
This manual describes BASIC language programs for operating the Canon AS-100
System. To realize the AS- 100’s full potential it is necessary to fully understand Canon
BASIC Language.

To make this task as easy as possible, this manual is divided into the following sections.

Chapter I Introduction

This chapter provides beginners with basic information on computers, and
how they operate, in addition to defining technical terms. You may skip this
chapter if you already have a working knowledge of computers as it contains no
essential information about Canon BASIC.

Chapter II Operation

This chapter explains various operations, including system generation and
programming of Canon BASIC. It describes all aspects of Canon BASIC for use
with the AS-100.

Chapter III Language

This chapter includes Canon BASIC language specifications and details on
programming. This section is mandatory for those who will be writing programs
in Canon BASIC language.

Canon BASIC

Canon A S -100

This chapter provides beginners with basic information on computers, and how they oper­
ate, in addition to defining technical terms. You may skip this chapter if you already have a
working knowledge of computers as it is contains no essential information about Canon
BASIC.

Contents

1. Basic Construction of the Computer.. 1

2. Data.. 4

3. Programs.. 6

4. Commands... 7

5. Operating System.. 8

6. Disks.. 9

7. BASIC Language.. 10

C

(

l

')

)

1. Basic Construction of the Computer

Until about twenty years ago, the word “computer” conjured up images of
human-like robots or vast rooms filled with monstrous contraptions that flashed
and whirred, things from another place and time. In fact, computers were the
very stuff of science fiction.

Computers have come a long way since then. Today they touch nearly every
aspect of our lives. Microcomputers can be found in automobiles and cameras,
television sets and stereos, typewriters and watches. And are being used to auto­
mate every field from business and finance to education and medicine. Some
are designed to serve a multitude of functions, like the AS-100. All are playing
an increasingly vital role in society.

Despite thier varied forms, computers usually have the same basic struc­
ture—an input unit, an output unit, a memory unit, an arithmetic unit, and a
control unit.

The terms input, output, control, arithmetic, and memory are fundamental
to understanding how computers work. To give you a better understanding of
these terms, we’ve illustrated their functions in the following cartoon.

1

Processing Flow

(5) Control

Q The supply of ingredients corresponds to data input. Data that will be pro­
cessed by the computer is entered or input into the computer.

2 The place where the ingredients are mixed, kneaded, and finally baked is the
arithmetic unit. Actual data processing (calculation, sorting, etc.) is performed
inside the computer.

(D The bread is then sent (or stored) in the warehouse, where other ingredients
(data) are also stored. This warehouse is the memory or storage unit.

4) Finally the bread is shipped (or output) as a product. This task is handled by
the output unit.

(D This entire process is supervised by the control unit, from input and arith­
metic operation, to storage and output.

2

Let’s take a closer look at the AS-100. Its basic construction is as follows.

Keyboard

Input unit

Disk

o
o

•Keyboard___This is a unit for entering data and operator’s instructions.

• D i s k This is a unit media for recording or storing data magnetically.
The disk is classified as an input unit when magnetized data is
read from it.

•C PU (Central Processing U n it)
This unit controls all computer functions and performs various
processing operations like calculations. The CPU is the core of
the computer.

3

•M emory................. Memory usually means IC memory. This is a temporary
storage area for data and programs that will be executed
in the computer.

•P rin te r............... ... This device prints data as readable characters, etc.

•C RT display..........This unit displays data as readable characters, etc.

•D isk The disk is classified as an output unit when data is writ­
ten into it magnetically.

The disk is classfied both as an input unit and an output unit because like a
tape recorder, the disk can record data and the recorded data can also be read
from the disk. The disk is also called an external storage device.

Data

The computer must convert data into electrical signals for processing. Num­
bers and characters you enter through a keyboard are all converted into electri­
cal pulses called digital signals for transfer into the computer.

Digital signals convey information by their status: either on or off. Within
the computer, all processing is performed with the data and signals expressed by
two states: “ on or o ff’ or “ 1 or 0.”

To use a computer, it is hardly necessary for you to understand the signal
flow inside the computer. But it is very important to have a clear concept of digi­
tal signals to understand the way data is processed in the computer.

The smallest unit of data processed in a computer is a bit. The bit is the unit
that can indicates the on or off status. Groups of these bits are used to represent
data.

You may wonder how various kinds of data can be represented simply by
combining by these states. To understand this, you must first know the concept
of binary notation. For example, the number “ 26” is expressed in decimal nota­
tion. This figure is expressed as “ 11010” in binary notation (in which only 1 and
0 are used). That is, the collection of five bits that can represent 1 or 0 can ex­
press the value 26.

Decimal
26

Binary
11010

The computer usually processes data in units called bytes. One byte consists
of eight bits. One byte can express numeric values from 0 through 255.

1 byte

,______ »______ ,
Upper Lower

0 0 0 1 1 0 1 0t
Bit

Of course, the computer can process characters too.
Characters are expressed by preset codes. For example, if it is decided in ad­

vance that the number 1 means “A” , the data, 1, expressing the character, is
understood as “A ” . Thus one byte of data can express 256 different characters.

The coding system of the AS-100 is based on standard codes called ASCII
codes, which were established within the computer industry.

5

3. Programs

A program is a group of working instructions for the computer. The comput­
er performs actions sequentially as instructed by the program. This is called pro­
gram execution.

Computers do not understand human language. They only understand in­
structions given in a particular programming language.

So for the computer to function, you first have to describe the job in a pro­
gramming language that the computer understands. This step of description is
called programming. The computer can only do the job when a program is ex­
ecuted.

How is a program executed in the computer?
A program can only be executed when it is in memory. For example, when a

program is stored on a disk, the program must be first transferred or read to the
memory area of the computer. This step is called program loading. After the pro­
gram is loaded, execution is possible. The computer reads instructions one by
one from the beginning (head) of the program in the memory and executes
them. Program execution is accomplished by the repetition of this reading and
execution sequence.

6

© ©
CPU

Program

Memory

Disk CPU CPU

o
o

Instruction
Read

tO

=̂0
Execution

Load

Program

Memory

Program

Memory

Repeat

Commands

A program makes the computer perform certain tasks. But how is the pro­
gram prepared and loaded? There has to be some way to operate the computer
while it is not executing a progrm.

The computer can be directed to perform certain routine operations not only
by programs, but also by entering commands through the keyboard using a par­
ticular format. Basically, commands allow you communicate directly with the
computer. The computer also communicates with you through the display.

Here’s an example. Let’s say you want the computer to execute a certain
program.

Canon BASIC has a command called “ RUN” . Look at the display to see if
program execution is possible. If it is, depress the R, U, and N keys. You’ll see
that RUN is displayed on the CRT. This confirms that the command has been
entered correctly. But the command is not yet complete. Depress the |E NT E R]
key, which indicates that command input is complete. After receiving the RUN
command, the computer evaluates the command and starts program execution.

7

5. Operating System

A direction issued by either a program or a command specifies the result of a
function like “ Display ABC” . To realize this function, a procedure consisting of
a group of simple action must be performed step by step. The computer first
reads the data which indicates the shapes of the characters “ ABC” and then
sends them to the CRT display circuit. Finally the characters “ABC” are dis­
played on the screen.

The operating system interprets this kind of direction and indicates the
details of the procedure which will carry out the direction according to the hard­
ware specifications. This enables the operator to control the computer with the
simplest directions under the support of the operating system.

That is, the operating system is a program that acts as an intermediary be­
tween software, like commands and programs, and the individual hardware
devices of the computer, thus creating an environment in which the user can
use the computer functions easily and effectively. The operating system is some­
times called a system program.

C

In the AS-100, the operating system is stored on a disk and loaded into
memory when the power is turned on. Unless the disk that stores the operating
system, called a system disk, is set in the disk drive, the AS-100 cannot be used
even if the power is turned on.

8

6. Disks

The contents of memory in the computer are deleted when the power is
turned off. Therefore, the data and programs have to be stored in disks.

Like recording tapes, disks preserve data magnetically. There are basically 3
types of disks which used with the AS-100—mini floppy disks, floppy disks, and
hard disks.

Mini floppy disks and floppy disks are detachable flat circular plates enclosed
in square envelopes. When set in devices called disk drives, data can be read
from and written to it. Disks 5-1/4 inches in diameter are called mini floppy
disks. Those 8 inches in diameter are called floppy disks.

Hard disks are also called fixed disks because data is read from and written
to disks fixed on disk drives. There are also various other kinds of magnetic stor­
age devices.

Mini floppy disk Floppy disk Hard disk

Unlike an audio magnetic tape, a computer disk does not permit data reading
and writing unless work called “ initialization” is performed. Sometimes called
formating, initialization is magnetically dividing the recording surface of the
disk into prescribed formats. The computer can only read data from and write it
to the disk after initialization.

You can not see a magnetic record on a disk which means a record could be
erased by accident. So important programs or data should be stored on more
than one disk. Then even if the program or data on one of them is erased, the
other disk can be used. Such a reserve disk is called a backup disk. Making
backup disks may seem like unnecessary work. But we recommend you always
prepare backup disks so that you will not lose important programs or data with a
simple mistake.

9

7. BASIC Language

BASIC is an acronym for “ Beginners All-Purpose Symbolic Instruction
Code” . Since its introduction, BASIC has been used extensively as a high level
programming language for microcomputers. BASIC seems to be the easiest pro­
gramming language for two reasons—because its instructions or commands are
easy for beginners to memorize and because it allows versatile processing.

Canon BASIC language, described in Chapter III and elsewhere, is an ex­
tended version of BASIC language that has some special instructions and facili­
ties that allow you to use the AS-lOO’s functions easily.

10

I_____________________________________ 1

r

Chapter II
Canon BASIC
Operation

Canon A S -100

This chapter explains various operations, including system generation, commands and
programming of Canon BASIC. It describes all aspects of Canon BASIC for use with the
AS-100.

Contents

1. An Outline of Canon BASIC.. 1

1.1 System Outline.. 1

1.2 M odes.. 3

1.3 F iles.. 4

1.4 Input/Output Control... 5

1.5 Programs.. 6

1.6 D ata.. 7

2. Use and Operations... 8

2.1 System Generation.. 8

2.1.1 Disk Initialization... 10

2.1.2 CP/M-86 Volume Copying... 11

2.1.3 Canon BASIC Copying... 13

2.2 Hardware U n its.. 14

2.2.1 CRT Display.. 14

2.2.2 Disk D rives.. 15

2.2.3 Keyboard.. 16

2.3 System Start-up.. 23

2.4 Command Operations... 24

2.4.1 Outline and Format of Commands.. 24

2.4.2 EDIT Command.. 25

2.4.3 LOAD Command... 27

2.4.4 SAVE Command... 28

2.4.5 LIST Command... 31

2.4.6 XREF Command... 33

2.4.7 RUN Command.. 35

2.4.8 CANCEL Command... 37

2.4.9 DLIST C om m and.. 38

i

2.4.10 RNAME Command.. 40

2.4.11 NEW Command.. 41

2.4.12 BYE Command.. 41

2.4.13 OS Mode C om m ands.. 42

2.4.14 Handlers.. 51

2.5 Programming.. 52

2.5.1 Programming Procedure.. 52

2.5.2 C oding.. 53

2.5.3 Program E ntry .. 54

2.5.4 Program Editing.. 58

2.6 D ebugging.. 73

2.6.1 Debugging Mode Outline.. 73

2.6.2 Debugging Commands.. 75

2.6.3 Debugging Examples.. 80

2.7 Functions of Control K e y .. 81

K
1. An Outline of Canon BASIC

This section gives a general outline o f Canon BASIC. For more details,
please refer to the explanations in the subsequent sections. In the descriptions
that follow, the word BASIC means Canon BASIC.

1.1 System Outline

Canon BASIC operates under the CP/M-86™ operating system. When the
AS-100 is operated under Canon BASIC, it uses CP/M-86 indirectly. Conceptu­
ally, the functions of Canon BASIC are actually performed by CP/M-86, which
BASIC requires to control the hardware.

User

Direct

O Canon
BASIC o CP/M-86 o AS-100

Hardware

Canon BASIC facilities can be classified into the following three categories:

Interpreter........ Interprets a BASIC language program and executes it.

E d itor.............. A program used to create or edit a BASIC program in
memory.

Command processor..........
Interprets commands entered through the keyboard and exe­
cutes them.

These facilities are actually used as shown in the next page.

* CP/M-86 is a trademark of Digital Research Inc.

1

Job Facility used Purpose

To enter a program

To execute a program

To check a program

To correct a program

To store a program on a disk
using the SAVE command

To list the contents of the disk

To output a program list

Other

The information in the table is merely an example of how the facilities are
used. Each will be explained in detail later.

The structure of Canon BASIC is illustrated below.

User

2

1 .2 Modes
There are two modes, a programming mode and operating mode, in BASIC.

The programming mode is for program creation and editing. The operating
mode is for execution o f commands and programs. Besides, there is an OS
mode under the direct control of the OS and a debugging mode which is under
control of the operating mode.

Programming mode: • When the editor is executed, the AS-100 enters
the programming mode. Program creation and
editing can be performed in the programming
mode. This mode is indicated by prompting
When the automatic numbering function of the
editor is used, line numbers are displayed instead
o f “%” .

Operating mode: Programs and commands can be executed in this
mode. The AS-100 is automatically set to this
mode when BASIC is started up. This mode is the
basic status o f Canon BASIC. The operating
mode is indicated by prompting “ $” on the dis­
play.

3

1.3 Files

A file is a program or a block of data recorded on a disk. A file consisting of
one program is called a program file. A file consisting of a block of data is called
a data file.

The program is loaded to memory or saved to disk in units called program
files. Data read/write from/to the disk is performed against the data file. In pro­
gram and command operations, files are specified as follows:

< Drive name > : < File name > . < File type >

Program file.............. A program file consists o f a single program written in
BASIC language. The file name is the same as the program
name. The file type must be BAS.

A: AAA. BAS
__________________________This indicates that the program is stored on the disk in

drive A.

The program name is specified by a maximum of 8 capital
alphabet letters and numbers, beginning with a capital
letter.

The file type indicates that the program file is written in
BASIC language.

4

c Data file A data file consists of a block of data which can be used in a
BASIC program. During program execution data is read from
and written to the data file. The file type must be DAT.

A: BBB. DAT

This indicates that the file is stored on the disk in
drive A.

The data file name is specified by a maximum of 8
capital alphabet letters and numbers, beginning with a
capital letter.

The file type indicates that this is a data file.

1.4 Input/Output Control
All input and output in the AS-100 under BASIC is controlled by specifying

the device name. In BASIC programs, however, device names must be defined
as numbers called logical device numbers before execution of input/output in­
structions. Specify the logical device number in advance with the input/output
instructions.

Device names are defined as follows:

Connector No. RS232C I/F Centronics I/F

1 X LPT: or UPO:

2 USOtorTTY: ULl:or UP1:

3 PTR: or PTP: U Ll:or UP1:

4 . US1: UL1: or UP1:

5 US2: U L L orU Pl:

The device name CRT: is given to the display and CON: is given to the key­
board. This is specified only when input or output is performed through the dis­
play or keyboard using either the GET or PUT statements (explained later).

* The Centronics I/F Board can only be added to connector 3 ,4 , or 5.

5

1.5 Programs
The editor is used to create and edit BASIC programs. At this time, a pro­

gram entered through the keyboard is actually created in memory in an inter­
mediate code which can be interpreted by the interpreter.

It is possible to call and execute a machine language program in a BASIC pro­
gram.

Only one BASIC program can be loaded (read from the disk to memory) at
a time. But two or more BASIC programs can be loaded in memory as sub­
programs using the CALL statement (explained later).

The size of a BASIC program cannot exceed 32K bytes.

Memory

BASIC program

Subprogram
i______________________ i

Disk

When the program name is omitted in program specification of command
operations, the program in memory is automatically specified. This program is
called a priority program.

6

1 . 6 Data
There are three types of data processed under BASIC. They are real number

type, integer type, and string type data. Processing like calculation cannot be per­
formed between different data types. (Processing can be performed between
integer type and real number type data.)

The reading and writing of data from/to a disk is performed using input/out-
put instructions like INPUT, PRINT, GET, and PUT statements. But be careful
when using the GET and PUT statements, because the operating system
reads/writes data from/to the disk in 128-byte units. Please read the explana­
tions of the statements carefully.

7

2. Use and Operations

2.1 System Generation
To use BASIC, you first have to generate a system disk for BASIC from the

original CP/M-86 disk and the original BASIC disk.
A Canon BASIC system disk, which will be called the system disk in this

manual, is generated by copying all of the CP/M-86 system programs onto a
blank disk and then copying all of the modules of the Canon BASIC subsystems
onto the same disk.

Original disk Original disk

System disk

The system generation procedure consists of three steps:

1. Initializing a disk to use as the system disk.
2. Volume copying the CP/M-86 onto the disk.
3. Copying Canon BASIC onto the same disk.

8

System generation is basically copying the contents of one disk to another
disk. This means that a misoperation can erase an important original disk. Ob­
serve the following cautions during system generation:

• Read the explanations carefully before performing each operation.

• Do not open the disk drive door except when “ A > _ ” is displayed on the
CRT.

• Make sure the disks are set in the correct drives.

• Make sure that you depress the correct keys.

Other remarks:

• Key operations are indicated by a character enclosed by the key mark □ .
The functions of 0 and |E NT E Rl are the same.

• Detailed explanations of the commands used in this operation are given
later.

• If an error occurs during operation, refer to the explanation of the corre­
sponding command or “6. Error Messages” in Chapter III.

• After system generation, store the original disks carefully in the correct envi­
ronment.

• There is no explanation given for system generation involving disks of dif­
ferent shapes, i.e. when an 8-inch Canon BASIC system disk is generated
from a 5-inch original disk. If copying to a different-sized disk is necessary,
read the explanation of each command and perform the same three steps ini­
tializing the disks, copying the CP/M-86, and copying Canon BASIC. The
VOLCOPY and the COPYDISK commands cannot be used when copying
to disks of a different size.

9

2.1.1 Disk Initialization

New blank disks must be initialized before they are used with the AS-100.
Initialization involves checking a new blank disk and dividing or formating the
disk surface into prescribed formats so that data can be written to and read from
the disk. The FORMAT command is used to initialize both mini floppy and
floppy disks.

• Disk initialization procedure

1. Set the original CP/M-86 disk in drive A.

2. Turn the display unit’s power on.

3. CP/M -86 is loaded and "A>_" is dis­
played.

4. Set the disk that will be initialized in drive B.

5. Depress 0 0 0 (M] (A] [T] g]

Drive

Disk to be initialized

Original CP/M-86 disk

6. The following message is displayed:

FORMAT Vx. xx

Disk B:will be d e stroyed,OK?_

7. Depress [Y] and 0 .

(*If |N] and 0 are depressed, initialization
is not performed and the display returns to
“ A > _ ” .

8 . COPYING SECONDARY BOOT

is displayed.

9. When initialization is completed without an
error, "A>_" is displayed.

* Initialization for mini floppy disks takes about 40 seconds; floppy disks take
about 90 seconds.

to

2.1.2 CP/M-86 Volume Copying
Volume copying means making a copy of the entire disk. In the following op­

eration, the original CP/M-86 disk is copied.

• Volume copying the original CP/M-86 disk

1. Continued from the disk initialization
procedure described 2.1.1.

Drive A: Original CP/M-86 disk
Drive B: A new blank disk just initial­

ized.
Display: A >_

2. Depress 00[L|[C][Q|[P][Y]0

3. The following message is displayed:

Enter Source Disk Drive(A-D)?_

4. Depress [79 and 0 •

5. The following message is displayed:

Destination Disk Drive(A-D)?_

Drive

B

Initialized disk

A

Original CP/M-86 disk

6. Depress [0 a n d 0 .

7. The following message is displayed:

Copying Disk A:to Disk B:

Is this what you want to do(Y/N)?

8 . Depress [V] and 0 .
*If El and 0 are depressed, volum e\
copying is not performed and the display re-)
turns to "A> 11

C

11

Drive

Copy o f original
CP/M-86 disk

Original CP/M-86 disk

9. The following message is displayed:

COPY TRACK NUMBER=0

The track number being checked is dis­
played.

10. The following message is displayed:

Copy another di sk (Y/N)?_

11. Depress [N] and 0 .

12. When volume copying is completed without
an error, “A > _ ” is displayed.

»Volume copying CP/M-86 takes about 2 minutes.

12

2.1.3 Canon BASIC Copying

This procedure copies the contents of the original Canon BASIC disk to the
disk on which the original CP/M-86 disk is copied.

Unlike volume copying, this operation uses the PIP command of the OS to
add the Canon BASIC system program to the CP/M-86 system disk.

• Copying Canon BASIC onto the CP/M-86 system disk

1.

2.

Continued from the volume copying opera­
tion described in 2.1.2.

Drive A: Original CP/M-86 disk
Drive B: Copy of original CP/M-86 disk
Display: A > _

Remove the CP/M-86 original disk from
drive A and set the original Canon BASIC
disk into this drive.

3. Depress ICTRLI and [Q] simultaneously.

4. The following is displayed:

A> A C
A>

5. Depress (SEIBCDEI ISPACEl
ElUlElEISSQdiy

Drive

B

Canon BASIC
system disk

0

A

riginal Canon BASIC disk

6. When copying is com pleted without an
error, “A > _ ” is displayed.

* Copying Canon BASIC takes about
1 minute.

7. System generation is completed. The disk
now set in drive B is the Canon BASIC
system disk.

13

2.2 Hardware Units
This section explains the functions o f the AS-100 System units under

BASIC. For the specifications of hardware devices, please read the “AS-100
System Instruction Manual” included with the display unit and the instruction
manual for each peripheral device.

2.2.1 CRT Display
(1) Capacity

The CRT display of the AS-100 has a standard display capacity of 2000 char­
acters (80 characters x 25 lines) —alphabetic letters, numbers, signs, and sym­
bols. This is equivalent to 640 x 400 dots.

(2) Cursor
Each input through the keyboard is displayed on the screen. This is called

input echo back. The cursor indicates the position where the input echo back
and data output are performed on the screen. Input can be made through the
keyboard when the cursor is displayed on the screen.

The cursor in the AS-100 is Each input is made at the cursor position.

r% >

14

(3) Promptings
A prompting is a symbol displayed just in front of the cursor to indicate the

current system mode. The following promptings are displayed for the different
modes.

$ BASIC operating mode

% BASIC programming mode

* When the automatic numbering function of the editor is used,
line numbers are displayed instead of the promting.

A > OS mode under the direct control of the operating system

@ Debugging mode (See 2.6 Debugging.)

2.2.2 Disk Drives

(1) Drive Names
The drives of the mini floppy and floppy disk units are defined by drive

name. Disks are specified by the drive name in the AS-100 System.
In the mini floppy disk unit, the lower drive is defined as A and the upper

drive as B. In the floppy disk unit, the left drive is defined as A and the right
drive as B.

When there are two floppy disk units or when there is one mini floppy disk
unit and one floppy disk unit, the drive names of one of the two units must be
changed to C and D. Consult your Canon sales representative about changing
the drive names.

(2) Current Drive
If disk specification is omitted in a command operation or a program, drive

A is automatically specified. In this case, drive A is called current drive.

(3) Disk Replacement
The removal or setting of disks under using BASIC must always be carried

out in the command waiting state (see “ 2.4 Command Operations”). The
prompting is displayed to indicate the command waiting state.

During program execution, disks can be replaced when a message is dis­
played by execution of the CHANGE statement (described later).

Disk replacement at any other time, may cause destruction of the disk.

15

2.2.3

(1)

Keyboard

The A S-100 keyboard is divided into three sections by function as shown
below.

Function key section

Typewriter key section Ten-key section

Typewriter Key Section
The character inscribed on each key is entered depending on the conditions

set by the following keys that select the input modes:

Alpha lock key: Sets the keyboard in the alpha lock
mode. Key depression alternately sets and
releases the alpha lock mode. The key lamp
lights in the alpha lock mode and goes out
when the mode is released.

Shift key: Sets the shift mode.

16

• Normal mode: The alpha lock key lamp is off and the shift key is not depressed.
Lowercase (small) alphabet letters, numbers and symbols can be en­
tered.

Ex. a

• Alpha lock mode: Uppercase alphabet (capital) letters, numbers, and symbols can be en­
tered.

• Shift mode: Uppercase alphabet (capital) letters and symbols can be entered.

Ex. 0 = > > 0 = > A 0 = > +

17

Summary 1

Normal mode — a
Shift mode —* A
Alpha lock mode —1► A

Summary 2

Shift mode
#
3

Normal mode
or alpha lock mode

Other keys

DEL key:

Tab key:

Control key:

CR key:

Space bar:

Deletes the character immediately preceding the
cursor and moves the cursor one column to the
left.

Moves the cursor to the end of the current input
line. In the shift mode, it moves the cursor to the
beginning of the current input line.

Used when a console control code (described
later) is entered.

This is depressed at the end of a line. Each com­
mand is executed when this key is depressed. It
has exactly the same function as the lENTERl
key.

Enters a space at the cursor position.

is

Ten-key Section
Keys in the ten-key section are used to input numbers and move the cursor.

DELETELINE Delete line key: Deletes the current input line and returns
the cursor to the beginning of the line.

Numeric keys: Enter numbers 0 through 9. In the cursor
control mode, these keys control the cursor.

oo
' -S

V.— U

Double zero key: Enters two zeros at once. Depressing this
key is the same as depressing the [öS key
twice.

Decimal point key: Enters a decimal point.

Minus key: Enters a minus sign.

Enter key: This is depressed at the end of a line. Each
command is executed when this key is de­
pressed. It has exactly the same function as
theCR key.

ps CZ3CURSORLOCK
4

Cursor lock key: Sets the numeric keys in the cursor control
mode. Each key depression alternately sets
and releases the cursor control mode. The
key lamp lights in the cursor control mode
and goes out when the mode is released. In
the cursor control mode, the cursor moves
one column at a time in the direction of the
arrow printed on the top of the (2) , (4) ,
[6] and [8] keys.

19

(3) Function Key Section
This section consists o f 12 function keys. A character string entered with

these keys when {) | is not depressed (shift down state) can be defined into a
required character string in BASIC programs.

Initially the 12 function keys are defined as follows:

[fi | : This key allows one-key, one-instruction input (described later)
when used in combination with the typewriter keys.

| F2 | : EDIT i_i

I F3 | : LOADi—!

I F4 | : SAVE>__>

| Fs | ; l is T u_,

[F6 | ; XREF<_.

I ~F7 I : RUN (_i

I F8 | : CANCEL i_i

I F9) : DLIST

I FK) | : RNAME

[F11 | : NEW

I F12 | : BYE

(4)

* The symbol in character strings represents a space.

Other Keys
?---------

CANCEL Cancel key:

DELETE Delete key:

INSERT
—1

Insert key:

Stops BASIC program execution and sets the
system in the command waiting state.

This key deletes the character at the cursor posi­
tion and shifts the following character string one
character to the left.

Inserts a character string, entered after this key is
depressed, at the cursor position. The insertion is
completed with the cursor movement operation
or by depressing any key but a character key.

20

(5) One-Key, One-Instruction Function
The one-key, one-instruction function can be used to input the keywords

during program entry or editing.
You can enter the keywords shown below by depressing the corresponding

typewriter key after depressing rhe j-F 11 key.

1
i

If
2

#
3

$
4

e/i
5

t.
6

t
7

t
8

>
9 0 = i

\
L___' 1 > r f \ / * r~ * ' \

MAT«—, PRINT«., COLOR-, ORIGIN pmodel PS ET.-, LINE«-, RECT«_, CIRCLÊ, MARK,-, TEXT.., GGETuj gput̂

FORMAT.., FUSING«-, DEF«., PARAM,_, CALU_ GOTO.., FREÊ ON«j I F._, FOR̂ ._,TO PA I NT ̂

REM.-, DIMuj INTEGER̂ , READu DATA«-, RESTORÊ RETURN,-, GOSUB«., T̂HEN̂ j NEXT̂ .-.STEPu, ,_,WlTH,_j

z X c r
is

V B
*

N M < >

•

o
-

\

-

/ N - r >) / /
L E T ^ j I N P U T u M S G ,- , O P E N u . C L O S E u G E T u , P U T , . , E N D «., S P A C E T A B F E E D

(6) Repeat Function and Click Tone
All typewriter keys and cursor control keys (Q], CD, 0 and 0) are

equipped with a repeat function. This means that the input or cursor movement
is repeated as long as a key is depressed.

Each key on the keyboard produces a click tone when depressed to confirm
entry.

(7) Key Buffer
Keyboard input is transfered to the system through the key buffer. The key

buffer can store codes of up to 128 characters. Although you do not need to con­
sider the key buffer for ordinary inputs, there are some instructions related to
the contents of key buffer.

21

Key Operations in this Manual
Key operations are abbreviated in this manual as follows:

1. The character or symbol entered by a key operation is indicated by
enclosing it by □ .

Ex. In the cursor control mode: 0

In the normal mode: [X] = = > ID

2. 0 and ENTER are indicated as 0 .

3. Sequential key operations are joined by

Ex. (\ and m are depressed one after another. ==>

G D-m
4. Two keys depressed simultaneously are written with a “ / ” between

them.

CTRL and (S] are depressed simultaneously. CTRLEx.

2.3 System Start-up
To start-up the Canon BASIC System, follow the procedure below.

1. Turn the power on as described in “ 2.3.3 Power
On/OfT Order” in the “AS-100 System Instruc­
tions” .
System disk as used in the manual means the
Canon BASIC system disk.

2. CP/M-86 is loaded, and the following boot strap
message is displayed:

nnn K-BYTE SYSTEM
CP/M-86 LOADER Vm. mm
SEGMENT ADDRESS = xxxx

LAST OFFSET = yyyy

Canon AS-100 CP/M-86 Version z.zz
Copyright(C)1981,Digital Research Inc.
BIOS(A) Vp.pp by Canon Inc.
A>

* Refer to the “ CP/M-86 User’s Manual” for
the CP/M-86 boot strap message.

3. Depress [B][ä][S][T][C]0

4. BASIC is loaded and the following start-up
message is displayed:

Canon AS-100 BASIC Vn.nn
Copyright by Canon Inc.
User's Memory mmmmmmm Bytes
$

5. BASIC System start-up is completed and com­
mands can now be entered.

Refer to “ 2.4.13 OS Mode Commands” for the details of the preceding oper­
ation.

23

2.4 Command Operations
The BASIC system is operated by entering commands through the key­

board. Commands indicate the directives o f specific actions and order the
AS-100 perform the actions.

Like program instructions, each command has a specific format. Commands
can only be entered in the operating mode when prompting “$ ” and the cursor
are displayed. This is called the command waiting state.

2.4.1 Outline and Format of Commands

There are 11 commands under BASIC. Each command consists of a keyword
and an operand. By entering the command through the keyboard, the specified
action is performed. The format is interpreted as shown in the next example.

Example:
Keyword

/---- "-----N
EDIT

Operand

F2

<Program specification > '

l_________
0

Part in brackets may be omitted.

The command is executed when
is depressed (j j at the end of
the line.

— Element of operand

The keyword and space can be entered using the 1 F 21 key.

(1) Operands

< Program specification > The program file is specified by the drive
name, program name, and file type.
Ex. A: ABC.BAS

< File specification > The file name is specified by the drive
name, file name, and file type.
Ex. A: XYZ.DAT

<Drive specification > The drive name is specified by A :~D :.

24

(2) Notes to Command Operations

• No distinction is made between uppercase and lowercase letters in command
operations.

• The default value for specifications of the drive name, program name, file
name, and file type differ from one command to anther.

2.4.2 EDIT Command

The EDIT command activates the editor for program creation or editing.
This command cannot be executed for a secured program (explained later).

Format

EDIT (!_i < Program specification >) Q

F2

< Program specification >The name o f program that will be created
or edited is specified. If the program name
is omitted, the priority program in memory
is automatically specified. If the drive name
is omitted, the current drive is automatical­
ly specified. The file type BAS may be omit­
ted.

• When the specified program is not in memory or on the disk (i.e. when the
program will be created), the following message is displayed:

PROGRAM CREATION x x x x x x x x x x x x x x x x : Program name

The system then enters the programming mode. At this time, “ 10 is dis­
played by the automatic numbering function of the editor.

• When the specified program is on the disk (i.e. when the program will be
edited), the following message is displayed:

PROGRAM EDITION x x x x x x x x x x x x x x x x : Program name

25

The system then enters the programming mode. At this time, the first 10
lines of the program are listed and is displayed.

Note: W hen the EDIT command is executed, the specified program is
searched on the disk first even if it is in memory. So when the program
specified in the EDIT command is in memory, the program in memory
is cleared when the command is executed.

For the details of program creation and editing, refer to “ 2.5 Programming.”

Example 1
«Display» «Key Operation and Explanation»

•Create program “ ABC” .
$ _

EKEamm ispacei m s s
PROGRAM CREATION ABC

1 0 _

Example 2
«Display» «Key Operation and Explanation»

•Edit program “XYZ” stored on the disk
in drive B.

$ _
EHÜHUCD ispacei d[l][x][2 [Z]l3

PROGRAM EDITION XYZ

10 ____

<?
100 ____

%

The first 10 lines of the
program are listed.

(

26

2.4.3

/

LOAD Command
The LOAD command loads a specified program from the disk to memory.

A program must be loaded in memory when the XREF command (described
later) and the LIST command are used, so the program is loaded from the disk
to memory in advance using this command.

Format

LOAD.—i < Program specification > PI

F3

< Program specification > The program that will be loaded to memory
is specified. When the drive name is omit­
ted, the current drive is automatically speci­
fied. The file type BAS may be omitted.
The program name must be specified. If the
program specified is not on the disk, the
message “ <Program specification> NOT
EXIST!” is displayed. Loading is not execut­
ed and the system returns to the command
waiting state.

Example 1
«Display»

$

$

«Key Operation and Explanation»

•Load program “ ABC” stored on the disk in drive B to
memory.

0 0 1 3 0 i s p a c e i o m s m i E i y

27

2.4.4 SAVE Command

The SAVE command stores the program in memory to the disk. The pro­
gram in memory is not deleted. When a program is stored or saved to the disk,
the program can be “secured” so that it cannot be specified in the XREF, LIST,
and EDIT commands. If there is no program in memory, executing this com­
mand causes an error.

Format

SAVE C i— . < Program specification >) (, SECURE) PI
II

r F 4 1

< Program specification > The name o f the program stored on the
disk is specified. The name specified does
not have to be the same as that of the pro­
gram currently in memory.
W hen the program name is omitted, the
name o f the program in memory is auto­
matically specified. When the drive name is
omitted, the current drive is automatically
specified. The file type BAS may be omit­
ted.

, SECURE.......................................When this is specified, the XREF, LIST,
and EDIT commands cannot be executed
for the program stored in the disk. (The
program in memory is not secured.) If the
XREF, LIST, or EDIT command is issued
to a secured program, the message:
"SECURED PROGRAM!" is displayed and
the command is not executed. Once a pro­
gram is secured, it cannot be released.

28

When this command is entered, the following confirmation message is dis­
played:

SAVE l_.T0^_i< P rogram specification> (Y/ N) ?_

When 0 and 0 are depressed, the program is stored. When [Nj and 0
are depressed, the command is not executed and the system returns to the
command waiting state. When a program of the same name as the program
specified is already stored on the specified disk, the following message is dis­
played:

CANCELl_,0LD <Program specification Y/N) ? _

When 0 and 0 are depressed, the program already on the disk is deleted
and the specified program is stored. When [N] and 0 are depressed, the com­
mand is not executed and the system returns to the command waiting state.

Example 1
«Display» «Key Operation and Explanation»

•Store program “ABC” in memory to the disk in drive
A using the same program name.

$

(S H S 0 E 0

Example 2
«Display» «Key Operation and Explanation»

•Store the program in the memory to the disk in drive B
using program name “XYZ” .

$

I1 M J0 E Is p a c e i 0 E H 5 D 0 E Ö

29

Example 3
«Display» «Key Operation and Explanation»

$ _

• Delete program “ EFG” on the disk in drive A and
store the program in memory to the disk in drive A
using the same program name.

SAVE TO A: E F 6 . BAS (Y/ N) ? _

0 a
CANCEL OLD A: EFG. BAS (Y/ N) ?

$ _

s a

Example 4
«Display» «Key Operation and Explanation»

$ _

•Secure and store program “POR” in memory to the
disk in drive A.

[sifÄifWEi ispA CEim rsiaiciforRifEira

SAVE TO A :P O R .BAS (Y/N)?_

ma
$

30

2.4.5 LIST Command

The LIST command outputs the list of a program in memory to the specified
device. This command can also specify the the range of program lines that will
be listed. This command cannot be used for secured programs. If there is no pro­
gram in the memory, executing this command causes an error.

Format

LIST C< Device nam e>) (< Range specification >) 0

F5

< D e v ic e n a m e >The name o f the device to which the list
will be output is specified. For device
nam es, refer to “ 1.4 Input/Output Con­
trol.” When the device name is omitted,
the display (CRT) is automatically speci­
fied. When one of the disk drives (A :~D :)
is specified as the output device, a list file is
created on the disk in the specified drive.
(Refer to “ 2.5 Programming.”) The name
of the list file consists of program name plus
the file type LST.

< Range specification>The range o f the list that will be output is
specified by line number. It is specified as
follows:

No specification... All program lines are listed.
< Line number > ... Only the specified line is listed.
<Line number > ,... All lines from the specified line through the last line of

the program are listed.
,<L ine number> ... All lines from the beginning of the program through

the specified line are listed.
< Line number > , < Line number > ...

All lines from the first line specified through the last
line specified are listed.

31

The following header is always output at the head of a list:

ABC. 1372
1 f

Program name Program size (bytes)

If the line specified to indicate the beginning of the output range is not found
in the program, listing starts from the line immediately following the line speci­
fied. If the line specified to indicate the end of the output range is not found in
the program, listing ends with the line immediately preceding the line specified.
If only one line is specified and it is not found in the program, only the header is
output. The output o f a list can be aborted by depressing iCANCELl or

1CTRL1 / fCl .

Example 1
«Display» «Key Operation and Explanation»

•Output Lines 10—30, of the program in memory to
the display.

(D c n s m ispACEi L r a n a ß a a

A B C . 3 0 2 1 4—Program name and size

10 DIM A(3 0)
<? Program contents from Lines 10—30

30 LET A(1) = 1 0.

Example 2
«Display» «Key Operation and Explanation»

•Output Lines 10—300, of the program in memory to
$ the printer connected to connector 1.

$

32

2.4.6 XREF Command (Cross Reference)
The XREF command outputs a list of the variable names used in the pro­

gram in memory. The list shows the line numbers where the variables are used.
This command cannot be used for secured programs. If there is no program in
memory, executing this command causes an error.

Format

XREF (i—1< Device nam e>) Q

F6

< Device nam e>.............. The name of the device to which the list of varia­
bles will be output is specified. For device names,
refer to “ 1.4 Input/Output Control” . When the
device name is omitted, the display (CRT) is auto­
matically specified. When one o f the disk drives
(A: through D:) is specified, a list file is created on
the disk in the specified drive. The file name of the
list file consists of the program name plus file type
REF.

The list contains the following elements. A header is always output at the top
of the list.

XYZ . 1 204 «- Program size

1 Program name

A 10 20 30 *---- The variable A is used on Lines 10,20, and 30.

B 10 80
C 10 100

Variable name

The output of a list can be aborted by depressing ICANCEL] or
ICTRLI / 0

33

Example 1
«Display» «Key Operation and Explanation»

$

XYZ. 1204
A 10 20
B 10 80
C 10 100

$

•Output a list of the variables used in the program in
memory on the display.

E H B E E B S

30

Example 2
«Display» «Key Operation and Explanation»

•O utput a list of the variables used in the program in
memory to the printer connected to connector 1.

E H M E E i s p ac ei O B E m a

$

34

2.4.7 RUN Command

The RUN command activates the interpreter to start BASIC program execu­
tion. This command can also execute a program in the debugging mode by spe­
cifying /D.

Format

RUN i—O [<Program specification] C/D] [;<Character string>]

F7

R U N ...The keyword can be omitted.
< Program specification> The name o f the program that will be ex­

ecuted is specified. When the drive name is
omitted, the current drive is automatically
specified. The file type BAS may be omit­
ted. When program specification is omitted,
the priority program (program in memory)
is automatically specified. The relationship
between program specification and the pro­
gram that will executed are summarized
below.

a) When the program name is not specified:
•The program in memory is executed.
•If there is no program in memory, the command is not executed and
the system returns to the command waiting state.

b) When the program name is specified:
•The specified program is automatically loaded from the disk to
memory and executed. In this case, the program already in memory
is deleted.

•If the specified program is not found on the disk, the message
“ < Program specification> NOT EXIST! "is displayed, the com­
mand is not executed, and the system returns to the command waiting
state. In this case, the program in the memory is not deleted.

35

/ D This is specified to execute the program in the

; < Character string > .

debugging m ode. For details, refer to “ 2.6
Debugging” .

.......... This specifies the character string that will be as­
signed to the COM$ function in a program. For
details, refer to the explanation o f the COM$
function given in “ 3. Built-in Function of Chap­
ter III Language” .

Example 1
«Display» «Key Operation and Explanation»

$_
•T he priority program is executed.

0
Program execution

Example 2
«Display» «Key Operation and Explanation»

$ _

• Load program “ ABC” from the disk in drive B to
memory and execute it.

E Q E H l l c iy

Program execution

36

2.4.8 CANCEL Command

The CANCEL command deletes a specified program file or data file from
the disk.

Format

CANCEL.—i < File specification> Q
II

F8

< File specification> The file that will be deleted from the disk is
specified. When the drive name is omitted, the
current drive is automatically specified. When
the file type is omitted, file type BAS (BASIC
program file) is automatically specified.

The following confirmation message is displayed when this command is
entered.

< File specification> CANCEL (Y/N) ?_

When [Y] and 0 are depressed, the specified program is deleted from the
disk. When El and 0 are depressed, the command is not executed and the
system returns to the command waiting state.

Example
«Display» «Key Operation and Explanation»

•D elete file “ ABC.DAT” from the disk in drive B.
$_

E2(ä][MC)[e][D Is p a c e i [S m O T I S Q m i T H a
B :A B C .DAT CANCEL (Y/N)?_

m s
$

37

2.4.9 DLIST Command (Disk List)

The DLIST command outputs a list of specified files on a specified disk to
the display. This command permits wild card specification so that more than one
file can be specified at a time.

Format

DLIST C '—i < File specification > D

F9

< File specification>The nam es o f the files that will be listed are
specified. When only the drive name is specified,
all of the files on the disk in the drive specified
are automatically specified and all of their names
are listed. When the drive name is omitted, the
current drive is automatically specified. Wild
card specification, the specification of more than
one file at a time, is also possible.

Wild card specification
A wild card is used to specify more than one file at a time and is indicated

by the generalization symbols and “ ?” . The symbol is used to indi­
cate all character strings. The symbol “ ?” is used to indicate all single charac­
ters.

The following are examples of wild card specification:
A: * .B A S........ All BASIC program files on the disk in drive A.
B: A*.* All files whose names begin with “ A ” on the disk in

drive B (i.e. B.A.BAS and B:ABC.DAT).
B:? ? ?.* All files with names of three letters on the disk in drive B

(i.e. BiABC.BAS, B:XYZ.DAT).
B:TEST?.* . . . All files with names o f five letters beginning with TEST

(i.e. B:TESTA.BAS, BiTESTl.DAT, and BiTESTO.BAS).

38

The list of the files displayed by the DLIST command is as follows.

A- --------- Specified drive

ABC .BAS CDE .DAT

ANTNT .BAS TEST .BAS

1____ |
-------------- 1--------- File type

File name

Example 1
«Display» «Key Operation and Explanation»

$

•Display a list of the BASIC program files on the disk in
drive A.

A:
ABC .BAS AAA .BAS
OPQ .BAS TESTX .BAS

<?

$ _

Example 2
«Display» «Key Operation and Explanation»

$ _

A:
TEST .BAS

$ _

•Confirm that program file “TEST.BAS” is on the disk
in drive A.

Is p a c e ! [H E I S H T O 1 E H 5 I 0

A name is not displayed if the specified file is not found on the disk.

39

2.4.10 RNAME Command (Rename)
The RNAME command changes the name of a file on a disk.

Format

RNAME l_ i < File specification l > <_j TO i_i < File specification 2 > 0
II

FIO

<File specification 1 > The file whose name will be changed is specified.
When the drive name is omitted, the current
drive is automatically specified. Wild card specifi­
cation is not available.

<File specification 2 > The new file name is specified. The specification
consists o f < F ile n am e> and < File type> .
Drive specification cannot be made. Wild card spe­
cification is not available.

Example
«Display» «Key Operation and Explanation»

•Change the name of program file “ABC.BAS” on the
disk in drive A to “XYZ.BAS.”

$ _
[M EM E] Ispacei EIISEIEHSEHEI IspaceI

mm Ispacei taSEJQtllMSiy

$ _

40

2.4.11 NEW Command

The NEW command deletes the program in memory and clears the display.
Then the display returns to its original status at the time of BASIC start-up.

Format

NEW y
II

Fl l

Example
«Display» «Key Operation and Explanation»

$
(M M S

Canon AS-100 BASIC Vm.mm
User's Memory nnnnnn Bytes

$ _

2.4.12 BYE Command

The BYE command terminates BASIC and returns the system to the OS
mode. The definitions made under BASIC return to their initial value
(CP/M-86 initial state). At this time, the display is cleared and a cursor and
prompting “A > ” (indicating the OS mode) are displayed in the upper left-hand
corner of the screen.

Format

BYE □

Fl2

Example
«Display» «Key Operation and Explanation»

$_

A>
E U D E S

41

2.4.13 OS Mode Commands

In the OS mode, before BASIC is started-up or after BASIC is terminated
using the BYE command, “ A > ” (A indicates the current drive) is displayed,
and the AS-100 is put under the direct control of the CP/M-86 operating system.

In the OS mode, the commands supported by CP/M-86 can be used. Like
commands under BASIC, they can be used with the AS-100 System.

This section explains the command functions of several OS mode commands
which are useful to operate BASIC. Refer to the “CP/M-86 User’s Manual” for
OS commands not explained here and for the details of each command.

(1) VOLCOPY Command and COPYD1SK Command
These commands copy the contents of one disk to another disk, thus prepar­

ing a copy (backup) of the disk. The COPYDISK command copies the disk by
sector, and the VOLCOPY command by track. Their key operations are almost
the same. The processing speed of the VOLCOPY command is slightly faster
than that of the COPYDISK command. Before a disk copy is made using these
commands, the disk on which the copy will be made must be initialized using
the FORMAT command. The original disk (source) and copy disk (destination)
must be the same size.

Format

(VOLCOPY 1 □

I c o p y d i s k J

Operations are made as follows:

«Display» «Key Operation and Explanation»

A>_

O O E S O f f l s l U Q]
(or m n c i o t B E O)

CP/M-86 Full Disk Copy Utility Version 2.0 or
VOLCOPY VI.01
Enter Source Disk Drive(A-D)?_

•Enter the name of the drive where the original disk is
set.

m
Destination Disk Drive(A-D)?_

•Enter the name of the drive where the copy disk is set.

ED0

42

Copying disk A:to disk B:
L Source 1— Destination

Is this what you want to do(Y/N)?_

• Confirm that the original disk and the copy disk are
correct, and depress 0 and 0 • When (N] and 0
are depressed, copying is not performed and the
message “Copy another disk (Y /N)?” is displayed.

0 0

•T h e numbers of the tracks being processed are dis­
played in sequence. The displays for the COPYDISK
command and the VOLCOPY command are slightly
different.

Copy started

Reading track nn

Writing track nn

Verifying track nn

COPYDISK only

COPY TRACK NUMBER=nn (voLCOPYoniy)

Copy completed (COPYDISK only)

"Copy another disk(Y/N)?"

•W hen copying is complete, this message is displayed.
When 0 and 0 are depressed, the system returns
to the beginning of command operation procedure and
copying is repeated for the new disk. When [N] and

' 0 are depressed, copying ends.

Copy program existing(c o p y d i s k only)

A>

43

FORMAT Command
The FORMAT command initializes a disk.

Format

FORMAT □

«Display» «Key Operation and Explanation»

A>

FORMAT Vn.nn
Disk Brwill be destroyed,0K?_

•Set the disk that will be initialized in drive B and dep­
ress H and 0 . When M and 0 are depressed,
the disk is not initialized, and “A > _ ” is displayed.

COPYING SECONDARY BOOT.

A> • “A > _ ” is displayed when initialization is completed.

(3) PIP Command
The PIP command copies a file on a disk to another disk.

Format

PIP.—, <D rive name> = < F ile specification> D

< Drive n am e> Specify the drive where the destination disk is set. The
drive name cannot be omitted.

< File specification> . . . Specify the original file by <D rive n am e> , <File
n am e> , and <F ile type> . When the drive name is
omitted, the current drive is automatically specified.
Wild card specification can be made for the <File
name > and < File type > .

«Display»

A>_

A>_

«Display»

«Key Operation and Explanation»

•Copy program file “ TEST.BAS” from the disk in
drive A to the disk in drive B.

[pimfpifspÄSEifBirriRmf^rsimnfBifÄifsiH

«Key Operation and Explanation»

A>_

Copying-

TEST1.BAS

c3
A>

•U se wild card specification to copy all BASIC pro­
grams on the disk in drive A to the disk in drive B.

fpimtPiispASEiiBimRFintBiiÄirsiPi

•The names of files copied are displayed when the wild
card is specified.

If the destination disk contains a file of the same name as the file specified in
PIP command , the file on the destination disk is automatically deleted and copy­
ing is performed. If the file on the destination disk is write-protected (see the
CP/M-86 User’s Manual), the message “ DESTINATION IS R/O, DELETE
(Y /N)?” is displayed. If [3 is depressed, the file on the destination disk is
deleted and the new file of the same name is copied following the message. If
[N] is depressed, copying is not performed.

45

(4) ST AT Command
The ST AT command displays the size of the free area on a disk.

Format

STAT □

«Display» «Key Operation and Explanation»

A>_
t u m m y

A :RW,Free Space:16K

-̂---- Attribute t--------- Free area (bytes)

------- Drive name

A>_

(5) TOD Command

The TOD command sets the AS-lOO’s internal clock or displays its current
value. In BASIC programs, the value of the internal clock can be modified or
read using the TOD$ and TIM functions. The internal clock is set at 00 hours 00
minutes 00 seconds when the power is turned on. The elapsed time is recorded
in seconds. Random values are set for date and day as the initial values. If the op­
tional real-time clock is added, the elapsed time is counted even when the
power is off.

Format

TOD Cl_ .< Month > / < Day > /< Y e a r > L _ ,< Hour > :< M in u te > :< Second >] Q

< M o n th > /< D a y > /< Y e a r > Specify the year, month, and day that
will be set using two-digit numbers.
Specify the year by the last two digits.
For exam ple, January 10, 1983, is
specified as 01/10/83.

< Hour > :< Minute > :< S econ d > . . . Specify the time that will be set using
two-digit numbers. Specify the hour
according to 24-hour system . For
exam ple, specify 3:05:00 p.m. as
15:05:00. When all of the operands are
om itted, the TOD command displays
the current time.

46

«Display» «Operation and Explanation»

A>_
•Set the internal clock for 7:25 a.m., March 3, 1983.

ITlIÖllDl ISPASEI Iülf3li71fülf3l[71l8ir3l ISPACEl
E a m sE iE iE iis iE iia

S t r i k key t o s e t t i m e

•T he specified time is set when any key is depressed.

0
0 3 / 0 3 / 8 3 (T h u) , 0 7 : 2 5 : 0 0

•T he time set is displayed. The day of the week is auto

a >_
matically set.

«Display» «Key Operation and Explanation»

A>
•T he current value of the internal clock is displayed.

m o o s
0 3 / 0 3 / 8 3 (T h u) , 0 7 : 2 6 : 0 5
A>

47

(6) TYPE Command
The TYPE command displays the contents of a character file. For example,

if this command is used when inputs are made from the character file using the
G command during program editing (see “2.3.4 Program Editing”), the con­
tents of the character file can be checked in advance.

TYPE l_ j Civile specification> Q

< File specification> -----Specify the file name o f the character file whose
contents will be displayed.

Format

«Display» «Key Operation and Explanation»

•Display the contents of the character file on the disk in
drive A.

A>

mmrpifEi fspÄüEimfEifsimmnfüifsimPi
100 REM + + CA LC.ROUT INE + +

110 A=0 Contents o f the character file

“TEST1.LST

A>

48

(7) BASIC Command
The BAISC command activates the BASIC system. Specify the library

names in this command when the library modules (ISAM and MATRIX li­
braries) will be loaded after the BASIC system module. This command can also
specify the BASIC program which will be executed immediately after BASIC
start-up.

Format

BASIC (._j / < Library nam e>) C >—« < Program specification>)

(;< Character string>) Q

/ < Library n a m e >This is specified to load a library module in
memory where it will reside following the
BASIC system. A library is a file with file
type LIB, which is required to use matrix-
related instructions, etc. If the library name
is not specified in the operand o f the
BASIC command, it must be loaded during
the program execution to use the function.
The benefits of having the library reside in
memory are:
a) The memory is reserved for the BASIC

system including the library, so the
user’s memory area displayed at BASIC
start-up indicates the actual memory
amount which can be used for user pro­
grams.

b) The processing speed improves because
a library does not have to be loaded in a
program.

< Program specification> Specify the BASIC program that will be ex­
ecuted just after BASIC start-up. The file
type BAS may be omitted.

< Character string> This is the same as the character string of
the RUN command of BASIC.

49

When the BASIC command that specifies the program that will be executed
just after BASIC start-up is executed in the SUBMIT file (refer to the
“CP/M-86 User’s Manual”), the next line of the SUBMIT file is executed when
the specified BASIC program ends with the BYE statement.

«Display» «Operation and Explanation»

• BASIC is activated and then the BASIC program
“TEST” is executed. The MATRIX library resides in
memory just after the BASIC system.

A>__
HHMstspÄcsammHiiiixi

ispACEimfEifsirrp)
Version n o .-------------------------

*------ \

Canon AS-100 BASIC Vn.nn

Copyright by Canon Inc.

Option:MATRIX

User's Memory mmmmmm Bytes

User area (byte)------------

O The BASIC program “TEST” is executed.

$

50

2.4.14 Handlers

When using an optional printer with the AS-100, it is necessary to load han­
dlers to memory before BASIC start-up (in the OS mode). The handlers and
their loading operations are shown below. Refer to the “ CP/M-86 User’s
Manual” for details of the handlers.

• A1200........Load th is to use the A-1200 Wire Dot Printer connected to
connector 1.

Operation: [3CDEOG2E30
• A1210........Load this to use the A-1210 Color Printer connected to connec­

tor 1.

Operation: (A](T]EI[T][O|0

51

2.5

2.5.1

Programming
Creating a program is called programming. This section explains the pro­

gramming procedure in sequence—from writing the program on a coding sheet
and entering the program through the keyboard, to editing it and storing it to a
disk. Refer to “ 2.6 Debugging” for details on debugging (finding errors) in the
program.

Programming Procedure

The procedure that follows must be used to code the program or write it on
the coding sheet, enter the program, and actually execute it.

END OF
PROGRAMMING

52

2.5.2 Coding

First, write the program on a coding sheet. Since Canon BASIC programs ac­
comodate up to 127 characters per line, including the line number and 0 , use
a 128-character coding sheet. Refer to “Chapter III Language” for the details of
Canon BASIC language used for programming.

Coding Example:

Coding Sheet
Canon
RfiOGRAM 0 0 23 prt°™£m T E S T 2 3 PROCRAMMER ̂ ^WlZaWO.
LINE NO. KEYWORD & OPERAND

10 REM + + + DATA CHECK PRO5-RAH + + +

20 INTEfr ER Ud , COPE A ̂ C

30 DIM A(203 ,BC 20 3

40 REM =* INI T iA li ■EE R*«TINT = =

00 PRINT V CHECk PR0ÖRAM NO-. 1 91

&o INPUT M ^ C ’’ iNPO T You R PA 5Svt/aRP ! ”) N Ame4

70 0-PEN M / a '.PAS* .OAT”

80 Sr E T t 1 WAR4 : IF NAMEftowo kk§ TMEW CLOSE ftl: &oTo bo

20 CL&9E 41 ft

loo REM == HEAI u m MT = =

53

2.5.3 Program Entry

Enter the program through the keyboard according to the coding sheet. Use
the following procedure to enter the program.

(1) Set the AS-100 in the programming mode.
(2) Enter each program line.
(3) Release the programming mode.
(4) Save the program to a disk.

(1) Setting the Programming Mode
Before the program is entered, the editor must be activated and the AS-100

must be set in the programming mode using the EDIT command.
Specify the program name in the operand of the EDIT command as shown

below.

E O m f f l 1SPACEI < Program name > 0

The BASIC editor, in turn, activates the automatic numbering function, so
the line number is displayed instead of “%”.

PROGRAM CREATION x x x x x x x x
.̂.. Program name

10 LJ_

The program can be entered when this is displayed. The line number in­
creases by 10 with the entry of each line.

Note: The program name can be om itted if a program is not loaded in
memory. The program name must be defined by the N command (de­
scribed later) before the programming mode is released.

54

(2) Entering Program Lines
After setting the AS-100 in the programming mode, enter the program lines

according to the coding sheet. Depress 0 at the end of each line. It is not neces­
sary to enter line numbers because they are entered automatically. The program
must not take up more than half the user memory area or execeed 32K bytes in
length.

Example 1
«Display» «Key Operation and Explanation»

$ _
E m m [s p M u m g y

*--------- program name
PROGRAM CREATION AAA
1 0 _

I f f l l i s p a c e ! [SHXHDiniDJ
10 DIM A(1 0) _

020
Keywords of instructions can be entered by depressing the IF 11 key and a

typewriter key using the one-key, one-instruction function. For details of the
one-key, one-instruction function, refer to “ 2.2.3, (5) One-key, one-instruction
function” .

If a mistake is made during program line entry, the line is not entered to the
system even if 0 is depressed. The cursor will automatically move to the posi­
tion of the error. Then correct the error and depress 0 . The line is then en­
tered to the system and the next line number is displayed.

The following keys are used for correction.

BED:

INSERT

The cursor moves one character in the direction of the
arrow. The functions are repeated if the keys are con­
tinuously depressed.

This key inserts a character string at the cursor position.
First depress lINSERTl and then enter the character
string that will be inserted. Insertion is completed when
the cursor is moved or when any key other than the
character keys are depressed.

55

DELETE

DEL

This key deletes the character at the cursor position
and shifts the following character string one column to
the left.

These keys move the cursor to the beginning of the
line (h—) or to the end of the line (—h) .

This key deletes the character immediately preceding
the cursor and shifts the cursor one column to the left.

This key deletes the entire line except for the line
number.

Example 2
«Display» «Key Operation and Explanation»

a) »Various correction operations are shown.
40 PRRINT A

O "

F = 1 B B
40 PRRINT A

[DELETE
40 PRINT A

b) 80 LET B + C_

0
B B B

80 LET B+C

|l NSERTl [Ä1R

80 LET A=B+C

c) 90 PRINT "ABC"

90 PRINT "ABC"

90 PRINT II II

90 PRINT " XYZ "

B B B B

IDELETEI [DELETEl IDELETEI

II NSERTl S H E

56

d)
TOO GOTO TOOOO_

[DELlfDELl
TOO GOTO 100_

e)
70 INPUT A_

D E ürfE l
|L INE

7 0_

1SPACEI B E m u m ISPACEI El

70 PRINT A_

Programs can be entered using the basic operations described in this section.
The details of the editor, including the procedure for using the edit commands,
can be found in “2.5.4 Program Editing”

(3) Releasing the Programming Mode
After all program lines have been entered, release the programming mode

using the following procedure:

1) Depress 0 to display
2) Depress E and 0 to release the programming mode and set

the operating mode and then is displayed.

Now the program is in memory and can be executed. To prevent the pro­
gram from being erased, save the program to a disk prior to execution.

(4) Saving the Program to a Disk
Use the SAVE command to save the entered program to a disk. The operand

of the SAVE command can be omitted.

1) Enter E M M E S .
When saving a program to a disk other than the one in drive A,
specify the disk as follows:

E[Ä][y][E] ISPACEI <D rivenam e>: 0
2) The message " SAVE TO A: <Program name> . BAS (Y/N) ?_"

is displayed.
3) Depress [Y) and 0 .
4) The program in memory is saved to the disk in drive A. The

system then returns to the command waiting state.

57

2.5.4 Program Editing

This section contains a detailed explanation of the editor functions. The op­
erations just described use only a fraction of the editor functions. The editor is
also used whenever an error is found during program checking or anytime a part
of the program is modified. Program editing is just about the same as program
creation. The only difference is whether the program being edited is in memory
or not.

(1) Activating the Editor
Activate the editor using the EDIT command. Refer to “2.4.2 EDIT Com­

mand” for the details of this operation. The first 10 lines of the program are
listed, and the programming mode prompting is displayed.

(2) Basic Editor Functions
The Canon BASIC editor is a line editor which means that it edits a program

line by line.
There are two display statuses in the programming mode. One is the edit

command waiting state when edit commands can be entered. In this state,
prompting “ %” is displayed. The other is the line input state, when program
lines can be entered and modified directly. Either a line number or a program
line with its line number is displayed.

Edit command waiting state:

-̂------- Cursor

Line input state:
1 2 0_P RI NT A , B , C

-̂---------Cursor

One line in a program is defined as the key line for editing. This line is called
the current line. The current line changes according to editing procedure. Basi­
cally the line displayed in the line input state is defined as the current line.

120 PRINT A,B,C

130 GOTO 100

140 [SUB1] REM ===

%C 1 30
130 GOTO 100 <- Current line

58

The editor checks the grammar (syntax) of each line as it is entered and
stores the lines as a program. If there is a syntax error in a line, the line is not en­
tered to memory and the cursor will indicate the position of the error.

Correct line Incorrect line

The syntax check performed by the editor starts at the beginning of a line.
This means that the cursor will be positioned at the character immediately fol­
lowing the error.

(3) Edit Commands
Eleven edit commands can be used in the edit command waiting state of the

programming mode. Their functions are described below.
1) LINE command__ Inserts, deletes, or modifies a line.
2) I command...............Specifies automatic numbering.
3) R command.............Renumbers lines.
4) L command.............Displays a list of programs.
5) D command.............Deletes a specified line.
6) C command.............Calls a specified line.
7) N command.............Changes a program name.
8) G command............ Reads a character file.
9) M com m and.......... Merges one BASIC program file with anoth­

er one.
10) E command............ Releases the programming mode.
11) T4 com m and........ Changesaline.

59

1) LINE Command
The LINE command inserts, modifies, or deletes a specified line.

Format

< L in e N o .> (<C ontents of l i ne >) Q

< Line No. > Specify the number o f the line that will be inserted,
modified, or deleted.

< Contents of line. > . . . Specify the contents of the line. If this specification
is omitted, the line is deleted.

The line specified becomes the current line. If the line is deleted, the line
following it becomes the current line.

Example 1
«Display» «Key Operation and Explanation»

%

% 12 5 A = A + B
%

• Insert Line 125.

O D O [5] Is p a c e i H E) (S E E S

* If there is already a Line 125, its contents are changed.

Example 2
«Display» «Key Operation and Explanation»

• Delete Line 400.

%400
%

60

2) I Command (Input)
This command specifies automatic numbering. The I command also sets the

display in the line input state.

Format

I [< S t a r t in g l i n e >] (, < I n t e r v a l >) Q

< Starting line> Specify the line number where auto numbering will
start. If the starting line is omitted, auto numbering
starts from the line with a number equal to the number
of the last program line of the program plus the value
specified in < Interval > .

For example, if the starting line is omitted during the
editing of a program in which Line 500 is the last line and
the I command specifying a numbering interval of 5 is
executed, auto numbering starts from Line 505 with the
subsequent lines automatically numbered 510, 515, 520.
.. etc.

When a line already stored in the program is specified,
auto numbering starts from the line with line number
equal to the number of the line specified plus the value
specified in < Interval > . But if that value (specified line
number + interval) corresponds to a line already entered
in the program, the I command is ignored. It is possible to
specify F for the first line of the program and L for the last
line.

<Interval> The automatic numbering interval is specified. If the in­
terval is omitted, 10 is automatically specified.

61

When the line number of line input state set by the automatic numbering
function matches or exceeds the line already entered in the program, auto num­
bering is released and the editor returns to the edit command waiting state. The
last line entered immediately before line input state ends becomes the current
line.

The line input state is also released when 0 is depressed without entering
the contents of a line in the line input state set by the automatic numbering
function.

Example 1
«Display»

%_

510

520
<?

600

%

«Key Operation and Explanation»

• Add Line 510 and subsequent lines to a program con­
sisting of Lines 10—500.

CDS

y

Example 2
«Display»

* _

52

54
<?

58

%

«Key Operation and Explanation»

• Insert program lines at intervals of 2 between Lines
50 and 60.

[D t M o o y g

E M ispacei m e m ispacei m m
ISPACEI m iü lp l

Additional

program

lines.

(M E E E Is p a c e i (U 0

62

3) R Command (Renumbering)
The R command renumbers the lines of a program at equal intervals. The

lines specified in a statement like the GOTO statement are automatically renum­
bered.

Format

R (< Starting l i ne >) (, < Interval>] PI

< Starting line> ___Specify what the beginning line number of a program
will be after renumbering. If this specification is omitted,
the value specified in < Interval > is automatically speci­
fied as the first line of the program.

< Interval> Specify the renumbering interval for the line numbers.
If this specification is omitted, 10 is automatically speci­
fied.

After this command is executed, the first 10 renumbered lines of the pro­
gram are displayed. The last line displayed becomes the current line.

Example
«Display» «Key Operation and Explanation»

• Renumber lines at intervals of 100 beginning from
Line 100.

[R H U n m g]
100 INTEGER A, B, C

200 DIM A (20), B (2 0),C (20)
<?

1000 PRINT "OK?"

%

63

4) L Command (List)
The L command displays a program list. The part that will be listed can be

specified.

Format

L (< Starting l i ne >) (, < Ending l i ne >) Q

< Starting l in e > -----Specify the first line that will be listed. If the line speci­
fied is not found in the program, listing starts from the
first line beyond the specified line. For example, if Line
25 is specified in a program containing Lines 10, 20, and
30, Line 30 becomes the starting line.

< Ending lin e > Specify the last line that will be listed. If this specification
is omitted, 10 lines starting from the line specified by
< Starting line> are automatically listed.

If both of the operands are omitted, 10 lines starting from the current line
are listed. It is possible to specify F for the first line and L for the last line.

If the part of the program specified is not found, the message “ LINE NOT
EXIST!” is displayed.

The last line listed after execution of this command becomes the current line.
The listing can be aborted using the ICANCELl key or ICTRLl / |C] .

64

Example 1
«Key Operation and Explanation»«Display»

%_

100 —
c?

400 —

• List Lines 100—400 of the program.

o m m n s i m s

Example 2
«Display»

%_

10 —20 —

c>
%

«Key Operation and Explanation»

• List the program from the first line to the last line.

□ E O D 0

Note: If the lines listed exceed the display capacity, the lines displayed will be
scrolled up and off the display as listing progresses. To stop scrolling, use
the screen stop function described in “2.7 Functions of Control Key” .

65

5) D Command (Delete)
The D command deletes a specified line.

Format

D <Starting lin e> (, <Ending l i ne >) P

<Startingline>................ Specify the first line o f the program that will be
deleted. If the starting line is specified without spe­
cifying the ending line, only the specified starting
line is deleted.

< Endling lin e > Specify the last line o f the program that will be
deleted.

When deleting only one line, if the specified line is not found in the pro­
gram, the message “ LINE NOT EXIST!” is displayed. When deleting more
than one line at a time, if line specified as the starting line or the ending line is
not found in the program, the lines that are found within the range specified are
deleted. If none o f the lines specified are found in the program, the message
“LINE NOT EXIST!” is displayed. It is possible to specify F for the first line and
L for the last line. The line immediately following the line deleted after this com­
mand is executed becomes the current line.

Example 1
«Display» «Key Operation and Explanation»

• Delete Line 120.
%

%

Example 2
«Display»

(Operation |T][2][0]0 is also acceptable.)

«Key Operation and Explanation»

• Delete all lines from Line 150 through the last line of
the program.

m s i E n E a

66

6) C Command (Call)
The C command calls a specified line and sets the line input state.

Format

C (<Li ne number >) D

<L inenum ber>............ . Specify the program that will be called for correc­
tion. If this specification is omitted, the current line
is automatically called.

When a program line is called using this command, its contents are dis­
played and the editor enters the line input state. Correct the contents and dep­
ress 0 to enter the correction. When correction is complete, the editor auto­
matically returns to the edit command waiting state.

After this command is entered, the line called becomes the current line.

Example 1
«Display»

%

«Key Operation and Explanation»

• Call and correct Line 150.

150_PRINT A

150 PRINT B

%

] B E

y

67

7) N Command (Name)
The N command changes the name of a program.

Format

N (< Program name>) Q

< Program n a m e >Specify the new program name. The program name
must be a character string consisting of capital al­
phabet letters and numbers, beginning with a capi­
tal letter and not exceeding 8 characters.

When this command is executed, the old program
name is displayed in the format “ OLD
PROGRAM NAME < Program n a m e> ” . When
the program name is omitted, the program name
does not change and the current program name is
displayed.

«Key Operation and Explanation»

• Change the name of program “ AAA” to “BBB” .

Example 1
«Display»

%

OLD PROGRAM NAME AAA
%

68

8) G (Get) Command
The G command reads a character string from a character file on a disk. The

character string is treated the same as program entry through the keyboard and
a syntax check is performed.

Format

G < File specification > PI

<File specification> Specify the character file that will be read. If
the specified file is not found on the disk,
the message “ <Fi le specification > NOT
FOUND!” is displayed and the editor enters
the edit command waiting state.

A character string which is read from a character file using this command is
entered to the editor. If a syntax error is found in the character string which is
read from the file, reading is stopped temporarily and the line is displayed with
the cursor positioned at the error. When the error is corrected and 0 is de­
pressed, reading is resumed.

Example
«Display» «Key Operation and Explanation»

%_

200 A=B*C

210 PRNT_

210 PRINT

%_

• A character file “ABC.LST” with the following con­
tents is read and entered:

21oIqM a1=IB|*IcIcrIlfI211 lOMPlRlNlTl^
ft

Syntax error

Suspended due to to the syntax error

BE! 11 NSERTl Q] . . . Correction

0 Correction completed

• Line 200 and 210 are entered after the operation
above.

69

Note: Program line entry from a character file is treated the same as an
entry through the keyboard. So, if a program line whose line number
has already been used in the program in the memory is specified with
program line entry from a character file, the program line in memory is
updated to the contents specified by the character string read from the
character file.

9) M Command (Merge)
The M command merges a part of a BASIC program with another program.

The range of program lines that will be merged can be specified. Only BASIC
programs created by this editor and consisting of an intermediate code can be
merged. Secured programs cannot be merged.

Format

M <Program specification> [<Starting l ine> (> <Ending line>]] PI

< Program specification>Specify the program that will be
merged. When the drive name is
omitted, the current drive is auto­
matically specified. File type BAS
may be omitted.
If the specified program is not
found, the message “ <Program
n a m e > NOT FOUND! ” is dis­
played and the editor returns to the
edit command waiting state.

< Starting line> [, < E n d in g lin e>].......... Specify the part o f the program
that will be merged by line num­
bers. The method of specification
is similar to that o f the D com ­
mand. When the merge range spe­
cification is omitted, all program
lines are merged.

70

Example
«Display»

%

1 00 —200 —

%

«Key Operation and Explanation»

• Merge lines 100—200 of program “XYZ” on the disk
in drive A with the program in memory.

m m a m m a a i M y
• The merged program lines are listed.

[D m m a E r a a

10) E Command (End)
The E command releases the programming mode and sets the system in the

operating mode.

Format

E □

«Display» «Key Operation and Explanation»

%_

$
E 0

71

11) u Command (Up/Down)
This command is executed by the cursor control keys J j and [Jj, This oper­

ation displays the line immediately preceding ((H) or following (Q]) the line
currently displayed and sets the line input state. A warning buzzer sounds if GO
is depressed at the beginning of a program or [Jj is depressed at the end of a
program.

Format

E or J

«Display» «Key Operation and Explanation»

120 .„PRINT A
CO

110 _A=A+1
a ®

110 B=A+1

a

72

2.6 Debugging
Debugging is finding the incorrect parts of a program and correcting them.

When the RUN command in which “/D ” is specified is executed, the program
is executed in the debugging mode and program can be checked during execu­
tion. Program errors that are found are corrected using the editor.

2.6.1 Debugging Mode Outline

In the debugging mode, the program can be executed statement by state­
ment. That is, the instructions in the program are executed one by one so that
the execution procedure of the program can be checked.

When program execution starts in the debugging mode, program exectuion
is suspended and the debugging prompting “@” is displayed together with the
program name, line number, and statement number as shown below, immedi­
ately before the first statement is executed.

ABC.10.@_
| -̂---- Statement no. (0)

Program I
name Line no.

Numbers (0, 1, 2 , . . .) are assigned to statements (multistatements) written
on the same line. As shown in the above example, however, statement 0 is not
displayed.

Line no. — * 1 0 0 P R11\ T A :LET A=A+1:G0T0 90

Statement
no. 0 1 2

73

This temporary suspension is called the debugging command waiting state.
The following seven debugging commands can be entered.

1) R command___Restarts program execution.
2) S command___Executes one statement.
3) T command — Specifies the section that will be traced.
4) B command___Sets a breakpoint.
5) U command___Releases a breakpoint.
6) D command___Displays the contents of a variable.
7) E command___Ends the program.

Trace is program execution in which the line and statement number of the
statement currently being executed is displayed. The execution results of each
statement can be checked one by one.

A breakpoint is a point set in a program where program execution is tempo­
rarily suspended. In the debugging mode, program execution is temporarily sus­
pended just prior to the execution of a statement set as a breakpoint, and the
system enters in the debugging command waiting state.

For example, the result of a calculation by a program is different than expect­
ed. If breakpoints are set at several points in the calculation routine and the
value of the variable is checked at these points, the statement responsible for
the incorrect calculation result can be found easily.

Even if the execution of a program is started without specifying “ / D ” , pro­
gram execution can be changed to debugging mode execution by depressing
ICTRLI/ E l .

When the 1CTRL1/IÄ1 keys are depressed, program execution is tempo­
rarily suspended and the system enters the debugging command waiting state.

Note: When the subkeyword THEN is included in the IF statement, the state­
ment is treated as two statements like the example below.

400 IF A=100 THEN PRINT "A=100":GOTO 800

Statement 0
no.

74

2.6.2 Debugging Commands

(1) R Command (Run)
The R command restarts program execution starting from the statement

being displayed (i.e. the statement indicated by the line number and statement
number immediately preceding the prompting). When a breakpoint is set in the
program, the program stops and the system enters the debugging command
waiting state just prior to statement execution. When the specified trace section
is executed, the line and statement numbers are displayed one by one during ex­
ecution.

Format

R □

(2) S Command (Step)
The S command executes a statement being displayed (i.e. the statement in­

dicated by the line number and statement number, immediately preceding the
prompting). The system enters the debugging command waiting state after one
statement is executed.

Format

Note: The S command has no keyword. Simply depressing the ED key exe­
cutes the S command.

(3) T Command (Trace)
The T command specifies a section for trace execution, in which a program

is executed and the line and statement number of each statement are displayed
as they are executed. The T command only specifies a trace section; actual trace
execution is performed when program execution is restarted and the statements
in the trace section are executed. A trace section can be specified in the sub­
program called using the CALL statement.

Only one trace section can be specified in each program. If more than one
trace section is specified, only the last trace section specified is valid.

75

Format

T ((<Program name>] <Starting l ine> [, <Ending l i ne>] p|

<Program nam e>.......... W hen the trace sect ion is specified in the sub­
program that will be called by the CALL statement,
specify the subprogram name. If this specification
is omitted, the trace section is set to the program
whose execution is suspended temporarily. There­
fore, when the system is in the debugging command
waiting state in a subprogram, the name of the main
program must be specified even if the trace section is
set in the main program.
The program name must be specified with capital
alphabet letters and numbers.

< Starting line> [, < Ending line>] -----
Specify a trace section by line number (s) as follows:
a) When only the starting line is specified:

Only that line is set to a trace section. If the line
specified is not found in the program, the specifi­
cation is valid but tracing is not actually per­
formed.

b) When both the starting line and ending line are
specified:
The section from the first statement on the line
specified < Starting line> through the last state­
ment on the line specified < Ending line> is trace
section. If a line number specified in a program,
those lines actually included in the specified sec­
tion are traced. The relationship between the start­
ing line and ending line are shown below.

Starting line < Ending l ine. . . Section specified
Starting line = Ending l ine. . . The line only
Starting line > Ending l ine. . . Error

76

c) When the trace section specification is omitted:
The trace section currently set is displayed as fol­
lows:
< Program nam e> . < Starting line> , < Ending
line>

d) When a negative line number is specified:
The trace section specification is reset.

Note: If an error is caused by the T command with an
incorrect operand, the trace section currently set
is released. An effecive trace range is limited to
one program. For example, even if a section con­
taining the CALL statement is specified as a
trace section, tracing is not performed in the sub­
program called by the CALL statement.

(4) B Command (Break)
The B command sets a breakpoint at the line number specified. One break­

point can be set with each B command. Up to four breakpoints can be set in a
program. Program execution in the debugging mode is suspended immediately
before executing a statement set as a breakpoint and the system enters the
debugging command waiting state. The B command can also be used to set a
breakpoint in a subprogram.

Format

B CC<Program nam e> .) < L ine N o .> . < Statement N o .>)) Q

Program n am e......................................Specify the name o f the subprogram
w hen a breakpoint is set to the sub­
program that will be called by the
CALL statement. For details, refer to
the explanation of the T command.

< L in eN o.> [.< Statement No. >] . . Specify the num bers o f the line and
statement where the breakpoint will be
set. If the statement number is omitted,
0 is automatically specified.

77

When the B command is executed to set
a breakpoint when four breakpoints
have already been set, the message
“ ALREADY 4 BREAK POINTS
EXIST!” is displayed together with the
line and statement numbers of the four
breakpoints already set.

If all operands are omitted, the program
name, line num bers, and statem ent
numbers in which breakpoints are set are
all displayed. If there are no breakpoints
set, the message “NO BREAK POINT!”
is displayed.

(5) U Command (Unbreak)
The U command releases a breakpoint.

Format

U ((<Program nam e> .] < L ine N o .> [.<Statement N o .>]] PI

<P rogram nam e>Specify the nam e o f the program in
which the breakpoint will be released.
For details, refer to the explanation of
the B command.

< Line No. > [. < Statement No. >) . . Specify the number of the line and state­
ment o f the breakpoint that will be re­
leased. If the specified breakpoint is not
set in the program, the message “NOT
EXIST!” is displayed together with all
breakpoints currently set. If all operands
are omitted, all of the breakpoints are re­
leased. If breakpoints are not set, the
message “ NO BREAK POINT!” is dis­
played.

78

(6) D Command (Display)
The D command displays the current value of a variable.

Format

D < Variable nam e> PI

< Variable name> Specify the name o f the variable whose current
value will be displayed. When a varible specify its
name with the subscript.
The display format is as follows:
• Arithmetic variables

Same as the PRINT statement without a format.
•String type variables
X“ <Hexadecimal code> ” , “character string”

When a specified variable is not defined in a pro­
gram, the m essage “ VARIABLE NAME NOT
FOUND!” is displayed.

(V) E Command (End)

The E command ends program execution. The E command has the same
function as the END statement.

Format

E Q

79

2.6.3 Debugging Example

This section gives a step-by-step explanation of a simple program debugging
example. Underlined portions of the display indicate inputs through the key­
board. indicates the 0 key.

«Display»
$L0AD DEBUG-'
$ L I ST
DEBUG.131
10 READ A, B
20 DATA 23, 24
30 C=A+B
40 PRINT C
50 C=A*B
60 PRINT C
70 END
$ / D J -----------------

DEBUG.1O0B4O J -
DEBUG.10@B^ -—
DEBUG.40 '
DEBUG.100T 6 0 , 70
DEBUG. 1 0@T-^ -----
DEBUG.6 0 , 70
DEBUG. 1 0 (3 ^ « ------
DEBUG. 20@DA-J —
23
DEBUG.2O0DM —
24
DEBUG.20@R^- —
DEBUG . 400DC_^ —
47
DEBUG.400RJ 47 -
60 :5 52« — -------------
70: * --------------
$ _

«Explanation»

This is a simple program to
output the results of addition
and multiplication.

Execution is started in the debugging mode. RUN DEBUG is
omitted.

A breakpoint is set on Line 40.

The breakpont is verified.

A trace section is specified between Lines 60 and 70.

The trace section is verified.

One statement is executed using the S command.

The value of variable A immediately following the execution of
Line 10 is displayed.

The value of variable B is also displayed.

Execution is restarted.

Program execution is temporarily suspended at the breakpoint. The
value of variable D at this point in program execution is displayed.

Execution is restarted.

This is an output caused by tracing. 60 and 70 are line numbers.

80

2.7 Functions of Control Keyc
Several functions can be performed by simultaneously depressing fCTRLl

and one of several predetermined keys. These are called console control opera­
tions, whose and their functions are described below.

• Abort Program Execution

Operation: iCTRLl/IC l

Function: Aborts program exection. Like 1CANCEÜ , this operation is also
valid to end of the output of lists, etc.

• Hard Copy of the Display

Operation: iCTRLl/fP l

Function: Outputs the display contents to the printer. The printer handler
must be loaded in memory to use this function.

• Temporary Suspension of Output to the Display

Operation: |CTRLl/[S l

Function: Suspends output to the display.
When output on the screen exceeds the display capacity, this opera­
tion stops scrolling to permit confirmation.

(

81

• Restart Output to the Display

Operation: ICTRLl/[Q l

Function: Restarts output to the display after temporary suspension by
fcTRLl/lS l .

• Break for Debugging

Operation: lCTRLl/fA]

Function: Sets the system in the debugging command waiting state during
program execution. (See “2.6 Debugging”).

• Switch Between Smooth Scroll and Line Scroll

Operation: |CTRLl/'[2 l

Function: Switches the display from line scroll to smooth scroll, or vice versa.

• Elimination of Click Tone

Operation: ICTRLI/ H l

Function: Eliminates the click sound that confirms key operations. The
sound is restored by depressing ICTRLl/ H l again.

82

Canon A S -100

This chapter explains the detailed specifications of Canon BASIC language.

Contents

1. Program E lem en ts.. 1
1.1 Program L ines.. 1
1.2 Constants.. 2
1.3 Variables.. 4
1.4 Array Variables... 5
1.5 Arithmetic Operators... 6
1.6 Relational Operators and Expressions.. 7
1.7 Logical Operators and Expressions.................................. 8
1.8 Arithmetic Expressions.. 13
1.9 String Expressions.. 14
1.10 F iles.. 14
1.11 Logical Device Num bers... 15

2. Instructions.. 16
2.1 Form ats............. ... 17

2.1.1 Program Instruction Elements... 17
2.1.2 Symbols Used in Formats... 17
2.1.3 Format Interpretation Examples... 18

2.2 Declaration Instructions... 19
2.2.1 REM Statem ent.. 19
2.2.2 DIM Statement... 21
2.2.3 OPTION BASE Statement... 24
2.2.4 INTEGER Statem ent... 25
2.2.5 DEFKEY Statem ent... 27

2.3 Assignment Instruction.. 29
2.3.1 LET Statement.......... .. 29

2.4 Input Instructions.. 32
2.4.1 INPUT Statem ent...................................... 32
2.4.2 INPUT USING Statement... 40

2.5 Output Instructions.............................. 44
2.5.1 PRINT Statement... 44
2.5.2 PRINT USING Statement

FORMAT Statement... 58
2.6 Branch Instructions.. 66

2.6.1 GOTO Statement... 66
2.6.2 GOSUB Statement

RETURN Statement... 67
2.6.3 IF Statement.. 70
2.6.4 ON Statement.. 77

I

2.7 Loop Instructions.. 80
2.7.1 FOR S tatement

NEXT Statem ent.. 80
2.8 Constant Definition Instructions.. 85

2.8.1 READ S tatement
DATA Statement.. 85

2.8.2 RESTORE Statem ent.. 88
2.9 Program Control Instructions.. 89

2.9.1 END Statem ent.. 89
2.9.2 BYE S tatement.. 90

2.10 Function Definition Instruction.. 91
2.10.1 DEF FN Statem ent.. 91

2.11 Program Calling Instructions.. 93
2.11.1 CALL Statement

PARAM Statement.. 93
2.11.2 FREE Statem ent.. 98

2.12 File-Related Instructions.. 101
2.12.1 OPEN Statem ent.. 101
2.12.2 CLOSE Statem ent.. 105
2.12.3 CHANGE Statement.. 107
2.12.4 PUT Statement.. 109
2.12.5 GET Statement.. 119
2.12.6 Other Inputs/Outputs.. 126

2.13 Matrix-Related Instructions.. 131
2.13.1 Before Using Matric Related Instructions... 131
2.13.2 Notes to Use of Matrix Related Instructions... 137
2.13.3 MAT INPUT Statement.. 137
2.13.4 MAT READ Statement.. 139
2.13.5 MAT PRINT Statement.. 140
2.13.6 MAT MOV Statem ent.. 142
2.13.7 MAT ADD Statem ent... 143
2.13.8 MAT SUB Statement... 144
2.13.9 MAT MUL Statem ent... 145
2.13.10 MAT D IV Statem ent.. 147
2.13.11 MAT SUM Statem ent... 148
2.13.12 MAT CSUM Statement.. 149
2.13.13 MAT RSUM Statement... 150
2.13.14 MAT IDN Statem ent... 151
2.13.15 MAT INV Statem ent... 152
2.13.16 MAT TRN Statement... 153
2.13.17 MAT DETStatement... 154
2.13.18 MAT MLT Statem ent... 155
2.13.19 MAT M AXStatem ent... 156
2.13.20 MAT MIN Statement... 157

ii

3. Built-in F unctions .. 159
3.1 Arithmetic Functions... 159

3.1.1 EXP Function.. 159
3.1.2 LOG Function.. 159
3.1.3 LGT Function.. 160
3.1.4 SQR Function.. 161
3.1.5 FRC Function... 161
3.1.6 RND F unction .. 162
3.1.7 ABS Function.. 163
3.1.8 SGN Function............... 163
3.1.9 FIXO F unction .. 164
3.1.10 FIX5 F unction .. 165
3.1.11 FIX9 F unction .. 166
3.1.12 FIXE Function.. 166
3.1.13 INT Function ... 167
3.1.14 SIN Function.................................. 168
3.1.15 COS Function.. 168
3.1.16 TAN Function.. 169
3.1.17 ASN Function.. 170
3.1.18 ACS Function.. 170
3.1.19 ATN Function.. 171
3.1.20 RAD F unction .. 171
3.1.21 DMS F unction .. 172
3.1.22 ARD F unction .. 173
3.1.23 ADS Function................................ 173
3.1.24 MOD Function.. 174
3.1.25 MAX Function .. 175
3.1.26 MIN Function.. 176
3.1.27 TIM Function.. 176
3.1.28 PIFunction .. 177
3.1.29 SIZE Function.. 178
3.1.30 ERR Function.. 178
3.1.31 EOF Function.. 179
3.1.32 % CURX Function... 181
3.1.33 % CURY Function... 181

3.2 String Functions.. 183
3.2.1 LEN Function.. 183
3.2.2 IDX Function.. 184
3.2.3 VER Function.. 185
3.2.4 NUM Function.. 186
3.2.5 CHR$ F unction .. 187
3.2.6 ASC$ Function.. 188
3.2.7 COD F unction .. 189
3.2.8 STR$ Function.. 190

iii

3.2.9 INPUTS F u n tion .. 193
3.2.10 KEY Function.. 195
3.2.11 FKEY Function .. 198
3.2.12 COM$ Function.. 201
3.2.13 HEX$ F u n ction .. 202
3.2.14 TOD$ F unction .. 203

4. ISAM Function... 206
4.1 What Is IS A M .. 206

4.1.1 Indexed Access.. 206
4.1.2 K e y s .. 208

4.2 Canon BASIC ISAM Function... 209
4.2.1 G eneral.. 209
4.2.2 R ecords.. 210
4.2.3 Primary Keys and Alternate K eys... 211
4.2.4 F i le s .. 213
4.2.5 Pointer.. 213
4.2.6 Limitations and Notes for U se ... 215

4.3 How to Use ISAM Instructions... 216
4.3.1 Loading the ISAM Library... 216
4.3.2 Design of F i le s .. 216
4.3.3 Variables.. 217
4.3.4 Return C od e.. 218
4.3.5 How to Interpret Formats... 218

4.4 Basic ISAM Instructions... 219
4.4.1 ISAM OPEN Statem ent... 219
4.4.2 ISAM CLOSE Statem ent... 224

4.5 ISAM Data Write Instructions... 225
4.5.1 ISAM PACK Statem ent... 225
4.5.2 ISAM WRITE Statement... 228
4.5.3 ISAM REWRITE Statem ent... 231

4.6 ISAM Data Read Instructions... 235
4.6.1 ISAM UNPACK Statement... 235
4.6.2 ISAM RREAD Statem ent... 236
4.6.3 ISAM START Statement... 240
4.6.4 ISAM SREAD Statement... 242

4.7 Other ISAM Instructions... 246
4.7.1 ISAM DELETE Statement... 246
4.7.2 ISAM SECUR Statement... 248

4.8 Return Code.. 250
4.9 ISAM Utility Program s... 253

4.9.1 ISGEN Utility.. 253
4.9.2 IDXINF Utility.. 259

4.10 How To Calculate File S iz e ... 261

I V

c
5. Graphic F u n ction s.. 263

5.1 Graphic Functions.. 263
5.1.1 Coordinates.. 263
5.1.2 Palette and Display Color Specification... 265
5.1.3 Current P o in t.. 268
5.1.4 Line Types.. 269
5.1.5 Pattern.. 269
5.1.6 How to use Graphic Instructions... 270

5.2 Graphic Declaration Instructions... 272
5.2.1 DEFCOL Statem ent.. 272
5.2.2 COLOR Statement... 273
5.2.3 ORIGIN Statem ent... 275

5.3 Graphic Drawing Instructions... 277
5.3.1 PSET Statement... 277
5.3.2 LINE Statement.. 278
5.3.3 RECT Statem ent... 280
5.3.4 CIRCLE Statement... 281
5.3.5 FAN Statement... 283
5.3.6 ELLIP Statement... 284
5.3.7 MARK Statem ent... 285

5.4 Other Graphic Instructions... 287
5.4.1 TEXT Statem ent... 287
5.4.2 PAINT Statem ent... 288
5.4.3 GGET Statement... 291
5.4.4 GPUT Statem ent... 293
5.4.5 CONSOLE Statement... 295
5.4.6 PMODE Statem ent... 298
5.4.7 PINPUT Statem ent... 300
5.4.8 HCOPY Statement... 301
5.4.9 POINT Function... 302

5.5 Application Examples... 303
5.5.1 Line Chart.. 303
5.5.2 BarChart.. 305
5.5.3 Pie C hart.. 306

C

V

6. Error Messages.. 310

Appendix 1 Character C o d e s ... 316

Appendix 2 Reserved W ords... 317

Appendix 3 Commands... 318

Appendix 4 Syntax Table... 319

Appendix 5 Display Control C odes... 322

Appendix 6 Calling a Machine Language Program.. 326

V i

1. Program Elements

This section gives definitions, limitations, and detailed explanations of the
elements used in preparing Canon BASIC language programs.

1.1 Program Lines

As shown below, each program consists of program lines with numbers.

10 DIM A (100)

20 OPEN # 1 , " A : DF I L E . DAT"

30 REM ++DATA READ++

40 1=1+1
60 GET #1 A (I) : GOTO 40

70 FOR J=1 TO 1-1
<?

Program lines are executed in numerical order unless there are branch direc­
tives.

A program line can contain several statements. Statements on the same line
are executed from the beginning of the line. The statements are separated by a
colon (:). A line consisting of more than one statement is called a multi­
statement line. Depress 0 at the end of each line.

A statement is the unit by which instructions are executed. Each statement
consists of a keyword and an operand. A keyword is a word consisting of capital
alphabet letters that indicates the instruction’s function. An operand is the part
in which the detailed contents of the instruction are specified. These elements
are described in detail below.

c) Statement

b) Line number-
d) Keyword e) Operand

a) Program
line 250 OPEN #1 , "LPT : "

End of
Statement Statement line

r---------------------- ^ ---------------------s. /----------------- --------------------->. j

: GET #1 A : GOTO 200 0
t_____________

Multi-statement
Separator

1

a) Program line___A program line can contain up to 127 characters.

b) Line number . . . There must be a line number at the beginning of each line.
The number must be an integer within the range: 1 —32767.
During program creation/editing, line numbers are assigned
automatically by the automatic numbering function of the
editor.

c) Statement.......... Any number o f statements can be included on a program
line as long as the total number o f characters does not
exceed 127. Some types of statements do not allow multi­
statements. A colon (:) mut be placed between statements
on the same line.

d) Keyword............ The keyword is determined according to the function of the
instruction and is defined in Canon BASIC.

e) Operand............ The operand is specified according to the syntax rules for
each statement.

1.2 Constants

Data used in programs are divided into the following three types:

1) Real Number-T ype Constant

This is a number within the range: 1 x 10~64^ x < 1 x 1064. It can be assigned
to a real number-type variable as described later. It is treated as 8-byte data.

Real number-type constants can be specified with either of the following two
types of notation.

Floating type___Indicated with a real number of up to 14 digits.

Examples: 1.234, -0 .2345,10000000

E type...................Indicated by a real number with a mantissa o f up to 14 digits
and an exponent of up to 2 digits (—6 4 ^ x <64).

Examples: 1.23E12, —5.687E—12

2

2) Integer-Type Constant

This is an integer with the range : —32768 ^x^32767 . It can be assigned to
an integer-type variable as described later. It is treated as 2-byte data.
Examples: 123, —5232,1000

Note: An integer within the range —32768 ^ x ^ 32767 can be assigned
to either a real number-type or an integer-type variable. It is processed
according to the type of variable to which it is assigned.

3) String Constant

This is character string consisting of 1-byte characters. It can be assigned to a
string variable as described later. A string constant must be enclosed by double
quotation marks (”).
Examples: ” ABC” , ” 1234” (different than the numerical value 1234)

A string constant can also be indicated by a hexadecimal figure in ASCII
code. In this case, prefix the symbol to the 2-digit hexadecimal code. Refer
to “ Appendix 1. Character Codes” for the ASCII Codes.

In this manual, 2-digit hexadecimal code (1 byte) are indicated in the format
“XXH” .

Examples: ” &41” - * ” A” , ’’&31&32&33” — ” 123”

Note: Specify ” ” or && respectively when a quotation mark (”) or is
used as a character in a string constant.

Examples: ” A” ” 12” ” + ” ” A&&B

' ^
A” 12” + A&B

3

1.3 Variables

A variable is used to temporarily store data in a program for processing.
The name of a variable is specified by a character string of up to 32 alphabet

letters and numbers, beginning with an alphabet letter. Keywords, sub­
keywords, etc., called reserved words, cannot be used for variable names. (See
“Appendix 2. Reserved Words” .)

Variables are divided into the following three types:

1) Real Number-T ype Variable

This is an 8-byte variable that can store a real number-type arithmetic value.

Examples: ABC, DAT1

2) Integer-Type Variable

This is a 2-byte variable that can store an integer-type arithmetic value. The
name of the variable must be defined in advance by the INTEGER statement.
(See “ 2.2.4 INTEGER Statement.”)

Examples: ABC, DAT1 after execution of “ INTEGER ABC, DAT 1 ”

3) String Variable

This is a variable (usually 8 bytes) that can store a character string. In a string
variable, 1 byte has a 1 character capacity. For example, an 8-byte string variable
can store a string of 8 characters. The length of a string variable can be defined
within the range 1—255 bytes by the DIM statement. (See “2.2.2 DIM state­
ment” .)

Suffix the symbol “ $” to the string variable name.

Examples: ABC$, NAME1$

All real number-type and integer-type variables are arithmetic variables.
The same name cannot be used for variables even if their types are different.

Correct variable names: A, XYZ, VERTICAL, NAMES

Incorrect variable names: 12XY.......... A number cannot be used as the first
character.

LET............ Reserved words cannot be used.
$A B C “ $” must be suffixed to the variable

name.

4

Array Variables

Array variables are convenient when handling a group of the same kind of
data items, because all data items in the group can be handled using the same
variable name. All array variables with the same name can be processed at once
in the PUT statement, the GET statement, and matrix instructions.

An array variable is defined using the DIM statement.

Example: 10 DIM A B C (4 0)

Executing the example above defines an array variable with 40 elements,
from ABC (1)—ABC (40). It is possible to alter the starting subscript to 0 using
the OPTION BASE statement. Refer to the explanations of the DIM statement
and the OPTION BASE statement for details.

Real number-type variables, integer-type variables, and string variables can
all be defined as array variables. Array subscripts must be integers in the range
0—32767.

In array subscripts there is no restriction on dimension. It is possible to use
any dimension o f array subscripts within the range allowed by the memory
capacity.

Defining array variables:

DIM A(3) —* A (l) , A(2), A(3)
DIM X(2,2) — X (l ,l) , X (l,2), X (2 ,l), X(2,2)

Two-dimension array

An asterisk (*) can be specified instead of a subscript to handle all defined
array variables as one block. When an asterisk is specified, all array variables
with the same name are handled as a block regardless of their dimension.

4

one dimension can be specified

Under the definition of DIM X(3,3):
X (*)= > X (1 ,1) , X (l,2) , X (l,3) , X (2 ,l) , X (2,2), X (2,3), X (3 ,l) ,

X(3,2), X(3,3)

General specification of array variables using an asterisk is available for the
following statement:

CALL, PARAM, MAT, PUT, GET.

1.5 Arithmetic Operators

Arithmetic operations in a program are performed using the operators listed
below. An operation which mixes data of different types causes an error.
(Integer-type and the real number-type variables can be mixed.)

10 DIM A (5)

80 GET #1 A (*)

For example, array variables of more than
with an asterisk that corresponds as follows:

O Addition
O Subtraction
O Multiplication
O Division
O Power

O Priority operation

+

/
** (When X < 0 , Y must be an integer in power
calculations X**Y.)
O

The calculation is carried out according to the following priority: parentheses,
power, multiplication or division, and addition or subtraction. The addition
operator also connects character strings.

” ABC” + ”XYZ” —»’’ABCXYZ”

6

1.6 Relational Operators and Relational Expressions

Relational operators that are used to compare the values of data in programs
are listed in the following table.

Relational operator Representation

= (Equals) =
> (Greater than) >
§ (Greater than or equal to) > =
< (Less than) <
^ (Less than or equal to) < =
^ (Not equal to) < >

Relational operators compare either two numeric values and or two charac­
ters. A numeric value and a character string cannot be compared. Characters are
compared based on their values in ASCII code.

An expression using relational operators is called a relational expression. In
relational expressions the value of the expression is —1 (true) when the condi­
tions are satisfied. When the conditions are not satisfied, the value of the expres­
sion is 0 (false). Program examples using relational expressions are shown
below. Refer to the explanations of the IF and LET statements for details.

Relational expressions and logical expressions which have specified condi­
tions, described later, are also called conditional expressions.

[Ex. 1.6-1]

90 IF A>0 GOTO 300

When variable A on line 90 is a positive value, the condition of the IF state­
ment is satisfied and program execution branches to line 300.

7

[Ex. 1.6-2]

100 X = -((A>0)+(B>0)+(C>0))

A check is performed to determine the values of A, B, and C.
If A = 3 , B = —1, a n d C = —5
ThenA >0:true (—1), B>0: false (0) andO O :false (0).
So — ((— 1) + 0 + 0) is calculated and 1 is assigned to X.

1.7 Logical Operators and Logical Expressions

Logical operators are used to specify logical expressions (compare various
expressions) used in IF statements, etc. The following four types of logical oper­
ators are available:

Logical operator Format

AND (Logical product)
OR (Logical sum)
XOR (Exclusive OR)
NOT (Negation)

< Expression 1 > AND < Expression 2 >
< Expression 1 > OR < Expression 2 >
< Expression 1 > XOR < Expression 2 >
NOT < Expression 1 >

1) AND (Logical Product)

The result is true (—1) only when the conditions of <Expression 1 > and
< Expression 2 > are both true. Otherwise the result is false (0).

When < Expression 1 > and < Expression 2 > are both arithmetic expres­
sions (described later), their values are first converted to 2-byte integer type
values. Then they are compared bit by bit. The resulting bit is 1 only when the
two corresponding bits are 1. Otherwise the resulting bit is 0.

8

2) OR (Logical Sum)

The result is false (0) only when the conditions of < Expression 1 > and
< Expression 2 > are both false (0). Otherwise the result is true (—1).

When both < Expression 1> and < Expression 2 > are arithmetic expres­
sions, their values are first converted to 2-byte integer type values. Then they
are compared bit by bit. The resulting bit is 0 only when the corresponding bits
are 0. Otherwise the resulting bit is 1.

3) XOR (Exclusive OR)

The result is false (0) only when the conditions of < Expression 1> and
< Expression 2> are both true (—1) or both false (0). Otherwise the result is
true (—1).

When < Expression 1> and < Expression 2 > are both arithmetic expres­
sions, their values are first converted to 2-byte integer type values. Then they
are compared bit by bit. The resulting bit is 0 only when the corresponding bits
agree. Otherwise the resulting bit is 1.

4) NOT (Negation)

The result is false (0) when the condition of < Expression 1 > is true (—1).
The result is true (—1) when the condition is false (0).

When < Expression 1 > is an arithmetic expression, it’s value is first con­
verted to a 2-byte integer type value. Then the value of each bit of the 2-byte
value is inverted. The resulting bit is 0 when the bit is 1. The resulting bit is 1
when the bit is 0.

1. When expressions are conditoinal:

Expression 1 Expression 2 AND OR XOR

True (—1) True (—1) True (—1) True (—1) False (0)
True (—1) False (0) False (0) True (—1) True (—1)
False (0) True (—1) False (0) True (—1) True (—1)
False (0) False (0) False (0) False (0) False (0)

Expression 1 NOT

True (—1)
False (0)

False (0)
True (—1)

9

2, When expressions are arithmetic:

Integer type

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

.Value of the expression after conversion

.Bit n

Bit n after
conversion of
expression 1

Bit n after
conversion of
expression 2

Bit n in
result
of AND

Bit n in
result
of OR

Bit n in
result
of XOR

1 1 1 1 0
1 0 0 1 1
0 1 0 1 1
0 0 0 0 0

Bit n after Bit n in
conversion of result of
expression 1 NOT

1 0
0 1

Expressions specified using AND, OR, XOR, and NOT are called logical ex­
pressions. Program examples using logical expressions are given next. Refer to
the explanations of the IF and LET statements for details.

In all of the examples, the value of variable A is 5 and the value of variable B
is 3.

[Ex. 1.7-1]
Conditional expression of AND

90 IF A>0 AND B=3 GOTO 50

On line 90, A >0: true (5 > 0) and B=3: true (3= 3), so the result of the ex­
pression is true. The condition of the IF statement is satisfied and program exe­
cution branches to line 50.

10

[Ex. 1.7-2]
Arithmetic expression of AND

On line 90, bits are compared as shown below and 1 is assigned to variable X.

2 bytes

A = 5

AND t t t
AND of the
corresponding
bits

X X I
B =3 0 0 0 0 0 0 0

oo

0 0 0 0 0 1 1

4 1 1 . 4 4 4
X = 1 | o | o | o l o | o | o l o | o j o | o | o | o | o | o | o | r

[Ex. 1.7-3]
Conditional expression of OR

100 IF A<=0 OR B=3 GOTO 50

On line 100, ASS0: false (5> 0) and B=3: true (3= 3), so the result of the
expression is true. The condition of the IF statement is satisfied and program ex­
ecution branches to line 50.

[Ex. 1.7-4]
Arithmetic expression of OR

110 LET X=A+7 OR B

On line 110, bits are compared as shown below and 15 is assigned to
variable X.

2 bytes

> + 11 K> 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

OR | | j OR of corresponding ^ ^ j j

B = 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

4 4 4 .. 4 4 4 4

to1—HIIX

0 0 0 0 0 0 0 o | o 0 0 0 1 1 1 1

11

[EX. 1.7-5]
Conditional expression of XOR

60 IF A-5=0 XOR B-3>=0 GOTO 50

70 ..

On line 60, A —5=0: true (5—5= 0) and B—3^0: true (3—3 = 0), so the
result of the expression is false. The condition of the IF statement is not satisfied
and program execution proceeds to the next line.

[Ex. 1.7-6]
Arithmetic expression of XOR

70 X=A XOR B

On line 70, bits are compared as shown below and 6 is assigned to variable X.

2 bytes

> II 0 0 0 0 0 0 0

oo

0 0 0 0 1 0 1

X O R
XOR of

i X corresponding J J J
bits

B =3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 i ..i i i

X = 6 0 0 0 0 0 0 0

oo

0 0 0 0 1 1 0

[Ex. 1.7-7]
Conditional expression of NOT

120 IF NOT A>0 GOTO 50

1 3 0

On line 120, A >0: true (5 > 0), so the result is the negation of this, false.
The condition of the IF statement is not satisfied and program execution pro­
ceeds to the next line.

12

[Ex. 1.7-8]
Arithmetic expression of NOT

40 X=N0T A-5

On line 40, bits are inverted as shown below and — 1 is assigned to
variable X.

A —5 = 0

X = - l

2 bytes

0 0 0 0 0 0 0 o | o 0 0 0 0 0 0 0
NOT of

i | l corresponding ••• | [
bits

l l l 1 1 1 1 1 1 1 1 1] 1

*A negative value of integer-type
data is expressed as 2.5 complement.

1.8 Arithmetic Expressions

Arithmetic expressions are expressions that represent values (real number­
type and integer-type constants), arithmetic variables, and those values and
variables combined by arithmetic, relational, and logical operators, etc. Logical
and relational expressions are considered as arithmetic expressions because
they have a value of — 1 when their result is true and 0 when their result is false.

The types of arithmetic expressions are shown below.

324Integer-type constant
1.5E 23.....................Real number-type constant
A Arithmetic variable
A + 45
A* (B+C)
A AND B Logical expressions
C > = 4 5Relational expression

Calculation results of arithmetic expressions vary depending on the types of
constants and variables (integer-type and real number-type) and also upon arith­
metic operations.

1) Addition, subtraction and multiplication:
Integer-type and integer-type—
The result is an integer-type value. When the result exceeds the integer-type
range (—32768 ̂ x <32767), it is automatically converted to a real number­
type value.

13

Integer-type and real number-type or real number-type and
real number-type-----
The result is a real number-type value. Integer-type values are automatically
converted to real number-type values before calculation.

2) Division and power:
All results are real number-type values. Integer-type values are automatical­
ly converted to real number-type values before calculation.

1.9 String Expressions

String expressions consist of string constants, string variables, and character
strings and combine those constants and variables.

Various string expressions are shown below.
”ABC”String constant
’’&41&42”
NAM ES. String variable
AS+BS
C$ + ”XYZ”

1.10 Files

Files are classified into two general categories—program files and data files.
There are also files managed exclusively by the operating system.

Each file has a name. File names must be specified when handling the file.
File names can be expressed with up to 8 capital alphabet letters or numbers,
beginning with a capital letter.

Up to 128 files can be stored on a disk.
Refer to the “CP/M-86 User’s Manual” for details about disk handling.
Data is read from or written to a data file in a program by specifying a logical

device number (described next). At this time, the operating system reads/writes
data from/to files in 128-byte units. For details about processing, refer to “ 2.12
File-Related Instructions.”

14

1.11 Logical Device Numbers

Numbers must be defined in advance to specify execution of input/output
from/to files on disks or external peripheral devices. These numbers are called
logical device numbers. Logical device numbers are defined by the OPEN state­
ment which is described later. The definitions are canceled by the CLOSE state­
ment.

Nine logical device numbers (1 ~ 9) can be defined. So up to 9 data files
and/or I/O devices can be defined at the same time.

[Ex. 1.11-1]

40 OPEN #1,"A :DAT]"

140 PUT #1 A , B , C

400 CLOSE #1

The OPEN statement on line 40 in the above program defines the data file
“DAT1” in drive A as logical device number 1. On line 140, the PUT statement
is executed against logical device number 1 and the contents of the variables A,
B, and C are written to the data file. The CLOSE statement on line 400 cancels
the definition.

Refer to “2. Instructions” for details of the respective statements.

15

2. Instructions

This section explains the functions, formats, procedures, etc. of program in­
structions using program examples.

Each explanation contains the following:

•Heading:

•Function:

The keyword and the full name of the instruction are shown.

The function of the instruction is described briefly.

•Format: The syntax of the instruction is shown. For the rule of interpreta­
tion. Refer to “2.1 Formats” .

•Explanation: The details of the function, procedures for its use, limitations,
etc. of the instruction are explained. The most important parts
are underlined.

•Note: The points that could lead to the misuse of the instruction are
emphasized.

•Advice: Programming techniques and other hints are given for more effi­
cient use of the instruction.

•Example: A program example is given to explain how to use the instruc­
tion. Lines not needed for explanation are omitted. Line num­
bers are for the sake of convenience only.

16

2.1 Formats

This section explains individual program instructions. Prior to the explana­
tion, the rules for interpreting the formats of program lines is described.

2.1.1 Program Instruction Elements

Instruction word
or keyword.................. Indicates the function of the instruction. It consists of

capital alphabet letters.

Operand...................... Specifies the detailed contents of the instruction. It is
written after the keyword.

Statement.................... An instruction consisting of a keyword and the
operand that specifies an action.

[Example]

Statement
/ ----------------------------- *----------------------------- s

LET — A = B + C
'------- v------ '

Keyword Operand

The example above is the LET statement consisting of the keyword LET
and the operand A=B-t-C.

2.1.2 Symbols Used in Formats

< > Indicates one element in an operand.

C] Indicates that the enclosed element can be omitted.

{) Any one of the elements between the brackets can be selected.

................ Indicates that the operand can be repeated as necessary.

.... This indicates one or more spaces.

17

2.1.3 Format Interpretation Examples

Format 1

Can be omitted

PR NT_
I - Arith
^ Varia

> ,
metic^
ble ^

] [
)

*

< E ™ r = s s io „ > ^ M >
^ Arithmetic^ l ; J
^ Expression
^Sub- ^

^instruction

Keyword — See Note l

Space Select any of
the elements.

Elements in the operand
can be continued as
needed.

This part of the format is shown separately to
prevent the format from being too complex.

Format 2

<Sub-instruction> FE E D (< Arithmetic Expression>)

SPA CE(< Arithmetic Expression>)

• T A B (< Arithmetic Expression>)

% HOME

% C U R S O R « Arithmetic^ ^ Arithmetic-^
Expression ’ ^ Expression^

Note I: The comma at the end of a statement may be omitted.

c

c

18

2.2 Declaration Instructions

2.2.1 REM Statement (Remark)

Function
The REM Statement inserts a comment into a program list. This statement

does not affect program execution.

Format

REM i_ » <Comment>

Explanation
This is a statement that the programmer uses to insert comments into the

program to clarify the program list.
Because this instruction is stored as part of the program, it uses memory area

in proportion to the length of the comment.
It is indicated as a program line during program editing and listing, but it

does not affect program execution.

Any character that can be entered through the keyboard can be used in the
comment. The REM statement can include up to 127 characters, including the
line number, keyword, and 0 .

There must be at least one space between the keyword and the comment.

[Ex. 2.2.1-1]
The program title is entered at the head of the program.

10 REM TEST PROGRAM NO.1

19

[Ex. 2..2.1—2]
A comment is inserted into each routine to describe the sections of a pro­

gram.

10 REM PROGRAM START

2 0 REM INPUT ROUTINE

1 50 REM CALCULATION ROUTINE

300 REM OUTPUT ROUTINE

Note All characters in the statement following the keyword REM are
regarded as part of the comment. This means that any statements on the
same line following REM are not executed.

[Example]

40 REM DEFINITION ROUTINE:DIM A (10) Wrong

The entire description is regarded as a comment, so the DIM statement is not
executed.

40 DIM A (10):REM DEFINITION ROUTINE Right

20

2.2.2 DIM Statement (Dimension)

Function
The DIM statement defines array variables and string variables of an irregu­

lar length and reserves space in memory for them.

Format

DIM i—. < V a r ia b le> [,]

Explanation
When array variables are used in a program or when string variables of a

length of other than 8 bytes are used, this statement must be executed to define
the uses of the variables and reserve memory areas for them. Simple variables
(variables without subscripts) and 8-byte string variables can be used without
definition by the DIM statement.

A variable can only be defined once by this statement. More than one defini­
tion causes an error.

Definition of Array Variables
Array variables are defined by specifying the variable name with the highest

subscript value in the operand. For example, specifying A(10) defines the 10
array variables, A (l) ~A (10).

Because the highest subscript value allowed for array variables is 32767, spe­
cifying a higher value causes an error. The array dimension (1-dimension:
A(10); 2-dimension: A(10, 10) . . .) is unlimited. An error occurs if there is in­
sufficient memory area for the variable that will be defined by this statement.

Definition of String Variables
String variables have an initial length of 8 bytes. But it is possible to change

the length to accommodate strings of irregular lengths, for example, 3 characters
or 10 characters.

Not only does this save memory area but sometimes it even makes process­
ing easier.

21

To define the length of an irregular string variable, specify the necessary
number o f bytes immediately following the variable name. For example, spe­
cifying A$30 in the DIM statement redefines the length of string variable A$ as
30 bytes. Only the variable name must be used in the program after definition
by the DIM statement. The length need not be specified.

String variables can be defined within the range: 1—255 bytes. An error
occurs if a length outside this range is specified.

Advice
As you now know, array variables and string variables of irregular lengths

cannot be used unless they are defined by the DIM statement. The DIM state­
ment can be executed anytime before such variables are used in the program. It
is best, however to define all variables at the beginning of the program to pre­
vent duplicate definitions, to reserve necessary memory area in advance, and to
clarify the types of variables that will be used in the program.

[Ex. 2.2.2-1]
Array variables A (1 ,1)~ A (2 ,2) , B (1)~ B (4), and C $(1)~ C $(4) are

defined.

10 DIM A(2,2) .B (4),C$(4)

In this example, the following 12 array variables are defined:

A (l , l) , A (l,2), A (2 ,l), A(2,2)
B (l), B(2), B(3), B(4)
C $(l), C$(2), C$(3), C$(4)

Total: 12 variables

22

[Ex. 2.2.2-2]
String array variables NAME$(1)~NAME$(10) are defined as 20 bytes (20

characters) per variable.

10 DIM NAME$2 0 (10)

Memory is reserved as shown below.

-«— 20 bytes ------—■ 20 bytes-----------— 20 bytes--------- •» ■*— 20 bytes----- »

NAMES (1) NAMES (2) NAMES (3)
—

---------- /
—

I-------- NAMES(IO)

200 bytes

[Ex. 2.2.2-31
Three-dimensional array variables M (1,1,1)~M (2,2,2) are defined.

10 DIM M (2 , 2 , 2)

The following 8 variables are defined in the statement above.
M (l,1,1), M (l,l,2), M (1,2,1)~M (2,2,2)... 8 variables

[Ex. 2.2.2-41
The number of array variables is specified by value of a variable.

10 INPUT N

20 DIM A (N)

In this example, the value input for variable N on line 10 specifies the range
of array variables that will be defined by the DIM statement on line 20. (The
INPUT statement is described later.)

For example, if “ 10” is entered through the keyboard during execution of
the INPUT statement on line 10, 10 array variables, A(1)~A(10), are defined
by the DIM statement on line 20. If a decimal fraction (e.g. 5.7) is entered for N,
the DIM statement defines array variables by automatically truncating the frac­
tional part of the value of N.

23

O PT IO N
B A SE

2.2.3 OPTION BASE Statement (Option Base)

Function
The OPTION BASE statement specifies the subscript for the first element of

an array as 0.

Format

OPTION BASE 0

Explanation
The subscript of an array variable is initially set to 1. This statement changes

the starting subscript to 0. For example, the statement “DIM A (2)” usually
defines two variables, A (l) and A(2), but three variables, A(0) through A(2),
are defined after executing the OPTION BASE statement. This instruction must
be executed before the DIM statement. Execution of this instruction more than
once in a program causes an error.

[Ex. 2.2.3-1]
Specify that the subscript of an array variable start with 0.

10 OPTION BASE 0

20 DIM A (3) , B (2 , 2)

The following array variables are defined in the above example.

A(0), A (l) , A(2), A (3) .. .4 variables

B(0,0), B(0,1), B(0,2)
B(1,0), B(1,1), B(1,2)
B(2,0), B (2 ,l), B (2 ,2). . . 9 variables

Total: 13 variables

Without the OPTION BASE statement on line 10, 7 array variables, A (l),
A (2), A(3), B(1,1), B(1,2), B (2 ,l), andB(2,2) are defined.

24

INTEGER

Note
If this statement is executed somewhere in a program, the subscript of any

array variable defined prior to the execution also starts with 0. For example, an
array A (1)~ A (3) is A (0)~ A (2) after the execution of this instruction.

2.2.4 INTEGER Statement (Integer)

Function
The INTEGER statement defines the name of an integer-type variable.

Format:

INTEGER i_i < Arithmetic Variable> [,]

Explanation
This instruction defines the name of an integer-type variable. The variable

whose name is specified in the operand of this statement is treated as an integer­
type variable after this statement is executed.

An integer-type variable has a length of 2 bytes. Values assigned must be
integers within the range: —32768^x^32767. Assigning a value outside this
range causes an error. When a decimal fraction within this range (e.g. 7.25) is as­
signed, the fractional part is truncated automatically. (That is, 7 is assigned.)

To define an array variable as an integer type-variable, execute an
INTEGER statement that specifies only the name of the array variable (without
the subscript) before executing the DIM statement that defines the variable.

Advice
When a variable is defined as an integer-type variable, the range of values

that can be assigned is limited. But it does save memory and increase the pro­
cessing speed. Check the values that will be input to variables carefully during
program design. Those values which can be processed within the value range of
integer-type variables (e.g. employee numbers, etc.) should be processed as
integer-type variables.

25

INTEGER

[Ex. 2.2.4-1]
Integer-type variables R, S, and T are defined.

10 INTEGER R,S,T

[Ex. 2.2.4-2]
Ten integer-type array variables AREA are defined.

10 INTEGER AREA

20 DIM A R E A (10)

In this example, 10 integer-type array variables, AREA(1)~AREA(10),
are defined.

Note
Reversing the order of line 10 and line 20 in above example causes an error.

This is because if the DIM statement is executed first, the real number-type
array variables having a length of 8 bytes are defined then and memory is re­
served for that length. Even if the INTEGER statement is executed later, the
real number-type variable already defined cannot be converted to an integer­
type, so an error occurs.

[Ex. 2.2.4-3]
The fractional part of the data is truncated when an integer-type variable is

used.

10 INTEGER UNIT

20 DIM UN IT(10)

80 LET UN IT(1) = X

If data with a decimal fraction is assigned to an integer-type variable, the frac­
tional part is truncated automatically. On line 80 of this example, the value of
real number-type variable X is assigned to integer-type variable UNIT(l) by the
LET statement (described later). When the value of X is 14.25,14 is assigned to
UNIT(l).

26

DEFKEY

2.2.5 DEFKEY Statement (Define Key)

Function
The DEFKEY statement defines a character string entered when a function

key is depressed in the shift down mode.

Format

DEFKEY t_j <Arithmetic Expression>, <String Expression>

Explanation
In the initial state, various command names are defined for both shift up and

shift down mode of the 12 function keys (1f H~-IF121). The DEFKEY statement
changes the definitions of the function keys in the shift down mode (in which
the shift key is not depressed) and permits input of any character string using
the function key operation.

The number of the function key (1 ~ 12) is specified in the arithmetic ex­
pression part of the operand. In the string expression part, the character string
that will be defined for the function key is specified. The character string cannot
exceed 15 characters. A control code may be included. Only the first 15 charac­
ters specified are valid and excess characters are ignored.

The character string defined is valid until the definition is changed using this
statement or BASIC is ended (i.e. control is returned to the operating system or
the power is turned of!).

If a decimal fraction within the range: 1 ^ x < 13 is specified as a function key
number, the fractional part is automatically truncated. Specifying a value outside
this range causes an error.

[Ex. 2.2.5-1]
The character string “CANON” is defined for function key 12.

50 DEFKEY 12,"CANON"

27

DEFKEY

In this example, the character string “CANON” is defined for |F121. When
1F12I is depressed in the shift down mode (the shift key is not depressed) after
execution of the DEFKEY statement on line 50, the input is exactly the same as
if E H IS E M is depressed.

[Ex. 2.2.5-21
A function key definition program is prepared to permit the selection of a

program that will be executed by function keys and the 0 key.

1 0 DEFKEY 1,"PR0G1 "

2 0 DEFKEY 2,"PR0G2"

30 DEFKEY 3 ," PR0G3 11

40 END

After this program is executed, depressing [FI], (F2], and [F3] in the shift
down mode produces the same result as the inputting the program name,
corresponds to the operation for inputting program name “PROGF
that of “PROG2” , and {F3j to that of “PROG3” . So each program is executed

F2 to

by depressing one of the three function keys and 0 . This definition remains
valid until control is returned to the operating system or the power is turned off.

Advice
Use the function key overlays on the keyboard to write the definitions so

that programs and jobs can be selected easily.

28

2.3 Assignment Instruction

2.3.1 LET Statement (Let)

Function
The LET statement assigns data to a variable.

Format

< Arithmetic Expression>

, < String Expression> .

[LET i_pj < V ariable> =

Explanation
The value on the right side of the operand is assigned to the variable on the

left side. The equal sign (=) in the operand of the LET statement means to
assign the value on the right side to the variable on the left side.

The type of data on the right side of the operand must be the same as that on
the left. So, if the left side is a string-type variable, the right side must be a string
expression. If the type of data on the right and on the left side do not agree, an
error occurs.

The keyword LET can be omitted. Any operand consisting only of the right
side and the left side with an equal sign in between is treated as a LET statement.

Some built-in functions can be specified as a variable on the left side. Refer
to “3. Built-in Functions” .

Note
Using an array variable not defined in advance by the DIM statement causes

an error.

[Ex. 2.3.1-1]
The value 26 is assigned to arithmetic variable A.

30 LET A = 26

When line 30 is executed, 26 is assigned to variable A. The same result is ob­
tained when the example below, in which the keyword is omitted, is executed.

30 A=26

29

[Ex. 2.3.1-2]
The right side is calculated using the value of variable W and the result is as­

signed to variable A.

40 LET A=W*3.14+440

If the value of W is 100, the value of A is 754.

[Ex. 2.3.1-3]
The characters “JOHN” are assigned to string variable NAMES.

90 LET NAME$ = 11 JOHN"

Initially up to 8 characters can be assigned to a string variable. In this exam­
ple, 4 characters are assigned to the string variable (8-byte). When as in this
case, fewer than 8 characters are assigned, the NUL code (00h) is automatically
added to “JOHN” .

When more than 8 characters are assigned, only the first 8 characters entered
are assigned and excess characters are ignored.

Note The NUL code (00h) is not treated as data.

[Ex. 2.3.1-4]
The result of a calculation using variable M is again assigned to variable M.

60 LET M=M*I2

[Ex. 2.3.1-5]
The character data in string variables B$ and C$ are connected to assign

them to string variable A$.
Example of data:

“SIZE • L” = “SIZE” + “ • L”

70 LET A$=B$+C$

30

[Ex. 2.3.1-6]
The values of variables A, B, and C are compared using a relational operator,

and the result of the conditional expression is assigned to variable D.

90 LET D = - ((A > B) + (A > C))

In this example, the following values are assigned to variable D, according to
the values of the variables A, B, and C.

A >B , A > C 2
AsSB, A > C1
A >B , A sSC1
A=SB, A sSC......... 0

When the value of the conditional expression is true, the value is —1, and
when the expression is false, the value is 0.

31

INPUT

2.4 Input Instructions

2.4.1 INPUT Statement (Input)

Function
The INPUT statement reads data entered through the keyboard and assigns

it to a variable. Data from a disk file or an external input device can be assigned
to a variable by specifying the logical device number.

Format

Note 1: The comma (,) at the end of the statement can be omitted.

Expatriation
Any characters, numbers, or symbols entered through the keyboard can be

assigned to variables using the INPUT statement. The 0 key must be de­
pressed at the end of input. Depressing this key indicates that input to a variable
is completed.

Data separated by commas can be assigned to two or more specified variables
at the same time.

When this statement is executed without logical device number specification,
“ ? ” is displayed. An input operation through keyboard for the INPUT state­
ment at that time is echoed back following When 0 key is depressed, the
data is assigned to the variable. Data can be corrected before 0 is depressed

DELETEl, or |INSERT!. Any message can be displayed in-with DEL [DELETE
LINE

stead o f“ ? ” using the sub-keyword “MSG” .
If incorrect data (unmatched with the variable) is entered, the data is not as­

signed and entered data is displayed together with “ ? ? ” to request reinput.
The INPUT statement is the main statement to control input. It has such

functions as branch operation and temporary program suspension. Details of
these functions are described later.

32

INPUT

[Ex. 2.4.2-1]
Data are input to variables “LENGTH1” and “LENGTH2” through the

keyboard.

50 INPUT LENGTH1, LENGTH2

In this example, keyboard input operations are as follows:

«Display» «Operation»

?
mmm

?1 2 3 _

y
? 1 2 3 ?_

B1EI®
? 1 2 3 ? 4 5 6_

0
? 1 2 3 7 4 5 6

“ 123” is assigned to variable LENGTH 1 and “456” to LENGTH2.
These two data that will be assigned to each variable can be input at the same

time using a comma as shown below. This type of input is called batch input.

«Display»

?123,456

?123,456

As shown in this example, data separated by a comma (s) can be input at the
same time to an arithmetic variable specified in the INPUT statement. Batch
input cannot be performed to a string variable because a comma (,) is regarded
as data.

«Operation»

U E lQ im E]® ®

0

33

INPUT

Note During batch input, when the number of data connected by commas is less
than the number of the variables specified in the INPUT statement, “ ? ” is dis­
played continuously, prompting input for the remaining variables. If there are
more data than variables, only the data corresponding to the variables are as­
signed sequentially, and the excess data are ignored.

[Ex. 2.4.1-2]
Data are input through the keyboard to arithmetic variable A and string

variable NAMES.

60 INPUT A ,NAME$

«Display» «Operation»

?

? 1 2 3_

?123?_

?1237CAN0N

?123?CAN0N

m m m

y

In this program example, 123 is assigned to arithmetic variable A and
“CANON” is assigned to string variable NAMES.

Because string variable NAMES has a length o f 8 bytes, 3 NUL codes
(OOh)11 are automatically added following the data “CANON”.

Only the first 8 characters entered are assigned and excess characters are ig­
nored.

Note 1: “ X X H” is an A S C II code consisting o f 2 hexadecimal figures.

34

INPUT

Retaining Data

When 0 is depressed without data input during execution of the INPUT
statement, data is not assigned to the variable and INPUT statement execution
is ended. The contents of the variable are retained. This operation is called a no­
input operation. Depressing 0 without data input changes the flow of program
execution. This is called a branch operation and is explained later.

[Ex. 2.4.1-3]

80 LET C = 328

90 INPUT C

During the input operation to variable C by the execution of line 90, when
0 key is depressed without data input, 328 assigned on line 80 is retained and

program execution proceeds to the next line.

To retain the data of one or more variables in batch input, input only
commas as shown below.

[Ex. 2.4.1-4]

80 A=10:B=20:C=30

90 INPUT A, B, C

«Display» «Operation»

?

? > »95

? , , 9 5

□□(DEI

0

This is an example in which 95 is assigned to variable C and the contents of
variables A and B are retained. When only a comma (s) is entered in batch input
with data omitted, the contents of the variables corresponding to the data omit­
ted are retained.

35

INPUT

Note During batch input, to omit the data corresponding to the last variable, e.g.
the third variable in an INPUT statement specifying 3 variables, a comma must
be entered instead of data.

[Example] To input data by executing “INPUT A, B, C” , enter the follow­
ing to input data to variable B only.

□EHuianns
Com ma to om it assigning data to variable C

Data to variable B

Branch Operation

The no-input operation (depressing [j] without data input) changes the
flow of program execution following an INPUT statement.

And when (3 is depressed without data input to a variable specified in the
operand of the INPUT statement, program execution proceeds to the next line.
This means that the statement placed on the same line following the INPUT
statement is executed only when data is entered. But when data input is omitted
during batch input, the execution flow is the same as if data was entered normal­
ly.

The execution order of a branch operation is illustrated below.

Data input

170 INPUT A :LET C=C+1:G0T0

I No data input No-input operation

180 LET C=0

40

(

36

INPUT

[Ex. 2.4.1-5]
A program branch made by the operator’s input operation.

In this program example, data are input to variable A and B using the
INPUT statement on line 30. The program execution flow varies depending on
whether the GOTO statement (described later) on line 30 is executed or not.
The GOTO statement is a branch instruction. When the GOTO statement on
line 30 is executed, program execution branches to line 100.

Assuming that the data that will be input to variable A is 10 and that the data
that will be input to variable B is 20, the program is executed according to input
operations as follows.

a) Q] 0 0 1 1] 0 0
In this case, 10 is assigned to variable A and 20 to variable B. Then the next

GOTO statement is executed and program execution branches to line 100.

b) HIP I- n10J0 Batch Input
(or □[uns °r mroinnra or nr]0)

Data are assigned to the variables (or retained) according to the rules for
batch input. Then the next GOTO statement is executed and program execution
branches to line 100.

c) Q M 1 0 0 No-Input of B
In this case, 10 is assigned to variable A and program execution proceeds to

the next line (line 40). The contents of variable B are retained.

d) 0No-Input Operation
The contents of both variables are retained and program execution proceeds

to line 40.

Note Even when more than one variable is specified in an INPUT statement,
when no-input operation is performed, INPUT statement execution is ended
and program execution proceeds immediately to the next line even if some of
the variables are not assigned data.

37

INPUT

Input with a message

When the INPUT statement is executed, it is possible to display another
message instead o f“ ? ” . The sub-keyword “MSG” is used to display a message.

[Ex. 2.4.1-5]
Input to variable HEIGHT 1 is prompted by displaying the message

“ HEIGHT l-i = ” .

90 INPUT MSG("HEIGHT=")HEIGHT1

«Display» «Operation»

HEIGHT = _

HEIGHT = 150 .

HEIGHT = 1 5 0

m m m

0

150 is assigned to variable HEIGHT1 using this operation.

[Ex. 2.4.1-6]
The value of a variable is displayed in a message.
Using the character processing function CHR$ (described later), numeric

data specified as a part of the message is converted into character data.
In this example, data is input to array variable POINT (I) through the key­

board according to variable I. At this time the message “POINT u O F u
NO=l?i_i ” is displayed.

170 INPUT M S G ("POINT OF N0="+CHR$(I)+"? ")POINT(I)

38

INPUT

When 1=5;

«Display»

POINT OF N0=_5?__

P 0 1N T_0 F_N 0=_5 ?_9 5

POINT OF N0= 5? 95

«Operation»

0

As a result of this operation, 95 is assigned to variable POINT(5). The space
just before “ 5” in the message is automatically inserted in front o f the character
string (number) when the numeric value is converted by the CHR$ function.

Temporary Program Suspension

Unless the name of a variable is specified in the operand of the INPUT state­
ment, program execution is suspended only temporarily and program execution
is restarted by depressing 0 . This is called the pause function. Specify the fol­
lowing for no display.

INPUT M S G ("")

A branch operation is valid even if the variable is not specified in the INPUT
statement. When only Q) is depressed, program execution proceeds to the next
line. When data is entered before depressing Q), the input data are ignored and
program execution proceeds to the following statement on the same line.

Input from Disk Files

Data can be read from a disk file or an external input device and assigned to
a variable by specifying a logical device number in the INPUT statement. For
details, refer to the explanation of the INPUT statement in “2.12.6 Other In-
put/Output” .

39

IN P U T
USING

2.4.2 INPUT USING Statement (Input Using)

Function
The INPUT USING Statement enters data to variables by specifying the

number of digits or characters that will be entered.

Format

INPUT l_i C # [< 1—9 > J USING u j < Line No. > __1<V ariable>(,]

< Arithmetic> f < Label >]
t Variable

Explanation
The basic function is the same as that of the INPUT statement, but the

number of digits or characters that will be entered is specified in advance. Input
is completed when the specified volume of data is entered. No input prompting
symbol or cursor is displayed.

The input format is specified by the FORMAT statement. The line on which
the FORMAT statement is written must be specified following USING in the
INPUT USING statement. Executing the FORMAT statement by itself has no
effect.

The FORMAT statement is also specifies the format for the PRINT USING
statement.

Input Specification Using the FORMAT Statement

In the FORMAT statement used with the INPUT USING statement, the
input format is specified by “ # ” . Look at the following example using the
INPUT USING statement and the FORMAT statement:

Specification of the line of
j~ FORMAT statement used

140 INPUT USING I 50 A

150 F0RMATt_i##$ —̂ Variable to which data is input

l------------- Start o f format specification

In the FORMAT statement, specification of the input format starts after a
space is entered following the keyword. In the above example, the input of 3
digits is specified for variable A in the INPUT USING statement on line 140.

40

IN P U T
U S IN G

So when the INPUT USING statement on line 150 is executed, a 3-digit data
can be input to the variable A. WhenQ], EL and [3] are depressed, for example,
input to variable A is completed. After assignment of 123 to variable A, program
execution proceeds to the next statement.

Depressing 0 is unnecessary when inputting data with the INPUT USING
statement, because the number of digits or characters is specified by the
FORMAT statement.

The relationship between the specification of the input form by the
FORMAT statement and the data assigned to the variable specified in the
INPUT USING statement is shown next.

FORMAT
statement

Input data Variable Data assigned to
variable

(u_i indicates a space.)

[UEjIll A A =123

CQ0 0 S tud] A (l), A(2) A (1) -==-123 A (2) =456

Corresponds repeatedly
to 2 variables.

0 0 0 0 0 0

1__
A (l) , A(2)

End of input

A (1) = 123 A (2)=45

UJ# # # A (l) , A(2) A (l) = 123 A (2) =567

Space indicates data read skipping
or separation.

0 0 0 0 B$ B $ = “ ABCD”

HI HI H E
L

A A -0 .1
The number of
digits determines the input format for the E form, too.

41

INPUT
USING

Data that can be entered using the INPUT USING statement are limited as
follows according to the variable type.

Arithmetic variable:
Only the number of digits input must be considered, regardless of whether

the variable is of the real number-type or the integer-type. Inputting invalid data
causes an error.

String variable:
The data are characters, numbers, and symbols that can be entered through

the keyboard.

Note Using characters other than “# ” or a space in the FORMAT statement used
with the INPUT USING statement causes an error. But when the FORMAT
statement is used with the PRINT USING statement, other characters are valid.
So, do not use the FORMAT statement with both the INPUT USING statement
and PRINT USING statement.

[Ex. 2.4.2-1]
Data entered one after another through the keyboard are assigned to several

variables.

100 INPUT USING 110 A,B,C,D

110 FORMAT ###

When the 12-digit data “ 123456789012” is entered in the input waiting state
after execution of line 100, the data is separated into four blocks of 3-digit data,
which are then assigned to the variables. The values of the variables are:

A =123, B =456, C =789, D = 12

[Ex. 2.4.2-21
Part of the data is assigned to variables.

50 INPUT USING 60 A$,B$,C$

60 FORMAT #

When the 20-character data “ ABCDEFGHIJKLMNOPQRST” is entered in
the input waiting state after execution of line 50, the spaces in the FORMAT
statement serve as data separators and data read skip marks. Character data are
assigned to the three variables as follows:

A $ = “CDE” , B $ = “KLMNO” , C $ = “T”

42

INPUT
U S IN G

Input from Disk Files
Data can be read from a disk file or an external input device and assigned to

a variable by specifying a logical device number in the INPUT USING state­
ment. Refer to the explanation of the INPUT USING statement in “ 2.12.6
Other Input/Output” for details.

43

PRINT

2.5 Output Instructions

2.5.1 PRINT Statement (Print)

Function
The PRINT Statement displays data on the screen. Data can also be output to

the printer, a disk file, or any other external output device by specifying the logi­
cal device number.

Format 1

PRINT [# (< l ~ 9 >
A rithm etic^
Variable

r <

<

String
Expression
A rithm etic^
Expression^

^ Su b-
instruction >

Format 2

< Sub-instruction > F E E D (< Arithmetic E xpression>)

SPACE (< Arithmetic Expression>)

T A B (< A rithm etic Expression^*)

% HOME

% C U R S O R « A rithm etic^ <­
Expression ’

Arithmetic
Expression

Note 1: The comma (,) at the end of a statement can be omitted.

Explanation
The PRINT statement displays characters and numbers on a display unit or

outputs them to the printer. The contents of the variable or character string
specified in the operand are output. Output is displayed on the screen if a logical
device number is not specified. The form of output can be specified using sym­
bols and sub-instructions in the operand.

Unless otherwise specified, output to the screen or printer by the PRINT
statement starts at the current cursor or print head position. (Immediately after
program execution starts, the cursor is positioned at the beginning of the line
following the program execution command line.)

44

PRINT

The function of the PRINT statement is to output the contents specified in
the operand to an output device (like the display unit) in ASCII code. For exam­
ple, a display unit and printer have a different code table to control them, so that
a different action is performed even if the PRINT statement with the same
output code is executed.

The form of data output varies depending on whether the data is numeric or
character as shown below.

Numeric data........Output is performed in the floating form when the value is
within the range: 1 x 10-4S lx I < 1 x 1012 (e.g. 103.45).

Otherwise output is performed in the E form (e.g. 1.52E13).
In both cases, one space is assigned at the beginning of output
and data is left justified.

Character data___Characters and symbols are output with left justification.

Commas (,) and semicolons (;) in the operand have the following mean­
ing:

Semicolon (;)___Used for continuous output.

Comma (,) Used for output in the 20-column zone (described later).

The CR code (0DH)n and the LF code (O A h) are output automatically, and
a new line is started if a comma or semi-colon is not specified at the end of a
statement.

Note 1: ASCII code in 2-digit hexadecimal figures.

[Ex. 2.5.1-1]

40 A=1 5 :B=40:X$="ABC":Y$="XYZ"

50 PRINT A ; B

60 PRINT X$;Y$

In this example, after data are assigned to the variables on line 40, their con­
tents are output by the PRINT statements on lines 50 and 60.

The display is shown below. (The cursor is directly below “ A ” on the display
after execution of line 60.)

The ASCII code output is also shown for reference.

45

PRINT

Display

(i—.1 5uj40
ABCXYZ

> v

V_____________ J

< Output code>

20h 31h 3Sh to o a 34h 30h odh oah
I 1 1 i i 1 1 1

l_1 1 5 !_1 4 0 CR LF

41H 42H 43H 5 ?h 5 ®h 5-A-h opH oah
i i 1 i 1 i 1 i
A B C X Y z CR LF

20-column Zone

The 20-column zone is an area consisting of 20 columns set by the PRINT
statement in relation to the display and the printer. Characters in each 20-digit
zone can be output by specifying a comma (,) in the operand of the PRINT state­
ment.

Display (Printer)

r

v

20 digits 20 digits 20 digits 20 digits

t
1st column

T
21st column

T
41st column

t
61st column

)

The comma in the operand specifies a shift of the cursor or print head to the
start o f the next 20-column zone. The PRINT statement itself counts the
number o f characters output and automatically outputs the number of spaces
necessary to m ove the cursor or print head to the beginning of the next 20-
column zone.

For example, when the cursor is at positon® and PRINT "AA", "BB"
is executed, the display is as shown in (2).

Display

Fig.©
18 spaces

AAi
T

1st column

i BB
t

21st column J
The 20-column zone is valid for only one line on the display or the printer.

When automatic line feed is performed (described later) and output is continued
on the next line, the position of the 20-column zone may be shifted.

46

PRINT

[Ex. 2.5.1-2]
Characters are displayed using a 20-column zone specification.

70 A$="A' : B$=" B" : C$ = "C"
80 PRINT A$,B$,C$
90 PRINT C$, B$, A$

In this program example, output by the PRINT statements on lines 80 and
90 is as follows:

Display

A B C
C B A
i i t
1st column 21st column 41st column

v_____ _____________ ___________ J

Automatic Linefeed Function and Scrolling

When output exceeds the line capacity of the display or printer, linefeed is
performed automatically at the end of each line and output continues from the
beginning of the next line.

Display

v _ _________________________________ J

When linefeed is performed at the bottom line on the display screen, the
screen contents move up to create new lines for output. When reverse linefeed
is specified by the sub-instruction FEED (described later) the contents of the
screen move down. These actions are called scrolling. The concept of scrolling is
illustrated next.

47

PRINT

Concept of Scrolling

Note Display contents that are scrolled off the screen are not reproduced
even if the line is redisplayed on the screen by reverse scrolling.

Specification of Output Characters

A string variable is usually specified in the operand for character output.
Character output can be specified directly by specifying the character string
between quotation marks like in the LET statement.

[Ex. 2.5.1-3]

70 A =14 5

80 PRINT "Average=" ;A

This program example produces the following display.

Display

Average = <-i 145

v______ J

48

PRINT

Note Specify two quotation marks (” ”) when a quotation mark will be output as
a character.

PRINT Display: A"B

[Ex. 2.5.1-4]
Data is displayed on the screen using the function of the PRINT statement

just described.

140 NAME!$="HARDIN":NAME2E$= "AMES"

150 A=7 5 : B = 82

160 PRINT "PUPIL " ;NAME1$;" 1 S SCORE",A;"MARKS"

170 PRINT "PUPIL " ;NAME2$;" 1 S SCORE",B;"MARKS"

Executing this program example results in the following display.

Display

r --- \

PUPIL,_iHARDIN ,_i' Sl_,SC0RE ^75MARKS
PUPILl—iAMES,_j' S ^ SCORE 82MARKS

f ♦
1st column 21st column

V______________ _______ ____ J
Sub-instructions

The following sub-instructions can be specified in the operand of the PRINT
statement.

a) SPACE (< Arithmetic Expression >)

A specified number of spaces are output. The number of spaces that will be
output is specified by an arithmetic expression or numeric value in parentheses.
The value that will be specified must be a integer within the range:
-2 5 5 x =§ 255.

49

PRINT

When a negative value is specified, a backspace code (08h) is output and the
opposite action is performed (the output position moves one column to the
left). When the cursor is located at the beginning of the line and the backspace
code is output, the cursor moves to the end of the preceding line, but scrolling is
not performed. When the destination of movement is outside of the current
screen, the output position is the far-left column on the top line of the screen.

[Ex. 2.5.1-5]

70 PRINT "A" ; S P A C E (5) ; " B" : SPACE(5) ; 11C"

Display

[Ex. 2.5.1-6]

(\

A i_ii_ii_i_ii_i B i_ii_ii_ii_ii_i C1------ y------ - '------ y-------'
5 spaces 5 spaces

^ J

80 PRINT"A"; SPACE(1 0) ; " B " ; SPACE(- 5) ;"C"

Display

^ 5 back spaces

A i_ii_ii_ii_ii_ii_i C i_ii_ii_i Bi j

^ 10 spaces y

b) FEED (< Arithmetic Expression >)
The number of lines specified are fed. The horizontal output position does

not change.
The number of lines that will be fed is specified by an arithmetic expression

or numeric value in parentheses. The numeric value that will be specified must
be an integer within the range: —255 x 255. When a negative value is
specified, reverse linefeed is performed.

50

PRINT

When the output position specified by FEED is outside the current screen,
scrolling or reverse scrolling is performed.

When a positive value is specified, linefeed code (OAh) is output. When a
negative value is specified, a control code (IBh, 4Dh) x) is output.

Note 1: the control code is only valid for display.

[Ex. 2.5.1-7]

70 PRINT " * " ; FEE D (1 F E E D(1) ; " * "

Display

c) TAB (< Arithmetic Expression >)

TAB (0) TAB (79)

1 1
□ □
f f

1st digit 80th digit

The output position moves to the specified column on the line. The column
is specified by an arithmetic expression or a numeric value in parentheses. In
column specification, the head of the line is 0. Integers within the range:
0 ^ x ^ 255 can be specified. When the value specified exceeds the length of a
line (79 for the display), the movement continues on the next line.

The PRINT statement counts the number of the characters output. When
the movement of the output position is specified by TAB, the PRINT statement
calculates the number of spaces or backspaces required to produce output at the
specified position and then outputs the necessary number of spaces (2 0 h) or
backspaces (08 H).

51

PRINT

[Ex. 2.5.1-8]

70 PRINT TAB(10) ;"AB C " ; T A B (2 0);"XYZ"

Display

ABC

t
11th column

V .

XYZ

t
21st column

J
Note The movement of the output position using TAB is actually per­

formed by outputting spaces or backspaces. Consequently the result of
the PRINT statement execution is:

PRINT "A";T A B (10);"B ";T A B (5);"AA";TAB(15);"BB"

Display Instruction Printer Output
execution process (Logical device number

must be specified.)

/ \
A

V
B

)
•••" A " ;TAB (1 0);" B ";

f
A AA B

N
..TAB (5) ;" AA" ;

\)

(
A a a n BB •••• TAB (1 5); "BB" ••••

V y

B is erased.

PRINT

d) %HOME
The entire screen contents are erased and the starting output position is set

at the home position (first column of first line on the display).

Advice
When program execution starts, the starting output positon on the display is

the first column of the line immediately following the program execution com­
mand line. So, when output is performed to the display, the output resulting
from program execution is performed after the display of command operations,
etc. Execute “ PRINT %HOME” to clear the display contents before executing
any output instructions to the display.

PRINT %HOME not specified PRINT %HOME specified

r

Display by
program
execution

I___

v

"\
100END
%E
$SAVE ABC
SAVE TO A:ABC. BAS(Y/N)?Y
$RUN
123
234
345

e) %CURSOR (< Arithmetic Expression > , < Arithmetic Expression >)

x-coordinate

0

y-coordinate

24

0 ------------------------------ * 79

+ (X,Y)

Coordinates on the display are specified and the starting output position is
moved to that position.

x-coordinates 0—79 (horizontal) and y-coordinates 0—24 (vertical) are
defined for the display. The coordinates are specified as (x, y) to indicate the
starting output position.

The x and y coordinates are specified by arithmetic expressions or numeric
values. Integers within the range: —32767^ x and y^32767 can be specified.
Negative values are regarded as 0. Values exceeding 79 in x-coordinate specifica­
tion are regarded as 79. Values exceeding 24 in y-coordinate specification are
regarded as 24.

Note Coordinates are defined on the screen. So even if output is per­
formed to coordinates (10,10), the result of output is moved to coordi­
nates (10,10— n) after the display contents are scrolled up.

53

PRINT

[Ex. 2.5.1-9]

90 PRINT %CURS0R(5,10);"ABC";%CURS0R(10,10);"XYZ"

Display

ABC XYZ

f t
(5,10) (10,10)

Code Output

It is possible to specify the output of an ASCII code by specifying a hexadeci­
mal figure in the PRINT statement. Output specification is performed by specify­
ing a 2-digit hexadecimal code prefixed by the symbol “ &” and enclosed with
quotation marks (”)•

PRINT "ABC&0D&0A";

Codes 0Dh(CR) and 0AH(LF)
are output.

The codes used in the PRINT statement and their functions are described
below.

• LF code (0Ah)
Linefeed • • •

The cursor or paper is fed one line. The horizontal position of the cursor or
print head does not change. The function is the same as that of FEED (1).

• CR code (ODh)
Carriage Return • • •

The cursor or print head returns to the first column of the current line. The
vertical position of the cursor or print head does not change.

• BS code (08h)
Backspace• • •

The cursor is shifted one column to the left. The function is the same as that
of SPACE (—1).

• BEL code (07H)
Bell • • •

The buzzer sounds for approximately 0.3 seconds.

54

PRINT

Executing the following two PRINT statements produces the same result.

PRINT "ABC";FEED(1);SPACE(-3);"XYZ"

PRINT "ABC&0A&08&08&08XYZ&0A&0D";

Output to Printer

Data can be output to a printer or other external output device by specifying
a logical device number in the PRINT statement. The logical device number
must be defined to the connecter where the output device is connected before
executing the PRINT statement.

[Ex. 2.5.1-10]
Output is performed to the printer connected to connector no. 1.

40 OPEN #1, "LPT:"

50 PRINT #1 , "ABC"

60 CLOSE #1

The following is printed by executing this program example.

55

PRINT

Drawing Lines

The display characters for the A S-100 include special characters to draw
lines. Lines can be drawn on the display by specifying the output of these special
characters in the PRINT statement.

See “Appendixl Character Codes” for the shapes of the special characters.

[Ex. 2.5.1-11]
Lines are drawn using the special characters “ f ~ ” (F0h), ” (F5h),

“ “ I ” (F3h), “ ! ” (F4h), “ L ” (F1h), and “ J ” (F2H).

2 0 0 PRINT "&F0&F5&F5&F5&F3"

2 1 0 PRINT "&F4ABC&F4"

2 2 0 PRINT "& F1&F5&F5&F5&F2"

The following lines and characters are displayed on the screen when this pro­
gram example is executed.

Display

The relationship between lines and special characters is shown below.

56

PRINT

Output of Calculation Results
The result of a calculation can be output by specifying an arithmetic expres­

sion in the operand of the PRINT statement.

[Ex. 2.5.1-12]
The calculation result of an expression consisting of the three variables A, B,

and C is output.

140 PRINT (A+B)/C

Assuming that A = 10, B = 20, and C = 5, the result of the above calcula­
tion (6) is output as follows:

Display

i_. 6

Output to Disk Files

Data can be output to a disk file or an external output device by specifying
the logical device number in the PRINT statement. Refer to the explanation of
the PRINT statement in “2.12.6 Other Input/Output” for details.

57

PRINT
USING

FORMAT 2.5.2 PRINT USING Statement (Print Using)
FORMAT Statement (Format)

Function
These statements are used to output tables, etc., when the output form must

be specified in detail.

Format

PRINT .—I [# / < 1 ~ 9 > \ ,] USING _i / < L i n e N o > \ ,___, j ̂ A r i t h m a t i c ^ \ r -j _
i E x p r e s s i o n ' *- > J

A r i t h m e t i c ^
' V a r i a b l e - X < L a b e l >]

^ C h a r a c t e r
E x p r e s s io n

FORMAT i—i < Format Specification>

Explanation
The contents of output are specified by the PRINT USING statement and

the output form is specified by the corresponding FORMAT statement.
The PRINT USING statement and the FORMAT statement must be used

together. Executing the FORMAT statement by itself has no effect.

Output Specification by the FORMAT statement

Several different format specification characters can be used to specify the
output form in the FORMAT statement used with the PRINT USING state­
ment. So do not use a common FORMAT statement for the INPUT USING
statement and the PRINT USING statement.

The relationship between the PRINT USING statement and the FORMAT
statement is shown below.

Specification o f FORMAT
statement line used

140 PRINT USING 150 A

I 50 FORMAT ¥###. ##
Specification of
output contents

Format specification

58

PRINT
USING

In the FORMAT statement, the specification of the output format starts
after a space is entered following the keyword. The specification of the output
format by the PRINT USING statement is made only in the format. Except for
the specification of the FORMAT statement line, etc., only the variables specify­
ing the output contents and commas (separators) can be specified in the operand
of the PRINT USING statement. (Commas used in this case do not specify
printing in a 20-column zone.)

FORMAT

The following format specification characters can be specified in the operand
of the FORMAT statement.

a) Basic Characters
...................When effective number output has already started, all effective

numbers are output. In other cases, a space is output. When
data is a negative num eric value, the minus sign “ — ” is
output just ahead of the numbers.

......................... The position o f the decimal point is specified and a decimal
point (.) is output.

a a a a Output in the E form is specified. The output form is E ±X X
(4 characters).

b) Prefixed Characters
* When effective num ber output has already started, the

number in the column is output. In other cases, (*) is output.
When data is a negative numeric value, a minus sign (—) is
output just ahead of the numbers.

+W hen effective number output has already started, the
number in the column is output. Otherwise, “ + ” or ” is
output depending on whether the data is positive value or
negative value.

—When effective num ber output has already started, the
number in the column is output. When data is negative value,
a minus sign (—) is output just ahead of the numbers.

59

PRINT
USING

FORMAT $When effective number output has already started, the
number in the column is output. The symbol “ $” is output
just ahead of the numbers.

0W hen effective num ber output has already started, the
number in the column is output. Otherwise, “ 0” is output.
When data is a negative value, ” is output at just ahead of
the numbers.

c) Suffixed Characters
+“ + ” or ” is suffixed to the data depending on whether the

data is positive or negative.

—When data is a negative value, ” is suffixed. If data is posi­
tive, a space is output.

d) Inserted Characters
, or ’ When effective number output has already started, a comma

(,) or an apostrophe (’) is inserted at the position specified.

e) Comment Characters
Characters other than those just listed can be specified directly in the format as a
comment.

Like in the INPUT USING statement, if there are fewer formats than varia­
bles that will be output, the formats are used repeatedly.

The relationship between format specification, output data, and output re­
sults are shown below.

Integer-type output

< Format > <D ata> < Output >

25 i_,1_I._125
- 3 0 i_h—i — 30
1.95

•The fractional part is truncated.

1234567 # # # #
• I f output data exceeds the number
of digits in the format, format
specification is output as it is. This
applies to all formats.

60

PRINT
USING

Decimal number-type output
< Format > <D ata> < Output >

20
-0 .1385
12345.67

2 0.00
0 . 1 3

. #

FORMAT

E-type output
< Format >

. # #

<D ata> < Output >

1000
-0 .001234

U-. 1.000E + 03
- 1.234E—03

Prefixed character output
< Format > <D ata> <Output>

* * * * * * 234 * * * 2 3 4
* * * * * * -2 5 6 * * — 2 5 6
+ + + + + + 345 ^ ^ + 3 4 5
+ + + + + + -7 8 9 L_u_i- 7 8 9
+ + + + + + 23.45 2 3
— 789 i_,1_II_j 7 8 9

-7 9 5 7 9 5
+ # # # # # 567 + 1_ji_. 5 6 7
+ # # # # # -2 3 9 — l—m_i 2 3 9
m m m (p m ̂ ̂ ̂ ̂ ^ 639 $ 6 3 9
$ # # # # # 329 $ i_I._13 2 9
5 * * * * * 3276 ¥ * 3 2 7 6
0 0 0 0 0 0 320 0 0 0 3 2 0
0 0 0 0 0 0 -6 0 3 - 0 0 6 0 3

Suffixed character output
< Format > <D ata> < Output >

+ 780 7 8 0 +
+ -9 6 8 9 6 8 -
- 824 8 2 4 . _i

-9 8 7 9 8 7 -

61

P R IN T
U S IN G

F O R M A T Inserted character output
< Format > < D ata> < Output >

8726
23

Character data output
< Format > < Data >

#
#
#

ABCDE
ABC
ABCDEFGH

< Output >

A B C D E
A B C ^ ^
A B C D E

‘Digits in excess of format
specification are ignored for character
data.

Output w ith comment
< Format > <D ata> < Output >

E X P # #
E X P #

136,21
ABCDEFGH

1 2 3 E X P 2 1
A B C E X P D E
•A comment is regarded as a separator
for numeric data. A comment is
regarded simply as an inserted
character for character data.

[Ex. 2.5.2-1]
Mixed output of numeric and character data.

100 PRINT USING 110 NO, NAME$, P I , P2,P3

110 FORMAT ###^,_ , # # # ^ ^ # # #

Assuming that NO = 101, N A M E $=“ WATSON” , P l= 9 5 , P2=72, and
P3=100, the following is output.

Display

—

1 0 1ljljWATS0Ni_,lj1_,u

___ ______ ________

-j9 51—j i—i l

—

100

Format if##

62

PRINT
USING

[Ex. 2.5.2-2]
A table of amounts is created using “$” and

FORMAT

90 PRINT USING 100 ITEM$, ON EW,DOLD

100 FORMAT $ $ $ 1_ri_II_1$$$,$$$

Assuming that ITEM $=“SALES” , DNEW =7450, and DOLD=6705, the
following is output.

Display

[Ex. 2.5.2-31
Output with direct specification of a comment in the FORMAT statement.

70 PRINT USING 80 D1,D2,D3

80 FORMAT HIGH l_j ### 1_h_j.MID^, l o w _ ###

Assuming that D1 = 240, D2 = 132, and D3 = 5, the following is output.

Display

Format HIGHu###uuMIDu###uuL0Wu###

63

PRINT
USING

FORMAT [Ex. 2.5.2-4]
A format is used repeatedly for a PRINT USING statement.

90 PRINT USING 100 A , B , C , D

100 FORMAT # # # , _ , _ # # #

Assuming that A=450, B=38, C=721, and D = 5 , the following is output.

Display

A

Format

Output to disk files

Like with PRINT statement, data can be output to a disk file or an external
output device by specifying the logical device number in the PRINT USING
statement. Refer to the explanation of the PRINT statement in “ 2.12.6 Other
Input/Output” for details.

64

GOTO

2.6 Branch Instructions

2.6.1 GOTO Statement (Go To)

Function
The GOTO statement changes the program execution flow.

Format

GOTO>_i J<Li ne N o . >)

{ [< L abel>] J

Explanation
The GOTO statement is an instruction that changes the program execution

flow. The line number or label must be specified in the operand. Specify
number of the line to which the branch will be made. When the label is specified
in the operand, the same label must be placed at the head of the line to which
the branch will be made (immediately following the line number).

A branch destination is always the first statement in the line. A branch
cannot be made to the second or following statement in a multi-statement line.

Note Alphabet letters and numbers can be used for labels. Enclose the
label in square brackets ([]) and position it immediately following the
line number. There is no limit to the number of characters in the label.

<Li ne N o .> [< L abel>]<Statem ent>

Only one branch destination label can be placed on a line.
An error occurs if the line contains only a label. Write a statement following

the label.

[Ex. 2.6.1-1]
A branch to a specified line.

65

GOTO

[Ex. 2.6.1-2]
A branch to the line specified by the label.

90 GOTO [CALC.ROUTINE]

180 [CALC.ROUTINE]REM TOTALING
■

Execution branches from line 90 to line 180.

[Ex. 2.6.1-3]
The GOTO statement is used as the second statement in a multi-statement

line, and a branch is executed by the no-input operation.

80 REM

170 INPUT A G A I N :GOTO 80

180 REM

When data is input to the variable AGAIN on line 170, program execution
branches to line 80 by the next statement, GOTO 80, and line 180 is executed
when the no-input operation is performed.

66

GOSUB

2.6.2 GOSUB Statement (Go to Subroutine)
RETURN Statement (Return)

RETURN

Function
The GOSUB statement branches a program to a subroutine and executes the

subroutine. The RETURN statement returns program execution to the main
routine and executes the statement next to the GOSUB statement where the
branch occurred.

Format

GOSUB ^ f < Line N o .>

I [< Label>]

RETURN

Explanation
When there are several identical parts in a program, they are extracted from

the program and made into a common routine 1>. This is called a subroutine.
Using subroutines makes a program easy to understand and decreases the pro­
gram volume.

The GOSUB statement branches program execution to a subroutine and ex­
ecutes it. The RETURN statement returns execution from the subroutine to the
original or main routine.

[Program without subroutine] [Program with subroutine]

Main
routine

Sub­
routine

Note 1: A routine is a part of a program that performs a particular job.

67

GOSUB

RETURN A line number or a label can be specified in the operand of the GOSUB state­
ment. Specify the line number on the first line of a subroutine. When a label is
specified in the operand, the same label must be placed at the beginning of the
line where the subroutine starts (immediately following the line number). Pro­
gram execution proceeds to the statement next to the GOSUB statement to
which the branch was made when the RETURN statement is executed.

One subroutine can be branched to another. This is called the nesting of a
subroutine. Any number of subroutines can be nested as long as the capacity of
the stack area in memory is sufficient. But because the stack area is also shared
by the FOR and the NEXT statements (described later), there is a correlation to
nesting. Fig. 2 shows the nesting order in two levels.

Fig. 2

(s t a r t)

68

GOSUB

[Ex. 2.2.6-1]
An input error warning is made into a subroutine.
When a value greater than 100 is input to variable X, the alarm sounds and

“ERROR” is displayed.

RETURN

140 INPUT X

1 50 IF X<=100 GOTO [Calculation A]

160 GOSUB [Error]

1 70 GOTO 140

240 INPUT Y

250 IF Y< = 100 GOTO [Calculation B]

260 GOSUB [Error]

270 GOTO 240

500 [Error] REM Buzzer & Print

510 PRINT " &07";

520 PRINT "ERROR"

530 RETURN

Line 510 is the PRINT statement to activate the alarm.

(

69

2.6.3 IF Statement (If)

Function
A branch or statement is executed according to specified conditions.

Format

IFi_i/ < Conditional Expression > .

.< Arithmetic Expression> ,

. G O T O ^ / < Line No . > Y,

I < L a b e l>]

TH EN i_i < Statement > ,

Explanation
This instruction changes the order o f program execution depending on

whether a specified condition is satisfied or whether the value of an expression
isO.

When a conditional expression is satisfied or when the value of an arithmetic
expression is not 0, the GOTO statement or the statement following THEN is
executed.

When a conditional expression is not satisfied or when the value of an arith­
metic expression is 0, the statements on the next line are executed.

Six relational operators (< , > , = , ^ ^ , and 2=0 can be used in conditional
expressions. In programs, they are indicated as follows:

< — <
> — >

5̂ —► < >
— < =

s — > =

In judging the condition following IF, — 1 means that the condition is satis­
fied and 0 means that it isn’t satisfied. This processing method allows logical op­
erations (logical product, logical sum, exclusive OR, and negation) to judge two
or more conditions.

70

Logical operations are performed as follows:

Logical product (AND)

X Y Logical product of X and Y

0 0 0
0 - 1 0

- 1 0 0
- 1 - 1 - 1

Logical sum (OR)

X Y Logical sum of X and Y

0 0 0
0 - 1 - 1

- 1 0 - 1
- 1 - 1 - 1

Exclusive OR (XOR)

X Y Exclusive OR of X and Y

0 0 0
0 - 1 - 1

- 1 0 - 1
- 1 - 1 0

Negation (NOT)

X Negation of X

0 - 1
- 1 0

The logical operators shown in parentheses are used in programs.

Note A GOTO or THEN statement following the IF statement must be
written on the same line with the IF statement. An error occurs if the
THEN statement which follows IF and the condition specified are writ­
ten on the next line.

71

[Ex. 2.6.3-1]
The program branches according to a conditional expression comparing one

variable with another. When the value of the variable RIGHT is greater than
that of the variable LEFT, program execution branches to line 100.

50 IF RIGHT>LEFT GOTO 100

' (Samewith THEN GOTO 100)

This is shown in the flowchart below.

To line 100

[Ex. 2.6.3-21
When the comparison condition of string variables is satisfied, the statement

following THEN is executed.

80 [Input] REM Input Routine

150 IF NAME1$<>NAME2$ THEN PRINT "NG!" :G0T0 [Input]

160 REM Calculation Routine

If the values of string variables NAME1 $ and NAME2$ are the same, execu­
tion proceeds to the next line. When they are not, “NG!” is displayed and pro­
gram execution branches to the label [Input].

72

This example can be written as follows:

80 [Input] REM Input Routine

150 IF NAME!$=NAME2$ GOTO 170

160 PRINT "NG!" :G0T0 [Input]

170 REM Calculation Routine

In this case, when the contents of NAME1$ and NAME2$ on line 150 are
the same, execution branches to the calculation routine on line 170. When they
are not, line 160 is executed and execution branches to line 80.

73

[Ex. 2.6.3-31
The program branches according to the comparison of arithmetic expres­

sions.

120 IF M*N<P*Q THEN PRINT "Condition B" :G0T0 400

130 PRINT "Condition A"

140 REM Condition A

400 REM Condition B

When the values of variables M, N, P, and Q satisfy the condition
M x N < P xQ , “ Condition B” is displayed and program execution branches to
line 400. Otherwise, “Condition A” is displayed and execution proceeds to the
next line.

Condition A Condition B

Toline 140 To line 400

74

80

170
180

400

[Ex. 2.6.3-41
Program execution branches according to the logical sum (OR) of the two

conditional expressions.

[SORT] REM High-Low Comparison

IF (PI>LEVEL)0R(P2>LEVEL) THEN PRINT "PASS": GOTO [REG13
PRINT "CHECK&07";N A ME S;GOTO [SORT]

[REGI] REM NUMERICAL REGISTRATION

When the value of either variable PI or P2 is greater than the value of varia­
ble LEVEL, “PASS” is displayed and program execution branches to the label
[REGI]. Otherwise “CHECK” is displayed, the alarm sounds, the contents of
string variable NAMES are displayed, and program execution branches to the
label [SORT],

To label
[SORT]

To label

[REGI]

75

[Ex. 2.6.3-51
Program execution branches according to the logical product (AND) of

three conditional expressions.
When variables Q (l), Q(2), and Q(3) satisfy all of the following conditions,

program execution branches to label [CALC]:
Q (l) > 100, Q(2) >45, Q(3) < 0

150 IF (Q(l)>100)AND(Q(2)>45)AND(Q(3)<0) GOTO [CALC]

160 [CHECK] REM VALUE CHECK

270 [CALC] REM CALCULATION OF VALUE

(label [CHECK]) [CALC]

Each conditional expression whose specified condition is satisfied has a
value of — 1. When the condition is not satisfied, each has a value of 0. If at least
one of the conditional expressions has a value of 0, the total logical product is 0.
Program execution branches to the label [CALC] only when all of the condi­
tions are satisfied. When at least one of the conditions is not satisfied, execution
proceeds to the next line.

76

2.6.4 ON Statement (On)

Function
Program execution branches according to the value of a variable or expres­

sion.

Format

ON < Arithmetic Expression> .'GOTO \i—i / < Line N o .> j [,]

.GOSUbJ [[< Label>] ,

Explanation
The value of an arithmetic expression following ON is converted to an inte­

ger and program execution branches to the line indicated by the integer value.
The relationship between the value of an arithmetic expression and the branch
destination line is shown below.

ON < Arithmetic Expression> GOTO < L in e N o .l> , < L in e N o .2 > ,........ ,
<Line N o.n>

When the value o f the arithmetic expression is 1, program execution
branches to the line specified in <Line No. 1 > .

When the value o f the arithmetic expression is 2, program execution
branches to the line specified in < Line No. 2 > .

When the value o f the arithmetic expression is n, program execution
branches to the line specified in <Line No. n > .

When the value of the arithmetic expression is 0 or negative, execution pro­
ceeds to the statement next to the ON statement.

When the value of the arithmetic expression is greater than the number of
destinations, execution also proceeds to the next statement.

As described above, a line number or a branch destination label must be
specified following the GOTO or GOSUB statement.

77

[Ex. 2.6.4-1]
When the value of variable CODE is 1, program execution branches to line

200. When the value is 2, program execution branches to line 350. When the
value is 3, program execution branches to line 540.

70 ON CODE GOTO 200,350,540

2 0 0 REM C0DE=1

350 REM C0DE=2

540 REM C0DE=3

[Ex. 2.6.4-2]
Under the same conditions as in Ex. 2.6.4-1, program branches according to

the label.

70 ON CODE GOTO [Bl] , [B2] ,[B3]

2 0 0 [Bl] REM C 0 D E = 1

350 [B2] REM C0DE=2

540 [B3] REM C0DE=3

78

[Ex. 2.6.4-31
Program execution branches according to the conditional expression.
When one of the variables A, B, or C has positive value, program execution

branches to line 250. When two of them have positive values, program execu­
tion branches to line 350. When all three variables have positive values, program
execution branches to line 450.

120 ON -((A>0)+(B>0)+(C>0)) GOTO 25,350,450

250 REM 1 POSITIVE VALUE

350 REM 2 POSITIVE VALUES

450 REM 3 POSITIVE VALUES

Each conditional expression has a value of — 1 when its condition is satisfied
and 0 if it is not. So the value of the expressions following ON is equal to the
number of variables that have positive values.

79

FOR

NEXT 2.7 Loop Instructions

2.7.1 FOR Statement (For)
NEXT statement (Next)

Function
These instructions repeat the same processing.

Format

FOR, ^ -A r ith m e t ic s . Arithmetic s -p p . ^-A rithm etic s r C T F P < ' '
Variable ^ Expression 1 ^ '— 1 * ^ 1— ‘ ^ Expression 2 ^ L1— 1 o 1 t r \

Arithmetic
Expression 3>]

NEXT i_, < Arithmetic Variable>

Explanation
A pair of FOR and NEXT statements are used to repeat all program lines

from the FOR statement to the NEXT statement. This type of execution is
called a loop. The arithmetic variable following FOR counts the number of
times the loop is executed. The arithmetic variable in the operand of the NEXT
statement must be the same as the arithmetic variable following FOR.

Arithmetic expressions 1 ~ 3 are specified to determine the number of loop
repetitions. The value of < Arithmetic Expression 1 > is called the starting
value and specifies the arithmetic variable’s initial value in the loop. The value
of < Arithmetic Expression 2 > is called the ending value and specifies the
value of the arithmetic variable at which loop execution will end.

The value of < Arithmetic Expression 3 > is called the increment value and
specifies the amount added to the arithmetic variable each time the loop is ex­
ecuted.

Numeric values, simple variables, and array variables are used for arithmetic
expressions 1~3. The increment value is added to the starting value with each
loop execution. The loop ends when the value of the arithmetic variable is great­
er than the ending value. The statement following NEXT is executed when the
loop ends.

< Arithmetic Expression 3 > can be omitted. When it is omitted, 1 is auto­
matically specified. Negative values can be used for arithmetic expressions 1 ~ 3 .

80

The value of the arithmetic variable and the ending value are compared and
the increment value is added by the NEXT statement. So, the loop is executed
at least once no matter what the starting, ending, and increment values are.

The values of arithmetic variable and arithmetic expressions 1 ~ 3 can be as­
signed to other variables or referenced in a loop, but their values cannot be
changed.

FOR

NEXT

A branch can be performed during loop execution. A branch to a line in the
middle of the loop cannot be performed and causes an error. If program execu­
tion branches during loop execution, the value of the arithmetic variable does
not change.

Loops between FOR and NEXT can be included in another loop between
FOR and NEXT. This is called nesting.

r- 60 FOR X == 1 TO 5

r 70 FOR Y=1 TO

— 60 FOR 1=1 TO 5

j— 70 FOR J=1 TO 3

- 80 FOR K=1 TO 10

L 110 NEXT Y

— 120 NEXT X L 11 0 NEXT K

r 1 2 0 FOR L=1 TO 4

l 150 NEXT L

- 160 NEXT J

- 170 NEXT I

Any number of nesting levels can be specified as long as the capacity of the
stack area in memory is sufficient. Because the GOSUB statement and the
RETURN statement also use the stack area, there is a correlation with their
nesting.

In nesting, the entire inner loop must be within the outer loop. The arithme­
tic variable specified for the outer loop must not be specified for the inner loop.

81

FOR

NEXT Right Loop Wrong Loop

~ 40 FOR X=1 TO 5

r 50 FOR Y=1 TO 5

— 40 FOR X = 1 TO 5

r 50 FOR Y=1 TO 5

L 110 NEXT Y

— 120 NEXT X

— 110
- 1 2 0

NEXT X

NEXT Y

*The entire inner loop is not within
the outer loop.

(— 40 FOR X = 1 TO 5

r-50 FOR Y = 1 TO 5
i
i :
i •
- h l O NEXT X

*Line 50 is ignored so there is no
error, but FOR and NEXT are used in­
correctly.

[Ex. 2.7.1-1]
The loop is executed five times with the condition that variable I = 1, 2, 3,

4, and 5. The value of the array variable WORK (I) is displayed. The increment
value is omitted (1).

82

FOR

[Ex. 2.7.1-2] NEXT
The loop is executed five times with the condition that variable COUNT = -----------

1,3, 5 ,7 , and 9. The value of COUNT is displayed.

110 FOR C0UNT=1 TO 10 STEP 2

120 PRINT COUNT

130 NEXT COUNT

When loop execution ends, variable COUNT has a value of 11.

[Ex. 2.7.1-3]
The loop is executed five times with the condition that variable I = 0.2,

— 0.2, — 0.6, — 1.0, and — 1.4. The value of 2 xl is displayed during loop execu­
tion.

•
•

2 1 0 FOR 1=0.2 TO -1.4 STEP -0.4

2 2 0 PRINT 2*1

230 NEXT I

•

When loop execution ends, variable I has a value of —1.8

83

FOR

NEXT [Ex. 2.7.1-4]
This is an example of 2-level loop nesting. Data are input in sequence to

array variables CONST (1,1) — CONST (4,4).

10
•

DIM CON ST(4 , 4)

•

310 FOR J=1 TO 4

320 FOR 1=1 TO 4

330 INPUT CONST(I , J)

340 NEXT I

350 NEXT J

When loop execution ends, variables I and J have values of 5.

[Ex. 2.7.1-5]
This is an example of an error.
It is impossible to branch program execution from line 100 to line 410.

70• FOR J=0 TO 20

•
100 IC A - n CATfl 4 1 nI r M U U U l U H - I U 1

Wrong branch

200 NEXT J

•
400 FOR 1=0 TO 5

410 FOR J=0 TO 3 -------------

500 NEXT J

510 NEXT I
•

84

READ

2.8 Constant Definition Instructions

2.8.1 READ Statement (Read)
DATA Statement (Data)

Function
Numeric values and characters are assigned to variables.

DATA

Format

READ i_i< Variable> [,] —

D A T A i_j/< C on stan t>) [,] • • •

, < Character> ,

Explanation
The READ statement specifies the variable to which data will be assigned

and the DATA statement actually assigns the data.
The variable specified in the READ statement must correspond to the data

specified in the DATA statement. So the number and the type of variables
(arithmetic or string) must agree with corresponding data. But there is a special
way to make the number of data smaller than that of variables to produce the
same result as the no-input function of the INPUT statement.

Data assigned to a string variable does not need to be enclosed with quota­
tion marks (”). However the data must be in quotes if quotation marks are used
as data. Characters which cannot be entered through the keyboard can be speci­
fied by a hexadecimal code following

85

READ

DATA [Ex. 2.8.1-1]
Data are assigned to variables as follows:

10 20 30 WHITE RED 40 50 60
vJl̂ 'JL' 1̂/ 'il' 'll/ 'll/ \lf 'll"
X Y Z AS B$ C(l) C(2) C(3)

10 D I M C (3)

1 50 R E A D X , Y , Z

3 0 0 R E A D A$,B$

350 F O R I= 1 TO 3

3 60 R E A D c (I)

3 7 0 N E X T I

4 0 0 D A T A 1 0 , 2 0 , 3 0 , W H I T E

41 0 D A T A R E D , 4 0 , 5 0 , 6 0

Lines 400 and 410 can be combined into one line as DATA 10, 20, 30,
WHITE, RED, 40, 50, 60.

86

READ

[Ex. 2.8.1-2]
This is an example in which there are fewer variables than data (no input).
Only two data are specified in the DATA statement on line 100.
When the value of N entered on line 20 is less than or equal to 2, the data on

line 100 is read and program execution proceeds to line 60. When the value of N
is greater than 2, execution proceeds to the next line (line 50), “NO DATA” is
displayed and program execution ends.

DATA

1 0 DIM A (10)

2 0 INPUT N

30 FOR I= 1 TO N

40 READ A (I) :G0T0 60

50 PRINT "NO DATA' : END

60 NEXT I

1 0 0 DATA 1 1 , 2 2

87

RESTORE

2.8.2 RESTORE Statement (Restore)

Function
This instruction makes the first data in the DATA statement correspond to

the variable specified in the READ statement that immediately follows.

Format

RESTORE

Explanation
There must be a one to one correspondence between the number of varia­

bles in the READ statement and the number of data in the DATA statement.
But when the processing requires that the same data are read in the same order,
the correspondence can be changed using the RESTORE statement. The first
data in the DATA statement is made to correspond to the variable of the READ
statement that immediately follows the RESTORE statement.

[Ex. 2.8.2-1]
Using the READ statement, data 10, 20, and 30 are assigned so that X =10,

Y =20, Z =30, A =10, and B=20.

•

30 READ X,Y,Z

40 RESTORE

50 READ A, B

•

1 0 0 DATA 10,20,30

88

2.9 Program Control Instructions

2.9.1 END Statement (End)

Function
This instruction ends program execution.

Format

END

Explanation
Several END statements can be placed on various program lines according

to the program flow. The program ends when the END statement is executed.
The END statement in a subprogram (i.e. a program called by the CALL

statement) has the same function as the RETURN statement in a subroutine.
When the END statement is executed in a subprogram, program execution re­
turns to the main program and the statement following the CALL statement is
executed.
[Ex. 2.9.1-1]

Program execution ends after a branch by the IF statement.

200 IF ,A>0 GOTO 300

210 REM CASE OF

OVII<

290 END

300 REM CASE OF A>0

380 END

89

2.9.2 BYE Statement (Bye)

Function
This statement ends BASIC and returns the system to the OS mode.

Format

BYE

Explanation
The BYE statement ends the program and returns the system to the OS

mode. The function is exactly the same as that of the BYE command. It is used
like the END statement.

[Ex. 2.9.2-1]

400 BYE

In the above example, BASIC program execution ends and the system re­
turns to the OS mode.

Note
When BASIC program execution is started by a BASIC command in a

SUBMIT file (see the “ CP/M -86 U ser’s Manual”), the next line in the
SUBMIT file is executed after the BASIC program is ended using the BYE state­
ment.

90

2.10 Function Definition Statement

2.10.1 DEF FN Statement (Define Function)

Function
This instruction defines an expression used repeatedly as a user defined func­

tion.

Format

DEF F N < F u n ction N am e> (< V a r ia b le > [,) • • •) = < D e f in e d Expressions>

Explanation
When the same calculation is repeated many times in a program, the calcula­

tion expression can be defined as a function using this instruction.
The function name is specified according to the same rules as those used for

variable name. The sub-keyword FN must be placed in front of the function
name. “FN” must always be specified in capital letters.

Two or more variables can be specified in an expression. This statement
must be executed prior to execution of the statement that uses the function.

[Ex. 2.10.1-1]
Coshx = (ex + e-x)/2 is defined as FNCOSH(X).

•
•

1 0
•

DEF FNC0SH(X)=(EXP(X)+EXP(-X))/2

•

150
•

FOR 1=1 TO 360

250 LET P = FNC0SH (I)*10

260 PRINT P

270 NEXT I

EXP(X) is one of the built-in functions explained later.

91

[Ex. 2.10.1-2]
2X2+ 4 Y -Z is defined as FNA (X, Y, Z).

The following calculation is performed on line 150.
A N S = 2 x (D (1))2+ 4 X D (2)—D(3)
Assuming that D (1)= 3 ,D (2)= 2 , and D (3) = 1,

A N S = 2X 32+ 4 x 2 - 1 = 2 5 .

92

CALL

2.11 Program C aillnstructions

2.11.1 CALL Statement (Call)
PARAM Statement (Parameter)

PARAM

Function
The CALL statement loads other BASIC programs stored on the disk

(called subprograms) and executes them.
The PARAM statement shares data between the main program and sub­

programs.

Format

CALL i_j<Program > [(< Variable> [,] •••)

PARAM l__,< Variable> [,] •••

Explanation
The CALL statem ent reads a subprogram from the disk, loads it to

memory, and then executes it.

(CALLA) (CALLB)

So when the CALL statement is executed, an error occurs unless there is
sufficient memory to store the subprogram.

93

CALL

PARAM Immediately after the CALL statement is executed, the system confirms
that the specified subprogram is in memory. If found, the subprogram is execut­
ed. If not, the subprogram is searched for on the disks, starting with the disk in
drive A. If the subprogram is found, it is loaded to memory for execution. An
error occurs if the subprogram is not found.

Data can be shared with the subprogram by specifying a variable after the
subprogram name of the CALL statement, and then placing the PARAM state­
ment in which the variables are specified at the beginning of the subprogram.
Another statement cannot be written before the PARAM statement.

If the END statement is executed in the subprogram, the statement next to
the CALL statement in the main program is executed. The subprogram remains
in memory after execution. Even if the same subprogram is called, it is not read
from the disk again. The FREE statement (described later) can be used to pre­
vent a memory overflow when subprograms are called.

The subprogram starting with a PARAM statement cannot be executed in­
dependently. It must be called by the CALL statement.

The CALL statement can be executed to call a different subprogram in a
subprogram. The nesting of CALL statements is the same as the nesting of
GOSUB statements.

Main program Subprogram A Subprogram B

94

(

CALL

[Ex. 2.11.1-1] PARAM
Variable D and data NAMES (1) ~ NAMES (3) are shared between program --------------

A (main program) and program B (subprogram).

5 REM PROGRAM A

1 0 DIM NAME$(3)

n o PRINT D ,NAMES(1)

1 20 CALL B (D ,NAMES(*))

130 PRINT D ,NAME$(1)

1 0 PARAM D,NAME$(*)

1 5 REM PROGRAM B

Asterisk (*) indicates all array
variables.

The contents of variable D and data NAME$(1) ~ NAME$(3) are shared
by the two programs using the CALL statement on line 120 in program A and
the PARAM statement on line 10 in program B.

The contents displayed on line 110 are shared with program B which is called
by the CALL statement on line 120. There is a statement in program B to
update the contents of variable D and NAMES (1) ~ NAMES (3). After execu­
tion of program B, the updated data of each variable are shared with program A.

Note
As the example shows, the array variables shared by programs A and B

using the PARAM statement do not need to be defined by the DIM statement
in program B. But array variables not specified by the PARAM statement, even
if the same name is defined in main program, must be defined in program B by
the DIM statement. In this case, the contents of the variables in programs A and
B are not related. They are treated as different variables.

95

CALL

PARAM [Ex. 2.11.1-2]
Data are assigned directly to the variables in the subprogram called.
Instead of making a variable correspond to a variable using the CALL and

PARAM statements, the data specified in the CALL statement are assigned
directly to the subprogram called.

When execution proceeds to program B, the contents of variables A and B
are A *= 100 and B = (Value of X in program A). When execution returns to
program A, only the value of B is given to X.

Numeric values and characters can be specified directly in the CALL state­
ment.

[Ex. 2.11.1-3]
An expression is specified in the CALL statement.

When execution proceeds to program B, the contents of variables A and B
are A = (Value of X) and B = (Value of Y + Z). When execution returns to
program A, the contents of A are assigned to X in program A but the contents
of Y and Z do not change.

96

CALL

[Ex. 2.11.1-4]
A nesting of program call is executed.
Program C is called in program B which is called in program A.

10

100

REM PROGRAM A

CALL B (X ,Y)

Program B

10 PARAM X ,Y

1 5 REM PROGRAM B

200 CALL C(Z)

500 END

Program C

10 PARAM Z

15 REM PROGRAM C

300 END

PARAM

97

2.11.2 FREE Statement (Free)

Function
This instruction deletes a subprogram from memory.

Format

FREE

Explanation
The subprogram called remains in memory after execution, so the memory

may overflow when several subprograms are called, even if some programs are
not used. These unnecessary subprograms can be deleted from memory using
the FREE statement.

(CALLA) (FREE) (CALLB)

Memory

Main
program

CALLA
FREE
CALLB

Main
program

Subprogram A

Main
program

Main
program

Subprogram B

: Free memory area

When the FREE statement is executed, all of the programs following the
program in which the FREE statement is executed in memory, are deleted.
When the FREE statement is executed in the main program, all of the sub­
programs called are deleted from memory. When the FREE statement is execut­
ed in a subprogram, all o f the subprograms following the subprogram in
memory are deleted from memory.

(CALLA) (CALLB) (FREE)

Main
program

Subprogram A

Subprogram B

zzzzzzzzz

Main
program

Subprogram A

'A

98

[Ex. 2.11.2-1]
Subprograms B and C are deleted from memory and then subprogram D is

called.

10 REM PR0GRAM

1 0 0 CALL B

300 CALL C

500 FREE

510 CALL D

Memory reservation is changed as follows:

(CALLB) (CALLC) (FREE) (CALL D)

Memory Program A

Subprogram B

Subprogram C

Program A

Subprogram D

ẐZZZZZZ

7// // / / '■ Free memory

99

[EX. 2.11.2-2]
In this example, the FREE instruction is executed in subprogram C.

10 REM PROGRAM A

100 CALL B

300 CALL C

Program C

1 0 REM PROGRAM C

50 CALL X

1 0 0 FREE

2 0 0 END

Memory reservation is changed as follows:

(C A L L B ~) (C A L L C) (C A L L X ~) (F R E E)

Program A Program A Subprogram B Program AiH I Subprogram B Subprogram B Subprogram B Subprogram B
/ / ' / / / / / / Subprogram C Subprogram C Subprogram C

Subprogram X

In this case, only subprogram X is deleted from memory.

100

OPEN

2.12 File-Related Instructions

2.12.1 OPEN Statement (Open)

Function
This instruction defines the logical device number for data files on disks or

peripheral devices so they can be used in a program.

Format

OPEN . _ . # / < I ~ 9 > . , / ” [< D rive N a m e >]< F ile N am e> ” .

< Arithmetic Variable>, < Device N am e> ”

, < String Expression>

Explanation
The OPEN statement must be executed before using data files on disks or

peripheral devices.
The OPEN statement defines the logical device number for files or peripher­

al devices that will be used. The logical device number defined by the OPEN
statement must be specified in instructions (e.g. PUT, GET, etc. described
later) that perform input/output from/to the files and peripheral devices. Integ­
ers 1 ~ 9 can be specified as logical device numbers. If a logical device number
is specified with an arithmetic variable, programs must be written to assign an
integer 1 ~ 9 to the variable.

Specify a drive name when the file on disk is defined. When the drive name
is omitted, the current drive is automatically specified.

Drive Description on program
Floppy disk A A: or FDO
Floppy disk B B: or FD1
Floppy disk C C: or FD2
Floppy disk D D: or FD3
Mini floppy disk A A: or FDO
Mini floppy disk B B: or FD1

101

OPEN

Refer to “ 1.10 Files’ ’ for the specification of file names. When the file type is
omitted, DAT is automatically specified.

Specify the following device names when the peripheral devices are defined.

No. I/O connector Device name

0 Display unit or keyboard CON: or CRT:
1 Centronics I/F LPT: or UPO:
2 RS232C I/F (Centronics I/F) USO: or TTY:(UL1: or UP1:)
3 RS232C (Centronics I/F) PTR: or PTP:(UL1: or UP1:)
4 RS232C (Centronics I/F) US1:(UL1: or UP1:)
5 RS232C (Centronics I/F) US2:(UL1: or UP1:)

Note: Only one connector from connectors 2—5 can be used to connect a
centronics I/F.

The numbers correspond to those in the figure below.

Rear View of Display Unit

The drive name, file name, or device name can also be specified with string
expressions.

The definitions of the OPEN statement are valid until they are canceled by
the CLOSE statement (described later). The definitions are automatically can­
celed when the program ends.

Only one file or peripheral device can be defined to a logical device number
at a time. An error occurs if the OPEN statement is executed again for a file or
peripheral device already defined by the OPEN statement.

102

OPEN

[Ex. 2.12.1-1]
The disk file POINT is defined as logical device number 1.

When POINT.DAT is on the disk in drive A, logical device number 1 is
defined to it. When it is not, a new file POINT.DAT is created on the disk in
drive A and defined as logical device number 1.

[Ex. 2.12.1-2]
A printer is connected to the Centronics I/F of connector 1 and defined as

logical device number 2.

[Ex. 2.12.1-3]
Logical device numbers are defined according to the value (1 ~ 9) entered

through the keyboard.

90 INPUT A

100 OPEN # A ,"LPT : "

When 2 is entered through the keyboard on line 90, LPT: is defined as logical
device number 2. If a numeric value other than 1 ~ 9 is entered on line 90, an
error occurs on line 100.

103

OPEN

[Ex. 2.12.1-4]
A disk file or peripheral device is defined by the character string entered

through the keyboard.

When “LPT:” is entered through the keyboard on line 150, LPT: is defined
as logical device number 1. When “ A: FILEGT” is entered, disk file
FILEGT. DAT on the disk in drive A is defined as logical device number 1.

The DIM statement on line 40 specifies the number of characters that can be
entered for the file name or device name as 10 characters (1 character for the
drive name, 1 character for the colon, and 8 characters for the file name).

104

(

2.12.2 CLOSE Statement (Close)

Function
This instruction cancels the definition of a logical device number.

CLOSE

Format

CLOSE # (< l ~ 9 > \ [, % DEL]

.< Arithmetic V ariable>.

Explanation
The contents of the logical device number defined by the OPEN statement

are canceled (closed).
After the logical device number definitions are canceled (closed) by the

CLOSE statement, they can be redefined.
Specify the logical device number that will be closed with 1—9. It also can be

specified by arithmetic variable. When a logical device number is specified with
an arithmetic variable, write the program so that the value of the variable is
1—9.

A file can be deleted from the disk after being closed by specifying % DEL
(Delete). This specification is valid only when a disk file is closed.

[Ex. 2.12.2-1]
Logical device number #1 opened by the OPEN statement is closed.

••■
40
•

OPEN #1 , " LPT:

•
170

•••

CLOSE #1

105

[Ex, 2.12.2-2]
Data file TRN.DAT on the disk on drive A is deleted at the same time logical

device number #1 is closed. So if file TRN.DAT is opened after this, a new file
is created on the disk.

•
•

40
•

OPEN #1 , "A:TRN"

•

170 CLOSE # 1 , %DEL
•
•
•

106

CHANGE

2.12.3 CHANGE Statement (Change)

Function
This instruction is used to change disks in a drive during the execution of a

program.

Format

C H A N G E ^ [M S G « S tr in g Expression>) ,] ”< Drive N am e> ”

Explanation
In BASIC, mini floppy disks and floppy disks can usually be set into and re­

moved from drives only when ” is displayed. If a disk is set or removed in
another system status, the disk may be damaged or a data irregularity may occur
in the file.

But when the CHANGE statement is executed in the program, a disk can be
set/removed into/from the drive.

When the CHANGE statement is executed, the cursor is displayed and pro­
gram execution is suspended temporarily. At this time, it is possible to set/re-
move a disk into/from the drive specified by the CHANGE statement. After
disk replacement, depress 0 to resume program execution.

When a message is specified after MSG in the operand of the CHANGE
statement, this message is displayed with the cursor during temporary program
suspension.

Before the CHANGE statement is executed to replace the disk, the disk file
opened on the disk must be closed with the CLOSE statement.

[Ex. 2.12.3-1]
Processing is resumed after replacing of the disk in drive B.

50 OPEN #1, “B :SALES1 "

90 CLOSE #1

100 CHANGE M S G ("CHANGE THE DISK IN DRIVE B"),"B:"

110 OPEN #1 , "B:SALES2"

Operations after the execution of line 100 are shown next.

107

CHANGE

If [j] is depressed after disk replacement, program execution is resumed
starting from line 110.

108

2.12.4 PUT Statement (Put)

Function
This instruction writes data to a file on a disk.

Format

PUT ._ * # (< l ~ 9 > \ [, < Arithmetic Expression>]> _ .< Variable> [,] •••
- Arithmetic^

- Variable

Explanation
The PUT statement writes the contents of variables to a file on a disk. The

unit for data writing is called a record. It is determined by the total length of the
variables specified in the operand of the PUT statement. The lengths of variables
are usually as follows:

Integer-type variable: 2 bytes
Real number-type variable: 8 bytes
String variable: 8 bytes

The length of a string variable can be changed to 1 —255 bytes.
Each time the PUT statement is executed, one data record is written to a file.
There are two methods of writing data to a file, called sequential access and

random access. Access means writing data to a file or reading data from the file.
In sequential access, file access is always performed starting from the first

record of a file. In random access, the position of a record that will be accessed
can be specified by record number.

The operating system reads/writes a data to a file on disk in 128-byte units.
So, the end of the data written by the PUT statement isn’t necessarily the same
as the end of the file. (Details are described later.)

Therefore, the EOD (End of Data) record, which indicates the end of the
data, must be written in the file at the end of the data written by use of the PUT
statement. The EOD record is used only as the marker, so use a data which will
not be confused with the file data.

109

The EOD record is effective when data is read by sequential access. When
the contents of data (number o f records and record length) are known, the
EOD record isn’t necessary.

Data writing to a file by the PUT statement is performed as follows:
The CP/M-86 operating system writes data to files in 128-byte units. So, the

size of the file can be calculated as follows:

Total record length
128

x 128 bytes =File size

Note: L J indicates that fractions are rounded up.

When ten 8-byte records are written to a file, the total record length is 80
bytes (= 8 x 1 0) but the file size is 128 bytes.

Increasing the data volume in the file is automatically expands the file. But
once a file is expanded, it cannot be made smaller. For example, even if a file is
rewritten to include 100 data records and then the number of records is reduced
to 50, the file size does not change.

▲
End of file

Before executing the PUT statement, the file must be opened by the OPEN
statement.

110

Note
The CP/M-86 operating system manages the disk in blocks, and consequent­

ly the file reserves the disk area in block units of 2K-bytes. So even a file whose
size is only 128-byte reserves 2K-byte disk area.

Sequential Access

When a file is opened by the OPEN statement, the write starting position (in­
dicated by what is called a pointer) is at the beginning of the file. Once the PUT
statement is executed, the pointer moves to the next write position immediately
following the first record. So in sequential access, records are written sequential­
ly beginning at the head of the file.

For sequential access, < Arithmetic Expression > which specifies a record
number (described later), is omitted.

OPEN #1

PUT #1 (Record A)

PUT # 2 (Record B)

File
Pointer —

Pointer -*»•

Pointer —

111

PUT #1 (EOD Record)

PUT

CLOSE # 1

Random Access

Pointer —

In the execution o f the PUT statement using random access, the pointer
moves according to record numbers and records are written at the position in­
dicated by pointer. After the data is written, the pointer is positioned immediate­
ly following the last record written.

For random access, record numbers must be specified in < Arithmetic Ex­
pression > .

0 cannot be specified as a record number.

OPEN # 1
File

Pointer ——I

PUT # 1 , 3 (Record A)

L1 Record No.

PUT # 1 , 1 (Record B)

PUT # 1 , 2 (Record C)

PUT # 1 , 4 (EOD Record)

112

[Ex. 2.12.4-1]
The contents of variables D A T(l) — DAT(5) are written to a file by sequen­

tial access.

1 0 DIM DAT(5)

2 0
•

E0DREC=9.9999999999999E63

•

140 OPEN #1 ,"B:MS T1"

1 50
•

FOR 1=1 TO 5

•

2 0 0
•

PUT #1 DA T(I)

•

300 NEXT I

310 PUT #1 E0DREC

320 CLOSE #1

In the above example, the PUT statement is executed five times in a loop on
lines 150~300, and the contents of variables DAT(l) to DAT(5) are written by
sequential access. 9.9999999999999E63 is written immediately following the
data as an EOD record.

113

[Ex. 2.12.4-2]
Data blocks of different lengths are written to a file by sequential access.

10 INTEGER NO,E0DREC

20
•

DIM N O (5),NAME$(5)

•

200 OPEN #1 , "A : DFILE11

210
■

FOR 1=1 TO 5

•

300
•

PUT #1 N O (I)

•

400
•

PUT #1 NAMES(I)

•

500 NEXT I

510 E0DREC= 32767

520 PUT #1 E0DREC

530 CLOSE #1

In the above example, the record length in the PUT statement on line 300 is
2 bytes and the record length in the PUT statement on line 400 is 8 bytes. These
two PUT statements are repeated five times in a loop on lines 210—500 by
sequential access. Data blocks of different lengths are written as shown below.

File
A.DFILE.

114

[Ex. 2.12.4-3]
The contents of array variables are written as one record to a file by specify­

ing an asterisk (*).

10 DIM DAT(5)

20 E0DREC=9.9999999999999E63

1 00
•

OPEN # 1 , " B .MS T1 "

200 PUT #1 DAT(*)

290 PUT #1 E0DREC

300 CLOSE #1

The above example is a modified form of Ex. 2.12.4-1. Here an asterisk is
used to specify all of the elements of array variables D AT(1)~D A T(5) as one
record.

Unused area 80 bytes

115

[EX. 1.12.4-4]
Data is written to a file by random access.

1 0
•

DIM P(10)

•

1 0 0 OPEN #1 A : FI LEI"

2 0 0
•

PUT #1 ,5 P (5)

•

300 PUT #1 ,7 P (7)

390 E0DREC=9.9999999999999E63

400 PUT #1 , 1 1 E0DREC

410 CLOSE #1

In the above example, the data of variables P(5) and P(7) are written to a
file by random access.

Both of the variables specified in the operands of the PUT statement on lines
200 and 300 have lengths of 8 bytes. Data is written to a file as shown below.

End of file

116

[Ex. 2.12.4-5]
Data blocks of different lengths are written into a file by random access.

1 0 DIM A $ 10,B$ 5,E0D$10

2 0
•

E0D$="END-DATA"

50
•

OPEN #1 ,"B :FILE2"

•

1 0 0
•

PUT #1,4 A$

•

2 0 0 PUT #1,4 B$

300 PUT #1,5 E0D$

310
•
•

CLOSE #1

The record length in random access is not fixed. The length of the variable
specified in the operand of the PUT statement determines the record length. In
the above example, because variable A$ in the PUT statement on line 100 has a
length o f 10 bytes, the contents of A$ are written beginning at the 31st byte
from the head of the file (at the head of the 4th record in lengths of 10 bytes).

Likewise on line 200, writing starts at the 16th byte from the head of the file.
When data of different record lengths are written to a file by random access,

be careful about the specification of record numbers.

Record l 2 3 4

117

[Ex. 2.12.4-6]
Record numbers are entered through the keyboard and data is written to a

file by random access.

1 0 0 OPEN #1 , " B :FILE2"

2 0 0 INPUT RNO

2 1 0 IF(RN0>10)0R(RN0<1) GOTO 200

2 2 0 PUT #1,RNO DAT

290 E0DREC=9.9999999999999E63

300 PUT #1,11 E0DREC

310 CLOSE #1

On line 200, values 1 -—10 are entered to variable RNO as record numbers. If
the input values exceed this range, line 200 is executed again by the IF statement
on line 210. Data is written into the file by the PUT statement on line 220 ac­
cording to the record number entered. If the RNO value is a fraction, the frac­
tional part is automatically truncated.

When the input value is 4, the file is as shown below.

118

GET

2.12.5 GET Statement (Get)

Function
This instruction reads data from a file on a disk.

Format:

GET i—i # / < l — 9 > \ [, < Arithmetic Expression >]
- Arithmetic^

- Variable

< Variable> [,] •••

Explanation
The GET statement reads data from a file on a disk and assigns the data to a

variable. This statement is used for files in which data were written by the PUT
statement. It is necessary to know which data were written in what order.

With the execution of the GET statement, one record of data is read from a
file and assigned to variables. At this time, unless the type and length of data,
etc, match that of the record data written, an incorrect value is assigned to varia­
bles.

Just as with the PUT statement, there are two kinds of file access, sequential
access and random access. For details, refer to the PUT statement.

Data is read from files in units of 128 bytes by the operating system. So,
except when the length o f data written in a file is an integral multiple of 128
bytes, the end of data isn’t the same as the end of the file. It is necessary, there­
fore, to determine the end of data using the EOD record described in the PUT
Statement.

Like the INPUT statement, the GET statement has an automatic branch
function based on no-input. In the GET statement, the no-input branch occurs
when the data is read beyond the end of the file. At the same time, the value of
the EOF function becomes —1.

The file must be open by the OPEN statement before executing the GET
statement.

119

[Ex. 2.12.5-1]
Data is read from a file by sequential access.

1 0 DIM DA T(5)

1 0 0 OPEN # 1 ,"A:FILE!

n o FOR 1=1 TO 5

1 2 0 GET #1 DA T(I)

130
•

NEXT I

2 0 0 CLOSE #1

In this exam ple, data is read sequentially from the top o f data file
A:FILE1.DAT in which five records of real number-type data (8 -byte) is stored.

File
A:FILE1.DAT

8 bytes 8 bytes 8 bytes 8 bytes 8 bytes

Real
number­
type data

Real
number­
type data

Real
number­
type data

Real
number­
type data

Real
number­
type data

EOD
Record

4
DAT(l)

4
DAT(2)

4
DATO)

4
DAT (4)

4
DAT(5) Unused area

In the above example, the number of records written to the file is known, so
it is not necessary to check the EOD record. But when the number of records
written to a file is not known, the end of the data must be determined as follows:

10 DIM DAT(15)

•

100 OPEN # 1 , " A : F I L E ! "

1 1 0 1=0
1 2 0 1 = 1+1
130 GET #1 DAT(I) : IF DAT(I)< > 9 . 9 9 9 9 9 9 9 9 9 9 9 9 9 E 6 3 GOTO 120

140

In the above example, the IF statement is used to check whether the data
read on line 130 is the EOD record data. When the EOD record is read, reading
ends and execution proceeds to line 140.

120

In the previous example, if data is read from a file that does not contain a
EOD record or from a file in which the contents of the EOD record is other than
9.9999999999999E63, the no-input condition occurs at the end of the file and
execution proceeds to line 140. At this time, the value of the EOF function be­
comes — 1 .

Advice
When data is read from a file by sequential access, an EOD record is required

to determine the end o f the data unless the number of records in the file is
known. The EOD record can have any contents but some standardization is
recommended to prevent confusion.

It is also better not to set any EOD record but to use the first record of a file
as a file information record to indicate the number of records in a file.

Information record Unused area

The program shown below is used to read data from a file.

1 0 OPEN #1 ,"A :FILE

2 0 GET #1 RN0

30 DIM DA T(RN0)

40 FOR 1=1 TO RN0

50 GET #1 DA T(I)

60 NEXT I

70 CLOSE #1

121

[Ex.2.12.5-2]
Data are read to all elements of the array variables by specifying an

asterisk (*).

1 0
•

DIM DA T(5)

1 0 0
•

OPEN #1,"B :MST1"

•

2 0 0
•

GET #1 DA T(*)

•

300 CLOSE #1

•

As in Ex. 2.12.4-3, the data are read and assigned to all elements (8 x 5=40
bytes) of array variables D A T(l) —DAT (5) as one record at the same time.

8 bytes 8 bytes 8 bytes 8 bytes 8 bytes End of file

D A T (l) D A T(2) DAT(3) DAT(4) DA T(5) Unused area

In this example, the data is read on the assumption that the number of
records and data type in the file are known.

122

[Ex. 2.12.5-3]
Data is read from a file by random access.

1 0 INTEGER P ,Q

•
•

1 0 0 OPEN #1 , 1 1 A : FILE!

2 0 0 GET # 1 , 2 P,DAT1$

•
•

300 GET # 1 , 5 Q,DAT2$

400 CLOSE #1

In the above example, each record is 10 bytes (integer-type: 2 bytes, string
type: 8 bytes) in the GET statements on line 200 and line 300. So, the data is
read from the file as shown below. In this example, it is assumed that the con­
tents of the file are known.

Interger-type String-type

In this example, if the GET statement specifying a record number larger
than 6 is executed, incorrect data is read. If reading is performed beyond the
end of the file (i.e. record number greater than 1 2), no-input branch occurs and
the value of the EOF function becomes — 1.

123

GET

[Ex. 2.12.5-4]
A record number is entered through the keyboard and data is read by

random access:

1 OPEN #1," A :FILE3"

2 GET #1 RN0

1 0 0 INPUT X

n o IF (X< 1) 0 R (X V o

1 2 0 GET #1 ,X + 1 DAT

2 0 0 CLOSE #1

When a record number is entered through the keyboard, it is compared with
the number written as the first record in a file indicating the number of records
in the file. In random access, even if an EOD record is written at the end of data,
it is not effective because the record read by random access is arbitrary.

In this case, it is useful to write an information record indicating the number
of records as explained before.

In this example, the data in the file shown below is read by random access. If
a value larger than the range of records is entered, it is checked by the IF state­
ment on line 110 and line 100 is executed again. In the GET statement on line
1 2 0 , 1 is added to the record number entered because record 1 is only an infor­
mation record and is ignored. This means that data record 2 can actually be
specified with relative record number 1 .

File
A:FTLES3.DAT

'/7 7 7 r / / /A
10 Data Data Data Data Data Data Data Data Data Data

Information record
DAT (when 6 is input)

1

Unused area

124

[Ex. 2.12.5-5]
Data from an external input device is read by the GET statement.

1 0
•

DIM A $ 1

1 0 0 OPEN #1 , "US

n o GET #1 A$

1 2 0
•

IF A$="&20"

2 0 0 GOTO n o

2 1 0 CLOSE #1

In the above example, the GET statement is used to read 1-byte data from
an external input device connected to I/O connector 4 (US1:). The data is then
assigned to 1-byte string variable A$. In this case, in the GET Statement on line
1 1 0 , program execution is suspended until a 1 -byte code is sent from the exter­
nal input device. In the above example, execution of the data read routine ends
when a space code (2 0 h) is sent as data.

125

Other Input
and Output

2.12.6 Other Input and Output

When the logical device number defined by the OPEN statement described
before is specified by I/O-related instructions (INPUT, INPUT USING,
PRINT, and PRINT USING statements), input and output can be performed
from/to files and external I/O devices using these instructions.

This section gives examples and explanations of input and output from/to
files and external I/O devices.

(1) INPUT Statement

[Ex. 2.12.6-1]
Data is read from a file.

1 2 0 OPEN #1 ," A :FILEl

2 0 0
•

INPUT #1 , A$

•

400 CLOSE #1

In the above example, data is read from file “FILET.DAT” by the INPUT
statement. The reading of data from a file by the INPUT statement is performed
in almost the same way as sequential access by the GET statement. Reading
ends when the CR code (0DH) and the LF code (OAh) are read.

Assume that file “FILE1.DAT” has the following contents and the pointer
is at the head of the file.

FILEl A B C CR LF X Y Z Q R CR LF L M N CR LF EOF

f
Pointer

* 1 space is equal to 1 byte.

When the INPUT statement on line 200 is executed under these conditions,
“ ABC” is assigned to variable A$ and the pointer moves to position “ X” . After
data reading is repeated, the pointer reaches position “ EOF code (I A h) ” ,
which indicates the end o f the file. Then when the EOF code is read by the
INPUT statement, the value of the EOF function (described later) becomes —1
and the no-input branch occurs, like when keyboard entry is performed. So data
reading is not performed and execution proceeds to the next line.

126

Other Input
and Output

As previously mentioned, the CR and LF codes are regarded as the end of
one data when data is read from a file by the INPUT statement. So, a file read by
the INPUT statement is usually created by the PRINT statement without a
symbol at the end of statement. The EOF code (1 Ah) is automatically written to
files created by the PRINT or PRINT USING statements.

In input to and output from a file by the PRINT or INPUT statement, the
correspondence between variables and data in the file do not have to be consid­
ered. These statements are different from the PUT and GET statements in this
respect. Data from a character file created by the PRINT statement is regarded
by the INPUT statement as a data input operation through a keyboard.

File

PUT statement <Contents of Variable > =̂ > O
0

< Variable > GET statement

File

PRINT statement
Contents of ^ <Character> ^

^Variable
O => < Character > <Variable> INPUT statement

(2) INPUT USING Statement

Reading data from a file by the INPUT USING statement is almost the same
as that for the INPUT statement, but the CR and LF codes are not necessary to
indicate the end of one data.

[Ex. 2.12.6-2]
Data is read from a file.

1 0 0 OPEN #1 ,"A :FILE"

2 0 0 INPUT #1 ,USING 210 A$

2 1 0 FORMAT ###

400 CLOSE #1

In the above example, the contents of file “ FILE” are as follows:

FILE A B C D E F G H I J K L M EOF

127

Other Input
and Output

When the pointer is at the beginning of the file on line 200, the three charac­
ters specified by the FORMAT statement on line 210 are read from the begin­
ning of the file and assigned to variable A$. That is, A$ = “ ABC” and the point­
er m oves to positon “D ” , the next character, and execution proceeds to line
220.

At the end of the file, if there are fewer digits in the remaining data in a file
than the number of digits specified to be read, the excess digits are automatically
filled by NUL code (00H) .

So even when the pointer points at the EOF code, NUL codes equal to the
number of input digits are assigned to the variable by the INPUT USING state­
ment. And because the value of the EOF function becomes — 1 when the point­
er moves to the EOF positon, the end of file can be determined.

[Ex. 2.12.6-3]
Numeric data is read in.

150 OPEN #1 ,"A :FILE"

200 INPUT #1 .USING 210 A,B,C

210 FORMAT ##

400 CLOSE #1

Assume that the file “FILE” is as follows:

FILE 1 2 3 4 5 6 7 8 9 0 EOF 7
By executing the INPUT USING statement on line 200, two digits of data

are read from the file and assigned to variables A, B, and C. So, the values of the
variables are: A =12, B =34, and C =56. Then the pointer moves to “ 7” .

Reading data from an external input device using the INPUT or INPUT
USING statement is similar to reading data from a file. Remember that 1 byte of
data (1 character) is regarded as one key operation. Be careful about the end of
one data (CR and LF code) and the EOF code that indicates the end of the file.

128

(3) PRINT Statement

Other Input
and Output

As explained before, 1-byte ASCII codes are output to a file or an external
output device according to specification by the PRINT statement. But when data
is output to a file using the PRINT statement, an EOF code (1AH) is written to
the end of the data as a data end code, so it is possible to detect the end of data
when the data is read from the file by the INPUT or INPUT USING statements.
In the GET statement, the EOF code is always regarded as a data.

Output to an external output device like a printer is similar to output to a dis­
play unit. Depending on the specifications of printers, results may differ even if
the same data are output. Load a handler before activating BASIC to use a print­
er.

The PRINT USING statement is used exactly like the PRINT statement.

[Ex. 2.12.6-4]
Output to a file

2 0 0 OPEN # 1 , " A : FILE"

300 A$ = "ABC" : X = 326
310

•

PRINT # 1 ,A$;X

400 CLOSE # 1

In the above example, the following file is created:

FILE.DAT B

20h 0D h OAh IA jj

129

Other Input
and Output

[Ex. 2.12.6-5]
Output to a printer.

2 0 0 OPEN #1 , "LPT:"

300 A$=MABC":X=512
310

•
PRINT # 1 j A $; X

400 CLOSE #1

In the above example, data is output to a printer connected to I/O connector
no. 1. The printout is as follow:

130

2.13 Matrix-Related Instructions

2.13.1 Before Using Matrix Related Instructions

(1) Matrix

In a table, numeric values and characters are usually arranged in a rectan­
gular or square format. The table below shows the performance of two pupils,
X and Y, in Science, English, and Mathematics.

Science English Mathematics

X 70 66 60

Y 60 75 80

This table can be represented as follows using parentheses:

170 66 60 \
\60 75 80/

This type of figure arrangement is called a matrix. The individual figures
are called elements of the matrix.

In the above example, a horizontal line of figures (e.g. 70, 66, and 60) is
called a row. A vertical line of figures (e.g. 70 and 60) is called a column.

Generally, a matrix that has m rows and n columns is called an (m , ri)

matrix. A matrix that has equal numbers of rows and volumns is called a square
matrix. An (n , n) matrix is called a square matrix of the nth degree.

A matrix is described as follows:

a12 • • • a ln \
a 2 2 • • • a 2 n

a rn2 • • a m/i

/ a l l

[a] = a 21

\ a ml

131

MAT

(2) Unit Matrix
A unit matrix is a square matrix in which all of the elements on the diagonal

line from left top to right bottom are 1 and the other elements are all 0. The unit
matrix is represented by I.

In matrix calculations, the unit matrix corresponds to 1 in numeric calcula­
tions.

Ex.
(1 0 0 \

[I] = 0 1 0

\ 0 0 1/

(3) Transposed Matrix
Whe matrix [A] consists of i rows and j columns, the matrix formed

by replacing the / rows by the j rows and the j columns by the / columns is
called a transposed matrix, which is represented by [A]1.

'1 3 2 t 1 O'

0 1 - 1 . = 3 1
2 - 1 .

(4) inverse Matrix
In a calculation with real numbers, the value of b that satisfies ab = 1 or

ba= 1 when is called the inverse of a. Likewise, when the product of two
square matrixes is equal to unit matix [I] (i.e. [A] [B] = [i]) , [B] is called the
inverse matrix of [A] and [A] is the inverse matrix of [B]. They are represented
by [A] - 1 and [B] - 1 respectively.

At this time, the following expression is valid:

[a] [a] - 1 = [a] - l [a] = [i]

132

MAT

(S) Sum and Difference of Matrixes
When matrixes [A] and [B] have an equal number of rows and cloumns, the

matrix formed with the sums or differences of the corresponding elements of
the two matrixes is called the sum or difference of [A] and [B]. It is represented
by A + B or A - [B].

[A] + [B] = [5 g g)

[a] — [b]
-3 -3 -3
3 2 4

(6) Product of Matrixes
The product of matrixes is calculated as follows:
Take as a simple example:

[A] —
a b
c d

The product of [A] [X] is:

[a] [x] = (ax' + ^
\ CX] + dx2

The product of two square matrixes is:

i - (; , ') ■ I » -

[A I M - [■ "* "• +\cx 1 + dx2 cyi + dy2

133

The product of matrixes is represented as follows:

m

[A]

n

B

n

[C]

(7) Values of Determinants
A determinant is an expression in which the elements of square matrixes

are calculated according to a certain rule. A determinant is represented by J A | .
The result of the calculation is called the value of the determinant.

Take as an example a square matrix:
I ai b ,\
\ a2 b2 /

The value of the following expression is:
a ib2 - a 2 b,

is represented by:
ai bi
a2 b2

This is called a determinant of the second degree. The value of a i b 2- a 2b]
is called the value of the determinant.

A determinant of the third degree and its value are:
al t>l Cl
a 2 b2 c2

a3 b3 C3

= aj(b2c3 - b ^ - a2(bic3- b3c,) + a3(b,c2- b2Cj)

134

(8) Expansion of Determinants

MAT

To formulate a calculation expression from the elements of a determinant is
called the expansion of the determinant.
• Second degree

a i b,
a 2 b2

Third degree
ai bj Ci
a 2 b2 c2

a 3 b3 c3

= aib2 —a2bi

ai
b2 c2
b3 c3

- a 2

bi Ci
b3 c3 + a 3

bj c,
b2 c2

= a,(b2c3 - b3c2) - a2(b,c3 - b3c,) + a3(b,c2- b2Cj)
Fourth degree
a i b, ci d,
a 2 b2 c2 d2 b2 c2 d2 bi c, dj bi C] d, b) ci d,

a3 b3 c3 d3
<i4 b4 c4 d4

= aj b3 c3 d3
b4 c4 d4

— a2 b3 c3 d3
b4 c4 d4

+ a3 b2 c2 d2
b4 c4 d4

a4 b2 c2 d2
b3 c3 d3

Generally, to expand a determinant of the nth degree, minus signs are given
to the even elements in the first column. Then the sub-determinant of the ele­
ments in the first column is obtained. A sub-determinant is a determinant of the
(n —l)th degree determined by removing the row and column that contain the
element from a given determinant finally the aggregate sum of the products of the
elements in the first column with the signs and the sub-determinants of the ele­
ments is obtained.

(9) Characteristics of Determinants

Determinants have the following characteristics:
• Even if the rows and the columns are switched, the value of the determinant

does not change.
a, b, ci ai a2 a3
a 2 b2 c2 = bi b2 b3
a3 b3 c3 Ci c2 c3

• If two adjacent rows or columns are exchanged, the sign of the value of the
determinant changes.

• The value of a determinant in which each element consists of the same rows
or columns is 0 .

• When the elements in a row are equal to m times the corresponding elements
in another row, the value of the determinant is 0 .

135

MAT

• If a row of a determinant is multiplied by m, the value of the new deter­
minant is m times the value of the original determinant.

• ai + Pl + Qi ai bi C] Pi b, c. q , b i c ,
a2 + p2 + q2 = a 2 b2 c2 + p2 b2 c2 + q2 b2 c2

a3 + P3 + Q3 a 3 b3 c3 P3 b 3 c3 Q3 b3 c3

• ai bi c. ai + mb] bi C]
a2 b2 C2 = a2 + mb2 b2 c2

a 3 b3 c3 a3 + mb3 b3 c3

(10) Solution of Simultaneous Linear Equations

As an application of matrixes, simultaneous linear equations are solved
by the two different methods shown here.

• Method Using the Values of Determinants
When:
f ax + by = p
{ cx + dy = q

the simultaneous linear equation becomes:
[a] [x] = [d]
where:

[AH c \ b) ' [xH xy) ' [DH pJ

When ab —b e * 0, the solution can be found by obtaining [A] _ the inverse
matrix o f [A] :
[X] = [A] [D]

• Method of Using the Values of Determinants
When:aix + bjy + ciz = di

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

assume:
ai bi ci bi bi Ci a i dj Ci ai b) dj
a2 b2 C2 * 0 , D i — d2 b2 c2 . d 2= a2 d2 c2 , d 3 = a2 b2 d2

a 3 b3 c3 d3 b3 c3 a 3 d3 c3 a3 d3 d3

Then the solutions x, y, and z are obtained as follows:

136

2.13.2 Notes for Using Matrix-Related Instructions

Regarding integer-type and real number-type array variables of two dimen­
sions as matrixes, matrix-related instructions perform various calculations.
Therefore, array variables for a matrix must be defined by the DIM statement
before executing matrix-related instructions. The method for definition is
described below.

For example, in order to define array variable A as a matrix of 3 rows
and 4 columns, specify:
DIM A(3, 4)

The subscript must be within the range: 1(0) ~ 32767.
Use an asterisk (*) to specify all elements of array variables for a matrix.

'A (1,1) A (1,2) A (1,3) A (1,4) ‘
A(*) = A (2,1) A (2, 2) A (2, 3) A (2, 4)

. A (3,1) A (3, 2) A (3, 3) A (3, 4) J
Each element of the matrix corresponds to each of the array variables.
The execution of a matrix-related instruction requires the loading of a

matrix library. The library is loaded automatically when a matrix-related in­
struction is executed. But it is also possible for the library to reside in memory.
Ehen the matrix library is resident in memory, it need not be loaded during pro­
gram execution, so higher speed processing can be performed. For the specifi­
cation of a resident matrix library, refer to the explanation of the BASIC com­
mands in “ Chapter II, 2.4.13 OS Mode Commands’’.

2.13.3 MAT INPUT Statement (Matrix Input)

Function
This statement assigns data to a matrix through the keyboard or a file.

Format

MAT 1NPUT(<Variable>, <Array Variable> (*))

Explanation
To enter data through the keyboard, specify 0 in < Variable > indicating

the logical device number. The OPEN statement is not necessary to enter data
through the keyboard.

When entering data from a file, specify the logical device number defined
by the OPEN statement in < Variable > . The symbol # immediately preceding
the logical device number must be omitted.

137

MAT

[Ex. 2.13.3-1]
Data is entered through the keyboard to matrix A, consists of 2 columns

and 2 rows.

In this example, the function is exactly the same as the one in the following
example using the INPUT statement.

10 DIM A (2,2)

100 INPUT A (1,1),A(1, 2) , A (2,1) , A (2,2)

[Ex. 2.13.3-2]
As in the case of the INPUT statement, data is read into the matrix A from

a character file on a disk.

1 0 DIM B (2,2)

50 OPEN #1, "B:DATA1"

1 0 0 MAT INPUT(1 ,A(*))

Character
file

D A T A 1
f i l l

A (1 ,1) A (1 ,2) A (2 ,1) A (2, 2)

Data reading from a file starts at the pointer position just like in the INPUT
statement. Each data in a character file must also have a CR code and LF
code as the end of one data.

138

MAT

2.13.4 MAT READ Statement (Matrix Read)

Function
This statement assigns data specified by the DATA statement to a matrix.

Format

MAT READ(<Array Variable> (*))

Explanation
Data specified by a DATA statement are assigned to the array variable

elements. The order of input is as follows:
For example, when A (1, 1) ~A (2, 3), the order of input is A (1, 1),

A (1, 2), A (1, 3), A (2, 1), A (2, 2) and A (2, 3). Follow the order of data
specified by the DATA statement.

The RESTORE statement can also be used.

[Ex. 2.13.4-1]
Data is read to a matrix consisting of 2 rows and 3 columns.

10 DIM A(2,3)

•

50
•

MAT READ(A (*))

•

100 DATA. 1 00,148, 1 62,1 72, 720, 31 0

In this example, the function is exactly the same as the one in the following
example using the READ statement.

139

MAT

2.13.5 MAT PRINT Statement (Matrix Print)

Function
The MAT PRINT statement outputs the elements of a matrix.

Format

MAT PRI NT(< Variable>, < Array Variable> (*))

Explanation
This statement sequentially outputs the elements of a matrix to a file or a

device specified in < Variable > indicating the logical derice number.
Specify 0 for output to the display. The OPEN statement must also be ex-

cuted. The elements are displayed one after another in a horizontal line. For
output in matrix form, use the PRINT statement or the PRINT USING
statement.

For output to a file on a disk, specify the logical device number defined by
the OPEN statement. The symbol # immediately preceding the logical device
number must be omitted.

[Ex. 2.13.5-1]
The elements of matrix A consisting of 2 rows and 3 columns are displayed.

In this example, the function is exactly the same as the one in the following
example using the PRINT statement.

When the values of the variable are:
A (1, 1) = 40, A (1,2) = 50, A (1,3) = 60
A (2, 1) = 70, A (2, 2) = 80, A (2, 3) = 90

140

M A T

The following is output:

[Ex. 2.13.5-2]
The values of the elements of a matrix are written to a file on disk.

1 0 DIM A (2 ,2)

50 OPEN # 1 ,"B :D A T A ! "

100 MAT P R I N T (1 ,A(*))

In the above example, if the values of the array variables are: A (1, 1) = 12,
A (1, 2) = 340, A (2, 1) = 5, and A (2, 2) = 372, the following character data
are written to the file;

r 1 byte

Note
When data is written to a file using the MAT PRINT statement, a CR,

LF, or EOF code is not written at the end of the data.

141

MAT

2.13.6 MAT MOV Statement (Matrix Move)

Function
This statement assigns the values of the elements of a matrix to those of

another matrix.

Format

MAT M O V « ^ b | e 2 > (.) , [< Ä . e 2 ><*>])

^ Arithmetic
. E x p r e s s i o n ^

Explanation
This instruction corresponds to the LET statement, which handles numeric

values.
The value of each element of < Array Variable 1 > is assigned to the cor­

responding element of < Array Variable 2 > . In this case, the two matrixed
must have an equal numbers of rows and columns.

If < Arithmetic Expression> is specified instead of < Array Variable 2 > ,
the value of the specified expression is assigned to all elements of < Array
Variable 1 > .

[Ex. 2.13.6-1]
The element values of matrix B are assigned to those of matrix A.

I----------------------------------* * . . 1 1

t

A (1, 1) A (1,2)' B (1, 1) B (1, 2)'
A (*) = B (*) =

A (2,1) A (2, 2) .B(2, 1) B (2, 2)

142

[Ex. 2.13.6-2]
The 5 is assigned to each element of matrix A.

[Ex. 2.13.6-3]
The value of an arithmetic expression is assigned to each of the elements

of matrix A.

2.13.7 MAT ADD Statement (Matrix Addition)

Function
This statement adds the values of the elements of a matrix to those of

another matrix.

Format

MAT A D D (< Array
Variable l > (•) , < Array

Variable 2> (*)
<

^ Arithmetic^
. ^ Expression

)

Explanation
The value of each element of < Array Variable 2 > are added to those of

< Array Variable 1 > . The two matrixes must have an equal numbers of rows
and columns.

If < Arithmetic Expression> is specified instead of < Array Variable 2 > ,
the value of the specified expression is added to the value of each element of
< Array Variable 1 > .

143

[Ex. 2.13.7-1]
The element values of matrix B are added to those of matrix A.

[Ex. 2.13.7-2]
The value of variable X is added to each of the elements of matrix A.

When the value of variable X is 246, 246 is added to each of the elements
of A (*).

2.13.8 MAT SUB Statement (Matrix Subtraction)

Function
The values of the elements of a matrix are subtracted from those of another

matrix.

Format

MAT S U B « Array
Variable l > , < Array

Variable 2> (*)

^Arithmetic
«E xpression

)

144

Explanation
The values of the elements of < Array Variable 2> are subtracted from

those of < Array Variable 1 > . The two matrixed must have an equal number
of rows and columns.

When < Arithmetic Expression > is specified instead of < Array Variable
2 > , the value of the specified expression is subtracted from the value of each
element of < Array Variable 1 > .

[Ex. 2.13.8-1]
The element values of matrix B are subtracted from those of martix A.

A.

then on line 50: [A] =

[Ex. 2.13.8-1]
The value of an arithmetic expression is subtracted from each of the ele­

ments of matrix A.

When X = 20 and Y = 30, 50 is subtracted from each of the elements of
matrix A.

2.13.9 MAT MUL Statement (Matrix Multiplication)

Function
This statement multiplies the values of the elements of a matrix by those of

another matrix.

145

Format

MAT

MAT MUL (< Array
Variable 1> (*) , < Array

Variable 2 > (*)
<

^ Arithmetic^
. Expres s i on

)

Explanation
The values of the elements of < Array Variable 1> are multiplied by the

corresponding elements of < Array Variable 2 > . The two matrixes must have
an equal number of rows and columns.

Use the MAT MLT statement (described later) to obtain the product of the
matrixes.

When < Arithmetic Expression > is specified instead of < Array Variable
2 > , the value of each element of < Array Variable 1 > is multiplied by the
value of the specified expression

[Ex. 2.13.9-1]
The element values of matrix A are multiplied by those of matrix B.

Each element of matrix A is multiplied by the value of an arithmetic ex­
pression.

When variable L = 7 and M = 8 , each element of matrix A is multiplied by
56 (= 7x8) .

146

MAT

2.13.10 MAT DIV Statement (Matrix Division)

Function
This statement divides the values of the elements of a matrix by those of

another matrix.

The values of the elements of < Array Variable 1 > are divided by those of
< Array Variable 2 > . The two matrixes must have an equal numbef of rows
and columns.

When < Arithmetic expression > is specified instead of < Array Variable
2 > , the value of each element of < Array Variable 1 > is divided by the value
of the specified expression.

The elements of the array variables and the value of the arthmetic expres­
sion cannot beO.

Format

MAT DIV(<
<

^ Arithmetic^
. E x p r e s s i o n ^

Explanation

[Ex. 2.13.10-1]
The element values of matrix A are divided by those of matrix B.

10 DIM A(2,2), B (2,2)

50 MAT DIV(A(*),B(*))

then on line 50;

147

[Ex. 2.13.10-2]
Each element of matrix A is divided by the value of a variable.

When S = 100, each element of A (*) is divided by 100.

2.13.11 MAT SUM Statement (Matriex Sum)

Function
The sum of the values of the elements of a matrix is assigned to a variable.

Format

MAT SUM (< V ariab le^ < 0aH ab le>

Explanation
The values of the elements of an array variable are totaled and the result is

assigned to another variable.

[Ex. 2.13.11-1]
The element values of matrix B are totaled and the result is assigned to

variable X.

then on line 50: X = l + 2 + 3 + 4 =1 0

148

MAT

2.13.12 MAT CSUM Statement (Matrix Column Sum)

Function
The total of the values of the elements in each column of a matrix is assigned

to another matrix.

Format

MAT CSUM « Array
Variable > (*) , <

Array
Variable 2> (*))

Explanation
The total value of the elements in each column of < Array Variable 2 > is

calculated and the result is assigned to < Array Variable 1 > . The two matrixes
must have an equal number of columns. < Array Variable 1 > must also have
only one raw.

Note
< Array Variable 1 > must be one-dimensional and < Array Variable 2>

must be two-dimensional.

[Ex. 2.13.12-1]
The values of the elements in each column of matrix B are totaled and the

result is assigned to matrix A.

then on line 50: [A] = (2 1 24)

149

MAT

2.13.13 MAT RSUM Statement (Matrix Row Sum)

Function
The total of the values of the elements in each row of a matrix is assigned to

another matrix.

Format

MAT RSUM (/A rray
^ V a ria b le l > (*) , <

Array
Variable 2> (*))

Explanation
The total value of the elements in each row of < Array Variable 2 > is

calculated and the result is assigned to < Array Variable 1 > . The two matrixes
must have an equal number of rows. <Array Variable 1 > must have only one
column.

Note
< Array Variable 1 > must be one-dimensional, and < Array Variable 2 >

must be two-dimensional.

10 DIM A (2), B (2,2)

50 MAT RSUM(A (*) , B (*))

Assuming that: [B] =

then on line 50: [A] =

4 5 6

7 8 9

£)

150

MAT

2.13.14 MAT IDN Statement (Matrix Identity)

Function
This statement constructs a unit matrix of the specified size.

Format

MAT IDN (< Array Variable > (*))

Explanation
A unit matrix is constructed by assigning 0 and 1 to the elements of an

array variable of the size defined by the DIM statement. The array variable
must be a square matrix.

[Ex. 2.13.14-1]
A unit matrix is constructed by assigning 0 and 1 to the elements of

square matrix A.

On line 50:

[A] =

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1 /

151

MAT

2.13.15 MAT INV Statement (Matrix Inverse)

Function (

This statement constructs the inverse matrix of a specified square matrix.

Format

MAT IN V (<A rray V ariable> (*))

Explanation
This statement calculates the inverse matrix of a matrix specified by the

array variable and assignes the result to the original array. The array variable
must be a square matrix. An error occurs if the specified matrix is not a
square matrix.

Note
The array variable must be two-dimensional.

[Ex. 2.13.15-1]
The inverse matrix of matrix A is calculated.

10 DIM A (2,2)

50 MAT INV(A (*))

Assuming that: [A] =

because [A] [A] 1 = [I].

152

MAT

2.13.16 MAT TRN Statement (Matrix Transpose)

Function
This statement constructs the transposed matrix of a specified matrix.

The transposed matrix of the matrix specified by < Array Variable 2 > is
assigned to the matrix specified by < Array Variable 1> . That is, the rows
become colums and the columns become rows.

The number of the rows of < Array Variable 1 > must be equal to the
number of columns of < Array Variable 2 > .

The number of the columns of < Array Variable 1 > must be equal to that
of the rows of < Array Variable 2 > .

Format

MAT T R N (<

Explanation

[Ex. 2.13.16-1]
The transposed matrix of matrix B is assigned to A.

10 DIM A (2 »3) , B(3 , 2)

50 MAT TRN(A(*) , B (*))

Assuming that: [B] =

then on line 50: [A] =

153

MAT

2.13.17 MAT DET Statement {Matrix Determinant)

Function
This statement calculates the value of the determinant of a specified

square matrix and constructs the its inverse matrix.

Format

MAT D E T « V ariable>, < $ ™ l hle> (*)}

Explanation
The determinant of a square matrix specified by < Array Variable > is

calculated and the result is assigned to the variable. Simultaneously, the
inverse matrix of the square matrix specified by < Array Variable > is assigned
to the original matrix. When the determinant is 0, a meaningless value is
assigned to the array variable because there is no inverse matrix.

[Ex. 2.13.17-1]
The value of the determinant of matrix A is calculated.

10 DIM A (2,2)

50 MAT DE T(X , A (*))

Assuming that: [A] =

then on line 50: X = 2 x 3 — 4 x 1 = 2

154

2.13.18 MAT MLT Statement (Matrix Multiplication)

MAT

Function
The product of matrixes is calculated.

Format

MAT M LT(<

Explanation
The product of the matrix specified by < Array Variable 2> and the

matrix specified by < Array Variable 3 > is calculated and assigned to the
matrix specified by < Array Variable 1 > .

The number of the rows of the matrix specified by < Array Variable 1 >
equal the number of the rows of < Array Variable 2 > . The number of the
columns of < Array Variable 1> must equal the number of the columns of
< Array Variable 3 > .

The multiplication of the elements of array variables is performed by the
MAT MUL statement.

[Ex. 2.13.18-1]
The product of matrix B and matrix C is assigned to matrix A.

10 DIM A (2,2) , B (2,3) , C (3,2)

50 MAT M L T (A (*), B (*),C(*))

Assuming that: [B] = 1 2
4 5

then on line 50:

1x14- 2x3 + 3x 5 1 x 2 + 2 x 4 + 3 x 6 \ _ 122 28
4 x l + 5x 3 + 6 x 5 4 x 2 + 5 x 4 + 6 x 6 / \ 49 64

155

MAT

2.13.19 MAT MAX Statement (Matrix Maximum)

Function
This statement searches the maximum value of the elements of a matrix.

Format

MAT MAX « V a r ia b le ^ <vHr?-KU> (* »Variable

Explanation
The maximum value of the elements of a matrix specified by < Array

Variable > is assigned to < Variable > .

[Ex. 2.13.19-1]
The maximum value of the elements of the matrix A is assigned to X.

10 DIM A (3,4)

50 MAT M A X (X , A (*))

10 is assigned to X on line 50.

156

2.13.20 MAT MIN Statement (Matrix Minimum)

Function
This statement searches the minimum value of the elements of a matrix.

Format

MAT MIN « V a r i a b l e ^ < Oariable> (*}}

Explanation
The minimum value of the elements of a matrix specified by < Array

Variable > is assigned to < Variable > .

[Ex. 2.13.20-1]
The minimum value of the elements of matrix A is assigned to X.

-4 is assigned to X on line 50.

157

Matrix-related Instructions

No. Instruction Function

1 MAT INPUT (n, A(*)) Input to A from logical device number n

2 MAT READ (A (*)) Input to A from DATA statement

3 MAT PRINT (n, A (*)) Output of A to logical device number n

4 MAT MOV (A (*), B (*)) Assignment of B to A

MAT MOV (A (*), Arithmetic Assignment of arithmetic expression

Expression) to A

5 MAT ADD (A (*)) Addition of B to A

MAT ADD (A (»), Arithmetic Addition of arithmetic expression

Expression) to A

6 MAT SUB (A (*), B (*)) Substraction of B from A

MAT SUB (A (*), Arithmetic Subtraction of arithmetic expression

Expression) from A

7 MAT MUL (A (*), B (*)) Multiplication A X B

MAT MUL (A (*), Arithmetic Multiplication A X arithmetic expres-

Expression) sion

8 MAT DIV (A (*), B (*)) Division A t B

MAT DIV (A (*), Arithmetic

Expression)

Division A -r arithmetic expression

9 MAT SUM (X, A (*)) Sum of A

10 MAT CSUM (A (*), B (*)) Assignment of column sum to B from A

11 MAT R S UM(A(*) , B (*)) Assignment of row sum to B from A

12 MAT IDN (A (*)) Construction of unit matrix of A

13 MAT INV (A (*)) Construction of inverse matrix of A

14 MAT TRN (A (*), B(*)) Assignment of transpose matrix of B to

A

Assignment of value of determinant

of A to X

15 MAT DET (X, A (*))

16 MAT MLT (A (*), B (*),C (*)) Product of matrixes

17 MAT MAX (X, A (*)) Assignment of maximum value of A to X

18 MAT MIN (X, A (*)) Assignment of minimum value of A

to X

Note: I. A, B, and C indicate array variables.
2. n indicates a logical device number.
3. X indicates an arithmetic variable.

158

Arithmetic
Function

3. Built-in Functions

3.1 Arithmetic Functions

Arithmetic functions are explained using arithmetic expressions X and Y.

3.1.1 EXP Function (Exponent)

Function
This function assigns the value of ex (e = 2.7182818284586).

Format

E X P (< Arithmetic Expression^-)

[Ex. 3.1.1-1]
The value of ex is assigned to variable A.

3.1.2 LOG Function (Log)

Function
This function assigns natural logarithms.

Format

LOG (< Arithmetic Expression>)

Note
The value of < Arighmetic Expression > must be positive.

159

Arithmetic
Function

[Ex. 3.1.2-1]
The natural logarithm of X is assigned to variable A.

150 LET A=L0G(X)

3.1.3 LGT Function

Function
This function assigns common logarithms.

Format

LGT (< Arithmetic Expression>)

Note
The value of the < Artchmetic Expression > must be positive.

[Ex. 3.1.3-1]
The common logarithm of X is assigned to variable A.

160

Arithmetic
Function

3.1.4 SQR Function (Square Root)

Function
This function assigns square roots.

Format

SQR (< Arithmetic Expression >)

Note
The value of < Arithmetic Expression > must be positive.

[Ex. 3.14-1]
The square root of X is assigned to variable A.

3.1.5 FRC Function (Fraction)

Function
This function is extracts a fraction.

Format

F R C (< Arithmetic Expression^*)

[Ex. 3.1.5-1]
The fractional part of the value of variable X is assigned to variable A.

161

Arithmetic
Function

3.1.6 RND Function (Random)

Function
This function generates random numbers.

Format

R N D (< Arithmetic Expression>)

Explanation
If RND(X) is specified, a value determined by the value of X is generated.

The value is generated as long as the value of X does not change. When the
value of X is 0, random numbers determined by the value of the system clock
are generated.

When RND is specified, new random numbers are generated based on the
random numbers generated by the preceding RND function. When a RND
function which has no parameter is used for the first time,the same result is
obtained as when RND (0) is specified.

Note
Random numbers generated are 7-digit decimal fractions within the range:

0 < X < 1 .

[Ex. 3.1.6-1]
A random number determined by 8 is assigned to variable A.

[Ex. 3.1.6-2]
A random number based on the value of the system clock is assigned to

variable A.

162

Arithmetic
Function

[Ex, 3.1.6-3]
A new random number is assigned to variable B based on the preceding

random number.

3.1.7 ABS Function (Absolute)

Function
This function assigns an absolute value.

Format

ABS (Arithmetic Expression)

[Ex. 3.1.7-1]
The absolute value of X is assigned to variable A.

3.1.8 SGN Function (Sign)

Function
This function checks the sign of a value.

Format

SGN (< Arithmetic Expression >)

163

Arithmetic
Function

Explanation
The value-1, 0 ro 1 is assigned depending on the sign of X.
X<0: SGN(X) = —1
X=0: SGN(X)=0
X>0:SGN(X) = 1

[Ex. 3.1.8-1]
Program execution branches depending on the sign of X.

150 ON S G N (X)+2 GOTO [MINUS],[ZERO],[PLUS]

200 [MINUS] REM X<0

250 [ZERO] REM X=0

300 [PLUS] REM X>0

3.1.9 FIX0 Function (Fix 0)

Function
This function rounds a fraction down to the specified decimal place.

Format

F I X0 (< Arithmetic Expression>, < V ariab le>)

Explanation
The value of < Variable > is converted to an integer. Assuming that the

integer is n, the value of < Arithmetic Expression > is rounded down to the
nth decimal place.

164

Arithmetic
Function

[Ex. 3.1.9-1]
The value of X is rounded down to the third decimal place and the result

is assigned to variable A.

3.1.10 FIX5 Function (Fix 5)

Function
This function rounds a decimal fraction off to the specified decimal place.

Format

FIX5 (< Arithmetic Expression>, <V ariab le>)

Explanation
The value of < Variable > is converted to an integer. Assuming that the

integer is n, the value of < Arithmetic Expression > is rounded of to the nth
dicimal place.

[Ex. 3.1.10-1]
The value of X is rounded off to the third decimal place and the result is

assigned to variable A.

165

Arithmetic
Function

3.1.11 FIX9 Function (Fix 9)

Function
This function rounds a decimal fraction up to the specified decimal place.

Format

FIX 9(< Arithmetic Expression>, < V ariab le>)

Explanation
The value of < Variable > is converted to an integer. Assuming that the

integer is n, the value of < Arithmetic Expression > is rounded up to the nth
decimal place.

[Ex. 3.1.11-1]
The value of X is rounded up to third decimal place and the result is

assigned to variable A.

3.1.12 FIXE Function (Fix E)

Function
This function assumes a value of the E-type form and rounds its mantissa

off to the specified number of digits.

Format

FIXE (< Arithmetic Expression>, < V ariab le>)

Explanation
When lagre numeric value, e.g. 123456789, is represented in E-type

form, it becomes 1.23456789E8. The mantissa is rounded off to number of
digits specified by the variable. The value of the variable is converted to an
integer. Assuming that the integer is n, the value is rounded off to the nth
decimal place. For example, if n = 3, the value becomes 1.235E + 8 . That is,
the original figure 123456789 is converted to 123500000.

166

Arithmetic
Function

[Ex. 3.1,12-1]
The mantissa of the value of X in the E form is rounded off to third

decimal place and the result is assigned to variable A.

3.1.13 INT Function (Integer)

Function
This function truncates a decimal fraction and assigns only an integer.

Format

IN T (< Arithmetic Expression>)

[Ex. 3.1.13]
The integer part of the value of X is assigned to variable A.

167

Arithmetic
Function

3.1.14 SIN Function (Sine)

Function
This function assigns a sine value.

Format

SIN (< Arithmetic Expression >)

Note
The value of < Arithmetic Expression > must be specified in degrees.

[Ex. 3.1.14-1]
The sine value of X is assigned to variable A.

3.1.15 COS Function (Cosine)

Function
This function assigns a cosine value.

Format

COS (< Arithmetic Expression>)

Note
The value of < Arithmetic Expression > must be specified in degrees.

168

Arithmetic
Function

[Ex. 3.1.15-1]
The cosine value of X is assigned to variable A.

3.1.16 TAN Function (Tangent)

Function
This function is assigns a tangent value.

Format

TAN (< Arithmetic Expression>)

Note
The value of < Arithmetic Expression > must be specified in degrees. If

a value is specified that makes the tangent value infinity (i.e. an integral
multiple of ±90), the value of the function is the maximum or minimum
value in the system.

[Ex. 2.1.16-1]
The tangent value of X is assigned to variable A.

169

Arithmetic
Function

3.1.17 ASN Function (Arcsine)

Function
This function is assigns an arcsine value.

Format

ASN (< Arithmetic Expression>)

Note
The value of < Arithmetic Expression > must be specified as a numeric

value. The result is within the range: - 9 0 - 9 0 degrees.

3.1.18 ACS Function (Arccosine)

Function
This function is assigns an arccosine value.

Format

ACS (< Arithmetic Expression>)

Note
The value of < Arithmetic Expression > must be specified as a numeric

value. The result is within the range: 0 — 180 degrees.

[Ex. 3.1.18-1]
The arccosine value of X is assigned to variable A.

170

Arithmetic
Function

3.1.19 ATN Function (Arctangent)

Function
This function assigns an arctangent value.

Format

ATN (< Arithmetic Expression>)

Note
The value of < Arithmetic Expression > must be specified as a numeric

value. The result is within the range: - 9 0 - 9 0 degrees.

[Ex. 3.1.19-1]
The arc tangent value of X is assigned to variable A.

3.1.20 RAD Function (Arctangent)

Function
This function converts degrees to radians.

Format

R A D (< Arithmetic Expression>)

Note
< Arithmetic Expression > must be specified in degrees. The result is

within the range: 0-6.2831853071794 (2t).

171

Arithmetic
Function

[Ex. 3.1.20-1]
. The value of X is converted into radians and the result is assigned to

variable A.

3.1.21 DMS Function (Degree-Minute-Second)

Function
This function converts a decimal value in degrees to a sexagesimal value

in degrees, minutes, and seconds.

Format

DMS (< Arithmetic Expression^-)

Note
< Arithmetic Expression > must be specified in degrees. The decimal

fraction consists of 4 digits. The first 2 digits indicate minutes and the last 2
digits indicate seconds.

[Ex. 3.1.21-1]
The value of X is converted into degrees, minutes, and seconds, and the

result is assigned to variable A.

If X = 45.26, A = 45.1536. This means that 45.26 degrees is equal to 45
degrees, 15 minutes, and 36 seconds.

172

Arithmetic
Function

3.1.22 ARD Function

Function
This function converts a radian value to a degree value.

Format

A R D (< Arithmetic Expression>)

Note
< Arithmetic Expression > must be specified in radians.

[Ex. 3.1.22-1]
Cos X is calculated in radians.

When X = 1.047 (—) radians, the value of ARD (X) is 60 degrees and
A = 0.5. • 3

3.1.23 ADS Function

Function
This function converts a value in degrees, minutes, and seconds into a

value in degrees.

Format

A D S (< Arithmetic Expression^*)

Note
Specify a decimal value for < Arithmetic Expression > . In the decimal

number, the integer indicates degrees, the first 2 digits of the dacimal fraction
indicate minutes, and the last two digits indicate seconds.

173

Arithmetic
Function

[Ex. 3.1.23-1]
The value of X is converted to a value in degrees and the result is assigned to

variable A.

If X = 45 degrees, 15 minutes, and 36 seconds (45.1536), A = 45.26 degrees.

3.1.24 MOD Function (Modulo)

Function
This function assigns the remainder of a division.

Format

MOD (< Arithmetic Expression I > , < Arithmetic Expression 2 >)

Explanation
The value of < Arithmetic Expression 1 > is divided by the value of

< Arithmetic Expression 2 > , and the function value becomes the remainder
of this calculation. When the value of < Arithmetic Expression 1 > is negative,
the remainder is also negative. When the value of < Arithmetic Expression 2 >
is greater than that of < Arithmetic Expression 1 > , the remainder is the
value of < Arithmetic Expression 1 > .

[Ex. 3.1.24-1]
The remainder when X is divided by Y is assigned to the variable A.

174

Arithmetic
Function

The values of X, Y, and A are shown below.

X Y MOD (X, Y)

7 2 1

- 1 0 3 - 1

- 1 0 - 3 - 1

2 1 0 2

3.1.25 MAX Function (Maximum)

Function
This function assigns the maximum value from a specified group of

variables.

Format

M A X « Variable>, •••)

[Ex. 3.1.25-1]
The maximum value from the values of variables D (1)~D (4) is assigned

to variable A.

Assuming that D (1) = 130, D (2) = 2790, D (3) = 4, and D (4) = 2789, then
A = 2790.

175

Arithmetic
Function

3.1.26 MIN Function (Minimum)

Function
This function assigns the minimum value from a specified group of

variables.

Format

M IN (< Variable>, •••)

[Ex. 3.1.26-1]
The minimum value of the values of variables D (1)~D (4) is assigned to

variable A.

Assuming that D (1) = 130, D (2) = 2790, D (3) = 4, and D (4) = 5789, then
A = 4.

3.1.27 TIM Function (Time)

Function
This function reads hours, minutes, and seconds from the AS-100’s system

clock.

Format

TIM

Explanation
The TIM function reads the time that has elapsed since power-on in hours,

minutes and seconds. Hours, minutes and seconds are indicated as follows:

H H . M M S S
1—-------- Seconds

-------------------- Minutes

------------------------------------Hours

The value of the TIM function is within the range: 00.0000 ~ 23.5959.
00.0000 comes after 23.5959.

176

Arithmetic
Function

The value of the TIM function can be changed by the LET statement.
The system clock used by the TIM function is the same as that used by string
function TOD$.

[Ex. 3.1.27-1]
The processing time of an calculation routine is displayed.

50 LET TIME=0

60 REM CALCULATION ROUTINE

400 LET T = TIM

410 PRINT T

TIM is set to 0 on line 50 and the time when the calculation routine ends
is assigned to T on line 400.

For example, if 3.4513 is displayed, it means that calculation took 3 hours,
45 minutes, and 13 seconds.

3.1.28 PI Function (Pi)

Function
The function has a value of tt (= 3.1415926535898)

Format

PI

[Ex. 3.1.28-1]
The area of a circle whose radius is R is calculated and assigned to variable

A.

177

Arithmetic
Function

3.1.29 SIZE Function

Function
This function indicates the size of the unused memory area.

Format

SIZE

Explanation
The function has a value which indicates the size of the unused memory

area when the function is executed. The value is in bytes.

[Ex. 3.1.29-1]
The size os the unused memory area when the program ends is displayed.

3.1.30 ERR Function (Error)

Function
This function detects a numeric value overflow.

Format

ERR

Explanation
There is a limit to the size of a value that can be processed by a system.

(The limit is 9.9999999999999 x 1063 for Canon BASIC.) An overfflow occurs
if the result of a calculation exceeds this limit or a value larger than the limit
is input. An overflow also occurs when a value is divided by 0.

When an overflow occurs, the value of the ERR function changes from
0 to 1. The ERR function is initially set to 0 when program execution begins.

The LET statement can be used to assign 0 to the ERR function.

178

[Ex. 3.1.30-1]
An overflow of a value is checked.

70 INPUT B , c

150 LET A=B *C

160 IF ERR= 1 GOTO 280

280 PRINT " OVERFLOW"
290 LET ERR= 0

300 GOTO 70

Arithmetic
Function

When the result of the multiplication on line 150 exceeds the range:
l.Ox 10_64g |x | < 1.0 x 1064, program execution branches to line 280. After
“ OVERFLOW” is displayed, processing is performed again from line 70.

On line 290, the overflow status of the ERR function is reset by assigning
0 with the LET statement.

3.1.31 EOF Function (End of File)

Function
This function detects the end of a specified file.

Format

EOF (< Arithmetic Expression>)

Explanation
< Arithmetic Expression > specifies the logical device number of the file

defined by the OPEN statement.
When the specified file is opened, 0 is antomatically assigned to the EOF

function corresponding to the file.
For details of the status under which the value of EOF function becomes

- 1 , refer to the explanation of the INPUT, INPUT USING, and GET
statements.

179

Arithmetic
Function

[Ex. 3.1.31.—1]
Data is read and displayed by random access from a file prepared by the

PUT statement.

10 OPEN #1,"B:FILE1"

50 INPUT RNO

100 GET #1 ,RN0 RECORD

110 IF EOF(1) GOTO 50

120 PRINT RECORD

150 CLOSE #1

The record number displayed on line 50 is entered through the keyboard.
If the record number entered is outside the file area, reinput must be made.

180

3.1.32 %CURX Function (%Cursor X)

Arithmetic
Function

Function
This function reads the x-coordinate at the cursor position on the display.

Format

% CURX

Explanation
This function has the value that indicates the x-coordinate of the cursor

position on the display. The value is within the range: 0 ~ 79 .

3.1.33 %CURY Function (%Cursor Y)

Function
This function reads the y-coordinate at the cursor position on the display.

Format

% CURY

Explanation
This function has the value that indicates the y-coordinate of the cursor

position on the display. The value is within the range: 0~ 24 .

181

Arithmetic
Function

Arithmetic Functions

No. Functions Use Significant
digits

1 EXP (X) ex 12
2 LOG (X) löge X: natural logarithm 12
3 LGT (X) log io X: common logarithm 12
4 SQR (X) Vx: square root 14
5 FRC (X) Extracting a decimal fraction 14
6 RND (X) Random numbers 7
7 ABS (X) | X j: absolute value 14
8 SGN (X) Sign discrimination 1
9 FIXO (X, Y) Round-down 14

10 FIX5 (X, Y) Round-off 14
11 FIX9 (X, Y) Round-up 14
12 FIXE (X, Y) E-type expression round-off 14
13 INT (X) In integers 14
14 SIN (X) SinX 12
15 COS (X) Cos X 12
16 TAN (X) TanX 12
17 ASN (X) cn ►—* • o i X 12
18 ACS (X) Con- 1 X 12
19 ATN (X) Tan- 1 X 12
20 RAD (X) Degree —radians 14
21 DMS (X) Degree—degrees, minutes, seconds 14
22 ARD (X) Radians—degrees 14
23 ADS (X) Degrees, minutes, seconds—degrees 14
24 MOD (X, Y) Remainder of X -s- Y 14
25 MAX (X,, •**, Xn) Maximum value 14
26 MIN (Xj.-.Xn) Minimum value 14
27 TIM Hours, minutes, seconds —

28 PI 7r 12
29 SIZE Size of unused memory area —
30 ERR Overflow check 1
31 EOF (X) End of file checking 1
32 ®7oCURX x-coordinate of cursor 2
33 VoCURY y-coordinate of cursor 2

182

String
Function

3.2 String Functions

3.2.1 LEN Function (Length)

Function
This function checks the number of characters in a character string.

Format

LEN (< String Expression>)

Explanation
This function has the value of the number of characters in a specified

string expression. Each blank space is counted as one character.

[Ex. 3.2.1-1]
When X$ = “ABCDEFG” , the number of characters in X$ is assigned to

variable I.

When line 50 is executed, 7 is assigned to variable I. If X$ = “ABC u u

EFG” , 1 = 8 . (i_ i indicates one space.)

183

String
Function

3.2.2 IDX Function (Index)

Function
This function confirms whether there is a specified character string in a

certain string expression or not.

Format

I D X « I trine . , > , < “ "« . > (, < Arithmetic>] }
Expression 1 Expression 2 u Expression

Explanation
This function searches the character string specified by < String Expression

2 > in a string expression specified by < String Expression 1 > . If it is found,
this function has a value indicating where the match lies from the beginning of
< String Expression 1 > . When there is more than one match in < String Expres­
sion 1 > , the value of < Arithmetic Expression > specifies which occurrance
of the match will be searched.

If the character string specified is not found, the value of this function is 0.
A space is counted as one character.

[Ex. 3.22-11]
When X$ = “ REDi_,W H ITE 1_ jBLUE,_jWHITE1_ , YELLOW” , the

second character string “ WHITE” is searched.

the value of A is 16.

is searched in
16th character,

184

3.2.3 VER Function (Verify)

String
Function

Function
This function verifies that a certain character string consists only of the

specified characters.

Format

VER(<String Expression 1 > , <String Expression 2 >)

Explanation
This function verifies that the character string specified by < String Ex­

pression 1 > consists only of the characters specified by < String Expression
2 > . Two or more characters can be specified for < String Expression 2 > .

When < String Expression 1 > consists only of the characters specified by
< String Expression 2 > , the value of this function is 0.

If < String Expression 1 > contains a character not specified by < String
Expression 2 > , this function has a value indicating the column number
where the unspecified character in < String Expression 1 > .

[Ex. 3.2.3-11]
When X$ = “ABCCABC2B4A” , find out at what column number in

X$ a character other than A, B, or C appear for the first time.

When line 50 is executed, a check is performed to verify if there is any
character other than A, B, or C in character string X$. Because the eighth char­
acter in X$ is 2, 8 is assigned to A.

185

String
Function

3.2.4 NUM Function (Number)

Function
This function converts a numbers (character data) to a numeric value.

Format

N U M (<String Expression>)

Explanation
Some character strings consist of numbers (0 ~ 9) and look like numerical

values, but they cannot be used for calculation. The NUM function converts
such character data into numeric values. The following characters can be
specified in a string expression:
• Numbers: 0 ~ 9
• Decimal point: . (If there is more than one decimal point, the

characters following the second one are ignored.)
• Sign: + or — (The sign can be specified only at the beginning

of numbers or immediately following E.)
• Exponent expression: E (If there is more than one E, the characters follow­

ing the second E are ignored.)
If a character other than one of those listed above is included in the char­

acter string, all characters following that character are ignored.
If the string expression does not contain a number, the value of the

function is 0 .

[Ex. 3.2.4-1]
X$ is converted to a numeric value when X$ = “ 123AB5” .

When line 50 is executed, the value 123 is assigned to A.
“ AB5” is ignored.

186

String
Function

3.2.5 CHR$ Function (Character)

Function
This function converts a numeric value to character data.

Format

CH R$(<A rithm etic Expression>)

Explanation
The function is the opposite of the NUM function. It converts a numeric

value specified by < Arithmetic Expression > to a string of numbers (character
data).

This function has a defined length according to the number of digits.
The first charcter is always a space.

If a number whose value is expressed in the E form is specified, it is con­
verted into a character string in the E form.

[Ex. 3.2.5-11]
The character string “ 1234” is assigned to A$ when X = 1234.

When line 50 is executed, the value 1234 is converted to a charater string
and “ ,__,1234” is assigned to A$.

187

String
Function

3.2.6 ASC$ Function (ASCII)

Function
This function converts a specified ASCII code to character data.

Format

A SC $(< Arithmetic Expression>)

Explanation
This function’s value is a one-byte character data in ASCII code that cor­

responds to the value specified by < Arithmetic Expression > . The numeric
value in an arithmetic expression must be specified in decimal notation. The
range of values that can be specified is : 0 -2 5 5 (0 0 -F F in hexadecimal
notation). Specifying a value outside this range causes an error.

Refer to “Appendix 1. Character Codes” for ASCII codes.

[EX. 3.2.6-1]
The integer 65 is converted into a corresponding character.

50 LET X = 65

60 LET A$=A SC$(X)

On line 60, character “ A ” , which corresponds to the ASCII code 65 (41 h),
is assigned to A$.

188

String
Function

3.2.7 COD Function (Code)

Function
This function converts a specified character to ASCII code.

Format

C O D (<String Expression>)

Explanation
This function has the value of the first character of a specified character

string converted to decimal ASCII code.
Refer to “Appendix 1. Character Codes” for ASCII codes.

[Ex. 3.2.7-11]
When string variable X$ is “ BOOK” , the ASCII code that corresponds to

the first character is assigned to variable A.

50 LET A = C 0 D (X$)

When line 50 is executed, the first character (B) of X$ = “ BOOK” is
converted to ASCII code and 6 6 (42h) is assigned to A.

189

String
Function

3.2.8 STR$ Function (String)

Function
This function extracts part of a variable.

Format

S T R $ « f trinS . > , < Arithmetic > [<;
Expression Expression 1 L

Arithmetric
Expression l

Explanation
A character string specified by < Arithmetic Expression 1 > and

< Arithmetic Expression 2 > is extracted from the character string speci-
fed by < String Expression > .

< Arithmetic Expression 1 > specifies the position of the character string
that will be extracted.

< Arithmetic Expression 2 > specifies the number of characters that will
be extracted. < Arithmetic Expression 2 > can be omitted. If it is omitted,
all characters following the column specified by < Arithmetic Expression 1 >
are extracted.

The contents of < String Expression > do not change when a character
string is extracted using this function.

If this function is specified for the left side of an expression in the LET state­
ment, a part of a specified character string can be replaced by another character
string. In this case, the position of the first character of the character string that
will be replaced is specified by < Arithmetic Expression 1 > , and the number of
characters that will be replaced is specified by < Arithmetic Expression 2 > .
< Arithmetic Expression 2 > can be omitted. If it is omitted, all characters
following the column specified by < Arithmetic Expression 1 > are replaced.

For example, suppose that the following specification is made by the LET
statement:

LET ST R$(A $,X ,Y)=B$

At this time, there are three different methods of replacement depending
on the position specified by X:

• When the position specifed by X is in the character string of A$.

V ////Ä • Character
V ////A * string

n : N U L(O O h)

190

String
Function

In this case, only the character string specified by Y is replaced. If fewer
characters are specified by Y than are specified by B$, Y characters from the
beginning of B$ are used to replace A$. If more characters are specified by Y
than are specified by B$, all characters of B$ are used to replace A$, and the
number of characters specified by Y is ignored.

• When the position specified by X exceeds the character area of X$:

Only the character string specified by y is replaced (added) and space codes
are filled.

• When the position specified by X exceeds the character area of A$:

A$

X
1

In this case, replacement is not performed.

[Ex. 3.2.8-1]
“ DEF” is extracted from string variable X $= “ABCDEFGHI” and

assigned to string variable A$.

When line 50 is executed, three characters starting from the fourth char­
acter are extracted from “ABCDEFGHI” and assigned to A$ so A $ = “ DEF” .

191

String
Function

[EX. 3.2.8-2]
“ DEF” in character string “ABCDEFGH” is replaced by “ 123” .

50 LET A$="ABCDEFGH"

60 LET STR$(A$,4,3)="]23"

When line 60 is executed, the contents of A$ changes from “ABCDEFG”
to “ ABC123GH” .

In this case, even if “ 12345678” is specified instead of “ 123” , the result is
the same. If “ 12” is specified instead of “ 123,” the result is “ABC12FGH” .

[Ex. 3.2.8-3]
Assuming that “AB” is in a string variable with a length of 10 bytes,

“ 123456” is added starting from the the fourth character.

1 0 DIM A $ 1 0

2 0 LET A$="AB"

50 LET STR$(A$,4,6)="123456"

When line 50 is executed, the contents of A$ changes from “ AB” to
“AB i _ i 123456” . B is followed by one space (20h), and 6 is followed by a
NUL code (00H).

192

3.2.9 INPUTS Function

(
Function

This function reads a character string.

String
Function

Format

[N P U T $ (< A rithmetic1> [,< A r i th m e m c [String];|)
Expression! u’ Expression 2 L Expression

Explanation
This function reads character strings entered through the keyboard, char­

acter data from a file on a disk, or character strings output from an external
input device.

This function is almost the same as the INPUT statement. But it has the
values of the character strings read by the function itself. When the character
(code) specified as the end code is read during the reading of a character string,
the reading ends. <Arithemetic Expression 1> specifies the length (the
number of characters) of the character string that will be read. Integers
within the range: 1 -2 5 5 can be specified.

< Arithmetic Expression 2 > specifies the logical device number of the
external input device or file from which reading will be performed. An integer
of 0 — 9 can be specified. The logical device number must be defined in
advance by the OPEN statement. But logical device number 0 indicates the
keyboard, which is automatically opened by the system. <Arithmetric Ex­
pression 2 > can be omitted. If it is omitted, the <String Expression > must
also be omitted. It this case, the keyboard is automatically specified.

< String Expression > specifies the character that ends the reading. When
this character is read during character string reading reading ends.

Up to four such characters can be specified as end codes at the same
time. If more than one character is specified, reading ends when one of them
is read. At the end of data reading, the end code itself is read. Even if an end
code is specified, when the character string of the length specified by
< Arithmetic Expression 1 > is read, the reading ends. < String Expression >
can be omitted. If it is omitted, the character string of the length specified by
<Arithmetric Expression 1 > is read.

“ 0 0 H” can not be specified as a end code.

Note
When a character string entered through the keyboard is read by this

function, the characters stored in the key buffer are actually read and cleared
from the key buffer.

193

String
Function

[Ex. 3.2.9-1]
A string of 255 characters is read from the file on a disk. Reading ends

when ” is read.

When the data that will be read from the file is “ ABCDEFGH:IJI” , A$
is “ABCDEFG:” .

[Ex. 3.2.9-2]
A character string entered through the keyboard is assigned to string

variable A$. Reading ends when a code representing a comma (,) or 0 is
read.

10 DIM A $ 128

50 LET A$ = INPUT$(128,0," ,&0D")

On line 50, the 0 is specifed for reading through the keyboard. Because
the keyboard is already opened by the system, the OPEN statement does not
have to be excuted.

When line 50 is executed, nothing on the screen but the system is set to
the key input waiting state. Then if “ABCD,” is entered, A$ becomes
“ ABCD,” . Then execution proceeds to the next line and the key buffer is
cleared. (Unlike the INPUT or INPUT USING statement, the INPUTS
function does not cause input echo back.)

194

String
Function

3.2.10 KEY Function (Key)

Function
This function checks a character string entered through the keyboard.

Format

K E Y [(<String Expression>)]

Explanation
Characters entered through the keyboard are first stored in the key buffer.

The key buffer can store up to 128 characters.
With this function, the number of characters stored in the key buffer or

and where character is located in the key buffer can be checked. Only one
character can be specified in < String Expression > . If more than one char­
acter is specified, only the first character is valid, and other characters are
ignored. This function has a value indicating the specified character’s column
number in the character string stared in the key buffer. If the specified
character is not found, the value is 0 .

If < String, Expression > is omitted, this function has the value indicating
the number of characters in the buffer. A value of 0 ~ 128 is assigned to the
function.

Note
The contents of the key buffer remain as long as they are not read by the

INPUTS function. So, clear the buffer before the program ends. Refer to
the example to learn how to clear the buffer.

195

String
Function

[Ex. 3.2.10-1]
Characters entered through the keyboard are stored in the key buffer.

Processing starts when 0 is depressed.

5 DIM A $ 10

1 0 IF KEY >=10 GOTO [EXIT]

2 0 IF KEY("&0D ") < > 0 GOTO [EXIT]

30 GOTO 10

40 [EXIT] REM PROCESSING START

50 PRINT "PROCESSING START"

A loop is made by lines 10 — 30. The branch condition from this loop is the
storage of 10 characters in the key buffer or the depression of 0 . “&0D”
on line 2 0 is the code for 0 .

When this program is executed, nothing is displayed and the system is set
to the key input waiting state. Character can be entered through the keyboard
in this state. The character string is not displayed on the screen but is stored
in the key buffer. When 0 is depressed or 10 characters are entered,
“ PROCESSING START” is displayed on the screen.

[Ex. 3.2.10-2]
The contents of the key buffer are cleared.

When line 50 is executed, the value of the KEY function (the number of
characters in the buffer) is used as the parameter for the INPUTS function
and the contents of key buffer are assigned to AS. So the key buffer is cleared.

196

String
Function

[Ex. 3.2.10-3]
When a comma (,) is entered, the character string is assigned to A$.

5 DIM A $ 128

10 IF KEY("*")=0 GOTO 10

20 A$=INPUT$(KEY(","))

30 A$ = STR$(A$,1,L E N (A $)- 1)

On line 10, the input through the keyboard is stored in the key buffer.
When the comma is entered, the value of KEY changes from 0 to the number of
characters stored in the key buffer and execution proceeds to line 2 0 .

On line 20, the entire character string (including the comma) in the key
buffer is assigned to A$.

On line 30, the entire character string except the comma is extracted and
assigned again to A$. '

When the program is executed, nothing is displayed and the system is set
to the input waiting state. At this time, if “ABODE,” is entered through the
keyboard, “ABCD” is assigned to A$.

197

String
Function

3.2.11 FKEY Function (Function Key)

Function
This function checks a key when it is depressed.

Format

FK EY[(<A rithm etric E xpression>)]

Explanation
Function keys and other special keys generate the character strings shown

in Table 3.1 in the key buffer.
< Arithmetic Expression > specifies the number corresponding to a key

shown in Table 3.1. The range of values is: 1 —43.
When < Arithmetic Expression > is specified, the function searches the

key buffer for the character string corresponding to the specified key. If the
character string is found, the function has a value indicating the number of
column where the character string begins. At the same time, the character
string is cleared from the key buffer and the remaining character string is
moved up. If the character string corresponding to the specified key is not
found, the value of the function is 0 and the contents of the key buffer do
not change.

If < Arithmetic Expression > is not specified, the function checks if there
is a character string at the head of the key buffer that corresponds to any
of the keys shown in Table 3.1. If such a character string is found, the
function has a value indicating the the key number in the table. At this time,
the character string found is cleared from the key buffer and the remaining
character string is moved up. If there is not a character string corresponding
to a key in the table, the value of the function is 0 and the contents of the key
buffer do not change.

198

String
Function

Table 3.1

No. Key Key
No.

Character
String

No. Key Key
No.

Character
String

1 FI 1 ESCO 23 - (6) 23 ESC [C
2 F2 2 ESC P 24 - (4) 24 ESC [D
3 F3 3 ESC Q 25 PgUp (9) 25 ESC [E
4 F4 4 ESC R 26 PgDn (3) 26 ESC [F
5 F5 5 ESCS 27 - (5) 27 ESC [G
6 F6 6 ESC T 28 HOME (7) 28 ESC [H
7 F7 7 ESC U 29 - 0) 29 ESC [I
8 F8 8 ESC V 30 CLEAR 30 ESC [2J
9 F9 9 ESC W SCREEN

1 0 F10 1 0 ESC X 31 - (0) 31 ESC [N
1 1 F ll 1 1 ESCY 32 ■ft /FI 32 ESCo
1 2 F12 1 2 ESC Z 33 17F2 33 ESC p
13 COPY 13 ESC 3 34 Y/F3 34 ESC q
14 MOVE 14 ESC 4 35 Y/F4 35 ESC r
15 DELETE 15 ESC 5 36 ÜVF5 36 ESCs
16 INSERT 16 ESC 6 37 Ü7F6 37 ESC t
17 t !Sj 17 ESC 7 38 H7F7 38 ESC u
18 PD-A 18 ESCO 39 t / F 8 39 ESC v
19 PD-B 19 ESC 1 40 U7F9 40 ESC w
2 0 PD-C 2 0 ESC 2 41 H7F10 41 ESC x
2 1 1 (8) 2 1 ESC [A 42 t / F l l 42 ESCy
2 2 1 (2) 2 2 ESC C B 43 Ü7F12 43 ESC z

Note 1.
2.

3.

4.
5.
6.

ESC indicates “ 1BH” in ASCII code.
Numbers 0 ~ 9 in parentheses indicate ten-key numbers.
Numbers 2 1 -2 9 and 31 indicate key operations performed in the
cursor control mode.
— indicates that nothing is printed on a key.
H indicates that the key is depressed simultaneously with the shift key.
PD-A - PD-C are function keys on the pointing device.

199

String
Function

[Ex. 3.2.11-1]
When 0 is depressed, execution proceeds to the next routine.

50 IF FKEY(23)=0 GOTO 50

60 REM MOVE CURSOR TO RIGHT

When 0 (key no. 23) is depressed on line 50, the next line is executed. At
this time, character string “ESC [C” in the key buffer is cleared.

[Ex. 3.2.11-2]
When I F 1 I , I F2 1 , or I F3 i is depressed, a branch occurs to the res­

pective routine.

10 DIM A $ 1

40 IF KEY=0 GOTO 40
50 ON FKEY GOTO [FI] ,[F2],[F3]

60 A$ = INPUT$(1)

70 GOTO 40

•

100 [FI] REM FI PROCESSING

150 [F2] REM F2 PROCESSING

200 [F3] REM F3 PROCESSING

The system awaits key input on line 40. If a key is depressed, it is checked
on line 50. If the key is one of the function keys specified, a branch occurs
to the respective processing. If the key is not one of the function keys
specified, line 60 is executed to clear the key buffer, and the execution returns
to line 40.

200

3.2.12 COM$ Function (Command)

String
Function

Function
This function extracts a character string specified by the RUN com­

mand.

Format

COM$

Explanation
This function enables the use of a character string, entered after a

semicolon (;) in the RUN command, in a program.
If there is no semicolon or character string following the semicolon, this

function has NUL code (0 0 h) as its value.

Note
The semicolon immediately following the RUN command is not included

in the character string of this function.

[Ex. 3.2.12-1]
In the RUN command input to execute program EX1, the name of the

file that will be used in the program is specified.

5 REM PROGRAM

10 DIM D F $ 1 0

50 LET FNAME$=C0M$

60 DF$="A:"+FNAME$

70 OPEN #1,DF$

Assume that the following is input to start program execution.
RUN E X 1;FA B C 0
E X 1;FA B C 0
or E X 1;FA B C 0
or ;FABC Q]

In each case, data file FABC. DAT on the disk in drive A is opened on
line 60.

201

String
Function

3.2.13 HEX$ Function (Hexadecimal)

Function
This function converts a specified value to a hexadecimal figure.

Format

H E X $(< Arithmetic Expression>)

Explanation
This function converts a value specified by <Arithemetic Expression >

to a two-digit hexadecimal figure (character string). The range of values that
can be specified by < Arithmetic Expression > is : 0 -2 5 5 .

[Ex. 3.2.13-1]
The ASCII code of a character entered through the keyboard is converted

to a hexadecimal figure.

5 DIM A$ 1 ,X$2

10 INPUT A$

20 LET Q = C0D(A$)

30 LET x $ =HEX$(Q)

40

•

PRINT X$

If “ $” is entered on line 10, ASCII code 36 (decimal) is assigned to Q on
line 20. On line 30, character string 24, which is the hexadecimal figure
equivalent to 36, is assigned to X$. So “ 24” is displayed on line 40.

202

3.2.14 TOD$ Function (Time of Day)

Function
This function sets the date, day, and time.

String
Function

Format

TODS

Explanation
This function has the value of the AS-lOO’s system clock. It is expressed

as a 2 2 -character string as shown below.

mm/dd/yy (www), hh:mm:ss

Second (2 characters: 00-59)

Minute (2 characters: 00-59)

Hour (2 characters: 00-23)
„ - . (2 characters: SUN, MON, TUE,Day of week WED> XHU> FRI SAX)

Year (2 characters: 00-99)

Day of month (2 characters: 00-31)

Month (2 characters: 01-12)

The value of the AS-lOO’s system clock is set as the day and the time.
The value of the system clock can be also set by the OS mode command

TOD.
The hour, minute, and second value handled by this function is linked to

the TIM function.

• Method for setting the data and time
TOD$ = ” mm/dd/yy, hh:mm:ss”

• Method for setting the date only
TODS = ” m m /dd/yy”

• Method for setting the time only
TODS = ” hh:mm:ss”

When the date or the time is set, a two-digit figure must be specified
for each element. When the date (year/month/day) is specified, the day of
week is automatically set.

The value is counted according to the system clock.

Note
When the real time clock (option) is attatched to the AS-100, the value of

the system clock elapses even when the power is off.

203

String
Function

[Ex. 3.2.14-1]
January 5, 1983, 8:30:00 is set.

10 LET T0D$ = "01/05/83,08:30:00"

[Ex. 3.2.14-2]
A date entered through the deyborad is set.

10 INPUT M S G ("DATE(mm/dd/yy)=")DAY$

20 LET T0D$=DAY$

[Ex. 3.2.14-3]
The value of the system clock is displayed.

The result is as shown below. The contents is the value of the system
clock at the time line 50 is executed.

“01/05/83 (WED), 08:35:12”

Note
When the system clock is set using the TOD command (an OS mode

command), a space (l _ j) instead of a comma, must be placed between the
data and the time as follows:
TOD mm/dd/yyL_,hh:mm:ss

204

String
Function

List of Character Processing Functions

No. Function Use

1 LEN (X$) Number of characters
2 IDX (X$, Y$, Z) Search
3 VER (X$, Y$) Locate
4 NUM (X$) Character string — numeric value
5 CHR$ (X) Numeric value — character string
6 ASC$ (X) ASCII code — character string
7 COD (X$) Character — ASCII code
8 STR$ (X$, Y, Z) Extraction and replacement
9 INPUTS (X, Y, Z$) Reading
10 KEY (X$) Key buffer retrieval
11 FKEY (X) Function key retrieval
12 COMS Extracts the character string form

RUN commands
13 HEXS (X) Decimal value — hexadecimal

figure
14 TODS Date and time

205

ISAM

4.

4.1

4.1.1

ISAM Function

This section explains the ISAM function of Canon BASIC, which can be
used by loading an ISAM library into memory.

What Is ISAM?

ISAM is an abbreviation for Indexed Sequential Access Method. This
function reads and writes data (indexed access) to and from a file by
referencing the contents of the data as an index.

Indexed Access

When accessing a file using the GET statement, the PUT statement, etc., data
is read from and written to the file by specifying the record number in the file.

With indexed access, data is read from and written to a file by specifing the
contents of records as an index, disregarding the record numbers in the file
(the record positions in the file).

For example, with ordinary access, an instruction is given to read the data
from record 4. But with indexed access, an instruction is given to read the data
from the record that contains “ ABC” .

• Access with GET, PUT and others • Indexed Access

Data

P O R . . .

206

{

Data read

ISAM

An index for indexed access is called a key. The part of the record where
“ ABC” is written is the key in the figure.

The key can be set at any position in a record. The data in the key (key
value) of the record serves as the index in indexed access.

Assume that a record the following contents:

2-byte 8-byte character
integer string

If the first two bytes are set as a key, indexed access can be performed using
the value of the 2-byte integer data as an index. The record that has data
“ 45” as a key can be read from the file by indexed access when the data
“45” is specified as a key.

Integer^__Character string

45 E F G

•Read data from the record
whose key value is “ 45” .

Indexed access is possible because there is an index file. An index file
records the key information of the records in a data file. An index file is also
created when a data file which is accessed with indexed access is created.

When data is read from a file with indexed access, the key information in
the index file is first retrieved according to the specified key value. Then the
record specified by the key information is read.

With this procedure the data of a specific record can be read into a
program.

In indexed access, a data file and an indexed file function only when they
are used together, so, they must always be copied together.

207

ISAM

Access instruction = > Index nie

<;
Data

Data Pile

w
In indexed access, allocation of a data file and an index file to a disk,

writing of key information into the index file, and other processing are all
performed automatically by the ISAM function. So during design, only the
data structure of the record and the location of the key have to be con­
sidered.

4.1.2 Keys

This part explains the rules governing a key as an access index in indexed
access.

Assume that a record is as shown here.

Record 10 Byte

2-byte
integer

8-byte character
string

D ata A Data B

f t

And assume that a file consisting of four records with the following data is
created with indexed access:

Data A D ata B

27 A A A A A A A A

49 B B B B B B B B

132 C C C C C C C C

50 D D D D D D D D

o
Key

Because data A is defined as a key, the priority shown below is assigned to
each record according to the key value. The priority is not related to the order
of writing the records. The ISAM function automatically assigns higher
priority to smaller key values by referring to the key values of the records in
the file. This priority is called a key order.

208

4.2

4.2.1

ISAM

Data A Data B

Key order 1

Key order 2

Key order 3

Key order 4

27 a a a a a a a a

49 B B B B B B B B

50 D D D D D D D D

132 C C C C C C C C

Key

Reading data from the records continuously in key order is called indexed
sequential read.

Reading data from the records, without regard to the key order, by
specifying the key values (Data A) of the records that will be read is called
indexed random read.

Canon BASIC ISAM Function

This part describes how indexed access is performed by the ISAM func­
tion of Canon BASIC.

General

The ISAM function of Canon BASIC uses#a special data file and a special
index file for indexed access. These files have a different structure than data
files used by the GET, PUT, and other statements. A file created by the PUT
statement can be converted to a file for ISAM using ISGEN, one of the
ISAM utility programs explained later.

A file created by ISAM can be accessed by the ISAM function of
Level II COBOL*(Canon AS-100 Specifications).

The ISAM function is executed by eleven ISAM instructions and two ISAM
utility programs. The functions of the instructions and the utilities are illust­
rated on the next page.

‘ Level II COBOL is a trademark o f Micro Focus Ltd.

209

ISAM

Variable

•ISAM PACK S t a t e m e n t
Data assignment of record buffer

7 \

I record buffer

•ISAM UNPACK S t a t e m e n t • Data read from
record buffer

•ISAM WRITE S t a t e m e n t . . . D a t a w r i t e
•ISAM REWRITE statement...
Data update

•ISAM DELETE statement...
Record delete

Index file
information

•IDXINF
utility

7T]
•ISAM START statement...Current record set

•ISAM SREAD statement.. Sequential read

•ISAM RREAD statement.. Random read

File File conversion File

by PUT
ISGEN utility statement

4.2.2

•ISAM OPEN statement.........File open

•ISAM CLOSE statement...... File close

•ISAM SECUR statement...... File security

The functions of the instructions and utilities are explained in detail later.

Records

Although the record length is determined by the length of the variable
specified in the GET statement and the PUT statement, it is regarded as fixed in
ISAM processing. The record length can be defined within the range: 1 — 510
bytes. A fixed record length here means that all the record lengths in the same
file are equal and the reading/writing of the data from/to file is always
performed in record units.

210

ISAM

In ISAM, data cannot be read and written directly. Data is first stored in
an area called a record buffer before it is written into a file or assigned to a
variable. For example, when one data record is written to a file, the value of
each variable that consists of the record data is assigned to the record buffer in
advance using the PACK statement. Then an instruction to write the contents
of the record buffer into the file is executed.

•Ordinary file reading/writing •File reading/writing by ISAM

Variable
7T"

GET statement

PUT statement

Variable
7 T

Variable

\7 \7

File

Read: ISAM UNPACK
statement

Assign: ISAM PACK
statement

ISAM file read/ write

The record buffer consists of a record length of string-type array variables
in which each array element is one byte. By using the PACK statement (assign)
and the UNPACK statement (read), the record buffer delivers or receives
data to/from the variables.

4.2.3 Primary Keys and Alternate Keys

Up to four keys in each record can be set in ISAM. There is one primary
key and three alternate keys. The primary key must always be set.

The value of the primary key cannot be duplicated in a file. This means that
records having the same primary key value are not written to a file.

One, two, or three alternate keys can be set. It must be specified if
duplication is valid or not for each key.

211

ISAM

The length of each key is specified within the range: 1—32 bytes.

Key values are compared byte by byte from the beginning of the key regard­
less of the data type.

For example, when comparing character strings “ ABC” and “ ACC” ,
both strings have “A ” in the first byte. Comparison proceeds to the second
byte, where “ B” and “ C” are compared. Because “ B” = 42H and “ C” =43h,
the key value “ACC” is regarded as greater than that of “ABC” .

Record A Record B

42h 43h 44h 42h 44„ 44,H

Record A < Record B

Key values are compared in the same way for integer type-data (2 bytes)
and real number-type data (8 bytes).

Since the numeric order and the order of key value are different for
negative values, negative numeric values should not be used in ISAM.

The comparative order of key values of integer-type data are as shown
below.

M in im u m i 0 ------- 3 2767 , —3 2 768 ------- — 1 1 M axim u m |

Note Refer to “Appendix 6 , Execution of Machine Language Programs” ,
for the structure of integer-type data and real number-type data.

212

ISAM

4.2.4 Files

Regardless of files opened with the OPEN statement, under ISAM up to
six pairs of files can be open at the same time.

Each file is opened with the ISAM OPEN statement. File numbers are
defined automatically to the files. The file numbers must be specified to access
these files in the program.

When a files are opened, the open mode (described later) must be
specified to the opened files according to the mode access.

The following number of records can be written into a pair of files:

• When the record length is 126 bytes or less: 65535 records

• When the record length is 127 bytes or more:
The value of the integer N in
(Record length + 2) x N i 65535x 128

* These limits do not apply when the disk is full.

4.2.5 Pointer

When an index for indexed access is a key value, a pointer in ISAM serves
as a direct index for file access.

For example, assume that a key value is specified and the data of the record
that has the key value specified is read.

ISAM first searches the key information in the index file for the specified
key value and finds the corresponding record in the data file.

Then ISAM moves the pointer to the corresponding record, reads the data
of the record indicated by the pointer, and assigns the data to the record buffer.
After this processing, ISAM moves the pointer to the next record in the key
order and processing is completed.

213

ISAM

The record where the pointer is located is called the current record and the
key serving as the basis of pointer movement is called the current key.

This process is shown here.

Record

2-byte 2-byte 8-byte character
integer integer string

ft
Prim ary key Alternate key 1

12 bytes

• Reading of data from the record in which the alternate key value is 24.

1) Key information o f alternate key 1 is searched.

2) The pointer is moved according to the key
information.

3) Data is read from the record
at the pointer position.

Record buffer

4) For alternate key 1, the pointer is moved to the record next in the key order.

Data File

5) End o f processing

2 1 4

ISAM

The current key has nothing to do with indexed random access, but it serves
as an index for access in indexed sequential access. The next record in indexed
sequential access means the next record in the key order with respect to the
current key.

4.2.6 Limitations and Notes for Use

• Up to six files can be open at the same time.

• The record length is within the range: 1 — 510 bytes.

• The maximum number of keys is four: 1 primary key and 3 alternate keys.

• The maximum key length is 32 bytes.

• The maximum number of records that can be written in a pair of files is 65535.

1) Record length s 126......... 65535 records
2) Record length a 127..........N records in

(Record le n g th 2)x N s65535 x 128

• The value of the primary key cannot be duplicated.

• Key values are compared byte by byte as characters. The order of a numeric
value and the order of key values are different for negative values.

• The ISAM library must always be loaded at BASIC start-up and be resident
in memory.

215

ISAM

4.3 How To Use ISAM Instructions

T h i s n n rt H p srrih ps

4.3.1 Loading the ISAM Library

The ISAM library must always be resident in memory to use ISAM.
“/ISAM ” must be specified in the BASIC command to start BASIC, and
the ISAM library is loaded into memory when the BASIC command is
executed.

• Operation
BASIC i—i /ISAM Q]

4.3.2 Design of Files

A file for indexed access must be designed for use by ISAM. Only the
record structure must be considered because file design is determined by the
record design.

• Data structure:

• Record length:

• Key:

The data that makes up a record is determined.

The record length is determined according to the data
structure of the record. It must be within the range:
1 — 510 bytes.

The key part of the record is determined.

• Filename: The file type specified should be ISAM to prevent
confusion with non-ISAM data files. The name of a
data file added to the file type IDX is automatically
specified as an index file.

♦Refer to “ 4.10 How To Calculate File Size” to calculate the size of a file.

216

ISAM

[Ex.]

File Name: M S T. IS M

2-byte
integer

<1

2 -byte integer
— 1 byte character

30-byte character string

Record length SO bytes

17 18 19 20 21 22 23 24 25 26 27 28 29 30

Variable N O N A M E S

A
C O D E S$ A D D R S

 ̂ i_ Alternate key 2 (1 byte from the 20th byte;
duplication acceptable)

Alternate key 1 (2 bytes from the 18th byte;
duplication acceptable)

I Primary key (2 bytes from the 1st byte)

4.3.3 Variables

The use of ISAM requires a number of different variables. The names of
the variables must be defined in advance. The examples shown here are the
same variables used in the ISAM program examples.

• D a ta Variables to which data making up records is assigned
NO, NAMES, etc.

• Record b u fferString-type array variables used as a record buffer
Each element has a length of 1 byte.

BUF$(1) ~ BUF$(n)

• File structure
information.....................Integer-type array variables to which data indicating

the file structure specified for the ISAM OPEN
statement are assigned

PARM(l) ~ PARM(n)

• File number.....................This is an integer-type variable to which a file number
is assigned.

ID

217

ISAM

• Return cod e..................... This is an integer-type variable to which a return
code indicating the result of ISAM instruction execu­
tion is assigned.

STAT

The details of these variables are explained in the explanation of each ISAM
instruction. In addition to these variables, other variables necessary to execute
of ISAM instructions must sometimes be defined.

4.3.4 Return Code

When an ISAM instruction is executed, a return code indicating the result of
instruction execution is automatically assigned to a specified variable. Be sure
to check this return code following execution of an ISAM instruction in the
program.

4.3.5 How To Interpret Formats

Like other Canon BASIC statements, each ISAM statement consists of
an instruction word (keyword) and an operand. Specify a keyword and an
operand according to the format shown for each ISAM statement.

But the method of specifying formats is somewhat different from that of
other instructions. In other Canon BASIC statements, a specifiable element
such as < Arithmetic Expression > is shown in the operand specified in the
format. In ISAM statements, the definition of an element in the operand is
specified as <File Number > , <File N am e>, etc.

The part that specifies the variable to which the data is returned from
ISAM is underlined (=) in the format.

Example:

ISAM OPEN (< File N o .> , < File N am e>, <File Structure> , < Return Code>)

218

ISAM

4.4 Basic ISAM Instructions

4.4.1 ISAM OPEN Statement (ISAM Open)

Function
This statement opens a pair of data files and index files.

Format

ISAM OPEN (< File N o .> , < File N am e>, < File Structure> ,
< Return C ode>)

Explanation
The ISAM OPEN statement opens a pair of data files and index files for

indexed access.

Specify an integer-type variable in < File N o .> . When this statement is
executed, an identification number (1 - 6) of the pair of files opened is auto­
matically assigned to the variable as the file number. Specify the file number
assigned to the variable for indexed access to the file after execution of the
statement. If the file is not opened, 0 is assigned.

Specify the name of the data file that will be opened with the drive name,
file name, and file type in < File Name > .

It must be specified with a string expression (a string variable or a
character string in quotation marks). An index file with the same name as the
specified data file with the IDX file type attached, is opened by the ISAM
OPEN statement on the same disk as the data file. If the drive name is omitted,
the current drive is automatically specified.

Any file type can be specified here. If the file type is omitted, a file whose
file type isn’t defined is opened. Because the CANCEL command of the Canon
BASIC cannot delete a file whose file type isn’t defined, specify this file type
as “ ISM” . A file created by ISAM cannot be accessed using the GET state­
ment, PUT statement, etc. Do not use the file type “DAT” to prevent con­
fusion with ordinary data files.

219

ISAM

Specify an integer-type array variable of one dimention to which the value
corresponding to the structure of the file that will be opened is assigned in
advance in < File Structure > .

For the file structure (record information, key information, etc.) of the
pair of files that will be opened using the ISAM OPEN statement for indexed
access, the value corresponding to the structure must be assigned in advance
to the integer-type array variable of one dimension by the method shown below.

For the integer-type array variable, the length corresponding to the
quantity of the file structure information must be defined in advance with the
INTEGER and DIM statements.

Specify the file structure information as shown below.

Subscript o f array

Omissible <

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Open mode

Record length

Prim ary key position

Prim ary key length

Attribute o f alternate key 1

Position o f alternate key 1

Length o f alternate key 1

A ttribute o f alternate key 2

Position o f alternate key 2

Length o f alternate key 2

Attribute o f alternate key 3

Position o f alternate key 3

Length o f alternate key 3

0

Input mode: 1, Output mode: 2,
Update Mode:3

1 - 5 1 0

1 - Record length

1 - 3 2

Duplication unacceptable: 1,
duplication acceptable:2

End code

• Open Mode
Select the input mode (1), output mode (2), or update mode (3) according

to the form of indexed access.
Specify the input mode when only the reading of data from the file will be

performed. When files are opened in this mode, data cannot be written to the
file. An error occurs if the pair of files specified in this mode are not on the
disk.

220

ISAM

Specify the output mode to create a file. If files are opened in this mode,
data cannot be read from the file. When files are opend in this mode, if the
specified files are already on the disk, they are deleted from the disk and new
files are created.

Specify the update mode to read data from a file and write data to a file.
When files are opened in this mode, if the specified files are not on the disk,
new files are created. An error occurs if either the data file or an index file
specified is not on the disk.

• Record Length
Specify the length of the record in bytes. The length must be an integer

within the renge: 1 -510 .

• Primary Key Position
Specify 1 plus the number of bytes preceding the position of the primary

key. With the beginning of the record being 1, specify an integer within the
range of the record length.

• Primary Key Length
Specify the primary key length in bytes. Specify an integer within the range:

1 — 32. Make sure that the key range does not exceed the record length.

• Attribute of Alternate Key 1 (2, 3)
Specify whether the duplication of alternate key attributes is unacceptable

(1) or acceptable (2).

• Position and Length of Alternate Key 1 (2, 3)
Specify the position and length of each alternate key just as for the primary

key.

• End Code
Specify 0 to mark the end of the file structure information.

Specify an integer-type variable in < Return Code > . The return code
indicating the result of execution of the ISAM OPEN statement is assigned to
the variable specified here. When the files are opened correctly, 0 is assigned.
< Return Code> must be specified in the operand of every ISAM instruction.
When 0 is assigned to this variable, it means that the ISAM instruction was
executed correctly. Return codes will not be explained later. Refer to “ 4.8
Return Codes” for the meanings of the return codes.

When a file on the disk will be opened with the ISAM OPEN statement,
the file structure specified with this statement is checked to see if it is the
same as the structure of the file on the disk. An error occurs if they are not
the same. If fewer alternate keys are specified than the number of alternate
keys of the file on the disk, a warning return code is returned and the pro­
cessing continues.

221

ISAM

When a file is opened in the input or update mode, the record that has the
lowest primary key value in the file becomes the current record, and the
primary key becomes the current key.

[Ex. 4.4.1-1]
A file “ DFILE. ISM” consisting of the following records is created on

the disk in drive A:

2-byte
integer

Record length 10 bytes O f
ft

8-byte character
string

Primary key

1 0 INTEGER ID, PARM, STAT

2 0 DIM BUF$1(10), PARM(5)

30 PARM(1)=2: REM OUTPUT MODE

40 PARM(2)=10 : REM RECORD LENGTH=10 BYTES

50 PARM(3)=1: REM P KEY P O S I T I O N S ST BYTE

60 PARM(4)=2: REM P KEY LENGTH=2 BYTES

70 PARM(5)=0: REM END CODE

80 ISAM OPEN (ID, "DFILE.ISM", PARM(*), STAT)

In this example, the INTEGER and DIM statements on lines 10 and 20
define the integer-type variables required to execute the ISAM OPEN stat-
ment.

ID is the variable to which the file number of the pair of files opened is
assigned. STAT is the variable to which the return code is assigned.

Array variables PARM (1) ~ PARM (5) are integer-type array variables that
specify the structure of the files that will be opened. The values of file struc­
ture information are assigned to the variables by the LET statements (with
the keyword omitted) on lines 3 0 -7 0 . The number of the array elements is 5
because alternate keys are not specified. 2 is assigned to variable
PARM(l) to specify the output mode, and 10 is assigned to variable PARM(2)
as the length of the record. Because the primary key position is at the 1st byte
from the beginning, 1 is assigned to PARM(3) as the key position and 2 is
assigned to PARM(4) as the key length. 0 is assigned to PARM(5) as the end
code.

222

ISAM

The ISAM OPEN Statement on line 80 actually opens the files for indexed
access. With the execution of this ISAM OPEN statement, data file “ DFILE.
ISM” and index file “ DFILE.IDX” are opened on the disk in drive A. After
the files are opened correctly, 0 is assigned to variable STAT, and the file
number (1 ~ 6) is assigned to variable ID. After the execution of the ISAM
OPEN statement, processing to the files is performed by specifying the file
number assigned to ID.

223

ISAM

4.4.2 ISAM CLO SE Statement (ISAM Close)

Function
This statement closes a pair of data files and index files.

Format

ISAM CLOSE « F i l e N o .> , < Return C od e>)

Explanation
The ISAM CLOSE statement closes the pair of files specified by the file

number.
The open data file and index file must be closed with this statement before

the program ends. Ending the program without closing the files may cause data
irregularities when additional writing, modification, or other processing is
performed.

[Ex. 4.4.2-1]
The file opened in Ex. 4.4.1-1 is closed.

10 INTEGER ID , PA RM,STAT

80 ISAM 0PEN(ID,"DFILE.ISM", PARM(*) „STAT)

500 ISAM CLOSE(ID ,STAT)

510 IF STAT=0 THEN PRINT "NORMAL CL0SE":G0T0 530

520 PRINT "CLOSE ERROR";STAT

530

The IF statement of line 510 confirms that the file has been closed cor­
rectly.

224

ISAM

4.5 ISAM Data Write Instructions

4.5.1 ISAM PACK Statement (ISAM Pack)

Function
This statement assigns data to the record buffer.

Format

ISAM P A C K (<B uffer> , < E x p ressio n > ,........., <Expression> ,
< Return C ode>)

Explanation
The ISAM PACK statement assigns data to the record buffer. Assigning

data to the record buffer is always performed using this statement.
The part of a record buffer to which data will be assigned can be specified.

Data can also be rewritten in a part of the record buffer.
Specify the string array variable, and its subscript, defined as a record

buffer, in < Buffer> . The array variable specified here indicates the position
in the record buffer where data assignment will start. For example, if
BUF$(1)~ BUF$(15) are defined as a record buffer, specify BUF$(3) to start
data assignment at the third byte of the record buffer.

Specify the data that will be assigned to the record buffer in < Expression > .
More than one block of data can be specified, but the data specified must
conform to the data structure of the record (the length of each block of data).

The relationship between the data assigned to a record buffer and the
specification of a record buffer is shown on the next page.

225

ISAM

2-byte 8-byte character 8-byte real

BUF$(1)..BUF$(18)

• When one record o f data is assigned to the record buffer:

ISAM P A C K (B U F $ (1), NO , N A M E $,D A T ,S T A T)
' ------------------------------ v -------------------------------- '

Data
From head of
record buffer

• When only the data of NAMES is assigned to the record buffer:

ISAM P A CK(BUF$(3) , NAMES,STAT)
------- '
Data

From 3rd byte of
record buffer

Each specified length of data is assigned to the record buffer starting from
the specified position. Data assignment can start at any position in the record
buffer. Be sure that the data assigned does not exceed the record length.

Note
When string data or a value is specified directly in < Expression > of

the operand of the ISAM PACK statement, the legth of data is:

ISAM P A CK(BUF$(3) , "ABC",STAT)

-̂--------- 3 bytes (number of characters
number of bytes)

ISAM PACK(BUF$(11) , 3 4 2 , STAT)

-̂---------8 bytes (Numeric value is 8 bytes)

226

ISAM

[Ex. 4.5.1-1]
The data of a record is assigned to the record buffer:

2-byte 8-byte character 8-byte real
integer ___string ^ number ^

Record 18 bytes rr
Variables NO NAMES DAT

10 INTEGER N O , I D ,PARM,STAT

20 DIM BUF$1(18),PARM(5)

80 ISAM 0PEN(ID,"DFILE.ISM", PARM(*), STAT)

200 INPUT M S G ("NO.?")N O :PRINT

210 INPUT MSG("NAME?")NAME$:PRINT

220 INPUT M S G ("DATA?")DA T:PRINT

230 ISAM PACK(BUF$(1), N O ,NAME$,D A T ,ST AT)

Line 20 defines a record buffer length of 18 bytes with 1-byte string-type
array variables BUF$(1)~ BUF$(18). After the file is opened on line 80, the
data input on lines 200 — 220 is assigned to the record buffer using the ISAM
PACK statement on line 230.

Input Input Input

I 4

NO NAMES DAT

2 bytes 8 bytes 8 bytes

V V V
Record buffer

BUF$(1)~BUF$(15)

227

ISAM

4.5.2 ISAM WRITE Statement (ISAM Write)

Function
This Statement writes the contents o f an additional record to a file.

Format

ISAM W R IT E (<F ile N o .> , <B uffer> , < Return C ode>)

Explanation
The ISAM WRITE statement writes an additional record to a file opened in

the output or update mode.
Specify the file number, defined when opening the file, to which additional

writing will be performed in <File N o . > . The file to which additional
writing will be performed must be a file opened in the output mode (2)
or update mode (3). An error occurs if this statement is executed on a file
opened in the mode.

Specify all of the elements of the string-type array variables defined as the
record buffer with an asterisk (*) in < Buffer > .

Before the execution of this statement, the data of the record that will be
written must be assigned to the record buffer using the ISAM PACK statement.

This statement checks for the duplication of the key values of the record
that will be written and the key value of all records in the file before the addi­
tional writing of the record. Because the duplication of primary key values is
unacceptable, if the value of the primary key of the record that will be written
is the same as the value of the primary key of any other records in the file,
return code 2 is returned and the additional writing of the record is not
performed.

This also applies to the alternate keys for which duplication is unacceptable.
If the values of the keys for which duplication is specified as acceptable are
duplicated, warning return code 3 is returned and the additional writing of the
record is performed.

Note
The current record and the current key are reset after execution of the

ISAM WRITE statement.

228

ISAM

[Ex. 4.5.2-1]
File “ FILE1.ISM” , consisting of records with the following data struc­

ture, is created on the disk in drive A.

2-byte 8-byte character
integer string

Record 10 bytes

ft
Primary key

Variables NO NAMES

10 INTEGER N O ,ID,PARM,STAT

20 DIM BUF$ 1(10) ,PARM(5)

30 PARM(1)=2:REM OUTPUT MODE

40 PARM(2)=10:REM RECORD LENGTH = 10 BYTES

50 PARM(3)=1:REM P KEY POSITION = 1ST BYTE

60 PARM(4) = 2:REM P KEY LENGTH = 2 BYTES

70 PARM(5)=0:REM END CODE

80 ISAM 0PEN(ID,"FILE1.ISM",PARM(*) ,STAT)

90 INPUT MSG("N0.=")N0:PRINT

100 IF N0=0 GOTO [END]

110 IF N0<0 GOTO 90

120 INPUT MSG("NAME=")NAME$:PRINT

130 ISAM PACK(BUF$(1) ,N0,NAME$,STAT)

140 ISAM WRITE(ID,BUF$(*),STAT)

150 IF STAT=-2 THEN PRINT "DUP. ERR0R1":G0T0 90

160 GOTO 90

170 [END] ISAM CLOSE (ID, STAT)

229

ISAM

A file in which one record is 10 bytes (integer data: 2 bytes; character
data: 8 bytes) is created for indexed access.

The LET statements on lines 3 0 -7 0 assign the file structure information to
array variables PARM (l) - P A R M (5). The output mode (2) is selected as the
open mode to create a new file.

The data input routine is on lines 90 —120. The data of the record that will
be written is input through the keyboard.

After data is input to the variables NO and NAMES, the data is assigned to
the record buffer with the ISAM PACK statement on line 130. In this case,
the data of the entire record is assigned to the record buffer so BUF$(1) is
specified in the operand of the ISAM PACK statement to assign the data from
the beginning of the record buffer.

The contents of the record buffer are written to the file using the ISAM
WRITE statement on line 140. If the duplication of key values occurs between
the data of the record that will be written and the data of the record in the file,
the message “ DUP. ERROR” is output by the IF statement on line 150 and
writing is not performed.

230

ISAM

4.5.3 ISAM REWRITE Statement (ISAM Rewrite)

Function
This statement rewrites the record data in a file.

Format

ISAM REWRITE(< File N o . > , <B uffer> , < Return C ode>)

Explanation
The ISAM REWRITE statement updates the record in the file whose

primary key value is the same as the primary key value specified in the record
buffer.

Specify the number of the file that will be rewritten in < File No. > . Specify
the variable defined in the record buffer in < Buffer > .

For example, if data is read from a file to the record buffer and this state­
ment is executed after the modification of a part other than the primary key
of the data, that part of the record from which the data was read, is rewritten.

Rewrite
| 100

Rewrite
1 200

Record Buffer 30 W & «
Execute
ISAM REWRITE
statement

Record 100 m 200

File

The same result is obtained by assigning the same value as the primary key
value of the record that will be rewritten to the record buffer, without reading
the data from the file.

Assign Assign Assign
\ 100 J, A l 200

ISAM REWRITE statement

231

ISAM

In this case, unless the record having the primary key value specified in the
record buffer was written in the file, the record is not rewritten and return code
2 is returned.

When the modification of an alternate key value is specified, the newly
specified alternate key value is checked to see if it duplicates the key value of
record in the file. If an alternate key value is duplicated when duplication
is specified as unacceptable, return code 2 is returned and the record is not
rewritten. If the duplication of an alternate key value is specified as acceptable,
return code 3 is returned and the record is rewritten.

Note
Only the part rewritten with the ISAM PACK statement is changed.

[Ex.]

2-byte
integer

- V

8-byte character
string

8-byte real
number

Record Buffer 16 bytes 128 A B C D E F G H 32.148

BUF$ (1) ~ BUF$ (16)

Contents of record
buffer are rewritten.

NAME$="HGFEDCBA"
ISAM PACK(BUF$(3),NAMES,STAT)

Record Buffer 128 H G F E D C B A 32.148

The current record and the current key are reset when the ISAM
REWRITE statement is executed.

232

ISAM

[Ex. 4.5.3-1)
Rewrite data in a file written with the following record.

2-byte
integer

Record 19 bytes a
0

8-byte character
string

Primary key

Variable NO NAMES

8-byte real
number

DAT

10 INTEGER NO , I D ,PA RM,STAT

20 DIM BUF$1(18),PARM(5)

30 PARM(1)=3:REM UPDATE MODE

40 PARM(2)=18:REM RECORD LENGTH = 18 BYTES

50 PARM(3)=1:REM P KEY P0SITI0N=1ST BYTE

60 PARM(4)=2:REM P KEY LENGTH=2 BYTES

70 PARM(5)=0:REM END CODE

80 ISAM OPEN(ID,"DFILE.ISM",PARM(*),STAT)

90 INPUT MS G("NO.")N0:PRINT

100 IF N0=0 GOTO [END]

110 INPUT MSG("NAME=")NAME$:PRINT

120 INPUT M S G ("DATA=")D A T :PRINT

130 ISAM PACK(BUF$(1),NO ,N A ME $,D A T ,STAT)

140 ISAM REWRITE(ID,BUF(*), STAT)

150 IF STAT = - 2 THEN PRINT UN REG I STERED G O T O 90

160 GOTO 90

170 [END]ISAM CL0SE(ID, STAT)

233

ISAM

The data of the record in the file is rewritten according to the primary key
value, so the file is opened in the update mode (3).

The data is assigned to the record buffer by the ISAM PACK statement on
NAMES and DAT with the INPUT statements on lines 110 and 120.

The data is assigned to the record buffer by the ISAM PACK statement of
line 130, and the data of the file is rewritten with the ISAM REWRITE state­
ment on line 140. If the record having the primary key value specified (input to
the variable NO) is not in the file (return code 2), the data of the record is not
rewritten and the message “UNREGISTERED!” is displayed, requiring
reinput of data.

This processing is shown below.

234

ISAM

4.6 ISAM Data Read Instructions

4.6.1 ISAM UNPACK Statement (ISAM Unpack)

Function
This statement reads data from a record buffer and assigns it to a variable.

Format

ISAM UNPACK (< B uffer> . <V ariab le> , •••, <Return C ode>)

Explanation
The ISAM UNPACK statement is the opposite of the ISAM PACK state­

ment. It reads data from any part of the record buffer and assigns it to a
variable.

Specify the elements of the operand as for the ISAM PACK statement.
The length of data that will be read from the record buffer depends on the

length of a variable specified in the operand. Be careful not to specify the
reading of data that exceeds the length o f the record buffer.

An example of a program using this statement is shown in the explanations
of the ISAM RREAD statement and ISAM SREAD Statement.

235

ISAM

4.6.2 ISAM RREAD Statement (ISAM Random Read)

Function
This Statement reads record data by specifying a key value. (Indexed ran­

dom read).

Format

ISAM R R E A D (< File N o . > , <BufTer>, < Return C o d e> [, < Ke y T yp e>])

Explanation
This statement searches a file for a record having a specified key value and

reads the data from that record into the record buffer.
A key value is specified by assigning the value to the key part of the record

buffer before this statement is executed.
Specify the file number defined when opening the file from which data will

be read in <File No. > . The file must be opened in the input or update mode.
For < Buffer > , specify all o f the elements of the string-type array variables

defined as the record buffer with an asterisk (*) .
Specify an integer-type variable in <Key T ype>. This variable must be

selected from the integer values 1 ~ 4, which indicate the key type serving as an
index for record retrieval and assigned before the execution of this statement. 1

indicates the primary key, 2 indicates alternate key 1, 3 indicates alternate key
2 and 4 indicates alternate key 3. If the specification is omitted, 1 (the prima
rykey) is automatically specified.

After this statement is executed, the current key becomes the type of key
specified with this statement, and the next key in the key order to the record
from which data was read becomes the current record.

When more than one record has the specified key value (i.e. when an alter­
nate key accepting duplication is specified), data is read from the record written
to the file first. In this case, the current record after the execution of this state­
ment, is the record written to the file second.

When there is no record having the specified key value, reutrn code - 2 is
returned and data reading is not performed.

236

ISAM

The indexed random read processing with this statement is shown below.

2-byte
integer

8-byte character
string

Record 10 bytes

ft
Primary key

D Key value is assigned to record buffer.

©
i

Record Buffer 135

NO = 135

ISAM PACK (BUFS (1), NO, STAT)

2 ISAM RREAD statement is executed.

Data File

3) Data is read from correspond­
ing record into record buffer.

Record Buffer 135 A B C D E F G H

© Contents of record buffer
are read.

ISAM UNPACK (BUF$ (3), NAMES, STAT)

Variable NAMES A B C D E F G H

62 S T U V W X Y Z

135 A B C D E F G H

O P Q R S T U V

4 Pointer is moved. V
62 S T U V W X Y Z

135 A B C D E F G H

Pointer (current record)

■=> 205 O P Q R S T U V

t Current key

237

ISAM

[Ex. 4 . 6 .2-1]
The key value of alternate key 1 in a record with the following data is

specified, and the data is read from the record in the file:

Record 18 bytes

2-byte
integer

a
8-byte character

string
8-byte real

number _

{ } { }
Primary key Alternate key 1 (duplication unacceptable)

Variable NO NAMES DAT

10 INTEGER N0,ID,PARM,STAT,KEYN0

20 DIM BUF$1(18),PARM(8)

30 PARM(1)=1:REM INPUT MODE

40 PARM(2)=18:REM RECORD LENGTH = 18 BYTES

50 PARM(3)=1:REM P KEY POSITION = 1ST BYTE

60 PARM(4)=2:REM P KEY LENGTH = 2 BYTES

70 PARM(5)=1:REM A1 KEY DUPLICATION UNACCEPTABLE

80 PA RM(6)=3:REM A1 KEY POSITION = 3RD BYTE

90 PARM(7)=8:REM A1 KEY LENGTH = 8 BYTES

100 ISAM 0PEN(ID,"FILE3.ISM",PARM(*),STAT)

110 INPUT MSG("NAME?")NAME$:PRINT

120 IF NAME$="E" GOTO [END]

130 ISAM PACK(BUF$(3),NAME$,STAT)

140 KEYN0=2:REM KEY TYPE = ALTERNATE KEY 1

150 ISAM RREAD(ID,BUF$(*),STAT,KEYN0)

160 IF STAT = -2 THEN PRINT "NAME UN REG ISTERED!":GOTO 110

170 ISAM UNPACK(BUF$(1),NO,NAMES,DAT,STAT)

180 PRINT "NO.=" ; NO

190 PRINT "DATA=" ; DAT

200 GOTO 110
210 [END]ISAM CL0SE(ID, STAT)

238

ISAM

In this example, the value of alternate key 1, whose duplication is specified
as unacceptable, is specified, and data is read from the record that has the
specified key value. The file is opened in the input mode.

The INPUT statement on line 110 inputs the data (key value) serving as an
index for record retrieval to the variable NAMES.

The ISAM PACK statement on line 130 assigns the key value input to
NAMES to the record buffer. Because data is assigned to only the alternate key
1 part of the record buffer, BUFS (3) (from the third byte of the record buffer)
is specified in the operand.

After the key value is assigned to the record buffer, the ISAM RREAD
statement on line 150 reads data from the file. The LET statement on line 140
specifies the key type as alternate key 1 .

If the record specified with the ISAM RREAD statement on line 150 is not
in the file, return code —2 is returned. After the message ”NAM
EUNREGISTERED!” is displayed, the system again enters the input status.

The ISAM UNPACK statement on line 170 assigns the contents of the
record buffer to the variable.

239

ISAM

4.6.3 ISAM START Statement (ISAM Start)

Function
This statement defines the reading start record for the sequential reading of

record data according to the key order. (Indexed Sequential Read).

Format

ISAM START(<Fi l e N o . > , <B uffer> , <Start C od e> , < Return C ode>
[, < Ke y N o . >])

Explanation
The ISAM START statement defines the first record where the reading

data will start when indexed sequential read is performed with the ISAM
SREAD statements described later. Actually the pointer moves according to the
conditions specified with this statement, and the current record and the current
key are set.

As with the ISAM RREAD statement, the conditions for setting the record
to start reading data are specified by assigning a specified key value to the
record buffer in advance and specifying the variable of the record buffer and
the key type (<Key No. >) of the record in the operand of the ISAM SREAD
statement. With this statement, however, it is possible to specify a comparison
between the key value of the record that will be searched and the specified
value. (With the ISAM RREAD statement, the record that has the same key
value as the specified value is searched.)

For < Start Code > , specify an integer-type variable, and assign 0, 1, or 2
to it according to the conditions of key values comparison in advance. Specify
the start code as follows:

0 Specified key value = Record key value
• The record that has the same key value as

the specified key value is the current
record

1 Specified key value % Record key value
• The record that has the same key value as

the specified key value is the current
record. When there is no record with the
same key value, the record that has the
next key value in the key order is the cur­
rent record.

240

ISAM

2 Specified key value < Record key value
• The record that has the first key value

larger than the specified key value is the
current record.

When there is more than one record that has the same key value
corresponding to the specified conditions (when an alternate key accepting
duplication is specified), the record written to the file first is the current record.
If there is no corresponding record, return code —2 is returned and the
pointer is not defined.

The movement of the pointer by the execution of this statement and the
ISAM SREAD statement is shown below.

Record 5 bytes

2-byte 3-byte character
integer string

n r ^
{>

Primary key

Record buffer

Assign

l
HI

File

63

123

ABC

DEF
Pointer t Current record

240

920

GHI

JKL

® Execution of ISAM START
statement

I--------------------------- ■
| Specify:

! 1
I Key...Primary key]
! i

Key value... 123

I Start code... 1 (=) |
I_________________ j

File

63 ABC

123 DEF

240 GHI
Pointer t Current reco

920 JKL

2 Execution of ISAM SREAD (3) After execution of ISAM
statement SREAD statement

An example of a program using this statement is shown in the explanation
of the ISAM SREAD statement.

241

ISAM

4.6.4 ISAM SREAD Statement (ISAM Sequential Read)

Function
This statement reads data in sequence from the records of a file according

to the key order. (Indexed Sequential Read.)

Format

ISAM S RE A D (< File N o . > , < Buffer> , < Return C ode>)

Explanation
The ISAM SREAD statement reads one record of data from the current

record of the file into the record buffer and moves the pointer to the next
record in the key order of the current key. Data in records are read in sequence
according to the key order of the current key (indexed sequential read) with the
repeated execution of this statement.

Specify the File number defined when opening the file from which data will
be read in <File No. > . The file must be opened in the input or update mode.

For < Buffer > , specify all elements o f string-type array variables defined
as the record buffer with an asterisk (*).

The ISAM START statement must be executed to set the current record
and the current key before the start of indexed sequential access by this state­
ment. But when the primary key is used as the current key and indexed sequen­
tial read starts with the record with the lowest key value, the ISAM START
statement need not be executed because the current record and the current key
are set automatically just after execution of the ISAM OPEN statement.
Remember that the current record and the current key change when the ISAM
RREAD statement is executed.

When the current key is an alternate key whose duplication is specified as
acceptable and there is more than one record that has the same key value, the
records are read in the order in which they were written to the file.

242

ISAM

[Ex. 4.6.4-11]
Assuming that the records consist of the following data, data is read in the

key order from the records whose primary key values are between 1 0 0 and 2 0 0 :

2-byte
integer

Record 10 bytes a
{>

8-byte
character string

Primary key

Variables NO NAMES

1 0 INTEGER N0,ID,PARM,STAT,SC0DE

2 0 DIM BUF$1(10), PARM(5)

30 PARM(1)=1:REM INPUT MODE

40 PARM(2)=10:REM RECORD LENGTH: 10 BYTES
50 PARM(3)=1:REM P KEY POSITION: 1ST BYTE
60 PARM(4)=2:REM P KEY POSITION: 2ND BYTE
70 PARM(5)=0:REM END CODE

80 ISAM 0PEN(ID,"FILE3.ISM",PARM(*), STAT)
90 PRINT "CODE","NAME":PRINT

1 0 0 SC0DE=1:N0=100:REM 100<=C0DE

1 1 0 ISAM PACK(BUF$(1),NO,STAT)

1 2 0 ISAM START(ID,BUF$(*),SCODE,STAT)

130 ISAM SREAD(ID,BUF$(*) , STAT)

140 IF STAT=-2 GOTO [END]

1 50 ISAM UNPACK(BUF$(1),NO ,NAME$,STAT)
160 IF N0>200 GOTO [END]

170 PRINT NO,NAME$

180 GOTO 130

190 [END]ISAM CL0SE(ID, STAT)

243

ISAM

In this example, data is read from the records in the key order of primary
key values and is displayed.

The file from which data is read is opened in the input mode.
The two LET statements on line 100 specify the key value of the record

where data reading will start. They assign 1 as the start code and 100 as the key
value to each variable and specify the current record to the first record in the
key order from the records whose primary key values are 100 or more.

The ISAM START statement on line 110 actually moves the pointer to the
record mentioned before. At the same time, the primary key becomes the cur­
rent key.

The indexed sequential read routine is on lines 120-180. It is a loop to
repeat execution the required number of times. In this loop, the ISAM SREAD
statement is executed repeatedly to read data from records according to the key
order of the records’ data.

When the primary key value of the record read exceeds 200, the loop ends
and the file is closed. When there is not a record whose primary key value is
larger than 200, data reading reaches the end of the file before the data that ex­
ceeds 200 is read. In this case, return code —2 is returned and the loop ends
with the IF statement on line 140.

The processing for this program example is shown next.

(D 120 ISAM STARTED,BUF$(*),SCODE,STAT)
t T

100 1

Record buffer 1 0 0

File

■ = o
Pointer

195 L M N

210 S T U

120 D E F -
t Current record

143 G H I -

244

(D 130 ISAM SREAD(ID,BUF$(*),STAT)

Record buffer 120 D E F

(3) The ISAM SREAD statement is repeated.

® 130 ISAM SREAD(ID,BUF$(*),STAT)

CD 160 IF N0>200 GOTO [END]
*

190 [ENDjISAM CLOSE(ID,STAT)

245

ISAM

4.7 Other ISAM Instructions

4.7.1 ISAM DELETE Statement (ISAM Delete)

Function
This statement deletes a specified record from a file.

Format

ISAM D ELETE(< File N o .> , < Buffer> , < Return C ode>)

Explanation
The ISAM DELETE statement deletes the record that has the same primary

key value as the one specified in the record buffer from an index file. Records in
the data file are not deleted with this statement. But, because the key informa­
tion in the index file is deleted, the record deleted with this statement cannot be
read with indexed access. The area of the data record deleted with this state­
ment is used for the additional writing of a record.

Specify the file number defined when opening the file from which a record
will be deleted for <File No. > . The file must be opened in the output mode or
update mode.

For < Buffer > , specify all of the elements o f string-type array variables
defined as the record buffer with an asterisk (*). Assign the primary key value
of the record that will be deleted to the record buffer before this statement is ex­
ecuted.

If the record specified is not in the file, return code —2 is returned.

Note
The current record and the current key are reset after execution of the

ISAM DELETE statement.

246

ISAM

[Ex. 4.7.1-1]

Delete all records with a primary key value of 100 ~ 200.

Record 10-bytes

2-byte
integer

t n

8-byte character
string

0
Primary key

10 INTEGER NO, I D } PARM, STAT

•

80 ISAM 0 P E N (I D , " F I L E 3 . I S M " , P A R M (*) , S T A T)

90 FOR N0=100 TO 200
100 ISAM PACK(BUF$(1) , NO,STAT)

110 ISAM DELETE(ID,BUF$(*) , STAT)

120 IF S T A T o - 2 THEN PRINT " DELETE" ;N0

130 NEXT NO
140 ISAM CLOSE(I D , STAT)

In this example, records whose primary key values are 100 — 200 are
deleted.

The IF statement on line 120 checks the return code after execution of the
ISAM DELETE statement and displays the primary key value of the record
deleted.

247

ISAM

4.7.2 ISAM SECU R Statement (ISAM Security)

Function
This statement specifies the period for writing into a file from the ISAM

system buffer.

Format

ISAM SECUR (< S w itc h > ,< File Information> , < Return Code>_)

Explanation
When data is written to a file with indexed access, the data is temporarily

stored in a memory area called the ISAM system buffer where it is defined
automatically by ISAM before it is written to the data file and index file.

When the program ends abnormally during file updating, the data written
to the file may be wrong. It number of data written to a file correctly may differ
depending on the data writing period from the ISAM system buffer to the file.

The ISAM SECUR Statement specifies the period for writing the contents
of the ISAM system buffer to the file.

This specification determines the processing speed and the security of data.
In < Switch > , specify an integer-type variable. Assign 1, 0, or —1 to this

variable indicating the period of writing the contents of the ISAM system buf­
fer. These values have the following meanings:

1Each time the statement for writing data to a file is executed, the
contents o f the ISAM system buffer are written to the file.
Although the processing speed is slow, the highest degree of file
security is guaranteed.

0When the contents of the ISAM system buffer reaches capacity, the
contents are written to the file. The disk is always checked to ensure
that there is suffucient area to write the contents of the ISAM
system buffer. The processing speed is higher than in 1, and an
medium degree of file security is guaranteed. This method is
adopted when the ISAM SECUR statement is not executed.

24«

ISAM

- 1 This method is the same as 0. But the disk area availability is not
checked until the writing of the contents of the ISAM buffer is per­
formed. Although the processing speed is the highest, sometime the
contents of the ISAM system buffer cannot be written to the disk.

In <File Information > , specify the elements of the integer-type array
variables defined for the file information with an asterisk(*)

Specify the integer-type array variables for < File Information > . The array
rariable must consist of 6 array elements. The information of each file is assign­
ed to each of the variables as follows when this statement is executed. If 0 is
assigned, the file is normal. If the file is abnormal, 1 is assigned.

Ex: IFINF (1)~(6)

File No. 1 File No. 2 File N o .3 File N o .4 File N o .5 File N o .6

i }

IFINF(l) IFINF(2) IFINF(3) IFINF(4) IFINF(5) IFINF(6)

[Ex. 4.7.2-1]
ISAM processing is performed with 1 (the highest degree of file security)

specified in switch.

10 INTEGER ID,PARM,STAT,SW, IFINF

20 DIM BUF$1 (1 0) , PARM(5) , I F I N F (6)

400 SW=1

410 ISAM SECUR(SW,IFINF(*) , S T A T)

249

ISAM

4.8 Return Codes

The values of the return codes returned by ISAM statements have the
following meanings:

< Normal >

0Normal end

< Errors >

1, 3, 4, 6 and 1 0The index file is wrong.

2The disk is full.

5The directory area of the disk has overflowed.

7 The specified file is not on the disk.

8 The disk or file has a read-only attribute.

9 An attempt is made to open the same file twice.

11The number of records in the file has exceeded the limitation.

1 2 The EOD record is wrong.

1 3 There is no EOD record.

2 0 The parameter attribute is wrong.

21An attempt is made to open more than six pairs of files at the same
time.

3 2The file name specification is wrong.

2 3 The parameter value is wrong.

2 4 The record length is wrong.

2 6An attempt is made to execute an instruction that cannot be ex­
ecuted in the specified open mode.

250

ISAM

2 7 The key specification is wrong.

2 8 When an attempt is made to open files in the update mode, either
the data file or the index file is not on the disk.

2 9 The number of a file that is not opened is specified.

3 0 The contents of the index file are wrong.

31Error in the ISAM SECUR statement.

3 2 The index file size has exceeded the limitation.

< Warnings >

— 1An attempt is made to read data beyond the end of data.

- 2The key specification is wrong.

- 3The key value is duplicated.

— 4Because the index file is wrong, the alternate key position is wrong.

- 5The number of keys specified with file structure information is
greater than the number of the keys of the records in the file opened.

— 6The record deleted is wrong.

Warning codes — 1 and —2 indicate the abnormal execution of the ISAM
instructions and record data is not read or written.

When —4 or — 6 is returned, the statement is executed but the result is not
guaranteed because the data file or index file is abnormal.

Note
When the integer-type variable for < Return Code > is not specified in the

operand or when the specified variable is not of the integer-type, a return code
is not returned.

251

ISAM

Caution Disk Overflow

The disk may overflow during ISAM processing. This may occur
in following cases:

When writing to a data fileISAM WRITE statement execution
When writing to an index file......ISAM WRITE, REWRITE,

DELETE, CLOSE statement ex­
ecutions

In these cases, return code 2 is returned and the file may become
invalid for ISAM. So use a disk which has sufficient free area for
ISAM to prevent the overflow. This error may occur even if the
ISAM SECUR statement, which specifies switch 1, is executed.

If the file becomes invalid because of this error, reorganize the
file using the ISGEN utility and reactivate the file for ISAM. Refer to
“4. 9. 1 ISGEN Utility” for details of this recovery operation.

252

ISAM

4.9 ISAM Utility Programs

The ISGEN utility and IDXINF utility are utility programs that can be
executed in the OS mode. This part explains the functions and the procedures
for using these two utility programs.

4.9.1 ISGEN Utility

The ISGEN utility is a utility program to generate an index file from a data
file. It can be used to regenerate an index file from a data file that has lost an in­
dex file for some reason, or to create a pair of files for indexed access from a
data file created using the PUT statement.

In data files used in ISAM, a 2-byte flag for ISAM is attached to the end of
each record. The flag is “ODhOAh” if the record is active (not deleted) and
“OOhOOh” if the record is deleted. An EOD record containing information for
ISAM is also attached to the end of data. This data file for ISAM is called a
data file of the ISAM format.

Data file o f
IS A M format

2 bytes 2 bytes 2 bytes

Data record Data record ______ V_ Data record E O D record

I t I
Flag for Flag for Flag for
IS A M IS A M IS A M

In contrast, the following file created with the PUT statement is called a
data file of the BASIC format:

Data file o f
B A SIC format

Data record Data record Data record Data record

253

ISAM

The functions of the ISGEN utility are next described in detail for files of
these two different formats.

One of the functions of this utility is to regenerate an index file according to
the data of an ISAM format data file that has lost a corresponding index file,
thus reenabling indexed access.

It is also possible to reorganize files for ISAM according to the contents of
the data file or index file which have become unusable for ISAM because of a
disk overflow.

The other function is to generate a pair of files for indexed access according
to a data file of the BASIC format created with the PUT statement.

This utility is used in the interactive operation.
The starting method and operation are shown below.

«Display» «Operation and Explanation»

A>_ • Make sure that the OS mode is set.

mtMGlEE] 0
0 * Source File Name?

<File Name> 0
• Enter the name of the data file that serves as

the source for generation of an index file.

© ♦ T y p e of Data File (Reformat/Isam/Basic)?
EEi or my or my
• Enter I if the data file is of the ISAM for­

mat and B if it is of the BASIC format.
If R is entered, the file reformatting
(reorganization) is performed with proces­
sing as follows:

a) The data file is reformatted by physically
deleting the records which are deleted
logically by ISAM DELETE statement.

b) Reorganization of the files which have
become unusable with disk overflow.

254

ISAM

«Dipslay» «Operation and Explanation»

(D * Source Data Record Length?

< Record Length > 0
• Enter the record length of one record in

bytes. The value must be an integer within
the range: 1 -5 1 0 . (When the data file has a
ISAM format, omit the ISAM flag from the
record length.)

Only when B or R is selected in © .

© ♦ D a t a File Name to create?

< File Name > 0
•Enter, together with the file type, the name
of the data file of ISAM that will be created
from the data file of BASIC format or from
the incorrect data file of ISAM format.

Only when B is selected in © .

©♦Creation Data Record Length?

< Record Length > 0
• Enter the record length of the data file of

ISAM format that will be created. If the
record length entered here is less than the
record length entered in 3 , the excess
records of the original file are ignored. If it
is greater, 0 0 h is added to create file.

©♦Record Count?

BASIC format only
< Record Count > 0

• Enter the number of records which will be
converted for ISAM use. The default (0
only) is that all records are converted.

©♦Primary Key Position?

< Primary Key Position > 0
• Enter the position of the primary key.

255

ISAM

«Dipslay»

©♦Primary Key Length?

«Operation and Explanation»

< Primary Key Length > 0
• Enter the length of the primary key.

©♦Transfer ratio l(K90(%)[default=50%]?

< Transfer Ratio > 0
• The transfer ratio is a value (an integer

within the range: 10 -90) that shows the size
of the spare area of key information in the
index file. The way the key information is
split depends on this value.
Enter an integer within the range: 10 — 90.
For processing efficiency, enter 90 when the
records of the original data file are arranged
in the key order (from smallest to greatest
values) and not many records will be added.
Enter 50 when alot of records will be added
or modified. Enter 10 when the records of
the original file are arranged in the reverse
key order (from greatest to smallest values).
The default (0 only) is that 50 is specified.

Repeat only when an alternate key is specified.

©♦Alternate key[0:No l:Yes(No dup)2:Yes(dup)]?

£ 0 °r CO or (2) 0

• Enter 1, 2, or 3 to specify whether an alter­
nate key is set or not.
If 0 is entered, an alternate key is not set. If
1 is entered an alternate key not accepting
duplication is set.
If 2 is entered, an alternate key accepting
duplication is set. Steps © to (Q) are
repeated until 0 is entered here or three
alternate keys are specified.

©♦Alternate Key Position?

< Key Position > 0
• Enter the position of the alternate key.

256

ISAM

«Dipslay» «Operation and Explanation»

Alternate Key Length?

< Key Length > 0
• Enter the length of the alternate key.

(L|)»Transfer ratio lCK90(%)[default=50%]?

Repeat only when an

alternate key is specified

< Transfer Ratio > 0
• Enter the transfer ratio (10 — 90) as explain­

ed in 9 .

(g)*ISGEN Start OK (No/Yes)?

0 (or H) 0

• Make sure that the values entered are cor­
rect, then enter Y create the file. If N is
entered, restart input at I .

When there is already a file of the same name as the file that will be created
on the disk, the message:

* F i le Already E x is ts D elete (Yes/No)?
is displayed. If Y is entered, the file is deleted before the start of file creation. If
N is entered, reinput of the file name is required.

During processing, the record number being processed is displayed.

The following error messages are displayed during the input of values or
during processing:

«During the input of values»

Invalid File Name.................The file name specification is wrong.

File doesn’t exist...................The specified file is not on the disk.

Invaled Parameter................The value entered is wrong.

Read Only File......................The file that will be deleted has a read-only at­
tribute.

Invalid Key Data.................. The specification of record length, key position,
or key length is wrong.

257

ISAM

«During processing»

Error: Code= < Return Code>
...This has the same meaning as the return code of

ISAM instructions.

••Delete Record Found: Rec No = <Record N o .>
...The record o f < Record N o .> in the original

data file is a delete record. The record is also
written as a delete record in the file that will be
created.

••Invalid Record Flag: Rec No = < Record N o .>
...The ISAM flag of the record having < Record

No. > in the original file is wrong. The record is
written as it is to the file that will be created.

••Invalid Key Found: Rec No = < Record N o> Key No = <Key N o> Ignored
The key value of < Record N o .> is duplicated
in <Key No. > even if duplication is not accep­
table. The record is not written to the file that
will be created.

••Duplicate Key Found: Rec No = <Record N o .> Key No = <Key N o .>
...The key value of < Record N o .> is duplicated

in <Key No. > when duplication is acceptable.
The record is written to the file to be created.

The processing speed using ISGEN can be improved by rearranging, in ad­
vance, the records of the original data file in the key order. When more than
one key is specified, rearrange the records on the basis of the key order o f the
greatest key length.

258

ISAM

4 .9 .2 ID X IN F Utility

This utility displays the key information of an index file to confirm the
record length, record number, key position, key length, etc.

This utility is started with the following input in the OS mode.

miÜifXimfNlfFll SPACE I < Index File Name> < Character>] 0

< Index File Name >Specify the index file whose key information
will be displayed.

< Character > If some character is specified, the index informa­
tion is output to the printer connected to the I/O
connector of LPT:. The default is that the infor­
mation is displayed on the CRT.

The display of index information with this utility is shown next. The
numbers (l to 6 explain the meanings of the messages.

259

ISAM

[Example]

*** Index File Information Display Vn.nn ***

(1) Data Record Length : 62©
(2) Last Data Record: 10 0 0 ©
(3) Last Index Record: 35©
(4) Free Data Record:©

23 41

(5) Free Index Record: None©
(6) Key Informations:©

Key no=l

Position: 27

Length: 5

Root Rec.: 2

Max Level: 1

**************** Q-f Information ***************

© Record length of data.
© Number of data record.
© Number of index record. Not the number of data record.
© Deleted records. Records 23 and 41 are deleted.
© Free index record. Nil.
© Key information. Only the primary key is set. The key position is the 27th

byte from the beginning of the record and the key length is 5 bytes.

260

ISAM

4.10 How To Calculate File Size

The method of calculating the size of ISAM data files and index files are
shown here. The size of an index file is an approximate value based on the
assumption that the transfer ratio is 50%.

According to CP/M - 8 6 specifications, a file is written to a disk in 128-byte
units and reserves disk area in 2K-byte units.

• Size of a data file (ISAM format)

Size = (< Record length > + 2) x < Number of data record > (bytes)

• Size of an index file (Approximate value)

Size = (< Key length > + 2) x < Number of data record >
x 1 . 1 / 0 .7 (bytes)

261

ISAM

ISAM Instruction Formats

0 ISAM OPEN (< File N o. > , < File Name > , < File Structure > , < Return Code >)

@ ISAM CLOSE (< File No. > , < Return Code >)

0 ISAM PACK (< Buffer > , < Expression> ,•••, < Return C ode>)

0 ISAM WRITE (< File No. > , < Buffer > , < Return Code >)

© ISAM REWRITE (< File No. > , < Buffer > , < Return C ode>)

© ISAM UNPACK (< B u ffer> , < Variable> , < Return Code>)

© ISAM RREAD (<File N o .> , < Buffer> , < Rgturn Code> [,<K ey T ype>])

© ISAM START (<F ile No. > , < Buffer > , < Start C ode>, < Return Code>
[,<Key No. >])

® ISAM SREAD (<File N o .> , < Buffer> , <Return C ode>)

@ ISAM DELETE (< File No. > , < Buffer > , < Return Code >)

(Q) ISAM SECUR (< Switch > , < File Information > , < Return Code >)

262

5.

5.1

5.1.1

Graphic

Graphic Functions

This section explains how to use the instructions for the various graphic
functions of the AS-100 display through the Canon BASIC program.

Graphic Functions

The graphic functions enable the operator to draw various figures with the
dots (640x400) on the display. The graphic functions use dots rather than
characters as the unit of display.

The AS-100 graphic functions are supported by the CP/M - 8 6 operating sys­
tem and can be controlled by outputting defined codes to the display.

Refer to the CP/M - 8 6 User’s Manual for details of the display control codes.

Coordinates

The location of a figure that will be drawn is specified with the coordinates
of dots on the display.

The display screen has 0 — 639 coordinates on the X axis (horizontal) and
0 — 399 coordinates on the Y axis (vertical). They are coordinated with the dots
on the display. These coordinates are called as absolute coordinates.

Relative coordinates are used for each instruction to facilitate coordinate
specification in a program. Relative coordinates can be defined by the ORIGIN
statement. When the ORIGIN statement is not executed, the absolute coordi­
nates are identiacl to the relative coordinates.

263

Graphic

The relationship between the absolute coordinates and the relative coordi­
nates is as shown below.

Absolute coordinates

0 ----------------------------- ► 639

Relative coordinates

- 3 2 0 ------- — 0 ----------— 319
-200 ----------------------------------

The origin (0, 0) of the relative
coordinates is set as (320, 200) of
the absolute coordinate system by
the ORIGIN statement.

Each of the coordinates is specified as (x, y). The figure will not be dis­
played when it is drawn at coordinates which are outside the display range. The
valid range of x, y is —32768 — 32767 (absolute coordinates). Any numeric
specification outside this range causes an error. A decimal within this range is
automatically converted to an integer by truncating the decimal fraction.

The length of the figure that will be drawn is specified by the number of
dots.

Note
The coordinates used for the graphic functions are not related to the

coordinates of x = 0 ~ 7 9 , y = 0 ~ 2 4 specified in %CURSOR of PRINT state­
ment. Do not confuse the two.

264

Graphic

5.1.2 Palette and Display Color Specification

Users can specify a display color (for color display) and a display mode (for
monochrome display) with a palette. The palettes and display colors (display
modes) are explained below.

AS-100 color display can display 27 colors. These 27 colors are numbered
0~26 .

A palette is like a dish that stores one of these 27 colors. For example, a red
circle can be drawn with the screen by specifying the red pallete.

The AS-100 color display has eight palettes, which are numbered 0 — 7. The
palette used for each of the figures displayed is memorized so the display color
can be changed by simply specifying the color of a palette. For example, assume
that the red circle was drawn with palette No. 2. The red circle can be changed
to white by changing the definition of palette 2 to “white” .

The same principle applies to the monochrome display.

The monochrome display supports 1-VRAM (Video RAM is the memory
area for the data image displayed.) specification and 2-VRAM specifications.
Like the color display, the monochrome display has a palette and color
numbers. However, these color numbers are actually display mode numbers.

The 1-VRAM specifications of the monochrome display have two palettes
and two color numbers (No-color = 0 and Colored = 1). The 2-VRAM specifi­
cations have four palettes and five color numbers (No-color, Standard Bright­
ness, High Brightness, Blinking Standard Brightness, and Blinking High
Brightness).

The relationaship between the palettes and the display is shown in the
next page. (This is a color display.)

265

Graphic

Display

27 colors

All graphic figures are displayed through the palettes. This means that the
number of palettes is equal to the number of colors that can be displayed
simultaneously on the screen.

The color numbers are defined as shown below.

• Monochrome Display (1-VRAM specifications)

No.
No-color 0

Colored 1

Monochrome Display (2-VRM specifications)

No.
No-color 0

Standard brightness 1

High brightness 2

Blinking standard brightness 27
Blinking high brightness 28

266

Graphic

• Color Display

The initial values are automatically set to each palette when BASIC is acti­
vated.

When the color definition of a palette is modified in a program, the modifi­
cation is retained during program execution. The color definition of the palette
will be automatically reset to the initial values when program execution ends.

The color display contents can be printed with the A-1210 Color Printer. In
this case, the color used on display will match the printout colors (approximately)
only if the initial pallettes are not modified. The white portions of the screen
are printed as black and the no-color (no-display) area is not printed.

The initial values of the palettes in Canon BASIC are as follows.

• Monochrome Display (1-VRAM specifications)

Palette Number 0 1

Color Number 0

(no-color)
1

(colored)

• Monochromatic Display (2-VRAM specifications)

Palette Number 0 1 2 1

Color Number 0

(No-color)

2

(High brightness)

27
(Blinking standard

brightness)

1

(Standard
brightness)

267

Graphic

• Color Display

Palette
Number 0 1 2 3 4 5 6 7

Color
Number

0

(No-color)

1

(Blue)

9
(Red)

1 0

(Purple)

3
(Green)

4
(Light blue)

1 2

(Yellow)

13
(White)

5.1.3 Current Point

The default value of the coordinate specification in a graphic instruction is
the current point.

The current point is determined by the last graphic statement executed.
Its initial value is the origin (0, 0) of the absolute coordinate immediately
following the start of program execution.

For example, draw a line from the coordinates (0, 0) to (150, 200) and then
execute a graphic instruction for drawing a circle without specifying the
coordinates of the center. The center of the circle will be (150, 200) because the
current point was moved to (150, 2 0 0) when the line was drawn.

Current Point

268

Graphic

5.1.4 Line Types

A line type can be specified for drawing fitures. Five line types are supported.
They are numbered 0 — 4.

The numbers 0 — 4 correspond to the following line types .

Number Line Type

0 : Solid line -------------------------------

1 : Short broken line -------------------------------

2 : Long broken line -------------------------------

3 : Single dot chain line -------------------------------

4 : Double dot chain line -------------------------------

Note
Numbers exceeding 4 correspond to the line types as follows, 5 = 0,
6 = 1,7 = 2 . . .

5.1.5 Pattern

A paint pattern in figures, i.e., rectangles, circles, fans, or an ellipses can be
specified. Seven paint patterns (excluding no-paint) are supported. They are
numbered 0 — 8 . When a paint pattern in a figure is specified, the frame is drawn
with a solid line regardless of the line type specification.

The numbers 0 - 8 correspond to the following patterns.

Number

0 :

l :

2 :

3 :

4 :

269

Graphic

5 :

6 :

7 :

8 :

Note
Numbers exceeding 8 correspond to the paint patterns as follows, 9 = 0,

10= 1, 11= 2. . .

5.1.6 How To Use Graphic instructions

Like the other Canon BASIC statements, each graphic statement consists
of a keyword and operands. Specify keywords and operands according to the
format description for each statement.

The format descriptions of graphic statements differs slightly from those
of the other Canon BASIC statements. For example, a specificable element like
< Arithmetic Expression > is shown as an operand in the format description of
other BASIC statements. But an element which indicates the function of a
parameter, like < Coordinate > snf < Angle > , is shown as an operand of
graphic statements.

Example:
LINE l_ j [<Coordinate l >] , <Coordinate 2 >] , <Coordinate 3 >] •••

[l__j WITH i_i [< P >] [, CLine T y p e>]]

The principal elements of the operand are:

< Coordinate > Specify a coordinate in the form (x, y).

< Angle > Specify an angle in degrees.

< P > Specify a palette number (0~ 7).

< Line Type > Specify a line type (0 ~ 4).

< Pattern > Specify a paint pattern (0~ 8).

270

Graphic

Each element of operand is specified with a numeric value or an arithmetic
expression. When a decimal is specified, the fractions are truncated automatically.

The sub-keyword WITH and the subsequent operands specify the graphic
conditions, like the palette number, line type, and paint pattern. The following
are the default values of WITH and the subsequent operands.

• < P >

• < Line Type >

• < Pattern >

• <M ark>

Pallette number of foreground (described later)

Solid line (0)

No-paint

x (4)

271

Graphic

5.2 Graphic Declaration Instructions

5.2.1 DEFCOL Statement (Define Color)

Function
Sets colors to palettes.

Format

DEFCOLi_i [< C o lor0>] , [< C o l o r , >] , •• ••••, [< C o lor7>]
©

Note 1: The comma at the end of a statement can be omitted.

Explanation
The DEFCOL statement changes the color definition of palettes. Specify up

to 8 color numbers, separating them with commas (,).
The color number specifications correspond to Palette 0, Palette 1, Palette 2,

etc. This statement does not change the definition of those palettes for which
a color number is not specified. The palette definition by this statement is
retained only during program execution. The palette definition is reset to the
initial value when program excution ends.

[Example 5.2.1-11]
Modify the definition of palettes 0, 1, 3 of the color display.

40 DEFCOL 3,20,,8

Assuming that the palette definition prior to line 40 is the initial value, the
definition of the palettes 0 — 7 are modified as shown below by the execution of
line 40.

Palette
0

3
l
20

2
9

5
4

This definition is retained until redefinition by the DEFCOL statement
is performed or until program execution ends.

272

Graphic

5.2.2 COLOR Statement (Color)

Function
Specifies the palette for the display as the default value.

Format

C O L O R ^ < P , > [, < P 2>]

Explanation
Output to the display is always performed through the palettes. When an

output instruction without color specification (like the PRINT statement) is
executed, the color of display (called the foreground) and the display field (called
the background) are automatically determined by the defined palettes. Without
palette specification, white characters are displayed on the no-color field on the
display. This is because the system automatically specifies palette 7 as the fore­
ground and the palette 0 as the background when the palette specification is
omitted.

The COLOR statement modifies the palette definition of the foreground
and the background, specifies the palette number for the foreground as < Pj > ,
and specifies the palette number for the background as < P 2> . The default
value of < P 2 > is Palette 0.

When a graphic instruction without palette specification is executed, the
palette which is initially defined as the foreground is automatically specified.

The foreground and background palette definitions by the COLOR state­
ment are retained during program execution. They are reset to the initial value
when program execution ends.

For the a monochrome display, the initial value of the foreground is Palette
1 (1-VRAM) or Palette 3 (2-VRAM) and that of the background is Palette 0.

273

Graphic

[Example 5.2.2-1]
The palette definition of the foreground and the background is modified by

the COLOR statement and characters are displayed by PRINT statement.

10 COLOR 2,6

20 PRINT "ABC"

If the palette color definition is not changed in the above example, the
display contents are as shown below when line 2 0 is executed.

Display (Color)

The characters are red (2)
and the field is yellow (6).

[Example 5.2.2-2]
Graphic instruction in which the palette is not specified.

10 COLOR 6

20 LINE (100,100),(200,200)

In this example, the LINE statement is executed on line 20. If the palette
color definition is not changed, the line is drawn on the display as follows by
executing the LINE statement without palette specification on line 20. (The
LINE statement is described later.)

Display (Color)

274

Graphic

5.2.3 ORIGIN Statement (Origin)

Function
Defines the origin of relative coordinates.

Format

ORIGIN._,<C oordinate>

Explanation
Relative coordinates specify the location of a figure that will be drawn on a

display using the graphic functions. The ORIGIN statement defines the relative
coordinates. The absolute coordinates which are specified as < Coordinate >
will be the origin (0, 0) of the relative coordinates. When the ORIGIN statement
is not executed, the absolute coordinates are the same as the relative coordinates.

Absolute coordinates

0 --------------- 639

Relative coordinates

--- -------o----- «*- +

ORIGIN (x, y)

After execution of ORIGIN (x0, yo), the relative coordinates (x, y) are the
absolute coordinates (x + y0, y + yo).

The definition of relative coordinates by the ORIGIN statement is retained
during the program execution.

[Example 5.2.3-11]
Draw a circle at the center of the screen.

275

Graphic

The ORIGIN statement on line 40 defines the absolute coordinates (320,
200) as the origin (0, 0) of the relative coordinates. The CIRCLE statement on
Line 50 specifies a circle whose center is (0, 0) and radius is 100. This circle is
drawn on the screen as shown below.

Display

Center (0, 0) ___
(320,200).

Relative coordinates
Absolute coordinates

276

Graphic

5.3 Graphic Drawing Instructions

5.3.1 PSET Statement (Point Set)

Function
Draws a dot.

Format

PSETi—i! < Coordinates,>] (, <Coordinates2>] [i _ i WITH i_. < P >]

Explanation
The PSET statement draws a dot at the specified coordinates with the

specified palette color. More than one set of coordinates can be specified.
The default value of < Coordinatesi > is the current point. After the

execution of this statement, the current point will be the coordinates of the last
dot drawn.

[Example 5.3.1-1]
Draw a sine curve.

1 0 PRINT %H0ME

2 0 0RIGI N (0,200)

30 FOR I=0 TO 639

40 A= 1 00 *S IN(I)

50 PSET (I,A) WITH 5

60 NEXT I

In the above example, a sine curve is drawn by displaying 640 dots in the
direction of the x-axis. The screen is as shown below.

Display

277

Graphic

5.3.2 LINE Statement (Line)

Function
Draws a line.

Format

L1NE._.[<Coordinates 1 >] , <C oodinates 2 > [, < Coordinates 3 >] •••
[i_.WITH.—1 [< P >] , [, C L ine T y p e >]]

Explanation
The LINE statement draws a line of the specified line type connecting the

specified coordinates. More than one set of coordinates can be specified.
The default value of < Coordinates^ is the current point. After the execution
of the statement, the current point will be the point where the last line drawn
ends.

[Example 5.3.2-1]
Draw a line between the relative coordinates (0, 0) to (100, 100).

The following line is desplayed whern line 90 is executed.

Display

278

Graphic

[Example 5.3.2-2]
Move a line by repeating line display and erasure.

1 0 PRINT %H0ME

50 FOR I= 0 TO 639

60 LINE (0 , 0),(I , 399)

70 LINE (0 j 0) , (I > 399)

80 NEXT I

In the porgram example, the value of the x- coordinate which specifies the
drawing location of the line is increased in a loop to shift the location of the line.

A line is drawn using the LINE statement of line 60. The line is erased by
drawing the same line with no-color (Palette 0) using the LINE statement of
line 70.

In other words, the line is drawn and then erased immediately. This operation
is repeated as the location is shifted gradually. As a result, the line looks like it
is moving.

As this example shows, a figure is erased by drawing the same figure with
no-color (or with the field color). This example can also be used with the mono­
chrome display because the figure is erased with no-color (Palette 0).

Display

279

Graphic

5.3.3 RECT Statement (Rectangle)

Function
Draws a rectangle.

Format

RECTi_.[<Coordinates 1 >] , < Coordinates 2 >
[t_iW ITH^_i[<P>] [, [< L in e T yp e>] [, < P a ttern >]]]

Explanation
The RECT statement draws a rectangle by specifying the coordinates of its two

opposite corners. The default value of one set of coordinates is the current point.
The inside of the rectangle can be painted by specifying a paint pattern. In

this case, the line type will be a solid line (0) regardless of the specification. The
current point is < Coordinates 1 > after the execution of this statement.

[Example 5.3.3-1]
Draw a rectangle whose opposite corners are coordinates (—100, —100) and

(100, 100). Specify the net pattern in the rectangle. Use Palette 6 .

10 PRINT %H0ME

20 ORIGIN (320,200)

90 RECT (-100,-1 00),(100,100) WITH 6 , , 6

The following figure is displayed by executing the previous program example.

Display

(- 100, - 100)

(100, 100)

280

Graphic

5.3.4 CIRCLE Stanement (Circle)

Function
Draws a circle or an arc.

Format

CIRC LE,_J[< C o o r d i n a t e s >] , < R a d i u s > [, < Angle 1 > , < Angle 2>]
[.—, WITH l—, [< P >] [, < Line T y p e >] [, < P a t t e r n >]]]

Explanation
The CIRCLE statement draws a circle or an arc by specifying the coordi­

nates of the center and the radius. Do not specify < Angle 1 > and < Angle 2>
to draw a circle.

If < Angle 1 > and < Angle 2 > are specified, the statement draws an arc.
< Angle 1> is the starting angle indicating the starting postion of the arc.
< Angle 2 > is the range angle indicating the drawing range of the arc. A
poxitive angle indicates the clockwise direction.

The range angle is positive. The range angle is negative.

Range angle Range angle

y y

To draw an arc, specify the starting point with a starting angle and specify
the degrees and the direction (clockwise direction; positive value, or counter­
clockwise direction, negative value with a range angle. The starting angle
must be within the range: 0 -3 6 0 and the range angle must be an integer
value within the range: -32768-32767 . As the drawings show, some ars can
be drawn by specifying starting angle =90 and range angle =90, or specifying
starting angle = 180 and range angle = -9 0 .

Any paint pattern specification is ignored for arc drawing. The current
point is the center of the circle or arc after execution of this statement.

281

Graphic

[Example 5.3.4-1]
Draw a circle whose center is at the coordinates (0, 0) and whose radius is 100.

Paint the inside of the circle completely. Use Palette 2.

1 0 PRINT %H0ME

2 0 ORIGIN (320,200)

70 CIRCLE (0,0) ,100 WITH 2

The following figure will be displayed by executing the above example.

[Example 5.3.4-2]
Draw an arc using a broken line. Use Palette 2.

1 0 PRINT %H0ME

2 0 ORIGIN (320,200)

80 CIRCLE (0,0),100,90,-270 WITH 2,1

The following figure is displayed by executing the above example.

Display

282

Graphic

5.3.5 FAN Statement (Fan)

Function
Draws a fan.

Format

FA N ._.[<C oordinates>], < R ad iu s> , <A ngle 1> , < Angle 2>
[l_.WITH._j [< P >] [, (< Line T ype>] [, < P a tte rn >]]]

Explanation
The FAN statement draws a fan by specifying operands like those for

drawing an arc.

[Example 5.3.5-1]
Draw a fan and paint the inside completely. Use Palette 3.

10 PRINT %H0ME

20 ORIGIN (3 2 0 , 2 0 0)

70 FAN (0 , 0) , 1 0 0 , 0 , 9 0 WITH 3 , , 0

The following figure is displayed by executing the above example.

Display

283

Graphic

5.3.6 ELLIP Statement (Ellipse)
Function

Draws an ellipse.

Format

E L L IP ^ [< C oord inates^ , < ^ f us> * < Radius> [’ < A n §le >]

[i_i WITH i____i [< P >] [, [< Line T y p e >] [, < P a ttern >]]]

Explanation
The ELLIP statement draws an ellipse by specifying the coordinates of

the center, the long radius, the short radius, and the angle. < A n g lo is the
angle which the long radius forms against the x — axis. It must be within the
range: 0 — 360. The default value of < Angle > is 0.

s - x

[Example 5.3.6-11]
Draw an ellipse whose center is at coordinates (0, 0), with a long radius

of 200, short radius of 100, and angle of 45. Paint the inside of the ellipse
using paint patterns. Specify Palette 4.

The following figure will be displayed by executing the above example.

284

Display

5.3.7 MARK Statement (Mark)

Function
Draws a mark at the specified coordinates.

Graphic

Format

MARK)_,[<C oord inates>] [^ W I T H ^ [< P >] [, < M a r k >]]

Explanation
The MARK statement draws one of seven types of marks at the specified

coordinates. Specify a mark number (0 — 6) for <M ark>. The default value of
< Mark > is 4 (x) . The current point is < Coordinates > after the execution of
this statement.

The marks and their numbers are shown below. O indicates a dot and + is
the center of each mark.

ooo o o
0 + 0 o o ooo

1: ooo ooooo ooooo ooooo ooo

2: ooooo o o
0 + 0 o o ooooo

3: ooooo ooooo ooooo ooooo ooooo

4" O o 5:
o o o
o o oo o 0 + 0o o ooooooo

6 :

0 8 0oooooooooooo
Note

Numbers exceeding 6 coorespond to the mark type as follows,: 7 = 0,
8 = 1, 9 = 2 . . .

285

Graphic

[Example 5.3.7-1]
Draw eight periods (.). Use Palette 6 .

10 PRINT %H0ME

20 ORIGIN (320 , 200)

70 FOR 1=0 TO 70 STEP 10

80 MARK (1,0) WITH 6,1

90 NEXT I

The following figure is displayed by executing the above example.

Display

286

Graphic

5.4 Other Graphic Instructions

5.4.1 TEXT Statement (Text)

Function
Displays a character string using graphic specification.

Format

T E X T i__. [< C oord inates>], <Character String> [i_i WITH j [< P >]

[, [< D irectio n >] [, < W i d t h ^ ^
m a g n i f i c a t i o n ' ’ x

H e ig h t
m a g n i f i c a t i o n >]]]

Explanation
The TEXT statement draws character strings using graphic specification.

Output directions and magnification of characters can be specified.
It can output the same characters that can be output by THE PRINT

statement. < Coordinates > specifies the starting point of display, which is
the left top of the first character of a character string. The current point is the
right top of the last character after the execution of this statement.

Specify one of the following numbers, right = 0, u p = l, left = 2, down
= 3 for < Direction > . The default value is 0 (right).

Specify the character magnification for < Width magnification > and
< Height Magnification > with a number within the range: 1 ~16. The default
value is 1 .

These syntax rules are summarized below.

Note
Numbers exceeding 3 correspond to the directions as follows,: 4 = 0, 5 = 1,

6 = 2 . . .

287

Graphic

[Example 5.4.1-1]
Display the character string “ABC” at a width magnification of 15 and at

a height magnification of 5.

10 PRINT %H0ME

40 TEXT (0 , 0) , "ABC" WI TH, , 1 5 , 5

In the above example, the relative coordinates are the same as the absolute
coordinates because the ORIGIN statement is not executed. The following
character string is displayed by executing the above example.

5.4.2

Display

/pi b c A

L
PAINT Statement (Paint)

Function
Paints an enclosed area.

Format

PAINT._;(<C oord inates>) [, < Boundary Palette>]
[l_.WITH._i [< P >] [, < P attern >)]

Explanation
The PAINT statement paints the area containing the specified coordinates

with the specified paint pattern and in the color of the specified palette. Here
an area is a portion of the screen enclosed by a line(s).

For example, define the origin of relative coordinates as (320, 200) of the
absolute coordinates using the ORIGIN statement. Then, draw a circle with a
radius of 70 at (- 5 0 , 0) and another circle with the same radius at (50, 0). If a
paint pattern is not specified in the circles, four areas, A, B, C, and Dare formed
on the screen as shown on the next page.

288

Graphic

If the PAINT statement which specifies (50, 0) as the coordinates para­
meter is executed, area C which contains (50, 0) is painted. Areas B and A are
painted by the PAINT statement which specifies (0, 0) and (-5 0 , 0) respectively.
The entire screen except the two circles (area D) is painted by the PAINT state­
ment which specifies (0 , - 1 0 0).

The PAINT statement which specifies a boundary palette enables painting a
figure drawn with the specified palette. For example, assume that the same circles
described previously are drawn by the following two CIRCLE statements.

50 CIRCLE (-50,0),70 WITH 1

60 CIRCLE (50,0),70 WITH 6

The left circle is drawn with Palette 1 (blue) and the right circle is drawn
with Palette 6 (red). If PAINT statement which specifies (50, 0) as < Coordinate >
and Palette 6 as < Boundary Palette > is executed, area B and area C will be
painted. This is because the arc between area B and area C has been drawn with
Palette 1 and so is ignored by this PAINT statement. At this time, the arc con­
necting area B and area C is erased.

However, area A and area B cannot be painted by executing a PAINT
statement which specifies (-5 0 , 0) as < Coordinates > and Palette 1 as
< Boundary Palette > .

289

Graphic

This is because the circles drawn by the two CIRCLE statements intersect and
the left circle has been partially eclipsed by the right circle. So a PAINT statement
specifying Palette 1 for < Boundary Palette > treats the entire screen as one area.

When intersecting figures are drawn on the screen as explained in the previous
example, the last figure will remain on the screen, so be careful when executing
PAINT statements with boundary palette specification.

The current point is < Coordinates > after execution of the PAINT statement.

[Example 5.4.2-1]
Paint the area enclosed by three lines.

1 0 PRINT %H0ME

2 0 ORIGIN (320,200)

30 LINE (-300,0),(300, - 1 0 0)

40 LINE (- 1 0 0 ,-2 0 0),(- 1 0 0 ,2 0 0)

50 LINE (-300,200),(300,-150)

60 PAINT (0,0) WITH 2

The following figure is displayed by executing the above example.

Display

290

Graphic

5.4.3 GGET Statement (Graphic Get)

Function
Assigns the image data displayed on the screen to variables.

Format

GGETl_ j[< C oordinates 1 >] , < Coordinates 2 > , < Array Variable>

Explanation
The GGET statement assigns the image data of a specified area on the screen

to variables. The image data which are assigned to variables by this statement can
be reproduced on the screen using the GPUT statement, explained later.

The image that will be written to variables as image data is specified with
< Coordinates 1> and < Coordinates 2 > . The area is the rectangle whose
diagonal line is the line connecting these two coordinates. This is illustrated
below. Either (xh yt) or (x2, y2) may be specfied as < Coordinates 1> or
< Coordinates 2 > . The larger number specified as <Coodinates 1> or
< Coordinates 2 > is treated as (x2, y^. the smaller one is treated as (xj, yj).
The default value of < Coodinates 1 > is the current point.

Display

* The frame of the rectangle is also in­
cluded in the area.

The necessary number of array variables is defined according to the area of
the image. The momory size (the total length of variables) is calculated using the
following equation.

Memory size (in bytes) = 4 + N x L(y2 ~Yi + 1) x (x2 — Xi + l) / 8 J
♦ V alue o f N : N = 3 (C o lo r), N = 1 (M o n o c h r o m e 1 -V R A M), N = 2 (M o n o c h r o m e 2 -V R A M)

* L J means to round fractions up.

291

Graphic

Array variables may be of the real number-type, integer-type, of string-type.
The image data cannot be stored if the array variable defined doesn’t have

the memory size calculated above.
However, the maximum subscript value of the array is 32767. The use of real

number-type variables is recommended considering the amount of image data.
Therefore, the maximum subscript value of the array variable is the result ob­
tained by dividing the calculated memory size by 8 bytes and rounding the frac­
tions up.

The data are assigned to variables are shown below. Refer to “The CP/
M- 8 6 User’s Manual” for details of the Video RAM.

Number of dots Number of dots Dot information of Dot information of Dot information of
in direction in direction Video Video VideoX y RAM 1 RAM 2 RAM 3

2 bytes 2 bytes

Each l(y2 - y i + 1) x (x2- x (+ 1)/8J bytes

Enough array variables must be defined by the DIM statement in advance
to assign image data. If not, executing the GGET statement will cause an error.

The current point is < Coordinates 1 > after the execution of this statement.

292

Graphic

5.4.4 GPUT Statement (Graphic Put)

Function
Reproduces images recorded as image data on the screen.

Format

G PU T i_t[<C oordinates>), <Array Variable>

Explanation
The GPUT statement reproduces an image on the screen using the image

data which have been assigned to variables by the GGET statement.
< Coordinates > specifies where the image will be reproduced. Specify the top

left coordinate of the image area that will be displayed. If a part of the image
extends beyond the screen display area, this statement is ignored.

Display Area

(x.y)___________
Reproduced
image

(x,

Specify the array variables to which the image data have been assigned by
the GGET Statement.

The current point is < Coordinates > After execution of this statement.

293

Graphic

[Example 5.4.4-1]
A figure is moved using the GGET statement and GPUT statement.

10 DIM IMAGE(176)

20 PRINT %H0ME

30 ORIGIN (320,200)

40 CIRCLE (0,0),30

50 GGET (-30,-30),(30,30),IMAGE(*)

60 GPUT (100,100).IMAGE(*)

In the above example, the image data of a cicle drawn at the center
of the screen (color display) are assigned to the array variables IMAGE using
the GGET statement. Then this figure is reproduced at another position on the
screen.

The image area which id recorded in variables as image data is from (— 30,
- 30) to (30, 30), so the necessary number of the elements of the array variables is
calculated by the following method.

Bytes = 4 + 3 x|_(30 + 30 + 1) X (30 + 3 0 + l) / 8 j
= 1402

Because real number-type array variables are used,
Number of array elements = U402J

= 176

The array variables IMAGE(1)~IMAGE(176) are defined by the DIM
statement on line 10. The following figures are displayed by executing the
above example.

Display

294

CONSOLE Statement (Console)5.4.5

Function
Clears the screen and specifies the screen status.

Graphic

Format

Explanation
This statement clears the contents of screen, specifies the capacity of the

display lines on the screen (20 or 25), specifies smooth scroll or line scroll (0 or 1),
and the range of partial scrolling (Starting Line and Number of Lines).

The capacity of display lines on the screen is the display capacity of one
screen when characters are displayed using the PRINT statement, etc. The initial
value is 25 lines. When this operand is not specified, the number of display lines
remains the same. When the number of display lines is changed to 20, the y- co­
ordinates of the character coordinates on the screen (coordinates specified by
% CURSOR, etc.) are 0 ~ 19.

The next operand (0 or 1) specifies smooth scroll or line scroll. The unit of
smooth scroll is one dot and that of line scroll is one line. The same result can
be obtained using console control code I CTRL I/T21. Specify 1 for smooth scroll
and 0 for line scroll. When this operand is not specified, the scroll mode remains
the same.

The last two operands < Starting Line> and < Number of Lines > specify
partial scrolling.

The initial status of scrolling is all screen scrolling. It can be modified to partial
scrolling by specifying < Starting Line> and < Number of Lines> . <Starting
Line> specifies the line (counted from the top line of the screen) where partial
scrolling starts. < Number of Lines > specifies the range of partial scrolling.

The display functions change as follows when partial scrolling is specified.

295

Graphic

Assume the area of partial scrolling is specified as 10 lines starting from the
5th line by executing the following CONSOLE statement.

CONSOLE ,,5,10
Display

• Functions of PRINT %CURSOR(x, y), <7oCURX function, and <%CURY
No change.

• Functions of PRINT VoHOME . . .
If the cursor is in area A or B (1st ~ 14th line), the display contents of area

A and B are erased and the cursor moves to the top left corner of the screen.
If the cursor is in area C (15th ~ 25 (20)th line), the display contents in area

C are erased and the cursor moves to the beginning of the 15 th line.

• Continuous output functions using the PRINT statement . . .
Assume that the following program is executed.

FOR 1=1 TO 20

PRINT I

NEXT I

If the cursor is in area A, data is displayed normally up to the 15th line. The
16th line is not displayed and scrolling is performed in the partial scrolling area.

12
3
4

5th line 11 1
l ■ Scrolling in this range

15 th line 20 J

296

Graphic

Scrolling is the same in the partial scrolling area when the cursor is in area B.

When the cursor is in area C, data is displayed normally through the last
line of the screen.

All remaining output to the screen is displayed one after another on the
last line and the final output displayed is retained as the last line on the screen.

15 th line

Last line

12
l
9

1 020 Output is displayed on this line one after another.

All specifications of the CONSOLE statement are retained until another
CONSOLE statement is executed or the power is turned off.

[Example 5.4.5-1]
Specify the display capacity as 20 lines and set line scroll mode.

10 CONSOLE 20,0

Caution
All the display contents are cleared by executing the CONSOLE statement

above.

297

Graphic

5.4.6 PMODE Statement (P-Mode)

Function
Controls the pointing device and the graphic cursor.

Format

PMODE j 0 j [, [| 0 j] [, < C oord inates>]]

Explanation
The PMODE statement activates the optional pointing device which

controls the graphic cursor.
The graphic cursor is “ + ” . It is moved by operating the slider on the pointing

device. The position of the graphic cursor can be read by the PINPUT statement,
which is explained later.

The first operand (0 or 1) of the PMODE statement specifies whether to
display the graphic cursor or not. Specify 1 for graphic cursor display or
0 for no display. This operand only specifies whether the graphic cursor is dis­

' played or not, and does not change any other functions.
The next operand (0 or 1) specifies the open/close status of the pointing

device. Specify 0 to open the pointing device. In this status, the graphic cursor
can be moved with the pointing device. Specify 1 to close the pointing device. In
this status, the graphic cursor cannot be controlled by the pointing device.

< Coordinates > specifies the position of the graphic cursor in relative co­
ordinates.

298

Graphic

• Operation of the pointing device

Pointing Device

Function key A Slider

function key C

function key B

When the slider is shifted in the direction of one of the arrows, the graphic
cursor moves continuously in that direction. When the fast button is pressed at
the same time, the graphic cursor moves faster.

Function keys A, B, and C are defined as 18, 19, and 20 in FKEY functions.
These three function keys operate regardless of the status (open/close) of the
pointing device.

The graphic cursor display specification and the pointing device open/close
status of this statement are retained until another PMODE statement is executed
or the power is turned off. No graphic cursor display and pointing device close
are automatically specified as initial values when BASIC is activated.

An example of the PMODE statement is explained with the PINPUT
statement.

299

Graphic

5.4.7 PINPUT Statement (P-Input)

Function
Reads the position of the graphic cursor.

Format

PINPUT i_i < Variable 1 > , < Variable 2 >

Explanation
When the PINPUT statement is executed, the relative coordinates of the

current graphic cursor position are assigned to variables. The x-coordinate is
assigned to < Variable 1 > and the y-coordinated is assigned to < Variable 2 > .

[Example 5.4.7-1]
Move the graphic cursor with the pointing device. When function key A

is depressed, draw a circle with a radius of 50 with the center at the graphic
cursor position.

10 PRINT %H0ME

20 ORIGIN (320,200)

30 PM0DE 1 ,0,(0,0)

40 IF KEY=0 GOTO 40

50 IF FKEY(1 8)=0 THEN A$= INPUT$(1):GOTO 40

60 PINPUT X ,Y

70 CIRCLE (X,Y) ,5 0

When line 30 in the example is executed, the graphic cursor is displayed
at the center of the screen and the pointing device is opened.

The KEY function of line 40 and the FKEY statement on line 50 confirms
whether or not function key A on the pointing device is depressed. When
function key A is depressed, the coordinates of the current graphic cursor
position are assigned to variables X, Y by the PINPUT statement on line 60.
A circle is drawn when line 70 is executed. The center of the circle is the
coordinates of the current graphic cursor position.

300

Graphic

5.4.8 HCOPY Statement (Hard Copy)

Function
Prints the display contents on the printer.

Format

HCOPY

Explanation
Executing the HCOPY statement outputs the contents of the current screen

to the printer connected to I/O connector no. 1.
The printer must be the Canon Color Printer A-1210, Canon Dot Impact

Printer A-1200, or another Canon-specified printer. The handler for the printer
must be loaded before Canon BASIC is activated to use this statemente.

The contents of the color display can be printed with Color Printer A-1210.
The colors on the screen are the same as the printout colors (approximate colos)
only when the initial values of the palette color definition have not been changed.
No-color on the screen is not printed and white is printed as black.)

This statement has the same function as concole control code ICTRL \/ \ P \ .
Printing using this statement can be aborted by depressing I CANEL 1 or

1 CTRL |/ [C l .

[Example 5.4.8-1]
Draw a circle on the screen and make its hard copy.

30 PRINT %H0ME

40 CIRCLE (3 2 0 , 2 0 0) , 1 0 0

50 HCOPY

The following figure is be printed by executing the above example.

301

Graphic

5.4.9 POINT Function (Point)

Function
Reads the palette information of the dot at the specified coordinates.

Format

POINT(< Arithmetic Expression 1 > , <Arithmetic Expression 2 >)

Explanation
The POINT function is an arithmetic function and is used like other

arithmetic functions.
This function checks the palette with which the dot at the specified coordinates

is drawn.
When the x-coordinate of a dot is specified as < Arithmetic Expression 1 >

and the y-coordinate of the dot as < Arithmetic Expression 2 > , this function
has the palette number (0 ~7) of the dot specified.

For example, assuming that the dot at (100, 100) is a part of a circle drawn
with Palette 2, POINT (100, 100) has a value of “2” .

(Example 5.4.9-1]
Output the palette number of the dot at the specified coordinates.

302

Graphic

5.5 Application Examples

Various graphs can be created using the graphic functions. Examples of
such programs are explained in this section.

5.5.1 Line Chart

Draw a line chart using the LINE statement and the MARK statement.

1 0 DIM DA T(6)

2 0 PRINT %H0ME

30 0RIGI N (100,300)

40 READ DAT(1),DAT(2) ,DAT (3) , DAT (4) , DAT (5) , DAT (6)

50 DATA 45,40,68,72,65 ,90

60 LINE (0,-300) ,(0,0) ,(400,0)

70 FOR I= 1 TO 6

80 MARK (1*50,-DAT(I)* 3) WITH , 0

90 NEXT I

1 0 0 PSET (50,- DAT(1)*3) WITH 0

1 1 0 FOR I= 2 TO 6

1 20 LINE ,(1*50,-DAT(I)* 3) WITH , 1

130 NEXT I

140 END

In this example, a line chart is drawn based on six data. Points are plotted
by the MARK statement in the loop of lines 70 ~ 90. These points are connected
by the LINE statement in the loop of lines 110-130. The PSET statement on
line 1 0 0 moves the current point to draw a line by the loop.

The line chart on the next page is drawn by executing this example.

303

Graphic

Display

The graphic functions handle the downward direction of y-axis as positive
direction. To draw an ordinary x, y graph on the screen, invert the signs by
adding a minus sign (—) to the data of y-coordinates.

304

Graphic

5.5.2 Bar Chart

Draw a bar chart using the RECT statement.

10 DIM DA T(4)

20 PRINT %H0ME

30 0RIGI N (100,300)

40 READ DAT(1),DAT(2),DA T(3),DA T(4)

50 DATA 45,40,68,80

60 LINE (0,-300),(0,0),(400,0)

70 FOR I=1 TO 10

80 LINE (0 ,-1*30),(400,-1*30) WITH ,1
90 NEXT I

100 FOR I= 1 TO 4

110 RECT (1*70,-1),(1*70+40,-DAT(I)* 3) WITH ,, 2

1 20 NEXT I

130 END

In this example, a bar chart is drawn from four data. The x-axis, the y-axis,
and the scale are drawn by the LINE statements on lines 60 ~ 90.

The bars are drawn by the RECT statement of line 110. Parameter — 1 in
the RECT statement prevents the erasure of the x-axis. The following chart is
drawn by executing the program example.

Display

305

Graphic

5.5.3 Pie Chart

Draw a pie chart using the FAN statement.

10 PRINT %H0ME

20 ORIGIN (320,200)

30 READ A , B ,C ,D

40 DATA 80,62,30,15

50 T=360/(A+B+C+D)

60 A = A* T:B=B*T:C=C*T:D=D*T

70 A=FIX5(A,0):B = FIX5(B,0):C = FIX5(C,0):D = FIX(D , 0)

80 IF A+B+C+D=360 GOTO [GRAPH]

90 IF A+B+C+D>360 GOTO [+]

100 IF A = M I N (A , B ,C , D) THEN A=A+1:G0T0 [GRAPH]

110 IF B=MIN(A,B,C,D) THEN B=B+1:G0T0 [GRAPH]

120 IF C = M I N (A ,B ,C ,D) THEN C = C + 1:G0T0 [GRAPH]

130 D= D+1:GOTO [GRAPH]

140 [+] IF A= MAX(A ,B ,C,D) THEN A=A-1:G0T0 [GRAPH]

150 IF B = M A X (A ,B,C ,D) THEN B = B-1:G0T0 [GRAPH]

160 IF C=MAX(A,B,C,D) THEN C=C-1:GOTO [GRAPH]

170 D = D-1

180 [GRAPH] FAN (0,0),150,0 ,A

190 FAN ,150,A ,B WITH ,,7

200 FAN , 150 , A+B , C WITH ,,2

210 FAN ,150,A + B + C ,D WITH ,,3

220 END

In this example, a pie chart is drawn from four data.
A pie chart is drawn by combining fans. The total angle of the fans must be

360 degrees and the angle specification of each FAN statement must be an
integer. Because of this, the angle of each fan is corrected on lines 90—170.
When the angles of the fan total 359 degrees, 1 is added to the smallest angle.
When the total is 361 degrees, 1 is subtracted from the largest angle. (The error
produced by execution of line 70 is ±1.)

306

Graphic

The following pie chart is drawn by executing the previons example.

Display

307

Graphic

1 .

2 .

3.

4.

5.

6 .

7.

8 .

9.

10.

11.

12.

13.

Graphic Instruction Formats

D E F C O L ^ [< C o lo r0>] , [< C o lo r ,>] , [< C o lo r7>]

COLORt_i < P i > [, < P 2 >]

ORIGIN i__i <C oordinates>

PSET L _ , [<C oodinates 1 >] [, <Coordinates 2 >] ••• [< _ _ j WITH i_ _ i < P >]

LINE l__, [< Coordinates 1 >] , < Coordinates 2 > [, <Coodinates 3 >] - -

[i_i WITH l—i [< P >] [, < L in e T y p e>]]

RECTt_i [< Coordinates 1 >] , < Coordinates 2 >

[i_i WITH i_i [< P >] [, [< Line T yp e>] [, < Pattern >]]]

CIRCLE i_i [< C oord inates>] , < Radius> [, < Angle 1 > , < Angle 2 >]

[l_j WITH i_i [< P >] [, < Line T y p e >] [, < P a ttern >]]]

FAN t—j [< C oord inates>] , < R a d iu s> , < Angle I > , < Angle 2 >

[u_. W IT H ^ [< P >] [, [< Line T y p e >] [, < P attern >]]]

E L L IP ^ [< C o o d in a ,es>] , < ^ f us> , t • < A n g le >]

[i_i WITH i—i [< P >] [, [< Line T yp e>] [, <Pattern>]]]

MARK t__i [< C oord inates>] [i—. WITH i—i [< P >] [, < M a rk >]]

T E X T i_ _ i [< C ood in a tes>] , <Character String>

[■—'WITH.—t [< P >] [, [< D irectio n >] [. [< S ^ „ ll0B> .

PAINT t—i [< C ood in a tes>] [,<Boundary Palette>]

>]]]

[i_i WITH i—i [< P >] [, < P attern >]]

G G ET,_i [<C oordinate 1 >] , <Coordinate 2 > , < Array Variable>

308

Graphic

14.

15.

16.

GPUTi_i [< C oord inates>] , <Array Variable>

CONSOLE l_, [|2 0 j] [, [|0 j] [« S tartin g Line>

PMODE i—. f 0 \ [, [fOl] [, < C oord inates>]]

17.

18.

19.

PINPUT

HCOPY

P O IN T «

< Variable 1 > , < Variable 2 >

A rith m e tic ^ A r ith m e tic v .
E x p re ss io n 1 ^ ^ E x p re ss io n 1 '

•■•Function

, <Num ber of L in es>]]

309

Error

6. Error Messages

The error messages output by Canon BASIC have the following format:

< Error Message> ! < Program N am e> . <Line No. > [. < Statement No. >
V--------------------------y-- -

The name of the program in which the error occurs is
displayed. The location of the error is indicated by line
number and statement number. When < Statement
No. > is 0, the 0 is omitted.
These are displayed only when errors occur during pro­
gram execution.

The following error messages are displayed by Canon BASIC.

No. Message Meaning/Example

1 < File Name > NOT EXIST • The specified file is not found on the disk.

2 < File Name > ILLEGAL
PROGRAM

• The file specified as a BASIC program file
does not have the correct BASIC program
format.

3 < File Name > ALREADY
OPENED

• The specified logical device number is
already open.

4 < Device Name > NOT READY • The specified dvice is not ready to use.

5 < File Name> DISK OVERFLOW • There is not enough free area for writing
on disk specified.

< File Name > ILLEGAL
RECORD NO.

• The record number specified for file assess
exceeds the range 1 ~ 32767.

[Ex.]

PUT # 1,40000 A$

310

No. Message Meaning/Example

7 INVALID COMMAND • The specified command is not defined.

8 NOT LOADED PFOGRAM • The program is not loaded.

[Ex.]

EHM 2 IE 0 operation when the program
is not in memory.

6 FILE NOT OPENED • The logical device number specified is not
defined.

7 STOP AT • The program was aborted bv 1CTRL i/fCl
or 1 CANCEL 1 .

8 DECLARATION ERROR • There is an error in declarative instructions.

[Ex.]

10 DIM A (10) — |
„ „ „ . — Order is reversed.

20 INTEGER A — 1

i

9 TYPE ERROR • There is an error in the data type.

[Ex.]

3 + A$ or AS + B

1 0 CONVERSION ERROR • There

[Ex.]

P

is an error in type conversion.

 ̂= B$

-̂------------ String variable

---------------------Arithmetic variable

311

No. Message Meaning/Example

1 1 DATA ERROR • There is an error in data read by the READ
statement.

[Ex.]

40 READ A, B — Arithmetic variable

50 DATA XYZ, STU —Character data

1 2 ILLEGAL ARGUMENT • There is an error in the value limitation.

[Ex.]

A = ASN(—2)
[— Negative value unacceptable

[Ex.]

OPEN # 12,”A. .
— Logical device numbers

must be 1 — 9.

13 BRANCH ERROR • There is an error in the specification of a
branch destination.

[Ex.]

GOTO 100 in a program that does not
contain line 1 0 0 .

14 MEMORY OVERFLOW • The memory area is full.

15 ENTRY NOT FOUND • There is an error in the specification of the
entry name (keyword).

[Ex.]

MAT AAA(10, 10)

312

(No. Message Meaning/Example

16 ADDRESS ERROR • There is an error in the subscript of an
array variable.

(Ex.)

10 DIM A(5)

40 A(10) = 100

-̂-------Not defined

17 CONVERSION OVERFLOW • There is an error in the conversion of a
value from the real number-type to the
integer-type.

[Ex.]

10 INTEGER A

50 A = 100000

^-Outside the range o f integer-type

constants.

18 SYNTAX ERROR • There is a syntax error.

19 UNMATCHED NUMBER OF
ARGUMENT

• The number of the argument is not matched
correctly.

[Ex.]

PARAM A, B in program A
against CALL A(A).

2 0 ILLEGAL FILE NAME • There is an error in the specification of
a file name.

313

No. Message Meaning/Example

2 1 BAD INCREMENT VALUE • There is an error in the line interval speci­
fication of a program edit command.

[Ex.]

RIO, 0 0

L--------- Line interval 0.

2 2 LINE NOT EXIST • The line specified by a program edit
command is not found in the program.

[Ex.]

C l 0 0 0 in the editing of a program that
does not contain line 1 0 0 .

23 ILLEGAL LINE NUMBER • There is an error in the line specification
of a program edit command.

[Ex.]

C40000

-̂----------- line no. must be 0 — 32767.

24 PROGRAM OVERSIZE • The program size has exceeded the limitation
and no more additions can be made.

25 SECURED PROGRAM • The specified command cannot be executed
because the program is secured.

26 PROGRAM NAME NOT
DEFIND

• The program name is not defined.

314

No. Message Meaning/Example

27 < File Name > ALREADY EXIST • A file with the same name as the one specified
is already on the disk.

[Ex.]

RNAME < file 1 > TO < file 2 >

I
This file is already on the disk

28 < File Name > DIRECTORY FULL • The specified file cannot be created be­
cause the directory area of the disk is full.

29 INSUFFICIENT GGET
MEMORY

• The length of array variable defined for
the GGET statement is less than that re­
quired to record image data.

30 ILLEGAL DEF-FN STATEMENT • There is an error in DEF FN statement.

[Ex.]

10 DEF FNA = S(l)
—̂ Undefined array variable

20 PRINT FNA

* Error occurs on Line 20

31 < File Name > READ ONLY • Data deltion or writing cannot be per­
formed because the type of file specified is
read-only.

Command; SAVE, CANCEL, or RNAME
Statement; PRINT, PUT, CLOSE/DEL, etc.

Besides these error messages output by BASIC, there are error messages
from the operating system. Refer to ’’The CP/M - 8 6 User’s Manual” for these
messages.

315

A ppendix 1. Character C odes

The table below shows the character codes for display.
Code: mn

\m
n \ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL DLE 0 e P P r* E T r
1 SOH DC1 1• 1 A Q a q © L 1 A K L

2 STX DC 2 1 * 2 B R b r 0 J Ä □■a X j

3 ETX DC3 # 3 C S c s V -1 Ö (E + l
4 EOT DC 4 $ 4 D T d t ♦ IJ 0 z i
5 ENQ NAK % 5 E U e u ä » t -

6 ACK SYN & 6 F V f V * Ö IJ 4-

7 BEL ETB «
7 G II 9 w * - Ü ij i

8 BS CAN < 8 H X h X 0 . ß Cl +

9 HT EM) 9 I Y
•l y 0 mTm ä i F T

A LF SUB * •• J 2 j 2 s 1
a

6 J.

B VT ESC + ■ K [k i 8 K. 9 $

C FF FS < L \ l II ¥ G a
D CR GS - - n] m } c Ü &
E SO RS • > N

A

n A k P r
F S I US / ?■ 0 0 DEL i i e £ 11

0

1

2

3

4

5

6

7

8

9

1 0

11

12

13

14

15

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

♦For conversion to a decimal figure, add the two figures outside the table
as follows:

57h 7

u 80 + 7 = 87
80 So 57h = 87 (decimal notation)

316

Appendix 2. Reserved Words

a) Keywords

LET, GOTO, GOSUB, RETURN, FOR, NEXT, IF, ON, DIM, INTEGER,
DEF, INPUT, PRINT, BYE, OPTION, CALL, FREE, END, READ, DATA,
RESTORE, FORMAT, REM, OPEN, CLOSE, GET, PUT, PARAM, MAT,
%LOAD, %CALL, CHANGE, DEFKEY

b) Sub-keywords

®7oCURSOR, VoHOME, %DEL, BASE, AND, OR, XOR, NOT, TO, STEP,
THEN, USING, MSG, TAB, SPACE, FEED

c) Function Names

SQR, EXP, LOG, LGT, SIN, COS, TAN, ASN, ACS, ATN, FRC, RAD,
DMS, ARD, ADS, SGN, ABS, INT, LEN, IDX, VER, NUM, COD, STR$,
CHR$, ASC$, SIZE, MOD, FIXO, FIX5, FIX9, FIXE, MAX, MIN, TIM, PI,
ERR, RND, %CURX, %CURY, KEY, EOF, INPUTS, HEX$, FKEY,
COM$, TODS

317

Appendix 3. Commands

a) BASIC Commands

1. EDIT[,—,<Program Specification]

2. LOAD i—i < Program Specification >

3. SAVE[i_i<Program Specification>] [,SECUR]

4. L IST [,_ ,< Device N am e>] [,_,< Range Specification>

5. XREF[,—, < Device N am e>]

6 . [R U N ^] [< Program Specification>] [D] [; < Character String>]

7. CANCEL,—i < File Specification>

8 . DLIST[,—, < File Specification>]

9. RNAME < File Specification 1> TO < File Specification 2>

10. NEW

11. BYE

b) OS Commands

1. COPYDISK

2. VOLCOPY

3. FORMAT

4. PIP,_,< Drive N am e> = < F ile Specification>

5. STAT

6 . TO D [^_,<M onth> < D a y > / < Y ear> ,_ ,< H ou r> : < M inute> : < S eco n d >]

7. TYPE,_,< File Specification>

8 . BASIC [l—i < Library N am e>] [t_,< Program Specification>
[; < Character S tring>]]

318

Appendix 4. Syntax Table

1. REM l_ j <C om m ent>

2. DIM < Variable> [,] • • •

3. OPTION BASE 0

4. INTEGER .—. < Arithmetic Variable> [,] • • •

5. DEFKEY <Arithmetic Expression> , <Character Expression>

6 . [LET l__ ,] <V ariab le> — (< Arithmetic Expression>l
\ < Character Expression> J

7. INPUT [# < I ~ 9 >
^ Arithmetic^

Variable

] [M S G (< String >)] [< V ariab le>] [,]•
Expression

8 . IN P U T ._> [# < 1 ~ 9 >
^ Arithmetic^

Variable

] USING [< Line N o .> V< Variable> [,] •
1 [< L a b e l>] j

9. PRINT [# < 1 ~ 9 >
Arithmetic
V ariable

.] [< String Expression>
< Arithmetic Expression>

. <Sub-keyword>

] [/ , !]

<Sub-keyw ord> = [SPA C E (< Arithmetic Expression>)
FE E D (< Arithmetic Expression>)
T A B (< Arithmetic Expression>)
% HOME

1% C U R S O R K ^ i,hme,iC> , <A rithm e.ic> j
Expression Expression

10. PRINT i_ i [# < 1 ~ 9 >
Arithmetic
Variable

,] USING l_j f < Line N o .>
[< Label >]

^ A r ith m e tic \
E x p r e s s i o n ^

< S tr in g
E x p re ss io n >

[.]■

FORMAT i_i < Format Specification>

319

11. GOTO:—i f < Line N o . > j
l [< Label >] J

12. GOSUB._i f < Line N o . > l
1 [< Label>] J

RETURN

13. IF .—i J <Con dit iona l Expression>) ,_. GOTO f < Line N o . > 1
1 < Arithmetic Expression> J - \ [< L a b e l >] J ■

.THEN i_i < S t a t e m e n t > ,

14. ON i—i < Arithmetic Expression> ._, jGOTO 1 l_j f < Line N o . > 1 [,]•••
iGOSUBj | [< Label>] J

i c r r i D -Arithmetic-— -Arithmetic v. -Arithmetic \ r C T C n --Arithmetic v. ~i
ID. r U K :— r < . Variable -> — Expression i ^ ' 1 U l— 1 Expression L L—1 ^ 1 E r Expression 3> J

N E X T i_i <Arithmetic Variable>

16. RE A D t_i < Variable> [,]••■

D A T A i—i | < C o n s t a n t > ! [,] • • •
1 <Character> J

17. RESTORE

18. END

19. BYE

20. DEF:_i FN < Function N a m e > (< Variable> (,]■■•)—< Definition Expression>

21. CALLu_, < P r o g r a m > [(< V a r i a b l e > (,] •••)]

PAR AM u_ j < Variable> [,] • • •

22. FREE

23. OPEN i_i # < 1 ~ 9 > ’ 5 ” [< Drive N a m e >]< F ile N am e> ”
^ Arithmetic^ ►

”< Device N am e> ”
. Expression .

,< String Expression> .

320

24. CLOSE i_ j # < 1 ~ 9 >
Arithmetic^
Variable

[,% DEL]

25. CHANGE._. [MSG (<String Expression>) ,] ”<Dri ve N am e> ’

26. PUT i_i # < 1 ~ 9 >
Arithmetic
Variable

[, < Arithmetic Expression>] ._, < Variable> [,]

27. GET i_i # < 1 ~ 9 >
^ Arithmetic^

Variable

[, < Arithmetic Expression>] ._. < Variable> [,]

321

Appendix 5. Display Control Codes

The various functions of the AS- 100’s display can be used by outputting
specific codes to the display. These codes are called display control codes. They
are supported by the CP/M-86 operating system.

This appendix explains the use of these display control codes. For further
details, refer to “ The CP/M-86 User’s Manual.”

Each display control code consists of a code string called an escape
sequence or a control sequence 1}. Various functions can be performed by out­
putting these codes with the PRINT statement.

An escape or control sequence is a code string beginning with the ESC code
(IBh). The part following the ESC code specifies the function that will be used
and the value (parameter) requred for its execution. Sometimes a specific code
must be output at the end of a code string to indicate the end of the control
code sequence.

Ex. Esc

Parameter

Code indicating function

ESC code

[> Pf ; Pf
-y—
A Code indicating the end of control sequence

The parameter is specified by a number (0~9). Two or more parameters
are connected by a semicolon (;).

Note 1 : “ The CP/M-86 User’s Guide” calls a code string beginning wit
ESc ta control sequence, and a code string beginning with Es^; an
escape sequence.

322

1) Specifying underlined display

Characters are underlined when they are output.

ESC [4m

All characters displayed after this code is output are underlined. The
specification is retained until the code to reset it is output.

[Ex.]

20 PRINT "ABC"
30 PRINT "&1B[4m"

40 PRINT "ABC"

Executing the program example displays the following:

Display

A B C

A B C

2) Resetting character display attributes

The underlined display specification is reset.

Esc [0 m

323

Executing the program example displays the following:

Display

 ̂ ABC

A B C

l___ ___
Sound Generation

Musical notes are generated from a speaker.

eSc I > p f ;Pfs

Pf: The pitch of the musical note is specified. The relationship between
numbers and pitches is shown below.

c C# D D # E F F# G G # A A # B

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

13 14 15 16 17 18 19 2 0 2 1 2 2 23 24
25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56 57 58 59 60

22 = 440 Hz (A)

324

Pf: The duration of sound is specified. The relationship between
numbers and duration is shown below. The number must be
within the range: 0 — 255.

1 1 0 50 1 0 0 150 2 0 0 255

Duration
(seconds) 0.016 0.16 0 . 8 1 . 6 2.4 3.2 4.08

The ratio is 1: 0.016 second.

The parameter must not exceed 30 characters including a semicolon.

[Ex.]
The C major scale is generated with one tone with a duration of 0.8 second.

325

Appendix 6. Calling a Machine Language Program

It is possible to load and execute a machine language program in a Canon
BASIC program using the %LOAD statement and the %CALL statement.
This appendix explains how to call a machine language program.

Refer to “The CP/M - 8 6 User’s Manual” for machine language programs
and more detailed explanations.

1) Structure

A machine language program must have the following structure:

Loading start
address

— «£—

BASE PAGE (256 bytes)

'S
Term Instruction (1 byte)

Entry Table

Code Section
J

Paragraph
border CS, DS

Created by
programmer

A machine language program must be created under the 8080 memory
model. CS and DS are set to the loading start address.

BASE PAGE:

Term Instruction:

Entry Table:

This is created by a generator (GENCMD).

This is a 1-byte FAR RET instruction to prevent
problems in sole execution.

This has the following structure:

_______________________ __ bytes _______■_________________

Entry Name (6 bytes) Offset (2 bytes)

00H

v:---- z?
1 byte

326

• Entry Name: The entry name consists of 6 capital alphabet
letters and numbers starting with an capital letter.
When the number of the characters is less than
6 , the space is filled.

• Offset: This is an offset address from CS for the routine
corresponding to the entry name.

Code Section: Processing program of each routine.

2) Execution Environment

Canon BASIC loads a machine language program specified by the %LOAD
statement next to the BASIC program in memory. It searches the entry table
for the entry name specified by the %CALL statement. If the entry name is
found, Canon BASIC sets CS and DS to the load address and calls a routine
by CALL FAR of the corresponding offset. The routine ends with FAR
RET and execution returns to the BASIC program.

When a machine language program is loaded, memory clearing by the FREE
statement is also valid for the machine language program. The effect of the
FREE statement in this case is the same as in the BASIC program.

The formats of the %LOAD statement and the %CALL statement are
shown below.

% LOAD < File Specification >

%CALL < Entry N am e>(< Augment> ' ,] . . .)

When the %CALL statement is executed, Canon BASIC searches the
routine specified and then its offset is set to control the program, the environ­
ment is as follows:

• CS = DS indicates the loading start address of the selected machine language
program.

• IP holds the offset from CS of the selected routine.

• ES = SS indicates the head address of BASIC system program.

327

• SS = SP indicates the usable stack in BASIC. The usable stack is approximately
1 K-byte.

• SS + BX indicates the head of the argument table delivered by BASIC.

All registers can be used in machine language program execution. But when
control returns to BASIC, SS and PS must be set to their original values. The
contents of registers other than SS and PS do not change.

3) Registers

SS, ES

SS + SP

SS + BX

CS, DS

CS + IP

BASIC system

System stack

Return address to BASIC
FAR: 4 bytes

Machine language program

Selected routine

~ n

1K B

J _

Selected
program

Argument
table

SS + BX— »-
or ES Type

(1 byte)

End mark
FFh

Length
(1 byte)

Segment address
(2 bytes)

Offset address
(1 byte)

328

Type: This is the type of data delivered.
1 byte)

b 7 b 6 b 5 b 4 b 3 b 2 b l bO

0 0 0 0 X

1 : Integer 0 : Real number

1 : Character string
0 : Real number or integer

1 : A rray 0: Scaler

Note: Array indicates that all elements of the array are delivered.

Length: The length of data delivered is indicated in bytes. When the data
delivered is an array, the length of one element is shown.

Real number — 8 bytes
Integer — 2 bytes
Character string — 1 —255 bytes

Address: This is the head address where the delivered data is stored. When
the data is an array, the address is the head address including
the array structure information which begins the dimension of the
array.

Physical address = (Sgement Address) x 16 + (Offset Address)

4) Data Structure

• Integer data

Low byte

High byte

This is 2-byte binary data. It is stored in order of from the low-byte to the
high-byte data.

Note: This is different from the ordinary notation 8088 and 8086.

329

• Real number data

1 byte Main part 7 bytes

1 . 2 3 4 5 6 7 8 9 0 1 2 3 4

Mantissa part is of 14 digits in binary
coded decimal notation

Position of decimal point

-«— Mantissa sign 1 bit (0: + ,1 : —)

— Exponent represented by 7 bits
In complement notation of 2, - 6 4 - 6 3 show 10_64~ 1063.

• Character data

n-byte area

* The number of characters can be specified within
the range: 1 -2 5 5 .

* When a character string is shorter than the area
length n, NUL is filled.

• Array data

1 byte 2 bytes (ml x m2 x . . . x ml) elements of n bytes

,1 (U (H)

Number of dimensions (/)
* Byte length n is the data length of one element

defined in the vaviable table.

* The size is set in order from the lowest byte to the
highest byte.

* The total size of the array data may exceed 64KB

Note: When data exceeding the range of the data area is written or when the
information part of array data is rewritten, the result is not guaranteed.

330

