

CP/M-86™ User’s Guide

Copyright © 1981

Digital Research
P.O. Box 579

160 Central Avenue
Pacific Grove, CA 93950

(403) 649-3895
TWX 910 360 5001

All Rights Reserved

i

COPYRIGHT

Copyright © 1981 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

C-P/M is a registered trademark of Digital Research.
CP/M-86, DDT-05, ASM-85, are trademarks of Digital
Research. Intel is a registered trademark of Intel
Corporation. Z80 is a registered trademark of
Zilog, Inc.

ii

Volume I Foreword

CP/M-86tm' is an operating system designed by Digital Research
for the 8086 and 8088 sixteen bit microprocessor. CP/M-86 is
distributed with its accompanying utility programs on two eight-inch
single sided, single density floppy disks.

CP/M-06 file structure is compatible with the file structure of
Digital Research's CP/M® operating system for computers based on
the 8080 or Z80® microprocessor chips. This means that if the disk
formats are the same, as in standard single density format, CP/M-06
can read the same data files as CP/M. The system calls are as close
to CP/M as possible to provide a familiar assembly language
programming environment. This allows application programs to be
easily converted to execute under CP/M-86.

The minimum hardware requirement for CP/M-86 consists of a
computer system based on an 8085 or 8088 microprocessor, 32K
(kilobytes) of random access memory, a keyboard and a screen device,
and generally, two eight-inch floppy disk drives with diskettes.
The CP/M-86 operating system itself, excluding the utility programs
supplied with it, uses approximately 12 kilobytes of memory. To run
DDT-86™, you must have 48K of memory, and to run ASM-86™' and many
of the application programs that run under CP/M-86, you must have
64K of memory.

If you expand your system beyond these minimums, you will
appreciate that CP/M-86 supports many other features you can add to
your computer. For example, CP/M-86 can support up to one megabyte
of Random Access Memory (RAM) , the maximum allowed by your 8086 or
8088 microprocessor. CP/M-86 can support up to sixteen logical disk
drives of up to eight megabytes of storage each, allowing up to 128
megabytes of on-line storage.

This manual introduces you to CP/M-86 and tells you how to use
it. The manual assumes your CP/M-86 system is up and running. (The
interface between the hardware and the software must be configured
in the Basic Input Output System (BIOS) according to the
instructions in the CP/M-86 System Guide.) The manual also assumes
you are familiar with the parts of your computer, how to set it up
and turn it on, and how to handle, insert and store disks. However,
it does not assume you have had a great deal of experience with
computers.

Section 1 tells how to start CP/M-86, enter a command and make
a back-up disk. Section 2 discusses disks and files. Section 3
develops the CP/M-86 command concepts you need to understand the
command summary in Section 4. The command summary describes all of
the user programs supplied with CP/M-86.

i i i

Section 5 tells you how to use ED, the CP/M-86 file editor.
With ED you can create and edit program, text and data files.

Appendix A supplies an ASCII to Hexadecimal conversion table.
Appendix B lists the filetypes associated with CP/M-86. Appendix C
lists the CP/M-86 Control Characters. Appendix D lists the messages
CP/M-35 displays when it encounters special conditions. If the
condition requires correction, Appendix D can also tell you what
actions you should take before you proceed. Appendix E provides a
simple glossary of commonly used computer terms for the convenience
of the user.

The more complex programs are described in the CP/M-86
Programmer's and System Guides. ASM-85 is the CP/M-86 assembler for
your computer. You won't need ASM-86 until you decide to write
assembly language programs and become more familiar with your
computer's 8086 or 8088 microprocessor instruction set. When you
do, you'll find that ASM-86 simplifies writing 8086 or 8088
microprocessor programs. DDT-86 is the CP/M-85 debugging program.
You can use DDT-86 to find errors in programs written in high-level
languages as well as in ASM-86.

iv

Table of Contents

1 Introduction

1.1 How to Get CP/M-85 S t a r t e d 1
1.2 The Command L i n e 2

1.3 CP/M Line Editing Control Characters 3

1.4 Why You Should Back Up Your F i l e s 5
1.5 How to Make a Copy of Your CP/M-86 Disk 5

2 Files, Disks, Drives and Devices

2.1 What is a F i l e 7

2.2 How Are Files Created................................ 7
2.3 Naming Files - What's in a N a m e 8

2.4 Accessing Files - Do You Have the Correct Drive . . 9

2.5 Accessing More Than One F i l e 10
2.6 How Can I Organize and Protect My F i l e s 11

2.7 How Are Files Stored on a D i s k 12

2.8 Changing D i s k s ..12
2.9 Changing the Default Drive 13

2.10 More CP/M-86 Drive Features 14

2.11 Other CP/M-86 Devices.......... 14

3 CP/M-86 Command Concepts

3.1 Two Types of Commands................................... 15

3.2 Built-in Commands.............................. 15
3.3 Transient Utility Commands 16
3.4 How CP/M-86 Searches for Commands...................... 17

3.5 Control Character Commands 18

v

Table of Contents
(continued)

4 Command Summary .

• 4.1 Let's Get Past the F o r m a lities......................19

4.2 How Commands Are D e s c r i b e d 20

4.3 The ASM-86 (Assembler) Command 24

4.4 The COPYDISK (Copy Disk) Command 27

4.5 The DDT-86 (Dynamic Debugging Tool) Command 29
4.6 The DIR (Directory) B u i l t - i n 32

4.7 The ED (Character File Editor) C o m m a n d 34

4.8 The ERA (Erase) B u i l t - i n 40

4.9 The GENCMD (Generate CMD File) Command 42

4.10 The HELP (Help) Command.................................44

4.11 PIP (Peripheral Interchange Program) Command 46

4.11.1 Single File C o p y 46
4.11.2 Multiple File C o p y 48
4.11.3 Combining F i l e s 49
4.11.4 Copy Files to and from Auxiliary Devices . . 50
4.11.5 Multiple Command M o d e 52
4.11.6 Using Options With P I P 53

4.12 The REN Command....................... 58
4.13 The STAT (Status) Command............................ 60

4.13.1 Set a Drive to Read-Only Status 60
4.13.2 Free Space on D i s k61
4.13.3 Files - Display Space Used and Access Mode . 62
4.13.4 Set File Access M o d e s 64
4.13.5 Display Disk Status 65
4.13.6 Display User Numbers With Active Files . . . 66
4.13.7 Display STAT Commands and Device Names . . . 67
4.13.8 Display and Set Physical to Logical Devices . 67

4.14 The SUBMIT (Batch Processing) Command 69

4.15 The TOD (Display and Set Time of Day) Command 72
4.16 The TYPE (Display File) Built-in 74

vi

Table of Contents
(continued)

4.17 The USER (Display and Set User Number) Built-in . . . 75

5 ED, The CP/M-86 Editor
5.1 Introduction to E D 77

5.2 Starting E D .. 77

5.3 ED O p e r a t i o n ..78
5.3.1 Appending Text into the B uffer..................80
5.3.2 ED E x i t ..81

5.4 Basic Editing Commands 82

5.4.1 Moving the Character Pointer 83
5.4.2 Displaying Memory Buffer Contents 85
5.4.3 Deleting Characters 86
5.4.4 Inserting Characters into the Memory Buffer . 87
5.4.5 Replacing Characters 89

5.5 Combining ED Commands................................... 89

5.5.1 Moving the Character Pointer 90
5.5.2 Displaying T e x t 90
5.5.3 E d i t i n g ..91

5.6 Advanced ED C o m m a n d s 92

5.6.1 Moving the CP and Displaying T e x t92
5.6.2 Finding and Replacing Character Strings . . . 93
5.6.3 Moving Text B l ocks...............................96
5.6.4 Saving or Abandoning Changes: ED Exit 98

5.7 ED Error Messages....................................... 99

1

vi i

Appendixes

A ASCII and Hexadecimal Conversions 103

B F i l e t y p e s ... 107

C CP/M-35 Control Character Summary 109

D CP/M-86 Messages ... Ill
E User's Glossary ... 125

vi i i

Section 1
Introduction

This section discusses the fundamentals of your computer and
CP/M-86. It describes CP/M-86 start-up procedures and initial
messages. Then it shows you how to enter a CP/M-86 command and make
a back-up copy of your CP/M-86 distribution disk.

CP/M-86 manages information stored magnetically on disks by
grouping this information into files of programs or data. CP/M-85
can copy files from a disk to your computer's memory, or to a
peripheral device such as a printer. CP/M-86 performs these and
other tasks by executing various programs according to commands you
enter at your keyboard.

Once in memory, a program runs through a set of steps that
instruct your computer to perform a certain task. You can use CP/M-
86 to create your own CP/M-86 programs, or you can choose from the
wide variety of CP/M-86 application programs that entertain,
educate, and solve commercial and scientific problems.

1.1 How to Get CP/M-86 Started

Starting or loading CP/M-86 means reading a copy of CP/M-
86 from your CP/M-86 distribution system disk into your com
puter's memory. For AS-100 series you can start CP/M-86 under
the following procedure.

Starting with five-inch mini-floppy disk drive:
. insert five-inch CP/M-86 system disk into drive A

(the lower drive)
. close the drive door
. turn on the power of the main unit

This automatically loads CP/M-86 into memory.

Starting with eight-inch standard floppy disk drive:
. turn on the power of eight-inch floppy disk unit
. insert eight-inch CP/M-86 system disk into drive A

(the lefthand side drive)
. close the drive door
. turn on the power of the main unit

This automatically loads CP/M-86 into memory.

If power is on and you want to restart CP/M-86, first make
sure your CP/M-86 system disk is in drive A and turn off the
power of the main unit, and then turn on the power again after
ten seconds or so. Or press the system reset switch (the left
side hole of the lower side of the display) with the like pen.
This causes restarting CP/M-86. This is called System Restart,
or "booting the system".

1

CP/M-86 User's Guide 1.1 How to Get CP/M-86 Started

At System Reset, CP/M-86 is loaded into memory. The first
thing CP/M-86 does after it is loaded into memory is display
the following message on your screen:

Canon AS-100 CP/M-86 Version V.V
Copyright (C) 1981, Digital Research Inc.

BIOS (A) Vn.mm by Canon Inc.

The version number, represented above by V.V, tells you the
major and minor revision level of the CP/M-86 version that you
own. Vn.mm indicates the version number of BIOS presented by
Canon.

This display is followed by' the two character message:

A>

The A> symbol is the CP/M-86 "system prompt". The system prompt
tells you that CP/M-86 is ready to read a command from your
keyboard. It also tells you that drive A is your "default" drive.
This means that until you tell CP/M-86 to do otherwise, it looks for
program and data files on the disk in drive A.

Note: Your AS-100 CP/M-86 system disk may execute several com
mands automatically under the control of the START.SUB
function before the system prompt message is displayed.
See the volume four AS-100 CP/M-86 user's guide for more
detail.

1.2 The Command Line

CP/M-86 performs certain tasks according to specific commands
that you type at your keyboard. A CP/M-86 command line is composed
of a command keyword, an optional command tail, and a carriage
return keystroke. The carriage return key might be marked RETURN or
CR on your particular terminal. The command keyword identifies a
command (program) to be executed by the AS-100. The command
tail can contain extra information for the command such as a
filename, option or parameter. To end the command line, you
must press the ENTER Key or RETURN (0) Key.

As you type characters at the keyboard, they appear on your
screen and the cursor (position indicator) moves to the right. If
you make a typing mistake, press the DEL key or CTRL-H charac
ters to correct the error.

You can type the keyword and command tail in any combination of
upper-case and lower-case letters. CP/M-86 treats all letters in
the command line as upper-case. •

2

CP/M-86 User's Guide 1 . 2 The Command Line

Generally, you type a command line directly after the system
prompt. However, CP/M-86 does allow spaces between the prompt and
the command keyword.

A command keyword identifies one of two different types of
commands: Built-in commands and Transient Utility commands. Built-
in commands reside in memory as a part of CP/M-86 and can be
executed immediately. Transient Utility commands are stored on disk
as program files. They must be loaded into memory to perform their
task. You can recognize Transient Utility program files in a disk's
directory because their filenames end with CMD.

For Transient Utilities, CP/M-86 checks only the command
keyword. If you include a command tail, CP/M-86 passes it to the
utility without checking it because many utilities require unique
command tails.

Let's use one Built-in command to demonstrate how CP/M-86 reads
command lines. The DIR command tells CP/M-86 to display the names
of disk files on your screen. Type the DIR keyword after the system
prompt, omit the command tail, and press ENTER.

A>DIR

CP/M-86 responds to this command by writing the names of all the
files that are stored on the disk in drive A. For example, if you
have your CP/M-86 system disk in drive A, these filenames, among
others, appear on your screen:

COPYDISK CMD
PIP CMD
STAT CMD

CP/M-86 recognizes only correctly spelled command keywords. If you
make a typing error and press ENTER before correcting your mistake,
CP/M-86 echoes the command line with a question mark at the end.
For example, if you accidently mistype the DIR command, CP/M-86
responds:

A>DJR
DJR?

to tell you that it can not find the command keyword.

DIR accepts
a filename to see
to check that the
system disk, type:

a filename as a command tail. You can use DIR with
if a specific file is on the disk. For example,
Transient Utility program COPYDISK.CMD is on your

A>DIR COPYDISK.CMD

CP/M-86 performs this task by writing either the name of the file
you specified or the message NO FILE.

3

CP/M-86 User's Guide 1.3 Line Editing Control Characters

Be sure to type at least one space after DIR to separate the
command keyword from the command tail. If you don't, CP/M-86
responds as shown below.

A >DIRCOPYDISK.CMD
DIRCOPYDISK.CMD?

1.3 CP/M-86 Line Editing Control Characters
You can correct typing mistakes with the DEL key.

However, CP/M-86 supports the following control character commands
to help you edit more efficiently. You can use these control
characters to edit command lines or input lines to most programs.
To type a control character, hold down the CONTROL key (CTRL) and
press the required letter key. Release both keys.

(

4

Table 1-1. Control Character Commands

Command Mean ing

CTRL-E moves the cursor to the beginning of the
following line without erasing your
previous input.

CTRL-H moves the cursor left one character
position and deletes the character.

CTRL-I moves the cursor to the next tab stop,
where tab stops are automatically
placed at each eighth column - same as
the 1 'z, | key.

CTRL-J moves the cursor to the left of the
current line and sends the command line
to CP/M-86 - same effect as a ENTER
keystroke.

CTRL-M moves the cursor to the left of the
current line and sends the command line
to CP/M-86 - same as a ENTER
keystroke.

CTRL-R displays a # at the current cursor
location, moves the cursor to the next
line and redisplays any partial com
mand you have typed so far.

CTRL-U discards all the characters in the
command line that you've typed so far,
displays a # at the current cursor
position and moves the cursor to the
next command line.

CTRL-X discards all the characters in the
command line that you've typed so far
and moves the cursor back to the
beginning of the current line - same ,
as a DELETE-LINE key.

You probably noticed that some control characters have the same
meaning. For example, the CTRL-J and CTRL-M keystrokes have the
same effect as pressing the ENTER key: all three send the com
mand line to CP/M-86 for processing.
Note: The DEL key and CTRL-H have the same function but the

different movement of the cursor occurs on the display. \
When you type CTRL-H, the letters before the cursor are
deleted and the cursor moves to the left position.
When you press the DEL key the letters before the cur
sor are displayed again (echoback) and the cursor moves
to the right position.

5

CP/M-86 User's Guide 1.4 Why You Should Back-Up Your Files

1.4 Why You Should Back-Up Your Files
Humans have faults, and so do computers. Human or computer

errors sometimes destroy valuable programs or data files. By
mistyping a command, for example, you could accidently erase a
program that you just created. A similar disaster could result from
an electronic component failure.

Data processing professionals avoid losing programs and data by
making copies of valuable files. Always make a working copy of any
new program you purchase and save the original. If the program is
accidentally erased from the working copy, you can easily restore it
from the original.

Professionals also make frequent copies of new programs or data
files during the time they are being developed. The frequency of
making copies varies with each programmer, but as a general rule,
make a copy at the point where it takes ten to twenty times longer
to reenter the information than it takes to make the copy.

You can make back-ups in two ways. You can back up files one
at a time, or you can make a complete copy of the entire disk.
The choice is usually made based on the number of files on the disk
that need to be backed up. It might take less than a minute to make
a copy of one file, but it only takes two or three minutes to copy
an entire disk.

Note: Other than these two ways that presented by the standard
CP/M-86 system, AS-100 CP/M-86 prepares high-speed back
up command "VOL COPY". See the volume four AS-100 CP/M-
86 user's guide for more detail.

So far, we haven't discussed any commands that change
information recorded on your CP/M-86 system disk. Before we do,
let's make a few working copies of the original disk.

1.5 Bow to Make a Copy of Your CP/M-86 Disk
To back-up your CP/M-86 disk, you will use one or more

floppy disks for the back-ups, the COPYDISK Transient Utility
program, and of course your CP/M-86 disk.

The back-up disks can be factory-fresh or used. Some eight-
inch disks come with a notch cut out of the lower right hand side.
This notch prevents data from being written to the disk. It is
called a "write-protect" notch. To copy data to these disks, you
have to "write-enable" them by placing a small foil tab over the
write-protect notch. These tabs are supplied with the disks.

Note: Five-inch disks have a notch on the upper righthand side.
Placing a small foil tab in the opposite way of the eight-
inch disks, you have "write-protect" status.

6

CP/M-36 User’s Guide 1.5 How to Copy Your CP/M-86 Disk

You might want to format new or reformat used disks with the
disk formatting program (FORMAT, see volume four AS-100 CP/M-86
user's guide). If the disks are used, make sure they do not
contain any information you might need again! COPYDISK copies
everything from a source disk to a destination disk - including
blank space - and writes over any information that might already
be stored on the destination disk.

To make a copy of your CP/M-86 disk, use the COPYDISK utility.
First make sure that your system disk is in drive A and a formatted
disk is inserted in drive B. Then enter the following command to
the system prompt, terminated by a carriage return keystroke.

A>COPYDISK

CP/M-86 loads COPYDISK into memory and runs it. COPYDISK displays
the following messages on your screen:

CP/M-86 Full Disk COPY Utility
Version 2.0

Enter Source Disk Drive (A-P) ?A

Destination Disk Drive (A-P) ?B

Copying Disk A: to Disk B:
Is this what you want to do (Y/N) ?Y

Copy started
Reading Track 0...
Copy completed.

Copy another disk (Y/N) ?N
Copy program exiting

A>

Now you have an exact copy of the original CP/M-86 disk in drive B.
Remove the original from drive A and store it in a safe place. If
your original remains safe and unchanged, you can easily restore
your CP/M-86 program files if something happens to your working
copy.

Remove the copy from drive B and insert it in drive A. Use it
as your CP/M-86 system disk to make more back-ups, to try the
examples shown in the rest of this manual and to start CP/M-86 the
next time you power up your computer.

C

7

r

Section 2
Files, Disks, Drives and Devices

CP/M-86's most important task is to access and maintain files
on your disks. It can create, read, write, copy and erase program
and data files. This section tells you what a file is, how to
create, name and access a file, and how files are stored on your
disks. It also tells how to indicate to CP/M-86 that you've changed
disks or that you want to change your default drive.

2.1 What is a File?
A CP/M-86 file is a collection of related information stored on

a disk. Every file must have a unique name because that name is
used to access that file. A directory is also stored on each disk.
The directory contains a list of the filenames stored on that disk
and the locations of each file on the disk.

In general, there are two kinds of files: program files and
data files. A program file is an executable file, a series of
instructions the computer can follow step by step. A data file is
usually a collection of information; a list of names and addresses,
the inventory of a store, the accounting records of a business, the
text of a document, or similar related information. For example,
your computer cannot "execute" names and addresses, but it can
execute a program that prints names and addresses on mailing labels.

A data file can also contain the source code for a program.
Generally, a program source file must be processed by an assembler
or compiler before it becomes an executable program file. In most
cases, an executing program processes a data file. However, there
are times when an executing program processes an executable program
file. For example, the executable copy program PIP can copy one or
more command program files.

2.2 How Are Files Created?
There are many ways to create a file. You can create a file by

copying an existing file to a new location, perhaps renaming it in
the process. Under CP/M-86, you can use the Transient Utility PIP
to copy and rename files. The second way to create a file is to use
a text editor. The CP/M-86 text editor ED can create a file and
assign it the name you specify. Finally, some programs such as ASM-
86 create output files as they process input files.

(

9

CP/M-36 User's Guide 2.3 Naming Files

2.3 Naming Files - What's in a Name?

CP/M-86 identifies every file by its unique file specification.
spec i ficati on (filespec) can have three parts:

d : drive specifier one charac ter optional
filename filename 1-8 characters
typ filetype 0-3 characters optional

We recommend that you create file specifications from letters and
numbers. Because the CP/M-86 command processor recognizes the
following special characters as delimiters (separators), they must
not be included within a filename or filetype.

< > . , ; : - ? * []
A file specification can be simply a one to eight character
filename, such as:

MYFILE

When you make up a filename, try to let the name tell you something
about what the file contains. For example, if you have a list of
customer names for your business, you could name the file

CUSTOMER

so that the name is eight or fewer characters and also gives you
some idea of what's in the file.

As you begin to use your computer with CP/M-86, you'll find
that files fall naturally into families. To keep file families
separated, CP/M-86 allows you to add an optional one to three
character family name, called a filetype, to the filename. When you
add a filetype to the filename, separate the filetype from the
filename with a period. Try to use three letters that tell
something about the file's family. For example, you could add the
following filetype to the file that contains a list of customer
names:

CUSTOMER.NAM

When CP/M-86 displays file specifications in response to a DIR
command, it fills in short filenames and filetypes with blanks so
that you can compare filetypes quickly.

The executable program files that CP/M-86 loads into memory
from a disk have different filenames, but are in the family of 8086
or 8088 programs that run with CP/M-86. The filetype CMD identifies
this family of executable programs. .

10

CP/M-86 User's Guide 2.3 Naming Files

CP/M-86 has already established several file families. Here's
a table of some of their filetypes with a short description of each
family.

Table 2-1. CP/M-86 Filetypes
Filetype Mean ing

CMD 8086 or 8088 Machine Language Program

$$$ Temporary File

A8 6 ASM-86 Source File

H86 Assembled ASM-86 Program in hexadecimal format

SUB List of commands to be executed by SUBMIT

2.4 Accessing Files - Do You Have the Correct Drive?
When you type a file specification in a command tail, the

Built-in or Transient Utility looks for the file on the disk in the
drive named by the system prompt. For example, if you type the
command

A>dir copydisk.cmd
CP/M-86 looks in the directory of the disk in drive A for
COPYDISK.CMD. But if you have another drive, B for example, you
need a way to tell CP/M-86 to access the disk in drive B instead.
For this reason, CP/M-86 lets you to preceed a filename with a drive
specifier which is the drive letter followed by a colon. For
example, in response to the command

A>dir b:myfile.lib
CP/M-86 looks for the file MYFILE.LIB in the directory of the disk
in drive B.

You can also preceed an executable program filename with a
drive specifier, even if you are using the program filename as a
command keyword. For example, if you type the following command

A>b:pip
CP/M-86 looks in the directory of the disk in the B drive for the
file PIP.CMD. If CP/M-86 finds PIP on drive B, it loads PIP into
memory and executes it.

11

CP/M-86 User's Guide 2.4 Accessing Files

Unlike the filename and filetype that are stored in the disk
directory, the drive specifier for a file changes as you move the
disk from one drive to another. Therefore a file has a different
file specification when you change its disk from one drive to
another.

2.5 Accessing More Than One File
Certain CP/M-86 Built-in and Transient Utilities can select and

process several files when special "wildcard" characters are
included in the filename or filetype. A file specification
containing wildcards can refer to more than one file because it
gives CP/M-86 a pattern to match: CP/M-86 searches the disk
directory and selects any file whose filename or filetype matches
the pattern.

The two wildcard characters are ?, which matches any single
letter in the same position, and *, which matches any character at
that position, and any other characters remaining in the filename or
filetype. The rules for using wildcards are listed below.

• A ? matches any character in a name, including a space
character.

• A * must be the last, or only, character in the filename or
filetype. CP/M-85 internally replaces a * with ? characters
to the end of the filename or filetype.

• When the filename to match is shorter than eight characters,
CP/M-86 treats the name as if it ends with spaces.

• When the filetype to match is shorter than three characters,
CP/M-86 treats the filetype as if it ends with spaces.

Suppose, for example, you have a disk with the following six
files:

Several cases are listed below where a name with wildcards matches
all, or a portion of, these files:

A.CMD, AA.CMD, AAA.CMD, B.CMD, A.A86, and B.A86

* * is treated as ????????.???
9 9 9 9 9 9 9 9 9 9 9 matches all six names

*. CMD is treated as ????????.CMD

????????.CMD matches the first four names

?. CMD matches A.CMD and B.CMD

12

CP/M-86 User's Guide 2.5 Accessing Multiple Files

? . * is treated as ?.???
9 9 9 9 matches A.CMD, B.CMD, A.A86, and B.A86

A?.CMD matches A.CMD and AA.CMD

A* .CMD is treated as A???????.CMD

A???????.CMD matches A.CMD, AA.CMD, and AAA.CMD

Remember that CP/M-86 uses wildcard patterns only while
searching a disk directory, and therefore wildcards are valid only
in filenames and filetypes. You cannot use a wildcard in a drive
spec i f ier.

2.6 How Can I Organize and Protect My Files?

Under CP/M-86 you can organize your files into groups, protect
your files from accidental change, and specify how your files are
displayed in response to a DIR command. CP/M-86 supports these
features by assigning user numbers and attributes to files and
recording them in the disk's directory.

You can use user numbers to separate your files into 16 file
groups. All files are identified by a user number which ranges from
0 to 15. CP/M-86 assigns a user number to a file when the file is
created. Unless you use the command program PIP to copy the file to
another user number, the file is assigned the "current" user number.
You can use the Built-in command USER to display and change the
current user number.

Most commands can access only those files that have the current
user number. For example, if the current user number is 7, a DIR
command displays only the files that were created under user number
7. The exception to this is the PIP command. With the [Gn] option,
PIP can copy a file with one user number and give the copy another
user number.

File attributes control how a file can be accessed. There are
two kinds of file accessing attributes. The DIR/SYS attribute can
be set to either DIR (Directory) or SYS (System) . When you create a
file, it is automatically marked with the DIR attribute. The DIR
command only displays files that are in the current user area,
whether that is user number 0,1,2,3 or 15.

You can use the STAT Transient Utility command to assign the
SYS or DIR attribute to a file. The DIR command does not display
files that are marked with the SYS attribute. You must use the DIRS
command to display SYS files. Remember that DIRS only displays the
system files that are in the current user number. The STAT command
also displays files marked with the SYS attribute. Again, STAT
displays files from the current user number only.

13

CP/M-86 User's Guide 2.6 File Organization and Protection

It is very useful to assign the SYS attribute to files that are
in user number 0. They should be command files, files with a
filetype of CMD. If you give a command file in user number 0 the
SYS attribute, you can read and execute that file from any user
number on the same drive. This feature gives you a convenient way
to make your commonly used programs available under any user number,
without having to maintain a copy of each command program in every
user number.

The RW/RO file accessing attribute can be set to either RW
(Read-Write) or RO (Read-Only) . A file with the RW attribute can be
read or written to at any time unless the disk is write-protected,
or the drive containing the disk is set to Read-Only. If a file is
marked RO, any attempt to write data to that file produces a Read
Only error message. Therefore you can use the RO attribute to
protect important files.

You can use the STAT Transient Utility program to assign the
Read-Write or Read-Only attribute to a file or group of files. STAT
can also assign the Read-Only attribute to a drive. CTRL-C resets
all logged-in drives to Read-Write.

2.7 How Are Files Stored on a Disk?

CP/M-86 records the filename, filetype, user number and
attributes of each file in a special area of the disk called the
directory. In the directory, CP/M-86 also records which disk
sectors belong to which file. The directory is large enough to
store this data for up to sixty-four files.

Note: AS-100 CP/M-86 five-inch and eight-inch floppy disks use
double-sided and double-density media. The directory is
up to one hundred and twenty-eight files. The eight-inch,
single-sided and single-density media, the directory is
up to sixty-four files - the standard CP/M-86.

CP/M-86 allocates directory and storage space for a file as
records are added to the file. When you erase a file, CP/M-86
reclaims storage in two ways: it makes the file's directory space
available to catalog a different file, and frees the file's storage
space for later use. It's this "dynamic allocation" feature that
makes CP/M-86 powerful. You don't have to tell CP/M-86 how big your
file will become because CP/M-86 automatically allocates more
storage for a file as it is needed, and releases the storage for
reallocation when the file is erased.

2.8 Changing Disks

CP/M-86 cannot, of course, do anything to a file unless the
disk that holds the file is inserted into a drive and the drive is
in ready status. When a disk is in a drive, it is "on-line" and
CP/M-86 can access its directory.

14

CP/M-86 User's Guide 2.8 Changing Disks

At some time, you'll have to .take a disk out of a drive and
insert another that contains different files. You can replace an
on-line disk whenever you see the system prompt at your console.
However, if you are going to write on the disk, you must tell CP/M-
86 that you have changed a disk by typing CTRL-C directly after the
system prompt. In response, CP/M-86 resets the drive for the new
disk.

If you forget to type CTRL-C after you change a disk, CP/M-86
automatically protects the new disk. You can run a text editor or
copy program and try to write to the new disk, but when you do,
CP/M-85 notices that the original disk is no longer in the drive and
writes the message:

Bdos err on d: RO

where d: is the drive specifier of the new disk. If you get this
message, you must type one CTRL-C to return to the system prompt and
another CTRL-C to log in the new disk.

2.9 Changing the Default Drive
At any given time during operation of CP/M-86, there is one

drive called the default drive. Unless you put a drive specifier in
your command line, CP/M-86 and the utilities look in the directory
of the disk in the default drive for all program and data files.
You can tell the default drive from the CP/M-86 system prompt. For
example, the message:

A>

tells you that the A drive is the default drive. When you give
commands to CP/M-86, you should remember which disk is the default
drive. Then you will know which files an application program can
access if you do not add a drive specifier.

Drive A is usually the default drive when you start CP/M-86.
If you have more than one drive, you might want to change the
default drive. Do this by typing the drive specifier of the desired
default drive next to the system prompt and pressing the RETURN key.

A>B:

This command, for example, changes the default drive to B. Unless
you change the default drive again, all system prompt messages
appear as:

B>

The system prompt now indicates that CP/M-86 and its utilities will
check in the directory of the disk in drive B for any file that does
not have a drive specifier included in the file specification.

15

CP/M-86 User's Guide 2.10 More CP/M-86 Drive Features

2.10 More CP/M-86 Drive Features
Under CP/M-86, drives can be marked RO just as files can be

given the RO attribute. The default state of a drive is RW, but
CP/M-86 marks a drive RO whenever you change the disk in the drive.
You can give a drive the RO attribute by using the STAT Transient
Utility described in Section 4. To return the drive to RW you must
type a CTRL-C to the system prompt.

2.11 Other CP/M-86 Devices
CP/M-86 manages all the peripheral devices attached to your

computer. These can include storage devices such as disk drives,
input devices such as keyboards, or modems, and output devices such
as printers, modems, and screens.

To keep track of input and output devices, CP/M-86 uses
"logical" devices. The table below shows CP/M-86 logical device
names and indicates whether the device is input or output.

Table 2-2. CP/M-86 Logical Devices
Device Name Device Type

CON: Console input and output

AXI: Auxiliary input

AXO: Auxiliary output

LST: List output

CP/M-86 associates physical devices with the logical device
names. For example, the default console input device is the
keyboard and the default console output device is the screen. If
you want CP/M-86 to manage an optional peripheral, you must use the
STAT command to assign an alternate peripheral to the logical device
name. For example, a STAT command can change the console input
device from the keyboard to a teletype. STAT can assign a printer
to the LST: logical output device name.

A logical input device can be assigned only one physical
device. A logical output device can be assigned only one physical
device. See the description of the STAT command in Section 4 for
more detail.

Note: See the volume four AS-100 CP/M-86 user's guide for the
description of the input/output device of AS-100 options.

16

(
Section 3

CP/M-86 Command Concepts

As we discussed in Section 1, a CP/M-86 command line consists
of a command keyword, an optional command tail, and a carriage
return keystroke. This section describes the two different kinds of
programs the command keyword can identify, and tells how CP/M-86
searches for command files on a disk. It also introduces the
control characters that direct CP/M-86 to perform various tasks.

3.1 Two Types of Commands

A command keyword identifies a program that resides either in
memory as part of CP/M-86, or on a disk as a program file. If a
command keyword identifies a program in memory, it is called a
Built-in command. If a command keyword identifies a program file on
a disk, it is called a Transient Utility or simply a utility.

You can add utilities to your system by purchasing various
CP/M-86-compatible application programs. If you are an experi
enced programmer, you can also write your own utilities that
operate with CP/M-86.

Note: Some Transient Utilities are included with AS-100 CP/M-86.
See the volume four.

3.2 Built-In Commands

Built-in commands are part of CP/M-86 and are always available
for your use regardless of which disks you have in which drives.
Built-in commands reside in memory as a part of CP/M-86 and
therefore execute more quickly than the utilities. Section 4 gives
you the operating details for the Built-in commands listed in the
table below.

Table 3-1. Built-In Commands

Command Meaning

DIR displays a list of filenames with the
DIR attribute from a disk directory.

DIRS displays a filename list of files
marked with the SYS attribute.

ERA erases a filename from a disk
directory and releases the storage
occupied by the file.

17

CP/M-8S User's Guide 3.2 Built-In Commands

Table 3-1. (continued)
Command Meaning

REN lets you rename a file.

TYPE writes the content of a character
file at your screen.

USER lets you change from one user number
to another.

3.3 Transient Utility Commands
A program that executes a Transient Utility command comes into

memory only when you request it. Section 5 gives you operating
details for the standard CP/M-86 Utilities listed in the table
below.

Table 3-2. CP/M-86 Utilities
Command Meaning

ASM86 translates 8086 assembly language programs
into machine code form.

COPYDISK creates a copy of a disk that can contain
CP/M-86, program files, and data files.

DDT86 helps you check out your programs and
interactively correct "bugs" and programming
errors.

ED lets you create and alter character files
for access by various programs.

GENCMD uses the output of ASM-86 to produce an
executable command file.

HELP displays information on how to use each
CP/M-36 command.

PIP combines and copies files.

STAT lets you examine and alter file and disk
status, and assign physical I/O devices to
CP/M-86 logical devices.

SUBMIT sends a file of commands to CP/M-86 for
execution. .

TOD sets and displays the system date and time.

18

CP/M-86 User's Guide 3.4 How CP/M-36 Searches for Commands

3.4 How CP/M-86 Searches for Commands
If a command keyword does not identify a Built-in command,

CP/M-86 looks on the default or specified drive for a program file.
It looks for a filename equal to the keyword and a filetype of CMD.
For example, suppose you type the command line:

A>ED MYPROG. BAS

CP/M-86 goes through these steps to execute the command:

1) CP/M-3S first finds that the keyword ED does not
identify one of the Built-in commands.

2) CP/M-36 searches for the utility program file ED.CMD
in the directory of the default drive. If it does not
find the file under the current user number, it looks
under user number 0 for ED.CMD with the SYS attribute.

3) When CP/M-86 locates ED.CMD, it copies the program to
memory and passes control to ED.

4) ED remains operational until you enter a command to
exit ED.

5) CP/M-86 types the system prompt and waits for you to
type another command line.

If CP/M-86 cannot find either a Built-in or a Transient
Utility, it reports a keyword error by repeating the command
line you typed on your screen, followed by a question mark.
This tells you that one of four errors has occurred:

• The keyword is not a Built-in command.

© No corresponding .CMD file appears under the current user
number or with the SYS attribute under user 0.

• No corresponding .CMD file appears under the current user
number or with the SYS attribute under user 0 on the specified
drive when you have included a drive specifier.

For example, suppose your default disk contains only standard CP/M-
86 utilities and you type the command line:

A>EDIT MYPROG. BAS

19

CP/M-86 User's Guide 3.4 How CP/M-86 Searches for Commands

Here are the steps that CP/M-86 goes through to report the error:

1) CP/M-86 first examines the keyword EDIT and finds that
it is not one of the Built-in commands.

2) CP/M-86 then searches the directory of the default
disk, first under the current user number for EDIT.CMD
and then under user 0 for EDIT.CMD with the SYS
attribute.

3) When the file cannot be found, CP/M-86 writes the
message:

EDIT?

at the screen to tell you that the command cannot be
executed.

4) CP/M-86 displays the system prompt and waits for you
to type another command line.

3.5 Control Character Commands
You can direct CP/M-86 to perform certain functions just by

striking a special key. Using the Control Character commands, you
can tell CP/M-86 to start and stop screen scrolling, suspend current
operations, or echo the screen display at the printer. The table
below summarizes Control Character Commands.

Table 3-3. Control Character Commands
Command Meaning

CTRL-C ends the currently operating program, or,
if typed after the system prompt,
initializes the system and default drives
and sets all drives to RW status.

CTRL-P echoes all console activity at the
printer; a second CTRL-P ends printer
echo. This only works if your system is
connected to a printer.

CTRL-S toggles screen scrolling. If a display at
your screen rolls by too quickly for you
to read it, press CTRL-S. Press any key
or CTRL-S again to continue the display.

20

Section 4
Command Summary

This section describes how we show the parts of a file
specification in a command line. It also describes the notation
used to indicate optional parts of a command line and other syntax
notation. The remainder of the section provides a handy reference
for all standard CP/M-86 commands.

Built-in and Transient Utility commands are intermixed in
alphabetical order. Each command is listed, followed by a short
explanation of its operation with examples. more complicated
commands are described later in detail. For example, ED is
described in Section 5 while ASM-36, DDT-86 and GENCMD are described
in the CP/M-86 System Guide.

4.1 Let's Get Past the Formalities

You can see that there are several parts in a file
specification that we must distinguish. To avoid confusion, we give
each part a formal name that is used when we discuss command lines.
The three parts of a file specification are:

• drive specifier - the optional disk drive, A, B, C, or D that
contains the file or group of files to which you are referring.
If a drive specifier is included in your command line, it must
be followed by a colon.

• filename - the one-to-eight character first name of a file or
group of files.

• filetype - the optional one-to-three character family name of a
file or group of files. If the filetype is present, it must be '
separated from the filename by a period.

We use the following form to write the general form of a file
spec ification:

d :f i1ename.typ

In the above form, "d:" represents the optional drive specifier,
"filename" represents the one to eight character filename, and
".typ" represents the optional one to three character filetype.
Valid combinations of the elements of a CP/M-86 file specification
are shown in the following list.

21

CP/M-35 User's Guide 4.1 Let's Get Past the Formalities

• filename
• d :filename
• filename.typ
• d :fi1ename.typ

If you do not include a drive specifier, CP/M-85 automatically
supplies the default drive. If you omit the period and the
filetype, CP/M-86 automatically includes a filetype of three blanks.

We call this general form a "file specification". A file
specification names a particular file or group of files in the
directory of the on-line disk given by the drive specifier. For
exampl e ,

BrMYFILE.A8S

is a file specification that indicates drive "B:", filename
"MYFILE", and filetype "A85". We abbreviate "file specification" as
s imply

f ilespec

in the command syntax statements.

Some CP/M-35 commands accept wildcards in the filename and
filetype parts of the command tail. For example,

B:MY*.A??

is a file specification with drive-specifier "B:", filename "MY*",
and filetype "A??". This file specification might match several
files in the directory.

You now understand command keywords, command tails, control
characters, default drives, on-line drives, and wildcards. You also
see how we use the formal names filespec, drive specifier, filename,
and filetype. These concepts give you the background necessary to
compose complete command lines.

4.2 How Commands Are Described
This section lists the Built-in and Transient Utility commands

in alphabetical order. Each command description is given in a
specific form.

• The description begins with the command keyword in upper-case.
When appropriate, an English phrase that is more descriptive of
the command's purpose follows the keyword, in parentheses.

• The "Syntax" section gives you one or more general forms to
follow when you compose the command line.

• The "Type" section tells you if the keyword is a Built-in or

22

CP/M-86 User's Guide 4.2 How Commands Are Described

Transient Utility command. Built-in commands are always
available for your use, while Transient Utility commands must
be present on an on-line disk as a CMD program file.

• The "Purpose" section defines the general use of the command
keyword.

• The "Remarks" section points out exceptions and special cases.

• The "Examples" section lists a number of valid command lines
that use the command keyword. To clarify examples of
interactions between the user and the operating system, the
characters entered by the user are shown in boldface. CP/M-
86' s responses are shown in normal type.

The notation in the syntax lines describes the general command
form using these rules:

• Words in capital letters must be typed by you and spelled as
shown, but you can use any combination of upper- or lower-case
letters.

• A lower-case word in italics has a general meaning that is
defined further in the text for that command. When you see the
word "option", for example, you can choose from a given list of
options.

• You can substitute a number for n.
• The symbolic notation "d:", "filename", ".typ" and "filespec"

have the general meanings described in the previous section.

• You must include one or more space characters where a space is
shown, unless otherwise specified. For example, the PIP
options do not need to be separated by spaces.

• Items enclosed within curly braces { } are optional. You can
enter a command without the optional items. The optional items
add effects to your command line.

• An ellipsis (...) tells you that the previous item can be
repeated any number of times.

• When you can enter one or more alternative items in the Syntax
line, a vertical bar I separates the alternatives. Think of
this vertical bar as the "or" bar.

• An up-arrow T or CTRL represent the Control Key on your
keyboard.

• All other punctuation must be included in the command line.

23

CP/M-86 User's Guide 4.2 How Commands Are Described

Let's look at some examples of syntax notation. The CP/M-86
Transient Utility command STAT (status) displays the amount of free
space in kilobytes for all on-line drives. It also displays the
amount of space in kilobytes used by individual files. STAT can
also assign the Read-Only (RO) or Read-Write (RW) , and the System
(SYS) or Directory (DIR) attributes to a file.

The Syntax section of the STAT command shows how the command
line syntax notation is used:

Syn tax:

STAT { filespec {RO | RW | DIR | SYS } }
I I II
I ---------- optional------ I
---------------- optional -------------

This tells you that the command tail following the command keyword
STAT is optional. STAT alone is a valid command, but you can
include a file specification in the command line. Therefore, STAT
filespec is a valid command. Furthermore, the file specification
can be followed by another optional value selected from one of the
following:

RO '
RW
DIR
SYS

Therefore,

STAT filespec RO

is a valid command.

Recall that in Section 3 you learned about wildcards in
filenames and filetypes. The STAT command accepts wildcards in the
file specification.

Using this syntax, we can construct several valid command
lines:

STAT
STAT X.A86
STAT X.A86 RO
STAT X.A86 SYS
STAT *.A86
STAT *.* RW
STAT X.* DIR

2 4

CP/M-86 User's Guide 4.2 How Commands Are Described

The CP/M-86 command PIP (Peripheral Interchange Program) is the
file copy program. PIP can copy information from your screen to the
disk or printer. PIP can combine two or more files into one longer
file. PIP can also rename files after copying them. Let's look at
one of the formats of the PIP command line for another example of
how to use command line notation.

Syntax:

PIP dest-filespec=source-filespec[,filespec...}

For this example, dest-filespec is further defined as a destination
file specification or peripheral device (printer, for example) that
receives data. Similarly, source-filespec is a file specification
or peripheral device (keyboard, for example) that transmits data.
PIP accepts wildcards in the filename and filetype. (See the PIP
command summary for details regarding other capabilities of PIP.)
There are, of course, many valid command lines that come from this
syntax. Some of them are shown below.

PIP NEWFILE.DAT = OLDFILE.DAT
PIP B: = AiTHISFILE.DAT
PIP B :X.BAS = Y.BAS, Z.BAS
PIP X.BAS = A.BAS, B.BAS, C.BAS
PIP B: = A :*.BAK
PIP B: = A:*.*

25

CP/M-86 User's Guide 4.3 The ASM-86 Command

4.3 The ASM-86 (Assembler) Command

Syntax:

ASM86 filespec { $ parameter-list }
Type:

Transient Utility

Purpose:

The ASM-86 Utility converts 8088 and 8086 assembly language
source statements into machine code form.

The operation of the ASM-86 assembler is described in detail in
the CP/M-86 Programmer's Guide.

Remarks;

The filespec names the character file that contains an 8086
assembly language program to translate. If you omit the filetype, a
filetype of A86 is assumed. The assembler uses the drive specifier
portion of the filespec as the destination drive for output files
unless you include a parameter in the command tail to override this
default.

The three output files produced by the assembler are given the
filetypes listed below.

LST contains the annotated source listing .

H86 contains the 8086 machine code in "hex" format.

SYM contains all programmer-defined symbols wi th
their program relative addresses •

assembler assigns the same filename as the source filename to
LST, H86 and SYM files.

You con trol the ass embly process by i nclud ing optional
parameters in the parameter-list. Each parameter is a single
parameter letter followed by a single letter device name. The
parameters can be separated by blanks, but each parameter letter
must be followed immediately by the device name.

The parameter letters are A, H, P, S, and F. The device names
are the letters A through P, corresponding to the drive letters.
The letters X, Y, and Z have special meaning when used as device
names:

is the Screen.

26

CP/M-S6 User's Guide 4.3 The ASM-36 Command

Y is the Printer.

Z is Zero Output.

Use the A parameter letter to override the default drive
specifier to obtain the source file. The valid parameters are AA
through AP.

Use the H parameter letter to override the default drive
specifier to receive the H86 file. Valid parameters are HA through
HP, and HX, HY, and HZ.

Use the P parameter letter to override the default drive
specifier to receive the LST file. Valid parameters are PA through
PP, PX, PY, and PZ.

Use the S parameter letter to override the default drive
specifier to receive the SYM file. Valid parameters are SA through
SP, SX, SY, and SZ.

Use the F parameter letter to select the format of the "hex"
output file. Valid parameters are FI and FD. The FI parameter
selects Intel format "hex" file output. The FD parameter selects
Digital Research format "hex" file output. FD is assumed if neither
FI nor FD appear as a parameter. Use PI when the program is going
to be combined with a program generated by an Intel compiler or
assembler.

When conflicting parameters appear on the command line, the
rightmost parameter prevails.

Examples:

A>ASM86 X

The ASM86.CMD file must be on drive A. The source file X.A86
is read from drive A, and X.LST, X.H36, and X.SYM are written to
drive A.

B>ASM86 X.ASM $PX

The ASM86.CMD file must be on drive B. The source file X.ASM
is read from drive B. The listing is written to the screen, and the
X.H86 and X.SYM files are placed on drive B.

A>ASM86 B :MYPROG $PY HC

The source file MYPROG.A86 is read from drive B, the listing is
sent to the printer, the file MYPROG.H86 is written to drive C, and
file MYPROG.SYM is placed on drive B.

A>B:ASM86 X $SZ

27

CP/M-85 User's Guide 4.3 The ASM-86 Command

The ASMS6.CMD file must be on drive B. The X.A86 file is read
from drive A. The X.LST and X.H86 files are written to drive A. No
X.SYM file is generated.

C

c
28

CP/M-86 User's Guide 4.4 The COPYDISK Command

4.4 The COPYDISK (Copy Disk) Command

Syntax;

COPYDISK

Type;

Transient Utility

Purpose:

The COPYDISK Utility copies all the information on one disk to
another disk, including the CP/M-86 system tracks if they are
present on the source disk.

Before copying to a brand-new disk, you might first have to
prepare it with the disk formatting program that should accompany
your computer. If you copy to a used disk, COPYDISK writes all the
information from the source disk over the information on the
destination disk, including blank space.

Note: See the volume four for the disk formatting program.

Remarks:

To display instructions on how to use COPYDISK, enter the
keyword HELP with the command tail COPYDISK.

To successfully copy from one disk to another, you must make
sure that your destination disk is not write-protected. Check that
there is a foil tab covering any existing write-protect notch on the
edge of your disk before inserting the disk into the destination
d r ive.

Note: If the foil tab covers a notch on the five-inch mini
floppy disk of AS-100 system, it is write-protected.

COPYDISK is an exact track-for-track, sector-for-sector copy
utility, and is the fastest way to copy an entire disk. However, if
many files have been created and erased on the source disk, the
records belonging to a particular file might be randomly placed on
the disk. In this case, it might be more efficient (although
slower) to use PIP to copy the files and thus to put all the records
in sequential order on the new disk.

Note: AS-100 CP/M-86 supplies high-speed media copy program
VOL COPY. See the volume four AS-100 CP/M-86 user's
guide for more detail.

29

CP/M-36 User's Guide 4.4 The COPYDISK Command

Examples:

A>COPYDISK

Invoke COPYDISK and it prompts you for the source
destination disk. In our next example, COPYDISK copies from
your master disk (disk A:) to the new disk (disk B :). When
invoked, COPYDISK displays the information in the first line
of our example:

CP/M-S6 Full Disk Copy Utility
Version 2.0

Enter Source Disk Drive (A-D) ? A

Destination Disk Drive (A-D) ? B

Copying disk A: to disk B:
Is this what you want to do (Y/N) ? Y
opy started
Reading track nn (After read, new text appears)
Writing track nn (After write, next message is)
Verifying track nn
Copy completed.

Copy another disk (Y/N) ? N
Copy program exiting

A>

and

30

CP/M-86 User's Guide 4.5 The DDT-86 Command

4.5 The DDT-86 (Dynamic

Syntax;

DDT86 [filespec

Debugging Tool) Command

}
Type:

Transient Utility

Purpose:
The DDT-86 Utility allows you to monitor and test programs

developed for the 3086 and the 8088 processors.

The DDT-85 single letter commands, their parameters and options
are described in Table 4-1. The actual command letter is printed in
boldface. The parameters are in lower-case and follow the command
letter. Optional items are in curly brackets. Replace the
arguments with the appropriate values as described in the following
list Table 4-1.

Table 4-1. DDT-86 Commands

Command Meaning

As (Assemble) Enter Assembly Language Statements

Bs,f,s1 (Block Cmp) Compare Blocks of Memory

D{W}[s(,f} } (Display) Display Memory in Hex and ASCII

Ef i1espec (Execution) Load Program for Execution
Fs,f,bc (Fill) Fill Memory Block - Byte

FWs,f , wc (Fill) Fill Memory Block - Word

G{s}{,bl{,b2}} (Go) Begin Execution

Hwcl,wc2 (Hex) Hexadecimal Sum and Difference

Icommand tail (Input) Set Up Input Command Line

L{s{,f}} (List) List Memory in Mnemonic Form
Ms, f ,d (Move) Move Memory Block

Rf ilespec (Read) Read Disk File to Memory

S{W} s (Set) Set Memory Values

31

CP/M-86 User's Guide 4.5 The DDT-86 Command

Table 4-1. (continued)
Command Meaning

T{n} (Trace) Trace Program Execution

TS {n} (Trace) Trace and Show All Registers

U{n} (Untrace) Monitor Execution without Trace

US {n} (Untrace) Monitor and Show All Registers

V (Ver i fy) Show Memory Layout after Disk Read

Wfilespec{,s,f} (Write) Write Content of Block to Disk

X{ r} (Examine) Examine and Modify CPU Registers

Parameter Replace with

be byte constant
bl breakpoint one
b2 breakpoint two
d destination for data
f final address
n number of instructions to execute
r register or flag name
s starting address
si second starting address
W word 16-bit '
wc word constant

The overall operation of DDT-86, along with each single letter
command, is described in detail in the CP/M-86 Programmer's Guide.

Remarks:

If the file specification is not included, DDT-36 is loaded
into User Memory without a test program. You must not use the DDT-
86 commands G, T, or U until you have first loaded a test program.
The test program is usually loaded using E command.

If the file specification is included, both DDT-86 and the test
program file specified by filespec are loaded into User Memory. Use
G, T, or U to begin execution of the test program under supervision
of DDT-86. *

If the filetype is omitted from the file specification, a
filetype of CMD is assumed.

32

CP/M-85 User's Guide 4.5 The DDT-8G Command

DDT-36 cannot directly load test programs in Hexadecimal (H36)
format. You must first convert to command file form (CMD) using the
GENCMD Utility.

Examples:

A>DDT86
The DDT-85 Utility is loaded from drive A to User Memory. DDT-

86 displays the prompt when it is ready to accept commands.

A>B:DDT86 TEST.CMD

The DDT-86 Utility is loaded from drive B to User Memory. The
program file TEST.CMD is then loaded to User Memory from drive A.
DDT-86 displays the address where the file was loaded and the
prompt.

33

CP/M-85 User's Guide 4.6 The DIR Command

4.6 The DIR (Directory) Built-in

Syntax :

DIR {d : }
DIR (filespec}
DIRS {d: }
DIRS {filespec}

Type:

Built-in

Purpose:

The DIR and DIRS Built-in commands display the names of files
cataloged in the directory of an on-line disk. The DIR Built-in
lists the names of files in the current user number that have the
Directory (DIR) attribute. DIR accepts wildcards in the file
specification.

The DIRS command displays the names of files in the current
user number that have the System (SYS) attribute. Therefore, even
though you can access System (SYS) files that are stored in user 0
from any other user number on the same drive, DIRS only displays
those user 0 files if the current user number is 0. DIRS accepts
wildcards in the file specification.

Remarks:

If the drive and file specifications are omitted, the DIR
command displays the names of all files with the DIR attribute on
the disk in the default drive and current user number. Similarly,
DIRS displays the SYS files.

If the drive specifier is included, but the filename and
filetype are omitted, the DIR command displays the names of all DIR
files in the current user on the disk in the specified drive. DIRS
displays the SYS files.

If the file specification contains wildcard characters, all
filenames that satisfy the match are displayed on the screen.

If no filenames match the file specification, or if no files
are cataloged in the directory of the disk in the named drive, the
DIR command displays the message:

NO FILE

If system (SYS) files reside on the specified drive, DIR
displays the message:

SYSTEM FILE(S) EXIST

34

CP/M-86 User's Guide 4.6 The DIR Command

If non-system (DIR) files reside on the specifed drive, DIRS
displays the message:

NON-SYSTEM FILES(S) EXIST

You cannot use a wildcard character in a drive specifier.

Examples:

A>DIR
All DIR files cataloged in the current user number in the

directory of the disk mounted in drive A are displayed on the
screen.

A>DIR B:
All DIR files in the current user number on the disk in drive B

are displayed on the screen.

A>DIR B:X.A86
If the file X.A8S is present on the disk in drive B, the DIR

command displays the name X.A86 on the screen.
A>DIR *.BAS

All DIR files with filetype BAS in the current user number on
the disk in drive A are displayed on the screen.

B>DIR A:X*.C?D
All DIR files in the current user number on the disk in drive A

whose filename begins with the letter X, and whose three character
filetype contains the first character C and last character D are
displayed on the screen.

A>DIRS
Displays all files in the current user number on drive A that

have the system (SYS) attribute.

A>DIRS *.CMD
Displays all files in the current user number on drive A with a

filetype of CMD that have the system (SYS) attribute.

35

CP/M-86 User's Guide 4.7 The ED Command

4.7 The ED (Character File Editor) Command

Syntax:

ED input-filespec [d: | output-filespec}

Type:

Transient Utility

Purpose:

The ED Utility lets you create and edit a disk file.

The ED Utility is a "line-oriented" and "context" editor. This
means that you create and change character files line-by-line, or by
referencing individual characters within a line.

The ED Utility lets you create or alter the file named in the
file specification.

The ED Utility uses a portion of your User Memory as the active
text "Buffer" where you add, delete, or alter the characters in the
file. You use the A command to read all or a portion of the file
into the Buffer. You use the W or E command to write all or a
portion of the characters from the Buffer back to the file.

An imaginary "character pointer," called CP, is at the
beginning of the Buffer, between two characters in the Buffer, or at
the end of the Buffer.

You interact with the ED Utility
"insert" mode. ED displays the "*" prompt
in command mode. When the "*" appears,
letter command that reads text from the
changes the ED mode of operation.

in either "command" or
on the screen when ED i s
you can enter the single
Buffer, moves the CP, or

Table 4-2. ED Command Summary

Command Action

nA
append n lines from original file to memory

OA

buffer

append file until buffer is one half full

«A
append file until buffer is full (or end of
file)

36

CP/M-86 User's Guide 4.7 The ED Command

Table 4-2. (continued)

Command Action

cqi*CD

move CP to the beginning (B) or bottom
buffer

(-B) of

nC, -nC
move CP n characters forward (C) or back
through buffer

(-C)

nD, -nD
delete n characters before (-D) or from
CP

(D) the

E
save new file and return to CP/M-8S

Fstring(TZ}
find character string

H
save the new file, then reedit, using
file as the original file

the new

I
enter insert mode; use Tz to exit insert mode

Istringt Tz}
insert string at CP

Jsearch str~Zins str“Zdel to str[TZ}
juxtapose strings

nR, -nK
delete (kill) n lines from the CP

*ci%jc OL
move CP n lines

nMcommands
execute commands n times

n , -n
move CP n lines and display that line

n:
move to line n

:ncommand
execute command through line n

Nstring{fZ}
extended find string

37

CP/M-86 User's Guide 4.7 The ED Command

Table 4-2. (continued)
Command Ac t i o n

0
return to original file

nP# -nP
move CP 23 lines forward and display 23 lines
at console

G abandon new file, return to CP/M-36

R
read X$$$$$$$.LIB file into buffer

Rfilespec(tZ)
read filespec into buffer

Sdelete string“Zinsert string!TZ}
substitute string

nT, -nTf OT
type n lines

U, -U
upper-case translation

V, -v, OV
line numbering on/off, display free buffer
space

nW
write n lines to new file

nX
write or append n lines to X$$$$$$$.LIB

nXfilespec{T Z}
write n lines to filespec or append if previous
x command applied to the same file

OX
delete file X$$$$$$$.LIB

OXfilespec{TZ}
delete filespec

nZ
wait n seconds

38

CP/M-85 User's Guide 4.7 The ED Command

Section 5 gives a detailed description of the overall operation
of the ED Utility and the use of each command.

Remarks:

Include the second file specification only if the file named by
the first file specification is already present and you do not want
the original file replaced. The file named by the second file
specification receives the altered text from the first file, which
remains unchanged.

If the second file specification contains only the drive
specifier the second filename and filetype become the same as the
first filename and filetype.

If the file given by the first file specification is not
present, the ED Utility creates the file and writes the message:

NEW FILE

If the second filespec is omitted, the original file is preserved by
renaming it's filetype to BAK before it is replaced. If you issue
an ED command line that contains a filespec with filetype BAK, ED
creates and saves your new edited version of the BAK file, but ED
deletes your source file, leaving no back-up. If you want to save
the original BAK file, use the REN command first to change the
filetype from BAK, so that ED can rename it to BAK.

If you include the optional second filespec and give it the
same name as the first filespec, ED again creates and saves your new
edited version of the output filespec, but has to delete the
original input filespec because it has the same name as the output
file. You cannot, of course, have two files with the same name in
the same user number on the same drive.

If the file given by the first filespec is already present, you
must issue the A command to read portions of the file to the Buffer.
If the size of the file does not exceed the size of the Buffer, the
command :

a
reads the entire file to the Buffer.

The i (Insert) command places the ED Utility in insert mode.
In this mode, any characters you type are stored in sequence in the
Buffer starting at the current CP.

Any single letter commands typed in insert mode are not
interpreted as commands, but are simply stored in the Buffer. You
return from insert mode to command mode by typing CTRL-Z.

39

CP/M-86 User's Guide 4.7 The ED Command

The single letter commands are normally typed in lower-case.
The commands that must be followed by a character sequence end with
CTRL-Z if they are to be followed by another command letter.

Any single letter command typed in upper-case tells ED to
internally translate to upper-case all characters up to the CTRL-Z
that ends the command.

When enabled, line numbers that appear on the left of the
screen take the form:

nnnnn:

where nnnnn is a number in the range 1 through 65535. Line numbers
are displayed for your reference and are not contained in either the
Buffer or the character file. The screen line starts with

when the CP is at the beginning or end of the Buffer.

Examples:

A>ED MYPROG.A86
If not already present, this command line creates the file

MYPROG.A86 on drive A. The command prompt
. *

appears on the screen. This tells you that the CP is at the
beginning of the Buffer. If the file is already present, issue the
command:

: *f a

to fill the Buffer. Then type the command

: *0p

to fill the screen with the first 23 lines of the Buffer. Type the
command

: *e

to stop the ED Utility when you are finished changing the character
file. The ED Utility leaves the original file unchanged as
MYPROG.BAK and the altered file as MYPROG.A86.

A>ED MYPR0G.A86 B:NEWPROG.A86
The original file is MYPROG.A86 on the default drive A. The

original file remains unchanged when the ED Utility finishes, with
the altered file stored as NEWPROG.A86 on drive B.

40

CP/M-86 User's Guide 4.7 The ED Command

A>B:ED MYPROG.A86 B:
The ED.CMD file must be on drive B. The original file

MYPROG.A86 located on Drive A. It remains unchanged, with
altered program stored on drive B as MYPROG.A85.

i s
the

41

CP/M-86 User's Guide 4.8 The ERA Command

4.8 The ERA (Erase) Built-in

Syntax;

ERA filespec

Type:

Built-in

Purpose;

o f
Di
by

The ERA Built-in removes one or more files from
a disk. Wildcard characters are accepted in the

rectory and data space are automatically reclaimed
another file.

the directory
command tail,
for later use

Remarks:

Use the ERA command with care since all files that satisfy the
file specification are removed from the disk directory.

Command lines that take the form:

ERA {d:}*.*

require your acknowledgment since they reclaim all file space.
You'll see the message:

All (Y/N)?

Respond with "y" if you want to remove all files, and "n" if you
want to avoid erasing any files.

You will see the message:

NO FILE

on the screen if no files match the file specification.

Examples

A>ERA X.A86

This command removes the file X.A86 from the disk in drive A.

A>ERA *.PRN

All files with the filetype PRN are removed from the disk in
drive A. .

B>ERA A:MY*.*

42

CP/M-86 User's Guide 4.8 The ERA Command

Each file on drive A with a filename that begins with MY is
removed from the disk.

A>ERA B:*.*
All files on drive B are removed

the operation, you must respond with
displays the message:

from the disk,
a "y" when the

To complete
ERA command

All (Y/N)?

43

CP/M-86 User's Guide 4.9 The GENCMD Command

4.9 The GENCMD (Generate CMD File) Command

Syntax;

GENCMD filespec [8080 CODE[An,Bn,Mn ,Xn] DATA[An,Bn,Mn,Xn]
STACKfAn,Bn,Mn,Xn] EXTRA[An,Bn,Mn,Xn] XI[...}

Type:

Transient Utility

Purpose:

The GENCMD Utility uses the hex output of ASM-8S and other
language processors to produce a CMD file. An optional parameter
list follows the file specification.

You need to know how to use GENCMD when you wr i te assembly
language programs that become Transient Utility commands.

The operation of GENCMD is described in detail in the CP/M-86
System Guide.

The parameter-list consists of up to nine keywords with a
corresponding list of values. The keywords are:

8080 CODE DATA STACK EXTRA XI X2 X3 X4

The keyword 8080 identifies the CMD file as an "8080 Memory
Model" where code and data groups overlap. The remaining keywords
define segment groups that have specific memory requirements. The
values that define the memory requirements are separated by commas
and enclosed in square brackets ([]) following each keyword. The
bracketed keywords and related values must be separated from other
keywords by at least one blank.

The values included in brackets are defined below, where n
represents a hexadecimal constant of from one to four digits. The
value n represents a "paragraph" value where each paragraph is 16
bytes lonq. The paragraph value corresponds to the byte value n *
16, or hhhhO in hexadecimal.

An
Bn
Mn
Xn

Load Group at Absolute Location
Begin Group at address n in the
The Group Requires a Minimum of
The Group Can Address up to n *

n
Hexadecimal File
n * 16 Bytes
16 Bytes

Remarks:

Use the 8080 keyword for programs converted from 8-bit
microprocessors to CP/M-86. The programs load into an area with
overlapping code and data segments. The code segment in the program
must begin at location 100H.

44

CP/M-85 User's Guide 4.9 The GENCMD Command

Use An for any group that must be loaded at an absolute
location in memory. Don't use an A value in the command tail unless
you know that the requested absolute area will be available when the
program runs.

Use Bn when your input Hex file does not contain information
that identifies the segment groups. This value is not necessary
when your H86 file is the output from the Digital Research ASM-86
assembler, unless the ASM-86 parameter FI was included.

Use the Mn value when you include a data segment that has an
uninitialized data area at the end of the segment.

Use Xn when your program can use a larger data area, if
available, than the minimum given by Mn.

Examples:

A>GENCMD MYPROG

The file MYPROG.H85 is read from drive A. The output file
MYPROG. CMD is written back to drive A. The input H86 file includes
information that marks the program as operating with a particular
memory model.

B>GENCMD MYFILE CODE[A40] DATA[M30,XFFF]
The file MYFILE.H85 is read from drive B. The MYFILE.CMD

output file is written to drive B. The code group must be loaded at
location 400 hexadecimal. The data group requires a minimum of 300
hexadecimal bytes, but if available, the program can use up to FFFO
bytes.

45

CP/M-86 User's Guide 4.10 The HELP Command

4.10 The HELP (Help) Command

Syntax:

HELP {topic} {subtopicl subtopic2 ... subtopic8}{[P]}
Type;

Transient Utility

Purpose;

The HELP command provides summarized information for all of the
CP/M-86 commands described in this manual. HELP with no command
tail displays a list of all the available topics. HELP with a topic
in the command tail displays information about that topic, followed
by any available subtopics. HELP with a topic and a subtopic
displays information about the specific subtopic.

Remarks;

After HELP displays the information for your specified topic,
it displays the special prompt HELP> on your screen. You can
continue to specify topics for additional information, or simply
press the RETURN key to return to the CP/M-86 system prompt.

You can abbreviate the names of topics and subtopics. Usually
one or two letters is enough to specifically identify the topics.

HELP with the [P] option prevents the screen display from
stopping every 23 lines.

Examples:

A>HELP

The command above displays a list of topics for which help is
available.

A>HELP STAT

This command displays general information about the STAT
command. It also displays any available subtopics.

A>HELP STAT OPTIONS

The command above includes the subtopic "options". In
response, HELP displays information about options associated with
the STAT command.

A>HELP ED

46

CP/M-85 User's Guide 4.10 The HELP Command

The command above displays general information about the ED
Utility.

A>HELP ED COMMANDS

This form of HELP displays information about commands internal
to ED.

CP/M-86 is distributed with two related HELP files: HELP.
CMD and HELP.HLP. The HELP.CMD file is the command file that
processes the text of the HELP.HLP file and displays it on the
screen. The HELP.HLP file is a text file to which you can add
customized information, but you cannot edit the HELP.HLP file.
You must use the HELP.CMD file to convert HELP.HLP to a file
named HELP.DAT before you can edit or add your own text.

Use the following forms of the HELP command to change
HELP.HLP to HELP.DAT and change HELP.DAT back to HELP.HLP.

HELP [E]

HELP [C]

The HELP [E] command accesses the file HELP.HLP on the
default drive, removes the header record, and creates a file
called HELP.DAT on the default drive. You can now invoke a
word-processing program to edit or add your own text to the
HELP.DAT file.

The HELP [C] command accesses your edited HELP.DAT file
on the default drive, generates a new index for the entries
record, and buids a revised HELP.HLP file on the default drive.
HELP.CMD can now display your new HELP.HLP file.

You must add topics and subtopics to the HELP.DAT file in
a specific format. The general format of a topic heading in
the HELP.DAT file is shown below.

///nTOPICNAME<cr>

The three back slashes are the topic delimiters and must begin
in column one. In the format statement above, n is a number
in the range from 1 through 9 that signifies the level of the
topic. A main topic always has a level number of 1. The first
subtopic has a level number of 2. The next subtopic has a level
number of 3, and so forth up to a maximum of nine levels. TOPIC-
NAME is the name of your topic, and allows a maximum of twelve
characters. The entire line is terminated with a carriage
return.

47

CP/M-86 User's Guide 4.10 The HELP Command

Use the following guidelines to properly edit and insert
text into the HELP.DAT file.

. Topics should be ordered in ascending alphabetical order.

. Subtopics should be ordered in ascending alphabetical
order within their respective supertopic.

. Levels must be indicated by a number 1 - 9 .

Some examples of topic and subtopic lines in the HELP.HLP
file are shown below.

///1NEW UTILITY<cr>

///2COMMANDS<cr>

///3EXAMPLES<cr>

The first example shown above illustrates the format of a main
topic line. The second example shows how to number the first
subtopic of that main topic. The third example shows how the
next level subtopic should be numbered. Any topicname with a
level number of 1 is a main topic. Any topicname with a level
number of 2 is a subtopic within its main topic.

When you are executing the HELP.CMD file, you need only
enter enough letters of the topic to unambiguously identify the
topic name. When referencing a subtopic, you must type the
topic name.and the subtopic, otherwise the HELP program cannot
determine which main topic you are referencing. You can also
enter a topic and subtopic following the program's internal
prompt, HELP>, as shown below.

HELP>ED COMMANDS

This form of HELP displays information about commands internal
to the editing program, ED.

48

CP/M-86 User's Guide 4.11 The PIP Command

4.11 PIP (Peripheral Interchange Proqram - Copy File) Command

Syntax;

PIP dest-file{[Gn] } !dev=src-file{ [options] }I dev{[options] }

Type:

Transient Utility

Purpose:

The PIP Utility copies one or more files from one disk and or
user number to another. PIP can rename a file after copying it.
PIP can combine two or more files into one file. PIP can also copy
a character file from disk to the printer or other auxiliary logical
output device. PIP can create a file on disk from input from the
console or other logical input device. PIP can transfer data from a
logical input device to a logical output device. Hence the name
Peripheral Interchange Program.

4.11.1 Single File Copy

Syntax;

PIP d:[[Gn]} = so urce-f i 1 espec [[options] }

PIP dest-f ilespec{ [Gn] } = d :[[options] }

PIP dest-filespec{[Gn]} = source-filespec[[options]}

Purpose;

The first form shows the simplest way to copy a file. PIP
looks for the file named by source-filespec on the default or
optionally specified drive. PIP copies the file to the drive
specified by d: and gives it the same name as source-filespec. If
you want, you can use the [Gn] option to place your destination file
(dest-fi 1 espec) in the user number specified by n. The only option
recognized for the destination file is [Gn] . Several options can be
combined together for the source file specification (source
filespec). See the section on PIP options.

The second form is a variation of the first. PIP looks for the
file named by dest-filespec on the drive specified by d :, copies it
to the default or optionally specified drive, and gi*ves it the same
name as dest-filespec.

The third form shows how to rename the file after you copy it.
You can copy it to the same drive and user number, or to a different
drive and/or user number. Rules for options are the same. PIP
looks for the file specified by source-filespec, copies it the the
location specified in dest-filespec, and gives it the name indicated
by dest-filespec.

49

CP/M-86 User's Guide 4.11 The PIP Command

user
Remember that PIP always "goes to" and "gets from"
number unless you specify otherwise with the [Gn]

the current
option.

Remarks:

Before you start PIP, be sure that you have enough free space
in kilobytes on your destination disk to hold the entire file or
files that you are copying. Even if you are replacing an old copy
on the destination disk with a new copy, PIP still needs enough room
for the new copy before it deletes the old copy. (See the STAT
Utility.)

Data is first copied to a temporary file to ensure that the
entire data file can be constructed within the space available on
the disk. PIP gives the temporary file the filename specified for
the destination, with the filetype $$$. If the copy operation is
successful, PIP changes the temporary filetype $$$ to the filetype
specified in the destination.

If the copy operation succeeds and a file with the same name as
the destination file already exists, the old file with the same name
is erased before renaming the temporary file.

File
files.

attributes (SYS, DIR, RW, RO) are transferred with the

If the existing destination file is set to Read-Only (RO) , PIP
asks you if you want to delete it. Answer Y or N. Use the W option
to write over Read-Only files.

You can include PIP options following each source name (see PIP
Options, below) . There is one valid option ([Gn] - go to user
number n) for the destination file specification. Options are
enclosed in square brackets. Several options can be included for
the source files. They can be packed together or separated by
spaces. Options can verify that a file was copied correctly, allow
PIP to read a file with the system (SYS) attribute, cause PIP to
write over Read-Only files, cause PIP to put a file into or copy it
from a specified user number, transfer from lower- to upper-case,
and much more.

Examples:

A>PIP B:=A:oldfile.dat
*

A>PIP Bioldfile.dat = A:
Both forms of this command cause PIP to read the file

oldfile.dat from drive A and put an exact copy of it onto drive B.
This is called the short form of PIP, because the source or
destination names only a drive and does not include a filename.
When using this form you cannot copy a file from one drive and user

50

CP/M-36 User's Guide 4.11 The PIP Command

number to the same drive and user number. You must put the
destination file on a different drive or in a different user number.
See the section on PIP Options, and the section on the USER Command.
The second short form produces exactly the same result as the first
one. PIP simply looks for the file oldfile.dat on drive A, the
drive specified as the source.

A>PIP B:newfile.dat=A:oldfile.dat

This command copies the file oldfile.dat from drive A to drive
B and renames it to newfile.dat. The file remains as oldfile.dat on
drive A. This is the long form of the PIP command, because it names
a file on both sides of the command line.

A>PIP newfile.dat = oldfile.dat

Using this long form of PIP, you can copy a file from one drive
and user number (usually user 0 because CP/M-36 automatically starts
out in user 0 - the default user number) to the same drive and user
number. This effectively gives you two copies of the same file on
one drive and user number, each with a different name.

A>PIP B :PROGRAM.BAK = A:PROGRAM.DAT[G1]
The command above copies the file PROGRAM.DAT from user 1 on

drive A to the currently selected user number on drive B and renames
the filetype on drive B to BAK.

B>PIP program2.dat = A:programl.dat[E V G3]

In this command, PIP copies the file named programl.dat on
drive A and echoes [E] the transfer to the console, verifies [V]
that the two copies are exactly the same, and gets [G3] the file
programl.dat from user 3 on drive A. Since there is no drive
specified for the destination, PIP automatically copies the file to
the default user number and drive, in this case drive B.

4.11.2 Multiple File Copy

Syntax:

PIP d:{[Gn]} = {d :}wildcard-fi1espec{[options]}

Purpose:

When you use a wildcard in the source specification, PIP copies
qualifying files one-by-one to the destination drive, retaining the
original name of each file. PIP displays the message "COPYING"
followed by each filename as the copy operation proceeds. PIP
issues an error message and aborts the copy operation if the
destination drive and user number are the same as those specified in
the source.

51

CP/M-86 User's Guide 4.11 The PIP Command

Examples:

A>PIP B:=A:*.CMD
This command causes PIP to copy all the files on drive A with

the filetype CMD to drive B.

A>PIP B :=A:*.*

This command causes PIP to copy all the files on drive A to
drive B. You can use this command to make a back-up copy of your
distribution disk. Note, however, that this command does not copy
the CP/M-36 system from the system tracks. COPYDISK copies the
system for you.

A>PIP B :=A:PROG????.*

The command above causes PIP to copy all files beginning with
PROG and having any filetype at all from drive A to drive B.

A>PIP B: [G1]=A:*.A86
This command causes PIP to copy all the files with a filetype

of A86 on drive A in the default user number (user ZERO unless you
have changed the user number with the USER command) to drive B in
user number 1. (Remember that the DIR, TYPE, ERA and other commands
only access files in the same user number from which they were
invoked. See the USER Utility.)

4.11.3 Combining Files

Syntax: .

PIP dest-f ile{ [Gn] }=src-file{ [opt] },file([opt] }{,file([opt] }...}
Purpose:

This form of the PIP command lets you specify two or more files
in the source. PIP copies the files specified in the source from
left to right and combines them into one file with the name
indicated by the destination file specification. This procedure is
called file concatenation. You can use the [Gn] option after the
destination file to place it in the user number specified by n. You
can specify one or more options for each source file.

52

CP/M-36 User's Guide 4.11 The PIP Command

Remarks:

Most of the options force PIP to copy files character by
character. In these cases PIP looks for a CTRL-Z character to
determine where the end of the file is. All of the PIP options
force a character transfer except the following:

Gn,K,0,R,V, and W.

Copying data to or from logical devices also forces a character
transfer.

During character transfers, you can terminate a file
concatenation operation by striking any key on your keyboard.

When concatenating files, PIP only searches the last record of
a file for the CTRL-Z end-of-file character. However, if PIP is
doing a character transfer, it stops when it encounters a CTRL-Z
character.

Use the [0] option if you are concatenating machine code files.
The [0] option causes PIP to ignore embedded CTRL-Z (end-of-file)
characters, normally used to indicate the end-of-file character in
files.

Examples:

A>PIP NEWFILE=FILE1,FILE2,FILE3
The three files named FILE1, FILE2, and FILE3 are joined from

left to right and copied to NEWFILE.$$$. NEWFILE.$$$ is renamed to
NEWFILE upon successful completion of the copy operation. All
source and destination files are on the disk in the default drive A.

A>PIP B:X.A86 = Y.A86, B:Z.A86
The file Y.A86 on drive A is joined with Z.A86 from drive B and

placed in the temporary file X.$$$ on drive B. The file X.$$$ is
renamed to X.A86 on drive B when PIP runs to successful completion.

4.11.4 Copy Files to and from Auxiliary Devices
Syntax:

PIP dest-filespec { [Gn] } = source-filespec { [options] }
AXO: AXI: { [options] }
CON: CON: { [options] }
PRN: NUL:
LST: EOF:

53

CP/M-86 User's Guide 4.11 The PIP Command

Purpose:
This form is a special case of the PIP command line that lets

you copy a file from a disk to a device, from a device to a disk or
from one device to another. The files must contain printable
characters. Each peripheral device can be assigned to a "logical"
name that identifies a source device that can transmit data or a
destination device that can receive data. A colon (:) follows each
logical device name so it cannot be confused with a filename.
Strike any key to abort a copy operation that uses a logical device
in the source or destination.

The logical device names are:

CON: Console: the physical device assigned to CON:
When used as a source, usually the keyboard;
When used as a destination, usually the screen.

AXI: Auxiliary Input or Output Device.

AXO: Auxiliary Output Device.

LST: The destination device assigned to LST:
Usually the printer.

There are three device names that have special meaning:

NUL: A source device that produces 40 hexadecimal zeroes.

EOF: A source device that produces a single CTRL-Z,
(The CP/M-86 End-of-File Mark) .

PRN: The printer device with tab expansion to every
eighth column, line numbers, and page ejects
every 60th line.

Examples :

B >PIP PRN:=CON:,MYDATA.DAT
Characters are first read from the console input device,

generally the keyboard, and sent directly to your printer device.
You type a CTRL-Z character to tell PIP that keyboard input is
complete. At that time, PIP continues by reading character data
from the file MYDATA. DAT on drive B. Since PRN: is the destination
device, tabs are expanded, line numbers are added, and page ejects
occur every 60 lines.

54

CP/M-8S User's Guide 4.11 The PIP Command

A>PIP B:FUNFILE.SUE = CON:
If CRT: is assiqned to CON: whatever you type at the console is

written to the file FUNFILE.SUE on drive B. End the keyboard input
by typing a CTRL-Z.

A>PIP LST:=CON:
If CRT: is assigned to CON: whatever you type at the keyboard

is written to the list device, generally the printer. Terminate
input with a CTRL-Z.

A>PIP LST:=B:DRAFT.TXT[T8]
The file DRAFT.TXT on drive B is written to the printer device.

Any tab characters are expanded to the nearest column that is a
multiple of 8.

A>PIP PRN:=B:DRAFT.TXT
The command above causes PIP to write the file DRAFT.TXT to the

list device. It automatically expands the tabs, adds line numbers,
and ejects pages after sixty lines.

4.11.5 Multiple Command Mode

Syntax:

PIP

Purpose:

This form of the PIP command starts the PIP Utility and lets
you type multiple command lines while PIP remains in User Memory.

Remarks :

PIP writes an asterisk (*) on your screen when ready to accept
input command lines.

You can type any valid command line described under previous
PIP formats following the asterisk prompt.

Terminate PIP by pushing only the ENTRY key following the
asterisk prompt. The empty command line tells PIP to discontinue
operation and return to the CP/M-86 system prompt.

55

CP/M-36 User's Guide 4.11 The PIP Command

Examples:

A>PIP
*NEWFILE=FILE1,FILE2,FILE3
*APROG.CMD=BPROG.CMD
*A:=B:X.A86
* B: = *.**

This command loads the PIP program. The PIP command input
prompt (*) tells you that PIP is ready to accept commands. The
effects of this sequence of commands are the same as shown in the
previous examples, where the command line is included in the command
tail. PIP is not loaded into memory for each command.

4.11.6 Using Options With PIP
Purpose:

Options enable you to process your source file in special ways.
You can expand tab characters, translate from upper- to lower-case,
extract portions of your text, verify that the copy is correct,.and
much more.

The PIP options are listed below, using "n" to represent a
number and "s" to represent a sequence of characters terminated by a
CTRL-Z. An option must immediately follow the file or device it
affects. The option must be enclosed in square brackets []. For
those options that require a numeric value, no blanks can occur
between the letter and the value.

You can include the [Gn] option after a destination file
specification. You can include a list of options after a source
file or source device. An option list is a sequence of single
letters and numeric values that are optionally separated by blanks
and enclosed in square brackets [].

Table 4-3. PIP Options
Option Function

Dn Delete any characters past column n. This
parameter follows a source file that contains
lines too long to be handled by the destination
device, for example, an 80-character printer or
narrow console. The number n should be the
maximum column width of the destination device.

56

CP/M-83 User's Guide 4.11 The PIP Command

Table 4-3. (continued)

Option Function

E Echo transfer at console. When this parameter
follows a source name, PIP displays the source
data at the console as the copy is taking place.
The source must contain character data.

F Filter form-feeds. When this parameter follows
a source name, PIP removes all form-feeds
embedded in the source data. To change form
feeds set for one page length in the source file
to another page length in the destination file,
use the F command to delete the old form-feeds
and a P command to simultaneously add new form
feeds to the destination file.

Gn Get source from or Go to user number n. When
this parameter follows a source name, PIP
searches the directory of user number n for the
source file. When it follows the destination
name, PIP places the destination file in the
user number specified by n. The number must be
in the range 0 to 15.

H Hex data transfer. PIP checks all data for
proper Intel hexadecimal file format. The
console displays error messages when errors
occur.

I Ignore : 00 records in the transfer of Intel
h e x a d e c i m a l format file. The I option
automatically sets the H option.

L Translate upper-case alphabetics in the source
file to lower-case in the destination file.
This parameter follows the source device or
filename.

N Add line numbers to the destination file. When
this parameter follows the source filename, PIP
adds a line number to each line copied, starting
with 1 and incrementing by one. A colon follows
the line number. If N2 is specified, PIP adds
leading zeroes to the line number and inserts a
tab after the number. If the T parameter is
also set, PIP expands the tab.

0 Object file transfer for machine code (non
character and therefore non-printable) files.
PIP ignores any CTRL-Z ends-of-file during
concatenation and transfer. Use this option if
you are combining object code files.

57

CP/M-86 User's Guide 4.11 The PIP Command

Table 4-3. (continued)

Options Function

Pn Set page length. n specifies the number of
lines per page. When this parameter modifies a
source file, PIP includes a page eject at the
beginning of the destination file and at every n
lines. If n = 1 or is not specified, PIP
inserts page ejects every 60 lines. When you
also specify the F option, PIP ignores form
feeds in the source data and inserts new form
feeds in the destination data at the page length
specified by n.

Qs Quit copying from the source device after the
string s. When used with the S parameter, this
parameter can extract a portion of a source
file. The string argument must be terminated by
CTRL-Z.

R Read system (SYS) files. Normally, PIP ignores
files marked with the system attribute in the
disk directory. But when this parameter follows
a source filename, PIP copies system files,
including their attributes, to the destination.

Ss Start copying from the source device at the
string s. The string argument must be
terminated by CTRL-Z. When used with the Q
parameter, this parameter can extract a portion
of a source file. Both start and quit strings
are included in the destination file.

Tn Expand tabs. When this parameter follows a
source filename, PIP expands tab (CTRL-I)
characters in the destination file. PIP
replaces each CTRL-I with enough spaces to
position the next character in a column
divisible by n.

U Translate lower-case alphabetic characters in
the source file to upper-case in the destination
file. This parameter follows the source device
or filename.

V Verify that data has been copied correctly. PIP
compares the destination to the source data to
ensure that the data has been written correctly.
The destination must be a disk file.

58

ZP/M-36 User's Guide 4.11 The PIP Command

Table 4-3. (continued)

Opt ion Func t ion

W Write over files with RO (Read-Only) attribute.
Normally, if a PJ.P command tail includes an
existing RO file as a destination, PIP sends a
query to the console to make sure you want to
write over the existing file. When this
parameter follows a source name, PIP overwrites
the RO file without a console exchange. If the
command tail contains multiple source files,
this parameter need follow only the last file in
the list.

z, Zero the parity bit. When this parameter
follows a source name, PIP sets the parity bit
of each data byte in the destination file to
zero. The source must contain character data.

A >PIP NEWPROG.A86=CODE.A86[L], DATA.A86[U]

This command constructs the file NEWPROG.A86 on drive A by
' :ning the two files CODE.A86 and DATA.A86 from drive A. During
t . -opy operation, C0DE.A8G is translated to lower-case, while
D . A85 is translated to upper-case.

A ~>PI P CON:=WIDEFILE.A86 [D80]
This command writes the character file WIDEFILE.A86 from drive

A to the console device, but deletes all characters following the
30th column position.

A >P1P B:=LETTER.TXT[E]

The file LETTER.TXT from drive A is copied to LETTER.TXT on
drive B. The LETTER.TXT file is also written to the screen as the
copy operation proceeds.

A>PIP LOT:=B:LONGPAGE.TXT[FP65]

This command writes the file LONGPAGE.TXT from drive B to the
printer device. As the £il is written, form-feed characters are
removed and re-inserted at the beginning and every 65th line
tue-»a l ter .

B PIP LST:=PROGRAM.A86[NT8U]
Ibis command writes the file PROGRAM.A86 from drive B to the

prinLer device. The N parameter tells PIP to number each line. The
F8 parameter expands tabs to every eighth column. The U parameter
transiai.es Lower-case letters to upper-case as the file is printed.

59

CP/M-86 User's Guide 4.11 The PIP Command

A>PIP PORTION.TXT=LETTER.TXT[SDear Sir~Z QSincerely~Z]
This command abstracts a portion of the LETTER.TXT file from

drive A by searching for the character sequence "Dear Sir" before
starting the copy operation. When found, the characters are copied
to PORTION.TXT on drive A until the sequence "Sincerely" is found in
the source file.

B>PIP B:=A:*.CMD[VWR]
This command copies all files with filetype CMD from drive A to

drive B. The V parameter tells PIP to read the destination files to
ensure that data was correctly transferred. The W parameter lets
PIP overwrite any destination files that are marked as RO (Read
Only) . The R parameter tells PIP to read files from drive A that
are marked with the SYS (System) attribute.

60

CP/M-S6 User's Guide 4.12 The REN Command

4.12 The REN (Rename) Built-in

Syntax:

REN {d:}newname{.typ} = oldname(.typ}

Type:

Built-in

Purpose;

The REN Built-in lets you change the name of a file that is
cataloged in the directory of a disk.

The filename oldname identifies an existing file on the disk.
The filename newname is not in the directory of the disk. The REN
command changes the file named by oldname to the name given as
newname.

Remarks;

REN does not make a copy of the file. REN changes only the
name of the file.

If you omit the drive specifier, REN assumes the file to
rename is on the default drive.

You can include a drive specifier as a part of the newname.
If both file specifications name a drive, it must be the same drive.

If the file given by oldname does not exist, REN displays the
following message on the screen:

NO FILE
If the file given by newname is already present in the

directory, REN displays the following message on the screen:

FILE EXISTS

Examples:

A>REN NEWASM.A86=OLDFILE.A86
The file 0LDFILE.A86 changes to NEWASM.A86 on drive A.

B>REN A :X.PAS = Y.PLI
The file Y.PLI changes to X.PAS on drive A.

61

CP/M-86 User's Guide 4.12 The REN Command

A>REN B:NEWLIST=B:OLDLIST
The file OLDLIST changes to NEWLIST on drive B. Since the

second drive specifier, B: is implied by the first one, it is
unnecessary in this example. The command line above has the same
effect as the following:

A>REN B:NEWLIST=OLDLIST

62

CP/M-86 User's Guide 4.13 The STAT Command

4.13 The STAT (Status) Command
Syntax:

STAT
STAT d :=RO
STAT filespec {RO|RW|SYS|DIR|SIZE}
STAT (d :}DSK: | USR:
STAT VAL: | DEV:

Type:

Transient Utility

Purpose:

The various forms of the STAT Utility command give you
information about the disk drives, files and devices associated with
your computer. STAT lets you change the attributes of files and
drives. You can also assign physical devices to the STAT logical
device names.

Note that the options following filespec can be enclosed in
square brackets [], or be preceeded by a dollar $ sign or by no
delimiter as shown in the syntax section above.

Remarks:

The notation "RW" tells you the drive is in a Read-Write state
so that data can be both read from and written to the disk.

The notation "RO" tells you the drive is in a Read-Only state
so that data can only be read from, but not written to, the disk.

Drives are in a Read-Write state by default, and become Read
Only when you set the drive to RO or when you change a disk and
forget to type a CTRL-C.

4.13.1 Set a Drive to Read-Only Status
Syntax:

STAT d:= RO

Purpose:

You can use this form of the STAT command to set the drive to
Read-Only status. Use CTRL-C to reset a drive to Read-Write.

63

CP/M-86 User's Guide 4.13 The STAT Command

Example: ,

A>STAT B:= RO
The command line shown above sets drive B to Read-Only status.

4.13.2 Free Space on Disk
Syntax;

STAT {d:}

Purpose;
STAT with no command tail reports the amount of free storage

space that is available on all on-line disks. This form of the STAT
command reports free space for only those disks that have been
accessed since CP/M-86 was last started or reloaded. You can find
the amount of free space on a particular disk by including the drive
specifier in the command tail.

Remarks :

If the drive specifier names a drive that is not on-line, CP/M-
86 places the drive in an on-line status.

This form of the STAT command displays information on your
screen in the following form:

d: RW, Free Space: nnK

where d is the drive specifier, and n is the number of kilobytes of
storage remaining on the disk in the drive specified by d.

Examples:

A>STAT
Suppose

Suppose also
while drive B has
drive A is marked

you have two
that drive A

32K (32,728)
RW, and drive

disk drives containing active disks,
has 16K (16,384) bytes of free space,

bytes of free space Assume that
B is marked RO. The STAT command

displays the following messages on your screen:

A: RW, Free Space: 16K
B: RO, Free Space: 32K

64

CP/M-86 User's Guide 4.13 The STAT Command

A>STAT B:
Suppose drive B is set to Read-Only and has 98 Kilobytes of

storage that is free for program and data storage. The following
message is displayed on your screen:

B: RO, Free Space: 98K

4.13.3 Files - Display Space Used and Access Mode
Syntax:

STAT filespec (SIZE}

Purpose:

This form of the STAT command displays the amount of space in
kilobytes used by the specified file. It also displays the Access
Mode of the file. STAT accepts wildcards in the filename and
filetype part of the command tail. When you include a wildcard in
your file specification, the STAT command displays a list of
qualifying files from the default or specified drive, with their
file characteristics, in alphabetical order.

Note that the S option following the filespec can be enclosed
in square brackets [], or be preceeded by a dollar $ sign, or by no
delimiter as shown in the syntax line above.

CP/M-86 supports four file Access Modes:

RO The file has the Read-Only attribute that allows data
to come from the file, but the file cannot be
altered.

RW The file has the Read-Write attribute that allows
data to move either to or from the file.

SYS The file has the "system" attribute. System files do
not appear in DIR (directory) displays. Use DIRS to
show System (SYS) files. Use the STAT command to
display all files including those with the System
attribute. The STAT command shows System files in
parentheses.

DIR The file has the "directory" attribute and appears in
DIR (directory) displays.

A file has either the RO or RW attribute, and either the SYS or
DIR attribute. By default, and unless changed by the STAT command,
a file has the RW and DIR attributes.

65

CP/M-86 User's Guide 4.13' The STAT Command

This format for the STAT command produces a list of file
characteristics under five headings:

• The first column displays the number of records used by the
file, where each record is 128 bytes in length. This value is
listed on your screen under the column marked "Rees."

• The second column displays the number of kilobytes used by the
file, where each kilobyte contains 1,024 bytes. This value is
listed under "Bytes."

• The third column displays the number of directory entries used
by the file. This value appears under the "FCBs" column. FCB
(File Control Block) is another name for a directory entry.

• The Access Modes are displayed under the "Attributes" column.

• The file specification, consisting of the drive specifier,
filename, and filetype of the file appears under "Name" on your
screen.

Remarks:

If the drive specifier is included, and the corresponding drive
is not active, CP/M-86 places the drive in an active status.

Use SIZE to tell STAT to compute the "virtual file size" of
each file. The virtual and real file size are identical for
sequential files, but can differ for files written in random mode.
When you use SIZE, the additional column, marked "Size", is
displayed, on the screen. The value in this column represents the
number of filled and unfilled records allotted to the file.

When you enter the command STAT *.*,
verification to ensure that two files do
space allocation. This means that the
portion of the disk with another file in
finds a duplicate space allocation it
message:

STAT performs a
not share the
indicated file
the directory,
displays the

d i rectory
same disk
shares a
If STAT

following

Bad Directory on d:
Space Allocation Conflict:
User nn d :filename.typ

STAT prints the user number and the name of the file containing
doubly allocated space. More than one file can be listed. The
recommended solution is to erase the listed files, and then type a
CTRL-C.

STAT does a complete directory verification whenever a wildcard
character appears in the command tail.

66

CP/M-86 User's Guide 4.13 The STAT Command

Examples;

A>STAT MY*.*
This command tells STAT to display the characteristics of all

files that begin with the letters MY, with any filetype at all.
Assume that the following three files satisfy the file
specification. The screen could display the following:

Dr ive B: User 0
Rees Bytes FCBs Attributes Name
16 2K 1 Di.r RW B:MYPROG . A86
8 IK 1 Dir RO B:MYTEST .DAT

32 18K 2 Sys RO B:MYTRAN .CMD

Total: 21K 4

B: RW, Free Space: 90K

A>STAT MY*.* SIZE
This command causes the same action as the previous command,

but includes the "Size" column in the display. Assume that
MYFILE.DAT was written using random access from record number 8
through 15, leaving the first 8 records empty. The virtual file
size is 16 records, although the file only consumes eight records.
The screen appears as follows:

Drive B:
Si ze Rees Bytes
16 16 2K
16 8 IK
32 32 18K

To t a 1: 21K

B: RW, Free Space

FCBs Attributes
1 Dir RW
1 Dir RO
2 Sys RO

4

90K

User 0
Name

B :MYPROG .A86
B :MYTEST .DAT
B :MYTRAN .CMD

4.13.4 Set File Access Modes (Attributes)
Syntax:

STAT filespec RO jRW I SYS |DIR

Purpose:

This form of the STAT command lets you set the Access Mode for
one or more files. Note that the option following filespec can be
enclosed in square brackets [], be preceeded by a dollar $ sign or
by no delimiter as shown above.

67

CP/M-86 User's Guide 4.13 The STAT Command

The four Access Modes, described above, are:

RO
RW
SYS
DIR

Remarks:

If the drive named in the file specification corresponds to an
inactive drive, CP/M-86 first places the drive in an on-line state.

A file can have either the RO or RW Access Mode, but not both.
Similarly, a file can have either the SYS or DIR Access Mode, but
not both.

Examples;

A>STAT LETTER.TXT RO
This command sets the Access Mode for the file LETTER.TXT on

the default drive to RO. The following message appears on your
screen if the file is present:

LETTER.TXT set to RO

The command:

B>STAT A:*.COM SYS
sets the Access Mode for all files on drive A, with filetype COM, to
SYS. Given that the three command files PIP, ED, and ASM-86 are
present on drive A, the following message appears on your screen:

PIP.COM set to SYS
ED.COM set to SYS
ASM86 set to SYS

4.13.5 Display Disk Status
Syntax:

STAT {d :}DSK:

Purpose:

This form of the STAT command displays internal information
about your disk system for all on-line disks.

If a drive is specified, it is placed in an on-line status.

68

CP/M-86 User's Guide 4.13 The STAT Command

The information provided by this command is useful for more
advanced programming, and is not necessary for your everyday use of
CP/M-S6.

Examples:

A >STAT DSK:

This STAT command displays information about drive A in the
following form. STAT supplies numbers for n.

A: Drive Characteristics
nnnn: 128 Byte Record Capacity
nnnn: Kilobyte Drive Capacity
nnnn: 32 Byte Directory Entries
nnnn: Checked Directory Entries
nnnn: 128 Byte Records/Directory Entry
nnnn: 128 Byte Records/Block
nnnn: 128 Byte Records/Track
nnnn: Reserved Tracks

A>STAT B :D S K :

This command produces the information shown in the previous
example for drive B.

4.13.6 Display User Numbers With Active Files
Syntax:

STAT {d :}USR:
Purpose:

This form of the STAT command lets you determine the User
Numbers that have files on the disk in the specified drive.

User Numbers are assigned to files that are created under CP/M-
86. Use this form of the STAT command to determine the active User
Numbers on a disk.

Examples:

A >STAT USR:

This command displays the User Numbers containing active files
on the disk in drive A.

69

CP/M-86 User's Guide 4.13 The STAT Command

4.13.7 Display STAT Commands and Device Haines

Syntax:

STAT VAL:

Purpose:

STAT VAL: displays the general form of the STAT commands. It
also displays the possible physical device names that you can assign
to each of the four CP/M-3S logical device names.

Examples: ,

The STAT VAL: display is shown below:

A>STAT VAL:
STAT 2.1

Read Only Disk: d:=RO
Set Attribute: d :filename.typ [roj [rw] [sys] [dir]
Disk Status : DSK: d :DSK:
User Status : USR: d:USR:
lobyte Assign:
CON: = TTY: CRT: BAT: UC1
AXI: = TTY: PTR: UR1: UR 2
AXO: = TTY: PTP: UP1: UP2
LST: = TTY: CRT: LPT: UL1
A>

4.13.8 Display and Set Physical to Logical Device Assignments
Syntax:

STAT DEV:
STAT logical device: = physical device:

Purpose:

STAT DEV: displays the current assignments for the four CP/M-86
logical device names, CON:, AXI:, AXO: and LST:. Use the second
form of the above STAT command to change these current assignments.
The command STAT VAL: displays the possible physical device names
that you can assign to each logical device name. Refer to the part
of the STAT VAL: display entitled "lobyte Assign" shown above.

When you assign a physical device to a logical device, STAT
assigns a value from 0 to 3 to the logical device name in what is
called the IObyte.

You can assign any of the listed physical device names to their
appropriate logical device names. However, the assignment does not
work unless you are using the proper Input-Output Port on your

70

CP/M-86 User's Guide 4.13 The STAT Command

computer, with the proper cable to connect the computer to the
device, and the proper 10 (Input-Output) driver routine for the
particular physical device.

The physical device drivers have to be implemented in the BIOS
(Basic Disk Operating System). The lObyte must be read and
interpreted. The appropriate drivers must be jumped to for the
logical output routine. Refer to the CP/M-86 System Guide for
further information on handling external physical devices.

Examples

A>STAT CON: = CRTs
The command above

logical input device
console.

assigns the
name CON:,

physical device name CRT: to the
which generally refers to the

A>STAT LST: = LPT:
The command above assigns

logical output device name LST:
printer.device of the

the physical device name
, which generally refers

LPT: to
to the

the
list

71

CP/M-86 User's Guide 4.14 The SUBMIT Command

4.14 The SUBMIT (Batch Processing) Command
Syntax;

SUBMIT filespec { parameters... }
Type:

Transient Utility

Purpose:

The SUBMIT Utility lets you group a set of commands together
for automatic processing by CP/M-86.

Normally, you enter commands one line at a time. If you must
enter the same sequence of commands several times, you'll find it
easier to "batch" the commands together using the SUBMIT Utility.
To do this create a file and list your commands in this file. The
file is identified by the filename, and must have a filetype of SUB.
When you issue the SUBMIT command, SUBMIT reads the file named by
filespec and prepares it for interpretation by CP/M-86.

The file of type
If you want, you can i
that are filled in by

SUB can contain any valid CP/M-85 commands,
nclude SUBMIT parameters within the SUB file
values that you include in the command tail,

by a
SUBMIT parameters take the form of a dollar sign ($)
number in the range 1 through 9:

followed

$1
$2
$3
$4
$5
$6
$7
$3
$9

your
You can put these parameters anywhere in the command lines in
file of type SUB.

• The SUBMIT Utility reads the command line following SUBMIT
filespec and substitutes the items you type in the command tail for
the parameters that you included in the file of type SUB. When the
substitutions are complete, SUBMIT sends the file to CP/M-86 line by
line as if you were typing each command.

Remarks:
Each item in the

numeric, and/or special
or more blanks.

command tail
characters.

is a sequence of alphabetic, The items are separated by one

72

CP/M-86 User's Guide 4.14 The SUBMIT Command

The first word in the command tail takes the place of $1, the
second word replaces $2, and so-forth, through the last parameter

If you type fewer items in the command tail than parameters in
the SUB file, remaining parameters are removed from the command
line.

If you type more items in the command tail than parameters in
the SUB file, the words remaining in the command tail are ignored

SUBMIT creates a file named $$$.SUB that contains the command
lines resulting from the substitutions.

Batch command processing stops after reading the last line of
the SUB file. CTRL-Break stops the SUBMIT process. You can also
stop batch processing before reaching the end of the SUB file by
pressing any key after CP/M-86 issues the command input prompt, A>.

The file $$$.SUB is automatically removed when CP/M-86 has
processed all command lines.

SUB files cannot contain nested SUBMIT commands. However, the
last command in a SUB file can be a SUBMIT command that "chains" to
another SUB file.

To include an actual dollar sign ($) in your file of type SUB,
type two dollar signs ($$). The SUBMIT Utility replaces them with a
single dollar sign when it substitutes a command tail item for a $
parameter in the SUB file.

Examples :

A>SUBMIT SUBFILE
Assume the file SUBFILE.SUB is on the disk in drive A, and that

it contains the lines shown below.

DIR *.COM
ASM86 X $$SB
PIP LST:= X.PRN [T8D80]

The SUBMIT command shown above sends the sequence of commands
contained in SUBFILE.SUB to CP/M-86 for processing. CP/M-86 first
performs the DIR command and then assembles X.A86. When ASM-86
finishes, the PIP command line is executed.

A>SUBMIT B :ASMCOM X 8 D80 SZ <— these command tail
items are assigned

$1 $2 $3 $4 <— to these SUB file $n
parameters.

73

CP/M-86 User's Guide 4.14 The SUBMIT Command

Assume that ASMCOM.SUB is present on drive B and that it
contains the commands:

ERA $ 1.BAR
ASM86 $1 $$$4
PIP LST:- $1.PRN[T$2 $3 $5]

The SUBMIT Utility reads this file and substitutes the items in
the command tail for the parameters in the SUB file as follows:

ERA X.BAK
ASM86 X $SZ
PIP LST:= X .PRN[T8 D80]

These commands are executed from top to bottom by CP/M-85.

74

CP/M-86 User's Guide 4.15 The TOD Command

4.15 The TOD (Display and Set Time of Day) Command
Syntax:

TOD {time-specification | P }
Type:

Transient Utility

Purpose;

The TOD Utility lets you examine and set the time of day.

When you start CP/M-86, the date and time are set to the
creation date of the BDOS. Use TOD to change this initial value, at
your option, to the current date and actual time.

A date is represented as a month value in the range 1 to 12, a
day value in the range 1 to 31, depending upon the month, and a two
digit year value relative to 1900.

Time is represented as a twenty-four hour clock, with hour
values from 00 to 11 for the morning, and 12 to 23 for the
afternoon.

Use the command:

TOD

to obtain the current date and time in the format:

month/day/year (weekday), hour minute:second

For example, the screen might appear as:

12/06/81 (WED), 09:15:37

in response to the TOD command.

Use the command form:

TOD time-specification

to set the date and time, where the time-specification takes the
fo rm:

month/day/year hour:minute:second

A command line in this form is:

TOD 02/09/81 10:30:00

75

CP/M-86 User's Guide 4.15 The TOD Command

To let you accurately set the time, the TOD Utility writes the
messag e :

Press any key to set time

When the time that you give in the command tail occurs, press any
key. TOD begins timing from that instant, and responds with a
display in the form:

02/09/81 10:30:00

Use the command form:

TOD P

to continuously print the date and time on the screen. You can stop
the continuous display by pressing any key.

Remarks:

TOD checks to ensure that the time-specification represents a
valid date and time.

You need not set the time-of-day for proper operation of CP/M-
86.

Examples:

A>TOD
This- command writes the current date and time on the screen.

A>TOD 12/31/81 23:59:59
This command sets the current date and time to the last second

of 1981.

Note: In AS-100 system, when you have an internal timer as an
option the current date and time are set automatically.
If you don't have the internal timer, when you start
CP/M-86 the date that the system is generated and 0
hour:0 minute: 0 second are set as an initial value.

76

CP/M-86 User's Guide 4.16 The TYPE Command

4.16 The TYPE (Display File) Built-in
Syntax:

TYPE {d:}filename{.typ}

Type;

Built-in

Purpose:

The TYPE built-in displays the contents of a character file on
your screen.

Remarks:

Tab characters occurring in the file named by the file
specification are expanded to every eighth column position of your
screen.

Press any key on your keyboard to discontinue the TYPE command.

Wake sure the file specification identifies a file containing
character data.

If the file named by the file specification is not present on
an on-line disk, TYPE displays the following message bn your screen:

NO FILE

To list the file at the printer as well as on the screen, type
a CTRL-P before entering the TYPE command line. To stop echoing
keyboard input at the printer, type a second CTRL-P.

Examples:

A>TYPE MYPROG.A86
This command displays the contents of the file MYPROG.A86 on

your screen.

A>TYPE BrTHISFILE
This command displays the contents of the file THISFILE from

drive B on your screen.

77

CP/M-86 User's Guide 4.17 The USER Command

4.17 The USER (Display and Set User Number) Built-in
Syntax:

USER { number }

Type :

Built-in

Purpose;

The USER Built-in command displays and changes the current user
number. The disk directory can be divided into distinct groups
according to a "User Number."

Remarks:

When CP/M-86 starts, 0 is the current User Number. Any files
you create under this User Number are not generally accessible under
any other User Number except through the PIP command or the System
(SYS) attribute as assigned with the STAT command. (See the G
parameter of the PIP Utility.)

Use the command

USER

to display the current User Number.

Use the command

USER number

where number is a number in the range 0. through 15, to change the
current User Number.

See the command

STAT USR:

to get a list of User Numbers that have files associated with them.

Examples:

A>USER
0

This command displays the current User Number.

A>USER 3
This command changes the current User Number to 3.

78

Section 5
ED, The CP/M-86 Editor

5.1 Introduction to ED
To do almost anything with a computer you need some way to

enter data, some way to give the computer the information you want
it to process. The programs most commonly used for this task are
called "editors." They transfer your keystrokes at the keyboard to
a disk file. CP/M-85's editor is named ED. Using ED, you can
easily create and alter CP/M-86 text files.

The correct command syntax for invoking the CP/M-86 editor is
given in the first section, "Starting ED." After starting ED, you
issue commands that transfer text from a disk file to memory for
editing. "ED Operation" details this operation and describes the
basic text transfer commands that allow you to easily enter and exit
the editor.

"Basic Editing Commands" details the commands that edit a file.
"Combining ED Commands" describes how to combine the basic commands
to edit more efficiently. Although you can edit any file with the
basic ED commands, ED provides several more commands that perform
more complicated editing functions, as described in "Advanced ED
Command s ."

During an editing session, ED may return two types of error
messages. "ED Error Messages" lists these messages and provides
examples that indicate how to recover from common editing error
cond itions.

5.2 Starting ED
Syntax:

ED filespec filespec

To start ED, enter its name after the CP/M-86 prompt. The
command ED must be followed by a file specification, one that
contains no wildcard characters, such as:

A>ED MYFILE.TEX
The file specification, MYFILE.TEX in the above example,

specifies a file to be edited or created. The file specification
can be preceded by a drive specifier but a drive specifier is
unnecessary if the file to be edited is on your default drive.
Optionally, the file specification can be followed by a drive
specifier, as shown in the following example.

79

CP/M-86 User's Guide 5.2 Starting ED

A>ED MYFILE.TEX B:

In response to this command, ED opens the file to be edited,
MYFILE.TEX, on drive A, but sends all the edited material to a file
on drive B.

Optionally, you can send the edited material to a file with a
different filename, as shown in the following example.

A>ED MYFILE.TEX YOURFILE.TEX

The file with the different filename cannot already exist or ED
prints the following message and terminates.

Output File Exists, Erase It

The ED prompt, *, appears at the screen when ED is ready to accept a
command, as shown below.

A>ED MYFILE.TEX• *

If no previous version of the file exists on the current disk,
ED automatically creates a new file and displays the following
message:

NEW FILE • *

Note: before starting an editing session, use the STAT command to
check the amount of free space on your disk. Make sure that the
unused portion of your disk is at least as large as the file you are
editing - larger if you plan to add characters to the file. When ED
finds a disk or directory full, ED has only limited recovery
mechanisms. These are explained in "ED Error Messages."

5.3 ED Operation

With ED, you change portions of a file that pass through a
memory buffer. When you start ED with one of the commands shown
above, this memory buffer is empty. At your command, ED reads
segments of the source file, for example MYFILE.TEX, into the memory
buffer for you to edit. If the file is new, you must insert text
into the file before you can edit. During the edit, ED writes the
edited text onto a temporary work file, MYFILE.$$$.

When you end the edit, ED writes the memory buffer contents to
the temporary file, followed by any remaining text in the source
file. ED then changes the name of the source file from MYFILE.TEX
to MYFILE.BAK, so you can reclaim this original material from the
back-up file if necessary. ED then renames the. temporary file,
MYFILE.$$$, to MYFILE.TEX, the new edited file. The following
figure illustrates the relationship between the source file, the
temporary work file and the new file.

80

CP/M-86 User's Guide 5.3 ED Operation

Note: when you invoke ED with two filespecs, an input file and an
output file, ED does not rename the input file to type .BAK;
therefore, the input file can be Read-Only or on a write protected
disk if the output file is written to another disk.

Figure 5-1. Overall ED Operation

In the figure abov
source file and the
commands that transfer
memory buffer and the
following table lists
allow you to easily en
file, and exit the edi

e, the memory buffer is logically between
temporary work file. ED supports sev
lines of text between the source file,

temporary, and eventually final, file,
the three basic text transfer commands
ter the editor, write text to the tempo
tor .

the
er al
the
The
that
rar y

81

CP/M-86 User's Guide 5.3 ED Operation

Table 5-1. Text Transfer Commands
Command

-- ,

Result

nA Append the next n unprocessed source lines
from the source file to the end of the
memory buffer.

nW Write the first n lines of the memory
buffer to the temporary file free space.

E End the edit. Copy all buffered text to
the temporary file, and copy all
unprocessed source lines to the temporary
file. Rename files.

5.3.1 Appending Text into the Buffer
When you start ED and the memory buffer is empty, you can use

the A (append) command to add text to the memory buffer.

Note: ED can number lines of text to help you keep track of data in
the memory buffer. The colon that appears when you start ED
indicates that line numbering is turned on. Type -V after the ED
prompt to turn the line number display off. Line numbers appear on
the screen but never become a part of the output file.

The A (Append) Command

The A command appends (copies) lines from an existing source
file into the memory buffer. The form of the A command is:

nA

where n is the number of unprocessed source lines to append into the
memory buffer. If a pound sign, #, is given in place of n, than the
integer 65535 is assumed. Because the memory buffer can contain
most reasonably sized source files, it is often possible to issue
the command #A at the beginning of the edit to read the entire
source file into memory.

If n is 0, ED
memory buffer until
do not specify n, ED
memory buffer.

appends the unprocessed source lines into
the buffer is approximately half full. If
appends one line from the source file into

the
yo u
the

82

CP/M-86 User's Guide 5.3 ED Operation

5.3.2 ED Exit
You can use the W (Write) command and the E (Exit) command to

save your editing changes. The W command writes lines from the
memory buffer to the new file without ending the ED session. An E
command saves the contents of the buffer and any unprocessed
material from the source file and exits ED.

The W (Write) Command

The W command writes lines from the buffer to the new file.
The form of the W command is:

nW

where n is the number of lines to be written from the beginning of
the buffer to the end of the new file. If n is greater than 0, ED
writes n lines from the beginning of the buffer to the end of the
new file. If n is 0, ED writes lines until the buffer is half
empty. The 0W command is a convenient way of making room in the
memory buffer for more lines from the source file. You can
determine the number of lines to write out by executing a 0V command
to check the amount of free space in the buffer, as shown below:

1: *0V
25000/30000
1: *

The above display indicates that the total size of the memory buffer
is 30,000 bytes and there are 25,000 free bytes in the memory
buffer.

Note: after a W command is executed, you must enter the H command
to reedit the saved lines during the current editing session.

The E (Exit) Command

An E command performs a normal exit from ED. The form of the E
command is:

E

followed by a carriage return.

When you enter an E command, ED first writes all data lines
from the buffer and the original source file to the new file. If a
.BAK file exists, ED deletes it, then renames the original file with
the .BAK filetype. Finally, ED renames the new file from
filename.$$$ to the original filetype and returns control to the
CCP.

83

CP/M-86 User's Guide 5.3 ED Operation

The operation of the E command makes it unwise to edit a back
up file. When you edit a BAK file and exit with an E command, ED
erases your original file because it has a .BAK filetype. To avoid
this, always rename a back-up file to some other filetype before
editing it with ED.

Note; any command that terminates an ED session must be the only
command on the line.

5.4 Basic Editing Commands

The text transfer commands discussed above allow you to easily
enter and exit the editor. This section discusses the basic
commands that edit a file.

ED treats a file as a long chain of characters grouped together
in lines. ED displays and edits characters and lines in relation to
an imaginary device called the character pointer (CP). During an
edit session, you must mentally picture the CP's location in the
memory buffer and issue commands to move the CP and edit the file.

The following commands move the character pointer or display
text in the vicinity of the CP. These ED commands consist of a
numeric argument and a single command letter and must be followed by
a carriage return. The numeric argument, n, determines the number
of times ED executes a command; however, there are four special
cases to consider in regard to the numeric argument;

• If the numeric argument is omitted, ED assumes an argument of
1.

• Use a negative number if the command is to executed backwards
through the memory buffer. (The B command is an exception) .

• If you enter a pound sign, #, in place of a number, ED uses the
value 65535 as the argument. A pound sign argument can be
preceded by a minus sign to cause the command to execute
backwards through the memory buffer (-#).

• ED accepts 0 as a numeric argument only in certain commands.
In some cases, 0 causes the command to be executed
approximately half the possible number of times, while in other
cases it prevents the movement of the CP.

84

CP/M-86 User's Guide 5.4 Basic Editing Commands

The following table alphabetically summarizes the basic editing
commands and their valid arguments.

Table 5-2. Basic Editing Commands
Command Ac t i o n

B, -B Move CP to the beginning (B) or end (-B)
of the memory buffer.

nC, -nC Move CP n characters forward (nC) or
backward (-nC) through the memory buffer.

nD, -nD Delete n characters before (-nD) or after
(nD) the CP.

I Enter insert mode.

Istr ingt Z Insert a string of characters.

nK, -nK Delete (kill) n lines before the CP (-nK)
or after the CP (nK) .

nL, -nL Move the CP n lines forward (nL) or
backward (-nL) through the memory buffer.

nT, -nT Type n lines before the CP (-nT) or after
the CP (nT).

n, -n Move the CP n lines before the CP (-n) or
after the CP (n) and display the
destination line.

The following sections discuss ED's basic editing commands in
more detail. The examples in these sections illustrate how the
commands affect the position of the character pointer in the memor
buffer. Later examples in "Combining ED Commands" illustrate ho
the commands appear at the screen. For these sections, however, the
symbol ~ in command examples represents the character pointer, which
you must imagine in the memory buffer.

5.4.1 Moving the Character Pointer
This section describes commands that move the character pointer

in useful increments but do not display the destination line.
Although ED is used primarily to create and edit program source
files, the following sections present a simple text as an example to
make ED easier to learn and understand.

85

€
*<

CP/M-86 User's Guide 5.4 Basic Editing Commands

The B (Beg inning/Bottom) Command

The B command moves the CP to the beginning or bottom of the
memory buffer. The forms of the B command are:

B, -B

-B moves the CP to the end or bottom of the memory buffer; B moves
the CP to the beginning of the buffer.

The C (Character) Command

The C command moves the CP .forward or backward the specified
number of characters. The forms of the C command are:

nC, -nC

where n is the number of characters the CP is to be moved. A
positive number moves the CP towards the end of the line and the
bottom of the buffer. A negative number moves the CP towards the
beginning of the line and the top of the buffer. You can enter an n
large enough to move the CP to a different line. However, each line
is separated from the next by two invisible characters: a carriage-
return and a line-feed represented by <cr><lf>. You must compensate
for their presence. For example, the command 30C moves the CP to
the next line:

Emily Dickinson said,<cr><lf>
"I fin~d ecstasy in living -<cr><lf>

The L (Line) Command
The L command moves the CP the specified number of lines.

After an L command, the CP always points to the beginning of a line.
The forms of the L command are:

nL, -nL

where n is the number of lines the CP is to be moved. A positive
number moves the CP towards the end of the buffer. A negative
number moves the CP back toward the beginning of the buffer. The
command 2L moves the CP two lines forward through the memory buffer
and positions the character pointer at the beginning of the line.

Emily Dickinson said,<cr><1f>
"I find ecstasy in living -<cr><lf>

'the mere sense of 1iving<cr><1f>

The command -L moves the CP to the beginning of the previous line,
even if the CP originally points to a character in the middle of the
line. Use the special character 0 to move the CP to the beginning
of the current line.

86

CP/M-86 User's Guide 5.4 Basic Editing Commands

The n (Number) Command

The n command moves the CP and displays the destination line.
The forms of the n command are:

n, -n

where n is the number of lines the CP is to be moved. In response
to this command, ED moves the CP forward or backward the number of
lines specified, then prints only the destination line.

Emily Dickinson sa id,<cr><lf>
""I find ecstasy in living -<cr><lf>

A further abbreviation of this command is to enter no number at all.
In response to a carriage return without a preceding command, ED
assumes an n command of 1 and moves the CP down to the next line and
prints it.

Emily Dickinson sa id,<cr> <lf>
" " I find ecstasy in living -<c rXl f>

Also, a minus sign, -, without a number moves the CP back one line.

5.4.2 Displaying Memory Buffer Contents

ED does not display the contents of the memory buffer until you
specify which part of the text you want to see. The T command
displays text without moving the CP.

The T (Type) Command

The T command types a specified number of lines from the CP at
the screen. The forms of the T command are:

nT, -nT

where n specifies the number of lines to be displayed. If a
negative number is entered, ED displays n lines before the CP. A
positive number displays n lines after the CP. If no number is
specified, ED types from the character pointer to the end of the
line. The CP remains in its original position no matter how many
lines are typed. For example, if the character pointer is at the
beginning of the memory buffer, and you instruct ED to type four
lines (4T) , four lines are displayed at the screen, but the CP stays
at the beginning of line 1.

"Emily Dickinson sa id ,<c rXlf >
"I find ecstasy in living -<cr><lf>
the mere sense of living
is joy enough."

If the CP is between two characters in the middle of the line, T

87

CP/M-86 User's Guide 5.4 Basic Editing Commands

command with no number specified types only the characters between
the CP and the end of the line, but the character pointer stays in
the same position, as shown in the memory buffer example below.

"I find ec"stasy in living -

Whenever ED is displaying text with the T command, you can enter a
CTRL-S to stop the display, then a CTRL-Q when you' re ready to
continue scrolling. Enter a CTRL-C to abort long type-outs.

5.4.3 Deleting Characters

The D (Delete) Command

The D command deletes a specified number of characters and has
the forms:

nD, -nD

where n is the number of characters to be deleted. If no number is
specified, ED deletes the character to the right of the CP. A
positive number deletes multiple characters to the right of the CP,
towards the bottom of the file. A negative number deletes
characters to the left of the CP, towards the top of the file. If
the character pointer is positioned in the memory buffer as shown
below:

Emily Dickinson said ,<cr><lf>
"I find ecstasy in living -<cr><lf>
the mere sense of 1iving<cr><lf>
is joy ~enough . "<c rXlf>

the command 6D deletes the six characters after the CP, and the
resulting memory buffer looks like this:

Emily Dickinson said ,<crXlf>
"I find ecstasy in living -<cr> <lf>
the mere sense of 1iving<crX1f>
is joy "."<cr><lf>

You can also use a D command
lines to join them together,
two characters.

to delete the <cr><lf> between
Remember that the <cr> and <lf>

two
are

The K (Kill) Command

The K command "kills" or deletes whole lines from the memory
buffer and takes the forms:

nK, -nK

where n is the number of lines to be deleted. A positive number
kills lines after the CP. A negative number kills lines before the

88

CP/M-86 User's Guide 5.4 Basic Editing Commands

CP. When no number is specified, ED kills the current line. If the
character pointer is at the beginning of the second line (as shown
below) ,

Emily Dickinson sa id ,<cr> <If>
""I find ecstasy in living -<cr><lf>
the mere sense of 1iving<cr><1f>
is joy enough ."<cr><lf>

then the command -K deletes the previous line and the memory buffer
changes:

""I find ecstasy in living -<cr><lf>
the mere sense of 1 iv ing<c rXl f>
is joy enough."<cr><lf>

If the CP is in the middle of a line, a K command kills only
the characters from the CP to the end of the line and concatenates
the characters before the CP with the next line. A -K command
deletes all the characters between the beginning of the previous
line and the CP. A OK command deletes the characters on the line up
to the CP.

You can use the special # character to delete all the text from
the CP to the beginning or end of the buffer. Be careful when using
#K because you cannot reclaim lines after they are removed from the
memory buffer.

5.4.4 Inserting Characters into the Memory Buffer
The I (Insert) Command

To insert characters into the memory buffer from the screen,
use the I command. The I command takes the forms:

I
Istr ing~ Z

When you type the first command, ED enters insert mode. In this
mode, all keystrokes are added directly to the memory buffer. ED
enters characters in lines and does not start a new line until you
press the enter key.

A>ED B:QUOTE.TEX
NEW

1
2
3
4
5

FILE
*i
Emily Dickinson said,
"I find ecstasy in living -
the mere sense of living
is joy enough."
‘Z

89

CP/M-86 User's Guide 5.4 Basic Editing Commands

Note: to exit from insert mode, you must press CTRL-Z or Esc. When
the ED prompt, *, appears on the screen, ED is not in insert mode.

In command mode, you can use CP/M-86 line editing control
characters to edit your input. The table below lists these control
characters.

Table 5-3. CP/M-86 Line Editing Controls
Command

--- ------
Result

CTRL-C Abort the editor and return to the CP/M-86
system.

CTRL-E Return carriage for long lines without
transmitting command line to the buffer.

CTRL-H Delete the last character typed on the
current line.

CTRL-U Delete the entire line currently being
typed.

CTRL-X Delete the entire line currently being
typed. Same as CTRL-U.

DEL Remove the last character and echo deleted
character at the screen.

Note: in insert mode, the same line editing controls exist except
for CTRL-C and CTRL-E.

When entering a combination of numbers and letters, you might
find it inconvenient to press a caps-lock key if your terminal
translates caps-locked numbers to special characters. ED provides
two ways to translate your alphabetic input to upper-case without
affecting numbers. The first is to enter the insert command letter
in upper-case: I. All alphabetics entered during the course of the
capitalized command, either in insert mode or as a string, are
translated to upper-case. (If you enter the insert command letter
in lower-case, all alphabetics are inserted as typed) . The second
method is to enter a U command before inserting text. Upper-case
translation remains in effect until you enter a -U command.

The Istring^Z (Insert String) Command

The second form of the I command does not enter insert mode.
It inserts the character string into the memory buffer and returns
immediately to the ED prompt. You can use CP/M-86's line editing
control characters to edit the command string.

90

CP/M-86 User's Guide 5.4 Basic Editing Commands

To insert a string, first use one of the commands that position
the CP. You must move the CP to the place where you want to insert
a string. For example, if you want to insert a string at the
beginning of the first line, use a B command to move the CP to the
beginning of the buffer. With the CP positioned correctly, enter an
insert string, as shown below:

iIn 1870, "Z

This inserts the phrase "In 1870, " at the beginning of the first
line, and returns immediately to the ED prompt. In the memory
buffer, the CP appears after the inserted string, as shown below:

In 1870, "Emily Dickinson said,<cr><lf>

5.4.5 Replacing Characters

The S (Substitute) Command

The S command searches the memory buffer for the specified
string, but when it finds it, automatically substitutes a new string
for the search string. The S command takes the form:

nSsearch string"Znew string

where n is the number of substitutions to make. If no number is
specified, ED searches for the next occurrence of the search string
in the memory buffer. For example, the command:

Emily Dickinson"ZThe poet

searches for the first occurrence of "Emily Dickinson" and
substitutes "The poet." In the memory buffer, the CP appears after
the substituted phrase, as shown below:

The poet" said ,<cr><lf>

If upper-case translation is enabled by a capital S command
letter, ED looks for a capitalized search string and inserts a
capitalized insert string. Note that if you combine this command
with other commands, you must terminate the new string with a CTRL-
Z.

5.5 Combining ED Commands

It saves keystrokes and editing time to combine the editing and
display commands. You can type any number of ED commands on the
same 1ine. ED executes the command string only after you press the
car r iage-return key. Use CP/M-86's line editing controls to
manipulate ED command strings.

91

CP/M-86 User's Guide 5.5 Combining ED Commands

When you combine several commands on a line, ED executes them
in the same order they are entered, from left to right on the
command line. There are four restrictions to combining ED commands:

• The combined-command line must not exceed CP/M-85's 128
character maximum.

• If the combined-command line contains a character string, the
line must not exceed 100 characters.

• Commands to terminate an editing session must not appear in a
combined-command line.

• Commands, such as the I, S, J, X and R commands, that require
character strings or filespecs must be either the last command
on a line or must be terminated with a CTRL-Z or Esc character,
even if no character string or filespec is given.

While the examples in the previous section show the memory
buffer and the position of the character pointer, the examples in
this section show how the screen looks during an editing session.
Remember that the character pointer is imaginary, but you must
picture its location because ED's commands display and edit text in
relation to the character pointer.

5.5.1 Moving the Character Pointer

To move the CP to the end of a line without calculating the
number of characters, combine an L command with a C command, L-2C.
This command string accounts for the <cr><lf> sequence at the end of
the line.

Change the C command in this command string to move the CP more
characters to the left. You can use this command string if you must
make a change at the end of the line and you don't want to calculate
the number of characters before the change, as in the following
example.

1: *T
1: Emily Dickinson said,
1: *L—7CT

said,
1 : *

5.5.2 Displaying Text

A T command types from the CP to the end of the line. To see
the entire line, you can combine an L command and a .T command. Type
0It to move the CP from the middle to the beginning of the line and
then display the entire line. In the example below, the CP is in
the middle of the line. 0L moves the CP to the beginning of the

92

CP/M-86 User's Guide 5.5 Combining ED Commands

line. T types from the CP to the end of the line, allowing you to
see the entire line.

3: *T
sense of living

3: *OLT
3: ' the mere sense of living
3: *

The command OTT displays the entire line without moving the CP.

To verify that an ED command moves the CP correctly, combine
the command with the T command to display the line. The following
example combines a C command and a T command.

2: *8CT
ecstasy in living -

2 : *

4: *B#T
1: Emily Dickinson said,
2: "I find ecstasy in living -
3: the mere sense of living
4: is joy enough."
1: *

5.5.3 Editing

To edit text and verify corrections quickly, combine the edit
commands with other ED commands that move the CP and display text.
Command strings like the one below move the CP, delete specified
characters, and verify changes quickly.

1: *15C5D0LT
1: Emily Dickinson,
1 : *

Combine the edit command K with other ED commands to delete entire
lines and verify the correction quickly, as shown below.

1: *2L2KB#T
1: Emily Dickinson said,
2: "I find ecstasy in living -
1 : *

The abbreviated form of the I (insert) command makes simple textual
changes. To make and verify these changes, combine the I command
string with the C command and the OLT command string as shown below.
Remember that the insert string must be terminated by a CTRL-Z.

1: *20Ci to a friendTzOLT
1: Emily Dickinson said to a friend,
1 : *

93

CP/M-86 User's Guide 5.6 Advanced ED Commands

5.6 Advanced ED Commands

The basic editing commands discussed above allow you to use ED
for all your editing. The following ED commands, however, enhance
ED's usefulness.

5.6.1 Moving the CP and Displaying Text

The P (Page) Command

Although you can display any amount of text at the screen with
a T command, it is sometimes more convenient to "page" through the
buffer, viewing whole screens of data and moving the CP to the top
of each new screen at the same time. To do this, use ED's P
command. The P command takes the following forms:

nP, -nP

where n is the number of pages to be displayed. If you do not
specify n, ED types the 23 lines following the CP and then moves the
CP forward 23 lines. This leaves the CP pointing to the first
character on the screen.

To display the current page without moving the CP, enter OP.
The special character 0 prevents the movement of the CP. If you
specify a negative number for n, P pages backwards towards the top
of the file.

The n; (Line Number) Command

When line numbers are being displayed, ED accepts a line number
as a command to specify a destination for the CP. The form for the
line number command is:

n :

where n is the number of the destination line. This command places
the CP at the beginning of the specified line. For example, the
command 4: moves the CP to the beginning of the fourth line.

Remember that ED dynamically renumbers text lines in the buffer
each time a line is added or deleted. Therefore, the number of the
destination line you have in mind can change during editing.

94
'V

CP/M-86 User's Guide 5.6 Advanced ED Commands

The :n (Through Line Number) Command

The inverse of the line number command specifies that a command
should be executed through a certain line number. You can only use
this command with three ED commands: the T (type) command, the L
(line) command, and the K (kill) command. The :n command takes the
following form:

:ncommand

where n is the line number through which the command is to be
executed. The :n part of the command does not move the CP, but the
command that follows it might.

You can combine n: with :n to specify a range of lines through
which a command should be executed. For example, the command 2: : 4T
types the second, third, and fourth lines, as shown below.

1: *2::4T
2: "I find ecstasy in living -
3: the mere sense of living
4: is joy enough."
2 : *

5.6.2 Finding and Replacing Character Strings

ED supports a find command, F, that searches through the memory
buffer and places the CP after the word or phrase you want. The N
command allows ED to search through the entire source file instead
of just the buffer. The J command searches for and then juxtaposes
character strings.

The F (Find) Command

The F command performs the simplest find function. Its förm
is:

nFstr ing

where n is the occurrence of the string to be found. Any number you
enter must be positive because ED can only search from the CP to the
bottom of the buffer. If you enter no number, ED finds the next
occurrence of the string in the file. In the following example, the
second occurrence of the word living is found.

1: *2fliving
3: *

The character pointer moves to the beginning of the third line where
the second occurrence of the word "living" is located. To display
the line, combine the find command with a type command. Note that
if you .follow an F command with another ED command on the same line,
you must terminate the string with a CTRL-Z, as shown below.

95

CP/M-86 User's Guide 5.6 Advanced ED Commands

1: *2fliving~Z01t
3: *the mere sense of living

It makes a difference whether you enter the F command in upper- or
lower-case. If you enter F, ED internally translates the argument
string to upper-case. If you specify f, ED looks for an exact
match. For example, FCp/m-86 searches for CP/M-86 but fCp/m-86
searches for Cp/m-86, and cannot find CP/M-S6 or cp/m-86.

If
buffer ,

ED does not find a match for the string
it issues the message:

in the memory

BREAK "If" AT
where the symbol It indicates that the search
execution of an F command.

failed during the

The N Command

The N command extends the search function beyond the memory
buffer to include the source file. If the search is successful, it
leaves the CP pointing to the first character after the search
string. The form of the N command is:

nNstr ing

where n is the occurrence of the string to be found. If no number
is entered, ED looks for the next occurrence of the string in the
file. The case of the N command has the same effect on an N command
as it does on an F command. Note that if you follow an N command
with another ED command, you must terminate the string with a CTRL-
Z. ■

When an N command is executed, ED searches the memory buffer
for the specified string, but if ED doesn't find the string, it
doesn't issue an error message. Instead, ED automatically writes
the searched data from the buffer into the new file. Then ED
performs a OA command to fill the buffer with unsearched data from
the source file. ED continues to search the buffer, write out data
and append new data until it either finds the string or reaches the
end of the source file. If ED reaches the end of the source file,
ED issues the following message:

BREAK "1" AT

Because ED writes the searched dc
for more data in the source file,
the buffer to the new file before
and issuing the error message.

Note: you must use the H command
the source file is exhausted and

jta to the new file before looki ng
ED usually writes the contents o f
finding the end of the source file

to continue an ed it session after
the memory buffer is emptied.

96

CP/M-86 User's Guide 5.6 Advanced ED Commands

The J (Juxtapose) Command

The J command inserts a string after the search string, then
deletes any characters between the end of the inserted string to the
beginning of the third "delete-to" string. This juxtaposes the
string between the search and delete-to strings with the insert
string. The form of the J command is:

nJsearch string"Zinsert string"Zdelete-to string

where n is the occurrence of the search string. If no number is
specified, ED searches for the next occurrence of the search string
in the memory buffer. In the following example, ED searches for the
word "Dickinson" and inserts the phrase "told a friend" after it and
then deletes everything up to the comma.

1 : **T
1: Emily Dickinson said,
2: "I find ecstasy in living -
3: the mere sense of living
4: is joy enough."
1: *jDickinson~Z told a friend~Z,
1: *01t
1: Emily Dickinson told a friend,
1 : *

If you combine this command with other commands, you must
terminate the delete-to string with a CTRL-Z or Esc. (This is shown
in the following example). If an upper-case J command letter is
specified, ED looks for upper-case search and delete-to strings and
inserts an upper-case insert string.

The J command is especially useful when revising comments in
assembly language source code, as shown below.

236: SORT LXI H, SW ;ADDRESS TOGGLE SWITCH
236: *j;"ZADDRESS SWITCH TOGGLE*Z~L*ZOLT
236: SORT LXI H, SW ;ADDRESS SWITCH TOGGLE
236: *

In this example, ED searches for the first semicolon and inserts
ADDRESS SWITCH TOGGLE after the mark and then deletes to the
<cr><lf> sequence, represented by CTRL-L. (In any search string,
you can use CTRL-L to represent a <cr><lf> when your desired phrase
extends across a line break. You can also use a CTRL-I in a search
string to represent a tab).

Note: if long strings make your command longer than your screen
line length, enter a CTRL-E to cause a physical carriage return at
the screen. A CTRL-E returns the cursor to the left edge of the
screen, but does not send the command line to ED. Remember that no
ED command line containing strings can exceed 100 characters. When
you finish your command, press the carriage-return key to send the
command to ED.

97

CP/M-86 User's Guide 5.6 Advanced ED Commands

The M (Macro) Command

An ED macro command, M, can increase the usefulness of a string
of commands. The M command allows you to group ED commands together
for repeated execution. The form of the M command is:

nMcommand string

where n is the number of times the command string is to be executed.
A negative number is not a valid argument for an M command. If no
number is specifed, the special character # is assumed, and ED
executes the command string until it reaches the end of data in the
buffer or the end of the source file, depending on the commands
specified in the string. In the following example, ED executes the
four commands repetitively until it reaches the end of the memory
buffer:

1: *mfliving/'Z-6diLiving~Z01t
2: "I find ecstasy in Living -
3: the mere sense of Living

BREAK "#" AT “Z
3: *

The terminator for an M command is a carriage return; therefore, an
M command must be the last command on the line. Also, all character
strings that appear in a macro must be terminated by CTRL-Z or Esc.
If a character string ends the combined-command string, it must be
terminated by CTRL-Z, then followed by a <cr> to end the M command.

The execution of a macro command always ends in a BREAK
message, even when you have limited the number of times the macro is
to be performed, and ED does not reach the end of the buffer or
source file. Usually the command letter displayed in the message is
one of the commands from the string and not M.

To abort a macro command, strike a CTRL-C at the keyboard.

5.6.3 Moving Text Blocks
To move a group of lines from one area of your data to another,

use an X command to write the text block into a temporary .LIB file,
then a K command to remove these lines from their original location,
and finally an R command to read the block into its new location.

The X (Xfer) Command

The X command takes the forms:

nX
nX filespec~Z

where n is the number of lines from the CP towards the bottom of the

98

CP/M-36 User's Guide 5.6 Advanced ED Commands

buffer that are to be transferred to a temporary file; therefore, n
must always be a positive number. If no filename is specified,
X$$$$$$$ is assumed. If no filetype is specified, .LIB is assumed.
If the X command is not the last command on the line, the command
must, be terminated by a CTRL-Z or Esc. In the following example,
just one line is transferred to the temporary file:

1: *X
1: *t
1: *Emily Dickinson said,
1: *kt
1: *"I find ecstasy in 1iving -
1: *

If no library file is specified, ED looks for a file named
X$$$$$$$. LIB. If the file does not exist, ED creates it. If a
previous X command already created the library file, ED appends the
specified lines to the end of the existing file.

Use the special character 0 as the n argument in an X command
to delete any file from within ED.

The R (Read) Command

The X command transfers the next n lines from the current line
to a library file. The R command can retrieve the transferred
lines. The R command takes the forms:

R
Rfilespec

If no filename is specified, X$$$$$$$ is assumed. If no filetype is
specified, .LIB is assumed. R inserts the library file in front of
the CP; therefore, after the file is added to the memory buffer,
the CP points to the same character it did before the read, although
the character is on a new line number. If you combine an R command
with other commands, you must separate the filename from subsequent
command letters with a CTRL-Z as in the following example where ED
types the entire file to verify the read.

1: *41
: *R*ZB#T

1: "I find ecstasy in living -
2: the mere sense of living
3: is joy enough."
4: Emily Dickinson said,
1 : *

99

CP/M-86 User's Guide 5.6 Advanced ED Commands

5.6.4 Saving or Abandoning Changes: ED Exit
You can save or abandon editing changes with the following

three commands.

The H (Head of File) Command

An H command saves the contents of the memory buffer without
ending the ED session, but it returns to the "head" of the file. It
saves the current changes and lets you reedit the file without
exiting ED. The form of the H command is:

H .

followed by a carriage return.

To execute an H command, ED first finalizes the new file,
transferring all lines remaining in the buffer and the source file
to the new file. Then ED closes the new file, erases any .BAK file
that has the same file specification as the original source file,
and renames the original source file filename.BAK. ED then renames
the new file, which has had the filetype .$$$, with the original
file specification. Finally, ED opens the newly renamed file as the
new source file for a new edit, and opens a new .$$$ file. When ED
returns the * prompt, the CP is at the beginning of an empty memory
buffer .

If you want to send the edited material to a file other than
the original file, use the following command:

A>ED filespec differentfilespec

If you then restart the edit with the H command, ED renames the
file differentfi1ename . $$$ to differentfilename.BAK and creates a
new file of differentfilespec when you finish editing.

The 0 (Original) Command

An 0 command abandons changes made since the beginning of the
edit and allows you to return to the original source file and begin
reediting without ending the ED session. The form of the 0 command
is:

0

followed by a carriage return. When you enter an 0 command, ED
confirms that you want to abandon your changes by asking:

0 (Y/N)?
You must respond with either a Y or an N; if you press any other
key, ED repeats the question. When you enter Y, ED erases the
temporary file and the contents of the memory buffer. When the *

100

CP/M-86 User's Guide 5.6 Advanced ED Commands

prompt returns, the character pointer is pointing to the beginning
of an empty memory buffer, just as it is when you start ED.

The Q (Quit) Command
A Q command abandons changes made since the beginning of the ED

session and exits ED. The form of the Q command is:

Q

followed by a carriage return.

When you enter a Q command, ED verifies that you want to
abandon the changes by asking:

Q (Y/N) ?
You must respond with either

other key, ED repeats the question,
temporary file, closes the source fi
86.

a Y or an N; if you press any
When you enter Y, ED erases the
le, and returns control to CP/M-

Note: you can enter a CTRL-C to immediately return control to CP/M-
86. This does not give ED a chance to close the source or new
files, but it prevents ED from deleting any temporary files.

5.7 ED Error Messages
ED returns one of two types of error messages: an ED error

message if ED cannot execute an edit command, or a CP/M-86 error
message if ED cannot read or write to the specified file.

The form of an ED error message is:

BREAK "x" AT c

where x is one of the symbols defined in the following table and c
is the command letter where the error occurred.

101

CP/M-86 User's Guide 5.7 ED Error Messages

Table 5-4. ED Error Symbols
Symbol Meaning

If Search failure. ED cannot find the string
specified in an F, S, or N command.

?c Unrecoginzed command letter c. ED does not
recognize the indicated command letter, or an
E, H, Q, or 0 command is not alone on its
command line.

0 No .LIB file. ED did not find the .LIB file
specified in an R command.

> Buffer full. ED cannot put any more characters
in the memory buffer, or string specified in an
F, N, or S command is too long.

E Command aborted. A keystroke at the keyboard
aborted command execution.

F File error. Followed by either DISK FULL or
DIRECTORY FULL.

The following examples show how to recover from common editing
error conditions. For example:

BREAK ">" AT A

means that ED filled the memory buffer before completing the
execution of an A command. When this occurs, the character pointer
is at the end of the buffer and no editing is possible. Use the OW
command to write out half the buffer or use an 0 or H command and
reedit the file.

BREAK "#" AT F

means that ED reached the end of the memory buffer without matching
the string in an F command. At this point, the character pointer is
at the end of the buffer. Move the CP with a B o r n : line number
command to resume editing.

BREAK "F" AT F
DISK FULL

Use the OX command to erase an unnecessary file on the disk or
a B#Xd:buffer.sav command to write the contents of the memory buffer
onto another disk.

102

Section 1
CP/M-86 System Overview

1.1 CP/M-86 General Characteristics
CP/M-86 contains all facilities of CP/M-80 with additional

features to account for increased processor address space of up to a
megabyte (1,048,576) of main memory. Further, CP/M-86 maintains
file compatibility with all previous versions of CP/M. The file
structure of version 2 of CP/M is used, allowing as many as sixteen
drives with up to eight megabytes on each drive. Thus, CP/M-80 and
CP/M-86 systems may exchange files without modifying the file
format.

CP/M-86 resides in the file CPM.SYS, which is loaded into
memory by a cold start loader during system initialization. The
cold start loader resides on the first two tracks of the system
disk. CPM.SYS contains three program modules: the Console Command
Processor (CCP), the Basic Disk Operating System (BDOS), and the
user-configurable Basic I/O System (BIOS). The CCP and BDOS
portions occupy approximately 10K bytes, while the size of the BIOS
varies with the implementation. The operating system executes in
any portion of memory above the reserved interrupt locations, while
the remainder of the address space is partitioned into as many as
eight non-contiguous regions, as defined in a BIOS table. Unlike
CP/M-80, the CCP area cannot be used as a data area subsequent to
transient program load; all CP/M-86 modules remain in memory at all
times, and are not reloaded at a warm start.

Similar to CP/M-80, CP/M-86 loads and executes memory image
files from disk. Memory image files are preceded by a "header
record," defined in this document, which provides information
required for proper program loading and execution. Memory image
files under CP/M-86 are identified by a "CMD" file type.

Unlike CP/M-80, CP/M-86 does not use absolute locations for
system entry or default variables. The BDOS entry takes place
through a reserved software interrupt, while entry to the BIOS is
provided by a new BDOS call. Two variables maintained in low memory
under CP/M-80, the default disk number and I/O Byte, are placed in
the CCP and BIOS, respectively. Dependence upon absolute addresses
is minimized in CP/M-86 by maintaining initial "base page" values,
such as the default FCB and default command buffer, in the transient
program data area.

Utility programs such as ED, PIP, STAT and SUBMIT operate in
the same manner under CP/M-86 and CP/M-80. In its operation, DDT-86
resembles DDT supplied with CP/M-80. It allows interactive
debugging of 8086 and 8088 machine code. Similarly, ASM-86 allows
assembly language programming and development for the 8086 and 8088
using Intel-like mnemonics.

All Information Presented Here is Proprietary to Digital Research

1

CP/M-86 System Guide 1.1 CP/M-86 General Characteristics

The GENCMD (Generate CMD) Utility replaces the LOAD program of
CP/M-80, and converts the hex files produced by ASM-86 or Intel
utilities into memory image format suitable for execution under
CP/M-86. Further, the LDCOPY (Loader Copy) program replaces SYSGEN,
and is used to copy the cold start loader from a system disk for
replication. In addition, a variation of GENCMD, called LMCMD,
converts output from the Intel LOC86 utility into CMD format.
Finally, GENDEF (Generate DISKDEF) is provided as an aid in
producing custom disk parameter tables. ASM-86, GENCMD, LMCMD, and
GENDEF are also supplied in "COM" file format for cross-development
under CP/M-80.

Several terms used throughout this manual are defined in Table
1-1 below:

Table].-1. CP/M-86 Terms

Term Meaning

Nibble 4-bit half-byte
Byte 8-bit value
Word 16-bit value

Double Word 32-bit value

Paragraph 16 contiguous bytes
Paragraph Boundary An address divisible evenly

by 16 (low order nibble 0)
Segment Up to 64K contiguous bytes

Segment Register One of CS, DS, ES, or SS

Offset 16-bit displacement from a
segment register

Group A segment-register-relative
relocatable program unit

Address
•

The effective memory address
derived from the composition
of a segment register value
with an offset value

A group consists of segments that are loaded into memory as a single
unit. Since a group may consist of more than 64K bytes, it is the
responsibility of the application program to manage segment
registers when code or data beyond the first 64K segment is
accessed.

All Information Presented Here is Proprietary to Digital Research

2

CP/M-86 System Guide 1.1 CP/M-86 General Characteristics

CP/M-86 supDorts eiqht program groups: the code, data, stack
and extra groups as well as four auxiliary groups. When a code,
data, stack or extra group is loaded, CP/M-86 sets the respective
segment register (CS, DS, SS or ES) to the base of the group. CP/M-
86 can also load four auxiliary groups. A transient program manages
the location of the auxiliary groups using values stored by CP/M-86
in the user's base page.

1.2 CP/M-80 and CP/M-86 Differences
The structure of CP/M-86 is as close to CP/M-80 as possible in

order to provide a familiar programming environment which allows
application programs to be transported to the 8086 and 8088
processors with minimum effort. This section points out the
specific differences between CP/M-80 and CP/M-86 in order to reduce
your time in scanning this manual if you are already familiar with
CP/M-80. The terms and concepts presented in this section are
explained in detail throughout this manual, so you will need to
refer to the Table of Contents to find relevant sections which
provide specific definitions and information.

Due to the nature of the 8086 processor, the fundamental
difference between CP/M-80 and CP/M-86 is found in the management of
the various relocatable groups. Although CP/M-80 references
absolute memory locations bv necessity, CP/M-86 takes advantage of
the static relocation inherent in the 8086 processor. The operating
system itself is usuallv loaded directly above the interrupt
locations, at location Q400H, and relocatable transient programs
load in the best fit memory region. However, you can load CP/M-86
into any portion of memory without changing the operating system
(thus, there is no MOVCPM utility with CP/M-86), and transient
programs will load and run in any non-reserved region.

Three general memory models are presented below, but if you are
converting 8080 programs to CP/M-86, you can use either the 8080
Model or Small Model and leave the Compact Model for later when your
addressing needs increase. You'll use GENCMD, described in Section
3.2, to produce an executable program file from a hex file. GENCMD
parameters allow you to specify which memory model your program
requires.

CP/M-86 itself is constructed as an 8080 Model. This means
that all the segment registers are placed at the base of CP/M-86,
and your customized BIOS is identical, in most respects, to that of
CP/M-80 (with changes in instruction mnemonics, of course). In
fact, the only additions are found in the SETDMAB, GETSEGB, SETIOB,
and GETIOB entry points in the BIOS. Your warm start subroutine is
simpler since you are not required to reload the CCP and BDOS under
CP/M-86. One other point: if you implement the IOBYTE facility,
you'll have to define the variable in your BIOS. Taking these
changes into account, you need only perform a simple translation of
your CP/M-80 BIOS into 8086 code in order to implement your 8086
BIOS.

All Information Presented Here is Proprietary to Digital Research

3

CP/M-86 System Guide 1.2 CP/M-80 and CP/M-86 Differences

If you've implemented CP/M-80 Version 2, you already have disk
definition tables which will operate properly with CP/M-86. You may
wish to attach different disk drives, or experiment with sector skew
factors to increase performance. If so, you can use the new GENDEF
utility which performs the same function as the DTSKDEF macro used
by MAC under CP/M-80. You'll find, however, that GENDEF provides
you with more information and checks error conditions better than
the DISKDEF macro.

Although generating a CP/M-86 system is generally easier than
generating a CP/M-80 system, complications arise if you are using
single-density floppy disks. CP/M-86 is too large to fit in the
two-track system area of a single-density disk, so the bootstrap
operation must perform two steps to load CP/M-86: first the
bootstrap must load the cold start loader, then the cold start
loader loads CP/M-86 from a system file. The cold start loader
includes a LDBIOS which is identical to your CP/M-86 BIOS with the
exception of the INIT entry point. You can simplify the LDBIOS if
you wish because the loader need not write to the disk. If you have
a double-density disk or reserve enough tracks on a single-density
disk, you can load CP/M-86 without a two-step boot.

To make a BDOS system call, use the reserved software interrupt
#244. The jump to the BDOS at location 0005 found in CP/M-80 is not
present in CP/M-86. However, the address field at offset 0006 is
present so that programs which "size" available memory using this
word value will operate without change. CP/M-80 BDOS functions use
certain 8080 registers for entry parameters and returned values.
CP/M-86 BDOS functions use a table of corresponding 8086 registers.
For example, the 8086 registers CH and CL correspond to the 8080
registers B and C. Look through the list of BDOS function numbers
in Table 4-2. and you'll find that functions 0, 27, and 31 have
changed slightly. Several new functions have been added, but they
do not affect existing programs.

One major philosophical difference is that in CP/M-80, all
addresses sent to the BDOS are simply 16-bit values in the range
0000H to 0FFFFH. In CP/M-86, however, the addresses are really just
16-bit offsets from the DS (Data Segment) register which is set to
the base of your data area. If you translate an existing CP/M-80
program to the CP/M-86 environment, your data segment will be less
than 64K bytes. In this case, the DS register need not be changed
following initial load, and thus all CP/M-80 addresses become simple
DS-relative offsets in CP/M-86.

Under CP/M-80, programs terminate in one of three ways: by
returning directly to the CCP, by calling BDOS function 0, or by
transferring control to absolute location 0000H. CP/M-86, however,
supports only the first two methods of program termination. 'T’his
has the side effect of not providing the automatic disk system reset
following the jump to 00Ö0H which, instead, is accomplished by
entering a CONTROL-C at the CCP level.

All Information Presented Here is Proprietary to Digital Research
4

CP/M-86 System Guide 1.2 CP/M-80 and CP/M-86 Differences

You'll find many new facilities in CP/M-86 that will simplify
your programming and expand your application programming capability.
But, we've designed CP/M-86 to make it easy to get started: in
short, if you are converting from CP/M-80 to CP/M-86, there will be
no major changes beyond the translation to 8086 machine code.
Further, programs you design for CP/M-86 are upward compatible with
MP/M-86, our multitasking operating system, as well as CP/NET-86
which provides a distributed operating system in a network
environment.

All Information Presented Here is Proprietary to Digital Research

5

c

Section 2
Command Setup and Execution Under CP/M-86

This section discusses the operation of the Console Command
Processor (CCP), the format of transient programs, CP/M-86 memory
models, and memory image formats.

2.1 CCP Built-in and Transient Commands
The operation of the CP/M-86 CCP is similar to that of CP/M-80.

Upon initial cold start, the CP/M sign-on message is printed, drive
A is automatically logged in, and the standard prompt is issued at
the console. CP/M-86 then waits for input command lines from the
console, which may include one of the built-in commands

DIR ERA REN TYPE USER

(note that SAVE is not supported under CP/M-86 since the equivalent
function is performed by DDT-86).

Alternatively, the command line may begin with the name of a
transient program with the assumed file type "CMD" denoting a
"command file." The CMD file type differentiates transient command
files used under CP/M-86 from COM files which operate under CP/M-80.

The CCP allows multiple programs to reside in memory, providing
facilities for background tasks. A transient program such as a
debugger may load additional programs for execution under its own
control. Thus, for example, a background printer spooler could
first be loaded, followed by an execution of DDT-86. DDT-86 may, in
turn, load a test program for a debugging session and transfer
control to the test proqram between breakpoints. CP/M-86 keeps
account of the order in which proqrams are loaded and, upon
encountering a CONTROL-C, discontinues execution of the most recent
program activated at the CCP level. A CONTROL-C at the DDT-86
command level aborts DDT-86 and its test program. A second CONTROL-
C at the CCP level aborts the background printer spooler. A third
CONTROL-C resets the disk system. Note that program abort due to
CONTROL-C does not reset the disk system, as is the case in CP/M-80.
A disk reset does not occur unless the CONTROL-C occurs at the CCP
command input level with no programs residing in memory.

When CP/M-86 receives a request to load a transient program
from the CCP or another transient program, it checks the program^s
memory requirements. If sufficient memory is available, CP/M-86
assigns the required amount of memory to the program and loads the
program. Once loaded, the program can request additional memory
from the BDOS for buffer space. When the program is terminated,
CP/M-86 frees both the program memory area and any additional buffer
space.

All Information Presented Here is Proprietary to Digital Research

7

CP/M-86 System Guide 2.2 Transient Program Execution Models

2.2 Transient Program Execution Models
The initial values of the segment registers are determined by

one of three "memory models" used by the transient program, and
described in the CMD file header. The three memory models are
summarized in Table 2-1 below.

Table 2-1. CP/M-86 Memory Models
Model Group Relationships

8080 Model Code and Data Groups Overlap
Small Model Independent Code and Data Groups
Compact Model Three or More Independent Groups

The 8080 Model supports programs which are directly translated
from CP/M-80 when code and data areas are intermixed. The 8080
model consists of one group which contains all the code, data, and
stack areas. Segment registers are initialized to the starting
address of the region containing this group. The segment registers
can, however, be managed by the application program during execution
so that multiple segments within the code group can be addressed.

The Small Model is similar to that defined by Intel, where the
program consists of an independent code group and a data group. The
Small Model is suitable for use by programs taken from CP/M-80 where
code and data is easily separated. Note again that the code and
data groups often consist of, but are not restricted to, single 64K
byte segments.

The Compact Model occurs when any of the extra, stack, or
auxiliary groups are present in program. Each group may consist of
one or more segments, but if any group exceeds one segment in size,
or if auxiliary groups are present, then the application program
must manage its own segment registers during execution in order to
address all code and data areas.

The three models differ primarily in the manner in which
segment registers are initialized upon transient program loading.
The operating system program load function determines the memory
model used by a transient program by examining the program group
usage, as described in the following sections.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 2.3 The 8080 Memory Model

2.3 The 8080 Memory Model
The 8080 Model is assumed when the transient program contains

only a code group. In this case, the CS, DS, and ES registers are
initialized to the beginning of the code group, while the SS and SP
registers remain set to a 96-byte stack area in the CCP. The
Instruction Pointer Register (IP) is set to 100H, similar to CP/M-
80, thus allowing base page values at the beginning of the code
group. Following program load, the 8080 Model appears as shown in
Figure 2-1, where low addresses are shown at the top of the diagram:

SS:

SS + SP:

CS DS ES:
DS+0000H:

CS+0100H:

code

data

base
page

IP = 0100H
code

data

Figure 2-1. CP/M-86 8080 Memory Model

The intermixed code and data regions are indistinguishable. The
"base page" values, described below, are identical to CP/M-80,
allowing simple translation from 8080, 8085, or Z80 code into the
8086 and 8088 environment. The following ASM-86 example shows how
to code an 8080 model transient program.

endcs

eseg
org 100h
•

• (code)
equ
dseg

$
org offset endcs
•

•

end
(data)

All Information Presented Here is Proprietary to Digital Research
9

CP/M-86 System Guide 2.4 The Small Memory Model

2.4 The Small Memory Model
The Small Model is assumed when the transient program contains

both a code and data group. (In ASM-86, all code is generated
following a CSEG directive, while data is defined following a DREG
directive with the origin of the data segment independent of the
code segment.) In this model, CS is set to the beginning of the
code group, the DS and ES are set to the start of the data group,
and the SS and SP registers remain in the CCP's stack area as shown
in Figure 2-2.

SR

SS + SP

CS: IP = OOOOH
code

DS ES:

DS+0100H:

Figure 2-2. CP/M-86 Small Memory Model

base
page

data

The machine code begins at CS+0000H, the "base page" values begin at
DS+0000H, and the data area starts at DS+0100H. The following ASM-
86 example shows how to code a small model transient Drogram.

cseg
•

•

dseg
(code)

org 100h
•

•

end
(data)

All Information Presented Here is Proprietary to Digital Research

10

CP/M-86 System Guide 2,5 The Compact Memory Model

2.5 The Compact Memory Model

The Compact Model is assumed when code and data groups are
present, along with one or more of the remaining stack, extra, or
auxiliary groups. In this case, the CS, DS, and ES registers are
set to the base addresses of their respective areas. Figure 2-3
shows the initial configuration of segment registers in the Compact
Model. The values of the various segment registers can be
programmatically changed during execution by loading from the
initial values placed in base page by the CCP, thus allowing access
to the entire memory space.

If the transient program intends to use the stack group as a
stack area, the SS and SP registers must be set upon entry. The SS
and SP registers remain in the CCP area, even if a stack group is
defined. Although it may appear that the SS and SP registers should
be set to address the stack group, there are two contradictions.
First, the transient program may be using the stack group as a data
area. In that case, the Far Call instruction used by the CCP to
transfer control to the transient program could overwrite data in
the stack area. Second, the SS register would logically be set to
the base of the group, while the SP would be set to the offset of
the end of the group. However, if the stack group exceeds 64K the
address range from the base to the end of the group exceeds a 16-bit
offset value.

The following ASM-86 example shows how to code a compact model
transient program.

cseg
•

•

dseg
(code)

org 100h

eseg
(data)

sseg
(more data)

end
(stack area)

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 2.5 The Compact Memory Model

SS

SS + SP

cs

DS

DS+0100H

ES

Figure 2-3.

IP = OOOOH

code

CP/M-86 Compact Memory Model

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 2.6 Base Page Initialization

2.6 Base Page Initialization
Similar to CP/M-80, the CP/M-86 base page contains default

values and locations initialized by the CCP and used by the
transient program. The base page occupies the regions from offset
0000H through OOFFH relative to the DS reqister. The values in the
base page for CP/M-86 include those of CP/M-80, and appear in the
same relative positions, as shown in Figure 2-4.

DS + 0000: LC0 LC1 LC 2

DS + 0003: BC0 BC1 M80

DS + 0006: LD0 LDl LD2

DS + 0009: BD0 BDl X X X

DS + 000C: LEO LEI LE2

DS + 000F: BE0 BEI X X X

DS + 0012: LS0 LSI LS2

DS + 0015: BS0 BS1 X X X

DS + 0018: LX0 LXl LX 2

DS + 001B: BX0 BXl X X X

DS + 00IE: LX0 LXl LX 2

DS + 0021: BX0 BXl X X X

DS + 0024: LX0 LXl LX 2

DS + 0027: BX0 BXl X X X

DS + 002A: LX0 LXl LX 2

DS + 002D: BX0 BXl X X X

DS + 0030: Not
• • • Currently

DS + 005B: Used

DS + 005C: Default FCB

DS + 0080: Default Buffer

DS + 0100: Begin User Data

Figure 2-4. CP/M-86 Base Page Values

All Information Presented Here is Proprietary to Digital Research

13

CP/M-86 System Guide 2.6 Base Page Initialization

Each byte is indexed by 0, 1, and 2, corresponding to the standard
Intel storage convention of low, middle, and high-order (most
significant) byte. "xxx" in Figure 2-4 marks unused bytes. LC is
the last code group location (24-bits, where the 4 high-order bits
equal zero) .

In the 8080 Model, the low order bytes of LC (LCO and LCl)
never exceed OFFFFH and the high order byte (LC2) is always zero.
BC is base paragraph address of the code group (16-bits) . LD and BD
provide the last position and paragraph base of the data group. The
last position is one byte less than the group length! It should be
noted that bytes LDO and LDl appear in the same relative positions
of the base page in both CP/M-80 and CP/M-86, thus easing the
program translation task. The M8Q byte is equal to 1 when the 8080
Memory Model is in use. LE and BE provide the length and paragraph
base of the optional extra group, while LS and BS give the optional
stack group length and base. The bytes marked LX and BX correspond
to a set of four optional independent groups which may be required
for programs which execute using the Compact Memory Model. The
initial values for these descriptors are derived from the header
record in the memory image file, described in the following section.

2.7 Transient Program Load and Exit
Similar to CP/M-80, the CCP parses up to two filenames

following the command and places the properly formatted FCB "'s at
locations 005CH and 006CH in the base page relative to the DS
register. Under CP/M-80, the default DMA address is initialized to
0080H in the base page. Due to the segmented memory of the 8086 and
8088 processors, the DMA address is divided into two parts: the DMA
segment address and the DMA offset. Therefore, under CP/M-86, the
default DMA base is initialized to the value of DS, and the default
DMA offset is initialized to 0080H. Thus, CP/M-80 and CP/M-86
operate in the same way: both assume the default DMA buffer
occupies the second half of the base page.

The CCP transfers control to the transient program through an
8086 "Far Call." The transient program may choose to use the 96-byte
CCP stack and optionally return directly to the CCP upon program
termination by executing a "Far Return." Program termination also
occurs when BDOS function zero is executed. Note that function zero
can terminate a program without removing the program from memory or
changing the memory allocation state (see Section 4.2). The
operator may terminate program execution by typing a single CONTROL-
C during line edited input which has the same effect as the proqram
executing BDOS function zero. Unlike the operation of CP/M-80, no
disk reset occurs and the CCP and BDOS modules are not reloaded from
disk upon program termination.

All Information Presented Here is Proprietary to Digital Research

Section 3
Command (CMD) File Generation

As mentioned previously, two utility proqrams are provided with
CP/M-86, called GENCMD and LMCMD, which are used to produce CMD
memory image files suitable for execution under CP/M-86. GENCMD
accepts Intel 8086 "hex" format files as input, while LMCMD reads
Intel L-module files output from the standard Intel LOC86 Object
Code Locator utility. GENCMD is used to process output from the
Digital Research ASM-86 assembler and Intel's OH86 utility, while
LMCMD is used when Intel compatible developmental software is
available for generation of programs targeted for CP/M-86 operation.

3.1 Intel 8086 Hex File Format
GENCMD input is in Intel "hex" format produced by both the

Digital Research ASM-86 assembler and the standard Intel OH86
utility program (see Intel document #9800639-03 entitled "MCS-86
Software Development Utitities Operating Instructions for ISIS-II
Users"). The CMD file produced by GENCMD contains a header record
which defines the memory model and memory size requirements for
loading and executing the CMD file.

An Intel "hex" file consists of the traditional sequence of
ASCII records in the following format:

where the beginning of the record is marked by an ASCII colon, and
each subsequent digit position contains an ASCII hexadecimal digit
in the range 0-9 or A-F. The fields are defined in Table 3-1.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 3.1 Intel Hex File Format

Table 3-1. Intel Hex Field Definitions
Field Contents

11 Record Length 00-FF (0-255 in decimal)

aaaa Load Address

tt Record Type:
00 data record, loaded starting at offset

d

cc

aaaa from current base paragraph
01 end of file, cc = FF
02 extended address, aaaa is paragraph

base for subsequent data records
03 start address is aaaa (ignored, IP set

according to memory model in use)

The following
81 same as 00
82 same as 00
83 same as 00
84 same as 00
85 paragraph
86 paragraph
87 paragraph
88 paragraph

are output from ASM-86 only:
, data belongs to code segment
, data belongs to data segment
, data belongs to stack segment
, data belongs to extra segment
address for absolute code segment
address for absolute data segment
address for absolute stack segment
address for absolute extra segment

Data Byte
Check Sum (00 - Sum of Previous Digits)

All characters preceding the colon for each record are ignored.
(Additional hex file format information is included in the ASM-86
User's Guide, and in Intel^s document #9800821A entitled "MCS-86
Absolute Object File Formats.")

3.2 Operation of GENCMD
The GENCMD utility is invoked at the CCP level by typing

GENCMD filename parameter-list

where the filename corresponds to the hex input file with an assumed
(and unspecified) file type of H86. GENCMD accepts optional
parameters to specifically identify the 8080 Memory Model and to
describe memory requirements of each segment group. The GENCMD
parameters are listed following the filename, as shown in the
command line above where the parameter-list consists of a sequence
of keywords and values separated by commas or blanks. The keywords
are: .

8080 CODE DATA EXTRA STACK Xl X2 X3 X4

All Information Presented Here is Proprietary to Digital Research

16

CP/M-86 System Guide 3.2 Operation of GENCMD

The 8080 keyword forces a single code group so that the BDOS load
function sets up the 8080 Memory Model for execution, thus allowing
intermixed code and data within a single segment. The form of this
command is

GENCMD filename 8080
The remaining keywords follow the filename or the 8080 option and
define specific memory requirements for each segment group,
corresponding one-to-one with the segment groups defined in the previous section. In each case, the values corresponding to each
group are enclosed in square brackets and separated by commas. Each
value is a hexadecimal number representing a paragraph address or
segment length in paragraph units denoted by hhhh, prefixed by a
single letter which defines the meaning of each value:

Ahhhh Load the group at absolute location hhhh
Bhhhh The group starts at hhhh in the hex file
Mhhhh The group requires a minimum of hhhh * 16 bytes Xhhhh The group can address a maximum of hhhh * 16 bytes

Generally, the CMD file header values are derived directly from the
hex file and the parameters shown above need not be included. The
following situations, however, require the use of GENCMD parameters.

• The 8080 keyword is included whenever ASM-86 is used in
the conversion of 8080 proqrams to the 8086/8088
environment when code and data are intermixed within a
single 64K segment, regardless of the use of CSEG and
DSEG directives in the source program.

• An absolute address (A value) must be given for any group
which must be located at an absolute location. Normally,
this value is not specified since CP/M-86 cannot
generally ensure that the required memory reqion is
available, in which case the CMD file cannot be loaded.

• The B value is used when GENCMD processes a hex file
produced by Intel's OH86, or similar utility program that
contains more than one group. The output from OH86
consists of a sequence of data records with no
information to identify code, data, extra, stack, or
auxiliary groups. In this case, the B value marks the
beginning address of the group named by the keyword,
causing GENCMD to load data following this address to the
named group (see the examples below). Thus, the B value
is normally used to mark the boundary between code and
data segments when no segment information is included in
the hex file. Files produced by ASM-86 do not require
the use of the B value since segment information is included in the hex file.

All Information Presented Here is Proprietary to Digital Research

17

CP/M-86 System Guide 3.2 Operation of GENCMD

• The minimum memory value (M value) is included only when
the hex records do not define the minimum memory
requirements for the named group. Generally, the code
group size is determined precisely by the data records
loaded into the area. That is, the total space required
for the group is defined by the range between the lowest
and highest data byte addresses. The data group,
however, may contain uninitialized storage at the end of
the group and thus no data records are present in the hex
file which define the highest referenced data item. The
highest address in the data group can be defined within
the source program by including a "DB 0" as the last data
item. Alternatively, the M value can be included to
allocate the additional space at the end of the group.
Similarly, the stack, extra, and auxiliary group sizes
must be defined using the M value unless the highest
addresses within the groups are implicitly defined by
data records in the hex file.

• The maximum memory size, given by the X value, is
generally used when additional free memory may be needed
for such purposes as I/O buffers or symbol tables. If
the data area size is fixed, then the X parameter need
not be included. In this case, the X value is assumed to
be the same as the M value. The value XFFFF allocates
the largest memory region available but, if used, the
transient program must be aware that a three-byte length
field is produced in the base page for this group where
the high order byte may be non-zero. Programs converted
directly from CP/M-80 or programs that use a 2-byte
pointer to address buffers should restrict this value to
XFFF or less, producing a maximum allocation length of
0FFF0H bytes.

The following GENCMD command line transforms the file X.H86
into the file X.CMD with the proper header record:

gencmd x code[a40] data[m30,xfff]
In this case, the code group is forced to paragraph address 40H, or
equivalently, byte address 400H. The data group requires a minimum
of 300H bytes, but can use up to 0FFF0H bytes, if available.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 3.2 Operation of GENCMD

Assuming a file Y.H86 exists on drive B containing Intel hex
records with no interspersed segment information, the command

gencmd b:y datatb30,m20] extra[b50] stack[m40] xl[m40]
produces the file Y.CMD on drive B by selecting records beginning
at address 0000H for the code segment, with records starting at
300H allocated to the data segment. The extra segment is filled
from records beginning at 500H, while the stack and auxiliary segment #1 are uninitialized areas requiring a minimum of 400H
bytes each. In this example, the data area requires a minimum of
200H bytes. Note again, that the B value need not be included if the Digital Research ASM-86 assembler is used.

3.3 Operation of LMCMD
The LMCMD utility operates in exactly the same manner as

GENCMD, with the exception that LMCMD accepts an Intel L-module
file as input. The primary advantage of the L-module format is
that the file contains internally coded information which defines values which would otherwise be required as parameters to GENCMD,
such the beginning address of the group's data segment. Currently,
however, the only language processors which use this format are the standard Intel development packages, although various independent
vendors will, most likely, take advantage of this format in the
future.

All Information Presented Here is Proprietary to Digital Research
19

CP/M-86 System Guide 3.4 Command (CMD) File Format

3.4 Command (CMD) File Format
The CMD file produced by GENCMD and LMCMD consists of the

128-byte header record followed immediately by the memory image.
Under normal circumstances, the format of the header record is of
no consequence to a programmer. For completeness, however, the
various fields of this record are shown in Figure 3-1.

GD# 1 GD#2 GD#3 GD#4 GD#5-GD#8. . .
Code,

Data,
Extra,

Stack,Auxiliary
Figure 3-1. CMD File Header Format

In Figure 3-1, GD#2 through GD#8 represent "Group Descriptors."
Each Group Descriptor corresponds to an independently loaded
program unit and has the following fields:

8-bit 16-bit 16-bit 16-bit 16-bit
G-Form G-Length A-Base G-Min G-Max

where G-Form describes the group format, or has the value zero if
no more descriptors follow. If G-Form is non-zero, then the 8-bit
value is parsed as two fields:

G-Form:
4-bit 4-bit

X X X X G-Type

The G-Type field determines the Group Descriptor type. The valid
Group Descriptors have a G-Type in the range 1 through 9, as shown
in Table 3-2 below.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 3.4 Command (CMD) File Format

Table 3-2. Group Descriptors
G-Type Group Type

1 Code Group2 Data Group
3 Extra Group4 Stack Group
5 Auxiliary Group #1
6 Auxiliary Group #27 Auxiliary Group #3
8 Auxiliary Group #49 Shared Code Group10 - 14 Unused, but Reserved
15 Escape Code for Additional Types

All remaining values in the group descriptor are given in
increments of 16-byte paragraph units with an assumed low-order 0
nibble to complete the 20-bit address. G-Length gives the number
of paragraphs in the group. Given a G-length of 0080H, for
example, the size of the group is 00800H = 2048D bytes. A-Base
defines the base paragraph address for a non-relocatable group
while G-Min and G-Max define the minimum and maximum size of the memory area to allocate to the group. G-Type 9 marks a "pure" code
group for use under MP/M-86 and future versions of CP/M-86.
Presently a Shared Code Group is treated as a non-shared Program Code Group under CP/M-86.

The memory model described by a header record is implicitly
determined by the Group Descriptors. The 8080 Memory Model is
assumed when only a code group is present, since no independent
data group is named. The Small Model is implied when both a code
and data group are present, but no additional group descriptors
occur. Otherwise, the Compact Model is assumed when the CMD file
is loaded.

All Information Presented Here is Proprietary to Digital Research

Section 4
Basic Disk Operating System Functions

This section presents the interface conventions which allow
transient program access to CP/M-86 BDOS and BIOS functions. The
BDOS calls correspond closely to CP/M-80 Version 2 in order to
simplify translation of existing CP/M-80 programs for operation
under CP/M-86. BDOS entry and exit conditions are described first,
followed by a presentation of the individual BDOS function calls.

4.1 BDOS Parameters and Function Codes

Entry to the BDOS is accomplished through the 8086 software
interrupt #224, which is reserved by Intel Corporation for use by
CP/M-86 and MP/M-86. The function code is passed in register CL
with byte parameters in DL and word parameters in DX. Single byte
values are returned in AL, word values in both AX and BX, and double
word values in ES and BX. All segment registers, except ES, are
saved upon entry and restored upon exit from the BDOS (corresponding
to PL/M-86 conventions) . Table 4-1 summarizes input and output
parameter passing:

Table 4-1. BDOS Parameter Summary

BDOS Entry Registers BDOS Return Registers
CL Function Code Byte value returned in AL
DL Byte Parameter Word value returned in both AX and BX
DX Word Parameter Double-word value returned with
DS Data Segment offset in BX and

segment in ES

Note that the CP/M-80 BDOS requires an "information address" as
input to various functions. This address usually provides buffer or
File Control Block information used in the system call. In CP/M-86,
however, the information address is derived from the current DS
register combined with the offset given in the DX register. That
is, the DX register in CP/M-86 performs the same function as the DE
pair in CP/M-80, with the assumption that DS is properly set. This
poses no particular problem for programs which use only a single
data segment (as is the case for programs converted from CP/M-80),
but when the data group exceeds a single segment, you must ensure
that the DS register is set to the segment containing the data area
related to the call. It should also be noted that zero values are
returned for function calls which are out-of-range.

All Information Presented Here is Proprietary to Digital Research

23

CP/M-86 System Guide 4.1 BDOS Parameters and Function Codes

A list of CP/M-86 calls is given in Table 4-2 with an asterisk
following functions which differ from or are added to the set of
CP/M-80 Version 2 functions.

Table 4-2. CP/M-86 BDOS Functions
F# Result F#

0* System Reset 24
1 Console Input 25
2 Console Output 26
3 Reader Input 27*
4 Punch Output 28
5 List Output 29
6* Direct Console I/O 30
7 Get I/O Byte 31*
8 Set I/O Byte 32
9 Print String 33

10 Read Console Buffer 34
11 Get Console Status 35
12 Return Version Number 36
13 Reset Disk System 37*
14 Select Disk 40
15 Ooen File 50*
16 Close File 51*
17 Search for First 52*
18 Search for Next 53*
19 Delete File 54*
20 Read Sequential 55*
21 Write Sequential 56*
22 Make File 57*
23 Rename File 58*

59*

Result

Return Login Vector
Return Current Disk
Set DMA Address
Get Addr(Alloc)
Write Protect Disk
Get Addr(R/0 Vector)
Set File Attributes
Get Addr(Disk Parms)
Set/Get User Code
Read Random
Write Random
Compute File Size
Set Random Record
Reset drive
Write Random with Zero Fill
Direct BIOS Call
Set DMA Segment Base
Get DMA Segment Base
Get Max Memory Available
Get Max Mem at Abs Location
Get Memorv Region
Get Absolute Memory Region
Free memorv region
Free all memory
Program load

The
sections
extended

individual BDOS functions are described below in three
which cover the simple functions, file operations, and
operations for memory management and program loading.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 4.2 Simple BDOS Calls

4.2 Simple BDOS Calls
The first set of BDOS functions cover the range 0 through 12,

and perform simple functions such as system reset and single character I/O.

Entry' ►
CL: 00H
DL: Abort

Code

FUNCTION 0
SYSTEM RESET

Return
• — ►

The system reset function returns control to the CP/M operating
system at the CCP command level. The abort code in DL has two
possible values: if DL = 00H then the currently active program is terminated and control is returned to the CCP. If DL is a 01H, the
program remains in memory and the memory allocation state remains unchanged.

Entry--------- ►
CL: 01H

V 1

\

FUNCTION 1
CONSOLE INPUT

Return■ ■— »
AL: ASCII Character

The console input function reads the next character from the
logical console device (CONSOLE) to register AL. Graphic
characters, along with carriage return, line feed, and backspace
(CONTROL-H) are echoed to the console. Tab characters (CONTROL-I)
are expanded in columns of eight characters. The BDOS does not
return to the calling program until a character has been typed, thus
suspending execution if a character is not ready.

Entry----------- ►
CL: 02H
DL: ASCII

Character \

FUNCTION 2
CONSOLE OUTPUT

Return »

The ASCII character from DL is sent to the logical console.
Tab characters expand in columns of eight characters. In addition, a check is made for start/stop scroll (CONTROL-S).

All Information Presented Here is Proprietary to Digital Research
25

CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry■■■■■'■ ■■ ■»
CL: 03H

Return
»" »

AL: ASCII Character

The Reader Input function reads the next character from the
logical reader (READER) into register AL. Control does not return
until the character has been read.

Entry
CL: 04H FUNCTION 4
DL: ASCII

Character
PUNCH OUTPUT

Return
■ >

The Punch Output function sends the character from register DL
to the logical punch device (PUNCH).

Entry
■—1 »
CL: 05H
DL: ASCIICharacter

FUNCTION 5
LIST OUTPUT

Return
' »

The List Output function sends the ASCII character in register
DL to the logical list device (LIST).

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 4.2 Simple BDOS Ca.lls

Entry
CL: 06H
DL: OFFH (input/

or status]**
OFEH (status)
or
char (output)

FUNCTION 6
DIRECT CONSOLE I/O

Return
AL: char or status

(no value)

Direct console I/O is supported under CP/M-86 for those
specialized applications where unadorned console input and output is
required. Use of this function should, in general, be avoided since
it bypasses all of CP/M-86^s normal control character functions
(e.g., CONTROL-S and CONTROL-P) . Programs which perform direct I/O
through the BIOS under previous releases of CP/M-80, however, should
be changed to use direct I/O under the BDOS so that they can be
fully supported under future releases of MP/M and CP/M.

Upon entry to Function 6, register DL contains either (1) a
hexadecimal FF denoting a CONSOLE input/status request, or (2) a
hexadecimal FE denoting a console status request, or (3) an ASCII
character to be output to CONSOLE where CONSOLE is the logical
console device. If the input value is FF, then Function 6 checks to
see if a character is ready. If a character is ready, Function 6
returns the character in AL; otherwise Function 6 returns a zero in
A L . If the input value is FE and no character is ready, then
Function 6 returns AL = 00; otherwise, AL = FF. If the input value
in DL is not FE or FF, then Function 6 assumes that DL contains a
valid ASCII character which is sent to the console.

You cannot use Function 6 with FF or FE in combination with
either Function 1 or Function 11. Function 1 is used in conjunction
with Function 11. Function 6 must be used independently.

Entry ----------------V
CL: 07H FUNCTION 7

GET I/O BYTE

Return----------- ►
AL: I/O Byte Value

The Get I/O Byte function returns the current value of IOBYTE
in register AL. The IOBYTE contains the current assignments for the
logical devices CONSOLE, READER, PUNCH, and LIST provided the IOBYTE
facility is implemented in the BIOS.

All Information Presented Here is Proprietary to Digital Research
27

CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry-------— — >»
CL: 08H
DL: I/O Byte

Value

FUNCTION 8
SET I/O BYTE

Return --------►

The Set I/O Byte function chanqes the system IOBYTE value to
that given in register DL. This function allows transient program
access to the IOBYTE in order to modify the current assignments for
the logical devices CONSOLE, READER, PUNCH, and LIST.

Entry
----------- — — — ►

CL: 09H
DX: String

Offset

FUNCTION 9
PRINT STRING

Return

The Print String function sends the character string stored in
memory at the location given by DX to the logical console device
(CONSOLE), until a "$" is encountered in the string. Tabs are
expanded as in function 2, and checks are made for start/stop scroll
and printer echo.

Entry
—— --— **

CL: OAH
DX: Buffer

Offset

FUNCTION 10
READ CONSOLE BUFFER

Return
Console Characters
in Buffer

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 4.2 Simple BDOS Calls

The Read Buffer function reads a line of edited console input into a
buffer addressed by register DX from the logical console device
(CONSOLE). Console input is terminated when either the input buffer
is filled or when a return (CONTROL-M) or a line feed (CONTROL-J) character is entered. The input buffer addressed by DX takes the form:

DX: +0 +1 +2 +3 +4 +5 +6 +7 +8 . . . +n

where "mx" is the maximum number of characters which the buffer will
hold, and "nc" is the number of characters placed in the buffer.
The characters entered by the operator follow the "nc" value. The
value "mx" must be set prior to making a function 10 call and mav
range in value from 1 to 255. Setting mx to zero is equivalent to
setting mx to one. The value "nc" is returned to the user and may
range from 0 to mx. If nc < mx, then uninitialized positions follow
the last character, denoted by "??" in the above figure. Note that
a terminating return or line feed character is not placed in the
buffer and not included in the count "nc".

A number of editing control functions are supported during
console input under function 10. These are summarized in Table 4-3.

Table 4-3. Line Editing Controls
Keystroke Result
rub/del
CONTROL-C
CONTROL-E
CONTROL-H
CONTROL-J
CONTROL-M
CONTROL-R
CONTROL-U
CONTROL-X

removes and echoes the last character
reboots when at the beginning of line
causes physical end of line
backspaces one character position
(line feed) terminates input line
(return) terminates input line retypes the current line after new line
removes current line after new line
backspaces to beginning of current line

Certain functions which return the carriage to the leftmost position
(e.g., CONTROL-X) do so only to the column position where the prompt
ended. This convention makes operator data input and line
correction more legible.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry
»CL: OBH FUNCTION 11

GET CONSOLE STATUS

Return
AL: Console Status

The Console Status function checks to see if a character has
been typed at the logical console device (CONSOLE). If a character
is ready, the value 01H is returned in reqister AL. Otherwise a 00H
value is returned.

Entry Returnl ---- A
CL: 0CH

's

FUNCTION 12
RETURN VERSION NUMBER

BX: Version Number

Function 12 provides information which allows version
independent programming. A two-bvte value is returned, with BH = 00
designating the CP/M release (BH = 01 for MP/M) , and BL = 00 for all
releases previous to 2.0. CR/M 2.0 returns a hexadecimal 20 in
register BL, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. To provide version number compatibility,
the initial release of CP/M-86 returns a 2.2.

4.3 BDOS File Operations
Functions 12 through 52 are related to disk file operations

under CP/m-86. In many of these operations, DX provides the DS-
relative offset to a file control block (FCB). The File Control
Block (FCB) data area consists of a sequence of 33 bytes for
sequential access, or a sequence of 36 bytes in the case that the
file is accessed randomly. The default file control block normally
located at offset 005CH from the DS register can be used for random
access files, since bytes 007UH, 007EH, and 007FH are available for
this purpose. Here is the FCB format, followed by definitions of
each of its fields:

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 4.3 BDOS File Operations

dr fl f 2 / / f 8 tl t2 t3 ex si s2 rc dO / / dn cr rO rl r 2
00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

where
dr drive code (0 - 16)

0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,
• • •16=> auto disk select drive P.

fl...f8 contain the file name in ASCII
upper case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl', t2', and t3' denote the high
bit of these positions, tl' = 1 => Read/Only file,
t2' = 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 3 1 during file I/O

si reserved for internal system use
s2 reserved for internal system use, set

to zero on call to OPEN, MAKE, SEARCH
rc record count for extent "ex,"

takes on values from 0 - 128
d0...dn filled-in by CP/M, reserved for

system use
cr current record to read or write in

a sequential file operation, normally
set to zero by user

r0,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte rO, and high byte rl

For users of earlier versions of CP/M, it should be noted in
passing that both CP/M Version 2 and CP/M-86 perform directory
operations in a reserved area of memory that does not affect write
buffer content, except in the case of Search and Search Next where
the directory record is copied to the current DMA address.

All Information Presented Here is Proprietary to Digital Research
31

CP/M-86 System Guide 4.3 8D0S File Operations

There are three error situations that the BDOS may encounter durinq
file processing, initiated as a result of a BDOS File I/O function
call. When one of these conditions is detected, the BDOS issues the
following message to the console:

BDOS ERR ON x: error

where x is the drive name of the drive selected when the error
condition is detected, and "error" is one of the three messages:

BAD SECTOR SELECT R/0

These error situations are trapped by the BDOS, and thus the
executing transient program is temporarily halted when the error is
detected. No indication of the error situation is returned to the
transient program.

The "BAD SECTOR" error is issued as the result of an error
condition returned to the BDOS from the BIOS module. The BDOS makes
BIOS sector read and write commands as part of the execution of BDOS
file related system calls. If the BIOS read or write routine
detects a hardware error, it returns an error code to the BDOS
resulting in this error message. The operator may respond to this
error in two ways: a CONTROL-C terminates the executing program,
while a RETURN instructs CP/M-86 to ignore the error and allow the
program to continue execution.

The "SELECT" error is also issued as the result of an error
condition returned to the BDOS from the BIOS module. The BDOS makes
a BIOS disk select call prior to issuinq any BIOS read or write to a
particular drive. If the selected drive is not supported in the
BIOS module, it returns an error code to the BDOS resulting in this
error message. CP/M-86 terminates the currently running program and
returns to the command level of the CCP following any input from the
console.

The "R/0" message occurs when the BDOS receives a command to
write to a drive that is in read-only status. Drives may be placed
in read-only status explicitly as the result of a STAT command or
BDOS function call, or implicitly if the BDOS detects that disk
media has been changed without performing a "warm start." The
ability to detect changed media is optionally included in the BIOS,
and exists only if a checksum vector is included for the selected
drive. Upon entry of any character at the keyboard, the transient
program is aborted, and control returns to the CCP.

All Information Presented Here is Proprietary to Digital Research

32

CP/M-86 System Guide 4.3 BDOS File Operations

Entry --------------- V
CL: ODH FUNCTION 13

RESET DISK SYSTEM

Return
-------►

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29) , only disk drive A is selected. This
function can be used, for example, by an application program which
requires disk changes during operation. Function 37 (Reset Drive)
can also be used for this purpose.

Entry
-------- ►
CL: OEH

DL: Selected
Disk

Return
—

The Select Disk function designates the disk drive named in
register DL as the default disk for subsequent file operations, with DL = 0 for drive A, 1 for drive B, and so-forth through 15
corresponding to drive P in a full sixteen drive system. In
addition, the designated drive is logged-in if it is currently in the reset state. Logging-in a drive places it in "on-line" status
which activates the drive's directory until the next cold start,
warm start, disk system reset, or drive reset operation. FCB's
which specify drive code zero (dr = 00H) automatically reference the
currently selected default drive. Drive code values between 1 and
16, however, ignore the selected default drive and directly
reference drives A through P.

Entry
CL: OFH
DX: FCB

Offset

FUNCTION 15
OPEN FILE

Return
AL: Return Code

The Open File operation is used to activate a FCB specifying a
file which currently exists in the disk directory for the currently
active user number. The BDOS scans the disk directory of the drive
specified by byte 0 of the FCB referenced by DX for a match in positions 1 through 12 of the referenced FCB, where an ASCII
question mark (3FH) matches any directory character in any of these
positions. Normally, no question marks are included and, further,
byte "ex" of the FCB is set to zero before making the open call.

All Information Presented Here is Proprietary to Digital Research
33

CP/M-86 System Guide 4.3 BDOS File Operations

If a directory element is matched, the relevant directory
information is copied into bytes dO through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
successful open operation is completed. Further, an FCB not
activated by either an open or make function must not be used in
BDOS read or write commands. Upon return, the open function returns
a "directory code" with the value 0 through 3 if the open was
successful, or OFFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB then the first matching FCB is
activated. Note that the current record ("cr") must be zeroed by
the program if the file is to be accessed sequentially from the
first record.

Entry
--------------4*.
CL: 10H
DX: FCB

Offset

FUNCTION 16
CLOSE FILE

Return -------- ----
AL: Return Code

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DX has been previously
activated through an open or make function (see functions 15 and
22) , the close function permanently records the new FCB in the
referenced disk directory. The FCB matching process for the close
is identical to the open function. The directory code returned for
a successful close operation is 0, 1, 2, or 3, while a OFFH (255
decimal), is returned if the file name cannot be found in the
directory. A file need not be closed if only read operations have
taken place. If write operations have occurred, however, the close
operation is necessary to permanently record the new directory
information.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 4.3 BDOS File Operations

Entry -.. »
CL: 11H
DX: FCB

Offset

\----------------\

\

FUNCTION 17
SEARCH FOR FIRST

Return
AL: Directory Code

Search First scans the directory for a match with the file
given by the FCB addressed by DX. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise 0, 1, 2, or 3 is
returned indicating the file is present. In the case that the file
is found, the buffer at the current DMA address is filled with the
record containing the directory entry, and its relative starting
position is AL * 32 (i.e., rotate the AL register left 5 bits). Although not normally required for application programs, the
directory information can be extracted from the buffer at this
position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from "fl" through "ex" matches the corresponding field of any directory entry on the default or auto-selected disk drive. If
the "dr" field contains an ASCII question mark, then the auto disk
select function is disabled, the default disk is searched, with the
search function returning any matched entry, allocated or free,
belonging to any user number. This latter function is not normally
used by application programs, but does allow complete flexibility to
scan all current directory values. If the "dr" field is not a
question mark, the "s2" byte is automatically zeroed.

Entry Return-̂---------------V ___________ ^
CL: 12H

s

FUNCTION 18
SEARCH FOR NEXT

AL: Directory
Code

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match. In terms
of execution sequence, a function 18 call must follow either a
function 17 or function 18 call with no other intervening BDOS disk
related function calls.

All Information Presented Here is Proprietary to Digital Research
35

CP/M-86 System Guide

Entry---- —----►
CL: 13H
DX: FCB

Offset

FUNCTION 19
DELETE FILE

Return— --- i ——»
AL: Return Code

The Delete File function removes files which match the FCB
addressed by DX. The filename and type may contain ambiquous
references (i.e., question marks in various positions), but the
drive select code cannot be ambiguous, as in the Search and Search
Next functions. Function 19 returns a OFFH (decimal 255) if the
referenced file or files cannot be found, otherwise a value of zero
is returned.

□ uu - _ s----------------- V
CL: 14H FUNCTION 20
DX: FCB

Offset 's READ SEQUENTIAL

Return
■ — I»

AL: Return Code

Given that the FCB addressed by DX has been activated through
an open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. The record is read from position "cr" of
the extent, and the "cr" field is automatically incremented to the
next record position. If the "cr" field overflows then the next
logical extent is automatically opened and the "cr" field is reset
to zero in preparation for the next read operation. The "cr" field
must be set to zero following the open call by the user if the
intent is to read sequentially from the beginning of the file. The
value 00H is returned in the AL register if the read operation was
successful, while a value of 01H is returned if no data exists at
the next record position of the file. Normally, the no data
situation is encountered at the end of a file. However, it can also
occur if an attempt .is made to read a data block which has not been
previously written, or an extent which has not been created. These
situations are usually restricted to files created or appended by
use of the BDOS Write Random commmand (function 34).

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 4.3 BDOS File Operations

Entry

CL: 15H

DX: FCB
Offset

FUNCTION 21

WRITE SEQUENTIAL

Return
------------►
AL: Return Code

Given that the FCB addressed by DX has been activated through
an open or make function (numbers 15 and 22), the Write Sequential
function writes the 128 byte data record at the current DMA address
to the file named by the FCB. The record is placed at position "cr"
of the file, and the "cr" field is automatically incremented to the
next record position. If the "cr" field overflows then the next
logical extent is automatically opened and the "cr" field is reset
to zero in preparation for the next write operation. Write
operations can take place into an existing file, in which case newly
written records overlay those which already exist in the file. The
"cr" field must be set to zero following an open or make call by the
user if the intent is to write sequer. .ially from the beginning of
the file. Register AL = 00H upon return from a successful write
operation, while a non-zero value indicates an unsuccessful write
due to one of the following conditions:

01 No available directory space - This condition occurs when
the write command attempts to create a new extent that
requires a new directory entry and no available directory
entries exist on the selected disk drive.

02 No available data block - This condition is encountered
when the write command attempts to allocate a new data
block to the file and no unallocated data blocks exist on
the selected disk drive.

Entry
►

CL: 16H

DX: FCB
Offset

FUNCTION 22

MAKE FILE

Return
. »

AL: Return Code

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly
by a non-zero "dr" code, or the default disk if "dr" is zero). The
BDOS creates the file and initializes both the directory and main
memory value to an empty file. The programmer must ensure that no
duplicate file names occur, and a preceding delete operation is
sufficient if there is any possibility of duplication. Upon return,
register A = 0, 1, 2, or 3 if the operation was successful and OFFH
(255 decimal) if no more directory space is available. The make
function has the side-effect of activating the FCB and thus a
subsequent open is not necessary.

All Information Presented Here is Proprietary to Digital Research

37

CP/M-86 System Guide 4.3 BDOS File Operations

Entry
- ----------— — * »

CL: 17H

DX: FCB
Offset

FUNCTION 23

RENAME FILE

Return-------- --- ►
AL: Return Code

The Rename function uses the FCB addressed by DX to change all
directory entries of the file specified by the file name in the
first 16 bytes of the FCB to the file name in the second 16 bytes.
It is the user's responsibility to insure that the file names
specified are valid CP/M unambiguous file names. The drive code
"dr" at position 0 is used to select the drive, while the drive code
for the new file name at position 16 of the FCB is ignored. Upon
return, register AL is set to a value of zero if the rename was
successful, and OFFH (255 decimal) if the first file name could not
be found in the directory scan.

Entry------------------------- — ,— p.
CL: 18H

BX: Login
Vector

------------------------- -

FUNCTION 24

RETURN LOGIN
\ VECTOR

Return;--- — ---- »
BX: Login Vector

The login vector value returned by CP/M-86 is a 16-bit value in
BX, where the least significant bit corresponds to the first drive
A, and the high order bit corresponds to the sixteenth drive,
labelled P. A "0" bit indicates that the drive is not on-line,
while a "1" bit marks an drive that is actively on-line due to an
explicit disk drive selection, or an implicit drive select caused by
a file operation which specified a non-zero "dr" field.

Entry

CL: 19H
\ ------ ------

FUNCTION 25

RETURN CURRENT
NJ DISK

Return
------------ — ■

AL: Current Disk

Function 25 returns the currently selected default disk number
in register AL. The disk numbers range from 0 through 15
corresponding to drives A through P.

All Information Presented Here is Proprietary to Digital Research

38

CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return
V ..

CL: 1AH FUNCTION 26

DX: DMA SET DMA
Offset \ ADDRESS

"DMA" is an acronym for Direct Memory Address, which is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the
disk subsystem. Although many computer systems use non-DMA access
(i.e., the data is transfered through programmed I/O operations),
the DMA address has, in CP/M, come to mean the address at which the
128 byte data record resides before a disk write and after a disk
read. In the CP/M-86 environment, the Set DMA function is used to
specify the offset of the read or write buffer from the current DMA
base. Therefore, to sDecify the DMA address, both a function 26
call and a function 51 call are required. Thus, the DMA address
becomes the value specified by DX plus the DMA base value until it
is changed by a subsequent Set DMA or set DMA base function.

Entry
-------►
CL: 1BH FUNCTION 27

GET ADDR(ALLOC)

Return

BX: ALLOC Offset

ES: Segment base

An "allocation vector" is maintained in main memory for each
on-line disk drive. Various system proqrams use the information
provided by the allocation vector to determine the amount of
remaining storage (see the STAT program). Function 27 returns the
segment base and the offset address of the allocation vector for the
currently selected disk drive. The allocation information may,
however, be invalid if the selected disk has been marked read/only.

Entry

CL: ICH
is ■ , \

FUNCTION 28

WRITE PROTECT DISK \ ____________________

Return
-■ " »

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold start, warm start, disk system reset,
or drive reset operation produces the message:

Bdos Err on d: R/0

All Information Presented Here is Proprietary to Digital Research

39

CP/M-86 System Guide 4.3 BDOS File Operations

Entry
---------►
CL: 1DH FUNCTION 29

GET READ/ONLY
VECTOR

Return

BX: R/O Vector Value

Function 29 returns a bit vector in register BX which indicates
drives which have the temporary read/onlv bit set. Similar to
function 24, the least significant bit corresponds to drive A, while
the most significant bit corresponds to drive P. The R/0 bit is set
either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M-86 which detect changed disks.

Entry
_________ _ ----------------- \CL: 1EH FUNCTION 30

DX: FCB SET FILE
Offset ATTRIBUTES

Return
-----------►
AL: Return Code

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/0, System and Archive attributes (tl", t 2 ' , and
tS"*) can be set or reset. The DX pair addresses a FCB containing a
file name with the appropriate attributes set or reset. It is the
user^s responsibility to insure that an ambiguous file name is not
specified. Function 30 searches the default disk drive directory
area for directory entries that belong to the current user number
and that match the FCB specified name and type fields. All matching
directory entries are updated to contain the selected indicators.
Indicators fl' through f4"* are not presently used, but may be useful
for applications programs, since they are not involved in the
matching process during file open and close operations. Indicators
fS"* through fS' are reserved for future system expansion. The
currently assigned attributes are defined as follows:

tl": The R/0 attribute indicates if set that the file
is in read/only status. BDOS will not allow write
commands to be issued to files in R/0 status.

t2': The System attribute is referenced by the CP/M DIR
utility. If set, DIR will not display the file in
a directory display.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 4.3 Bnos File Operations

t3"*: The Archive attribute is reserved but not actually
used bv r V M - % 6 If set it indicates that the file
has been written to back up storaqe bv a user
written archive program. To implement this
facility, the archive program sets this attribute
when it copies a file to back up storaqe; anv
proqrams updatinq or creatinq files reset this
attribute. Further, the archive proqram backs u p
only those files that have the Archive attribute
reset. Thus, an automatic back up facilitv
restricted to modified files can be easily
implemented.

Function 30 returns with reqister AL set to Offh (255 decimal)
if the referenced file cannot be found, otherwise a value of zero is
returned.

Entrv --------- ►
CL: 1FH

s.
FUNCTION 31

\
GET

(DISK
ADDR
PARMS)

Return

RX: DPR Offset

ES: Segment Base

The offset and the seqment base of the BIOS resident disk
parameter block of the currently selected drive are returned in BX
and ES as a result of this function call. This control block can be
used for either of two purposes. First, the disk parameter values
can be extracted for displav and space computation purposes, or
transient programs can dynamically change the values of current disk
parameters when the disk environment changes, if required.
Normally, application programs will not require this facility.
Section 6.3 defines the BIOS disk parameter block.

Entrv

CL: 20H

DL: OFFH(get)
or

User Code
(set)

's------------------------- \

>

FUNCTION 32

SET/GET
USER CODE

Return

AL: Current Code
or no value

An application proqram can chanqe or interrogate the currently
active user number by calling function 32. If register DL = OFFH,
then the value of the current user number is returned in register
AL, where the value is in the ranqe 0 to 15. If register DL is not
OFFH, then the current user number is changed to the value of DL
(modulo 16).

All Information Presented Here is Proprietary to Digital Research

41

CP/M-86 System Guide 4.3 BDOS File Operations

Entry
..

CL: 21H

DX: FCB
Offset

FUNCTION 33

READ RANDOM

Return
1 »

AL: Return Code

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions rO at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (rO), middle
byte next (rl) , and high byte last (r2). CP/M does not reference
byte r2, except in computing the size of a file (function 35) . Byte
r2 must be zero, however, since a non-zero value indicates overflow
past the end of file.

Thus, the rO,rl byte pair is treated as a double-byte, or
"word" value, which contains the record to read. This value ranges
from 0 to 65535, providing access to any particular record of any
size file. In order to access a file using the Read Random
function, the base extent (extent 0) must first be opened. Although
the base extent may or may not contain any allocated data, this
ensures that the FCB is properly initialized for subsequent random
access operations. The selected record number is then stored into
the random record field (r0,rl), and the BDOS is called to read the
record. Upon return from the call, register AL either contains an
error code, as listed below, or the value 00 indicating the
operation was successful. In the latter case, the buffer at the
current DMA address contains the randomly accessed record. Note
that contrary to the sequential read operation, the record number is
not advanced. Thus, subsequent random read operations continue to
read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode
to sequential read, and the last record will be re-written as you
switch to a sequential write operation. You can, of course, simply
advance the random record position following each random read or
write to obtain the effect of a sequential I/O operation.

All Information Presented Here is Proprietary to Digital Research

CP/m -86 System Guide 4.3 BDOS File Operations

Error codes returned in register AL following a random read are
listed in Table 4-4, below.

Table 4-4. Function 33 (Read Random) Error Codes
Code Meaning

01 Reading unwritten data - This error code is returned
when a random read operation accesses a data block which
has not been previously written.

02 (not returned by the Random Read command)

03 Cannot close current extent - This error code is
returned when BDOS cannot close the current extent prior
to moving to the new extent containing the record
specified by bytes r0,rl of the FCB. This error can be
caused by an overwritten FCB or a read random operation
on an FCB that has not been opened.

04 Seek to unwritten extent - This error code is returned
when a random read operation accesses an extent that has
not been created. This error situation is equivalent to
error 01.

05 (not returned by the Random Read command)

06 Random record number out of range - This error code is
returned whenever byte r2 of the FCB is non-zero.

Normally, non-zero return codes can be treated as missing data, with
zero return codes indicating operation complete.

All Information Presented Here is Proprietary to Digital Research

43

CP/M-86 System Guide 4.3 BDOS File Operations

Entry

CL: 22H
DX: FCB

Offset

FUNCTION 34

WRITE RANDOM

Return
------------ ►
AL: Return Code

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the
current DMA address. Further, if the disk extent or data block
which is the target of the write has not yet been allocated, the
allocation is performed before the write operation continues. As in
the Read Random operation, the random record number is not changed
as a result of the write. The logical extent number and current
record positions of the file control block are set to correspond to
the random record which is being written. Sequential read or write
operations can commence following a random write, with the note that
the currently addressed record is either read or rewritten again as
the sequential operation begins. You can also simply advance the
random record position following each write to get the effect of a
sequential write operation. In particular, reading or writing the
last record of an extent in random mode does not cause an automatic
extent switch as it does in sequential mode.

In order to access a file using the Write Random function, the
base extent (extent 0) must first be opened. As in the Read Random
function, this ensures that the FCB is properly initialized for
subsequent random access operations. If the file is empty, a Make
File function must be issued for the base extent. Althouqh the base
extent may or may not contain any allocated data, this ensures that
the file is properly recorded in the directory, and is visible in
DIR requests.

Upon return from a Write Random cal’’ , register AL either
contains an error code, as listed in Table 4-5 below, or the value
00 indicating the operation was successful.

Table 4-5. Function 34 (WRITE RANDOM) Error Codes
Code Meaning
01 (not returned by the Random Write command)
02 No available data block - This condition is encountered

when the Write Randdto command attempts to allocate a new
data block to the file and no unallocated
exist on the selected disk drive.

data blocks

All Information Presented Here is Proprietary to Digital Research

44

CP/M-86 System Guide 4.3 BDOS File Operations

Table 4-5. (continued)
Code Meaning

03 Cannot close current extent - This error code is
returned when BDOS cannot close the current extent prior
to moving to the new extent containing the record
specified by bytes r0,rl of the FCB. This error can be
caused by an overwritten FCB or a write random operation
on an FCB that has not been opened.

04 (not returned by the Random Write command)

05 No available directory space - This condition occurs
when the write command attempts to create a new extent
that requires a new directory entry and no available
directory entries exist on the selected disk drive.

06 Random record number out of range - This error code is
returned whenever byte r2 of the FCB is non-zero.

Entry
s---7------------- \CL: 23H FUNCTION 35

DX: FCB COMPUTE FILE
Offset \ SIZE

Return
---------- ►
Random Record

Field Set

When computing the size of a file, the DX register addresses an
FCB in random mode format (bytes rO, rl, and r2 are present). The
FCB contains an unambiguous file name which is used in the directory
scan. Upon return, the random record bytes contain the "virtual"
file size which is, in effect, the record address of the record
following the end of the file. If, following a call to function 35,
the high record byte r2 is 01, then the file contains the maximum
record count 65536. Otherwise, bytes rO and rl constitute a 16-bit
value (rO is the least significant byte, as before) which is the
file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of
file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size
when the file is written sequentially. If, instead, the file was
created in random mode and "holes" exist in the allocation, then the
file may in fact contain fewer records than the size indicates. If,
for example, a single record with record number 65535 (CP/M's
maximum record number) is written to a file using the Write Random
function, then the virtual size of the file is 65536 records,
although only one block of data is actually allocated.

All Information Presented Here is Proprietary to Digital Research

45

CP/M-86 System Guide 4.3 BDOS Pile Operations

Entry
—-- ►

CL: 24H

DX: FCB
Offset

V----------- ------ -
FUNCTION 36

SET RANDOM
\ RECORD

Return
- — — ►
Random Record

Field Ret

The Set Random Record function causes the BDOS to automatically
produce the random record position of the next record to be accessed
from a file which has been read or written sequentially to a
particular point. The function can be useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "kev" fields.
As each key is encountered, function 36 is called to compute the
random record position for the data corresponding to this key. If
the data unit size is 128 bytes, the resulting record position minus
one is placed into a table with the key for later retrieval. After
scanning the entire file and tabularizing the kevs and their record
numbers, you can move instantly to a particular keyed record by
performing a random read usinq the corresponding random record
number which was saved earlier. The scheme is easily generalized
when variable record lengths are involved since the program need
only store the buffer-relative byte position along with the key and
record number in order to find the exact starting position of the
keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read
and write operations continue from the next record in the file.

Entry __________________ Return--- -------------- \
CL: 25H FUNCTION 37

DX: Drive
Vector k RESET DRIVE

The Reset Drive function is used to proqrammatically restore
specified drives to the reset state (a reset drive is not logged-in
and is in read/write status). The passed parameter in register DX
is a 16 bit vector of drives to be reset, where the least
significant bit corresponds to the first drive, A, and the high
order bit corresponds to the sixteenth drive, labelled P. Bit
values of "1" indicate that the specified drive is to be reset.

In order to maintain compatibility with MP/M, CP/M returns a
zero value for this function.

All Information Presented Here is Proprietary to Digital Research

46

CP/M-86 System Guide

Entry Return

CL: 28H
S

FUNCTION 40 AL: Return Code

DX: FCB WRITE RANDOM
Offset k WITH ZERO FILL

The Write Random With Zero Fill function is similar to the
Write Random function (function 34) with the exception that a
previously unallocated data block is initialized to records filled
with zeros before the record is written. If this function has been
used to create a file, records accessed by a read random operation
that contain all zeros identify unwritten random record numbers.
Unwritten random records in allocated data blocks of files created
using the Write Random function contain uninitialized data.

Entry ----------------------- \

CL: 2FH FUNCTION 47

DMA buffer: Command Line k
CHAIN TO PROGRAM

Return

The CHAIN TO PROGRAM function provides a means of chaining from
one program to the next without operator intervention. Although there is no passed parameter for this call, the calling process must
place a command line terminated by a null byte in the default DMA
buffer.

Under CP/M-86™-, the CHAIN TO PROGRAM function releases the
memory of the calling function before executing the command. The command line is parsed and placed in the Base Page of the new
program. The Console Command Processor (CCP) then executes the
command line.

All Information Presented Here is Proprietary to Digital Research

^ntr y

CL: 031H FUNCTION 49
GET SYSDAT ADDRESS

L U X . i l

BX: SYSDAT Address
Offset

ES: SYSDAT Address
Segment

The GET SYSDAT function returns the address of the System Data
Area. The system data area includes the following information:

dmaad equ word Ptr 0 ;user DMA address
dmabase equ word ptr 2 ;user DMA base
curdsk equ byte ptr 4 ;current user disk
usrcode equ byte ptr 5 ,-current user number
control_p_flag equ byte ptr 22 /•listing toggle...

;set by ctrl-p
console_width equ byte ptr 64
pr inter_width equ byte ptr 65
console_column equ byte ptr 66
pr inter_column equ byte ptr 67

The following list provides an explanation of system data area
parameters.

• dmaad means current user DMA address.
•» dmabase means current user DMA base.
» curdsk means current user disk, 0-15 (A-P).
• usrcode means current user area, 0-15.
» control_p_flag, 0 means do not echo console output to the

printer. FF means echo to the printer.

Entry , Return• s
CL: 32H FUNCTION 50
DX: BIOS DIRECT BIOS CALL
Descriptor

Function 50 provides a direct BIOS call and transfers control
through the BDOS to the BIOS. The DX register addresses a five-byte
memory area containing the BIOS call parameters:

8-bit 16-bit 16-bit
Func value(CX) value(DX)

where Func is a BIOS function number, (see Table 5-1) , and value (CX)
and value(DX) are the 16-bit values which would normally be passed
directly in the CX and DX registers with the BIOS call. The CX and DX values are loaded into the 8086 registers before the BIOS call is
initiated.

All Information Presented Here is Proprietary to Digital Research

48

CP/M-86 System Guide 4.3 BDOS File Operations

Entry
------— ■— +>
CL: 33H

DX: Base
Address

FUNCTION 51
SET DMA BASE

Return
— — ---#»

Function 51 sets the base register for subsequent DMA
transfers. The word parameter in DX is a paragraph address and is
used with the DMA offset to specify the address of a 128 byte buffer
area to be used in the disk read and write functions. Note that
upon initial program loading, the default DMA base is set to the
address of the user^s data segment (the initial value of DS) and the
DMA offset is set to 0080H, which provides access to the default
buffer in the base page.

Entrv
—----— ►
CL: 34H

\

FUNCTION 52
GET DMA BASE

Return

BX: DMA Offset

ES: DMA Segment

Function 52 returns the current DMA Base Segment address in ES,
with the current DMA Offset in DX.

4.4 BDOS Memory Management and Load
Memory is allocated in two distinct ways under CP/M-86. The

first is through a static allocation map, located within the BIOS,
that defines the physical memory which is available on the host
system. In this way, it is possible to operate CP/M-86 in a memory
configuration which is a mixture of up to eight non-contiguous areas
of RAM or ROM, along with reserved, missing, or faulty memory
regions. In a simple RAM-based system with contiguous memory, the
static map defines a single region, usually starting at the end of
the BIOS and extending up to the end of available memory.

Once memory is physically mapped in this manner, CP/M-86
performs the second level of dynamic allocation to support transient
program loading and execution. CP/M-86 allows dynamic allocation of
memory into, again, eight regions. A request for allocation takes
place either implicitly, through a program load ooeration, or
explicitly through the BDOS calls given in this section. Programs
themselves are loaded in two ways: through a command entered at the
CCP level, or through the BDOS Program Load operation (function 59) .
Multiple programs can be loaded at the CCP level, as long as each
program executes a System Reset (function 0) and remains in memory
(DL = 01H). Multiple programs of this type only receive control by
intercepting interrupts, and thus under normal circumstances there

All Information Presented Here is Proprietary to Digital Research

49

CP/M-86 System Guide 4.4 BDOS Memory Management and Load

is only one transient program in memory at any given time. If,
however, multiple programs are present in memory, then CONTROL-C
characters entered by the operator delete these programs in the
opposite order in which they were loaded no matter which program is actively reading the console.

Any given program loaded through a CCP command can, itself,
load additional programs and allocate data areas. Suppose four
regions of memory are allocated in the following order: a program
is loaded at the CCP level through an operator command. The CMD
file header is read, and the entire memory image consisting of the
program and its data is loaded into region A, and execution beqins.
This program, in turn, calls the BDOS Program Load function (59) to load another program into region B, and transfers control to the
loaded program. The region B program then allocates an additional
region C, followed by a region D. The order of allocation is shown
in Figure 4-1 below:

Region A
Region B
Region C
Region D

Figure 4-1. Example Memory Allocation

There is a hierarchical ownership of these regions: the program in
A controls all memory from A through D. The program in B also
controls regions B through D. The program in A can release regions
B through D, if desired, and reload yet another program. DDT-86,
for example, operates in this manner by executing the Free Memory call (function 57) to release the memory used by the current program
before loading another test program. Further, the program in B can
release regions C and D if required by the application. It must be noted, however, that if either A or B terminates by a System Reset
(BDOS function 0 with DL = 00H) then all four regions A through D
are released.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 4.4 BDOS Memory Management and Load

A transient program may release a portion of a region, allowing
the released portion to be assigned on the next allocation request.
The released portion must, however, be at the beginning or end of
the region. Suppose, for example, the program in reqion B above
receives 800H paragraphs at paragraph location 100H following its
first allocation request as shown in Figure 4-2 below.

Length
8000H

1000H:

Region C

Figure 4-2. Example Memory Region

Suppose further that region D is then allocated. The last 200H
paragraphs in region C can be returned without affecting region D by
releasing the 200H paragraphs beginning at paragraph base 700H,
resulting in the memory arrangement shown in Figure 4-3.

Length =
6000H -

' 1000H:

k Region C

Length = f 7000H: ///////////
2000H ///////////

Figure 4-3. Example Memory Regions

The region beginning at paragraph address 7Q0H is now available for
allocation in the next request. Note that a memory request will
fail if eight memory regions have already been allocated. Normally,
if all program units can res'ide in a contiguous region, the system
allocates only one region.

£

All Information Presented Here is Proprietary to Digital Research

51

CP/M-86 System Guide 4.4 BDOS Memory Management and Load

Memory management functions beginning at 53 reference a Memory
Control Block (MCB), defined in the calling program, which takes the
form:

MCB:

16-bit 16-bit 8-bit
M-Base M-Length M-Ext

where M-Base and M-Length are either input or output values
expressed in 16-byte paragraph units, and M-Ext is a returned byte
value, as defined specifically with each function code. An error condition is normally flagged with a OFFH returned value in order to
match the file error conventions of CP/M.

Entry
CL: 35H
DX: Offset

of MCB

FUNCTION 53
GET MAX MEM

Return
.... »

AL: Return Code

Function 53 finds the largest available memory region which is
less than or equal to M-Length paragraphs. If successful, M-Base is set to the base paragraph address of the available area, and M-
Length to the paragraph length. AL has the value OFFH upon return
if no memory is available, and 00H if the request was successful.
M-Ext is set to 1 if there is additional memory for allocation, and
0 if no additional memory is available.

Entry
CL: 36H
DX: Offset

of MCB

FUNCTION 54
GET ABS MAX

Return
------------►
AL: Return Code

Function 54 is used to find the largest possible region at the
absolute paragraph boundary given by M-Base, for a maximum of M-
Length paragraphs. M-Length is set to the actual length if
successful. AL has the value OFFH upon return if no memory is
available at the absolute address, and 00H if the request was successful.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 4.4 BDOS Memory Management and Load

Entry fr
CL: 37H
DX: Offset

of MCB

FUNCTION 55
ALLOC MEM

Return
------------ fr-
AL: Return Code

The allocate memory function allocates a memory area according
to the MCB addressed by DX. The allocation request size is obtained
from M-Length. Function 55 returns in the user's MCB the base
paragraph address of the allocated region. Register AL contains a
00H if the request was successful and a OFFH if the memory could not
be allocated.

Entry
— ■ >
CL: 38H

DX: Offset
of MCB

FUNCTION 56

ALLOC ABS MEM

Return.............fr
AL: Return Code

The allocate absolute memory function allocates a memory area
according to the MCB addressed by DX. The allocation request size
is obtained from M-Length and the absolute base address from M-Base.
Register AL contains a 00H if the request was successful and a OFFH
if the memory could not be allocated.

Entry
------- ►»
CL: 39H

DX: Offset
Of MCB

FUNCTION 57

FREE MEM

Return
, — -»

Function 57 is used to release memory areas allocated to the
program. The value of the M-Ext field controls the operation of
this function: if M-Ext = OFFH then all memory areas allocated by
the calling program are released. Otherwise, the memory area of
length M-Length at location M-Base given in the MCB addressed by DX
is released (the M-Ext field-should be set to 00H in this case). As
described above, either an entire allocated region must be released,
or the end of a region must be released: the middle section cannot
be returned under CP/M-86.

All Information Presented Here is Proprietary to Digital Research

53

CP/M-86 System Guide 4.4 BDOS Memory Management and Load

Entry' »»
CL: 3AH

Return
— — — — &

Function 58 is used to release all memory in the CP/M-86
environment (normally used only by the CCP upon initialization).

Entry
— »
CL: 3BH
DX: Offset

of FCB

FUNCTION 59
PROGRAM LOAD

Return
— ---------
AX: Return Code/

Base Page Addr
BX: Base Page Addr

Function 59 loads a CMD file. Upon entry, register DX contains
the DS relative offset of a successfully opened FCB which names the
input CMD file. AX has the value 0FFFFH if the program load was
unsuccessful. Otherwise, AX and BX both contain the paragraph
address of the base page belonging to the loaded program. The base
address and segment length of each segment is stored in the base page. Note that upon program load at the CCP level, the DMA base
address is initialized to the base page of the loaded program, and
the DMA offset address is initialized to 0080H. However, this is a function of the CCP, and a function 59 does not establish a default
DMA address. It is the responsibility of the program which executes
function 59 to execute function 51 to set the DMA base and function
2 6 to set the DMA offset before passing control to the loaded
program.

All Information Presented Here is Proprietary to Digital Research

Section 5
Basic I/O System (BIOS) Organization

The distribution version of CP/M-86 is setup for operation with
the Intel SBC 86/12 microcomputer and an Intel 204 diskette
controller. All hardware dependencies are, however, concentrated in
subroutines which are collectively referred to as the Basic I/O
System, or BIOS. A CP/M-86 system implementor can modify these
subroutines, as described below, to tailor CP/M-86 to fit nearly any
8086 or 8088 operating environment. This section describes the
actions of each BIOS entry point, and defines variables and tables
referenced within the BIOS. The discussion of Disk Definition
Tables is, however, treated separately in the next section of this
manual.

5.1 Organization of the BIOS
The BIOS portion of CP/M-86 resides in the topmost portion of

the operating system (highest addresses) , and takes the general form
shown in Figure 5-1, below:

CS,

BIOS:

DS, ES, SS:

CS + 2500H:
CS + 253FH:

Console
Command
Processor

and
Basic
Disk
Operating
System

BIOS Jump Vector

BIOS Entrv Points

Disk
Parameter
Tables

Uninitialized
Scratch RAM

Figure 5-1. General CP/M-86 Organization

All Information Presented Here is Proprietary to Digital Research

55

CP/M-86 System Guide 5.1 Organization of the BIOS

As described in the following sections, the CCP and BDOS are
supplied with CP/M-86 in hex file form as CPM.H86. In order to
implement CP/M-86 on non-standard hardware, you must create a BIOS
which performs the functions listed below and concatenate the
resulting hex file to the end of the CPM.H86 file. The GENCMD
utility is then used to produce the CPM.SYS file for subsequent load
by the cold start loader. The cold start loader that loads the
CPM.SYS file into memory contains a simplified form of the BIOS,
called the LDBIOS (Loader BIOS). It loads CPM.SYS into memory at
the location defined in the CPM.SYS header (usually 0400H). The
procedure to follow in construction and execution of the cold start
loader and the CP/M-86 Loader is given in a later section.

Appendix D contains a listing of the standard CP/M-86 BIOS for
the Intel SBC 86/12 system using the Intel 204 Controller Board.
Appendix E shows a sample "skeletal” BIOS called CBIOS that contains
the essential elements with the device drivers removed. You may
wish to review these listings in order to determine the overall
structure of the BIOS.

5.2 The BIOS Jump Vector
Entry to the BIOS is through a "jump vector" located at offset

2500H from the base of the operating system. The jump vector is a
sequence of 21 three-byte jump instructions which transfer program
control to the individual BIOS entry points. Although some non
essential BIOS subroutines may contain a single return (RET)
instruction, the corresponding jump vector element must be present
in the order shown below in Table 5-1. An example of a BIOS jump
vector may be found in Appendix D, in the standard CP/M-86 BIOS
listing.

Parameters for the individual subroutines in the BIOS are
passed in the CX and DX registers, when required. CX receives the
first parameter; DX is used for a second argument. Return values
are passed in the registers acco dinq to type: Byte values are
returned in AL. Word values (16 bits) are returned in BX. Specific
parameters and returned values are described with each subroutine.

All Information Presented Here is Proprietarv to Digital Research

CP/M-86 System Guide 5.2 The. BIOS Jump Vector

Table 5-1. BIOS Jump Vector
Offset from
Beqinning
of BIOS

Suggested
Instruction

BIOS
F# Description

2500H JMP INIT 0 Arrive Here from Cold Boot
2503H JMP WBOOT 1 Arrive Here for Warm Start
2506H JMP CONST 2 Check for Console Char Ready
2509H JMP CONIN 3 Read Console Character In
250CH JMP CONOUT 4 Write Console Character Out
250FH JMP LIST 5 Write Listinq Character Out
2512H JMP PUNCH 6 Write Char to Punch Device
2515H JMP READER 7 Read Reader Device
2518H JMP HOME 8 Move to Track 00
251BH JMP SELDSK 9 Select Disk Drive
251EH JMP SETTRK 10 Set Track Number
2521H JMP SETSEC 11 Set Sector Number
2524H JMP SETDMA 12 Set DMA Offset Address
2527H JMP READ 13 Read Selected Sector
252AH JMP WRITE 14 Write Selected Sector
252DH JMP LISTST 15 Return List Status
2530H JMP SECTRAN 16 Sector Translate
2533H JMP SETDMAB 17 Set DMA Segment Address
2536H JMP GETSEGB 18 Get MEM DESC Table Offset
2539H JMP GETIOB 19 Get I/O Mapping Byte
253CH JMP SETIOB 20 Set I/O Mapping Byte

There are three major divisions in the BIOS jump table: system
(re) initialization subroutines, simple character I/O.subroutines,
and disk I/O subroutines.

5.3 Simple Peripheral Devices
All simple character I/O operations are assumed to be performed

in ASCII, upper and lower case, with hiqh order (parity bit) set to
zero. An end-of-file condition for an input device is qiven by an
ASCII control-z (1AH). Peripheral devices are seen by CP/M-86 as
"logical" devices, and are assigned to physical devices within the
BIOS. Device characteristics are defined in Table 5-2.

All Information Presented Here is Proprietary to Digital Research

57

CP/M-86 System Guide 5.3 Simple Peripheral Devices

Table 5-2. CP/M-86 Logical Device Characteristics
Device Name Characteristics

CONSOLE The p r i n c i p a l interactive console which
communicates with the operator, accessed through
CONST, CONIN, and CONOUT. Typically, the CONSOLE
is a device such as a CRT or Teletype.

LIST The principal 1 istinq device, if it exists on your
system, which is usually a hard-copy device, such
as a printer or Teletype.

PUNCH The principal tape punch.inq device, if it exists,
which is normally a high-speed paper tape ounch or
Teletype.

READER The principal tape reading device, such as a
simple optical reader or teletype.

Note that a single peripheral can be assigned as the LIST,
PUNCH, and READER device simultaneously. If no peripheral device is
assigned as the LIST, PUNCH, or READER device, your CHIOS should
give an appropriate error message so that the system does not "hang"
if the device is accessed by PIP or some other transient proqram.
Alternately, the PUNCH and LIST subroutines can iust simolv return,
and the READER subroutine can return with a IAH (ctl-7.) in reg A to
indicate immediate end-of-file.

For added flexibility, you can optionally implement the
"IOBYTE" function which allows reassignment of physical and logical
devices.. The IOBYTE function creates a mapping of logical to
physical devices which can be altered durinq CP/M-86 processing (see
the STAT command). The definition of the IOBYTE function
corresponds to the Intel standard as follows: a single location in
the BIOS is maintained, called IOBYTE, which defines the logical to
physical device mappinq which is in effect at a particular time.
The mappinq is performed by splitting the IOBYTE into four distinct
fields of two bits each, called the CONSOLE, READER, PUNCH, and LIST
fields, as shown below:

most significant least significant
IOBYTE LIST PUNCH READER CONSOLE

bits 6,1 bits 4,5 bits 2,3 bits 0,1

All Information Presented Here is Proprietary to Digital Research

58

CP/M-86 System Guide 5.3 Simple Peripheral Devices

The value in each field can be in the range 0-3, defining the
assigned source or destination of each logical device. The values
which can be assigned to each field are given in Table 5-3, below.

Table 5-3. IOBYTE Field Definitions
CONSOLE field (bits 0,1)

0 - console is assigned to the console printer (TTY:)
1 - console is assigned to the CRT device (CRT:)
2 - batch mode: use the READER as the CONSOLE input,

and the LIST device as the CONSOLE output (BAT:)
3 - user defined console device (UCl:)

READER field (bits 2,3)
0 - READER is the Teletype device (TTY:)
1 - READER is the high-speed reader device (RDR:)
2 - user defined reader # 1 (URl:)
3 - user defined reader # 2 (UR2:)

PUNCH field (bits 4,5)
0 - PUNCH is the Teletype device (TTY:)
1 - PUNCH is the high speed punch device (PUN:)
2 - user defined punch # 1 (UPl:)
3 - user defined punch # 2 (UP2:)

LIST field (bits 6,7)
0 - LIST is the Teletype device (TTY:)
1 - LIST is the CRT device (CRT:)
2 - LIST is the line printer device (LPT:)
3 - user defined list device (ULl:)

Note again that the implementation of the IOBYTE is optional,
and affects only the organization of your CBIOS. No CP/M-86
utilities use the IOBYTE except for PIP which allows access to the
physical devices, and STAT which allows logical-physical assignments
to be made and displayed. In any case, you should omit the IOBYTE
implementation until your basic CBIOS is fully implemented and
tested, then add the IOBYTE to increase your facilities.

(

All Information Presented Here is Proprietary to Digital Research
59

CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

5.4 BIOS Subroutine Entry Points
The actions which must take place upon entry to each BIOS

subroutine are given below. It should be noted that disk I/O is
always performed through a sequence of calls on the various disk
access subroutines. These setup the disk number to access, the
track and sector on a particular disk, and the direct memory access
(DMA) offset and seqment addresses involved in the I/O operation.
After all these parameters have been setup, a call is made to the
READ or WRITE function to perform the actual I/O operation. Note
that there is often a single call to SELDSK to select a disk drive,
followed by a number of read or write operations to the selected
disk before selecting another drive for subsequent operations.
Similarly, there may be a call to set the DMA seqment base and a
call to set the DMA offset followed bv several calls which read or
write from the selected DMA address before the DMA address is
changed. The track and sector subroutines are always called before
the READ or WRITE operations are performed.

The READ and WRITE subroutines should perform several retries
(10 is standard) before reporting the error condition to the BDOS.
The HOME subroutine mav or may not actually perform the track 00
seek, depending upon your controller characteristics; the important
point is that track 00 has been selected for the next operation, and
is often treated in exactly the same manner as SETTRK with a
parameter of 00.

Table 5-4. BIOS Subroutine Summary
Subroutine Descr iption

INIT This subroutine is called directly bv the CP/M-86
loader after the CPM.SYS file has been read into
memory. The procedure is responsible for any
hardware initialization not performed by the
bootstrap loader, setting initial values for BIOS
variables (including IOBYTE), printing a siqn-on
messaqe, and initializing the interrupt vector to
point to the BDOS offset (0B06H) and base, when
this routine completes, it jumps to the CCP
offset (OH). All seqment registers should be
initialized at this time to contain the base of
the operating system.

WBOOT This subroutine is called whenever a proqram
terminates by performing a BDOS function #0 call.
Some re-initialization of the hardware or
software may occur here. When this routine
completes, it jumps directly to the warm start
entry point of the CCP (06H).

CONST Sample the status of the currently assigned
console device and return 0FFH in reqister AL if
a character is ready to read, and 00H in reqister
AL if no console characters are ready.

All Information Presented Here is Proprietary to Digital Research

60

CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4. (continued)
Subroutine Descr iption

CONIN Read the next console character into reqister AL,
and set the parity bit (high order bit) to zero.
If no console character is ready, wait until a
character is tvped before returning.

CONOTJT Send the character from reqister CL to the
console ^output device. The character is in
ASCII, with high order parity bit set to zero.
You may want to include a time-out on a line feed
or carriage return, if your console device
requires some time interval at the end of the
line (such as a TI Silent 700 terminal). You
can, if you wish, filter out control characters
which have undesirable effects on the console
device.

LIST Send the character from register CL to the
currently assigned listinq device. The character
is in ASCII with zero parity.

PUNCH Send the character from register CL to the
currently assigned punch device. The character
is in ASCII with zero parity.

READER Read the next character from the currently
assigned reader device into reqister AL with zero
parity (high order bit must be zero). An end of
file condition is reported by returning an ASCII
CONTROL-Z (1AH).

HOME Return the disk head of the currently selected
disk to the track 00 position. If your
controller does not have a special feature for
finding track 00, you can translate the call into
a call to SETTRK with a parameter of 0.

All Information Presented Here is Proprietary to Digital Research

61

CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4. (continued)
Subroutine Description

SELDSK Select the disk drive given by register CL for
further operations, where register CL contains 0
for drive A , 1 for drive B, and so on up to 1 5
for drive P (the standard CP/M-86 distribution
version supports two drives). On each disk
select, SELDSK must return in BX the base address
of the selected drivers Disk Parameter Header.
Ror standard floppy disk drives, the content of
the header and associated tables does not change.
The sample BIOS included with CP/M-86 called
CBIOS contains an example program segment that
performs the SELDSK function. If there is an
attempt to select a non-existent drive, SELDSK
returns BX=0000H as an error indicator. Although
SELDSK must return the header address on each
call, it is advisable to postpone the actual
phvsical disk select operation until an I/O
function (seek, read or write) is performed.
This is due to the fact that disk select
operations may take Place without a subsequent
disk operation and thus disk access mav be
substantially slower using some disk controllers.
On entry to SELDSK it is possible to determine
whether it is the first time the specified disk
has been selected. Register d l , bit 0 (least
significant bit) is a zero if the drive has not
been previously selected. This information is of
interest in systems which read configuration
information from the disk in order to set u p a
dynamic disk definition table.

SETTRK Register CX contains the track number for
subsequent disk accesses on the currently
selected drive. You can choose to seek the
selected track at this time, or delay the seek
until the next read or write actually occurs.
Register CX can take on values in the ranqe 0-76
corresponding to valid track numbers for standard
floppy disk drives, and 0-65535 for non-standard
disk subsystems.

SETSEC Register CX contains the translated sector number
for subsequent disk accesses on the currently
selected drive (see SECTRAN, below). You can
choose to send this information to the controller
at this point, or instead delay sector selection
until a read or write operation occurs.

All Information Presented Here is Proprietary to Digital Research

62

CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4. (continued)
Subroutine Description
SETDMA Register CX contains the DMA (disk memory access)

offset for subsequent read or write operations.
For example, if CX = 80H when SETDMA is called, then all subsequent read operations read their
data into 80H through OFFH offset from the
current DMA segment base, and all subsequent
write operations get their data from that
address, until the next calls to SETDMA and
SETDMAB occur. Note that the controller need not
actually support direct memory access. If, for
example, all data is received and sent through
I/O ports, the CBIOS which you construct will use the 128 byte area starting at the selected DMA
offset and base for the memory buffer during the
following read or write operations.

READ Assuming the drive has been selected, the track
has been set, the sector has been set, and the DMA offset and segment base have been specified,
the READ subroutine attempts to read one sector
based upon these parameters, and returns the
following error codes in register AL:
0 no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M-86 responds only to a zero or
non-zero value as the return code. That is, if
the value in register AL is 0 then CP/M-86
assumes that the disk operation completed properly. If an error occurs, however, the CBIOS
should attempt at least 10 retries to see if the
error is recoverable. When an error is reported the BDOS will print the message "BDOS ERR ON x:
BAD SECTOR". The operator then has the option of
typinq RETURN to ignore the error, or CONTROL-C
to abort.

WRITE Write the data from the currently selected DMA
buffer to the currently selected drive, track,
and sector. The data should be marked as "non-
deleted data" to maintain compatibility with
other CP/M systems. The error codes given in the
READ command are returned in register AL, with
error recovery attempts as described above.

LISTST Return the ready status of the list device. The
value 00 is returned in AL if the list device is not ready to accept a character, and OFFH if a
character can be sent to the printer.

All Information Presented Here is Proprietary to Digital Research
63

CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4. (continued)
Subroutine Descr iption

SECTRAN Performs logical to physical sector translation
to improve the overall response of CP/M-86.
Standard CP/M-86 systems are shipped with a "skew
factor" of 6, where five physical sectors are
skipped between sequential read or write
operations. This skew factor allows enough time
between sectors for most programs to load their
buffers without missing the next sector. In
computer systems that use fast processors, memory
and disk subsystems, the skew factor may be
changed to improve overall response. Note,
however, that you should maintain a single
density IBM compatible version of CP/M-86 for
information transfer into and out of your
computer system, using a skew factor of 6. In
general, SECTRAN receives a logical sector number
in CX. This logical sector number may range from
0 to ’the number of sectors -1. Sectran also
receives a translate table offset in DX. The
sector number is used as an index into the
translate table, with the resulting physical
sector number in BX. For standard systems, the
tables and indexing code is provided in the CBIOS
and need not be changed. If DX = 0000H no
translation takes place, and CX is simply copied
to BX before returning. Otherwise, SECTRAN
computes and returns the translated sector number
in BX. Note that SECTRAN is called when no
translation is specified in the Disk Parameter
Header.

SETDMAB Register CX contains the seqment base for
subsequent DMA read or write operations. The
BIOS will use the 128 byte buffer at the memory
address determined by the DMA base and the DMA
offset during read and write operations.

GETSEGB Returns the address of the Memory Region Table
(MRT) in BX. The returned value is the offset of
the table relative to the start of the operating
system. The table defines the location and
extent of physical memory which is available for
transient programs.

All Information Presented Here is Proprietary to Digital Research

64

CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4. (continued)
Subroutine Descr iption

Memory areas reserved for interrupt vectors and
the CP/M-86 operating system are not included in
the MRT. The Memory Region Table takes the form:

8-bit
MRT: R-Cnt

0: R-Base R-Lenqth

1: R-Base R-Length

R-Base R-Length

16-bit 16-bit

where R-Cnt is the number of Memory Reqion
Descriptors (equal to n+1 in the diagram above) ,
while R-Base and R-Lenqth give the paragraph base
and length of each physically contiguous area of
memory. Again, the reserved interrupt locations,
normally 0-3FFH, and the CP/M-86 operating system
are not included in this map, because the map
contains regions available to transient programs.
If all memory is contiguous, the R-Cnt field is 1
and n = 0, with only a single Memory Region
Descriptor which defines the region.

GETIOB Returns the current value of the logical to
physical input/output device byte (IOBYTE) in AL.
This eight-bit value is used to associate
physical devices with CP/M-86's four logical
devices .

SETIOB Use the value in CL to set the value of the
IOBYTE stored in the BIOS.

The following section describes the exact layout and
construction of the disk parameter tables referenced by various
subroutines in the BIOS.

All Information Presented Here is Proprietary to Digital Research

c

Section 6
BIOS Disk Definition Tables

Similar to CP/M-80, CP/M-86 is a table-driven operating system
with a separate field-configurable Basic I/O System (BIOS). By
altering specific subroutines in the BIOS presented in the previous
section, CP/M-86 can be customized for operation on any RAM-based
8086 or 8088 microprocessor svstem.

The purpose of this section is to present the organization and
construction of tables within the BIOS that define the
characteristics of a particular disk system used with CP/M-86.
These tables can be either hand-coded or automatically generated
usinq the OENDEF utility provided with CP/M-86. The elements of
these tables are presented below.

6.1 Disk Parameter Table Format
In general, each disk drive has an associated (16-byte) disk

parameter header which both contains information about the disk
drive and provides a scratchpad area for certain BDOS operations.
The format of the disk parameter header for each drive is shown
below.

Disk Parameter Header

XLT 0000 0000 0000 DIRBUF DPB CSV ALV

16b 16b 16b 16b 16b 16b 16b 16b

where each element is a word (16-bit) value. The meaning of each
Disk Parameter Header (DPH) element is given in Table 6-1.

Table 6-1. Disk Parameter Header Elements
Element Description

XLT Offset of the logical to physical translation vector,
if used for this particular drive, or the value 0000H
if no sector translation takes place (i.e, the
physical and logical sector numbers are the same).
Disk drives with identical sector skew factors share
the same translate tables.

0000 Scratchpad values for use within the BDOS (initial
value is unimportant).

All Information Presented Here is Proprietary to Digital Research

67

CP/M-86 System Guide 6.1 Disk Parameter 'fable Format

T a b le 6 - 1 . (c o n t i n u e d)

Element Descr iption

DIRBUF Offset of a 128 byte scratchpad area for directory
operations within BDOS. All DPH's address the same
scratchpad area.

DPB Offset of a disk parameter block for this drive.
Drives with identical disk characteristics address the
same disk parameter block.

CSV Offset of a scratchpad area used for software check for
changed disks. This offset is different for each DPR.

ALV Offset of a scratchpad area used by the BDOS to keep
disk storage allocation information, 'i’his offset is
different for each DPH.

Given n disk drives, the DPF's are arranqed in a table whose first
row of 16 bytes corresponds to drive 0, with the last row
correspondinq to drive n-1. The table thus appears as

DPBASE

00 XLT 00 0000 0000 0000 DIRBUF DBP 00 CSV 00 ALV 00
01 XLT 01 0000 0000 0000 DIRBUF DBP 01 CSV 01 ALV 01

(and so-forth throuqh)

n-1

where the label DPBASE defines the offset of the DPH table relative
to the beginninq of the operatinq system.

A responsibility of the SELDSK subroutine, defined in the
previous section, is to return the offset of the DPH from the
beginninq of the operatinq system for the selected drive. The
followinq sequence of operations returns the table offset, with a
OOOOH returned if the selected drive does not exist.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 6.1 Disk Parameter Table Format

NDISKS EQU 4 ;NUMBER OF DISK DRIVES

SELDSK:
;SELECT DISK N GIVEN BY CL
MOV BX,0000H READY FOR ERR
CPM CL,NDISKS N BEYOND MAX DISKS?
JNB RETURN RETURN IF SO

0 <= N < NDISKS
MOV CH, 0 DOUBLE (N)
MOV BX ,CX BX = N
MOV CL, 4 READY FOR * 16
SHL BX ,CL N = N * 16
MOV CX,OFFSET DPBASE
ADD BX ,CX •DPBASE + N * 16

RETURN: RET ;BX - .DPH (N)
The translation vectors (XLT 00 through XLTn-1) are located
elsewhere in the BIOS, and simply correspond one-for-one with the
logical sector numbers zero through the sector count-1. The Disk
Parameter Block (DPB) for each drive is more complex. A particular
DPB, which is addressed by one or more DPET'sv takes the general
form:

SPT BSH BLM EXM DSM DRM ALO AL1 CKS OFF

16b 8b 8b 8b 16b 16b 8b 8b 16b 16b

where each is a byte or word value, as shown by the "8b" or "16b"
indicator below the field. The fields are defined in Table 6-2.

Table 6-2. Disk Parameter Block Fields
Field Definition *

SPT is the total number of sectors per track
BSH is the data allocation block shift factor, determined

by the data block allocation size.

BLM is the block mask which is also determined by the data
block allocation size.

EXM is the extent mask, determined by the data block
allocation size and the number of disk blocks.

DSM determines the total storage capacity of the disk drive
DRM determines the total number of directory entries which

can be stored on this drive

All Information Presented Here is Proprietary to Digital Research

69

CP/M-86 System Guide 6.1 Disk Parameter Table Format

Table 6-2. (continued)
Field Def inition
ALOrALI determine reserved directory blocks.

CKS is the size of the directory check vector

OFF is the number of reserved tracks at the beginning of
the (logical) disk.

Although these table values are produced automatically by GENDEF, it
is worthwhile reviewing the derivation of each field so that the
values may be cross-checked when necessary. The values of BSH and
RLM determine (implicitly) the data allocation size BLS, which is
not an entry in the disk parameter block. Given that you have
selected a value for BLS, the values of BSH and BLM are shown in
Table 6-3 below, where all values are in decimal.

Table 6-3. BSH and BLM Values for Selected BLS
BLS BSH BLM

1,024 3 7
2,048 4 15
4,096 5 31
8,192 6 63

16,384 7 127

The value of EXM depends upon both the BLS and whether the DSM value
is less than 256 or greater than 255, as shown in the following
table.

Table 6-4. Maximum EXM Values
BLS DSM < 256 DSM > 255

1,024 0 N/A
2,048 1 0
4,096 3 1
8,192 7 3

16,384 15 7

The value of DSM is the maximum data block number supported by
this particular drive, measured in BLS units. The product BLS times
(DSM+1) is the total number of bytes held by the drive and, of
course, must be within the capacity of the physical disk, not
counting the reserved operating system tracks.

All Information Presented Here is Proprietary to Digital Research

70

CP/M-86 System Guide 6.1 Disk Parameter '’’able Format

The DRM entry is one less than the total number of directory
entries, which can take on a 16-bit value. The values of ALO and
ALl, however, are determined by DRM. The two values ALO and ALl can
together be considered a string of 16-bits, as shown below.

AL0 ALl

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

where position 00 corresponds to the high order bit of the byte
labeled AL0, and 15 corresponds to the low order bit of the byte
labeled ALl. Each bit position reserves a data block for a number
of directory entries, thus allowinq a total of 16 data blocks to be
assigned for directory entries (bits are assigned starting at 00 and
filled to the right until position 15). Each directory entry
occupies 32 bytes, as shown in Table 6-5.

Table 6-5. BLS and Number of Directory Entries
BLS Directory Entries
1,024 32 times # bits
2,048 64 times # bits
4,096 128 times # bits
8,192 256 times # bits

16,384 512 times # bits

Thus, if DRM = 127 (128 directory entries), and BLS = 1024, then
there are 32 directory entries per block, requiring 4 reserved
blocks. In this case, the 4 high order bits of AL0 are set,
resulting in the values AL0 = 0F0H and ALl = 00H.

The CKS value is determined as follows: if the disk drive
media is removable, then CKS = (DRM+D/4, where DRM is the last
directory entrv number. If the media is fixed, then set CKS = 0 (no
directory records are checked in this case).

Finally, the OFF field determines the number of tracks which
are skipped at the beginning of the physical disk. This value is
automatically added whenever SETTRK is called, and can be used as a
mechanism for skipping reserved operating system tracks, or for
partitioning a large disk into smaller segmented sections.

To complete the discussion of the DPB, recall that several
DPH's can address the same DPB if their drive characteristics are
identical. Further, the DPB can be dynamically changed when a new
drive is addressed by simply changing the pointer in the DPH since
the BDOS copies the DPB values to a local area whenever the SELDSK
function is invoked.

All Information Presented Here is Proprietary to Digital Research

71

CP/M-86 System Guide 6.1 Disk Parameter Table Format

Returning back to the DPH for a particular drive, note that the
two address values CSV and ALV remain. Both addresses reference an
area of uninitialized memory following the BIOS. The areas must be
unique for each drive, and the size of each area is determined by
the values in the DPB.

The size of the area addressed by CSV is CKS bytes, which is
sufficient to hold the directory check information for this
particular drive. If CKS = (DRM+l)/4, then you must reserve
{DRM+1) /4 bytes for directory check use. If CKS = 0, then no
storage is reserved.

The size of the area addressed by ALV is determined by the
maximum number of data blocks allowed for this particular disk, and
is computed as (DSM/8)+l.

The BIOS shown in Appendix D demonstrates an instance of these
tables for standard 8" single density drives. It may be useful to
examine this program, and compare the tabular values with the
definitions given above.

6.2 Table Generation Using GENDEF
The GENDEF utility supplied with CP/M-86 greatly simplifies the

table construction process. GENDEF reads a file

x .DEF

containing the disk definition statements, and produces an output
file

x .LIB

containing assembly language statements which define the tables
necessary to support a particular drive configuration. The form of
the GENDEF command is:

GENDEF x parameter list

where x has an assumed {and unspecified) filetype of DEF. The
parameter list may contain zero or more of the symbols defined in
Table 6-6.

Table 6-6. GENDEF Optional Parameters
Parameter Effect

$c Generate Disk Parameter Comments
$0 Generate DPBASE OFFSET $
$z Z80, 8080, 8085 Override
$COZ (Any of the Above)

All Information Presented Here is Proprietary to Digital Research

72

CP/M-86 System Guide 6.2 Table Generation Using GENDEF

The C parameter causes GENDEF to produce an accompanying
comment line, similar to the output from the "STAT DSK:" utility
which describes the characteristics of each defined disk. Normally,
the DPBASE is defined as

DPBASE EQU $

which requires a MOV CX,OFFSET DPBASE in the SELDSK subroutine shown
above. For convenience, the $0 parameter produces the definition

DPBASE EQU OFFSET $

allowing a MOV CX,DPBASE in SELDSK, in order to match your
particular programming practices. The $Z parameter is included to
override the standard 8086/8088 mode in order to generate tables
acceptable for operation with Z80, 8080, and 8085 assemblers.

The disk definition contained within x.DEF is composed with the
CP/M text editor, and consists of disk definition statements
identical to those accepted by the DISKDEF macro supplied with CP/M-
80 Version 2. A BIOS disk definition consists of the following
sequence of statements:

DISKS n
DISKDEF o,.
DISKDEF 1,.
DISKDEF n-1

ENDEF

Each statement is placed on a single line, with optional embedded
comments between the keywords, numbers, and delimiters.

The DISKS statement defines the number of drives to be
configured with your system, where n is an integer in the range 1
through 16. A series of DISKDEF statements then follow which define
the characteristics of each logical disk, 0 through n-1,
corresponding to logical drives A through P. Note that the DISKS
and DISKDEF statements generate the in-line fixed data tables
described in the previous section, and thus must be placed in a non
executable portion of your BIOS, typically at the end of your BIOS,
before the start of uninitialized RAM.

The ENDEF (End of Diskdef) statement generates the necessary
uninitialized RAM areas which are located beyond initialized RAM in
your BIOS.

All Information Presented Here is Proprietary to Digital Research

73

CP/M-86 System Guide 6.2 Table Generation Using GENDEF

The form of the

DISKDEF

where
dn is
fsc is
lsc is
skf is
bis is
dks is
dir is
cks is
of s is
[0] is

DISKDEF Statement is
dn,fsc,lsc,[skf],bls,dks,dir,cks,ofs,[0]

the logical disk number, 0 to n-1 .
the first physical sector number (0 or 1)
the last sector number
the optional sector skew factor
the data allocation block size
the disk size in bis units
the number of directory entries
the number of "checked” directory entries
the track offset to logical track 00
an optional 1.4 compatibility flag

The value "dn" is the drive number being defined with this DISKDEF
statement. The "fsc" parameter accounts for differing sector
numbering systems, and is usually 0 or 1. The "lsc" is the last
numbered sector on a track. When present, the "skf" parameter
defines the sector skew factor which is used to create a sector
translation table according to the skew. If the number of sectors
is less than 256, a single-byte table is created, otherwise each
translation table element occupies two bytes. No translation table
is created if the skf parameter is omitted or equal to 0.

The "bis" parameter specifies the number of bytes allocated to
each data block, and takes on the values 1024, 2048, 4096, 8192, or
16384. Generally, performance increases with larger data block
sizes because there are fewer directory references. Also, logically
connected data records are physically close on the disk. Further,
each directory entry addresses more data and the amount of BIOS work
space is reduced. The "dks" specifies the total disk size in "bis"
units. That is, if the bis = 2048 and dks = 1000, then the total
disk capacity is 2,048,000 bytes. If dks is greater than 255, then
the block size parameter bis must be greater than 1024. The value
of "dir" is the total number of directory entries which may exceed
255, if desired.

The "cks" parameter determines the number of directory items to
check on each directory scan, and is used internally to detect
changed disks during system operation, where an intervening cold
start or system reset has not occurred (when this situation is
detected, CP/M-86 automatically marks the disk read/only so that
data is not subsequently destroyed). As stated in the previous
section, the value of cks = dir when the media is easily changed, as
is the case with a floppy disk subsystem. If the disk is
permanently mounted, then the value of cks is typically 0, since the
probability of changing disks without a restart is quite low.

All Information Presented Here is Proprietary to Digital Research

74

CP/M-86 System Guide 6.2 Table Generation Using GENDEF

The "ofs” value determines the number of tracks to skip when
this particular drive is addressed, which can be used to reserve
additional operating system space or to simulate several logical
drives on a single large capacity physical drive. Finally, the [0]
parameter is included when file compatibility is required with
versions of CP/M-80, version 1.4 which have been modified for hiqher
density disks (typically double density). This parameter ensures
that no directory compression takes place, which would cause
incompatibilities with these non-standard CP/M 1.4 versions.
Normally, this parameter is not included.

For convenience and economy of table space, the special form

DISKDEF i,i

gives disk i the same characteristics as a previously defined drive
j. A standard four-drive single density system, which is compatible
with CP/M-80 Version 1.4, and upwardly compatible with CP/M-80
Version 2 implementations, is defined using the following
statements:

(

DISKS 4
DISKDEF 0,1
DISKDEF 1,0
DISKDEF 2,0
DISKDEF 3,0
ENDEF

with all disks having the same parameter values of 26 sectors per
track (numbered 1 through 26), with a skew of 6 between sequential
accesses, 1024 bytes per data block, 243 data blocks for a total of
243K byte disk capacity, 64 checked directory entries, and two
operating system tracks.

The DISKS statement generates n Disk Parameter Headers (DPH's) ,
starting at the DPH table address DPBASE generated by the statement.
Each disk header block contains sixteen bytes, as described above,
and corresponds one-for-one to each of the defined drives. In the
four drive standard system, for example, the DISKS statement
generates a table of the form:

DPBASE EQU
DPEO DW
DPE1 DW
DPE2 DW
DPE3 DW

$
XLTO,o o o o h ,o o o o h ,o o o o h ,d i r b u f ,d p b o ,c s v o ,alvo
XLTO,0000H,0000H,0000H,DIRBUF,DPB0,CSV1,ALVl
XLTO,OOOOH,OOOOH,OOOOH,DIRBUF,DPB0,CSV2,ALV2
XLTO,OOOOH,OOOOH,OOOOH,DIRBUF,DPBO,CSV3,ALV3

where the DPH labels are included for reference purposes to show the
beginning table addresses for each drive 0 through 3. The values
contained within the disk parameter header are described in detail
earlier in this section. The check and allocation vector addresses
are generated by the ENDEF statement for inclusion in the RAM area
following the BIOS code and tables.

All Information Presented Here is Proprietary to Digital Research

75

CP/M-86 System Guide 6.2 Table Generation Using GENDEF

Note that if the "skf" (skew factor) parameter is omitted (or
equal to 0), the translation table is omitted, and a 0000H value is
inserted in the XLT position of the disk parameter header for the
disk. In a subsequent call to perform the logical to physical
translation, SECTRAN receives a translation table address of DX =
0000H, and simply returns the original logical sector from CX in the
BX register. A translate table is constructed when the skf
parameter is present, and the (non-zero) table address is placed
into the corresponding DPH's. The table shown below, for example,
is constructed when the standard skew factor skf = 6 is specified in
the DISKDEF statement call:

XLTO EQU OFFSET $
DB 1,7,13,19,25,5,11,17,23,3,9,15,21
DB 2,8,14,20,26,6,12,18,24,4,10,16,22

Following the ENDEF statement, a number of uninitialized data
areas are defined. These data areas need not be a part of the BIOS
which is loaded upon cold start, but must be available between the
BIOS and the end of operating system memory. The size of the
uninitialized RAM area is determined by EQU statements generated by
the ENDEF statement. For a standard four-drive system, the ENDEF
statement might produce

1C72 = BEGDAT EQU OFFSET $
(data areas) .

1DB0 = ENDDAT EQU OFFSET $
013C = DATSIZ EOU OFFSET $-BEGDAT

which indicates that uninitialized RAM begins at offset 1C72H, ends
at 1DB0H-1, and occupies 013CH bytes. You must ensure that these
addresses are free for use after the system is loaded.

After modification, you can use the STAT program to check your
drive characteristics, since STAT uses the disk parameter block to
decode the drive information. The comment included in the LIB file
by the $C parameter to GENCMD will match the output from STAT. The
STAT command form

STAT d:DSK:
decodes the disk parameter block for drive d (d=A,
displays the values shown below:

r :
k :
d:
c :
e:
b:
s :
t:

128 Byte
Kilobyte
32 Byte
Checked
Records/
Records/
Sectors/
Reserved

Record Capacity
Drive Capacity
Directory Entries
Directory Entries
Extent
Block
Track
Tracks

,P) and

All Information Presented Here is Proprietary to Digital Research

76

CP/M-86 System Guide 6.3 GENDEF Output

6.3 GENDEF Output
GENDEF produces a listing of the Statements included in the DEF

file at the user console (CONTROL-P can be used to obtain a printed
listing, if desired). Each source line is numbered, and any errors
are shown below the line in error, with a "?" beneath the item which
caused the condition. The soi/rce errors produced by GENCMD are
listed in Table 6-7, followed by errors that can occur when
producing input and output files in Table 6-8.

Table 6-7. GENDEF Source Error Messages
Message Meaning

Bad Val More than 16 disks defined in DISKS statement.

Convert Number cannot be converted, must be constant
in binary, octal, decimal, or hexadecimal as
in ASM-86.

Delimit Missing delimiter between parameters.

Duplic Duplicate definition for a disk drive.

Extra Extra parameters occur at the end of line.

Length Keyword or data item is too long.

Missing Parameter required in this position.

No Disk Referenced disk not previously defined.

No Stmt Statement keyword not recognized.

Numer ic Number required in this position

Range Number in this position is out of range.

Too Few Not enough parameters provided.

Quote Missing end quote on current line.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 6.3 GENDEF Output

Table 6-8. GENDEF Input and Output Error Messages
Message Meaning

Cannot Close ".LIB" File LIB file close operation
unsuccessful, usually due
to hardware write protect.

"LIB" Disk Full No space for LIB file.
No Input File Present Specified DEF file not

found.
No ".LIB" Directory Space Cannot create LIB file due

to too manv files on LIB
disk.

Premature End-of-File End of DEF file encountered
unexpectedly.

Given the file TWO.DEF containing the following statements

disks 2
diskdef 0,1,26,6,2048,256,128,128,2
diskdef 1,1,58,,2048,1024,300,0,2
endef

the command

gencmd two $c

produces, the console output

DISKDEF Table Generator, Vers 1.0
1 DISKS 2
2 DISKDEF 0,1,58,,2048,256,128,128,2
3 DISKDEF 1,1,58,,2048,1024,300,0,2
4 ENDEF
No Error(s)

The resulting TWO.LIB file is brought into the following skeletal
assembly language program, using the ASM-86 INCLUDE directive. The
ASM-86 output listing is truncated on the right, but can be easily
reproduced using GENDEF and ASM-86.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 6.3 GENDEF Output

; Sample Proqram Including TWO.LI

SELDSK:

0000 B9 03 00 MOV CX,OFFSET DPBASE
= 1 • • • t

INCLUDE TWO.LIB
= DISKS 2
= 0003 dpbase equ $;Base o
= 0003 32 00 00 00 dpeO dw XltO,0000h ;Transl= 0007 00 00 00 00 dw 0000h,0000h ;Scratc
= 000B 5B 00 23 00 dw dirbuf,dpb0 ;Dir Bu
= Q00F FB 00 DB 00 dw csvO,alvO ; Check,
= 0013 00 00 00 00 dpel dw xltl,0000h ;Transl
= 0017 00 00 00 00 dw 0000h,0000h ;Scratc
= 001B 5B 00 4C 00 dw dirbuf,dpbl ;Dir Bu
= 001F 9B 01 1B 01 dw csvl,alvl ;Check,
s = DISKDEF 0,1,26;6 ,2048,2
= Disk 0 is CP/M 1.4 Single Densi
= 4096 128 Byte Record Capacit
= 512 Kilobyte Drive Capacit
= 128 32 Byte Directory Entri
= 128 Checked Directory Entri
= 256 Records / Extent
= 16 Records / Block
= 26 Sectors / Track
= 2 Reserved Tracks
SS 6 Sector Skew Factor
SS 0023 3pb0 equ offset $;Disk P
= 0023 1A 00 dw 26 ;Sector
SS 0025 04 db 4 ;Block
= 0026 OF db 15 ;Block
SS 0027 01 db 1 ;Extnt
= 0028 FF 00 dw 255 ;Disk S
SS 002A 7F 00 dw 127 ;Direct
— 002C CO db 192 ; AllocO
SS 002D 00 db 0 ; Allocl
= 002E 20 00 dw 32 ;Check
= 0030 02 00 dw 2 ;Offset
= 0032 xltO equ offset $;Transl
SS 0032 01 07 QD 13 db 1,7,13,19
= 0036 19 05 OB 11 db 25,5,11,17

003A 17 03 09 OF db 23,3,9,15
= 003E 15 02 08 0E db 21,2,8,14
SS 0042 14 1A 06 OC db 20,26,6,12
= 0046 12 18 04 0A db 18,24,4,10
= 004A 10 16 db 16,22
SS 0020 alsO equ 32 jAlloca
SS 0020 cssO equ 32 ;Check

DTSKDEF 1,1,58,,2048,10

Disk 1 is CP/M 1.4 Single Densi
16384: 128 Byte Record Caoacit

All Information Presented Here is Proprietary to Digital Research

79

CP/M-86 System Guide 6.3 GENDEF Outout

= 2048 Kilobyte Drive Capacit
= 300 32 Byte Directory Entri
= 0 Checked nirectory Entri
= 128 Records / Extent
= 16 Records / Block
= 58 Sectors / Track
= 2 Reserved Tracks
= 004C dpbl equ offset $ Disk P
= 004C 3A 00 dw 58 Sector
- 004E 04 db 4 Block
= 004F OF db 15 Block
= 0050 00 db 0 Extnt
= 0051 FF 03 dw 1023 Disk S
= 0053 2B 01 dw 299 Direct
= 0055 F8 db 248 AllocO
= 0056 00 db 0 Al loci
= 0057 00 00 dw 0 Check
= 0059 02 00 dw 2 Offset
= 0000 xltl equ 0 No Tra
= 0080 alsl equ 128 Alloca
= 0000 cssl equ 0 Check
= •

9 ENDEF

=
9

9 Uninitialized Scratch Memory Fo
= 005B

9

beqdat equ offset $ Start
= 005B dirbuf rs 128 Direct
= 00DB alvO rs alsO Alloc
= oofb csvO rs cssO Check
= 011B alvl rs alsl Alloc
= 019B csvl rs cssl Check
= 019B enddat equ offset $ End of
= 0140 dats i z equ offset $-beqdat Size o
= 019B 00 db 0 Marks

END

All Information Presented Here is Proprietary to Digital Research

Section 7
CP/M-86 Bootstrap and Adaptation Procedures

This section describes the components of the standard CP/M-86
distribution disk, the operation of each component, and the
procedures to follow in adapting CP/M-86 to non-standard hardware.

CP/M-86 is distributed on a sinqie-density IBM compatible 8"
diskette using a file format which is compatible with all previous
CP/M-80 operating systems. In particular, the first two tracks are
reserved for operating system and bootstrap programs, while the
remainder of the diskette contains directory information which leads
to program and data files. CP/M-86 is distributed for operation
with the Intel SBC 86/12 single-board computer connected to floppy
disks through an Intel 204 Controller. The operation of CP/M-86 on
this configuration serves as a model for other 8086 and 8088
environments, and is presented below.

The principal components of the distribution system are listed
below:

• The 86/12 Bootstrap ROM (BOOT ROM)
• The Cold Start Loader (LOADER)
• The CP/M-86 System (CPM.SYS)

When installed in the SBC 86/12, the BOOT ROM becomes a part of
the memory address space, beginning at byte location 0FF000H, and
receives control when the system reset button is depressed. In a
non-standard environment, the BOOT ROM is replaced by an equivalent
initial loader and, therefore, the ROM itself is not included with
CP/M-86. The BOOT ROM can be obtained from Digital Research or,
alternatively, it can be programmed from the listinq given in
Appendix C or directly from the source file which is included on the
distribution disk as BOOT.A86. The responsibility of the BOOT ROM
is to read the LOADER from the first two system tracks into memory
and pass program control to the LOADER for execution.

7.1 The Cold Start Load Operation
The LOADER program is a simple version of CP/M-86 that contains

sufficient file processing capability to read CPM.SYS from the
system disk to memory. When LOADER completes its operation, the
CPM.SYS program receives control and proceeds to process operator
input commands.

Both the LOADER and CPM.SYS programs are preceded by the
standard CMD header record. The 128-bvte LOADER header record
contains the following single group descriptor.

All Information Presented Here is Proprietary to Digital Research

81

CP/M-86 System Guide 7.1 The Cold Start Load Operation

G-Form G-Length A-Base G-Min G-Max

1 xxxxxxxxx 0400 xxxxxxx xxxxxxx

8b 16b 16b 16b 16b

where G-Form = 1 denotes a code group, "x" fields are ignored, and
A-Base defines the paragraph address where the BOOT ROM begins
filling memory (A-Base is the word value which is offset three bytes
from the beginning of the header) . Note that since only a code
group is present, an 8080 memory model is assumed. Further,
although the A-Base defines the base paragraph address for LOADER
(byte address 04000H) , the LOADER can, in fact be loaded and
executed at any paragraph boundary that does not overlap CP/M-86 or
the BOOT ROM.

The LOADER itself consists of three parts: the Load CPM
program (LDCPM), the Loader Basic Disk System (LDBDOS), and the
Loader Basic I/O System (LDBIOS). Although the LOADER is setup to
initialize CP/M-86 using the Intel 86/12 configuration, the LDBIOS
can be field-altered to account for non-standard hardware using the
same entry points described in a previous section for BIOS
modification. The organization of LOADER is shown in Figure 7-1
below:

CS DS ES SS 0000H:

0400H:

1200H:

1700H:

Figure 7-1. LOADER Organization

GD#1 0 /////////////

JMP 1200H

(LDCPM)

JMPF CPM

(LDBDOS)

JMP INIT
• • • • • • •
JMP SETIOB

INIT: .. JMP 0003H

(LDBIOS)

All Information Presented Here is Proprietary to Digital Research

82

CP/M-86 System Guide 7.1 The Gold Start Load Operation

Byte offsets from the base registers are shown at the left of the
diagram. GD#1 is the Group Descriptor for the LOADER code group
described above, followed immediately by a "0" group terminator.
The entire LOADER program is read by the BOOT ROM, excluding the
header record, starting at byte location 04000H as given by the A
Field. Upon completion of the read, the BOOT ROM passes control to
location Ö4000H where the LOADER program commences execution. The
JMP 1200H instruction at the base of LDCPM transfers control to the
beginning of the LDBIOS where control then transfers to the INIT
subroutine. The subroutine starting at INIT performs device
initialization, prints a sign-on message, and transfers back to the
LDCPM program at byte offset 0003H. The LDCPM module opens the
CPM.SYS file, loads the CP/M-86 system into memory and transfers
control to CP/M-86 through the JMPF CPM instruction at the end of
LDCPM execution, thus completing the cold start sequence.

The files LDCPM.H86 and LDBDOS.H86 are included with CP/M-86 so
that you can append your own modified LDBIOS in the construction of
a customized loader. In fact, BIOS.A86 contains a conditional
assembly switch, called "loader_bios," which, when enabled, produces
the distributed LDBIOS. The INIT subroutine portion of LDBIOS is
listed in Appendix C for reference purposes. To construct a custom
LDBIOS, modify your standard BIOS to start the code at offset 1200H,
and change your initialization subroutine beginning at INIT to
perform disk and device initialization. Include a JMP to offset
Ö003H at the end of your INIT subroutine. Use ASM-86 to assemble
your LDBIOS.A86 program:

ASM86 LDBIOS

to produce the LDBIOS.H86 machine code file. Concatenate the three
LOADER modules using PIP:

PIP LOADER.H86=LDCPM.H86,LDBDOS.H86,LDBIOS.H86

to produce the machine code file for the LOADER program. Although
the standard LOADER program ends at offset 1700H, your modified
LDBIOS may differ from this last address with the restriction that
the LOADER must fit within the first two tracks and not overlap
CP/M-86 areas. Generate the command (CMD) file for LOADER using the
GENCMD utility:

GENCMD LOADER 8080 CODE[A400]

resulting in the file LOADER.CMD with a header record defininq the
8080 Memory Model with an absolute paragraph address of 400H, or
byte address 4000H. Use DDT to read LOADER.CMD to location 900H in
your 8080 system. Then use the 8080 utility SYSGEN to copy the
loader to the first two tracks of a disk.

All Information Presented Here is Proprietary to Digital Research

83

CP/M-86 System Guide 7.1 The Cold Start Load Operation

A>DDT
-ILOADER.CMD
-R800
-ÄC
A>SYSGEN
SOURCE DRIVE NAME (or return to skip) <cr>
DESTINATION DRIVE NAME (or return to skip) B

Alternatively, if you have access to an operational CP/M-86 system,
the command

LDCOPY LOADER

copies LOADER to the system tracks. You now have a diskette with a
LOADER program which incorporates your custom LDBIOS capable of
reading the CPM.SYS file into memory. For standardization, we
assume LOADER executes at location 4000H. LOADER is staticallv
relocatable, however, and its operating address is determined only
by the value of A-Base in the header record.

You must, of course, perform the same function as the BOOT ROM
to get LOADER into memory. The boot operation is usually
accomplished in one of two ways. First, you can program your own
ROM (or PROM) to perform a function similar to the BOOT ROM when
your computer's reset button is pushed. As an alternative, most
controllers provide a power-on "boot" operation that reads the first
disk sector into memory. This one-sector program, in turn, reads
the LOADER from the remaining sectors and transfers to LOADER upon
completion, thereby performing the same actions as the BOOT ROM.
Either of these alternatives is hardware-specific, so you'll need to
be familiar with the operating environment.

7.2 Organization of CPM.SYS
The CPM.SYS file, read by the LOADER program, consists of the

CCP, BDOS, and BIOS in CMD file format, with a 128-byte header
record similar to the LOADER program:

G-Form G-Length A-Base G-Min G-Max

1 xxxxxxxxx 040 xxxxxxx xxxxxxx

8b 16b 16b 16b 16b

where, instead, the A-Base load address is paragraph 040H, or byte
address 0400H, immediately following the 8086 interrupt locations.
The entire CPM.SYS file appears on disk as shown in Figure 7-2.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide 7.2 Organization of CPM.SYS

(0040:0) CS DS ES SS 0000H:

(0040:) 2500H:

(0040:) 2AQ0H:

Figure 7-2. CPM.SYS File Organization

GD#1 0 /////////////

(CCP and BDOS)

JMP INIT
• • • • « * •JMP SETIOB

(BIOS)
INIT: .. JMP 0000H

where GD#1 is the Group Descriptor containing the A-Base value
followed by a "0" terminator. The distributed 86/12 BIOS is listed
in Appendix D , with an "include" statement that reads the
SINGLES.LIB file containing the disk definition tables. The
SINGLES.LIB file is created by GENDEF using the SINGLES.DEF
statements shown below:

disks 2
diskdef 0,1,26,6,1024,243,64,64,2
diskdef 1,0
endef

The CPM.SYS file is read by the LOADER program beginning at the
address given by A-Base (byte address 0400H), and control is passed
to the INIT entry point at offset address 2500H. Any additional
initialization, not performed by LOADER, takes place in the INIT
subroutine and, upon completion, INIT executes a JMP 0000H to begin
execution of the CCP. The actual load address of CPM.SYS is
determined entirely by the address given in the A-Base field which
can be changed if you wish to execute CP/M-86 in another region of
memory. Note that the region occupied by the operating system must
be excluded from the BIOS memory region table.

Similar to the LOADER program, you can modify the BIOS by
altering either the BIOS.A86 or skeletal CBIOS.A86 assembly language
files which are included on your source disk. In either case,
create a customized BIOS which includes your specialized I/O
drivers, and assemble using ASM-86:

ASM86 BIOS

to produce the file BIOS.H86 containing your BIOS machine code.

All Information Presented Here is Proprietary to Digital Research

85

CP/M-86 System Guide 7.2 Organization of CPM.SYS

Concatenate this new BIOS to the CPM.H86 file on your distribution
disk:

PIP CPMX.H86 = CPM.H86,BIOS.H86

The resulting CPMX hex file is then converted to CMD file format by
executing

GENCMD CPMX 8080 CODE[A40]

in order to produce the CMD memory image with A-Base = 40H.
Finally, rename the CPMX file using the command

REN CPM.SYS = CPMX.CMD

and place this file on your 8086 system disk. Now the tailoring
process is complete: you have replaced the BOOT ROM by either your
own customized BOOT ROM, or a one-sector cold start loader which
brings the LOADER program, with your custom LDBIOS, into memory at
byte location 04000H. The LOADER program, in turn, reads the
CPM.SYS file, with your custom BIOS, into memory at byte location
0400H. Control transfers to CP/M-86, and you are up and operating.
CP/M-86 remains in memory until the next cold start operation takes
place.

You can avoid the two-step boot operation if you construct a
non-standard disk with sufficient space to hold the entire CPM.SYS
file on the system tracks. In this case, the cold start brings the
CP/M-86 memory image into memory at the location given by A-Base,
and control transfers to the INIT entry point at offset 2500H.
Thus, the intermediate LOADER program is eliminated entirely,
although the initialization found in the LDBIOS must, of course,
take place instead within the BIOS.

Since ASM-86, GENCMD and GENDEF are provided in both COM and
CMD formats, either CP/M-80 or CP/M-86 can be used to aid the
customizing process. If CP/M-80 or CP/M-06 is not available, but
you have minimal editing and debugging tools, you can write
specialized disk I/O routines to read and write the system tracks,
as well as the CPM.SYS file.

The two system tracks are simple to access, but the CPM.SYS
file is somewhat more difficult to read. CPM.SYS is the first file
on the disk and thus it appears immediately following the directory
on the diskette. The directory begins on the third track, and
occupies the first sixteen logical sectors of the diskette, while
the CPM.SYS is found starting at the seventeenth sector. Sectors
are "skewed" by a factor of six beginning with the directory track
(the system tracks are sequential), so that you must load every
sixth sector in reading the CPM.SYS file. Clearly, it is worth the
time and effort to use an existing CP/M system to aid the conversion
process.

All Information Presented Here is Proprietary to Digital Research

86

Appendix A
Sector Blocking and Deblocking

Upon each call to the BIOS WRITE entry point, the CP/M-86 BOOS
includes information that allows effective sector blocking and
deblocking where the host disk subsystem has a sector size which is
a multiple of the basic 128-bvte unit. This appendix presents a
general-purpose algorithm that can be included within your BIOS and
that uses the BOOS information to perform the operations
automatically.

Upon each call to WRITE, the BDOS provides the following
information in register CL:

0 = normal sector write
1 = write to d i r e c t o r y sector
2 S3 write to the first sector

of a new data block

Condition 0 occurs whenever the next write operation is into a
previously written area, such as a random mode record update, when
the write is to other than the first sector of an unallocated block,
or when the write is not into the directory area. Condition 1
occurs when a write into the directory area is performed. Condition
2 occurs when the first record (only) of a newly allocated data
block is written. In most cases, application programs read or write
multiple 128-bvte sectors in sequence, and thus there is little
overhead involved in either operation when blocking and deblocking
records since pre-read operations can be avoided when writing
records.

This appendix lists the blocking and deblocking algorithm in
skeletal form (the file is included on your c p/m -86 disk).
Generally, the algorithms map all CP/M sector read operations onto
the host disk through an intermediate buffer which is the size of
the host disk sector. Throughout the program, values and variables
which relate to the CP/M sector involved in a seek operation are
prefixed by "sek," while those related to the host disk system are
prefixed by "hst." The equate statements beginning on line 24 of
Appendix F define the mapping between CP/M and the host system, and
must be changed if other than the sample host system is involved.

The SELDSK entry point clears the host buffer flag whenever a
new disk is logged-in. Note that although the SELDSK entry point
computes and returns the Disk Parameter Header address, it does not
physically select the host disk at this point (it is selected later
at READHST or WRITEHST). Further, SETTRK, SETSEC, and SETDMA simply
store the values, but do not take any other action at this point.
SECTRAN performs a trivial function of returning the physical sector
number.

All Information Presented Here is Proprietary to Digital Research

87

CP/M-86 System Guide Appendix A Blocking and Deblocking

The principal entry points are READ and WRITE. These
subroutines take the place of your previous READ and w r i t e
operations.

The actual physical read or write takes place at either
WRITEHST or READHST, where all values have been prepared: hstdsk is
the host disk number, hsttrk is the host track number, and hstsec is
the host sector number (which mav require translation to a physical
sector number). You must insert code at this point which performs
the full host sector read or write into, or out of, the buffer at
hstbuf of length hstsiz. All other mapping functions are performed
by the algorithms.

1:
2 :
3:
4:
5:
6 :
7:
8 :
9:

10:
11:
12:
13:
14:
.15:
16:
17:
18:
19:
20:
21:
2 2 :

*

Sector Blocking / Deblocking

This algorithm is a
GP/m -80 Version, and
ence purposes only,
eluded on your CP/M-
for actual applicati
Digital Research for

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

direct translation of the
is included here for refer-
The file DEBLOCK.LIB is in-
86 disk, and should be used
ons. You may wish to contact *
notices of updates. **

★
*
* *
* (This example is setup for CP/M. block size of 16K *
* with a host sector size of 512 bvtes, and 12 sec- *
* tors
* and
****** 5

r***
*

CP/M to host disk constants *

per track. Blksiz, hstsiz, hstspt, hstblk *
seeshf mav change for different hardware.) * :***

23: una equ byte ptr [BX] ;name for byte at BX
24:
25:

•r
blksiz equ 16384 ; CP/M allocation size

26: hstsiz equ 512 ;host disk sector size
27: hstspt equ 12 ;host disk sectors/trk
28: hstblk equ hstsiz/128 ;CP/M sects/host buff
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

**************************^**************************
* *i
* seeshf is log2(hstblk), and is listed below for *
* values of hstsiz up to 2048.

hstsiz
256
512

1024
2048

hstblk
2
4
8

16

seeshf
1
2
3
4

All Information Presented Here is Proprietary to Digital Research

88

CP/M-86 System Guide Appendix A Blockinq and Deblocking

41
42
43
44
45
46
47
48
49
50
51 wrall equ 0 ;write to allocated
52 wrdir equ 1 ;write to directory
53 wrual equ 2 ;write to unallocated
54
55
56
57
58

85
86
87
88
89
90
91
92
93
94
95

• '***
secshf equ 2 ;log2(hstblk)
cpmspt equ hstblk * hstsot ;CP/M sectors/track
secmsk equ hstblk-1 jsector mask

* *

* BDOS constants on entry to write *
* *

* *

* The BIOS entry points given below show the *
code which is relevant to deblocking only.

59 • *9 *
60 9 k'kiflckleic'kle'k'k'k'k'k'k’k'k'k'k'k'k'k'k'k-k'k'k'k'k'k'k-k'kic'k'k'k'k’k'k'k'k'k'klt'k'k
61 seldsk:
62 ;select disk
63 ; is this the first activation of the drive?
64 test DL, 1 i—i cn cr ll o ■o

65 jnz selset
66 ;this is the first activation, clear host buff
67 mov hstact,0
68 mov unacnt,0
69 selset:
70 mov al,cl ! cbw ;put in AX
71 mov sekdsk,al ;seek disk number
72 mov cl,4 ! shi al,cl ;times 16
73 add ax,offset dpbase
74 mov bx, ax
75 ret
76 •9
77 home:
78 ;home the selected disk
79 mov al,hstwrt ;check for pending write
80 test al,al
81 jnz homed
82 mov hstact,0 ;clear host active flag
83 homed:
84 mov cx, 0 ;now, set track zero

settrk:

setsec:

(continue HOME routine)
ret

;set track given by registers CX
mov sektrk,CX ;track to seek
ret

;set sector given by register cl
mov seksec,cl ;sector to seek

All Information Presented Here is Proprietary to Digital Research

89

CP/M-86 System Guide Appendix A Blocking and Deblocking

96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

ret
t
setdma:

;set dma address given by CX
mov dma_off,CX
ret

7
setdmab:

;set segment address given by CX
mov dma__seg,CX
ret

sectran:
;translate sector number CX with table at [DX]
test DX fDX ;test for hard skewed
jz notran ;(blocked must be hard skewed)
mov BX,CX
add BX,DX
mov BL,[BX]
ret

no_tran:
;hard skewed disk, physical = logical sector
mov BX,CX
ret

read:

write:

;read the selected CP/M
mov unacnt,0
mov readop,!
mov rsflag,l
mov wrtype,wrual
jmp rwoper

sector
;clear unallocated counter
;read operation
ymust read data
;treat as unalloc
;to perform the read

;write the selected
mov readop,0
mov wrtype,cl
cmp cl,wrual
jnz chkuna

CP/M sector
;write operation

;write unallocated7
;check for unalloc

write to unallocated, set parameters

mov unacnt,(blksiz/128)
mov al,sekdsk
mov unadsk,al
mov ax,sektrk
mov unatrk,ax
mov al,seksec
mov unasec,al

ynext una)loc recs
ydisk to seek
yunadsk = sekdsk

;unatr k = sektrk

; unasec = seksec

chkuna:
;check for write to unallocated sector

r
mov bx,offset unacnt ypoint "UMA" at UNACNT
mov al,una ! test al,al ;any unalloc remain?

All Information Presented Here is Proprietary to Digital Research

90

CP/M-86 System Guide Appendix A Blocking and Deblocking

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

r
m
t

$
t

noovf:

alloc:

jz alloc ;skip if not
more unallocated records remain
dec almov una,almov al,sekdsk
mov BX,offset unadskcmp al,una
inz alloc
disks are the same
mov AX, unatrk
cmp AX, sektrk
inz alloc
tracks are the same
mov al,seksec
mov BX,offset unasec
cmp al,una
jnz alloc

junacnt = unacnt-1
fsame disk?
jsekdsk = unadsk?
;skio if not

;skio if not

;same sector?
;point una at unasec
;seksec = unasec?
;skip if not

match, move to next sector for future ref
inc una
mov al,una
cmp al,cpmspt jb noovf
overflow to next track
mov una,0
inc unatrk

junasec = unasec+1
;end of track?
;count CP/M sectors ;skip if below

;unasec = 0 ;unatrk=unatrk+l

;match found, mark as unnecessary read
mov rsflag,0 yrsflag = 0
imps rwoper ;to perform the write

;not an unallocated record, requires pre-read
mov unacnt,0 ;unacnt = 0
mov rsflag,l ;rsflag = 1

;drop through to rwoper
.***
f• * *l;* Common code for READ and WRITE follows *• * ik
t.***Irwoper:

;enter here to perform the read/write
mov erflag,0 ;no errors (yet)
mov al, seksec ;compute host sectormov cl, secshf
shr al,cl

All Information Presented Here is Proprietary to Digital Research
91

CP/M-86 System Guide Appendix A Blocking and Deblocking

206 mov sekhst,al ?host sector to seek
207 •

9

208 ; active host sector?
209 mov al,1
210 xchg al,hstact ;always becomes 1
211 test al,al ;was it already?
212 iz filhst ;fill host if not
213 •

9

214 ; host buffer active, same as seek buffer?
215 mov al,sekdsk
216 cmp al,hstdsk ;sekdsk - hstdsk?
217 inz nomatch
218 •

9

219 ; same disk, same track?
220 mov ax,hsttrk
221 cmp ax,sektrk ;host track same as seek track
222 jnz nomatch
223 •

9

224 ; same disk, same track, same buffer?
225 mov al,sekhst
226 cmp al,hstsec jsekhst = hstsec?
227 iz match ;skip if match
228 nomatch:
229 jproper disk, but not correct sector
230 mov al, hstwrt
231 test al,al ;"dirty” buffer ?
232 jz filhst ;no, don't need to write
233 call writehst ;yes, clear host buff
234 ; (check errors here)
235 •

9

236 filhst:
237 ;may have to fill the host buffer
238 mov al,sekdsk ! mov hstdsk,al
239 mov ax,sektrk ! mov hsttrk,ax
240 mov al,sekhst ! mov hstsec,al
241 mov al,rsflag
242 test al,al ;need to read?
243 iz filhstl
244 r
245 call readhst ;yes, if 1
246 ; (check errors here)
247 •

9

248 filhstl:
249 mov hstwrt,0 ;no pending write
250 •

9

251 match:
252 ;copy data to or from buffer depending on "readop"
253 mov al,seksec ;mask buffer number
254 and ax,secmsk ;least signif bits are masked
255 mov cl, 7 ! shl ax,cl ;shift left 7 (* 128 = 2**7)
256 •

9

257 ; ax has relative host buffer offset
258 •

9

259 add ax,offset hstbuf ;ax has buffer address
260 mov si,ax ;put in source index register

All Information Presented Here is Proprietary to Digital Research

92

CP/m-86 System Guide Appendix A Blocking and Deblocking

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

mov di,dma_off

push DS ! push ES

mov ES,dma_seg

mov cx,128/2
mov alfreadop
test al,al
inz rwmove

l
; write operation, mark

mov hstwrt,l
xchg si,di
mov ax,DS
mov ES,ax
mov DS,dma_seg

■
t

rwmove:
cld ! rep movs AX,AX
pop ES ! pop DS

;user buffer is dest if readop

;save segment registers
;set destseg to the users seg
;SI/DI and DS/ES is swapped
;if write op
;length of move in words

?which way?
;skip if read

and switch direction
;hstwrt = 1 (dirty buffer now)
;source/dest index swap

;setup DS,ES for write

;move as 16 bit words
jrestore segment registers

data has been moved to/from host buffer
cmp wrtype,wrdir ;write type to directory?
mov al,erflag ;in case of errors
jnz return rw ;no further processing

; clear host buffer for
test al,al
jnz return_rw
mov hstwrt,0
call writehst
mov al,erflag

return_rw:
ret

directory write
;errors?
;skip if so
;buffer written

.***
t• * *f
;* WRITEHST performs the physical write to the host *
;* disk, while READHST reads the physical disk. *• * *
f.**********★**
t

writehst:
ret

r
readhst:

ret
t**t• * *f
;* Use the GENDEF utility to create disk def tables *• ★ *
t.**★****
t

dpbase equ offset $

All Information Presented Here is Proprietary to Digital Research

93

CP/M-86 System Guide Appendix A Blocking and Deblocking

316:
317:
318:
319:
320:
321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:

All

disk Darameter tables go here

* *
* Uninitialized RAM areas follow, including the *
* areas created by the GENDER utility listed above. *
* *

;seek disk number
?seek track number
;seek sector number

sek_dsk rb 1
sek_trk rw 1
sek_sec rb 1
7
hst_dsk rb 1
hst_trk rw 1
hst_sec rb 1
t

sek_hst rb 1
hst__act rb 1
hst_wrt rb 1
#
una_cnt rb 1
una__dsk rb 1
una_trk rw 1
una__sec rb 1
t

erflag rb 1
rsflag rb 1
readop rb 1
wrtvpe rb 1
dma_seg rw 1
dma_of f rw 1
hstbuf rb

end
hstsiz

;host disk number
;host track number
;host sector number

;seek shr secshf
;host active flag
;host written flag

junalloc rec cnt
;last unalloc disk
;last unalloc track
;last unalloc sector

;error reporting
;read sector flag
; 1 i'f read operation
;write operation type
;last dma segment
;last dma offset
;host buffer

Information Presented Here is Proprietary to Digital Research

94

Appendix B
Sample Random Access Program

This appendix contains a rather extensive and complete example
of: random access operation. The program listed here performs the
simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled FANDOM.CMD, the CCP level-
command :

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt
the console for input. If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by a carriage return.
The inout commands take the form

nW nR Q

where n is an integer value in the range 0 to 65535, and W, R, and 0
are simple command characters corresponding to random write, random
read, and quit processing, respectively. If the W command is
issued, the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed
by a carriage return. RANDOM then writes the character string into
the X .DAT file at record n. If the R command is issued, RANDOM
reads record number n and displays the string value at the console.
If the Q command is issued, the X.DAT file is closed, and the
program returns to the console command processor. The only error
message is

error, trv again

The program begins with an initialization section where the
input file is opened or created, followed by a continuous loop at
the label "ready" where the individual commands are interpreted.
The default file control block at offset 005CH and the default
buffer at offset 0080H are used in all disk operations. The utility
subroutines then follow, which contain the principal input line
processor, called "readc." This particular program shows the
elements of random access processing, and can be used as the basis
for further program development. In fact, with some work, this
program could evolve into a simple data base management svstem.

All Information Presented Here is Proprietary to Digital Research

95

CP/M-86 System Guide Appendix B Sample Random Access Program

One could, for example, assume a standard record size of 128
bytes, consisting of arbitrary fields within the record. A Program,
called GETKEY, could be developed which first reads a sequential
file and extracts a specific field defined by the operator. For
example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the "LASTNAME" field from each record, starting at position 10 and
ending at character 20. GETKEY builds a table in memory consisting
of each particular LASTNAME field, along with its 16-bit record
number location within the file. The GETKEY program then sorts this
list, and writes a new file, called LASTNAME.KEY, which is an
alphabetical list of LASTNAME fields with their corresponding record
numbers. (This list is called an "inverted index" in information
retrieval parlance.)

Rename the program shown above as QUERY, and enhance it a bit
so that it reads a sorted key file into memory. The command line
might appear as:

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DAT data base.
Since the LASTNAME.KEY list is sorted, you can find a particular
entry quite rapidly by performing a "binary search," similar to
looking up a name in the telephone book. That is, starting at both
ends of the list, you examine the entry halfway in between and, if
not matched, split either the upper half or the lower half for the
next search. You^ll quickly reach the item you^re looking for (in
log2(n) steps) where you^ll find the corresponding record number.
Fetch and display this record at the console, just as we have done
in the program shown above.

At this point you^re just getting started. With a little more
work, you can allow a fixed grouping size which differs from the 128
byte record shown above. This is accomplished by keeping track of
the record number as well as the byte offset within the record.
Knowing the group size, you randomly access the record containing
the proper group, offset to the beginning of the group within the
record read sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an
AGE less than 45. Display all the records which fit this
description. Finally, if your lists are getting too big to fit into
memory, randomly access your key files from the disk as well.

All Information Presented Here is Proprietary to Digital Research

96

CP/M-86 System Guide Appendix B Random Access Sample Program

1
2 **
3 * *
4 * Sample Random Access Program for CP/M-86 *
5 * *
6 **
7
8 Q BDOS Functions

10 c:oninp equ 1 ^console input function
11 conout equ 2 ^console output function
12 pstring equ 9 jprint strinq until
13 rstring equ 10 ;read console buffer
14 version equ 12 ;return version number
15 openf equ 15 ;file open ^unction
16 closef equ 16 jelose function
17 makef equ 22 jmake file function
18 readr equ 33 ;read random
19 writer equ 34 ;write random
20
21 ii Equates for non graphic characters
22 er equ Odh jearriage return
23 If equ Oah ;line feed
24
25
26 load SP, ready file for random access
27
28 eseg
29 pushf ;push flags in CCP stack
30 pop ax ;save flags in AX
31 cli jdisable interrupts
32 mov bx ,ds ;set SS register to base
33 mov ss ,bx ;set SS, SP with interru
34 mov sp,offset stack ; for 80888
35 push ax ;restore the flags
36 popf
37
38 CP/M-86 initial release returns the file
39 system version number of 2.2: check is
40 shown below for illustration purposes.
41
42 mov cl,version
43 call bdos
44 emp al,20h ;version 2.0 or later?
45 jnb versok
46 •r bad version, message and go back
47 mov dx,offset badver
48 call print
49 imp abort
50 •f
51 versok:
52 •r correct version for random access
53 mov cl,openf ;open default fet
54 mov dx,offset feb
55 call bdos

All Information Presented Here is Proprietary to Digital Research

97

CP/M-86 System Guide Appendix B Random Access Sample Program

56 inc al ;err 255 becomes zero
57 jnz ready
58 •

9

59 9
9 cannot open file, so create it

60 mov cl,makef
61 mov dx,offset fcb
62 call bdos
63 inc al ;err 255 becomes zero
64 inz ready
65 9

9

66 9
9 cannot create file, directory full

67 mov dx,offset nospace
68 call print
69 imp abort ;back to ccp
70 9

9

71 ; loop back to "ready" after each command
72 •

9

73 ready:
74 •

9 file is ready for processing
75 9

9

76 call readcom ;read next command
77 mov ranrec,dx ;store input record#
78 mov ranovf,0h ;cleat hiqh byte if set
79 cmp al , ' O ' ;quit?
80 jnz notq
81 9

9

82 •
9 quit processing, close file

83 mov cl,closef .
84 mov dx,offset fcb
85 call bdos
86 inc al ;err 255 becomes 0
87 jz error ;error message, retry
88 imps abort ;back to ccp
89 9

9

90 9
9

91 ; end of quit command, process write
92 •

9

93 •
9

94 notq:
95 9 not the quit command, random write?
96 cmp al/W'
97 inz notw
98 9

9

99 •
9 this is a random write, fill buffer until cr

100101
102
103
104
105
106
107
108
109
110

r

i

mov dx,offset datmsq
call print ;data prompt
mov cx,127 ;up to 127 characters
mov bx,offset buff destination

rloop: ;read next character to buff
push cx ;save loop conntrol
push bx ;next destination
call getchr jcharacter to AL
pop bx jrestore destination
pop cx jrestore counter
cmp al,cr ;end of line?

All Information Presented Here is Proprietary to Digital Research

98

CP/M-86 System Guide Appendix B Random Access Sample Program

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

jz erloop
; not end, store character

mov byte ptr [bx],a!
inc bx ;next to fill
loop rloop ;decrement cx ..loop if

erloop:
; end of read loop, store 00

mov byte ptr [bx],0h

write the record to selected record number
mov cl»writer
mov dx,offset fcb
cal 1 bdos
or al ,al ;error code
jz ready ;tor another record
jmps error ymessage if not

end of write command, process read

notw:
; not a write command, read record?

cmp al,"R"
jz ranread
jmps error ;skip if not

r

; read random record
ranread:

mov cl,readr
mov dx,offset fcb
call bdos
or al,al ;return code 00?
jz readok
jmps error

; read was successful, write to console
readok:

call crlf ;new line
mov cx,128 ;max 128 characters
mov si,offset buff ;next to get

wloop:
lods al
and al,07fh
jnz wloopl
jmp ready

wloopl:
push cx
push si
cmp al," "
jb skipw
call putchr

skipw:
pop si

;next character
;mask parity

;for another command if

;save counter
;save next to get
jgraphic?
;skip output if not grap
;output character

All Information Presented Here is Proprietary to Digital Research

99

CP/M-86 System Guide Appendix B Random Access Sample Program

166
167
168
169
170
171
172
173
174

219220

pop cx
loop wloop
imp ready

;decrement CX and check

end of read command, all errors end-up here

error:
175 mov dx,offset errmsg
176 call print
177 jmp ready
178 •

9

179 ; BDOS entry subroutine
180 bdos:
181 int 224 gentry to BDOS if
182 ret
183 •

9

184 abort: ;return to CCP
185 mov cl ,0
186 call bdos ;use function 0 tc
187 •

9

188 ; utility subroutines for console i/o
189 •

9

190 getchr:
191 ; read next console character to a
192 mov cl,conino
193 call bdos
194 ret
195 •

9

196 putchr:
197 ;write character from a to console
198 mov cl,conout
199 mov dl,al ;character to sene
200 call bdos ;send character
201 ret
202 •

9

203 crlf:
204 ; send carriage return line feed
205 mov al ,cr ;carriage return
206 call putchr
207 mov al, If ;line feed
208 call putchr
209 ret
210 •

9

211 print:
212 ;print the buffer addressed by dx until $
213 push dx
214 call crlf
215 pop dx ;new line
216 mov cl,pstring
217 call bdos ;print the string
218 ret

readcom:

All Information Presented Here is Proprietary to Digital Research

100

CP/M-86 User's Guide 5.7 ED Error Messages

BREAK "F" AT n
DIRECTORY FULL

Use the same commands described in the previous message to recover
from this file error.

The following table defines the disk file error messages ED
returns when it cannot read or write a file.

Table 5-5. ED Disk File Error Messages

Message Meaning

BDOS ERR ON d: RO
Disk d: has Read-Only attribute. This
occurs if a different disk has been
inserted in the drive since the last cold
or warm boot.

** FILE IS READ ONLY **
The file specified in the command to
invoke ED has the RO attribute. ED can
read the file so that you can examine it,
but ED cannot change a Read-Only file.

103

.

Appendix A
ASCII and Hexadecimal Conversion

ASCII stands for American Standard Code for Information
Interchange. The code contains 96 printing and 32 non-printing
characters used to store data on a disk. Table A-l defines ASCII
symbols, then Table A-2 lists the ASCII and hexadecimal conversions.
The table includes binary, decimal, hexadecimal, and ASCII
conversions.

T a b le A - l . A S C II S y m b o ls

Symbol Meaning Symbol Mean i ng

ACK acknowledge FS file separator
BEL bell GS group separator
BS backspace HT horizontal tabulation
CAN cancel LF 1ine-feed
CR carriage return NAK negative acknowledge
DC device control NUL null
DEL delete RS record separator
DLE data link escape SI shift in
EM end of medium SO shift out
ENQ enquiry SOH start of heading
EOT end of transmission SP space
ESC escape STX start of text
ETB end of transmission SUB substitute
ETX end of text SYN synchronous idle
FF fo rm-feed US unit separator

VT vertical tabulation

105

CP/M-36 User's Guide Appendix A ASCII Conversions

Table A-2. ASCII Conversion Table

Binary Dec imal Hexadec imal ASCII

0000000 0 0 NUL
0000001 1 1 SOH (CTRL-A)
0000010 2 2 STX (CTRL-B)
0000011 3 3 ETX (CTRL-C)
0000100 4 4 EOT (CTRL-D)
0000101 5 5 ENQ (CTRL-E)
0000110 6 6 ACK (CTRL-F)
0000111 7 7 BEL (CTRL-G)
0001000 8 8 BS (CTRL-H)
0001001 9 9 HT (CTRL-I)
0001010 10 A LF (CTRL-J)
0001011 11 B VT (CTRL-K)
0001100 12 C FF (CTRL-L)
0001101 13 D CR (CTRL-M)
0001110 14 E SO (CTRL-N)
0001111 15 F SI (CTRL-O)
0010000 16 10 DLE (CTRL-P)
0010001 17 11 DC1 (CTRL-Q)
0010010 18 12 DC 2 (CTRL-R)
0010011 19 13 DC 3 (CTRL-S)
0010100 20 14 DC 4 (CTRL-T)
0010101 21 15 NAK (CTRL-U)
0010110 22 16 SYN (CTRL—V)
0010111 23 17 ETB (CTRL-W)
0011000 24 18 CAN (CTRL-X)
0011001 25 19 EM (CTRL-Y)
0011010 26 1A SUB (CTRL-Z)
0011011 27 1B ESC (CTRL-[)
0011100 28 1C FS (C'TRL-\)
0011101 29 ID GS (CTRL-])
0011110 30 IE RS (CTRL-")
0011111 31 IF US (CTRL-)
0100000 32 20 (SPACE)
0100001 33 21 1
0100010 34 22 II

0100011 35 23 *
0100100 36 24 $
0100101 37 25 %
0100110 38 26 &
0100111 39 27 '
0101000 40 28 (
0101001 41 29)
0101010 42 2A •k

0101011 43 2B +
0101100 44 2C f

0101101 45 2D —

0101110 46 2E •

0101111 47 2F /
0110000 48 30 0
0110001 49 31 l
0110010 50 32 2

106

CP/M-86 User's Guide Appendix A ASCII Conversions

Table A-2. (continued)

Binary Dec imal Hexadec imal ASCII

0110011 51 13 3
0110100 52 34 4
0110101 53 35 5
0110110 54 36 6
0110111 55 37 7
0111000 56 38 8
0111001 57 3 9 9
0111010 58 3 A :
0111011 59 3B 7
0111100 60 3C <
0111101 61 3D =
0111110 52 3E >
0111111 63 3F ?
.1000000 64 40 @
1000001 ' 65 41 A
1000010 66 42 B
1000011 67 43 C
1000100 68 44 D
1000101 69 45 E
1000110 70 46 F
1000111 71 47 G
1001000 72 48 H
1001001 73 49 I
1001010 74 4A J
1001011 75 4B K
1001100 76 4C L
1001101 77 4D M
1001110 78 4 E N
1001111 79 4F O
1010000 80 50 P
1010001 81 51 Q
1010010 82 52 R
1010011 83 53 S
1010100 84 54 T
1010101 85 55 U
1010110 86 56 V
1010111 87 57 W
1011000 88 53 X
1011001 89 59 Y
1011010 90 5 A Z
1011011 91 5B [
1011100 92 5C \
1011101 93 5D]
1011110 94 5E
1011111 95 5F _
1100000 96 60 f

1100001 97 61 a
1100010 98 62 b
1100011 99 63 c
1100100 100 64 d

107

CP/M-85 User's Guide Appendix A ASCII Conversions

Table A-2. (continued)

Binary Decimal Hexadecimal ASCII
1100101 101 55
1100110 102 66 f
1100111 103 67 g
1101000 104 68 h
1101001 105 69 i
1101010 106 6A j
1101011 107 6B k
1101100 108 6C 1
1101101 109 SD m
1101110 110 6E n
1101111 111 6F o
1110000 112 70 P
1110001 113 71 q
1110010 114 72 r
1110011 115 73 s
1110100 116 74 t
1110101 117 75 u
m o n o 118 76 V
1110111 119 77 w
1111000 120 78 X
1111001 121 79 y
1111010 122 7 A z
1111011 123 7B {
1111100 124 7C 1
1111101 125 7D }
1111110 126 7 E
1111111 127 7F DEL

108

(
Appendix B

CP/M-86 File Types

CP/M-86 identifies every file by a unique file specification,
which consists of a drive specifier, a filename, and a filetype.
The filetype is an optional three character ending separated from
the filename by a period. The filetype generally indicates a
special kind of file. The following table lists common filetypes
and their meanings.

Table B-l. Filetypes

Filetype Indication

A86 Assembly language source file; the CP/M-36
assembler, ASM-86, assembles or translates a file
of type .A86 into machine language.

BAK Back-up file created by a text editor; an editor
renames the source file with this filetype to
indicate that the original file has been
processed. The original file stays on the disk as
the back-up file, so you can refer to it.

CMD Command file that contains instructions in machine
executable code.

COM 8080 executable file.

H86 Program file in hexadecimal format.

LST Printable file that can be displayed on a console
or printer.

PRN Printable file that can be displayed on a console
or printer.

SUB Filetype required for SUBMIT input file containing
one or more CP/M-8S commands. The SUBMIT program
executes the commands In the file of type SUB
providing a batch mode for CP/M-86.

SYM Symbol table file.

$$$ Temporary file created by PIP.

109

c

.

Appendix C
CP/M-86 Control Characters

Table C-l. CP/M-86 Control Characters

Keystroke Action

CTRL-C prompts to abort a program currently running at
a given console.

DEL deletes character to the left of cursor; echoes
character deleted - cursor moves right.

CTRL-E forces a physical carriage return, but does not
send command to CP/M-86.

CTRL-H moves cursor back one space, erases previous
character.

CTRL-J line-feed, terminates input at the console.

CTRL-M same as carriage return.

CTRL-P echoes all console activity at the printer; a
second CTRL-P ends printer echo. This only
works if your system is connected to a printer.

CTRL-R retypes current command line; useful after
using RUB or DEL key.

RETURN carriage return. (ENTER or *-i in AS-100)

CTRL-S stops console listing temporarily; CTRL-S
resumes the listing.

CTRL-U cancels line, displays #, cursor moves down one
line and awaits a new command.

CTRL-X deletes all characters in command line.

CTRL-Z string or field separator.

111

.

c

Appendix D
CP/M-86 Error Messages

Table D-l. CP/M-86 Command Messages
Message Meaning

Ambiguous operand

DDT-86. An attempt was made to
assemble a command with an ambiguous
operand. Precede the operand with
the prefix "BYTE" or "WORD".

Bad Directory on d:
Space Allocation Conflict:
User n d:filename.typ

STAT has detected a space allocation
conflict in which one data block is
assigned to more than one file. One
or more filenames might be listed.
Each of the files listed contain a
data block already allocated to
another file on the disk. You can
correct the problem by erasing the
files listed. After erasing the
conflicting file or files, press TC
to regenerate the allocation vector.
If you do not, the error might
repeat itself.

BDOS err on d:

CP/M-86 replaces d: with the drive
specifier of the drive where the
error occurred. This message
appears when CP/M-86 finds no disk
in the the drive, when the disk is
improperly formatted, when the drive
latch is open, or when power to the
drive is off. Check for one of
these situations and retry.

113

CP/M-86 User's Guide Appendix D Messages

Table D-l. (continued)

Message Meaning

BDOS err on d: bad sector

This could indicate a hardware
problem or a worn or improperly
formatted disk. Press CTRL-C to
terminate the program and return to
CP/M-86, or press the enter key to
ignore the error.

BDOS err on d: seiect

CP/M-86 has received a request
specifying a non-existent drive, or
disk in drive is improperly
formatted. CP/M-86 terminates the
current program as soon as you press
any key.

BDOS err on d: RO

Drive has been assigned Read-Only
status with a STAT command, or the
disk in the drive has been changed
without being initialized with a
CTRL-C. CP/M-86 terminates the
current program as soon as you press
any key.

Cannot close

ASM-86. An output file cannot be
closed. This is a fatal error that
terminates ASM-86 execution. The
user should take appropriate action
after checking to see if the correct
disk is in the drive and that the
disk is not write protected.

DDT-86. The disk file written by a
W command cannot be closed. This is
a fatal error that terminates DDT-86
execution. The user should take
appropriate action after checking to
see if the correct disk is in the
drive and that the disk is not write
protected .

114

CP/M-86 User's Guide Appendix D Messages

Table D-l. (continued)
Message Meaning

Command name?

If CP/M-86 cannot find the command
you specified, it returns the
command name you entered followed by
a question mark. Check that you
have typed the command name
correctly, or that the command you
requested exists as a .CMD file on
the default or specified disk.

DESTINATION IS R/O, DELETE (Y/N) ?

PIP. The destination file specified
in a PIP command already exists and
it is Read-Only. If you type Y, the
destination file is deleted before
the file copy is done.

Directory full

ASM-86. There is not enough
directory space for the output
files. You should either erase some
unnecessary files or get another
disk with more directory space and
execute ASM-86 again.

Disk full

ASM-86. There is not enough disk
space for the output files (LST, H86
and SYM) . You should either erase
some unnecessary files or get
another disk with more space and
execute ASM-86 again.

Disk read error

ASM-86. A source or include file
could not be read properly. This is
usually the result of an unexpected
end of file. Correct the problem in
your source file.

115

CP/M-86 User's Guide Appendix D Messages

Table D-l. (continued)

Message Meaning

DDT-86. The disk file specified in
an R command could not be read
properly. This is usually the
result of an unexpected end of file.
Correct the problem in your file.

Disk write error

DDT-86. A disk write operation
could not be successfully performed
during a W command, probably due to
a full disk. You should either
erase some unnecessary files or get
another disk with more space and
execute ASM-86 again.

Double defined variable

ASM-86. An identifier used as the
name of a variable is used elsewhere
in the program as the name of a
variable or label. Example:

X DB 5
• • •

X DB 123H

Double defined label

ASM-86. An identifier used as a
label is used elsewhere in the
program as a label or variable name.
Example:

LAB3: MOV BX,5
• • •

LAB3: CALL MOVE

Double defined symbol - treated as undefined

ASM-86. The identifier used as the
name of an EQU directive is used as
a name elsewhere in the program.

116

CP/M-86 User's Guide Appendix D Messages

Table D-l. (continued)

Message Meaning

ERROR: BAD PARAMETER

PIP. An illegal parameter has been
entered in a PIP command. Retype
the entry correctly.

ERROR: CLOSE FILE - {filespec}

PIP. An output file cannot be
closed. The user should take
appropriate action after checking to
see if the correct disk is in the
drive and that the disk is not write
protected .

ERROR: DISK READ - {filespec}

PIP. The input disk file specified
in a PIP command could not be read
properly. This is usually the
result of an unexpected end of file.
Correct the problem in your file.

ERROR: DISK WRITE - {filespec}

PIP. A disk write operation could
not be successfully performed during
a PIP command, probably due to a
full disk. You should either erase
some unnecessary files or get
another disk with more space and
execute PIP again.

ERROR: FILE NOT FOUND - {filespec}

PIP. An input file that you have
specified does not exist.

ERROR: HEX RECORD CHECKSUM - {filespec}

PIP. A hex record checksum was
encountered during the transfer of a
hex file. The hex file with the
checksum error should be corrected,
probably by recreating the hex file.

117

CP/M-86 User's Guide Appendix D Messages

Table D-l. (continued)

Message Meaning

Er ro r in codemacro building

ASM-86. Either a codemacro contains
invalid statements, or a codemacro
directive was encountered outside a
codemacro.

ERROR: INVALID DESTINATION

PIP. The destination specified in
your PIP command is illegal. You
have probably specified an input
device as a destination.

ERROR: INVALID FORMAT

PIP. The format of your PIP command
is illegal. See the description of
the PIP command.

ERROR: INVALID HEX DIGIT - {filespec}

PIP. An invalid hex digit has been
encountered while reading a hex
file. The hex file with the invalid
hex digit should be corrected,
probably by recreating the hex file.

ERROR: INVALID SEPARATOR

PIP. You have placed an invalid
character for a separator between
two input filenames.

ERROR: INVALID SOURCE

PIP. The source specified in your
PIP command is illegal. You have
probably specified an output device
as a source.

118

CP/M-86 User's Guide Appendix D Messages

Table D-l. (continued)
Message Meaning
ERROR: INVALID USER NUMBER

PIP. You have specified a User
Number greater than 15. User
Numbers are in the range 0 to 15.

ERROR: NO DIRECTORY SPACE - (filespec}

PIP. There is not enough directory
space for the output file. You
should either erase some unnecessary
files or get another disk with more
directory space and execute PIP
again.

ERROR: QUIT NOT FOUND

PIP. The string argument to a Q
parameter was not found in your
input file.

ERROR: START NOT FOUND •

PIP. The string argument to an S
parameter could not be found in the
source file.

ERROR: UNEXPECTED END OF HEX FILE - {filespec}

PIP. An end of file was encountered
prior to a termination hex record.
The hex file without a termination
record should be corrected, probably
by recreating the hex file.

ERROR: USER ABORTED

PIP. The user has aborted a PIP
operation by pressing a key.

119

CP/M-86 User's Guide Appendix D Messages

Table D-l. (continued)
Message Meaning
ERROR: VERIFY - {filespec}

PIP. When copying with the V
option, PIP found a difference when
rereading the data just written and
comparing it to the data in its
m e mory buffer. Usually this
indicates a failure of either the
destination disk or drive.

File exists

You have asked CP/M-86 to create a
new file using a file specification
that is already assigned to another
file. Either delete the existing
f i l e or use a n o t h e r file
specification.

File name syntax error

ASM-86. The filename in an INCLUDE
directive is improperly formed.
Exampl e:

INCLUDE FILE.A86X
File not found

CP/M-86 could not find the specified
file. Check that you have entered
the correct drive specification or
that you have the correct disk in
the drive.

Garbage at end of line - ignored

ASM-86. Additional items were
encountered on a line when ASM-86
was expecting an end of line.
Examples:

NOLIST 4
MOV AX,4 RET

120

CP/M-86 User's Guide Appendix D Messages

Table D-l. (continued)

Message Meaning

Illegal expression element

ASM-86. An expression is improperly
formed. Examples:

X DB 12X
DW (4 *)

Illegal first item

ASM-86. The first item on a source
line is not a valid identifier,
directive or mnemonic.

Example: 1234H

Illegal "IF" operand - "IF" ignored

ASM-86. Either the expression in an
IF statement is not numeric, or it
contains a forward reference.

Illegal pseudo instruction

A S M - 8 6 . E i t h e r a required
identifier in front of a pseudo
instruction is missing, or an
identifier appears before a pseudo
instruction that doesn't allow an
identifier.

Illegal pseudo operand

ASM-86. The operand in a directive
is invalid. Examples:

X EQU OAGH

TITLE UNQUOTED STRING

Instruction not in code segment

ASM-86. An instruction appears in a
segment other than a CSEG.

121

CP/M-86 User's Guide Appendix D Messages

Table D-l. (continued)
Message Meaning

Is this what you want to do (Y/N)?

COPYDISK. If the displayed COPYDISK
function is what you want performed,
type Y.

Insufficient memory

DDT-86. There is not enough memory
to load the file specified in an R
or E command.

Invalid Assignment

STAT. An invalid device was
s p e c i f i e d in a STAT device
assignment. Use the STAT val:
d i s p l a y to list the v a l i d
assignments for each of the four
logical STAT devices: CON:, AXI:,
AXO: and LST: .

Label out of range

ASM-86. The label referred to in a
call, jump or loop instruction is

• out of range. The label can be
defined in a segment other than the
segment containing the instruction.
In the case of short instructions
(JMPS, conditional jumps and loops) ,
the label is more than 128 bytes
from the location of the following
instruction.

Memory request denied

DDT-86. A request for memory during
an R command could not be fulfilled.
Up to eight blocks of memory can be
allocated at a given time.

122

CP/M-86 User's Guide Appendix D Messages

Table D-l. (continued)
Message Meaning

Missing instruction

ASM-86. A prefix on a source line
is not followed by an instruction.
Example:

REPNZ

Missing pseudo instruction

ASM-86. The first item on a source
line is a valid identifier and the
second item is not a valid directive
that can be preceded by an
identifier. Example: THIS IS A
MISTAKE

Missing segment information in operand

ASM-86. The operand in a CALLF or
JMPF instruction (or an expression
in a DD directive) does not contain
segment information. The required
segment information can be supplied
by including a numeric field in the
segment directive as shown:

CSEG 1000H
X:

• • •
JMPF X
DD X

Missing type information in operand(s)

ASM-86. Neither instruction operand
c o n t a i n s s u f f i c i e n t t y p e
information. Example:

MOV [BX],10

Nested "IF" illegal - "i f" ignored

ASM-86. The maximum nesting level
for IF statements has been exceeded.

123

CP/M-36 User's Guide Appendix D Messages

Table D-l. (continued)

Message Meaning

Nested INCLUDE not allowed

ASM-86. An INCLUDE directive was
encountered within a file already
being included.

No file

CP/M-86 could not find the specified
file, or no files exist.

ASM-86. The indicated source or
include file could not be found on
the indicated drive.

DDT-86. The file specified in an R
or E command could not be found on
the disk.

No matching "IF" for "ENDIF"

ASM-86. An ENDIF statement was
encountered without a matching IF
statement.

No space

DDT-86. There is no space in the
directory for the file being written
by a W command.

Operand(s) mismatch instruction

ASM-86. Either an instruction has
the wrong number of operands, or the
types of the operands do not match.
Examples:

MOV CX,1,2
X DB 0

MOV AX, X

124

CP/M-86 User's Guide Appendix D Messages

Table D-l. (continued)
Message Meaning
Parameter error

ASM-86. A parameter in the command
tail of the ASM-86 command was
specified incorrectly. Example:

ASM86 TEST $S;

Symbol illegally forward referenced - neglected

ASM-86. The indicated symbol was
illegally forward referenced in an
ORG, RS, EQU or IF statement.

Symbol table overflow

ASM-86. There is not enough memory
for the symbol table. Either reduce
the length and/or number of symbols,
or reassemble on a system with more
memory available.

Undefined element of expression

ASM-86. An identifier used as an
operand is not defined or has been
illegally forward referenced.
Examples:

JMP X
A EQU B
B EQU 5

MOV AL

Undefined instruction

ASM-86. The item following a label
on a source line is not a valid
instruction. Example:

DONE: BAD INSTR

125

CP/M-86 User's Guide Appendix D Messages

Table D-l. (continued)
Message Meaning

Use: [size] [ro] [rw] [sys] or [dir]

STAT. This message results from an
invalid set file attributes command.
These are the only options valid in
a STAT filespec [option] command.

Use: STAT d :=R0

STAT. An invalid STAT drive command
was given. The only valid drive
assignment in STAT is STAT d :=R0.

Too Many Files
STAT. A STAT wildcard command
matched more files in the directory
than STAT can sort. STAT can sort a
maximum of 512 files.

Verify error at s :o

DDT-86. The value placed in memory
by a Fill, Set, Move, or Assemble
command could not be read back
correctly, indicating bad user
memory or attempting to write to ROM
or non-existent memory at the
indicated location.

126

Appendix E
User’s Glossary

ambiguous filename:
wildcard characters,
or both. When you
wildcard characters,
reference
Section 2

of the CP/M-86
or the filetype

Filename that contains either
? or *, in the primary filename
replace characters in a filename with these
you create an ambiguous filename and can easily

more than one CP/M-86 file in a single command line. See
of this manual.

applications program: Program that needs an operating system to
provide an environment in which to execute. Typical applications
programs are business accounting packages, word processing (editing)
programs and mailing list programs.

argument: Symbol, usually a letter, indicating a place into which
you can substitute a number, letter or name to give an appropriate
meaning to the formula in question.

ASCII: The American Standard Code for Information Interchange is a
standard code for representation of numbers, letters, and symbols.
An ASCII text file is a file that can be intelligibly displayed on
the video screen or printed on paper. See Appendix A.

attribute: File characteristic that can be set to on or off.

back-up: Copy of a disk or file made for safe keeping, or the
creation of the disk or file.

bit: "Switch" in memory that can be set to on (1) or off
are grouped into bytes.

(0) Bits

block: Area of disk reserved for a specific use.

bootstrap: Process of loading an operating system into memory.
Bootstrap procedures vary from system to system. The boot for an
operating system must be customized for the memory size and hardware
environment that the operating system manages. Typically, the boot
is loaded automatically and executed at power up or when the
computer is reset. Sometimes called a "cold start."

buffer:
transfer

Area of memory
of information.

that temporarily stores data during the

built-in commands: Commands that permanently reside in memory.
They respond quickly because they are not accessed from a disk.

byte: Unit of memory or disk storage containing eight bits.

127

CP/M-86 User's Guide Appendix E User's Glossary

command: Elements of a CP/M-86 command line. In general, a CP/M-86
command has three parts: the command keyword, the command tail, and
a carriage return.

command file: Series of coded machine executable instructions
stored on disk as a program file, invoked in CP/M-86 by typing the
command keyword next to the system prompt on the console. The CP/M-
86 command files generally have a filetype of CMD. Files are either
command files or data files. Same as a command program.

command keyword: Name that identifies an CP/M-86 command, usually
the primary filename of a file of type CMD, or a built in command.
The command keyword precedes the command tail and the carriage
return in the command line.

command syntax: Statement that defines the correct way to enter a
command. The correct structure generally includes the command
keyword, the command tail, and a carriage return. A syntax line
usually contains symbols that you should replace with actual values
when you enter the command.
command tail: Part of a command that follows the command keyword in
the command line. The command tail can include a drive
specification, a filename and/or filetype, and options or
parameters. Some commands do not require a command tail.

concatenate: Term that describes one of PIP's operations that
copies two or more separate files into one new file in the specified
sequence.
console: Primary input/output device. The console consists of a
listing device such as a screen and a keyboard through which the
user communicates with the operating system or applications program.

control character: Non-printing character combination that sends a
simple command to CP/M-86. Some control characters perform line
editing functions. To enter a control character, hold down the
CONTROL key on your terminal and strike the character key specified.
See Appendix C.

cursor: One-character symbol that can appear anywhere on the
console screen. The cursor indicates the position where the next
keystroke at the console will have an effect.

data file: Non-executable collection of similar information that
generally requires a command file to manipulate it.

default: Currently selected disk drive and user number. Any
command that does not specify a disk drive or a user number
references the default disk drive and user number. When CP/M-86 is
first invoked, the default disk drive is drive A, and the default
user number is 0, until changed with the USER command.

128

CP/M-86 User's Guide Appendix E User's Glossary

delimiter: Special characters that separate different items in a
command line. For example, in CP/M-86, a colon separates the drive
specification from the filename. A period separates the filename
from the filetype. Brackets separate any options from their command
or file specification. Commas separate one item in an option list
from another. All of the above special characters are delimiters.

directory: Portion of a disk that contains entries for each file on
the disk. In response to the DIR command, CP/M-86 displays the
filenames stored in the directory.

DIR attribute: File attribute. A file with the DIR attribute can
be displayed by a DIR command. The file can be accessed from the
default user number and drive only.
disk, diskette: Magnetic media used to store information.
Programs and data are recorded on the disk in the same way that
music is recorded on a cassette tape. The term "diskette" refers to
smaller capacity removable floppy diskettes. "Disk" can refer to a
diskette, a removable cartridge disk or a fixed hard disk.

disk drive: Peripheral device that reads and writes on hard or
floppy disks. CP/M-86 assigns a letter to each drive under its
control. For example, CP/M-86 may refer to the drives in a four-
drive system as A, B, C, and D.

editor: Utility program that creates and modifies text files. An
editor can be used for creation of documents or creation of code for
computer programs. The CP/M-86 editor is invoked by typing the
command ED next to the system prompt on the console. (See ED in
Section 5 of this manual).

executable: Ready to be run by the computer. Executable code is a
series of instructions that can be carried out by the computer. For
example, the computer cannot "execute" names and addresses, but it
can execute a program that prints all those names and addresses on
mailing labels.

execute a program: Start a program executing. When a program is
running, the computer is executing a sequence of instructions.

FCB: File Control Block.

file: Collection of characters, instructions or data stored on a
disk. The user can create files on a disk.

File Control Block: Structure used for accessing files on disk.
Contains the drive, filename, filetype and other information
describing a file to be accessed or created on the disk.

filename: Name assigned to a file. A filename can include a
primary filename of 1-8 characters and a filetype of 0-3 characters.
A period separates the primary filename from the filetype.

129

CP/M-86 User's Guide Appendix E User's Glossary

file specification: Unique file identifier. A complete CP/M-86
file specification includes a disk drive specification followed by a
colon (d:) , a primary filename of 1 to 8 characters, a period and a
filetype of 0 to 3 characters. For example, b :example.tex is a
complete CP/M-86 file specification.

filetype: Extension to a filename. A filetype can be from 0 to 3
characters and must be separated from the primary filename by a
period. A filetype can tell something about the file. Certain
programs require that files to be processed have certain filetypes
(see Appendix B).

floppy disk: Flexible magnetic disk used to store information.
Floppy disks come in 5 1/4 and 8 inch diameters.

hard disk
container . A

Rigid, platter-like, magnetic disk
hard disk stores more information than a

sealed in a
floppy disk.

hardware: Physical components of a computer.

hex file: ASCII-printable representation of a command (machine
language) file.

hexadecimal notation: Notation for the base 16 number system using
the symbols 0,1,2,3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F to
represent the sixteen digits. Machine code is often converted to
hexadecimal notation because it can be easily represented by ASCII
characters and therefore printed on the console screen or on paper
(see Appendix A).
input: Data going into the computer, usually from an operator
typing at the terminal or by a program reading from the disk.

interface: Object that allows two independent systems to
communicate with each other, as an interface between hardware and
software in a microcomputer.

I/O: Abbreviation for input/output.

keyword: See command keyword.
kilobyte: 1024 bytes denoted as IK. 32 kilobytes equal 32K. 1024
kilobytes equal one megabyte, or over one million bytes.

list device: Device such as a printer onto which data can be listed
or printed.

logged in: Made known to the operating system, in reference to
drives. A drive is logged in when it is selected by the user or an
executing process, and remains selected or logged in until you
change disks in a floppy disk drive or enter |C at the command
level.

130

CP/M-86 User's Guide Appendix E User's Glossary

logical: Representation of something that may or may not be the
same in its actual physical form. For example, a hard disk can
occupy one physical drive, and yet you can divide the available
storage on it to appear to the user as if it were in several
different drives. These apparent drives are the logical drives.

megabyte: Over one million bytes; 1024 kilobytes (see byte,
kilobyte).
microprocessor: Silicon chip that is the Central Processing Unit
(CPU) of the microcomputer.

operating system: Collection of programs that supervises the
running of other programs and the management of computer resources.
An operating system provides an orderly input/output environment
between the computer and its peripheral devices. It enables user
written programs to execute safely.

option: One of many parameters that can be part of a command tail.
Use options to specifiy additional conditions for a command's
execution.

output: Data that the processor sends to the console or disk.

parameter: Value in the command tail that provides additional
information for the command. Technically, a parameter is a required
element of a command.

peripheral devices: Devices external to the CPU. For example,
terminals, printers and disk drives are common peripheral devices
that are not part of the processor, but are used in conjunction with
it.
physical: Actual hardware of a computer. The physical environment
varies from computer to computer.

primary filename: First 8 characters of a filename. The primary
filename is a unique name that helps the user identify the file
contents. A primary filename contains 1 to 8 characters and can
include any letter or number and some special characters. The
primary filename follows the optional drive specification and
precedes the optional filetype.

program: Series of specially coded instructions that performs
specific tasks when executed by a computer.

prompt: Any characters displayed on the video screen to help the
user decide what the next appropriate action is. A system prompt is
a special prompt displayed by the operating system. The system
prompt indicates to the user that the operating system is ready to
accept input. The CP/M-86 system prompt is an alphabetic character
followed by an angle bracket. The alphabetic character indicates
the default drive. Some applications programs have their own
special "system" prompts.

131

CP/M-86 User's Guide Appendix E User's Glossary

Read-Only: Attribute that can be assigned to a disk file or a disk
drive. When assigned to a file, the Read-Only attribute allows you
to read from that file but not write any changes to it. When
assigned to a drive, the Read-Only attribute allows you to read any
file on the disk, but prevents you from adding a new file, erasing
or changing a file, renaming a file, or writing on the disk. The
STAT command can set a file or a drive to Read-Only. Every file and
drive is either Read-Only or Read-Write. The default setting for
drives and files is Read-Write, but an error in resetting the disk
or changing media automatically sets the drive to Read-Only until
the error is corrected. Files and disk drives may be set to either
Read-Only or Read-Write.

Read-Write: Attribute that can be assigned to a disk file or a disk
drive. The Read-Write attribute allows you to read from and write
to a specific Read-Write file or to a any file on a disk that is in
a drive set to Read-Write. A file or drive can be set to either
Read-Only or Read-Write.

record: Collection of data. A file consists of one or more records
stored on disk. An CP/M-86 record is 128 bytes long.

RO: Abbreviation for Read-Only.

RW: Abbreviation for Read-Write.

sector: Portion of a disk track. There are a specified number of
sectors on each track.

software: Specially coded programs that transmit machine readable
instructions to the computer, as opposed to hardware, which is the
actual physical components of a computer.

source file: ASCII text file that is an input file for a processing
program, such as an editor, text formatter, or assembler.

syntax: Format for entering a given command.

system attribute: A file attribute. You can give a file the system
attribute by using the SYS option in the STAT command. A file with
the SYS attribute is not displayed in response to a DIR command; you
must use DIRS (see Section 4). If you give a file with user number
0 the SYS attribute, you can read and execute that file from any
user number on the same drive. Use this feature to make your
commonly used programs available under any user number.

system prompt: Symbol displayed by the operating
that the system is ready to receive input. See

system indicating
prompt.

terminal: See console.

132

CP/M-85 User's Guide Appendix E User's Glossary

track: Concentric rings dividing a disk. There are 77 tracks on a
typical eight inch floppy disk.

turn-key application: Application designed for the non computer-
oriented user. For example, a typical turn-key application is
designed so that the operator needs only to turn on the computer,
insert the proper program disk and select the desired procedure from
a selection of functions (menu) displayed on the screen.
upward-compatible: Term meaning that a program created for the
previously released operating system (or compiler, etc.) runs under
the newly released version of the same operating system.

user number: Number assigned to files in the disk directory so that
different users need only deal with their own files and have their
"own" directories even though they are all working from the same
disk. In CP/M-86, files can be divided into 16 user groups.

utility: "Tool." Program that enables the user to perform certain
operations, such as copying files, erasing files, and editing files.
Utilities are created for the convenience of programmers and users.

wildcard characters: Special characters that match certain
specified items. In CP/M-86 there are two wildcard characters, ?
and *. The ? can be substituted for any single character in a
filename, and the * can be substituted for the primary filename or
the filetype or both. By placing wildcard characters in filenames,
the user creates an ambiguous filename and can quickly reference one
or more files.

133

CP/M-86

System Guide

Canon A S -100 Series

CP/M-86™
System Guide

Cooyright © 1981

Digital Research
P.O. Box 579

801 Lighthouse Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright © 1981 by Digital Research. All rights
reserved. No oart of this publication mav be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into anv language or
computer languaqe, in any form or by anv means,
electronic, mechanical, magnetic, ootical, chemical ,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.
This manual is, however, tutorial in nature, ^hus,
the reader is granted permission to include the
example programs, either in whole or in part, in his
own programs.

DISCLAIMER

Digital Research makes no representations or
warranties with resoect to the contents hereof and
specifically disclaims any implied warranties of
merchantabi1itv or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this oublication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
ASM-86, CP/M-86, CP/M-80, CP/NET, DDT-86, LINK-80,
MP/M, and TEX-80 are trademarks of Digital Research.

ii

Foreword
C

The CP/M-86 System Guide presents the system proqramminq
aspects of CP/M-86tm-, a sinqle-user ooeratinq system for the Intel
8086 and 8088 16-bit microprocessors. The discussion assumes the
reader is familiar with CP/M the Digital Research 8-bit operatinq
system. To clarify soecific differences with CP/M-86, this document
refers to the 8-bit version of CP/M as CP/M-80TM. Elements common
to both systems are simply called CP/M features.

CP/M-80 and CP/M-86 are equivalent at the user interface level
and thus the Diqital Research documents:

• An Introduction to CP/M Features and Facilities
• ED: A Context Editor for the CP/M Disk System
• CP/M 2 User's Guide

are shipped with the CP/M-86 package. Also included is the CP/M-86
Proqrammer's Guide, which describes ASM-86™ and DOT-86™, Diqital
Research's 8086 assembler and interactive debuqqer.

This System Guide presents an overview of the CP/M-86
proqramminq interface conventions. It also describes procedures for
adapting CP/M-86 to a custom hardware enviornment. This information
parallels that presented in the CP/M 2 Interface Guide and the CP/M
2 Alteration Guide.

Section 1 gives an overview of CP/M-86 and summarizes its
differences with CP/M-80. Section 2 describes the general execution
environment while Section 3 tells how to generate command files.
Sections 4 and 5 respectively define the proqramminq interfaces to
the Basic Disk Operating Svstem and the Basic Input/Output System.
Section 6 discusses alteration of the BIOS to support custom disk
configurations, and Section 7 describes the loading operation and
the organization of the CP/M-86 svstem file.

iii

Table of Contents

1 CP/M-86 System Overview
1.1 CF/M-86 General. Characteristics.................... 1
1.2 rp/M-80 and CP/M-86 Differences 3

2 Command Setup and Execution Dnder CP/M-86
2.1 CCP Built-in and Transient Commands 7
2.2 Transient Proqram Execution Models 8
2.3 The 8080 Memory M o d e l 9
2.4 The Small Memory M o d e l 10
2.5 The Compact Memory M o d e l 11
2.6 Base Page Initialization........................... 13
2.7 Transient Proqram Load and E x i t 14

3 Command (CMD) File Generation
3.1 Inte1 Hex FiTe F o r m a t 18
3.2 Ooeration of G E N C M P 16
3.3 Operation of L M C M u 19
3.4 Command (PMD) File F o r m a t 20

4 Basic Disk Operating System (BDOS) Functions
4.1 BDOS Parameters and Function C o d e s 23
4.2 Simple BDOS Calls 25
4.3 BDOS File O p e r a t i o n s 30
4.4 BDOS Memory Manaqement and Load 48

5 Basic I/O System (BIOS) Organization
5.1 Organization of the B I O S 55
5.2 The BIOS Jump V e c t o r 56
5.3 Simple Peripheral Devices 57
5.4 BIOS Subroutine Entry Points 60

6 BIOS Disk Definition Tables
6.1 Disk Parameter Table Format 67
6.2 Table Generation Using GENDEF 72
6.3 GENDEF O u t p u t 77

7 CP/M-86 Bootstrap and Adaptation Procedures
7.1 The Cold Start Load Operation 81
7.2 Organization of CPM.SYS 84

v

Appendixes

A Blockinq and Deblocking Alqorithms fi7
t

B Random Access Sample Rroqram 95

C Listing of the Boot R o m 103

D LDBIOS Listinq ... 113

E BIOS L i s t i n q .. 121

F CBIOS Listinq ... 137

vi

CP/M-86 System Guide Appendix B Random Access Sample Program

221

254
255
256
257
258
259

275

read the next command line to the conbuf
222 mov dx,offset promot
223 call print ;command?
224 mov cl ,rstring
225 mov dx,offset conbuf
226 call bdos ;read command line
227 •

9 command line is present, scan it
228 mov ax,0 ;start with 0000
229 mov bx,offset conlin
230 readc: mov dl,[bx] ;next command character
231 inc bx ;to next command positio
232 mov dh, 0 ;zero high byte for add
233 or dl ,dl ;check for end of comman
234 inz getnum
235 ret
236 •

9 not zero, numeric?
237 getnum:
238 sub dl,'0'
239 cmp dl, 10 ;carrv if numeric
240 inb endrd
241 mov cl ,10
242 mul cl ;multipy accumulator by
243 add ax ,dx ;+digit
244 imps readc ;for another char
245 endrd:
246 •

9 end of read, restore value in a and return value
247 mov dx ,ax ;return value in DX
248 mov al,-l[bx]
249 cmp al,'a' ;check for lower case
250 jnb transl
251 ret
252 transl: and al,5fH ;translate to upper case
253 ret

Template for Page 0 of Data Group
Contains default FCB and DMA buffer

dseg
260 org 05ch
261 fcb rb 33 ;default file control b]
262 ranrec rw 1 ;random record position
263 ranovf rb 1 ;high order (overflow) b
264 buff rb 128 ;default DMA buffer
265 •

9

266 ; string data area for console messages
267 badver db 'sorry, you need cp/m version 2$'
268 nospace db 'no directory space$'
269 datmsg db 'type data: $'
270 errmsg db 'error, try again,$'
271 prompt db 'next command? $'
272 •

9

273 9
9

274 ; fixed and variable data area

All Information Presented Here is Proprietary to Digital Research

101

CP/M-86 System Guide Appendix B Random Access Sample Program

276: conbuf db conlen
277: consiz rs 1
278: conlin rs 32
279: conlen equ offset $
280: •

t

281: rs 31
282: stack rb 1
283: db 0
284: end

;length of console buffer
;resultinq size after read
; length 32 buffer
- offset consiz
;16 level stack

;end byte for GENCMD

All Information Presented Here is Proprietary to Digital Research

Appendix C
Listing of the Boot ROM

**
* *

* This is the original BOOT ROM distributed with CP/M *
* for the SBC 86/12 and 204 Controller. The listinq *
* is truncated on the right, but can be reproduced by *
* assembling ROM.A86 from the distribution disk. Note *
* that the distributed source file should alwavs be *
* referenced for the latest version *
* ***

■
9

; ROM bootstrap for CP/M-86 on an iSBC86/12
; with the
; Intel SBC 204 Floppy Disk Controller •
; Copyright (C) 1980,1981
; Digital Research, Inc.
; Box 579, Pacific Grove
; California, 93950
•
9***
?* This is the BOOT ROM which is initiated *
;* by a system reset. First, the ROM moves *
;* a copy of its data area to RAM at loca- *
;* tion 00000H, then initializes the segment*
;* registers and the stack pointer. The *
;* various peripheral interface chips on the*
;* SBC 86/12 are initialized. The 8251 *
;* serial interface is configured for a 9600*
;* baud asynchronous terminal, and the in- *
;* terrupt controller is setup for inter- *
;* rupts 10H-17H (vectors at 00040H-0005FH) *
;* and edqe-triggered auto-EOI (end of in- *
;* terrupt) mode with all interrupt levels *
;* masked-off. Next, the SBC 204 Diskette *
;* controller is initialized, and track 1 *
;* sector 1 is read to determine the target *
;* paragraph address for LOADER. Finally, *
;* the LOADER on track 0 sectors 2-26 and *
;* track 1 sectors 1-26 is read into the *
;* target address. Control then transfers *
;* to LOADER. This program resides in two *
;* 2716 EPROM"s (2K each) at location *
;* 0FF000H on the SBC 86/12 CPU board. ROM *
;* 0 contains the even memory locations, and*
;* ROM 1 contains the odd addresses. BOOT *
;* ROM uses RAM between 00000H and OOOFFH *
;* (absolute) for a scratch area, along with*
;* the sector 1 buffer. *
• *
9

All Information Presented Here is Proprietary to Digital Research

103

CP/M- 8 6 System Guide Appendix C Listing of the BOOT ROM

00FR true equ Of fh
FF00 false equ not true

00FF
9

debug equ true
;debug = true indicates bootstrap is in same roms
? with SBC 957 "Execution Vehicle"
7 at FE00:0 instead of FF00:0

monitor

000D
9

cr equ 13
000A if equ 10

disk ports and commands

00A0
•
9

base204 equ OaOh
00 AO fdccom equ base204+0
00A0 fdcstat equ base204+0
00A1 fdcparm equ base204+l
00A1 fdcrslt equ base204+l
00A2 fdcrst equ base204+2
00A4 dmacadr equ base204+4
00A5 dmaccont equ base204+5
00A6 dmacscan equ base204+6
00A7 dmacsadr equ base204+7
00A8 dmacmode equ base204+8
00A8 dmacstat equ base204+8
00A9 fdcsel equ base204+9
00AA fdcsegment equ base204+10
00AF reset204

*
equ base204+15

jactual console baud rate
2580 baud__r ate equ 9600

;value for 8253 baud counter
0008 baud equ 768/ (baud__rate/100)

00DA
7
csts equ ODAh ? i8251 status port

00D8 cdata equ 0 D8h ; " data port

00D0 tchO equ ODOh ;8253 PIC channel 0
00D2 tchl equ tchO+ 2 7ch 1 port
00D4 tch2 equ tchO+4 ?ch 2 port
00D6 tcmd equ tchO+ 6 7 8 2 5 3 command port

ooco
9

icpl equ OCOh 78259a port 0
00C2 icp2

•
9

equ 0C2h 7 8 2 5 9 a port 1
m

IF NOT DEBUG
ROMSEG EQU OFFOOH jnorma1

ENDIF
9

IF DEBUG 7Share prom with SB
FE00 ROMSEG EOU 0FE00H

ENDIF
/

9

All Information Presented Here is Proprietary to Digital Research

104

CP/M-86 System Guide Appendix C Listing of the BOOT ROM

FEOO

0000 8CC8
0002 8ED8
0004 BE3F01
0007 BF0002
000A B80000
000D 8EC0
000F B9E600
0012 F3A4

0014 B80000
0017 8ED8
0019 8ED0
001B BC2A03
001E FC

001F B013
0021 E6C0
0023 B010

All Information

This long jump prom''d in by hand
cseg Offffh ;reset goes to here
JMPF BOTTOM ;boot is at bottom
EA 00 00 00 FF ?cs = bottom of pro

ip = 0
EVEN PROM ODD PROM
7F8 - EA 7F8 - 00
7F9 - 00 7F9 - 00
7FA - FF ; this is not done i

cseg romseg

First, move our data area into RAM at 0000:0200

mov ax,cs
mov ds,ax ;point DS to CS for source
mov SI,drombegin ;start of data
mov DT,offset ram_start ;offset of destinat
mov ax,0
mov es,ax destination segment is 000
mov CX,data_length ;how much to move i
rep movs al,al ;move out of eorom

mov ax,0
mov ds,ax ;data segment now in RAM
mov ss,ax
mov sp,stack_offset jInitialize stack s
cld ;clear the directio

IF NOT DEBUG

Now, initialize the console USART and baud rate

mov al,QEh
out csts,al
mov al,40h
out csts,al
mov al,4Eh
out csts,al
mov al,37h
out csts,al
mov al,0B6h
out tcmd,al
mov ax,baud
out tch2,al
mov al,ah
out tch2,al
END IF

;qive 8251 dummy mode

;reset 8251 to accept mode

;normal 8 bit asynch mode,

;enable Tx & Rx

;8253 ch.2 square wave mode

;low of the baud rate

;high of the baud rate

Setup the 8259 Programmable Interrupt Controller

mov al,l3h
out icpl,al j8259a ICW 1 8086 mode
mov al,10h

Presented Here is Proprietary to Digital Research

105

CP/M-86 System Guide Appendix C Listing of the BOOT ROM

0025 E6C2
0027 B01F
0029 E6C2
002B B0FF
002D E6C2

out icp2,al ;8259a
mov al,lFh
out icp2,al ;8259a
mov al,OFFh
out icp2,al ;8259a

ICW 2 vector @ 40-5

ICW 4 auto EOI mast
OCW 1 mask all leve

Reset and initialize the iSBC 204 Diskette Interfa

002F E6AF
0031 B001
0033 E6A2
0035 B000
0037 E6A2
0039 BB1502
003C E8E100
003F BB1B02
0042 E8DB00
0045 BB2102
0048 E8D500
004B BB1002
004E E85800

restart: ;also come back here on
reset204,AL ;reset iSBC 204
AL, 1
fdcrst,AL ;give 8271 FDC
al, 0
fdcrst,AL
BX,offset
sendcom

homer

out
mov
out
mov
out
mov
CALL
mov BX,offset
CALL sendcom
mov BX,offset
call sendcom
mov BX,offset
CALL execute

fatal error
logic and

reset command; a
specsi
;program
specs2
; Shugart SA-800 drive
specs3
; characteristics
home

;home drive 0

0051 BB2A03
0054 B80000
0057 8EC0
0059 E8A700

005C BB0202
005F E84700

mov bx,sectorl ;offset for first sector DM
mov ax,0
mov es,ax ;segment " " " "
call setup_dma

mov bx,offset readO
call execute ;get TO SI

0062 8E062D03
0066 BB0000
0069 E89700

mov es,ABS
mov bx,0 ?get loader load address
call setup_dma ;setup d m a to read loader

006C BB0602
006F E83700
0072 BB0B02
0075 E83100

mov bx,offset readl
call execute ;read track 0
mov bx,offset read2
call execute ;read track 1

0078 8C06E802

007C C706E6020000

mov leap_segment,ES
setup far jump vector
mov leap_offset,0

0082 FF2EE602
enter LOADER
jmpf dword ptr leap_offset

0086 8A0F
0088 84C9
008A 7476
008C E80400
008F 43
0090 E9F3FF

pmsg:
mov cl,[BX]
test cl,cl
jz return
call conout
inc BX
jmp pmsg

All Information Presented Here is Proorietary to Digital Research

106

CP/M-86 System Guide Appendix C Listinq of the BOOT1 ROM

0093
0095
0097
0099
009B
009D

009E
OOAO
00A2
00A4
00A6
00A8

00A9

00 AD

OOBO
00B4
00B7
00B9
00BC
OOBE
00C0
00C3
00C5
00C7
00C9

OOCB
OOCD
OOCF

00D3
00D5
00D7
00D9
OODB

00 DD
OOEO

All

conout:
E4DA in al,csts
A801 test al,l
74FA jz conout
8AC1 mov al,cl
E6D8 out cdata,al
03 ret

9

conin:
E4DA in al,csts
A802 test al,2
74FA jz conin
E4D8 in alfcdata
247F and al,7Fh
C3 ret

execute •• ;execute command string @ [BX]
;<BX> points to length,
;followed by Command byte
?foil owed by length-1 parameter bvt

891E0002
9

mov lastcom,BX ;remember what it w
retry: ;retrv if not ready

E87000 call sendcom ;execute the comman
;now, let's see wha
;of status poll was
;for that command t

8B1E0002 mov BX,lastcom ;point to command s
8A4701 mov AL , 1 [BX] ;get command op cod
243F and AL,3fh ;drop drive code bi
B90008 mov OX,0800h ;mask if it will be
3C2C cmp AL,2ch ;see if interrupt t
720B jb execpoll
B98080 mov CX,8080h ;else we use "not c
240F and AL,Ofh ;unless . . .
3C0C cmp AL,Och ;there isn't
B000 mov AL, 0
7737 ja return ;any result at all

9

execpoll: ;poll for bi t in b, toggled with c
E4A0 in AL/FDCSTAT
22C5 and AL, GH
32C174F8 xor AL,CL ! JZ execpoll

E4A1
9

in AL,fdcrslt ;get result registe
241E and AL,leh ;look only at resul
7429 jz return ;zero means it was
3C10

9

cmp al,10h
7513 jne fatal ;tf other than "Not

BB1302
9

mov bx,offset rdstat
E83D00 call sendcom ;perform read statu

Information Presented Here is Proprietary to Digital Research
107

CP/M-86 System Guide Appendix C Listing of the BOOT ROM

rd_poll m
•

00E3 E4A0 in al,fdc_stat
00E5 A880 test al,80h ;wait for command n
00E7 75FA jnz rd_poll
00E9 8B1E0002 mov bx,last com ;recover last attem
00ED E9BDFF imp retry ;and trv it over ag

t

fatal: ; fatal error
00F0 B400 mov ahf0
00F2 8BD8 mov bx,ax ;make 16 bits
00F4 8B9F2702

•
1

mov bx,errtbl[BX]
print appropriate error message

00F8 E88BFF call pmsg
OOFB E8A0FF call conin ;wait for key strik
oofe 58 pop ax ;discard unused ite
00FF E92DFF imp restart 7 then start all ove

t

return:
0102 C3 RET ;return from EXECUT

t

setuodma:
0103 B004 mov AL,04h
0105 E6A8 out dmacmode,AL ;enabie dmac
0107 B000 mov a! , 0
0109 E6A5 out dmaccont,AL ;set first (dummy)
010B B040 mov AL,40h
010D E6A5 out dmaccont,AL ; force read data mo
010F 8CC0 mov AX,ES
0111 E6AA out fdcsegment , AL
0113 8AC4 mov AL,AH
0115 E6AA out fdcsegment , AL
0117 8BC3 mov AX,BX
0119 E6A4 out dmacadr,AL
011B 8AC4 mov AL,AH
OllD E6A4 out dmacadr,AL
01 IF C3

•
i

RET

0120 E4A0
sendcom: ;routine

in AL,fdcstat
to send a command string t

0122 2480 and AL,80h
0124 75FA inz sendcom ;insure command not busy
0126 8A0F mov CL,[BX] ;get count
0128 43 inc BX
0129 8A07 mov al,[BX] ;point to and fetch command
012B E6A0 out fdccom,AL ;send command

012D FEC9
parmloop:

dec CL
012F 7 4D1 jz return ;see if any (more) paramete
0131 43 inc BX ;point to next parameter

0132 E4A0
parmpoll:

in AL,fdcstat
0134 2420 and AL,20h
0136 75FA jnz parmpoll ;loop until parm not full

All Information Presented Here is Proprietary to Digital Research

108

CP/M-86 System Guide Listing of the BOOT ROM

0138 8A07
013A E6A1
013C E9EEFF

013F

013F 0000

0141 03
0142 52
0143 00
0144 01

0145 04
0146 53
0147 00
0148 02
0149 19

014A 04
014B 53
014C 01
014D 01
014E 1A

014F 026900
0152 016C
0154 05350D
0157 0808E9
015A 053510
015D FFFFFF
0160 053518
0163 FFFFFF

0166 4702
0168 4702
016A 4702
016C 4702
016E 5702
0170 6502
0172 7002
0174 7F02
0176 9002
0178 A202
017A B202
017C C502
017E D302
0180 4702
0182 4702
0184 4702

0186 0D0A4E756C6C

All Information

Appendix C

mov AL,[BX]
out fdcparm,AL ;outout next parameter
imp parmloop ;go see about another

mt
r
; Image of data to be moved to RAM
t

drombegin equ offset $

clastcom
r

creadstring

creadtrkO

creadtrkl

chomeO
crdstatO
cspecsl

cspecs2

cspecs3

cerrtbl dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

t

CerO db

dw 0000h

db 3
db 52h
db 0
db 1

db 4
db 53h
db 0
db 2
db 25

db 4
db 53h
db 1
db 1
db 26

db 2,69h , 0
db 1,6ch

;last command

;length
;read function code
;track #
;sector #

;read multiple
;track 0
jsectors 2
jthrough 26

;track 1
;sectors 1
;through 26

db 5,35h,Odh
db 08h,08h,0e9h
db 5,35h,10h
db 255,255,255
db 5,35h,18h
db 255,255,255

offset erO
offset erl
offset er2
offset er3
offset er4
offset er5
offset er6
offset er7
offset er8
offset er9
offset erA
offset erB
offset erC
offset erD
offset erE
offset erF

cr,If,'Null Error ??',0

Presented Here is Proprietary to Digital Research

109

CP/M-86 System

204572726F72
203F3F00

Guide Appendix C Listing of the

0186 Cerl equ cerO
0186 Cer 2 equ cerO
0186 Cer3 equ cerO

0196 0D0A436C6F63
6B204572726F
7200

Cer4 db cr,If,"Clock Error",0

01A4 0D0A4C617465
20444D4100

Cer5 db cr,If,"Late DMA",0

01AF ODOA49442043
524320457272
6F7200

Cer6 db cr,1f,"ID CRC Error",0

01BE 0D0A44617461
204352432045
72726F7200

C e r l db cr,If,"Data CRC Error",0

01CF 0D0A44726976
65204E6F7420
526561647900

Cer8 db cr,If,"Drive Not Ready",0

01E1 0D0A57726974
652050726F74
65637400

Cer9 db cr,If,"Write Protect",0

01F1 0D0A54726B20
3030204E6F74
20466F756E64
00

CerA db cr,If,"Trk 00 Not Found",

0204 0D0A57726974
65204661756C
7400

CerB db cr,If,"Write Fault",0

0212 0D0A53656374
6F72204E6F74
20466F756E64
00

CerC db cr,If,"Sector Not Found",

0186 CerD equ cerO
0186 CerE equ cerO
0186 CerF equ cerO

0225
9

dromend equ offset $

00E6
9

data_ length equ dromend-drombegin

reserve space in RAM for data area
(no hex records generated here)

0000 dseg 0
org 0200h

0200
9

ram_start equ $
0200 lastcom rw 1 ; last command
0202 readO rb 4 ;read track 0 secto
0206 readl rb 5 ;read TO S2-26
020B read2 rb 5 jread ^1 Sl-26
0210 home rb 3 ;home drive 0
0213 rdstat rb 2 ;read status
0215 specsl rb 6

All Information Presented Here is Proprietary to Digital Research

110

CP/M-86 System Guide Appendix C Listinq of the BOOT ROM

021B specs2 rb 6
0221 specs3 rb 6
0227 errtbl rw 16
0247 erO rb length cerO 16

0247 er 1 equ erO
0247 er2 equ erO
0247 er 3 eou erO

0257 er 4 rb length cer4 14
0265 er 5 rb length cer5 11
0270 er 6 rb length cer6 15
027F er7 rb length cer7 17
0290 er8 rb length cer8 18
02A2 er 9 rb length cer9 16
02B2 erA rb length cerA 19
0 2C5 erB rb length cerB 14
02D3 erC rb length cerC 19

0247 erD equ erO
0247 erE equ erO
0247 erF equ erO

02E6
9

leap_offset rw 1
02E8 leap_segment

•
9

rw 1

02EA
•
9

rw 32 ;local stack
032A stack_offset equ offset $;stack from

•
9 T0 51 read in here

032A sector1 equ offset $

032A
9

Ty rb 1
032B Len rw 1
03 2D Abs rw 1 ;ABS is all
032F Min rw 1
0331 Max rw 1

end

All Information Presented Here is Proprietary to Digital Research

c

Appendix D
LDBIOS Listing

ft***
*

This the the LOADER BIOS, derived from the BIOS *
program by enabling the "loader_bios" condi- *
tional assembly switch. The listing has been *
edited to remove portions which are duo!icated *
in the BIOS listing which appears in Appendix D *
where elipses ”..." denote the deleted portions *
(the listing is truncated on the right, but can *
be reproduced by assembling the BIOS.A86 file *
provided with CP/M-86) *

*

★★A***

* *

* Basic Tnput/Output System (BIOS) for *
* CP/M-86 Configured for iSBC 86/12 with *
* the iSBC 204 Floppy Disk Controller *
* ★
* (Note: this file contains both embedded *
* tabs and blanks to minimize the list file *
* width for printing purposes. You mav wish*
* to expand the blanks before performing *
* major editing.) **

Copyright (C) 1980,1981
Digital Research, Inc.
Box 579, Pacific Grove

. California, 93950
(Permission is herebv granted to use
or abstract the following program in
the implementation of CP/M, MP/M or
CP/NETfor the 8086 or 8088 Micro
processor)

FFFF
0000

true equ -1
false equ not true

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide Appendix D LDBIOS Listing

* *

* Loader_bios is true if assembling the *
* LOADER BIOS, otherwise BIOS is for the *
* CPM.SYS file. Blc_list is true if we *
* have a serial printer attached to BLC8538 *
* Bdos_int is interrupt used for earlier *
* versions. *
* *

FFFF
FFFF
00E0

loader_bios
blc_list
bdos_int

IF

equ true
equ true
equ 224 ;reserved BDOS Interrupt

not loader_bios
/
;!

• • •

>1

1

1
ENDIF ;not loader_bios

' IF loader bios

1200
t

; 1
bios code

1
egu 1200h ;start of LDBIOS

0003 ccp offset equ 0003h ;base of CPMLOADER
0406 bdos ofst

; 1 "
equ 0406h ;stripped BDOS entry

ENDIF
• • •

cseg

;loader bios

org
ccp:

ccpoffset

org bios code

* *

* BIOS Jump Vector for Individual Routines *
* *

1200 E93C00
1203 E96100

jmp INIT ;Enter from BOOT ROM or LOADER
jmp w b o OT ;Arrive here from BDOS call 0

1239 E96400
123C E96400

jmp GETIOBF ;return I/O map byte (IOBYTE)
jmp SETIOBF ;set I/O map byte (IOBYTE)

All Information Presented Here is Proprietary to Digital Research
114

CP/M-86 System Guide Appendix D LDBIOS Listing

* *

* INIT Entry Point, Differs for LDBIOS and *
* BIOS, according to "Loader Bios" value *
* *

INIT: ;print signon message and initialize hardwa
123F 8CC8 mov ax ,cs ;we entered with a JMPF so
1241 8ED0 mov ss ,ax ; CS: as the initial value
1243 8ED8 mov ds ,ax } DS: ,
1245 8EC0 mov es, ax ; and ES:

;use local stack during initialization
1247 BCA916 mov sp,offset stkbase
124A FC cld ;set forward direction

IF not loader_bios
/
»1

1 1
; This
• • •

i
is a BIOS for the CPM.SYS file.

!
t

ENDIF ;not loader_bios

IF loader bios

124B IE push ds
124C B80000 mov ax, 0
124F 8ED8 mov ds,ax

;BDOS int<
1251 C70680030604 mov bdos_<
1257 8C0E8203 mov bdos i
125B IF pop ds

125C BB1514
125F E85A00
1262 B100
1264 E99CED

1267 E99FED

;This is a BIOS for the LOADER
;save data segment

;point to segment zero

jrestore data segment
»I I• — — ~ M ~a» M Mi M M — — — —t

ENDIF ;loader_bios

mov bx,offset signon
call pmsg ;print signon message
mov cl,0 jdefault to dr A: on coldst
jmp ccp ;jump to cold start entry o

WBOOT: jmp ccp+6 ;direct entry to CCP at com

IF not loader_bios

H i

ENDIF ;not loader bios

All Information Presented Here is Proprietary to Digital Research

115

CP/M-86 System Guide Appendix D LDBIOS Listinq

.***

. * * i
;* CP/M Character I/O Interface Routines *
;* Console is Usart (i8251a) on iSBC 86/12 *
l * at ports D8/DA *. * *f* a**

126A E4DA
CONST: ;console status

in alrcsts

1272 C3
const_ret:

ret ;Receiver Data Available

1273 E8F4FF
CONIN: ^console input

call const

127D E4DA

• • •
CONOUT: ;console output

in al,csts
• • •

1288 E80700

LISTOUT: ;list device output

IF blcJList

; 1 !
call LISTST

1291 C3

H 7 i
ENDIF ;blc_list

ret
LISTST: ypoll list status

1292 E441

IF blc_list

? 1 1
in al,Ists

129C C3

; 1 i
ENDIF ;blc__l ist

ret

129D B01A
129F C3

PUNCH: ;not implemented in this configuration
READER:

mov al,lah
ret ;return EOF for now

All Information Presented Here is Proprietary to Digital Research

116

C.p /m-8 6 System Guide Appendix D LDBIOS Listing

GETIOBF:
12A0
12A2

B000
C3

mov al,0 ;TTY: for consistency
ret ;IOBYTE not implemented

12A3 C3
SETIOBF:

ret ;iobyte not implemented

12 A4
12A6

2400
C3

zero_ret:
and al,0

ret ;return zero in AL and flag

; Routine to get and echo a console character
; and shift it to upper case

12A7 E8C9FF
uconecho:

call CONIN ;get a console character
• • •

.***
• * *»
;* Disk Input/Output Routines *. * *
9**

12CA BB0000
SELDSK: yselect disk given by register CL

mov bx,0000h
• • •

12EB C606311500
HOME: ;move selected disk to home position (Track

mov trk,0 ;set disk i/o to track zero
• ■ •

1300
1304

880E3115
C3

SETTRK: ;set track address given by CX
mov trk,cl ;we only use 8 bits of trac
ret

1305
1309

880E3215
C3

SETSEC: ;set sector number given by cx
mov sect,cl ;we only use 8 bits of sect
ret

130A 8BD9
SECTRAN: ;translate sector CX using table at [DXl

mov bx,cx
• • •

1311
1315

890E2A15
C3

SETDMA: ;set DMA offset given by CX
mov dma_adr,CX
ret

1316
131A

890E2C15
C3

SETDMAB: ;set DMA segment given by CX
mov dma_seg,CX
ret

131B
131E

BB3815
C3

9

GETSEGT: ;return address of physical memory table
mov bx,offset seg_table
ret

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide Appendix D LDBIOS Listing

* *
* All disk I/O parameters are setup: the *
* Read and Write entry points transfer one *
* sector of 128 bytes to/from the current *
* DMA address using the current disk drive *
* *

READ:
13 IF
1321

B012
EB02

mov
jmps

al,12h
r_w_common

;basic read sector command

1323 BQOA
WRITE:

mov al,Oah ;basic write sector command

1325 BB2F15
r_w_c°mm°n :

mov bx,offset io_com ;point to command stri

• *4r4r4r**4r*4r4r*****4r4r4r*4r**4r4r*4r4r**4r4:*4r*4r******4r*4r4r
. * *
t

;* Data Areas *
• * *
t**t

1415 data_offset equ offset S

dseg
org data_offset ycontiguous with co

IF loader bios

1415 0D0A0D0A
t
; 1
signon db

!
cr,lf,cr,If

1419 43502F4D2D3B
362056657273
696F6E20322E
320D0A00

;|

db CP/M-86 Version 2.2"* ,cr flf ,0

!
#

ENDIF ;loader_bios

IF not loader_bios
t
H
\ 1

• • •
I
1

r
ENDIF ;not loader_bios

142F 0D0A486F6D65 bad_hom db cr,If,'Home Error',cr,If,0

include singles.lib ;read in disk definitio
DISKS 2

All Information Presented Here is Proprietary to Digital Research

118

CP/M-86 System Guide Aüpendix D LDBIOS Listinq

1541

1668 00

1669
16A9

16A9 00

0000

All Information

debase equ $;3ase of Disk Param
• • •
db 0 ;Marks End of Modul

loc stk rw 32 ;local stack for initialization
stkbase equ offset $

db 0 ;fill last address for GENCMD

* *

* Dummy Data Section *
* *
* *

dseq
org

0
0

;absolute]ow memory
;(interrupt vectors)

END

Presented Here is Proprietary to Digital Research

119

(

, ,

■

c

Appendix E
BIOS Listing

* *
* This is the CP/M-86 BIOS, derived from the BIOS *
* program by disabling the "loader_bios" condi- *
* tional assembly switch. The listing has been *
* truncated on the right, but can be reproduced *
* by assembling the BIOS.A86 file provided with *
* CP/M-86. This BIOS allows CP/M-86 operation *
* with the Intel SBC 86/12 with the SBC 204 con- *
* troller. Use this BIOS, or the skeletal CBIOS *
* listed in Appendix E, as the basis for a cus- *
* tomized implementation of CP/M-86. *
* provided with CP/M-86) *
* *

* *

* Basic Tnput/Output System (BIOS) for *
* CP/M-86 Configured for iSBC 86/12 with *
* the iSBC 204 Floppy Disk Controller *
* *
* (Mote: this file contains both embedded *
* tabs and blanks to minimize the list file *
* width for printing purposes. You may wish*
* to expand the blanks before performing *
* major editing.) **

Copyright (C) 1980,1981
Digital Research, Inc.
Box 579, Pacific Grove
California, 93950
(Permission is hereby granted to use
or abstract the following program in
the implementation of CP/M, MP/M or
CP/NET for the 8086 or 8088 Micro
processor)

FFFF true equ -1
0000 false equ not true

All Information Presented Here is Proprietary to Digital Research

121

CP/M-86 System Guide Appendix E BIOS Listing

0000
FFFF
00E0

2500
0000
0B06

* *

* Loader_bios is true if assembling the *
* LOADER BIOS, otherwise BIOS is for the *
* CPM.SYS file. Blc_] ist is true if we *
* have a serial printer attached to BLG8538 *
* Bdos_int is interrupt used for earl ier *
* versions. *
* * ***

loader_bios
blc_list
bdos int

equ false
equ true
equ 224 ;reserved BDOS Interruot

IF not loader bios

bios_code
ccp_offset
bdos ofst

ENDIF

equ 2500h
equ 0000h
equ 0B06h ;BDOS entry point

;not loader bios

IF loader bios

bios_code
ccp_offset
bdos ofst

equ 1200h ;start of LDBIOS
equ 0003h ;base of CPMLOADER
equ 0406h ;stripped BDOS entrv

9

ENDIF ;loader_bios

00DA csts equ ODAh ;i8251 status port
00D8 cdata equ 0D8h ; " data port

IF blc_list

0041
9

»1
lsts

1
equ 41h ;2651 No. 0 on BLC8538 stat

0040 ldata equ 40h ; " " " " " data
0060 blc reset

»1 "
equ 60h ;reset selected USARTS on B

9

ENDIF ;blc_list
**
• ★ *
• *
9 Intel iSBC 204 Disk Controller Ports *
• * *
**

All Information Presented Here is Proprietarv to Digital Research

122

CP/M-86 System Guide Appendix E BIOS Listinq

00A0 base204

00A0 fdc_com
00A0 fdc_stat
00A1 fdc_parm
00A1 fdc_rslt
00A2 fdc_rst
00A4 dmac_adr
00A5 dmac cont
00A6 dmac_scan
00A7 dmac_sadr
00A8 dmac_mode
00A8 dmac_stat
00A9 fdc_sel
00AA fdc_segment
00AF reset 204

000A max_retries

000D cr
000A If

cseq
org

ccp:
orq

equ OaOh ;SBC204 assigned ad

equ base204+0 ; 8271 FDC out comma
equ base204+0 ; 8271 in status
equ base204+l ; 8271 out parameter
equ base204+l ; 8271 in result
equ base204+2 ; 8271 out reset
equ base204+4 ; 8257 DMA base addr
equ base204+5 ;8257 out control
equ base204+6 ; 8257 out scan cont
equ base204+7 ; 8257 out scan addr
equ base204+8 ;8257 out mode
equ base204+8 ;8257 in status
equ base204+9 ;FDC select port (n
equ base204+10 ;segment address re
equ base204+15 ;reset entire inter

equ 10 ;max retries on dis
;before perm error

equ Odh jcarriage return
equ Oah ;line feed

ccpoffset

bios code

* *

* BIOS Jump Vector for Individual Routines *
* *

2500 E93C00
2503 E98400
2506 E99000
2509 E99600
250C E99D00
250F E9A500
2512 E9B700
2515 E9B400
2518 E9FF00
251B E9DB00
251E E90E01
2521 E91001
2524 E91901
2527 E92401
252A E92501
252D E99100
2530 E90601
2533 E90F01
2536 E91101
2539 E99300
253C E99300

jmp INIT
jmp WBOOT
imp CONST
jmp CONIN
jmp CONOUT
jmp LISTOUT
jmp PUNCH
jmp READER
jmp HOME
jmp SELDSK
jmp SETTRK
jmp SETSEC
jmp SETDMA
jmp READ
imp WRITE
jmp LISTST
jmp SECTRAN
jmp SETDMAB
jmp GETSEGT
jmp GETIOBF
jmp SETIOBF

Enter from BOOT ROM or LOADER
Arrive here from BDOS call 0
return console kevboard status
return console keyboard char
write char to console device
write character to list device
write character to punch device
return char from reader device
move to trk 00 on cur sei drive
select disk for next rd/write
set track for next rd/write
set sector for next rd/write
set offset for user buff (DMA)
read a 128 byte sector
write a 128 byte sector
return list status
xlate logical->physical sector
set seg base for buff (DMA)
return offset of Mem Desc Table
return I/O map byte (IOBYTE)
set I/O map byte (IOBYTE)

All Information Presented Here is Proprietary to Digital Research

123

CP/M-86 System Guide Appendix E BIOS Listing

* *

* INIT Entry Point, Differs for LDBIOS and *
* BIOS, according to "Loader Bios" value *
* — *

INIT
253F 8CC8
2541 8ED0
2543 8ED8
2545 8EC0

2547 BCE429
254A FC

254B IE
254C B80000
254F 8ED8
2551 8EC0

2553 C70600008D25
2559 8C0EO200
255D BF0400
2560 BE0000
2563 B9FE01
2566 F3A5

2568 C7068003060B
256E IF

;print signon message and initialize hardwa
mov ax,cs ;we entered with a JMPF so
mov ss,ax ; CS: as the initial value
mov ds,ax ; DS:,
mov es,ax ; and ES:
;use local stack during initialization
mov sp,offset stkbase
cid ;set forward direction
IF not loader bios

; This is a BIOS for the CPM.SYS file.
; Setup all interrupt vectors in low
; memory to address trao

push ds ;save the DS register
mov ax, 0
mov ds,ax
mov es,ax ;set ES and DS to zero
;setup interrupt 0 to address trap routine
mov int0_offset,offset int_trap
mov intO_segment,CS
mov d i , 4
mov si,0 ;then propagate
mov cx,510 ;trap vector to
rep movs ax,ax ;all 256 interrupts
;BDOS offset to proper interrupt
mov bdos_offset,bdos_ofst
pop ds ;restore the DS register

* *

* National "BLC 8538" Channel 0 for a serial*
* 9600 baud printer - this board uses 8 Sig-*
* netics 2651 Usarts which have on-chip baud*
* rate generators. *
* *

256F BOFF
2571 E660
2573 B04E
2575 E642
2577 B03E
2579 E642
257B B037
257D E643

mov al,OFFh
out blc_reset,al ;reset all usarts on 8538
mov al,4Eh
out ldata+2,al jset usart 0 in async 8 bit
mov al,3Eh
out ldata+2,al ;set usart 0 to 9600 baud
mov al,37h
out ldata+3,al jenable Tx/Rx, and set up

All Information Presented Here is Proprietary to Digital Research

124

CP/M-86 Svstem Guide Appendix E BIOS Listing

ENDIF ;not loader_bios

IF loader bios

;This is a BIOS for the LOADER
push ds ;save data segment
mov ax,0
mov ds,ax ;point to segment zero
;BDOS interrupt offset
mov bdos_offset,bdos_ofst
mov bdos_segment,CS ;bdos interrupt segment
pop ds ;restore data segment

9

ENDIF ;loader bios

257F BB4427 mov bx,offset signon
2582 E86600 call pmsg jprint signon message
2585 B100 mov cl,0 jrdefault to dr A: on coldst
2587 E976DA imp ccp ;jump to cold start entry o

258A E979DA WBOOT: jmp ccp+6 ;direct entry to CCP at com

IF not loader bios
9

i 1int trap: 1
258D FA cli ;block interrupts
258E 8CC8 mov ax,cs
2590 8ED8 mov ds,ax ;get our data segment
2592 BB7927 mov bx,offset int trp
2595 E85300 call. pmsg
2598 F4 hit

»1
jhardstop

I
ENDIF ;not toader_bios

**
. * *»
; * C P /M Character I/O Interface Routines *
;* Console is Usart (i8251a) on iSBC 86/12 *
;* at ports D8/DA *
• * *
9

• ***
9

CONST: ;console status
in al,csts
and al,2
jz const__ret
or al,255 ;return non-zero if RDA

const_ret:
ret ^Receiver Data Available

2599 E4DA
259B 2402
259D 7402
259F OCFF

25A1 C3

All Information Presented Here is Proprietary to Digital Research

125

CP/M-86 System Guide Appendix E BIOS Listinq

CONIN: ;console inout
25A2 E8F4FF cal] const
25A5 74FB iz CONIN ;wait for RDA
25A7 E4D8 in al,cdata
25A9 247F and al,7fh ;read data and remove oar it
25AB C3 ret

CONOUT: ;console output
2 5 AC E4DA in ai,csts
25AE 2401 and al,l ;get console status
25B0 74FA iz CONOUT ;wait for TBE
25B2 8AC1 mov al,cl
25B4 E6D8 out cdata,al transmitter Buffer Empty
25B6 C3 ret ; then return data

LISTOUT: ;list device output
IF blc_list

25B7 E80700
9

; I
call LISTST

1
25BA 74FB iz LISTOUT ywait for printer not busy
25BC 8AC1 mov al,cl
25BE E640 out ldata,al

? 1
jsend char to TT 810

ENDIF ;blc _list

25C0 C3 ret
LISTST: ;poll list status

IF blc__list

25C1 E441
9

? 1
in al ,lsts

1
25C3 2481 and al,81h ;look at both TxRDY and DTR
25C5 3C81 cmp al,81h
25C7 750A inz zero ret jeither false , printer is b
25C9 OCFF or al,255

; 1
;both true, LPT is ready

9

ENDIF ;blc_list

25CB C3 ret

PUNCH: ;not implemented in this configuration
READER:

25CC B01A mov al , lah
25CE C3 ret ;return EOF for now

GETIOBF:
25CF B000 mov al,0 ;TTY: for consistency
25D1 C3 ret ;IOBYTE not implemented

All Information Presented Here is Proprietary to Digital Research

126

CP/M-86 System Guide Appendix E BIOS Listing

25D2 C3

25D3 2400
25D5 C3

25D6 E8C9FF
25D9 50
25DA 8AC8
25DC E8CDFF
25DF 58
25E0 3C61
25E2 7206
25E4 3C7A
25E6 7702
25E8 2C20

25EA C3

25EB 8A07
25ED 84C0
25EF 7428
25F1 8AC8
25F3 E8B6FF
25F6 43
25F7 EBF2

SETIOBF:
ret ;iobyte not implemented

zero_ret:
and al ,0

ret ;return zero in AL and flag

; Routine to get and echo a console character
; and shift it to upper case

uconecho:
call CONIN
push ax
mov cl,al
call CONOUT
pop ax
cmp al,"a^
ib uret
cmp al, ** z"
ja uret
sub alj^a'-'A"

uret;
ret

;get a console character

;save and
;echo to console

;less than 'a' is ok

jgreater than 'z' is ok
;else shift to caps

utility subroutine to print messages

pmsg:
mov al,[BX]
test al ,al
jz return
mov CL, AL
call CONOUT
inc BX
jmps pmsg

;get next char from message

;if zero return

;print it

;next character and loop
ft****#***********************************'****
* *

* Disk Input/Output Routines *
* *

SELDSK: ;select disk given by register CL
25F9 BB0000 mov bx,0000h
25FC 80F902 cmp cl,2 ;this BIOS only supports 2
25FF 7318 jnb return ;return w/ 0000 in BX if ba
2601 B080 mov al, 80h
2603 80F900 cmp cl, 0
2606 7502 jne sell ;drive 1 if not zero
2608 B040 mov al, 40h ;else drive is 0
260A A26928 sell; mov sel_mask,al ;save drive select mask

;now, we need disk paramete
260D B500 mov ch,0
260F 8BD9 mov bx ,cx ;BX = word(CL)
2611 B104 mov cl ,4

All Information Presented Here is Proprietary to Digital Research

127

CP/m-86 System Guide Appendix E BIDS Listing

2613 D3E3 shl bx,cl jmultiply drive code * 16
;create offset from Disk Parameter Base

2615 81C37C28 add bx,offset dp base
return:

2619 C3 ret

261A C6066C2800
26IF BB6E28
2622 E83500
2625 74F2
2627 BB6A27
262A E8BEFF
262D EBEB

HOME: ;move selected disk to home position (Track
mov trk,0 ;set disk i/o to track zero
mov bx,offset hom_com
call execute
jz return ;home drive and return if 0
mov bx,offset bad_hom ;else print
call pmsg ;"Home Error"
jmps home ;and retrv

262F 880E6C28
2633 C3

SETTRK: ;set track address given by CX
mov trk,cl ;we only use 8 bits of trac
ret

2634 880E6D28
2638 C3

SETSEC: ;set sector number given by cx
mov sect,cl ;we only use 8 bits of sect
ret

2639 8BD9
263B 03DA
263D 8A1F
263F C3

SECTRAN: jtranslate sector CX using table at [DX]
mov bx,cx
add bx,dx ;add sector to tran table a
mov bl,[bxl ;get logical sector
ret

2640 890E6528
2644 C3

SETDMA: ;set DMA offset given bv CX
mov dma_adr,CX
ret

2645 890E6728
2649 C3

SETDMAB: jset DMA segment given by CX
mov dma seg,CX
ret

264A BB7328
264D C3

•
t

GETSEGT: ;return address of physical memory table
mov bx,offset seg table
ret

**$
• * *
t

;* All disk I/O parameters are setup: the *
;* Read and Write entry points transfer one *
;* sector of 128 bytes to/from the current *
;* DMA address using the current disk drive *
• * *i.***

264E B012
2650 EB02

READ:
mov al,12h ;basic read sector command
jmps r__w common

WRITE:

All Information Presented Here is Proprietary to Digital Research

128

CP/M-86 System Huide Appendix E BIOS Listing

2652 BOOA mov al,Oah ;basic write sector command

r w common:
2654 BB6A28 mov bx,offset io com ;point to command stri
2657 884701

•r
mov byte ptr 1 [BX],al ;put command into str
fall into execute and return

execute : ^execute command string.
; [BX] points to length,
; followed by Command byte,
; followed by length-1 parameter byte

265A 891E6328 mov last com,BX ;save command address for r
outer retry:

;allow some retrving
265E C60662280A mov rtry_cnt,max_retries

retry:
2663 8B1E6328 mov BX,]ast com
2667 E88900 call send com ;transmit command to i8271

•9 check status poll

266A 8B1E6328 mov BX,last com
266E 8A4701 mov al,1 [b x T ;get command op code
2671 B90008 mov cx,0800h ;mask if it will be "int re
2674 3C2C cmp al,2ch
2676 720B ib exec__poll ;ok if it is an interrupt t
2678 B98080 mov cx,8080h ;else we use "not command b
267B 240F and al,Ofh
267D 3C0C cmp al,0ch junless there isn't
267F B000 mov al,0
2681 7736 ja exec_exit ; any result

jpoll for bits in CH,
exec_poll: ; toggled with bits in CL

2683 E4A0 in al,fdc_stat ;read status
2685 22C5 and al,ch
2687 32C1 xor al,cl ; isolate what we want to
2689 74F8 j z exec_pol1 ;and loop until it is done

;Operation complete,
268B E4A1 in al,fdc_rslt ; see if result code indica
268D 241E and al,leh
268F 7428 jz exec_exit ;no error, then exit

;some type of error occurre
2691 3C10 cmp al,10h
2693 7425 ie dr__nrdy ;was it a not ready drive ?

; no,
dr_rdy: ; then we just retry read or write

2695 FE0E6228 dec rtry_cnt
2699 75C8 jnz retry ; up to 10 times

retries do not recover from the
hard error

269B B400 mov ah, 0

All Information Presented Here is Proprietary to Digital Research

129

CP/M-86 System Guide Appendix E BIOS Listing

269D 8BD8 mov bx, ax ;make error code 16 bits
269F 8B9F9127 mov bx,errtbl[BX]
26A3 E845FF call pmsg ;print appropriate message
26A6 E4D8 in al,cdata ;flush usart receiver buff
26A8 E82BFF call uconecho ;read upper case console ch
2 6 AB 3C43 cmp al,'C'
2 6 AD 7425 ie wboot_l jcancel
26AF 3C52 cmp al,'R'
26B1 7 4 AB je outer retry ;retry 10 more times
26B3 3C49 cmp al,'I'
26B5 741A je z__ret ;iqnore error
26B7 OCFF or al,255 ;set code for permanent err

exec__exit s
26B9 C3 ret

dr_nrdy: ;here to wait for drive ready
26BA E81A00 call test_ready
26BD 75A4 jnz retrv ;if it's ready now we are d
26BF E81500 call test_ready
26C2 759F jnz retry ;if not ready twice in row.
26C4 BB0228 mov bx,offset nrdymsg
26C7 E821FF call pmsg ;"Drive Not Ready"

nrdyOl:
26CA E80A00 call test_ready
26CD 74FB jz nrdyOl ;now loop until drive ready
26CF EB92 jmps retry ;then go retry without deer

zret:
26D1 2400 and al,0
26D3 C3 ret ;return with no error code

wboot 1: ;can't make it w/ a short 1
26D4 E9B3FE jmp WBOOT

★★a**
★ *
* The i8271 requires a read status command *
* to reset a drive-not-ready after the *
* drive becomes ready *
* *

26D7 B640
26D9 F606692880
26DE 7502
26E0 B604

26E2 BB7128
26E5 E80B00

26E8 E4A0
26EA A880
26EC 75FA
26EE E4A1
26F0 84C6

test_ready:
mov dh, 40h jproper mask if dr 1
test sei mask,80h
jnz nrdy'J
mov dh, 04h ;mask for dr 0 status bit

nrdy2:

dr poll

mov bx,offset rds_com
call send com

in al,fdc_stat
test al,80h
jnz dr_poll
in al,fdc_rslt
test al,dh

;qet status word

;wait for not command busy
;qet "special result"
;look at bit for this driv

All Information Presented Here is Proprietary to Digital Research

130

CP/M-86 System Guide

26F2

26F3
26F5
26F7

26F9
26FC
26FE
2700
2702

2704
2706
2708

270A
270C
2 7 OE
2710
2712
2714
2716
2719
271B
271D
271F
2722
2724
2726

2728
272A
272B
2 7 2d
2731

2733
2735
2737

Appendix E BIOS Listing

C3 ret ;return status of ready

* Send com sends a command and parameters ** to the i8271: BX addresses parameters. ** The DMA controller is also initialized **
*

if this is a read or write *★

send com:
E4A0 in al,fdc_stat
A880 test al,80h ;insure command not busy
75FA jnz send com ;loop until ready

;see if we have to initialize for a DMA ope

8A4701 mov al,l[bx] ;get command bvte
3C12 cmp al,12h
7504 ine write_maybe ;if not a read it could be
B140 mov cl,40h
EB06 jmps init dma ;is a read command, go set

write maybe:
3C0A cmp al,0ah
7520 jne dma_exit ;leave d m a alone if not rea
B180 mov cl,8Oh ;we have write, not read

init_dma:
;we have a read or write operation, setup DMA contr
; (CL contains proper direction bit)

B004 mov al,04h
E6A8 out dmac mode,a1 ;enable dmac
B000 mov al, 00
E6A5 out dmac_cont,al ;send first byte to con
8AC1 mov al ,cl
E6A5 out dmac_cont,al ;load direction register
A16528 mov ax,dma_adr
E6A4 out dmac_adr,al ;send low byte of DMA
8AC4 mov al, ah
E6A4 out dmac_adr,al ;send high byte
A16728 mov ax,dma_seg
E6AA out fdc_seqment,al ;send low byte of segmen
8AC4 mov al ,ah
E6AA out fdc_segment,al ;then high segment addre

dma_exit:
8A0F mov cl,[BXl ;get count
43 inc BX
8A07 mov al,[BXl ;get command
0A066928 or al,sel_mask ;merqe command and drive co
E6A0 out fdc_com,al ;send command byte

parm loop:
FEC9 dec cl
7482 iz exec exit ;no (more) parameters, retu
43 inc BX ;point to (next) parameter

parm poll:

All Information Presented Here is Proprietary to Digital Research

CP/M-86 System Guide Appendix E BIOS Listing

2738 E4A0
273A A820
273C 75FA
273E 8A07
2740 E6A1
2742 EBEF

in al,fdc_stat
test al,20h
inz parm_poll.
mov al,[BX]
out fdc_parmfal
jmps parm_loop

;test "parameter register f
;idle until parm reg not fu

;send next parameter
;go see if there are more p

* *

* Data Areas *
* *

2744 data_offset equ offset $
dseg
org data_offset ;contiguous with co

IF loader_bios
f

? 1
signon db

i
cr ,lf,cr,lf

f 1
db 'CP/M-86 Version 2.2' ,cr ,lf,0 ̂

f
ENDIF ;loader_bios

IF not loader_bios

2744 0D0A0D0A
9

> 1
signon db

1
cr,If,cr,If

2748 202053797374
656D2047656E
657261746564
20202D203131
204A616E2038
310D0A00

i 1

db ' System Generated - 11 Jan 81' , c

\
9

ENDIF ;not loader_bios
276A 0D0A486F6D65 bad horn db cr,lf,'Home Error',cr,If,0

204572726F72
0D0A00

2779 0D0A496E7465 int trp db cr ,If,'Interrupt Trap Halt',cr,If,0
727275707420
547261702048
616C740D0A00

2791 B127B127B127
B127

errtbl dw erO ,erl,er2,er3

2799 C127D127DE27
EF27

dw er 4,er5,er6,er7

27A1 022816282828 dw er 8,er9,erA,erB
3D28

27A9 4D28B127B127 dw erC,erD,erE,erF

All Information Presented Here is Proprietary to Digital Research

132

CP/M-86 System Guide Appendix E BIOS Listing

B127

27B1 0D0A4E756C6C erO db cr,If,"Null Error ??",0
204572726F72
203F3F00

27B1 er 1 equ erO
27B1 er 2 equ erO
27B1 er3 equ er 0

27C1 0D0A436C6F63 er 4 db cr,If,"Clock Error :",0
6B204572726F
72203A00

27D1 0D0A4C617465 er 5 db cr,If,"Late DMA :",0
20444D41203A
00

27DE 0D0A49442043 er6 db cr,If,"ID CRC Error :",0
524320457272
6F72203AOO

27EF ODOA44617461 er7 db cr,If,"Data CRC Error :",0
204352432045
72726F72203A
00

2802 0D0A44726976 er8 db cr,lf,"nrive Not Ready :",0
65204E6F7420
526561647920
3A00

2816 0D0A57726974 er9 db cr,If,"Write Protect :",0
652050726F74
656374203A00

2828 0D0A54726B20 erA db crjlf^'T’rk 00 Not Found :",0
3030204E6F74
20466F756E64
203A00

283D ODOA57726974 erB db cr,If,"Write Fault :",0
65204661756C
74203A00

284D 0D0A53656374 erC db cr,If,"Sector Not Found :",0
6F72204E6F74
20466F756E64
203A00

27B1 erD equ erO
27B1 erE equ erO
27B1 erF equ erO
2802 nrdymsg equ er8

2862 00 rtry_cnt db 0 ;disk error retry counter
2863 0000 last com dw 0 ;address of last command string
2865 0000 dma_adr dw 0 ;dma offset stored here
2867 0000 dma seg dw 0 ;dma segment stored here
2869 40 sel_mask db 40h ;select mask, 40h or 80h

•
t Various command strings for i8271

286A 03 io com db 3 ;length
286B 00 rd_wr db 0 ;read/write function code
286C 00 tr k db 0 ;track #

All Information Presented Here is Proprietary to Digital Research

133

CP/M-86 System Guide Appendix E BIOS Listing

286D 00 sect db 0 ;sector #

286E 022900 hom_com db 2,29h ,0 ;home drive command
2871 012C rds com db l,2ch ;read status command

•
9 System Memory Segment Table

2873 02 segtable db 2 ; 2 segments
2874 DF02 dw tpa seg ;lst seg starts after BIOS
2876 2105 dw tpa len ;and extends to 08000
2878 0020 dw 2000h jsecond is 20000 -
287A 0020 dw 2000h ;3FFFF (128k)

= include singles.lib ;read in disk definitio
= •

9 DISKS 2
= 287C dpbase equ $ Base of Disk Param
=287C AB280000 dpeO dw xltO,0000h Translate mable
=2880 00000000 dw 0000h,0000h Scratch Area
=2884 C5289C28 dw dirbuf,dDb0 Dir Buff, Parm Bio
=2888 64294529 dw csvO,alvO Check, Alloc Vecto
=288C AB280000 dpel dw xltl,0000h Translate '’’able
=2890 00000000 dw 0000h,0000h Scratch Area
=2894 C5289C28 dw dirbuf,dpbl Dir Buff, Parm Bio
=2898 93297429 dw csvl,alvl Check, Alloc Vecto
= 7 DISKDEF 0,1,26,6 1024,243,64,64,2
= 289C dpbO equ offset $ Disk Parameter Bio
=289C 1A00 dw 26 Sectors Per Track
=289E 03 db 3 Block Shift
=289F 07 db 7 Block Mask
=28A0 00 db 0 Extnt Mask
=28A1 F200 dw 242 Disk Size - 1
=28A3 3F00 dw 63 Directory Max
=28A5 C0 db 192 All.ocO
=28A6 00 db 0 Allocl
=28A7 1000 dw 16 Check Size
=28A9 0200 dw 2 Offset
= 28AB xltO equ offset $ Translate ^able
=28AB 01070D13 db 1,7,13,19
=28AF 19050B11 db 25,5,11,17
=28B3 1703090F db 23,3,9,15
=28B7 1502080E db 21,2,8,14
=28BB 141A060C db 20,26,6,12
=28BF 1218040A db 18,24,4,10
=28C3 1016 db 16,22
= 001F alsO equ 31 ;Allocation vector
= 0010 cssO equ 16 ;Check Vector Size
= •r DISKDEF 1,0
= 289C dpbl equ dpbO ;Equivalent Paramet
= 00 IF alsl equ al sO ;Same Allocation Ve
= 0010 cssl equ cssO ;Same Checksum Vect
= 28AB xltl equ xl tO ;Same translate Tab
S •

9 ENDES*
s

9

•
9 Uninitialized Scratch Memory follows:

= 28C5 begdat equ offset $;Start of Scratch A

All Information Presented Here is Proprietary to Digital Research

134

CP/M-86 System Guide Appendix E BIOS Listing

= 28C5 dirbuf rs 128 Directory Buffer
= 2945 alvO rs alsO Alloc Vector
2964 csvO r s cssO Check Vector

= 2974 alvl rs alsl Alloc Vector
= 2993 csvl rs cssl Check Vector
= 29A3 enddat equ offset S End of Scratch Are
= 00DE datsiz equ offset $-begdat Size of Scratch Ar
=29A3 00 db 0 Marks End of Modul

29A4 loc_stk rw 32 ;local stack for initialization
29E4 stkbase equ offset $

29E4 lastoff equ offset $
02DF tpa_seg equ (lastoff+0400h+l5) / 16
0521 tpa len equ 0800h - tpa seg

29E4 00 db 0 ;fill last address for GENCMD

0000
0000
0002
0004

* *

* Dummy Data Section *
* *

dseg
org

int0_offset
intO_segment
; pad to

rw

0 ;absolute low memory
0 ;(interrupt vectors)
rw 1
rw 1

system call vector
2*(bdos int-1)

0380
0382

bdos_offset rw 1
bdos_segment rw 1

' END

All Information Presented Here is Proprietary to Digital Research

c

c

Appendix F
CBIOS Listing

'k'k'kick'k’kic'kitic’k’'kic'k'k,kic'k'k,k'kicic'k'k,k i c ’k'kicic'k'kicicic,k'k-k'k’k'kic'k1c'kieit'kic

* *
* This is the listing of the skeletal CBIOS which *
* you can use as the basis for a customized BIOS *
* for non-standard hardware. The essential por- *
* tions of the BIOS remain, with "rs" statements *
* marking the routines to be inserted. *
* *

ft**

* *

* This Customized BIOS adapts CP/M-86 to *
* the following hardware configuration *
* Processor: *
* Brand; *
* Controller; *
* *

* *
* Programmer; *
* Revisions ; *
* *

FFFF true equ -1
0000 false equ not true
000D cr equ Odh ;carriage return
000A If equ Oah ;line feed

************** *******************************
* *
* Loader bios is true if assembling the *
* LOADER BIOS, otherwise BIOS is for the *
* CPM.SYS file *•* *
************** *******************************

0000 loader bios equ false
00E0 bdos_int equ 224 ;reserved BDOS interrupt

IF not loaderjbios

2500 f 1
bios code

1
equ 250Oh

0000 ccp offset equ 0000h
0B06 bdos_ofst equ 0BQ6h ;BDOS entry point

All Information Presented Here is Proprietary to Digital Research
137

CP/M-86 System Guide Appendix F CBIOS Listing

END IF

IF

;not loader bios

loader bios
r

;lbios code
i

equ 1200h ;start of LDBIOS
ccp offset equ 0003h ;base of CPMLOADER
bdos ofst
•! '

equ 0406h ;stripoed BDOS entry

ENDIF ;loader_bios
cseg
org ccpoffset

ccp:
org bios code

'kicif'k’k'k'kjcic'k'k’kicieic-k'k'k'k'k'k'k'k'k’k l c'k’k-k'k'k'k’k'k'k'k'k'k'k-k'k'k’k'k'k

* *
* BIOS Jump Vector for Individual Routines *
* *

2500 E 9 30.00 jmp INIT
2503 E97900 jmp WBOOT
2506 E98500 jmp CONST
2509 E98D00 jmp CON IN
250C E99A00 imp OONOTJT
250F E9A200 imp LISTOUT
2512 E9B500 imp PUNCH
2515 E9BD00 imp READER
2518 E9F600 imp HOME
251B E9D900 imp SELDSK
251E E90101 imp SETTRK
2521 E90301 imp SETSEC
2524 E90C01 imp SETDMA
2527 E91701 imp READ
252A E94701 imp WRITE
252D E98FOO imp LISTST
2530 E9F900 imp SECTRAN
2533 E90201 imp RETDMAB
2536 E90401 imD GETSEGT
2539 E9A400 imp GETTOBF
253C E9A500 imp SETIOBF

Fnter from BOOT ROM or LOADER
Arrive here from BDOS call 0
return console keyboard status
return console keyboard char
write char to console device
write character to list device
write character to punch device
return char from reader device
move to trk 00 on cur sei drive
select disk for next rd/write
set track for next rd/write
set sector for next rd/write
set offset for user buff (DMA)
read a 128 byte sector
write a 128 byte sector
retur.n list status
xlate loqical->physical sector
set seq base for buff (nMA)
return offset of Mem Desc Table
return I/O map byte (IOBYTE)
set I/O map byte (IOBYTE)

* *
* INIT Entry Point, Differs for LDBIOS and *
* BIOS, according to "Loader_Bios" value *
* *

253F 8CC8
INIT: ;print signon message and initialize hardwa

mov ax,cs ;we entered with a JMPF so

All Information Presented Here is Proprietary to Digital Research

138

CP/M-86 System Guide Appendix F CBIOS Listing

2541 8ED0 mov ss ,ax ;CS: as the initial value
2543 8ED8 mov ds ,ax 7 DS: ,
2545 8EC0 mov es ,ax ;and ES:

;use! local stack during initialization
2547 BC5928 mov sp,offset stkbase
254A FC cld ;set forward direction

IF not loader_bios

; This is a BIOS for the CPM.SYS file.
; Setup all interrupt vectors in low
; memory to address trap

2 54B IE push. ds ;save the DS register
254C C606A72600 mov IOBYTE,0 ;clear IOBYTE
2551 B80000 mov ax, 0
2554 8ED8 mov ds ,ax
2556 8EC0 mov es ,ax ;set ES and DS to zero

;setup interrupt 0 to address trap routine
2558 C70600008225 mov intO_offset,offset int trap
255E 8C0E0200 mov into segment ,CS
2562 BF0400 mov di , 4
2565 BE0000 mov si, 0 ;then propagate
2568 B9FE01 mov cx,510 ;trap vector to
256B F3A5 rep movs ax,ax ;all 256 interrupts

;BDOS offset to proper interrupt
256D C7068003060B mov bdos_offset,bdos_ofst
2573 IF pop ds ;restore the DS register

(additional CP/M-86 initialization)

ENDIF ynot loader_bios

IF loader bios

;This is a BIOS for the LOADER
push ds ;save data segment
mov ax,0
mov ds,ax ;point to segment zero
;BDOS interrupt offset
mov bdos_offset,bdos_ofst
mov bdos_segment,CS ;bdos interrupt segment
(additional LOADER initialization)
pop ds ;restore data segment

ENDIF ;loader bios

2574 BBB126
2577 E86F00
257A B100
257C E981DA

mov bx,offset
call pmsg
mov cl,0
imp ccp

signon
;print signon message
jdefault to dr A: on coldst
;iump to cold start entry o

All Information Presented Here is Proprietarv to Digital Research

139

CP/M-86 System Guide Appendix F CBIOS Listing

257F E984DA WBOOT: jmp ccp+6 jdirect entry to CCP al

IF not loader_bios
t

; 1int trap:
I

2582 FA cli ;block interrupts
2583 8CC8 mov ax,cs
2585 8ED8 mov ds ,ax ;get our data segment
2587 BBD126 mov bx,offset int trp
258A E85C00 call pmsg
258D F4 hit

»1
yhardstop

f

ENDIF ;not loader bios
.***
• * *
;* CP/M Character I/O Interface Routines *. * *
.***r

CONST: ;console status
258E rs 10 ; (fill-in)
2598 C3 ret

CONIN: ;console input
2599 E8F2FF call CONST
259C 74FB jz CONIN ;wait for RDA
259E rs 10 ;(fill-in)
2 5 AS €3 ret

CONOUT: jconsole output
25A9 rs 10 ;(fill-in)
25B3 C3 ret ;then return data

LISTOUT: ;list device output
25B4 rs 10 ; (fill-in)
25BE C3 ret

LISTST: ;poll list status
25BF rs 10 ;(fill-in)
25C9 C3 ret

PUNCH: ;write punch device
25CA rs 10 ;(fill-in)
25D4 C3 ret

READER:
25D5 rs 10 ;(fill-in)
25DF C3 ret

GETIOBF:
25E0 A0A726 mov al,IOBYTE

A H Information Presented Here is Proprietary to Digital Research

140

CP/M-86 System Guide Appendix F CBIOS Listing

25E3 C3 ret

SETIOBF:
25E4 880EA726 mov IOBY^Efd ;set iobyte
25E8 C3 ret ;iobyte not implemented

pmsg:
25E9 8A07 mov al,[BX] ;get next char from message
25EB 84C0 test al,al
25ED 7421 jz return ;if zero return
25EF 8AC8 mov CL,AL
25F1 E8B5FF call CONOUT ;print it
25F4 43 inc BX
25F5 EBF2 jmps pmsg ;next character and loop

* *

* Disk Input/Output Routines *
* *

SELDSK: jselect disk given by register OL
0002 ndisks equ 2 jnumber of disks (up to 16)

25F7 880EA826 mov disk,cl ;save disk number
25FB BB0000 mov bx,0000h ;ready for error return
25FE 80F902 cmp cl,ndisks ;n beyond max disks?
2601 730D jnb return ;return if so
2603 B500 mov ch, 0 jdouble(n)
2605 8BD9 mov bx,cx ;bx = n
2607 B104 mov cl, 4 ;ready for *16
2609 D3E3 shl bx ,cl ;n = n * 16
260B B9F126 mov cx,offset dpbase
260E 03D9 add bx,cx ;dpbase + n * 16
2610 C3 return: ret ;bx = .dph

HOME: ;move selected disk to home position (Track
2611 C706A9260000 mov trk ,0 ;set disk i/o to track zero
2617 rs 10 ;(fill-in)
2621 C3 ret

SETTRK: ;set track address given by OX
2622 890EA926 mov trk,CX
2626 C3 ret

SETSEC: ;set sector number given by cx
2627 890EAB26 mov sect,CX
262B C3 ret

SECTRAN : jtranslate sector CX using table at [DX]
262C 8BD9 mov bx ,cx
262E 03DA add bx,dx ;add sector to tran table a
2630 8A1F mov bl, [bx] ;get logical sector
2632 C3 ret

SETDMA: ;set DMA offset given by GX

All Information Presented Here is Proprietary to Digital Research

141

CP/M-86 System Guide Appendix F CBIOS Listing

2633 890EAD26
2637 C3

2638 890EAF26
263C C3

263D BBE826
2640 C3

2641
2673 C3

2674
26A6 C3

mov dma_adr,CX
ret

SETDMAB: ;set DMA segment given by CX
mov dma_seg,CX
ret

t

GETSEGT: ;return address of physical memory table
mov bx,offset seg_table
ret

All disk I/O Parameters are setup:
DISK
TRK
SECT
DMA_ADR
DMA SEG

(SELDSK)
(SETTRK)
(SETSEC)
(SETDMA)
(SETDMAB)*

is disk number
is track number
is sector number
is the DMA offset
is the DMA segment

READ reads the selected sector to the DMA*
address, and WRITE writes the data from *
the DMA address to the selected sector *
(return 00 if successful, 01 if perm err)*

*

*

*

*

*

*

*

*

* *
'k’k'k+c'kit-k'k'k'kic'k’k'k'k'k’k'k'k'k'kit'k'k'k'k'k'k'k-k'k'k-k'klc'k'k'k’k ' k ’k'k'k'k'k

READ:
rs 50 ;fill-in
ret

WRITE:
rs 50 ;(fill-in)
ret

• * *
• *
r Data Areas *
• * *
. *

26A7 data offset equ offset $
dseg
org data offset ;contiguous wi

26A7 00 IOBYTE db 0
26A8 00 disk db 0 ;disk number
26A9 0000 trk dw 0 ;track number
26AB 0000 sect dw 0 jsector number
26AD 0000 dma adr dw 0 ;DMA offset from DS
26AF 0000 dma_seg dw 0 ;DMA Base Segment

IF loader_bios
t

; 1
signon db

1
cr ,If,cr ,lf

All Information Presented Here is Proprietary to Digital Research

142

CP/M-86 System Guide Appendix F CBIOS Listing

;|
db 'CP/M-86 Version 1.0',cr,If,0

1
t

ENDIF ; loader__bios

IF not loader_bios

26B1 0D0A0D0A
t
• 1
signon db cr,If ,cr,If

1
26B5 53797374656D

2047656E6572
db 'System Generated 00/00/00'

617465642030
302F30302F30
30

26CE 0D0A00
»(

db cr,If,0
1

9

ENDIF ;not loader_bi os

26D1 odoa int trp db cr, If
26D3 496E74657272 db 'Interrupt Trap Halt'

757074205472
61702048616C
74

26E6 ODOA db cr, If

9 System Memory Segment Table

26E8 02 segtable db 2 ;2 segments
26E9 C602 dw tpa seg ;1st seg starts after BIOS
26EB 3A05 dw tpa len ;and extends to 08000
26ED 0020 dw 2000h ;second is 20000 -
26EF 0020 dw 2000h ;3FFFF (128k)

= include singles.lib ;read in disk defrnitio
= •

9 DISKS 2
= 26F1 dpbase equ $ Base of Disk Param
= 26F1 20270000 dpeO dw xltO,0000h Translate Table
= 26F5 00000000 dw 0000h, 0000h Scratch Area
= 2 6 F 9 3A271127 dw dirbuf,dpb0 Dir Buff, Parm Bio
= 26FD D927BA27 dw csvO,alvO Check, AHo c Vecto
= 2701 20270000 dpel dw xltl,0000h Translate Table
= 2705 00000000 dw 0000h,0000h Scratch Area
= 2709 3A271127 dw dirbuf,dpbl Dir Buff, Parm Bio
= 270D 0828E927 dw csvl,alvl Check, Alloc Vecto
=

9 DISKDEF 0,1,26,6 1024,243,64,64,2
= 2711 dpbO equ offset $ Disk Parameter Bio
= 2711 1A00 dw 26 Sectors Per Track
= 2713 03 db 3 Block Shift
= 2714 07 db 7 Block Mask
= 2715 00 db 0 Extnt Mask
= 2716 F200 dw 242 Disk Size - 1
= 2718 3F00 dw 63 Directory Max
= 271A CO db 192 AllocO
= 271B 00 db 0 Allocl

All Information Presented Here is Proprietary to Digital Research

143

CP/M-86 System Guide Appendix F CHIOS Listing

=271C 1000 dw 16 ;Check Size
=271E 0200 dw 2 ;Offset
= 2720 xltO equ offset $;Translate Table
=2720 01070D13 db 1,7,13,19
=2724 19050B11 db 25,5,11,17
=2728 1703090F db 23,3,9,15
=272C 1502080E db 21,2,8,14
=2730 141A060C db 20,26,6,12
=2734 1218040A db 18,24,4,10
=2738 1016 db 16,22
= 001F alsO equ 31 ;Allocation Vector
= 0010 cssO equ 16 ;Check Vector Size
= •f DISKDEF 1,0
= 2711 dobl equ dpbO Equivalent Paramet
= 001F alsl equ alsO ;Same Allocation Ve
= 0010 cssl equ cssO ;Same Checksum Vect
= 2720 xltl equ xltO ;Same translate Tab
= ENDEF

= Uninitialized Scratch Memory Follows:

= 273A h>egdat equ offset $;Start of Scratch A
= 273A dirbuf rs 128 directory Buffer
= 27BA alvO rs alsO ;Alloc Vector
= 27D9 csvO rs cssO ;Check Vector
= 27E9 alvl rs alsl ;Alloc Vector
= 2808 csvl r s cssl ;Check Vector
= 2818 enddat equ offset $;End of Scratch Are
= 00DE datsiz equ offset $-begdat ;Size of Scratch A l
=2818 00 db 0 ;Marks End of Modul

2819 loc_stk rw 32 ;local stack for initialization
2859 stkbase equ offset $

2859 lastoff equ offset $
0 2C6 tpa_seg equ (lastoff+0400h+l5) / 16
0 53A tpa len equ 0800h - tpa seg

2859 00 db 0 ;fill last address for GENCMU
★ Jr***

*
*k Dummy Data Section *

★
**

0000 dseg 0 yabsolute low memory
org 0 ;(interrupt vectors)

0000 int0_offset rw 1
0002 into segment rw 1

r pad to system call vector
0004 rw 2*(bdos_int-l)

0380 bdos offset rw 1
0382 bdos segment rw 1

END

All Information Presented Here is Proprietary to Digital Research

144

Programer's Guide

Canon AS-100 Series

CP/M-86™
Operating System

Release 1.1
System Guide Release Notes

Copyright © 1982

Digital Research
P.O. Box 579

160 Central Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

COPYRIGHT1
Copyright © 1981 by Piqitai Research. All riqhts
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into anv lanquaqe or
computer lanquaqe, in anv form or by any means,
electronic, mechanical, maqnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. T>hus,
the reader is granted permission to include the
example proqrams, either in whole or in part, in his
own programs.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for anv particular
purpose. Further, niqital Research reserves the
right to revise this publication and to make chanqes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
CP/M-86, ASM-86, DDT-86 and TEX-80 are trademarks of
Digital Research.

li

Foreword

This manual assists the 8086 assembly lanquaae Droqrammer
working in a environment. It assumes you are familiar
with the CP/M-86 imo1ementation of op/M and have read the following
Digital Research publications:

• CP/M 2 Documentation

• CP/M-86 System Guide

The reader should, also be familiar with the 8086 assembly
language instruction set, which is defined in Intel/s 8086 Family
User^s Manual.

The first section ot this manual discusses ASM-86 operation
and the varioiis assembler options which may be enabled when
invokinq ASM-861 . One of these options controls the hexadecimal
outDut format. ASM-86 can qenerate 8086 machine code in either
Intel or Digital Research format, 'f’hese two hexadecimal formats
are described in Appendix A.

The second section discusses the elements of ASM-86 assembly
languaqe. It defines ASM-86's character set, constants, variates,
identifiers, operators, expressions, and statements.

The third section discusses the ASM-86 directives, which
perform housekeeping functions such as requesting conditional
assembly, including multiple source files, and controlling the
format of the listing printout.

The fourth section is a concise summary of the 8086
instruction mnemonics accepted bv ASM-86. The mnemonics used bv
the Diqital Research assembler are the same as those used by the
Intel assembler except for four instructions: the intra-seqment
short jump, and inter-segment jump, return and ca11 instructions.
These differences are summarized in Appendix B.

The fifth section of this manual discusses the code-macro
facilities of ASM-86. Code-macro definition, specifiers and
modifiers as well as nine special code-macro directives are
discussed. This information is also summarized in Appendix H.

The sixth section discusses the DDT-86 oroqram, which allows
the user to test and debug programs interactively in the CP/M-86
enviornment. Section 6 includes a 00^-86 sample debugging session.

C
i n

»

Table of Contents

1 I n t r o d u c t i o n

1.1 Assembler Operation I

1.2 Optional Run-time Parameters 3

1.3 Abortinq ASM-86 4

2 E le m e n ts of A S M -86 A s s e m b ly L a n g u a g e

2.1 ASM-86 Character Set 5

2.2 Tokens and Separators 5
2.3 Delimiters... 5

2.4 C o n s t a n t s ... 7

2.4.1 Numeric Constants 7
2.4.2 Character Strinqs 8

2.5 Identifiers ... 8

2.5.1 K e y w o r d s 9
2.5.2 Symbols and Their Attributes 10

2.6 O p e r a t o r s ... 12

2.6.1 Operator Examples 15
2.6.2 Operator Precedence 17

2.7 E x p r e ssions... 18

2.8 Statements 19

3 Assembler Directives
3.1 Introduction... 21

3.2 Seqment Start Directives 21

3.2.1 The CSEG D i r e c t i v e 22
3.2.2 The DSEG D i r e c t i v e 22
3.2.3 The SSEG D i r e c t i v e 22
3.2.4 The ESEG D i r e c t i v e 23

3.3 The ORG D i r e c t i v e 23

v

Table of Contents
(continued)

3.4 The IF and ENDIF D i r e c t i v e s 24

3.5 The INCLUDE D i r e c t i v e 24

3.6 The END D i r e c t i v e 24

3.7 The EOTJ D i r e c t i v e 25

3.8 The DB Directive..................................... 25

3.9 The DN Directive..................................... 26

3.10 The DD D i r e c t i v e 26

3.11 The RS D i r e c t i v e 27

3.12 The RB D i r e c t i v e 27

3.13 The RW D i r e c t i v e 27

3.14 The TITLE Directive................................. 27

3.15 The PAGESIZE D i r e c t i v e 27

3.16 The PAGEWIDTH Directive............................. 28

3.17 The EJECT Directive................................. 28
3.18 The SIMFORM Directive............................... 28

3.19 The NOLIST and LIST D i r e c t i v e s 28

4 The ASM-86 Instruction Set

4.1 Introduction... 29

4.2 Data Transfer Instructions.......................... 31

4.3 Arithmetic, Loqical, and Shift Instructions 33

4.4 String Instructions 38

4.5 Control Transfer Instructions 39

4.6 Processor Control Instructions 43

vi

Table of Contents
(continued)

5 Code-Macro Facilities

5.1 Introduction to Code-macros 45

5.2 Specifiers... 47

5.3 M o d i f i e r s ... 47

5.4 Range Specifiers 48

5.5 Code-macro Directives 49

5.5.1 S E G F I X 49
5.5.2 N O S E G F I X 49
5.5.3 M O D R M ... 50
5.5.4 RELB and R E L W 51
5.5.5 DB, DW and D D 51
5.5.6 D B I T ... 52

6 DDT-86

6.1 DDT-86 Operation 55

6.1.1 Invoking D D T - 8 6 55
6.1.2 DDT-86 Command Conventions 55
6.1.3 Specifying a 20-Bit Address 56
6.1.4 Terminating DDT-86 57
6.1.5 DDT-86 Operation with Interrupts 57

6.2 DDT-86 C o m m a n d s 57

6.2.1 The A (Assemble) C o m m a n d 57
6.2.2 The D (Display) Command...................... 58
6.2.3 The E (Load for Execution) C o m m a n d 58
6.2.4 The F (Fill) C o m m a n d 59
6.2.5 The G (Go) C o m m a n d 59
6.2.6 The H (Hexadecimal Math) C o m m a n d 60
6.2.7 The I (Input Command Tail) Command 60
6.2.8 The L (List) C o m m a n d< 61
6.2.9 The M (Move) C o m m a n d 61
6.2.10 The R (Read) Command........................ 62
6.2.11 The S (Set) C o m m a n d 62
6.2.12 The T (Trace) C o m m a n d 63
6.2.13 The U (Untrace) Command 64
6.2.14 The V (Value) Command 64
6.2.15 The W (Write) C o m m a n d 64
6.2.16 The X (Examine CPU State) Command 65

Table of Contents
(continued)

6.3 Default Seqment Values 66

6.4 Assembly Lanquaqe Syntax for A and L Commands . . . 69

6.5 DDT-86 Sample Proqram 70

viii

Appendixes

A ASM-86 Invocation ... 79

B Mnemonic Differences from the Intel Assembler 81

C ASM-86 Hexadecimal Output Format 83
D Reserved W o r d s .. 87

E ASM-86 Instruction Summary 89

F SamDle Program ... 93

G Code-macro Definition Syntax 99

H ASM-86 Error Messaqes 101

I DDT-86 Error Messaqes 103

ix

o

Section 1
Introduction

1.1 Assembler Operation
ASM-86 processes an 8086 assembly language source file in three

passes and produces three output files, including an 8086 machine
language file in hexadecimal format. This object file may be in
either Intel or Digital Research hex format, which are described in
Appendix C. ASM-86 is shipped in two forms: an 8086 cross
assembler designed to run under CP/M on an Intel 8080 or Zilog Z-80
based system, and a 8086 assembler designed to run under CP/M-86 on
an Intel 8086 or 8088 based system. ASM-86 typically produces three
output files from one input file as shown in Figure 1-1, below.

SOURCE

LIST FILE

HEX FILE

SYMBOL FILE

<file name>.A86
<file name>.LST
<file name>.H86

<file name>.SYM

contains source
contains listing
contains assembled program in
hexadecimal format
contains all user-defined symbols

Figure 1-1. ASM-86 Source and Object Files

Figure 1-1 also lists ASM-86 filename extensions. ASM-86
accepts a source file with anv three letter extension, but if the
extension is omitted from the invoking command, it looks for the
specified filename with the extension .A86 in the directory. If no
filename is specified and the file has an extension other than .A86
or has no extension at all, ASM-86 returns an error message.

The other extensions listed in Figure 1-1 identify ASM-86
output files. The .LST file contains the assembly language 1istinq
with any error messages. The .H86 file contains the machine
language program in either Digital Research or Intel hexadecimal
format. The .SYM file lists any user-defined symbols.

All Information Presented Here is Proprietary to Digital Research

1

CP/M-86 Programmer's Guide 1.1 Assembler Ooeration

Invoke ASM-86 by enterinq a command of the following form:

ASM86 <source filename> [$ <optional parameters> 1

Section 1.2 explains the optional parameters. Specify the source
file in the followinq form:

[coptional drive>:]<filename>[.<optional extension>]

where

coptional drive>

<filename>

is a valid drive letter specifvinq
the source filers location. Not
needed if source is on current
drive.

is a valid CP/M filename of 1 to 8
characters.

coptional extension> is a valid file extension of 1 to 3
characters, usually .A86.

Some examples of valid ASM-86 commands are:
A>ASM86 B:BIOS88
A>ASM86 BIOS88.ASM $FI AA HB PB SB
A>ASM86 D :TEST

Once invoked, ASM-86 responds with the messaqe:

GP/M 8086 ASSEMBLER VER x.x

where x.x is the ASM-86 version number. ASM-86 then attempts to
open the source file. If the file does not exist on the designated
drive, or does not have the correct extension as described above,
the assembler displays the messaqe:

NO FILE

If an invalid parameter is given in the optional parameter list,
ASM-86 displays the message:

PARAMETER ERROR

After opening the source, the assembler creates the output
files. Usually these are placed on the current disk drive, but they
may be redirected by optional parameters, or by a drive
specification in the the source file name. In the latter case, ASM-
86 directs the output files to the drive specified in the source
file name.

All Information Presented Here is Proprietary to Digital Research

2

CP/M-86 Programmer's Guide 1.1 Assembler Operation

During assembly, ASM-86 aborts if an error condition such as
disk full or symbol table overflow is detected. When ASM-86 detects
an error in the source file, it places an error message line in the
listing file in front of the line containing the error. Each error
message has a number and gives a brief explanation of the error.
Appendix H lists ASM-86 error messages. When the assembly is
complete, ASM-86 displays the message:

END OF ASSEMBLY. NUMBER OF ERRORS: n

1.2 Optional Run-time Parameters
The dollar-sign character, $, flags an optional string of run

time parameters. A parameter is a single letter followed by a
single letter device name specification. The parameters are shown
in Table 1-1, below.

Table 1-1. Run-time Parameter Summary
Parameter To Specify Valid Arguments

A source file device Af Bf Of ••• P
H hex output file device A ... P , X , Y , Z
P list file device A ... P, X, Y, Z
S symbol file device A ... P , X , Y , Z
F format of hex output file 1 , D

All parameters are optional, and can be entered in the command
line in any order. Enter the dollar sign only once at the beginning
of the parameter string. Spaces may separate parameters, but are
not required. No space is permitted, however, between a parameter
and its device name.

A device name must follow parameters A, H, P and S. The
devices are labeled:

A, B, C, ... P or X, Y, Z

Device names A through P respectively specify disk drives A
through P. X specifies the user console (CON:), Y specifies the
line printer (LST:), and Z suppresses output (NUL:).

If output is directed to the console, it mav be temporarily
stopped at any time by typinq a control-S. Restart the output by
typing a second control-S or any other character.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 Programmers Guide 1.2 Optional Run-time Parameters

The F parameter requires either an I or a D argument. When I
is specified, ASM-86 produces an object file in Intel hex format. A
D argument requests Digital Research hex format. Appendix C
discusses these formats in detail. If the F parameter is not
entered in the command line, ASM-86 produces Digital Research hex
format.

Table 1-2. Run-time Parameter Examples

Command Line Result
ASM 8 6 10 Assemble file I0.A86, produce 10.HEX,

IO.LST and IO.SYM, all on the default
drive.

ASM86 10.ASM $ AD SZ Assemble file 10.ASM on device D,
produce IO.LST and 10.HEX on the default
device, suppress symbol file.

ASM86 10 $ PY SX Assemble file IO.A86, produce 10.HEX,
route listinq directly to printer,
output symbols on console.

ASM86 10 $ FD Produce Digital Research hex format.

ASM86 10 $ FI Produce Intel hex format.

1.3 Aborting ASM-86

You may abort ASM-86 execution at any time by hitting anv key
on the console keyboard. When a key is pressed, ASM-86 responds
with the question:

USER BREAK. OK(Y/N)?

A Y response aborts the assembly and returns to the operating
system. An N response continues the assembly.

All Information Presented Here is Proprietary to Digital Research

4

Section 2
Elements of ASM-86 Assembly Language

2.1 ASM-86 Character Set
ASM-86 recognizes a subset of the ASCII character set. The

valid characters are the alphanumerics, special characters, and non
printing characters shown below:

a b c d e f g h i .t k l m n o p o r s t t j v w x y z
a b c d e f g h i j k l r a n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9

+ - * / = ()
space, tab, carriage-return, and line-feed

Lower-case letters are treated as upper-case except within
strings. Only alphanumerics, special characters, and spaces may
appear within a string.

2.2 Tokens and Separators
A token is the smallest meaningful unit of an ASM-86 source

program, much as a word is the smallest meaningful unit of an
English composition. Adiacent tokens are commonly separated by a
blank character or space. Any sequence of spaces may appear
wherever a single space is allowed. ASM-86 recognizes horizontal
tabs as separators and interprets them as spaces. Tabs are expanded
to spaces in the list file. The tab stops are at each eighth
column.

2.3 Delimiters
Delimiters mark the end of a token and add special meaning to

the instruction, as opposed to separators, which merely mark the end
of a token. When a delimiter is present, separators need not be
used. However, separators after delimiters can make your program
easier to read.

Table 2-1 describes ASM-86 separators and delimiters. Some
delimiters are also operators and are explained in greater detail in
Section 2.6.

All Information Presented Here is Proprietarv to Digital Research

5

CP/M-86 Programmer's Guide 2.3 Delimiters

Table 2-1. Separators and Delimiters

Character Name Use
20H space separator
09H tab separator, legal in source

files, expanded in list files
CR carriage return terminate source lines
LF line feed legal after CR; if within

source lines, it is inter
preted as a space

•
9 semicolon start comment field
•• colon identifies a label,

used in seqment override
specification

• period forms variables from numbers
$ dollar sign notation for "present value

of location pointer"
+ plus arithmetic operator for addition
- minus arithmetic operator for

subtraction
* asterisk arithmetic operator for multiplication
/ slash arithmetic operator for d ivision
<3 at-sign legal in identifiers

— underscore legal but ignored in
identifiers

j exclamation
point loqically terminates a

statement, thus allowing
multiple statements on a
single source line

> apostrophe delimits string constants

All Information Presented Here is Proprietary to Digital Research

6

CP/M-86 Programmers Guide 2.4 Constants

2.4 Constants
A constant is a value known at assembly time that does not

change while the assembled program is executed. A constant may be
either an integer or a character string.

2.4.1 Numeric Constants
A numeric constant is a 16-bit value in one of several bases.

The base, called the radix of the constant, is denoted by a trailing
radix indicator. The radix indicators are shown in Table 2-2,
below.

Table 2-2. Radix Indicators for Constants
Indicator Constant Type Base

B binary 2
0 octal 8
Q octal 8
n decimal 10
H hexadecimal 16

ASM-86 assumes that any numeric constant not terminated with a
radix indicator is a decimal constant. Radix indicators may be
upper or lower case.

A constant is thus a sequence of digits followed by an optional
radix indicator, where the digits are in the range for the radix.
Binary constants must be composed of 0's and l's. Octal digits
range from 0 to 7; decimal digits range from 0 to 9. Hexadecimal
constants contain decimal digits as well as the hexadecimal digits A
(10D) , B (HD) , C (12D) , D (13D) , E (14D), and F (15D) . Note that
the leading character of a hexadecimal constant must be either a
leading 0 or a decimal diqit so that ASM-86 cannot confuse a hex
constant with an identifier. The following are valid numeric
constants:

1234
1234H
33770

1234D 1100B 111100001111000OB
0FFEH 33770 137720
0FE3H 1234d Offffh

All Information Presented Here is Proprietary to Digital Research

CP/M-86 Programmer's Guide 2.4 Constants

2.4.2 Character Strings

ASM-86 treats an ASCII character string delimited by
apostrophes as a string constant. All instructions accept only one-
or two-character string constants as valid arguments. Instructions
treat a one-character string as an 8-bit number. A two-character
string is treated as a 16-bit number with the value of the second
character in the low-order byte, and the value of the first
character in the high-order byte.

The numeric value of a character is its ASCII code. ASM-86
does not translate case within character strings, so both upper- and
lower-case letters can be used. Note that only alphanumerics,
special characters, and spaces are allowed within strings.

A DB assembler directive is the only ASM-86 statement that may
contain strings longer than two characters. The string may not
exceed 255 bytes. Include any apostrophe to be printed within the
string by entering it twice. ASM-86 interprets the two keystrokes
" as a single apostrophe. Table 2-3 shows valid strings and how
they appear after processing:

Table 2-3. String Constant Examples

'a' -> a
"Ab "Cd' -> Ab'Cd

'I like CP/M' -> I like CP/M

•'ONLY UPPER CASE' -> ONLY UPPER CASE
'only lower case' -> only lower case

2.5 Identifiers

Identifiers are character sequences which have a special,
symbolic meaning to the assembler. All identifiers in ASM-86 must
obey the following rules:

1. The first character must be alphabetic (A,...Z,
a ,...z) .

2. Any subsequent characters can be either alphabetical
or a numeral (0,1,.... 9). ASM-86 ignores the special
characters @ and _, but they are still legal. For
example, a_b becomes ab.

3. Identifiers may be bf anv length up to the limit of
the physical line.

All Information Presented Here is Proprietary to Digital Research

8

CP/M-86 Programmer's fluide 2.5 Identifiers

Identifiers are of two types. The first are keywords, which
have predefined meanings to the assembler, ^he second are symbols,
which are defined by the user. The following are all valid
ident i f iers:

NOLIST
WORD
AH
Third_street
How_are_you_today
var iable@number @12 34567890

2.5.1 Keywords

A keyword is an identifier that has a predefined meaning to the
assembler. Keywords are reserved; the user cannot define an
identifier identical to a keyword. For a complete list of keywords,
see Appendix D.

ASM-86 recognizes five types of keywords: instructions,
directives, operators, registers and predefined numbers. 8086
instruction mnemonic keywords and the actions they initiate are
defined in Section 4. Directives are discussed in Section 3.
Section 2.6 defines operators. Table 2-4 lists the ASM-86 keywords
that identify 8086 registers.

Three keywords are predefined numbers: BYTE, WORD, and DWORD.
The values of these numbers are 1, 2 and 4, respectively. In
addition, a Type attribute is associated with each of these numbers.
The keyword's Type attribute is equal to the keyword's numeric
value. See Section 2.5.2 for a complete discussion of 'T’ype
attr ibutes.

All Information Presented Here is Proprietary to Digital Research

9

CP/M-86 Programmer's Guide 2.5 Identifiers

Table 2-4. Register Keywords
Register
Symbol Size

Numeric
Value Meaning

AH 1 byte 100 B Accumulator-High-Byte
BH 1 fl 111 B Base-Register-High-Byte
CH 1 II 101 B Count-Register-High-Byte
DH 1 It 110 B Data-Register-High-Byte
AL 1 II 000 B Accumulator-Low-Bvte
BL 1 II Oil B Base-Reqister-Low-Byte
CL 1 II 001 B Count-Reqister-Low-Byte
DL 1 II 010 B Data-Reqister-Low-Byte
AX 2 bytes 000 B Accumulator (full word)
BX 2 II Oil B Base-Register "
CX 2 II 001 B Count-Register "
DX 2 II 010 B Data-Register "
BP 2 II 101 B Base Pointer
SP 2 II 100 B Stack Pointer
SI 2 II 110 B Source Index
DI 2 II 111 B Destination Index

CS 2 II 01 B Code-Seqment-Register
DS 2 II 11 B Data-Seqment-Register
SS 2 II 10 B Stack-Segment-Register
ES 2 II 00 B Extra-Segment-Register

2.5.2 Symbols and Their Attributes
A symbol is a user-defined identifier that has attributes which

specify what kind of information the symbol represents. Symbols
fall into three categories:

• variables
• labels
• numbers

Variables identify data stored at a
memory. All variables have the following

particular location
three attributes:

in

All Information Presented Here is Proprietary to Digital Research

10

CP/M-86 Programmer's Guide 2.5 Identifiers

• Segment - tells which segment was being assembled when the
variable was defined.

• Offset - tells how many bvtes there are between the
beginning of the segment and the location of this variable.

• Type - tells how manv bvtes of data are maniDulated when
this variable is referenced.

A Segment may be a code-segment, a data-segment, a stack
segment or an extra-segment depending on its contents and the
register that contains its starting address (see Section 3.2). A
segment may start at anv address divisible by 16. ASM-86 uses this
boundary value as the Segment portion of the variable's definition.

The Offset of a variable may be any number between 0 and OFFFFH
or 65535D. A variable must have one of the following Type
attributes:

• BYTE
• WORD
• DWORD

BYTE specifies a one-byte variable, WORD a two-byte variable
and DWORD a four-byte variable. The DB, DW, and DD directives
respectively define variables as these three types (see Section 3) .
For example, a variable is defined when it appears as the name for a
storage directive:

VARIABLE DB 0

A variable may also be defined as the name for an EQU directive
referencing another label, as shown below:

VARIABLE EQU ANOTHE R_VARIABLE

Labels identify locations .in memory that contain instruction
statements. They are referenced with jumps or calls. All labels
have two attributes:

• Segment
• Offset

Label segment and offset attributes are essentially the same as
variable segment and offset attributes. Generally, a label is
defined when it precedes an instruction. A colon, :, separates the
label from instruction; for example:

LABEL: ADD AX,BX

A label may also appear as the name for an EQU directive
referencing another label; for example:

LABEL EQU ANOTHER LABEL

All Information Presented Here is Proprietary to Digital Research
11

CP/M-86 Programmer"s Guide 2.5 Identifiers

Numbers may also be defined as symbols. A number symbol is
treated as if you had explicitly coded the number it represents.
For example:

Number_five EQU- 5
MOV AL,Number_five

is equivalent to:

MOV AL,5

Section 2.6 describes operators and their effects on numbers
and number symbols.

2.6 Operators
ASM-86 operators fall into the following categories:

arithmetic, logical, and relational operators, segment override,
variable manipulators and creators. Table 2-5 defines ASM-86
operators. In this table, a and b represent two elements of the
expression. The validity column defines the type of ODerands the
operator can manipulate, using the or bar character, I, to separate
alternatives.

Table 2-5. ASM-86 Operators

Syntax Result Validity

Logical Operators
a XOR b bit-by-bit logical

OR of a and b.
EXCLUSIVE a, b = number

a OR b bit-by-bit loqical
and b.

OR of a a, b = number

a AND b bit-bv-bit loqical
and b.

AND of a a, b = number

NOT a loqical. inverse of a: all (Ks
become l"s, l"s become 0's.

a = 16-bit
number

All Information Presented Here is Proprietarv to Digital Research

12

CP/M-86 Programmer's Guide 2.6 Operators

Table 2-5. (continued)

(

Syntax Result Validity
Relational Operators

a EO b returns OFFFFH if a = b,
otherwise 0.

a LT b returns OFFFFH if a < b,
otherwise 0.

a LE b returns OFFFFH if a <= b,
otherwise 0.

a GT b returns OFFFFH if a > b,
otherwise 0.

a GE b returns OFFFFH if a >= b
otherwise 0.

a NE b returns OFFFFH if a <> b ,
otherwise 0.

a, b =
unsigned

a , b =
unsigned

a, b =
unsigned

a, b =
unsigned

a, b =
unsigned

a, b =
unsigned

number

number

number

number

number

number
Arithmetic Operators

a + b arithmetic sum of a and b.

a - b arithmetic difference of
a and b .

a * b does unsigned multiplication
of a and b.

a / b does unsigned division of a
and b.

a MOD b returns remainder of a / b.
a SHL b returns the value which

results from shifting a to
left by an amount b.

a SHR b returns the value which
results from shiftinq a to
the right by an amount b.

+ a gives a.
- a gives 0 - a.

a = variable,
label or number
b = number
a = variable,
label or number
b = number
a, b = number

a, b = number

a, b = number
a, b = number

a, b = number

a = number
a = number

All Information Presented Here is Proprietary to Digital Research

13

CP/M-86 Programmer's Guide 2.6 Operators

Table 2-5. (continued)

Syntax Result Validity
Segment Override

<seg reg>:
<addr exo>

overrides assembler's choice
of segment register.

<seg req> =
CS, DS, SS
or ES

Variable Manipulators, Creators
SEG a creates a number whose value

is the segment value of the
variable or label a.

a = label |
variable

OFFSET a creates a number whose value
is the offset value of the
variable or label a.

a = label |
variable

TYPE a creates a number. If the
variable a is of type BYTE,
WORD or DWORD, the value of
the number will be 1, 2 or 4,
resDectively.

a = label |
variable

LENGTH a creates a number whose value
is the LENGTH attribute of
the variable a. The length
attribute is the number of
bytes associated with the
variable.

a = label |
variable

LAST a if LENGTH a > 0, then LAST a
= LENGTH a - 1; if LENGTH a =
0, then LAST a = 0.

a = label |
variable

a PTR b creates virtual variable or
label with type of a and
attributes of b

a = BY^E |
WORD, (DWORD
b = <addr exp>

. a creates variable with an
offset attribute of a.
Segment attribute is current
segment.

a = number

$ creates label with offset
equal to current value of
location counter; segment
attribute is current
segment.

no argument

All Information Presented Here is Proprietary to Digital Research

14

CP/M-86 Programmer's Guide 2.6 Operators

2.6.1 Operator Examples
Logical operators accept only numbers as operands. They

perform the boolean logic operations AND, OR, XOR, and NOT. For
example:

OOFC
0080

0000 B180
0002 B003

MASK EQU
SIGNBIT EQU

MOV
MOV

0FCH
80H
CL,MASK AND SIGNBIT
AL,NOT MASK

Relational operators treat all operands as unsigned numbers.
The relational operators are EO (equal), L T (less than), LE (less
than or equal), GT (greater than), GE (greater than or equal), and
NE (not equal). Each operator compares two operands and returns all
ones (0FFFFH) if the specified relation is true and all zeros if it
is not. For example:

000A LIMITl EQU 10
0019 LIMIT2 EQU• 25

0004 B8FFFF

••
MOV AX,LIMITl LT LIMIT2

0007 B80000 MOV AX,LIMITl GT LIMIT2

Addition and subtraction operators compute the arithmetic sum
and difference of two operands. The first operand mav be a
variable, label, or number, but the second operand must be a number.
When a number is added to a variable or label, the result is a
variable or label whose offset is the numeric value of the second
operand plus the offset of the first operand. Subtraction from a
variable or label returns a variable or label whose offset is that
of first operand decremented by the number specified in the second
operand. For example:

0002 COUNT EQU 2
0005 DISP1 EQU 5

000A ff FLAG DB
•

0FFH

000B 2EA00B00

•
•
MOV AL,FLAG+1

000F 2E8A0E0F00 MOV CL,FLAG+DISPl
0014 B303 MOV BL,DTSPl-COUNT

The multiplication and division operators *, /, MOD, SHL, and
SHR accept only numbers as operands. * and
unsigned numbers. For example:

/ treat all operators as

0016 BE5500 MOV SI,256/3
0019 B310 MOV BL,64/4

0050 BUFFERSIZE EQU 80
001B B8A000 MOV AX,BUFFERSIZE * 2

All Information Presented Here is Proprietary to Digital Research

15

2.6 OperatorsCP/M-86 Programmer's Guide

Unary operators accept both signed and unsigned operators as
shown below:

001E B123
0020 R007
0022 B2F4

MOV CL,+35
MOV AL,2 — 5
MOV DL,-12

When manipulating variables, the assembler decides which
segment register to use. You may override the assemblers choice by
specifying a different register with the segment override operator.
The syntax for the override operator is <segment register> :
<address expression> where the <segment register> is CS, OS, SS, or
ES. For example:

0024 368B472D MOV AX ,SS-.WORDBUFFER [BX]
0028 268B0E5B00 MOV CX,ES:ARRAY

A variable manipulator creates a number equal to one attribute
of its variable operand. SEG extracts the variable's segment value,
OFFSET its offset value, TYPE its tvpe value (1, 2, or 4), and
LENGTH the number of bvtes associated with the variable. LAST
compares the variable's LENGTH with 0 and if greater, then
decrements LENGTH by one. If LENGTH equals 0, LAST leaves it
unchanged. Variable manipulators
operators. For example:

accept only variable

00 2d 000000000000 WORDBUFFER DW 0,0,0
0033 0102030405 BUFFER DB 1,2,3,4,5

•

0038 B80500 MOV

••
AX,LENGTH BUFFER

003B B80400 MOV AX,LAST BUFFER
003E B80100 MOV AX,TYPE BUFFER
0041 B80200 MOV AX,TYPE WORDBUFFER

The PTR operator creates a virtual variable or label, one valid
only during the execution of the instruction. It makes no changes
to either of its operands. The temporary symbol has the same Type
attribute as the left operator, and all other attributes of the
right operator as shown below.

0044 C60705 MOV BYTE PTR [BX], 5
0047 8A07 MOV AL,BYTE PTR [BX]
0049 FF04 INC WORD PTR [SI]

The Period operator, ., creates a variable in the current data
segment. The new variable has a segment attribute equal to the
current data segment and an offset attribute equal to its operand.
Its operand must be a number. For example:

004B A10000 MOV AX, .0
004E 268B1E0040 MOV BX, ES: .4000H

All Information Presented Here is Proprietary to Digital Research

16

CP/M-86 Programmer's Guide 2.6 Operators

The Dollar-sign operator, $, creates a label with an offset
attribute equal to the current value of the location counter. The
label's segment value is the same as the current code segment. This

takes no operand. For example:

0053 E9FDFF JMP $
0056 EBFE JMPS $
0058 E9FD2F JMP $ + 3 0 0 0 H

2.6.2 Operator Precedence
Expressions combine variables, labels or numbers with

operators. ASM-86 allows several kinds of expressions which are
discussed in Section 2.7. This section defines the order in which
operations are executed should more than one operator appear in an
expression.

In general, ASM-86 evaluates expressions left to right, but
operators with hiqher precedence are evaluated before operators with
lower precedence. When two operators have equal precedence, the
left-most is evaluated first. Table 2-6 presents ASM-86 operators
in order of increasing precedence.

Parentheses can override normal rules of precedence. The part
of an expression enclosed in parentheses is evaluated first. If
parentheses are nested, the innermost expressions are evaluated
first. Only five levels of nested parentheses are legal. For
example:

15/3 + 18/9 = 5 + 2 = 7
15/(3 + 18/9) = 15/(3 + 2) = 15/5 = 3

All Information Presented Here is Proprietary to Digital Research

CP/M-86 Programmer's Guide 2.6 Operators

Table 2-6. Precedence of Operations in ASM-86
Order Operator Type Operators

1 Log ical XOR, OR

2 Log ical AND

3 Logical NOT

4 Relational EO, LT, LE, GT,
GE, NE

5 Addition/subtraction + r “

6 Multiplication/division *, /, MOD, SHL,
SHR

7 Unary +, -

8 Segment override <seqment override>:

9 Variable manipulators,
creators

SEG, OFFSET, PTR,
TYPE, LENGTH, LAST

10 Parentheses/brackets (>, [1

11 Period and Dollar $

2.7 Expressions
ASM-86 allows address, numeric, and bracketed expressions. An

address expression evaluates to a memory address and has three
components:

• A segment value
• An offset value
• A type

Both variables and labels are address expressions. An address
expression is not a number, but its components are. Numbers mav be
combined with operators such as PTR to make an address expression.

A numeric expression evaluates to a number. It does not
contain any variables or labels, only numbers and operands.

Bracketed expressions specify base- and index- addressinq
modes. The base registers are BX and BP, and the index registers
are DI and SI. A bracketed expression mav consist of a base
register, an index register, or a base reqister and an index
register.

All Information Presented Here is Proprietary to Digital Research

18

CP/M-86 Programmer's Guide 2.7 Expressions

Use the + operator between a base register and an index register to
specify both base- and index-register addressing. For example:

MOV variable [bx],0
MOV AX,[BX+DI]
MOV AX,[El]

2.8 Statements
Just as "tokens" in this assembly language correspond to words

in English, so are statements analogous to sentences. A statement
tells ASM-86 what action to perform. Statements are of two types:
instructions and directives. Instructions are translated by the
assembler into 8086 machine language instructions. Directives are
not translated into machine code but instead direct the assembler to
perform certain clerical functions.

Terminate each assembly language statement with a carriage
return (CR) and line feed (LF), or with an exclamation point, !,
which ASM-86 treats as an end-of-1ine except in comments. Multiple
assembly lanquage statements can be written on the same physical
line if separated by exclamation points.

The ASM-86 instruction set is defined in Section 4. The syntax
for an instruction statement is:

[labe];] [prefix] mnemonic [operand(s)] [;comment]

where the fields are defined as:

label:

A symbol followed by defines a label at the current
value of the location counter in the current seqment.
T’his field is optional.

prefix

Certain machine instructions such as LOCK and REP mav
prefix other instructions. This field is optional.

mnemonic

A symbol defined as a machine instruction, either bv the
assembler or by an EQU directive. This field is optional
unless preceded by a prefix instruction. If it is
omitted, no operands may be present, although the other
fields may appear. ASM-86 mnemonics are defined in
Section 4.

All Information Presented Here is Proprietary to Digital Research

19

CP/M-86 Programmer's Guide 2.8 Statements

ooerand(s)
An instruction mnemonic may require other symbols to
represent operands to the instruction. Instructions may
have zero, one or two operands.

comment

Any semicolon (?) appearing outside a character string
beqins a comment, which is ended by a carriage return.
Comments improve the readability of oroqrams. This field
is optional.

ASM-86 directives are described in Section 3. The syntax for a
directive statement is:

[name] directive operand(s) [;comment]

where the fields are defined as:

name

Unlike the label field of an instruction, the name field
of a directive is never terminated with a colon.
Directive names are legal for only DB, DW, d d , RS and
EOU. For DB, DW, DD and RS the name is optional; for FOU
it is required.

directive
One of the directive keywords defined in Section 3.

operand(s)
Analogous to the operands to the instruction mnemonics.
Some directives, such as DB, DW, and DD, allow any
operand while others have special requirements.

comment
Exactly as defined for instruction statements.

All Information Presented Here is Proprietary to Digital Research

20

Section 3
Assembler Directives

3.1 Introduction
Directive statements cause ASM-86 to Derform housekeeping

functions such as assigning portions of code to logical segments,
requesting conditional assembly, defining data items, and specifying
listing file format. General syntax for directive statements
appears in Section 2.8.

In the sections that follow, the specific syntax for each
directive statement is given under the heading and before the
explanation. These syntax lines use special svmbols to represent
possible arguments and other alternatives. Square brackets, [],
enclose optional arguments. Angle brackets, <>, enclose
descriptions of user-supplied arguments. Do not include these
svmbols when coding a directive.

3.2 Segment Start Directives
At run-time, every 8086 memory reference must have a 16-bit

segment base value and a 16-bit offset value. These are combined to
produce the 20-bit effective address needed by the CPU to physically
address the location. The 16-bit segment base value or boundary is
contained in one of the segment registers CS, DS, SS, or ES. The
offset value gives the offset of the memory reference from the
segment boundary. A 16-bvte physical segment is the smallest
relocatable unit of memory.

ASM-86 predefines four logical segments: the Code Segment, Data
Segment, Stack Segment, and Extra Segment, which are respectively
addressed by the CS, DS, SS, and ES registers. Future versions of
ASM-86 will support additional segments such as multiple data or
code segments. All ASM-86 statements must be assigned to one of the
four currently supported segments so that they can be referenced bv
the CPU. A segment directive statement, CSEG, DSEG, SSEG, or ESEG,
specifies that the statements following it belong to a specific
segment. The statements are then addressed by the corresponding
segment register unless a segment override is included with the
instruction. ASM-86 assigns statements to the specified segment
until it encounters another segment directive.

Instruction statements must be assigned to the Code Segment.
Directive statements may be assigned to any segment. ASM-86 uses
these assignments to change from one segment register to another.
For example, when an instruction accesses a memory variable, ASM-86
must know which segment contains the variable so it can generate a
segment override prefix byte if necessary.

All Information Presented Here is Proprietary to Digital Research
21

CP/M-86 Programmers Guide 3.2 Segment Start Directives

3.2.1 The CSEG Directive
CSEG cnumeric exoression>
CSEG
CSEG $

This directive tells the assembler that the followinq
statements belonq in the Code Segment. All instruction statements
must be assigned to the Code Seqment. All directive statements are
legal within the Code Segment.

Use the first form when the location of the segment is known at
assembly time; the code generated is not relocatable. Use the
second form when the segment location is not known at assembly time;
the code generated is relocatable. Use the third form to continue
the Code Segment after it has been interruoted by a DSEG, SSEG, or
ESEG directive. The continuing Code Segment starts with the same
attributes, such as location and instruction pointer, as the
previous Code Segment.

3.2.2 The DSEG Directive
DSEG <numeric expression>
DSEG
DSEG $

This directive specifies that the followinq statements belonq
to the Data Seqment. The Data Segment primarily contains the data
allocation directives DB, DW, DD and RS, but all other directive
statements are also legal. Instruction statements are illegal in
the Data Segment.

Use the first form when the location of the segment is known at
assembly time; the code generated is not relocatable. Use the
second form when the segment location is not known at assembly time;
the code generated is relocatable. Use the third form to continue
the Data Segment after it has been interrupted by a CSEG, SSEG, or
ESEG directive. The continuing Data Segment starts with the same
attributes as the previous Data Segment.

3.2.3 The SSEG Directive
SSEG cnumeric expression»
SSEG
SSEG $

The SSEG directive indicates the beginning of source lines for
the Stack Segment. Use the Stack Segment for all stack operations.
All directive statements are legal in the Stack Seqment, but
instruction statements are illegal.

All Information Presented Here is Proprietary to Digital Research

22

CP/M-86 Programmer"s Guide 3.2 Segment Start Directives

Use the first form when the location of the seqment is known at
assembly time; the code generated is not relocatable. Use the
second form when the seqment location is not known at assembly time;
the code generated is relocatable. Use the third form to continue
the Stack Segment after it has been interrupted by a CSEG, DSEG, or
ESEG directive. The continuing Stack Segment starts with the same
attributes as the previous Stack Seqment.

3.2.4 The ESEG Directive
ESEG cnumeric expression>
ESEG
ESEG $

This directive initiates the Extra Seqment. Instruction
statements are not legal in this seqment, but all directive
statements are.

Use the first form when the location of the seqment is known at
assembly time; the code generated is not relocatable. Use the
second form when the segment location is not known at assembly time;
the code generated is relocatable. Use the third form to continue
the Extra Segment after it has been interrupted by a DSEG, SSEG, or
CSEG directive. The continuing Extra Segment starts with the same
attributes as the previous Extra Segment.

3.3 The ORG Directive
ORG <numeric expression>

The ORG directive sets the offset of the location counter in
the current seqment to the value specified in the numeric
expression. Define all elements of the expression before the ORG
directive because forward references may be ambiguous.

In most segments, an ORG directive is unnecessary. If no ORG
is included before the first instruction or data byte in a seqment,
assembly begins at location zero relative to the beginning of the
segment. A seqment can have any number of ORG directives.

All Information Presented Here is Proprietary to Digital Research

23

CP/M-86 Programmer's Guide 3.4 The IF and ENDIF Directives

3.4 The IF and ENDIF Directives
IF <numeric express ion>

< source line 1 >
< source line 2 >

< source line n >
ENDIF

The IF and E N D I F directives allow a group of source 1ines to be
included or excluded from the assembly. Use conditional directives
to assemble several different versions of a sinqle source program.

When the assembler finds an IF directive, it evaluates the
numeric expression following the IF keyword. If the expression
evaluates to a non-zero value, then <source line 1> through <source
line n> are assembled. If the expression evaluates to zero, then
all lines are listed but not assembled. All elements in the numeric
expression must be defined before they appear in the IF directive.
Nested IF directives are not legal.

3.5 The INCLUDE Directive
INCLUDE <file name>

This directive includes another ASM-86 file in the source text.
For example:

INCLUDE EQUALS.A86

Use INCLUDE when the source program resides in several
different files. INCLUDE directives may not be nested; a source
file called by an INCLUDE directive mav not contain another INCLUDE
statement. If <file name> does not contain a file tvpe, the file
type is assumed to be .A86. If no drive name is specified with <file
name>, ASM-86 assumes the drive containing the source file.

3.6 The END Directive
END

An END directive marks the end of a source file. Any
subsequent lines are ignored by the assembler. END is optional. If
not present, ASM-86 processes the source until it finds an End-Of-
File character (1AH).

All Information Presented Here is Proprietary to Digital Research

24

CP/M-86 Programmer's Guide 3.7 The EQU directive

3.7 The EQU Directive

symbol EQU
symbol EQU
symbol EQU
symbol EQU

cnumeric expression>
<address expression>
<reqlster>
<instruction mnemonic>

The EQU (equate) directive assigns values and attributes to
user-defined symbols. The required symbol name may not be
terminated with a colon. The svmbol cannot be redefined by a
subsequent EQU or another directive. Anv elements used in numeric
or address expressions must be defined before the EQU directive
appears.

The first form assigns a numeric value to the symbol, the
second a memory address. The third form assiqns a new name to an
8086 register. The fourth form defines a new instruction (sub)set.
The following are examples of these four forms:

0005 FIVE EOU 2*2+1
0033 NEXT EOU BUFFER
0001 COUNTER EQU CX

m q v w EOU MOV•
005D 8BC3 M O V W

••
AX, BX

3.8 The DB Directive

[symbol] DB cnumeric expression>[,cnumeric exoression>.. 1
[symbol] DB cstring constant>[,cstrinq constant>...1

The DB directive defines initialized storaqe areas in byte
format. Numeric expressions are evaluated to 8-bit values and
sequentially placed in the hex output file. String constants are
placed in the output file according to the rules defined in Section
2.4.2. A DB directive is the only ASM-86 statement that accents a
string constant longer than two bytes. There is no translation from
lower to upper case within strings. Multiple expressions or
constants, separated by commas, mav be added to the definition, but
may not exceed the physical line length.

Use an optional, symbol to reference the defined data area
throughout the program. The symbol has four attributes: the
Segment and Offset attributes determine the symbol's memory
reference, the Type attribute specifies sinqle bvtes, and Lenqth
tells the number of bytes (allocation units) reserved.

All Information Presented Here is Proprietary to Digital Research

25

CP/M-86 Programmer's Guide 3.8 The HB nirective

The following statements show DB directives with symbols:
005F 43502F4D2073

797374656D00
TEXT DB 'CP/M system' ,

006B El AA DB 'a' + 80H
006C 0102030405 X DB 1,2,3,4,5

•

0071 B90C00 MOV

•
•
CX, LENGTH TEXT1

3.9 The DW Directive
[symboll DW cnumeric expression>[,<numeric expression>..1
[symboll DW <string constant>[,cstring constant>... 1

The DW directive initializes two-byte words of storage. String
constants longer than two characters are illegal. Otherwise, DW
uses the same procedure to initialize storage as DB except that the
low-order byte is stored first, followed by the high-order byte.
The following are examples of DW statements:

0074 0000 CNTR DW 0
0076 63C166C169C1 JMPTAB DW SUBRl,SUBR2,SUBR3
007C 010002000300 DW 1,2,3,4,5,6

040005000600

3.10 The DD Directive
[symbol] DD cnumeric expression>[,cnumeric expression>..]

The DD directive initializes four bytes of storage. The Offset
attribute of the address expression is stored in the two lower
bytes, the Segment attribute in the two upper bytes. Otherwise, DD
follows the same procedure as DB. For example:

1234 CSEG 1234H

0000 6CC134126FC1 LONG JMPTAB
3412

DD ROUT1,ROUT2

0008 72C1341275C1
3412

DD ROUT3,ROUT4

All Information Presented Here is Proprietary to Digital Research
26

CP/M-86 Programmer"s Guide 3.11 The RS Directive

3.11 The RS Directive
[symbol] RS <numeric expression>

The RS directive allocates storage in memory but does not
initialize it. The numeric expression gives the number of bytes to
be reserved. An RS statement does not give a byte attribute to the
optional symbol. For example:

0010 BUF RS 80
0060 RS 4000H
4060 RS 1

3.12 The RB Directive
[symbol] RB cnumeric expression>

The RB directive allocates byte storage in memory without any
initialization. This directive is identical to the RS directive
except that it does give the byte attribute.

3.13 The KW Directive
[symbol] RW <numeric expression»

The RW directive allocates two-byte word storage in memory but
does not initialize it. The numeric expression gives the number of
words to be reserved. For example:

4061 BUFF RW 128
4161 RW 4000H
G161 RW 1

3.14 The TITLE Directive
TITLE <string constant»

ASM-86 prints the string constant defined by a TITLE directive
statement at the top of each printout page in the listing file, ^he
title character string should not exceed 30 characters. For
example:

TITLE "CP/M monitor"

3.15 The PAGESIZE Directive
PAGESIZE cnumeric expression»

The PAGESIZE directive defines the number of lines to be
included on each printout page. The default pagesize is 66.

All Information Presented Here is Proprietary to Digital Research

27

CP/M-86 Programmer's Guide 3.16 The PAGEWIDTH Directive

3.16 The PAGEWIDTH Directive
PAGEWIDTH cnumeric expression>

The PAGEWIDTH directive defines the number of columns printed
across the page when the listing file is output. The default
pagewidth is 120 unless the listing is routed directly to the
terminal; then the default pagewidth is 79.

3.17 The EJECT Directive
EJECT

The EJECT directive performs a page eiect during printout. The
EJECT directive itself is printed on the first line of the next
page.

3.18 The SIMFORM Directive
SIMFORM

The SIMFORM directive replaces a form-feed (FF) character in
the print file with the correct number of line-feeds (LF) . Use this
directive when printing out on a printer unable to interpret the
form-feed character.

3.19 The NOLIST and LIST Directives
NOLIST
LIST

The NOLIST directive blocks the printout of the following
lines. Restart the listing with a LIST directive.

All Information Presented Here is Proprietary to Digital Research

28

Section 4
The ASM-86 instruction Set

4.1 Introduction
The ASM-86 instruction set includes all 8086 machine

instructions. The general syntax for instruction statements is
given in Section 2.7. The following sections define the specific
syntax and required operand types for each instruction, without
reference to labels or comments. The instruction definitions are
presented in tables for easy reference. For a more detailed
description of each instruction, see Intel's MCS-86 Assembly
Language Reference Manual. For descriptions of the instruction bit
patterns and operations, see Intel's MCS-86 User's Manual.

The instruction-definition tables present ASM-86 instruction
statements as combinations of mnemonics and operands. A mnemonic is
a symbolic representation for an instruction, and its operands are
its required parameters. Instructions can take zero, one or two
operands. When two operands are specified, the left operand is the
instruction's destination operand, and the two operands are
separated by a comma.

The instruction-definition tables organize ASM-86 instructions
into functional groups. Within each table, the instructions are
listed alphabetically. Table 4-1 shows the symbols used in the
instruction-definition tables to define operand types.

Table 4-1. Operand Type Symbols
Symbol Operand Type
numb any NUMERIC expression
numb 8 any NUMERIC expression which

evaluates to an 8-bit number
acc accumulator register, AX or AL
reg any general purpose register,

not segment register
reql6 a 16-bit general purpose register,

not segment register
segreg any segment register: CS, DS, SS,

or ES

All Information Presented Here is Proprietary to Digital Research

29

CP/M-86 Programmer's Guide 4.1 Introduction

Table 4-1. (continued)
Symbol Operand Type

mem any ADDRESS expression, with or
without base- and/or index-
addressinq modes, such as:

variable
variable+3
variable[bx]
variable[SI]
variable[BX+SI]
[BX]
[BP+DI]

s impmem any ADDRESS expression WITHOUT base-
and index- addressinq modes, such as:

variable
variable+4

mem|reg any expression symbolized by "req"
or "mem"

mem|reg16 any expression symbolized by
"mem|reg", but must be 16 bits

label any ADDRESS expression which
evaluates to a label

lab8 any "label" which is within +/- 128
bytes distance from the instruction

The 8086 CPU has nine sinqle-bit Flaq registers which reflect
the state of the CPU. The user cannot access these registers
directly, but can test them to determine the effects of an executed
instruction upon an operand or register. The effects of
instructions on Flaq registers are also described in the
instruction-definition tables, using the symbols shown in Table 5-2
to represent the nine Flag registers.

All Information Presented Here is Proprietary to Digital Research

30

CP/M-86 Programmer's Guide 4.1 Introduction

Table 4-2. Flag Register Symbols
AF Auxiliary-Carrv-Flag
CF Carry-Fiag
DF Direction-Flag
IF Interrupt-Enable-Flag
OF Overflow-Flag
PF Parity-Flag
SF Sign-Flag
TF Trap-Flag
ZF Zero-Flag

4.2 Data Transfer Instructions
There are four classes of data transfer operations: general

purpose, accumulator specific, address-object and flag. Only SAHF
and POPF affect flag settings. Note in Table 4-3 that if acc = AL,
a byte is transferred, but if acc = AX, a word is transferred.

Table 4-3. Data Transfer Instructions
Syntax Result

IN acc,numb8|numbl6 transfer data from input port given
by numb8 or numbl6 (0-255) to
accumulator

IN acc,DX transfer data from input port given
by DX register (0-0FFFFH) to
accumulator

LAHF transfer SF, ZF, AF, PF, and CF
flags to the AH register

LDS regl6,mem transfer the segment part of the
memory address (DWORD variable) to
the DS seqment register, transfer
the offset part to a general
purpose 16-bit register

LEA regl6,mem transfer the offset of the memory
address to a (16-bit) register

LES regl6,mem transfer the seqment part of the
memory address to the ES segment
register, transfer the offset part
to a 16-bit general purpose register

MOV reg,mem|reg move memory or register to reqister

MOV mem|reg,reg move reqister to memory or reqister

All Information Presented Here is Proprietary to Digital Research

31

CP/M-86 Programmer's Guide 4.2 Data Transfer Instructions

Table 4-3. (continued)
Syntax Result

MOV mem|reg,numb move immediate data to memory or
register

MOV segreg,mem|regl6 move memory or register to segment
register

MOV mem|regl6,segreg move segment register to memory or
register

OUT numb8|numbl6,acc transfer data from accumulator
to output port (0-255) given by
numb8 or numbl6

OUT DX,acc transfer data from accumulator to
output port (O-OFFFFH) given by DX
register

POP mem|regl6 move top stack element to memory or
register

POP segreg move top stack element to segment
register; note that CS segment
register not allowed

POPF transfer top stack element to flags

PUSH mem|regl6 move memory or register to top
stack element

PUSH segreg move segment register to top stack
element

PUSHF transfer flags to top stack element

SAHF transfer the AH register to flags

XCHG reg ,mem|reg exchange register and memory or
register

XCHG mem|reg,reg exchange memory or register and
register

XL AT mem|reg .perform table lookup translation,
table qiven by "mem 1reg", which is
always BX. Replaces AL with AL
offset from BX.

All Information Presented Here is Proprietary to Digital Research

32

CP/M-86 Programmers Guide 4.3 Arithmetic, Logic, and Shift

4.3 Arithmetic, Logical, and Shift Instructions
The 8086 CPU performs the four basic mathematical operations in

several different ways. It supports both 8- and 16-bit operations
and also signed and unsigned arithmetic.

Six of the nine flag bits are set or cleared by most arithmetic
operations to reflect the result of the operation. Table 4-4
summarizes the effects of arithmetic instructions on flag bits.
Table 4-5 defines arithmetic instructions and Table 4-6 logical and
shift instructions.

Table 4-4. Effects of Arithmetic Instructions on Flags
CF is set if the operation resulted in a carry out of

(from addition) or a borrow into (from subtraction)
the high-order bit of the result; otherwise CF is
cleared.

AF is set if the operation resulted in a carry out of
(from addition) or a borrow into (from subtraction)
the low-order four bits of the result; otherwise AF
is cleared.

ZF is set if the result of the operation is zero;
otherwise ZF is cleared.

SF is set if the result is negative.

PF is set if the modulo 2 sum of the low-order eight
bits of the result of the operation is 0 (even
parity); otherwise PF is cleared (odd parity).

OF is set if the operation resulted in an overflow; the
size of the result exceeded the capacity of its
destination.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 Programmer's Guide 4.3 Arithmetic, Logic, and Shift

Table 4-5. Arithnetic Instructions
Syntax Result

AAA adjust unpacked BCD (ASCII) for
addition - adjusts AL

AAD adjust unpacked BCD (ASCII) for
division - adjusts AL

AAM adjust unpacked BCD (ASCII) for
multiplication - adjusts AX

AAS adjust unpacked BCD (ASCII) for
subtraction - adjusts AL

ADC reg,mem|reg add (with carry) memory or
register to register

ADC mem|reg,reg add (with carry) reqister to memory
or register

ADC mem|reg,numb add (with carry) immediate data to
memory or register

ADD reg,mem|reg add memory or register to reqister

ADD mem|reg,reg add register to memory or reqister

ADD mem|reg,numb add immediate data to memory or
reqister

CBW convert byte in AL to word in AH bv
sign extension

CWD convert word in AX to double word
in DX/AX by sign extension

CMP reg,memIreg compare register with memory or
reqister

CMP mem|reg,reg compare memory or reqister with
reqister

CMP mem|reg,numb compare data constant with memory
pr register

DAA decimal adjust for addition,
adjusts AL

DAS decimal adjust for subtraction,
adjusts AL

DEC mem|reg subtract 1 from memory or reqister

All Information Presented Here is Proprietary to Diaital Research

34

CP/M-86 Programmer ''s Guide 4.3 Arithmetic, Logic, and Shift

Table 4-5. (continued)
Syntax Result

INC mem 1 reg add 1 to memory or register
DIV mem reg divide (unsigned) accumulator (AX

or AL) by memory or register.
If byte results, AL = quotient, AH
= remainder. If word results, AX =
quotient, DX = remainder

IDIV mem reg divide (signed) accumulator (AX or
AL) by memory or register -
quotient and remainder stored as in
DIV

IMUL mem reg multiply (signed) memory or
register by accumulator (AX or
AL) - if byte, results in AH, AL.
If word, results in DX, AX

MUL mem [reg multiply (unsigned) memory or
reqister by accumulator (AX or
AL) - results stored as in IMUL

NEG mem I reg two's complement memory or
register

SBB reg ,mem|reg subtract (with borrow) memory or
register from register

SBB mem |reg,reg subtract (with borrow) register
from memory or register

SBB mem | reg, numb subtract (with borrow) immediate
data from memory or register

SUB reg ,mem|reg subtract memory or register from
register

SUB mem |reg,reg subtract register from memory or
reqister

SUB mem j reg,numb subtract data constant from memory
or register

All Information Presented Here is Proprietary to Digital Research

35

CP/M-86 Programmer's Guide 4.3 Arithmetic, Logic, and Shift

Table 4-6. Logic and Shift Instructions
Syntax Result

AND reg ,mem|reg perform bitwise logical "and" of a
register and memory register

AND mem !reg,reg perform bitwise logical "and" of
memory register and register

AND mem |reg,numb perform bitwise logical "and" of
memory register and data constant

NOT mem reg form ones complement of memory
or register

OR reg ,mem|reg perform bitwise logical "or" of
a register and memory register

OR mem !reg,reg perform bitwise logical "or" of
memory register and register

OR mem reg,numb perform bitwise logical "or" of
memory register and data constant

RCL mem reg, 1 rotate memory or register 1 bit
left through carry flag

RCL mem reg,CL rotate memory or register left
through carry flag, number of bits
given by CL register

RCR mem 1 reg, 1 rotate memory or register 1 bit
right through carry flag

RCR mem |reg,CL rotate memory or register right
through carry flag, number of bits
given by CL register

ROL mem I reg, 1 rotate memory or register 1 bit
left

ROL mem !reg,CL rotate memory or register left,
number of bits given by CL register

ROR mem !reg, 1 rotate memory or register 1 bit
xight

ROR mem |reg,CL rotate memory or register right,
number of bits given by CL register

SAL mem |reg ,1 shift memory or register 1 bit
left, shift in low-order zero bits

All Information Presented Here is Proprietary to Digital Research

36

CP/M-86 Proqrammer“s Guide 4.3 Arithmetic, Logic, and Shift

Table 4-6. (continued)
Syntax Result

SAL mem reg,CL shift memory or register left,
number of bits given by CL
register, shift in low-order zero
bits

SAR mem reg, 1 shift memory or register 1 bit
right, shift in high-order bits
equal to the original high-order
bit

SAR mem reg,CL shift memory or register right,
number of bits given by CL
reqister, shift in high-order bits
equal to the original high-order
bit

SHL mem reg, 1 shift memory or register 1 bit
left, shift in low-order zero bits
- note that SHL is a different
mnemonic for SAL

SHL mem reg,CL shift memory or register left,
number of bits given by CL
register, shift in low-order zero
bits - note that SHL is a
different mnemonic for SAL

SHR mem reg, 1 shift memory or register 1 bit
right, shift in high-order zero
bits

SHR mem reg,CL shift memory or register right,
number of bits given by CL
register, shift in high-order zero
bits

TEST reg ,mem|reg perform bitwise loqical "and" of a
register and memory or register
- set condition flags but do not
change destination

TEST mem |reg,reg perform bitwise logical "and" of
memory reqister and register - set
condition flags but do not
change destination

TEST mem |reg,numb perform bitwise logical "and" -
test of memory reqister and data
constant - set condition flags
but do not change destination

All Information Presented Here is Proprietary to Digital Research

37

CP/M-86 Programmer's Guide 4.3 Arithmetic, Logic, and Shift

Table 4-6. (continued)
Syntax Result

XOR reg,mem|reg perform bitwise logical "exclusive
OR" of a register and memory or
register

XOR mem|reg,reg perform bitwise logical "exclusive
OR" of memorv register and register

XOR mem|reg,numb perform bitwise logical "exclusive
OR" of memory reqister and data
constant

4.4 String Instructions
String instructions take one or two operands. The operands

specify only the operand type, determining whether operation is on
bytes or words. If there are two operands, the source operand is
addressed by the SI register and the destination operand is
addressed by the DI register. The DI and SI registers are always
used for addressing. Note that for string operations, destination
operands addressed by DI must always reside in the Extra Segment
(ES) .

Table 4-7. String Instructions
Syntax Result

CMPS mem|reg,mem|reg subtract source from destination,
affect flags, but do not return
result.

LODS mem|reg transfer a byte or word from the
source operand to the accumulator.

MOVS mem j reg,mem|reg move 1 byte (or word) from source
to destination.

SC AS mem|reg subtract destination operand from
accumulator (AX or AL), affect
flags, but do not return result.

STOS mem|reg transfer a byte or word from
accumulator to the destination
operand.

All Information Presented Here is Proprietary to Digital Research
38

CP/M-86 Programmer's Guide 4.4 String Instructions

Table 4-8 defines prefixes for string instructions. A prefix
repeats its string instruction the number of times contained in the
CX register, which is decremented by 1 for each iteration. Prefix
mnemonics precede the string instruction mnemonic in the statement
line as shown in Section 2.8.

Table 4-8. Prefix Instructions
Syntax Result

REP repeat until CX register is zero
REPZ repeat until CX register

and zero flag (ZF) is not
is zero
zero

REPE equal to "REPZ"
REPNZ repeat until CX register is

and zero flag (ZF) is zero
zero

REPNE equal to "REPNZ"

4.5 Control Transfer Instructions
There are four classes of control transfer instructions:

• calls, jumps, and returns
• conditional jumps
• iterational control
• interrupts

All control transfer instructions cause program execution to
continue at some new location in memory, possibly in a new code
segment. The transfer may be absolute or depend upon a certain
condition. Table 4-9 defines control transfer instructions. In the
definitions of conditional jumps, "above" and "below" refer to the
relationship between unsigned values, and "greater than" and "less
than" refer to the relationship between signed values.

All Information Presented Here is Proprietary to Digital Research

39

CP/M-86 Programmer's Guide 4.5 Control Transfer Instructions

Table 4-9. Control Transfer Instructions
Syntax Result

CALL label push the offset address of the next
instruction on the stack, lump to
the target label

CALL mem j regl6 push the offset address of the next
instruction on the stack, jump to
location indicated by contents of
specified memory or register

CALLF label push CS segment register on the
stack, Dush the offset address of
the next instruction on the stack
(after CS), jump to the target
label

CALLF mem push CS register on the stack,
push the offset address of the next
instruction on the stack, jump to
location indicated by contents of
specified double word in memory

INT numb8 push the flag registers (as in
PUSHF), clear TF and IF flags,
transfer control with an indirect
call through any one of the 256
interrupt-vector elements - uses
three levels of stack

INTO if OF (the overflow flag) is
set, push the flag registers (as in
PUSHF), clear TF and IF flags,
transfer control with an indirect
call through interrupt-vector
element 4 (location 10H) - if the
OF flag is cleared, no operation
takes place

IRET transfer control to the return
address saved by a previous
interrupt operation, restore saved
flag registers, as well as CS and
IP - p o d s three levels of stack

JA lab8 jump if "not below or equal" or
"above" ((CF or ZF)=0)

All Information Presented Here is Proprietary to Digital Research

40

CP/M-86 Programmer's Guide 4.5 Control Transfer Instructions

Table 4-9. (continued)
Syntax Result

JAE lab8 jump if "not below" or "above or
equal" (CF=0)

JB lab8 iump if "below" or "not above or
equal" (CF=1)

JBE lab8 jump if "below or equal" or "not
above" ((CF or ZF)=1)

JC lab8 same as "JB"
JCXZ lab8 jump to tarqet label if CX register

is zero
JE lab8 jump if "equal" or "zero" (ZF=1)
JG lab 8 jump if "not less or equal" or

"greater" (((SF xor OF) or ZF)=0)
JGE lab8 jump if "not less" or "greater or

equal" ((SF xor OF)=0)
JL lab8 jump if "less" or "not greater or

equal" ((SF xor 0F)=1)
JLE lab8 jump if "less or equal" or "not

greater" (((SF xor OF) or ZF)=1)
JMP label jump to the target label
JMP mem|regl6 jump to location indicated by

contents of specified memorv or
register

JMPF label jump to the target label possibly
in another code segment

JMPS lab8 jump to the target label within +/-
128 bytes from instruction

JNA lab8 same as "JBE"

JNAE lab8 same as "JB"
JNB lab8 same as "JAE"
JNBE lab8 same as "JA"
JNC lab8 same as "JNB"

All Information Presented Here is Proprietary to Digital Research

41

CP/M-86 Programmer"s Guide 4.5 Control Transfer Instructions

Table 4-9. (continued)
Syntax Result

JNE lab8 jump
'(ZF=

if
=0)

"not equal" or "not zero"

JNG lab8 same as " JLE"

JNGE lab8 same as "JL"

JNL lab8 same as "JGE"

JNLE lab8 same as "JG"

JNO lab8 jump if "not overflow" (OF=0)

JNP lab8 jump
odd"

if "not parity" or "parity

JNS lab8 jump if "not sign"

JNZ lab8 same as "JNE"

JO lab8 jump if "overflow" (OF=l)

JP lab8 jump
’(PF:

if
= 1)

"parity" or "paritv even"

JPE lab8 same as "JP"

JPO lab8 same as "JNP"

JS lab8 jump if "sign" (SF=1)

JZ lab8 same as "JE"

LOOP lab8 decrement CX register by one, jump
to target label if CX is not zero

LOOPE lab8 decrement CX reqister by one, jump
to target label if CX is not zero
and the ZF flag is set - "loop
while zero" or "loop while equal"

LOOPNE lab8 decrement CX reqister by one, jump
.to target label if C.X is not zero
and ZF flag is cleared - "loop
while not zero" or "loop while not
equal"

LOOPNZ lab8 same as "LOOPNE"

LOOPZ lab8 same as "LOOPE"

All Information Presented Here is Proprietary to Digital Research

42

CP/M-86 Programmers Cuide 4.5 Control Transfer Instructions

Table 4-9. (continued)
Syntax Result

RET return to the return address pushed
by a previous CALL instruction,
increment stack pointer by 2

RET numb return to the address pushed by a
previous CALL, increment stack
pointer by 2+numb

RETF return to the address pushed by a
previous CALLF instruction,
increment stack pointer by 4

RETF numb return to the address pushed by a
previous CALLF instruction,
increment stack pointer by 4+numb

4.6 Processor Control Instructions
Processor control instructions manipulate the flag registers.

Moreover, some of these instructions can synchronize the 8086 CPU
with external hardware.

Table 4-10. Processor Control Instructions
Syntax Results

CLC clear CF flag
CLD clear DF flag, causing string

instructions to auto-increment the
ODerand pointers

CLI clear IF flag, disabling maskable
external interrupts

CMC complement CF flag

ESC numb8,mem j reg do no operation other than compute
the effective address and place it
on the address bus (ESC is used by
the 8087 numeric co-processor),
"numb8" must be in the range 0 to 63

All Information Presented Here is Proprietary to Digital Research

43

CP/M-86 Programmer's Guide 4.6 Processor Control Instructions

Table 4-10. (continued)
Syntax Results

LOCK PREFIX instruction, cause the 8086
Processor to assert the "bus-lock"
signal for the duration of the
operation caused by the following
instruction - the LOCK prefix
instruction may precede any other
instruction - buslock prevents
co-processors from gaining the bus;
this is useful for shared-resource
semaphores

HLT cause 8086 processor to enter halt
state until an interrupt is
recognized

STC set CF flag
STD set DF flag, causinq string

instructions to auto-decrement the
operand pointers

STI set IF flag, enabling maskable
external interrupts

WAIT cause the 8086 processor to enter a
"wait" state if the signal on its
"TEST" pin is not asserted

All Information Presented Here is Proprietary to Digital Research

44

Section 5
Code-Macro Facilities

5.1 Introduction to Code-macros
ASM-86 does not support traditional assembly-3anquaqe macros,

but it does allow the user to define his own instructions by usinq
the Code-macro directive. Like traditional macros, code-macros are
assembled wherever they appear in assembly 1anquaqe code, but there
the similarity ends. Traditional macros contain assembly lanquaqe
instructions, but a code-macro contains only code-macro directives.
Macros are usually defined in the user's symbol table; ASM-86 code
macros are defined in the assembler's symbol table. A macro
simplifies usinq the same block of instructions over and over aqain
throuqhout a proqram, but a code-macro sends a bit stream to the
output file and in effect adds a new instruction to the assembler.

Because ASM-86 treats a code-macro as an instruction, vou can
invoke code-macros by usinq them as instructions in your proqram.
The example below shows how MAC, an instruction defined bv a code
macro, can be invoked.

XCHG BX,WORD3
MAC PARI,PAR2
MUL AX,WORD4

Note that MAC accepts two operands. When MAC was defined,
these two operands were also classified as to type, size, and so on
by defininq MAC's formal parameters. The names of formal parameters
are not fixed. They are stand-ins which are replaced by the names
or values supplied as operands when the code-macro is invoked. Thus
formal parameters "hold the place" and indicate where and how the
operands are to be used.

The definition of a code-macro starts with a line soecifyinq
its name and its formal parameters, if any;

CodeMacro <name> [<formal parameter iist>l

where the optional. <formal parameter list> is defined;

<formal name>; <soeci.f ier letter>[<modifier letter>1 f<ranqe>l

All Information Presented Here is Proprietary to Diqital Research

45

CP/M-86 Programmer's Guide 5.1 Introduction to Code-Macros

As stated above, the formal name is not fixed, but a Place
holder. If formal parameter list is present, the specifier letter
is required and the modifier letter is optional. Possible
specifiers are A, C, D, E, M, R, S, and X. Possible modifier
letters are b, d, w, and sb. The assembler ignores case except
within strings, but for clarity, this section shows specifiers in
upper-case and modifiers in lower-case. Following sections describe
specifiers, modifiers, and the optional ranqe in detail.

The bodv of the code-macro describes the bit pattern and formal
parameters. Only the following directives are legal within code
macros :

SEGFIX
NOSEGFIX
MODRM
RELB
RELW
DB
DW
DD
D B I T

These directives are unique to code-macros, and those which
appear to duplicate ASM-86 directives (DB, DW, and DD) have
different meaninqs in code-macro context. These directives are
discussed in detail in later sections. The definition of a code
macro ends with a line:

EndM

CodeMacro, EndM, and the code-macro directives are ail reserved
words. Code-macro definition syntax is defined in Backus-Naur-like
form in Appendix H. The following examples are typical code-macro
definitions.

CodeMacro AAA
DB 37H

EndM

CodeMacro DIV divisor:Eb
SEGFIX divisor
DB 6FH
MODRM divisor

EndM
CodeMacro ESC opcode:Db(0,63),src:Eb

SEGFIX src
DBIT 5 (1BH) ,3(opcode (3))
MODRM opcode,src

EndM

All Information Presented Here is Proprietary to Digital Research

46

CP/M-86 Programmers Guide 5.2 Specifiers

5.2 Specifiers
Every formal parameter must have a specifier letter that

indicates what type of operand is needed to match the formal
parameter. Table 5-1 defines the eight possible specifier letters.

Table 5-1. Code-macro Operand Specifiers
Letter Operand Type

A Accumulator register, AX or AL.

C Code, a label expression only.

D Data, a number to be used as an
immediate value.

E Effective address, either an M
(memory address) or an R (reqister).

M Memory address. This can be either
a variable or a bracketed register
expression.

R A general register only.
S Segment register only.

X A direct memory reference.

5.3 Modifiers
The optional modifier letter is a further requirement on the

operand. The meaning of the modifier letter depends on the tvpe of
the operand. For variables, the modifier requires the operand to be
of type: "b" for byte, "w" for word, "d" for double-word and "sb"
for signed byte. For numbers, the modifiers require the number to
be of a certain size: "b" for -256 to 255 and "w" for other numbers.
Table 5-2 summarizes code-macro modifiers.

All Information Presented Here is Proprietary to Digital Research

47

CP/M-86 Programmer 's Guide 5.3 Modifiers

T a b le 5 - 2 . C o d e -m a c ro O p e ra n d M o d i f i e r s

Variables Numbers
Modifier Type Modifier Size

b byte

w word
d dword
sb signed

byte

b -256 to 255

w anything else

5.4 Range Specifiers
The optional range is specified within parentheses by either

one expression or two expressions separated by a comma. The
following are valid formats:

(numberb)
(register)
(numbe r b,numbe r b)
(numberb,register)
(register,numberb)
(register,register)

Numberb is 8-bit number, not an address. The following example
specifies that the input port must be identified by the DX register:

CodeMacro IN dst:Aw,port:Rw(DX)

The next example specifies that the CL register is to contain the
"count” of rotation:

CodeMacro ROR dst:Ew,count:Rb(CL)

The last example specifies that the "opcode" is to be immediate
data, and may range from 0 to 63 inclusive:

CodeMacro ESC opcode:Db(0,63),adds:Eb

All Information Presented Here is Proprietary to Digita1 Research

CP/M-B6 Programmer's Guide 5.5 Code-macro directives

5.5 Code-macro Directives
Code-macro directives define the bit pattern and make further

requirements on how the ooerand is to be treated. Directives are
reserved words, and those that appear to duplicate assembly lanquage
instructions have different meaninqs within a code-macro definition.
Only the nine directives defined here are legal, within code-macro
definitions.

5.5.1 SEGFIX
If SEGFIX is present, it instructs the assembler to determine

whether a segment-override prefix byte is needed to access a given
memorv location. If so, it is output as the first byte of the
instruction. If not, no action is taken. SEGFIX takes the form:

SEGFIX <formal name>
where <formal name> is the name of a formal parameter which rep
resents the memory address. Because it represents a memory address,
the formal parameter must have one of the specifiers E, M or X.

5.5.2 NOSEGFIX
Use NOSEGFIX for operands in instructions that must use the ES

register for that operand. This applies only to the destination
operand of these instructions: CMPS, MOVS, SCAS, STOS. The form of
NOSEGFIX is:

NOSEGFIX segreg,<formname>

where segreg is one of the segment registers ES, CS, SS, or DS and
<formname> is the name of the memory-address formal parameter, which
must have a specifier E, M, or X. No code is generated from this
directive, but an error check is performed. The following is an
example of NOSEGFIX use:

CodeMacro MOVS si_ptr:Ew,di_ptr:Ew
NOSEGFIX ES,di_ptr
SEGFIX si_ptr
DB 0A5H

EndM

All Information Presented Here is Proprietary to Digital Research

49

CP/M-86 Proqrammer's Guide 5.5 Code-macro Directives

5.5.3 MODRM

This directive intructs the assembler to qenerate the ModRM
byte, which follows the opcode bvte in manv of the 8086's
instructions. The ModRM byte contains either the indexing type or
the reqister number to be used in the instruction. It also
specifies which register is to be used, or gives more information to
specify an instruction.

The ModRM byte carries the information in three fields: T’he mod
field occupies the two most significant bits of the byte, and
combines with the reqister memory field to form 32 possible values:
8 registers and 24 indexing modes.

The reg field occupies the three next bits following the mod
field. It specifies either a reqister number or three more bits of
opcode information. The meaning of the req field is determined by
the opcode byte.

The reqister memory field occupies the last three bits of the
byte. It specifies a register as the location o^ an operand, or
forms a part of the address-mode in combination with the mod field
described above.

For further information of the BOSSES instructions and their
bit patterns, see Intel's 8086 Assembly Language Programing Manual
and the Intel 8086 Family User's Manual. The forms of MODRM are:

MODRM <form name>,<form name>
MODRM NUMBER7,<form name>

where NUMBER7 is a value 0 to 7 inclusive and <form name> is the
name of a formal parameter. The following examples show MODRM use

CodeMacro RCR dst:Ew,count:Rb(CL)
SEGFIX dst
DB 0D3H
MODRM 3,dst

EndM

CodeMacro OR dst:Rw,src:Ew
SEGFIX src
DB OBH
MODRM dst,src

EndM

All Information Presented Fere is Proprietary to Digital Research

50

CP/M-86 Programmer's Guide 5.5 Code-macro Directives

5.5.4 RELB and RELW
These directives, used in IP-relative branch instructions,

instruct the assembler to generate displacement between the end of
the instruction and the label which is supplied as an operand. RELB
generates one byte and RELW two bytes of displacement. The
directives the following forms:

RELB <form name>
RELW <form name>

where <form name> is the name of a formal parameter with a "C"
(code) specifier. For example:

CodeMacro LOOP place:Cb
DB 0E2H
RELB place

EndM

5.5.5 DBr DW and DD
These directives differ from those which occur outside of code

macros. The form of the directives are:
DB <form name> NUMBERB
DW <form name> NUMBERW
DD <form name>

where NUMBERB is a single-byte number, NUMBERW is a two-byte number,
and <form name> is a name of a formal parameter. For example:

CodeMacro XOR dst:Ew,src:Db
SEGFIX dst
DB 81H
MODRM 6,dst
DW src

EndM

All Information Presented Here is Proprietary to Digital Research

51

CP/m-86 Programmer's Guide 5.5 Code-macro Directives

5.5.6 DBIT
This directive manipulates bits in combinations of a bvte or

less. The form is:
DBIT <field description>f,<field description^

where a <field description^ has two forms:

<number ><combi nation>
cnumber> (<form name>(<rshift>))

where <number> ranges from 1 to 16, and specifies the number of bits
to be set. <combination> specifies the desired bit combination.
The total of all the <number>s listed in the field descriptions must
not exceed 16. The second form shown above contains <form name>, a
formal parameter name that instructs the assembler to out a certain
number in the specified position. This number normally refers to
the register specified in the first line of the code-macro. The
numbers used in this special case for each register are:

AL 0
CL 1
DL 2
BL 3
AH 4
CH 5
DH 6
BH 7
AX 0
CX 1
DX 2
BX 3
SP 4
BP 5
SI 6
DI 7
ES 0
CS 1
SS 2
DS 3

<rshift>, v ch is contained
specifies a number of right shifts,
shift, "1" shifts right one bit, "2"
on. The definition below uses this

in the innermost parentheses,
For example, "0” specifies no
shifts right two bits, and so
form.

CodeMacro DEC dst:Rw
DBIT 5(9H) ,3 (dst(0))

EndM

All Information Presented Here is Proprietary to Digital Research

CP/M-86 Programmer " s Guide 5.5 Code-macro directives

The first five bits of the bvte have the value 9H. If the
remaining bits are zero, the hex value of the bvte will be 48H. If
the instruction:

DEC DX
is assembled and DX has a value of 2H, then 48H + 2H = 4AH, which is
the final value of the byte for execution. If this sequence had
been present in the definition:

DBIT 5 (9H) ,3(dst (1))

then the register number would have been shifted right once and the
result would had been 48H + 1H = 49H, which is erroneous.

All Information Presented Here is Proprietary to Digital Research

53

(

Section 6
DDT-86

6.1 DDT-86 Operation
The DDT-86™ program allows the user to test and debug programs

interactively in a CP/M-86 environment. The reader should be
familiar with the 8086 processor, ASM-86 and the CP/m -86 operating
system as described in the CP/M-86 System Cuide.

6.1.1 Invoking DDT-86
Invoke DDT-86 by entering one of the followinq commands:

DDT 8 6
DDT86 filename

The first command simply loads and executes DDT-86. After
displaying its sign-on message and prompt character, - , DDT-86 is
ready to accept operator commands. The second command is similar to
the first, except that after DDT-86 is loaded it loads the file
specified by filename. If the file tvpe is omitted from filename,
.CMD is assumed. Note that DDT-86 cannot load a file of tvpe .H86.
The second form of the invoking command is equivalent to the
sequence:

A>DDT86
DDT86 x.x
-Efilenarae

At this point, the program that was loaded is ready for execution.

6.1.2 DDT-86 Command Conventions
When DDT-86 is ready to accept a command, it prompts the

operator with a hyphen, -. In response, the operator can type a
command line or a CONTROL-C (represented in this chapter as fc) to
end the debugging session (see Section 6.1.4). A command line mav
have up to 64 characters, and must be terminated with a carriage
return. While entering the command, use standard CP/M line-editing
functions (|X, |H, |r , etc.) to correct tvping errors. DDT-86 does
not process the command line until a carriage return is entered.

The first character of each command line determines the command
action. Table 6-1 summarizes DDT-86 commands. DDT-86 commands are
defined individually in Section 6.2.

All Information Presented Here is Proprietary to Digital Research

55

CP/M-86 Programmer 's Guide 6.1 DDT-86 Operation

T a b le 6 - 1 . D D T -8 6 Command S um m ary

Command Action
A enter assembly language statements
D display memory in hexadecimal and ASCII
E load program for execution
F fill memory block with a constant
G begin execution with optional breakpoints
H hexadecimal arithmetic
I set up file control block and command tail
L list memory usinq 8086 mnemonics
M move memory block
R read disk file into memory
S set memory to new values
T trace program execution
U untraced program monitoring
V show memory layout of disk file read
W write contents of memory block to disk
X examine and modify CPU state

The command character may be followed by one or more arguments,
which may be hexadecimal values, file names or other information,
depending on the command. Arguments are separated from each other
by commas or spaces. No spaces are allowed between the command
character and the first argument.

6 . 1 . 3 S p e c i f y i n g a 2 0 - B i t A d d r e s s

Most DDT-86 commands require one or more addresses as operands.
Because the 8086 can address up to 1 megabyte of memory, addresses
must be 20-bit values. Enter a 20-bit address as follows:

ssssioooo

where ssss reoresents an optional 16-bit segment number and oooo is
a 16-bit offset. DDT-86 combines these values to produce a 20-bit
effective address as follows:

ssssO
+ oooo

eeeee

The optional value ssss may be a 16-bit hexadecimal value or
the name of a segment register. If a segment register name is
specified, the value of ssss is the contents of that register in the
user's CPU state, as displayed by the X command. If omitted, a
default value appropriate to the command being executed is used as
described in Section 6.4.

All Information Presented Here is Proprietary to Digital Research

56

Cp /m -86 Programmer's Cuide 6.1 DDT-86 Operation

6.1.4 Terminating DDT-86
Terminate DDT-86 by typinq a fc in response to the hyphen

prompt. This returns control to the CCP. Note that op/M-86 does
not have the SAVE facility found in CP/M for 8-bit machines. Thus
if DDT-86 is used to patch a file, write the file to disk using the
W command before exiting DDT-86.

6.1.5 DDT-86 Operation with Interrupts
DDT-86 ODerates with interruots enabled or disabled, and

preserves the interrupt state of the program being executed under
DDT-86. When DDT-86 has control of the CPU, either when it is
initially invoked, or when it regains control from the program being
tested, the condition of the interrupt flag is the same as it was
when DDT-86 was invoked, except for a few critical reqions where
interrupts are disabled. While the program beinq tested has control
of the CPU, the user's CPU state determines the state of the
interrupt flag.

6.2 DDT-86 Commands
This section defines DDT-86 commands and their arquments. DDT-

86 commands qive the user control of program execution and allow the
user to display and modify system memory and the CPU state.

6.2.1 The A (Assemble) Command
The A command assembles 8086 mnemonics directly into memory.

The form is:
As

where s is the 20-bit address where assembly is to start. DDT-86
responds to the A command by displaying the address of the memory
location where assembly is to beqin. At this point the operator
enters assembly language statements as described in Section 4 on
Assembly Language Syntax. When a statement is entered, DDT-86
converts it to machine code, places the value(s) in memory, and
displays the address of the next available memory location. This
process continues until the user enters a blank line or a line
containing only a period.

DDT-86 responds to invalid statements by displavinq a question
mark, ? , and redisplaying the current assembly address.

All Information Presented Here is Proprietary to Digital Research

57

CP/M-86 Programmer's Guide 6.2 ddt-86 Commands

6.2.2 The D (Display) Command
The D command displays the contents of memorv as 8-bit or 16-

bit hexadecimal values and in ASCII. The forms are:
D
Ds
Ds, f DW
DWs
DWs, f

where s is the 20-bit address where the display is to start, and f
is the 16-bit offset within the segment specified in s where the
display is to finish.

Memory is displayed on one or more disolay lines. Each display
line shows the values of up to 16 memory locations. For the first
three forms, the display line appears as follows:

ssssioooo bb bb . . . bb cc . . . c
where ssss is the segment being displayed and oooo is the offset
within segment ssss. The bb's represent the contents of the memorv
locations in hexadecimal, and the c's represent the contents of
manory in ASCII. Any non-graohic ASCII characters are represented
by periods.

In response to the first form shown above, DDT-86 displays
memory from the current display address for 12 display lines. The
response to the second form is similar to the first, except that the
display address is first set to the 20-bit address s. The third
form displays the memory block between locations s and f. The next
three forms are analogous to the first three, except that the
contents of memory are displayed as 16-bit values, rather than 8-bit
values, as shown below:

ssss:oooo wwww wwww . . . wwww cccc . . . cc

During a long display, the D command may be aborted bv tvping
any character at the console.

6.2.3 The E (Load for Execution) Command
The E command loads a file into memory so that a subsequent G,

T or U command can beqin program execution. The E command takes the
form:

E<filename>
where <filename> is the name of the file to be loaded. If no file
type is specified, .CMD is assumed. The contents of the user
seqment registers and IP register are altered according to the
information in the header of the file loaded.

All Information Presented Here is Proprietary to Digital Research
58

CP/m -86 Programmer's Guide 6.2 nnT-86 Commands

An E command releases any blocks of memory allocated bv any
previous E or R commands or by programs executed under DOT-86. Thus
only one file at a time may be loaded for execution.

When the load is complete, DDT-86 displays the start and end
addresses of each segment in the file loaded. Use the V command to
redisplay this information at a later time.

If the file does not exist or cannot be successfully loaded in
the available memory, DDT-86 issues an error message.

6.2.4 The F (Fill) Command
The F command fills an area of memory with a byte or word

constant. The forms are:

Fs,f ,b
FWs,f,w

where s is a 20-bit starting address of the block to be filled, and
f is a 16-bit offset of the final byte of the block within the
segment specified in s.

In response to the first form, DDT-86 stores the 8-bit value b
in locations s through f. In the second form, the 16-bit value w is
stored in locations s through f in standard form, low 8 bits first
followed by high 8 bits.

If s is greater than f or the value b is greater than 255, DDT-
86 responds with a question mark. DDT-86 issues an error message if
the value stored in memory cannot be read back successfully,
indicating faulty or non-existent RAM at the location indicated.

6.2.5 The G (Go) Command
The G command transfers control to the program being tested,

and optionally sets one or two breakpoints. The forms are:
G
G ,bl
G,bl,b2
Gs
Gs ,bl
Gs,bl,b2

where s is a 20-bit address where proqram execution is to start, and
bl and b2 are 20-bit addresses of breakpoints. If no segment value
is supplied for any of these three addresses, the segment value
defaults to the contents of the CS register.

All Information Presented Here is Proprietary to Digital Research

59

CP/M-86 Programmer's Guide 6.2 DDT-86 Commands

In the first three forms, no starting address is soecified, so
DDT-86 derives the 20-bit address from the user's CS and IP
registers. The first form transfers control to the user's program
without settinq any breakpoints. The next two forms respectively
set one and two breakpoints before passinq control to the user's
program. The next three forms are analogous to the first three,
except that the user's CS and IP registers are first set to s.

Once control has been transferred to the proqram under test, it
executes in real time until a breakpoint is encountered. At this
point, DDT-86 regains control, clears all breakpoints, and indicates
the address at which execution of the program under test was
interrupted as follows:

*ssss:oooo

where ssss corresponds to the CS and oooo corresponds to the IP
where the break occurred. When a breakpoint returns control to D D T -
86, the instruction at the breakpoint address has not yet been
executed.

6.2.6 The H (Hexadecimal Nath) Command
The H command computes the sum and difference of two 16-bit

values. The form is:
Ha ,b

where a and b are the values whose sum and difference are to be
computed. DDT-86 displays the sum (ssss) and the difference (dddd)
truncated to 16 bits on the next line as shown below:

ssss dddd

6.2.7 The I (Input Command Tail) Command
The I command prepares a file control block and command tail

buffer in DDT-86's base page, and copies this information into the
base page of the last file loaded with the R command. The form is

I<command tail>

where ccommand tail> is a character string which usually contains
one or more filenames. The first filename is parsed into the
default file control block at 005CH. The optional second filename
(if specified) is parsed into the second part of the default file
control block beginning at 006CH. The characters in <command tail>
are also copied into the default command buffer at 0080H. The
length of ccommand tail> is stored at 0080H, followed by the
character string terminated with a binary zero.

All Information Presented Here is Proprietary to Digital Research

60

CP/M-86 Programmers Guide 6.2 DDT-86 Commands

If a file has been loaded with the E command, DDT-86 copies the
file control block and command buffer from the base page of DDT-86
to the base page of the program loaded. The location of DDT-86"s
base page can be obtained from the SS register in the user's CPU
state when DDT-86 is invoked. The location of the base page of a
program loaded with the E command is the value displayed for DS upon
completion of the program load.

6.2.8 The L (List) Command
The L command lists the contents of memory in assembly

language. The forms are:

L
Ls
Ls ,f

where s is a 20-bit address where the list is to start, and f is a
16-bit offset within the segment specified in s where the list is to
finish.

The first form lists twelve lines of disassembled machine code
from the current list address. The second form sets the list
address to s and then lists twelve lines of code. The last form
lists disassembled code from s through f. In all three cases, the
list address is set to the next unlisted location in preparation for
a subsequent L command. When DDT-86 regains control from a program
being tested (see G, T and U commands), the list address is set to
the current value of the CS and IP registers.

Long displays mav be aborted by typing any key during the list
process. Or, enter fs to halt the display temporarily.

The syntax of the assembly language statements produced by the
L command is described in Section 4.

6.2.9 The M (Move) Command
The M command moves a block of data values from one area of

memory to another. The form is:
Ms,f,d

where s is the 20-bit starting address of the block to be moved, f
is the offset of the final byte to be moved within the segment
described by s, and d is the 20-bit address of the first byte of the
area to receive the data. If the segment is not specified in d, the
same value is used that was used for s. Note that if d is between s
and f, part of the block being moved will be overwritten before it
is moved, because data is transferred starting from location s.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 Programmers Guide 6.2 nnT-86 Commands

6.2.10 The R (Read) Command
The R command reads a file into a contiguous block of memory.

The form is:
R<filename>

where <filename> is the name and type of the file to be read.
DDT-86 reads the file into memory and displays the start and

end addresses of the block of memory occupied by the file. A V
command can redisplay this information at a later time. The default
display pointer (for subsequent D commands) is set to the start of
the block occupied by the file.

The R command does not free any memory previously allocated by
another R or H command. Thus a number of files may be read into
memory without overlapping. The number of files which may be loaded
is limited to seven, which is the number of memory allocations
allowed by the BOOS, minus one for pnT-86 itself.

If the file does not exist or there is not enough memory to
load the file, DDT-86 issues an error message.

6.2.11 The S (Set) Command
The S command can change the contents of bytes or words of

memory. The forms are:
Ss
SWs

where s is the 20-bit address where the change is to occur.

DDT-86 displays the memory address and its current contents on
the following line. In response to the first form, the display is

ssss:oooo bb

and in response to the second form

ssss:oooo wwww

where bb and wwww are the contents of memory in byte and word
formats, respectively.

In resDonse to one of the above displays, the operator may
choose to alter the memory location or to leave it unchanged. If a
valid hexadecimal value is entered, the contents of the byte (or
word) in memory is replaced with the value. If no value is entered,
the contents of memory are unaffected and the contents of the next
address are displayed. In either case, DDT-86 continues to display
successive memory addresses and values until either a period or an
invalid value is entered.

All Information Presented Here is Proprietary to Digital Research

62

CP/M-86 Programmer's Guide 6.2 DDT-86 Commands

DDT-86 issues an error message if the value stored in memory
cannot be read back successfully, indicating faulty or non-existent
RAM at the location indicated.

6.2.12 The T (Trace) Command
The T command traces program execution for 1 to OFFFFH program

steps. The forms are:
T
Tn
TS
TSn

where n is the number of instructions to execute before returning
control to the console.

Before DDT-86 traces an instruction, it displays the current
CPU state and. the disassembled instruction. In the first two forms,
the segment registers are not displayed, which allows the entire CPU
state to be displayed on one line, 'i’he next two forms are analogous
to the first two, except that all the registers are displayed, which
forces the disassembled instruction to be displayed on the next line
as in the X command.

In all of the forms, control transfers to the program under
test at the address indicated by the CS and IP registers. If n is
not specified, one instruction is executed. Otherwise DDT-86
executes n instructions, displaying the CPU state before each step.
A long trace may be aborted before n steps have been executed by
typing any character at the console.

After a T command, the list address used in the L command is
set to the address of the next instruction to be executed.

Note that DDT-86 does not trace through a BDOS interrupt
instruction, since DDT-86 itself makes BDOS calls and the BDOS is
not reentrant. Instead, the entire sequence of instructions from
the BDOS interrupt through the return from BDOS is treated as one
traced instruction.

All Information Presented Here is Proprietary to Digital Research

63

CP/M-86 Programmer"s Guide 6.2 DDT-86 Commands

6.2.13 The U (Ontrace) Command
The U command is identical to the T command except that the C.PTT

state is displayed only before the first instruction is executed,
rather than before every step. The forms are:

U
Un
US
USn

where n is the number of instructions to execute before returning
control to the console. The U command mav be aborted by strikinq
any key at the console.

6.2.14 The V (Value) Command
The V command displays information about the last file loaded

with the E or R commands. The form is:
V

If the last file was loaded with the E command, the v command
displays the start and end addresses of each of the segments
contained in the file. If the last file was read with the R
command, the V command displays the start and end addresses of the
block of memory where the file was read. If neither the R nor E
commands have been used, DDT-86 responds to the V command with a
question mark, ?.

6.2.15 The W (Write) Command
The W command writes the contents of a contiguous block of

memory to disk. The forms are:

W<filename>
W<filename>,s,f

where <filename> is the filename and file type of the disk file to
receive the data, and s and f are the 20-bit first and last
addresses of the block to be written. If the seqment is not
specified in f, DDT-86 uses the same value that was used for s.

If the first form is used, DDT-86 assumes the s and f values
from the last file read with an R command. If no file was read with
an R command, DDT-86 responds with a question mark, ?. This first
form is useful for writing out files after patches have been
installed, assuming the overall length of the file is unchanged.

All Information Presented Here is Proprietary to Digital Research

64

6.2 DDT-86 CommandsCP/M-86 Programmer"s Guide

In the second form where s and f are specified as 20-bit
addresses, the low four bits of s are ignored. Thus the block being
written must always start on a paragraph boundary.

If a file by the name specified in the W command already
exists, DDT-86 deletes it before writing a new file.

6 . 2 . 1 6 T h e X (E x a m in e CPU S t a t e) Command

The X command allows the operator to examine and alter the CPn
state of the Program under test. The forms are:

X
Xr
Xf

where r is the name of one of the 8086 CPU registers and f is the
abbreviation of one of the CPU flags. The first form displays the
CPU state in the format:

AX BX CX . . . SS ES IP
--------- xxxx xxxx xxxx . . . xxxx xxxx xxxx
< instruction»

The nine hyphens at the beginning of the line indicate the state of
the nine CPU flags. Each position may be either a hyphen,
indicating that the corresponding flag is not set (0) , or a one-
character abbreviation of the flag name, indicating that the flag is
set (1) . The abbreviations of the flag names are shown in Table 2
1. <instruction> is the disassembled instruction at the next
location to be executed, which is indicated by the CS and IP
registers.

T a b le 6 - 2 . F la g Name A b b r e v i a t i o n s

Character Name

0 Overflow
D Direction
I Interrupt Enable
T Trap
S Sign
Z Zero
A Auxiliary Carrv
P Parity
C Carry

All Information Presented Here is Proprietarv to Digital Research

CP/M-86 Programmer's Guide 6.2 d d t-86 Commands

The second form allows the ooerator to alter the registers in
the CPU state of the program being tested. The r following the X is
the name of one of the 16-bit CPU registers. DDT-86 responds by
displaying the name of the register followed by its current value.
If a carriage return is typed, the value of the register is not
changed. If a valid value is typed, the contents of the register
are changed to that value. In either case, the next register is
then displayed. This process continues until a period or an invalid
value is entered, or the last register is displayed.

The third form allows the operator to alter one of the flags in
the CPU state of the program being tested. DDT-86 responds bv
displaying the name of the flag followed bv its current state. If a
carriage return is typed, the state of the flag is not changed. If
a valid value is typed, the state of the flag is changed to that
value. Only one flag may be examined or altered with each Xf
command. Set or reset flags by entering a value of 1 or 0.

6.3 Default Segment Values
DDT-86 internally keeps track of the current segment value,

making segment specification an optional part of a DDT-86 command.
DDT-86 divides the command set into two tvpes of commands, according
to which segment a command defaults if no segment value is specified
in the command line.

The first type of command pertains to the code segment: A
(Assemble), L (List Mnemonics) and W (Write). These commands use
the internal type-1 segment value if no segment value is specified
in the command.

When invoked, DDT-86 sets the type-1 segment value to 0, and
changes it when one of the following actions is taken:

• When a file is loaded by an E command, DDT-86 sets the type-1
segment value to the value of the CS register.

• When a file is read by an R command, DDT-86 sets the type-1
segment value to the base segment where the file was read.

• When an X command changes the value of the CS register, DDT-86
changes the type-1 segment value to the new value of the CS
register.

• When DDT-86 regains control from a user program after a G, T or
U command, it sets the type-1 segment value to the value of the
CS register.

• When a segment value is specified explicitly in an A or L
command, DDT-86 sets the type-1 segment value to the segment
value specified.

All Information Presented Here is Proprietary to Digital Research

66

CP/M-86 Programmer's Guide 6.3 Default Seament Values

The second tvpe of command pertains to the data seqment: D
(Display), F (Fill), M (Move) and S (Set). These commands use the
internal type-2 seqment value if no segment value is specified in
the command.

When invoked, DDT-86 sets the type-2 seqment value to 0, and
changes it when one of the followinq actions is taken:

• When a file is loaded bv an E command, DDT-86 sets the tyoe-2
segment value to the value of the DS register.

• When a file is read by an R command, DDT-86 sets the type-2
segment value to the base segment where the file was read.

• When an X command chanqes the value of the DS register, ddt-86
changes the tvpe-2 segment value to the new value of the DS
register.

• When DDT-86 regains control from a user program after a G, T or
U command, it sets the type-2 segment value to the value of the
DS register.

• When a segment value is specified explicitly in an D, F, M or S
command, DDT-86 sets the type-2 seqment value to the seqment
value specified.
When evaluating programs that use identical values in the CS

and DS registers, all DDT-86 commands default to the same seqment
value unless explicitly overridden.

Note that the G (Go) command does not fall into either group,
since it defaults to the CS register.

All Information Presented Here is Proprietary to Digital Research

CP/M-86 Programmer's Guide 6.3 Default Segment Values

Table 6-3 summarizes DDT-86's default segment values.

Table 6-3. DDT-86 Default Segment Values

Command tvpe-1 tvpe-2

A X

D X

E u u
F X

G u u
H
I
L X

M X

R u u
S X

T u u
U u u
V
W X

X u u

x - use this segment default if none specified;
change default if specified explicitly

u - update this segment default

All Information Presented Here is Proprietary to Digital Research

68

CP/M-86 Programmers Guide 6.4 Assembly Language Syntax

6.4 Assembly Language Syntax for A and L Commands
In general, the syntax of the assembly language statements used

in the A and L commands is standard 8086 assembly language. Several
minor exceptions are listed below.

• DDT-86 assumes that all numeric values entered are hexadecimal.

• Up to three prefixes (LOCK, repeat, segment override) mav
appear in one statement, but they all must precede the opcode
of the statement. Alternately, a prefix may be entered on a
line by itself.

• The distinction between byte and word string instructions is
made as follows:

byte word

LODSB LODSW
STOSB STOSW
SCASB SCASW
MOVSB MOVSW
CMPSB CMPSW

• The mnemonics for near and far control transfer instructions
are as follows:

short normal far
JMPS JMP JMPF

CALL CALLF
RET RETF

• If the operand of a CALLF or JMPF instruction is a 20-bit
absolute address, it is entered in the form:

ssss:oooo

where ssss is the segment and oooo is the offset of the
address.

All Information Presented Here is Proprietarv to Digital Research

69

CP/M-86 Programmer's Guide 6.4 Assemblv Language Syntax

• Operands that could refer to either a bvte or word are
ambiguous, and must be preceded either by the prefix "BYTE" or
"WORD". These prefixes mav be abbreviated to "BY" and "WO".
For example:

INC BYTE [BP]
NOT WORD [1234]

Failure to supply a prefix when needed results in an error
message.

• Operands which address memory directly are enclosed in square
brackets to distinguish them from immediate values. For
example:

ADD AX,5 ;add 5 to register AX
ADD AX,[5] ;add the contents of location 5 to AX

• The forms of register indirect memory operands are:

[pointer register]
[index register]
[pointer register + index register]

where the pointer registers are BX and RP, and the index
registers are SI and DI. Any of these forms mav be preceded bv
a numeric offset. Ror example:

ADD BX,[BP+SI]
ADD BX,3[BP+SI]
ADD BX,1D47[BP+SI]

6.5 DDT-86 Sample Session
In the following sample session, the user interactively debugs

a simple sort program. Comments in italic type explain the steps
involved.

All Information Presented Here is Proprietary to Digital Research

70

CP/M-86 Programmer"s Guide 6.5 DDT-86 Sample Session

Sou-tce i-ile. OfS ptiogtiam to t u t . A>type sort.a86
simole sort orogram

1sort:
mov si, 0 initialize index
mov bx,offset nlist ;bx = base of list
mov sw, 0 ;clear switch flag

comp:
mov al,[bx+si] •get byte from list
cmp a!,1[bx+si] ;compare with next byte
j na inci ;don't switch if in order
xcha al, 1[bx+si] ;do first Dart of switch
mov [bx+sil ,al ;do second Dart
mov sw, 1 ;set switch flag

inci:
inc si ; increment index
cmp si,count ;end of list?
i nz comp ;no, keen going
test sw, 1 ;done - anv switches?
i nz sort ;yes, sort some more

done :
/

jmp
dseg

done ;get here when list ordered

orq 100h ; leave space for base cage
/nl ist db 3,8,4,6,31,6,4, 1
count eau offset $ - offset nlist
sw db

end
0

A<si&mble p/iog-tam.
A>asm86 sort
CP/M 8086 ASSEMBLER VER 1.1
END OF PASS 1 END OF PASS 2
END OF ASSEMBLY. NUMBER OF ERRORS: 0

Type t u ,ting fatte. genetuUed by ASM-S6.
A>tvoe sort.1st
CP/M ASM86 1.1 SOURCE: SORT.A86 PAGE 1

1 simple sort program
1
sort:

0000 BE0000 mov si, 0 initialize index
0003 BB0001 mov bx,offset nlist :bx = base of list
0006 C606080100

comp:
mov sw, 0 ;clear switch flag

000B 8A00 mov al,[bx+sil ;get byte from list
OOOD 3A4001 cmp al,1[bx+si] ;compare with next byte
0010 760A jna inci ;don't switch if in order
0012 864001 xchq al,1[bx+si] ;do first Dart of switch
0015 8800 mov [bx+sil,al ;do second part
0017 C606080101

inci:
mov sw, 1 ;set switch flag

001C 46 inc si increment index
001D 83FE08 cmp si,count jend of list?
0020 75E9 jnz comp ;no, keep going
0022 F606080101 test sw, 1 ;done - any switches?
0027 75D7

done:
inz sort ;yes, sort some more

0029 E9FDFF jmp done ;get here when list ordered
dseg
org 100h ;leave space for base bage

All Information Presented Here is Proprietary to Digital Research

71

CP/M-86 Programmer"s Guide 6.5 DDT-86 Sample Session

0100 030804061F06 0401 nl ist db 3,8,4,6,31,6,4,1
0008 count equ offset S - offset nlist

0108 00 sw dbend 0

END OF ASSEMBLY. NUMBER OF ERRORS: 0

Tape, iumboi table i{-die. generated by ASM-S6.A>type socx.svm
0000 VARIABLES
0100 NLIST 0108 SW
0000 NUMBERS
0008 COUNT
0000 LABELS
000B COMP 0029 DONE 001C INCI 0000 SORT

Type hex l-cle generated by ASM-S6.A>tvpe sort.h86
:04Ö0000300000000F9
:1B0O0O8IBEOOOOBBOOOIC6O6O8O1008A003A4001760A8640018800C60608016C
:11001B81014683FE0875E9F60608010175D7E9FDFFEE
:09010082030804061F0604010035
:00000001FF

Generate CUV title nxom .H86 £ i le . A>qencmd sott
BYTES READ 0039
RECORDS WRITTEN 04

Invoke WT-S6 and load SORT. CUV. A>ddt86 sort
DDT86 1.0

START END
CS 047D:0000 047D:002F
DS 0480:0000 0480:010F

Pi*p lay i n i t i a l x e g iite x valuea .-x
AX BX CX DX SP BP SI DI CS DS SS ES IP

--------- 0000 0000 0000 0000 119E 0000 0000 0000 047D 0480 0491 0480 0000
MOV SI,0000

DiioiAemble the beginning the code iegment.
-1
047D:0000 MOV SI,0000
0 47D:0003 MOV BX,0100
047D:0006 MOV BYTE [01081,00
047D-.OOOB MOV AL,[BX+SIl
0 47D:000D CMP AL,01[BX+SI]
047D:0010 JBE 001C
0 47D:0012 XCHG AL,01[BX+SI]
047D:0015 MOV [BX+SI],AL
0 47D:0017 MOV BYTE [0108],01
047D:001C INC SI
0 47D:001D CMP SI,0008
047D:0020 JNZ 000B

d isp la y the Ataxt oA the data segment.-dlOO,10C
0480:0100 03 08 04 06 IF 06 04 01 00 00 00 00 00 00 00 00

All Information Presented Here is Proprietary to Digital Research

CP/M-86 Programmer's Guide 6.5 d d t-86 Sample Session

Disassemble the r e s t oh the eode.
- 1
0 47D:00 22 TEST BYTE [01081,01
0 4 7D:0027 JNZ 0000
0470:0029 ,7MP 0029
0 4 7D:00 2C ADD [BX+SI1,AL
0 47D:002E ADD [BX+SI1,AL
047D:0030
047D:0031

DAS
ADD [BX+SI], AL

047D:0033 ? ? = 6C0 47D:0034 POP ES
0470:0035 ADD [BX1,CL047D:0037 ADD [BX+SI], AX047D:0039 •5 ? = 6F

Execute program hrom IP (=0) settin g breakpoint a t 29H.-g, 29
*0470:0029 Breakpoint encountered.

D isplay sorted L is t .-d 100,10 f:
0480:0100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

D oesn't look good; reload h ile .-esoct
START END

CS 047D:0000 047D:002F
DS 0480:0000 0480:010F

Trace 3 in s tr u c t io n s .-t3
AX BX cx DX SP BP SI OI IP

Z-P- 0000 0100 0000 0000 119E 0000 0008 0000 0000 MOV
Z-P- 0000 0100 0000 0000 119E 0000 0000 0000 0003 MOV
Z-P- 0000 0100 0000 0000 119E 0000 0000 0000 0006 MOV

*047D:000B

SI,0000 BX,0100
BYTE [01081,00

Trace some more.
-t3

AX BX CX DX SP BP SI DI IP
-Z-P- 0000 0100 0000 0000 119E 0000 0000 0000 000B MOV AL,[BX+SI]
-Z-P- 0003 0100 0000 0000 119E 0000 0000 0000 000D CMP AL,01[BX+SI1
S-A-C 0003 0100 0000 0000 119E 0000 0000 0000 0010 JBE 001C

*0470:001C
D isplay unsorted l i s t .

-dlOO , 10f
0480:0100 03 08 04 06 IF 06 04 01 00 00 00 00 00 00 00 00

D isplay next in stru ctio n s to be executed.
-1
047D:001c INC SI
047D:001D CMP SI,0008
047D:00 20 JNZ 000B
0470:0022 TEST BYTE [0108],01
047D:0027 JNZ 0000
0 47D:0029 JMP 0029
0 47D:002C ADD [BX+SI],AL
047D:002E
0470:0030

ADD
DAS

[BX+SI1,AL
0470:0031 ADD [BX+SI],AL
047D:0033 ?? = 6C
0470:0034 POP ES

Trace some more.

AX BX CX DX SP BP SI DI IP
— S-A-C 0003 0100 0000 0000 119E 0000 0000 0000 001C INC SI------ C 0003 0100 0000 0000 119E 0000 0001 0000 001D CMP SI,0008
— S-APC 0003 0100 0000 0000 119E 0000 0001 0000 0020 JNZ OOOB

*047D:000B

All Information Presented Here is Proprietary to Digital Research

73

CP/M-86 Proqramraer's Guide 6.5 PD'i’-SG Gamole Session

Omplay nmtnuc-tcom j - t o m cuAAenX tP.

0470:000B MOV AL,[BX+SIl
0 47D:000D CMP AL,01[3X+SI]
0470:0010 JBE 001C047D:0012 XCHG AL,01[BX+SI]047D:0015 MOV [BX+SI1,AL
047D:0017 MOV BYTE [01081,01
047D:001C INC SI
0470:00 ID CMP SI, 0008
047D:0020 JNZ 00080 47D:0022 TEST BYTE [01081,01
047D:0027 JNZ 0000
0470:0029 JMP 0029

-t3
AX BX CX OX SP BP SI 01 IP

--- S-APC 0003 0100 0000 0000 119E 0000 0001 0000 000B
--- S-APC 0008 0100 0000 0000 119E 0000 0001 0000 000D0008 0100 0000 0000 119E 0000 0001 0000 0010
*047D:0012

-1
0470:0012 XCHG AL, 01 [BX+.SI 10470:0015 MOV [BX+SI],AL0470:0017 MOV BYTE [0108],01
0470:001C INC SI
047D:001D CMP SI,0008
0470:0020 JNZ 000B
047D:0022 TEST BYTE [0108],010470:0027 JNZ 0000
047D:0029 JMP 0029
047D:002C AOD [BX+SI],AL047D:002E ADD [BX+SI],AL0470:0030 DAS

Go u n t il iuüXch ha.s been penfionmd.

*047D:0020

AL, [BX+SI1
AL,01 [BX+SI1 00 ir

V-it, play l a t .-d io o ao f y
0480:0100 03 04 08 06 IF 06 04 01 01 00 00 00 00 00 00 00

Look* Itk z 4 and i wwe iuiitchzd okay. (And togglz l i üiu&.l

AX BX CX DX SP BP SI DI IP
--- S-APC 0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ 000B*0470:000B

D isplay next lnitn .ucM .om .-1
047D:000B MOV
047D:000O CMP
047D:0010 JBE
0 47D:0012 XCHG
0470:0015 MOV
047D:0017 MOV
047D:001C INC
047D:001D CMP
047D:0020 JNZ
047D:0022 TEST
047D:0027 JNZ
0470:0029 JMP

AL,[BX+SI1
AL,01[BX+SI]
001C
AL,01[BX+SI]
[BX+SIl,AL
BYTE [0108],01 SI
SI, 0008
000B
BYTE [0108],01
0000
0029

S-cnce iutUch wonked, I z t ' i unload and c/iecfe boundary zo n d ltio m .-esort
START END

CS 047D:0000 047D:002F
OS 0480:0000 0480:010F

All Information Presented Here is Proorietarv to Digital Research

74

CP/M-86 Programmer's Guide 6.5 00^-86 Sample Session

Mafee i t qucekea by se ttin g H i t length to 3. (Could a lio have ased i47d=le -aid to patch. I 047D:00lD cmo si,3
0 47D:0020

V iip la y umo/itcd H i t .-dlOO
0480:0100 03 08 04 06 IF 06 04 01 00 00 00 00 00 00 00 00
0480:0110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0480:0120 00 00 00 00 00 00 00 00 00 00 00 00 00 20 20 20

Set breakpoint when h ite t 3 elements of. H i t should be so rted .-g, 29*047D:0029

-dl00,101?ee li ^ i0̂ ed-
0480:0100 03 04 06 08 IF 06 04 01 00 00 00 00 00 00 00 00

esort lH & *eA tin g , the fourth element ieemi to have been sorted in .

START END
CS 047D:0000 047D:002F
DS 0480:0000 0480:010F

L e t 'i try again with iome tracin g .
-aid
047D:00lD cmo si,3
0470:0020 .
-t9

AX BX CX DX SP BP SI DI IP---- Z-P- 0006 0100 0000 0000 119E 0000 0003 0000 0000 MOV SI,0000
---- Z-P- 0006 0100 0000 0000 119E 0000 0000 0000 0003 MOV BX,0100---- Z-P- 0006 0100 0000 0000 119E 0000 0000 0000 0006 MOV BYTE [0108],00
---- Z-P- 0006 0100 0000 0000 119E 0000 0000 0000 OOOB MOV AL,[BX+SIl
---- Z-P- 0003 0100 0000 0000 119E 0000 0000 0000 0O0D ^MP AL,01[BX+SI]
--- S-A-C 0003 0100 0000 0000 119E 0000 0000 0000 0010 JBE 001C
--- S-A-C 0003 0100 0000 0000 119E 0000 0000 0000 001C INC SI--------C 0003 0100 0000 0000 119E 0000 0001 0000 001D CMP SI,0003
--- S-A-C
*047D:000E

0003
1

0100 0000 0000 119E 0000 0001 0000 0020 JNZ OOOB

-1
047D:000B MOV AL,[BX+SI]
0 47D:000D CMP AL,01[BX+SI]
0470:0010 JBE 001C
0 47D:0012 XCHG AL,01[BX+SI]
0470:0015 MOV [BX+SI],AL
0470:0017 MOV BYT’E [0108],01
0 470:001C INC SI
0 47D:OOlD CMP SI,0003
0470:0020 JNZ OOOB
0470:0022 TEST BYTE [0108],01
0470:0027 JNZ 0000
0 47D:0029 JMP 0029

-t3
AX BX CX DX SP BP SI DI IP

--- S-A-C 0003 0100 0000 0000 119E 0000 0001 0000 OOOB MOV AL,[BX+SIl
--- S-A-C 0008 0100 0000 0000 119E 0000 0001 0000 OOOn CMP AL,01[BX+SI]
*047D:0012

0008 0100 0000 0000 119E 0000 0001 0000 0010 TBE 001C

-1
047D:0012 XCHG
0470:0015 MOV
047D:0017 MOV
047D:001C INC
047D:001D CMP 047D:0020 JNZ
047D:0022 TEST

AL,01(BX+SIl
[BX+SIl,AL
BYTE [0108],01
SI
SI,0003
000B
BYTE [0108],01

All Information Presented Here is Proorietarv to Digital Research
75

6.5 00^-86 Sample SessionCP/M-86 Programmers Guide

-t3
AX BX CX ox SP BP SI DI IP--------- 0008 0100 0000 0000 119E 0000 0001 0000 0012 XCHG AL,01[BX+SIl

--------- 0004 0100 0000 0000 119E 0000 0001 0000 0015 MOV [BX+SI1,AL
--------- 0004
*0470:001C 0100 0000 0000 119E 0000 0001 000 0 0017 MOV byte roioai,01

-dlOO , lOf
0480 :0100 03 04 08 06 IF 06 04 01 01 00 00 00 00 00 00 00 ..

So icui,-t3 io good.

AX BX CX DX SP BP SI OI IP
0004 0100 0000 0000 119E 0000 0001 0000 001C INC SI
0004 0100 0000 0000 119E 0000 0002 0000 001D CMP ■SI,0003

--- S-APC 0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ 000B
*0470:0008

-1
047D:000B MOV AL,[BX+SI1
0 47D:0Q0D CMP AL,01TBX+SI]
0 47D:0010 JBE 001C
047D:0012 XCHG AL,01[BX+SI]
047D:0015 MOV [BX+SI],AL
0470:0017 MOV BYTE [01081,01
047D:001C INC SI
047D:001D CMP SI,0003
047D:0020 JNZ 000B
047D:0022 TEST BYTE [0108],01
0 47D:0027 JNZ 0000
0470:0029 JMP 0029

-t3
AX BX CX DX SP BP SI OI IP

--- S-APC 0004 0100 0000 0000 119E 0000 0002 0000 000B MOV AL, [BX+SIl
--- S-APC 0008 0100 0000 0000 119E 0000 0002 0000 000D CMP AL,0l[BX+SI1

0008 0100 0000 0000 119E 0000 0002 0000 0010 JBE 001C
*047D:0012

SuAt enough, I t ' 4 comparing the tkoid and iouAth element* o& the H i t . -esort Reload pnogAam.
START END

CS 0470:0000 047D:002F
DS 0480:0000 0480:010F

-1
0470:0000 MOV SI,0000
047D:0003 MOV BX,0100
0 47D:0006 MOV BYTE [0108],00
047D:000B MOV AL,[BX+SI]
047D:OOOD CMP AL,01[BX+SI]
047D:0010 JBE 001C0470:0012 XCHG AL,01[BX+SIl
047D:0015 MOV [BX+SI],AL
0470:0017 MOV BYTE [01081,01
047D:001C INC SI
0470:001D CMP SI,0008
047D:0020 JNZ 000B

Pa tch l e n g t h .
-aid
047D:00ID cmp si,7
0470:0020 .

Ta g I t o u t .
- 9 ,2 9
*0470:0029

All Information Presented Here is Proprietary to Digital Research

76

CP/M- 8 6 Programmer's (luide 6.5 DPT-86 Sample Session

S ee i { l i i t m 4 a n t e d .
-dlOO, lOf
0480:0100 01 03 04 04 06 06 08 IF 00 00 00 00 00 00 00 00

L ooki b e t t e * ; l e t ' 4 i m t a l l p a t c h i n d i , i k { i l e . To da t k i is, we
-rsort.cmd m u i t * e a d CMD { i l e i n c l u d i n g h e a d e r , io uie nie R

START END command.
2 000: 0000 2000:01FF

F i n i t iOh b i j t e i c o n t a i n
-180
2000:0080 MOV
2000:0083 MOV
2000:0086 MOV
2000:008B MOV
2000:008D CMP
2000:0090 JBE
2000:0092 XCHG
2000:0095 MOV
2000:0097 MOV
2000:0090 INC
2000:00m) CMP
2000:0QA0 JNZ

SI,0000
BX,0100
BYTE [01081,00
AL,[BX+SI]
AL,01[BX+SI1
009C
AL,01[BX+SI1
[BX+SI1,AL
BYTE [01081,01
SI
SI, 0008
008B

h e a d e * , so code st a * t i a t SOh.

1 n i t a l t p a t c h .-a9d
2000:009D cmp si,7

U * i t e { U z back t o d i i k . (Le ng th o{ { i l e a a u m e d to be unc hanged -wsoct.cmd i i n c e no l e n g t h sp e c i { i e d . I

R e l o a d { i l e .-esort
START END

CS 047D:0000 047D:002F
DS 0480:0000 0480:010F

V e * i { y

047D:0000 MOV
0470:0003 MOV
047D:0006 MOV
047D:000B MOV
047D:000D CMP
047D:0010 JBE
047D:0012 XCHG
047D:0015 MOV
Q47D:0017 MOV
0 47D:001C INC
047D:00ID CMP 047D:0020 JNZ

t h a t p a t c h wai i m t a i l e d .

SI,0000
BX,0100
BYTE [0108],00
AL,[BX+SI1
AL,01[BX+SI1
001C
AL,01(BX+SI1
[BX+SI1,AL
BYTE [01081,01
SI
SI,0007
OOOB

Run i t .-9,29
*0470:0029

S t i l l looki good. Skip i t !-dlOO,lOf0480:0100 01 03 04 04 06 06 08 IF 00 00 00 00 00 00 00 00
-~C
A>

All Information Presented Here is Proprietary to Digital Research

77

Appendix A
ASM-86 Invocation

Command: ASM86

Syntax: ASM86 <filename> { $ <parameters> }

where

<filename> is the 8086 assembly source file.
Drive and extension are optional.
The default file extension is .A86.

<parameters> are a one-letter type followed by
a one-letter device from the table
below.

Parameters:

form: $ Td where T = type and d = device

Table A-l. Parameter Types and Devices

Except for the F type, the default device is the the current default
drive.

All Information Presented Here is Proprietary to Diqital Research

79

CP/M-86 Programmer's Guide Appendix A ASM-86 Invocation

Table A-2. Parameter Types
A controls location of ASSEMBLER source file
H controls location of HEX file
P controls location of PRINT file
S control! s location of SYMBOL file
F controls type of hex output FORMAL

Table A-3. Device Types
A - P Drives A - P

X console device
Y printer device
Z byte bucket
I Intel hex format
D Digital Research hex format

Table A-4. Invocation Examples

ASM86 10 Assemble file IO.A86, produce 10.HEX
IO.LST and IO.SYM.

ASM86 10.ASM $ AD SZ Assemble file 10.ASM on device D,
produce IO.LST and 10.HEX,
no symbol file.

ASM86 10 $ PY SX Assemble file IO.A86, produce 10.HEX,
route listinq directly to printer,
output symbols on console.

ASM86 10 $ FD Produce Digital Research hex format.

ASM86 10 $ FI Produce Intel hex format.

All Information Presented Here is Proprietary to Digital Research

Appendix B
Mnemonic Differences From the Intel Assembler

The CP/M 8086 assembler uses the same instruction mnemonics
as the INTEL 8086 assembler except tor explicitly specifying far
and short jumps, calls and returns. The following table shows
the four differences:

Table B—1. Mnemonic Differences
Mnemonic Function CP/M INTEL

Intra segment short jump: JMPS JMP

Inter segment jump: JMPF JMP

Inter segment return: r etf RET

Inter segment call: CALLF CALL

All Information Presented Here is Proorietary to Digital Research

81

Appendix C
ASM-86 Hexadecimal Output Format

At the user "'s option, ASM-86 produces machine code in either
Intel or Digital Research hexadecimal format. The Intel format is
identical to the format defined by Intel for the 8086. The Digital
Research format is nearly identical to the Intel format, but adds
segment information to hexadecimal records. Output of either format
can be input to GENCMD, but the Digital Research format
automatically provides segment identification. A segment is the
smallest unit of a program that can be relocated.

Table C-l defines the sequence and contents of bytes in a
hexadecimal record. Each hexadecimal record has one of the four
formats shown in Table C-2. An example of a hexadecimal record is
shown below.

Byte number=> 0 1 2 3 4 5 6 7 8 9 n

Contents=> : l l a a a a t t d d d c c C R L F

Table C-l. Hexadecimal Record Contents
Byte Contents Symbol

0 record mark ••
1-2 record length 1 1
3-6 load address a a a a
7-8 record type t t
9- (n-1) data bytes d d d
n- (n+1) check sum c c
n+2 carriage return CR
n+3 line feed LF

All Information Presented Here is Proprietary to Digital Research

CP/M-86 Programmer's Guide Appendix C Hexadecimal Output Format

Table C-2. Hexadecimal Record Formats
Record type Content Format

00 Data record : 11 aaaa DT <data...> cc
01 End-of-file : 00 0000 01 FF

Extended address
02 mark : 02 0000 ST ssss cc
03 Start address : 04 0000 03 ssss iiii cc

11 => record length - number of data bvtes
cc => check sum - sum of all record bytes
aaaa => 16 bit address
ssss => 16 bit segment value
iiii => offset value of start address
DT => data record type
ST => segment address record type

It is in the definition of record types 00 and 02 that Digital
Research's hexadecimal format differs from Intel's. Intel defines
one value each for the data record type and the segment address
type. Digital Research identifies each record with the segment that
contains it, as shown in Table C-3.

All Information Presented Here is Proprietary to Digital Research

84

CP/M-86 Programmer"s Guide Appendix C Hexadecimal Output Format

Table C-3. Segment Record Types

Symbol
Intel' s
Value

Digital's
Value Meaning

DT 00 for data belonging
8086 segments

to all

• 81H for data belonging
CODE segment

to the

82H for data belonging
DATA segment

to the

83H for data belonging
STACK segment

to the

84H for data belonging
EXTRA segment

to the

ST 02 for all segment address
records

85H for a CODE absolute
address

segment

86H for a DATA segment address
87H for a STACK segment address
88H for a EXTRA segment address

All Information Presented Here is Proprietary to Digital Research

85

(

c

Appendix D
Reserved Words

Table D-l. Reserved Words
Predefined Numbers

BYTE WORD DWORD

Operators
EQ GE GT LE LT
NE OR AND MOD NOT
PTR SEG SHL SHR XOR
LAST TYPE LENGTH OFFSET

Assembler Directives
DB DD DW IF RS
RB RW END ENDM EOU
ORG CSEG DSEG ES EG SSEG
EJECT ENDIF TITLE LIST NOLIST
INCLUDE SIMFORM PAGESIZE CODEMACRO PAGEWIDTH

Code-macro directives
DB DD DW DBIT RELB
RELW MODRM SEGFIX NOSEGFIX

8086 Registers
AH AL AX BH BL
BP BX CH CL CS
CX DH DI DL DS
DX ES SI SP SS

Instruction Mnemonics - See Appendix E.

All Information Presented Here is Proprietary to Digital Research

c

c

Appendix E
ASM-86 Instruction Summary

Table E-l. ASM-86 Instruction Summary
Mnemonic Description Section

AAA ASCII adjust for Addition 4.3
AAD ASCII adjust for Division 4.3
AAM ASCII adjust for Multiplication 4.3
AAS ASCII adjust for Subtraction 4.3
A DC Add with Carry 4.3
ADD Add 4.3
AND And 4.3
CALL Call (intra segment) 4.5
CALLF Call (inter segment) 4.5
CBW Convert Byte to Word 4.3
CLC Clear Carry 4.6
CLD Clear Direction 4.6
CLI Clear Interrupt 4.6
CMC Complement Carry 4.6
CMP Compare 4.3
CMPS Compare Byte or Word (of string) 4.4
CWD Convert Word to Double Word 4.3
DAA Decimal Adjust for Addition 4.3
DAS Decimal Adjust for Subtraction 4.3
DEC Decrement 4.3
DIV Divide 4.3
ESC Escape 4.6
HLT Halt 4.6
IDIV Integer Divide 4.3
IMUL Integer Multiply 4.3
IN Input Byte or Word 4.2
INC Increment 4.3
INT Interrupt 4.5
INTO Interrupt on Overflow 4.5
I RET Interrupt Return 4.5
JA Jump on Above 4.5
JAE Jump on Above or Equal 4.5
JB Jump on Below 4.5
JBE Jump on Below or Equal 4.5
JC Jump on Carry 4.5
JCXZ Jump on CX Zero 4.5
JE Jump on Equal 4.5
JG Jump on Greater 4.5
JGE Jump on Greater or Equal 4.5
JL Jump on Less 4.5
JLE Jump on Less or Equal 4.5

All Information Presented Here is Proprietary to Diqital Research

89

CP/M-86 Programmer's Guide Appendix E Instruction Summary

Table E—1. (continued)

Mnemonic Descr iption Section
JMP Jump (intra segment) 4.5
JMPF Jump (inter segment) 4.5
JMPS Jump (8 bit displacement) 4.5
JNA Jump on Not Above 4.5
JNAE Jump on Not Above or Equal 4.5
JNB Jump on Not Below 4.5
JNBE Jump on Not Below or Equal 4.5
JNC Jump on Not Carry 4.5
JNE Jump on Not Equal 4.5
JNG Jump on Not Greater 4.5
JNGE Jump on Not Greater or Equal 4.5
JNL Jump on Not Less 4.5
.TNLE Jump on Not Less or Equal 4.5
JNO Jump on Not Overflow 4.5JNP Jump on Not Parity 4.5
JNS Jump on Not Sign 4.5
JNZ Jump on Not Zero 4.5
JO Jump on Overflow 4.5
JP Jump on Parity 4.5
JPE Jump on Parity Even 4.5
JPO Jump on Parity Odd 4.5
JS Jump on Sign 4.5
JZ Jump on Zero 4.5
LAHF Load AH with Flags 4.2
LDS Load Pointer into DS 4.2
LEA Load Effective Address 4.2
LES Load Pointer into ES 4.2
LOCK Lock Bus 4.6
LODS Load Byte or Word (of string) 4.4
LOOP Looo 4.5
LOOPE Loop While Equal 4.5
LOOPNE Loop While Not Equal 4.5
LOOPNZ Loop While Not Zero 4.5
LOOPZ Looo While Zero 4.5
MOV Move 4.2
MOVS Move Byte or Word (of string) 4.4
MUL Multiply 4.3
NEG Negate 4.3
NOT Not 4.3
OR Or 4.3
OUT Output Byte or Word 4.2

All Information Presented Here is Proprietary to Digital Research

90

CP/M-86 Programmer''s Guide Appendix E Instruction Summary

Table E—1. (continued)
Mnemonic Descr iption Section
POP Pop 4.2
POPF Pop Flags 4.2
PUSH Push 4.2
PUSHF Push Flags 4.2
RCL Rotate through Carry Left 4.3
RCR Rotate through Carry Right 4.3
REP Repeat 4.4
RET Return (intra segment) 4.5
RETF Return (inter segment) 4.5
ROL Rotate Left 4.3
ROR Rotate Right 4.3
SAHF Store AH into Flags 4.2
SAL Shift Arithmetic Left 4.3
SAR Shift Arithmetic Right 4.3
SBB Subtract with Borrow 4.3
SCAS Scan Byte or Word (of string) 4.4
SHL Shift Left 4.3
SHR Shift Right 4.3
STC Set Carry 4.6
STD Set Direction 4.6
STI Set Interrupt 4.6
STOS Store Byte or Word (of string) 4.4
SUB Subtract 4.3
TEST Test 4.3
WAIT Wait 4.6
XCHG Exchange 4.2
XL AT Translate 4,2
XOR Exclusive Or 4.3

All Information Presented Here is Proprietary to Digital Research

Appendix F
Sample Program

Listinq F-l. Sample Proqram APPF.A86

CP/M ASM86 1.1 SOURCE: APPF.A86 Terminal Input/Outout PAGE1
title 'Terminal Input/Output'
pagesize 50
pagewidth 79
simform•
r

.****** Terminal I/O subroutines ********
9

; The following subroutines
; are included:•
9

; CONSTAT - console status
; CONIN - console input
; CONOUT - console output
•
9

? Each routine requires CONSOLE NUMBER
; in the BL - register•
9

9

• *****************
; * Jump table: *
. ****************
9

m
9CSEG ; start of code segment
9

jmp tab:
0000
0003
0006

* I/O port numbers * ***********************

E90600 imp constat
E91900 jmp conin
E92B00 jmp conout

All Information Presented Here is Proprietary to Digital Research
93

CP/m-86 Programmer's Guide Appendix F Sample Program

CP/M ASM86 1.1 SOURCE: APPF.A86 Terminal Input/Output PAGE
2

Terminal 1:

0010
•/
instatl equ 10h ; input status port

0011 indatal equ 11h ; input port
0011 outdatal equ 11h ; output port
0001 readvinmaskl equ 01h ; input ready mask
0002 readyoutmask1 equ 02h ; output ready mask

Terminal 2:

0012 ■mstat2 equ 12h ; input status port
0013 indata2 equ 13h ; input port
0013 outdata2 equ 13h ; output port
0004 readyinmask2 equ 04h ; input ready mask
0008 i-eadyoutmask2 equ 08h ; output ready mask

* CONSTAT * ***********

Entry: BL - reg = terminal no
Exit: AL - reg = 0 if not ready

Offh if ready

0009 53E83F00
constat:

push bx ! call okterminal

000D 52
constatl:

push dx
000E B600 mov dh, 0 ;
0010 8A17 mov dl,instatustab [BX]
0012 EC in al ,dx
0013 224706 and al,readyinmasktab [bx]
0016 7402 jz constatout
0018 B0FF mov al, Of f h

read status port

♦

All Information Presented Here is Proprietary to Digital Research

94

Cp /m -86 Programmer's Guide Appendix F Sample Proqram

CP/M ASM86 1.1 SOURCE: APPF.A86 Terminal Inout/Output PAGE
3

001A 5A5B0AC0C3
constatout:

pop dx ! pop bx ! or al,al ret

. *********
; * CONIM *
• *********
t

; Entry: BL - reg = terminal no
; Exit: AL - reg = read character

001F 53E82900
0023 E8E7FF
0026 74FB
0028 52
0029 B600
002B 8A5702
002E EC
002F 247F
0031 5A5BC3

** * *******
* CONOTJT *

conin: push bx ! call okterminal !
coninl: call constatl ; test status

jz coninl
push dx ; read character
mov dh,0
mov dl,indatatab [BXl
in al,dx
and al,7fh ; strip parity bit
pop dx ! pop bx ! ret

Entry: BL - req = terminal no
AL - reg = character to print

0034 53E81400 conout: push bx ! call okterminal
0038 52 push dx
0039 50 push ax
003A B600 mov dh,0 ; test status
003C 8A17

conoutl
mov•• dl,instatustab fBXl

003E EC in al ,dx

All Information Presented Here is Proprietary to Digital Research

CP/M-86 Programmer"s Guide Appendix F Sample Program

CP/M ASM86 1.1 SOURCE: APPF.A86 Terminal Input/Output PAGE
4

003F 224708 a n d
0042 74FA iz
0044 58 P O P
0045 8A5704 mov
0048 EE out
0049 5A5BC3 pop

al,readvoutmasktab [BX]
conoutl
ax ; write
dl,outdatatab [BX]
dx ,al

dx ! pop bx ! ret

byte

+ OKTERMINAL +
++++++++++++++

Entry: BL - reg = terminal no

okterminal:
004C 0ADB or bl ,bl
004E 740A jz error
0050 80FB03 cmp bl,length instatustab + 1
0053 7305 jae error
0055 FECB dec bl
0057 B700 mov bh, 0
0059 C3 ret

005A 5B5BC3 error: pop bx ! pop bx ! ret ; do nothing
7*********** **** end of code segment ***************

* Data segment *

dseg
"kirick'kic'k'kieic'k'k'k'kjtic'k’kic'k’k'k'k-k'k'k
* Data for each terminal * **************************

All Information Presented Here is Proprietary to Digital Research

96

CP/M-86 Programmer's Guide Appendix F Sample Program

CP/M ASM86 1.1 SOURCE: APPF.A86 Terminal Input/Outout P A G E

5

0000 1012 instatustab db instatl,instat2
0002 1113 indatatab db indatal,indata2
0004 1113 outdatatab db outdatal,outdata2
0006 0104 readyinmasktab db readyinmaskl,readyinmask2
0008 0208 readyoutmasktab db readyoutmask1,readyoutmask2

.*************** end of file **********************
end

END OF ASSEMBLY. NUMBER OF ERRORS: 0

All Information Presented Here is Proprietary to Digital Research
97

o

(

c

Appendix G
Code-Macro Definition Syntax

<codemacro> ::= CODEMACRO <name> [<formal$1ist>l
T clistSof$macro$di rectives>l
ENDM

<name> ::= IDENTIFIER

<formal$list> ::= <parameterSdescr>[{,<parameterSdescr>1]
<parameter$descr> ::= <formSname>:<specifier$letter>

<mod ifier$1 etter > f (<ranqe>)]
< specif ier $letter > : : = a | c I d | e | m | r | s | x

<modifier$letter> ::= b | w | d | sb

<range> ::= <sinqle$range>|<doub1e$ranqe>

<sinqle$ranqe> ::= REGISTER | NUMBERB

<double$ranqe> ::= NUMBERB,NUMBERB | NUMBERB,REGISTER I
REGISTER,NUMBERB | REGISTER,REGISTER

<listofmacro$directives> ::= <macro$directive>
f <Tnacro$directive>}

<macro$directive> ::= <db> | <dv/> | <dd> | <segfix>
<noseqfix> | <modrm> | <re3.b>
<relw> | <dbit>

<db> ::= DB NUMBERB | DB <form$name>

<dw> ::= DW NUMBERW | DW <form$name>

<dd> ::= DD <form$name>

<segfix> SEGFIX <form$name>

<nosegfix> ::= NOSEGFIX <form$name>

<modrm> MODRM NUMBER7,<form$name> |
MODRM <form$name>,<Form$name>

<relb> ::= RELB <form$name>

<relw> ::= RELW <form$name>

<dbit> ::= DBIT <field$descr>{,<field$descr>}

All Information Presented Here is Proprietary to Digital Research
99

CP/M-86 Programmer's Guide ^opendix G Code-macro Syntax

<field$descr> ::= NUMBER!5 (NUMBERB) |
NUMBER15 (<form$name> (NUMBERB))

<formSname> = IDENTIFIER

NUMBERB is 8-bits
NTJMBERW is 16-bits
NUMBER7 are the values 0, 1,. . , 7
MUMBER15 are the values 0, l,. . ,15

All Information Presented Here is Proprietary to Digital Research

100

Appendix H
ASM-86 Error Messages

There are two types of error messages produced by ASM-8 6 :
fatal errors and diagnostics. Fatal errors occur when ASM- 8 6 is
unable to continue assembling. Diagnostics messages report
problems with the syntax and semantics of the oroaram being
assembled. ^he following messages indicate fatal errors
encountered bv ASM- 8 6 during assembly:

NO FILE
DISK FULL
DIRECTORY FULL
DISK READ ERROR
CANNOT1 CLOSE
SYMBOL TABLE OVERFLOW
PARAMETER ERROR

ASM - 8 6 reports semantic and syntax errors by placing a
numbered ASCII message in front of the erroneous source line. It
there is more than one error in the line, only the first one is
reported. Table H-l summarizes ASM- 8 6 diagnostic error messages.

All Information Presented Here is Proprietary to Digital Research

CP/M- 8 6 Proqrammer"*s Guide Appendix H Error Messages

Table H-l. ASM-86 Diagnostic Error Messages
Number Meaning

0 ILLEGAL FIRST ITEM
1 MISSING PSEUDO INSTRUCTION
2 ILLEGAL PSEUDO INSTRUCTION
3 DOUBLE DEFINED VARIABLE
4 DOUBLE DEFINED LABEL
5 UNDEFINED INSTRUCTION
6 GARBAGE AT END OF LINE - IGNORED
7 OPERAND(S) MISMATCH INSTRUCTION
8 ILLEGAL INSTRUCTION OPERANDS
9 MISSING INSTRUCTION

10 UNDEFINED ELEMENT OF EXPRESSION
11 ILLEGAL PSEUDO OPERAND
12 NESTED "IF" ILLEGAL - "IF" IGNORED
13 ILLEGAL "IF" OPERAND - "IF" IGNORED
14 NO MATCHING "IF" FOR "ENDIF"
15 SYMBOL ILLEGALLY FORWARD REFERENCED - NEGLECTED
16 DOUBLE DEFINED SYMBOL - TREATED AS UNDEFINED
17 INSTRUCTION N O T IN CODE SEGMENT
18 FILE NAME SYNTAX ERROR
19 NESTED INCLUDE NOT ALLOWED
20 ILLEGAL EXPRESSION ELEMENT
21 MISSING TYPE INFORMATION IN OPERAND(S)
22 LABEL OUT OF RANGE
23 MISSING SEGMENT INFORMATION IN OPERAND
24 ERROR IN CODEMACROBUILDING

All Information Presented Here is Propr i etary to Diaital Research

102

Appendix I
DDT-86 Error Messages

T a b le I - 1 . D D T -8 6 E r r o r M e s s a g e s

Error Message Meaninq

AMBIGUOUS OPERAND An attempt was made to assemble a command
with an ambiguous operand. Precede the
operand with the prefix "BYTE" or
"WORD".

CANNOT CLOSE The disk file written bv a W command
cannot be closed.

DISK READ ERROR The disk file specified in an R command
could not be read properly.

DISK WRITE ERROR A disk write operation could not be
successfully performed during a W
command, probably due to a full disk.

INSUFFICIENT MEMORY There is not enough memory to load the
file specified in an R or E command.

MEMORY REQUEST DENIED A request for memory during an R command
could not be fulfilled. Up to eight
blocks of memory may be allocated at a
qiven time.

NO FILE The file sDeci.fied in an R or E command
could not be found on the disk.

NO SPACE There is no space in the directory for the
file beinq written by a W command.

VERIFY ERROR AT S:o The value placed in memory by a Fill, Set,
Move, or Assemble command could not be
read back correctly, indicating bad RAM
or attempting to write to ROM or non
existent memory at the indicated
1ocation.

All Information Presented Here is Proprietary to Diqital Research

103

■

c

c

AS-100 CP/M-86

User's Guide

Canon AS-100 Series

Preface

U4The CP/M-86 operating system for the Canon AS-100 is based
on the standard CP/M-86 developed by Digital Research, and
includes various additional functions which make the best of
the hardware of the AS-100. This manual describes primarily
those functions which are peculiar to AS-100 CP/M-86; readers
are expected to be familiar with standard CP/M-86. Readers
who are using CP/M-86 for the first time should first read
the Standard CP/M-86 User's Guide. In this manual, functions
peculiar to AS-100 are identified by the notation "AS-100
CP/M-86."

* CP/M-86 is trademark of Digital

CONTENTS

CHAPTER 1 SYSTEM CONFIGURATION

1-1 Features of AS-100 CP/M- 8 6 1

1- 2 AS-100 CP/M- 8 6 Configuration 2

CHAPTER 2 SYSTEM ACTIVATION

2- 1 System Loading 5

2- 2 Automatic SUBMIT Function g

CHAPTER 3 FLOPPY DISK DEVICE

3- 1 Floppy Disk Drives and Device Names 10

3-2 Floppy Disks 1 2

3-3 Device Names E: and F: 1 3

3- 4 AS-100 Function Call 1 4

CHAPTER 4 CRT DISPLAY

4- 1 Outline .. lg

4-1-1 V-RAM configuration lg

4-1-2 Palette method 1 3

4-1-3 Display modes 20

4-2 ASCII Characters 21

4-3 Control Characters 2 1

4-4 Escape Sequences 22

4-5 Control Sequences 24

4-6 Graphic Display Functions 4 3

4-6-1 Outline 4 3

4-6-2 Graphic display through CONOUT 4 4

4-6-3 AS-100 function call 5 3

ii

CHAPTER 5 KEYBOARD

5-1 Layout ... 60
5-2 ASCII Keys 60
5-3 Ten Numeric Keys 62
5-4 Function Keys 63
5-5 Special Keys 64
5- 6 Pointing Device 65

CHAPTER 6 PRINTER INTERFACE
6- 1 Printer Handling Commands 67
6-2 Device Assignments and Operations 68

6-3 Executing AS-100 Function Calls 71

6-4 A1200 Command 72
6-5 A1210 Command 73

6 - 6 CNTHND Handler 74

6- 7 Messages 74

CHAPTER 7 RS232C INTERFACE
7- 1 Input/Output Port Assignments 75

7-2 RS232C Handling Commands 76
7-3 RSHND Command 78
7-4 RSINIT Command 78
7- 5 Executing AS-100 Function Calls 81

CHAPTER 8 EXTENDED UTILITY COMMANDS
8- 1 FORMAT Command 83

8-2 VOLCOPY Command 37

8-3 MS2CPM Command 9 0
8-4 MCX2CPM Command 92

iii

APPENDIX
APPENDIX A
APPENDIX B
APPENDIX C

CRT CODE TABLE 95

ROM DEBUGGER............................ 97

DIP SWITCH xo2

(

iv

CHAPTER 1 SYSTEM CONFIGURATION

1-1 Features of AS-100 CP/M- 8 6
AS-100 CP/M- 8 6 was developed by adding a variety of functions
to Digital Research's CP/M- 8 6 to make the best use of the
hardware and application system of the AS-100 computer. Since
these additional functions do not reduce the capability of
CP/M- 8 6 can be used with little or no modification on AS-100.
AS-100 CP/M- 8 6 has been improved as follows.
. A new BIOS with added functions has been developed and
implemented.

. A new boot ROM and secondary boot have been developed.

. Extended commands have been added.
Features of AS-100 CP/M- 8 6 are described below.
. 5-inch floppy disks are accessed in units of 512-byte sectors
while 8-inch floppy disks are accessed in units of 1024-byte
sectors; this improves the efficiency of file access.

. Single sided, single density, 128-byte sector, 8-inch floppy
disks for the standard CP/M- 8 6 system can also be used by
performing a simple operation.

. A function call is provided which makes it possible to access
data from double sided, single density, 128-byte sector 8-
inch floppy disks or from double sided, double density,
256-byte sector, 8-inch floppy disk.

. Various CRT display control functions (such as graphic
display, color and attribute specification, scroll area
specification and cursor control functions) are provided.

. A variety of handlers, such as a printer handler or RS232C
interface support program can be linked to BIOS.

. A media backup utility is provided which makes it possible
to copy the contents of floppy disks at high speed.

. Commands can be written in a SUBMIT file for automatic sequen
tial execution when the power is turned on.

1

1-2 AS-100 CP/M- 8 6 Configuration

The figure below shows the memory configuration when CP/M- 8 6
is running.

FEOO:OOOOh

FEOO:IFFFh
ROM (8K bytes)

End address
of RAM area

2

BIOS of AS-100 CP/M- 8 6 performs the following processing.
(1) Processing of BIOS entries from standard CP/M-8 6 .
(2) AS-100 hardware support processing which does not use

BDOS functions.
The following table shows the BIOS function numbers corres
ponding to the functions of standard CP/M- 8 6 and BIOS entry
points.

BIOS
NO. Function BIOS jump

address Explanation

0 INIT 40 : 2500 Cold start
1 WBOOT 40 : 2503 Warm start
2 CONST 40 : 2506 Console status check
3 CON IN 40 : 2509 Inputs a character from the console.
4 CONOUT 40 : 250C Outputs a character to the console.
5 LIST 40 : 250F Outputs a character to the printer.
6 PUNCH 40 : 2512 Outputs a character to the punch device.
7 READER 40 : 2515 Inputs a character from the reader device.
8 HOME 40 : 2518 Moves the head to track 00.
9 SELDSK 40 : 251B Selects the disk drive.

10 SETTRK. 40 : 25.1E Specifies the track number.
11 SETSEC 40 : 2521 Specifies the sector number.
12 SETDMA 40 : 2524 Specifies the DMA offset address.
13 READ 40 : 2527 Reads data from the specified sector.
14 WRITE 40 : 252A Writes data to the specified sector.
15 LISTST 40 : 252D List device status check
16 SECTRAN 40 : 2530 Converts sector number.
17 SETDMAB 40 : 2533 Specifies the DMA segment address.
18 GETSEGB 40 : 2536 Obtains the memory control table address.
19 GETIOB 40 : 2539 Obtains the contents of IOBYTE.
20 SETIOB 40 : 253C Sets IOBYTE.

* All the above addresses are represented in hexadecimal.

3

After the system has been initialized, the 8088 interrupt
vector table is set to 224 (EOh) which is the standard inter
rupt (function call) of CP/M-8 6 . The AS-100 CP/M- 8 6 supports
the following interrupt calls in addition to the standard
interrupt call.

INT 240 (FOh): Used for printer and RS-232C.
INT 241 (Flh): Used for graphic functions.
INT 242 (F2h): Used for floppy disk access.

These interrupt calls are peculiar to the AS-100 CP/M- 8 6 and
hereafter they are referred to as the AS-100 function calls.
The BIOS entry table for the AS-100 function calls is in the
memory area starting at 40:2700h. Refer to the related
chapters for details of each AS-100 function call.

4

CHAPTER 2 SYSTEM ACTIVATION

The AS-100 CP/M- 8 6 is activated by the system activation
function stored in ROM. Any application system can be auto
matically started by the automatic SUBMIT function after the
operating system has been activated. This chapter describes
the system activation and automatic SUBMIT functions.

2-1 System Loading
The system activation program for the AS-100 is stored in an
8KB ROM of addresses from FE00:0000 to FE00:1FFF. This ROM
has the following programs as well as the boot for system
activation.

- Initialization program
- Self-diagnostic program
- Boot loader
- ROM debugger

When the power of the AS-100 computer is turned on, control
is transferred to the system activation program in the ROM.
Control is also transferred to the program when the reset
switch (in the hole below the lower left of the screen) is
pressed. (The reset switch can be pressed by using a thin
object such as ball pen.)
(1) Initialization
Control is first transferred to the initialization program
in the ROM to reset registeres used by the hardware and to
clear work areas used by the programs in the ROM.
After initialization, control is transferred to the self
diagnostic program.
(2) Self-diagnostic program
The self-diagnostic program performs the following.
. RAM check
Data is written in and read from every byte of the RAM area
installed.
. ROM check
The contents of ROM are checked by the checksum.

5

. Timer check
Software timers 1 to 3 are checked.
. Keyboard check
The keyboard is checked.

If an error is detected during the above checks, the corres
ponding error message (described later) is displayed and
control is transferred to the ROM debugger. When the self
diagnostic program is completed normally, control is trans
ferred to the boot loader.
(3) Boot loader
The boot loader loads the secondary boot program which loads
the CP/M- 8 6 system and transfers control to it. The secondary
boot program is stored on the system tracks (tracks 0 and 1)
of the disk. The disk drive and disk size (5 or 8 inch) are
determined by the DIP switch.
For the DIP switch, refer to Appendix C. The sector size is
automatically detected by the secondary boot program when it
reads the contents of sector 1 of track 0 .
If an error occurs while the secondary boot program is being
loaded, an error message (described later) is displayed and
control is transferred to the ROM debugger. When loading is
normally completed, control is transferred to the secondary
boot program. Control can also be transferred to the second
ary boot program from the ROM debugger.
(4) Secondary boot program
This program is not included in ROM but it is loaded into
memory by the boot loader. This program is written on the
system track when a floppy disk is formatted by the FORMAT
command.
The secondary boot program loads the system (CPM.SYS) from
the system disk (from which the secondary boot program is
also loaded) into memory and transfers control to CPM.SYS.
If an error occurs during loading CPM.SYS, an error message
is displayed and the secondary boot program loops to stop
further execution of system activation.
(5) ROM debugger
The ROM debugger is activated when an error occurs during
execution of the self-diagnostic program or boot loader, or
when the stop switch (right to the reset switch) is pressed.
The ROM debugger has the following functions.

6

. Displays and changes the contents of memory.

. Displays and changes the contents of registers.

. Inputs data to an output port.

. Executes a program (with break points set).

. Executes a program step by step.

The ROM debugger is used to check the contents of the CP/M- 8 6
system and handler program in memory. For user programs,
DDT- 8 6 is a more effective checking tool.
For use of the ROM debugger, refer to Appendix B.

Messages displayed during system activation are as follows.

nnnK-BYTES SYSTEM

Indicates the size of RAM installed when the self-diagnostic
program is executed. nnn is a decimal number.

CP/M- 8 6 LOADER Vn.mm

Displayed when the secondary boot program is executed.
Vn.mm indicates the version number of the secondary boot
program.

SEGMENT ADDRESS = nnnn

Indicates the address of the segment currently being loaded
in hexadecimal when CPM.SYS is loaded.

LAST OFFSET = nnnn

Indicates the last offset in hexadecimal when loading CP/M- 8 6
is completed. TPA starts at the next address.

BIOS (A) Vn.mm by Canon Inc.

Indicates that CP/M- 8 6 is activated. (A) indicates that the
ASCII character set is being used. Vn.mm indicates the ver
sion number of BIOS.

8086/8088 DEBUGGER Vn.mm

Indicates that the ROM debugger is activated. Vn.mm indicates
the version number of the ROM debugger. The debugger's prompt

7

RAM ERR AT nnnn:mmmm

An error was detected during execution of RAM check by the
self-diagnostic program. nnnn:mmmm indicates the segment
and offset addresses where the error is detected.

ERR CODE = nn

An error was detected by the self-diagnostic program.

nn = 02 : ROM checksum error
nn = 03 : Timer failure
nn = 04 : Keyboard failure

BOOT ERROR

An error occurred during loading of the secondary boot program.

ERROR IN READING CPM.SYS

An error occurred during loading of CPM.SYS by the secondary
boot program.

THE FILE CPM.SYS NOT FOUND ON THIS DISK

The disk does not contain CPM.SYS.

8

2-2 Automatic SUBMIT Function
After the CP/M- 8 6 system program has been loaded, control is transferred to it. CP/M- 8 6 then searches the directory of
the system load device for the START.SUB file. If the START.
SUB file cannot be found, CP/M- 8 6 displays "A>" to prompt the
operator to enter a command.
When the START.SUB file is found, CP/M- 8 6 calls the SUBMIT
command with START.SUB specified as the object file, that is,
it sets "SUBMIT START" in the console buffer and transfers
control to CCP.
With this feature, an application program can be automatically
activated by turning on the power of the AS-100 computer.
This is useful when automatically executing handler commands
required for the application system.
The START.SUB file must be executable by the SUBMIT command.

9

CHAPTER 3 FLOPPY DISK DEVICE

This chapter describes configuration of the floppy disk drives
used for the AS-100 series computer, specifications of floppy
disks and the function calls relating to disk I/O operation
which are peculiar to the AS-100 CP/M-8 6 .

3-1 Floppy Disk Drives and Device Names
Two types of floppy disk drives are provided for the AS-100 series computer: mini floppy disk unit (A-1300) and standard
floppy disk unit (A-1330). Each unit has two floppy disk
drives. The former uses 5-inch (more exactly, 5 1/4~inch) mini
floppy disks and the latter uses 8-inch floppy disks. The
following four combinations of floppy disk units and the AS-100
computer are available.

Display unit +
minifloppy unit

Display unit +
standard floppy unit

Display unit + minifloppy
unit + standard floppy unit

Display unit +
two standard floppy units

Physical unit addresses 0 and 1 or 2 and 3 are assigned to a
disk unit accordinq to the setting of the DIP switch in the
floppy disk unit. (For setting of the DIP switch, refer to
Chapter C.) Logical device names A:, B:, C: and D: are
assigned to physical unit address 0, 1, 2 and 3, respectively.

10

Since the CP/M- 8 6 system is always loaded from device A:,
there is no system configuration including devices C: and D:
only. Any of mini-floppy unit and standard floppy unit may
be assigned logical device names A: and B:. Allowable combi
nations of logical device names are as follows.
1) One mini floppy unit

2)

3)

4)

5)

1

A (E) B(F)

B

A

0
One standard floppy unit

One mini floppy unit and
one standard floppy unit (1)

D

C

One mini floppy unit and
one standard floppy unit (2)

A (E) B (F) C D

Two standard floppy units

11

In the above figures, numbers indicate physical unit addresses
and alphabetic characters indicate logical device names.
Logical device names in parentheses indicate that these names
can be used instead of logical device names A: and B:, or C:
and D:. These names are used when single sided, single density,
128-byte sector, 8 -inch disks for the standard CP/M- 8 6 are
used. Details are explained in the next section.

3-2 Floppy Disks

Specifications of floppy disks used for floppy disk units of
the AS-100 series computer are shown below.

Floppy disk unit
A-1300
mini-floppy
unit

A-1330
standard floppy unit

Type
5-inch,
double sided,
double density

8-inch,
double sided,
double density

8-inch,
single sided,
single density

Sector size
(Byte/Sector) 512 1024 128

Track size
(Sector/Track) 8 * 8 26

Number of tracks
(Track) 80 77 77

Interleaved sectors 4 3 6

Block size (Byte) 2048 2048 1024

Total number of blocks
(Block) 312 600 243

Total amount of data
(K Bytes) 620 1196 241

Number of directory
blocks (Block) 2 2 2

Total number of
directory entries 128 128 64

Number of system
tracks (Track) 2 2 2

* Although 9 sectors are assigned to each track, 8 sectors
are used to maintain compatibility with MS-DOS.**

** MS-DOS is trade mark of Microsoft, Inc.

12

Device names A: to D: are assumed to be used for double sided,
double density, 512-byte sector, 5-inch floppy disks or double
sided, double density. 1024-byte sector, 8-inch floppy disks.
These media (disks) must be formatted using the FORMAT command
before use.
Refer to CHAPTER 8 for details of the FORMAT command.

3-3 Device Names E: and F:
Device names E: and F: can be assigned to standard 8-inch
floppy disk drives. These names indicate that the drives are
used for single sided, single density, 128-byte sector, 8-inch
floppy disks which are standard for CP/M-8 6 . That is, when
either E: or F: is specified, BIOS assumes that the disk
inserted in the specified drive is of the CP/M- 8 6 standard.
Note that logical device names E: and F: are assigned to disk
drives which are also assigned any of logical device names A:
to D: .
The procedures for copying a file on a CP/M standard disk
(single sided, single density) to a file on a double sided,
double density disk for the AS-100 CP/M- 8 6 are shown below.
Assume a AS-100 system with one A-1330 standard floppy disk
unit. Load the AS-100 CP/M- 8 6 system disk in A: and a stand
ard CP/M- 8 6 disk which contains file TEST.TXT in B:.
File TEXT.TXT can be copied to the disk in A: by the following
command.

PIP A :=F:TEXT.TXT
If device name B: is used instead of F:, an error results.
The following command makes it possible to list the entries
of the directory of the disk in B;.

DIR F:
Device name F: can be soecified in other commands when a
standard CP/M- 8 6 disk is loaded in B:.
Which disk drive is assigned device name E: or F : is shown
in Section 3-1.

13

3-4 AS-100 Function Call
The standard CP/M- 8 6 allows the user to use the following BIOS
functions directory by calling BOOS function 50 (direct BIOS call).

BIOS
F# Name Function

8 HOME Moves the head to track 00.
9 SELDSK Selects the drive.

10 SETTRK Sets the track number.
1 1 SETSEC Sets the sector number.
12 SETDMA Sets the DMA offset address.
13 READ Reads data from the specified sector.
14 WRITE Writes data to the specified sector.
16 SECTRAN Converts the sector number.
17 SETDMAB Sets the DMA segment address.

Refer to the Standard CP/M- 8 6 System Guide for details of these
BIOS calls.
In addition to the above, special function calls for floppy
disk access are provided for the AS-100 CP/M-8 6 . These
function calls are used to change the drive information
without using the normal BIOS portion. Some of these func
tion calls support access to 8-inch floppy disks other than
those of the AS-100 CP/M- 8 6 standard format.
The function calls for floppy disk access can be executed by
the following sequence.

MOV AL, Pn ; Set parameter.
MOV CL, Fc ; Set function code.
I NT 242 ; Call function.

14

The function codes used are as follows.

Function
code Name Function
0 MTRON Starts the motor of the specified

5-inch disk drive.
1 MTROFF Starts the motor off timer of the

specified 5-inch disk drive.
2 SELECT Selects the drive.
3 DISSEL Deselects the drive.
4 CHGSPC Switches the drive access parameter.

(5/8 inch)
5 GET128 Reads data from an 8-inch, double

sided, single density, 128-byte
sector disk.

6 GET256 Reads data from an 8-inch, double
sided, double density, 256-byte
sector disk.

9 PÜT128 Writes data to an 8-inch, double
sided, single density, 128-byte
sector disk.

10 PUT256 Writes data to an 8-inch, double
sided, double density, 256-byte
sector disk.

Function codes 0 to 4 are used when the user wants to control
a floppy disk drive independent of the AS-100 CP/M- 8 6 BIOS
functions. To read/write data practically, knowledgement of
the hardware of floppy disk controller (FDC) is necessary.
Function codes 5, 6 , 9 and 10 can be used alone and knowledge-
ment of the hardware of FDC is not required to use them.

(1) MTRON
Function code: CL 0
Parameter: AL +■ Drive number 0 to 3
Function: This function starts the motor of the specified

5-inch disk drive. If the motor off timer has
already been set, it is canceled. This func-

15

(2) MTROFF
Function code:
Parameter:
Function:

(3) SELECT
Function code:
Parameter:
Function:

(4) DISSEL
Function code:
Parameter:
Function:

(5) CHGSPC
Function code:
Parameter:

Function:

tion does nothing when an 8-inch drive is
specified or a drive which is not installed
is specified.
The specified drive must have been selected
previously.

CL + - 1
AL Drive number 0 to 3
This function starts the motor off timer of
the specified 5-inch disk drive. When the
timer is started, the motor will stop after
30 seconds.
This function does nothing if an 8-inch disk
drive or a drive which is not installed is
specified. The specified drive must have
been selected previously.

CL 2
AL Drive number 0 to 3
This function selects the specified drive.
It does nothing if a drive which is not in
stalled is specified.

CL 3
None
This function deselects all the selected
drives.

CL ^ 4
AL Drive type IQh: 8 inch

02h: 5 inch
This function alternates the parameters of
the currently selected drives
5 inch: SRT=3, HUT=240, HLT=50 msec
8 inch: SRT=4, HUT=480, HLT=48 msec

16

(6) 8-inch floppy disk I/O

These functions make it possible to read/write data from/to
an 8 -inch disk of the double sided, single density, 128-byte
sector format or the double sided, double density, 256-byte
sector format.

Function codes Single density,
Single density,
Double density,
Double density,

128-byte sector
128-byte sector
256-byte sector
256-byte sector

read CL -<r- 5
write CL 9
read CL +- 6

write CL 1 0

Parameters: AL +- Drive number 0 to 3
AH +- Track number 0 to 76
CH •*- Head number 0 or 1
DL Sector number 1 to 26
DH Number of sectors read or written 1 to 26
ES :BX +- I/O buffer address

Return codes: When execution is finished, one of the follow
ing return codes is set to AL.

0 : normal completion
1 : drive not ready
2 : read error
3: write error
4 : write protected
6 : seek error

16: parameter error
17: number of sectors too great
18: buffer overrun

Note: The number of sectors to be read or written must be
less than the number of sectors between the specified
sector and the last sector on the specified track.

Ex) DH must be less than 8 when DL=2Q

The I/O buffer must be within 64K byte bank.

Ex) DH must be less than 17 when ES:BX=F00:800 and
one sector consists of 128 bytes.

Read-after-write check is not performed when writing
data. Access is made assuming that one track consists
of 26 sectors.

17

CHAPTER 4 CRT DISPLAY

4-1 Outline
The CRT display unit of the AS-100 series computer uses the
bit mapped system of 640 x 400 dots, which makes it possible
to achieve various display functions such as graphic function.
The BIOS CONOUT function of the AS-100 CP/M- 8 6 is improved
to make the best of the above feature. In this chapter, the
CONOUT function is mainly explained as well as special func
tions of the CRT display unit.

4-1-1 V-RAM configuration
Two models of CRT display units are available for the AS-100
computer: the color model and monochrome mode. The color model
uses the RGB method and its V-RAM can store information for
three screen frames.

Model Color model Monochrome model
2 frames 3 frames

Number of frames
(V-RAM) 3 2 1

About 32K bytes are used for storing information of 640 x 400
dot bit-map for each screen frame.
Major difference between the monochrome two frame model and
one frame model is that high brightness and blinking display
are possible with the two frame model. Underlined characters
and reverse display are possible for all models.

4-1-2 Palette method
Selection of colors with the color model and selection of display
attributes with the monochrome model are made through registers
called palette. Although 8 palette registers (No. 0 to No. 7)
are provided, the number of palette registers which can be used
by each model differs as follows.

Color model Palettes 0 to 7
Monochrome 2 screen frame model 0 to 3
Monochrome 1 screen frame model 0 , 1

18

Each palette register store the initial value, but it can be
changed by the control sequence described later. When a
character or pattern is displayed, a foreground palette number
is specified for dots which are set (foreground) and a back
ground palette number is specified for dots which are not set
(background). Each dot is displayed with the color or attribu
te assigned to the corresponding palette.
With the color model, one of 27 colors (combinations of three
primary colors (red, green and blue) of standard brightness
and three primary colors of half brightness) can be assigned
to any of palette 0 to 7. With the monochrome 2-frame model,
one of the non-display, standard brightness, high brightness
and blinking attributes can be assigned to palettes 0 to 3.
With the monochrome 1-frame model, either non-display or
standard brightness attribute can be assigned to palettes 0
and 1. The figure below shows the concept of palette for the
color model.

Combination of colors

19

4-1-3 Display modes

Number of lines within screen and size of character box

The 25-line mode and 20-line mode are available and the size
of character box differs according to the line mode selected,

25-line mode

.80 columns.

Screen

8 dots

2 0 -line mode

80 columns.

Screen

Font area

Character box

The size of each character does not vary if the number of
lines within the screen is changed. The 25-line mode is
automatically selected at initialization.

Scroll modes

Two scroll modes, the smooth scroll mode and jump (line) scroll
mode are supported. The scroll mode is initially set to the
smooth mode. These modes are effective only when the entire
screen is set to the scroll area. When a scroll area is set
within a partial area of the screen, the partial scroll mode
is applied to that area.

Cursor types

Two types of cursor can be used: the character cursor indicates
a character box location and the graphic cursor indicates a
graphic dot location. For both types of cursors, their
locations can be moved and read, and whether they are displayed
or not can be specified by software. The two cursors can be
displayed simultaneously.

20

Pointing device modes
A pointing device can be used in either the character cursor
mode or graphic cursor mode: the pointing device is used to
move the character cursor in the character cursor mode and
is used to move the graphic cursor in the graphic cursor mode.

4-2 ASCII Characters
Any of alphabetic characters and semigraphic characters can be displayed at the cursor location. The cursor then moves
to the right one character space. When the cursor is located
at the end of a line (at column 80), it does not move even if
a character is displayed at that location, and the cursor
moves to the beginning of the next line when the next character to be displayed is output to the CRT display unit. Charac
ters displayed can be reversed or underlined by the control
sequence described in 4-5.
An ASCII code table is shown in Appendix A.

4-3 Control Characters
When a control character is output to the CRT display unit,
the corresponding function is performed.
Control characters and their functions are as follows.
(1) BEL (07h) - bell ■
Generates the buzzer sound.
(2) BS (08h) - back space
Moves the cursor to the left one space, or moves it to the
right end of the above line when it is at the left end of a
line. When the cursor is at the home position, this character
does nothing.
(3) HT (09h) - horizontal tabulation
Moves the cursor to the next tabulation position. When the
cursor is at a position after column 73, this character moves
it to the beginning of the next line. Tabulation positions are
set every 8 columns as follows.

1....9.... 17.... 25 ^ 73.... 80
(4) LF (OAh) - line feed
Moves the cursor to the same column on the next line. When the
cursor is at the lowest line of the scroll area, the area is
scrolled up.

21

(5) VT (OBh)
The same as LF.
(6) FF (OCh)
The same as LF.
(7) CR (ODh) - carriage return
Moves the cursor to the beginning (left end) of the current
line.
(8) ESC (lBh) - escape
Identifies the escape and control sequences.
(9) DEL (7Fh) - delete
Erases the character at the left of the cursor location and
moves the cursor to the left one space.

4-4 Escape Sequences
An escape character (lBh) followed by a character controls the
CRT display unit as shown below.

No. ESC sequence Function
1 ESc D (lB44h) Index
2 Esc E (lB45h) New line
3 1% M (lB4Dh) Reverse index
4 E8c c (lB63h) Initialization

(1) Index (ESC D)
The same as LF.
(2) New line (ESC E)
The same as CR + LF.
(3) Reverse index (ESC M)
Moves the cursor up one line. When the cursor is at the upper
most line of the scroll area, the area is scrolled down one
line.

22

(4) Initialization (ESC c)
Initializes the screen: all modes are initialized, the entire
screen is cleared and the cursor is moved to the home position.
The table lists the initial conditions of various modes.

Mode Initial condition
Character cursor display ON
Graphic cursor display OFF
Line mode 25-line mode
Scroll mode Smooth scroll
Scroll area Entire screen
Character box mode 8 x 16 (25-line mode)
Character cursor location (1 , 1)
Graphic cursor location (320, 200)
Graphic, current point coordinates (0 , 0)
Pointing device mode Character cursor mode

Palette registers are set as follows.

Palette
number Color CRT Monochrome CRT

2-frame V-RAM 1-frame V-RAM

0 0 : Black 0: Black (non-display) 0: Black (non-display)

1 1 : Blue 2: High brightness 1: Standard brightness

2 3 : Green 27:Standard blinking

3 4 : Cyan 1: Standard brightness

4 9 : Red

5 10: Magenta

6 12: Yellow

7 13: White

23

The palette registers for displaying characters, cursors and
underline are initialized as follows.

Color CRT Monochrome CRT
2-frame V-RAM 1-frame V-RAM

Character display 7: White 3: Standard brightness 1: Standard brightness

Character cursor 6: Yellow 2: Standard blinking 1: Standard brightness

Graphic cursor 6: Yellow 2: Standard blinking 1: Standard brightness

Underline 7: White 3: Standard brightness 1: Standard brightness

4-5 Control Sequences
A control sequence consists of an escape character and a square
bracket "ESC [" followed by parameters. Although some of
control sequences are not related to display control, all
control sequences are explained in this section.
The following table summarizes the formats of control sequences
and their functions. In the formats, P followed by a lowercase
character (such as Pn or Ps) represents a parameter. When more
than one parameters are specified, they are separated by semi
colons (;). A parameter is a string of numbers and preceding
zeros are ignored. The end of control sequence is always a
command character which indicates the function of the control
sequence.

24

No. Control sequence Function
1 ESC [Pn A Moves the cursor up.

2 ESC [Pn B Moves the cursor down.

3 ESC [Pn C Moves the cursor to the right.

4 ESC [Pn D Moves the cursor to the left.

5 ESC [PI ; PcH Moves the cursor to the specified location.

6 ESC [OK Clears a line from the cursor location to the
end of the line.

7 ESC [IK Clears a line from the beginning of the line
to the cursor location.

8 ESC [2K Clears the line on which the cursor is located.

9 ESC [0J Clears the area from the cursor location to the
end of the scroll area.

10 ESC [1J Clears the area from the beginning of the scroll
area to the cursor location.

11 ESC [2J Clears the scroll area.

12 ESC [Pf ; Ptr Specifies the scroll area.

13 ESC [Pn L Insert lines.

14 ESC [Pn M Deletes lines.

15 ESC [Pn @ Insert characters.

16 ESC [Pn P Deletes characters.

17 ESC [6 n Gets cursor location.

18 ESC [> Pn A Moves the graphic cursor up.

19 ESC [> Pn B Moves the graphic cursor down.

20 ESC [> Pn C Moves the graphic cursor to the right.

21 ESC [> Pn D Moves the graphic cursor to the left.

22 ESC [> Px ; PyH Moves the graphic cursor to the specified location.

23 ESC [> 6 n Gets the graphic cursor location.

25

No. Control sequence Function

24 ESC [> 0 h Displays the character cursor.

25 ESC [> 1 h Displays the graphic cursor.

26 ESC [> 2 h Sets the 25-line mode.

27 ESC E > 3 h Sets the smooth scroll mode.

28 ESC [> 4 h Sets the pointing device graphic cursor mode.

29 ESC [> 5 h Sets the character box size to 16/20.

30 ESC [> 0 £ Makes the character cursor invisible.

31 ESC [> 1 £ Makes the graphic cursor invisible.

32 ESC E > 2 £ Sets the 20-line mode.

33 ESC [> 3 £ Sets the jump scroll mode.

34 ESC [> 4 £ Sets the pointing device character cursor mode.

35 ESC [> 5 £ Sets the character box size to 12/16.

36 ESC [0 m Resets the character display attribute.

37 ESC [1 m Sets the high brightness display attribute.

38 ESC [4 m Sets the underlined display attribute.

39 ESC [5 m Sets the blinking display attribute.

40 ESC [7 m Sets the reverse display attribute.

41 ESC [Pn m Specifies the foreground and background colors.

42 ESC [> 0 } Pn c Specifies the color of the character cursor.

43 ESC [>1 ; Pn c Specifies the color of the graphic cursor.

44 ESC [> 2 ; Pn c Specifies the color of the underline.

45 ESC [0 ; Png Sets the screen bank.

46 ESC [1 ; Pf ; Pb q Specifies the foreground and background colors.

47 ESC [2 ; Pn ; Pc q Sets the palette.

48 ESC [> Pf ; P£ s Generates sound.

26

(1) Moving the cursor up

Format: ESC[PnA

Function: Moves the cursor up the number of lines specified
with Pn. Pn is assumed as 1 when it is omitted or
is specified as 0. The cursor does not move when
it is on the uppermost line.

(2) Moving the cursor down

Format: ESC[PnB

Function: Moves the cursor down the number of lines specified
with Pn. Pn is assumed as 1 when it is omitted or
is specified as 0. The cursor does not move when
it is on the lowermost line.

(3) Moving the cursor to the right

Format: ESC[PnC

Function: Moves the cursor to the right the number of columns
specified with Pn. Pn is assumed as 1 when it is
omitted or is specified as 0. The cursor moves to
the beginning of the next line when it is at the
end of the current line (column 80). However, when
the cursor is at the end of the lowermost line, it
is moves to the beginning of that line and scroll
ing is not performed.

(4) Moving the cursor to the left

Format: ESC[PnD
Function: Moves the cursor to the left the number of columns

specified with Pn. Pn is assumed as 1 when it is
omitted or is specified as 0. The cursor moves to
the end (column 80) of the preceding line when it
is at the beginning of the current line. However,
when the cursor is at the beginning of the uppermost
line, it is not moved and scrolling is not performed.

(5) Moving the cursor

Format: ESC[Pl,PcH or ESC[Pl;Pcf

Function: Moves the cursor to the location specified with line
number PI and column number Pc. When P£ or Pc is
out of range, it is automatically set to the nearest
location within the range.

27

Ex) ESC [0; 90H -> ESC [1; 8OH
ESC [H -* ESC [1; 1H

(6) Clear line after cursor

Format: ESC[OK or ESC[K

Function: Clears columns from the cursor location to the end
of line with spaces. The cursor does not move.

(7) Clear line before cursor

Format: ESC[1K

Function: Clears columns from the beginning of the current
line to the cursor location with spaces. The cursor
moves to the beginning of the line.

(8) Clear current line

Format: ESC[2K

Function: Clears the current line with spaces. The cursor
moves to the beginning of the line.

(9) Clear lower part of scroll area

Format: ESC[0J or ESC[J

Function: Clears the area from the cursor location to the end
' of the scroll area with spaces. The cursor does not

move.

Note:

The scroll area varies according to the specifica
tions of control sequence ESC[Pf;Ptr.

That is, when area B is specified as the partial
scroll area and the cursor is in that area, area B
is cleard to its end; when the cursor is in area A,
area A is cleared to its end. ■

28

(10) Clear upper part of scroll area

Format: ESC[1J

Function: Clears a part of scroll area from its beginning to
the cursor location with spaces. The cursor moves
to the beginning of the scroll area. Refer to the
note for ESC[0J.

(11) Clear scroll area

Format: ESC[2J

Function: Clears the scroll area with spaces. The cursor
moves to the beginning of the scroll area. Refer
to the note for ESCfOJ.

(12) Scroll area setting

Format: ESC[Pf;Ptr

Function: Sets the scroll area to the area from line Pf to
line Pt. Pf and Pt must be as follows.

When the value of Pf or Pt is out of range, it is
assumed as the limit value.

Ex) ESC [0; 28r -* ESC[l;25r

When the scroll area is not the entire screen, a
special scroll method is used. This method is
performed at a lower speed than that with the smooth
or jump scroll method.

(13) Line insertion

Format: ESC[PnL

Function: Inserts the number of blank lines specified with Pn
between the cursor line and the preceding line.
The lines after cursor lines are scrolled down.
The cursor is moved to the beginning of the cursor
line. This control sequence is not performed when
the cursor is out of the scroll area. Pn is assumed
as 1 when it is omitted or is specified as 0.

25-line mode
20-line mode

l<Pf<Pt<25
l<Pf<Pt<20

29

(14) Line deletion

Format: ESC[PnM

Function: Deletes the number of lines specified with Pn from
the cursor line. The remaining lines are scrolled
up. The cursor is moved to the beginning of the
cursor line. This function is not performed when
the cursor is out of the scroll area. Pn is assumed
as 1 when it is omitted or is specified as 0.

(15) Character insertion

Format: ESC[Pn@

Function: Inserts the number of spaces specified with Pn in the
cursor location. The following characters are shift
ed to the right and those exceed the end of line are
discarded. Pn is assumed as 1 when it is omitted or
is specified as 0.

(16) Character deletion

Format: ESC[PnP

Function: Deletes the number of character specified with Pn
from the cursor location. The following characters
are shifted to the left and columns at the end of
line are filled with spaces. Pn is assumed as 1
when it is omitted or is specified as 0.

(17) Cdrsor location

Format: ESC[6n

Function: Requests the current location. The format of the
return data is as follows. The user must obtain the
location through CONIN.

ESC[PI;PcR where PI = line number, Pc = column number

(18) Moving the graphic cursor up

Format: ESC[>PnA

Function: Moves the cursor up the number of dots specified with
Pn. When the Y coordinate of the cursor location is
0, the cursor does not move. Pn is assumed as 1 when
it is omitted or specified as 0.

30

(19) Moving the graphic cursor down
Format: ESC[>PnB
Function: Moves the cursor down the number of dots specified

with Pn. When the Y coordinate of the cursor loca
tion is 399, the cursor does not move. Pn is assumed
as 1 when it is omitted or is specified as 0.

(20) Moving the graphic cursor to the right
Format: ESC[>PnC
Function: Moves the graphic cursor to the right the number of

dots specified with Pn. When the X coordinate of
the cursor location is 639, the cursor does not move.
Pn is assumed as 1 when it is omitted or is specified
as 0.

(21) Moving the graphic cursor to the left
Format: ESC[>PnD
Function: Moves the graphic cursor to the left the number of

dots specified with Pn. When the X coordinate of
the cursor location is 0, the cursor does not move.
Pn is assumed as 1 when it is omitted or is specified
as 0.

(22) Moving the graphic cursor
Format: ESC[>Px,PyH or ESC[>Px;Pyf
Function: Moves the graphic cursor to the location specified

with coordinates Px and Py. When Px and Py are out
of range, they are assumed as the nearest limit values.
Ex) ESC[>700;400H * ESC(>639;399H

(23) Getting the graphic cursor position
Format: ESC[>6n
Function: Requests the current graphic cursor location. The

format of the return data is as follows. The user
must obtain the location through CONIN.
ESC[>Px;Py R where Px = x coordinate, Py = y coordinate

*

31

(24) Character cursor display
Format: ESC[>0h
Function: Makes the character cursor visible (ON).

(25) Graphic cursor display
Format: ESC[>lh
Function: Makes the graphic cursor visible (ON).

(26) 25-line mode specification
Format: ESC[>2h
Function: Sets the screen to the 25-line mode, clears the entire

screen and sets the scroll area to the entire screen.
The cursor is moved to the home position.

(27) Smooth scroll mode specification
Format: ESC[>3h
Function: Sets the scroll mode to the smooth scroll mode. This

control sequence is not effective if it is entered
when a part of screen is set to the scroll area but
will become effective when the scroll area is set to
the entire screen.

(28) Setting the pointing device graphic cursor mode
Format: ESC[>4h
Function: Sets the pointing device graphic cursor mode in which

the pointing device is used to move the graphic cursor
and makes the graphic cursor visible.

(29) Setting the character box size to 16/20
Format: ESC[>5h
Function: Sets the size of character box as shown below.

25-line mode

Character box

32

20-line mode

Character box

When a character which is not underlined is displayed
in this mode in a location on which an underline is
already displayed, the underline is erased because
the display area includes the underline area.
(Note for h-type sequences)
All the above h-type control sequences (ESC[>0h -
ESC[>5h) can be executed at a time by the following
format.

ESC[>h
More than one h-type control sequences can be includ
ed in a format as shown below.

ESC[> 0;1;4h

(30) Erasing the character cursor
Format: ESC[>0£
Function: Makes the character cursor invisible. As a result,

the display processing speed is increased.

(31) Erasing the graphic cursor
Format: ESC[>1£
Function: Makes the graphic cursor invisible. As a result, the

display processing speed is increased.

(32) 20-line mode specification
Format: ESC[>2£
Function: Sets the screen to the 20-line mode, clears the

entire screen and sets the entire screen to the scroll
area. The cursor is moved to the home position.

33

(33) Jump scroll mode specification
Format: ESC[>3£
Function: Sets the scroll method to the jump mode. This con

trol sequence is not effective if it is entered when
a part of screen is set to the scroll area but will
become effective when the entire screen is set to
the scroll area.

(34) Setting the pointing device character cursor mode
Format: ESC[>4£
Function: Sets the pointing device character cursor mode in

which the pointing device is used to move the charac
ter cursor, and makes the graphic cursor invisible.

(35) Setting the character box size to 12/16
Format: ESC[>5£
Function: Sets the size of character box as shown below.

25-line mode

Underline area
Character box

20-line mode

i Underline area
Character box

When a character which is not underlined is displayed
in this mode in a location on which an underline is
displayed, the underline is not erased because the
underline area is not set as the display area. If
semigraphic characters are displayed in this mode,

34

the lower part of each character which occupies the
lower 4 lines of the 8 x 16 dot matrix is not dis
played .
(Note for £-type sequence)
All the above £-type control sequences (ESC[>0Jl -
ESC[>5£) can be executed at a time by the following
format.

ESC [>£.
More than one control sequence can be specified in
a format as shown below.

ESC[>1;2;3£

(36) Resetting character display attributes
Format: ESCfOm
Function: Resets the underline and reverse attributes for

character display. With the monochrome 2-frame model,
this control sequence sets the foreground palette
number to 3 (default value: standard brightness).

(37) Setting the high brightness attribute
Format: ESC[lm
Function: Displays characters at higher brightness, that is sets

the foreground palette number to 1 (default value:
high brightness). This is effective only with the
monochrome 2-frame model. This sequence does not
operate properly if the palette setting has been
changed.

(38) Setting the underline attribute
Format: ESC[4m
Function: Displays characters with underlines.

25-line mode

35

20-line mode

(39) Setting the blinking attribute
Format: ESC[5m
Function: Displays characters with blinking attributes. This

sequence is effective with the monochrome 2-frame
model. The foreground palette number is set to 2
(default value: blinking). This sequence does not
operate properly if the palette setting has been
changed.

(40) Setting the reverse display attribute
Format: ESC[7m
Function: Reverses the foreground and background colors or

attributes to display characters.

(41) Specifying the foreground and background colors
Format: . ESC[Pnm
Function: Specifies the palette numbers for the foreground and

background colors when characters are displayed. This
is effective for the color CRT model only.

Value of Pn Specified palette
Foreground Background Number Default color

30 40 0 Black

31 41 4 Red

32 42 2 Green

33 43 6 Yellow

34 44 1 Blue

35 45 5 Magenta

36 46 3 Cyan

37 47 7 White

36

This control sequence has a similar function as the
palette setting sequence (ESC [1;Pn;Pcq) excepting
that this uses the default colors. Use the palette
setting sequence when you what to change the palette
setting. The desired result cannot be obtained with
this sequence if the palette setting has been changed.
(Note for the m-type control sequences)
More than one m-type control sequence (ESC[0m -
ESC[47m) can be specified in a format as shown below.

ESC[4;31;41m
Note that parameters which can be specified very
according to the model as shown below.

Parameter Function Color CRT
model

Monochrome 2-
frame model

Monochrome 1-
frame model

0 Resetting attributes o o o
1 High brightness o
4 Underline o o o
5 Blinking o
7 Reverse display o o o

30 't 37,
40 47

Foreground and
background colors o

(42) Specifying the character cursor color
Format: ESC[>0;Pnc
Function: Specifies the palette number for the attribute or

color of the character cursor. Pn must be within the
range shown below.

Color CRT model °lPn<7
Monochrome 2-frame model °£Pn<3
Monochrome 1-frame model °<Pn<l

(43) Specifying the graphic cursor color
Format: ESC[>l;Pnc
Function: Specifies the palette number for the attribute or

color of the graphic cursor. Pn must be within the
range shown below.

37

Color CRT model 0<_Pn<7
Monochrome 2-frame model °<Pn<3
Monochrome 1-frame model °<Pn<l

(44) Specifying the underline color
Format: ESC[2;Pnc
Function: Specifies the palette number .for the attribute and

color of the underline. Pn must be within the range
shown below.

Color CRT mode °<Pn<7
Monochrome 2-frame model °<Pn<3
Monochrome 1-frame model 0<Pn<l

(45) Specifying the screen bank
Format: ESC[0;Pnq
Function: Specifies the effective screen bank when data is

output to V-RAM.
setting of Pn 1------------- 2
2 1 0 1------- 1

Screen 0
bank

The lower 3 bits of Pn correspond to screen banks 1
to 3 as shown above. Therefore, when Pn is set to 5
(101), data is not output to screen bank 1. This
control sequence is effective when each screen bank
is independently controlled. Pn must be within the
range shown below.

Color CRT model °lPnl7
Monochrome 2-frame model °<Pn<3
Monochrome 1-frame model °lPnS-

38

(46) Specifying the foreground and background colors

Format: ESC[1;Pf;Pbq

Function: Specifies the palette numbers for the attributes or
colors of characters or graphic patterns. Pf speci
fies the palette for foreground and Pb specifies the
palette for background.

Background
Foreground

Character box

The background color or attribute is effective when
characters are displayed or graphic patterns are
painted. Pf and Pb must be within the range shown
below.

Color CRT mode 0<Pf or Pb<7
Monochrome 2-frame model 4-1ft,

o or Pb<3
Monochrome 1-frame model 0<Pf or Pb<l

(47) Setting the palette

Format: ESC[2;Pn;Pcq

Function: Sets the palette specified with Pn to the color or
attribute specified with Pc. More than one Pc can
be specified to specify the colors or attributes to
palettes Pn, Pn+1, Pn+2 •••.

Ex) ESC[2;0;1;2;3;4;5;6;7;8q

The above example sets attributes 1 to 8 to palettes
0 to 7.

PC for monochrome 1-frame mode;

Value Attribute
0
1

2 - 2 8

Non-display
Standard brightness
Standard brightness

39

Pc for monochrome 2-frame model

Attribute
Value Blinking High

brightness
Standard
brightness

Remarks

0 0 0 0 Non-display (black)
1 0 0 1 Standard brightness
2 0 1 0 High brightness

3 ̂ 26 0 0 1 Standard brightness
27 1 0 1 Standard blinking
28 1 1 0 High brightness

blinking

40

Pc for color CRT model

Value Color
Remarksr R g G b B

0 0 0 0 0 0 0 Black (non-display)
1 0 0 0 0 0 1 Blue
2 0 0 0 0 1 1
3 0 0 0 1 0 0 Green
4 0 0 0 1 0 1 Cyan
5 0 0 0 1 1 1
6 0 0 1 1 0 0
7 0 0 1 1 0 1
8 0 0 1 1 1 1
9 0 1 0 0 0 0 Red

10 0 1 0 0 0 1 Yellow
11 0 1 0 0 1 1
12 0 1 0 1 0 0 Magenta
13 0 1 0 1 0 1 White
14 0 1 0 1 1 1
15 0 1 1 1 0 0
16 0 1 1 1 0 1
17 0 1 1 1 1 1
18 1 1 0 0 0 0
19 1 1 0 0 0 1
20 1 1 0 0 1 1
21 1 1 0 1 0 0
22 1 1 0 1 0 1
23 1 1 0 1 1 1
24 1 1 1 1 0 0
25 1 1 1 1 0 1
26 1 1 1 1 1 1

27,28 1 1 1 1 1 1

R: Red r : Half brightness red
G: Green g: Half brightness green
B: Blue b: Half brightness blue

41

(48) Generating sound
Format: ESC[>Pf;P£s
Function: Generates the sound of the frequency specified with

Pf for the period of time specified with Pit. More
than one parameter can be specified. Pf is a number
from 0 to 60 which represents a note within 5 octave
range. When 0 is specified no sound is generated.

Value of Pf

Tone Octave
0 1 2 3 4

C 1 13 25 37 49
C# 2 14 26 38 50
D 3 15 27 39 51
D# 4 16 28 40 52
E 5 17 29 41 53
F 6 18 30 42 54
F# 7 19 31 43 55
G 8 20 32 44 56
G# 9 21 33 45 57
A 10 22 34 46 58
A# 11 23 35 47 59
B 12 24 36 48 60

A1 (22)=440Hz
P£ must be within the range from 0 to 255. The unit
period is about 0.016 seconds.

p£ Time
(second)

1 0.016
10 0.16
50 0.8
100 1.6
150 2.4
200 3.2
255 4.08

Multiple parameters can be specified but the total
number of parameters (include;) must be 30 or less.
Ex) ESC[>Pfl;p£l;Pf2;P£2;....;Pfn;p£ns

42

4-6 Graphic Display Functions
4-6-1 Outline
There are two methods to use the graphic display functions.
One uses special escape sequences entered through the BIOS
CONOUT call.
The other calls the AS-100 function calls from user assembler
programs. In this method, parameters are directly set in regis
ters. The processing speed of this method is faster than that
of the former method.

Coordinate system
The X and Y coordinates of the address space for graphic display
range from -32768 to +32767. However, the area which is actual
ly displayed on the CRT screen is limited as follows.

0 < x < 639
0 < y < 399

Values which are out of the above ranges are ignored by the
boundary check function but do not cause errors except the
following cases.

1. When specified in V-RAM transfer commands G and H.
2. When specified in paint commands P and Q.

-y

43

Current pointer (CP)
The Coordinates which are used as the reference point when draw
ing dot patterns or circles are indicated by the current pointer.
The initial value of the current pointer is (0, 0) and it can
be varied if necessary. The current pointer can be varied only
by graphic commands and initialization sequence (ESCc).

Color and attribute
The color or attribute of dot, pattern or character displayed by
a graphic command is determined by the palette currently select
ed (foreground or background palette). Thus, the color of a
mesh pattern or halftone pattern may be a composite color of the
foreground and background colors.

4-6-2 Graphic display through CONOUT
Graphic sequence
Graphic commands and parameters are entered as follows to execute
graphic functions through CONOUT.

£sc p Esc /

I--------- Graphic mode terminated
------------------- Command and parameter group

-----------------------------Graphic mode initiated

ESC P (1B50H) switches CONOUT to the graphic mode. The graphic
mode continues until ESC / is entered. In the graphic mode,
CONOUT assumes that all the codes entered comply the rule des
cribed below and executed them as graphic commands and parameters.
The following items are initialized when the graphic mode is
initiated by ESC P.

Line Solid line
Paint pattern Painting all over
Character enlargement 1 (not enlarged)
Character inclination 0 (not inclined)

Commands and parameters
Each graphic command consists of a command character followed by
parameters. Graphic commands are executed when ESC / is entered.

44

Command character;
Command characters are listed below. Lowercase characters
are treated as uppercase characters (e.g., M=m). Charac
ters other than the listed are ignored.

Parameters;
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ", + and - are valid.Other characters are ignored. ' and " are used as delimiters
for text string in which all characters can be used.

Graphic command list

No. Command Parameter Function
1 M x, y Moving current point
2 D None Drawing dot
3 L x, y Line drawing
4 R x, y [, p] Rectangle drawing (paint)
5 C r [, p] Circle drawing (paint)
6 E rx, ry, 0 [, p] Ellipse drawing (paint)
7 F r, 01, 02 [, p] Fan shape drawing (paint)
8 A r, 01, 02 Arc drawing
9 S P Mark drawing

10 Q None Painting an area
11 p P Painting the area within a closed

line
12 T "string" or 'string' Text (enlargement, inclination)
13 W Pi, p2 Specifying color (attribute)
14 X P Specifying line type
15 Y P Specifying paint pattern
16 Z pi, p2, p3 Specifying character size and

inclination
17 G seg, off, x, y Reading V-RAM
18 H seg, off, x, y Writing V-RAM

Lowercase character
y: Coordinates
r: Radius seg: Segment address
0: Angle (decimal number)

P: Numeric string defined for
each function

off: Offset address
(decimal number)

45

(1) M - Moving current point

Format: Mx, y

Parameters: x X-coordinate
y Y-coordinate

Function: Moves the current point to the specified location.

(2) D - Drawing dot

Format: D

Parameter: None

Function: Displays a dot at the current point. The color or
attribute is specified by the foreground palette.

(3) L - Drawing line

Format: Lx, y

Parameter: x and y coordinates

Function:

Draws a line from the current point to the specified location.
The current point is moved to the specified location after
drawing the line. The line type depends on the line type mode
(command X). The point of termination is always set. The
color or attribute is specified by the foreground palette.

(4) R - Drawing rectangle

Format: Rx, y [,p]

Parameters: x, y coordinates
p paint attribute

0 not painted
1 painted
(Default value is 0.)

Function: Draws a rectangle with the diagonal line connecting
the current point and the specified location set as
the diagonal. The line type depends on the line
type mode when the rectangle is not painted; the
profile is set to the solid line according to the
paint type when it is painted. The color or attri
bute is specified by the foreground palette.

46

(5) C - Drawing circle
Format: Cr[,p]
Parameters: r radius (positive value only)

p paint attribute
0 not painted
1 painted
(Default value is 0.)

Function: Draws a circle with the special radius with the
current point set as the center. The line type
depends on the line type mode when the circle is
not painted; the profile is set to the solid line
according to the paint pattern when it is painted.
The color or attribute is specified by the fore
ground palette.

(6) E - Drawing ellipse
Format: Erx,ry,0[,p]
Parameters: rx

ry
0
P

radius in the direction of x' axis
radius in the direction of y' axis
angle of x' axis to x axis
paint attribute

0 not painted
1 painted
(Default value is 0.)

47

Function: Draws an ellipse with the current point as the
center which has radiuses of the specified lengths
and is inclined by 9 degrees against the x axis.
The current point is not moved. The line type
depends on the line type mode when the ellipse is
not painted; the profile is set to the solid line
when it is painted. If another pattern or closed
line exists in the ellipse, all the entire area
within the ellipse may not be painted. (Painting
start at CP.) The color or attribute is specified
by the foreground palette.

(7) F - Drawing fan shape
Format: Fr,01,02t»Pi
Parameters: r radius

. 01 start angle
02 interior angle
P paint attribute

0 not painted
1 painted
(Default value is 0.)

y

Function: Draws a fan shape with a starting angle of 0p, an
interior angle of 02 and a radius of r with the
current point as the center. The current point is
not moved. The line type depends on the line type
mode when the fan shape is not painted, the profile
is set to the solid line when it is painted. Paint
ing starts at coordinates 02/2, r/2. Therefore, if

48

the painting start point is not in the display space,
painting is not performed. If another pattern or
closed line is within the shape, painting may not
be performed correctly. The color or attribute is
specified with the foreground palette.

(8) A - Drawing arc

Format: Ar, 01,02

Parameters: r radius
0 1 starting angle
0 2 interior angle

- 0

¥
y

Function: Draws an arc with the current point set as the
center which has a starting angle of Bp, an interior
angle of 0 2 and a radius of r. The current point is
not moved. The line type depends on the line type
mode. The color or attribute is specified with the
foreground palette.

(9) S - Drawing mark

Format: Sp

Parameters: p mark type (0 to 6) ' 0 O

1 •
2 □
3 ■
4 x
5 *

. 6

49

Function: Displays a mark specified with the parameter at the
current point. The current point is not moved. The
color or attribute is specified with the foreground
palette.
Mark patterns (x; current point)

Type 0 Type 1

Type 2

o o o o o
o o
o X o
o o
o o o o o

Type 3

o o o o o
o o o o o
o o 0 o o
o o o o o
o o o o o

Type 4

o o
o o

0
o o

o o

Type 5

o
o o

o X o
o o o o o o o

Type 6

o
o o o

o o 0 o o
o o o o o o o

50

(10) Q - Painting an area

Format: Q

Parameter: none

Function: Paint a continuous area, which includes the current
point and has the same color or attribute as the
current point, with the color or attribute specified
with the foreground palette. Painting depends on
the paint pattern. For patterns other than overall
painting, the background c lor or attribute may be
used. The current point is not moved.

(11) P - Painting the area enclosed with a closed line

Format: Pp

Parameter: p Palette number for boundary color (0 to 7)

Function: Paints the screen starting at the current point
until a location which has the color or attribute
specified with the parameter. Therefore, if there
is no location which has the specified color or
attribute in the screen, the entire screen is paint
ed with the foreground color. Patterns which has
the specified color or attribute and areas enclosed
with lines of the specified color or attribute are
not painted. Painting depends on the paint pattern.
For patterns other than overall painting, the back
ground color or attribute may be used. The current
point is not moved.

(Note for painting)

When a complex pattern is painted with a Q or P command
(e.g. when a halftone pattern is painted by the mesh pattern),
the work area in the graphic system may be insufficient. In
such a case, painting is suspended. With the color model,
if all screen banks (V-RAM) are not selected, boundary con
ditions become ambiguous, resulting in erroneous operation.

(12) T - Text

Format: T"text" or T 'text'

Parameter: "text"

Function: Displays the specified text assuming that the cur-
rnt point is the upper left corner of the first
character box. The dots which form character
patterns are plotted with the color or attribute
specified with the foreground palette. The color

51

or attribute of the remaining area in each character
box does not change. The size and inclination of
each character are specified with the character type
setting command (Z). The current point is moved to
the upper right corner of the last character box.

y Enlargement ratio 1, inclination 0

(13) W - Specifying color

Format: Wpl,p2

Parameter: pi foreground palette number 0 to 7
p2 background palette number 0 to 7

Function: Assigns the foreground and background palette
numbers. The palette numbers specified with this
command is also effective after the graphic mode
has been terminated. The background color or attri
bute is used only when painting is performed. The
initial setting of each palette is as follows.
Color CRT model

Palette number Color
0 Black (non-display)
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Yellow
7 White

52

Monochrome 2-frame model

Palette number Attribute
0 Non-display
1 High brightness
2 Blinking
3 Standard brightness

Monochrome 1-frame model

Palette number Attribute
0 Non-display
1 Standard brightness

(14) X - Specifying line type

Format: X[p]

Parameter: p line type 0 to 4 (Default is 0.)
0: Solid line —-- ----
1: Short dotted line ------
2: Long dotted line — — ---
3: Chain line -— ■— ---
4: Two dots chain line -------

Function: Specifies the line type. The type specified is ef
fective until the graphic mode is terminated. The
initial value and default value are 0 (solid line)
The line type becomes 0 when the graphic mode is
terminated.

Line patterns

0 solid line

53

3 chain line

o o o o o o o o o o
4 two dots chain line

(15) Y - Specifying paint pattern

Format: Y[p]

Parameter: p paint pattern 0 to 8 (Default is 0.)
0: Overall painting
1: Halftone

2: Oblique lines (right up)
3: Oblique lines (left up)
4: Vertical lines
5: Horizontal lines
6: Slanted mesh
7: Mesh
8: Deep halftone '

Function: Specifies the paint pattern. The pattern specified
is effective until the graphic mode is terminated.
The initial value and default value are 0 (overall
painting). The paint pattern is initialized when
ever the graphic mode is initiated (with ESC P).

Paint pattern

1. Halftone

o o o
o o o

o o o
o o o

2. Oblique lines (right up)

o o
o o

o o
o o

o
o

o
o

54

3. Oblique lines (left up)

o o
o

o
o

o
o o

o o '

o o

4. Vertical lines

o o o
o o 0
o o o
o o o
o o o
o o o
o o o
o o o

5. Horizontale lines

o o o o o o o o o o o o

o o o o o o o o o o o o

6 . Slanted mesh

o o
o o o

o o o
o o o

o
o o o

o o o
o o o

7. Mesh

o o o
o o o
o o o

o o o o o o o o o o o o
o o o
o o o
o o o

o o o o o o o o o o o o

8 . Deep halftone

o o o o o o
o o o o o o

o o o o o o
o o o o o o

o o o o o o
o o o o o o

o o o o o o
o o o o o o

55

(16) Z - Specifying inclination of characters

Format: Zpl,p2,p3

Parameters: pi horizontale multiplier 1 to 16
p2 vertical multiplier 1 to 16
p3 inclination 0 to 3

Function: Specifies the multipliers which determine the size
of character and the inclination of character. The
multipliers and inclination are effective until the
graphic mode is terminated. The initial values of
the multipliers are 1 and that of inclination is 0 .
They are initialized whenever the graphic mode is
initiated with ESC P. Enlargement of character is
performed for the 8 x 16 dot character box.

Horizontal
A —— multiplier^ — \

Vertical /
A

multiplier:!

Standard box

Inclination is performed in 90-degree units with the
current point set to the center.

56

(17) G - Reading V-RAM

Format: Gseg,off,x,y

Parameters: seg destination segment address
off destination offset address
x, y Coordinates

Function: Transfers the bit map of the rectangular with the
diagonal line connecting the current point and the
specified location to the specified memory area
starting at the specified address. Data transfer
is made in bit units. If the last byte is not
filled with the bit transferred, the remaining
bits become 0. When two or more screen frames are
used, frame 1 is transferred after frame 0 has been
transferred, and so on. If the current point and
the specified location are not in the display space,
data transfer is not performed.

segroff
User RAM

Note: When the transfer starting address (CP) of
the V-RAM bit map is at a byte boundary,
data transfer is performed in word units
(16 bit units), resulting in high speed
processing. This also applies to the H
command below.

57

(18) H - Writing V-RAM

Format: Hseg,off,x,y

Parameters: seg source segment address
off source offset address
x, y coordinate

Function: Transfers bit image from the memory area starting
at address seg:off to the rectangular display area
with the diagonal line connecting the current point
and the specified location. When two or more
frames are used, data is first transferred to frame
0, then frame 1 and frame 2 in succession. If the
current point and the specified location are not
in the display area, data transfer is not perform
ed. This command has an opposite function of the
G command.

4-6-3 AS-100 function call

The AS-100 function calls are basically the same as the func
tions called through CONOUT. Each function is executed by
issuing INT 241 (Flh) with a function code and parameters set
in registers.

A function code is set in the CL register and parameters are
set in the AX, BX, DX, BP, ES and/or DI registers. The con
tents of all registers are not changed upon execution of the
called function. The text display function is different from
the corresponding function called through CONOUT: it cannot
display more than one character. Other functions are the same
as those called through CONOUT. The table below lists the
function codes and parameters. For details, refer to the
corresponding functions called through CONOUT.

Function codes and parameters

Function
code Parameters Function

0 AX: x coordinate
BX: y coordinate

Moving current point

I None Displaying dot

2 AX: x coordinate
BX: y coordinate

Drawing line

58

Function
code Parameters Function

3 AX: x coordinate
BX: y coordinate
BP: paint attribute

Drawing rectangle

4 AX: radius
BP: paint attribute

Drawing circle

5 AX: radius
BX: starting angle
DX: interior angle
BP: paint attribute

, Drawing fan shape

6 AX: radius
BX: starting angle
DX: interior angle

Drawing arc

7 ÄL: mark type Drawing mark

8 AL: boundary color palette
number

Painting area within
closed line

9 None Painting an area

10 AX: Character code
AH=Null AL 8 bit
AH^Null AX 16 bit

Displaying one character

11 AX: x coordinate
BX: y coordinate
DI: offset address
ES: segment address

Reading V-RAM

12 AX: x coordinate
BX: y coordinate
DI: offset address
ES: segment address

Writing V-RAM

13 AX: major radius
BX: minor radius
DX: inclination
BP: paint attribute

Drawing ellipse

14 AH: foreground palette number
AL: background palette number

Specifying color
(attribute)

15 AL: line type Specifying paint type
16 AL: paint pattern Specifying paint pattern
17 AH: vertical multiplier

AL: horizontal multiplier
BL: inclination

Specifying character
size and inclination

59

CHAPTER 5 KEYBOARD

5-1 Layout

The AS-100 keyboard keys are grouped into ASCII keys, ten
numeric keys, function keys, and special keys as shown in the
figure below. It allows attachment of the optional A-1100
pointing device.

Under AS-100 CP/M-8 6 , all key code is passed to the system via
the BIOS CONIN routine. This chapter describes the keyboard
codes that are handled by the CONIN routine.

5-2 ASCII Keys

ASCII keys generate different codes when pressed simultaneous
ly with the CTRL, ALPHA-LOCK, or SHIFT key. Pressing these
keys while holding down the ALT key generates no code.
The CURSOR LOCK key does not affect the ASCII keys.
All ASCII keys have the auto repeat feature.

The table below lists the character codes produced by the ASCII
keys along with various mode control keys. In the table, blank
columns indicate that no code is generated when the pertinent
key is pressed and numbers enclosed in parentheses denote the
hexadecimal representations of the codes. The other columns
contain the character representations of the codes.

60

K
E
Y

C
TR
L
ON

CTRL OFF
ALPHA
LOCK

ALPHA
LOCK OFF

Shift
ON

Shift
OFF

Shift
ON

Shift
OFF

X (18) X X X X
Y (19) Y Y Y y
Z (1Ä) Z Z Z Z

[(1B) { [{ [
(1C) 11 \ 1

\ \
] (ID) }] 1]
A (IE) A A

— (IF) _ _ _ —
0 0 0
1 t 1 1 l
2 II 2 II 2
3 # 3 # 3
4 $ 4 $ 4
5 % 5 % 5
6 & 6 & 6
7 T 7 ▼ 7
8 (8 (8
9) 9) 9
: * : * :
/ + t + t

t < i < f

- = - = -
• > • > •

/ ■? / /

K
E
Y

c
T
R
L
ON

CTRL OFF
ALPHA
LOCK

ALPHA
LOCK OFF

Shift
ON

Shift
OFF

Shift
ON

Shift
OFF

Ö (00) ▼ @ T @
A (01) A A A a
B (02) B B B b
C (03) C C C c
D (04) D D D d
E (05) E E E e
F (06) F F F f
G (07) G G G g
H (08) H H H h
I (09) I I I i
J (OA) J J J j
K (OB) K K K k
L (OC) L L L 1
M (OD) M M M m
N (OE) N N N n
0 (OF) 0 0 0 o
P (10) P P P p
0 (11) Q Q Q q
R (12) R R R r
S (13) S S S s
T (14) T T T t
U (15) U U U u

V (16) V V V V

w (17) W W w w

61

5-3 Ten Numeric Keys

The ten numeric key group consists of digit keys 0-9, 00 key,
and decimal point (.) and minus (-) keys. You can use some
of these keys to position the cursor on the screen by changing
its mode with the CURSOR-LOCK key. These keys are not affect
ed by the ALPHA-LOCK or SHIFT key.

They generate no code when pressed simultaneously with the
CTRL key. All keys have the auto repeat feature. The table
below presents the codes that they product with or without the
CURSOR-LOCK key pressed. Blank column indicates that no code
is generated.

Key CURSOR LOCK
OFF ON

0 0 ES0 [N

1 1 Es0 (I

2 2 Esc [b (i)

3 3 eSq [F (PgDn)

4 4 ES o [D («-)

5 5 ESc[G

6 6 ESC [c (-)

7 7 Esc [H (HOME)

8 8 ES0 [A (t)

9 9 ESC [E (PgUp)

00 00

• •

- -

When the CURSOR-LOCK key is ON, the 0 through 9 numeric keys
generate 3-character escape code sequences which are used to
control the CRT display (via CONOUT). Since these codes are
not automatically echoed back to CONOUT, however, you cannot
control the cursor simply pressing these keys. See CHAPTER 4
for the CONOUT functions.

When used together with the ALT key, the ten numeric keys allow
you to enter character codes with decimal notation. When you

62

enter a decimal number using the 0 through 9 keys while holding
down the ALT key, the corresponding character code is generated
when the ALT key is released. For example, if you enter "160"
with the ALT key held down, the corresponding character code
AOh will be generated when you release the ALT key. Pressing
the 00 key while holding down the ALT key cancels the previous
decimal number input.

5-4 Function Keys
The keyboard has twelve function keys named FI through F12.
These keys are not affected by the ALPHA-LOCK or CURSOR-LOCK
keys. They generate different codes depending on whether or
not they are pressed simultaneously with the SHIFT key. When
pressed simultaneously with the CTRL and ALT keys, the function
keys generate no code. They do not have the auto repeat func
tion. The table below lists the codes generated by the func
tion keys.

Key SHIFT key state
Shift OFF Shift ON

FI Es00 Esc o

F2 ESC P ^cP
F3 Esc Q Esc q
F4 EscR Esc r
F5 EscS E®C 3

F6 ESC T ESc t
F7 E®C U ESc U

F8 E®c V ESc V
F9 ESC w ESC W

F10 ESC X ESC X

Fll Esc y Esc y
F12 Esc z ESC z

63

5-5 Special Keys

The keys on the AS-100 keyboard other than the ASCII keys, ten
numeric keys, and function keys [F1-F12] are called special
keys. The special keys are not affected by whether the ALPHA
LOCK or CURSOR-LOCK key is on or not; however, some special
keys generate different codes when pressed simultaneously with
the SHIFT key. Their codes are suppressed when they are press
ed simultaneously with either CTRL or ALT key. The space and
DEL keys have the auto repeat function. The table below lists
the codes generated by the special keys. Numbers enclosed in
parentheses are hexadecimal representations of the codes.

Key SHIFT key state Repeat
featureShift OFF Shift ON

M ----- -
■-----M

(09) ESC 7 No

(Space) (20) ®8C 7 Yes

ESC (IB) ESc 7 No

DEL (7F) ESc 7 Yes
LINE
FEED (0A) % 7 No

(0D) ESc 7 No

ENTER (0D) ESc 7 No
CLEAR
SCREEN Esc [2J ESC 7 No
DELETE
LINE (18) ESC 7 No

CANCEL (03) ESc 7 No

COPY E8C3 E®C 7 NO

MOVE ESC4 ESc 7 NO

DELETE ESC5 ESc 7 No

INSERT ESc 6 ESC 7 No

64

5-6 Pointing Device
The pointing device is used to move the cursor at any given
position on the screen. There are two types of cursor: the
character cursor and the graphic cursor. The pointing device
can control only one cursor type at a time. Which cursor the
pointing device is controlling is determined by the mode in
which the pointing device is currently in. This mode is con
trolled by issuing a control sequence to the CONOUT routine.
In the initial state, the pointing device is placed in the
character cursor mode. The CONOUT routine also supports the
control sequence which reads the current cursor position on
the screen. See Chapter 4 for details.
(1) Character cursor mode
Moving the direction control button in the character cursor
mode generates escape code sequence associated with eight
directions to the CONIN routine. These codes are identical
to those which are generated by pressing cursor control keys
in the ten numeric key group while holding down the CURSOR
LOCK key. They are also identical to the character cursor
control code sequences supported by the CONOUT routine. The
codes associated with the eight directions are listed in the
table below.

Direction Code

1 ESC [A

i ESC EB

- * E®c [c

— ESC [D

\ ESc [D Egc [B

/
ESC [C ESq [b

/
ESc [D eSc [a

\ ESC [C ESC [A

(2) Graphic cursor mode
In the graphic cursor mode, the pointing device passes no
escape code sequences associated with the eight cursor direc
tions to the CONIN routine. Instead, it outputs the escape
code sequences directly to the CONOUT routine to speed up
cursor movement.

65

In the graphic cursor mode, the movements of the graphic cursor
are associated with the following increments of the x and y
coordinates of the cursor:

Direction
Increment

Ax Ay

I 0 1

1 0 -1

— 1 0

— -1 0

\ -1 -1

/
1 -1

/
-1 1-

\ 1 1

In the high-speed mode (when the fast button is pressed), the
increments of the x and y coordinates are multiplied by five
and three respectively.

(3) Pointing device function keys

The pointing device has three function keys (A, B, and C) which
provide.the same functions as some special keys. Pressing these
keys generate the corresponding escape code sequences to the
CONIN routine, irrespective of whether the pointing device is
in the character or graphic cursor mode. The escape code sequen
ces generated by the function keys are listed below.

Key Generated codes

A Esc 0

B Escl

C Esc 2

66

CHAPTER 6 PRINTER INTERFACE

The AS-100 is provided as standard with a parallel printer
interface which conforms to the Centronics specifications.
The AS-100 allows attachment of any printer which matches this
interface.
Canon supplies several printers for the AS-100. You can use
any of these printers with no special handling program under
AS-100 CP/M-86. However, you need a special handling program
tailored to our printer when you want to produce hard copies
or handle two printers at a time (another parallel interface
option is required in this case).
This chapter describes the use of the printer handling program
supported by AS-100 CP/M-86.

6-1 Printer Handling Commands
The AS-100 CP/M-86 operating system supports the following
printer handling subprograms in the form of transient commands:

Handler
name

Printer
type Main function Required

size*(KB)
A1200 A-1200 Produces hard copy of screen

data.
3

A1210 A-1210 Produces hard copy of screen
data in colors.

3

CNTHND Centronics
compatible
printer

Provides no special functions
(handles second printer).

0.3

* Size of the resident routines linked to BIOS.

AS-100 CP/M-86 contains a standard LPT: device handling program
in its BIOS. Therefore, the user can use a printer without the
above handler programs.
When a printer handling program is executed, it is loaded into
the TPA area, then it relocates itself to the area following
the BIOS area. The program then links to BIOS and invalidates
the preceding printer handler. The printer handler programs
must not be invoked indiscriminately since if the same printer
handler were executed more than once, deal located areas would
be created in the BIOS area.

67

CP/M-86 CP/M-86

BIOS

=>
BIOS

Handler

TPÄ TPA

Handler riL.___ _______i
ROM ROM

Control is returned to CP/M-86 when the linkage between the
handler and BIOS is completed.
Once the printer handler program is executed, the user can
obtain hard copy of screen contents. It would therefore be
convenient if the user incorporates the handler programs
tailored to his printer into the automatic setup command file
(START.SUB). He may not need these handlers, however, if he
does not want the above listed special printer functions.

6-2 Device Assignments and Operations
A printer handler is invoked in the following command format:

<handler-name> ((i_,} ̂ <device-name>]
You can specify either LPT: or UL1: as the device name.
LPT: is assumed when you omit this parameter. This device
name is a physical device name which is associated with the
logical device name LST: by the STAT command through IOBYTE.
Initially LPT: is associated with LST:.
The parallel printer interface of the AS-100 is preassigned
to port number 1 as shown in the figure below. Port numbers
2 through 4 are reserved for the optional input/output devices.

68

FDU connector

Two parallel interfaces can be installed. The first interface
have already been installed in the standard port number 1 slot
and the second interface can be added to one of the slot
assigned to port numbers 2 through 4.
The standard parallel interface (port number 1) is assigned
to physical device LPT:. Therefore, if only one printer is
connected to the AS-100, you need execute the printer handler
programs only for device LPT: (LPT: is assumed when you omit
the device name in the commands).
The optional parallel interface is assigned to physical device
UL1:. In this case, you must execute the handler programs to
device UL1: to use the second printer. Normally, you can use
the standard printer without executing in advance the handler
program to the standard printer interface since CP/M-86 in
corporates a printer handler. Since CP/M-86 has no handling
program for the second printer, you must execute the printer
handler programs to device UL1:.
When a printer handler program is executed to device UL1:,
the user can control two printers, LPT: and UL1:. The logical
list device name LST:, however, can be associated with only
LPT: or UL1: at a time. For example, you can use the printer
connected to the standard interface if you associate LST:
with LPT: with the STAT command and you can use the printer
connected to the optional interface if you associate LST:
with UL1:.
In addition to switching between physical devices LPT: and
UL1: through IOBYTE, you can control the second printer using
the logical device name AXO: under CP/M-86. The logical name
AXO: is associated with one of physical devices TTY:, PTP:,
UP1:, and UP2:. The optional parallel interface is assigned
to one of port numbers 2 through 4. The table below lists
the physical device names and the associated port numbers.

Port Number 2 3 4
Physical device
name TTY: PTP: UP1:

69

When a printer handler program is executed for device UL1:, it
checks the port number of the optional parallel interface and
makes the corresponding physical device available to the user.
By associating the logical device name AXO: with the target
physical device name with the STAT command, you can use the
standard printer under LST: and the optional printer under
AXO: simultaneously.

The above two methods of using two printers at a time are
exemplified below. It is assumed that an A-1200 printer is
used as the standard printer and an A-1210 printer is used as
the optional printer (assigned to port number 2).

To execute the printer handlers, type in:
A1200
A1210 UL1:

To print the contents of the text file "TEST.TXT" in the
floppy disk on device B: to each of the printers using the PIP
command, type in:

PIP LST:=B:TEST.TXT

The above command will direct the contents of the file to the
A-1200.

The commands

STAT LST:=UL1:
PIP LST:=B:TEST.TXT

will output the contents of the file to the A-1210.
In this way, you must reassign the list device using the STAT
command to use the A-1200 printer again.

STAT LST:=LPT:

If you preassign the A-1210 printer to AXO: with the command

STAT AXO:=TTY:

then you can direct the file data also to the A-1210 using the
command

PIP AXO:=B:TEXT.TXT

without reassigning the LST: device with the STAT command.
The second method is convenient since it dispenses with the
need to between the physical devices LPT: and UL1: to reassign
to the logical device LST: using the STAT command.

70

6-3 Executing AS-100 Function Calls

Once a printer handler program is linked to BIOS, the user
program can use the handler all through BDOS. The user who
used an assembler language, however, can use the handler direct
ly using AS-100 function calls. The calling sequence is given
below.

CL register +■ Function number
INT 240 (FOh)

The available function numbers and applicable devices (names)
are listed below.

Function
Function Number

(decimal)
LPT: UL1:

Initializing 35 40

Getting output status 38 43

Outputting data 39 44

(1) Initializing

Initializes the physical device (LPT: or UL1:) and the handler.
The result of the function execution is returned into the AX
register.

AH register: Handler identification code
A1200 Olh
A1210 02h
CNTHND or built-in handler OOh
Undefined OFFh

AL register: Status
Normal termination OOh
Abnormal termination Nonzero

(2) Getting output status

Reads the printer status into the AL register.

Printer ready OFFh
Printer not ready OOh

71

(3) Outputting data
Outputs the data stored in the AL register.

6-4 A1200 Command
This command is for the wire-dot matrix printer model A-1200.

Characters Print
The 1-byte codes output by the A1200 handler are described
below.

(1) Control codes (00-lFh)
The handler outputs control codes CR (ODh), LF (OAh), FF (OCh),
CAN (18h), ESC (lBh), DC1 (llh), and DC3 (13h) as are. It
ignores the other control codes.

(2) Alphanumeric characters (20h-7Fh)
The handler outputs codes 20h through 7Eh as are and ignores
the DEL code (7Fh).

(3) Special codes (80h-FCh)
The handler outputs codes 80h through OFCh as are.

(4) Ignore codes (FDh-FFh)
The handler ignores codes OFDh through OFFh.

Escape Sequence
The A1200 handler performs special functions (described below)
specified by the character strings following an ESC code. These
functions are inherent to the A1200 handler; in addition to
these escape sequences, the A-1200 printer has its own escape
functions. Refer to the A-1200 printer manual for details.

(1) Enlarged mode (ESC 1)
ESC 1 (lB31h) puts the A-1200 printer into the enlarged charac
ter mode in which the printer prints the characters all in an
enlarged size. This does not apply when a hard copy of the
screen content is to be produced.

72

(2) Normal mode (ESC c)
ESC c (lB63h) restores the printer from the enlarged character
mode to the normal character mode.

(3) Screen hard copy (ESC #7)
ESC #7 (lB2337h) causes the data currently displayed on the
screen to be printed on the printer as is. Note that the line
spacing is set to 6 (LPI) after this code sequence is issued.

6-5 A1210 Command
This command is for the color ink jet printer model A-1210
which can produce a hard copy of the color CRT screen contents.

Characters Printed
The 1-byte codes output by the A1210 handler are described
below.

(1) Control codes (00-lFh)
The handler outputs control codes CR (ODh), LF (OAh), FF (OCh),
CAN (18H), ESC (lBh), DC1 (llh), and DC3 (13h) as are. It
ignores the other control codes.

(2) Alphanumeric characters (20h-7Fh)
The handler outputs codes 20h through 7Eh as are and ignores
the DEL code (7Fh).

(3) Special codes (80h-DFh)
The handler outputs codes 80h through DFh as are.

(4) Ignore codes (FDh-FFh)
The handler ignores codes FDh through FFh.

Escape Sequence
The escape code sequence ESC #7 (lB2337h) causes the data
currently didplayed on the color CRT screen to be printed on
the printer. Note that the line spacing is set to 6 (LPI)
after this code sequence is issued. This function is inherent
to the A-1210 handler; in addition to these escape sequences,
the A-1210 printer has its own escape functions. Refer to the
A-1210 printer manual for details.

73

A hard copy of color CRT screen contents is reproduced on the
printer in colors which are most similar to the colors set up
for the screen data. This means that there are some cases in
which data displayed on the screen in different colors is
printed on the printer in the same color. This causes no
problem when the data on the screen uses only basic colors.

6-6 CNTHND Handler

The CNTHND handler provides no special function and outputs
print data received by the user program to the printer as is.
This handler is used primarily to drive the optional parallel
interface which is connected to a printer other than the A-1200
and A-1210. This is functionally equivalent to the printer
handler incorporated in AS-100 CP/M-86. It provides the data
buffering function.

6-7 Messages

The printer handler programs, when executed, display the fol
lowing message on the screen:

XXXXXX HANDLER Vm.nn

XXXXXX indicates the name of the handler in execution and Vm.nn
indicates its version number. The handlers issue error messages
when they encounter error conditions during execution.

&& ILLEGAL PARAMETER

(An illegal device name was specified. The handler
will not be executed properly.)

&& INSUFFICIENT MEMORY

(The TPA is too small to execute the handler. The
handler will not be executed properly.)

&& NO OPTIONAL PORT

(No optional parallel interface was installed when device
name UL1: was specified. The handler will not be execut
ed properly.)

&& IRQ ENTRY FULL

(There was no free entry in the IRQ chain when an attempt
was made to link the handler to BIOS. The handler will
not be executed properly.)

74

CHAPTER 7 RS232C INTERFACE

The AS-100 system can accommodate up to four channels of RS232C
interface. This chapter describes the use of the RS232C inter
face under AS-100 CP/M-86.

7-1 Input/Output Port Assignments

The AS-100 display unit has five input/output port slots as shown
in the figure below. Slot Nos. 2 through 5 are available for
the RS232C interface. Slot No. 1 is used for the parallel inter
face for the standard printer.

The user can install RS232C interface channels in all or any
of the input/output port slot Nos. 2 through 5; however, he
must know the slot numbers to which RS232C interface channels
are installed.

Under CP/M-86, the logical and physical devices are linked
through an area called the IOBYTE. The relationship between
them is summarized in the table below.

Logical
device name Physical device name

CON: TTY: * CRT: RAT: UC1:
AXI: TTY: * PTR: * UR1: * UR2 : *
AXO: TTY ? * PTP: * UP1: * UP 2: *
LST: TTY: * CRT: LPT: UL1:

Asterisks indicate the physical devices to which the RS232C
interface can be attached.

75

The linkage between the logical and physical devices are
established by the STAT command. Initially, they are linked
as follows:

Console device
Input device
Output device
List device

CON:=CRT
AXI:=PTR
ACO:=PTP
LST:=LPT

In the above table, physical devices indicated by an asterisk
can be connected to the AS-100 through an RS232C interface.
They are assigned to the following input/output ports:

Input/output
port No. 2 3 4 5

Physical device
name TTY: PTR:

PTP:
UR1:
UP1:

UR2:
UP2:

When an RS232C interface is assigned only to port No. 2, only
the physical device TTY: is available for the user. The con-
binations of physical device names PTR: and PTP:, UR1: and
UP1:, and UR2: and UP2: refer to the same port number or
input/output port.
Since the RS232C interfaces in all input/output ports have
the same specifications, the user can transfer data to or
from port No. 3 as either PTP: (Paper Tape Punch) or PTR:
(Paper Tape Reader).
However, since PTR: is associated with logical device name
AXI: and PTP: with logical device name AXO according to the
CP/M-86 conventions, the user program must distinguish between
the input and output device names, that is AXI: for PTR:
(input) and AXO: for PTP (output).

7-2 RS232C Handling Commands
CP/M-86 provides two transient commands to handle the RS232C
interfaces. The first command, RSHND, links the RS232C hand
ling routines to BIOS. The second command, RSINIT, sets the
parameters which specifies the operating environment (in the
RSHND handler area) of the RS232C interfaces assigned as
physical devices. For this reason, the RSHND command must
be executed before the RSINIT command. The RSHND command,
when executed, loads the RSHND handler into the highest TPA
area, then relocates it to the area following the BIOS area.
The command then links the RSHND handler with BIOS and returns
control to CP/M-86. The resident RSHND handler occupies
approximately 1.5K bytes of memory.

76

CP/M-86 CP/M-86

BIOS BIOS

1------- % RSHND

TPA

V

TPA

RSHND 1-----------------------------------T

L _________ j
ROM ROM

Once the RSHND command is executed, the RS232C handler is
made resident in the BIOS area. If another RSHND command is
executed, the same handler will be placed immediately follow
ing the preceding RSHND handler, putting this handler into
disuse. Since the TPA is reduced by approximately 1.5K bytes
every time the RSHND command is executed. Don't execute the
RSHND command more than once.

The RSINIT command sets the parameter values defining the
manner in which the RSHND handler handles the physical devices.
The possible parameter values and initial values (enclosed in
parentheses) are listed in the table below.

Baud rate 110, 300, 600, 1200, (2400), 4800, 9600
Data format (7 bits), 8 bits
Parity bit None, (even), odd
Stop bits (1), 2
XON/XOFF (Yes), no
Wait cycle (Yes), no
Time filler Yes, (no)
Buffer size (0) , 16-4096 bytes

Values enclosed in parentheses are initial values set up when
the RSHND command is executed.

There are two types of buffers, one for input and the other
for output. At least one buffer must be specified. The buffer

77

area of the size specified by the buffer size parameter is
reserved following the BIOS area. The user must specify the
appropriate buffer area size. See Section 7-4 for the para
meters.

7-3 RSHND Command
Format: RSHND
Parameter: None
Description: The RSHND command links the RS232C handler to

BIOS.
Although no parameter is specified, the RSHND
handler is initialized when this command is
executed.

7-4 RSINIT Command
Format: RSINIT {i_i}i< device-name > {u}i<baud-rate>{u }]_<data-

format>(i_j}i<options>
Parameter: <device-name>

Specify one of the following device names:

Device
name TTY: PTR: PTP: UR1: UP1: UR2: UP2 :

Port No. 2 3 4 5

<baud-rate>
Specify one of the following baud rates:

Note that the same baud rate must be specified
to a port to which two device names are assigned.

<data-format>
Specifies the format of the data to be sent or
received. Code one of the following combinations
according to the character length (7 or 8 bits),
parity (E or 0), and the number of stop bits
(S or SS).

78

Data format 7ESS 70SS 7ES 70S 8SS 8S 8ES 80S

<options>
Specifies option (s). When coding two or more
options, separate them with space(s). The options
may be specified in any order. When options are
omitted, the last values or initial values (which
are set up when the RSHND command is executed)
remain valid.

BUFSIZ(nl,n2), BUFSIZ(nl,), BUFSIZ(,n2), or
BUFSIZ(nl)

Specifies in bytes the size of the input buffer
(nl) and/or the output buffer (n2). You can
specify a value 16 to 4096. When a zero is
specified no buffer area is reserved, in which
case no input/output operation is allowed. When
nl or n2 is omitted, a default value of zero is
assumed. n2 is assumed to be equal to nl when
BUFSIZ(nl) is specified. The buffer area(s) are
cleared each time an RSINIT command is executed.

AUTOX
Specifies that the auto XON/XOFF mode is to be
used. With this specification, the handler tempora
rily suspends transmission when it receives the
XOFF code (13h) from the remote terminal and resumes
transmission when it receives the XON code (llh).
This mode is used when the handler is to be con
nected to a terminal which cannot generate the
busy signal.

NOAUTOX
Specifies that the auto XON/XOFF mode is not to
be used.

WAIT
Specifies that the handler is to enter the wait
state when there is no receive data.

NOWAIT
Specifies that the handler is to return control

79

to the user program with a null code (OOh) when
there is no receive data.

FILL(Cl, C2, n)

Specifies the time filler. When this option is
specified, the handler transmits the number of
C2 codes specified by n after transmitting the
code Cl. Code Cl, C2, and n with 1- or 2-digit
hexadecimal numbers. When a 1-digit number is
specified, a zero is assumed in the higher order
digit position (nibble).

Explanation: The RSINIT command allows you to specify the
parameter values for each of the input/output
devices. When options are omitted, the default
values which are established when the RSHND
command is executed are retained.

You must always reserve buffers. The recommend
ed buffer size is 1 to 3 times the length of the
records to be handled by the user program.

Note that the XON (llh) and XOFF (13h) cannot be
handled as data bytes when AUTOX is specified.

You should specify the NOWAIT option when you
do not want the program execution to be dis
continued because of the handler indefinitely
waiting for receive data from the terminal.
When NOWAIT is specified, the handler returns

. a null code when there is no receive data, so
that the user program can determine whether it
must continue to wait for input from the terminal
or it must continue its processing. The time
filler should be used for a printer which does
not return the Busy signal when it performs an
operation (such as form feed) which takes a long
processing time. When you specify FILL (0A,00,
05), then the handler will transmit five null
codes successively after transmitting a line
feed code (0A). At 300 bauds, it provides a
wait time of approximately 33.3 x 5 milliseconds.

Examples: Transmit 15 null codes (OOh) as a time filler after
transmitting a CR code (ODh) to FTP: which is
assigned to a printer without the AUTO XON/XOFF
beature. Assume that the baud rate is 300, that
the data format is 7 data bits, even parity, and
1 stop bit, and that the output buffer size is 133
bytes (1 line length). .

80

RSINIT PTP: 300 7ES BÜFSIZ(0,133) NOAUTOX FILL
(0D,00,OF)

Connect one AS-100 to another AS-100 via TTY:
Assume that the baud rate is 4800, that a data
byte consists of 8 data bits, 1 odd parity bit,
and 1 stop bit, and that NOWAIT mode is used.
Also assume that 512 bytes of buffer space are
reserved for each of the input and output buffers.

RSINIT TTY: 4800 70S BUFSIZ (512) NOWAIT

Error messages: If an error is detected during the execution
of the RSINIT command, one of the following
error messages is issued and the command
processing is terminated:

&& Parameter not exist!!

(No parameter was specified.)

&& Port not declared!!

(No device name was specified.)

&& Invalid parameter!!

(An invalid parameter was specified.)

&& Size error!!

(An invalid buffer size was specified.)

&& Lack of memory space!!

(The specified buffer size is too large.)

&& Not I/O board!!

(The specified physical device is not
installed.)

7-5 Executing AS-100 Function Calls

Once the input/output handler is linked to BIOS by the RSHND
command and the necessary parameter values are set by the
RSINIT command, the user program can use the handler all
through BDOS calls. The user who uses an assembler language,
however, can use the handler directly using AS-100 function
calls. The calling sequence is given in next page.

81

CL register +• Function number
INT 240 (FOh)

The available function numbers and applicable devices (names)
are listed below.

Function Function number
TTY: PTR: PTP: UR1: UP1: UR2: P2:

Initializing 5 20 20 25 25 30 30
Getting input
status 6 21 - 26 - 31 -

Inputting data 7 22 - 27 - 32 -
Getting output
status 8 - 23 - 28 - 33
Outputting
data 9 - 24 - 29 - 34

(1) Initializing
Initializes the physical device and handler. The result is
returned into the AL register.

Normal termination OOh
Abnormal termination Nonzero value

(2) Getting input status
Reads the input port status into the AL register.

Input port ready OOh
Input port busy Nonzero value

(3) Getting data
Reads receive data into the AL register.

(4) Getting output status
Reads the output port status into the AL register.

Output port ready OOh
Output port busy Nonzero value

(5) Outputting data
Writes data in the AL register to the given output port.

82

CHAPTER 8 EXTENDED UTILITY COMMANDS

AS-100 CP/M-86 has four extended utility commands in addition
to those provided by standard CP/M-86.

The four utility commands are FORMAT, VOLCOPY, MS2CPM, and
MCX2CPM. The functions of these commands are as follows:

FORMAT Formats a floppy disk so that it can be used by
AS-100 CP/M-86.

VOLCOPY Copies or backs up an entire floppy disk volume
to another disk.

MS2CPM Converts a file created by AS-100 MS-DOS* to CP/M-86
format.

MCX2CPM Converts a file created by the Canon CX-1 system
to CP/M-86 format.

This chapter provides detailed explanations of these extended
commands and describes procedures for using them.

* MS-DOS is a trademark of Micro Soft

8-1 FORMAT Command

Function: Formats a 5- or 8-inch floppy disk and writes the
secondary loader to the disk. A disk formatted by
this command can be read or written by AS-100 CP/M-86.
The FORMAT command can also copy system files (whose
attribute is SYS) from the current disk.

Format: FORMAT [<drive-name>] ii_,} [<loader-file name>] (u)i [$S]

Parameters: <drive-name>

Specify the name of the floppy disk drive as A:,
B :, C:, D :, E :, or F :. Drives E : and F: can be
used only for an 8-inch, single-sided, with single
density floppy disk. When this parameter is
omitted, drive B: is assumed.

<loader-file name>

Specify the name of the secondary loader to be
copied to the formatted disk. When omitted, the
secondary loader on the system track of the current
disk is copied. Generally this parameter is not

83

specified, and is ignored when drive E: or F: is
specified.

$S
Specify this parameter when all files (whose attri
bute is SYS, but whose extension is not SYS) on •
the current disk are to be copied after formatting.
When omitted, no files are copied. This parameter
is ignored when drive E: or F: is specified.

Prompt messages:
FORMAT Vn.mm

This message appears when the FORMAT command is
entered.
Vn.mm indicates the version number of the command.

Disk d: will be destroyed, OK?
This message warns that the contents of the floppy
disk to be formatted will be destryed. "d:" in
dicates the drive name specified. Enter "Y" to
start processing or "N" to cancel processing.

FORMAT TRACK NUMBER=nn -
This message appears only when an 8-inch floppy
disk is specified. "nn" indicates the track
number being formatted.

COPYING SECONDARY BOOT
This message is displayed while the secondary
loader is being copied.

COPYING SYSTEM FILES
This message appears when a SYS file is being
copied. The user can cancel the copy operation
while this message is displayed by pressing CTRL/C.

Remarks: Operation of the FORMAT command differs depending on
whether a of 5- or 8-inch disk is being formatted.
For an 8-inch disk, all sectors from track 0 to the
last track are physically formatted. A double sided,
double density disk is formatted so that each sector
contains 1024 bytes, while a single sided, single
density disk is formatted so that each sector con-

84

tains 128 bytes. (The latter type of disk is assum
ed when drive E: or F: is specified.) These are the
same disk formatting specifications as are used with
standard CP/M-86. The contents of the directory are
cleared after all sectors of all traks have been
formatted. However, for a 5-inch disk, the directory
is cleared but sectors are not physically formatted.
Therefore, when a 5-inch disk is required, use one
which has been formatted as a double sided disk with
double density, double track, and 512 bytes/sector
speifications. When an 8-inch single sided disk
with single density is formatted, neither the second
ary loader nor SYS files are copied even if the para
meter is specified.

Examples:

FORMAT

Formats the floppy disk in default drive B:.

FORMAT C: $S

Formats the floppy disk in drive C: and copies the
SYS files.

Error messages:

When an error occurs during execution of the FORMAT
command, one of the following messages is displayed
and processing is terminated.

Illegal device name specified

An illegal drive name was specified.

Specified device is default device

The drive name specified was that of the current
drive.

Too many operands

Too many parameters were specified.

Illegal operand

An illegal parameter was specified.

85

Illegal secondary boot file name
An illegal name was specified for the secondary
loader.

File name syntax error
A syntax error was found in the secondary loader
file name specification.

Secondary boot file not found
The specified secondary file was not found.

Secondary boot file specified on format media
The secondary loader file was specified for the
formatted floppy disk.

TOO LONG SECONDARY BOOT FILE
The secondary loader file is too large for the system
track.

READ ERROR
An I/O error occurred while the secondary loader was
being read from the system track.

WRITE ERROR
An I/O error occurred while the secondary loader was
being written to the system track.

FORMAT DEVICE NOT READY
The drive containing the disk to be formatted was not
ready.

FORMAT ERROR
A write error occurred during formatting.

SEEK ERROR
A seek error occurred during formatting.

86

SYSTEM FILE OPEN ERROR

An error occurred when the source system file was
opened with the $S specification.

SYSTEM FILE MAKE ERROR

No free directory space was found when the destina
tion system file was opened with the $S specification.

EOV DETECTED

No free space was available when the system file was
being copied with the $S specification.

FORMAT ABORTED

Processing was cancelled by pressing CTRL/C while the
system file was being copied with the $S specification.

8-2 VOLCOPY Command

Function: Copies the entire contents of a 5- or 8-inch floppy
disk to another one. The VOLCOPY command can only
be used with standard format floppy disks used by
AS-100 series CP/M-86. Therefore, it cannot be used
for 8-inch single sided disks with single density.
Moreover, the VOLCOPY command can be used to copy
a 5- or 8-inch disk to another disk of the same size,
but not for copying between the two disks of differ
ent size. Parameters required for use of this com
mand are entered through an interactive sequence.

Format: VOLCOPY

Parameter: None

Prompt messages:

VOLCOPY Vn.mm

This message appears when the VOLCOPY command is
entered. Vn.mm indicates the version number of the
command.

Enter Source Disk Drive (A-D)?

When this message is displayed, specify the name
of the source drive as A:, B:, C:, or D:.

87

Destination Disk Drive (A-D)?

When this message is displayed, specify the name of
the destination drive as A:, B:, C:, or D:. The
source and destination drive names must be different.

Copying disk s: to disk d :
Is this what you want to do (Y/N)?

This message appears before the VOLCOPY command is
executed to confirm that the user really wants to
copy the disk. The entire volume in drive S: is
copied to the drive d:.
Enter "Y" to start processing or "N" to cancel.

COPY TRACK NUMBER=nn

This message appears while the disk is being copied,
"nn" indicates the track number currently being
copied.

COPY another disk (Y/N)?

This message appears when copying is completed. Enter
"Y" to make a copy on another disk or "N" to terminate
the command execution. When copying to another disk,
be sure to insert a suitable disk in the destination
drive before entering "Y".

After the VOLCOPY command is entered and the first
message is displayed, the user can replace the disk in
the source drive with another one. In this case, be
sure to replace the system disk when this command
execution is completed and the last message is dis
played, or to execute a warm boot (CTRL/C) upon com
pletion of the command.

Remarks: The VOLCOPY command copies each track from the source
disk to the destination disk. Since the volume is
copied from track 0, the system track containing the
secondary loader is also copied. Therefore, the
volume can be copied to a new 5-inch disk which has
not been formatted with the FORMAT command. When
copying to a new 8-inch disk whose physical sector
size differs from that for a 5-inch disk, be sure to
format the disk with the FORMAT command before exe
cuting VOLCOPY command.

The VOLCOPY command performs track-to-track copy
operation and, at the same time, vertifies whether

88

tracks have been properly copied. When a track is
copied improperly, up to seven retries are made.

An error results if a track is copied properly after
seven retries. Copying takes about 130 seconds for
a 5-inch disk, and about 100 seconds for an 8-inch
disk.
During execution of the command the user can cancel
processing by pressing CTRL/C.

Error messages:
When one of the following errors is detected, VOLCOPY
issues the corresponding message, then prompts for
reentry of the proper parameter or terminates command
execution.

Illegal input device specified
Illegal output device specified

An illegal source or destination drive name was
specified.

Output device same to input device
The destination drive name was the same as the source
drive name.

Different device type specified
The source and destination drives specified are of
different types.

DISK I/O ERROR d:
An I/O error occurred in drive d:

OUTPUT DISK DESTROYED
Command execution was cancelled by pressing CTRL/C.
The contents of the destination disk are not assured.

INSUFFICIENT MEMORY
Copying cannot be performed because there is not
enough memory.

89

8-3 MS2CPM Command
Function: Converts a floppy disk file created by AS-100 MS-DOS

to a file which can be used by AS-100 CP/M-86.

Format: MS2CPM{l_Ji<CP/M filename>=<MS-DOS filename> [(i_,}i$0]

Parameters: <CP/M filename>
Specify the CP/M-86 filename in conformance with
the CP/M-86 file specifications: <drive-name>:
<file-name>. <extension>. When this parameter is
omitted, the MS-DOS filename is assumed.

<MS-DOS filename>
Specify, the MS-DOS filename in conformance with
MS-DOS file specifications: <drive-name>: <file
name>. <extension>. One or more wild card charac
ters ("*") can be used in the filename and/or
extension. In this case, place the character
in the first and/or last position in each parameter.
(The following example is invalid: AB*EF.GHI.)

$0

Specify this parameter when the MS-DOS source file
is a binary data file and blank spaces in the last
record of the file are padded with NUL codes (OOH).
When this parameter is omitted, the MS-DOS source
file is handled as a text data file and blanks in
the last record is padded with CTRL/Z codes (1AH).

Prompt messages:
MS-DOS to CP/M-86 file converter Vn.mm

This message appears when the MS2CPM command is
entered.
Vn.mm indicates the version number of the command.

<CP/M filename>=<MS-DOS filename>
This message indicates the file name of the file
being processed.

n files copied
This message is displayed when conversion process
ing is completed to indicate the number of files
converted.

90

Remarks: The MS2CPM command searches for the specified file in
the directory of a 5- or 8-inch floppy disk created
by AS-100 MS-DOS, then converts that file to AS-100
series CP/M-86 format. File records handled by
CP/M-86 have a length of 128 bytes while those
handled by MS-DOS are of variable length. Therefore,
if the last record length of an MS-DOS file is less
than 128 bytes, a "short record" is generated in that
CP/M-86 file. In this case, blank spaces in the short
record are filled with CTRL/Z codes (lAh) or NUL codes
(00H). Whether NUL or CTRL/Z is used depends on
whether the optional $0 parameter is specified.
Conversion is done for each byte; however, specific
processing such as code conversion is not performed.
The user can cancel execution of this command by
pressing CTRL/C.

Examples:

MS2CPM A :=B:*.DAT $0

All MS-DOS disk files on drive B; whose file names
have the extension ".DAT" are converted to CP/M-86 disk
files on drive A:. The file name assigned to each
CP/M-86 file is the same as that of the corresponding
MS-DOS source file; blank spaces in short records of
CP/M-86 files are filled with NUL codes (00H).

MS2CPM A :SOURCE.LST=C:PROG.LST

The MS-DOS disk file on drive C: whose file name is
"PROG. LST" is converted to a CP/M-86 disk file on
drive A: with the file name "SOURCE.LST". Since the
$0 parameter is not specified, blank spaces in the
short record of the CP/M-86 file are filled with EOF
codes (1AH).

Error messages:

Error: Bad parameter

An illegal command parameter was detected.

Error: Write error

An error occurred while a record was being written to
the CP/M-86 object disk.

Error: Read error

An error occurred while a record was being read from
the MS-DOS source disk.

91

Error: File not found
The specified source file does not exist on the MS-DOS
disk.

Error: Invalid Source
The source disk has not been formatted by AS-100
MS-DOS.

Error: No directory space
No free directory space is available on the CP/M-86
disk.

Abort requested
Command execution was cancelled by pressing CTRL/C.

8-4 MCX2CPM Command
Function: Converts floppy disk files created by the MCX opera

ting system of the Canon CX-l/BX-3 to files which
can be handled by AS-100 CP/M-86.

Format: MCX2CPM{i_,}]_<CP/M filename>=<MCX filename>

Parameters: <CP/M filename>
Specify the CP/M-86 file name in conformance with
CP/M-86 file specifications: <drive-name>: <file-
name>.<extension>. When this parameter is omitted,
the MCX file name is assumed.

<MCX filename>
Specify the MCX file name in conformance with MCX
file specifications: <drive-name>: <file-name>.
<extension>. One or more wild card characters
("*") can be used in the file name and/or extension.
In this case, place the wildcard character ("*") in
the first and/or last position in each parameter.
The following example is invalid.

AB*EF.GHI

Prompt messages:
MCX2CPM Vn.mm

This message appears when the MCX2CPM command is

92

entered.
Vn.mxn indicates the version number of the command.

COPYING-

<filename>

This message appears during execution of the com
mand. The file name of the file being processed
is displayed when one or more wildcard characters
are used in any parameter.

Remarks: The MCX2CPM command searches for the specified file
from the directory of a 5-inch floppy disk in MCX
format (double sided, double density with 256 bytes/
sector) and converts it to a file in AS-100 series
CP/M-86 format. This command cannot be used with
8-inch disks for an MCX file. CP/M-86 handles files
in which each record is 128 bytes in length, while
MCX handles byte-configured files which contain no
records. This is because a "short record" is derived
in a CP/M-86 file when the last record length of an
MCX file is less than 128 bytes. In this case, blank
space in the resulting short record of the CP/M-86
file is filled with one or more CTRL/Z codes of EOF
codes (lAh). Conversion is performed for one at a
time; however, special processing (such as code con
version) is not performed. The user can cancel exe
cution of this command by pressing CTRL/C.

Examples:
MCX2CPM A :=B:*.LST

All MCX disk files on drive B: whose file names include
the extension ".LST" are converted to CP/M-86 disk
files same as that of the corresponding MCX source
file.

MCX2CPM C :PROGB=B:PROGA

The MCX disk file on drive B: whose file name is
"PROGA" is converted to a CP/M-86 disk file on drive
C: with the file name "PRQGB".

Error messages:

Input device is same to output device or current
device. The specified source drive was the same as
the object or current drive.

93

Input file name syntax error.
An MCX syntax error was detected in the source file
name specification.

Input device specified 8 inches drive.
An 8-inch floppy disk drive was specified as the
source device.

Input file not found
The specified source file does not exist on the MCX
disk.

Input file name not specified
No source file name was specified.

Illegal device name specified
A character other than A, B, C, and D was specified
for the source or target drive name.

Illegal output file name specified
An illegal file name was specified for the object
f ile.

Illegal wildcard specified
The wildcard character (*) was incorrectly used in
the source file name.

OUTPUT FILE MAKE ERROR
No free directory space is available on the CP/M-86
disk.

EOV DETECTED
An overflow error occurred while a file was being
written to the CP/M-86 object disk.

READ ERROR
An error occurred while a file was being read from
the MCX source disk.

94

APPENDIX A CRT CODE TABLE

n 0 1 2 3 4 5 6 7

0 NUL DEL Space 0 e P % P
1 SOH DC1 1 1 A Q a q
2 STX DC2 II 2 B R b r

3 ETX DC 3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F V f V

7 BEL* ETB t 7 G W g w
8 BS * CAN (8 H X h X

9 HT * EM) 9 I Y i y
A LF * SUB * : J Z j Z

B VT * ESC* + / K [k {
C FF * FS t < L \ 1

i
1

D CR * GS - = M] m }

E SO RS • > N n -V

F SI US / ? 0 o DEL*

Note: OOh to lFh and 7F are control codes. Control
codes which are valid for the CRT are those
indicated by others are invalid.

95

(

96

APPENDIX B ROM DEBUGGER

The ROM debugger is installed in the boot ROM and it makes it
possible to execute the system program step by step and to
manipulate NMI, vector tables other than break points and
memory space from 40Oh to FFFFFh.
(The upper 256 bytes of the installed memory and 4 bytes from
3FCh to 3FFh are used by the debugger.)

The debugger can be activated by either the following two
methods.

(1) Turn the power on of the system without setting any
floppy disk. The debugger start message is first display
ed and the debugger waits for a command input.

(2) Press the STOP key (located in the hole at the lower left
of the display unit) while the system is operating. Then
"@" followed by the CS and IP contents is displayed and
the debugger waits for a command input.

The debugger prompt is When it is displayed, any of the
following commands can be input.

Command Meaning Operating
B Boot B[D]<CR>
D Memory display D[W]<ADDR>[,<ADDR2>]<CR>
G Execution G<CS : IPXOLD> [<ADDR> [, <BRK>]] <CR>
I Read port I[W]<PORT><CR/, >
N Step execution N<CS:IP><OLD>[<ADDR>]<CR/,>
0 Write port 0 [W] <PORT>, <NEWXCR/, >
R Reading Intel HEX file R[<BIAS>]<CR>
S Changing memory contents S[W]<ADDR>,<OLD>[<NEW>]<CR/, >
X Displaying/changing

register contents
X<CR> X<REG><OLD>[<NEW>]<CR/, >

T Changing debugger console T<CR>

Items within [] can be omitted.
Underlined items are output by the debugger.
Items within < > are abbreviations.

97

Abbreviations

w When this is specified, the commands treats data in
word units; otherwise, it treats data in byte unit.

<ADDR> Address. The format is segment:offset. segment and
offset are specified with 4 digit hexadecimals or
names of registers (refer to REG). When segment is
omitted, the value of CS is used as the default value.

Ex) SP:1234

<BIAS> Program loading bias. Specify with 4-digit hexadecimal
or name of register.

<BRK> Break point. The format is the same as that of [ADDR].

<CR> Entry of carriage return code.

<CR/,> Entry of carriage return code or comma. When a comma
is entered, the debugger executes the same command on
the next address. The next address is the current
address + 1 for byte access (except I and 0 commands),
the current address + 2 for word access or the current
address plus the number of bytes of the command exe
cuted for step execution. -

<CS:IP> The message output by the debugger consisting of the

<NEW>

code segment and instruction pointer represented in 4
digit hexadecimals.

New data to be set in register or memory. Specify with
2- or 4- digit hexadecimal.

<OLD> Data in register or memory. Displayed with 2- or 4-digit
hexadecimal.

<PORT> Port address. Specify with 2- or 4-digit hexadecimal.

<REG> Represents a register with 2 characters.

AX Accumulator
BX Base
CX Count
DX Data
SP Stack Pointer
BP Base Pointer

98

SI Source Index
DI Destination Index
CS Code Segment
DS Data Segment
SS Stack Segment
ES Extra Segment
IP Instruction Pointer
FL Flag

Command
B - Boot

B[D]<CR>
Performs initial boot from drive A:. When D is specified,
control remains in the debugger after booting.

D - Memory display
D[W]<ADDR>[,<ADDR2>]<CR>
Displays the contents of the memory area from <ADDR> to
<ADDR2> in word or byte units. When <ADDR2> is omitted,
the contents of address <ADDR> are displayed. Pressing any
key during display stops display and the debugger enters the
command wait state.

G - Execution
G<CS;IP><OLD>[<ADDR>[,<BRK>]]<CR>
When G is entered, the values of CS and IP of the instruc
tion to be executed next and the contents of that address
are displayed. To start execution at that address, enter
<CR> without entering <ADDR>. To change the execution
starting address, enter <ADDR> and to set a break point,
enter <BRK>, then enter <CR>.
When the execution reaches the break point, the following
message is displayed and control is returned to the debugger.

BR @<CS:IP>

I - Read port
I[W]<port><CR/,>
Data read from the specified port is displayed. Enter <CR/,>.

99

When is entered, data read from the same port is dis
played again. (This allows the user to check the changing
process of specified port.)

N - Step execution
N<CS:IP><OLD>[<ADDR>]<CR/,>
Displays the values of CS and IP of the instruction to be
executed next and the contents (2 digits) of that address.
Specify <ADDR> to change the execution address. When ","
is entered, instruction at the specified address is executed.

0 - Write port
0 [W]<PORT>,<NEW><CR/,>
Write data to the specified port. When "," is entered, a
hyphen is displayed and the next data is written to the port.

R - Read Intel HEX file
R [<BIAS>]<CR>
Loads the Intel HEX format file through the RS232C interface
at I/O port No. 5 into memory. When <BIAS> is specified,
each record load address plus <BIAS> becomes the load address.
The initial setting of the RS232C interface are as follows:
2400 bauds, 8S. However, if these settings have been chang
ed by the handler, the changed settings are valid. If any
key is pressed while the debugger waits for file input, it
returns to the command wait state of debugger.

S - Changing memory
S[W]<ADDR>,<QLD>(<NEW>]<CR/,>
Displays the contents of memory address <ADDR> when <NEW> is
not specified. When it is specified, the new data is written
to the specified address and read-after-write check is
performed.

X - Displaying/changing register contents
X<CR>
X<REG><OLD>[<NEW><CR/.>
X<CR>displays the name and contents of each register. When
<REG> is specified, the name and contents of the specified

100

register are displayed. To change the contents of a regis
ter, specify <NEW>. When is entered, the contents of
the next register are displayed. (The order of registers
is shown in the previous section.)

T - Changing debugger console

T<CR>

Changes the debugger console from the AS-100 itself to the
RS-232C interface at I/O port No. 5, or vice versa. After
T CR has been entered, the message "ARE YOU SURE?" is
displayed and the debugger waits for a key entry. Change
is made only when Y is entered.

Calculating function

When entering a command, addition and subtraction can be used
in <ADDR>, <BRK>, <CS:IP>, <NEW> and <PORT> by using "+" or
It _ It

Ex) DAX+100-BX<CR>
SDS:BX-100<,>

Error processing

If a command or operand error is detected, "#" is displayed
and a line feed is performed. The debugger waits for reentry
of the command. When the length of numeric data is too long,
the excessive part of data is discarded and no error results.
There is no way to correct the command entry. Therefore,
to reenter command, cause an error forcibly (for example,
enter @).
Keys other than the alphanumeric keys are not accepted.
Errors occurring after execution are also identified with #.

Note

When the debugger is activated by the STOP key, the screen
may be disrupted. This is not an error. This is because
CRT is controlled both by the ROM debugger and OS. If the
screen is hard to see, enter "ESC Z" to reset the screen. To
prevent the screen from being disrupted, change the console
to RS-232C with the T command.

101

APPENDIX C DIP SWITCH

Each of the CPU card and I/O card of the main unit and the
I/F card of the flopDy disk unit incorporates a DIP switch.
The settings of these switches are explained below.

(1) CPU card

SW1 SW2 SW3 SW4

SW1 ON
SW2 ON
SW3 OFF
SW4 Clock option ON: no, OFF: yes

(2) I/O card

SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8

SW1 ROM debugger console ON: RS232C
OFF: AS100 itself

SW2 OFF
SW3 ON
SW4 CRT code ON: ASCII, OFF: JIS
SW5 CRT model ON: color or monochrome 1-frame

OFF : monochrome 2-frame
SW6 CRT model ON: monochrome, OFF: color
SW7 OFF
SW8 OFF

(3) Mini-floppy disk unit

S W l SW2 SW3 SW4 SW5 SW6 SW7 SW8

SWl OFF
SW2 OFF
SW3 OFF
SW4 OFF

102

When device names are A: and B: ,
SW5: OFF, SW6: ON, SW7: OFF, SW8: ON

When device names are C: and D:,
SW5: ON, SW6: OFF, SW7: ON, SW8: OFF

(4) Standard floppy disk unit

SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8

SW1 OFF
SW2 OFF
SW3 OFF
SW4 ON

When device names are A: and B :,
SW5: ON, SW6: OFF, SW7: ON, SW8: OFF

When device names are C: and D :,
SW5: OFF, SW6: ON, SW7: OFF, SW8: ON

103

(

I

