For example, the minor device number for /dev/fd048ss8 is “8.” Inter­
preted as a binary number, 8 is:

00001000
This is how each bit, or binary digit, is significant:

48tpi - 0 Sectors per
Track

ss - 0 Drive
96tpi - 1

ds - 1135tpi - 1
32 16 8 4 2 1
0 0 1 0 0 0

28 March 1991 Page 2

FD (HW) FD (HW)

Only the last six digits of the number are used in minor device
identification. The first significant digit is the third from the left. In
this example, the third digit from the left is zero, thus the device is
48tpi. The next two digits mean:

Bitts Sectors per
Track

16 8
0 0 9
0 1 8
1 0 15
1 1 18

The fourth digit tells whether the floppy is single sided (ss - 0) or dou­
ble sided (ds -1). The last two signify the drive number:

i
Bits Drive

Number
2 1
0 0 0
0 1 1
1 0 2
1 1 3*

* reserved for special, non-floppy devices connected to the floppy
controller as unit #3.

Using this information, you can construct any minor device numbers
you need.

It is not advisable to format a low density (48tpi) diskette on a high
density (96tpi or 135tpi) floppy drive. Low density diskettes written
on a high density drive should be read on high density drives. They
may or may not be readable on a low density drive.

Use error-free floppy disks for best results on reading and writing.

28 March 1991 Page 3

HD(HW) HD (HW)

Name
hd - Internal hard disk drive

Description
Block-buffered access to the primary hard disk is provided through the
following block special files: hdOO, hdOl through hd04, hdOa and hdOd, root, and swap Block-buffered access to the secondary hard
disk is provided through the following block special files: hdlO, h d ll
through hdl4, hdla,
hdOO refers to the entire physical disk; hdOl through hd04 refer to the
fdisk partitions, root refers to the root file system; swap refers to the
swap area; The block special files access the disks via the system’s
normal buffering mechanism and may be read and written without
regard to the size of physical disk records.

Character special files follow the same naming convention as the
block specie files except that the character special file is prefaced
with an "r". For example, the character special file referring to the
entire physical disk is /dev/rhdOO.
The following are the names of the fixed disk partitions. Each parti­
tion can be accessed through a block interface, for example /dev/hdOl, or through a character (raw) interface, for example
/dev/rhdOl.

28 March 1991 Page 1

HD (HW) HD (HW)

Device File Names for Fixed Disks
Disk 1 Disk 2 Partition

/dev/hdOO
/dev/rhdOO

/dev/hdlO
/dev/rhdlO

entire disk

/dev/hdOl
/dev/rhdOl

/dev/hdl 1
/dev/rhdl 1

first partition

/dev/hd02
/dev/rhd02

/dev/hdl 2
/dev/rhdl 2

second partition

/dev/hd03
/dev/rhd03

/dev/hdl3
/dev/rhdl3

third partition

/dev/hd04
/dev/rhd04

/dev/hdl4
/dev/rhdl4

fourth partition

/dev/hdOa
/dev/rhdOa

/dev/hdla
/dev/rhdla

active partition

/dev/hdOd
/dev/rhdOd

/dev/hdld
/dev/rhdld

DOS partition

/dev/root
/dev/rroot

root file system

/dev/swap
/dev/rswap

swap area

Note that the root and swap file names do not exist for a second disk.

To access DOS partitions, specify letters such as “C:” or “D:” to indi­
cate first or second partitions. The file /etc/default/msdos contains
lines that assign a letter abbreviation for the DOS device name. Refer
to dos(C).

The following table lists the minor device number definitions for the
hard disk special files, along with examples. Note that the block and
character special devices share the same minor device definition. The
minor device number definition is as follows: bits 7 and 6 denote phy­
sical drive, bits 5-3 denote virtual(fdisk) partition and bits 2-0 denote
divvy partition.

28 March 1991 Page 2

HD (HW) HD (HW)

Minor Device Bits
Phys. Virtual divvy Device special Description
7 6 5 4 3 2 1 0 file name
0 0 0 0 0 0 0 0 /dev/hdOO whole PD 0
0 1 0 0 0 0 0 0 /dev/hdlO whole PD 1
1 0 0 0 0 0 0 0 /dev/hd20 whole PD 2
1 1 0 0 0 0 0 0 /dev/hd30 whole PD 3
0 0 0 0 1 1 1 1 /dev/hdOl PD 0, whole VD 1
0 0 0 1 0 1 1 1 /dev/hd02 PD 0, whole VD 2
0 0 0 1 1 1 1 1 /dev/hd03 PD 0, whole VD 3
0 0 1 0 0 1 1 1 /dev/hd04 PD 0, whole VD 4
0 0 1 0 1 1 1 1 /dev/hdOa PD 0, whole active VD
0 0 1 1 0 1 1 1 /dev/hdOd PD 0, whole DOS VD
0 0 1 0 1 0 0 0 /dev/root PD 0, active virtual, DP 0
0 0 1 0 1 0 0 1 /dev/swap PD 0, active virtual, DP 1
0 0 1 0 1 0 1 0 /dev/usr PD 0, active virtual, DP 2
0 0 1 0 1 1 1 0 /dev/recover PD 0, active virtual, DP 6
0 1 0 0 1 1 1 1 /dev/hdl 1 PD 1, whole VD 1
0 1 0 1 0 1 1 1 /dev/hdl2 PD 1, whole VD 2
0 1 0 1 1 1 1 1 /dev/hdl3 PD 1, whole VD 3
0 1 1 0 0 1 1 1 /dev/hdl4 PD 1, whole VD 4
0 1 1 0 1 1 1 1 /dev/hdla PD 1, whole active VD
0 1 1 1 0 1 1 1 /dev/hdld PD 1, whole DOS VD
0 1 1 0 1 0 0 0 /dev/uO PD 1, active virtual, DP 0t
0 1 1 0 1 0 0 1 /dev/ul PD 1, active virtual, DP It
0 1 1 0 1 0 1 0 /dev/u2 PD 1, active virtual, DP 2f

KEY VD == virtual drive PD = physical drive
DP = divvy partition t = user-defined name

The device files usr and u[0-2] are optional filesystem names; these
nodes are not present unless created by the system administrator.

Files
/dev/hdOa
/dev/rhdOa
/dev/hd0[0-4]
/dev/rhd0[0-4]
/dev/hdOd
/dev/rhdOd

/dev/hdla
/dev/rhdla
/dev/hdl[0-4]
/dev/rhdl[0-4]
/dev/hdld
/dev/rhdld

/dev/usr
/dev/rusr
/dev/root
/dev/rroot
/dev/swap
/dev/rswap

See Also
fdisk(ADM), badtrk(ADM), divvy(ADM), dos(C), mkdev(ADM)

28 March 1991 Page 3

HD (HW) HD (HW)

Diagnostics
The following messages are among those that may be printed on the
console:

invalid fixed disk parameter table

and:

error on fixed disk (minor n), block = nnnnn,
cmd=nnnnn, status=w«w«,
Sector = nnnnn, Cylinder/head = nnnnn

Possible reasons for the first error include:

- The kernel is unable to get drive specifications, such as number of
heads, cylinders, and sectors per track, from the disk controller
ROM.

- Improper configuration.

- The disk is not turned on.

- The disk is not supported.

The second error specifies the following information:

- block : The XENIX block number within the device.

- cmd: The last command sent to the disk controller.

- status : The error status from the disk controller.

- Sector and Cylinder/head specify the location of a possible flaw.
This information is used with badtrk(ADM).

Notes
On the first disk, hdOO denotes the entire disk and is used to access the
master boot block which includes the fdisk partition table. For the
second disk, hdlO denotes the entire disk and is used to access its
fdisk partition table. Do not write to hdlO and hdOO.

28 March 1991 Page 4

KEYBOARD (HW) KEYBOARD (HW)

Name
keyboard - The PC keyboard.

Description
The PC keyboard is used to enter data, switch screens, and send cer­
tain control signals to the computer. XENIX performs terminal emula­
tion on the PC screen and keyboard, and, in doing so, makes use of
several particular keys and key combinations. These keys and key
combinations have special names that are unique to the XENIX sys­
tem, and may or may not correspond to the keytop labels on your key­
board. These keys are described later.

When you press a key, one of the following happens:

- An ASCII value is entered

- A string is sent to the computer.

- A function is initiated.

- The meaning of another key, or keys, is changed.

When a key is pressed (a keystroke), the keyboard sends a scancode to
the computer, it is interpreted by the keyboard driver. The interpreta­
tion of key codes may be modified so that keys can function dif­
ferently from their default actions.

There are three special occurrences, or keystrokes:

- Switch screens.

- Send signals.

- Change the value of previous character, characters or string.

Switching Screens (Multiscreen)
To get to the next consecutive screen, enter Ctrl-PrtSc using the Ctrl
key, and the PrtSc key. Any active screen may be selected by enter­
ing alt-F/z, where Fn is one of the function keys. FI refers to the PC
display (/dev/ttyOl).

28 March 1991 Page 1

KEYBOARD (HW) KEYBOARD (HW)

Signals
A signal affects some process or processes. Examples of signals are Ctrl-d (end of input, exits from shell), Ctrl-\ (quits a process), Ctrl-s
(stop output to the screen), and Ctrl-q (resume sending output).

Typically, characters are mapped to signals using sttyiC). The only
way to map signals is using stty.

Altering Values
The actual code sent to the keyboard driver can be changed by using
certain keys in combination. For example, the SHIFT key changes the
ASCII values of the alphanumeric keys. Holding down the Ctrl key
while pressing another key sends a control code (Ctrl-d, Ctrl-s,
Ctrl-q, etc.).

Special Keys
To help you find the special keys, the following table shows which
keys on a typical console correspond to XENIX system keys. In this
table, a hyphen (-) between keys means ‘hold down the first key while
pressing the second.’

XENIX Name Keytop Action
INTO Del Stops current action and returns

to the shell. This key is also
called the RUB OUT or INTER­
RUPT key.

BACKSPACE <- Deletes the first character to
the left of the cursor.
Note that the “cursor left” key
also has a left arrow (<—) on its
keytop, but you cannot back­
space using that key.

Ctrl-d Ctrl-d Signals the end of input from
the keyboard; also exits current
shell.

Ctrl-h Ctrl-h Deletes the first character to
the left of the cursor. Also
called the ERASE key.

Ctrl-q Ctrl-q Restarts printing after it has
been stopped with Ctrl-s.

28 March 1991 Page 2

KEYBOARD (HW) KEYBOARD (HW)

Ctrl-s Ctrl-s

Ctrl-u Ctrl-u

CtrlA CtrlA

ESCAPE Esc

RETURN (down-left arrow
or ENTER)

Fn Fn

Suspends printing on the screen
(does not stop the program).
Deletes all characters on the
current line. Also called the
KILL key.
Quits current command and
creates a core file, if allowed.
(Recommended for debugging
only.)
Special code for some pro­
grams. For example, changes
from insert mode to command
mode in the v/(C) text editor.
Terminates a command line and
initiates an action from the
shell.
Function key n. F1-F12 are
unshifted, F13-F24 are shifted
F1-F12, F25-F36 are Ctrl-Fl
through F12, and F37-F48 are
Ctrl-Shift-Fl through F12.

The next Fn keys (F49-F60) are
on the number pad (unshifted):

F49 - ’7’ F55 - ’6’
F50 - ’8’ F56 -
F51 - ’9’ F57 - ’ 1’
F52 - » » F58 - ’2’
F53 - ’4’ F59 - ’3’
F54 - ’5’ F60 - ’0’

For keys F61 through F96, see
/usr/lib/keyboard/strings.
These function keys are not
available on all keyboards, but
you can map other keys to
represent them.

The keyboard mapping is performed through a structure defined in /usr/include/sys/keyboardJi. Each key can have ten states. The first
eight are:

- Base - Ctrl-Shift
- Shift - Alt-Shift
- Ctrl - Alt-Ctrl
- Alt - Alt-Ctrl-Shift

There are two additional states indicated by two special bytes. The

28 March 1991 Page 3

KEYBOARD (HW) KEYBOARD (HW)

first is a “ special state” byte whose bits indicate whether the key is
“special” in one or more of the first eight states.

The second is one of four characters (C, N, B, O) which indicate how
the lock keys affect the particular key. This is discussed further in the
next section, “Scan Codes.”

Keyboard Mode

Most keyboards normally are in a PC compatibility mode, though
some can be put into a native AT keyboard mode. The XENIX utility
kbmode(ADM) can be used to determine if a keyboard supports AT
mode, and can also be used to put the keyboard into AT mode until the
next time the system is rebooted. A system can also be configured to
boot with the keyboard in AT mode with the configure(ADM) utility.

Enhanced keyboards are more fully programmable in AT mode. Also,
it recognizes two control keys and an alt key.

Scan Codes

The following table describes the default contents of
/usr/lib/keyboard/keys. The column headings are:

SCAN CODE - The scan code generated by the keyboard hardware
when a key is pressed. There is no user access to the scan code gen­
erated by releasing a key.

BASE - The normal value of a key press.

SHIFT - The value of a key press when the SHIFT is also being held
down.

LOCK - Indicates which lock keys affect that particular key:

- C indicates Capslock
- N indicates Numlock
- B indicates both
- 0 indicates locking is off

Keys affected by the lock keys C, B, or N, send the shifted value (scan
code) of current state when that lock key is on. When the shift key is
depressed while a lock key is also on, the key reverts (toggles) to its
original state.

The other columns are the values of key presses when combinations of
the CTRL, ALT and SHIFT keys are also held down.

28 March 1991 Page 4

KEYBOARD (HW) KEYBOARD (HW)

All values, except for keywords, are ASCII character values. The key­
words refer to the special function keys.

ALT
SCAN
CODE BASE SHIFT CTRL

CTRL
SHIFT ALT

ALT
SHIFT

ALT
CTRL

CTRL
SHIFT LOCK

0 nop nop nop nop nop nop nop nop O
1 esc esc nop nop esc esc nop nop O
2 T ’ ’ ! ’ nop nop T ’ ’ ! ’ nop nop O
3 ’2 ’ w nop nop ’2 ’ w nop nop O
4 ’3 ’ nop nop ’3 ’ nop nop O
5 ’4 ’ nop nop ’4 ’ T nop nop O
6 ’5 ’ nop nop ’5 ’ nop nop O
7 ’6 ’ rs rs ’6 ’ rs rs O
8 ’7 ’ nop nop ’7 ’ nop nop O
9 ’8 ’ >*> nop nop ’8 ’ nop nop O

10 ’9 ’ T nop nop ’9 ’ V nop nop O
11 ’0 ’ T nop nop ’0 ’ y nop nop O
12 ’ ’ ns ns ’ * ns ns O
13 ’+ ’ nop nop ’= ’ ’+ ’ nop nop O
14 bs bs del del bs bs del del O
15 ht btab nop nop ht btab nop nop O
16 ’q’ ’Q ’ del del ’q ’ ’Q ’ del del C
17 ’w’ ’W ’ etb etb ’w’ ’W ’ etb etb C
18 ’e ’ ’E ’ enq enq ’e’ ’E ’ enq enq C
19 Y ’R ’ dc2 dc2 Y ’R ’ dc2 dc2 C
20 Y T ’ dc4 dc4 Y »T» dc4 dc4 C
21 y ’Y ’ em em y ’Y ’ em em C
22 v ’U ’ nak nak V ’U ’ nak nak c
23 Y T ht ht T T ht ht c
24 ’o’ ’O’ si si ’o’ ’O’ si si c
25 V ’P ’ die die V ’? ’ die die c
26 T T esc esc T T esc esc 0
27 T T gs gs ’] ’ T gs gs o
28 cr cr nl nl cr cr nl nl 0
29 Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl Ctrl 0
30 ’a ’ ’A’ soh soh ’a ’ ’A’ soh soh c
31 ’s ’ ’S’ dc3 dc3 ’s ’ ’S’ dc3 dc3 c
32 ’d ’ ’D ’ eot eot ’d ’ ’D ’ eot eot c
33 T ’F ack ack T ’F ’ ack ack c
34 ’g ’ ’G ’ bei bei ’g ’ ’G ’ bei bei c
35 ’h’ ’H ’ bs bs ’h’ ’H’ bs bs c
36 T ’J ’ nl nl ’j ’ ’J ’ nl nl c
37 ’k’ ’K ’ vt vt ’k’ ’K ’ vt vt c
38 ’1’ ’L’ np np ’1’ ’L’ np np c
39 nop nop nop nop 0
40 \ ” »H» nop nop ,n’ nop nop 0
41 »~» nop nop nop nop 0

28 March 1991 Page 5

KEYBOARD (HW) KEYBOARD (HW)

42 lshift lshift lshift lshift lshift lshift lshift lshift O
43 \Y r fs fs \Y T fs fs O
44 ’z’ Z ’ sub sub ’z’ ’Z ’ sub sub C
45 ’x’ ’X ’ can can V ’X ’ can can C
46 ’c’ ’C etx etx ’c ’ ’C ’ etx etx C
47 V ’V ’ syn syn V ’V ’ syn syn C
48 ’b’ ’B ’ stx stx ’b’ ’B ’ stx stx C
49 ’n’ so so ’n’ *N’ so so C
50 ’m’ ’M’ cr cr ’m’ ’M’ cr cr C
51 * ’ nop nop * ’ nop nop O
52 * * nop nop nop nop O
53 7 »?* nop nop 7 ’ »?* nop nop O
54 rshift rshift rshift rshift rshift rshift rshift rshift O
55 >*» >*» nscr nscr »*> >*» nscr nscr 0
56 alt alt alt alt alt alt alt alt O
57 ’ * * * * ’ ’ ’ ’ * » ’ ’ ’ * ’ O
58 clock clock clock clock clock clock clock clock 0
59 fkeyl fkeyl 3 fkey25 fkey37 scrl scrll scrl sc rll O
60 fkey2 fkeyl4 fkey26 fkey38 scr2 scrl2 scr2 scrl 2 O
61 fkey3 fkeyl5 fkey27 fkey39 scr3 scrl3 scr3 scrl 3 O
62 fkey4 fkeyl6 fkey28 fkey40 scr4 scrl4 scr4 scrl4 0
63 fkey5 fkeyl7 fkey29 fkey41 scr5 scrl5 scr5 scrl 5 0
64 fkey6 fkeyl8 fkey30 fkey42 scr6 scrl 6 scr6 scrl6 0
65 fkey7 fkeyl9 fkey31 fkey43 scr7 scr7 scr7 scr7 O
66 fkey8 fkey20 fkey32 fkey44 scr8 scr8 scr8 scr8 O
67 fkey9 fkey21 fkey33 fkey45 scr9 scr9 scr9 scr9 O
68 fkeylO fkey22 fkey34 fkey46 scrlO scrlO scrlO scrlO O
69 nlock nlock dc3 dc3 nlock nlock dc3 dc3 0
70 slock slock del del slock slock del del 0
71 fkey49 *7* ’7 ’ ’7 ’ ’7 ’ *7* *7* ’7 ’ N
72 fkey50 ’8’ ’8’ ’8* ’8* *8’ ’8 ’ ’8* N
73 fkey51 ’9* *9’ ’9 ’ ’9* *9’ *9' *9* N
74 fkey52 N
75 fkey53 ’4 ’ *4’ ’4 ’ *4* ’4 ’ ’4 ’ *4’ N
76 fkey54 ’5’ '5* ’5 ’ ’5 ’ *5* *5’ *5’ N
77 fkey55 ’6’ ’6 ’ *6’ ’6 ’ ’6 ’ ’6* *6’ N
78 fkey56 V ’+* V V V V V N
79 fkey57 T ’ 1* ’ 1’ ’ 1’ T ’ 1’ *1* N
80 fkey58 *2’ ’2* ’2’ ’2* ’2 ’ ’2 ’ *2* N
81 fkey59 *3* *3’ *3’ ’3’ *3* ’3’ ’3 ’ N
82 fkey60 ’0 ’ ’0* ’0 ’ *0’ ’0* ’0 ’ *0* N
83 del ** del del del del del del N
84 ns ns ns ns ns ns ns ns O
85 nop nop nop nop nop nop nop nop 0
86 nop nop nop nop nop nop nop nop 0

28 March 1991 Page 6

KEYBOARD (HW) KEYBOARD (HW)

The following scan codes exist only for keyboards which support, and
are in, native AT mode rather than PC compatibility mode.

ALT
SCAN
CODE BASE SHIFT CTRL

CTRL
SHIFT ALT

ALT
SHIFT

ALT
CTRL

CTRL
SHIFT LOCK

87 fkeyll fkey23 fkey35 fkey47 scrll scrll scrll scrll O
88 fkeyl2 fkey24 fkey36 fkey48 scrl2 scrl2 scrl2 scrl2 O
89 nop nop nop nop nop nop nop nop O
90 nop nop nop nop nop nop nop nop O
91 nop nop nop nop nop nop nop nop O
92 nop nop nop nop nop nop nop nop O
93 nop nop nop nop nop nop nop nop O
94 nop nop nop nop nop nop nop nop O
95 nop nop nop nop nop nop nop nop O
96 fkey50 fkey50 fkey50 fkey50 fkey50 fkey50 fkey50 fkey50 O
97 fkey53 fkey53 fkey53 fkey53 fkey53 fkey53 fkey53 fkey53 O
98 fkey58 fkey58 fkey58 fkey58 fkey58 fkey58 fkey58 fkey58 O
99 fkey55 fkey55 fkey55 fkey55 fkey55 fkey55 fkey55 fkey55 O

100 fkey49 fkey49 fkey49 fkey49 fkey49 fkey49 fkey49 fkey49 O
101 fkey51 fkey51 fkey51 fkey51 fkey51 fkey51 fkey51 fkey51 O
102 fkey57 fkey57 fkey57 fkey57 fkey57 fkey57 fkey57 fkey57 O
103 fkey59 fkey59 fkey59 fkey59 fkey59 fkey59 fkey59 fkey59 O
104 fkey60 fkey60 fkey60 fkey60 fkey60 fkey60 fkey60 fkey60 O
105 del del del del del del del del N
106 fkey54 fkey54 fkey54 fkey54 fkey54 fkey54 fkey54 fkey54 O
107 nop nop nop nop nop nop nop nop O
108 nop nop nop nop nop nop nop nop 0
109 nop nop nop nop nop nop nop nop 0
110 nop nop nop nop nop nop nop nop 0
111 nop nop nop nop nop nop nop nop 0
112 nop nop nop nop nop nop nop nop 0
113 nop nop nop nop nop nop nop nop 0
114 nop nop nop nop nop nop nop nop 0
115 nop nop nop nop nop nop nop nop 0
116 nop nop nop nop nop nop nop nop 0
117 nop nop nop nop nop nop nop nop 0
118 nop nop nop nop nop nop nop nop 0
119 nop nop nop nop nop nop nop nop 0
120 nop nop nop nop nop nop nop nop 0
121 nop nop nop nop nop nop nop nop 0
122 nop nop nop nop nop nop nop nop 0
123 nop nop nop nop nop nop nop nop 0
124 nop nop nop nop nop nop nop nop 0
125 nop nop nop nop nop nop nop nop 0
126 nop nop nop nop nop nop nop nop 0
127 nop nop nop nop nop nop nop nop 0
128 rctrl rctrl rctrl rctrl rctrl rctrl rctrl rctrl 0

28 March 1991 Page 7

KEYBOARD (HW) KEYBOARD (HW)

129 ralt ralt ralt ralt ralt ralt ralt ralt 0
130 fkey60 fkey60 fkey60 fkey60 fkey60 fkey60 fkey60 fkey60 0
131 del del del del del del del del N
132 fkey49 fkey49 fkey49 fkey49 fkey49 fkey49 fkey49 fkey49 O
133 fkey57 fkey57 fkey57 fkey57 fkey57 fkey57 fkey57 fkey57 O
134 fkey51 fkey51 fkey51 fkey51 fkey51 fkey51 fkey51 fkey51 o
135 fkey59 fkey59 fkey59 fkey59 fkey59 fkey59 fkey59 fkey59 o
136 fkey53 fkey53 fkey53 fkey53 fkey53 fkey53 fkey53 fkey53 o
137 fkey55 fkey55 fkey55 fkey55 fkey55 fkey55 fkey55 fkey55 o
138 fkey50 fkey50 fkey50 fkey50 fkey50 fkey50 fkey50 fkey50 o
139 fkey58 fkey58 fkey58 fkey58 fkey58 fkey58 fkey58 fkey58 o
140 7’ nop nop nop 7’ nop nop nop 0
141 cr cr nl nl cr cr nl nl o

The next table lists the “value” of each of the special keywords used
in /usr/lib/keyboard/keys (and the preceding table). mapkey{ADM)
places a “value” in the ioctl buffer during key mapping. The key­
words are only used in the scan code file (/usr/lib/keyboard/keys) for
readability.

Name Value Meaning
nop 0 No operation - no action from keypress
lshift 2 Left hand shift
rshift 3 Right hand shift
clock 4 Caps lock
nlock 5 Numeric lock
slock 6 Scroll lock
alt 7 Alt key
btab 8 Back tab key - generates fixed sequence (esc [Z)
Ctrl 9 Control key
nscr 10 Switch to die next screen
scrl 11 Switch to screen #1

scrl6 26 Switch to screen #16
fkeyl 27 Function key #1

fkey96 122 Function key #96
rctl 128* Right Control Key
ralt 129* Right Alt Key

* AT mode keyboard only.

28 March 1991 Page 8

KEYBOARD (HW) KEYBOARD (HW)

This table lists names and decimal values that are interchangeable in
the mapkey file. Names are used in place of numeric constants to
make it easier to read the scan code table. Again, only the decimal
values are placed in the ioctl buffer. These are taken from ascii(M).

Name Value Name Value
nul 0 del 17
soh 1 dc2 18
stx 2 dc3 19
etx 3 dc4 20
eot 4 nak 21
enq 5 syn 22
ack 6 etb 23
bei 7 can 24
bs 8 em 25
ht 9 sub 26
nl 10 esc 27
vt 11 fs 28
np 12 gs 29
cr 13 rs 30
so 14 ns 31
si 15 del 127
die 16

Keyboard Mapping
The PC keyboard is mapped as part of terminal emulation. This kind
of mapping is performed only on the computer keyboard, not on
remote terminals. Use mapkey to change keyboard mapping. To
change the mapping for individual channels (multiscreens), use
mapchan(M).
Keyboard mapping can also be performed using ioctl. The syntax is
the same as for string key mapping (see previous section).

For keyboard mapping, cmd is GIO_KEYMAP to display the current
map, and PIO_KEYMAP puts the prepared buffer into place.

String Key Mapping
To map string (function) keys, use the mapstr (see mapkey{ADM))
utility, mapstr modifies the string mapping table where function keys
are defined.

The string mapping table is an array of 512 bytes (typedef strmap t)
containing null terminated strings that redefine the function keys. The
first null terminated string is assigned to the first string key, the
second string to the second string key, and so on.

28 March 1991 Page 9

KEYBOARD (HW) KEYBOARD (HW)

There is no limit to the length of any particular string as long as the
whole table does not exceed 512 bytes, including nulls. Strings are
made null by the introduction of extra null characters.

The following is a list of default function key values:

Default Function Key Values

Key # Function
Shift
Function

Ctrl
Function

Ctrl
Shift
Function

1 ESC [M ESC [Y ESC [k ESC [w
2 ESC [N ESC [Z ESC [1 ESC [x
3 ESC [0 ESC [a ESC [m ESC [y
4 ESC [P ESC [b ESC [n ESC [z
5 ESC [Q ESC [c ESC [o ESC [@
6 ESC [R ESC [d ESC [p ESC [[
7 ESC [S ESC [e ESC [q ESC [\
8 ESC [T ESC [f ESC [r ESC []
9 ESC [U ESC [g ESC [s ESC
10 ESC [V ESC [h ESC [t ESC [
11 ESC [W ESC [i ESC [u ESC [‘
12 ESC [X ESC [j ESC [v ESC [{

Home ESC [H End ESC [F
Up arrow ESC [A Down arrow ESC [B
Page up ESC [I Page down ESC [G
Left arrow ESC [D 5 ESC [E
Right arrow ESC [C Insert ESC [L

You can also map string keys using ioctl (S). The syntax is:

#include <sys/keyboard.h>
ioctl(fd,cmd,buf)
int fd, cmd;
char *buf;

For string key mapping where cmd is GIO_STRMAP to display the
string mapping table and PIO_STRMAP to put the new string mapping
table in place.

28 March 1991 Page 10

KEYBOARD (HW) KEYBOARD (HW)

Files

/usr/lib/keyboard/keys
/usr/lib/keyboard/strings

See Also

mapchan(F), mapchan(M), mapkey(ADM), multiscreen(M),
screen(HW), setkey(C), stty(C), kbmode(ADM), configure(ADM)

28 March 1991 Page 11

LP (HW) LP (HW)

Name
lp, lpO, lpl, lp2 - Line printer device interfaces.

Description
The IpO , lp l, and lp2 files provide access to the optional parallel
ports of the computer. The lpO and lp2 files provide access to parallel
ports 1 and 2, respectively. The lp l file provides access to the parallel
port on the monochrome adaptor.

Only one of lpO and lp l may be used on a given system. To access two
parallel printers on a system, use either lpO or ip i, and lp2.

Files
/dev/lpO
/dev/lpl
/dev/lp2

See Also
lp(C), lpadmin(ADM), lpsched(ADM), lpinit(ADM)

Notes
The standard lp ports, lpO, lp l, and lp2 send a printer initialization
string the first time the file is opened after the system is booted.

Not all computers have an alternate parallel port slot.

28 March 1991 Page 1

MACHINE (HW) MACHINE (HW)

Name
Machine - Description of host machine.

Description
This page lists the internal characteristics of personal computers
which use the Intel 8086 processor family and its associated hardware.
The information is intended for software developers who wish to
transfer relocatable object or executable files from other XENIX ma­
chines to a personal computer then prepare the files for execution on
the personal computer.

Central Processing Unit

Disk Block Size (BSIZE)

Memory Management Scheme

Split Instruction and Data

Variable Stack Size

Fixed Stack Size

Intel 8086,8088,80186,80286,80386

1024 bytes

Unmapped (8086,8088,80186)
Segmented (80286)
Segmented and paged (80386)

Supported

Supported (8086,80386 only)
(8086,80386 default configuration)

Supported
(80286 default configuration)

Clock Ticks .05 second (8086,8088,80186)
.02 second (80286,80386)

Binary Compatibility
The small and middle model binary programs created by the C com­
piler cc(CP) run on many processors. The following chart shows
which XENIX systems running on which processors produce code exe­
cutable on other machines. It is assumed that system specific system
calls are not used to produce portable code. cc(CP) produces code by
default, but can also be used as a cross development compiler, by
using the appropriate flags.

SCO-nn is XENIX distributed by The Santa Cruz Operation, Inc. MS-
nn is XENIX distributed by Microsoft Corporation. Intel XENIX is dis­
tributed by Intel Corporation. Altos XENIX is distributed by Altos
Computer Systems, nn designates the machine processor. System
designates the version of XENIX, either 2.3,3.0, or System V.

28 March 1991 Page 1

MACHINE (HW) MACHINE (HW)

Binary CompatibilityYour Default compiler Runs default Compiles (cross « . produces programs programs development) ̂ which run on created on programs for Processor System/Processor System/Processor System/ProcessorSCO-86 3.0 SCO-86 [3.0, Sys V] SCO-186 [3.0, Sys V] SCO-286 SysV SCO-86 3.0SCO-186 3.0Intel, Altos-86 2.3,3.0 DOS*
SCO-86 SystemV SCO-86 Sys V SCO-186 Sys V SCO-286 Sys V MS-286 Sys V

SCO-86 [3.0, Sys V] SCO-186 [3.0, Sys V] SCO-286 Sys V Intel, Altos-86 2.3,3.0
MS-286 3.0t DOS*

SCO-186 3.0 SCO-86 [3.0, Sys V] SCO-186 [3.0, Sys V] SCO-286 Sys V SCO-86 3.0SCO-186 3.0Intel, Altos-86 2.3,3.0 DOS*
SCO-186 System V SCO-86 Sys V SCO-186 Sys V SCO-286 Sys V MS-286 Sys V

SCO-86 [3.0, Sys V] SCO-186 [3.0, Sys V] SCO-286 Sys V Intel, Altos-86 2.3,3.0
MS-286 3.0t DOS*

SCO-286 3.0 SCO-286 [3.0, SysV] MS-286 [3.01*, Sys V] SCO-286 3.0 MS-286 3.0t DOS*SCO-286 System V SCO-86 Sys V SCO-186 SysV SCO-286 Sys V MS-286 Sys V
SCO-86 [3.0, Sys V] SCO-186 [3.0, Sys V] SCO-286 [3.0, Sys V] MS-286 [3.0t, Sys V]

SCO-286 3.0 MS-286 3.Of DOS*SCO-386 System V SCO-86 Sys V SCO-186 Sys V SCO-286 Sys V SCO-386 Sys V MS-286 Sys V MS-386 Sys V
SCO-86 [3.0, Sys V] SCO-186 [3.0, Sys V] SCO-286 [3.0, Sys V] SCO-386 [Sys V] MS-286 [3.0t, Sys V] MS-386 [Sys V]

SCO-286 3.0 MS-286 3.0t DOS*
MS-286 3.0t MS-286 [3.0t, Sys V] SCO-286 Sys V SCO-286 3.0 DOS*MS-286 System V MS-286 Sys V SCO-286 Sys V SCO-86 [3.0, SysV# SCO-186 [3.0, SysV# SCO-286 [3.0, Sys V# DOS*
MS-386 System V MS-386 Sys V SCO-386 Sys V SCO-86 [3.0, Sys V# SCO-186 [3.0, Sys V# SCO-286 [3.0, Sys V# SCO-386 [Sys V#

DOS*
* MS-DOS for i8086/8088,180186 and i80286 processors,
t MS-286 3.0 XENIX is equivalent to Intel 286 3.0 XENIX.
t untested, pending release of this product.

See also
cc(CP), ld(CP), a.out(F).

28 March 1991 Page 2

MOUSE (HW) MOUSE (HW)

Name
mouse - System mouse.

Description
XENIX supports mice attached directly to controller cards on the bus
and mice attached to standard serial ports. The command:

mkdev mouse
is used to configure a new mouse or to reconfigure an existing mouse.

See Also
Files
/dev/mouse
/dev/mouse/bus[0-1]
/dev/mouse/vpix[0-1]
/dev/mouse/microsoft_ser
/dev/mouse/logitech_ser
/dev/mouse/mousesys_ser
/dev/ttyp[0-7]
/etc/default/usemouse
Aisr/lib/event/devices
/usr/lib/event/ttys
/usr/lib/mouse/*

Directory for mouse-related special device files.
Bus mouse device files,
vpix-mouse device files.
Microsoft serial mouse device files.
Logitech serial mouse device files.
Mousesys serial mouse device files.
Special pseudo-tty files for mouse input.
Default map file for mouse-generated characters.
File containing device information for mice.
File listing ttys eligible to use mice.
Alternate map files for mice.

mkdev(ADM), usemouse(C)

28 March 1991 Page 1

PARALLEL (HW) PARALLEL (HW)

Name

parallel - Parallel interface devices.

Description

There are several parallel devices:

/dev/lpO Main parallel adapter.

/dev/lpl Adapter on monochrome video card.

/dev/lp2 Alternate parallel adapter (on appropriate machines).

It is not possible to have all three parallel devices on one system. XT
computers only allow the use of /dev/lpO. Some AT computers allow
the use of two parallel devices, /dev/lp2, and either /dev/lpO or
/dev/lpl. However, available devices vary from machine to machine,
and may instead allow either /dev/lpO, or and either /dev/lpl, and
/dev/lp2.

If a parallel device fails to interrupt properly, the parallel driver enters
“poll mode.” Once interrupts are received from the device, the driver
returns to its original mode.

The parallel driver delays a certain amount of time when a parallel de­
vice is closed. The amount of delay can affect printer performance,
but is necessary to compensate for different sizes of printer buffers and
printer speeds. For example, this command sets the delay on close to
1 second, specified in lOths of a second:

stty time 10< /dev/lpO

When given from a prompt, this command will only work if the port is
open. It is recommended that a variation of this command be placed
in the interface script used with the parallel device to achieve the
same results:

stty time 10 0< &1

Notes

Parallel adapters on add-on cards will function, but switches must be
set correctly. Some compatible computers have ports lpO and lpl
reversed.

The stty(C) command for output processing is supported on a parallel
device, stty options that have no effect on a parallel device are
ignored and no error messages are displayed.

28 March 1991 Page 1

PARALLEL (HW) PARALLEL (HW)

Usage

Usually invoked by through lp(C), but can be written to directly.

Files

/dev/lpO
/dev/lpl
/dev/lp2

See Also

lp(C), lp(HW), lpadmin(ADM), lpinit(ADM), lpsched(ADM),
serial(HW)

28 March 1991 Page 2

RAMDISK (HW) RAMDISK (HW)

Name
ramdisk - Memory block device

Description

The ramdisk device driver provides a block interface to memory. A
ramdisk can be used like any other block device, including making it
into a file systems using m^(ADM). There are eight ramdisks avail­
able.

The characteristics of a ramdisk file are determined by its minor de­
vice number. The bits in the minor device number encode its size,
longevity, and which of the eight possible ramdisks it is.

The three low-order bits of the minor device number determine which
of the eight ramdisks is being accessed.

The next four bits of the minor device number determine the size of
the ramdisk. The size of a ramdisk must be a power of 2, and must be
at least 16K. Since 4 bits are available, there are 16 possible sizes,
starting at 16K and doubling every time the size indicator is incre­
mented, to produce possible sizes of 16K, 32K, 64K, and up.

The high-order bit is a longevity indicator. If set, memory is per­
manently allocated to that ramdisk, and can be deallocated only by
rebooting the system. Permanent ramdisks can only be allocated by
the superuser. However, once a permanent ramdisk is allocated (by
opening it), it can be read and written by anyone having the appropri­
ate permissions on the ramdisk inode.

If clear, the ramdisk is deallocated when no processes have it open.
To create an easily removable, but semi-permanent ramdisk, use a
separate process to keep the device open for as long as necessary.

28 March 1991 Page 1

RAMDISK (HW) RAMDISK (HW)

Since a complete set of ramdisks (8) would consume 256 inodes, only
one example 16K ramdisk (/dev/ramOO) is created when the system is
installed. The system administrator can check this existing file to
determine the major device number for any other required ramdisks.
Ail ramdisks will use the same major device number.

The following table shows how the minor device number is con­
structed:

Example Minor Device Number Construction
Description Longe- Size (see Ram Minor

vity next table) Disk No. Device
Number

16K (#1)
(Temporary)

0 0 0 0 0 0 0 1 1

16K (#1)
(Permanent)

1 0 0 0 0 0 0 1 129

64K (#0)
(Temporary)

0 0 0 1 0 0 0 0 16

512K (#7)
(Permanent)

1 0 1 0 1 1 1 1 175

The contents of the size field and the corresponding ramdisk size is
shown in the next table.

Size Bits Ramdisk Size
0 0 0 0 16K
0 0 0 1 32K
0 0 1 0 64K
0 0 1 1 128K
0 1 0 0 256K
0 1 0 1 512K
0 1 1 0 1M
0 1 1 1 2M
1 0 0 0 4M
1 0 0 1 8M
1 0 1 0 16M
1 0 1 1 32M
1 1 0 0 64M
1 1 0 1 128M
1 1 1 0 256M
1 1 1 1 512M

To create a ramdisk, follow these steps:

28 March 1991 Page 2

RAMDISK (HW) RAMDISK (HW)

1. Create the device node.
You must first create the device that the ramdisk will reside on. It has
the form:mknod devicejiame b_or_c major device number minor_de-

vicejiumber

where b_or_c “b” or “c”. ‘ ’b” is for blocked devices and is the one
you will use. The major number will always be 31. The minor num­
ber is derived from the table above. The minor number is the sum of
the three attribute columns.

Longevity:
permanent = 128 non-permanent = 0

Size:
16K = 0 128K = 24 lMeg = 48 8Meg = 72
32K = 8 256K = 32 2 Meg = 56 16 Meg = 80
64K= 16 512K = 40 4 Meg = 64 32 Meg = 88

Ram Disk number: 0 through 7 Note: There are only 8 devices avail­
able. Two different size devices may not share the same number.

For example, to create a 64K permanent ramdisk, the minor number
could vary from 144 to 151. If the disk number was 1 the mknod com­
mand would be:

mknod /dev/ram64 b 31 145

2. Make a file system.
This creates a file system on the the ramdisk. In this example mkfs
has the form:

mkfs device name size of JHe in Bsize blocks

In this example, the command to create a 64K file system would be:

mkfs /dev/ram64 64

3. Mount the filesystem.
This mounts the selected device on the specified mount point. It has
the form:

mount device_name mount_point

In order to mount the example 64K ramdisk on /mnt the command
would be:

mount /dev/ram64 /mnt

28 March 1991 Page 3

RAMDISK (HW) RAMDISK (HW)

To make a file system on a non-permanent ramdisk, the device file
must be held open between the mkfs and the mount (ADM) operations.
Otherwise, the ramdisk is allocated at the start of the mkfs command,
and deallocated at its end. Once the ramdisk is mounted, it is open
until it is unmounted.

The following shell fragment shows one way to use mkfs on a non-
permanent 512K ramdisk, then mount it:

(/etc/mkfs /dev/ram40 512
/etc/mount /dev/ram40 /mnt

) < /dev/ram40
Notes

ramdisks must occupy contiguous memory. If free memory is frag­
mented, opening a ramdisk may fail even though there is enough total
memory available. Ideally, all ramdisks should be allocated at system
startup. This helps prevent the ramdisks themselves from fragmenting
memory.

ramdisks are geared towards use in specialized applications. In many
cases, you will notice a decrease in system performance when ram­
disks are used, because XENIX can generally put the memory to better
use elsewhere.

Files

/dev/ramOO

See Also

mkfs(ADM), mount(ADM), mknod(C)

28 March 1991 Page 4

SCREEN (m i) SCREEN (HW)

screen - tty[01-n], color, monochrome, ega, vga display adapter and
video monitor

Description
The tty [01 -«] device files provide character I/O between the system
and the video display monitor and keyboard. Each file corresponds to
a separate teletype device. Although there is a maximum of 12
screens, the exact number available (n) depends upon the amount of
memory in the computer. The screens are modeled after a 25 line, 80
column ASCII terminal, unless specified otherwise.

System error messages from the kernel are written to /dev/console,
which is normally the current multiscreen. If the /dev/console is the
default output device for system error messages, and the display being
used is switched to graphics mode, console messages are not dis­
played. When the video device returns to text mode, a notice message
is displayed and the text of the kernel error can be recovered from usr/adm/messages.
Although all tty[01-n] devices may be open concurrently, only one of
the corresponding devices can be active at any given time. The active
device displays its own screen and takes sole possession of the key­
board. It is an error to attempt to access the color, monochrome, or ega file when no corresponding adapter exists or no multiscreens are
associated with it.

To get to the next consecutive screen, enter Ctrl-PrtSc using the Ctrl
key, and the PrtSc key. Any active screen may be selected by enter­
ing alt-Fn, where Fn is one of the function keys. For example, FI
refers to the ttyOl device.

Control Modes
Multiscreens can be reassigned to different adapters (in multi-adapter
systems) with these ioctl s :

SWAPMONO Selects the monochrome display as the output
device for the multiscreen.

SWAPCGA Selects the regular color display as the output
device for the multiscreen.

SWAPEGA Selects the enhanced color display as the out­
put device for the multiscreen.

28 March 1991 Page 1

SCREEN (HW) SCREEN (HW)

SWAP VGA Selects the video graphics array color display
as the output device for the multiscreen.

To find out which display adapter type is currently attached to the
multiscreen, you can use ioctl(S) with the following request:

CON S_CURRENT Returns the display adapter type currently asso­
ciated with the multiscreen. The return value
can be one of: MONO, CGA, EGA, or VGA.

Display Modes
The following ioctls can be used to change the video display mode:

SW_B80x25 Selects 80x25 black and white text display

SW_C80x25

mode. (MONO, CGA, EGA, VGA)

Selects 80x25 color text display mode. (CGA,
EGA, VGA)

SW_B40x25 Selects 40x25 black and white text display
mode. (MONO, CGA, EGA, VGA)

SW_C40x25 Selects 40x25 color text display mode. (CGA,
EGA, VGA)

SW_BG320 Selects 320x200 black and white graphics
display mode. (CGA, EGA, VGA)

SW_CG320 Selects 320x200 color graphics display mode.
(CGA, EGA, VGA)

SW_BG640 Selects 640x200 black and white graphics
display mode. (CGA, EGA, VGA)

SW_EGAMONO80x25 Selects EGA (Enhanced Graphics Adapter)
mode 7 - emulates support provided by the
monochrome display. (EGA, VGA)

SW.EGAMONOAPA Selects EGA support for 640x350 graphics
display mode (EGA mode F). (EGA with mono
monitor)

28 March 1991 Page 2

SCREEN (HW) SCREEN (HW)

SW_ENHM0N0APA2 Selects EGA mode F*. (EGA with mono moni­
tor)

SW_ENHB40x25 Selects enhanced EGA support for 40x25 black
and white text display mode. (EGA, VGA)

SW_ENHC40x25 Selects enhanced EGA support for the 40x25
color text display mode. (EGA, VGA)

SW_ENHB80x25 Selects enhanced EGA support for 80x25 black
and white text display mode. (EGA, VGA)

SW_ENHC80x25 Selects enhanced EGA support for 80x25 color
text display mode. (EGA, VGA)

SW_ENHB80x43 Selects enhanced EGA support for 80x43 black
and white text display mode. (EGA, VGA)

SW_ENHC80x43 Selects enhanced EGA support for 80x43 color
text display mode. (EGA, VGA)

SW_CG320_D Selects EGA support for 320x200 graphics
display mode. (EGA mode D.) (EGA, VGA)

SW_CG640_E Selects EGA support for 640x200 graphics
display mode (EGA mode E). (EGA, VGA)

SW_CG640x350 Selects EGA support for 640x350 graphics
display mode (EGA mode 10). (EGA, VGA)

SW_ENH_CG640 Selects EGA mode 10*. (EGA, VGA)

SW_MCAMODE Reinitializes the monochrome adapter.
(MONO)

SW_VGA40x25 Selects VGA support for the 40x25 color text
display mode (VGA mode 1+). (VGA)

SW_VGA80x25 Selects VGA support for the 80x25 black and
white text display mode (VGA mode 2+).
(VGA)

SW_VGAM80x25 Selects VGA mode 7+ - emulates support pro­
vided by the monochrome display. (VGA with
mono monitor)

28 March 1991 Page 3

SCREEN (HW) SCREEN (HW)

SWJVGAl 1 Selects VGA support for the 640x480 graphics
display mode (VGA mode 11). (VGA)

SW_VGA12 Selects VGA support for the 640x480 graphics
display mode (VGA mode 12). (VGA)

SWJVGAl3 Selects VGA support for the 320x200 graphics
display mode (VGA mode 13). (VGA)

Switching to an invalid display mode for a display device will result
in an error.

Getting Display Modes
The following ioctl{) requests are provided to obtain information
about the current display modes:

CONS_GET

CGA.GET

EGA_GET

MCAJ3ET

VGA.GET

Returns the current display mode setting for
current display adapter. (All)

Returns the current display mode setting of the
color graphics adapter. (CGA only)

Returns the current display mode setting of the
enhanced graphics adapter. (EGA only)

Returns the current display mode setting of the
monochrome adapter. (MONO only)

Returns the current display mode of the video
graphics adapters. (VGA only)

CONS_GETINFO Returns structure vidjnfo (below). Size of
structure (first field) must be filled in by user.

s t r u c t v i d _ i n f o
{

s h o r t s i z e ; /* m a s t b e f i r s t f i e l d * /
s h o r t m num; / * m u l t i s c r e e n nu m b er, 0 b a s e d * /
u s h o r t mv_row, m v _ co l; / * c u r s o r p o s i t i o n V
u s h o r t m v _ rsz , m v_csz; / * t e x t s c r e e n s i z e * /
s t r u c t c o l o r s mv_norm, / * n o rm a l a t t r i b u t e s V

m v_rev , / * r e v e r s e v id e o a t t r i b u t e s * /
m v _ g rfc ; / * g r a p h ic c h a r a c t e r a t t r i b u t e s * /

u c h a r _ t m v_o vscan ; / * b o r d e r c o l o r * /
u c h a r _ t m k _ k ey lo c k ; / * c a p s / n u m / s c r o l l lo c k V

};
CONS_6845INFO Returns structure m6845Jnfo (below). Size of

structure (first field) must be filled in by user.
s t r u c t m 6 8 4 5 _ in fo
{

s h o r t s i z e ; / * m a s t b e f i r s t f i e l d * /

28 March 1991 Page 4

SCREEN (HW) SCREEN (HW)

u s h o r t s c r e e n _ t o p ; / * o f f s e t o f s c r e e n i n v id e o * /
u s h o r t c u r s o r _ ty p e ; / * c u r s o r s h a p e * /

};

CONSADP Returns number of multiscreen displayed on
adaptor associated with that multiscreen.

GIO.ATTR Return value of ioctl is 6845-style attribute
byte in effect.

GIO_COLOR Return value of ioctl is zero or one depending
on whether the device supports color

GIO.SCRNMAP Gets the 256-byte screen map table, which is
the mapping of ASCII values (0-256) onto the
PC video ROM font characters (0-256). Note
that control characters (ASCII values less than
hex 20) have control functions and do not
display ROM characters (example: AJ is new-
line).

This is often used to map the low font values
that normally correspond to ASCII control
values to higher ASCII values, thus displaying
the desired ROM characters.

PIO_SCRNMAP Puts the 256-byte screen map table (see
GIOJSCRNMAP).

PIO_KEYMAP See keyboard^HW)

PIOJKEYMAP See keyboard^HW)

GIO_FONT8Xn Gets font, where is 8, 14, and 16. Argument is
a pointer to a font table. Size of 8X8 font table
is 8X256 bytes, 8X14 is 14X256 bytes, etc.

PI0_F0NT8Xn Puts font, where is 8, 14, and 16. Argument is
a pointer to a font table. Size of 8X8 font table
is 8X256 bytes, 8X14 is 14X256 bytes, etc.

28 March 1991 Page 5

SCREEN (HW) SCREEN (HW)

Memory Mapping Modes

The ioctl (S) routine is used to map the display memory of the various
devices into the user’s data space.

Note that the MAP* ioctls map the memory associated with the
current mode. You must put the adapter into the desired mode before
performing mapping, or the pointers returned will not be appropriate.
Refer to your hardware manual for details on various displays,
adapters, and controllers.

These ioctl() requests can be used to map the display memory:

MAPCONS Maps the display memory of the adaptor
currently being used into the user’s data space.
(All)

MAPMONO Maps the monochrome adapter’s display
memory into the user’s data space. (MONO
only)

MAPCGA Maps the color adapter’s display memory into
the user’s data space. (CGA only)

MAPEGA Maps the enhanced graphics adapter’s display
memory into the user’s data space. (EGA only)

MAPVGA Maps the video graphics adapter’s display
memory into the user’s data space. (VGA only)

For example, the following code can be used to acquire a pointer to
the start of the user data space associated with the color graphics
adapter display memory:

c h a r * d p ;
i n t r e t v a l ;

/ * f d i s a f i l e d e s c r i p t o r f o r a
m u l t i s c r e e n d e v i c e * /

r e t v a l = i o c t l (f d , M A PCONS,OL);
d p = (c h a r *) r e t v a l ;

Note that when the display memory is mapped into the user space, the
adapter’s m6845 start address registers are not set. The start address
can be reset in two ways, so that the start address of the display mem­
ory corresponds to the upper left hand comer of the screen:

28 March 1991 Page 6

SCREEN (HW) SCREEN (HW)

1. Switch modes with an ioctlQ (the “switch” can be to the
present mode). See the “Display Modes” section of this manu­
al page.

2. Change the start address high and low address with the
in-on-portlout-on-port ioctlQ.

The in-on-portl out-on-port ioctl()’s can also be used to determine the
current value in the start address register, and then set up a pointer to
point to the offset in the mapped-in data space.

MAP_CLASS
Package ioctl that gives I/O privileges to an arbitrary list of ports
and maps an arbitrary frame buffer into user’s address space
identified by a string found in the struct vidclass vidclasslist[]
located in /usi7include/sys/vtkd.h.

EGAJOPRTVL

VGAJOPRIVL
These add the list of 10 ports found on standard EGA and VGA
cards into the process’ TSS 10 permission bitmap. This allows the
process to access the EGA or VGA io ports directly from user
space with 386 IN and OUT instructions.

KDDISPTYPE
This call returns display information to the user. The argument
expected is the buffer address of a structure of type kdjlisparam
into which display information is returned to the user. The
kdjlisparam structure is defined as follows:

s t r u c t k d _ d is p a ra m {
lo n g t y p e ; / ^ d i s p l a y t y p e * /
c h a r * a d d r ; / * d i s p l a y memory a d d r e s s * /

Possible values for the type field include:

KD_MONO (0x01), for the IBM monochrome display adapter.

KD_HERCULES (0x02), for the Hercules monochrome graphics
adapter.

KD_CGA (0x03), for the IBM color graphics adapter.

KD_EGA (0x04), for the IBM enhanced graphics adapter.

KD_VGA (0x05), for the IBM video graphics adapter.

KDDISPINFO
Returns struct kdjlisparam, which contains adaptor type and phy­
sical address of frame buffer.

28 March 1991 Page 7

SCREEN (HW) SCREEN (HW)

KIOCSOUND
Start sound generation. Him on sound. The arg is the frequency
desired. A frequency of 0 turns off the sound. This is useful for
generating tones while in graphics mode.

KDGETLED
Get keyboard LED status. The argument is a pointer to a charac­
ter. The character will be filled with a boolean combination of the
following values:
1 scroll lock
2 num lock
4 caps lock

KDSETLED
Set keyboard LED status. The argument is a character whose
value is the boolean combination of the values listed under
“KDGETLED”.

KDMKTONE
Not supported. (See KIOCSOUND.)

KDADDIO
Not supported. (See MAP_CLASS.)

KDDELIO
Not supported. (See MAP_CLASS.)

KIOCDOSMODE
Not supported.

KIOCNONDOSMODE
Not supported.

KDSETMODE
(VP/DC only.) Set console in text or graphics mode. The argument
is of type integer, which should contain one of the following
values:

KD_TEXT 0x00 (sets console to text mode)
KD_GRAPHICS 0x01 (sets console in graphics mode)

Note, the user is responsible for programming the color/graphics
adaptor registers for die appropriate graphical state.

KDGETMODE
(VP/IX only.) Get current mode of console. Returns integer argu­
ment containing either KD_TEXT or KD_GRAPHICS as defined
in the KDSETMODE ioctl description.

KDENABIO
Enable in’s and out’s to video adaptor ports. No argument.

28 March 1991 Page 8

SCREEN (HW) SCREEN (HW)

KDDISABIO
Disable in’s and out’s to video adaptor ports. No argument.

KDGKBTYPE
Always returns 0.

KDGKBMODE
Get keyboard translation mode, also known as scan code mode.
Mode is returned where arg points.

KDSKBMODE
Set keyboard translation mode, also known as scan code mode.

KDGKBSTATE
Returns the state of the shifted, alt-, or control- state of the key­
board. Returns a bollean combination of:
1 shifted
2 control-
4 alt-

KIOCINFO
Always returns 0x6664.

KDMAPDISP
(VP/ix only) Maps display memory into user process address
space. Argument is a pointer to structure type kdjnemloc. This
ioctl requires that a virtual 8086 subtask be attached to the current
process. KDMAPDISP should not be used by ordinary users to
map the console display; use MAPCONS.

KDUNMAPDISP
(VP/ix only) Unmap display memory from user process address
space. No argument required.

VTJSETMODE
Set the virtual terminal mode. The argument is a pointer to a
vt_mode structure, as defined below.

VT_GETMODE
Determine what mode the active virtual terminal is currently in,
either VT_AUTO or VT_PROCESS. The argument to the ioctl is
the address of the following type of structure:

s t r u c t v t_m od e {
c h a r m ode; / * VT mode * /

c h a r w a i tv ; / * n o t im p le m e n te d * /
s h o r t r e l s i g ; / * s i g n a l t o u s e f o r r e l e a s e r e q u e s t * /
s h o r t a c q s i g ; / * s i g n a l t o u s e f o r d i s p l a y a c q u i r e d * /
s h o r t f r s i g ; / * n o t im p le m e n te d * /
}

d e f i n e VT_AUTO 0x00 / * a u to m a t ic VT s w i tc h in g * /
d e f i n e VT_PROCESS 0x01 / * p r o c e s s c o n t r o l s s w i tc h in g * /

28 March 1991 Page 9

SCREEN (HW) SCREEN (EW)

The vt_mode structure will be filled in with the current value for each
field.

VT_RELDISP
Used to tell the virtual terminal manager that the display has or has
not been released by the process.

0 == release refused
1 == release acknowledged
2 == acquire acknowledged

VT_ACTTVATE
Makes the multiscreen number specified in the argument the active
multiscreen. The video driver will cause a switch to occur in the
same manner as if a hotkey sequence had been typed at the key­
board. If the specified multiscreen is not open or does not exist,
the call will fail and ermo will be set to ENXIO.

Graphics Adapter Port I/O
You can use ioctl(S) to read or write a byte from or to the graphics
adapter port. The arg parameter of the ioctl call uses the io jirg data
structure:

s t r u c t p o r t _ _ i o _ a r g {
s t r u c t p o r t _ i o _ s t r u c t a r g s [4] ;

};

As shown above, the io arg structure points to an array of four port J o
data structures. The port J o structure has the following format:

s t r u c t p o r t _ i o _ s t r u c t {
c h a r d i r ; / * d i r e c t i o n f l a g (i n v s . o u t) * /
u n s ig n e d s h o r t p o r t ; / * p o r t a d d r e s s * /
c h a r d a t a ; / * b y te o f d a t a * /

};

You may specify one, two, three, or four of the port io struct struc­
tures in the array for one ioctl call. The value of dir can be either
IN_ON_PORT to specify a byte being input to the graphics adapter
port or OUT_ON_PORT to specify a byte being output to the graphics
adapter port. Port is an integer specifying the port address of the
desired graphics adapter port. Data is the byte of data being input or
output as specified by the call.

If you are not using any of the port J o structures, load the port with 0,
and leave the unused structures at the end of the array. Refer to the
hardware manuals for port addresses and functions for the various
adapters.

28 March 1991 Page 10

SCREEN (HW) SCREEN (HW)

You can use the following ioctl(S) commands to input or output a byte
on the graphics adapter port:

CONSIO Inputs or outputs a byte on the current graphics
adapter port as specified. (All)

MGAIO Inputs or outputs a byte on the monochrome
adapter port as specified. (MONO only)

CGAIO Inputs or outputs a byte on the color graphics
adapter port as specified. (CGA only)

EGAIO Inputs or outputs a byte on the enhanced graph­
ics adapter port as specified. (EGA only)

VGAIO Inputs or outputs a byte on the video graphics
array adapter port as specified. (VGA only)

To input a byte on any of the graphics adapter ports, load dir with
IN_ON_PORT and load port with the port address of the graphics
adapter. The byte input from the graphics adapter port will be returned
in data.

To output a byte, load dir with OUT_ON_PORT, load port with the
port address of the graphics adapter, and load data with the byte you
want output to the graphics adapter port.

Function Keys
ioctl(S) can be used to define or obtain the current definition of a func­
tion key. The arg parameter of the iocti call uses the fkeyarg data
structure:

s t r u c t f k e y a r g {
u n a s s i g n e d i n t k e y n u m ;
c h a r k e y d e f [MAXFK];
/ * C om es f r o m
c h a r f l e n ; i o c t i . h v i a c o m c r t . h * /

}

You can use the following ioctl(S) requests to obtain or assign func­
tion key definitions:

GETFKEY Obtains the current definition of a function key.
The function key number must be passed in keynum. The string currently assigned to the
key will be returned in keydef and Äe length of
the string will be returned in flen when the iocti

28 March 1991 Page 11

SCREEN (HW) SCREEN (HW)

is performed.

Assigns a given string to a function key. The
function key number must be passed in keydef
and the length of the string (number of charac­
ters) must be passed in flen.
Toggles the <Caps Lock> and <Num Lock>
keys to be either global to all the multiscreens,
or local to each individual multiscreen. To
make the <Caps Lock> global (its default), set
the arg parameter to 1. To make the
<Caps Lock> local to each screen, set the arg
parameter to 0.

ANSI Screen Attribute Sequences

The following character sequences are defined by ANSI X3.64-1979
and may be used to control and modify the screen display. Each n is
replaced by the appropriate ASCII number (decimal) to produce the
desired effect. The last column is for termcap(M) codes, where “n/a”
means not applicable.

The use of 7 or 8 bit characters in the escape sequence is a valid invo­
cation for each action defined. For example the ANSI ED command
can be invoked via the “ESC[/z J ” (Ox 1 b-0x5b-«-0x4a, 7 bit chars)
sequence or the “CSM ” (0x9b-n-0x4n, 8 bit chars) sequence.

SETFKEY

SETLOCKLOCK

ISO

ED
(Erase in
Display)

EL
(Erase in
Line)

ECH
(Erase
Character)

Sequence Action Termcap
_______________________________________ Code
CSInJ Erases all or part of a cd

display, n-0: erases from
active position to end of
display. n = l: erases from
the beginning of display to
active position. n=2:
erases entire display.

CSI/zK Erases all or part of a line. ce
n-0: erases from active
position to end of line.
n -1 : erases from begin­
ning of line to active posi­
tion. n=2: erases entire
line.

CSIrtX Erases n characters n/a

28 March 1991 Page 12

SCREEN (HW) SCREEN (HW)

CBT
(Cursor
Backward
Tabulation)

CSInZ Moves active position
back n tab stops.

SU
(Scroll
Up)

CSInS Scroll screen up n lines,
introducing new blank
lines at bottom.

SD
(Scroll
Down)

CSlnT Scrolls screen down n
lines, introducing new
blank lines at top.

CUP
(Cursor
Position)

CSIm;nH Moves active position to
location m (vertical) and n
(horizontal).

HVP
(Horizontal
& Vertical
Position)

CSIm;wf Moves active position to
location m (vertical) and n
(horizontal).

CUU
(Cursor Up)

CSIwA Moves active position up n
number of lines.

CUD
(Cursor
Down)

CSIwB Moves active position
down n number of lines.

CUF
(Cursor
Forward)

CSInC Moves active position n
spaces to the right.

CUB
(Cursor
Backward)

CSI/tD Moves active position n
spaces backward.

HPA
(Horizontal
Position
Absolute)

CSI n‘ Moves active position to
column given by n.

HPR
(Horizontal
Position
Relative)

CSIna Moves active position n
characters to the right.

28 March 1991

bt

sf

sr

cm

n/a

up (ku)

do (kd)

nd(kr)

bs (kl)

n/a

n/a

Page 13

SCREEN (HW) SCREEN (HW)

VPA
(Vertical
Position
Absolute)

CSInd Moves active position to
line given by n.

n/a

VPR
(Vertical
Position
Relative)

CSIne Moves active position
down n number of lines.

n/a

IL
(Insert
Line)

CSIwL Inserts n new, blank lines. al

ICH
(Insert
Character)

CSI«@ Inserts n blank places for n
characters.

ic

DL
(Delete
Line)

CSI/iM Deletes n lines. dl

DCH
(Delete
Character)

CSI/iP Deletes n number of char­
acters.

dc

CPL
(Cursor to
Previous
Line)

CSInF Moves active position to
beginning of line, n lines
up.

n/a

CNL
(Cursor
Next
Line)

CSInE Moves active position to
beginning of line, n lines
down.

n/a

28 March 1991 Page 14

SCREEN (UW) SCREEN (HW)

SGR CSImn
(Select
Graphic
Rendition)

Character attributes, as n/a
summarized in the chart
below. Up to three attri­
butes can be specified in
the form: CSI nl\ n2; n3 m

Select Graphic Rendition (SGR) Chart
n Meaning
0 all attributes off (normal display)
1 bold intensity (or light color)
4 underscore on (if hardware supports it)
5 blink on (if hardware supports it)
7 reverse video
8 sets blank (non-display)
10 selects the primary font
11 selects the first alternate font; lets ASCII

characters less
ROM characters

than 32 be displayed as

12 selects a second alternate font; toggles high
bit of extended ASCII code before display­
ing as ROM characters

30 black foreground
31 red foreground
32 green foreground
33 brown foreground
34 blue foreground
35 magenta foreground
36 cyan foreground
37 white foreground
38 enables underline option; white foreground

with white underscore
39 disables underline option
40 black background
41 red background
42 green background
43 brown background
44 blue background
45 magenta background
46 cyan background
47 white background

ISO Sequence Action Termcap
___________ Code

SM CSI2h Lock keyboard. Ignores n/a
(Set Mode) keyboard input until

unlocked. Characters are
not saved.

28 March 1991 Page 15

SCREEN (UW) SCREEN (HW)

MC
(Media
Copy)

CSI2i Send screen to host.
Current screen contents are
sent to the application.

n/a

RM
(Reset
Mode)

CSI21 Unlock keyboard. Re­
enable keyboard input.

n/a

Additional Screen Attribute Sequences

Name Sequence Action Termcap
Code

n/a CSI=p;JB Set the bell parameter to the n/a
decimal values of p and d. p is
the period of the bell tone in units
of 840.3 nanoseconds, and d is the
duration of the tone in units of
100 milliseconds.

n/a CSI=s;eC Set the cursor to start on scanline n/a
s and end on scanline e.

n/a CSI=jcD

n/a CSI=jcE

n/a CSI=cA

n/a CSI=cF

n/a CSI=cG

Turn on or off (jc= 1 or 0) the n/a
intensity of the background color.

Set or clear (x= 1 or 0) the Blink n/a
vs. Bold background bit in the
6845 crt controller.
Set overscan color to color c. c is n/a
a decimal value taken from Color
Table above. (This sequence may
not be supported on all hardware.)

Set normal foreground color to c. n/a
(c is a decimal parameter taken
from Color Table.)

Set normal background. (See n/a
Color Table.)

n/a CSI=c H Set reverse foreground. (See n/a
Color Table.)

28 March 1991 Page 16

SCREEN (HW) SCREEN (HW)

n/a CSI=c I Set reverse
Color Table.)

background. (See n/a

n/a CSI=c J Set graphic
Color Table.)

foreground. (See n/a

n/a CSI=c K Set graphic
Color Table.)

background. (See n/a

Color Table
Cn Color Cn Color
0 Black 8 Grey
1 Blue 9 Lt. Blue
2 Green 10 Lt. Green
3 Cyan 11 Lt. Cyan
4 Red 12 Lt. Red
5 Magenta 13 Lt. Magenta
6 Brown 14 Yellow
7 White 15 Lt. White

Name Sequence Action Termcap
Code

n/a CSIng

n/a CSIttL

n/a CSInM

n/a CSIs

Accesses alternate graphics set. n/a
Not the same as
“graphics mode.” Refer to your
owner’s manual for
decimal/character codes (Pn) and
possible output characters.

Fills new regions with current n/a
(w=0) or normal (n=l) attributes.
Default is 0.

Returns current foreground color n/a
attributes, with n=0 for normal, 1
for reverse, and 2 for graphic.
The colors are sent back in the
keyboard data input stream as
text decimal values separated by
a space and terminated with a
newline. For example, if the
current foreground color is ltjred
on black, “ 12 ONn” is returned.

Saves current cursor position. n/a

28 March 1991 Page 17

SCREEN (HW) SCREEN (HW)

n/a CSIu Restores saved cursor position. n/a

n/a ESC7 Saves current cursor position. n/a

n/a ESC8 Restores saved cursor position. n/a

n/a ESCQFn'string ’ Define function key Fn with n/a
string. String delimiters
’ and ’ may be any character not
in string. Fn is defined as the key
number starting at zero plus the
ASCH value of zero. For exam­
ple, FI = 0... F16 = ?, and so on.

In this escape sequence, the
character will cause the next
character to have 32 subtracted
from its ASCII value. Thus A!
results in a soh ("A) characters.

n/a CSInz Switches to screen n. If the n/a
screen does not exist, no action
will take place.

Files
/dev/console

/dev/tty [02 -/*]

/dev/color

/dev/monochrome

/dev/ega

/dev/vga

See Also
console(M), ioctl(S), keyboard(HW), keymap(M), mapkey(M),
mapchan(M), multiscreen (M), setcolor(C), stty(C), systty(M),
vidi(C), termcap(M), tty(M)

28 March 1991 Page 18

SCSI (HW) SCSI (HW)

Name
scsi - Small computer systems interface.

Description
SCSI provides a standard interface for peripherals such as hard disks,
printers, tape drives and others. SCSI is run via a host adapter card
that can support up to 7 devices.

The minor device numbering scheme for SCSI devices (for example, a
hard disk) is the same as the standard minor device number scheme for
non-SCSI devices. Each SCSI device has its own major device num­
ber.

Unsupported Tape Devices
Although some tape drives are not supported (example: DAT and
8mm tape drives), the SCSI driver permits the connection of these de­
vices. In order to use these tape drives you must create the special de­
vice files manually. Here is a description of additional tape device
nodes:

Name Major Minor See Note Tape Type
/dev/rctO 34+TID 0 1,5 QIC, 9TLD
Idev/brctO 34+TID 4 1,6 9TLD, HS
Idev/nrctO 34+TID 8 2,5 QIC, 9TLD
/dev/bnrctO 34+TID 12 2,6 9TLD, HS
/dev/hirctO 34+TID 16 4,1,5 9THD
/dev/hibrctO 34+TID 20 4,1,6 9THD
Idev/hinrctO 34+TID 24 4,2,5 9THD
/dev/hibnrctO 34+TID 28 4,2,6 9THD
Idev/urctO 34+TID 32 3,5 QIC, 9TLD
/dev/burctO 34+TID 36 3,6 9TLD, HS
IdevIhiurctO 34+TID 48 4,3,5 9THD
/dev/hiburctO 34+TID 52 4,3,6 9THD

Tape Type:
9THD Nine Track Hi-Density Tape (reel-to-reel)
HS Helical Scan Tape drive (WangDAT/Exabyte)
9TLD Nine Track Low-Density Tape (reel-to-reel)
QIC Quarter Inch Tape Cartridge

NOTES:

1. This device will do a tape rewind and unload at the end of the
operation (at close).

2. This device will not issue a rewind to the device, but an unload
will be issued. On some tape drives an unload implies a rewind
will be done (at close).

28 March 1991 Page 1

SCSI (HW) SCSI (HW)

3. This device will issue a rewind, but no unload will be done (at
close).

4. This is used to set the tape operation to high density for reel-to-
reel tape drives (at close).

5. This device uses a 512 byte block size. For typical quarter-inch
tape drives.

6. This device uses a 1024 byte block size. To be used for devices,
that do not have a fixed block size, such as a helical scan tape,
or reel-to-reel tape. Using this device on a quarter inch tape
drive will not have any effect.

You cannot run mkdev tape to add drives other than the QIC type
because they are not supported. The default devices are /dev/rctO and /dev/nrctO. To create the other entries, you will need to do:

mknod lde\lname c 34+TID major minor

Where name is a name from the left column in the drive table. TID is
the target ID of the SCSI tape drive you are installing.

For instance, to create the IdeviurctO device, with the tape drive target
ID set to 2, you would enter the following:

mknod /dev/urctO c 36 32
Notes

This functionality applies only to
XENIX-386 distributions.

See Also
hd(HW), tape(HW)

28 March 1991 Page 2

SERIAL (HW) SERIAL (HW)

Name
ttyl[a-h], ttyl[A-H], tty2[a-h] , tty2[A-H] - Interface to serial ports.

Description

The ttyl[a-h], ttyl[A-H], tty2[a-h] and tty2[A-H] files provide
access to the standard and optional serial ports of the computer. Each
file corresponds to one of the serial ports (with or without modem con­
trol). Files are named according to the following conventions:

- The first number in the file name corresponds to the COM expan­
sion slot.

- Lower case letters indicate no modem control.

- Upper case letters indicate the line has modem control.

tty la and ttylA both refer to COM 1, whereas tty2a and tty2A both
refer to COM 2.

For example, with a four port expansion board installed at COM 1 and
a single port board installed at COM 2, you can access:

Each serial port has modem and non-modem invocations. The device
names in the following table refer to the serial ports, with and without
modem control. The first section of the table describes boards at COM
1 and the second section describes boards installed at COM 2.
“Minor” is the minor device number for the port (see mknod(C)).

ttyla
ttylb
ttylc
ttyld

ttylA
ttylB
ttylC
ttylD

tty2a tty2A

28 March 1991 Page 1

SERIAL (HW) SERIAL (HW)

Serial Lines
Board
Type

Non-Modem
Control Modem Control

Minor Name Minor Name
1 Port 0 ttyla 128 ttylA

1 tty lb 129 ttylB
4 Port 2 ttylc 130 ttylC

3 ttyld 131 ttylD

4 ttyle 132 ttylE
8 Port 5 tty If 133 ttylF

6 ttyig 134 ttylG
7 ttylh 135 ttylH

1 Port 8 tty2a 136 tty2A

9 tty2b 137 tty2B
4 Port 10 tty2c 138 tty2C

11 tty2d 139 tty2D

12 tty2e 140 tty2E
Q Dnrt 13 tty2f 141 tty2F

14 tty2g 142 tty2G
15 tty2h 143 tty2H

16 tty2i 144 tty2I
17 tty2j 145 tty2J
18 tty2k 146 tty2K

16 Port (MCA) 19
20

tty21
tty2m

147
148

tty2L
tty2M

21 tty2n 149 tty2N
22 tty2o 150 tty20
23 tty2p 151 tty2P

Interrupt Vectors:

All board(s) installed at COM 1 - 4
All board(s) installed at COM 2 - 3

For a list of I/O addresses, see the Release Notes furnished with your
distribution.

Access
The files may only be accessed if the corresponding serial interface
card is installed and its jumper I/O address correctly set. Also, for
multi-port expansion cards, you must use the mkdev{ADM) program to

28 March 1991 Page 2

SERIAL (HW) SERIAL (HW)

create more than the default number of files.

The serial ports must also be defined in the system configuration.
Check your hardware manual to determine how your system is config­
ured, via a CMOS database or by switch settings on the main system
board. If your system is configured using a CMOS database, the ports
are defined in the database (see cmas(HW)). Otherwise, define the
ports by setting the proper switches on the main system board. Refer
to your computer hardware manual for switch settings.

It is an error to attempt to access a serial port that has not been
installed and defined.

The serial ports can be used for a variety of serial communication pur­
poses such as connecting login terminals to the computer, attaching
printers, or forming a serial network with other computers. Note that a
serial port may operate at most of the standard XENIX baud rates, and
that the ports (on most computers) have a DTE (Data Terminal Equip­
ment) configuration. The following table defines how each pin is used
for 25-pin and 9-pin connections:

25-Pin 9-Pin Description
2 2 Transmit Data
3 3 Receive Data
4 7 Request to Send
5 8 Clear to Send
7 5 Signal Ground
8 1 Carrier Detect (Data Set Ready)
20 4 Data Terminal Ready

Only pins 2,3, and 7 (2,3 and 5 for 9-pin) are necessary for a terminal
(or direct) connection.

A modem control device (port) uses pins 2, 3, and 7 in the same way
as a non-modem control device: send on pin 2 and receive on pin 3.
Pin 7 is data ground. On a non-modem control device the state of the
other pins are not set or read. On a modem control device, pins 4 and
20 (RTS & DTR) are asserted and the port will not open until pin 8
(CXD) is asserted. That is, no signal travels from pin 2 until pin 8 is
asserted from another source. The modem control device monitors the
the status of pin 8.

See tty(M) and termio (M) for the details of serial line operation in the
XENIX system.

Files
/dev/ttyl[a-h]
/dev/ttyl[A-H]

28 March 1991 Page 3

SERIAL (HW) SERIAL (HW)

/dev/tty2[a-h]
/dev/tty2[A-H]

See Also
cmos(HW), csh(C), cu(C), getty(ADM), mkdev(ADM), mknod(C)
nohup(C), open(S), termio(M), tty(M), uucp(C)

Notes
If you login via a modem control serial line, hanging up logs that line
out and kills your background processes. See nohup(C) and csh(C)).

You cannot use the same serial port with both modem and non-modem
control at the same time. For example, you cannot use ttyla and ttyl A
simultaneously.

Use a modem cable to connect your modem to a computer.

28 March 1991 Page 4

TAPE (HW) TAPE (HW)

Name
tape - Magnetic tape device.

Description

The tape device implements the XENIX interface with a tape drive.
QIC-02 cartridge tape drives are supported by the ct device driver,
QIC-40 and QIC-80 tape drives connected to the floppy disk controller
are supported with the ft device driver, and Irwin tape drives con­
nected to the floppy disk controller are supported with the me device
driver. Typically, the tar(C), cpio(C), dd(C), backup (ADM), or
restore (ADM) commands are used to access a tape drive.

A single tape drive with a raw (character, non-blocking) interface is
supported, except for the SCSI tape driver which supports up to four
devices. There are four standard tape device types. Devices beginning
with the “r” prefix, (for “raw device”), should be used for most nor­
mal tape work, while devices with the “n” prefix, (“for no rewind on
hold”), should be used for storing and restoring multiple files. De­
vices beginning with the “x” prefix are control devices, which are
used for sending ioctl (S) commands to the tape subsystem.

Devices beginning with the “e” prefix (for ECC device) support a
2/64 error recovery scheme. Thus two 512-byte blocks out of every 64
blocks can be bad and the driver will correct the errors. This software
ECC support provides a high degree of error recovery.

The ft and me floppy tape drivers do not support the “n” or “e” device
types. ECC encoding and decoding is automatically used with the
standard “r” device. On the QIC-40, QIC-80 and Irwin 80MB drives,
for every 29K written to the tape, 3K of ECC data is written with it to
provide error recovery. On the Irwin 10, 20,40 and 60MB drives, for
every 16K written to the tape, 2K of ECC data is written.

QIC-40 and QIC-80 tapes must be formatted with the tape(C) com­
mand before use, unless you use pre-formatted tapes. Similarly, Irwin
tapes must be first servo-written and then formatted with tape(C)
before use, unless you use pre-formatted tapes. The new Irwin driver
cannot write tapes formatted under earlier releases, so pre-formatted
tapes are strongly recommended.

The following table summarizes the base naming conventions for the
tape drives supported:

ctfi,l
ct2,3

QIC24 unit 0,1
QIC 11 unit 0,1
SCSI tape unit 0,1,2,3
QIC-40 or QIC-80 floppy tape unit
Irwin floppy tape unit
default mini-cartridge device

Stp0,l,2,3
ftO
mcO
ctmini

28 March 1991 Page 1

TAPE (HW) TAPE (HW)

mtO,l
mt2,3
mt4,5

reel to reel unit 0,1 1600 bpi
reel to reel unit 0,1 800 bpi
reel to reel unit 0,1 6250 bpi

The default tape device is stored in the file /etc/default/tape, which is
also used by tape(C). /etc/default/tape should always contain the “x”
(control) device name of the default device, and is normally updated
by mkdev(ADM) tape. If the default device is an QIC-40, QIC-80 or
Irwin tape drive, the appropriate device from the table above will be
linked to the ctmini device node. QIC-02 tape drives will always be
accessed by the ctO, 1 device nodes as shown in the table. If a SCSI
tape drive is installed as the default device and there is no QIC-02
drive installed, it will be linked to the ctO device node. If both SCSI
and QIC-02 drives are installed, the SCSI device node cannot be
linked to the ctO device node.

tape(C) describes the commands used to access tape drives.

Definition of ioctl commands
The following ioctl commands can be used with the various tape de­
vice drivers supported under XENIX. The letters following each
description indicate which drivers support each ioctl command:

A All drivers
C QIC-02 cartridge tape driver
S SCSI tape driver
F QIC-40 and QIC-80 mini-cartridge tape drivers
I Irwin mini-cartridge tape driver

MTSTATUS
Returns a device-independent structure holding the status of the
drive. The tapejnfo structure is defined in
/usr/include/sys/tape.h. (C,S,F)

MT_DSTATUS
Returns a device-dependent structure holding status information of
the drive. (C,S,F)

MT_RESET
Resets the driver software and the tape drive. Interrupts tape com­
mands in progress. (C,S,F)

MT_REPORT
Returns an integer code which determines the type of device which
the driver controls. The type numbers are defined in
/usr/include/sys/tape.h. (C,S,F)

28 March 1991 Page 2

TAPE (HW) TAPE (HW)

MT RETEN
Winds the tape forward to EOT and then backward to BOT.
(C,S,F)

MTREWIND
Rewinds the tape to BOT. (C,S,F)

MT_ERASE
Erases the data on the tape and retensions the cartridge. (C,S,F)

MTAMOUNT
Returns an integer count of the amount of the last data transfer.
(C,S,F)

MTFORMAT
Formats the tape. Expects as an argument the number of tracks to
format, which must be an even number. If no argument is pro­
vided, the default is 20 tracks for QIC-40 drives, and 28 tracks for
QIC-80 drives. (F)

MTGETHDR
Expects as an argument a pointer to a struct ft header or struct
ir header and copies the header of the current tape into it. (F)

MTPUTHDR
Takes a pointer to a struct ft header or struct irjheader and writes
it onto the tape. This command should be used with caution. (F)

MT_GETNEWBB
Takes a pointer to a struct ftjiewbbt or struct irjiewbbt and copies
in a list of bad blocks detected on the last write operation. (F)

MTPUTNEWBB
Takes a pointer to a struct ftjiewbbt or struct irjiewbbt, reads in
the header from the tape, then writes a new bad block onto the tape
with the new bad blocks from the provided bad block table. (F)

MT_GETVTBL
Takes a pointer to a struct ftjytbl and copies in the volume table
from the tape. (F)

MT PUTVTBL
Takes a pointer to a struct ft_vtbl and writes the volume table onto
the tape. This command should be used with caution. (F)

MT_RFM
Winds the tape forward to the next file mark. (C,S)

MTWFM
Writes a file mark at the current location on the tape. (C,S)

28 March 1991 Page 3

TAPE (HW) TAPE (HW)

MTJLOAD
On devices which are capable of doing so, loads the tape into the
drive. (S)

MTUNLOAD
On devices which are capable of doing so, unloads the tape from
the drive. (S)

Irwin-specific ioctl Interface
Device specific functions of the Irwin tape drive are accessed via spe­
cial commands passed to the Irwin driver using the ioctlf) interface.
An Irwin driver interface library is available. This library provides a
system independent interface to ioctlf) via the entry point mcioctlf):

♦ include "m c.h"

i n t m c i o c t l (f h , a n d , a rg)
i n t f h ; / * F i l e h a n d le fro m o p e n () * /
i n t a n d ; / * MCCTL_* command c o d e * /
v o id * a rg ; / * A d d i t io n a l a rg u m e n t p o i n t e r * /

m c i o c t l (fh , MCCTLJJOP, NULL)
m c i o c t l (f h , MCCTL_VERSION, v e rb u f)
m c i o c t l (f h , MCCTL_CAPACITY, capp)
m c i o c t l (f h , MCCTL_LSEEK, l s k b u f) ;
m c i o c t l (f h , MCCTL_REWIND)
m c i o c t l (f h , MCCTL_RETEN)
m c i o c t l (f h , tCCTL_REWIND_NW)
m c i o c t l (f h , MCCTL_RETEN_NW)
m c i o c t l (f h , MCCTL_GETDRVCFG, c fg b u f)
m c i o c t l (f h , MCCTL_GETCFG, c f g b u f)
m c i o c t l (f h , MCCTLJSETCFG, c fg b u f)
m c i o c t l (f h , MCCTL_GETTHDR, h d rb u f)
m c i o c t l (f h , MCCTL_PUTTHDR, h d rb u f)
m c i o c t l (fh , MCCTL_GETDLISTS, l i s t b u f)
m c i o c t l (f h , MCCTL_FLUSH)
m c i o c t l (f h , MCCTL_FORMAT, fm tb u f)
m c i o c t l (f h , MCCTLJFMTSTAT, fin tb u f)
m c i o c t l (f h , MCCTL_ABORT)
m c i o c t l (f h , MCCTL_DEVSTAT, d s t a t p)
m c i o c t l (f h , MCCTL_GETERCTL, e r c t l p)
m c i o c t l (f h , MCCTL_SETERCTL, e r c t l p)
m c i o c t l (f h , MCCTLjGETER, i e r r p)
s t r u c t m cv er * v e rb u f ; / * v e r s i o n b u f f e r * /
lo n g * c ap p ;
s t i m e t m c ls e e k * l s k b u f ;
s t r u c t m cc fg * c f^ D u f;
c h a r * h d rb u f ;
u n s ig n e d s h o r t * l i s t b u f ;
s t r u c t m cfm t * f in tb u f ;
u n s ig n e d s h o r t *d s t a t p ;
u n s ig n e d s h o r t * e r c t l p ;
u n s ig n e d s h o r t *i e r r p ;

/ * c a p a c i t y i n b y t e s * /
/ * t a p e l o g i c a l p o s i t i o n d e s c r i p t o r * /
/ * c o n f i g u r a t i o n b u f f e r * /
/ * 1024 b y te h e a d e r b u f f e r * /

/ * 2048 b y te d e f e c t l i s t b u f f e r * /
/ * fo r m a t c o n t r o l / s t a t u s b u f f e r * /
/ * d e v ic e s t a t u s w ord * /
/ * e r r o r c o n t r o l w ord * /
/ * d e v ic e s p e c i f i c e r r o r * /

28 March 1991 Page 4

TAPE (HW) TAPE (HW)

mcioctlf) provides system independent ioctl interface to the Irwin
driver. This subroutine is essentially a pass-trough. That is, argu­
ments are passed through to ioctlf), If a device specific error occurs
(i.e., a non-system error) at completion of the system ioctl() and the
command is other than MCCTL_NOP or MCCTL_VERSION,
mcioctlf) executes ioctlfMCCTL_GETER) to retrieve the device spe­
cific error.

The following ioctl commands are available for the Irwin driver:

MCCTL_NOP
No operation. The argument is ignored. A success status is
returned. This command may be used as an aid in determining if a
special file refers to the MC driver.

MCCTL_VERSION
Gets driver version information. The argument is the address of
version information buffer (see struct mcver in /usr/include/sys/mc.h) to which the driver writes.

MCCTL_CAPACITY
Gets a tape’s capacity in bytes. The argument is the address of a
long integer.

MCCTLREWIND
MCCTLJfcETEN
MCCTLREWINDNW
MCCTLRETENNW

These four commands physically position the tape at high speed.
MCCTL_RETEN and MCCTL_RETEN_NW run the tape to the
early warning hole first. All four commands return the tape to the
load-point hole. MCCTL_REWIND_NW and
MCCTL_RETEN_NW start a request but don’t wait for comple­
tion.

MCCTL_GETDRVCFG
MCCTL_GETCFG
MCCTLJSETCFG

These three commands provide access to configuration parameters
for a particular a mini cartridge tape unit. The structure of these
parameters is struct mccfg (defined in /usi7incltide/sys/mc.h) This
structure has driver, tape drive, and cartridge related fields. Both
MCCTL.GETDRVCFG and MCCTL_GETCFG copies the
driver’s the MCCFG structure to the caller’s buffer. When
MCCTLJj ETDRVCFG is used, struct mccfg members with driver
and tape drive related fields are returned. No error is given when a
cartridge is absent. When MCCTL__GETCFG is used successfully,
all fields are returned with valid data. An error is returned if no
cartridge is present. MCCTL_SETCFG allows the caller to adjust
certain fields in the driver’s configuration.

28 March 1991 Page 5

TAPE (HW) TAPE (HW)

MCCTL_GETTHDR
MCCTLJPUTTHDR

MCCTL_GETTHDR and MCCTL_PUTTHDR read and write the
1024 byte tape header in block 0. MCCTL_PUTTHDR assumes an
Irwin style header. The the following procedure is used to write
the header:

Tape block 0 is read to a buffer. The caller’s 1024 byte
header buffer is copied to the first, fifth, and when space
permits, the ninth and thirteenth 1024-byte sectors in the
buffer. When the cartridge format uses ECC (i.e., other
than 110 cartridge format), the header’s ECC in use field is
set. When the cartridge format uses ECC, ECC is encoded.
A check sum is calculated for the buffer. The buffer is writ­
ten back to block 0. Block 0 is reread and the cartridge
state is redetermined. A new checksum is calculated and
compared against the original.

MCCTL_GETDLISTS
Returns lists used by the driver’s flaw management. The caller
gives the address of a buffer which is at least 2 KB in length. Four
lists are copied to the buffer. Each list is comprised of physical
tape block numbers stored as unsigned short integers and ter­
minated with the value Oxffff. The lists are contiguous and given in
the following order:

Primary Defect List (PDL)
Working Defect List (WDL)
Grown Defect List (GDL)
Relocation List (RL)

MCCTL_FLUSH
Flushes dirty buffers to tape. MCCTL_FLUSH forces dirty buffers
in the Irwin driver’s cache to be written to tape. The pointer argu­
ment is ignored. Control returns when data is written. Buffers are
automatically flushed upon a close() or when the device is idle for
a certain period (see mcjiutoflush in struct mccfg in
/usr/include/sys/mc.h).

MCCTL_FORMAT
MCCTL_FMTSTAT

MCCTL_FORMAT starts a erase, servo-format-certify-initialize
header or re-certify operations. The argument is the address of
struct mcfmt (see /usr/include/sys/mc.h). Formatting operations
performed depend upon the values in the structure’s fin cmd and
fin option fields, and struct mccfg mc cartstate field. When an
MCCTL_FORMAT command completes successfully,
MCCTLJFMTSTAT is used to determine the progress (when a no­
wait flag is set) or results of formatting. Like MCCTL_FORMAT,
MCCTL_FMTSTAT also uses the struct mcfmt structure (typically
the same one passed to MCCTLJFORMAT).

28 March 1991 Page 6

TAPE (HW) TAPE (HW)

MCCTL_ABORT
Used to interrupt and terminate operations started by
MCCTL_FORMAT. The pointer argument is ignored. Control
returns after formatting has terminated.

MCCTL_DEVSTAT
Returns a 16-bit device status word to an unsigned short integer
who’s address is passed in the third argument of ioctl(). This field
is intended for use by applications which use the tape drive
interactively. The status bits are defined in struct mclseek in /usr/include/ sys/mc.h.

MCCTL_GETERCTL
MCCTLJSETERCTL

MCCTL_GETERCTL and MCCTL_SETERCTL give application
access to the state of and control over certain error mechanisms.
The argument is the address of a 16-bit error control variable
which the Irwin driver writes with current values for
MCCTL_GETERCTL and reads for MCCTL_SETERCTL. Cer­
tain flags may or may not have an effect depending on the imple­
mentation. Bit values for the error control variable are defined in /usr/include/sys/mc.h.

MCCTLGETER
Gets device specific error: DE_*. In general the value 0 is returned
to indicate success or -1 to indicate an error. When mcioctlf)
returns the value -1, an error has occurred. The error condition
may have been detected in the operating system or in the driver. In
order to discriminate the origin the global jncerrno should be
examined first (before ermo). When non-zero, the error was
returned by the driver. Values for jncerrno are defined in /usr/include/ierrno.h with an IE_ prefix.

Irwin Drive and Cartridge Models
This section is concerned with Irwin tape drives and cartridges sup­
ported.

Drive Models
Many Irwin mini cartridge drives have a three digit model number.
Each digit has a meaning. The high order digit encodes the form fac­
tor and cabinetry:

lxx 5-1/4 inch drive (mounted in system cabinet).
2xx 3-1/2 inch drive (mounted in system cabinet).

28 March 1991 Page 7

TAPE (HW) TAPE (HW)

3xx 5-1/4 inch drive in a metal cabinet w/ power supply.
4xx 3-1/2 inch drive in a plastic cabinet (no supply).
7xx 3-1/2 inch drive in a metal cabinet w/ power supply.

The middle digit gives the approximate capacity, in 10 Megabyte
units for a standard capacity (not extra long) tape:

xlx 10 Megabytes
x2x 20
x4x 40
x6x 60
x8x 80

The low digit encodes the drive’s normal data transfer rate (i.e., the
floppy controller data clock rate).

xxO 250 Kilobits/Second
xx5 500 Kilobits/Second
xx7 1 Megabit/Second

In addition, a new 4-digit model numbering system is in use. These
model numbers are associated with drives which are adaptable to
different system hardware environments with accessory hardware kits.

2020 3-1/2 inch, 20 Megabyte, 250 Kilobits/Second
2040 3-1/2 inch, 40 Megabyte, 500 Kilobits/Second
2080 3-1/2 inch, 80/120 Megabyte, 500 Kilobits/Second
2120 3-1/2 inch, 80/120 Megabyte, 1 Megabit/Second

Mini Cartridges
There are three primary physical mini cartridges types:

DC1000 185 feet of 0.150 inch wide tape (same as TC-200)
DC2000 205 feet of 0.250 inch wide tape (same as TC-400)
DC2120 307.5 feet of 0.250 inch wide tape

The DC1000 cartridge is physically thinner than DC2000 and DC2120
cartridges. The DC2000 and DC2120 have the same physical form but
the DC2120 has a longer tape. These cartridges are distinguished by
there labels. Each physical cartridge type has at least two cartridge
formats:

28 March 1991 Page 8

TAPE (HW) TAPE (HW)

Mini (Irwin) Cartridge Format Parameters
AccuTrak Sectors

Cart- Reorder Cart- Total Blocks per Dens­
ridge Number ridge Tape Trks per Block ity
Format see note Blocks Track Data ECC (FTPI)
110 1000-10 DC 1000 1264 8 158 8 0 6400
120 2000-20 DC2000 1190 14 85 16 2 6400
120XL 2000-30 DC2120 1792 14 128 16 2 6400
125 1000-20 DC 1000 1320 12 110 16 2 10000
145 2000-40 DC2000 2480 20 124 16 2 10000
145XL 2000-60 DC2120 3720 20 186 16 2 10000
165 2000-64 DC2000 3936 24 164 16 2 13200
285 2000-80 DC2000 2752 32 86 29 3 11600
285XL 2000-120 DC2120 4160 32 130 29 3 11600

Notes: The suffix part o f the AccuTrak Reorder Number is an approxi­
mate cartridge capacity in Megabytes.

All formats use 1024 byte MFM encoded sectors.

Drive Read/Write Compatibility for Mini Cartridge Formats
Drive Model (See Note'

2020 2040
720 725 745
420 425 445 765 2080 2120

Cart­ 410 320 325 345 465 785 787
ridge 310 220 225 245 265 485 487 Cart­
Format 110 120 125 145 165 285 287 ridge
110 rw rw r- r- r- r- r- DC 1000
120 — rw — r- r- r- r- DC2000
120XL — rw — r- r- r- r- DC2120
125 — — rw rw r- r- r- DC1000
145 — — — rw r- r- r- DC2000
145XL — — — rw r- r- r- DC2120
165 — — — — rw r- r- DC2000
285 — — — — — rw rw DC2000
285XL — — — — — rw rw DC2120

Key:

r Drive reads cartridge format

w Drive writes cartridge format

Incompatible: When a cartridge is formatted but
incompatible for reading or writing, the driver
reports that the cartridge is either incompatible
or erased.

Extra Long (XL) DC2120 Cartridge Compatibility
Extra long (i.e., DC2120) cartridges are incompatible with the follow­
ing drives as the drive will not physically accommodate the cartridge:

28 March 1991 Page 9

TAPE (HW) TAPE (HW)

110,310,410,125,225,325,425, and 725

Even though DC2120 cartridges are physically accepted in the follow­
ing drives, they may not be formatable:

120,220,320,420,720,2020,145,245,345,445,745,2040

Drives manufactured previous to about 1989 don’t recognize the
longer tape. However, the MC driver is able to read and write pre­
formatted extra long tapes in these drives, but it is unable to correctly
format them. Formatting will start, but terminate in error. To deter­
mine whether a drive supports formatting of DC2120 cartridges, use
the mcart utility. If the command mcart drive reports a drive type
with the suffix XL, formatting of DC2120 cartridges is supported.

Files

/dev/rStpO
/dev/nrStpO
/dev/xStpO
/dev/rftO
/dev/xftO

/dev/rctO
/dev/nrctO
/dev/rct2
/dev/nrct2
/dev/xctO

/dev/erctO
/dev/xctO
/dev/rctmini
/dev/xctmini
/dev/rmcO

/dev/rmcl
/dev/mcdaemon

Include files:

/usr/include/sys/tape.h
/usr/include/sys/ct.h
Aisr/include/sys/ft.h
Aisr/include/sys/ir.h
Aisr/include/sys/mc.h
/usr/include/sys/mcheader.h

Notes

After certain tape operations are executed, the system returns a
prompt before the tape controller has finished its operation. If the user
enters another tape command too quickly, a “device busy” error is
returned until the tape device is finished with its previous operation.

Periodic tape cartridge retensioning and tape head cleaning are neces­
sary for continued error-free operation of the tape subsystem. Use
tape(C) to retension the tape.

See Also

backup(ADM), cpio(C), dd(C), format(C), tape(C), tar(C),
restore(ADM)

28 March 1991 Page 10

TERMINAL (HW) TERMINAL (HW)

Name
terminal - Login terminal.

Description

A terminal is any device used to enter and display data. It may be
connected to the computer:

- By a serial wire, either direct or dialup
- As a virtual terminal, for example with emulator software
- Through a display adapter

A terminal has an associated device file /dev/tty*.

Files

/dev/tty*

See Also

console(M), disable(C), enable(C), mkdev(ADM), serial(HW), stty(C),
vidi(C), termcap(M), term(F), terminals(M)

28 March 1991 Page 1

Contents
M iscellaneous (M)

intro Introduction to miscellaneous features and files.
aliases,aliases.hash,
maliases,maliases.hash,
faliasesasciichrtblcoffconv
coltblconsoledaemon.mnenvironerrorgettyinit, inirIdlocaleloginmapchan

Micnet aliasing files.
Map of the ASCII character set.
Create a ctype locale table.
Convert 386 COFF files to UNIX format.
Create a collation locale table.
System console device.
Micnet mailer daemon.
The user environment.
Kernel error output device.
Sets terminal mode.
Process control initialization.
Invokes the link editor.
The international locale.
Gives access to the system.
Configure tty device mapping.

mapkey,mapscrn, mapstr,convkey Configure console screen mapping.
messagesmestblmontblmscreenmultiscreennumtblprofilesxtsysttytermcapterminalsterminfotermiotimtbl

Description of system console messages.
Create a messages locale table.
Create a currency locale table,
multiscreens on serial terminals.
Multiple screens.
Create a numeric locale table.
Sets up an environment at login time.
Pseudo-device driver.
System maintenance device.
Terminal capability data base.
List of supported terminals.
Terminal capability data base.
General terminal interface.
Create a time locale table.

i

trchan
ttytz

Translate character sets.
General terminal interface.
Time zone variable.

it

INTRO (M) INTRO (M)

Name

intro - Introduction to miscellaneous features and files.

Description
This section contains miscellaneous information useful in maintaining
the system. Included are descriptions of files, devices, tables and pro­
grams that are important in maintaining the entire system.

28 March 1991 Page 1

ALIASES (M) ALIASES (M)

Name
aliases, aliases.hash, maliases, maliases.hash, faliases - Micnet alias­
ing files.

Description
These files contain the alias definitions for a Micnet network. Aliases
are short names or abbreviations that may be used in the mail com­
mand to refer to specific machines or users in a network. Aliasing
allows a complex combination of site, machine, and user names to be
represented by a single name.

The aliases, maliases, and faliases files each define a different type of
alias. The aliases file defines the standard aliases which are names
for specific systems and users and, in some case, for commands. The maliases file defines machine aliases, names, and paths for specific
systems. The faliases file defines forwarding aliases which are tem­
porary names for forwarding mail intended for one system or user to
another.

The aliases.hash file is the hashed version of the aliases file created
by the aliashash command. The file is used by the mail command to
resolve all standard aliases and is identical to the aliases file except
for a hash table at the beginning of the file. The hash table allows for
more efficient access to the entries in the file. The aliases file need
only be present to generate the aliases.hash file. The aliases file is
not required to run the network.

The maliases.hash file is the hashed version of the maliases file. It is
an optional file created by executing the following command:

/usr/lib/mail/aliashash /usr/lib/mail/maliases

If the maliases.hash file is created, maliases is no longer necessary to
run the network. If the number of machines in the network is large,
and particularly if several types of networks are in use, it is recom­
mended that the maliases file be hashed. In such a network, the con­
figuration is no longer homogeneous, aliases are likely to be fairly
complex and machine aliases are likely to differ between machines.
The use of machine aliases allows the standard alias file to be identi­
cal on all machines in the network. In such an environment, netutil
can only generate network files that can be used as a starting point.
The rest of the network maintenance should be done manually with a
text editor.

Each file contains zero or more lines. If hashing is to be performed, at
least one alias is required. Each line lists the alias and its meaning.
The alias meaning can have site, machine, and user login names and

28 March 1991 Page 1

ALIASES (M) ALIASES (M)

other aliases (its exact composition depends on the type of alias). A
colon (:) separating the alias and meaning is required.

In the aliases file, a line can have the forms:

alias:[[site!]machine:]user[,[[site!]machine:]user]...

alias:[[site!]machine:]command-pipeline

alias:error-message

Site and machine are the site and machine names of the system to
which the user belongs or on which the specified command is to be
executed. The site and machine names must end with an exclamation
mark (!) or colon (:) respectively, and must be defined in a systemid
file. A machine alias may be used in place of a site and machine name
if it is followed by a question mark.

User is a user login name or another alias. User names in a list must
be separated by commas. A newline may immediately follow a
comma. Spaces and tabs are allowed, but only immediately before or
after a comma or newline.

Command-pipeline is any valid command (with necessary arguments)
preceded by a pipe symbol (|) and enclosed in double quotation marks.
Spaces may separate the command and arguments, but there must be
no space between the first double quotation mark and the pipe symbol.

Error-message is any sequence of letters, numbers, and punctuation
marks (except a double quotation mark), preceded by a number sign
(#) and enclosed in double quotation marks.

In the faliases file, each line can have the same form as lines in the
aliases file except that no more than one user name can be given for
any one alias. To prevent alias expansion on a remote machine, the
meaning should be escaped with “\\”, as in:

foo: machTWfoo

Failure to do the escape may result in an infinite forwarding loop. If
this happens and the loop does not invoke a uucp connection, looping
will be detected, and the mail will be returned to the sender.

The alias.hash file has already been searched at this point. If there is
no explicit machine given as part of the meaning, the recipient will be
assumed to be local. After forward aliasing is complete, machine
aliasing is performed as necessary.

28 March 1991 Page 2

ALIASES (M) ALIASES (M)

In the maliases file, a line has the form:

alias:[[site!]machine:]...

Site and machine are the site and machine names for a specific net­
work and system. Multiple site and machine names direct messages
along the specified path of systems. If no site or machine name is
given, the alias is ignored.

Before the mail program sends a message, it searches the aliases.hash, faliases, and maliases files to see if any of the names given with the
command are aliases. Each file is searched in turn (aliases.hash, faliases, then maliases) and if a match is found, the alias is replaced
with its meaning. If no match is found, the name is assumed to be the
valid login name of a user on that machine. The search in the aliases.hash file continues until all aliases have been replaced, so it is
possible for several replacements to occur for a single name. Alias
loops are now detected. If a loop exists, any recipients involved in the
alias loop are dropped from the mail recipient list, and an error mes­
sage is displayed. The faliases file is searched once, from beginning
to end, even if it is empty. The maliases file is searched only if the
alias contains a machine alias.

When an alias is a user or a list of users, the mail command sends the
message to each user in the list. When it is a command-pipeline, the
mail command starts execution of the command on the specified ma­
chine and sends the message as input. When the alias is an error-
message, the mail command ignores the message and instead, displays
the alias and its meaning at the standard error.

In all files, any line beginning with a number sign (#) is considered a
comment and is ignored.

As a special feature, any alias that contains a site name as the first
component of its meaning is automatically prepended with the ma­
chine alias uucp?. This alias may be explicitly defined in the maliases
file to help direct mail between networks to the system performing the
uucp link.

Directives
Though alias directives are never included in an alias expansion, they
can be used to restrict the expansion to a class of users, forward the
unexpanded alias to another machine, or produce error messages. An aliases file may include directives of the form:

testalias: $xalaska, mikem, georger, terih

sams: “$e ambiguous, use samst or samsnT

28 March 1991 Page 3

ALIASES (M) ALIASES (M)

Fields on the right-hand side of an alias (after the colon) that begin
with a dollar sign ($) character, are alias directives. Fields containing
any blanks or tabs must be enclosed in quotes. The directive must pre­
cede all normal right-hand fields as shown in the example above. The
character following the dollar sign ($) specifies the directive type:

$n <real name or description>

$x <machine>

$e <error message>

$p <permissions>

$r <restrictions>

None of the above directives are currently supported in
/usr/lib/ mail/faliases. Only the $e is supported in
/usr/lib/mail/maliases and maliases.hash. Unrecognized directives
do not create error messages and are treated as if they do not exist.
The above directives are described in detail as follows:

$n For a user alias, this field should contain the full real name of the
user associated with the alias. For a group alias, a description of
the group should be given.

$x Causes the alias to be forwarded, unexpanded, to the machine
specified in this field. White space is only allowed immediately
following the $x. Since machine aliasing will be performed, the
appropriate machine alias must exist in the maliases file.

$e This field contains an error message to be printed. The left side of
the alias will be removed from the list of users to be aliased. An
alternate form of $e is #.

$p This field contains the character star (*) or a string of upper and
lowercase alphabetic characters. Each character indicates that the
user on the left-hand side of the alias belongs to a special “class”
of users. The star (*) character implies membership in all such
classes.

$r This field contains a string of upper and lower case alphabetic
characters, each character indicating a “class” of users to be
granted expansion permision. The absence of a $r field means that
any user can expand the alias. If the $r field exists, expansion is
only allowed if:

1) the user requesting expansion has a $p field and it contains one or
more of the characters found in the $r field.

28 March 1991 Page 4

ALIASES (M) ALIASES (M)

2) the user has a $p field and it contains a

3) the real user ED is 0 (super user).

If expansion is not allowed, no error messages result; the alias in ques­
tion is treated as if it were not present.

To send mail delivery problems to root, the following alias could be
used:

network: “$n the network mail recipient,” root

To forward a group alias called testalias to a machine called alaska
and expand it there, the following alias may be used:

testalias: $xalaska, mikem, georger, terih

Files
/usr/lib/mail/aliases

/usr/lib/mail/aliases.hash

/usr/lib/mail/maliases

/usr/lib/mail/faliases

/usr/lib/mail/maliases.hash

See Also
aliashash(ADM), netutil(ADM), systemid(F), top(F)

28 March 1991 Page 5

ASCII (M) ASCII (M)

Name
ascii - Map of the ASCII character set.

Description
ascii is a map of the 7-bit ASCII character set. It lists both octal and
hexadecimal equivalents of each character. It contains:

Octal

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 ack 007 bei
010 bs Oil ht 012 nl 013 vt 014 np 015 cr 016 so 017 si
020 die 021 del 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 etb
030 can 031 em 032 sub 033 esc 034 fs 035 gs 036 rs 037 us
040 sp 041 i 042 " 043 # 044 $ 045 % 046 & 047 y
050 (051) 052 * 053 + 054 , 055 - 056 . 057 /
060 0 061 1 062 2 063 3 064 4 065 5 066 6 067 7
070 8 071 9 072 073 ; 074 < 075 = 076 > 077 ?
100 @ 101 A 102 B 103 c 104 D 105 E 106 F 107 G
110 H 111 I 112 J 113 K 114 L 115 M 116 N 117 O
120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W
130 X 131 Y 132 Z 133 [134 \ 135] 136 137
140 141 a 142 b 143 c 144 d 145 e 146 f 147 g
150 h 151 i 152 j 153 k 154 1 155 m 156 n 157 0
160 P 161 q 162 r 163 s 164 t 165 u 166 V 167 w
170 X 171 y 172 z 173 { 174 1 175 } 176 - 177 del

Hexadecimal

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bei
08 bs 09 ht 0a nl 0b vt 0c np Od cr Oe so Of si
10 die 11 del 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb
18 can 19 em la sub lb esc lc fs Id gs le rs If us
20 sp 21 i 22 " 23 # 24 $ 25 % 26 & 27 ✓
28 (29) 2a ♦ 2b + 2c , 2d - 2e . 2f /
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3a 3b ; 3c < 3d = 3e > 3f ?
40 @ 41 A 42 B 43 c 44 D 45 E 46 F 47 G
48 H 49 I 4a J 4b K 4c L 4d M 4e N 4f O
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y 5a Z 5b [5c \ 5d 1 5e 5f
60 N 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 i 6a j 6b k 6c 1 6d m 6e n 6f 0
70 P 71 q 72 r 73 s 74 t 75 u 76 V 77 w
78 X 79 y 7a z 7b { 7c 1 7d } 7e - 7f del

28 March 1991 Page 1

ASCII (M) ASCII (M)

The extended 8-bit ASCH character set is shown here, again with the
octal and hexadecimal value of each character. The mapchan(C) util­
ity allows access to these characters. Display of these characters is
dependent on the capabilities of the hardware device. (A Sfc indicates
an unassigned character.)

Octal

200 $ 201 38 202 38 203 18 204 ind 205 nel 206 ssa 207 esa
210 hts 211 htj 212 vts 213 pld 214 plu 215 ri 216 ss2 217 ss3
220 des 221 pul 222 pu2 223 sts 224 cch 225 mw 226 spa 227 epa
230 $ 231 38 232 m 233 csi 234 st 235 osc 236 pm 237 ape
240 nbsp 241 i 242 0 243 £ 244 □ 245 ¥ 246 1 247 §
250 251 © 252 • 253 4(254 —i 255 shy 256 257
260 o 261 ± 262 2 263 3 264 * 265 P 266 11 267
270 271 i 272 fi 273 y> 274 '/4 275 Vi 276 3/4 277 i
300 X 301 A 302 A 303 A 304 Ä 305 A 306 JE 307 c
310 E 311 E 312 E 313 E 314 i 315 f 316 I 317 i
320 D 321 N 322 Ö 323 Ö 324 Ö 325 Ö 326 Ö 327 $
330 0 331 Ü 332 Ü 333 Ü 334 Ü 335 Y 336 337 ß
340 ä 341 ä 342 ä 343 ä 344 ä 345 £ 346 £ 347 9
350 b 351 6 352 b 353 e 354 i 355 1 356 1 357
360 d 361 n 362 5 363 6 364 6 365 Ö 366 Ö 367 $
370 0 371 Ü 372 Ü 373 a 374 u 375 1 376 377 y

Hexadecimal

83 & 84 ind80¾¾
88 hts
90 des
98 m
aO nbsp
a8 “
bO °
b8 .
cO X
c8 E
dO D
d8 0
eO ä
e8 b
fO d
f8 0

si $
89 htj
91 pul
99 $8
al j
a9 ©
b l ±
b9 1
cl A
c9 £
dl N
d9 Ü
e l ä
e9 6
fl n
f9 ü

82 lift
8a vts
92 pu2
9a 18
a2 ¢
aa *
b2 2
ba 8
c2 A
ca 6
d2 Ö
da Ü
e2 ä
ea e
f2 6
fa ü

8b pld
93 sts
9b csi
a3 £
ab «
b3 3
bb »
c3 Ä
cb E
d3 Ö
db Ü
e3 ä
eb e
ß 6
fb a

8c plu
94 cch
9c st
a4 a
ac -i
b4 '
be lA
c4 Ä
cc i
d4 Ö
dc 0
e4 ä
ec 1
f4 Ö
fc fi

85 nel
8d ri
95 mw
9d osc
a5 ¥
ad shy
b5 p
bd XA
c5 A
cd f
d5 Ö
dd Y
e5 k
ed £
ß Ö
fd j

86 ssa
8e ss2
96 spa
9e pm
a6 1
ae ©
b6 J
be 3/4
c6 JE
ce !
d6 Ö
de I>
e6 £
ee i
f6 Ö
fe {>

87 esa
8f ss3
97 epa
9f ape
a7 §
af
b7 •
bf l cl Q
cf I
d7 $
df ß
e7 5
ef r
f t 38
ff y

Files

/usr/pub/ascii

28 March 1991 Page 2

CHRTBL (M) CHRTBL (M)

Name

chrtbl - Create a ctype locale table.

Syntax

chrtbl [specfile]

Description

The utility chrtbl is provided to allow new LC_CTYPE locales to be
defined; It reads a specification file, containing definitions of the
attributes of characters in a particular character set, and produces a
binary table file, to be read by setlocale (S), which determines the
behavior of the ctype (S) and conv(S) routines.

The information supplied in the specification file consists of lines in
the following format:

char type conv

The three fields, which are separated by space or tab characters, have
the following meanings and syntax:

char This is the character which is being defined. It may be
specified in one of six different ways (the following exam­
ples all specify the ASCII character “A”):

65 decimal
0101 octal
0x41 hexadecimal
’A’ quoted character
MOl’ quoted octal
’\x41’ quoted hexadecimal

type This specifies the classification of the character, as reported
by the ctype (S) routines. There are 7 basic classifications:

C iscntrl
D sdigit
L islower
P ispunct
S isspace
U isupper
X isxdigit

28 March 1991 Page 1

CHRTBL (M) CHRTBL (M)

Other ctype macros use combinations of these 7 basic
classifications. Zero, one or more of these classification
letters can be specified, in any order, although only certain
combinations are logically reasonable, as follows:

C control character
CS spacing control character
U uppercase alphabetic
UX uppercase alphabetic hex digit
UL dual case character
L lowercase alphabetic
LX lowercase alphabetic hex digit
DX decimal and hex digit
S spacing character
P punctuation (all other printing chars)
blank undefined (all classifications false)

conv This optional field specifies the corresponding upper case
character for a lower case character, or the corresponding
lower case character for an upper case character. Dual case
characters should have their own values repeated in this
field.

The syntax is as for the char field.

All characters following a hash (#) are treated as a comment and
ignored up to the end of the line, unless the hash is within a quoted
character.

The initial LC_CTYPE table used is that for the ascii (M) character set,
with the entries for the higher 128 characters (0x80 - Oxfl) set to zero
(i.e. all classifications false). Thus an empty specification file will
result in a table for US ASCII. Any specifications found in the input
to chrtbl will overwrite the specifications for that character only, thus
additions and modifications to the ASCII table can be made without
respecifying those characters which are unchanged.

The binary table output is placed in a file named ctype, within the
current directory. This file should be copied or linked to the correct
place in the setlocale file tree (see locale (M)). To prevent accidental
corruption of the output data, the file is created with no write permis­
sion; if the chrtbl utility is run in a directory containing a write-
protected “ctype” file, the utility will ask if the existing file should be
replaced; any response other than “yes” or “y” will cause chrtbl to
terminate without overwriting the existing file.

If the specfile argument is missing, the specification information is
read from the standard input.

28 March 1991 Page 2

CHRTBL (M) CHRTBL (M)

Diagnostics
If the input table file cannot be opened for reading, processing will ter­
minate with the error message, “Cannot open specification file”.

Any lines in the specification file which are syntactically incorrect
will cause an error message to be issued to the standard error output,
specifying the line number on which the error was detected. The line
will be ignored, and processing will continue.

If the output file, “ctype”, cannot be opened for writing, processing
will terminate with the error message, “Cannot create table file.”

Any error conditions encountered will cause the program to exit with
a non-zero return code; successful completion is indicated with a zero
return code.

Specification File Format
The chrtbl specification file has the following format (the order of the
specifications is not significant):

#
c h r t b l f i l e f o r TV I 7 - b i t S p a n i s h c h a r a c t e r s e t
N o t e t h a t o n l y n o n - A S C I I c h a r a c t e r s n e e d b e s p e c i f i e d
#
' 0 ' P # i n v e r t e d ?
' [' L '] ' # n t i l d e
' \ V P # i n v e r t e d !

U ' [' # N t i l d e
P # d e g r e e s i g n

Files
/usr/include/ctype.h

See Also

ascii(M), conv(S), ctype(S), locale(M), setlocale(S)

28 March 1991 Page 3

COFFCONV { M) COFFCONV (M)

Name

coffconv - Convert 386 COFF files to XENIX format.

Syntax

coffconv [-v] [-o outfile] coff-file

Description

coffconv converts 386 Common Object Format Files (COFF) to the
appropriate Xenix file format. If the file specified is a relocatable
object module it is converted to Microsoft OMF format. If it is an
executable binary it is converted to x.out format.

If the file is a UNIX System V archive, it is converted to XENIX
archive format and each file in the archive is converted as appropriate.
Any files in the archive which are not in 386 COFF format are copied
to die new archive unchanged, coffconv also creates a XENIX format
__.SYMDEF symbol directory for die new archive.

Options are:

-v Verbose mode. The name of each member of an archive is dis­
played as it is converted.

-o Output file name. If no output file name is specified the default
is x.out.

Notes

Only essential symbol table information is converted. Source line
numbers and additional symbol information for use by the symbolic
debugger sdb will be ignored.

Note that coffconv only converts 386 COFF files. It is not possible to
convert 286 COFF files.

Files

x.out Default output file

See Also

86rel(F), a.out(F), ar(F)

28 March 1991 Page 1

COLTBL (M) COLTBL (M)

Name

coltbl - Create a collation locale table.

Syntax

coltbl [specfile]

Description

The utility coltbl is provided to allow LC_COLLATE locales to be
defined. It reads in a specification file (or standard input if specfile is
not defined), containing definitions for a particular locale’s collation
ordering, and produces a concise format table file, to be read by
setlocale(S).

In general, characters may be specified in one of six different ways
(the following examples all specify the ASCII character “A”):

65 decimal
0101 octal
0x41 hexadecimal
’A’ quoted character
MOl’ quoted octal

1 ’ quoted hexadecimal

The information in the specification file is to an extent free format. A
particular type of definition is started by one of the following key­
words:

PRIM:
ZERO:
EQUIV:
DOUBLE:

The keywords, PRIM:, ZERO: and EQUIV:, are concerned directly with
the setting of die collation ordering of characters

A group of characters which are to be collated as equal, unless all
other characters in a pair of strings are also equal, are grouped
together with the PRIM: keyword. The position of a particular group in
the specification file is significant as far as the collation ordering is
concerned. Collating elements following the PRIM: keyword are
separated by white spaces. A two character collating element can be
specified here by (a b), where a and b are the two characters making
up the sequence. The order of the collating elements defined in one
group is significant in secondary collation ordering. It is also possible
to define a range of characters, for example:

28 March 1991 Page 1

COLTBL (M) COLTBL (M)

PRIM: V - Y

Collating elements following the ZERO: keyword, are to be ignored
when collating. The format of the definitions is the same as with
PRIM: . Ranges of characters can also be defined, as for example:

ZERO: 0x80 -0x9f

EQUIV: is used to give two collating elements identical positions in
the collation ordering. The syntax is:

EQUIV: a = b

where a and b are the two equal collating elements. There can be only
one definition for each occurrence of this keyword.

Single characters which are to be collated as two characters, for exam­
ple the German sharp s, are defined with the DOUBLE: keyword. The
syntax is:

DOUBLE: a = (be)

where a is the single character, and b and c are the two characters in
the collating sequence. There can be only one definition for each oc­
currence of this keyword. The single character a must not also appear
after a PRIM: , a ZERO: or a EQUIV: keyword.

All characters following the hash character are treated as a comment
and ignored up to the end of the line, unless the hash is within a
quoted string.

The concise format locale table is placed in a file named collate in the
current directory. This file should be copied or moved to the correct
place in the setlocale (S) file tree (see locale (M)). To prevent acciden­
tal corruption of the output data, the file is created with no write per­
mission; if the coltbl utility is run in a directory containing a write-
protected collate file, the utility will ask if the existing file should be
replaced - any response other than “yes” or “y” will cause coltbl to
terminate without overwriting the existing file.

See Also

chrtbl(M), collation(S), locale(M), numtbl(M), mestbl(M), montbl(M),
timtbl(M), setlocale(S)

Diagnostics

All error messages printed are self explanatory.

28 March 1991 Page 2

CONSOLE (M) CONSOLE (M)

Name

console - System console device.

Description

The file /dev/console is the device used by the system administrator
for system maintenance (single-user) operations. It is the tty to which
the first default shell is attached.

The system console device can be either a terminal (a serial adapter
device, tty la) or a sytem keyboard display adapter monitor (ttyOl).

Many programs, such as the XENIX kernel, redirect error messages to
/dev/console. Initially /dev/console is linked to /dev/systty.

Files

/dev/console

See Also

boot(HW), systty(M), tty(M)

Notes

/dev/console should not be enabled, instead either the the display
adapter (ttyOl) or the serial adapter device (ttyla) should be enabled.

A serial console cannot be attached to a multiport card or one that
uses special drivers; it must be on a standard COM1 card.

In any console escape sequence, the caret character Q will have 32
(decimal) subtracted from the ASCII value and will be interpreted as
the right angle bracket or “greater than” key.

28 March 1991 Page 1

DAEMON MN (M) DAEMON MN (M)

Name

daemon.mn - Micnet mailer daemon

Syntax

Aisr/lib/mail/daemon.mn [-ex]

Description

The mailer daemon performs the “backend” networking functions of
the mail, rep, and remote commands by establishing and servicing the
serial communication link between computers in a Micnet network.

When invoked, the daemon creates multiple copies of itself, one copy
for each serial line used in the network. Each copy opens the serial
line, creates a startup message for the LOG file, and waits for a
response from the daemon at die other end. The startup message lists
the names of the machines to be connected, the serial line to be used,
and the current date and time. If the daemon receives a correct
response, it establishes the serial link and adds the message “first
handshake complete” to the LOG file. If there is no response, the dae­
mon waits indefinitely.

If invoked with the -x switch, the daemon records each transmission in
the LOG file. A transmission entry shows the direction of the
transmission (tx for transmit, rx for receive), the number of bytes
transmitted, the elasped time for the transmission (in minutes and
seconds), and the time of day of the transmission (in hours, minutes,
and seconds). Each entry has the form:

direction bytejeount elasped time timejofjiay

The daemon also records the date and time every hour. The date and
time have the same format as described for the date command.

If invoked with the -e switch, the daemon records all transmission
errors in the LOG file. An error entry shows the cause of the error pre­
ceded by the name of the daemon subroutine which detected the error.

The mailer daemon is normally invoked by the start option of the
netutil command and is stopped by the stop option.

During the normal course of execution, the mailer daemon uses
several files in the /usr/spool/micnet/remote directory. These files
provide storage for LOG entries, commands issued by the remote (C)
command, and a list of processes under daemon control.

28 March 1991 Page 1

DAEMON MN (M) DAEMONMN (M)

Files

/usr/Ub/mail/daemon.mn

/usr/spool/micnet/remote/*/LOG

Aisr/spool/micnet/remote/^/mn

/usr/spool/micnet/remote/lcKal/mn*

/usr/spool/micnet/remote/lock

Aisr/spool/micnet/remote/pids

See Also

netutil(ADM)

28 March 1991 Page 2

ENVIRON (M) ENVIRON (M)

Name

environ - User environment.

Description

The user environment is a collection of information about a user, such
as login directory, mailbox, and terminal type. The environment is
stored in special “environment variables,” which can be assigned
character values, such as names of files, directories, and terminals.
These variables are automatically made available to programs and
commands invoked by the user. The commands can then use the
values to access the user’s files and terminal.

The following is a short list of commonly used environment variables.

PATH Defines the search path for the directories containing
commands. The system searches these directories
whenever a user types a command without giving a full
pathname. The search path is one or more directory
names separated by colons (:). Initially, PATH is set to
:/bin:/usr/bin.

HOME Names the user’s login directory. Initially, HOME is set
to the login directory given in the user’s passwd file
entry.

EDITOR Used to set the editor. The default editor is ed(C).
Using vi as an example, for Bourne Shell users, the syn­
tax is:

EDITOR = /bin/vi

For C-Shell users, the syntax is:

setenv EDITOR /bin/vi

EXINTT Used to set vi options and define vi abbreviations and
mappings. For Bourne Shell users, the syntax is:

EXINIT = ’set options’

For C-Shell users, the syntax is:

setenv EXINIT ’set options’

For example, a C-Shell user might place the following
command in $HOME/.cshrc:

setenv EXINIT ’set wm=24 | map g 1G’

28 March 1991 Page 1

ENVIRON (M) ENVIRON (M)

TERM

TZ

This would automatically set v is wrapmargin option to
24 and would define the “g” key to move to the top of
the file (just as “G” moves to the bottom of the file).

You can set more than one option with the same set
command. If you define abbreviations or mappings
with this environment variable, you must separate the
abbr and map commands from the set command and
from each other with a bar (I). The function of the bar
is similar to that of the semicolon that separates com­
mands on a shell command line.

If you are defining many customizations, you might
prefer to use the .exrc file, where each command can be
listed one per line (see v/(C)).

Defines the type of terminal being used. This informa­
tion is used by commands such as moreiC) which rely
on information about the capabilities of the user’s ter­
minal. The variable may be set to any valid terminal
name (see terminals (M)) directly or by using the
tset(C) command.

Defines time zone information. This information is used
by date (C) to display the appropriate time. The vari­
able may have any value of the form:

xxxnzzzs; start/time, end/time

where xxx is standard local time zone abbreviation (1-9
characters), n is the standard time zone difference from
GMT, and may be given as hh:mm:ss
(hours:minutes:seconds), zzz is the summertime local
time zone abbreviation of 1-9 characters (if any), s is
the summertime time zone difference from GMT, and
may be given as hh:mm:ss (hours:minutes:seconds),
start and end specify the day to begin and end sum­
mertime based on one of four rules, and time is the
time of day the change to or from summertime occurs.
The rules for specifying start and end are:

In 1 based Julian day n
n 0 based Julian day n
W/z.d nth day of week d
Mm.n.d nth day of week d in month m

For example:

EST5:00:00EDT4:00:00;M4.1.0/2:00:00,M10.5.0/2:00:00.

Refer to the tz(M) manual page for more on 7Z.

28 March 1991 Page 2

ENVIRON (M) ENVIRON (M)

HZ Defines, with a numerical value, the number of clock
interrupts per second. The value of this variable is
dependent on the hardware, and configured in the file
etc/default/login. If HZ is not defined, programs which
depend on this hertz value, such as profiCP) and
times{S), will not run.

LANG Represents the international locale in the format lan­
guage territory.codeset . This is used by setlocale (S)
to establish the default locale on program startup.

Individual locale-specific functions can be affected independently
using the following optional environment variables:

LC_CTYPE Locale affecting character classification routines
(ctype(S)).

LC.NUMERIC
Locale affecting numeric formatting.

LCJITME Locale affecting time and date format.

LC.COLLATE
Locale affecting collation/sorting sequence.

LCJMESSAGES
Locale affecting message language.

LCLMONETARY
Locale affecting currency formatting.

The environment can be changed by assigning a new value to a vari­
able. An assignment has the form:

name=value

For example, the assignment:

TERM=h29

sets the TERM variable to the value “h29”. The new value can be
“exported” to each subsequent invocation of a shell by exporting the
variable with the export command (see sh(C)) or by using the env(C)
command.

You may also add variables to the environment, but you must be sure
that the new names do not conflict with exported shell variables such
as MAIL, PSI, PS2, and IFS. Placing assignments in the .profile file is
a useful way to change the environment automatically before a session
begins.

28 March 1991 Page 3

ENVIRON (M) ENVIRON (M)

Note that the environment is made available to all programs as an
array of strings. Each string has the form:

name=value

where the name is the name of an exported variable and the value is
the variable’s current value. For programs started with a exec (S) call,
the environment is available through the external pointer environ. For
other programs, individual variables in environment are available
through getenv(S) calls.

See Also

env(C), exec(S), getenv(S) setlocale(S), locale(M), login(M),
profile(M), sh(C)

28 March 1991 Page 4

ERROR (M) ERROR (M)

Name

error - Kemel error output device.

Description

System error messages are collected and made available to error log­
ging daemons through the /dev/error device, /dev/error is a read­
only device which returns one error per read and no EOF character,
/etc/rc uses a utility to read messages from /dev/error and write them
to the system error log file /usr/adm/messages:

/etc/logger /dev/error /usr/adm/messages &

Any process can read /dev/error or arrange to be signaled when errors
are queued in /dev/error. The following ioctl causes the error device
to signal the process with SIGUSR1 when an error message is queued
in /dev/error.

#include <signal.h>
#include <syserr.h>

int fd;

fd = open(7dev/error", O.RDONLY);
ioctl(fd, EMSG.SIG, SIGUSR1);

Before exiting, the process must return /dev/error to its normal state.
Do this with die following ioctl:

ioctl(fd,EMSG_NOSIG, 0);

Panic error messages are not logged in /dev/error.

Files

/dev/error

See Also

messages(M)

28 March 1991 Page 1

GETTY (M) GETTY (M)

Name

getty - Sets terminal type, modes, speed, and line discipline.

Syntax

/etc/getty [-h] [-t timeout] line [speed [type [linedisc]]]
/etc/getty -c file

Description

getty is a program that is invoked by init(M). It is the second process
in the series, (init-getty-login-shell), that ultimately connects a user
with the XENIX system. Initially getty displays die login message
field for the entry it is using from /etc/gettydefs. getty reads the user’s
login name and invokes the login(M) command with the user’s name
as argument. While reading the name, getty attempts to adapt the sys­
tem to the speed and type of terminal being used.

Line is the name of a tty line in /etc/ttys to which getty is to attach
itself, getty uses this string as the name of a file in die /dev directory
to open for reading and writing. The -t flag, plus timeout in seconds,
specifies that getty should exit if the open on the line succeeds and no
one enters anything in the specified number of seconds. The optional
second argument, speed, is a label to a speed and tty definition in the
file /etc/gettydefs. This definition tells getty what speed to initially
run, what the login message should look like, what the initial tty set­
tings are, and what speed to try next should the user indicate that the
speed is inappropriate (by entering a BREAK character). The default
speed is 300 baud. The optional third argument, type, is a character
string describing to getty what type of terminal is connected to the line
in question, getty understands die type none—any CRT or normal ter­
minal unknown to the system. This is the default.

For terminal type to have any meaning, the virtual terminal handlers
must be compiled into the operating system. They are available, but
not compiled in the default condition. The optional fourth argument,
linedisc, is a character string describing which line discipline to use in
communicating with the terminal. Again the hooks for line discip­
lines are available in the operating system but there is only one
presently available, the default line discipline, LDISCO.

When given no optional arguments, getty sets the speed of the inter­
face to 300 baud, specifies that raw mode will be used (awaken on
every character), that echo will be suppressed, either parity allowed,
that new-line characters will be converted to carriage return-line feed,
and that tab expansion is performed on the standard output. It displays
the login message before reading the user’s name a character at a time.
If a null character (or framing error) is received, it is assumed to be
the result of the user pushing die BREAK key. This will cause getty to

28 March 1991 Page 1

GETTY (M) GETTY(M)

attempt the next speed in the series. The series that getty tries is
determined by what it rinds in /etc/gettydefs.

The user’s name is terminated by a new-line or carriage-return charac­
ter. The latter results in the system being set to treat carriage returns
appropriately (see ioctl (S)).

The user’s name is scanned to see if it contains any lower-case alpha­
betic characters, getty suggests that the user use all lower-case charac­
ters. If the user uses upper case characters, the system is told to map
any future upper-case characters into the corresponding lower-case
characters.

Finally, the login-program from /etc/gettydefs is called with the user’s
name as an argument. Additional arguments may be entered after the
login name. These are passed to the login-program. The default log-
in-program, /etc/login, places them in the environment (see log-
ini M ».

A check option is provided. When getty is invoked with the -c option
and file, it scans the rile as if it were scanning /etc/gettydefs and
prints out the results to the standard output. If there are any unrecog­
nized modes or improperly constructed entries, it reports these. If the
entries are correct, it displays the values of the various flags. See
ioctl (S) to interpret the values. Note that some values are added to the
flags automatically.

Notes

Changes have been made to support using the line for uucico, cu, and
ct, that is, the line can be used in both directions. The getty will allow
users to login, but if the line is free, uucico, cu, or ct can use it for
dialing out. The implementation depends on the fact that uucico, cu,
and ct create lock files when devices are used. When the "open()"
returns on a modem-control-line (or the first character is read on a
non-modem-control line), the status of the lock file indicates whether
the line is being used by uucico, cu, ct, or someone trying to login.
Note that in the non-modem-control case, several <carriage-retum>
characters may be required before the login message is output. The
human users will be able to handle this slight inconvenience, uucico
trying to login will have to be told by using a login script similar to
the following:

"" WViWydVr in:-in:...

where ... is whatever would normally be used for the login sequence.

getty only behaves in this special UUCP mode (waiting for a first
character, checking for a lock file) if the line is shared between dial-in
and dial-out (i.e., only if there is an entry for that line in
/usr/lib/uucp/Devices). If the UUCP package is not installed, then

28 March 1991 Page 2

GETTY (M) GETTY (M)

getty will not behave in this manner. If a line is shared between dial-
in and dial-out and there is a dialer on the line, then getty will reini­
tialize the line to dial-in prior to opening the the line by running
dialer -h, where dialer is the dialer program given in the Devices
entry (see dial(M », or by running /usr/nb/uucp/uuchat with the reini­
tialization chat specified by an ampersand (&) entry in
/usr/lib/uucp/Dialers. getty generates no error message if this reini­
tialization fails.

The -h flag is used when ct invokes getty itself; it instructs getty to
bypass this special UUCP function, since ct has already opened and
locked the line.

Files

/etc/gettydefs
/etc/ttys
Aisr/lib/uucp/Devices
/usr/lib/uucp/Dialers
/usr/lib/uucp/LCK..ttyXX

See Also

init(M), login(M), ioctl(S), gettydefs(F), ttys(F), ct(C), dial(M), cu(C),
uucico(ADM).

28 March 1991 Page 3

INIT (M) INIT (M)

Name

init, inir - Process control initialization.

Syntax

/etc/init
/etc/inir

Description

The init program is invoked as the last step of the boot procedure and
as the first step in enabling terminals for user logins, init is one of
three programs {init, getty{M), and login(M)) used to initialize a sys­
tem for execution.

init creates a process for each terminal on which a user may log in. It
begins by opening the console device, /dev/console, for reading and
writing. It then invokes a shell which prompts for a password to start
the system in “maintenance mode”. If at this prompt an EOF is read,
the system proceeds toward “multi-user mode”. If the root pasword is
entered, a shell is started and attached to the console. When this shell
is terminated the system proceeds toward “multi-user mode”.

If the system was automatically loaded at boot time, init will be
passed a -a flag when it is started, init also passes this flag to the pro­
grams it runs so they may choose to behave differently under
autoboot{ ADM) conditions.

The user may boot and the filesystem may be dirty. In this case, inir
prompts the user, asking whether to do an fsck (ADM) (See fsck
(ADM) for more information.)

The user may boot and the filesystem may be clean. In this case, init
reads commands from the /etc/rc file. This is followed by the
“multi-user/rc" and the “getty/login" procedures as documented
below.

“multi-user/rc" procedure: Once the filesystem is clean, the shell ter­
minates, and init performs several steps to begin normal operation. It
invokes a shell and reads the commands in the /etc/rc file. This com­
mand file performs housekeeping tasks such as removing temporary
files, mounting file systems, and starting daemons. Then it reads the
file /etc/ttys and forks several times to create a process for each termi­
nal device in the file. Each line in the /etc/ttys lists the state of the
line (0 for closed, 1 for open), the line mode, and the serial line (see
ttys (F)). Each process opens the appropriate serial line for reading
and writing, assigning the file descriptors 0, 1, and 2 to the line and
establishing it as the standard input, output, and error files. If the
serial line is connected to a modem, the process delays opening the

28 March 1991 Page 1

INIT(M) INIT(M)

line until someone has dialed up and a carrier has been established on
the line.

“getty/login" procedure: Once init has opened a line, it executes the
getty program, passing the line mode as an argument. The getty pro­
gram reads the user’s name and invokes login (M) to complete the log­
in process (see getty (M) for details), init waits until the user logs out
by typing ASCII end-of-file (Ctrl-D) or by hanging up. It responds by
waking up and removing the former user’s login entry from the file
utmp, which records current users, and makes a new entry in the file
wtmp, which is a history of logins and logouts. Then the corre­
sponding line is reopened and getty is reinvoked.

init has special responses to the hangup, interrupt, and quit signals.
The hangup signal SIGHUP causes init to change the system from nor­
mal operation to maintenance mode. The interrupt signal SIGINT
causes init to read the ttys file again to open any new lines and close
lines that have been removed. The quit signal SIGQUIT causes init to
disallow any further logins. In general, these signals have a signifi­
cant effect on the system and should not be used by a inexperienced
user. Instead, similar functions can be safely performed with the
enable(C), disable(C), and shutdown(ADM) commands.

Files

/dev/tty*
/etc/utmp
/usr/adm/wtmp
/etc/default/boot
/etc/ttys
/etc/rc
/etc/gettydefs

See Also

autoboot(ADM), telenit(ADM), disable(C), enable(C), login(M),
kill(C) sh(C), shutdown(ADM), ttys(F), getty(M), gettydefs(F),
inittab(F)

Diagnostics

If seven or more getty processes are started on the same line in five
minutes or less, init writes an error message to /dev/console and
refuses to start another getty on that line for at least 30 minutes. If
desired, init will try again immediately if a SIGINT is sent.

Notes

init can only be invoked by the kernel as process 1. It cannot be
invoked from the shell prompt.

28 March 1991 Page 2

INIT (M) INIT(M)

For users more familiar with the telenit approach to terminal adminis­
tration, inittab is provided. For more information, see telenit(ADM)
and inittab(F).

28 March 1991 Page 3

LD (M) LD (M)

Name

Id - Invokes the link editor.

Syntax

Id [options] filename...

Description

Id is the XENIX link editor. It creates an executable program by com­
bining one or more object files and copying the executable result to
the file a.out. The filename must name an object or library file.
These names must have the “ .o” (for object) or “ .a” (for archive
library) extensions. If more than one name is given, the names must
be separated by one or more spaces. If errors occur while linking, Id
displays an error message; the resulting a.out file is unexecutable.

Id concatenates the contents of the given object files in the order given
in the command line. Library files in the command line are examined
only if there are unresolved external references encountered from pre­
vious object files. Library files must be in ranlib(CP) format, that is,
the first member must be named__.SYMDEF, which is a dictionary
for the library. The library is searched iteratively to satisfy as many
references as possible and only those routines that define unresolved
external references are concatenated. Object and library files are pro­
cessed at the point they are encountered in the argument list, so the
order of files in the command line is important. In general, all object
files should be given before library files. Id sets the entry point of the
resulting program to the beginning of the first routine.

There are the following options:

-A num
Creates a standalone program whose expected load address (in
hexadecimal) is num. This option sets the absolute flag in the
header of the a.out file. Such program files can only be executed as
standalone programs. Options -A and -F are mutually exclusive.

-B num
Sets the text selector bias to the specified hexadecimal number.

-c num
Alters the default target CPU in the x.out header, num can be 0,1,
2, or 3 indicating 8086, 80186, 80286 and 80386 processors,
respectively. The default on 8086/80286 systems is 0. The default
on 80386 systems is 3. Note that this option only alters the default;
if object modules containing code for a higher numbered processor
are linked, then that will take precedence over the default.

28 March 1991 Page 1

LD (M) LD (M)

C
Causes the link editor to ignore the case of symbols.

-D num
Sets the data selector bias to the specified hexadecimal number.

-C5
Huns on a bit to invoke /usr/lib/coffconv with the linker, produc­
ing an x.out COFF-compatible binary.

-CX
Ihms off bit set with -C5, which resides in the header of the object
file.

-F num
Sets the size of the program stack to num bytes where num is a
hexadecimal number. This option is ignored for 80386 programs
which have a variable sized stack. By default 8086 programs have
a variable stack located at the top of the first data segment, and
80286 programs have a fixed size 4096 byte stack. The -F option
is incompatible with the -A option

Creates separate instruction and data spaces for small model pro­
grams. When the output file is executed, the program text and data
areas are allocated separate physical segments. The text portion
will be read-only and shared by all users executing the file.

Sets advisory file locking. Advisory locking is used on files with
access modes that do not require mandatory locking.

-Lm
Sets mandatory file locking. Mandatory file locking is used on files
that cannot be opened by more than one user at the same time.

-m name
Creates a link map file named name that includes public symbols.

Creates a small model program and checks for errors, such as fixup
overflow. This option is reserved for object files compiled or
assembled using the small model configuration. This is the default
model if no -M option is given.

-Mm
Creates middle model program and checks for errors. This option
is reserved for object files compiled or assembled using the middle
model configuration. This option implies - i.

28 March 1991 Page 2

LD (M) LD (M)

-Ml
Creates a large model program and checks for errors. The option is
reserved for object files compiled using the large model configura­
tion. This option implies - i.

-Mx
Specifies the memory model, x can have the following values:
s small
m middle
1 large
h huge
e mixed

-n num
Truncates symbols to the length specified by num.

-N num
Sets the pagesize to hex-num (which should be a multiple of 512) -
the default is 1024 for 80386 programs. 8086/80186/80286 pro­
grams do not normally have page-aligned x.out files and the default
for these is 0.

-o name
Sets the executable program filename to name instead of a.out.

-P
Disables packing of segments

-r Invokes the incremental linker, /lib/ldr , with the arguments
passed to Id to produce a relocatable output file.

-R Ensures that the relocation table is of non-zero size. Important for
8086 compatibility.

-Rd num
Specify the data segment relocation offset (80386 only), num is
hexadecimal.

-Rt num
Specify the text segment relocation offset (80386 only) num is hex­
adecimal.

-s
Strips the symbol table.

-S num
Sets the maximum number of segments to num. If no argument is
given, the default is 128.

-u symbol
Designates the specified symbol as undefined.

28 March 1991 Page 3

LD (M) LD (M)

-v num
Specifies the XENIX version number. Acceptable values for num
are 2,3, or 5; 5 is the default.

Id should be invoked using the cc(CP) instead of invoking it directly.
Cc invokes Id as the last step of compilation, providing all the neces­
sary C-language support routines. Invoking Id directly is not recom­
mended since failure to give command line arguments in the correct
order can result in errors.

Files

/bin/ld

See Also

ar(CP), cc(CP), ld(CP), masm(CP), ranlib(CP)

Notes

The user must make sure that the most recent library versions have
been processed with ranlib(CP) before linking. If this is not done, Id
cannot create executable programs using these libraries.

28 March 1991 Page 4

LOCALE (M) LOCALE (M)

Name
locale - International locale.

Syntax

language [_ [territory] [. [codeset]]]

Description
The international locale is a definition of the local conventions to be
used by XENIX libraries (and hence utilities and applications) for fea­
tures whose behavior varies internationally.

The locale is specified by a character string of the form lan­
guage territory.codeset , where:

language represents both the language of text files being used,
and the preferred language for messages (where the
utility or application is capable of displaying messages
in many languages),

territory represents the geographical location (usually the coun­
try) determining such factors as currency and numeric
formats, and

codeset represents the character set in use for the internal
representation of text.

The locale string “french_canada.8859” could therefore represent a
Canadian user using the French language, processing data using the
ISO 8859/1 standard international character set.

Each element (,language, territory or codeset) can be up to 14 charac­
ters long, and should use only alphanumeric ASCII characters (see
ascii(M)).

Note that the locale is not required to be completely specified: terri­
tory and codeset are optional. When a locale is incompletely
specified, missing values are sought in the following sequence:

1. For each subclass, such as LC_TIME , in an environment variable
of the same name as the subclass.

2. In the LANG environment variable.

3. In the file!etc!default!lang .

28 March 1991 Page 1

LOCALE (M) LOCALE (M)

The special locale string “C”, used to represent the minimal environ­
ment needed for the C programming language, is taken to be
equivalent to “english_us.ascii” .

The format of the file letcidefault/lang is at least one line, of the form:

LANG= " language_territory. codeset"
A partly specified locale string will be expanded to the first LANG =
entry in which the specified locale fields match.

Thus if the letc/default/lang file contains the following:

LANG=english_us. ascii
LANG=english_uk.8859
LANG=french_franee.8859

A locale string “english_uk” will get expanded to “english_uk.8859”,
whereas a locale string “french” will get expanded to
“french_france.8859” .

The information used to configure a particular locale is generated by
the utilities chrtbl (M), coltbl (M), mestbl (M), montbl (M), numtbl (M)
and timtbl (M). The output files produced by these utilities (ctype, col­
late, currency, messages, numeric and time respectively) must be
installed in the correct place in the directory structure lusr/libllang.
The correct directory name is found by substituting the language, ter­
ritory and codeset names into the string “/usr/lib/langjlan-
guage!territory I codesef ’. The files should be installed into this direc­
tory with their existing file name (such as ctype).

A suggested naming convention for locales is as follows:

language The name of the language, in English, such as: english,
french, german.

territory The name of the nation, in English, such as: us, uk,
Canada, france, germany, Switzerland.

codeset An identification of the codeset, such as: ascii, 8859.

See Also
chrtbl(M), coltbl(M), environ(M), mestbl(M), montbl(M), numtbl(M),
setlocale(S), timtbl(M)

28 March 1991 Page 2

LOGIN {M) LOGIN {M)

Name

login - Gives access to the system.

Description

The login command is used at the beginning of each terminal session
to identify the user and allow them access to the system. It cannot be
invoked except when a connection is first established, or after the pre­
vious user has logged out by sending an end-of-file (Ctrl-D) to his ini­
tial shell.

login prompts for user name, and if appropriate, a password. Echoing
is turned off (where possible) while die password is being entered, so
it will not appear on the written record of the session.

It is possible to assign an additional password to dial-in lines for addi­
tional security. This is discussed below in “Dial-in Passwords.”

If the login sequence is not completed successfully within a certain
period of time (e.g., one minute), the user is returned to the “ login:”
prompt or silently disconnected from a dial-in line.

After a successful login, accounting files (letc/utmp and /etclwtmp) are
updated, the user is notified if they have mail, and the start-up shell
files (i.e., .profile for the Bourne shell or .login for the C-shell) if any,
are executed.

login checks /etc/default/login for ULIMIT (maximum file size in
512 byte blocks, default is 2,097,152), and for environment variables,
such as TZ (time zone), HZ (hertz), and ALTSHELL (allows other
than sh shell types). Other entries sometimes found in
/etc/default/login are IDLEWEEKS, CONSOLE, and PASSREQ.
IDLEWEEKS=n, where n is a number of weeks, works in conjunction
with pwadmin (ADM). If a password has expired, the user is prompted
to choose a new one. If it has expired beyond IDLEWEEKS, the user
is not allowed to log in, and must consult system administrator. The
CONSOLE=/dev/? ? ? entry means that root can only log in on the
/dev listed. PASSREQ=YES, if set, forces the user to select a pass­
word if they do not have one.

login initializes the user and group IDs and the working directory,
then executes a command interpreter (usually sh(C)) according to spe­
cifications found in the /etc/passwd rile. Argument 0 of the command
interpreter is a dash (-) followed by the last component

28 March 1991 Page 1

LOGIN (M) LOGIN (M)
of the interpreter’s pathname. The basic environment (see
environ (M)) is initialized to:

HOME= your-login-directory
PATH=:/bin:/usr/bin
SHELL=last field of passwd entry
MAIL=/usr/spoo\/m2iil/your-login-name
TZ=timezone-specification

Initially, umask is set to octal 022 by login.

If a user’s UID is 0 (i.e. if this is the superuser), the PATH variable is
set to SUPATH, if SUPATH is specified in !etc!default!login. If it is
not, PATH is set to the following:

PATH=:/bin:/usr/bin:/etc

It is not advisable for SUPATH to include the current directory symbol
(.) .

Dial-in Passwords

If desired, special dial-in passwords can be defined for selected tty
lines, requiring selected classes of users to input these passwords.
Logging information, including the last time of connection, can be
stored for later use.

Specific dial-in lines that require passwords are defined in the file /etc/dialups. The actual dialup passwords are kept in the file /etc/d_passwd. The password must be generated /etc/passwd an
transferred.

The first field (“user name”) in /etc/djpasswd is the name of a shell
program (for example, /bin/sh) used in/etc/passwd. If the login shell
of the user attempting to log in (on a tty line listed in /etc/dialups) is
listed in /etc/d_passwd, then the user is prompted for the dial-in pass­
word stored in letcldjpasswd. (A shell name of in /etc/d_passwd
specifies the default dialup password.)

A sample /etc/d_passwd file might be:

*:<encrypted passwd>:Dcfm\t dialup password
/usr/lib/uucp/uucico::UUCP dialup password (none)
/b'm/rsh:<encrypted passwd>:Restricted shell user dialup password

To enable time-of-login recording (and reporting of the time of last
login at each login), create the log file /usr/adm/lastlog. This file
should be owned by /bin and group bin; the permissions can be re­
stricted to 600 if desired. If this file exists and the user is not currently
logged in, the finger(C) utility will report the time of last login.

28 March 1991 Page 2

LOGIN (M) LOGIN (M)

Files

/etc/utmp

/etc/wtmp

Information on current logins

History of logins since last multiuser

/usr/spool/mail/rttfme Mailbox for user name

/etc/motd

/etc/default/login Default values for environment
variables

Message of the day

/etc/passwd

/etc/profile

SHOME/.profile

System profile

Personal profile

Password file

See Also

environ(M), getty(ADM), machine(M), mail(C), newgrp(C),
passwd(C), passwd(F), profile(M), su(C), sh(C), ulimit(S), umask(C),
who(C).

Diagnostics

Login incorrect
The user name or the password is incorrect.

No shell, cannot open password file, no directory:
Your account has not been properly set up.

Your password has expired. Choose a new one.
Password aging is implemented and yours has expired.

Only the superuser may execute login from a shell.

As explained in machine^M), when setting ULIMIT in the
/etc/default/login file on filesystems with 1024 byte blocks (see ma-
chine(M)), be sure to specify even numbers, as the ULIMIT variable
accepts a number of 512-byte blocks. The default is 2,097,152 blocks,
or 1 gigabyte. Use this variable to increase or decrease the maximum
allowable file size.

Notes

28 March 1991 Page 3

MAPCHAN (M) MAPCHAN (M)

Name

mapchan - Configure tty device mapping.

Syntax

mapchan [-ans] [-f mapfile] [channels ...]
mapchan [[-o] [-d]] [channel]

Description

mapchan configures the mapping of information input and output of
XENIX. The mapchan utility is intended for users of applications that
employ languages other than English (character sets other than 7-bit
ASCII).

mapchan translates codes sent by peripheral devices, such as termi­
nals, to the internal character set used by the XENIX system, mapchan
can also map codes in the internal character set to other codes, for out­
put to peripheral devices (such as terminals, printers, console screen,
etc.). Note that PC keyboard configuration is accomplished through
the mapkeyQA) utility.

mapchan has several uses: to map a channel (-a or -s); to unmap a
channel (-n and optionally -a); or to display the map on a channel
(optionally -o, -d, channels).

mapchan with no options displays the map on the user’s channel. The
map displayed is suitable as input for mapchan.

The options are:

-a when used alone, sets all channels given in the default file
(/etc/default/mapchan) with the specified map. When used
with -n, it refers to all channels given in the default file. Super-
user maps or unmaps all channels, other users map only chan­
nels they own. -a can not be used with -d, -o, or -s.

-d causes the mapping table currently in use on the given device,
channel, to be displayed in decimal instead of the default hexa­
decimal. An ASCII version is displayed on standard output. This
output is suitable as an input file to mapchan for another chan­
nel. Mapped values are displayed. Identical pairs are not out­
put. -d can not be used with -a, -f, -n, -o, or -s.

-f causes the current channel or list of channels to be mapped with
mapfile. -f can not be used with -d, -n, -s, or -o.

28 March 1991 Page 1

MAPCHAN (M) MAPCHAN (M)

-n causes null mapping to be performed. All codes are input and
output as received. Mapping is turned off for the user’s channel
or for other channels, if given, -a used with -n will turn map­
ping off on all channels given in the default file. This is the
default mapping for all channels unless otherwise configured. -
n can not be used with -d, -f, -o, or -s.

-o causes the mapping table currently in use on the given device,
channel, to be displayed in octal instead of the default hexade­
cimal. An ASCH version is displayed on standard output. This
output is suitable as an input file to mapchan for another port.
Mapped values are displayed. Identical pairs are not output, -o
can not be used with -a, -d, -f, -n, or -s.

-s sets the user’s current channel with the mapfile given in the
default file, -s can not be used with any other option.

The user must own the channel in order to map it. The super-user can
map any channel. Read or write permission is required to display the
map on a channel.

Each tty device channel (display adapter and video monitor on com­
puter, parallel port, serial port, etc.) can have a different map. When
XENIX boots, mapping is off for all channels.

mapchan is usually invoked in the /etc/rc file. This file is executed
when the system enters multi-user mode and sets up the default map­
ping for the system. Users can invoke mapchan when they log in by
including a mapchan command line in their .profile or .login file. In
addition, users can remap their channel at any time by invoking map­
chan from the command line, channels not listed in the default file are
not automatically mapped, channels are not changed on logout. What­
ever mapping was in place for the last user remains in effect for the
next user, unless they modify their .profile or .login file.

For example, the default file /etc/default/mapchan can contain:

tty02 ibm
ttyla
tty2a wy60.ger
IP ibm

The default directory containing mapfiles is /usr/lib/mapchan. The
default directory containing channel files is /dev. Full pathnames may
be used for channels or mapfiles. If a channel has no entry, or the
entry field is blank, no mapping is enabled on that channel. Addi­
tional channels added to the system, (for example, adding a serial or
parallel port) are not automatically entered in the mapchan default
file. If mapping is required, the system administrator must make the
entries.

28 March 1991 Page 2

MAPCHAN (M) MAPCHAN(U)

The format of the mapfiles is documented in the mapchan(F) manual
page.

Using a Mapped channel

The input information is assumed to be 7- or 8-bit codes sent by the
peripheral device. The device may make use of “dead” or “compose”
keys to produce the codes. If the device does not have dead or com­
pose keys, these keys can be simulated using mapchan.

One to one mapped characters are displayed when the key is pressed,
and the mapped value is passed to the kernel.

Certain keys are designated as dead keys in the mapfile. Dead key
sequences are two keystrokes that produce a single mapped value that
is passed to the kernel. The dead key is usually a diacritical character,
the second key is usually the letter being modified. For example, the
sequence ' e could be mapped to the ASCII value 0xE9, and display as
e .

One key is designated as the compose key in the mapfile. Compose
key sequences are composed of three keystrokes that produce a single
mapped value that is passed to the kernel. The compose key is usually
a seldom used character or Ctrl-letter combination. The second key is
usually the letter being modified. The third key may be another char­
acter being combined, or a diacritical character. For example, if ‘@ ’ is
the compose key, the sequence @ c O could be mapped to the ASCII
value 0xA9, and display as ©.

Characters are not echoed to the screen during a dead or compose
sequence. The mapped character is echoed and passed to the kernel
once the sequence is correctly completed.

Characters are always put through the input map, even when part of
dead or compose sequences. The character is then checked for the
internal value. The value may also be mapped on output. This should
be kept in mind when preparing map files.

The following conditions will cause an error during input:

• non-recognized (not defined in the mapfile) dead or compose
sequence

• restarting a compose sequence before completion by pressing
the compose key in the middle of a dead or compose sequence.
This is an error, but a new compose sequence is initiated.

If the mapfile contains the keyword beep, a bell sounds when either of
the above conditions occurs. In either case, the characters are not
echoed to the screen, or passed to the kernel.

28 March 1991 Page 3

MAPCHAN (M) MAPCHAN (M)

In order to allow for character sequences sent to control the terminal
(move the cursor, and so on) rather than to print characters on the
screen, mapchan allows character sequences to be specified as special
sequences which are not passed through the normal mapping pro­
cedure. Two sections may be specified, one for each of the input (key­
board) and output (screen) controls.

Character Sets

The internal character set used by XENIX is defined by the mapfiles
used. By default, this is the ISO 8859/1 character set which is also
known as the dpANS X3.4.2 and ISO/TC97/SC2. It supports most of
the Latin alphabet and can represent most European languages.

Several partial map files are provided as examples. They must be
modified for use with specific peripheral devices. Consult your hard­
ware manual for the codes needed to display the desired characters.
Two map files are provided for use with the console device:
/usr/lib/mapchan/ibm for systems with a standard PC character set
ROM, and /usr/Ub/mapchan/iso for systems with an optional ISO
8859/1 character set ROM.

Care should be taken that the stty(C) settings are correct for 8-bit ter­
minals. The /etc/gettydefs file may require modification to allow log­
ging in with the correct settings.

7-bit U.S. ASCH (ANSI X3.4) should be used if no mapping is enabled
on the channel.

Files

/etc/default/mapchan
/usr/lib/mapchan/*

See Also

ascii(M), keyboard(HW), lp(C), lpadmin(ADM), mapchan(F),
mapkey(M), parallel(HW), screen(HW), serial(HW), setkey(M),
trchan(M), tty(M)

Notes

Some non-U.S. keyboards and display devices do not support charac­
ters commonly used by XENIX command shells and the C program­
ming language. It is not recommended that these devices be used for
system administration tasks.

28 March 1991 Page 4

MAPCHAN { M) MAPCHAN (M)

Printers can be mapped, output only, and can either be sent 8-bit codes
or one-to-many character strings using mapchan. Line printer spooler
interface scripts can be used (setuid root) to change the output map on
the printer when different maps are required (as in changing print
wheels to display a different character set). See lp(C) and
Ipadmin (ADM) for information on installing and administering inter­
face scripts.

Not all terminals or printers can display all the characters that can be
represented using this utility. Refer to the device’s hardware manual
for information on the capabilities of the peripheral device.

Warnings
Use of mapfiles that specify a different “ internal” character set per-
channel, or a set other than the 8-bit ISO 8859 set supplied by default
can cause strange side effects. It is especially important to retain the
7-bit ASCH portion of the character set (see ascii (M)). XENIX utili­
ties and many applications assume these values.

Media transported between machines with different internal code set
mappings may not be portable as no mapping is performed on block
devices, such as tape and floppy drives. However, trchan with an
appropriate mapfile can be used to “translate” from one internal char­
acter set to another.

Do not set ISTRIP (see stty(C)) when using mapchan. This option
causes the eighth bit to be stripped before mapping occurs.

28 March 1991 Page 5

MAP KEY (M) MAPKEY (M)

Name

mapkey, mapscm, mapstr, convkey - Configure monitor screen map­
ping.

Syntax

mapkey [-dox][datafile]
mapscrn [-d][datafile]
mapstr [-d][datafile]
convkey [in [out]]

Description

mapscrn configures the output mapping of the monitor screen on
which it is invoked, mapkey and mapstr configure the mapping of the
keyboard and string keys (eg. function keys) of the monitor (and mul­
tiscreens if present), mapkey can only be run by the super-user.

mapstr functions on a per-screen basis. Mapping strings on one screen
does not affect any other screen.

If a file name is given on the argument line the respective mapping
table is configured from the contents of the input file. If no file is
given, the default files in /usr/lib/keyboard and /usr/lib/console is
used. The -d option causes the mapping table to be read from the ker­
nel instead of written and an ASCII version to be displayed on the
standard output. The format of the output is suitable for input files to
mapscrn, mapkey, or mapstr . Non-super-users can run mapkey and
mapstr when the -d option is given.

With the -o or -x options, mapkey displays the mapping table in octal
or hexadecimal.

convkey translates an old-style mapkey file into the current format. If
in or out are missing, they default to stdin or stdout.

Files

/usr/lib/keyboard/*
/usr/lib/console/*

Notes

There is no way to specify that the map utilities read their configura­
tion tables from standard input.

28 March 1991 Page 1

MAPKEY (M) MAPKEY (M)
See Also

keyboard(HW), screen(HW), setkey(C)

28 March 1991 Page 2

MESSAGES (M) MESSAGES (M)

Name

messages - Description of system console messages.

Description
This section describes the various system messages which may appear
on the system console. All messages are displayed in the following
format:

labe ̂ severity'.comment

The segments break down as follows:

label
Name of the driver or routine where the error occurred.

severity
The level of error severity, consisting of four levels:

PANIC These fatal messages indicate hardware
problems or kernel inconsistencies that
are too severe for continued operation.
After displaying a PANIC message, the
system stops. Rebooting is required.

ERROR Resource use has been affected. Some
corrective action is needed.

WARNING An error indication that should be moni­
tored (example, free file space is low)
but requires no immediate action.

INFO Some information about the system is
provided.

comment
A field containing information about the problem at hand.

action
The course of action to remedy the situation.

The system services error messages are generated by the shell and do
not follow the above convention.

System Message Meanings
The following classifications are meant to be a key for you to use to
determine the actions to take to correct an error situation. Each kernel
message will have one of the following three classifications listed

28 March 1991 Page 1

MESSAGES (M) MESSAGES (M)

with it. The classifications are:

System inconsistency
A contradictory situation exists in the kernel.

Abnormal
A probably legitimate but extreme situation exists.

Hardware
Indicates a hardware problem.

System inconsistency messages indicate problems usually traceable to
hardware malfunction, such as memory failure. These messages
rarely occur since associated hardware problems are generally
detected before such an inconsistency can occur.

Abnormal messages represent kernel operation problems, such as the
overflow of critical tables. It takes extreme situations to bring these
problems about, so they should never occur in normal system use.
However, in some cases you can modify the kernel parameters that are
causing die error message. Use the configure^ADM) utility to make
the necessary changes.

Hardware messages normally specify the device, dev, that caused the
error. Each message gives a device specification of the form nnlmm
where nn is the major number of the device, and mm is its minor num­
ber. The command pipeline

Is -1 /dev | grep nn | grep mm

may be used to list the name of the device associated with the given
major and minor numbers.

System Messages

* * Normal System Shutdown * *
This message appears when the system has been shutdown prop­
erly. It indicates that the machine may now be rebooted or
powered down.

kemelrPANIC:** ABNORMAL System Shutdown * *
This message appears when errors occur during system shut­
down. It is usually accompanied by other system messages.
System inconsistency, fatal.

kemel:WARNING:bad block on dev nn/mm
A nonexistent disk block was found on, or is being inserted in,
the structure’s free list. System inconsistency.

28 March 1991 Page 2

MESSAGES (M) MESSAGES (M)

kemel:WARNING:bad count on dev nn/mm
A structural inconsistency in the superblock of a file system.
The system attempts a repair, but this message will probably be
followed by more complaints about this file system. System
inconsistency.

kemel:WARNING:Bad free count on dev nn/mm
A structural inconsistency in the superblock of a file system.
The system attempts a repair, but this message will probably be
followed by more complaints about this file system. System
inconsistency.

kemel:ERROR:error on dev name (nn/mm)
This is the way that most device driver diagnostic messages
start. The message will indicate the specific driver and com­
plaint. The name is a word identifying the device.

kemel:ERROR:iaddress > 2"24
This indicates an attempted reference to an illegal block num­
ber, one so large that it could only occur on a file system larger
than 8 billion bytes. Abnormal.

kemel:WARNING:Inode table overflow
Each open file requires an inode entry to be kept in memory.
When this table overflows, the specific request (usually open(S)
or creat(S)) is refused. Although not fatal to the system, this
event may damage the operation of various spoolers, daemons,
the mailer, and other important utilities. Abnormal results and
missing data files are a common result. Use configure(ADM) to
raise the number of inodes. Abnormal.

kemel:WARNING:interrupt from unknown device, vec=num
The CPU received an interrupt via a supposedly unused vector.
This message is followed by “panicrunknown interrupt.” Typi­
cally, this event comes about when a hardware failure miscom-
putes the vector of a valid interrupt. Hardware.

kemel:WARNING:stray interrupt on vector num
The CPU received an interrupt via a supposedly unused vector.
Hardware.

28 March 1991 Page 3

MESSAGES (M) MESSAGES (M)

kernel: WARNING:no file
There are too many open files. The system has run out of entries
in its “open file” table. The warnings given for the message
“ inode table overflow” apply here. Use configure(ADM) to
raise the total number of available files or the number of files
available per process. Abnormal.

kemel:WARNING:no space on dev nn/mm
This message means that the specified file system has run out of
free blocks. Although not normally as serious, the warnings dis­
cussed for “inode table overflow” applyroften user programs are
written casually and ignore the error code returned when they
tried to write to the disk; this results in missing data and
“holes” in data files. The system administrator should keep
close watch on the amount of free disk space and take steps to
avoid this situation. Abnormal.

kernel: WARNING:Out of inodes on dev nn/mm
The indicated file system has run out of free inodes. The number
of inodes available on a file system is determined when the file
system is created (using mkfs (ADM)). The default number is
quite generous; this message should be very rare. The only
recourse is to remove some worthless files from that file system,
or dump the entire system to a backup device, run mkfs (ADM)
with more inodes specified, and restore the files from backup.
Abnormal.

kemel:PANIC:blkdev
An internal disk I/O request, already verified as valid, is discov­
ered to be referring to a nonexistent disk. System inconsistency,
fatal.

kemel:PANIC:devtab
An internal disk I/O request, already verified as valid, is discov­
ered to be refering to a nonexistent disk. System inconsistency,
fatal.

kemel:PANIC:iinit
The super-block of the root file system could not be read. This
message occurs only at boot time. Hardware, fatal.

kemel:PANIC:swap IO error
A fatal I/O error occurred while reading or writing the swap
area. System inconsistency, fatal.

kemel:PANIC:memory failure - parity error
A hardware memory failure trap has been taken. System incon­
sistency, fatal.

kemel:PANIC:no fs
A mounted file system’s entry has disappeared from the system
mount table. System inconsistency, fatal.

28 March 1991 Page 4

MESSAGES (M) MESSAGES (M)

kemel:PANIC:no imt
A mounted file system has disappeared from the mount table.
System inconsistency, fatal.

kemel:PANIC:no procs
Each user is limited in the amount of simultaneous processes he
can have; an attempt to create a new process when none is
available or when the user’s limit is exceeded and refused. That
is an occasional event and produces no console messages; this
panic occurs when the kernel has certified that a free process
table entry is available and can’t find one when it goes to get it.
System inconsistency, fatal.

kemel:WARNING:Out of swap
There is insufficient space on the swap disk to hold a task. The
system refuses to create tasks when it feels there is insufficient
disk space, but it is possible to create situations to circumvent
this mechanism. Abnormal.

kemel:PANIC:general protection trap
General protection trap taken in kernel. System inconsistency,
fatal.

kemel:PANIC:segment not present
An attempt has been made to access an invalid segment. It may
also indicate the segment-not-present trap has been taken in the
kernel. System inconsistency, fatal.

kemel:PANIC:Timeout table overflow
The timeout table is full. Timeout requests are generated by de­
vice drivers, there should usually be room for one entry per sys­
tem serial line plus ten more for other usages. Use config-
ure(ADM) to raise the number of timeout table entries.

kemel:PANIC:Trap in system
The CPU has generated an illegal instruction trap while execut­
ing kernel or device driver code. This message is preceded with
an information dump describing the trap. System inconsistency,
fatal.

kemel:PANIC:Invalid TSS
Internal tables have become corrupted. System inconsistency,
fatal.

kemel:WARNING:bootstring invalid, ignored
A bad bootstring was entered at the Boot prompt.

kemel:ERROR:bad syntax - string
A bad bootstring was entered at the Boot prompt.

28 March 1991 Page 5

MESSAGES (M) MESSAGES (M)

kemel:PANIC:bad mapping in copyio
Copyio was called with a strange request. Usually a bad driver.

kernel: WARNING:HARD WARE FADLURE:386 incorrectly multi­
plies 32-bit numbers
The cpu is displaying the 32-bit multiply bug.

kemekPANIC:*** POWER CYCLE TO REBOOT * * *
This message follows the above HARDWARE FAILURE 32 bit
error message.

kemel:INFO:10 bits of I/O address decoding
The hardware is only decoding 10 bits of i/o addresses. This
amount is sufficient in most cases. This condition is only an
issue if you are strapping i/o devices with a base address above
400 (hex).

kernel:WARNING:A31 CPU bug workaround not possible for this
machine
A31 was specified on the boot line, but cannot be applied to the
current system.

kemel:INFO:A31 CPU bug workaround in effect
A31 was specified on the boot line and the software workaround
is currently in effect.

kemel:PANIC:bad boot string An invalid boot string was entered at
the Boot prompt.

kemekPANIC:** WYSE/SCO UNIX only operates on WYSE PC sys­
tems * *
A kernel was serialized for WYSE hardware only and is being
booted on a non-WYSE machine.

kemekPANIC.out of both memory & swap
No more memory pages or swap pages are free.

kemel:PANIC:not enough contiguous memory
The kernel memory allocation routines require more physically
contiguous memory. Either decrease the size of some kernel
parameters (like disk buffers) or add more physical memory.

kernel:WARNING: filesystem page read failed
An error occurred trying to read a page from the disk. This is
not fatal, but usually indicates hardware problems.

kemel:PANIC:free inode isn’t
There is internal inode table corruption within the kernel.

kemel:ERROR:Map overflow (num), shutdown and reboot, mp-
>mpent
There are internal kernel map inconsistencies. Reboot your

28 March 1991 Page 6

MESSAGES (M) MESSAGES (M)

system.

kemel:PANIC:write_sb():cannot cvts3superb() yet
This message is found in the 386 kernel only. A write of a non
SYS ID or SYS V filesystem superblock is being attempted.
This action should be impossible due to earlier checks.

kemel:WARNING:Can’t allocate message buffer
This message indicates a lack of memory. Processes should be
killed to make more room. Another option is to add more physi­
cal memory.

kemel:PANIC:Large model 386 ssig
Internal kernel error in processing large model 386 signals.

Trap type
This message precedes a “kemekPANIC:” message. The type
is the trap number given by the processor. The message is fol­
lowed by a dump of registers. System inconsistency, fatal

fpsave:PANIC:no fp_task
No floating point context to save, internal kernel error.

mdep.386/fp.c:WARNING:No floating point emulator found in string,
No /etc/emulator was present in the root filesystem. The System
Administrator should install one and reboot.

fp_OVERRUN:PANIC:coprocessor overrun - with no 287/387
Internal coprocessor error, fatal.

fp_COPROC:PANIC:, coprocessor error - with no 287/387
Inconsistent kernel internal state.

fp_COPROC:PANIC:coprocessor error - switched away from fp_task
Internal kernel mismanagement of floating point processes.

fp_DNA:PANIC:
A device trap happened while emulating floating point instruc­
tions.

iinit:PANIC:cannot copy in superblock
An error happened during the root filesystem superblock load­
ing.

srmount:PANIC:cannot cvtv7superb() yet
A root filesystem superblock was not recognized as a SYS in or
SYS V superblock. V7 superblocks cannot currently be con­
verted on the 386 kernel.

mapphys:PANIC:sptmap overflow
No system page table pages are available. This is an internal
error in the kernel, usually caused by a faulty device driver.

28 March 1991 Page 7

MESSAGES (M) MESSAGES (M)

physio:PANIC:bad state
A device driver made an invalid request to physio.

badint:PANIC:bad interrupt handler
Invalid interrupt request, usually fault hardware.

setup:PANIC:sptmap overflow
This message indicates possible kernel image corruption or lack
of physical memory.

setup:PANIC:u-area not page aligned
This indicates possible kernel image corruption.

setup:PANIC:u-area address does not match SPTADDR
Indicates possible kernel image corruption.

cmn_err:PANIC:DOUBLE PANIC The kernel panicked while trying
to panic. You must power cycle at this point to reboot the ma­
chine.

cmn_err:PANIC:unknown level in cmn_err (level=num, msg-string),
The kernel’s cmn_err() routine was called with an invalid argu­
ment.

Kernel Paging Messages
The following messages indicate system inconsistencies in the kernel
paging code. These inconsistencies can be caused by hardware or soft­
ware problems. Reboot your system and note the circumstances if you
see one of these messages:

mfalloc:PANIC:page not free

mfalloc:PANIC:page not free at exit

mflree:PANIC:page already free

mflree:PANIC:page is locked

dfalloc:PANIC:frame not free at exit

xlcheck:PANIC:xlink serial mismatch

impcode:PANIC:called to load impure 386

impcode:PANIC:more than 1 data segment?

preload:PANIC:, invalid page (num, num)

28 March 1991 Page 8

MESSAGES (M) MESSAGES (M)

kemel:PANIC:bad page type for protection fault

kemel:PANIC:protection fault on read access

kemel:PANIC:not present fault on shared data

kemel:PANIC:added strange page table - num, index

pgfind:PANIC:not in cache

pghash:PANIC:not in cache

pginval:PANIC:list broken

pginval:PANIC:not in cache

mftomp:PANIC:bad frameno num

mptomf:PANIC:bad mp num

swapadd:PANIC:no space for dpfi

dftodp:PANIC:bad frameno num

dptodf:PANIC:bad dp num

dptodf:PANIC:bad dp num

pgread:PANIC:no xlink

pgfree:PANIC:invalid page marked present

pgfree:PANIC:freeing intransit page

pgpid:WARNING:setting disk pid

kemel:PANIC:page table under page table?

kemel:PANIC:swapping intransit page

dftomf:PANIC:non-swap page table entry changed

dftomf:PANIC:swap disk frame rcnt(nwm) != 1, dp=num, dp-
>dp_rcnt,dp

dftomf:PANIC:page type mismatch - mptype num dptype num mp num
dp num, mp->mp_type, dp->dp_type, mp, dp

dftomf2:PANIC:, swap memory frame rent (num) != 1, mp=num,

28 March 1991 Page 9

MESSAGES (M) MESSAGES (M)

dftomf3:PANIC:swap mem frame rcnt(wwm) != 1, mp=num, mp-
>mp_rcnt, mp

mftodfl:PANIC:swap mem frame rent(num) != 1, mp=num, mp-
>mp_rcnt, mp

mftodf:PANIC:memory frame marked in transit

mftodf:PANIC:page type mismatch - dptype num mptype num dp num
mp num

mftodf2:PANIC:swap disk frame rent (num) != 1, dp=num

mftodf3:PANIC:swap disk frame rent (num) != 1, dp=num, dp-
>dp_rcnt, dp

fftomf:PANIC:page type(wwm) not TE_FILSYS, mp = num,mp-
>mp_type, mp

mfcvt:PANIC:zero ref count

ptdup:PANIC:TE_SWAP page rent (num) > 1,

ptdup:PANIC:xlinked page has reference

ptdup2:PANIC:TE_SWAP page rent > 1

ptdup:PANIC:xlinked page has reference

ptdup:PANIC:locked page not present

ptdup:PANIC:intransit page

pgcheck:PANIC:page type mismatchrptp num type num xtype
w«m,ptp,type,xtype

The above listed messages indicate system inconsistencies in the ker­
nel paging code. These inconsistencies can be caused both by hard­
ware or software problems. Reboot your system.

cputok:PANIC:

cpktou:PANIC:

sdfrem :PANIC: sdp->sd_inode not found

The above 3 errors indicate internal shared data errors within the ker­
nel.

v86sighdlint:WARNING:lost signal

28 March 1991 Page 10

MESSAGES (M) MESSAGES (M)

v86setint:PANIC:xtss pte not present

The above 2 errors indicate internal VPIX processing errors within the
kernel.

namei:PANIC:null cache ino

namei:PANIC:duplicating cache

The above 2 messages indicate internal file management errors in the
kernel.

System Services Messages
The following messages are displayed by the shell when a system call
fails.

Not owner:
Typically, this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also returned
for attempts by ordinary users to do things allowed only to the
super-user.

No such file or directory:
This error occurs when a filename is specified and the file should
exist but doesn’t, or when one of the directories in a pathname does
not exist.

No such process:
No process can be found corresponding to that specified by pid in
kill or ptrace.

Interrupted system call:
An asynchronous signal (such as interrupt or quit), which the user
has elected to catch, occurred during a system call. If execution is
resumed after processing the signal, it will appear as if the inter­
rupted system call returned this error condition.

I/O error:
Some physical I/O error. This error may in some cases occur on a
call following the one to which it actually applies.

No such device or address:
I/O on a special file refers to a subdevice which does not exist, or
beyond the limits of the device. It may also occur when, for exam­
ple, a tape drive is not on-line or no disk pack is loaded on a drive.

Arg list too long:
An argument list longer than 5,120 bytes is presented to a member
of the exec family.

28 March 1991 Page 11

MESSAGES (M) MESSAGES (M)

Exec format error:
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic number
(see a.out(F)).

Bad file number:
Either a file descriptor refers to no open file, or a read (respectively
write) request is made to a file which is open only for writing
(respectively reading).

No child processes:
A wait was executed by a process that had no existing or
unwaited-for child processes.

No more processes:
A fork failed because the system’s process table is full or the user
is not allowed to create any more processes.

Not enough space:
During an exec, or sbrk, a program asks for more space than the
system is able to supply. This is not a temporary condition; the
maximum space size is a system parameter. The error may also
occur if the arrangement of text, data, and stack segments requires
too many segmentation registers, or if there is not enough swap
space during a fork.

Permission denied:
An attempt was made to access a file in a way forbidden by the
protection system.

Bad address:
The system encountered a hardware fault in attempting to use an
argument of a system call.

Block device required:
A nonblock file was mentioned where a block device was required,
e.g., in mount.

Device busy:
An attempt to mount a device that was already mounted or an
attempt was made to dismount a device on which there is an active
file (open file, current directory, mounted-on file, active text seg­
ment). It will also occur if an attempt is made to enable account­
ing when it is already enabled.

File exists:
An existing file was mentioned in an inappropriate context, e.g.,
link.

Cross-device link:
A link to a file on another device was attempted.

28 March 1991 Page 12

MESSAGES (M) MESSAGES (M)

No such device:
An attempt was made to apply an inappropriate system call to a
device; e.g., read a write-only device.

Not a directory:
A nondirectory was specified where a directory is required, for
example, in a path prefix or as an argument to chdir(S).

Is a directory:
An attempt to write on a directory.

Invalid argument:
An invalid argument (e.g., dismounting a nonmounted device;
mentioning an undefined signal in signal or kill; reading or writing
a file for which Iseek has generated a negative pointer). Also set
by the math functions described in the (S) entries of this manual.

File table overflow:
The system’s table of open files is full and temporarily no more
opens can be accepted.

Too many open files:
No process may have more than 60 file descriptors open at a time.

Not a character device

Text file busy:
An attempt to execute a pure-procedure program which is
currently open for writing (or reading). Also an attempt to open
for writing a pure-procedure program that is being executed.

File too large:
The size of a file exceeded the maximum file size (1,082,201,088
bytes) or ULIMIT; see ulimit(S).

No space left on device:
During a write to an ordinary file, there is no free space left on the
device.

Illegal seek:
An Iseek was issued to a pipe.

Read-only file system:
An attempt to modify a file or directory was made on a device
mounted read-only.

Too many links:
An attempt to make more than the maximum number of links
(1000) to a file.

28 March 1991 Page 13

MESSAGES (M) MESSAGES (M)

Broken pipe:
A write on a pipe for which there is no process to read the data.
This condition normally generates a signal; the error is returned if
the signal is ignored.

Arg out of domain of func:
The argument of a function in the math package is out of the
domain of the function.

Result too large:
The value of a function in the math package is not representable
within machine precision.

File system needs cleaning:
An attempt was made to mount(S) a file system whose super-block
is not flagged clean.

Would deadlock:
A process’ attempt to lock a file region would cause a deadlock
between processes vying for control of that region.

Not a name file:
A creatsem(S), opensem(S), waitsem (S), or sigsem(S) was issued
using an invalid semaphore identifier.

Not available:
An opensem(S), waitsem (S) or sigsem(S) was issued to a sema­
phore that has not been initialized by a call to creatsem(S). A sig-
sem was issued to a semaphore out of sequence; i.e., before the
process has issued the corresponding waitsem to the semaphore.
An nbwaitsem was issued to a semaphore guarding a resource that
is currently in use by another process. The semaphore on which a
process was waiting has been left in an inconsistent state when the
process controlling the semaphore exits without relinquishing con­
trol properly; i.e., without issuing a waitsem on the semaphore.

A name file:
A name file (semaphore, shared data, etc.) was specified when not
expected.

No message of desired type: An attempt was made to receive a mes­
sage of a type that does not exist on the specified message queue
[see msgop(S)\.
An attempt was made to receive a message of a type that does not
exist on the specified message queue; see msgop(S).

Identifier removed:
This error is returned to a process that resumes execution due to
the removal of an identifier from the file system’s
name space; see msgctl(S), semctl (S), and shmctHS).

28 March 1991 Page 14

MESSAGES (M) MESSAGES (M)

No record locks available:
In fcntl(S) the setting or removing of record locks on a file cannot
be accomplished because there are no more record entries left on
the system.

Channel number out of range

Level 2 not synchronized

Level 3 halted

Level 3 reset

Link number out of range

Protocol driver not attached

No CSI structure available

Level 2 halted

Deadlock situation detected/avoided
A deadlock situation was detected and avoided. This error pertains
to file and record locking.

No record locks available

Bad exchange descriptor

Bad request descriptor

Message tables full

Inode table overflow

Bad request code

Invalid slot

File locking deadlock

Bad font file format

Not a stream device
A putmsg(S) or getmsg(S) system call was attempted on a file
descriptor that is not a STREAMS device.

No data available

Timer expired
The timer set for a STREAMS ioctl(S) call has expired. The cause
of this error is device specific and could indicate either a hardware

28 March 1991 Page 15

MESSAGES (M) MESSAGES (M)

or software failure, or perhaps a timeout value that is too short for
the specific operation. The status of the ioctl(S) operation is
indeterminate.

Out of stream resources
During a STREAMS open(S), either no STREAMS queues or no
STREAMS head data structures were available.

Machine is not on the network
This error is Remote File Sharing (RFS) specific. It occurs when
users try to advertise, unadvertise, mount, or unmount remote
resources while the machine has not done the proper startup to
connect to the network.

Package not installed
This error occurs when users attempt to use a system call from a
package which has not been installed.

Object is remote
This error is RFS specific. It occurs when users try to advertise a
resource which is not on the local machine, or try to
mount/unmount a device (or pathname) that is on a remote ma­
chine.

Link has been severed
This error is RFS specific. It occurs when the link (virtual circuit)
connecting to a remote machine is gone.

Advertise error
This error is RFS specific. It occurs when users try to advertise a
resource which has been advertised already, or try to stop the RFS
while there are resources still advertised, or try to force unmount a
resource when it is still advertised.

Srmount error
This error is RFS specific. It occurs when users try to stop RFS
while there are resources still mounted by remote machines.

Communication error on send
This error is RFS specific. It occurs when trying to send messages
to remote machines but no virtual circuit can be found.

Protocol error
Some protocol error occurred. This error is device specific, but is
generally not related to a hardware failure.

Multihop attempted
This error is RFS specific. It occurs when users try to access
remote resources which are not directly accessible.

28 March 1991 Page 16

MESSAGES (M) MESSAGES (M)

Not a data message
During a read(S), getmsg(S), or ioctl(S) I_RECVFD system call to a
STREAMS device, something has come to the head of the queue
that can’t be processed. That something depends on the system
call:
read(S) - control information or a passed file descriptor.
getmsg(S) - passed file descriptor.
ioctl(S) - control or data information.

Name not unique on network

File descriptor in bad state

Remote address changed

Cannot access a needed shared library
Trying to exec(S) an a.out that requires a shared library (to be
linked in) and the shared library doesn’t exist or the user doesn’t
have permission to use it.

Accessing a corrupted shared library
Trying to exec(S) an a.out that requires a shared library (to be
linked in) and execiS) could not load the shared library. The shared
library is probably corrupted.

Trying to exec(S) an a.out that requires a shared library (to be linked
in) and there was erroneous data in the .lib section of the a.out. The
.lib section tells exec(S) what shared libraries are needed. The
a.out is probably corrupted.

Attempting to link in more shared libraries than system limit
Trying to exec(S) an a.out that requires more shared libraries (to be
linked in) than is allowed on the current configuration of the sys­
tem. See the System Administrator’s Guide.

Cannot exec a shared library directly
Trying to exec(S) a shared library directly. This is not allowed.

Driver Messages
The following messages are different from kernel messages in that
they are generated by the device drivers for the various hardware sup­
ported under XENIX. The source of the message can be determined by
checking the label field of the message.

Console Driver Messages
console:WARNING:Kemel messages lost on non-text screen

(also check /usr/adm/messages)
Kernel messages were lost while the console was in graphics

28 March 1991 Page 17

MESSAGES (M) MESSAGES (M)

mode and did not appear. Check the last lines of
/usr/adm/messages to find the messages.

console:WARNING:Too many keyboard groups
There are more video devices attached to your system than your
kernel is designed to support.

Irwin Driver Messages

mc:ERROR:Block not found
A block not found error occurs when the driver cannot locate a
physical tape block during a read or write operation. Ensure the
tape head is clean (see the tape drive hardware manual for
cleaning instructions). When this message is displayed during a
data restore operation, try retensioning the tape, then repeat the
restore operation. If this fails, try restoring the data using a
different tape drive. When this message is displayed during data
backup operation, try another tape. If your backup is successful
on another tape, discard or bulk erase and reformat the original
tape.

mc:ERROR:Data CRC error

mc:ERROR:ID CRC error
These messages are displayed during a tape read operation when
a tape block cannot be recovered by ECC. If this message
appears, retension the tape and try again. If this fails, the data
might be recovered by using a different tape drive. Causes of
persistent CRC errors are: poor quality tapes, worn tape head, a
defect in the drive’s record circuitry, or an incompatible or oth­
erwise defective data separator circuit on the controller. CRC
errors might be stopped by using new tapes, or installing a data
compensator circuit on the drive.

mc:ERROR:Record not found
This error occurs when some sector within a tape block cannot
be located. This error typically occurs on or during a tape read
operation when there are too many erroneous sectors to recover
data using ECC. (See Data CRC error.)

mc:ERROR:Drive not found
When /etc/mcdaemon is run for the first time after system boot,
a drive searching algorithm is executed by the driver. If this
algorithm fails to detect the presence of a tape drive, the mes­
sage “mc:ERROR:Drive not found” is displayed. Subsequently,
the same message is displayed on any read or write access to an
opened me device file for which no drive is present. When this
message appears, hardware should be checked.

28 March 1991 Page 18

MESSAGES (M) MESSAGES (M)

Shut down the system and then cycle the power switch. With no car­
tridge present, the tape drive should flash its LED on power up. If it
doesn’t, power down and check (when applicable) for a disconnected
or defective tape drive power cable. On PC/AT class machines (and
some Micro Channel compatibles) the power cable resembles the four
wire cable which powers the floppy diskette drive. For internally
mounted drives, the power cable is connected directly to the drive
(whether the drive connected to the system floppy controller, a 4251
extender, or a 4100 PC bus controller). For external drives, make sure
the four wire cable is connected to the 4251 floppy extender or 4100
PC bus controller adapters. Also check that the 35-pin connector at
the end of the tape drive’s cable is correctly seated in the adapter
socket on the back of the computer. If a 4251 board is present, check
the tubular glass fuses. When cables and fuses appear to be in order
and the LED still doesn’t flash, either the cables, 4251 or 4100 (when
applicable), or drive may be defective.

The drive select jumper (on the tape drive) should also be checked. In
most installations, the jumper should connect the DRIVE SELECT 2
pin pair. For 5-1/4 form factor drives, DRIVE SELECT 2 is labeled
with a "[2]" on the drive’s circuit board. For 3-1/2 inch form factor
drives with connector adapter which have jumpers mounted on the
adapter, consult the hardware installation instructions. For other 3-1/2
inch form factor drives, the DRIVE SELECT 2 is the forth pin pair
from the comer of the drive’s circuit board:

I o o o o o
I o o o o o
I 4 3 2 1

If the drive is connected to an Irwin 4251 floppy extender which is, in
turn, cabled to an Adaptec suffix ’B ’ (e.g., ACB-2xxxB, or 1542B scsi)
controller and the "Drive not found" message is seen, check the 4251
jumpers. In the "as shipped from the factory" state, the A0, A2, and
A3 pin pairs are jumpered, and the A7 pin pair has a spare jumper
(stored on one pin of the pair). If the jumpers are in this "as shipped"
state, reinstall the A7 jumper to connect the pin pair. Typically this
change will allow the drive to be found.

mc:ERROR:Servo failure
This is a tape formatting error message. The servo writing func­
tion is a part of the tape drive’s firmware. The driver issues a
command to the drive to servo write and awaits tape drive com­
pletion status. Usually the drive’s LED will be flashing on servo
writing failure. Try bulk erasing the cartridge and restarting the
format. If this fails, try another cartridge.

mc:ERROR:Insufficient memory
This message is displayed when the driver fails to allocate at
least three tape block buffers. Sufficient memory may be avail­
able when single user mode is entered immediately after system

28 March 1991 Page 19

MESSAGES (M) MESSAGES (M)

boot. Usually adding memory to the system will stop this mes­
sage.

mc:ERROR:Block 0 missing servo header

mc:ERROR:Too many sequential missing servo headers

mc:ERROR:Too many missing servo headers on track

mc:ERROR:Too many missing servo headers

mc:ERROR:Too many sequential bad blocks

mc:ERROR:Too many bad blocks on a track

mc:ERROR:Too many bad blocks
These messages occur during formatting. When formatting fails
for one of these reasons, try bulk erasing the cartridge and refor­
matting. If this fails, try another cartridge.

mc:ERROR:Block 0 medium error
This error results when, during tape state determination, the first
tape block has a medium error which is not recoverable by
either redundant correction or ECC. Normally the cartridge
should be reformatted or discarded. If the cartridge has a
backup on it, try using a different drive to read the tape.

If this message persists for multiple cartridges, the tape drive’s read
circuitry may be out of adjustment, or there may be an incompatibility
between the floppy controller’s data separator circuit and the tape
drive. When running on a Micro Channel machine, the problem can
be overcome by adding the following line to the /etc/default/mcconfig
file:

i r o p t = I

This enables an algorithm known as "wait-for-index."

mc:ERROR:Defect list has unrecoverable error
This message is displayed when both copies of the relocation
table (kept in the second and third good tape blocks) have unre­
coverable medium errors or are otherwise corrupt.

mc:ERROR:Defect list corrupt
This message is displayed if an error is found in the primary
defect list kept in block 0. Reformat the tape.

mc:ERROR:Daemon not started
The tape driver uses a single daemon process to encode ECC
during tape write operations and recover data with ECC during
tape reads. When this message occurs, execute /etc/mcdaemon
and retiy the tape operation.

28 March 1991 Page 20

MESSAGES (M) MESSAGES (M)

mc:ERROR:Timeout reading controller result
mc:ERROR:Timeout writing controller command
The driver accesses the tape drive by sending commands to and
reading results from a floppy controller chip. These messages
are displayed when the controller will not accept a command or
return results in the manner expected by the driver. Floppy con­
troller access timeouts may indicate a driver conflict. For
instance, a diskette driver may be accessing the floppy control­
ler chip at the same time as the tape driver.

mc:ERROR:Unrecognized controller error
This message indicates the floppy controller has returned an
error code which is not in a list kept by the tape driver. Causes
might be defective hardware, or a new floppy controller chip.
This error message has yet to be seen.

mc:ERROR:State machine hung
The driver will enter the hung state when an unexpected event
occurs. The hung state is cleared when the device file is first
closed, then reopened. Causes for this condition are:

• A hardware defect, or

• another device driver is accessing the floppy controller,
or

• some system function or driver has kept interrupts dis­
abled for an excessive period of time.

mc:ERROR:DMA attempt past end of cylinder
This error occurs the floppy controller receives a DMA data
transfer request after data for a given tape block has been
transferred.

The message may indicate a hardware problem or an error in driver
programming. The message can appear when another device driver
attempts use the tape drive’s DMA channel while in use by the tape
driver. This message has been seen on XT class machines which are
fitted with certain early Advanced Micro Devices (AMD) DMA con­
trollers. These controllers have a defect which doesn’t allow con­
current DMA accesses (on different channels) by the tape and hard
disk.

mc:ERROR:Write protected
The "Write protected" message appears when an attempt is
made to write a write protected cartridge. Writing includes both
formatting and back-up operations. Check the cartridge write
protect silder. It must be in the RECORD position before the
tape can be written. When a cartridge is inserted with the slider
in the RECORD position, the slider presses against the lever of
a microswitch. TTie switch is one of two visible in the mouth of
the drive and is the closest to the circuit board. The slider’s

28 March 1991 Page 21

MESSAGES (M) MESSAGES (M)

pressure closes the (normally open) micro switch which, in turn,
enables write circuitry in the drive. If the "Write protected"
message persists, the switch lever may be bent, the switch may
be electrically noisy, or the switch or associated write circuitry
may be defective.

mc:ERROR:No ID address mark
A "No ID address mark" is used internally by the driver and
does not normally appear. "IDMARK" may be seen when
debugging of data transfers is enabled. The error normally
appears when tape block’s servo header is weak or missing.
This error will also occur when the "read data" signal path is
broken or defective. When applicable, check the cable which
connects the tape drive to the floppy controller (try a substitute).

mc:ERROR:Request timed out
This message occurs when the drive’s BUSY (i.e., TRACK 0)
line remains active for more than a certain period. Typically
two minutes for data transfers. (Yet to be implemented.)

mc:ERROR:DMA boundary error
A "DMA boundary error" messages indicate an an attempt to
program the DMA controller to transfer data which crosses a
64K physical memory boundary in an AT class machine. This
may be due to an error in programming.

mc:ERROR:Cylinder not found
This code is returned by the floppy controller chip and used
internally by the driver. It is not returned to a program by the
driver interface.

mc:ERROR:No data address mark
Each sector is comprised of an ID field and a data field. The
data address mark is used by the controller to identify the start
of a data field. The "No data address mark" message is dis­
played as the result of a read error. However, the cause of the
error is related to writing the tape. When this message persists
for different tapes after writing then reading, there may be
defect somewhere in the write circuitry. The write circuitry
includes the floppy controller, the WRITE DATA signal line at
the floppy controller/tape drive interface and the write circuitry
internal to the tape drive. If data needs to be recovered from a
tape, try a different drive.

mc:ERROR:DMA overrun
Tape data transfers between the floppy controller and memory
are accomplished using the services of a special chip called the
Direct Memory Access (DMA) controller. When the floppy
controller needs to transfer a data byte to or from its register, it
activates a hardware signal called the DMA Request line
(DRQ). This tells the DMA that its time to move a data byte.
When the memory bus is available the DMA controller responds

28 March 1991 Page 22

MESSAGES (M) MESSAGES (M)

by activating the appropriate bus signals to transfer the data
byte. Upon completion of the transfer, the DMA controller
activates a DMA Acknowledge (DACK) line to inform the
floppy controller.

DMA Overrun errors result when the DMA controller is too slow in
responding to a floppy controller data transfer request.

Most floppy controllers are sensitive to slow DMA response. At a 500
KHz data transfer rate (i.e., the transfer rate used by 125, 145, 165,
285 drives) the DMA controller must respond with in 13
microseconds.

In some cases DMA Overruns can be cured by not printing to the
screen during tape operations. Try "silent" modes.

In most cases DMA Overruns are stopped by attaching the tape drive
to a floppy adapter which has a first-in-first-out (FIFO) buffer. The
FIFO is part of the floppy controller chip. Intel 82072 and 82077 con­
troller chips have FIFOs. Certain Adaptec AT class controllers have
the 82072 (those with a ’B’ suffix). Both the Irwin 4100 (for AT class
machines) and 4100MC (Micro Channel) tape adapters employ the
82077.

mc:ERROR:Memory address conversion error
The "Memory address conversion error" message occurs, when
the driver encounters an error converting a logical (or virtual)
memory address to a physical memory address. In 80286 sys­
tems this message might mean the system is out of selectors.

mc:ERROR:Controller not found
When the driver’s tape drive search debug option is enabled, the
"Controller not found" message is given for each controller
which has been tested for presence but not found.

mc:ERROR:Equipment fault
An "Equipment fault" error is generated when a selected drive
sets the equipment fault signal line. As this line is wired to an
inactive state at the floppy controller chip, this error might indi­
cate a controller hardware error. This error has not yet been
seen.

mc:ERROR:Drive not ready

mc:ERROR:Medium changed
The driver polls the tape drive for cartridge presence and change
status. The tape drive senses cartridge presence and removal
using a "cartridge present" microswitch. The switch is one of
two visible in the mouth of the drive and is the furthest from the
circuit board. When a cartridge is present, it presses the micro
switch lever causing the switch to close. When a new cartridge
is inserted, the tape is brought to load-point. For some drives,

28 March 1991 Page 23

MESSAGES (M) MESSAGES (M)

the load-point operation is automatically performed on cartridge
insertion. For others, the driver issues the load-point command
to the drive. When either the "Drive not ready" or "Medium
changed" messages is seen and the cartridge is known to be
present or not changed, there may be a defect in the cartridge
present microswitch. The switch might have a bent lever, or
may be electrically disconnected or noisy, to be found.

mc:ERROR:Erase failure
Some 145 Irwin tape drives support an erase feature. It is
recommended that this feature not be used. Erasing is done by
applying a DC bias to the tape head, repeatedly spooling the
tape from end-to-end and stepping the head 1/4 of a track at the
end of each repetition. The "Erase failure" message appears
when the drive does not support the erase feature.

mc:ERROR:Seek track error
This code is used internally by the driver. If displayed, there
may be an error in programming.

mc:ERROR:Track following error
A track following error results when no index signals are
received from the controller. The following are possible causes:

• The cartridge is erased (no servo tracks and not format­
ted).

• The cartridge was formatted on a higher density tape
drive and is not recognized in a lower density drive. For
example an 80 MB cartridge (formatted on a 285 drive)
in early 145 drive.

• The tape is despooled (examine the cartridge)

• The INDEX signal line may be broken or the cable which
connects the tape drive to die controller.

• The main tape driving motor in the drive is not spinning.
Check that the tape driving capstan (the rubber wheel
visible in the mouth of the tape drive) spins freely. If the
capstan cannot be rotated with a finger, check for an
obstruction in the area of the main flywheel/rotor on the
side of the drive opposite to the printed circuit board. If
the motor spins freely, the motor fuse may be blown. The
fuse is soldered in. Send the drive in to Irwin for repair.

mc:ERROR:Too many outstanding interrupts
When the driver receives an interrupt, it enters a loop in which
the initial interrupt and additional hidden interrupts are ser­
viced. To prevent infinite looping in the interrupt handler, four
iterations are allowed. On the fifth iteration, file driver stops
processing and enters a hung state. If a request is in service, the

28 March 1991 Page 24

MESSAGES (M) MESSAGES (M)

"Too many outstanding interrupts" message is displayed. This
condition has yet to be seen.

mc:ERROR:Error on sense interrupt status

mc:ERROR:Sense drive status failure
When the tape driver receives an interrupt, it retrieves the con­
tent of both the floppy controller interrupt status and the drive
status registers. Interrupt status is used to determine the inter­
rupt type. Drive status tells the state of signal lines at the floppy
interface cable. If retrieval of either of these status registers
fails, the appropriate message is displayed if a tape transfer
request is active. These messages may caused by faulty floppy
arbitration programming. That is, both the tape and diskette
drivers are communicating with the floppy controller con­
currently.

mc:ERROR:Floppy controller reset failure
When the tape driver gains owner ship of the floppy controller,
it starts a floppy controller reset procedure. When the procedure
cannot be completed successfully, this message will be dis­
played if a tape data transfer request being processed.

mc:ERROR:Error sending command to drive
The driver uses two floppy controller signal lines to both com­
municate with the tape drive and control tape motion. "Pulse"
commands are sent by the driver to the tape drive on the STEP
signal line. In turn, the tape drive responds by either activating
or deactivating the TRACK 0 line. When the "Error sending
command to drive" message appears, the controller did not
accept the command to send STEP pulses. Typically this mes­
sage is generated when two drivers are using the floppy control­
ler concurrently. That is, there is a failure in floppy ownership
arbitration.

mc:ERROR:Error starting data transfer
"Error starting data transfer" is displayed when the driver fails
to setup the floppy controller chip at the start of a
read/write/format operation. This error may indicate a tape
driver/diskette driver conflict. That is, both drivers may be
using the floppy controller concurrently.

mc:ERROR: Vector installation failure
This message indicates the driver could not install its interrupt
vector. It may indicate an error in programming.

mc:ERROR:Unexpected interrupt
An "Unexpected interrupt" occurs when the tape driver is in a
state in which it is not expecting an interrupt from the floppy
controller. If this message is seen, there may be a tape
driver/diskette driver conflict or a noisy interrupt line.

28 March 1991 Page 25

MESSAGES (M) MESSAGES (M)

mc:ERROR:Intemal error
’’Internal error" may be an indication of an error in driver pro­
gramming.

mc:ERROR:Request aborted
"Request aborted" is a message used internally by the driver.
When seen, there may be a an error in driver programming.

mc:ERROR:Bad operation code

mc:ERROR:Bad device number

mc:ERROR:Bad block address

mc:ERROR:Bad count
These messages, in general, indicate an error in driver program­
ming. When tape drive search debugging is enabled (irdbg=s),
it is normal for the "BADDEV" message to be displayed for the
alternate floppy controller (ALTFDC). By default, the BAD­
DEV error code is set in low level controller searching algo­
rithms to prevent testing for drive presence on this controller.
Testing for drives on an alternate controller (other than a 4100)
is explicitly enabled by user configuration (d\lf<\c-config).

mc:ERROR:No servo
The "No servo" message is synonymous with the message
"Track following error."

mc:ERROR:Servo but no sector format
Normally "Servo but no sector format" means that a cartridge
has servo written but no sector ID’s have been written. The
message is displayed at the completion of tape state determina­
tion. Tape state determination is the first operation performed
for a freshly inserted cartridge. Tape state determination
includes up to 5 tries at reading block zero -- the first block on
the tape. When a cartridge is known to have been correctly for­
matted, this message may indicate a defect somewhere in the
read data signal path. Included in the read data signal path are
the tape drive’s head and read circuitry, the cable which con­
nects the drive to the controller, and the floppy controller’s data
receiving and separator circuit.

mc:ERROR:Block 0 corrupt
A "Block 0 corrupt" message is displayed when the driver does
not recognize the data in the first sector on the tape (i.e., the
physical tape header). This may be the result of incomplete for­
matting or a tape which was written by another tape driver.

mc:ERROR:Defect list has unrecoverable error
This message is displayed when both copies of the relocation
table (kept in the second and third good tape blocks) have unre­
coverable medium errors or are otherwise corrupt.

28 March 1991 Page 26

MESSAGES (M) MESSAGES (M)

When this message is displayed on the first backup after drive installa­
tion in a Micro Channel machine, the wait-for-index algorithm may be
need to be enabled.

mc:ERROR:Block merge failure
The tape driver writes only füll tape blocks. Since system
blocks are smaller (usually 512 through 10 KB) are smaller than
than tape blocks (8, 16, or 29 KB) a block merging operation is
occasionally performed. A merging operation typically takes
place at the end of a tar backup or the start of a tar append. This
operation involves reading the medium copy of the tape block,
partially overlaying the tape block data with user data, append­
ing ECC sectors and finally writing the block back to tape. A
"Block merge failure" message is displayed when some part of
the operation fails.

mc:ERROR:Block allocation failure
This message is displayed, when during a write relocation
operation, no spare block can be allocated. The driver keeps a
count of free spare blocks and will not attempt block relocation
when the count is zero. Therefore, this message indicates the
defect lists associated with block relocation are most probably
corrupt.

mc:ERROR:Block relocation failure

mc:ERROR:Maximum block relocation tries reached
The "Maximum block relocation tries reached" message may be
displayed when three sequential attempts to relocate a given
tape block fail. This message might indicate a tape is of low
quality. It may also be the result of sector 1 errors in certain
Micro Channel machines. If this is the case, enabling the wait-
for-index algorithm may alleviate this condition (see "Block 0
medium error").

mc:ERROR:Incompatible cartridge
During reading, this message appears when the cartridge was
formatted by a higher density drive. Newer 145 drives recog­
nize cartridges servo written by by 165 (64 MB), 285 and 287
(80/120 MB) drives. Tapes are not read as the tracks are too
narrow.

During writing the "Incompatible cartridge" message appears for car­
tridges which have formatted tracks which are other than the width of
the tape head.

During formatting, this message normally occurs, when a cartridge
already has servo tracks written by a drive of a different type. The
message also appears when formatting of a blank DC-1000 (0.150 inch
wide tape) cartridge is attempted in 165, 285, or 287 drives. These
drives will only servo write quarter inch DC-2000 and DC-2120 car­
tridges.

28 March 1991 Page 27

MESSAGES (M) MESSAGES (M)

The "Incompatible cartridge" message also occurs when the tape
drive’s read circuitry is disturbed by magnetic fields generated by CRT
monitors. Strong magnetic disturbance prevents the drive from
correctly reading the "servo-type-finger-print" recorded at the begin­
ning of tape, during the load-point operation. Lower levels of distur­
bance prevent tape data from being read. It is important that external
drives be separated by a good distance from display monitors. Internal
drives may also be affected when the display monitor sits on the case.
If the computer has a plastic enclosure, try moving the monitor off the
case. Otherwise, if the computer has a metal case, try sliding the mon­
itor toward the back of the computer (away from the bezel of the tape
drive).

mc:ERROR:Timer initialization failure
This message is displayed, when during initialization, no timer
interrupts were received from the system.

mc:ERROR:Operating system call failed
This message may indicate an error in driver programming.

mc:ERROR:Invalid parameter
The "Invalid parameter" message is associated with incorrect
parameters passed by ioctl calls. If this message is seen, there is
either an error in the application making the call or the driver.

mc:ERROR:Device busy

mc:ERROR:Device busy formatting

mc:ERROR:Device performing diagnostic
If these messages appear the device is in use by another task.
Try again later.

mc:ERROR:Read after write miscompare
At the end of the first backup, the driver will checksum the last
block written, read the block, re-checksum the block and com­
pare the checksums. If the checksums don’t match, the "Read
after write miscompare" message is displayed.

When this message occurs the following should be checked: If the
tape drive is connected to an Irwin 4251 floppy extender board which
is, in turn, connected to a DTC (Data Technology Corporation) hard
disk/floppy disk controller, check the jumper pins on the 4251 board.
In the "as shipped from the factory" state, the AO, A2, and A3 pin pairs
are jumpered, and the A7 pin pair has a spare jumper (stored on one
pin of the pair). If the jumpers are in this "as shipped" state, reinstall
the A7 jumper to connect the pin pair. Typically this change will
allow tapes to be correctly written.

The "Read after write miscompare" message will also be displayed if
either the "write data" or "write gate" signal lines in the (when applica­
ble) cable which connects the tape drive to floppy controller are

28 March 1991 Page 28

MESSAGES (M) MESSAGES (M)

broken. Check the cable connection.

Cartridge Driver Messages
ct:ERROR:Tape controller (type=name) not found

The Controller specified in in the file lusrlsyslio/ctconf.asm was
not found.

ct:ERROR:Cartridge tape is write protected
You must remove the write protect tab from the cartridge before
use.

ct:ERROR:system too busy for efficient tape use
There is not enough user memory available to allow the device
to work.

ct:WARNING:attempted to free invalid buffer
The driver attempted free a buffer that was not active. The buffer
must be activated before use.

SCSI Driver Messages
scsi:ERROR:No controller response :num

Requested controller is not present on SCSI bus num. Check
your system setup and connections.

scsi:ERROR:CTLR num LUN man not attached
Requested unit not present on controller. Check your system
setup.

scsi:ERROR:CTLR num LUN mim:invalid type <num>,
Requested unit is not a disk or tape. Disk and tape and printer
are currently the only supported SCSI devices.

scsi:ERROR:CTLR num LUN numrdevice not ready, ctlr, x);
Requested device is busy.

scsi:ERROR:adstrategy:device/type error Oxtype/Oxtype
Internal error - open device is not disk, tape or printer.

scsi:ERROR:adioctl:ADMODESENSE re num host num unit num
ioctl sense command did not complete as expected.

scsi:WARNING:adioctl:ADEXECUTE rc num host num unit num
ioctl execute command did not complete as expected.

scsi: INFO: adioctl reassigned
ioctl bad block mapping completed (done in pairs)

28 March 1991 Page 29

MESSAGES (M) MESSAGES (M)

scsi:WARNING:adsetparam:ADMODESENSE rc num host num unit
num
Mode sense command did not complete as expected.

scsi:ERROR:adgetcdb:unsupported command num
Internal error - unexpected command.

scsi:WARNING:adintr:adapter num SR_DETECTED status=nwm,
intr-num
SCSI reset detected.

scsi:WARNING:Unexpected MBI status num
Unexpected condition after interrupt.

scsi:WARNING:ad_sndcmd:unexpected port status = num
Unable to send command to adapter.

scsi:ERROR:adpresent:Adapter num internal failurerwwm
Adapter returned bad status on initialization.

scsi:ERROR:on disk dev=num/num ha=num id-num lun=/w//w
block-num sector-num, cylinder/head = num/num
Disk I/O failure.

scsi:ERROR:on tape ha=num id=num lun=num hst num ust num
AHA-1540 cmd :num [num...]
AHA-1540 sense :num [num...]

Tape I/O failure; followed by one of these messages:

end of tape
tape is write protected
wrong record length

Disk Driver Messages
disk:ERROR:Diskinfo table overflow

Too many disk drives in use - reconfigure kernel to increase the
available number of disks.

disk:ERROR:Invalid partition sector on hard disk
Master boot block on disk is unrecognizable. Run fsck(ADM).

Floppy Driver Messages
floppy:WARNING:CMOS indicates no diskette drives installed

Configuration memory invalid - run your DOS SETUP disk.

floppy:WARNING:CMOS indicates diskette drive num not present
Configuration memory invalid - run your DOS SETUP disk.

28 March 1991 Page 30

MESSAGES (M) MESSAGES (M)

floppy:ERROR:fdm/m being formatted
The floppy drive is in use.

floppy: ERROR: disk is write protected
The disk cannot be written because it is protected.

floppy:ERROR:on dev (num/num), block=num cmd-num status=m/m
Floppy I/O failure, possibly followed by the message:
insert disk or close floppy door
if appropriate.

floppy:WARNING:cmd result error
I/O error on the floppy drive.

VPIX Messages

VPIXxommand completed unexpectedly
Process terminated prematurely.

OMTI Driver Messages

omti:ERROR:cannot allocate a GDT descriptor
Internal error - kernel dscralloc routine failed.

omti:ERROR:\xmt=num controller not configured
Internal error - driver open failed to identify disk type.

omti:WARNING:already busy
Internal error - omtistart called for a busy drive.

omti:ERROR:unknown command(/zw/n), bp->b_cmd
Internal error - omtistart encountered an unrecognized com­
mand.

omti:ERROR:command setup failed
Controller failed to accept command.

omti:WARNING:non-omti interrupt (num), omti_status
Controller did not signal an interrupt when an interrupt was
received.

omti:WARNING:unexpected omti interrupt (num), omtLstatus
Internal error - no pending command when interrupt received.

omti:WARNING:still busy
Controller still busy after generating an interrupt.

omti:ERROR:during omtLsense
Interrupt received during an OMTI sense command.

28 March 1991 Page 31

MESSAGES (M) MESSAGES (M)

omti:ERROR:initialization failure
Error indicated during an initialization.

omti:ERROR:sense command setup failed
Controller failed to accept setup command.

omti: ERROR: mmor=num, block=nwm, errtype=«wm, code=num,
xmit=num [sector-num, cylinder/head=«ww/«wm,] <message>
Disk I/O failure. <message> is one of:

No error or no sense information,
No Index,
No Seek/Command Complete,
Write/Drive Fault,
Drive Not Selected/Not Ready,
No Track zero or Cylinder zero found,
Multiple Drives Selected,
Seek/Command in progress,
Cartridge Changed
ID CRC,
Uncorrectable Data ECC,
ID Address Mark Not Found,
Data Address Mark Not Found,
Sector Not Found,
Seek Error,
Sequence/DMA,
Write Protected,
Correctable ECC,
Bad Track Encountered,
Illegal Interleave Factor,
Unknown Error,
Illegal Access To An Alternated Track/Unable to Read the Alternate
Track Address,
Alternate of Bad Track Already Assigned,
No Alternate Track Found,
Illegal Alternate Track Address
Invalid Command,
Illegal Disk Address,
Illegal Function for Drive Type,
Volume Overflow
RAM error,
EPROM Checksum/Intemal Diagnostic error
Error with unknown type or code

omti:ERROR:controller already in select state
Internal error - controller busy when sending command.

omti:ERROR:cannot enter command phase
Controller failed to accept select command.

28 March 1991 Page 32

MESSAGES (M) MESSAGES (M)

omti:ERROR:C_D bit stuck off
Controller failed to indicate readiness for command.

omti:ERROR:OMTI_BUSY bit still stuck on
Controller failed to obey reset command.

omti:INFO:unloading all requests
Preparing for manual reset because programmed reset did not
work.

omti:WARNING:colliding polling routines ...
Internal error - multiple instances of omtipoll.

omti:ERROR:timed out
Expected interrupt did not arrive.

omti:ERROR:please use sfmt to modify disk parameters
Attempt to write disk characteristics directly with DIOWDISK
ioctl.

Serial Driver Messages
serial:ERROR:Garbage or loose cable on dev num, port shut down

Too many interrupts were received together. Check your con­
nections.

Winchester Driver Messages
wd:ERROR:on fixed disk dev=num/num b\ock=num cmd=num

status=/iwm sector=nwm, cylinder/head = num/num
Disk I/O failure.

Event Driver Messages
event:ERROR:event channel full

There are no more devices available in the event queue.

event:ERROR:event table full
All of the system’s event queues are opened.

Keyboard Driver Messages
kb:ERROR:keyboard is in an unknown mode

The keyboard has been set in an invalid mode through an ioctlQ.
The only valid keyboard modes are XT (0) and AT(1).

28 March 1991 Page 33

MESSAGES (M) MESSAGES (M)

Notes
Some messages are processor dependent.

28 March 1991 Page 34

MESTBL (M) MESTBL (M)

Name
mestbl - Create a messages locale table.

Syntax
mestbl [specfile]

Description
The utility mestbl is provided to allow LC MESSAGES locales to be
defined. It reads in a specification file (or standard input if specfile is
not defined), containing a definition for a particular locale’s response
strings to yes/no queries, and produces a concise format table file, to
be read by setlocale(S).

The response strings may be specified as a string held within double
quotes or as a series of characters which are specified in one of six dif­
ferent ways (the following examples all specify the ASCII character
’A’):

65 - decimal
0101 - octal
0x41 - hexadecimal
’A’ - quoted character
MOl’ -quotedoctal
’\x41’ - quoted hexadecimal

or a combination of both methods, for example:

y "es"

is identical to:

"yes"

To specify the response strings, the above string definitions must be
preceded by the keyword YESSTR= for affirmative responses, and
NOSTR= for negative responses.

All characters following the hash character are treated as a comment
and ignored up to the end of the line, unless the hash is within a
quoted string.

The concise format locale table is placed in a file named messages in
the current directory. This file should be copied or moved to the
correct place in the setlocale (S) file tree (see locale (M)). To prevent
accidental corruption of the output data, the file is created with no
write permission; if the mestbl utility is run in a directory containing a
write-protected “messages” file, the utility will ask if the existing file

28 March 1991 Page 1

MESTBL (M) MESTBL (M)

should be replaced - any response other than “yes” or “y” will cause
mestbl to terminate without overwriting the existing file.

See Also
chrtbl(M), montbl(M), coltbl(M), locale(M), numtbl(M), timtbl(M),
setlocale(S)

Diagnostics
All error messages printed are self explanatory.

28 March 1991 Page 2

MONTBL (M) MONTBL (M)

Name

montbl - Create a currency locale table.

Syntax

montbl [specfile]

Description

The utility montbl is provided to allow new LC_MONETARY locales
to be defined; it reads a specification file, containing a definition of
the currency symbol for a particular locale, and produces a binary
table file, to be read by setlocale (S), which determines the behavior of
the nl_langinfo(S) routine.

The information supplied in the specification file consists of a line in
the following format:

CRNCYSTR = string

The “ = ” can be separated from the keyword and string fields by zero
or more space or tab characters.

The string is a sequence of characters surrounded by quotes ("). The
first character of die string should be if the symbol is to precede
the currency value, or “+” if it should appear after the value. Charac­
ters within the string can be specified both literally and using “ \ ”
escapes; the following three strings are equivalent:

"+DM" literal
"+\x44M" hexadecimal escapes
”+D\l 15" octal escapes

All characters following a hash (#) are treated as a comment and
ignored up to the end of the line, unless the hash is within a quoted
string.

The binary table output is placed in a file named currency , within the
current directory. This file should be copied or linked to the correct
place in the setlocale file tree (see locale {M)). To prevent accidental
corruption of the output data, the file is created with no write permis­
sion; if the montbl utility is run in a directory containing a write-
protected currency file, the utility will ask if the existing file should be
replaced - any response other than “yes” or “y” will cause montbl to
terminate without overwriting the existing file.

If the specfile argument is missing, the specification information is
read from the standard input.

28 March 1991 Page 1

MONTBL (M) MONTBL (M)

See Also
chrtbl(M), locale(M), msgtbl(M), nl_langinfo(S), numtbl(M),
setlocale(S), timtbl(M)

Diagnostics
If the input table file cannot be opened for reading, processing will ter­
minate with the error message, “Cannot open specification file”.

Any lines in the specification file which are syntactically incorrect, or
contain an unrecognized value instead of CRNCYSTR will cause an
error message to be issued to the standard error output, specifying the
line number on which the error was detected. The line will be
ignored, and processing will continue.

If the output file, currency, cannot be opened for writing, processing
will terminate with the error message, “Cannot create table file”.

Any error conditions encountered will cause the program to exit with
a non-zero return code; successful completion is indicated with a zero
return code.

28 March 1991 Page 2

MSCREEN (M) MSCREEN (M)

Name

mscreen - Serial multiscreens utility.

Syntax

mscreen [-s] [-n number] [-t]

Description

mscreen allows a serial terminal to have multiple login screens similar
to the multiscreen(M) console.

Note: For full mscreen support the terminal must have the ability to
switch internal screen pages on command and it must retain a separate
cursor position for each screen page.

The options are used as follows:

-s Silent mode. This flag suppresses the startup messages,
and on “dumb” terminals it suppresses the screen switch
messages

-n Selects the number of serial multiscreens desired up to the
maximum defined for the terminal type.

-t Disables the transparent tty checking, mscreen normally
exits silently if the terminal device name starts with the
characters “ttyp”. Device names beginning with “ttyp”
are used as slave devices for mscreen. The correct names
for the master tty devices begin with “ptyp”.

mscreen can be used on both “ smart” and “dumb” terminals.
Although it is optimized to take advantage of smart terminals with
screen memory, mscreen also works on dumb terminals, although the
screen images are not saved during screen changes, mscreen also sup­
ports terminals with two (or more) serial ports that are connected to
different computers.

mscreen is designed to be invoked from the .profile or .login files. Use
mscreen in place of the SHELL variable so that serial multiscreens
can be automatic at login time. The “stop” and “quit” keys allow you
to logout from all screens with a single keystroke.

Configuration

mscreen determines the terminal type of the terminal it is invoked
from by examining the environment variable TERM, mscreen looks
in /etc/mscreencap or in the filename contained in the environment

28 March 1991 Page 1

MSCREEN (M) MSCREEN (M)

variable MSCREENCAP to get the capabilities for the terminal type.

The pseudo terminals assigned to the user are automatically deter­
mined at startup by mscreen. Manual assignment of ttys can be
accomplished by creating a file in the user’s home directory called
.mscreenrc.

mscreencap format
mscreencap contains an entry for each terminal type supported. An
entry may have several names if the support for several terminal types
are the same. Within an entry are the key mappings for each potential
pseudo terminal. Each pseudo terminal has a help key string, an input
string (the sequence generated by the key that selects this screen), and
an optional output string (the sequence to send to the terminal that
will cause a page switch). The input and output strings are in a
termcap like format: (the backslash and caret are special lead in
(escape) characters)

\nnn an octal number, one to three digits are allowed
\n newline
\r carriage return
\t tab
\b backspace
\ f form feed
\E escape (hex lb octal 33).
\ enter backslash as a data character
V enter caret as a data character
VX ctrl-X where X can be: @ABCDEFGHUKLM-

NOPQESTUVWXYZ[r_ effectively the caret
can generate hex 01 through hex If.

If a terminal type has no output strings then it is assumed to be a dumb
terminal that does not have multiple internal memory pages.

There are five special entries that allow the user to define keys to sup­
port the other functions of mscreen. They are the help key (which
prints a list of all of the keys that are currently available and their
functions), the who key (prints the name of the current screen), the
stop key (terminates mscreen and returns a good (zero) shell return
code), and quit key (terminates mscreen and returns a bad (non-zero)
shell return code and the dummy entry that is used for terminals with
multiple ports.

The format is:

28 March 1991 Page 2

MSCREEN (M) MSCREEN (M)

t h i s i s a comment a n d may o n ly a p p e a r b e tw e e n e n t r i e s
e n t r y n a m e |a l i a s 1 | a l i a s 1 . . . | a l i a s n :

: s p e c ia ln a m e , h e lp n a m e , i n p u t s t r i n g , p a g e s e l e c t s t r i n g :
: s p e c i a l n a m e , h e l p n a m e , i n p u t s t r i n g , p a g e s e l e c t s t r i n g :

e n t r y n a m e | a l i a s l | a l i a s l . . . | a l i a s n :
: s p e c ia ln a m e , h e lp n a m e , i n p u t s t r i n g , p a g e s e l e c t s t r i n g :
: s p e c ia ln a m e , h e lp n a m e , i n p u t s t r i n g , p a g e s e l e c t s t r i n g :

The specialname is empty for real screen entries. See the provided
/etc/mscreencap for examples.

.mscreenrc format

•mscreenrc contains a list of ttynames if the user wants to allocate a
fixed set of ttys for use:

ttypO
ttypi
ttypn

Shell return codes and auto login/logout

mscreen exits with a bad (non-zero) return code if there is an error or
when the “quit” key is pressed. The “stop” key causes mscreen to
exit with a good (zero) return code. This allows users to place mscreen
in the .login or .profile files. The .login or .profile files should set up an
automatic logout if the mscreen return code is good (zero). The fol­
lowing is a csh sample invocation of mscreen for a .login file:

mscreen -n 4
if ($status = 0) logout

The single key logout feature of mscreen works as if a normal logout
was entered on each pseudo-terminal. A hangup signal is sent to all of
the processes on all the pseudo terminals.

Multiple Port Option

mscreen provides a dummy entry type. It allows mscreen to be placed
in an inactive state while the user uses his terminal to converse
through another (physical) io port to another computer, see the pro­
vided /etc/mscreencap for an example. To be used, you must take the
example and configure it for your needs.

mscreen Driver

The mscreen driver is already installed in the XENIX kernel with eight

28 March 1991 Page 3

MSCREEN (M) MSCREEN(M)

pseudo terminals available for use. You must enable a pseudo termi­
nals to use it. See the link-kit instructions for relinking the kernel to
have more available pseudo terminals.

Notes
mscreen has a VTIM timeout of 1/5 second for input strings.

mscreen has a limit of twenty multiscreens per user.

You should not switch screen pages in mscreen when output is occur­
ring because if an escape sequence is cut in half it may leave the ter­
minal in an indeterminate state and distort the screen image.

Terminals that save the cursor location for each screen often do not
save states such as insert mode, inverse video, and others. For exam­
ple, you should not change screens if you are in insert mode in vi, and
you should not change screens during an inverse video output
sequence.

For inactive screens (screens other than the current one) mscreen
saves the last 2048 characters of data (2K). Data older than this is
lost. This limit occasionally results in errors for programs that require
a memory of more data than this. The application-defined screen
redraw key restores the screen to normal appearance.

mscreen depends on the pseudo terminal device names starting with
ttyp for the slave devices and ptyp for the master devices. The number
of trailing character in the device name is not significant.

See Also
multiscreen(M), enable(C)

28 March 1991 Page 4

MULTISCREEN (M) MULTISCREEN (M)

Name

multiscreen - Multiple screens (device files)

Syntax

alt-Fn
alt-ctrl-Fn
alt-shift-Fn
alt-ctrl-shift-Fn

Description

With the multiscreen feature, a user can access up to twelve different
“screens,” each corresponding to a separate device file. Each screen
can be viewed one at a time through the primary monitor video dis-
play.

The number of screens on a system depends upon the amount of mem­
ory in the computer. The system displays the number of enabled
screens during the boot process.

Access

To see the next consecutive screen, enter:

Ctrl-PrtSc

To move to any screen from any other screen, enter:

alt-Fn or alt-ctrl-Fn or alt-shift-Fn
alt-Fn or alt-ctrl-Fn (screens 1-12)
alt-shift-Fn or alt-ctrl-shift-Fn (screens 11-16,7-12)

where n is the number of one of the “F” function keys on the primary
monitor keyboard. For example:

alt-F2

selects tty02, and all output in that device’s screen buffer is displayed
on the monitor screen.

The second form (using the SHIFT key) permits access to screens 11
and 12 on keyboards that have only ten function keys. It is also possi­
ble to configure the kernel for up to 16 screens, but 12 is the default.

The function key combinations used to display the various screens are
defined in the keyboard mapping file. The /usr/lib/keyboard/keys or
other mapkey(ADM) file can be modified to allow different key com­
binations to change multiscreens. Use the mapkey utility to create a

28 March 1991 Page 1

MULTISCREEN (M) MULTISCREEN (M)

new keyboard map.

Files

/dev/tty [01-12] multiscreen devices
(number available depends on system
memory)

See Also

mapkey(ADM), keyboard(HW), screen(HW), serial(HW), stty(C)

Notes

Any system error messages are normally output on the console device
file (/dev/console). When an error message is output, the video dis­
play reverts to the console device file, and the message is displayed
on the screen. The console device is the only teletype device open
during the system boot sequence and when in single user, or system
maintenance mode.

Limitations to the number of multiscreens available on a system does
not affect the number of serial lines or devices available. See
serial (M) for information on available serial devices.

Note that the keystrokes given here are the default for XENIX, but
your keyboard may be different If so, see keyboard^M) for the
appropriate substitutes. Also, any key can be programmed to generate
the screen switching sequences by using the mapkey utility.

28 March 1991 Page 2

NUMTBL (M) NUMTBL (M)

Name
numtbl - Create a numeric locale table.

Syntax
numtbl [table_file]

Description

This utility will create a numeric locale table to be interpreted by the
setlocale (S) system call.

The table Jile contains information about the numeric locale in a user
readable form.

At present, two pieces of information can be supplied. These are: the
character to be used as a decimal place marker (radix character), and
the character to be used as a thousands delimiter, for example the
commas in 1,000,000. To specify these, there must be lines, in the
table file, of the form:

DECIMAL=d
THOUSANDS=t

Where “d” is the character to be used as the decimal place mark and
“t” is the character to be used as the thousands delimiter. The charac­
ters “d” and “t” may be specified in six different ways. The following
lines show different formats for the letter b.

98 -decimal
0142 -octal
0x62 - hexadecimal

’b’ - quoted character
^ 1 4 2 ’ - quoted octal

’\x62’ - quoted hexadecimal

Any line starting with a hash (“#”) is treated as a comment.

The output is a file, called numeric, which is placed in the current
directory. This file is in a form which can be interpreted by the
setlocale(S) system call. For more information on where this file
should be placed, please see locale(M).

If no table file is specified, the information is taken from the standard
input. The format of the information is identical.

If either DECIMAL or THOUSANDS is not specified, its value will
default to or respectively.

28 March 1991 Page 1

NUMTBL (M) NUMTBL (M)

See Also

locale(M), environ(M)

Diagnostics

Any lines of input which are in the wrong format will cause a warning
to be issued on the terminal, but will not terminate the program.

“Character syntax error” will be issued on the terminal if the format
of the character specification does not match one of those specified
above. The program will then terminate.

If the input table file cannot be opened for reading, the program will
also terminate with the error message, “Cannot open table file”.

If the output file, numeric, cannot be opened for writing, the program
will terminate with the error message, “Cannot create numeric locale
file”.

Notes

The thousands delimiter is not currently used within any of the stan­
dard XENIX libraries or utilities, although it can be accessed by appli­
cation programs using the nl_langinfo(S) function.

The string RADIXCHAR may be used as an alternative to DECIMAL ,
and THOUSEP as an alternative to THOUSANDS , if required. These
alternatives are provided for consistency with the identifiers used by
nljanginfo (S).

28 March 1991 Page 2

PROFILE (M) PROFILE (M)

Name

profile - Sets up an environment at login time.

Description

The optional file, .profile, permits automatic execution of commands
whenever a user logs in. The file is generally used to personalize a
user’s work environment by setting exported environment variables
and terminal mode (see environ(C)).

When a user logs in, the user’s login shell looks for .profile in the log­
in directory. If found, the shell executes the commands in the file
before beginning the session. The commands in the file must have the
same format as if they were entered at the keyboard. Any line begin­
ning with the number sign (#) is considered a comment and is ignored.
The following is an example of a typical file:

Tell me when new mail comes in
MAIL=/usr/mail/myname
Add my /bin directory to the shell search sequence
PATH=$PATH:$HOME/bin
Make some environment variables global
export MAIL PATH TERM
Set file creation mask
umask 22

Note that the file /etc/profile is a system-wide profile that, if it exists,
is executed for every user before the user’s .profile is executed.

Files

$HOME/.profile
/etc/profile

See Also

env(C), login(M), mail(C), sh(C), stty(C), su(C), environ(M)

28 March 1991 Page 1

SXT(M) SXT(M)

Name
sxt - Pseudo-device driver

Description
Sxt is a pseudo-device driver that interposes a discipline between the
standard tty line disciplines and a real device driver. The standard dis­
ciplines manipulate virtual tty structures (channels) declared by the
sxt driver. Sxt acts as a discipline manipulating a real tty structure
declared by a real device driver. The sxt driver is currently only used
by the shl(C) command.

Virtual ttys are named /dev/sxt??? and are allocated in groups of up
to eight. To allocate a group, a program should exclusively open a file
with a name of the form /dev/sxt??0 (channel 0) and then execute a
SXTIOCLINK ioctl call to initiate the multiplexing.

Only one channel, the controlling channel, can receive input from the
keyboard at a time; others attempting to read will be blocked.

There are two groups of ioctl {S) commands supported by sxt. The
first group contains the standard ioctl commands described in
termio (M), with the addition of the following:

TIOCEXCL Set exclusive use mode: no further opens are permit­
ted until the file has been closed.

TIOCNXCL Reset exclusive use mode: further opens are once
again permitted.

The second group are directives to sxt itself. Some of these may only
be executed on channel 0.

SXTIOCLINK Allocate a channel group and multiplex the
virtual ttys onto the real tty. The argument is
the number of channels to allocate. This com­
mand may only be executed on channel 0.
Possible errors include:

EINVAL The argument is out of range.

ENOTTY The command was not issued from a
real tty.

ENXIO linesw is not configured with sxt.

EBUSY An SXTIOCLINK command has
already been issued for this real tty.

28 March 1991 Page 1

SXT(M) SXT(M)

ENOMEM
There is no system memory avail­
able for allocating the virtual tty
structures.

EBADF Channel 0 was not opened before
this call.

SXTIOCSWTCH Set the controlling channel. Possible errors
include:

EINVAL An invalid channel number was
given.

EPERM The command was not executed
from channel 0.

SXTIOCWF Cause a channel to wait until it is the control­
ling channel. This command will return the
error, EINVAL, if an invalid channel number is
given.

SXTIOCUBLK Turn off the loblk control flag in the virtual tty
of the indicated channel. The error EINVAL
will be returned if an invalid number or chan­
nel 0 is given.

SXTIOCSTAT Get the status (blocked on input or output) of
each channel and store in the sxtblock structure
referenced by the argument. The error
EFAULT will be returned if the structure can­
not be written.

SXTIOCTRACE Enable tracing. Tracing information is written
to the console. This command has no effect if
tracing is not configured.

SXTIOCNOTRACE Disable tracing. This command has no effect if
tracing is not configured.

Files
/dev/sxt??[0-7] virtual tty devices
/usr/include/sys/sxt.h driver specific definitions

See Also
shl(C), stty(C), ioctl(S), open(S), termio(M)

28 March 1991 Page 2

SYSTTY (M) SYSTTY (M)

Name
systty - System maintenance device.

Description

The file /dev/systty is the device on which system error messages are
displayed. The actual physical device accessed via /dev/systty is
selected during boot, and is typically the device used to control the
bootup procedure. The default physical device /dev/systty is deter­
mined by boot(HW) when the system is brought up.

Initially /dev/console is linked to /dev/systty.

Files
/dev/systty

See Also

boot(HW), console(M)

28 March 1991 Page 1

TERMCAP (M) TERMCAP (M)

Name

termcap - Terminal capability data base.

Description

The file /etc/termcap is a data base describing termiruds. This data
base is used by commands such as v/(C), vsh(C), Lyrix , Multiplan1111
and sub-routine packages such as curses (S). Terminals are described
in termcap by giving a set of capabilities and by describing how
operations are performed. Padding requirements and initialization
sequences are included in termcap.

Entries in termcap consist of a number of fields separated by colons
The first entry for each terminal gives the names that are known

for the terminal, separated by vertical bars (I). For compatibility
with older systems the first name is always 2 characters long. The
second name given is the most common abbreviation for the terminal
and the name used by vi (C) and ex(C). The last name given should be
a long name fully identifying the terminal. Only the last name can
contain blanks for readability.

Capabilities (including XENIX Extensions)

The following is a list of the capabilities that can be defined for a
given terminal. In this list, (P) indicates padding can be specified, and
(P*) indicates that padding can be based on the number of lines
affected. The capability type and padding fields are described in
detail in the following section “Types of Capabilities. ”

The codes beginning with uppercase letters (except for CC) indicate
XENIX extensions. They are included in addition to the standard
entries and are used by one or more application programs. As with the
standard entries, not all modes are supported by all applications or ter­
minals. Some of these entries refer to specific terminal output capa­
bilities (such as GS for “graphics start”). Others describe character
sequences sent by keys that appear on a keyboard (such as PU for
PageUp key). There are also entries that are used to attribute special
meanings to other keys (or combinations of keys) for use in a particu­
lar software program. Some of the XENIX extension capabilities have
a similar function to standard capabilities. They are used to redefine
specific keys (such as using function keys as arrow keys). The exten­
sion capabilities are included in the /etc/termcap file, as they are
required for some XENIX utilities (such as vsh(C)). The more com­
monly used extension capabilities are described in more detail in the
section “XENIX Extensions.”

28 March 1991 Page 1

TERMCAP (M) TERMCAP (M)

Name Type Pad? Description
ae str (p) End alternate character set
al str a *) Add new blank line
am bool Terminal has automatic margins
as str (p) Start alternate character set
bc str Backspace if not AH
bs bool Terminal can backspace with AH
bt str (p) Back tab
bw bool Backspace wraps from column 0

to last column
CC str Command character in prototype

if terminal settable
cd str (p*) Clear to end of display
ce str (p> Clear to end of line
CF str Cursor off
ch str (p) Like cm but horizontal motion only,

line stays same
CL str Sent by CHAR LEFT key
cl str (p*) Clear screen
cm str (p) Cursor motion
CO num Number of columns in a line
CO str Cursor on
er str (p*) Carriage return, (default AM)
cs str (p) Change scrolling region (vtlOO), like cm
cv str (p) Like ch but vertical only.
CW str Sent by CHANGE WINDOW key
da bool Display may be retained above
DA bool Delete attribute string
db bool Display may be retained below
dB num Number of millisec of bs delay needed
dC num Number of millisec of cr delay needed
de str (p*) Delete character
dF num Number of millisec of ff delay needed
dl str (p*) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode
ei str End insert mode; give ':ei=:'

if ic
EN str Sent by END key
eo bool Can erase overstrikes with a blank
ff str (p *) Hardcopy terminal page eject (default AL)
Gl str Upper-right (1st quadrant) comer character
G2 str Upper-left (2nd quadrant) comer character

28 March 1991 Page 2

TERMCAP (M) TERMCAP (M)

Name Type Pad? Description
G3 str Lower-left (3rd quadrant) comer character
G4 str Lower-right (4th quadrant) comer character
GC str Center graphics character (similar to “+”)
GD str Down-tick character
GE str Graphics mode end
GG num Number of chars taken by GS and GE
GH str Horizontal bar character
GL str Left-tick character
GR str Right-tick character
GS str Graphics mode start
GU str Up-tick character
GV str Vertical bar character
hc bool Hardcopy terminal
hd str Half-line down (forward 1/2 linefeed)
HM str Sent by HOME key (if not kh)
ho str Home cursor (if no cm)
hu str Half-line up (reverse 1/2 linefeed)
hz str Hazeltine; can’t print ~’s
ic str (p) Insert character
if str Name of file containing is
im str Insert mode (enter); give ‘ :im=’ if ic
in bool Insert mode distinguishes nulls on display
ip str (p*) Insert pad after character inserted
is str Terminal initialization string
k0-k9 str Sent by ‘other’ function keys 0-9
kb str Sent by backspace key
kd str Sent by terminal down arrow key
ke str Out of ‘keypad transmit’ mode
kh str Sent by home key
kl str Sent by terminal left arrow key
kn num Number of ‘other’ keys
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in ‘keypad transmit’ mode
ku str Sent by terminal up arrow key
10-19 str Labels on ‘other’ function keys
LD str Sent by line delete key
LF str Sent by line feed key
li num Number of lines on screen or page
11 str Last line, first column (if no cm)
ma str Arrow key map, used by vi version 2 only
mi bool Safe to move while in insert mode
ml str Memory lock on above cursor
MP str Multiplan initialization string
MR str Multiplan reset string
ms bool Will scroll in stand-out mode
mu str Memory unlock (turn off memory lock)

28 March 1991 Page 3

TERMCAP (M) TERMCAP (M)

Name Type Pad? Description
nc bool No correctly working carriage return

(DM2500, H2000)
nd str Non-destructive space (cursor right)
nl str (p*) Newline character (default \n)
ns bool Terminal is a CRT but doesn’t scroll
NU str Sent by NEXT UNLOCKED CELL key
OS bool Terminal overstrikes
pc str Pad character (rather than null)
PD str Sent by PAGE DOWN key
PN str Start local printing
PS str End local printing
Pt bool Has hardware tabs

(may need to be set with is)
PU str Sent by PAGE UP key
RC str Sent by RECALC key
RF str Sent by TOGGLE REFERENCE key
RT str Sent by RETURN key
se str End stand out mode
sf str (p) Scroll forwards
sg num Number of blank chars left by so or se
so str Begin stand out mode
sr str (p) Scroll reverse (backwards)
ta str (p) Tab (other than AI or with padding)
tc str Entry of similar terminal - must be last
te str String to end programs that use cm
ti str String to begin programs that use cm
uc str Underscore one char and move past it
ue str End underscore mode
ug num Number of blank chars left by us or ue
ul bool Terminal underlines even though

it doesn’t overstrike
up str Upline (cursor up)
UP str Sent by up-arrow key (alternate to ku)
US str Start underscore mode
vb str Visible bell (may not move cursor)
ve str Sequence to end open/visual mode
VS str Sequence to start open/visual mode
WL str Sent by WORD LEFT key
WR str Sent by WORD RIGHT key
xb bool Beehive (fl=escape, f2=ctrl C)
xn bool A newline is ignored after a wrap

(Concept)
xr bool Return acts like ce\r\n

(Delta Data)
xs bool Standard out not erased by writing over it

(HP 264?)
xt bool Tabs are destructive, magic so char

(Teleray 1061)

28 March 1991 Page 4

TERMCAP (M) TERMCAP (M)

A Sample Entry

The following entry describes the Concept-100, and is among the
more complex entries in the termcap file. (This particular Concept
entry is outdated, and is used as an example only.)

Cl I clOO I concept 100:is=NEU\Ef\E7\E5\E8\El\ENH\EK\E\200KEo&\200:\
:al=3*\EAR:am:bs:cd= 16*\EAC:ce= 16\EAS :cl=2*AL:\
:cm=\Ea%+ %+ :co#80:dc=16\EAA:dl=3*\EAB:\
:ei=\E\200:eo:im=\EAP:in:ip=16*:li#24:mi:nd=\E=:\
: se=\Ed\Ee: so=\ED\EE: ta=8\t: ul: up=\E;: vb=\Ek\EK: xn:

Entries may continue over to multiple lines by giving a backslash (\)
as the last character of a line. Empty fields can be included for reada­
bility between the last field on a line and the first field on the next.
Capabilities in termcap are of three types: Boolean capabilities,
which indicate that the terminal has some particular feature, numeric
capabilities giving the size of the terminal or the size of particular
delays, and string capabilities, which give a sequence that can be used
to perform particular terminal operations.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the
Concept has ‘automatic margins’ (i.e., an automatic return and
linefeed when the end of a line is reached) is indicated by the capabil­
ity am. The description of the Concept includes am. Numeric capa­
bilities are followed by the character ‘#’ and then the value. Thus co,
which indicates the number of columns the terminal has, gives the
value ‘80’ for the Concept.

Finally, string valued capabilities, such as ce (clear to end of line
sequence) are given by the two character code, an ‘= ’, and then a
string ending at the next following A delay in milliseconds may
appear after the ‘= ’ in such a capability, and padding characters are
supplied by the editor after the rest of the string is sent to provide this
delay. The delay can be either a integer, e.g., ‘20’, or an integer fol­
lowed by an ** ’, i.e. ‘3 *’. A ‘* ’ indicates that the padding required is
proportional to the number of lines affected by the operation, and the
amount given is the per-affected-unit padding required. When a ‘* ’ is
specified, it is sometimes useful to give a delay of the form ‘3.5’ to
specify a delay per unit to tenths of milliseconds.

A number of escape sequences are provided in the string valued capa­
bilities for easy encoding of characters there. A \E maps to an ESCAPE
character, Ax maps to a control-x for any appropriate x, and the
sequences \n \r \t \b \f give a newline, return, tab, backspace and
formfeed. Finally, characters may be given as three octal digits after a
\, and the characters A and \ may be given as \A and \\. If it is necessary
to place a colon (:) in a capability, it must be escaped in octal as \072.
If it is necessary to place a null character in a string capability, it must
be encoded as uOO. The routines that deal with termcap use C strings,

28 March 1991 Page 5

TERMCAP (M) TERMCAP (M)

and strip the high bits of the output very late so that a \200 comes out
as a \000 would.

Preparing Descriptions

The most effective way to prepare a terminal description is by imitat­
ing the description of a similar terminal in termcap and to build up a
description gradually, using partial descriptions with ex to check that
they are correct. Be aware that a very unusual terminal may expose
deficiencies in the ability of the termcap file to describe it. To test a
new terminal description, you can set the environment variable
TERMCAP to a pathname of a file containing the description you are
working on and the editor will look there radier than in /etc/termcap.
TERMCAP can also be set to the termcap entry itself to avoid reading
the file when starting up the editor.

Basic capabilities

The number of columns on each line for the terminal is given by the
co numeric capability. If the terminal is a CRT, the number of lines on
the screen is given by the li capability. If the terminal wraps around to
the beginning of the next line when it reaches the right margin, it
should have the am capability. If the terminal can clear its screen,
this is given by the cl string capability. If the terminal can backspace,
it should have the bs capability, unless a backspace is accomplished
by a character other than H in which case you should give this char­
acter as the be string capability. If it overstrikes (rather than clearing a
position when a character is struck over), it should have the os capa­
bility.

A very important point here is that the local cursor motions encoded in
termcap are undefined at the left and top edges of a CRT terminal. The
editor will never attempt to backspace around the left edge, nor will it
attempt to go up locally off the top. The editor assumes that feeding
off the bottom of the screen will cause the screen to scroll up, and the
am capability tells whether the cursor sticks at the right edge of the
screen. If the terminal has switch selectable automatic margins, the
termcap file usually assumes that this is on (i.e., am).

These capabilities suffice to describe hardcopy and ‘glass-tty’ termi­
nals. Thus the model 33 teletype is described as

t31331 tty33:co#72:os

while the Lear Siegler ADM-3 is described as:

cl I adm3l3llsi adm3:am:bs:cl=AZ:li#24:co#80

28 March 1991 Page 6

TERMCAP (M) TERMCAP (M)

Cursor addressing

Cursor addressing in the terminal is described by a cm string capabil­
ity. This capability uses printf(S) like escapes (such as % \) in it.
These substitute to encodings of the current line or column position,
while other characters are passed through unchanged. If the cm string
is thought of as being a function, its arguments are the line and then
the column to which motion is desired, and the % encodings have the
following meanings:

%d replaced by line/column position, 0 origin
%2 like %2d - 2 digit field
%3 like %3d - 3 digit field
%. like printfiS) %c
%+x adds x to value, then %.
%>xy if value > x adds y, no output
%r reverses order of line and column, no output
%i increments line/column position (for 1 origin)
%% gives a single %
%n exclusive or row and column with 0140

(DM2500)
%B BCD (16*(x/10)) + (x%10), no output
%D Reverse coding (x-2*(x% 16)), no output

(Delta Data).

Consider the HP2645, which, to get to row 3 and column 12, needs to
be sent \E&al2c03Y padded for 6 milliseconds. Note that the order of
the rows and columns is inverted here, and that the row and column
are printed as two digits. Thus its cm capability is
‘cm=6\E&%r%2c%2Y\ The Microterm ACT-IV needs the current row
and column sent preceded by a AT, with the row and column simply
encoded in binary, ‘cm=T%.%.\ Terminals that use need to be
able to backspace the cursor (bs or be), and to move the cursor up one
line on the screen (up introduced below). This is necessary because it
is not always safe to transmit \t, \n AD and \r, as the system may
change or discard them.

A final example is the LSI ADM -3a, which uses row and column offset
by a blank character, thus ‘cm=NE=%+ %+ ’.

Cursor motions

If the terminal can move the cursor one position to the right, leaving
the character at the current position unchanged, this sequence should
be given as nd (non-destructive space). If it can move the cursor up a
line on the screen in the same column, it should be given as up. If the
terminal has no cursor addressing capability, but can home the cursor
(to very upper left comer of screen), this can be given as ho; similarly,
a fast way of getting to the lower left hand comer can be given as U;
this may involve going up with up from the home position, but the
editor will never do tins itself (unless 11 does) because it makes no

28 March 1991 Page 7

TERMCAP (M) TERMCAP (M)

assumption about the effect of moving up from the home position.

Area clears

If the terminal can clear from the current position to the end of the
line, leaving the cursor where it is, the sequence should be given as ce.
If the terminal can clear from the current position to the end of the dis­
play, the sequence should be given as cd. The editor only uses cd
from the first column of a line.

Insertldelete line

If the terminal can open a new blank line before the line where the
cursor is, the sequence should be given as al. Note that this is done
only from the first position of a line. The cursor must then appear on
the newly blank line. If the terminal can delete the line on which the
cursor rests, the sequence should be given as dl. This is done only
from the first position on the line to be deleted. If the terminal can
scroll the screen backwards, the sequence can be given as sb, but al
can suffice. If the terminal can retain display memory above, the da
capability should be given, and if display memory can be retained
below, then db should be given. These let the editor know that delet­
ing a line on the screen may bring non-blank lines up from below or
that scrolling back with sb may bring down non-blank lines.

Insertldelete character

There are two basic kinds of intelligent terminals with respect to the
insert/delete character that can be described using termcap. The most
common insert/delete character operations affect only the characters
on the current line and shift characters off the end of the line. Other
terminals, such as the Concept 100 and the Perkin Elmer Owl, make a
distinction between typed and untyped blanks on the screen, shifting
upon an insert or delete only to an untyped blank on the screen which
is either eliminated, or expanded to two untyped blanks. You can find
out which kind of terminal you have by clearing the screen and enter­
ing text separated by cursor motions. Enter ‘abc def\ using local
cursor motions (not spaces) between the ‘abc’ and the ‘def’. Then
position the cursor before the ‘abc’ and put the terminal in insert
mode. If entering characters causes the rest of the line to shift rigidly
and characters to fall off the end, your terminal does not distinguish
between blanks and untyped positions. If the ‘abc’ shifts over to the
‘def’ which then move together around the end of the current line and
onto the next as you insert, you have the second type of terminal, and
should give the capability in, which stands for ‘insert null’. No known
terminals have an insert mode, not falling into one of these two
classes.

The editor can handle both terminals that have an insert mode and ter­
minals that send a simple sequence to open a blank position on the
current line. Specify im as the sequence to get into insert mode, or
give it an empty value if your terminal uses a sequence to insert a

28 March 1991 Page 8

TERMCAP (M) TERMCAP (M)

blank position. Specify ei as the sequence to leave insert mode
(specify this with an empty value if you also gave im an empty value).
Now specify ic as any sequence needed to be sent just before sending
the character to be inserted. Most terminals with a true insert mode
will not support ic, terminals that send a sequence to open a screen
position should give it here. (Insert mode is preferable to the sequence
to open a position on the screen if your terminal has both.) If post
insert padding is needed, give this as a number of milliseconds in ip (a
string option). Any other sequence that may need to be sent after an
insert of a single character may also be given in ip.

It is occasionally necessary to move around while in insert mode to
delete characters on the same line (e.g., if there is a tab after the inser­
tion position). If your terminal allows motion while in insert mode,
you can give the capability mi to speed up inserting in this case. Omit­
ting mi will affect only speed. Some terminals (notably Datamedia’s)
must not have mi because of the way their insert mode works.

Finally, you can specify delete mode by giving dm and ed to enter and
exit delete mode, and dc to delete a single character while in delete
mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode, these
can be given as so and se respectively. If there are several flavors of
standout mode (such as reverse video, blinking, or underlining - half
bright is not usually an acceptable ‘standout’ mode unless the terminal
is in reverse video mode constantly), the preferred mode is reverse
video by itself. It is acceptable, if die code to change into or out of
standout mode leaves one, or even two blank spaces on the screen, as
the TVI912 and Teleray 1061 do. Although it may confuse some pro­
grams slightly, it cannot be helped.

Codes to begin underlining and end underlining can be given as us,
and ue respectively. If the terminal has a code to underline the current
character and move the cursor one space to the right, such as the
Microterm Mime, the sequence can be given as uc. (If the underline
code does not move the cursor to the right, specify the code followed
by a nondestructive space.)

If the terminal has a way of flashing the screen to indicate an error
quietly (a bell replacement), the sequence can be given as vb; it must
not move the cursor. If the terminal should be placed in a different
mode during open and visual modes of ex, the sequence can be given
as vs and ve, sent at the start and end of these modes respectively.
These can be used to change from a underline to a block cursor and
back.

If the terminal needs to be in a special mode when running a program
that addresses the cursor, the codes to enter and exit this mode can be
given as ti and te. This arises, for example, from terminals like the

28 March 1991 Page 9

TERMCAP (M) TERMCAP (M)

Concept with more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative cursor
addressing, a one screen-sized window must be fixed into the terminal
for cursor addressing to work properly.

If your terminal correctly generates underlined characters (with no
special codes needed), even though it does not overstrike, you should
give the capability ul. If overstnkes are erasable with a blank, this
should be indicated by specifying eo.
Keypad

If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible to
handle terminals where the keypad only works in local (this applies,
for example, to the unshifted HP 2621 keys). If the keypad can be set
to transmit or not to transmit, enter these codes as ks and ke. Other­
wise, the keypad is assumed always to transmit. The codes sent by the
left arrow, right arrow, up arrow, down arrow, and home keys can be
given as kl, kr, ku, kd, and kh. If there are function keys such as fO,
f l , ..., f9, the codes they send can be given as kO, k l , ..., k9. If these
keys have labels other than the default fö through f9, the labels can be
given as 10,11,..., 19. If there are other keys that transmit the same
code as the terminal expects for the corresponding function, such as
clear screen, the termcap 2 letter codes can be given in the ko capabil­
ity, for example, ‘ :ko=cl,ll,sf,sb:\ which says that the terminal has
clear, home down, scroll down, and scroll up keys that transmit the
same thing as the cl, 11, sf, and sb entries.

The ma entry is also used to indicate arrow keys on terminals which
have single character arrow keys. It is obsolete, but still in use in ver­
sion 2 of vi, which must be run on some minicomputers due to mem­
ory limitations. This field is redundant with kl, kr, ku, kd, and kh. It
consists of groups of two characters. In each group, the first character
is what an arrow key sends, the second character is the corresponding
vi command. These commands are h for kl, j for kd, k for ku, 1 for kr,
and H for kh. For example, the Mime would be :ma=AKjAZkAXl:
indicating arrow keys left (AH), down CK), up CZ), and right (AX).
(There is no home key on the Mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, this
can be given as pc.
If tabs on the terminal require padding, or if the terminal uses a char­
acter other than AI to tab, die sequence can be given as ta.
Terminals that do not allow characters to be displayed (such as
Hazeltines), should indicate hz. Datamedia terminals that echo
cairiage-retum-linefeed for carriage return, and then ignore a follow­
ing linefeed, should indicate nc. Early Concept terminals, that ignore

28 March 1991 Page 10

TERMCAP (M) TERMCAP (M)

a linefeed immediately after an am wrap, should indicate xn. If an
erase-eol is required to get rid of standout (instead of merely writing
on top of it), xs should be given. Teleray terminals, where tabs turn all
characters moved over to blanks, should indicate xt. Other specific
terminal problems may be corrected by adding more capabilities of
the form xx

If the leading character for commands to the terminal (normally the
escape character) can be set by the software, specify the command
characters) with the capability CC.

Other capabilities include Is, an initialization string for the terminal,
and if, the name of a file containing long initialization strings. These
strings are expected to properly clear and then set the tabs on the ter­
minal, if the terminal has settable tabs. If both are given, is is dis­
played before if. This is useful where if is /usr/lib/tabset/std , but is
clears the tabs first.

Similar Terminals

If there are two very similar terminals, one can be defined as being
just like the other with certain exceptions. The string capability, tc,
can be given with the name of the similar terminal. This capability
must be last and the combined length of the two entries must not
exceed 1024. Since termlib routines search the entry from left to right,
and since the fc capability is replaced by the corresponding entry, the
capabilities given at the left override the ones in the similar terminal.
A capability can be cancelled with xx@ where xx is the capability.
For example:

hn 12621nl:ks@:ke@:tc=2621:

This defines a 262lnl that does not have the ks or ke capabilities, and
does not turn on the function key labels when in visual mode. This is
useful for different modes for a terminal, or for different user prefer­
ences.

XENIX Extensions

Capabilities This table lists the (previously listed) XENIX extensions
to the termcap capabilities. It shows which codes generate information
input from the keyboard to the program reading the keyboard and
which codes generate information output from the program to the
screen.

28 March 1991 Page 11

TERMCAP (M) TERMCAP (M)

Name Input/OutputDescription
CF str Cursor off
CL str Sent by CHAR LEFT key
CO str Cursor on
CW str Sent by CHANGE WINDOW key
DA bool Delete attribute string
EN str Sent by END key
G1 str Upper-right (1st quadrant) comer character
G2 str Upper-left (2nd quadrant) comer character
G3 str Lower-left (3rd quadrant) comer character
G4 str Lower-right (4th quadrant) comer character
GC str Center graphics character (similar to +)
GD str Down-tick character
GE str Graphics mode end
GG num Number of chars taken by GS and GE
GH str Horizontal bar character
GL str Left-tick character
GR str Right-tick character
GS str Graphics mode start
GU str Up-tick character
GV str Vertical bar character
HM str Sent by HOME key (if not kh)
MP str Multiplan initialization string
MR str Multiplan reset string
NU str Sent by NEXT UNLOCKED CELL key
PD str Sent by PAGE DOWN key
PU str Sent by PAGE UP key
RC str Sent by RECALC key
RF str Sent by TOGGLE REFERENCE key
RT str Sent by RETURN key
UP str Sent by up-arrow key (alternate to ku)
WL str Sent by WORD LEFT key
WR str Sent by WORD RIGHT key

Cursor motion Some application programs make use of special editing
codes. CR and CL move the cursor one character right and left
respectively. WR and WL move the cursor one word right and left
respectively. CW changes windows, when they are used in the pro­
gram.

Some application programs turn off the cursor. This is accomplished
using CF for cursor off and CO to turn it back on.

Graphic mode. If the terminal has graphics capabilities, this mode
can be turned on and off with the GS and GE codes. Some terminals
generate graphics characters from all keys when in graphics mode
(such as the Visual 50). The other G codes specify particular graphics
characters accessed by escape sequences. These characters are avail­
able on some terminals as alternate graphics character sets (not as a
bit-map graphic mode). The vtlOO has access to this kind of alternate
graphics character set, but not to a bit-map graphic mode.

28 March 1991 Page 12

TERMCAP (M) TERMCAP (M)

Files

/etc/termcap File containing terminal descriptions

See Also

ex(C), curses(S), termcap(S), tset(C), vi(C), more(C), screen(HW)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

ex(C) allows only 256 characters for string capabilities, and the rou­
tines in termcap(S) do not check for overflow of this buffer. The total
length of a single entry (excluding only escaped newlines) may not
exceed 1024.

The ma, vs, and ve entries are specific to the v/(C) program.

Not all programs support all entries. There are entries that are not
supported by any program.

XENIX termcap extensions are explained in detail in the software
application documentation.

Refer to the screen (HW) manual page, for a description of the charac­
ter sequences used by the monitor device on your specific XENIX Sys­
tem.

28 March 1991 Page 13

TERMINALS (M) TERMINALS (M)

Name

terminals - List of supported terminals.

Description

The following list, derived from the file /etc/termcap, shows the ter­
minal name (suitable for use as a TERM shell variable), and a short
description of the terminal. The advice in termcap(F) will assist users
in creating termcap entries for terminals not currently supported.

Name Terminal

1200 terminet 1200
1620 diablo 1620
1640 diablo 1640
2392 239x series
2392an hp 239x in ansi mode
2392ne 239x series
2621 hp2621
2621k45 hp 2621 with 45 keyboard
262lnl hp 2621 with no labels
2621nt hp 2621 w/no tabs
2621wl hp 2621 with labels
2622 hp 2622
262x hp 262x series
2640 hp 2640a
2640b hp 264x series
300 terminet 300
3045 datamedia 3045a
33 model 33 teletype
37 model 37 teletype
40 teletype dataspeed 40/2
4025 tektronix 4024/4025/4027
4025-17 tek 4025 17 line window
4025-17ws tek 4025 17 line window in workspace
4025ex tek 4025 w/!
43 model 43 teletype
515 AT&T-IS 515 terminal in native mode
5410 5410 terminal 80 columns
5410-nfk version 1 tty5410 entry without function keys
5410132 5410 132 columns
5420132 5420 132columns
5425 AT&T Teletype 5425 80 columns
5425-w AT&T Teletype 5425 132 columns
610bct AT&T 610; 80 column; 98key keyboard
615mt AT&T 615; 80 column; 98key keyboard

28 March 1991 Page 1

TERMINALS (M) TERMINALS (M)

620mtg
7900
8001
912b
925
925so
ATT5620
Ma2
TWO
a980
aa
aaa
aaa30
aaa48db
aaadb
act5s
adds
adds25
admll
adml2
adm2
adm3
adm31
adm3a
adm3a+
adm3al9.2
adm3aso
adm42
adm5
aj830
altos3
altos4
altos5
am219w
amp219
amp232
ampex
ansi
ansi-nam
arpanet
at386
at386-m
atarist
att513

att513-w

att605

AT&T 620; 80 column; 98key keyboard
NCR 7900-1
intecolor
new televideo
newer televideo
newer televideo with attribute byte workaround
5620 terminal 88 columns
Ampex Model 232 / 132 lines
Altos Computer Systems II
adds consul 980
ann arbor
ann arbor ambassador/48 lines
ann arbor ambassador 30/destructive backspace
ann arbor ambassador 48/destructive backspace
ann arbor ambassador 48/destructive backspace
skinny act5
adds viewpoint
adds regent 25 with local printing
lsi admll
lsi adml2
lsi adm2
lsi adm3
Lear Siegler ADM31
lsi adm3a
lsi adm3a+
lsi adm3a at 19.2 baud
lsi adm3a with {} for standout
lsi adm42
lsi adm5
anderson jacobson
Altos HI
Altos IV
Altos V
Ampex 132 Cols
Ampex with Automargins
Ampex Model 232
ampex dialogue 80
Ansi standard crt
Ansi standard crt without automargin
network
at/386 console
at/386 console
Atari ST vt52
AT&T-IS 513 Business Communications Terminal 80
columns
AT&T-IS 513 Business Communications Terminal 132
columns
AT&T 605 BCT

28 March 1991 Page 2

TERMINALS (M) TERMINALS (M)

att630 AT&T 630 windowing terminal
bct500 teletype 5541
bh3m beehivelUm
big2621 48 line 2621
clOO concept 100
c1004p clOO w/4 pages
clOOrv clOO rev video
cl00rv4p clOO w/4 pages
cl00rv4pna clOO with no arrows
cl00rv4ppp clOO with printer port
clOOrvs slow reverse concept 100
clOOs slow concept 100
c3102 cromemco 3102
carlock klc
cci cci 4574
cdc456 cdc
cdc456tst cdc456tst
cdi cdi 1203
cie467 C.Itoh 467,414 Graphics
cit80 c.itoh 80
cit80nam C.Itoh 80 without automargins
compucolor compucolorll
dl32 datagraphix 132a
datapoint datapoint 3360
delta delta data 5000
dg data general 6053
digilog digilog 333
dml520 datamedia 1520
dml521 datamedia 1521
dm2500 datamedia 2500
dm3025 datamedia 3025a
dmterm Tandy deskmate terminal
dosansi ANSI.SYS standard crt
dtlOO Tandy DT-100 terminal
dtlOOw Tandy DT-100 terminal
dt200 Tandy DT-200
dt80 datamedia dt80/l
dt80132 datamedia dt80/l in 132 char mode
dtc300s dtc 300s
du dialup
dumb unknown
dwl decwriter I
dw2 decwriter II
ep40 execuport 4000
ep48 execuport 4080
esp925 esprit tvi925 emulation
espHA esprit 6310 in hazeltine emulation mode
ethemet network

28 March 1991 Page 3

TERMINALS (M) TERMINALS (M)

exidy
fos
fox
freelOO
freellO
M024
gt40
gt42
hl 500
hl510
hl520
hl552
hl552rv
hl9
hl9a
hl9nk
h2000
hp
hp2626
hp2648
hpansi

exidy sorcerer as dm2500
Fortune system
perkin elmer 1100
liberty freedom 100
Freedom 110
Forward Technology graphics controller
dec gt40
dec gt42
hazeltine 1500
hazeltine 1510
hazeltine 1520
hazeltine 1552
hazeltine 1552 reverse video
heathkit hl9 w/ function keypad
heathkit hl9 ansi mode
heathkit w/numeric keypad (not function keys)
hazeltine 2000
hp 264x series
hp 2626
HP 2648a graphics terminal
Hewlett Packard 700/44 in HP-PCterm mode, PC char­
acter set

hpansi-24
hpex
hpsub
ilOO
ibm3101
ibm3151
ibm3161
ibm3163
ibm3164
ibm5151
ibmcons
ibmcons-43
intext
ipc
klO
kn
kt7ix
lisa
mlOO
macterm
macterm-nam
mdlllO
microb
microterm
microterm5
mime

HP 700/44 in HP-PCterm 24 line mode, PC character set
hp extended capabilities
hp terminals — capability subset
General Terminal 100A (formerly Infoton 100)
IBM 3101-10
3151
3161
3163
3164
ibm console
Ansi standard with EGA
Ansi EGA console in 43 line mode
ISC modified owl 1200
Intel IPC
Kaypro 10
kt70pcix
kimtron kt-7
apple lisa xenix console display (white on black)
radio shack model 100
macintosh MacTerm in vt-100 mode
MacTerm in vt-100 mode with automargin NOT set
cybemex mdl-110
micro bee series
microterm act iv
microterm act v
microterm mimel

28 March 1991 Page 4

TERMINALS (M) TERMINALS (M)

mime2a
mime2as
mime3a
mime3ax
mimefb
mimehb
mt70
nabu
netx
nucterm
oadm31
omron
ot80
owl
pe550
pixel
plasma
ptl500
pt210
qume5
qvtlOl
qvtl01+
qvtl01+so
qvtlOlb
qvtl02
qvtl03
qvtl08
qvtl09
qvtl 19
qvtl 19+
qvt201
qvt202
qvt203
regent
regentlOO
regent20
regent25
regent25a
regent40
regentöO
regentöOna
rx303
sbl
sb2
sexidy
sk8620
soroc
sun

microterm mime2a (emulating an enhanced vt52)
microterm mime2a (emulating an enhanced soroc iql20)
mimel emulating 3a
mimel emulating enhanced 3a
full bright mime 1
half bright mimel
morrow mt70
nabu terminal
netronics
NUC homebrew
old adm31
Omron 8025AG
onyx ot80
perkin elmer 1200
perkin elmer 550
Pixel terminal
plasma panel
Convergent Technologies PT
Tandy TRS-80 PT-210 printing terminal
Qume Sprint 5
Qume QVT-101 vers c
Qume QVT-101 Plus vers c
Qume QVT-101+ with protected mode/standout
QVT-101 with cursor set to blinking underline
Qume QVT 102
Qume QVT-103
QVT-108
QVT-109
Qume QVT-119
Qume QVT-119 Plus vers c
Qume QVT-201
Qume QVT-202
Qume QVT 203 PLUS
adds regent series
adds regent 100
adds regent 20
adds regent 25
adds regent 25a
adds regent 40
adds Regent 60
regent 60 w/no arrow keys
rexon 303 terminal
beehive super bee
fixed superbee
exidy smart
Seiko 8620
Soroc 120
Sun Microsystems Workstation console

28 March 1991 Page 5

TERMINALS (M) TERMINALS (M)

sun-cmd

sun-nic

sunl
superbeeic
svtlOO
svtl210
svtl220
svt52
switch
swtp
tl061
tl061f
t3700
t3800
td200

tek4013
tek4014
tek4014sm
tek4015
tek4015sm
tek4023
tek4107
teletec
terak
ti
ti745
ti924
ti924-8
ti926
ti931
trslOO
trsl6
trs600
tty4420
tty4424
tty4424-w
tty5410
tty5410-w
tvi910
tvi910+
tvi912
tvi9220
tvi9220w
tvi924
tvi950

Sun Microsystems Workstation console with scrollable
history
Sun Microsystems Workstation console without insert
character
old Sun Microsystems Workstation console
super bee with insert char
1220/PC, Sperry in VT100 mode
Sperry 1210, standard setup
Sperry 1220, standard setup
1210/1220/PC, Sperry in VT52 mode
intelligent switch
southwest technical products ct82
teleray 1061
teleray 1061 with fast PROMs
dumb teleray 3700
teleray 3800 series
Tandy 200
tektronix 4012
tektronix 4013
tektronix 4014
tektronix 4014 in small font
tektronix 4015
tektronix 4015 in small font
tektronix 4023
tektronix 4107
Teletec Datascreen
Terak emulating Datamedia 1520
ti silent 700
ti silent 745
Texas Instruments 924 VDT 7 bit
Texas Instruments 924 VDT 8 bit
Texas Instruments 926 VDT
Texas Instruments 931 VDT
Tandy TRS-80 Model 100
Tandy trs-80 model 16 console
Tandy Model 600
teletype 4420
teletype 4424
teletype 4424 in display function group ii
Teletype 5410 terminal in 80 column mode
Teletype 5410 in 132 column mode
old televideo 910
televideo 910 PLUS
old televideo
Televideo 9220 w/status line @ bottom
Televideo 9220 132 col w/status line @ bottom
televideo924
televideo950

28 March 1991 Page 6

TERMINALS (M) TERMINALS (M)

tvi950-2p
tvi950-4p
tvi950-ap
tvi950b
tvi950ns
v50
v55
vi200
vi200f
vi200ic
vi200rv
vi200rvic
vi50
vi55
vis613
vslOO
vslOOs
vtlOO
vtlOOn
vtlOOnam
vtlOOs
vtlOOw
vtl02
vtl31
vtl32
vt220
vt220d

vt50
vt50h
vt52
vt52so
vtz
w2110A
ws584
ws584fr
ws584gr
ws584nr
ws584sp
ws584sw
ws584uk
ws584us
ws685
wylOO
wyl20
wy 120-25
wyl20-vb
wyl20-wvb

tvi 950 w/2 pages
tvi 950 w/4 pages
tvi 950 w/alt pages
bare tvi950 no is
tvi950 w/no standout
Visual 50 emulation of DEC VT52
Visual 55 emulation of DEC VT52 (called V55)
visual 200 with function keys
visual 200 no function keys
visual 200 using insert char
visual 200 reverse video
visual 200 reverse video using insert char
Visual 50 in ADDS viewpoint emulation
Visual 55 using ADDS emulation
Visual 613
xterm terminal emulator
xterm terminal emulator (small screen 24x80)
dec vtlOO
vtlOO w/no init
DEC VT100 without automargins
dec vtlOO 132 cols 14 lines
dec vtlOO 132 cols
dec vtl02
dec vtl31
vt-132
dec vt220 generic
DEC VT220 in vtlOO mode with DEC function key
labeling
dec vt50
dec vt50h
dec vt52
dec vt52 with brackets added for standout use
Zilog vtz 2/10
Wang 2110 Asynch Data Entry Terminal - 80 column
Olivetti WS584
Olivetti WS584 with French keyboard
Olivetti WS584 with German keyboard
Olivetti WS584 with Norwegian/Danish keyboard
Olivetti WS584 with Spanish keyboard
Olivetti WS584 with Swedish/Finnish keyboard
Olivetti WS584 with U.K. keyboard
Olivetti WS584 with U.S.A. keyboard
Olivetti WS685
wyse 100
Wyse 120
Wyse 120 80-column 25-lines
Wyse 120 Visible bell
wysel20-wvb

28 March 1991 Page 7

TERMINALS (M) TERMINALS (M)

wyl20w
wyl20w-25
wyl50
wy 150-25
wyl50-vb
wyl50-wvb
wyl50w
wyl50w-25
wy30
wy30-vb
wy350
wy350-vb
wy350-wvb
wy350w
wy50
wy50-wvb
wy501

wy50n
wy50vb
wy50w

wy60

wy60-25
wy60-42
wy60-43
wy60-vb
wy60ak
wy60w

wy60w-25
wy60w-42
wy60w-43
wy60w-vb
wy75
wy75-mc
wy75-vb
wy75-wvb
wy75ap

wy75w
wy75x
wy85
wy85-vb
wy85-wvb
wy85w

Wyse 120 132-column
Wyse 120 132-column 25-lines
Wyse 150
Wyse 150 80-column 25-lines
Wyse 150 Visible bell
wysel50-wvb
Wyse 150 132-column
Wyse 150 132-column 25-lines
Wyse WY-30 in wy30 mode
wyse 30 Visible bell
Wyse 350 80 column color terminal emulating wy50
wyse 350 Visible bell
wyse 350 132-column Visible bell
Wyse 350 132 column color terminal emulating wy50
Wyse 50/80 Wyse WY-50 with 80 column screen
wyse 50 132-column Visible bell
Wyse WY-60 with 80 column/43 line screen in WY50+
mode
Wyse WY-50 - 80 column screen, no automargin
Wyse WY-50/80vb Wyse WY-50/80 with visible bell
Wyse WY-50/132 Wyse WY-50 with 132 column
screen
Wyse WY-60 with 80 column/24 line screen in wy60
mode
wyse 60 80-column 25-lines
wyse 60 80-column 42-lines
wyse 60 80-column 43-lines
Wyse 60 Visible bell
Wyse 60 in wy60 mode with ANSI arrow keys +
Wyse WY-60 with 132 column/24 line screen in wy60
mode
wyse 60 132-column 25-lines
wyse 60 132-column 42-lines
wyse 60 132-column 43-lines
Wyse 60 132-column Visible bell
Wyse WY-75 with 80 column line
wyse 75 with magic cookies
wyse 75 with visible bell
wyse 75 with visible bell 132 columns
Wyse WY-75 with Applications and Cursor keypad
modes
Wyse WY-75 in 132 column mode
Wyse WY-75 with 132 column lines in vi editor mode
Wyse 85 in 80 column mode, vtlOO emulation
wyse 85 with visible bell
wyse 85 with visible bell 132-columns
Wyse 85 in 132 column mode, vtlOO emulation

28 March 1991 Page 8

TERMINALS (M) TERMINALS (M)

wy85w wyse 85 in 132-column mode
wy99gt Wyse 99gt
wy99gt-25 wyse 99gt 80-column 25-lines
wy99gt-25-w wyse 99gt 132-column 25-lines
wy99gt-vb Wyse 99gt Visible bell
wy99gt-w wyse 99gt 132-column
wy99gt-w-vb wyse99gt-wvb
wysel20ak Wyse 120 with ANSI key values
xl720 xerox 1720
xitex xitex set-100
z29 zenith z29
z39 Zenith Z-39
zen30 zentec 30
zen40 zentec 40
zen50 zentec 50
zephyr zentec zephyr220 in vtlOO mode
zephymam zentec zephyr220 in vtlOO mode w/out automargins

Files

/etc/termcap

See Also

tset(C), environ(M), termcap(F)

28 March 1991 Page 9

TERMINFO(M) TERMINFO(M)

Name

terminfo - Terminal capability data base

Syntax

/usr/lib/terminfo/*/*

Description

terminfo is a data base describing terminals, used, e.g., by terminfo(S).
Terminals are described in terminfo by a set of capabilities that they
have, and by describing how operations are performed. Padding
requirements and initialization sequences are included in terminfo.

Entries in terminfo consist of a number of fields separated by commas
\ \ White space after each Y is ignored. The first entry for each ter­
minal gives the various names that are known for the terminal. Each of
these entries is separated by ‘I’. The first name given is the most com­
mon abbreviation for the terminal, (referred to as the “root name”) the
last name given should be a long name fully identifying the terminal,
and all others are understood as synonyms for the terminal name. All
names but the last should be in lower case and contain no blanks; the
last name can contain upper case and blanks for readability.

Terminal names (except for the last entry) should be chosen using the
following conventions. The particular piece of hardware making up
the terminal should have a root name chosen, for example, “hp2621”.
This name should not contain hyphens, except that synonyms may be
chosen that do not conflict with other names. Modes that the hard­
ware can be in, or user preferences, should be indicated by appending
a hyphen and an indicator of the mode. Thus, a vt-100 in 132 column
mode would be vtlOO-w. The following suffixes should be used where
possible:

Suffix Meaning Example
-w Wide mode (more than 80 columns) vtl00-w
-am With auto margins (usually default) vtl00-am
-nam Without automatic margins vtlOO-nam
-n Number of lines on the screen aaa-60
-na No arrow keys (leave them in local) cl00-na
-np Number of pages of memory cl00-4p
-rv Reverse video cl00-rv

In the following table, the “variable” is the name by which the pro­
grammer (using the terminfo library) accesses the capability. The
“capname” is the short name used in the text of the database, and is
used by a person updating the database. The “ i.code” is the two letter
internal code used in the compiled database, and always corresponds
to the termcap(M) capability name.

28 March 1991 Page 1

TERMINFO(M) TERMINFO(M)

Capability names have no hard length limit, but an informal limit of 5
characters has been adopted to keep them short. Whenever possible,
names are chosen to be the same as or similar to the ANSI X3.64-1979
standard. Semantics are also intended to match those of the specifica­
tion.

(P)
indicates that padding may be specified

(G)
indicates that the string is passed through tparm with parms as
given (#/).

(*)
indicates that padding may be based on the number of lines
affected

thindicates the i parameter.

(t) Not present in all versions of termcap.

VariableBooleans: Cap-name
i.Code

Description
auto_left_margin, bw bw cubl wraps from column 0 to last

column
auto_right_margin, am am Terminal has automatic margins
beehive_glitch, xsb xb Beehive (fl=escape, f2=ctrl C)
ceol_standout_glitch, xhp xs Standout not erased by overwriting

(hp)
eat_newline_glitch, xenl xn Newline ignored after 80 cols

(Concept)
erase_overstrike, eo eo Can erase overstrikes with a blank
generic_type, gn gn Generic line type (e.g., dialup,

switch).
hard_copy, he he Hardcopy terminal
has_meta_key, km km Has a meta key (shift, sets parity

bit)
has_status_line, hs hs Has extra "status line"
insert_null_glitch, in in Insert mode distinguishes nulls
memory_above, da da Display may be retained above

the screen
memory _below, db db Display may be retained below

the screen
move_insert_mode, mir mi Safe to move while in insert mode
mo ve_standout_mode, msgr ms Safe to move in standout modes
over_strike, os os Terminal overstrikes
status_line_esc_ok, eslok es Escape can be used on the status

line

28 March 1991 Page 2

TERMINFO(M) TERMINFO (M)

teleray_glitch, xt xt Tabs ruin, magic so char
(Teleray 1061)

tilde_glitch, hz hz Hazeltine; can not print ~’s
transparent_underline, ul ul Underline character overstrikes
xon_xoff, xon xo Terminal uses XON/XOFF

handshaking

Numbers:
columns, cols CO Number of columns in a line
init_tabs, it it Tabs initially every # spaces
lines, lines li Number of lines on screen or page
lines_of_memory, lm lm Lines of memory if > lines.

0 means varies
magic_cookie_glitch, xmc sg Number of blank chars left by

smso or rmso
padding_baud_rate, pb pb Lowest baud where cr/nl padding

is needed
virtual_terminal, vt vt Virtual terminal number (UNIX

system)
width_status_line, wsl WS No. columns in status line

Strings:
back_tab, cbt bt Back tab (P)
bell, bei bl Audible signal (bell) (P)
caniage_retum, er er Carriage return (P*)
change_scroll_region, csr cs Change to lines #1 through #2

(vt-100) (PG)
clear_all_tabs, tbc ct Clear all tab stops (P)
clear_screen, clear cl Clear screen and home cursor (P*)
clr_eol, el ce Clear to end of line (P)
clr_eos, ed cd Clear to end of display (P*)
column_address, hpa ch Set cursor column (PG)
command_character, cmdch CC Term, settable cmd char in

prototype
cursor_address, cup cm Screen rel. cursor motion row #1

col #2 (PG)
cursor_down, cudl do Down one line
cursor_home, home ho Home cursor (if no cup)
cursor_invisible, civis vi Make cursor invisible
cursor_left, cubl le Move cursor left one space
cursor_mem_address, mrcup CM t Memory relative cursor addressing
cursor_normal, enorm ve Make cursor appear normal

(undo vs/vi)
cursor_right, cufl nd Non-destructive space (cursor

right)
cursor_to_ll, 11 11 Last line, first column (if no cup)
cursor_up, cuul up Upline (cursor up)

28 March 1991 Page 3

TERMINFO (M) TERMINFO(M)

cursor_visible, cvvis VS Make cursor very visible
delete_character, dchl de Delete character (P*)
deletejine, dll dl Delete line (P*)
dis_status_line, dsl ds Disable status line
down_half_line, hd hd Half-line down (forward 1/2

linefeed)
enter_alt_charset_mode, smacs as Start alternate character set (P)
enter_blink_mode, blink mb Turn on blinking
enter_bold_mode, bold md Him on bold (extra bright) mode
enter_ca_mode, smcup ti String to begin programs that use

cup
enter_delete_mode, smdc dm Delete mode (enter)
enter_d im_mode, dim mh Him on half-bright mode
enter_insert_mode, smir im Insert mode (enter);
enter_protected_mode, prot mp Him on protected mode
enter_reverse_mode, rev mr Him on reverse video mode
enter_secure_mode, invis mk Turn on blank mode (chars

invisible)
enter_standout_mode, smso so Begin stand out mode
enter_underline_mode, smul US Start underscore mode
erase_chars ech ec Erase #1 characters (PG)
exit_alt_charset_mode, rmacs ae End alternate character set (P)
exit_attribute_mode, sgiO me Him off all attributes
exit_ca_mode, rmcup te String to end programs that use

cup
exit_delete_mode, rmdc ed End delete mode
exit_insert_mode, rmir ei End insert mode
exit_standout_mode, rmso se End stand out mode
exit_underline_mode, rmul ue End underscore mode
flash_screen, flash vb Visible bell (may not move cursor)
form_feed, ff ff Hardcopy terminal page eject (P*)
from_status_line, fsl fs Return from status line
init_l string, is l il Terminal initialization string
init_2string, is2 i2 Terminal initialization string
init_3string, is3 i3 Terminal initialization string
init_file, if if Name of file containing is
insert_character, ichl ic Insert character (P)
insert_line, ill al Add new blank line (P*)
insert_padding, ip ip Insert pad after character inserted

(P*)
key_backspace, kbs kb Sent by backspace key
key_catab, ktbc ka Sent by clear-all-tabs key
key_clear, kclr kC f Sent by clear screen or erase key
key_ctab, kctab kt Sent by clear-tab key
key_dc, kdchl kD f Sent by delete character key
key_dl, kdll kL f Sent by delete line key
key_down, kcudl kd Sent by terminal down arrow key
key_eic, krmir kM t Sent by rmir or smir in insert

mode

28 March 1991 Page 4

TERMINFO (M) TERMINFO (M)

key_eol, kel kEf
key_eos, ked kSt

key_f0, kfO kO
k ey .fl, kfl k l
key_fl0, kflO k
key_f2, kf2 k2
key_f3, kf3 k3
key_f4, kf4 k4
key_f5, kf5 k5
key_f6, kf6 k6
key_f7, kf7 k l
key_f8, kf8 k8
key_f9, kf9 k9
key_home, khome kh
key_ic, kichl kl

key_il, kill kA f
key_left, kcubl kl
key_ll, kll kHt
key_npage, knp kN |
key_ppage, kpp kPt
key_right, kcufl kr
key_sf, kind kFf
key_sr, kri kRt
key_stab, khts kTt
key_up, kcuul ku
keypad_local, rmkx ke
keypad_xmit, smkx ks

lab JO , lfO 10
l a b j l , lfl 11
labJIO , lflO la

lab_f2, lf2 12
lab_f3, lf3 13
lab_f4, lf4 14
lab J5 , lf5 15
lab_f6, lf6 16
lab_f7, in 17
lab J8 , lf8 18
lab J9 , lf9 19
meta_on, smm mm
meta_off, rmm mo
newline, nel nw

pad_char, pad pc
parm_dch, dch D Ct

Sent by clear-to-end-of-line key
Sent by clear-to-end-of-screen
key
Sent by function key fO
Sent by function key f 1
Sent by function key f 10
Sent by function key f2
Sent by function key f3
Sent by function key f4
Sent by function key f5
Sent by function key f6
Sent by function key f7
Sent by function key f8
Sent by function key f9
Sent by home key
Sent by ins char/enter ins mode
key
Sent by insert line
Sent by terminal left arrow key
Sent by home-down key
Sent by next-page key
Sent by previous-page key
Sent by terminal right arrow key
Sent by scroll-forward/down key
Sent by scroll-backward/up key
Sent by set-tab key
Sent by terminal up arrow key
Out of "keypad transmit" mode
Put terminal in "keypad transmit"
mode
Labels on function key fO if not fO
Labels on function key f 1 if not f 1
Labels on function key flO if not
flO
Labels on function key f2 if not f2
Labels on function key f3 if not f3
Labels on function key f4 if not f4
Labels on function key f5 if not f5
Labels on function key f6 if not f6
Labels on function key f7 if not f7
Labels on function key f8 if not f8
Labels on function key f9 if not f9
Tüm on "meta mode" (8th bit)
Turn off "meta mode"
Newline (behaves like cr followed
by If)
Pad character (rather than null)
Delete #1 chars (PG*)

28 March 1991 Page 5

TERMINFO(M) TERMINFO (M)

parm_delete_line, dl D Lt Delete #1 lines (PG*)
parm_down_cursor, cud DOt Move cursor down #1 lines (PG*)
parm_ich, ich ict Insert #1 blank chars (PG*)
parm_index, indn SF f Scroll forward #1 lines (PG)
parm_insert_line, il A Lt Add #1 new blank lines (PG*)
parm_left_cursor, cub L E f Move cursor left #1 spaces (PG)
parm_right_cursor, cuf RIt Move cursor right #1 spaces

(PG*)
parm_rindex, rin SR I Scroll backward #1 lines (PG)
parm_up_cursor, cuu UPt Move cursor up #1 lines (PG*)
pkey_key, pfkey pk Prog funct key #1 to type

string #2
pkey_local, pfloc Pl Prog funct key #1 to execute

string #2
pkey_xmit, pfx px Prog funct key #1 to xmit

string #2
print_screen, mcO ps Print contents of the screen
prtr_off, mc4 Pf Turn off the printer
prtr_on, mc5 po Him on the printer
repeat_char, rep rp Repeat char #1 #2 times. (PG*)
reset_l string, rsl rl Reset terminal completely to sane

modes
reset_2string, rs2 r2 Reset terminal completely to sane

modes
reset_3string, rs3 r3 Reset terminal completely to sane

modes
reset_file, rf rf Name of file containing reset string
restore_cursor, rc rc Restore cursor to position of last sc
row_address, vpa cv Vertical position absolute

(set row) (PG)
save_cursor, sc sc Save cursor position (P)
scroll_forward, ind sf Scroll text up (P)
scrolljreverse, ri sr Scroll text down (P)
set_attributes, sgr sa Define the video attributes (PG9)
set_tab, hts st Set a tab in all rows, current

column
set_window, wind wi Current window is lines #l-#2

cols #3-#4
tab, ht ta Tab to next 8 space hardware tab

stop
to_status_line, tsl ts Go to status line, column #1
underline_char, uc uc Underscore one char and move

past it
up_half_line, hu hu Half-line up (reverse 1/2 linefeed)
init_prog, iprog iP Path name of program for init
key_al, kal Kit Upper left of keypad
key_a3, ka3 K 3f Upper right of keypad

28 March 1991 Page 6

TERMINFO (M) TERMINFO (M)

key_b2,
key_c1,
key_c3,
prtr_non,

kb2 K 2t Center of keypad
kcl K 4f Lower left of keypad
kc3 K 5f Lower right of keypad
mc5p pO f Tum on the printer for #1 bytes

A Sample Entry

The following entry, which describes the Concept-100, is among the
more complex entries in the terminfo file.

conceptlOO | cl00| concept | cl04 | cl00-4p | concept 100,
am, bel=~G, blank=\EH, blink=\EC, clear=~L$<2*>, cnorm=\Ew,
cols#80, cr=~M$<9>, cubl=~H, cudl=~J, cufl=\E=,
cup=\Ea%pl%' '%+%c%p2%' ' %+%c,
cuul=\E;, cwis=\EW, db, dchl=\E~A$<16*>, dim=\EE, dll=\E~B$<3*>,
ed=\E~C$<16*>, el=\E~U$<16>, eo, flash=\Ek$<20>\EK, ht=\t$<8>,
ill=\E~R$<3*>, in, ind=~J, .ind=~J$<9>, ip=$<16*>,
is2=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200\Eo\47\E,
kbs="h, kcubl=\E>, kcudl=\E<, kcufl=\E=, kcuul=\E;,
kfl=\E5, kf2=\E6, kf3=\E7, khome=\E?,
lines#24, mir, pb#9600, prot=\EI, rep=\Er%pl%c%p2%' '%+%c$<.2*>,
rev=\ED, rmcup=\Ev $<6>\Ep\r\n, rmir=\E\200, rmkx=\Ex,
rmso=\Ed\Ee, nnul=\Eg, rmul=\Eg, sgr0=\EN\200,
smcup=\EU\Ev 8p\Ep\r, smir=\E~P, smkx=\EX, smso^=\EE\ED,
smul=\EG, tabs, ul, vt#8, xenl,

Entries may continue onto multiple lines by placing white space at the
beginning of each line except the first. Comments lines begin with
“#”. Capabilities in terminfo are of three types: Boolean capabilities
which indicate that the terminal has some particular feature, numeric
capabilities giving the size of the terminal or the size of particular
delays, and string capabilities, which give a sequence that can be used
to perform particular terminal operations.

Types of Capabilities

All capabilities have names. For instance, the fact that the Concept
has automatic margins (i.e., an automatic return and linefeed when the
end of a line is reached) is indicated by the capability am. Hence the
description of the Concept includes am. Numeric capabilities are fol­
lowed by the character ‘#’ and then the value. Thus cols, which indi­
cates the number of columns the terminal has, gives the value ‘80’ for
the Concept.

Finally, string valued capabilities, such as el (clear to end of line
sequence) are given by the two-character code, an ‘= \ and then a
string ending at the next following \ \ A delay in milliseconds may
appear anywhere in such a capability, enclosed in $<..> brackets, as in
el=\EK$<3>, and padding characters are supplied by tputs to provide
this delay. The delay can be either a number, e.g., ‘20’, or a number
followed by an ‘* ’, i.e., ‘3 *’. A ‘* ’ indicates that the padding required
is proportional to the number of lines affected by the operation, and
the amount given is the per-affected-unit padding required. (In the

28 March 1991 Page 7

TERMINFO (M) TERMINFO(M)

case of insert character, the factor is still the number of lines affected.
This is always one unless the terminal has xenl and the software uses
it.) When a ** ’ is specified, it is sometimes useful to give a delay of
the form ‘3.5’ to specify a delay per unit to tenths of milliseconds.
(Only one decimal place is allowed.)

A number of escape sequences are provided in the string valued capa­
bilities for easy encoding of characters there. Both \E and \e map to
an ESCAPE character, Ax maps to a control-x for any appropriate x,
and the sequences \n \1 \r \t \b \f \s give a newline, linefeed, return,
tab, backspace, formfeed, and space. Other escapes include V for A, \\
for \ \ for comma, V for :, and V) for null. (¾) will produce N200,
which does not terminate a string but behaves as a null character on
most terminals.) Finally, characters may be given as three octal digits
after a \.

Sometimes individual capabilities must be commented out. To do
this, put a period before the capability name. For example, see the
second ind in the example above.

Preparing Descriptions
The most effective way to prepare a terminal description is to imitate
the description of a similar terminal in terminfo and to build up a
description gradually, using partial descriptions with vi to check that
they are correct. Be aware that a very unusual terminal may expose
deficiencies in the ability of the terminfo file to describe it or bugs in
vi. To test easily a new terminal description you can set the environ­
ment variable TERMINFO to a pathname of a directory containing the
compiled description you are working on and programs will look there
rather than in /usr/lib/terminfo. To get the padding for insert line
right (if the terminal manufacturer did not document it) a severe test is
to edit a copy of /etc/passwd at 9600 baud, delete 16 or so lines from
the middle of the screen, then hit the ‘u’ key several times quickly. If
the terminal display is scrambled, more padding is usually needed. A
similar test can be used for insert character.

Basic Capabilities
The cols numeric capability describes the number of columns on each
line for the terminal. If the terminal is a CRT, then the number of lines
on the screen is given by the lines capability. If the terminal wraps
around to the beginning of the next line when it reaches the right mar­
gin, then it should have the am capability. If the terminal can clear its
screen, leaving the cursor in the home position, then this is given by
the clear string capability. If the terminal overstrikes (rather than
clearing a position when a character is struck over) then it should have
the os capability. If the terminal is a printing terminal, with no soft
copy unit, give it both he and os. (os applies to storage scope termi­
nals, such as TEKTRONIX 4010 series, as well as hard copy and APL
terminals.) If there is a code to move the cursor to the left edge of the
current row, give this as cr. (Normally this will be carriage return,
control M.) If there is a code to produce an audible signal (bell, beep,

28 March 1991 Page 8

TERMINFO (M) TERMINFO (M)

etc) define this as bei.
If there is a code to move the cursor one position to the left (such as
backspace) that capability should be defined as cubl. Similarly,
codes to move to the right, up, and down should be defined as cufl, cuul, and cudl. These local cursor motions should not alter the text
they pass over, for example, you would not normally use ‘cufl= ’
because the space would erase die character moved over.

A very important point here is that the local cursor motions encoded in
terminfo are undefined at the left and top edges of a CRT terminal.
Programs should never attempt to backspace around the left edge,
unless bw is given, and never attempt to go up locally off the top. In
order to scroll text up, a program will go to the bottom left comer of
the screen and send the ind (index) string.

To scroll text down, a program goes to the top left comer of the screen
and sends the ri (reverse index) string. The strings ind and ri are
undefined when not on their respective comers of the screen.

Parameterized versions of the scrolling sequences are indn and rin,
which have the same semantics as ind and ri except that they take one
parameter, and scroll that many lines. They are also undefined except
at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of
the screen when text is output, but this does not necessarily apply to a cufl from the last column. The only local motion which is defined
from the left edge is when bw is given, in which case a cubl from the
left edge will move to the right edge of the previous row. If bw is not
given, the effect is undefined. This is useful for drawing a box around
die edge of the screen, for example. If the terminal has switch select­
able automatic margins, the terminfo file usually assumes that this is
on; i.e., am. If the terminal has a command which moves to the first
column of the next line, that command can be given as nel (newline).
It does not matter if the command clears the remainder of the current
line, so if the terminal has no cr and If it may still be possible to craft
a working nel out of one or both of them.

These capabilities suffice to describe hardcopy and glass-tty terminals.
Thus the model 33 teletype is described as:

33 | tty33 | tty | model 33 teletype,
bel=~G, cols#72, cr=~M, cudl=~J, he, ind^J, os,

while the Lear Siegler ADM-3 is described as:

adm3 | 3 | lsi adm3,
am, bel=~G, clear=~Z, cols#80, cr=~M, cubl=~H, cudl=~J,
ind=~J, lines#24,

28 March 1991 Page 9

TERMINFO (M) TERMINFO(M)

Parameterized Strings

Cursor addressing and other strings requiring parameters in the termi­
nal are described by a parameterized string capability, with printf(S)
like escapes %x in it. For example, to address the cursor, the cup
capability is given, using two parameters: the row and column to
address to. (Rows and columns are numbered from zero and refer to
the physical screen visible to the user, not to any unseen memory.) If
the terminal has memory relative cursor addressing, that can be indi­
cated by mrcup.

The parameter mechanism uses a stack and special % codes to mani­
pulate it. Typically a sequence will push one of the parameters onto
the stack and then print it in some format. Often more complex opera­
tions are necessary.

The % encodings have the following meanings:

%% outputs
%d print pop() as in printf
%2d print pop() like %2d
%3d print pop() like %3d
%02d
%03d as in printf
%c print pop() gives %c
%s print pop() gives %s

%p[l-9] push ith parm
%P[a-z] set variable [a-z] to pop()
%g[a-z] get variable [a-z] and push it
%’c’ char constant c
%{nn) integer constant nn

arithmetic (%m is mod): push(pop() op pop())
%& %\ bit operations: push(pop() op pop())
%= %> %< logical operations: push(pop() op pop())
%! unary operations push(op pop())
%i add 1 to first two parms (for ANSI terminals)

%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional,
else-if s are possible ala Algol 68:
%? Cj %t bj %e c2 %t b2 %e %t b^ %e c4 %t b^ %e %;

c. are conditions, b. are bodies.

Binary operations are in postfix form with the operands in the usual
order. That is, to get x-5 one would use "%gx%{5}%-".

Consider the HP2645, which, to get to row 3 and column 12, needs to
be sent \E&al2c03Y padded for 6 milliseconds. Note that the order of
the rows and columns is inverted here, and that the row and column

28 March 1991 Page 10

TERMINFO (M) TERMINFO (M)

are printed as two digits. Thus its cup capability is
cup=\E&%p2%2dc%p 1 %2dY$<6>.

The Microterm ACT-IV needs the current row and column sent pre­
ceded by a AT, with the row and column simply encoded in binary,
cup=~T%p 1 %c%p2%c. Terminals that use %c need to be able to
backspace the cursor (cubl), and to move the cursor up one line on the
screen (cuul). This is necessary because it is not always safe to
transmit \n D and \r, as the system may change or discard them. (The
library routines dealing with terminfo set tty modes so that tabs are
never expanded, so Nt is safe to send. This turns out to be essential for
the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column oflset
by a blank character, thus cup=\E=%pl%’ ’%+%c%p2%’ ’%+%c.
After sending ‘\E =\ this pushes the first parameter, pushes the ASCII
value for a space (32), adds them (pushing the sum on the stack in
place of the two previous values) and outputs that value as a character.
Then the same is done for the second parameter. More complex arith­
metic is possible using the stack.

If the terminal has row or column absolute cursor addressing, these
can be given as single parameter capabilities hpa (horizontal position
absolute) and vpa (vertical position absolute). Sometimes these are
shorter than the more general two parameter sequence (as with the
HP2645) and can be used in preference to cup . If there are parameter­
ized local motions (e.g., move n spaces to the right) these can be given
as cud, cub, cuf, and cuu with a single parameter indicating how
many spaces to move. These are primarily useful if the terminal does
not have cup, such as the TEKTRONIX 4025.

Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left
comer of screen) then this can be given as home; similarly a fast way
of getting to the lower left-hand comer can be given as 11; this may
involve going up with cuul from the home position, but a program
should never do this itself (unless 11 does) because it can make no
assumption about the effect of moving up from the home position.
Note that the home position is the same as addressing to (0,0): to the
top left comer of the screen, not of memory. (Thus, die \EH sequence
on HP terminals cannot be used for home.)

Area Clears

If the terminal can clear from the current position to the end of the
line, leaving the cursor where it is, this should be given as el. If the
terminal can clear from the current position to the end of the display,
then this should be given as ed. ed is only defined from the first
column of a line. (Thus, it can be simulated by a request to delete a
large number of lines, if a true ed is not available.)

28 March 1991 Page 11

TERMINFO(M) TERMINFO (M)

Insert/delete line

If the terminal can open a new blank line before the line where the
cursor is positioned, this should be given as ill; this is done only from
the first position of a line. The cursor must then appear on the newly
blank line. If the terminal can delete the line on which the cursor is
positioned, then this should be given as dll; this is done only from the
first position on the line to be deleted. Versions of ill and d ll that
take a single parameter and insert or delete that many lines can be
given as il and dl. If the terminal has a settable scrolling region (like
Üie vt-100) the command that sets this can be described with the csr
capability, which takes two parameters: the top and bottom lines of
the scrolling region. The cursor position is, however, undefined after
using this command. It is possible to get the effect of insert or delete
line using this command - die sc and re (save and restore cursor) com­
mands are also useful. Inserting lines at the top or bottom of the
screen can also be done using ri or ind on many terminals without a
true insert/delete line, and is often faster even on terminals with those
features.

If the terminal has the ability to define a window as part of memory,
which all commands affect, it should be given as the parameterized
string wind. The four parameters are the starting and ending lines in
memory and the starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capabil­
ity should be given; if display memory can be retained below, then db
should be given. These indicate that deleting a line or scrolling may
bring non-blank lines up from below or that scrolling back with ri may
bring down non-blank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to
insert/delete character that can be described using terminfo. The most
common insert/delete character operations affect only the characters
on the current line and shift characters off the end of the line rigidly.
Other terminals, such as the Concept 100 and the Perkin Elmer Owl,
make a distinction between typed and untyped blanks on the screen,
shifting upon an insert or delete only to an untyped blank on the
screen which is either eliminated, or expanded to two untyped blanks.
You can determine the kind of terminal you have by clearing the
screen and then typing text separated by cursor motions. Type
abc def using local cursor motions (not spaces) between the abc and
the def. Then position the cursor before the abc and put the terminal
in insert mode. If typing characters causes the rest of the line to shift
rigidly and characters to fall off the end, then your terminal does not
distinguish between blanks and untyped positions. If the “abc” shifts
over to the def which then move together around the end of the current
line and onto the next as you insert, you have the second type of termi­
nal, and should give the capability in, which stands for insert null.
While these are two logically separate attributes (one line vs. multi-
line insert mode, and special treatment of untyped spaces) we have

28 March 1991 Page 12

TERMINFO (M) TERMINFO (M)

seen no terminals whose insert mode cannot be described with the sin­
gle attribute.

terminfo can describe both terminals that have an insert mode, and ter­
minals that send a simple sequence to open a blank position on the
current line. To get into insert mode use the smir sequence. To leave
insert mode use the rmir sequence. Now give as ichl any sequence
needed to be sent just before sending the character to be inserted.
Most terminals with a true insert mode will not give ichl; terminals
that send a sequence to open a screen position should give it here. (If
your terminal has both, insert mode is usually preferable to ichl. Do
not give both unless the terminal actually requires both to be used in
combination.) If post insert padding is needed, give this as a number
of milliseconds in ip (a string option). Any other sequence which may
need to be sent after an insert of a single character may also be given
in ip. If your terminal needs both to be placed into an ‘insert mode’
and a special code to precede each inserted character, then both smir/rmir and ichl can be given, and both will be used. The ich
capability, with one parameter, /2, will repeat the effects of ichl n
times.

It is occasionally necessary to move around while in insert mode to
delete characters on the same line (e.g., if there is a tab after the inser­
tion position). If your terminal allows motion while in insert mode
you can give the capability mir to speed up inserting in this case.
Omitting mir will affect only speed. Some terminals (notably
Datamedia’s) must not have mir because of the way their insert mode
works.

Finally, you can specify dchl to delete a single character, dch with
one parameter, n, to delete n characters, and delete mode by giving smdc and rmdc to enter and exit delete mode (any mode the terminal
needs to be placed in for dchl to work).

A command to erase n characters (equivalent to outputting n blanks
without moving the cursor) can be given as ech with one parameter.

Highlighting, Underlining, and Visible Bells
If your terminal has one or more kinds of display attributes, these can
be represented in a number of different ways. You should choose one
display form as standout mode, representing a good, high contrast,
easy-on-the-eyes, format for highlighting error messages and other
attention getters. (If you have a choice, reverse video plus half-bright
is good, or reverse video alone.) The sequences to enter and exit stan­
dout mode are given as smso and rmso, respectively. If the code to
change into or out of standout mode leaves one or even two blank
spaces on the screen, as the TVI 912 and Teleray 1061 do, then xmc
should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as smul
and rmul respectively, ff the terminal has a code to underline the
current character and move the cursor one space to the right, such as

28 March 1991 Page 13

TERMINFO(M) TERMINFO(M)

the Microterm Mime, this can be given as uc.

Other capabilities to enter various highlighting modes include blink
(blinking) bold (bold or extra bright) dim (dim or half-bright) invis
(blanking or invisible text) prot (protected) rev (reverse video) sgrO
(turn off all attribute modes) smacs (enter alternate character set
mode) and rmacs (exit alternate character set mode). Tbming on any
of these modes singly may or may not turn off other modes.

If there is a sequence to set arbitrary combinations of modes, this
should be given as sgr (set attributes), taking 9 parameters. Each
parameter is either 0 or 1, as the corresponding attribute is on or off.
The 9 parameters are, in order: standout, underline, reverse, blink,
dim, bold, blank, protect, alternate character set. Not all modes need
be supported by sgr, only those for which corresponding separate
attribute commands exist.

Terminals with the “magic cookie” glitch (xmc) deposit special
“cookies” when they receive mode-setting sequences, which affect the
display algorithm rather than having extra bits for each character.
Some terminals, such as the HP 2621, automatically leave standout
mode when they move to a new line or the cursor is addressed. Pro­
grams using standout mode should exit standout mode before moving
die cursor or sending a newline, unless the msgr capability, asserting
that it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error
quietly (a bell replacement) then this can be given as flash; it must not
move the cursor.

If the cursor needs to be made more visible than normal when it is not
on the bottom line (to make, for example, a non-blinking underline
into an easier to find block or blinking underline) give this sequence as
cwis. If there is a way to make the cursor completely invisible, give
that as civis. The capability enorm should be given which undoes the
effects of both of these modes.

If the terminal needs to be in a special mode when running a program
that uses these capabilities, the codes to enter and exit this mode can
be given as smeup and rmeup.
This arises, for example, from terminals like the Concept with more
than one page of memory. If the terminal has only memory relative
cursor addressing and not screen relative cursor addressing, a one
screen-sized window must be fixed into the terminal for cursor
addressing to work properly. This is also used for the TEKTRONIX
4025, where smeup sets the command character to be the one used by
terminfo.

If your terminal correctly generates underlined characters (with no
special codes needed) even though it does not overstrike, then you
should give the capability ul. If overstrikes are erasable with a blank,
then this should be indicated by giving eo.

28 March 1991 Page 14

TERMINFO(M) TERMINFO (M)

Keypad

If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible to
handle terminals where the keypad only works in local (this applies,
for example, to the unshifted HP 2621 keys). If the keypad can be set
to transmit or not transmit, give these codes as smkx and rmkx. Oth­
erwise the keypad is assumed to always transmit. The codes sent by
the left arrow, right arrow, up arrow, down arrow, and home keys can
be given as kcubl, kcufl, kcuul, kcudl, and khome respectively. If
there are function keys such as fö, f l , ..., flO, the codes they send can
be given as kfO, k f l,..., kflO. If these keys have labels other than the
default fö through flO, the labels can be given as IfO, l f l , ..., lflO. The
codes transmitted by certain other special keys can be given: kll
(home down), kbs (backspace), ktbc (clear all tabs), kctab (clear the
tab stop in this column), kclr (clear screen or erase key), kdchl
(delete character), kdll (delete line), krmir (exit insert mode), kel
(clear to end of line), ked (clear to end of screen), kichl (insert char­
acter or enter insert mode), kill (insert line), knp (next page), kpp
(previous page), kind (scroll forward/down), kri (scroll backward/up),
khts (set a tab stop in this column). In addition, if the keypad has a 3
by 3 array of keys including the four arrow keys, the other five keys
can be given as kal, ka3, kb2, kcl, and kc3. These keys are useful
when the effects of a 3 by 3 directional pad are needed.

Tabs and Initialization

If the terminal has hardware tabs, the command to advance to the next
tab stop can be given as ht (usually control I). A “backtab” command
that moves leftward to the next tab stop can be given as cbt. By con­
vention, if the teletype modes indicate that tabs are being expanded by
the computer rather than being sent to the terminal, programs should
not use ht or cbt even if they are present, since the user may not have
the tab stops properly set. If the terminal has hardware tabs which are
initially set every n spaces when the terminal is powered up, the
numeric parameter it is given, showing the number of spaces the tabs
are set to. This is normally used by the tset(C) command to determine
whether to set the mode for hardware tab expansion, and whether to
set the tab stops. If the terminal has tab stops that can be saved in
nonvolatile memory, the terminfo description can assume that they are
properly set.

Other capabilities include isl, is2, and is3, initialization strings for the
terminal, iprog, the path name of a program to be run to initialize the
terminal, and if, the name of a file containing long initialization
strings. These strings are expected to set the terminal into modes con­
sistent with the rest of the terminfo description. They are normally
sent to the terminal, by the tset program, each time the user logs in.
They will be printed in the following order: isl; is2; setting tabs using
tbc and hts; if; running the program iprog; and finally is3. Most ini­
tialization is done with is2. Special terminal modes can be set up
without duplicating strings by putting the common sequences in is2
and special cases in isl and is3. A pair of sequences that does a

28 March 1991 Page 15

TERMINFO(M) TERMINFO(M)

harder reset from a totally unknown state can be analogously given as rsl, rs2, rf, and rs3, analogous to is2 and if. Commands are normally
placed in rs2 and rf only if they produce annoying effects on the
screen and are not necessary when logging in. For example, the com­
mand to set the vt-100 into 80-column mode would normally be part
of is2, but it causes an annoying glitch of the screen and is not nor­
mally needed since the terminal is usually already in 80 column mode.

If there are commands to set and clear tab stops, they can be given as tbc (clear all tab stops) and hts (set a tab stop in the current column of
every row). If a more complex sequence is needed to set the tabs than
can be described by this, the sequence can be placed in is2 or if.
Delays
Certain capabilities control padding in the teletype driver. These are
primarily needed by hard copy terminals, and are used by the tset pro­
gram to set teletype modes appropriately. Delays embedded in the
capabilities cr, ind, cubl, ff, and tab will cause die appropriate delay
bits to be set in the teletype driver, ff pb (padding baud rate) is given,
these values can be ignored at baud rates below the value of pb.
Miscellaneous
ff the terminal requires other than a null (zero) character as a pad, then
this can be given as pad. Only the first character of the pad string is
used.

ff the terminal has an extra “status line” that is not normally used by
software, this fact can be indicated, ff the status line is viewed as an
extra line below the bottom line, into which one can cursor address
normally (such as the Heathkit hl9’s 25th line, or the 24th line of a
vt-100 which is set to a 23-line scrolling region), the capability hs
should be given. Special strings to go to the beginning of the status
line and to return from the status line can be given as tsl and fsl. (fsl
must leave the cursor position in the same place it was before tsl. ff
necessary, the sc and rc strings can be included in tsl and fsl to get
this effect.) The parameter tsl takes one parameter, which is Sie
column number of the status line the cursor is to be moved to. ff
escape sequences and other special commands, such as tab, work
while in the status line, the flag eslok can be given. A string which
turns off the status line (or otherwise erases its contents) should be
given as dsl. ff the terminal has commands to save and restore the
position of the cursor, give them as sc and rc. The status line is nor­
mally assumed to be the same width as the rest of the screen, e.g., cols, ff the status line is a different width (possibly because the termi­
nal does not allow an entire line to be loaded) the width, in columns,
can be indicated with the numeric parameter wsl.
ff the terminal can move up or down half a line, this can be indicated
with hu (half-line up) and hd (half-line down). This is primarily use­
ful for superscripts and subscripts on hardcopy terminals, ff a hard­
copy terminal can eject to the next page (form feed), give this as ff

28 March 1991 Page 16

TERMINFO (M) TERMINFO(M)

(usually control L).

If there is a command to repeat a given character a given number of
times (to save time transmitting a large number of identical charac­
ters) this can be indicated with die parameterized string rep. The first
parameter is the character to be repeated and the second is the number
of times to repeat it. Thus, tparm(repeat_char, ’x\ 10) is the same as
‘xxxxxxxxxx’.

If the terminal has a settable command character, such as the TEK­
TRONIX 4025, this can be indicated with cmdch. A prototype com­
mand character is chosen which is used in all capabilities. This char­
acter is given in the cmdch capability to identify it. The following
convention is supported on some XENIX systems: The environment is
to be searched for a CC variable, and if found, all occurrences of the
prototype character are replaced with the character in the environment
variable.

Terminal descriptions that do not represent a specific kind of known
terminal, such as switch, dialup, patch, and network, should include
the gn (generic) capability so that programs can complain that they do
not know how to talk to the terminal.

If the terminal uses XON/XOFF handshaking for flow control, give
xon. Padding information should still be included so that routines can
make better decisions about costs, but actual pad characters will not
be transmitted.

If the terminal has a “meta key” which acts as a shift key, setting the
8th bit of any character transmitted, this fact can be indicated with
km. Otherwise, software will assume that the 8th bit is parity and it
will usually be cleared. If strings exist to turn this “meta mode” on
and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at
once, the number of lines of memory can be indicated with lm. A
value of lm#0 indicates that the number of lines is not fixed, but that
there is still more memoiy than fits on the screen.

If the terminal is one of those supported by the UNIX virtual terminal
protocol, the terminal number can be given as vt.

Media copy strings that control an auxiliary printer connected to the
terminal can be given as mcO: print the contents of the screen, mc4:
turn off the printer, and mc5: turn on the printer. When the printer is
on, all text sent to the terminal will be sent to the printer. It is
undefined whether the text is also displayed on the terminal screen
when the printer is on. A variation mc5p takes one parameter, and
leaves the printer on for as many characters as the value of the param­
eter, then turns the printer off. The parameter should not exceed 255.
All text, including mc4, is transparently passed to the printer while an
mc5p is in effect.

28 March 1991 Page 17

TERMINFO(M) TERMINFO(M)

Strings to program function keys can be given as pfkey, pfloc, and
pfx. Each of these strings takes two parameters: the function key
number to program (from 0 to 10) and the string to program it with.
Function key numbers out of this range may program undefined keys
in a terminal dependent manner. The difference between the capabili­
ties is that pfkey causes pressing the given key to be the same as the
user typing the given string; pfloc causes the string to be executed by
the terminal in local; and pfx causes the string to be transmitted to the
computer.

Glitches and Unusual Capabilities

Hazeltine terminals, which do not allow characters to be displayed
should indicate hz.

Terminals that ignore a linefeed immediately after an am wrap, such
as the Concept and vt-100, should indicate xenl.

If el is required to get rid of standout (instead of merely writing nor­
mal text on top of it), xhp should be given.

Teleray terminals, where tabs turn all characters moved over to
blanks, should indicate xt (destructive tabs). This glitch is also taken
to mean that it is not possible to position the cursor on top of a “magic
cookie”, that to erase standout mode it is instead necessary to use
delete and insert line.

The Beehive Superbee, which is unable to correctly transmit the
escape or control C characters, has xsb, indicating that the fl key is
used for escape and f l for control C. (Only certain Superbees have
this problem, depending on the ROM.)

Other specific terminal problems may be corrected by adding more
capabilities of the form xjc.

Similar Terminals

If there are two very similar terminals, one can be defined as being
just like the other with certain exceptions. The string capability use
can be given with the name of the similar terminal. The capabilities
given before use override those in the terminal type invoked by use.
A capability can be cancelled by placing xx@ to the left of the capa­
bility definition, where xx is the capability. For example, the entry

2621-nl, smkx@, rmkx@, use=2621,

defines a 2621-nl that does not have the smkx or rmkx capabilities,
and hence does not turn on the function key labels when in visual
mode. This is useful for different modes for a terminal, or for different
user preferences.

28 March 1991 Page 18

TERMINFO(M) TERMINFO (M)

Files

Aisr/lib/tenninfo/? /*
files containing terminal descriptions compiled by tic(C)

See Also

terminfo(S), terminfo(F), tic(C)

Notes
Neither v/, tset, nor any other XENIX command presently uses
terminfo. It is intended that a full integration of termcap and terminfo
will be provided in a future version of XENIX.

28 March 1991 Page 19

TERMIO (M) TERMIO (M)

Name
termio - General terminal interface.

Description

All asynchronous communications ports use the same general inter­
face, no matter what hardware is involved. The remainder of this sec­
tion discusses the common features of this interface.

When a terminal file is opened, it noimally causes the process to wait
until a connection is established. In practice, users’ programs seldom
open these files; they are opened by getty(M) and become a user’s
standard input, output, and error files. The very first terminal file
opened by die process group leader of a terminal file not already asso­
ciated with a process group becomes the “control terminal” for that
process group. The control terminal plays a special role in handling
quit and interrupt signals, as discussed below. The control terminal is
inherited by a child process during a fork(S). A process can break this
association by changing its process group using setpgrp(S).

A terminal associated with one of these files ordinarily operates in
full-duplex mode. Characters can be entered at any time, even while
output is occurring, and are only lost when the system’s character
input buffers become completely full, which is rare, or when the user
has accumulated the maximum allowed number of input characters
that have not yet been read by some program. Currently, this limit is
256 characters. When the input limit is reached, all the saved charac­
ters are thrown away without notice.

Normally, terminal input is processed in units of lines. A line is
delimited by a newline (ASCII LF) character, an end-of-file (ASCII
EOT) character, or an end-of-line character. This means that a pro­
gram attempting to read will be suspended until an entire line has
been entered. Also, no matter how many characters are requested in
the read call, one line will be returned at most. It is not, however,
necessary to read a whole line at once; any number of characters may
be requested in a read, even one, without losing information.

Erase and kill processing is normally done during input. By default, a
Ctrl-H or BACKSPACE erases the last character typed, except that it
will not erase beyond the beginning of the line. By default, a Ctrl-U
kills (deletes) the entire input line, and optionally outputs a newline
character. Both these characters operate on a key-stroke basis,
independent of any backspacing or tabbing that may have been done.
Both the erase and kill characters may be entered literally by preced­
ing them with the escape character (\). In this case, the escape charac­
ter is not read. The erase and kill characters may be changed (see
stty{ C)).

28 March 1991 Page 1

TERMIO (M) TERMIO (M)

Certain characters have special functions on input. These functions
and their default character values are summarized as follows:

INTR (Rubout or ASCII DEL) Generates an interrupt signal which
is sent to all processes with the associated control terminal.
Normally, each such process is forced to terminate, but
arrangements may be made either to ignore the signal or to
receive a trap to an agreed-upon location; see signal(S).

QUIT (CtrlA or ASCII FS) Generates a quit signal. Its treatment is
identical to the interrupt signal except that, unless a receiv­
ing process has made other arrangements, it will not only be
terminated, but a core image file (called core) will be
created in the current working directory.

SWTCH (ASCH NUL) Is used by the job control facility, shl(C), to
change the current layer to the control layer.

ERASE (Ctrl-H) Erases the preceding character. It will not erase
beyond the start of a line, as delimited by a NL, EOF, or EOL
character.

KILL (Ctrl-U) Deletes the entire line, as delimited by a NL, EOF, or
EOL character.

EOF (Ctrl-D or ASCII EOT) May be used to generate an end-of-file
from a terminal. When received, all die characters waiting
to be read are immediately passed to the program, without
waiting for a newline, and the EOF is discarded. Thus, if
there are no characters waiting, which is to say the EOF
occurred at the beginning of a line, zero characters will be
passed back, which is the standard end-of-file indication.

NL (ASCH LF) Is the normal line delimiter. It cannot be changed
or escaped.

EOL (ASCH NUL) Is an additional line delimiter, like NL. It is not
normally used.

STOP (Ctrl-S or ASCII DC3) Temporarily suspends output. It is use­
ful with CRT terminals to prevent output from disappearing
before it can be read. While output is suspended, STOP char­
acters are ignored and not read.

START (Ctrl-Q or ASCII DC1) Resumes output which has been
suspended by a STOP character. While output is not
suspended, START characters are ignored and not read. The
START/STOP characters cannot be changed or escaped.

The character values for INTR, QUIT, SWTCH, ERASE, KILL, EOF, and
EOL may be changed to suit individual tastes. The ERASE, KILL, and
EOF characters may be escaped by a preceding backslash (\) character,

28 March 1991 Page 2

TERMIO (M) TERMIO (M)

in which case no special function is carried out.

When the carrier signal from the dataset drops, a “hangup” signal is
sent to all processes that have this terminal as the control terminal.
Unless other arrangements have been made, this signal causes the
processes to terminate. If the hangup signal is ignored, any subse­
quent read returns with an end-of-file indication. Thus, programs that
read a terminal and test for an end-of-file can terminate appropriately
when hung up on.

When one or more characters are written, they are transmitted to the
terminal as soon as the previously typed characters have been entered.
Input characters are echoed by putting them in the output queue as
they arrive. If a process produces characters more rapidly than they
can be typed, it will be suspended when its output queue exceeds a
given limit. When the queue has drained down to the given threshold,
die program is resumed.

Several ioctl (S) system calls apply to terminal files. The primary calls
use the following structure, defined in the file <termio.h>:

#define NCC 8
struct termio {

unsigned short
unsigned short
unsigned short
unsigned short
char
unsigned char

cjflag; /* input modes */
c_oflag; /* output modes */
c_cflag; /* control modes */
c_lfiag; /* local modes */
c_line; /* line discipline */
c_cc[NCC];/* control chars */

The special control characters are defined by the array c_cc. The rela­
tive positions and initial values for each function are as follows:

0 VINTR DEL
1 vQurr FS
2 VERASE Ctrl-H
3 VKILL Ctrl-U
4 VEOF/VMIN EOT
5 VEOL/VTIME NUL
6 Reserved
7 VSWTCH NUL

The c Jflag field describes the basic terminal input control:

IGNBRK 0000001 Ignores break condition
BRKINT 0000002 Signals interrupt on break
IGNPAR 0000004 Ignores characters with parity errors
PARMRK 0000010 Marks parity errors
INPCK 0000020 Enables input parity check
ISTRIP 0000040 Strips character
INLCR 0000100 Maps NL to CR on input

28 March 1991 Page 3

TERMIO (M) TERMIO (M)

IGNCR 0000200
ICRNL 0000400
IUCLC 0001000
IXON 0002000
IXANY 0004000
IXOFF 0010000
CTSFLOW 0020000
RTSFLOW 0040000

Ignores CR
Maps CR to NL on input
Maps uppercase to lowercase on input
Enables start/stop output control
Enables any character to restart output
Enables start/stop input control
Enables CTS protocol for a modem line
Enables RTS signaling for a modem line

If IGNBRK is set, the break condition (a character framing error with
data all zeros) is ignored, that is, not put on the input queue and there­
fore not read by any process. Otherwise, if BRKINT is set the break
condition will generate an interrupt signal and flush both the input and
output queues. If IGNPAR is set, characters with other framing and
parity errors are ignored.

If PARMRK is set, a character with a framing or parity error which is
not ignored is read as the 3-character sequence: 0377, 0, X, where X
is the data of the character received in error. To avoid ambiguity in
this case, if ISTRIP is not set, a valid character of 0377 is read as 0377,
0377. If PARMRK is not set, a framing or parity error which is not
ignored is read as the character NUL (0).

If INPCK is set, input parity checking is enabled. If INPCK is not set,
input parity checking is disabled. This allows output parity generation
without input parity errors.

If ISTRIP is set, valid input characters are first stripped to 7-bits, other­
wise all 8-bits are processed.

If INLCR is set, a received NL character is translated into a CR charac­
ter. If IGNCR is set, a received CR character is ignored (not read).
Otherwise, if ICRNL is set, a received CR character is translated into a
NL character.

If IUCLC is set, a received uppercase alphabetic character is translated
into the corresponding lowercase character.

If IXON is set, start/stop output control is enabled. A received STOP
character will suspend output and a received START character will
restart output. All start/stop characters are ignored and not read. If
IXANY is set, any input character will restart output which has been
suspended.

If IXOFF is set, the system will transmit START characters when the
input queue is nearly empty and STOP characters when nearly full.

If CTSFLOW or RTSFLOW are set, IXON and IXANY should also be
set so that these two types of flow control do not interfere with each
other.

28 March 1991 Page 4

TERMIO (M) TERMIO (M)

The initial input control value is all bits clear.

The c oflag field specifies the system treatment of output:

OPOST 0000001 Postprocesses output

OLCUC 0000002 Maps lowercase to uppercase on output

ONLCR 0000004 Maps NL to CR-NL on output

OCRNL 0000010 Maps CR to NL on output

ONOCR 0000020 No CR output at column 0

ONLRET 0000040 NL performs CR function

OFILL 0000100 Uses fill characters for delay

OFDEL 0000200 Fills is DEL, else NUL

NLDLY 0000400 Selects newline delays:
NLO 0
NL1 0000400

CRDLY 0003000 Selects carriage return delays:
CRO 0
CR1 0001000
CR2 0002000
CR3 0003000

TABDLY 0014000 Selects horizontal tab delays:
TABO 0
TAB1 0004000
TAB2 0010000
TAB3 0014000 Expands tabs to spaces

BSDLY 0020000 Selects backspace delays:
BSO 0
BS1 0020000

VTDLY 0040000 Selects vertical tab delays:
VTO 0
VT1 0040000

FFDLY 0100000 Selects form feed delays:
FFO 0
FF1 0100000

If OPOST is set, output characters are post-processed as indicated by
the remaining flags, otherwise characters are transmitted without
change.

If OLCUC is set, a lowercase alphabetic character is transmitted as the
corresponding uppercase character. This function is often used in con­
junction with IUCLC.

28 March 1991 Page 5

TERMIO (M) TERMIO (M)

If ONLCR is set, the NL character is transmitted as the CR-NL charac­
ter pair. If OCRNL is set, the CR character is transmitted as the NL
character. If ONOCR is set, no CR character is transmitted when at
column 0 (first position). If ONLRET is set, the NL character is
assumed to perform the carriage return function and the column
pointer is set to 0 and the delays specified for CR will be used. Other­
wise, the NL character is assumed to perform the linefeed function;
the column pointer will remain unchanged. The column pointer is
also set to 0 if the CR character is actually transmitted.

The delay bits specify how long transmission stops to allow for
mechanical or other movement when certain characters are sent to the
terminal. In all cases, a value of 0 indicates no delay. If OFILL is set,
fill characters will be transmitted for delay instead of a timed delay.
This is useful for high baud rate terminals which need only a minimal
delay. If OFDEL is set, the fill character is DEL, otherwise NUL.

If a form feed or vertical tab delay is specified, it lasts for about 2
seconds.

Newline delay lasts about 0.10 seconds. If ONLRET is set, the car­
riage return delays are used instead of the newline delays. If OFILL is
set, 2 fill characters will be transmitted.

Carriage return delay type 1 is dependent on the current column posi­
tion, type 2 is about 0.10 seconds, and type 3 is about 0.15 seconds. If
OFILL is set, delay type 1 transmits 2 fill characters, and type 2
transmits 4 fill characters.

Horizontal tab delay type 1 is dependent on the current column posi­
tion. Type 2 is about 0.10 seconds. Type 3 specifies that tabs are to be
expanded into spaces. If OFILL is set, 2 fill characters will be
transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, 1 fill char­
acter will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

The c_cflag field describes the hardware control of the terminal:

CBAUD 0000017 Baudrate:
B0 0 Hang up
B50 0000001 50 baud
B75 0000002 75 baud
B110 0000003 110 baud
B134 0000004 134.5 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud

28 March 1991 Page 6

TERMIO (M)

B600 0000010
B1200 0000011
B1800 0000012
B2400 0000013
B4800 0000014
B9600 0000015
EXTA 0000016
EXTB 0000017

CSIZE 0000060
CS5 0
CS6 0000020
CS7 0000040
CS8 0000060
CSTOPB 0000100
CREAD 0000200
PARENB 0000400
PARODD 0001000
HUPCL 0002000
CLOCAL 0004000
LOBLK 0010000

600 baud
1200 baud
1800 baud
2400 baud
4800 baud
9600 baud
External A
External B

Character size:
5 bits
6 bits
7 bits
8 bits
Sends two stop bits, else one
Enables receiver
Parity enable
Odd parity, else even
Hangs up on last close
Local line, else dial-up
Block layer output

TERMIO (M)

The CBAUD bits specify the baud rate. The zero baud rate, B0, is used
to hang up the connection. If B0 is specified, the data-terminal-ready
signal will not be asserted. Without this signal, the line is discon­
nected if it is connected through a modem. For any particular
hardware, impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both transmission
and reception. This size does not include the parity bit, if any. If
CSTOPB is set, 2 stop bits are used, otherwise 1 stop bit. For example,
at 110 baud, 2 stops bits are required.

If PARENB is set, parity generation and detection is enabled and a par­
ity bit is added to each character. If parity is enabled, the PARODD
flag specifies odd parity if set, otherwise even parity is used.

If CREAD is set, the receiver is enabled. Otherwise no characters will
be received.

If HUPCL is set, the line will be disconnected when the last process
with the line open closes it or terminates. That is, the data-terminal-
ready signal will not be asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection
with no modem control. The data-terminal-ready and request-to-send
signals are asserted, but incoming modem signals are ignored. If
CLOCAL is not set, modem control is assumed. This means the data-
terminal-ready and request-to-send signals are asserted. Also, the

28 March 1991 Page 7

TERMIO (M) TERMIO (M)

carrier-detect signal must be returned before communications can
proceed.

If LOBLK is set, the output of a job control layer will be blocked when
it is not the current layer. Otherwise the output generated by that
layer will be multiplexed onto the current layer.

The initial hardware control value after open is B9600, CS8, CREAD,
HUPCL.

The cjflag field of the argument structure is used by the line discip­
line to control terminal functions. The basic line discipline (0) pro­
vides the following:

ISIG 0000001 Enable signals
ICANON 0000002 Canonical input (erase and kill processing)
XCASE 0000004 Canonical upper/lower presentation
ECHO 0000010 Enables echo
ECHOE 0000020 Echoes erase character as BS-SP-BS
ECHOK 0000040 Echoes NL after kill character
ECHONL 0000100 Echoes NL
NOFLSH 0000200 Disables flush after interrupt or quit
XCLUDE 0100000 Exclusive use of the line

If ISIG is set, each input character is checked against the special con­
trol characters INTR, SWTCH, and QUIT. If an input character
matches one of these control characters, the function associated with
that character is performed. If ISIG is not set, no checking is done.
Thus, these special input functions are possible only if ISIG is set.
These functions may be disabled individually by changing the value of
the control character to an unlikely or impossible value (e.g., 0377).

If ICANON is set, canonical processing is enabled. This enables the
erase and kill edit functions, and the assembly of input characters into
lines delimited by NL, EOF, and EOL. If ICANON is not set, read
requests are satisfied directly from the input queue. A read will not be
satisfied until at least VMIN characters have been received or the
timeout value VTIME has expired and at least one character has been
input. This allows fast bursts of input to be read efficiently while still
allowing single character input. (See the discussion of VMIN and
VTIME below.)

The VMIN and VTIME values are stored in the position for the EOF
and EOL characters respectively. VMIN and VTIME are interpreted as
EOF and EOL if ICANON is set. Default VMIN and VTIME values are
stored in the /usr/include/sys/termio.h file. To change these values,
set ICANON to off and use stty(C) to change the VMIN and VTIME
values as represented by EOF and EOL. The TIME value represents
tenths of seconds.

28 March 1991 Page 8

TERMIO (M) TERMIO (M)

If XCASE and ICANON are set, an uppercase letter is accepted on
input by preceding it with a \ character, and is output preceded by a \
character. In this mode, the following escape sequences are generated
on output and accepted on input:

For:

{
}\

Use:
V
\!r
\(
\)w

For example, A is input as \a, \n as \\n, and \N as \\\n.

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible. If
ECHO and ECHOE are set, the erase character is echoed as ASCII BS
SP BS, which will clear the last character from a CRT screen. If
ECHOE is set and ECHO is not set, the erase character is echoed as
ASCH SP BS. If ECHOK is set, the NL character will be echoed after
the kill character to emphasize that the line will be deleted. Note that
an escape character preceding the erase or kill character removes any
special function. If ECHONL is set, the NL character will be echoed
even if ECHO is not set. This is useful for terminals set to local echo
(so-called half duplex). Unless escaped, the EOF character is not
echoed. Because EOT is the default EOF character, this prevents ter­
minals that respond to EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output queues asso­
ciated with the quit and interrupt characters will not be done.

If XCLUDE is set, any subsequent attempt to open the TTY device
using open(S) will fail for all users except the super-user. If the call
fails, it returns EBUSY in errno. XCLUDE is useful for programs
which must have exclusive use of a communications line. It is not
intended for the line to the program’s controlling terminal. XCLUDE
must be cleared before the setting program terminates, otherwise sub­
sequent attempts to open the device will fail.

VMIN represents the minimum number of characters that should be
received when the read is satisfied (i.e., the characters are returned to
the user). VTIME is a timer of 0.10 second granularity used to time-out
bursty and short-teim data transmissions. The four possible values for
VMIN and VTIME and their interactions are:

VMIN > 0, VTIME > 0
In this case, VTIME serves as an inter-character timer activated after
the first character is received, and reset upon receipt of each character.
VMIN and VTIME interact as follows:

28 March 1991 Page 9

TERMIO (M) TERMIO (M)

As soon as one character is received the inter-character timer is
started.

If VMIN characters are received before the inter-character timer
expires the read is satisfied.

If the timer expires before VMIN characters are received the char­
acters received to that point are returned to the user.

A read(S) operation will sleep until the VMIN and VTIME
mechanisms are activated by the receipt of the first character, thus,
at least one character must be returned.

VMIN >0, VTIME = 0
In this case, because VTIME = 0, the timer plays no role and only
VMIN is significant. A read(S) operation is not satisfied until VMIN
characters are received.

VMIN = 0, VTIME >0
In this case, because VMIN = 0, VTIME no longer serves as an inter-
character timer, but now serves as a read timer that is activated as
soon as the read(S) operation is processed. A read(S) operation is
satisfied as soon as a single character is received or the timer expires,
in which case, the read(S) operation will not return any characters.

VMIN = 0, VTIME = 0
In this case, return is immediate. If characters are present, they will
be returned to the user.

The initial line-discipline control value is all bits clear.

The primary ioctl (S) system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this form are:

TCGETA Gets the parameters associated with the terminal and
stores them in the termio structure referenced by arg.

TCSETA Sets the parameters associated with the terminal from
the structure referenced by arg. The change is
immediate.

TCSETAW Waits for the output to drain before setting the new
parameters. This form should be used when changing
parameters that will affect output.

TCSETAF Waits for the output to drain, then flushes the input
queue and sets the new parameters.

28 March 1991 Page 10

TERMIO (M) TERMIO (M)

Additional ioctl (S) calls have the form:

ioctl (hides, command, arg)
int arg;

The commands using this form are:

TCSBRK Waits for the output to drain. If arg is 0, then sends a
break (zero bits for 0.25 seconds).

TCXONC Starts/stops control. If arg is 0, suspends output; if 1,
restarts suspended output.

TCFLSH

Files

/dev/tty

/dev/tty*

/dev/console

If arg is 0, hushes the input queue; if 1, hushes the
output queue; if 2, hushes both the input and output
queues.

See Also

fork(S), ioctl(S), mapchan(F), mapchan(M), read(S), setgprp(S),
signal(S), stty(C), tty(M)

28 March 1991 Page 11

TIMTBL (M) TIMTBL (M)

Name

timtbl - Create a time locale table.

Syntax

timtbl [specfile]

Description

The utility timtbl is provided to allow new LC_TIME locales to be
defined. It reads a specification file, which contains definitions of the
way in which time and date information is presented for a particular
locale, and produces a binary table file, to be read by setlocale{S),
which determines the behavior of the strftime(S) routine.

The information supplied in the specification file consists of lines in
the following format:

item = string

The “= ” can be separated from the item and string fields by zero or
more space or tab characters. The following values are meaningful for
item:

DATE_FMT specification of the format string for representing the
date. It will contain directives representing vari­
able items such as the month number, as used in die for­
mat string for strftime (S).

T1ME_FMT specification of the format string for representing the
time of day.

F_NOON string indicating 12-hour clock times before midday,
e.g. “AM”.

A_NOON string indicating 12-hour clock times after midday, e.g.
“PM”.

D_T_FMT string for formatting combined date and time.

DAY_1 full name of the first day of the week (Sunday).

DAY_7 full name of the seventh day of the week.

28 March 1991 Page 1

TIMTBL (M) TIMTBL (M)

ABDAY_1 abbreviated name of the first day of the week, e.g.
“Sun”.

ABDAY_7 abbreviated name of the seventh day of the week.

MON_l füll name of the first month in the Gregorian calendar.

MON_12 full name of the twelfth month.

ABMON_l abbreviated name of the first month.

ABMON_12 full name of the twelfth month.

The string is a sequence of characters surrounded by quotes ("). Char­
acters within the string can be specified both literally and using “ \ ”
escapes; the following three strings are equivalent:

"Tuesday” - literal
"\x54ue\x73da\x79" - hexadecimal escapes
'M 24ue\l 63da\l 71" - octal escapes

The strings for the items DATE_FMT, TIME_FMT and D_T_FMT will
also include “ % ” directives as detailed in the strftime(S) manual
page, to specify variable portions of the string.

All characters following a hash (“ # ”) are treated as a comment and
ignored up to the end of the line, unless the hash is within a quoted
string.

The various items may be specified in any order. If any items are not
specified, a warning message will be produced, and the null string (,,M)
substituted.

The binary table output is placed in a file named “time”, within the
current directory. This file should be copied or linked to the correct
place in the setlocale file tree (see locale (M)). To prevent accidental
corruption of the output data, the file is created with no write permis­
sion; if the timtbl utility is run in a directory containing a write-
protected “ctype” file, the utility will ask if the existing file should be
replaced - any response other than “yes” or “y” will cause timtbl to
terminate without overwriting the existing file.

28 March 1991 Page 2

TIMTBL (M) TIMTBL (M)

If the specfile argument is missing, the specification information is
read from the standard input.

See Also
chrtbl(M), locale(M), numtbl(M), setlocale(S), stiftime(S)

Diagnostics
If the input table file cannot be opened for reading, processing will ter­
minate with the error message, “Cannot open specification file”.

Any lines in the specification file which are syntactically incorrect, or
contain an unrecognized value for the item, will cause an error mes­
sage to be issued to the standard error output, specifying the line num­
ber on which the error was detected. The line will be ignored, and
processing will continue.

If a particular item is specified more than once, a warning message
will be produced, and processing will continue.

If the specification file does not contain specifications for all possible
items, a warning message will be produced.

If the output file, time , cannot be opened for writing, processing will
terminate with the error message, “Cannot create table file”.

Any error conditions encountered will cause the program to exit with
a non-zero return code; successful completion is indicated with a zero
return code.

Notes
The strings D_FMT , T_FMT , AMJSTR and PM_STR may be used as
alternatives to DATE_FMT , TIME_FMT , F_NOON and A_NOON
respectively, if required. These alternatives are provided for con­
sistency with the identifiers used by nl_langinfo(S).

28 March 1991 Page 3

TRCHAN (M) TRCHAN (M)

Name

trchan - Translate character sets

Syntax
trchan [-ciko] mapfile

Description

trchan performs mapping as a filter, using the same format of mapfile
as mapchan(M) (described in mapchan(F)). This allows a file consist­
ing of one internal character set to be “translated” to another internal
character set.

trchan reads standard input, maps it, and writes to standard output. A
mapfile must be given on the command line. Errors cause trchan to
stop processing unless -c is specified.

The following options can be used with trchan :

-c causes errors to be echoed on stderr, and processing is continued.

-i specifies that the “input” section of the mapfile is used when
translating data.

-k specifies that the “dead” and “compose” sections of the mapfile
are used when translating data.

-o specifies that the “output” section of the mapfile is used when
translating data.

The -i, -k and -o options can be specified in any combination; if
none are specified, trchan uses the entire mapfile, as if all three
were specified together.

Files

/usr/lib/mapchan/*

See Also

ascii(M), mapchan(F), mapchan(M)

Notes

trchan currently ignores the control sections of the mapfile.

March 28, 1991 Page 1

TTY (M) TTY (M)

Name
tty - Special terminal interface.

Description

The file /dev/tty is, in each process, a synonym for the control termi­
nal associated with the process group of that process, if any. It is use­
ful for programs or shell sequences that wish to be sure of writing
messages on the terminal no matter how output has been redirected. It
can also be used for programs that demand the name of a file for out­
put, when typed output is desired, and when it is tiresome to find out
what terminal is currently in use.

The general terminal interface is described in termio (M).

Files

/dev/tty
/dev/tty*

See Also

termio(M)

28 March 1991 Page 1

TZ (M) TZ (M)

Name

TZ - Time zone environment variable.

Syntax
TL=sssn[ddd[m] \;start[/time],end[/time]]]; export TZ

setenv TZ sssn\ddd\m\ [;start[/time],end[/time]]]

/etc/tz

Description

TZ is the shell environment variable for the time zone of the system
and is set in the files /etc/rc, /.profile, and /etc/default/login.

The shell script /etc/tz, generally run during installation, prompts for
the correct time zone and makes the changes in the appropriate files.

/etc/tz also prompts for the dates when time is shifted from standard to
daylight time and back, and for the number of hours to shift (partial
hours in the form of hh:mm:ss are acceptable).

Users living in a time zone different than that of the host machine may
change TZ in their $HOME/.profile or $HOME/.login files.

TZ contains the following information:

(sss) One to nine letters designating the standard time zone.

(n) Number of hours past Greenwich mean time for the stan­
dard time (partial hours are valid e.g. 12:30:01). Positive
hours are west of Greenwich, negative numbers are east of
Greeenwich.

(ddd) One to nine letters designating the local daylight savings
time (summer time) zone. If not present, summer time is
assumed not to apply.

(m) Number of hours past Greenwich mean time for the sum­
mer time (partial hours are valid e.g. 11:30:01). Positive
hours are west of Greenwich, negative numbers are east of
Greeenwich. If m is not given, the distance to GMT dur­
ing summer time is assumed to be one hour less than dur­
ing standard time.

{start) The rule defining the day summer time begins. In the
southern hemisphere, the ending day will be earlier in the
year than the starting day.

28 March 1991 Page 1

TZ (M) TZ (M)

(end) The rule defining the day summer time ends.

(time) The time of day the change to and from summer time
occurs. The default is 02:00:00 local time.

The rules for defining the start and end of summer time are as fol­
lows:

Jn 1 based Julian day n (1 < n < 365)*
n 0 based Julian day n (0 < n < 364)*
Wn.d day d (0<d< 6)** of week n (1 < n < 53)t
Mm.n.d day d of week n (1 </i<5)$ of month m(l <m< 12)

* Leap days (February 29) are never counted; that is, February 28
(J59) is immediately followed by March 1 (J60) even in leap years.

* * Sunday is the first day of the week (0). If d is omitted, Sunday is
assumed. Note that d is optional.

t The 5th week of the month is always the last week containing day
d, whether there are actually 4 or 5 weeks containing day d.

$ The 53rd week of the year is always the last week containing day
d, whether there are actually 52 or 53 weeks containing day d.

If start and end are omitted, current U.S. law is assumed.

For the simple expression of Eastern Standard/Daylight Time TZ is set
as follows:

TZ=EST5EDT; export TZ
(for sh(C) and vsh(C))

setenv TZ EST5EDT
(for csh(C))

The fully expressed TZ string for Eastern Standard/Daylight Time,
using the current U.S. law of changing to daylight saving time on the
first Sunday in April, and back to standard time on the last Sunday in
October at 2:00 a.m. local time, would be:

TZ=EST05:00:00EDT04:00:00;M4.1.0/02:00:00,Ml0.5.0/02:00:00

To change the time zone for the entire system, run the shell script
/etc/tz (as root) or use an editor to change the variable 7Z in the files
/etc/rc, /.profile and /etc/default/login. In /etc/rc the line changing
the time zone (see the sh example above) must occur before the
/etc/asktime command. The TZ variable in /etc/default/login causes
the time zone to be set correctly on logging in and for programs such
as uucico.

28 March 1991 Page 2

TZ (M) 7Z(M)

Files

/etc/rc
/etc/default/login
/etc/t7
$HOME/.profile
$HOME/.login

See Also

environ(M), date(C), ctime(S)

Notes

The date(C) automatically switches from Standard Time to Summer
Time (Daylight Saving Time). Leap days are properly accounted for.

Changes to TZ are immediately effective, (i.e. if a process changes the
TZ variable, the next call to a crime (S) routine returns a value based
on the new value of the variable).

28 March 1991 Page 3

Permuted Index
Commands, System Calls, Library Routines and File Formats

This permuted index is derived from the “ Name” description lines found on each
reference manual page. Each index line shows the title of the entry to which the line
refers, followed by the reference manual section letter where the page is found.

To use the permuted index search the middle column for a key word or phrase. The right
hand column contains the name and section letter of the manual page that documents
the key word or phrase. The left column contains additional useful information about
the command. Commands or routines are also listed in the context of the index line,
followed by a colon (:). This denotes the “ beginning” of the sentence. Notice that in
many cases, the lines wrap, starting in the middle column and ending in the left column.
A slash (/) indicates that the description line is truncated.

coffconv: Convert 386 COFF files to XENIX format. . coffconv(M)
13tol, ltol3: Converts between 3-byte integers and long/ 13tol(S)

accepts a number of 5 12-byte blocks.....................................login(M)
between long integer and base 64 ASCII. a641,164a: Converts . . a641(S)

Object Modules. 86rel: Intel 8086 Relocatable Format for . . . 86rel(F)
asx: XENIX 8086/186/286/386 Assembler. . . asx(CP)

Format for Object Modules. 86rel: Intel 8086 Relocatable . . . 86rel(F)
long integer and base 64 ASCII. a641,164a: Converts between . . . a641(S)

format of UUCP dial-code abbreviations file dialcodes: . . . dialcodes(F)
abort: Generates an IOT fault. . . abort(S)

value, abs: Returns an integer absolute . abs(S)
abs: Returns an integer absolute value..abs(S)

and/ /fabs, ceil, fmod: Performs absolute value, floor, ceiling . . . floor(S)
integer, labs: Returns the absolute value of a l o n g labs(DOS)

blocks, accepts a number of 512-byte . . login(M)
files, settime: Changes the access and modification dates of . settime(ADM)

a file, touch: Updates access and modification times of . touch(C)
utime: Sets file access and modification times. . . utime(S)

of a file, access: Determines accessibility . access(S)
dosls, dosrm, dosrmdir: Access DOS files.................................. dos(C)

directory, chmod: Changes the access permissions of a file or . . chmod(C)
a/ /nbwaitsem: Awaits and checks access to a resource governed by . waitsem(S)

sdenter, sdleave: Synchronizes access to a shared data segment. . sdenter(S)
sputl, sgetl: Accesses long integer data in a/ . . sputl(S)

endutent, utmpname: Accesses utmp file entry.....................getut(S)
access: Determines accessibility of a file........................... access(S)

Synchronizes shared data access, sdgetv, sdwaitv: sdgetv(S)
csplit: Splits files according to context............................csplit(C)

rmuser: Removes a user account from the system.....................rmuser(ADM)
accton: Turns on accounting...accton(ADM)

1-1

Permuted Index

acct: Format of per-process accounting file.................................. . acct(F)
Searches for and prints process accounting files, acctcom: acctcom(ADM)

Enables or disables process accounting, acct: acct(S)
process accounting. acct: Enables or disables acct(S)

accounting file. acct: Format of per-process . . . acct(F)
process accounting files. acctcom: Searches for and prints . acctcom(ADM)

accton: Turns on accounting. . . . accton(ADM)
sin, cos, tan, asin, acos, atan, atan2: Performs/ . . • trig(S)

Prints current SCCS file editing activity, s a c t : sact(CP)
information about system activity, uptime: Displays uptime(C)

debugger. adb: Invokes a general-purpose . . adb(CP)
Copies bytes from a specific address, movedata: movedata(DOS)

mkuser: Adds a login ID to the system. . mkuser(ADM)
nl: Adds line numbers to a file. . . . nl(C)

lineprinters. lpinit: Adds, reconfigures and maintains . lpinit(ADM)
swapadd: Adds swap area................................. . swapadd(S)

putenv: Changes or adds value to environment. . . . putenv(S)
SCCS files. admin: Creates and administers . . admin(CP)

admin: Creates and administers SCCS files.................... . admin(CP)
netutil: Administers the XENIX network. . netutil(ADM)

uuinstall: Administers UUCP control files. . uuinstall(ADM)
pwadmin: Performs password aging administration................................... . pwadmin(ADM)

sysadmsh: Menu driven system administration utility....................... . sysadmsh(ADM)
uadmin: administrative control...................... . uadmin(S)

/uudemon.poll, uudemon.poll2 UUCP administrative s c r i p t s uudemon(ADM)
pwadmin: Performs password aging administration........................ . pwadmin(ADM)

alarm: Sets a process’ alarm clock.. . alarm(S)
clock. alarm: Sets a process’ alarm . . . alarm(S)

aliashash: Micnet alias hash table generator. aliashash(ADM)
table generator. aliashash: Micnet alias hash . . . aliashash(ADM)
faliases: Micnet aliasing files...................................... . aliases(M)

brkctl: Allocates data in a far segment. . . brkctl(S)
malloc, free, realloc, calloc: Allocates main memory. malloc(S)

brk: Changes data segment space allocation, s b r k , sbrk(S)
file, inittab: Alternative login terminals . . . inittab(F)

terminals/ telinit, mkinittab: Alternative method of turning . telinit(ADM)
Generates programs for lexical analysis, l e x : lex(CP)

document, style: Analyzes characteristics of a . . . style(CT)
link editor output. a.out: Format of assembler and . a.out(F)

scopatch: Applies kernel patches.................... . scopatch(ADM)
ar: Archive file format..................... • ar(F)

libraries. ar: Maintains archives and ar(C)
dc: Invokes an arbitrary precision calculator. . dc(C)

cpio: Format of cpio archive.. . cpio(F)
pax: Portable archive exchange.............................. . pax(C)

ar: Archive file format........................... . ar(F)
tar: archive format................................... . tar(F)

the names of files on a backup archive, dumpdir: Prints dumpdir(ADM)
ar: Maintains archives and libraries....................... • ar(C)

tar: Archives files.................................... . tar(C)
cpio: Copies file archives in and out........................... . cpio(C)

1-2

Permuted Index

pcpio: Copy file archives in and out............... pcpio(C)
ptar: Process tape archives..................................... ptar(C)

ranlib: Converts archives to random libraries. . . . ranlib(C)
swapadd: Adds swap area.....................................swapadd(S)

varargs: variable argument list....................... varargs(S)
output of a varargs argument list. /Prints formatted . . vprintf(S)

getopt: Gets option letter from argument vector.................................... getopt(S)
expr: Evaluates arguments as an expression. . . . expr(C)

echo: Echoes arguments................................ echo(C)
ascii: Map of the ASCII character set...............ascii(M)

character set. ascii: Map of the A S C I I ...ascii(M)
atof, atoi, atol: Converts ASCII to numbers.................... atof(S)

between long integer and base 64 ASCII. a641,164a: Converts . . . a641(S)
tzset: Converts date and time to ASCII, /gmtime, asctime, ctime(S)
and/ ctime, localtime, gmtime, asctime, tzset: Converts date . . . ctime(S)

Performs/ sin, cos, tan, asin, acos, atan, atan2: trig(S)
commands, help: Asks for help about SCCS help(CP)

time of day. asktime: Prompts for the correct . asktime(ADM)
output. a.out: Format of assembler and link editor a.out(F)

asx: XENIX 8086/186/286/386 Assembler................................asx(CP)
masm: Invokes the XENIX assembler............................ masm(CP)

program, assert: Helps verify validity of . . assert(S)
deassigns devices assign, deassign: assigns and . . . assign(C)

deassigns devices, assign, deassign: Assigns and . . assign(C)
assign, deassign: Assigns and deassigns devices. . . assign(C)
assign, deassign: assigns and deassigns devices . . assign(C)

setbuf, setvbuf: Assigns buffering to a stream. . . setbuf(S)
setkey: Assigns the function keys....................setkey(C)

Close the event queue and all associated devices. ev_close: . . ev_close(S)
Assembler, asx: XENIX 8086/186/286/386 . . asx(CP)

a later time, at, batch: Executes commands at . at(C)
sin, cos, tan, asin, acos, atan, atan2: P erfo rm s/.......................trig(S)

sin, cos, tan, asin, acos, atan, atan2: Performs trigonometric/ . . trig(S)
to numbers, atof, atoi, atol: Converts ASCII . . atof(S)

double-precision/ strtod, atof: Converts a string to a strtod(S)
numbers, atof, atoi, atol: Converts ASCII to . . . atof(S)

integer, strtol, atol, atoi: Converts string to strtol(S)
integer, strtol, atol, atoi: Converts string to . . . strtol(S)

atof, atoi, atol: Converts ASCII to numbers. . atof(S)
lprint: Print to a printer attached to the user’s terminal . . lprint(C)

data segment, sdget, sdfree: Attaches and detaches a shared . . sdget(S)
the system, autoboot: Automatically boots . . autoboot(ADM)

schedule: Database for automated system backups schedule(ADM)
autoboot: Automatically boots the system. . autoboot(ADM)

resource/ waitsem, nbwaitsem: Awaits and checks access to a . . waitsem(S)
processes, wait: Awaits completion of background . wait(C)

a pattem in a file, awk: Searches for and processes . awk(C)
wait: Awaits completion of background processes.......................... wait(C)

Prints the names of files on a backup archive, dumpdir: dumpdir(ADM)
sddate: Prints and sets backup dates.. sddate(ADM)

/Default backup device information. . . . archive(F)

1-3

Permuted Index

file system backup.
format.

Performs incremental file system
error-checking filesystem

sysadmin: Performs file system
periodic semi-automated system
Database for automated system
fixed disk for flaws and creates

flaws and creates bad track/

between long integer and
and sets the configuration data
and sets the configuration data

names from pathnames.
Terminal capability data
terminal capability data

later time, at,

for diff.

cb:
jO, j l , jn, yO, y l, yn: Performs

Performs Bessel functions.

mail uudecode: decode a
mail uuencode: encode a

fixhdr: Changes executable
selected parts of executable

firead, fwrite: Performs buffered
bsearch: Performs a

tfind, tdelete, twalk: Manages
Creates an instance of a

Removes symbols and relocation
shutdn: Flushes

cmchk: Reports hard disk
df: Report number of free disk

Calculates checksum and counts
accepts a number of 512-byte

fdswap: Swaps default
boot: XENIX

autoboot: Automatically
allocation, sbrk,

segment,
search.

output, fread, fwrite: Performs
stdio: Performs standard
setbuf, setvbuf: Assigns

flushall: Flushes all output
a character to the console

mknod:

backup, dump: Performs incremental
backup: Incremental dump tape . .
backup, backup, d u m p :
backup fsave: Interactive,
backups and restores files....................
backups fsphoto: Performs . . .
backups s c h e d u le :
bad track table, badtrk: Scans . .
badtrk: Scans fixed disk for . . .
banner. Prints large letters...................
base 64 ASCII. /164a: Converts . .
base, cmos: D is p la y s
base, cmos: D is p la y s
basename: Removes directory . .
base, termcap:
base, "terminfo:"
batch: Executes commands at a . .
be: Invokes a calculator.......................
bdiffi Compares files too large . .
bdos: Invokes a DOS system call. .
Beautifies C programs..........................
Bessel functions, bessel,
bessel,jO ,jl,jn , yO, y l, yn: . . .
bfs: Scans big files................................
binary file for transmission via . .
binary file for transmission via . .
binary file headers.................................
binary files, hdr: Displays
binary input and output........................
binary search...
binary search trees, tsearch, . . .
binary semaphore, creatsem: . . .
bits, strip: ..
block I/O and halts the CPU. . . .
block size...
blocks..
blocks in a file, s u m :
blocks..
boot floppy drive..........................
boot program...
boot: XENIX boot program. . . .
boots the system....................................
brk: Changes data segment space
brkctl: Allocates data in a far . . .
bsearch: Performs a binary
buffered binary input and
buffered input and output.....................
buffering to a stream.............................
buffers...
buffer, ungetch: Returns
Builds special files................................

backup! ADM)
backup(F)
backup! ADM)
fsave(ADM)
sysadmin(ADM)
fsphoto! ADM)
schedule(ADM)
badtrk(ADM)
badtrk! ADM)
banner(C)
a641(S)
cmos(HW)
cmos!HW-86)
basename(C)
termcap(M)
terminfo(M)
at(C)
bc(C)
bdifüC)
bdos(DOS)
cb(CP)
bessel(S)
bessel(S)
bfs(C)
uuencode!C)
uuencode(C)
fixhdr(C)
hdr(CP)
fread(S)
bsearch!S)
tsearch(S)
creatsem!S)
strip(CP)
shutdn!S)
cmchk(C)
df(C)
sum(C)
login!M)
fdswap! ADM)
boot(HW)
boot(HW)
autoboot(ADM)
sbrk(S)
brkctl(S)
bsearch(S)
fread(S)
stdio(S)
setbuf(S)
flushalKDOS)
ungetch(DOS)
mknod(C)

1-4

Permuted Index

inp: Returns a byte.. inp(DOS)
outp: Writes a byte to an output port...........................outp(DOS)

movedata: Copies bytes from a specific address. . . movedata(DOS)
swab: Swaps bytes...swab(S)

cc: Invokes the C compiler.. cc(CP)
cflow: Generates C flow graph................................cflow(CP)

cpp: The C language preprocessor.............cpp(CP)
lint: Checks C language usage and syntax. . . lint(CP)

cxref: Generates C program cross-reference. . . . cxref(CP)
cb: Beautifies C programs.....................................cb(CP)

xref: Cross-references C programs................................... xref(CP)
xstr: Extracts strings from C programs....................................xstr(CP)
an error message file from C source, mkstr: Creates mkstr(CP)

distance, hypot, cabs: Determines Euclidean . . . hypot(S)
cal: Prints a c a le n d a rcal(C)

blocks in a file, sum: Calculates checksum and counts . sum(C)
be: Invokes a calculator...bc(C)

Invokes an arbitrary precision calculator, dc: dc(C)
cal: Prints a calendar...cal(C)

service, calendar: Invokes a reminder • . . calendar(C)
bdos: Invokes a DOS system call..bdos(DOS)

intdos: Invokes a DOS system call..intdos(DOS)
intdosx: Invokes a DOS system call..intdosx(DOS)

exit: Terminates the calling process......................................exit(DOS)
malloc, free, realloc, calloc: Allocates main memory. . . malloc(S)

cu: Calls another XENIX system. . . cu(C)
Data returned by stat system call, stat: stat(F)

lineprinter. Ip, lpr, cancel: Send/cancel requests to . . lp(C)
termcap: Terminal capability data base............................. termcap(M)
terminfo: terminal capability data base.............................terminfo(M)

descriptions into terminfo/ capinfo: convert term er capinfo(C)
files, cat: Concatenates and displays . . cat(C)

Generate troff width files and catabfile. charmap:charmap(CT)
cb: Beautifies C programs...................cb(CP)
cc: Invokes the C compiler. . . . cc(CP)
cd: Changes working directory. . . cd(C)

commentary of an SCCS delta, ede: Changes the delta cdc(CP)
value, floor,/ floor, fabs, ceil, fimod: Performs absolute . . . floor(S)

/Performs absolute value, floor, ceiling and remainder functions. . floor(S)
cflow: Generates C flow graph. . . cflow(CP)
egets: Gets a string............................... cgets(DOS)

delta: Makes a delta (change) to an SCCS file.................... delta(CP)
allocation, sbrk, brk: Changes data segment space . . . sbrk(S)

headers, fixhdr: Changes executable binary file . . fixhdr(C)
chgrp: Changes group ID................. chgrp(C)

passwd: Changes login password...passwd(C)
chmod: Changes mode of a file....... chmod(S)

environment, putenv: Changes or adds value to putenv(S)
chown: Changes owner ID...............chown(C)

nice: Changes priority of a process. . . nice(S)
command, chroot: Changes root directory for chroot(ADM)

1-5

Permuted Index

modification dates of/ settime:
of a file or directory, chmod:

an SCCS delta, ede:
file, newform:

file, chown:
chroot:
chsize:

chdir:
cd:

stream, ungetc: Pushes
eqnchar: Contains special

isatty: Checks for a
ioctl: Controls

fgetc, fgetchar: Gets a
getch: Gets a

getche: Gets and echoes a
getc, getchar, fgetc, getw: Gets

/putchar, fputc, putw: Puts a
ascii: Map of the ASCII

trehan: Translate
fjputc, fputchar: Write a

ungetch: Returns a
putch: Writes a
style: Analyzes

Displays/changes hard disk
strrev: Reverses the order of

charater. strset: Sets all
ltoa: Converts long integers to

strlwr: Converts uppercase
strupr: Converts lowercase

tr: Translates
ultoa: Converts numbers to

wc: Counts lines, words and
tolower, toascii: Translates

toascii: Classifies or converts
characters in a string to one

files and catab file,
directory.

fstab: File system mount and
permissions file uucheck:

constant-width text for/ cw,
mathematical text/ eqn, neqn,

processed by fsek.
of MM macros,

waitsem, nbwaitsem: Awaits and
fsck:

syntax, lint:
isatty:

grpcheck:
diction:

pwcheck:

Changes the access a n d
Changes the access permissions
Changes the delta commentary of .
Changes the format of a text . . .
Changes the owner and group of a .
Changes the root directory. . . .
Changes the size of a file.....................
Changes the working directory. . .
Changes working directory. . . .
character back into input
character definitions for eqn. . . .
character device....................................
character devices..................................
character from a stream.......................
character...
character...
character or word from a stream,
character or word on a stream. . .
character set...
character s e t s
character to a stream............................
character to the console buffer. . .
character to the c.onsole.......................
characteristics of a document. . .
characteristics, d p a r a m :..................
characters in a string............................
characters in a string to one . . .
characters...
characters to lowercase........................
characters to uppercase........................
characters..
characters...

characters, conv, toupper,
characters, /tolower, toupper, . .
charater. strset: Sets a l l
charmap: Generate troff width . .
chdir: Changes the working . . .
check commands...................................
check the uucp directories and . .
checkcw, cwcheck: Prepares . . .
checkeq, eqncheck: Formats . . .
checklist: List of file systems . . .
checkmm, mmcheck: Checks usage
checks access to a resource/ . . .
Checks and repairs file systems.
Checks C language usage and . .
Checks for a character device. . .
Checks group file..................................
Checks language usage........................
Checks password file............................

characters.

settime(ADM)
chmod(C)
cdc(CP)
newform(C)
chown(S)
chroot(S)
chsize(S)
chdir(S)
cd(C)
ungetc(S)
eqnchar(CT)
isatty(DOS)
ioctl(S)
fgetc(DOS)
getch(DOS)
getche(DOS)
getc(S)
putc(S)
ascii(M)
trchan(M)
fputc(DOS)
ungetch(DOS)
putch(DOS)
style(CT)
dparam(ADM)
strrev(DOS)
strset(DOS)
ltoa(DOS)
strlwr(DOS)
strupr(DOS)
tr(C)
ultoa(DOS)
wc(C)
conv(S)
ctype(S)
strset(DOS)
charmap(CT)
chdir(S)
fstab(F)
uucheck(ADM)
cw(CT)
eqn(CT)
checklist(F)
checkmm(CT)
waitsem(S)
fsck(ADM)
lint(CP)
isatty(DOS)
grpcheck(C)
diction(CT)
pwcheck(C)

1-6

Permuted Inaex

keystroke, kbhit: Checks the console for a . . kbhit(DOS)
to be read, rdchk: Checks to see if there is data . . . rdchk(S)

checkmm, mmcheck: Checks usage of MM macros. . . checkmm(CT)
file, sum: Calculates checksum and counts blocks in a . sum(C)

chgrp: Changes group ID. chgrp(C)
times: Gets process and child process times...................... . . times(S)

terminate, wait: Waits for a child process to stop or wait(S)
chmod: Changes mode of a file. . . chmod(S)

permissions of a file or/ chmod: Changes the access . . chmod(C)
chown: Changes owner ID. . . chown(C)

group of a file. chown: Changes the owner and . . chown(S)
for command. chroot: Changes root directory . . chroot(ADM)

directory. chroot: Changes the root chroot(S)
table. chrtbl: Create a ctype locale . . chrtbl(M)
table. chrtbl: Create a ctype locale . . chrtbl(M)

file. chsize: Changes the size of a . . . chsize(S)
tolower, toupper, toascii: Classifies or converts/ /isascii, . . ctype(S)

uuclean: uucp spool directory c le a n - u p uuclean(ADM)
clear: Clears a terminal screen. . . clear(C)

stream status, ferror, feof, clearerr, fileno: Determines . . ferror(S)
clear: Clears a terminal screen. clear(C)

clri: Clears inode.................................. . . clri(ADM)
a shell command interpreter with C-like syntax, csh: Invokes . . csh(C)

alarm: Sets a process’ alarm clock... . . alarm(S)
clock: Reports CPU time used. . . clock(S)

(time of day) clock. clock: The system real-time . . clock(F)
system real-time (time of day) clock, clock: The clock(F)
system real-time (time of day) clock, setclock: Sets the setclock(ADM)

operations. closedir: Performs directory . . directory(S)
close: Closes a file descriptor. close(S)

fclose, fflush: Closes or flushes a stream. fclose(S)
shuts down the/ haltsys, reboot: Closes out the file systems and . . haltsys(ADM)

fclose, fcloseall: Closes streams.............................. . . fclose(DOS)
clri: Clears inode.......................... . . clri(ADM)

size. cmchk: Reports hard disk block . . cmchk(C)
configuration data base. cmos: Displays and sets the . . cmos(HW)

cmp: Compares two files. cmp(C)
coffconv: Convert 386 COFF files to XENIX format. . . coffconv(M)

col: Filters reverse linefeeds. . . . col(CT)
coltbl: Create a collation locale table................... . . coltbl(M)
coltbl: Create a collation locale table................... . . coltbl(M)

screen: tty[01-n], color, monochrome, ega,. screen(HW)
setcolor: Set screen color... . . setcolor(C)

locale table. coltbl: Create a collation coltbKM)
locale table. coltbl: Create a collation coltbl(M)

lc: Lists directory contents in columns... . . ls(C)
comb: Combines SCCS deltas. . . comb(CP)

comb: Combines SCCS deltas. comb(CP)
common to two sorted files. comm: Selects or rejects lines . . comm(C)

nice: Runs a command at a different priority. . . nice(C)
segread: command description. segread(DOS)

1-7

Permuted Index

env: Sets environment for
quits, nohup: Runs a

rsh: Invokes a restricted shell
sh: Invokes the shell

syntax, csh: Invokes a shell
uux: Executes
getopt: Parses

system: Executes a shell
time: Times a

Changes root directory for
at, batch: Executes

cron: Executes
micnet: The Micnet default

help: Asks for help about SCCS
intro: Introduces XENIX

system, remote: Executes
xargs: Constructs and executes

File system mount and check
Introduces text processing

XENIX Development System
cdc: Changes the delta

comm: Selects or rejects lines
/the status of inter-process
ftok: Standard interprocess

dircmp:
sdiff:

diff. bdiff:
diskcp, diskcmp: Copies or

difiB:
cmp:
diff:

file, sccsdiff:
regexp: Regular expression

terminfo: Format of
cc: Invokes the C

tic: Terminfo
yacc: Invokes a

expressions, regex, regcmp:
regcmp:

erf, eifc: Error function and
processes, wait: Awaits

storage,
compress:

pack, peat, unpack:
scsi: Small

cat:

system.
emos: Displays and sets the

hwconfig: Read the
Anapscm, mapstr, convkey:

command execution.............................
command immune to hangups and .
(command interpreter).........................
command interpreter............................
command interpreter with C-like
command on remote XENIX. . . .
command options..................................
command..
command..
command, c h r o o t :
commands at a later time.....................
commands at specified times. . . .
commands file.......................................
commands..
commands..
commands on a remote XENIX . .
commands..
commands, fstab:
commands, intro:
commands, intro: Introduces . . .
commentary of an SCCS delta. . .
common to two sorted files. . . .
communication facilities.....................
communication package......................
Compares directories...........................
Compares files side-by-side. . . .
Compares files too large for . . .
compares floppy disks..........................
Compares three files.............................
Compares two files...............................
Compares two text files.......................
Compares two versions of an SCCS
compile and match routines. . . .
compiled terminfo file..........................
compiler...
compiler...
compiler-compiler................................
Compiles and executes regular . .
Compiles regular expressions. . .
complementary error function. . .
completion of background
compress: Compress data for . . .
Compress data for storage...................
Compresses and expands files. . .
computer systems interface. . . .
Concatenates and displays files. . .
conditions, test: T e s t s
config: Configures a XENIX . . .
configuration data base........................
configuration information....................
Configure monitor screen/

env(C)
nohup(C)
rsh(C)
sh(C)
csh(C)
uux(C)
getopt(C)
system(S)
time(CP)
chroot(ADM)
at(C)
cron(C)
micnet(F)
help(CP)
Intro(C)
remote(C)
xargs(C)
fstab(F)
Intro(CT)
Intro(CP)
cdc(CP)
comm(C)
ipcs(ADM)
stdipc(S)
dircmp(C)
sdifl(C)
bdiff(C)
diskcp(C)
diff3(C)
cmp(C)
diff(C)
sccsdiff(CP)
regexp(S)
terminfo(F)
cc(CP)
tic(C)
yacc(CP)
regex(S)
regcmp(CP)
erf(S)
wait(C)
compress(C)
compress(C)
pack(C)
scsi(HW)
cat(C)
test(C)
config(ADM)
cmos(HW)
hwconfig(ADM)
mapkey(M)

1-8

Permuted Index

mapchan:
config:

spooling system, lpadmin:
an out-going terminal line
Returns a character to the
cputs: Puts a string to the

console: System
kbhit: Checks the

cscanf: Converts and formats
messages: Description of system

putch: Writes a character to the

cw, checkcw, cwcheck: Prepares
mkfs:

commands, xargs:
nrofl/troff, tbl, and eqn

debugging on uutry: try to
ev_block: Wait until the queue

definitions for eqn. eqnchar:
lc: Lists directory

Is: Gives information about
1: Lists information about

Splits files according to
UUCP

init, inir: Process
msgctl: Provides message

uadmin: administrative
ioctl:
fcntl:

semctl:
operations, shmctl:

uucp status inquiry and job
Translates characters.

term:
fcvt, gcvt: Performs output

format, coffconv:
into terminfo/ capinfo:

double-precision/ strtod, atof:
dd:

input, cscanf:
scanf, fscanf, sscanf:

libraries, ranlib:
atof, atoi, atol:

and long/ 13tol, ltol3:
and base 64 ASCII. a641,164a:

toupper, toascii: Classifies or
/gmtime, asctime, tzset:

characters, ltoa:
uppercase, strupr:

ultoa:
itoa:

Configure tty device mapping.
Configures a XENIX system. . .
Configures the lineprinter . . .
connection, dial: Establishes . .
console buffer, ungetch: . . .
console...
console device..................................
console for a keystroke....................
console input.....................................
console messages.............................
console...
console: System console device,
constant-width text for troff. . .
Constructs a file system..................
Constructs and executes
constructs, deroffi Removes . .
contact remote system with . .
contains an event..............................
Contains special character . . .
contents in columns.........................
contents of directories.....................
contents of directory........................
context, csplit:
control files, uuinstall: Administers
control initialization.........................
control operations.............................
control..
Controls character devices. . .
Controls open files...........................
Controls semaphore operations. .
Controls shared memory . . .
control, uustat:
conv, toupper, tolower, toascii:
Conventional names........................
conversions, e c v t ,
Convert 386 COFF files to XENIX
convert termcap descriptions . .
Converts a string to a
Converts and copies a file. . . .
Converts and formats console
Converts and formats input. . .
Converts archives to random . .
Converts ASCII to numbers. . .
Converts between 3-byte integers
Converts between long integer
converts characters, /tolower,
Converts date and time to ASCII.
Converts long integers to . . .
Converts lowercase characters to
Converts numbers to characters.
Converts numbers to integers.

mapchan(M)
config(ADM)
lpadmin(ADM)
dial(S)
ungetch(DOS)
cputs(DOS)
console(M)
kbhit(DOS)
cscanf(DOS)
messages(M)
putch(DOS)
console(M)
cw(CT)
mkfs(ADM)
xargs(C)
derofKCT)
uutry(ADM)
ev_block(S)
eqnchar(CT)
ls(C)
ls(C)
ls(C)
csplit(C)
uuinstall(ADM)
init(M)
msgctl(S)
uadmin(S)
ioctl(S)
fcntl(S)
semctl(S)
shmctl(S)
uustat(C)
conv(S)
term(CT)
ecvt(S)
coffconv(M)
capinfo(C)
strtod(S)
dd(C)
cscanf(DOS)
scanf(S)
ranlib(C)
atof(S)
13tol(S)
a641(S)
ctype(S)
ctime(S)
ltoa(DOS)
strupr(DOS)
ultoa(DOS)
itoa(DOS)

1-9

Permuted Index

standard FORTRAN, ratfor: Converts Rational FORTRAN into ratfor(CP)
strtol, atol, atoi: Converts string to integer. strtol(S)

units: Converts units................................... . units(C)
lowercase, strlwr: Converts uppercase characters to . strlwr(DOS)

screen/ mapkey, mapscm, mapstr, convkey: Configure monitor . . . mapkey(M)
dd: Converts and copies a file.. . dd(C)

address, movedata: Copies bytes from a specific . . . movedata(DOS)
cpio: Copies file archives in and out. . cpio(C)

systems, rep: Copies files across XENIX rcp(C)
cp: Copies files.. . cp(C)

copy: Copies groups of files...................... . copy(C)
diskep, diskemp: Copies or compares floppy disks. . diskcp(C)

copy: Copies groups of files. . . . copy(C)
pepio: Copy file archives in and out. . . . pcpio(C)

Public XENIX-to-XENIX file copy, uuto, uupick: uuto(C)
core: Format of core image file. . . core(F)

core: Format of core image file.................................. . core(F)
asktime: Prompts for the correct time of day........................... . asktime(ADM)

explain: Corrects language usage. explain(CT)
atan2: Performs/ sin, cos, tan, asin, acos, atan, trig(S)

functions, sinh, cosh, tanh: Performs hyperbolic . . sinh(S)
sum: Calculates checksum and counts blocks in a file...................... . sum(C)

characters, wc: Counts lines, words and wc(C)
cp: Copies files................................. • cp(C)

cpio: Format of cpio archive....................................... . cpio(F)
and out. cpio: Copies file archives in . . . cpio(C)

cpio: Format of cpio archive. . . . cpio(F)
preprocessor. epp: The C language cpp(CP)

cprintf: Formats output.................... . cprintf(DOS)
clock: Reports CPU time used.................................. . clock(S)

Flushes block I/O and halts the CPU. s h u td n :............................... . shutdn(S)
console. eputs: Puts a string to the cputs(DOS)

rewrites an existing one. creat: Creates a new file or creat(S)
coltbl: Create a collation locale table. . coltbl(M)
coltbl: Create a collation locale table. . coltbl(M)
chrtbl: Create a ctype locale table. . . . chrtbl(M)
chrtbl: Create a ctype locale table. . . . chrtbl(M)

montbl: Create a currency locale table. . montbl(M)
montbl: Create a currency locale table. . montbl(M)
mestbl: Create a messages locale file . . . mestbl(M)
mestbl: Create a messages locale file . . . mestbl(M)
numtbl: Create a numeric locale table. . numtbl(M)
numtbl: Create a numeric locale table. . numtbl(M)
timtbl: Create a time locale table. timtbl(M)

file, tmpnam, tempnam: Creates a name for a temporary . . tmpnam(S)
mkdir: Creates a new directory................... . mkdir(DOS)

an existing one. creat: Creates a new file or rewrites . . . creat(S)
fork: Creates a new process..................... . fork(S)

spawnl, spawnvp: Creates a new process..................... . spawn(DOS)
ctags: Creates a tags file............................. . ctags(CP)

tee: Creates a tee in a pipe...................... . tee(C)

HO

Permuted Index

tmpfile:
from C source, mkstr:

profile, profil:
semaphore, creatsem:

pipe:
files, admin:

/Scans fixed disk for flaws and
umask: Sets and gets file

a binary semaphore.
listing,

specified times,
intro: Introduction to DOS
dosld: XENIX to MS-DOS

cxref: Generates C program
cref: Makes a

xref:

console input,
interpreter with C-like syntax.

to context,
terminal

for a terminal,
asctime, tzset: Converts date/

islower, isdigit, isxdigit,/
chrtbl: create a
chrtbl: create a

montbl: create a
montbl: create a

ev_getemask: Return the
pointer, tell: Gets the

activity, sact: Prints
the slot in the utmp file of the
getcwd: Get the pathname of

uname: Prints the name of the
uname: Gets name of

/Returns the number of events
ev_flush: Discard all events

cursor functions,
curses: Performs screen and
spline: Interpolates smooth

the user,
each line of a file,
line of a file, cut:

constant-width text for troff,
text for troff, cw, checkcw,

cross-reference,
daemon.mn: Micnet mailer

sdwaitv: Synchronizes shared

Creates a temporary file.......................
Creates an error message file . . .
Creates an execution time
Creates an instance of a binary . .
Creates an interprocess pipe. . . .
Creates and administers SCCS . .
creates bad track table..........................
creation mask..
creatsem: Creates an instance of
cref: Makes a cross-reference . .
cron: Executes commands at . . .
cross development functions. . . .
cross linker...
cross-reference......................................
cross-reference listing..........................
Cross-references C programs. . .
crypt: en code/decod e
cscanf: Converts and formats . . .
csh: Invokes a shell command . .
csplit: Splits files according . . .
ct: spawn getty to a remote . . .
ctags: Creates a tags file......................
ctermid: Generates a filename . .
ctime, localtime, gmtime,
ctype, isalpha, isupper,
ctype locale table
ctype locale table
cu: Calls another XENIX system.
currency locale t a b l e
currency locale t a b l e
current event mask...............................
current position of the file
current SCCS file editing
current user, ttyslot: Finds
current working directory....................
current XENIX system........................
current XENIX system........................
currently in the queue..........................
currently in the queue..........................
curses: Performs screen and . . .
cursor functions.....................................
curve...
cuserid: Gets the login name of . .
cut: Cuts out selected fields of . .
Cuts out selected fields of each . .
cw, checkcw, cwcheck: Prepares
cwcheck: Prepares constant-width .
cxref: Generates C program . . .
daemon...
daemon.mn: Micnet mailer daemon,
data access, sdgetv,

tmpfile(S)
mkstr(CP)
profil(S)
creatsem(S)
pipe(S)
admin(CP)
badtrk(ADM)
umask(S)
creatsem(S)
cref(CP)
cron(C)
intro(DOS)
dosld(CP)
cxref(CP)
cref(CP)
xref(CP)
crypt(C)
cscanf(DOS)
csh(C)
csplit(C)
ct(C)
ctags(CP)
ctermid(S)
ctime(S)
ctype(S)
chrtbl(M)
chrtbl(M)
cu(C)
montbl(M)
montbl(M)
ev_gtemsk(S)
tell(DOS)
sact(CP)
ttyslot(S)
getcwd(S)
uname(C)
uname(S)
ev_count(S)
ev_flush(S)
curses(S)
curses(S)
spline(CP)
cuserid(S)
cut(CT)
cut(CT)
cw(CT)
cw(CT)
cxref(CP)
daemon.mn(M)
daemon.mn(M)
sdgetv(S)

1 - 1 1

Permuted Index

termcap: Terminal capability data base..termcap(M)
"terminfo: terminal capability"database.

and sets the configuration data base, cmos: Displays cmos(HW)
compress: Compress data for storage.....................................compress(C)

brkctl: Allocates data in a far segment........................... brkctl(S)
/sgetl: Accesses long integer data in a machine-independent. . . sputl(S)
plock: Lock process, text, or data in memory.......................plock(S)

prof: Displays profile data..prof(CP)
execseg: makes a data region executable......................... execseg(S)

call, stat: Data returned by stat system . . . stat(F)
sbrk, brk: Changes data segment space allocation. . . sbrk(S)

Synchronizes access to a shared data segment, sdenter, sdleave: . . sdenter(S)
Attaches and detaches a shared data segment, sdget, sdfree: . . . sdget(S)
rdchk: Checks to see if there is data to be read........................ rdchk(S)

types: Primitive system data types................................. types(F)
backups schedule: Database for automated system . . schedule(ADM)

firstkey, nextkey: Performs database functions, /delete, . . . dbm(S)
"terminfo: terminal d e sc rip tio n "....................database.

tput: Queries the terminfo database..tput(C)
/gmtime, asctime, tzset: Converts date and time to ASCII........................ ctime(S)

date: Prints and sets the date..date(C)
date: Prints and sets the date. . . . date(C)

time, ftime: Gets time and date..time(S)
the access and modification dates of files. / C h a n g e s settime(ADM)

sddate: Prints and sets backup dates... sddate(ADM)
The system real-time (time of day) clock, clock: clock(F)
the system real-time (time of day) clock, setclock: Sets setclock(ADM)

Prompts for the correct time of day. a s k t im e :asktime(ADM)
firstkey, nextkey: Performs/ dbminit, fetch, store, delete, . . . dbm(S)

precision calculator, dc: Invokes an a r b it r a r y dc(C)
dd: Converts and copies a file. . . dd(C)

devices, assign, deassign: Assigns and deassigns . assign(C)
assign, deassign: Assigns and deassigns devices............................... assign(C)

adb: Invokes a general-purpose debugger.................................. adb(CP)
fsdb: File system debugger............................ fsdb(ADM)

sdb: Invokes symbolic debugger...................................sdb(CP)
to contact remote system with debugging on uutiy: t r y .uutry(ADM)

transmission via mail uudecode: decode a binary file for uuencode(C)
fdswap: Swaps default boot floppy drive.fdswap(ADM)

micnet: The Micnet default commands file.........micnet(F)
information directory, default: Default program default(F)

defopen, defread: Reads default entries.....................defopen(S)
directory, default: Default program information . . . default(F)

Contains special character definitions for eqn. eqnchar: . . . eqnchar(CT)
entries, defopen, defread: Reads default . . defopen(S)

defopen, defread: Reads default entries. . . defopen(S)
Performs/ dbminit, fetch, store, delete, firstkey, nextkey: dbm(S)

rmdir: Deletes a directory............................. rmdir(DOS)
pathname, dimame: Delivers directory part of dimame(C)

file, tail: Delivers the last part o f a tail(C)
delta: Makes a delta (change) to an SCCS file. . . delta(CP)

1-12

Permuted Index

delta, cdc: Changes the delta commentary of an SCCS . . cdc(CP)
rmdel: Removes a delta from an SCCS file.............rmdel(CP)

an SCCS file, delta: Makes a delta (change) to . delta(CP)
the delta commentary of an SCCS delta, cdc: Changescdc(CP)

comb: Combines SCCS deltas...comb(CP)
terminal, mesg: Permits or denies messages sent to a mesg(C)

tbl, and eqn constructs, deroff. Removes nrofl/troff, . . . derofl(CT)
terminfo: terminal description database.................. terminfo(S)

Machine: Inscription of host machine. . . . machine(HW)
messages, messages: Description of system console . . messages(M)

segread: command description................................ segread(DOS)
capinfo: convert termcap descriptions into terminfo/ capinfo(C)

descriptions into terminfo descriptions, /convert termcap . . capinfo(C)
close: Closes a file descriptor..close(S)

dup2: Duplicates an open file descriptor, d u p ,dup(S)
sdget, sdfree: Attaches and detaches a shared data segment. . sdget(S)

file, access: Determines accessibility o f a . . . access(S)
dtype: Determines disk type............................dtype(C)

eof: Determines end-of-file......................... eof(DOS)
hypot,cabs: Determines Euclidean distance. . . hypot(S)

file: Determines file type............................. file(C)
ferror, feof, clearerr, fileno: Determines stream status.......ferror(S)

whodo: Determines who is doing what . . whodo(C)
console: System console device.. console(M)

error: Kemel error output device...error(M)
/Default backup device information....................................archive(F)

master: Master device information table......................master(F)
lp, lpO, lpl, lp2: Line printer device interfaces................................... lp(HW)

isatty: Checks for a character device... isatty(DOS)
mapchan: Format of tty device mapping files..................mapchan(F)
mapchan: Configure tty device mapping......................... mapchan(M)

devnm: Identifies device name..................................devnm(C)
systty: System maintenance device... systty(M)

ev_getdev: Gets a list o f devices feeding an event queue. . ev_getdev(S)
devices: format of UUCP devices f i l edevices(F)

ev_gindev: include/exclude devices for event i n p u t ev_gindev(S)
file devices: format of UUCP devices . devices(F)

ioctl: Controls character devices... ioctl(S)
deassign: Assigns and deassigns devices, a s s i g n ,assign(C)

event queue and all associated devices. ev_close: Close the . . . ev_close(S)
font and video mode for a video device, vidi: Sets t h e vidi(C)

devnm: Identifies device name. . . devnm(C)
blocks, df: Report number of free disk . . df(C)

dial: Dials a modem........... dial(ADM)
terminal line connection, dial: Establishes an out-going . . dial(S)

dialcodes: format of UUCP dial-code abbreviations file . . . dialcodes(F)
dial-code abbreviations file dialcodes: format of UUCP . . . dialcodes(F)

dialers: format of UUCP dialers file .. dialers(F)
file dialers: format of UUCP Dialers . dialers(F)

dial: Dials a modem.................... dial(ADM)
uuchat: dials a modem.....................dial(ADM)

1-13

Permuted Index

diction: Checks language usage. . diction(CT)
diff: Compares two text files. . . . difl^C)
dif¥3: Compares three files. . . . difB(C)

difimk: Marks differences between files.......... diflmk(CT)
between files, diflmk: Marks differences diffink(CT)

dir: Format of a directory.....................dir(F)
dircmp: Compares directories. . . dircmp(C)

uucheck: check the uucp directories and permissions file . . uucheck(ADM)
dircmp: Compares directories..dircmp(C)

mv: Moves or renames files and directories.. mv(C)
rm, rmdir: Removes files or directories..rm(C)

rmdir: Removes directories..rmdir(C)
information about contents of directories. Is: G i v e sls(C)

cd: Changes working directory.. cd(C)
chdir: Changes the working directory.. chdir(S)

chroot: Changes the root directory..chroot(S)
uuclean: uucp spool directory clean-up uuclean(ADM)

lc: Lists directory contents in columns. . . ls(C)
dir: Format of a directory. dir(F)

file, getdents: read directory entries and put in a . . . getdents(S)
dirent: file system independent directory entry......................................dirent(F)

unlink: Removes directory entry............................. unlink(S)
chroot: Changes root directory for command........... chroot(ADM)

uucico: Scan the spool directory for work.......................uucico(C)
mkdir: Makes a directory.. mkdir(C)

mkdir: Creates a new directory.. mkdir(DOS)
mvdir:M ovesa directory..mvdir(C)

pwd: Prints working directory name...............................pwd(C)
basename: Removes directory names from pathnames. . basename(C)

closedir: Performs directory operations..................directory(S)
ordinary file, mknod: Makes a directory, or a special o rmknod(S)

dimame: Delivers directory part of pathname. . . . dimame(C)
rename: renames a file or directory....................................rename(DOS)

rmdir: Deletes a directory.. rmdir(DOS)
access permissions of a file or directory, chmod: Changes the . . chmod(C)
Default program information directory, d e f a u l t : default(F)

the pathname of current working directory, getcwd: Get getcwd(S)
information about contents of directory. 1: Lists ls(C)

directory entry, dirent: file system independent . . dirent(F)
of pathname, dimame: Delivers directory part . dimame(C)

printers, disable: Turns off terminals and . . disable(C)
acct: Enables or disables process accounting. . . . acct(S)

the queue. ev_flush: Discard all events currently in . . ev_flush(S)
type, modes, speed, and line discipline. /Sets terminal getty(M)

cmchk: Reports hard disk block size.............................cmchk(C)
df: Report number of free disk blocks..df(C)

dparam: Displays/changes hard disk characteristics............................... dparam(ADM)
hd: Internal hard disk drive.. hd(HW)

track/ badtrk: Scans fixed disk for flaws and creates bad . . badtrk(ADM)
fdisk: Maintain disk partitions...fdisk(ADM)

dtype: Determines disk type..dtype(C)

1-14

Permuted Index

du: Summarizes disk usage.................................... du(C)
floppy disks, diskcp, diskcmp: Copies or compares . . diskcp(C)

compares floppy disks, diskcp, diskcmp: Copies or . . . diskcp(C)
format: format floppy disks...................................... format(C)

Copies or compares floppy disks, diskcp, d i s k c m p : .diskcp(C)
umount: Dismounts a file structure....................umount(ADM)

zcat: Display a stored file..............................compress(C)
vedit: Invokes a screen-oriented display editor, vi, v i e w ,vi(C)
configuration data base, cmos: Displays and sets t h e cmos(HW)

cat: Concatenates and displays files...............................cat(C)
format, hd: Displays files in hexadecimal . . . hd(C)

od: Displays files in octal format. . . . od(C)
system activity, uptime: Displays information about . . . uptime(C)

is on the system and what w: Displays information about who . w(C)
prof: Displays profile data.............prof(CP)

executable binary files, hdr: Displays selected parts of hdr(CP)
characteristics, dparam: Displays/changes hard disk . . . dparam(ADM)

mail: Sends, reads or disposes of mail.............................mail(C)
cabs: Determines Euclidean distance, h y p o t , hypot(S)

lcong48: Generates uniformly distributed. srand48, seed48, . . . drand48(S)
divvy -b block_device -c c/ . . divvy(ADM)

mm macros, mm: Prints documents formatted with the . . mm(CT)
mmt: Typesets documents.....................................mmt(CT)

Analyzes characteristics of a document, style: style(CT)
whodo: Determines who is doing what....................................whodo(C)

intro: Introduction to DOS cross development functions. intro(DOS)
dosexterr: Gets DOS error messages...............dosexter(DOS)

dosls, dosrm, dosrmdir: Access DOS files... dos(C)
bdos: Invokes a DOS system call.........................bdos(DOS)

intdos: Invokes a DOS system call........................intdos(DOS)
intdosx: Invokes a DOS system call.......................intdosx(DOS)

messages, dosexterr: Gets DOS error dosexter(DOS)
linker, dosld: XENIX to MS-DOS cross . dosld(CP)

DOS files, dosls, dosrm, dosrmdir: Access . . dos(C)
files, dosls, dosrm, dosrmdir: Access DOS . . dos(C)

dosls, dosrm, dosrmdir: Access DOS files. . . . dos(C)
/atof: Converts a string to a double-precision number.....................strtod(S)

disk characteristics, dparam: Displays/changes hard . . dparam(ADM)
hd: Internal hard disk drive..hd(HW)

Swaps default boot floppy drive, fdswap: fdswap(ADM)
utility, sysadmsh: Menu driven system administration . . . sysadmsh(ADM)

mcconfig: Irwin tape driver parameters mcconfig(F)
sxt: Pseudo-device driver..sxt(M)

term: Terminal driving tables for nroff. term(F)
dtype: Determines disk type. . . . dtype(C)
du: Summarizes disk usage. . . . du(C)

backup: Incremental dump tape format.................................backup(F)
files on a backup archive, dumpdir: Prints the names of . . . dumpdir(ADM)

file, tapedump: Dumps magnetic tape to output . . tapedump(C)
file descriptor, dup, dup2: Duplicates an open . . dup(S)

descriptor, dup, dup2: Duplicates an open file . . . dup(S)

[-15

Permuted Index

descriptor, dup, dup2: Duplicates an open file dup(S)
echo: Echoes arguments.......................... echo(C)

getche: Gets and echoes a character.................................getche(DOS)
echo: Echoes arguments.................................echo(C)

output conversions, ecvt, fcvt, gcvt: Performs ecvt(S)
ed: Invokes the text editor...................ed(C)

program, end, etext, edata: Last locations in end(S)
sact: Prints current SCCS file editing activity..sact(CP)

ed: Invokes the text editor. ... ed(C)
ex: Invokes a text editor.. ex(C)

Id: Invokes the link editor...ld(CP)
Id: Invokes the link editor...ld(M)

Format of assembler and link editor output. a.out:a.out(F)
the stream editor, sed: Invokes sed(C)

a screen-oriented display editor, /view, vedit: Invokes . . . vi(C)
effective user, real group, and effective group IDs. /real user, . . getuid(S)

/getgid, getegid: Gets real user, effective user, real group, and/ . . getuid(S)
color, monochrome, ega,. /tty [0 1 - «] , screen(HW)
for a pattern, grep, egrep, fgrep: Searches a file . . . grep(C)

input, soelim: Eliminates .so’s from nroff soelim(CT)
line printers, enable: Tbms on terminals and . . enable(C)

accounting, acct: Enables or disables process . . . acct(S)
transmission via mail uuencode: encode a binary file f o r uuencode(C)

crypt: encode/decodeciypt(C)
crypt: password and file encryption functionscrypt(S)
makekey: Generates an encryption key.......................................makekey(M)

locations in program, end, etext, edata: L a s tend(S)
/getgrgid, getgmam, setgrent, endgrent: Get group file entry. . . getgrent(S)

eof: Determines end-of-file...eof(DOS)
/getpwuid, getpwnam, setpwent, endpwent: Gets password file/ . . getpwent(S)

utmp file entry, endutent, utmpname: Accesses . . getut(S)
getdents: read directoiy entries and put in a file........................ getdents(S)

defopen, defread: Reads default entries...defopen(S)
xlist, fxlist: Gets name list entries from files...................................xlist(S)

nlist: Gets entries from name list............................ nlist(S)
wtmp: Formats of utmp and wtmp entries, u t m p ,utmp(F)
putpwent: Writes a password file entry..putpwent(S)

unlink: Removes directoiy entry..unlink(S)
system independent directory entry, dirent: file dirent(F)

utmpname: Accesses utmp file entry, e n d u te n t ,............................... getut(S)
endgrent: Get group file entry, /getgmam, setgrent, getgrent(S)

endpwent: Gets password file entry, /getpwnam, setpwent, . . . getpwent(S)
command execution, env: Sets environment for env(C)

environ: The user environment. . . environ(M)
profile: Sets up an environment at login time...................profile(M)
environ: The user environment.. environ(M)

execution, env: Sets environment for command env(C)
getenv: Gets value for environment name................................getenv(S)

putenv: Changes or adds value to environment.. putenv(S)
TZ: Time zone environment variable........................... tz(M)

set or read international environment setlocale: setlocale(S)

1-16

Permuted Index

eof: Determines end-of-file. . . . eof(DOS)
Removes nrofl/troff, tbl, and eqn constructs, derotfiderofl^CT)

Formats mathematical text for/ eqn, neqn, checkeq, eqncheck: . . eqn(CT)
character definitions for eqn. eqnchar: Contains special eqnchar(CT)
text for/ eqn, neqn, checkeq, eqncheck: Formats mathematical . eqn(CT)

character definitions for eqn. eqnchar: Contains special . . eqnchar(CT)
complementary error function, erf, erfc: Error function and . . . erf(S)

complementary error/ erf, erfc: Error function a n d erf(S)
perror, sys_errlist, sys_nerr, ermo: Sends system error/ perror(S)

error function, erf, erfc: Error function and complementaiy erf(S)
Error function and complementary error function, erf, e r f c : erf(S)

device, error: Kemel error output error(M)
source, mkstr: Creates an error message file from C mkstr(CP)

dosexterr: Gets DOS error messages...dosexter(DOS)
sys_nerr, ermo: Sends system error messages. /sys_errlist, . . . perror(S)
services, library routines and error numbers, / s y s t e m Intro(S)

error: Kernel error output device................................error(M)
fsave: Interactive, error-checking filesystem backup . fsave(ADM)

matherr: Error-handling function....................... matherr(S)
hashcheck: Finds spelling errors, /hashmake, spellin, spell(CT)

terminal line connection, dial: Establishes an out-going dial(S)
setmnt: Establishes /etc/mnttab table. . . . setmnt(ADM)

setmnt: Establishes /etc/mnttab table.......... setmnt(ADM)
program, end, etext, edata: Last locations in . . . end(S)

hypot, cabs: Determines Euclidean distance................hypot(S)
expression, expr: Evaluates arguments as an expr(C)
contains an event. ev_block: Wait until the queue . . ev_block(S)

and all associated devices. ev_close: Close the event queue . ev_close(S)
events currently in the queue. ev_count: Returns the number of . ev_count(S)

ev_read: Read the next event in the queue............. ev_read(S)
include/exclude devices for event input. e v _ g in d e v : .ev_gindev(S)

ev_init: Invokes the event manager..................... ev_init(S)
ev_getemask: Return the current event mask....................ev_gtemsk(S)

ev_setemask: Sets event mask.....................ev_stemsk(S)
ev_pop: Pop the next event off the queue.............ev_pop(S)

devices. ev_close: Close the event queue and all associated . . ev_close(S)
ev_suspend: Suspends an event queue........................ev_susp(S)

ev_open: Opens an event queue for input.......ev_open(S)
a list of devices feeding an event queue. ev_getdev: Gets . . ev_getdev(S)

Wait until the queue contains an event. ev_block:ev_block(S)
ev_count: Returns the number of events currently in the queue. . . ev_count(S)

ev_flush: Discard all events currently in the queue. . . ev_flush(S)
currently in the queue. ev_flush: Discard all events . . . ev_flush(S)

devices feeding an event queue. ev_getdev: Gets a list o f ev_getdev(S)
event mask. ev_getemask: Return the current . ev_gtemsk(S)

devices for event input. ev_gindev: include/exclude . . . ev_gindev(S)
manager. ev_init: Invokes the event ev_init(S)
for input. ev_open: Opens an event queue . . ev_open(S)

the queue. ev_pop: Pop the next event off . . ev_pop(S)
the queue. ev_read: Read the next event in . . ev_read(S)

queue. ev_resume: Restart a suspended . ev_resume(S)

1-17

Permuted Index

ev_setemask: Sets event mask. . . ev_stemsk(S)
queue. ev_suspend: Suspends an event . . ev_susp(S)

ex: Invokes a text editor...................... ex(C)
pax: Portable archive exchange.. pax(C)

execlp, execvp: Executes a/ execl, execv, execle, execve, . . . exec(S)
Executes a file, execl, execv, execle, execve, execlp, execvp: . . exec(S)
execl, execv, execle, execve, execlp, execvp: Executes a file. . . exec(S)

executable, execseg: makes a data region . . . execseg(S)
fixhdr: Changes executable binary file headers. . . fixhdr(C)

hdr: Displays selected parts of executable binary files.........................hdr(CP)
execseg: makes a data region executable.. execseg(S)

execle, execve, execlp, execvp: Executes a file, execl, execv, . . exec(S)
system: Executes a shell command. . . . system(S)

int86: Executes an interrupt.......................... int86(DOS)
int86x: Executes an interrupt.......................... int86x(DOS)

XENIX, uux: Executes command on remote . . uux(C)
time, at, batch: Executes commands at a later . . at(C)

times, cron: Executes commands at specified . cron(C)
XENIX system, remote: Executes commands on a remote . remote(C)

xargs: Constructs and executes commands............................ xargs(C)
regex, regcmp: Compiles and executes regular expressions. . . . regex(S)

nap: Suspends execution for a short interval. . . nap(S)
sleep: Suspends execution for an interval.............sleep(C)
sleep: Suspends execution for an interval............. sleep(S)

monitor: Prepares execution profile........................monitor(S)
profil: Creates an execution time profile................. profil(S)

Sets environment for command execution, env: env(C)
execvp: Executes a file, execl, execv, execle, execve, execlp, . . exec(S)

a file, execl, execv, execle, execve, execlp, execvp: Executes . exec(S)
execv, execle, execve, execlp, execvp: Executes a file, execl, . . exec(S)

link: Links a new filename to an existing file.. link(S)
a new file or rewrites an existing one. creat: Creates . . . creat(S)

process, exit, _exit: Terminates aexit(S)
exit, _exit: Terminates a process. . . . exit(S)

process, exit: Terminates the calling . . . exit(DOS)
false: Returns with a nonzero exit value..false(C)

true: Returns with a zero exit value.. true(C)
Performs exponential,/ exp, log,pow, sqrt, log 10: exp(S)

peat, unpack: Compresses and expands files, pack,pack(C)
usage, explain: Corrects language explain(CT)

/log, pow, sqrt, log 10: Performs exponential, logarithm, power,/ . . exp(S)
number into a mantissa and an exponent. /Splits floating-point . . frexp(S)

expression, expr: Evaluates arguments as an . expr(C)
routines, regexp: Regular expression compile and match . . regexp(S)

expr: Evaluates arguments as an expression......................................expr(C)
regcmp: Compiles regular expressions....................... regcmp(CP)

Compiles and executes regular expressions, regex, regcmp: . . . regex(S)
programs, xstr: Extracts strings from C xstr(CP)

absolute value, floor,/ floor, fabs, ceil, fmod: Performs floor(S)
of inter-process communication facilities. /Reports the status . . . ipcs(ADM)

factor: Factor a number.....................factor(C)

1-18

Permuted Index

factor: Factor a number........................factor(C)
faliases: Micnet aliasing files. . . aliases(M)

exit value, false: Returns with a nonzero . . . false(C)
abort: Generates an IOT fault.. abort(S)

streams, fclose, fcloseall: C l o s e s fclose(DOS)
flushes a stream, fclose, fflush: Closes o r fclose(S)

fclose, fcloseall: Closes streams.....................fclose(DOS)
fcntl: Controls open files..................... fcntl(S)

conversions, ecvt, fcvt, gcvt: Performs output ecvt(S)
fdisk: Maintain disk partitions. . . fdisk(ADM)

fopen, freopen, fdopen: Opens a stream....................... fopen(S)
floppy drive, fdswap: Swaps default boot . . . fdswap(ADM)

/to machine related miscellaneous features and files...................................... Intro(HW)
Introduction to miscellaneous features and files, i n t r o : Intro(M)

/Gets a list of devices feeding an event queue........................ ev_getdev(S)
Determines stream/ ferror, feof, clearerr, fileno:ferror(S)

Determines stream status, ferror, feof, clearerr, fileno: . . . ferror(S)
nextkey: Performs/ dbminit, fetch, store, delete, firstkey, . . . dbm(S)

stream, fclose, fflush: Closes or flushes a fclose(S)
character from a stream, fgetc, fgetchar: Gets a fgetc(DOS)

word from a/ getc, getchar, fgetc, getw: Gets character or . . getc(S)
a stream, fgetc, fgetchar: Gets a character from . . fgetc(DOS)

stream, gets, fgets: Gets a string from a gets(S)
pattem, grep, egrep, fgrep: Searches a file for a grep(C)

Compares files too large for diff. bdiffi bdifi^C)
cut: Cuts out selected fields of each line of a file.................. cut(CT)

of file systems processed by fsck. checklist: List checklist(F)
times, utime: Sets file access and modification . . . utime(S)

cpio: Copies file archives in and out........... cpio(C)
pcpio: Copy file archives in and out......... pcpio(C)

chmod: Changes mode of a file.. chmod(S)
chsize: Changes the size of a file.. chsize(S)

uncompress: Uncompress a stored file...compress(C)
zcat: Display a stored file.. compress(C)

uupick: Public XENIX-to-XENIX file copy, uuto,uuto(C)
core: Format of core image file.. core(F)

umask: Sets and gets file creation mask................................ umask(S)
ctags: Creates a tags file.. ctags(CP)

dd: Converts and copies a file.. dd(C)
close: Closes a file descriptor...close(S)

dup, dup2: Duplicates an open file descriptor...dup(S)
file: Determines file type..................... file(C)

devices: format of UUCP devices file ..devices(F)
dialers: format of UUCP Dialers file ..dialers(F)

sact: Prints current SCCS file editing activity..............................sact(CP)
crypt: password and file encryption fu n c tio n s................ crypt(S)

putpwent: Writes a password file entry... putpwent(S)
utmpname: Accesses utmp file entry, endutent,getut(S)

setgrent, endgrent: Get group file entry, /getgrgid, getgmam, . . getgrent(S)
endpwent: Gets password file entry, /getpwnam, setpwent, . getpwent(S)

filelength: Gets the length of a file..fileleng(DOS)

1-19

Permuted Index

grep, egrep, fgrep: Searches a file for a pattern.....................................grep(C)
open: Opens file for reading or writing.................... open(S)

writing, sopen: Opens a file for shared reading and sopen(DOS)
uudecode: decode a binary file for transmission via mail . . . uuencode(C)
uuencode: encode a binary file for transmission via mail . . . uuencode(C)

ar: Archive file format...ar(F)
intro: Introduction to file formats... Intro(F)

mkstr: Creates an error message file from C source................................. mkstr(CP)
group: Format of the group file... group(M)

grpcheck: Checks group file... grpcheck(C)
Changes executable binary file headers, fixhdr: fixhdr(C)

split: Splits a file into pieces....................................... split(C)
In: Makes a link to a file..ln(C)

mem, kmem: Memory image file... mem(M)
mestbl: create a messages locale file .. mestbl(M)
mestbl: create a messages locale file .. mestbl(M)

nl: Adds line numbers to a file..nl(C)
null: The null file... null(F)

/Finds the slot in the utmp file of the current user. ttyslot(S)
rename: renames a file or directory......................................rename(DOS)

the access permissions of a file or directoiy. /Changes chmod(C)
one. creat: Creates a new file or rewrites an existing creat(S)

passwd: The password file... passwd(F)
/ftell, rewind: Repositions a file pointer in a stream......................... fseek(S)

lseek: Moves read/write file pointer..lseek(S)
Gets the current position of the file pointer, t e l l : tell(DOS)

poll: format of UUCP Poll file ... poll(F)
prs: Prints an SCCS file..prs(CP)

pwcheck: Checks password file..pwcheck(C)
read: Reads from a file..read(S)

locking: Locks or unlocks a file region for reading or/ locking(S)
sccsfile: Format of an SCCS file..sccsfile(F)

stat, fstat: Gets file status.. stat(S)
mount: Mounts a file structure.. mount(ADM)

umount: Dismounts a file structure..umount(ADM)
backup, dump: Performs incremental file system backup............................... backup(ADM)

files, sysadmin: Performs file system backups and restores . sysadmin(ADM)
fsdb: File system debugger........................... fsdb(ADM)

volume, file system: Format of a system . . filesystem(F)
directory entry, dirent: file system in d ep en d en t...............dirent(F)

fstatfs: get file system information..............statfs(S)
statfs: get file system information............ statfs(S)

mkfs: Constructs a file s y s t e m . .. mkfs(ADM)
commands, fstab: File system mount and check . . . fstab(F)

mount: Mounts a file system...mount(S)
quot: Summarizes file system ownership......................... quot(C)

restore, restor: Invokes incremental file system restorer.............................. restore(ADM)
ustat: Gets file system statistics..............................ustat(S)

mnttab: Format of mounted file system table.................................... mnttab(F)
umount: Unmounts a file system.. umount(S)

haltsys, reboot: Closes out the file systems and shuts down the/ . haltsys(ADM)

1-20

Permuted Index

fsck: Checks and repairs file systems................................ fsck(ADM)
fsck. checklist: List of file systems processed by checklist(F)

systems: format of UUCP Systems file .. systems(F)
tmpfile: Creates a temporary file...tmpfile(S)

tsort: Sorts a file topologically......................... tsort(CP)
the scheduler for the uucp file transport program uusched: . . uusched(ADM)

ftw:W alksa file tree.. ftw(S)
ttys: Login terminals file.. ttys(F)

file: Determines file type..file(C)
val: Validates an SCCS file.. val(CP)

write: Writes to a file.. write(S)
Determines accessibility of a file, access: access(S)

Format of per-process accounting file, acct: .. acct(F)
for and processes a pattem in a file, awk: S e a r c h e s awk(C)

troff width files and catab file, charmap: G e n e r a te charmap(CT)
Changes the owner and group of a file, chown:chown(S)

umask: Sets file-creation mode mask............umask(C)
fields of each line of a file, cut: Cuts out selected cut(CT)

a delta (change) to an SCCS file, delta: Makesdelta(CP)
of UUCP dial-code abbreviations file dialcodes: f o r m a tdialcodes(F)

execlp, execvp: Executes a file, /execv, execle, execve, . . . exec(S)
directory entries and put in a file, getdents: r e a dgetdents(S)

Alternative login terminals file, inittab:inittab(F)
file, filelength: Gets the length of a . . fileleng(DOS)

a new filename to an existing file, link: L i n k s link(S)
UUCP uusched limit file m a x u u sc h e d s :...........................maxuuscheds(F)

UUCP uuxqt limit file m a x u u x q t s : maxuuxqts(F)
The Micnet default commands file, micnet: micnet(F)

or a special or ordinary file, mknod: Makes a directory, . . mknod(S)
ctermid: Generates a filename for a terminal.............. ctermid(S)

mktemp: Makes a unique filename....................................... mktemp(S)
link: Links a new filename to an existing file. . . . link(S)

Changes the format of a text file, newform: newform(C)
status, ferror, feof, clearerr, fileno: Determines stream ferror(S)

format of UUCP Permissions file permissions: permissions(F)
Removes a delta from an SCCS file, r m d e l : rmdel(CP)

csplit: Splits files according to context............csplit(C)
rep: Copies files across XENIX systems. . . . rcp(C)

faliases: Micnet aliasing files..aliases(M)
charmap: Generate troff width files and catab file................... charmap(CT)

mv: Moves or renames files and directories........................mv(C)
bfs: Scans big files... bfs(C)

cat: Concatenates and displays files... cat(C)
emp: Compares two files.. cmp(C)

copy: Copies groups of files..copy(C)
cp: Copies files..cp(C)

difB: Compares three files..difB(C)
diffi Compares two text files...difl(C)

fcntl: Controls open files.. fcntl(S)
find: Finds files...find(C)

translate: Translates files from one format to another . . translate(C)

1-21

Permuted Index

hd: Displays
od: Displays

mknod: Builds special
dumpdir: Prints the names of

pr: Prints
rm, rmdir: Removes

paste: Merges lines of
sdiffi Compares

sort: Sorts and merges
tar: Archives

coffconv: Convert 386 COFF
bdiff: Compares

control
what: Identifies

and prints process accounting
Creates and administers SCCS

Compares two versions of an SCCS
lines common to two sorted
Marks differences between

dosrm, dosrmdir: Access DOS
parts of executable binary

to miscellaneous features and
Prints the size of an object

semaphores and record locking on
Format of tty device mapping

unpack: Compresses and expands
access and modification dates of
file system backups and restores

miscellaneous features and
top.next: The Micnet topology

printable strings in an object
checksum and counts blocks in a

Gets name list entries from
format of UUCP Sysfiles

Interactive, error-checking
mnt: Mount a

The Micnet system identification
/Default information for mounting

Delivers the last part of a
Dumps magnetic tape to output

Format of compiled terminfo
Creates a name for a temporary

and modification times of a
Undoes a previous get of an SCCS

Reports repeated lines in a
uucp directories and permissions

col:
documents formatted with the

find:
hyphen:

finger:

files in hexadecimal format. . . .
files in octal format...............................
files..
files on a backup archive.....................
files on the standard output. . . .
files or directories.................................
files..
files side-by-side...................................
files..
files..
files to XENIX format..........................
files too large for d i f f
files, uuinstall: Administers UUCP
files..
files, acctcom: Searches for . . .
files, admin:
file, sccsdiffi
files, comm: Selects or rejects . .
files, diffink:
files, d o s l s , ..
files, hdr: Displays selected . . .
files, intro: Introduction..................
file, size: ..
files, lockf: Provide
files, mapchan:
files, pack, p e a t ,
files, settime: Changes the
files, sysadmin: Performs
files, /to machine related
files, top, ..
file, strings: Finds the
file, sum: Calculates
files, xlist, fxlist:
file sysfiles:
filesystem backup fsave:
filesystem ..
file, systemid:
filesystems...
file, t a i l : ...
file, tapedump:
file, " te rm in fo :"
file, tmpnam, tem p n am :..................
file, touch: Updates access . . .
file, u n g e t : ..
file, uniq: ..
file uucheck: check t h e
Filters reverse linefeeds.......................
mm macros, mm: P r i n t s
Finds files...
Finds hyphenated words......................
Finds information about users. . .

hd(C)
od(C)
mknod(C)
dumpdir(ADM)
pr(C)
rm(C)
paste(CT)
sdiff(C)
sort(C)
tar(C)
coffconv(M)
bdiff(C)
uuinstall(ADM)
what(C)
acctcom(ADM)
admin(CP)
sccsdifKCP)
comm(C)
diffink(CT)
dos(C)
hdr(CP)
Intro(M)
size(C)
lockf(S)
mapchan(F)
pack(C)
settime(ADM)
sysadmin(ADM)
Intro(HW)
top(F)
strings(C)
sum(C)
xlist(S)
sysfiles(F)
fsave(ADM)
mnt(C)
systemid(F)
filesys(F)
tail(C)
tapedump(C)
terminfo(F)
tmpnam(S)
touch(C)
unget(CP)
uniq(C)
uucheck(ADM)
col(CT)
mm(CT)
find(C)
hyphen(CT)
finger(C)

1-22

Permuted Index

look: Finds lines in a sorted list....................look(CT)
logname: Finds login name of user..................... logname(S)

object library, lorder: Finds ordering relation for an . . . lorder(CP)
hashmake, spellin, hashcheck: Finds spelling errors, spell, . . . spell(CT)

ttyname, isatty: Finds the name of a terminal. . . . ttyname(S)
an object file, strings: Finds the printable strings in . . . strings(C)

of the current user, ttyslot: Finds the slot in the utmp file . . . ttyslot(S)
users, finger: Finds information about . . finger(C)

dbminit, fetch, store, delete, firstkey, nextkey: Performs/ . . . dbm(S)
/Prints formatted output of a varargs argument list........................... vprintf(S)

bad track table, badtrk: Scans fixed disk for flaws and creates . . badtrk(ADM)
binary file headers, fixhdr: Changes executable . . . fixhdr(C)

badtrk: Scans fixed disk for flaws and creates bad track/ . . . badtrk(ADM)
frexp, ldexp, modf: Splits floating-point number into a/ . . . frexp(S)

/fmod: Performs absolute value, floor, ceiling and remainder/ . . . floor(S)
Performs absolute value, floor,/ floor, fabs, ceil, fmod: floor(S)

format: format floppy disks.......................... format(C)
diskcmp: Copies or compares floppy disks, d i s k c p ,diskcp(C)

fdswap: Swaps default boot floppy drive..fdswap(ADM)
cflow: Generates C flow graph.. cflow(CP)

buffers, flushall: Flushes all output flushall(DOS)
fclose, fflush: Closes or flushes a stream..................................... fclose(S)

flushall: Flushes all output buffers.flushall(DOS)
CPU. shutdn: Flushes block I/O and halts the . . shutdn(S)

floor,/ floor, fabs, ceil, fmod: Performs absolute value, . . floor(S)
device, vidi: Sets the font and video mode for a video . . vidi(C)

stream, fopen, freopen, fdopen: Opens a . fopen(S)
fork: Creates a new process. . . . fork(S)

ar: Archive file format..ar(F)
backup: Incremental dump tape format..backup(F)

format: format floppy disks.............. format(C)
86rel: Intel 8086 Relocatable Format for Object Modules. . . . 86rel(F)

format: format floppy disks. . . . format(C)
od: Displays files in octal format... od(C)

dir: Format of a directory..................dir(F)
file system: Format of a system volume. . . . filesystem(F)

newform: Changes the format of a text file........................... newform(C)
inode: Format of an inode................. inode(F)

sccsfile: Format of an SCCS file...... sccsfile(F)
editor output. a.out: Format of assembler and link . . . a.out(F)

file, "terminfo:" Format of compiled terminfo . . . terminfo(F)
core: Format of core image file........core(F)
cpio: Format of cpio archive............ cpio(F)

table, mnttab: Format of mounted file system . . mnttab(F)
file, acct: Format of per-process accounting . acct(F)

group: Format of the group file.......group(M)
files, mapchan: Format of tty device mapping . . mapchan(F)

devices: format of UUCP devices file . . . devices(F)
abbreviations file dialcodes: format of UUCP dial-code dialcodes(F)

dialers: format of UUCP Dialers file . . . dialers(F)
permissions: format of UUCP Permissions file . permissions(F)

1-23

Permuted Index

poll: format of UUCP Poll file poll(F)
sysfiles: format o f UUCP Sysfiles file . . . sysfiles(F)
systems: format of UUCP Systems file . . . systems(F)

tar: archive format. ...tar(F)
Translates files from one format to another translate: . . . translate(C)

Convert 386 COFF files to XENIX format, coffconv:coffconv(M)
Displays files in hexadecimal format, h d : .. hd(C)

cscanf: Converts and formats console input...............................cscanf(DOS)
fscanf, sscanf: Converts and formats input, s c a n f , scanf(S)

intro: Introduction to file formats...Intro(F)
eqn, neqn, checkeq, eqncheck: Formats mathematical text for/ . . eqn(CT)

neqn: Formats mathematics............................ neqn(CT)
entries, utmp, wtmp: Formats of utmp and wtmp utmp(F)

cprintf: Formats output...................................... cprintf(DOS)
printf, fprintf, sprintf: Formats output.......................................printf(S)

troff, tbl: Formats tables for nroff or tbl(CT)
vfjprintf, vsprintf: Prints formatted output of a/ vprintf, . . vprintf(S)

macros, mm: Prints documents formatted with the mmmm(CT)
nroff A text formatter.................................. nroff CT)

ratfor: Converts Rational FORTRAN into standard FORTRAN. ratfor(CP)
Rational FORTRAN into standard FORTRAN, ratfor: Converts . . . ratfor(CP)

and segment. fp_off, fp_seg: Return offset . . . fp_seg(DOS)
output, printf, fprintf, sprintf: F o r m a t s printf(S)

segment. fp_off, fp_seg: Return offset and fp_seg(DOS)
character to a stream, fputc, fputchar: Write a fputc(DOS)

word on a/ putc, putchar, fjputc, putw: Puts a character or . . putc(S)
stream, fjputc, fputchar: Write a character to a . . fputc(DOS)
stream, puts, fputs: Puts a string on aputs(S)

binary input and output, ffead, fwrite: Performs buffered . . fread(S)
main memory, malloc, free, realloc, calloc: Allocates . . malloc(S)

fopen, freopen, fdopen: Opens a stream. . fopen(S)
floating-point number into a/ frexp, ldexp, modf: Splits frexp(S)

error-checking filesystem/ fsave: Interactive, fsave(ADM)
formats input, scanf, fscanf, sscanf: Converts and . . . scanf(S)

systems, fsck: Checks and repairs file . . . fsck(ADM)
fsdb: File system debugger. . . . fsdb(ADM)

Repositions a file pointer in a/ fseek, ftell, r e w in d :........................... fseek(S)
semi-automated system backups fsphoto: Performs periodic fsphoto(ADM)

check commands, fstab: File system mount and . . . fstab(F)
stat, fstat: Gets file status............................. stat(S)

information, fstatfs: get file s y s t e mstatfs(S)
file pointer in a/ fseek, ftell, rewind: Repositions a . . . fseek(S)

time, ftime: Gets time and date.................... time(S)
communication package, ftok: Standard interprocess stdipc(S)

ftw: Walks a file tree............................ ftw(S)
function, erf, erfc: Error function and complementary error . erf(S)

gamma: Performs log gamma function................................ gamma(S)
setkey: Assigns the function keys........................ setkey(C)

matherr: Error-handling function................................matherr(S)
function and complementary error function, erf, erfc: Error erf(S)

sysi86: machine specific functions................................ sysi86(S)

1-24

Permuted Index

floor, ceiling and remainder functions, /absolute value, floor(S)
atan2: Performs trigonometric functions, /asin, acos, atan, . . . trig(S)

jn, yO, y 1, yn: Performs Bessel functions, bessel, jO, j 1....................... bessel(S)
password and file encryption functions c r y p t :crypt(S)

Performs screen and cursor functions, curses:curses(S)
nextkey: Performs database functions, /delete, firstkey, . . . dbm(S)

logarithm, power, square root functions, /expon en tia l,.................. exp(S)
to DOS cross development functions, intro: Introduction . . intro(DOS)

cosh, tanh: Performs hyperbolic functions, s i n h , sinh(S)
tgoto, tputs: Performs terminal functions, /tgetflag, tgetstr, . . . termcap(S)

input and output, fread, fwrite: Performs buffered binary . fread(S)
from files, xlist, fxlist: Gets name list entries . . . xlist(S)

gamma: Performs log gamma function.................................... gamma(S)
function, gamma: Performs log gamma . . . gamma(S)

conversions, ecvt, fcvt, gcvt: Performs o u t p u t ecvt(S)
adb: Invokes a general-purpose debugger.................. adb(CP)

catab file, charmap: Generate troff width files and . . . charmap(CT)
terminal, ctermid: Generates a filename for a ctermid(S)

ptx: Generates a permuted index. . . . ptx(CT)
random: Generates a random number. . . . random(C)

rand, srand: Generates a random number. . . . rand(S)
makekey: Generates an encryption key. . . . makekey(M)

abort: Generates an IOT fault........................abort(S)
cflow: Generates C flow graph.......................cflow(CP)

cross-reference, cxref: Generates C p r o g r a mcxref(CP)
numbers, ncheck: Generates names from inode . . . ncheck(ADM)

analysis, lex: Generates programs for lexical . . lex(CP)
srand48, seed48, lcong48: Generates uniformly distributed. . drand48(S)

Micnet alias hash table generator, a l i a s h a s h : aliashash(ADM)
character or word from a/ getc, getchar, fgetc, getw: Gets . . getc(S)

getch: Gets a character.............................getch(DOS)
character or word from a/ getc, getchar, fgetc, getw: Gets getc(S)

character, getche: Gets and echoes a getche(DOS)
current working directory, getcwd: Get the pathname of . . . getcwd(S)

and put in a file, getdents: read directory entries . . getdents(S)
getuid, geteuid, getgid, getegid: Gets real u s e r , / getuid(S)

environment name, getenv: Gets value for getenv(S)
real user, effective/ getuid, geteuid, getgid, getegid: Gets . . . getuid(S)
effective/ getuid, geteuid, getgid, getegid: Gets real user, . . getuid(S)

setgrent, endgrent: Get group/ getgrent, getgrgid, getgmam, . . . getgrent(S)
endgrent: Get group/ getgrent, getgrgid, getgmam, setgrent, . . . getgrent(S)
Get group/ getgrent, getgrgid, getgmam, setgrent, endgrent: . . . getgrent(S)

getlogin: Gets login name................... getlogin(S)
argument vector, getopt: Gets option letter from . . getopt(S)

getopt: Parses command options. . getopt(C)
getpass: Reads a password. . . . getpass(S)

process group, and/ getpid, getpgrp, getppid: Gets process, . . getpid(S)
process, process group, and/ getpid, getpgrp, getppid: Gets . . getpid(S)
group, and/ getpid, getpgrp, getppid: Gets process, process . . getpid(S)

user ID. getpw: Gets password for a given . getpw(S)
setpwent, endpwent: Gets/ getpwent, getpwuid, getpwnam, . . getpwent(S)

1-25

Permuted Index

Gets/ getpwent, getpwuid, getpwnam, setpwent, endpwent: . getpwent(S)
endpwent: Gets/ getpwent, getpwuid, getpwnam, setpwent, . . getpwent(S)

fgetc, fgetchar: Gets a character from a stream. . . fgetc(DOS)
getch: Gets a character.................................. getch(DOS)

an event queue. ev_getdev: Gets a list of devices feeding . . . ev_getdev(S)
shmget: Gets a shared memory segment. . . shmget(S)

cgets: Gets a string.. cgets(DOS)
gets,fgets: Gets a string from a stream. . . . gets(S)

input, gets: Gets a string from the standard . . gets(CP)
getche: Gets and echoes a character. . . . getche(DOS)
ulimit: Gets and sets user limits....................ulimit(S)

getc, getchar, fgetc, getw: Gets character or word from a/ . . getc(S)
dosexterr: Gets DOS error messages................. dosexter(DOS)

nlist: Gets entries from name list. . . . nlist(S)
a stream, gets, fgets: Gets a string from . . . gets(S)

umask: Sets and gets file creation mask.......................umask(S)
stat, fstat: Gets file status.....................................stat(S)

ustat: Gets file system statistics.................. ustat(S)
standard input, gets: Gets a string from the . . . gets(CP)

getlogin: Gets login name..................................getlogin(S)
logname: Gets login name..................................logname(C)

msgget: Gets message queue...........................msgget(S)
files, xlist, fxlist: Gets name list entries from . . . xlist(S)

system, uname: Gets name of current XENIX . . . uname(S)
vector, getopt: Gets option letter from argument . getopt(S)

/getpwnam, setpwent, endpwent: Gets password file entry....................getpwent(S)
ID. getpw: Gets password for a given user . . getpw(S)

times, times: Gets process and child process . . times(S)
getpid, getpgrp, getppid: Gets process, process group, and/ . getpid(S)

real/ /geteuid, getgid, getegid: Gets real user, effective user, . . . getuid(S)
semget: Gets set of semaphores......................semget(S)

file pointer, tell: Gets the current position of the . . tell(DOS)
filelength: Gets the length of a file........................fileleng(DOS)

cuserid: Gets the login name of the user. . . cuserid(S)
tty: Gets the terminal’s name.....................tty(C)

time, ftime: Gets time and date................................ time(S)
getenv: Gets value for environment name. . getenv(S)

modes, speed, and line/ getty: Sets terminal type, getty(M)
ct: spawn getty to a remote terminal ct(C)

settings used by getty. gettydefs: Speed and terminal . . gettydefs(F)
and terminal settings used by getty. gettydefs: S p e e d gettydefs(F)

getegid: Gets real user,/ getuid, geteuid, getgid, getuid(S)
from a/ getc, getchar, fgetc, getw: Gets character or word . . . getc(S)

of directories. Is: Gives information about contents . ls(C)
date and time/ crime, localtime, gmtime, asctime, tzset: Converts . ctime(S)

longjmp: Performs a nonlocal “ goto” , s e t j m p , setjmp(S)
and checks access to a resource governed by a semaphore. /Awaits waitsem(S)

cflow: Generates C flow graph...cflow(CP)
file for a pattern, grep, egrep, fgrep: Searches a . . grep(C)

/real user, effective user, real group, and effective group IDs. . . getuid(S)
/getppid: Gets process, process group, and parent process IDs. . . getpid(S)

1-26

Permuted Index

newgrp: Logs user into a new group...newgrp(C)
copy: Copies groups of files..copy(C)

updates, and regenerates groups of programs. /Maintains, . make(CP)
grpcheck: Checks group file. . . . grpcheck(C)

signals, ssignal, gsignal: Implements software . . ssignal(S)
shutdn: Flushes block I/O and halts the CPU.. shutdn(S)

file systems and shuts down the/ haltsys, reboot: Closes out the . . haltsys(ADM)
nohup: Runs a command immune to hangups and quits................................. nohup(C)

cmchk: Reports hard disk block size..............................cmchk(C)
dparam: Displays/changes hard disk characteristics.......................dparam(ADM)

hd: Internal hard disk drive............................. hd(HW)
hcreate, hdestroy: Manages hash search tables, hsearch, . . . hsearch(S)

aliashash: Micnet alias hash table generator............................. aliashash(ADM)
spell, hashmake, spellin, hashcheck: Finds spelling/ spell(CT)

Finds spelling errors, spell, hashmake, spellin, hashcheck: . . spell(CT)
search tables, hsearch, hcreate, hdestroy: Manages hash . hsearch(S)

hexadecimal format, hd: Displays files in hd(C)
hd: Internal hard disk drive. . . . hd(HW)

tables, hsearch, hcreate, hdestroy: Manages hash search . . hsearch(S)
executable binary files, hdr: Displays selected parts of . . hdr(CP)

Changes executable binary file headers, f i x h d r : fixhdr(C)
user, hello: Send a message to another . hello(ADM)

program, assert: Helps verify validity o fassert(S)
hd: Displays files in hexadecimal format.......................hd(C)

Machine: Description of host machine........................... machine(HW)
Manages hash search tables, hsearch, hcreate, hdestroy: hsearch(S)

information, hwconfig: Read the configuration . hwconfig(ADM)
sinh, cosh, tanh: Performs hyperbolic functions.....................sinh(S)

hyphen: Finds hyphenated words. . hyphen(CT)
hyphen: Finds hyphenated words...........hyphen(CT)

Euclidean distance, hypot, cabs: D eterm in es..hypot(S)
chgrp: Changes group ID.. chgrp(C)

chown: Changes owner ID.. chown(C)
and names, id: Prints user and group IDs . . . id(C)

setpgrp: Sets process group ID..setpgrp(S)
mkuser: Adds a login ED to the system..................... mkuser(ADM)

systemid: The Micnet system identification file.systemid(F)
devnm: Identifies device name...............devnm(C)

what: Identifies files............................... what(C)
Gets password for a given user ID. g e t p w : getpw(S)

idleout: Logs out idle users..................................idleout(ADM)
idleout: Logs out idle users. . . . idleout(ADM)

id: Prints user and group IDs and names..............................id(C)
group, and parent process IDs. /Gets process, process . . . getpid(S)

real group, and effective group IDs. Aeal user, effective user, . . getuid(S)
setgid: Sets user and group IDs. s e tu id ,........................ setuid(S)

core: Format of core image file....................................... core(F)
mem, kmem: Memory image file......................................mem(M)

nohup: Runs a command immune to hangups and quits. . . nohup(C)
ssignal, gsignal: Implements software signals. . . . ssignal(S)

event input. ev_gindev: include/exclude devices for . . . ev_gindev(S)

1-27

Permuted Index

backup: Incremental dump tape format. . . backup(F)
backup: Performs incremental file system backup. . . backup(ADM)

restore, restor: Invokes incremental file s y s t e m / restore(ADM)
dirent: file system independent directory entry. . . . dirent(F)

ptx: Generates a permuted index... ptx(CT)
and teletypes last: Indicate last logins of users . . . last(C)

/Default backup device information... archive(F)
hwconfig: Read the configuration information... hwconfig(ADM)

pstat: Reports system information... pstat(C)
fstatfs: get file system information... statfs(S)
statfs: get file system information... statfs(S)

prints lineprinter status information, lpstal:lpstat(C)
initialization, init, inir: Process control init(M)

initialization, init, inir: Process control init(M)
init, inir: Process control initialization...................................init(M)
process, popen, pclose: Initiates I/O to or from a popen(S)

terminals file, inittab: Alternative login inittab(F)
clri: Clears inode.. clri(ADM)

inode: Format of an inode................... inode(F)
inode: Format of an inode.. inode(F)

ncheck: Generates names from inode numbers.........................ncheck(ADM)
inp: Returns a byte...................... inp(DOS)

fwrite: Performs buffered binary input and output, f r e a d , fread(S)
Performs standard buffered input and output, s t d i o :stdio(S)
Pushes character back into input stream, u n g e t c : ungetc(S)

usemouse: Maps mouse input to k e y s tro k e susemouse(C)
Converts and formats console input, c s c a n f : cscanf(DOS)

Opens an event queue for input. e v _ o p e n :ev_open(S)
Gets a string from the standard input, g e t s :gets(CP)

devices for event input, /in clu de/exclu deev_gindev(S)
sscanf: Converts and formats input, scanf, fscanf,scanf(S)

Eliminates .so’s from nroff input, s o e l im :soelim(CT)
uustat: uucp status inquiry and job control.........................uustat(C)

script, install: Installation s h e l l install(ADM)
install: Installation shell script..................... install(ADM)

creatsem: Creates an instance of a binary semaphore. . . creatsem(S)
int86: Executes an interrupt. . . . int86(DOS)
int86x: Executes an interrupt. . . int86x(DOS)

call, intdos: Invokes a DOS system . . intdos(DOS)
call, intdosx: Invokes a DOS system . . intdosx(DOS)

abs: Returns an integer absolute value...................abs(S)
/164a: Converts between long integer and base 64 ASCII. . . . a641(S)

sputl, sgetl: Accesses long integer data in a /sputl(S)
the absolute value of a long integer, labs: R e tu r n slabs(DOS)

/ltol3: Converts between 3-byte integers and long integers....................13tol(S)
itoa: Converts numbers to integers..................................... itoa(DOS)

ltoa: Converts long integers to characters.................ltoa(DOS)
between 3-byte integers and long integers. /ltol3: Converts 13tol(S)

atol, atoi: Converts string to integer, strtol, strtol(S)
for Object Modules. 86rel: Intel 8086 Relocatable Format . . 86rel(F)

filesystem backup fsave: Interactive, error-checking fsave(ADM)

1-28

Permuted Index

scsi: Small computer systems interface... scsi(HW)
termio: General terminal interface... termio(M)

/, tty2[a-h], tty2[A-H]: Interface to serial ports. . . . serial(HW)
tty: Special terminal interface... tty(M)

lpl, lp2: Line printer device interfaces. Ip, l p O , lp(HW)
hd: Internal hard disk drive. . . . hd(HW)

setlocale: Set or read international environment . . . setlocale(S)
locale: the international l o c a l e locale(M)

spline: Interpolates smooth curve. . . spline(CP)
sh: Invokes the shell command interpreter...................................... sh(C)
csh: Invokes a shell command interpreter with C-like syntax. . csh(C)

a restricted shell (command interpreter), rsh: Invokes . . . rsh(C)
ipcs: Reports the status of inter-process communication/ . ipcs(ADM)

package, ftok: Standard interprocess communication . stdipc(S)
pipe: Creates an interprocess pipe.......................... pipe(S)

int86: Executes an interrupt... int86(DOS)
int86x: Executes an interrupt... int86x(DOS)

sleep: Suspends execution for an interval... sleep(C)
sleep: Suspends execution for an interval... sleep(S)

Suspends execution for a short interval, n a p : nap(S)
services, library routines and/ intro: Introduces system . . . Intro(S)

processing commands. intro: Introduces text Intro(CT)
commands. intro: Introduces XENIX . . . Intro(C)

Development System commands. intro: Introduces XENIX . . . Intro(CP)
development functions. intro: Introduction to DOS cross . intro(DOS)

formats. intro: Introduction to file . . . Intro(F)
miscellaneous features and/ intro: Introduction to Intro(M)

related miscellaneous features/ intro: Introduction to machine . Intro(HW)
library routines and/ intro: Introduces system services, . Intro(S)

commands, intro: Introduces text processing . . . Intro(CT)
intro: Introduces XENIX commands. . Intro(C)

System commands, intro: Introduces XENIX Development . Intro(CP)
development functions, intro: Introduction to DOS cross . . . intro(DOS)

intro: Introduction to file formats. . Intro(F)
miscellaneous features/ intro: Introduction to machine related . Intro(HW)

features and files, intro: Introduction to miscellaneous . Intro(M)be: Invokes a calculator..................... bc(C)
yacc: Invokes a compiler-compiler. . . yacc(CP)
bdos: Invokes a DOS system call. . bdos(DOS)

intdos: Invokes a DOS system call. . intdos(DOS)
intdosx: Invokes a DOS system call. . intdosx(DOS)

debugger, adb: Invokes a general-purpose . . . adb(CP)
m4: Invokes a macro processor. . m4(CP)

calendar: Invokes a reminder service. . calendar(C)
(command interpreter), rsh: Invokes a restricted shell . . . rsh(C)

red: Invokes a restricted version of. . ed(C)
display/ vi, view, vedit: Invokes a screen-oriented . . . vi(C)

interpreter with C-like/ csh: Invokes a shell command . . . csh(C)
ex: Invokes a text editor.................... ex(C)

calculator, dc: Invokes an arbitrary precision . dc(C)
restore, restor: Invokes incremental file system/ . restore(ADM)

1-29

Permuted Index

sdb: Invokes symbolic debugger. . . . sdb(CP)
cc: Invokes the C compiler.......................cc(CP)

ev_init: Invokes the event manager. . . . ev_init(S)
Id: Invokes the link editor........................ ld(CP)
Id: Invokes the link editor. ld(M)

interpreter, sh: Invokes the shell command . . . sh(C)
sed: Invokes the stream editor................... sed(C)
ed: Invokes the text editor........................ ed(C)

masm: Invokes the XENIX assembler. . . masm(CP)
shutdn: Flushes block I/O and halts the CPU.......................... shutdn(S)

select: synchronous I/O multiplexing.................................. select(S)
popen, pclose: Initiates I/O to or from a process....................... popen(S)

devices, ioctl: Controls c h a ra c te r ioctl(S)
abort: Generates an IOT fault..abort(S)

semaphore set or shared memory, ipcrm: Removes a message queue, ipcrm(ADM)
inter-process communication/ ipcs: Reports the status of ipcs(ADM)

mcconfig: Irwin tape driver parameters . . . mcconfig(F)
/islower, isdigit, isxdigit, isalnum, isspace, ispunct,/ ctype(S)

isdigit, isxdigit,/ ctype, isalpha, isupper, islower, ctype(S)
/isprint, isgraph, iscntrl, isascii, tolower, toupper,/ ctype(S)

device, isatty: Checks for a character . . . isatty(DOS)
terminal, ttyname, isatty: Finds the name of a ttyname(S)

/ispunct, isprint, isgraph, iscntrl, isascii, t o lo w e r ,/ ctype(S)
/isalpha, isupper, islower, isdigit, isxdigit, isalnum,/ ctype(S)
/isspace, ispunct, isprint, isgraph, iscntrl, i s a s c i i , / ctype(S)

ctype, isalpha, isupper, islower, isdigit, isxdigit,/ ctype(S)
/isalnum, isspace, ispunct, isprint, isgraph, i s c n t r l , / ctype(S)
/isxdigit, isalnum, isspace, ispunct, isprint, isgraph,/ ctype(S)
/isdigit, isxdigit, isalnum, isspace, ispunct, isprint,/ ctype(S)
isxdigit,/ ctype, isalpha, isupper, islower, i s d i g i t ,ctype(S)
/isupper, islower, isdigit, isxdigit, isalnum, isspace,/ ctype(S)

news: Print news items.. news(C)
integers, itoa: Converts numbers to itoa(DOS)

Bessel functions, bessel, jO, j l , jn , yO, y l, yn: Performs . . bessel(S)
Bessel functions, bessel, jO, j l , jn , yO, y l, yn: Performs bessel(S)

functions, bessel, jO, j 1, jn, yO, y l,yn : Performs Bessel . . bessel(S)
join: Joins two relations....................... join(C)

join: Joins two relations............................... join(C)
keystroke, kbhit: Checks the console for a . . kbhit(DOS)

test keyboard support kbmode: Set keyboard mode or . . kbmode(ADM)
error: Kernel error output device. . . . error(M)

scopatch: Applies kernel patches........... scopatch(ADM)
makekey: Generates an encryption key.................................... makekey(M)

keyboard: The PC keyboard...................... keyboard(HW)
support kbmode: Set keyboard mode or test keyboard . kbmode(ADM)

Set keyboard mode or test keyboard support kbmode: . . . kbmode(ADM)
keyboard: The PC keyboard. . . . keyboard(HW)

setkey: Assigns the function keys.. setkey(C)
kbhit: Checks the console for a keystroke........................... kbhit(DOS)

usemouse: Maps mouse input to keystrokesusemouse(C)
process or a group of/ kill: Sends a signal to a kill(S)

1-30

Permuted Index

kill: Terminates a process............. kill(C)
mem, kmem: Memory image file. . . . mem(M)

contents of directory. 1: Lists information about ls(C)
3-byte integers and long/ 13tol, ltol3: Converts between . . 13tol(S)

integer and base 64/ a641, 164a: Converts between long . . . a641(S)
of a long integer, labs: Returns the absolute value . . labs(DOS)

cpp: The C language preprocessor.................cpp(CP)
lint: Checks C language usage and syntax. . . . lint(CP)

diction: Checks language usage..........................diction(CT)
explain: Corrects language usage..........................explain(CT)

shl: Shell layer manager................................. shl(C)
columns, lc: Lists directory contents in . . . ls(C)

distributed. srand48, seed48, lcong48: Generates uniformly . . drand48(S)
Id: Invokes the link editor................... ld(CP)
Id: Invokes the link editor.............. ld(M)

floating-point number/ frexp, ldexp, modf: Splitsffexp(S)
filelength: Gets the length of a file....................................... fileleng(DOS)
strlen: Returns the length of a string....................... strlen(DOS)

getopt: Gets option letter from argument vector. . . . getopt(S)
banner: Prints large letters..banner(C)

lexical analysis, lex: Generates programs for . . . lex(CP)
lex: Generates programs for lexical analysis..............................lex(CP)

and update. 1 search, lfind: Performs linear search . . . lsearch(S)
ar: Maintains archives and libraries.. ar(C)

Converts archives to random libraries, r a n l ib : ranlib(C)
/Introduces system services, library routines and error/ Intro(S)

ordering relation for an object library, lorder: F i n d slorder(CP)
maxuuscheds: UUCP uusched limit f i l e ...maxuuscheds(F)

maxuuxqts: UUCP uuxqt limit f i l e ...maxuuxqts(F)
ulimit: Gets and sets user limits..ulimit(S)

line: Reads one line...line(C)
lsearch, lfind: Performs linear search and update............ lsearch(S)

col: Filters reverse linefeeds. col(CT)
lpshut, lpmove: Starts/stops the lineprinter request, lpsched, . . . lpsched(ADM)

lpadmin: Configures the lineprinter spooling system. . . . lpadmin(ADM)
lpstat: prints lineprinter status information. . . lpstat(C)

cancel: Send/cancel requests to lineprinter. Ip, I p r , lp(C)
Adds, reconfigures and maintains lineprinters. l p i n i t : lpinit(ADM)

files, comm: Selects or rejects lines common to two sorted . . . comm(C)
uniq: Reports repeated lines in a file..................................uniq(C)

look: Finds lines in a sorted list..................... look(CT)
head: Prints the first few lines of a stream............................head(C)

paste: Merges lines of files................................. paste(CT)
wc: Counts lines, Words and characters. . . . wc(C)

Id: Invokes the link editor....................................... ld(CP)
Id: Invokes the link editor.. ld(M)

a.out: Format of assembler and link editor output..........................a.out(F)
existing file, link: Links a new filename to an . link(S)
In: Makes a link to a file.. ln(C)

dosld: XENIX to MS-DOS cross linker...dosld(CP)
existing file, link: Links a new filename to an link(S)

1-31

Permuted Index

and syntax, lint: Checks C language usage . . lint(CP)
xlist, fxlist: Gets name list entries from files................xlist(S)

look: Finds lines in a sorted list... look(CT)
nlist: Gets entries from name list.. nlist(S)

nm: Prints name list..nm(C)
queue. ev_getdev: Gets a list of devices feeding an event . . ev_getdev(S)

by fsck. checklist: List of file systems processed . . . checklist(F)
terminals: List of supported terminals. . . . terminals(M)

varargs: variable argument list... varargs(S)
cref: Makes a cross-reference listing.......................................cref(CP)

of a varargs argument list. /Prints formatted output . . . vprintf(S)
columns, lc: Lists directory contents in ls(C)

of directory. 1: Lists information about contents . ls(C)
who: Lists who is on the system............... who(C)

In: Makes a link to a file...................... ln(C)
mestbl: Create a messages locale file mestbl(M)
mestbl: Create a messages locale filemestbl(M)

locale: the international locale ..locale(M)
chrtbl: Create a ctype locale table....................................... chrtbl(M)
chrtbl: Create a ctype locale table....................................... chrtbl(M)

coltbl: Create a collation locale table..........................coltbl(M)
coltbl: Create a collation locale table..........................coltbl(M)

montbl: Create a currency locale table............................montbl(M)
montbl: Create a currency locale table............................montbl(M)
numtbl: Create a numeric locale table...........................numtbl(M)
numtbl: create a numeric locale table..........................numtbl(M)

timtbl: Create a time locale table..timtbl(M)
locale, locale: the in tern ation al...............locale(M)

tzset: Converts date and/ ctime, localtime, gmtime, asctime, . . . ctime(S)
end, etext, edata: Last locations in program........................... end(S)

memory, lock: Locks a process in primary . lock(S)
lock: Locks a user’s terminal. . . lock(C)

memory, plock: Lock process, text, or data in . . . plock(S)
record locking on files, lockf: Provide semaphores and . . lockf(S)

region for reading or writing, locking: Locks or unlocks a file . . locking(S)
Provide semaphores and record locking on files, lockf: lockf(S)

memory, lock: Locks a process in primary . . . lock(S)
lock: Locks a user’s terminal.......................lock(C)

for reading or/ locking: Locks or unlocks a file region . . locking(S)
gamma: Performs log gamma function.............................gamma(S)

exponential, logarithm,/exp, log, pow, sqrt, log 10: Performs . . exp(S)
logarithm,/ exp, log, pow, sqrt, log 10: Performs exponential, . . . exp(S)

/log 10: Performs exponential, logarithm, power, square root/ . . exp(S)
mkuser: Adds a login ID to the system..........................mkuser(ADM)

getlogin: Gets login name.. getlogin(S)
logname: Gets login name.. logname(C)

cuserid: Gets the login name of the user.........................cuserid(S)
logname: Finds login name of user............................... logname(S)

passwd: Changes login password..................................... passwd(C)
terminal: Login terminal..terminal(HW)

inittab: Alternative login terminals file.............................. inittab(F)

1-32

Permuted Index

ttys: Login terminals file.................. ttys(F)
Sets up an environment at login time, p r o f i le :profile(M)

last: Indicate last logins of users and teletypes . . . last(C)
user, logname: Finds login name of . . logname(S)

logname: Gets login name...................logname(C)
idleout: Logs out idle users...... idleout(ADM)
newgrp: Logs user into a new group. . . . newgrp(C)

“ goto” , setjmp, longjmp: Performs a nonlocal . . setjmp(S)
for an object library, lorder: Finds ordering relation . . lorder(CP)

uppercase, strupr: Converts lowercase characters t o strupr(DOS)
Converts uppercase characters to lowercase, strlwr: strlwr(DOS)

device interfaces. Ip, lpO, lp l, lp2: Line printer . . . lp(HW)
requests to lineprinter. Ip, lpr, cancel: Send/cancel . . . lp(C)
device interfaces. Ip, lpO, lpl, lp2: Line printer lp(HW)

interfaces. Ip, lpO, lpl, lp2: Line printer device . . . lp(HW)
interfaces. Ip, lpO, lpl, lp2: Line printer d e v i c e lp(HW)

lineprinter spooling system, lpadmin: Configures t h e lpadmin(ADM)
maintains lineprinters. lpinit: Adds, reconfigures and . . lpinit(ADM)

lineprinter/ lpsched, lpshut, lpmove: Starts/stops t h e lpsched(ADM)
requests to lineprinter. Ip, lpr, cancel: S e n d /c a n c e l................ lp(C)

attached to the user’s terminal lprint: Print to a printer lprint(C)
Starts/stops the lineprinter/ lpsched, lpshut, lp m o v e :................. lpsched(ADM)

lineprinter request, lpsched, lpshut, lpmove: Starts/stops the . . lpsched(ADM)
status information, lpstat: prints l in e p r in te r lpstat(C)

contents of directories. Is: Gives information about . . . ls(C)
search and update, lsearch, lfind: Performs linear . . lsearch(S)

pointer, lseek: Moves read/write file . . . lseek(S)
characters, ltoa: Converts long integers to . . ltoa(DOS)

integers and long/ 13tol, ltol3: Converts between 3-byte . . 13tol(S)
m4: Invokes a macro processor. . . m4(CP)

machine. Machine: Description of host . . . machine(HW)
Machine: Description of host machine... machine(HW)

features/ intro: Introduction to machine related miscellaneous . . Intro(HW)
sysi86: machine specific functions. . . . sysi86(S)

Accesses long integer data in a machine-independent, /sgetl: . . sputl(S)
m4: Invokes a macro processor................................... m4(CP)

mmcheck: Checks usage of MM macros, ch eck m m ,..........................checkmm(CT)
formatted with the mm macros, mm: Prints documents . . mm(CT)

program, tape: Magnetic tape maintenance . . . tape(C)
tapedump: Dumps magnetic tape to output file. . . . tapedump(C)

of mail, mail: Sends, reads or disposes . . mail(C)
daemon.mn: Micnet mailer daemon..daemon.mn(M)

Sends, reads or disposes of mail, m a i l : mail(C)
binary file for transmission via mail uudecode: decode a uuencode(C)
binary file for transmission via mail uuencode: encode a uuencode(C)
free, realloc, calloc: Allocates main memory, malloc,malloc(S)

fdisk: Maintain disk partitions....................... fdisk(ADM)
libraries, ar: Maintains archives a n d ar(C)

lpinit: Adds, reconfigures and maintains lineprinters......................... lpinit(ADM)
regenerates groups of/ make: Maintains, updates, a n dmake(CP)

systty: System maintenance device............................. systty(M)

1-33

Permuted Index

tape: Magnetic tape maintenance program................... tape(C)
key. makekey: Generates an encryption makekey(M)
cref: Makes a cross-reference listing. . . cref(CP)

execseg: makes a data region executable. . execseg(S)
SCCS file, delta: Makes a delta (change) to an . . . delta(CP)

mkdir: Makes a directory.........................mkdir(C)
or ordinary file, mknod: Makes a directory, or a special . . mknod(S)

In: Makes a link to a file....................... ln(C)
mktemp: Makes a unique filename.....................mktemp(S)

another user, su: Makes the user a super-user or . . su(C)
Allocates main memory, malloc, free, realloc, calloc: . . . malloc(S)

ev_init: Invokes the event manager...ev_init(S)
shl: Shell layer manager.. shl(C)

tsearch, tfind, tdelete, twalk: Manages binary search trees. . . . tsearch(S)
hsearch, hcreate, hdestroy: Manages hash search tables. . . . hsearch(S)

/floating-point number into a mantissa and an exponent............frexp(S)
ascii: Map of the ASCII character set. . . ascii(M)

mapping, mapehan: Configure tty device . . mapchan(M)
mapping files, mapehan: Format of tty device . . mapchan(F)

convkey: Configure monitor/ mapkey, mapsem, mapstr, mapkey(M)
mapehan: Format of tty device mapping files.....................mapchan(F)
mapehan: Configure tty device mapping............................mapchan(M)

Configure monitor screen mapping, /mapstr, convkey: . . . mapkey(M)
usemouse: Maps mouse input to keystrokes . usemouse(C)

Configure monitor/ mapkey, mapsem, mapstr, convkey: mapkey(M)
monitor screen/ mapkey, mapsem, mapstr, convkey: Configure . . . mapkey(M)

diflmk: Marks differences between files. . diflmk(CT)
ev_setemask: Sets event mask.................................ev_stemsk(S)

umask: Sets file-creation mode mask....................................... umask(C)
Return the current event mask. ev_getemask: ev_gtemsk(S)

Sets and gets file creation mask, u m a s k :umask(S)
assembler, masm: Invokes the XENIX . . . masm(CP)

master: Master device information table. . master(F)
information table, master: Master device master(F)

Regular expression compile and match routines, r e g e x p :regexp(S)
Aieqn, checkeq, eqncheck: Formats mathematical text for nroff,/ . . . eqn(CT)

neqn: Formats mathematics................................. neqn(CT)
function, matherr: E rror-handling........matherr(S)
limit file maxuuscheds: UUCP uusched . . maxuuscheds(F)
limit file maxuuxqts: UUCP uuxqt maxuuxqts(F)

parameters mcconfig: Irwin tape driver . . . mcconfig(F)
mem, kmem: Memory image file. . mem(M)

mem, kmem: Memory image file.......................mem(M)
lock: Locks a process in primary memory... lock(S)

shmctl: Controls shared memory operations......................shmctl(S)
shmop: Performs shared memory operations......................shmop(S)

shmget: Gets a shared memory segment.........................shmget(S)
Reports virtual memory statistics, vmstat: vmstat(C)

realloc, calloc: Allocates main memory, malloc, free, malloc(S)
Lock process, text, or data in memory, p l o c k :plock(S)

queue, semaphore set or shared memory. /Removes a message . . ipcrm(ADM)

1-34

Permuted Index

administration/ sysadmsh: Menu driven systemsysadmsh(ADM)
sort: Sorts and merges files................................sort(C)

paste: Merges lines of files........... paste(CT)
sent to a terminal, mesg: Permits or denies messages . mesg(C)

msgctl: Provides message control operations. . . . msgctl(S)
mkstr: Creates an error message file from C source. . . . mkstr(CP)

msgop: Message operations.............msgop(S)
msgget:Gets message queue.................... msgget(S)

shared memory, ipcrm: Removes a message queue, semaphore set or . ipcrm(ADM)
hello: Send a message to another user.hello(ADM)

console messages, messages: Description of system . messages(M)
dosexterr: Gets DOS error messages......................dosexter(DOS)

mestbl: Create a messages locale file........... mestbl(M)
mestbl: Create a messages locale file...........mestbl(M)

mesg: Permits or denies messages sent to a terminal. . . . mesg(C)
Description of system console messages, m e s s a g e s : .messages(M)

ermo: Sends system error messages. / s y s _ n e r r ,perror(S)
file, mestbl: Create a messages locale . mestbl(M)
file, mestbl: Create a messages locale . mestbl(M)

telinit, mkinittab: Alternative method of turning terminals on/ . . telinit(ADM)
generator, aliashash: Micnet alias hash table aliashash(ADM)

faliases: Micnet aliasing files.......... aliases(M)
micnet: The Micnet default commands file. . . micnet(F)
daemon.mn: Micnet mailer daemon.daemon.mn(M)

file, systemid: The Micnet system identification . . . systemid(F)
commands file, micnet: The Micnet default . . . micnet(F)

top, top.next: The Micnet topology files................ top(F)
/Introduction to machine related miscellaneous features and/ . . . Intro(HW)

files, intro: Introduction to miscellaneous features and . . . Intro(M)
mkdir: Creates a new directory. . . mkdir(DOS)
mkdir: Makes a directory.....mkdir(C)
mkfs: Constructs a file system. . . mkfs(ADM)

turning terminals onJ telinit, mkinittab: Alternative method of . telinit(ADM)
mknod: Builds special files. . . . mknod(C)

special or ordinary file, mknod: Makes a directory, or a . . mknod(S)
file from C source, mkstr: Creates an error message . mkstr(CP)

mktemp: Makes a unique filename. mktemp(S)
system, mkuser: Adds a login ID to the . . mkuser(ADM)

mmcheck: Checks usage of MM macros, ch eck m m ,.... checkmm(CT)
with the mm macros, mm: Prints documents formatted . mm(CT)

macros, checkmm, mmcheck: Checks usage of MM . checkmm(CT)
mmt: Typesets documents...mmt(CT)
mnt: Mount a f ile sy ste mmnt(C)

system table, mnttab: Format of mounted file . . mnttab(F)
vidi: Sets the font and video mode for a video device...............vidi(C)

umask: Sets file-creation mode mask...................................umask(C)
chmod: Changes mode of a file...............................chmod(S)

kbmode: Set keyboard mode or test keyboard support . . kbmode(ADM)
setmode: Sets translation mode...setmode(DOS)

dial: Dials a modem...dial(ADM)
uuchat: dials a modem...dial(ADM)

1-35

Permuted Index

getty: Sets terminal type, modes, speed, and l i n e /getty(M)
tset: Sets terminal modes..tset(C)

number into a/ frexp, ldexp, modf: Splits floating-point frexp(S)
settime: Changes the access and modification dates of files................... settime(ADM)

touch: Updates access and modification times of a file. . . . touch(C)
utime: Sets file access and modification times................................utime(S)

Relocatable Format for Object Modules. 86rel: Intel 8086 . . . 86rel(F)
profile, monitor: Prepares execution . . . monitor(S)

/mapstr, convkey: Configure monitor screen mapping......................mapkey(M)
tty[01-/z], color, monochrome, ega,. screen: . . . screen(HW)

table, montbl: Create a currency locale . montbl(M)
table, montbl: Create a currency locale . montbl(M)
mnt: Mount a f ile sy ste mmnt(C)

fstab: File system mount and check commands. . . . fstab(F)
mount: Mounts a file structure. . . mount(ADM)
mount: Mounts a file system. . . . mount(S)

mnttab: Format of mounted file system table......... mnttab(F)
/Default information for mounting filesystems..................filesys(F)

mount: Mounts a file structure...................... mount(ADM)
mount: Mounts a file system......................... mount(S)

usemouse: Maps mouse input to keystrokes usemouse(C)
mouse: System mouse...mouse(HW)

mouse: System mouse.............. mouse(HW)
specific address, movedata: Copies bytes from a . . movedata(DOS)

mvdir: Moves a directory..............................mvdir(C)
directories, mv: Moves or renames files and . . . mv(C)

lseek: Moves read/write file pointer. . . lseek(S)
utility mscreen: Serial multiscreens . . . mscreen(M)

dosld: XENIX to MS-DOS cross linker................ dosld(CP)
operations, msgctl: Provides message control . msgctl(S)

msgget: Gets message queue. . . . msgget(S)
msgop: Message operations. . . . msgop(S)

select: synchronous I/O multiplexing................................. select(S)
mscreen: Serial multiscreens u t i l i t y mscreen(M)

directories, mv: Moves or renames files and . . mv(C)
mvdir: Moves a directory........... mvdir(C)

devnm: Identifies device name...devnm(C)
getlogin: Gets login name..getlogin(S)
logname: Gets login name... logname(C)

pwd: Prints working directory name...pwd(C)
tty: Gets the terminal’s name.. tty(C)

Gets value for environment name, getenv: getenv(S)
ncheck: Generates names from inode numbers. . . . ncheck(ADM)

basename: Removes directory names from pathnames...........basename(C)
archive, dumpdir: Prints the names of files on a backup dumpdir(ADM)

term: Conventional names..term(CT)
Prints user and group IDs and names, id: id(C)

short interval, nap: Suspends execution for a . . nap(S)
access to a resource/ waitsem, nbwaitsem: Awaits and checks . . waitsem(S)

inode numbers, ncheck: Generates names from . . ncheck(ADM)
mathematical text for/ eqn, neqn, checkeq, eqncheck: Formats eqn(CT)

1-36

Permuted Index

network.
netutil: Administers the XENIX

text file,
group,

news: Print

/fetch, store, delete, firstkey,
process,

different priority.

list.

hangups and quits,
setjmp, longjmp: Performs a

false: Returns with a

soelim: Eliminates .so’s from
tbl: Formats tables for

Formats mathematical text for
Terminal driving tables for

constructs, deroff Removes
null: The

factor: Factor a
random: Generates a random

rand, srand: Generates a random
nl: Adds line

ultoa: Converts
itoa: Converts

atoi, atol: Converts ASCII to
Generates names from inode

library routines and error
a string to a double-precision

numtbl: Create a
numtbl: Create a

table,
table.

size: Prints the size of an
the printable strings in an

Finds ordering relation for an
8086 Relocatable Format for

a process until a signal
od: Displays files in

format.
of turning terminals on and

fjp_off, fp_seg: Return
Invokes a restricted version

new file or rewrites an existing
and writing, sopen:

opensem:

neqn: Formats mathematics. . . .
netutil: Administers the XENIX . .
network..
newform: Changes the format of a .
newgrp: Logs user into a new . .
news items...
news: Print news items........................
nextkey: Performs database/ . . .
nice: Changes priority of a
nice: Runs a command at a . . .
nl: Adds line numbers to a file. . .
nlist: Gets entries from name . . .
nm: Prints name list..............................
nohup: Runs a command immune to
nonlocal “ goto”
nonzero exit value................................
nroff A text formatter..........................
nroff input...
nroff or troff.
nroff, troff /eqncheck:
nroff t e r m : ..
nrofl/troff, tbl, and eqn
null file..
null: The null file..................................
number..
number...
number..
numbers to a file....................................
numbers to characters..........................
numbers to integers..............................
numbers, atof,
numbers, ncheck:
numbers, /system services, . . .
number, strtod, atof: Converts . .
numeric locale table.............................
numeric locale table.............................
numtbl: Create a numeric locale
numtbl: Create a numeric locale
object file..
object file, strings: Finds
object library, lo r d e r :
Object Modules. 86rel: Intel . . .
occurs, pause: Suspends
octal format..
od: Displays files in octal
off /Alternative m e th o d
offset and segment................................
of. red: ...
one. creat: Creates a
Opens a file for shared reading . .
Opens a semaphore...............................

neqn(CT)
netutil(ADM)
netutil(ADM)
newform(C)
newgrp(C)
news(C)
news(C)
dbm(S)
nice(S)
nice(C)
nl(C)
nlist(S)
nm(C)
nohup(C)
setjmp(S)
false(C)
nroff^CT)
soelim(CT)
tbl(CT)
eqn(CT)
term(F)
deroff(CT)
null(F)
null(F)
factor(C)
random(C)
rand(S)
nl(C)
ultoa(DOS)
itoa(DOS)
atof(S)
ncheck(ADM)
Intro(S)
strtod(S)
numtbl(M)
numtbl(M)
numtbl(M)
numtbl(M)
size(C)
strings(C)
lorder(CP)
86rel(F)
pause(S)
od(C)
od(C)
telinit(ADM)
fp_seg(DOS)
ed(C)
creat(S)
sopen(DOS)
opensem(S)

1-37

Permuted Index

fopen, freopen, fdopen: Opens a stream........................... . . fopen(S)
ev_open: Opens an event queue for input. . . ev_open(S)

writing, open: Opens file for reading o r open(S)
opensem: Opens a semaphore. . . opensem(S)

closedir: Performs directory operations...directory(S)
msgctl: Provides message control operations..msgctl(S)

msgop: Message operations..msgop(S)
semctl: Controls semaphore operations..semctl(S)
semop: Performs semaphore operations..semop(S)

shmctl: Controls shared memory operations..shmctl(S)
shmop: Performs shared memory operations..shmop(S)

strdup: Performs string operations..string(S)
vector, getopt: Gets option letter from argument . . . getopt(S)

stty: Sets the options for a terminal.......................... stty(C)
getopt: Parses command options... getopt(C)

library, lorder: Finds ordering relation for an object . . lorder(CP)
a directory, or a special or ordinary file, mknod: Makes . . . mknod(S)

pcpio: Copy file archives in and out... pcpio(C)
Copies file archives in and out. cpio: .. cpio(C)

dial: Establishes an out-going terminal l i n e /dial(S)
port, outp: Writes a byte to an output . . outp(DOS)

flushall: Flushes all output buffers...flushall(DOS)
ecvt, fcvt, gcvt: Performs output conversions...............................ecvt(S)

cprintf: Formats output...cprintf(DOS)
error: Kernel error output device.. error(M)

tapedump: Dumps magnetic tape to output file.. tapedump(C)
/vsprintf: Prints formatted output of a varargs/vprintf(S)

outp: Writes a byte to an output port...outp(DOS)
pr: Prints files on the standard output...pr(C)

of assembler and link editor output. a.out: F o r m a ta.out(F)
buffered binary input and output, fread, fwrite: Performs . . fread(S)

fprintf, sprintf: Formats output, p r in t f ,printf(S)
standard buffered input and output, stdio: P e r fo r m s stdio(S)

chown: Changes the owner and group of a file....................chown(S)
chown: Changes owner ID... chown(C)

quot: Summarizes file system ownership..quot(C)
and expands files, pack, peat, unpack: Compresses . pack(C)

interprocess communication package, ftok: S ta n d a rd stdipc(S)
mcconfig: Irwin tape driver p a ra m e te r s .. mcconfig(F)

Gets process, process group, and parent process IDs. /getppid: . . . getpid(S)
getopt: Parses command options..................... getopt(C)

fdisk: Maintain disk partitions...........................fdisk(ADM)
files, hdr: Displays selected parts of executable binary hdr(CP)

passwd: Changes login password. . passwd(C)
passwd: The password file. . . . passwd(F)

pwadmin: Performs password aging administration. . . pwadmin(ADM)
putpwent: Writes a password file entry.......... putpwent(S)

setpwent, endpwent: Gets password file entry, /getpwnam, . getpwent(S)
passwd: The password file........................passwd(F)

pwcheck: Checks password file.................... pwcheck(C)
getpw: Gets password for a given user ID. . . . getpw(S)

1-38

Permuted Index

getpass: Reads a password... getpass(S)
passwd: Changes login password... passwd(C)

paste: Merges lines of files. . . . paste(CT)
scopatch: Applies kernel patches...scopateh(ADM)

directoiy. getcwd: Get the pathname of current working . . . getcwd(S)
Delivers directory part of pathname, dimame: dimame(C)

Removes directory names from pathnames, basename:basename(C)
Searches for and processes a pattem in a file, a w k :awk(C)

fgrep: Searches a file for a pattem, grep, egrep, grep(C)
a signal occurs, pause: Suspends a process until . . pause(S)

pax: Portable archive exchange. . pax(C)
keyboard: The PC keyboard.. keyboard(HW)

expands files, pack, peat, unpack: Compresses and . . pack(C)
a process, popen, pclose: Initiates I/O to or from . . popen(S)

out. pepio: Copy file archives in and . . pcpio(C)
bsearch: Performs a binary search..................... bsearch(S)

setjmp, longjmp: Performs a nonlocal “ goto” setjmp(S)
qsort: Performs a quicker sort........................ qsort(S)

floor, fabs, ceil, fmod: Performs absolute value, floor,/ . . floorfS)
bessel, jO, j 1, jn, yO, y 1, yn: Performs Bessel functions................bessel(S)

and output, fread, fwrite: Performs buffered binary input . . fread(S)
/delete, firstkey, nextkey: Performs database functions. . . . dbm(S)

closedir: Performs directory operations. . . directory(S)
exp, log, pow, sqrt, log 10: Performs exponential, logarithm,/ . exp(S)

restores files, sysadmin: Performs file system backups and . sysadmin(ADM)
sinh, cosh, tanh: Performs hyperbolic functions. . . sinh(S)

backup, backup, dump: Performs incremental file system . backup(ADM)
update, lsearch, lfind: Performs linear search and lsearch(S)

gamma: Performs log gamma function. . . gamma(S)
ecvt, fevt, gevt: Performs output conversions. . . . ecvt(S)

administration, pwadmin: Performs password aging pwadmin(ADM)
system backups fsphoto: Performs periodic semi-automated . fsphoto(ADM)

functions, curses: Performs screen and cursor . . . curses(S)
semop: Performs semaphore operations. . semop(S)

operations, shmop: Performs shared memory shmop(S)
and output, stdio: Performs standard buffered input . stdio(S)

strdup: Performs string operations................string(S)
/tgetflag, tgetstr, tgoto, tputs: Performs terminal functions. . . . termcap(S)

tan, asin, acos, atan, atan2: Performs trigonometric/ /cos, . . trig(S)
backups fsphoto: Performs periodic semi-automated system . fsphoto(ADM)

permissions: format of UUCP permissions file permissions(F)
check the uucp directories and permissions file uucheck: uucheck(ADM)

permissions file permissions: fohnat of UUCP . . permissions(F)
chmod: Changes the access permissions of a file o r / chmod(C)

to a terminal, mesg: Permits or denies messages sent . mesg(C)
ptx: Generates a permuted index...................................ptx(CT)

acct: Format of per-process accounting file. . . . acct(F)
ermo: Sends system error/ perror, sys_errlist, sys_nerr, . . . perror(S)

split: Splits a file into pieces.. split(C)
pipe, pipe: Creates an interprocess . . . pipe(S)

pipe: Creates an interprocess pipe..pipe(S)

1-39

Permuted Index

tee: Creates a tee in a pipe... tee(C)
data in memory, plock: Lock process, text, or . . . plock(S)

rewind: Repositions a file pointer in a stream, /ftell, fseek(S)
lseek: Moves read/write file pointer...lseek(S)

the current position of the file pointer, tell: Gets tell(DOS)
poll: format of UUCP poll file ...poll(F)

poll: format of UUCP Poll file . . poll(F)
queue. ev_pop: Pop the next event off the ev_pop(S)

or from a process, popen, pclose: Initiates I/O to . . popen(S)
outp: Writes a byte to an output port..outp(DOS)

pax: Portable archive exchange. . . . pax(C)
,tty2[A-H]: Interface to serial ports. /, tty 1[A-H], tty2[a-h] . . . serial(HW)

exponential,/exp, log, pow,sqrt, log 10: Performs exp(S)
/Performs exponential, logarithm, power, square root functions. . . . exp(S)

output, pr: Prints files on the standard . . pr(C)
dc: Invokes an arbitrary precision calculator.............................. dc(C)

statistical processing, prep: Prepares text for prep(CT)
troff, cw, checkcw, cwcheck: Prepares constant-width text for . . cw(CT)

monitor: Prepares execution profile.......................monitor(S)
processing, prep: Prepares text for statistical prep(CT)

cpp: The C language preprocessor..cpp(CP)
unget: Undoes a previous get of an SCCS file. . . . unget(CP)

lock: Locks a process in primary memory................................... lock(S)
types: Primitive system data types. . . . types(F)
news: Print news items................................. news(C)

the user’s terminal lprint: Print to a printer attached to . . . lprint(C)
file, strings: Finds the printable strings in an object . . . strings(C)

terminal lprint: Print to a printer attached to the user’s . . . lprint(C)
lp, lpO, lpl, lp2: Line printer device interfaces....................lp(HW)

disable: Turns off terminals and printers..disable(C)
Turns on terminals and line printers, e n a b le : enable(C)

Formats output, printf, fprintf, s p r in t f :printf(S)
cal: Prints a calendar.....................................cal(C)
prs: Prints an SCCS file................................prs(CP)

sddate: Prints and sets backup dates. . . . sddate(ADM)
date: Prints and sets the date.........................date(C)

activity, sact: Prints current SCCS file editing . . sact(CP)
the mm macros, mm: Prints documents formatted with . mm(CT)

output, pr: ftints files on the standard pr(C)
vprintf, vfprintf, vsprintf: Prints formatted output of a/ . . . vprintf(S)

banner: Prints large letters................................. banner(C)
information, lpstat: prints lineprinter status lpstat(C)

nm: Irints name list...................................... nm(C)
acctcom: Searches for and prints process accounting files. . . acctcom(ADM)

yes: Prints string repeatedly.........................yes(C)
stream, head: Prints the first few lines of a . . . head(C)

XENIX system, uname: Prints the name of the current . . uname(C)
backup archive, dumpdir: Prints the names of files on a . . . dumpdir(ADM)

file, size: Prints the size of an object size(C)
names, id: Prints user and group IDs and . . id(C)

pwd: Irints working directory name. . . pwd(C)

1-40

Permuted Index

nice: Changes priority of a process.............................nice(S)
Runs a command at a different priority, n i c e :nice(C)

acct: Enables or disables process accounting............................... acct(S)
acctcom: Searches for and prints process accounting files.......................acctcom(ADM)

alarm: Sets a process* alarm clock............................alarm(S)
times: Gets process and child process times. . times(S)

init, inir: Process control initialization. . . . init(M)
exit: Terminates the calling process..exit(DOS)

exit, _exit: Terminates a process...exit(S)
fork: Creates a new process...fork(S)

/getpgrp, getppid: Gets process, process group, and parent/ getpid(S)
setpgrp: Sets process group ID.........................setpgrp(S)

process group, and parent process IDs. /Gets process, . . . getpid(S)
lock: Locks a process in primary memory. . . . lock(S)

kill: Terminates a process...kill(C)
nice: Changes priority of a process...nice(S)

kill: Sends a signal to a process or a group of processes. . . kill(S)
getpid, getpgrp, getppid: Gets process, process group, and/ . . . getpid(S)

ptrace: Traces a process...ptrace(S)
spawnl, spawnvp: Creates a new process..spawn(DOS)

ps: Reports process status....................................... ps(C)
ptar: Process tape archives.......................... ptar(C)

memory, plock: Lock process, text, or data in plock(S)
times: Gets process and child process times................................. times(S)

wait: Waits for a child process to stop or terminate. . . . wait(S)
pause: Suspends a process until a signal occurs. . . . pause(S)
sigsem: Signals a process waiting on a semaphore. . sigsem(S)

checklist: List of file systems processed by fsck.................................. checklist(F)
awk: Searches for and processes a pattern in a file. . . . awk(C)

to a process or a group of processes, kill: Sends a signal . . kill(S)
Awaits completion of background processes, w a i t : wait(C)

intro: Introduces text processing commands................. Intro(CT)
shutdown: Terminates all processing...............................shutdown(ADM)

Prepares text for statistical processing, prep: prep(CT)
m4: Invokes a macro processor...m4(CP)

Initiates I/O to or from a process, popen, p c l o s e :popen(S)
prof: Displays profile data................. prof(CP)

time profile, profil: Creates an execution . . . profil(S)
prof: Displays profile data..................................... prof(CP)

monitor: Prepares execution profile..monitor(S)
at login time, profile: Sets up an environment . . profile(M)

Creates an execution time profile, p r o f i l : profil(S)
assert: Helps verify validity of program.. assert(S)

boot: XENIX boot program..boot(HW)
tape: Magnetic tape maintenance program..tape(C)

etext, edata: Last locations in program, e n d ,end(S)
cb: Beautifies C programs.. cb(CP)

lex: Generates programs for lexical analysis. . . lex(CP)
xref: Cross-references C programs.. xref(CP)

xstr: Extracts strings from C programs.. xstr(CP)
and regenerates groups of programs. /Maintains, updates, . . make(CP)

1-41

Permuted Index

day. asktime: Prompts for the correct time of . . asktime(ADM)
locking on files, lockf: Provide semaphores and record . . lockf(S)

operations, msgctl: Provides message control msgctl(S)
prs: Prints an SCCS file........................ prs(CP)
ps: Reports process status................... ps(C)

sxt: Pseudo-device driver............................ sxt(M)
information. pstat: Reports s y s t e m pstat(C)

ptar: Process tape archives. . . . ptar(C)
ptrace: Traces a process....................... ptrace(S)
ptx: Generates a permuted index. ptx(CT)

stream, ungetc: Pushes character back into input ungetc(S)
a character or word on a/ putc, putchar, fputc, putw: Puts . . putc(S)

console. putch: Writes a character to the . . putch(DOS)
character or word on a/ putc, putchar, fputc, putw: Puts a . . . putc(S)

environment. putenv: Changes or adds value to putenv(S)
entry. putpwent: Writes a password file putpwent(S)

putc, putchar, fputc, putw: Puts a character or word on a/ putc(S)
puts, fputs: Puts a string on a stream...................... puts(S)

cputs: Puts a string to the console. . . . cputs(DOS)
stream. puts, fputs: Puts a string on a . . . puts(S)

on a/ putc, putchar, fputc, putw: Puts a character or word . . putc(S)
administration. pwadmin: Performs password aging pwadmin(ADM)

pwcheck: Checks password file. pwcheck(C)
name. pwd: Prints working directory . . pwd(C)

qsort: Performs a quicker sort. . . qsort(S)
tput: Queries the terminfo database. . . tput(C)

ev_close: Close the event queue and all associated/ ev_close(S)
ev_block: Wait until the queue contains an event....................... ev_block(S)

ev_resume: Restart a suspended queue... ev_resume(S)
ev_suspend: Suspends an event queue... ev_susp(S)

ev_open: Opens an event queue for input...................................... ev_open(S)
msgget: Gets message queue... msgget(S)

ipcrm: Removes a message queue, semaphore set or shared/ ipcrm(ADM)
all events currently in the queue. ev_flush: Discard ev_flush(S)

list of devices feeding an event queue. ev_getdev: Gets a ev_getdev(S)
Pop the next event off the queue. ev_pop: ev_pop(S)

Read the next event in the queue, ev r e a d : ev_read(S)
of events currently in the queue. /Returns the number . . . ev_count(S)

qsort: Performs a quicker sort.. qsort(S)
a command immune to hangups and quits. n o h u p :R u n s........................... nohup(C)

ownership. quot: Summarizes file system . . . quot(C)
number. rand, srand: Generates a random rand(S)
number. random: Generates a random . . . random(C)

ranlib: Converts archives to random libraries.................................... ranlib(C)
random: Generates a random number..................................... random(C)

rand, srand: Generates a random number..................................... rand(S)
random libraries. ranlib: Converts archives to . . . ranlib(C)

FORTRAN into standard FORTRAN. ratfor: Converts Rational ratfor(CP)
FORTRAN, ratfor: Converts Rational FORTRAN into standard . ratfor(CP)

systems. rep: Copies files across XENIX . . rcp(C)
data to be read. rdchk: Checks to see if there is . . rdchk(S)

1-42

Permuted Index

in a file, getdents: read directory entries and put . . . getdents(S)
setlocale: Set or read international environment . . setlocale(S)

read: Reads from a file.........................read(S)
information, hwconfig: Read the configurationhwconfig(ADM)

queue. ev_read: Read the next event in the ev_read(S)
sopen: Opens a file for shared reading and writing.............................. sopen(DOS)

open: Opens file for reading or writing................................. open(S)
or unlocks a file region for reading or writing. /Locks locking(S)
to see if there is data to be read, rdchk: Checksrdchk(S)

getpass: Reads a password................................ getpass(S)
defopen, defread: Reads default entries...............................defopen(S)

read: Reads from a file.................................. read(S)
line: Reads one line...................................... line(C)

mail: Sends, reads or disposes of mail..................... mail(C)
lseek: Moves read/write file pointer...........................lseek(S)

memory, malloc, free, realloc, calloc: Allocates main . . malloc(S)
clock: The system real-time (time of day) clock. . . . clock(F)

setclock: Sets the system real-time (time of day) clock. . . . setclock(ADM)
systems and shuts down/ haltsys, reboot: Closes out the file haltsys(ADM)

Specifies what to do upon receipt of a signal, signal: signal(S)
lineprinters. lpinit: Adds, reconfigures and maintains lpinit(ADM)

lockf: Provide semaphores and record locking on files......................... lockf(S)
version of. red: Invokes a r e s tr ic te d ed(C)

regular expressions, regex, regcmp: Compiles and executes . . regex(S)
expressions, regcmp: Compiles regular regcmp(CP)

make: Maintains, updates, and regenerates groups of programs. . make(CP)
executes regular expressions, regex, regcmp: Compiles and . . . regex(S)
compile and match routines, regexp: Regular expression . . . regexp(S)

execseg: makes a data region executable..................................execseg(S)
locking: Locks or unlocks a file region for reading or writing. . . . locking(S)

match routines, regexp: Regular expression compile and . regexp(S)
regcmp: Compiles regular expressions............................ regcmp(CP)

regcmp: Compiles and executes regular expressions, regex, . . . regex(S)
sorted files, comm: Selects or rejects lines common to two . . . comm(C)
intro: Introduction to machine related miscellaneous features/ . . Intro(HW)

lorder: Finds ordering relation for an object library. . . . lorder(CP)
join: Joins two relations... join(C)

Modules. 86rel: Intel 8086 Relocatable Format for Object . . 86rel(F)
strip: Removes symbols and relocation bits..strip(CP)

value, floor, ceiling and remainder functions, /absolute . . floor(S)
calendar: Invokes a reminder service.......................................calendar(C)

remote XENIX system, remote: Executes commands on a . remote(C)
uutry: try to contact remote system with debugging on . uutry(ADM)
ct: spawn getty to a remote terminalct(C)

remote: Executes commands on a remote XENIX system.........................remote(C)
uux: Executes command on remote XENIX..................................... uux(C)

file, rmdel: Removes a delta from an SCCS . . rmdel(CP)
semaphore set or shared/ ipcrm: Removes a message queue, . . . ipcrm(ADM)

system, rmuser: Removes a user account from the . rmuser(ADM)
rmdir: Removes directories............................ rmdir(C)

unlink: Removes directory entry.....................unlink(S)

1-43

Permuted Index

pathnames, basename: Removes directory names from . . basename(C)
rm, rmdir: Removes files or directories. . . . rm(C)

eqn constructs, deroffi Removes nrofl/troff, tbl, and . . . deroff(CT)
bits, strip: Removes symbols and relocation . strip(CP)
directory, rename: renames a file or rename(DOS)

rename: renames a file or directory...................rename(DOS)
mv: Moves or renames files and directories. . . . mv(C)

fsck: Checks and repairs file systems........... fsck(ADM)
uniq: Reports repeated lines in a file.............uniq(C)

yes: Prints string repeatedly..yes(C)
blocks, df: Report number of free disk df(C)

clock: Reports CPU time used...........................clock(S)
cmchk: Reports hard disk block size. . . . cmchk(C)

ps: Reports process status......................... ps(C)
file, uniq: Reports repeated lines in a uniq(C)

pstat: Reports system information. . . . pstat(C)
inter-process/ ipcs: Reports the status of ipcs(ADM)

vmstat: Reports virtual memory statistics. . vmstat(C)
stream, fseek, ftell, rewind: Repositions a file pointer in a . . . fseek(S)

Starts/stops the lineprinter request, /lpshut, lpmove: lpsched(ADM)
lp, lpr, cancel: Send/cancel requests to lineprinter................. lp(C)

/Awaits and checks access to a resource governed by a / .waitsem(S)
ev_resume: Restart a suspended queue. . . . ev_resume(S)

incremental file/ restore, restor: Invokesrestore(ADM)
Invokes incremental file system/ restore, r e s t o r :restore(ADM)
Invokes incremental file system restorer, / r e s t o r : restore(ADM)

Performs file system backups and restores files, sysadmin: sysadmin(ADM)
interpreter), rsh: Invokes a restricted shell (command rsh(C)

red: Invokes a restricted version of.ed(C)
fjp_off, fp_seg: Return offset and segment................... fp_seg(DOS)
ev_getemask: Return the current event mask. . . ev_gtemsk(S)

stat: Data returned by stat system call. . . . stat(F)
inp: Returns a byte..inp(DOS)

console buffer, ungetch: Returns a character to the ungetch(DOS)
value, abs: Returns an integer absolute . . . abs(S)

long integer, labs: Returns the absolute value of a . . labs(DOS)
strlen: Returns the length of a string. . . strlen(DOS)

currently in the/ ev_count: Returns the number of events . . . ev_count(S)
value, false: Returns with a nonzero exit . . . false(C)

true: Returns with a zero exit value. . . true(C)
col: Filters reverse linefeeds......................col(CT)

in a string, strrev: Reverses the order of characters . strrev(DOS)
pointer in a/ fseek, ftell, rewind: Repositions a file fseek(S)

creat: Creates a new file or rewrites an existing one......... creat(S)
directories, rm, rmdir: Removes files or . . . rm(C)
SCCS file, rmdel: Removes a delta from an . rmdel(CP)

rmdir: Deletes a directory....................rmdir(DOS)
rmdir: Removes directories. . . . rmdir(C)

directories, rm, rmdir: Removes files o r rm(C)
from the system, rmuser: Removes a user account . rmuser(ADM)

chroot: Changes the root directory.........................chroot(S)

1-44

Permuted Index

chroot: Changes
logarithm, power, square
/system services, library

expression compile and match
(command interpreter),

priority, nice:
and quits, nohup:

editing activity,
space allocation,

work, uucico:
and formats input.

bfs:
creates bad track/ badtrk:
help: Asks for help about

the delta commentary of an
comb: Combines

sact: Prints current
prs: Prints an

rmdel: Removes a delta from an
sccsfile: Format of an

val: Validates an
Makes a delta (change) to an

admin: Creates and administers
Compares two versions o f an

Undoes a previous get of an
of an SCCS file.

file.
system backups

transport program uusched: the
patches,

curses: Performs
clear: Clears a terminal

setcolor: Set
convkey: Configure monitor

color, monochrome, ega,.
vi, view, vedit: Invokes a
install: Installation shell

UUCP administrative
interface.

dates.
access to a shared data/

shared data segment, sdget,
detaches a shared data segment.

shared data access,
side-by-side,

a shared data segment, sdenter,
data access, sdgetv,

lsearch, lfind: Performs linear
bsearch: Performs a binary

hcreate, hdestroy: Manages hash

root directory for command. . . .
root functions, /exponential, . . .
routines and error numbers. . . .
routines, regexp: Regular
rsh: Invokes a restricted shell . . .
Runs a command at a different . .
Runs a command immune to hangups
sact: Prints current SCCS file . . .
sbrk, brk: Changes data segment
Scan the spool directory for . . .
scanf, fscanf, sscanf: Converts . .
Scans big files..
Scans fixed disk for flaws and . .
SCCS commands..................................
SCCS delta, ede: Changes
SCCS deltas...
SCCS file editing activity....................
SCCS file..
SCCS file..
SCCS file..
SCCS file..
SCCS file, delta:
SCCS files..
SCCS file, sccsdiff
SCCS file, unget:
sccsdiffi Compares two versions
sccsfile: Format of an SCCS . . .
schedule: Database for automated .
scheduler for the uucp file
scopatch: Applies kernel
screen and cursor functions. . . .
screen..
screen color..
screen mapping, /mapstr,
screen: tty [01-/i],
screen-oriented display editor. . .
script...
scripts /u u d em o n .p o ll2
scsi: Small computer systems . . .
sdb: Invokes symbolic debugger,
sddate: Prints and sets backup . .
sdenter, sdleave: Synchronizes . .
sdfree: Attaches and detaches a . .
sdget, sdfree: Attaches and . . .
sdgetv, sdwaitv: Synchronizes . .
sdiff. Compares files
sdleave: Synchronizes access to
sdwaitv: Synchronizes shared . .
search and update.................................
search..
search tables, hsearch,

chroot(ADM)
exp(S)
Intro(S)
regexp(S)
rsh(C)
nice(C)
nohup(C)
sact(CP)
sbrk(S)
uucico(C)
scanf(S)
bfs(C)
badtrk(ADM)
help(CP)
cdc(CP)
comb(CP)
sact(CP)
prs(CP)
rmdel(CP)
sccsfile(F)
val(CP)
delta(CP)
admin(CP)
sccsdifi(CP)
unget(CP)
sccsdifl(CP)
sccsfile(F)
schedule(ADM)
uusched(ADM)
scopateh(ADM)
curses(S)
clear(C)
setcolor(C)
mapkey(M)
screen(HW)
vi(C)
install(ADM)
uudemon(ADM)
scsi(HW)
sdb(CP)
sddate(ADM)
sdenter(S)
sdget(S)
sdget(S)
sdgetv(S)
sdiff(C)
sdenter(S)
sdgetv(S)
lsearch(S)
bsearch(S)
hsearch(S)

1-45

Permuted Index

tdelete, twalk: Manages binary search trees, tsearch, tfind, . . . tsearch(S)
grep, egrep, fgrep: Searches a file for a pattern. . . . grep(C)

accounting files, acctcom: Searches for and prints process . . acctcom(ADM)
pattem in a file, awk: Searches for and processes a . . . awk(C)

sed: Invokes the stream editor. . . sed(C)
uniformly distributed. srand48, seed48, lcong48: Generates . . . drand48(S)

brkctl: Allocates data in a far segment.. brkctl(S)
shmget: Gets a shared memory segment.. shmget(S)

sbrk, brk: Changes data segment space allocation.....................sbrk(S)
fp_seg: Return offset and segment. f p _ o f f , fp_seg(DOS)

and detaches a shared data segment, /sdfree: Attaches . . . sdget(S)
access to a shared data segment, /sdleave: Synchronizes . sdenter(S)

segread: command description. . . segread(DOS)
multiplexing, select: synchronous I / O select(S)

a file, cut: Cuts out selected fields of each line of . . . cut(CT)
binary files, hdr: Displays selected parts of executable . . . hdr(CP)
to two sorted files, comm: Selects or rejects lines common . . comm(C)

opensem: Opens a semaphore...opensem(S)
semctl: Controls semaphore operations......................... semctl(S)
semop: Performs semaphore operations......................... semop(S)

ipcrm: Removes a message queue, semaphore set or shared memory. . ipcrm(ADM)
to a resource governed by a semaphore, /and checks access . . waitsem(S)

Creates an instance of a binary semaphore, creatsem: creatsem(S)
files, lockf: Provide semaphores and record locking on . lockf(S)
semget: Gets set of semaphores...semget(S)

Signals a process waiting on a semaphore, sigsem:sigsem(S)
operations, semctl: Controls semaphore . . . semctl(S)

semget: Gets set of semaphores. . semget(S)
fsphoto: Performs periodic semi-automated system backups . fsphoto(ADM)

operations, semop: Performs semaphore . . . semop(S)
hello: Send a message to another user. . . hello(ADM)

lineprinter. Ip, lpr, cancel: Send/cancel requests t o lp(C)
group of processes, kill: Sends a signal to a process or a . . kill(S)

mail, mail: Sends, reads or disposes of mail(C)
/sys_errlist, sys_nerr, ermo: Sends system error messages. . . perror(S)

mesg: Permits or denies messages sent to a terminal...................................mesg(C)
mscreen: Serial multiscreens utility mscreen(M)

,tty2[A-H]: Interface to serial ports. /, tty2[a-h] serial(HW)
calendar: Invokes a reminder service...calendar(C)

error/ intro: Introduces system services, library routines and . . . Intro(S)
Map of the ASCII character set. ascii: .. ascii(M)

buffering to a stream, setbuf, setvbuf: A s s i g n s setbuf(S)
real-time (time of day) clock, setclock: Sets the system setclock(ADM)

setcolor: Set screen color.................... setcolor(C)
setuid, setgid: Sets user and group IDs. . . setuid(S)

getgrent, getgrgid, getgmam, setgrent, endgrent: Get group/ . . getgrent(S)
nonlocal “ goto” , setjmp, longjmp: Performs a . . . setjmp(S)

keys, setkey: Assigns the function . . . setkey(C)
international environment setlocale: Set or r e a dsetlocale(S)

table, setmnt: Establishes /etc/mnttab . . setmnt(ADM)
setmode: Sets translation mode. . . setmode(DOS)

1-46

Permuted Index

getpwent, getpwuid, getpwnam,
alarm:

to one charater. street:
mask, umask:

sddate: Prints and
execution, env:

ev_setemask:
modification times, utime:

umask:
setpgrp;

tset:
speed, and line/ getty:

base, cmos: Displays and
date: Prints and

a video device, vidi:
stty:

of day) clock, setclock:
stime:

setmode:
trchan: Translate character

time, profile:
setuid, setgid:

ulimit: Gets and
modification dates of files,

gettydefs: Speed and terminal
group IDs.

stream, setbuf,
data in a/ sputl,

interpreter,
sdgetv, sdwaitv: Synchronizes

sdffee: Attaches and detaches a
Synchronizes access to a

shmctl: Controls
shmop: Performs

shmget: Gets a
message queue, semaphore set or

sopen: Opens a file for
reh: Invokes a restricted

sh: Invokes the
C-like syntax, csh: Invokes a

system: Executes a
shl:

install: Installation

operations.
segment,

operations,
nap: Suspends execution for a

halts the CPU.
processing.

setpgrp: Sets process group ID. . .
setpwent, endpwent: Gets/
Sets a process* alarm clock. . . .
Sets all characters in a string . . .
Sets and gets file creation
sets backup dates..................................
Sets environment for command . .
Sets event mask....................................
Sets file access a n d
Sets file-creation mode mask. . .
Sets process group ID..........................
Sets terminal modes.............................
Sets terminal type, modes,
sets the configuration data
sets the date...
Sets the font and video mode for
Sets the options for a terminal. . .
Sets the system real-time (time . .
Sets the time..
Sets translation mode...........................
sets • • • • • • • • • • • • •
Sets up an environment at login . .
Sets user and group IDs.......................
sets user limits.......................................
settime: Changes the access and
settings used by getty...........................
setuid, setgid: Sets user and . . .
setvbuf: Assigns buffering to a
sgetl: Accesses long integer . . .
sh: Invokes the shell command . .
shared data access.................................
shared data segment, sdget, . . .
shared data segment, /sdleave: . .
shared memory operations. . . .
shared memory operations. . . .
shared memory segment......................
shared memory, ipcrm: Removes a
shared reading and writing. . . .
shell (command interpreter). . . .
shell command interpreter...................
shell command interpreter with . .
shell command......................................
Shell layer manager..............................
shell script..
shl: Shell layer manager......................
shmctl: Controls shared memory
shmget: Gets a shared memory . .
shmop: Performs shared memory
short interval..
shutdn: Flushes block I/O and . .
shutdown: Terminates all

setpgrp(S)
getpwent(S)
alarm(S)
street(DOS)
umask(S)
sddate(ADM)
env(C)
ev_stemsk(S)
utime(S)
umask(C)
setpgrp(S)
tset(C)
getty(M)
cmos(HW)
date(C)
vidi(C)
stty(C)
setclock(ADM)
stime(S)
setmode(DOS)
trchan(M)
profile(M)
setuid(S)
ulimit(S)
settime(ADM)
gettydefs(F)
setuid(S)
setbuf(S)
sputl(S)
sh(C)
sdgetv(S)
sdget(S)
sdenter(S)
shmctl(S)
shmop(S)
shmget(S)
ipcrm(ADM)
sopen(DOS)
reh(C)
sh(C)
csh(C)
system(S)
shl(C)
install(ADM)
shl(C)
shmctl(S)
shmget(S)
shmop(S)
nap(S)
shutdn(S)
shutdown(ADM)

1-47

Permuted Index

Closes out the file systems and shuts down the system, /reboot: . haltsys(ADM)
sdiffi Compares files side-by-side....................................sdifl^C)

Suspends a process until a signal occurs, p a u s e :pause(S)
upon receipt of a signal, signal: Specifies what to do . . . signal(S)

of processes, kill: Sends a signal to a process or a group . . . kill(S)
semaphore, sigsem: Signals a process waiting on a . . sigsem(S)

what to do upon receipt of a signal, signal: S p e c i f ie s signal(S)
gsignal: Implements software signals, s s i g n a l , ssignal(S)

waiting on a semaphore, sigsem: Signals a process sigsem(S)
atan2: Performs trigonometric/ sin, cos, tan, asin, acos, atan, . . . trig(S)

hyperbolic functions, sinh, cosh, tanh: Performs sinh(S)
cmchk: Reports hard disk block size...cmchk(C)

chsize: Changes the size of a file........................... chsize(S)
size: Prints the size of an object file.................size(C)

object file, size: Prints the size of an size(C)
interval, sleep: Suspends execution for an . sleep(C)
interval, sleep: Suspends execution for an . sleep(S)

current/ ttyslot: Finds the slot in the utmp file of the ttyslot(S)
spline: Interpolates smooth curve.. spline(CP)

nroff input. soelim: Eliminates .so’s from . . . soelim(CT)
ssignal, gsignal: Implements software signals.......................... ssignal(S)

reading and writing, sopen: Opens a file for shared . . sopen(DOS)
qsort: Performs a quicker sort...qsort(S)

sort: Sorts and merges files. . . . sort(C)
or rejects lines common to two sorted files, comm: Selects . . . comm(C)

look: Finds lines in a sorted list... look(CT)
tsort: Sorts a file topologically..................... tsort(CP)
sort: Sorts and merges files..........................sort(C)

soelim: Eliminates .so’s from nroff input................. soelim(CT)
an error message file from C source, mkstr: Creates mkstr(CP)

sbrk, brk: Changes data segment space allocation.....................................sbrk(S)
ct: spawn getty to a remote terminal . ct(C)

process, spawnl, spawnvp: Creates a new . spawn(DOS)
spawnl, spawnvp: Creates a new process. . spawn(DOS)

movedata: Copies bytes from a specific address..................... movedata(DOS)
sysi86: machine specific functions.................................sysi86(S)

cron: Executes commands at specified times.......................................cron(C)
receipt of a signal, signal: Specifies what to do upon signal(S)

/Sets terminal type, modes, speed, and line discipline....................getty(M)
by getty. "gettydefs:" Speed and terminal settings used . gettydefs(F)

hashcheck: Finds spelling/ spell, hashmake, spellin, spell(CT)
spelling/ spell, hashmake, spellin, hashcheck: Finds spell(CT)

spellin, hashcheck: Finds spelling errors, /hashmake, . . . spell(CT)
curve, spline: Interpolates smooth . . . spline(CP)

pieces, split: Splits a file i n t osplit(C)
split: Splits a file into pieces........................ split(C)

context, csplit: Splits files according t o csplit(C)
into a/ frexp, ldexp, modf: Splits floating-point number . . . frexp(S)

uuclean: uucp spool directory c le a n -u p ...uuclean(ADM)
uucico: Scan the spool directory for work..................... uucico(C)

Configures the lineprinter spooling system, lpadmin: lpadmin(ADM)

1-48

Permuted Index

printf, fprintf, sprintf: Formats output.........................printf(S)
integer data in a/ sputl, sgetl: Accesses long sputl(S)

exponential,/ exp, log, pow, sqrt, log 10: P e r fo r m sexp(S)
exponential, logarithm, power, square root functions. /Performs . exp(S)

number, rand, srand: Generates a random rand(S)
Generates uniformly/ srand48, seed48, lcong48: drand48(S)

input, scanf, fscanf, sscanf: Converts and formats . . . scanf(S)
software signals, ssignal, gsignal: Implements . . . ssignal(S)

output, stdio: Performs standard buffered input and . . . stdio(S)
Converts Rational FORTRAN into standard FORTRAN, ratfor: . . . ratfor(CP)

gets: Gets a string from the standard input..gets(CP)
communication package, ftok: Standard in te rp rocess...................... stdipc(S)

pr: Prints files on the standard output......................................pr(C)
lpsched, lpshut, lpmove: Starts/stops die lineprinter/ lpsched(ADM)

system call, stat: Data returned by stat stat(F)
stat, fstat: Gets file status.....................stat(S)

stat: Data returned by stat system call...................................... stat(F)
information, statfs: get file s y s t e mstatfs(S)

prep: Prepares text for statistical processing............................ prep(CT)
ustat: Gets file system statistics..ustat(S)

virtual memory statistics, vmstat: Reports vmstat(C)
lpstat: prints lineprinter status information................................. lpstat(C)

uustat: uucp status inquiry and job control. . . uustat(C)
communication/ ipcs: Reports the status of in ter-process.......................ipcs(ADM)

ps: Reports process status... ps(C)
stat, fstat: Gets file status..stat(S)

fileno: Determines stream status, ferror, feof, clearerr, . . . ferror(S)
buffered input and output, stdio: Performs s ta n d a rd stdio(S)

stime: Sets the time.................stime(S)
Waits for a child process to stop or terminate, w a i t :wait(S)

compress: Compress data for storage.. compress(C)
nextkey:/ dbminit, fetch, store, delete, f ir s tk e y ,............... dbm(S)

uncompress: Uncompress a stored file................................... compress(C)
zcat: Display a stored file................................... compress(C)

operations, strdup: Performs stringstring(S)
Invokes the stream editor, sed:sed(C)

fopen, freopen, fdopen: Opens a stream...fopen(S)
puts, fputs: Puts a string on a stream..puts(S)

clearerr, fileno: Determines stream status, ferror, feof, ferror(S)
fflush: Closes or flushes a stream, fclose,fclose(S)

Gets a character from a stream, fgetc, f g e t c h a r : fgetc(DOS)
fputchar: Write a character to a stream, f p u t c ,fputc(DOS)

Repositions a file pointer in a stream, fseek, ftell, rewind: . . . fseek(S)
Gets character or word from a stream, /getchar, fgetc, getw: . . getc(S)

fgets: Gets a string from a stream, gets, gets(S)
Prints the first few lines of a stream, h e a d :head(C)

Puts a character or word on a stream, /putchar, fputc, putw: . . putc(S)
fclose, fcloseall: Closes streams..fclose(DOS)

setvbuf: Assigns buffering to a stream, setbuf,setbuf(S)
Pushes character back into input stream, ungetc:ungetc(S)

cgets: Gets a string..cgets(DOS)

1-49

Permuted Index

gets, fgets: Gets a string from a stream..............................gets(S)
gets: Gets a string from the standard input. . . gets(CP)

puts, fputs: Puts a string on a stream..................................puts(S)
strdup: Performs string operations....................................string(S)

yes: Prints string repeatedly....................................yes(C)
strlen: Returns the length of a string... strlen(DOS)

strtod, atof: Converts a string to a double-precision/ . . . strtod(S)
strtol, atol, atoi: Converts string to integer..................................... strtol(S)

strset: Sets all characters in a string to one charater..........................strset(DOS)
cputs: Puts a string to the console........................... cputs(DOS)

strings in an object file, strings: Finds the printable strings(C)
xstr: Extracts strings from C programs...................... xstr(CP)

strings: Finds the printable strings in an object file.........................strings(C)
the order of characters in a string, strrev: R e v e r s e sstrrev(DOS)

relocation bits, strip: Removes symbols and . . . strip(CP)
string, strlen: Returns the length of a . . strlen(DOS)

characters to lowercase, strlwr: Converts uppercase strlwr(DOS)
characters in a string, strrev: Reverses the order of . . . strrev(DOS)
string to one charater. strset: Sets all characters in a . . . strset(DOS)

to a double-precision number, strtod, atof: Converts a string . . . strtod(S)
string to integer, strtol, atol, atoi: Converts strtol(S)

mount: Mounts a file structure.. mount(ADM)
umount: Dismounts a file structure.. umount(ADM)
characters to uppercase, strupr: Converts lowercase strupr(DOS)

terminal, stty: Sets the options for a stty(C)
of a document, style: Analyzes characteristics . . style(CT)

or another user, su: Makes the user a super-user . . su(C)
counts blocks in a file, sum: Calculates checksum and . . sum(C)

du: Summarizes disk usage........................du(C)
ownership, quot: Summarizes file s y s t e m quot(C)
sync: Updates the super-block.. sync(ADM)
sync: Updates the super-block.. sync(S)

su: Makes the user a super-user or another user................... su(C)
terminals: List of supported terminals............................. terminals(M)

keyboard mode or test keyboard support kbmode: S e tkbmode(ADM)
ev_resume: Restart a suspended queue..................................ev_resume(S)
signal occurs, pause: Suspends a process until a pause(S)

ev_suspend: Suspends an event queue.....................ev_susp(S)
interval, nap: Suspends execution for a short . , nap(S)

interval, sleep: Suspends execution for an sleep(C)
interval, sleep: Suspends execution for an sleep(S)

swab: Swaps bytes................................swab(S)
swapadd: Adds swap area .. swapadd(S)

swapadd: Adds swap area swapadd(S)
swab: Swaps bytes... swab(S)

fdswap: Swaps default boot floppy drive. . fdswap(ADM)
sxt: Pseudo-device driver.................... sxt(M)

sdb: Invokes symbolic debugger............................... sdb(CP)
strip: Removes symbols and relocation bits. . . . strip(CP)

sync: Updates the super-block. . . sync(ADM)
sync: Updates the super-block. . . sync(S)

1-50

Permuted Index

data segment, sdenter, sdleave: Synchronizes access to a shared . sdenter(S)
sdgetv, sdwaitv: Synchronizes shared data access. . sdgetv(S)

select: synchronous I/O multiplexing. . . select(S)
command interpreter with C-like syntax, csh: Invokes a shell . . . csh(C)

Checks C language usage and syntax, lint:lint(CP)
backups and restores files, sysadmin: Performs file system . . sysadmin(ADM)

administration utility, sysadmsh: Menu driven system . . sysadmsh(ADM)
Sends system error/ perror, sys_errlist, sys_nerr, ermo: . . . perror(S)

sysfiles: format of UUCP sysfiles f i l e .. sysfiles(F)
sysfiles file sysfiles: format of UUCP sysfiles(F)

functions. sysi86: machine specific sysi86(S)
error/ perror, sys_errlist, sys_nerr, ermo: Sends system . . perror(S)

config: Configures a XENIX system.. config(ADM)
cu: Calls another XENIX system.. cu(C)

mkfs: Constructs a file system.. mkfs(ADM)
mkuser: Adds a login ID to the system.. mkuser(ADM)

mount: Mounts a file system.. mount(S)
umount: Unmounts a file system.. umount(S)
who: Lists who is on the system.. who(C)
Automatically boots the system, autoboot: autoboot(ADM)

identification file, systemid: The Micnet system . . . systemid(F)
the lineprinter spooling system, lpadmin: Configures . . . lpadmin(ADM)

file systems and shuts down the system, /reboot: Closes out the . . haltsys(ADM)
commands on a remote XENIX system, remote: Executes remote(C)

Removes a user account from the system, r m u s e r : rmuser(ADM)
/reboot: Closes out the file systems and shuts down the/ . . . haltsys(ADM)
systems: format of UUCP systems f i l e .. systems(F)

file systems: format of UUCP Systems systems(F)
fsck: Checks and repairs file systems.. fsck(ADM)

scsi: Small computer systems interface.................................. scsi(HW)
checklist: List of file systems processed by fsck checklist(F)

rep: Copies files across XENIX systems.. rcp(C)
the name of the current XENIX system, uname: Prints uname(C)

Gets name of current XENIX system, u n a m e :uname(S)
device, systty: System maintenance . . . systty(M)

chrtbl: Create a ctype locale table..chrtbl(M)
chrtbl: Create a ctype locale table..chrtbl(M)
aliashash: Micnet alias hash table generator.......................................aliashash(ADM)

montbl: Create a currency locale table..montbl(M)
montbl: Create a currency locale table..montbl(M)
numtbl: Create a numeric locale table..numtbl(M)
numtbl: Create a numeric locale table..numtbl(M)
setmnt: Establishes /etc/mnttab table..setmnt(ADM)

timtbl: Create a time locale table..timtbl(M)
for flaws and creates bad track table, badtrk: Scans fixed disk . . badtrk(ADM)

Create a collation locale table, coltbl:coltbl(M)
Create a collation locale table, coltbl:coltbl(M)

Master device information table, m a s t e r :master(F)
Format of mounted file system table, m n tta b :...................................mnttab(F)

tbl: Formats tables for nroff or troff. tbl(CT)
term: Terminal driving tables for nroff. term(F)

1-51

Permuted Index

hdestroy: Manages hash search tables, hsearch, hcreate, hsearch(S)
ctags: Creates a tags file... ctags(CP)

a file, tail: Delivers the last part of . . . tail(C)
Performs/ sin, cos, tan, asin, acos, atan, atan2: trig(S)

functions, sinh, cosh, tanh: Performs hyperbolic sinh(S)
ptar: Process tape archives..ptar(C)

mcconfig: Irwin tape driver parametersmcconfig(F)
backup: Incremental dump tape formatbackup(F)

program, tape: Magnetic tape maintenance . tape(C)
tape: Magnetic tape maintenance program. . . . tape(C)

tapedump: Dumps magnetic tape to output file.................................. tapedump(C)
output file, tapedump: Dumps magnetic tape to tapedump(C)

tar: archive format................................ tar(F)
tar: Archives files..................................tar(C)

derofi: Removes nrofl/troflf, tbl, and eqn constructs......................... derofl^CT)
troff, tbl: Formatstables fornroflfor . . tbl(CT)

search trees, tsearch, tfind, tdelete, twalk: Manages binary . . tsearch(S)
tee: Creates a tee in a pipe. . . . tee(C)

tee: Creates a tee in a pipe..tee(C)
last logins of users and teletypes last: Indicate last(C)

method of turning terminals on/ telinit, mkinittab: Alternative . . . telinit(ADM)
temporary file, tmpnam, tempnam: Creates a name for a . . tmpnam(S)

tmpfile: Creates a temporary file............................. tmpfile(S)
tempnam: Creates a name for a temporary file, tmpnam, tmpnam(S)

term: Conventional names. . . . term(CT)
for nroflf. term: Terminal driving tables . . . term(F)

"terminfo/" capinfo: convert termcap descriptions into capinfo(C)
database, termcap: Terminal capability . . . termcap(M)

termcap: Terminal capability data base. . . termcap(M)
"terminfo:" terminal capability data base. . . . terminfo(M)

ct: spawn getty to a remote terminal .. ct(C)
"terminfo:" terminal description database. . . terminfo(S)
nroflf. term: Terminal driving tables for term(F)

tgetstr, tgoto, tputs: Performs terminal functions, /tgetflag, . . . termcap(S)
termio: General terminal interface...................................... termio(M)

tty: Special terminal interface.................................. tty(M)
dial: Establishes an out-going terminal line connection.......................dial(S)

lock: Locks a user’s terminal... lock(C)
terminal: Login terminal........ terminal(HW)

tset: Sets terminal modes...................................... tset(C)
clear: Clears a terminal screen.......................................clear(C)

gettydefs: Speed and terminal settings used by getty. . . gettydefs(F)
stty: Sets the options for a terminal.. stty(C)

terminal: Login terminal................................... terminal(HW)
line discipline, getty: Sets terminal type, modes, speed, and . getty(M)
Generates a filename for a terminal, c t e r m id : ctermid(S)

a printer attached to the user’s terminal lprint: Print t o lprint(C)
or denies messages sent to a terminal, mesg: P e r m its mesg(C)

enable: Turns on terminals and line printers.......... enable(C)
disable: Turns off terminals and printers................... disable(C)

inittab: Alternative login terminals file.............................inittab(F)

1-52

Permuted Index

ttys: Login terminals file....................................... ttys(F)
terminals, terminals: List of supported . . . terminals(M)

tty: Gets the terminal’s name.....................................tty(C)
/Alternative method of turning terminals on and off. telinit(ADM)

terminals: List of supported terminals.. terminals(M)
isatty: Finds the name of a terminal, t ty n a m e ,........................... ttyname(S)

exit, _exit: Terminates a process........................... exit(S)
kill: Terminates a process........................... kill(C)

shutdown: Terminates all processing....................... shutdown(ADM)
exit: Terminates the calling process. . . exit(DOS)

for a child process to stop or terminate, wait: Waitswait(S)
tic: terminfo compiler................................ tic(C)

tput: Queries the terminfo database.................................tput(C)
termcap descriptions into terminfo descriptions, /convert . . capinfo(C)

terminfo: Format of compiled terminfo file...terminfo(F)
terminfo file, terminfo: Format of compiled . . terminfo(F)

data base, terminfo: terminal capability . . . terminfo(M)
database, terminfo: terminal description . . terminfo(S)
interface, termio: General terminal termio(M)

kbmode: Set keyboard mode or test keyboard s u p p o r t kbmode(ADM)
test: Tests conditions............................ test(C)

test: Tests conditions................................... test(C)
ed: Invokes the text editor..ed(C)

ex: Invokes a text editor.. ex(C)
newform: Changes the format of a text file... newform(C)

diff Compares two text files..diff(C)
eqncheck: Formats mathematical text for nroff, troff, /checkeq, . . . eqn(CT)

prep: Prepares text for statistical processing. . . . prep(CT)
cwcheck: Prepares constant-width text for troff, cw, checkcw, . . . cw(CT)

nroff: A text formatter........................ nrofl(CT)
plock: Lock process, text, or data in memory........................plock(S)

intro: Introduces text processing commands. . . . Intro(CT)
troff: Typesets text... troff(CT)

binary search trees, tsearch, tfind, tdelete, twalk: Manages . . tsearch(S)
tgetstr, tgoto, tputs: Performs/ tgetent, tgetnum, tgetflag, termcap(S)

Performs/ tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs: . . . termcap(S)
tgoto, tputs: Performs/ tgetent, tgetnum, tgetflag, tgetstr, termcap(S)

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs: Performs/ . . termcap(S)
/tgetnum, tgetflag, tgetstr, tgoto, tputs: Performs terminal/ . . termcap(S)

tic: Terminfo compiler......................... tic(C)
time, ftime: Gets time and date. . . time(S)

clock: The system real-time (time of day) clock............................... clock(F)
Sets the system real-time (time of day) clock, setclock: . . setclock(ADM)

stime: Sets the time...stime(S)
Executes commands at a later time, at, batch:at(C)

Sets up an environment at login time, profile: profile(M)
Executes commands at specified times, cron: cron(C)

Gets process and child process times, times: times(S)
file access and modification times, utime: S e t sutime(S)

table, timtbl: Create a time locale . . . timtbl(M)
file, tmpfile: Creates a temporary . . . tmpfile(S)

1-53

Permuted Index

for a temporary file, tmpnam, tempnam: Creates a name tmpnam(S)
/isascii, tolower, toupper, toascii: Classifies or converts/ . . ctype(S)

conv, toupper, tolower, toascii: Translates characters. . . conv(S)
characters, conv, toupper, tolower, toascii: Translates conv(S)

/isgraph, iscntrl, isascii, tolower, toupper, toascii:/ ctype(S)
topology files, top, top.next: The Micnet top(F)

files, top, top.next: The Micnet topology . . top(F)
tsort: Sorts a file topologically...tsort(CP)

top, top.next: The Micnet topology files...top(F)
modification times of a file, touch: Updates access and touch(C)

/iscntrl, isascii, tolower, toupper, toascii: Classifies or/ . . ctype(S)
Translates characters, conv, toupper, tolower, toascii: conv(S)

database, tput: Queries the terminfo tput(C)
/tgetflag, tgetstr, tgoto, tputs: Performs terminal/ termcap(S)

tr: Translates characters....................... tr(C)
ptrace: Traces a process...................................ptrace(S)

disk for flaws and creates bad track table. /Scans fixed badtrk(ADM)
trchan: Translate character s e t s trchan(M)

one format to another translate: Translates files from . . translate(C)
conv, toupper, tolower, toascii: Translates characters............................ conv(S)

tr: Translates characters............................ tr(C)
to another translate: Translates files from one format . . translate(C)

setmode: Sets translation mode................................... setmode(DOS)
decode a binary file for transmission via mail uudecode: . uuencode(C)
encode a binary file for transmission via mail uuencode: . uuencode(C)

the scheduler for the uucp file transport program uusched: . . . uusched(ADM)
trchan: Translate character sets . . trchan(M)

ftw: Walks a file tree.. ftw(S)
twalk: Manages binary search trees, tsearch, tfind, tdelete, . . . tsearch(S)

acos, atan, atan2: Performs trigonometric functions, /asin, . . trig(S)
tbl: Formats tables for nroff or troff. .. tbl(CT)

troff. Typesets text................................ trofRCT)
file, charmap: Generate troff width files and catab charmap(CT)

Prepares constant-width text for troff cw, checkcw, cwcheck: . . cw(CT)
mathematical text for nroff, troff, /eqncheck: Formats eqn(CT)

with debugging on uutry: try to contact remote system . . . uutry(ADM)
Manages binary search trees, tsearch, tfind, tdelete, twalk: . . . tsearch(S)

tset: Sets terminal modes.....................tset(C)
topologically, tsort: Sorts a f i l e tsort(CP)

mapchan: Format of tty device mapping files.......................mapchan(F)
mapchan: Configure tty device mapping............................... mapchan(M)

tty: Gets the terminal’s name. . . tty(C)
tty: Special terminal interface. . . tty(M)

monochrome, ega,. screen: tty [01-n], c o l o r , screen(HW)
tty2[a-h], tty2[A-H]:/ ttyl[a-h] ,ttyl[A -H]............................ serial(HW)

tty2[A-H]: Interface/ ttyl[a-h] ttyl[A-H], tty2[a-h],serial(HW)
tty2[A-H]:/ tty 1 [a-h], ttyl[A-H], tty2[a-h]............................ serial(HW)

to/ tty 1 [a-h] ,ttyl[A -H], tty2[a-h] ,tty2[A-H]: Interface . . serial(HW)
Interface/tty 1 [a-h] , tty 1[A-H] tty2[a-h] , t ty 2 [A - H] :serial(HW)

/, tty 1 [A-H] ,tty2[a-h], tty2[A-H]: Interface to serial/ . . serial(HW)
ports. /, tty 1 [A-H] ,tty2[a-h] tty2[A-H]: Interface to serial . . . serial(HW)

1-54

Permuted Index

of a terminal, ttyname, isatty: Finds the name . . ttyname(S)
ttys: Login terminals file......................ttys(F)

utmp file of the current user, ttyslot: Finds the slot in the . . . ttyslot(S)
/mkinittab: Alternative method of turning terminals on and off. . . . telinit(ADM)

printers, disable: 'Rims off terminals and disable(C)
accton: Turns on accounting.................................. accton(ADM)

printers, enable: Turns on terminals and line . . . enable(C)
trees, tsearch, tfind, tdelete, twalk: Manages binary search . . tsearch(S)

dtype: Determines disk type...dtype(C)
file: Determines file type...file(C)
getty: Sets terminal type, modes, speed, and line/ . . . getty(M)

types, types: Primitive system data . . . types(F)
types: Primitive system data types...types(F)

mmt: Typesets documents...............................mmt(CT)
troff: Typesets text... troff(CT)

variable. TZ: Time zone environment . . . tz(M)
/localtime, gmtime, asctime, tzset: Converts date and time to/ . ctime(S)

uadmin: administrative control. . . uadmin(S)
limits, ulimit: Gets and sets user ulimit(S)

characters, ultoa: Converts numbers to . . . ultoa(DOS)
creation mask, umask: Sets and gets file umask(S)

mask, umask: Sets file-creation mode . . umask(C)
structure, umount: Dismounts a file umount(ADM)

umount: Unmounts a file system. . umount(S)
XENIX system, uname: Gets name of current . . . uname(S)

current XENIX system, uname: Prints the name of the . . uname(C)
uncompress: Uncompress a stored file..................... compress(C)

file, uncompress: Uncompress a stored . compress(C)
file, unget: Undoes a previous get of an SCCS unget(CP)

an SCCS file, unget: Undoes a previous get of . . unget(CP)
into input stream, ungetc: Pushes character back . . ungetc(S)

the console buffer, ungetch: Returns a character to . . ungetch(DOS)
seed48, lcong48: Generates uniformly distributed. srand48, . . drand48(S)

a file, uniq: Reports repeated lines in . . uniq(C)
mktemp: Makes a unique filename.....................................mktemp(S)

units: Converts units.............................units(C)
units: Converts units.. units(C)

unlink: Removes directory entry. . unlink(S)
reading or/ locking: Locks or unlocks a file region f o r locking(S)

umount: Unmounts a file s y s t e m umount(S)
files, pack, peat, unpack: Compresses and expands . pack(C)

Performs linear search and update, lsearch, lfind: lsearch(S)
times of a file, touch: Updates access and modification . touch(C)

of programs, make: Maintains, updates, and regenerates groups . make(CP)
sync: Updates the super-block...................... sync(ADM)
sync: Updates the super-block...................... sync(S)

lowercase, strlwr: Converts uppercase characters t o strlwr(DOS)
Converts lowercase characters to uppercase, strupr: strupr(DOS)

about system activity, uptime: Displays information . . . uptime(C)
lint: Checks C language usage and syntax...................................lint(CP)

diction: Checks language usage... diction(CT)

1-55

Permuted Index

du: Summarizes disk usage..du(C)
explain: Corrects language usage..explain(CT)

checkmm, mmcheck: Checks usage of MM macros.......................... checkmm(CT)
clock: Reports CPU time used..clock(S)

keystrokes usemouse: Maps mouse input to . usemouse(C)
user, su: Makes the user a super-user or another . . . su(C)
rmuser: Removes a user account from the system. . . rmuser(ADM)

id: Prints user and group IDs and names. . . id(C)
setuid, setgid: Sets user and group IDs...................... setuid(S)

/getgid, getegid: Gets real user, effective user, real/ getuid(S)
environ: The user environment.......................environ(M)

hello: Send a message to another user...hello(ADM)
getpw: Gets password for a given user ID...getpw(S)

newgrp: Logs user into a new group..........................newgrp(C)
ulimit: Gets and sets user limits... ulimit(S)

logname: Finds login name of user...logname(S)
group/ /Gets real user, effective user, real group, and effective . . getuid(S)

write: Writes to another user...write(C)
Gets the login name of the user, c u s e r i d : cuserid(S)
last: Indicate last logins of users and t e le t y p e slast(C)

finger: Finds information about users...finger(C)
idleout: Logs out idle users.. idleout(ADM)

lock: Locks a user’s terminal...............................lock(C)
to a printer attached to the user’s terminal lprint: Print . . . lprint(C)

wall: Writes to all users.. wall(ADM)
the user a super-user or another user, su: M a k e s su(C)

in the utmp file of the current user, ttyslot: Finds the slot . . . ttyslot(S)
statistics, ustat: Gets file system ustat(S)

mscreen: Serial multiscreens utility ..mscreen(M)
driven system administration utility, sysadmsh: Menu sysadmsh(ADM)

modification times, utime: Sets file access and utime(S)
utmp, wtmp: Formats of utmp and wtmp entries...........utmp(F)

endutent, utmpname: Accesses utmp file entry.........................getut(S)
ttyslot: Finds the slot in the utmp file of the current user. . . . ttyslot(S)

wtmp entries, utmp, wtmp: Formats of utmp and . utmp(F)
entry, endutent, utmpname: Accesses utmp file . . getut(S)

uuchat: dials a modem...... dial(ADM)
directories and permissions/ uucheck: check the uucp uucheck(ADM)

for work, uucico: Scan the spool directory . uucico(C)
clean-up uuclean: uucp spool directory . . uuclean(ADM)

/uudemon.poll, uudemon.poll2 UUCP administrative scripts . . . uudemon(ADM)
Administers UUCP control files, uuinstall: . . uuinstall(ADM)

devices: format of UUCP devices f i l edevices(F)
file dialcodes: format of UUCP dial-code abbreviations . . dialcodes(F)

dialers: format of UUCP Dialers filedialers(F)
file uucheck: check the uucp directories and permissions . uucheck(ADM)

uusched: the scheduler for the uucp file transport program . . . uusched(ADM)
permissions: format of UUCP Permissions file permissions(F)

poll: format of UUCP Poll file poll(F)
uuclean: uucp spool directory clean-up . . uuclean(ADM)

control, uustat: uucp status inquiry and job . . . uustat(C)

1-56

Permuted Index

sysfiles: format of
systems: format of

maxuuscheds:
maxuuxqts:

for transmission via mail
uudemon.clean, uudemon.hour,/

uudemon.hour,/ uudemon:
uudemon: uudemon.admin,

Aiudemon.admin, uudemon.clean,
Aiudemon.clean, uudemon.hour,

Aiudemon.hour, uudemon.poll,
for transmission via mail

files.
file copy, uuto,

maxuuscheds: UUCP
uucp file transport program

job control.
XENIX-to-XENEX file copy,

system with debugging on
XENIX,

maxuuxqts: UUCP

val:
assert: Helps verify

abs: Returns an integer absolute
ceil, fmod: Performs absolute

getenv: Gets
labs: Returns the absolute
putenv: Changes or adds

true: Returns with a zero exit
Returns with a nonzero exit

varargs:
TZ: Time zone environment

Gets option letter from argument
display editor, vi, view,

assert: Helps
red: Invokes a restricted
sccsdiffi Compares two

formatted output of a/ vprintf,
screen-oriented display editor,

a binary file for transmission
a binary file for transmission

the font and video mode for a
vidi: Sets the font and

mode for a video device,
screen-oriented display/ vi,

vmstat. Reports
statistics.

file system: Format of a system
Prints formatted output of a/

UUCP Sysfiles f i l e
UUCP Systems f i l e
UUCP uusched limit file
UUCP uuxqt limit file
uudecode: decode a binary file . .
uudemon: uudemon.admin, . . .
uudemon.admin, uudemon.clean,
uudemon.clean, uudemon.hour,/
uudemon.hour, uudemon.poll,/ . .
uudemon.poll, uudemon.poll2 UUCP/
uudemon.poll2 UUCP/
uuencode: encode a binary file . .
uuinstall: Administers UUCP control
uupick: Public XENIX-to-XENTX .
uusched limit file
uusched: the scheduler for the . .
uustat: uucp status inquiry and . .
uuto, uupick: Public
uutry: try to contact remote . . .
uux: Executes command on remote
uuxqt limit file
val: Validates an SCCS file. . . .
Validates an SCCS file.........................
validity of program...............................
value..
value, floor, ceiling and/ /fabs, . .
value for environment name. . . .
value of a long integer.........................
value to environment............................
value...
value, false:
varargs: variable argument list. . .
variable argument list..........................
variable...
vector, getopt:
vedit: Invokes a screen-oriented
verify validity of program...................
version of. ..
versions of an SCCS file......................
vfprintf, vsprintf: P r i n t s
vi, view, vedit: Invokes a
via mail uudecode: decode . . .
via mail uuencode: encode . . .
video device, vidi: S e t s
video mode for a video device. . .
vidi: Sets the font and video . . .
view, vedit: Invokes a
virtual memory statistics.....................
vmstat: Reports virtual memory . .
volume..
vprintf, vfprintf, vsprintf:

sysfiles(F)
systems(F)
maxuuscheds(F)
maxuuxqts(F)
uuencode(C)
uudemon(ADM)
uudemon(ADM)
uudemon(ADM)
uudemon(ADM)
uudemon(ADM)

uudemon(ADM)
uuencode(C)
uuinstall(ADM)
uuto(C)
maxuuscheds(F)
uusched(ADM)
uustat(C)
uuto(C)
uutry(ADM)
uux(C)
maxuuxqts(F)
val(CP)
val(CP)
assert(S)
abs(S)
floor(S)
getenv(S)
labs(DOS)
putenv(S)
true(C)
false(C)
varargs(S)
varargs(S)
tz(M)
getopt(S)
vi(C)
assert(S)
ed(C)
sccsdifl(CP)
vprintf(S)
vi(C)
uuencode(C)
uuencode(C)
vidi(C)
vidi(C)
vidi(C)
vi(C)
vmstat(C)
vmstat(C)
filesystem(F)
vprintf(S)

1-57

Permuted Index

output of a/ vprintf, vfprintf, vsprintf: Prints formatted vprintf(S)
who is on the system and what w: Displays information about . . w(C)

background processes, wait: Awaits completion of . . . wait(C)
event. ev_block: Wait until the queue contains an . ev_block(S)

to stop or terminate, wait: Waits for a child process . . wait(S)
sigsem: Signals a process waiting on a semaphore....................... sigsem(S)

stop or terminate, wait: Waits for a child process to . . . wait(S)
checks access to a resource/ waitsem, nbwaitsem: Awaits and . waitsem(S)

ftw: Walks a file tree.....................................ftw(S)
wall: Writes to all users....................... wall(ADM)

characters, wc: Counts lines, words and . . . wc(C)
whodo: Determines who is doing what.. whodo(C)

what, whodo: Determines who is doing . whodo(C)
charmap: Generate troff width files and catab file..........................charmap(CT)

hyphen: Finds hyphenated words...hyphen(CT)
cd: Changes working directory................................. cd(C)

chdir: Changes the working directory................................. chdir(S)
pwd: Prints working directory name.......................pwd(C)

Get the pathname of current working directory, getcwd: . . . getcwd(S)
Scan the spool directory for work, u u c ic o :uucico(C)

fputc, fputchar: Write a character to a stream. . . . fputc(DOS)
write: Writes to a file............................write(S)
write: Writes to another user. . . . write(C)

outp: Writes a byte to an output port. . . outp(DOS)
console, putch: Writes a character to t h e putch(DOS)

putpwent: Writes a password file entry. . . . putpwent(S)
write: Writes to a file................................. write(S)
wall: Writes to all users........................wall(ADM)

write: Writes to another user....................write(C)
open: Opens file for reading or writing.. open(S)

a file region for reading or writing. /Locks or unlocks locking(S)
a file for shared reading and writing, sopen: Opens sopen(DOS)

utmp, wtmp: Formats of utmp and wtmp entries.................................... utmp(F)
entries, utmp, wtmp: Formats of utmp and wtmp . utmp(F)

commands, xargs: Constructs and executes . . xargs(C)
Assembler, asx: XENDC 8086/186/286/386 asx(CP)

masm: Invokes the XENIX assembler...............masm(CP)
boot: XENIX boot program......... boot(HW)

intro: Introduces XENIX commands................. Intro(C)
commands, intro: Introduces XENIX Development System . . Intro(CP)

Convert 386 COFF files to XENIX format, coffconv: coffconv(M)
netutil: Administers the XENIX network....................................netutil(ADM)

config: Configures a XENIX system...................................... config(ADM)
cu: Calls another XENIX system...................................... cu(C)

uname: Gets name of current XENIX system...................................... uname(S)
Executes commands on a remote XENIX system, remote: remote(C)

rep: Copies files across XENIX systems.................................... rcp(C)
Prints the name of the current XENIX system, u n a m e :..................uname(C)

dosld: XENIX to MS-DOS cross linker. . dosld(CP)
uux: Executes command on remote XENIX... uux(C)

uuto, uupick: Public XENIX-to-XENIX file copy. . . . uuto(C)

1-58

Permuted Index

entries from files, xlist, fxlist: Gets name list xlist(S)
programs, xref: Cross-references Cxref(CP)
programs, xstr: Extracts strings from C . . . xstr(CP)

functions, bessel, jO ,jl,jn , yO, y l, yn: Performs Bessel . . . bessel(S)
bessel, jO, j 1, jn, yO, y 1, yn: Performs B e s s e l / bessel(S)
compiler-compiler, yacc: Invokes ayacc(CP)

yes: Prints string repeatedly. . . . yes(C)
bessel, jO, j 1, jn, yO, y 1, yn: Performs Bessel functions. . . bessel(S)

zcat: Display a stored file........ compress(C)
true: Returns with a zero exit value............................... true(C)

TZ: Time zone environment variable. . . . tz(M)

1-59

AZ01204P000
52013

' s

	Cover
	SCO XENIX System V Operating System XENIX Reference The Santa Cruz Operation, Inc.
	Document Version: 2.3.4C Date: 28 March 1991
	Preface
	Alphabetized List
	Contents System Administration (ADM)
	A
	B
	C
	D
	F
	H
	I
	K
	L
	M
	N
	P
	R
	S
	T
	U

	Contents Commands (C)
	INTRO (C)
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Contents File Formats (F)
	INTRO (F)
	86REL (F)
	A
	B
	C
	D
	F
	G
	I
	M
	N
	P
	Q
	S
	T
	U

	Contents Hardware Dependent (HW)
	INTRO (HW)
	80287 (HW)
	B
	C
	F
	H
	K
	L
	M
	P
	R
	S
	T

	Contents Miscellaneous (M)
	INTRO (M)
	A
	C
	D
	E
	G
	I
	L
	M
	N
	PROFILE (M)
	S
	T

	Permuted Index - Commands, System Calls, Library Routines and File Formats
	Back

