

SCO® XENIX® System V

Operating System

XENIX Reference

The Santa Cruz Operation, Inc.

© 1983-1991 The Santa Cruz Operation, Inc.
© 1980-1991 Microsoft Corporation.

© 1989-1991 AT&T.

All Rights Reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system,
nor translated into any human or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the
prior written permission of the copyright owner, The Santa Cruz Operation, Inc., 400
Encinal, Santa Cruz, California, 95061, U.S.A. Copyright infringement is a serious
matter under the United States and foreign Copyright Laws.

The copyrighted software that accompanies this manual is licensed to the End User
only for use in strict accordance with the End User License Agreement, which should
be read carefully before commencing use of the software. Information in this document
is subject to change without notice and does not represent a commitment on the part of
The Santa Cruz Operation, Inc.

The following legend applies to all contracts and subcontracts governed by the Rights
in Technical Data and Computer Software Clause of the United States Department of
Defense Federal Acquisition Regulations Supplement:

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 52.227-7013. The
Santa Cruz Operation, Inc., 400 Encinal Street, Santa Cruz, California 95061, U.S.A.

SCO and the SCO logo are registered trademarks and the Santa Cruz Operation is a trademark
of the Santa Cruz Operation, Inc.

Microsoft, MS-DOS, and XENIX are registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of AT&T in the U.S.A. and other countries.

Document Version: 2.3.4C
Date: 28 March 1991

Preface

The complete set of XENIX manual pages are distributed as individual
reference sections in the various volumes of the XENIX Operating, Text
Processing, and Development Systems. The following table lists the
name, content, and location of each reference section.

Section Description XENIX Volume

ADM Administrative Commands - used XENIX Reference
for system administration.

C Commands - used with the XENIX XENIX Reference
Operating System.

Cp Programming Commands - used Programmer’s Reference
with the Development System.

CT Text Processing Commands - used ~ Text Processing Guide
with the Text Processing System.

DOS Routines - used with the Programmer’s Reference
Development System

F File Formats - description of XENIX Reference
various system files not defined in
section M.

HW Hardware specific manual pages - XENIX Reference
information about XENIX
procedures specific to your
computer.

M Miscellaneous - information used XENIX Reference
for access to devices, system
maintenance, and communi-
cations.

S System Calls and Library Programmer’s Reference

Routines - available for C and
assembly language programming.

In the manual pages, a given command, routine, or file is referred to by
name and section. For example, the programming command “cc”, which
is described in the Programming Commands (CP) section, is listed as
cc(CP).

The alphabetized table of contents given on the following pages is a
complete listing of all XENIX commands, system calls, library routines,
and file formats. The permuted index, found at the end of the XENIX
Reference and the the end of the XENIX Programmer’s Reference, is
useful in matching a desired task with the manual page that describes it.

Alphabetized List

Commands, Systems Calls, Library Routines and File Formats

80287cccovveenennen 80287(HW)
80387 ... 80387 (HW)
86rel ... 86rel(F)
a6dl ... a641(S)
A0UL .o a.out(F)
abortcccovevvvvereennne abort(S)
abs abs(S)
acCePtcooverunvennanne accept(C)
ACCESS .oovvevneererraennennens access(S)
ACCE eoeererririnienreeeraens acct(F)
acct acct(S)
acctcom acctcom(ADM)
accton accton(ADM)
ACOS cooneeeeerncecrceeeneeas trig(S)
adb ..o adb(CP)
adfmt adfmt(ADM)
admin admin(CP)
alarmcovene. alarm(S)
aliases aliases (M)
aliases.hash aliases (M)
aliashash aliashash(ADM)
ar ..ar(C)
AL et eve e e taeses ar(F)
archive archive (F)
ASCH oo, ascii(M)
asctime ..., ctime(S)
ASIN ..o trig(S)
asktime asktime (ADM)

assert(S)

assign(C)
F: 2> QR asx(CP)
AL e at(C)
atan trig(S)
atan2 ... trig(S)
atof atof (S)
atofcooveeereererenrennne strtod(S)
atoi atof (S)
P17 SO strtol (S)
atol atof (S)
atoloovnererrnene strrol(S)
autoboot autoboot(ADM)

awk awk(C)
backup backup (ADM)
backupccceenen. backup (F)
badtrk badtrk(ADM)
banner banner(C)
basename basename (C)
batch at(C)
be bc(C)
bdiff ...t bdiff(C)
bdoscovevrerennne bdos(DOS)
besselc.ccvevennns bessel (S)
BES o bfs(C)
bootooeveerereennne boot(HW)
1] 3 . QRSN sbrk(S)
brketl ..., brkctl (S)
bsearch bsearch(S)
€Al e cal(C)
calendar calendar(C)
calloc ..o malloc (S)
cancelooeevvrennnnnen. Ip(C)
capinfo capinfo(C)
cat ..cat(C)
cb cb(CP)
CC cuvereerierrineeernesnresanneaans cc(CP)

cflowuoueennne cflow(CP)
cgetsoveureeennnnnne. cgets (DOS)
character eqnchar(CT)
charmap charmap(CT)
chdir ... chdir(S)
checkcw cew(CT)
checkeqcoooeuecceneee eqn(CT)
checklist checklist (F)
checkmm checkmm (CT)
chgrp ... chgrp(C)
chmod chmod(C)
chmod chmod(S)
chown chown(C)

chroot chroot(ADM)

chroot chroot(S)
chrtbl chrtbl(M)
chsize ... chsize(S)
clearccocevveevvivenen. clear (C)
clearerr Sferror(S)
clockcorirrrevennns clock (F)
clockccovvreevennns clock(S)
closeooveeirnnrenrennnes close(S)
closedir directory(S)
[+ 1 o [OOSR clri(ADM)
coltblcocuen.ee. coltbl(M)
cmchk cmchk(C)
CIMOS ..coveeveerrrnenrennnns cmos(HW)
(41 111 RO cmp(C)
coffconv coffconv(M)

COl e col(CT)
combcoevrvvenen. comb (CP)
COMMcoeevuinninennen comm(C)
COMPIress compress(C)
config config(ADM)
configure configure (ADM)
console console (M)
contains egnchar (CT)
COMV ..nnneirireieenaene conv(S)
convkey ... mapkey (M)
COPY eovvrvecnenrcnrnncnenns copy(C)
COTE ...oooniiininieieiennaenae core(F)
COS ..oovererreereanirsessessesarsens trig(S)
cosh ... sinh(S)
(11 JOOOOUROR cp(C)
CPIO ..o cpio(C)
CPIO ..o cpio(F)
CPP ot cpp (CP)
cprintf ... cprintf (DOS)
CPULSooviniriienane cputs(DOS)
creatooevevevereeinennen creat(S)
creatsem creatsem(S)
Cref oo cref(CP)
CrON ..ot cron(C)
CIYPL oot crypt(C)
cscanf ... cscanf(DOS)
CSh e ¢csh(C)
CSPlit ..o csplit (C)
Cl ot ct(C)
ctagscovvvevvinennnnnn ctags(CP)

ctermid(S)
........................... ctime(S)
............................ ctype(S)
...................................... cu(C)
CUTSES ..ccoevvreernearnnaanas curses(S)
cuserid cuserid(S)
custom custom(ADM)
CUL ..ooieeiceieneeeeaeenns cut(CT)
CW eeereceecneesneesanensensennns cw(CT)
cwcheck cw(CT)
exref ..o cxref (CP)
daemon.mn daemon.mn(M)
datecceeievieiiiienne date (C)
dbminit dbm(S)
AC e dc(C)
dd ..o dd(C)
deassigncccoeeeeee assign(C)
default default (F)
definitions eqnchar(CT)
defopen defopen(S)
defread defopen(S)
deleteoovvevennna. dbm(S)
deltac.cccoverernene. delta(CP)
deroff deroff(CT)
devices ... devices (F)
devnmc.......... devnm(C)
df e daf(C)
dialcccoeueneee. dial (ADM)
dial ..o dial(S)
dialcodes dialcodes (F)
dialers dialers(F)
diction diction(CT)
diff ... dif(C)
diff3 ... dif3(C)
diffmk diffmk(CT)
dir .o dir(F)
dircmpccc....... dircmp (C)
directory directory(S)
direntccceeeent dirent(F)
dirname dirname (C)
disable disable (C)
diskempcoceeee. diskep (C)
diskep ...ocooveiiinennnne. diskcp (C)
divvy ..o divvy (ADM)
dmesg dmesg (ADM)
dOS ..o dos(C)

doscatooevvenvinrvennee dos(C)
dOSCPocvrnrrvreicanrenene dos(C)
dosdirccoeevenerennnnen dos(C)
dosexterr dosexter (DOS)
dosformat dos(C)
dosldccooeuuenee. dosld(CP)
dosls ... dos(C)
dosmkdir dos(C)
dosrmoovervvennnnnen dos(C)
dosrmdir dos{(C)
dparam dparam(ADM)
drand4§ drand48(S)
Atype ... drype(C)
du .. du(C)
dump ... backup (ADM)
dumpdir dumpdir(ADM)
dup dup(S)
dup2 ... dup(S)
echo ..., echo(C)
ecvt ecvt(S)
ed. ed(C)
edataocooeevvevrennnee. end(S)
€EIEP ...cccovverenrerererannnan grep(C)
enable enable(C)
endooveeiriereniinenen end(S)
endgrent getgrent(S)
endpwent getpwent (S)
endutent getut(S)
MV .virireerinieeiietenannas env(C)
environ environ(M)
eof ..o eof (DOS)
QM ...eveenenrrerreraraerenenes eqn(CT)
eqn ...ucveeieieneans egnchar(CT)
eqnchar eqnchar(CT)
eqncheck eqn(CT)
erand48 drand48(8S)
erf .o erf(S)
erfc .o erf(S)
E€rTNO ..occovevrerenrernsn. perror(S)
T3 5 (1] LR error(M)
etextooeviiiiiiieenn, end(S)
ev_block ... ev_block(S)
ev_close ... ev_close(S)
ev_count ev_count(S)
ev_flush ev_flush(S)
ev_getdev ev_getdev (S)

ev_gindev ev_gindev (S)

ev_getemask ev_gtemsk(S)
ev_imit ... ev_init(S)
ev_open ev_open(S)
€V_POP ..o ev_pop(S)
ev_read ... ev_read(S)
ev_resume ev_resume (S)
ev_setemask ev_stemsk (S)
ev_suspend ev_susp(S)
€X iicreeeeeierirrenreeeiresresesnens ex{(C)
execloveervevrirrecnnen. exec (S)
execlecocnevvenenn. exec (S)
execlpviviniiinninnnne exec (S)
€XECSeEcouvueueucnens execseg (S)
EXCCV ovenveeeenernrriosronres exec (S)
EXECVE ...cvveerrrrerrenrranaeans exec (S)
EXECVP ..oovreenerrrereneraenee exec(S)
(31 T exit (DOS)
exit exit(S)
_eXit e exit(S)
CXP eoevririrecniiiiecaenienines exp(S)
explain explain(CT)
1541 LRI expr(C)
£abs ..o floor(S)
factoroveeevenn. factor(C)
faliases aliases (M)
falseccooovvreieviicenanns false(C)
fclose ... [felose (DOS)
fcloseooovevverveneenn, felose (S)
fcloseall fclose (DOS)
fentl ..o, fentl(S)
FOVE o ecvt(S)
fd oo fd(HW)
fdisk fdisk(ADM)
fdopenccooeceee. fopen(S)
fdswap fdswap(ADM)
feof ..., ferror(S)
ferrorvevienene ferror(S)
fetch ..o, dbm(S)
fllush ... fclose (S)
fgete ...cooovevvereinnnne fgetc (DOS)
fgete ..oovvvvevvrecnrrirnnnns getc(S)
fgetchar feetc (DOS)
fgets ..cooceveveeeencncenenas gets(S)
farep ..o, grep(C)
file ...ooooveeieiiieeeinne file(C)

iii

filenocooeueuene. ferror(S)
filesysccocecverrenne Sfilesys (F)
filesystem filesystem (F)
find ..., find(C)
fingerccoovnin Sfinger(C)
firstkeyocoeverennnnnnn dabm(S)
fixhdr ... Sixhdr(C)
fixpad capinfo (C)
fixperm Sfixperm(ADM)
floorovvevverevennnn. Sfloor(S)
flushall flushall(DOS)
fmodcoovervrnne. Sfloor(S)
fopen ..., fopen(S)

fprintfcoconune... printf(S)
fp_seg ...ccooveuene. fp_seg(DOS)
fpute ..o foutc(DOS)
fPULC .ot putc(S)
fputchar Jfputc (DOS)
fPULs ..o puts(S)
freadcoovvvevenennnne. fread(S)
free ..o malloc (S)
freopenccoceveuune fopen(S)
frexp .o Jfrexp(S)
fsave ... Jsave (ADM)
fscanfccoevvvveennne. scanf(S)
fSCK o, [fsck(ADM)
fsdbccoveannee fsdb(ADM)
fseekcoooeerevrcnnnnnee. [seek (S)
fsname fsname (ADM)
fsphoto Jfsphoto(ADM)
fstabcoevevevnenreenns [fstab(F)
111 SOOI stat(S)
fstatfs statfs(S)
ftell ... [seek(S)
ftimeoooveeenenne. time(S)
ftokooeverereeernnns stdipc(S)
ftw Jtw(S)
fwritec.oovvveervnenene. Jfread(S)
FXhiSt ...ooooveveienrenieenene xlist(S)
€aAMMAcocvevevnee gamma(S)
EOVE oovereerrerrieneeeerenns ecvt(S)
v

et e get(CP)
GetC .o getc(S)
getch getch(DOS)
getcharccccoeneee. getc(S)
getche getche (DOS)
getewd ... getcwd(S)
getdents getdents(S)
getegidcceoeee. getuid(S)
getenvcccceneee. getenv (S)
geteuid getuid(S)
getgid ..o getuid(S)
getgrent getgrent (S)
getgrgid getgrent (S)
getgrnam getgrent (S)
getlogin getlogin(S)
getopt ... getopt (C)
getoptooeveveennnnne. getopt(S)
getpassccoveeeenne. getpass(S)
Zetpgrp ..oovvvveenenenee getpid (S)
getpidocoeene.e. getpid (S)
getppid getpid(S)
GeLPW ...oovnireiencnnene getpw(S)
getpwent getpwent (S)
getpwnam getpwent (S)
getpwuid getpwent (S)
getS gets(CP)
gets gets(S)
ety oo getty(M)
gettydefs gettydefs (F)
getuid ... getuid(S)
getutccoveeeveennee getut (S)
getutent getut(S)
getutid getut(S)
getutline getut (S)
............................... getc(S)
ctime(S)

grep(C)

ErOUP ..cocveveeveneaereenan group(F)
grpcheck grpcheck(C)
gsignalccoeeennee ssignal (S)
haltsys haltsys (ADM)
hashcheck spell(CT)
hashmake spell (CT)
hereate hsearch(S)
hd ... hd(C)
hd ..o hd(HW)

hdestroy hsearch(S)
hdinstall hdinstall (ADM)
hdr .. hdr(CP)
head head(C)
hellocovervvrererrnnne hello (C)
help ..., help(C)
help e help(CP)
hsearch hsearch(S)
hwconfig hwconfig(C)
hyphen hyphen(CT)
hypotccvevnenes hypot(S)
id id(C)
idleout idleout (ADM)
inir init(M)
it e init(M)
inittab inittab (F)
inodecuvune.... inode(F)
inp inp(DOS)
install install(ADM)
int86 int86 (DOS)
int86x int86x (DOS)
intdos intdos (DOS)
intdosx intdosx (DOS)
i Intro(ADM)
............................. Intro(C)
.......................... Intro(CP)
.......................... Intro(CT)
....................... intro(DOS)
............................. Intro(F)
........................ Intro(HW)
............................ Intro(M)
............................. Intro(S)
............................... ioctl(S)
........................... ips(ADM)
ipcrm ipcrm(ADM)
117 OO ipcs(ADM)
111 (N . ipr(C)
iPS o ips(ADM)
isalnumcccoeveennene ctype(S)
ISASCH .ooveveneeereecennnene ctype(S)
iSatLycccoveveenee isatty (DOS)
isatty ..o ttyname (S)
ishs .o ips(ADM)
isentrlooooeiines ctype(S)

isdigitoccoveeveeneee ctype(S)

isgraphc.ccoe..... ctype(S)

islowercccoevnnene ctype(S)
isprintccooveeenne ctype(S)
ispunctcccccoeenneee ctype(S)
isspaceccoeeeveeneunee ctype (S)
isupper ..., ctype(S)
isxdigitc.c.c..... ctype(S)
itoa ..o itoa(DOS)
itroff ... itroff(CT)
jo bessel (S)
1 e bessel (S)
TN bessel (S)
Join ., Jjoin(C)
jrand48 ... drand48(S)
kbhit kbhit (DOS)
kbmode kbmode (ADM)
keyboard keyboard (HW)
Kill ..o kill (C)
Kill ..o kill (S)
kmemcooovevvrenenne mem(F)
ksh ksh(C)
1 Is(C)
Btol ... 13t0l(S)
16d4acccovvvanne a641(S)
labsccocvevvrenne labs (DOS)
Iast ..o, last(C)
Ic Is(C)
Icongd8 drand48(S)
Id ld(M)
Id ... ld(CP)
Idexp ... frexp(S)
IeX .o lex(CP)
Ifindccc......... Isearch(S)
line line (C)
link ... link(S)
lint lint (CP)
in In(C)
locale locale (M)
localtime ctime(S)
10CK o, lock(C)
FOCK oo, lock(S)
lockf ..o lockf(S)
locking locking (S)
log exp(S)
logl0 ... exp(S)
loginccoonncennenne login(M)

logname logname(C)

logname logname(S)
longjmp setjmp(S)
lookocooviiiiiinns look(CT)
lorder lorder(CP)
Ip ... Ip(C)
IP e Ip(HW)
IPO .o Ip(HW)
Ipl Ip(HW)
Ip2 [p(HW)
Ipadmin Ipadmin(ADM)
Ipinit Ipinit (ADM)
Ipmove Ipsched (ADM)
Ipr Ip(C)
Iprintcovvcrnnnnn Iprint (C)
Ipsched Ipsched (ADM)
Ipshat Ipsched (ADM)
Ipstatcovevneees Ipstat(C)
Irand48 drand48(S)
Is Is(C)
Isearch Isearch(S)
Iseek ..., Iseek (S)
oA ...oovereeeene ltoa(DOS)
Itol3 . 13t0l (S)
mé ..., m4(CP)
machine machine (HW)
mail ... mail(C)
makeocueneeee. make (CP)
makekey makekey (ADM)
maliases aliases(M)
maliases.hash aliases (M)
malloc malloc(S)
MAN iieieeeeeenaeas man(C)
mapchan mapchan(F)
mapchan mapchan(M)
mapkey mapkey (M)
Mapscrn mapkey (M)
mapstr mapkey (M)
MASHocoverararennnne masm(CP)
master master(F)
matherr matherr(S)
maxuuscheds . maxuuscheds (F)
maxuuxqts maxuuxqts (F)
mcceonfig mcconfig(F)
MEMooveereiienrennenne mem(F)
MEMCCPY ...ooevevennnne memory(S)

vi

memchr memory(S)
memcmp memory(S)
11112111371 /2N memory(S)
memset memory(S)
1117 OO mesg(C)
messages messages (M)
mestbl mestbl (M)
micnetc.ccoeenenen. micnet (F)
mkdev mkdev(ADM)
mkdir ... mkdir(C)
mkdir mkdir(DOS)
mkfs ..o mkfs (ADM)
mkinittab telinit (ADM)
mknod mknod(C)
mknod mknod(S)
mkstr mkstr(CP)
mktemp mktemp (S)
mkuser mkuser (ADM)
[11) 11 JO IR mm(CT)
mmcheck checkmm(CT)
mmtcooeereeennnnnnn. mmt (CT)
ML .o mnt(C)
mnttab mnttab(F)
modfoceveiinnns Jfrexp(S)
monitor monitor(S)
[1171] ¢ RN more(C)
mount mount(ADM)
mountcoeeveenenee mount(S)
MOUSEccn.... mouse(HW)
movedata movedata(DOS)
montbl montbl (M)
mrand48 ... drand48(S)
mscreen mscreen(M)
msgetl ..., msgetl(S)
MSEZetovvreeenrnene msgget(S)
11107171 1 JSSOOORSRn msgop(S)
multiscreen multiscreen (M)
MV eieeccreereerereenenes mv(C)
mvdir mvdir(ADM)
DAP cooveiiereeereeeneerennes nap(S)
nbwaitsem waitsem(S)
ncheck ncheck (ADM)
NEQRN ..ooererrreecaeneneens eqn(CT)
REGN ..covcreeeneeeneenennes neqn(CT)
netutil netutil (ADM)
newform newform(C)

NEWEIP ...coevneneeneene newgrp(C)
MNEWS ...ccveecrenarinieesreennns news(C)
nextkey dbm(S)
nice nice(C)
nice nice(S)
Nl nl(C)
nlistcooovevrvcivnennn. nlist(S)
1] 1 : SOOI nm(C)
nohup ..., nohup(C)
nrand48 drand48(S)
nroff ... nroff(CT)
null ..., null (F)
numtbl numtbl(M)
od .. .0d(C)
Oldiprcevovvvrienrennes ipr(C)
OPeNcuvnnerirniraranrens open(S)
opendir directory(S)
opensem opensem(S)
OULP ...ceovvverreninne outp(DOS)
packicriinaee. pack(C)
paraliel parallel(HW)
passwd passwd(C)
passwdccceeeee passwd(F)
pasteccoceennnee. paste(CT)
pause(S)
................................. pax(C)
.............................. pack(C)
popen(S)
pepio(C)
permissions (F)
perror(S)
..................................... pg(C)
............................... pipe(S)
plock(S)
................................. poll (F)
popen(S)
................................. exp(S)
...................................... pr(C)
Prep ccvvennneccrrnennns prep(CT)
printf ... printf(S)
proctlcoovnnnnnn. proctl(S)
Prof ...ooovirrreinnne prof (CP)
profil ... profil(S)
profile profile(M)
PIS cooiiirirrnreseraereseenns prs(CP)
ps . ps(C)

pstatccoovvrccnencenens pstat(C)

Par ... ptar(C)
ptracecooeeeveene ptrace(S)
115, SO ptx(CT)
PULC ..oeeieeeeienene putc(S)
putch putch(DOS)
putcharccoeeenene putc(S)
putenvcc.u... putenv(S)
putpwent putpwent(S)
PULS .ceornrinenreeneienennes puts(S)
pututline getut(S)
PULW ..ooonrnirrnenirnrenennenes putc(S)
pwadmin pwadmin(ADM)
pwcheck pwcheck(C)
PWA ... pwd(C)
queuedefs queuedefs (F)
QSOOI eernvrcerevannnnones gsort(S)
QUOLcoeeernecnnanen quot(C)
ramdisk ramdisk (HW)
randoieveneene rand(S)
random random(C)
ranlib ranlib(C)
ratforcoeeee. ratfor(CP)
TCP cooeereenneninreensiessessenans rep(C)
rdchk ... rdchk(S)
readoccoviervennenne. read(S)
readdir directory(S)
realloc ... malloc (S)
reboot haltsys (ADM)
Ted ..ot ed(C)
regcmp regemp(CP)
FegCMP .ccoveorereraneeeennas regex(S)
FeZeX ..cooovienianirrueaeanes regex(S)
TeZEXP ..cocivurmenrenennnen regexp(S)
rejectccooveneunene accept(C)
remote remote (C)
rename rename(DOS)
restor restore(ADM)
restore restore (ADM)
rewindco..... [seek(S)
rewinddir directory (S)
I et s e rm(C)
rmdel rmdel (CP)
rmdir ... rm(C)
rmdir rmdir(DOS)
rmuser rmuser(ADM)

vii

ISh e, rsh(C)

runbig runbig(ADM)
SACE .vcnerereeerereeeriennen sact(CP)
11 3 QU sbrk(S)
scanf ..., scanf(S)
scesdiff scesdiff(CP)
sccsfile ..., sccsfile (F)
schedule schedule (ADM)
scopatch scopatch(ADM)
SCIeencoceereeuenne screen (HW)
SCSI ceeoverrnreerereeeeanas scsi(HW)
SAD ..o, sdb(CP)
sddate sddate (ADM)
sdenter sdenter(S)
sdfreecooeeevenne sdget(S)
sdgetcoevivininnnee sdget(S)
sdgetvccovveerenenene. sdgetv(S)
SAiff ..o, sdif (C)
sdleave sdenter (S)
sdwaityv sdgetv(S)
sed sed(C)
seed48 drand48(S)
seekdir directory(S)
sfmtccoovevnnnne sfmt(ADM)
segread segread(DOS)
select ..., select (S)
semctlcccoevneee. semctl(S)
semgetccoeceinnee semget(S)
215 1171) 1 2O semop(S)
serialc.......... serial (HW)
sethuf ... setbuf (S)
setclock setclock (ADM)
setcolor setcolor (C)
setgidc.cocvevenienenen. setuid(S)
setgrent getgrent (S)
setimp ..o setjmp (S)
setkeycoovvveeinenencns setkey (C)
setlocale setlocale (S)
setmnt setmnt (ADM)
setmode setmode (DOS)
SEtPEIP ..covveveercinenes setpgrp(S)
setpwent getpwent (S)
settime settime (ADM)
setuidccocveeeeene. setuid(S)
setutent getut(S)
setvbuf setbuf(S)

viii

sgetl ..o sputl(S)
Sh oo, sh(C)
shl e shi(C)
shmctl shmctl (S)
shmget shmget(S)
shmopcoceeueee. shmop(S)
shutdn shutdn(S)
shutdown shutdown(ADM)
signalc.ccccovrrnnnene. signal(S)
sigsemcoccoerveueenne sigsem(S)
SIR e trig(S)
Sinh .o sinh(S)
SIZE oo size(C)
sleep ..o sleep (C)
sleepoovvinninnirinans sleep (S)
soelimcoc.c.... soelim(CT)
SOpencoceeeene. sopen(DQOS)
E11) o USRI sort(C)
spawnl spawn(DOS)
Spawnvp spawn(DOS)
special eqnchar(CT)
spellcccovvinninne spell(CT)
spellin spell (CT)
splineccccoeuee. spline (CP)
SPLit ..o split(C)
sprintfoecenenne printf(S)
3 11111 (RN sputl(S)
11| AOURORUISUUIRIN exp(S)
srand48 rand(S)
sscanfo.oooeveeiennen. scanf(S)
ssignal ... ssignal (S)
SEAL .ot stat(F)
SEAL (oo eeeeeeeeene stat(S)
statfs ..o statfs(S)
Stdio ...ccoovereeireinnn. stdio(S)
stimeccooeeiicieinans stime (S)
SEOTE ...vovceereneiireannenans dbm(S)
streat o....ovevevveeneenneen, string(S)
Strchr .o, string (S)
4 11 + N string(S)
SEPCPY o string (S)
11 o] 1] | [URRRIOO string (S)
Strdupcoovvevveeene string (S)
Stringocoocvvvivvenncens string (S)
Stringsccoceeeeene strings(C)
11y | + JSOSIOROUROORROON strip(CP)

strlen strlen(DOS)
striwr striwr (DOS)
strncatcocceevvennene string (S)
strnempoovereenee. string(S)
SEENCPY .eoeveerreneecanens string(S)
strpbrk ..., string (S)
strrchrovovveenenee string(S)
11 o = strrev(DOS)
strsetccoceevveenee strset (DOS)
11 0] 1) 1 T string (S)
Strtodoovveveenviennnns strtod(S)
Strtokocoecvevveennen. string (S)
SErtolcoovvevevnrcneininn, strtol (S)
SLrupr ... strupr(DOS)
stty sty (C)
style ... style (CT)
-1 1 su(C)
SUM ...ooenerreeeencieereesieens sum(C)
SWab ..o, swab(S)
swapadd swapadd(S)
SXE oot sxt(M)
£ 71 [N sync (ADM)
SYNC .cvveerrenenereernresaesanens sync(S)
sysadmin sysadmin(ADM)
sysadmsh sysadmsh(ADM)
sys_errlist perror(8S)
SYS_REITcccnuvunes perror(S)
sysfilescc.ooovunee. sysfiles (F)
Sysi86cccoveevennn. sysi86(S)
systemccococovennee. system(S)
systemid systemid (F)
systems (F)

...................... systty (M)
il tail (C)
.................................. trig(S)
............................... sinh(S)
............................... tape (C)

tapeoooevveieiane. tape HW)
tapedump tapedump (C)
BAL et tar(C)
BAN oeeieiecereenereene tar(F)
bl e thl(CT)
tdelete tsearch(S)
tee tee (C)
telinit telinit (ADM)
tell ..o tell (DOS)

telldir directory(S)

tempnam tmpnam(S)
termooocvevecennennen. term(CT)
LM ...ocvvvenrececricerecnee term(F)
termcap termcap (M)
terminal terminal (HW)
terminals terminals (M)
terminfo terminfo (F)
terminfo terminfo (M)
terminfo terminfo (S)
termio termio(M)
test test (C)
tind ... tsearch(S)
tgetent termcap (S)
tgetflag termcap (S)
tgetnum termcap (S)
tgetstrcocovveveeeee. termcap (S)
t2OLocoonvninnannne termcap(S)
L tic(C)
tid tid(C)
timeccoovvevererenne. time (CP)
timecooeeeenvireneeennes time(S)
timeSovevevereeirernnne times(S)
timtbl ..o timtbl (M)
tmpfile tmpfile (S)
tmpnam tmpnam(S)
t0ASCil ..ceovveveereierienernene conv(S)
toasciiccceeveenecnnnns ctype(S)
tolowerccueue.e. conv(S)
tolowerccooeeeuennne ctype(S)
(1] SRR top(F)
top.nextcococeeennen. top(F)
touchcceeee. touch(C)
toupperceeveeee. conv(S)
tOUPPETovneierrccnnene ctype(S)
tput tput(C)
tputscovveunnenee termcap(S)
tr tr(C)
translate (C)

...................... trchan(M)
............................ trof(CT)

LU .ooeeeereveereeeceesrnennen true(C)
tsearch tsearch(S)
ESet ettt tset (C)
ESOrt ..ot tsort(CP)
BLY oveeeceeeeneeeereeetenenene 1ty (C)

ix

tty ty (M)

ttyname ttyname (S)
ttys ttys (F)
ttyslot ... ttyslot (S)
twalkcooevernnees tsearch(S)
LYPES oeeeereeeeereneinne types (F)
TZ tz(M)
tZSet ...eeoerereareecnne. ctime(S)
uvadmin uadmin(S)
ulimitcocovvenenen. ulimit (S)
ultoa ultoa(DOS)
umaskccoevvneeneee umask(C)
umask ... umask(S)
umount umount(ADM)
umount(S)

uname(C)

....................... uname(S)
uncompress compress(C)
ungetcoeeiviennneae unget (CP)
ungeteocoeevenineenen ungetc (S)
ungetch ... ungetch (DOS)
UDEQ .o uniq(C)
UNELS .o, units (C)
unlink unlink(S)
unpack ... pack(C)
uptimecceeuene.. uptime (C)
usemouse usemouse(C)
ustatocoeeieeeeene ustat(S)
utime ... utime (S)
UENP ..oevenenenenceioncnenene utmp(F)
utmpname getut(S)
uuchat dial (ADM)
uucheck uucheck (ADM)
VUCICOcunennen. uucico(ADM)
uuclean uuclean (ADM)
UUCP ecovenrerrenenenensensens uucp(C)

uudemon.admin. uudemon(ADM)

uudemon.clean. uudemon(ADM)
uudemon.hour. uudemon(ADM)
uudemon.poll. uudemon(ADM)

uudemon.poll2. uudemon(ADM)

uuencode uuencode (C)
uvuinstall uuinstall (ADM)
uulog ..., uucp(C)
HUNAMEc.ccoevennnnn. uucp(C)
uupick ... uuto(C)

uusched uusched (ADM)
uustatccecoveneneen uustat(C)
UUto ..o, uuto(C)
UULTY i, uutry(ADM)
[T11), uux(C)
uuxqtocouneee. uuxqt(ADM)
Val e val (CP)
VArargscoccoeeeeens varargs(S)
vedit vi(C)
viprintf vprintf(S)
Vi e vi(C)
VIdE .o vidi (C)
VIEW oooierierceererreeenneene vi(C)
vmstatoc.oeee. vmstat(C)
vprintf vprintf(S)
vsh . vsh(C)
vsprintf vprintf(S)
w w(C)
A2 11 SR wait (C)
Walt oo wait(S)
waitsem waitsem(S)
wall ... wall(ADM)
WC areeieerecreeeenseenesesensassenes wc(C)
what ..., what(C)
WHO ..o who(C)
whodo whodo(C)
WEIte .ooev everiereecrenene write (C)
WEite ..o write(S)
WP ..o utmp(F)
XAIES .covovvviinircnnerennens xargs(C)
XESt oo xlist (S)
Xref oo xref (CP)
D' 1 (U xstr(CP)
VO oo bessel (S)
V1 e bessel (S)
YACC ceociinrieieeieeenene yacc (CP)
VES ittt yes(C)
VI coviirncrereanseneenens bessel(S)
771 RN compress(C)

Contents

System Administration (ADM)

intro

acctcom
accton

adfmt
aliashash
asktime
autoboot
backup, dump
badtrk

chroot
clri
config
configure
custom
dial
divvy
dmesg
dparam
dumpdir
fdisk
fdswap
fixperm
fsave
fsck

fsdb
fsname
fsphoto
haltsys, reboot

hdinstall
idleout
install
ipcrm

ipes
kbmode

Introduction to system administration.

Searches for and prints process accounting files.
Turns on accounting.

Formats SCSI hard disks.

Micnet alias hash table generator.

Prompts for the correct time of day.

Automatically boot system.

Performs incremental file system backup.

Disk flaws, scans for flaws and creates bad track
table.

Changes root directory for command.

Clears inode.

Configures a XENIX system.

XENIX configuration program.

Installs specific portions of the XENIX System.
Establish an outgoing terminal line connection.
Divides disk partitions.

Displays the system messages on the console.
Displays/changes hard disk characteristics.

Prints the names of files on a backup archive.
Maintain disk partitions.

Swaps default boot floppy drives.

Correct or initialize file permissions and ownership.
Interactive, error-checking file system backup.
Checks and repairs file systems.

File system debugger.

Prints or changes the name of a file system.
Performs periodic semi-automated system backups.
Closes out the file systems and shuts down the
system

Places newly-created kernel in default location.
Logs out idle users.

Installation shell script.

Removes a message queue, semaphore set or shared
memory ID.

Reports the status of inter-process communication.
Tests or configures keyboard support.

Ipadmin

Ipinit

Ipsched, Ipshut,
Ipmove
makekey
mkdev

mkfs

mkuser
mount

mvdir

ncheck

netutil
pwadmin
restore, restor
rmuser
runbig

schedule
scopatch

sddate

setclock

setmnt

settime

sfmt

shutdown

sync

sysadmin
sysadmsh
telinit, mkinittab
umount
uucheck

uucico

uuclean
uudemon:
uudemon.admin,
uudemon.clean,
uudemon.hour,
uudemon.poll,
uudemon.poll2
uuinstall
uusched

uutry

uuxqt

wall

it

Configures the lineprinter spooling system.
Adds, reconfigures and maintains lineprinters.

Starts/stops the lineprinter.

Generates an encryption key.

Calls scripts to add peripheral devices.
Constructs a file system.

Adds a login ID to the system.

Mounts a file structure.

Moves a directory.

Generates names from inode numbers.
Administers the Micnet network.
Performs password aging administration.
Invokes incremental file system restorer.
Removes a user account from the system.

Runs a command that may require more memory

than normal.

Database for automated system backups.

Applies kernel patches.

Prints and sets backup dates.

Sets system real time clock.

Establishes /etc/mnttab table.

Changes the access and modification dates of files.
Performs special formatting.

Terminates all processing.

Updates the super-block.

Performs file system backups and restores files.
Menu driven system administration utility.
Alternative method of turning terminals on and off.
Dismounts a file structure.

Checks the uucp directories and permissions file.
File transport program for the uucp system.

UUCP spool directory clean-up.

UUCP administrative scripts.

Administers UUCP control files.

The scheduler for the uucp file transport program.
Tries to contact remote system with debugging on.
Executes remote command requests.

Writes to all users.

INTRO (ADM) INTRO (ADM)

Name

intro - Introduction to system administration commands.

Description

This section contains the commands that are used to administrate and
maintain the XENIX operating system. These commands are largely
root-only, meaning that they can only be executed by the super-user
(root).

28 March 1991 Page 1

ACCTCOM (ADM) ACCTCOM (ADM)

Name

acctcom - Searches for and prints process accounting files.

Syntax

acctcom [[options][file]]...

Description

acctcom reads file, the standard input, or /usr/adm/pacct, in the form
described by acct(F) and writes selected records to the standard out-
put. Each record represents the execution of one process. The output
shows the COMMAND NAME, USER, TTYNAME, START TIME, END
TIME, REAL (SEC), CPU (SEC), MEAN SIZE (K), and optionally, F (the
forkjexec flag: 1 for fork without exec) and STAT (the system exit
status).

The command name is prepended with a # if it was executed with
super-user privileges. If a process is not associated with a known ter-
minal, a ? is printed in the TTYNAME field.

If no files are specified, and if the standard input is associated with a
terminal or /dev/mull (as is the case when using & in the shell),
fusr/adm/pacct is read, otherwise the standard input is read.

If any file arguments are given, they are read in their respective order.
Each file is normally read forward, i.e., in chronological order by pro-
cess completion time. The file /usr/adm/pacct is usually the current
file to be examined; a busy system may need several files, in which
case all but the current file will be found in /usr/adm/pacct?. The
options are:

-b Reads backwards, showing latest commands first.

-f Prints the fork/exec flag and system exit status columns in
the output.

-h Instead of showing mean memory size, it shows the frac-

tion of total available CPU time consumed by the process
during its execution. This “hog factor” is computed as:

(total CPU time)/(elapsed time).
-i Prints columns containing the I/O counts in the output.

-k Instead of memory size, shows total kcore-minutes.

28 March 1991 Page 1

ACCTCOM (ADM) ACCTCOM (ADM)

-m
r
-t
-v
-1 line

-U user

-g group

-d mm/dd

-S time

-e time

-n pattern

-H factor

-I number

-0 time

-C time

Shows mean core size (the default).

Shows CPU factor (user time/(system-time + user-time).)
Shows separate system and user CPU times.

Excludes column headings from the output.

Shows only processes belonging to terminal /dev/line.

Shows only processes belonging to user that may be
specified by a user ID, a login name that is then converted
to a user ID, a # which designates only those processes
executed with super-user privileges, or ? which designates
only those processes associated with unknown user IDs.

Shows only processes belonging to group. The group
may be designated by either the group ID or group name.

Any time arguments following this flag are assumed to
occur on the given month and day, rather than during the
last 24 hours. This is needed for looking at old files.

Shows only those processes that existed on or after time,
given in the form hr:min:sec. The :sec or :min:sec may
be omitted.

Shows only those processes that existed on or before time .
Using the same time for both -s and -e shows the pro-
cesses that existed at time.

Shows only commands matching pattern that may be a
regular expression as in ed (C) except that + means one or
more occurrences.

Shows only processes that exceed factor, where factor is
the “hog factor” as explained in option -h above.

Shows driver processes transferring more characters than
the cutoff number.

Shows only those processes with operating system CPU
time that exceeds time.

Shows only those processes that exceed time (the total
CPU time).

Multiple options have the effect of a logical AND.

28 March 1991

Page 2

ACCTCOM (ADM) ACCTCOM (ADM)

Files

fetc/passwd
fusr/adm/pacct
fetc/group

See Also
accton{ADM), ps(C), su(C), acc(S), acct(F), utmp(F)

Notes

acctcom only reports on processes that have terminated; use ps(C) for
active processes.

28 March 1991 Page 3

ACCTON (ADM) ACCTON (ADM)

Name

accton - Tums on accounting.

Syntax

accton [file]

Description
accton turns on and off process accounting. If no file is given then

accounting is turned off. If file is given, the kernel appends process
accounting records. (See acct (S) and acct (F)).

Files

fetc/passwd Used for login name to user ID conversions
fust/fadm/pacct Current process accounting file
fusr/adm/sulogin Super-user login history file

fetc/wtmp Login/logout history file

See Also
acctcom(ADM), acct(S), acct(F), su(C), utmp(F)

28 March 1991 Page 1

ADFMT (ADM) ADFMT (ADM)

Name

adfmt - Formats SCSI hard disks.

Syntax

fetc/adfmt device_name

Description
The adfmt command issues a format command to the SCSI disk de-

vice_name. device name should be the character-special device
representing the whole SCSI disk, for example, /dev/rhdl0.

Notes

This utility is only applies to
XENIX-386 distributions.

SCSI disks with embedded controllers are formatted as part of the
manufacturing test procedure. Using adfmt on these disks is unneces-

sary.

Files
/dev/rhd?0

See Also

scsi(HW)
hd(HW)

28 March 1991 Page 1

ALIASHASH (ADM) ALIASHASH (ADM)

Name

aliashash - Micnet alias hash table generator.

Syntax

aliashash [-v] [-0 output-file] [input-file]

Description

The aliashash command reads the input-file and generates an output-
file containing a hash table of alias definitions for a Micnet network.
The input-file must name a file containing alias definitions in the form
described for the aliases file (see aliases(M)). If the -0 option is not
used to specify an output-file, the command creates a file with the
same name as the input-file but with .hash appended to it. If no
input-file is given, the command reads the file named
fusr/lib/mail/aliases and creates the file named
fusr/lib/mail/aliases.hash.

If invoked with the -v option, the command lists information about the
hash table.

The output-file will contain both the alias definitions given in the
input-file and the new hash table. The hash table appears at the begin-
ning of the file and is separated from the alias definitions by a blank
line. The hash table has three or more lines. The first line is:

#<hash>

The second line has 4 entries: the bytes per table entry, the maximum
number of items per hash value, the number of entries in the table, and
the offset (in bytes) from the beginning of the file to the beginning of
the alias definitions.

The next lines (up to the end of the hash table) contain the hash table
entries. Each line has 8 entries (separated by spaces) and each entry
has 2 fields. The first field (1 byte) is a checksum (represented as a
printable character); the second field is a pointer (in bytes) to the alias
definition. The pointer is represented as a hexadecimal number with
leading blanks if necessary and is always relative to the start of the
definitions.

The aliashash command is normally invoked by the install option of
the netutili command. If the alias definitions of a network must be
changed, the definitions in the aliases file should be changed and a
new aliases.hash file created using the aliashash command. The new
aliases.hash file must then be copied to all other computers in the net-
work.

28 March 1991 Page 1

ALIASHASH (ADM) ALIASHASH (ADM)

Files
Jusr/lib/mail/aliashash
fusr/lib/mail/aliases
/fusr/lib/mail/aliases.hash
Jusr/lib/mail/maliases.hash
Jusr/lib/mail/maliases

See Also

aliases(M), netutil{ ADM)

Warning
Do not use the aliashash command to create the aliases.hash file
while the network is running. If necessary, create a temporary output
file, aliases.hash+ , using the -0 option, then enter:
mv aliases.hash+ aliases.hash

This will prevent disruption of the network.

28 March 1991 Page 2

ASKTIME (ADM) ASKTIME (ADM)

Name

asktime - Prompts for the correct time of day.

Syntax
/etc/asktime

Description

This command prompts for the time of day. You must enter a legal
time according to the proper format as defined below:

[[yylmmddlhhmm
Here the first mm is the month number; dd is the day number in the
month; kh is the hour number (24-hour system); the second mm is the
minute number; yy is the last 2 digits of the year number and is
optional. The month and day are also optional, as a group with with
the year. The current year is the default if no year is mentioned.
Examples

This example sets the new time, date, and year to “11:29 Aug 31,
1992”.

Current system time is Mon Aug 24 14:36:23 PST 1992
Enter time ([yymmdd]hhmm): 9208311129

Diagnostics
If you enter an illegal time, asktime prompts with:

Try again:

Notes

asktime is normally performed automatically by the system startup file
fete/rc immediately after the system is booted; however, it may be
executed at any time. The command is privileged, and can only be
executed by the super-user.

28 March 1991 Page 1

ASKTIME (ADM) ASKTIME (ADM)

Systems which autoboot will invoke asktime automatically on reboot.
On these systems, if you don’t enter a new time or press return within
1 minute of invoking asktime, the system will use the time value it
has. If RETURN alone is entered, the time is unchanged.

28 March 1991 Page 2

AUTOBOOT (ADM)

Name

AUTOBOOT (ADM)

autoboot - Automatically boots the system.

Description

The system can be set up to go through the boot stages automatically
(as defined in /etc/default/boot) when the computer is turned on
(booted), provided no key is pressed at the boot(HW) prompt.

If boot times out and LOADXENIX=YES, then XENIX is passed the
word “auto” in its boot string and init(M) fsck(ADM), and
asktime (ADM) are passed a -a flag.

In addition, the TIMEOUT entry can be set to specify the number of
seconds to wait before timing out.

The autoboot procedure checks the file /etc/default/boot for the fol-
lowing instructions on autobooting:

LOADXENIX=YES or NO

FSCKFIX=YES or NO

MULTIUSER=YES or NO

PANICBOOT=YES or NO

RONLYROOT=YES or NO

DEFBOOTSTR=bootstring

28 March 1991

Whether or not boot(HW) times out
and loads XENIX. boot looks for this
variable in the /etc/default/boot file
on its default device.

Whether or not fsck(ADM) fixes any
root system problems by itself. If the
variable is set to YES, then
fsck(ADM) is run on the root filesys-
tem with the -rr flag.

Whether or not init(M) invokes
sulogin or proceeds to multiuser
mode.

Whether or not the system reboots
after a panic(). This variable is read
from /etc/default/boot by init.

Whether or not the root filesystem is
mounted readonly. This must be
used only during installation, and not
for a normal boot. It will effectively
prevent writing to the filesystem.

Set default bootstring to bootstring.
This is the string used by boot when
the user presses <RETURN> only to
the “Boot:” prompt, or when boot
times out.

Page 1

AUTOBOOT (ADM) AUTOBOOT (ADM)

SYSTTY=x If x is 1, the system console device is
set to the serial adapter at COML. If
x is 0, the system console is set to the
main display adapter.

TIMEOUT=n where 7 is the number of seconds to
timeout at the “Boot:” prompt
before booting the kerel @f
LOADXENIX=YES). If TIMEOUT is
unspecified, defaults to one minute.

If either the /etc/default/boot file or the variable needed cannot be
found, the variable is assumed to be NO. However, if the filesystem
cannot be found, PANICBOOT is set to YES.

The /etc/default/boot file is shipped with the following default figura-
tion:

LOADXENIX=YES
FSCKFIX=YES
MULTIUSER=YES
PANICBOOT=NO

A scratch file is needed by fsck to check large filesystems. The user is
informed during the installation of XENIX if the system needs a
scratch file to fsck the root filesystem. If necessary, the installation
procedure creates the filesystem /dev/scratch to write the fsck tem-
porary file. fsck uses the file named on the /etc/default/boot line:

SCRATCH=

as a scratch file. If the installation procedure creates the scratch
filesystem, the entry in the /etc/default/boot is automatically made.

SCRATCH need only be specified if the root filesystem is large enough
to need a temporary file. If a file is specified, it is always passed to
fsck when checking the root filesystem, even if the system is booted
manually. The only exception is the first time XENIX is booted from
the hard disk, when the user must specify the scratch file. The file
specified as SCRATCH must not be on the filesystem being checked by
fsck. SCRATCH also cannot be on an unmounted filesystem.

If the XENIX mail system, mail(C), is installed on the system, the out-
put of each autoboot sequence is mailed to root. Otherwise, the sys-
tem administrator should check the file /etc/bootlog for the boot
sequence output. The output of fsck(ADM) is temporarily saved in
the file /dev/recover before it is moved to /etc/bootlog and finally
may be sent to the system administrator via mail.

Other boot options which take affect during autoboot are documented
on the boor(HW) manual page.

28 March 1991 Page 2

AUTOBOOT (ADM)

Files

fetc/bootlog
Jetc/default/boot

Jetc/rc

/bin/sulogin

/dev/recover

/dev/scratch

See Also

AUTOBOOT (ADM)

boot output log for autobooting systems
boot parameter file

instructions for entering multiuser mode,
including mounting and checking additional
filesystems

executed at startup, prompts the user to press
Ctrl-d for multiuser mode or to enter the root
password for maintenance mode

allows saving of fsck output

temporary fsck file for large filesystems

boot(HW), fsck(ADM), init(M)

Notes

The utilities invoked during the boot procedure are passed the -a flag
and time out only when the system autoboots. For example,
asktime (ADM) times out after one minute when the system autoboots,
but waits for a response from the user any other time it is invoked.

The previous boot modes of AUTO=CLEAN, DIRTY, NEVER have
been retained for backwards compatibility, but are ignored if any of
the newer modes are present.

28 March 1991

Page 3

BACKUP (ADM) BACKUP (ADM)

Name

backup, dump - Performs incremental filesystem backup.

Syntax

backup [key [arguments] filesystem]

Description

backup copies all files changed after a certain date in the filesystem .
dump is a link to backup; they refer to the same utility. The key speci-
fies the date and other options about the backup, where a key consists
of characters from the set 0123456789kfusd. The meanings of these
characters are described below:

f

Places the backup on file specified by the next argument instead
of the default device.

If the backup completes successfully, writes the date of the
beginning of the backup to the file /etc/ddate. This file records
a separate date for each filesystem and each backup level.

This number is the “backup level”. Backs up all files modified
since the last date stored in the file /etc/ddate for the same
filesystem at lesser levels. If no date is determined by the level,
the beginning of time is assumed; thus the option 0 causes the
entire filesystem to be backed up.

This is the size of the tape in feet. The number of feet is taken
from the next argument. When the specified size is reached,
backup will wait for reels to be changed. The default size is
2,300 feet.

This is the density of the tape, expressed in BPI, is taken from
the next argument. This is used in calculating the amount of
tape used per write. The default is 1600.

The size (in K-bytes) of the volume being written is taken from
the next argument. If the k argument is specified, any s and d
arguments are ignored. The default is to use s and d.

If no arguments are given, the key is assumed to be 9u and a default
filesystem is backed up to the default device.

The first backup should be a full level-0 backup:

backup Ou

Next, periodic level 9 backups should be made on an exponential

28 March 1991 Page 1

BACKUP (ADM) BACKUP (ADM)

progression of tapes or floppies:

backup 9u

This progression is shown as follows:

12131214..

where backup 1 is used every other time, backup 2 every fourth,
backup 3 every eighth, etc.) When the level-9 incremental backup
becomes unmanageable because a tape is full or too many floppies are
required, a level-1 backup should be made:

backup lu

After this, the exponential series should progress as if uninterrupted.
These level-9 backups are based on the level-1 backup, which is based
on the level-0 full backup. This progression of levels of backups can
be carried as far as desired.
The default filesystem and the backup device depend on the settings of
the variables DISK and TAPE, respectively, in the file
fetc/default/backup.

Files
fetc/ddate Records backup dates of filesystem/level

fetc/default/backup Default backup information

See Also
XENIX System Administrator’s Guide 7
cpio(C), default(F), dumpdir(ADM), restore(ADM), sddate(C),
backup(F)
Diagnostics
If the backup requires more than one volume (where a volume is likely

to be a floppy disk or tape), you will be asked to change volumes.
Press RETURN after changing volumes.

28 March 1991 Page 2

BACKUP (ADM) BACKUP (ADM)

Notes

Sizes are based on 1600 BPI for blocked tape. Although the s and d
options are used by default, they are not commonly used; the k option
is more popular because it specifies size in K-bytes. Write errors to
the backup device are usually fatal. Read errors on the filesystem are
ignored.

If the default archive medium specified in /etc/default/backup or
letc/default/restor is block structured, (example: floppy disk) then the
volume size in Kbytes must be specified on the command line. Nei-
ther utility works correctly without this information. For example,
using the default device (below) with the backup command, enter the
following:

backup k 360

The default device entry for /etc/default/backup (tape=/dev/xxx) and
letc/default/restor (archive=/dev/xxx) is /dev/rfd02.

It is not possible to successfully restore an entire active root filesys-
tem.

Warning

When backing up to floppy disks, be sure to have enough formatted
floppies ready before starting a backup. You must also be sure to close
the floppy door when inserting floppy disks. If you fail to do so in a
multi-floppy backup, the entire backup will fail and you will have to
begin again.

You should never backup more than one filesystem to the tape devices
/dev/nret0 and /dev/mrct2. This is because, although backup can
write more than one filesystem to /dev/nrct0 or /dev/nrct2, restore
may not be able to restore more than one filesystem from these de-
vices.

28 March 1991 Page 3

BADTRK (ADM) BADTRK (ADM)

Name

badtrk - Scans fixed disk for flaws and creates bad track table.

Syntax
badtrk [-e] [-s qtdm] [-f /dev/rhd*]

Description

Used chiefly during system installation, badtrk scans the media sur-
face for flaws, creates a new bad track table, prints the current table,
and adds and deletes entries to the table.

WARNING: The -e flag should not be invoked by the user. It is called
by hdinit during installation to change the space allocated for bad
tracks. Use of the -e flag at any other time may restructure the hard
disk, rendering the information stored on it unusable.

To use badtrk, you must be in single user mode. (See
shutdown(ADM)). To address the active XENIX partition on your
primary fixed disk, enter:

badtrk -f /dev/rhd0Oa

To address the active XENIX partition on your secondary fixed disk,
enter:

badirk -f /dev/rhdla
WARNING: badtrk must be applied to a partition, not a whole disk,
division, or filesystem.
Usage

When badtrk is executed, the program first displays the main menu:

/ . Print Current Bad Track Table

. Scan Disk (You may choose Read-Only or Destructive later)

. Add Entries to Current Bad Track Table by Cylinder/Head Number
. Add Entries to Current Bad Track Table by Sector Number

. Delete Entries Individually From Current Bad Track Table

. Delete All Entries From Bad Track Table

O W N

Enter your choice or ‘q’ to quit:

28 March 1991 Page 1

BADTRK (ADM) BADTRK (ADM)

You are prompted for option numbers, and, depending upon the option,
more information may be queried for later.

A bad track table (option ‘1’) might look like this:

Defective Tracks

Cylinder Head Sector Number (s)

1. 190 3 12971-12987

Press <RETURN> to continue.

Option “2” scans the disk for flaws. If badtrk thinks changes may
have been made to your bad track table since entering badtrk or updat-
ing your table, you will be asked if you want to update the device with
the new table before scanning. You should answer “y” to save your
changes, ‘n’ if you don’t want to save changes made up to this point.
Next you are prompted for the type of scan: all or part of the disk, a
thorough or quick scan, and whether it is destructive or not. After you
respond to these prompts, badtrk begins its scan. You can interrupt a
scan by typing “q” at any time. You are then prompted to continue
the scan or return to the main menu.

As the program finds flawed tracks, it displays the location of each
bad track. Here is an example error message:

wd: ERROR : on fixed disk ctlr=0 dev=0/47 block=31434 cmd=00000020
status=00005180, sector = 62899, cylinder/head = 483/4

(You may see this kind of message if there is a read or write error dur-
ing the scanning procedure.)

When the scan is complete, the main menu reappears. The program
automatically enters any detected flaws in the bad track table.

If there are no entries in your bad track table and a scan does not
reveal any flaws, but your disk is furnished with a flaw map, you
should enter these flaws into the bad track table. To add flaw loca-
tions to an existing bad track table, select either option “3” or option
“4”, depending upon the format of the flaw map furnished with your
disk. Enter the defective tracks, one per line. (This should only be
done on non-remapped drives; see cautions under Notes.)

When you are satisfied that badtrk contains a table of the desired
flaws, quit the badtrk program by entering “q” at the main menu.

28 March 1991 Page 2

BADTRK (ADM) BADTRK (ADM)

If badtrk was invoked with the -e option (which should only occur
when called by hdinit, during the XENIX installation procedure), if
you are reinstalling and you have a valid disk division table, the fol-
lowing message is displayed prior to the badtrk menu:

This device contains a valid division table. Additional

(non-root) filesystems can be preserved across this reinstallation.
If you wish to be able to preserve these file systems later, you must
not change the current limit of the bad track table, which is

n bad tracks. Do you wish to leave it unchanged? <y/n>:

664,97

If you respond “y”, you will not be prompted later to enter a new limit
for the size of your bad track table. You can add or delete entries, but
you will not be allowed to increase the maximum number of bad
tracks allocated. If you respond “n” and the size of your bad track
table is changed, your disk division table will be destroyed.

If you do not have a valid disk division table or you selected “n” when
prompted, you are prompted for the number of bad tracks to allocate.
There will be a recommended number of replacement tracks to allo-
cate based on the number of known bad tracks plus an allowance for
tracks that will go bad in the future. You should choose to allocate at
least as many as the recommended number of replacement tracks.
Make your choice carefully, because if you want to change this
amount later, you will have to reinstall XENIX.

At this point, you are asked if you want to update the table, meaning if
you wish to save the changes made. You should answer “y” to save
your changes, “n” to leave the bad track table as it was when last

updated.

Arguments

-f name
Opens the partition name and reads the bad track table associated
with that partition. The default is /dev/rhd0a.

-s options
Invokes badtrk non-interactively. Valid options for this flag are:

{q]uick
[t]horough
[d]estructive
[n]on-destructive

The -s flag takes two options at a time. Choose quick or thorough scan,
and destructive or non-destructive scan.

28 March 1991 Page 3

BADTRK (ADM) BADTRK (ADM)

Notes

This utility only applies to standard disk controllers and not SCSI host
adapters or SMS-OMTI controllers.

badtrk can only be used in single-user mode.

If a bad spot develops in the boot blocks or system tables at the very
beginning of the fdisk partition, reinstallation is required.

Some disk controllers support alternate modes known as "translation,"”
"mapping" or "63-sector” modes that change the apparent shape of the
drive. This is often used to make a drive that has more than 1024
cylinders appear to have less cylinders in order to make it compatible
with MS-DOS. If your drive has been formatted using one of these
options, do not use options 3 and 4 to manually add entries to the bad
track.

Files
fetc/badtrk

28 March 1991 Page 4

CHROOT (ADM) CHROOT (ADM)

Name

chroot - Changes root directory for command.

Syntax

chroot newroot command

Description
The given command is executed relative to the new root. The mean-
ing of any initial slashes (/) in pathnames is changed for a command
and any of its children to newroot. Furthermore, the initial working
directory is newroot.
Notice that:

chroot newroot command >x

creates the file x relative to the original root, not the new one.
This command is restricted to the super-user.
The new root pathname is always relative to the current root even if a
chroot is currently in effect. The newroot argument is relative to the
current root of the running process. Note that it is not possible to
change directories to what was formerly the parent of the new root
directory; i.e., the chroot command supports the new root as an abso-

lute root for the duration of the command. This means that “/..” is
always equivalent to “/”.

See Also
chdir(S)

Notes

Exercise extreme caution when referencing special files in the new
root file system.

command must be under newroot or command is reported:
command: not found

28 March 1991 Page 1

CLRI (ADM) CLRI (ADM)

Name

clri - Clears inode.

Syntax

fetc/clri file-system i-number ...

Description

clri writes zeros on the 64 bytes occupied by the inode numbered i-
number. File-system must be a special filename referring to a device
containing a file system. After clri is executed, any blocks in the
affected file will show up as “missing” if the file system is checked
with fsck(ADM). Use clri only in emergencies and exercise extreme
care.

Read and write permission is required on the specified file-system de-
vice. The inode becomes allocatable.

The primary purpose of this routine is to remove a file which, for some
reason, does not appear in a directory. If you use clri to destroy an
inode which does appear in a directory, track down the entry and
remove it. Otherwise, when the inode is reallocated to some new file,
the old entry will still point to this file. At that point removing the old
entry will destroy the new file. The new entry will again point to an
unallocated inode, so the whole cycle is likely to be repeated again
and again.

See Also
fsck(ADM), ncheck(ADM)

Notes
If the file is open, clri is likely to be ineffective.

28 March 1991 Page 1

CONFIG (ADM) CONFIG (ADM)

Name

config - Configures a XENIX system.

Syntax

fusr/sys/conf/config [-i] [-c file] [-s] -m master dfile

Description

config takes a description of a XENIX system and generates compil-
able files that define the configuration tables for the various devices
on the system.

Options include:

-m Specifies the name of the file that contains all the information
regarding supported devices; /usr/sys/conf/master is the stan-
dard name. This file is supplied with the XENIX system and
should not be modified by the user. The configure(ADM) utility
should be used to update /usr/sys/conf/master and dfile.

-i Requests assembly-language output, instead of the default C
language output.

-¢ Specifies the name of the configuration table file. c.c is the
default names unless the -i option is given, in which case the
default name is c.asm .

-s Specifies the name of the parameters file. space.c is the default
name; if the -i option is used, the default name is space.inc.

dfile contains system device information and is divided into two parts.
The first contains physical device specifications. The second contains
system-dependent information. Any line with an asterisk (*) in
column 1 is a comment. A standard dfile is provided as
/usr/sys/conf/xenixconf. The configure(ADM) utility should also be
used to update /usr/sys/conf/xenixconf.

All configurations are assumed to have a set of required devices, such

as the system clock, which must be present to run XENIX. These de-
vices must not be specified in dfile.

28 March 1991 Page 1

CONFIG (ADM) CONFIG (ADM)

First Part of dfile

Each line contains two fields, delimited by spaces and/or tabs in the
following format:

devname number

where devname is the name of the device, and number is the number
(decimal) of devices associated with the corresponding controller.
The device name can be any name given in part 1 of the
fusr/sys/conf/master file, or any alias given in part 3 of the same file;
number is optional, and if omitted, a default value which is the max-
imum value for that controller is used.

There are certain drivers that may be provided with the system that are
actually pseudo-device drivers; that is, there is no real hardware asso-
ciated with the driver. If the system has such drivers, they are
described in section M of the XENIX User’s Reference .

Second Part of dfile

The second part contains three different types of lines. Note that all
specifications of this part are required, although their order is arbi-

trary.
1. root/pipe device specification
Two lines, each having three fields:

root devname minor
pipe devname minor

where devname is the name of the device, and minor is the minor de-
vice number (in octal). The device name can be any name given in
part 1 of the /usr/sys/conf/master file, or any alias given in part 3 of
the same file.

2. swap device specification
One line that contains five fields as follows:

swap devname minor swplo nswap
where devname is the name of the device, minor is the minor device
number (in octal), swplo is the lowest disk block (decimal) in the
swap area, and nswap is the number of disk blocks (decimal) in the

swap area. The device name can be any name given in part 1 of the
lusr/sys/conf/master file, or any alias given in part 3 of the same file.

28 March 1991 Page 2

CONFIG (ADM) CONFIG (ADM)

3. Parameter specification
One or more lines, each having two fields as follows:
name number

where name is a tunable parameter name, and number is the desired
value (in decimal) for the given parameter. Only names that have
been defined in part 4 of the /usr/sys/conf/master file

can be used; number overrides the default value for the given parame-
ter.

A complete list of kernel parameters is found in “Tuning System Per-
formance” in the System Administrator’s Guide. Note that the param-
eters listed by configure are in uppercase and the values in
fusr/sys/conf/master are in lowercase.

Files
fust/sys/conf/master default input master device table
c.c default output driver configuration table file
space.c " default output resource configuration table file
c.asm default driver configuration in assembly language
space.inc default resource configuration in assembly language
See Also

configure(ADM), master(F)

Diagnostics

Diagnostics are routed to the standard output and are self-explanatory.

Notes

The value on the right-hand side of a parameter specification must be
a double-quoted character string, an integer, the name of another
parameter defined within the master(F) file, or some arithmetical com-
bination of integers and defined parameter names. Only the “+”, “-”,
“*” and “/” operators can be used in an arithmetical expression.
Expressions are interpreted left-to-right: if operator precedence is in

doubt, parenthesize.

28 March 1991 Page 3

CONFIGURE (ADM) CONFIGURE (ADM)

Name

configure - xenix configuration program.

Syntax

configure [options] [parm=val ...]

Description

The configure program determines and alters different kemnel
resources. For end users, configure is easier than modifying the sys-
tem configuration files directly. For device driver writers, configure
avoids the difficulties of editing configuration files that have already
been edited by an earlier driver configuration script.

Resources are modified interactively or with command-line argu-
ments. Adding or deleting device driver components requires the
command line options.

The next paragraphs discuss how to use configure interactively. Com-
mand line options are discussed in the “Options” section.

Interactive Usage

configure functions interactively when no options are given, or when
-f is the only option specified on the command line.

When you invoke configure interactively, you first sece a category
menu that looks something like this:

/,V 1. Disk Buffers
2. Character Buffers
3. Files, Inodes, and Filesystems
4. Processes, Memory Management & Swapping
S. Clock
6. MultiScreens
7. Message Queues
8. Semaphores
9. Shared Data
10. System Name
11. Streams Data
12, Event Queues and Devices
13. Hardware Dependent Parameters

Select a parameter category to reconfigure by
typing a number from 1 to 13, or type 'q’ to quit:

28 March 1991 Page 1

CONFIGURE (ADM) CONFIGURE (ADM)

To choose a category, enter its number, (e.g. “1” for “Disk Buffers”)
then press RETURN.

Each category contains a number of configurable resources. Each
resource is presented by displaying its true name, a short description,
and its current value. For example, for the “Disk Buffers” category
you might see:

NBUF: total disk buffers. Currently determined at system start up:
NSABUF: system-addressable {(near) disk buffers. Currently 10:
NHBUF: hash buffers (for disk block sorting). Currently 128:

To keep the current value, simply press RETURN. Otherwise, enter an
appropriate value for the resource, then press RETURN. configure
checks each value to make sure that it is within an appropriate range.
If not, configure will warmn you that the value is inappropriate and con-
firm that you wish to override the recommended value.

To exit from configure enter °q’ at the category menu prompt. If any
changes are made, configure asks if it should update the configuration
files with the changes. To keep the old configuration values, enter 'n’
at this prompt, and no changes are made. Otherwise, enter 'y’ and con-
figure updates the required system configuration files. After config-
ure has completed, the kernel is ready for linking.

To link the kernel, enter:

cd /usr/sys/conf
Jlink_xenix

Linking may take a few minutes. After the kernel is linked, enter the
following commands to place a copy of the new kemnel (xenix.new) in
the root directory and reboot the system:

cp /usr/sys/conf/xenix /xenix.new
/etc/shutdown

Eventually, you see the boot prompt:

Boot

To test the new kernel, enter the following at the boot prompt:
xenix.new
The system is now running the new kernel. When you are satisfied

with the performance of the new kernel, enter the following command
to install the new kernel on the hard disk:

28 March 1991 Page 2

CONFIGURE (ADM) CONFIGURE (ADM)

/usr/sys/conf/hdinstall

The hdinstal(ADM) program backs up the old /xenix and copies
lusrisysiconflxenix to /xenix.

Remove xenix.new by entering the following command:
rm /xenix.new

Reboot the system to run the new kernel.

Options

The command line options are designed for writers of driver-installa-
tion shell scripts. You can configure drivers, remove driver definitions
from the configuration files, and modify some driver attributes, all
from the command line. There are also options for querying the
current driver configuration, querying kernel resources, and modifying
these resources.

configure uses the following options:

-a [funcl func2 ...]
-g [funcl func2 ...}

-c

-d [funcl func2 ...)

-f master_file [dfile]

-g dev_name handler | dev_name
-j [prefix] [NEXTMAJOR]

-1 priority_level

-m major

-n

-q

-r

-t

-v interrupt_vector [interrupt_vector2...]
-w

-X

-y resource

-m, -b, and -¢
These options are used to define which driver is being referenced.
Following -m must be the major device number of the driver. If
you are configuring a block driver, -b must appear; if you are con-
figuring a character driver, -c must appear. Both are used when
configuring a driver with both kinds of interfaces.

-aand -d

Each option is followed by a list of functions to add or delete,
respectively. These are the names of the functions that appear

28 March 1991 Page 3

CONFIGURE (ADM) CONFIGURE (ADM)

within bdevsw|[] or cdevsw[], as appropriate, plus the names of the
initialization, clock poll, halt and interrupt routines, if present, plus
the names of the tty, stream, and tab structure pointers. configure
enforces the rules that all of a driver’s routines must have a com-
mon prefix, and that the prefix be 2-4 characters long.

-j When followed by a prefix used by a driver, the major device num-
ber is displayed. When followed by NEXTMAJOR, the smallest
unused major device number is displayed.

-r This option forces a rewrite of the configuration files regardless of
whether or not the command changed the configuration.

-v This option modifies the system’s notion of the vectors on which
this device can interrupt. A device may interrupt on up to 4 vec-
tors.

-1 This sets the interrupt priority level of the device, which is almost
always the same as the type of spl() call used: a driver that inter-
locks using spl5() almost always has an interrupt priority level of
5.

-q If the -q option is given, no gswrch() is possible after returning
from the device interrupt. Use of this option in new drivers is not
recommended.

-f The configuration is maintained in two data files, whose default
names are master and xenixconf. The -f option can be used to
specify alternate names. Note that if -f is the only option present,
the program is still interactive.

-n If -n is present, the two configuration data files are modified, but no
‘.0’ files are produced. This option is useful when configuring a
driver package containing multiple drivers.

-w This option suppresses warning messages.

-x This dumps all the resource prompts known to configure. These
reveal the name, description and current value of each parameter
capable of being reconfigured. Category prompts are not dumped.

-y The -y option prints out the current value of the requested resource.

-t This option prints out nothing (except possibly error messages).
However, it has a return value of 1 if a driver corresponding to the
given combination of -m, -b, -¢ and options is already configured,
and returns 0 if no such driver is present.

-g This option is used to add or remove graphics input (GIN) device
handlers. Devices such as mice, bitpads, and keyboards may have
handlers to turn their input data into “events.” The -g flag may be
given one argument that is interpreted as a device name. That GIN

28 March 1991 Page 4

CONFIGURE (ADM) CONFIGURE (ADM)

device is removed from the configuration files. If the -g flag has
two arguments, the second is a handler for that device, and the de-
vice is added to the files. If it was already present, its handler is
updated and the user is informed. Multiple devices may be added
or removed by specifying -g multiple times.
Setting Command-line Parameters
Any number of arguments can be given on the command line of the
form resource=value. These arguments can be given at the same time
as an add or delete driver request, but must follow all the driver-con-
figuration arguments on the command line.
Some resources have values that are character strings. In this case
their values must be enclosed within the characters \" . The quotes are
syntactically necessary for them to be used as C-language strings, and
the backslashes protect the quotes from being removed by the shell.
Examples
Print out the current value of NCLIST:
configure -y NCLIST
Return 1 if character major device 7 and vector 3 are available:
éonﬁgure t-v7-m3-c
Add a clock-time polling and initialization routine to the already con-
figured “foo” driver, a hypothetical character driver at major device
#17:
configure -a foopoll fooinit -¢ -m 17
Delete the “foo” driver:
configure -m 17 -d -¢

Add a new “hypo” driver, a block driver with a character interface. It
absorbs 3 different interrupt vectors, at priority 6:

configure -a hypoopen hypoclose hyporead hypowrite hypoioctl\
hypostrategy hypotab hypointr -b -c -16 -v 1742 49

Notes

Kernel Data Space Restrictions (XENIX-286 only)

28 March 1991 Page 5

CONFIGURE (ADM) CONFIGURE (ADM)

If the total size of all the allocated resources grows too large, the
group will not fit within the kernel’s 64k near data segment. You will
not see messages about excessive size from configure, but you may
see them from the linker when you attempt to link the kernel.

Files
fusr/sys/conf/master
fusr/sys/conf/xenixconf
fusr/sys/conf/config
fusr/sys/conf/space.o
fusr/sys/conf/c.0

See Also

master(F), config(ADM), event(M), hdinstall(ADM)

28 March 1991 Page 6

CUSTOM (ADM) CUSTOM (ADM)

Name

custom - Installs specific portions of the XENIX System

Syntax

custom [-odt] [-irl [package]] [-m device] [-f [file]]

Description

With custom you can create a custom installation by selectively in-
stalling or deleting portions of the XENIX system. custom is execut-
able only by the super-user and is either interactive or can be invoked
from the command line with several options.

Files are extracted or deleted in packages. A package is a collection
of individual files. Packages are grouped together in sets.

Three default sets are always available:

Operating System
Development System
Text Processing System

You can also install additional sets. You can list the available pack-
ages by using the custom command as described next.

Usage
To use custom interactively, enter:
custom
You see a list of sets. For example:

1. Operating System

2. Development System

3. Text Processing System
4. Add a Supported Product

The program prompts you to choose a set from which to work. If the
data files for that set are not already installed on the hard disk, custom
prompts you for the floppy which contains these data files and installs
them. You may also see menu items for each product that has been
previously added using the “Add a Supported Product” option. If you
are adding a new product, you will be prompted for volume 1 of the
new product distribution and custom will extract the product informa-
tion necessary to support it.

28 March 1991 Page 1

CUSTOM (ADM) CUSTOM (ADM)

When you select a valid set, you see a menu like this:

. Install one or more packages

. Remove one or more packages
. List the files in a package

. Install a single file

. Select a new set to customize
. Display current disk usage

. Help

NSNS W -

When you enter a menu option, you are prompted for further informa-
tion. This is what the options prompt, and what action occurs:

1. Install
Prompts for one or more package names.

Calculates which installation volumes (distribution media) are
needed, then prompts for the correct volume numbers. If multiple
packages are specified, the names should be separated by spaces on
the command line.

This option, as well as “2” and “3,” displays a list of all available
packages in the currently selected set. Each line describes the pack-
age name, whether the package is fully installed, not installed or par-
tially installed, the size of the package (in 512 byte blocks), and a one
line description of the package contents.

2. Remove
Prompts for one or more package names.

Deletes the correct files in the specified package. If multiple pack-
ages are specified the names should be separated by spaces on the
command line.

Displays available packages (see option “17).

3. List files in a package
Lists all files in the specified package.

Prompts for one or more package names. Enter the name of the
desired package(s).

Displays available packages (see option “17).

28 March 1991 Page 2

CUSTOM (ADM) CUSTOM (ADM)

4. Install a single file
Extract the specified file from the distribution set.

Filename should be a full pathname relative to the root directory
“ /,’.

5. Select a new set
Allows you to work from a different set than the current one.
6. Display current disk usage
Tells you your current disk usage.
7. Help
Prints a page of instructions to help you use custom.
Options

Three arguments are required for a completely non-interactive use of
custom:

A set identifier
(-0, -d, or -t),

A command
(i, -1, -l, or -f),

And either one or more package names, or a file name

If any information is missing from the command line, custom prompts
for the missing data.

Only one of -0, -d, or -t may be specified. These stand for:

-0 Operating System

-d Development System

-t Text Processing System

Only one of -i, -r, -1, or -f may be specified, followed by an argument

of the appropriate type (one or more package names, or a file name).
These options perform the following:

28 March 1991 Page 3

CUSTOM (ADM) CUSTOM (ADM)

-i Install the specified package(s)

-r Remove the specified package(s)

-1 List the files in the specified package(s).

-f Install the specified file.

The -m flag allows the media device to be specified. The default is
/devfinstall (which is always the 0 device, as in /dev/fd0). This is very
useful if the system has a 5.25-inch drive on /dev/fd0 and a 3.5-inch

floppy on /dev/fdl, and it is necessary to install 3.5-inch media. For
example:

custom -m /dev/rfd196ds9
this will override the default device and use the one supplied with the
-m flag.
Files
fetc/base.perms
fetc/soft.perms
Jetc/text.perms
Jetc/perms/*
See Also

fixperm(ADM), df(C), du(C), install(ADM)

Notes

If you upgrade any part of your system, custom detects if you have a
different release and prompts you to insert the floppy volume that
updates the custom data files. Likewise, if you insert an invalid prod-
uct or a volume out of order, you will be prompted to reinsert the
correct volume.

28 March 1991 Page 4

DIAL (ADM) DIAL (ADM)

Name

dial, uuchat - Dials a modem.

Syntax

/usr/lib/uucp/dialX ttyname telno speed
fusr/lib/uucp/dialX -h ttyname speed
fusr/lib/uucp/uuchat ttyname speed chat-script

Description

fusr/lib/uucp/dialX dials a modem attached to ttyname. (X is a dialer
name, such as HA1200.) The -h option is used to hang up the modem.

uucico(ADM), ct(C), and cu(C) use /usr/lib/uucp/dialX. A number
of dialer binaries are distributed (there may be differences between
XENIX-286 and XENIX-386 distributions):

Binary File Modem

dialHA12 Hayes Smartmodem 1200 or compatible
dialHA24 Hayes Smartmodem 2400 or compatible
dialHA96V Hayes Smartmodem 9600 or compatible
dialMUL Multitech Multimodem 224 EH
dialVA3450 Racal Vadic 3451 modem

dialVA96 Racal Vadic 9600 modem

dialTBIT Telebit Trailblazer Modem

Source for these is provided in their respective .c files.

uucico(ADM) invokes dial, with a ttyname, telno (phone number),
and speed. dial attempts to dial the phone number on the specified
line at the given speed. When using dialHA12 or dialHA24, speed
can be a range of baud rates. The range is specified with the form:

lowrate - highrate
where lowrate is the minimum acceptable connection baud rate and
highrate is the maximum. The dial program returns the status of the
attempt through the following dial return codes:

bit 0x80 =1
The connection attempt failed.

28 March 1991 Page 1

DIAL (ADM)

bits Ox0f =

DIAL (ADM)

If bit 0x80 is a 1, then these bits are the dialer error code:

0

“» A W N

=T - - TN =

10
11
12
13
14
15

general or unknown error code.
line is being used.

a signal has aborted the dialer.
dialer arguments are invalid.
the phone number is invalid.

the baud rate is invalid or the dialer could not
connect at the requested baud rate.

can’t open the line.

ioctl error on the line.

timeout waiting for connection.
no dialtone was detected.
unused.

unused.

unused.

phone is busy.

no carrier is detected.

remote system did not answer.

Error codes 12-15 are used to indicate that the problem is at the

remote end.

If bit 0x80 is a 0, then these bits are used to indicate the actual con-
nection baud rate. If 0, the baud rate is the same as the baud rate used
to dial the phone number or the highest baud rate if a range was
specified. Otherwise, these four bits are the CBAUD bits in the struct
termio c_flag and the struct sgttyb sg_ispeed and sg_ospeed tty ioctl

structures.

You can copy and modify one of the files fusr/lib/uucp/dialHA12.c
etc., to use a different modem. There is a makefile in /usr/lib/uucp
which should be modified for the new dialer, and can be used to com-
pile the new program.

28 March 1991

Page 2

DIAL (ADM) DIAL (ADM)

If you create a dial program for another modem, send us the source.
User generated dial programs will be considered for inclusion in
future releases.

The dial program to be used on a particular line is specified in the fifth
field of the entry for that line in /usr/lib/uucp/Devices. If there is no
dial program of that name, then uucico, ct, and cu use a built-in dialer,
together with the chat-script of that name in /usr/lib/uucp/Dialers.

dial -h is executed by getty when it is respawned on a line shared
between dial-in and dial-out. If there is no dial program, then getty
uses /usr/lib/uucp/uuchat, passing it the & chat-script from
fusr/lib/uucp/Dialers.

Files
fusr/lib/uucp/Devices
fusr/lib/uucp/dial*.c Dialer source files
fust/lib/uucp/dialHA12 Hayes Smartmodem 1200/1200B dialer
fusr/lib/uucp/dialHA24 Hayes Smartmodem 2400 dialer
fusr/lib/uucp/makefile Makefile to compile new dialer
fusr/lib/uucp/dial TBIT Telebit Trailblazer dialer
fusr/lib/uucp/uuchat

See Also

ct(C), cu(C), uucico (ADM), dialers(F), getty (M)
Notes

You must have the Development System installed in order to compile
and install a new dial program.

28 March 1991 Page 3

DIVVY (ADM) DIVVY (ADM)

Name

divvy - Disk dividing utility

Syntax
divvy -b block_device -¢ character_device [-v virtual_drive]
[-p physical_drive] [-i] [-m]
Description
divvy divides an fdisk (ADM) partition into a number of separate areas
known as “divisions”. A division is identified by unique major and
minor device numbers and can be used for a filesystem, swap area, or
for isolating bad spots on the device.
With divvy you can:
- Divide an fdisk partition into separate devices.
- Create new filesystems.
- Change the device names of filesystems.
- Change the size of filesystems.
- Remove filesystems.
Options
Options to divvy are:

-b block_device
Major device number of block interface.

-c character_device
Major device number of character interface.

-v fdisk_partition
For dividing an fdisk partition (also known as a “virtual drive”).

-p physical_drive
For dividing one of several physical disks that share the same con-
troller.

-1 Disk being divided will contain a root filesystem on division 0.

-m Disk being divided should be made into a number of mountable
file systems.

28 March 1991 Page 1

DIVVY (ADM) DIVVY (ADM)

Usage

The device being divided must be a block device with a character
interface. For example, to use divvy on a device with a block-
interface major number 1 and character interface number of 1, enter:

divwy -b 1 ¢ 1

The -v option specifies which fdisk partition (virtual drive) to divide.
The default is the active drive. Virtual drive numbers are determined
with the fdisk (ADM) utility.

The -p option allows division of one of several physical disks sharing
a controller. divvy defaults to the first physical device numbered “0.”
To access a second physical disk, use the -p 1 option.

The -i option specifies the device being divided will contain a root
filesystem. With this option, device nodes are created relative to the
new root, generally a hard disk, instead of the current root, often an
installation floppy. A root filesystem and a recover area are created.
divvy prompts for the size of the swap area. If the disk is large enough,
then divwy prompts for a separate fu (user) filesystem. divwy also
prompts for block-by-block control over the layout of the
filesystem(s). If the root filesystem is large enough to require a
scratch division, (more than 40,000 blocks) then divvy will prompt for
whether one should be created. divvy is invoked with the -i option dur-
ing XENIX installation.

The -m option is used for initial installation on devices that will not
be used as the root. It causes the user to be prompted for a number of
filesystems.

When divvy is invoked from the command line, you see a main menu:

n(ame] Name or rename a division.

clreate} create a new filesystem on this division.

plrevent] Prevent a new filesystem from being created on this division.
s[tart] Start a division on a different block.

e[nd) End a division on a different block.

rlestore}] Restore the original partition table.
Please enter your choice or ‘q' to quit:

To choose a command, enter the first letter of the command, then press
RETURN.

28 March 1991 Page 2

DIVVY (ADM) DIVVY (ADM)

The divvy division table might look something like this:

Name New File System? | # | First Block | Last Block

root no, exists 0 0 13754

swap no, exists 1 13755 15135

u no, exists 2 15136 25135
no 3 —_ —
no 4 — —
no 5 — —

recover no, exists 6 25136 25145

d1057all | no 7 0 25546

25146 blocks for divisions, 400 blocks reserved for the system

divvy also displays information about block allocation for system
tables and bad tracks.

If you select option ‘n’, you can change the name of the device. divvy
prompts you for the division number (from the divvy table displayed
above), then for a new name.

Option ‘c’ causes a given division to become a new, empty filesystem
when you exit from divvy. After using the ‘c’ option, you will see a
‘yes’ in the ‘New File System?’ column. If you use option ‘p,” the
‘yes’ in the ‘New File System?’ column will change to a ‘no’, and the
contents of the division will not change.

With the ‘s’ or ‘start’ command, you can start a division on a different
block number. With the ‘e’ or ‘end’ command, you can end a division
on a different block number.

You can use these two commands to change the size of a division. For
example, if your disk is similar to the one in the sample divvy table
above, and you want to make the root filesystem larger and the swap
area smaller, do this:

1. Make the swap area smaller with the ‘s’ command.
2. Use the ‘e’ command to make the root division bigger.

Changing the size of an existing filesystem destroys any existing data
on that filesystem. Note that if any of the divisions overlap, divwy will
complain when you try to exit and put you back in the menus to
correct the situation.

The ‘r’ or ‘restore’ command restores the original partition table. This
is useful if you make a serious mistake and want to return to where
you started.

When you exit from divwy, you are prompted whether you want to

save any changes you made, or exit without saving the changes. At
this time, you can also go back to the divvy menu, and may also have

28 March 1991 Page 3

DIVVY (ADM) DIVVY (ADM)

the option to reinstall the original, default division table.

See Also

badtrk(ADM), fdisk(ADM), fsck(ADM), hd(HW), mkdev(C), mkfs(C),
mknod(C)

Notes

divvy requires kernel level support from the device driver. If divwy
lists the size of a disk as “0” blocks, or displays the following error
messages, the device may not support dividing:

cannot read division table
or:
cannot get drive parameters

These errors may also occur if the prerequisite programs fdisk and
badtrk are not run correctly.

If you change the size of filesystems (such as fu) after you have
installed a XENIX filesystem, you will have to run mkfs on the filesys-
tem and reinstall the files that are kept there. This is because the free
list for that filesystem has changed. Be sure to backup the files in any
filesystem you intend to change, using backup(C), tar(C), or cpio(C),
before you run divvy . After XENIX is installed, the bounds of the root
filesystem must not be changed.

During installation, if the filesystem on division O (generally root)
becomes or remains large enough to require a scratch area during fsck,
and one does not already exist, divvy prompts for whether one should
be created. (The resulting filesystem, /dev/scratch, is used by auto-
boot if it runs fsck. /deviscratch should also be entered when fsck
prompts for a scratch file name, provided that the filesystem being
checked is not larger than the root filesystem.) If all disk divisions
have been used up, divvy will not prompt for a scratch filesystem, even
if the root filesystem is large enough to require one.

This utility uses 1K blocks.

28 March 1991 Page 4

DMESG (ADM) DMESG (ADM)

Name

dmesg - Displays the system messages on the console.

Syntax
dmesg [-]

Description

The dmesg command displays all the system messages that have been
generated since the last time the system was booted. If the option —
is specified, it displays only those messages that have been generated
since the last time the dmesg command was performed.

dmesg can be invoked periodically by placing instructions in the file
fusr/lib/crontab . It can also be invoked automatically by /etc/rc
whenever the system is booted. See “Notes”, below.

dmesg logs all error messages it prints in /usr/adm/messages. If
dmesg is invoked automatically, the messages file continues to grow
and can become very large. The system administrator should occa-
sionally erase its contents.

Files
Jetc/dmesg
fusr/adm/messages
fusr/adm/msgbuf

Notes
dmesg is included in this release for backwards compatibility only.
The device /dev/error provides a more flexible means of logging error
messages, and is recommended over dmesg. See error(M) for more
information.

See Also

cron(C), error(M), messages(M)

28 March 1991 Page 1

DPARAM (ADM) DPARAM (ADM)

Name

dparam - Displays/changes hard disk characteristics.

Syntax

dparam [-w]
dparam /dev/rhd[0l 1]0 [characteristics]

Description

The dparam command displays or changes the hard disk characteris-
tics currently in effect. These changes go into effect immediately and
are also written to the master boot block for subsequent boots. If a
non-standard hard disk is used, this utility must be called before
accessing the drive.

The -w option causes a copy of /etc/masterboot to be copied to disk to
ensure that non-standard hard disks are supported for the specified
drive. This call must precede a call to write non-standard disk param-
eters for the desired parameters to be saved correctly in the master-
boot block.

When called without options or disk characteristics, dparam prints the
current disk characteristics (on the standard output) for the specified
hard disk. These values are printed in the same order as the argument
list.

When writing characteristics for the specified hard disk, dparam
changes the current disk controller status and updates the masterboot
block. The argument ordering is critical and must be entered as speci-
fied below. All characteristics must be entered when writing disk
characteristics, otherwise an error is returned. Hard disk characteris-
tics (in respective order) are:

number of cylinders total number of
cylinders on the hard
disk

number of heads number of heads

reduced write current cylinder hardware specific, con-
sult your hardware
manual

write precompensation cylinder hardware specific, con-
sult your hardware
manual

28 March 1991 Page 1

DPARAM (ADM) DPARAM (ADM)

ecc number of bits of error
correction on
transfers, consult your
hardware manual

control very hardware specific,
consult your hardware
manual

landing zone cylinder where to park heads
after shutting down the
system

number of sectors per track number of sectors per
track on the hard disk

Examples
dparam -w
dparam /dev/rhd10

dparam /dev/rhd00 700 4 256 180 5 0 640 17

Notes

This utility changes the kernel’s view of the hard disk parameters. It
may be subject to restrictions imposed by the hardware configuration.

dparam is called automatically during XENIX installation and by
mkdev hd.

28 March 1991 Page 2

DUMPDIR (ADM) DUMPDIR (ADM)

Name

dumpdir - Prints the names of files on a backup archive.

Syntax

dumpdir { f filename]

Description

dumpdir is used to list the names and inode numbers of all files and
directories on an archive written with the backup command. This is
most useful when attempting to determine the location of a particular
file in a set of backup archives.

The f option causes filename to be used as the name of the backup de-
vice instead of the default. The default backup device depends on the
setting of the variable TAPE in the file /etc/default/dumpdir. The de-
vice specified as TAPE can be any type of backup device supported by
the system (for example, a floppy drive or cartridge tape drive).

Files
/tmp/rst* Temporary files
fetc/default/dumpdir Default backup device

See Also

backup(ADM), restore(ADM), default(F)

28 March 1991 Page 1

FDISK (ADM) FDISK (ADM)

Name

fdisk - Maintain disk partitions.

Syntax

fdisk [[-p] [-ad partition] [-c partition start size] [-f devicename]]

Description

fdisk displays information about disk partitions. fdisk also creates and
deletes disk partitions and changes the active partition. fdisk func-
tionality is a superset of the MS-DOS command of the same name.
fdisk is usually used interactively from a menu.

The hard disk has at most four partitions. Only one partition is active
at any given time. It is possible to assign a different operating system
to each partition. Once a partition is made active, the operating sys-
tem resident in that partition boots automatically once the current op-
erating system is halted.

To use XENIX, at least one partition must be assigned to XENIX.

The fdisk utility does not allocate the first track or the last cylinder on
the hard disk when the “Use Entire Disk for XENIX” option is used.
The first track on the hard disk is reserved for masterboot and the last
cylinder is generally used when running hard disk diagnostics. You
should not allocate the last cylinder if you plan to run diagnostics on
your hard disk.

For example, if a disk has 2442 tracks, fdisk reports these as tracks 0-
2441. If your hard disk has 4 heads, fdisk will assign (using the “Use
Entire Disk for XENIX” option) tracks 1-2437. (Track O is reserved
for masterboot.) The last cylinder (tracks 2438-2441) is not assigned
with the “Use Entire Disk for XENIX” option.

Partitions are defined by a “partition table” at the end of the master
boot block. The partition table provides the location and size of the
partitions on the disk. The partition table also defines the active parti-
tion. Each partition can be assigned to XENIX, DOS, or some other
operating system. Once a DOS partition is set up, DOS files and
directories resident in the DOS partition may be accessed while run-
ning XENIX by means of the dos(C) commands. DOS may be booted
without the DOS partition being active via the “boot:dos” command.
See boot(HW).

Arguments

28 March 1991 Page 1

FDISK (ADM) FDISK (ADM)

-p,-a,-d,
These flags are used to invoke fdisk non-interactively:
-p prints out the disk partition table.
-a number activates the specified partition number.
-d number deletes the specified partition number.

-C number start size creates partition with specified start and size.

-f name
Open device name and read the partition table associated with that
device’s partition. The default is /dev/rhd00.

Options

The fdisk command displays a prompt and a menu of five options.
Updates to the disk are not made until you enter “q” from the main
menu.

1. Display Partition Table.
This option displays a table of information about each partition on
the hard disk. The PARTITION column gives the partition num-
ber. The STATUS column tells whether the partition is active (A)
or inactive (I). TYPE tells whether the partition is XENIX, DOS,
or “other”. The option also displays the starting track, ending
track and total number of tracks in each partition.

2. Use Entire Disk for XENIX.
fdisk creates one partition that includes all the tracks on the disk,
except the first track and the last cylinder. This partition is
assigned to XENIX and is designated the active partition.

3. Create XENIX Partition
This option allows the creation of a partition by altering the parti-
tion table. fdisk reports the number of tracks available for each
partition and the number of tracks in use. fdisk prompts for the
partition to create, the starting track and size in tracks. The change
is written to the operating system and the hard disk when you enter
“q” from the main menu.

4. Activate Partition
This option activates the specified partition. Only one partition
may be active at a time. The change is not effective until you exit.
The operating system residing in the newly activated partition
boots once the current operating system is halted.

5. Delete Partition
This option requests which partition you wish to delete. fdisk
reports the new available amount of disk space in tracks. The
change is not effective until you exit.

28 March 1991 Page 2

FDISK (ADM) FDISK (ADM)

Exit the fdisk program by typing a ‘q’ at the main fdisk menu. Your
changes are now written to the operating system and the hard disk.

Notes

The minimum recommended size for a XENIX partition is 5 mega-
bytes.

Since fdisk is intended for use with DOS, it may not work with all op-
erating system combinations.

See also

dos(C), hd(HW).

28 March 1991 Page 3

FDSWAP (ADM) FDSWAP (ADM)

Name

fdswap - Swaps default boot floppy drive.

Syntax
fdswap [onl off]

Description

fdswap tells the CMOS to swap the default floppy drive used to read
boot information at boot time. For example, if your computer defaults
to read boot information on drive A, fdswap on changes the default
drive to drive B.

fdswap with no arguments reports the current fdswap state, on or off.

fdswap off switches the drive setting back to the default configura-
tion. Changing the drives takes effect on the next boot of the system.

Notes

This utility is only included on
XENIX-386 distributions.

Support for this functionality is only available on a small number of
machines. The ROMs must recognize and interpret the CMOS flag
that specifies that the floppy drives are swapped.

28 March 1991 Page 1

FIXPERM (ADM) FIXPERM (ADM)

Name

fixperm - Correct or initialize file permissions and ownership.

Syntax
fixperm [-cfgilnsvwDS [-d package]] specfile

Description

For each line in the specification file specfile, fixperm makes the
listed pathname conform to a specification. fixperm is typically used
to configure a XENIX system upon installation.

The specification file has the following format: Each non-blank line
consists of either a comment or an item specification. A comment is
any text from a pound sign “#” up to the end of the line. There is one
item specification per line. User and group id numbers must be speci-
fied at the top of the specification file for each user and group men-
tioned in the file. The syntax for the definition section is simple: the
first field indicates the type of id (either uid or gid), the second con-
tains the name reference for the id, and the third is the corresponding
numeric id. Example:

uid root 0
An item specification consists of a package specifier, a permission
specification, owner and group specifications, the number of links on
the file, the file name, and an optional volume number.

The package specifier is an arbitrary string which is the name of a
package within a distribution set. A package is a set of files.

After the package specifier is a permission specification. The permis-
sion specification consists of a file type, followed by a numeric per-
mission specification. The item specification is one of the following
characters:

X Executable.

a Archive.

e Empty file (create if -c option given).

b Block device.

c Character device.

28 March 1991 Page 1

FIXPERM (ADM) FIXPERM (ADM)

d Directory.
f Text file.
P Named pipe.

If the item specification is used as an upper-case letter, then the file
associated with it is optional, and fixperm will not return an error mes-
sage if it does not exist.

The numeric permission conforms to the scheme described in
chmod(C). The owner and group are in the third column separated by
a slash: e.g.,: “bin/bin”. The fourth column indicates the number of
links. If there are links to the file, the next line contains the linked
filename with no other information. The fifth column is a pathname.
The pathname must be relative, i.e., not preceded by a slash “/”. The
sixth column is only used for special files, giving the major and minor
device numbers, or volume numbers.

Options
The following options are available from the command line:

-¢ Create empty files and missing directories. Also creates (or
modifies) device files.

-g Instructs fixperm to list devices as specified in the permlist (similar
to the -f flag, which lists files on standard output). No changes are
made as a result of this flag.

«d package
Process input lines beginning with given package specifier string
(see above). For instance, -dBASE processes only items specified
as belonging to the Basic utilities set. The default action is to pro-
cess all lines.

-upackage
Like -d, but processes items that are not part of the given package.

-f List files only on standard output. Does not modify target files.

-i Check only if the selected packages are installed. Return values
are:

package completely installed
package not found

package not installed
package partially installed

Lewe

28 March 1991 Page 2

FIXPERM (ADM) FIXPERM (ADM)

-l List files and directories on standard output. Does not modify tar-
get files.

-n Report errors only. Does not modify target files.

-D List directories only on standard output. Does not modify target
files.

-v Verbose, in particular, issues a complaint if executable files are
word swapped, not fixed stack, not separate I and D, or not
stripped.

-s Modify special device files in addition to the rest of the permlist.

-w Lists where (what volume) the specified files or directories are
located.

-S Issues a complaint if files are not in x.out format.

The following two lines make a distribution and invoke tar(C) to
archive only the files in /etc/perms/inst on /dev/sample:

fetc/fixperm -f fetc/perms/inst > list
tar cfF /dev/sample list

This example reports BASE package errors:
fetc/fixperm -nd BASE

Notes

Usually fixperm is only run by a shell script at installation.

See Also
custom (ADM)

28 March 1991 Page 3

FSAVE (ADM) FSAVE (ADM)

Name

fsave - Interactive, error-checking filesystem backup

Synopsis

fsave filesystem { dumpinfo] [mediainfo] [sitename]

Description

fsave is used by fsphoto(ADM) to provide a semi-automated interface
to backup(ADM) for backing-up XENIX filesystems. Human inter-
vention is required to mount and dismount tapes or floppies at the
appropriate times, but is kept to a minimum to reduce the potential for
error.

The operator is prompted each time some action is required, such as
mounting or unmounting a tape or floppy. These prompts, and their
possible selections, are described below.

For all prompts, an answer of h, H, or ? will display a short summary
of the possible answers.

Filesystem dump (backup)

The following prompt displays the defaults (gleaned from the sched-
ule database file) and presents options to alter them:

Level dumplevel dump of filesystem filesystem , date
media size: size feet [or Kb]
media drive: drive

This media will be saved for howlong, and is howvital .

M)ounted volume, P)ostpone, C)heck or F)ormat volumes, R)
Retension or H)elp:

The values displayed dictate the following instructions: filesystem is
to be backed-up using size-foot long magtapes (or size-kilobyte big
floppies) mounted on drive drive. The media will be saved for how-
long (“1 year,” “2 months,” etc.), and being a level dumplevel dump,
is howvital (“critical,” “precautionary,” etc.).

The menu options are:

m A volume of the asked for size has been mounted (write-
enabled), so begin the dump.

mnewsize Insufficient volumes of the originally asked for size are

available, so a newsize big volume has been mounted
instead. If the dump extends across more than one volume,

28 March 1991 Page 1

FSAVE (ADM) FSAVE (ADM)

each volume must be of the same size.

p Postpone this backup until later (fsphoto will automatically
retry this filesystem next time it is run).

¢ Recheck the volumes used to backup filesystem for erors.
This answer is useful when a dump mysteriously fails and
Jfsave is starting over from the beginning, but the operator
doesn’t believe there really is a problem (for example, the
tape drive was accidentally left offline or the floppy door
was left open), and wants to check the volumes again.

f Format the currently mounted volume (useful mainly for
floppies).
r Retension cartridge tape using fusr/bin/tape.

If multiple volumes are required, backup will pause for the next vol-
ume to be mounted. Be certain to keep track of the volume order.

Format check
The format of “critical”’ volumes are checked using dumpdir(ADM):

Check vital volumes for format errors
M)ounted first volume, S)kip format check, or H)elp:

The menu options are:

m The first volume has been (or still is) mounted, and dump-
dir can now check the volume format.

s Skip checking the volume format, and continue on to the
read error check (below).

The format is not always checked, but when it is, the first volume writ-
ten must be mounted.

Read error check
All volumes are read using restore (ADM), which checks for errors
during reading. If an error occurs, the dump is declared unsuccessful
and is retried from the beginning.
Check vital volumes for read errors
M)ounted which volume, E)rror on previous volume, D)one, S)kip
checks, or H)elp:

The menu options are:

28 March 1991 Page 2

FSAVE (ADM) FSAVE (ADM)

m The which (“first” or “next”) volume has been mounted on
the drive and is ready to be checked for read errors.

e An error occurred on the last volume checked, and the
dump should be retried.
d All volumes have been checked and no errors occurred, so

the filesystem has been successfully backed-up; This
backup is done.

s Don’t bother (skip) checking the rest of the volumes for
read errors.

Every volume should be checked for read errors; restore requires the
volumes to be checked in first-to-last order. Volumes that produce
read errors should be marked “suspect,” discarded and the dump run
once again.

After the backup has been successfully performed, instructions are
given on how to label the volumes.

Arguments

fsave is normally run by fsphoto, which passes all the proper argu-
ments based on the schedule (ADM) database.

filesystem
The filesystem to be backed-up.

dumpinfo
A set of blank-separated strings that give some optional informa-
tion about this backup:

dumplevel size savetime importance marker

Each of these component strings may be quoted and can thus con-
tain spaces.

dumplevel The level of the dump to be performed. This is a single
digit from 0 to 9 (passed to dump), or the letter x (which
means no dump is to be done). The default is to per-
form a level 0 dump.

size The size of the media volumes that should be used.
This should be in feet for tapes and kilobytes for
floppies. A size of - means to use the first size listed in
mediainfo. This is the default.

savetime How long this backup is to be saved (for example, “3
months”). Default is “1 year.”

28 March 1991 Page 3

FSAVE (ADM) FSAVE (ADM)

importance
How important is this backup? (For example, “critical’’
or “precautionary.”) Those which are “critical’’ have
their format checked by dumpdir. Default is “impor-
tant.”

marker Either “none” (the default) or an additional label to
place on each volume (for example, “a pink sticker”).

A typical dumpinfo might look like:
9 1200 "2 weeks" useful "a blue X"

which specifies that a level 9 dump is to be done on a 1200 foot
tape (or 1200 kilobyte floppy) which will be saved for 2 weeks and
is to be marked with a blue cross (in addition to a more descriptive
label). This backup is merely considered “useful” and thus will
not be checked by dumpdir.

mediainfo
A set of blank-separated strings that give some optional informa-
tion about this the media to be used:

drive d density sizes... [format]
drive Kk sizes ... [format]

drive The name of backup device to use. The default is
Idevirmt0.
k sizes... If k is specified, drive is assumed to be a floppy, and

the list of sizes which follow define the allowable
capacities of the floppies that can be used (in kilo-
bytes).

d density sizes...
Otherwise, d must be specified. In this case, drive is
assumed to be a magtape at density BPI , in one of
the possible sizes (in feet).

format The XENIX command used to format the tape or
floppy so described.

A mediainfo describing 9-track magtape would be:

media /dev/rmt0 d 1600 2400 1200 600
media /dev/rmt2 d 800 1400 1200 600

which specifies that /dev/rmt0 is a 1600 BPI magtape capable of

handling 2400, 1200, and 500 foot reels, and that /dev/rm:t2 is the
800 BPI device.

28 March 1991 Page 4

FSAVE (ADM) FSAVE (ADM)

A floppy might be described with:
media /dev/fd0 k 1024 format /dev/fd0

which describes device /dev/fd0 as a megabyte (1024 kilobytes)
floppy formatted by the command:

format /dev/fd0
sitename
Where this backup was made (for example, the name of the com-
pany or which building). Note that the uucp(C) nodename from
letc/systemid is automatically placed on the volume labels.

Only the super-user can execute the fsave command.

Files

fetc/systemid
Name of this machine.

Jetc/ddate
Dump-maintained record of last time each filesystem was backed-
up.

[dev/tty
Always-existent character-special device.
See Also

fsphoto(ADM), schedule(ADM), backup(ADM), dumpdir(ADM),
restore(ADM), basename(C)

Diagnostics
A successful backup exits successfully (0), but errors generate a com-
plaint and an exit status of 1. fsave complains about illegal or
incorrect arguments, and exits with a status of 2.

If the backup of filesystem is postponed, fsave exits with a status of 3.

28 March 1991 Page 5

FSCK (ADM) FSCK (ADM)

Name

fsck - Checks and repairs filesystems.

Syntax

/bin/fsck [options] [filesystem] ...

Description

Jsck audits and interactively repairs inconsistent conditions for XENIX
System V filesystems. If the filesystem is consistent, the number of
files, the number of blocks used, and the number of blocks free are
reported. If the filesystem is inconsistent, the operator is prompted for
concurrence before each correction is attempted. It should be noted
that most corrective actions result in some loss of data. The amount
and severity of the loss may be determined from the diagnostic output.
(An experienced operator can resolve discrepancies manually using
fsdb(ADM), the filesystem debugger.) The default action for each
consistency correction is to wait for the operator to respond “yes” or
“no”. If the operator does not have write permission fsck defaults to
the action of the -n option.

The following flags are interpreted by fsck:
-y Assumes a yes response to all questions asked by fsck.

-n Assumes a no response to all questions asked by fsck; do not
open the filesystem for writing.

-scylinder:gapsize

Ignore the actual free list and (unconditionally) reconstruct a
new one by rewriting the super block of the file system. The
filesystem must be unmounted while this is done; if this is not
possible, care should be taken that the system is quiescent and
that it is rebooted immediately afterwards. This precaution is
necessary so that the old, bad, in-core copy of the super block
will not continue to be used, or written on the file system. If
cylinder:gapsize is not given, the values used when the file
system was created are used.

-S Conditionally reconstructs the free list. This option is like -
scylinder:gapsize above except that the free list is rebuilt only
if there are no discrepancies discovered in the filesystem.
Using -S forces a “no” response to all questions asked by fsck.
This option is useful for forcing free list reorganization on
uncontaminated filesystems.

28 March 1991 ‘ Page 1

FSCK (ADM) FSCK (ADM)

-t

-C

If fsck cannot obtain enough memory to keep its tables, it uses
a scratch file. If the -t option is specified, the file named in the
next argument is used as the scratch file, if needed. Make cer-
tain you leave a space between the -t and the filename, or fsck
will use the entire filesystem as a scratch file and erase the
entire disk. If you created a scratch filesystem during installa-
tion then you can use /dev/scratch as the filename, provided
that the filesystem being checked is no larger than the root
filesystem. Without the -t flag, fsck prompts the operator for
the name of the scratch file. The file chosen should not be on
the filesystem being checked, and if it is not a special file or
did not already exist, it is removed when fsck completes. If the
system has a large hard disk there may not be enough space on
another filesystem for the scratch file. In such cases, if the sys-
tem has a floppy drive, use a blank, formatted floppy in the
floppy drive with (for example) /dev/fd0 specified as the
scratch file.

Quiet fsck. Do not print size-check messages in Phase 1.
Unreferenced FIFO files will selectively be removed. If fsck
requires it, counts in the superblock will be automatically fixed
and the free list salvaged.

Directories are checked for bad blocks. Useful after system
crashes.

Fast check. Check block and sizes (Phase 1) and check the
free list (Phase 5). The free list will be reconstructed (Phase 6)
if it is necessary.

Recovers and remounts the root filesystem. The required
filesystem argument must refer to the root filesystem, and
preferably to the block device (normally /dev/root). This
switch implies -y and overrides -n .

Causes any supported filesystem to be converted to the type of
the current filesystem. The user is prompted to verify the
request for each filesystem that requires conversion unless the
-y option is specified. It is recommended that every filesystem
be checked with this option while unmounted if it is to be used
with the current version of XENIX. To update the active root
filesystem, it should be checked with:

fsck -¢ -rr /dev/root

If no filesystems are specified, fsck reads a list of default filesystems
from the file /etc/checklist.

28 March 1991 Page 2

FSCK (ADM) FSCK (ADM)

Inconsistencies checked are as follows:

Blocks claimed by more than one inode or the free list

Blocks claimed by an inode or the free list outside the range of
the filesystem

Incorrect link counts
Size checks:
Incorrect number of blocks
Directory size not 16-byte aligned
Bad inode format
Blocks not accounted for anywhere
Directory checks:
File pointing to unallocated inode
Inode number out of range
Super block checks:
More than 65536 inodes
More blocks for inodes than there are in the filesystem
Bad free block list format

Total free block or free inode count incorrect

Orphaned files and directories (allocated but unreferenced) are, with
the operator’s concurrence, reconnected by placing them in the
lost+found directory. The name assigned is the inode number. The
only restriction is that the directory lost+found must preexist in the
root of the filesystem being checked and must have empty slots in
which entries can be made. This is accomplished by making
lost+found, copying a number of files to the directory, and then
removing them (before fsck is executed).

Files

Jetc/checklist Contains default list of filesystems to check
fetc/default/boot Automatic boot control

See Also

autoboot(ADM), fsdb(ADM), checklist(F), filesystem(F), init(M)

28 March 1991 Page 3

FSCK (ADM) FSCK (ADM)

Notes

fsck will not run on a mounted non-raw filesystem unless the filesys-
tem is the root filesystem or unless the -n option is specified and no
writing out of the filesystem will take place. If any such attempt is
made, a warning is displayed and no further processing of the filesys-
tem is done for the specified device.

Although checking a raw device is almost always faster, there is no
way to tell if the filesystem is mounted. And cleaning a mounted
filesystem will almost certainly result in an inconsistent superblock.

Warning

File systems created under XENIX-86 version 3.0 are not supported
under XENIX System V because the word ordering in type long vari-
ables has changed. fsck is capable of auditing and repairing XENIX
version 3.0 file systems if the word ordering is correct.

For the root filesystem, “fsck -rr /dev/root” should be run. For all
other filesystems, “fsck /dev/??” on the unmounted block device
should be used.

Diagnostics
Initialization Phase

Command syntax is checked. Before the filesystem check can be per-
formed, fsck sets up certain tables and opens some files. The fsck ter-
minates on initialization errors.

General Errors

Three error messages may appear in any phase. While they seem to
offer the option to continue, it is generally best to regard them as fatal,
end the run, and investigate what may have caused the problem.

CAN NOT SEEK: BLK B (CONTINUE?)
The request to move to a specified block number B in the
filesystem failed. The occurrence of this error condition
indicates a serious problem (probably a hardware failure)
that may require additional help.

CAN NOT READ: BLK B (CONTINUE?)
The request for reading a specified block number B in the
filesystem failed. The occurrence of this error condition
indicates a serious problem (probably a hardware failure)
that may require additional help.

28 March 1991 Page 4

FSCK (ADM)

FSCK (ADM)

CAN NOT WRITE: BLK B (CONTINUE?)
The request for writing a specified block number B in the
filesystem failed. The disk may be write-protected.

Meaning of Yes/No Responses

Prompt

n(no)

y(yes)

CONTINUE?

Terminates program.
(This is the recom-
mended response.)

Attempts to continue to
run filesystem check.

Often, however, the
problem persists. The
error condition does not
allow a complete check
of the filesystem. A
second run of fsck
should be made to
recheck this filesystem.

Phase 1: Check Blocks and Sizes

This phase checks the inode list.

Meaning of Yes/INo Responses—Phase 1

Prompt n(no) y(yes)
| CONTINUE? | Terminates” the pro- Continues with the pro-
gram. gram.
(Recommended This error condition
response.) means that a complete
check of the filesystem
is not possible. A
second run of fsck
should be made to
recheck this filesystem.
CLEAR? Ignores the error condi- Deallocates i-node / by
tion. zeroing its contents.
A NO response is only This may invoke the
appropriate if the user UNALLOCATED error
intends to take other condition in Phase 2 for
measures to fix the each directory entry
problem. pointing to this i-node.

Phase 1 Error Messages

UNKNOWN FILE TYPE I=I (CLEAR?)

28 March 1991

Page 5

FSCK (ADM) FSCK (ADM)

The mode word of the i-node I suggests that the i-node is not
a pipe, special character i-node, regular i-node, or directory
i-node.

LINK COUNT TABLE OVERFLOW (CONTINUE?)
An internal table for fsck containing allocated i-nodes with a
link count of zero has no more room.

B BAD I=I

I-node [contains block number B with a number lower than
the number of the first data block in the filesystem or greater
than the number of the last block in the filesystem. This
error condition may invoke the EXCESSIVE BAD BLKS
emror condition in Phase 1 if i-node I has too many block
numbers outside the filesystem range. This error condition
invokes the BAD/DUP error condition in Phase 2 and Phase
4.

EXCESSIVE BAD BLOCKS I=I (CONTINUE?)
There is more than a tolerable number (usually 10) of blocks
with a number lower than the number of the first data block
in the filesystem or greater than the number of the last block
in the filesystem associated with i-node /.

B DUP I=I
I-node I contains block number B, which is already claimed
by another i-node. This error condition may invoke the
EXCESSIVE DUP BLKS error condition in Phase 1 if
i-node I has too many block numbers claimed by other
i-nodes. This error condition invokes Phase 1B and the
BAD/DUP error condition in Phase 2 and Phase 4.

EXCESSIVE DUP BLKS I=I (CONTINUE?)
There is more than a tolerable number (usually 10) of blocks
claimed by other i-nodes.

DUP TABLE OVERFLOW (CONTINUE?)
An internal table in fsck containing duplicate block numbers
has no more room.

POSSIBLE FILE SIZE ERROR I=I
The i-node [size does not match the actual number of blocks
used by the i-node. This is only a warning. If the -¢ option
is used, this message is not printed.

DIRECTORY MISALIGNED I=I
The size of a directory i-node is not a multiple of 16. This is
only a wamning. If the -q option is used, this message is not
printed.

28 March 1991 : Page 6

FSCK (ADM) FSCK (ADM)

PARTIALLY ALLOCATED INODE I=I (CLEAR?)
I-node I is neither allocated nor unallocated.

Phase 1B: Rescan for More DUPS

When a duplicate block is found in the filesystem, the filesystem is
rescanned to find the i-node that previously claimed that block. When
the duplicate block is found, the following information message is
printed:

B DUP I=I
I-node I contains block number B, which is already claimed
by another i-node. This error condition invokes the
BAD/DUP error condition in Phase 2. I-nodes with overlap-
ping blocks may be determined by examining this error con-
dition and the DUP error condition in Phase 1.

Phase 2: Check Path Names
This phase removes directory entires pointing to bad inodes found in

Phase 1 and phase 1B.

Meaning of Yes/INo Responses—Phase 2

Prompt n(no) y(yes)

FIX? Terminates the program | In Phase 2, a y(yes)
since fsck will be | response to the FIX?

unable to continue. prompt says: Change
the root i-node type to
“directory.”

If the root i-node data
blocks are not directory
blocks, a very large
number of error condi-
tions are produced.

(Continued)

28 March 1991 Page 7

FSCK (ADM) FSCK (ADM)
Prompt n(no) y(yes)
CONTINUE? || Terminates the pro- | Ignores DUPS/BAD
gram. error condition in root
i-node and attempt to
continue to run the
filesystem check.
If root i-node is not
correct, then this may
result in a large number
of other error condi-
tions.
REMOVE? Ignores the error condi- | Removes duplicate or
tion. unallocated blocks.
A NO response is only
appropriate if the user
intends to take other
measures to fix the
problem.

Phase 2 Error Messages

28 March 1991

ROOT INODE UNALLOCATED. TERMINATING
The root i-node (always i-node number 2) has no allocate
mode bits. The occurrence of this error condition indicates a
serious problem. The program stops.

ROOT INODE NOT DIRECTORY (FIX?)
The root i-node (usually i-node number 2) is not directory

i-node type.

DUPS/BAD IN ROOT INODE (CONTINUE?)
Phase 1 or Phase 1B found duplicate blocks or bad blocks in
the root i-node (usually i-node number 2) for the filesystem.

I OUT OF RANGE I=I NAME=F (REMOVE?)
A directory entry F has an i-node number [/ that is greater
than the end of the i-node list.

UNALLOCATED I=sI OWNER=0O MODE=M SIZE=S
MTIME=T NAME=F (REMOVE?)
A directory entry F has an i-node / without allocate mode
bits. The owner O, mode M, size §, modify time 7, and
filename F are printed. If the filesystem is not mounted and
the -n option was not specified, the entry is removed auto-
matically if the i-node it points to is character size 0.

DUP/BAD I=I OWNER=O MODE=M SIZE=S MTIME=T

Page 8

FSCK (ADM)

DIR=F (REMOVE?)

FSCK (ADM)

Phase 1 or Phase 1B found duplicate blocks or bad blocks
associated with directory entry F, directory i-node I. The
owner O, mode M, size S, modify time 7, and directory name
F are printed.

DUP/BAD I=I OWNER=O MODE=M SIZE=S MTIME=T
FILE=F (REMOVE?)

Phase 1 or Phase 1B found duplicate blocks or bad blocks
associated with file entry F, i-node /. The owner O, mode M,
size S, modify time 7, and filename F are printed.

BAD BLK B IN DIR I=I OWNER=O MODE=M SIZE=S
MTIME=T

This message only occurs when the -D option is used. A bad
block was found in DIR i-node I. Error conditions looked
for in directory blocks are nonzero padded entries, incon-
sistent “.” and “..” entries, and embedded slashes in the
name field. This error message means that the user should at
a later time either remove the directory i-node if the entire

block looks bad or change (or remove) those directory

entries that look bad.

Phase 3: Check Connectivity

This phase is concerned with the directory connectivity seen in Phase
2.

Meaning of Yes/No Responses—Phase 3

Prompt n(no) y(yes)

RECONNECT? | Ignores the error condi- | Reconnects directory
tion. i-node I to the filesys-
This invokes the | tem in directory for lost
UNREEF error condition | files (usually

in Phase 4. lost+found).
A NO response is only | This may invoke a
appropriate if the user | lost+found error condi-
intends to take other | tion if there are prob-
measures to fix the | lems connecting direc-
problem. tory inode I to

lost+found.
This invokes CON-
NECTED information
message if link was

successful.
28 March 1991 Page 9

FSCK (ADM) FSCK (ADM)

Phase 3 Error Messages

UNREF DIR I=I OWNER=0O MODE=M SIZE=S MTIME=T
(RECONNECT?)
The directory i-node / was not connected to a directory entry
when the filesystem was traversed. The owner O, mode M,
size S, and modify time T of directory i-node [are printed.
The fsck program forces the reconnection of a nonempty
directory.

SORRY. NO lost+found DIRECTORY
There is no lost+found directory in the root directory of the
filesystem; fsck ignores the request to link a directory in
lost+found. This invokes the UNREF error condition in
Phase 4. Possible problem with access modes of lost+found.

SORRY. NO SPACE IN lost+found DIRECTORY
There is no space to add another entry to the lost+found
directory in the root directory of the filesystem; fsck ignores
the request to link a directory in lost+found. This invokes
the UNREF error condition in Phase 4. Clean out unneces-
sary entries in lost+found or make lost+found larger.

DIR I=I1 CONNECTED. PARENT WAS I=]2
This is an advisory message indicating a directory i-node [/
was successfully connected to the lost+found directory. The
parent i-node /2 of the directory i-node /! is replaced by the
i-node number of the lost+found directory.

28 March 1991 Page 10

FSCK (ADM)

Phase 4: Check Reference Counts

FSCK (ADM)

This phase checks the link count information seen in Phases 2 and

Meaning of Yes/INo Responses—Phase 4

Prompt n(no) y(yes)
RECONNECT? || Ignores this error con- | Reconnect i-node [to
dition. filesystem in the direc-

This invokes a CLEAR | tory for lost files (usu-

error condition later in | ally lost+found).

Phase 4. This can cause a
lost+found error condi-
tion in this phase if
there are problems con-
necting i-node [to
lost+found.

CLEAR? Ignores the error condi- | Deallocates the i-node
tion. by zeroing its contents.

A NO response is only

appropriate if the user

intends to take other

measures to fix the

problem.

ADJUST? Ignores the error condi- | Replaces link count of

tion. file i-node I with Y.

A NO response is only

appropriate if the user

intends to take other

measures to fix the

problem.

FIX? Ignores the error condi- | Replaces count in
tion. super-block by actual

A NO response is only | count.

appropriate if the user

intends to take other

measures to fix the

problem.

Phase 4 Error Messages

UNREF FILE I=I OWNER=0O MODE=M SIZE=S MTIME=T
(RECONNECT?)
I-node 7 was not connected to a directory entry when the
filesystem was traversed. The owner O, mode M, size S, and

28 March 1991

Page 11

FSCK (ADM) FSCK (ADM)

modify time T of i-node [are printed. If the -n option is
omitted and the filesystem is not mounted, empty files are
cleared automatically. Nonempty files are not cleared.

SORRY. NO lost+found DIRECTORY
There is no lost+found directory in the root directory of the
filesystem; fsck ignores the request to link a file in
lost+found. This invokes the CLEAR error condition later
in Phase 4. Possible problem with access modes of
lost+found.

SORRY. NO SPACE IN lost+found DIRECTORY
There is no space to add another entry to the lost+found
directory in the root directory of the filesystem; fsck ignores
the request to link a file in lost+found. This invokes the
CLEAR error condition later in Phase 4. Check size and
contents of lost+found.

(CLEAR)
The i-node mentioned in the immediately previous UNREF
error condition cannot be reconnected.

LINK COUNT FILE I=I OWNER=O MODE=M SIZE=S
MTIME=T COUNT=X SHOULD BE Y (ADJUST?)
The link count for i-node I, which is a file, is X but should be
Y. The owner O, mode M, size S, and modify time T are
printed.

LINK COUNT DIR I=I OWNER=O MODE=M SIZE=S
MTIME=T COUNT=X SHOULD BE Y (ADJUST?)
The link count for i-node I, which is a directory, is X but
should be Y. The owner O, mode M, size S, and modify time
T of directory i-node I are printed.

LINK COUNT F I=I OWNER=0 MODE=M SIZE=S MTIME=T
COUNT=X SHOULD BE Y (ADJUST?)
The link count for F i-node I is X but should be Y. The
filename F, owner O, mode M, size S, and modify time T are
printed.

UNREF FILE I=I CWNER=0 MODE=M SIZE=S MTIME=T

(CLEAR?)
I-node I, which is a file, was not connected to a directory
entry when the filesystem was traversed. The owner O,
mode M, size S, and modify time T of i-node [are printed. If
the -n option is omitted and the filesystem is not mounted,
empty files are cleared automatically. Nonempty files are
not cleared.

28 March 1991 Page 12

FSCK (ADM) FSCK (ADM)

UNREF DIR I=I OWNER=0O MODE=M SIZE=S MTIME=T

(CLEAR?)
I-node I, which is a directory, was not connected to a direc-
tory entry when the filesystem was traversed. The owner O,
mode M, size S, and modify time T of i-node / are printed. If
the -n option is omitted and the filesystem is not mounted,
empty directories are cleared aatomatically. Nonempty
directories are not cleared.

BAD/DUP FILE I=l OWNER=0 MODE=M SIZE=S MTIME=T
(CLEAR?)
Phase 1 or Phase 1B found duplicate blocks or bad blocks
associated with file i-node I. The owner O, mode M, size S,
and modify time T of i-node / are printed.

BAD/DUP DIR I=I OWNER=0 MODE=M SIZE=S MTIME=T
(CLEAR?)
Phase 1 or Phase 1B found duplicate blocks or bad blocks
associated with directory i-node I. The owner O, mode M,
size §, and modify time T of i-node / are printed.

FREE INODE COUNT WRONG IN SUPERBLK (FIX?)
The actual count of the free i-nodes does not match the
count in the super-block of the filesystem. If the -g option is
specified, the count will be fixed automatically in the super-
block.

Phase 5: Check Free List
This phase checks the free-block list.

Meaning of Yes/INo Responses—Phase 5

Prompt n(no) y(yes)
CONTINUE? | Terminates the pro- | Ignores rest of the
gram. free-block list and con-

tinue execution of fsck.
This error condition
will always invoke
BAD BLKS IN FREE
LIST error condition
later in Phase 5.

(Continued)

28 March 1991 Page 13

FSCK (ADM) FSCK (ADM)
Prompt n(no) y(yes)

FIX? Ignores the error condi- | Replaces count in
tion. super-block by actual
A NO response is only | count.
appropriate if the user
intends to take other
measures to fix the
problem.

SALVAGE? | Ignores the error condi- | Replaces actual free-

tion.

A NO response is only
appropriate if the user
intends to take other
measures to fix the
problem.

block list with a new
free-block list.

The new free-block list
will be ordered accord-
ing to the gap and
cylinder specs of the -s
or -§ option to reduce
time spent waiting for
the disk to rotate into
position.

28 March 1991

Phase 5 Error Messages

EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE?)
The free-block list contains more than a tolerable number
(usually 10) of blocks with a value less than the first data
block in the filesystem or greater than the last block in the
filesystem.

EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE?)
The free-block list contains more than a tolerable number
(usually 10) of blocks claimed by i-nodes or earlier parts of
the free-block list.

BAD FREEBLK COUNT
The count of free blocks in a free-block list is greater than
50 or less than 0. This error condition will always invoke
the BAD FREE LIST condition later in Phase 5.

X BAD BLKS IN FREE LIST
X blocks in the free-block list have a block number lower
than the first data block in the filesystem or greater than the
last block in the filesystem. This error condition will always
invoke the BAD FREE LIST condition later in Phase 5.

Page 14

FSCK (ADM) FSCK (ADM)

X DUP BLKS IN FREE LIST
X blocks claimed by i-nodes or earlier parts of the free-block
list were found in the free-block list. This error condition
will always invoke the BAD FREE LIST condition later in
Phase 5.

X BLK(S) MISSING
X blocks unused by the filesystem were not found in the
free-block list. This error condition will always invoke the
BAD FREE LIST condition later in Phase 5.

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX?)
The actual count of free blocks does not match the count in
the super-block of the filesystem.

BAD FREE LIST (SALVAGE?)
This message is always preceded by one or more of the
Phase 5 information messages. If the -g option is specified,
the free-block list will be salvaged automatically.

Phase 6: Salvage Free List

This phase reconstructs the free-block list. It has one possible error
condition that results from bad blocks-per-cylinder and gap values.

Phase 6 Error Messages

DEFAULT FREE-BLOCK LIST SPACING ASSUMED
This is an advisory message indicating the blocks-to-skip
(gap) is greater than the blocks-per-cylinder, the blocks-to-
skip is less than 1, the blocks-per-cylinder is less than 1, or
the blocks-per-cylinder is greater than 500. The values of 7
blocks-to-skip and 400 blocks-per-cylinder are used.

Cleanup Phase

Once a filesystem has been checked, a few cleanup functions are per-
formed. The cleanup phase displays advisory messages about the
filesystem and status of the filesystem.

Cleanup Phase Messages

X files Y blocks Z free
This is an advisory message indicating that the filesystem
checked contained X files using Y blocks leaving Z blocks
free in the filesystem.

**¥4% REMOUNTING THE ROOT FILESYSTEM **#*##

28 March 1991 Page 15

FSCK (ADM) FSCK (ADM)

This is an advisory message indicating the root filesystem
was remounted. Appears when the -rr option was specified.

x++ FILE SYSTEM WAS MODIFIED *****

This is an advisory message indicating that the current
filesystem was modified by fsck.

28 March 1991 Page 16

FSDB (ADM) FSDB (ADM)

Name

fsdb - File system debugger.

Syntax
letc/fsdb special [-]

Description

fsdb can be used to patch up a damaged file system after a crash. It
has conversions to translate block and i-numbers into their corre-
sponding disk addresses. Also included are mnemonic offsets to
access different parts of an i-node. These greatly simplify the process
of correcting control block entries or descending the file system tree.

Jsdb contains several error-checking routines to verify i-node and
block addresses. These can be disabled if necessary by invoking fsdb
with the optional - argument or by the use of the O symbol. (fsdb
reads the i-size and f-size entries from the superblock of the file sys-
tem as the basis for these checks.)

Numbers are considered decimal by default. Octal numbers must be
prefixed with a zero. During any assignment operation, numbers are
checked for a possible truncation error due to a size mismatch
between source and destination.

Jsdb reads a block at a time and will therefore work with raw as well
as block I/O. A buffer management routine is used to retain commonly
used blocks of data in order to reduce the number of read system calls.
All assignment operations result in an immediate write-through of the
corresponding block.

The symbols recognized by fsdb are:
absolute address
i convert from i-number to i-node address
b convert to block address
d directory slot offset
+,- address arithmetic
q quit
>,< save, restore an address

= numerical assignment
= incremental assignment

=- decremental assignment
=" character string assignment
4] error checking flip flop

p general print facilities

28 March 1991 Page 1

FSDB (ADM) FSDB (ADM)

file print facility
byte mode

word mode
double word mode
escape to shell

~ogwe

The print facilities generate a formatted output in various styles. The
current address is normalized to an appropriate boundary before print-
ing begins. It advances with the printing and is left at the address of
the last item printed. The output can be terminated at any time by typ-
ing the delete character. If a number follows the p symbol, that many
entries are printed. A check is made to detect block boundary
overflows since logically sequential blocks are generally not physi-
cally sequential. If a count of zero is used, all entries to the end of the
current block are printed. The print options available are:

print as i-nodes

print as directories
print as octal words
print as decimal words
print as characters
print as octal bytes

TOoo Q™

The f symbol is used to print data blocks associated with the current
i-node. If followed by a number, that block of the file is printed.
(Blocks are numbered from zero.) The desired print option letter fol-
lows the block number, if present, or the f symbol. This print facility
works for small as well as large files. It checks for special devices and
that the block pointers used to find the data are not zero.

Dots, tabs, and spaces may be used as function delimiters but are not
necessary. A line with just a new-line character will increment the
current address by the size of the data type last printed. That is, the
address is set to the next byte, word, double word, directory entry or
i-node, allowing the user to step through a region of a file system. In-
formation is printed in a format appropriate to the data type. Bytes,
words and double words are displayed with the octal address followed
by the value in octal and decimal. A .B or .D is appended to the
address for byte and double word values, respectively. Directories are
printed as a directory slot offset followed by the decimal i-number and
the character representation of the eniry name. I-nodes are printed
with labeled fields describing each element.

The following mnemonics are used for i-node examination and refer to
the current working i-node:

md mode

In link count

uid user ID number
gid group ID number

28 March 1991 Page 2

FSDB (ADM)

Sz
a#
at
mt
maj
min

Examples

386i

In=4
In=+1

fc

2i.fd

dsi.fc

512B.p0o
2i.a0b.d7=3

2i.a0b.p3d

d7.nm="name"

a2b.p0d

28 March 1991

FSDB (ADM)

file size

data block numbers (0 - 12)
access time

modification time

major device number
minor device number

prints i-number 386 in an i-node format. This now
becomes the current working i-node.

changes the link count for the working i-node to 4.
increments the link count by 1.

prints, in ASCII, block zero of the file associated
with the working i-node.

prints the first 32 directory entries for the root
1-node of this file system.

changes the current i-node to that associated with
the Sth directory entry (numbered from zero)
found from the above command. The first logical
block of the file is then printed in ASCIL,

prints the superblock of this file system in octal.

changes the i-number for the seventh directory slot
in the root directory to 3. This example also
shows how several operations can be combined on
one command line.

prints the first 3 entries in the root directory. This
example also shows how several operations can be
combined on one command line.

changes the name field in the directory slot to the
given string. Quotes are optional when used with
nm if the first character is alphabetic.

prints the third block of the current i-node as
directory entries.

Page 3

FSDB (ADM) FSDB (ADM)

See Also
fsck(ADM), dir(F), filesystem(F).

28 March 1991 Page 4

FSNAME (ADM) FSNAME (ADM)

Name

fsname- Prints or changes the name of a file system.

Syntax

fsname [-p] [-s name] /dev/device

Description

The /etc/fsname utility is used to print or change the name of a filesys-
tem. The options are:

-p Select the “pack” name field instead of the filesystem
name field.

-sname Changes the specified field in the superblock.

The default action is to print the name of the filesystem.

See Also
mkfs(C), ustat(S), filesystem (F)

28 March 1991 Page 1

FSPHOTO (ADM) FSPHOTO (ADM)

Name

fsphoto - Performs periodic semi-automated system backups

Syntax
fsphoto [-i] schedule [drive]

Description

fsphoto, in conjunction with fsave (ADM), provides a semi-automated
interface to backup(C) for backing-up XENIX filesystems. A human
operator is required to mount and dismount tapes or floppies at the
appropriate times, so some interaction is necessary, but all such
interaction is kept to a minimum to reduce the potential for human
error.

The selection and timing of backups for all filesystems is governed by
the schedule (ADM) database. The system administrator must set up
this file, and make arrangements to run fsphoto on the implicitly
defined schedule (normally once per weekday). fsphoto can be
invoked most easily from the sysadmin(ADM) menu. fsphoto inter-
prets schedule , and for each filesystem that should be backed-up on
that day, runs fsave to interact with the operator and backup the
filesystem without error.

The optional argument drive specifies the magtape or floppy device to
use; the default is specified in the schedule file.

Backups may be postponed (via fsave) or interrupted. The resulting
“partial’’ backups are automatically resumed the next time fsphoto is
run: Any missed filesystems are backed-up as if the original backup
had not been delayed. The -i flag ignores any pending partial backups.

If there is a pending partial backup, the normally scheduled backups
are not done. This means that if a partial backup is resumed, and the
normally scheduled backups are to be done, fsphoto must be run twice.

You must be the super-user to use this program.

Files
{usriliblsysadmin/schedule

Database describing which filesystems are to be backed-up when,
and at what dump level .

/dev/ity

Source of interactive input.

/ 28 March 1991 Page 1

FSPHOTO (ADM)

FSPHOTO (ADM)
fusr/lib/sysadmin/past
Record of filesystems successfully backed-up in the pending par-
tial backup.
/tmp/backup$$

Temporary file for recording successfully backed-up filesystems.
See Also
fsave(ADM), schedule(ADM), backup(C), basename(C)
Diagnostics

Sfsphoto complains of syntax errors in schedule, and exits with a status
of 1.

fsphoto complains about illegal or incorrect arguments, and exits with
a status of 1.

An interrupt will cause an exit status of 2.
Notes

If a drive is explicitly given, the “raw” (/dev/r*) form of the device
should be used.

28 March 1991 Page 2

HALTSYS (ADM) HALTSYS (ADM)

Name

haltsys, reboot - Closes out the file systems and shuts down the sys-
tem.

Syntax
/etc/haltsys
fetc/reboot

Description
The haltsys utility performs a uadmin() system call (see uadmin(S)) to
flush out pending disk I/O, mark the file systems clean, and halt the
processor. haltsys takes effect immediately, so user processes should
be killed beforehand. shutdown(ADM) is recommended for normal
system shutdown, since it warns users, terminates processes, then calls
haltsys. Use haltsys directly only if you cannot run shutdown; for
example, because of some system problem.

The reboot command performs the same function as haltsys, except
the system is rebooted automatically afterwards.

Only the super-user can execute haltsys or reboot.

Notes
haltsys locks hard disk heads.

See Also
shutdn(S), uadmin(S), shutdown(ADM)

28 March 1991 Page 1

HDINSTALL (ADM) HDINSTALL (ADM)

Name

hdinstall - places newly-created kemel in default location.

Syntax
hdinstall

Description
When a new kemnel is created with the Link Kit, hdinstall must be
invoked to place the new kernel in /xenix. hdinstall moves the “old”
/xenix to a file called /xenix.old and copies /usr/sys/confixenix to
/xenix , the default location.

Files
fusr/sys/conf/xenix
/xenix
/xenix.old

Notes
Any kernel patches applied using scopatch(ADM) are added to hdin-
stall (XENIX-386 only).

See Also

configure(ADM), config(ADM), scopatch(ADM)

28 March 1991 Page 1

IDLEOUT (ADM) IDLEOUT (ADM)

Name

idleout - Logs out idle users.

Syntax

idleout [minutes | hours:minutes]

Description

The idleout command monitors line activity and logs out users whose
terminal remains idle longer than a specified period of time. Minutes
are assumed; if a colon appears in the number, hours are assumed.

The utility uses a default file, /etc/default/idleout, to indicate the inter-
val a user’s terminal may remain idle before being logged out. This
file has one entry:

IDLETIME=time

The time format is identical to that used on the command line. The
time specified in the default file is overridden by idletime if idletime
is specified on the command line. Note that, if idletime is zero, no
monitoring takes place and idle users are not logged out. You can
either run idleout from the command line, or, to have continuous cov-
erage, you must add the program name in /etc/rc.d/8/userdef to see to
it that the program is run each time the system is rebooted.

Files
fetc/default/idleout
fetc/utmp
fetc/wtmp
See Also
who(C), getut(S), kill(S)

28 March 1991 Page 1

INSTALL (ADM) INSTALL (ADM)

Name

install - Installation shell script.

Syntax
/etc/install [device]

Description

Jetc/install is the sh(C) script used to install XENIX distribution (or
application program) floppies. It performs the following tasks:

- Prompts for insertion of floppies.
- Extracts files using the tar(C) utility.

- Executes /once/init.* programs on each floppy
after they have been extracted.

- Removes any /once/init.* programs when the
installation is finished.

The optional argument to the command specifies the device used. The
default device is /dev/install.

Files
fetc/install

Jonce/init.*

28 March 1991 Page 1

IPCRM (ADM) IPCRM (ADM)

Name

ipcrm - Removes a message queue, semaphore set or shared memory
ID.

Syntax

ipcrm [options]

Description

ipcrm removes one or more specified messages, a semaphore or
shared memory identifiers. The identifiers are specified by the fol-
lowing options:

-q msqid removes the message queue identifier msqid from the
system and destroys the message queue and data struc-
ture associated with it.

-m shmid removes the shared memory identifier shmid from the
system. The shared memory segment and data structure
associated with it are destroyed after the last detach.

-8 semid removes the semaphore identifier semid from the sys-
tem and destroys the set of semaphores and data struc-
ture associated with it.

-Q msgkey removes the message queue identifier, created with key
msgkey, from the system and destroys the message
queue and data structure associated with it.

-M shmkey removes the shared memory identifier, created with key
shmkey, from the system. The shared memory segment
and data structure associated with it are destroyed after
the last detach.

-S semkey removes the semaphore identifier, created with key
semkey, from the system and destroys the set of sema-
phores and data structure associated with it.

The details of the removes are described in msgctl(S), shmctl(S), and

semctl(S). The identifiers and keys may be found by using

ipcs(ADM).
See Also

ipcs(ADM), msgctl(S), msgget(S), msgop(S), semctl(S), semget(S),
semop(S), shmctl(S), shmget(S), shmop(S)

28 March 1991 Page 1

IPCRM (ADM) IPCRM (ADM)

Note

ipcrm cannot be used to remove semaphores created using
creatsem(S) or to remove shared memory created using sdger(S).

28 March 1991 Page 2

IPCS (ADM) IPCS (ADM)

Name

ipcs - Reports the status of inter-process communication facilities.

Syntax

ipcs [options]

Description

ipcs prints certain information about active inter-process communica-
tion facilities. Without options, information is printed in short format
for message queues, shared memory, and semaphores that are
currently active in the system. Otherwise, the information that is dis-
played is controlled by the following options:

-q Print information about active message queues.
-m Print information about active shared memory segments.
-s Print information about active semaphores.

If any of the options -q, -m, or -s are specified, information about only
those indicated are displayed. If none of the three options are
specified, information about all three are displayed.

-b Print biggest allowable size information (maximum number of
bytes in messages on queue for message queues, size of segments
for shared memory, and number of semaphores in each set for
semaphores). See below, for the meaning of columns in a listing.

-¢ Print creator’s login name and group name. See below.

-0 Display information on outstanding usage (number of messages on
queue, total number of bytes in messages on queue, and the number
of processes attached to shared memory segments).

-p Display process number information. (Process ID of last process to
send a message and process ID of last process to receive a message
on message queues. It displays the process ID of the creating pro-
cess and the process ID of the last process to attach or detach on
shared memory segments.) See below.

-t Print time information. (Time of the last control operation that
changed the access permissions for all facilities. Time of last
msgsnd and last msgrev on message queues, last shmar and last
shmdt on shared memory, and last semop(S) on semaphores.) See
below.

-a Use all print oprions. (This is a shorthand notation for -b, -¢, -0,
-p, and -t.)

-C corefile
Use the file corefile in place of /dev/kmem.

-N namelist
The argument will be taken as the name of an alternate namelist
(/xenix is the default).

28 March 1991 Page 1

IPCS (ADM) IPCS (ADM)

The column headings and the meaning of the columns in an ipcs list-
ing are given below; the letters in parentheses indicate the options that
cause the corresponding heading to appear; all means that the heading
always appears. Note that these options only determine what informa-
tion is provided for each facility; they do not determine which facili-
ties will be listed.

T (all) Type of the facility:
q message queue;
m shared memory segment;
S semaphore.

ID (all) The identifier for the facility entry. Note that ID is
“X” for facilities created using creatsem(S) or
sdget(S).

KEY (all) The key used as an argument to msgget, semget, or
shmget to create the facility entry. (Note: The
key of a shared memory segment is changed to
IPC_PRIVATE from when the segment has been
removed until all processes attached to the seg-
ment detach it.)

MODE (all) The facility access modes and flags: The mode
consists of 11 characters that are interpreted as
follows:

The first two characters are:

R if a process is waiting on a msgrcv;

S if a process is waiting on a msgsnd,;

D if the associated shared memory segment
has been removed. It will disappear when
the last process attached to the segment
detaches it;

C if the associated shared memory segment
is to be cleared when the first attach is
executed;

- if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets
of three bits each. The first set refers to the
owner’s permissions; the next to permissions of
others in the user-group of the facility entry; and
the last to all others. Within each set, the first
character indicates permission to read, the second
character indicates permission to write or alter the
facility entry, and the last character is currently
unused.

28 March 1991 Page 2

IPCS (ADM)

OWNER
GROUP

CREATOR(a,c)

CGROUP
CBYTES
QNUM
QBYTES

LSPID
LRPID
STIME
RTIME
CTIME
NATTCH
SEGSZ
CPID
LPID
ATIME
DTIME
NSEMS
OTIME

(all)
(all)
(ac)
(a,0)
(a,0)

(a,b)

(ap)
(ap)
@t
@y
(ab)
(a0)
(a,b)
(ap)
(a,p)
(CRY
@y
(a,b)
€Y

28 March 1991

IPCS (ADM)

The permissions are indicated as follows:

r if read permission is granted,;

w if write permission is granted,;

a if alter permission is granted;

- if the indicated permission is not granted.
The login name of the owner of the facility entry.
The group name of the group of the owner of the
facility entry.

The login name of the creator of the facility entry.

The group name of the group of the creator of the
facility entry.

The number of bytes in messages currently out-
standing on the associated message queue.

The number of messages currently outstanding on
the associated message queune.

The maximum number of bytes allowed in mes-
sages outstanding on the associated message
queue.

The process ID of the last process to send a mes-
sage to the associated queue.

The process ID of the last process to receive a
message from the associated queue.

The time the last message was sent to the associ-
ated queue.

The time the last message was received from the
associated queue.

The time when the associated entry was created or
changed.

The number of processes attached to the associ-
ated shared memory segment.

The size of the associated shared memory seg-
ment.

The process ID of the creator of the shared mem-
ory entry.

The process ID of the last process to attach or
detach the shared memory segment.

The time the last attach was completed to the
associated shared memory segment.

The time the last detach was completed on the
associated shared memory segment.

The number of semaphores in the set associated
with the semaphore entry.

The time the last semaphore operation was com-
pleted on the set associated with the semaphore

entry.

Page 3

IPCS (ADM) IPCS (ADM)

Files
/xenix system namelist
/dev/kmem memory
fetc/passwd user names
fetc/group group names
See Also

creatsem(S), msgop(S), sdget(S), semop(S), shmop(S)
Notes

Things can change while ipcs is running; the picture it gives is only a
close approximation.

28 March 1991 Page 4

KBMODE (ADM) KBMODE (ADM)

Name

kbmode - Set keyboard mode or test keyboard support.

Syntax

kbmode command [file]

Description
This command can be used to determine if your system keyboard sup-
ports AT mode. If it does, this utility can change the keyboard mode
between AT mode and PC/XT compatibility mode.

If the file argument is specified, it should be a tty device of one of the
multiscreens of the keyboard’s group.

Valid commands are:

test - determine if keyboard supports AT mode
at - set keyboard to AT mode
xt - set keyboard to PC/XT compatibility mode

Notes
Some keyboards look like an AT keyboard but do not support AT

mode. Setting such a keyboard to AT mode will render it useless,
unless it can be set to XT mode from another (serial) terminal.

See Also
keyboard(HW)

28 March 1991 Page 1

LPADMIN (ADM) LPADMIN (ADM)

Name

Ipadmin - Configures the lineprinter spooling system.

Syntax

fusr/lib/ipadmin -p printer [options...]
fusr/lib/ipadmin -x dest
fusr/lib/lpadmin -d[dest]

Description

Ipadmin configures the lineprinter spooling system to describe print-
ers, classes, and devices. It is used to add and remove destinations,
change membership in classes, change devices for printers, change
printer interface programs, and to change the system default destina-
tion. System managers may also use /pinit (ADM) to add new printing
destinations to the system. Ipadmin may not be used when the
lineprinter scheduler, Ipsched(ADM), is running, except where noted
below.

Exactly one of the -p, -d, or -x options must be present for every legal
invocation of lpadmin.

-d[dest] Makes dest, an existing destination, the new system
default destination. If dest is not supplied, then there is
no system default destination. This option may be used
when Ipsched(ADM) is running. No other options are
allowed with -d.

-xdest Removes destination dest from the LP system. If dest is a
printer and is the only member of a class, then the class
will be deleted, too. No other options are allowed with -
X.

-pprinter Names a printer to which all of the options below refer.
If printer does not exist then it will be created.

The following options are only useful with -p and may appear in any
order. For ease of discussion, the printer will be referred to as p
below.

-cclass Inserts printer p into the specified class. Class will be
created if it does not already exist.

-eprinter Copies an existing printer’s interface program to be the
new interface program for p.

28 March 1991 Page 1

LPADMIN (ADM) LPADMIN (ADM)

-h Indicates that the device associated with p is hardwired.
This option is assumed when creating a new printer
unless the -1 option is supplied.

-linterface Establishes a new interface program for p. Interface is
the pathname of the new program.

-1 Indicates that the device associated with p is a login ter-
minal. The lineprinter scheduler, Ipsched(ADM), dis-
ables all login terminals used as printers automatically
each time it is started. Before re-enabling p, its current
device should be established using Ipadmin.

-mmnodel specifies model interface program to be used (See
“Models™).

-rclass Removes printer p from the specified class. If p is the
last member of the class, then the class will be removed.

-vdevice Associates a new device with printer p. Device is the
pathname of a file that is writable by the print system
manager, /p. Note that there is nothing to stop a print
systern manager from associating the same device with
more than one printer. If only the -p and -v options are
supplied, then /padmin may be used while the scheduler
is running.

Restrictions -

When creating a new printer, the -v option and one of the -e, -i, or -m
options must be supplied. Only one of the -e, -i, or -m options may be
supplied. The -h and -l keyletters are mutually exclusive. Printer and
class names may be no longer than 14 characters and must consist
entirely of the characters A-Z,a-z,0-9 and _ (underscore).

Models

Model printer interface programs are shell procedures which interface
between Ipsched(ADM) and devices. Models reside in the directory
fusr/spool/lp/model and may be used as is with I[padmin -m. Models
should have 644 permission if owned by /p & bin, or 664 permission if
owned by bin & bin. System managers may modify copies of models
and then use Ipadmin -i to associate them with printers. If printers
have special options, these can be included in the interface program.
Users can then choose an option with the /p -0 command.

Several model interface programs are supplied.

28 March 1991 Page 2

LPADMIN (ADM) LPADMIN (ADM)

Serial printers that need delays or other special stty(C) options (such
as mapping CR to newline) should have this string included in the
model interface program:
stty [options ...] 0<&1
Files

fust/spool/lp/*

See Also
accept(C), enable(C), Ip(C), Ipinit(ADM), lpsched(ADM), Ipstat(C)

28 March 1991 Page 3

LPINIT (ADM) LPINIT (ADM)

Name

Ipinit - Adds, reconfigures and maintains printers.

Syntax
fetc/Ipinit

Description

Ipinit is a shell script for configuring and adding new lineprinters to a
system, and for maintaining and reconfiguring existing printers. It
should only be executed by the system manager.

Ipinit asks a series of questions for which the default answers are dis-
played. You can press RETURN to accept the default value or type in
anew value.

Ipinit displays a menu with the following options:
1) Add a new printer
2) Remove a printer
3) Reconfigure an existing printer
4) Assign a system default printer
5) Print lp status information

When reconfiguring an existing printer the following options are
given:

1) Insert a printer into a class

2) Remove a printer from a class

3) Install a new interface program for a printer

4) Associate a new device with a printer

Information which the system manager may be asked to supply
includes:
- The printer device (e.g. /dev/lp0).
- The printer character mode. (The default value is non-
interpretive. See “Notes” below for more information.)
- The printer name (default is printer).
- The pathname of the interface program (several example pro-
grams are supported).
- The name of a class into which to insert or remove a printer.
- Whether the printer being added or reconfigured is a parallel,
serial, or remote printer.
- Whether the printer being added or reconfigured requires special
handling for carriage returns and line feeds.

The printer name can be any combination of up to 14 alphanumeric
characters or underscores. A printer interface program can be a shell
script, C program, or any executable program; or the model interface

28 March 1991 Page 1

LPINIT (ADM) LPINIT (ADM)

program, /usr/spool/lp/model/dumb, can be copied and modified.
(See the “Models” section of the lpadmin(ADM) manual page.)

‘When adding a new printer, Ipinit changes the acceptance status of the
new lineprinter to “accept,” and enables it to print files. /etc/ Ipinit
then asks if the new printer will be the default printing destination.
All nonspecific print requests are routed to the default destination (see

Ip(C)).

If the line printer scheduler is running when /pinit is invoked, the user
is reminded that any jobs which are printing may be interrupted and
the user is asked if he wants to continue. The scheduler is restarted
when Ipinit exits only if it was running when Ipinit was invoked or if a
new printer was added.

The steps to configure a new printer can be taken separately, (see
Ipadmin(ADM), accept(C), enable(C), and Ipsched(ADM) for more
information).

Files

Jusr/lib/mkdev/lp
fetc/lpinit

Notes

Some printers (principally Tandy) require conversions for line-feeds,
tabs and form-feeds. In interpretive mode, the system sends line-feeds
as carriage-returns, tabs as the appropriate number of spaces, and
form-feeds as the appropriate number of carriage-returns. In non-
interpretive mode (the default value), the system sends every charac-
ter to the printer unmodified.

If you are adding a parallel printer you are asked, after the menu of
interface scripts, if the printer requires conversions for line-feed, tab
and form-feed. If the printer does not, press RETURN. If the printer
does, press y. This selects interpretive mode and assigns the device
/deviip[012]f to the printer.

If you choose interpretive mode, note the following:

You must be sure that the printer’s actual top-of-form corresponds
to top-of-form as interpreted by the printer driver.

If you run a program that does any non-standard line spacing, such
as half-line feeds or 8 lines per inch, the printer’s top-of-form will
be out of place in subsequent output.

If your output contains characters that are not uniformly spaced,
the tab translation may not work properly.

28 March 1991 Page 2

LPINIT (ADM) LPINIT (ADM)

Note that if your printer can be set (for example, with dip switches) to
treat line-feed as newline and carriage-return as carriage-return
(without a line-feed), and if the printer can do its own tabs and form-
feeds, you should select non-interpretive mode. If your printer cannot
automatically do tabs, you can still use non-interpretive mode by
using the -e option of the pr(C) command when printing files that con-
tain tabs.

See Also
accept(C), enable(C), Ip(C), lpadmin(ADM), Ipsched(ADM), pr(C)

28 March 1991 Page 3

LPSCHED (ADM) LPSCHED (ADM)

Name

Ipsched, Ipshut, Ipmove - Starts/stops the lineprinter request scheduler
and moves requests.

Syntax

fusr/lib/lpsched

fusr/lib/ipshut

fusr/lib/lpmove requests destination
fusr/lib/tpmove destl dest2

Description
Ipsched schedules requests taken by Ip(C) for printing on lineprinters.

Ipshut shuts down the lineprinter scheduler. All printers that are print-
ing at the time Ipshut is invoked will stop printing. Requests that were
printing at the time a printer was shut down will be reprinted in their
entirety after I[psched is started again. All lineprinter commands per-
form their functions even when Ipsched is not running.

Ipmove moves requests that were queued by Ip(C) between lineprinter
destinations. This command may be used only when Ipsched is not
running. The first form of the command moves the named requests to
the lineprinter destination. Requests are request IDs as returned by
Ip(C). The second form moves all requests for destination dest! to
destination dest2. As a side effect, Ip(C) will reject requests for
destl .

Note that [pmove never checks the acceptance status for the new desti-
nation when moving requests (see accept (C)).

Files

fusr/spool/lp/*

See Also
accept(C), enable(C), Ip(C), Ipadmin(ADM), Ipinit(ADM), Ipstat(C)

28 March 1991 Page 1

MAKEKEY (ADM) MAKEKFEY (ADM)

Name

makekey - Generates an encryption key.

Syntax

fusr/lib/makekey

Description

makekey improves the usefulness of encryption schemes by increasing
the amount of time required to search the key space. It reads 10 bytes
from its standard input, and writes 13 bytes on its standard output.
The output depends on the input in a way that is intended to be diffi-
cult to compute (i.e., to require a substantial fraction of a second).

The first 8 input bytes (the input key) can be arbitrary ASCII charac-
ters. The last 2 input bytes (the salr) are best chosen from the set of
digits, dot (.), slash (/), and uppercase and lowercase letters. The salt
characters are repeated as the first 2 characters of the output. The
remaining 11 output characters are chosen from the same set as the
salt and constitute the output key .

The transformation performed is essentially the following: the salt is
used to select one of 4,096 cryptographic machines all based on the
National Bureau of Standards DES algorithm, but broken in 4,096 dif-
ferent ways. Using the input key as the key, a constant string is fed
into the machine and recirculated. The 64 bits that come out are dis-
tributed into the 66 output key bits in the result.

Notes
Distribution of the encryption libraries and utilities is regulated by the
U.S. Government and are not available to sites outside of the United
States and its territories. Because we cannot control the destination of
the software, these utilities are not included in the standard product. If

your site is within the U.S. or its territories, you can obtain the encryp-
tion software through your product distributor or reseller.

See Also

passwd(F)

28 March 1991 Page 1

MKDEV (ADM) MKDEV (ADM)

Name

mkdev - Calls scripts to add peripheral devices.

Syntax

letc/mkdev lp

/etc/mkdev hd

letc/mkdev serial
/etc/mkdev fs [device file]
fete/mkdev fd

fetc/mkdev tape
/etc/mkdev shl
/etc/mkdev mouse

Description

midev calls the scripts to create the requested type of device file(s).
mkdeyv calls scripts found in the directory /usr/lib/mkdev. If no argu-
ments are listed, mkdev prints a usage message.

letc/mkdev Ip creates device files for use with line printers. (See
IpinittADM).)

letc/mkdev hd creates device files for use with a peripheral hard disk.
The device files for an internal hard disk already exist. kdinit invokes
the following utilities, where appropriate: dparam(ADM),
badtrk(ADM), fdisk(ADM), and divwy(ADM).

letc/mkdev serial creates device files for use with serial cards. The de-
vice files for the first and second ports already exist. Additional de-
vice files must be created for the ports added when expansion cards
are added to the system. The /etc/ttys and /etc/ttytype files are
updated.

letcimkdev fs performs the system maintenance tasks required to add
a new filesystem to the system once the device is created (mknod(C))
and the filesystem is made (mkfs(ADM)). It creates the /file and
[file/lost+found directories, reserves slots in the lost+found directory,
(if either already exist, they are used unmodified) and modifies
letc/checklist, /etc/default/filesys and /etc/default to check
(fsck(ADM)) and mount (mount(ADM), mnt(C)) the filesystem as
appropriate. It is usually used in conjunction with mkdev hd when
adding a second hard disk to the system or with mkdev fd when creat-
ing a mountable filesystem on a floppy, but can be used on any addi-
tional filesystem (for example, on a large internal hard disk).

letc/mkdev fd creates bootable and root file system floppy disks. The

three basic options are: boot and root on a single disk (96 or 135 tpi
only), boot and root pair (48 tpi) or filesystem only. Use with mkdev

28 March 1991 Page 1

MKDEV (ADM) MKDEV (ADM)

/s when creating a filesystem-only floppy.

Several boot and/or root floppies can be created during a single mkdev
fd session, but mkdev does not display a prompt to remove the first
floppy and insert the next one. Insert the next floppy when mkdev
prompts “Would you like to format the floppy first? (y/n).”

letc/mkdev tape configures the tape driver in preparation for linking a
new kernel that includes tape support. It adds a standard quarter-inch
cartridge tape driver and/or a mini-cartridge tape driver.

The current driver configurations can be displayed, and changed if
necessary. A zero in any of the fields means the driver automatically
detects the type of tape device installed and uses the built-in values
for that device. If the autoconfiguration values are not correct for your
drive, refer to your hardware manual for the correct values, configure
the driver and relink the new kemel. mkdev tape can also be used to
remove a tape driver from the existing kernel.

letc/mkdev shl initializes necessary devices and configures kernel
parameters associated with the number of shell layers sessions avail-
able on the system.

letc/mkdev mouse initializes necessary devices and configures the sys-
tem to use any supported mouse.

Once the driver is configured, you are prompted for re-linking the ker-
nel. The appropriate devices in /dev are created.

The various init scripts prompt for the information necessary to create
the devices.

Files
fusr/lib/mkdev/*

See Also
badtrk(ADM), divvy(ADM), dparam(ADM), fd(HW), fdisk(ADM),

filesys(F), format(C), hd(HW), Ip(HW), lpinit(ADM), mkfs(ADM),
mknod(C), mount(ADM), serial(HW), usemouse(C), tape(HW).

28 March 1991 Page 2

MKFS (ADM) MKFS (ADM)

Name

mkfs - Constructs a file system.

Syntax

fetc/mkfs [-y] [-n] special blocks[: inodes] {gap inblocks]
fetc/mkfs [-y] [-n] special proto [gap inblocks]
[-s blocks [: inodes]]

Description

mikfs constructs a file system by writing on the special file special ,
according to the directions found in the remainder of the command
line.

If it appears that the special file contains a file system, operator con-
firmation is requested before overwriting the data. The -y “yes”
option overrides this, and writes over any existing data without ques-
tion. The -n option causes mkfs to terminate without question if the
target contains an existing file system. The check used is to read
block one from the target device (block one is the super-block) and
see whether the bytes are the same. If they are not, this is taken to be
meaningful data and confirmation is requested.

If the second argument is given as a string of digits, mkfs builds a file
system with a single empty directory on it. The size of the file system
is the value of blocks interpreted as a decimal number. The boot pro-
gram is left uninitialized. If the number of inodes is specified, then
this number should be the same as the estimated number of files in the
file system. If the optional number of inodes is not given, the number
of inodes is calculated as a function of the system file size.

If the second argument is a file name that can be opened, mikfs
assumes it to be a prototype file, proto, and takes its directions from
that file. The prototype file contains tokens separated by spaces or
newlines. The first token is the name of a file to be copied onto block
zero as the bootstrap program. The bootstrap program specified
should already be stripped of the header (see strip(CP)). If the header
has not been stripped from the bootstrap program, then mkfs issues a
warning. The second token is a number specifying the size of the cre-
ated file system. Typically, it will have been the number of blocks on
the device, perhaps diminished by space for swapping. The next token
is the i-list size in blocks. The next set of tokens comprise the specifi-
cation for the root file. File specifications consist of tokens giving the
mode, the user ID, the group ID, and the initial contents of the file.
The syntax of the contents field depends on the mode.

28 March 1991 Page 1

MKFS (ADM) MKFS (ADM)

The mode token for a file is a 6 character string. The first character
specifies the type of the file. (The characters -bed specify regular,
block special, character special and directory files respectively.) The
second character of the type is either u or - to specify set-user-ID
mode or not. The third is g or - for the set-group-ID mode. The rest of
the mode is a three digit octal number giving the owner, group, and
other read, write, execute permissions; see chmod(C).

Two decimal number tokens come after the mode; they specify the
user and group ID’s of the owner of the file.

If the file is a regular file, the next token is a pathname whose con-
tents and size are copied. If the file is a block or character special file,
two decimal number tokens follow which give the major and minor
device numbers. If the file is a directory, mkfs makes the entries . and
.. and then reads a list of names and (recursively) file specifications
for the entries in the directory. The scan is terminated with the token

A sample prototype specification follows:

/stand/diskboot
4872110
d--77731
usr d--77731
sh ---755 31 /bin/sh
kerg$ d--75561
b0 b-6443100
c0 ¢c--6443100
$
$

In the second version of the command the -s option is a command-line
override of the size and number of inodes in the proto file.

In both commands, the disk interleaving factors, gap and inblocks ,
can be specified. The interleaving factors are a disk hardware func-

tion and are described in detail in the XENIX System Administrator’s
Guide.

See Also
chmod(C), filesystem(F), dir(F), strip(CP)

Notes

There is no way to specify links when using a prototype file. If the
number of inodes is specified on the command line, then the max-
imum number of inodes in the file system is 65500. This utility uses
1K blocks.

28 March 1991 Page 2

MKUSER (ADM) MKUSER (ADM)

Name

mkuser - Adds a login ID to the system.

Syntax

/etc/mkuser

Description

mkuser is used to add more user login IDs to the system. It is the pre-
ferred method for adding new users to the system, since it handles all
directory creation and password file updating. To add a new user to
the system, mkuser requires six pieces of information:

¢ login name

e userID

e groupID

¢ user’s login shell

¢ initia] password

e comment string for the /etc/passwd file (optional).

The login name is checked against certain criteria (i.e., it must be at
least three characters and begin with a lowercase letter). The pass-
word must follow standard XENIX conventions (see passwd(F)). The
password file comment field can be up to 35 characters of information.

mkuser prompts for the shell type to assign to the new user. The selec-
tion of shells is determined by the number of shells installed on the
system. The shells included in the Run Time System are the standard
(Bourne) shell, sk, and the restricted shell, rsh. Each installed shell is
represented by a subdirectory /usr/lib/mkuser/shell, which is installed
along with the given shell package (see custom(ADM)). The shell
subdirectory contains the files needed to set up the user’s environment
to use that shell. These files are mkuser.defs and mkuser.init, plus
any additional files that are specific to a given shell. (For example,
/usr/lib/mkuser/csh/cshrc and /usr/lib/mkuser/csh/login are the
standard .cshre and .login files used by the csh and are copied to the
user’s home directory when mkuser is run.) The C shell and Korn
shell (XENIX-386 only) are additional shells that can be loaded on the
system with custom(ADM).

mkuser takes some of its parameters from a default file,
letc/default/mkuser. An example default file is:

28 March 1991 Page 1

MKUSER (ADM) MKUSER (ADM)

HOME-=/usr
HOMEMODE=0755
PROFMODE=0640
MAILMODE=0640

The HOME entry is the user’s home directory, the HOMEMODE entry
is the permissions for the user’s home directory, the PROFMODE
entry is the permissions for the .login, .profile and .cshrc files or other
shell-specific files, and the MAILMODE entry specifies the permis-
sions of the user’s mailbox.

This file can be edited by the super-user to change these defaults.
These defaults can also be defined on a per-shell basis by adding simi-
lar entries to the appropriate /usr/lib/mkuser/shell/mkuser.def file.
In addition, there are other files in /usr/lib/mkuser that can be cus-
tomized. These include /usr/lib/mkuser/lib/mail, which is the stan-
dard mail message sent to new users, /usr/lib/mkuser/lib/help, which
is the explanation displayed by mkuser at startup,
fusr/lib/mkuser/shell/mKkuser.init, and any of the shell related files.

mbkuser allocates user IDs starting at 200, or the largest number used in
the password file. (The operator can also assign a specific user ID to a
new user. It must be greater than or equal to 200 and must not already
exist.) The default group ID for new users is 50. The minimum group
ID allowed for user accounts is 50. The operator is given the choice of
assigning the user to the default group or another existing group (only
those groups with IDs greater than or equal to 50 are displayed, but
any group can be selected). In addition, a new group can be created, in
which case the operator may specify the name or ID (or both). If only
the name is specified, the next available number is assigned.

mkuser can only be executed by the super-user.
The minimum length of a legal password, and the minimum and max-
imum number of weeks used in password aging are specified in
fetc/default/passwd by the variables PASSLENGTH, MINWEEKS and
MAXWEEKS. For example, these variables might be set as follows:
PASSLENGTH=6
MINWEEKS=2
MAXWEEKS=6
Files
Jetc/passwd
fust/spool/mail/username

Jetc/default/mkuser

28 March 1991 Page 2

MKUSER (ADM) MKUSER (ADM)

fetc/default/passwd
fusr/lib/mkuser/mkuser/lib/help
fusr/lib/mkuser/mkuser/lib/mail
Jusr/lib/mkuser/shell/mkuser.defs
/ust/lib/mkuser/shell/mkuser.init
[ust/lib/mkuser/shell/shellfiles

See Also

¢hmod(C), custom(ADM), sh(C), csh(C), ksh(C), rsh(C), vsh(C),
group(F), passwd(F), pwadmin(ADM), rmuser(ADM)

28 March 1991 Page 3

MOUNT (ADM) MOUNT (ADM)

Name

mount - Mounts a file structure.

Syntax

fetc/mount [[-r] special-device directory] [readonly]

Description

mount announces to the system that a removable file structure is
present on special-device. The file structure is mounted on directory.
The directory must already exist; it becomes the name of the root of
the newly mounted file structure. directory should be empty. If direc-
tory contains files, they will appear to have been removed while the
directory is mounted and reappear when the directory is unmounted.

The mount and umount commands maintain a table of mounted de-
vices. If each special device is invoked without any arguments, mount
displays the name of the device, and the directory name of the
mounted file structure, whether the file structure is read-only, and the
date it was mounted.

The -r option mounts the device read-only. Physically write-protected
file structures must be mounted in this way or errors occur when
access times are updated, whether or not any explicit write is
attempted.

umount removes the removable file structure previously mounted on
device special-device.

Files
fetc/mnttab Mount table
fetc/default/filesys Filesystem data
See Also

umount{ADM), mnt(C), mount(S), mnttab(F), default(F)
Diagnostics

mount issues a warning if the file structure to be mounted is currently
mounted under another name.

28 March 1991 Page 1

MOUNT (ADM) MOUNT (ADM)

Busy file structures cannot be dismounted with umoun:. A file struc-
ture is busy if it contains an open file or some user’s working direc-

tory.

Notes
Only the super-user can use the mount command.

Some degree of validation is done on the file structure, however it is
generally unwise to mount corrupt file structures.

Be warned that when in single-user mode, the commands that look in
fetc/mnttab for default arguments (for example df, ncheck, quot,
mount, and umount) give either incorrect results (due to a corrupt
/etc/mnttab from a non-shutdown stoppage) or no results (due to an
empty mnttab from a shutdown stoppage).

When multi-user, this is not a problem; /etc/re initializes /etc/mnttab
to contain only /dev/root and subsequent mounts update it appropri-
ately.

The mount(ADM) and umount(ADM) commands use a lock file to
guarantee exclusive access to /etc/mnttab. The commands which just
read it (those mentioned above) do not, so it is possible that they may
hit a window, which is corrupt. This is not a problem in practice since
mount and umount are not frequent operations. Block devices must be
used, not raw (character) devices.

When mounting a file system on a floppy disk you need not use the
same directory each time. However, if you do, the full pathnames for
the files are consistent with each use.

Floppy disks must be unprotected (no write-protect tab) to be mounted
as a filesystem unless the -r option is used. If floppy disks are write-
protected, they must be mounted with the -r or readonly flag.
Always unmount filesystems on floppy disks before removing them
from the floppy drive. Failure to do so requires running fsck the next
time the disk 1s mounted.

28 March 1991 Page 2

MVDIR (ADM) MVDIR (ADM)

Name

mvdir - Moves a directory.

Syntax

/etc/mvdir dimame name

Description
mvdir moves directories within a file system. The directory (dir-
name) must be a directory. If there is already a directory or file with
the same name as name, mvdir fails.

Neither name may be a sub-set of the other. For example, you cannot
move a directory named /x/y to /x/y/z, and vice versa.

Notes

You must be root to use mvdir.

See Also
mkdir(C)

28 March 1991 Page 1

NCHECK (ADM) NCHECK (ADM)

Name

ncheck - Generates names from inode numbers.

Syntax

ncheck [-<inumbers] [-a][-s] [filesystem]

Description
ncheck with no argument generates a pathname and inode number list
of all files on the set of file systems specified in /etc/mnttab. The two
characters “/.” are appended to the names of directory files. The -i
option reduces the report to only those files whose inode numbers fol-
low. The -a option allows printing of the names . and .., which are
ordinarily suppressed. The -s option reduces the report to special files
and files with set-user-ID mode; it is intended to discover concealed
violations of security policy. A single filesystem may be specified
rather than the default list of mounted file systems.

Files

Jetc/mnttab

See Also
fsck(ADM), sort(C)
Diagnostics

When the file system structure is improper, 2? denotes the “parent” of
a parentless file and a pathname beginning with ... denotes a loop.

Notes
See Notes under mount(ADM).

28 March 1991 Page 1

NETUTIL (ADM) NETUTIL (ADM)

Name

netutil - Administers the Micnet network.

Syntax

netutil [option] [-x][-e]

Description

The netutil command allows the user to create and maintain a network
of XENIX machines. A Micnet network is a link through serial lines of
two or more XENIX systems. It is used to send mail between systems
with the mail(C) command, transfer files between systems with the
rcp(C) command, and execute commands from a remote system with
the remote (C) command.

The netutil command is used to create and distribute the data files
needed to implement the network. It is also used to start and stop the
network. The option argument may be any one of install, save,
restore, start, stop, or the numbers 1 through 5 respectively. The -x
option logs transmissions and the -e option logs errors. The -x and -e
options work only when they are used in conjunction with start, stop
or their decimal equivalents (4 and 5).

The install option interactively creates the data files needed to run the
network. The save option saves these files on floppy or hard disks,
allowing them to be distributed to the other systems in the network. If
you save the micnet files to the hard disk, you can then use uucp(C) to
transfer the files to the other machines. This option specifies the
name of the backup device and prompts for whether this is the desired
device to use. The user can specify an alternate device, including a
file on the hard disk. The name of the default backup device is
located in the file /etc/default/micnet. This can be changed depend-
ing on system configuration. The restore option copies the data files
from floppy disk back to a system. The start option starts the net-
work. The stop option stops the network. An option may also be any
decimal digit in the range 1 to 5. If invoked without an option, the
command displays a menu from which to choose one. Once an option
is selected, it prompts for additional information if needed.

28 March 1991 Page 1

NETUTIL (ADM) NETUTIL (ADM)

A network must be installed before it can be started. Installation con-
sists of creating appropriate configuration files with the install option.
This option requires the name of each machine in the network, the
serial lines to be used to connect the machines, the speed of transmis-
sion for each line, and the names of the users on each machine. Once
created, the files must be distributed to each computer in the network
with the save and restore options. The network is started by using the
start option on each machine in the network. Once started, mail and
remote commands can be passed along the network. A record of the
transmissions between computers in a network can be kept in the net-
work log files. Installation of the network is described in the XENIX
System Administrator’s Guide.

Files
/bin/netutil
Jetc/default/micnet
See Also

aliases(M), aliashash(ADM), mail(C), micnet(F), remote(C), rcp(C),
systemid(F), top(F).

28 March 1991 Page 2

PWADMIN (ADM) PWADMIN (ADM)

Name

pwadmin - Performs password aging administration.

Syntax

pwadmin [-min weeks -max weeks] options

Description

pwadmin is used to examine and modify the password aging informa-
tion in the password file.

The options are as follows:

-d user
-f user
-C user
-a user

=N user

Displays the password aging information for the user.
Forces the user to change his password at the next login.
Prevents the user from changing his password.

Enables password aging for the given user. This option sets
the minimum number of weeks that the user must wait before
changing his password and the maximum number of weeks
that a user can keep his current password to the values
defined by the MINWEEKS and MAXWEEKS variables in the
letc/default/passwd file. If the file is not found or the defined
values are not in the range 0 to 63, the default values 2 and 4
are used.

Disables password aging for the user.

-min weeks

Enables password aging and sets the minimum number of
weeks before a password can be changed.

-max weeks

Files

Enables password aging and sets the number of weeks a pass-
word can be used.

Jetc/passwd

Jetc/default/passwd

See Also

passwd(C), passwd(F)

28 March 1991 Page 1

PWADMIN (ADM) PWADMIN (ADM)

Notes

The user must not attempt to force a new password by setting both the
-min and -max values to zero. To force a password, use the -f option.

The user must not attempt to prevent further password changes by set-
ting the -min value greater than the -max value. To prevent changes,
use the -c option.

28 March 1991 Page 2

RESTORE (ADM) RESTORE (ADM)

Name

restore, restor - Invokes incremental file system restorer.

Syntax

restore key [arguments]

restor key [arguments]

Description

restore is used to read archive media backed up with the
backup(ADM) command.

The key specifies what is to be done. Key is one of the characters ¢C,
rR, tT, or xX optionally combined with k and/or f or F. restor is an
alternate spelling for the same command.

c,C

Verify (check) a dump tape. Used after a dump is made to make
sure the tape has no I/O errors or bad checksums. C is the same as
¢ except that it provides a higher level of checking.

Uses the first argument as the name of the archive (backup device
/dev/*) instead of the default.

F is the number of the first file on the tape to read. All files up to
that point are skipped.

Follow this option with the size of the backup volume. This allows
for reading multivolume dumps from media such as floppies.

r,R

The archive is read and loaded into the file system specified in
argument. This should not be done lightly (see below). If the key
is R, restore asks which archive of a multivolume set to start on.
This allows restore to be interrupted and then restarted (an fsck
must be done before the restart).

Prints the date the archive was written and the date the file system
was backed up.

Prints a full listing of a dump tape. Similar to t.

Each file on the archive named by an argument is extracted. The
filename has all “mount” prefixes removed; for example, if /usr is
a mounted file system, }l)lsr/bin/lpr is named /bin/lpr on the
archive. The extracted file is placed in a file with a numeric name
supplied by restore (actually the inode number). In order to keep

28 March 1991 Page 1

RESTORE (ADM) RESTORE (ADM)

the amount of archive read to a minimum, the following procedure
is recommended:

1. Mount volume 1 of the set of backup archives.

2. Type the restore command with the appropriate key and argu-
ments.

3. restore will check dumpdir, then announce whether or not it
found the files, give the numeric name that it will assign to the
file, and in the case of a tape, rewind to the start of the archive.

4. It then asks you to “mount the desired tape volume”. Type the
number of the volume you choose. On a multivolume backup,
the recommended procedure is to mount the last through the
first volumes, in that order. restore checks to see if any of the
requested files are on the mounted archive (or a later archive,
thus the reverse order). If the requested files are not there,
restore doesn’t read through the tape. If you are working with a
single-volume backup or if the number of files being restored is
large, respond to the query with 1 and restore will read the
archives in sequential order.

X Same as x except that files are replaced in original location. When
you use this option, omit the initial slash (/) in the filename on the
restore command line.

The r option should only be used to restore a complete backup archive
onto a clear file system, or to restore an incremental backup archive
onto a file system so created. It should not be used to restore a backup
archive onto the root file system. Thus:

Jetc/mkfs /dev/hdl 10000
restore 1 /dev/hdl

is a typical sequence to restore a complete backup. Another restore
can be done to get an incremental backup in on top of this.

A backup followed by a mkfs and a restore is used to change the size
of a file system.

Files
Ist* Temporary files
fetc/default/restor Name of default archive device

The default archive unit varies with installation.

28 March 1991 Page 2

RESTORE (ADM) RESTORE (ADM)

Notes

It is not possible to successfully restore an entire active root file sys-
tem.

Note also that restore may be unable to restore more than one filesys-
tem from the tape devices /dev/nrctO and /dev/nrci2.

Diagnostics
There are various diagnostics involved with reading the archive and
writing the disk. There are also diagnostics if the i-list or the free list
of the file system is not large enough to hold the dump.
If the dump extends over more than one disk or tape, restor may ask
you to change disks or tapes. Reply with a newline when the next unit
has been mounted.

See Also

backup(ADM), dumpdiADM), fsck(ADM), mkfs(ADM),
sddate(ADM)

28 March 1991 Page 3

RMUSER (ADM) RMUSER (ADM)

Name

rmuser - Removes a user account from the system.

Syntax

/etc/rmuser

Description

rmuser removes users from the system. It begins by prompting for a
user name; after receiving a valid user name as a response, it then
deletes the named user’s entry in the password file, and removes the
user’s mailbox file, the .profile file, and the entire home directory. It
will also remove the users group entry in /etc/group if the user was
the only remaining member of that group, and the group ID was
greater than 50.

Before removing a user ID from the system, make sure its mailbox is
empty and that all files belonging to that user ID have been saved or
deleted as required.

The rmuser program will refuse to remove a user ID or any of its files
if one or more of the following checks fails:

- The user name given is one of the “system” user names such as
root, sys, sysinfo, cron, or uucp. All user IDs less than 200 are con-
sidered reserved for system use, and cannot be removed using
rmuser. Likewise, all group IDs less than 50 are not removable
using rmuser.

- The user’s mailbox exists and is not empty.

- The user’s home directory contains files other than .profile .

rmuser can only be executed by the super-user.

Files

fetc/passwd

fust/spool/mail/username

$HOME

See Also

mkuser(ADM), backup(C)

28 March 1991 Page 1

RUNBIG (ADM) RUNBIG (ADM)

Name

runbig - Runs a command that may require more memory than normal.

Syntax

runbig command [arguments]

Description

runbig executes commands that may require more memory than is
normally available to a user process. While runbig is executing the
specified command, it ignores the restriction on the default of memory
available to the user process. The command will run normally until it
grows to be larger than the amount of memory available to a user pro-
cess. It is then locked in core memory and not swapped until it either
exits or shrinks to a size less than or equal to the size of a default user
process.

The removal of the process size restriction during execution of runbig
will be preserved during an exec (S) system call, but not for a fork(S)
system call.

See Also
exec(S), fork(S)

Notes
Running programs greater than the default process size, and therefore,
possibly greater than the size of the disk swap area, may severely
impact system performance.

runbig has no effect on systems whose memory size is much less than
the size of the disk swap area.

28 March 1991 Page 1

SCHEDULE (ADM) SCHEDULE (ADM)

Name

schedule - Database for automated system backups.

Description

The schedule database is used in conjunction with fsphoto(ADM) to
partially automate system-wide backups. For each filesystem to be
backed-up, a cyclical schedule of backup(ADM) levels is specified.

This cyclical schedule (or cycle) is a list of backup levels to perform
(including no backup at all) and a pointer to the last-used element of
that list. The pointer is advanced to the next element of the list on a
regular basis (each time fsphoto is run, usually once per day), starting
over at the beginning each time it falls off the end. It is advanced,
however, only on success - the desired backup must have been suc-
cessful.

Each entry in the file is on a separate line. Blank and comment lines
(beginning with “#”) may be placed anywhere. Several keywords are
recognized:

site sitename
Sitename is passed to fsave as a description to place on each tape
label. Usually, sitename is the name of the company or a building
number.

media drive K sizes... [format]
Device drive is a floppy capable of handling volumes with any of
the listed sizes (in kilobytes). If specified, formar is the XENIX
command used to format the described floppies. This also applies
to standard cartridge tapes.

media drive d density sizes... [format]
Device drive is a density BPI magtape capable of handling tapes of
any of the indicated sizes (in feet). Like floppies, format is the
optional XENIX command used to format the described tape.

[0-9] size savetime importance marker
Description of each backup level, as described in fsave (ADM).
The possible values are:

Level Size Savetime Importance Marker
0 - "1 year" critical none
1 - "3 months" necessary none
2.7 - "1 month" important none
8 - "2 weeks" useful none
9 B "1 week" precautionary none

28 March 1991 Page 1

SCHEDULE (ADM) SCHEDULE (ADM)

All four fields must be specified. On XENIX-386 distributions, only
levels 0, 1, 2 and 3 are used in the default schedule file. On XENIX-
286 distributions, levels 0, 1, 8 and 9 are used.

A size of - means to use the first size listed in the appropriate media
sizes list.

Keywords should be placed before any filesystem backup schedules.
A filesystem backup schedule is of the form:

/dev/rfilesys cycle
The filesystem resident on device /dev/rfilesys is to be backed-up
according to cycle , which is a space-separated list of backup levels
(the digits 0 to 9, passed to backup), or the letter X, meaning no
backup should occur. The specified device should be the raw
(character) device associated with the filesystem.

A backup cycle must have at least one member, but it may be of any
length. Different filesystems may have cycles of different lengths.

The default schedule file differs slightly under XENIX-286; the backup
device is the floppy drive and the Schedule Table uses levels 0, 1, 8,
and 9. Here is the default schedule file for XENIX-386:

SYSTEM BACKUP SCHEDULE
site mymachine

Media Entries

#

96 tpi 1.2 MB floppy 0

media /dev/rfd096ds1S k 1200 format /dev/rfd096dslS
96 tpi 1.2 MB floppy 1

media /dev/rfdl96dslS k 1200 format /dev/rfd196ds15
135 tpi 1.44 MB floppy 0

media /dev/rfd0135ds18 k 1440 format /dev/rfd0135ds18
135 tpi 1.44 MB floppy 1

media /dev/rfdl135ds18 k 1440 format /dev/rfdl135ds18
Cartridge tape 1

media /dev/rct0 k 60000 125000 150000 tape erase

Mini cartridge drive (10MB)

media /dev/rctmini k 8800 format /dev/rctmini

Mini cartridge drive (20MB)

media /dev/rctmini k 17200 format /dev/rctmini

Mini cartridge drive (40MB)

media /dev/rctmini k 37500 format /dev/rctmini

9-track tape drive

media /dev/rmt0 d 1600 2400 1200 600

Backup Descriptor Table
Backup Vol. Save for Vitality Label
level size how long (importance) marker

28 March 1991 Page 2

SCHEDULE (ADM) SCHEDULE (ADM)

0 - "1 year" critical "a red sticker"

1 - "4 months" necessary "a yellow sticker"
2 - "3 weeks" useful "a blue sticker"
3 - "1 week" precautionary none

Schedule Table

12345 67890 12345 67890
Filesystem MTWTF MTWTF MTWTF MTWTF
/dev/rroot 0x3x3 2x3x3 1x3x3 2x3x3
/dev/ru 30333 32333 31333 32333

/dev/rroot is backed-up using a level 0 backup the first time fsphoto is
run (on a Monday), and if that backup is successful, the next (second)
time it runs (Tuesday), no backup is performed. If doing nothing is
successful, the third time (Wednesday) a level 3 backup occurs. If that
backup succeeds, no backup occurs the fourth time (Thursday), but the
fifth time fsphoto is run (Friday), a level 3 backup is made.

Each time a successful backup at the specified level happens, the
pointer advances so that the next run of fsphoto (on the next weekday)
will do the next backup scheduled for that filesystem. If however, a
backup fails (or is interrupted or postponed by the operator) the
pointer is not advanced; hence, the next time fsphoto is attempted, the
same level backup will again be tried so the sequence will not be bro-
ken (but the timing may be off).

The larger and more rapidly changing filesystem /dev/ru is backed-up
more frequently (each time fsphoto is run - once a day - instead of
every other time), and the levels used are staggered to prevent having
to perform two full-scale backups (like levels O or 1) of the large

filesystems on the same day. The backup cycle period is also shorter,
two weeks instead of four.

See Also
fsphoto(ADM), fsave(ADM), backup(ADM)

Notes

Keywords and filesystem names must not be preceded by any spaces
or tabs.

It is not necessary to specify the name of the “raw” (/dev/r*) device
for each filesystem, but the backups are faster if this is done.

28 March 1991 Page 3

SCOPATCH (ADM) SCOPATCH (ADM)

Name

scopatch - Applies kernel patches.

Syntax

letc/scopatch patchfile

Description
scopatch applies a kemel patch named patchfile found in
fusr/lib/scopatch. Any patches applied are added to hdinstall(ADM)
to ensure that they are retained in subsequent relinks.

A list of current patches available is contained in the Release Notes.

Notes
This utility only applies to XENIX-
386 distributions.
Files
fusr/lib/scopatch Patch source directory
fusr/lib/patchlog Patch log file
See Also
hdinstall(ADM)

28 March 1991 Page 1

SDDATE (ADM) SDDATE (ADM)

Name

sddate - Prints and sets backup dates.

Syntax

sddate [name lev date]

Description

If no argument is given, the contents of the backup date file /etc/ddate
are printed. The backup date file is maintained by backup (ADM) and
contains the date of the most recent backup for each backup level for
each filesystem.

If arguments are given, an entry is replaced or made in /etc/ddate.
name is the last component of the device pathname, lev is the backup
level number (from O to 9), and date is a time in the form taken by
date(C):

mmddhhmm(yy]
Where the first mm is a two-digit month in the range 01-12, dd is a
two-digit day of the month, A# is a two-digit military hour from 00-23,

and the final mm is a two-digit minute from 00-59. An optional two-
digit year, yy, is presumed to be an offset from the year 1900, i.e.,

19yy.
Some sites may wish to back up file systems by copying them verba-
tim to backup media. sddate could be used to make a “level 0” entry
in /etc/ddate, which would then allow incremental backups.
For example:
sddate rhd0 5 10081520
makes an /etc/ddate entry showing a level 5 backup of /dev/rhd0 on
October 8, at 3:20 PM.
Files

Jetc/ddate

28 March 1991 Page 1

SDDATE (ADM) SDDATE (ADM)

See Also
backup(ADM), restore(ADM), date(C)

Diagnostics

bad conversion If the date set is syntactically incorrect.

28 March 1991 Page 2

SETCLOCK (ADM) SETCLOCK (ADM)

Name

setclock - Sets the system real-time (time of day) clock.

Syntax

setclock [time]

Description
The setclock file sets the battery-powered, real-time time of day clock
to the given time. If time is not given, the current contents of the
battery-powered clock are displayed. The time must be a combination
of digits with the form:
MMddhhmmyy
where MM is the month, dd is the day, hh is the hour, mm is the
minute, and yy is the last two digits of the year. If yy is not given, it is
taken from the current system time. For example, the command:
082615092

sets the time of day clock to 15:03 on August 26, 1992.

Files

Jetc/setclock

See Also
clock(F)

Notes

Not all computers have battery-powered real-time time of day clocks.
Refer to your computer’s hardware reference manual.

28 March 1991 Page 1

SETMNT (ADM) SETMNT (ADM)

Name

setmnt - Establishes /etc/mnttab table.

Syntax
/etc/setmnt

Description
setmnt creates the /etc/mnttab table (see mnrtab(F)), which is needed
for both the mount(ADM) and umount(ADM) commands. setmnt
reads the standard input and creates a mnttab entry for each line.
Input lines have the format:

filesys node

where filesys is the name of the file system’s special file (e.g., “hd0”)
and node is the root name of that file system. Thus filesys and node
become the first two strings in the mnstab (F) entry.

Files

/etc/mnttab

See Also
mnttab(F)

Notes
If filesys or node are longer than 128 characters, errors can occur.

setmnt silently enforces an upper limit on the maximum number of
mnttab entries.

setmnt is normally invoked by /etc/r¢ when the system boots up.

28 March 1991 Page 1

SETTIME (ADM) SETTIME (ADM)

Name

settime - Changes the access and modification dates of files.

Syntax
settime [mmddhhmm [yy]] [-f fname] name ...

Description
Sets the access and modification dates for one or more files. The
dates are set to the specified date, or to the access and modification
dates of the file specified via -f. Exactly one of these methods must
be used to specify the new date(s). The first mm is the month number;
dd is the day number in the month; 4h is the hour number (24 hour sys-
tem); the second mm is the minute number; yy is the last two digits of
the year and is optional. For example:
settime 1008004583 ralph pete

sets the access and modification dates of files ralph and pete to Oct 8,
12:45 AM, 1983. Another example:

settime -f ralph john

This sets the access and modification dates of the file john to those of
the file raiph.

Notes

Use of touch in place of settime is encouraged.

28 March 1991 Page 1

SFMT (ADM) SFMT (ADM)

Name

sfmt - Performs special formatting.

Syntax

letc/sfmt device_name

Description

The sfmt command performs a low-level formatting, initializes non-
standard disk parameters, and performs initial processing of manufac-
turer-supplied defect lists of the disk device_name. device_name
should be the character-special device representing the whole disk, for
example, /dev/rhdl0.

The sfmt command must be issued from the Boot: prompt, and should
be used only if the “type=E” banner appears during power-up.

Low-level disk formatting is usually performed on bundled systems
before delivery. If this formatting has not been done, you must format
the disk before installing it. You must know the hard disk parameters
before you invoke sfmt.

Files
/dev/rhd?0

28 March 1991 Page 1

SHUTDOWN (ADM) SHUTDOWN (ADM)

Name

shutdown - Terminates all processing.

Syntax

Jetc/shutdown [time] [su]

Description
The primary function of shutdown is to terminate all currently running
processes in an orderly and cautious manner. shutdown goes through
the following steps:

1. All users logged on the system are notified to log off the system
by a broadcast message.

2. /etc/init is called to perform the the actual shutdown.
the time argument is the number of minutes before a shutdown will
occur. The optional su argument lets the user go single-user, without
completely shutting down the system.

You must be super-user to execute the shutdown command.

See Also
sync(ADM), umount(ADM), wall(ADM), boot(HW)

Diagnostics
The most common error diagnostic that will occur is device busy.
This diagnostic appears when a particular file system could not be
unmounted. See umount(ADM).

Notes

Once shutdown has been invoked, it must be allowed to run to comple-
tion and must nor be interrupted by pressing BREAK or DEL.

shutdown does not work when executed from within a shell layer.

shutdown locks the hard disk heads.

28 March 1991 Page 1

SYNC (ADM) SYNC (ADM)

Name

sync - Updates the super-block.

Syntax

sync

Description

sync executes the sync system primitive. If the system is to be
stopped, sync must be called to ensure file system integrity. Note that
shutdown (ADM) automatically calls sync before shutting down the
system.

See Also
sync(S)

28 March 1991 Page 1

SYSADMIN (ADM) SYSADMIN (ADM)

Name

sysadmin - Performs file system backups and restores files.

Syntax

letc/sysadmin

Description

sysadmin is a utility for performing filesystem backups and for restor-
ing files from backup volumes, and includes several options. Its main
function is to act as a front-end for the fsphoto(ADM) utility, which
performs backups according to an established schedule. Depending on
the day of the week, a daily incremental backup (level 9), or a periodic
full backup (level 0) is automatically selected. sysadmin can also be
invoked to do an unscheduled backup. It can provide a listing of the
files backed up and also has facilities for restoring individual files and
complete filesystems from backups.

The main sysadmin menu appears as follows:
Filesystem Maintenance Options

1. Perform a scheduled backup

2. Perform an unscheduled backup
3. List the contents of an archive
4. Restore backed up file(s)

5. Restore an entire filesystem

6. Check backup archive integrity

Enter an option or enter q to quit:
Any supported archive medium may be used to create backups. Any
filesystem may be backed up. Menus of these devices are created for
each option from the files /tmp/backup.list, /etc/default/archive, and
letc/default/filesys.

You must be the super-user to use this program.

Files
/mmp/backup.list

fetc/default/archive
fetc/default/filesys

28 March 1991 Page 1

SYSADMIN (ADM) SYSADMIN (ADM)

See Also

fsphoto(ADM), mkfs(ADM), backup(C), dumpdir(C), restore(C),
archive(F), filesys(F)

Notes

/tmp/backup.list, /etc/default/archive and /etc/default/filesys may
be edited to add devices, or to delete entries for devices that are no
longer used.

Warning

You should never backup more than one filesystem to the tape devices
Idevinrct0 and /devinrct2. This is because, although backup can write
more than one filesystem to /devinrct0 or /devinrct2, restore may not
be able to restore more than one filesystem from these devices.

You must also be sure to close the floppy door when inserting floppy

disks during a backup. If you fail to do so in a multi-floppy backup,
the entire backup will fail and you will have to begin again.

28 March 1991 Page 2

SYSADMSH (ADM) SYSADMSH (ADM)

Name

sysadmsh - Menu driven system administration utility

Syntax

sysadmsh

Description

sysadmsh is an easy-to-use menu interface designed to provide novice
users with the tools needed for day-to-day system administration of
the XENIX system.

WARNING: sysadmsh does not replace the XENIX documentation. It
provides an overview of available system administration features and
a reminder of tasks which need to be performed regularly. An under-
standing of the XENIX Installation Guide, the XENIX System
Administrator’s Guide, and the XENIX User’s Guide is necessary to
use sysadmsh.

Usage
To use this utility enter:
sysadm
at the login prompt. This sets your login shell to be the sysadmsh
menu hierarchy. You may access many useful commands and sub-

menus, all presented in simple, descriptive terms.

Alternately, sysadmsh menus may also be invoked by logging in as the
super-user (root) and entering:

sysadmsh
at the shell prompt.

Once you are in sysadmsh, on-line instructions for its use may be
obtained by selecting the <F1> key.

Some sysadmsh options must be run from the system console device.
Some options must be run while in single user (system maintenance)
mode. Check the documentation manual page referenced by the menu
selection for more information.

28 March 1991 Page 1

SYSADMSH (ADM) SYSADMSH (ADM)

Files
See Also

XENIX System Administrator’s Guide
XENIX User’s Guide
XENIX Installation Guide

acctcom(ADM), accton(ADM), alias(M), asktime(ADM), at(C),
badtrk(ADM), checklist(F), chgrp(C), chmod(S), chown(C), config-
ure(ADM) copy(C), cron(C), csh(C), custom(ADM), df(C), diff(C),
dircmp(C), disable(C), diskemp(C), diskcp(C), dmesg(ADM), dos(C),
dtype(C), du(C), enable(C), fdisk(ADM), find(C), finger(C),
fixperm(ADM), format(C), fsck(ADM), fstab(F), grpcheck(C),
initM), kill(C), login(M), Ip(C), lpadmin(ADM), Ipinit(ADM),
Ipstat(C), mail(C), mkdev(ADM), mkuser(ADM), more(C),
mount(ADM), netutil(ADM), ps(C), pwadmin(ADM), pwcheck(C),
quot(C), rmuser(ADM), shutdown(ADM), sysadmin(ADM),
systemid(F), tar(C), ttys(F), umount(ADM), uuinstall(ADM), vi(C),
wall(ADM), who(C), write(C)

Notes

A knowledge of vi(C) is assumed for file edit selections, although the
SCO Lyrix® editor is used when available.

Acknowledgements

This utility takes its design from the SCO Lyrix Word Processing Sys-
tem.

28 March 1991 Page 2

TELINIT (ADM) TELINIT (ADM)

Name

telinit, mkinittab - Alternative method of turning terminals on and off.

Syntax

telinit state
mkinittab [ttysfile]...

Description

telinit directs the actions of init(M). It is an alternative to using
enable (C) and disable(C) to allow and disallow logins on terminals.

telinit generates a new /etc/ttys file from the /etc/inittab file. Only
those lines from inittab(F) which apply in state are converted to their
ttys (F) equivalent. init is then signaled to allow or disallow logins on
terminals according to /etc/ttys.

The recognized state arguments are:

0-6
Generate /etc/ttys using the lines in /etc/inittab which apply to the
specified state.

q, Q

Do not generate a new /etc/ttys file, but signal init to examine the
existing /etc/ttys file.

s, S
Signal init to enter System Maintenance (single-user) mode.

Only the superuser can run telinit. Users currently logged onto termi-
nals that are disabled are abruptly killed. Logins are not allowed on
terminals not listed in /etc/ttys.
mkinittab writes on the standard output an inittab-format file gen-
erated from the specified ttysfiles. Each ttysfile must be in ttys format.
If no #tysfile is specified, the standard input is read.

Files
fetc/ttys

fetc/inittab

28 March 1991 Page 1

TELINIT (ADM) TELINIT (ADM)

See Also
disable(C), enable(C), getty(M), init(M), inittab(F), login(M), ttys(F)

Notes
inittab is provided for users more familiar with the telinit approach to

terminal administration, as opposed to the standard XENIX enable and
disable approach.

28 March 1991 Page 2

UMOUNT (ADM) UMOUNT (ADM)

Name

umount - Dismounts a file structure.

Syntax
letc/umount special-device

Description
umount announces to the system that the removable file structure pre-
viously mounted on device special-device is to be removed. Any
pending I/O for the file system is completed, and the file structure is
flagged clean. For a detailed explanation of the mounting process, see
mount(ADM).

Files

fetc/mnttab Mount table

See Also
mount(ADM), mount(S), mnttab(F)

Diagnostics
device busy An executing process is using a file on the named
filesystem, often caused by a user working in the
filesystem.

28 March 1991 Page 1

UUCHECK (ADM) UUCHECK (ADM)

Name

uucheck - Checks the uucp directories and permissions file.

Syntax
fusr/lib/uucp/uucheck [-v] [-x debug_level]

Description

uucheck checks for the presence of the uucp system required files and
directories. It also checks for some obvious errors in the Permissions
file (/usr/lib/uucp/Permissions). When executed with the -v option,
it gives a detailed explanation of how the uucp programs will interpret
the Permissions file. The -x option is used for debugging. debug-
option is a single digit in the range 1-9; the higher the value, the
greater the detail.

Note that uucheck can only be used by the super-user or uucp.

Files

fusr/lib/uucp/Systems
fust/lib/uucp/Permissions
fusr/lib/uucp/Devices
fust/lib/uucp/Maxuuscheds
fust/lib/uucp/Maxuuxqts
fusr/spool/uucp/*
fusr/spool/uucppublic/*

See Also
uucico(ADM), uusched(ADM), uucp(C), uustat(C), uux(C)

Notes

The program does not check file/directory modes or some errors in the
Permissions file such as duplicate login or machine name.

28 March 1991 Page 1

UUCICO (ADM) UUCICO (ADM)

Name

uucico - File transport program for the UUCP system.

Syntax

fasr/lib/uucp/uucico [-r role_number] [-x debug_level]
[-i interface] [-d spool_directory] [-s] [-S] system_name

Description

uucico is the file transport program for uucp work file transfers. Role
numbers for -r are the digit 1 for master mode or O for slave mode
(default). The -r option should be specified as the digit 1 for master
mode when uucico is started by a program or cron. uux and uucp both
queue jobs that will be transferred by uucico. It is normally started by
the scheduler, uusched , but can be started manually; this is done for
debugging. For example, the shell uutry starts uucico with debugging
turned on. The -x option specifies the level of debugging (1-9), with 9
displaying the most information.

The -i option defines the interface used with uucico. This interface
only affects slave mode. Known interfaces are UNIX (default), TLI
(basic Transport Layer Interface), and TLIS (Transport Layer Interface
with Streams modules, read/write); only the default, UNIX, is applica-
ble in this release.

The -d option can be used to specify the spool directory: the default is
fusr/spool/uucp.

If -s is specified, a call to the specified site is made even if there is no
work for site sitename in the spool directory, but the call is made only
when times in the Systems file permit it. This is useful for polling
sites that do not have the hardware to initiate a connection.

The -S option can be used to specify the system name, overriding the
call schedule given in the Systems file. For example, -S can be used
to call a system which is listed as “Never” to be called in the Systems
file.

Changing Packet Parameters

An additional feature is the ability to change two specialized parame-
ters contained in the uucico program without having to recompile the
source. (The uucico binary is provided unstripped so that patches can
be applied using scopatch(ADM). The first is a parameter called win-
dows, which specifies the size of window that the sliding-window pro-
tocol should use (how many packets it can send before getting any
ack/nack’s from the remote site). windows can be changed using the

28 March 1991 Page 1

UUCICO (ADM) UUCICO (ADM)

following command:
scopatch windows

You are prompted for the new value. In addition, the parameter
pktime can be altered. This is the number of seconds uucico should
wait before giving up and re-transmitting the packet being sent sent.
This interval can be as long as 35 seconds, which can be costly with
overseas phone connections. pktime can be changed in same way as
windows by using pktime as the argument to the scopatch command.
You are prompted for a new value for the parameter.

Files

fust/lib/uucp/Systems
fust/lib/uucp/Permissions
fusr/lib/uucp/Devices
fusr/lib/uucp/Maxuuxqts
fusr/lib/uucp/Maxuuscheds
fust/spoolfuucp/*
fust/spoolfuucppublic/*

See Also

scopatch(ADM), uusched(ADM), uutry(ADM), cron(C), uucp(C),
uustat(C), uwux(C)

28 March 1991 Page 2

UUCLEAN (ADM) UUCLEAN (ADM)

Name

uuclean - UUCP spool directory clean-up.

Syntax

fusr/lib/uucp/uuclean [-Ctime] [-Dtime] [-Wtime] [-Xtime]
[-mstring] [-otime] [-ssystem] [-xdebug_level]

Description

uuclean will scan the UUCP spool directories for old files and take
appropriate action to remove them in a useful way:

Inform the requestor of send/receive requests for systems that cannot
be reached.

Return mail, which cannot be delivered, to the sender.

Delete or execute rnews for rnews type files (depending on where the
news originated--locally or remotely).

Remove all other files.

In addition, there is provision to warn users of requests that have been
waiting for a given number of days (default 1). Note that uuclean will
process as if all option rimes were specified to the default values
unless time is specifically set.

The following options are available.

-Ctime Any C. files greater or equal to time days old will be
removed with appropriate information to the requestor.
(default 7 days)

-Dtime Any D. files greater or equal to time days old will be
removed. An attempt will be made to deliver mail mes-
sages and execute mews when appropriate. (default 7
days)

-Wtime Any C. files equal to time days old will cause a mail mes-
sage to be sent to the requestor warning about the delay in
contacting the remote. The message includes the JOBID,
and in the case of mail, the mail message. The adminis-
trator may include a message line telling whom to call to
check the problem (-m option). (default 1 day)

-Xtime Any X. files greater or equal to time days old will be

removed. The D. files are probably not present (if they
were, the X. could get executed). But if there are D. files,

28 March 1991 Page 1

UUCLEAN (ADM) UUCLEAN (ADM)

they will be taken care of by D. processing. (default 2
days)

-mstring This line will be included in the warning message gen-
erated by the -W option. The default line is "See your
local administrator to locate the problem".

-otime Other files whose age is more than time days will be
deleted. (default 2 days)

-ssystem Execute for system spool directory only.

-Xdebug_level
The -x debug level is a single digit between 0 and 9; higher num-
bers give more detailed debugging information.

This program is typically started by the shell uudemon.clean, which
should be started by cron(C). uuclean can only be executed by the
super user or uucp.

Files
fusr/libfuucp directory with commands used by uuclean
internally
fasr/spool/uucp spool directory
See Also

cron(C), uucp(C), uux(C).

28 March 1991 Page 2

UUDEMON (ADM) UUDEMON (ADM)

Name

uudemon: uudemon.admin, uudemon.clean, uudemon.hour,
uudemon.poll, uudemon.poll2 - UUCP administrative scripts.

Description

UUCP communications and file maintenance can be automated with
the use of the uudemon.hour, uudemon.poll, uudemon.poll2,
uudemon.admin, and uudemon.clean shell scripts. While in multi-
user mode, cron scans files in /usr/spool/cron/crontabs once each
minute for entries to execute at this time. An example crontabs file,
crontab.eg, is provided to activate these daemons. The system
administrator ~ should copy these from /usr/lib/uucp to
fusr/spool/cron/crontabs/uucp. To do this, log in as user uucp, edit
the crontab.eg file to make any changes, and then enter the following
command:

crontab crontab.eg

This will replace the original crontab entry.

uudemon.admin

The uudemon.admin shell script, as delivered, runs the uustat com-
mand with -p and -q options. The -q reports on the status of work files
(C.), data files (D.), and execute files (X.) that are queued. The -p
prints process information for networking processes listed in the lock
files (fusr/spoolflocks). It sends resulting status information to the
UUCP administrative login (uucp) via mail.

The default crontab entry for vudemon.admin is:

48 10,14 * * 1-5 /bin/su uucp -c \
"/usr/lib/uucp/uudemon.admin® > /dev/null

This runs daily at 10:48 AM and 2:48 PM.

uudemon.clean

The uudemon.clean shell script, as delivered, takes log files for indi-
vidual machines from the /usr/spool/.Log directory, merges them, and
places them in the /fusr/spool/.Old directory with other old log infor-
mation. If log files get large, the ulimit may need to be increased. It
also removes work files (C.) 7 days or older, data files (D.) 7 days old
or older, and execute files (X.) 2 days old or older from the spool files.
uudemon.clean mails a summary of the status information gathered
during the current day to the UUCP administrative login (uucp).

March 28, 1991 Page 1

UUDEMON (ADM) UUDEMON (ADM)

The default crontab entry for uudemon.clean is:

45 23 * * * ulimit 5000; /bin/su uucp -c \
"/usr/lib/uucp/uudemon.clean" > /dev/null

This runs daily at 11:45 PM.

uudemon.hour

The uudemon.hour shell script calls the uusched program to search
the spool directories for work files (C.) that have not been processed
and schedules these files for transfer to a remote machine. It then
calls the uuxqt daemon to search the spool directories for execute
files (X.) that have been transferred to your computer and were not
processed at the time they were transferred.

This is the default root crontab entry for uudemon.hour :
39,9 * * * * /fusr/lib/uucp/uundemon.hour > /dev/null

This script runs twice per hour (at 39 and 9 minutes past).

uudemon.poll

uudemon.poll uses the Poll (or the alternative Poll.hour and
Poll.day) file (see poll(F)) for polling remote computers. The
uudemon.poll script controls polling but does not actually perform
the poll. It merely sets up a polling file (C.sysnxxxx) in the
fust/spoolfuucp/nodename directory, where nodename is replaced by
the name of the machine. This file will in turn be acted upon by the
scheduler (started by uudemon.hour). The uudemon.poll script is
scheduled to run twice an hour just before uudemon.hour so that the
work files will be there when uudemon.hour is called. The default
root crontab entry for uudemon.poll is as follows:

1,30 * * * * “/ygr/lib/uucp/uudemon.poll > /dev/null"

This runs twice per hour (at 1 and 30 minutes past). uudemon.poll2 is
an alternative to uudemon.poll, which uses a different scheme and
different poll files. Listing a site in the Poll file gives you control
over the lower bound on number-of-calls-per-day (at least as many as
you specify in Poll), but still no control on the upper bound. (This is
because uudemon.poll uses the the time field of the Systems file,
which is not suited to the purposes of polling). uudemon.poll2 per-
mits much more precise control of scheduling. To use
uudemon.poll2, you must remove the call to wuusched from
uudemon.hour, and run uudemon.poll2 in place of uudemon.poll
from cron.

March 28, 1991 Page 2

UUDEMON (ADM) UUDEMON (ADM)

uudemon.poll2 reads Poll.hour (or Poll.day if called with the -d
option) to determine whom to poll much like uudemon.poll, but calls
uucico directly, using the -S option, thus overriding the time field of
the Systems file.

Files

fusr/lib/uucp/Systems
fusr/lib/uucp/uudemon.admin
fusr/lib/uucp/uudemon.clean
fusr/lib/uucp/uudemon.hour
fusr/lib/uucp/uudemon.poll
fusr/lib/uucp/uudemon.poll2
fusr/lib/uucp/Poll
fusr/lib/uucp/Poll.hour
/fusr/lib/uucp/Poll.day

See Also

uusched(ADM) uucico(ADM), uuclean(ADM), cron(C), uucp(C),
poll(F), systems(F)

March 28, 1991 Page 3

UUINSTALL (ADM) UUINSTALL (ADM)

Name

uuinstall - Administers UUCP control files.

Syntax
/etc/uninstall [-r]

Description

The uuinstall program is used to manage the content of the control
files used by the uucp communications system. It allows the user to
change the contents of these files without using a text editor. The user
need not know the detailed format of each of the control files,
although he must be familiar with the function of the various fields
within the files. These details are explained in the XENIX System
Administrator’s Guide .

The uuinstall program can only be executed by the super-user. When
invoked with the optional -r flag, uuinstall will not allow any of the
files to be modified whether or not the user has made changes to the
files.

If uuinstall finds any of the required uucp control files missing from
the system, it will create them with the correct access permissions and
ownership.
Files
Jetc/systemid
fust/lib/uucp/Systems
fusr/lib/uucp/Permissions
fusr/lib/uucp/Devices
See Also

mkuser(ADM)

28 March 1991 Page 1

UUSCHED (ADM) UUSCHED (ADM)

Name

uusched - The scheduler for the uucp file transport program.

Syntax
fusr/lib/uucp/uusched [-x debug_level] [-u debug_level]

Description

uusched is the uucp file transport scheduler. It is usually started by
the daemon uudemon.hour that is started by cron(C) from an entry in
lusrispool/cronicrontabsiroot:

39,9 * * * * fbin/su uucp -c "fust/lib/uucp/uudemon.hour” > /dev/null

The two options are for debugging purposes only; -x debug level will
output debugging messages from uusched and -u debug_level will be
passed as -X debug level to uucico. The debug level is a number
between 0 and 9; higher numbers give more detailed information.

Files
fust/lib/uucp/Systems
/usr/lib/uucp/Permissions
fusr/lib/uucp/Devices
fust/lib/uucp/Maxuuscheds
fust/spool/uucp/*
fust/spoolfuucppublic/*

See Also

uucico(ADM), cron(C), uucp(C), uustat(C), uux(C).

28 March 1991 Page 1

UUTRY (ADM) UUTRY (ADM)

Name

uutry - Tries to contact remote system with debugging on.

Syntax

fusr/lib/uucp/uutry [-x debug_level][-r] system

Description

The uutry program is a shell script that invokes uucico to call a
remote site. Debugging is automatically enabled at default level 5; -x
overrides this value. If uutry successfully connects to the remote sys-
tem, uutry stores the debugging output in the file /tmp/system, where
system is the name of the remote system. In addition, uutry uses tail
~f to print the last 10 lines of the debugging output to the standard out-
put.

To break out of the shell created by uutry , press DELETE or BREAK .
This returns control to the terminal while uucico continues to run,
sending the output to /tmp/system.

The -r option overrides the retry time in the Systems file.

Files

fusr/lib/uucp/Systems
fusr/lib/uucp/Permissions
fust/lib/uucp/Devices
fust/lib/uucp/Maxuuscheds
fust/lib/uucp/Maxuuxqts
fust/spool/uucp/*
fusr/spool/uucppublic/*
ftmp/system

See Also
uucico(ADM), uucp(C), uux(C).

28 March 1991 Page 1

UUXQT (ADM) UUXQT (ADM)

Name

uuxqt - Executes remote command requests.

Syntax
fusr/lib/uucp/uuxqt [-s system] { -x debug_level]

Description

uuxqt is the program that executes remote job requests from remote
systems generated by the use of the uux command. (Mail uses uux for
remote mail requests). uuxgt searches the spool directories looking
for X. files. For each X. file, uuxgt checks to see if all the required
data files are available and accessible, and file commands are permit-
ted for the requesting system. The Permissions file is used to validate
file accessibility and command execution permission.

There are two environment variables that are set before the uuxqt
command is executed:

UU_MACHINE is the machine that sent the job (the previous one).
UU_USER is the user that sent the job.

These can be used in writing commands that remote systems can exe-
cute to provide information, auditing, or restrictions.

The -x debug_level is a single digit between 0 and 9. Higher numbers
give more detailed debugging information.
Files
fusr/lib/uucp/Permissions
fusr/lib/uucp/Maxuuxqts
fust/spoolfuucp/*
See Also
uucico(ADM), uucp(C), uustat(C), uux(C), mail(C).

28 March 1991 Page 1

WALL (ADM) WALL (ADM)

Name

wall - Writes to all users.

Syntax
fetc/wall

Description
wall reads a message from the standard input until an end-of-file. It
then sends this message to all users currently logged in preceded by
“Broadcast Message from ...”. wall is used to wamn all users, for
example, prior to shutting down the system.
The sender should be super-user to override any protections the users
may have invoked.

Files

[dev/tty *

See Also
mesg(C), write(C)

Diagnostics
Cannot send to ... The open on a user’s tty file has failed.

28 March 1991 Page 1

Contents

Commands (C)

intro
accept, reject

ar
assign, deassign
at, batch

awk

banner
basename

bc

bdiff

bfs

cal

calendar
capinfo

cat

cd

chgrp
chmod
chown
clear
cmchk
cmp
comm
compress,
uncompress, zcat

copy
p
cpio
cron
crypt
csh

csplit
ct

Introduces XENIX commands.

Allows/prevents print requests to a lineprinter or
class of printers.

Maintains archives and libraries.

Assigns and deassigns devices.

Executes commands at a later time.

Searches for and processes a pattern in a file.

Prints large letters.

Removes directory names from pathnames.

Invokes a calculator.

Compares files too large for diff.

Scans big files.

Prints a calendar.

Invokes a reminder service.

Converts termcap descriptions into terminfo
descriptions.

Concatenates and displays files.

Changes working directory.

Changes group ID.

Changes the access permissions of a file or directory.
Changes owner ID.

Clears a terminal screen.

Reports hard disk block size.

Compares two files.

Selects or rejects lines common to two sorted files.

Compresses data for storage, uncompresses, displays
a stored file.

Copies groups of files.

Copies files.

Copies file archives in and out.

Executes commands at specified times.
Encodes/decodes.

Invokes a shell command interpreter with C-like
syntax.

Splits files according to context.

Spawns getty to a remote terminal.

cu Calls another XENIX system.

date Prints and sets the date.

dc Invokes an arbitrary precision calculator.

dd Converts and copies a file.

devnm Identifies device name.

df Reports number of free disk blocks.

diff Compares two text files.

diff3 Compares three files.

dircmp Compares directories.

dirname Delivers directory part of pathname.

disable Turns off terminals and printers.

diskcp, diskemp Copies or compares floppy disks.

dos, doscat,

doscp, dosdir,

dosformat, dosls,

dosmkdir, dosrm,

dosrmdir Accesses DOS files.

dtype Determines disk type.

du Summarizes disk usage.

echo Echoes arguments.

ed Invokes the ed text editor.

enable Turns on terminals and line printers.

env Sets or displays environment for command
execution.

ex Invokes the ex text editor.

expr Evaluates arguments as an expression.

factor Factor a number.

false Returns with a nonzero exit value.

file Determines file type.

find Finds files.

finger Finds information about users.

fixhdr Changes executable binary file headers.

format Formats floppy disks.

getopt Parses command options.

grep, egrep, fgrep Searches a file for a pattern.

grpcheck Checks group file.

hd Displays files in hexadecimal format.

hdr Displays selected parts of an object file.

head Prints the first few lines of a stream.

hello Sends a message to another user.

help Asks for help with UNIX commands and SCCS error
messages.

hwconfig Displays hardware configuration information.

id Prints user and group IDs and names.

ii

join

kill

ksh, rksh
last

line

In

lock
logname
Ip, Ipr, cancel
Iprint
Ipstat

Is, L, Ic
mail
man
mesg
mkdir
mknod
mnt
more

mv
newform
newgrp
news
nice

nl

nm
nohup
od

pack, pcat,
unpack
passwd
pax

ranlib
rep

Joins two relations.
Terminates a process.

KomShell, a command and programming language.

Indicate last logins of users and teletypes.
Reads one line.

Makes a link to a file.

Locks a user’s terminal.

Gets login name.

Sends/cancels requests to lineprinter.

Prints to a printer attached to the user’s terminal.
Prints lineprinter status information.

Gives information about contents of directories.
Sends, reads, or disposes of mail.

Prints reference pages in this guide.

Permits or denies messages sent to a terminal.
Makes a directory.

Builds special files.

Mounts a filesystem.

Views a file one screen full at a time.

Moves or renames files.

Changes the format of a text file.

Logs users into a new group.

Print news items.

Runs a command at a di‘ferent priority .

Adds line numbers to a file.

Prints name list.

Runs a command immune to naigups : nd quits.
Displays files in octal format.

Compresses and expands files.
Changes login password.

Portable archive exchange.

Copy file archives in and out.
Paginates display for soft-copy terminals.
Prints files on the standard output.
Reports process status.

Reports system information.

Process tape archives.

Checks password file.

Prints working directory name.
Summarizes file system ownership.
Generates a random number,
Converts archives to random libraries.
Copies files across XENIX systems.

iii

remote Executes commands on a remote XENIX system.

rm, rmdir Removes files or directories.

rsh Invokes a restricted shell (command interpreter).

sdiff Compares files side-by-side.

sed Invokes the stream editor.

setcolor Sets screen color.

setkey Assigns the function keys.

sh Invokes the shell command interpreter.

shl Manages shell layers.

size Prints the size of an object file.

sleep Suspends execution for an interval.

sort Sorts and merges files.

split Splits a file into pieces.

strings Finds the printable strings in an object file.

stty Sets the options for a terminal.

su Makes the user a super-user or another user.

sum Calculates checksum and counts blocks in a file.

tail Delivers the last part of a file.

tape Maintains tape drives

tapedump Dumps magnetic tape to output file.

tar Archives files.

tee Creates a tee in a pipe.

test Tests conditions.

tic Compiles terminfo descriptions.

tid Decompiles terminfo descriptions.

touch Updates access and modification times of a file.

tput Queries the terminfo database.

tr Translates characters.

translate Translates files from one format to another.

true Returns with a zero exit value.

tset Sets terminal modes.

tty Gets the terminal’s name.

umask Sets file-creation mode mask.

uname Prints the name of the current XENIX system.

uniq Reports repeated lines in a file.

units Converts units.

uptime Displays information about the system activity.

usemouse Maps mouse input to keystrokes for use with non-
mouse based programs.

uucp, uulog,

uuname Copies files from XENIX to XENIX.

uuencode,

uudecode Encodes/decodes a binary file for transmission via

mail

iv

uustat

uuto, nupick
uux

vi, view, vedit
vidi

vmstat

vsh

w

wait
we
what
who
whodo
write
xargs
yes

Displays UUCP status and controls UUCP jobs.
Copies files across UUCP network.

Executes command on remote XENIX.

Invokes a screen-oriented display editor.

Sets the font and video mode for a video device.
Reports virtual memory statistics.

Menu-driven visual shell.

Displays information about who is on the system and
what they are doing.

Awaits completion of background processes.
Counts lines, words and characters.

Identifies files.

Lists who is on the system.

Determines who is doing what.

Writes to another user.

Constructs and executes commands.

Prints string repeatedly.

INTRO (C) INTRO (C)

Name

intro - Introduces XENIX commands.

Description

This section describes use of the individual commands available in the
XENIX Operating System. Each individual command is labeled with
either a C, a CP, or a CT for easy reference from other volumes. The
letter “C” stands for “command”. The letters “P” and “T” stand for
commands that come with the optional XENIX Development System
(Programming) and the XENIX Text Processing System, respectively.
For example, the reference date(C) indicates a reference to a discus-
sion of the date command in the C section; the reference cc(CP) indi-
cates a reference to a discussion of the ¢c command in the XENIX De-
velopment System; and the reference spell(CT) indicates a reference
to a discussion of the spell command in the XENIX Text Processing
System. The Text Processing and Development Systems are optional
supplemental packages to the standard Operating System.

The “M” Miscellaneous section contains miscellaneous information
including a great deal of system maintenance information. Other
reference sections include the “S” System Services section, the
“DOS” Routines section, the “F” File Format section, and the
“ADM?” sysem administration section.

Syntax

Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

name [option(s)] [cmdarg(s))

where:

name Is the name of an executable file.

option - noargletter (s) or,
- argletter <>optarg
where <> is optional whitespace.

noargletter Is a single letter representing an option without an
argument.

argletter Is a single letter representing an option requiring an
argument.

28 March 1991 Page 1

INTRO (C) INTRO (C)

optarg Is an argument (character string) satisfying preceding
argletter .
cmdarg Is a pathname (or other command argument) not
beginning with -. - by itself usually indicates the stan-
dard input.
See Also
getopt(C), getopt(S)
Diagnostics

Upon termination, each command returns 2 bytes of status, one sup-
plied by the system and giving the cause for termination, and (in the
case of “normal” termination) one supplied by the program (see
wait(S) and exit(S)). The former byte is 0 for normal termination; the
latter is customarily O for successful execution and nonzero to indicate
troubles such as erroneous parameters, bad or inaccessible data. It is
called variously “exit code”, “exit status”, or “return code”, and is
described only where special conventions are involved.

Notes

Not all commands adhere to the syntax described here.

28 March 1991 Page 2

ACCEPT (C) ACCEPT (C)

Name

accept, reject - Allows/prevents print requests to a lineprinter or class
of printers.

Syntax

/usr/lib/accept destinations
/usr/lib/reject [-r[reason]] destinations

Description

accept allows Ip(C) to accept requests for the named destinations. A
destination can be either a printer or a class of printers. Use Ipstat(C)
to find the status of destinations .

reject prevents [p(C) from accepting requests for the named destina-
tions. A destination can be either a printer or a class of printers. Use
Ipstat(C) to find the status of destinations. The following option is
useful with reject :

-r{reason] Associates a reason with disabling (using disable (C))
the printer. The reason applies to all printers listed up to
the next -r option. If the -r option is not present or the -r
option is given without a reason, then a default reason is
used. Reason is reported by Ipstat(C). Please see
disable(C) for an example of reason syntax.
Files

fusr/spool/lp/*
See Also

enable(C), Ip(C), lpadmin(ADM), Ipinit(tADM), Ipsched(ADM),
Ipstat(C), disable(C).

28 March 1991 Page 1

AR (C) AR (C)

Name

ar -

Maintains archives and libraries.

Syntax

ar key [posname] afile names ...

Description

ar

maintains groups of files combined into a single XENIX format

archive file. Its main use is to create and update library files as used
by the link editor though it can be used for any similar purpose.

key is one character from the set drqtpmx, optionally concatenated
with one or more of vuaibeln. gfile is the archive file. The names are
constituent files in the archive file. The posname is the name of a
constituent file, and is required when certain keys are used. The
meanings of the key characters are:

d

r

Deletes the named files from the archive file.

Replaces the named files in the archive file. If the optional charac-
ter u is used with r, then only those files with modified dates later
than the archive files are replaced. If an optional positioning char-
acter from the set abi is used, then the posname argument must be
present and specifies that new files are to be placed after (a) or
before (b or i) posname. Otherwise new files are placed at the end.

Quickly appends the named files to the end of the archive file.
Optional positioning characters are invalid. The command does
not check whether the added members are already in the archive.
Useful only to avoid quadratic behavior when creating a large
archive piece by piece.

Prints a table of contents of the archive file. If no names are given,
all files in the archive are tabled. If names are given, only those
files are tabled.

Prints the named files in the archive.

Moves the named files to the end of the archive. If a positioning
character is present, then the posname argument must be present
and, as in r, specifies where the files are to be moved.

Extracts the named files. If no names are given, all files in the
archive are extracted. Unless the optional character n is used with
X, an extracted file’s modification date will be set to the date stored
in that file’s archive header. In neither case does x alter the
archive file.

28 March 1991 Page 1

AR (C) AR (C)

v Verbose. Under the verbose option, ar gives a file-by-file descrip-
tion of the making of a new archive file from the old archive and
the constituent files. When used with t, it gives a long listing of all
information about the files. When used with X, it precedes each
file with a name.

¢ Create. Normally ar will create afile when it needs to. The create
option suppresses the normal message that is produced when afile
is created.

1 Local. Normally ar places its temporary files in the directory
/tmp. This option causes them to be placed in the local directory.

n New. When used with the key character x it sets the extracted file’s
modification date to the current date.

When ar creates an archive, it always creates the header in XENIX
format (see ar(F)).
Files

ftmp/v* Temporary files

See Also
1d(CP), lorder(CP), ar(F)

Notes

If the same file is mentioned twice in an argument list, it may be put in
the archive twice.

Failure to process a library with ranlib, or failure to reprocess a
library with ranlib, will cause Id to fail. Because generation of a
library by ar and randomization by ranlib are separate, phase errors
are possible. The loader /d warns when the modification date of a
library is more recent than the creation of its dictionary; but this
means you get the warning even if you only copy the library.

28 March 1991 Page 2

ASSIGN (C) ASSIGN (C)

Name

assign, deassign - Assigns and deassigns devices.

Syntax
assign [-u][-v][-d][device]..

deassign [-u][-v][device] ...

Description

assign attempts to assign device to the current user. The device argu-
ment must be an assignable device that is not currently assigned. An
assign command without an argument prints a list of assignable de-
vices along with the name of the user to whom they are assigned.

deassign is used to “deassign” devices. Without any arguments, deas-
sign will deassign all devices assigned to the user. When arguments
are given, an attempt is made to deassign each device given as an
argument.

With these commands you can exclusively use a device, such as a tape
drive or floppy drive. This keeps other users from using the device.
They have a similar effect to chown(C) and chmod(C), although they
only act on devices in /dev. Other aspects are discussed further on.

Available options include:

-d Performs the action of deassign. The -d option may be embedded
in device names to assign some devices and deassign others.

-v Gives verbose output.

-u Suppresses assignment or deassignment, but performs error check-
ing.

The assign command will not assign any assignable devices if it can-
not assign all of them. deassign gives no diagnostic if the device can-
not be deassigned. Devices may be automatically deassigned at
logout, but this is not guaranteed. Device names may be just the
beginning of the device required. For example,

assign fd
should be used to assign all floppy disk devices. Raw versions of de-

vice will also be assigned, e.g., the raw floppy disk devices /dev/rfd?
would be assigned in the above example.

28 March 1991 Page 1

ASSIGN (C) ASSIGN (C)

Note that in many installations the assignable devices such as floppy
disks have general read and write access, so the assign command may
not be necessary. This is particularly true on single-user systems. De-
vices supposed to be assignable with this command should be owned
by the user asg. The directory /dev should be owned by bin and have
mode 755. The assign command (after checking for use by someone
else) will then make the device owned by whoever invokes the com-
mand, without changing the access permissions. This allows the sys-
tem administrator to set up individual devices that are freely avail-
able, assignable (owned by asg), or nonassignable and restricted (not
owned by asg and with some restricted mode).

Note that the first time assign is invoked, it builds the assignable de-
vices table /etc/atab . This table is used in subsequent invocations to
save repeated searches of the /dev directory. If one of the devices in
/dev is changed to be assignable (i.e., owned by asg), then /etc/atab
should be removed (by the super-user) so that a correct list will be
built the next time the command is invoked.

Return Values

Exit code 0 returned if successful, 1 if problems, 2 if device cannot be
assigned.

28 March 1991 Page 2

AT (C) AT (C)

Name

at, batch - Executes commands at a later time.

Syntax
at time [date] [+ increment]
at-r job ...
at-1[job ...]

at -qf letter] time [date] [job...]

Description

at and batch read commands from the standard input to be executed at
a later time. (batch has the same options shown for at.) ar allows you
to specify a time when the commands should be executed, while batch
executes jobs when the system load level permits.

Standard output and standard error output are mailed to the user unless
they are redirected elsewhere. The shell environment variables,
current directory, umask, and ulimit are retained when the commands
are executed. Open file descriptors, traps, and priorities are lost.

A user is permitted to use at if their login name appears in the file
/usr/lib/cron/at.allow. If that file does not exist, the file
fusr/lib/cron/at.deny is checked to determine if the user should be
denied access to at. If neither file exists, only root is allowed to sub-
mit a job. If only the at.deny file exists, global usage is permitted.
The allow/deny files consist of one user name per line.

The options are:

time The time may be specified as 1, 2, or 4 digits. One- and two-
digit numbers are taken to be hours, four digits to be hours and
minutes. The time may alternately be specified as two numbers
separated by a colon, meaning hour:minute. A suffix am or pm
may be appended; otherwise a 24-hour clock time is understood.
The suffix zulu may be used to indicate GMT. The special
names noon, midnight, now, and next are also recognized.

date An optional date may be specified as either a month name fol-
lowed by a day number (and possibly year number preceded by
an optional comma) or a day of the week (fully spelled or abbre-
viated to three characters). Two special “days”, today and
tomorrow, are recognized. If no date is given, today is
assumed if the given hour is greater than the current hour and
tomorrow is assumed if it is less. If the given month is less

28 March 1991 Page 1

AT (C) AT (C)

than the current month (and no year is given), next year is
assumed.

increment

The optional increment is simply a number suffixed by one of
the following: minutes, hours, days, weeks, months, or years.
(The singular form is also accepted.) Thus, legitimate com-
mands include:

at 0815am Jan 24

at 8:15am Jan 24

at now + 1 day

at 5 pm Friday

-r Removes jobs previously scheduled by the ar or
batchcommand. Unless you are the super-user, you can only
remove your own jobs.

-1 Lists all the jobs currently scheduled for the invoking user.

-qletter

Places the specified job in a queue denoted by letter, where
letter is any letter from “a” to “z” (not uppercase). The queue
letter is appended to the job number. The following letters have
special significance:

a atqueue

b batch queue

c cron queue

at and batch write the job number and schedule time to standard error.
batch submits a batch job. It is almost equivalent to “at now,” but
with a difference: batch goes into a different queue; at now will
respond with the error message “too late.”

Examples

The at and batch commands read the commands to be executed at a
later time from the standard input. s#(C) provides different ways of
specifying standard input. Within your commands, it may be useful to
redirect standard output.

The following sequence can be used at a terminal:
batch

nroff filename > outfile
<Ctrl-D> (press “Ctrl” and press “D”)

28 March 1991 Page 2

AT (C) AT (C)

This sequence, which demonstrates redirecting standard error to a pipe
(1), is useful in a shell procedure (the sequence of output redirection
specifications is significant):

batch <<!

nroff filename 2>&1 >outfile | mail
loginid

1

To have a job reschedule itself, invoke at from within the shell pro-
cedure by including code similar to the following within the shell file:
echo “sh shellfile” | at 1900 thursday next week

The most simple use of ar is to specify that a given command or regu-
lar file containing commands, file, be run on the date specified:
atdate < file

Files
fusr/lib/cron main cron directory
[usr/lib/cron/at.allow list of allowed users
fusr/lib/cron/at.deny list of denied users
fusr/lib/cron/queue scheduling information
[usr/spool/cron/atjobs spool area

See Also

cron(C), kill(C), mail(C), nice(C), ps(C), sh(C), queuedefs(F).

Diagnostics

Complains about syntax errors and times out of range.

28 March 1991 Page 3

AWK (C) AWK (C)

Name

awk — Pattern scanning and processing language.

Syntax
awk [—F re] [parameter...] ["prog’] [—f progfile][file...]

Description

The —F re option defines the input field separator to be the regular
expression re.

Parameters, in the form x=... y=... may be passed to awk, where x and
y are awk built-in variables (see list below).

awk scans each input file for lines that match any of a set of patterns
specified in prog. The prog string must be enclosed in single quotes
() to protect it from the shell. For each pattern in prog there may be
an associated action performed when a line of a file matches the pat-
tem. The set of pattern-action statements may appear literally as prog
or in a file specified with the —f progfile option.

Input files are read in order; if there are no files, the standard input is
read. The file name — means the standard input. Each input line is
matched against the pattern portion of every pattern-action statement;
the associated action is performed for each matched pattern.

An input line is normally made up of fields separated by white space.
(This default can be changed by using the FS built-in variable or the
—F re option.) The fields are denoted $1, $2, ...; $0 refers to the
entire line.
A pattern-action statement has the form:

pattern { action }
Either pattern or action may be omitted. If there is no action with a
pattern, the matching line is printed. If there is no pattern with an
action, the action is performed on every input line.

Patterns are arbitrary Boolean combinations (!, | |, &&, and
parentheses) of relational expressions and regular expressions. A rela-

28 March 1991 Page 1

AWK (C) AWK (C)

tional expression is one of the following:

expression relop expression
expression matchop regular expression

where a relop is any of the six relational operators in C, and a matchop
is either ~ (contains) or ! ~ (does not contain). A conditional is an
arithmetic expression, a relational expression, the special expression

var in array,
or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control
before the first input line has been read and after the last input line has
been read respectively.

Regular expressions are as in egrep (see grep(C)). In patterns they
must be surrounded by slashes. Isolated regular expressions in a pat-
tem apply to the entire line. Regular expressions may also occur in
relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all
lines between an occurrence of the first pattern and next occurrence of
the second pattern.

A regular expression may be used to separate fields by using the —F
re option or by assigning the expression to the built-in variable FS .
The default is to ignore leading blanks and to separate fields by blanks
and/or tab characters. However, if FS is assigned a value, leading
blanks are no longer ignored.

Other built-in variables include:

ARGC command line argument count

ARGV command line argument array

FILENAME name of the current input file

FNR ordinal number of the current record in the current file
FS input field separator regular expression (default blank)
NF number of fields in the current record

NR ordinal number of the current record ‘

OFMT output format for numbers (default %.6g)

OFS output field separator (default blank)

ORS output record separator (default new-line)

RS input record separator (default new-line)

28 March 1991 Page 2

AWK (C) AWK (C)

An action is a sequence of statements. A statement may be one of the
following:

if (conditional) statement [else statement]

while (conditional) statement

do statement while (conditional)

for (expression ; conditional ; expression) statement
for (var in array) statement

delete array[subscript]

break

continue

{ [statement] ... }

expression # commonly variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]

next # skip remaining patterns on this input line
exit [expr] # skip the rest of the input; exit status is expr
return [expr]

Statements are terminated by semicolons, new lines, or right braces.
An empty expression-list stands for the whole input line. Expressions
take on string or numeric values as appropriate, and are built using the
operators +, —, #, /, %, and concatenation (indicated by a blank). The
C operators ++, ——, +=, —=, #=, /=, and %= are also available in
expressions. Variables may be scalars, array elements (denoted x[i]),
or fields. Variables are initialized to the null string or zero. Array
subscripts may be any string, not necessarily numeric; this allows for a
form of associative memory. String constants are quoted ().

The print statement prints its arguments on the standard output, or on
a file if >expression is present, or on a pipe if | cmd is present. The
arguments are separated by the current output field separator and ter-
minated by the output record separator. The printf statement formats
its expression list according to the format (see printf(S) in the
Programmer’s Reference Manual).

awk has a variety of built-in functions: arithmetic, string,
input/output, and general.

The arithmetic functions are: aran2, cos, exp, int, log, rand, sin, sqrt,
and srand. int truncates its argument to an integer. rand returns a ran-
dom number between O and 1. srand (expr) sets the seed value for
rand to expr or uses the time of day if expr is omitted.

The string functions are:
gsub(for, repl, in)
behaves like sub (see below), except that it replaces

successive occurrences of the regular expression
(like the ed global substitute command).

28 March 1991 Page 3

AWK (C)

index(s, t)

length(s)

match(s, re)

split(s, a, fs)

sprintf(fmt, expr,

AWK (C)

returns the position in string s where string ¢ first
occurs, or 0 if it does not occur at all.

returns the length of its argument taken as a string, or
of the whole line if there is no argument.

returns the position in string s where the regular
expression re occurs, or 0 if it does not occur at all.
RSTART is set to the starting position (which is the
same as the returned value), and RLENGTH is set to
the length of the matched string.

splits the string s into array elements a[/], a[2], a[n],
and returns n. The separation is done with the regu-
lar expression f5 or with the field separator FS if fs is
not given.

expr,...)
formats the expressions according to the prin#f(S)
format given by fimt and returns the resulting string.

sub(for, repl, in) substitutes the string rep/ in place of the first

substr(s, m, n)

instance of the regular expression for in string in and
returns the number of substitutions. If in is omitted,
awk substitutes in the current record ($0).

returns the n-character substring of s that begins at
position m.

The input/output and general functions are:

close(filename)

cmd|getline

getline

getline <file

getline var

closes the file or pipe named filename.

pipes the output of cmd into getline; each successive
call to getline returns the next line of output from
cmd.

sets $0 to the next input record from the current input
file.

sets $0 to the next record from file.

sets variable var instead.

getline var <file sets var from the next record of file.

system(cmd)

executes cmd and returns to its exit status.

All forms of getline return 1 for successful input, 0 for end of file, and

—1 for an error.

28 March 1991

Page 4

AWK (C) AWK (C)

awk also provides user-defined functions. Such functions may be
defined (in the pattern position of a pattern-action statement) as

function name(args,...) { stmts }
func name(args,...) { stmts }

Function arguments are passed by value if scalar and by reference if
array name. Argument names are local to the function; all other vari-
able names are global. Function calls may be nested and functions

may be recursive. The return statement may be used to return a
value.

Examples

Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:
{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and tabs:
BEGIN [FS = "[\t]+[\t}+")
{ print $2, $1 }
Add up the first column, print sum and average:
{s+=31}
END { print "sum is", s, " average is", s/NR }
Print fields in reverse order:

{ for (i = NF; i > 0; ——i) print $i }

Print all lines between start/stop pairs:

[start/, [stop/

Print all lines whose first field is different from previous one:

$1 != prev [print; prev = $1 }

28 March 1991 ’ Page 5

AWK (C) AWK (C)

Simulate echo(C):
BEGIN |
for (i = 1; i < ARGC; i++)
printf "%s", ARGV[i]

printf "\n"
exit
}

Print file, filling in page numbers starting at 5:

/Page/ { $2 = n++;)
{ print }

command line: awk —f program n=5 input

See Also

grep(C), sed(C).
lex(CP), printf(S) in the Programmer’s Reference Manual.

Bugs
Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To
force an expression to be treated as a number add O to it; to force it to
be treated as a string concatenate the null string (" ") to it.

28 March 199i Page 6

BANNER (C) BANNER (C)

Name

banner - Prints large letters.

Syntax

banner strings

Description
banner prints its arguments (each up to 10 characters long) in large

letters on the standard output. This is useful for printing names at the
front of printouts.

See Also
echo(C)

28 March 1991 Page 1

BASENAME (C) BASENAME (C)

Name

basename - Removes directory names from pathnames.

Syntax

basename string [suffix]

Description
basename deletes any prefix ending in / and the suffix (if present in
string) from string, and prints the result on the standard output. The
result is the “base” name of the file, i.e., the filename without any
preceding directory path and without an extension. It is used inside
substitution marks (~*) in shell procedures to construct new
filenames.

The related command dirname deletes the last level from string and
prints the resulting path on the standard output.
Examples

The following command displays the filename memos on the standard
output:

basename /usr/johnh/memos.old .old
The following shell procedure, when invoked with the argument
fusr/src/cmd/cat.c, compiles the named file and moves the output to a
file named cat in the current directory:

cc $1

mv a.out ~basename $1 .c*

See Also
dirname(C), sh(C)

28 March 1991 Page 1

BC (C) BC (C)

Name

bc - Invokes a calculator.

Syntax
be[-c][-1]1[file..]

Description

bc is an interactive processor for a language that resembles C but pro-
vides unlimited precision arithmetic. It takes input from any files
given, then reads the standard input. The -l argument stands for the
name of an arbitrary precision math library. The syntax for bc pro-
grams is as follows: L means the letters a-z, E means expression, S
means statement.

Comments:

Enclosed in /* and */

Names:

Simple variables: L
Array elements: L[E]

” <«

The words “ibase”, “obase”, and “scale”

Other operands:

Arbitrarily long numbers with optional sign and decimal point
E

sqrt (E)

length (E) Number of significant decimal digits
scale (E) Number of digits right of decimal point
L(E,..,E)

Additive operators:

<+

Multiplicative operators:

*

% (remainder)
" (exponentiation)

28 March 1991 Page 1

BC (C) BC (C)

Unary operators:

++
-- (prefix and postfix; apply to names)

Relational operators:

Assignment operators:

=+
—
=/
=%

Statements:

E

{S;..;S}

if (E)S

while (E) S
for(E;E;E)S
null statement
break

quit

Function definitions:

define L(L,...,L) {
auto L, ..., L
S, .S
return (E)

28 March 1991 Page 2

BC (C) BC (C)

Functions in -1 math library:

s(x) Sine

c(x) Cosine

e(x) Exponential
1(x) Log

a(x) Arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the
main operator is an assignment. Either semicolons or newlines may
separate statements. Assignment to scale influences the number of
digits to be retained on arithmetic operations in the manner of dc(C).
Assignments to ibase or obase set the input and output number radix
respectively.

The same letter may be used as an array, a function, and a simple vari-
able simultaneously. All variables are global to the program. “Auto”
variables are pushed down during function calls. When using arrays
as function arguments or defining them as automatic variables, empty
square brackets must follow the array name.

bc is actually a preprocessor for dc(C), which it invokes automatical -
ly, unless the -c (compile only) option is present. If the -¢ option is
present, the dc input is sent to the standard output instead.

Example

The following defines a function to compute an approximate value of
the exponential function:

scale =20
define e(x){
auto a, b, c, i, s
a=1
b=1
s=1
for(i=1; 1==1; i++){
a=axx
b = bx*i
c=ab
if(c == 0) return(s)
S=s+¢

28 March 1991 Page 3

BC (C) BC (C)

The following prints the approximate values of the exponential func-
tion of the first ten integers:

for(i=1; i<=10; i++) e(i)
Files

fusr/lib/libbc Mathematical library

fusr/bin/dc Desk calculator proper
See Also

de(C)

The XENIX User’s Guide
Notes

A For statement must have all three E’s.
Quit is interpreted when read, not when executed.

Trigonometric values should be given in radians.

28 March 1991 Page 4

BDIFF (C) BDIFF (C)

Name

bdiff - Compares files too large for diff.

Syntax
bdiff filel file2 [n] [-s]

Description

bdiff compares two files, finds lines that are different, and prints them
on the standard output. It allows processing of files that are too large
for diff. bdiff splits each file into n-line segments, beginning with the
first nonmatching lines, and invokes diff upon the corresponding seg-
ments. The arguments are:

n The number of lines bdiff splits each file into for processing. The
default value is 3500. This is useful when 3500-line segments are
too large for diff.

-s Suppresses printing of bdiff diagnostics. Note that this does not
suppress printing of diagnostics from diff.

If filel (or file2) is a dash (-), the standard input is read.
The output of bdiff is exactly that of diff. Line numbers are adjusted to

account for the segmenting of the files, and the output looks as if the
files had been processed whole.

Files

See Also
diff(C)

Notes

Because of the segmenting of the files, bdiff does not necessarily find a
smallest sufficient set of file differences.

Specify the maximum number of lines if the first difference is too far
down in the file for diff and an error is received.

28 March 1991 Page 1

BFS (C) BFS (C)

Name

bfs - Scans big files.

Syntax

bfs [-] name

Description

bfs is like ed (C) except that it is read-only and processes much larger
files. Files can be up to 1024K bytes and 32K lines, with up to 255
characters per line. bfs is usually more efficient than ed for scanning
a file, since the file is not copied to a buffer. It is most useful for iden-
tifying sections of a large file where csplit(C) can be used to divide it
into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of
any file written with the w command. The optional dash (-)
suppresses printing of sizes. Input is prompted for with an asterisk (%)
when “P” and RETURN are typed. The “P” acts as a toggle, so
prompting can be turned off again by entering another “P” and a
RETURN. Note that messages are given in response to errors only if
prompting is turned on.

All address expressions described under ed are supported. In addition,
regular expressions may be surrounded with two symbols other than
the standard slash (/) and (?): A greater-than sign (>) indicates down-
ward search without wraparound, and a less-than sign (<) indicates
upward search without wraparound. Note that parentheses and curly
braces are special and need to be escaped with a backslash (\). Since
bfs uses a different regular expression-matching routine from ed, the
regular expressions accepted are slightly wider in scope (see
regex (S)). Differences between ed and bfs are listed below:

+ A regular expression followed by + means one or more times.
For example, [0-9]+ is equivalent to [0-9][0-9]*.
\m\} \{m,\} \{m,u\}

Integer values enclosed in \{\} indicate the number of times
the preceding regular expression is to be applied. m is the
minimum number and u 1s a number, less than 256, which is
the maximum. If only m is present (e.g., \{m\}), it indicates
the exact number of times the regular expression is to be
applied. \{m,\} is analogous to \{m,infinity\}. The plus (+)
and star (*) operations are equivalent to \{1\} and \{O\}
respectively.

28 March 1991 Page 1

BFS (C) BFS (C)

(...)$n The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+/)th argument
following the subject argument. At most ten enclosed regular
expressions are allowed. regex makes its assignments uncon-
ditionally.

(...) Parentheses are used for grouping. An operator, e.g. *, +,
\{\}, can work on a single character or a regular expression
enclosed in parenthesis. For example, \ (a*\(cb+\)*\)$0.

There is also a slight difference in mark names: only the letters “a”
through “z” may be used, and all 26 marks are remembered.

The e, g, v, k, p, g, w, =, ! and null commands operate as described
under ed except that e doesn’t remember filenames and g and v when
given no arguments return the line after the line you were on. Com-
mands such as ---, +++-, +++=, -12, and +4p are accepted. Note that
1,10p and 1,10 will both print the first ten lines. The f command only
prints the name of the file being scanned; there is no remembered
filename. The w command is independent of output diversion, trunca-
tion, or crunching (see the xo, xt and x¢ commands, below). The fol-
lowing additional commands are available:

xf file
Further commands are taken from the named file. When an
end-of-file is reached, an interrupt signal is received, or an error
occurs, reading resumes with the file containing the xf. xf com-
mands may be nested to a depth of 10.

xo [file]
Further output from the p and null commands is diverted to the
named file. If file is missing, output is diverted to the standard
output. Note that each diversion causes truncation or creation
of the file.

: label
This positions a label in a command file. The label is ter-
minated by a newline, and blanks between the : and the start of
the label are ignored. This command may also be used to insert
comments into a command file, since labels need not be refer-
enced.

(.,.)xb/regular expression/label
A jump (either upward or downward) is made to label if the
command succeeds. It fails under any of the following condi-
tions:
1. Either address is not between 1 and §$.

2. The second address is less than the first.

28 March 1991 Page 2

BFS (C) BFS (C)

3. The regular expression doesn’t match at least one line
in the specified range, including the first and last lines.

On success, dot (.) is set to the line matched and a jump is made
to label. This command is the only one that doesn’t issue an
error message on bad addresses, so it may be used to test
whether addresses are bad before other commands are executed.
Note that the command

xb/’/ label

is an unconditional jump.

The xb command is allowed only if it is read from somewhere
other than a terminal. If it is read from a pipe only a downward
jump is possible.

xt number
Output from the p and null commands is truncated to a max-
imum of number characters. The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the specified digir following the xv.
xv5100 or xv5 100 both assign the value 100 to the variable 5.
xv61,100p assigns the value 1,100p to the variable 6. To refer-
ence a variable, put a % in front of the variable name. For
example, using the above assignments for variables 5 and 6:

1,%5p
1,%5
%6

prints the first 100 lines.
2/%5/p

globally searches for the characters 100 and prints each line
containing a match. To escape the special meaning of %, a \
must precede it. For example,

/" *\%[cdsl/p

could be used to match and list lines containing printf charac-
ters, decimal integers, or strings.

Another feature of the xv command is that the first line of output
from a XENIX command can be stored into a variable.

28 March 1991 Page 3

BFS (C) BFS (C)

The only requirement is that the first character of value be a !.
For example,

xv5!cat junk
'rm junk

lecho "%S5"
xv6lexpr %6 + 1

puts the current line in variable 5, prints it, and increments the
variable 6 by one. To escape the special meaning of ! as the first
character of value, precede it with a \. For example,

xv/\!date
stores the value !date into variable 7.
xbz label

xbn label
These two commands test the last saved rerurn code from the
execution of a XENIX command (!command) or nonzero value,
respectively, and jump to the specified label. The two examples
below search for the next five lines containing the string size:

Xv55
.1
[size/
xv5lexpr %S5 - 1
1if 0%5 =0 exit 2
xbn 1
xv45
.1
[size/
xvélexpr %4 - 1
tif 0%4 = 0 exit 2
xbz 1
xc [switch]
If switch is 1, output from the p and null commands is crunched;
if switch is 0, it is not. Without an argument, xc reverses switch.
Initially switch is set for no crunching. Crunched output has

strings of tabs and blanks reduced to one blank and blank lines
suppressed.

See Also
csplit(C), ed(C), umask(C)

Diagnostics

? for errors in commands if prompting is turned off. Self-explanatory

28 March 1991 Page 4

BFS (C) BFS (C)

error messages when prompting is on.

28 March 1991 Page 5

CAL (C) CAL (C)

Name

cal - Prints a calendar.

Syntax

cal [[month] year]

Description

cal prints a calendar for the specified year. If a month is also speci-
fied, a calendar for that month only is printed. If no arguments are
specified, the current, previous, and following months are printed,
along with the current date and time. The year must be a number
between 1 and 9999; month must be a number between 1 and 12 or
enough characters to specify a particular month. For example, May
must be given to distinguish it from March, but S is sufficient to
specify September. If only a month string is given, only that month of
the current year is printed.

Notes
Beware that “cal 84 refers to the year 84, not 1984.
The calendar produced is that for England and her colonies. Note that
England switched from the Julian to the Gregorian calendar in Sep-

tember of 1752, at which time eleven days were excised from the year.
To see the result of this switch, try “cal 9 1752”.

28 March 1991 Page 1

CALENDAR (C) CALENDAR (C)

Name

calendar - Invokes a reminder service.

Syntax

calendar [-]

Description

calendar consults the file calendar in the user’s current directory and
mails him lines that contain today’s or tomorrow’s date. Most reason-
able month-day dates, such as “Sep. 7, “september 77, and “9/7”, are
recognized, but not “7 September”, “7/12” or “07/12”.

On weekends “tomorrow” extends through Monday. Lines that con-
tain the date of a Monday will be sent to the user on the previous Fri-
day. This is not true for holidays.

When an argument is present, calendar does its job for every user who
has a file calendar in his login directory and sends the result to the

standard output. Normally this is done daily, in the early moming,
under the control of cron (C).

Files
calendar

fust/lib/calprog To figure out today’s and tomorrow’s dates
fetc/passwd
/tmp/cal*

See Also
cron(C), mail(C)

Notes

To get reminder service, a user’s calendar file must have read permis-
sion for all.

28 March 1991 Page 1

CAPINFO (C) CAPINFO (C)

Name
capinfo, fixpad - convert termcap descriptions into terminfo descrip-
tions.

Syntax
capinfo capfile infofile
fixpad

Description
capinfo invokes an ex(C) script to begin the conversion of a termcap
terminal description into the equivalent terminfo description. capinfo
calls fixpad to convert the padding specifications. The conversion

needs to be completed by hand. The following should be given spe-
cial attention:

- Many terminfo capabilities do not have termcap equivalents.
The XENIX extensions to termcap do not have terminfo
equivalents.

- The termcap capabilities cr, nl, and ht
are noted in the ex script as being problematical.

See Also

termcap(M), terminfo(M), terminfo(F), tic(C)

28 March 1991 Page 1

CAT (C) CAT (C)

Name

cat - Concatenates and displays files.

Syntax
cat[-u][-s][-v][-t][-e]file...

Description

cat reads each file in sequence and writes it on the standard output. If

no input file is given, or if a single dash (-) is given, cat reads from the

standard input. The options are:

-s Suppresses warnings about nonexistent files.

-u Causes the output to be unbuffered.

-v Causes non-printing characters (with the exception of tabs, new-
lines, and form feeds) to be displayed. Control characters are dis-
played as “"X” (Cul-X), where X is the key pressed with the Ctrl
key (for example, Ctrl-M is displayed as “M). The DEL character
(octal 0177) is printed as “*?2.” Non-ASCII characters (with the
high bit set) are printed as “M -x,” where x is the character
specified by the seven low order bits.

-t Causes tabs to be printed as “”I” and form feeds as “"L”. This
option is ignored if the -v option is not specified.

-e Causes a “$” character to be printed at the end of each line (prior
to the new-line). This option is ignored if the -v option is not set.

No input file may have the same name as the output file unless it is a
special file.

Examples
The following example displays file on the standard output:

cat file

28 March 1991 Page 1

CAT (C) CAT (C)

The following example concatenates file] and file2 and places the
result in file3:

cat filel file2 >file3
The following example concatenates filel and appends it to file2 :

cat filel >> file2

See Also
cp(C), pr(C)

Warning
Command lines such as:
cat filel file2 > filel

will cause the original data in filel to be lost; therefore, you must be
careful when using special shell characters.

28 March 1991 Page 2

CD (C) CD (C)
Name

cd - Changes working directory.

Syntax

cd [directory]

Description

If specified, directory becomes the new working directory; otherwise
the value of the shell parameter $HOME is used. The process must
have search (execute) permission in all directories (components)
specified in the full pathname of directory .

Because a new process is created to execute each command, cd would
be ineffective if it were written as a normal command; therefore, it is
recognized and executed by the shell.

If the shell is reading its commands from a terminal, and the specified
directory does not exist (or some component cannot be searched),
spelling correction is applied to each component of directory, in a
search for the “correct” name. The shell then asks whether or not to
try and change directory to the corrected directory name; an answer of
n means “no”, and anything else is taken as “yes”.

Notes

Wildcard designators will work with the ¢d command.

See Also
pwd(C), sh(C), chdir(S)

28 March 1991 Page 1

CHGRP (C) CHGRP (C)

Name

chgrp - Changes group ID.

Syntax
chgrp group file ...

Description

chgrp changes the group ID of each file to group. The group may be
either a decimal group ID or a group name found in the file /etc/group.

Files

fetc/passwd
fetc/group

See Also

chown(C), chown(S), passwd(F), group(F)

Notes

Only the owner or the super-user can change the group ID of a file.

28 March 1991 Page 1

CHMOD (C) CHMOD (C)

Name

chmod - Changes the access permissions of a file or directory.

Syntax

chmod mode file ...
chmod [who] +-= [permission ...] file ...

Description

The chmod command changes the access permissions (or mode) of a
specified file or directory. It is used to control file and directory
access by users other than the owner and super-user. The mode may
be an expression composed of letters and operators (called symbolic
mode), or a number (called absolute mode).

A chmod command using symbolic mode has the form:

chmod [who] +-= [permission ...] filename

In place of who you can use one or any combination of the following
letters:

a Stands for “all users”. If who is not indicated on the command line,
a is the default. The definition of “all users” depends on the user’s
umask. See umask(C).

g Stands for “group”, all users who have the same group ID as the
owner of the file or directory.

o Stands for “others”, all users on the system.

u Stands for “user”, the owner of the file or directory.

The operators are:

+ Adds permission

- Removes permission

= Assigns the indicated permission and removes all other permis-
sions (if any) for that who. If no permission is assigned, existing
permissions are removed.

Permissions can be any combination of the following letters:

X Execute (search permission for directories)

28 March 1991 Page 1

CHMOD (C) CHMOD (C)

r Read
w Write

s Sets owner or group ID on execution of the file to that of the owner
of the file. The mode “u+s” sets the user ID bit for the file. The
mode “g+s” sets the group ID bit. Other combinations have no
effect.

t Saves text in memory upon execution. (“Sticky bit”, see
chmod(S)). Only the mode “u+t” sets the sticky bit. All other
combinations have no effect. This mode can only be set by the
super-user.

I Advisory locking calls on the file will automatically be promoted
to mandatory locking. Applies only to normal files (not direc-
tories, special devcie files, etc.).

Mandatory file and record locking refers to locking the read or write
permissions while a program is accessing that file. Under advisory
locking, processes are expected to cooperate by not reading or writing
sections of a file unless a lock can be obtained. The system will not
prevent processes from violating these cooperative procedures as it
does with mandatory locking. A file cannot have group execution per-
mission and be able to be locked on execution. In addition, it is not
possible to turn on the set-group-ID and enable a file to be locked on
execution at the same time. The following examples show illegal uses
of chmod and will generate error messages:

chmod g+x,+l filename
chmod g+s,+l filename
A chmod command using absolute mode has the form:
chmod mode filename

where mode is an octal number constructed by performing logical OR
on the following:

4000 Set user ID on execution

20#0 Set group ID on execution if “#” is 7, 5, 3, or 1 and enable
mandatory locking if “#” is 6, 4, 2, or 0.

1000 Sets the sticky bit (see chmod(S))

0400 Read by owner

0200 Write by owner

28 March 1991 Page 2

CHMOD (C) CHMOD (C)

0100 Execute (search in directory) by owner
0040 Read by group
0020 Write by group
0010 Execute (search in directory) by group
0004 Read by others
0002 Write by others
0001 Execute (search in directory) by others
0000 No permissions
Examples

Symbolic Mode

The following command causes advisory locking calls on file to be
promoted to mandatory locking:

chmod +x file
Multiple symbolic modes may be given, separated by commas, on a
single command line. The following command removes read and
write permission for group and others from file:

chmod go-rw file

The following command gives other users read and write permission
for file:

chmod o+rw file
The following command gives read permission to group and other:

chmod g+r,0+4r file

Absolute Mode

The following command gives all users read, write and execute per-
mission for file:

chmod 0777 file

The following command gives read and write permission to all users
for file:

28 March 1991 Page 3

CHMOD (C) CHMOD (C)

chmod 0666 file

The following command gives read and write permission to the owner
of file only:

chmod 0600 file
The following example causes the file to be locked on access:

chmod +1 file

See Also
1s(C), chmod(S), locking(S), lockf(S), fcntl(S)

Notes

The setuid, setgid, and sticky bit settings are only useful for binary
executable files. They have no effect on shell scripts.

28 March 1991 Page 4

CHOWN (C) CHOWN (C)

Name

chown - Changes owner ID.

Syntax

chown owner file ...

Description

chown changes the owner ID of the files to owner. The owner may be
either a decimal user ID or a login name found in the file /etc/passwd.

Files

fetc/passwd
Jetc/group

See Also

chgrp(C), chown(S), group(F), passwd(F)

Notes

Only the owner or the super-user can change a file’s owner or group

28 March 1991 Page 1

CLEAR (C) CLEAR (C)

Name

clear - Clears a terminal screen.

Syntax

clear [term]

Description

The clear command clears the screen. If term is not specified, the ter-
minal type is obtained from the TERM environment variable.

If a video terminal does not have a clear screen capability, newlines
are output to scroll the screen clear. If the terminal is a hardcopy, the
paper is advanced to the top of the next page.

Files

fetc/termcap

See Also
environ(M), termcap(M), tput(C)

Notes

If the standard output is not a terminal, clear issues an error message.

28 March 1991 Page 1

CMCHK (C)

Name

cmchk - Reports hard disk block size.

Syntax

cmchk

Description

Reports the hard disk block size (BSIZE) in bytes.

28 March 1991

CMCHK (C)

Page 1

CMP (C) CMP (C)

Name

cmp - Compares two files.

Syntax
cmp [-1][-s]filel file2

Description

cmp compares two files and, if they are different, displays the byte and
line number of the differences. If filel is -, the standard input is used.

The options are:

-1 Prints the byte number (decimal) and the differing bytes (octal)
for each difference.

-S Returns an exit code only, O for identical files, 1 for different
files and 2 for inaccessible or missing file(s).

This command should be used to compare binary files; use diff (C) or
diff3 (C) to compare text files.

See Also
comm(C), diff(C), diff3(C)

Diagnostics

Exit code O is returned for identical files, 1 for different files, and 2 for
an inaccessible or missing argument.

28 March 1991 Page 1

COMM (C) COMM (C)

Name

comm - Selects or rejects lines common to two sorted files.

Syntax
comm [- [123]] filel file2

Description

comm reads filel and file2 , which should be ordered in ASCII collat-
ing sequence (see sort (C)), and produces a three-column output: lines
only in filel ; lines only in file2 ; and lines in both files. The filename
- means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus
comm -12 prints only the lines common to the two files; comm -23
prints only lines in the first file but not in the second; comm -123 is a
no-op.

See Also

cmp(C), diff(C), sort(C), unig(C)

28 March 1991 Page 1

COMPRESS (C) COMPRESS (C)

Name

compress - compress data for storage.
uncompress - uncompress a stored file.
zcat - display a stored file.

Syntax

compress [-dfFqc] [-b bits] file
uncompress [-fqc] file
zcat file

Description

compress takes a file and compresses it to the smallest possible size,
creates a compressed output file, and removes the original file unless
the -c option is present. Compression is achieved by encoding com-
mon strings within the file. uncompress restores a previously
compressed file to its uncompressed state and removes the
compressed version. zcat uncompresses and displays a file on the stan-
dard output. When zcat is used to display a file, the file is
uncompressed and concatenated on the screen or standard output, and
the compressed version of the file is not removed.

If no file is specified on the command line, input is taken from the
standard input and the output is directed to the standard output. Output
defaults to a file with the same filename as the input file with the suf-
fix “.Z” or it can be directed through the standard output. The output
files have the same permissions and ownership as the corresponding
input files or the user’s standard permissions if output is directed
through the standard output.

If no space is saved by compression, the output file is not written
unless the -F flag is present on the command line.
Options

The following options are available from the command line:

-d Decompresses a compressed file.
-c Writes output on the standard output and does not remove
original file.

-bbits Specifies the maximum number of bits to use in encoding.

-f Overwrites previous output file.

28 March 1991 Page 1

COMPRESS (C) COMPRESS (C)

-F Writes output file even if compression saves no space.
-q Generates no output except error messages, if any.
See Also

pack(C), pcat(C), ar(C), tar(C), cat(C)

28 March 1991 Page 2

COPY (C) COPY (C)

Name

copy - Copies groups of files.

Syntax

copy [option] ... source ... dest

Description

The copy command copies the contents of directories to another direc-
tory. It is possible to copy whole file systems since directories are
made when needed.

If files, directories, or special files do not exist at the destination, then
they are created with the same modes and flags as the source. In addi-
tion, the super-user may set the user and group ID. The owner and
mode are not changed if the destination file exists.

Note that there may be more than one source directory. If so, the
effect is the same as if the copy command had been issued for each
source directory with the same destination directory for each copy.

Options do not have to be given as separate arguments, and may
appear in any order, even after the other arguments. The options are:

-a Asks the user before attempting a copy. If the response does
not begin with a “y”, then a copy is not done.

-1 Uses links instead whenever they can be used. Otherwise a
copy is done. Note that links are never done for special files
or directories.

-n Requires the destination file to be new. If not, then the copy

command does not change the destination file. The -n flag is
meaningless for directories. For special files an -n flag is
assumed (i.e., the destination of a special file must not
exist).

-0 If set then every file copied has its owner and group set to
those of the source. If not set, then the file’s owner is the
user who invoked the program.

-m If set, then every file copied has its modification time and
access time set to that of the source. If not set, then the
modification time is set to the time of the copy.

-r If set, then every directory is recursively examined as it is

encountered. If not set then any directories that are found
are ignored.

28 March 1991 Page 1

COPY (C) COPY (C)

-ad Asks the user whether a -r flag applies when a directory is
discovered. If the answer does not begin with a “y”, then
the directory is ignored.

-v If the verbose option is set messages are printed that reveal
what the program is doing.

Arguments to copy are:

source This may be a file, directory or special file. It must exist. If
it is not a directory, then the results of the command are the
same as for the cp command.

dest The destination must be either a file or directory that is
different from the source.

If the source and destination are anything but directories, then copy
acts just like a ¢p command. If both are directories, then copy copies
each file into the destination directory according to the flags that have
been set.

Examples

This command line verbosely copies all files in the current directory
to /tmp/food:

copy -v . /tmp/food
The next command line copies all files, except for those that begin
with a period (.), and copies the immediate contents of any child
directories:

copy * fumnp/logic
This command is the same as the previous one, except that it recur-
sively examines all subdirectories, and it sets group and ownership
permissions on the destination files to be the same as the source files:

copy -ro * ftmp/logic

Notes

Special device files can be copied. When they are copied, any data
associated with the specified device is not copied.

28 March 1991 Page 2

CP (C) CP(C)

Name

cp - Copies files.

Syntax
cp filel file2

cp files directory

Description
There are two ways to use the cp command. With the first way, filel
is copied to file2 . Under no circumstance can filel and file2 be ident-
ical. With the second way, directory is the location of a directory into
which one or more files are copied.

See Also
copy(C), cpio(C), In(C), mv(C), rm(C), chmod(S)

Notes

Special device files can be copied. If the file is a named pipe, then the
data in the pipe is copied to a regular file. Similarly, if the file is a de-
vice, then the file is read until the end-of-file is reached, and that data
is copied to a regular file. It is illegal to copy a directory to a file.

28 March 1991 Page 1

CPIO (C) CPIO (C)

Name

cpio - Copy file archives in and out.

Syntax

cpio]-]o[achV] [-C bufsize] [[-O file] [-K volumesize | [-M mes-
sage

cpio -i [BedmrtTuvV£sSh6k] [-C bufsize] [[-I file] [-K volumesize]
[-M message]] [pattern ...]

cpio -p [adlmuvV] directory

Description

cpio -o (copy out) reads the standard input to obtain a list of path
names and copies those files onto the standard output together with
path name and status information. Output is padded to a 512-byte
boundary by default.

NOTE: The following table lists options that are not available on
XENIX-286 distributions:

Options Related options

-0, -p -V

-i -T, -S, -6, -k

Other X, -I,-M,-C

cpio -i (copy in) extracts files from the standard input, which is
assumed to be the product of a previous cpio -0. Only files with
names that match patterns are selected. patterns are regular expres-
sions given in the filename-generating notation of sh(C). In patterns,
metacharacters ?, #*, and [...] match the slash (/) character, and
backslash (\) is an escape character. A ! metacharacter means not.
(For example, the !abc* pattern would exclude all files that begin with
abc.) Multiple patterns may be specified and if no patterns are speci-
fied, the default for parterns is * (i.e., select all files). Each pattern
must be enclosed in double quotes; otherwise the name of a file in the
current directory is used. Extracted files are conditionally created and
copied into the current directory tree based upon the options described
below. The permissions of the files will be those of the previous cpio
-o . The owner and group of the files will be that of the current user
unless the user is super-user, which causes cpio to retain the owner
and group of the files of the previous cpio -o . NOTE: If cpio -i tries
to create a file that already exists and the existing file is the same age
or newer, cpio will output a warning message and not replace the file.
(The -u option can be used to unconditionally overwrite the existing
file.)

28 March 1991 Page 1

CPIO (C) CPIO (C)

cpio -p (pass) reads the standard input to obtain a list of path names of
files that are conditionally created and copied into the destination
directory tree based upon the options described below. Archives of
text files created by cpio are portable between implementations of
UNIX System V.

The meanings of the available options are:

-a Reset access times of input files after they have been copied.
Access times are not reset for linked files when cpio -pla is
specified.

-b Reverse the order of the bytes within each word. Use only with the
-i option.

-B Input/output is to be blocked 5,120 bytes to the record. The default
buffer size is 512 bytes when this and the -C options are not used.
(-B does not apply to the pass option; -B is meaningful only with
data directed to or from a character-special device, e.g.,
/dev/rfd096ds15.)

-¢ Write header information in ASCII character form for portability.
Always use this option when origin and destination machines are
different types.

-C bufsize
Input/output is to be blocked bufsize bytes to the record, where buf-
size is replaced by a positive integer. The default buffer size is 512
bytes when this and -B options are not used. (-C does not apply to
the pass option; -C is meaningful only with data directed to or
from a character-special device, e.g., /dev/rct0.) When used with
the -K option, bufsize is forced to be a 1K multiple.

-d directories are to be created as needed.

-f Copy in all files except those in patterns. (See the paragraph on
cpio -i for a description of patterns.)

-1file
Read the contents of file as input. If file is a character-special de-
vice, when the first medium is full, replace the medium and type a
carriage return to continue to the next medium. Use only with the
-i option.

-k Attempt to skip corrupted file headers and I/O errors that may be
encountered. If you want to copy files from a medium that is cor-
rupted or out of sequence, this option lets you read only those files
with good headers. (For cpio archives that contain other cpio
archives, if an error is encountered, cpio may terminate prema-
turely. cpio will find the next good header, which may be one for a
smaller archive, and terminate when the smaller archive’s trailer is
encountered.) Used only with the -i option.

-1 Whenever possible, link files rather than copying them. Usable
only with the -p option.

-m
Retain previous file modification time. This option is ineffective
on directories that are being copied.

-K volumesize
Specifies the size of the media volume. Must be in 1K blocks. For
example, a 1.2 MB floppy disk has a volumesize of 1200. Must

28 March 1991 Page 2

CPIO (C) CPIO (C)

include the -C option with a bufsize multiple of 1K.

-M message
Define a message to use when switching media. When you use the
-0 or -I options and specify a character-special device, you can
use this option to define the message that is printed when you
reach the end of the medium. One %d can be placed in the mes-
sage to print the sequence number of the next medium needed to
continue.

-0 file
Direct the output of cpio to file. If file is a character-special de-
vice, when the first medium is full, replace the medium and type a
carriage return to continue to the next medium. Use only with the
-0 option.

-r Interactively rename files. If the user types a null line, the file is
skipped. If the user types a ".", the original pathname will be
copied. (Not available with cpio -p.)

-s swap bytes within each half word. Use only with the -i option.

-S Swap halfwords within each word. Use only with the -i option.

-T Truncate long filenames to 14 characters. Use only with the -i
option.

-t Print a table of contents of the input. No files are created.

-u Copy unconditionally (normally, an older file will not replace a
newer file with the same name).

-v verbose: causes a list of file names to be printed. When used with
the -t option, the table of contents looks like the output of an Is -l
command [see Is(C)].

-V Special Verbose: print a dot for each file seen. Useful to assure the
user that cpio is working without printing out all file names.

-6 Process an old (i.e., UNIX System Sixth Edition format) file. Use
only with the -i option.

NOTE: cpio assumes 4-byte words.

If cpio reaches end of medium (end of a diskette for example) when
writing to (-0) or reading from (i) a character-special device, and -O
and -1 are not used, cpio will print the message:

If you want to go on, type devicel file name when ready.

To continue, you must replace the medium and type the character-
special device name (/dev/rfd096ds15 for example) and a carriage
return. You may want to continue by directing cpio to use a different
device. For example, if you have two floppy drives, you may want to
switch between them so cpio can proceed while you are changing the
floppies. (A carriage return alone causes the cpio process to exit.)

28 March 1991 Page 3

CPIO (C) CPIO (C)

Examples

The following examples show three uses of cpio.

When standard input is directed through a pipe to cpio -0, it groups the
files so they can be directed (>) to a single file (../newfile). The -¢
option insures that the file will be portable to other machines. Instead
of Is(C), you could use find(C), echo(C), cat(C), etc., to pipe a list of
names to cpio. You could direct the output to a device instead of a
file.

Is | cpio -oc >../newfile

cpio -i uses the output file of cpio -o (directed through a pipe with cat
in the example), extracts those files that match the patterns (memo/al,
memo/b#*), creates directories below the current directory as needed
(-d option), and places the files in the appropriate directories. The -¢
option is used when the file is created with a portable header. If no
patterns were given, all files from newfile would be placed in the
directory.

cat newfile | cpio -icd “memolal” "memolb*"

cpio -p takes the file names piped to it and copies or links (-l option)
those files to another directory on your machine (rewdir in the exam-
ple). The -d options says to create directories as needed. The -m
option says retain the modification time. [It is important to use the
-depth option of find(C) to generate path names for cpio. This elim-
inates problems cpio could have trying to create files under read-only
directories.]

find . -depth -print | cpio -pdlmv newdir
See Also
cat(C), echo(C), find(C), I1s(C), tar(C), cpio(F)

Notes

1) Path names are restricted to 256 characters.

2) Only the super-user can copy special files.

3) Blocks are reported in 512-byte quantities.

4) If a file has 000 permissions, contains more than 0 characters of data,
and the user is not root, the file will not be saved or restored.

28 March 1991 Page 4

CRON (C) CRON (C)

Name

cron - Executes commands at specified times.

Syntax

fetc/cron
crontab [file]
crontab -r
crontab -l

Description

cron is the clock daemon that executes commands at specified dates
and times according to the instructions in the files located in
fusr/spool/cron/crontabs. Regularly scheduled commands can be
specified according to instructions found in crontab files; users can
submit their own crontab file via the crontab command. Commands
which are to be executed only once may be submitted via the az(C)
command. Because cron never exits, it should be executed only once.

crontab copies the specified file, or standard input if no file is speci-
fied, into a directory that holds all users’ crontabs. The crontab file in
the crontabs directory is given the user’s login name. The -r option
removes a user’s crontab from the crontab directory. crontab -1 will
list the crontab file for the invoking user.

A user is permitted to use crontab if their name appears in the file
/usr/lib/cron/cron.allow. If that file does not exist, the file
fusr/lib/cron/cron.deny is checked to determine if the user should be
denied access to crontab. If neither file exists, only root is allowed to
submit a job. Global usage is permitted by the existence of an empty
cron.deny file. cron.deny is checked only if cron.allow does not
exist. The allow/deny files consist of one user name per line.

The crontabs files consist of lines of six fields each. The fields are
separated by spaces or tabs. The first five are integer patterns that
specify the minute (0-59), hour (0-23), day of the month (1-31), month
of the year (1-12), and day of the week (0-6, with 0=Sunday). Each of
these patterns may contain:

- A number in the (respective) range indicated above

- Two numbers separated by a minus (indicating an inclusive range)

28 March 1991 Page 1

CRON (C) CRON (C)

- A list of numbers separated by commas (meaning all of these num-
bers)

- Anasterisk (meaning all legal values)

Note that the specification of days may be made by two fields (day of
the month and day of the week). If both are specified as a list of ele-
ments, both are adhered to. For example, 0 0 1,15 * 1 would run a
command on the first and fifteenth of each month, as well as on every
Monday. To specify days by only one field, the other field should be
set to * (for example, 0 0 * * 1 would run a command only on Mon-
days).

The sixth field is a string that is executed by the shell at the specified
time(s). A % in this field is translated into a newline character. Only
the first line (up to a % or end-of-line) of the command field is exe-
cuted by the shell. The other lines are made available to the command
as standard input.

The shell is invoked from your SHOME directory with an arg0 of sh.
Users who desire to have their .profile executed must explicitly do so
in the crontab file. cron supplies a default environment for every
shell, defining HOME, LOGNAME, SHELL (=/bin/sh), and
PATH (=:/bin:/usr/bin).

cron examines the crontabs directory periodically to see if it has
changed; if it has, cron reads it. Thus it takes only a short while for
entries to become effective.

crontab exits and returns a value of 55 if it cannot allocate enough
memory. If it exits for any other reason, it returns a value of 1.

Examples

An example crontabs file follows:

30 4 * * /etc/sa ~s > /dev/null

0 4 * * % calendar -

15 4 * * * find /usr/preserve -mtime +7 -a -exec rm -f {} ;
40 4 * * * find / -name ’#*’ -atime +3 -exec m -f (} ;

1,21,41 * * * * (echo -n ' ’; date; echo) >/dev/console

A history of all actions by cron can be recorded in /usr/lib/cron/log.
This logging occurs only if the variable CRONLOG in
fetc/default/cron is set to YES. By default this value is set to NO and
no logging occurs. If logging should be turmed on, be sure to monitor
the size of /usr/lib/cron/log so that it doesn’t unreasonably consume
disk space.

28 March 1991 Page 2

CRON (C) : CRON (C)

Files
/fusr/lib/cron main cron directory
fusr/spool/cron/crontabs/* spool area
fusr/lib/cron/log accounting information

fusr/lib/cron/cron.allow list of allowed users
fusr/lib/cron/cron.deny list of denied users

fusr/lib/cron/.proto cron environment information

fust/lib/cron/quevedefs cron data file

Jetc/default/cron cron logging default information
See Also

at(C), sh(C), queuedefs(F).

Notes

cron reads the files in the crontabs directory only when there is a
change, but it reads the in-core version of the tables periodically.

Users should remember to redirect the standard output and standard
error of their commands, otherwise any generated output or errors will
be mailed to the user.

crontab will overwrite any previous entry with the same name. To

modify an existing crontab file, use crontab -l to copy it to a file, edit
the file, then resubmit it with crontab.

28 March 1991 Page 3

CRYPT (C) CRYPT (C)

Name

crypt - Encode/decode.

Syntax

crypt [password]
crypt [-k]

Description

The crypt command reads from the standard input and writes to the
standard output. The password is a key that selects a particular
transformation. If no argument is given, crypt demands a key from the
terminal and turns off printing while the key is being typed in. If the
-k option is used, crypt will use the key assigned to the environment
variable CRYPTKEY. The crypt command encrypts and decrypts with
the same key:

crypt key <clear >cypher
crypt key <cypher | pr

Files encrypted by crypt are compatible with those treated by the edi-
tors ed(C), edit(C), ex(C), and vi(C) in encryption mode.

The security of encrypted files depends on three factors: the funda-
mental method must be hard to solve; direct search of the key space
must be infeasible; “sneak paths” by which keys or clear text can
become visible must be minimized.

The crypt command implements a one-rotor machine designed along
the lines of the German Enigma, but with a 256-element rotor.
Methods of attack on such machines are known, but not widely; more-
over the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is
deliberately designed to be expensive, i.e., to take a substantial frac-
tion of a second to compute. However, if keys are restricted to (say)
three lower-case letters, then encrypted files can be read by expending
only a substantial fraction of five minutes of machine time.

If the key is an argument to the crypt command, it is potentially visi-
ble to users executing ps(C) or a derivative. To minimize this possi-
bility, crypt takes care to destroy any record of the key immediately
upon entry. The choice of keys and key security are the most vulner-
able aspect of crypt.

28 March 1991 Page 1

CRYPT (C) CRYPT (C)

Files

fdev/tty for typed key

See Also
ed(C), edit(C), ex(C), makekey(C), ps(C), stty(C), vi(C)

Notes

If two or more files encrypted with the same key are concatenated and
an attempt is made to decrypt the result, only the contents of the first
of the original files will be decrypted correctly.

Distribution of the crypt libraries and utilities is regulated by the U.S.
Government and are not available to sites outside of the United States
and its territories. Because we cannot control the destination of the
software, these utilities are not included in the standard product. If
your site is within the U.S. or its territories, you can obtain the crypt
software through your product distributor or reseller.

28 March 1991 Page 2

CSH (C) CSH (C)

Name

csh - Invokes a shell command interpreter with C-like syntax.

Syntax
csh [-cefinstvVxX] [arg ...]

Description

csh is a command language interpreter. It begins by executing com-
mands from the file .cshre in the home directory of the invoker. If
this is a login shell, it also executes commands from the file .login
there. In the normal case, the shell begins reading commands from the
terminal, prompting with % . Processing of arguments and the use of
the shell to process files containing command scripts will be described
later.

The shell then repeatedly performs the following actions: a line of
command input is read and broken into words. This sequence of words
is placed on the command history list and then parsed. Finally, each
command in the current line is executed.

When a login shell terminates, it executes commands from the file
Jogout in the user’s home directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the fol-
lowing exceptions. The characters &, |,;, <,>, (,), form separate
words. If doubled in &&, | 1, <<, or >>, these pairs form single words.
These parser metacharacters may be made part of other words, or their
special meaning prevented, by preceding them with\. A newline pre-
ceded by a\ is equivalent to a blank.

In addition, strings enclosed in matched pairs of quotations, *,” or ",
form parts of a word; metacharacters in these strings, including blanks
and tabs, do not form separate words. These quotations have seman-
tics to be described subsequently. Within pairs of “or " characters, a
newline preceded by a\ gives a true newline character.

When the shell’s input is not a terminal, the character # introduces a
comment which continues to the end of the input line. It does not
have this special meaning when preceded by\ or placed inside the
quotation marks °, ", or ".

28 March 1991 Page 1

CSH (C) CSH (C)

Commands

A simple command is a sequence of words, the first of which specifies
the command to be executed. A simple command or a sequence of
simple commands separated by | characters forms a pipeline. The out-
put of each command in a pipeline is connected to the input of the
next. Sequences of pipelines may be separated by ;, and are then exe-
cuted sequentially. A sequence of pipelines may be executed without
waiting for it to terminate by following it with a &. Such a sequence
is automatically prevented from being terminated by a hangup signal;
the nohup command need not be used.

Any of the above may be placed in parentheses to form a simple com-
mand (which may be a component of a pipeline, etc.) It is also possi-
ble to separate pipelines with || or && indicating, as in the C lan-
guage, that the second is to be executed onmly if the first fails or
succeeds respectively. (See Expressions.)

Substitutions

The following sections describe the various transformations the shell
performs on the input in the order in which they occur.

History Substitutions

History substitutions can be used to reintroduce sequences of words
from previous commands, possibly performing modifications on these
words. Thus, history substitutions provide a generalization of a redo
function.

History substitutions begin with the character ! and may begin any-
where in the input stream if a history substitution is not already in
progress. The ! may be preceded by a\ to prevent its special meaning;
a! is passed unchanged when it is followed by a blank, tab,
newline, =, or (. History substitutions may also occur when an input
line begins with *. This special abbreviation will be described later.

Any input line which contains history substitution is echoed on the
terminal before it is executed as it could have been entered without
history substitution.

Commands input from the terminal which consist of one or more
words are saved on the history list, the size of which is controlled by
the history variable. The previous command is always retained. Com-
mands are numbered sequentially from 1.

28 March 1991 Page 2

CSH (C) CSH (C)

For example, enter the command:
history
Now, consider the following output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It is not usually
necessary to use event numbers, but the current event number can be
made part of the prompt by placing a ! in the prompt string.

Events can be referred by event number (example: !11), or relatively
(example: !-2), or by prefix of a command word (example: !d for event
12), or by a string (example: !?mic? for event 9). These forms,
without further modification, simply reintroduce the words of the
specified events, each separated by a single blank. As a special
case !! refers to the previous command; thus !! alone is essentially a
redo. The form !# references the current command (the one being
entered). It allows a word to be selected from further left in the line,
to avoid retyping a long name, as in {#:1.

To select words from an event, we can follow the event specification
by a: and a designator for the desired words. The words of an input
line are numbered from O, the first (usually command) word being O,
the second word (first argument) being 1, and so on. The basic word
designators are:

0 First (command) word

n nth argument

“ First argument, i.e. 1

$ Last argument

% Word matched by (immediately preceding) ?s ? search

x -
Range of words

-y Abbreviates 0-y
* Abbreviates "-$, or nothing if only 1 word in event

x * Abbreviates x -$

28 March 1991 Page 3

CSH (C) CSH (C)

x - Like x * but omitting word $

The : separating the event specification from the word designator can
be omitted if the argument selector begins with a*, $, #, - or %. After
the optional word designator, a sequence of modifiers can be placed,
each preceded by a :. The following modifiers are defined:

h Removes a trailing pathname component

r Removes a trailing .xxx component

sflir/
Substitutes r for /

t Removes all leading pathname components

&

Repeats the previous substitution
Applies the change globally, prefixing the above

Prints the new command but does not execute it

LT e

Quotes the substituted words, preventing further substitutions
x Like g, but breaks into words at blanks, tabs, and newlines

Unless preceded by a g, the modification is applied only to the first
modifiable word. In any case it is an error for no word to be applica-
ble.

The left sides of substitutions are not regular expressions in the sense
of the editors, but rather strings. Any character may be used as the de-
limiter in place of /; a\ quotes the delimiter within the / and r strings.
The character & in the right side is replaced by the text from the left.
A\ quotes & also. A null / uses the previous string either from a / or
from a contextual scan string s in !?2s?. The trailing delimiter in the
substitution may be omitted if a newline follows immediately as may
the trailing ? in a contextual scan.

A history reference may be given without an event specification,
e.g., !$. In this case the reference is to the previous command unless a
previous history reference occurred on the same line in which case
this form repeats the previous reference. Thus !?foo?™!$ gives the first
and last arguments from the command matching ?foo?.

A special abbreviation of a history reference occurs when the first
nonblank character of an input line is a”. This is equivalent to !:s",
providing a convenient shorthand for substitutions on the text of the
previous line. Thus "Ib"lib fixes the spelling of lib in the previous
command. Finally, a history substitution may be surrounded with {
and } if necessary to insulate it from the characters that follow. Thus,
after Is -1d “paul we might do !{1}a to do Is -Id “paula, while !la would

28 March 1991 Page 4

CSH (C) CSH (C)

look for a command starting la.
Quotations With “and "'

The quotation of strings by “ and " can be used to prevent all or some
of the remaining substitutions. Strings enclosed in are prevented any
further interpretation. Variable and command expansion occurs in
strings enclosed in". Since ! substitution occurs before quoting, !
must be escaped with \, within quotes, to prevent history substitution.

In both cases, the resulting text becomes (all or part of) a single word;
only in one special case (seec Command Substitution below) does a "
quoted string yield parts of more than one word; “ quoted strings never
do.

Alias Substitution

The shell maintains a list of aliases which can be established, dis-
played and modified by the alias and unalias commands. After a com-
mand line is scanned, it is parsed into distinct commands and the first
word of each command, left-to-right, is checked to see if it has an
alias. If it does, then the text which is the alias for that command is
reread with the history mechanism available as though that command
were the previous input line. The resulting words replace the com-
mand and argument list. If no reference is made to the history list,
then the argument list is left unchanged.

Thus if the alias for Is is “Is -1” the command “Is /usr” would map to
“Is-l1fusr”. Similarly if the alias for “lookup” was
“grep\!" fetc/passwd” then “lookup bill” would map to
“grep bill /etc/passwd”.

If an alias is found, the word transformation of the input text is per-
formed and the aliasing process begins again on the reformed input
line. Looping is prevented if the first word of the new text is the same
as the old by flagging it to prevent further aliasing. Other loops are
detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyn-
tax. Thus we can alias print “’pr\!* | lpr"” to make a command that

paginates its arguments to the lineprinter.

There are four csh aliases distributed. These are pushd, popd, swapd,
and flipd. These aliases maintain a directory stack.

pushd dir

Pushes the current directory onto the top of the directory stack,
then changes to the directory dir.

28 March 1991 Page 5

CSH (C) CSH (C)

popd
Changes to the directory at the top of the stack, then removes
(pops) the top directory from the stack, and announces the current
directory.

swapd
Swaps the top two directories on the stack. The directory on the
top becomes the second to the top, and the second to the top direc-
tory becomes the top directory.

flipd
Flips between two directories, the current directory and the top
directory on the stack. If you are currently in dirl,and dir2 is on
the top of the stack, when flipd is invoked, you change to dir2 and
dirl is replaced as the top directory on the stack. When flipd is
again invoked, you change to dirl and dir2 is again the top direc-
tory on the stack.

Variable Substitution

The shell maintains a set of variables, each of which has a list of zero
or more words as its value. Some of these variables are set by the
shell or referred to by it. For instance, the argv variable is an image of
the shell’s argument list, and words of this variable’s value are
referred to in special ways.

The values of variables may be displayed and changed by using the set
and unset commands. Of the variables referred to by the shell a num-
ber are toggles; the shell does not care what their value is, only
whether they are set or not. For instance, the verbose variable is a tog-
gle which causes command input to be echoed. The setting of this
variable results from the -v command line option.

Other operations treat variables numerically. The at-sign (@) com-
mand permits numeric calculations to be performed and the result
assigned to a variable. However, variable values are always
represented as (zero or more) strings. For the purposes of numeric
operations, the null string is considered to be zero, and the second and
subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is
executed, variable substitution is performed, keyed by dollar sign ($)
characters. This expansion can be prevented by preceding the dollar
sign with a backslash (\) except within double quotation marks (")
where it always occurs, and within single quotation marks (“) where it
never occurs. Strings quoted by back quotation marks (*) are inter-
preted later (see Command substitution below) so dollar sign substitu-
tion does not occur there until later, if at all. A dollar sign is passed
unchanged if followed by a blank, tab, or end-of-line.

28 March 1991 Page 6

CSH (C) CSH (C)

Input and output redirections are recognized before variable expan-
sion, and are expanded separately. Otherwise, the command name and
entire argument list are expanded together. It is thus possible for the
first (command) word to generate more than one word, the first of
which becomes the command name, and the rest of which become
arguments.

Unless enclosed in double quotation marks or given the :q modifier,
the results of variable substitution may eventually be subject to com-
mand and filename substitution. Within double quotation marks ("), a
variable whose value consists of multiple words expands to a portion
of a single word, with the words of the variable’s value separated by
blanks. When the :q modifier is applied to a substitution, the variable
expands to multiple words with each word separated by a blank and
quoted to prevent later command or filename substitution.

The following sequences are provided for introducing variable values
into the shell input. Except as noted, it is an error to reference a vari-
able which is not set.

$name

${name)
Are replaced by the words of the value of variable name, each
separated by a blank. Braces insulate name from following
characters which would otherwise be part of it. Shell variables
have names consisting of up to 20 letters, digits, and under-
scores.

If name is not a shell variable, but is set in the environment, then that
value is returned (but : modifiers and the other forms given below are
not available in this case).

$name[selector]

${name(selector] }
May be used to select only some of the words from the value of
name. The selector is subjected to $ substitution and may con-
sist of a single number or two numbers separated by a-. The
first word of a variable’s value is numbered 1. If the first num-
ber of a range is omitted it defaults to 1. If the last member of a
range is omitted it defaults to $#name. The selector * selects all
words. It is not an error for a range to be empty if the second
argument is omitted or in range.

$#name

${#name}
Gives the number of words in the variable. This is useful for
later use in a [selector].

$0 Substitutes the name of the file from which command input is being
read. An error occurs if the name is not known.

28 March 1991 Page 7

CSH (C) CSH (C)

$number
${number)
Equivalent to $argv[number].

$+ Equivalent to $argv[+].

The modifiers :h, :t, :r, :q and :x may be applied to the substitutions
above as may :gh, :gt and :gr. If braces { } appear in the command
form then the modifiers must appear within the braces. Only one :
modifier is allowed on each $ expansion.

The following substitutions may not be modified with : modifiers.

$name
${?name)
Substitutes the string 1 if name is set, 0 if it is not.

$20 Substitutes 1 if the current input filename is known, 0 if it is not.
$$ Substitutes the (decimal) process number of the (parent) shell.
Command and Filename Substitution

Command and filename substitution are applied selectively to the
arguments of built-in commands. This means that portions of expres-
sions which are not evaluated are not subjected to these expansions.
For commands which are not internal to the shell, the command name
is substituted separately from the argument list. This occurs very late,
after input-output redirection is performed, and in a child of the main
shell.

Command Substitution

Command substitution is indicated by a command enclosed in back
quotation marks (). The output from such a command is normally
broken into separate words at blanks, tabs and newlines, with null
words being discarded. This text then replaces the original string.
Within double quotation marks, only newlines force new words;
blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note
that it is possible for a command substitution to yield only part of a
word, even if the command outputs a complete line.

Filename Substitution

If a word contains any of the characters *, ?, [or { or begins with the
character =, then that word is a candidate for filename substitution,
also known as globbing. This word is then regarded as a pattern, and
is replaced with an alphabetically sorted list of filenames which match
the pattern. In a list of words specifying filename substitution it is an

28 March 1991 Page 8

CSH (C) CSH (C)

error for no pattern to match an existing filename, but it is not required
for each pattern to match. Only the metacharacters *, ?, and [imply
pattern matching. The characters ™ and { are more akin to abbrevia-
tions.

In matching filenames, the character . at the beginning of a filename or
immediately following a/, as well as the character / must be matched
explicitly. The character * matches any string of characters, including
the null string. The character ? matches any single character. The
sequence within square brackets [] matches any one of the characters
enclosed. Within square brackets [], a pair of characters separated
by - matches any character lexically between the two.

The character ~ at the beginning of a filename is used to refer to home
directories. Standing alone, it expands to the invoker’s home directory
contained in the variable HOME. When followed by a name consist-
ing of letters, digits and _ characters the shell searches for a user with
that name and substitutes their home directory; thus "ken might
expand to /usr/ken and "ken/chmach to /usr/ken/chmach. If the
character ~ is followed by a character other than a letter or/, or if it
does not appear at the beginning of a word, it is left unchanged.

The metanotation a{b,c,d}e is a shorthand for abe ace ade. Left to
right order is preserved, with results of matches being sorted
separately at a low level to preserve this order. Thus
“source/s1/{oldls,Is}.c expands to /usr/source/s1/oldls.c
fusr/source/s1/Is.c, whether or not these files exist, assuming that the
home directory for source is /usr/source. Similarly ./{memo,*box}
might expand to ../memo ../box ./mbox. (Note that memo was not
sorted with the results of matching *box.) As a special case {, }
and {} are passed unchanged. This construct can be nested.

Spelling Checker

If the local variable cdspell has been set, the shell checks spelling
whenever you use cd to change directories. For example, if you
change to a different directory using cd and misspell the directory
name, the shell responds with an aliernative spelling of an existing
directory. Enter “y” and press RETURN (or just press RETURN) to
change to the offered directory. If the offered spelling is incorrect,
enter “n”, then retype the command line. In this example the csh(C)
response is boldfaced:

cd /usr/spol/uucp

/usr/spool/uucp? y
ok

28 March 1991 Page 9

CSH (C) CSH (C)

Input/Output

The standard input and standard output of a command may be
redirected with the following syntax:

< name
Opens file name (after variable, command and filename expan-
sion) as the standard input.

<< word

Reads the shell input up to a line which is identical to word.
Word is not subjected to variable, filename or command substi-
tution, and each input line is compared to word before any sub-
stitutions are done on this input line. Unless a quoting
backslash, double, or single quotation mark, or a back quotation
mark appears in word, variable and command substitution is
performed on the intervening lines, allowing \ to quote $,\ and ~.
Commands which are substituted have all blanks, tabs, and new-
lines preserved, except for the final newline which is dropped.
The resulting text is placed in an anonymous temporary file
which is given to the command as standard input.

> name

>! name

>& name

>&! name
The file name is used as standard output. If the file does not
exist, then it is created; if the file exists, it is overwritten.

If the variable noclobber is set, then an error results if the file
already exists or if it is not a character special file (e.g., a termi-
nal or /dev/null). This helps prevent accidental destruction of
files. In this case, the ! forms can be used to suppress this check.

The forms involving & route the standard error into the
specified file as well as the standard output. Name is expanded
in the same way as < input filenames are.

>> name

>>& name

>>! name

>>&! name
Uses file name as standard output like > but places output at the
end of the file. If the variable noclobber is set, then it is an error
for the file not to exist unless one of the ! forms is given. Other-
wise similar to >.

If a command is run in the background (followed by &) then the
default standard input for the command is the empty file /dev/null.
Otherwise, the command receives the input and output parameters
from its parent shell. Thus, unlike some previous shells, commands
run from a file of shell commands have no access to the text of the

28 March 1991 Page 10

T

CSH (C) CSH (C)

commands by default; rather they receive the original standard input
of the shell. The << mechanism should be used to present inline data.
This permits shell command scripts to function as components of pipe-
lines and allows the shell to block read its input.

Standard error can be directed through a pipe with the standard output.
Simply use the form | & rather than just I.

Expressions

A number of the built-in commands (to be described later) take
expressions, in which the operators are similar to those of C, with the
same precedence. These expressions appear in the @, exit, if, and
while commands. The following operators are available:

I && |~ = l= <= >= < > << >>
+-*%[% ! 7()

Here the precedence increases to the right, ==and !=, <=,>=, <,
and >, << and >>, +and -, */ and % being, in groups, at the same
level. The == and != operators compare their arguments as strings, all
others operate on numbers. Strings which begin with 0 are considered
octal numbers. Null or missing arguments are considered 0. The
result of all expressions are strings, which represent decimal numbers.
It is important to note that no two components of an expression can
appear in the same word unless a word is adjacent to components of
expressions which are syntactically significant to the parser
(& | <> (), in which case it should be surrounded by spaces.

Also available in expressions as primitive operands are command exe-
cutions enclosed in { and } and file enquiries of the form -/ name
where [is one of:

Read access
Write access
Execute access
Existence
Ownership
Zero size

Plain file
Directory

PN O O x g™

Command and filename expansion is applied to the specified name,
then the result is tested to see if it has the specified relationship to the
real user. If the file does not exist or is inaccessible then all enquiries
return false, i.e. 0. Command executions succeed, returning true,
if.e. 1, if the command exits with status 0, otherwise they fail, returning
alse, i.e. 0.

If more detailed status information is required then the command

should be executed outside of an expression and the variable status
examined.

28 March 1991 Page 11

CSH (C) CSH (C)

Control Flow

The shell contains a number of commands which can be used to regu-
late the flow of control in command files (shell scripts) and (in limited
but useful ways) from terminal input. Due to the implementation,
some restrictions are placed on the word placement for the foreach,
switch, and while statements, as well as the if-then-else form of the if
statement. Please pay careful attention to these restrictions in the
descriptions in the next section.

If the shell’s input is not seekable, the shell buffers up input whenever
a loop is being read and performs seeks in this internal buffer to
accomplish the rereading implied by the loop. (To the extent that this
allows, backward goto commands will succeed on nonseekable
inputs.)

Built-In Commands

Built-in commands are executed within the shell. If a built-in com-
mand occurs as any component of a pipeline except the last, then it is
executed in a subshell.

alias

alias name

alias name wordlist
The first form prints all aliases. The second form prints the alias
for name. The final form assigns the specified wordlist as the
alias of name; wordlist is a command, and filename substitution
is applied to wordlist. Name is not allowed to be alias or
unalias .

break
Causes execution to resume after the end of the nearest enclos-
ing foreach or while statement. The remaining commands on
the current line are executed. Multiievel breaks are thus possi-
ble by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
This is part of the switch statement discussed below.

cd

cd name

chdir

chdir name
Changes the shell’s working directory to directory name. If no
argument is given, it then changes to the home directory of the
user. If name is not found as a subdirectory of the current direc-
tory (and does not begin with /, ./, or ../), then each component of
the variable cdpath is checked to see if it has a subdirectory

28 March 1991 Page 12

CSH (C) CSH (C)

name. Finally, if all else fails but name is a shell variable
whose value begins with /, then this is tried to see if it is a direc-

tory.

If cdspell has been set, the shell runs a spelling check as follows. If
the shell is reading its commands from a terminal, and the specified
directory does not exist (or some component cannot be searched),
spelling correction is applied to each component of directory in a
search for the “correct” name. The shell then asks whether or not to
try and change the directory to the corrected directory name; an
answer of n means “no,” and anything else is taken as “yes.”

continue
Continues execution of the nearest enclosing while or foreach.
The rest of the commands on the current line are executed.

default:
Labels the default case in a swirch statement. The default
should come after all case labels.

echo wordlist
The specified words are written to the shell’s standard output.
Ac causes the echo to complete without printing a newline.
A\n in wordlist causes a newline (o be printed. Otherwise the
words are echoed, separated by spaces.

else

end

endif

endsw
See the description of the foreach, if, switch, and while state-
ments below.

exec command
The specified command is executed in place of the current shell.

exit

exit(expr)
The shell exits either with the value of the szatus variable (first
form) or with the value of the specified expr (second form).

foreach name (wordlist)

end
The variable name is successively set to each member of
wordlist and the sequence of commands between this command

and the matching end are executed. (Both
foreachname(wordlist) and end must appear alone on separate
lines.)

28 March 1991 Page 13

CSH (C) CSH (C)

The built-in command continue may be used to continue the
loop prematurely and the built-in command break to terminate it
prematurely. When this command is read from the terminal, the
contents of the loop are read by prompting with ? until end is
typed before any statements in the loop are executed.

glob wordlist
Like echo but no \ escapes are recognized and words are delim-
ited by null characters in the output. Useful for programs which
wish to use the shell to apply filename expansion to a list of
words.

goto word
Filename and command expansion is applied to the specified
word to yield a string of the form label:. The shell rewinds its
input as much as possible and searches for a line of the form
label: possibly preceded by blanks or tabs. Execution continues
after the specified line.

history
Displays the history event list.

if (expr) command

If the specified expression evaluates true, then the single com-
mand with arguments is executed. Variable substitution on
command happens early, at the same time it does for the rest of
the if command. Command must be a simple command, not a
pipeline, a command list, or a parenthesized command list.
Input/output redirection occurs even if expr is false, and com-
mand is not executed.

if (expr) then
else if (expr2) then
else

endif

If the specified expr is true then the commands before the first
else are executed; else if expr2 is true then the commands after
the second then and before the second else are executed, etc.
Any number of else-if pairs are possible; only one endif is
needed. The else part is likewise optional. (The words else and
endif must appear at the beginning of input lines; the if (expr)
then must appear alone on its input line or after an else.)

logout

Terminates a login shell. The only way to log out if ignoreeof is
set.

28 March 1991 Page 14

CSH (C) CSH (C)

nice

nice +number

nice command

nice +number command
The first form sets the nice for this shell to 4. By default, com-
mands run under C-Shell have a “nice value” of 0. The second
form sets the nice to the given number. The final two forms run
command at priority 4 and number respectively. The super-user
may specify negative niceness by using “nice -number” The
command is always executed in a subshell, and the restrictions
placed on commands in simple if statements apply.

nohup

nohup command
The first form can be used in shell scripts to cause hangups to be
ignored for the remainder of the script. The second form causes
the specified command to be run with hangups ignored. Unless
the shell is running in the background, nohup has no effect. All
processes running in the background with & are automatically
nohuped.

onintr

onintr -

onintr label
Controls the action of the shell on interrupts. The first form
restores the default action of the shell on interrupts which is to
terminate shell scripts or to return to the terminal command
input level. The second form, onintr -, causes all interrupts to
be ignored. The final form causes the shell to execute a goto
label when an interrupt is received or a child process terminates
because it was interrupted.

In any case, if the shell is running in the background, interrupts
are ignored whether any form of onintr is present or not.

rehash
Causes the internal hash table of the contents of the directories
in the parh variable to be recomputed. This is needed if new
commands are added to directories in the path while you are
logged in.

repeat count command
The specified command, which is subject to the same restric-
tions as the command in the simple if statement above, is exe-
cuted count times. I/O redirection occurs exactly once, even if
count is 0.

set

set name
set name=word

28 March 1991 Page 15

CSH (C) CSH (C)

set name[index]=word

set name=(wordlist)
The first form of the command shows the value of all shell vari-
ables. Variables which have other than a single word as value
print as a parenthesized word list. The second form sets name to
the null string. The third form sets name to the single word. The
fourth form sets the indexth component of name to word; this
component must already exist. The final form sets name to the
list of words in wordlist. Command and filename expansion is
applied in all cases.

These arguments may be repeated to set multiple values in a
single set command. Note however, that variable expansion
happens for all arguments before any setting occurs.

setenv name value
Sets the value of the environment variable name to be value,
which must be a single string. Two useful environment vari-
ables are TERM, the type of your terminal and SHELL, the shell
you are using.

shift

shift variable
In the first form, the members of argv are shifted to the left, dis-
carding argv[1]. It is an error for argv not to be set or to have
less than one word as a value. The second form performs the
same function on the specified variable.

source name

The shell reads commands from rname. Source commands may
be nested, but if they are nested too deeply, the shell may run
out of file descriptors. An error in a source at any level ter-
minates all nested source commands, including the csh process
from which source was called. If source is called from the login
shell, it is logged out. Input during source commands is never
placed on the history list.

switch (string)
case strl:

b.l";:aksw
Eefault:

breaksw
endsw
Command and filename substitution is applied to string. Then
each case label is successively matched against the result. Vari-
able expansion is also applied to the case labels, so the file
metacharacters *, ?, and [...] can be used. If none of the labels
match before a default label is found, then the execution begins
after the default label. Each case label and the default label

28 March 1991 Page 16

CSH (C) CSH (C)

must appear at the beginning of a line. The command breaksw
causes execution to continue after the endsw. Otherwise control
may fall through case labels and default labels, as in C. If no
label matches and there is no default, execution continues after
the endsw.

time

time command
With no argument, a summary of CPU time used by this shell
and its children is printed. If arguments are given, the specified
simple command is timed and a time summary as described
under the time variable is printed. If necessary, an extra shell is
created to print the time statistic when the command completes.
command has the same restrictions as the simple if statement
described above.

umask

umask value
The file creation mask is displayed (no arguments) or set to the
specified value (one argument). The mask is given in octal.
Common values for the mask are 002 giving all access to the
group and read and execute access to others, or 022 giving read
and execute access to users in the group and all other users.

unalias pattern
All aliases whose names match the specified pattern are dis-
carded. Thus, all aliases are removed by unalias *. It is not an
error for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of executed pro-
grams is disabled.

unset pattern
All variables whose names match the specified pattern are
removed. Thus, all variables are removed by unset *; this has
noticeably distasteful side-effects. It is not an error for nothing
to be unset.

wait
All child processes are waited for. If the shell is interactive,
then an interrupt can disrupt the wait, at which time the shell
prints names and process numbers of all children known to be
outstanding.

while (expr)
end
While the specified expression evaluates nonzero, the com-

mands between the while and the matching end are evaluated.
Break and continue may be used to terminate or continue the

28 March 1991 Page 17

CSH (C) CSH (C)

loop prematurely. (The while(expr) and end must appear alone
on their input lines.) Prompting occurs here the first time
through the loop as for the foreach statement if the input is a ter-
minal.

@

@ name = expr

@ name[index] = expr
The first form prints the values of all the shell variables. The
second form sets the specified name to the value of expr. If the
expression contains <, >, & orl then at least this part of the
expression must be placed within (). The third form assigns the
value of expr to the indexth argument of name. Both name and
its indexth component must already exist.

The operators *=, +=, etc. are available as in C. The space
separating the name from the assignment operator is optional.
Spaces are mandatory in separating components of expr which
would otherwise be single words. The space between @ and
name is also mandatory.

Special postfix ++ and -- operators increment and decrement
name respectively, i.e. @ i++.

Predefined Variables

The following variables have special meaning to the shell. Of these,
argv, child, home, path, prompt, shell and status are always set by the
shell. Except for child and status this setting occurs only at initializa -
tion; these variables will not be modified unless done explicitly by the
user.

The shell copies the environment variable PATH into the variable
path, and copies the value back into the environment whenever path is
set. Thus it is not necessary to worry about its setting other than in the
file .login because inferior csh processes will import the definition of
path from the environment.

argv Set to the arguments to the shell, it is from this vari-
able that positional parameters are substituted,
i.e., $1 is replaced by $argv[1], etc. argv([0] is not
defined, but $0 is.

cdpath Gives a list of alternate directories searched to find
subdirectories in c¢d commands.

child The process number of the last command forked
with &. This variable is unset when this process
terminates.

28 March 1991 Page 18

CSH (C)

echo

histchars

history

home

ignoreeof

noclobber

28 March 1991

CSH (C)

Set when the -x command line option is given.
Causes each command and its arguments to be
echoed just before it is executed. For nonbuilt-in
commands all expansions occur before echoing.
Built-in commands are echoed before command and
filename substitution, since these substitutions are
then done selectively.

Can be assigned a two-character string. The first
character is used as a history character in place of !,
the second character is used in place of the * substi-
tution mechanism. For example, set histchars=",;"
will cause the history characters to be comma and

semicolon.

Can be given a numeric value to control the size of
the history list. Any command which has been
referenced in this many events will not be dis-
carded. A history that is too large may run the shell
out of memory. The last executed command is
always saved on the history list.

The home directory of the invoker, initialized from
the environment. The filename expansion of ~
refers to this variable.

If set, the shell ignores end-of-file from input de-
vices that are terminals. This prevents a shell from
accidentally being terminated by pressing Ctrl-D.

The files where the shell checks for mail. This
check is executed after each command completion.
The shell responds with, “You have new mail” if
the file exists with an access time not greater than
its modify time.

If the first word of the value of mail is numeric, it
specifies a different mail checking interval: in
seconds, rather than the default, which is 10
minutes.

If multiple mail files are specified, then the shell
responds with “New mail in name”, when there is
mail in the file name.

As described in the section Imput/Output, restric-
tions are placed on output redirection to insure that
files are not accidentally destroyed, and that >>
redirections refer to existing files.

Page 19

CSH (C)

noglob

nonomatch

path

prompt

shell

status

28 March 1991

CSH (C)

If set, filename expansion is inhibited. This is most
useful in shell scripts which are not dealing with
filenames, or after a list of filenames has been
obtained and further expansions are not desirable.

If set, it is not an error for a filename expansion to
not match any existing files; rather, the primitive
pattern is returned. It is still an error for the primi-
tive pattern to be malformed, i.e., echo [still gives
an error.

Each word of the path variable specifies a directory
in which commands are to be sought for execution.
A null word specifies the current directory. If there
is no path variable, then only full pathnames will
execute. The usual search path is /bin, fusr/bin,
and ., but this may vary from system to system. For
the super-user, the default search path is /etc, /bin
and /fusr/bin. A shell which is given neither the -¢
nor the -t option will normally hash the contents of
the directories in the path variable after reading
.cshre, and each time the path variable is reset. If
new commands are added to these directories while
the shell is active, it may be necessary to give the
rehash command, or the commands may not be
found.

The string which is printed before reading each
command from an interactive terminal input. If a!
appears in the string, it will be replaced by the
current event number unless a preceding \ is given.
Default is % , or # for the super-user.

The file in which the shell resides. This is used in
forking shells to interpret files which have execute
bits set, but which are not executable by the system.
(See the description of Nonbuilt-In Command Exe-
cution below.) Initialized to the home of the shell.

The status returned by the last command. If it ter-
minated abnormally, then 0200 is added to the
status. Built-in commands which fail return exit
status 1, otherwise these commands set status to 0.

Page 20

CSH (C) CSH (C)

time Controls automatic timing of commands. If set,
then any command which takes more than this
many cpu seconds will cause a line to be sent to the
screen displaying user time, system time, real time,
and a utilization percentage which is the ratio of
user plus system times to real time.

verbose Set by the -v command line option, causes the
words of each command to be printed after history
substitution.

Nonbuilt-In Command Execution

When a command to be executed is not a built-in command, the shell
attempts to execute the command via exec (S). Each word in the vari-
able path names a directory from which the shell will attempt to exe-
cute the command. If it is given neither a -¢ nor a -t option, the shell
will hash the names in these directories into an internal table so that it
will only try an exec in a directory if there is a possibility that the
command resides there. This greatly speeds command location when
a large number of directories are present in the search path. If this
mechanism has been tumned off (via unhash), or if the shell was given a
-c or -t argument, and for each directory component of path which
does not begin with a/, the shell concatenates each directory com-
ponent of path with the given command name to form a pathname of a
file which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus
(cd; pwd); pwd
prints the home directory but leaves you in the original directory,
while
cd; pwd
moves you to the home directory.

If the file has execute permissions but is not an executable binary to
the system, then it is assumed to be a file containing shell commands
and a new shell is spawned to read it.

If there is an alias for shell then the words of the alias are prepended
to the argument list to form the shell command. The first word of the
alias should be the full pathname of the shell (e.g. $shell). Note that
this is a special, late occurring, case of alias substitution, and only
allows words to be prepended to the argument list without
modification.

28 March 1991 Page 21

CSH (C) CSH (C)

Argument List Processing

If argument O to the shell is - then this is a login shell. The flag argu-
ments are interpreted as follows:

-¢c Commands are read from the (single) following argument which
must be present. Any remaining arguments are placed in argv.

-¢ The shell exits if any invoked command terminates abnormally
or yields a nonzero exit status.

-f The shell will start faster, because it will neither search for nor
execute commands from the file .cshrc in the invoker’s home
directory.

-i The shell is interactive and prompts for its top-level input, even
if it appears to not be a terminal. Shells are interactive without
this option if their input and output are terminals.

-n Commands are parsed, but not executed. This may aid in syn-
tactic checking of shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A\ may be used to
escape the newline at the end of this line and continue onto
another line.

-v Causes the verbose variable to be set, with the effect that com-
mand input is echoed after history substitution.

-x Causes the echo variable to be set, so that commands are echoed
immediately before execution.

-V Causes the verbose variable to be set even before .cshrc is exe-
cuted.

-X Causes the echo variable to be set even before .cshrc is exe-
cuted.

After processing the flag arguments, if arguments remain but none of
the -c, -i, -s, or -t options were given, the first argument is taken as the
name of a file of commands to be executed. The shell opens this file,
and saves its name for possible resubstitution by $0. On a typical sys-
tem, most shell scripts are written for the standard shell (see sh(C)).
The C shell will execute such a standard shell if the first character of
the script is not a # (i.e. if the script does not start with a comment).
Remaining arguments initialize the variable argv.

28 March 1991 Page 22

CSH (C) CSH (C)

Signal Handling

The shell normally ignores quit signals. The interrupt and quit signals
are ignored for an invoked command if the command is followed
by &; otherwise the signals have the values which the shell inherited
from its parent. The handling of interrupts can be controlled by
onintr. By default, login shells catch the terminate signal; otherwise
this signal is passed on to children from the state in the shell’s parent.
In no case are interrupts allowed when a login shell is reading the file

Jogout.
Files
~/.cshrc Read at by each shell at the beginning
of execution
fetc/cshrc Systemwide default cshrc file
“/login Read by login shell, after .cshrc at login
“/logout Read by login shell, at logout
/bin/sh Shell for scripts not starting with a #
/tmp/sh* Temporary file for <<
/dev/null Source of empty file
fetc/passwd Source of home directories for “name
Limitations

Words can be no longer than 512 characters. The number of argu-
ments to a command which involves filename expansion is limited to
1/6 the number of characters allowed in an argument list, which is
5120, less the characters in the environment. The length of any argu-
ment of a command after filename expansion cannot exceed 159 char-
acters. Also, command substitutions may substitute no more charac-
ters than are allowed in an argument list.

To detect looping, the shell restricts the number of alias substitutions
on a single line to 20.

See Also

access(S), exec(S), fork(S), pipe(S), signal(S), umask(S), wait(S),
a.out(F), environ(M)

28 March 1991 Page 23

CSH (C) CSH (C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

Built-in control structure commands like foreach and while cannot be
used with |, & or ;.

Commands within loops, prompted for by ?, are not placed in the his-
tory list.

It is not possible to use the colon (:) modifiers on the output of com-
mand substitutions.

The C-shell has many built-in commands with the same name and
functionality as Boume shell commands. However, the syntax of
these C-shell and Bourne shell commands often differs. Two examples
are the nice and echo commands. Be sure to use the correct syntax
when working with these built-in C-shell commands.

When a C-shell user logs in, the system reads and executes commands
in /etc/cshre before executing commands in the user’s SHOME/ .cshrc
and 3HOME/login. You can, therefore, modify the C-shell environ-
ment for all users on the system by editing /etc/cshrc.

During intervals of heavy system load, pressing the delete key while
at a C-shell prompt (%) may cause the shell to exit. If csh is the login
shell, the user is logged out.

csh attempts to import and export the PATH variable for use with reg-

ular shell scripts. This only works for simple cases, where the PATH
contains no meta-characters.

28 March 1991 Page 24

CSPLIT (C) CSPLIT (C)

Name

csplit - Splits files according to context.

Syntax
csplit [-s] [-k] [-f prefix] file argl [. .. argn]

Description

csplit reads file and separates it into n+1 sections, defined by the
arguments argl... argn. By default the sections are placed in xx00
... Xxn (n may not be greater than 99). These sections get the fol-
lowing pieces of file:

00: From the start of file up to (but not including) the line refer-
enced by argl.

01: From the line referenced by argl up to the line referenced by
arg?.

n+l: From the line referenced by argn to the end of file.
The options to csplit are:

-s csplit normally prints the character counts for each file creat-
ed. If the -s option is present, csplit suppresses the printing
of all character counts.

-k csplit normally removes created files if an error occurs. If
the -k option is present, csplit leaves previously created files
intact.

-f prefix If the -f option is used, the created files are named prefix00
... prefixn. The default is xx00 ... xxn.

The arguments (argl ... argn) to csplit can be a combination of the
following:

frexp/ Afile is to be created for the section from the current line up
to (but not including) the line containing the regular expres-
sion rexp. The current line becomes the line containing
rexp. This argument may be followed by an optional +or -
some number of lines (e.g., /Page/-5).

%rexp % This argument is the same as /rexp/, except that no file is
created for the section.

28 March 1991 Page 1

CSPLIT (C) CSPLIT (C)

Inno A file is to be created from the current line up to (but not
including) /nno. The current line becomes Inno.

{num} Repeat argument. This argument may follow any of the
above arguments. If it follows a rexp type argument, that
argument is applied num more times. If it follows /nno, the
file will be split every Inno lines (num times) from that
point.

Enclose all rexp type arguments that contain blanks or other charac-

ters meaningful to the shell in the appropriate quotation marks. Regu-

lar expressions may not contain embedded newlines. csplit does not
affect the original file; it is the user’s responsibility to remove it.

Examples

csplit -f cobol file “fprocedure division/” /par5./ /fparl6./

This example creates four files, cobol00 ... cobol03. After editing
the “split” files, they can be recombined as follows:

cat cobol0[0-3] > file
Note that this example overwrites the original file.
csplit -k file 100 {99}
This example would split the file at every 100 lines, up to 10,000 lines.
The -k option causes the created files to be retained if there are less
than 10,000 lines; however, an error message would still be printed.
csplit -k prog.c “%main(% "~ /"}/+1° {20}
Assuming that prog.c follows the normal C coding convention of end-
ing routines with a } at the beginning of the line and that main() is the
first function in proc.c this example will create a file containing each
separate C routine (up to 21) in prog.c.

See Also
ed(C), sh(C), regex(S)

Diagnostics
Self-explanatory except for “arg - out of range,” which means that the

given argument did not reference a line between the current position
and the end of the file.

28 March 1991 Page 2

CT (C) CT (C)

Name

ct - spawn getty to a remote terminal

Syntax
ct{-wn][-xn][-h][-v][-sspeed]telno ..

Description

ct dials the telephone number of a modem that is attached to a termi-
nal, and spawns a getty process to that terminal. Telno is a telephone
number, with equal signs for secondary dial tones and minus signs for
delays at appropriate places. (The set of legal characters for telno is 0
thru 9, -, =, *, and #. The maximum length telno is 58 characters). If
more than one telephone number is specified, ¢t will try each in suc-
cession until one answers; this is useful for specifying alternate dial-
ing paths.

ct will try each ACU line listed in the file /usr/lib/uucp/Devices until
it finds an available line with appropriate attributes or runs out of
entries. If there are no free lines, ¢z will ask if it should wait for one,
and if so, for how many minutes it should wait before it gives up. ct
will continue to try to open the dialers at one-minute intervals until
the specified limit is exceeded. The dialogue may be overridden by
specifying the -wn option, where n is the maximum number of
minutes that ct is to wait for a line.

The -xn option is used for debugging; it produces a detailed output of
the program execution on stderr. The debugging level, n, is a single
digit; -x9 is the most useful value. If the -v option is used, ¢t will
send a running narrative to the standard error output stream.

Normally, ¢z will hang up the current line, so the line can answer the
incoming call. The -h option will prevent this action. The -h option
will also wait for the termination of the specified ¢t process before
returning control to the user’s terminal.

The data rate may be set with the -s option, where speed is expressed
in baud. The default rate is 1200.

After the user on the destination terminal logs out, ¢t prompts, Recon-
nect? If the response does not begin with the letter y, the line will be
dropped; otherwise, getty will be started again and the login: prompt
will be printed.

To log out properly, the user must type control D.

28 March 1991 Page 1

CT (C) CT (C)

Of course, the destination terminal must be attached to a modem that
can answer the telephone.

Files
fusr/lib/uucp/Devices
fusr/lib/uucp/LCK..(tty-device)
fusr/adm/ctlog

See Also
cu(C), login(M), uucp(C), getty(M).

Notes

In hangup mode (-h not specified), when a suitable dialer has been
allocated, ct prompts “Proceed to hang-up?” If the response does not
begin with the letter y, the program simply exits. If you are logged in
on a computer through a local terminal and you want to connect a
remote terminal to the computer, you should use nohup with ct to
accomplish this:

nohup ct -h -sspeed phone
After the command is executed, a login prompt is displayed on the

remote terminal. The user can then log in and work on the computer
just as on a local terminal.

28 March 1991 Page 2

CcU (C)

Name

CU(C)

cu - Call another XENIX/UNIX system.

Syntax

cu [-sspeed] [-lline] [-h] [-t] [-xn] [-0]-el-0e] [-n] telno
cul[-sspeed][-h][-xn][[-0!-el-0e] -] line [dir]
cu[-h}[-xn][-o0l-el-0e] systemname

Description

cu calls up another UNIX system, a terminal, or possibly a non-UNIX
system. It manages an interactive conversation with possible transfers

of ASCII files.

cu accepts the following options and arguments:

-sspeed

-line

-t

28 March 1991

Specifies the transmission speed (150, 300, 600, 1200,
2400, 4800, 9600, 19200, 38400). The default value is
“Any” speed which will depend on the order of the
lines in the /usr/lib/uucp/Devices file. A speed range
can also be specified (for example, -s1200-4800).

Specifies a device name to use as the communication
line. This can be used to override the search that would
otherwise take place for the first available line having
the right speed. When the -l option is used without the
-s option, the speed of a line is taken from the Devices
file. When the -1 and -s options are both used together,
cu will search the Devices file to check if the requested
speed for the requested line is available. If so, the con-
nection will be made at the requested speed; otherwise
an error message will be printed and the call will not be
made. The specified device is generally a directly con-
nected asynchronous line (e.g., /dev/ttyab) in which
case a telephone number (telno) is not required. The
specified device need not be in the /dev directory. If
the specified device is associated with an auto dialer, a
telephone number must be provided. Use of this option
with systemname rather than telno will not give the
desired result (see systemname below).

Emulates local echo, supporting calls to other computer
systems which expect terminals to be set to half-duplex
mode.

Used to dial an ASCII terminal which has been set to

auto answer. Appropriate mapping of carriage-return to
carriage-return-line-feed pairs is set.

Page 1

9 2(S) CU(C)

-Xn Causes diagnostic traces to be printed; it produces a
detailed output of the program execution on stderr. The
debugging level, n, is a single digit; -x9 is the most
useful value.

-n For added security, will prompt the user to provide the
telephone number to be dialed rather than taking it
from the command line.

telno When using an automatic dialer, the argument is the
telephone number with equal signs for secondary dial
tone or minus signs placed appropriately for delays of 4
seconds.

systemname A UUCP system name may be used rather than a tele-
phone number. In this case, cu will obtain an appropri-
ate direct line or telephone number from
fusr/lib/uucp/Systems. Note: the systemname option
should not be used in conjunction with the -1 and -s
options as cu will connect to the first available line for
the system name specified, ignoring the requested line
and speed.

dir The keyword dir can be used with cu -lline, in order to
talk directly to a modem on that line, instead of talking
to another system via that modem. This can be useful
when debugging or checking modem operation. Note:
only users with write access to the Devices file are per-
mitted to use cu -line dir.

In addition, cu uses the following options to determine communica-
tions settings:

-0 If the remote system expects or sends 7-bit with odd parity.
-e If the remote system expects or sends 7-bit with even parity.

-0e
If the remote system expects or sends 7-bit, ignoring parity and
sends 7-bit with either parity.

By default, cu expects and sends 8-bit characters without parity. If the
login prompt received appears to contain incorrect 8-bit characters, or
a correct login is rejected, use the 7-bit options described above.

After making the connection, cu runs as two processes: the transmit
process reads data from the standard input and, except for lines begin-
ning with ~, passes it to the remote system; the receive process accepts
data from the remote system and, except for lines beginning with ~,
passes it to the standard output. Normally, an automatic XON/XOFF
protocol is used to control input from the remote so the buffer is not
overrun. Lines beginning with ~ have special meanings.

28 March 1991 Page 2

CU(C)

CU (C)

The transmit process interprets the following user initiated com-

mands:

-1

temd ...

“+cmd. ..

“%cd

"%take from [to]

“%oput from [to)

“line

“%break

"%debug

t

28 March 1991

terminate the conversation.

escape to an interactive shell on the local sys-
tem.

run cmd on the local system (via sh -c).

run ¢md locally and send its output to the
remote system.

runs cmd on the local system (via sh -¢), with
both standard input and standard output of
cmd redirected to the remote system.

change the directory on the local system.
Note: “!ed will cause the command to be run
by a sub-shell, probably not what was
intended.

copy file from (on the remote system) to file
to on the local system. If to is omitted, the
from argument is used in both places.

copy file from (on local system) to file fo on
remote system. If fo is omitted, the from
argument is used in both places.

For both "%take and “%put commands, as
each block of the file is transferred, consecu-
tive single digits are printed to the terminal.

send the line “line to the remote system.

transmit a BREAK to the remote system
(which can also be specified as “%b).

toggles the -x debugging level between 0 and
9 (which can also be specified as "%d).

prints the values of the termio structure vari-
ables for the user’s terminal (useful for
debugging).

prints the values of the termio structure vari-

ables for the remote communication line
(useful for debugging).

Page 3

CU (C) CU (C)

“%nostop toggles between XON/XOFF input control
protocol and no input control. This is useful
in case the remote system is one which does
not respond properly to the DC3 and DCl1
characters.

The receive process normally copies data from the remote system to
its standard output. Internally the program accomplishes this by ini-
tiating an output diversion to a file when a line from the remote begins
with ~. Data from the remote is diverted (or appended, if >> is used)
to file on the local system. The trailing "> marks the end of the diver-
sion.

The use of “%put requires stty(C) and caz(C) on the remote side. It
also requires that the current erase and kill characters on the remote
system be identical to these current control characters on the local
system. Backslashes are inserted at appropriate places.

The use of “%take requires the existence of echo(S) and cat(C) on the
remote system. Also, tabs mode (See stry(C)) should be set on the
remote system if tabs are to be copied without expansion to spaces.
These commands must be executed at a shell prompt on the remote
system.

When cu is used on systeml to connect to system2 and subsequently
used on system2 to connect to system3, commands on system2 can be
executed by using ~. Executing a tilde command reminds the user of
the local system uname. For example, uname can be executed on sys-
tems 1, 2, and 3 as follows:

uname

system3
“systemI'!uname
systeml
““system2!uname
system2

In general, ~ causes the command to be executed on the original ma-
chine, ~" causes the command to be executed on the next machine in
the chain.

Examples

To dial a system whose telephone number is 9 201 555 1212 using
1200 baud (where dialtone is expected after the 9):

cu -s1200 9=12015551212

If the speed is not specified, “Any” is the default value.

28 March 1991 Page 4

CU (C) CU (C)

To login to a system connected by a direct line:
cu -l /devityXX
or
cu - teyXX
To dial a system with the specific line and a specific speed:
cu -s1200 -1 ayXX
To dial a system using a specific line associated with an auto dialer:
cu -1 tyXX 9=12015551212
To use a system name:
cu systemname

To talk directly to an ACU (connect directly with the modem and
enter modem commands manually):

cu -lityXX dir

Files
/usr/lib/uucp/Systems

fusr/lib/uucp/Devices
fasr/lib/uucp/LCK..(tty-device)

See Also
cat(C), ct(C), echo(S), stty(C), uucp(C), uname(C)

Diagnostics

Exit code is zero for normal exit, otherwise, one.

28 March 1991 Page 5

CU(©©) CU(C)

Warnings

The cu command does not do any integrity checking on data it
transfers. Data fields with special cu characters may not be transmit-
ted properly. Depending on the interconnection hardware, it may be
necessary to use a ~. to terminate the conversion even if stty 0 has
been used. Non-printing characters are not dependably transmitted
using either the “%put or “%take commands.

Notes

There is an artificial slowing of transmission by cu during the ~%put
operation so that loss of data is unlikely.

28 March 1991 Page 6

DATE (C) DATE (C)

Name

date - Prints and sets the date.

Syntax
date [mmddhhmm(yy]] [+format]

Description

If no argument is given, or if the argument begins with +, the current
date and time are printed as defined by the locale. Otherwise, the
current date is set. The first mm is the month number; dd is the day
number in the month; hh is the hour number (24-hour system); the
second mm is the minute number; yy is the last 2 digits of the year
number and is optional. For example:

date 10080045
sets the date to Oct 8, 12:45 AM, if the local language is set to English.
The current year is the default if no year is mentioned. The system
operates in GMT. date takes care of the conversion to and from local
standard and daylight time.
If the argument begins with +, the output of date is under the control
of the user. The format for the output is similar to that of the first
argument to printf (S). All output fields are of fixed size (zero padded
if necessary). Each field descriptor is preceded by a percent sign (%)
and will be replaced in the output by its corresponding value. A single
percent sign is encoded by doubling the percent sign, i.e., by specify-
ing “%%”. All other characters are copied to the output without
change. The string is always terminated with a newline character.
Field Descriptors:
n Inserts a newline character
t Inserts a tab character
m Month of year - 01 to 12
d Day of month - 01 to 31
y Last 2 digits of year - 00 to 99
D Date as mm/dd/yy

H Hour-00t023

28 March 1991 Page 1

DATE (C) DATE (C)

M Minute - 00 to 59

S Second - 00to 59

T Time as HH:MM:SS
Julian date - 001 to 366

Coe

w Day of the week - Sunday =0
Abbreviated weekday - Sun to Sat

-]

-2

Abbreviated month - Jan to Dec

r Time in AM/PM notation

Example
The line
date “+DATE: %m/%d/%y%nTIME: %H:%M:%S *
generates output similar to this:

DATE: 08/01/90
TIME: 14:45:05

Diagnostics
no permission You aren’t the super-user and you are trying to
change the date.
bad conversion The date set is syntactically incorrect.

bad format character The field descriptor is not recognizable.

28 March 1991 Page 2

DC (C)

Name

DC (C)

dc - Invokes an arbitrary precision calculator.

Syntax

dc [file]

Description

dc is an arbitrary precision arithmetic package. Ordinarily it operates
on decimal integers, but you may specify an input base, output base,
and a number of fractional digits to be maintained. The overall struc-
ture of dc is a stacking (reverse Polish) calculator. If an argument is
given, input is taken from that file until its end, then from the standard
input. The following constructions are recognized:

number

The value of the number is pushed on the stack. A number is
an unbroken string of the digits 0-9. It may be preceded by an
underscore () to input a negative number. Numbers may con-
tain decimal points.

+-/*%*%"

The top two values on the stack are added (+), subtracted (-),
multiplied (¥), divided (/), remaindered (%), or exponentiated
("). The two entries are popped off the stack; the result is
pushed on the stack in their piace. Any fractional part of an
exponent is ignored.

The top of the stack is popped and stored into a register named
x, where x may be any character. If the s is capitalized, x is
treated as a stack and the value is pushed on it.

The value in register x is pushed on the stack. The register x is
not altered. All registers start with zero value. If the I is capi-
talized, register x is treated as a stack and its top value is
popped onto the main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains
unchanged.

Interprets the top of the stack as an ASCII string, removes it,
and prints it.

All values on the stack are printed.

28 March 1991 Page 1

DC (C)

X

[..

]

DC (C)

Exits the program. If executing a string, the recursion level is
popped by two. If q is capitalized, the top value on the stack is
popped and the string execution level is popped by that value.

Treats the top element of the stack as a character string and
executes it as a string of dc commands.

Replaces the number on the top of the stack with its scale fac-
tor.

Puts the bracketed ASCII string onto the top of the stack.

<X >X =X

The top two elements of the stack are popped and compared.
Register x is evaluated if they obey the stated relation.

Replaces the top element on the stack by its square root. Any
existing fractional part of the argument is taken into account,
but otherwise the scale factor is ignored.

Interprets the rest of the line as a XENIX command.

All values on the stack are popped.

The top value on the stack is popped and used as the number
radix for further input.

Pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number
radix for further output.

Pushes the output base on the top of the stack.

The top of the stack is popped, and that value is used as a non-
negative scale factor; the appropriate number of places are
printed on output, and maintained during multiplication, divi-
sion, and exponentiation. The interaction of scale factor, input
base, and output base will be reasonable if all are changed
together.

The stack level is pushed onto the stack.

Replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the ter-
minal) and executed.

Used by bc for array operations.

28 March 1991 Page 2

DC (C) DC (C)

Example
This example prints the first ten values of n!:
[lal+dsa*plalO>ylsy
0Osal
lyx
See Also
be(C)

Diagnostics

X is unimplemented The octal number x corresponds to a character
that is not implemented as a command

stack empty Not enough elements on the stack to do what
was asked
Out of space The free list is exhausted (too many digits)
Out of headers Too many numbers being kept around
Out of pushdown Too many items on the stack
Nesting Depth Too many levels of nested execution
Notes

be is a preprocessor for dc, providing infix notation and a C-like syn-
tax which implements functions and reasonable control structures for
programs. For interactive use, bc is preferred to dc .

28 March 1991 Page 3

DD (C)

Name

DD (C)

dd - Converts and copies a file.

Syntax

dd [option=value] ...

Description

dd copies the specified input file to the specified output with possible
conversions. The standard input and output are used by default. The
input and output block size may be specified to take advantage of raw

physical I/O.
Option
if=file
of=file
ibs=n

obs=n

bs=n

cbs=n
skip=n

seek=n

count=n
conv=ascii
conv=ebcdic
conv=ibm

conv=lcase

28 March 1991

Value

Input filename; standard input is default

Output filename; standard output is default

Input block size n bytes (default is 1024)

Output block size (default is 1024)

Sets both input and output block size, superseding ibs
and obs; also, if no conversion is specified, it is par-
ticularly efficient since no in-core copy needs to be
done

Conversion buffer size

Skips n input records before starting copy

Seeks n records from beginning of output file before
copying

Copies only n input records
Converts EBCDIC to ASCII
Converts ASCII to EBCDIC
Slightly different map of ASCII to EBCDIC

Maps alphabetics to lowercase

Page 1

DD (C) DD (C)

Option Value
conv=ucase Maps alphabetics to uppercase
conv=swab Swaps every pair of bytes

conv=sync Pads every input record to ibs

"

Several comma-separated conversions

conv="...,...

Where sizes are specified, a number of bytes is expected. A number
may end with k, b, or w to specify multiplication by 1024, 512, or 2
respectively; a pair of numbers may be separated by x to indicate a
product.

Cbs is used only if ascii or ebcdic conversion is specified. In the
former case cbs characters are placed into the conversion buffer, con-
verted to ASCII, and trailing blanks trimmed and newline added before
sending the line to the output. In the latter case ASCII characters are
read into the conversion buffer, converted to EBCDIC, and blanks
added to make up an output record of size cbs.

After completion, dd reports the number of whole and partial input
and output blocks.

Examples

This command reads an EBCDIC tape, blocked ten 80-byte EBCDIC
card images per record, into the ASCII file outfile :

dd if=/dev/rct0 of=outfile ibs=800 cbs=80 conv=ascii,lcase
dd is especially suited to I/O on raw physical devices because it
allows reading and writing in arbitrary record sizes.
See Also
copy(C), cp(C), tar(C)

Diagnostics

f+p records in(out) Numbers of full and partial records
read(written)

28 March 1991 Page 2

DD (C) DD (C)

Notes
The ASCII/EBCDIC conversion tables are taken from the 256-
character standard in the CACM Nov, 1968. The ibm conversion cor-
responds better to certain IBM print train conventions. There is no
universal solution.

Newlines are inserted only on conversion to ASCII; padding is done
only on conversion to EBCDIC.

When using dd with a raw device, specify the block size as a multiple
of 1K. For example, to use a 9K block size, enter:

dd if=file of=/dev/rfd0 bs=18b
You could also enter:

dd if=file of=/dev/rfd0 bs=9K

28 March 1991 Page 3

DEVNM (C) DEVNM (C)

Name

devnm - Identifies device name.

Syntax

/etc/devnm [names |

Description

Devnm identifies the special file associated with the mounted file sys-
tem where the argument name resides.

This command is most commonly used by /etc/re to construct a mount
table entry for the root device.

Examples
Be sure to type full pathnames in this example:
fetc/devim fu
If /dev/hd1 is mounted on /u, this produces:

hdl M

Files

/dev/* Device names

fetc/rc XENIX startup commands

See Also
setmnt(ADM)

28 March 1991 Page 1

DF (C) DF (C)

Name

df - Report number of free disk blocks.

Syntax
df [t][-F][-v-i]][filesystems]

Description

df prints out the number of free blocks and free inodes available for
on-line filesystems by examining the counts kept in the super-blocks;
filesystems may be specified by device name (e.g., /dev/root). If the
filesystems argument is unspecified, the free space on all of the
mounted filesystems is sent to the standard output. The list of
mounted file systems is given in /etc/mnttab.

Options include:

-t Causes total allocated block figures to be reported as well as
number of free blocks.

-f Reports only an actual count of the blocks in the free list (free
inodes are not reported). With this option, df reports on raw de-
vices.

-v Reports the percent of blocks used as well as the number of
blocks used and free.

-i Reports the percent of inodes used as well as the number of
inodes used and free. Use the -i option with the -v option to dis-
play counts of blocks and inodes free as well as the percentage
of inodes and blocks used.

The -v and -i options can not be used with other df options.
Files

[dev/*
Jetc/mnttab

See Also
mount(ADM), fsck(ADM), mattab(F)

28 March 1991 Page 1

DF (C) DF (C)

Notes
See Notes under mount(ADM).
This utility reports sizes in 512 byte blocks. This means a file of 500

bytes uses 2 blocks. df will report 2 blocks less free space, rather than
1 block, because the file uses one system block of 1024 bytes.

28 March 1991 Page 2

DIFF (C) DIFF (C)

Name

diff - Compares two text files.

Syntax
diff [-efbh] filel file2

Description

diff tells what lines must be changed in two files to bring them into
agreement. If filel or file2 is a dash (-), the standard input is used. If
filel or file2 is a directory, diff uses the file in that directory that has
the same name as the file (file2 or filel respectively) it is compared to.
For example:

diff /tmp dog

compares the file named dog, that is in the /fmp directory, with the file
dog in the current directory.

The normal output contains lines of these forms:

nl an3,nd
nl,n2 d n3
nl,n2 ¢ n3,nd

These lines resemble ed commands to convert filel into file2. The
numbers after the letters pertain to file2. In fact, by exchanging a for
d and reading backward, one may ascertain equally how to convert
file2 into filel . As in ed, identical pairs where nl = n2 or n3 = n4 are
abbreviated as a single number.

Following each of these lines come all the lines that are affected in the
first file flagged by <, then all the lines that are affected in the second
file flagged by >.

The -b option causes trailing blanks (spaces and tabs) to be ignored
and other strings of blanks to compare equal.

The -e option produces a script of @, ¢ and d commands for the editor
ed, which will recreate file2 from filel . The -f option produces a simi-
lar script, not useful with ed, in the opposite order. In connection with
-e, the following shell procedure helps maintain multiple versions of a
file:

(shift; cat $%; echo “1,$p”) led - $1

28 March 1991 Page 1

DIFF (C) DIFF (C)

This works by performing a set of editing operations on an original
ancestral file. This is done by combining the sequence of ed scripts
given as all command line arguments except the first. These scripts
are presumed to have been created with diff in the order given on the
command line. The set of editing operations is then piped as an edit-
ing script to ed where all editing operations are performed on the
ancestral file given as the first argument on the command line. The
final version of the file is then printed on the standard output. Only an
ancestral file ($1) and a chain of version-to-version ed scripts
($2,%$3,...) made by diff need be on hand.

Except in rare circumstances, diff finds the smallest sufficient set of
file differences.

The -h option does a fast, less-rigorous job. It works only when
changed stretches are short and well separated, but also works on files
of unlimited length. The -e and -f options cannot be used with the -h
option.

Files

fusr/lib/difth for -h

See Also
cmp(C), comm(C), ed(C)

Diagnostics

Exit status is O for no differences, 1 for some differences, 2 for errors.
Notes

Editing scripts produced under the -e or -f option do not always work
correctly on lines consisting of a single period (.).

28 March 1991 Page 2

DIFF3 (C) DIFF3 (C)

Name

diff3 - Compares three files.

Syntax
diff3 [-ex3] filel file2 file3

Description

diff3 compares three versions of a file, and publishes disagreeing
ranges of text flagged with these codes:

==== All three files differ
==== Filel is different
==== File2 is different
==== File3 is different

The type of change suffered in converting a given range of a given file
to some other range is indicated in one of these ways:

f:nla Text is to be appended after line number n/ in
file f, where f = 1, 2, or 3.
finl n2c¢ Text is to be changed in the range line nl to
' line n2. If nl = n2, the range may be abbrevi-
ated to nl.

The original contents of the range follows immediately after a ¢ indi-
cation. When the contents of two files are identical, the contents of
the lower-numbered file is suppressed.

Under the -e option, diff3 publishes a script for the editor ed that will
incorporate into filel all changes between file2 and file3, i.e., the
changes that normally would be flagged ==== and ====3. The -x
option produces a script to incorporate changes flagged with “===="
Similarly, the -3 option produces a script to incorporate changes
flagged with “====3". The following command applies a resulting
editing script to filel

(cat script; echo “1,$p") l ed - filel

28 March 1991 Page 1

DIFF3 (C) DIFF3 (C)

Files
Jtmp/d3*
fusr/lib/diff3prog

See Also
diff(C)

Notes

dif3 does not work properly for lines consisting of a single period.

The input file size limit is 64K bytes.

28 March 1991 Page 2

DIRCMP (C) DIRCMP (C)

Name

dircmp - Compares directories.

Syntax
dircmp [-d] [-s] [-wn] dirl dir2

Description

dircmp examines dir! and dir2 and generates tabulated information
about the contents of the directories. Listings of files that are unique
to each directory are generated in addition to a list that indicates
whether the files common to both directories have the same contents.

There are three options available:

-d Performs a full diff on each pair of like-named files if the
contents of the files are not identical.
-S Suppresses output of identical filenames.
-wn Changes the width of the output line to n characters. The
default width is 72.
See Also
cmp(C), diff(C).

28 March 1991 Page 1

DIRNAME (C) DIRNAME (C)

Name

dirname - Delivers directory part of pathname.

Syntax

dirname string

Description
dirname delivers all but the last component of the pathname in string
and prints the result on the standard output. If there is only one com-
ponent in the pathname, only a “dot” is printed. It is normally used
inside substitution marks (* *) within shell procedures.
The companion command basename deletes any prefix ending in a
slash (/) and the suffix (if present in string) from string, and prints the
result on the standard output.
Examples
The following example sets the shell variable NAME to /usr/src¢/cmd:
NAME=-dimame /usr/src/cmd/cat.c*
This example prints /a/b/c on the standard output:
dimame /a/b/c/d

This example prints a “dot” on the standard output:

dirname file.ext

See Also
basename(C), sh(C)

28 March 1991 Page 1

DISABLE (C) DISABLE (C)

Name

disable - Turns off terminals and printers.

Syntax
disable tty ...
disable [-c][-r[reason]] printers
Description
For terminals, this program manipulates the /etc/ttys file and signals
init to disallow logins on a particular terminal. For printers, disable
stops print requests from being sent to the named printer. The follow-
ing options can be used:
-c Cancels any requests that are currently printing.
-r[reason] Associates a reason with disabling the printer. The rea-
son applies to all printers listed up to the next -r option.
If the -r option is not present or the -r option is given
without a reason, then a default reason is used. Reason
is reported by Ipstat (C).
Examples

In this example, a printer named linepr is disabled because of a paper
jam:

disable -r"paper jam" linepr

Files
/dev/tty*
fetc/ttys
fusr/spool/lp/*

See Also

login(M), enable(C), ttys(F), getty(M), init(M), Ip(C), lpinit(ADM),
Ipstat(C), ungetty(M)

28 March 1991 Page 1

DISKCP (C) DISKCP (C)

Name

diskcp, diskemp - Copies, compares floppy disks.

Syntax

diskep [-f]1[-d][-s][-48ds9][-96ds9][-96ds1S5](-135ds9][-135ds18]
diskemp [-d] [-s][-48ds9]([-96ds9][-96ds15][-135ds9}[-135ds18]

Description

diskcp is used to make an image (exact copy) of a source floppy disk
on a target floppy disk. On machines with one floppy drive diskcp
temporarily transfers the image to the hard disk until a blank “target”
floppy is inserted into the floppy drive. On machines with two floppy
drives diskcp immediately places the image of the source floppy
directly on the target floppy.

The options are:

-f Format the target floppy disk before the image is copied (diskcp
only).

-d The computer has dual floppy drives. diskcp copies the image
directly onto the target floppy.

-s Uses sum(C) to compare the contents of the source and target
floppies; gives an error message if the two do not match.

-48ds9
This setting is for low density 48tpi (360K) floppies. It is the
default setting.

-96ds9
This setting is for medium density 96tpi (720K) floppies.

-96ds15
This setting is for high density 96tpi (1200K) floppies.

-135ds9
This setting is for low density 135tpi (720K) 3.5 inch floppies.

-135ds18
This setting is for high density 135tpi (1440K) 3.5 inch floppies.

28 March 1991 Page 1

DISKCP (C) DISKCP (C)

When using the -96ds9 and -96ds15 options of diskcp, if the first tar-
get disk is unformatted, the program will note it, format it and make
the copy. If another copy is requested and another unformatted target
disk is inserted, diskcp exits with a “System Error.” Quit, format the
floppy, and reinvoke diskcp to make another copy.

diskemp functions similarly to diskcp. It compares the contents of one
floppy disk with the contents of a second floppy disk using the cmp
utility.

Examples

To make a copy of a floppy, place the source floppy in the drive and
type:
diskcp

When diskcp is finished copying to the hard disk, it prompts you to
insert the target floppy in the drive. If you specify the -f flag when you
invoke diskcp , the program formats the target floppy. When the copy
is finished, diskcp prompts if you would like to make another copy of
the same source disk. If you enter ‘n’, it prompts if you would like to
copy another source disk.

Specify the -d flag on the command line if you have two floppy drives:

diskep -d

Notes
If diskcp encounters a write error while copying the source image to
the target disk, it formats the disk and tries to write the source image
again. This happens most often when an unformatted floppy is used
and the -f flag is not specified.

Files
fusr/bin/diskcp
fusr/bin/diskcmp
/tmp/disk$$

See Also

cmp(C), dd(C), sum(C)

28 March 1991 Page 2

DOS (C) DOS (C)

Name

dos: doscat, doscp, dosdir, dosformat, dosmkdir, dosls, dosrm,

dosrmdir - Access to and manipulation of DOS files.
Syntax

doscat [-rl-m] file ...

doscp [-r1-m] filel file2

doscp { -r1-m] file ... directory

dosdir directory ...

dosformat [-fqv] drive

dosls directory ...

dosmkdir directory ...

dosrm file ...

dosrmdir directory ...

Description

The dos commands provide access to the files and directories on MS-
DOS floppy disks and on a DOS partition of a hard disk. Note that in
order to use these commands on a DOS partition of a hard disk, the
partition must be bootable, although not active.

The dos commands perform the following actions:

doscat Copies one or more DOS files to the standard output. If
-r is given, the files are copied without newline conver-
sions. If -m is given, the files are copied with newline
conversions (see “Conversions” below).

doscp Copies files between a DOS disk and a XENIX filesys-
tem. If filel and file2 are given, filel is copied to file2.
If a directory is given, one or more files are copied to
that directory. If -r is given, the files are copied
without newline conversions. If -m is given, the files
are copied with newline conversions (see “Conver-
sions” below).

dosdir Lists DOS files in the standard DOS style directory for-
mat.

28 March 1991 Page 1

DOS (C) DOS (C)

dosformat Creates a DOS 2.0 formatted diskette. The drive may
be specified in either DOS drive convention, using the
default file /etc/default/msdos, or using the XENIX spe-
cial file name. dosformat cannot be used to format a
hard disk. The -f option suppresses the interactive fea-
ture. The -q (quiet) option is used to suppress informa-
tion normally displayed during dosformat . The -q
option does not suppress the interactive feature. The -v
option prompts the user for a volume label after the
diskette has been formatted. The maximum size of the
volume label is 11 characters.

dosls Lists DOS directories and files in a XENIX format (see
Is(C)).
dosrm Removes files from a DOS disk.

dosmkdir Creates a directory on a DOS disk.
dosrmdir Deletes directories from a DOS disk.

The file and directory arguments for DOS files and directories have the
form:

device:name

where device is a XENIX pathname for the special device file contain-
ing the DOS disk, and name is a pathname to a file or directory on the
DOS disk. The two components are separated by a colon (:). For
example, the argument:

[dev/fdO:/src/file.asm

specifies the DOS file, file.asm, in the directory, /src, on the disk in the
device file /dev/fd0. Note that slashes (and not backslashes) are used
as filename separators for DOS pathnames. Arguments without a de-
vice: are assumed to be XENIX files.

For convenience, the user configurable default file,
/etc/default/msdos, can define DOS drive names to be used in place of
the special device file pathnames. For example, it can contain lines
with the following format:

A=/dev/fd0
C=/dev/hd0d
D=/dev/hd1d

The drive letter “A” may be used in place of special device file path-
name /dev/fd0 when referencing DOS files (see “Examples” below).
The drive letter “C” or “D” refers to the DOS partition on the first or
second hard disk.

28 March 1991 Page 2

DOS (C) DOS (C)

The commands operate on the following kinds of disks:

DOS partitions on a hard disk
5 1/4 inch DOS

3 1/2 inch DOS

8,9, 15, or 18 sectors per track
40 or 80 tracks per side

1 or 2 sides

DOS versions 1.0,2.0 or 3.0

Conversions

In the case of doscp, certain conversions are performed when copying
a XENIX file. Filenames with a basename longer than eight characters
are truncated. Filename extensions (the part of the name following
separating period) longer than three characters are truncated. For
example, the file 123456789.12345 becomes 12345678.123. A mes-
sage informs the user that the name has been changed and the altered
name is displayed. Filenames containing illegal DOS characters are
stripped when writing to the MS-DOS format. A message informs the
user that characters have been removed and displays the name as writ-
ten.

All DOS text files use a carriage-return/linefeed combination, CR-LF ,
to indicate a newline. XENIX files use a single newline LF character.
When the doscat and doscp commands transfer DOS text files to the
XENIX filesystem, they automatically strip the CR. When text files
are transferred to DOS , the commands insert a CR before each LF
character.

Under some circumstances the automatic newline conversions do not
occur. The -m option may be used to ensure the newline conversion.
The -r option can be used to override the automatic conversion and
force the command to perform a true byte copy regardless of file type.

Examples

doscat /dev/fd0:/docs/memo.txt
doscat /tmp/f1 /tmp/f2 /dev/fd0:/src/file.asm

dosdir /dev/fd0:/src
dosdir A:/src A:/dev

doscp A:autoexec.bat fu/naomiby/test.txt
doscp fu/naomib/test.txt A:test.txt
dosformat /dev/fd0

dosls /dev/fd0:/src
dosls B:

dosmkdir /dev/fd0:/usr/docs

28 March 1991 Page 3

DOS (C) DOS (C)

dosrm /dev/fd0:/docs/memo.txt
dosrm A:/docs/memol .txt

dosrmdir /dev/fd0:/usr/docs

Files
fetc/default/msdos Default information
/dev/fd* Floppy disk devices
/dev/hd* Hard disk devices
See Also

assign(C), dtype(C), mkfs(ADM) and “Using DOS and OS/2” in the
XENIX System Administrator’s Guide

Notes

Using the DOS utilities, is not possible to refer to DOS files with wild
card specifications. The programs mentioned above cooperate among
themselves so no two programs will access the same DOS disk. Only
one process will access a given DOS disk at any time, while other pro-
cesses wait. If a process has to wait too long, it displays the error
message, “can’t seize a device,” and exits with an exit code of 1.

You cannot use the dosformat command to format device A: because
it is aliased to /dev/install, which cannot be formatted. Use /dev/rfd0/
instead.

The following hard disk devices:

/dev/hd0d
Jdev/rhd0d
/dev/hdld
/dev/rhd1ld

are similar to /dev/hd0a in that the disk driver determines which parti-
tion is the DOS partition and uses that as hd?d. This means that soft-
ware using the DOS partition does not need to know which partition is
DOS.

The Development System supports the creation of DOS executable
files, using cc (CP). Refer to the C User’s Guide and C Library Guide
for more information on using your XENIX system to create programs
suitable for DOS systems.

All of the DOS utilities leave temporary files in /tmp. These files are

automatically removed when the system is rebooted. They can also be
manually removed.

28 March 1991 Page 4

DOS (C) DOS (C)

You must have DOS 3.3 or earlier. Extended DOS partitions are not
supported.

28 March 1991 Page 5

DTYPE (C)

Name

DTYPE (C)

dtype - Determines disk type.

Syntax

dtype {-s] device ...

Description

dtype determines type of disk, prints pertinent information on the stan-
dard output unless the silent (-s) option is selected, and exits with a
corresponding code (see below). When more than one argument is
given, the exit code corresponds to the last argument.

Disk Exit | Message
Type Code | (optional)
Misc. 60 error (specified)
61 empty or unrecognized data
Storage 70 dump format, volume n
71 tar format[, extent e of n]
72 cpio format
73 cpio character (-c) format
MS-DOS | 80 DOS 1.x, 8 sec/track, single sided
81 DOS 1.x, 8 sec/track, dual sided
90 DOS 2.x, 8 sec/track, single sided
91 DOS 2.x, 8 sec/track, dual sided
92 DOS 2.x, 9 sec/track, single sided
93 DOS 2.x, 9 sec/track, dual sided
94 DOS 2.x, fixed disk
110 DOS 3.x, 9 sec/track, dual sided
XENIX 120 XENIX 2.x filesystem [needs cleaning]
130 XENIX 3.x or later filesystem [needs cleaning]
Notes

word-swapped refers to byte ordering of long words in relation to the

host system.

XENIX file systems and dump and cpio binary formats may not be
recognized if created on a foreign system. This is due to such system
differences as byte and word swapping and structure alignment.

This utility only works reliably for floppy diskettes.

28 March 1991

Page 1

DU (C) DU (C)

Name

du - Summarizes disk usage.

Syntax

du [-afrsu] [names]

Description

du gives the number of blocks contained in all files and (recursively)
directories within each directory and file specified by the names argu-
ment. The block count includes the indirect blocks of the file. If
names is missing, the current directory is used.

The optional argument -s causes only the grand total (for each of the
specified names) to be given. The optional argument -a causes an
entry to be generated for each file. Absence of either causes an entry
to be generated for each directory only.

The -f option causes du to display the usage of files in the current file
system only. Directories containing mounted file systems will be
ignored. The -u option causes du to ignore files that have more than
one link.

du is normally silent about directories that cannot be read, files that
cannot be opened, etc. The -r option will cause du to generate mes-
sages in such instances.

A file with two or more links is only counted once.

Notes

If the -a option is not used, nondirectories given as arguments are not
listed.

If there are too many distinct linked files, du will count the excess
files more than once.

Files with holes in them will get an incorrect block count.

This utility reports sizes in 512 byte blocks.

28 March 1991 Page 1

ECHO (C) ECHO (C)

Name

echo - Echoes arguments.

Syntax

echo[arg]...
/bin/echo [arg] ...

Description

echo writes its arguments separated by blanks and terminated by a
newline on the standard output. echo also understands C-like escape
conventions. The following escape sequences need to be quoted so
that the shell interprets them correctly:

\b Backspace
\c Prints line without newline
\f Form feed

\n Newline

\r Carriage return

\t Tab

\v Vertical tab

\\ Backslash

\n The 8-bit character whose ASCII code is a 1, 2 or 3-digit octal
number. In all cases, n must start with a zero. For example:

echo "\07" - Echoes Ctl-G.

echo "\007" - Also echoes Ctl-G.

echo "\065" - Echoes the number “5”.
echo "\0065" - Also echoes the number “5”.
echo "\0101" - Echoes the letter “A”.

echo is useful for producing diagnostics in command files and for
sending known data into a pipe.

See Also
sh(C)
Notes
The ¢sh(C) has a built-in echo utility which has a different syntax than

this echo. Be aware that users running under csk will get the built-in
echo unless they specify /bin/echo .

28 March 1991 Page 1

ED (C) ED (C)

Name

ed, red - Invokes the ed text editor.

Syntax
ed[-][-pstring][file }
red [-] [-p string] [file]

Description

ed is the standard text editor. If the file argument is given, ed simu-
lates an ¢ command (see below) on the named file; that is to say, the
file is read into ed’s buffer so that it can be edited. ed operates on a
copy of the file it is editing; changes made to the copy have no effect
on the file until a w (write) command is given. The copy of the text
being edited resides in a temporary file called the buffer. There is
only one buffer.
red is a restricted version of ed(C). It will only allow editing of files
in the current directory. It prohibits executing sh#(C) commands via
the ! command. red displays an error message on any attempt to
bypass these restrictions.
In general, red does not allow commands like

!date
or

Ish

Furthermore, red will not allow pathnames in its command line. For
example, the command:

red /etc/passwd

when the current directory is not /etc causes an error.

Options
The options to ed are:
- Suppresses the printing of character counts by the e, r, and w

commands, of diagnostics from e and ¢ commands, and the !
prompt after a !shell command.

28 March 1991 Page 1

ED (C) ED (C)

-p Allows the user to specify a prompt string.

ed supports formatting capability. After including a format specifica-
tion as the first line of file and invoking ed with your terminal in stty
-tabs or stty tab3 mode (see stty(C)), the specified tab stops will auto-
matically be used when scanning file. For example, if the first line of
a file contained:

<:t5,10,15 s72:>

tab stops would be set at columns 5, 10, and 15, and a maximum line
length of 72 would be imposed. NOTE: While inputing text, tab char-
acters are expanded to every eighth column as the default.

Commands to ed have a simple and regular structure: zero, one, or two
addresses followed by a single-character command, possibly followed
by parameters to that command. These addresses specify one or more
lines in the buffer. Every command that requires addresses has default
addresses, so that the addresses can very often be omitted.

In general, only one command may appear on a line. Certain com-
mands allow the input of text. This text is placed in the appropriate
place in the buffer. While ed is accepting text, it is said to be in input
mode. In this mode, no commands are recognized; all input is merely
collected. Input mode is left by entering a period (.) alone at the
beginning of a line.

ed supports a limited form of regular expression notation; regular
expressions are used in addresses to specify lines and in some com-
mands (e.g., s) to specify portions of a line that are to be substituted.
A regular expression specifies a set of character strings. A member of
this set of strings is said to be matched by the regular expression. The
regular expressions allowed by ed are constructed as follows:

The following one-character regular expressions match a single char-
acter:

1.1 An ordinary character (not one of those discussed in 1.2 below)
is a one-character regular expression that matches itself.

1.2 A backslash (\) followed by any special character is a one-
character regular expression that matches the special character
itself. The special characters are:

a. . * [, and \ (dot, star, left square bracket, and backslash,
respectively), which are otherwise special, except when they
appear within square brackets ([]); see 1.4 below).

b. ~ (caret), which is special at the beginning of an entire regu-
lar expression (see 3.1 and 3.2 below), or when it immedi-
ately follows the left of a pair of square brackets ([]) (see
1.4 below).

28 March 1991 Page 2

ED (C) ED (C)

c. $ (dollar sign), which is special at the end of an entire regu-
lar expression (see 3.2 below).

d. The character used to bound (i.e., delimit) an entire regular
expression, which is special for that regular expression (for
example, see how slash (/) is used in the g command below).

1.3 A period (.) is a one-character regular expression that matches
any character except newline.

1.4 A nonempty string of characters enclosed in square brackets ([])
is a one-character regular expression that matches any one char-
acter in that string. If, however, the first character of the string is
a caret (~), the one-character regular expression matches any
character except newline and the remaining characters in the
string. The star (*) also has this special meaning only if it occurs
first in the string. The dash (-) may be used to indicate a range of
consecutive ASCII characters; for example, [0-9] is equivalent to
[0123456789]. The dash (-) loses this special meaning if it
occurs first (after an initial caret (»), if any) or last in the string.
The right square bracket (]) does not terminate such a string
when it is the first character within it (after an initial caret (*), if
any); e.g., []a-f] matches either a right square bracket (]) or one
of the letters “a” through “f” inclusive. Dot, star, left bracket,
and the backslash lose their special meaning within such a string
of characters.

Ranges of characters (characters separated by -) are treated according
to the current locale’s collation sequence (see locale (M)). Therefore,
if the collation sequence in use is A, a, B, b, C, c, then the expression
[a-d] is equivalent to the expression [aBbCcDd].

To specify a collation item within a class, the item must be enclosed
between [. and .] . Two character to one collation itern mappings must
be specified this way. For example, if the current collation rules
specify that the characters “Ch” map to one character for collation
purposes (as in Spanish), then this collation item would be specified as
[.Ch.] .

To specify a group of collation items, which are classified as equal
unless all other collation items in the string also match, in which case
a secondary “weight” becomes significant, a single member of that
group must be enclosed between [= and =] . For example, if the char-
acters A and a are in the same group then the class expressions
[[=a=]b], [[=A=]b] and [Aab] are all equivalent.

The ctype classes can also be specified within regular expressions.
These are enclosed between [: and :] . The possible ctype classes are:

28 March 1991 Page 3

ED (C) ED (C)

[:alpha:] Matches alphabetic characters
[:upper:] = Matches upper case characters
[:lower:] Matches lower case characters
[:digit:] Matches digits

[:alnum:] Matches alphanumeric characters
[:space:] Matches white space

(:print:] Matches printable characters
[:punct:] Matches punctuation marks
(:graph:] Matches graphical characters
[:entrl:] Matches control characters

The following rules may be used to construct regular expressions from
one-character regular expressions:

2.1
A one-character regular expression followed by a star (*) is a regu-
lar expression that matches zero or more occurrences of the one-
character regular expression. If there is any choice, the longest
leftmost string that permits a match is chosen.

22

A one-character regular expression followed by \{m\}, \{m,\}, or
\{m,n\} is a regular expression that matches a range of occurren-
ces of the one-character regular expression. The values of m and n
must be nonnegative integers less than 255; \{m\} matches exactly
m occurrences; \{m,\} matches at least m occurrences; \{m,n\}
matches any number of occurrences between m and n, inclusive.
Whenever a choice exists, the regular expression matches as many
occurrences as possible.

2.3
The concatenation of regular expressions is a regular expression
that matches the concatenation of the strings matched by each
component of the regular expression.

24
A regular expression enclosed between the character sequences \(
and \) is a regular expression that matches whatever the unadomned
regular expression matches. See 2.5 below for a discussion of why
this is useful.

25
The expression \n matches the same string of characters as was
matched by an expression enclosed between \(and \) earlier in the
same regular expression. Here n is a digit; the subexpression
specified is that beginning with the n-th occurrence of \(counting
from the left. For example, the expression ~\(.*\)\1$ matches a
line consisting of two repeated appearances of the same string.

Finally, an entire regular expression may be constrained to match
only an initial segment or final segment of a line (or both):

28 March 1991 Page 4

ED (C) ED (C)

3.1 A caret (») at the beginning of an entire regular expression con-
strains that regular expression to match an initial segment of a
line.

3.2 A dollar sign ($) at the end of an entire regular expression con-
strains that regular expression to match a final segment of a line.
The construction ~entire regular expression$ constrains the
entire regular expression to match the entire line.

The null regular expression (e.g., /) is equivalent to the last regular
expression encountered.

To understand addressing in ed , it is necessary to know that there is a
current line at all times. Generally speaking, the current line is the last
line affected by a command; the exact effect on the current line is dis-
cussed under the description of each command. Addresses are con-
structed as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.
4

x addresses the line marked with the mark name character x,
which must be a lowercase letter. Lines are marked with the &
command described below.

5. A regular expression enclosed by slashes (/) addresses the first
line found by searching forward from the line following the
current line toward the end of the buffer and stopping at the first
line containing a string matching the regular expression. If
necessary, the search wraps around to the beginning of the buffer
and continues up to and including the current line, so that the
entire buffer is searched.

6. A regular expression enclosed in question marks (?) addresses
the first line found by searching backward from the line preced-
ing the current line toward the beginning of the buffer and stop-
ping at the first line containing a string matching the regular
expression. If necessary, the search wraps around to the end of
the buffer and continues up to and including the current line. See
also the last paragraph before Files below.

7. An address followed by a plus sign (+) or a minus sign (-) fol-
lowed by a decimal number specifies that address plus or minus
the indicated number of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is

taken with respect to the current line; e.g, -5 is understood to
mean .-5.

28 March 1991 Page 5

ED (C) ED (C)

9. If an address ends with + or -, then 1 is added to or subtracted
from the address, respectively. As a consequence of this rule and
of rule 8 immediately above, the address - refers to the line
preceding the current line. (To maintain compatibility with ear-
lier versions of the editor, the character ~ in addresses is entirely
equivalent to -.) Moreover, trailing + and - characters have a
cumulative effect, so -- refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$,
while a semicolon (;) stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands that
require no addresses regard the presence of an address as an error.
Commands that accept one or two addresses assume default addresses
when an insufficient number of addresses is given; if more addresses
are given than such a command requires, the last address(es) are used.

Typically, addresses are separated from each other by a comma (,).
They may also be separated by a semicolon (;). In the latter case, the
current line (.) is set to the first address, and only then is the second
address calculated. This feature can be used to determine the starting
line for forward and backward searches (see rules 5 and 6 above). The
second address of any two-address sequence must correspond to a line
that follows, in the buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown
in parentheses. The parentheses are not part of the address.

It is generally illegal for more than one command to appear on a line.
However, any command (except e, f, r, or w) may be suffixed by p or
by 1, in which case the current line is either printed or listed, respec-
tively, as discussed below under the p and / commands.

(.a

<text>

The append command reads the given text and appends it after the
addressed line; dot is left at the address of the last inserted line, or,
if there were no inserted lines, at the addressed line. Address O is
legal for this command: it causes the “appended” text to be placed
at the beginning of the buffer.

(e

<text>
The change command deletes the addressed lines, then accepts
input text that replaces these lines; dot is left at the address of the

last line input, or, if there were none, at the first line that was not
deleted.

(.,.)d

The delete command deletes the addressed lines from the buffer.
The line after the last line deleted becomes the current line; if the

28 March 1991 Page 6

ED (C) ED (C)

lines deleted were originally at the end of the buffer, the new last
line becomes the current line.

e file

The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in; dot is set to the last
line of the buffer. If no filename is given, the currently remem-
bered filename, if any, is used (see the f command). The number
of characters read is typed. file is remembered for possible use as
a default filename in subsequent e, r, and w commands. If file
begins with an exclamation (!), the rest of the line is taken to be a
shell command. The output of this command is read for the e and r
commands. For the w command, the file is used as the standard
input for the specified command. Such a shell command is rot
remembered as the current filename.

E file
The Edit command is like e, except the editor does not check to
see if any changes have been made to the buffer since the last w
command.

ffile
If file is given, the filename command changes the currently
remembered filename to file; otherwise, it prints the currently
remembered filename.

(1,$)g/regular-expression [command list

In the global command, the first step is to mark every line that
matches the given regular expression. Then, for every such line,
the given command list is executed with . initially set to that line.
A single command or the first of a list of commands appears on the
same line as the global command. All lines of a multiline list
except the last line must be ended with a \; a, i, and ¢ commands
and associated input are permitted; the . terminating input mode
may be omitted if it would be the last line of the command list. An
empty command list is equivalent to the p command. The g, G, v,
and V commands are nof permitted in the command list. See also
Notes and the last paragraph before Files below.

(1,$)G/regular-expression/

In the interactive Global command, the first step is to mark every
line that matches the given regular expression. Then, for every
such line, that line is printed, dot (.) is changed to that line, and
any one command (other than one of the a, ¢, i, g, G, v, and V
commands) may be input and is executed. After the execution of
that command, the next marked line is printed, and so on. A new-
line acts as a null command. An ampersand (&) causes the re-
execution of the most recent command executed within the current
invocation of G. Note that the commands input as part of the exe-
cution of the G command may address and affect any lines in the
buffer. The G command can be terminated by entering an INTER-
RUPT (pressing the DEL key).

28 March 1991 Page 7

ED (C) ED (C)

h
The help command gives a short error message that explains the
reason for the most recent ? diagnostic.

The Help command causes ed to enter a mode in which error mes-
sages are printed for all subsequent ? diagnostics. It will also
explain the previous diagnostic if there was one. The H command
alternately turns this mode on and off. It is initially off.

(.)i

<text>

The insert command inserts the given text before the addressed
line; dot is left at the address of the last inserted line, or if there
were no inserted lines, at the addressed line. This command differs
from the a command only in the placement of the input text.
Address 0 is not legal for this command.

(.,+1)j
The join command joins contiguous lines by removing the
appropriate newline characters. If only one address is given, this
command does nothing.

()kx
The mark command marks the addressed line with name x, which
must be a lowercase letter. The address “x then addresses this line.
Dot is unchanged.

(.,
The /ist command prints the addressed lines in an unambiguous
way: a few nonprinting characters (e.g., tab, backspace) are
represented by mnemonic overstrikes, all other nonprinting charac-
ters are printed in octal, and long lines are folded. An! command
may be appended to any command other than e, f, r, or w.

(ey.)ma
The move command repositions the addressed line(s) after the line
addressed by a. Address 0 is legal for a and causes the addressed
line(s) to be moved to the beginning of the file. It is an error if
address a falls within the range of moved lines. Dot is left at the
last line moved.

(ey.)n
The number command prints the addressed lines, preceding each
line by its line number and a tab character. Dot is left at the last
line printed. The n command may be appended to any command
other than e, f, r,or w.

(+>.)p

The print command prints the addressed lines. Dot is left at the
last line printed. The p command may be appended to any

28 March 1991 Page 8

ED (C) ED(C)

command other than e, f, r, or w; for example, dp deletes the
current line and prints the new current line.

The editor will prompt with a * for all subsequent commands. The
P command alternately turns this mode on and off. It is initially off.

The quit command causes ed to exit. No automatic write of a file
is done.

The editor exits without checking if changes have been made in
the buffer since the last w command.

($)r file

The read command reads in the given file after the addressed line.
If no filename is given, the currently remembered filename, if any,
is used (see e and f commands). The currently remembered
filename is not changed unless file is the very first filename men-
tioned since ed was invoked. Address O is legal for r and causes
the file to be read at the beginning of the buffer. If the read is suc-
cessful, the number of characters read is typed. Dot is set to the
address of the last line read in. If file begins with !, the rest of the
line is taken to be a shell command whose output is to be read.
Such a shell command is not remembered as the current filename.

(.,.)slregular-expression Ireplacement | or
(.y.)slregular-expression Ireplacement /g or
(.,.)slregular-expression Ireplacement In n=1-512

The substitute command searches each addressed line for an oc-
currence of the specified regular expression. In each line in which
a match is found, all nonoverlapped matched strings are replaced
by replacement if the global replacement indicator g appears after
the command. If the global indicator does not appear, only the first
occurrence of the matched string is replaced. It is an error for the
substitution to fail on all addressed lines. Any character other than
space or newline may be used instead of / to delimit regular-
expression and replacement. Dot is left at the address of the last
line on which a substitution occurred.

The n character represents any number between one and 512. This
number indicates the instance of the pattern to be replaced on each
addressed line.

An ampersand (&) appearing in replacement is replaced by the
string matching the regular-expression on the current line. The
special meaning of the ampersand in this context may be
suppressed by preceding it with a backslash. The characters \n,

28 March 1991 Page 9

ED (C) ED (C)

where 7 is a digit, are replaced by the text matched by the n-th reg-
ular subexpression of the specified regular expression enclosed
between \(and \). When nested parenthesized subexpressions are
present, n is determined by counting occurrences of \(starting
from the left. When the character % is the only character in
replacement , the replacement used in the most recent substitute
command is used as the replacement in the current substitute com-
mand. The % loses its special meaning when it is in a replace-
I\nent string of more than one character or when it is preceded by a

A line may be split by substituting a newline character into it. The
newline in the replacement must be escaped by preceding it with a
\. Such a substitution cannot be done as part of a g or v command
list.

(..)ta
’ This command acts just like the m command, except that a copy of
the addressed lines is placed after address a (which may be 0). Dot
is left at the address of the last line of the copy.

u
The undo command nullifies the effect of the most recent com-
mand that modified anything in the buffer, namely the most recent
a,c,d,g,i,j,m,r,s,t,v,G,or V command.

(1,$)viregular-expression lcommand list
This command is the same as the global command g except that
the command list is executed with dot initially set to every line
that does not match the regular expression.

(1,$)Viregular-expression/
This command is the same as the interactive global command G
except that the lines that are marked during the first step are those
that do not match the regular expression.

(1,8)w file

The write command writes the addressed lines into the named file.
If the file does not exist, it is created with mode 666 (readable and
writeable by everyone), unless the umask setting (see sh(C)) dic-
tates otherwise. The currently remembered filename is not
changed unless file is the very first filename mentioned since ed
was invoked. If no filename is given, the currently remembered
filename, if any, is used (see ¢ and f commands), and dot remains.
If the command is successful, the number of characters written is
displayed. If file begins with an exclamation (!), the rest of the
line is taken to be a shell command to which the addressed lines
are supplied as the standard input. Such a shell command is not
remembered as the current filename.

28 March 1991 Page 10

ED(C) ED (C)

($)=
The line number of the addressed line is typed. Dot is unchanged
by this command.

'shell command

The remainder of the line after the ! is sent to the XENIX shell
(sh(C)) to be interpreted as a command. Within the text of that
command, the unescaped character % is replaced with the remem-
bered filename. If a ! appears as the first character of the shell
command, it is replaced with the text of the previous shell com-
mand. Thus, !! will repeat the last shell command. If any expan-
sion is performed, the expanded line is echoed. Dot is unchanged.

(+1)
An address alone on a line causes the addressed line to be printed.
A RETURN alone on a line is equivalent to .+1p. This is useful for
stepping forward through the editing buffer a line at a time.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ques-
tion mark (?) and returns to its command level.

ed has size limitations: 512 characters per line, 256 characters per
global command list, 64 characters per filename, and 128K characters
in the buffer. The limit on the number of lines depends on the amount
of user memory.

When reading a file, ed discards ASCII NUL characters and all charac-
ters after the last newline. Files (e.g., a.out) that contain characters
not in the ASCII set (bit 8 on) cannot be edited by ed.
If the closing delimiter of a regular expression or of a replacement
string (e.g., /) would be the last character before a newline, that delim-
iter may be omitted, in which case the addressed line is printed. Thus,
the following pairs of commands are equivalent:

s/sl/s2 sfsl/s2/p

g/sl gislfp

?s1 7s1?

Files
ftmp/e# Temporary; # is the process number

ed.hup Work is saved here if the terminal is hung up

See Also

coltbl(M), grep(C), locale(M), sed(C), sh(C), stty(C), regexp(S)

28 March 1991 Page 11

ED (C) ED (C)

Diagnostics

? Command errors
? file An inaccessible file

Use the Aelp and Help commands for detailed explanations.

If changes have been made in the buffer since the last w command that
wrote the entire buffer, ed warns the user if an attempt is made to de-
stroy ed’s buffer via the e or ¢ commands by printing ? and allowing
you to continue editing. A second ¢ or ¢ command at this point will
take effect. The dash (-) command-line option inhibits this feature.

Notes

An exclamation (!) command cannot be subject to a g or a v com-
mand.

The ! command and the ! escape from the e, r, and w commands can-
not be used if the the editor is invoked from a restricted shell (see
sh(C)).

The sequence \n in a regular expression does not match any character.
The / command mishandles DEL.

Because O is an illegal address for the w command, it is not possible to
create an empty file with ed.

If the editor input is coming from a command file (i.e., ed file < ed-
cmd-file), the editor will exit at the first failure of a command in the
command file.

28 March 1991 Page 12

ENABLE (C) ENABLE (C)

Name

enable - Turns on terminals and line printers.

Syntax
enable tty ...
enable printers
Description

For terminals this program manipulates the /etc/ttys file and signals
init to allow logins on a particular terminal.

For line printers, enable activates the named printers and enables them
to'print requests taken by Ip(C). Use Ipstat(C) to find the status of the
printers.
Examples
A simple command to enable tty01 follows:
enable tty01
Files
[dev/ftty*
fetc/ttys

fust/spool/lp/*

See Also
disable(C), getty(M), init(M), login(M), Ip(C), Ipstat(C), ttys(F)

28 March 1991 Page 1

ENV (C) ENV (C)

Name

env - Sets environment for command execution.

Syntax

env [-] [name=value] ... [command args]

Description

env obtains the current environment , modifies it according to its argu-
ments, then executes the command with the modified environment.
Arguments of the form name=value are merged into the inherited
environment before the command is executed. The - flag causes the
inherited environment to be ignored completely, so that the command
is executed with exactly the environment specified by the arguments.

If no command is specified, the resulting environment is printed, one
name-value pair per line.

See Also
sh(C), exec(S), profile(F), environ(M)

28 March 1991 Page 1

This page intentionally left blank.

EX (C) EX (C)

Name

ex, edit - Invokes a text editor.

Syntax
ex[-s][-v][-ttag][-rfile][-L][-R][-ccommand] name ...
edit [-r] [-x] [-C] name ...

Description

ex is the root of the editors ex and vi. ex is a superset of ed, with the
most notable extension being a display editing facility. Display based
editing is the focus of vi.

edit is a variant of the text editor ex recommended for new or casual
users who wish to use a command-oriented editor. It operates pre-
cisely as ex(C) with the following options automatically set:

novice ON
report ON
showmode ON
magic OFF

These options can be turned on or off via the sef command in ex(C).

Refer to the vi(C) page for a complete description of the ex com-
mands.

Files
fusr/lib/ex3.7strings Error messages
fusr/lib/ex3.7recover Recover command
/usr/lib/ex3.7preserve Preserve command
fetc/termcap Describes capabilities of terminals
$HOME/.exrc Editor startup file
/tap/Exnnnnn Editor temporary
/top/Rxnnnnn Named buffer temporary
Jusr/preserve Preservation directory

See Also

awk(C), ctags(CP), ed(C), grep(C), sed(C), termcap(F), vi(C)

28 March 1991 Page 1

EX (C) EX (C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

28 March 1991 Page 2

EXPR (C) EXPR (C)

Name

expr - Evaluates arguments as an expression.

Syntax

expr arguments

Description

The arguments are taken as an expression. After evaluation, the result
is written on the standard output. Terms of the expression must be
separated by blanks. Characters special to the shell must be escaped.
Note that zero is returned to indicate a zero value, rather than the null
string. Strings containing blanks or other special characters should be
quoted. Integer-valued arguments may be preceded by a unary minus
liiegn' Internally, integers are treated as 32-bit, 2’s complement num-
IS.

The operators and keywords are listed below. Characters that need to
be escaped are preceded by \. The list is in order of increasing pre-
cedence, with equal precedence operators grouped within braces ({
and }).

expr | expr
Returns the first expr if it is neither null nor 0, otherwise
returns the second expr.

expr & expr
Retumns the first expr if neither expr is null nor 0, otherwise
returns 0.

expr { =,2, 25, K,<=5, != } expr
Retumns the result of an integer comparison if both arguments
are integers, otherwise returns the result (that is, O for false, 1
for true) of a lexical comparison, as defined by the locale.

expr { +,-} expr
Addition or subtraction of integer-valued arguments.

expr { *,1, % } expr
Multiplication, division, or remainder of the integer-valued
arguments.

expr : expr
The matching operator : compares the first argument with the
second argument, which must be a regular expression; regular
expression syntax is the same as that of ed(C), except that all
patterns are “anchored” (i.e., begin with a caret (")) and there-
fore the caret is not a special character in that context. (Note

28 March 1991 Page 1

EXPR (C) EXPR (C)

that in the shell, the caret has the same meaning as the pipe
symbol (1).) Normally the matching operator returns the num-
ber of characters matched (zero on failure). Alternatively, the
\(...\) pattern symbols can be used to return a portion of the
first argument.
Examples

1. a= expr $a + I~

Adds 1 to the shell variable a.

2. # For $a ending in "/file"
expr $a : “H/\(H)’

Returns the last segment of a pathname (i.c., file). Watch out
for the slash alone as an argument: expr will take it as the divi-
sion operator (see Notes).

3. expr $VAR : ¥’

Returns the number of characters in $VAR.

See Also
coltbl(M), ed(C), locale(M), sh(C), awk(C), bc(C)

Diagnostics

As a side effect of expression evaluation, expr retumns the following
exit values:

0 If the expression is neither null nor zero
1 If the expression is null or zero
2 For invalid expressions

Other diagnostics include:

syntax error For operator/operand errors, including unset vari-
ables

nonnumeric argument
If arithmetic is attempted on a nonnumeric string

28 March 1991 Page 2

EXPR (C) EXPR (C)

Notes
After argument processing by the shell, expr cannot tell the difference
between an operator and an operand except by the value. If $a is an
equals sign (=), the command:
expr $a = =
looks like:

expr = = =

The arguments are passed to expr and will all be taken as the = opera-
tor. The following permits comparing equals signs:

expr X$a = X=

28 March 1991 Page 3

FACTOR (C) FACTOR (C)

Name

factor - Factor a number.

Syntax

factor [number]

Description

When factor is invoked without an argument, it waits for a number to
be typed in. If you type in a positive number less than 2* (about
7.2x10") it will factor the number and print its prime factors; each
one is printed the proper number of times. Then it waits for another
number. It exits if it encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number as above
and then exits.

The time it takes to factor a number, n, is proportional to vyn. It usu-
ally takes longer to factor a prime or the square of a prime, than to fac-
tor other numbers.

Diagnostics

factor Jeturns an error message if the supplied input value is greater
than 2 or is not an integer number.

28 March 1991 Page 1

FALSE (C) FALSE (C)

Name

false - Returns with a nonzero exit value.

Syntax

false

Description
false does nothing except return with a nonzero exit value. #rue(C),
false’s counterpart, does nothing except return with a zero exit value.
“False” is typically used in shell procedures such as:
until false
do
command
done
See Also

sh(C), true(C)

Diagnostics

false is any non-zero value.

28 March 1991 Page 1

FILE (C) FILE (C)

Name

file - Determines file type.

Syntax
file [-m] file ...

file [-m] -f namesfile

Description

file performs a series of tests on each argument in an attempt to clas-
sify it. If an argument appears to be ASCIL, file examines the first 512
bytes and tries to guess its language.

If the -f option is given, file takes the list of filenames from namesfile.
If the -m option is given, file sets the access time for the examined file
to the current time. Otherwise, the access time remains unchanged.

Several object file formats are recognized. For a.out and x.out format
object files, file reports “separate” if the file was linked with cc -i,
“pure” if the file was linked with c¢ -n, and “not stripped” if the file
was not linked with c¢ -s or if strip(CP) was not run.

Credit
This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

file makes errors; in particular it often mistakes command files for C
programs.

The file command can only distinguish English text. If an 8 bit char-

acter (a character not in the English alphabet) is found, then the text
will be defined as “8 bit text”.

28 March 1991 Page 1

FIND (C)

Name

find - Finds files.

Syntax

FIND (C)

find pathname-list expression

Description

find recursively descends the directory hierarchy for each pathname in
the pathname-list (one or more pathnames), seeking files that match a
Boolean expression written in the primaries (options) given below. In
the descriptions, the argument n is used as a decimal integer where +n
means more than n, -n means less than n and n means exactly »n.

-depth

-name file

(-perm) -onum

-type x

-links n

-inum num

-user uname

28 March 1991

Always true; causes descent of the directory
hierarchy to be done so that all entries in a direc-
tory are acted upon before the directory itself.
This can be useful when used with cpio(C) to
transfer files located in directories without write
permission.

True if file matches the current file name. Normal
shell argument syntax may be used if escaped
(watch out for the left bracket ([), the question
mark (?) and the asterisk (*)).

True if the file permission flags exactly match the
octal number onum [see chmod(C)]. If onum is
prefixed by a minus sign, only the bits that are set
in onum are compared with the file permission
flags, and the expression evaluates true if they
match.

True if the type of the file is x, where ¢ is b, ¢, d,
p. or f for block special file, character special file,
directory, FIFO (first-in-first-out), or plain file
respectively.

True if the file has n links.

True if the file’s inode is num. This is useful for
locating files with matching inodes.

True if the file belongs to the user uname. If
uname is numeric and does not appear as a login
name in the /etc/passwd file, it is taken as a user
ID.

Page 1

FIND (C)

-group gname

-size n

-atime n

-mtime n

-ctime n

-exec cmd

-ok cmd

-cpio device

-print

-newer file

(expression)

FIND (C)

True if the file belongs to the group gname. If
name is numeric and does not appear in the
etc/group file, it is taken as a group ID.

True if the file is n blocks long (512 bytes per
block).

True if the file has been accessed in the past n
days.

True if the file has been modified in the past n
days.

True if the file was created in the past n days.

True if the executed cmd returns a zero value as
exit status. The end of cmd must be punctuated by
an escaped semicolon. A command argument { }
is replaced by the current path name.

Like -exec except that the generated command
line is printed with a question mark first, and is
executed only if the user responds by typing y.

Always true; write the current file on device in
cpio(F) format (5120-byte records).

Always true; causes the current path name to be
printed.

True if the current file has been modified more
recently than the argument file.

True if the parenthesized expression is true
(parentheses are special to the shell and must be

escaped).

The primaries may be combined using the following operators (in
order of decreasing precedence):

negation

AND

OR

28 March 1991

The negation of a primary is specified with the
exclamation (!) unary not operator.

The AND operation is implied by the juxtaposition
of two primaries.

The OR operation is specified with the -0 operator
given between two primaries.

Page 2

FIND (C) FIND (C)

Example
The following command searches for files named chapter! in the
current directory and all directories below it and sends the pathname
of any such files it finds to the standard output:
find . -name chapterl -print

The following removes all files named core or a.out that have not
been accessed for a week:

find / \(-name core -name a.out\) -atime +7 -exec rm {} \;
Files

fetc/passwd

Jetc/group
See Also

cpio(C), sh(C), stat(S), test(C)

Notes

If none of the -print, -exec, -0k, or -cpio primaries are given, find
locates the specified files but nothing is done.

28 March 1991 Page 3

FINGER (C) FINGER (C)

Name

finger - Finds information about users.

Syntax
finger { -bfilpgsw] [login1 [login2 ...]]

Description
By default finger lists the login name, full name, terminal name and
write status (as a “*” before the terminal name if write permission is
denied), idle time, login time, office location, and phone number (if
they are known) for each current XENIX user. (Idle time is minutes if
it is a single integer, hours and minutes if a colon (:) is present, or
days and hours if a “d” is present.)
A longer format also exists and is used by finger whenever a list of
names is given. (Account names as well as first and last names of
users are accepted.) This is a multiline format; it includes all the in-
formation described above as well as the user’s home directory and
login shell, any plan which the person has placed in the file .plan in
their home directory, and the project on which they are working from
the file .project which is also in the home directory.
finger options are:
-b Briefer long output format of users.
-f Suppresses the printing of the header line (short format).
-i Quick list of users with idle times.
-1 Forces long output format.
-p Suppresses printing of the .plan files.
-q Quick list of users.
-s Forces short output format.

-w Forces narrow format list of specified users.

Files
fetc/utmp Who file
fetc/passwd User names, offices, phones,

login directories, and shells

28 March 1991 Page |

FINGER (C) FINGER (C)

$HOME/.plan Plans
$HOME/.project Projects
See Also
who(C)
Credit

This utility was developed at the University of California at Berkeley
and is used with permission.
Notes
Only the first line of the .project file is printed.
Entries in the /etc/passwd file have the following format:

login name:user password(coded):user ID:group ID :comments:home
directory:login shell

The comment field corresponds to configurable columns in the finger
output. For example, in the following /etc/passwd entry:

blf:Tg6blFzOwgfbA:47:5:Brian Foster, Mission, x70, 767-1234
:/u/blf:/bin/sh

the comment field, “Brian Foster, Mission, x70, 767-1234” , contains
data for the “In Real Life” , “Office” , and “Home Phone” columns of
the finger listings.

Idle time is computed as the elapsed time since any activity on the

given terminal. This includes previous invocations of ﬁn]ger which
may have modified the terminal’s corresponding device file /dev/tty??.

28 March 1991 Page 2

FIXHDR (C)

Name

FIXHDR (C)

fixhdr - Changes executable binary file headers.

Syntax

fixhdr option files

Description

fixhdr changes the header of output files created by link editors or
assemblers. The kinds of modifications include changing the format of
the header, the fixed stack size, the standalone load address, and sym

bol names.

Using fixhdr allows the use of binary executable files, created under
other versions or machines, by simply changing the header informa-
tion so that it is usable by the target cpu.

These are the options to fixhdr :

-x5 [-n]

Change the x.out format of the header to the a.out format.
Change the x.out format of the header to the b.out format.

Change the x.out format of the header to the 4.2BSD a.out
format.

Change the x.out format of the header to 5.2 (UNIX™
System V release 2) a.our format. The -n flag causes
leading underscores on symbol names to be passed with
no modifications.

-ax -¢ [11,86]

-5x [-n]

-86x

28 March 1991

Change the a.out format of the header to the x.our format.
The -c flag specifies the target cpu. 11 specifies a PDP-11
cpu. 86 specifies one of the 8086 family of cpus (8086,
8088, 80186, 80286 or 80386).

Change the b.out format of the header to the x.out format.
Change the 5.2 (UNIX System V release 2) a.out format
of the header to the x.out format. The -n flag causes lead-
ing underscores on symbol names to be passed with no
modifications.

Add the x.out header format to the 86rel object module
format. See 86rel(F).

Page 1

FIXHDR (C) FIXHDR (C)

-F num Add (or change) the fixed stack size specified in the x.out
format of the header. num must be a hexadecimal num-
ber.

-A num Add (or change) the standalone load address specified in
the x.out format of the header. num must be a hexade-
cimal number.

-Mfsmlh] Change the model of the x.out or 86rel format. Model
refers to the compiler model specified when creating the
binary. s refers to small model, m refers to medium
model, 1 refers to large model, and h refers to huge model.

-v [2,3,5,7] Change the version of XENIX specified in the header.
XENIX version 2 was based on UNIX Version 7.

-8 s1=s2 [-s s3=s4]
Change symbol names, where symbol name s/ is changed
to s2.

-r Ensure that the resolution table is of non-zero size.

-Ccpu Set the cpu type. cpu can be 186, 286, 386, 8086, others.

Files

fusr/bin/fixhdr

See Also
a.out(F), 86rel(F)

Notes

Give fixhdr one option at a time. If you need to make more than one
kind of modification to a file, use fixadr on the original file. Then use it
again on the fixhdr output, specifying the next option. Copy the origi-
nal file if you need an unmodified version as fixhdr makes the
modifications directly to the file.

28 March 1991 Page 2

FORMAT (C) FORMAT (C)

Name

format - format floppy disks

Syntax

format [-n] [-v] [-e] [-f] [-q] [device] [-i interleave]

Description

format formats diskettes for use with XENIX. It may be used either
interactively or from the command line. The default drive is
/dev/rfd0, as defined in /etc/default/format.

Options
The following command line options are available:

-f Suppresses the interactive feature. The format program does not
wait for user-confirmation before starting to format the diskette.
Regardless of whether or not you run format interactively, track
and head information is displayed.

-e Erases the servo information on a mini-cartridge. This option
applies only to QIC-40 drives. Note that formatting mini-
cartridges is not recommended; for best results use preformatted
cartridges.

device
This specifies the device to be formatted. The default device is
/dev/rfd0 .

-i interleave
Specifies the interleave factor.

-q Quiet option. Suppresses the track and head output information
normmally displayed. Although this option does not suppress the
interactive prompt, it would typically be used with -f to produce no
output at all.

-v Specifies format verification.

-n Specifies that the diskette is not to be verified (overrides verify
entry in /etc/default/format).

The file /etc/default/format is used to specify the default device to be
formatted and whether or not each diskette is to be verified. The
entries must be in the format DEVICE=/dev/rfdnnn and
VERIFY=[yYnN], as in the following example:

28 March 1991 Page 1

FORMAT (C) FORMAT (C)

DEVICE=/dev/tfd096ds15
VERIFY=y

The device must be a character (raw) device.

Usage
To run format interactively, enter:
format

followed by any of the legal options except -f, and press RETURN.
When you run format interactively, you see the prompt:

insert diskette in drive and press return when ready

When you press RETURN at this prompt, format begins to format the
diskette.

If you specify the -f option, you do not see this prompt. Instead, the
program begins formatting immediately upon invocation.

Unless you specify the -q option, format displays which track and
head it is currently on:

track # head #

The number signs above are replaced by the actual track and head in-
formation.

Files
Jetc/default/format

/dev/rfd[0 -n]

See Also
fd(HW)

Notes

The format utility does not format floppies for use under DOS; use the
dosformat command documented in dos(C).

XENIX requires error free floppies.

28 March 1991 Page 2

FORMAT (C) FORMAT (C)

It is not advisable to format a low density (48tpi) diskette on a high
density (96tpi) floppy drive. Diskettes written on a high density drive
should be read on high density drives. A low density diskette written
on a high density drive may not be readable on a low density drive.

28 March 1991 Page 3

GETOPT (C) GETOPT (C)

Name

getopt - Parses command options.

Syntax

set -- “getopt optstring $+°

Description

getopt is used to check and break up options in command lines for
parsing by shell procedures. Optstring is a string of recognized option
letters (see getopt (S)). If a letter is followed by a colon, the option is
expected to have an argument which may or may not be separated
from it by whitespace. The special option -- is used to delimit the end
of the options. getopt will place -- in the arguments at the end of the
options, or recognize it if used explicitly. The shell arguments
(51 $2...) are reset so that each option is preceded by a dash (-) and in
its own shell argument; each option argument is also in its own shell
argument.

Example

The following code fragment shows how one can process the argu-
ments for a command that can take the options a and b, and the option
o, which requires an argument:

set —-- ~getopt abo: $x-

if [$2 '= 0]

then
echo S$SUSAGE
exit 2

fi

for i in $*

do
case $i in
-a | -b) FLAG=$i; shift;;
~0) OBRG=52;shift; shift;;
-) shift; break;;

esac
done

This code will accept any of the following as equivalent:
cmd -aoarg file file
cmd -a -o arg file file

cmd -oarg -a file file
cmd -a -oarg -- file file

28 March 1991 Page 1

GETOPT (C) GETOPT (C)

See Also
sh(C), getopt(S)

Diagnostics
getopt prints an error message on the standard error when it
encounters an option letter not included in optstring .

Notes

The “Syntax” given for this utility assumes the user has an sh(C)
shell.

28 March 1991 Page 2

GREP (C) GREP (C)

Name

grep, egrep, fgrep - Searches a file for a pattern.

Syntax
grep [-bchinsvy] [-e expression] [files]
egrep [-bchlnv] [-e expression] [files]
fgrep [-belnvxy] [-f expfile] { files]

Description

Commands of the grep family search the input files (or standard input
if no files are specified) for lines matching a pattern. Normally, each
matching line is copied to the standard output. If more than one file is
being searched, the name of the file in which each match occurs is
also written to the standard output along with the matching line
(unless the -h option is used, see below).

grep patterns are limited regular expressions in the style of ed(C).
grep uses a compact nondeterministic algorithm. egrep patterns are
full regular expressions; it uses a fast deterministic algorithm that
sometimes needs exponential space. fgrep patterns are fixed strings.
fgrep is fast and compact. The following options are recognized:

v All lines but those matching are displayed.
-X Displays only exact matches of an entire line. (fgrep only.)
-C Only a count of matching lines is displayed.

-1 Only the names of files with matching lines are displayed,
separated by newlines.

h Prevents the name of the file containing the matching line from
being prepended to that line. Used when searching multiple
files. (This option works with grep and egrep only.)

-n Each line is preceded by its relative line number in the file.

-b Each line is preceded by the block number on which it was
found. This is sometimes useful in locating disk block num-
bers by context.

-s Suppresses error messages produced for nonexistent or unread-

able files. (grep only). Note that the -s option will not
suppress error messages generated by the -f option.

28 March 1991 Page 1

GREP (C) GREP (C)

-y Turns on matching of letters of either case in the input so that
case is insignificant. Conversion between uppercase and
lowercase letters is dependent on the locale setting. -y does
not work with egrep.

-e expression or strings
Same as a simple expression argument, but useful when the
expression begins with a dash (-).

-f expfile
The regular expression for grep or egrep, or strings list for
Serep is taken from the expfile.

In all cases (except with -h) the filename is output if there is more
than one input file. Care should be taken when using the characters $,
* [, 1, (), and \ in expression, because they are also meaningful to
the shell. It is safest to enclose the entire expression or strings argu-
ment in single quotation marks. For example:

grep ’[Ss]omeone’ text.file

This command would find all lines containing the word “someone” in
the file text.file, whether the initial “s” is uppercase or lowercase.

Multiple strings can be specified in fgrep without using a separate
strings file by using the quoting conventions of the shell to imbed
newlines in the string argument. For example, if you were using the
Bourne shell (sk(C)) you might enter the following on the command
line:

fgrep “Someone
someone” text.file

This would have the same effect as the grep example above. See the
csh(C) manual page for ways to imbed newlines in a string when
using csh(C).

egrep accepts regular expressions as in ed(C), with the addition of the
following:

- A regular expression followed by a plus sign (+) matches one or
more occurrences of the regular expression.

- Aregular expression followed by a question mark (?) matches 0 or
1 occurrences of the regular expression.

- Two regular expressions separated by a vertical bar (1) or by a

newline match strings that are matched by either regular expres-
sion.

28 March 1991 Page 2

GREP (C) GREP (C)

- A regular expression may be enclosed in parentheses () for group-
ing. For example:

egrep ([Sslomel[Aa]ny)one” text.file

This example displays all lines in text.file containing the words
“someone” or “anyone”, whether or not they are spelled with initial
capital letters. Without the parentheses, this example would display
all lines containing the words “some” or “anyone” (because the verti-
cal bar (|) operator is of lower precedence than concatenation, see
below).

Because of the algorithm used, egrep does not support extended
ranges as in ed(C): Ranges like [a-z] are interpreted on the basis of
the machine’s collating sequence, not the collating sequence defined
by the locale. grep supports col(C) extended ranges.

The \(and V) operators, supported by ed(C), are not supported by
egrep.

The order of precedence of operators is [], then *? +, then concatena-
tion, then backslash (\) with newline or vertical bar (]).

See Also
col(C), coltbl(M), ed(C), locale(M), sed(C), sh(C)

Diagnostics
Exit status is 0 if any matches are found, 1 if no matches are found,
and 2 for syntax errors or inaccessible files.

Notes

Ideally there should be only one grep, but there isn’t a single algo-
rithm that spans a wide enough range of space-time tradeoffs.

Lines are limited to 256 characters. Longer lines are truncated.

When using grep with the -y option, the search is not made totally
case insensitive in character ranges specified within brackets.

28 March 1991 Page 3

GRPCHECK (C) GRPCHECK (C)

Name

grpcheck - Checks group file.

Syntax
grpcheck [file]

Description

grpcheck verifies all entries in the group file. This verification
includes a check of the number of fields, group name, group ID, and
whether all login names appear in the password file. The default group
file is /etc/group.

Files
Jetc/group

Jetc/passwd

See Also
pwcheck(C), group(F), passwd(F)

Diagnostics

Group entries in /etc/group with no login names are flagged.

28 March 1991 Page 1

HD (C)

Name

HD (C)

hd - Displays files in hexadecimal format.

Syntax

hd [-format ... } [-s offset] [-n count] [file] ...

Description

The hd command displays the contents of files in hexadecimal, octal,
decimal, and character formats. Control over the specification of
ranges of characters is also available. The default behavior is with the
following flags set: “-abx -A”. This says that addresses (file offsets)
and bytes are printed in hexadecimal and that characters are also
printed. If no file argument is given, the standard input is read.

Options include:

-5 offset

-h count

28 March 1991

Specify the beginning offset in the file where printing is
to begin. If no ‘file’ argument is given, or if a seek fails
because the input is a pipe, ‘offset’ bytes are read from
the input and discarded. Otherwise, a seek error will
terminate processing of the current file.

The offset can be given in decimal, hexadecimal (pre-
ceded by ‘0x’), or octal (preceded by a “0°). It is option-
ally followed by one of the following multipliers: w, 1,
b, or k; for words (2 bytes), long words (4 bytes), half
kilobytes (512 bytes), or kilobytes (1024 bytes). Note
that this is the one case where “b” does not stand for
bytes. Since specifying a hexadecimal offset in blocks
would result in an ambiguous trailing ‘b’, any offset and
multiplier can be separated by an asterisk (*). (The
asterisk might need to be enclosed in quotation marks
to protect it from the shell.)

Specify the number of bytes to process. The count is in
the same format as offset, above.

Page 1

HD (C) HD (C)

Format Flags

Format flags can specify addresses, characters, bytes, words (2 bytes)
or longs (4 bytes) to be printed in hex, decimal, or octal. Two special
formats can also be indicated: text or ascii. Format and base specifiers
can be freely combined and repeated as desired in order to specify
different bases (hexadecimal, decimal or octal) for different output for-
mats (addresses, characters, etc.). All format flags appearing in a sin-
gle argument are applied as appropriate to all other flags in that argu-
ment.

acbwlA
Output format specifiers for addresses, characters, bytes, words,
longs and ascii respectively. Only one base specifier will be used
for addresses; the address will appear on the first line of output that
begins each new offset in the input.

The character format prints printable characters unchanged, spe-
cial C escapes as defined in the language, and the remaining values
in the spectified base.

The ascii format prints all printable characters unchanged, and all
others as a period (.). This format appears to the right of the first of
other specified output formats. A base specifier has no meaning
with the ascii format. If no other output format (other than
addresses) is given, bx is assumed. If no base specifier is given, all
of xdo are used.

xdo
Output base specifiers for hexadecimal, decimal and octal. If no
format specifier is given, all of achwl are used.

t Print a text file, each line preceded by the address in the file. Nor-
mally, lines should be terminated by a \n character; but long lines
will be broken up. Control characters in the range 0x00 to 0x1f are
printed as “°@’ to “"_’. Bytes with the high bit set are preceded by
a tilde (7) and printed as if the high bit were not set. The special
characters (, 7, \) are preceded by a backslash (V) to escape their
special meaning. As special cases, two values are represented
numerically as \177" and “377°. This flag will override all output
format specifiers except addresses.

28 March 1991 Page 2

HDR (C) HDR (C)

Name

hdr - Display selected parts of an object file.

Syntax
hdr [-dhprsSt] file ...

Description

hdr displays executable binary file headers, symbol tables, and text or
data relocation records in human-readable formats. It also prints out
seek positions for the various segments in the executable binary file.

a.out, x.out, and x.out segmented formats and archives are under-
stood.

The symbol table format consists of six fields. In a.out formats the
third field is missing. The first field is the symbol’s index or position
in the symbol table, printed in decimal. The index of the first entry is
zero. The second field is the type, printed in hexadecimal. The third
field is the s_seg field, printed in hexadecimal. The fourth field is the
symbol’s value in hexadecimal. The fifth field is a single character
which represents the symbol’s type as in nm(C), except C common is
not recognized as a special case of undefined. The last field is the
symbol name.

If long form relocation is present, the format consists of six fields.
The first is the descriptor, printed in hexadecimal. The second is the
symbol ID, or index, in decimal. This field is used for external reloca-
tions as an index into the symbol table. It should reference an unde-
fined symbol table entry. The third field is the position, or offset,
within the current segment at which relocation is to take place; it is
printed in hexadecimal. The fourth field is the name of the segment
referenced in the relocation: text, data, bss or EXT for external. The
fifth field is the size of relocation: byte, word (2 bytes), or long. The
last field will indicate, if present, that the relocation is relative.

If short form relocation is present, the format consist of three fields.
The first field is the relocation command in hexadecimal. The second
field contains the name of the segment referenced; text or data. The
last field indicates the size of relocation: word or long.

28 March 1991 Page 1

HDR (C) HDR (C)

Options and their meanings are:

-d Causes the data relocation records to be printed out.

-h Causes the executable binary file header and extended header to be
printed out. Each field in the header or extended header is labeled.
This is the default option.

-p Causes seek positions to be printed out as defined by macros in the
include file, <a.out.h>.

-r Causes both text and data relocation to be printed.
-s Prints the symbol table.

-S Prints the file segment table with a header. (Only applicable to
x.out segmented executable files.)

-t Causes the text relocation records to be printed out.
See Also
a.out(F), nm(C)

28 March 1991 Page 2

HEAD (C) HEAD (C)

Name

head - Prints the first few lines of a stream.

Syntax
head { -count] [file ...]

Description
This filter prints the first count lines of each of the specified files. If

no files are specified, head reads from the standard input. If no count
is specified, then 10 lines are printed.

See Also
tail(C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

28 March 1991 Page 1

HELLO (C) HELLO (C)

Name

hello - Send a message to another user.

Syntax
hello user [uy]

Description

hello sends messages from one user to another. When first called,
hello displays the following message:

Message from sender’s-system! sender’s-name sender’s-tty

The recipient of the message should write back at this point. Commu-
nication continues until an interrupt is sent. (On most terminals, press-
ing the Del key sends an interrupt.) At that point hello prints “EOT”
on the other terminal, and exits.

To write to a user who is logged in more than once, the user can
employ the #y argument to specify the appropriate terminal name.
The who(C) command can be used to determine the correct terminal
name.

Permission to write may be allowed or denied by the recipient, using
the mesg command. Writing is allowed by default. Certain com-
mands, such as nroff and pr, prohibit messages in order to prevent
disruption of output.

If the character ! is found at the beginning of a line, kello calls the
shell to execute the rest of the line as a command.

The following protocol is suggested for using hello. When first writ-
ing to another user, the sender should wait for that user to write back
before sending a message. Each party should end each message with a
signal indicating that the other may reply: o for “over” is conven-
tional. The signal oo for “over and out” is suggested when conversa-
tion is about to be terminated.

Files
fetc/utmp
fbin/sh

See Also
mesg(C), who(C), mail(C), write(C)

28 March 1991 Page 1

HELP (C) HELP (C)

Name

help - Asks for help with XENIX commands and SCCS error messages.

Syntax

help [command] [imessagenumber]

Description

help provides on-line explanations of most commonly-used XENIX
commands. help also displays information explaining SCCS error
messages. Multiple arguments can be supplied. If no arguments are
given, help will prompt for one.

The arguments may be XENIX command names or SCCS message
numbers. Message numbers are displayed at the end of SCCS error
messages. SCCS message numbers come in two forms: numbers and
letter-number combinations (for example, ge6 or 212).

When all else fails, try “help stuck”.

Files

fusr/lib/help Directory containing files of message text

28 March 1991 Page 1

HWCONFIG (C) HWCONFIG (C)

Name

hwconfig - Display hardware configuration information.

Syntax
/etc/hweonfig [-f filename] [-chinq] [field=value] [field] ...

Description

hwconfig displays hardware configuration information as reported by
device drivers during system bootup, from the file fusr/adm/hwconfig
or a specified file. Using combinations of the remaining options, the
user can select which devices to report on as well as what information
to report about these devices. hwconfig can also be used to detect
conflicts in device settings.

Two display formats are available. By default, hwconfig displays a
series of field=value entries for each recognized device. The fields
include (but are not restricted to) name, base I/O address, offset (num-
ber of consecutive I/O addresses used), interrupt vector, DMA chan-
nel, and fields specific to each device. This format is easily inter-
preted by programs.

In the default format, an argument of field=value causes only lines
with a matching field to be displayed. A field argument without a
value causes only the specified fields of the selected lines to display,
and selects only those lines which contain that field.

Using the -h option, the hwconfig display looks similar to this:

device address vec dma comment

floppy 0x3£2-0x3f7 06 2 unit=0 type=96dslS

serial 0x210-0x217 03 - unit=l type=DIGIBOARD nports=4

console - - — unit=vga type=0

disk 0x1£0-0x1f7 36 - type=W0 unit=0 cyls=1023 hds=8 secs=52
Options

The following options are available:

-f filename use filename instead of /usr/adm/hwconfig.

-h Display tabular format with headers, rather than
field=value pairs. If field=value or field arguments are

included, only lines matching all such arguments are dis-
played. (The complete line is always displayed.)

28 March 1991 Page 1

HWCONFIG (C) HWCONFIG (C)

-c Check for device conflicts, including I/O addresses, DMA
channels and interrupt vectors which are being used by
more than one driver.

-q Check quietly for device conflicts; display nothing. When
both -c and -q are given, display conflicts only.

-n Display names; same as a field argument of name.

-1 Display all fields, even if field selectors have been given.

field=value Display all devices with a field matching the stated value.

field Display only the matching fields of selected devices.
With -h, display whole lines with a matching field.

Examples

hwconfig The entire contents of the file /usr/adm/hwconfig is
printed.

hwconfig base
prints all base values found in /usr/adm/hwconfig.

hwconfig -f conf base=300 vec=31
prints all entries in conf that match the base and vec
values given.

hwconfig name=floppy base
})rints the base values for any floppy entries in
usr/adm/hwconfig.

hwconfig -n base dma
displays name, base and dma of all entries in
fusr/adm/hwconfig with base and dma values.

hwconfig base dma vec=4
displays the base and dma values of all
fusr/adm/hwconfig entries with base and dma values and
vec=4.

hwconfig -l base dma
displays in full all entries in fusr/adm/hwconfig with both
base and dma values.

hwconfig -ch

displays /usr/adm/hwconfig in an easy-to-read tabular
format and checks for device conflicts.

28 March 1991 Page 2

HWCONFIG (C) HWCONFIG (C)

Files
fetc/hwconfig program file
fusr/lib/hwconfig.awk awk program which hwconfig uses
fusr/adm/hwconfig default source file

Diagnostics

hwconfig returns O for success, 1 for conflicts detected, 2 for invalid
arguments.

Notes

Information about conflicts is purely advisory because hwconfig can
only report about hardware devices which have been correctly recog-
nized by a kemel driver.

fusr/adm/hwconfig is not normally readable by users, but can be
made so by the System Administrator.

lusr/adm/hwconfig is written by the error logger daemon. The logger
daemon does not run while in System Maintenance mode. This means
that the hwconfig report is not valid until the system is brought into
multi-user mode.

28 March 1991 Page 3

ID (C) ID (C)

Name

id - Prints user and group IDs and names.
Syntax
id

Description
Id writes a message on the standard output, giving the user and group

IDs and the corresponding names of the invoking process. If the effec-
tive and real IDs do not match, both are printed.

See Also

logname(C), getuid(S)

28 March 1991 Page 1

JOIN (C) JOIN (C)

Name

join - Joins two relations.

Syntax

join [options] filel file2

Description

Jjoin forms, on the standard output, a join of the two relations specified
by the lines of filel and file2. If filel is a dash (-), the standard input
is used.

Filel and file2 must be sorted in increasing ASCII collating sequence
on the fields on which they are to be joined, normally the first in each
line.

There is one line in the output for each pair of lines in filel and file2
that have identical join fields. The output line normally consists of
the common field, then the rest of the line from filel , then the rest of
the line from file2 .

Fields are normally separated by blank, tab or newline. In this case,
multiple separators count as one, and leading separators are discarded.

These options are recognized:

-an In addition to the normal output, produces a line for each
unpairable line in file n, where n is 1 or 2.

-es Replaces empty output fields by string s.

-jn m Joins on the mth field of file n. If n is missing, uses the
mth field in each file.

-0 list Each output line comprises the fields specified in list,

each element of which has the form n.n, where n is a file
number and m is a field number.

-tc Uses character ¢ as a separator (tab character). Every
appearance of c in a line is significant.

28 March 1991 Page 1

JOIN (C) JOIN (C)
See Also

awk(C), comm(C), sort(C)

Notes

With default field separation, the collating sequence is that of sort -b.
With -t, the sequence is that of a plain sort.

28 March 1991 Page 2

KILL (C) KILL (C)

Name

kill - Terminates a process.

Syntax

kill [-signo] processid ...

Description

kill sends signal 15 (terminate) to the specified processes. This will
normally kill processes that do not catch or ignore the signal. The
process number of each asynchronous process started with & is
reported by the shell (unless more than one process is started in a pipe-
line, in which case the number of the last process in the pipeline is
reported). Process numbers can also be found by using ps(C).

For example, if process number 0 is specified, all processes in the pro-
cess group are signaled.

The killed process must belong to the current user unless he is the
super-user.

If a signal number preceded by - is given as the first argument, that
signal is sent instead of the terminate signal (see signal(S)). In partic-
ular “kill -9 ...” is a sure kill.

See Also
ps(C), sh(C), kill(S), signal(S)

28 March 1991 Page 1

KSH (C) KSH (C)

Name

ksh, rksh - Komn Shell, a standard/restricted command and program-
ming language.

Syntax

ksh [taefhiknoprstuvx] [tooption] ... [-estring J{arg...]
rksh [taefhiknoprstuvx] [tooption]... [-cstringJ[arg...]

Description

ksh is a command and programming language that executes com-
mands read from a terminal or a file. rksh is a restricted version of the
command interpreter ksh; it is used to set up login names and execu-
tion environments whose capabilities are more controlled than those
of the standard shell. See Invocation below for the meaning of argu-
ments to the shell.

Definitions
A metacharacter is one of the following characters:
; & () | < > mew-line space tab

A blank is a tab or a space. An identifier is a sequence of letters,
digits, or underscores starting with a letter or underscore. Identifiers
are used as names for functions and named parameters. A word is a
sequence of characters separated by one or more non-quoted meta-
characters .

A command is a sequence of characters in the syntax of the shell lan-
guage. The shell reads each command and carries out the desired
action either directly or by invoking separate utilities. A special com-
mand is a command that is carried out by the shell without creating a
separate process.

Commands

A simple-command is a sequence of blank separated words which may
be preceded by a parameter assignment list. (See Environment
below). The first word specifies the name of the command to be exe-
cuted. Except as specified below, the remaining words are passed as
arguments to the invoked command. The command name is passed as
argument O (see exec(S)). The value of a simple-command is its exit
status if it terminates normally, or (octal) 200+status if it terminates
abnormally (see signal(S) for a list of status values).

28 March 1991 Page 1

KSH (C) KSH (C)

A pipeline is a sequence of one or more commands separated by |.
The standard output of each command but the last is connected by a
Dipe(S) to the standard input of the next command. Each command is
run as a separate process; the shell waits for the last command to ter-
minate. The exit status of a pipeline is the exit status of the last com-
mand.

A list is a sequence of one or more pipelines separated by ;, &, &&,
or | |, and optionally terminated by ;, &, or |&. Of these five sym-
bols, ;, &, and |& have equal precedence, which is lower than that
of && and | |. The symbols && and | | also have equal precedence.
A semicolon (;) causes sequential execution of the preceding pipe-
line; an ampersand (&) causes asynchronous execution of the preced-
ing pipeline (i.e., the shell does not wait for that pipeline to finish).
The symbol | & causes asynchronous execution of the preceding com-
mand or pipeline with a two-way pipe established to the parent shell.
The standard input and output of the spawned command can be writ-
ten to and read from by the parent shell using the -p option of the spe-
cial commands read and print described later. The symbol && (| |)
causes the list following it to be executed only if the preceding pipe-
line returns a zero (non-zero) value. An arbitrary number of new-lines
can appear instead of a semicolon in a list, to delimit a command.

A command is either a simple-command or one of the following.
Unless otherwise stated, the value returned by a command is that of
the last simple-command executed in the command.

for identifier | inword ... | ;do list ;done
Each time a for command is executed, identifier is set to the next
word taken from the in word list. If in word ... is omitted, then
the for command executes the do list once for each positional
parameter that is set (see Parameter Substitution below). Execu-
tion ends when there are no more words in the list.

select identifier [in word ...] ;do list ;done

A select command prints on standard error (file descriptor 2), the
set of words, each preceded by a number. If in word ... is omit-
ted, then the positional parameters are used instead (see Parameter
Substitution below). The PS3 prompt is printed and a line is read
from the standard input. If this line consists of the number of one
of the listed words, then the value of the parameter identifier is set
to the word corresponding to this number. If this line is empty the
selection list is printed again. Otherwise the value of the parame-
ter identifier is set to null. The contents of the line read from stan-
dard input is saved in the parameter REPLY. The list is executed
for each selection until a break or end-of-file is encountered.

case word in [[(lpattern [| pattern }...) list 33] ... esac
A case command executes the list associated with the first pattern
that matches word. The form of the patterns is the same as that
used for file-name generation (see File Name Generation below).

28 March 1991 Page 2

KSH (C) KSH (C)

if list sthen list [; elif list ;then list 1...[;else list] ;fi
The list following if is executed and, if it returns a zero exit status, the list
following the first then is executed. Otherwise, the list following elif is
executed and, if its value is zero, the lisz following the next then is exe-
cuted. Failing that, the else list is executed. If no else list or then [ist is
executed, then the if command returns a zero exit status.

while /ist ;do list ;done

until /ist ;do list ;done
A while command repeatedly executes the while /ist and, if the
exit status of the last command in the list is zero, executes the do
list; otherwise the loop terminates. If no commands in the do list
are executed, then the while command returns a zero exit status;
until may be used in place of while to negate the loop termination
test.

(list)
Executes list in a separate environment. Note, that if two adjacent
open parentheses are needed for nesting, a space must be inserted
to avoid arithmetic evaluation as described below.

{ list;}
li;t is simply executed. Note that unlike the metacharacters (and
), { and } are reserved words and must be at the beginning of a line
or after a ; in order to be recognized.

[[expression]]
Evaluates expression and returns a zero exit status when expres-
sion is true. See Conditional Expressions below, for a description
of expression.

function identifier { list ;}

identifier () { list 3}
Defines a function which is referenced by identifier. The body of
the function is the list of commands between { and }. (See Func-
tions below).

time pipeline
The pipeline is executed and the elapsed time as well as the user
and system time are printed on standard error.

The following reserved words are only recognized as the first word of
a command and when not quoted:

if then else elif fi case esac for while until do done
{ } function select time [[1]
Comments

A word beginning with # causes that word and all the following char-
acters up to a new-line to be ignored.

28 March 1991 Page 3

KSH (C) KSH (C)

Aliasing

The first word of each command is replaced by the text of an alias if
an alias for this word has been defined. The first character of an alias
name can be any non-special printable character, but the rest of the
characters must be the same as for a valid identifier. The replacement
string can contain any valid shell script including the metacharacters
listed above. The first word of each command in the replaced text,
other than any that are in the process of being replaced, will be tested
for aliases. If the last character of the alias value is a blank then the
word following the alias will also be checked for alias substitution.
Aliases can be used to redefine special builtin commands but cannot
be used to redefine the reserved words listed above. Aliases can be
created, listed, and exported with the alias command and can be
removed with the unalias command. Exported aliases remain in effect
for scripts invoked by name, but must be reinitialized for separate
invocations of the shell (See Invocation below).

Aliasing is performed when scripts are read, not while they are exe-
cuted. Therefore, for an alias to take effect the alias definition com-
mand has to be executed before the command which references the
alias is read.

Aliases are frequently used as a short hand for full path names. An
option to the aliasing facility allows the value of the alias to be auto-
matically set to the full pathname of the corresponding command.
These aliases are called tracked aliases. The value of a tracked alias
is defined the first time the corresponding command is looked up and
becomes undefined each time the PATH variable is reset. These
aliases remain tracked so that the next subsequent reference will
redefine the value. Several tracked aliases are compiled into the shell.
The -h option of the set command makes each referenced command
name into a tracked alias.

The following exported aliases are compiled into the shell but can be
unset or redefined:

autoload="typeset -fu’

false="let 0"

functions="typeset -f’

hash="alias -t

history="fc -1’

integer="typeset -i’

nohup="nohup *

r="fc-e-’

true=":"

type="whence -v’
The alias of nohup with a trailing space allows nohup to be used with
aliases.

28 March 1991 Page 4

KSH (C) KSH (C)

Tilde Substitution

After alias substitution is performed, each word is checked to see if it
begins with an unquoted ~. If it does, then the word up to a / is
checked to see if it maiches a user name in the /etc/passwd file. If a
match is found, the ~ and the matched login name are replaced by the
login directory of the matched user. This is called a tilde substitution.
If no match is found, the original text is left unchanged. A ~ by itself,
or in front of a /, is replaced by the value of the HOME parameter. A ~
followed by a + or - is replaced by $PWD and $OLDPWD respec-
tively.

In addition, tilde substitution is attempted when the value of a vari-
able assignment parameter begins with a ",

Command Substitution

The standard output from a command enclosed in parenthesis pre-
ceded by a dollar sign ($()) or a pair of grave accents (**) may be
used as part or all of a word; trailing new-lines are removed. In the
second (archaic) form, the string between the quotes is processed for
special quoting characters before the command is executed. (See
Quoting below). The command substitution $(cat file) can be
replaced by the equivalent but faster $(<file). Command substitutions
of most special commands that do not perform input/output redirection
are carried out without creating a separate process.

An arithmetic expression enclosed in double parentheses preceded by
a dollar sign ($(())) is replaced by the value of the arithmetic expres-
sion within the double parentheses.

Parameter Substitution

A parameter is an identifier, one or more digits, or any of the charac-
ters *, @, #,2,-, %, and !. A named parameter (a parameter denoted
by an identifier) has a value and zero or more attributes. Named
parameters can be assigned values and arntributes by using the
typeset special command. The attributes supported by the shell are
described later with the typeset special command. Exported parame-
ters pass values and attributes to the environment.

The shell supports a one-dimensional array facility. An element of an
array parameter is referenced by a subscript. A subscript is denoted
by a [, followed by an arithmetic expression (see Arithmetic evalua-
tion below) followed by a]. To assign values to an array, use
set -A name value The value of all subscripts must be in the
range of O through 1023, Arrays need not be declared. Any reference
to a named parameter with a valid subscript is legal and an array will
be created if necessary. Referencing an array without a subscript is
equivalent to referencing the element zero.

28 March 1991 Page 5

KSH (C) KSH (C)

The value of a named parameter may also be assigned by writing:
name=value [name=value]...

If the integer attribute, -i, is set for name the value is subject to arith-
metic evaluation as described below.

Positional parameters, parameters denoted by a number, may be
assigned values with the set special command. Parameter $0 is set
from argument zero when the shell is invoked.

The character $ is used to introduce substitutable parameters.

${parameter}
The shell reads all the characters from ${ to the matching } as part
of the same word even if it contains braces or metacharacters. The
value, if any, of the parameter is substituted. The braces are
required when parameter is followed by a letter, digit, or under-
score that is not to be interpreted as part of its name or when a
named parameter is subscripted. If parameter is one or more digits
then it is a positional parameter. A positional parameter of more
than one digit must be enclosed in braces. If parameter is * or @,
then all the positional parameters, starting with $1, are substituted
(separated by a field separator character). If an array identifier
with subscript * or @ is used, then the value for each of the ele-
ments is substituted (separated by a field separator character).

${#parameter}
If parameter is * or @, the number of positional parameters is sub-
stituted. Otherwise, the length of the value of the parameter is
substituted.

${#identifier[*1}
The number of elements in the array identifier is substituted.

${parameter :-word}
If parameter is set and is non-null then substitute its value; other-
wise substitute word.

${parameter :=word}
If parameter is not set or is null then set it to word; the value of
the parameter is then substituted. Positional parameters may not
be assigned to in this way.

${parameter :?word}
If parameter is set and is non-null then substitute its value; other-
wise, print word and exit from the shell. If word is omitted then a
standard message is printed.

${parameter :+word}
If parameter is set and is non-null then substitute word; otherwise
substitute nothing.

${parameter#ipartern}

${parameteritiipattern}
If the shell pattern matches the beginning of the value of parame-
ter, then the value of this substitution is the value of the parameter
with the matched portion deleted; otherwise the value of this
parameter is substituted. In the first form the smallest matching
pattern is deleted and in the second form the largest matching pat-
tern is deleted.

28 March 1991 Page 6

KSH (C) KSH (C)

${parameter Yopattern}

${parameter % %pattern}
If the shell pattern matches the end of the value of parameter , then
the value of this substitution is the value of the parameter with the
matched part deleted; otherwise substitute the value of parameter.
In the first form the smallest matching pattern is deleted and in the
second form the largest matching pattern is deleted.

In the above, word is not evaluated unless it is to be used as the substi-
tuted string, so that, in the following example, pwd is executed only if
d is not set or is null:

echo ${d:-$(pwd)}

If the colon (:) is omitted from the above expressions, then the shell
only checks whether parameter is set or not.

The $i"';)1$lowing parameters are automatically set by the shell:
-$n
Positional parameters.
The number of positional parameters in decimal.
- Flags supplied to the shell on invocation or by the set com-
mand.
The decimal value returned by the last executed command.
The process number of this shell.
Initially, the value _ is an absolute pathname of the shell or
script being executed as passed in the environment. Subse-
quently it is assigned the last argument of the previous com-
mand. This parameter is not set for commands which are asyn-
chronous. This parameter is also used to hold the name of the
matching MAIL file when checking for mail.
! The process number of the last background command invoked.
ERRNO
The value of errno as set by the most recently failed system
call. This value is system dependent and is intended for debug-
ging purposes.
LINENO
The line number of the current line within the script or function
being executed.
OLDPWD
The previous working directory set by the ¢d command.
OPTARG
The value of the last option argument processed by the getopts
special command.
OPTIND
The index of the last option argument processed by the getopts
special command.
PPID
The process number of the parent of the shell.
PWD
The present working directory set by the ¢d command.

@ >

28 March 1991 Page 7

KSH (C) KSH (C)

RANDOM
Each time this parameter is referenced, a random integer, uni-
formly distributed between O and 32767, is generated. The
sequence of random numbers can be initialized by assigning a
numeric value to RANDOM.

REPLY
This parameter is set by the select statement and by the read
special command when no arguments are supplied.

SECONDS
Each time this parameter is referenced, the number of seconds
since shell invocation is returned. If this parameter is assigned
a value, then the value returned upon reference will be the
value that was assigned plus the number of seconds since the
assignment.

The following parameters are used by the shell:

CDPATH
The search path for the cd command.

COLUMNS
If this variable is set, the value is used to define the width of the
edit window for the shell edit modes and for printing select
lists.

EDITOR
If the value of this variable ends in emacs, gmacs, or vi and the
VISUAL variable is not set, then the corresponding option (see
%pecial Command set below) will be turned on.

EN
If this parameter is set, then parameter substitution is per-
formed on the value to generate the pathname of the script that
will be executed when the shell is invoked. (See Invocation
below.) This file is typically used for alias and function
definitions.

FCEDIT
The default editor name for the fc command.

FPATH
The search path for function definitions. This path is searched
when a function with the -u attribute is referenced and when a
command is not found. If an executable file is found, then it is

IFSread and executed in the current environment.
Internal field separators, normally space, tab, and new-line that
is used to separate command words which result from com-
mand or parameter substitution and for separating words with
the special command read. The first character of the IFS
parameter is used to separate arguments for the "$+" substitu-
tion (See Quoting below).

HISTFILE
If this parameter is set when the shell is invoked, then the value
is the pathname of the file that will be used to store the com-
mand history. (See Command re-entry below.)

28 March 1991 Page 8

KSH (C) KSH (C)

HISTSIZE
If this parameter is set when the shell is invoked, then the num-
ber of previously entered commands that are accessible by this
shell will be greater than or equal to this number. The default
is 128.

HOME
The default argument (home directory) for the cd command.

LINES
If this variable is set, the value is used to determine the column
length for printing select lists. Select lists will print vertically
until about two-thirds of LINES lines are filled.

MAIL
If this parameter is set to the name of a mail file and the MAIL-
PATH parameter is not set, then the shell informs the user of
arrival of mail in the specified file.

MAILCHECK
This variable specifies how often (in seconds) the shell will
check for changes in the modification time of any of the files
specified by the MAILPATH or MAIL parameters. The default
value is 600 seconds. When the time has elapsed the shell will
check before issuing the next prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set
then the shell informs the user of any modifications to the
specified files that have occurred within the last MAILCHECK
seconds. Each file name can be followed by a ? and a message
that will be printed. The message will undergo parameter sub-
stitution with the parameter, $_ defined as the name of the file
that has changed. The default message is you have mail in $_.

PATH
The search path for commands (see Execution below). The
user may not change PATH if executing under rksh (except in

profile).
PS1

The value of this parameter is expanded for parameter substitu-
tion to define the primary prompt string which by default is
“$ ”. The character ! in the primary prompt string is replaced
by the command number (see Command Re-entry below).

S Secondary prompt string, by default “> .

PS3
Selection prompt string used within a select loop, by default
“#? $$.

PS4
The value of this parameter is expanded for parameter substitu-
tion and precedes each line of an execution trace. If omitted,
the execution trace prompt is “+

SHELL
The pathname of the shell is kept in the environment. At invo-
cation, if the basename of this variable matches the pattern
*r¥gh, then the shell becomes restricted.

28 March 1991 Page 9

KSH (C) KSH (C)

TMOUT
If set to a value greater than zero, the shell will terminate if a
command is not entered within the prescribed number of
seconds after issuing the PS1 prompt.

VISUAL
If the value of this variable ends in emacs, gmacs, or vi then the
corresponding option (see Special Command set below) will be
turned on.

The shell gives default values to PATH, PS1, PS2, MAILCHECK,
TMOUT and IFS, while HOME, SHELL, ENV and MAIL are not set
at all by the shell (although HOME, MAIL, and SHELL are set by
login(M)).

Blank Interpretation

After parameter and command substitution, the results of substitutions
are scanned for the field separator characters (those found in IFS)
and split into distinct arguments where such characters are found. Ex-
plicit null arguments (" or “*) are retained. Implicit null arguments
(those resulting from parameters that have no values) are removed.

File Name Generation

Following substitution, each command word is scanned for the char-
acters *, ?, and [unless the -f option has been set. If one of these
characters appears then the word is regarded as a pattern. The word is
replaced with lexicographically sorted file names that match the pat-
tern. If no file name is found that matches the pattern, then the word is
left unchanged. When a pattern is used for file name generation, the
character ., at the start of a file name or immediately following a /, as
well as the character / itself, must be matched explicitly. In other
instances of pattern matching the / and . are not treated specially.

* Matches any string, including the null string.
? Matches any single character.
[...]
Matches any one of the enclosed characters. A pair of charac-
ters separated by - matches any character lexically between the
pair, inclusive. If the first character following the opening "["
isa"! " then any character not enclosed is matched. A - can be
included in the character set by putting it as the first or last
character.
A partern-list is a list of one or more patterns separated by each other
with a |. Composite patterns can be formed with one or more of the
following:
?(pattern-list)
Optionally matches any one of the given patterns.

28 March 1991 Page 10

KSH (C) KSH (C)

*(pattern-list)

Matches zero or more occurrences of the given patterns.
+(pattern-list)

Matches one or more occurrences of the given patterns.
@(pattern-list)

Matches exactly one of the given patterns.
Y(pattern-list)

Matches anything, except one of the given patterns.

Quoting

Each of the metacharacters listed above (See Definitions above) has a
special meaning to the shell and causes termination of a word unless
quoted. A character may be quoted (i.e., made to stand for itseif) by
preceding it with a \. The pair \new-line is ignored. All characters
enclosed between a pair of single quote marks ("), are quoted. A sin-
gle quote cannot appear within single quotes. Inside double quote
marks (" "), parameter and command substitution occurs and \ quotes
the characters \, *, ", and §. The meaning of $+ and $@ is identical
when not quoted or when used as a parameter assignment value or as a
file name. However, when used as a command argument, "$+" is
equivalent to "$1d$2d...", where d is the first character of the IFS
parameter, whereas "$@" is equivalent to "$1" "$2" Inside
grave quote marks (**) \ quotes the characters \, *, and $. If the grave
quotes occur within double quotes then \ also quotes the character *.

The special meaning of reserved words or aliases can be removed by
quoting any character of the reserved word. The recognition of func-
tion names or special command names listed below cannot be altered
by quoting them.

Arithmetic Evaluation

An ability to perform integer arithmetic is provided with the special
command let. Evaluations are performed using long arithmetic. Con-
stants are of the form [base#]n where base is a decimal number
between two and thirty-six representing the arithmetic base and # is a
number in that base. If base is omitted then base 10 is used.

An arithmetic expression uses the same syntax, precedence, and asso-
ciativity of expression of the C language. All the integral operators,
other than ++, -, 22, and , are supported. Named parameters can be
referenced by name within an arithmetic expression without using the
parameter substitution syntax. When a named parameter is refer-
enced, its value is evaluated as an arithmetic expression.

An internal integer representation of a named parameter can be
specified with the -i option of the typeset special command. Arith-
metic evaluation is performed on the value of each assignment to a
named parameter with the -i attribute. If you do not specify an

28 March 1991 Page 11

KSH (C) KSH (C)

arithmetic base, the first assignment to the parameter determines the
arithmetic base. This base is used when parameter substitution
occurs.

Since many of the arithmetic operators require quoting, an alternative
form of the let command is provided. For any command which begins
with a ((, all the characters until a matching)) are treated as a quoted
expression. More precisely, ((...)) is equivalent to let " ...".

Prompting

When used interactively, the shell prompts with the value of PS1
before reading a command. If at any time a new-line is typed and
further input is needed to complete a command, then the secondary
prompt (i.e., the value of PS2) is issued.

Conditional Expressions

A conditional expression is used with the [[compound command to
test attributes of files and to compare strings. Word splitting and file
name generation are not performed on the words between [[and]].
Each expression can be constructed from one or more of the following
unary or binary expressions:
-afile
True, if file exists.
-b file
True, if file exists and is a block special file.
-c file
True, if file exists and is a character special file.
-d file
True, if file exists and is a directory.
f file
True, if file exists and is an ordinary file.
-gfile
True, if file exists and is has its setgid bit set.
-k file
True, if file exists and is has its sticky bit set.
-n string
True, if length of string is non-zero.
-0 option
True, if option named option is on.
-p file
True, if file exists and is a FIFO (first-in-first-out) special file or a
pipe.
-r file
True, if file exists and is readable by current process.
-8 file

True, if file exists and has size greater than zero.

28 March 1991 Page 12

KSH (C) KSH (C)

-t fildes
True, if file descriptor number fildes is open and associated with a
terminal device.
-u file
True, if file exists and is has its setuid bit set.
-w file
True, if file exists and is writable by current process.
X file
True, if file exists and is executable by current process. If file
exists and is a directory, then the current process has permission to
search in the directory.
-Z string
True, if length of string is zero.
-0 file
True, if file exists and is owned by the effective user id of this pro-
cess.
-G file
True, if file exists and its group matches the effective group id of
this process.
filel -ntfile2
True, if filel exists and is newer than file2.
filel -ot file2
True, if filel exists and is older than file2.
filel -ef file2
True, if filel and file2 exist and refer to the same file.
string = pattern
True, if string matches pattern.
string = pattern
True, if string does not match pattern.
stringl < string2
True, if stringl comes before string2 based on ASCII value of their
characters.
stringl > string2
True, if stringl comes after string2 based on ASCII value of their
characters.
expl -eq exp2
True, if exp! is equal to exp2.
expl -ne exp2
True, if expl is not equal to exp2.
expl -It exp2
True, if expl is less than exp2.
expl -gt exp2
True, if exp! is greater than exp2.
expl -le exp2
True, if expl is less than or equal to exp2.
expl -ge exp2
True, if expl is greater than or equal to exp2.

In each of the above expressions, if file is of the form /dev/fd/n, where

n is an integer, then the test is applied to the open file whose descrip-
tor number is n.

28 March 1991 Page 13

KSH (C) KSH (C)

A compound expression can be constructed from these primitives by
using any of the following, listed in decreasing order of precedence.
(expression)

True, if expression is true. Used to group expressions.
! expression

True if expression is false.
expression] && expression2

True, if expressionl and expression2 are both true.
expressionl | | expression2

True, if either expressionl or expression? is true.

Spelling Checker

By default, the shell checks spelling whenever you use cd to change
directories. For example, if you change to a different directory using
cd and misspell the directory name, the shell responds with an alterna-
tive spelling of an existing directory. Enter “y” and press RETURN
(or just press RETURN) to change to the offered directory. If the
offered spelling is incorrect, enter “n”, then retype the command line.
In this example the user input is boldfaced:

cd /usr/spol/uucp
/usr/spool/uucp? y
ok

The spell check feature is controlled by the CDSPELL environment
variable. The default value of CDSPELL is set to the string “cdspell”
whenever a ksh session is run. A user can change it to any value,
including the null string, but the value is immaterial, if CDSPELL is
set to any value, the speli check feature is engaged.

To disable the spelling checker, enter the following at the ksh prompt :
unset CDSPELL

When the user does a set at the ksh prompt, CDSPELL is not listed if
the unset was successful.

Input/Output

Before a command is executed, its input and output may be redirected
using a special notation interpreted by the shell. The following may
appear anywhere in a simple-command or may precede or follow a
command and are not passed on to the invoked command. Command
and parameter substitution occurs before word or digit is used except
as noted below. File name generation occurs only if the pattern
matches a single file and blank interpretation is not performed.

28 March 1991 Page 14

KSH (C) KSH (C)

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1).
If the file does not exist then it is created. If the file
exists, and the noclobber option is on, this causes an
error; otherwise, it is truncated to zero length.

>|word Sames as >, except that it overrides the noclobber
option.
>>word Use file word as standard output. If the file exists

then output is appended to it (by first seeking to the
end-of-file); otherwise, the file is created.

<>word Open file word for reading and writing as standard
input.
<<[-]word The shell input is read up to a line that is the same as

word, or to an end-of-file. No parameter substitu-
tion, command substitution or file name generation is
performed on word. The resulting document, called
a here-document , becomes the standard input. If any
character of word is quoted, then no interpretation is
placed upon the characters of the document; other-
wise, parameter and command substitution occurs,
\new-line is ignored, and \ must be used to quote the
characters \, $, ~, and the first character of word. If -
is appended to <<, then all leading tabs are stripped
from word and from the document.

<&digit The standard input is duplicated from file descriptor
digit (see dup(S)). Similarly for the standard output
using >& digit.

<&- The standard input is closed. Similarly for the stan-
dard output using >&-.

<&p The input from the co-process is moved to standard
input.

>&p The output to the co-process is moved to standard
output.

If one of the above is preceded by a digit, then the file descriptor num-
ber referred to is that specified by the digit (instead of the default 0 or
1). For example:

. 2>&1

means file descriptor 2 is to be opened for writing as a duplicate of file
descriptor 1.

28 March 1991 Page 15

KSH (C) KSH (C)

The order in which redirections are specified is significant. The shell
evaluates each redirection in terms of the (file descriptor , file) associ-
ation at the time of evaluation. For example:

... 1>fname 2>&1

first associates file descriptor 1 with file fname . It then associates file
descriptor 2 with the file associated with file descriptor 1 (i.e. fname).
If the order of redirections were reversed, file descriptor 2 would be
associated with the terminal (assuming file descriptor 1 had been) and
then file descriptor 1 would be associated with file frame. File
descriptor 0 is used for standard input, 1 for standard output, and 2 for
standard error.

Environment

The environment (see environ(M)) is a list of name-value pairs that is
passed to an executed program in the same way as a normal argument
list. The names must be identifiers and the values are character
strings. The shell interacts with the environment in several ways. On
invocation, the shell scans the environment and creates a parameter
for each name found, giving it the corresponding value and marking it
export. Executed commands inherit the environment. If the user
modifies the values of these parameters or creates new ones, using the
export or typeset -x commands they become part of the environment.
The environment seen by any executed command is thus composed of
any name-value pairs originally inherited by the shell, whose values
may be modified by the current shell, plus any additions which must
be noted in export or typeset -x commands.

The environment for any simple-command or function may be aug-
mented by prefixing it with one or more parameter assignments. A
parameter assignment argument is a word of the form
identifier=value . Thus:

TERM=vt100 cmd args

and

(export TERM; TERM=vt100; cmd args)
are equivalent (as far as the above execution of cmd is concerned).
If the -k flag is set, all parameter assignment arguments are placed in
the environment, even if they occur after the command name. The fol-
lowing first prints a=b ¢ and then c¢:

echo a=b ¢

set -k
echo a=b ¢

28 March 1991 Page 16

KSH (C) KSH (C)

This feature is intended for use with scripts written for early versions
of the shell and its use in new scripts is strongly discouraged. It is
likely to disappear someday.

Functions

The function reserved word, described in the Commands section
above, is used to define shell functions. shell functions are read in and
stored internally. Alias names are resolved when the function is read.
Functions are executed like commands with the arguments passed as
positional parameters. (See Execution below).

Functions execute in the same process as the caller and share all files
and present working directory with the caller. Traps caught by the
caller are reset to their default action inside the function. A trap con-
dition that is not caught or ignored by the function causes the function
to terminate and the condition to be passed on to the caller. A trap on
EXIT set inside a function is executed after the function completes in
the environment of the caller. Ordinarily, variables are shared
between the calling program and the function. However, the typeset
special command used within a function defines local variables whose
scope includes the current function and all functions it calls.

The special command return is used to return from function calls.
Errors within functions return control to the caller.

Function identifiers can be listed with the -f or +f option of the typeset
special command. The text of functions will also be listed with -f.
Function can be undefined with the -f option of the unset special com-
mand.

Ordinarily, functions are unset when the shell executes a shell script.
The -xf option of the typeset command allows a function to be
exported to scripts that are executed without a separate invocation of
the shell. Functions that need to be defined across separate invoca-
tions of the shell should be specified in the ENV file with the -xf
option of typeset.

Execution

If the command name matches one of the Special Commands listed
below, it is executed within the current shell process. Next, the com-
mand name is checked to see if it matches one of the user defined
functions. If it does, the positional parameters are saved and then
reset to the arguments of the function call. When the function com-
pletes or issues a return, the positional parameter list is restored and
any trap set on EXIT within the function is executed. The value of a
function is the value of the last command executed. A function is also
executed in the current shell process. If a command name is not a spe-
cial command or a user defined function, a process is created and an

28 March 1991 Page 17

KSH (C) KSH (C)

attempt is made to execute the command via exec (S).

The shell parameter PATH defines the search path for the directory
containing the command. Alternative directory names are separated
by a colon (:). The default path is /bin:/usr/bin: (specifying /bin,
fusr/bin, and the current directory in that order). The current direc-
tory can be specified by two or more adjacent colons, or by a colon at
the beginning or end of the path list. If the command name contains a
/ then the search path is not used. Otherwise, each directory in the
path is searched for an executable file. If the file has execute permis-
sion but is not a directory or an a.out file, it is assumed to be a file
containing shell commands. A sub-shell is spawned to read it. All
non-exported aliases, functions, and named parameters are removed in
this case. A parenthesized command is executed in a sub-shell
without removing non-exported quantities.

Command Re-entry

The text of the last HISTSIZE (default 128) commands entered from
a terminal device is saved in a history file. The file
$HOME/.sh_history is used if the HISTFILE variable is not set or is
not writable. A shell can access the commands of all interactive
shells which use the same named HISTFILE. The special command
fc is used to list or edit a portion of this file. The portion of the file to
be edited or listed can be selected by number or by giving the first
character or characters of the command. A single command or range
of commands can be specified. If you do not specify an editor pro-
gram as an argument to fc then the value of the parameter FCEDIT is
used. If FCEDIT is not defined then /bin/ed is used. The edited
command(s) is printed and re-executed upon leaving the editor. The
editor name - is used to skip the editing phase and to re-execute the
command. In this case a substitution parameter of the form old=new
can be used to modify the command before execution. For example, if
r is aliased to “fc -e -* then typing ‘r bad=good ¢’ will re-execute the
most recent command which starts with the letter ¢, replacing the first
occurrence of the string bad with the string good.

In-line Editing Options

Normally, each command line entered from a terminal device is sim-
ply typed followed by a new-line (‘RETURN’ or ‘LINE FEED’). If
any of the emacs, gmacs, or vi options are active, the user can edit the
command line. To be in either of these edit modes set the corre-
sponding option. An editing option is automatically selected each
time the VISUAL or EDITOR variable is assigned a value ending in
either of these option names.

The editing features require that the user’s terminal accept ‘RETURN’

as carriage return without line feed and that a space (‘’) must
overwrite the current character on the screen.

28 March 1991 Page 18

KSH (C) KSH (C)

The editing modes implement a concept where the user is looking
through a window at the current line. The window width is the value
of COLUMNS if it is defined, otherwise 80. If the line is longer than
the window width minus two, a mark is displayed at the end of the
window to notify the user. As the cursor moves and reaches the win-
dow boundaries the window will be centered about the cursor. The
mark is a > (<, *) if the line extends on the right (left, both) side(s) of
the window.

The search commands in each edit mode provide access to the history
file. Only strings are matched, not patterns, although a leading * in the
string restricts the match to begin at the first character in the line.

Emacs Editing Mode

This mode is entered by enabling either the emacs or gmacs option.
The only difference between these two modes is the way they handle
“T. To edit, the user moves the cursor to the point needing correction
and then inserts or deletes characters or words as needed. All the edit-
ing commands are control characters or escape sequences. The nota-
tion for control characters is caret () followed by the character. For
example, “F is the notation for control F. This is entered by depress-
ing ‘f” while holding down the ‘CTRL’ (control) key. The ‘SHIFT’
léey is not depressed. (The notation "? indicates the DEL (delete)
ey.)

The notation for escape sequences is M- followed by a character. For
example, M-f (pronounced Meta f) is entered by depressing ESC fol-
lowed by ‘f>. (M-F would be the notation for ESC followed by
‘SHIFT’ (capital) ‘F’.)

All edit commands operate from any place on the line (not just at the
beginning). Neither the "RETURN" nor the "LINE FEED" key is
entered after edit commands except when noted.

F Move cursor forward (right) one character.

M-f Move cursor forward one word. (The emacs editor’s idea
of a word is a string of characters consisting of only
letters, digits and underscores.)

‘B Move cursor backward (left) one character.

M-b Move cursor backward one word.

‘A Move cursor to start of line.

E Move cursor to end of line.

“Ichar Move cursor forward to character char on current line.
M-"Ichar Move cursor back to character char on current line.
XX Interchange the cursor and mark.

erase (User defined erase character as defined by the sty (C)
command, usually “H or #.) Delete previous character.
‘D Delete current character.

28 March 1991 Page 19

KSH (C)

M-d
M-"H
M-h
M-"?

T
“C
M-c
M-l
K

‘W
M-p
kill

Y
‘L
‘@
M-space

™M
eof
P

M-<
M->
N

“Rstring

"0

28 March 1991

KSH (C)

Delete current word.

(Meta-backspace) Delete previous word.

Delete previous word.

(Meta-DEL) Delete previous word (if your interrupt char-
acter is “? (DEL, the default) then this command will not
work).

Transpose current character with next character in emacs
mode. Transpose two previous characters in gmacs mode.
Capitalize current character.

Capitalize current word.

Change the current word to lower case.

Delete from the cursor to the end of the line. If preceded
by a numerical parameter whose value is less than the
current cursor position, then delete from given position up
to the cursor. If preceded by a numerical parameter
whose value is greater than the current cursor position,
then delete from cursor up to given cursor position.

Kill from the cursor to the mark.

Push the region from the cursor to the mark on the stack.
(User defined kill character as defined by the sty com-
mand, usually “U or @.) Kill the entire current line. If
two kill characters are entered in succession, all kill char-
acters from then on cause a line feed (useful when using
paper terminals).

Restore last item removed from line. (Yank item back to
the line.)

Line feed and print current line.

(Null character) Set mark.

(Meta space) Set mark.

(New line) Execute the current line.

(Return) Execute the current line.

End-of-file character, normally “D, is processed as an
End-of-file only if the current line is null.

Fetch previous command. Each time “P is entered the
previous command back in time is accessed. Moves back
one line when not on the first line of a multi-line com-
mand.

Fetch the least recent (oldest) history line.

Fetch the most recent (youngest) history line.

Fetch next command line. Each time "N is entered the
next command line forward in time is accessed.

Reverse search history for a previous command line con-
taining string. If a parameter of zero is given, the search
is forward. String is terminated by a "RETURN" or
"NEW LINE". If string is preceded by a °, the matched
line must begin with string. If string is omitted, then the
next command line containing the most recent string is
accessed. In this case a parameter of zero reverses the
direction of the search.

Operate - Execute the current line and fetch the next line
relative to current line from the history file.

Page 20

KSH (C)

M-digits

M-letter

M-Jletter

v
M-#

KSH (C)

(Escape) Define numeric parameter, the digits are taken
as a parameter to the next command. The commands that
accept a parameter are “F, “B, erase, "C, D, K, "R, P,
;;1,:& M-.,M-"],M-_, M-b, M-c, M-d, M-f, M-h M-l and
Soft-key - Your alias list is searched for an alias by the
name _letter and if an alias of this name is defined, its
value will be inserted on the input queue. The letter must
not be one of the above meta-functions.

Soft-key - Your alias list is searched for an alias by the
name __letter (two underscores followed by letter) and if
an alias of this name is defined, its value will be inserted
on the input queue. This can be used to program functions
keys on many terminals.

The last word of the previous command is inserted on the
line. If preceded by a numeric parameter, the value of
this parameter determines which word to insert rather
than the last word.

Same as M-..

Attempt file name generation on the current word. An
asterisk is appended if the word doesn’t match any file or
contain any special pattern characters.

File name completion. Replaces the current word with
the longest common prefix of all filenames matching the
current word with an asterisk appended. If the match is
unique, a / is appended if the file is a directory and a space
is appended if the file is not a directory.

List files matching current word pattern if an asterisk
were appended.

Multiply parameter of next command by 4.

Escape next character. Editing characters, the user’s
erase, kill and interrupt (normally "?) characters may be
entered in a command line or in a search string if pre-
ceded by a \. The \ removes the next character’s editing
features (if any).

Display version of the shell.

Insert a # at the beginning of the line and execute it. This
causes a comment to be inserted in the history file.

Vi Editing Mode

There are two typing modes. Initially, when you enter a command you
are in the input mode. To edit, the user enters control mode by typing
ESC and moves the cursor to the point needing correction and then
inserts or deletes characters or words as needed. Most control com-
mands accept an optional repeat count prior to the command.

When in vi mode on most systems, canonical processing is initially
enabled and the command will be echoed again if the speed is 1200
baud or greater and it contains any control characters or less than one
second has elapsed since the prompt was printed. The ESC character

28 March 1991

Page 21

KSH (C)

KSH (C)

terminates canonical processing for the remainder of the command
and the user can then modify the command line. This scheme has the
advantages of canonical processing with the type-ahead echoing of

raw mode.

If the option viraw is also set, the terminal will always have canonical
processing disabled.

" Input Edit Commands"

By default the editor is in input mode.

erase
‘W
‘D
vV

\

(User defined erase character as defined by the stty
command, usually “H or #.) Delete previous character.
Delete the previous blank separated word.

Terminate the shell.

Escape next character. Editing characters, the user’s
erase or kill characters may be entered in a command
line or in a search string if preceded by a “V. The “V
removes the next character’s editing features (if any).
Escape the next erase or kill character.

" Motion Edit Commands”

These commands will move the cursor.

[count]l
[countlw
[count)W

[count]e
[count]E
[count]h
[count]b
[count]B
[count}
[countlfc
[couniiFc
[countitc
[couni)Tc
[count];

[count],

0

~

$

Cursor forward (right) one character.

Cursor forward one alpha-numeric word.

Cursor to the beginning of the next word that follows a
blank.

Cursor to end of word.

Cursor to end of the current blank delimited word.
Cursor backward (left) one character.

Cursor backward one word.

Cursor to preceding blank separated word.

Cursor to column count.

Find the next character ¢ in the current line.

Find the previous character c in the current line.
Equivalent to f followed by h.

Equivalent to F followed by L.

Repeats count times, the last single character find
command, f,F, ¢t,or T.

Reverses the last single character find command count
times.

Cursor to start of line.

Cursor to first non-blank character in line.

Cursor to end of line.

" Search Edit Commands"

These commands access your command history.

[countlk

28 March 1991

Fetch previous command. Each time k is entered the
previous command back in time is accessed.

Page 22

KSH (C)

[count]-
[count]j

[count)+
[count]G

Istring

?string
n

N

KSH (C)

Equivalent to k.

Fetch next command. Each time j is entered the next
command forward in time is accessed.

Equivalent to j.

The command number count is fetched. The default is
the least recent history command.

Search backward through history for a previous com-
mand containing string. String is terminated by a
"RETURN" or "NEW LINE". If string is preceded by
a ", the matched line must begin with string. If string
is null the previous string will be used.

Same as / except that search will be in the forward
direction.

Search for next match of the last pattern to / or ? com-
mands.

Search for next match of the last pattern to / or ?, but
in reverse direction. Search history for the string
entered by the previous / command.

" Text Modification Edit Commands"

These commands will modify the line.

a

Enter input mode and enter text after the current char-
acter.

A Append text to the end of the line. Equivalent to $a.

[countlemotion

c[countimotion
Delete current character through the character that
motion would move the cursor to and enter input
mode. If motion is ¢, the entire line will be deleted
and input mode entered.

C Delete the current character through the end of line
and enter input mode. Equivalent to c$.

S Equivalent to cc.

D Delete the current character through the end of line.
Equivalent to d$.

[countldmotion

d[countlmotion
Delete current character through the character that
motion would move to. If motion is d , the entire line
will be deleted.

i Enter input mode and insert text before the current
character.

I Insgn text before the beginning of the line. Equivalent
to 0i.

[count]P Place the previous text modification before the cursor.

[count]lp Place the previous text modification after the cursor.

R Enter input mode and replace characters on the screen
with characters you type overlay fashion.

[countlrc Replace the count character(s) starting at the current
cursor position with ¢, and advance the cursor.

28 March 1991 Page 23

KSH (C)

[count]x
[count]X
[count).
[count]”

{count] _

KSH (C)

Delete current character.

Delete preceding character.

Repeat the previous text modification command.
Invert the case of the count character(s) starting at the
current cursor position and advance the cursor.

Causes the count word of the previous command to be
appended and input mode entered. The last word is
used if count is omitted.

Causes an * to be appended to the current word and
file name generation attempted. If no match is found,
it rings the bell. Otherwise, the word is replaced by
the matching pattern and input mode is entered.
Filename completion. Replaces the current word with
the longest common prefix of all filenames matching
the current word with an asterisk appended. If the
maich is unique, a / is appended if the file is a direc-
tory and a space is appended if the file is not a direc-

tory.

" Other Edit Commands”

Miscellaneous commands.
(count]lymotion
ylcountlmotion

Y

u
U

[countlv

"L
J
‘M
#

@letter

28 March 1991

Yanks current character through character that motion
would move the cursor to and puts them into the delete
buffer. The text and cursor are unchanged.

Yanks from current position to end of line. Equivalent
to y$.

Undo the last text modifying command.

Undo all the text modifying commands performed on
the line.

Returns the command fc -e
${VISUAL:-${EDITOR:-vi}} count in the input buffer.
If count is omitted, then the current line is used.

Line feed and print current line. Has effect only in
control mode.

(New line) Execute the cuwrrent line, regardless of
mode.

(Return) Execute the current line, regardless of mode.
Sends the line after inserting a # in front of the line.
Useful for causing the current line to be inserted in the
history without being executed.

List the file names that match the current word if an
asterisk were appended it.

Your alias list is searched for an alias by the name
_lerter and if an alias of this name is defined, its value
will be inserted on the input queue for processing.

Page 24

KSH (C) KSH (C)

Special Commands

The following simple-commands are executed in the shell process.

Input/Output redirection is permitted. Unless otherwise indicated, the

output is written on file descriptor 1 and the exit status, when there is

no syntax error, is zero. Commands that are preceded by one or two
are treated specially in the following ways:

1. Parameter assignment lists preceding the command remain in
effect when the command completes.

2. 1/O redirections are processed after parameter assignments.

3. Errors cause a script that contains them to abort.

4. Words, following a command preceded by 17 that are in the format
of a parameter assignment, are expanded with the same rules as a
parameter assignment. This means that tilde substitution is per-
formed after the = sign and word splitting and file name generation
are not performed.

telarg...]
The command only expands parameters.

t .file [arg...]

(period-space-file) Read the complete file then execute the com-
mands. The commands are executed in the current shell environ-
ment. The search path specified by PATH is used to find the direc-
tory containing file. If any arguments arg are given, they become
the positional parameters. Otherwise the positional parameters are
unchanged. The exit status is the exit status of the last command
executed.

ftalias [-tx 1 [name[=value 11...

Alias with no arguments prints the list of aliases in the form
name=value on standard output. An alias is defined for each name
whose value is given. A trailing space in value causes the next
word to be checked for alias substitution. The -t flag is used to set
and list tracked aliases. The value of a tracked alias is the full
pathname corresponding to the given name. The value becomes
undefined when the value of PATH is reset but the aliases
remained tracked. Without the -t flag, for each name in the argu-
ment list for which no value is given, the name and value of the
alias is printed. The -x flag is used to set or print exported aliases.
An exported alias is defined for scripts invoked by name. The exit
status is non-zero if a name is given, but no value, for which no
alias has been defined.

fbreak [n]
Exit from the enclosing for, while, until, or select loop, if any. If
n is specified then break n levels.

T continue [n]
Resume the next iteration of the enclosing for, while, until, or
select loop. If n is specified then resume at the n-th enclosing
loop.

28 March 1991 Page 25

KSH (C) KSH (C)

cdfarg]

cd old new
This command can be in either of two forms. In the first form it
changes the current directory to arg. If arg is - the directory is
changed to the previous directory. The shell parameter HOME is
the default arg. The parameter PWD is set to the current direc-
tory. The shell parameter CDPATH defines the search path for the
directory containing arg. Alternative directory names are
separated by a colon (:). The default path is <null> (specifying
the current directory). Note that the current directory is specified
by a null path name, which can appear immediately after the equal
sign or between the colon delimiters anywhere else in the path list.
If arg begins with a / then the search path is not used. Otherwise,
each directory in the path is searched for arg.

The second form of cd substitutes the string new for the string old
in the current directory name, PWD and tries to change to this new
directory.

The c¢d command may not be executed by rksh.

echo[arg...]
See echo(C) for usage and description.

teval{arg...]
The arguments are read as input to the shell and the resulting
command(s) executed.

texec[arg...]

If arg is given, the command specified by the arguments is exe-
cuted in place of this shell without creating a new process.
Input/output arguments may appear and affect the current process.
If no arguments are given the effect of this command is to modify
file descriptors as prescribed by the input/output redirection list. In
this case, any file descriptor numbers greater than 2 that are opened
with this mechanism are closed when invoking another program.

texit[n]
Causes the shell to exit with the exit status specified by n. If n is
omitted then the exit status is that of the last command executed.
An end-of-file will also cause the shell to exit except for a shell
which has the ignoreeof option (See set below) turned on.

Tt export [name[=value]]...
The given names are marked for automatic export to the environ-
ment of subsequently-executed commands.

fc[-eename 1[-nlr 1 first [last 1]

fc -e - [old=new][command]
In the first form, a range of commands from first to last is selected
from the last HISTSIZE commands that were typed at the termi-
nal. The arguments first and last may be specified as a number or

28 March 1991 Page 26

KSH (C) KSH (C)

as a string. A string is used to locate the most recent command
starting with the given string. A negative number is used as an
offset to the current command number. If the flag -l, is selected,
the commands are listed on standard output. Otherwise, the editor
program ename is invoked on a file containing these keyboard
commands. If ename is not supplied, then the value of the parame-
ter FCEDIT (default /bin/ed) is used as the editor. When editing is
complete, the edited command(s) is executed. If last is not
specified then it will be set to first. If first is not specified the
default is the previous command for editing and -16 for listing.
The flag -r reverses the order of the commands and the flag -n
suppresses command numbers when listing. In the second form the
command is re-executed after the substitution old=new is per-
formed.

getopts optstring name [arg ...]
Checks arg for legal options. If arg is omitted, the positional
parameters are used. An option argument begins with a + or a -.
An option not beginning with + or - or the argument -- ends the
options. optstring contains the letters that getopts recognizes. If a
letter is followed by a :, that option is expected to have an argu-
ment. The options can be separated from the argument by blanks.

getopts places the next option letter it finds inside variable name
each time it is invoked with a + prepended when arg begins with a
+. The index of the next arg is stored in OPTIND. The option
argument, if any, gets stored in OPTARG.

A leading : in optstring causes getopts to store the letter of an
invalid option in OPTARG, and to set name to ? for an unknown
option and to : when a required option is missing. Otherwise,
getopts prints an error message. The exit status is non-zero when
there are no more options.

kill [-sig]job ...

kill -1
Sends either the TERM (terminate) signal or the specified signal to
the specified jobs or processes. Signals are either given by number
or by names (as given in /usr/include/signal.h, stripped of the
prefix “SIG™). If the signal being sent is TERM (terminate) or
HUP (hangup), then the job or process will be sent a CONT (con-
tinue) signal if it is stopped. The argument job can be the process
id of a process that is not a member of one of the active jobs. In
the second form, kill -1, the signal numbers and names are listed.

letarg ...
Each arg is a separate arithmetic expression to be evaluated. See
Arithmetic Evaluation above, for a description of arithmetic
expression evaluation.

The exit status is O if the value of the last expression is non-zero,
and 1 otherwise.

28 March 1991 Page 27

KSH (C) KSH (C)

tmewgrp[arg ...]
Equivalent to exec /bin/newgrp arg

print[-Rnprsu[n] J[arg...]

The shell output mechanism. With no flags or with flag - or - - the
arguments are printed on standard output as described by echo(C).
In raw mode, -R or -r, the escape conventions of echo are ignored.
The -R option will print all subsequent arguments and options
other than -n. The -p option causes the arguments to be written
onto the pipe of the process spawned with |& instead of standard
output. The -s option causes the arguments to be written onto the
history file instead of standard output. The -u flag can be used to
specify a one digit file descriptor unit number » on which the out-
put will be placed. The default is 1. If the flag -n is used, no new-
line is added to the output.

pwd
Equivalent to print -r - $PWD

read [-prsu[n] 1 [name?prompt ([name ...]

The shell input mechanism. One line is read and is broken up into
fields using the characters in IFS as separators. In raw mode, -r, a \
at the end of a line does not signify line continuation. The first
field is assigned to the first name, the second field to the second
name, etc., with leftover fields assigned to the last name. The -p
option causes the input line to be taken from the input pipe of a
process spawned by the shell using | &. If the -s flag is present, the
input will be saved as a command in the history file. The flag -u
can be used to specify a one digit file descriptor unit to read from.
The file descriptor can be opened with the exec special command.
The default value of n is 0. If name is omitted then REPLY is
used as the default name. The exit status is O unless an end-of-file
is encountered. An end-of-file with the -p option causes cleanup
for this process so that another can be spawned. If the first argu-
ment contains a ?, the remainder of this word is used as a prompt
on standard error when the shell is interactive. The exit status is 0
unless an end-of-file is encountered.

t1 readonly { name[=value]]...
The given names are marked readonly and these names cannot be
changed by subsequent assignment.

freturn[n]
Causes a shell function to return to the invoking script with the
return status specified by #. If n is omitted then the return status is
that of the last command executed. If return is invoked while not
in a function or a . script, then it is the same as an exit.

set [+aefhknopstuvx) [tooption)...[tAname] [arg ...]
The flags for this command have meaning as follows:

28 March 1991 Page 28

KSH (C)

A

-a

-€

£
-h

-0

28 March 1991

KSH (C)

Array assignment. Unset the variable name and assign
values sequentially from the list arg. If +A is used, the
variable name is not unset first.

All subsequent parameters that are defined are automati-

cally exported.

If a command has a non-zero exit status, execute the

ERR trap, if set, and exit. This mode is disabled while

reading profiles.

Disables file name generation.

Each command becomes a tracked alias when first

encountered.

All parameter assignment arguments are placed in the

environment for a command, not just those that precede

the command name.

Read commands and check them for syntax errors, but do

not execute them. Ignored for interactive shells.

The following argument can be one of the following

option names:

allexport
Same as -a.

errexit Same as -e.

bgnice All background jobs are run at a lower priority.
This is the default mode.

emacs Puts you in an emacs style in-line editor for
command entry.

gmacs Puts you in a gmacs style in-line editor for
command entry.

ignoreeof
The shell will not exit on end-of-file. The com-
mand exit must be used.

keyword Same as -k.

markdirs
All directory names resulting from file name
generation have a trailing / appended.

noclobber
Prevents redirection > from truncating existing
files. Require >| to truncate a file when turned
on.

noexec Same as -n.

noglob Same as -f.

nolog Do not save function definitions in history file.

nounset Same as -u.

privileged
Same as -p.

trackall Same as -h.

verbose Same as -v.

vi Puts you in insert mode of a vi style in-line edi-
tor until you hit escape character 033. This
puts you in move mode. A return sends the
line.

Page 29

KSH (C) KSH (C)

viraw Each character is processed as it is typed in vi
mode.

xtrace Same as -X. If no option name is supplied then
the current option settings are printed.

-p Disables processing of the $HOME/.profile file and uses
the file /etc/suid_profile instead of the ENV file. This
mode is on whenever the effective uid (gid) is not equal
to the real uwid (gid). Turning this off causes the effective
uid and gid to be set to the real uid and gid.

-s Sort the positional parameters lexicographically.

-t Exit after reading and executing one command.

-u Treat unset parameters as an error when substituting.

-v Print shell input lines as they are read.

-X Print commands and their arguments as they are exe-
cuted.

- Turns off -x and -v flags and stops examining arguments
for flags.

-- Do not change any of the flags; useful in setting $1 to a
value beginning with -. If no arguments follow this flag
then the positional parameters are unset.

Using + rather than - causes these flags to be turned off. These
flags can also be used upon invocation of the shell. The current set
of flags may be found in $-. Unless -A is specified, the remaining
arguments are positional parameters and are assigned, in order, to
$1 %2 If no arguments are given then the names and values of
all named parameters are printed on the standard output. If the
only argument is +, the names of all named parameters are printed.

tshift[n]
The positional parameters from $n+1 ... are renamed 1..., default
n is 1. The parameter n can be any arithmetic expression that
evaluates to a non-negative number less than or equal to $#.

1 times
Print the accumulated user and system times for the shell and for
processes run from the shell.

ttrap[arg 1[sig]...
arg is a command to be read and executed when the shell receives
signal(s) sig. (Note that arg is scanned once when the trap is set
and once when the trap is taken.) Each sig can be given as a num-
ber or as the name of the signal. Trap commands are executed in
order of signal number. Any attempt to set a trap on a signal that
was ignored on entry to the current shell is ineffective. If arg is
omitted or is -, then all trap(s) sig are reset to their original values.
If arg is the null string then this signal is ignored by the shell and
by the commands it invokes. If sig is ERR then arg will be exe-
cuted whenever a command has a non-zero exit status. If sig is
DEBUG then arg will be executed after each command. If sig is 0
or EXIT and the trap statement is executed inside the body of a
function, then the command arg is executed after the function

28 March 1991 Page 30

KSH (C) KSH (C)

completes. If sig is 0 or EXIT for a trap set outside any function
then the command arg is executed on exit from the shell. The trap
command with no arguments prints a list of commands associated
with each signal number.

t1 typeset [LRZfilrtux[n] 1 [name[=value | 1...

Sets attributes and values for shell parameters. When invoked

inside a function, a new instance of the parameter name is created.

The parameter value and type are restored when the function com-

pletes. The following list of attributes may be specified:

<L Left justify and remove leading blanks from value. If n is non-
zero it defines the width of the field, otherwise it is determined
by the width of the value of first assignment. When the param-
eter is assigned to, it is filled on the right with blanks or trun-
cated, if necessary, to fit into the field. Leading zeros are
removed if the -Z flag is also set. The -R flag is tumed off.

-R Right justify and fill with leading blanks. If n is non-zero it
defines the width of the field, otherwise it is determined by the
width of the value of first assignment. The field is left filled
with blanks or truncated from the end if the parameter is reas-
signed. The -L flag is turned off.

-Z Right justify and fill with leading zeros if the first non-blank
character is a digit and the -L flag has not been set. If n is non-
zero it defines the width of the field, otherwise it is determined
by the width of the value of first assignment.

«f The names refer to function names rather than parameter
names. No assignments can be made and the only other valid
flags are -t, -u and -x. The flag -t turns on execution tracing for
this function. The flag -u causes this function to be marked
undefined. The FPATH variable will be searched to find the
function definition when the function is referenced. The flag -x
allows the function definition to remain in effect across shell
procedures invoked by name.

-i Parameter is an integer. This makes arithmetic faster. If n is
non-zero it defines the output arithmetic base, otherwise the
first assignment determines the output base.

-1 All upper-case characters converted to lower-case. The upper-
case flag, -u is turned off.

-r The given names are marked readonly and these names cannot
be changed by subsequent assignment.

-t Tags the named parameters. Tags are user definable and have
no special meaning to the shell.

-u All lower-case characters are converted to upper-case charac-
ters. The lower-case flag, -1 is turned off.

-x The given names are marked for automatic export to the
environment of subsequently-executed commands.

Using + rather than - causes these flags to be turned off. If no
name arguments are given but flags are specified, a list of names
(and optionally the values) of the parameters which have these
flags set is printed. (Using + rather than - keeps the values from
being printed.) If no names and flags are given, the names and

28 March 1991 Page 31

KSH (C) KSH (C)

attributes of all parameters are printed.

ulimit [-HS [limit]

Display or set the limit on the number of 512-byte blocks on files
written by child processes (files of any size may be read). The
limit is set when limit is specified. The value of limit can be a
number or the value unlimited. The H and S flags specify whether
the hard limit or the soft limit is set. A hard limit cannot be
increased once it is set. A soft limit can be increased up to the
value of the hard limit. If neither the H or S options is specified,
the limit applies to both. The current limit is printed when limit is
omiited. In this case the soft limit is printed unless H is specified.

umask [mask]
The user file-creation mask is set to mask (see umask(C)). mask
can either be an octal number or a symbolic value as described in
chmod(C). If a symbolic value is given, the new umask value is
the complement of the result of applying mask to the complement
of the previous umask value. If mask is omitted, the current value
of the mask is printed.

unalias name ...
The parameters given by the list of names are removed from the
alias list.

unset { -f J name ...

The parameters given by the list of names are unassigned, i.e.,
their values and attributes are erased. Readonly variables cannot
be unset. If the flag, -f, is set, then the names refer to function
names. Unsetting ERRNO, LINENO, MAILCHECK,
OPTARG, OPTIND, RANDOM, SECONDS, TMOUT, and _
causes removes their special meaning even if they are subse-
quently assigned to.

t wait [job]
Wait for the specified job and report its tenmination status. If job is
not given then all currently active child processes are waited for.
The exit status from this command is that of the process waited for.
whence [-pv]| name ...
For each name, indicate how it would be interpreted if used as a
command name.
The flag, -v, produces a more verbose report.
The flag, -p, does a path search for name even if name is an alias, a
function, or a reserved word.

Invocation

-If the shell is invoked by exec(S), and the first character of argument

28 March 1991 Page 32

KSH (C) KSH (C)

zero ($0) is -, then the shell is assumed to be a login shell and com-
mands are read from /etc/profile and then from either .profile in the
current directory or SHOME/.profile, if either file exists. Next, com-
mands are read from the file named by performing parameter substitu-
tion on the value of the environment parameter ENYV if the file exists.
If the -s flag is not present and arg is, then a path search is performed
on the first arg to determine the name of the script to execute. The
script arg must have read permission and any setuid and setgid set-
tings will be ignored. Commands are then read as described below;
the following flags are interpreted by the shell when it is invoked:

-c string If the -c¢ flag is present then commands are read from
string.

-s If the -s flag is present or if no arguments remain then
commands are read from the standard input. shell output,
except for the output of the Special commands listed
above, is written to file descriptor 2.

-i If the -i flag is present or if the shell input and output are
attached to a terminal (as told by ioctl(S)) then this shell
is interactive . In this case TERM is ignored (so that kill 0
does not kill an interactive shell) and INTR is caught and
ignored (so that wait is interruptible). In all cases, QUIT
is ignored by the shell.

-r If the -r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set com-
mand above.

rksh Only

rksh is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell. The
actions of rksh are identical to those of ksh, except that the following
are disallowed:

changing directory (see cd(C)),

setting the value of SHELL, ENV, or PATH,

specifying path or command names containing /,

redirecting output (>, >| , <>, and >>).

The restrictions above are enforced after .profile and the ENV files
are interpreted.

When a command to be executed is found to be a shell procedure, rksh
invokes ksh to execute it. Thus, it is possible to provide to the end-
user shell procedures that have access to the full power of the standard
shell, while imposing a limited menu of commands; this scheme
assumes that the end-user does not have write and execute permissions
in the same directory.

28 March 1991 Page 33

KSH (C) KSH (C)

The net effect of these rules is that the writer of the .profile has com-
plete control over user actions, by performing guaranteed setup
actions and leaving the user in an appropriate directory (probably not
the login directory).

The system administrator often sets up a directory of commands
(example: /usr/rbin) that can be safely invoked by rksh.

Diagnostics

Errors detected by the shell, such as syntax errors, cause the shell to
return a non-zero exit status. Otherwise, the shell returns the exit
status of the last command executed (see also the exit command
above). If the shell is being used non-interactively then execution of
the shell file is abandoned. Run time errors detected by the shell are
reported by printing the command or function name and the error con-
dition. If the line number that the error occurred on is greater than
one, then the line number is also printed in square brackets ([]) after
the command or function name.

Files

Jetc/passwd
fetc/profile
fetc/suid_profile
$HOME/.profile
/tmp/sh*
/dev/null

See Also

cai(C), cd(C), chmod(C), cu(C), echo(C), env(C), newgrp(C),
paste(C), stty(C), test(C), umask(C), vi(C), dup(S), exec(S), fork(S),
ioctl(S), Iseek(S), pipe(S), signal(S), umask(S), ulimit(S), wait(S),
rand(S), a.out(F), profile(M), environ(M).

Notes

If a command which is a tracked alias is executed, and then a com-
mand with the same name is installed in a directory in the search path
before the directory where the original command was found, the shell
will continue to exec the original command. Use the -t option of the
alias command to correct this situation.

Some vIery old shell scripts contain a " as a synonym for the pipe char-
acter (|)

28 March 1991 Page 34

KSH (C) KSH (C)

Using the fc built-in command within a compound command will
cause the whole command to disappear from the history file.

The built-in command . file reads the whole file before any commands
are executed. Therefore, alias and unalias commands in the file will
not apply to any functions defined in the file.

Traps are not processed while a job is waiting for a foreground pro-

cess. Thus, a trap on CHLD won’t be executed until the foreground
job terminates.

28 March 1991 Page 35

LAST (C) LAST (C)

Name

last - indicate last logins of users and teletypes

Syntax
last [-n limit] [-1 tty] [-v] [name]

Description
Last checks the wemp file, which records all logins and logouts for in-
formation about a user, a tty line or any group of users and lines.
Arguments specify a user name and/or tty.
last -1 tty0l1 root

would list all “root” sessions as well as all sessions on /dev/tty01.
last prints the sessions of the specified users and ttys, including login
name, the line used, the device name, the process ID, plus start time
and elapsed time.

last with no arguments prints a record of all logins and logouts, in
reverse order.

The options behave as follows:

-n limit
limits the report to n lines.

<l line
specifies the tty.

-v prints header (verbose option).

Files
fetc/wtmp login data base

See Also
finger(C), utmp(M), accton(ADM), acctcom(ADM), acct(F)

March 29, 1991 Page 1

LINE (C) LINE (C)

Name

line - Reads one line.

Syntax

line

Description
line copies one line (up to a newline) from the standard input and
writes it on the standard output. It returns an exit code of 1 on end-
of-file and always prints at least a newline. It is often used within
shell files to read from the user’s terminal.

See Also

gets(CP), sh(C)

28 March 1991 Page 1

LN (C) LN (C)

Name

In - Makes a link to a file.

Syntax
In filel file2
In filel ... directory

Description
A link is a directory entry referring to a file; the same file (together
with its size, all its protection information, etc). may have several
links to it. There is no way to distinguish a link to a file from its origi-
nal directory entry. Any changes to the file are effective independent
of the name by which the file is known.

In the first case, In creates a link to the existing file, filel. The file2
argument is a new name referring to the same file contents as filel.

In the second case, directory is the location of a directory into which
one or more links are created with corresponding file names.

You cannot link directories or link across filesystems.

See Also
cp(C), mv(C), m(C)

28 March 1991 Page 1

LOCK (C) LOCK (C)

Name

lock - Locks a user’s terminal.

Syntax
lock {-v] [-number }

Description

lock requests a password from the user, requests it again for verifica-
tion, then locks the terminal until the password is reentered. If a
-number is specified in the lock command, the terminal is automati-
cally logged out and made available to another user after that number
of minutes has passed.

This command uses the file /etc/default/lock. This file has two entries:

DEFLOGOUT = number
MAXLOGOUT = number

DEFLOGOUT specifies the default time in minutes a terminal will
remain locked before the user is logged out. This default value is
overridden if the -number option is used on the command line. If
DEFLOGOUT and -number are not specified, the MAXLOGOUT
value is used.

MAXLOGOUT is the maximum number of minutes a user is permit-
ted to lock a terminal. If a user attempts to lock a terminal for longer
than this time, lock will issue a warning to the user that it is using the
system maximum time limit. If DEFLOGOUT and -number and
MAXLOGOUT are not specified, users are not logged out.

DEFLOGOUT and MAXLOGOUT are configured by the system
administrator to reflect the demand for terminals at the site.

The lock may be terminated by killing the lock process. Only the
superuser and the user who invoked lock may do so.
Options

-number Sets the time limit for lock to number of minutes, instead
of the system default.

-v Specifies verbose operation.
Files
fetc/default/lock

28 March 1991 Page 1

LOCK (C) LOCK (C)

Notes
The file /etc/default/lock is shipped with the following default values:

DEFLOGOUT =30
MAXLOGOUT = 60

28 March 1991 Page 2

LOGNAME (C) LOGNAME (C)

Name

logname - Gets login name.

Syntax
logname
Description
logname returns the user’s login name as found in /etc/utmp. If no log-

in name is found, logname returns the user’s user ID number.

See Also
env(C), id(C), getlogin(S), getuid(S), login(M), logname(S)

28 March 1991 Page 1

LP (C) LP (C)

Name

Ip, lpr, cancel - Send/cancel requests to lineprinter.

Syntax

Ip [options...J[name...]
Ipr [options...][name...]
cancel [request ID s] [printers]

Description

Ip causes the named files and associated information (collectively
called a “request”) to be printed by a lineprinter. Ip and Ipr are
equivalent commands and may be used interchangeably. If no file
names are mentioned, the standard input is assumed. The file name -
stands for the standard input and may be supplied on the command
line in conjunction with named files. The order in which files appear
is the same order in which they will be printed.

Ip associates a unique request ID with each request and prints it on the
standard output. This request ID can be used later to cancel (see can-
cel) or find the status of the request (see Ipstat(C)).

The following options to Ip may appear in any order and may be inter-
mixed with file names:

-c Makes copies of the files to be printed immediately when
Ip is invoked. Normally, files will not be copied, but will
be linked whenever possible. If the -c¢ option is not given,
then the user should be careful not to remove any of the
files before the request has been printed in its entirety; any
changes made to the named files after the request is made
but before it is printed will be reflected in the printed out-
put.

-ddest Chooses dest as the printer or class of printers to do the
printing. If dest is a printer, then the request will be
printed only on that specific printer. If dest is a class of
printers, then the request will be printed on the first avail-
able printer that is a member of the class. Under certain
conditions (for example, printer unavailability or file space
limitation), requests for specific destinations may not be
accepted (see accept(C) and Ipstat(C)). By default, dest is
taken from the environment variable LPDEST (if it is set).
Otherwise, a default destination (if one exists) for the com-
puter system is used. Destination names vary between sys-
tems (see Ipstat (C)).

28 March 1991 Page 1

LP(C) LP(C)

-m Sends mail (see mail (C)) after the files have been printed.
By default, no mail is sent upon normal completion of the
print request.

-nnumber Prints number of copies of the output. The default is one.

-ooption Specifies printer-dependent or class-dependent options.
Several such options may be collected by specifying the -0
keyletter more than once. For more information about
what is valid for options, see Ipadmin(ADM).

-r Removes file after sending it.

-S Suppresses messages from Ip(C) such as “request id is ...”.

-ttitle Prints title on the banner page of the output.

-T Local printing option. Sends print job to printer attached to
the terminal.

-w Writes a message on the user’s terminal after the files have
been printed. If the user is not logged in, then mail is sent
instead.

The file- /etc/default/lpd contains - the setting of the variable
BANNERS, whose value is the number of pages printed as a banner
identifying each printout. This is normally set to either O or 1.

Cancel cancels line printer requests that were made by the Ip(C) com-
mand. The command line arguments may be either request IDs (as
returned by /p(C)) or printer names (for a complete list, use Ipstat (C)).
Specifying a request ID cancels the associated request even if it is
currently printing. Specifying a printer cancels the request which is
currently printing on that printer. In either case, the cancellation of a
request that is currently printing frees the printer to print its next
available request. User identification and accounting data spool area
contains BANNERS setting.

Files
fetc/passwd
fusr/spool/lp/*
fetc/default/lpd
See Also

enable(C), Ipstat(C), mail(C), accept(C), Ipadmin(ADM),
Ipsched(ADM)

28 March 1991 Page 2

LP (C) LP (C)

Notes

The file’s directory and all directories in the path must also be publicly
readable. The following are three possible workarounds:

pr filename | lp
cat filename | lp

Ip -c filename

28 March 1991 Page 3

LPRINT (C) LPRINT (C)

Name

Iprint - print to a printer attached to the user’s terminal

Syntax
Iprint [-] file

Description
Iprint(C) accepts a filename to print or - to read from the keyboard. If
the terminal has local printing abilities, it will then print the file to a
printer attached to the printer port of the terminal.

This command uses the file /etc/termcap.

Options

- Tells Iprint to use the standard input for printing.
Files

Jetc/termcap
Notes

The only terminals currently supported with entries in /etc/termcap are
Tandy’s DT-100 and DT-1, and Hewlett-Packard’s HP-92.

To add attached printer capability to the termcap file for a different
terminal, add entries for PN (start printing) and PS (end printing) with
the appropriate control or escape characters for your terminal.

Terminal communications parameters (such as baud rate and parity)
must be set up on the terminal by the user.

See Also

termcap (M), “Using Printers” in the XENIX System Administrator’s
Guide.

28 March 1991 Page 1

LPSTAT (C) LPSTAT (C)

Name

Ipstat - prints lineprinter status information

Syntax

Ipstat [options ...]

Description

Ipstat prints information about the current status of the lineprinter sys-
tem.

If no options are given, then Ipstat prints the status of all requests
made to Ip(C) by the user. Any arguments that are not options are
assumed to be request IDs (as returned by Ip). Ipstat prints the status
of these requests. Options may appear in any order and may be
repeated and intermixed with other arguments. Some of the following
options may be followed by /ist which can be in one of two forms: a
list of items separated from one another by a comma, or a list of items
enclosed in double quotes and separated from one another by a comma
and/or one or more spaces. For example:

-u“userl, user2, user3”

The omission of a list following such options causes all information
relevant to the option to be printed, for example:

lpstat -o
prints the status of all output requests.
-a[list] Prints acceptance status (with respect to Ip) of destinations
for requests. List is a list of intermixed printer names and

class names.

-c[list] Prints class names and their members. List is a list of class
names.

-d Prints the system default destination for Ip.

-o[list] Prints the status of output requests. List is a list of inter-
mixed printer names, class names, and request IDs.

-pllist] Prints the status of printers. List is a list of printer names.

-r Prints the status of the lineprinter scheduler, [psched.

28 March 1991 Page 1

LPSTAT (C) LPSTAT (C)

-s Prints a status summary, including the status of the lineprint-
er scheduler, the system default destination, Prints a status
summary, including the system default destination, a list of
class names and their members, and a list of printers and
their associated devices.

-t Prints all status information.

-u[/ist] Prints status of output requests for users. List is a list of log-
in names.

-v[list] Prints the names of printers and the pathnames of the de-
vices associated with them. List is a list of printer names.

Files

Jusr/spool/lp/*

See Also
enable(C), Ip(C)

28 March 1991 Page 2

LS (C) LS (C)

Name

Is, Ic, 1 - Gives information about contents of directories.

Syntax

Is [-ACFRabcdfgilmnopqrstux] [names]
Ic [-1ACFRabcedfgilmnopgrstux] [names]
1[-ACFRabcdfgilmnopqrstu] [names]

Description

For each directory named, /s lists the contents of that directory; for
each file named, Is repeats its name and any other information
requested. By default, the output is sorted alphabetically. When no
argument is given, the current directory is listed. When several argu-
ments are given, the arguments are first sorted appropriately, file argu-
ments are processed before directories and their contents.

There are three major listing formats. The default format is to list one
entry per line, the -C and -x options enable multi-column formats, and
the -m option enables stream output format in which files are listed
across the page, separated by commas. In order to determine output
format for the -C, -x, and -m options, Is uses an environment variable,
COLUMNS, to determine the number of character positions available
on one output line. If this variable is not set, the rermcap database is
used to determine the number of columns, based on the environment
variable TERM. If this information cannot be obtained, 80 columns
are assumed.

There are many options:

-A List all entries. Entries whose name begin with a period (.) are
listed. Does not list current directory (.) and directory above

(..)

-a Lists all entries. Entries whose name begin with a period (.) are
listed.

-R Recursively lists subdirectories encountered.

-d If an argument is a directory, lists only its name (not its con-
tents); often used with -1 to get the status of a directory.

-C Multi-column output with entries sorted down the columns.

-x Multi-column output with entries sorted across rather than down
the page.

28 March 1991 Page 1

LS (C)

-0

-r

-t

-q

-S

£

LS (C)

Stream output format.

Lists in long format, giving mode, number of links, owner,
group, size in bytes, and time of last modification for each file
(see below). If the file is a special file, the size field will contain
the major and minor device numbers, rather than a size.

The same as -1, except that the owner’s UID and group’s GID
numbers are printed, rather than the associated character strings.

The same as -1, except that the group is not printed.
The same as -1, except that the owner is not printed.

Reverses the order of sort to get reverse alphabetic or oldest
first, as appropriate.

Sorts by time modified (latest first) instead of by name.

Uses time of last access instead of last modification for sorting
use with the -t option.

Uses time of last modification of the inode (file created, mode
changed, etc.) for sorting use with -t option.

Puts a slash (/) after each filename if that file is a directory.

Puts a slash (/) after each filename if that file is a directory and
puts an asterisk (*) after each filename if that file is executable.

Forces printing of non-graphic characters to be in the octal \ddd
notation.

Forces printing of non-graphic characters in file names as the
character (?).

For each file, prints the inode number in the first column of the
report.

Gives size in blocks, including indirect blocks, for each entry.

Forces each argument to be interpreted as a directory and lists
the name found in each slot. This option turns off -1, -t, -s, and
-r, and turns on -a. The order is the order in which entries
appear in the directory.

28 March 1991 Page 2

LS (C) LS (C)

The mode printed under the -l option consists of 11 characters. The
first character is:

- If the entry is an ordinary file.
d If the entry is a directory.
b If the entry is a block special file.

(g}

If the entry is a character special file.

p If the entry is a named pipe.

s If the entry is a semaphore.

m If the entry is a shared data (memory) file.

The next 9 characters are interpreted as 3 sets of 3 bits each. The first
set refers to the owner’s permissions; the next to permissions of others
in the user-group of the file; and the last to all others. Within each set,
the 3 characters indicate permission to read, to write, and to execute
the file as a program, respectively. For a directory, “execute” permis-
sion is interpreted to mean permission to search the directory for a
specified file.

The permissions are indicated as follows:

r If the file is readable.

w If the file is writable.

x Ifthe file is executable.

- If the indicated permission is not granted.

The group-execute permission character is given as s if the file has
set-group-ID mode; likewise, the user-execute permission character is
given as s if the file has set-user-ID mode. The last character of the
mode (normally x or -) is t if the 1000 (octal) bit of the mode is on.
See chmod(C) for the meaning of this mode. The indications for set-
ID and the 1000 bit of the mode are capitalized if the corresponding

execute permission is not set.

When the sizes of the files in a directory are listed, a total count of
blocks including indirect blocks is printed.

28 March 1991 Page 3

LS (C) LS (C)

Files
fetc/passwd Gets user IDs for Is -1 and Is -0
fetc/group Gets group IDs for Is -1 and Is -g
Jetc/termcap Gets terminal information

See Also

chmod(C), coltbl(M), find(C), 1(C), 1c(C), locale(M), termcap(F)

Notes
Sorts according to the collating sequenced defined by the locale.
Newline and tab are considered printing characters in filenames.

Unprintable characters in filenames may confuse the columnar output
options.

This utility reports sizes in 512 byte blocks.

28 March 1991 Page 4

MAIL (C) MAIL (C)

Name

mail - Sends, reads or disposes of mail.

Syntax
mail [[-u user] [-f mailbox]] [-e] [-R] [-i] [users ...]

mail [-s subject] [-i] [user ...]

Description

mail is a mail processing system that supports composing of mes-
sages, and sending and receiving of mail between multiple users.
When sending mail, a user is the name of a user or of an alias assigned
to a machine or to a group of users.

Options include:

-u user
Tells mail to read the system mailbox belonging to the specified
user.

-f mailbox
Tells mail to read the specified mailbox instead of the default
user’s system mailbox.

-e Allows escapes from compose mode when input comes from a file.

-R Makes the mail session “read-only” by preventing alteration of the
mailbox being read. Useful when accessing system-wide mail-
boxes.

-i Tells mail to ignore interrupts sent from the terminal. This is use-
ful when reading or sending mail over telephone lines where
“noise” may produce unwanted interrupts.

-S subject
Specifies subject as the text of the Subject: field for the message
being sent.

Sending mail
To send a message to one or more other people, invoke mail with
arguments which are the names of people to send to. You are then

expected to type in your message, followed by a Curl-D at the begin-
ning of a line.

28 March 1991 Page 1

MAIL (C) MAIL (C)

Reading Mail

To read mail, invoke mail with no arguments. This will check your
mail out of the system-wide directory so that you can read and dispose
of the messages sent to you. A message header is printed out for each
message in your mailbox. The current message is initially the last
numbered message and can be printed using the print command
(which can be abbreviated p). You can move among the messages
much as you move between lines in ed, with the commands + and -
moving backwards and forwards, and simple numbers typing the
addressed message.

If new mail arrives during the mail session, you can read in the new
messages with the restart command.

Note that you can configure your environment so that you are notified
whenever new mail is sent to you. To do so, you would have to set the
MAIL environment variable if you are using the Bourne shell or the
mail shell variable if you are using the C-shell. For more information,
see “The Shell” chapter of the XENIX User’s Guide and csh(C) in the
XENIX User’s Reference.

Disposing of Mail

After examining a message, you can delete (d) the message or reply
(r) to it. Deletion causes the mail program to forget about the mes-
sage. This is not irreversible, the message can be undeleted (u) by
giving its number, or the mail session can be aborted by giving the
exit (x) command. Deleted messages will, however, disappear.

Specifying Messages

Commands such as print and delete often can be given a list of mes-
sage numbers as arguments to apply to a number of messages at once.
Thus “delete 1 2” deletes messages 1 and 2, while “delete 1-5”
deletes messages 1 through 5. The special name “*” addresses all
messages, and “$” addresses the last message; thus the command top
which prints the first few lines of a message could be used in “top *”
to print the first few lines of all messages.

Replying to or Originating Mail

You can use the reply command to set up a response to a message,
sending it back to the person who sent it. Then you can enter in the
text of the reply, and press Cirl-D to send it. While you are composing
a message, mail treats lines beginning with a tilde (7) as special. For
instance, typing ““m” alone on a line, places a copy of the current
message into the response, right shifting it by one tabstop. Other
escapes set up subject fields, add and delete recipients to the message,

and allow you to escape to an editor to revise the message or to a shell

28 March 1991 Page 2

MAIL (C) MAIL (C)

to run some commands. (These options are given in the summary
below.)

Ending a Mail Session

You can end a mail session with the quit (q) command. Messages that
have been examined go to your mbox file unless they have been
deleted, in which case they are discarded. Unexamined messages go
back to the post office. The -f option causes mail to read in the con-
tents of your mbox (or the specified file) for processing; when you
quit, mail writes undeleted messages back to this file. The -i option
causes mail to ignore interrupts.

Using Aliases and Distribution Lists

It is also possible to create a personal distribution list. For instance,
you can send mail to “cohorts” and have it go to a group of people.
Such lists can be defined by placing a line like

alias cohorts bill bob barry bobo betty beth bobbi

in the file .mailrc in your home directory. The current list of such
aliases can be displayed by the alias (a) command in mail. System-
wide distribution lists can be created by editing /usr/lib/mail/aliases,
see aliases (M); these are kept in a slightly different syntax. In mail
you send, personal aliases will be expanded in mail sent to others so
that they will be able to reply to the recipients. System-wide aliases
are not expanded when the mail is sent, but any reply returned to the
machine will have the system-wide alias expanded.

mail has a number of options which can be set in the .mailrc file to
alter its behavior; thus “set askcc” enables the “askcc” feature.
(These options are summarized below.)

Summary

Each mail command is entered on a line by itself, and may take argu-
ments following the command word. The command need not be
entered in its entirety; the first command which matches the typed
prefix is used. For the commands that take message lists as argu-
ments; if no message list is given, then the next message forward that
satisfies the command’s requirements is used. If there are no messages
forward of the current message, the search proceeds backwards, and if
there are no messages at all, mail types “No applicable messages™ and
aborts the command.

- Goes to the previous message and prints it out. If given

a numeric argument 2, goes to the nth previous mes-
sage and prints it.

28 March 1991 Page 3

MAIL (C)

+

RETURN

-~

.-

alias

Alias users

cd

delete

dp

echo path

edit

exit

file

28 March 1991

MAIL (C)

Goes to the next message and prints it out. If given a
numeric argument n, goes to the nth next message and
prints it.

Goes to the next message and prints it out.
Prints a brief summary of commands.
Executes the shell command which follows.
Prints out the current message number.
Prints out the first message.

Prints out the last message.

(a) With no arguments, prints out all currently-de fined
aliases. With one argument, prints out that alias. With
more than one argument, adds the users named in the
second and later arguments to the alias named in the
first argument.

Prints system-wide list of aliases for users. At least one
user must be specified.

(¢) Changes the user’s working directory to that
specified, if given. If no directory is given, then
changes to the user’s login directory.

(d) Takes a list of messages as an argument and marks
them all as deleted. Deleted messages are not retained
in the system mailbox after a quit, nor are they avail-
able to any command other than the undelete command.

Deletes the current message and prints the next mes-
sage. If there is no next message, mail says “no more
messages.”

Expands shell metacharacters.

(e) Takes a list of messages and points the text editor at
each one in turn. On return from the editor, the message
is read back in.

(x) Effects an immediate return to the shell without
modifying the user’s system mailbox, his mbox file, or
his edit file in -f.

(i) Prints the name of the file mail is reading. If it is a
mailbox, the name of the owner is returned.

Page 4

MAIL (C)

forward

Forward

headers

hold

list

Ipr

mail

mbox

MAIL (C)

(f) Forwards the current message to the named users.
Current message is indented within forwarded message.

(F) Forwards the current message to the named users.
Current message is not indented within forwarded mes-
sage.

(h) Lists the current range of headers, which is an 18
message group. If a “+” argument is given, then the
next 18 message group is printed, and if a “-” argument
is given, the previous 18 message group is printed.
Both “+” and “-” may take a number to view a particu-
lar window. If a message-list is given, it prints the
specified headers.

(ho) Takes a message list and marks each message
therein to be saved in the user’s system mailbox instead
of in mbox. Use only when the switch autombox is set.
Does not override the delete command.

Prints list of mail commands.

(I) Prints out each message in a message-list on the
lineprinter.

(m) Takes as arguments login names and distribution
group names and sends mail to those people.

(mb) Marks messages in a message list so that they are
saved in the user mailbox after leaving mail.

move mesg-list mesg-num

next

print

quit

28 March 1991

Places the messages specified in mesg-list after the
message specified in mesg-num. If mesg-num is 0,
mesg-list moves to the top of the mailbox.

(n like + or RETURN) Goes to the next message in
sequence and prints it. With an argument list, types the
next matching message.

(p) Prints out each message in a message-list on the ter-
minal display.

(q) Terminates the session, retaining all undeleted,
unsaved messages in the system mailbox and removing
all other messages. Messages marked with a star (¥) are
saved; messages marked with an “M” are saved in the
user mailbox. If new mail has arrived during the ses-
sion, the message “You have new mail” is given. If
given while editing a mailbox file with the -f flag, then
the mailbox file is rewritten. The user returns to the
shell, unless the rewrite of the mailbox file fails, in

Page 5

MAIL (C)

reply

Reply

restart

save

set

shell

size

source

MAIL (C)

which case the user can escape with the exit command.

(r) Takes a message list and sends mail to each mes-
sage author. The default message must not be deleted.

(R) Takes a message list and sends mail to each mes-
sage author and each member of the message just like
the mail command. The default message must not be
deleted.

Reads in messages that arrived during the current mail
session.

(s) Takes a message list and a filename and appends
each message in turn to the end of the file. The
filename, in quotation marks, followed by the line
count and character count is echoed on the user’s termi-
nal.

(se) With no arguments, prints all variable values. Oth-
erwise, sets option. Arguments are of the form
“option=value” or “option”.

(sh) Invokes an interactive version of the shell.

(si) Takes a message list and prints out the size in char-
acters of each message.

(so) Reads mail commands from the file given as its
only argument.

string string mesg-list

top

undelete

unset

visual

whois

28 March 1991

Searches for string in mesg-list. If no mesg-list is
specified, all undeleted messages are searched. Case is
ignored in search.

(t) Takes a message list and prints the top few lines of
each. The number of lines printed is controlled by the
variable toplines and defaults to six.

(u) Takes a message list and marks each one as not
being deleted.

(uns) Takes a list of option names and discards their
remembered values; the inverse of set.

(v) Takes a message list and invokes vi on each mes-
sage.

Looks up a list of target mail recipients and prints the

real names or descriptions of each recipient. If the first
character of the first argument is alphabetic, the

Page 6

MAIL (C)

write filename

MAIL (C)

arguments are looked up without change. Otherwise,
the arguments are assumed to be a message list, in the
format specified in the Mail User’s Guide. For each
message in the list, the “From” person is extracted from
the header and added to the list of users to be searched.

If a target mail recipient contains a machine and user
name, nothing is printed. If it is a private alias,
“private alias” is printed. If it is a global alias, the
name or description of the recipient is printed (contents
of the $n field in the alias file). If all of the above fail,
the user is looked up in /fetc/passwd; if the user is a
local user, “local user” is printed. Finally, if none of
the above tests and searches succeed, “unknown” is
printed.

(w) Saves the body of the message in the named file.

Here is a summary of the compose escapes, which are used when com-
posing messages to perform special functions. Compose escapes are
only recognized at the beginning of lines.

“string

“?

Inserts the string of text in the message prefaced by a
single tilde (7). If you have changed the escape charac-~
ter, then you should double that character instead.

Prints out help for compose escapes.
Same as Curl-D on a new line.

Executes the indicated shell command, then returns to
the message.

Pipes the message through the command as a filter. If
the command gives no output or terminates abnormally,
retains the original text of the message.

"_mail-command

Executes a mail command, then returns to compose
mode.

"t mail-command

“alias

Executes a mail command, then returns to compose
mode.

Prints list of private aliases

"alias aliasname

28 March 1991

Prints names included in private aliasname.

Page 7

MAIL (C)

“Alias

"Alias users

“b name ...
"¢ name ...

“c¢c name ...

d

"h

“m mesg-list

"M mesg-list

28 March 1991

MAIL (C)

Performs aliasing by first examining private aliases and
then system-wide aliases using all three global alias
files (aliases.hash, faliases, and maliases). Only the
final result is printed (non-local mail recipients will
have the complete delivery path printed). The user list
is taken from header fields.

Performs aliasing by first examining private aliases and
then system-wide aliases using all three global alias
files (aliases.hash, faliases, and maliases). Only the
final result is printed (non-local mail recipients will
have the complete delivery path printed). At least one
user must be specified.

Adds the given names to the list of blind carbon copy
recipients.

Adds the given names to the list of carbon copy reci-
pients.

Same as ¢ above.

Reads the file dead.letter from your home directory into
the message.

Invokes the text editor on the message collected so far.
After the editing session is finished, you may continue
appending text to the message.

Edits the message header fields by typing each one in
turn and allowing the user to append text to the end or
modify the field with the current terminal erase and kill
characters.

Reads the named messages into the message buffer,
shifted right one tab. If no messages are specified,
reads the current message.

Reads the named messages into the message buffer,
with no indentation. If no messages are specified, reads
the current message.

Prints out the messages collected so far, prefaced by the
message header fields.

Prints the real names or descriptions (in parentheses)
after each recipient in a header field.

Aborts the message being sent, copying the message to
dead.letter in your home directory if save is set.

Page 8

MAIL (C)

“r filename

“"Return name

s string

"t name ...

v

"W filename

MAIL (C)

Reads the named file into the message buffer.

Adds the given names to the Return-receipt-to field.

Causes the named string to become the current subject
field.

Adds the given names to the direct recipient list.

Invokes a visual editor (defined by the VISUAL option)
on the message buffer. After you quit the editor, you
may resume appending text to the end of your message.

Writes the body of the message to the named file.

Options are controlled with the set and unset commands. An option
may be either a switch, in which case it is either on or off, or a string,
in which case the actual value is of interest. The switch options
include the following:

askcc

asksubject

autombox

autoprint

chron

dot

execmail

ignore

28 March 1991

Causes you to be prompted for additional carbon
copy recipients at the end of each message.
Responding with a newline indicates your satisfac-
tion with the current list.

Causes mail to prompt you for the subject of each
message you send. If you respond with simply a
newline, no subject field is sent.

Causes all examined messages to be saved in the
user mailbox unless deleted or saved.

Causes the delete command to behave like dp -
thus, after deleting a message, the next one will be
entered automatically.

Causes messages to be displayed in chronological
order.

Permits use of dot (.) as the end of file character
when composing messages.

Causes the underbar prompt to return before mail is
finished being sent. This frees the user to continue
while mail performs mailing functions in back-
ground.

Causes interrupt signals from your terminal to be
ignored and echoed as at-signs (@).

Page 9

MAIL (C)

mchron

metoo

nosave

quiet

verify

MAIL (C)

Causes messages to be listed in numerical order
(most recently received first), but displayed in chro-
nological order.

Usually, when a group is expanded that contains the
sender, the sender is removed from the expansion.
Setting this option causes the sender to be included
in the group.

Prevents aborted messages from being appended to
the file dead.letter in your home directory on
receipt of two interrupts (or a “q).

Suppresses the printing of the version header when
first invoked.

Causes each target mail recipient to be verified in
the manner described in the whois command. This
option permits errors made while composing mes-
sages to be corrected or ignored.

The following options have string values:

EDITOR

SHELL

VISUAL

escape

page=n

record

toplines

28 March 1991

Pathname of the text editor to use in the edit com-
mand and e escape. If not defined, then a default
editor (/bin/ed) is used.

Pathname of the shell to use in the ! command and
the ~! escape. A default shell (/bin/sh) is used if this
option is not defined.

Pathname of the text editor (/bin/vi) to use in the
visual command and “v escape.

If defined, the first character of this option gives the
character to use in the place of the tilde (V) to
denote escapes.

Specifies the number of lines (n) to be printed in a
“page” of text when displaying messages.

If defined, gives the pathname of the file used to
record all outgoing mail. If not defined, then outgo-
ing mail is not saved.

If defined, gives the number of lines of a message to

be printed out with the top command; normally, the
first six lines are printed.

Page 10

MAIL (C)

Files

fusr/spool/mail/*
$HOME/dead.letter

$HOME/mbox
$HOME/.mailrc
fusr/lib/mail/aliases
/ust/lib/mail/aliases.hash

fusr/lib/mail/faliases

fusr/lib/mail/maliases
fusr/lib/mail/mailhelp.cmd
fusr/lib/mail/mailhelp.esc
fusr/lib/mail/mailhelp.set
Jusr/lib/mail/mailrc
fusr/bin/mail

See Also

MAIL (C)

System mailboxés

File where undeliverable mail is depo-
sited

Your old mail

File giving initial mail commands
System-wide aliases
System-wide alias database

Forwarding aliases for the local ma-
chine

Machine aliases

Help file

Help file

Help file

System initialization file (defaults)

The mail command

aliases(M), aliashash(ADM), netutil(ADM)
The “Mail” chapter in the XENIX User’s Guide.

Credit

This utility was developed at the University of California at Berkeley

and is used with permission.

28 March 1991

Page 11

MAN (C) MAN (C)

Name

man - Prints reference pages in this guide.

Syntax

man [-afbcw] {-tproc] [-ppager] [-ddir] [-
T term] [section] [title]

Description

The man program locates and prints the named title from the desig-
nated section in the XENIX Reference. For historical reasons, “page” is
often used as a synonym for “entry” in this context.

Since XENIX commands are given in lowercase, the title is always
entered in lowercase. If no section is specified, the whole guide is
searched for fitle and the first occurrence of it is printed. You can
search for a group of sections by separating the section names with
colons (:) on the command line.

The options and their meanings are:

-a “All” mode. Displays all matching titles. Incompatible
with f mode.

-f “First” mode. Displays only the first matching title.
Incompatible with a mode. This is the default mode for
man.

-b Leaves blank lines in output. nroffCT) pads entries with

blank lines for line printer purposes. man normally filters
out these excess blank lines. Normally, man does not dis-
play more than 2 consecutive blank lines. The -b flag
leaves blank lines in the CRT output.

-C Causes man to invoke col (CT). Note that col is invoked
automatically by man unless term is one of the follow-
ing: 300, 300s, 450, 37, 4000a, 382, 4014, tek, 1620, and

X.

-w Prints on the standard output only the pathnames of the
entries.

-tproc Indicates that if an unprocessed manual page is avail-

able, it is to be passed to proc for formatting. proc can be
any command script in /usr/man/bin or an absolute
filename of a text processing program elsewhere on the
system, for example /bin/nroff.

28 March 1991 Page 1

MAN (C) MAN (C)

The scripts in /usr/man/bin invoke the actual processing
programs with the correct flags and arguments. The
default processor is /usr/man/bin/nr, which invokes
/bin/nroff and produces output that safely prints on any
terminal. The text is also preprocessed by eqn(CT) and
tbl(CT) as a default.

-ppager Selects paging program pager to display the entry. Pag-
ing systems such as more(C), pg(C), cat(C), or any cus-
tom pagers that you may have are valid arguments for
this flag. The default pager, pg(C), is set in
fetc/default/man.

-ddir Specifies directory dir to be added to the search path for
entries. You can specify several directories to be
searched for entries by separating the directory names
with colons (:) on the command line.

-Tterm Format the entry and pass the given term value to the
processing program, then print it on the standard output
(usually, the terminal); term is the terminal type (see
term(M) and the explanation below); for a list of the
recognized values of term, type help term2. The default
value of term is 450.

Section Names

The names and general descriptions of the available manual sections
are:

C Commands

M Miscellaneous

F File Formats

HW Hardware Dependent

CT Text Processing Commands

S Subroutines and Libraries

CP Programming Commands

DOS DOS Subroutines and Libraries

UCB University of California, Berkeley, Utilities

LOCAL Local utilities for your system

You can add other section names as you desire. Each new section,
however, must follow the standard section directory structure. The
UCB and LOCAL directories are shipped to you without contents, as
no LOCAL or UCB manual pages are included with XENIX.

/usr/man Directory Structure

The source files for the man program are kept in the directory
fusr/man. Each man section is comprised of two directories, and there
is a directory called bin for programs and shell scripts related to man.
There is also an index file called index in /usr/man. This index is a list
of all XENIX commands and their sections.

28 March 1991 Page 2

MAN (C) MAN (C)

Each manual section has two directories in /usr/man. These direc-
tories are called man and cat, plus the name of the section as a suffix.
For example, the C manual section is comprised of two directories,
man.C and cat.C, both located in /usr/man.

The unprocessed source text is in the man directory and the printable
processed output is in the cat directory. When a title is requested, both
directories are checked. The most recent copy of the manual page is
used as the current copy. If the most recent title is in the source text
directory and it is processed by the default processor with the default
terminal type, a display copy of the output is placed in the cat direc-
tory for future use. Note that a file that must be processed takes longer
to appear on the screen than a display copy.

Environment Variables

There is a shell environment variable for use with the man utility. This
variable is called MANPATH and it is used to change or augment the
path man searches for entries. Multiple directories set with this vari-
able must be delimited by colon characters (:). If the MANPATH
environment variable is present, the directories are searched in the
order that they appear. /usr/man must appear in the MANPATH list
to be included. If you set this environment variable, it supercedes the
MANPATH entry in the /etc/default/man file. Alternate subdirec-
tories are expected to have the same form as the default directories in
fusr/man.

fetc/default/man
There is a file called man in the /etc/default directory that contains
the default settings for the man utility. The following options are set in
fetc/default/man:

PAGER=pg

MANPATH=/usr/man

TERM=lp

ORDER=C:S:CP:CT:M:F:-HW:DOS:UCB:LOCAL

MODE=FIRST

PROC=nr
You can select a different paging system, search path, terminal type,
search order, mode, and processor for the man system by changing the
information in this file.
To change the search order for manual sections, edit the list following

the ORDER variable. Be certain the section names are separated with
colons (:). Section names not present in ORDER are searched in

28 March 1991 Page 3

MAN (C) MAN (C)

arbitrary order after those specified in /etc/default/man.
Creating New Manual Entries

You can create new manual pages for utilities and scripts that you
have developed. Use an existing manual page as an example of manu-
al page structure. Use the man macros to format your manual page.
For more information, refer to the nroffCT) manual page.

You must be logged in as root (the “Super-User”) to place a new man-
ual page in your /usr/man directory structure. Place your new page in
fusr/man/man.LOCAL while logged in as root and view it using the
man command, since only root has write permission for the catable
directories. Once man has produced the catable output, any user can
view the new page in the same manner as any other on line manual

page.

Additionally, you can create your own custom sections by creating
another manual directory and putting it in the MANPATH. For exam-
ple, if subdirectories man.X and cat.X are present, then man recog-
nizes that X is a valid manual section.

If you wish to use another text processing program (such as trofiCT))
to process your custom manual pages, use the -tproc flag of man. proc
can be any shell script in fusr/man/bin. To place a catable copy of the
manual page in the cat directory, use the tee(C) command to send the
output to a file, as well as to the standard output. Your command
should have the form:

man -tproc filename | tee pathname

In the above example, proc is the text processing script, filename is the
manual page source file, and pathname is the path of the directory for
the catable output.

Custom manual sections can have an index, if the format is the same
as the index in /usr/man. man uses the index to locate multiple com-
mands that are listed on the same page as well as commands that have
pages in several different sections.

28 March 1991 Page 4

MAN (C) MAN (C)

The man Macro Package

The man macro package is located in /usr/lib/macros/an. There are
15 basic macros in the package. Here is a table of the macros and brief
descriptions of their functions:

Macro Description

TH title Title Heading

SH ritle Section Heading
SS title Subsection Heading
SMrext Reduce Point Size

.PP New Paragraph

IP Indented Paragraph

.HP Hanging Paragraph

.TP Tagged Paragraph

.DAdate Date of Document

RS~ Relative Indent

.RE Release Relative Indent
Jtext Italic Font

.B text Bold Font

R text Roman Font

.PM Proprietary Mark (copyright)
.PM Proprietary Mark (copyright)

See Also
eqnchar(CT), nroff(CT), tbl(CT), troff(CT), environ(M), term(CT).

Notes

All entries are supposed to be reproducible either on a typesetter or on
a terminal. However, on a terminal some information, such as
eqn(CT) and tbI(CT) output, is either lost or approximated as it cannot
be exactly reproduced.

The man macros, nrof{CT), troffCT), and other (CT) commands are
components of the Text Processing System.

28 March 1991 Page 5

MESG (C) MESG (C)

Name

mesg - Permits or denies messages sent to a terminal.

Syntax

mesg [n][y]

Description
mesg with argument n forbids messages via write(C) by revoking
nonuser write permission on the user’s terminal. mesg with argument
y reinstates permission. All by itself, mesg reports the current state
without changing it.

Files

/dev/ity*

See Also

write(C)

Diagnostics

Exit status is O if messages are receivable, 1 if not, 2 on error.

28 March 1991 Page 1

MKDIR (C) MKDIR (C)

Name

mkdir - Makes a directory.

Syntax

mkdir dirname ...

Description

mkdir creates directories. The standard entries “dot” (.), for the direc-
tory itself, and “dot dot” (..), for its parent, are made automatically.

mkdir requires write permission in the parent directory. The permis-

sions assigned to the new directory are modified by the current file
creation mask set by umask (C).

See Also
rmdir(C), umask(C)

Diagnostics

mkdir returns exit code O if all directories were successfully made;
otherwise, it prints a diagnostic and returns nonzero.

28 March 1991 Page 1

MKNOD (C) MKNOD (C)

Name

mknod - Builds special files.

Syntax
/etc/mknod name [¢] [b] major minor
/etc/mknod name p
/etc/mknod name s

/etc/mknod name m

Description

mknod makes a directory entry and corresponding inode for a special
file. The first argument is the name of the entry. In the first case, the
second argument is b if the special file is block-type (disks, tape) or ¢
if it is character-type (other devices). The last two arguments are
numbers specifying the major device type and the minor device (e.g.,
unit, drive, or line number), which may be either decimal or octal.

The assignment of major device numbers is specific to each system.
Major device numbers can be found in the system source file c.c.

mknod can also be used to create named pipes with the p option;
semaphores with the s option; and shared data (memory) with the m
option.

Only the super-user can use the first form of the syntax.

System Compatibility
The s and m options can only be used to create XENIX version 3.0

semaphores and shared data, not XENIX System V semaphores and
shared data.

See Also
mknod(S)

28 March 1991 Page 1

MNT (C) MNT (C)

Name

mnt - mount a filesystem

Syntax
letc/mnt [-urat][directory]

fetc/umnt directory

Description
mnt allows users other than the super-user to access the functionality
of the mount(ADM) command to mount selected filesystems. The
super-user can define how and when a filesystem mount is permitted
via special entries in the /etc/default/filesys file.
The filesystem requirements are the same as defined for mount(ADM).

umnt removes the removable filesystem previously mounted at the
mount point directory .

mnt is invoked from /etc/rc with the -r and possibly the -a flag to
mount filesystems when the system comes up multi-user. The -a flag
is used when the system has autobooted. Neither of these flags should
be specified during normal use.

The -t flag displays the contents of /etc/default/filesys.

The -u flag forces mnt to behave like umnt.

Options

The following options can be defined in the /etc/defaultifilesys entry
for a filesystem:

bdev=/dev/device Name of block device associated with the
filesystem.
cdev=/dev/device Name of character (raw) device associated

with the filesystem.

mountdir=/directory = The directory the filesystem is to be mounted
on.

desc=name A string describing the filesystem.

28 March 1991 Page 1

MNT (C)

passwd=string

MNT (C)

An optional password prompted for at mount
request time. Cannot be a simple string; must
be in the format of /etc/passwd. (See Notes.)

fsck=yes, no, dirty, prompt

fsckflags=flags

If “yes” or “no”, tells explicitly whether or
not to run fsck. If “dirty”, fsck is run only if
the filesystem requires cleaning. If “prompt”,
the user is prompted for a choice. If no entry
is given, the default value is “dirty”.

Any flags to be passed to fsck.

rcfsck=yes, no, dirty, prompt

maxcleans=n

mount=yes, no, prompt

Similar to fsck entry, but only applies when
the -r flag is passed.

The number of times to repeat cleaning of a
dirty filesystem before giving up. If
undefined, default is 4.

If “yes” or “no”, users are allowed or disal-
lowed to mount the filesystem, respectively.
If “prompt”, the user is queried to mount the
filesystem.

rcmount=yes, no, prompt

mountflags=flags

prep=yes, no, prompt

prepcmd=command

init=yes, no, prompt

initcmd=command

28 March 1991

If “yes”, the filesystem is mounted by /etc/rc
when the system comes up multiuser. If
“no”, the filesystem is never mounted by
letcirc. With “prompt”, a query is displayed
at boot time to mount the filesystem.

Any flags to be passed to mount.

Indicates whether any prepcmd entry should
always be executed, never executed, or exe-
cuted as specified by the user.

An arbitrary shell command to be invoked
immediately following password check and
prior to running fsck.

Indicates whether an initcmd entry should
always be executed, never be executed, or
executed as specified by user.

An optional, arbitrary shell command to be

invoked immediately following a successful
mount.

Page 2

MNT (C) MNT (C)

Any entries containing spaces, tabs, or newlines must be contained in
double quotes ().

The only mandatory entries in /etc/default/filesys are bdev and
mountdir. The prepcmd and initemd options can be used to execute
another command before or after mounting the filesystem. For exam-
ple, initemd could be defined to send mail to root whenever a given
filesystem is mounted.
When invoked without arguments, mnt attempts to mount all filesys-
tems that have the entries mount=yes or mount=prompt.

Examples
The following is a sample /etc/default/ filesys file:

bdev=/dev/root cdev=/dev/iroot mountdir=/ \
desc="The Root Filesystem" rcmount=no mount=no

bdev=/dev/u cdev=/dev/ru mountdir=/u rcmount=yes \
fsckflags=-y desc="The User Filesystem"

bdev=/dev/x cdev=/dev/rx mountdir=/u rcmount=no \
mount=yes fsckflags=-y desc="The Exira Filesystem"

Of the examples above, only /x is mountable by the user.

Files

fetc/default/filesys Filesystem data

See Also
mount(ADM), default(M)
Diagnostics

mnt will fail if the filesystem to be mounted is currently mounted
under another name.

Busy filesystems cannot be dismounted with umnt. A filesystem is
busy if it contains an open file or if a user’s present working directory
resides within the filesystem.

Notes

Some degree of validation is done on the filesystem, however it is gen-
erally unwise to mount corrupt filesystems.

28 March 1991 Page 3

MNT (C) MNT (C)

In order to create a password for a filesystem, you must create a
dummy account in /etc/passwd and define a password for it. You can
then edit the /etc/passwd file and transfer the encrypted password into
the password entry for the filesystem in /etc/default/ filesys.

28 March 1991 Page 4

MORE (C) MORE (C)

Name

more - Views a file one screen full at a time.

Syntax

more [-cdfirsuvw] [-n } [+linenumber] [+/pattern] [name ...]

Description

This filter allows examination of a continuous text one screen full at a
time. It normally pauses after each full screen, displaying:

--More--

at the bottom of the screen. If the user then presses a carriage return,
one more line is displayed. If the user presses the SPACE bar, another
full screen is displayed. Other possibilities are described below.

The command line options are:

-n

An integer which is the size (in lines) of the window which more
will use instead of the default.

more draws each page by beginning at the top of the screen and
erasing each line just before it draws on it. This avoids scrolling
the screen, making it easier to read while more is writing. This
option is ignored if the terminal does not have the ability to clear
to the end of a line.

more prompts with the message “Hit space to continue, Rubout to
abort" at the end of each full screen. This is useful if more is being
used as a filter in some setting, such as a class, where many users
may be inexperienced.

This option causes more to count logical, rather than screen lines.
That is, long lines are not folded. This option is recommended if
nroff output is being piped through ul, since the latter may generate
escape sequences. These escape sequences contain characters that
would ordinarily occupy screen positions, but do not print when
they are sent to the terminal as part of an escape sequence. Thus
more may think that lines are longer than they actually are and fold
lines erroneously.

Does not treat Curl-L (form feed) specially. If this option is not
given, more pauses after any line that contains a Cul-L, as if the
end of a full screen has been reached. Also, if a file begins with a
form feed, the screen is cleared before the file is printed.

28 March 1991 Page 1

MORE (C) MORE (C)

-r Causes carriage returns to be printed as “"M”.

-s Squeezes multiple blank lines from the output, producing only one
blank line. Especially helpful when viewing nroff output, this
option maximizes the useful information present on the screen.

-u Normally, more handles underlining, such as that produced by nroff
in a manner appropriate to the particular terminal: if the terminal
can perform underlining or has a stand-out mode, more outputs
appropriate escape sequences to enable underlining or stand-out
mode for underlined information in the source file. The -u option
suppresses this processing.

-v Normally, more ignores control characters that it does not interpret
in some way. The -v option causes these to be displayed as "C
where C is the corresponding printable ASCII character. Non-
printing non-ASCII characters (with the high bit set) are displayed
in the format M-C, where C is the corresponding character without
the high bit set. If output is not going to a terminal, more does not
interpret control characters.

-w Normally, more exits when it comes to the end of its input. With -
w however, more prompts and waits for any key to be struck before
exiting.

+linenumber
Starts up at linenumber.

+/pattern
Starts up two lines before the line containing the regular expres-
sion pattern.

more looks in the file /etc/termcap to determine terminal characteris-
tics, and to determine the default window size. On a terminal capable
of displaying 24 lines, the default window size is 22 lines.

more looks in the environment variable MORE to preset any flags
desired. For example, if you prefer to view files using the -¢c mode of
operation, the shell command “MORE=-c” in the .profile file causes
all invocations of more to use this mode.

If more is reading from a file, rather than a pipe, a percentage is dis-
played along with the “--More--" prompt. This gives the fraction of
the file (in characters, not lines) that has been read so far.

Other sequences which may be entered when more pauses, and their
effects, are as follows (i is an optional integer argument, defaulting to
1 where not specified otherwise):

i <space>

Displays i more lines, (or another full screen if no argument is
given).

28 March 1991 Page 2

MORE (C) MORE (C)

i Cul-D

id

iz

is

if

Displays 11 more lines (a “scroll”). If i is given, then the scroll
size issetto .

Same as Cirl-D.

Same as entering a space except that i, if present, becomes the
new window size.

Skips i lines and displays a full screen of lines.

Skips i full screens and displays a full screen of lines.

qorQ

Exits from more.
Displays the current line number.
Starts up the screen editor vi at the current line. Note that vi may

not be available with your system. Also, this sequence does not
work if the input is piped through more.

hor?

Help command; Gives a description of all the more commands.

i fexpr

in

Searches for the i th occurrence of the regular expression expr. If
there are less than i occurrences of expr, and the input is a file
(rather than a pipe), then the position in the file remains
unchanged. Otherwise, a full screen is displayed, starting two
lines before the place where the expression was found. The user’s
erase and kill characters may be used to edit the regular expres-
sion. Erasing back past the first column cancels the search com-
mand.

Searches for the ith occurrence of the last regular expression
entered.

(Single quotation mark) Goes to the point from which the last
search started. If no search has been performed in the current file,
this command goes back to the beginning of the file.

\command

imn

Invokes a shell with command . The characters % and ! in “com-
mand" are replaced with the current filename and the previous
shell command respectively. If there is no current filename, % is
not expanded. The sequences “\%” and “\!” are replaced by “%”
and “!” respectively.

Skips to the i th next file given in the command line (skips to last
file if i doesn’t make sense).

28 March 1991 Page 3

MORE (C) MORE (C)

ip
Skips to the ith previous file given in the command line. If this
command is given in the middle of printing out a file, more goes
back to the beginning of the file. If i doesn’t make sense, more
skips back to the first file. If more is not reading from a file, the
bell rings and nothing else happens.

:f Displays the current filename and line number.

:qor:Q
Exits from more (same as q or Q).

Repeats the previous command.

The commands take effect immediately. It is not necessary to enter a
carriage return. Up to the time when the command character itself is
given, the user may enter the line kill character to cancel the numeri-
cal argument being formed. In addition, the user may enter the erase
character to redisplay the “--More--(xx%)’’ message.

The terminal is set to noecho mode by this program so that the output
can be continuous. What you enter will not show on your terminal,
except for the slash (/) and exclamation (!) commands.

If the standard output is not a teletype, more acts just like cat, except
that a header is printed before each file (if there is more than one).

A sample usage of more in previewing nroff output would be

nroff -ms +2 doc.n | more -s

Files
Jetcftermcap Terminal data base
fusr/lib/more.help Help file

See Also

csh(C), sh(C), environ(M)
Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

28 March 1991 Page 4

MORE (C) MORE (C)

Notes
The vi and help options may not be available.
Before displaying a file, more attempts to detect whether it is a non-
printable binary file such as a directory or executable binary image. If

more concludes that a file is unprintable, it refuses to print it. How-
ever, more cannot detect all possible kinds of non-printable files.

28 March 1991 Page 5

MV (C) MV (C)

Name

mv - Moves or renames files and directories.

Syntax
mv [-f] filel file2

mv [-f] file ... directory

Description
mv moves (changes the name of) filel to file2 .
If file2 already exists, it is removed before filel is moved. If file2 has
a mode which forbids writing, mv prints the mode (see chmod(S)) and
reads the standard input to obtain a line. If the line begins with y, the
move takes place; if not, mv exits.

In the second form, one or more files are moved to the directory with
their original filenames.

No questions are asked when the -f option is given (y is assumed).

mv refuses to move a file onto itself.

mv can only rename directories, not physically move them.

mvdir(ADM) should be used to move directories within a filesystem.
See Also

cp(C), chmod(S), copy(C)

Notes
If filel and file2 lie on different filesystems, mv must copy the file and

delete the original. In this case the owner name becomes that of the
copying process and any linking relationship with other files is lost.

28 March 1991 Page 1

NEWFORM (C) NEWFORM (C)

Name

newform - Changes the format of a text file.

Syntax

newform [-itabspec] [-otabspec] [-In] [-bn] [-en] (-cchar] [-pn] [-an]
[-f] [-s] [file ...]

Description

newform reads lines from the named files, or the standard input if no
input file is named, and reproduces the lines on the standard output.
Lines are reformatted in accordance with command line options in

effect.

Except for -s, command line options may appear in any order, may be
repeated, and may be intermingled with files. Command line options
are processed in the order typed. This means that option sequences
like “-el5 -160” will yield results different from “-160 -e15”. Options
are applied to all files on the command line.

-itabspec

-otabspec

28 March 1991

Input tab specification: expands tabs to spaces, according
to the tab specifications given. Tabspec recognizes all tab
specification forms described below. In addition, tabspec
may be --, in which newform assumes that the tab specifi-
cation is to be found in the first line read from the stan-
dard input. If no tabspec is given, tabspec defaults to -8.
A tabspec of -0 expects no tabs; if any are found, they are
treated as -1.

Output tab specification: replaces spaces by tabs, accord-
ing to the tab specifications given. The tab specifications
are the same as for -itabspec. If no tabspec is given,
tabspec defaults to -8. A tabspec of -0 means that no
spaces will be converted to tabs on output.

Sets the effective line length to n characters. If » is not
typed, -1 defaults to 72. The default line length without
the -1 option is 80 characters. Note that tabs and back-
spaces are considered to be one character (use -i to
expand tabs to spaces).

Page 1

NEWFORM (C) NEWFORM (C)

-bn

-f

Tabs

Truncates n characters from the beginning of the line
when the line length is greater than the effective line
length (see -In). The default is to truncate the number of
characters necessary to obtain the effective line length.
The default value is used when -b with no 7 is used. This
option can be used to delete the sequence numbers from a
COBOL program as follows:
newform -11 -b7 file-name

The option -11 must be used to set the effective line length
shorter than any existing line in the file so that the -b
option is activated.

Truncates »n characters from the end of the line.

Changes the prefix/append character to k. Default charac-
ter for k is a space (see options -p and -a).

Prefixes n characters (see -ck) to the beginning of a line
when the line length is less than the effective line length.
The default is to prefix the number of characters neces-
sary to obtain the effective line length.

Appends n characters to the end of a line. The default is
to append the number of characters necessary to get the
effective line length.

Writes the tab specification format line on the standard
output before any other lines are output. The tab specifi-
cation format line which is printed will correspond to the
format specified in the last -0 option. If no -o option is
specified, the line which is printed will contain the default
specification of -8.

Shears off leading characters on each line up to the first
tab and places up to 8 of the sheared characters at the end
of the line. If more than 8 characters (not counting the
first tab) are sheared, the eighth character is replaced by a
* and any characters to the right of it are discarded. The
first tab is always discarded.

An error message and program exit will occur if this
option is used on a file without a tab on each line. The
characters sheared off are saved internally until all other
options specified are applied to that line. The characters
are then added at the end of the processed line.

Four types of tab specification are accepted for tabspec: “canned,”
repetitive, arbitrary, and file. The lowest column number is 1. For

28 March 1991

Page 2

NEWFORM (C) NEWFORM (C)

tabs, column 1 always refers to the leftmost column on a terminal,
even one whose column markers begin at 0, e.g. the DASI 300, DASI
3008, and DASI 450.

The “canned” tabs are given as -code where code (and its meaning) is
from the following list:

-a

-3

P

-S

1,10,16,36,72
Assembler, IBM S/370, first format

1,10,16,40,72
Assembler, IBM S/370, second format

1,8,12,16,20,55
COBOL, normal format

1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using
this code, the first typed character corresponds to card
column 7, one space gets you to column 8, and a tab
reaches column 12. Files using this tab setup should
include a format specification as follows:

<:t-c2 mé s66 d:>

1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with
more tabs than COBOL -c2. This is the recommended
format for COBOL. The appropriate format specification
is:

<:t-c3 m6 s66 d:>

1,7,11,15,19,23
FORTRAN

1,5,9,13,17,21,25,29,33,37,41,45,53,57,61
PL/

1,10,55
SNOBOL

1,12,20,44
UNIVAC 1100 Assembler

In addition to these “canned” formats, three other types exist:

-n

28 March 1991

A repetitive specification requests tabs at columns 1+n,
142*n, etc. Note that such a setting leaves a left margin of
n columns on TermiNet terminals only. Of particular
importance is the value -8: this represents the XENIX sys-
tem “standard” tab setting, and is the most likely tab set-
ting to found at a terminal. It is required for use with
nroff(CT) -h option for high-speed output. Another

Page 3

NEWFORM (C) NEWFORM (C)

special case is the value -0, implying no tabs at all.

nl,n2,.. The arbitrary format permits the user to type any chosen
set of number, separated by commas, in ascending order.
Up to 40 numbers are allowed. If any number (except the
first one) is preceded by a plus sign, it is taken as an incre-
ment to be added to the previous value. Thus, the tab lists
1,10,20,30 and 1,10,+10,+10 are considered identical.

- file

If the name of a file is given, newform reads the first line
of the file, searching for a format specification. If it finds
one there, it sets the tab stops according to it, otherwise it
sets them as -8. This type of specification may be used to
make sure that a tabbed file is printed with correct tab set-
tings.

Any of the following may be used also; if a given flag occurs more
than once, the last value given takes effect:

-Teype

newform usually needs to know the type of terminal in
order to set tabs and always needs to know the type to set
margins. #ype is a name listed in term(CT). If no -T flag
is supplied, newform searches for the $TERM value in
the environment (see environ(M)). If no type can be
found, newform tries a sequence that will work for many
terminals.

+mn The margin argument may be used for some terminals. It
causes all tabs to be moved over n columns by making
column n+1 the left margin. If +m is given without a
value of n, the value assumed is 10. For a TermiNet, the
first value in the tab list should be 1, or the margin will
move even further to the right. The normal (leftmost)
margin on most terminals is obtained by +m@. The mar-
gin for most terminals is reset only when the +m flag is
given explicitly.

Example

In the following example, newform converts a file named text with
leading digits, one or more tabs, and text on each line to a file begin-
ning with the text and the leading digits placed at the end of each line
in column 73 (-s option). All tabs after the first one are expanded to
spaces (-i option). To reach the line length of 72 characters (-1 option),
spaces are appended to each line up to column 72 (-a option) or lines
are truncated at column 72 (-e option). To reformat the sample file
text in this manner, enter:
newform -s -i -l -a -e text

28 March 1991 Page 4

NEWFORM (C) NEWFORM (C)

Exit Codes

0 - normal execution
1 - for any error

See Also
csplit(C)
Diagnostics
All diagnostics are fatal.
usage: ... newform was called with a bad option.
not -s format There was no tab on one line.
can’t open file Self-explanatory.
internal line too long A line exceeds 512 characters after being
expanded in the internal work buffer.
tabspec in error A tab specification is incorrectly format-
ted, or specified tab stops are not ascend-

ing.

tabspec indirection illegal A tabspec read from a file (or standard
input) may not contain a tabspec referenc-
ing another file (or standard input).

Notes
newform normally only keeps track of physical characters; however,
for the -i and -0 options, newform will keep track of backspaces in

order to line up tabs in the appropriate logical columns.

newform will not prompt the user if a tabspec is to be read from the
standard input (by use of -i,-- or -0--).

If the -f option is used, and the last -0 option specified was “-0--" , and

was preceded by either “-0--” or a “-i--" , the tab specification format
line will be incorrect.

28 March 1991 Page 5

NEWGRP (C) NEWGRP (C)

Name

newgrp - Logs user into a new group.

Syntax

newgrp [group]

Description

newgrp changes the group identification of its caller. The same per-
son remains logged in, and the current directory is unchanged, but cal-
culations of access permissions to files are performed with respect to
the new group ID.

newgrp without an argument changes the group identification to the
group in the password file. This changes the caller’s group identifica-
tion back to the original group. When most users log in, they are
members of the group named group.

If a group has a password, any user can become a member of that
group by entering the password when prompted by newgrp. If a group
does not have a password, a user can become a member of it only if
the user is listed in /etc/group as a member of the group. Therefore,
group security is stronger if group passwords are not used.

Files

fetc/group
Jetc/passwd

See Also
login(M), group(F), passwd(F)

Notes

A password must be added to the /etc/group file manually; see
group(F) for details. The newgrp command executes, but does not
fork, a new shell. If your login shell is a C shell and you invoke
newgrp , you will have to press CTRL-D when you wish to log out.
Typing the csh (C) logout command will result in an error message.
Note also that the newgrp command causes the csh history list to start
again at 1.

28 March 1991 Page 1

NEWS (C) NEWS (C)

Name

news - Print news items.

Syntax

news[-al[-n][-s][items]

Description

news is used to keep the user informed of current events. By conven-
tion, these events are described by files in the directory /usr/news.

When invoked without arguments, news prints the contents of all
current files in /usr/news, most recent first, with each preceded by an
appropriate header. news stores the “currency” time as the modifica-
tion date of a file named .news_time in the user’s home directory (the
identity of this directory is determined by the environment variable
$HOME); only files more recent than this currency time are con-
sidered “current.”

The -a option causes news to print all items, regardless of currency.
In this case, the stored time is not changed.

The -n option causes news to report the names of the current items
without printing their contents, and without changing the stored time.

The -s option causes news to report how many current items exist,
without printing their names or contents, and without changing the
stored time.

All other arguments are assumed to be specific news items that are to
be printed.

If the INTERRUPT key is struck during the printing of a news item,
printing stops and the next item is started. Another INTERRUPT
within one second of the first causes the program to terminate.

Files

Jusr/news/*
$HOME/.news_time

28 March 1991 Page 1

NEWS (C)

See Also
profile(M), environ(M).

Notes

This is not an interface for USENET news.

28 March 1991

NEWS (C)

Page 2

NICE (C) NICE (C)

Name

nice - Runs a command at a different priority.

Syntax

nice [-increment] command [arguments]

Description

nice executes command with a lower CPU scheduling priority. Priori-
ties range from O to 39, where 0 is the highest priority and 39 is the
lowest. By default, commands have a "nice value” of 20. If an -incre-
ment argument is given where increment is in the range 1-19, incre-
ment is added to the default priority of 20 to produce a numerically
higher priority, meaning a lower scheduling priority. If no increment

is given, an increment of 10 to produce a priority of 30 is assumed. '

The super-user may run commands with priority kigher than normal
by using a double negative increment. For example, an argument of
--10 would decrement the default to produce a nice value of 10, which
is a higher scheduling priority than the default of 20.

See Also

nohup(C), csh(C), nice(S)

Diagnostics

nice returns the exit status of the subject command.

Notes
An increment larger than 19 is equivalent to 19.
Note also that this description of nice applies only to programs run

under the Bourne Shell. The C-Shell has its own rice command,
which is documented in csh(C).

28 March 1991 Page 1

NL (C) NL (C)

Name

nl - Adds line numbers to a file.

Syntax

nl [-htype] [-btype] [-fiype] [-vstart#] [-iincr] [-p] [-lnum] [-ssep]
[-wwidth] [-nformat] file

Description

nl reads lines from the named file, or the standard input if no file is
named, and reproduces the lines on the standard output. Lines are
numbered on the left in accordance with the command options in
effect.

nl views the text it reads in terms of logical pages. Line numbering is
reset at the start of each logical page. A logical page consists of a
header, a body, and a footer section. Empty sections are valid. Dif-
ferent line numbering options are independently available for header,
body, and footer (e.g. no numbering of header and footer lines while
numbering blank lines only in the body).

The start of logical page sections is signaled by input lines containing
nothing but the following combinations of backslashes (\) and colons

¢

Page Section Line Contents
Header N\

Body \o\:

Footer \:

Unless signaled otherwise, n/ assumes the text being read is in a sin-
gle logical page body.

Command options may appear in any order and may be intermingled
with an optional filename. Only one file may be named. The options
are:

-btype Specifies which logical page body lines are to be num-
bered. Recognized fypes and their meaning are: a, num-
ber all lines; t, number lines with printable text only; n,
no line numbering; pstring, number only lines that con-
tain the regular expression specified in string. Default
type for logical page body is t (text lines numbered).

28 March 1991 Page 1

NL (C)
-htype
-ftype

P

-vstart#

-iincr

-ssep

-wwidth

-nformat

-lnum

See Also
pr(C)

28 March 1991

NL (C)

Same as -btype except for header. Default sype for logi-
cal page header is n (no lines numbered).

Same as -brype except for footer. Default for logical page
footer is n (no lines numbered).

Does not restart numbering at logical page delimiters.

Start# is the initial value used to number logical page
lines. Default is 1.

Incr is the increment value used to number logical page
lines. Default is 1.

Sep is the character(s) used in separating the line number
and the corresponding text line. Default sep is a tab.

Width is the number of characters to be used for the line
number. Default width is 6.

Format is the line numbering format. Recognized values
are: Inm, left justified, leading zeroes suppressed; rn, right
justified, leading zeroes suppressed; rz, right justified,
leading zeroes kept. Default format is rn (right justified).

Num is the number of blank lines to be considered as one.
For example, -12 results in only the second adjacent blank
being numbered (if the appropriate -ha, -ba, and/or -fa
option is set). Default is 1.

Page 2

NM (C) NM (C)

Name

nm - Prints name list.

Syntax

nm [-acgnoOprsSuv] [+offset] [file ...]

Description

nm prints the name list (symbol table) of each object file in the argu-
ment list. If an argument is an archive, a listing for each object file in
the archive will be produced. nm works transparently on COFF files
and XENIX generated object files. nm translates all possible COFF
symbols into standard XENIX object symbols.

If no file is given, the symbols in a.out are listed.

Each symbol name is preceded by its value in hexadecimal (blanks if
undefined) and one of the letters U (undefined), A (absolute), T (text
segment symbol), D (data segment symbol), B (bss segment symbol), S
(segment name), C (common symbol), K (8086 common segment), or
S (segment name). If the symbol table is in segmented format, symbol
values are displayed as segment:offset. If the symbol is local (non-
external), the type letter is in lowercase. The output is sorted alpha-
betically.

Options are:

-a Attempt to print the namelist of all modules in an archive
library. Normally, nm silently ignores any library members
which are not valid object modules. Using this option causes
nm to report an error for all such modules. Note that the first
member in any library which has been processed by ranlib(C) is
called __ __.SYMDEF and is not a valid object module, thus
the -a option will always produce at least one error message
when used on such a library.

-c Print only C program symbols (symbols which begin with ‘_’) as
they appeared in the C program.

-g Print only global (external) symbols.
-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output line rather
than only once.

28 March 1991 Page 1

NM (C) NM (C)

-O Print symbol values in octal.

-p Don’t sort; print in symbol-table order.

-r Sort in reverse order.

-s Sort by size of symbol and display each symbol’s size instead of
value. The last symbol in each text or data segment may be
assigned a size of 0. This implies the -n option.

-S Switch the display format. If the symbol table is in segmented
format, print values in non-segmented format. If not segmented,
print values in segmented format. Segment offsets in 386 object
modules and executable files are 32 bits rather than 16 bits.

- Print only undefined symbols.

-v Also describe the object file and symbol table format.

Files

a.out

See Also
ar(C), ar(F), a.out(F)

28 March 1991 Page 2

NOHUP (C) NOHUP (C)

Name

nohup - Runs a command immune to hangups and quits.

Syntax

nohup command [arguments]

Description
nohup executes command with hangups and quits ignored. If output is
not redirected by the user, it will be sent to nohup.out. If nohup.out
does not have write permission in the current directory, output is
redirected to $SHOME/nohup.out.

See Also

nice(C), signal(S)

28 March 1991 Page 1

0D (C) oD (C)

Name

od - Displays files in octal format.

Syntax
od [-bedox] [file] [[+ Joffset[.)[b]]

Description

od displays file in one or more formats as selected by the first argu-

ment. If the first argument is missing, -0 is the default. The meanings

of the format options are:

-b Interprets bytes in octal.

- Interprets bytes in ASCII. Certain nongraphic characters
appear as C escapes: null=\0, backspace=\b, form feed=\f,
newline=\n, return=\r, tab=\t; others appear as 3-digit octal
numbers.

-d Interprets words in decimal.

-0 Interprets words in octal.

-X Interprets words in hex.

The file argument specifies which file is to be displayed. If no file
argument is specified, the standard input is used.

The offset argument specifies the offset in the file where displaying is
to start. This argument is normally interpreted as octal bytes. If . is
appended, the offset is interpreted in decimal. If b is appended, the
offset is interpreted in blocks. If the file argument is omitted, the
offset argument must be preceded by +.

The display continues until end-of-file.

See Also
hd(C), adb(CP)

28 March 1991 Page 1

PACK (C) PACK (C)

Name

pack, pcat, unpack - Compresses and expands files.

Syntax
pack [-] name ...
pcat name . ..

unpack name ...

Description

pack attempts to store the specified files in a compressed form. Wher-
ever possible, each input file name is replaced by a packed file
name.z with the same access modes, access and modified dates, and
the owner of name. If pack is successful, name will be removed.
Packed files can be restored to their original form using unpack or
pcat.

pack uses Huffman (minimum redundancy) codes on a byte-by-byte
basis. If the - argument is used, an internal flag is set that causes pack
to display information about the file compression. Additional occur-
rences of - in place of name will cause the internal flag to be set and
reset.

The amount of compression obtained depends on the size of the input
file and the character frequency distribution. Because a decoding tree
forms the first part of each .z file, it is usually not worthwhile to pack
files smaller than three blocks, unless the character frequency distri-
bution is very scattered, which may occur with printer plots or pic-
tures.

Typically, text files are reduced to 60-75% of their original size. Load
modules, which use a larger character set and have a more uniform
distribution of characters, show little compression, the packed ver-
sions being about 90% of the original size.

pack returns a value that is the number of files that it failed to
compress.

No packing will occur if:
- The file appears to be already packed

- The filename has more than 12 characters

28 March 1991 Page 1

PACK (C) PACK (C)

- The file has links
- The file is a directory
- The file cannot be opened
- No disk storage blocks will be saved by packing
- A file called name .z already exists
- The .z file cannot be created
- An /O error occurred during processing
The last segment of the filename must contain no more than 12 char-
acters to allow space for the appended .z extension. Directories can-
not be compressed.
Pcat does for packed files what cat(C) does for ordinary files. The
specified files are unpacked and written to the standard output. Thus
to view a packed file named name .z use:
pcat name.z
or just:

pcat name

To make an unpacked copy, say nnn, of a packed file named name.z
without destroying name.z, enter the command:

pcat name >nnn

Pcat returns the number of files it was unable to unpack. Failure may
occur if:

- The filename (exclusive of the .z) has more than 12 characters

- The file cannot be opened

- The file does not appear to be the output of pack

unpack expands files created by pack. For each file name specified in
the command, a search is made for a file called name.z (or just name,
if name ends in .z). If this file appears to be a packed file, it is
replaced by its expanded version. The new file has the .z suffix

stripped from its name, and has the same access modes, access and
modification dates, and owner as those of the packed file.

28 March 1991 Page 2

PACK (C) PACK (C)

unpack retumms a value that is the number of files it was unable to
unpack. Failure may occur for the same reasons that it may in pcat, as
well as in a file where the “unpacked” name already exists, or if the
unpacked file cannot be created.

28 March 1991 Page 3

PASSWD (C) PASSWD (C)

Name

passwd - Changes login password.

Syntax

passwd name

Description

This command changes (or installs) a password associated with the
login name.

The program prompts for the old password (if any) and then for the
new one (twice). The user must supply these. Passwords can be of
any reasonable length, but only the first eight characters of the pass-
word are significant. The minimum number of characters allowed in a
new password is determined by the PASSLENGTH variable. Although
the minimum can be 3, a minimum of 5 characters is strongly recom-
mended since passwords shorter than this are much easier to guess or
discover by trial and error.

Only the owner of the name or the super-user may change a password,
the owner must prove he knows the old password. Only the super-user
can create a null password.

The password file is not changed if the new password is the same as
the old password, or if the password has not “aged” sufficiently. See
passwd(F).

The minimum length of a legal password, and the minimum and max-
imum number of weeks used in password aging are specified in
letc/default/passwd by the variables PASSLENGTH, MINWEEKS and
MAXWEEKS. If not explicitly set, the default values for these vari-
ables are:

PASSLENGTH=5
MINWEEKS=2
MAXWEEKS=4

MINWEEKS and MAXWEEKS values must be in the range O to 63. If
PASSLENGTH is not in the range 3 to 8, it is set to 5.

Notes
When a user changes his or her password, that user’s group becomes
the group assigned to /etc/passwd. This can be verified by entering the
following command after successfully using passwd:

1 /etc/passwd

28 March 1991 Page 1

PASSWD (C) PASSWD (C)

Files

fetc/default/passwd
fetc/passwd

See Also
default(F), login(M), passwd(F), pwadmin(ADM)

28 March 1991 Page 2

PAX (C) PAX (C)

NAME

pax - Portable archive exchange.

Syntax
pax [-cimopuvy] [-f archive] [-s replstr] [-t device] [pattern...]
pax -r [-cimnopuvy] [-f archive] [-s replstr] [-t device] [pattern...]

pax -w [-adimuvy] [-b blocking] [-f archive] [-s replstr] [-t device]
[-x format] [pathname...}

pax -rw [-ilmopuvy] [-s replstr] [pathname...] directory

Description

pax reads and writes archive files which conform to the
Archive/Interchange File Format specified in /EEE Std. 1003.1-
1988. pax can also read, but not write, a number of other file formats
in addition to those specified in the Archive/Interchange File For-
mat description. Support for these traditional file formats, such as V7
tar and System V binary cpio format archives, is provided for back-
ward compatibility and to maximize portability.

pax will also support traditional cpio and System V rar interfaces if
invoked with the name “cpio” or “tar” respectively. See the cpio(C)
or tar(C) manual pages for more details.

Combinations of the -r and -w command line arguments specify
whether pax will read, write or list the contents of the specified
archive, or move the specified files to another directory.

The command line arguments are:

-w writes the files and directories specified by pathname operands
to the standard output together with the pathname and status in-
formation prescribed by the archive format used. A directory
pathname operand refers to the files and (recursively) subdirec-
tories of that directory. If no pathname operands are given,
then the standard input is read to get a list of pathnames to
copy, one pathname per line. In this case, only those path-
names appearing on the standard input are copied.

-r pax reads an archive file from the standard input. Only files
with names that match any of the pattern operands are selected
for extraction. The selected files are conditionally created and
copied relative to the current directory tree, subject to the
options described below. By default, the owner and group of
selected files will be that of the invoking process, and the

28 March 1991 Page 1

PAX (C) PAX (C)

permissions and modification times will be the sames as those
in the archive.

The supported archive formats are automatically detected on
input. The default output format is uszar, but may be overrid-
den by the -x format option described below.

-rw pax reads the files and directories named in the pathname
operands and copies them to the destination directory. A direc-
tory pathname operand refers to the files and (recursively) sub-
directories of that directory. If no pathname operands are
given, the standard input is read to get a list of pathnames to
copy, one pathname per line. In this case, only those path-
names appearing on the standard input are copied. The direc-
tory named by the directory operand must exist and have the
proper permnissions before the copy can occur.

If neither the -r or -w options are given, then pax will list the contents
of the specified archive. In this mode, pax lists normal files one per
line, hard link pathnames as

pathname == linkname
and symbolic link pathnames (if supported by the implementation) as

pathname -> linkname

where pathname is the name of the file being extracted, and linkname
is the name of a file which appeared earlier in the archive.

If the -v option is specified, then pax list normal pathnames in the
same format used by the Is utility with the -1 option. Hard links are
shown as

<ls -1 listing> == linkname
and symbolic links (if supported) are shown as

<lIs -l listing> -> linkname
pax is capable of reading and writing archives which span multiple
physical volumes. Upon detecting an end of medium on an archive
which is not yet completed, pax will prompt the user for the next vol-
ume of the archive and will allow the user to specify the location of
the next volume.

Options

The following options are available:

28 March 1991 Page 2

PAX (C)

-a

-b blocking

-C

-d

-f archive

-0

-p

-8 replstr

28 March 1991

PAX (C)

The files specified by pathname are appended to the
specified archive.

Block the output at blocking bytes per write to the
archive file. A k suffix multiplies blocking by 1024, a b
suffix multiplies blocking by 512 and a m suffix multi-
plies blocking by 1048576 (1 megabyte). If not
specified, blocking is automatically determined on input
and is ignored for -rw.

Complement the match sense of the the pattern
operands.

Intermediate directories not explicitly listed in the
archive are not created. This option is ignored unless
the -r option is specified.

The archive option specifies the pathname of the input
or output archive, overriding the default of standard
input for -r or standard output for -w.

Interactively rename files. Substitutions specified by -s
options (described below) are performed before request-
ing the new file name from the user. A file is skipped if
an empty line is entered and pax exits with an exit status
of 0 if EOF is encountered.

Files are linked rather than copied when possible.
File modification times are not retained.

When -r is specified, but -w is not, the pattern argu-
ments are treated as ordinary file names. Only the first
occurrence of each of these files in the input archive is
read. The pax utility exits with a zero exit status after
all files in the list have been read. If one or more files in
the list is not found, pax writes a diagnostic to standard
error for each of the files and exits with a non-zero exit
status. the file names are compared before any of the -i,
-s, or -y options are applied.

Restore file ownership as specified in the archive. The
invoking process must have appropriate privileges to
accomplish this.

Preserve the access time of the input files after they have
been copied.

File names are modified according to the substitution
expression using the syntax of ed(C) as shown:

-s fold/new/[gp]

Page 3

PAX (C) PAX (C)

Any non null character may be used as a delimiter (a / is
used here as an example). Multiple -s expressions may
be specified; the expressions are applied in the order
specified terminating with the first successful substitu-
tion. The optional trailing p causes successful mappings
to be listed on standard error. The optional trailing g
causes the old expression to be replaced each time it
occurs in the source string. Files that substitute to an
empty string are ignored both on input and output.

-t device The device option argument is an implementation-
defined identifier that names the input or output archive
device, overriding the default of standard input for -r
and standard output for -w.

-u Copy each file only if it is newer than a pre-existing file
with the same name. This implies -a.

-V List file names as they are encountered. Produces a ver-
bose table of contents listing on the standard output
when both -r and -w are omitted, otherwise the file
names are printed to standard error as they are encoun-
tered in the archive.

=X format Specifies the output archive format. The input format,
which must be one of the following, is automatically
determined when the -r option is used. The supported
formats are:

cpio The extended CPIO interchange format specified in
Extended CPIO Format in IEEE Std. 1003.1-1988.

ustar The extended TAR interchange format specified in
Extended TAR Format in /EEE Std. 1003.1-1988. This
is the default archive format.

-y Interactively prompt for the disposition of each file.
Substitutions specified by -s options (described above)
are performed before prompting the user for disposition.
EOF or an input line starting with the character q
caused pax to exit. Otherwise, an input line starting
with anything other than y causes the file to be ignored.
This option cannot be used in conjunction with the -i
option.

Only the last of multiple -f or -t options take effect.

When writing to an archive, the standard input is used as a list of path-
names if no pathname operands are specified. The format is one path-
name per line. Otherwise, the standard input is the archive file, which
is formatted according to one of the specifications in
Archive/Interchange File format in /EEE Std. 1003.1-1988, or some

28 March 1991 Page 4

PAX (C) PAX (C)

other implementation-de fined format.

The user ID and group ID of the process, together with the appropriate
privileges, affect the ability of pax to restore ownership and permis-
sions attributes of the archived files. (See format-reading utility in
Archive/Interchange File Format in [EEE Std. 1003.1-1988.)

The options -a, -¢, -d, -i, -1, -p, -t, -u, and -y are provided for func-
tional compatibility with the historical cpio and tar utilities. The
option defaults were chosen based on the most common usage of these

options, therefore, some of the options have meanings different than
those of the historical commands.

Operands

The following operands are available:

directory The destination directory pathname for copies when
both the -r and -w options are specified. The directory
must exist and be writable before the copy or and error
results.

pathname A file whose contents are used instead of the files named
on the standard input. When a directory is named, all of
its files and (recursively) subdirectories are copied as
well.

pattern A pattern is given in the standard shell pattern matching
notation. The default if no pattern is specified is *,
which selects all files.

Examples

The following command
pax -w -f /dev/rmt0 .

copies the contents of the current directory to tape drive 0.

The commands
mkdir newdir
cd olddir
pax -rw . newdir

copies the contents of olddir to newdir .

The command

pax -r -s *ff*ust//*,,’ -f pax.out

28 March 1991 Page 5

PAX (C) PAX (C)

reads the archive pax.out with all files rooted in "/usr” in the archive
extracted relative to the current directory.

Files
[dev/tty used to prompt the user for information when the -i or -y
options are specified.
See Also

cpio(C), find(C), pcpio(C), tar(C), tar(F)

Diagnostics

pax will terminate immediately, without processing any additional
files on the command line or in the archive.

pax will exit with one of the following values:
0 All files in the archive were processed successfully.

>0 pax aborted due to errors encountered during operation.

Notes
Special permissions may be required to copy or extract special files.

Device, user ID, and group ID numbers larger than 65535 cause addi-
tional header records to be output. These records are ignored by some
historical version of cpio(C) and tar(C).

The archive formats described in Archive/Interchange File Format
have certain restrictions that have been carried over from historical
usage. For example, there are restrictions on the length of pathnames
stored in the archive.

When getting an “Is -1” style listing on ter format archives, link
counts are listed as zero since the ustar archive format does not keep
link count information.

Copyright

Copyright (c) 1989 Mark H. Colburn.
All rights reserved.

28 March 1991 Page 6

PAX (C) PAX (C)

Redistribution and use in source and binary forms are permitted pro-
vided that the above copyright notice is duplicated in all such forms
and that any documentation, advertising materials, and other materials
related to such distribution and use acknowledge that the software was
developed by Mark H. Colburn and sponsored by The USENIX Asso-
ciation.

THE SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTI-
BILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Author
Mark H. Colburn
NAPS International
117 Mackubin Street, Suite 1

St. Paul, MN 55102
mark@jhereg. MN.ORG

Sponsored by The USENIX Association for public distribution.

28 March 1991 Page 7

mailto:mark@jhereg.MN.ORG

PCPIO (C) PCPIO (C)

NAME

pepio - Copy file archives in and out.

Syntax

pcpio -of{Bacv]
pepio -i[Bedfmrtuv] [pattern...]
pcpio -pladlmruv] directory

Description

The pcpio utility ﬁroduces and reads files in the format specified by
the cpio Archive/Interchange File Format specified in /EEE Std.
1003.1-1988.

The pepio -i (copy in) utility extracts files from the standard input,
which is assumed to be the product of a previous pcpio -0 . Only files
with names that match patterns are selected. Multiple patterns may
be specified and if no patterns are specified, the default for patterns is
selecting all files. The extracted files are conditionally created and
copied into the current directory, and possibly any levels below, based
upon the options described below and the permissions of the files will
be those of the previous pepio -0 . The owner and group of the files
will be that of the current user unless the user has appropriate
privileges, which causes pcpio to retains the owner and group of the
files of the previous pepio -0 .

The pepio -p (pass) utility reads the standard input to obtain a list of
path names of files that are conditionally created and copied into the
destination directory based upon the options described below.

If an error is detected, the cause is reported and the pepio utility will
continue to copy other files. pepio will skip over any unrecognized
files which it encounters in the archive.

The following restrictions apply to the pepio utility:

1 Pathnames are restricted to 256 characters.

2 Appropriate privileges are required to copy special files.

3 Blocks are reported in 512-byte quantities.

Options

The following options are available:

28 March 1991 Page 1

PCPIO (C) PCPIO (C)

-B

-a

-C

-m

-r

-V

Input/output is to be blocked 5120 bytes to the record. Can
only be used with pepio -0 or pcpio -1 for data that is directed
to or from character special files.

Reset access times of input files after they have been copied.
When the -1 option is also specified, the linked files do not have
their access times reset. Can only be used with pepio -0 or
pcpio -i .

Write header information in ASCII character for for portability.
Can only be used with pepio -i or pcpio -0 . Note that this
option should always be used to write portable files.

Creates directories as needed. Can only be used with pcpio -i
or pcpio -p .

Copy in all files except those in patterns . Can only be used
with pepio -i.

Whenever possible, link files rather than copying them. Can
only be used with pepio -p .

Retain previous modification times. This option is ineffective
on directories that are being copied. Can only be used with
pcpio -i or pcpio -p .

Interactively rename files. The user is asked whether to rename
pattern each invocation. Read and write permissions for
/dev/tty are required for this option. If the user types a null
line, the file is skipped. Should only be used with pepio -i or
pepio -0 .

Print a table of contents of the input. No files are created. Can
only be used with pcpio -i .

Copy files unconditionally; usually an older file will not
replace a new file with the same name. Can only be used with
pepio -i or pcpio -p .

Verbose: cause the names of the affected files to be printed.
Can only be used with pepio -i . Provides a detailed listing
when used with the -t option.

28 March 1991 Page 2

PCPIO (C) PCPIO (C)

Operands
The following operands are available:

patterns Simple regular expressions given in the name-generating
notation of the shell.

directory The destination directory.

Exit Status

The pcepio utility exits with one of the following values:

0 All input files were copied.

2 The utility encountered errors in copying or accessing files or
directories. An error will be reported for nonexistent files or
directories, or permissions that do not allow the user to access
the source or target files.

It is important to use the -depth option of the find utility to generate

pathnames for pepio . This eliminates problems pcpio could have try-

ing to create files under read-only directories.

The following command:

Is | pcpio -0 > ../newfile

copies out the files listed by the Is utility and redirects them to the file
newfile .

The following command:

cat newfile | pcpio -id "memo/al” "memo/b*"
uses the output file newfile from the pcpio -o utility, takes those files
that match the patterns memo/al and memo/b* , creates the direc-
tories below the current directory, and places the files in the appropri-
ate directories.
The command

find . -depth -print | pcpio -pdlmv newdir
takes the file names piped to it from the find utility and copies or links

those files to another directory named mewdir , while retaining the
modification time.

28 March 1991 Page 3

PCPIO (C) PCPIO (C)

Files
[dev/tty used to prompt the user for information when the -i or -r
options are specified.
See Also

find(C), pax(C), tar(C), tar(F)

Copyright

Copyright (c) 1989 Mark H. Colburn.
All rights reserved.

Redistribution and use in source and binary forms are permitted pro-
vided that the above copyright notice is duplicated in all such forms
and that any documentation, advertising materials, and other materials
related to such distribution and use acknowledge that the software was
developed by Mark H. Colburn and sponsored by The USENIX Asso-
ciation.

THE SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTI-
BILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Author
Mark H. Colburn
NAPS International
117 Mackubin Street, Suite 1

St. Paul, MN 55102
mark@jhereg. MN.ORG

Sponsored by The USENIX Association for public distribution.

28 March 1991 Page 4

mailto:mark@jhereg.MN.ORG

PG (C) PG (C)

Name

pg - Paginates display for soft-copy terminals.

Syntax

pg [- number] [-p string] [-cefns] [+ linenumber] [+/ pattern /]
[files ...]

Description

The pg command is a filter which allows the examination of files one
screenful at a time on a soft-copy terminal. (The dash (-) command
line option and/or NULL arguments indicate that pg should read from
the standard input.) Each screenful is followed by a prompt. If you
press the RETURN key, another page is displayed; other possibilities
are listed below. This command is different from previous paginators
because it allows you to back up and review something that has
already passed.

To determine terminal attributes, pg scans the termcap (M) data base
for the terminal type specified by the environment variable TERM. If
TERM is not defined, the terminal type dumb is assumed.

The command line options are:

-number Specifies the size (in lines) of the window that pg is to
use instead of the default. (On a terminal containing 24
lines, the default window size is 23.)

-p string Causes pg to use string as the prompt. If the prompt
string contains a “%d”, the first occurrence of “%d” in
the prompt will be replaced by the current page number
when the prompt is issued. The default prompt string is
a colon (2).

-c Homes the cursor and clears the screen before display-
ing each page. This option is ignored if ¢l is not
defined for this terminal type in the termcap(M) data

base.
-e Causes pg not to pause at the end of each file.
-f Inhibits pg from splitting lines. In the absence of the -f

option, pg splits lines longer than the screen width, but
some sequences of characters in the displayed text (for
example, escape sequences for underlining) give
undesirable results.

28 March 1991 Page 1

PG (C) PG (C)

-n Normally, commands must be terminated by pressing
the RETURN key (ASCIH newline character). This
option causes an automatic end of command as soon as
a command letter is entered.

-s Causes pg to display all messages and prompts in stan-
dout mode (usually inverse video).

+linenumber Starts up at linenumber .

+/pattern/ Starts up at the first line containing the regular expres-
sion pattern.

The responses that may be entered when pg pauses can be divided into
three categories: those that cause further perusal, those that search,
and those that modify the perusal environment.

Commands which cause further perusal normally take a preceding
address (an optionally signed number indicating the point from which
further text should be displayed). pg interprets this address in either
pages or lines depending on the command. A signed address specifies
a point relative to the current page or line, and an unsigned address
specifies an address relative to the beginning of the file. Each com-
mand has a default address if no address is provided.

The perusal commands and their defaults are as follows:

(+1)RETURNkey
Causes one page to be displayed. The address is specified in
pages.

D1
With a signed address, causes pg to simulate scrolling the screen,
forward or backward, the number of lines specified. With an
unsigned address this command displays a full screen of text
beginning at the specified line.

(+1) d or Ceri-D
Simulates scrolling half a screen forward or backward.

The following perusal commands take no address:

.or Ctrl-L
Causes the current page of text to be redisplayed.

$ Displays the last windowfull of text in the file. Use with caution
when the input is a pipe.

The following commands are available for searching for text patterns
in the text. The regular expressions described in ed(C) are available.
They must always be terminated by a newline character, even if the -n
option is specified.

28 March 1991 Page 2

PG (C) PG (C)

ilpattern/
Search forward for the ith (default i=1) occurrence of pattern.
Searching begins immediately after the current page and continues
to the end of the current file, without wrap-around.

i"pattern”

i?pattern?
Search backwards for the ith (default i=1) occurrence of pattern.
Searching begins immediately before the current page and contin-
ues to the beginning of the current file, without wrap-around. The
caret (*) notation is useful for terminals which will not properly
handle the question mark (?).

After searching, pg displays the line found at the top of the screen.
You can modify this by appending m or b to the search command to
leave the line found in the middle or at the bottom of the window from
now on. Use the suffix t to restore the original situation.

The following commands modify the environment of perusal:

in Begins perusing the ith next file in the command line. The
default value of i is 1.

iw Displays another window of text. If i is present, set the win-
dow size to i.

s filename

Saves the input in the named file. Only the current file being
perused is saved. The white space between the s and filename
is optional. This command must always be terminated by a
newline character, even if the -n option is specified.

h Help displays abbreviated summary of available commands.

qorQ Quitpg.

Ycommand
command is passed to the shell, whose name is taken from the
SHELL environment variable. If this is not available, the
default shell is used. This command must always be ter-
minated by a newline character, even if the -n option is
specified.

At any time when output is being sent to the terminal, the user can
press the quit key (normally Ctrl-\) or the INTERRUPT (BREAK) key.
This causes pg to stop sending output, and display the prompt. The
user may then enter one of the above commands in the normal manner.
Unfortunately, some output is lost when this is done, because any
characters waiting in the terminal’s output queue are flushed when the
quit signal occurs.

28 March 1991 Page 3

PG (C) PG (C)

If the standard output is not a terminal, then pg acts just like cat(C),
except that a header is printed before each file (if there is more than
one).

Example
To use pg to read system news, enter:

news | pg -p “(Page %d):”

Files
fetc/termcap Terminal information data base
[tmp/pg* Temporary file when input is from a pipe
See Also

ed(C), grep(C), termcap(M)

Notes

If terminal tabs are not set every eight positions, undesirable results
may occur.

When using pg as a filter with another command that changes the ter-
minal I/O options terminal settings may not be restored correctly.

While waiting for terminal input, pg responds to BREAK and DEL by
terminating execution. Between prompts, however, these signals
interrupt pg’s current task and place you in prompt mode. Use these
signals with caution when input is being read from a pipe, since an
interrupt is likely to terminate the other commands in the pipeline.

The z and f commands used with more are available, and the final

slash (/), caret (*), or question mark (?) may be omitted from the
searching commands.

28 March 1991 Page 4

PR (C) PR (C)

Name

pr - Prints files on the standard output.

Syntax

pr [options] [files]

Description

pr prints the named files on the standard output. If file is -, or if no
files are specified, the standard input is assumed. By default, the list-
ing is separated into pages, each headed by the page number, date and
time, and the name of the file.

By default, columns are of equal width, separated by at least one
space; lines which do not fit are truncated. If the -s option is used,
lines are not truncated and columns are separated by the separation
character.

If the standard output is associated with a terminal, error messages are
withheld until pr has completed printing.

Options may appear singly or combined in any order. Their meanings
are:

+k Begins printing with page k (default is 1).

-k Produces k-column output (default is 1). The options -e and -i
are assumed for multicolumn output.

-a Prints multicolumn output across the page.

-m Merges and prints all files simultaneously, one per column
(overrides the -k, and -a options).

-d Double-spaces the output.

-eck Expands input tabs to character positions k+1, 2*k+1, 3*k+1,
etc. If k is O or is omitted, default tab settings at every 8th posi-
tion are assumed. Tab characters in the input are expanded into
the appropriate number of spaces. If ¢ (any nondigit character)
is given, it is treated as the input tab character (default for ¢ is
the tab character).

<ick In output, replaces whitespace wherever possible by inserting
tabs to character positions k+1, 2*k+1, 3*k+1, etc. If k is O or
is omitted, default tab settings at every 8th position are
assumed. If ¢ (any nondigit character) is given, it is treated as
the output tab character (default for c is the tab character).

28 March 1991 Page 1

PR (C)

PR (C)

-nck Provides k-digit line numbering (default for & is 5). The number

occupies the first k+1 character positions of each column of nor-
mal output or each line of -m output. If ¢ (any nondigit charac-
ter) is given, it is appended to the line number to separate it
from whatever follows (default for ¢ is a tab).

Sets the width of a line to k character positions (default is 72 for
equal-width multicolumn output, no limit otherwise).

Offsets each line by & character positions (default is 0). The
number of character positions per line is the sum of the width
and offset.

-k Sets the length of a page to k lines (default is 66).

<h Uses the next argument as the header to be printed instead of
the filename.

-p Pauses before beginning each page if the output is directed to a
terminal (pr will ring the bell at the terminal and wait for a car-
riage return).

-f Uses the form feed character for new pages (default is to use a
sequence of linefeeds). Pauses before beginning the first page if
the standard output is associated with a terminal.

-r Prints no diagnostic reports on failure to open files.

-t Prints neither the 5-line identifying header nor the 5-line trailer
normally supplied for each page. Quits printing after the last
line of each file without spacing to the end of the page.

-s¢ Separates columns by the single character ¢ instead of by the
appropriate number of spaces (default for ¢ is a tab).

Examples

The following prints filel and file2 as a double-spaced, three-column
listing headed by “file list’’:

pr -3dh "file list" filel file2

28 March 1991 Page 2

PR(C) PR (C)

The following writes filel on file2, expanding tabs to columns 10, 19,
28,37,...:

pr -9 -t <filel >file2
See Also
cat(C)

28 March 1991 Page 3

PS(C)

Name

PS (C)

ps - Reports process status.

Syntax

ps [options]

Description

ps prints certain information about active processes. Without options,
information is printed about processes associated with the current ter-
minal. Otherwise, the information that is displayed is controlled by
the following options:

-€

-d

-a

-f

-1
-¢ corefile

-s swapdev

-n namelist

-t tlist

28 March 1991

Prints information about all processes.

Prints information about all processes, except process
group leaders.

Prints information about all processes, except process
group leaders and processes not associated with a ter-
minal.

Generates a full listing. (Normally, a short listing con-
taining only process ID, terminal (“tty”) identifier,
cumulative execution time, and the command name is
printed.) See below for meaning of columns in a full
listing.

Generates a long listing. See below.
Uses the file corefile in place of /dev/mem.

Uses the file swapdev in place of /dev/swap. This is
useful when examining a corefile.

The argument is taken as the name of an alternate
namelist (/xenix is the default).

Restricts listing to data about the processes associated
with the terminals given in tlisz, where tlist can be in
one of two forms: a list of terminal identifiers
separated from one another by a comma, or a list of ter-
minal identifiers enclosed in double quotes and
separated from one another by a comma and/or one or
more spaces.

Page 1

PS(C)

-p plist

-u ulist

-g glist

PS(C)

Restricts listing to data about processes whose process
ID numbers are given in plist, where plist is in the same
format as tlist.

Restricts listing to data about processes whose user ID
numbers or login names are given in ulist, where ulist
is in the same format as rlisz. In the listing, the numeri-
cal user ID is printed unless the -f option is used, in
which case the login name is printed.

Restricts listing to data about processes whose process
groups are given in glist, where glist is a list of process
group leaders and is in the same format as tlist.

The column headings and the meaning of the columns in a ps listing
are given below; the letters f and 1 indicate the option (full or long)
that causes the corresponding heading to appear; all means that the
heading always appears. Note that these two options only determine
what information is provided for a process; they do nor determine
which processes will be listed.

F 0
S o
101 SRR)
PID (all)
PPID ()
C (1)
STIME (f)
PRI ()

28 March 1991

A status word consisting of flags associated with
the process. Each flag is associated with a bit in
the status word. These flags are added to form a
single octal number. Process flag bits and their
meanings are:
01 in core;
02 system process;
04 locked in core (e.g., for physical 1/O);
10 being swapped;
20 being traced by another process.
The state of the process:
non-existent;
sleeping;
waiting;
running;
intermediate;
terminated;
stopped;
waiting.

WHN=DgnO

The user ID number of the process owner; the log-
in name is printed under the -f option. Login
names are truncated after 7 characters.

The process ID of the process; it is possible to kill
a process if you know this number.

The process ID of the parent process.

Processor utilization for scheduling.

Starting time of the process.

The priority of the process; higher numbers mean
lower priority.

Page 2

PS (C) PS(C)

NI @ Nice value; used in priority computation.

ADDR (1) The memory address of the process, if resident;
otherwise, the disk address.

Sz ()] The size in blocks of the core image of the pro-

cess, but not including the size of text shared with
other processes. Since this size includes the
current size of the stack, it will vary as the stack
size varies.

WCHAN(}) The event for which the process is waiting or
sleeping; if blank, the process is running.

TTY (all) The controlling terminal for the process.

TIME (all) The cumulative execution time for the process.

CMD (all) The command name; the full command name and
its arguments are printed under the -f option. A
process that has exited and has a parent, but has
not yet been waited for by the parent, is marked
<defunct>.

Under the -f option, ps tries to determine the command name and
arguments given when the process was created by examining memory
or the swap area. Failing this, the command name, as it would appear
without the -f option, is printed in square brackets.

Files
/xenix system namelist

/dev/mem memory

/dev searched to find swap device and terminal (“tty”) names.

See Also
kill(C), nice(C)

Notes

Things can change while ps is running; the picture it gives is only a
close approximation to reality.

Some data printed for defunct processes are irrelevant.

28 March 1991 Page 3

PSTAT (C) PSTAT (C)

Name

pstat - Reports system information.

Syntax

pstat [-aixpf] [-u ubase] [-c corefile] [-n namelist] [file]

Description
pstat interprets the contents of certain system tables. pstar searches
for these tables in /dev/mem and /dev/kmem.

Options

The available options are as follows:

-a Under -p, describe all process slots rather than just active
ones.
-i Print the inode table with these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:
L Locked
U Update time
A Access time must be corrected
M File system is mounted here
W Wanted by another process (L flag is on)
T Contains a text (executable image) file
C Changed time must be corrected
CNT Number of open file table entries for this inode.
DEV Major and minor device number of file system in
which this inode resides.
INO I-number within the device.
MODE Mode bits, see chmod(S).
NLK Number of links to this inode.
UID User ID of owner.
SIZ/DEV
Number of bytes in an ordinary file, or major and
minor device of special file.

-X Prints the text (executable code segment) table with these
headings (XENIX-286 only):
LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:
T ptrace(S) in effect
W Text not yet written on swap device

28 March 1991 Page 1

PSTAT (C)

PSTAT (C)

L Loading in progress
K Locked
w Wanted (L flag is on)

DADDR Disk address in swap, measured in multiples of

BSIZE bytes.

CADDR Core address, measured in units of memory

management resolution.

SIZE Size of text segment, measured in units of memory
management resolution.
IPTR Core location of corresponding inode.
CNT Number of processes using this text segment.
CCNT Number of processes in core using this text seg-
ment.
-p Prints process table for active processes with these head-
ings:
LOC The core location of this table entry.
S Run state encoded thus:
0 No process
1 Waiting for some event
3 Runnable
4 Being created
5 Being terminated
6 Stopped under trace
F Miscellaneous state variables, ORed together:
01 Loaded
02 The scheduler process
04 Locked
010
Swapped out
020
Traced
040
Used in tracing
0100
Locked in by lock(S).
PRI Scheduling priority, see nice(S).
SIGNAL Signals received (signals 1-16 coded in bits 0-15).
UID Real user ID.
TIM Time resident in seconds; times over 127 coded as
127.
CPU Weighted integral of CPU time, for scheduler.
NI Nice level, see nice(S).
PGRP Process number of root of process group (the
opener of the controlling terminal).
PID The process ID number.
PPID The process ID of parent process.

ADDRI1, ADDR2

28 March 1991

If in core, the physical page frame numbers of the
u-area of the process. These numbers can be
translated into the addresses of the u-area, which
is split and stored in two pages. If swapped out,

Page 2

PSTAT (C) PSTAT (C)

the position in the swap area is measured in multi-
ples of BSIZE bytes.
WCHAN
Wait channel number of a waiting process.
LINK Link pointer in list of runnable processes.
TEXTP If text is pure, pointer to location of text table
entry (286 only).
INODP Pointer to location of shared inode (386 only).
CLKT Countdown for alarm(S) measured in seconds.

-t Print table for terminals with these headings:
RAW Number of characters in raw input queue.
CAN Number of characters in canonicalized input
queue.
ouT Number of characters in output queue.
IMODE Corresponds to c_iflag field in termio structure,
see tty (M).
OMODE Corresponds to c_oflag field in termio structure,
see tty (M).
CMODE Corresponds to c_cflag field in termio structure,
see 1ty (M).
LMODE Corresponds to c_lflag field in termio structure,
see 1ty (M).
ADDR Physical device address.
DEL Number of delimiters (newlines) in canonicalized
input queue.
COL Calculated column position of terminal.
STATE Miscellaneous state variables:
W waiting for open to complete
open
has special (output) start routine
carrier is on
busy doing output
process is awaiting output
open for exclusive use
hangup on close
PGRP Process group for controlling terminal.

TXRPWOVO

-f Print the open file table with these headings:
LOC The core location of this table entry.
FLG Miscellaneous state variables:

R Open for reading

W Open for writing

P Pipe
CNT Number of processes that know this open file.
INO The location of the inode table entry for this file.
OFFS The file offset, see Iseek(S).

-u ubase

Print information about a user process. ubase is the hexade-
cimal location of the process in main memory. The address
can be obtained by using the long listing (-1 option) of the
ps(C) command.

28 March 1991 Page 3

PSTAT (C) PSTAT (C)

-c corefile
Use the file corefile in place of /dev/kmem.
-n namelist
Use the file namelist as an alternate namelist in place of
/xenix.
file Source or tables as an alternate to /dev/mem.
Files

/xenix Namelist

/dev/mem Default source of tables

See Also
ps(C), stat(S), filesystem(F)

28 March 1991 Page 4

PTAR (C) PTAR (C)

Name

ptar - Process tape archives.

Syntax

ptar -c[bfvw] device block filename. ..
ptar -r[bvw] device block [filename...]
ptar -t[fv] device

ptar -u[{bvw] device block

ptar -x[flmovw] device [filename...]

Description
Tar reads and writes archive files which conform to the
Archive/Interchange File Format specified in /EEE Std. 1003.1-
1988.
Options

The following options are available:

-C Creates a new archive; writing begins at the beginning
of the archive, instead of after the last file.

-r Writes names files to the end of the archive.

-t Lists the names of all of the files in the archive.

-u Causes named files to be added to the archive if they are

not already there, or have been modified since last writ-
ten into the archive. This implies the -r option.

-x Extracts named files from the archive. If a named file
matches a directory whose contents had been written
onto the archive, that directory is recursively extracted.
If a named file in the archive does not exist on the sys-
tem, the file is create with the same mode as the one in
the archive, except that the set-user-id and get-group-id
modes are not set unless the user has appropriate
privileges.

If the files exist, their modes are not changed except as described
above. The owner, group and modification time are restored if possi-
ble. If no filename argument is given, the entire contents of the
archive is extracted. Note that if several files with the same name are
in the archive, the last one will overwrite all earlier ones.

28 March 1991 Page 1

PTAR (C)

-b

-f

-m

-0

-V

Files
/devi/tty

See Also

PTAR (C)

Causes ptar to use the next argument on the command
line as the blocking factor for tape records. The default
is 1, the maximum is 20. This option should only be
used with raw magnetic tape archives. Normally, the
block size is determined automatically when reading
tapes.

Causes ptar to use the next argument on the command
line as the name of the archive instead of the default,
which is usually a tape drive. If - is specified as a
filename prar writes to the standard output or reads from
the standard input, whichever is appropriate for the
options given. Thus, ptar can be used as the head or tail
of a pipeline.

Tells ptar to report if it cannot resolve all of the links to
the files being archived. If -1 is not specified, no error
messages are written to the standard output. This
modifier is only valid with the -c, -r and -u options.

Tells ptar not to restore the modification times. The
modification time of the file will be the time of extrac-
tion. This modifier is invalid with th -t option.

Causes extracted files to take on the user and group
identifier of the user running the program rather than
those on the archive. This modifier is only valid with the
-X option.

Causes ptar to operate verbosely. Usually, prar does its
work silently, but the v modifier causes it to print the
name of each file it processes, preceded by the option
letter. With the -t option, v gives more information
about the archive entries than just the name.

Causes prar to print the action to be taken, followed by
the name of the file, and then wait for the user’s
confirmation. If a word beginning with y is given, the
action is performed. Any other input means “no”. This
modifier is invalid with the -t option.

used to prompt the user for information when the -i or -y
options are specified.

cpio(C), dd(C), find(C), pax(C), pcpio(C)

28 March 1991

Page 2

PTAR (C) PTAR (C)

Copyright

Copyright (c) 1989 Mark H. Colbumn.
All rights reserved.

Redistribution and use in source and binary forms are permitted pro-
vided that the above copyright notice is duplicated in all such forms
and that any documentation, advertising materials, and other materials
related to such distribution and use acknowledge that the software was
developed by Mark H. Colburn and sponsored by The USENIX Asso-
ciation.

THE SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTI-
BILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Author
Mark H. Colburn
NAPS International
117 Mackubin Street, Suite 1

St. Paul, MN 55102
mark@jhereg. MN.ORG

Sponsored by The USENIX Association for public distribution.

28 March 1991 Page 3

mailto:mark@jhereg.MN.ORG

PWCHECK (C) PWCHECK (C)

Name

pwcheck - Checks password file.

Syntax
pwcheck [file]

Description

pwcheck scans the password file and checks for any inconsistencies.
The checks include validation of the number of fields, login name,
user ID, group ID, and whether the login directory and optional pro-
gram name exist. The default password file is /etc/passwd.

Files

fetc/passwd

See Also

grpcheck(C), group(F), passwd(F)

28 March 1991 Page 1

PWD (C) PWD (C)

Name

pwd - Prints working directory name.

Syntax

pwd

Description

pwd prints the pathname of the working (current) directory.

See Also
cd(C)

Diagnostics
“Cannot open ..” and “Read error in ..” indicate possible file system

trouble. In such cases, see the XENIX System Administrator’s Guide
for information on fixing the file system.

28 March 1991 Page 1

QUOT (C) QUOT (C)

Name

quot - Summarizes file system ownership.

Syntax

quot [option] ... [filesystem]

Description
quot prints the number of blocks in the named filesystem currently
owned by each user. If no filesystem is named, the file systems given
in /etc/mnttab are examined.
The following options are available:

-n Processes standard input. This option makes it possible to produce
a list of all files and their owners with the following command:

ncheck filesystem | sort +0n | quot -n filesystem
-¢ Prints three columns giving file size in blocks, number of files of
that size, and cumulative total of blocks in that size or smaller file.
Data for files of size greater than 499 blocks are included in the
figures for files of exactly size 499.

-f Prints a count of the number of files as well as space owned by

each user.
Files
fetc/passwd Gets user names
fetc/mnttab Contains list of mounted file systems
See Also

cmchk(C), du(C), 1s(C), machine(M)
Notes

Holes in files are counted as if they actually occupied space. Blocks
are reported in 512 byte blocks. See also Notes under mount(ADM).

28 March 1991 Page 1

RANDOM (C) RANDOM (C)

Name

random - Generates a random number.

Syntax

random {-s] [scale]

Description
random generates a random number on the standard output. and
returns the number as its exit value. By default, this number is either
Oor 1 (i.e., scale is 1 by default). If scale is given a value between 1
and 255, then the range of the random value is from O to scale. If scale
is greater than 255, an error message is printed.
When the -s , “silent” option is given, the random number is returned
as an exit value but is not printed on the standard output. If an error
occurs, random returns an exit value of zero.

See Also

rand(S)

Notes
This command does not perform any floating point computations.

random uses the time of day as a seed.

28 March 1991 Page 1

RANLIB (C) RANLIB (C)

ranlib - Converts archives to random libraries.

Syntax

ranlib archive...

Description

ranlib converts each archive to a form which can be loaded more
rapidly by the loader, by adding a table of contents named __.SYM-
DEF to the beginning of the archive. It uses ar(C) to reconstruct the
archive, so sufficient temporary file space must be available in the file
system containing the current directory.

See Also
1d(CP), ar(C), copy(C), settime(ADM)

Notes

Failure to process a library with ranlib, or failure to reprocess a
library with ranlib, will cause I/d to fail. Because generation of a
library by ar and randomization by ranlib are separate, phase errors
are possible. The loader Id warns when the modification date of a
library is more recent than the creation of its dictionary; but this
means you get the warning even if you only copy the library.

28 March 1991 Page 1

RCP (C) RCP (C)

Name

rcp - Copies files across XENIX micnet networks.

Syntax

rcp [options] [srcmachine:]srcfile [destmachine:]destfile

Description

rep copies files between systems in a Micnet network. The command
copies the srcmachine:srcfile to destmachine:destfile , where srcma-
chine: and destmachine: are optional names of systems in the net-
work, and srcfile and destfile are pathnames of files. If a machine
name is not given, the name of the current system is assumed. If - is
given in place of srcfile, rcp uses the standard inpat as the source.
Directories named on the destination machine must have write per-
mission, and directories and files named on a remote source machine
must have read permission.

The available options are:

-m
Mails and reports completion of the command, whether there is an
€rTor Or Not.

-u [machine:Juser

Any mail goes to the named user on machine. The default ma-
chine is the machine on which the rcp command is completed or
on which an error was detected. If an alias for user exists in the
system alias files on that machine, the mail will be redirected to
the appropriate mailbox(es). Since system alias files are usually
identical throughout the network, any specified machine will most
likely be overridden by the aliasing mechanism. To prevent alias-
ing, user must be escaped with at least two \ characters (at least
four if given as a shell command).

28 March 1991 Page 1

RCP (C) RCP (C)

rep is useful for transferring small numbers of files across the network.
The network consists of daemons that periodically awaken and send
files from one system to another. The network must be installed using
netutil (ADM) before rcp can be used.

Also, to enable transfer of files from a remote system, either:

This line should be in /etc/default/micnet on the systems in the net-
work:

rcp=/usr/bin/rcp
Or, these lines should be in that file:

executeall
execpath=P ATH= path

where path must contain /usr/bin.

Example

rcp -m machinel:/etc/mnttab /tmp/vtape

See Also
mail(C), micnet(F), netutil(ADM), remote(C)

Diagnostics

If an error occurs, mail is sent to the user.

Notes
Full pathnames must be specified for remote files.
rcp handles binary data files transparently, no extra options or proto-

cols are needed to handle them. Wildcards are not expanded on the
remote machine.

28 March 1991 Page 2

REMOTE (C)

Name

REMOTE (C)

remote - Executes commands on a remote XENIX system over a mic-
net network.

Syntax

remote [-] [-f file] [-m] [-u user] machine
command { arguments]

Description

remote is a limited networking facility that permits execution of
XENIX commands across serial lines. Commands on any connected
system may be executed from the host system using remote. A com-
mand line consisting of command and any blank-separated arguments
is executed on the remote machine. A machine’s name is located in
the file /etc/systemid. Note that wild cards are nor expanded on the
remote machine, so they should not be specified in arguments. The
optional -m switch causes mail to be sent to the user telling whether
the command is successful.

The available options follow:

£ file

-m

-u user

28 March 1991

A dash signifies that standard input is used as the standard
input for command on the remote machine. Standard
input comes from the local host and not from the remote
machine.

Use the specified file as the standard input for command
on the remote machine. The file exists on the local host
and not on the remote machine.

Mails the user to report completion of the command. By
default, mail reports only errors.

Any mail goes to the named user on machine. The default
machine is the machine on which an error was detected,
or on which the remote command was completed. The
mail will be redirected to the appropriate mailbox(es), if
an alias for user exists in the system alias files on that ma-
chine . Since system alias files are usually identical
throughout the network, any specified machine will most
likely be overridden by the aliasing mechanism. To
prevent aliasing, user must be escaped with at least two \
characters (at least four if givean as a shell command).

Page 1

REMOTE (C) REMOTE (C)

Before remote can be successfully used, a network of systems must

first be set up and the proper daemons initialized using nerutil (ADM).

Also, entries for the command to be executed using remote must be

added to the /etc/default/micnet files on each remote machine.
Example

The following command executes an /s command on the directory
/tmp of the machine machinel :

remote machinel Is /tmp
See Also
rcp(C), mail(C), netutil(ADM), micnet(F)

Notes

The mail command uses the equivalent of remote to send mail
between machines.

28 March 1991 Page 2

RM (C) RM (C)

Name

mm, rmdir - Removes files or directories.

Syntax
rm [-fri] file ...
rmdir dir ...
Description

rm removes the entries for one or more files from a directory. If an
entry was the last link to the file, the file is destroyed. Removal of a
file requires write permission in its directory, but neither read nor
write permission on the file itself.

If a file has no write permission and the standard input is a terminal,
its permissions are printed and a line is read from the standard input.
If that line begins with y, the file is deleted, otherwise the file
remains. No questions are asked when the -f option is given or if the
standard input is not a terminal.

If a designated file is a directory, an error comment is printed uniess
the optional argument -r has been used. In that case, rm recursively
deletes the entire contents of the specified directory, and the directory
itself.

If the -i (interactive) option is in effect, rm asks whether to delete
each file, and if the -r option is in effect, whether to examine each
directory.

The special option “--” can be used to delimit options. For example, a
file named “-f” could not be removed by rm because the hyphen is
interpreted as an option; the command rm -f would do nothing, since
no file is specified. Using rm -- -f removes the file successfully.

rmdir removes empty directories.

Diagnostics

Generally self-explanatory. It is forbidden to remove the file .. to
avoid the consequences of inadvertently doing something like:

m -r .x

It is also forbidden to remove the root directory of a given file system.

28 March 1991 Page 1

RM (C) RM (C)

No more than 17 levels of subdirectories can be removed using the -r
option.

28 March 1991 Page 2

RSH (C) RSH (C)

Name

rsh - Invokes a restricted shell (command interpreter).

Syntax
rsh [flags] [name [argl ... 1]

Description

rsh is a restricted version of the standard command interpreter sh(C).
It is used to set up login names and execution environments whose
capabilities are more controlled than those of the standard shell. The
actions of rsh are identical to those of sk, except that changing direc-
tory with cd, setting the value of $PATH, using command names con-
taining slashes, and redirecting output using > and >> are all disal-
lowed.

When invoked with the name -rsh, rsh reads the user’s .profile (from
$HOME/.profile). It acts as the standard sh while doing this, except
that an interrupt causes an immediate exit, instead of causing a return
to command level. The restrictions above are enforced after .profile
is interpreted.

When a command to be executed is found to be a shell procedure, rsh
invokes sh to execute it. Thus, it is possible to provide to the end user
shell procedures that have access to the full power of the standard
shell, while restricting him to a limited menu of commands; this
scheme assumes that the end user does not have write and execute per-
missions in the same directory.

The net effect of these rules is that the writer of the .profile has com-
plete control over user actions, by performing guaranteed setup
actions, then leaving the user in an appropriate directory (probably not
the login directory).

rsh is actually just a link to sh and any flags arguments are the same
as for sh(C).

The system administrator often sets up. a directory of commands that
can be safely invoked by rsh.

Notes

Simply making a user’s login shell rsh does not necessarily make the
account safe from a security standpoint.

28 March 1991 Page 1

RSH (C) RSH (C)

See Also
sh(C), profile(M)

28 March 1991 Page 2

SDIFF (C)

Name

SDIFF (C)

sdiff - Compares files side-by-side.

Syntax

sdiff [options ...] filel file2

Description

sdiff uses the output of diff (C) to produce a side-by-side listing of two
files indicating those lines that are different. Each line of the two files
is printed with a blank gutter between them if the lines are identical, a
< in the gutter if the line only exists in filel , a > in the gutter if the
line only exists in file2 , and a | for lines that are different.

For example:

X | y

a a

b <

c <

d d
> c

The following options exist:

W n

-1
-S

-0 output

28 March 1991

Uses the next argument, n, as the width of the output
line. The default line length is 130 characters.

Only prints the left side of any lines that are identical.
Does not print identical lines.

Uses the next argument, output, as the name of a third
file that is created as a user-controlled merging of file!
and file2. Identical lines of filel and file2 are copied to
output. Sets of differences, as produced by dif(C), are
printed; where a set of differences share a common
gutter character. After printing each set of differences,
sdiff prompts the user with a % and waits for one of the
following user-typed commands:

1 Appends the left column to the output file
r Appends the right column to the output file

s Tumns on silent mode; does not print identi-
cal lines

Page 1

SDIFF (C) SDIFF (C)

v Turns off silent mode

el
Calls the editor with the left column

er
Calls the editor with the right column

eb
Calls the editor with the concatenation of
left and right
e Calls the editor with a zero length file
q Exits from the program
On exit from the editor, the resulting file is concatenated
on the end of the output file.

See Also
diff(C), ed(C)

28 March 1991 Page 2

SED (C) SED (C)

Name

sed - Invokes the stream editor.

Syntax
sed [-n] [-e script] [-f sfile] { files]

Description

sed copies the named files (standard input default) to the standard out-
put, edited according to a script of commands. The -e option causes
the script to be read literally from the next argument, which is usually
quoted to protect it from the shell. The -f option causes the script to
be taken from file sfile; these options accumulate. If there is just one
-e option and no -f options, the flag -e may be omitted. The -n option
suppresses the default output. A script consists of editing commands,
one per line, of the following form:

[address [, address]] function [arguments]

In normal operation, sed cyclically copies a line of input into a pattern
space (unless there is something left after a D command), applies in
sequence all commands whose addresses select that pattern space,
and at the end of the script copies the pattern space to the standard
output (except under -n) and deletes the pattern space.

A semicolon (;) can be used as a command delimiter.

Some of the commands use a hold space to save all or part of the pat-
tern space for subsequent retrieval.

An address is either a decimal number that counts input lines cumula-
tively across files, a $ that addresses the last line of input, or a context
address, i.e., a /regular expression/ in the style of ed(C) modified as
follows:

- Ina context address, the construction \?regular expression? , where
? is any character, is identical to /regular expression/. Note that
in the context address \xabc\xdefx, the second x stands for itself,
so that the regular expression is abcxdef.

- The escape sequence \n matches a newline embedded in the pat-
tern space.

- A period . matches any character except the terminal newline of
the pattern space.

28 March 1991 Page 1

SED (C) SED (C)

- A command line with no addresses selects every pattern space.

- A command line with one address selects each pattern space that
matches the address.

- A command line with two a2ddresses separated by a comma selects
the inclusive range from the first pattern space that matches the
first address through the next pattern space that maiches the
second. (If the second address is a number less than or equal to the
line number first selected, only one line is selected.) Thereafter,
the process is repeated, looking again for the first address.

Editing commands can be applied only to nonselected pattern spaces
by use of the negation function ! (below).

In the following list of functions, the maximum number of permissible
addresses for each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of
which end with backslashes to hide the newlines. Backslashes in text
are treated like backslashes in the replacement string of an s com-
mand, and may be used to protect initial blanks and tabs against the
stripping that is done on every script line. The rfile or wfile argument
must terminate the command line and must be preceded by exactly
one blank. Each wfile is created before processing begins. There can
be at most 10 distinct wfile arguments.

(1)a\
text Appends text, placing it on the output before reading the
next input line.

(2)b label Branches to the : command bearing the label. If label is
empty, branches to the end of the script.

) e\

text Changes text by deleting the pattern space and then
appending text. With O or 1 address or at the end of a 2-
address range, places text on the output and starts the next
cycle.

2)d Deletes the pattern space and starts the next cycle.

2)D Deletes the initial segment of the pattern space through
the first newline and starts the next cycle.

g Replaces the contents of the pattern space with the con-
tents of the hold space.

)G Appends the contents of the hold space to the pattern

space.

28 March 1991 Page 2

SED (C)
@)h
2H
(O
text
)t
2)n

2)N

@)p
)P

(hq

@)r rfile

SED (C)

Replaces the contents of the hold space with the contents
of the pattern space.

Appends the contents of the pattem space to the hold
space.

Insert. Places text on the standard output.

Lists the pattern space on the standard output with
nonprinting characters spelled in two-digit ASCII and long
lines folded.

Copies the pattern space to the standard output. Replaces
the pattern space with the next line of input.

Appends the next line of input to the pattern space with an
embedded newline. (The current line number changes.)

Prints (copies) the pattern space on the standard output.

Prints (copies) the initial segment of the pattern space
through the first newline to the standard output.

Quits sed by branching to the end of the script. No new
cycle is started.

Reads the contents of rfile and places them on the output
before reading the next input line.

(2)sfregular expression/replacement|flags

(2)t label

28 March 1991

Substitutes the replacement string for instances of the
regular expression in the pattern space. Any character
may be used instead of /. For a more detailed description,
see ed(C). Flags is zero or more of:

n n=1-512. Substitute for just the nth occurrence of the
regular expression.

g Globally substitutes for all nonoverlapping instances
of the regular expression rather than just the first one.

p Prints the pattern space if a replacement was made.

w wfile
Writes the pattern space to wfile if a replacement was
made.

Branches to the colon (:) command bearing label if any
substitutions have been made since the most recent read-
ing of an input line or execution of a t command. If label
is empty, t branches to the end of the script.

Page 3

SED (C) SED (C)

(2) w wfile Writes the pattern space to wfile.
2)x Exchanges the contents of the pattern and hold spaces.

(2) y/stringl [string2 |
Replaces all occurrences of characters in stringl with the
corresponding characters in string2. The lengths of
stringl and string2 must be equal.

) function
Applies the function (or group, if function is {) only to
lines not selected by the address(es).

(0): label This command does nothing; it bears a label for b and t
commands to branch to.

O= Places the current line number on the standard output as a
line.
@1 Executes the following commands through a matching }
only when the pattern space is selected.
(©) An empty command is ignored.
See Also
awk(C), ed(C), grep(C)
Notes

This command is explained in detail in XENIX Text Processing Guide.

28 March 1991 Page 4

SETCOLOR (C) SETCOLOR (C)

Name

setcolor, setcolour - Set screen color.

Syntax

setcolor -[nbrgopc] argument [argument]

Description

setcolor allows the user to set the screen color on a color screen. Both
foreground and background colors can be set independently in a range
of 16 colors. setcolor can also set the reverse video and graphics
character colors. setcolor with no arguments produces a usage mes-
sage that displays all available colors, then resets the screen to its pre-
vious state.

For example, the following strings are possible colors.

blue magenta brown black
It_blue It_magenta yellow gray
cyan white green red
lt_cyan hi_white It_green It_red

The following flags are available. In the arguments below, “color” is
taken from the above list.

-n Set the screen to “normal” white characters on black background.

color [color)
Set the foreground to the first color. Sets background to second
color if a second color choice is specified.

b color
Set the background to the specified color.

-r color [color)
Set the foreground reverse video characters to the first color. Set
reverse video characters’ background to second color.

-g color [color]
Set the foreground graphics characters to the first color. Set graph-
ics characters’ background to second color.

-0 Set the color of the screen border (overscan region). This option
applies only to CGA adapters.

28 March 1991 Page 1

SETCOLOR (C) SETCOLOR (C)

-p pitch duration
Set the pitch and duration of the bell. Pitch is the period in
microseconds, and duration is measured in fifths of a second.
When using this option, a control-G (bell) must be echoed to the
screen for the command to work. For example:

setcolor -p 2500 2
echo "G

-cfirst last
Set the first and last scan lines of the cursor. (For more informa-
tion see screen(HW).)
Notes
The ability of setcolor to set any of these described functions is ulti-
mately dependent on the ability of devices to support them. setcolor
emits an escape sequence that may or may not have an effect on mono-
chrome devices.
Occasionally changing the screen color can help prolong the life of
your monitor.
See Also

screen(HW), console(HW)

28 March 1991 Page 2

SETKEY (C) SETKEY (C)

Name

setkey - Assigns the function keys.

Syntax

setkey keynum string

Description
The setkey command assigns the given ANSI string to be the output
of the computer function key given by keynum. For example, the
command:
setkey 1 date
assigns the string "date" as the output of function key 1. The string
can contain control characters, such as a newline character, and
should be quoted to protect it from processing by the shell. For exam-
ple, the command:
setkey 2 "pwd ; Ic\n"
assigns the command sequence "pwd ; Ic" to function key 2. Notice
how the newline character is embedded in the quoted string. This
causes the commands to be carried out when function key 2 is pressed.
Otherwise, the Enter key would have to be pressed after pressing the
function key, as in the previous example.
Files

/bin/setkey

See Also
keyboard(HW)

Notes
setkey works only on the console keyboard.

The string mapping table is where the function keys are defined. It is
an array of 512 bytes (typedef strmap_t) where null terminated strings
can be put to redefine the function keys. The first null terminated
string is assigned to the first string key, the second to the second string
key, and so on. There is one string mapping table per multiscreen.

28 March 1991 Page 1

SETKEY (C)

SETKEY (C)

Although the size of the setkey string mapping table is 512 bytes,
there is a limit of 30 characters that can be assigned to any individual

function key.

Assigning more than 512 characters to the string mapping table causes
the function key buffer to overflow. When this happens, the sequences
sent by the arrow keys are overwritten, effectively disabling them.
Once the function key buffer overflows, the only way to enable the

arrow keys is to reboot the system.

The table below lists the keynum values for the function keys:

Function key keynum Function key keynum
F1 1 Curl-F10 34
F2 2 Curl-F11 35
F3 3 Ctrl-F12 36
F4 4 Ctrl-Shift-F1 37
F5 5 Ctrl-Shift-F2 38
F6 6 Ctrl-Shift-F3 39
F7 7 Ctrl-Shift-F4 40
F8 8 Ctrl-Shift-F5 41
F9 9 Ctrl-Shift-Fé6 42
F10 10 Ctrl-Shift-F7 43
F11 11 Ctrl-Shift-F8 44
F12 12 Ctrl-Shift-F9 45
Shift-F1 13 Ctrl-Shift-Fi0 46
Shift-F2 14 Cul-Shift-F11 47
Shift-F3 15 Curl-Shift-F12 48
Shift-F4 16

Shift-F5 17 Numeric Key-Pad keynum
Shift-F6 18

Shift-F7 19 7 49
Shift-F§ 20 8 50
Shift-F9 21 9 51
Shift-F10 22 - 52
Shift-F11 23 4 53
Shift-F12 24 5 54
Cirl-F1 25 6 55
Ctrl-F2 26 + 56
Ctrl-F3 27 1 57
Ctrl-F4 28 2 58
Ctrl-F5 29 3 59
Ctrl-F6 30 0 60
Cirl-F7 31

Ctrl-F8 32

Ctrl-Fo 33

28 March 1991

Page 2

SH (C) SH (C)

Name

sh - Invokes the shell command interpreter.

Syntax

sh [-aceiknrstuvx] [args]

Description

The shell is the standard command programming language that exe-
cutes commands read from a terminal or a file. See Invocation below
for the meaning of arguments to the shell.

Commands

A simple-command is a sequence of nonblank words separated by
blanks (a blank is a tab or a space). The first word specifies the name
of the command to be executed. Except as specified below, the
remaining words are passed as arguments to the invoked command.
The command name is passed as argument 0 (see exec (S)). The value
of a simple-command is its exit status if it terminates normally, or
(octal) 1000+srarus if it terminates abnormally. See signal(S) for a
list of status values.

A pipeline is a sequence of one or more commands separated by a
vertical bar (|). (The caret (~), is an obsolete synonym for the
vertical bar and should not be used in a pipeline; scripts that use a
caret to represent a pipe will be incompatible with ksa(C).) The stan-
dard output of each command but the last is connected by a pipe(S) to
the standard input of the next command. Each command is run as a
separate process; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by ;, &, &&,
or|] , and optionally terminated by ; or & . Of these four symbols, ;
and & have equal precedence, which is lower than that of && and ||.
The symbols && and || also have equal precedence. A semicolon (3)
causes sequential execution of the preceding pipeline; an ampersand
(&) causes asynchronous execution of the preceding pipeline (i.e., the
shell does not wait for that pipeline to finish). The symbol && (||)
causes the list following it to be executed only if the preceding pipe-
line returns a zero (nonzero) exit status. An arbitrary number of new-
lines may appear in a list, instead of semicolons, to delimit com-
mands.

28 March 1991 Page 1

SH (C) SH (C)

A command is either a simple-command or one of the following com-
mands. Unless otherwise stated, the value returned by a command is
that of the last simple-command executed in the command:

for name [inword ...]
do

list
done

Each time a for command is executed, name is set to the next word
taken from the in word list. If in word is omitted, then the for com-
mand executes the do list once for each positional parameter that is
set (see Parameter Substitution below). Execution ends when there
are no more words in the list.

case word in
[pattern [| pattern] ...) list
3
esac
A case command executes the list associated with the first pattern
that matches word. The form of the patterns is the same as that used
for filename generation (see Filename Generation below).

if list then
list

{ elif list then
list]

[else list]

fi
The list following if is executed and, if it returns a zero exit status, the
list following the first then is executed. Otherwise, the list following
elif is executed and, if its value is zero, the list following the next
then is executed. Failing that, the else list is executed. If no else list
or then list is executed, then the if command returns a zero exit status.

while list

do
list

done
A while command repeatedly executes the while list and, if the exit
status of the last command in the list is zero, executes the do list; oth-
erwise the loop terminates. If no commands in the do list are exe-
cuted, then the while command returns a zero exit status; until may be
used in place of while to negate the loop termination test.

(list)
Executes list in a subshell.

{list;}
list is simply executed.

28 March 1991 Page 2

SH (C) SH (C)

name () {list;}
Define a function which is referenced by name. The body of functions
is the list of commands between { and }. Execution of functions is
described later (see Execution.)

The following words are recognized only as the first word of a com-
mand and when not quoted:

if then else elif fi case esac for while until do done { }

Comments

A word beginning with # causes that word and all the following char-
acters up to a newline to be ignored.

Command Substitution

The standard output from a command enclosed in a pair of grave
accents (" ") may be used as part or all of a word; trailing newlines are
removed.

No interpretation is done on the command string before the string is
read, except to remove backslashes (\) used to escape other characters.
Backslashes may be used to escape grave accents () or other
backslashes and are removed before the command string is read.
Escaping grave accents allows nested command substitution. If the
command substitution lies within a pair of double quotes ("~ .. "),
backslashes used to escape a double quote (\") will be removed; other-
wise, they will be left intact.

If a backslash is used to escape a newline character, both the
backslash and the newline are removed (see the section on “Quot-
ing”). In addition, backslashes used to escape dollar signs (\$) are
removed. Since no interpretation is done on the command string
before it is read, inserting a backslash to escape a dollar sign has no
effect. Backslashes that precede characters other than \, °, ", newline,
and $ are left intact.

Parameter Substitution
The character $ is used to introduce substitutable parameters. There
are two types of parameters, positional and keyword. If parameter is a
digit, it is a positional parameter. Positional parameters may be
assigned values by set. Keyword parameters, (also known as vari-
ables) may be assigned values by writing:

name=value [name=value] ...

28 March 1991 Page 3

SH(C) SH (C)

Pattern-matching is not performed on value. There cannot be a func-
tion and a variable with the same name.

${parameter}
A parameter is a sequence of letters, digits, or underscores (a
name), a digit, or any of the characters *, @, #, 7, -, $, and !. The
value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its name. A name
must begin with a letter or underscore. If parameter is a digit then
it is a positional parameter. If parameter is * or @, then all the
positional parameters, starting with $1, are substituted (separated
by spaces). Parameter $0 is set from argument zero when the shell
is invoked.

${parameter :-word}
If parameter is set and is not a null argument, substitute its value;
otherwise substitute word.

${parameter :=word}
If parameter is not set or is null, then set it to word; the value of
the parameter is then substituted. Positional parameters may not
be assigned to in this way.

${parameter:?word}
If parameter is set and is not a null argument, substitute its value;
otherwise, print word and exit from the shell. If word is omitted,
the message “parameter null or not set” is printed.

${parameter :+word}
If parameter is set and is not a null argument, substitute word; oth-
erwise substitute nothing. In the above, word is not evaluated
unless it is to be used as the substituted string, so that in the fol-
lowing example, pwd is executed only if d is not set or is null:
echo ${d:-~pwd-}

If the colon (:) is omitted from the above expressions, then the shell
only checks whether parameter is set.

The following parameters are automatically set by the shell:
The number of positional parameters in decimal

- Flags supplied to the shell on invocation or by the set command

-~

The decimal value returned by the last synchronously executed
command

$ The process number of this shell

28 March 1991 Page 4

SH (C) SH (C)

! The process number of the last background command invoked
The following parameters are used by the shell:

CDPATH
Defines search path for the cd command. See the section Special
Commands, “cd”.

HOME
The default argument (home directory) for the c¢d command

PATH
The search path for commands (see Execution below)

MAIL
If this variable is set to the name of a mail file, then the shell
informs the user of the arrival of mail in the specified file

MAILCHECK
This parameter specifies how often (in seconds) the shell will
check for the arrival of mail in the files specified by the
MAILPATH or MAIL parameters. The default value is 600
seconds (10 minutes). If set to 0, the shell will check before each
prompt.

MAILPATH
A colon (:) separated list of file names. If this parameter is set, the
shell informs the user of the arrival of mail in any of the specified
files. Each file name can be followed by % and a message that
will be printed when the modification time changes. The default
message is you have mail.

PS1
Primary prompt string, by default “$

PS2
Secondary prompt string, by default “>

IFS
Internal field separators, normally space, tab, and newline

SHELL
When the shell is invoked, it scans the environment (see Environ-
ment below) for this name. If it is found and there is an ‘r’ in the
file name part of its value, the shell becomes a restricted shell.

The shell gives default values to PATH, PS1, PS2, and IFS, while

HOME and MAIL are not set at all by the shell (although HOME s set
by login(M)).

28 March 1991 Page 5

SH (C) SH (C)

Blank Interpretation

After parameter and command substitution, the results of substitution
are scanned for internal field separator characters (those found in IFS)
and split into distinct arguments where such characters are found. Ex-
plicit null arguments (""" or - -) are retained. Implicit null arguments
(those resulting from parameters that have no values) are removed.

Filename Generation

Following substitution, each command word is scanned for the char-
acters *, ?, and [. If one of these characters appears, the word is
regarded as a pattern. The word is replaced with alphabetically sorted
filenames that match the pattern. If no filename is found that matches
the pattern, the word is left unchanged. The character . at the start of a
filename or immediately following a /, as well as the character / itself,
must be matched explicitly. These characters and their matching pat-
terns are:

*+ Matches any string, including the null string.
? Matches any single character.

[...]
Matches any one of the enclosed characters. A pair of characters
separated by - matches any character lexically between the pair,
inclusive. If the first character following the opening bracket ([) is
an exclamation mark (!), then any character not enclosed is
matched.

Quoting

The following characters have a special meaning to the shell and
cause termination of a word unless quoted:

; & () | ° < > newline space tab

A character may be quoted (i.e., made to stand for itself) by preceding
it with a \. The pair \newline is ignored. All characters enclosed
between a pair of single quotation marks (-), except a single quota-
tion mark, are quoted. Inside double quotation marks (" "), parameter
and command substitution occurs and \ quotes the characters \, *, ",
and $. "$+" is equivalent to "$1 $2 ...", whereas “$@? is equivalent
to "$1n "$2n L

Prompting

When used interactively, the shell prompts with the value of PS1
before reading a command. If at any time a newline is typed and

28 March 1991 Page 6

SH (C) SH (C)

further input is needed to complete a command, the secondary prompt
(i.e., the value of PS2) is issued.

Spelling Checker

When using cd(C) the shell checks spelling. For example, if you
change to a different directory using cd and misspell the directory
name, the shell responds with an alternative spelling of an existing
directory. Enter “y” and press RETURN (or just press RETURN) to
change to the offered directory. If the offered spelling is incorrect,
enter “n”, then retype the command line. In this example the user
input is boldfaced:

$ ed /usr/spol/uucp
cd /usr/spool/uucp? y
ok

Input/Output

Before a command is executed, its input and output may be redirected
using a special notation interpreted by the shell. The following may
appear anywhere in a simple-command or may precede or follow a
command. They are not passed on to the invoked command; substitu-
tion occurs before word or digit is used:

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1).
If the file does not exist, it is created; otherwise, it is
truncated to zero length.

>>word Use file word as standard output. If the file exists,
output is appended to it (by first seeking the
end-of-file); otherwise, the file is created.

<<[~]word The shell input is read up to a line that is the same as
word, or to an end-of-file. The resulting document
becomes the standard input. If any character of word
is quoted, no interpretation is placed upon the char-
acters of the document; otherwise, parameter and
command substitution occurs, (unescaped) \newline
is ignored, and \ must be used to quote the characters
\, $, *, and the first character of word. If - is
appended to <<, all leading tabs are stripped from
word and from the document.

<&digit The standard input is duplicated from file descriptor

digit (see dup(S)). Similarly for the standard output
using >.

28 March 1991 Page 7

SH (C) SH (C)

<&- The standard input is closed. Similarly for the stan-
dard output using >.

If one of the above is preceded by a digit, the file descriptor created is
that specified by the digit (instead of the default O or 1). For example:

... 2>&1
creates file descriptor 2 that is a duplicate of file descriptor 1.

If a command is followed by &, the default standard input for the
command is the empty file /dev/null. Otherwise, the environment for
the execution of a command contains the file descriptors of the invok-
ing shell as modified by input/output specifications.

Environment

The environment (see environ(M)) is a list of name-value pairs that is
passed to an executed program in the same way as a normal argument
list. The shell interacts with the environment in several ways. On
invocation, the shell scans the environment and creates a parameter
for each name found, giving it the corresponding value. Executed
commands inherit the same environment. If the user modifies the
values of these parameters or creates new ones, none of these affect
the environment unless the export command is used to bind the shell’s
parameter to the environment. The environment seen by any executed
command is composed of any unmodified name-vaiue pairs originally
inherited by the shell, minus any pairs removed by unset, plus any
modifications or additions, all of which must be noted in export com-
mands.

The environment for any simple-command may be augmented by
prefixing it with one or more assignments to parameters. Thus:

TERM=wy60 cmd args
and
(export TERM; TERM=wy60; cmd args)
are equivalent (as far as the above execution of cmd is concerned).
If the -k flag is set, all keyword arguments are placed in the environ-
ment, even if they occur after the command name.
Signals
The INTERRUPT and QUIT signals for an invoked command are

ignored if the command is followed by &; otherwise signals have the
values inherited by the shell from its parent, with the exception of

28 March 1991 Page 8

SH (C) SH (C)

signal 11. See the trap command below.
Execution

Each time a command is executed, the above substitutions are carried
out. If the command name does not match a Special Command, but
matches the name of a defined function, the function is executed in the
shell process (note how this differs from the execution of shell pro-
cedures). The positional parameters $1, $2, ... are set to the arguments
of the function. If the command name matches neither a Special Com-
mand nor the name of a defined function, a new process is created and
an attempt is made to execute the command via exec (S).

The shell parameter PATH defines the search path for the directory
containing the command. Alternative directory names are separated
by a colon (:). The default path is :/bin:/usr/bin (specifying the
current directory, /bin, and /usr/bin, in that order). Note that the
current directory is specified by a null pathname, which can appear
immediately after the equal sign or between the colon delimiters any-
where else in the path list. If the command name contains a /, then the
search path is not used. Otherwise, each directory in the path is
searched for an executable file. If the file has execute permission but
is not an a.out file, it is assumed to be a file containing shell com-
mands. A subshell (i.e., a separate process) is spawned to read it. A
parenthesized command is also executed in a subshell.

Shell procedures are often used by users running the csh. However, if
the first character of the procedure is a # (comment character), csh
assumes the procedure is a csh script, and invokes /bin/csh to execute
it. Always start sh procedures with some other character if csh users
are to run the procedure at any time. This invokes the standard shell
Ibin/sh .

The location in the search path where a command was found is
remembered by the shell (to help avoid unnecessary execs later). If
the command was found in a relative directory, its location must be
re-determined whenever the current directory changes. The shell for-
gets all remembered locations whenever the PATH variable is changed
or the hash -r command is executed (see hash in next section).

Special Commands
Input/output redirection is permitted for these commands:

No effect; the command does nothing. A zero exit code is
returned.

. file

Reads and executes commands from file and returns. The search
path specified by PATH is used to fin- the directory containing file.

28 March 1991 Page 9

SH (C) SH (C)

break [n]

Exits from the enclosing for, while, or until loop, if any. If » is
specified, it breaks n levels.

continue [n |

Resumes the next iteration of the enclosing for, while, or until
loop. If n is specified, it resumes at the n-th enclosing loop.

cd[arg]

Changes the current directory to arg. The shell parameter HOME
is the default arg. The shell parameter CDPATH defines the
search path for the directory containing arg. Altemative directory
names are separated by a colon (:). The default path is <npull>
(specifying the current directory). Note that the current directory
is specified by a null path name, which can appear immediately
after the equal sign or between the colon delimiters anywhere else
in the path list. If arg begins with a /, the search path is not used.
Otherwise, each directory in the path is searched for arg.

If the shell is reading its commands from a terminal, and the
specified directory does not exist (or some component cannot be
searched), spelling correction is applied to each component of
directory , in a search for the “correct” name. The shell then asks
whether or not to try and change directory to the corrected direc-
tory name; an answer of n means “no”, and anything else is taken
as “yes”.

echo [arg]

Writes arguments separated by blanks and terminated by a newline
on the standard output. Arguments may be enclosed in quotes.
Quotes are required so that the shell correctly interprets these spe-
cial escape sequences:

\b Backspace

\c Prints line without newline.
\f Form feed

\n Newline

\r Carriage return

\t Tab

\v Vertical tab

\\ Backslash

\n The 8-bit character whose ASCII code is the 1, 2 or 3-digit octal

number » which must start with a zero

eval [arg ...]

The arguments are read as input to the shell and the resulting
command(s) executed.

28 March 1991 Page 10

SH (C) SH (C)

exec[arg...]
The command specified by the arguments is executed in place of
this shell without creating a new process. Input/output arguments
may appear and, if no other arguments are given, cause the shell
input/output to be modified.

exit[n]
Causes the shell to exit with the exit status specified by n. If n is
omitted, the exit status is that of the last command executed. An
end-of-file will also cause the shell to exit.

export [name ...]
The given names are marked for automatic export to the environ-
ment of subsequently executed commands. If no arguments are
given, a list of all names that are exported in this shell is printed.

getopts
Used in shell scripts to support command syntax standards (see
intro(C)); it parses positional parameters and checks for legal
options. See getopts(C) for usage and description.

hash[-r] [name ...]

For each name, the location in the search path of the command
specified by name is determined and remembered by the shell. The
-r option causes the shell to forget all remembered locations. If no
arguments are given, information about remembered commands is
presented. Hits is the number of times a command has been
invoked by the shell process. Cost is a measure of the work
required to locate a command in the search path. There are certain
situations which require that the stored location of a command be
recalculated. Commands for which this will be done are indicated
by an asterisk (*) adjacent to the hits information. Cost will be
incremented when the recalculation is done.

newgrpf arg ...]
Equivalent to exec newgrp arg ...

pwd
Print the current working directory. See pwd(C) for usage and
description.

read [name ...]
One line is read from the standard input and the first word is
assigned to the first name, the second word to the second name,
etc., with leftover words assigned to the last name. The return
code is O unless an end-of-file is encountered.

readonly [name ...]
The given names are marked readonly and the values of these
names may not be changed by subsequent assignment. If no argu-
ments are given, a list of all readonly names is printed.

return{ n]
Causes a function to exit with the return value specified by n. If n
is omitted, the return status is that of the last command executed.

28 March 1991 Page 11

SH (C) SH (C)

set [-aefhknuvx [arg ...]]
-a Mark variables which are modified or created for export.

-e If the shell is noninteractive, exits immediately if a command
exits with a nonzero exit status.

-f Disables file name generation.

-h Locates and remembers function commands as functions are
defined (function commands are normally located when the
function is executed). For example, /bin/tty would be added to
the hash table if, say, showtty() { tty } is declared. If -h was
unset, it would not be added to the hash table until showtty is
called.

-k Places all keyword arguments in the environment for a com-
mand, not just those that precede the command name.

-n Reads commands but does not execute them.
-u Treats unset variables as an error when substituting.
-v Prints shell input lines as they are read.

-x Prints commands and their arguments as they are executed.
Although this flag is passed to subshells, it does not enable trac-
ing in those subshells.

-- Does not change any of the flags; useful in setting $1 to -.

Using + rather than - causes these flags to be tumed off. These
flags can also be used upon invocation of the shell. The current
set of flags may be found in $-. The remaining arguments are
positional parameters and are assigned, in order, to $1, $2, ...
If no arguments are given, the values of all names are printed.

shift [n]
The positional parameters from $2 ... are renamed $1 ... If n is
specified, shift them by places. shift is the only way to access
positional parameters above $9.

test
Evaluates conditional expressions. See test(C) for usage and
description.

times
Prints the accumulated user and system times for processes run
from the shell.

trap[arg 1[n]...
arg is a command to be read and executed when the shell receives
signal(s) n. (Note that arg is scanned once when the trap is set and
once when the trap is taken.) Trap commands are executed in
order of signal number. The highest signal number allowed is 16.
Any attempt to set a trap on a signal that was ignored on entry to
the current shell is ineffective. An attempt to trap on signal 11
(memory fault) produces an error. If arg is absent, all trap(s) n are
reset to their original values. If arg is the null string, this signal is
ignored by the shell and by the commands it invokes. If # is 0, the
command arg is executed on exit from the shell. The trap

28 March 1991 Page 12

SH (C) SH(C)

command with no arguments prints a list of commands associated
with each signal number.

type [name ...]
For each name, indicate how it would be interpreted if used as a
command name.

ulimit [n]
imposes a size limit of n blocks on files written by the shall and its
child processes (files of any size may be read). Any user may
decrease the file size limit, but only the super-user (root) can
increase the limit. With no argument, the current limit is printed.

unset [name ...]
For each name, remove the corresponding variable or function.
The variables PATH, PS1, PS2, MAILCHECK and IFS cannot be
unset.

umask [ooo 1]
The user file-creation mask is set to the octal number ooo where o
is an octal digit (see umask(C)). If ooo is omitted, the current
value of the mask is printed.

wait [n]
Waits for the specified process to terminate, and reports the termi-
nation status. If n is not given, all currently active child processes
are waited for. The return code from this command is always 0.

Invocation

If the shell is invoked through exec (S) and the first character of argu-
ment O is -, commands are initially read from /etc/profile and then
from $HOME/.profile, if such files exist. Thereafter, commands are
read as described below, which is also the case when the shell is
invoked as /bin/sh. The flags below are interpreted by the shell on
invocation only; note that unless the -c or -s flag is specified, the first
argument is assumed to be the name of a file containing commands,
and the remaining arguments are passed as positional parameters to
that command file:

-c string If the -c flag is present, commands are read from string.

-s If the -s flag is present or if no arguments remain, com-
mands are read from the standard input. Any remaining
arguments specify the positional parameters. Shell output
is written to file descriptor 2.

-t If the -t flag is present, a single command is read and exe-
cuted, and the shell exits. This flag is intended for use by
C programs only and is not useful interactively.

-i If the -i flag is present or if the shell input and output are
attached to a terminal, this shell is interactive. In this
case, TERMINATE is ignored (so that kill 0 does not kill
an interactive shell) and INTERRUPT is caught and
ignored (so that wait is interruptible). In all cases, QUIT

28 March 1991 Page 13

SH (C) SH (C)

is ignored by the shell.

-r If the -r flag is present, the shell is a restricted shell (see
rsh(C)).

The remaining flags and arguments are described under the set com-
mand above.

Exit Status

Errors detected by the shell, such as syntax errors, cause the shell to
return a nonzero exit status. If the shell is being used noninterac-
tively, execution of the shell file is abandoned. Otherwise, the shell
returns the exit status of the last command executed. See the exit com-
mand above.

Files
fetc/profile system default profile
$SHOME/.profile read by login shell at login
/tmp/sh* temporary file for <<
/dev/null source of empty file

See Also

cd(C), env(C), login(M), newgrp(C), rsh(C), test(C), umask(C),
dup(S), exec(S), fork(S), pipe(S), signal(S), umask(S), wait(S),
a.out(F), profile(M), environ(M)

Notes

If << is used to provide standard input to an asynchronous process
invoked by &, the shell gets mixed up about naming the input docu-
ment; a garbage file /tmp/sh#* is created and the shell complains about
not being able to find that file by another name.

If a command is executed, and a command with the same name is
installed in a directory in the search path before the directory where
the original command was found, the shell will continue to exec the
original command. Use the hash command to correct this situation.

If you move the current directory or one above it, pwd may not give
the correct response. Use the ¢d command with a full path name to
correct this situation.

When a sh(C) user logs in, the system reads and executes commands
in /etc/profile before executing commands in the user’s
SHOME] profile. You can, therefore, modify the environment for all
sh(C) users on the system by editing /etc/profile.

28 March 1991 Page 14

SH (C) SH (C)

The shell doesn’t treat the high (eighth) bit in the characters of a com-
mand line argument specially, nor does it strip the eighth bit from the
characters of error messages. Previous versions of the shell used the
eighth bit as a quoting mechanism.

Existing programs that set the eighth bit of characters in order to quote
them as part of the shell command line should be changed to use of the
standard shell quoting mechanisms (see the section on “Quoting”).

Words used to filenames in input/output redirection are not interpreted
for filename generation (see the section on “File Name Generation™).
For example, cat filel > a* will create a file named a*.

Because commands in pipelines are run as separate processes, vari-
ables set in a pipeline have no effect on the parent shell.

If you get the error message:
fork failed - too many processes

try using the wait(C) command to clean up your background pro-
cesses. If this doesn’t help, the system process table is probably full or
you have too many active foreground processes (there is a limit to the
number of processes that can associated with your login, and to the
number the system can keep track of). These limits are associated
with the kernel parameters NPROC and MAXUPRC.

Warnings

Not all processes of a 3- or more-stage pipeline are children of the
shell, and thus cannot be waited for.

For wait n, if n is not an active process id, all your shell’s currently

active background processes are waited for and the return code will be
zero.

28 March 1991 Page 15

SHL (C) SHL (C)

Name

shl - Shell layer manager

Syntax
shl

Description

shl allows a user to interact with more than one shell from a single ter-
minal. The user controls these shells, known as layers, using the com-
mands described below.

The current layer is the layer that can receive input from the key-
board. Other layers attempting to read from the keyboard are blocked.
Output from multiple layers is multiplexed onto the terminal. To have
the output of a layer blocked when it is not current, the stty(C) option
loblk may be set within the layer.

The stty character swtch (set to “Z if NUL) is used to switch control to
shl from a layer. skl has its own prompt, >>>, to help distinguish it
from a layer.

A layer is a shell that has been bound to a virtual tty device
(/dev/sxt???). The virtual device can be manipulated like a real tty
device using stty(C) and ioctl(S). Each layer has its own process
group id.

Definitions

A name is a sequence of characters delimited by a blank, tab or new-
line. Only the first eight characters are significant. The names (1)
through (7) cannot be used when creating a layer. They are used by
shl when no name is supplied. They may be abbreviated to just the
digit.

Commands

The following commands may be issued from the shl prompt level.
Any unique prefix is accepted.

create name
Create a layer called name and make it the current layer. If no
argument is given, a layer will be created with a name of the form
(#) where # is the last digit of the virtual device bound to the layer.
The shell prompt variable PS1 is set to the name of the layer fol-
lowed by a space, or, if superuser, the name followed by a sharp (#)

28 March 1991 Page 1

SHL (C) SHL (C)

and a space. A maximum of seven layers can be created.

block name [name ...}
For each name, block the output of the corresponding layer when it
is not the current layer. This is equivalent to setting the szzy option
loblk within the layer.

delete name name ...
For each name, delete the corresponding layer. All processes in
the process group of the layer are sent the SIGHUP signal (see sig-
nal(2)).

help (or ?)
Print the syntax of the sh/ commands.

layers -1 nrame ...
For each name, list the layer name and its process group. The -l
option produces a ps(1)-like listing. If no arguments are given, in-
formation is presented for all existing layers.

resume name
Make the layer referenced by name the current layer. If no argu-
ment is given, the last existing current layer will be resumed.

toggle
Resume the layer that was current before the last current layer.

unblock name { name ...]
For each name, do not block the output of the corresponding layer
when it is not the current layer. This is equivalent to setting the
stty option loblk within the layer.

quit
Exit shl. All layers are sent the SIGHUP signal.

name
Make the layer referenced by name the current layer.

Files
/dev/sxt??? Virtual tty devices
$SHELL Variable containing path name of the shell to
use (default is /bin/sh).
See Also

ioctl(S), mkdev(ADM), sh(C), signal(S), stty(C), sxt(M)

28 March 1991 Page 2

SHL (C) SHL (C)

Note
It is inadvisable to kill shl.
If shi does not run properly on a particular terminal, you may have to
set istrip for that terminal’s line by entering the following command
at the terminal:
stty istrip

By default, XENIX is configured for one shell layer session at a time.
To increase this single session limit, enter the command:

mkdev shl
This executes a script which prompts you for the number of sessions
desired. The script also allows you to relink the kernel. The new ses-

sion limit becomes effective after the kernel is rebooted. (For more in-
formation, see mkdev(ADM).)

28 March 1991 Page 3

SIZE (C) SIZE (C)

Name

size - Prints the size of an object file.

Syntax

size [object ...]

Description
size prints the (decimal) number of bytes required by the text, data,

and bss portions, and their sum in decimal and hexadecimal, of each
object-file argument. If no file is specified, a.out is used.

See Also
a.out(F)

28 March 1991 Page 1

SLEEP (C) SLEEP (C)

Name

sleep - Suspends execution for an interval.

Syntax

sleep time

Description

sleep suspends execution for time seconds. It is used to execute a
command after a certain amount of time as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do
command
sleep 37
done

See Also
alarm(8S), sleep(S)

Notes

It is recommended that time be less than 65536 seconds.

28 March 1991 Page 1

SORT (C) SORT (C)

Name

sort - Sorts and merges files.

Syntax

sort [-cmu] [-ooutput] [-ykmem] [-zrecsz] [-dfiMnr] [-b] [-tx]
[+pos1] [-pos2] [files]

Description

sort sorts lines of all the named files together and writes the result on
the standard output. The standard input is read if - is used as a file
name or if no input files are named.

Comparisons are based on one or more sort keys extracted from each
line of input. By default, there is one sort key, the entire input line,
and ordering is determined by the collating sequence defined by the
locale (see locale (M)).

The following options alter the default behavior:

«¢ Check that the input file is sorted according to the ordering
rules; give no output unless the file is out of sort.

-m Merge only, the input files are already sorted.

-u Unique: suppress all but one in each set of lines having equal
keys. This option can result in unwanted characters placed at
the end of the sorted file.

-ooutput
The argument given is the name of an output file to use instead
of the standard output. This file may be the same as one of the
inputs. There may be optional blanks between -0 and output.

-ykmem

The amount of main memory used by the sort has a large impact
on its performance. Sorting a small file in a large amount of
memory is a waste. If this option is omitted, sort begins using a
system default memory size, and continues to use more space as
needed. If this option is presented with a value, kmem, sort will
start using that number of kilobytes of memory, unless the
administrative minimum or maximum is violated, in which case
the comresponding extremum will be used. Thus, -y0 is
guaranteed to start with minimum memory. By convention, -y
(with no argument) starts with maximum memory.

28 March 1991 Page 1

SORT (C) SORT (C)

-zrecsz

Causes sort to use a buffer size of recsz bytes for the merge
phase. Input lines longer than the buffer size will cause sort to
terminate abnormally. Nommally, the size of the longest line
read during the sort phase is recorded and this maximum is used
as the record size during the merge phase, eliminating the need
for the -z option. However, when the sort phase is omitted (-¢ or
-m options) a system default buffer size is used, and if this is not
large enough, the -z option should be used to prevent abnormal
termination.

The following options override the default ordering rules.

-d “Dictionary” order: only letters, digits and blanks (spaces and
tabs) are significant in comparisons. Dictionary order is defined
by the locale setting (see locale (M)).

-f Fold lower case letters into upper case. Conversion between
lowercase and uppercase letters are governed by the locale set-
ting (see locale (M)).

-i Ignore non-printable characters in non-numeric comparisons.
Non-printable characters are defined by the locale setting (see
locale (M)).

M Compare as months. The first three non-blank characters of the
field are folded to upper case and compared so that “JAN” <
“FEB” < ... < “DEC”. Invalid fields compare low to “JAN™.
The -M option implies the -b option (see below).

-n An initial pumeric string, consisting of optional blanks, an
optional minus sign, and zero or more digits with optional
decimal point, is sorted by arithmetic value. The -n option
implies the -b option (see below). Note that the -b option is
only effective when restricted sort key specifications are in
effect.

-r Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifica-
tions, the requested ordering rules are applied globally to all sort keys.
When attached to a specific sort key (described below), the specified
ordering options override all global ordering options for that key.

The notation +posl -pos2 restricts a sort key to one beginning at posl
and ending at pos2. The characters at positions pos!/ and pos2 are
included in the sort key (provided that pos2 does not precede posl). A
missing -pos2 means the end of the line.

28 March 1991 Page 2

SORT (C) SORT (C)

Specifying posl and pos2 involves the notion of a field (a minimal
sequence of characters followed by a field separator or a newline). By
default, the first blank (space or tab) of a sequence of blanks acts as
the field separator. All blanks in a sequence of blanks are considered
to be part of the next field; for example, all blanks at the beginning of
a line are considered to be part of the first field. The treatment of field
separators can be altered using the options:

-tx Use x as the field separator character; x is not considered to be
part of a field (although it may be included in a sort key). Each
occurrence of x is significant (e.g., xx delimits an empty ficld).

-b Ignore leading blanks when determining the starting and ending
positions of a restricted sort key. If the -b option is specified
before the first +posl argument, it will be applied to all +pos/
arguments. Otherwise, the b flag may be attached indepen-
dently to each +pos! or -pos2 argument (see below).

Posl and pos2 each have the form m.n optionally followed by one or

more of the flags b, d, f, i, m, or r. A starting position specified by

+m.n is interpreted to mean the n+1st character in the m+1st field. A

missing .» means .0, indicating the first character of the m+1st field. If

the b flag is in effect, n is counted from the first non-blank in the

;in+1st field; +m.Ob refers to the first non-blank character in the m+1st
eld.

A last position specified by -m.n is interpreted to mean the nth charac-
ter (including separators) after the last character of the mth field. A
missing .# means .0, indicating the last character of the mth field. If
the b flag is in effect, n is counted from the last leading blank in the
m+1st field; -m.1b refers to the first non-blank in the m+1st field.
When there are multiple sort keys, later keys are compared only after
all earlier keys compare equal. Lines that otherwise compare equal
are ordered with all bytes significant.
Examples

Sort the contents of infile with the second field as the sort key:

sort +1 -2 infile
Sort, in reverse order, the contents of infilel and infile2, placing the
output in outfile and using the first character of the second field as the
sort key:

sort -1 -o outfile +1.0 -1.2 infilel infile2

Sort, in reverse order, the contents of infilel and infile2 using the first
non-blank character of the second field as the sort key:

28 March 1991 Page 3

SORT (C) SORT (C)

sort -r +1.0b -1.1b infilel infile2

Print the password file (passwd(F)) sorted by the numeric user ID (the
third colon-separated field):

sort -t: +2n -3 /etc/passwd
Print the lines of the already sorted file infile, suppressing all but the
first occurrence of lines having the same third field (the options -um
with just one input file make the choice of a unique representative
from a set of equal lines predictable):

sort -um +2 -3 infile

Files

fusr/tmp/stm???

See Also
coltbl(M), comm(C), join(C), locale(M), unig(C)

Diagnostics

Comments and exits with non-zero status for various trouble condi-
tions (e.g., when input lines are too long), and for disorders discovered
under the -c option. When the last line of an input file is missing a
newline character, sort appends one, prints a warning message, and
continues.

28 March 1991 Page 4

SPLIT (C) SPLIT (C)

Name

split - Splits a file into pieces.

Syntax
split [-n] [file [name]]

Description
split reads file and writes it in as many n-line pieces as necessary
(default 1000), onto a set of output files. The name of the first output
file is name with aa appended, and so on lexicographically. If no out-
put name is given, X is default.
If no input file is given, or if a dash (-) is given instead, the standard
input file is used.

See Also

bfs(C), csplit(C)

28 March 1991 Page 1

STRINGS (C) STRINGS (C)

Name

strings - Find the printable strings in an object file.

Syntax

strings [-] [-0] [-number] filename ...

Description

strings looks for ASCH strings in a binary file. A string is any
sequence of four or more printing characters ending with a newline or
a null character. Unless the - flag is given, strings only looks in the
initialized data space of object files. If the -o flag is given, then each
string is preceded by its decimal offset in the file. If the -number flag
is given then number is used as the minimum siring length rather than
4.

strings is useful for identifying random object files and many other
things.

See Also
hd(C), od(C)

Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

28 March 1991 Page 1

STTY (C) STTY (C)

Name

stty - Sets the options for a terminal.

Syntax
stty [-a] [-g] [options]

Description

stty sets certain terminal I/O options for the device that is the current
standard input; without arguments, it reports the settings of certain
options. With the -a option, stty reports all of the option settings; with
the -g option, it reports current settings in a form that can be used as
an argument to another stty command. Detailed information about the
modes listed in the first four groups may be found in termio(M).
options in the last group are implemented using options in the previ-
ous groups. Refer to vidi(C) for hardware specific information that
describes control modes for the video monitor and other display de-
vices.

Common Control Modes

parenb (-parenb)
Enables (disables) parity generation and detection.

parodd (-parodd)
Selects odd (even) parity.

¢sS ¢s6 cs7 cs8
Selects character size (see tty (M)).

0 Hangs up phone line immediately.

50 75 110 134 150 200 300 600

1200 1800 2400 4800 9600 exta extb
Sets terminal baud rate to the number given, if possible. exta and
extb are not defined for the built-in serial driver, but are often used
by 3rd-party serial port drivers to specify 19200 and 38400 bits per
second.

hupcl (-hupcl)
Hangs up (does not hang up) phone connection on last close.

hup (-hup)
Same as hupcl (-hupcl).

28 March 1991 Page 1

STTY (C) STTY (C)
cstopb (-cstopb)
Uses two(one) stop bits per character.

cread (-cread)
Enables (disables) the receiver.

clocal (-clocal)
Assumes a line without (with) modem control.

ctsflow (-ctsflow)
Enables CTS protocol for a modem line.

rtsflow (-rtsflow)
Enables RTS signaling for a modem line.

Input Modes

ignbrk (-ignbrk)
Ignores (does not ignore) break on input.

brkint (-brkint)
Signals (does not signal) INTERRUPT on break.

ignpar (-ignpar)
Ignores (does not ignore) parity errors.

loblk (-loblk)
block (do not block) output from a non-current layer.

parmrk (-parmrk)
Marks (does not mark) parity errors (see tty (M)).

inpck (-inpck)
Enables (disables) input parity checking.

istrip (-istrip)
Strips (does not strip) input characters to 7 bits.

inler (-inler)
Maps (does not map) NL to CR on input.

igner (-igner)
Ignores (does not ignore) CR on input.

icrnl (-icrnl)
Maps (does not map) CR to NL on input.

iucle (-iuclc)
Maps (does not map) uppercase alphabetics to lowercase on input.

28 March 1991 Page 2

STTY (C) STTY (C)

ixon (-ixon)
Enables (disables) START/STOP output control. Output is stopped
by sending an ASCII DC3 and started by sending an ASCII DC1.

ixany (-ixany)
Allows any character (only DCI) to restart output.

ixoff (-ixoff)
Requests that the system send (not send) START/STOP characters
when the input queue is nearly empty/full.

Output Modes

opost (-opost)
Post-processes output (does not post-process output; ignores all
other output modes).

olcuc (-olcuc)
Maps (does not map) lowercase alphabetics to uppercase on out-
put.

onlcr (-onlcr)
Maps (does not map) NL to CR-NL on output.

ocrnl (-ocrnl)
Maps (does not map) CR to NL on output.

onocr (-onocr)
Does not (does) output CRs at column zero.

onlret (-onlret)
On the terminal NL performs (does not perform) the CR function.

ofill (-ofill)
Uses fill characters (uses timing) for delays.

ofdel (-ofdel)
Fill characters are DELETEs (NULs).

crOcrl er2 cr3
Selects style of delay for RETURNS (see 1ty (M)).

nl0 ni1
Selects style of delay for LINEFEED:s (see tty (M)).

tab0 tabl tab2 tab3
Selects style of delay for horizontal TABs (see tty(M)).

bs0 bsl
Selects style of delay for BACKSPACE:s (see try (M)).

28 March 1991 Page 3

STTY (C) STTY (C)

10 ff1
Selects style of delay for FORMFEEDs (see tty (M)).

vt0 vtl
Selects style of delay for Vertical TABs (see tty(M)).

Local Modes

isig (-isig)
Enables (disables) the checking of characters against the special
control characters INTERRUPT and QUIT.

icanon (-icanon)
Enables (disables) canonical input (ERASE and KILL processing).

xcase (-xcase)
Canonical (unprocessed) upper/lowercase presentation.

echo (-echo)
Echoes back (does not echo back) every character typed.

echoe (-echoe)
Echoes (does not echo) ERASE character as a SPACEBAR string.
Note: this mode will erase the ERASE character on many CRT ter-
minals; however, it does not keep track of column position and, as
a result, may be confusing on escaped characters, TABs, and
BACKSPACEs.

echok (-echok)
Echoes (does not echo) NL after KILL character.

Ifke (-Ifkc)
The same as echok (-echok); obsolete.

echonl (-echonl)
Echoes (does not echo) NL.

noflsh (-noflsh)
Disables (enables) flush after INTERRUPT or QUIT.

Control Assignments

control-character ¢
set control-character to ¢, where control-character is erase, Kill,
intr, quit, swtch, eof, or eol. If ¢ is preceded by an (escaped from
the shell) caret (°), then the value used is the corresponding CTRL
character (e.g., “"d” is a CTRL-d); “*?” is interpreted as DEL and
“".” is interpreted as undefined.

28 March 1991 Page 4

STTY (C) STTY (C)

min /, time i (0<i<127)
When -icanon is set, and one character has been received, read
requests are not satisfied until at least min characters have been
received or the timeout value time has expired and one character
has been received. See 1y(C).

line |
Sets the line discipline to i (0<i <127).

Combination Modes

evenp or parity
Enables parenb and cs7.

oddp
Enables parenb, ¢s7, and parodd.

-parity, -evenp, or -oddp
Disables parenb, and sets cs8.

raw (-raw or cooked)
Enables (disables) raw input and output (no ERASE, KILL, INTER-
RUPT, QUIT, EOF, EOL, or output post-processing).

nl (-nl)
Unsets (sets) icrnl, onlcr. In addition -nl unsets inlcr, igner,
ocrnl, and onlret.

Icase (-Icase)
Sets (unsets) xcase, iuclc, and olcuc.

LCASE (-LCASE)
Same as Icase (-Icase).

tabs (-tabs or tab3)
Preserves (expands to spaces) tabs when printing.

ek Resets ERASE and KILL characters back to normal CTRL-H and
CTRL-U.

sane

Resets all modes to some reasonable values. Useful when a
terminal’s settings have been hopelessly scrambled.

28 March 1991 Page 5

STTY (C) STTY (C)

term
Sets all modes suitable for the terminal type, TERM.

See Also
console(M), ioctl(S), vidi(C), tty(M), termio(M)

Notes

Many combinations of options make no sense, but no checking is per-
formed.

28 March 1991 Page 6

SU(C) SU(C)

Name

su - Makes the user a super-user or another user.

Syntax

su[-][name[arg...]]

Description

su allows you to become another user without logging off. The
default user name is root (i.e., super-user).

To use su, the appropriate password must be supplied (unless you are
already a super-user). If the password is correct, su will execute a
new shell with the real and effective user ID set to that of the specified
user. The new shell will be the optional program named in the shell
field of the specified user’s password file (/bin/sh if none is specified
(see sh(C)). To restore normal user ID privileges, press EOF (Ctrl-D)
to the new shell.

Any additional arguments given on the command line are passed to
the program invoked as the shell. When using programs like s#(C), an
arg of the form -c¢ string executes string via the shell and an arg of -r
gives the user a restricted shell.

The following statements are true only if the optional program named
in the shell field of the specified user’s password file entry is like
sh(C). If the first argument to su is a -, the environment is changed to
what would be expected if the user actually logged in as the specified
user. This is done by invoking the program used as the shell with an
arg0 value whose first character is -, thus causing first the system’s
profile (/etc/profile) and then the specified user’s profile (.profile in
the new HOME directory) to be executed. Otherwise, the environ-
ment is passed along with the possible exception of $PATH, which is
set to /bin:/etc:/usr/bin for root. Note that if the optional program
used as the shell is /bin/sh, the user’s .profile can check arg0 for -sh
or -su to determine if it was invoked by login(M) or su(C), respec-
tively. If the user’s program is other than /bin/sh, then .profile is
invoked with an arg0 of -program by both login(M) and su(C).

28 March 1991 Page 1

SU(C) SU(C)

The file /etc/default/su can be used to control several aspects of how
su is used. Several entries can be placed in /etc/default/su:

SULOG Name of log file to record all attempts to use su. Usually
fusr/adm/sulog. If not set, no logfile is kept. (See exam-
ple below.)

PATH The PATH environment variable to set for non-root users.
If not set, it defaults to “:/bin:/usr/bin”. The current
PATH environment variable is ignored.

SUPATH When invoked by root, the path is set by default to
“/bin:/usr/bin:/etc”, unless this variable is defined. The
current PATH is ignored.

CONSOLE Attempts to use su are logged to the named file, indepen-
dently of SULOG.

For example, if you want to log all attempts by users to become root,
create the file /etc/default/su. In this file, place a string similar to
SULOG=/usr/adm/sulog. This causes all attempts by any user to
switch user IDs to be recorded in the file /usr/adm/sulog. This
filename is arbitrary. The su logfile records the original user, the UID
of the su attempt, and the time of the attempt. If the attempt is suc-
cessful, a plus sign (+) is placed on the line describing the attempt. A
minus sign (-) indicates an unsuccessful attempt.

Examples

To become user bin while retaining your previously exported environ-
ment, enter:

su bin

To become user bin but change the environment to what would be
expected if bin had originally logged in, enter:

su - bin

To execute command with the temporary environment and permissions
of user bin, enter:

su - bin -¢ “command args”

Files
fetc/passwd The system password file
fetc/default/su Optional file containing control options
fetc/profile The system profile
$HOME/.profile The user profile

28 March 1991 Page 2

SU(C) SU(C)

See Also
env(C), environ(M), login(M), passwd(F), profile(M), sh(C)

28 March 1991 Page 3

SUM (C) SUM (C)

Name

sum - Calculates checksum and counts blocks in a file.

Syntax

sum [-r] file

Description
sum calculates and prints a 16-bit checksum for the named file, and
also prints the number of blocks in the file. It is typically used to look
for bad spots, or to validate a file communicated over a transmission
line. The option -r causes an alternate algorithm to be used in com-
puting the checksum.

See Also

cmchk(C), machine(M), wc(C)
Diagnostics
“Read error” is indistinguishable from end-of-file on most devices;

check the block count.

Notes
This utility uses 1024-byte blocks.

28 March 1991 Page 1

TAIL (C) TAIL (C)

Name

tail - Delivers the last part of a file.

Syntax
tail [Z[{number][lbc] [-f]] [file]

Description

tail copies the named file to the standard output beginning at a desig-
nated place. If no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number
from the end of the input (if number is null, the value 10 is assumed).
Number is counted in units of lines, blocks, or characters, according to
the appended option I, b, or c. When no units are specified, counting
is by lines.

With the -f (“follow”) option, if the input file is not a pipe, the pro-
gram will not terminate after the last line of the input file has been
copied, but will enter an endless loop, wherein it sleeps for a second
and then attempts to read and copy further records from the input file.

Thus it may be used to monitor the growth of a file that is being writ-
ten by some other process. For example, the command:

tail -f file
will print the last ten lines of file, followed by any lines that are
appended to file between the time zail is initiated and killed.
See Also
dd(C)

Notes
Tails relative to the end of the file are kept in a buffer, and thus are

limited in length. Unpredictable results can occur if character special
files are “tailed’’.

28 March 1991 Page 1

TAPE (C) TAPE (C)

Name

tape, mcart - Magnetic tape maintenance program.

Syntax
tape [-csf8i] [-a arg] command { device]

mcart command [device]

Description

tape sends commands to and receives status from the tape subsystem.
tape can communicate with QIC-02 cartridge tape drives, SCSI tape
drives, and QIC-40, QIC-80 and Irwin mini-cartridge tape drives.
(The mcart program is automatically invoked by tape when options
specific to the Irwin driver are used.)

tape reads /etc/default/tape to find the default device name for send-
ing commands and receiving status. For example, the following line
in /etc/default/tape will cause tape to communicate with the QIC-02
cartridge tape device:

device = /dev/xct0

If a device name is specified on the command line, it overrides the
default device. tape queries the device to determine its device type.
If the device does not respond to the query, for example if the car-
tridge tape driver is from an earlier release, tape will print a warning
message and assume the device is a QIC-02 cartridge tape.

You can explicitly specify the type of the device by using the device
type flags, as follows:

-C QIC-02 cartridge tape

-s SCSI tape

-f QIC-40 mini-cartridge tape
-8 QIC-80 mini-cartridge tape
- Irwin mini-cartridge tape

The -a flag allows you to pass an argument to commands that can use
them. The only command that currently can take an argument is the
format command, and a format argument is only valid with QIC-40
and QIC-80 tape drives.

28 March 1991 Page 1

TAPE (C) TAPE (C)

The following commands can be used with the various tape drivers
supported under XENIX. The letters following each description indi-
cate which drivers support each command:

A All drivers
C QIC-02 cartridge tape driver
S SCSI tape driver
F QIC-40 and QIC-80 mini-cartridge tape drivers
I Irwin mini-cartridge tape driver
amount

Report amount of data in current or last transfer. (C,S,F)

erase
Erase and retension the tape cartridge. (C,S,F)

load
Loads the tape cartridge. (S)

reset
Reset tape controller and tape drive. Clears error conditions and
returns tape subsystem to power-up state. (C,S,F)

reten
Retension tape cartridge. Should be used periodically to remedy
slack tape problems. Tape slack can cause an unusually large
number of tape errors. (A)

rewind
Rewind to beginning of tape. (A)

status
The status output looks like this:
status: status message
soft errors: n
underruns: m

status message is a report of the current status of the drive; “no
cartridge,” “write protected,” or “beginning of tape” are typical
status messages.

soft errors is the number of recoverable errors that occurred during
the last tape operation. A recoverable error is one which is
correctable by the drive or controller. An example of a non-
recoverable “hard” error is an attempt to write to a write-protected
cartridge. Note that if the number of soft errors greatly exceeds
the manufacturer’s specifications, the drive may require service or
replacement, or you may be using defective tape.

28 March 1991 Page 2

TAPE (C) TAPE (C)

underruns is the number of times the tape drive had to stop and
restart due to tape buffer underflows. Underruns are not errors, but
an indication that the data transfer did not occur at the drive’s max-
imum data transfer rate. The number of underruns can be affected
by system load. (C,S,F)

unload
Unloads the tape cartridge. (S)

format

Format the tape cartridge. Floppy controller-based tapes must be
formatted before they can be used. This command takes approxi-
mately one minute per megabyte of tape capacity. If an argument
is provided with the -a flag, the number of tracks specified by the
argument will be formatted. Only even numbers less than or equal
to the number of tracks on the tape are allowed. (See tape(HW)
for more information.) If no argument is given, the entire tape will
be formatted. Preformatted tapes are available and are highly
recommended. They are more reliable than user-formatted tapes.
Before reformatting a used tape, it must be erased with a bulk
eraser. Proper use of a bulk eraser is essential; refer to the docu-
mentation for your bulk eraser before attempting to use it. (F,I)

getbb
Prints a list of bad tape blocks detected during the last tape opera-
tion. This listing can be saved in a file for use by the putbb com-
mand. (F)

putbb
Reads a list of bad tape blocks from the standard input and adds
them to the bad block table on the tape. The format expected by
putbb is the same as generated by the getbb command. (F)

rfm
Wind tape forward to the next file mark. (C,S)

wfm
Write a file mark at the current tape position. (C,S)

28 March 1991 Page 3

TAPE (C) TAPE (C)

Irwin-specific Commands
The following commands are all specific to Irwin drives.

drive
displays information about the Irwin driver and the tape drive. An
example display is:

Special file: /dev/rctmini
Driver version: 1.0.6a
Drive type: 285XL

Drive firmware: A0
Controller type: SYSFDC
Unit select (0-3): 3

Special file is the name of the special file used to access the driver.
Driver version is the version of the driver linked with the kernel.

Drive type is an “equivalent’’ tape drive model number as deter-
mined by the MC driver. Since the exact model number of the tape
drive depends on the drive’s form factor and whether the drive is
mounted in its own cabinet, the equivalent model number may not
be the exact model of the installed tape drive. The following is a
list of equivalent drives:

110: 110,310,410

120[XL]: 120, 220, 320, 420, 720, 2020
125: 125,225, 325, 425, 725
145[XL]: 145, 245, 345, 445, 745, 2040
165: 165, 265, 465, 765

285XL: 285,485, 785, 2080

287XL: 287,487,787,2120

The brackets in the 120[XL] and 145[XL] mean the letters “XL”
may or may not be present. When the letters “XL” appear, the
drive is capable of servo writing extra long (i.e., 307.5 foot
DC2120) tapes.

Note: When this field displays “125/145,” either a 125 drive or an
early model 145 drive with a DC1000 is present, the driver can’t
distinguish between the two. A 125 drive will only accept a
DC1000 cartridge (a DC2000 or DC2120 will not fit). A 145 drive
will accommodate DC1000, DC2000, or DC2120 cartridges.

Drive firmware is the firmware part number and revision levei.
This line is present only for drives which report this information.

28 March 1991 Page 4

TAPE (C) TAPE (C)

Controller type: is a mnemonic for the floppy controller to which
the tape drive is attached:

Mnemonic Description

SYSEDC System floppy controller

ALTFDC Alternate floppy controller

4100MC Irwin 4100MC Micro Channel controller
4100MCB Second 4100MC Micro Channel controller
4100 Irwin 4100 PC Bus controller

4100B Second 4100 PC Bus controller

Unit select (0-3) gives the controller’s unit select, in the range O
through 3. The unit select selects the drive.

info
displays Irwin cartridge information. For example:

Cartridge state: Formatted
Cartridge format: 145
Write protect slider position: RECORD

Cartridge state is the current state of the cartridge’s format.

Cartridge format indicates the format on the cartridge’s tape. The
format is given in a code which is the same as the drive model on
which the cartridge was originally formatted (see drive and
tape(HW) for details). When the cartridge is blank, the code has
the format which would be applied by the format command.

Write protect slider position is RECORD or PROTECT.

capacity
cartridge capacity in 512-byte blocks.

kapacity
cartridge capacity in 1024-byte blocks.

These two commands give the total usable data storage capacity of

a formatted tape cartridge. Variations in cartridge capacity are due
to differing numbers of bad blocks.

28 March 1991 Page 5

TAPE (C) TAPE (C)

Files

/dev/tStp0 /dev/rctO /dev/erctO /dev/mmcl
/dev/nrStp0 /dev/nrct0 /dev/xctO /dev/mcdaemon
/dev/xStp0 /dev/rct2 /dev/rctmini

/dev/rft0 /dev/nrct2 /dev/xctmini

/dev/xft0 /dev/xct0 /dev/rmc0

fetc/default/tape
Include files:

fusr/include/sys/tape.h
/fusr/include/sys/ct.h
fusr/include/sys/ft.h
fusrfinclude/sysfir.h

See Also

backup(ADM), cpio(C), dd(C), restore(ADM), tape(HW), tar(C),
mcdaemon(F)

Notes

See tape(HW) and your Release Notes for a list of supported tape
drives.

The amount and reset commands can be used while the tape is busy
with other operations. All other commands wait until the currently
executing command has been completed before proceeding.

When you are using the non-rewinding tape device or the tape com-
mands rfm and wfm, the tape drive light remains on after the com-
mand has been completed, indicating that more operations may be
performed on the tape. The tape rewind command may be used to
clear this condition.

For more information on devicefiles, (listed above), see the tape(HW)
manual page.

The amount command doesn’t work with QIC-40 mini-cartridge tape
devices.

28 March 1991 Page 6

TAPEDUMP (C) TAPEDUMP (C)

Name

tapedump - dumps magnetic tape to output file.

Syntax

tapedump [-al-e] [-ol-h] [-btsnnum] tape_device output_file

Description

tapedump dumps the contents of magnetic tapes according to the
options specified. Options include conversion from input format to
user specified output format, specification of input and output block-
size, and the ability to specify that the dump begin at a specific start
block on the tape and proceed for a specified number of blocks.

Options

Option Value

tape_device The input tape device.
-a Convert from EBCDIC input to ASCII output.
-e Convert from ASCII input to EBCDIC output.
-0 Display tape output in octal format.
<h Display tape output in hexadecimal format.
-b num skips n input records before starting dump.
-t num Specify which tape file to begin dump from,
where num is the tape file sequence number.
-S num Specify tape block address from which to start dump.
-n num Specify dump of only num blocks.
output_file The output filename; standard output is the default.
Examples

This command reads a tape starting at block 400 and outputs the
results in hexadecimal format into a user specified file called
/tmp/hex.dump:

28 March 1991 Page 1

TAPEDUMP (C) TAPEDUMP (C)

tapedump -b400 -h /dev/rct0 /tmp/hexdump

This command reads an EBCDIC tape and converts the standard out-
put to ASCII:

tapedump -a /dev/rct0
See Also

sysadmsh(ADM), dd(C), hd(C), 0od(C), tape(C)
Notes

The output file may be specified to be another tape device.

28 March 1991 Page 2

TAR (C) TAR (C)

Name

tar - Archives files.

Syntax
tar [key] [files]

Description

tar saves and restores files to and from an archive medium, which is
typically a storage device such as floppy disk or tape, or a regular file.
Its actions are controlled by the key argument. The key is a string of
characters containing at most one function letter and possibly one or
more function modifiers. Valid function letters are ¢, ¢, X, and e.
Other arguments to the command are files (or directory names) speci-
fying which files are to be backed up or restored. In all cases, appear-
ance of a directory name refers to the files and (recursively) subdirec-
tories of that directory. The r and u options cannot be used with tape
devices.

The function portion of the key is specified by one of the following
letters:

\

r The named files are written to the end of an existing archive.

X The named files are extracted from the archive. If a named
file matches a directory whose contents had been written
onto the archive, this directory is (recursively) extracted.
The owner, modification time, and mode are restored (if pos-
sible). If no files argument is given, the entire contents of
the archive are extracted. Note that if several files with the
same name are on the archive, the last one overwrites all
earlier ones.

t The names of the specified files are listed each time that
they occur on the archive. If no files argument is given, all
the names on the archive are listed.

u The named files are added to the archive if they are not
already there, or if they have been modified since last writ-
ten on that archive.

c Creates a new archive; writing begins at the beginning of the
archive, instead of after the last file.

28 March 1991 Page 1

TAR (C) TAR (C)

The following characters may be used in addition to the letter that
selects the desired function:

90....,9999
This modifier selects the drive on which the archive is
mounted. The default is found in the file /etc/default/tar.

v Normally, tar does its work silently. The v (verbose) option
causes it to display the name of each file it treats, preceded
by the function letter. With the t function, v gives more in-
formation about the archive entries than just the name.

w Causes rar to display the action to be taken, followed by the
name of the file, and then wait for the user’s confirmation. If
a word beginning with y is given, the action is performed.
Any other input means “no”.

f Causes tar to use the next argument as the name of the
archive instead of the default device listed in
letc/default/tar. If the name of the file is a dash (-), tar
writes to the standard output or reads from the standard
input, whichever is appropriate. Thus, far can be used as the
head or tail of a pipeline. far can also be used to move
hierarchies with the command:

cd fromdir; tar cf - .1 (cd todir; tar xf -)

b Causes rar to use the next argument as the blocking factor
for archive records. The default is 1, the maximum is 20.
This option should only be used with raw magnetic tape
archives (see f above). The block size is determined auto-
matically when reading tapes (key letters x and t).

F Causes tar to use the next argument as the name of a file
from which succeeding arguments are taken.

1 Tells tar to display an error message if it cannot resolve all
of the links to the files being backed up. If1is not specified,
no error messages are displayed.

m Tells tar to not restore the modification times. The
modification time of the file is the time of extraction.

k Causes tar to use the next argument as the size of an archive
volume in kilobytes. The minimum value allowed is 250.
Very large files are split into “extents” across volumes.
When restoring from a multivolume archive, tar only
prompts for a new volume if a split file has been partially
restored. To override the value of k in the default file,
specify k as 0 on the command line.

28 March 1991 Page 2

TAR (C) TAR (C)

e Prevents files from being split across volumes (tapes or
floppy disks). If there is not enough room on the present vol-
ume for a given file, rar prompts for a new volume. This is
only valid when the k option is also specified on the com-
mand line.

n Indicates the archive device is not a magnetic tape. The k
option implies this. Listing and extracting the contents of an
archive are sped because far can seek over files it wishes to
skip. Sizes are printed in kilobytes instead of tape blocks.

] Indicates that files are extracted using their original permis-
sions. It is possible that a non-super-user may be unable to
extract files because of the permissions associated with the
files or directories being extracted.

A Suppresses absolute filenames. Any leading “/”characters
are removed from filenames. During extraction arguments
given should match the relative (rather than the absolute)
pathnames. With the ¢, r, u options the A option can be
used to inhibit putting leading slashes in the archive
headers.

q During extraction, causes far to exit immediately after each
file on the command line has been extracted, rather than
continuing to look for additional files of the same name.

tar reads /etc/default/tar to obtain default values for the device,
blocking factor, volume size, and the device type (tape or non-tape).
If no numeric key is specified on the command, tar looks for a line in
the default file beginning with the string archive=. Following this
pattern are 4 blank separated strings indicating the values for the de-
vice, blocking factor, volume size and device type, in that order. A
volume size of ‘0’ indicates infinite volume length. This entry should
be modified to reflect the size of the tape volumes used.

For example, the following is the default device entry from
letc/default/tar :

archive=/dev/£d4096ds15 10 1200 n

The n in the last field means that this device is not a tape. Use y for
tape devices. Any default value may be overridden on the command
line. The numeric keys (by default 0-7) select the line from the
default value beginning with archive#=, where # is the numeric key.
When the f key letter is specified on the command line, the entry
"archivef="'is used. In this case, the default file entry must still con-
tain 4 strings, but the first entry (specifying the device) is not signifi-
cant. The default file /etc/default/tar need not exist if a device is
specified on the command line.

28 March 1991 Page 3

TAR (C) TAR (C)

Notes

A critical consideration when creating a tar volume involves the use
of absolute or relative pathnames. Consider the following tar com-
mand examples, as executed from the directory /u/target:

tar cv fuftarget/arrow

tar cv arrow

The first command creates a tar volume with the absofute pathname:
fuftarget/arrow. The second yields a tar volume with a relative path-
name: .farrow. (The ./ is implicit and shown here as an example; ./
should not be specified when retrieving the file from the archive.)
When restored, the first example results in the file arrow being writ-
ten to the directory fuftarget (if it exists and you have write permis-
sion) no matter what your working directory. The second example
simple writes the file arrow to your present working directory.

Absolute pathnames specify the location of a file in relation to the root
directory (/); relative pathnames are relative to the current directory.
This must be taken into account when making a tar tape or disk.
Backup volumes use absolute pathnames so that they can be restored
to the proper directory. Use relative pathnames when creating a tar
volume where absolute pathnames are unnecessary.

Examples

If the name of a floppy disk device is /dev/fdl, then a tar format file
can be created on this device by entering:

assign /dev/fd
tar cvfk /dev/fdl 360 files

where files are the names of files you want archived and 360 is the
capacity of the floppy disk in kilobytes. Note that arguments to key
letters are given in the same order as the key letters themselves, thus
the fk key letters have corresponding arguments /dev/fdl and 360.
Note that if a file is a directory, the contents of the directory are recur-
sively archived. To display a listing of the archive, enter:

tar tvf /dev/fdl

At some later time you will likely want to extract the files from the
archive floppy. You can do this by entering:

tar xvf /dev/fdl

The above command extracts all files from the archive, using the exact
same pathnames as used when the archive was created. Because of
this behavior, it is normally best to save archive files with relative
pathnames rather than absolute ones, since directory permissions may
not let you read the files into the absolute directories specified. (See

28 March 1991 Page 4

TAR (C) TAR(C)

the A flag under Options.)

In the above examples, the v verbose option is used simply to confirm
the reading or writing of archive files on the screen. Also, a normal file
could be substituted for the floppy device /dev/fd1 shown in the exam-
ples.

Files
fetc/default/tar Default devices, blocking and
volume sizes, device type
ftmpf/tar*
Diagnostics

Displays an error message about bad key characters and archive
read/write errors.

Displays an error message if not enough memory is available to hold
the link tables.

Notes
There is no way to ask for the nth occurrence of a file.
tar does not verify the selected media type.
The u option can be slow.
The limit on filename length is 100 characters.
When archiving a directory that contains subdirectories, tar will only
access those subdirectories that are within 17 levels of nesting. Sub-
directories at higher levels will be ignored after tar displays an error

message.

When using zar with a raw device, specify the block size with the b
option as a multiple of 1K. For example, to use a 9K block size, enter:

tar cvfb /dev/rfd0 18 file
Do not enter:
tar xfF - -

28 March 1991 Page 5

TAR (C) TAR (C)

This would imply taking two things from the standard input at the
same time.

Use error-free floppy disks for best results with zar.

28 March 1991 Page 6

TEE (C) TEE (C)

Name

tee - Creates a tee in a pipe.

Syntax
tee[-i][-al[-ul[file]...

Description
tee transcribes the standard input to the standard output and makes
copies in the files. The -i option ignores interrupts; the -a option
causes the output to be appended to the files rather than overwriting
them. The -u option causes the output to be unbuffered.

Examples

The following example illustrates the creation of temporary files at
each stage in a pipeline:

grep ABC | tee ABC.grep | sort | tee ABC.sort | more
This example shows how to tee output to the terminal screen:

grep ABC [tee /dev/tty | sort | uniq >final file

28 March 1991 ; Page 1

TEST (C)

Name

TEST (C)

test - Tests conditions.

Syntax
test expr

[expr]

Description

test evaluates the expression expr, and if its value is true, returns a
zero (true) exit status; otherwise, test returns a nonzero exit status if
there are no arguments. The following primitives are used to con-

struct expr:
-r file

-w file

X file
-ffile

-d file

-¢ file

-b file

-u file

-g file

-k file

-s file

-t [fildes]

-z sl

-n sl

28 March 1991

True if file exists and is readable.

True if file exists and is writable.

True if file exists and is executable.

True if file exists and is a regular file.

True if file exists and is a directory.

True if file exists and is a character special file.

True if file exists and is a block special file.

True if file exists and its set-user-ID bit is set.

True if file exists and its set-group-ID bit is set.

True if file exists and its sticky bit is set.

True if file exists and has a size greater than zero.

True if the open file whose file descriptor number is
ﬁ{des (1 by default) is associated with a terminal de-
vice.

True if the length of string s/ is zero. Possible null
length strings must be enclosed in double quotation
marks (").

True if the length of string s/ is nonzero. Possible null

length strings must be enclosed in double quotation
marks (").

Page 1

TEST (C) TEST (C)

sl=s2 True if strings s/ and s2 are identical.
sl =52 True if strings s/ and s2 are not identical.
sl True if s/ is not the null string.

nl -eqn2 True if the integers nl and n2 are algebraically equal.
Any of the comparisons -ne, -gt, -ge, -It, and -le may
be used in place of -eq.

These primaries may be combined with the following operators:

! Unary negation operator

-a Binary and operator

-0 Binary or operator (-a has higher precedence than
-0)

(expr) Parentheses for grouping

Notice that all the operators and flags are separate arguments to fest.
Notice also, that parentheses are meaningful to the shell and, there-
fore, must be escaped.

See Also
find(C), sh(C)

Notes

In the second form of the command (that is, the one that uses [], rather
than the word rest), the square brackets must be delimited by blanks.
That form of the command also requires that the expression s! = s2
contain a space on each side of the “=” and s/ /= s2 contain a space
before the “!” and after the “=".

28 March 1991 Page 2

TIC (C) TIC (C)

Name

tic - Terminfo compiler.

Syntax

tic [-v [n] [-p pemmlist]] file ...

Description

tic translates terminfo files from the source format into the compiled
format. The results are placed in the directory /usr/lib/terminfo.

If the environment variable TERMINFO is set, the results are placed
there instead of /usr/lib/terminfo.

The -v (verbose) option causes fic to output trace information showing
its progress. If the optional digit » is appended, the level of verbosity
can be increased.

The -p option directs tic to create a permissions file permlist for use
with fixperm(ADM).

tic compiles all terminfo descriptions in the given files. When a use=
field is discovered, tic first searches the current file and then the mas-
ter file ./terminfo.srec.
Some limitations: the total size of a description cannot exceed 4096
bytes; the name field cannot exceed 128 bytes.

Files
fusr/lib/terminfo/*/* -Compiled terminal capability database.

See Also
terminfo(M), terminfo(S), terminfo(F), tid(C)

Notes

Use of the -p option is not recommended. The functionality may
change in future versions of XENIX.

28 March 1991 Page 1

TID (C) TID (C)

Name

tid - Terminfo decompiler.

Syntax

tid [rerm]

Description
tid decompiles the description of terminal zerm originally compiled by
tic (C). If term is not specified, the setting of the TERM environment
variable is used.

Files

fusr/libfterminfo/*/* - Compiled terminal descriptions.

See Also
tic(C), terminfo(F), terminfo(M).

Notes

The output of #id is not acceptable input to fic; a great deal of editing
is required.

28 March 1991 Page 1

TOUCH (C) TOUCH (C)

Name

touch - Updates access and modification times of a file.

Syntax
touch [-amc] [mmddhhmm(yy]] files

Description

touch causes the access and modification times of each argument to
be updated. If no time is specified (see date(C)) the current time is
used. The first mm refers to the month, dd refers to the day, hh refers
to the hour, the second mm refers to the minute, and yy refers to the
year. The -a and -m options cause touch to update only the access or
modification times respectively (default is -am). The -¢ option
silently prevents rouch from creating the file if it did not previously
exist.

" The return code from fouch is the number of files for which the times
could not be successfully modified (including files that did not exist
and were not created).

See Also
date(C), utime(S)

28 March 1991 Page 1

TPUT (C)

Name

TPUT (C)

tput - Queries the terminfo database.

Syntax
tput [-Trype] attribute

Description

The command fput uses the terminfo database to make the values of
terminal-dependent attributes available to the shell. rpur outputs a
string if the terminal attribute is of type string, or an integer if the
attribute is of type integer. If the attribute is of type Boolean, tput
simply sets the exit code (0 for true if the terminal has the capability,
1 for false if it does not) and produces no output.

The -T flag indicates the type of the terminal. Normally this option is
unnecessary, as the default is taken from the environment variable

TERM.

attribute is the terminal capability name from the terminfo database.

Examples

tput clear

tput cols

tput -Tvt100 cols

bold=‘tput smso*
offbold=*‘tput rmso*

tput he

28 March 1991

Echo clear-screen sequence for the current ter-
minal.

Print the number of columns for the current ter-
minal.
Print the number of columns for the vt100 ter-
minal.

Set the shell variables “bold” to begin standout
mode sequence and “offbold” to end standout
mode sequence for the current terminal. This
might be followed by a prompt, such as:

echo "${bold}Name: ${offbold}\c"

Set exit code to indicate if the current terminal
is a hardcopy terminal.

Page 1

TPUT (C) TPUT (C)

Files
fusr/lib/terminfo/*/* -Compiled terminal capability database.

See Also
terminfo(M), terminfo(S), tic(C), stty(C)

Notes

If the attribute is of type boolean, a value of 0 is returned for TRUE
and a value of 1 for FALSE.

If the artribute is of type string or integer, a value of 0 is returned upon
successful completion. Any other value returned indicates an error.
For example, the specification of a bad atrribute (any capability name
that is not found in the terminfo database) produces an error.

28 March 1991 Page 2

TR (C)

Name

TR (C)

tr - Translates characters.

Syntax

tr [-cds] [string] [string2]]

Description

tr copies the standard input to the standard output with substitution or
deletion of selected characters. Input characters found in stringl are
mapped into the corresponding characters of string2. Any combina-
tion of the options -cds may be used:

-C

-S

Complements the set of characters in stringl with respect to
the universe of characters whose ASCII codes are 001
through 377 octal

Deletes all input characters in stringl

Squeezes all strings of repeated output characters that are in
string?2 to single characters

The following abbreviation conventions may be used to introduce
ranges of characters or repeated characters into the strings:

[a-z]

[a*n]

Stands for the string of characters whose ASCII codes run
from character a to character z, inclusive.

Stands for n repetitions of a. If the first digit of n is 0, n is
considered octal; otherwise, n is taken to be decimal. A
zero or missing n is taken to be huge; this facility is useful
for padding string2.

The escape character \ may be used as in the shell to remove special
meaning from any character in a string. In addition, \ followed by 1,2,
or 3 octal digits, stands for the character whose ASCII code is given by
those digits.

28 March 1991 Page 1

TR (C) TR (C)

The following example creates a list of all the words in filel, one per
line in file2, where a word is taken to be a maximal string of alphabet-
ics. The strings are quoted to protect the special characters from
interpretation by the shell; 012 is the ASCII code for newline:
tr -cs "[A-Z][a-z]" "[N12*]" <filel >file2

See Also
ed(C), sh(C), ascii(M)

Notes

tr won’t handle ASCII NUL in stringl or string2; always deletes NUL
from input.

28 March 1991 Page 2

TRANSLATE (C) TRANSLATE (C)

Name

translate - translates files from one format to another

Syntax

translate option [infile] [outfile]

Description

translate translates files according to the options specified. Transla-
tion is done according to the options defined below.

format is assumed to be a file in the directory
fusr/lib/mapchan/translate if a full pathname is not provided.

translate uses standard input and standard output unless otherwise
specified via the optional filename arguments.

Options
-ea From EBCDIC to ASCH.
-ae From ASCII to EBCDIC.

-fe format From a user defined format to EBCDIC format.
-fa format From a user defined format to ASCII format.
-ef format From EBCDIC format to a user defined format.

-af format From ASCII format to a user defined format.

-bm From binary/object code to maitable ASCII
uuencode format.
-mb From mailable ASCII uuencode format to
original binary.
Files
fusr/lib/mapchan/translate/*
See Also

uuencode(C), dd(C), mapchan(M), sysadmsh(ADM)

28 March 1991 Page 1

TRANSLATE (C) TRANSLATE (C)

Notes
The -bm and -mb options are, for example, used to translate execut-
able object code format to ASCII for transfer across communications
networks.

The syntax for the user defined format file is the same as the syntax
for the mapping files for mapchan(M) and trchan.

Use dd to convert character and file formats (especially tapes) to the
format specified. Example:

dd if=/dev/rmt0 of=outfile ibs=800 cbs=80 conv=ascii,lcase
This command reads an EBCDIC tape, blocked ten 80-byte EBCDIC

card images per record, into the ASCII file outfile. For more informa-
tion on conversion options, refer to dd(C).

28 March 1991 Page 2

TRUE (C) TRUE (C)

Name

true - Returns with a zero exit value.

Syntax

true

Description

true does nothing except return with a zero exit value. false(C), true’s
counterpart, does nothing except return with a nonzero exit value.
true is typically used in shell procedures such as:

while true
do

command
done

See Also
sh(C), false (C)

Diagnostics

true has exit status zero.

28 March 1991 Page 1

TSET (C) TSET (C)

Name

tset - Sets terminal modes.

Syntax

tset [-] [-hrsulQS] [-e[c] 1 {-E[c]][-klc]]
[-m [ident] [test baudrate]:type] [type]

Description

tset causes terminal dependent processing such as setting erase and
kill characters, setting or resetting delays, and the like. It is driven by
the /etc/ttytype and /etc/termcap files.

The type of terminal is specified by the #ype argument. The type may
be any type given in /etc/termcap. If rype is not specified, the termi-
nal type is the value of the environment variable TERM, unless the -h
flag is set or any -m argument is given. In this case, the type is read
from /etc/ttytype (the port name to terminal type database). The port
name is determined by a ttyname (S) call on the diagnostic output. If
thek port is not found in /etc/ttytype the terminal type is set to
unknown.

Ports for which the terminal type is indeterminate are identified in
fetc/ttytype as dialup, plugboard, etc. The user can specify how these
identifiers should map to an actual terminal type. The mapping flag,
-m, is followed by the appropriate identifier (a four-character or
longer substring is adequate), an optional test for baud rate, and the
terminal type to be used if the mapping conditions are satisfied. If
more than one mapping is specified, the first correct mapping prevails.
A missing identifier matches all identifiers. Baud rates are specified
as with stty(C), and are compared with the speed of the diagnostic out-
put. The test may be any combination of: >, =, <, @, and !. (Note: @
is a synonym for = and ! inverts the sense of the test. Remember that
escape characters are meaningful to the shell.)

If the type as determined above begins with a question mark, the user
is asked if he really wants that type. A null response means to use that
type; otherwise, another type can be entered which will be used
instead. (The question mark must be escaped to prevent filename
expansion by the shell.)

tset is most useful when included in the .login (for csh(C)) or .profile

(for sh(C)) file executed automatically at login, with -m mapping used
to specify the terminal type you most frequently dial in on.

28 March 1991 Page 1

TSET (C) TSET (C)

Options
-e [c]

This option sets the erase character to the named character, ¢, with
¢ defaulting to Cerl-H.

-E [¢]

This flag is identical to -e except that it only operates on terminals
that can backspace.

-k [c]

-h

-S

-r

This option sets the kill character to the named character, ¢, with ¢
defaulting to Curl-U. In all of these flags, “"X” where X is any
character is equivalent to Ctrl-X .

This option prints the terminal type on the standard output; this can
be used to get the terminal type by entering:

set termtype = “tset -

If no other options are given, fset operates in “fast mode” and only
outputs the terminal type, bypassing all other processing.

Forces tset to search /etc/ttytype for information and to overlook
the environment variable, TERM.

This option outputs “setenv” commands (if your default shell is
¢sh(C) or “export” and assignment commands (if your default
shell is sh(C));

For the -s option with the Bourne or Korn shell, enter:

tset -s ... > /tmp/tset$ $
. Jtmp/tset$ $
rm /tmp/tset$ $

This option only outputs the strings to be placed in the environ-
ment variables.

If you are using csh, enter:

set noglob

set term=(‘tset -S°)

setenv TERM $term[1]
setenv TERMCAP "$term[2]"
unset term

unset noglob

This option displays the terminal type on the diagnostic output.

-Q This option suppresses displaying the “Erase set t0” and “Kill set

t0” messages.

28 March 1991 Page 2

TSET (C) TSET (C)

-I This option suppresses outputting the terminal initialization
strings.

-m[ident][test baudrate):type

Allows a user to specify how a given serial port is is to be mapped
to an actual terminal type. The option applies to any serial port in
Jetc/ttytype whose type is indeterminate (e.g., dialup, etc.). The
type specifies the terminal type to be used, and ident identifies the
name of the indeterminate type to be matched. If no ident is given,
all indeterminate types are matched. The test baudrate defines a
test to be performed on the serial port before the type is assigned.
The baudrate must be as defined in stty(C). The test may be any
combination of: >, =, <, @, and !. If the rype begins with a ques-
tion mark, the user is asked if he really wants that type. A null
response means to use that type; otherwise, another type can be
entered which will be used instead. The question mark must be
escaped to prevent filename expansion by the shell. If more than
one -m option is given, the first correct mapping prevails.

tset is most useful when included in the .login [for csh(C)] or .profile

[for sh(C)] file executed automatically at login, with -m mapping used

to specify the terminal type you most frequently dial in on.

Examples

tset gt42
Sets the terminal type to gt42.

tset -mdialup\>300:adm3a -mdialup:dw2 -Qr -e#
If the entry in /etc/ttytype corresponding to the login port is
“dialup”, and the port speed is greater than 300 baud, set the termi-
nal type to adm3a. If the /etc/ttytype entry is “dialup” and the
port speed is less than or equal to 300 baud, set the terminal type to
dw2. Set the erase character to “#”, and display the terminal type
(but not the erase character) on standard error.

tset -m dial:ti733 -m plug:\?hp2621 -m unknown:\? -e -k"U

If the /etc/ttytype entry begins with “dial”, the terminal type
becomes ti733. If the entry begins with “plug”, tset prompts with:

TERM = (hp2621)

Enter the correct terminal type if it is different than that shown. If
the entry is “unknown”, tset prompts with:

TERM = (unknown)

In any case, erase is set to the terminal’s backspace character, the

28 March 1991 Page 3

TSET (C) TSET (C)

kill character is set to Ctrl-U, and the terminal type is displayed on
standard error.

Files
fetc/ttytype Port name to terminal type map database
Jetc/termcap Terminal capability database

See Also

tty(M), termcap(M), stty(C)
Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

28 March 1991 Page 4

TTY (C) ITY (C)

Name

tty - Gets the terminal’s name.

Syntax
tty[-s]

Description
The rty command prints the pathname of the user’s terminal on the
standard output. The -s option inhibits printing, allowing you to test
just the exit code.

Exit Codes

0 if the standard input is a terminal, 1 otherwise.
Diagnostics

not a tty If the standard input is not a terminal and -s is not
specified

28 March 1991 Page 1

UMASK (C) UMASK (C)

Name

umask - Sets file-creation mode mask.

Syntax

umask [000]

Description

The user file-creation mode mask is set to ooo. The three octal digits
refer to read/write/execute permissions for owner, group, and others,
respectively. Only the low-order 9 bits of cmask and the file mode
creation mask are used. The value of each specified digit is “sub-
tracted”’ from the corresponding “digit” specified by the system for
the creation of any file (see umask(S) or creat(S)). This is actually a
binary masking operation, and thus the name “umask”. In general,
binary ones remove a given permission, and zeros have no effect at
all. For example, umask 022 removes group and others write permis-
sion (files normally created with mode 777 become mode 755 ; files
created with mode 666 become mode 644).

If ooo is omitted, the current value of the mask is printed.

umask is recognized and executed by the shell. By default, login
shells have a umask of 022.

See Also
chmod(C), sh(C), chmod(S), creat(S), umask(S)

28 March 1991 Page 1

UNAME (C) UNAME (C)

Name

uname - Prints the name of the current XENIX system.

Syntax

uname [-snrmvdupX]

Description

uname prints the current system name of the XENIX system on the
standard output file. It is primarily used to determine which system
you are using. The options cause selected information returned by

uname(S) to be printed:

-s Prints the system name (default).

-n Prints the nodename (the nodename may be a name that the sys-
tem is known by to a communications network).

-r Prints the operating system release.

-m :\/[anufacturer: prints original supplier (number) of XENIX sys-

em.

-v Prints the operating system version.

-d Distributor: prints OEM (number) for the system.

-u Prints user serial number.

-p Prints processor of the machine.

-a Prints all the above information.

-X Prints all the above information, plus OEM number, kernel ID,
bus type, serial number, processor, license (2-user or unlimited),
origin number, and number of CPUs.

Notes

The -m, -d, -X options apply only to XENIX-386 distributions.

See Also

uname(S)

28 March 1991 Page 1

UNIQ (C) UNIQ (C)

Name

uniq - Reports repeated lines in a file.

Syntax
uniq [-udc{+n][-n]] [input [output]]

Description

uniq reads the input file and compares adjacent lines. In the normal
case, the second and succeeding copies of repeated lines are removed,;
the remainder is written on the output file. Input and output should
always be different. Note that repeated lines must be adjacent in order
to be found; see sort(C). If the -u flag is used, just the lines that are
not repeated in the original file are output. The -d option specifies
that one copy of just the repeated lines is to be written. The normal
mode output is the union of the -u and -d mode outputs.

The -c option supersedes -u and -d and generates an output report in
default style but with each line preceded by a count of the number of
times it occurred.

The n arguments specify skipping an initial portion of each line in the
comparison:

-n The first n fields together with any blanks before each are
ignored. A field is defined as a string of nonspace, nontab
characters separated by tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before
characters.

See Also

comm(C), sort(C)

28 March 1991 Page 1

UNITS (C) UNITS (C)

Name

units - Converts units.

Syntax

units

Description

units converts quantities expressed in various standard scales to their
equivalents in other scales. It works interactively in this fashion:

You have: inch

You want: ¢m
* 2,540000e+00
/3.937008e-01

A quantity is specified as a multiplicative combination of units
optionally preceded by a numeric multiplier. Numbers are displayed
in scientific notation; powers are indicated by suffixed positive
integers, division is shown by the usual sign:
You have: 15 Ibs force/in2
You want: atm
* 1.020689e+00
/9.797299¢-01
units only does multiplicative scale changes; thus it can convert Kel-
vin to Rankine, but not Centigrade to Fahrenheit. Most familiar units,
abbreviations, and metric prefixes are recognized, as well as the fol-
lowing:
pi Ratio of circumference to diameter
¢ Speed of light
e Charge on an electron
g Acceleration of gravity
force Sameasg

mole
Avogadro’s number

water
Pressure head per unit height of water

28 March 1991 Page 1

UNITS (C) UNITS (C)

au Astronomical unit

Pound is not recognized as a unit of mass; Ib is. Compound names are
run together, (c.g. lightyear). British units that differ from their US
counterparts are prefixed with “br”. For a complete list of units, enter:

cat fusr/lib/unittab

Files

Jusr/lib/unittab

28 March 1991 Page 2

UPTIME (C) UPTIME (C)

Name

uptime - Displays information about system activity.

Syntax

uptime

Description
uptime prints the current time of day, the length of time the system has
been up, the number of users logged onto the system, and load aver-
ages. Load averages are the number of processes in the run queue

averaged over 1, 5, and 15 minutes. All of this information is also
contained in the first line of the w(C) command.

See Also
w(C)

28 March 1991 Page 1

USEMOUSE (C) USEMOUSE (C)

Name

usemouse - Maps mouse input for use with non-mouse based pro-
grams.

Syntax

usemouse [-fconffile] [-ttype] [-hhoriz_sens] [-v vert_sens]-
[-ccmd] [-b] parameters

Description

This utility allows you to use a mouse with any program that would
otherwise accept only keyboard input.

For example, you can use a mouse with vi(C) to move the cursor
around the screen and generate your most commonly used vi com-
mands. The usemouse(C) command translates mouse input into spe-
cific keystrokes required by a program. You can use any of several
predefined mouse keystroke sets (called maps) that correspond to dif-
ferent popular programs. You can also define your own maps with
keystrokes that match different mouse movements and mouse buttons.

Options

The options are:

-f conffile
The -f flag may be used to select an alternate configuration file.
The alternate configuration file, conffile, should use the format of
letc/default/usemouse and be entered as an absolute pathname on
the command line. For example:

usemouse -f /u/daniel/mouseconf

is the correct form to specify an alternate configuration file. The -f
and -t flags are mutually exclusive.

-t type
The -t flag may be used to select a predefined configuration file.
type can be the name of any file in /usr/lib/mouse, such as vi,
rogue, or any others the system administrator chooses to place
there. These files are identical in format to /etc/default/usemouse.

-h horiz_sens
Defines the horizontal sensitivity. Horizontal mouse movements
smaller than this threshold are ignored. Mouse movements that are
multiples of this value generate multiple strings. The sensitivity

28 March 1991 Page 1

USEMOUSE (C) USEMOUSE (C)

defaults to 5 units. The minimum value is 1 unit, and the max-
imum is 100 units. The lower the value, the more sensitive your
mouse is to motion. Note that setting a high value may cause your
mouse to behave as though it is not functioning, due to the large
motion required to generate a signal.

-v vert_sens

Defines the vertical sensitivity. Vertical mouse movements
smaller than this threshold are ignored. Mouse movements that are
multiples of this value generate multiple strings. The sensitivity
defaults to 5 units. The minimum value is 1 unit, and the max-
imum is 100 units. The lower the value, the more sensitive your
mouse is to motion. Note that setting a high value may cause your
mouse to behave as though it is not functioning, due to the large
motion required to generate a signal.

-ccmd
This option selects a command for usemouse to run. This defaults
to the shell specified in the SHELL environment variable. If
SHELL is unspecified, /bin/sh is used. Note that the command
given with this flag can contain blank spaces if the entire command
is placed within double quotes. For example:

usemouse -¢ "vi /etc/termcap"

-b Suppresses bell ("G) for the duration of mouse usage. Useful with
vi(C).

parameters
These are name=value pairs indicating what ASCII string to insert
into the tty input stream, when the given event is received. Valid
parameters include:

rbu=string String to generate on right button up
rbd=string String to generate on right button down
mbus=string String to generate on middle button up
mbd=string String to generate on middle button down
lbu=string String to generate on left button up
Ibd=string String to generate on left button down
r=string String to generate on mouse right
lt=string String to generate on mouse left
up=string String to generate on mouse up
dn=string String to generate on mouse down
ul=string String to generate on mouse up-left
ur=string String to generate on mouse up-right
dr=string String to generate on mouse down-right
dl=string String to generate on mouse down-left
hsens=num Sensitivity to horizontal motion

28 March 1991 Page 2

USEMOUSE (C) USEMOUSE (C)

vsens=num Sensitivity to vertical motion
bells=yes/no Whether to remove "G characters

Parameters may be specified in any order. They may contain octal
escapes. They may be quoted with single or double quotes if they con-
tain blank spaces. Any parameters may be omitted and their value, if
any, is taken from the configuration file.

The usemouse(C) Command
To start using the mouse with a text program, enter the command:
usemouse
This command sets the mouse for use with the default map, which is
found in /etc/default/mouse. Alternate map files can be found in the
directory /usr/lib/mouse. You can create your own alternate map files

and place them in this directory or in your own custom map file direc-
tory. The default map file has the following values:

Mouse Keystroke

Left Button vi top of file (1G) command
Middie Button vi delete character (x) command
Right Button vi bottom of file (G) command
Up Up Arrow Key

Down Down Arrow Key

Left Left Arrow Key

Right Right Arrow Key

Up and Left not defined

Up and Right not defined

Down and Left not defined

Down and Right not defined

Bells no

Invoking the usemouse command without specifying any options
makes the mouse ready for use with a wide variety of programs or
applications. Invoking usemouse with no options causes the mouse to
use the default keystroke map. Invoking the mouse in this way creates
a new command shell. You can continue to use the mouse for the dura-
tion of the shell. To terminate usemouse, simply enter Ctri-D.

You can also invoke usemouse for the duration of a specific command:
usemouse -¢ command

This puts you in the program specified by command using the mouse.
When you leave the program, mouse input is terminated.

28 March 1991 Page 3

USEMOUSE (C) USEMOUSE (C)

Using the Mouse with Specific Programs

You can use any of several predefined maps that are set up specifically
for use with different programs. (These maps are found in
fusr/lib/mouse.) For example:

usemouse -t vi

This invokes the vi-specific map, which includes mapping the tradi-
tional h-j-k-1 direction keys to the mouse movements. The terminal
bell is automatically silenced by the vi map entry bells=no. This is
done to prevent the bell being activated continuously when the user
generates a spurious command with the mouse. (There is also a -b
option that can be used on the usemouse command line to do the same
thing.)

You can combine a command with a selected map file by putting both
on the command line. For example:

usemouse -t vi -c vi filename

This invokes the vi map along with the command; when you quit out
of vi the mouse disengages.

Setting Up Abbreviated (Aliased) Mouse Commands

If you plan to use the mouse frequently, you can substitute short, easy
to use commands that will call up the longer command lines. This is
known as command aliasing.

Specifying Map Keystrokes on the Command Line

You can aiso specify the characters to be generated by mouse motions
on the usemouse command line. You can specify button actions or
motion actions to supplement or replace a definition from a map file.
For example, assume you want to use the default usemouse file, but
you want to redefine the middie mouse button mbd (middle button
down) as the vi “i1” (insert) instead of the “x” (delete character) com-
mand. The following command line does this:

usemouse -¢ vi mbd=i

The mouse operations are defined by a series of acronyms that are the
same as used in the actual map file:

28 March 1991 Page 4

USEMOUSE (C) USEMOUSE (C)
Parameter Mouse Operation Default
rbu right button up not used
rbd right button down 1G
mbu middle button up not used
mbd middle button down x
Ibu left button up not used
Ibd left button down G
ul mouse up-left \033[A\033[C
ur mouse up-right \033[A\033[D
dr mouse down-left \033[{B\033[C
dl mouse down-right \033[B\033[D
it mouse right \033[C
It mouse left \033(D
up mouse up \033[A
dn mouse down \033[B
hsens horiz. sensitivity 5
vsens vert. sensitivity 5

28 March 1991

Creating Customized Maps

You can create your own personal map files for use with the mouse.
The ecasiest way to do this is to copy the default map in
letc/default/usemouse and edit it. You can use quoted strings or the
octal sequences found in the ascii(M) page. The mouse
direction/button parameters are defined in the usemouse table above.
For example, after placing a customized file, mine, in your home
directory, you would invoke the following command to use it with the
program prog:

usemouse -f mine -c prog
How usemouse Works

usemouse merges data from a mouse into the input stream of a tty. The
mouse data is translated to arrow keys or any other arbitrary ASCII
strings. Mouse movements up, down, left right, up-left, up-right,
down-left, and down-right, as well as individual up and down button
transitions, are programmable. This permits the mouse to be used
with programs that are not designed to accept mouse input.

By default, the usemouse utility gets value configurations from the file
fetc/default/usemouse .

After running the utility, provided a mouse is available, the user will
be running a command with mouse motions and button events
translated to ASCII strings and merged into their tty input stream. By
default, the command is a shell.

Page 5

USEMOUSE (C)

Files

/dev/mouse
/dev/mouse/bus[0-1]
/dev/mouse/vpix[0-1]
/dev/mouse/microsoft_ser
/dev/mouse/logitech_ser
/dev/mouse/mousesys_ser
/dev/mouse/ttyp[0-7]
/dev/mouse/ptyp[0-7]
fetc/default/usemouse
fusr/lib/event/devices
Jusr/lib/event/ttys
fasr/lib/mouse/*

See Also
mouse(HW)

28 March 1991

USEMOUSE (C)

Directory for mouse-related special device files.
Bus mouse device files.

vpix-mouse device files.

Microsoft serial mouse device files.

Logitech serial mouse device files.

Mousesys serial mouse device files.

Special pseudo-tty files for mouse input.
Special pseudo-tty files for mouse input.
Default map file for mouse-generated characters.
File containing device information for mice.
File listing ttys eligible to use mice.

Alternate map files for mice.

Page 6

UUCP (C) UUCP (C)

Name

uucp, uulog, uuname - UNIX-to-UNIX system copy

Syntax

uucp [options] source-files destination-file
uulog [options] -ssystem

uulog [options] system

uulog [options] -fsystem

uuname [-1][-c]

Description
uucp

uucp copies files named by the source-file arguments to the
destination-file argument. A file name may be a path name on your
machine, or may have the form:

system-name!path-name

where system-name is taken from a list of system names that uucp
knows about. The system-name may also be a list of names such as

system-name!system-name!. ..!system-name!path-name

in which case an attempt is made to send the file via the specified
route, to the destination. Care should be taken to ensure that inter-
mediate nodes in the route are willing to forward information (see
Warnings restrictions).

The shell metacharacters ?, * and [...] appearing in path-name will
be expanded on the appropriate system. These characters may need to
be escaped to prevent expansion by the local shell.

Path names may be one of:
(1) afull path name;

(2) a path name preceded by “user where user is a login name
on the specified system and is replaced by that user’s login
directory;

(3) a path name preceded by “/destination where destination is
appended to /usr/spool/uucppublic; (NOTE: This destina-
tion will be treated as a file name unless more than one file is
being transferred by this request or the destination is already
a directory. To ensure that it is a directory, follow the desti-
nation with a ’/. For example “/dan/ as the destination will

28 March 1991 Page 1

UUCP (C) UUCP (C)

make the directory /usr/spool/uucppublic/dan if it does not
exist and put the requested file(s) in that directory).

(4) anything else is prefixed by the current directory.
If the result is an erroneous path name for the remote system the copy
will fail. If the destination-file is a directory, the last part of the
source-file name is used.

uucp preserves execute permissions across the transmission and gives
0666 read and write permissions (see chmod(C)).

The following options are interpreted by uucp:

-C Do not copy local file to the spool directory for transfer to
the remote machine (default).

-C Force the copy of local files to the spool directory for
transfer.

-d Make all necessary directories for the file copy (default).

-f Do not make intermediate directories for the file copy.

-ggrade Grade is a single letter/number; lower ascii sequence
characters will cause the job to be transmitted earlier dur-
ing a particular conversation.

-) Output the job identification ASCII string on the standard
output. This job identification can be used by uustar to
obtain the status or terminate a job.

-m Send mail to the requester when the copy is completed.

-nuser Notify user on the remote system that a file was sent.

-r Do not start the file transfer, just queue the job.

-sfile Report status of the transfer to file. Note that the file must
be a full path name.

-Xdebug_level
Produce debugging output on standard output. The
debug_level is a number between 0 and 9; higher numbers
give more detailed information.
uulog

uulog queries a log file of uucp or uuxqt transactions in a file

28 March 1991 Page 2

UUCP (C) UUCP (C)

fusr/spool/uucp/.Log/uucico/system or /usr/spool/uucp/.Logluuxqt/systent.
The options cause uulog to print logging information:

-ssystem Print information about file transfer work involving sys-
tem sys.

-fsystem Does a “tail -f” of the file transfer log for system. (You
must press DELETE or BREAK to exit this function.)

Other options used in conjunction with the above:

-x Look in the uuxqg: log file for the given system, instead of the
uucico log file (default).

-number
Indicates that a “tail’’ command of number lines should be exe-
cuted.

uuname

uuname lists the names of systems known to uucp. The -c option
returns the names of systems known to cu. (The two lists are the
same, unless your machine is using different Systems files for cu and
uucp. See the Sysfiles file.) The -1 option returns the local system
name.

Files
Just/spool/uucp spool directories
fusr/spool/uucppublic/*public directory for receiving and sending
fusr/lib/uucp/* other data and program files

See Also

mail(C), uustat(C), uux(C), uuxqt(C), chmod(S)

Warnings

The domain of remotely accessible files can (and for obvious security
reasons, usually should) be severely restricted. You will very likely
not be able to fetch files by path name; ask a responsible person on the
remote system to send them to you. For the same reasons you will
probably not be able to send files to arbitrary path names. As distrib-
uted, the remotely accessible files are those whose names begin
lusr/spool/uucppublic (equivalent to /).

28 March 1991 Page 3

UUCP (C) UUCP (C)

All files received by uucp will be owned by uucp.

The -m option will only work sending files or receiving a single file.
Receiving multiple files specified by special shell characters ? * [...]
will not activate the -m option.

The forwarding of files through other systems may not be compatible
with the older (non-HoneyDanBer) versions of uucp. If forwarding is
used, all systems in the route must have the same version of uucp.

Notes
Protected files and files that are in protected directories that are owned
by the requester can be sent by uucp. However, if the requester is

root, and the directory is not searchable by “other” or the file is not
readable by “other,” the request will fail.

28 March 1991 Page 4

UUENCODE (C) UUENCODE (C)

Name
uuencode, uudecode - encode/decode a binary file for transmission via
mail
Syntax
uuencode [source] remotedest | mail sysl!sys2!..!decode
uudecode | file]
Description

uuencode and uudecode are used to send a binary file via uucp (or
other) mail. This combination can be used over indirect mail links.

uuencode takes the named source file (default standard input) and pro-
duces an encoded version on the standard output. The encoding uses
only printing ASCII characters, and includes the mode of the file and
the remotedest for recreation on the remote system.
uudecode reads an encoded file, strips off any leading and trailing
lines added by mailers, and recreates the original file with the speci-
fied mode and name.
The encode file has an ordinary text form and can be edited by any
text editor to change the mode or remote name.

See Also

uucp(C), uvux(ADM), mail(C)

Restrictions

The file is expanded by 35% (3 bytes become 4 plus control informa-
tion) causing it to take longer to transmit.

The user on the remote system who is invoking uudecode (often uucp)
must have write permission on the specified file.

28 March 1991 Page 1

UUSTAT (C)

Name

UUSTAT (C)

uustat - uucp status inquiry and job control

Syntax

uustat [-a]
uustat [-m]
uustat [-p]
uustat [-q)

uustat [-kjobid]
uustat [-rjobid]
uustat [-ssystem] [-uuser }

Description

uustat will display the status of, or cancel, previously specified uucp
commands, or provide general status on uucp connections to other sys-
tems. Only one of the following options can be specified with uustar
per command execution:

-a
-m
P

-q

kjobid

28 March 1991

Output all jobs in queue.

Report the status of accessibility of all machines.

Execute a “ps -flp” for all the process-ids that are in the
lock files.

List the jobs queued for each machine. If a status file
exists for the machine, its date, time and status informa-
tion are reported. In addition, if a number appears in ()
next to the number of C or X files, it is the age in days of
the oldest C./X. file for that system. The Retry field
represents the number of hours until the next possible call.
The Count is the number of failure attempts. NOTE: for
systems with a moderate number of outstanding jobs, this
could take 30 seconds or more of reai-time to execute. As
an example of the output produced by the -q option:

eagle 3C 04/07-11:07 NO DEVICES AVAILABLE
mh3bs3 2C 07/07-10:42 SUCCESSFUL

The above output tells how many command files are wait-
ing for each system. Each command file may have zero or
more files to be sent (zero means to call the system and
see if work is to be done). The date and time refer to the
previous interaction with the system followed by the
status of the interaction.

Kill the uucp request whose job identification is jobid.
The killed uucp request must belong to the person issuing
the uustat command unless one is the super-user.

Page 1

UUSTAT (C) UUSTAT (C)

-rjobid Rejuvenate jobid. The files associated with jobid are
touched so that their modification time is set to the
current time. This prevents the cleanup daemon from
deleting the job until the jobs modification time reaches
the limit imposed by the daemon.

Either or both of the following options can be specified with uustat:

-ssystem Report the status of all uucp requests for remote system
system.

-uuser Report the status of all uucp requests issued by user.

Output for both the -s and -u options has the following format:

eaglen0000 4/07-11:01:03 (POLL)

eagleNlbd7 4/07-11:07 S eagle dan 522 /usr/dan/A
eagleClbd8 4/07-11:07 S eagle dan 59 D.3b2al2ced924
4/07-11:07 S eagle dan rmail mike

With the above two options, the first field is the jobid of the job. This
is followed by the date/time. The next field is either an ’S’ or 'R’
depending on whether the job is to send or request a file. This is fol-
lowed by the user-id of the user who queued the job. The next field
contains the size of the file, or in the case of a remote execution (
rmail - the command used for remote mail), the name of the command.
When the size appears in this field, the file name is also given. This
can either be the name given by the user or an internal name (e.g.,
D.3b2alce4924) that is created for data files associated with remote
executions (rmail in this example).

When no options are given, uustat outputs the status of all wuucp
requests issued by the current user.

Files
/usr/spool/uucp/* spool directories
See Also

uucp(C).

28 March 1991 Page 2

UuuTo (C) uvurTo (C)

Name

uuto, uupick - public UNIX-to-UNIX system file copy

Syntax

uuto [options] source-files destination
uupick [-s system]

Description

uuto sends source-files to destination. uuto uses the uucp(C) facility
to send files, while it allows the local system to control the file access.
A source-file name is a path name on your machine. Destination has
the form:

system!user

where system is taken from a list of system names that uucp knows
about (see uuname). User is the login name of someone on the speci-
fied system.

Two options are available:

-p Copy the source file into the spool directory before transmis-
sion.
-m Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to
fusr/spool/uucppublic on system. Specifically the files are sent to

Jusr/spool/uucppublic/receive/user/mysystem/files.
The destined recipient is notified by mail (C) of the arrival of files.

uupick accepts or rejects the files transmitted to the user. Specifical-
ly, uupick searches /usr/spool/uucppublic for files destined for the
user. For each entry (file or directory) found, the following message is
printed on the standard output:

from system: [file file-name] (dir dirname] ?

uupick then reads a line from the standard input to determine the
disposition of the file:

<new-line> Go on to next entry.
d Delete the entry.
m [dir] Move the entry to named directory dir. If dir is not

specified as a complete path name (in which
$HOME is legitimate), a destination relative to the

28 March 1991 Page 1

UUTO (C) uuro (C)

current directory is assumed. If no destination is
given, the default is the current directory.

a[dir] Same as m except moves all the files sent from
system.

P Print the content of the file.

q Stop.

EOT (control-d) Same as q.
{command Escape to the shell to do command.
* Print a command summary.

uupick invoked with the -ssystem option will only search
fusr/spool/uucppublic for files sent from system.

Files

Jusr/spool/uucppublic public directory

See Also
mail(C), uucp(C), uustat(C), uux(C), nuclean(ADM).

Warnings
In order to send files that begin with a dot (e.g., .profile) the files must

by qualified with a dot. For example: .profile, .prof*, .profil? are
correct; whereas *prof*, ?profile are incorrect.

28 March 1991 Page 2

Uux () UUx (C)

Name

uux - UNIX-to-UNIX system command execution

Syntax

uux [options] command-string

Description

uux will gather zero or more files from various systems, execute a
command on a specified system and then send standard output to a file
on a specified system.

NOTE: For security reasons, most installations limit the list of com-
mands executable on behalf of an incoming request from wux, permit-
ting only the receipt of mail (see permissions(F)). (Remote execution
permissions are defined in fusr/lib/uucp/Permissions.)

The command-string is made up of one or more arguments that look
like a shell command line, except that the command and file names
may be prefixed by system-name!. A null system-name is interpreted
as the local system.

File names may be one of
(1) afull path name;
(2) apath name preceded by “xxx where xxx is a login name on
the specified system and is replaced by that user’s login
directory;
(3) anything else is prefixed by the current directory.
As an example, the command

uux "diff usg!/usr/dan/filel pwba!/ad4/dan/file2 > !"/dan/file.dift"
will get the file] and file2 files from the “usg” and “pwba” machines,
execute a diff(C) command and put the results in file.diff in the local
/usr/spool/uucppublic/dan directory.
Any special shell characters such as <>;| should be quoted either by
quoting the entire command-string, or quoting the special characters
as individual arguments.
uux will attempt to get all files to the execution system. For files that

are output files, the file name must be escaped using parentheses. For
example, the command

28 March 1991 Page 1

UUX (C)

Uux (C)

uux altail b!/usr/file \(c!/usr/file\)

gets /fusr/file from system “b” and sends it to system “a,” performs a
tail command on that file and sends the result of the tail command to

system “c.”

uux will notify you if the requested command on the remote system
was disallowed. This notification can be turned off by the -n option.
The response comes by remote mail from the remote machine.

The following options are interpreted by uux:

-aname

-C

-C

-ggrade

-J

P

-r

-sfile

The standard input to uux is made the standard input to
the command-string .

Use name as the user identification replacing the initiator
user-id. (Notification will be returned to the user.)

Return whatever standard input was provided to the wuux
command if the exit status is non-zero.

Do not copy local file to the spool directory for transfer to
the remote machine (default).

Force the copy of local files to the spool directory for
transfer.

Grade is a single letter/number; lower ASCII sequence
characters will cause the job to be transmitted earlier dur-
ing a particular conversation.

Output the jobid ASCII string on the standard output
which is the job identification. This job identification can
be used by uustat to obtain the status or terminate a job.
Do not notify the user if the command fails.

Same as -: The standard input to uux is made the standard
input to the command-string .

Do not start the file transfer, just queue the job.

Report status of the transfer in file.

-xdebug_level

A

28 March 1991

Produce debugging output on the standard output. The
debug_level is a number between 0 and 9; higher numbers
give more detailed information.

Send success notification to the user.

Page 2

UUX (C) UUX (C)

Files
/usr/spool/uucp/* spool directories
Jusr/lib/uucp/Permissions remote execution permissions
fusr/lib/uucp/* other data and programs

See Also

mail(C), uucp(C), uustat(C).

Warnings

Only the first command of a shell pipeline may have a system-name!.
All other commands are executed on the system of the first command.
The use of the shell metacharacter * will probably not do what you
want it to do. The shell tokens << and >> are not implemented.

The execution of commands on remote systems takes place in an exe-
cution directory known to the uucp system. All files required for the
execution will be put into this directory unless they already reside on
that machine. Therefore, the simple file name (without path or ma-
chine reference) must be unique within the uux request. The follow-
ing command will NOT work:

uux “a!diff bl/usr/dan/xyz c!/usr/dan/xyz > !xyz.diff"
but the command

nux "aldiff al/usr/dan/xyz c!/ust/dan/xyz > !xyz.diff"

will work. (If diff is a permitted command.)

Notes

Protected files and files that are in protected directories that are owned
by the requester can be sent in commands using uux. However, if the
requester is root, and the directory is not searchable by “other,” the
request will fail.

28 March 1991 Page 3

VI (C) VI(C)

Name

vi, view, vedit - Invokes a screen-oriented display editor.

Syntax
vi [-option ...] [command ...] [filename ...]
view [-option ...] [command ...] [filename ...]

vedit [-option ...] [command ...] [filename ...]

Description

vi offers a powerful set of text editing operations based on a set of
mnemonic commands. Most commands are single keystrokes that
perform simple editing functions. vi displays a full screen “window”
into the file you are editing. The contents of this window can be
changed quickly and easily within vi. While editing, visual feedback
is provided (the name vi itself is short for “visual”).

The view command is the same as vi except that the read-only option
(-R) is set automatically. The file cannot be changed with view .

The vedit command is the same as vi except for differences in the
option settings. vedit uses novice mode, turns off the magic option,
sets the option report=1 and turns on the options showmode and
redraw.

The showmode option informs the vedit user, in a message in the
lower right hand corner of the screen, which mode is being used. For
instance after the ESC-i command is used, the message reads
“INSERT MODE”.

Note that you can not set the novice option from within vi or ex. If
you want to use the novice option you must use the vedit utility. (It is
possible to set the nonovice option from within vedit.)

vi and the line editor ex are one and the same editor: the names vi and
ex identify a particular user interface rather than any underlying func-
tional difference. The differences in user interface, however, are quite
striking. ex is a powerful line-oriented editor, similar to the editor ed.
However, in both ex and ed, visual updating of the terminal screen is
limited, and commands are entered on a command line. vi, on the
other hand, is a screen-oriented editor designed so that what you see
on the screen corresponds exactly and immediately to the contents of
the file you are editing. In the following discussion, vi commands and
options are printed in boldface type.

28 March 1991 Page 1

VI (C) VI (C)

Options available on the vi command line include:

-x Encryption option; when used, the file will be encrypted as it is
being written and will require an encryption key to be read. vi
makes an educated guess to determine if a file is encrypted or not.
See crypt (C).

-C Encryption option; the same as -x except that vi assumes files are
encrypted.

~¢ command
Begin editing by executing the specified editor command
(usually a search or positioning command).

-t tag Equivalent to an initial tag command; edits the file con-
taining tag and positions the editor at its definition.

-r file Used in recovering after an editor or system crash,
retrieves the last saved version of the named file.

-l Specific to editing LISP, this option sets the showmatch
and lisp options.

-L List the names of all files saved as a result of an editor or
system crash. Files may be recovered with the -r option.

-wn Sets the default window size to n. Useful on dialups to
start in small windows.

-R Sets a read-only option so that files can be viewed but not
edited.

The Editing Buffer

vi performs no editing operations on the file that you name during
invocation. Instead, it works on a copy of the file in an “editing
buffer.”

When you invoke vi with a single filename argument, the named file is
copied to a temporary editing buffer. The editor remembers the name
of the file specified at invocation, so that it can later copy the editing

buffer back to the named file. The contents of the named file are not
affected until the changes are copied back to the original file.

Modes of Operation

Within vi there are three distinct modes of operation:

28 March 1991 Page 2

VI(C) VI (C)

Command Mode Within command mode, signals from the
keyboard are interpreted as editing com-
mands.

Insert Mode Insert mode can be entered by typing any

of the vi insert, append, open, substitute,
change, or replace commands. Once in
insert mode, letters typed at the key-
board are inserted into the editing buffer.

ex Escape Mode The vi and ex editors are one and the
same editor differing mainly in their user
interface. In vi , commands are usually
single keystrokes. In ex, commands are
lines of text terminated by a RETURN.
vi has a special “escape” command that
gives access to many of these line-
oriented ex commands. To use the ex
escape mode, type a colon (:). The colon
is echoed on the status line as a prompt
for the ex command. An executing com-
mand can be aborted by pressing INTER-
RUPT. Most file manipulation com-
mands are executed in ex escape mode
(for example, the commands to read in a
file and to write out the editing buffer to
a file).

Special Keys

There are several special keys in vi. The following keys are used to
edit, delimit, or abort commands and command lines.

ESC Used to return to vi command mode or to cancel par-
tially formed commands.

RETURN Terminates ex commands when in ex escape mode.
Also used to start a newline when in insert mode.

INTERRUPT Often the same as the DEL or RUBOUT key on many
terminals. Generates an interrupt, telling the editor to
stop what it is doing. Used to abort any command that
is executing.

/ Used to specify a string to be searched for. The slash
appears on the status line as a prompt for a search
string. The question mark (?) works exactly like the
slash key, except that it is used to search backward in a
file instead of forward.

28 March 1991 Page 3

VI (C)

VI (C)

The colon is a prompt for an ex command. You can
then type in any ex command, followed by an ESC or
RETURN, and the given ex command is executed.

The following characters are special in insert mode:

BKSP

Cul-U

Ctrl-V

Cul-W

Cul-T

Cul-@

Backs up the cursor one character on the current line. The
last character typed before the BKSP is removed from the
input buffer, but remains displayed on the screen.

Moves the cursor back to the first character of the inser-
tion and restarts insertion.

Removes the special significance of the next typed char-
acter. Use Cul-V to insert control characters. Linefeed
and Cul-J cannot be inserted in the text except as newline
characters. Ctrl-Q and Ctrl-S are trapped by the operating
system before they are interpreted by vi, so they too can-
not be inserted as text.

Moves the cursor back to the first character of the last
inserted word.

During an insertion, with the autoindent option set and at .
the beginning of the current line, entering this character
will insert shiftwidth whitespace.

If entered as the first character of an insertion, it is
replaced with the last text inserted, and the insertion ter-
minates. Only 128 characters are saved from the last
insertion. If more than 128 characters were inserted, then
this command inserts no characters. A Ctri<@ cannot be
part of a file, even if quoted.

Starting and Exiting vi

To enter vi, enter:

vi Edits empty editing buffer

vi file Edits named file

vi +123 file Goes to line 123

vi +45 file Goes to line 45

vi +/word file Finds first occurrence of “word”

vi +/tty file

28 March 1991

Finds first occurrence of “tty”

Page 4

VI(C) VI (C)

There are several ways to exit the editor:

Z7Z The editing buffer is written to the file only if any changes were
made.

:Xx The editing buffer is written to the file only if any changes were
made.

:q! Cancels an editing session. The exclamation mark (!) tells vi to
quit unconditionally. In this case, the editing buffer is not writ-
ten out.

vi Commands

vi is a visual editor with a window on the file. What you see on the
screen is 1vi’s notion of what the file contains. Commands do not
cause any change to the screen until the complete command is
entered. Most commands may take a preceding count that specifies
repetition of the command. This count parameter is not given in the
following command descriptions, but is implied unless overridden by
some other prefix argument. When vi gets an improperly formatted
command, it rings a bell.

Cursor Movement

The cursor movement keys allow you to move your cursor around in a
file. Note in particular the direction keys (if available on your termi-
nal), the h, j, k, and 1 cursor keys, and SPACEBAR, BKSP, Ctrl-N, and
Curl-P. These three sets of keys perform identical functions.

Forward Space - |, SPACEBAR, or right direction key

Syntax: 1
SPACEBAR
right direction key

Function: Moves the cursor forward one character. If a count is
given, move forward count characters. You cannot move
past the end of the line.

Backspace - h, BKSP, or left direction key
Syntax: h
BKSP
left direction key
Function: Moves cursor backward one character. If a count is given,

moves backward count characters. Note that you cannot
move past the beginning of the current line.

28 March 1991 Page 5

VI (C) VI (C)

Next Line - +, RETURN, j, . Ctrl-N, LF and Down Arrow Key"

Syntax: +
RETURN

Function: Moves the cursor down to the beginning of the next line.

Syntax: J
Ctrl-N
LF
down direction key

Function: Moves the cursor down one line, remaining in the same
column. Note the difference between these commands
and the preceding set of next line commands which move
to the beginning of the next line.

Previous Line - k, Ctri-P, and up direction key

Syntax: k
Ctrl-P
up direction key

Function: Moves the cursor up one line, remaining in the same
column. If a count is given, the cursor is moved count
lines.

Syntax: -

Function: Moves the cursor up to the beginning of the previous line.
If a count is given, the cursor is moved up count lines.

Beginning of Line - 0 and ~

Syntax:

Function: Moves the cursor to the beginning of the current line.
Note that 0 always moves the cursor to the first character
of the current line. The caret (") works somewhat
differently: it moves to the first character on a line that is
not a tab or a space. This is useful when editing files that
have a great deal of indentation, such as program texts.

28 March 1991 Page 6

VI (C) VI (C)

End of Line - $
Syntax: $

Function: Moves the cursor to the end of the current line. Note that
the cursor resides on top of the last character on the line.
If a count is given, the cursor is moved forward count-1
lines to the end of the line.

Goto Line - G
Syntax: llinenumberlG

Function: Moves the cursor to the beginning of the line specified by
linenumber . If no linenumber is given, the cursor moves
to the beginning of the last line in the file. To find the line
number of the current line, use Ctrl-G.

Column - |
Syntax: [column]|

Function: Moves the cursor to the column in the current line given
by column. If no column is given, the cursor is moved to
the first column in the current line.

Word Forward - wand W

Syntax: w
w

Function: Moves the cursor forward to the beginning of the next
word. The lowercase w command searches for a word
defined as a string of alphanumeric characters separated
by punctuation or whitespace (i.e., tab, newline, or space
characters). The uppercase W command searches for a
word defined as a string of nonwhitespace characters.

Back Word -b and B

Syntax: b
B

Function: Moves the cursor backward to the beginning of a word.
The lowercase b command searches backward for a word
defined as a string of alphanumeric characters separated
by punctuation or whitespace (i.e., tab, newline, or space
characters). The uppercase B command searches for a
word defined as a string of non-whitespace characters. If
the cursor is already within a word, it moves backward to
the beginning of that word.

" 28 March 1991 Page 7

VI (C) VI (C)
End-eand E
Syntax: e
E
Function: Moves the cursor to the end of a word. The lowercase e

command moves the cursor to the last character of a word,
where a word is defined as a string of alphanumeric char-
acters separated by punctuation or whitespace (i.e., tab,
newline, or space characters). The uppercase E moves the
cursor to the last character of a word where a word is
defined as a string of nonwhitespace characters. If the
cursor is already within a word, it moves to the end of that
word.

Sentence - (and)

Syntax:

Function:

(
)

Moves the cursor to the beginning (left parenthesis) or
end of a sentence (right parenthesis). A sentence is
defined as a sequence of characters ending with a period
(.), question mark (?), or exclamation mark (!), followed
by either two spaces or a newline. A sentence begins on
the first nonwhitespace character following a preceding
sentence. Sentences are also delimited by paragraph and
section delimiters. See below.

Paragraph - { and }

Syntax:

Function:

}
{

Moves the cursor to the beginning ({) or end (}) of a para-
graph. A paragraph is defined with the paragraphs
option. By default, paragraphs are delimited by the nroff
macros “.IP”, “.LP”, “.P”, “.QP”, and “.bp”. Paragraphs
also begin after empty lines.

Section - [[and]]

Syntax:

Function:

28 March 1991

11
[

Moves the cursor to the beginning ([[) or end (]}) of a sec-
tion. A section is defined with the sections option. By
default, sections are delimited by the nroff macros “.NH”
and “.SH”. Sections also start at formfeeds (Ctrl-L) and at
lines beginning with a brace ({).

Page 8

VI(C)

VI (C)

Match Delimiter - %

Syntax:

Function:

Home - H
Syntax:

Function:

%o

Moves the cursor to a matching delimiter, where a delim-
iter is a parenthesis, a bracket, or a brace. This is useful
when matching pairs of nested parentheses, brackets, and
braces.

[offsetIH

Moves the cursor to the upper left comer of the screen.
Use this command to quickly move to the top of the
screen. If an offset is given, the cursor is homed offset-1
number of lines from the top of the screen. Note that the
command “dH” deletes all lines from the current line to
the top line shown on the screen.

Middle Screen - M

Syntax:

Function:

M

Moves the cursor to the beginning of the screen’s middle
line. Use this command to quickly move to the middle of
the screen from either the top or the bottom. Note that the
command “dM” deletes from the current line to the line
specified by the M command.

Lower Screen - L

Syntax:

Function:

[offsef]L

Moves the cursor to the lowest line on the screen. Use
this command to quickly move to the bottom of the
screen. If an offset is given, the cursor is homed offser-1
number of lines from the bottom of the screen. Note that
the command “dL” deletes all lines from the current line
to the bottom line shown on the screen.

Previous Context - " and **

Syntax:

Function:

28 March 1991

“character
“character
Moves the cursor to previous context or to context marked
with the m command. If the single quotation mark or

back quotation mark is doubled, the cursor is moved to
previous context. If a single character is given after either

Page 9

VI (C) VI (C)

quotation mark, the cursor is moved to the location of the
specified mark as defined by the m command. Previous
context is the location in the file of the last “nonrelative”
cursor movement. The single quotation mark (”) syntax
is used to move to the beginning of the line representing
the previous context. The back quotation mark () syntax
is used to move to the previous context within a line.

The Screen Commands

The screen commands are not cursor movement commands and cannot
be used in delete commands as the delimiters of text objects. How-
ever, the screen commands do move the cursor and are useful in pag-
ing or scrolling through a file. These commands are described below:

Scroll- Ctrl-U and Ctrl-D

Syntax: [size)Ctrl-U
[size}Ctri-D

Function: Scrolls the screen up a half window (Ctrl-U) or down a
half window (Ctri-D). If size is given, the scroll is size
number of lines. This value is remembered for all later
scrolling commands.

Page - Ctrl-F and Ctri-B

Syntax: Ctrl-F
Curl-B

Function: Pages screen forward and backward. Two lines of con-
tinuity are kept between pages if possible. A preceding
count gives the number of pages to move forward or back-
ward.

Status - Ctrl-G

Syntax: BELL
Crl-G

Function: Displays vi status on status line. This gives you the name
of the file you are editing, whether it has been modified,
the current line number, the number of lines in the file,
and the percentage of the file (in lines) that precedes the
CUrSOr.

Zero Screen -z
Syntax: [linenumber)z[size] RETURN

[linenumberlz[size].
[linenumberla[size] -

28 March 1991 Page 10

VI (C)

Function:

VI (C)

Redraws the display with the current line placed at or
“zeroed” at the top, middle, or bottom of the screen,
respectively. If you give a size, the number of lines dis-
played is equal to size. If a preceding linenumber is
given, the given line is placed at the top of the screen. If
the last argument is a RETURN, the current line is placed
at the top of the screen. If the last argument is a period
(.), the current line is placed in the middle of the screen.
If the last argument is a minus sign (-), the current line is
placed at the bottom of the screen.

Redraw - Ctri-R or Ctrl-L

Syntax:

Function:

Ctrl-R
Ctrl-L
(Command depends on terminal type.)

Redraws the screen. Use this command to erase any sys-
tem messages or line noise that may scramble your
screen. Note that system messages do not affect the file
you are editing.

Text Insertion

The text insertion commands always place you in insert mode. Exit
from insert mode is always done by pressing ESC. The following
insertion commands are “pure” insertion commands; no text is deleted
when you use them. This differs from the text modification com-
mands, change, replace, and substitute, which delete and then insert
text in one operation.

Insert-iand I

Syntax:

Function:

i[text]ESC
I[text]ESC

Insert text in editing buffer. The lowercase i command
places you in insert mode. Text is inserted before the
character beneath the cursor. To insert a newline, press a
RETURN. Exit insert mode by typing the ESC key. The
uppercase I command places you in insert mode, but
begins text insertion at the beginning of the current line
(at the first non-blank character), rather than before the
CUISOr.

Append - a and A

Syntax:

28 March 1991

a[text]JESC
Altext]ESC

Page 11

VI (C)

Function:

VI (C)

Appends text to the editing buffer. The lowercase a com-
mand works exactly like the lowercase i command, except
that text insertion begins after the cursor and not before.
This is the one way to add text to the end of a line. The
uppercase A command begins appending text at the end of
the current line rather than after the cursor.

Open New Line -0 and O

Syntax: o[rext]ESC
O[text]ESC

Function: Opens a new line and inserts text. The lowercase o com-
mand opens a new line below the current line; uppercase
O opens a new line above the current line. After the new
line has been opened, both these commands work like the
I command.

Text Deletion

Many of the text deletion commands use the SM d key as an operator.
This operator deletes text objects delimited by the cursor and a cursor
movement command. Deleted text is always saved away in a buffer.
The delete commands are described below:

Delete Character - x and X

Syntax:

Function:

X
X

Deletes a character. The lowercase x command deletes
the character beneath the cursor. With a preceding count,
count characters are deleted to the right beginning with
the character beneath the cursor. This is a quick and easy
way to delete a few characters. The uppercase X com-
mand deletes the character just before the cursor. With a
preceding count, count characters are deleted backward,
beginning with the character just before the cursor.

Delete -d and D

Syntax:

Function:

28 March 1991

dcursor-movement
dd
D

Deletes a text object. The lowercase d command takes a
cursor-movement as an argument. If the cursor-movement
is an intraline command, deletion takes place from the
cursor to the end of the text object delimited by the
cursor-movement . Deletion forward deletes the character

Page 12

VI (C) VI (C)

beneath the cursor; deletion backward does not. If the
cursor-movement is a multi-line command, deletion takes
place from and including the current line to the text object
delimited by the cursor-movement .

The dd command deletes whole lines. The uppercase D command
deletes from and including the cursor to the end of the current line.

Deleted text is automatically pushed on a stack of buffers numbered 1
through 9. The most recently deleted text is also placed in a special
delete buffer that is logically buffer 0. This special buffer is the
default buffer for all (put) commands using the double quotation mark
(") to specify the number of the buffer for delete, put, and yank com-
mands. The buffers 1 through 9 can be accessed with the p and P (put)
commands by appending the double quotation mark (") to the number
of the buffer. For example:

u4p

puts the contents of delete buffer number 4 in your editing buffer just
below the current line. Note that the last deleted text is “put” by
default and does not need a preceding buffer number.

Text Modification

The text modification commands all involve the replacement of text
with other text. This means that some text will necessarily be deleted.
All text modification commands can be “undone” with the u com-
mand:

Undo-uand U
Syntax: u
U

Function: Undoes the last insert or delete command. The lowercase
u command undoes the last insert or delete command.
This means that after an insert, u deletes text; and after a
delete, u inserts text. For the purposes of undo, all text
modification commands are considered insertions.

The uppercase U command restores the current line to its
state before it was edited, no matter how many times the
current line has been edited since you moved to it.

Repeat - .

Syntax: .

Function: Repeats the last insert or delete command. A special case

exists for repeating the p and P “put” commands. When
these commands are preceded by the name of a delete

28 March 1991 Page 13

VI (C)

VI (C)

buffer, successive u commands display the contents of the
delete buffers.

Change -cand C

Syntax:

Function:

ccursor-movement text ESC
Ctext ESC
ccrext ESC

Changes a text object and replaces it with rexr . Text is
inserted as with the i command. A dollar sign ($) marks
the extent of the change. The ¢ command changes arbi-
trary text objects delimited by the cursor and a cursor-
movement . cc affects whole lines while C affects from the
cursor to the end of the line.

Replace -r and R

Syntax:

Function:

rchar
Rrext ESC

Overstrikes character or line with char or text , respec-
tively. Use r to overstrike a single character and R to
overstrike a whole line. A count multiplies the replace-
ment text count times.

Substitute -sand S

Syntax:

Function:

Filter - !
Syntax:

Function:

28 March 1991

stext ESC
Stext ESC

Substitutes current character or current line with zext. Use
s to replace a single character with new text. Use S to
replace the current line with new text. If a preceding
count is given, fext substitutes for count number of char-
acters or lines depending on whether the command is s or
S, respectively.

Ycursor-movement cmd RETURN

Filters the text object delimited by the cursor and cursor-
movement through the XENIX command, cmd. For exam-
ple, the following command sorts all lines between the
cursor and the bottom of the screen, substituting the
designated lines with the sorted lines:

'Lsort

Arguments and shell metacharacters may be included as
part of cmd; however, standard input and output are

Page 14

VI (C) VI (C)

always associated with the text object being filtered. !!
affects the current line.

Join Lines - J
Syntax: J

Function: Joins the current line with the following line. If a count is
given, count lines are joined.

Shift - <and >

Syntax: >[cursor-movement)
<[cursor-movement]
>>
<<

Function: Shifts text right (>) or left (<). Text is shifted by the value
of the option shiftwidth, which is normally set to eight
spaces. Both the > and < commands shift all lines in the
text object delimited by the current line and cursor-
movement. The >> and << commands affect whole lines.
All versions of the command can take a preceding count
that acts to multiply the number of objects affected.

Text Movement

The text movement commands move text in and out of the named
buffers a-z and out of the delete buffers /-9. These commands either
“yank” text out of the editing buffer and into a named buffer or “put”
text into the editing buffer from a named buffer or a delete buffer. By
default, text is put and yanked from the “unnamed buffer”, which is
also where the most recently deleted text is placed. Thus it is quite
reasonable to delete text, move your cursor to the location where you
want the deleted text placed, and then put the text back into the edit-
ing buffer at this new location with the p or P command.

The named buffers are most useful for keeping track of several chunks
of text that you want to keep on hand for later access, movement, or
rearrangement. These buffers are named with the letters a through z.
To refer to one of these buffers (or one of the numbered delete buffers)
in a command, use a quotation mark. For example, to yank a line into
the buffer named a, enter:

"

ayy

To put this text back into the file, enter:

"

ap

28 March 1991 Page 15

VI (C) VI (C)

If you delete text in the buffer named A rather than a, text is appended
to the buffer named a (A and a refer to the same buffer but are handled
differently).

Note that the contents of the named buffers are not destroyed when
you switch files. Therefore, you can delete or yank text into a buffer,
switch files, and then do a put. Buffer contents are destroyed when you
exit the editor, so be careful.

Put-pand P

Syntax: [“alphanumericlp
[“alphanumeric]P

Function: Puts text from a buffer into the editing buffer. If no buffer
name is specified, text is put from the unnamed buffer.
The lowercase p command puts text either below the
current line or after the cursor, depending on whether the
buffer contains a partial line or not. The uppercase P
command puts text either above the current line or before
the cursor, again depending on whether the buffer contains
a partial line or not.

Yank-yand Y

Syntax: ["letterlycursor-movement
["letterlyy
["letter]Y

Function: Copies text in the editing buffer to a named buffer. If no
buffer name is specified, text is yanked into the unnamed
buffer. If an uppercase letter is used, text is appended to
the buffer and does not overwrite and destroy the previous
contents. When a cursor-movement is given as an argu-
ment, the delimited text object is yanked. The Y and yy
commands yank a single line, or, if a preceding count is
given, multiple lines can be yanked.

Searching

The search commands search either forward or backward in the edit-
ing buffer for text that matches a given regular expression.

Search -/and ?
Syntax: [[pattern)/[offset]IRETURN
/llpattern]RETURN

?pattern]?[offset]RETURN
?pattern]RETURN

28 March 1991 Page 16

VI (C)

Function:

VI (C)

Searches forward (/) or backward (?) for pattern. A string
is actually a regular expression. The trailing delimiter is
not required. If no partern is given, then the last patrern
searched for is used. After the second delimiter, an offser
may be given, specifying the beginning of a line relative
to the line on which pattern was found. For example:

[word/-

finds the beginning of the line immediately preceding the
line containing “word” and the following command:

Jword/+2

finds the beginning of the line two lines after the line con-
taining “word”. See also the ignorecase and magic
options.

Next String - nand N

Syntax:

Function:

Repeats the last search command. The m command
repeats the search in the same direction as the last search
command. The N command repeats the search in the
opposite direction of the last search command.

Find Character -fand F

Syntax:

Function:

fchar
Fchar
H

b

Finds character char on the current line. The lowercase f
searches forward on the line; the uppercase F searches
backward. The semicolon (;) repeats the last character
search. The comma (,) reverses the direction of the
search.

To Character -tand T

Syntax:

Function:

28 March 1991

tchar
Tchar
5

b

Moves the cursor up to but not on char. The semicolon
() repeats the last character search. The comma (,) rev-
erses the direction of the search.

Page 17

VI (C) VI (C)

Mark - m
Syntax: mletter

Function: Marks a place in the file with a lowercase lerrer. You can
move to a mark using the “to mark” commands described
below. It is often useful to create a mark, move the cur-
sor, and then delete from the cursor to the mark “a” with
the following command:

da
To Mark - "and "

Syntax: “letter
“letter

Function: Move to letter. These commands let you move to the
location of a mark. Marks are denoted by single lower-
case alphabetic characters. Before you can move to a
mark, it must first be created with the m command. The
back quotation mark (*) moves you to the exact location
of the mark within a line; the forward quotation mark (*)
moves you to the beginning of the line containing the
mark. Note that these commands are also legal cursor
movement commands.

Exit and Escape Commands

There are several commands that are used to escape from vi command
mode and to exit the editor. These are described in the following sec-
tion.

ex Escape - :
Syntax: :

Function: Enters ex escape mode to execute an ex command. The
colon appears on the status line as a prompt for an ex
command. You then can enter an ex command line ter-
minated by either a RETURN or an ESC and the ex com-
mand will execute. You are then prompted to type
RETURN to return to vi command mode. During the input
of the ex command line or during execution of the ex
command, you may press INTERRUPT to stop what you
are doing and return to vi command mode.

Exit Editor - ZZ

28 March 1991 Page 18

VI (C) VI(C)

Syntax: 77

Function: Exit vi and write out the file if any changes have been
made. This returns you to the shell from which you

started vi.
Quittoex-Q
Syntax: Q

Function: Enters the ex editor. When you do this, you will still be
editing the same file. You can return to vi by entering the
vi command from ex.

ex Commands

Entering the colon (:) escape command when in command mode pro-

duces a colon prompt on the status line. This prompt is for a command

available in the line-oriented editor, ex. In general, ex commands let

%cl)u write out or read in files, escape to the shell, or switch editing
es.

Many of these commands perform actions that affect the “current” file
by default. The current file is normally the file that you named when
you started vi, although the current file can be changed with the “file”
command, f, or with the “next” command, n. In most respects, these
commands are identical to similar commands for the editor, ed. All

- such ex commands are aborted by either RETURN or ESC. We shall
use RETURN in our examples. Command entry is terminated by typ-
ing INTERRUPT.

Command Structure

Most ex command names are English words, and initial prefixes of the
words are acceptable abbreviations. In descriptions, only the abbrevi-
ation is discussed, since this is the most frequently used form of the
command. The ambiguity of abbreviations is resolved in favor of the
more commonly used commands. As an example, the command sub-
stitute can be abbreviated s, while the shortest available abbreviation
for the set command is se.

Most commands accept prefix addresses specifying the lines in the file
that they are to affect. A number of commands also may take a trail-
ing count specifying the number of lines to be involved in the com-
mand. Counts are rounded down if necessary. Thus, the command
“10p” displays the tenth line in the buffer while “move 5” moves the
current line after line 5.

28 March 1991 Page 19

VI (C) VI (C)

Some commands take other information or parameters, stated after the
command name. Examples might be option names in a set command,
such as “set number”, a filename in an edit command, a regular
expression in a substitute command, or a target address for a copy
command. For example:

1,5 copy 25

A number of commands have variants. The variant form of the com-
mand is invoked by placing an exclamation mark (!) immediately after
the command name. Some of the default variants may be controlled
by options; in this case, the exclamation mark turns off the meaning of
the default.

In addition, many commands take flags, including the characters “p”
and “1”. A “p” or “I” must be preceded by a blank or tab. In this
case, the command abbreviated by these characters is executed after
the command completes. Since ex normally displays the new current
line after each change, p is rarely necessary. Any number of plus (+)
or minus (-) characters may also be given with these flags. If they
appear, the specified offset is applied to the current line value before
the printing command is executed.

Most commands that change the contents of the editor buffer give
feedback if the scope of the change exceeds a threshold given by the
report option. This feedback helps to detect undesirably large
changes so that they may be quickly and easily reversed with the undo
command. After commands with global effect, you will be informed if
the net change in the number of lines in the buffer during this com-
mand exceeds this threshold.

Command Addressing
The following specifies the line addressing syntax for ex commands:

The current line. Most commands leave the current
line as the last line which they affect. The default
address for most commands is the current line, thus

“ ¥

.” is rarely used alone as an address.

n The nth line in the editor’s buffer, lines being num-
bered sequentially from 1.

$ The last line in the buffer.

% An abbreviation for “1,$”, the entire buffer.

+n or-n An offset, n relative to the current buffer line. The

forms “.4+3” “+3” and “+++” are all equivalent. If
the current line is line 100 they all address line 103.

28 March 1991 Page 20

VI(C) VI (C)

Ipattern/ or ?pattern?

Scan forward and backward respectively for a text
matching the regular expression given by pattern.
Scans normally wrap around the end of the buffer.
If all that is desired is to print the next line contain-
ing pattern, the trailing slash (/) or question mark
(?) may be omitted. If pattern is omitted or explic-
itly empty, the string matching the last specified
regular expression is located. The forms
“RETURN” and “?RETURN” scan using the last
named regular expression. After a substitute,
“RETURN” and “?7RETURN” would scan using
that substitute’s regular expression.

“or’x Before each nonrelative motion of the current line
dot (.), the previous current line is marked with a
label, subsequently referred to with two single quo-
tation marks (“"). This makes it easy to refer or
return to this previous context. Marks are esta-
blished with the vi m command, using a single
lowercase letter as the name of the mark. Marked
lines are later referred to with the following nota-
tion:

.

X.
where x is the name of a mark.

Addresses to commands consist of a series of addresses, separated by
a comma (,) or a semicolon (;). Such address lists are evaluated left to
right. When addresses are separated by a semicolon (;) the current
line (.) is set to the value of the previous addressing expression before
the next address is interpreted. If more addresses are given than the
command requires, all but the last one or two are ignored. If the com-
mand takes two addresses, the first addressed line must precede the
second in the buffer. Null address specifications are permitted in a list
of addresses, the default in this case is the current line “.”; thus
“,100” is equivalent to “.,100”. It is an error to give a prefix address
to a command which expects none.

Command Format
The following is the format for all ex commands:
[address] [command] [!] [parameters] [count] [flags]

All parts are optional depending on the particular command and its
options. The following section describes specific commands.

28 March 1991 Page 21

VI (C)

VI(C)

Argument List Commands

The argument list commands allow you to work on a set of files, by
remembering the list of filenames that are specified when you invoke
vi. The args command lets you examine this list of filenames. The
file command gives you information about the current file. The n
(next) command lets you either edit the next file in the argument list
or change the list. The rewind command lets you restart editing the
files in the list. All of these commands are described below:

args

f file

The members of the argument list are displayed, with
the current argument delimited by brackets.
For example, a list might look like this:

filel file2 [file3] file4 file5
The current file is file3.

Displays the current filename, whether it has been
modified since the last write command, whether it is
read-only, the current linenumber, the number of
lines in the buffer, and the percentage of the buffer
that you have edited. In the rare case that the current
file is “[Not edited]”, this is noted also; in this case
you have to use w! to write to the file, since the edi-
tor is not sure that a w command will not destroy a
file unrelated to the current contents of the buffer.

The current filename is changed to file which is con-
sidered “[Not edited]”’.

The next file in the command line argument list is
edited.

This variant suppresses wamings about the
modifications to the buffer not having been written
out, discarding irretrievably any changes that may
have been made.

n [+command)] filelist

rew

rew!

28 March 1991

The specified filelist is expanded and the resulting
list replaces the current argument list; the first file in
the new list is then edited. If command is given (it
must contain no spaces), then it is executed after
editing the first such file.

The argument list is rewound, and the first file in the
list is edited.

Rewinds the argument list discarding any changes
made to the current buffer.

Page 22

VI (C) VI (C)

If you use C-Shell and set the prompt variable to output a prompt for
non-interactive shells, the prompt is interpreted as a filename when
you use these commands. This causes unexpected problems. To avoid
these problems, use the default prompt value as specified in
{usr/libimkuser/mkuser.cshrc.

Edit Commands

To edit a file other than the one you are currently editing, you will
often use one of the variations of the e command.

In the following discussions, note that the name of the current file is
always remembered by vi and is specified by a percent sign (%). The
name of the previous file in the editing buffer is specified by a number
sign (#).

The edit commands are described below:

e file Used to begin an editing session on a new file. The edi-
tor first checks to see if the buffer has been modified
since the last w command was issued. If it has been, a
warning is issued and the command is aborted. The
command otherwise deletes the entire contents of the
editor buffer, makes the named file the current file, and
displays the new filename. After ensuring that this file
is sensible, (i.e., that it is not a binary file, directory, or
a device), the editor reads the file into its buffer. If the
read of the file completes without error, the number of
lines and characters read is displayed on the status line.
If none of these errors occurred, the file is considered
edited. If the last line of the input file is missing the
trailing newline character, it is supplied and a com-
plaint issued. The current line is initially the first line
of the file.

e! file This variant form suppresses the complaint about
modifications having been made and not written from
the editor buffer, thus discarding all changes that have
been made before editing the new file.

e +nfile Causes the editor to begin editing at line n rather than
at the first line. The argument n may also be an editor
command containing no spaces; for example, “+/pat-
tern”.

Ctrl-" This is a shorthand equivalent for “:e #RETURN”,
which returns to the previous position in the last edited
file. If you do not want to write the file, you should use
“:e! #RETURN” instead.

28 March 1991 Page 23

VI (C) VI (C)

Write Commands

The write commands let you write out all or part of your editing buffer
to either the current file or to some other file. These commands are
described below:

w file Writes changes made back to file, displaying the num-
ber of lines and characters written. Normally, file is
omitted and the buffer is written to the name of the
current file. If file is specified, text is written to that
file. The editor writes to a file only if it is the current
file and is edited, or if the file does not exist. Other-
wise, you must give the variant form w! to force the
write. If the file does not exist it is created. The
current filename is changed only if there is no current
filename; the current line is never changed.

If an error occurs while writing the current and edited
file, the editor displays:

No write since last change
even if the buffer had not previously been modified.

w>> file Appends the buffer contents at the end of an existing
file. Previous file contents are not destroyed.

w! name Overrides the checking of the normal write command,
and writes to any file that the system permits.

w !command
Writes the specified lines into command. A blank or
tab before the exclamation mark is necessary. Note the
difference in spacing between
w! file
which overrides checks and
w lemd
which writes to a command. The output of this com-
mand is displayed on the screen and not inserted in the
editing buffer.
Read Commands
The read commands let you read text into your editing buffer at any

location you specify. The text you read in must be at least one line
long, and can be either a file or the output from a command.

28 March 1991 Page 24

VI (C)

rfile

r ‘command

VI (C)

Places a copy of the text of the given file in the editing
buffer after the specified line. If no file is given, the
current filename is used. The current filename is not
changed unless there is none, in which case the file
becomes the current name. If the file buffer is empty
and there is no current name, this is treated as an e
command.

Address O is legal for this command and causes the file
to be read at the beginning of the buffer. Statistics are
given as for the e command when the r successfully ter-
minates. After an r the current line is the last line read.

Reads the output of command into the buffer after the
specified line. A blank or tab before the exclamation
mark (!) is mandatory.

Quit Commands

There are several ways to exit vi. Some abort the editing session,
some write out the editing buffer before exiting, and some warn you if

you decide t

o exit without writing out the buffer. All of these ways of

exiting are described below:

q

q!

wq hame

wq! name

X name

Exits vi. No automatic write of the editor buffer to a file
is performed. However, vi displays a warning message if
the file has changed since the last w command was issued,
and does not quit. vi also displays a diagnostic if there are
more files in the argument list left to edit. Normally, you
will wish to save your changes, and you should enter a w
command. If you wish to discard them, enter the q! com-
mand variant.

Quits from the editor, discarding changes to the buffer
without complaint.

Like a w and then a ¢ command.

Overrides checking normally made before execution of
the w command to any file. For example, if you own a file
but do not have write permission turned on, the wq!
allows you to update the file anyway.

If any changes have been made and not written, writes the
buffer out and then quits. Otherwise, it just quits.

Global and Substitute Commands

The global and substitute commands allow you to perform complex

changes to

28 March 1991

a file in a single command. Leaming how to use these

Page 25

VI (C)

VI (C)

commands is a must for an experienced vi user.

g/pattern/cmds

The g command has two distinct phases. In the first
phase, each line matching pattern in the editing buffer is
marked. Next, the given command list is executed with
the current line, dot (.), initially set to each marked line.

The command list consists of the remaining commands on
the current input line and may continue to multiple lines
by ending all but the last such line with a backslash (\).
This multiple-line option will not work from within vi,
you must switch to ex to do it. The vi command “Q” can
be used to exit to ex and the ex command “vi” returns to
visual mode. If cmds (or the trailing slash (/) delimiter) is
omitted, each line matching pattern is displayed.

The g command itself may not appear in c¢mds. The
options autoprint and autoindent are inhibited during a
global command and the value of the repert option is
temporarily infinite, in deference to a report for the entire
global. Finally, the context mark (") or () is set to the
value of the current line (.) before the global command
begins and is not changed during a global command.

The following global commands, most of them substitu-
tions, cover the most frequent uses of the global com-
mand.

g/sl/p This command simply prints all lines that contain
the string “s1” .

g/sl/s/ls2/ This command substitutes the first occurrence of
“s1” on all lines that contain it with the string “s2”.

g/sl/s//s2/g This command substitutes all occurrences of “s1”
with the string “s2”. This includes multiple occur-
rences of “s1” on a line.

g/sl/s//s2/gp This command works the same as the preceding
example, except that in addition, all changed lines
are displayed on the screen.

g/sl/s//s2/gc This command prompts you to confirm that you

want to make each substitution of the string “s1”
with the string “s2”. If you enter a Y , the given
substitution is made, otherwise it is not.

g/s0/s/s1/s2/g This command marks all those lines that contain the

28 March 1991

string “s0”, and then for those lines only, substi-
tutes all occurrences of the string “s1” with “s2”.

Page 26

VI(C) VI (C)

gl/pattern/cmds This variant form of g runs cmds at each line not
matching partern.

gl'isil /g This command inserts blank spaces at the beginning
of each line in a file.

s/patternireplloptions

On each specified line, the first instance of text
matching the regular expression pattern is replaced
by the replacement text repl. If the global indicator
option character g appears, all instances on a line
are substituted. If the confirm indication character
¢ appears, before each substitution the line to be
substituted is printed on the screen with the string
to be substituted marked with caret (") characters.
By entering Y , you cause the substitution to be per-
formed; any other input causes no change to take
place. After an s command, the current line is the
last line substituted.

vipattern/cmds A synonym for the global command variant g!, run-
ning the specified cmds on each line that does not
match pattern.

Text Movement Commands

The text movement commands are largely superseded by commands
available in vi command mode. However, the following two com-
mands are still quite useful:

co addr flags A copy of the specified lines is placed after addr,

which may be “0”. The current line “.” addresses
the last line of the copy.

[rangelmaddr The m command moves the lines specified by range
after the line given by addr. For example, m+
swaps the current line and the following line, since
the default range is just the current line. The first of
the moved lines becomes the current line (dot).

Shell Escape Commands

You will often want to escape from the editor to execute normal
XENIX commands. You may also want to change your working direc-
tory so that your editing can be done with respect to a different work-
ing directory. These operations are described below:

cd directory The specified directory becomes the current direc-

tory. If no directory is specified, the current value
of the home option is used as the target directory.

28 March 1991 Page 27

VI (C) VI (C)

After a cd , the current file is not considered to have
been edited so that write restrictions on preexisting
files still apply.

sh A new shell is created. You may invoke as many
commands as you like in this shell. To return to vi,
enter a Ctrl-D to terminate the shell.

{command The remainder of the line after the exclamation (!)
is sent to a shell to be executed. Within the text of
command , the characters “%” and “#” are
expanded as the filenames of the current file and the
last edited file and the character “!” is replaced
with the text of the previous command. Thus, in
particular, “!!” repeats the last such shell escape. If
any such expansion is performed, the expanded line
is echoed. The current line is unchanged by this
command.

If there has been “[No write]” of the buffer contents since the last
change to the editing buffer, a diagnostic is displayed before the com-
mand is executed, as a warning. A single exclamation (!) is displayed
when the command completes.

If you use C-Shell and set the prompt variable to output a prompt for
non-interactive shells, the prompt is interpreted as an argument for
command in shell escapes. This causes unexpected problems. To
avoid these problems, use the default prompt value as specified in
lusrllib/mkuserimkuser.cshrc.

Other Commands

The following command descriptions explain how to use miscellane -
ous ex commands that do not fit into the above categories.

The abbr, map, and set commands can also be defined with the
EXINIT environment variable, which is read by the editor each time it
starts up. For more information, see environ(M). Alternatively, these
commands can be placed in a .exrc file in your home directory, which
the editor reads if EXINIT is not defined.

abbr Maps the first argument to the following string. For exam-
ple, the following command

:abbr rainbow yellow green blue red
maps “rainbow” to “yellow green blue red”. Abbrevia-
tions can be tumed off with the unabbreviate command,
as in:

:una rainbow

28 March 1991 Page 28

VI (C)

map, map!

nu

preserve

recover file

VI (C)

Maps any character or escape sequence to a command
sequence. For example, the following command maps the
CTRL-A key to a shell escape that runs the clear (C) com-
mand:

map “A :!clear"M

To include the CTRL-A and CTRL-M characters in the
mapping, you must use vi’s CTRL-V escape.

Characters mapped with map work in command mode,
while characters mapped with map! work in insert mode.
Characters mapped with map! cannot be unmapped using
unmap.

Displays each specified line preceded by its buffer line
number. The current line is left at the last line displayed.
To get automatic line numbering of lines in the buffer, set
the number option.

The current editor buffer is saved as though the system
had just crashed. This command is for use only in emer-
gencies when a w command has resulted in an error and
you do not know how to save your work.

Displays the line number of the addressed line. The
current line is unchanged.

Recovers file from the system save area. The system
saves a copy of the editing buffer only if you have made
changes to the file, the system crashes, or you execute a
preserve command. When you use preserve, you are
notified by mail when a file is saved.

set argument

28 March 1991

With no arguments, set displays those options whose
values have been changed from their defaults; with the
argument all, it displays all of the option values.

Giving an option name followed by a question mark (?)
causes the current value of that option to be displayed.
The question mark is unnecessary unless the option is a
Boolean value. Switch options are given values either
with:

set option
to turn them on or:

set nooption

Page 29

VI(C) VI (C)

to turn them off. String and numeric options are assigned
with:

set option=value

More than one option can be given to set; all are inter-
preted from left to right. See “Options” for a complete
list and descriptions.

tag label The focus of editing switches to the location of label. If
necessary, vi will switch to a different file in the current
directory to find label. If you have modified the current
file before giving a tag command, you must first write it
out. If you give another tag command with no argument,
the previous label is used.

Similarly, if you press Ctrl-], vi searches for the word
immediately after the cursor as a tag. This is equivalent
to entering “:tag”, the word following the cursor, and then
pressing the RETURN key.

The tags file is normally created by a program such as
ctags, and consists of a number of lines with three fields
separated by blanks or tabs. The first field gives the name
of the tag, the second the name of the file where the tag
resides, and the third gives an addressing form which can
be used by the editor to find the tag. This field is usually a
contextual scan using /pattern/ to be immune to minor
changes in the file. Such scans are always performed as if
the nomagic option was set. The tag names in the tags
file must be sorted alphabetically.

unmap Unmaps any character or escape sequence that has been
mapped using the map command.

Options

There are a number of options that can be set to affect the vi environ-
ment. These can be set with the ex set command while editing, with
the EXINIT environment variable, or in the vi start-up file, .exrc. This
file normally sets the user’s preferred options so that they do not need
to be set manually each time you invoke vi.

The first thing that must be done before you can use vi, is to set the
terminal type so that vi understands how to talk to the particular termi-
nal you are using.

There are only two kinds of options: switch options and string options.
A switch option is either on or off. A switch is turned off by prefixing
the word no to the name of the switch within a set command. String
options are strings of characters that are assigned values with the

28 March 1991 Page 30

VI(C) VI (C)

syntax option=string. Multiple options may be specified on a line. vi
options are listed below:

autoindent, ai default: noai

Can be used to ease the preparation of structured program text. For
each line created by an append, change, insert, open, or substitute
operation, vi looks at the preceding line to determine and insert an
appropriate amount of indentation. To back the cursor up to the
preceding tab stop, press Ctrl-D. The tab stops going backward are
defined as multiples of the shiftwidth option. You cannot back-
space over the indent, except by pressing Ctrl-D.

Specially processed in this mode is a line with no characters added
to it, which turns into a completely blank line (the whitespace pro-
vided for the autoindent is discarded). Also, specially processed
in this mode are lines beginning with a caret () and immediately
followed by a Cul-D. This causes the input to be repositioned at
the beginning of the line, but retains the previous indent for the
next line. Similarly, a “0” followed by a Ctrl-D, repositions the
cursor at the beginning without retaining the previous indent.
Autoindent doesn’t happen in global commands.

autoprint ap default: ap
Causes the current line to be displayed after each ex copy, move,
or substitute command. This has the same effect as supplying a

trailing “p” to each such command. Autoprint is suppressed in
globals, and only applies to the last command on a line.

autowrite, aw default: noaw
Causes the contents of the buffer to be automatically written to the
current file if you have modified it when you give a next, rewind,
tag, or ! command, or a Cul-" (switch files) or Ctrl-] (goto tag) com-
mand.

beautify, bf default: nobeautify
Causes all control characters except tab, newline and formfeed to
be discarded from the input. A complaint is registered the first
time a backspace character is discarded. Beautify does not apply
to command input.

directory, dir default: dir=/tmp
Specifies the directory in which vi places the editing buffer file. If
the directory does not have write permission, the editor will exit
abruptly when it fails to write to the buffer file.

edcompatible default: noedcompatible
Causes the presence or absence of g and ¢ suffixes on substitute
commands to be remembered, and to be toggled on and off by
repeating the suffixes. The suffix r causes the substitution to be like
the tilde (*) command, instead of like the ampersand command
(&).

28 March 1991 Page 31

VI (C) VI (C)

errorbells, eb default: noeb
Error messages are preceded by a bell. If possible, the editor
always places the error message in inverse video instead of ringing
the bell.

hardtabs, ht default: ht=8
Gives the boundaries on which terminal hardware tabs are set or on
which tabs the system expands.

ignorecase, ic default: noic
Maps all uppercase characters in the text to lowercase in regular
expression matching. In addition, all uppercase characters in regu-
lar expressions are mapped to lowercase except in character class
specifications enclosed in brackets.

lisp default: nolisp
Autoindent indents appropriately for LISP code, and the () { } ({
and]] commands are modified to have meaning for LISP.

list default: nolist
All printed lines are displayed, showing tabs and end-of-lines.

magic default: magic
If nomagic is set, the number of regular expression metacharacters
is greatly reduced, with only up-arrow (*) and dollar sign ($) hav-
ing special effects. In addition, the metacharacters “™” and “&” in
replacement patterns are treated as normal characters. All the nor-
mal metacharacters may be made magic when nomagic is set by
preceding them with a backslash (V).

mesg default: nomesg
Causes write permission to be turned off to the terminal while you
are in visual mode, if nomesg is set. This prevents people writing
to your screen with the XENIX write command and scrambling
your screen as you edit.

number, n default: nonumber
Causes all output lines to be printed with their line numbers.

open default: open
If set to noopen, the commands open and visual are not permitted
from ex. This is set to prevent confusion resulting from accidental
entry to open or visual mode.

optimize, opt default: optimize
Output of text to the screen is expedited by setting the terminal so
that it does not perform automatic carriage returns when displaying
more than one line of output, thus greatly speeding output on ter-
minals without addressable cursors when text with leading whi-
tespace is printed.

28 March 1991 Page 32

VI (C) VI (C)

paragraphs, para default: para =IPLPPPQPP TPbp
Specifies paragraph delimiters for the { and } operations. The pairs
of characters in the option’s value are the names of the nroff mac-
ros that start paragraphs.

prompt default: prompt
ex input is prompted for with a colon (:). If noprompt is set, when
ex command mode is entered with the Q command, no colon
prompt is displayed on the status line.

redraw default: noredraw
The editor simulates (using great amounts of output), an intelligent
terminal on a dumb terminal. Useful only at very high speed.

remap default; remap
If on, mapped characters are repeatedly tried until they are
unchanged. For example, if o is mapped to O and O is mapped to /,
o will map to / if remap is set, and to O if noremap is set.

report default: report=5

Specifies a threshold for feedback from commands. Any command
that modifies more than the specified number of lines will provide
feedback as to the scope of its changes. For global commands and
the undo command, the net change in the number of lines in the
buffer is presented at the end of the command. Thus notification is
suppressed during a g command on the individual commands per-
formed.

scroll default: scroll="; window
Determines the number of logical lines scrolled when Curl-D is
received from a terminal input in command mode, and the number
of lines displayed by a command mode z command (double the
value of scroll).

sections default: sections=SHNHH HU
Specifies the section macros for the [[and 11 operations. The pairs
of characters in the option’s value are the names of the nroff mac-
ros that start sections.

shell, sh default: sh=/bin/sh
Gives the pathname of the shell forked for the shell escape com-
mand (1), and by the shell command. The default is taken from
SHELL in the environment, if present.

shiftwidth, sw default:sw=8
Gives the width of a software tab stop, used in reverse tabbing with
Ctrl-D when using autoindent to append text, and by the shift com-
mands.

showmatch, sm default: nosm

When a) or } is typed, moves the cursor to the matching (or { for
one second if this matching character is on the screen.

28 March 1991 Page 33

VI (C) VI (C)

showmode default: noshowmode
Causes the message “INPUT MODE” to appear on the lower right
corner of the screen when insert mode is activated.

slowopen default: noslowopen
Postpones update of the display during inserts.

tabstop, ts default: ts=8
The editor expands tabs in the input file to be on n boundaries for
the purposes of display.

taglength, tl default: t1=0
The first n characters in a tag name are significant, but all others
are ignored. A value of zero (the default) means that all characters
are significant.

tags default: tags=tags /usr/lib/tags
A path of files to be used as tag files for the tag command. A
requested tag is searched for in the specified files, sequentially. By
default, files named tags are searched for in the current directory
and in /usr/lib.

term default=value of shell TERM variable
The terminal type of the output device.

terse default: noterse
Shorter error diagnostics are produced for the experienced user.

timeout , to default: noto
Eliminates the 1 second time limit for maps (character mappings).

warn default: warn
Warn if there has been “[No write since last change]” before a
shell escape command (!).

window default: window = speed dependent
This specifies the number of lines in a text window. The default is
8 at slow speeds (600 baud or less), 16 at medium speed (1200
baud), and the full screen (minus one line) at higher speeds.

w300, w1200, w9600
These are not true options but set window (above) only if the
speed is slow (300), medium (1200), or high (9600), respectively.

wrapscan, ws default: ws
Searches, using the regular expressions in addressing, will wrap
around past the end of the file.

wrapmargin, wm default: wm=0

Defines the margin for automatic insertion of newlines during text
input. A value of zero specifies no wrap margin.

28 March 1991 Page 34

VI(C) VI (C)

writeany, wa default: nowa
Inhibits the checks normally made before write commands, allow-
ing a write to any file that the system protection mechanism will
allow.

Regular Expressions

A regular expression specifies a set of strings of characters. A
member of this set of strings is said to be “matched’” by the regular
expression. vi remembers two previous regular expressions: the pre-
vious regular expression used in a substitute command and the previ-
ous regular expression used elsewhere, referred to as the previous
scanning regular expression. The previous regular expression can
always be referred to by a null regular expression: e.g., “//” or “7?”.

The regular expressions allowed by vi are constructed in one of two
ways depending on the setting of the magic option. The ex and vi
default setting of magic gives quick access to a powerful set of regu-
lar expression metacharacters. The disadvantage of magic is that the
user must remember that these metacharacters are magic and precede
them with the backslash (\) to use them as “ordinary” characters.
With nomagic set, regular expressions are much simpler, there being
only two metacharacters. The power of the other metacharacters is
still available by preceding the now ordinary character with a “\”.
Note that “\” is always a metacharacter. In this discussion, the magic
option is assumed. With nomagic , the only special characters are the
caret (") at the beginning of a regular expression, the dollar sign (§) at
the end of a regular expression, and the backslash (\). The tilde (™)
and the ampersand (&) also lose their special meanings related to the
replacement pattern of a substitute.

The following basic constructs are used to construct magic mode reg-
ular expressions.

char An ordinary character matches itself. Ordinary characters are
any characters except a caret (") at the beginning of a line, a
dollar sign ($) at the end of line, an asterisk (*) as any character
other than the first, and any of the following characters:
AT

These characters must be preceded by a backslash (V) if they are
to be treated as ordinary characters.

At the beginning of a pattern, forces the match to succeed only
at the beginning of a line.

$ At the end of a regular expression, forces the match to succeed
only at the end of the line.

28 March 1991 Page 35

VI (C) VI(C)

. Matches any single character except the newline character.

\< Forces the match to occur only at the beginning of a “word”;
that is, either at the beginning of a line, or just before a letter,
digit, or underline and after a character not one of these.

> Similar to ‘“\<”, but matching the end of a “word”, i.e., either
the end of the line or before a character which is not a letter, a
digit, or the underline character.

[string]

Matches any single character in the class defined by string.
Most characters in string define themselves. A pair of charac-
ters separated by a dash (-) in string defines the set of characters
between the specified lower and upper bounds, thus “[a-z]” as a
regular expression matches any single lowercase letter. If the
first character of string is a caret (") then the construct matches
those characters which it otherwise would not. Thus “["a-z]”
matches anything but a lowercase letter or a newline. To place
any of the characters caret, left bracket, or dash in string they
must be escaped with a preceding backslash (V).

The concatenation of two regular expressions first matches the left-
most regular expression and then the longest string that can be recog-
nized as a regular expression. The first part of this new regular
expression matches the first regular expression and the second part
matches the second. Any of the single character matching regular
expressions mentioned above may be followed by an asterisk (*) to
form a regular expression that matches zero or more adjacent occur-
rences of the characters matched by the prefixing regular expression.
The tilde (") may be used in a regular expression to match the text that
defined the replacement part of the last s command. A regular expres-
sion may be enclosed between the sequences “N” and “N)” to
remember the text matched by the enclosed regular expression. This
text can later be interpolated into the replacement text using the fol-
lowing notation:

\digit
where digit enumerates the set of remembered regular expressions.

The basic metacharacters for the replacement pattern are the amper-
sand (&) and the tilde (7); these are given as ‘\&” and “\"” when
nomagic is set. Each instance of the ampersand is replaced by the
characters matched by the search pattern. In the replacement pattern,
the tilde stands for the text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always
introduced by a backslash (\). The sequence “\n” is replaced by the
text matched by the nth regular subexpression enclosed between “\(”
and “\)”. When nested, parenthesized subexpressions are present, 7 is
determined by counting occurrences of “\(” starting from the left.

28 March 1991 Page 36

VI (C) VI (C)

The sequences “\u” and “\1” cause the immediately following char-
acter in the replacement to be converted to uppercase or lowercase,
respectively, if this character is a letter. The sequences “\U” and
‘NL” turn such conversion on, either until “\E” or “\e” is encoun-
tered, or until the end of the replacement pattern.

Files
/tmp default directory where temporary work
files are placed; it can be changed using
the directory option (see the ex(C) set
command.).
fusr/lib/terminfo/? /* compiled terminal description database
fusr/lib/.COREterm/?/* subset of compiled terminal description
database
Credit

This utility was developed at the University of California at Berkeley
and is used with permission.

Notes

The /usr/lib/ex3.7preserve program can be used to restore vi buffer
files that were lost as a result of a system crash. The program searches
the /tmp directory for vi buffer files and places them in the directory
/usr/preserve. The owner can retrieve these files using the -r option.

The /usr/lib/ex3.7preserve program must be placed in the system
startup file, /etc/rc, before the command that cleans out the /tmp
directory. See the XENIX System Administrator’s Guide for more in-
formation on /etc/re.

Two options, although they continue to be supported, have been re-
placed in the documentation by the options that follow the Command
Syntax Standard (see intro(C)). A -r option that is not followed with
an argument has been replaced by -L and +command has been re-
placed by -c command.

vi does not strip the high bit from 8 bit characters read in from text
files, text insertion, and editing commands. It does not look for magic
numbers of object files when reading in a text file. It also writes out
text and displays text without stripping the high bit.

vi uses the LC_CTYPE environment variable to determine if a char-

acter is printable, displaying the octal codes of non-printable 8 bit
characters. It also uses LC_CTYPE and LANG to convert between

28 March 1991 Page 37

VI (C) VI (C)

upper and lowercase characters for the tilde command and for the ig-
norecase option.

When the percent sign (%) is used in a shell escape from vi via the
exclamation mark (%) the % is replaced with the name of the file being
edited. In previous versions of vi, each character in this replacement
had the high bit set to 1 to quote it; in the current version of vi it is left
alone.

Warnings

Tampering with the entries in /usr/lib/.COREterm/?/* or
fusr/lib/terminfo/? /* (for example, changing or removing an entry)
can affect programs such as vi that expect all entries to be present and
correct. In particular, removing the “dumb” terminal entry may cause
unexpected problems.

Software tabs using “T work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert
and delete operations in the terminal.

Refer to the crypt(C) page for information about restrictions on the
availability of encryption options.

28 March 1991 Page 38

VIDI (C) VIDI (C)

Name

vidi - Sets the font and video mode for a video device.

Syntax
vidi [-d][-f fontfile] font

vidi mode

Description
vidi has two functions: it loads/extracts a font or sets the video mode
for the current standard input device. Without arguments, it lists all of
the valid video mode and font commands.
Font Options
Some video cards support changeable character fonts. Available fonts
are font8x8, font8x14, and font8x16. The font options are used as fol-
lows:
vidi font loads font from /usr/lib/vidi/font.
vidi -d font writes font to the standard output.
vidi -d -f font fontfile writes font to fontfile.
vidi -f fontfile font loads font from fontfile instead of default
directory.
Mode Options

vidi also sets the mode of the video adapter connected to the standard
input. The modes are:

mono move current screen to the monochrome adapter.

cga move current screen to the Color Graphics adapter.
ega move current screen to the Enhanced Graphics adapter.
vga move current screen to the Video Graphics adapter.

internal activate the internal monitor on portable with a plasma
screen.

28 March 1991 Page 1

VIDI (C) VIDI (C)

external activate the external monitor on portable with a plasma
screen.

Text and Graphics Modes

The following tables list the available modes.

Text Modes

Mode Cols Rows Font Adapter

c40x25 40 25 8x8 CGA (EGA VGA)

e40x25 40 25 8x14 EGA (VGA)

v40x25 40 25 8x16 VGA

m80x25 80 25 8x14 MONO (EGA_MONO VGA_MONO)

c80x25 80 25 8x8 CGA (EGA VGA)

em80x25 80 25 8x14 EGA_MONO (VGA_MONO)

e80x25 80 25 8x14 EGA(VGA)

vm80x25 80 25 8x16 VGA_MONO

v80x25 80 25 8x16 VGA

e80x43 80 43 8x14 EGA (VGA)

Graphics Modes
Mode Pixel Resolution Colors Adapter
mode5 320x200 4 CGA (EGA VGA)
mode6 640x200 2 CGA (EGA VGA)
modeD 320x200 16 EGA (VGA)
modeE 640x200 16 EGA (VGA)
modeF 640x350 2 (mono) EGA (VGA)
model0 640x350 16 EGA (VGA)
model1l 640x480 2 VGA
model2 640x480 16 VGA
model3 320x200 256 VGA
See Also
screen(HW)
Notes

The internal and external commands do not work with all types of
portables.

28 March 1991 Page 2

VMSTAT (C) VMSTAT (C)

Name

vmstat - Report paging and system statistics.

Syntax
vmstat [-fs] [-n namelist] [-c¢ corefile] [-1 lines] [interval
[count]]
Description
vmstat reports some statistics kept by the system on processes,

demand paging, and cpu and trap activity. Three types of reports are
available:

(default)
A summary of the number of processes in various states, paging
activity, system activity, and cpu cycle consumption.

-f Number of fork(S)’s done.
-s A verbose listing of paging and trap activity.

If no interval or count is specified, the totals since system bootup are
displayed.

If an interval is given, the number of events that have occurred in the
last interval seconds is shown. If no count is specified, this display is
repeated forever every interval seconds. Otherwise, when a count is
also specified, the information is displayed count times.

Other flags that may be specified include:

-¢ corefile
Uses the file corefile in place of /dev/kmem.

-n namelist
Use file namelist as an alternate symbol table instead of /xenix.

-1 lines
For the default display, repeat the header every lines reports
(default is 20).

The fields in the default report are:

procs
The number of processes which are:

28 March 1991 Page 1

VMSTAT (C) VMSTAT (C)

r In the run queue.
b Blocked waiting for resources.
w Swapped out.

These values always reflect the current situation, even if the totals
since boot are being displayed.

paging
Reports on the performance of the demand paging system. Unless
the totals since boot are being displayed, this information is aver-
aged over the proceeding interval seconds:
si Number of processes swapped in.
so Number of processes swapped out.

ch Page cache hits.

cm
Page cache misses.

ffr Filesystem page reads.

Swr
Swap area page reads.

SWW
Swap area page writes.

rec
Number of pages reclaimed from the free list.

shf
Number of pages shared as copy-on-write after fork.

she
Number of pages shared due to cache hits.

<py .
Number of shared pages copied.

pf Number of page faults.
system
Reports on the general system activity. Unless the totals since

boot are being shown, these figures are averaged over the last
interval seconds:

28 March 1991 Page 2

VMSTAT (C) VMSTAT (C)

in Number of (non-clock) device interrupts.
sy Number of system calls.
¢s Number of context switches.

cpu
Percentage of cpu cycles spent in various operating modes:

us User.
su System.
id Idle.
The -f and -s reports are a series of lines of the form:
number description
which means that number of the items described by description hap-
pened (either since boot or in the last interval seconds, as appropri-
ate). These reports should be self-explanatory.
Files

/xenix
Default namelist.

/dev/kmem

Default source of statistics.

Notes

This utility is only available on
XENIX-386 distributions.

See Also
fork(S), ps(C), pstat(C)

28 March 1991 Page 3

VSH (C) VSH (C)

Name

vsh - menu driven visual shell

Syntax

vsh

Description

vsh is a highly interactive, visually oriented shell which eases many
XENIX activities. The vsh features both standard and customizable
XENIX command menus and on-line help. The vsh displays informa-
tion and menus in windows on the screen. To enter vsh, simply enter:

vsh

from a shell prompt. vsh can also be made a user’s default shell by
changing their shell entry in /etc/passwd (the last colon-separated
field). Help is available from all menus by typing the question mark
character.

The very last line of the screen is a status line. The status line dis-
plays the current pathname, the date, time and operating system name.
If you have new mail, the status line will indicate so. Above the status
line is the message line, which displays messages, error or otherwise,
from vsh.

A command menu is displayed at the bottom of the screen. The stan-
dard menu contains a range of commonly used XENIX commands.
Above the command menu is the output window. This window con-
tains a scrolling display of the output from commands. This window
is not visible at start-up, but is displayed while running certain com-
mands such as ‘=",

In the top of the screen is a window with a listing of the current work-
ing directory. To alter the size of this window, use the Window com-
mand from the main command menu. Items in the listing window may
be selected using standard key commands (q.v.). Two special key
commands are used with the listing window. The equals sign ‘=’
(‘SHOW’) key, displays the contents of the currently selected file or
directory. The minus sign ‘-> (‘GOAWAY") key, returns you to the
listing window.

28 March 1991 Page 1

VSH (C) VSH (C)

Commands may be invoked in one of two ways. A command can be
selected by pressing the first letter of its name. Alternatively, press
the space bar. Each time the space bar is pressed, the next menu item
is highlighted. This highlighting indicates that the command has been
selected. Backspace moves to the previous selection.

Once a command is selected, press the return key. A menu is dis-
played which gives the valid arguments for the particular command.
The default choice is shown in parentheses, e.g.:

recursive: Yes (No)

To send the output to another program, you may enter a vertical bar in
the “output:” field of the commands’ menu.

When the menu is filled in, press RETURN to start the command.

Main Menu Commands

The following menu options are available from the standard main
menu. Certain sub-commands are available under the Options selec-
tion. These are described in the next section.

Copy
Copy a file to a new file. Copy the contents of a directory to a new
directory.

Delete

Delete a file or directory.
Edit

Invoke an editor for a file. Default is the visual editor vi(C).
Help

Get help on diverse topics. A menu is displayed at the bottom of
the screen of available help topics.

Mail
Send or read XENIX mail.

Name
Rename a directory or file.

Options
Perform various commands. See OPTIONS section.

Print
Print file or files on systems’ lineprinter.

28 March 1991 Page 2

VSH (C) VSH (C)

Quit
Quit the visual shell.

Run
Run a specified XENIX command or applications program.

View '

View a specified file or directory listing. This file or directory list-
ing will be displayed in the upper window. Use the vsh scrolling
commands to move around (see KEY COMMANDS Section).

Window
Reset upper window ‘redraw’ characteristics and height.

Options Subcommand
The Options selection on the main menu has several important com-

mands grouped under the selections Directory, Filesystem, Output,
and Permissions. These are as follows:

Directory

Make
Make a directory under current working directory.

Usage
Display disk usage by number of blocks in current working direc-

tory.
Filesystem

Create
Create a filesystem.

FilesCheck
Check file system consistency.

Mount
Mount a file system on a specified mount-point.

SpaceFree
Report number of disk blocks available on all or some mounted file
systems.

Unmount
Unmount specified file system if it is not currently busy.

28 March 1991 Page 3

VSH (C) VSH (C)

Output

VShell
Echo vsh commands in output window (default).

XENIX
Echo actual XENIX commands in output window. For instance, if
running “Options Filesystem FilesCheck”, the command fsck will
be displayed in the output window if “Options Output Xenix” is
set.

Permissions

Change permissions on a file or directory.

Key Commands

The following keyboard commands allow editing of menus and fields,
and give access to various vsh features.

<Ctrl-E>
Move the cursor up one line.

<Ctrl-X>
Move the cursor down one line.

<Ctrl-S>
Move the cursor left one character.

<Ctrl-D>
Move the cursor right one character.

<Cul-R><Curl-E>
Scroll page up.

<Ctrl-R><Curl-X>
Scroll page down.

<Ctrl-R><Ctrl-S>
Scroll page left.

<Ctrl-R><Ctrl-D>
Scroll page right.

<Cutrl-Q>
Home. Go to start of menu.

28 March 1991 Page 4

VSH (C) VSH (C)

<Ctrl-Z>
End. Go to the end of menu.

<Ctrl-C>

Cancel. Stop present operation and return to the main command
menu.

<RETURN>
Start the present command.

<TAB>, <Ctrl-I>, or <Ctrl-A>
Move to and select entire contents of next field in command line.

<SPACE>
Select next item in menu.

<BACKSPACE> or <Ctrl-H>
Select previous menu item. In editing command lists, deletes char-
acter. Replacement text may then be typed.

<Ctrl-Y> or
Delete selected character.

<Ctrl-L>
Move to next character to right of current cursor position.

<Ctrl-K>
Move to next character to left of current cursor position.

<Cirl-P>
Move to next word to right of current cursor position.

<Ctrl-O>
Move to next word to left of current cursor position.

? Help. Request information about the selected command or com-
mand in progress at the time of the request.

= Show. Display sub-directory listings and text files in directory list-
ings. Display submenus for commands in main menu.

- Goaway. Return listing window to current or parent directory after
a show command.

@ Display the Modify menu.
! Redraw the screen.

| Display filter menu.

28 March 1991 Page 5

VSH (C) VSH (C)

Files
menu.def standard menu definition file.
.mnu extension for customized command

menus.
fusr/lib/vsh/VSHELL.HPP help file
fusr/lib/vsh/VSHELL.HPT yet another help file

Notes
The use of wildcard characters (*,[,], and ?) to specify file names is
not supported by vsh. (Wildcard characters are discussed in the XENIX
Tutorial.)

The swtch character is reset by vsh. It is not possible to switch to the
session manager, shi/(C), while running vsh.

It is necessary to run vsh as superuser and select “help” in order to ini-
tialize the help files. If this is not done, help is not available.

28 March 1991 Page 6

W (C) W (C)

Name

w - Displays information about who is on the system and what they
are doing.

Syntax

w [-higtw] [-n namelist] [-s swapdev] [-¢ corefile] [-u utmpfile]
[users...]

Description

w prints a summary of the current activity on the system, including
what each user is doing. The heading line shows the current time of
day, how long the system has been up, the number of users logged
onto the system, and load averages. Load averages are the number of
processes in the run queue averaged over 1, 5, and 15 minutes.

The options are:
-h Don’t print the heading or title lines.

-1 Long format (default): For each user, w outputs the user’s login
name, the terminal or pseudo terminal the user is currently using,
when the user logged onto the system, the number of minutes the
user has been idle (how much time has expired since the user last
typed anything), the CPU time used by all processes and their chil-
dren attached to the terminal, the CPU time used by the currently
active process, and the name and arguments of the currently active
process.

-q Quick format: For each user, w outputs the user’s login name, the
terminal or pseudo terminal the user is currently using, the number
of minutes the user has been idle, and the name of the currently
active process.

-t Only the heading line is output (equivalent to uptime(C)).
-w Both the heading line and the summary of users is output.
-nnamelist
The argument is taken as the name of an alternate namelist
(/xenix is the default).
-sswapdev

Uses the file swapdev in place of /dev/swap. This is useful when
examining a corefile.

28 March 1991 Page 1

w(C) w(C)

-ccorefile
Uses the file corefile in place of /devikmem .

-uutmpfile
The file urmpfile is used instead of /etc/utmp as a record of who is
currently logged in.

If any users are given, the user summary is restricted to reporting on
those users.

Files

/xenix
Jetc/utmp
/dev/kmem
/dev/swap

See Also
date(C), finger(C), ps(C), uptime(C), who(C), whodo(C)

Notes

The “currently active process” is only an approximation and is not
always correct. Pipelines can produce strange results, as can some
background processes. If w is completely unable to guess at the

[T

currently active process, it prints “-.

28 March 1991 Page 2

WAIT (C) WAIT (C)

Name

wait - Awaits completion of background processes.

Syntax

wait

Description

Waits until all background processes started with an ampersand (&)
have finished, and reports on abnormal terminations.

Because the wair(S) system call must be executed in the parent pro-
cess, the shell itself executes wait, without creating a new process.

See Also
sh(C)

Notes

Not all the processes of a pipeline with three or more stages are chil-
dren of the shell, and thus cannot be waited for.

28 March 1991 Page 1

WC (C) WC (C)

Name

wc -~ Counts lines, words and characters.

Syntax

wc [-lwe] [names]

Description

we counts lines, words and characters in the named files, or in the
standard input if no names appear. It also keeps a total count for all
named files. A word is a maximal string of characters delimited by
spaces, tabs, or newlines.

The options I, w, and ¢ may be used in any combination to specify that
a subset of lines, words, and characters are to be reported. The default
is ~lwe.

When names are specified on the command line, they are printed
along with the counts.

28 March 1991 Page 1

WHAT (C) WHAT (C)

Name

what - Identifies files.

Syntax

what files

Description

what searches the given files for all occurrences of the pattern @(#)
and prints out what follows until the first tilde (”), greater-than sign
(>), new-line, backslash (\) or null character. The SCCS command
get(CP) substitutes this string as part of the @(#) string.
For example, if the shell procedure in file print contains

@(#hthis is the print program

@(@#)syntax: print [files]

pr$* llpr
then the command

what print

displays the name of the file print and the identifying strings in that
file:

print:
this is the print program
syntax: print [files]
what is intended to be used with the get(CP) command, which auto-
matically inserts identifying information, but it can also be used where
the information is inserted manually.
See Also

admin(CP), get(CP)

28 March 1991 Page 1

WHO (C) WHO (C)

Name

who - Lists who is on the system.

Syntax
who [-uTlHqdtas] [file]
who am i

who am I

Description

who can list the user’s name, terminal line, login time, and the elapsed
time since activity occurred on the line; it also lists the process ID of
the command interpreter (shell) for each current XENIX system user.
It examines the /etc/utmp file to obtain its information. If file is
given, that file is examined. Usually, file will be /etc/wtmp, which
contains a history of all the logins since the file was last created.

who with the am i or am I option identifies the invoking user.

Except for the default -s option, the general format for output entries
is:

name [state] line time activity pid [comment] [exit]

With options, who can list logins, logoffs, reboots, and changes to the
system clock, as well as other processes spawned by the init process.
These options are:

-u This option lists only those users who are currently logged in.
The name is the user’s login name. The line is the name of the
line as found in the directory /dev. The time is the time that
the user logged in. The activity is the number of hours and
minutes since activity last occurred on that particular line. A
dot (.) indicates that the terminal has seen activity in the last
minute and is therefore “current”. If more than twenty-four
hours have elapsed or the line has not been used since boot
time, the entry is marked old. This field is useful when trying
to determine whether a person is working at the terminal or
not. The pid is the process ID of the user’s shell. The comment
is the comment field. It can contain information about where
the terminal is located, the telephone number of the dataset,
the type of terminal if hard-wired, etc.

-T This option is the same as the -u option, except that the state of

the terminal line is printed. The state describes whether some-
one else can write to that terminal. A plus character (+)

28 March 1991 Page 1

WHO (C) WHO (C)

appears if the terminal is writable by anyone; a minus charac-
ter (-) appears if it is not. Roet can write to all lines having a
plus character (+) or a minus character (-) in the state field. If
a bad line is encountered, a question mark (?) is displayed.

-1 This option lists only those lines on which the system is wait-
ing for someone to login. The name field is LOGIN in such
cases. Other fields are the same as for user entries except that
the state field does not exist.

-H This option displays column headings above the regular output.

-q This is a quick who, displaying only the names and the number
of users currently logged on. When this option is used, all
other options are ignored.

-d This option displays all processes that have expired and have
not been respawned by init. The exit field appears for dead
processes and contains the termination and exit values (as
returned by wait(S)), of the dead process. This can be useful in
determining why a process terminated.

-t This option indicates the last change to the system clock (via
the date(C) command) by roet. See su(C).

-a This option processes the /etc/utmp file or the named file with
all options turned on.

-s This option is the default and lists only the name, line, and
time fields.
Files
fetc/utmp
fetc/wtmp
fetc/ttys
See Also
date(C), login(M), mesg(C), su(C), utmp(F), ttys(F), wait(S)

Notes

The options -A, -b, -p, and -r are listed in the usage message and are
accepted as legal options by who but do not do anything.

28 March 1991 Page 2

WHODO (C) WHODO (C)

Name

whodo - Determines who is doing what.

Syntax
letc/whodo
Description
whodo produces merged, reformatted, and dated output from the

who(C) and ps(C) commands.

See Also
ps(C), who(C)

28 March 1991 Page 1

WRITE (C) WRITE (C)

Name

write - Writes to another user.

Syntax

write user [tty]

Description

write copies lines from your terminal to that of another user. When
first called, it sends the message:

Message from your-logname your-tty ...

The recipient of the message should write back at this point. Commu-
nication continues unti! an end-of-file is read from the terminal or an
interrupt is sent. At that point, write displays:

(end of message)
on the other terminal and exits.

If you want to write to a user who is logged in more than once, the 1y
argument may be used to indicate the appropriate terminal.

Permission to write may be denied or granted by use of the mesg(C)
command. At the outset, writing is allowed. Certain commands, in
particular nroff(CT) and pr(C), disallow messages in order to prevent
messy output.

If the character ! is found at the beginning of a line, write calls the
shell to execute the rest of the line as a command. Output from the
command is sent to the terminal; it is not sent to remote users.

The following protocol is suggested for using write: when you first
write to another user, wait for him or her to write back before starting
to send. Each party should end each message with a distinctive signal
((0) for “over” is conventional), indicating that the other may reply;
(00) for “over and out” is suggested when conversation is to be ter-
minated.

28 March 1991 Page 1

WRITE (C)
Files
fetc/utmp To find user
/bin/sh To execute !
See Also

hello(C), mail(C), mesg(C), who(C)

28 March 1991

WRITE (C)

Page 2

XARGS (C) XARGS (C)

Name

xargs - Constructs and executes commands.

Syntax

xargs [flags] [command { initial-arguments]]

Description

xargs combines the fixed initial-arguments with arguments read from
the standard input to execute the specified command one or more
times. The number of arguments read for each command invocation
and the manner in which they are combined are determined by the
flags specified.

Command, which may be a shell file, is searched for using the shell
$PATH variable. If command is omitted, /bin/echo is used.

Arguments read in from standard input are defined to be contiguous
strings of characters delimited by one or more blanks, tabs, or new-
lines; empty lines are always discarded. Blanks and tabs may be
embedded as part of an argument if escaped or quoted: Characters
enclosed in quotes (single or double) are taken literally, and the de-
limiting quotes are removed. Outside of quoted strings, a backslash (\)
will escape the next character.

Each argument list is constructed starting with the initial-arguments ,
followed by some number of arguments read from standard input
(exception: see -i flag). Flags -i, -1, and -n determine how arguments
are selected for each command invocation. When none of these flags
are coded, the initial-arguments are followed by arguments read con-
tinuously from standard input until an internal buffer is full, and com-
mand is executed with the accumulated args. This process is repeated
until there are no more args. When there are flag conflicts (e.g., -l vs.
-n), the last flag has precedence. Flag values are:

-lnumber Command is executed for each number lines of
nonempty arguments from the standard input. This is
instead of the default single line of input for each com-
mand. The last invocation of command will be with
fewer lines of arguments if fewer than number remain.
A line is considered to end with the first newline unless
the last character of the line is a blank or a tab; a trail-
ing blank/tab signals continuation through the next
nonempty line. If number is omitted, 1 is assumed.
Option -x is forced.

28 March 1991 Page 1

XARGS (C)

-ireplstr

-nnumber

-t

P

=X

-Ssize

-eeofstr

28 March 1991

XARGS (C)

Insert mode: command is executed for each line from
the standard input, taking the entire line as a single arg,
inserting it in initial-arguments for each occurrence of
replstr. A maximum of 5 arguments in initial-
arguments may each contain one or more instances of
replstr. Blanks and tabs at the beginning of each line
are thrown away. Constructed arguments may not grow
larger than 255 characters, and option -x is also forced.
{} is assumed for replstr if not specified.

Executes command, using as many standard input argu-
ments as possible, up to the number of arguments max-
imum. Fewer arguments are used if their total size is
greater than size characters, and for the last invocation
if there are fewer than number arguments remaining. If
option X is also coded, each number of arguments must
fit in the size limitation, or xargs terminates execution.

Trace mode: The command and each constructed argu-
ment list are echoed to file descriptor 2 just prior to
their execution.

Prompt mode: The user is prompted whether to execute
command at each invocation. Trace mode (-t) is turned
on to display the command instance to be executed, fol-
lowed by a ?... prompt. A reply of y (optionally fol-
lowed by anything), will execute the command; any-
thing else, including a carriage return, skips that partic-
ular invocation of command.

Causes xargs to terminate if any argument list would
be greater than size characters; -x is forced by the
options -i and -l. When neither of the options -i, -1, or
-n are coded, the total length of all arguments must be
within the size limit.

The maximum total size of each argument list is set to
size characters; size must be a positive integer less than
or equal to 470. If -s is not coded, 470 is taken as the
default. Note that the character count for size includes
one extra character for each argument and the count of
characters in the command name.

Eofstr is taken as the logical end-of-file string. Under-
score (_) is assumed for the logical EOF string if -e is
not coded. -e with no eofstr coded turns off the logical
EOF string capability (underscore is taken literally).
xargs reads standard input until either end-of-file or the
logical EOF string is encountered.

Page 2

XARGS (C) XARGS (C)

xargs terminates if it either receives a return code of -1 from, or if it
cannot execute, command. When command is a shell program, it
should explicitly exit (see sh(C)) with an appropriate value to avoid
accidentally returning with -1.

Examples

The following will move all files from directory $1 to directory $2,
and echo each move command just before doing it:

Is $1 1 xargs -i -t mv $1/{ } $2/{ }

The following will combine the output of the parenthesized com-
mands onto one line, which is then echoed to the end of file Jog:

(logname; date; echo $0 $*) | xargs >>log

The user is prompted to enter which files in the current directory are to
be printed and prints them one at a time:

Is | xargs -p -1 lpr
Or many at a time:
Is | xargs -p -1 | xargs lpr

The following will execute diff(C) with successive pairs of arguments
originally entered as shell arguments:

echo $+* | xargs -n2 diff

28 March 1991 Page 3

YES (C) YES (C)

Name

yes - Prints string repeatedly.

Syntax

yes [string]

Description

yes repeatedly outputs “y”, or if a single string argument is given, arg
is output repeatedly. The command will continue indefinitely unless
aborted. Useful in pipes to commands that prompt for input and

require a “y” response for a yes. In this case, yes terminates when the
command it pipes to terminates, so that no infinite loop occurs.

28 March 1991 Page 1

Contents

File Formats (F)

intro

86rel

a.out

acct

ar

archive
backup
checklist
clock

core

cpio
default
devices
dialcodes
dialers

dir

filesys
filesystem
fstab
gettydefs
group
inittab
inode
mapchan
master
maxuuscheds
maxuuxqts
mcconfig
mem,kmem
micnet
mnttab
null
passwd
permissions
poll: Poll,
Poll.hour,
Poll.day

Introduction to file formats.

Intel relocatable format for object modules.
Format of assembler and link editor output.
Format of per-process accounting file.
Archive file format.

Default backup device information.
Incremental dump tape format.

List of file systems processed by fsck.
System real time clock.

Format of core image file.

Format of cpio archive.

Default program information directory.
Format of UUCP devices file.

Format of UUCP Dialcode abbreviations file.
Format of UUCP Dialers file.

Format of a directory.

Default information for mounting file systems.
Format of a system volume.

File system mount and check commands.
Terminal speeds and settings.

Format of the group file.

Alternative login terminals file.

Format of an inode. »

Format of tty device mapping files.

Master device information table.

UUCP uusched(ADM) limit file.

UUCP uuxqt(C) limit file.

Irwin tape driver parameters.

Memory image file.

The Micnet default commands file.

Format of mounted file system table.

The null file.

The password file.

Format of UUCP Permissions file.

Format of UUCP Poll files.

queuedefs
scesfile

stat

sysfiles
systemid
systems

tar

term
terminfo
top, top.next
ttys

types

utmp, wtmp

ii

Scheduling information for cron queues.
Format of an SCCS file.

Data returned by stat system call.
Format of UUCP Sysfiles file.

The Micnet system identification file.
Format of UUCP Systems file.
Archive format.

Terminal driving tables for nroff.
Format of compiled terminfo file.
The Micnet topology files.

Login terminals file.

Primitive system data types.

Formats of utmp and wtmp entries.

INTRO (F) INTRO (F)
Name

intro - Introduction to file formats.

Description

This section outlines the formats of various files. Usually, these struc-
tures can be found in the directories /usr/include or /usr/include/sys.

28 March 1991 Page 1

86REL (F) 86REL (F)

Name

86rel - Intel 8086 Relocatable Format for Object Modules.

Syntax

#include <sys/relsym86.h>

Description

Intel 8086 Relocatable Format, or 86rel, is the object module format
generated by masm(CP), and the input format for the linker /d(CP).
The include file relsym86.h specifies appropriate definitions to access
86rel format files from C. For the technical details of the 86rel for-
mat, see Intel 8086 Object Module Format External Product Specifi-
cation.

An 86rel consists of one or more variable length records. Each record
has at least three fields: the record type, length, and checksum. The
first byte always denotes the record type. There are thirty-one dif-
ferent record types. Only eleven are used by I/d(CP) and masm(CP).
The word after the first byte is the length of the record in bytes,
exclusive of the first three bytes. Following the length word are typi-
cally one or more fields. Each record type has a specific sequence of
fields, some of which may be optional or of varying length. The very
last byte in each record is a checksum. The checksum byte contains
the sum modulo 256 of all other bytes in the record. The sum modulo
256 of all bytes in a record, including the checksum byte, should equal
Zero.

With few exceptions, 86rel strings are length prefixed and have no
trailing null. The first byte contains a number between O and 40,
which is the remaining length of the string in bytes. Although the
Intel specification limits the character set to upper case letters, digits,
and the characters “?”, “@”, “:”, “.”, and “_”, masm(CP) uses the
complete ASCII character set.

The Intel Object Module Format (OMF) specification uses the term
“index” to mean a positive integer either in the range 0 to 127, or 128
to 32,768. This terminology is retained in this document and else-
where in the 86rel literature. An index has one or two bytes. If the
first byte has a leading O bit, the index is assumed to have only one
byte, and the remainder of the byte represents a positive integer
between 0 and 127. If the second byte has a leading 1 bit, the index is
assumed to take up two bytes, and the remainder of the word
represents a positive integer between 128 and 32,768.

28 March 1991 Page 1

86REL (F)

86REL (F)

Following is a list of record types and the hexadecimal value of their
first byte, as defined in relsym86.h.

#define MRHEADR
#define MREGINT

#define MREDATA
#define MRIDATA

#define MOVLDEF
#define MENDREC
#define MBLKDEF
#define MBLKEND
#define MDEBSYM
#define MTHEADR

#define MLHEADR
#tdefine MPEDATA
#define MPIDATA

#define MCOMENT
#define MMODEND
#define MEXTDEF
#define MTYPDEF
#define MPUBDEF
#define MLOCSYM
#define MLINNUM
#tdefine MLNAMES
#define MSEGDEF
#define MGRPDEF
#define MFIXUPP
#define MNONE1
#define MLEDATA
#define MLIDATA

#tdefine MLIBHED
#define MLIBNAM
#define MLIBLOC
#tdefine MLIBDIC
#tdefine M386END
#define MPUB386
#define MLOC386
#define MLIN386
#define MSEG386
#define MFIX386
#define MLED386
#tdefine MLID386

0x6e /*rel module header/*

0x70 /*register initialization*/

0x72 [*explicit (enumerated) data image*/

0x74 [*repeated (iterated) data image*/

0x76 /*overlay definition*/

0x78 /*block or overlay end record*/

0x7a /*block definition*/

0x7c¢ /*block end*/

Ox7e /*debug symbols*/

0x80 /*module header,
[*usually first in a rel file*/

0x82 /*link module header*/

0x84 /*absolute data image*/

0x86 /*absolute repeated (iterated)
data image/

0x88 /*comment record*/

0x8a /*module end record*/

0x8c /*external definition*/

0x8e /*type definition*/

0x90 /*public definition*/

0x92 /*local symbols*/

0x94 /*source line number*/

0x96 /*name list record*/

0x98 /*segment definition*/

0x9a /*group definition*/

0x9c /*fix up previous data image*/

0x9e /*none*/

0xa0 /*logical data image*/

Oxa2 /*logical repeated (iterated)
data image/

Oxa4 /*library header*/

0xa6 /*library names record*/

0xa8 /*library module locations*/

Oxaa /*library dictionary*/

0x86 /*32 bit module end record*/

0x91 /*32 bit public definition*/

0x93 /*32 bit logical symbols*/

0x95 /*32 bit source line number*/

0x99 /*32 bit segment definition*/

0x9d /*fix up previous 32 bit data image*/

Oxal /*32 bit logical data image*/

0Oxa3 /*32 bit logical repeated (iterated) data image*/

In the following discussion, the salient features of each record type are
given. If the record is not used by either masm(CP) or ld(CP), it is not

listed.

28 March 1991

Page 2

86REL (F)

THEADR

COMENT

MODEND

EXTDEF

TYPDEF

PUBDEF

LNAMES

28 March 1991

86REL (F)

The record type byte is 0x80. The THEADR record
specifies the name of the source module at assembly-
time (see Notes). The sole field is the T-MODULE
NAME , which contains a length-prefixed string
derived from the base name of the source module.

The record type byte is 0x88. The COMENT record
may contain a remark generated by the compiler sys-
tem. mams(CP) inserts the string “XENIX 8086
ASSEMBLER .”

The record type byte is 0x8a. The MODEND record
terminates a module. It