
Advance Information

MC680 10

16-Btr
VIRTUAL MEMORY
MICROPROCESSOR

AUGUST, 1983

lhia dcumant contlrna rnlomatlon on a nar product SGf,crricltiont and rnlomllion ht.arn 0MOIOROLA INC . r§e3

aL tuDlacl to chrnia rrlttout notlca.

i!i:',T:!?F'.r.:ä:*1ä:"ät::,:"H:..1."",ä1,;I,'J jlH:äffi .ffi ffi;;ilffi
f,r uta ot aat f{sc! o. c,rcurt da.cnöd h.rar^ to |caäa. .! ""r,,..." ,,;"., .-.- a anY (tatrl} tntmo tut ol lia aslquoni :i;'"'.r'illr::fi$:::il'.::',";?r,i:.:L;..,:",:ff,,:.";;*-;.;.;;;;;;;';;;.];'.;;il1ä:Ti#;"*',:t.;:H*:il*:,..:?:::":

TABLE OF CONTENTS

Paragraph
Nunüer

1.1
1.2
1.3
1.3.1
1.3.2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.3
2.4
2.5
2.6
2.7
2.8
2.8.1
2.8.1.1
2.8.1.2
2.8.2
2.8.2.1
2.8.2.2
2.8.2.3
2.8.2.4
2.8.2.5
2.8.3
2.8.3.1
2.8.3.2
2.8.3.3
2.8.3.4
2.8.3.5
2.8.3.6
/.-J
2.10

frtb

Scs{bn I
lmroductirn

Data fypes and Addressing Modes 1-3
lnstruction Set Overvian 14
Virtual Memory/Machine Concepts 1-5

Virttral Memory 1-5
Virtual Machina..., .. 1.6

S.cüon 2
Ott Orlsnization and Addrsdng Capabilitia

Operand Size
Dau Organization in Regist66 . . .

Data Registers
Address Registers
Control R€gasters.

Data Organization in Memory . . .

Addressing
lnstruction Fontrat.
Program/ Data Ref arences
Register S pecrf ication
Effective Addr€ss

Reg,ster Direct Modes
Data Register Oirect .

Address Begister Direct .

Memory Address Mod6
Address Regisler I ndireci
Address Register lndirect wrth Postincrsrnent .

Address R€gister lndirect with Predocrernent . .

Address Eegistsr lndirect'6/ith Oisplacament

Address Registar lndired wath Ind€x
Special Address Modst

Absolute Short Address
Aueolute Long Address
Program Counter with Displacement
Program Counterwrth lndex
lmmediats Oata
lmpliot Reference .

Eff ectve Addressrng Encoding S u mmary
System Stacx.

Page
Number

24
2-7
/,- t

2-1
2-'.t
2-1
2-1
2-1
2-3
2-3
24
24
24
24
2-5
2-5
2-5
2-5
2-5
2-5
2-5
2-5
2-5
2S
2$
24
2-6
/4
24

rii

Paragraph
Numbor

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.1.1
4.1.2
4.1.3

TABLE OF CONTENTS
(Continued)

Tiüe

Srtion 3
lnstrustion Set Sumrnary

Data Movement Operations . . .

l nteger Arithmetic OPerations
Logical Operations
Shift and Rotate Operations
Eit Manipulation Operations . .

Binary Coded Decimal Operations
Program Control Operations
System Control Operations

Signal and
Section 4

Bus Operation Deocription
Signal Descrtption

Address Bus (Al through A1.3l .

Data Bus (D0 through D15)
AsynchronousBusControl

,Address Strobe (A-S)

Read/Wnte (R/W)
Upper and Lower Oara StroOe lCiD-S, 6§l
Data Transfer Acknowledge (DTACK)

8us Arbitration Control
Bus R@uest (B-f,)
8us Grant (BG)
Bus Grant Acknowledge tBGTCRl

lnterrupt Controi(iPm, fFil, iFDt .

System Control
Bus Error {SETH)
Reset tFlE§Eft
ttart rx-AfT)

M6m Perrpheral Control
Enable (E)
Vaird Penpheral Address (Vm)
Valid Memory Address {VMÄ}

Processor Status tFCO, FC1, FC2)
Clock (CLK)
Signal Summarv

Bus Operation
Data Transfer Operalrons

Read Cycie
Write Cycie
Read-Modifv-Wrrte Cycie
CPU SPace Cycle

Page
Number

31
3-2
3-3
33vvv
35

+1
+1
+2
aF2
+2
+2
+2
+2
+2
+3
+3
+3
+3
+3
+3
+3
44
44
.4
44
4
44
44
+5
+5
+5
+6
44

+11
4t-11

4.1.3.1
4.1.3.2
4.1.3.3
4.1.3.4
4.1.4
4.1.4.1
4.1.4.2
4. 1.4.3
4.1.5
4.1.6
4.1.6.1
4.1.6.2
4 1.6.3
4.1.7
4.1.7 .1
4.1.7 .2
41.7 3
4.1.8
4.1.9
4.1.10
4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.1.3
4.2.1.4

Paragraph
Numbcr

4.2.2
4.2.2.1
4,2.2.2
4.2.2.3
4.2.3
4.2.4
4.2.4.1
4.2.4.2
4.2.4.3
4.2.4.4
4.2.5
4.3
4.4
4.4.1
4.4.2

5.r
5.1.1
5. r.2
5. r.3
5.1.4
5.2
5.2.1
=.ra
5.2.3
5.2.4
5.2.5
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.s
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
5.4

TABLE OF CONTENTS
(Continued)

Pagc
NurücrIrdc

BusAöitration.....+13RequetingtheBus. +14ReceivingtheBusGrant.. +14
Acknorledgementof Mastership.... +14EusAöitrationControl +14BusErrorandHaltOperation..... +16
BusEnorOperation +18R+RunOperation +19Haltoperation..... +2ODoubleBusFaults +21Resetoperation.... .. +2.

The Relationship of dl-ACR, EEFH, and F[Äf,T +2.AsynchronousventusSynchronousOperation +24AsynchronousOperation +24
SynchronousOperation +6

Sscdon 5

Privilegastatesstate..
.
tYT

l*....
Usor State
Privlege State Changes
R ef erenca Classifi cation

Exception Processlng
Exception Vectors . ,

Exception Suck Frame
Kinds of Exceptions . .

Exception P rocessrng Sequence
Multiple Exceptions

Excaption Processing ln Detarl
Reset .

lnterrupts
Uninittalized lntorrupt . .

Spunous lnterrupt. . .

lnstruction Traps

$l
*2
,2
*2
*2
$3
$3
>ä
$5
$5
$6
u7
*7
,7

lllegal and Unimplemented lnstructions
Pnvilege Viqtations

$10
sr0
$10
s10
$'t1
$11
$12

''14$14

fraong
Bus Error
Address Error
Ralurn from Exception

Paragraph
Number

7.1
7.1.1
7.1 .2
7.1.3
1''
7.2.1
7.2.2
7.2.3
7 2.4
7.2.5
7.2.6
7 2.7
7.2.8
7.2.9
7.2.10
7.2.11
7.2.12

TABLE OF CONTENTS
(Continued)

Tith
Socdon 6

lnterfaca wiü tt €gX, Peripherals

Data Transf er Operation
AC Electnäl Specifications-MC680'10 to M6ffi Penpheral
I nterrupt lnterface Operatiön

Sectlon Z
lnEhrction Sa and Exeqrtion Timen

lnstruction Set
Addressing Categones
lnstruction Prefetch
Loop Mode Operation.

lnstruction Execution Times .

Operand Effective Address Calculation Times.
Move lnstruction Execution Times
Standard lnstruction Execution fimes .

lmmediate lnstruction Execution Times .

Single Operand lnstruction Execution Times.
Shitt/Rotare Instruction Execution Times .

8it Manipulation lnstruction Execution Times.
Conditional Instruction Execution Times
JMP, JSH. LEA, PEA, and MOVEM lnstruction Execution Times . , . ,

M ultr- P recrsron I ristruction Execution f imes .

M iscellaneous I nsitructron Execution fimes .

Excepuon Processing Execution Timc

Thermal Charactenstics
Power Consrderanons
DC Electrical Characteristrcs . . .

AC Electncal Specrficatrons- Clock lnput
AC Electrrcai Specificatrons- Read arrd Write Cycles
AC Electrrcal Specrficatrons- MC@10 to M6800 Penpheral .

AC Electrrcal Specifications- 8us ArE,itration. . .

Sestion 9
Ordering lnfonnation

Standard MC680'10 Orrlering lnformation
"Bener" Processrng - Standard Productron Plus

Page
Number

6.r
6.2
6.3

ü2
s3
&4

7-1
7-1
74
74
74
7-6
/4
7€
7-9

7-10
7-11
7-11
7-12
7-12
7-13
7-14
7-15

Scction 8

Maxrmum Ratrngs
E**ical Spccificatiotls

. . . &18.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

&1
&1
*2

.&3
&4

.&6

.&8

9.1
9.2

9.1
*2

TABLE OF CONTENTS
(Concludedl

Prragraph PagcNumbsr f!üc Numbcr

S.ction 10
Mcchanical Data10.1 PinAssrgnments...1()-11A.2 PackageDimensions'10-3

vti

Frgure
Numbsr

1-1
1-2
t-2

+1
+2
+3
44
+5
+6
+7
4€
+9

LIST OF ILLUSTRATIONS

Tiüe

User Programming Model
Supervrsor Programming Model Supplenrent
S tatus Register

Memory Data Organization
Word Organization in Memory
lnstruction Operation Word General Format
SingleEffective-Address lnstruction Operation Word .

lnput and Output Signals
Word Read Cycle Flowchart
Byte Read Cycle Flowchart . .

Read and Write Cycle Timing Diagram
Word and Byte Bead Cycle Timing Diagrarn . .

Word Write Cycle Flowchart .

Eyte Write Cycle Flowchart
Word and Byte Wnte Cycle Timing Diagram
Read-Modify-Wnte Cycle Flowchart . .

Page
Number

1-2
1-2
1-2

2-2
2-3
24
24

2-1
2-2
2-3
24

4-10 Read-Modify-Wnte Cycle Timing Oiagram
+11 Bus Arbitration Cycle Flowchart
4-12 Eus Arbrtratlon Cvcje iimrng Diagram
4-13 MC680'10 Bus Arbrtratron Unit State Diagram . .

+14 fiming Felationshrp of External Asynchronous lnputs to lnternal Signals
4-15 Bus Arbttratron fiming Diagram - Processor Active
4-16 8us Arbrtratron Timrng Diagram- 8us lnactive
+17 Bus Arbrtratlon Timrng Diagram- Special Case
4.18 8us Error Tirnrng Diagram
4-19 Delayed Bus Error Timing Oiagram
4-V0 R+Eun Bus Cvcle Timrng Di.agram
+21 Delayed F+Run 8us Cycle fiming Diagram
+22 Halt Processor Timrng DiagramL23 Reset Operatron Timing Diagram

'1
Format of Vector Table Entnes

U2 Vector Numoer Format
5-3 Exceptron Vector Äddress Caicujatron
5-4 MC68010 Stack Format
15 vector Acqursrtron Flowchart

,a

#
+7
+7
+8
+8
+9
+9

4-10
+11
+12
4-13
+15
4-15
+16
+17
4-17
+i8
+19
+19
+n
+21
+2.

s3
54u
E-F

5-8

viii

Table
Number

7-12
7-13
7-14
7-15
7- 16
7-17
7-18
7-19
7-n
7-21
7-2.

LIST OF TABLES
(Continuedl

Trüe

Single Operand lnstruction Execution Times.
Clear lnstruction &ecution Tim6s.
Single Operand lnstruction Loop Mode Execution Times .

Shift/Rotate lnstruction Execution Times .

Shift/Rotate lnstruction Loop Mode Execution Times.
Bit Manipulation lnstruction Execution fimes.
Conditional lnstruction Execution Times .

JMP, JSR, LEA, PEA, and MOVEM lnstruction Execution Times . 7-12
Multi-Precision lnslruction Execution Times . 7-13
Miscellaneous Instruction Execution Times .

Exception Processing Execution Times

Prgc
Numbe

7-10
7-10
7.10
7-11
7-1'.\
7-11
7-12

7-14
7-15

xii xri

SECTION 1

INTHODUCTION

The MC68010 is the third member oI a family of advanced microprocessors from Motorola. Utifiring
VLSI technology, the MC68010 is a fully-implemented 'l&bit microprocessor with 32-bit registerc, a
rich basic instruction set, and versatile addressing modes.

The MC6&10 is fully obiect code compatibl€ with the earlier members of the M68000 Family and
has the added features ol virtual m€mory suppon and enhanced instruction execution timing,

fhe MC68010 possess€s an asynchronous bus structure with a 24-bit address burs and a 1&bit data
bus.

The resourcEs available to th6 MC680'10 user consist ol the following:
a 17 32-Bit Data and Address Registers
o 16 Megabyta Dirrt Addressing Range
a Virtual Memory/ Machine Suppon
a 57 Powerful lnstruction fypes
o High Performance Looping lrrstructions
a Operatrons on Five Main Data Types
t Memory Mapped l/O
a 14 Addressrng Modes

As shown in the programmrng mo<lel (Figures'l-1 and l-2), the MC68010 offers lT 32-bit general
purf,oss regtsters, a 32-bit program counter, a l+bit status register, a 32-0it v€ctor bas€ register.
anc, two Sbit alternate function code registers. The first eight registers (DGD7) are used as data
registers for byte (&br0, word (l$bit), and long word (32-bit) operations. The second set of seven
regrsters {AG'A6) and the stack pointers (SSP, USP) mav be used as software stack pointers and
baso address registers. ln addition, the address regtste6 may be use.d for word anrj long word
operations. All of the 17 regrsters may be used as index registers.

The status register iFigure l-3) conuins the rnterrupt rnask ierght levels available) as well as the
condition codes; extend (X), negadve (N), zero (Z) , overflo,v (V), and carry (C) , Additional status
btts indicate that the processor is rn the trace {T) mode and in the supervisor (S) or usar state.

The vector base regrsrer is used to determine the location of the exception vector lable in tnemory
!o suppon multlpi€ vector tabies- The alternate function code registers allow the supervisor to ac-
cess us€r data space or emulate CPU space cyc,es.

1-1

Figura
Numbcr

ffi
*7
ffi
$9

'10$11

LIST OF ILLUSTRATIONS
(Continued)

Trü.
lnterrupt Acknowledge Cyde fiming Diagram
I nterrupt Processin g Sequence
Breakpoint Cyde fiming Diagram
Exception Stack Order (Bus and Address Error)
Special Status Word Format .

Address Enor Timing Diagram

M68ü) lnterfacing Flowchart .

MC68010 to MOm Peripheralfiming Diagram - Best Case .

MC68010 to M68m Peripheral fiming Diagram - Worst Case
Autovector Operation fiming Diagram

DBcc Loop Program Example

MCffi 10 Power Dissipation (Pgl vsAmbient femperature(Tn).

HßET rest Load
FIAIT TEst Load
fest Loads
Clock lnput Timrng Diagram
Read Cycle Timing Diagram

$9
s9

Page
Numbcr

s11
*12
$13
$14

&1
t2
}J
64

&1
62
$3
6-4

7-1

&1
*2
&3u
&5
&6

74

*2
&3
&3
&3
&3

Foldout
1

Foldout
2

8S
*7
8€

*7 Write Cycle Timing Diagram

8€ MCmlO to M6ffi Penpheral fiming Diagram - Best Case
&9 MC68010 to M68@ Peripheral fiming Diagram - Worst Case.&10 Bus Arbitration fiming Diagram ,

tx

Table
Number

1-1
1-2
1-3

2-1

+1
+z
+3
44
+E

1-3
14
1-5

z-l

91
3-2
93
33vv
$5
35

+2
+5
+5

31
T2
33v
35
36
,rt
3€

LIST OF TABLES

Trüe

Addressrng Modes
lnstruction Set Summary
Vanations of lnstruction TYPes .

Effectrve Address Encoding Summary

Data Movement Operations
I nteger Arithmetic OPerations
Logical Operations
Shift and Rotate Operations
BitManipulation Operation§
8inary Coded Decimai Opetations
Program Control OPerations
System Control Operations

Page
Number

+n
tF24

7-1

7-5
/-b
7-7
7-7

7€
7€
7.9

Data Strobe Controi of Data, Bus. . . .

Function Code OulDuts
Signal Summarv
OTAIX, EffiFl, and FiAEf Assertion Resuits
§EHH and FIAIT t'tegation Flesults

5-l 8us Cycle Classtfication
*2 Excepton Vector Table
t3 il/C6&10 Format Codes
il Exceptron GrouPing and Prrcrnry

7-1 Effec'tive Addressing Mode Categories
7-2 lnstructron Set . .

7-3 MC68010 Loopabie lnstructtons . .

74 Effective Adciress Calculatron Times
7-5 Move Byteand Word lnstruction Erecution limes.
7-O Move BYteand Word lnstruction Loop Mode Executton Times
7-7 Move Long lnstructton Execution Times
7€ Move Long lnstructlon Loop Mode Executron fimes
7-g Standard lnstructton Execution Times
7-10 Standard lnstruction Loop Mode Execution iimes
7-11 Immediale lnstruclion Execution Times ,

s3H
'5*7

I
I

I

I

I

I
I

I
I

I

I

I

I

AII ' ltusP! Pontt
31 0
I IPC --

'70 El..'m*
Figurr 1-1. Usr Programming ModC

I 17 Suoriwor Suck
SSPI pq5s'

'F_+_{L__1_jS!_JSR strtu.n.elstü

Vctor 8a R.g:rr
20
l-lsrc Ah.r6.t Fur'tin
forc co iqru:

Frgurc 1-2 Supcr.riror Programming Modd Supplemcnt

Swrar Srnr
Ura Eyta

{condtan cod. R.g§ril

t-/.

Ad('6
Ragrar..l

I

I

I

I

I
I
I

Figurc 'l-3. Status Registar

1.1 DATA TYPES AND ADDRESSING MODES
Five basic data types are supported. These cJata types are:

o Birs
. BCD Digits (4 biß)
a Bytes (8 bits)
. Words (]6 bits)
. Long Words {32 bits}

ln addltion, operations on other data types such as mernory addresses, starus word data, etc., are
provided in rhe instrucrion set.

The 14 address modes, shown in fable 1-1, inc,ude six basic types:
a Register Direct
a Register lndirect
O Absolute
a Program Counter Relative
o lmmediate
o lmplied

lncluded in the register indirect addressing modes is the capabili§' to do postincrementing,
predecrementing, offsening, and indexing. The program counter relative mode can also be
modified via indexing and offsening.

Tablc 1-1. Addrcssing Modes

Moda Grrrrba
nrgrOluAatk-E
Dau Rqrsur Oirccr
Addrcs F.ctsrcr Oi.rl

EA- Dn
EA- An

Ah.oirr OtuAe*p
Absoiutr Slpn
Absotutc Long

EA- lNcxt Wordl
EA- iNcrt Turo Wotdi,

Fngn Ca.nC idarrrYa Ad.l-ng
8.aatna sth Ofts.t
Rdatr\. nth lnoLr and Oft!.r

AA-{pC)+016
EA-{PC}}lXnl+on

ß.gE lnrEl^dd-rg
RogBrcr i ndrrrcl
Poconcrlilnt R agrgilr r ndrruct
Prgrrmt R ag,srü I

^OhrlcrRaglr(lndracr nth otfgat
lndc:ad Rcastr lndirllcr mü oftla(

EA r lA^)
Er{ - {Anl. An - An + N
An - A^- N. EA - lAnl
EA- lAnt +dt6
EA-lAn)-lXn,+dB

lm.nGLta Ortr add-rte
lmfrt.<rratr
Qurct lmmGdl'tt

OA IA - Nqr Wor<ilJ
lnhorsnt oala

lmg.(, A@-m
ImpiEd R6961ür EA-S8. USP SSP. PC.

VEFI SFC- CFC

NOTES:
EA- €ttactnr Adalrrlr
An- Add.rEs Rqlllrl,
0n- Oat! R.grsrar
x6' Addrs o. Oata Baq[srcr usad as lnd.r Ragßnar
SF - St ttls Rrssrc,
PC- Prograrn Cognrar
I l-Contrnr!Ot
dB - &8il Ottsat loisplacar"i€,r0
di6- l&Bit Ofts.r (Okdac.rnüo
N- l lor b^a, 2 lor {ofd. ailr 4 fo. long word. lt An is

th. strcl pomtcr end tha oparand szc ß oytr, N - 2
to kao tra siacl go.ntaa on a Yt€rd boundary.

- - H.palcat

1.2 INSTRUCTION SET OVERVIEW

rhe MC680'10 instruction s€t is shown in Table 1-2. some additional instructions are variations' or

subsets, of these ."d tht;;;;rln Table 1-3. Specral emphasis has been given to the instruction

set,s support of structured high-level languages to facilitate ease of programming' Each instruction'

with fenn oxceptions, operat; on bytes,-woids, and long wOrds and most instructions c'tn use any

of the 14 addressing modes. By combining instruction types, oau tYpes, and addresing modes,

over 1ffi usefut instructio"iaiJ provided. ihese inst.ctions includ€ signed and unsigned multiply

and divide, ,,quick,, ."ir,il,i" äperations, BcD arithmeric. and expanded op€railons (through

traps). Also, 33 instructions may be used in the loop mode with certain addressing modes and the

DBcc instruction to provide 230 high performance string, block manipufition' and extended

arithmetic oPerations.

Tablc 1-2 lnstrustion Sct SummarY

Mrrrcd: t)Gi,tim
ABCD'
Aoo'
ANO.
AsL'
ASß.

Add OGorial wth €rlüid
A«I
Logacrl Arl(l
AnttYßoc Shrft Laft
Arithrn üc Shitr Righr

8cc
BCHG
ECLF
B8A
BSET
8SR
ETST

Brrncrr CondtüoriallY
Bir T6t.nd Ch.ngr
8ir lat .nd C1...
Brlrrctt Ahit\,3
8ir T6t and S.l
Errrich lo Subrounna
Bir T6r

CHK
CLF.
CMP.

Ctreer nca,sa. AgärrBt 8o.r^d3
Cl€ar Or(8nd
Cocporu

DBcc
orvs
orvu

O6lmnt a.rd Itan€h CoodrtorullY
Sb,r.d Oivtd.
Uneorr«f Oiu(h

EOR.
EXG
EXT

Erougw Or
E:ar.'rga Ragtata(3
Siqn &t.nd

JMP
Js8

Jumo
Jumo to Sub.ouona

LEA
LINI(
LSL.
rsR'

Lo.d Eftctw. Addru.S
Lrnt Slrci
Logrc.l Shft Lcft
Loocal Sh'h Right

'LoooabL lßtrücoon3

lrnattüic Oeieton
MOVE.
MULS
MULU

ffircr o ocrtnrtort
Si3n*l MultPlY
Unroncd MultiOav

NBCD'
NEG.
NOP
Nor'

Neqat O.oriC wth E:rn<l
N.gato
No Ogr.tirr
Ona'3 Co.rrolifia.rt

OR Losl Or
PEA' Prßlt EttG$r. Addtlts
RESET
ROL.
ROR.
RoxL'
ROXR.
Rro
RTE
RTR
RTS

Eä grtrtu-ooncr
Rotrta Lafi ditlrdlr Erltrd
ßoEta Righr sthqrt Errand
Rorr. Lrft Htn E trxt
8or!l. Right flth Ert.nd
RaoJrn a.xl Oaa&ocara
R.tum rto.n Erc+tixr
R.$m and Rcto.!
Rorum lronr Subroutinc

sEco'
scc
sroP
SU8.
SWAP

SubüEr OGmaa nt,1 ErEnd
S.r Condi*rrd
Sroo
Subtrrcr
Surao Olu Rq§rt Hd\raa

TAS
TRAP
IRAPV
TST.

E-Scr op.rütd
Tm
Trag m Ovrtlor
Trar

UNLX Unlinr

ItIülJCOOal
f.rpr Variatbar OGsiptbn

aoo AOO.
ADOA'
AOOO
AOOI
ADOX.

Add
Add Addr$s
Add Ourcr
Add lmmcdrata
Add wlh Exlmd

ANO ANO'
ANOI
ANOI ro CCR

ANOI to SR

Loqcal And
And lmflr€diilo
And lmni€diate to

Condloon Cod6
And lmmedEte to

Starus Reo|ster
CMP craP.

CMPA'
CMPMO
CMPI

ComDar!
Compara Add.els
Comgarc Mcmor.r
ComEnra lßnrcdiato

EOR EOR'
EORI
EOf,l to CCR

EORI to SB

E clusrya Or
Erdusna Or lmrnadät
E:dusrva O(lmmadl.tc ro

Condioon Codca
Erdus.va Or lmntaota(r to

Status R«:rster

Table 1-3. Variations of lnsüuction Types

'Loogäbb lnstructons

Inrürrctbn V..iatira OeisOon
MOVE MOVE-

MOVEÄ '
MOVEC
MOVEM
MOVEP
MOVEO
MOVES
MOVE frorn SF
MOVE ro SR
MOVE from

ccR
MOVE ro CCB
MOVE USP

Oeaunetpn
Move Aodr6s
Mov. Control Regi$er
Morc Mulüple fiegßlars
Move Pgaohöräl Dare
Movc Ourd<
Molra Alt€n€6 Addrass Soaca
MoY€ lrom Starus R€grstat
M@a to Sutus R€g3t r

Movc from Condiion Cod6
Movo {o Coodrtron Cod€a
Mova Us€r Stack PoinrBr

NEG NEO'
NEGX.

N€are
N.q6re with Errdrd

OR oß.
OBI
ORI ro CCR

Oßl to SR

Logrcal Or
Or lmnLdiat.
Or lmmaOratr to

Conchoon Codc!
Or lrfim€diatc ro

Stafus qeqislE

SU8 sUE-
SUEA'
suEl
SUEO
su8x.

Subuact
Sub$afl.Addm
Subtract lmn1cdi,ete
Subttact Ouir:i
Subrred wth Extarid

1.3 VIRTUAL MEMORYi MACHINE CONCEPTS

ln most systems using the MC68010 as the central processor, only a traction of the 16 megabyte ad-
dress space will actually contain physical memory. However, by using virtual memory techniques
the systsm can be made to appeil to the user to l]ave 16 megabytes of physical rnemory available to
him/her. fhese techniques have been used lor several years ln large mainframe computes and
mora recently in minicomputersi and now, \ (th the N/lc68010, cän be fr.iiiy supported in
microprocessorbased systems.

ln a vinual memory system. a user program can be wntten as though it has a large arnount of
memorY avarlaole to it when onlv a smail arnount of memory is physrcally presenr in the system. ln a
simrlar fashion, a svstem can be c,esrgned rn such a manner as to allow user programs to access
other types of devrces that are nol physrcally presr?nt rn the system such as tape c,rives, disk drives,
printe6, or CRTs. With proper softlvare emulatron, a physical system can be nrerde io appear to a
us€r program as any other computer system and rhe program may be given full access to all of rhe
resourcas of ihat emulated system. Such an emulated system is called a vinual machine.

1.3. 1 VimJal Mornory
The basrc mecnanrsm for supportrng vlrtual memory rn compulerc rs tö provrrle only a limited
amount of hrgh-sOeed physlcal memory that can be accessed directly by the processor while main-
taining an rmage of a much larger "vrrtual" memory on Secondary Storage devrces such as large
capaclty disk dnves. When the oroce$sor ettemots to access a locatron in ihe vinual memory map
that rs not currently residrng rn physrcai memory treferrecl to as a oage fault), the access io ihat iocat-
tron rs temDoranlv susoended wnil€, Ine necessarl CaIa rs fetched from the Secondary storage and

1-5

placed in physical memory; the susp€nded accessr is then completed. The MC6&10 provides hard-
ware support for virtual memory with tha c€pability of suspending an instruction's execution when
a bus error is signaled and then completing the instruction after the physical m€mory has been up
dated as nece!§ary.

Tha MC68010 uses instruction continuation rather than instruction r6tart to support virlual
memory. With instruction restart, the processor must remember the exact stale of the system
before each instruction is started in order to restore that state if a page fault occu.rs during its execu-
tion. Then, aiter the page fault has been repaired, the entire instruction that caused the fault is r+
executed. With instruction continuation, whan a page fau,t ocdrrs the processor stores its intemal
state and then, after the page fault is repaired, restoreri that internal state and continues ex€cution
of the inslruction. ln order for the MC68010 to utilize instruclion continuation, it stores its intemal
state on the supervisor stack when a bus cycle is terminated with a bus error signal. lt then loads ths
program counter from vector table entry number two (offset Sffi) and resumext program execution
at that na,v address. When the bus error exception handler routin€ has completed execution. an
RTE instruction is executed which reloads th6 Mcmlo with the intemal state stored on the sEck,
re-runs the faulted bus cycle, and continu€s the suspended instruction. lnstruction continuation
has th€ additional advantage of allowing hardware support for virtual l/O dwices. Since virn:al
registers may be simulated in the memory map, an accessi to such a register will cause a fault and
the function of the register can be emulated by software.

1.3.2 Virtral Machinc
One typical use for a virtual machine system is in the development of software such as an operating
system for another machine with hardware also under development and not available for progranr
ming use. ln such a system, the governing opereting system (OS) emulatas the hardware of the
ne\,v system and allows the new OS to be ex€cutd and debugged as though it were running on the
neryrr hardware. Since the n€\^/ OS is controlled by the governing OS, tne ne1,v one must ex€cute at a
lower privilege level than the governing OS so that any attempts by the nevrr OS to use virtual
resources that are not physically pres€nt, and should be emulated, will be trapped by the governing
OS and handled in software. ln the MC68010, a vrrtual machine may be fully supported by running
the new OS in the user mode and the governing OS in the supervisor mode so that any attempE to
access supervisor resources or execute pnvrleged instructions by the nenv OS will caus€ a trap to the
governing OS.

ln order to fully suppon a vinual machine, Ihe MC68010 must protect the sup€rvisor rcources from
access by user programs. The one supervisor resource that is not fully protected in the MC6800 is
the system byte of the status regrster. ln the MC6800, the MOVE from SR instruction allows user
programs to test rhe s bir (in addition to the T bir and interrupt mask) and thus determine that they
are running in th€ user mode. For full vrrtual machine support, a new OS must not be aware of the
fact that it is runnrng in the user mode and thus should not be allowed to access the S bit. For this
reason, the MOVE from SR instruction on the MC6&10 is a privileged instruction and the MOVE
from CCB instruction has been added to allow user programs unhindered access to the condition
codes. 8y maklng the MOVE from SB instructron prrvileged. when the nerar OS attempts to access
the S brt, a rrap to the governrng OS wrll occur and ihe SR image passed to the new OS by the
governing OS wril have the S bit set.

1-6

SECTION 2
DATA ORGANIZATION AND ADDRESSING CAPABILITIES

fhis section contains a clescnption of the registers and the ctata organization of the M;6SO1O.

2.I OPERAND SIZE

Operand sizEs are defined as follows: a byte equals 8 bits, a word equals 16 bts, and a long word
equals 32 bits. The operand size for each instruction is either explicitly encoded in the instruction or
implicitly defined by the instruction operation. lrnplicit instructions suppo(some subset of all three
sizes.

2.2OATA ORGANIZATION IN REGISTERS

The aght data registers support data operands of 1, 8, 16, or 32 bits. The seven address registers
and the stack pointers suppon address operands of 32 bits. The four control registers support data
of I, 3, 8, 16, or 32 bits depending on the register specified.

2.21 Dao Registers

Each data register is 32 bits wide. Eyte operands occupy the low order I bits, word operands the
low order 16 bats, and long word operands the entire 32 brts. fhe least srgnrficant brt is addressed as
bit zero; the most significant bit rs addressed as bit 31 .

When a data register is used as etther a source or destination operand, only the apDropnate low
order ponion rs changed; the remarning high orcler portron is nather useo nor changed.

2.2.2 Adc,rs Registers

Each address reglster and stack pointer is 32 brts wrde and holds a full 32-bit address. Address
regrsteG do not supgon the srzed ogerands. Therefore, when an address relrster is used as a source
operend, e'ither the low order word or the entrre long word operand is used depending upon the
operation size. When an address register is used as the destrnatron operand, the entlre register rs af-
fected regardless of the operatron size. lf the oper,ation size is word, any other operands are stgn ex-
tend€d to 32 btts before the operaton is performed.

2.23 Controt Registers

The status regtster (SR) rs '16 brts wrde wrth the lower byte being accessed as the condition code
register ICCR). Not all 16 brts of the SB are defined and wrll be read as zeroeli and ignored when
wnnen. Operatrons to the CCR are word operatrons; however, thg ugper byte wril be read as all
zeroes and rgnored wnen wflt'ten.

2-1

8ir 0.n - t BYrc-8 8iüt

lil.gr 0.t. - I 8yür-8 Bir3
109E765

I Word- 16 Sitr
r3 la 13 12 11 10 E 8 7 d 5 . 3 2 t 0

MS Word 0

Wortl I

Word 2

I Loig Word-&l Ertg

9876
HEh Od.t

- - Long word 0-
Lor Otdt LSE

- -Loog Word l-

- - Lo.!g wo(d 2 -

Addr6G - I Adclras-3z Eits

15 14 13 l2 11 l0 9 8 7 6 5 . 3 2 I 0
MS8 Hlgh Or(,
- - AddrBo - -

Loi 016r LSI

- - Addr§l - -

- Ad(ta2 --

MS8- M6t S€dfür I't LS8-L6r S€nrfEarr 8ar

Ocnd O.(a
2 Einry Cod.d OGn a O§rtc- I 8Vr.

Figurc 2-1. Memory Oata Organization

ll12t3

ra 13 !2 11 10 6 a !

8CO 0 8CO 1 rSD 8CD 2 8CD 3

8CD 4 8CD 5 BCO 6 8CD 7

vSO-Mo:F Sqnrllqt Orgrt sSD-L*sr S,gnrlrrnt O§rt

Z-L

MSn Byr.0 Lst 8r. 1

ar.lr 2 8vc 3

a32t0

The vector base register (VBß) is 132 bits wide and holds a full 32-bit address. I'll operätions involv-
ing the VB R are long word operations regardless of whether it is the source or clestination operand.

The alternate function code registers (SFC and DFC) are three bits wide and contain the function
code values placed on FCüFC2 during the operand read or write of a MOVES instruction. All
transfers to or from the altemate function code registers are 32 bits although th€ upper 29 bits will
be rEad as zeroes and ignored when written

2.3 OATA OBGANIZATION IN MEMORY

The data types supported by the MC@10 are: bit data, integer data of 8, 16, or 32 bits, 32-bit ad-
dresses and binary coded decimal ,Jata. Each of these data types is put in memory, as shown in
Figure 2-1. fhe numbers indicate th€ order in which the data would be accessed from the pro,
cessor.

BWes are individually addressable with the high order byte having an even address the same as the
word, as shown in Figure 2-2. The low order byte has an odd address that is one count higher than
the word address. lnstructions and rvord or long word data äre accessed only on word lwen byte)
boundaries. lf a long word datum is loc€ted at address n (n even), then the low-order word of that
datum is located at address n + 2.

figuo 2-2. Word Organization in Memory

2.4 AOORESSING

lnstructions for the MC68010 contain two kinds of rnformation: the typ€ of functron to be per-
formed and the locatron of lhe operand(s) on which to perform that function. Ihe methods used to
Iocat€ (address) the operand(sl are exclained in the following paragraphs.

lnstructions specify an operand location in one of thre€ ways:
Regrster Sgecrficatron - the number of the regtster is grven rn rhe reglster iield of

lherr instruction.
Effective Address - use of the ditferent effective addressing modes.
lmpliclt Reference - the definitton of certain instructrons rmplies the use of specific registers.

8vt. m) | 8yr. (El,l
8yt.@ | Byr.GUB

8yr' FFFFFE | 8vt. FFFFFF

2-3

14 r1 I 7 6 5 { I 0

7
,1 I

2.5INSTRUCNON FORMAT

lnstructions are from one to five words in length as shown in Figure 2-3. The length of the instruc-
tion and the operation to be performed is specified by the first word of the instruction which is
called the operation word. The remaining words further specity th€ operands. These words are
aither immediate operands or exten§ons to the effective address mode specified in the operation
word.

OParaooti word
(On Word SOGtiG Op.f!*rn .nd Mod6l

l.ilndara Oga.aard
lll Anv. onr or Two Wordsl

Sourca Elr-rva Addrcc Erroson
{ll Anv, Orx o, Two wotdtl

Oadnanon €ttctrya addtlt3 Ertcnron
llt Any, Ona or Two Wordsl

Frgure 2-3. lnstrus'tion Oporation Word Genral Fomut

2.6 PROGRAM/DATA REFERENCES

The MC68010 seg€rates memory references into two classes: program references and data
referencs. Program references, as th€ nams implies, are references to that section of memory that
contains the program being executed. Data references refer to that section of memory that contains
data. Generally, operand reads are from tha data space. All operand writes are to the data space.

2.7 REGISTER SPECIFICANON

The register field within an rnstruction specifies the register to be used. Other fields within the in-
struction specify wh€ther the register selected is an address or data register and how the register is
to be used.

2.8 EFFECT]VE ADORESS

Most instructions specrfy lhe location of an operand by using the effective address field in the
operation word. For example, Figure 24 shows the general format of the srngle-effectiveaddress
instruction operation word. The effective address is composed of two Sbit fields: the mode field
and the register 1;916. The value in the mod€ field selects the different address modes. The register
field contains the number of a regrster.

Figurc 2-{. Single Eff rtiveAddress I nstruction Operation Word

24

The effective address fieid may require additional informatron to fully specify the operand. This ad-
ditional information, cailed the effective address exlensron, rs conlarned in the foilowing word or
words and is considered part of the instructi(ln, as shown in Figure 2-3. The effecrive address
modes are grouped into three categones: register direct, memory addressing, and special.

2.8. 1 Register Direct Modes

These effective addressing modes specify that lhe operand is in one ,of sixteen general purpose
registers or one of four ccntrol registers.

2.8.1.1 DATA REGISTER DIRECT. The operanc, is in the data register specified by tlre effectrve ad-
dress regrster field.

2.8.1.2 AOORESS REGISTER DIRECT. The op,erand is in the address register specified by the ef-
fective address register field.

2.8.2 Mernory Address Modes

These effective addressing moders specrfy that r:he operand is rn memory and prcvide the specific
address of the operand.

2.8.2,1 AODRESS REGISTER lilDlRECT. The address of the operand is in tlre actdress register
specified by the register field The reference is classified as a data reference with the exception of
the jump and lump-to-subroutrne rnstructions.

2.8.2.2 AOORESS REGISTER INDIRECT WITH POSTINCREMENT. The address of the operand rs
in the address regrster soecrfied 3V the regtster fieid. Af'ter the operand address is .:sed, it is in-
cremented by one, two, or four depending upon whether lhe size of the operand rs byte, word, or
long word. lf the address register s the stack pointer and the ooerand size is byte, the address is rn-
cremented by lwo rather lhan one to keep the stacK Dornter on a word boundary. rhe reference rs

classrfied as a data reference.

2.8.2.3 AOORESS REGISTER INOIRECT WITH PBEDECFEMENT. The aodress of the ooerand is rn
ihe address regrster specrfied 0\, the regtsler fietd. Eefore the operand addfess t5 used, it is

decremented by one, twc, or four depending upcn whether the operand srze rs bvte, word, or long
word. lf the address reglster rs lhe stack pornler and the operand srze is byte,:he address is
decremented by rwo rather ihan one to Keep the stack pointer on a word boundary. Tre reference rs

ctassrfied as a data i'eference.

2.8,2.4 ADDRESS REGISTER INOIRECT WITH OISPI-ACEMENT. Thrs arldressrne mode requrres
one word of extensron. The address of the ooerand rs the sum oi the address rn the adcress register
and the srgn-extenced 16-brt displacement rnteger rn the extensron word. The referenr:e is ciassrfied
as a data reference wtth the exceotion of the lump and lumo-to.subroutrne instructrons.

2-8.2.5 ADDRESS REGISTEF INOIRECT WITH INDEX. ihrs acdressrng mode requrres one word oi
exlensron. l.e aooress oi lhe ccerarro rs ine surn of :ne adoress in:he acdress regrster, ihe sign-
exlen0ed Jisolacernent rnteger n :'re ro.w oroer erqnt orrs of the extensron word, and the Contents

of ths index register' rhe index may be specified as the sign extended low-order word or the longword in the index register. Ihe reference is classrfied as a data reference with the exception of thejump and jumgto.subroutine instructions.

2.8.3 Special Addreos Modes
fhe special address modes us€ the effective address register field to specify the special addressing
mode instead of a register number.

28.3.1 ABSOLUTE SHORT AOORESS. rhis addressing mode requires one word of extension. The
address of the operand is in the axtension word. The l&bit address is sign extended before it is us-
ed. fhe reference is classified as a data reference with the exception of the jump and jumrto
subroütine instructlons.

L8-3-2 ABSOLUTE LONG AOORESS. rhis addressing mode requires two words of extension. The
address of the operand is developed by the concatenation of the extension words. fhe high order
part of the address is the f irst extension word; the low order part of the address is the second exten-
sion word. fhe reference is classified as a data reference with the exception of the jump andjump-
tosubroutine instructions.

2.8.3.3 PROGRAM COUNTER WITH DISPi-ACEMENT. fhis addressing mode requires one word
of extension. The address of the operand is the sum of the address in the program counter and the
sign-extended 1&bit displacement integer in the extension word. Ihe value in the program counter
is the address of the extensron word. The refarence is classified as a program reference.

2-8-3.4 PROGRAM COUNTEF WITH INDE(. This addressrng mode requires one word of exten-
sion. The address is the sum of the address in the program counter, the sign-extended displacement
integer in the lower eight bits of the extensron word, and the contents of the index register. fhe in
dex may be specified as the srgn extended low-order word or the long word in the iidex register.fhe value rn the program counter is the address of the extension word.lhe reference is classif-ied as
a program reference.

2-8.3.5 IMMEDIATE DATA. This addressing mode requires either one or two words of extension
depending on rhe srze of the operation.

Eyta Operatron - operand is in the low order byte of extension word
Word Operatton - operand rs in the extension word
Long Word Operation - operand is in the Wvo extension words, high order 16 bitS are in the

first extensron word, row order 16 bits ars in the second extension
word.

2-8.3.6 IMPLICIT REFERENCE. Some rnstructions make rmplicit reference to rhe program counter
{PC), the syslem stack polnter {SP}, the supervrsor stack poinrer (SSP}, the user itack pointer(USP), the slalus regtster (SR), the condition code regtster (CCR), the vector basa regrster (VBR),
or the alternare funcrron code reglsters iSFC or DFC).

2-6

A selected set of insructions may reference the status register by means of the effecüve address
field. These are:

ANDI to CCR
ANDI to SR
EORI to CCR

EORI to SR
ORI to CCR
ORI to SB

MOVE to CCII
MOVE to SIt
MOVE from SR

2.9 EFFECTIVE ADDRESS ENCOOING SUMMARY
Table 2-l is a summary of the effective addressing modes discussed in the prwious paragraphs.

Tablc 2-1. Effrtive Addrss Encoding Summary

,lOOr:rng UoOr M6d. R.(ii,
Det, Rcgrstar Drract m R.O[§ti Numbar
Addr6r Faa.3rar Orrrct @1 R{[rtrNumö.,'
AddrEg Rag[3tar lndrracr 0r0 aolgtü Nu{rrö.,
AddrGa Rrgl3r, lnoh.act Hth

P€trncrrrnail 0li laglstr Num!..
addtals RrgEtcr lndrr.ct wrrh

Prrdrrffit rco
Addr.Si Ragl3rar lndrrlct Hrh

0,3oLcrmant r0r Resrr Numöar
Addrüss R€gls(cr lndtrlct wth

lndar |r0 RdrJr'. Numoa.
Aösoiura Shorr lil m
Absorutc Ljng 1lr co1
ProE am Co.Jnt!, wth

Crtdacünant 111 010
Prcgr.m CüJnta(nth lndax ln 0ll
lmfi t11 1o

2.10 SYSTEM STACK

The system stack rs used rmplicltl'/ by rnany instructions; user stacks and queues may be created
and marntarned through rhe addressrng modes. Address register seven {A7) is the system stack
pornter(SP) . Thesystem stack pointerisatherthrB5upsrvr..rstack pointer(SSP) ortheuserstack
pointer (USP) , depending on the state of the S bit in the status regtsrer. lf the S bit indicates super-
vrsor slate, ihe ssP rs the acttve s\/stefii §tack pointer and the usP cannot be referenced as an ad-
clress register lf rhe S brt rndicate:i user siate, th€, USP is the active systern stacl(pointer, and the
SSP cannot be referenced. Each sysrem stack filts from high memory to lofl memory.

2-7 !2-8

SECTION 3
INSTRUCTION SET SUMMARY

This section contains an overvieur of the form and structure of the MC68O10 instruction set. The
instructions form a set of tools that include all the machine functions to perform the following
operations:

Data Movement
lnteger Arithmetic
Logical

Shift and ßotate Program Control
Bit Manipulation System Control
Binary Coded Decimal

The complete range of instruction capabilities combined with the flexible addressing modes
described previously provide a very flexible basa for progßm dwelopment.

3.I DATA MOVEMENT OPERATIONS
fhe basic method of data acqui§rion (transfer and storagd is provided by the move (MOVE) in-
struction. The move instruction and the effective addressing modes allow both address and data
manipulation. Data movement instructions allow byte, word, and long word operands to be
transferred from memory to memory, memory to register, regisler to memory, and register lo
register. Address movement instructions allow word and long word operand transfers and ensure
that only legal address manipulations are executd. ln addition to the general move instruction there
are several special data movement instructions: move multiple registers (MOVEM) , move peripheral
data TMOVEP), exchange registers (EXGI, load effective address (LEA), push effective address
(PEA), link stack (LINK), unlink stack (UNLK), move quick (MOVEO), move control register
(MOVEC), and mov6 altemate address space (MOVESI. Table 31 is a summary of the data move
ment operations.

Tablc 31. Data Movement Opcrations

l.:üuctixr Opra.rd Si:a Ooerirr
EXG Rx-Rv
LEA 32 EA-An

LINK
(Anr - - iSPl

lSPl - An
lSPt + drsd.ctnrnr- SP

MOVE 8. 16. 32 IEA)3 < EAd

MOVEC rSnl - c,
iCrl-Rn

MOVEM 10,32 (EA)-An. On
(An. Onl-€A

MOVES 8. 16. 32
t EA) - fln
rRnt-€A

IrGuctirr OpErd Sir. Oorrtio
MOVEP t6. 32

d(An) - On
On-d{An,

MOVEO 8 ,x-On
PEA ?, EA- -{SPI

SWAP II On{31:161 - On(15:01

UNLK tAn) - Sp
{SPl+ -An

NOTES;
s- louro,
d - (bronaüo6
(l-tit numOcrs

-()-mdif,rt with g.adcffit
{ ,+ -indiflE! wür p€idacr!.rlnl
,-mmGlr. d.ra

J-l

3.2 INTEGER ARITHMET1C OPEFATIONS

The anthmeric operations include the four basic operations of add (ADDI, subtract (SU8), multiply
(MUL), and divide (DlV) as wellas arithmetic compare (CMP), clear (CLR), and negate (NEG). The
add and subtract instructions are available for bottr address and data operations, w,th data opera-
tions gccepting all operand sizes. Address operations are limitec to legal address size operands (16
or 32 bits). Data, address, and memory compars operations are also available. The clear and negate
instructions may be used on all sizes of data operands.

fhe multiply and divide op€rations are available for signed and unsigned operands using word
multiply to produce a iong word pro'Juct, and a long word dividend with word divisor to produce a
word quotient wi(h a word remaindar.

Multiprecision and mixed size arithmetic can be accomplished using a set of extended instructions.
fhesa instructions are: add extended (ADDX), subtract extended (SUBX), sign extend (EXT), and
negate binary with extend (NEGX).

A test operand (TST) instruction that will set the condition code as a result of a compare of the
operand with zero is also available. fest and set (TAS) is a synchronization instruction useful in
multiprocessor systems. fable 3-2 is a summary of the integer arithmetic operattons.

Table 32. lnteger Arithrn€tic Operations

hüuc{irr Oomnd S-m Oorrtin

aoo
I. 16, Il

16. 32

(Onl + (EAl -On.lEAl+ lOn, -EAlEAl+rm-EA
{An}+{EA}-An

ADOX 8. 16. O
16. 32

(Ox)+loy)+x-Dr
-(Ax)+ -(Avl+X-,(Axi

0-€A

CMP

o .a ,

!l-

ron, - 1eAl
(€A) - ,xxr

(Ar)+ -lAyl +
iAnr - l€A)

DIV S ion,/{EA} -On
DIVU 32+'6 onl/ IEA) - On

EXi 8-!6 ron,g - on]6
lDn)ra - Onz

VULS 10 x 16-32 i0n) X l€A)-On
VULU 16 x 16-32 {on} x iEA}-on
NEG 8, 16. 32 0-lEAl-EA

}IEGX 8. j6. ? 0-{EAl-X-EJ\

SUB
16.32

lOn)-rEA)-On
iEA)-(Onr-€A
(EAl -rxu-EA'anr-iEAl-An

5U8X
'Or]-iOvl-X-Dx

-iAr,- -lAvl-X-rAx)
:AS 3 EAI -0. r-ErAtTl

EA) -O

NOTES:
I i.ö.r nu6b.r
, - rmflradirtr daüf
- r rndinr! fidt Ofrd€ct!f,bnt
+ r rndrnEt wth O6tdcr6n1üil

3.3 LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT are available for all sizes of integer data
operands. A similar set of immediate instructions (ANDI, ORl, and EORI) provide these logical
operations with all sizes of immediate data. fable $3 is a summary of the logical op€rations.

Tablc 93. Logical Operations

Ircr.Eti,t Oormd Sizr offiin
ANO 8. 16, 3l

(Dn) A (EAr-On
(EA) Ä (Onl-EA
(EA)

^
rxxr-€A

o8 8, 16,32
{onl v (EA}-On
{EA} v {onl-EA
IEA) v rux-EA

EOR 8, 16,32
(EAt.(oyl-€A
I EAI r lvv- r EA

NOT 8, 16, Xl - {EA} - EA

NOTES:
- - invart
, -iffiIrt. datt

^
rloOi, ANO

V - loglcea OR
. ' lo€lcal .rdu3iw oF

3.4 SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are providd by the arithmetic shift instructions ASR and ASL
and logical shift instrucrions LSR and LSL. fhe rotate instructions (with and without extend)
available are ROXR, BOXL, ROR, and ROL. All shift and rotate operations can be performed in
either registeni or memory. Register shifts and rotates support all operand siz6 and allow a shift
count specified in a data register.

Memory Shifts and rotates are for word operands only and allow only singl+bit shifts or rotatefi.

Table 3-4 is a summary of the shift and rotate operations.

Tablc 3-4. Shift and Roate Operations

Oerroi
Sir Ogroontixr

ASL 16.32 @o
ASF t6.3:

tSL 16.32 Eo
LSF 1. 16. 3i offi
ROL ,. 16.3:

ROn 16.32
I

-I

_E
ROXL r6,3i

ROXR 16.3'

J.J

3.5 BrT MANTPULATTON OPERATTON§

Bit manipulation operations are accomplished using the following instructior§: bit test (BTSI, bit
test and set (BSET), bit test and clear (BCLRI, and bit test and change (BCHG). fable 3-5 is a surn-
mary of the bit manipulation operations. lZ is bit 2 of the status register.)

3.6 BINARY COOED OECIMAL OPERAT]ONS

Multiprecisron arithm€tic operations on binary coded decimal numbers are accomplished using the
following instructions: add decimal with extend (l\8CDl, subtract decimal with extend {SBCD),
and negate decimal with extend (NBCDI. Table 3-6 is a summary of the binary coded decimal-
operations.

Tablc 35. Bit Manipulation Operations Tablc &6. Binary Coded Decimal Operations

liraüJcdoar Op-..!d Siz. Op*rtior
ETST 8, 32 -üt ol lEA)-Z
ESET -üt ol IEA)-Z

1-brt of EA

BCLF 8. 32 -§r ot IEA)-Z
C-bl{ of EA

ACHG 6.U -ört ot tgll-2
- üt ol (EA) -b.r of EA

NOTE: - - rnrrod

llÜüiJctbn Of..rd
Si2. Opretba

aSco I lOx,10+ iDyrt0+ X -Ox- {Ar)ln+ - {Aylrn+ r-lAx,
SBCD 8

{OI,1O- loyllO- X -Ox- {Ar}16- - (Ay)rO- X - (Ax
NECD 8 0- iüU 19- X - {EA)

NOTES:
- : rndircci uür grad{frünant
+ - ndirEt uth g6tdoartt.nt

3.7 PROGRAM CONTROL OPERATIICNS

Program control operatlons are acccmplished using a series of conditional and uncondittonal
branch rnstructions and j'eturn instructrons. These irrstructions are summarized in Table 37,

The condrtronal rnstructions provide senlng and branching for the following ccnditrons:
CC - carry ciear LS - low or same
CS - carrv set LT - less than
EO - equai Ml - minus
F - never true NE - not @ual
GE - greater or equal PL - plus
GT - greater than T - always true
Hl - high VC - no overflow
LE - less or equai VS - overflow

yl

Tablc &7. Progrsm Control Opcrat om

lrürrcdon Opodo.t

Bcc

oBcc

Src

SrI|ch Co.tditir.Cty {14 Co.xftioßl
&.nd l&8it Olrpa.arül

T-r Condürr, Ocüinr, aod 8ra.rd'l
lc8it Oilgarrf'lt

S.r 8yr. Co.xrtir.at {10 Cooditir'lrl
IJTET.IüT'
BRA

8Sß

JMP
Js8

Brüdr AltEv!
& l,td 148il Oirparcmrrt

Era.rdr to Sulrqrrinr
& !.rd l6-git OirCrcrnstt

Julrp
JunE to Subroi/ür

iarrr
ßTO

RTR
8TS

natrJrn rtutr Sub.uJtirl and
rnd Orrqa Std

Raojm and R-to.t Co.xltixt Cod-
R.lrmr frsn Sstro.Jtira

3.8 SYSTEM CONTBOL OPERATIONS

system control operations are accomplished by using privileged instructions, trap generating iß'
Structions, and instruclions that use or modify th6 condition code registBr. These instructjons are
summarized in fabb 38.

Trbaa 3€. Sycrn Coood Opcaiocr

LEUüt Oprft
Pnnlnrd

ANO to Sn
EOR| to SB
MOVE EA to Sß
MOVE Sn to EA
MOVE USP
MOV€C
MOves
Onl to SR
NESEI
RTE
STOP

Lo{rc.a ANO to St.rl§ R.9!3b.
LogrcJ EOß to Sutu! R.gr3lt
Lo.d flü Strt/a Ragt3l,
Sto.. Statua 8.€:Jtr
Mo. Ut- Sd Ponü,
Mor. Csrtd R.gat
M6r. Att-lata AAtfs Soa
Lq,c.a OF to Stntr.c Scastl
ßcr Eflritd Oat c-
Rium trqn €rcot m
Sto ProOrrn ErGroo.r

Tn9 Grrrong
cH(
TRAP
TRAFr'

Chd O.t 8.$cü Agrntt Ufr 8o.rnd3
Tr+
Irro sr Oiellorv

Csüron C4(. R.güll
ANOI to CCR
EORI to CCR
MOVE EA Io CCF
MoVE CCn to EA
ORI to CC8

Lo9rc.a ANO to Corrltba CodG
Lo!:cA EOR to Condirir Cod-
Lo.d N.w Co.i<ritir Co6
Sto.t Co.tdnirn Coü
Loqcd OA & Cqrditi,l C€d-

15/36

SECTION 4
SIGNAL AND BUS OPERATION DESCRIPTION

This section contains a brief description of the input and output signals. A disr;ussion of bus op€ra-
tion during the various machine cycles and operations is also given.

NOTE
The terms assertion and negation will be used extensively. fhis is done :o avoid confu-
sion when dealing with a minure of "activ+low" and "activehigh" signals. fhe term
ass€rt or assertion is usetj to indicate trlat a signal is active or true, independent of
whether that larel is represented by a high or low voltage. Ihe term negatr: or negation is
used to indicate that a signal is inactive or false.

4.1 SIGNAL OESCRIPTION

The input and output signals can be functionally organized into the groups shown in Figure 4-1. The
following paragraphs provrde a bnef descnptron of the signals and a referencre (if appficable) to
other paragraphs that contain more detail about the function being performecl

Preasor /'
Statur \
M6fil

PüoOha.äl
Conlrd

3us Aralräton
Conrd

snt-1
Cmrro \

\'nr" o,

J Coora

Figure S1. lnput and Output Signals

4.1.1 Addre.s 8us (Al through A23l

This 23brt. unrdirectronal. thr*state bus is cäpable of addressrng 8 megawords of cJara. lt provides
the address for bus operatron durrng all cycles except CPU space cycles.

o
a4
ff,
455I

4.1.2 Data 8us (D0 through D15l
fhis lGbit, bidirectional, three'state bus is the general purpose data path. It can transmit and ac-
cept data in either word or byte length.

4.'!.3 Asynchronous Bus Control
Asynchronous data transfers are handled using the following control signals: address strobe,
readlwrite. upper and lower data strobes, and datä transfer acknowledge. These signais are ex-
plained in the following paragraphs.

4.1.3.1 ADORESS STROBE (ß1. fnis signal indicates that there is a valid address on rhe address
bus.

4.1.3.? READ/WRITE (R/W). fhis signal defines the data bus transfer as a read or wrate cycle. The
R/W signal also works in coniunction with the data strobes as explained in the following paragraph.

4.1.3.3 UPPER AND LOWER DATA STROBE (UOS, LOS). These signals controlthe flow of data
on the data bus, as shown in fable 4- 1 . When the R/W line is high, the processor will read from the
dau bus as indicated, When the R/W line is low, the processor will write to the data bus as shown.

Table {-1. Oata Strobe Control of Oata Bus

uus D5 F/w o&o15 oGoT
High Hrgh No velid Oera No Vahd Oalä

Loti Low High Valrd Oata Bits
&15

V6rid Datä Eirs
G7

Hrgh Loq High No Valid o.ta Vald Oatä Bir!
67

High High vahd Oat. Birr
&15 No Vald Data

Low Low Low Vatd oale Brüt
$15

Vahd oal! 8rts
+7

Hrgh L6{ Vahd Oab art!
+7'

vali, Oata Bits
07

Low Fltgh Vald Oala Sirs
&r5

Valid Oa(a 8its
&r5'

tThsgc conortons a'! a rcault ol cllnlrll rngltrranGoon and ,nav
nol eggaaa on igty6 63,"...

4.1.3.4 OATA TRANSFER ACKNOWLEDGE (Effi). rhis input indicates that the data transfer is
completed. When the processor recognizes 0TA«'during a read cycie, data is latched one clock
cycle later and the bus cycie termrnated. when ffi rs recognrzed ctunng a wnre cycle, the bus
cycle is terminated. Refer ro 4,4 ASYNCHRONOUS VERSUS SYNCHRONOUS OPERATTON.

4.'l .4 Bus Arbitration Control
fhe three stgnals, bus request, bus grant. and bus grant acknowiedge, form a bus arbltration circuit
to determrne whrch devrce wrll be the bus masler devrce.

+2

4.1.4.1 BUS REOUEST (m). This input is wire ORed with all other devicrr rhat could be bus
masters. This input indicates to the processor that some other device desrres to become the bus
master.

4.1.4,2 BUS GRANT tEGt. fnis output indicates to all other potential bus rn,:ster devices rhat the
processor will release bus control at the end of the current bus cycle.

4.1,4.3 BUS GRANT ACKNOWLEDGE (F6Äek). This input indieztes that some other device has
become the bus master. This signal should not be esserted until the followingr four conditions are
met:

1. a bus grant has been received,

2. address strobe is inactive rryhich indicates that the microprocessor is not using the bus,

3, data transfer acknowledge is inactive which indicates that neither memory or peripherals are
using the bus, and

4. bus grant acknowledge is inactive which indicates that no other deviöe 's still claiming bus
mastershiP.

4.1.5 lntemrpt Control tiFio-. iF'Ei, iFtrt
These input pins indicate the encoded priority level of the device requesting 3n interrupt. Level
seven is the highest priority while level zero indicates that no interrupts BrB raQr:€st€d. Level seven
cannot be masked. The least signrficant Oit ls iF[O and the most slgnificant bit is iFE. These tines
musl remain staole untrl the processor signals interrupt acknowledge (FCSFCz are all high, A+M3
are ail high) to insure that the interrupt is recognized.

4.1.6 System Conuol
The system control inputs are used to either reset or halt the processor and to rrrdicate to the pro-
cessor that bus errors have occurred. The three systern control inputs are explainr;d in the tollowing
paragraphs.

4.1.6. 1 BUS ERROR (EEm). Thrs rnput informs the processor that there is a problen: with the cycl6
currently berng executed. P!'oblems mav be a resuil of:'I .ronresponding devrces,

2. rntarrugt vector nurnoer acqulsltron fatiure,
3. rllegal access request as determrned by a memory management unrt, or
4 other appricatlon deoendent errors.

The bus error signal rnteracts wrth the halt Slgnal to Cetermine rf the currenl bus crrcle should be rt
execured or rf exceoüon processrng should be performed.

Reier to 4.2.4 Bus Error and Halt Operation for additronal informaüon about the interactron of the
EEF'F and EAIT srgnals.

4. 1.6.2 RESET (Fffi7). -hrs ordirecrronal signal line acts lo reset istart a systerr inrtlalizatlon se
quencei lhe orocessor,n resoonse lo an externai ,-eset srgnai. An rnternally Eenefated :eset iiesult

+:

of a re6€t instruction) causes all external devices to be reset and the internal stata of the procsssor is
not affected. A total system reset (processor and external devices) is the result of external ffitT
anO FI§ET signats apptied ar the same time. Refer to 4.25 Reset Operation for further information.

4.1.6.3 HALT (H-ÄET. When this bidirectional line is driven by an axtemal devica, it will cause the
processor to stop at the completion of the current bus cycle. When the proca§sor has been halted
using this input. all control signals are inactiva and all thre+state lines are put in their high-
impedance state (refer to Table 4-3). Refer to 4.2.4 Bus Error and Hatt Operation for additional infor-
mation about the interaction between tne ffiffi and 6ETT signals.

When the procsssor has stopp€d executing instructions, due to a double bus fault condition (refer
to 4.24,4 DOUSLE BUS FAULTSI, tne HÄfT line is driven by the procsssor to indicate to external
devices that th6 processor has stopped.

4.1.7 Mffi Peripheral Contol '
fhesa control signals are used to allow the interfacrng of synchronous MffiO peripheral devices
with the asynchronous MC68010. fhese signals are explained in the following paragraphs.

4.1.7.1 ENABLE (E). This signal is the standard enable signal common to all M6&0 type peripheral
dEvices. fhe period for rhis output is ten MC68010 clock periods {six clocks low, four clocks high).
Enable is generated by an rntemal ring counter which may come up in any state (i.e., at power on, it
is impossible to guarantee phase reiationship of E !o CLK). E is a freerunning clock and runs
regardless of the state of the bus on the MPU.

4.1.7.2VAL|D PEHIPHERAL ADDRESS l\Ml. rhis input indicares that the device addressed is an
M68S Family devrce and that data transfer should be synchronized with the enable (E) signal. fhis
input also indicates that the processor should use automatic vectonng for an interrupt. Refer to
SECT]ON 6 INTERFACE WITH MM PERTPHERALS.

4.1.7.3 VAUO MEMORY AOORESS lVNiÄt. Ihis output rs used to indicate to M68m peripheral
devices that there is a valid address on th€ address bus and the procsssor is synchronized to enable
(E). fhis signal oniy responds to a valid penpheral addrss (VPA) input which indicates that the
genpheral rs an M68ffi Famrly devrce.

4. 1.8 Procsor Status (FCO, FC1 , FCa.
These function code outouts rndicate the state (user or supervisor) and the cycle tYge currently be
ing executed, as shown rn Table 4-2. The information indicated by the function code outputs is valid
whenever address strobe (Ä3) is aclrve.

4.1.9 Clock (CLK)

The clock inpur is a TTL-compattble signal thar is rnlernally buffered for development of the intemal
clocks needed by the processor. The clock rnput shouid not be gated off at anY tlme and the clock
srgnal must conform to minrmum and maxrmum pulse width tlmes.

4-4

Table 42. Fun,ction Code Outputs

Functbn C€da Outp.rr Cyd. fyp.Fc2, FCt FC0
Lor Low Low (Undefin€d, Ra§ofred,
Low Low High Us€r Oata
Low H§h Low Ussr Proaram
Lor High High (Underin€d. Re3€ß6dl
High Low Low (Undefin€d. Rss€ryed)
Hrgh Low H'sh Suoenvrlor Oata
High Hrgh Low Supnrursor P.ogram
H€h H§N High CPU Soace

4.'1.10 Signal Summary
Table 4-3 is a summary of all the signals discussed in the previous paragraphs.

Table G3. Signal Summary

Sift a fl..n Mnmoric IrFUt/Oirput Aciiv. Strt
Hi-z

on iIAEf on §6CK
Addr6s 8us 0utgut Hrgn Ye§i YgI
Oata 8us 00-o I 5 lnout,'oulout rtrgh Yss Y€a
A0dr6s Strooa 0r rout Low No Y€.

R6.d/Wnta RrW Outort Reä<r-High
WnteLo^/ Nlo Yd]

Uooar and Lowry Data Stoos JOS, I-DS Outgut !0w No Ye§

Data f ranslar Acrnoilaoga lnput
8us Saoueat f,|R rntrut
3us 6ranr SG Ou tput Low No No
8us Grant Acknowi€ogs rü§fr lnDut Low
lnterruOt Pnoßw Lell rPLO,]PL], IPL2 Inout Low
Bus Error SEFH I nout Low
R csct HtSti i nOu U ()utOUt Lcw No' NO

Salt {ÄI'l' ,nout/ (lutout l-ow No' NO

Eneölo Cl OulDut Hrqn No No
Veld Mffi Address Outg!a No Yea
Valld Pm9ha.al Addrass I nout
Functron Cod€ Out9ul c,^d af . cf a Output rr9n No' Ye3
Cloct CLK n0ut ts'gn

Inout npvt
Ground 5N0 lngul

' Oocn Oan

4.2 BUS OPERATION
The followrng paragraphs exoiain ccntroi srgnal and bus operatron dunng Cata transler operations,
cus arDttratton, bus error and hait condillons, and reset ooeratton,

4.2.1 Data Transfsr Operations
Transfer of data be§ve€n devrces rnvolves the foilcwtng signais:

1 address ous A1 through 423,
2. data ous D0 lhrougn D15. anc,
3. controi srgnals.

+5

fhe address and data buses are separate parallei buses used to transfer data using an asynchronous
bus structure. ln all cycles, the bus master assumes responsibiliry for deskewing all signals it issues
at both the start and end of a cycle. ln addition, the bus master is responsible for deskewing the
acknowledge and data signals from the slave device.

The following paragraphs expiain the read, write, and read-modify-write cycles. The indivisible
read-modify-write cycle is the method used by the MC68010 for interlocked multiprocessor corrF
munications.

4.2.1,1 READ CYCLE. Dunng a read cycle, the processor receives data from the memory or a
peripheral device. The processor reads bytes of data in all cases. lf the in$ruction specifies a word
(or long word) operation, the processor reads both upper and lower bytes srmultaneously by asser-
Iing both upper and lower data strobes. When the instruction specifies byte operation, the pro-
cessor uses an internal A0 bit to determine which byte to read and then issues the data strobe r+
quired for that byte. For byre operations, when the A0 bit equals zero, the upper data strobe is
issued. When the A0 bit equals one, the lower data strobe is issued. When the data is received, the
processor conectly positions rt internally. lf D=fÄ;ffi, 6EHF, or VE is not ass€rted for the required
setup time before the falling edge of 54, a wait cycle will be inserted in the bus cycle and DTIffi'
wrll be sampled again on the falling edge of each wait cycle. The MC68010 will continue to insert
wait cycles until f;l'AIR, 6-fHE', or Vffi is recognized.

A word read cycie f lowchart is given in Figure 4-2. A byte read cycle flowchart is given in Figure 4-3.
Bead cycle timing is given rn Figure 4-4 Figure 4-5 details word and byte read cycle operations.

BUS MASTER

Figure 4-2. Word Read Cycle Flowchart

ll Set fi/W ro Rcad
2) Ptacc Funcrron Codc on FCGFC2
3l Ptaca AOtsrres on AI.AzJ
4l Asr Addr6 Srroo. lA-)
5t 4s411 ugo« oera Srooc ,uTSi ano

Lowo. D.ra Sr.oö. rL-tt§)

ll MAddr§
A Pl.c. O.u o.r OOOI5
3, Alaan Oat. franslcr ActnowL<rg,

rö-re.cx-t

Rrnlolrr Orrr lrom 0+Ol5
xegrr Ö-lcx

4-6

l) L.tch O.r.
2t N.qrr. 6-3 ano i65
3l Nqrrr 7§

8US MASTER

l) Set R/W to Read
2l Placa Functron Code on FCGFC2
3) Placa AddfBs o^ Al-A23
4l Ass.(Ad6r6s S(rooa lA3l
5l asserr tlog€r Oara Srrooe (U-IIS) cr

Lower Oara Srrob€ (L.6SI (bas€d on AO,

ll D.codr AddEas
2l Ple€. Oau on OGCT or O&Ot6 tb.a.d

on UTS or 6'§t
3, Alsart Oalr Transra, Actnowtadgr

(OTACK)

ll L.rch Oerta N.s.t, ES or [ö-§
3l Ncqerc Ä§

1l Rrnoir. Oatr horn IOOT or O&OIS
2l xcs.tr örcR

Figure 4-3. Byte Read Cycle Flowchart

S0 Sl S2S3 54 SSSO 57 S0 Sl 52 53 S.55 SO S7 S0 Sl S2S3 S. w w w s 55 SO 57... t_.rLrlr
o,.or ------

i§
ü6§
LOS

R/w

OfACK
o&ol5
BO7

trc+Fcz

l+--e..o-l*-wr," --+]+-- sro,i F..d --..+,|
Figure {4. Read and Write Cycle Timing Diagram

SO SI 32 53 54 55 56 57 SO SI 52 53 54 55 56 57 SO SI 52 53 34 55 56 57

o,.ora

Ä-S

üö§
i6's
nrE

d'ilEi

-!-t,
,*tcz

'lntrnal Signal OntY

i+-wcrd Rcad.---l-Cdd 8vr! ß..d-+€vcn Sytc *..O---l

Figure 4-5. Word and B6e Read Cycle Timing Diagram

4.2.1 .2 WRTTE CYCLE. During a wrire cycle, the processor sends data to either the memory or a

penpheral device. fhe processor writes bytes of data in all cases. lf the instruction specifies a word
operation, th€ processor writes both bytes. When the instruction specifies a byte operation, the
processor uses an internai AO bit to determine which byte to write and then issues the data strobe
required for that byte. For byte operations, when lhe A0 bit equals zero, the upper data strobe is
issued. When the A0 bit equals one, rhe lower data strobe is issued. A word write flowchart is given
in Figure 4-6. A byre write cycle flowchart is grven in Figure 4-7. Write cycie timing is given in Figure
44. Figure 4€ details word and bYte write cycle operation.

8US MASTER

Figure zt-6. Word Write Cycle Flowchart

ll Ptäc! Furctrm CoO€ on FCIFC2
2) Ptact A(kr!3t on A1'a23
3l Asefl add.63 Strooc {a3}
4l Set R/W lo Wr,le
5l Plr! 0.rä on CO-015
6l Asr uoo6 Oata Srrooe'CE§i a"o

Lcwa, Oata Srrooc ,tT§l
ll Ocod. Addr..s
2, Stor. O.l. on OGOIs
3l As.!7t Olrr frrnsf; actnowbog.

r6ffiRt

ll N.g.r. u-6§ ano id§
2) \.9är. AS
3) Rmv.oata lrom @015
4t Scr RtWro Rod

4-g

BUS MASTER

ll Place Functron Codr on FCo-FC2
2l Place Adoress cn Al'423
3) Ass€rr Address Slrooc 1.4-)
4l Sat B/W to Wrrta
5l Pla6s 9.,. on 00-07 or O8-D15

leccordrng ro 40,
6) Ass€rt Ugper Dara Srrooe tFSr or

Lower Oara Srrooe rLE'§r rbas€d on aol ll Ocod. A@rü.ts
2, Stor. O.t' m m-O7 if [O-§ rs

Stor! Oata o.r OB'OI5 ,t FOt is
Assadad

31 49!!4 Oate frrnclcr ActnowLdgc
r6?ffir

3) Rrnow Oara lrom OGOT or O&Ol5rll Set ß/W ro SceO

Trnr,rrr ür.CVd.

Figure tl-7. Eyte Writa Cycle Flowchart

SO SI 52 53 54 S5 56 57 SO SI 52 53 54 55 56 57 SO S] 52 53 Si,. 55 56 57cL(J-'l-J-a-.l1 Ln_I
oo. _
i-t _-J

ffiei --J

''nte?nai Srgner 0niv

Figure *8, \A/ord and Byto Write Cycle Timing Diagram

+g

8US MASTER

tl Ser R/W ro 86ad
2l Placc Funcrron CoOC on l;CO-FC2
3) Ptace Addrsss on Al.A23
4l Assrr Addras S(rob. {a3)
5l Assarr ugp.t oeta Srrobe IUTS) or

Los Oät. Strobe ILES)

ll Ocod. Adcrr!3s
A Pl.c. O.rr on 0OO7 or O&Ots
3l Arsan Oau Translar Actn€(ddga

{6Tm)

ll L.rch Oa(a
xogerc üo-3 or [o-5
Strn Oar Modr,icarron

1l Rünor.i.t. trom OGOT or O&Ol5
2l N.g.e OfACK

l) Sa R/W to Wrrtr
2) Pl.c. O.t. on OGOT or O&O15
3l alsd Uog.r O.t. Slroo. IUOS) or

LoYY.r Orrt Stroor tid§t

Stor! Oaa. on OGOT or O&Ol5
ggara T rrnlrcr Actnowiadga
{OIACK)

I) N.q.r. üd§ or IES
2t Nrgrro l3
3l Rcnow O.ra lrom 0GO7 or O&Ot5
4l S.r R/W ro Rrd

Stra Oro.n TnlÜ,.i

Starr N.rt CycL

Figure 4-9. Read-Modify-Write Cycle Flowchart

+10

sllvE

4.2.1.3 BEAO-MODIFY-WRITE CYCLE. ihe read-rnodify-write cycle perforrns a read, modifies th,e
data in the arithmetic-logic unit, and writes the data back to the same address. In the MC68010, thi:3
cycle is indivisrble in that the address strobe is asserted throughout the enttre cycle. The test and set
{TAS} instruction uses this cycle to provide meaningful communication between processors in ;r
multiple processor environment. Thrs instruction is the only instruction that uses the read-modify-
write cycle and since the te:it and set instruction only operates on bytes, all read-modify-write'
cycles are byte operations. A read-modity-write flowchart is given in Figure .4-9 and a timing
diagram is given in Figure 4-10.

Wait cycles will be inserted between 54 and 55 on the read portion of the hJs cycle and between
S16 and S17 on the wnte portion of the cycle if D'Tffi, BTJ{F, or IZFA is nct asserted for rhe r+
quired setup trme prior to the falling edge of 54 and S16 respectively.

4.L1.4 CPU Space Cycle

During a CPU space cycle, the MC68010 reads a peripheral device vector nrmber or indicates a
breakpoint instruction. lf the cycle is to read a vector number it is referred to as an interrupt
acknowledge cycle. A CPU space cycle is indicäted when the function codes are all hrgh. The ad-
dress bus then defines what type of CPU space cycie is being executed. fho N{C68010 defines wvo
types of CPU space cycles, the interrupt acknowledge cycle, and the breakp()tnt cycle.

The interrupt acknowiedge cycle on an M68000 Family compatible processor is defined as a CPU
space cycle wrlh the most stgnificant address lines high; on the MC68010 this rneans that A+A23
will be high. The level of the interrupt being acknowledged is encoded on aodress lines A'l-A3. An
interrupt acknowledge cycie is terminated in the same manner as a normal n:ad cycle. The pro.
cessor expects a peripherai devrce to respond to an tnterrupt acknowledge :,/cle wtth a vector
number that wtil be used to transfer control !o an interrupt handler routrne. See 5.3.2 lntgmrpts for
further discussion of the interrupt acknowiedge cycle.

CL(

AI A23

Ä-s

65 o' r-E
lrW

9&Ots

lndNr3ba Cr"r

-{

Figure 4-10. ReaGModify-Write Cycle Timing Diagram

s0 sr s2 s3 g s5 56 S7 58 s9Sl0SJr S12St3St.S15S16S17Sl8Sl9']_J1J
E

4-1 1

PfocEssoR NCOUEST|XG OEVICE

ll AtaJr 8u3 Raqugt

ll Asr Bus Gf.nt {

ll ErlanrC A.titrrtbn O.t..mmG Naxt
8us Mas!.

2, N6rl gtrs M!3Lr Wr.E fof Cunofit. Cyct to Co,npLt
3l N.rt Bus M.3t Ass.r§ Buc Grenr

acrnowldg. tEEÄCRt to 8.corr.
NnMat

41 8lir Mlct r Ncg.r6EF
ll Nrg.ta BG tand wat for EGACK lo

Partam Oltr Tr!.r3ra€ lFesd and
Wnrr CyclGal Acco.dng lo tl! Sam.
RulG tha Pra6d UsG

RlArtuüßrrII
PyorOfrtan

Figure 4-11. Bus Arbitration Cyclo Flowchan

The breakpoint read cyc,e is executed by the MC680'10 in response to a bra3kpoint illegal instruc-
tion. A breakpoint cycle on the MC68010 is defined as a CPU space cycle tvith all of the address
lines low. The processor does not accept or s€nd any data during this cycle. fhe breakpoint cycle
may be terminated oy fiIffi. E'EHH, or VtrA. See 5.3.6 lllegal and Unimpricmented lnctrustion!
for funher discussion of breakpoints.

ln order to marntain compatrbility with future processor members of the M68m Family, system
designers should fully decoder the CPU space. ln panicular, the most srgnificant address lines
(A{-A19 for the MC68@ and A4-A23 for the MC68000 or MC68010} shoulcj lre used to distinguish
between an interrupt acknowledge cycle and a breakpoint cycle. AII encoding;s of bits A1&A'19 are
reserved by Motorola for furure extensions of the CPU space functions.

4.22 Bus Aöitration
8us arbitration is a technrque used by master-type devices to request, be grantald, and acknowledge
bus mastership. ln iß simplest form, it consists of the following:

1. assening a bus mastership request,
2. recavng a grant that the bus is available at the end of the current cycrg, and
3. acknowiedging that mastershrp has been assumed.

Figure 4-11 is a flowchan showing the detarl rnvolved in a request from a single, device. Figure &.12
is a timing diagram for the same operation. This technique allovvs processrng oi bus requestsduring
data transfer cycles.

The timing diagram shows that the bus reguest is negated at the time that an acknowledge is
asserted. This rype of operation would be true for a syslem consisting of the processor and one
davice capable of bus mastershro. ln systems having a nurnber of devrces capable of bus master-
ship. the bus request iine from each device rs wrre ORed to the processor. ln thrs system, it is easy
to see that there could be more than one bus request being made. The timing criagram shows that
the bus grant signal is negated a few clock rycles after the transition of the acknowteOge tE6ÄLXI
srgnai.

c..*J1J1J']fLnJt_ftJ J.lfi.ruut
o- -\-----

G;ü65 \---,n"
0 TACr
00.or5

FCOFC2

m
-5b

3GACX

Proct so,--++.r}-OMA Dicr/'c!-=++{-ptocasor-----+{rF-Olyla O-rc.-

Figurc 412. Bus Aöitrztion Cycle Timing Diagram

+13

However, if bus requests are still pending, the processor will assert another bus grant within a few
clock cycles after it was negated. This additional assenron of bus grant allows external arbitratton
circuitry to select the next bus mastar before the current bus master has completed its r*
quirements. The following paragraphs provide additional information about the three steps in the
arbitration process.

4.2,2.1 REOUESTING THE BUS. External devices capable of becoming bus masters request the
bus by asserting the bus request (8-F) signal. This is a wir+OBed signal (although it need not be
constructed from open-collector devices) that indicates to the processor that some external device
requires control of the exlernal bus. The processor is effectively at a lower bus priority level than the
external device and will reiinquish the bus after it has completed the last bus cycle it has started.

When no acknowledge is received before the bus request signal goes inactive, the processor will
continue processing when rt detects that the bus request is inactive. This allows ordinary procesg'
ing to continue if the arbitration circuitry responded to noise inadvertently.

4.2.2.2 RECEIVING THE BUS GRANT. fhe processor ass€rts bus grant t§G) as soon as possible.
Normally this is immediately after internal synchronization. fhe only exception to this occurs when
the processor has made an internal decision to execute the next bus cycle but has not progressed
far enough into the cycle to have asserted the address strobe (ß) signal. ln this case, bus grant will
be delayed until ÄS is assened to indicäte to external devices that a bus cycls is being executed.

The bus grant signal may be routed through a daisy-chained newvork or through a specific priority-
encoded netlvork. The processor is not affeoed by the external method of arbitration as long as the
protocol is obeyed.

4.2'L3 ACKNOWLEDGEMENT OF MASTERSHIP. Upon receiving a bus grant, the requesting
device warts unlil address strobe, data transfer acknowledgg, and bus grant acknowledge are
negated before issuing its own ä-öÄ«. The nqation of the AS indicat* that the prsvious master
has comptered its cycle; rhe negation of BGAeK indicates that the previous master has released the
bus. (While address strobe is asserted, no device is allowed to "break into" a cycle.) The negation
of Ö-IÄ,ffi indicales rhe prevrous slave has termrnatd its connection to the previous master. Note
that in some applicatrons data transfer acknowledge might not enter into thts function. General pur'
pose devices would then be connected such that they wsre only dependent on address strobe.
When bus grant acknowiedge rs issued, the device rs a bus master until it negates bus grant
acknowiedge. Bus grant acknowledge should not be negated untll after the bus cycle(s) is lare)
compiete{ 8us mastershtp rs terminated at the negatlon of bus granl acknowledge.

The bus request from the granted device should be negated after bus grant ac|nowledge is
asserted. lf a bus r@uesr rs stiil pending. another bus grant will be assened within a few clocks of
rhe negation of the bus granr. Refer to 4.2.3 8us Aöitration Control. Note that the processor does
not perform any external bus cycles before it reasserts bus grant.

4.2.3 Bus Arbitration Control

The bus arbttratlon control unlt in the MC68010 rs rmplemenled wirh a finite state machine. A state
diagram of this macnrne rs shown rn Figure 4-13. All asynchronous srgnals to the MC68010 are syn-
chronized before thev are used rnternally. Thrs svnchronizatiori is accomplished in a maximum of

R r 8u! Rcquct lntrrnal
A. Bu! G6nf Actnowlcdga lntarnri
G- 8'§ Grant
T- ThrGstetc Controt lo 8us Control togci
X-Oon'r C.lt
NOTES:

1. Stata nrachrnc nll nor chan96 rf bus is rn 5O or S1. Rcfs to 4.23 8u. A.t nlri.,l (änrd.
2. Th. addrEs bur wtil ba ol.cao rn tha hrEF,rnp.(änc6 stare r, T ir assarra6 and -a§ ,3 negäted-

Figure 413. MC68D10 8us Arbitration Unit Stata Diagranr

one cycle ot the system clock. assuming that the asynchronous input setup tjme (f47) has been met
(see Figure 4-14). The rnput srgnal is sampled on the falling edge of the clock and is valid internally
afler the next rising edge.

As shown rn Figure 4-13, input signals labeled R and A are internally synchrc,nlzed on the bus re
quest and bus grant acknowledge pins respectively. fhe bus grant output is latrr:fed G and the inter-
nal threesEte controi signal J. lf T is true, the address, data, and control buses are placed in a
higlrimpedance state when Ä§ is negated. All srgnals are shown in posrtivr:, logic (active high)
regardless of their lrue acrtve voltage level.

Statechanges ivahd outputs, occur on the next rising edge after the internal r;ignal is valid.

lntcma, Signal Vaid

Errmt Sqna(Samilcd

-l
*

cLx

8Fl {Errmar}

3-R {lnlam6ll

Figure 4-14. Timing Reiationship ol Extumal Asynchronous lnputs to lntemai Signats

+15

A timing diagram of the bus arbitration sequence during a processor bus cycle is shown in Figure
4-15. The bus arbitratron sequence while the bus is inactive (i.e., executing internal operations such
as a multiply instruction) is shown in Figure 4-16.

lf a bus reguest is made ar a time when the MPU has already begun a bus cycle but A- has not been
asserted (bus state S0), BG will not be asserted on the next rising edge. lnstead, BG will be delayed
until the second rising edge following its internal assrtion. This sequence is shown in Figure 4-17.

4.2.4 Bus Error and Hatt Operation

ln a bus architecture that requires a handshake from an external device, the possibility extsts that
the handshake might not occur. Since different systems wrll require a different maximum response
t,me, a bus errorjnput is provided. External circuitry must be used to determine the duration be
tween address strobe and data transfer acknowledge before issuing a bus error signal. When a bus
error orland halt signal is received, the processor will initiate a bus error exception sequence or try
to re-run the bus cycle.

ln addition to a bus rimeout indicator, the bus error input is used to indicate a page fault in a virtual
memory system. When an externai memory management unit detects an invalid access, a bus error
rs signaled to suspend execution of the current instruction.

aus fhr6o Sbte<, Eus Rel€ascd trom fhrcc S tat€ and
EG essenco-
EF vatrd tntcrnat

Procssso. Starts NGxt 8us
0n Völq Inl6Bl-
6H Samoteo..- |

E?F.fi Nagated rntarut
E-6ftk samoiao-
a-öICR HesatEFrrsneo , I Itlt

EF

5U

eEi
at.A23

Äs

u-o3

L6§

ffix

P'messor 8qs Masler+P'ocessor€

Figure 4-15. Bus Aöitration Timing Diagram - Processor Aaive

+16

6G ascrreo and 8us rh.e€ Slatd
8-l vald tntrnat
5I samor.dilt

8us Rcleased frofr fhra€ Stata and
Proc6asor Starts Naxt Bus Cvcle

§68fi xesarco

CLK

8a

t6
t6l-cR
ar.a23

ß
UU5

63
;c0.Fc2

azW

5TÄEi

:lSOS6s4>U

cGor5<
+-9ro€a.so'+..{t-8u3lnacl|ve+Allgnat.8usMesrar-.--.-I+.Procssor+

Figura *16. 8us Arbitration Tr'ming Diagram - 8us lnactive

8us Thrr S Bus Bdsrd lrom Thrac Statc and6b Pr*aasor SLrts N€rt Bus Cvcla
5Fl Vatrd tnrernar
EF Samoec
fH assrroo

äCER Ncgä(e6 l.t€f,nat
56ffi Samoteo-

I T§Fx usaoo-
cLx

5F

SG

s6§cR

56S2SOSO

A_§

uT§
.1r§

FCGFC2

azF

+-)rocSssor Atternat! aus MaSttr
--.-).+----

,iocassor
-.-->

F\gwe {17. t}us Aöitration Timrng Oiagram - Special Case

4.2.4.1 BUS EHROR OPERATION. When the bus error signal is used to terminate a bus cyclE. the
MC68010 will enter exception processing immediately following the bus rycle. The bus error signal
is recognized in either of the following cases:

1. 6T-EA and H-A[T are negared and 6?ffi is asserted.
2. FiÄfT and EEFH are negated and DI-ACK is asserted. EEHF is then assened within one clock

cycle.

When the bus error condition is recognized, the current bus cycle will be terminated in 59 for a read
rycle, a write cycle, or the read portion of a read-modify-wnte cycle and in S21 of th€ write portion
of a read-modify-wnte cycle. As long as EIEHH remains asserted, th6 data and address buses will be
in the higlrimpedance state. Figures 4-18 and 4-'19 show the timing diagrams for both types of bus
error signals.

CLK

AI.A23
A-S

Id§zUd§
nrW

urÄ?r
ooo15

F@FC2
EEFH
Ei7

, lnrtEta rl+- Raoo6sa Fariu6.-.+,h- Bg3 Eno. Oet.cuoriHsd
I lntoara Bus

Enof 5t.cltng

CLK

41.423
r-E

U§§ritr§
erfr

o-ilEi
oGol5

FCGFC2

8ERß

EIT

Fqure 4-18. Bus Enor Timing Diagram

SO 52 54 56

l-'s L tLE

-l-DarccnonF
Eror S ucr,ng

-i

Figura 419. Delayed Bus Error Timing Diagram

d- 18

After the aborted bus cycle is lerminated and 6EHH is negated, the MC6801C enter:, exception pro-
cessing for the bus error exception. During the exception processing sequenot, the following infor-
rnatron rs placed on the supenrisor stack:

1. Status register
2. Program counter (two words, may be up to five words past the instnJction being executed)
3. Frame format and vector offset
4. lntemai register information, 2.words

Note that the first four words oi information are identical to the information stacked by any other
exception such as an interrupt or TRAP instruction. The additional information ls used by the
MC68010 to continue the execution of the suspended instruction when it is re.,loaded by an BTE in-
struction. See 5.3.9 Bur Enor for further details.

After the MC68010 has placed the above information on the stack, the bus errcr exception vector is
read from vector tabls entry number two (offset SGI and placed in the program counter. fhe pro-
cessor then resumes instruction execution.

NOTE
lf a read-modify-write instruction is terminated with a bus error and later,:ontinued with
an RTE instructron, the processor wrll rarun the entire cycle whether the bus Eror occur-
red on the read or the write portion of the cycle.

4.2.4.2 RE-RUN OPERATION. When, dunng a bus rycle, the processor receivrs a bus arror signal
and the halt prn is berng driven by an external device. th6 processor enteni th6 r+run sequence. A
delayed rgrun srgnal mav be used simrlarly to the delayed bus error signal described above. Figures
{N and 421 are timing diagrarns for both methods of r+running the bus cy(le.

-
-J) !9>

rr!f

F(.l}FLI

ä-di-h

EiT
k- Rc.d +H.{r+{r-nun+{

Frgurc {-20. R+Run Bur Cycle Timing Oiagram

4-19

CLK

A1-A?3

^S
üo§
L6§
R/W

6rfti

r*a*

l+- B cad ---+- Häir ----+- R+Run

-rlFigure 4-21. Delayed ReFun Bus Cycle Timing Diagram

The processor terminates the bus cycle, then puts the address and data lines in the high-impedence
state. fhe processor remains "halted", and will not run another bus cycle until th6 halt signal is
removed by external logic. Then the processor will r+run the previous cycle using the same func-
tion codes, the same data (for a write operation), and the same address. Ihe bus error signal should
be removed at least one clock cycle before the halt signal is removed.

NOTE

The processor will not rerun a read-modify-wnte cycle. This restriction is rnade to
guarantee that the entire cycle runs correctly and that the wnte operation of a test-and-
set operation is performed wrthout ever releasing ÄS. tf g-EFF and FIÄTT are asserted
during a read-modify-write bus cycle, a bus error operation results.

4.2.4.3 HALT OPERATION. The hait input srgnal to the MC680l0 performs a halt/run/singlestep
function in a similar fashion to the M68m halt function. fhe halt and run mods are somervhat self
explanatory in that when the halt signai is constantly acttve the processor "halts" (does nothing)
and when the halt signal s constantly inacttve the processor "runs" (does something) .

This singlestep mod€ is derrved from correctly timed transttlons on the halt signal input. lt forces
the processor to execute a srngie bus cycle by entering the run mode untjl the processor starts a bus
cycle then changing to the halt mode. Thus, the stnglestep mode allows the user to proceed
through {and therefore debug) processor operations one bus cycle at a time.

Ftgura {22 detaiis the trmrng requrred for correct singl+step operations. Some care must be sxer-
clsed to avord harmfui rnteractrons bewveen the bus error signal and the halt pin when usrng the
singl+cycle mode as a debuggrng tool. This is also tru€ of interactions between the halt and reset
lines since these can reset the machine.

B-E'H

HALT

+20

n§
[!3,6§

e/w
OIACK
oGor5

FCSFC2

ilrI
l*-e+ xart

---f-
Rerd --.-.af

frgwa *2- Halt Processor Timing Diagram

When the processor completes a bus cycle after recognizing that the halt srgnal is active, most
thre+state signals are put in the high-impedence state, these include:

'I . address lines, and
2. data lines.

This is required for correct performance of the rerun bus cycie operation

Whrle the processor is hononng the halt request, bus arbitration performs as usuirl. That is, haiting
has no effect on bus arbitration. ll ts the bus arbitration function that removeri':ie control signals
from the bus.

The halt functron and the haroware trace capability allow the hardware debugger to trace single bus
cycles or single rnstructtons at a trme. fhese processor capabilities, along with a rioftware debugg-
ing package, grve total debuggrng flexrbility.

4.2.4.4 OOUBLE BUS FAULTS. Vt/hen a bus error exceptron occurs, the process{lr wiil attempt to
stack several words containrng information about ihe state of tne machine. lf a bus error exception
occurs durrng lhe stacking op€ratr,cn, there have been two bus errors in a row. T'his is commonly
referred to as a double bus 1'ault. V/hen a double bus fauit occurs, the processor vvril iralt and drive
the ffiT lin€ low Once a bus error exceplron has occurred, any bus error exceptrcn occurring
before the executron of the next instructlon constrtutes a double bus fault.

Note thal a bus cvcle whrch rs r+rtn does not constitute a bus error exception an«J does not con-
tnbute Io a double bus fauit. Note aiso lhat thrs means lhat as long as the external hardware r+
QUeSts it, lhe Drocessor wrll contrnue to rlrun the Same bus cycle.

The bus error ptn also has an effect on processor operatron after lhe processor nx:r3lves an external
reset rnput. The processor reads ihe veclor table afler a reset to determrne the address to start pro-
gram execulron. if a bus error occurs whrle reading the vector table (or at any tirrr, before the first
Instructlon rs execuled), ihe crocessor reacts as rf a doubie ous iauit has occurred atnd it halts. 0nly
an exlernal reset wrll start a ralted orocessor

1-2"

4.2.5 Recet Opcration

fhe reset signal is a bidirectional signal that allows either th€ proc*sor or an external device to reset
tho system. Figure 4-23 is a timing diagram for the reset operation. Both the halt and resat lines
must b€ asserted to ensure total res€t of the processor in all cases.

ll lntarnaa stafl-uo tma 4l
2l SSP HRn rad rn h.r. 5l
3l SSP Lm rt d rn h6a 6l

caa

PtJ3 5 VdE -- -
Y.-

l+ r- > tO Uitr$conOs -d

T'ÄiT

l<t-+{.t<4ooci! l+l+a
Eur Cycrcr

NOTES:23'156
PC HEh ru.d rn h.r. lur St.r. Unrn«n:§lX
PC Low raad r^ h«a
r'or .r"*rL rri"no n- ^ä.?J'::^Tä'ffi H

Fgurc tl-8. R6ot Opcation Timing Diagram

When the resel and halt lines are driven by an external device, it is recognized as an entire systerl
r€set, induding the processor. The processor responds by reading the res€t vector table entry (vec-
tor numb€r z8ro, address §mm) and loads it tnto th€ superyisor stack pointer (SS P) . Vector table
entry number on€ at address §(ffi4 is read next and loaded into the program counter. The pre
cessor initializes the status register to an interrupt lwel of ser/€n and ths vector bas€ register to9m. No other registers are affected by the reset s€quenca.

When a re§€t instruction rs executed, the procsssor drives the reset pin for 124 clock periods. ln this
case, the procassor is trying to reset th€ resl of th€ system. Therefore, there is no effect on the in-
temal state of the processor. All of the processor's intemal registers and th€ status register are unaf-
fected by th€ sxecution of a reset instruction. All extemal devrces connected to the re6et line shouid
be reset at tho completion of the reset instructjon.

Ass€rting the HE§Ef and FitrrL-f lines for ten clock cvcles will caus€ a processor reset, except when
VCC is initially applied to the processor. ln this cas€, an extemal r€set must be applied for at least
10 milliseconds.

4.3 THE REI-ATIONSHIP OF TTAffi, BEFN, ANO trAET
ln order to prop€rly control terminaoon of a bus cfc,s for a r+run or a bus €rror condition, EFÄER,
BEFIH, and FIET should b€ ass€rted and negated on the nsing edge of the MC&IO ctock. This
will assure that when two signals ar€ ass€ned simultan€ously, th€ required s€tup tirne (14il for both
of them will be rn€t dunng the sam€ bus state. This, or some equival€nt pracitution, should be
designed exlernal to the MC68010.

+22

The preferred bus cycle terminations may be summarized as follows (caser numbers refer to Table
44t:

Normal fermination: DTA« is asserted, EEHH and FTAff remain negated lcase 1).
Halt Termination: FI'AET is asserted at same time, or before DTi\ilR and BEH-H remains

negated (case 1.
Bus Error Termination: BEI{H is asserted in lieu of , at the s€me time, or before El-AeK (case 3)

or after DTFiffi lcase 4l and FiA,fT remains negrted; B-f,H'H is negated
at the same time or after D]-ACK.

R+Run Termrnation: H-'i\IT and EEFH are ass€rted in lieu of, at the sarne trme, or before
0TÄ« (case 5) or after D'fA« (case 6); BEF'll is negated at rhe same
time or after FI'Äffi, ffif must be held at least one cycle after 8-EF-FI.

Table 4-{. Ö-lA«, EERR-', and FiÄF Assertion Resula

Cr
No.

Csrtoa
SbnJ

A-td sr Räf
Edsü d Sm.

R-rltN N+2

I
OTACK
§Etrr
FIEI

AS
NA NA
NAX

Norrnal cycjc tcnninata and contrnu6

2
07[c(
EEHH
rAET

A
NA
A/S

S

S

Nornal cvdc tannrnata and nalt. Conunu€ when EÄEf rornor/€d.

1
oYr«
EEtrF
il-Et

xx
AS

ramnata an<, utka öi§ sror t€o

4
67Ä-fi
SEHF
trEr

AX
NAA
NA NA

remnata and tar6 öus ffor tEo

5
OTACK
tstrltl
rÄcr

X
A

A/S

x
S
S

Termrnste and r*run wnen F-A[T rffin)v€d.

0 SEFFffitr
AX
NAA
NAA

Ta.ßnats and rerun wncn x-'[T rmr>r,cd.

LEGENO:
N - th. numbar of riG clnent otfri bus stlte (a.g., 54, 56. erc.)
A - ggnai rs ,ssrt6d rn thts bus statr
NA - Sgml 6 not it3:Irlld rn rhs sürtr
X - doflt6G
s - srgnat waS assstad rr! pBrous stata and mrns a§rt!6 ,n this stäta

Table 4-4 details the resulting bus cycle termrnation under varrous comblnatlori:; of control signal s+
quences. The negatron o{ these same controi srgnais under several condttionrs s shown rn Tabie4-5
(OTÄCR is assumed to be negated normally in all cases; for besr resuits, b,crlr DTffi and BE-R
should be negated when address strobe rs negared).

EXAMPLE A:
A sYstem uses a watch-d,cg trmer to termrnate access€s to unpopuiat,ed address space. ihe
trmer asserts SEFH 3i1sp :rme out 'case 3)

+15

EXAMPLE B:
A system uses error detection on RAM contents. Designer may:

a) Delay DTAIX until data verified, and return BEFf; and FIÄLT simultaneously to re-run
error cycle (case 5), or rf valid, return §l'Iffi (cas€ 1).

b) Delay D'T-AIR untrl data verified, and return BEFH at same time as D'I'A?K if data in error
(case 31.

c) Return 6'fEffi prior to data verificatlon, as described in the next section. lf data is i*.
valid, BEFH is asserted on next ciock cycle (case 4).

d) Return DTF« prior to data verificailon, if data is invalid assert EffiH and FIÄLT on next
clock cycle {case 6) . fhe memory controller may then correct the RAM prior to or during
the r+run.

Tablc &5. 6ffiH and HAET Nogation Resutts

Conddqr oil
Trnanirn h

flöa.44
Cqraoa
Si.nd

N.g.r.d dr Ratirg
EdC. of Strt.

Rrrlrl - l{Gt Cyd.N l{+2
Bui E ro. 6EF'f;

mr?
a
a

or
ot

a
a

Tatla brJs aror trap.

R+run 6E[H
trAET

aora
a

llLgC Iquaflca; u$€üy
traoc to r !clo. numb* 0.

Rlrun SEFF
frÄü

a
a

Rlruß tha btJg c1/da-

Nonnd äEHHrrcr
a
oora

Msy ldrgtha.r narr 6/d..

e - Sbnaa € n€gatad rn thrs bu! süttr.

4.4 ASYNCHRONOUS VERSUS SYNCHRONOUS OPERANON

4.4. t Asynchronous Operation

To achieve clock frequency rndependence at a systern level, the MC68010 can be used in an asyn-
chronous manner. Thrs entarls usrng.only the bus handshake lines (AS, UD'S, IES, DTFrck, EEII ,

ffifT and VP-nt ro control the data transfer. Using this method, AT signals the start of a bus cycle
and th€ data strobes are used as a condition for valid data on a write cycle. The slave device
(memory or penpherall then responds by placrng the requested data on lhe data bus for a read cycle
or latching data on a write cycle and asserting the data transfer acknowledge signat (DTÄffi) to ter-
minate the bus cycle. lf no slave responds or the access rs rnvalid, sxternal control logic assers the
6EHH, or BT-fr-F and FIET, signal to abon or rerun the bus cycle.

Ihe D-ffi signal is allowöd to be asserted before the data from a slave devics is valid on a read
cycle. The lengrh of time that DTA-fi may precede data rs given as pafttmeter f3l and it must be
met rn any asynchronous system !o insure that valid data is latched into the procSssor. Notice that
there rs no maxrmum time specified from rhe asserrion of Äß to th€ assertion of §l-ffi. This is
because the MPU will insert wart cycles of one clock penod each until DTA« is recognrzed.

The B-EFF srgnal rs ailowed to be asserted after the 674« signal is'ass€rted. BEFH must be
asserted withrn the ltme grven as parameter l€ after 6TÄffi is ass€ned in any asynchronous
system to rnsure proper operatron. It this maxtmum delay trme rs violated, the groc8ssor may exhibit
erratrc behavior.

+24

4.4.2 Synchronous Operation
To allow for those systems which use the system clock as a signal to generate OTA-« and other
asynchronous inputs, the asynchronous input setup time is given as parameter 147. lf this setup rs
met on an input, such as DTÄek, the processor is guaranteed to recognize thät signal on the next
falling edge of the system clock. However, the converse is not true-if rhe input signal does not
meet the s€tup time it is not guaranted not to be recognized. In addition. if DTffi is recognized
on a falling edge, valid date wiil be latched into the processor (on a read cyclei on rhe next falling
edge provided that the dara mqers the s€tup time given as parameter t27 . Given this, parameter f31
may be ignored. Note that if DTFfi is assened, with the required setup time, before the faling
edge of 54, no wait states will be incurred and the bus cycle will run at its maximum speed of four
clock periods.

ln order to assure proper operatron in a synchronous system when BEFIH is ass€rted after U'TÄffi,
6EFF[must meet the setup time perameter l27A prior to the falling edge of the clock one clock
cycle after DTAftR was recognizrJ. This setup time is critical to propär operation, and the MC680l0
may exhibit erratic behavior if it is violated.

NOTE
Dunng an active bus cycle, VFIA and EEFH are sampled on every falling erlge of the ciock
starting with S0. 6T;§ffi is sampled on every falling edge of the cloclk srarlrng wirh 54
and data is latched on the falling edge of 56 dunng a read. The bus cycle will then be ter-
minated in 57 except when BEFH is asserted in the absence of D'I'ACR. in nrhich case ir
wril terminate one clock cvcle iater in 59.

SECTION 5
PROCESSING STATES

This section describes the actions of the MC68010 which are outside the normal processing
associaled with the execution of instructions. fhe functions of the bits in the supervisor portion of
th€ Status register are covered: the supervisor/user bit, the trace enable bit, and the processor inter-
rupt priority mask. Finaily, th€ sequencs of memory references and actions taken by the processor
on exception conditions are detailed.

fhe MCffi1O is always in one of thre€ procsssing state{i: normal, exception, or halted. The normal
processing state is that associated with instruction sxecution; the memory references ar8 to fetch
instructions and operands, and to store results. Two special cases of the normal state are the stop
ped state, which the processor enters when a STOP instruction is executed, and the loop mode.
which the processor may enter when a DBcc instruction is executed. ln the stopped state, no fur-
th€r memory references are made and in the loop mode only operand references are made.

The exception processing state is associated with interrupts, trap instructions, tracing and other ex-
ceptional conditions. fhe excaption may be intemally gene€t€d by an instruction or by an unusual
condition ansing dunng the execution of an instruction. Extemally, exception processing can be
forced by an intemrpt, by a bus error, or by a reset. Exception processing is designed to provide an
efficient context switch so that the processor may handle unusual conditions.

The halted processrng state is an rndicatron of catastrophic hardware failure. For example, if during
th€ exception processing of a bus error another bus error occuß, the processor assum€§ that the
system is unusable and halts. Only an external res€t c:rn rcx;ütrt a halted processor. Note that a pro-
cessor in th€ stopped state is not in the halted sEte, nor vice versa.

5.1 PRIVILEGE STATES
The procesrcr operates in one of wvo states of pnvilege: lhe "supervtsol" state or the "use/' state.
The pnvilege state determines which operations are legal, are used to choosa b€wveen the super-
vrsor stack pointer and the user stack pointer in instruction references, and may by used by an ex-
temal memory managernent deryice to control and translats acc6s€xt.

fhe privilege state is a mechanism for providing s€curity in a computsr system. Programs should
accss§ only therr own code and data areas, and Ought to be restncted from accessing information
which they do not need and rnust not modify.

The pnvilege mechanrsm provides security by allowing most programs to sx€cuts in user state. ln
this stats, the access€s are controlled, and the effects on other parts of the system are limited. The
operating system executes rn the supervisor state. has access to all resources, and performs the
overnead tasks for rhe user programs.

$1

5.1.1 Supervisor State
The supervisor state is the higher stater of privilege. For instruction execution, the superyisor state is
determined by the S bit of the status register; if the S bit is asserted (high). the processor is in the
supervisor state. All instructions can he executed in the supervisor stale. The bus cycles Eenerated
by instructtons executed in the supervisor state are classified as supervisor references. While the
processor is in the supervisor privilege state. thos€ instructions which use either the system stack
pointer implicrtly or address register seven explicitly access the supervisor stack pointer.

All exception processing is done in the supervisor state, regardless of the previous setting of the S
bit. The bus cycles generated during exception processing are classified as supervisor references.
All stacking operattons during exception processing use the supervisor stack pointer.

5.'1,2 User Sute
The user state is.the lower state of privilege. For instruclion execution, the user state is determined
by the S bit of the status register; il the S bit is negated (low), the processor is executing rnstruc-
tions in the user state.

Most instructions execute the same in user state as in the supervisor state. However. some instruc-
tions which have rmportant syslem effercts are made pnvileged. User programs are nol permined to
execute the STOP instructton, or the RESET instruction. fo ensure that a user program cannot
enter the supervrsor state except rn a c;ontrolled manner, the instructions which modify lhe whole
status regisler are pnvileged. To aid in debugging programs whrch are to be used as cperating
systems, the move from status regrsler {MOVE from SR), move to/from user stack pointer {MOVE
USP), move to/from control register (MOVEC), and move alternate address space (MOVES) in-
structions are also pnvileged.

The bus cycies generated by an instructron executed in the user state are classrfierJ as user state
references. ihis allows an externai me,mory management devrce to lranslate the address and to
control access io protected ponions of the address space- While the processor is in the user
priviiege state, those rnstructrons whrch use etther the system stack pornter impiicitly or address
regrster seven exolicrtlv, access :he user stack potnter.

5.1.3 Privilege State Changes

Once the processor is rn ihe user state and executrng rnstructrons, only exceptron processrng can
change the prrvrlege state. Durrng exceptron processrng, the previous $tting of the S bit of the
status register is saved and the S brt rs asserled, puttrng the processor in the supern,isor stale.
Therefore, when instruc:ron executron resumes at the address specrfied to process the erception,
the processor rs rn the supervrsor prrvrltpe state.

5. 1.4 Reference Classification
When the processor makes a reference, tt ctassrfies the kind of reference being made, Lrsrng the en-
coding on the three funcrron ccde outpu! rines. This arlows exlernal translatlon of aodresses, con-
irol of access, ano differentratron of soeclal crocessor state, such as anterrupt acknowledge. fable
ii 'rSts lne :taSsrfrcatron of 'eierences.

it

Tabla $1. Bus Cycte Classification

Funclirfi Coda Ouo./t Rrfutcr Clr
Fc2. FCt FC0

0 0 0 (Unesion d)
0 1 Us.r Ostt
0 1 0 Usar Program
0 I I {Unassqnld,
1 0 0 lUnassrgfrdd,

0 1 Supervisor Oate
I 0 Supan isor Proqfrm
I I CPU Soact

5.2 D(CEPNON PROCESSING

Eefore discussing the details of interrupts, traps, and tracing, a general description of exception
processing is in order. The processing of an exception occurs in four steps, with variations for dif-
ferent exception causes. During the first step, a temporary copy of the status register is made and
the status register is set for exception processing. ln the second step th€ exception vector is deter-
mined and the lhird step is the saving of the current processor context. ln the fourth step a new
context is obtained and the processor resumes instruction proces{iing.

5.2.I Exception V€ctoE
Exception vectors are memory locations from which the processor fetches th6 address of a routine
which will handle that excep(ion. All exception vectors are two words in length (Figure $l), except
for the res€t vector, which is four words. All exception vectors lie in the supervisor data space, ex-
cept for the res€t vector which is in the supervisor program space. A vector number is an &bit
number which, when multiplied by four, gives the offset of an exception vector. Vector numbers
are generated internally or externally, depending on the cause of the exception. ln the case of inter-
rupts, during the interrupt acknowledge bus cycle, a peripheral provides an &bit vector number
(Figure $2) to the processor on data bus lines D0 through D7. fhe processor translates the vector
number into a full 32-bit offset which rs added to the contents of the vector base register to generate
the adclress used to fetch rhe vector, as shown in Figure S3. The memory layout for exception vec-
tors is grven in fable F2.

As shown in Table !2, tne memory layout is 512 words long (1024 bytes). lt starts at offset 0 and
proceeds through offset 1023. This provides 255 unique vectors; some of these are reserved for
TRAPS and other sysrem functions. Of the 255, there are 192 reserved for user interrupt v€ctors.
However, there rs no protectton on the first 63 entnes, so extemally generatd interrupt vector
numbers may reference any of the exception vectors at the discretion of the system designer.

Nr P.ogra6 C@^tü (Hrghl

N'tv Progr.m Counta {Lowl

Figure $1. Format of Vestor Tablo Entries

AO-0. Al -0

AOr0. A1 r I

1

I

Wlt.rc:
v7 i3 rhc MSB ol tha V.C!O. Nurnbar
vO 13 tha LSB ol tho \/actor Numoar

Figure $2. Vector Number Format

Figure $3. Exception Vrtor Address Calculation

Table $2. Vector Table

E:ceouor Vector
AddrE.s

VEr
Nunbri31

ortr
Aa.agrY"ürtO* Har Soecr

0 0 co SP Aes6r: lnrmi SSP
4 m4 SP R6€r: lmtlal PC

2 8 G SO 8us Error
tl coc SO Addr6s Error

4 r6 0r0 SO llltgal rßtruc1ron
m 014 SO Züo Oiwcf,

6 24 0r8 so CHK lnslructon
7 B 01c so TAAPv lnstrucrron
I a. 020 SD Pryileqa Vloläoon
9 § Q4 5U T.act
10 40 (ß SD L:nc j0l0 €mr,tator
1t 4 5D LrnC 1111 Emuletot

t2. {€ m 5U iLl€sslqnld,.ts€fr€ol
13' co4 so Una3slgrrd, raffvldl
t4 56 038 SO ac.rEt Error
l3 60 coc SO UnrnrtErizcd Intarruot V6crot

'Vctor nurnOm 12, 13. 16 $raugn U. ar|d aO thrcugh 63 rrr r.senrrd lor futun ar1hariorralts bv MotüoL. lvo ust pangarta
-if ttErld b. a'r{n- urQ nuroß.

Vctt
Nunöolrl

Oft!.r
Aiignnrt(Oc Hü SoE

1623 64 04c SD t U nassriln€d, res€ry€d)
95 6F

24 $ 060 SO Srunous lntarrupr
ß 1m 064 SO Level I IntEfllot Autovftor
6 104 c68 SO Lar'd 2 lntlmot Autov€cror
27 tc8 06c SO Lnct 3 lntsruot Aulovcctor
ß r l2 070 SO LEt d 4 lntffruot Autovüctor
E 116 074 SD Lavd 5 lntffiugt Autovcto.
n 120 078 5U L6ral 6 lntcanJ9t Autor.€ctor
tt 124 SD Lev6l 7 ,ntrfiJot Autovactor

3c47 128 @ SD IRAP lnslrucüoo Vecto6
r9l 08F

,1&€3' !o cc0 so i U nass.qn€,6. .s!a{v€d}
< CFF

0.-255 6 1m Uscr rnlcrnJot Vectors

Col,ttrnts of V6cror Easr Regrstar

:r

5.2.2 Excaption Stack Framo

Exception processing saves the most volatiie portion of the cunent processor context on the top of
the supervisor stack. fhis context is organized in a format called th€ exception stack frame. This in-
formation always includes the status register and program counter of the processor when the ex-
ception occurred. ln order to support generic handlers, the processor also places the vector offset in
the exception stack frame. The format code field allows the RTE (retum from exception) instructjon
to identify what information is on the stack so thar it may be properly restored. fhe general form of
tha exce6ltion stack frame is illustrated in Figure $4; fable $3 lists rhe MC68O1O stac-k frame codes.
Although some formats are peculiar to a particular M6806 Family processor, the format 0000 is
always legal, and indicates that just the first four words of the frame are present.

Figure 5-4. MC6€I)10 SEck Fornst

Trblc $3. MC&10 ForrnEt Cods
Fonni Cd. SEcf- ln(ürlrinm MC6ml0 Slron Fonnat {4 Worü}lm MCß{10 Loag Formrr (29 wo.(§}
a[Oth.6 Unrsstgrrd. 8ar\,.(,

5.23 Kindr of Excrptionr
Excepttons can be generatod by ather internal or external caus€s. fhe externally generated excep
tions ara the interrupts, bus error, and reset requests. The interrupts are requests from peripheral
dwices for processor action while the bus error and reset inputs are used for access control and
procassor restart. The inremally generated excegtions come from instructions, or from address er-
ronr or facing. fhe trap (TRAP), trap on overflow (TRAPV), check data register against upper
bounds (CHK), and divide (DlV) instructrons all can generate exceptions as part of their instruction
execution. ln addition, illegal rnstructions, word or long word fetches from odd addresses, and
privilog€ violations caus€ exceptions. Trac.ing behaves like a very high-prionty intemally-generated
interrupt after each instrucllon executton.

5.2.4 Exc.ptbn Procr+ing Sequenco
Exception processng occurs in four identrfiable steps. ln ths first step, an internal copy is made of
ths status register. After the copy is made, the S bit is asserted, pufiing th€ processor inro the

Othar lnlorinatlon
Oagaodirlg o.t Ercaooo.t

'5

supervisor privilege state. ,Also, the T bit is negated which will allow the exceptlon handler to ex-
ecule unhindered by tracing. For the rese{ and interrupt exceptions, the interrupt prioriry mask is
also updared.

ln the second step, the vector number of the exception is determined. For interrupts, the vector
number is obtained by a processor fertch ciassified as an interrupt acknowledge. Frtr all other exceF}.
tions, internal logic provides the vector number. fhis vector number rs then used to generate the
offset of the exceptron vector and is added to the vector base register.

fhe third step is to save the current processor status, except for the reset exceptiorr. fhe exception
stack frame rs created at the top of the supervisor stack. fhe current program counter vaiue, the
saved copy of the status register, and the format/offset word are written into the stack frame. The
program counter value stacked usua'ly points to the next unexecuted instruction; however, for bus
error and address error, the value stacked for the program counter is unpredictable, and may be in-
cremented by up to five words from the address of the instruction which caused the error. Group 1

and 2 exceptions isee 5.2.5 Multiple Exceptions) use a short format exceptton slack frame (for-
mat = 0@0) . Additional information'defining the current context is stacked for the bus error and ad-
dress error exceptions.

The last step is the same for all exceptions. The new program counter value rs fet«:hed trom the ex-
ception vector tabie. The processor ':hen resumes rnstruction executton. fhe instruction at the ad-
dress grven in the exceptron vector rs fetched, and normal instruction decoding and execution is
staneo

5.2.5 Multipie Exceptions
These paragraphs describe the processing whrch occurs when multiple r:xceptions anse
simultaneously Exceptions can be grouped according to their occurrence and priority. The group O
exceptlons are reset, bus error, and address error. fhese exceptions cause the instn.rctron currently
betng executed to be aborted and the exceptron processrng to commence within hn,o ciock cycles.
The group 1 excepttons are trace and rnterrupt, as weil as the privilege violattons an<l illegal instruc-
tions. These excepÜons allow the current rnstruction to execute to compietion, but preempt the ex-
ecutlon of lhe next rnstrucilon by forcing exceptron processtng to occur (privrlege vrolalions and il-
legal rnstrucltons are detected when they are the next rnstruction to be executed). 1'he group 2 ex-
ceplrons occur as part of the normal processrng of instructions. The TRAP, IRAP\/, CHK, and zero
divrde exceptions are In thrs group. For lhese exceptions, the normal execution ol an rnstruction
may lead !o exceptton Drocessrng.

Group 0 excepttons have hrghest prronty. whrle group 2 exceptions have lowest pnority. Within
group 0. reset has hrghest priorrry, foilowed by address error and then bus error. Vy'ithrn group 1,
trace has prtoriry over exlernal interrugts, whrch in turn takes prrori§ over illegal instructron and
priviiege vrolatton Srnce onlv one jnstructron can be executed at a time, there is nc» prrority reiation
wrthrn group 2.

The prroniy reialron bewveen two excepllons determines which is taken, or taken first, if tne condi-
ttons for bo!h arlse stmultaneously. Trereiore, rf a ous error occurs during a TBAP irsrructton, the
bus error takes precedence, and the fFAP instructlon processtng rs suspended. ln anolher exarF.
pie, if an rnlerrupt request occurs durrng lhe execullon of an instruction while the T bit is assened,

i6

the trace exceptron has priority, and is processed first. Before instruction processing resumes,
however, the interrupt exception is also processed, and instruction processing commences finally in
the interrupt handler routine. A summary of exception grouping and prioriry is given in Table 5-4.

Table S4. Excaption Grouping and Priority

6rqrg Erc+rin Plr.-ng
0

Rd.r
Addr6 Erro.

Bus Em
E:c€rüon procasng Daqrrxt
wrthin nrc dei cydaa

1

Traca
lnnrrupt
llLgd

PrMt g.

Excrplron procr3s.ng bag[ß batorc
tha next instrucüolr

RAF. i TIAIJV,
CHK,

Z..o Divira
Fmt Eru

Excaooon 9roces.ng l! stärt€d bi/
noarral intttuctton axm0m

5.3 D(CEPTION PROCESSING IN DETAIL

Exceptions have a number of sources and each exception has processing which is peculiar to it. fhe
following paragraphs detail the sources of exceptions, how each arises, and how each is processed.

5.3.1 Rcst
fhe reset input provides the highest exception level. fhe processing of the reset signal is designed
tor system initiation, and recovery from catastrophic failure. Any processing in progress at the time
of the reset is aborted and cannot be recovered. fhe processor is forced into the supervisor state,
the trace state is forced off, and the processor interrupt pnority mask is set to level seven. The vec-
tor base register rs set to 500000000 and the vector number ls internally generated to reference the
reset excepttOn veclor at location 0 in the supervisOr program space. Eecause nO assumptrons Can
be made about the validity of register contents. in partrcuiar the supervisor stack pointer, neither the
program counter nor the status regrster is saved. The address contained in the first two words of
the reset exception vector is fetched as the rnrtial supervisor stack pointer, and the address in the
last two words of the res€t exceptron veclor rs fetched as rhe initial program counter. Finally, in-
struction execution is staned at the address in the program counter. The power-up/restan code
should be pointed to by the intttal program counter

The reset instructron does not cause loading of the reset vector, but does assert the reser line to
res€t external devices. This ailows the soltware to reset the sv§tem to a known state and then con-
trnue processing wrth lhe next instructron.

5.3.2 lntcrnrpts
Seven levels of interrupt pnorilres are provrded. Devices may be chained externaily withrn interrupt
prionty levels, ailowing an unlimrted number oi perrpheral devices to interrupt the proceasor. lnter
rupt pnonty levels are numbered from one to seven, level seven berng the highest priority. The
slatus register contarns a Sbrt mask whrch indicates the current processor priority, and interrupts
are rnhibtted for all prrority leveis less than or equal to the current processor pnontv

An interrupt reguest is madE to the processor by encoding lhe interrupt request level on the inter-
rupt request lines; a zero indicates no interrupt request. lnterrupt requests arnving at the processor
do not force immediate exception processing, but are made pending. Pending interrupts may cause
exception processing to stan at the end of an instruction depending on the current processor priori-
ty level. lf the priority of the pending rnterrupt is lower than or equal to the current processor priori-
ty, execution continues with the next instruction and the interrupt exception processing is post-
poned. (The recognition of level seven is slightty differenr, as explained in the following paragraph.)

lf the priority of the pending interrupt is greater than the.current processor priority, the exception
processing sequenca is started. A copy of the status register is saved, the privilege state is set to
supervisor state, tracing is suppressed, and the processor priority level is set to the ls/el of the inter-
rupt being acknowledged. The processor fetches the vector number from the interrupting device,
classifying lhe reference as an interrupt acknowledge and displaying the lwel number of the inter-
rupt being acknowledged on the address bus. lf external logic requests automatic vectoring, the
proc€ssor internally generates a vector number which is determined by the interrupt level number. lf
external logic indicates a bus error, tha interrupt is taken to be spurious, and the generated vector
number references the spurious interrupt vector. The processor then proceeds with the usual ex-
ception processing, saving the format/offset word, program counter, and status r=gister on the
supervisor stack. The offser value in the format/offset word is the externally supplied or internally
generated vector number multiplied b,/ four. The format will be ail zeroes. The sav,ed vaiue of the
program counter is the address of the instruction which would have been executed had the inter-
rupt not been present. The content of 'lhe interrupt vector whose vector number was previously ob.
Iained is fetched and loaded into the program counter, and normal instruction execution com-
mences in the tnterrupt handling routine. A flowchan for the interrupt acknowledge seguence is
given in Figure $5, a timing diagram rs given in Figure 46, and the inrerrupt proce$irng sequence rs
shown in Figure $7.

PßOCESSOn Ii{TEFRUPTING O€VICE

I) olac! Vocror Numöar on OO O:/
Assan Oatä faanslcr Actnotytedge
{oTACK)

Acsr.lt tr vcto. Nurnöa.

Lalcfi vtcto. numoal
rryte ü03 ano 6-§
N€grte AS

'Althoug§ a rGctor nlmbar rs ry|. bvra. cotn ditra 5lroo€t arc ass{t(€d dua to (hc mGrocooa ulad tor axcaglroar grofüsrng. rha gro-
c8sor do€ ^ot rrcognr:c enythrng on dat, lrG CB lhrough Ol5 al thrs lrfi€

Figure $5. Vector ,Acquasition Flowchart

1) Coanoäru rnutlfugr 16r€l rn sultls rlgtstat
and wat tor qr.ranr instnJct}on

2, Aas.ri adors strooa taT)
3l Placa nlrnrot lavC on Al- A2. 43 wrrh

A.&AZ .il h'Eh
Sat turicton cod. to CPU sE[ct

5) asarr addruß rrroö. 1a-)
A3t n 6.ut sroö.. tü6-§' ano IE§t

t8

SO 32 54 56 !Z s4 s6 s0 s2 s4 s6

oo.or=E
o,orEEV
,fS'Vr*V
t,WEm'afu

oe-or:§
*orc

v-rpl (tltl , _ ._

F *', t ä"lT "*:H'**"1 |- , r*,o, ^tff T:..,,*, * rlil: ;fi "l
'ltrto,rgn a \irtor numb.r is on bvü, both d.L nroöc ar. a3iaaad drx lo th. mrcrocod. usad to.

'rcagfion
Orocasing. Thc are

cGo. dod nol r.cogß:a alrvthr^g on d.u lina Ul th?ough O15 rr ürl3 tinE.

Frgurc 5{. lntorrupt Acknowledgc Cyde Timing Dkryram

NOTE: SSP ra{a6 to rh. vdua o, ilt. 3uoaM!o. sract oontü bato,t üra nttrugt ocar6.

Figurc $7. lntonupt Prccanling Squcnco

Priority level s€ven is a special case. Level senren interrupts etnnot be inhibited by the interrupt
prionty mask, thus providing a "non-maskable interrupf ' capability. An intamrpt is generatad each
time the interrupt request lwel changes from some lower lwel to level s€n/en. Note that a l€nrel saren
intem.rpr may still be caused by the level companson if the request lEuel is a ssven and the processor
prioris is set to a low6r level by an instructron.

E-O

5.3.3 Uninitialized lntemrpt
An interrupting device asserts !H, 6166, or provides an interrupt vector nurnber and asserts
Offfi during an interrupt acknowleoge cycle bv the MC68O1O. lf th€ vector register has not been
initialized, the resoonding M68000 Famrly penpheral will provide vector number 15, the uninitialized
interrupt vector. This provides a uniform way to recover from a programmtng error.

5.3.4 Spurious lntsrrupt

lf during lhe interrupt acknowledge cycle no device responds by asserting 6TFa:f or\iB, gen-R
should be asserted to terminate the vector acquisrtion. The processor separates the processing of
this error from bus error by forming a short format exception stack and fetching the spurious inter-
rupt vector instead of the bus error'r'ector. ihe processor then procseds with thra usual exception
processing.

5.3.5 lnstrustion Traps
fraps are exceptions caused by instructions. They arise either from processor recognition of abnor-
mal conditions during instruction execution, or from use of instructions whose normal behavior is
trapping.

Some instructions are used specifically to generate traps. The TRAP instructlon always forces an
exception and is useful for implementing supervisor calls for user programs. The -RAPV and CHK
rnstructtons force an exception rf the user program detects a runtime error, which may be an
arithemeric overftow or a subscriot cut of bounds.

The signed divide (DIVS) and unsrgned divide (DIVU) instructions will force an exception if a divr-
sion operation is anempted wrth a divrsor ol zero.

5.3.6 lllegal and Unimplem€nted lnstr.Jqtions
lllegal instruction is the term used to refer to any of the word bit panerns which are not the bit pat-
terns of the first word of a legal MC68010 instructton. During instruction exscution, if such an in'
struction rs tetched, an illegal instructron exceptton occurs. Motorola reserves the right to define rn-
stRrctions whos€ opcodes may be any' of the illegal instructions. Three bit patterns r,ryiil aiways force
an illegal instruction lrap on ail M680@ Famrly comparible m,croprocessors. fhey are: §4AFA,
§4AFB, and S4AFC. iwo of the panerns, S4AFA ano $4AFB, are reserved for Motorcrta system pro-
ducts. The thrrd panern, S4AFC, is reserved for customer use.

ln addition to the previously defined rllegal instructton opcodes, rhe MC68010 defines eight break-
point illegal tnstructtons with the bit patterns S484&$484F These instructtons cause the processor
to enter rllegal instructton exceplion processing as usual, but a breakpoint bus rycle is executed
before the stacking operattons are per{ormed as shown in Figure S8. The processor does not ac-
cept or send any dau dunng this cycle. Whether the breakpoinr cycte is terminated wrth a dffiR,
BEF-F, orlE signal, the processor vvill contrnue with the illegal instruction procassrng, 1'he pur-
pose ol this cycle is to provide a software breakpoint that will signal external harclware when it is ex-
ecuted.

t10

SO 52 54 56 SO 52 54 56 SO 52 54 56

a,-a

AI.AU
FS

u-tr§

itrs
elw

fimr
o&o15
oGoT

MOVE USP
OR lmmediate to SR
RESET
RTE
STOP

t*ac2
z^:a-L-Btürpornr+SbcrPC -t

Frguru ffi. Broskpoint Cycte Timing Diagram

Word patterns with bits'12-'15 egualing 1010 or 1111 are distinguished as unimplemented instruc-
tions and separate exceprion vectors are given to thess panerns to p€rmit efficient emulation. This
facility allows the ooerating system to detect program ero6, or to srnulats unimplemented instruc-
tions in software.

5.3. 7 Privilege Violations

ln order to provide system s€cunty, various instruction§ are privileged. An attempt to execute one
of the privileged instructions while in the user state will causo an exception. fhe privileged instruc-
tions are:

AND lmmediate to SB
EOR lmmediate to SB
MOVE to SR
MOVE from SR
ruovEc
MOVES

5.3.8 Tracing

To aid rn program deveiopment, the MC68010 includes a facility to allow instructioft'by-instruction
tractng. ln the trace state, after each instruction is gxecuted an exception is forced, allowing a
debuggrng program to monttor th€ execution of the program under test

The trace facility uses tne T bit in the supervisor portion of tho status register. tf the T bit is negated
(off) , tracrng rs disabled, and rnstructton executron proce€ds from instruction to instruction as nor-
mal. lf the T btl rs assened (on) at the begrnning of the execution of an instruction, a trace €xc€ption
wrll be generated as rhe execution of that instruction is completed. lf the instruction is not ex-
ecuted, erther because an rnterrupt is taken, or the instrucion is illegal or pnvileged, the trace ex-
ception does not occur. ihe trace exceptron aiso does not occur if the instruction is aboned bY a

reset, bus error, or address error exceptton. lf the instruction is indeed executed and an interrupt is
pending on compietron. rhe rrace exceptron is processed before the interrupt exceptlon. lf, dunng

'11

the execution of the instruction an exception is forced by that instruction, the forcrxj exception is
processed before the trace exception.

As an extreme illustration of the above rules, consider the arrival of an interrupt during the execu-
tion of a TRAP instruction while tracinr3 is enabied. First the lrap exception is proces,säd, then the
trace exception, and finally the lnterrupt exception. lnstruction execution resumes in the interrupt
handler routine.

5.3.9 Bus Enor
Bus error exceptions occur when externai logic terminates a bus cycle with a bus error signai.Whether the processor was doing instruction or exception processing. that proc€|ssing,Jt"r-
minated, and the processor immediatel'r begins exception processing. However, if ;r bus Jrro, o"-
curs dunng exception processing for a bus error. address error, or reset, the proces:;or detects a
double bus fault and haits. When exception processing is completed, instruction execution con-
tinues at the address contained rn exception vector table entry two, at offset s00g.

Exception processing for a bus error'foilows a slightly different sequence than the sequence forgroup l and 2 exceptions. ln addition to th€ four steps executed during exception processrng for all
other exceptions, 22 words of additional information are placed on the stack. This aclditionJl infor-
mation descnbes the internai state of the processor at the time of the bus error and s reloaded bythe RTE instruction to continue the instruction that caused the error. Figure F9 show,s the order ofthe stacked information.

\OTE. lh€ stact por^rr ,S decrümt66 bv 29 wo.ds, although onlv
26 wds ot Lnfomtton ar" rcruelty Mn€n to rncmorv 'l'hc thr*
addtrooal wo.ds ar! rEerv€d fd tuturu usa öv Motoro€.

Figura $9. Exception Stack Order (Bus and Address Errorl

UNUSEO, R€SEFVEO

!NUSED. RESEßVED

UNUSED. RESEBVEO

The value of the saved program counter does not necessarily point to the instruction that was ex-
ecuting when the bus error occurred. but may be advanced by up to five words. This is due to the
prefetch mechanism on the MC68010 that always fetches a new instruction word as each previously
fetched instruction word is used (see 7.1.2 lhstrustion Prafatch). However, enough information is
placed on the stack for the bus error exception handler routine to determine why the bus fault oc-
curred. This additional information includes the address that wes being accessed, the function
codes for the access, whether it was a read or a write, and what internal register was included in the
transfer. The fault address can be used by an operating system to determine what virtual memory
location is needed so that the requested data can be brought into physical memory. fhe RTE in'
slruction is then used to reload the processol's intemal state at the time of the fault, the faulted bus
cycle will then be r+run and the suspended instruction complet€d. lf the faulted bus cycle was a
read-modify-write, the entire cycle will be r+run whether the faull occuned during the read or the
write operation.

An alternate method of handling a bus error is to complete th6 faulied access in software. ln order
to us€ this method, use of the special status word. the instruction input buffer, the data input buF
fer, and the data output butfer image is required. The format of the special status word is shown in
Figure $10. lf the bus cycle was a wnte, the data output buffer image should be written to the fault
address location using the function code contained in the special status word. lf the cycle was a
read. the data at the fault address location should be written to the images of the data input buffer,
instruction input buffer, or both according to tha DF and lF bits.' ln addition, for read-modify-write
cycles, the status register image must be properly set to reflect the read data if the fault occurred
during the read ponion of the cycle and the write operation (i.e., setting the most significant bit of
the memory locaüon) must also be performed. fhis is because the entire read-modify-write cycle is
assumed to have been completed by software. OncE the cycle has been completed by software, the
RR bit in the spectal status word rs set to indicäte to the processor that it should not r+rt n the cycle
when the RTE instruction is executed. lf the rerun flag rs set when an RTE instruction executes, the
MC68010 srill reads all of the information from the stack.

I 't-3 2

- Rarun flaq; 0- groc".5t r'.run tdGlauiu, 1 . Sltvara .*run.
- Instrucoo.r tatcrr to tha lnstrucoorl tnput 8utfr.
- Orta tarch lo th. Oata lnout Eufrü.
- R.a+Modify-wnto cycio.
- Hqh byra raßfs from th. Oal' Output Butlr or to thr Oat, lnBrt Euftrr.
- Eyic rnnsla flag; HB srtctr üra h€h il loli byra ot tha transld r69star. lt 8Y rs cLtr, th! üanst8 ß wd.
- Raad/wnta tlag: 0- wnta, I -.cad.
- fh. functo.i coda us€d dunog tha faultod acc6s.
- Thaaa ö.t! arr r6an ad for tutunr usa bn/ Molo.ola änd illl b6 züo wfiGn wnnrn bv üa Mc§nio

Figure $10. Special Status Word Format

ffi'was.bYtoo!gatt6,lh€däutshouldb.rcvrdfromoftoth.l6.st.99nlficantbYteofth.daraoUtoUtoflnoUt
Oufler rmaga unl6s (hc HB blt rS s€t. ihrs condi0on nll onlv occur rf a MOVEP in3!ructlon causrd thc taulr dunng tha transfcr Of üt3
&15 o, a w«d or long word or §rts 24-3'l ol a tong word.

RR
IF
OF
RM
H8
8Y
RW
FL

:FrJ

5.3.10 Address Error
Address error exceptions occur when the processor anempts to access a wcrd or long word
operand or an instruclion at an odd address. The effect is much like an internally r76n"rrt"O bus er-
ror, so that the bus cycle rs aboned, and the processor begins exception procqssing. After excep
tion processing commences, the sequence is the same as that for bus error including the informa-
tion that is stacked, except that the vector offset refers to the address error exception vector. lf an
address error occurs during except;on processing for a bus error, address error, or reset, the pre
cessor detects a double bus fault and halts.

As shown in Figure $'i 1 , an address error will execute a shon bus cycle followed try exception pro-
cessrng. This short bus cycle rs simrlar to a normal read or write cycle, except that the data strobes
are nol asserted and no external srgnais are used to terminate the cycie. During an :rddress error bus
cycle, AS is assened to indicate that the MC68010 wrll drive the address bus (thus allowing for pro.
per operation in a multipie bus master system). Note that data strobes are not assiened allowing for
address error deteciron and memorT protection.

CLx

Al.a23

-
,E-S

iG
niW

-Tffi

*oru
+eeäd Addregs Error Agoror I Clo€tslrels Error aggrqr o L'Ers

;;!--T- Ian

-'.l*-
wrrt. Sr.(t..

Figure $'l 1. Address Enor Timing Diagram

Srnce the address €rror sy6sp1,on stacks the samg rnformatron that is stacked by a bus error excep-
tron. rI rs possrble lo use the ATE rnstructron to continue execution of the suspenc,ed instruction.
Sowever, if Ine software rerun flag rs not set. the fault address wrll be used when the cycle is rerun
and another address error exceotron wrll occur. fherefore, the user must be certatn lhat the proper
correclrons have oeen made to the stack rmage and user registers before attempting to continue the
rnstruction. With oroper software handling, the address error excepton handler ,:ould emulate
word or long word accesses to odd addresses rf desrred.

5.4 RETURN FROM EXCEPTION

ln adoitton 10 returnrng from anv exceotron handter routrne. the RTE instructron rs used to resume
Ihe execulton of a suSpended rnstructton bv resloflng a/l Of the temporary reglster ano Controt rnfor-
matlon stored durrng a bus error and returnrng to the normal processlng state. For th€ 8TE instruc-
tron to execute prooerly, the stack nusl contarn vaiid and accessible data. fhe Ii'fE instructron

i14

checks for data validity in two ways; first, by checking the formatloffset word for a valid stack for-
ma(code, and second, if the format code indicates the long stack format, the long stack data is
checked for validity as it is loaded into the processor. ln addition, the data is checked for accessibili-
ty when the processor starts reading the long data. Er.ause of these checks, the RTE instruction
executes as follows:

1. Determine the stack format. fhis step is the same for any stack format and consists of reading
the staius register, program counter, and formaVoffset word. lf the format code indicates a
short stack format, execution continues at the new program counter address. lf the format
code is not one of the MC68010 defined stack format codes, exception processing starts for a
format error.

2. Determine data validity. For a long stack format, the MC68O1O will begin to read the remaining
stack data, checking for validity of the data. fhe only word checked for vatidiry is the first of
the 16 internal information words {SP+26} shown in Figure $'9. This word contains a prgl
cessor version number in addition to proprietary internal information that must match the ver-
sion number of the MC68010 that is anempting to read the data. This validity check is used to
insure that in dual processor systems, the data will be properly interpreted by the BTE instruc-
tion if the wvo processors are of different versions. lf the version number is incorrect for this
processor, the ßTE instruction will be aboned and exception processing will begin for a format
error exception. Since the stack pointBr is not updated until the RTE instruction has suc-
cessfully read all of the stack data, a format error occurring at this point will not stack new data
over the previous bus error stack information.

3. Determine data accessibiiity. lf the long stack data is valid, the MC6801O performs a read from
the last word (SP+56) of the long stack to determine data accessibility. lf this read is ter-
mtnated normally, the processor assumes that the remaining words on the stack frame are also
accessible. lf a bus error is signaied before or during this read, a bus error exceprion is taken as
usual. After this read, the processor must b€ able to load the remaining data without recerving
a bus error; therefore, if a bus error occurs on any of the remaining stack reads, the MC68010
treats this as a doubie bus fault and enters the halted stare.

+15i 5-16

SECTION 6
INTERFACE WITH M68OO PERTPHERALS

Motorola's extensive line of M6800 peripherals are directly comparibie with the l\/C6BO1O. Some ofthese devices that are particularly usefui are:
I/C6821 Peripheral tnterface Adapter
MC6840 Programmabie fimer Module
[llC6843 Floppy Disk Controlter
MC6845 CRf Controiter
MC6&50 Asynchronous Communrcattons lnterface Adapter
lrdC6852 Synchronous Serrai Data Adapter
MC6854 Advanced Data Lrnk Corrtroller
MC68488 General Purpose lnterface Adapter

To interface the synchronous M6800 peripherals with the asynchronous MC6gOl0, the processor
modifies rts bus cycle to meet the M6800 cycle requiremenrs whenever an M6800 clevice address rs
detected. ThrS iS posstbie Srnce both processors use memory mapped l/O. Figure 6_l rs a flowchanof the interface operation berween :he processor and M6g@ devices.

PROCESSOR

Thc Proca+rcr Ms[oß Enso[lE] llntrl
rt 3 LOw rPhas€ I i
The Procsslo. Ass8n3 varo Mmory
Ador§ rm)

Tmmrr tfr Cvdr
l-ho Prffior Warts untrl E 3g rcw
:On a Raad Cvcla lhe Oatä rs Latcned
as E Gm Low rntffnärlv,
rha Prmrur riegrates iiä
fhe Prrer rieqars I§. lIß ano5

Figure &1. M6800 lnrerfacing Flowchart

l) Th€ Prcso. Starts a Norrut n€d o.
Wnt, Cvcla

1) Erternal Hardrare Assens Valrd
Penohsal loOrcss twf,

o-i

6.1 DATA TRANSFER OPERATION

Three signals on the processor provide the M6800 interface. They are: enable (E). vatid memory ad-
dress (lffiA), and valid peripheral address (V.Ifi). Enable corresponds to the E or phase 2 signal in
existing M6800 systems. fhe bus freguency is one tenth of the incoming MC680l0 clock frequency.
The timing of E allows 1 megahertz peripherals to be used with an 8 megaheru MC68010. Enable
has a 60/40 duty cycie; that is, it is low for six input clocks and high for four input clocks. This duty
cycle allows the processor to do successive iFA accesses on successive E pulses.

M6800 cycle timing is given in Figure &2. At state zero (S0) in the cycle, the address bus is in the
high-impedence state. A function code is assertd on the function code output lines. One-half clock
later, in state 1, the address bus is released from the high-impedence state.

During state 2, the address strobe (FfS) is assened to indicate that there is a valid address on the ad-
dress bus. lf the bus cycle is a read cycie, the upper and/or lower data strobes are also aaserted in
state 2. lf rhe bus cycle is a write cycle, the read/write (R/W) signal is switched to low (write) dur-
ing state 2. Onehalf clock later, in state 3, the wnte data is placed on the data bus, and in state 4
the data strobes are issued to indicate valid data on the data bus. The processor now inserts wait
states until it recognizes the assertion of Vfa.

The Vffi input signals the proceasor that the address on the bus is the address of an M6800 device
(or an area reserved for M6800 devicesl and that the bus should conform to the phase 2 transfer
characteristics of the M6800 bus. Valid peripheral address is derived by decoding the address bus,
conditioned by the address strobe. Chip select for the M6800 peripherals shouid be derived by
decoding the address bus conditioned by VM7.

After recognitron of VE, the processor assures that the enable (E) is low, by waiting rf necessary,
and subsequently asserts VMA wvo clock cycles before E goes high. VMA is then used as part of
the chip select equatton of the peripheral. This ensures that the M6800 peripherals are selected and
deselected ar the correct time. The peripheral now runs its ryde during the high portion of the E

signal. Figures &2 and 6.3 depict the best and worst case M6800 cycle timing; this cycle length is
dependent strictty upon when VIE is asserted in relatronship to the E clock.

S05254wwwwww56SO52
aa*

o,-*
Ä-§

6TÄffi
O"tä O*

Otta ln

r*ro
,

rFE
w_

Figure &2. MC68010 to M6800 Peripheral Timing Diagram - Best Case

ü2

S0S2S4W w w w w w w w w w w w w w wSOSO
c.* 1IU

or-*
ß

dtÄ?I
Oau Our

O"u rn

F@FC2E r-\ r-a
":Tfüffi

Figura &3. MC6&10 to Mm Peripharal Timing Diagram - Worgt Case

lf we assume that external circuitry asserts Vffi as soon as possible after the assertion of A§, then
!B wrlt be recognized as being asserted on the falling edge oi 34. ln this case, no "extra" wait
cycles will b€ inserted prior to the recognition of lPlÄ asserted and only the wait cycles insened to
synchronize wrth rhe E clock will determine the total length of the cycle. ln any case, the syn-
chronization delay will be some integral number of clock cycles within the following tlvo extrernes:

1. Best Case - Vffi rs recognized as being asserted on the falling edge thre€ clock cycles before
E rises (or three clock cycles after E falls) .

2. Worst Case - ffi is recognized as being ass€rted on the falling edge two clock cycles before
E rises (or four clock cycles after E falls).

Dunng a read cycle, the processor latches the peripheral data in srate 6. For ail cycles, ihe processor
negates lhe address and data strobes on+half clock cvcte later in state 7 and the enable signal goes
low at this trme. Another hall clock later, the address bus is put in the high-impedence state. During
a wnte cycle, the data bus is put rn the hrgh-impedence state and the read/write signal is switched
high, fhe peripheral logic must rernove VTE wrthrn one clock after the address strobe is negated.

D-rmR should nor be assened while\iE rs assened. Notrce rhat rhe MC68O1O \47Ä rs actve tow,
conrrasted wrth rhe acttve hrgh M68OO VMA This allows the processor tO put its buses in the high-
impedence state on DMA requests wrthout rnadvertently selectrng the peripherals.

6.2 AC ELECTRICAL SPECIFICATIONS

fhe electrical specrficattons for rntertacrng the MC@l0 to M6800 Famrly peripherals are located in
Section 8.

6.3 INTERRUPT INTERFACE OPERATION

During an interrupt acknowledge cycle while the processor is fetching the vector, if VTE is assertd
the MC68010 will assert Vl\[A and complete a normal M6800 read c.ycle as shown in Figure 6-4. The
processior will then use an internally generated vector that is a function of the interrupt being servic-
ed. fhis processi is known as autovectoring. The seven autovectors are vector numbers 25 through
31 (decimall.

Autovectoring operates in the same fashion (but is not restricred to) the M6800 interrupt sequence.
The basic difference is that there are six normal interrupt vectors and one NMI type vector. As wirh
both the M6800 and the MC680'10's normal vectored interrupt. the interrupt service routine can be
located anywhere in the address space. This is due to the fact that while the vector numbers are fix-
ed, the contents of the vector table entries are assigned by the user.

Since ffi is asserted during autovectonng, the M68C0 peripheral address decoding should pre
vent unintended accesses.

S05254 SOS052 54 w w w w w w w w w w S5SO52
aI-.

or-*
*-oo

o-a

rfs
nrw

-

ö.lr«
o&ol5

oooz
rcorc2

]TEC';FU

vtrA

V&-i

, Normr
ffi autov'clor ooeratron ..--'-*1

'Alttrougn a \€ctor nurnb« rs ona Wta, both data nrooG 6rc ast€d dua to tha mlcrocodr
uaad to. uc.goo.r prGsng. f hc arocc.sor do6 not .lcognrz! irnything on data lin€ 00
rhrougtr O15 dunng autovacis cvc,...

Figurc F4. Autovector Operation Timing Diagram

s4

SECTION 7
INSTRUC'TION SET AND EXECUTION TIMES

7.'I INSTRUCTION SET

The following paragraphs provide information about the addressing categories and instruction set
of rhe MC68010.

7. 1. 1 Addressing Categories

Effectrve address modes may be categonzed by the ways in which they may be used. The following
classificatrons will be used in the rnslruction definitions.

Oata lf an efleclive address mode may be used to refer to rJata operands, it is
consrdered a data addressrng eilectrve address mode.

Memory lf an efiective address mode may be used to refer to memory operands, it
is consiriered a memory addressing ef{ective addres.§ .node.

Alterable lf an effectrve address mode may be used to refer to alterable {writeable)
operands, it is considered an alterable addressing effective address mode.

Controi lf an effective address mode may be used to refer tro memory operands
wrthout an associated size, it rs consrdered a control.addresstng effec'tive
address mode.

These categorles may be combined, so lhat addirional, more restrictrve, classificatrons may be
defined. For example, the instruc:ion descrrptions use such crassrfications as alterable memory or
data alterable. The former refers to ihose addressrng modes which are both alterabie and mernory
addresses. and the latter refers to addressrng modes whrch are bolh data and alterable. Table 7-1
shows the vanous categories to wnich each of the eflectrve address modes belong. T'able 7-2 is the
;nslructron sel summary.

Table 7-1. Effective Addressing Mode Categories

€tfucon
Ad<nr
A,lod- Moda Raotrfü Oar!

Ad<lrrirg Catrconaa
Mm/ Cof,rga A}r!ntl.

Dn
An
i Anr

u
ml
J10

Regrstor Numö€.
R€gisrer Numoor
Rogrslv NumDer

X

x x X

x
x
x

lAn) +
-,Anl
d(Anl

Jt I

'm
101

loo§tor Numcs
qeg6tar Numöat
q,rgrster NumOaf

x
x
x

(
X

X X

X
x
x

d{An.

rxx !

d(PC,
,trx

,x,
:ll,]]

ragrsra Numo€tu
101

lr0
lr l

x
x\
?
x

X
x
x

x
x
x

X
x

.7,'

xrlxlxxl

Mnmor*; OGiFtixr Oprrtbo
Co.xfti,n

Codr
x N z c

AECD Add Oocirnat wln Erte.rd I OearunatK»,nl 10 + { Sourcal 10 + x - Oc|nrnttao,r .r U
T

U .r
ADO Add Binarv
AOOA Add Addr6s
AOOt Add lmm€diats {O6tinaoon) + lmmad€ta Oara - Oo3ünation

aooo Add Oulci I O€stnat@n) + lmm€diarr oal. - Oaslrnaoon

AOOX Add Exrmdod tDesnnauont + tsourcai + X - O6trnatlon

ANO aNO Logrcal I Ooaünatronl A { Soqtc6} - Oaatlnalron

ANOI ANO lmmcdiarc lD6alnarron|
^

lmmediälr oata - Oesttnatton 0 0

ANOI to CCF IttO tmrnoOratc to Conditlo{r Cod6a rso"dr; cc8 -cc8
ANDI to SR ANO lmriadratü to Surus Regsrar (Sourc€,

^
SR -SR

ASL, ASR andlmatlc Shrft iÖcstnanon, Shrfted bv <count> -O.3tnaton
8cc Eranch CondroonallY l, CC (h.tr PC + d - PC

BCHG f6t a Bit and CharE
-t<btt numb.r>l OF O6cünauon-Z
-{<Ur numbr>} OF D6tnaüo.l-
<blt ^umbar>

OF Or§onation

acLS T6.r a 8it and C16., -l<§rt numbr>) OF Dctrntlton-Z
O- <bat numbor> -OF O6annanon

B8A Eranch Ahiayt (PC)+d-PC

SSET T€r a 8ir a^d S.t - I < brt rumOc(> l OF O6tnaoon -Z
1 - <ür numbar> OF Oo*lnanon

8SB Brsncrr to Suörouflna (PC) - -{SP,: {PC)+.J-PC
BTST T€st a 8it -1 <brt numbor) | OF Or.tnaooß--4
cHx Choct Rrglnrr Agärnsl BoundS lf On <O ot On> (<aa>) thao IRAP U U U

CL8 Cl6r and Oo.rand i=E6trnar'on
CMP Compara {Dcaonatloo} - (Soutcri

CMPA Como.r! Addtds {D6tne0on} - lSourca)

CMPI Complrr lmrn€diata { Octmatrcn) - Irnnlcdlata Osu
CMPM Comoart MniorY lDctt|n!0on, - I Sourol
oBcc I-t Cond,!,o[Oacrofllqrl and EEncn ;ffi orI-on Dnr-I thcn PC+d-P(
orvs Siqnd O'ud. Ocsomtront/ (sourca| - O€stna0on

orvu Unsqnad Orvldr (O€atnatonll (Sourc!)

EOR Erclurw OR Log|cal Ocst*noal a (So.rtca, i- Ogonaoon

EOFI Erclu3va OR lmmdlara {oclrrnanont o tmmcd€to Oata- Octtrß]lon

EORI to CCB
Erdua.\a OB lmnradia6

ro Co{rdioofl Coda3
(so{rrc., . ccß - ccn

EOFI to SR
Eldusr.a OR lmm6d|€lc

to Suos Rcqsta {Soir.ca. SR - SR

EXG E:cnanqc Ragrsrr lRxl -{RYl
EXT Siqn Ertcod
JMP Jumg {D6ttmrEfi, -PC
JSF Jumo lo Subra/tna {rc) --ISP)i6ttn oon-PC
LEA Load Etl.ctm Addrds <aa> -r\n

lAnl - - {SP}: (SP} -An: tSPL:-q-§LLINK
L5L, LSR Loqcel Shrft (O6nmton) Shrtrod bY <cornl> -Oa3nnaton
MOVE Mo€ Oau frcm Sourca to OcsltrotPn I 5ourcü| - Oeahnallon

MOVE to CCB Mova to Condr0tr Code3 tSourc.l -CCB
MOVE trom

cc8 Mow frofi Conollon Coda (CCRI - O6tnaton i-
MOVE Io SR Mova ro tha Sutus RcAtsrcr I Sourcst - SF

TabieT-Z. lnstruction Set (She€t 1 of A

Ä log.c€l ANO
V roqrcal OR
a logrcal €rclulv, OR
- iogrcäl com9l€ffir

' afl€cr€d
- u^aftacted
0 clce.ld
1 sat
U undctin d

TabtaT-2. lnstruction Sst (Sheet 2 ot 2)

6a -6nll66l-fr

tOest nat,o.,tflffi

(Sourel v CCF-CCF

Rotat€d by?;;E:
Forateo ov?iäfF

1SPt. -pc. rspr*iEF
SPt * -Sn;]ffia^o nsrore Conar,äl-lt

i!ru-l';f;ffi
lO-lSourcellO-X-g!ffiil q; lnan i sE

g§ln t'on r - r..ää6ä- p-ffiti
S.or.acr *,rnllEiä

13l rt6l - ReoriGTll
€31 and Ssr an Oos.anä Irnätron, Tesr€d - CCllE3r

| ,r 561165-J|17=

I l-Orl numts
Ä logrcat ANO
V ogrel OR
a logrcat excru3w OR
- rog,cal comcr6m6nt

'aflecred
- unailrred
0 clerrEd
1 s€t
rJ undeirn€d

7-3

7.1.2 lnstruaion Prefetch

fhe MC68010 uses a twoword tightly-coupled instruction prefetch mechenisrn to enhance perfor-
manca. This mechanism is described in terms of the microcode operations involved. lf the execu-
tion of an instruction is defined to began when the microroutine for that instruction is entered, soma
features of the prefetch mechanism can be described.

1. When execution of an instruction begins, the operation word and the word folloMng have
already be€n fetched. The operation word is in the instruction decoder.

2. ln th6 case of multl-word instructions, as each additional word of the instruction is used
internally. a fetch is made to the instruction strenm to rsglace it.

3. The last fetch for an rnstruction from th€ instruction stream is made when the operation word
is discarded and decoding is started on th€ next instruction.

4. lf the instruction is a singleword in$ruction cau§ng a branch, the second word is not used.
8ut because this word is fetched by the preceding instruction, it is irnpossibl€ to avoid this
superfluous fetch.

5. ln the case of an interrupt or traca exception, both prefetched words are not used.
6. fhe program counter usually points to the last word fetched from the instruction strqtm.

7,1.3 Loop Modc Opcration
The MC68010 has several features that provide efficient execution of program loops. One of these
features is the DBcc looping primitive instruction. fhe DBcc instruction opsratex on three
operands, a loop counter, a branch condition. and a branch displac€mont. When the DBcc is
executed in loop mode, the contents of the low order word of the register specified as the loop
countff is decremented by one and compared to minus on€. lf €qual to minus one, the result of thE
decrement is placed back into ths count register and the next s€quential instruction is executed,
otherwise the condition code register is checked against the sp€cifi€d branch condition. lf the con-
dition is true, rhe result of the d€crement is dissrrd€d and th€ next s€qu€ntial instruction is
executed. Finally, i, the count register is not equal to minus one and tha branch condition is false.
the branch displacement is added to the program counter and instruction ex€cution continuet at
that ne^,y address. Nore that this is slightly different than non-l@ped execution; howargr, tha
results are the same.

An example of using the OBcc instruction in a simple loop for moving a block of data is shoarn in
Figure 7-l ln this program, the block of data'LENGTH'words long at address'SOURCE' is to be
moved to acldress 'DEST' provrded that non€ of the words moved are equal to zero. When the ef-
fect of instruction grefetch on this loop is examined it can be seen that the bus aaivity during the
loop execution would be:

I. Fetch the MOVE.W instructron.
2. Fetch th€ DBEO rnstrucrion,
3. Read the operand where A0 pornts,
4. Writs the operand where 41 pornts,
5. Fetch the 08EO branch displacement, ancl
6. lf loop conditions ar8 met, retum lo step 1.

LEA SOUACE. ÄO
LEA OEST, A1
VOVE.W

'LENGIH,
OO

LOOP MOVE w 'AOl + , rAl) +
oBEO 00. rooP

Load A Po.ntr fo Soorcr Orre
Lord A Pontr fo Odtnaoon
Lo.d Tha Countr RcAsrr
Loo fo Mor. Iha 816r Of 0.rr
Sto It O.ra Wad l! Z.fo

figuro 7-1. DBcc Loop Progam Examplc

74

During rhis loop, five bus cycles are executed; however, only two bus cycles perform the data
movement. Since the MC68010 has a two word prefetch queue in addition to a one word instruction
decode register, it is evident that the three instruction fetches in this loop could be eliminated by
placing the MOVE.W word in the instruction decode register and holding the DBEO instruction and
its branch displacement in the prefetch queue. The MC68010 has the ability to do this by enrering
the loop mode of operation, Dunng loop mode ogÖration, all opcode fetches are suppressed and
only operand reads and writes are performed until an exit loop condition is met.
Loop mode operation is transparent to the programmer. with only two conditions required for the
MC@10 to enter the loop mode. First, a DBcc instruction must b€ executed,rvith both branch con-
ditions met and a branch displacement of minus four; which indicates th6t the branch is to a one
word instruction preceding the DBcc instruction. Second, when the processor fetches the instruc-
tion at the branch address, it is checked to determine whether it is one of the allowed looping in-
structions. lf it is, the loop mode is entered. Thus, the single word looped instruction and the first
word of the OBcc instruction will each be fetched twice when the loop is enterred; but no instruction
fetches will occur again until the DBcc loop conditions fail.

ln addition to the normal termination conditions for a loop, there are several conditions that will
caus€ the MC68010 to exrt loop rnode operation. These conditions are interrupts, trace exceptions,
res€t erro6, and bus errors. lnterrupts are honored after each execution of the DBcc instruction,
but not after the execution of the looped instruction. lf an interrupt exceptiorl occursi, loop mode
operation is terminated and can be restarted on return from the interrupt handler. lf the T bit is set,
trace exceptions wrll occur at the end of both the loop instruction and the DBcc instruction and thus
loop mode operation is not avarlable. Reset will abort all processing, including the loop mode. Bus
enors cluring the loop mode will be treated the same as in normal processing; however, when the
RTE instruction is used to continue the execution of the looped instruction, the tlrree word loop will
not be refetched-
The loopable instructions available on the MC680'10 are listed in lable 7-3. These instructions may
use the thre€ address register indirect addressing modes to form one word looping instructions;
(An), (An)+, and -{An).

Tablc 7-3. MC6&10 Loopabla lnstruc,tions

Oocoar
Ageai(röa.

Ad.kriie Mod-
MOVE (BWLI (Ayl to 1Ar, ' -lAyl to lAr)

lAy) to lArl + - lAy) to {Ar} +
lAy) to - (Ar, - lAvl tO - rArl
{Av) + Io lAr) Ry to 1Ax}
IAy) + to (Ar) + Ry ro (Ax) +
{Av,+ ro -rAx}

aoo iEwrl
aNo lEwLl
CMP (BWL1
OR IEWL]
SU8 (BWLI
AOOA {WU
CMPA (WLJ
SUBA (Wt]
AOO tBwLl
aNo [8wLi
EOF tEwLl
OR IBWL]
SUB IBWL]

(Ayl to Ox
(AVl + tO Ox
- (Ayl to Ox

lAy, to Ar
-,Avl to Ax
{A7i + ro Ax5;;E-
Ox to {Av} +
Ox !o - rAvl

or Ll rndtcala an ooa.and 92e ol övla. ro.d, or iooE word

(]rcodrr
ApCi:*4.

Aderi.to Mod-
AECD (BI
aoox tEwLl
SECO IBI
suEx {8wLl

-(Ayl to -(Arl

CMP IEWLI (Ay| + to iAt) '
cLR (8wU
N€G [BWL]
NEGX {8WL]
NOT IBWL]
rST IEWL]
NSCD tBI

lAyl
lAyl +
- tAyl

ASL (wl
ASR (wl
LSL twl
L5F IWI
ROL lwl
ROR {W}
ioxL iwl
ROXR {Wl

(Ayl W ,'l
(Ay|+ by ll
-tAyf W ll

NOTE
iB, w

7.2 INSTRUCTION D(ECUNON TIMES

The following paragraphs contain listings of the instruction execution times in tarms of extemal
clock {CLK} periods. ln this timing data, it is assumed that both memory read and write cycle times
ars four clock periods. Any wait states caused bv a longer memory cycle must be added to the total
instruction time. The number of bus r6ad and write cycles for each instruction is also inctuded with
the timing data. This data is enclosed in parenthesis following the execution penods and is shown
as (r/w) whero r is the nurnber of read cycles and w is the number of wnte cycles.

NOTE
The number of clock periods includes instruction fetches
fetches and storss.

all applicable operand

7.21 Opcrand Effectivc Addrecs Calo.rlation Tima
Table 74 lists the number of clock periods required to computa an instruction's effecrive address. lt
includes fetching of any extension words, the address computation, and tetching of the memory
operand if necessary. Several instructions do not need üe operand at an effective address to be fet-
ched and thus require fewer clock periods to calculate a given effecüve address than the instruc-
tions that do fetch ths effective address operand. fhe number of bus read and write cycla is shown
in parentheses as (r/w) . Note there are no write cycles involved in processing the effective address.

Table 7-4. Effrtive Addrass Calculation Timc

7.2.2 Movc lnstruction Exccution T'ime
Tables 7-5, 7-6,7-7, and 7€ rndicate th€ numbsr of clock periods for the move instruction. This data
includes instrucrion fetch, operand reads, and operand writes. The number of bus read and write
cycles is shown in parenthesrs as (r/wl.

?nd

Adü-ng tttod.
8';4., Wo.d Lo.rg

ffir No ffir Frttjr No Frttlr

0n
An

D.lr RcAßu? oir*r
AddnE Rlo,rrr Oirrt

0(0/0)
d0/0r

0(0/0)
0(0/01

{Anl
(An) +

Mmory
Addrs Ra{irlta. lndir€cr
AddrGs Ragsrar lndirEt rth Po:uncrrncnt

tlll/O
«1/01

2t0l0r
4{0/0t

NUgt
euot

2totot
«0/0)

lAnl
d(An)

Addrs Raglna{ lndrrEr wth Praddtlmant
Addrg Relsta, lndrrect wrth Oispbccmmt

tt(I /ut
Stuot 'UO/01/x0/01

ro(z0r
r2t3/0)

40tot
41t01

d(An, rxl'
xu,W

Addr§ 8a$stt lndrrrct wrh ln(hx
ADsoaut Shon

10{20}
u2tot

& ,| t0t
41 1 /0)

lrx3/01
12t3tOt

8l r /o,
'l{li0}

u.L
d(PC)

Abaoautr Long
Program Corntcr Hth OisoLcrtiant

r213/01gaa
gz0l lO{.1/0}

143/Or
a2l0t

d(PC, 'r,,ur
Prog,.ar Carntr w.th lndar
lmflraoi.ta

rorzor
4l I /0t

l/U3/0)
u2tot

'Thr rzr ol rha iftbt 'lg§tat
(ixl ooa nor aflcr creclr(lon tlrlE

7-6

Bogßilrt

Table 7-5. Movo Byta and Word lnstruetion Execution Times

'Tho s:a ol tha rn@r rag|std trxl 006. nol alfGr aracuton trme,

Table 7{. Movc Eyta and Word lßtruction Loop Mode Execution Times

\ryord only

TableT-7. fvlove Long lrctruction Ereerrtion Times

tThc srze ol tha ^oar
.agrstrlf rrr) co€! 60r atiocl erccutroo tmG

Table 7€. Movc Long lnstrudion Loop Mode Execution Tima

Sou.ca Drirtim
Oa An (Anl (Ar)+ -tA,l, dlAn) C(Aä. irl' a.W u.L

t)lr
An
{An)

«1 /0r
a(I /01
a2l01

lt 1 l0r
ql/el
cr2tot

el /\t
8{1/1)

1212/ \t

Al/
e(1 /

12t?,t

ill/r)tr/l)
l2t2tlt

l2tult
12t2l1t
Il(3/ 1 t

14al t,
14U1t
193/11

t2t2/|
12121 lt
ra3/ r)

t6(3/ r l
143/ll
z0t4t tl

(Aal+
-(&rl
dual

e2lo)
r0az0l
l2(3/01

e2l0r
r0r2/0r
l2t3/0,

12tU l)
14Ult
ra3/ r l

t212t
l42t
lQt3t

t2tult
14?r'1t
143/il

ta3l lt
ie3/lr
zil4nt

IUJ/ i'
20(3/rl
z2l1l \t

tct3/ 't)

1ü3t1t
20{4/ r I

&4t 'l)

z)tlt lt
2U5llt

d(An, rxl
m.W
ur.L

lar3/0)
l2t3/0r
l«al0t

lal3/01
r2(3/0r
ra.r0t

1A3l 1)
t6{3/ I r
Ä4t11

lll3,/ r I
rG{3/lr
20(4/ I I

re3/lr
ra3/1t
zü1tlt

?2t1tlt
'ä,4l1t
2451l,

2411ll
z)l.t1t
,r5/1'

zlt4l lt
7ü41lt
2«5/ 1l

ü15/lt
245/|
,E16t1t

drcl
d(PC, ir,'
,E

r2(3/0r
l413/0)
l,'ztot

't2t3/01
lal3/0t
ü2l0r

ta3/11
le3/l)
r2t2l l,

ra3/1r
re3/lt
1,I2t1t

ta3/ U
tg3/il
112t11

a$tlt
z:t(tlt
la3/ll

?2l1t1l
2auttt
tü3/ !)

?oßt lt
2l4t1t
ta3/1)

z45tlt,/5/|
z,ilnt

Loog Cdttin.d Looo f.7r*ndad
V.lid Courrl' c€ Fab. Vdi, Cd/nt. cc Tru. Erßrtld Cq/nr

Sorrcc
o6tn tirr

(Anl (Anl + -{Anl lAnl (Anl + -{Anl (Anl (Anl + - (Anl
Dn

lAnl

r0(0/
l0(0/
141t

r0(0/ r)

t0(0/ l)

141 / 1t lal/1)

1glu
18tU
n3/

18a2/ \t
ßtull
?,)ßt1t ?2t3tlt

tga
lAU
18{3/

tctu l)
1ßlu 1l
18{3/ I i zx3/ 1)

lAn)+
- {An}

141/
1l,/1/

141/ 1t

l8ll/lt
lal/11
lE{1/1}

tu3/
z2t3/

,)/.3/lt
zlt3t lt

z.l3l1t
243/ 1l

18{31
DtSt

r8{3/ r }

ux3lll
20(31 l)
z2l3/11

Sqfta 0n A.r (&rl (&tl+ d{&rl d(An, ixr' E,\T s.L
On
An
{An)

{l/01
{l/0t

r2t3/0t

«110,
4ri 0t

r2(3/01

12tr t 2l
12t1 t 2l
ioßt2t

12(rt2t
12lt t2l
2!(3t2t

14\ t2l
14r t21
20(3/2)

1A2t2l
1l,r2t2t
244t21

raz/2t
\eil2t
7l1.t2'

1f/2/2)
ta2/2)
2tt4t2'l

?ol3/2t
7o'ßt2t
?!15t2l

(Anl +
- (Ail
d(An)

12(3/0t
t4(3/01
lqr/0t

r2(3/0r
1/x3/01
10{l/01

?,i.3t2t
zlt3t?t
244t2t

Ix3/2)
2t3t2t
zattt?l

,ot3t2t
2t3t2l
21t1t2l

zat1t2,
,t.t2l
,ta|2l

,l.t2l
alt2l
I)ts/2,

24t.121
üt4t2l
at5/7t

D5t2t
35/2)
?t6t2l

dl^lt, ü)r
s.W
m.L

1üa/01
!aal0t
20{5/0t

t!{4/01
ta4/01
20(5/0r

za1t2t
241t2t
?8t5t2t

?,1412't
24at2l
,,t5t2l

?,t4tzt
24/.1t21
?,,t5t?t

g5/2t
Dtsl?t
3lr0/2r

32.15t2)
ut5t2t
yt6t2l

I(5/2'
,I5/2'
tl(0/2,

yle/2t
?t6/21
,17t?'

d{rc}
d(PC, iil.
,IE

la./0t
la.a/01
r2r3/0r

la4/0r
lt(./01
l2t3/01

241t2t
za{rtzl
?oß/a.

7at1t2t
Dt1/2t
,ot3t2t

z(.t2t
?,ßt2t
?,/.3t2t

7!l5tzt
I(5121
244t2t

I}tsl7t
l2t3t2t
zg4t?t

z.t5t2t
,)tst?t
21t4i2t

3,15t2\y.at2t
a!ilzt

Ld Cdrifrrd Lm Ta.nmatad
Vari, Co.r,[, cc Fa- Vdil C,drnt, cc YnJ. E&.!d Corrlt

Sarrc.
Oar1.ti,r

tAnt I {An} + - {Anf I rAnt (anl + - (Anl (Anl lAnl i - (Anl
Dn
An
, AN'

tato/
140/2t
212/2)

1U0/2)
1lt9i2,

2U2.

a{2i2t
ntz/?)
3t4/2)

mtzl21
ntzl2)
dtar2) I14/2)

ßta2)
1AtA2)
244t2t

1Qt2l2t
t*U2t
21t4t2t ?'14t2t

- iAnl 242,'2.)
2.12./2) | 24r2i2)
2412 t) ?3i?.2)

8t4/2)
nt4t2)

?,,l4t2)
3ttr21

§14/2t
Q.t4i2)

744t2t
äta/2)

244t2t
?ll4t?l

?'t1t2t
Dt4/21

7-7

I

I

7.2.3 Standard lnstruction Execution Times

fhe number of clock periods shown in fables 7-9 and 7- 10 indicate the time required to perform the
operations, store the results, and read the next instruction. The number of bus read and write cycles
is shown in parenthesis as (r/w). The number of clock periods and the number of read and write
c.ycles must be added respectively to thos€ of the effective address calculation where indicated.

ln fables 7-9 and 7-10 the headings have the following meanings: An=address register operand.
Dn = data register operand, ea= an operand specified by an effective address, änd M = memory ef-
fective address operand.

Tablc 7-9. Standsrd lnstruction Execttion Timec

lrüuctirr Sir. op< ->. Atrir op<r>. 0lr oe 0n, <M>
AOO 8vta. word 8{1 /01 + { /Ol + 811/'il +

Long 6{l/01r ot u,+ l2l1t2l +

ANO Bvtc, word tU /01 + gt1 I +
Lonq a /01 + 1211 lA +

CMP 8vta, word 6{l/01+ 4 /01+
Long a /01+

OIVS lzx /01 +
olvu r6(/0) +

EOR
3vts, Word « tot &'ll1)+

Lonq 6t1/0,- 1211 ll +
MULS
MULU

tlil(l/0) + '
{O(I /0) +

oß Ayrc. Word at'l /o) + 8('l / 1) +
Lo.§ 1Zl1 /Zl +

SUB
BYre. Word 8(l/01+ «l/0)+ tlll/11+

Lorq 6{l/0}+ 6il/Ol + 1211 t Z' +

NOTES,
+ add 6frctrya eddflEn crtcularEfl oma '' of,ly avrrbbl. addrEsng drodL rs dala r69!§rcr diroclo rndtcala mxlmlm val6 r ' ' wod of long onay

TaHe 7-10. Standard lnstrustion Loop Mode Exrution Tmcs

'word o. long ontv
<ra> may Oa lAn,, ',rlnl cr -tAnl onlv AOd fwo clocl 96ood! to lna 6olG vöiuc rl <r> rs -tAnl

toq Cdnhud Looo Tm*rtl
Vdi, Cern cc fu. V.li, Count ca Trua Exrird Coun

nEuctirr Sir.
,9 <->,

A^a
o <aa>,

On
e on.
<->

O <I>,
Anr

cg <r>
On

oo Dn,
<->

o0 <->,
Anl

og <->,
D6

oe On,
< aa>

Aoo ,Yt., Wo((18{ I /0, 16llr0l 16{t/1} 2«3101 zltSt0t zll3l \t z2t3tot 20(3/0) 20(3/ 1)

Lonq zlu0t 2W0t 24U2t ?E.1tOt zl1t0t trß/2:t ?!l4tOl ?614/Ot at4t2t

ANO
lYr!. wo.(1et/0, lg1/1) z2t3/0t aß/\t 20(3/01 ?o13i1t

Long atu0t 24U?t ?l,l4t0l tA4/?) 2l{4/0} 8t4t2)

CMP
Bvl!. Wffi 1?$tot 12(1 /0) 1813/0t 18r3/0r 1A3/0) 16{4/0}

Long luu0t rErz0r 241t01 244t0t aM/01 2q4l0)

EOR
Bvt.. wo.c 1A 1 /01 ?213/1t 20(3/ 1 l

LorE 242t2t I,t4t2l ?,;t4t2l

OR
Jvtr, wor(r6l],0) r6{ 1 /0) ?213/0t 2l3l1l 2ol3/0t 20(3/ I l

Long ztz/ot 24tU2t 8t4/01 !A4/?l zBl4i0t ?l.t4t2l

SUB
3vtc. wo.c 1E(1iCI 16i1,0t lc{'li I) 2«3/0r 2t3tOt zlt3l 1l 2t3t0l 20(3/01 2013/ I I

Long z,t2i0t ?!t2iCt 24U2 at4/ot ?,,t4/Al ta4t2, ßt4t0l 244/01 8t4/2'

/-ö

+

7.2.4 lmmediate lnstrustion Exscution Tim€s

The number of clock periods shown in Table 7-1 1 includes the time to fetc,r immediate operands,
perform the operations, store the resulB, and read the next operation. The number of bus read and
wnte c.ycles is shown in parenthesis as (r/w) . The number of clock periods and the number of read
and write cycles must be added respectively to those of the effective address calculatlon where in-
dicated.

ln fable 7-11, the headings have the following meanings: # =immediate operand, On=dau
register operand, AN = address register operand, änd M = memory operand.

Table 7-11. lmmediate lnstruction Execution Times

. add cflac$va addraai carcu&riron rrma
o wOrd Onty

/-Y

InlrrJcür Sirr oo r. On oo t. An oor,M
aoor 8nr. Wfld 8t2/Ot /ll-

I,ffi I«JIOI /21 +

aooo Ultit «1l0t' lt1/lt-
L!f,0 !t l /ul ürrul

at{ot 8vt . Wdd tt2/0t /ll-
Lo6O l al3t ut ,1,+

cLPt Bft Wd ut7 tI
tffi

EOnl Eyrr,
t.ol

'1)-
'l/u3/o,

rrKtvEO tang alli0)

oRt BH. Wdd il)tAl
rgJ/u)

sual 8vra. Wo.r, 8(210r l212l I) -
La{r{l lruJtul frt3/2t -

SUEO
lft \ ,/.rrt i(t,ot «1/0). ll;1lr

LO.rg örl,ur örr ur 11 t2) -

7.2.5 Single Operand lnstruaion Execution Timcs
fabbs 7-12, 7-13, and 7-14 indicate the number of clock periods for the single operand instructions,
The number of bus read and write cyctes is shown in parenthesis a9 (r/w,. The nurnber of clock
periods and the number of read and writ€ cycles must be added resp€ctive{y ro those of the effec-
tive address calculation whera indicated.

TabIaT-12. Singlc Operand lnctn stim Exccution Tiraca

türrcrba Sirr A.(Fü ItlrrE t
N6CD er/ra al/0t Ell/ll +

NCG
Itra, wod

'al
I /0) tll/l)+

Lste 6{ I /0} lAlt Zl +

I'EGX
ürr., Wotd {r/0t t(l/ll+

l--!e a l/0r l2ll/21 +

I'toT
Itr., Urc,{ 'U1/01 er/U

Lo.g ar/0r 1211t2l +

scc
lr/ra, F-. 41 1 /0t gt/'ll+ o

lYla, rnx «l/0t 8ll/l)+'
TAS Et rr alliot l4z1l+ '
TST

lyt , tUord 4llot 41tot
lale t3t 1/01 {lll01 +

r add rllrctßa aodr6! ctcuratlon lrfia
'USa nortatdrng aflacrpa edüa3t celoJlaton srna.

Tablc 7-13. Clcar lnstrtrstion Erccutkrn Tima

.oglrSttt

Tablc 7-14. Single Operand lnstrustion Lmp Mode Execttion Timcc

Sir. Dn AA lAnl (Anl + - {Anl dAnl dAn, ii' s.W r§"L

CLß
8nr, wo.d «1/0) gl/1t gr/11 rql/1) t2t2tlt 1AA1t 12t2^t 16(3/ 1)

Long g1/0) 1211 / 2t 1211 /21 t41t2t 't42t2t n12t2t 1CtU2',) n3/2t
rha s.za o, lha rn(br ra€llstlr lirl doa! nor atfact arGcufloa! tilta.

Loog Contn.d LoO Trn*latad
Vaad Cqrn(cc Frb Vaait Cqrct cc n|. E lirrd Coqnr

Si:. (An, (Anl + - (Anl lAnl lAal + - {Arl lAnl lAnl + -{Anl
3vra, wo.c 10t0/ 1) r0{0/ r I 1210t lt rElzl) t8tult 8t2/Ot 142,/ I) lc{2/ 1 I 1tt2/ 1t

Lor§ 140/2t 140t2t 10{0/2) z|t?/2) ztz/2t 24U2t n(2t21 otu2, zxa2t
NECO 3yra t8il/1) lE{1/11 2lxr/1) 2431 1t 243t1t ?l13t1t zllStll z2t3/ \t 243tlt
NEG

3vrc, wo.o Itil/1) rar/lr 1e2/2t z2t3t 1t zll3t lt 2at3/'t\ 20(rl) ?!ßl1t z2l3t 1l

Lo.lq 242/2t 242/2t al2/2) !N1t2l xJi.1/2t Til4lZ' D11/Z) alt7) IJ/.1t2,

NEGX
lytc, wo.6 tC.t/l) tal/1) 1&2/2\ z13/1t z2t3/ 1l 243tlt ,i.3tlt 20t3/ 1) zltSl lt

Lffi 242/2t 242/2' xt2!2) Ißt2t 3)tat2't 714t2') ?E,t.t2t ,,t1t2l x)tltz\
NOT

3YG. woro lal/1t lt{l/l) 1g.2/2' z2t3/1t zlt3t ll 243tlt 20c3/ r r 20(3/ I I zll3t lt
Loog 242/2t 21!2/2t E12t2t tü4t2t ,J11t2t u2t1t2t Dllt2l aßt2l I]x4t2t

rST 3vr?, wo(d r2t r /ot 't2t1 /0t l4 1/'01 lt{3/0} 18(3/0t zx3tot ra3i 0, r613/0, rE(3/0t
r-onq 1 El2/01 1Er2/0t m2/ot 244t01 244t0t 26{./0t 2ot4t0l 2!x4l01 zll4tot

7- 10

7.2.6 Shift/Rotato lnstrustion Execution Times

fables 7-'15 and 7-'16 indicare the nurnber of clock periods for the shift and rotate instructions. Ihe
number of bus read and wnte cycles is shown in parenthesis as (r/w). fhe number of clock periods
and the number of read and write cycles must be added respectively to those of th,e effective ad-
dress calculation where indicated.

Table 7-15. Shift/Route lnstnrction &ecution Times

lrürrdan Skr Rlgrtr. Mlnotvr

ASN, ASL 1161, Wod 0'2n(/01 8(l/ 1) +
lrog tr2nt t0l

LSß, LSL
8tt . Word 6+2nt t0t Erl/1)

Llno I + 2n{l/0}

iot. nol Bt/r., wo.d It * 2nt /ot 8ll/ll+
Lo.rg 8+2nl tOt

FOXR, nOXL
8t/t , Wo.d 6 + 2n(1/01 8rl/l)

Ldr! t + 2n(l/01
+ 6d af{ctn/. addr63 calculrbon lrme
n 13 lha ghth ot rolrlc count
o word mty

Table 7-16. Shift/Rotate lnstnrction

L6 Ca.rtiu.d tooo Trtri.tar-
Vdd Cqrnt cc frir V.lid Co.rfil. c. fru. Erp..rd Carrnr

lnaüJctbn Si:r (Anl {.An} + - lAn) (Anl (Ant+ - (Anl (Anl lAnl . - {Anl
ASA, ASL Word r8l r8li r) &11/ 2113/ 1l 2413/ | ?ft3/ zÄ3/1t | 2ßi 243/1t
LSR, LSL Word t8{1/ 8{1/1t u.t1/ 1t 243/1 243/ 1l ?613/ z2l3/ 1t zlt3t 2113/ 1l
ROF, ROL Word l&1/ 8{l/1) 20{1/11 21t3i 1l 2rU3/ 1) ß13/ 2t3/1t 213/ 2113/ 1'l

ROXR. ROXLI wm lty 1811/1) 20{ 2tU3/ I) 243tlt ?,,'{3t z2l3t 1t 2t3/ 2413/ 1t

7.L7 Btl Manipulation lnstruction Execr.rtion Times
f ableT-17 indicates !h€ numoer of clock, periods required for the bit manipulation instructions. The
number of bus read and wnte cycles is shown in oarenthesrs as {rlwl . fhe number of clock periods
and ths number of read and wnte cvcles must be added respectively to those of the effectrve ad-
dress calculaüon where rndicated.

Table 7-17. 8it Manipulation lnstruction Execution Times

Loop Mode Execrtion Times

7 -11

l,Elrüar Stt Oyn.t'E s rG
Re Mmory ßaordr MtrE y

SCHG
BVT' E{l/ll+ l2l2/ 1l +
Lono & t/ o)' lZtAAt -

SCLA Avrc l(Xl/l) r 142/ ll +
Lono l(xl/ot.

BSET 3vta lr(1/1)+ 1212/ 1) -
Long t(1/0,' t2ta0t.

SIST 3vt3 /Ul/Ol+ ötuot.
io.9 6{'l /0} . r0(20)

7.2.8 Conditional lnstruction Execution Times

Table 7-.l8 indicates the number of clock periods required for the conditional instructions. The
number of bus read and write cycles is indicated in parenthesis as (r/w). The number of clock
periods and the number of read and write cycles must be added respectively to those of the effec-
tive addrBSS calculation where indicated,

Table 7-18. Conditional lnstnrstion Exrution Times

InülEtiro Oaaraactnrrt Bmdr T.lcr Erandi Not Tati
Bcc 8rnr totztot 6{1 /01

Wo.ü rot2/0t totuot

8na EYta r0t2/0r
Wo.d r0(2/0)

8S8
Evrr t8t2t2,
Wo.d 1At2t2l

oScc cc tn ßtaot
CCtr r0r2/0r ta3/0t

I add altactrva addr63 calculat@n rma

' indiätas,natimiJm vtlua

7.2.9 JMP, JSR, LEA, PEA, and MOVEM lnstnretion Execr.rtion Times

Table 7-19 indicates the number of clock penods required for the jump, jumgto-subroutine, load ef-
fective address, push effective address. and move multiple registers lnstructions- The nurnber of
bus read and write cycles is shown in parenthests as (r/w).

Table 7.19. JMP, JSR, LEA. PEA, and MOVEM lnstruction Execution Times

n rs rhc numi6 of .a9r!1G6 to mova
''S tha s.Zr Ol tha rndar nrgrltcr trrl dOA nO(aatacr tlr€ 'nstructEa's {rracuoon t,fle

Inlü Sir. 1An, {Anl + - {An) dAnl dAn. irJ + E-\lY ur.L d(Pcl drc. i{
JMP 8(2/0) 1u2tOt 1«3/0r totu0t 12t3/Ot 1A(Z/0t 143t0t
JSR 1et2/2t 1Et2/21 zltu?, 1812/2' ?,J,t3/2t lAtU2t 2t2/2t
LEA &l/0t E(2/0r 1212/01 g(210t 1213/0r gt?/01 121210t

PEA 1211 /21 1&2/2) 8t2t2t 161U2t ,Jßt2l taa2l bt2t2)

MOVEM
M-R

Wo.d 12+an(l* nr0)
l2 + a.l

l+ nr0)
16 +.Lr

i4 + n/01
18+ln

{4 + n/0,
r8 + aar

t4+ n/Ql
Al+ 4n

i5 + n/01
r6 +{n

l.l+ i,/01
1E+4.t

14+ n791

Long l2+8a
3+2nt0l

l2+{h
3 * 2nr0)

16+&r
L4 + 2nl0)

18+8n
4+?^/01

t6+&r
14+2^t0l

X)+8n
(5 + 2nl01

16+ {in
(4+ 2nl01

'18+ tla
14 + 2n10,

VOVEM
B-M

Word 8+4fi
\21dt

8 +.ln
tliot

12 +ln
(3/ n)

l.l + 4.r
13/n)

12+ao
r3lnl

l(}+«r
\41

^l
Long 8'8n

t2/2^t
6 {h
t2/2^t

12+84
\51l l

14+$
t3l2^l

12+&r
\3t2^t

t6+&r
14lznl

r'-i2

7.2. 1 0 Multi- Precision lnstrustion Execution Times

f ab|eT-?0 indicates the number of clock periods for the multi-precision instructions. The number of
clock periods includes the time to fetch both operands, perform th6 operaüons,. store the results,
and read the next instructions. The number of read and write cvcles is shown in parenthesis as
lr/wl .

ln Table 7-20, lhe headlngs have the following meanings: Dn=data register operand and
M = rn€rnorY Operand.

Table 7-20. Multi-Pracision lnstrustion Erecution Times

NqlLoog.d

Loog Moda
Cqninrrd TüTnanatld

V.ad Cq/m,
cc F.La

V.li, Cqrnt
cc Tnx

Erp.rd
Courn

latüt/gtbn Si:. o9 On, On o9 M, M'
aoox 8vta, Word «rl01 ra3/ 10r zllu lt D44/1t E\4/11

Long 6(1 /0) trx5/2) ?14t2) §16t2) Ii{6/2)

CMPM
8fla, word 1213/01 1a2/0t D14/Ct l8(4/0,

Long 20(510t 2rU4/0) 36/01 26{6/0)

SUBX
8yre, Wo.d 4"1 /0t lg3/ r alu1 Tl4l l 6$/l

Long a 1/0r nts/2t vt4/2, 3a16/2t §16/2)
ABCD 3yr6 61 1 /0r 1813/ 1 242/1 3014t 1t 8t4/1t
SBCD 3yrt 6l r /0) 'rE(3/ 1) 242/1) 3(4/lr El4/|

'Sourcl and dcunanon at 13 lan, + ior CMPM and - iAn, tor all othaß.

/-tJ

7.2.'l'l Miscallaneous lnstruction Execution Times

TableT-21 indicates the number of clock penods for the following miscellaneous instructions. The
number of bus read and write cycle is shown in parenthesis as (r/w). The number of clock penods
plus the number of read and write cycles must be added to those of the effective address calculation
where indicated.

TableT-21 . Miscdlaneous lnstruction Execution Times

Inoucri, Siz. neür llrnory
Rcartr-

Oraf,inatirn.r
SOaJaClr r <

Rcolar
ANOI to CCR 16{2/0t
ANOI to SR IAUOt
CHK 8{l/0}+
EORI to CCß 1Q12/0t

EORI to SR 1ct2i0t
EXG 6{1/01

EXT
Wo.d {'tlot
Long 41t0t

LINX 1a.2/2t
MOVE from CCR « r/0) E{l/ l}
MOVE to CCR 1212/0t t2l2/01+
MOVE lrom SR «rlot 8{l/'u +
MOVE to SR 12(A0t 12l2l0t +
MOVE trom USP g1/01
MOVE ro USP a1/0)
MOVEC 1AlUOt 12t2tOl

MOVEP
Word 16t2/21 16{4/0}
Long 24214t 2446/01

NOP 'uli0)
OFI to CCR 18{2l0)
OFI ro SF ra2l0r
RESET 13(1i0)
FTD 10(4/0t

RTE

Shon 24r6i 0)

Long, R6trv Road 112127 / 10t

Long, Rrtrv Wf,tB 1121?f/i)
Long. No Re(ry 'll&l€r0l

RTR 2O(51 0)
RIS 1614/0)

STOP /t{C/0)

SWAP 'l{li0l
TRAPV 4r 1 /0t
UNLX r2t3/01

- ädd €IJGUW a<ldr$ €rcqtaton u@
!g nortctchrno artrclrva aoo.6s €lculatron trm.

- - Sorco or dostrnaoon ,s a m€ftory rGtts for the MOVEP ,ßtruclron and a con(roi regrltw tor tho MOVEC rnstruclEn

i-11+

7.2.12 Exception Processing Execution Times

TableT-22 rndicates the number of clock periods for exception processing. The rumber of clock
peflods includes tne time for ail stacring, the vector fetch. and tne fetch of the first two instruction
words of the handler routine, ihe number of bus read and write cycles is shown in parenthesis as
irJw).

Table 7-D,. Exception Procassing Exacution Times

&caotbn
Ad0ross Error 12811/26)
Ersatoornt lnstructon' 42t5/ 4t
Cus trror 1ßtat28l
CHI(instruclron. . 413/ 4t +
Oivrda 8v Zero 42(5/41
lllegAl lnStruCtlon e@l4t
l. ttrtuot' ß15/4t
VCVEC. llegar Cr' a8t5/ 4t
Pnvrlege V/OlatrOn },14/4t
Reset' {o{6/0)
R l'E. llegal Fcrmal *17 /1t
RTE llegar A*r$on ml\2/4t

§14/4t
:RAP Insruc:ton §t4/4t
:AAPV nstruclron 4At5/ 4t

- 3Od etlectNo äOdr6S ctcJlatton tlme.
'f he nterruDt acrnowreoga end CrE(D€rnt cycles ar€ a9

Sumed to iake rour cl(l o€nods. . nolGtet &txlmum value
"' nor€(e5 rna ',m6 rom rnm iE3t'i ano f are ,rst

sampieo as negated l0 whefi nslructon errcut,on starls.

SECTION 8
ELECTRICAL SPECI FICATIONS

fhis section contains alectrical specifications and

8.1 MA)(MUM RATINGS

8.2 THERMAL CHAßACTERISTICS

associated timing information for the MC68010.

Thir dayi:a eontainr orclrtry to lrotact tha
inpuB a0r[nn dafi.gc dt,. to hqh n!rc
vdfSgci oa dclnc tidd!; howat r, it ir ad-
visad that ^ormll

pracautons ba talan to
avod egplicario.r ot any rcltaga highü rhall
maxmurn-ratad voltaga! !o thls high-
rmf,adanc! orcur. Rotl.Eriity ol opcranon rs
aflhrncad il unusr<l in9ul! erü 0ad to an a9
Itopf,ato loglc \.oltagc lard (a.9., nthar VSS
or Vg6).

8.3 POWER CONSIDEBATIONS
The average chipJUnction temperature,

TJ=TA+(P9r6341
Where:

T..1, in oC can be obtarned from:

TA = Ambient Temperature, cC

0JA= Package Thermai Hesrstance, Junctron-to-Ambrent, cCi W
PD=PtNT+Ptlo
PINT= lCCx vCC, watts - Chip lnternal Power
PllO= Power Dissrpatron on lnput and Output Pins -User Determrned

For most appiicatrons PtZO< P1p1 and can be negiecred.

An approxrmate reiatronshrp between Pp and Tg lrf P17g rs neglected) rs:
PD=K*{TJ+273oC)

Solvrng equalrons 1 and 2 for K grves:
K = Tge1f4 - 273'0 - 0 ;poPg2

Where K is a conslant oertarnrng to ihe oan,culat gafi. K can be determtned from equa0on 3 bV
measunng Pp (at equrirbrrum) for a known IA l-Srng ihrs value of K the values of Pg and T3 can be
obtarned bV soivrng equalrons r1) and,2) rteralrvetv for any vatue of iA.

(1)

l2t

\J/

Sriro Vdria
Supply Voat.€r Vcc -0.3 to +7.0
lnput Vollaqa -0.3 to +7.0
Opcrarng Tcnrprrarurt ßangc

MC6m10
MCml0C

T4
f1 to Tp
0to70

-€to6
Storagr Tmrsatwc rog - 56 to 150

Ch.G-idc Synröoa Vds. F.th
TharmC Raa.ntnca

Cr.mic
Plrslrc üth Halt SgrardS
fypo B ChrO C:mor
Typr C Chro Carncr

ola
I}
T
50s

'c/w

ö-l

\

The curve shown in Figure 8-1 give; the graphic solution to these eguattons for rhe specification
power dissipation of 'l .50 and 1.75 vratts over the ambient temperature range of -.55oC to'l25oC
usang a d..14 of 45oC/W for the ceramrc (L suffix) package.

2.2

LO

: r.6
a

t

al.6i
,
e 1.1

tt

l.0r , I I I I I I
-55 -10 0 25 7o 85 lto 125Adbt Irfrtrr lld - .C

Figure &1. Mc68010 Power Dissipstion (pD) vs Ambient Ternp€rsture (TA)

8.4 OC ELECTRICAL CHARACTERISTICS
{Vgg=5.0 Vdc t5%; VSS=0 Vdc; Ta-TU to TH; see Figures&2. &3, and }4}

'With extmi pqtlup rasls ol I : (O.
"Wrthout cxtemal purlup rstor

' ' 'lunng notrul ocratton r^stantanous vC- curmt r€eur.ffits mav ö€ it' htgh ö I 5 A' ' ' 'CafEotarca rs ocnodtetlv smc*cd rathü than tCO% t6rm.

Il{asrfr=
,3rzr.-

-
g

Cltrractrroc Slmbd Vin Mrr Urit
lngut Firgh Vortag6 2.t)

^0ut Low vortagr vgl; -0.3 tq
npur LütagoCJrent@ 5 5 v §EFH. ml$.ffi

cLK, rFE&rE. VfÄ
HÄÜ, HE§El

lin ,r
n A

fhGsrara (Off Srätel ingu(Currmr @ 2.4 V/C 4 v ---l-s-ll-A23§-Dtt
Fc+Fc2. L-§s, arW. U-6'5, VEII rTSt 20

outDut Ergh Volta€€ (lOH - - r@ rÄ) E.8... ÄS. a1-a23. §G, oGots.
FcGFcz. idS, arW. üUS. wfÄ

vox
v66-0 l

)1.
(pul Lcw vortaga
IOL- l 6mA) fA
rOL - 3 2 mA) A1-a23. tG, FcsF,^L-5;rar {ES
rOL - 5 3 mar E. FS, D+O15, iES. R/

üds, vE

vou ^<
0.5
c5

Powr OrsEsoon 1S* Src:ron 9) . Pp
laoaotarcü (Vinr0 V il - 25'C. Freeu€rcyr i VHz,. Ctn 20.0 9F

)5 v

?

f ,,-o
HALr I

L_ roo,
l_
=

'5 v

?

f "oo
F-g§ä? Io_-J

If rxloF

l_.=
Figuru &2 HE§Ef T€sr Load

Cl - l3tl Pf(lnduG.{ P!r&!ioqr}
ßr -6,0 r0 la
)ß. rr.aa. fG. ooors. e
Fc$Fc2. itrS. nrW. 6'3. Wi

'Rr I 22 @ td At.A23. EE.
F@FC2

Figure &3. FiAfT Test toao

'5v

R'-74O 0

MMOTM
or Eeurvatait

=
Figure &4. Tst Loads

8.5 AC ELECTRICAL SPECIFICATIONS - CLOCK INPUT {S* Figure &5}

CIru* Sfirüd t ial{t t0 MHt l2-! MHr
tJnittrr Mar Mh l/Lr Mh Mar

errquocv or op;mon I 2.0 8.0 7.0 10.0 40 12.5 MHz
Cvdr]inr tcvc 1A 0 r@ 0 s 6 n3

Cb€r tur Wirrtr lcL
tcH

5ör a& {5
16

u& s
t

1E
!* n3

Ri'..nd Fr. f'm- tQ,
tar

10
10

r0
r0 5 NS

Figure &5. Clock lnput Timing Diagram

MMO6ttO

8.6 AC ELECTRICAL SPECIFICATIONS - READ AND WRITE CYCLES
(V6g=5.0 Vdc t5%; VSS=0 Vdc; rA=TL to TH; see Figures 8-6 and 8-7)

Num. Cheractarbtic SYlnbol
I MHz 10 MHz 125 MHr

UnitMin Mar Min Mü Vin Max
l Clock Penod kvc 125 5C0 1m 5m & 250 ns

Clmk Width Low lcl 2* 45 za) 1E .h ns
3 Clak Width Hrgh tCH 55 m 45 2* x ns
4 Cloct Fall Time lcf 10 t0 n3
5 Clmk Biss Tire tcr 10 r0 5 n3

5 Clocl lo|fl to Address Varrd lar 10 55
6A CJocx Hiqh ro FC Vaird I.HFCV 70 60 t6 ns

7 Clock High ro Addrs oata
High lm9€dancs I Maxrmum) TCHAZx & 70 60 n3

I Clock H'gh to AddrRsslFC lnvalro
iMinrmum) lcHAzn 0 0 ns

gl Clock Hrqh to AS. 0S Low rMarrmuftr) ICHSLx 60 G 55 ns
10 Clocr Hrqn to AS, f,S Lcw rMrnrmuml LL5\L 0 0 0 ns

t12 Aodr6sn velid !o A-. o-S (Read)
LN/Ä5 (wnrel TAVSL T 0 n3

11 A2 FC Varld ro AS, 0S iBead)
Low/a- lwnro, IFCVSL 60 50 ao ns

12 Cjock Low ro AS. OS t,qn ICI SH 70 55 50 n3
.,11 AS. lS -ron io aoors,'C nvar,o 30 20 r0 ns
,,41 AS. DS Wrdlh Low lReaol/ aS lWitel tsL 2Q 195 160 ns

DS Wroth Low lWrrte, 1t5 d m
14 AS, DS '/vrd(h i qn ts 150 t05 1i5 n5

6 Clocx trgh to AS. -S nrqn moedancB lcH rc 70 ao ns
17 AS. OS lron :o 3, W :,q1 I n r0 ns
r8r Cloct troh to 3lW xrqn,Maxmumr tal 70 60 60 ns
I iOCk trgn lO i /'.rV i'qn Mrnrmuml taHnHn 0 s

Clocr rirqn to irW Lw I.HR 70 60 60 n3

nA2 AS Lcw lo a/W \'i arrd las FV n 20 n ns
?1t Addras! varo lo R/ try Low tAVRt 0 l ns

21 A2 C Varld to 8i W i-ow FCVRI. @ 50 :0 ns
n2 ß/W !-ow lo DS Low WIre, lRr § & 50 ns
23 Clocr Lm lo Data oul /arrd ICLOO 70 55 iÄ ns

Ciocr irgh lo l, W. 'rVl.119h mfEOanC€ ICHFZ s 70 60 n3

?y S irqn lo .]ata Out nvarrd s 20 r5 ns
ala :ul ' a,rd 'o :S -:w ^''re

30 20 r5 ts
Data n lo almx lcw Ss(uO i,m€) IDICT r5 r0 i0 rs
ats 3EiF .cw:c;icx -:w.Setuo - mel lqFr al 45 § ,15 ns

AS ;S r,gn tc JiACK -rgh tsHoAH 0 245 rs 0 i50 n3

29 5 -,gn .o .lara nva,r6 -oro - e, i§HD J ns
x AS lS *,gn:o SEiR rrgn IS H 8EH 0 c J 43

12.5 ACK -cw to lata ,rarrd LSetuo :imst IDAI DI s 55 tc is
!2 ',/aL lnd {:)t .out .aasrJton .ma :RHT 0 2@ 0 2m c 2C0 ns
13 Cltrx .i,qn 'o 3G -ow aHGt i - ;0 60 fJ is
y Ct€x -,gn ,q l(rrgn :0 60 50 rs
35 r3F tow ro 3G .c* IRRIGI r5
i6 R i,gn :o 3G n,gn B RHGH 3 15 1l 35 :lk. Per

37 SUAI^ -Jw'O 5b -'qn rc 3.0 r5 3.J lC:k. eer

- wOntlnU6d

3-J

8.6 AC ELECTRICAL SPECIFICATIONS - READ AND WRITE CYCLES (Continued)
(Vg6-5,9 vdc t5%; VSS=0 Vdc; TA=TL to TH; see Figures&6 and &7)

Nir,n ChJrcülic SyIflOoa
ll MHz ,O MH' lZ5 MHz

UrtrMh M.r Mh Mar Min Mrr
37A f,dACK tow to BH Higfi

(ro P'tt mr ßaa.titn ürnl tEGKgß a 20 20 n3

3 t(i Lofl to 8ua High lm9ad.n6
lwih AS Han, tGl: m m 60 ns

§ gG Width Hiqh tGH r.5 1.5 1.5 Clk. P-
{} Clocl Lo, to WA Low TCLVML 70 70 70 ns

4l Cbcf Lof, to E Traftiooo tcLc 7O 55 45 rot

42 E OuErir 8is. and Flll fitm lEr f - 6 * n3

€ VMA Lor/ to E High TVMLEH 20 150 s n3

4 AS, OS HiEh to vPA Hiqn lsHvPtt 0 t20 0 s 0 70 n3

46 E Low to Addr§/WÄ/Fe lrwahd tFt ar I 10 10 n3

48 FCACR Widrtl tR.: 1.5 r.5 r.5 3lk. Pcr.

tfi Asv.rironorrs lnpst Satup nan last n n n nt
482.3 OTACK Loi to EERR Lo^, TOALBEL $ 5 f, n3

4e E Low to A=, dS lrwrltd tFr sr -m -fi'l -rn rut

50 t Width Xiftt IFH 450 350 m n9

5r E Wrdth Loi tFr 7U 550 44 n3

52 E &tlndcd Ris. Tinx lclEHx s *) s n3

53 O.tr Hold tro.n Ooct Hrgh taH.}rl 0 0 0 n,
5. D.t! HoE trqi E Low lwntcl IELDOZ T a r5 n3

55 R/W to Oat! 8u3 lmp.daoca Chtnga tnt Do I 20 r0 n3

HÄ17/FESET Pulsr witn IHRFA/ 10 r0 Clk. Par

NOTES:
1. Fo. a to.(lirg cagßt aqt o, lGa ü'ra.r oa aqual to 50 9.corara6, SJbmtct 5 tl..r6co.tB fran tfl. yalu6 glyro in ür.aa cdumns-
2. ActrJaa valr.oQa,rö oa dock 9.nod.
3. In fi .!r-tca ot 6lRR, EEFI ,a an aavnclrro.rou! rnprit us.ac üa ixrvndrrooous inorrt lan p Ntt ll!,Tl
4. Fo. ,§r.. uo, ür. MPU .8uat b. hdd in EBEr sat. fo. lO ,r13 to allo, Sreb.liztDon ot oftciip orcuitty. Atter tha syslem i!

poia.d u9, l€0 oho lo lha ffnidxrtfi g./lsa wrdlh rQurf!(, to ret.t th€ w§am.
5. Itrna.3yftrno,ro.jrrrugorr(raTlniturrüi.nt3a,.saßrrd.üraö?fcx-loEtod.ra!.tugtril((11)anoöTÄ?R-o*toEEF-E-

lo\i t.rup orna {r48) r(Nrrerrrtt can ba rgrrcrrd, Tlx drta mugt only satr!fu thr dat}n to dct-loi satup trl. lnn bt *t
todowitg doü clq.. 6Bll ntct ontv r.Btv ü. bt}E-EiT-loi to docr-bti latup tint. tnTN lq th. tollowirtg cloct cycl..

Timing diagrams (Figures &6 and &7) are located on
foldout pages 1 and 2 at the end of this document.

a_i

8.7 AC ELECTRICAL SPECIFICATIONS
(Vg6=5.0 Vdc t5%, V55=0 Vdc,

- MC68010 7O M@0 PERIPHERAL C'Yr31g5
TA = f L to TH, refer to Figures &8 and &9)

Num, Charast .idc Synboa
8 MHs l0 MHz ,2.5 MHs

UnilMln Mar Min Ä,|r Min Mar
6 Clock Low to Oate Out V€lid lcLDo 70 nt

21 Clocr Hrgh to R/W.
VMA Hioh lmo.dan6 ICHRZ & 70 o ßl

a1 O.l. ln to Clocl Low (S.luD Tim., tDtCt 15 l0 r0 nt
{0 Cloct Low to VEI-n Lor tCLvML 70 70 nt
4l C,ock LM to E Trentlotr fcLc 70 55 15 ns
42 E OutBrt RE! aod F{l Tirn tEr. Ef f E * n!€ VMA Low to E HIqh tvMl Fl.i 2m :50 so n3
4 AS, OS Hioh to VPA Hioh ISHVPH 0 r20 0 s 0 70 NS

45 E Low ro addr§/VFiÄ/FC lsvflid IELAI T 10 10 nt
47 Agynchrgnous lnout Sctuo Tirnc lasl fr a 20 n3
49 E L6r ro AS. [S lril.lid tFt st -u) -&) -re NS

50 E wilrh Hi:h tBH 4EO 350 m n3
5r E Widrh Low tFt 7@ 550 44 n3
52 E Ertcnd.d Ais. T]m. tclFHx r m & its
54 Oet. Ho{d fro.n E Loi iwnrot tFt DO7 T n 15 ns

Thce waveforms should only b6 re{erenced in regard to the €dg}to-edge measurem€nt of th6 tim-
ing specifications. They are not intended as a functional description of th€ input and output signals.
Refar to othar functional d€scriptions itnd their related diagrams for derrice operation.

7§ra

Ä1.A23

lataOur----

#+{ 27)

Figura &8. MC68010 to M(EOO Peripheral Timing Oiagram - Best Case

SC Sl S2 33 54 * q w w w w w w w w w w 55 36 37 SO

&6

s0sl s2s3sr w w w w w w w w w ! * Ilw w wa-:w:*x*A*A-Äw w s6At':q
cr"K

AS

t

P
-J

vtrA

9MA

AI A23

Oata out --

DatÖ ln --

Flguro &9. Mcmlo to Mmo Peripherol Timing Diagram - worst cose

i

8.8 AC ELECTRICAL SPECIFICATIOITIS
(V66=5.9 Vdc t5%; VSS=0 Vdc;

- BUS ARBITBATION
TA=TL to fH; see Figure&10)

Num. Ch.6ct .iitic Sylnöd E MHz IO MHS .l25 MHS UnnMir Mar Min Mar Mnl Mu
33 Clock Hiqh ro 56 Low tcHct m 50 ns
3 Ctock Hioh to FG xiEn tat{GH 70 60 50 ns
35 FF Low to EG Lor TBRLGL 3.5 1.5 15 clk. Per.
36 8R Hioh to aG Hiah IBRHCH 1.5 l: aa !c 3.5 C!k. Par.

EGACK Low ro EG Hrgh TGALGH t.3 30 l 3.0 1.5 3.0 CIk. F!f.

374 EGACK Lon ro 3R High
i tO Prevent Rearbrtrittronl IBGKBS 20 n xl n!

38
Eö Low to aus High lmrEOrncs

lwrth AS Hiah, |GLZ m 70 60 n3

§ 8G Wrdth Hrqh GH r.5 r5 1.5 Clk- Per
4§ EGACK Wrdth ISGL l5 1.5 I CIk. P8r.

These waveforms should only be referenced in regard to the edgetcedge measurement of the tirn-
ing specifications. They are not intended as a iunctionai descnption of the input and clutput signals.
Befer to other functional descriptions and their related diagrams for device operation.

CLK

S troöG3
and R/W

5T

S§AtrR I i

NOTES

i Serug trme tor :h. synch.onous rnouts §EtrH IGIII . tfi. SIFCR ;trß;FO. and VFi guaanrea thsr recogttron at the n€xt
'arhng eog6 ol iha clocr

2. N*eioem reasurqrcnts ior 3ll ,nOUts and outDuts ars so€oliad ät: logrc h€n' 2 0 volts, oglc.lo^r=0 8 ,roits.

Figure &..l0. Bus Aöitratjon Timing

98

1.5

ol*_-l.e

SECTION 9
ORDERING INFORMATION

The section contains detailed information to be used as a guide when ordering the MC68010

9.1 STANOARD MC68O1O OROERING INFORMATION

Package Type

Ceramic
L Suffix

Plas:i: with
Heat Spreader
G Suffix

Type B Leadless
Chip Carrier
ZB Suffix

Pin Grid Array
R Suflix

Frequency
(MHz)

8.0
8.0

10.0
10.0
12.5

8.0
10.0
12.5

80
100
12.5

8.0
10.0
I t.a

Temperature

0oC to 70oC
-4OoC to 85oC

OoC to 70oC
- 40oC to 85oC

0oC to 70oC

0oC to 70oC
0oC to 70oC
OoC to 70oC

0oC to 70oC
0oC to 70oC
0oC to 70oC

0oC to 70oC
OoC to 70oC
OoC to 70oC

Ordar Nurnber

MC68010L8
MC68010C18
MC680101r0
MC68010C110
MC68010112

MC68010G8
MC68010G10
lvl C68010G 12

MC68010288
MC680102810
MC680102812

MC68010ß8
MC68010R10
MC68010R12

Madmum Pg
{Wattsl

1.50
1.65
1.50
1.65
1.75

' 1.50
150
1.75

1.50
1.50
1.75

1.50
'r.50
1.50

;t6äEr tacrorv for avärbulity ol thc fygc C Lsadl€5s Chro Carna (ZC Suflixl

$1

9.2 "BETTER" PROCESSING . STANOARD PRODUCT PLUS

Levei I (Suffix X)
. 1000/6 temperature cycling per MIL-STD-883A. Method 1010, ten cycles from -25oC to

+ 150"C.
a 1000,6 high temperature functional rest at f4 max.

Level ll (Suffix D)
a 100% bum-in to MIL-STD-883A test conditions equivalent to 168 hours at .+ l25oC.
a 100% post burn-in dc parametric test at 25oC.

Level lll (Suffix 0S)
o Combrnation of Levels I and ll above.

When ordenng the "BETTER" processing, identify the level desired by adding the appropriate suffix
(indicated above in parenthests) to the end of the part number.

MC68010
Famrly Designation

Temoerature Range
Blank=0oC to 70oC
C= -4OoC to 85oC

Package T
L Ceramrc
G Plastic wlth Heat Spreader
ZB Tvpe I Leadless Chio Carner
ZC -lvpe C Leadless Chro Carrier

SECTION 10
MECHANICAL DATA

fhis section contains the pin assignments and package dimensions
chip carrier veniions of the MC68010.

10.1 PIN ASSIGNMENTS

6#Pin Dual-in Une Packaoe Chip Carriar

for the 64-pin duai-in-line and

-or3
-ol4
-o15
-GNO
-GNO
-a?3
-aZ.
-a2l
- vcc
- A20
- al9
- at8
- at7
- al5
- at5
- 414
- Ar3

04
o3 iHHr+?i?isF???Fii

1;* ii.! * **iü ***'i: ä?

o1
o0
Ä§

Fs
Efs
nrW

OTACK
Fc

EGACX
6E

6?ICR-
ö(J-

E6Afß-
En-vcc-

CLK-
GNO-
GNO-
N C.-ffifT-HEI-

E-va-
6$[A-
itrL7-
lFfr-

0
1t

r3
1a

cL(

ffii
fer
W-r

E

GNO
AB
az|
a21
vcc
a20
Al9
Ar8
Al7
a!6
a15

VPA
EEäE
rTü
r?f.]

t4
Ar3

t2
I

r0

AI
A2
A3
M

1G1

' &Terminal Pin Grid Array

Pin Nsrnbc Functbn
AI

^2A3

A.5
A6
A7
A8
A9
al0
BI
g2
a3
34
85
36
g7
88
89
810

U
C8
c9

09
or0
EI

E9
Et0

Do Not Conn€ct-
01
a2
Bl
D5
07
08
ol0
0r2
o-TffiB63
00
03
D6
ca
011
JIJ
0156ffir
5E
er ü7
ol3
a23

fH
vcc
VSS
A21
CLK
VSs
vcc
a20

r-']lF- r
lF-JflF i
ll F- c

ll - ,

II F E

ll F- oilF c

I F==== .lF- ,
a

ooooo€,oooo
OOOOO<0tOOOOooo ooeoo oo
O@ Bott.,ri OO
oo vici o@oo ooooo oooooooooooooooooo(o,oooo
I ? : . t I t I I r0

Pin Nurnöc Funclirn
F1

F2
F9
Ft0
GI

G9
Gr0
HI
H2
H3
H8
H9
Hl0
JI
JI
J3
J4
J5
i6
J7
r'8
rq

Jl0
(1
K2
(3
K4
K5
K6
K7
(8
(9
K10

HALTnffi
A18
A19

r-
Ar5
Al7
E

tPt2
iFTi
a13
al2
Ar66ffi
äriö
rL I

Do Nor Connect
A?
A5
A8
al0
Alr
a14
Oo Not Conne:t
FQ,
FC0
AI
A3
M
A6

A9
Oo Nor Conner:t

1ü2

r0.2

G SUFFIX
PLASTIC PACXAGE

cas€ E 41

PACKAGE DIMENSIONS

L SUFHX
CERAMIC PACXAG€

cÄs€ 7{a{l

iottt
l. orler$orEErs o^rur.
,. ro$rl0uL r0LEr^rcl r0r L€ros:

I EEI ls §a^ni6 arie
r. olrci§or f-io c$fti 0f LEroS

mcl F0irfo ,Al^tlfL
i 0trfi!10ilx6 lro l0(Eilrctl6 r€l

Are Yla.i ltr!.

rcrlt
r. orrcrarort l lto t ^la

oltuE
lmtrsanrartrra
l. ltn flouL rortil*c! r0l Ltlel l0lral6l0l 0,:

Iill I [ä (o-it6 6l tla ,öl a An
a. orrctSoi L ro cttttr o, llÄß Ücl foirEo ,ataLLtL
I Orrtrslol a ooa! roI lrcLuoa r0L0 tusl{.
L Olrfl$oalro lro lotll[cll6 ttl ^tg

Y[.1 lln.
-TI

a

1G3

ZB SUFFIX
IYPE B LEAOLESS

CHIP CAiFIER
CASE 7604{1

{07E!:
r. 0rr€t6roi A ts o^rur t2 ?LAcf9.
2[ls 6^u6E PL^rie
l. Postnor^L I0L€ß^llcE rO8tENII((5101: 6t PLA(ES

F lä:ir iEno-iäTIrisl?-5'l
a. crxEr(st0ttiG at0 T0 L€BlrcItE

P€f, lxsr Yra.t lgn.
5. orl€r§lot x provlo€li Tl{€ IrzE F0i

80tH rx€ ,10 L€icTll lxo tH€
rxiEE c0it€n roTcsEt

xo?tt:
r. orrcr§ot l § oAnrr 12 tLAatSl-
z Els G^u6E pur1
! |(r$norat I0LEnlrct: F0i

TEisulsl0): ü tL^CES
[TIiEEidEJöiäTIIi'I7-If,I

.. 0rxHtEotltr6
^t0't0rEnltctrGrtt

^tst
Yt..l. tttt

I rogioiat t0tatr,tct Fot
L€los tra ucE$:
Eiu3ßo.t d

2- orl€rslorfiG
^r0t0LEtlrcltc tc I r,tst

Yla t. :9Il

-t<

xr - x_<_
..C-

zc suFFrx.]'YPE C LEAOLESS
CHIP C.AANIEf,
CÄSE

'O41

-t.-

R SUFFIX
PIN GRIO ANRAY

cÄsE 766A{1

--g

:i I 1e
:) otl 1.,13!)oole:iootil3!

I 0-1

-6 / i /

,/\

I-'
I

A!
I

r--;

-c-

AI.AU

AS

6§zi6'§

FCqFC2

A3ynchrones
Input:t

{No(e l)

HALT/ I€SET

Fn-RrEE
tNotc 2t

DIACK

Data tn

6EFl (Notc4l

NOTES! Seruo tra! ior r|ra äsvncnronous ,oout5 fdD Fil :no ffi guarantees inar f*ognroon at llrr t?rt tallrng edgc ol lhe cloct
2 trF neeo lart a(lnrs :,me onrv n oroer to rnsure Bng .Eognr2eo at ihc end oi ln's bus cvclc
I lrmrng measurem€f,rs ar6 rete.ancect iO and lrom a row vorläg€ ol 0 I vorlffio a nrgh vol(aga Oi 2 0 voit5. unlsss o(hwrs notd
a fho.tm'ng for th. f'ßt l6ilßg «tgc rl7) ol 3-EII a.a tor EF'F wrmst 67:ffi. iha lrmrngs ro, th. s€cono talling edga {27A änd €)

ara tor StHx wr(n U iaLI.
Figure &6. Read Cycle Timing Diagram

ioldout 1

These waveforms should only be referenced in regard to the edg+tledge measurement of the tirn
ing specificarions. They are not intended as a functional description of the input and output signals.
Flefer to other functional descrrptions and their related diagrams for devrce operation.

at-A23

A5

üö3tI6§

arW

oata Out

>LU FLI

Asynchronous
inpu(3

-ffi

HAL i,'HE5T i

olacx

§EFF tttorc 3t

IIOIES:
1 fimag rE,surmotg ar? rerr!rcoo ro and t.orn a tw vottaga ot 0 8 vol§t and a htgn voltaga ot 2.0 voant. unGas o(herHs€ notqd.
2. Bacausa ot loadlng van€(roß. RrW mav D€ vald alril l-§ ryen tnougn oolh ara 'fttr3l€<t by (ha rung €d€t o, 52 (spacrlicaoon

20A1.
3. fh. nm6g lo. r,E I6t talnng eoF (47) ol EEäT arc ror EETfi- w,thout 5frei: lh. trmrn€t for tha s.cond tallng 6dgp l27A and
€l ara lor §EEE qtn dTtR

figure &7. Write Cycle Timing Diagram

SO5/50S534S3S2S1SO

tä

Foldout 2

Sead and Wrrte Cycie
fimrng D,agrams

(Trrnrng tables localed on
Pages 8-4 and 8-5)

@ fr|OTOROLA Semiconductor Products tnc.
Colvillea Road, Kelvin Estatc - Eart Kilbrldc/G&argiow - SCOTL^}|O prnr.d ,n s,,tz.d.nd

