MOTOROLA

e Semiconductors
- Colvilles Road, Kelvin Estate - East Kilbride/Glasgow «~ SCOTLAND -

Advance Information

MC68010

16-BIT
VIRTUAL MEMORY
MICROPROCESSOR

AUGUST, 1883

This document contains information on a new product Specifications and nformation heren >MOTOROLA INC.. 1983 ADI-942-A1
are subject to change without notice.

|

"hi InfOrmanIon nes Deen Carefuily Cliecked and is befreved to be
N8 NQNT 10 Make CNENGES 10 ANy OroduCIs NErein 1O (MOrove r

ennrety reliadie . no

Y 's for inaccuracies. Motorcis reserves

I7 use Of any Product of CiIrcuIt JESCNDed Raren NO Heans

y. or demgn 0ia coes nat
3 conveyed under patent ngnhts in any

AroQuct. JOSCHICALCIA NOrWIN 418 SUDIECT (O Change without nots
—_

ANy (1a0sirty ANSING Oul O the spohcation
torm when this document contang intormation on a new

Paragraph
Number

“_g_d
Wwwik =

[S QY

2.1

2.2.1
222
2.23

24
2.5

2.7

28
2.8.1
28.1.1
28.1.2
28.2
2.8.2.1
28.2.2
2.8.2.3
2824
2825
283
2.8.3.1
2832
2.8.3.3
2834
2.8.35
2.8.3.6
2.8
2.10

TABLE OF CONTENTS

Page
Tite Number
Section 1
Introduction
Data Types and AddressingModes 1-3
Instruction SetOverview 14
Virtual Memory/MachineConcepts 1-5
Virtual Memory 1-5
Virtual Machine 1-6
Section 2
Data Organization and Addressing Capabiiities

Operand Size 2-1
Data OrganizationinRegisters 2-1
DataRegisterso 2-1
Address Registerso 2-1
Control Registers. 2-1
Data OrganizationinMemory 2-3
ADTFOESING] = s o im0 55w 505 50m0s 0w s s g o S g I A B SRS B85 85 8 5 0 6 2-3
Instruction FOrmat. 2-4
Program/Data References e hE e 3FE 24
Register Specification. 24
Effective Address 24
Register DirectModes e 2-5
Data Register Direct 2-5

Address Register Direct 2-5

Memory Address Modes 2-5
Address Register Indirect 2-5

Address Register Indirect with Postincrement ; 2-5

Address Register Indirect with Predecrement . . . 2-5

Address Register Indirect with Displacement mEisismisy LD

Address Register Indirect with Index e 2-5

Special AddressModes S EimiGmd HBi0a 2-6
Absolute Short Address 2-6
Absolute Long Address 26

Program Counter with Dispiacement e 26

Program Counterwithindex 2-6
ImmediateData 2-6

Implicit Reference e B 2-6

Effective Addressing Encoding Summary o o 227
System Stack. .. e o o 277

1t

Paragraph
Number

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

4.1
411
412
413
4.1.3.1
4132
4133
4134
41.4
414
4142
4143
415
416
4.1.6.1
4.16.2
4163
4.17
4.1.7.1
4.1.7.2
4173
4.1.8
4.1.9
4.1.10
42
4.2
4211
4212
4213
4214

TABLE OF CONTENTS

(Continued)
Page
Title Number
Section 3
Instruction Set Summary
Data Movement Operationst 3-1
Integer Arithmetic Operations oot 32
Logical Operations it 3-3
Shiftand Rotate Operations iiiiiainaa e 33
Bit Manipuiation Operations oot 34
Binary Coded Decimal Operationscooiiieeannoa... 34
Program Control Operationsiiiiiiia 34
Systemn Control Operations it 35
Section 4
Signal and Bus Operation Description
Signal DesCription i 4-1
Address Bus (Al through AZ23} oo 4-1
Data Bus (DO through D15) 432
Asynchronous Bus Control 4.2
Address Strobe (AS) . 4-2
Read/Write (R/W) .. 4-2
Upper and Lower Data Strobe (UDS, IDS). 4-2
Data Transfer Acknowledge (DTACK) 42
Bus Arbitration Contro_l .. 4-2
Bus Request (BR) 43
BusGrant (BG) e 4-3
Bus Grant Acknowledge(GAEfK) 4-3
interrupt Controi (IPLO, TPLT, TPLZ) o 43
System CoNtrol .. . 4-3
Bus Error (BERR) . 4-3
Reset (RESET) o 4-3
Halt (AL T 4-4
MB800 Peripheral Control 4-4
Enable (E) . . 44
Valid Perpherat Address (VPA) e ... 44
Valid Memory Address (VMA)44
Processor Status (FCO, FC1, FC2) i 4-4
Clock (CLK} P 4-4
Signal Summary R
Bus Operation A 4-5
Data Transfer Operauons . e men wamna e R . 4-5
Read Cycie . . . O 4-6
Write Cycle ke e mkn ammine nawnam sy nes v ... 48
Read-Modify-Write Cycie . R 4-11
CPU Space Cycle . . . U 4-11

Paragraph
Number

422
4221
4222
4223
423
4.2.4
4.2.4.1
4242
4.243
4244
425
43

4.4
4.4
442

TABLE OF CONTENTS

{Continued)
Page
Titde Number

Bus Arbitration e R R G RS E S e R S e 5 g A 4-13

RequestingtheBus...., -4-14

ReceivingtheBusGrant. iiiiian... 414

Acknowledgement of Mastership 4-14

Bus Arbitration Control 4-14

Bus Errorand Halt Operation i 4-16

BusErrorOperation 4-18

Re-RunQOperation 4-19
HAOPOIATION .« 5smc, mismismrnit 5ot 8 AP s Hismiominss 420
DoubleBusFaults e 4-21

Reset Operation i 4.22

The Relationship of DTACK, BERR, and FALT i, 422
Asynchronous versus Synchronous Operation 4-24
Asynchronous Operation 4-24
Synchronous Operation 425

Section 5
Procsssing States

Privilege States 51
SUPerVISOr STate 52
UserState e 5-2
Priviiege StateChanges 52
Reference Classification 5-2
Exception Processing 5-3
Exception Vectors e 5-3
Exception Stack Frame. 55
Kinds of Exceptions 55
Exception Processing Sequence 55
Multiple Exceptions. 5-6
Exception Processing in Detait 57
Reset . .. 57
IMMBITUDES . 57
Uninitialized Interrupt R LT T T 510
SPUROUS INTEITURT. 5-10
Instruction Traps . . Y 5-10
lllegal and Unimplemented Instructions 510
Privilege Violations 511
Tracing o 511

BUS Brror. 512
Address Error . 514
Return from Exception . .. O 514

TABLE OF CONTENTS

(Continued)
Paragraph Page
Number Title Number
Section 6
Interfaca with MGB0O Peripherais

6.1 Data Transfer Operation i i 6-2
6.2 AC Electrical Specifications— MCB8010 to M680O0 Peripheral 6-3
6.3 Interrupt interface Operation 6-4

Section 7

Instruction Set and Execution Times

7.1 INSTIUCTION St . . . 7-1
7.1.1 Addressing Categonies 7-1
7.1.2 Instruction Prefetch 7-4
7:1.3 Loop Mode Operation. i 74
7.2 Instruction Execution Times 76
7.2.1 Operand Effective Address Calculation Times 7-6
7.2.2 Move Instruction Execution Times 7-8
7.2.3 Standard Instruction Execution Times 7-8
7.2.4 immediate Instruction Execution Times 7-9
7.2.5 Single Operand Instruction Execution Times. 7-10
7.2.6 Shift/Rotate Instruction Execution Times 7-11
727 Bit Manipulation Instruction Execution Times A
7.2.8 Conditional Instruction Execution Times 712
7.2.9 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times 7-12
7.2.10 Muiti-Precision Instruction Execution Times 7-13
721 Miscellaneous Instruction Execution Times. 7-14
7.2.12 Exception Processing Execution Times 7-18

Section 8

Electrical Spectﬁcauons

8.1 Maximum Ratings . ne memenmie ns @I HUEEEE GIHEEHIEEINAEE §EAE Y 8-1
8.2 Thermai Characteristics ‘ R, e 84
8.3 Power Considerations . o R 81
8.4 DC Electrical Characteristics S 82
8.5 AC Electrical Specifications — Clock Input e omelesmad BeBaiEIEEEE 53 83
8.6 AC Electrical Specifications— Read and Wrxte Cyc!es e ... 84
8.7 AC Electnical Specifications — MCB88010 to M6800 Penpheral 86
8.8 AC Electrical Specifications— 8us Arpitration. 88

Section 9

Ordering Information

9.1 Standard MCB8010 Ordering Information A
9.2 ““Better”’ Processing — Standard Procuction PTus e s o Beek simiseg FD

Paragraph
Number

10.1
10.2

TABLE OF CONTENTS

(Concluded)
Page
Title . Number
Section 10
Mechanicai Data
Pin Assignments 10-1
Package Dimensions. i 10-3

vii

LIST OF ILLUSTRATIONS

User Programming Mode!

Supervisor Programming Model Supplement

STBUIS REGISTEE 1 soviamcemormoimi s @imis aoomitmiondimiaimbhmbnman osn

Memory Data Organization,
Word Organizationin Mernory
Instruction Operation Word General Format
Single-Effective-Address Instruction OperationWord

Inputand Qutput Signals
Word Read Cycle Flowchart

Byte Read Cycle Flowchart

Read and Write Cycle Timing Diagram
Word and Byte Read Cycle Timing Diagram e

Word Write Cycle Flowchart o

Byte Write Cycle Flowchart

Word and Byte Write Cycle Timing Dvagram

Read-Modify-Write Cycle Flowchart
Read-Modify-Write Cycle Timing Diagram
Bus Arbitration Cycle Flowchart . P
Bus Arbitration Cycle Timing Diagram e

MCB88010 Bus Arbitration Unit State Diagram .

Timing Reiationship of External Asynchronous inputs to intemal Sugna!s .
Bus Arbitration Timing Diagram — Processor Active e

Bus Arbitration Timing Diagram — Bus Inactive u
Bus Arbrtration Timing Diagram— Special Case
Bus Error Timing Diagram

Delayed Bus Error Timing Diagram . P

Re-Run Bus Cycle Timing Diagram. PN BEEEEE AN AEEREE e
Delayed Re-Run Bus Cycle Timing Oiagram

Halt Processor Timing Diagram . bty BEEEGEE R
Reset Operation Timing Diagram B o

Format of Vector Table Entries o T

Vector Number Format o earun nes snemBs Beu BamaeBia g
Exception Vector Address Calculauon . R
MCB8010 Stack Format e
Vector Acquisition Flowchart . A

Vil

Table
Number

7-12
7-13
7-14
7-15
7-18
7-17
7-18
7-19
7-20
7-21
7-2

LIST OF TABLES

(Continued)
Page
Title Number

Single Operand Instruction Execution Times............................ 7-10
Clear Instruction Execution Times. i iiiriiiiraannnnnn 7-10
Single Operand Instruction Loop Mode Execution Times 7-10
Shift/Rotate Instruction Execution Times 7-11
Shift/ Rotate instruction Loop Mode Execution Times. 7-11
Bit Manipulation instruction Execution Times. 7-11
Conditional Instruction Execution Timeso, 7-12
JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times 7-12
Multi-Precision instruction Execution Times 7-13
Miscellaneous Instruction Execution Timesccouun... 7-14
Exception Processing Execution Times e 7-18

Xt/ x1

SECTION 1
INTRODUCTION

The MC88010Q is the third member of a family of advanced microprocessors from Motorola. Utilizing
VLSI technology, the MC88010 is a fuily-implemented 16-bit microprocessor with 32-bit registers, a
rich basic instruction set, and versatile addressing modes.

The MCB8010 is fully object code compatibie with the earlier members of the M68000 Family and
has the added features of virtual memory support and enhanced instruction execution timing.

The MCB8010 possesses an asynchronous bus structure with a 24-bit address bus and a 16-bit data
bus.

The resources available to the MCB8010 user consist of the following:
® 17 32-Bit Data and Address Registers
® 16 Megabyte Direct Addressing Range
@ Virtual Memory/Machine Support
® 57 Powerful Instruction Types
® High Performance Looping Iristructions
Operations on Five Main Data Types
® Memory Mapped |/0
® 14 Addressing Modes

As shown in the programming modei (Figures 1-1 and 1-2), the MC88010 offers 17 32-bit general
purpose registers, a 32-bit program counter, a 16-bit status register, a 32-bit vector base register,
and two 3-bit aiternate function code registers. The first eight registers (D0-D7) are used as data
registers for byte (8-bit}, word (16-bit), and long word (32-bit} operations. The second set of seven
registers (AQ-AB) and the stack pointers (SSP, USP) may be used as software stack pointers and
base address registers. In addition, the address registers may te used for word and long word
operations. All of the 17 registers may be used as index registers.

The status register (Figure 1-3) contains the interrupt mask (eignt levels available) as well as the
condition codes; extend (X), negative (N}, zero (Z), overflow (V), and carry (C). Additional status
bits indicate that the processor is 1n the trace (T) mode ang in the supervisor (S) or user state.

The vector base reqister is used to determine the location of the exception vector table in memory

to support multipie vector tabiles. The alternate function code registers allow the supervisor 10 ac-
cess user data space or emulate CPU space cycles.

1-1

Figure
Number

57
59

510
511

8-10

LIST OF ILLUSTRATIONS

(Continued)
Page
Title Number
Interrupt Acknowledge Cycle Timing Diagram 5-9
Interrupt Processing Sequence 59
Breakpoint Cycle Timing Diagram 5-11
Exception Stack Order (Bus and Address Error) 512
Special StatusWord Format 5-13
Address Error Timing Diagram 514
ME800 Interfacing Flowchart 6-1
MCE8010 to M6BOO Peripheral Timing Diagram — BestCase . .~ 6-2
MCBB010 to M68QO Peripheral Timing Diagram — WorstCase. 6-3
Autovector Operation Timing Diagram 64
DBcc Loop Program Example 74
MCEB8010 Power Dissipation (PD) vs Ambient Temperature (TA)........... 8-2
AESET Testload oo 8-3
HALT Testload 8-3
TesStLoads 8-3
Clock Input Timing Diagram 83
Read Cycle Timing Diagram Foldout
1
Write Cycle Timing Diagram Foidout
2
MCB8010 to MB800 Peripheral Timing Diagram — BestCase 86
MCE8010 to MB80Q Peripheral Timing Diagram — WorstCase. 87
Bus Arbitration Timing-Diagram 8-8

LIST OF TABLES

Table Page
Number Title Number
1-1 AddressingModes 1-3
1-2 INSIrUCHON SEL SUMMAIYo oot et e e s .. 14
1-3 Variations of INStruction TYPeS o i 1-5
2-1 Effective Address Encoding Summary s o p e o e B el 53 b 2-7
31 Data Movement OPerationSt 31
32 Integer Arithmetic Operations 3-2
33 Logical Operationsottt 33
34 Shiftand Rotate Operationsot 33
35 Bit Manipulation Operationst 34
36 Binary Coded Decimal Operationsoiiiiieoiieann. 34
37 Program Control Operations 35
38 System Control Operations i amrs man e iSRRG 35
4-1 Data Strobe Controi of Data Bus. SR N P TE-F 42
4-2 Function Code Qutputs PP . 4.5
43 SIgNal SUMMAIY i 45
44 BTACK, BERR, and H HALT Assertion Results . R 423
45 BERR and HALT Negation Resuitso oo o 424
5-1 Bus Cycle Classification i oo 5-3
52 Exception Vector Table.) s e s mamsdoBiak o 5-4
5-3 MCB88010 Format Codes . . . AT R e oL 5-5
5-4 Exception Grouping and Pricnty . o . o 5-7
7-1 Effective Addressing Mode Categories. e iE GEE BEEEEEOcmE ana 7-1
7-2 Instruction Set o 7-2
7-3 MCB8010 Loopabie mstrucnons . L T 7-5
7-4 Effective Address Calculation Times o 7-6
7-5 Move Byte and Word |nstruction Execution Tlm&s R o . 7-7
7-6 Move Byte and Word instruction Loop Mode Execution Tlmes . . : 7-7
7-7 Move Long Instruction Execution Times . . . o 7-7
7-8 Move Long Instruction Loop Mode Execution Times 7-7

7-9 Standard Instruction Execution Times o 7
7-10 Standard Instruction Loop Mode Execution Times. . . 7-8
711 Immediate Instruction Execution Times . o o o 7-9

3 1815 87 Q
- i | —{oe
| | ' _Dl
- I i ‘ﬁi
= 1 | - Data
- | | D4 Registers
- | ! o8
N i I _|ps
L | 07
31 1815 0
' Ja0
| At
‘el —if
| a2
= - A3 Address
-] - Regesters
- | ™
| AS
B | A8
A7 User Stack
L }{UsPrPointer
3 8 Proge
[JPC Counter
7 0 "
e
Register
Figure 1-1. User Programming Modei
3 1815 0
[T r?’ Supervisor Stack
1 sSSP Pointer
15 8 7 0
{ i CCR SR Status Register
3 0
[vBR Vector Base Register

2 0
SFC Aiternate Function
OFC Code Registers

Figurs 1-2. Supervisor Programming Model Supplement

Usar 8yte
System Bvyte {Congition Code Register}
A\ A\
Aa “ 10 4
ENENNCIREDINEG D30

\—
Trace Mode

Supenrnsor

Stte interrupt Zero

Mask Overfiow]

Figure 1-3. Status Register

1.1 DATA TYPES AND ADDRESSING MODES
Five basic data types are supperted. These data types are:

® Bits

® BCD Digits (4 bits)
® Bytes (8 bits)

® Words (16 bits)

® Long Words (32 bits)

In addition, operations un other data types such as memory addresses, status word data, etc., are

provided in the instruction set.

The 14 address modes, shown in Table 1-1, include six basic types:

® Register Direct
® Register Indirect
® Absolute

® Program Counter Relative

® Immediate
® Implied

Included in the register indirect addressing modes is the capability to do postincrementing,
predecrementing, offsetting, and indexing. The program counter relative mode can also be
modified via indexing and offsetting.

Table 1-1. Addressing Modes

Mode Generation
Register Direct Addresmng
Data Register Direct EA=DOn
Address Reqister Diract EA= An
Absoiuts Dsta Addressing
Absoiute Short EA = (Next Word)
Absolute Long EA = (Next Two Woras)

Program Courtter Relstive Addressing
Reiatrve with Offsat
Relatrve with index ana Offset

EA = (PC)+a4g
EA = (PC} +(Xnl +dg

Register Indirect Addressing
Register indirect

Postincrement Register 'nairect
Pregecrement Register Indirect
Register incirect with Offset
Indexed Reqgister indirect with Offsat

EA = {An)

EA=(An}, An=—An+ N
An==An~-N, EA=(An)
EA = (An) +d1g

EA = (An) «(Xn)+ dg

Immediate Dsta Addressing

VB8R, SFC. OFC

Immediate DATA = Next Wordt(s)
Quick Immediate inherent Data

Implied Addressing

Impled Register EA = SR, USP. SSP, PC,

NQTES:

EA = EHective Addrass

An= Address Register

On = Data Register

Xn= Address or Data Register used as index Register

SR = Status Register

PC = Program Counter

()= Contents of

ag = 8-8it Offset (Displacermnent)

d16= 16-8it Offset {Dispiacement)

N=1 for byte, 2 for word, and 4 for long word. If Anis
the stack pointer and the operand size 1s byte, N=2
10 keep the stack pointer on a word boundary.

= = Replacas

1.2 INSTRUCTION SET OVERVIEW

The MCB8010 instruction set is shown in Table 1-2. Some additional instructions are variations, or
subsets, of these and they appear in Table 1-3. Special emphasis has been given to the instruction
set’s support of structured high-level languages to facilitate ease of programming. Each instruction,
with few exceptions, operates on bytes, words, and long words and most instructions can use any
of the 14 addressing modes. By combining instruction types, data types, and addressing modes,
over 1000 useful instructions are provided. These instructions include signed and unsigned multiply
and divide, ‘quick’’ arithmetic operations, B8CD arithmetic, and expanded operations {through
traps). Also, 33 instructions may be used in the loop mode with certain addressing modes and the
DBce instruction to provide 230 high performance string, block manipulation, and extended
arithmetic operations.

Table 1-2. Instruction Set Summary

Mnemonic Description Mnemonic Description

ABCD* Add Decimal with Extend MOVE* Move Sourcs to Destination

ADD* Add MULS Signed Multiply

AND® Logical And ‘| MULY Unsigned Muitipty

ASL® Anthmetic Shift Left NBCD* Negats Decimal with Extend

ASR* Arithmeuc Shift Right NEG® Negate

B¢ce Branch Conditonally NOP No Operation

BCHG Bit Test and Change NOT® One’s Complament

BCLR Bit Test and Clear OR® Logscat Or

BRA 8ranch Atways PEA" Push Effective Address

BSET Bit Test and Set

BSR Branch 10 Subroutine RESE.T Reset E"'"“‘, Devices

et | ot o, | et e,

otate wi 1

R g’f:o:?a"‘n;' AgnSy Bgnes ROXL® | Rotats Left with Extend

cMpe CARERES ROXR*® Rotate Right with Extend
RTD Retum and Desliocste

DBce Decrement and Branch Conditionaily RTE Retumn from Exception

Divs Signed Divide RTR Return and Restore

OIvU Unsigned Divide RTS Return from Subroutine

EOR® Exclusive Or sa8co* Subtract Decimai with Extend

EXG Exchange Regsters Sce Set Conditional

EXT Sign Extend sTOP Stop

JMP Jump sus*® Subtract

JSR Jump to Subroutine SWAP Swap Data Regsster Halves

LEA Load EHectrve Address TAS Test and Set Operand

LINK Link Stack TRAP Trep

LsL® Logecat Shift Left TRAPV Trap on Overflow

LSR® Logrcal Shift Right - TST® Test

* Loopabie instructons UNLK Uniink

Table 1-3. Variations of Instruction Types

Instruction oy - i
Tyoe Variation Description '"".:“m Variation Description
ADD ADD* Add MOVE MOVE”® Move Source to Desunation
ADDA* Add Address MOVEA* Move Address
ADDQ Add Quick MOVEC Mave Control Register
ADDI Add Immectiate MOVEM Move Muitipie Registers
ADDX* Add with Extend MOVEP Move Pericheral Data
AND AND* Logical And MOVEQ Move Quick
ANDI And Immediate MOVES Move Alternate Address Space

MQVE from SR| Move from Status Register

ANDi to CCR | And Immediate to
MOVE to SR | Move to Status Register

Conditon Codes

ANDI to SR And !mmediate to MOVE from
Status Register CCR Move from Condition Codes
MOVE to CCR | Move 0 Condition Codes

CmpP CMP* Com|

b N e MOVE USP___| Move User Stack Pointer

CMPM*® Compara Memory NEG NEG*® Negate

CMPI Compara immediate NEGX*® Negate with Extend
EOR EOR* Exclusve Or OR OR* Logicai Or

EORI Exclusive Or immediate OR! Or immaediate

ORI to CCR Or immediate to
Conchiion Codes

EOQRI to CCR | Exclusive Or Immeaiate to
Condition Codes

EORI to SR Exciusive Or immediata to ORI to SR Or Immediate o
Status Reqgister Status Register
.) sus sus* Subtract
voopably insmegtigns SUBA® Subtract Address
susl Subtract Immediate
susQ Subtract Quick
SUBx* Subtract with Extend

1.3 VIRTUAL MEMORY/MACHINE CONCEPTS

In most systems using the MCB8010 as the central processor, only a fraction of the 16 megabyte ad-
dress space will actuaily contain physical memory. However, by using virtual memory techniques
the system can be made to appear to the user to have 16 megabytes of physical memory available to
him/her. These techniques have been used for several years in large mainfrarne computers and
more recently in minicomputers and now, with the MCB88010, can be fully supported in

microprocessor-based systems.

In a virtual memory system, a user program can be wntten as though it has a large amount of
memory available to it when only a smail amount of memory is physically present in the system. In a
similar fashion, a system can be designed in such a manner as to allow user programs to access
other types of devices that are not physically present in the system such as tape drives, disk drives,
printers, or CRTs. With proper software emulation, a physical system can be made <0 appear 10 a
user program as any other computer system and the program may be given full access to all of the
resources of that emulated system. Such an emulated system is called a virtual machine.

1.3.1 Virtuai Memory

The basic mechanism for supporung virtual memory in computers is 10 provide only a limited
amount of high-speed physicai memory that can be accessed directly by the processcr while main-
taining an image of a much ‘arger “"virtual”” memory on secondary storage devices such as large
capacity disk drives. When the processor attempts to access a location in the virtual memory map
that s not currently resiging in ghysical memory (referred to as a page fault), the access 10 that loca-
uon 1s temporarily suspended while the necessary c¢ata s fetched from the secondary storage and

placed in physical memory; the suspended access is then completed. The MCB68010 provides hard-
ware support for virtual memory with the capability of suspending an instruction’s execution when
a bus error is signaled and then completing the instruction after the physicali memory has been up-

dated as necessary.

The MC6B8010 uses instruction continuation rather than instruction restart to support virtual
memory. With instruction restart, the processor must remember the exact state of the system
before each instruction is started in order to restore that state if a page fault occurs during its execu-
tion. Then, after the page fault has been repaired, the entire instruction that caused the fauit is re-
executed. With instruction continuation, when a page fault occurs the processor stores its internal
state and then, after the page fault is repaired, restores that internal state and continues execution
of the instruction. In order for the MCB8010 to utilize instruction continuation, it stores its internal
state on the supervisor stack when a bus cycle is terminated with a bus error signal. It then loads the
program counter from vector table entry number two {offset $008) and resumes program execution
at that new address. When the bus error exception handler routine has compieted execution, an
RTE instruction is executed which reloads the MC68010 with the internal state stored on the stack,
re-runs the faulted bus cycle, and continues the suspended instruction. Instruction continuation
has the additional advantage of allowing hardware support for virtual /O devices. Since virtual
registers may be simulated in the memory map, an access to such a register will cause a fault and
the function of the register can be emulated by software.

1.3.2 Virtuai Machine

One typical use for a virtual machine system is in the development of software such as an operating
system for another machine with hardware aiso under development and not available for program-
ming use. In such a system, the governing operating system {OS) emulates the hardware of the
new system and allows the new OS to be executed and debugged as though it were running on the
new hardware. Since the new OS is controiled by the governing OS, the new one must execute ata
lower privilege level than the governing OS so that any attempts by the new OS to use virtual
resources that are not physically present, and should be emulated, will be trapped by the governing
0OS and handled in software. In the MCB8010, a virtual machine may be fully supported by running
the new OS in the user mode and the governing OS in the supervisor mode so that any attempts to
access supervisor resources or execute privileged instructions by the new OS will cause a trap to the

governing OS.

in order to fully support a virtual machine, the MCB8010 must protect the supervisor resources from
access by user programs. The one supervisor resource that is not fuily protected in the MCB88000 is
the system byte of the status register. In the MCB8000, the MOVE from SR instruction allows user
programs to test the S bit {in addition to the T bit and interrupt mask) and thus determine that they
are running in the user mode. For full virtual machine support, a new OS must not be aware of the
fact that it is running in the user mode and thus should not be allowed to access the S bit. For this
reason, the MOVE from SR instruction on the MCB8010 is a privileged instruction and the MOVE
from CCR instruction has been added to allow user programs unhindered access to the condition
codes. By making the MOVE from SR instruction privileged, when the new OS attempts to access
the S bit, a trap to the governing OS wiil occur and the SR image passed to the new OS by the
governing OS will have the S bit set.

SECTION 2
DATA ORGANIZATION AND ADDRESSING CAPABILITIES

This section contains a description of the registers and the data organization of the MC88010.

2.1 OPERAND SIZE

Operand sizes are defined as follows: a byte equals 8 bits, a word equals 16 bits, and a long word
equals 32 bit;. The operand size for each instruction is either explicitly encoded in the instruction or
implicitly defined by the instruction operation. Implicit instructions support some subset of all three
sizes.

2.2 DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16, or 32 bits. The seven address registers
and the stack pointers support address operands of 32 bits. The four control registers support data
of 1, 3, 8, 16, or 32 bits depending on the register specified.

2.2.1 Data Registers

Each data register is 32 bits wide. Byte operands occupy the low order 8 bits, word operands the
low order 16 bits, and long word operands the entire 32 bits. The least significant bit is addressed as
bit zero; the most significant bit is addressed as bit 31.

When a data register is used as erther a source or destination operand, only the appropnate low
order poruon is changed; the remaining high order portion is neither used nor changed.

2.2.2 Address Registers

Each address register and stack pointer is 32 bits wide and hoids a full 32-bit aadress. Address
registers do not suppart the sized operands. Therefore, when an address register is used as a source
operand, either the low order word or the entire long word operand is used depending upon the
operation size. When an address register is used as the destinatuon operand, the entire reqister is af-
fected regardless of the operation size. If the operation size is word, any other operands are sign ex-
tended to 32 bits before the operation 1s performed.

2.2.3 Controi Registars

The status register (SR) is 16 bits wide with the lower byte being accessed as the condition code
register (CCR). Not all 16 bits of the SR are defined and will be read as zerces and :gnored when
written. Operations to the CCR are word operations; however, the upper byte wiil be read as ail
zeroes and ignored when written.

Bit Data — 1 Byte=28 Bits
7 8 5 4 3 2 ! s}

integer Oata — 1 Byta=8 Bits

15 14 13 12 11 10 3 8 7 (] 5 4 3 2 1 Q
MSB Syin 0 Ls8 By}
Byte 2 Byte 3
! Word= 18 Bits
15 14 13 12 11 10 3 8 7 [-] 5 4 2 1 9
MsB Word.9 Ls8
Word 1
Word 2
1 Long Word = 32 Bits
1% 14 13 12 1" 10 9 3 7] 5 4 2 1 Q
S8 High Order
— —={long Worg == — — = — = —~— =— = - e = = = = - -
Low COrder LS8
— ot VG WOTH, T ot ol o o e ool Sy (! (] i g,]])] e iy i
—e=—longWorg2 — = = = — = - = = = — — ————— === =
Addresses — | Address= 32 8its
15 14 13 2 1 10 9 8 7 8 5 4 2 ! 9
MSB
High Oroer
—_— = AJdress) = = = = e = — v e e = = = e = e = -
Low Order LS8
—_ — AQdress ! — — — — e e — = — e = — = — = = — —
— = AGOrESS ! —= == = —= e e e e e e e e e e e m e— =
MSB8 = Mast Sigrificant Bt LSB = Laast Significant Bit .
Decwral Data
2 Binary Coded Decimat Digits = 1 Byte
15 14 13 12 1 10 3] 7 [5 4 2 1 0
MSD
8CDQ 8CD ! LSD 8CD 2 8CD 3
8CD 4 8CD S BCD & 8CD 7

MSD = Mogt Sigmificant Oigit

SO = Laast Sgnificant Ot

Figure 2-1. Memory Data Organization

2-2

The vector base register (VBR) is 32 bits wide and holds a full 32-bit address. All operations involv-
ing the VBR are long word operations regardless of whether it is the source or destination operand.

The alternate function code registers (SFC and DFC) are three bits wide and contain the function
code values placed on FCO-FC2 during the operand read or write of a MOVES instruction. All
transfers to or from the aiternate function code registers are 32 bits although the upper 29 bits will
be read as zeroes and ignored when written.

2.3 DATA ORGANIZATION IN MEMORY

The data types supported by the MCB8010 are: bit data, integer data of 8, 16, or 32 bits, 32-bit ad-
dresses and binary coded decimal data. Each of these data types is put in memory, as shown in
Figure 2-1. The numbers indicate the order in which the data would be accessed from the pro-
Cessor.

Bytes are individually addressable with the high order byte having an even address the same as the
word, as shown in Figure 2-2. The low order byte has an odd address that is one count higher than
the word address. !nstructions and word or long word data are accessed only on word (even byte}
boundaries. If a long word datum is located at address n (n even), then the low-order word of that
datum is located at address n + 2.

15 14 13 12 1" 10 9 8 7 [} 5 4 3 2 ! 0
Word 000000
8yte 000000 | Byte 000001
Word Q00002
8yte Q00002 8yte 000003

!\‘
’\l

Word FFFFFE
Ayte FFEFFE 1 Byte FFFFFF

Figure 2-2. Word Organization in Memory

2.4 ADDRESSING
Instructions for the MCB88010 contain two kinds of information: the type of function o be per-

formed and the location of the operand(s) on which ta perform that function. The methods used to
locate (address) the operand(s) are explained in the following paragraphs.

Instructions specify an operand location in one of three ways:
Register Specification — the number of the register is given in the register field of
therr instruction.
EHective Address — use of the different effective addressing modes.
Implicit Reference — the definition of certain instructions implies the use of specific registers.

\

2-3

2.5 INSTRUCTION FORMAT

instructions are from one to five words in length as shown in Figure 2-3. The length of the instruc-
tion and the operation to be performed is specified by the first word of the instruction which is
called the operation word. The remaining words further specify the operands. These words are
gither immediate operands or extensions to the effective address mode specified in the operation
word.

15 14 13 12 1" 10 9 8 7 8 5 4 3 2 1 o]
Operation Word
(One Word Specifies Operation and Modes)
immediate Operand
(1 Any, One or Two Words!)
Source Effectuve Address Extension
(1t Any, One or Two Words)

Desunanon Effectuve Address Extension
{it Any, One or Two Words!)

Figure 2-3. Instruction Operation Word General Format

2.6 PROGRAM/DATA REFERENCES

The MCB8010 separates memory references into two classes: program references and data
references. Program references, as the name impiies, are references to that section of memory that
contains the program being executed. Data references refer to that section of memory that contains
data. Generally, operand reads are from the data space. All operand writes are to the data space.

2.7 REGISTER SPECIFICATION

The register field within an instruction specifies the register to be used. Other fields within the in-
struction specify whether the register selected is an address or data register and how the register is
to be used.

2.8 EFFECTIVE ADDRESS

Most instructions specify the location of an operand by using the effective address field in the
operation word. For exampie, Figure 2-4 shows the general format of the single-effective-address
instruction operation word. The effective address is composed of two 3-bit fields: the mode field
and the register field. The value in the mode field selects the different address modes. The register
field contains the number of a register.

1S \L) 13 12 Al 0 9 8 7 6 5 4 3 2 1 o]

EHectve Address
X X X X X X X X X X Mode | Reqistar

Figure 2-4. Singie-Effective-Address Instruction Operation Word

2-4

The effective address field may require additional information to fully specify the operand. This ad-
ditional information, called the effective address extension, is contained in the foliowing word or
words and is considered part of the instruction, as shown in Figure 2-3. The effective address
modes are grouped into three categories: register direct, memory addressing, and special.

2.8.1 Register Direct Modes

These effective addressing modes specify that the operand is in one of sixteen generai purpose
registers or one of four controi registers.

2.8.1.1 DATA REGISTER DIRECT. The operand is in the data register specified by the effective ad-
dress register field. .

2.8.1.2 ADDRESS REGISTER DIRECT. The operand is in the address register specified by the ef-
fective address register field.

2.8.2 Memory Address Modes

These effective addressing modes specify that the operand is in memory and provide the specific
address of the operand.

2.8.2.1 ADDRESS REGISTER INDIRECT. The address of the operand is in the address register
specified by the register field. The reference is classified as a data reference with the exception of
the jump and jump-to-subrouting INStructions.

2.8.2.2 ADDRESS REGISTER INDIRECT WITH POSTINCREMENT. The address of the operand is
in the address register specified oy the register field. After the operand address is Jsed, it is in-
cremented by one, two, or four depending upon whether the size of the operand i1s byte, word, or
long word. !f the address register is the stack pointer and the operand size is byte, the address is in-
cremented Dy two rather than one to keep the stack pointer on a word boundary. The reference is
classified as a data reference.

2.8.2.3 ADDRESS REGISTER INDIRECT WITH PREDECREMENT. The address of the ooerand is in
the address register specified by the register field. Before the operand address is used, it is
decremented by one, twe, or four depending upcn whether the operand size i1s byte, word, or long
word. If the address register 1s the stack pointer and the operand size is byte, the address is
decremented by two rather than one to keep the stack pointer on a word boundary. Tne reference is
classified as a qata reference. .

2.8.2.4 ADDRESS REGISTER INDIRECT WITH DISPLACEMENT. This addressing mode requires
one word of extension. The address of the operand is the sum of the address in the adaress register
and the sign-extenced 16-bit dispiacement integer in the extension word. The reference is ciassified
as a data reference with the exception of the jump and jump-to-subroutine instructions.

2.8.2.5 ADDRESS REGISTER INDIRECT WITH INDEX. This acdressing mode requires one wora of
extension. The adaress of the onerand :s the sum of the address in the acdress register, the sign-
extended displacement :nteger .n t1e ‘ow oraer aignt oits of the extension word. and the contents

2-5

of the index register. The index may be specified as the sign extended low-order word or the long
word in the index register. The reference is classified as a data reference with the exception of the

jump and jump-to-subroutine instructions.

2.8.3 Special Address Modes
The special address modes use the effective address register field to specify the special addressing
mode instead of a register number.

2.8.3.1 ABSOLUTE SHORT ADDRESS. This addressing mode requires one word of extension. The
address of the operand is in the extension word. The 16-bit address is sign extended before it is us-
ed. The reference is classified as a data reference with the exception of the jump and jump-to-

subroutine instructions.

2.8.3.2 ABSOLUTE LONG ADDRESS. This addressing mode requires two words of extension. The
address of the operand is developed by the concatenation of the extension words. The high order
part of the address is the first extension word; the low order part of the address is the second exten-
sion word. The reference is classified as a data reference with the exception of the jump and jump-

to-subroutine instructions.

2.8.3.3 PROGRAM COUNTER WITH DISPLACEMENT. This addressing mode requires one word
of extension. The address of the operand is the sum of the address in the program counter and the
sign-extended 16-bit displacement integer in the extension word. The value in the program counter
is the address of the extension word. The refarence is classified as a program reference.

2.8.3.4 PROGRAM COUNTER WITH INDEX. This addressing mode requires one word of exten-
sion. The address is the sum of the address in the program counter, the sign-extended displacement
integer in the lower eight bits of the extension word, and the contents of the index register. The in-
dex may be specified as the sign extended low-order word or the long word in the index register.
The value in the program counter is the address of the extension word. The reference is classified as

a program reference.

2.8.3.5 IMMEDIATE DATA. This addressing mode requires either one or two words of extension
depending on the size of the operation.

Byte Operation — operand is in the low order byte of extension word

Word Operation — operand is in the extension word

Long Word Operation — operand is in the two extension words, high order 16 bits are in the
first extension word, iow order 16 bits ars in the second extension

word.

2.8.3.6 IMPLICIT REFERENCE. Some instructions make implicit reference to the program counter
{PC), the system stack pointer (SP}, the supervisor stack pointer (SSP), the user stack pointer
(USP), the status register (SR), the condition code register (CCR), the vector base register (VBRI
or the aiternate function code registers (SFC or DFC).

2-6

A selected set of instructions may reference the status register by means of the effective address
field. These are:

ANDI to CCR EOR! to SR MOVE to CCR
ANDI to SR OR! to CCR MOVE to SR
EOQR! to CCR ORIl to SR MOVE from SR

2.9 EFFECTIVE ADDRESS ENCODING SUMMARY
Table 2-1 is a summary of the effective addressing modes discussed in the previous paragraphs.

Table 2-1. Effective Address Encoding Summary

Addressing Mode Mode Register

Data Reqgister Direct 000 Register Number
Address Register Direct 001 Register Number
Agdress Reqister indirect 010 Regrster Number
Address Register indirect with

Postincrement o1 Register Number
Address Register indirect with

Predecrament 100 Regrster Number
Address Raqister (ndirect wath

Displacement 101 Register Number|
Address Register Indirect with

index 110 Register Number
Apsoiute Short [ARI 000
Absoiute Lang imn o1
Program Counter with

Oisplacement m Q10
Program Counter wath (ndex m Q1
Immediate 111 100

2.10 SYSTEM STACK s

The system stack is used impiicitly by many instructions; user stacks and queues may be created
and maintained through the addressing modes. Address register seven (A7) is the system stack
pointer (SP). The system stack pointer is either the supervisor stack pointer (SSP) or the user stack
pointer (USP), cepending on the state of the S bit in the status register. If the S bit indicates super-
visor state, the SSP is the active system stack pointer and the USP cannot be referenced as an ad-
dress register. If the S bit indicates user state, the USP is the active system stack pointer, and the
SSP cannot be referenced. Each system stack fills from high memory to low memory.

SECTION 3
INSTRUCTION SET SUMMARY

This section contains an overview of the form and structure of the MCB8010 instruction set. The
instructions form a set of tools that inciude ail the machine functions to perform the following
operations:

Program Control

System Control

Shift and Rotate
Bit Manipulation
Binary Coded Decimal

Data Movement
Integer Arithmetic
Logical

The complete range of instruction capabilities combined with the flexible addressing modes
described previously provide a very flexible base for program development.

3.1 DATA MOVEMENT OPERATIONS

The basic method of data acquisition (transfer and storage) is provided by the move (MOVE) in-
struction. The move instruction and the effective addressing modes allow both address and data
manipulation. Data movement instructions allow byte, word, and long word operands to be
transferred from memory to memory, memory to register, register to memory, and register to
register. Address movement instructions allow word and long word operand transfers and ensure
that only legal address manipuiations are executed. In addition to the general move instruction there
are several special data movement instructions: move muitiple registers (MOVEM), move peripheral
data (MOVEP), exchange registers (EXG), load effective address (LEA), push effective address
{PEA), link stack (LINK), unlink stack (UNLK), move quick {MOVEQ), move control register
(MOVECQC), and move aiternate address space (MOVES). Table 3-1 is a summary of the data move-

ment operations.

Table 3-1. Data Movement Operations

31

Instruction Operand Size QOperstion Instruction | Operand Size Operation
EXG 2 Rx == Ay dlAn) == On
LEA k] EA ~— An MOVEP 8.2 On—=d(An)
(An) == ~(SP} MOVEQ 8 #xxx == On
LINK - (SPY == An PEA 7] EA == — (SP)
{SP) + displacement — SP SWAP n On(31:16] == On(15:0}
MOVE 8, 16, 12 (EA)s == EAd
= UNLK - i&nl=~5p
MOVEC z e (SP)+ — An
(EA}==An, On NOTES:
MOVEM 18, R (An. Dn) = £A S= SouUrce -{)= indirect with predecrement
EAl — An d= destinaton () + = ndirect with postdecrsment
MOVES 8, 16. 32 (Rn) = EA [= bit numbers # = wmmediate data

3.2 INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic operations of add (ADD), subtract (SUB), multiply
(MUL), and divide (DIV) as well as arithmetic compara (CMP), clear (CLR), and negate (NEG). The
add and subtract instructions are available for both address and data operations, with data opera-
tions accepting ail operand sizes. Address operations are limited to legal address size operands (16
or 32 bits). Data, address, and memory compare operations are also available. The clear and negate
instructions may be used on all sizes of data operands.

The muitiply and divide operations are availabie for signed and unsigned operands using word
muitiply to produce a long waord product, and a long word dividend with word divisor to produce a
word quotient with a word remainder.

Muitiprecision and mixed size arithmetic can be accomplished using a set of extended instructions.
These instructions are: add extended (ADDX), subtract extended (SUBX), sign extend (EXT), and
negate binary with extend (NEGX).

A test operand {TST) instruction that will set the condition codes as a result of a compare of the

operand with zero is aiso available. Test and set (TAS) is a synchronization instruction useful in
muitiprocessor systems. Table 3-2 is a8 summary of the integer arithmetic operations.

Table 3-2. Integer Arithmetic Operations

Instructon Operand Size Operstion
8. 18, 2 (Oni + (EA)=—0n
-(EA}+ (Dn) = EA
40D (EA) + #xxx == EA
18, 2 (An) + (EA) = An
8,16, R (Dx) +{Dy) + X == Ox
ADDX 18, 32 - (Ax) + —(Zv)tx—'(Axl
CLR 8, 16. R Q—EA
8, 6, R (On) =~ (EA}
cue Repitioit
it '8, 32 {Ani— (EA}
DIVS | 32+'8 1Dni/(EA) == On NOTES:
Oivu 2+'6 ‘Dni/(EA} == On { } =t number
exT S 16 ({Dnig— On1g I-lmm_oaiatc qata
I f—2 [(Dﬂ)‘lﬁ"om -~ = (ndirect with predecrament
WOLS BX 6= TOni X (EAT—On # swingirectimith postdacrement
MULU '8 X 16=—=32 {On) X {EA) == Dn
NEG 8. 16. 12 0~ (EA)—EA
NEGX 8. 18. 2 Q- (EA) ~ X ==EA
8. 16, R i (On) = EA} == 0On
{EA) = (Dnp ==
suB | E 'EAl-lxxx—-EE::
i ‘6, 32 ; ‘Ani — (EA) == An
§ ‘Oxit = (Oy) = X == Dx
suax 3.16. 2 —iAx)— —«Xw- X == Ax)
TAS 8 (EA] -0, 1 —EA(T
{ TSY 3. '6. 32 EAI =0

32

3.3 LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT are available for ail sizes of integer data
operands. A similar set of immediate instructions (ANDI, OR!, and EOR) provide these logical
operations with all sizes of immediate data. Table 3-3 is a summary of the logical operations.

Table 3-3. Logical Operations

Instruction Opersnd Size Operation
(Dn} A (EA)==Dn
AND 8 18 32 (EA) A (Dn)==EA
(EA) A xxx == EA
{On) v (EA) == Dn
OR 3. 18, 32 {EA) v (D) == EA NOTES:
[EA} v #xxx = EA ;",‘"""‘, dain
EOR 8,18, 2 EAL®IDyI—EA A = logpeal AND
{EA) @ #xxx = EA V = logical OR
NOT 8,18, R ~{EA) = EA
e =logical exciusive OR

3.4 SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the arithmetic shift instructions ASR and ASL
and logical shift instructions LSR and LSL. The rotate instructions (with and without extend)
available are ROXR, ROXL, ROR, and ROL. All shift and rotate operations can be performed in
either registers or memory. Register shifts and rotates support all operand sizes and allow a shift
count specified in a data register.

Memory shifts and rotates are for word operands only and allow only single-bit shifts or rotates.

Table 34 is a summary of the shift and rotate operations.

Table 3-4. Shift and Rotate Operations

|nstruc.{ Operand
ton Size

ASL B.16. .32 X/ C

%
o

ASR (8. 16. 3

LSt 818 32] [x/

i

LSA |8. 16, 2 0 X/C
AOL 8. 16. 32

ROXL (8. 16, 32
ROXR Ia. 16. 32 —

(f’

3

3.5 BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the following instructions: bit test (BTST), bit
test and set {BSET), bit test and clear (BCLR), and bit test and change (BCHG). Table 3-5 is a sum-
mary of the bit manipulation operations. (Z is bit 2 of the status register.)

3.6 BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded decimal numbers are accomplished using the
following instructions: add decimal with extend (ABCD), subtract decimal with extend (SBCD),
and negate decimal with extend (NBCD). Table 3-6 is a summary of the binary coded decimal-
operations.

Table 3-5. Bit Manipuiation Operations Table 3-6. Binary Coded Decirnal Operations
Instruction Operand Size Operation 2 Operand "
Instruction ; Operation

BTST 8, 2 ~oit of (EA) =2 Size

~bit of {(EA}==Z {Dxiq1g+ (Dyi1g+ X == 0Ox
BSET 8 R {—= it of EA ABCO 9 - (Ax)10+ - (Ay)1g+ x—{Ax}

: (DOx)19-- (Dyl1g~ X = Ox

~bit of (EA) =2 S8CD 8
8CLR 8. 0= tit of EA - {Ax)1g~ = (Ayl10 =~ X == (Ax)|
BCHG 8 2 ool EA)—2 ok 2 il e L

! - it of (EA) == tut of EA NOTES:

— = indirect with predecrement

NOTE. ~ =invert .
+ = indirect with postdecrement

3.7 PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using a series of conditional and unconditional
branch instructions and return instructions. These instructions are summarized in Table 3-7.

The conditional instructions provide setting and branching for the following conditions:

CC — carry clear LS — low or same
CS — carry set LT — less than
£EQ — equal Ml — minus

F — never true NE — not equal
GE — greater or equal PL — pius

GT - greater than T — always true
HlI — high VC — no overflow
LE — less or equal VS -~ overflow

Tabie 3-7. Program Control Operations

Inetruction Qperstion
| B¢e Branch Conditionaily {14 Conditions)

& and 16-Bit Dispiacement

(o] Tolol Test Condition, Decrement, and Branch
18-8it Displacement

Sce Set Byte Conditionaily (18 Conditions)

Unconditionet :

BRA Branch Always
& and 16-8it Displacement

8SA Branch to Subroutine
8- and 16-8it Displacement

JMP Jump

JSR Jumg to Subroutine

Returme

RTD Retum from Subroutine and
and Desliocate Stack

RTR Retun and Restore Condition Codes

RTS Return from Subroutine

3.8 SYSTEM CONTROL OPERATIONS

System control operations are accomplished by using privileged instructions, trap generating in-
structions, and instructions that use or modify the condition code register. These instructions are
summarized in Table 3-8.

Table 3-8. Systam Controi Operations

instruction Operstion
Prviieged
ANDI to SR Logecal AND 10 Status Register
EORI 10 SR Logecal EOR to Status Regester
MOVE EA to SR Load New Status Regster
MOVE SR 10 EA Store Status Regester
MOVE USP Move User Stack Pointer
MOVEC Move Control Regester
MOVES Move Altermnates Address Spacs
OR! to SR Logeeal OR to Status Regester
RESET Reset Extemnal Devices
RTE Retumn from Exception
sTOP Stop Program Execution
Trap Generating
CHK Check Data Register Against Upper 8ounds
TRAP Trap
TRAPY Trap on Overflow
Conaiton Cooe Regster
AND! w CCR Logecal AND to Condition Codes
EQR! to CCR Logecat EOR to Condition Codes
MOVE EA to CCR Losd New Condition Codes
MOVE CCR to EA Store Condttion Codes
ORI 10 CCR Logical OR to Condition Codes

3-5/3-6

SECTION 4
SIGNAL AND BUS OPERATION DESCRIPTION

This section contains a brief description of the input and output signals. A discussion of bus opera-
tion during the various machine cycles and operations is also given.

NOTE
The terms assertion and negation will be used extensively. This is done "0 avoid confu-
sion when dealing with a8 mixture of "‘active-low’’ and *‘active-high’’ signals. The term
assert or assertion is used to indicate that a signal is active or true, independent of
whether that level is represented by a high or low voltage. The term negate or negation is
used to indicate that a signal is inactive or false.

4.1 SIGNAL DESCRIPTION

The input and output signais can be functionally organized into the groups shown in Figure4-1. The
following paragraphs provide a brief description of the signals and a reference (if applicable) to
other paragraphs that contain more detail about the function being performed

vee'? Add
GNDI2) Bus A1-AZ3
SO
CLK
ooms
-
R/IW
., FCO 5 ‘ D3 Asynchronous
Processor] _FC1 o 3 o3 8us
swes Pz) 33 [OTAK | o™
S 3
6800 £ | 23 SR
p:' al VMA | b 8us Artitration
Control TEA am‘g‘ Controt
SERR P
System RESET Pl interrupt
Controt | _HALT @f Controi

Figure 4-1. Input and Qutput Signals

4.1.1 Address Bus (A1 through A23)

This 23-brt, unidirectional, three-state bus is capable of addressing 8 megawords of data. It provides
the address for bus operation during ail cycles except CPU space cycles.

4-1

4.1.2 Data Bus (D0 through D15)

This 16-bit, bidirectional, three-state bus is the general purpose data path. it can transmit and ac-
cept data in either word or byte length.

4.1.3 Asynchronous Bus Control

Asynchronous data transfers are handled using the following control signals: address strobe,
read/write, upper and lower data strobes, and data transfer acknowiedge. These signals are ex-
plained in the following paragraphs.

4.1.3.1 ADDRESS STROBE (AS). This signai indicates that there is a valid address on the address
bus.

4.1.3.2 READ/WRITE (R/W). This signal defines the data bus transfer as a read or write cycie. The
R/W signal also warks in conjunction with the data strobes as explained in the following paragraph.

4.1.3.3 UPPER AND LOWER DATA STROBE (UDS, LDS). These signals control the flow of data
on the data bus, as shown in Table 4-1. When the R/W line is high, the processor will read from the
data bus as indicated. When the R/W line is low, the processor will write to the data bus as shown.

Tabie 4-1. Data Strobe Control of Data Bus

(OB | (B8 | /W D8-015 00-D7
High | High - No Valid Data No Vand Data
. Vaha Data 8it Vaid Data Bits
Low Low ngh ah 8-?;3 its { e 1
v .
High | Low | High No Vaid Data ald 8_37"‘ Bis
Low | High | High Vaid g?? Hiis No Vaud Data
vaig Data Bits Vahd Data Buts
Low Low Low 3.15 07
Vahg Data Bits Valid Data 8its
High | Low | Low 57° o7
i Vahd Data Bits Valid Data 8its
Low 1gh Low 815 8-15*

* These conditions are a resuit of current implementation and may
not appear on future devices.

4.1.3.4 DATA TRANSFER ACKNOWLEDGE (DTACK). This input indicates that the data transfer is
completed. When the processor recognizes OTACK during a read cycle, data is latched one clock
cycle later and the bus cycle terminated. When DTACK s recognized during a write cycle, the bus
cycle is terminated. Refer 10 4.4 ASYNCHRONOUS VERSUS SYNCHRONOUS OPERATION.

4.1.4 Bus Arbitration Control

The three signals, bus request, bus grant, and bus grant acknowiedge, form a bus arbitration circuit
to determine which device wili be the bus master device.

42

4.1.4.1 BUS REQUEST (BR). This input is wire ORed with all other devices that could be bus
masters. This input indicates to the processor that some other device desires to become the bus
master.

4.1.4.2 BUS GRANT (BG). This output indicates o all other potential bus master devices that the
processor will release bus control at the end of the current bus cycle.

4.1.4,3 BUS GRANT ACKNOWLEDGE (BGACK). This input indicates that some other device has
become the bus master. This signai should not be asserted untii the following four conditions are
met:

1. a bus grant has been received,
2. address strobe is inactive which indicates that the microprocessor is not using the bus,

3. data transfer acknowledge is inactive which indicates that neither memory or peripherals are
using the bus, and

4. bus grant acknowledge is inactive which indicates that no other device ‘s still claiming bus
mastership.

4.1.5 Interrupt Control (IPLO, IPLT, TPD2)

These input pins indicate the encoded priority level of the device requesting an interrupt. Level
seven is the highest priority while level zero indicates that no interrupts are reguested. Level seven
cannot be masked. The least significant bit is IPLO and the most significant bit is TFL2. These lines
must remain stabte until the processor signals interrupt acknowledge (FCO-FC2 are all high, A4-A23
are all high) to insure that the interrupt is recognized.

4.1.6 System Controi

The system control inputs are used to either reset or halt the processor and to indicate to the pro-
cessor that bus errors have occurred. The three system control inputs are explained in the following
paragraphs.

4.1.6.1 BUS ERROR (BERR). This input informs the processor that there is a problem with the cycie
currently being executed. Problerns may be a resuit of:

1. nonresponding devices,

2. interrupt vector numbper acquisition failure,

3. illegal access request as determined by @ memory management unit, or

4. other apptication dependent errors.
The bus error signai interacts with the hait signal to determine if the current bus cv¢le should be re-
executed or if exception processirg should be performed.

Refer t0 4.2.4 Bus Error and Hait QOperation for additional information about the interaction of the
BERR and HALT signals.

4.1.6.2 RESET (RESET). This oidirectional signal line acts 1o reset istart a systen initialization se-
quence) the processor N response 1o an external reset signal. An internaily generated reset (result

of a reset instruction) causes all external devices to be reset and the internal state of the processor is
not affected. A total system reset (processor and external devices) is the resuit of external HALT
and RESET signals applied at the same time. Refer to 4.2.5 Reset Operation for further information.

4.1.6.3 HALT (HALT). When this bidirectional line is driven by an external device, it will cause the
processor to stop at the completion of the current bus cycle. When the processor has been haited
using this input, all control signals are inactive and all three-state lines are put in their high-
impedance state (refer to Table 4-3). Refer to 4.2.4 Bus Error and Halt Operation for additional infor-
mation about the interaction between the HALT and BERR signals.

When the processor has stopped executing instructions, due to a double bus fauit condition (refer
to 4.2.4.4 DOUBLE BUS FAULTS), the HALT iine is driven by the processor to indicate to external
devices that the processor has stopped.

[4

4.1.7 M6800 Peripheral Control

These control signais are used to allow the interfacing of synchronous ME800 peripheral devices
with the asynchronous MCB8010. These signais are explained in the following paragraphs.

4.1.7.1 ENABLE (E). This signal is the standard enable signal common to all M6800 type peripheral
devices. The period for this output is ten MC68010 clock periods (six clocks low, four clocks high).
Enable is generated by an internal ring counter which may come up in any state (i.e., at power on, it
is impossible to guarantee phase relationship of E to CLK). E is 3 free-running clock and runs
regardless of the state of the bus on the MPU.

4.1.7.2 VALID PERIPHERAL ADDRESS (VPA). This input indicates that the device addressed is an
M6800 Family device and that data transfer should be synchronized with the enable (E) signal. This
input also indicates that the processor should use automatic vectoring for an interrupt. Refer to
SECTION 6 INTERFACE WITH M6800 PERIPHERALS.

4.1.7.3 VALID MEMORY ADDRESS (VMA). This output is used to indicate to M680O peripheral
devices that there is a valid address on the address bus and the processor is synchronized to enable
(€). This signal oniy responds to a valid penpheral address (VPA) input which indicates that the

peripheral is an M6800 Family device.

4.1.8 Processor Status (FCO, FC1, FC2).

These function code outputs indicate the state {user or supervisor) and the cycle type currently be-
ing executed, as shown in T;qgte 4-2. The information indicated by the function code outputs is valid
whenever address strobe (AS) is active.

4.1.9 Clock (CLK)

The ciock input is @ TTL-compatibte signai that is internaily buffered for development of the internal
clocks needed by the processor. The clock input shouid not be gated off at any time and the clock
signal must conform to minimum and maximum pulise width tmes.

Table 4-2. Function Code Qutputs

Function Code Qutput

FQ2 | FC1 | FCO e Tyee

Low Low Low (Undefined, Reserved)
Low Low | High User Data

Low | High Low User Program
Low | High | High {Undefined, Reservea!
High | Low Low {Undefined, Reserveg!
High | Low | High Supervisor Data
High | High | Low Supervisor Program
High | Hign | Hign CPU Space

4.1.10 Signal Summary
Table 4-3 is a summary of all the signals discussed in the previous paragraphs.

Table 4-3. Signal Summary

Signai Name Mnemonic Input/ Output Active State SR W2 Yt s
Address Sus A}-AZ3 Qutput Hign Yes Yes
Data Bus 00-015 Inputs Output High Yes Yes
Address Strooe i3 Qutput Low No Yes
Read/Wnte IR Qutput ;7:::1?3 No Yes
Upper anc Lower Data Stopes JD5. (D5 Output _ow No Yes
Data Transfer Ackxnowilecge OTATK Input Low - -
Bus Request TR inout Low - -
3us Grant 3G Output Low No No
Bus Grant Acknowiedge BGACK Input Low - -
Interrupt Pronty Lavel PLC, PLY, PR Input Low - -
Bus Error SERR Input Low - ~
Resat RESET input/ Qutput Low No® No*
Halt SALT nput/ Qutput ow No* No*
Enavie £ Qutput Hign No ! No
Valid Memory Address VMA Output Low No 1 Yes
Vaiid Penpheral Aadress VPA 'nput B Low - -
Function Code Outout FCOD. FCt. FC2 QOutput =ign No Yes
Clock 8 ¢ 'nput =ign - =
Power ‘nput Ver input - - =
Grouna GND ingut - - -
*Qpen Cran

4.2 BUS OPERATION

The following paragraphs explain control signal and bus operation during data transfer operations,
pus arpitration, bus error and hait conditions, and reset operation.

4.2.1 Data Transfer Operations

Transfer of data between devices involves the foilowing signals:
1. agdress ous A1 through A23,
2. data ous 00 through D18, anc
3. controi signats.

4-5

The address and data buses are separate parallel buses used to transfer data using an asynchronous
bus structure. In all cycles, the bus master assumes responsibility for deskewing all signals it issues
at both the start and end of a cycle. In addition, the bus master is responsible for deskewing the
acknowledge and data signals from the slave device.

The following paragraphs explain the read, write, and read-madify-write cycles. The indivisible
read-modify-write cycle is the method used by the MCB8010 for interlocked muiltiprocessor com-
munications.

4.2.1.1 READ CYCLE. During a read cycle, the processor receives data from the memory or a
peripheral device. The processor reads bytes of data in all cases. If the instruction specifies a word
{or fong word) operation, the processor reads both upper and lower bytes simultaneousty by asser-
ting both upper and lower data strobes. When the instruction specifies byte operation, the pro-
cessor uses an internal AQ bit to determine which byte to read and then issues the data strobe re-
quired for that byte. For byte operations, when the AQ bit equais zero, the upper data strobe is
issued. When the AQ bit equals one, the lower data strobe is issued. When the data is received, the
processor correctly positions it internally. If DTACK, BERR, or VPA is not asserted for the required
setup time before the falling edge of S4, a wait cycle will be inserted in the bus cycle and DTACK
will be sampled again on the falling edge of each wait cycle. The MCB88010 will continue to insert
wait cycles untit DTACK, BERR, or VPA is recognized.

A word read cycie flowchart is given in Figure 4-2. A byte read cycle flowchart is given in Figure 4-3.
Read cycle timing is given in Figure 4-4. Figure 4-5 details word and byte read cycle operations.

BUS MASTER SLAVE
Address the Device

1) Set R/W to Read

2) Prace Function Code on FCO-FC2

3) Place Address on A1-A23

4) Assert Address Strode (AS)

5) Assert Upper Data Strope (UD3) and
Lower Data Strobe (LD3)

Input the Data

1) Decode Address
2} Place Data on DQ-018
3) Assert Data Transter Acknowiedgs

(OTACK)
Acquire the Data -t
1} Latch Data
2) Negate UDS and LD3
3) Negaw A5
Terminata the Cycle
1) Remove Data from O0-015
2) Negate DTACK
L Start Next Cycle }‘

Figure 4-2. Word Read Cycle Flowchart

BUS MASTER SLAVE

Address the Device
1) Set R/W 1o Read
2} Place Funcuon Code on FCO-FC2
3) Ptace Address on A1-A23
4) Assert Adadress Sirope (AS)
5) Assert Upper Data Strooe (JD3) cr

Lower Data Strobe ([D3} (based on AQ)
Input th Dats

1} Decode Address
2) Place Data on OG-7 or 08015 (based

on UDS or LOS)
3) Assert Data Transfer Acknowiedge

(DTACK)
Acquire the Dsta
1} Latch Oata
2) Negate JD3 or LO3
3) Negate AS
Terminate tha Cycle
1) Remove Data frorn 10-O7 or 08-015
2) Negate DTACK
L Start Next Cycie }<

Figure 4-3. Byte Read Cycle Flowchart

S2S3 S4 S5 56 S7 SO S1 52 S3 5S4 S5 S6 S7 SC S? S2S3 S4 w w w w S5 S8 S7

0 st
xS LUy

araz _)~ —C Damt
s N/ N/ \
wm N/ /" \
™ N/ ./ \

RIW e/
staex . oo/ N/

ors ———_____r—C ____——C
T, A e A e |

WI AR

reoFc2 X X X
lr: Assa 7%* write :L‘ Siow Fiead ——-—-J

Figure 4-4. Read and Write Cycle Timing Diagram

SO S1 S2 S3 S4 S5 56 S7 SO S1 S2 S3 S4 S5 56 S7 SO SV S2 $3 S4 S5 S8 37

A . ~—___/ ~ / /"
pso1s k> >

oo ——C— > ——(C >
reoFc2 X X ' —

*internat Signal Onty

lq-—Word Ruo—-—le— Odd Byte Rm+&m Byte Read———l

Figure 4-5. Word and Byte Read Cycie Timing Diagram

4.2.1.2 WRITE CYCLE. During a write cycle, the processor sends data to either the memory or a
peripheral device. The processor writes bytes of data in all cases. If the instruction specifies a word
operation, the processor writes both bytes. When the instruction specifies a byte operation, the
processor uses an internal AQ bit to determine which byte to write and then issues the data strobe
required for that byte. For byte operations, when the AQ bit equals zero, the upper data strobe is
issued. When the AQ bit equals one, the lower data strobe is issued. A word write flowchart is given
in Figure 4-8. A byte write cycle flowchart is given in Figure 4-7. Write cycle timing is given in Figure
4-4. Figure 4-8 details word and byte write cycle operation.

BUS MASTER SLAVE
Address the Device

11 Place Function Code on FCO-FC2

2} Prace Adaress on A1-A23

3) Assert Aadress Strope tA3)

4) Set R/ W 10 Write

5) Place Data on D0-015

5} Assert Upoer Data Strope 'L0S! and
Lewer Data Strooe (D3 Input the Data

11 Decoce Address
2) Store Data on 00-015
3) Assert Data Transier Acknowiedge

(OTACK)
Terminate Output Transter
11 Negate UBS ana (O3
2} Negate AS
3} Remove Oata from 0C-015
4) Set R/W t0 Read
Terminate the Cycle
1) Negate DTACK

| Start Next Cyce -

Figure 4-6. Word Write Cycle Fiowchart .

4-8

BUS MASTER

Address the Device

1) Place Funcuon Code on FCO-FC2

2) Ptace Agdress on A1-A23

3) Assert Agdress Strope (£.S)

4) Set R/W 1o Write

5) Place Data on 00-07 or 08-D15
taccoraing 10 AQ)

6) Assert Upper Data Strooe {GDS! or
Lower Data Strope (LD3) (based on AQ)

SI.AVE

Terminate Qutput Transfer

Input the Data

1) Negats UDS and (D3

2! Negate AS

3) Remave Data from 00-07 or 08015
4) Set A/W to Read

1) Decode Address

2) Store Data on D0-D7 if LD3 is Asserted
Store Data on 08-015 if UDS is
Asserted

3} Assert Data Transfer Acknowiedge
{OTACK)

[Start Next Cycle -

Terminate the Cycie

1} Negate DTACK

Figure 4-7. Byte Write Cycle Flowchart

SO S1 S2 S3 S4 S5 S6 S7 SO St

S2S3 S4 S5 S6 S7 SO S! S2 S3 S$4 S5 56 S7

S0 [U [(s S s I N Y O 6

ar a3 =

J—(

ﬂ—()

AQ*

ASLM S

™/
G W e

L] / \

./

/\

OTACK \—-——-/————\-—_——f_—ﬂ'—"—“

08015)~ — O C DO
2007 ___ I s T o, SR
reo-rc2 X X X D

* ‘nternal Signal Onliv

f-‘—— Wora Write ——*——— Oaa Byte Wnte —*—— Even Byte wmn—q

Figure 4-8. Word and Byte Write Cycle Timing Diagram

49

BUS MASTER

Address the Device

1) Set R/W 1 Read

2} Place Function Code on FCO-FC2

J) Place Aadress on A1-A23

4) Assert Address Strobe (&3]

5) Assert Upper Data Stroe (J03) o
Lower Data Strobe (LD3)

SLAVE

Inout the Dats

Acquirethe Dsta

1) Latch Data, #
2} Negate UDS or LDS
3) Start Dats Modification

1) Decode Address

2) Place Oata on DO-07 or 08-015

3) Assert Data Transfer Acknowiedge
(DTACK)

Terminate the Cycle

Start Qutput Transfer

1} Remove Data trom DO-D7 or 08-018
2} Negate OTACK

1) Set R/W to Write

2) Place Data on DG-07 or D8-015

3) Assert Upper Data Strobe (UDS) or
Lower Data Strode ({D3)

Input the Oata

Terminate Qutput Transter

1) Store Data on DO-D7 or 08015
2) Assert Data Transter Acknowiedge
{OTACK)

1) Negate UDS or LOS

2) Negate AS

3} Remove Data trom 00-07 or 08-015
41 Set R/W to Resd

Terminats the Cycie

Start Next Cycie

1) Negate DTACK

Figure 4-9. Read-Modify-Write Cycle Flowchart

4.2.1.3 READ-MODIFY-WRITE CYCLE. The read-modify-write cycle performs a read, modifies the
data in the arithmetic-logic unit, and writes the data back to the same address. In the MC88010, this
cycle is indivisible in that the address strobe is asserted throughout the entire cycle. The test and set
(TAS) instruction uses this cycle to provide meaningful communication between processors in a
multipte processor environment. This instruction is the only instruction that uses the read-modify-
write cycle and since the test and set instruction only operates on bytes, all read-modify-write
cycles are byte operations. A read-modify-write flowchart is given in Figure 4-3 and a timing
diagram is given in Figure 4-10.

Wait cycles will be inserted between S4 and S5 on the read portion of the bus cycle and between
S16 and S17 on the write portion of the cycle if DTACK, BERR, or VPA is not asserted for the re-
qQuired setup time prior to the falling edge of S4 and S16 respectively.

4.2.1.4 CPU Space Cycle

Ouring a CPU space cycle, the MCB8010 reads a peripheral device vector nimoer or indicates a
breakpoint instruction. If the cycle is to read a vector number it is referred to as an interrupt
acknowledge cycle. A CPU space cycle is indicated when the function codes are all high. The ad-
dress bus then defines what type of CPU space cycie is being executed. The MCB8010 defines two
types of CPU space cycles, the interrupt acknowledge cycle, and the breakpoint cycle.

The interrupt acknowiedge cycle on an M68000 Family compatibie processor is defined as a CPU
space cycle with the most significant address lines high; on the MC88010 this rmeans that A4-A23
will be high. The level of the interrupt being acknowledged is encoded on address lines A1-A3. An
interrupt acknowiedge cycle is terminated in the same manner as a normal read cycle. The pro-
cessor expects a peripherai device to respond 1o an interrupt acknowledge zycle with a vector
number that will be used to transfer controf to an interrupt handler routine. See 5.3.2 Interrupts for
further discussion of the interrupt acknowiedge cycle.

SO S S2 53 S4 S5 S6 S7 S8 SIS10S11S512513S14515516517518S13

cLKk
N <
s T S
65 o 53 \ 'a \ S
" Y
OTACK AN / .
08015 —-o(P { —
./ ~—
rcorcz X X
L[; indivisible Cycle >{

Figure 4-10. Read-Modify-Write Cycie Timing Diagram

4-11

PROCESSOR

Grant Bus Arbitration

REQUESTING DEVICE

Request the Bus

1) Assert Bus Geant (BG)

11 Assert Bus Asquest (BRI

Ak dedge Bus M g

Termingts Arbitration

1} Negate BG (and Want for BGACK 1o
be Negateqd)

1) Extemnat Arbitration Oeterrmines Next
Bus Master

2) Next Bus Master Waits for Current
Cycle to Compiete

3) Next Bus Master Asserts Bus Grant
Acknowiedge (BGACK) to Bacome
New Master

4} Bus Master Negates BR

Re-Artitrats or Resurns

Opersts ss Bus Master

1) Perform Data Transfers (Read and
Whnite Cycles) According to the Same
Ruies the Processor Uses

3

Reiesse Bus Mastership

1) Negate BGACK

Figure 4-11. Bus Arbitration Cycie Flowchart

4-12

The breakpoint read cycle is executed by the MC88010 in response to a breakpoint illegal instruc-
tion. A breakpoint cycle on the MCB88010 is defined as a CPU space cycle with all of the address
lines low. The processor does not accept or send any data during this cycle. The breakpoint cycle
may be terminated by DTACK, BERR, or VPA. See 5.3.5 lllegal and Unimpiemented Instructions

for further discussion of breakpoints.

In order to maintain compatitility with future processor members of the M68000 Family, system
designers should fully decode the CPU space. In particular, the most significant address lines
{A4-A19 for the MCB8008 and A4-A23 for the MCBE8000 or MCG8010) should ~e used to distinguish
between an interrupt acknowiedge cycle and a breakpoint cycle. All encodings of bits A16-A19 are
reserved by Motorola for future extensions of the CPU space functions.

4.2.2 Bus Arbitration
Bus arbitration is a techmque used by master-type devices to request, be granted, and acknowledge
bus mastership. In its simplest form, it consists of the foilowing:

1. asserting a bus mastership request,

2. receiving a grant that the bus is available at the end of the current cycie, and

3. acknowiedging that mastership has been assumed.
Figure 4-11 is a flowchart showing the detail involved in a request from a single device. Figure 4-12
is a timing diagram for the same operation. This technique ailows processing of bus requests during
data transfer cycles.

The timing diagram shows that the bus request is negated at the time that an acknowiedge is
asserted. This type of operation would be true for a system consisting of the processor and one
device capable of bus mastership. In systems having a number of devices capable of bus master-
ship, the bus request line from each device is wire ORed to the processor. In this system, it is easy
to see that there could be more than one bus request being made. The timing ciagram shows that
the bus grant signal is negated a few clock cycies after the transition of the acknowledge (BGACK)
signat.

cJUUvvUUUUvUvvvUUUUUU U UUUUL
a1.423 DL > — X P e A
ST\~ [\ —_/\
BsesT N M\ —__/ __/——"_/ \

R/W) S—) N oy
otack __/ \n__/ N/ _/ N/
00-D01% N\ L\ IV aannan N o\) s
Feo-Fez X — »—C__ X . X

8R \ / S
3GACK __'___/ N\

Processor——tt——0MA Dievice——-mpt————— Processor o= ONA Cevce ———
Figure 4-12. Bus Arbitration Cycle Timing Diagram

413

However, if bus requests are still pending, the processor will assert another bus grant within a few
clock cycles after it was negated. This additional assertion of bus grant allows external arbitration
circuitry to select the next bus master before the current bus master has completed its re-
quirements. The following paragraphs provide additional information about the three steps in the
arbitration process.

4.2.2.1 REQUESTING THE BUS. External devices capable of becoming bus masters request the
bus by asserting the bus request (BR) signal. This is a wire-ORed signal (although it need not be
constructed from open-collector devices) that indicates to the processor that some external device
requires control of the external bus. The processor is effectively at a lower bus priority level than the
external device and will relinguish the bus after it has completed the last bus cycle it has started.

When no acknowledge is received before the bus request signal goes inactive, the processor wiil
continue processing when it detects that the bus request is inactive. This allows ordinary process-
ing to continue if the arbitration circuitry responded to noise inadvertently.

4.2.2.2 RECEIVING THE BUS GRANT. The processor asserts bus grant (BG) as soon as possible.
Normalily this is immediately after internal synchronization. The oniy exception to this occurs when
the processor has made an internal decision to execute the next bus cycte but has not progressed
far enough into the cycle to have asserted the address strobe {AS) signal. In this case, bus grant will
be delayed until AS is asserted to indicate to external devices that a bus cycle is being executed.

The bus grant signal may be routed through a daisy-chaineg network or through a specific priority-
encoded netwark. The processor is not affected by the external method of arbitration as iong as the
protocol is obeyed.

.

4.2.2.3 ACKNOWLEDGEMENT OF MASTERSHIP. Upon receiving a bus grant, the requesting
device waits until address strobe, data transfer acknowledge, and bus grant acknowtedge are
negated before issuing its own BGACK. The negation of the AS indicates that the previous master
has completed its cycle; the negation of BGACK indicates that the previous master has released the
bus. (While address strobe is asserted, no device is allowed to “‘break into’’ a cycle.) The negation
of DTACK indicates the previous slave has terminated its connection to the previous master. Note
that in some applications data transfer acknowiedge might not enter into this function. General pur-
pose devices would then be connected such that they were only dependent on address strobe.
When bus grant acknowledge s issued, the device is a bus master until it negates bus grant
acknowledge. Bus grant acknowledge should not De negated untii after the bus cycle(s) is (are)
completed, Bus mastership is terminated at the negation of bus grant acknowledge.

The bus request from the granted device should be negated after bus grant acknowledge is
asserted. if a bus request is still pending, another bus grant will be asserted within a few clocks of
the negation of the bus grant. Refer to 4.2.3 Bus Arbitration Control. Note that the processor does
not perform any external bus cycles before it re-asserts bus grant.

4.2.3 Bus Arbitration Controi

The bus arbitration control unit in the MCB8010 is implemented with a finite state machine. A state
diagram of this machine i1s shown in Figure 4-13. All asynchronous signals to the MCB8010 are syn-
chronized before they are used internally. This synchronization is accomplished in a maximum of

4-14

R = 8us Request Internai

A= Bus Grant Acknowledge internal

G = Bus Grant

T = Thres-State Control to Bus Control Logic?
X = Don’'t Care i

NQTES: i
1. State mactune wiil not change if bus is in SO or S1. Refer tc 4.2.3 Bus Arbitration Control.

2. The address bus wiil be placed in the high-impecance state if T is asserted and AS s negated.

Figure 4-13. MC88010 Bus Arbitration Unit State Diagram

one cycle of the system clock, assuming that the asynchronous input setup time (#47) has been met
(see Figure 4-14). The input signal is sampled on the failing edge of the clock and is valid internally
after the next rising edge.

As shown in Figure 4-13, input signals iabeled R and A are internally synchronized on the bus re-
quest and bus grant acknowledge pins respectively. The bus grant output is labeied G and the inter-
nal three-state control signai T. If T is true, the address, data, and control buses are placed in a
high-impedance state when AS is negated. All signals are shown in positive logic (active high)
regardless of their true active voltage level.

State changes (valid outputs) occur on the next rising edge after the internal signal is valid.

Intemat Signat Vaiid

External Signal Sampied —————

v

CLK

3R (Externan ——'\

—~—

3R (Intemail -

Figure 4-14. Timing Refationship of External Asynchronous inputs to internai Signals

4-15

A timing diagram of the bus arbitration sequence during a processor bus cycle is shown in Figure
4-15. The bus arbitration sequence while the bus is inactive (i.e., executing internal operations such
as a muitiply instruction) is shown in Figure 4-16.

If a bus request is made ata time when the MPU has already begun a bus cycle bu&ik_s has not been
asserted (bus state SO), BG will not be asserted on the next rising edge. Instead, BG will be delayed
until the second rising edge following its internai assertion. This sequence is shown in Figure 4-17.

4.2.4 Bus Error and Halt Operation

In a bus architecture that requires a handshake from an external device, the possibility exists that
the handshake might not occur. Since different systems will require a different maximum response
time, a bus error.input is provided. External circuitry must be used to determine the duration be-
tween address strobe and data transfer acknowledge before issuing a bus error signal. When a bus
error or/and halt signal is received, the processor will initiate a bus error exception sequence or try
to re-run the bus cycle.

in addition to a bus timeout indicator, the bus error input is used to indicate a page fault in a virtual
memory system. When an external memory management unit detects an invalid access, a bus error
is signaled to suspend execution of the current instruction.

8us Released from Three State and

Processor Starts Next Bus Cycle
BGACK Negated intemal
\J

BGACK Sampied
3GACK Nagateo_L

Bus Three Stated
BC Asserted
BR Vahd Internal —m——y

==

BR Asserted

CLK
SC 52 S4 S6 SO S2 Sa S6 SO
), r
8G \ /
8GACK ___.—f
at-az3 ——{ > < —C

R/W \
OTACK \ / : ___./—_—
20-018 . /—_ﬁ__/ ,-——-—M—-—-—
s P-ocessor t an Alternate Bus Master > am Processor

Figure 4-15. Bus Arbitration Timing Diagram — Processor Active

4-16

8G Asserted and Bus Three Stated Bus Released from Three State and
B8R Valid Internal Processor Starts Next Bus Cycle .

BR Sampled

8R Asserted ‘ STATR Negated S
CLK ‘ l __J L_-l L—J LJ }
S0 S2 34

o s2 4 s6

&R [—

5T N/
3GATK \ /

. —
co-Fc2 X - <
R/W -~ e

STACK
n__/ L W
X0 e -

e ProCesSOf =t~ GU$ INaClive ——Prba——— L|lernate BuS MASIer —mmrm—————tegf— PrOCESSO =

Figure 4-16. Bus Arbitration Timing Diagram — Bus Inactive

Three
%’Am;m‘d‘—’———j Bus Releasad from Three State and
Processor Starts Next Bus Cycie

3R vaua Internal__ SGACK Negated Internal
3GACK Sampled

P reres] | R
Asserted ACK Negated.
HAE A

CLK 2

SO S2 S4 Sé S0 S2 S4 S8 S0

o\ '

:Id A /
STATR ~N___
Al o < —

s/ N/ - A

ms_/ 0 - S R
m_ S - - # e
o

reorca Y D

RIW / \
5Tack __/ ___/ | W
—_—
20-015 — {
A 2rocessor It Ajternats Bus Mastef —————eJptegpmmer=m P (OCESSO! mmmeemee o

Figure 4-17. Bus Arbitration Timing Diagram — Special Case

4.2.4.1 BUS ERROR OPERATION. When the bus error signal is used to terminate a bus cycis, the
MCB8010 will enter exception processing immediately following the bus cycle. The bus error signal
is recognized in either of the following cases:
" 1. DTACK and HALT are negated and BERR is asserted.
2. HALT and BERR are negated and DTACK is asserted. BERR is then asserted within one clock
cycle. :

When the bus error condition is recognized, the current bus cycle will be terminated in S9 for 3 read
cycle, a write cycle, or the read portion of a read-modify-wnte cycle and in S21 of the write portion
of a read-modify-write cycle. As long as BERR remains asserted, the data and address buses will be
in the high-impedance state. Figures 4-18 and 4-19 show the timing diagrams for both types of bus

error signais.

S0 S2 S4 w w w w S8 S8

a1 __)~

|

BT\ / M \
TEE —\ / e \

R/W ;:r | S—
BTACK N N
D0-018 = > !R(-

Feo-Fe2 X N—

HALT N

| initiats Bus

Iniuate
’—-——.h-——nm Response Faulum—*—— Bus Error Detection S Error Stacking
Figure 4-18. Bus Error Timing Diagram

SO $2 S4 S8
CLK

aaz DC > c—
B i —~
N

wss T \ /
AW
BTACK \ /
oot —————(- ——
Feo-FC2 X X
5 _/
HALT

Bus Erroi‘*‘_____ Intiate Bus __.{
I ‘ Read Cycle ! I Datacton Error Stacking

Figure 4-19. Delayed Bus Error Timing Diagram

4-18

After the aborted bus cycle is terminated and BERR is negated, the MCB8010 enters exception pro-
cessing for the bus error exception. During the exception processing sequencs, the following infor-
mation is placed on the supervisor stack:

1. Status register

2. Program counter (two words, may be up to five words past the instruction being executed)

3. Frame format and vector offset

4. Internal register information, 22 words
Note that the first four words of information are identical to the information stacked by any other
© exception such as an interrupt or TRAP instruction. The additional information is used by the
MCB8010 to continue the execution of the suspended instruction when it is reloaded by an RTE in-
struction. See 5.3.9 Bus Error for further details.

After the MCB8010 has placed the above information on the stack, the bus errcr exception vector is
read from vector table entry number two {offset $08) and placed in the program counter. The pro-
cessor then resumes instruction execution.

NOTE
If a read-modify-write instruction is terminated with a bus error and later continued with
an RTE instruction, the processor will re-run the entire cycle whether the tus arror occur-
red on the read or the write portion of the cycle.

4.2.4.2 RE-RUN OPERATION. When, during a bus cycle, the processor receives a bus error signal
and the hait pin is being driven by an external device, the processor enters the re-run sequencs. A
delayed re-run signal may be used similarly to the delayed bus error signal described above. Figures
4-20 and 4-21 are uming diagrams for both methods of re-running the bus c¢ycle.

A1 a3 }(> — }—C

S i, S
mmTT N/ ./
R/W
YRR N/
SO G £

Feo-Fc2 _X X D, G
AER —L___/ﬁ—m Clock Panod —
WaLT - v
- Reaa o Hait ol Ag- Aun——n{

Figure 4-20. Re-Run Bus Cycle Timing Diagram

4-19

g
Y

el @ D&)
_3ERR N/
RALT L /

i(—— Read :%‘ Hait :{: R&Run——’l

Figure 4-21. Delayed Re-Run Bus Cycle Timing Diagram

The processor terminates the bus cycle, then puts the address and data lines in the high-impedence
state. The processor remains ‘‘haited”’, and will not run another bus cycie until the hait signai is
removed by external logic. Then the processor will re-run the previous cycle using the same func-
tion codes, the same data (for a write operation), and the same address. The bus error signal should
be removed at least one clock cycle before the halt signal is removed.

NOTE

The processor will not re-run a read-modify-write cycle. This restriction is made to
guarantee that the entire cycle runs correctly and that the write operation of a test-and-
set operation is performed without ever releasing AS. if BERR and HALT are asserted
during a read-modify-write bus cycle, a bus error operation resuits.

4.2.4.3 HALT OPERATION. The hait input signai to the MCE8010 performs a halt/run/single-step
function in a similar fashion to the M6800 halt function. The halt and run modes are somewhat seif
explanatory in that when the halt signal is constantty active the processor ""haits” (does nothing)
and when the halt signal is constantly inactive the processor “'runs’’ (does somethingl.

This single-step mode is derived from correctly timed transitions on the halt signal input. It forces
the processor to execute a single bus cycle by entering the run mode untii the processor starts a bus
cycle then changing to the hait mode. Thus, the single-step mode allows the user to proceed
through (and therefore debug) processor operations one bus cycle at a time.

Figure 4-22 detaiis the timing required for correct single-step operations. Some care must be exer-
cised to avoid harmful interactions between the bus error signal and the halt pin when using the
single-cycle mode as a debugging tool. This is also true of interactions between the hait and reset
lines since these can reset the machine.

4-20

S0 S2 S4 $6 S0 S2 54 S6 So

XS N s Y e s e s Y Y U 5 o O
arazz__ Dy : — D
S N /S
N\ / N~
DTACK ——______/ N/
S " C
Fco-Fe2 _ X A X
AALT \ /

il sle il
F———-—aeac gl Hait T Reaq \ani

Figure 4-22. Hait Processor Timing Diagram

When the processor completes a bus cycle after recognizing that the halt signal is active, most
three-state signals are put in the high-impedence state, these include:

1. address lines, and

2. data lines.
This is required for correct performance of the re-run bus cycle operation

While the processor is honoring the halt request, bus arbitration performs as usual. That s, haiting
has no effect on bus arbitration. It 1s the bus arbitration function that removes the control signals
from the bus.

The halt function and the hardware trace capability allow the hardware debugger to trace single bus
cyctes or single instructions at a time. These processor capabilities, along with a software debugg-
ing package, give total debugging flexibility.

4.2.4.4 DOUBLE BUS FAULTS. When a bus error exception occurs, the processor wiil attempt to
stack several words containing information about the state of the machine. If a bus error exception
occurs during the stacking operation, there have been two bus errors in a row. This is commonly
referred to as a double bus fault. When a double bus fauit occurs, the processor wiil halt and drive
the HALT line low. Once a bus error exception has occurred, any bus error exception occurring
before the execution of the next instruction constitutes a double bus fault.

Note that a bus cycle which 1s re-run does not constitute a bus error exception and does not con-
tnbute to a double bus fault. Note aiso that this means that as long as the external hardware re-
quests it, the processcor will continue to re-run the same bus cycle.

The bus error pin aiso has an effect on processor operation after the processor recaives an external
reset input. The processor reads the vector tabie after a reset to determine the address to start pro-
gram execution. if a bus error occurs while reading the vector tabie (or at any time pbefore the first
instructon is executed), the orocessor reacts as if @ double bus ‘auit has occurred and it haits. Only
an external reset will start a haited processor

4-21

4.2.5 Reset Operation

The reset signal is a bidirectional signal that allows either the processor or an external device to reset
the system. Figure 4-23 is a timing diagram for the reset operation. Both the hait and reset lines
must be asserted to ensure total reset of the processor in all cases.

Plus 5 VOItS = == we —

Yece —/ ’

j# 1= > 100 Milliseconds —]
AESET 1

FALT | f

:) 3} t < 4 Clocks et 12

Bus Creies XOOOOOOOOCOONK- D GID GED GID G
4

NOTES: 2 3 2 8

1) Intemai start-up bme 4) PC High read in here Bus Siate Unknownzw
2} SSP thgh read in here 51 PC Low read in here Al Control Signats inactive
€]
3} SSP Low read in here 61 First instruction fetched here. Dats Bus.in Aasa Mode:) (

Figure 4-23. Reset Operation Timing Diagram

When the reset and halit lines are driven by an external device, it is recognized as an entire system
reset, including the processor. The processor responds by reading the reset vector table entry (vec-
tor number zero, address $000000) and loads it into the supervisor stack pointer (SSP). Vector table
entry number one at address $000004 is read next and loaded into the program counter. The pro-
cessor initializes the status register 10 an interrupt level of seven and the vector base register to
$00000000. No other registers are affected by the reset sequence.

When a reset instruction is executed, the processor drives the reset pin for 124 clock periods. n this
case, the processor is trying to reset the rest of the system. Therefore, there is no effect on the in-
ternat state of the processor. All of the processor's internal registers and the status register are unaf-
fected by the execution of a reset instruction. All external devices connected to the reset line should
be reset at the completion of the reset instruction.

Asserting the RESET and HALT lines for ten clock cycles will cause a processor reset, except when
VCC s initiaily applied to the processor. In this case, an external reset must be applied for at least
100 milliseconds.

4.3 THE RELATIONSHIP OF OTACK, BERR, AND HALT

In order to properly controi termination of a bus cycle for a re-run or a bus error condition, DTACK,
BERR, and HALT shouid be asserted and negated on the rising edge of the MCE8010 clock. This
will assure that when two signals are asserted simuitaneously, the required setup time (#47) for both
of them will be met during the same bus state. This, or some equivalent precaution, should be
designed externai to the MCE8010.

42

The preferred bus cycle terminations may be summarized as follows (case numbers refer to Table
4-4):

Normal Termination: DTACK is asserted, BERR and HALT remain negated (case 1.

Halt Termination: HALT is asserted at same time, or before DTACK and BERR remains
negated {case 2).

Bus Error Termination: BERR is asserted in lieu of, at the same time, or before DTACK (case 3)
or after DTACK (case 4) and HALT remains negated; BERR is negated
at the same time or after DTACK.

Re-Run Termination: HALT and BERR are asserted in lieu of, at the same time, or before
OTACK (case 5) or after DTACK {case 6); BERR is negated at the same
time or after OTACK, HALT must be held at least one cycle after BERR.

Tabie 4-4. DTACK, BERR, and HALT Assertion Resuilts

Assertad on Rising

Case | Controi | _Edge of Sute
No. Signal N N+2 Result
OTACK A g Normai cycle terminate ang conlinue.
1

JERR NA NA
HAL NA X
OTACK A S Normai cycle terminate and hait. Continue when HALT removed.
2 SERR NA NA
HALCT | A/S S

OTATR X X Terminate and take bus arror trag.
3 BERR A S
HAL NA NA
OTATK A X Terrmnate and take bus error trap
4 JERR NA Iy
AT NA NA
OTACTK X X Terminate and re-run when HALT removed.
5 SEFR A S
HALT A/S S
OTATX A X Terminate and re-run when HALT removed.
8 SJEAR | Na A
RATT l NA A

LEGEND:
N — the number of the cLrrent even bus state (e.g., S4, S8, atc)
A — signal s asserted in this bus state
NA — signai is not asserted n (s state
X — don't care
S ~ signat was asserted in previous state and remamns asserted 'n this state

Table 4-4 details the resulting bus cycle termination under various combinatior:s of control signai se-
quences. The negation of these same control signais under several conditions s shown in Tabie 4-5
{OTACK is assumed to be negated normally in ail cases; for best resuits, both DTACK and BERR
shouid be negated when address strobe is negated).

EXAMPLE A:

A system uses a watch-dog timer to terminate accesses 10 unpopuiated address space. The
timer asserts SERR after ime out (case 3).

4-23

EXAMPLE B:
A system uses error detection on RAM contents. Designer may:

a) Delay DTACK until data verified, and return BERR and HALT simultaneously to re-run
error cycle (case 5), or if valid, return DTACK (case 1).

b} Delay OTACK until data verified, and return BERR at same time as DTACK if data in error
(case 3).

¢} Return DTACK prior to data verification, as described in the next section. !f data is in-
valid, BERR is asserted on next clock cycle (case 4).

d) Return DTACK prior to data verification, if data is invalid assert BERR and HALT on next
clock cycle (case 6). The memory controller may then correct the RAM prior to or during
the re-run.

Table 4-5. BERR and HALT Negation Resuits
Conditions of Negated on Rising
Termination in Conwrol Edge of State
Table 4-4 Signat N N+2 Results — Next Cycie
BERR ° or ° Takes bus error trap.
RusiErroc FALT o or o
— BERR) or ° llegal sequence; usuaily
HRALT ® traps to vector number Q.
BEFR ° Re-runs the bus cycle.
Re-run FATT ° .
8ERR ° May lengthen next cycie.
Normal AATY ° or .

® = Signai 13 negated in this bus state.
4.4 ASYNCHRONOUS VERSUS SYNCHRONOQUS OPERATION

4.4.1 Asynchronous Operation

To achieve clock frequency independence at 3 system level, the MCB8010 can be used in an asyn-
chronous manner. This entails using only the bus handshake lines (AS, UDS, [D3, DTACK, BERR,
HALT and VPA) to control the data transfer. Using this method, AS signals the start of a bus cycle
and the data strobes are used as a condition for valid data on a write cycle. The slave device
{memory or peripherall then responds by placing the requested data on the data bus for a read cycle
or latching data on a write cycie and asserting the data transfer acknowiedge signal (DTACK) to ter-
minate the bus cycle. If no slave responds or the access is invalid, external control logic asserts the
BERR, or BERR and HALT, signal to abort or rerun the bus cycle.

The DTACK signal is allowed to be asserted before the data from a siave device is valid on a read
cycle. The length of time that DTACK may precede data is given as parameter #31 and it must be
met in any asynchronous system to insure that valid data is latched into the processor. Notice that
there is no maximum time specified from the assertion of AS to the assertion of DTACK. This is
because the MPU will insert wait cycles of one clock period each until DTACK is recognized.

The BERR signat is allowed to be asserted after the DTACK signal is asserted. BERR must be
asserted within the ume given as parameter £48 after DTACK is asserted in any asynchronous
system to insure proper operation. If this maximum deiay ume is violated, the processor may exhibit
erratic behavior.

4-24

4.4.2 Synchronous Operation

To allow for those systems which use the system clock as a signal to generate DTACK and other
asynchronous inputs, the asynchronous input setup time is given as parameter #47. If this setup is
met on an input, such as DTACK, the processor is guaranteed to recognize that signal on the next
falling edge of the system clock. However, the converse is not true—if the input signal does not
meet the setup time it is not guaranteed not to be recognized. In addition, if DTACK is recognized
on a falling edge, valid data will be latched into the processor (on a read cycle: on the next falling
edge provided that the data meets the setup time given as parameter #27. Given this, parameter #31
may be ignored. Note that if DTACK is asserted, with the required setup time, before the falling
edge of S4, no wait states will be incurred and the bus cycle will run at its maximum speed of four

clock periods.

In order to assure proper operation in a synchronous system when BERR is asserted after DTACK,
BERR must meet the setup time parameter #27A prior to the falling edge of the clock one clock
cycie after DTACK was recognized. This setup time is critical to proper operation, and the MC88010
may exhibit erratic behavior if it is violated.

NOTE

Ouring an active bus cycte, VPA and BERR are sampled on every falling edge of the clock
starting with SO. DTACK is sampled on every falling edge of the clock starting with S4
and data is latched on the falling edge of S6 during a read. The bus cycle will then be ter-
minated in S7 except when BERR is asserted in the absence of DTACK, in which case it
will terminate one clock cycle later in S9.

SECTION 5
PROCESSING STATES

This section describes the actions of the MC68010 which are outside the normal processing
associated with the execution of instructions. The functions of the bits in the supervisor portion of
the status register are covered: the supervisor/user bit, the trace enable bit, and the processor inter-
rupt priority mask. Finally, the sequence of memory references and actions taken by the processor
on exception conditions are detailed.

The MCB8010 is always in one of three processing states: normal, exception, or haited. The normal
processing state is that associated with instruction execution; the memory references are to fetch
instructions and operands, and to store results. Two special cases of the normal state are the stop-
ped state, which the processor enters when a STOP instruction is executed, and the loop mode,
which the processor may enter when a DBcc instruction is executed. In the stopped state, no fur-
ther memory references are made and in the ioop mode only operand references are made.

The exception processing state is associated with interrupts, trap instructions, tracing and other ex-
ceptional conditions. The exception may be internaily generated by an instruction or by an unusuali
condition ansing during the execution of an instruction. Extemnaily, exception processing can be
forced by an interrupt, by a bus error, or by a reset. Exception processing is designed to provide an
efficient context switch so that the processor may handle unusual conditions.

The haited processing state is an indication of catastrophic hardware failure. For example, if during
the exception processing of a bus error another bus error occurs, the processor assumes that the
system is unusable and haits. Oniy an external reset can restart a halted processor. Note that a pro-
cessor in the stopped state is not in the haited state, nor vice versa.

5.1 PRIVILEGE STATES

The processor operates in one of two states of privilege: the "'supervisor'’ state or the '‘user’” state.
The privilege state determines which operations are legal, are used to choose between the super-
visor stack pointer and the user stack pointer in instruction references, and may by used by an ex-
ternal memory management device to control and transiate accesses.

The privilege state is a mechanism for providing security in a computer system. Programs should
access only their own code and data areas, and ought to be restricted from accessing information
which they do not need and must not modify.

The privilege mechanism provides security by allowing most programs to execute in user state. In
this state, the accesses are controlled, and the effects on other parts of the system are limited. The
operating system executes in the supervisor state, has access to ail resources, and performs the

overnead tasks for the user programs.

5-1

5.1.1 Supervisor State

The supervisor state is the higher state of privilege. For instruction execution, the supervisor state is
determined by the S bit of the status register; if the S bit is asserted (high), the processor is in the
supervisor state. All instructions can be executed in the supervisor state. The bus cycles generated
by instructions executed in the supervisor state are classified as supervisor references. While the
processor is in the supervisor privilege state, those instructions which use either the system stack
pointer implicitly or address register seven explicitly access the supervisor stack painter.

All exception processing is done in the supervisar state, regardless of the previous setting of the S
bit. The bus cycles generated during exception processing are classified as supervisor references.
All stacking operations during exception processing use the supervisor stack pointer.

5.1.2 User State

The user state is- the lower state of privilege. For instruction execution, the user state is determined
by the S bit of the status register; if the S bit 1s negated (low), the processor is executing instruc-
tions in the user state.

Most instructions execute the same in user state as in the supervisor state. However, some instruc-
tions which have important system effects are made privileged. User programs are not permitted to
execute the STOP instruction, or the RESET instruction. To ensure that a user program cannot
enter the supervisar state except in a controlled manner, the instructions which modify the whole
status register are privileged. To aid in debugging programs which are to be used as operating
systems, the move from status register (MOVE from SR), move to/from user stack pointer (MOVE
USP), move to/from control register IMOVEC), and move aiternate address space (MOVES) in-

structions are also privileged.

The bus cycles generated by an instruction executed in the user state are classified as user state
references. This allows an externai memory management device to translate the address and to
control access 0 protected portions of the address space. While the processor is in the user
privilege state, those instructions which use either the system stack pointer implicitly or address
register seven exphcitly, access the user stack pointer.

5.1.3 Privilege State Changes

Once the processor is in the user state and executing nstructions, only exception processing can
change the privilege state. Durning exception processing, the previous setting of the S bit of the
status register is saved and the S bit is asserted, putting the processor in the supervisor state.
Therefore, when instruction execution resumes at the address specified to process the exception,
the processor i1s in the supervisor privilege state.

5.1.4 Reference Classification

When the processor makes a reference, 1t classifies the king of reference being made, using the en-
coding on the three funcuon code output lines. This ailows external transiation of addresses, con-
trol of access, and aifferentiation of special processor state, such as interrupt acknowledge. Table
5-1 lists the ctassification of references

Table 5-1. Bus Cycle Classification

Function Code Output R .
FC2 FC1 FCO

(Unassignad)
User Data
User Program
{Unassigned)
{Unassigned)
Supervisor Data
Supervisor Program
CPU Space

—{=]=]-jolclo]le
—|=lolol-l-]o]o
~leol=jol~]o]l-]lo

5.2 EXCEPTION PROCESSING

Before discussing the details of interrupts, traps, and tracing, a general description of exception
processing is in order. The processing of an exception occurs in four steps, with variations for dif-
ferent exception causes. During the first step, a temporary copy of the status register is made and
the status register is set for exception processing. In the second step the exception vector is deter-
mined and the third step is the saving of the current processor context. In the fourth step a new
context is obtained and the processor resumes instruction processing.

5.2.1 Exception Vectors

Exception vectors are memory locations from which the processor fetches the address of a routine
which will handle that exception. All exception vectors are two words in length (Figure 5-1), except
for the reset vector, which is four words. All exception vectors lie in the supervisor data space, ex-
cept for the reset vector which is in the supervisor program space. A vector number is an 8-bit
number which, when muitiplied by four, gives the offsat of an exception vector. Vector numbers
are generated internally or externally, depending on the cause of the exception. In the case of inter-
rupts, during the interrupt acknowledge bus cycle, a peripheral provides an 8-bit vector number
(Figure 5-2) to the processor on data bus lines DO through D7. The processor transiates the vector
number into a full 32-bit offset which is added to the contents of the vector base register to generate
the address used to fetch the vector, as shown in Figure 5-3. The memory layout for exception vec-
tors is given in Table 5-2.

As shown in Table 5-2, the memory layout is 512 words long (1024 bytes). It starts at offset O and
proceeds through offset 1023. This provides 255 unique vectors; some of these are reserved for
TRAPS and other system functions. Of the 255, there are 192 reserved for user interrupt vectors.
However, there is no protection on the first 63 entries, so externally generated interrupt vector
numbers may reference any of the exception vectors at the discretion of the system designer.

Word 0‘ New Program Counter (High) AQ=0, A1=Q

Word 1 New Program Counter (Low!) AQ=Q, Al=1

Figure 5-1. Format of Vector Table Entries

018 08 07 00
ignored Vi | VB {vE | vd [v3|v2|vi]| VO
Whaere:
v7 is the MSB of the Vector Number
v0 18 the LSB of the Vector Numoer
Figure 5-2. Vector Number Format
k}| 0
Contents of Vactor Base Register e
31 10 o}
Ali Zaroes vZIive | VB ivwd|v3|v2ivi|v| 0 (= *
Excepuon Vector
y 5 Address
Figure 5-3. Exception Vector Address Caiculation
Table 5-2. Vector Table
Vector Offaet , Vector Oftset)
Numberts) | Dec | Hex | Space v Number(si | Dec | Hex | Spaca jasignment

0 0 |ooof sP Reset: Ininal SSP 16-23° 84 | 04C| SO (Unassigned, reservea)

- 4 Q04 | SP Reset: imual PC 9% | O5F -

2 8 008 | SO 8us Error 24 %% | 060 | SD Spunous Interrupt

3 12 1 00C| SO Address Error pis] 100 | 064 | SD | Level ! intarrupt Autovector
4 16 | 010} SO illegal instruction 26 104 | 0688 | SO | Level 2 Interruct Autovector
5 20 | 014} SO Zero Divice 27 108 | 06C | SD | Levei 3 Interrupt Autovector
6 24 | 018| SO CHK Instruction 28 112 | 070 | SO | Levet 4 Interrupt Autovector
7 28 | 01C} SD TRAPV Instruction 29 116 | 074 | SD | Level 5 Interrupt Autovector
8 R [00| SO Prviiege Violation 0 120 | 078 | SD | Levet § interrupt Autovector
9 ¥ | 4| SO Trace N 124 | Q7C | SD | Levei 7 interrupt Autovector
10 4 | 08| SD Line 1010 Emuiator 47 128 | 38 | SO TRAP instruction Vectors
" 44 | 02C| SO Line 1111 Emuiator 191 | 08F -

12* 48 | B0 | SO {Unassigned. reserveq! 48-63°* ! 0C0| SO {Unassigned. resarved)
13° 52 | @4 | SO Unassigned. reserved) 2585 | OFF -

14 % | a3y SO “ormat Error 64-255 | 256 | 100 | SO User intermiot Vectors

15 60 | @WC| SO | Uninimaiized Interruot Vector

®Vector numbers 12, 13, 18 through 23, and 48 through 63 are reserved for future enhancements by Motorola. NG user penpherst
devices shouid be assigned these numbers.

5.2.2 Exception Stack Frame

Exception processing saves the most volatile portion of the current processor context on the top of
the supervisor stack. This context is organized in a format cailed the exception stack frame. This in-
formation always includes the status register and program counter of the processor when the ex-
ception occurred. In order to support generic handlers, the processor aiso places the vector offsat in
the exception stack frame. The format code field allows the RTE (return from exception} instruction
to identify what information is on the stack so that it may be properly restored. The general form of
the exception stack frame is illustrated in Figure 5-4; Table 5-3 lists the MC88010 stack frame codes.
Although some formats are peculiar to a particular M680OO Family processor, the format 0000 is
always legal, and indicates that just the first four words of the frame are present.

15 0 Higher Addresses
SP il Status Register
Program Counter High
” Program Counter Low
Format l Vector Otfset

Other information
e D€PENGING 0N Excoption

Figure 5-4. MC88010 Stack Format

Table 5-3. MC68010 Format Codes

Format Code Stacked information
0000 MCBB010 Short Format (4 Words)
1000 MCBB8010 Long Format (29 Woras!
Alf Others Unassigned. Reserved

5.2.3 Kinds of Exceptions

Exceptions can be generated by either internal or external causes. The externally generated excep-
tions are the interrupts, bus error, and reset requests. The interrupts are requests from peripheral
devices for processor action while the bus error and reset inputs are used for access control and
processor restart. The internally generated exceptions come from instructions, or from address er-
rors or tracing. The trap (TRAP), trap on overflow (TRAPV), check data register against upper
bounds (CHK), and divide (DIV) instructions ail can generate exceptions as part of their instruction
execution. In addition, illegal instructions, word or long word fetches from odd addresses, and
privilege violations cause exceptions. Tracing behaves like a very high-priority internally-generated
interrupt after each instruction execution.

5.2.4 Exception Processing Sequence

Exception processing occurs in four identifiable steps. In the first step, an internal copy is made of
the status register. After the copy is made, the S bit is asserted, putting the processor into the

55

supervisor privilege state. Also, the T bitis negéted which will aliow the exception handler to ex-
ecute unhindered by tracing. For the reset and interrupt exceptions, the interrupt priority mask is

also updated.

in the second step, the vector number of the exception is determined. For interrupts, the vector
number is obtained by a processor fetch classified as an interrupt acknowliedge. For all other excep-
tions, internal logic provides the vector number. This vector number is then used to generate the
offset of the exception vector and is added to the vector base register.

The third step is to save the current processor status, except for the reset exceptior. The exception
stack frame is created at the top of the supervisor stack. The current program counter value, the
saved copy of the status register, and the format/offset word are written into the stack frame. The
program counter vaiue stacked usuaily points to the next unexecuted instruction; however, for bus
error and address error, the value stacked for the program counter is unpredictable, and may be in-
cremented by up to five words from the address of the instruction which caused the error. Group 1
and 2 exceptions {see 5.2.5 Multiple Exceptions) use a short format exception stack frame (for-
mat=000C). Additional information defining the current context is stacked for the bus error and ad-
dress error exceptions.

The last step is the same for all exceptions. The new program counter value is fetched from the ex-
ception vector table. The processor then resumes instruction execution. The instruction at the ad-
dress given in the exception vector is fetched, and normal instruction decoding and execution is
started. -

5.2.5 Multiple Exceptions

These paragraphs describe the processing which occurs when muitiple exceptions arise
simuitaneousty. Exceptions can be grouped according to their occurrence and priority. The group 0
exceptions are reset, bus error, and address error. These exceptions cause the instruction currently
being executed to be aborted and the exception processing 10 commence within two clock cycles.
The group 1 exceptions are trace and interrupt, as well as the privilege violations and illegal instruc-
tons. These exceptions allow the current instruction 1o execute to compietion, but pre-empt the ex-
ecution of the next instruction by forcing exception processing 10 occur (privilege violations and il-
legal instructions are cetected when they are the next instruction to be executed). The group 2 ex-
cepuons occur as part of the normal processing of instructions. The TRAP, TRAPV, CHK, and zero
divide exceptions are 'n this group. For these exceptions, the normal execution of an instruction
may lead to exception processing.

Group O exceptions have highest prionty, while group 2 exceptions have lowest priority. Within
group O, reset has highest priority, followed by address error and then bus error. Within group 1,
trace has priorty over externat interrupts, which in turn takes priority over illegal instruction and
privilege violation. Since only one inNstruction can be executed at a time, there is no priority relation
within group 2.

The priority relation between two exceptions determines which is taken, or taken first, if tne condi-
tions for both arise simultaneousty. Tnerefore, if 3 bus error occurs during a TRAP instruction, the
bus error takes precedence, and the TRAP instruction processing is suspended. In another exam-
ple, if an interrupt request occurs during the execution of an instruction while the T bit is asserted,

the trace exception has priority, and is processed first. Before instruction processing resumes,
however, the interrupt exception is also processed, and instruction processing commences finally in
the interrupt handler routine. A summary of exception grouping and priority is given in Table 3-4.

Table 54. Exception Grouping and Priority

Group Exception Processing
Reset Exception processing degins
o] Address Error | within two clock cycles
Bus Error
Trace Exception processing begins before
1 Interrupt the next instruction
liiegal
Priviiege
TRAP. TRAPV, | Excaption processing i8 started by
2 CHK, normal instruchon execution
Zero Divide
Format Error

5.3 EXCEPTION PROCESSING IN DETAIL

Exceptions have a number of sources and each exception has processing which is peculiar to it. The
following paragraphs detail the sources of exceptions, how each arises, and how each is processed.

5.3.1 Reset

The reset input provides the highest exception level. The processing of the reset signal is designed
for system initiation, and recovery from catastrophic failure. Any processing in progress at the time
of the reset is aborted and cannot be recovered. The processor is forced into the supervisor state,
the trace state is forced off, and the processor interrupt priority mask is set to level seven. The vec-
tor base register 1s set to $00000000 and the vector number is internaily generated to reference the
reset exception vector at location 0 in the supervisor program space. Because no assumpgtions can
be made about the validity of register contents, in particular the supervisor stack pointer, neither the
program counter nor the status register is saved. The address contained in the first two words of
the reset exception vector is fetched as the initial supervisor stack pointer, and the address in the
last two words of the reset exception vector is fetched as the initial program counter. Finally, in-
struction execution is started at the address in the program counter. The power-up/restart code
should be pointed to by the initial program counter.

The reset instruction does not cause loading of the reset vector, but does assert the reset line to
reset external devices. This allcws the software to reset the system to 3 known state and then con-
tinue processing with the next instruction.

5.3.2 Interrupts

Seven leveis of interrupt prioriues are provided. Devices may be chained externally within interrupt
prionty levels, allowing an unlimited number of peripheral devices to interrupt the processor. inter-
rupt pnonty levels are numbered from one to seven, level seven being the highest priority. The
status register contains a 3-bit mask which indicates the current processor priority, and interrupts
are inhibited for all priority leveis less than or equal 1o the current processor priority.

5-7

An interrupt request is made to the processor by encoding the interrupt request level on the inter-
rupt request lines; a zero indicates nc interrupt request. Interrupt requests arriving at the processor
do not force immediate exception processing, but are made pending. Pending interrupts may cause
exception processing to start at the end of an instruction depending on the current crocessor priori-
ty level. If the priority of the pending interrupt is lower than or equal to the current processor priori-
ty, execution continues with the next instruction and the interrupt exception processing is post-
poned. (The recognition of level seven is slightly different, as explained in the following paragraph.)

If the priority of the pending interrupt is greater than the.current processor priority, the exception
processing sequence is started. A copy of the status register is saved, the privilege state is set to
supervisor state, tracing is suppressed, and the processor priority level is set to the level of the inter-
rupt being acknowledged. The processor fetches the vector number from the interrupting device,
classifying the reference as an interrupt acknowledge and displaying the level number of the inter-
rupt being acknowledged on the address bus. If external logic requests automatic vectoring, the
processor internally generates a vector number which is determined by the interrupt level number. If
external logic indicates a bus error, the interrupt is taken to be spurious, and the generated vector
number references the spurious interrupt vector. The processor then proceeds with the usual ex-
ception processing, saving the format/offset word, program counter, and status register on the
supervisor stack. The offset value in the format/offset word is the externaily supplied or internally
generated vector number multiplied by four. The format wiil be ail zerces. The saved value of the
program counter is the address of the instruction which would have been executed had the inter-
rupt not been present. The content of the interrupt vector whose vector number was previously ob-
tained is fetched and loaded into the program counter, and normal instruction execution com-
mences in the interrupt handling routine. A flowchart for the interrupt acknowledge sequence is
given in Figure 5-5, a timing diagram is given in Figure 5-6, and the interrupt processing sequence is
shown in Figure 5-7.

PROCESSOR INTERRUPTING DEVICE
Grant the interrupt g . { Request the Intermupt]

1} Compare Intarrupt ievel :n status register
and wart for current instruction compiete

2) Assert address strobe (A3)

3} Place interrupt levei on A1, A2, A3 with
A4-AZ3 ail igh

4) Set function coce to CPU space

5) Assert address strobe (AS) Provide the Vector Number

6] Assert cata stropes (GDS* and LDS!

1) Slace Vector Number on 0C-D7
2) Assert Data Transter Acknowledge

iDTACK)

Acquire the Vector Number -
1} Latch vector number
2) Negate UDS ang (D3
3) Negate AS

et
- Relssse 7
F\ Negate DTACK
Start imterrupt Processing }¢ 1

® Aithough 3 vector numper 1S one byte, J0th data strobes are assarted due 10 the MICrOCOCe used for exception processing. The pro-
cassor does Not recognize anything on data lines 08 through 016 at this ume

Figure 5-5. Vector Acguisition Flowchart

e I — -
FCO-FC2 DC VA X
IPLO-IPL2 AN X

Last Bus Cycie of instruction IACK Cycle Stack and
{Read or Wnitel (Vector Number Acquisition) Vector Felcp
'Althouqh a vector number i3 one byts, both data strobes are asserted due 0 the microcode usad for excaption processing. The pro-
cassor doss NOt recognize anything on data lines 08 through D15 at this time.

Figure 5-6. Interrupt Acknowledge Cycle Timing Diagram

Last Bus Cycte {ACK
ot Instruction € bl Stack Stack Stack
1Buring Which Waite Number [PcL Status = PcH
Interrupt Was Acquisitiont (at SSP4) (at SSP-8) (at SSP-8)
Recognized!
Stack Read Read Fetch First Two
Format Offset Vector Vector Instructon Words
Word . High Low of Interrupt
{at SSP-2) (A16-A23) tAQ-A15) Routine

NOTE: SSP refers to the vatue of the supervisor stack pointer before the INteMuPt OcCurs.

Figure 5-7. Interrupt Processing Sequence

Priority level seven is a special case. Level seven interrupts cannot be inhibited by the interrupt
priority mask, thus providing 3 ‘‘non-maskable interrupt’* capability. An interrupt is generated each
time the interrupt request levei changes from some lower level to levet seven. Note that a level seven
interrupt may still be caused by the level comparison if the request level is a seven and the processor
priority is set to a lower level by an instruction.

5-9

5.3.3 Uninitialized Interrupt

An interrupting device asserts VPA, BERR, or provides an interrupt vector number and asserts
DTACK during an interrupt acknowledge cycle by the MCB8010. If the vector register has not been
initialized, the responding M68000 Family peripherai wiil provide vector number 15, the uninitialized
interrupt vector. This provides a uniform wav to recover from a programming error.

5.3.4 Spurious Interrupt

If during the interrupt acknowledge cycle no device responds by asserting DTAGK or VPA, BERR
should be asserted 1o terminate the vector acquisition. The processor separates the processing of
this error from bus error by forming a short format exception stack and fetching the spurious inter-
rupt vector instead of the bus error vector. The processor then proceeds with the usual exception
processing.

5.3.5 Instruction Traps

Traps are exceptions caused by instructions. They arise either from processor recognition of abnor-
mal conditions during instruction execution, or from use of instructions whose normai behavior is

trapping.

Some instructions are used specificaily to generate traps. The TRAP instruction always forces an
exception and is useful for implementing supervisor calls for user programs. The TRAPY and CHK
instructions force an exception if the user program detects a runtime error, which may be an
arnthemetic overflow or a subscript cut of bounds.

The signed divide (DIVS) and unsigned divide (DIVU) instructions will force an exception if a divi-
sion operation is attempted with a divisor of zero.

5.3.6 lllegal and Unimpiemented Instructions

Hllegal instruction is the term used to refer to any of the word bit patterns which are not the dit pat-
terns of the first word of a legat MCB8010 instruction. During instruction execution, if such an in-
struction is fetched, an illegal instruction exception occurs. Motorola reserves the right to define in-
structions whose opcodes may be any of the illegal instructions. Three bit patterns will aiways force
an illegal instruction trap on ail ME8000 Family compatible microprocessors. They are: S4AFA,
$4AFB, and S4AFC. Two of the patterns, S4AFA and $4AFB, are reserved for Motorola system pro-
ducts. The third pattern, $4AFC, is reserved for customer use.

In addition to the previously defined illegal instruction opcodes, the MCB88010 defines eight break-
point illegal Instructions with the bit patterns $4848-3484F. These instructions cause the processor
10 enter illegal instruction exception processing as usual, but a breakpoint bus cycle is executed
before the stacking operations are performed as shown in Figure 5-8. The processor does not ac-
cept or send any data dunng this cycle. Whether the breakpoint cycle is terminated with a DTACK,
BERR, or VPA signal, the processor will continue with the illegal instruction processing. The pur-
pose of this cycie is to provide a software breakpoint that will signal external hardware when it is ex-
ecuted.

510

reorc2 — X 2 Ve
o Wors o —— STl SEEC___

Figure 5-8. Breakpoint Cycle Timing Diagram

Word patterns with bits 12-15 equaling 1010 or 1111 are distinguished as unimplemented instruc-
tions and separate exception vectors are given to these patterns to permit efficient emuiation. This
facility allows the operating system to detect program errors, or to emulate unimpiemented instruc-
tions in software.

5.3.7 Privilege Violations

In order to provide system security, various instructions are privileged. An attempt to execute one
of the privileged instructions while in the user state will cause an exception. The privileged instruc-
tions are:

AND Immediate to SR MOVE USP

EOR immediate to SR OR Immediate to SR
MOVE 10 SR RESET

MOVE from SR RTE

MOVEC STOP

MOVES

5.3.8 Tracing

To aid in program development, the MCBB8010 includes a facility to ailow instruction-by-instruction
tracing. In the trace state, after each instruction is executed an exception is forced, allowing a
debugging program to monitor the execution of the program under test

The trace facility uses the T bit in the supervisor portion of the status register. If the T bit is negated
{off). tracing is disabied, and instruction execution proceeds from instruction 10 instruction as nor-
mat. I the T bit is asserted (on} at the beginning of the execution of an instruction, a trace exception
will be generated as the execution of that instruction is completed. if the instruction is not ex-
ecuted, either because an interrupt is taken, or the instruction is illegal or privileged, the trace ex-
ception does not occur. The trace exception also does not occur if the instruction is aborted by a
reset, bus error. or address error exception. !f the instruction is indeed executed and an interrupt is
pending on completion, the trace exception is processed before the interrupt exception. If, dunng

51

the execution of the instruction an exception is forced by that instruction, the forced exception is
processed before the trace exception.

As an extreme illustration of the above rules, consider the arrival of an interrupt during the execu-
tion of a TRAP instruction while tracing is enabled. First the trap exception is processed, then the
trace exception, and finally the interrupt exception. instruction execution resumes in the interrupt
handler routine.

5.3.9 Bus Error

Bus error exceptions occur when external logic terminates a bus cycle with a bus error signal.
Whether the processor was doing instruction or exception processing, that processing is ter-
minated, and the processor immediately begins exception processing. However, if a bus error oc-
curs during exception processing for a bus error, address error, or reset, the processor detects a
double bus fauit and haits. When exception processing is completed, instruction execution con-
tinues at the address contained in exception vector table entry two, at offset $008.

Exception processing for a bus error foilows a slightly different sequence than the sequence for
group 1 and 2 exceptions. In addition to the four steps executed during exception processing for all
other exceptions, 22 words of additional information are placed on the stack. This additional infor-
mation describes the internai state of the processor at the time of the bus error and s refoaded by
the RTE instruction to continue the instruction that caused the error., Figure 5-9 shows the order of
the stacked information.

SP el Status Regrster
Program Counter (Highi

Program Counter (Low)

1000 | Vector Offsat
Special Status Word

Fault Agdress (High)

Fauit Adaress (Low!
JUNUSED. RESERVED
Data Quiput Bufter
UNUSED, RESERVED

Data input Butfer
UNUSED, RESERVED
Instructon input Suffer

internai Information, 16 Woras

NOTE: The stack pointer 1s decremented by 29 words, aithough only
26 words of iInformaton are actuaily wntten 10 memory. The three
3dditonal words are reserved for future use by Motoroia.

Figure 5-9. Exception Stack Order (Bus and Address Error)

512

The value of the saved program counter does not necessarily point to the instruction that was ex-
ecuting when the bus error occurred, but may be advanced by up to five words. This is due to the
prefetch mechanism on the MCB88010 that always fetches a new instruction word as each previously
fetched instruction word is used (see 7.1.2 Instruction Prefetch). However, enough information is
placed on the stack for the bus error exception handler routine to determine why the bus fault oc-
curred. This additional information includes the address that was being accessed, the function
codes for the access, whether it was a read or a write, and what internali register was included in the
transfer. The fault address can be used by an operating system to determine what virtual memory
location is needed so that the requested data can be brought into physical memory. The RTE in-
struction is then used to reload the processor's internal state at the time of the fault, the fauited bus
cycle will then be re-run and the suspended instruction completed. If the fauited bus cycle was a
read-modify-write, the entire cycle will be re-run whether the fauit occurred during the read or the

write operation.

An alternate method of handling a bus error is to complete the fauited access in software. In order
to use this method, use of the special status word, the instruction input buffer, the data input buf-
fer, and the data output buffer image is required. The format of the special status word is shown in
Figure 5-10. If the bus cycle was a write, the data output buffer image should be written t0 the fault
address location using the function code contained in the special status word. If the cycle was a
read, the data at the fault address location shoutd be written to the images of the data input buffer,
instruction input buffer, or both according to the OF and IF bits. ® In addition, for read-modify-write
cycles, the status register image must be properly set to reflect the read data if the fault occurred
during the read portion of the cycie and the write operation (i.e., setting the most significant bit of
the memory location) must also be performed. This is because the entire read-modify-write cycle is
assumed to have been completed by software. Once the cycle has been completed by software, the
RR bit in the special status word is set to indicate to the processor that it should not re-run the cycle
when the RTE instruction is executed. !f the re-run flag is set when an RTE instruction executes, the
MCB8010 still reads ail of the information from the stack.

15 14 13 12 n 10 9 8 7-3 2 1 Q
(e = L Lo [amre [ov [aw] - [rezre0 |
RR — Re-run fag; O= processor re-run (defauit), 1= software re-run.
IF = Instruchon fetch to the instruction Input Butfer.

DF ~ Data tetch to the Data input Bufter.

RM - Read-Modity-Wnte cycle.

HB - High byte transfer from the Data Output Buffer or to the Data input Buffer.

8Y - Byte transfer flag, HB setects the high or low byte of the transfer reqgister. If BY s ciear, the transfer is word.
RW — Read/Wnte flag, 0= wnte, 1= read.

FC = The function code used dunng the fauited access.

. — These i3 ars resarved for future use by Motorola and will be zero when wntien by the MCSB8010.

Figure 5-10. Special Status Word Format

“if (he fauited access was a byte operation, the data shouid be moved from or to the least-significant byte of the data outout or 1nput
bufter images uniess the HB bit 1s set. This condition wilt only occur if 3 MOVEP instruction caused the tauit dunng the transfer of bits

8-15 of 3 word or long word or Dits 24-31 of 3 tong word.

513

5.3.10 Address Error

Address error exceptions occur when the processor attempts to access a werd or long word
operand or an instruction at an odd address. The effect is much like an internally generated bus er-
ror, so that the bus cycle is aborted, and the processor begins exception processing. After excep-
tion processing commences, the sequence is the same as that for bus error including the informa-
tion that is stacked, except that the vector offset refers to the address error exception vector. If an
address error occurs during exception processing for a bus error, address error, or reset, the pro-
cessor detects a double bus fauit and halts.

As shown in Figure 5-11, an address error will execute a short bus cycle followed by exception pro-
cessing. This short bus cycle 1s similar to a normal read or write cycle, except that the data strobes
are not asserted and no external signals are used to terminate the cycle. During an address error bus
cycle, AS is asserted to indicate that the MCB8010 will drive the address bus (thus ailowing for pro-
per operation in a multiple bus master system}. Note that data strobes are not asserted allowing for
address error detection and memory protection.

SO 32 S4 S6 SO S2 S4 S6 S0 S2
3148 ———(— ——N -~
) \
R ey e yw— [\ f/ ¥ ~
A
Jo3 \ / 4‘ L._
— A\
[i —
RIW \ / \
/ f — Jﬁ
5TACK \ /) S
00018 I3 jr N o —
) L < J S,
' A 8 Clocks |
e P Adc:ff”m \ oorox!dh ocks : s Stacx———-—uj

Figure 5-11. Address Error Timing Diagram

Since the address error exception stacks the same information that is stacked by a bus error excep-
ton, it is possible 10 use the RTE instruction to continue execution of the suspended instruction.
However, if the software re-run flag is not set, the tauit address wiil be used when the cycle is re-run
and another address error exception will occur. Therefore, the user must be certain that the proper
corrections have been made to the stack image and user registers before attempting to continue the
nstruction. With proper software handling, the address error exception handler could emulate
word or long word accesses 1o odd addresses f desired.

5.4 RETURN FROM EXCEPTION

In adaition to returning from anv exceotion handler routine, the RTE instruction is used to resume
the execution of a suspended instruction by restoring all of the temporary register ana control infor-
mation stored during a bus error and returning to the normai processing state. For the RTE instruc-
ton to execute properly, the stack must contain valid and accessible data. The RTE instruction

checks for data validity in two ways; first, by checking the format/offset word for a valid stack for-
mat code, and second, if the format code indicates the long stack format, the long stack data is
checked for validity as it is loaded into the processor. In addition, the data is checked for accessibili-
ty when the processor starts reading the long data. Because of these checks, the RTE instruction
executes as follows:

1. Determine the stack format. This step is the same for any stack format and consists of reading
the status register, program counter, and format/offset word. If the format code indicates a
short stack format, execution continues at the new program counter address. If the format
code is not one of the MCB8010 defined stack format codes, exception processing starts for a
format error.

2. Determine data validity. For a long stack format, the MC88010 will begin to read the remaining
stack data, checking for validity of the data. The only word checked for validity is the first of
the 18 internal information words (SP + 26) shown in Figure 5-9. This word contains a pro-
cessor version number in addition to proprietary internal information that must match the ver-
sion number of the MC68010 that is attempting to read the data. This validity check is used to
insure that in dual processor systems, the data will be properly interpreted by the RTE instruc-
tion if the two processors are of different versions. If the version number is incorrect for this
processor, the RTE instruction will be aborted and exception processing will begin for a format
error exception. Since the stack pointer is not updated until the RTE instruction has suc-
cessfully read all of the stack data, a format error occurring at this point will not stack new data
over the previous bus error stack information.

3. Determine data accessibility. If the long stack data is valid, the MCB8010 performs a read from
the last word (SP + 56} of the long stack to determine data accessibility. If this read is ter-
minated normaily, the processor assumes that the remaining words on the stack frame are also
accessible. If a bus error is signaled before or during this read, a bus error exception is taken as
usual. After this read, the processor must be abie 1o load the remaining data without receiving
a bus error; therefore, if a bus error occurs on any of the remaining stack reads, the MC88010
treats this as a doubie bus fault and enters the halted state.

5-15/5-16

SECTION 6
INTERFACE WITH M6800 PERIPHERALS

Motorola’s extensive line of ME800 peripherals are directly compatible with the MCB88010. Some of
these devices that are particularly useful are:

MCB821 Peripheral interface Adapter

MCB840 Programmable Timer Module

MCB843 Floppy Disk Controller

MCEB845 CRT Controiter

MCB880 Asynchronous Communications Interface Adapter

MCB852 Synchronous Seral Data Adapter

MCB854 Advanced Data Link Controller

M(CB8488 General Purpose Interface Adapter
To interface the synchronous M6800 peripherals with the asynchronous MC88010, the processor
maodifies its bus cycle to meet the M6800 cycle requirements whenever an M6800 clevice address is

detected. This is possible since both processors use memory mapped /0. Figure 6-1 is a flowchart
of the interface operation between *he processor and M680Q devices.

PROCESSOR SLAVE

Initiste the Cycle

The Processor Starts a Normai Read or

wrnte Cycle Define the MEBO0 Cycle
1) External Hardware Asserts Vaid
Synchronize with Enadle Penpherai Address (VFA!
1} The Processor Monitors Enasote (£} Unut
it s Low (Phase 1}
2) The Processor Asserts Vang Memory
Acdgress (VMA) 3 Transter the Data
1} The Penpneral Waits Until £ 15 Active
Termuinate the Cycie < and then Transters the Data
1) The Processor Waits Until £ Goes Low

:On a Read Cvcle the Data is Latcned
as € Goes Low internailvs

The Processor Negates VMA

The Processor Negates X3, 03, anag
{38

[}

@

.

4

L Start Next Cycta j

Figure 6-1. M6800 Interfacing Flowchart

6.1 DATA TRANSFER OPERATION

Three signals on the processor provide the MB800 interface. They are: enable (E}, valid memory ad-
dress (VMA), and valid peripheral address (VPA). Enable corresponds to the € or phase 2 signal in
existing MB800 systems. The bus frequency is one tenth of the incoming MCB8010 clock frequency.
The timing of E allows 1 megahertz peripherals to be used with an 8 megahertz MC88010. Enable
has a 60/40 duty cycle; thatis, itis low for six input clocks and high for four input clocks. This duty
cycle allows the processor to do successive VPA accesses on successive E puises.

M6E800 cycle timing is given in Figure 6-2. At state zero (S0) in the cycle, the address bus is in the
high-impedence state. A function code is asserted on the function code output lines. One-haif clock
later, in state 1, the address bus is released from the high-impedence state.

During state 2, the address strobe (AS) is asserted to indicate that there is a valid address on the ad-
dress bus. !f the bus cycle is a read cycle, the upper and/or lower data strobes are also asserted in
state 2. If the bus cycle is a write cycle, the read/write (R/W) signal is switched to low (write) dur-
ing state 2. One-haif clock later, in state 3, the write data is placed on the data bus, and in state 4
the data strobes are issued to indicate valid data on the data bus. The processor now inserts wait
states until it recognizes the assertion of VPA.

The VPA input signals the processor that the address on the bus is the address of an M6800 device
(or an area reserved for M6800 devices) and that the bus should conform to the phase 2 transfer
characteristics of the M6800 bus. Valid peripheral address is derived by decoding the address bus,
conditioned by the address strobe. Chip select for the M6800 peripherals should be derived by
decoding the address bus conditioned by VMA.

Atter recognition of VPA, the processor assures that the enable (E) is low, by waiting if necessary,
and subsequently asserts VMA two clock cycles before € goes high. VMA is then used as part of
the chip select equation of the peripheral. This ensures that the MB800 peripherals are selected and
deselected at the correct time. The peripheral now runs its cycle during the high portion of the E
signal. Figures 6-2 and 6-3 depict the best and worst case MB800 cycle timing; this cycle length is
dependent strictly upon when VPA is asserted in relationship to the € clock.

S0 S2 4 9w w w w w w S8 S0 S2

a0 ~—
7\ I\

OTATK
Dala'Out anmen O —
reorcz _ X A
e\ / \
T\ VY
A \ /S

Figure 6-2. MC88010 to M6800 Peripheral Timing Diagram — Best Case

6-2

S0S2S4w w wwwwwwwwwww w wS8S0

CLx
A1-AZ3 :}()-(_
T\ '

OTATR
Y Y
Feo-Fe2 L X
e [[
WA\ [~

VMA \ ’

Figure 6-3. MC68010 to ME800 Peripheral Timing Diagram — Worst Case

If we assume that external circuitry asserts VPA as soon as possible after the assertion of AS, then
VPA will be recognized as being asserted on the falling edge of S4. In this case, no “"extra” wait
cycles will be inserted prior to the recognition of VPA asserted and only the wait cycles inserted to
synchronize with the £ clock will determine the total length of the cycle. In any case, the syn-
chronization delay will be some integrai number of ctock cycles within the following two extremes:
1. Best Case — VPA is recognized as being asserted on the failing edge three clock cycles before
E rises (or three clock cycles after E falls).
2. Worst Case — VPA is recognized as being asserted on the failing edge two clock cycles before
E rises (or four clock cycles after E fails).

During a read cycle, the processor latches the peripheral data in state 6. For all cyctes, he processor
negates the address and data strobes one-half ctock cycle later in state 7 and the enable signal goes
low at this time. Another half clock ater, the address bus is put in the high-impedence state. During
a write cycle, the data bus is put in the high-impedence state and the read/write signal is switched
high. The peripheral logic must remove VPA within one clock after the address strobe is negated.

DTACK should not be asserted while VPA s asserted. Notice that the MCB8010 VMA is active low,
contrasted with the active high M8800 VMA . This allows the processor to put its buses in the high-
impedence state on DMA requests without inadvertently seiecting the peripherais.

6.2 AC ELECTRICAL SPECIFICATIONS

The electrical specifications for interfacing the MC68010 to M6800 Family peripherals are iocated in
Section 8.

6-3

6.3 INTERRUPT INTERFACE OPERATION

During an interrupt acknowledge cycle while the processor is fetching the vector, if VPA is asserted
the MCB8010 will assert VMA and complete a normal M680O read cycle as shown in Figure 6-4. The
processor will then use an internally generated vector that is a function of the interrupt being servic-
ed. This process is known as autovectoring. The seven autovectors are vector numbers 25 through
31 {decimal).

Autovectoring operates in the same fashion {but is not restricted to) the MB800 interrupt sequence.
The basic difference is that there are six normal interrupt vectors and one NMI type vector. As with
both the M6800 and the MCB8010’s normal vectored interrupt, the interrupt service routine can be
located anywhere in the address space. This is due to the fact that while the vector numbers are fix-
ed, the contents of the vector table entries are assigned by the user.

Since VMA is asserted during autovectoring, the M68C0 peripheral address decoding should pre-
vent unintended accesses.

S0 52 54 SO S2 S4 w w w w w w w w w S S
CLK

ar-a3 W =
Ad4-423 =()-/

N
s T\
N

1)

JSJEOM ’
\)J Al 112 an

PLC-iPL2
3
VPA
VMA \
}: Ngrmm St Autovector Ooorauon_.___,i
voe

*® Aithough a vector number s one dyte, both data strobes are asserted due 10 the microcode
used for exception processing. The processor does not recognize anything on data lines 00
through 015 dunng autovector cycles.

Figure 6-4. Autovector Operation Timing Diagram

7.1 INSTRUCTION SET

The following paragraphs provide information about the addressing categories and instruction set

of the MC88010.

7.1.1 Addressing Categories

Effective address modes may be categorized by the ways in which they may be used. The following

SECTION 7
INSTRUCTION SET AND EXECUTION TIMES

classifications will be used in the instruction definitions.

Data

Memory

Alterable

Control

These categories may be combined, so that additional, more restrictive, classifications may be
defined. For example, the instruction descriptions use such ciassifications as aiterable memory or
data aiterable. The former refers to those addressing modes which are both alterabie and memory
addresses, and the latter refers to addressing modes which are both data and alterable. Table 7-1
shows the various categories to whnich each of the effective address modes belong. Table 7-2 is the

If an effective address mode may be used to refer to Jata operands, it is

considered a data addressing effective address mode.

address mode.

iNstruction set summary.

Table 7-1. Effective Addressing Mode Categories

If an effective address mode may be used to refer to memory operands, it
is considered a memory addressing effective address mode.

If an effective address mode may be used to refer to alterable (writeable)
operands, it is considered an aiterable addressing effective address mode.
if an effective address mode may be used to refer to memory operands
without an associated size, it is considered a control addressing effective

i"'“’"‘ Addressing Categories
Modes Mode Register Data| Memory Control Alterable
On 200 Reqister Numoer X - - X
An o Register Number - - - X
(Am 10 Register Numper X X X X
(An)+ a1 Register Number X X - X
- An} ‘00 Register Number X X - X
alAni 01 Ragister Number X X X X
atAn, x} “10 Register Number X X X X
xxx. W m 00 X X X X
XXX, L BERRR 201 X X X X
aPC; i ‘ 310 X X X =
aPC. x; I oy m X X X =
l 9 20 C X - -

[#xxx

Tabie 7-2. Instruction Set (Sheet 1 of 2}

Condit
Mnemonic Dascription Operstion Codes
s XINJZ{V]|C

ABCD Add Decimat with Extend {Destination] 10 + { Sourcel 10 + X — Destination *tuj*tiul®
ADD Add Binary {Destnation) + | Source) — Destination ST
ADDA Add Address {Destination) + (Saurce) = Destination - -
ADOI Add Immediats {Destination) + Immediata Data — Destination bl Bl Bl S
ADDQ Add Quick {Desunation) + immediate Data — Destination e e feg e
ADDX Add Extended {Desunauon) + (Source) + X — Destination sisle el
AND AND Logicat {Desunation) A {Source) = Destination ~i*{*j0l0
AND! AND immediate {Desunation) A Immediate Data — Destination *1* |00
ANDI to CCR | AND Immediate to Condition Codes (Source) A CCR—CCR HEHEEE
ANDI to SR AND Immediate 10 Status Register (Sourcet A SR~=SR LR S el il
ASL, ASR Arithmetic Shift {Desunation) Shifted by <count> == Desunation A
8ce Branch Conditionaily it ¢c then PC+d—FPC | s Jimmr e

~{<bit number>) OF Desunaton=—Z
BCHG Test a Bit and Change ~ (< bit number>) OF Destination = ~{=1*1-}-

< bit number> OF Destnation

; = { < bit numi F —
S a4, Bit and Glaw O::tzut:ur:x;?-g:%::::nonz i
BRA Branch Aiways {PCI+d—PC -t |-
; ~ [l F =

8SET Test a 8it and Sat 1::I;|t :::;:;%FDDQ:,::;?; i o it N el
BSR Branch to Subroutine (PC) == - {SP); (PC) +d==PC o i el bl e
BTST Test a Bit ~ (< bit number>) OF Destinaton=—2 o e Il Y
CHK Check Register Against Bounds 1f On <0 or On> (<ea>) then TRAP -{*juulu
CLR Clear and Operand 0 — Desunation -j0i1 {010
cMmP Compare {Destinaton) -~ (Sourcel — iyttt
CMPA Compare Address {Desunation! — (Source) I i
CMP! Compare Immediate (Destination) — immediate Oata -y
CMPM Comoare Memory {Desunation) — { Sourcs) -1 [**
OBcc Test Condition, Decrament and Branch | It ~c(C then Da—1—0n; i Onw - 1 then PC+d—PQ — - =
OIvs Signea Divide iDesunaton)/ (Source) — Destination -1*1%{*i0
ovu Unsigned Divide {Destination}/ (Source) — Destination —-{*j*{*]0
EOR Exciusive OR Logical {Destunanon! e (Source) = Destnaton -{*{*loto
EQRI Exciusrve OR Immeaciate (Desunanon} @ Immediate Data — Oestnation -{®*1*lol0
EORI 1o CCR | EXCIUSve OF Immedie (Source) # CCR—CCR olefeis]
EORI to SR E"f;“;‘:mc;aﬁ:;‘m““ (Sourca ® SR — SA EERA R
EXG Excnange Reqister (Rx) == {Ry) - |=|- -
EXT Sign Extend {Destinauon! Sign-Extenged — Destnaton —-{*|* {010
IMP Jump {Desunaton) —=PC ook il el . o
JSR Jump to Subroutine (PC) = - (SP); Desunation — PC - == l={=
LEA Load Effective Adaress <8a>~* An - (== i=1=
LINK Link and Allocats {An} — — (SP): (SP) == An; {SP) +d—SP - =
LSL, LSR Logical Shift (Destnation} Shifted by < count> — Destination sleitl0l®
MOVE Move Data from Sourca to Oesunation | { Sourcel == Desunation -{*]*[0]¢0
MOVE to CCR | Move to Condition Codes {Sourcet — CCR b Gl Al B
M%\ég from Move from Condition Codes (CCR) = Destination = = e e
MOVE to SR |Move to the Status Register ({Source! — SA b Sl el il e

A logical AND * atfected

V logical OR ~ unaffected

® logical exclusive OR 0 cieared

~ iogical complement 1 set

U ungefined

7-2

Tabie 7-2. Instruction Set (Sheet 2 of 2)

Mnemonic

Description

| Oparatin

MOVE from SR [Move from the Status Regroter

I(SR) == Destnation

10 Condition Codes

!lncﬁuswe OR Immeaiate
[

Inclusive OR Immeaiate

MOVE USP__ [Moave User Stack Pomntar {USPY —An; TAm =3P }

[MOVEA [Move Address |{Sourcel = Destination ~[=[-]=]=
[MovEC Mave Control Register [(C—An.{Rn) ~=C; -1=1==19]
@VEM Move Muitipie Registers [(lgzs‘;‘:’rs_‘.:ezzz:‘:uon - I.. } -

MOVEP Mave Penpherai Data [Sourcet — Desnnaton = [=T=T=]=

MOVEQ {Move Quick |Immediate Data— Destranon [={*]*fo]o

[MOvES [Move Altenate Address Souce 1{0n) = Destination; (Sourcel — On =1=1=1=15]
[MULS [Signed Muitiply [1Destnation) X (Source) — Destnaton -[*T*To]o

[MULU |Unsigned Muttipty [{Destinatoni X (Sourcel — Destmatan -{*{*ToJo

[NBCD [Negate Decimar with Extang 0- {Destinationi 19 - X = Destination IS

[NEG |Negate [0~ (Desunation) — Destnanon > ETETERE

{NEGX |Negate with Exteng [0- iDesunanon - X = Oestination HEREE

[NOP [No Operation = = {=1=1=1=

[NOT [Logical Comotement | = \Oesunation) — Destnauon I-1*T*ToJo

{OR [Inclusive OR Logical [1Oesunations v (Sourcel = Desorguan HEEEE

ORI [inclusrve OR \mmediate [Destination) v immediate Data — Destination =1*T*TaTo

ORI 10 CCR (Source) v CCR—CCR I"'I.l.[T’

b?l to SR

10 Status Regrster

[PEA

<e3> == - (Sp)

1]

RESET

{Pusn Effectva Adaress
[Resat External Cevice

I(Sourcsr v SR—SR
|
!

i
-
)

i

ROL. ROR [Ratate (Without Extend) [{Oestination) Rotated by <counts ~= Destination ~1*T*70
ROXL. ROXR [Rotate with cxteng [{Desunatians Rotated by <count> == Desnnation 1170

Return ana Deailocate Stacx

[ISPY+ —PC (SPI~g=—=3SP

orEn

[
[Retum from Exceotion

[ISP) + = SR, 15P1+ —PC

EE

.

»

.
—t—f—g—p 1|

RTR [Retum ang Restore Condiion Codes [ISP) = —=CC, 1SP1+ —PC

RTS [Returm from Subroutne |(SPY+ = PC -1-1=-1-17]
SBCD |Sudtract Decimal with Exteng [Destinationi1g - (Sourcei 19— X = Cestinaton IR
Scc [Set Accoraing to Condition [If CC then 13— Desunation eiss 0's = Destination - = 1-1=1~]
STOP |Load Status Reqister and Stog [\mmeaiate Cata — SA; 370 CTETET T
[suB [Subtract Sinary f(Destmanom—lSourcel—-Desnnanon T
SuUBA [Subtract Agaress liDestination) - 1Source) = Destination N I o o
[susi [Subtract :mmediate [(Destnation) — immediate Data~ Destination BE HER
SUBQ [Subtract Quick {(Desunanom— immediate Data — Oestnation I* I l N f .ﬁ
SuBx ISubtract witn Extena [(Cestnations ~ | Sourcer = X ~— Destination HESE 1]
[SWAP [Swao Register maives [Register (31 16] = Register [15.0] =" {oTq]
[TAs [Test and Set an Operang |(Destunation) Tested—CC. 1 — 7] OF Desnranon -1 T*To]0]
TRAP [Trao {(PC) = —SSP). ISAI—= —3SPT. [Vectori — PC - - = =]
TRAPV Trap on Overtiow jlf 'V set then TRAP - [— l~ [:ffl
[TST Test and Qperana [{Destnation) Tested — CC -1*1*T0]o]
UNLK Unhni [lAn =SP 3P < = an -1=1=1=1=]

[]= ot numper

A logicat AND

V logicat OR

® logical exciusive OR
~ logical comoptement

* attected

— unaffected
0 cleared

1 sat

U unaefined

7.1.2 Instruction Prefetch

The MCB8010 uses a two-word tightly-coupled instruction prefetch mechanism to enhance perfor-
mance. This mechanism is described in terms of the microcode operations involved. if the execu-
tion of an instruction is defined to begin when the microroutine for that instruction is entered, some
features of the prefetch mechanism can be described.

1. When execution of an instruction begins, the operation word and the word following have
already been fetched. The operation word is in the instruction decoder.

2. In the case of multi-word instructions, as each additional word of the instruction is used
internally, a fetch is made to the instruction stream to repiace it. '

3. The last fetch for an instruction from the instruction stream is made when the operation word
is discarded and decoding is started on the next instruction.

4. If the instruction is a single-word instruction causing a branch, the second word is not used.
But because this word is fetched by the preceding instruction, it is impossibie to avoid this
superfluous fetch.

5. In the case of an interrupt or trace exception, both prefetched words are not used.

6. The program counter usually points to the last word fetched from the instruction stream.

7.1.3 Loop Mode Operation

The MCB8010 has several features that provide efficient execution of program loops. One of these
features is the DBcc looping primitive instruction. The DBcc instruction operates on three
operands, a loop counter, 3 branch condition, and a branch displacement. When the DBcc is
executed in loop mode, the contents of the iow order word of the register specified as the loop
counter is decremented by one and compared to minus one. If equal to minus one, the result of the
decrement is placed back into the count register and the next sequential instruction is executed,
otherwise the condition code register is checked against the specified branch condition. If the con-
dition is true, the result of the decrement is discarded and the next sequential instruction is
executed. Finally, if the count register is not equal to minus one and the branch condition is faise,
the branch displacement is added to the program counter and instruction execution continues at
that new address. Note that this is slightly different than non-looped execution; however, the
results are the same.

An example of using the DBcc instruction in 3 simple loop for moving a block of data is shown in
Figure 7-1. In this program, the biock of data 'LENGTH’ words long at address ‘SOURCE’ is to be
moved to address ‘'DEST’ provided that none of the words moved are equal to zero. When the ef-
fect of instruction prefetch on this loop is examined it can be seen that the bus activity during the
loop execution would be:

1. Fetch the MOVE. W instruction,

2. Fetch the DBEQ instruction,

3. Read the operand where AQ points,

4. Write the operand where Al points,

5. Fetch the DBEQ branch displacement, and

6. If loop conditions are met, return to step 1.

LEA SOURCE, A0 Losd A Pointer To Source Oata
LEA OEST. Al Load A Pointer To Oestination
MOVE.W fLENGTH, DO Losd The Counter Register

Loee MOVE W (AQ)+, (A1) + Loop To Move The Block Of Data
OBEQ 00, LOOP Stoo it Dewa Word Is Zero

Figure 7-1. DBcc Loop Program Exampie

74

During this loop, five bus cycles are executed; however, only two bus cycles perform the data
movement. Since the MCB8010 has a two word prefetch queue in addition to a one word instruction
decode register, it is evident that the three instruction fetches in this loop could be eliminated by
placing the MOVE.W word in the instruction decode register and hoiding the DBEQ instruction and
its branch displacement in the prefetch queue. The MC88010 has the ability to do this by entering
the loop mode of operation. During loop mode operation, all opcode fetches are suppressed and
only operand reads and writes are performed until an exit loop condition is met.

Loop mode operation is transparent to the programmer, with only two conditions required for the
MCB8010 to enter the loop mode. First, a DBcc instruction must be executed with both branch con-
ditions met and a branch displacement of minus four; which indicates that the branch is to a one
word instruction preceding the DBcc instruction. Second, when the processor fetches the instruc-
tion at the branch address, it is checked to determine whether it is one of the allowed looping in-
structions. if it is, the loop mode is entered. Thus, the single word looped instruction and the first
word of the DBcc instruction wiil each be fetched twice when the loop is entered; but no instruction
fetches will occur again until the DBcc loop conditions fail.

In addition to the normal termination conditions for a lIoop, there are severai conditions that will
cause the MCB8010 to exit loop mode operation. These conditions are interrupts, trace exceptions,
reset errors, and bus errors. Interrupts are honored after each execution of the DBcc instruction,
but not after the execution of the looped instruction. If an interrupt exception occurs, loop mode
operation is terminated and can te restarted on return from the interrupt handler. If the T bit is set,
trace exceptions will occur at the end of both the loop instruction and the DBcc instruction and thus
loop mode operation is not available. Reset will abort all processing, including the loop mode. Bus
errors during the loop mode will be treated the same as in normal processing; however, when the
RTE instruction is used to continue the execution of the looped instruction, the three word loop will

not be re-fetched.

The loopable instructions available on the MCB8010 are listed in Table 7-3. These instructions may
use the three address register indirect addressing modes to form one word locping instructions;
(An), (An)+, and - (An).

Table 7-3. MC88010 Loopabie Instructions

Applicable Applicable
Opcodes Addressing Modes Opcodes Addressing Modes
MOVE (BWL] {Ayl t0 (Axt ~ - {Ayi to (Ax) ABCD (BI] - {Ay} to —(Ax)
(Ayi 10 (Ax) + ~(Ay) 10 (Ax) + ADDOX [8wWL]
{Ay} 10 ~{Ax} - (Ay) 10 = t(Ax} SB8CD (B!
(Ay) + 10 (Ax) Ry to (Ax} SUBX [BWL]
(Ay) + 10 (Ax}+ Ry to (Ax}+ CMP (BWL| (Ay) + 10 iAx) +
(Ayl + to —iAx] CLR (BWL] (Ay!
ADD (BWL] (Ay) to Dx NEG (BWL] (Ay) +
AND (BWL] (Ay)+ to Dx NEGX (BWL] - {Ayl
CMP (BWL] | ~tAy! to Ox NOT [BWL]
OR {BWL] | TST [BWL]
SUB (BwL] ! : 1 NBCD (B])
ADDA (WL) {Ay) 10 Ax ASL (W] (Ay) oy #1
CMPA (WL] - Ay to Ax ASR (W} (Ay)+ by #1
SUBA (WL] {Avi+ 10 Ax LSL (wi} -{Ay) by #1
ADD (BWLI | Ox 10 (Ay) LSR (W]
AND (BWLI | Dx to (Av) + ROL (W1
EOQR (BWL) {Ox t0 =(Av} ROR (W]
OR (BWL] | ROXL (W]
[SUB (BWL] L | | ROXR (W]
NOTE

{B. W, or L] inaicate an operand size of bvte. ~ord, ar iong word.

7-5

7.2 INSTRUCTION EXECUTION TIMES

The following paragraphs contain listings of the instruction execution times in terms of external
clock (CLK) periods. In this timing data, it is assumed that both memory read and write cycle times
are four clock periods. Any wait states caused by a longer memory cycle must be added to the total
instruction time. The number of bus read and write cycles for each instruction is aiso included with
the timing data. This data is enclosed in parenthesis following the execution periods and is shown
as (r/w) where r is the number of read cycles and w is the number of write cycles.

NOTE

The number of clock periods inciudes instruction fetches and all applicable operand
fetches and stores. '

7.2.1 Operand Effective Address Caiculation Times

Table 7-4 lists the number of clock periods required to compute an instruction’s effective address. It
includes fetching of any extension words, the address computation, and fetching of the memory
operand if necessary. Several instructions do not need the operand at an effective address to be fet-
ched and thus require fewer clock periods to caiculate a given effective address than the instruc-
tions that do fetch the effective address operand. The number of bus read and write cycles is shown
in parentheses as (r/w). Note there are no write cycles involved in processing the effective address.

Table 7-4. Effective Address Calculation Times

T

Byte, Word Long
Addressing Mode Fetch No Fetch Fetch No Fetch

Regrster
On Data Register Direct o0/0) - X0/ -
An Address Registar Direct 0/01 - 0(0/0} -

Memory
{An) Address Register indirect 41/0 210/01 8(2/0} 20/00
{An) + Address Reqister Indirect 'mth Posuncrement 4(1/0) 40/0) 8(2/0) 40/Q
- (An) Address Regster Indirect with Pragecrsment 8(1/0) 40/0) 10(2/0) 4(0/0)
dtAn) Address Register Indirect with Displacement 8(2/0) 40/01 12(3/0) 4«1/0)
dlAn, ix)* |Address Register Indirect with Index 10{2/0 8(1/0) 14(3/0} 8(1/0)
xxx. W Absolute Short 8(2/0) 41/0) 12(3/01 41/0)
0L Absolute Long 12(3/0) 8(2/Q) 16(4/0} 8t2/0)
d(PC}) Program Counter with Displacement 8(2/0) - 1203/0) -
a(PC, x) Program Counter with Index 1012/0) - 1443/0) -
#xxx Immediate H1/0) — 8(2/0) -

* The size of the index register (ix) does not affect axecution time.

7.2.2 Move Instruction Execution Times

Tables 7-5, 7-8, 7-7. and 7-8 indicate the number of ciock periods for the move instruction. This data
includes instruction fetch, operand reads, and operand writes. The number of bus read and write
cycles is shown in parenthesis as (r/w).

78

Table 7-5. Move Byte and Word Instruction Execution Times
- e
On An (An) (An)+ | ~{An) dAn) | diAn, X)¥| oW xxx. L
Dn 41/0) “1/0 81/ 81/ 81/0 | Y270 | wMZD | 12270 | 183/
An «1/0) 41/0) 8(1/1 801/ 81/ | 12/ | 14U | 1202/ | 1863/
{An) 8(2/0) 82/0) | 12/ | 222/n | 202/ | 18G/0 | 83/ | 18 | 2004/
(An)+ 8(2/0) 82/0) | 1202/ | 122711 | 121270 | 163/ | B3 | 183/ | 200/
-(An) 12/00 | 1062/00 | 1M/ | 1w/ | MUY | a3/ | 203/ | 183/ | 2214/
d(An) 1203/00 | 123/00 | 183/ | @3/ | 183/D | 20 | 2040 | 2064/ | 2405/
alAn, x)* 1M3/0 | 143/00 | 183/ | 183/ | 183/ | 214/ | 24la/) | 224/ | 28(5/1)
oo W 123/00 | 12(3/00 | 183/ | 183/ | 3/ | 2/ | 20410 | 2004/1) | 244571
e L 164/00 | 164/0) | 2014/ | 204/1) | 2004/ | 245/ | 288/ | 248/1) | 28i6/1)
HPC) 1203/00 | 1203/00 [83/ | 183/1) | 183/1 | 204/ | 224/1) | 2004/1) | 245/1)
d(PC, ix)* 1403/0) | 1413/00 | 183/ | 3/ | 13 | 214/ | 26t/ | 204/ | 28(5/1)
#xxx §2/0) 82/0) 12212/ 1) 12(2/1) 1212/ 18(3/1) 183/ 183/ 04/ 1)
® The size of the incex register (ix) does not atfect execution time.
Table 7-6. Move Byte and Word Instruction Loop Mode Execution Times
Loop Continued Loop Terminated
Vaiid Count, cc Faise Valid Count, cc True 1 Expired Count
S
Sourcs (An) {An} + ~{An) {An} (An} + ~-{An) (An) (An) + - (An)
Dn 10(0/ 1} 1000/ 1) - 18(2/1) 18(2/ 1) - 182/ 1 182/ 1) -
An*® 100/ 1) 100/ 1) - 18(2/1) 18(2/1) - 16(2/1) 16802/ 1) -
{An} 14(1/1) 1401/1) 18(1/1) W3/ 243/ 1) 243/1 18(3/1) U3/ 203/ 1)
{An} + 14(1/1} 1401/1} 181/ 1} 20(3/1) 203/ 203/1 18(3/ 1) 18(3/1) 23/
-{An} 1801/} 18(1/1} 18(1/1) 23/ 2(3/1 243/ 243/1) a3/ 213/ 1)
* Word onty
Table 7-7. Move Long Instruction Execution Times
Destingtion
Source On An (An) Anl~ | -(An) | dlAn) |diAn, W% moxW | ol
On 41/0 o | 12002 T/ | e | e | 182720 | 12720 | 2372
An 40170} 40 | 12072 | 12012 | e | e | 182/ | 182/ | 243/
{An) 1203/00 | 123/0) | 2003/ | 203/2) | 2003/2) | 244/ | 284/ | 244/ | 285/
(An) + 123/00 | 123/0) | 23/ | 2003/2) | 23/2) | 2404/ | 28(4/2) | 244/2) | 28i5/2)
- (An) M3/00 | M0 | 2032 | 203/ | 212 | a4 | 28a/) | W4/ | N5/
d(An) 164/0) | 1814/0) | 244/2) | 2414/2) | 28/ | 285/ | XS/D | M5/ | RS/
dAn, xI* 184/0) | 184/0) [28i4/2) | 28i4/2) | 28a/2) | 30(5/2) | 325/2) | NS/ | 3446/
o W 16(4/0) 168(4/0) 24(4/2) 2414/2) 2414/2) 2Bi5/2) WS/ 28(5/2) M6/2)
o L 2005/00 | 25/0) | 2i5/2) | 285/ | WS/ | 36/ | M6/ | RN/ | W7/
AHPC) 1614/0) | 1814/0) | 24i4/2) | 244/2) | 24i4/2) | 2B(5/D) | 30M5/2) | 285/ | 325/
atPC, ix)® 18(4/0) 18(4/0} 284/ 28(4/2) 28i4/2) I5/2) Ri5/2) A015/2) 34(68/2)
oo 120/00 | 121300 | 203/20 | 2003/ | 23/ | 244/ | 2814/2) | 24442 | 2815/
'Tho s129 Of The naex reqister ix) Joes not arfect execulion 'ime
Table 7-8. Move Long Instruction Loop Mode Execution Times
Looo Continued | Looo Termnated
Vaiid Count, cc Faies Vaiid Count, cc True BN Expired Count
[Destination
Source (An) | {Aal+ | -(Am) | (Am (Ani+ [-(An) (An) (An) + - {An)
On 14(0/2) wory | - | 20022 2002/2 - 1812/2) 182/2) -
An 14(0/2) 40/ e 2002/ 202/2) - 18(2/2) 18(2/2) -
(A 212/2) N2+ 2842/2)] Bla/) 2814:2) 3014/ 2444/2) 244/ 28(4/2)
Ani « 202/2) »(2:2 | 242 | B4/ 28i4/2) 0(4/2) 24(4/2) 2444/ 28(4/2)
~iAn: 242,27 | 2421 2822 | 304D 3014/ 2) R4 | 28472 2604/2) 28(4/2)

~d

7.2.3 Standard Instruction Execution Times

The number of clock periods shown in Tabies 7-9 and 7-10 indicate the time required to perform the
operations, store the results, and read the next instruction. The number of bus read and write cycles
is shown in parenthesis as (r/w). The number of clock periods and the number of read and write

cycles must be added respectively to those of the effective address calculation where indicated.

in Tables 7-9 and 7-10 the headings have the following meanings: An= address register operand,
Dn = data register operand, ea= an operand specified by an effective address, and M = memory ef-

fective address operand.

Table 7-9. Standard Instruction Execution Times

Instruction Size op<es>, An**® op<ea>, Dn op On, <M>
ADD B8yts. Word 8{1/0) + 41/0) + 8(1/1) +
Long &1/0+ 8(1/0) + 1201/2) +
Bytes, Word - 4(1/0) + 8(1/1) +
AND Long - 6(1/0)+ 1201/ +
CMP Svts, Word 6(1/0) + 41/0)+ -
Long 8101+ 8(1/0) + =
Divs - - 122(1/0) + -
Divy - - 108(1/0) + -
EOR 8yte, Word - 41/0)** 8(1/1) +
Long - 81/0)°* 1201/2) +
MULS - - Q01/0+* -
MULU - - 4001/Q) + =
OR Byts, Word - 401/0)+ 801/ +
Long - 8i1/0) + 1201/2) +
suB Byte, Word 8(1/0) + 41/0)+ 8(1/1) +
Long &1/0) + 81/0) + 1201/ +
NOTES.

+ 30d effective address caiculation tme

-

indicates maximum vaiue

** only avariable addressing mode is data register direct
*** word or long oniy

Table 7-10. Standard Instruction Loop Mode Execution Times

Loop Continued Loop Terminated
Valid Count cc Faise Vaiid Count cc True Expired Count

00 <e8>,lop <sa>,| opDn, |op <ea>, |op <ea>.| o0pDOn, |op <ea>,jop <es>, opOn,
Instructon| Size An® Dn <o0> An® Dn <oa> An® Dn <e8>
ADD Bvyte, Wora 18(1/0) 18(1/0) 181/1) 283/01 2213/0) 203/ 2213/ 0(3/0) M3/
Ltong 2(2/0 22(2/0) 242/2) 28t4/0) 28(4/0) 3014/ 2} 26t4/0) 26(4/Q) 2814/2)
AND Bvts, Word - 1801/Q) 18(1/1) - 2(3/0 2(3/1 - 20(3/0) 263/ M)
Long - 212/0) 442/2) - 28(4/0) 04/ - 26(4/0) 2814/

cMP Byte. Worg| 12(1/0} 12(1/0) - 18(3/0) 18(3/0 - 18(3/0) 16i4/0} -

Long 18(2/0 18(2/0 - 2414/0) 2414/0) - 0(4/0 20(4/0) -
Byts, Wora - - 18(1/0) - - 213/ - - 2003/ 1)
%08 Long - - W2/2) - - 3044/2) - - 28(4/2)
Byte, Worg - 18(1,0) 18(1/0) - 2(3/0 203/ 1) - 0(3/0 2063/ 1}
OR Long - 2212/0) 24i12/2) - 2814/0) 044/2) - 264/0) 84/2)
Byte, Wora| 18(1/0) 16010 1801/ 1) 24(3/0) 223/0 213/ 1 2(3/0 013/0 203/
su8 Long 212/0 202/0 I 822 28(4/0) 28(4/0) W4/2} 28(4/0) 2414/0) 28i4/2)

*Word or long onty

<sa> may be (Ani, =(An). or -iAni only Add two clock penods to the tabie vaiue f <ea> s - {Ani

7-8

7.2.4 Immediate Instruction Execution Times

The number of clock periods shown in Table 7-11 includes the time to fetch immediate operands,
perform the operations, store the resuits, and read the next operation. The number of bus read and
write cycles is shown in parenthesis as (r/w). The number of clock periods and the number of read
and write cycles must be added respectively to those of the effective address calculation where in-

dicated. ’

in Table 7-11, the headings have the foilowing meanings: # =immediate operand, Dn=data
register operand, AN = address register operand, and M = memory operand.

Table 7-11. Immediate instruction Execution Times

Instrucoon Size 00 4. Dn op £, An op s M
Byte, Word 8(2/0) - 1202/ 1) +
Aooi Tong TA370) = 200372~
Byte, Word 41/0 41/00* 8(1/1)
ADOQ ong 81/0 8(1/0) 1201/ +
ANOI Byte, Word 82/0) - 122/1) +
Long 1443/0) - 2013/ +
Byte, Word 812/0! - 8200 ~
cMpt Long 12(3/0) = 1203/0) ~
ORI Syte, Word 8(2:01 — 1202/ 1) ~
ong 14(3/0) - 20(3/2) +
MOVEQ Long 41,0 - -
ORI Byte, Word 8(2/0) ~ 1202/ 0+
Long 1473/0) - 263/ +
Byte. Word 812/0) - 1202/ 1) =
susi
Long 14(3/C) = 2013/2) -
Syts. Word 41.0) 401,00° 8(1/1)
Susg Long Bia B 120172) =

+ ada effective address caKcuiation ume

* word onty

7.2.5 Single Operand Instruction Execution Times

Tables 7-12, 7-13, and 7-14 indicate the number of clock periods for the single operand instructions..
The number of bus read and write cycles is shown in parenthesis as (r/w). The number of clock
periods and the number of read and write cycles must be added respectively to those of the effec-

tive address calculation where indicated.

Table 7-12. Single Operand instruction Execution Times

[insmucion | Size Reguter Memory
N8cD) 1700 B/ +
Byts. Word «1/0) 81/ 1)+
NEG Tong &0 22
Byte, Word ®1/00 CEVATR®
NEGX Long &1/0) 1201/ +
Byts, Word 41/0) 801/1) +
NOT Lo &1/ 202+
Byte, Feise w1700 81/ 1+ °
Scc Byee, Troe w170 31/ 1+ *
TAS Byre «1/0) 142/ 11+ *
Byte, Word @170 «1/01
TST Long 41/0) §1/0 +

+ add etfective aodress caicuiation ume
*Use non-tetching effective address caiculation tme.

Table 7-13. Clear instruction Execution Times

Size DOn An {An} {An) + - {An} dAn) AN, ix}® o, W ox. L
Byte. Word | 41/0) - 8(1/1} 81/ 1001/1) 1202/ 1602/ 1} 12(2/1) 168(3/1)
£LA Long 6(1/0) - 1201/2) 1201/2) 141/2) 18(2/2} 22/ 16(2/2) 203/2)

* The size of the index reqister Lix} does not affect execution time.

Table 7-14. Single Operand Instruction Loop Mode Execution Times
Loop Continued Loop Termnated
Vaid Count, cc Faise Valid Count, cc True Expired Count

Instruction Size (An) | (Aa)+ - {An) {An} (An) + -{An) {An) (An} + -{An)
CLR Byte, Word| 100/ 1) 10/ 1) 1210/ 1) 18(2/1) 18(2/1) 20(2/0 18(2/1) 182/ 18(2/M)
Long 1400/2) 1440/2) 16(0/2) 2202/2) 212/2) 2402/2) 0(2/2) 2002/2) 2(2/2)
NBCD 3yta 181/ 18(1/1) 2001/1) 243/ 24(3/1) 203/ 2(3/1 22(3/1) 243/
NEG Bvte. Word| 18(1/1) 18(1/1) 18(2/2) 2203/1) 23/ 243/ 3/ (3/1) 23/
Long 242/2) 24i2/2) 28(2/2 30i4/2) 30(4/2) 3214/2) 28(4/2) 2Bi4/2) A0(4/2)
NEGX 8yte, Wora| 1&1/1) 18(1/1) 18(2/2) 13/1) 2(3/1) 24(3/1) 243/1) 23/ 213/ 1)
Long 2412/ 2412/2) 28(2/2) A4/} 0(4/2) 2(4/2) 28(4/2) 28(4/2) AN4/2)
NOT Byte, Wora| 1&1/1) 181/ 18(2/2) 2(3/1) 213/ 243/ 3/ 1 o3/ 213/
Long 242/ 2402/ 28(2/2) A0(4/2) AN4/2) 204/ 28(4/2) 2814/2) 30(4/2)
5T Byte, Word] 12(1/0) 12(1/0) 1401/0 18(3/0) 18(3/01 2(3/0 18(3/01 168(3/0) 18(3/Q
Long 18(2/Q) 18t2/0 2002/0¢ 24i4/0) 24(4/0) 26(4/0) 2014/0) 2A%4/0) 2204/0)

7-10

7.2.6 Shift/Rotate Instruction Execution Times
Tables 7-15 and 7-16 indicate the number of clock periods for the shift and rotate instructions. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of clock periods
and the number of read and write cycles must be added respectively to those of the effective ad-
dress calculation where indicated.

Table 7-15. Shift/Rotate Instruction Execution Times
instruction Sae Register Memory *
SR A Byte, ‘Word 8 + 2n(1/0) 8(1/1)+

ASE, A3k Long 8 + 2n(1/0) =
Byte, Word 8 + 2n(1/0) 8(1/1)+

Lan..Lat Long 8 + 2n(1/0) =
Byte, Word § + 2n(1/0) 801/1) +

RO, ROk Long 8 + 2n(1/0) .
Byte, Word 8 + 2n(1/0} 8i1/1) -

ROXA. AOXE Long 8 + 2n(1/0) -

+ 8ad effectrve address caiculation time
n 1s the snift or rotats count

* word only

Table 7-16. Shift/ Rotate Instruction Loop Mode Execution Times

Loop Continued Loop Terminsted
Valid Count, cc Feise Vaiid Count, cc True Expired Count
Instruction Size (An) (AN} + - (An) {An) (An)+ -{An) (An) T (An) + - {An)
ASR, ASL Word 1801/1) 18(1/1) 21/ 24(3/1) 243/ 1) 22(3/1) 21 | 2031 243/ 1)
LSR, LSL Word 1801/ 1) 18(1/1) 2001/1) 2443/1; 243/ 28(3/1) 2(3/1) 22(3/1) 24(3/1)
ROR, ROL Word 18(1/1) 18(1/1) 2001/1) 243/ 1) 243/ 1) 28(3/1) 203/1) 213/1) 243/ 1)
ROXR, ROXL!{ Wora 1801/1) 18(1/1) (11 243/1) 24(3/1) 28(3/1) 2(3/1) 22(3/1 2403/

7.2.7 Bit Manipulation Instruction Execution Times

Table 7-17 indicates tha number of ciock periods required for the bit manipuiation instructions. The
number of bus read and write cycles is shown in parenthesis as (r/w). The number of clock periods
and the number of read and write cycies must be added respectively to those of the effective ad-
dress calculation where indicated.

Table 7-17. Bit Manipulation Instruction Execution Times

[7 5 Dynamic Statc
I ;

an Regster Memory Registar [Memory

8CHG Byte - 801/ + - 1212/ 1) +
Long 81,00* - 1212701 -

3CLR Bvte - 1001/1) - - 14(2/1) ~
Long 1001/0)* - 14(2/0)* -

8SET Syte - 8(1/1) + - 1202/1) -
Long 8(1/0)° - 12(2/01* -

8TST 3vte - 41/01 + - 8(2/0) +
Long 81/01% - 10(2/0) -

+ add effective address caicuiation tme
* indsicates maximum value

7.2.8 Conditional Instruction Execution Times

Table 7-18 indicates the number of clock periods required for the conditional instructions. The
number of bus read and write cycles is indicated in parenthesis as (r/w). The number of clock
periods and the number of read and write cycles must be added respectively to those of the effec-

tive address calculation where indicated.

Table 7-18. Conditional Instruction Execution Times

Instruction Displacement Branch Taken Branch Not Taken
Bce Byte 10(2/0 6(1/Q)
Word 10(2/0 1HZ/0
Byte 1012/0) -
BRA Word 10(2/01 =
Byte 1812/2) ~
oA Word 182/2) =
CC trve - 1002/0)
OBcc CC foise 1002/01 1613/01

+ add effective address caiculation time
*indicates maximum vaiue

7.2.9 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Tabie 7-19 indicates the number of clock periods required for the jump, jump-to-subroutine, load ef-
fective address, push effective address, and move muitiple registers instructions. The number of

bus read and write cycles is shown in parenthesis as (r/w).

Tabie 7-19. JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Instr Size (An) {An) + - {An) An) [dAn, ix)+{ oW xxx, L APC) | APC, ix)*
JMP - 8i2/0) - - 1042/0) 14(3/Q 102/0 12(3/0) 10(2/0) 1443/0)
JSR - 1612/2) - - 18(2/2) 2(2/2) 18(2/2) 20(3/2) 18(2/2) 2(2/2)
LEA - 401/0) — = 8(2/0) 12(2/0) 8(2/0) 1203/0) 8(2/0) 12(2/0)
PEA - 1201/2 - - 16(2/2) 202/2) 18(2/2) 03/ 18(2/2) 2002/2
Word 12+4n 12+ 4n - 18 + 4n 18+4n 18+4n 20+4n 16+ 4n 18+4n
MOVEM (3+n/0) 13+n/0) i4+n/Q) | 4+n/00 | 4+n/01] 5+0n/0) | (4+n/0) | (4+n/0)
M=—=R Long 12+8n 12+8n - 18+8n 18+8n 16+8n 20+8n 16+ 8n 18+8n
3+2n/Q0) | '3+ 2n/0} 4+2n/0) |(4+2n/0) | 14+2n/0) | (5+2n/0) | (d+2n/0) | (4+2n/0)
Wora 8+4n - 8+4n 12+4n 14+ 4n 12+4n 18+4n - -
MOVEM 12/m 12/m (3/n) 3/n) 13/n) (4/n} - -
R—=M Long 8+8n - 8+8n 12+8n 14+8n 12+8n 16+8n - —
12/2m - 12/2n) i3/2n) 13/2n) (3/2n) (4/2n) - -

n1s the number of reqisters 10 move
*:s the size of the index register 'ix) does not affect the instrucuon’s execution ime

7.2.10 Multi-Precision Instruction Execution Times

Table 7-20 indicates the number of clock periods for the multi-precision instructions. The number of
clock periods includes the time to fetch both operands, perform the operations, store the results,
and read the next instructions. The number of read and write cycles is shown in parenthesis as

(r/w).

In Table 7-20, the headings have the foilowing meanings: On=data register operand and

M = memory operand.

Table 7-20. Muiti-Precision Instruction Execution Times

Loop Mode

Continued Terrninated
Vaiid Count, | Vaiid Count, Expired
Non-Looped cc Faise cc True Courrt

Instruction Size op On, Dn op M, M*

ABD 8yte, Word 41/0) 18(3/10) 20U 28(4/1) 28(4/1)
Long 6(1/0) 30(5/2) R04/2) 3816/2) 3B(6/2)
i 8yte, Word - 12(3/0) 14(2/0) 20(4/0) 18(4/0)
Long - 2005/0) 2414/0) 30(6/0) 26(6/0)
susx Syte. Word 2170) 183/ 2201 2847 1) §(¢/ i
Long 8(1/0) 0(5/2) 204/ 38(6/2) PGk
ABCD 3yte §1/0) 18(3/1) 242/ 1) 3004/ 11 2804/ 1)
SBCD 3yte 81/0) 1837 1) 2427 1) 04/ 1) 284/ 11

* Source and destnaton sa s (Anl+ for CMPM and - {An) for ail others.

7-13

7.2.11 Miscellaneous Instruction Execution Times

Table 7-21 indicates the number of clock periods for the following miscellaneous instructions. The
number of bus read and write cycle is shown in parenthesis as (r/w). The number of clock periods
plus the number of read and write cycies must be added to those of the effective address caiculation
where indicated. '

Table 7-21. Misceilaneous Instruction Execution Times

Register— Source®* —

Instruction Size Register Memory Destination® * Register
ANDI to CCR - 168(2/0) - - -
ANDI to SR - 16(2/0) - - -
CHK — 81/0 + - - -
EOQRI to CCR - 18(2/0) - - -
EOR!I 10 SR - 1812/0} - - -
EXG - 6(1/0) - - -
Word 41/01 - - -
ExT Long 401/0 - - -
LINK - 18(2/2) - - -
MOQVE from CCR - 401/0) 81/} +* - -
MOVE to CCR - 12(2/0) 1212/0) + - -
MOVE from SR - 41/0) i/ N+ - -
MOVE to SR - 12(2/0) 1212/01 + - -
MOVE from USP - 8(1/0) - - —
MOVE to USP - 6(1/0) - - -

MOVEC - - - 10(2/Q) 12(2/0)

Word - - 18(2/2) 16(4/0)

MEWEF Long - - 2424 24{6/0
NOP - 41/0) — - -
OR! to CCR - 18(2/0) — - —
ORI 10 SR - 16(2/01 - - -
RESET - 130(1/0) = - -
ATD - 18(4/0) - = =
Short 24(6/0) - - =
ATE Long, Retry Reaa 112(27/10) - - -
Long, Retry Wnte 112126/ 1) - - =
Long, No Retry 110126/ 0} - - -
RTR - 20(5:0 — - -
RTS - 168(4/0) - - -
STCP - 4(C/Q) - = -
SWAP - 41/01 - - -~
TRAPV = 41/01 £ = —
UNLK - 12(3/0} = &= -

~ add eflfecuve aadress caicuiaton ume
1S
use non-fetching effective agaress calcuiaton time.
Sourcs or destination 's 3 memory iocaton 1or the MOVEP instruction and a control ragister for the MOVEC instruction.

7.2.12 Exception Processing Execution Times

Table 7-22 indicates the number of clock pericds for exception processing. The ~umber of clock
periods includes the time for ail stacking, the vector fetch, and the fetch of the first two instruction
words of the handler routine. The number of bus read and write cycles is shown in parenthesis as
(r/w).

Table 7-22. Exception Procassing Execution Times

Exception
Agadress Error 126(4/26)
Breakpoint Instruction * 42(5/4)
Bus Error 128(4/28)
CHK instruction® * 44(5/4) +
Oivide By Zero 42(5/4)
ilegal instruction 38t4/4)
interruot® 48(5/4)
MCVEC. liiegai Cr** 48(574)
Prvilege Violaton 38(4/4)
Reset® * * 40(6/0)
RTE. liegal Format 50(7/4)
RTE. llegar Rewvision 70(12/4)
Trace 38(4/4)
TRAP Instruction 38(4/4)
[TRAPV instruction 40(5/4)

- 3dd etfective acdress caiculatuon tmae.
* The ntefrupt acxnowledge and Dreakpoint Cycles are as-
sumed !0 lake 'our C!oCck penods
* ®'naicates maximum vaiue
***inaicates the "me from when RESET and HALT are first
sampied 3s neqated 10 when ‘NSIruction Axecution Starts.

SECTION 8

ELECTRICAL SPECIFICATIONS

This section contains electrical specifications and associated timing information for the MC68010.

8.1 MAXIMUM RATINGS

Rating Symboi Value Unit
Supply Voitage vee -031t0 +7.0 v
Input Volitage Vin -0.3t0 +7.0 \
Operatung Temperature Range TLwo TH
MCE8010 Ta 0t 70 °C
MCB8010C ~40 10 88
Storage Temperature Tsg -55 10 150 ®L
8.2 THERMAL CHARACTERISTICS
Charscteristic Symboi Vsiue R:n‘ng
Thermal Resistance
Ceramic 0
Plasuc with Heat Spreader LETN 0 °C/W
Type B Chip Carner 50
Type C Chip Carner 50

8.3 POWER CONSIDERATIONS

The average chip-junction temperature, T, in °C can be obtained from:

TJ=TAa+(Pped a)
Where:

Ta =Ambient Temperature, °C
6 A = Package Thermai Resistance, Junction-to-Ambient, °C/W

PD=PINT+PI/O
PINT=ICCx VCC, Watts — Chip Internal Power

This dewvice CoNtains Circuitry 10 Protect the
inputs against damage due to high statc
voitages or siectnc fisids; however, it is ad-
vised that normal precautions be taken to
avoid application of any voltage higher than
maximum-rated voltages to this high-
impedance circuit. Refiabiity of operation is
enhancad if unused inputs are tied 10 an ap-
propniate iogic voitage ievel (8.g., either Vg3
ar Veg).

(n

P1/Q = Power Dissipation on input and Qutput Pins — User Determined
For most applications Py 0 < PINT and can be neglected.

An approximate relationship between P and T Uf Py, Q is negliected) is:

PO=K = (T +273°C)

Solving equations 1 and 2 for K gives:

K=Tpe(Ta~273°C) ~ g aePp2
Where K is 3 constant pertaining to the particular part. K can be determined from equation 3 by
measuring PD fat equilibriumi for a known T A Using this value of K the values of Pp and T can be
obtained by soiving equatons (1) and 12) iteratively for any value of Ta.

81

(2)

(3

The curve shown in Figure 8-1 gives the graphic solution to these equations for the specification
power dissipation of 1.50 and 1.75 watts over the ambient temperature range of —85°C to 125°C
using a A of 45°C/W for the ceramic (L suffix) package.

2.2 I
20 \\
S8 =
=
éls\\ \.\;25%
2 =
s \{ 4 19 \\
S1a ’*"’?-5% =
=
1.2 T —
1.0
-55 -40 0 25 70 85 110 128

Ambient Tempersturs (Ty) — °C

Figure 8-1. MCB8010 Power Dissipation (Pp) vs Ambient Temperature (Ta)

8.4 DC ELECTRICAL CHARACTERISTICS
(VCC=5.0 Vde +5%; V§s=0Vdc; TA=T| to TH; see Figures 8-2, 8-3, and 8-4)

Charactansoc Symbot Min Max | Unit
Input High Voitage Vin 2.0 vVee v
input Low Yoitage Vig vg5-03,) 0.8 v
'nput Leakage Current @ 5 25 V 3ERR, BGACK. 8A. OTACR.
CLK, [PLB-PTZ, VPA B - 25 | pA
HALT, AESET] - X
Three-State (Off State) input Current @ 2.4 V/0 4 V A5, A1-A23. DO-D15,
Fco-rc2, (03, R/W, O3, VMA] TSI - D |
Qutput Figh Voitage tigp = — 400 wA) E* Vee=0.75| -
€** AT, A1-AZ3. BG, 00-015.] Vou v
FCO-FC2, (D3, R/W, JU3. VMA 2.4 -
Qutput Low voitage
dgL=1.6mA) HATT]| - 0.5
0L =3.2mA) A1-A23, G, FCO-FC2 - 05
oL =5.0mA) RESET] VoL - 05 | v
oL =53mA £, A%, 00-015, (B3, R/'W - 35
U035, VMA
Power Dissipation (See Section 31** Pp - - w
Capacitance (Vin=Q WV T4 =25°C, Frequency =1 MHzI®** * Cin - 200 | pF
*With external puilup resistor of | 1 Q.

* *Without externai puilup resistor
* * *Sunng normai operation instantaneous VCC current requirements mav be as ligh as 1 5 A,
® ¢ * *Capacitance is penodicaily sampied rather than 100% testeq.

82

+5V
9100
RESEY

»

120 pF

Figure 8-2. RESET Test Load

CL =120 pF
lInciudes a¥

R =6.0 k@ for
'XS. Al-AZ3,

FCO-FC2, IS, R/W, U03, VMA
*R=122 10 for A1-AZ3, BT,

FCO-FC2

Test
Point

Parasitcs)

BG. Do-018, €

HAL

+5Vv

MMOD6150
or Equivalent

Figure 8-4. Test Loads

R.=7400

29xQ

I

Figure 8-3. HALT Test Load

MMOD7000
or Equivaient

8.5 AC ELECTRICAL SPECIFICATIONS — CLOCK INPUT (See Figure 8-5)

8 MMz 10 MMz 12.5 MHz X

Characterisdc Symbol e [Max | Min | Max | Min | Max | U™
Frequency of Operstion f 20 | 80 | 2.0 | 100 40 | 12.5 | MHz
Cycle Time teve 126§ 500 {100 { 500 | 80 | 250 | ns

) cL % | 20| % | 20| B | 125
ok PaeiNidt 'Ch 55 | 20| 6 | m0| % | 15| ™
, tCr - 10 - 10 - 5
Rise and Fait Times il _ 10 _ 10 _ 5 ns
-t teve
et ———f L—— ICH

20V
o.sv-/

(ol —— premmrm— — —]

Figure 8-5. Clock Input Timing Diagram

83

_

8.6 AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES
(Vcc=5.0Vde +5%; V§s=0Vdc; TaA=TL to TH; see Figures 8-6 and 8-7)

. 8 MMz 10 MHz | 12.5 MHz .
Num. Charactenstic Symbol " T Max | Min | Max| in | Max] U™
1 | Clock Penod teve 126 | 500 | 100 | 500 | & | 250 ns
2 [Cloek Width Low 1cL 35 1 250 46 | 20| B | B ns
3 [Clock Width High ICH 55 | 250 | 46 | 250! 3B | 125 ns
4 | Clock Fall Time ot - 10 - 10 - 5 ns
5 |[Clock Rise Time tCr - 10 — 10 - 5 ns -
5 | Clock Low to Agdress Vand tcrav | - 70 - 35 | - 3 ns
84 | Clock Hign to FC Vand WCHFCY | — 70 - 60 -] ns
Hi A
% Ch:;n &l;ganismsamfmi CHAZx | = | 80 | - | 70| - | 60 ns
s Cl?::.n);:?:n:)o Address/ FC Invaiia tcHAzZn | O _ o _ 0 _ - .
9! [Clock High 1o A3, DS Low ‘Maximum) tcHSix | - | 80 L - | 5 55 ns
10 [Clock Hign to AS, DS Low (Minimum temstn | O - 0 - a - ns
112 Ac::or:s/sA_vsat(nsv::;S, OS (Reaq) tavsL | 2 _ 20 _) _ 64
1142 FCLZ‘T;"A—‘S"";Z‘;S e wcvsL | 80 | - | 0| - | 0] - ns
121 [Clock Low 10 AS, TS =ign torsp | - {0 - 15 -~ 1 % ns
132 [AS, OS High to Adaress/FC nvand tquaz | 0 | - 120] - [w] - ns
144 [A3, 3S wigth Low (Reagl, AS (Wnitel tsy j2e0! - 1w - |we0| - ns
14AZ |03 Wiath Low (Writel - 1185 - 35 — 30 ~ ns
152 |AS, TS Wigth =ign ey 11| - Jios | - [88 | - ns
16 |Clock High to AS, 33 =ign 'moedance tcqsz | - 1@ [- | 70 80 ns
172 [AS 3OS Hign 0 AVW ~ign ISHAH | %0 = 20 . ‘g = ns
18! |Clock Hign tg A/W Hign :Maxmum tCHRHx | = | 70 | - | 5 - | 80 ns
19 [Ciock High 10 3/ ~ign - Mimimum) tCHRHN | 0 - 3 — 3 - ns
207 [Clock Rign o 3/W Low WwHRL |~ {0 [- |80] - | & ns
20AZ [AS Low 0 R/W Vaud sy | - 1 20 | - 2] -1 2 ns
212 [Aqdress Vaud 10 R/ W Low tavRy | 20 | - 0 - 3 - ns
21A< | FC Vand 10 R/ W Low tecyRy | 60 - 50 - X0 - ns
227 [R/W Low 10 DS Low 'Write) s, | 0] - o} - [®) ~ ns
23 | Clock Low to Data Out vang W0CLpo | - 70 - 5 - g8 ns
i - t k v
2 “?ﬁ;n MG By . TR wenpz | = | o | =] 0| -8 | ns
252 (B3 rign to Data Sut invaig sHpQ | X | - (20] - i - ns
262 |Cata Oul vaud '0 D5 .ow Woite! | ‘ngsy | X® = 20 - 5 - ! ns =
P Cata In 1o Clocx ow :Setup Timel tDICL 15 - 10 - i0 -~ s
27A jLate 3ERR Low 'c J.ocx _Ow .Setup Timel BELCL | 98 ® 45 - 45 - ns
8L [AS O3 High (0 OTAGK migh tSHpAR| O | 245 1 0 [w@0] 0 | %0 ns
29 [CS ~ign 0 Sata nvang imaid Timer 1SHO| 2 - 1 - 3 - ns
0 'AS IS ~ign 0 3EAR =ign ftgHgen | 0 | = 1 f = [0 | - i »ns
3143 10TACK Low 10 Sata vand (Setup Time WALDI | = [%0 | - |8 | -~ | s
32 (HAL: and AESET nput Transition Time RHr ¢ 0 O 1200 0 J220] 0 |2 ns
33 Ciock Hign 0 3G ow ltmgL . — | 0 | = [0] -~ [30 | ns
34 Clock =ugn 10 3G ~ign CHGH | = 0] - 8| - | 50 i ns
35 (2R Low 10 3G wow BALGL | !5 | 35] 15] 35] 15 | 3.5 ICKk Per.
36 [3R High 10 8G ~gn tRAHGH | '3 | 35 [15] 35] 15| 35 ICk. Per
37 |3GACK _ow '0 3G =ign IGALGH | 5 [33 [15130 "5] 3.0 [Ck. Per

- Contnued

@
$u

.6 AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES (Continued) |

8
(Vce=5.0Vde £5%; Vss=0Vdc; TA=TL to TH; see Figures 8-6 and 8-7)
. - 8 MHz 10 MHz | 12.5 MHz)

Num, Eharscseistic Symbol e T Max | Min | Max | Min [Max] ™
A @ﬁt‘ﬁﬁlﬂm gekeR| 0 | - |20 | - | 20| - ns
T T wl-|o]|-|[»]-[=]=
3 [8G width High tGH 150 — [15] - [15] -~ [ck. Per
40 | Clock Low to VMA Low cvme] — 0 - 170 - [70 ns
41 | Clock Low to E Transiton cLe - | 70| - | %} - | 4 ns
42 | E Output Rise and Fall Time tgr, f - 28| -1 5] - ns
43 |VMA Low to E High tyMLEH | 200-] - [150] - | 90 - ns
4 |AS, DS High to VPA High tsHyP | 0 1120] 0 [0} o [70 ns
45 |E Low to Address/VMA/FC invaiid wal | 0| - w0l -11w0]- ns
4@ |BGACK Width Gl | 151 = | 15| = | 16| ~ |Ck, Per.
479 | Asynchronous Input Setup Time tagt |20 | - 120] -12]- ns

432.3[BTACK Low to BEAR Low toatger] - | 80 | - [6] -] 35 ns
49 |E Low to AS, DS Invaiid st |-80| - |-80f - [-80] - ns
50 | € Width High tEH & | - |B0 ! - | 280 | - ns
51 |E Width Low e} 70} - |S50 | - {40 | - ns
52 |E Extended Risa Time tegnx | - (80 | - tso | - [0 ns
53 |Data Hoid from Clock High tcHpg | 0 - o] - [*] - ns
54 |Data Hold from € Low (Wnte) teLpoz | X ~- 20 | - 15 - ns
55 |R/W to Data Bus Impedance Change taLpg | 0 ~ 20 - 0 | - ns
565 [HALT/RESET Pulse Width WRPW | 10 | = | 10 | - | 10 | = |Cik. Per

NOTES:

1

2
3
4

5.

. For a losding capacitance of less than or equai to 50 pcofarads, subtract 5 nanaseconds from the values given in these columns.
. Actual vaiue depends on clock penod.

In the sbsencs of DTACK, BERR is an asynchronous nput using the asynchronous input setup time (£47)

. For power up, the MPU must be heid in RESET state for 100 ms to allow stabiization of on-chip circuitry. After the system is
powered up, 758 refers 10 the MNIMuM puise width required 1o reset the system.

If the 8SyNChronous satug time (#47) requirements are satisfied. the DTACK-low to data setup time (#31) and DTACK-low to BERR-
iow setup time (#48) requirements can be ignomed. The data must only satisty the data-in to clock-low setup time (#27) for the
following clock cycle. SERR must only satisty the late-BERR-low ta clock-low satup time (#27A) for the following clock cycle.

Timing diagrams (Figures 8-6 and 8-7) are located on
foldout pages 1 and 2 at the end of this document.

8.7 AC ELECTRICAL SPECIFICATIONS — MC88010 TO M6800 PERIPHERAL CYCLES
(Vec=5.0Vde £5%, V§s=0 Vde, TA=T_ to TH, refer to Figures 8-8 and &-9)

. 8 MHz 10 MHz 12.5 MHz ;

Num. Characteristic Symboi Nin T Max | Mo T vax T T vax Unit
23 | Clock Low to Data Cut Valid Wewo | -~ | 0 - 5% | ~ | % ns
24 cx%“agm :\Q:Ida nce ICHRZ | - 0 - 70 - 80 ns
27 |Oata in 1o Clock Low (Setup Timael 1DICL 15 - 10 - 10 - ns
40 | Clock Low (0 VMA Low tcLyML] = | 70 | — | 70 | = | 70 ns
41 | Clock Low to E Transition cLe - 70 - 35 - 45 ns
42 | E Qutput Rise and Fail Time g £f | — 25 - 25 - 25 ns
43 [VMA Low to E Migh WMIER [200 | ~ [50 | - £ - ns
44 [A3, D3 High 1o VPA High tsuveW | 0 [1201 0 [0] 0| 70 ns
45 | E Low to Address/VMA/FC invalid teLAl | X0 - 10 - 10 - ns
47 | Asynchronous input Setup Time tAS1 2 - 20 - 20 - ns
49 |E Low to AS, DS Invaiid tELg) | -80(- [-80] - |-80] - ns
50 |E Width High tEH & | - |60 - 28| - ns
51_|E Width Low g, | 700 | - |50 | - | &0] - ns
52 | € Extended Risa Time ICIEHX | = - 80 - 80 ns
54 |Data Hoid from E Low (Wntei 100z | 0 - 0 - 1% - ns

These waveforms shoulid only be referenced in regard to the edge-to-edge measurement of the tim-
ing specifications. They are not intended as a functionai description of the input and output signals.
Refer to other functional descriptions and their related diagrams for device operation.

SC S1 32 S3 S4 w w w w W w w w w w w w S5 36 s$7 30

c~xwmwm
| |
e | |

T o
, —— O —T &
IR ® T
' v

[
i i ; ;
~H® ; |

®

A1.A23 -

L~
r— 27)

D33 M= = = = { :___ >~

Figure 8-8. MCB8010 to M6800 Peripheral Timing Diagram — Best Case

8-6

L8

SO SV S2 S3S4 w w w w w w
CLK

T\

wwwwwwwwwwwwwwwwwwwwwwwwSﬁSﬁS?

SO

VPA

Tel<

VMA *_@__>

2

)

Data Out ——————4

Téle 1t

Data tn——

Figure 8-9. MC68010 to M6800 Peripheral Timing Diagram — Worst Case

8.8 AC ELECTRICAL SPECIFICATIONS — BUS ARBITRATION
(Vcc=5.0Vde +5%; Vss=0 Vdc; TA=TL to TH; see Figure 8-10)

i 8 MHz 10 MHz 12.5 MHz :
Num. [7 Charactaristic Symbol (YT v P v vy v v Unit
33 | Clock High to 8G Low tweugL | - | 700 - (80| ~ [50 ns
34 |Clock High to 8G High WCHGH | — | 70| - | 80 | - | %0 ns
35 [BR Low 10 8G Low tgRLgL| 1.5 [35 [15[35] 15[3.5 [Clk. Per.
36 |BR High to 3G High tBRHGH| 15 | 3.5 [1.5 [35| 1.5 35 [Ck. Per.
37 |8GACK Low to 3G High tGALGH| 1.5 [30] 1.5] 30| 15| 3.0 {Cik. Per.
B8R Hi
W | b Remt BGkBR| 0 | = | 0| - | 20| - | ns
SR e Gz |- |0 | -0~ 6| n
39 [BG Width High GH | 15| - |15 = | 16| — [Ck. Per.
46 {BGACK Wigth 18GL 165 | ~ 151 - 15| - [Clk. Per.

These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim-
ing specifications. They are not intended as a functional description of the input and output signals.
Refer to other functional descriptions and their related diagrams for device operation.

l | GTA— e () ———
5\ L I |
! ! 4 — l ;
== 7 |
—— B |
3% L% ; ___f_
BB .
NOTES

Setup tume for the asynchranous inputs BERR, BGACK, 3R, DTACK. PL3-1PL2, and VPA guarantees their recagmition at the next

‘alling edge of the clock
2. Waveform measurements for ail inputs and outputs are soecitied at: logic Nign = 2.0 voits, logic-low =0 8 valts.

Figure 8-10. Bus Arbitration Timing

3-8

SECTION 9

ORDERING INFORMATION

The section contains detailed information to be used as a guide when ordering the MC88010.

9.1 STANDARD MC88010 ORDERING INFORMATION

Package Type

Ceramic
L Suffix

Plastiz with
Heat Spreader
G Suffix

Type B Leadless
Chip Carrier
2B Suffix

Pin Grid Array
R Suffix

*Contact factory for avaiability of the Type C Leadless Chio Carner (ZC Suffix)

Frequency
(MHz)

8.0
8.0
10.0
10.0
12.5

8.0
10.0
12.5

8.0
10.0
12.5

8.0
10.0
12.5

Temperature

0°C to 70°C
~40°C to 85°C
0°C to 70°C
—~40°C o0 85°C
0°C to 70°C

0°C to 70°C
0°C t0 70°C
0°C to 70°C

0°C to 70°C
0°C to 70°C
0°C to 70°C

0°C to 70°C

0°C to 70°C
0°C to 70°C

9-1

Order Number

MCB8010L8
MCB8010CL8
MCB88010L10
MCB8010CL10
MC6E8010L12

MC88010G8
MC88010G10
MC88010G12

MC88010ZB8
MCE8010Z810
MC88010ZB12

MCB8010R8
MCB8010R10
MCB8010R12

Maximum Pp
{Watts)

FARBRE

328 Hag

888

9.2 “BETTER” PROCESSING — STANDARD PRODUCT PLUS

Level | (Suffix X)
® 100% temperature cycling per MIL-STD-883A. Method 1010, ten cycles from —-25°C to

+ 150°C.
® 100% high temperature functional test at TA max.

Leve! Il {Suffix D)
® 100% burn-in to MIL-STD-883A test conditions equivaient to 168 hours at + 125°C.

® 100% post burn-in dc parametric test at 25°C.
Level I (Suffix DS)
® Combination of Levels | and Il above.

When ordering the “BETTER" processing, identify the level desired by adding the appropriate suffix
(indicated above in parenthesis) to the end of the part number.

M C6?01OC1.SDS

MC88010 J
Family Designation

Temperature Range
Blank =0°C to 70°C
C= ~40°C 10 856°C

Package Type
L Ceramic
G Piastic with Heat Spreader
ZB Type B Leadless Chip Carrier
ZC Type C Leadless Chip Carrier

9-2

SECTION 10
MECHANICAL DATA

This section contains the pin assignments and package dimensions for the 64-pin dual-in-line and
chip carrier versions of the MC88010.

10.1 PIN ASSIGNMENTS

64-Pin Dual-in-Line Package Chip Carrier

BTACR- 80g =013

101

68-Terminal Pin Grid Array

!
N

Pin Number Function
Al Do Not Connect
A2 A3
A3 D1
A4 02
A5 04
A6 05
A7 07
A8 o8
A9 [o2ls}
A1Q o
a1 &CK
82 oS
83 uos
84 [0 ¢]

85 [ox]
36 06
87 o]
88 on
89 213
810 015
1 8GACK
c2 3G
3 /W
c8 013
o] AZ23
10 A22
o} 8R
02 vee
o] vss
010 A21
3 CLX
£2 vss
€39 vee
E10 A0

RRRRAARAA

L

10-2

v

.

~
-
oJoJolcJoloJolefoo!
-

QOPREREROOE

@O QeC
B ROJO) @O

@ @ Bottom @ @

@ view @O

@6 0JO)

02020 QOO

oJoJolololelelololo)
s OOOROEREOOO

N,
] ? b] $ [I § 9 0

Pin Number Function

F1 HALT

F2 RESET

=] A18

F10 A9

G1 VMA

G2 VPA

G9 A1S

G10 A7

w1 E

H2 P02

H3 wu

H8 A3

k] A12

H10 A16

J BERR

J2 L0

J3 FC1

J4 Do Not Connect

J5 A2

6 AS

J7 A8

8 Al1Q

J9 All

J10 Al4

X1 Do Not Connect

X2 FC2

K3 FCO

X4 Al

K8 A3

K6 Ad

K7 AB

¢ A7

[$:] A9

X 10 Do Not Connect

10.2 PACKAGE DIMENSIONS

L SUFFAX

CERAMIC PACKAGE
CASE 748-01

G SUFFIX
PLASTIC PACKAGE
CASE 75401
OAA AT " ik A
1T
.
. o
oY ——
—=4 L
g ‘

0o ™

I)

-0

-«m—-

10-3

NOTES:
1. QIMENSION KIS DATUM.
2. POSITIONAL TOLERANCE FOR LEADS:

[fenunnel (1o

1 [T]15 SEATING PLANE.

4. DIMENSION “L" TO CENTER OF LEAOS
WHEN FORMED PARALLEL.

& DIMENSIONING ANO TOLERANCING PER

ANSI Y14.5, 1973,

38

AN i
X T 234 418101007 0.168
T BR: ALRE Y 1
(] = 100 - 100
O SRR T T VT

NOTES:
1. DIMENSIONS A ANG § ARE DATUMS.

2 (1] 1S SEATING PLARE.

3. POSITIGNAL TOLERANCE FOR LEADS (DIMENSION O3
(Azcne B[4 B[4 &

4. OIMENSION L TO CENTER OF LEADS WWEN FORMED PARALLEL

S DIMENSION 8 DOES NOT INCLUDE MOLD FLASH.
& ONMENSIONING ANO TOLERANGCING PER ANSI Y14.5 1973,

|MILLIMETERS| INCHES |
|ovee] uln TMAX | WiN_| MAX
11§ L4181]

n) (1]
| se| 4T
]80T [t

FIANR AN BELE

:
i

| Fr
F
1:

_jo]»

284
.20

E}
ol
ol
8
=
=2
o)

38 8SC 1.908 8SC

-

2'2
[
N | 05t | 101[000 G0

2B SUFFIX
TYPE 8 LEADLESS

CHIP CARRIER
CASE 760A-01 = 2
. ot
I 3 £ T
$ 7 I “”’y’m,_r
Y T T P
) H iR
| { ’ ; H
! []
! | |
L ! a3 1
: 2 i E / NG
5 A i
— e Neet = [- ——G
_— — —
2C SUFFIX
TYPE C LEADLESS
CHIP CARRIER
CASE 78001 = . ,
e, —— - —
N | ':g\“:‘ e g
i T 3 “ .
: H g
i , ! z
| ! s | 8
: T
) £ g;x .
e g u LEC R R s
A— —c—
R SUFRX
PIN GRID ARRAY
CASE 785A-01

i
|

NQTES:

1. DIMENSION A IS DATUM (2 PLACES).

2[Ths GAUGE PLANE.

3. POSITIONAL TOLERANCE 08
TERMINALSID): 68 PLACES
RSB0 G [TAR]

4. JIMENSIONING AND TOLERANCING
PER ANSI Y14.8 1973

§. DIMENSION K PROVIDES THE SI1ZE FOA

80TH THE PAD LENGTH AMD THE
THREE CORMER NOTCHES

MILLIMETERS[inCHES |
(O] MiN T MAX [WIN | MAX
A D E [2443 10438 382
§ 11574 11849 70, j"@j
[.08 G130
D oM .39 10,033 10.039 1
F1 130 741 10, 0,095
127 BSC Bs08sc_ |
1 40 | 0.060
T4 2 45 0.088
R 17383 | 2643 | 0938 | 0961

NOTES:

1. DIMENSION A (S DATUM (2 PLACES).

2 (TS GAUGE PLANE.

1 POSITIONAL TOLERANCE FOR
TERMINALS{D): 68 PLACES

SO0 @IT ADIA

4. DIMENSIONING ANO TOLERANCING

PER ANSI Y14.8, 1973

!' LMILLIMETERS] _ NCHES |

OIM{ MIR | MAX MiIN MAX |
A 8 4 038 0%
W 1836 1848 10600 050
TCT23 7 308 Taosd 10170
[T 6% T30 To0d Taged
T 241_.0.07% (0.098
i ¥
7182 1 153 10040 0.060
1178 1 72 10090 0090
158 2443 0330 10.962
NOTES.

t. POSITIONAL TOLERANCE FOR
LEADS (88 PUCESJ_:_
;918 .0.13 {2.008} (2]

2 OtMENSIONING ANMO
TOLERAMCING PEA ANS:
Y148 1971

[TweLimeTERST incues

(OH MM MAX MiN MAX
LA 1841 2743 1060 1 080
T RO Q% 08

AL RIS T30
83T 380 3050 10024]
TR TR 1 \
LSS RN T BN
SLRBEE RS ML AR S
I 854 1538 0817 T IEI8
RS REYT) 12 3820
AN BEF 7

$1 S2 S3 S4 S5 S8 S7

&
L@

f

A1-AZ3 j_—.

8—!-" r— o @—4-1 [t
8 - g\14/‘
33 __}f N s
- > — ‘_'
12 e J
0Db3/T03 1 £

FCO-FC2

Asynchronous
Inputs
(Note 1}

HALT/RESET 'F

j__
o ——

3ERR/BR \

‘Note 2)

F

DTACK

—
@)

—~a)—> (2)—>

- -4

Datain = == = = = = = m — e = e = e = e

) : 48“ 4———(:}—1
BEFR (Note 4) N N\

NQOTES
' Setuo lime for the asynchranous nouts iPLC/ 2. PLT. ang VPA guarantees hew recogmuon at the next faling edge of the clock
2 37 need tail at this sme ontv 1N orger 'Q INSure oeing recognized al the 2nd of this bus cvcle
3 Timing measurements are referenced 10 and from a 1ow voitage ot O 8 voits ana a tigh voitage of 2.0 voits. uniess otherwise noted
4. The trming for the first falling eage (47) of 3ERR are for BERR without DTACK, :he timings ror the sacond failing edge (27A and 48)
are for SEAR with STACK

Figure 8-6. Read Cycle Timing Diagram

Foigout

These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim-
ing specifications. They are not intended as a functional description of the input and output signals.
Refer to other functional descriptions and their related diagrams for device operation.

S0 S1 S2 S3 S4 S5 S6 s7 SO

w Ay £ & /Y S/
== @

A1-A23

@——F r— 10 ®‘

Ot @

a3 _} q d

1Y
&

- 003/ 103 7 L @- i S —
— @) EP -
RIW N
__ o &7 ey S —
Data Qut — —— e
—— (18) ——
& ® @

FCO-FC2 X

Asynchronous
inputs ’

@i Brrf
RALT/RESEY L
- (B—>| re—()—> @—a.
EL
2
BTATK N

(@)t >y
BERR (Note 3) l N
NQTES.

1 Tirmng measurements are referenced to and from a iow voitage of 0.8 voits and a high voitage of 2.0 volts, uniess otherwisa noted.

2. Becauss of l0ading vanations, R/W may be vaid after AS even thougn both are wtiated by the nsing edge of S2 (Specificaton
20A)

3. The nming for the first taliing eaqe (47) cf BERR are for BERR without DTACK: the umings for the second failing edge 127 A and
48) are for BEAR with OTACK

Figure 8-7. Write Cycle Timing Diagram

Foldout 2

Read and Write Cycle
Timing Diagrams
(Tirming tables iocated on
pages 8-4 and 8-5)

MOTOROLA Semiconductor Products Inc.
Colvilles Road, Kelvin Estate - East Kilbride/Glasgow - SCOTLAND trinted in Switzertend

