NAME

INTRO(2)

intro — introduction to system calls and error numbers

SYNOPSIS

#include <errno.h>
DESCRIPTION

This section describes all of the system calls. Most of these calls have one or more error returns.
An error condition is indicated by an otherwise impossible returned value. This is almost always

-1

; the individual descriptions specify the details. An error number is also made available in the

external variable errno. Errno is not cleared on successful calls, so it should be tested only after

an

error has been indicated.

Each system call description attempts to list all possible error numbers. The following is a com-
plete list of the error numbers and their names as defined in <errno.h>.

1

10

11

EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except to
its owner or super-user. It is also returned for attempts by ordinary users to do things
allowed only to the super-user.

ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t, or
when one of the directories in a path name does not exist.

ESRCH No such process
No process can be found corresponding to that specified by pid in kill or ptrace.

EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch,
occurred during a system call. If execution is resumed after processing the signal, it will
appear as if the interrupted system call returned this error condition.

EIO I/O error
Some physical I/O error has occurred. This error may in some cases occur on a call fol-
lowing the one to which it actually applies.

ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond the limits of the
device. It may also occur when, for example, a tape drive is not on-line or no disk pack is
loaded on a drive. On local terminals, it may indicate that the host terminal lacks the
specified channel; for example, opening tp2033, when tty033 refers to a TM31 Terminal.

E2BIG Arg list too long
An argument list longer than 10,240 bytes is presented to a member of the ezec family.
ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions,
does not start with a valid magic number (see a.out(4)).
EBADF Bad file number

Either a file descriptor refers to no open file, or a read (respectively, write) request is
made to a file which is open only for writing (respectively, reading).

ECHILD No child processes
A wait was executed by a process that had no existing or unwaited-for child processes.
EAGAIN No more processes

A fork failed because the system’s process table is full or the user is not allowed to create
any more processes.

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

INTRO(2)

ENOMEM Not enough space
During an ezec, brk, or sbrk, a program asks for more space than the system is able to
supply. The maximum allocation is 3.5 megabytes; a program that gets this condition
with a smaller allocation may work at another time when other large programs aren’t

hogging the swap file. If this problem recurs, the system administrator may want to con-
sider enlarging the swap file.

The error may also occur if the arrangement of text, data, and stack segments requires
too many segmentation registers, or if there is not enough swap space during a fork.
EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system. From
locking, an attempt to lock bytes already under a checking lock.
EFAULT Bad address
The system encountered a hardware fault in attempting to use an argument of a system
call.

ENOTBLK Block device required
A non-block file was mentioned where a block device was required, e.g., in mount.

EBUSY Device or resource busy
An attempt was made to mount a device that was already mounted or an attempt was
made to dismount a device on which there is an active file (open file, current directory,
mounted-on file, active text segment). It will also occur if an attempt is made to enable
accounting when it is already enabled. The device or resource is currently unavailable.

EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g., link.

EXDEV Cross-device link
A link to a file on another device was attempted.

ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g., read a
write-only device.

ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path prefix
or as an argument to chdir(2).

EISDIR Is a directory
An attempt was made to write on a directory.

EINVAL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted device; mentioning an unde-
fined signal in signal, or kil; reading or writing a file for which lseek has generated a
negative pointer). Also set by the math functions described in the (3M) entries of this
manual.

ENFILE File table overflow
The system file table is full, and temporarily no more opens can be accepted.

EMFILE Too many open files
No process may have more than 20 file descriptors open at a time.

ENOTTY Not a character device
An attempt was made to toctl(2) a file that is not a special character device.

ETXTBSY Text file busy

An attempt was made to execute a pure-procedure program that is currently open for

writing. Also an attempt to open for writing a pure-procedure program that is being exe-
cuted.

27

28

29

30

31

32

33

34

35

36

50

51

52

53

54

56

INTRO(2)

EFBIG File too large
The size of a file exceeded the maximum file size (1,082,201,088 bytes) or ULIMIT; see
ulimit(2).

ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device. This can
occur on a PILF file when the file system lacks unallocated clusters as big as the file’s
cluster size. On System 6600 tape files, it indicates a read past the end of the tape.

ESPIPE Illegal seek
An lseek was issued to a pipe.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

EMLINK Too many links
An attempt to make more than the maximum number of links (1000) to a file.

EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This condition normally
generates a signal; the error is returned if the signal is ignored.

EDOM Math argument
The argument of a function in the math package (3M) is out of the domain of the func-
tion.

ERANGE Result too large
The value of a function in the math package (3M) is not representable within machine
precision.

ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist on the specified
message queue; see msgop(2).

EIDRM Identifier Removed
This error is returned to processes that resume execution due to the removal of an identif-
ier from the file system’s name space (see msgctl(2), semctl(2), and shmctl(2)).

EBADE Invalid exchange
Use of an invalid Inter-CPU Communication exchange descriptor.

EBADR Invalid request descriptor
Use of an invalid Inter-CPU Communication request descriptor.
EXFULL Exchange full
An Inter-CPU Communication request failed because an exchange is full. The exchange
might be the request’s response exchange or the service exchange.
ENOANO No anode
The Application Processor has as many files open as it can handle.
EBADRQC Invalid request code
No operating system or RTOS process is servicing the specified request code.

EDEADLOCK Deadlock error
Call cannot be honored because of potential deadlock or because lock table is full. See
locking(2).

DEFINITIONS
Process ID

Each active process in the system is uniquely identified by a positive integer called a process ID.
The range of this ID is from 1 to 30,000.

INTRO(2)

Parent Process ID

A new process is created by a currently active process; see fork(2). The parent process ID of a
process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a positive integer called
the process group ID. This ID is the process ID of the group leader. This grouping permits the
signaling of related processes; see kill(2).

Tty Group ID
Each active process can be a member of a terminal group that is identified by a positive integer

called the tty group ID. This grouping is used to terminate a group of related processes upon ter-
mination of one of the processes in the group; see ezit(2} and signal(2).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer called a real user ID.

Each user is also a member of a group. The group is identified by a positive integer called the
real group ID.

An active process has a real user ID and real group ID that are set to the real user ID and real
group ID, respectively, of the user responsible for the creation of the process.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group ID that are used to determine file
access permissions (see below). The effective user ID and effective group ID are equal to the
process’s real user ID and real group ID respectively, unless the process or one of its ancestors
evolved from a file that had the set-user-ID bit or set-group ID bit set; see exec(2).

Super-user

A process is recognized as a super-user process and is granted special privileges if its effective
user ID is 0.

Special Processes

The processes with a process ID of 0 and a process ID of 1 are special processes and are referred to
as proc0 and procl.

ProcO is the scheduler. Procl is the initialization process (init). Procl is the ancestor of every
other process in the system and is used to control the process structure.

File Descriptor
A file descriptor is a small integer used to do I/O on a file. The value of a file descriptor is from
0 to 19. A process may have no more than 20 file descriptors (0-19) open simultaneously. A file
descriptor is returned by system calls such as open(2), or pipe(2). The file descriptor is used as an
argument by calls such as read(2), write(2), focti2), and close(2).

File Name
Names consisting of 1 to 14 characters may be used to name an ordinary file, special file or direc-
tory.

These characters may be selected from the set of all character values excluding \0 (null) and the
ASCII code for / (slash).

Note that it is generally unwise to use *, ?, [, or | as part of file names because of the special
meaning attached to these characters by the shell. See sh(1). Although permitted, it is advisable
to avoid the use of unprintable characters in file names.

Path Name and Path Prefix
A path name is a null-terminated character string starting with an optional slash (/), followed by
zero or more directory names separated by slashes, optionally followed by a file name.

More precisely, a path name is a null-terminated character string constructed as follows:

INTRO(2)

< path-name > ::=<file-name>| <path-prefix > <file-name > |/
< path-prefix > ::=<rtprefix >| / <rtprefix >
<rtprefix>::= <dirname > /| <rtprefix > <dirname >/

where <file-name> is a string of 1 to 14 characters other than the ASCII slash and null, and

<dirname>> is a string of 1 to 14 characters (other than the ASCII slash and null) that names a
directory.

If a path name begins with a slash, the path search begins at the root directory. Otherwise, the
search begins from the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named a non-existent
file.

Directory
Directory entries are called links. By convention, a directory contains at least two links, . and ..,
referred to as dot and dot-dot respectively. Dot refers to the directory itself and dot-dot refers to
its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current working directory
for the purpose of resolving path name searches. The root directory of a process need not be the
root directory of the root file system.

File Access Permissions

Read, write, and execute/search permissions on a file are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of the owner of the file and the
appropriate access bit of the ‘“‘owner” portion (0700) of the file mode is set.

The effective user ID of the process does not match the user ID of the owner of the file,
and the effective group ID of the process matches the group of the file and the appropri-
ate access bit of the ‘““group” portion (070) of the file mode is set.

The effective user ID of the process does not match the user ID of the owner of the file,
and the effective group ID of the process does not match the group ID of the file, and the
appropriate access bit of the “other” portion (07) of the file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier
A message queue identifier (msqid) is a unique positive integer created by a msgget(2) system call.
Each msqid has a message queue and a data structure associated with it. The data structure is
referred to as msqgid_ds and contains the following members:

struct ipc_perm msg_perm; /* operation permission struct */

ushort msg_qnum; /* number of msgs on q */

ushort msg_qgbytes; /* max number of bytes on q */
ushort msg_lspid; /* pid of last msgsnd operation */
ushort msg_lrpid; /* pid of last msgrcv operation */
time_t msg_stime; /* last msgsnd time */

time_t msg_rtime; /* last msgrev time */

time_t msg_ctime; /* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

Msg_perm is an ipc_perm structure that specifies the message operation permission (see below).
This structure includes the following members:

INTRO(2)

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */

ushort gid; /* group id */

ushort mode; /* r/w permission */

Msg_gnum is the number of messages currently on the queue. Msg_gbytes is the maximum
number of bytes allowed on the queue. Msg_lspid is the process id of the last process that per-
formed a msgsnd operation. Msg_Irpid is the process id of the last process that performed a
msgrcv operation. Msg_stime is the time of the last msgsnd operation, msg_rtime 1s the time
of the last msgrev operation, and msg_ctime is the time of the last msgeél(2) operation that
changed a member of the above structure.

Message Operation Permissions
In the msgop(2) and msgcti(2) system call descriptions, the permission required for an operation is
given as " {token}”, where "token” is the type of permission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others
Read and Write permissions on a msqid are granted to a process if one or more of the following

are true:
The effective user ID of the process is super-user.

The effective user ID of the process matches msg_perm.[c]uid in the data structure asso-
ciated with msgid and the appropriate bit of the “user” portion (0600) of
msg_perm.mode is set.

The effective user ID of the process does not match msg_perm.[c]uid and the effective
group ID of the process matches msg_perm.[c]gid and the appropriate bit of the
““group’’ portion (060) of msg_perm.mode is set.

The effective user ID of the process does not match msg_perm.[c]uid and the effective
group ID of the process does not match msg_perm.|[c|gid and the appropriate bit of the
“other” portion (06) of msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created by a semget(2) system call,
Each semid has a set of semaphores and a data structure associated with it. The data structure is
referred to as semid_ds and contains the following members:

struct ipc_perm sem_perm; /* operation permission struct */

ushort sem_nsems; /* number of sems in set */
time_t sem_otime; /* last operation time */
time_t sem_ctime; /* last change time */

/* Times measured in secs since */

/* 00:00:00 GMT, Jan. 1, 1970 */

Sem_perm is an ipc_perm structure that specifies the semaphore operation permission (see
below). This structure includes the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */

ushort gid; /* group id */

ushort mode; /* r/a permission */

INTRO(2)

The value of sem_nsems is equal to the number of semaphores in the set. Each semaphore in
the set is referenced by a positive integer referred to as a sem_num. Sem_num values run sequen-
tially from 0 to the value of sem_nsems minus 1. Sem_otime is the time of the last semop(2)

operation, and sem_ctime is the time of the last semect!(2) operation that changed a member of
the above structure.

A semaphore is a data structure that contains the following members:

ushort semval; /* semaphore value */

short sempid; /* pid of last operation */
ushort semnecnt; /* # awaiting semval > cval */
ushort semzcnt; /* 4 awaiting semval = 0 */

Semval is a non-negative integer. Sempid is equal to the process ID of the last process that per-
formed a semaphore operation on this semaphore. Semnent is a count of the number of
processes that are currently suspended awaiting this semaphore’s semval to become greater than
its current value. Semszcnt is a count of the number of processes that are currently suspended
awaiting this semaphore’s semval to become zero.

Semaphore Operation Permissions
In the semop(2) and semctl(2) system call descriptions, the permission required for an operation is
given as ”{token}”, where "token” is the type of permission needed interpreted as follows:

00400 Read by user
00200 Alter by user
00060 Read, Alter by group
00006 Read, Alter by others
Read and Alter permissions on a semid are granted to a process if one or more of the following are

true:
The effective user ID of the process is super-user.

The effective user ID of the process matches sem_perm.[cJuid in the data structure asso-
ciated with semid and the appropriate bit of the ‘“user” portion (0600} of
sem_perm.mode is set.

The effective user ID of the process does not match sem_perm.[cjuid and the effective
group ID of the process matches sem_perm.[c]gid and the appropriate bit of the
“group’’ portion (060) of sem_perm.mode is set.

The effective user ID of the process does not match sem_perm.[cluid and the effective
group ID of the process does not match sem_perm.[c]gid and the appropriate bit of the
“other” portion (06) of sem_perm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer created by a shmget(2) system
call. Each shmid has a segment of memory (referred to as a shared memory segment) and a data
structure associated with it. The data structure is referred to as shmid_ds and contains the fol-
lowing members:

struct ipc_perm shm_perm; /* operation permission struct */

int shm_segsz; /* size of segment */

ushort shm_cpid; /* creator pid */

ushort shm_lpid; /* pid of last operation */

short shm_nattch; /* number of current attaches */
time_t shm_atime; /* last attach time */

time_t shm_dtime; /* last detach time */

time_t shm_ctime; /* last change time */

/* Times measured in secs since */

INTRO (2)

/* 00:00:00 GMT, Jan. 1, 1970 */

Shm_perm is an ipc_perm structure that specifies the shared memory operation permission (see
below). This structure includes the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */

ushort gid; /* group id */

ushort mode; /* r/w permission */

Shm_segsz specifies the size of the shared memory segment. Shm_epid is the process id of the
process that created the shared memory identifier. Shm_lpid is the process id of the last process
that performed a shmop(2) operation. Shm_nattch is the number of processes that currently
have this segment attached. Shm_atime is the time of the last shmat operation, shm_dtime is
the time of the last shmdt operation, and shm_ctime is the time of the last shmc#!/(2) operation
that changed one of the members of the above structure.

Shared Memory Operation Permissions
In the shmop(2) and shmctl(2) system call descriptions, the permission required for an operation is
given as " {token}”, where "token” is the type of permission needed interpreted as follaws:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a shmid are granted to a process if one or more of the following
are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches shm_perm.[c]uid in the data structure asso-
ciated with shmid and the appropriate bit of the ‘‘user” portion (0600) of
shm_perm.mode is set.

The effective user ID of the process does not match shm_perm.[cJuid and the effective
group ID of the process matches shm_perm.[c|gid and the appropriate bit of the
‘“‘group’’ portion (060) of shm_perm.mode is set.

The effective user ID of the process does not match shm_perm.[cjuid and the effective
group ID of the process does not match shm_perm.[c|gid and the appropriate bit of the
“other” portion (06) of shm_perm.mode is set.

Otherwise, the corresponding permissions are denied.

SEE ALSO

close(2), ioctl(2), open(2), pipe(2), read(2), write(2), intro(3).

ACCESS(2)

NAME
~ access — determine accessibility of a file
SYNOPSIS
int access (path, amode)
char *path;
int amode;
DESCRIPTION

Path points to a path name naming a file. Access checks the named file for accessibility accord-
ing to the bit pattern contained in aemode, using the real user ID in place of the effective user ID

and the real group ID in place of the effective group ID. The bit pattern contained in amode is
constructed as follows:

04 read
02 write
¥ 01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] Read, write, or execute (search) permission is

requested for a null path name.
[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the
path prefix.
[EROFS] Write access is requested for a file on a read-only

file system.
[ETXTBSY| Write access is requested for a pure procedure
- (shared text) file that is being executed.
[EACCESS] Permission bits of the file mode do not permit
the requested access.
[EFAULT] Path points outside the allocated address
space for the process.

The owner of a file has permission checked with respect to the “owner” read, write, and execute
mode bits, members of the file’s group other than the owner have permissions checked with
respect to the “group” mode bits, and all others have permissions checked with respect to the
“‘other”” mode bits.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Otherwise, a value of —1 is returned
and errno is set to indicate the error.

SEE ALSO
chmod(2), stat(2).

ACCT(2)

NAME
acct — enable or disable process accounting

SYNOPSIS
int acct (path)
char *path;
DESCRIPTION
Acct 1s used to enable or disable the system process accounting routine. If the routine is enabled,
an accounting record will be written on an accounting file for each process that terminates. Ter-

mination can be caused by one of two things: an ezit call or a signal; see ezit(2) and signal(2).
The effective user ID of the calling process must be super-user to use this call.

Path points to a path name naming the accounting file. The accounting file format is given in
acct(4).

The accounting routine is enabled if path is non-zero and no errors occur during the system call.
It is disabled if path is zero and no errors occur during the system call.

Acct will fail if one or more of the following are true:

[EPERM] The effective user of the calling process is not super-user.

[EBUSY] An attempt is being made to enable accounting when it is already enabled.
[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] One or more components of the accounting file path name do not exist.
[EACCES] A component of the path prefix denies search permission.

[EACCES] The file named by path is not an ordinary file.

[EACCES] Mode permission is denied for the named accounting file.

[EISDIR] The named file is a directory.

[EROFS] The named file resides on a read-only file system.

[EFAULT) Path points to an illegal address.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
exit(2), signal(2), acct(4).

ALARM(2)

NAME
alarm - set a process alarm clock

SYNOPSIS
unsigned alarm (sec)

unsigned sec;
DESCRIPTION
Alarm instructs the alarm clock of the calling process to send the signal SIGALRM to the calling
process after the number of real time seconds specified by sec have elapsed; see signal(2).
Alarm requests are not stacked; successive calls reset the alarm clock of the calling process.

If sec is 0, any previously made alarm request is canceled.
RETURN VALUE
Alarm returns the amount of time previously remaining in the alarm clock of the calling process.

SEE ALSO
pause(2), signal(2).

BRK(2)

NAME

brk, sbrk - change data segment space allocation
SYNOPSIS

int brk (endds)

char *endds;

char *sbrk (incr)

int incr;
DESCRIPTION

Brk and sbrk are used to change dynamically the amount of space allocated for the calling
process’s data segment; see ezxec(2). The change is made by resetting the process’s break value
and allocating the appropriate amount of space. The break value is the address of the first loca-
tion beyond the end of the data segment. The amount of allocated space increases as the break
value increases. The newly allocated space is set to zero.

Brk sets the break value to endds and changes the allocated space accordingly.

Sbrk adds tncr bytes to the break value and changes the allocated space accordingly. Incr can be
negative, in which case the amount of allocated space is decreased.

Brk and sbrk will fail without making any change in the allocated space if one or more of the fol-
lowing are true:

Such a change would result in the process exceeding its allocation limit. This can be
imposed by the system administrator (see wlimit (2)); otherwise it is the available space is
the processor’s swap file, with an absolute maximum of about 3.5 megabytes. [ENOMEM]

Such a change would result in the break value being greater than or equal to the start
address of any attached shared memory segment (see shmop(2)).

RETURN VALUE

Upon successful completion, brk returns a value of 0 and sbrk returns the old break value. Other-
wise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

exec(2).

CHDIR (2)

NAME

chdir — change working directory
SYNOPSIS

int chdir (path)

char *path;
DESCRIPTION

Path points to the path name of a directory. Chdir causes the named directory to become the
current working directory, the starting point for path searches for path names not beginning with

/.

Chdir will fail and the current working directory will be unchanged if one or more of the follow-
ing are true:

[ENOTDIR] A component of the path name is not a directory.

s [ENOENT] The named directory does not exist.
[EACCES] Search permission is denied for any component of the path name.
[EFAULT! Path points outside the allocated address space of the process.

RETURN VALUE

Upon successful completion, a value of O is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chroot(2).

CHMOD (2)

NAME
chmod - change mode of file

SYNOPSIS
int chmod (path, mode)
char *path;
int mode;

DESCRIPTION
Path points to a path name naming a file. Chmod sets the access permission portion of the
named file’s mode according to the bit pattern contained in mode.

Access permission bits are interpreted as follows:

04000 Set user ID on execution.

02000 Set group ID on execution.

01000 Save text image after execution.

00400 Read by owner.

00200 Write by owner.

00100 Execute (search if a directory) by owner.
00070 Read, write, execute (search) by group.
00007 Read, write, execute (search) by others.

The effective user ID of the process must match the owner of the file or be super-user to change
the mode of a file.

If the effective user ID of the process is not super-user, mode bit 01000 (save text image on execu-
tion) is cleared.

If the effective user ID of the process is not super-user and the effective group ID of the process
does not match the group ID of the file, mode bit 02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing then mode bit 01000 prevents the system from aban-
doning the swap-space image of the program-text portion of the file when its last user terminates.
Thus, when the next user of the file executes it, the text need not be read from the file system
but can simply be swapped in, saving time.

Chmod will fail and the file mode will be unchanged if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID does not match the owner of the file and the effective user
ID is not super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT) Path points outside the allocated address space of the process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chown(2), mknod(2).

CHOWN (2)

NAME
chown — change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char *path;
int owner, group;
DESCRIPTION

Path points to a path name naming a file. The owner ID and group ID of the named file are set
to the numeric values contained in owner and group respectively.

Only processes with effective user ID equal to the file owner or super-user may change the owner-
ship of a file.

If chown is invoked by other than the super-user, the set-user-ID and set-group-ID bits of the file
mode, 04000 and 02000 respectively, will be cleared.

Chown will fail and the owner and group of the named file will remain unchanged if one or more
of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID does not match the owner of the file and the effective user
ID is not super-user.

[EROFS| The named file resides on a read-only file system.

[EFAULT) Path points outside the allocated address space of the process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chown(1), chmod(2).

CHROOT (2)

NAME
chroot — change root directory

SYNOPSIS
int chroot (path)
char *path;
DESCRIPTION

Path points to a path name naming a directory. Chroot causes the named directory to become
the root directory, the starting point for path searches for path names beginning with /. The
user’s working directory is unaffected by the chroot system call.

The effective user ID of the process must be super-user to change the root directory.

The .. entry in the root directory is interpreted to mean the root directory itself. Thus, .. cannot
be used to access files outside the subtree rooted at the root directory.

Chroot will fail and the root directory will remain unchanged if one or more of the following are

true:

[ENOTDIR] Any component of the path name is not a directory.
[ENOENT] The named directory does not exist.

[EPERM] The effective user ID is not super-user.

[EFAULT) Path points outside the allocated address space of the process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chdir(2).

n—

CLOSE(2)

NAME
close ~ close a file descriptor
SYNOPSIS
int close (fildes)
int fildes;
DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system call. Close
closes the file descriptor indicated by fildes.
[EBADF| Close will fail if fildes is not a valid open file descriptor.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fentl(2), open(2), pipe(2).

CREAT(2)

NAME -
creat — create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char *path;
int mode;
DESCRIPTION

Creat creates a new ordinary file or prepares to rewrite an existing file named by the path name
pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are unchanged; if a PILF
file, the cluster size exponent is also unchanged. Otherwise, the file’s owner ID is set to the effec-
tive user ID, of the process the group ID of the process is set to the effective group 1D, of the pro-
cess and the low-order 12 bits of the file mode are set to the value of mode modified as follows: -

All bits set in the process’s file mode creation mask are cleared. See umask(2).

The “‘save text image after execution bit’’ of the mode is cleared. See chrmod(2).

Gy
The process’s default cluster size exponent determines the cluster size of files created on PILF file
systems. See syslocal(2).
Upon successful completion, the file descriptor is returned and the file is open for writing, even if
the mode does not permit writing. The file pointer is set to the beginning of the file. The file
descriptor is set to remain open across erec system calls. See fentl/(2). No process may have
more than 20 files open simultaneously. A new file may be created with a mode that forbids writ-
ing.
Creat will fail if one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] A component of the path prefix does not exist.
[EACCES] Search permission is denied on a component of the path prefix.
[ENOENT] The path name is null.
[EACCES] The file does not exist and the directory in which the file is to be created does
not permit writing.
[EROFS] The named file resides or would reside on a read-only file system.
[ETXTBSY] The file is a pure procedure (shared text) file that is being executed. -
[EACCES] The file exists and write permission is denied.
[EISDIR] The named file is an existing directory. -
[EMFILE] Twenty (20) file descriptors are currently open.
[EFAULT) Path points outside the allocated address space of the process.
[ENFILE] The system file table is full.

[EDEADLOCK]| A side effect of a previous locking(2) call.

RETURN VALUE

Upon successful completion, a non-negative integer, namely the file descriptor, is returned. Oth-
erwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), close(2), dup(2), fentl(2), locking(2), lseek(2), open(2), read(2), umask(2), write(2).

DUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fildes;

DESCRIPTION

Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system call. Dup
returns a new file descriptor having the following in common with the original:

Same open file (or pipe).
Same file pointer (i.e., both file descriptors share one file pointer).
Same access mode (read, write or read/write).
The new file descriptor is set to remain open across ezec system calls. See fentl(2).
The file descriptor returned is the lowest one available.
Dup will fail if one or more of the following are true:
[EBADF| Fildes is not a valid open file descriptor.
[EMFILE] Twenty (20) file descriptors are currently open.

RETURN VALUE

Upon successful completion a non-negative integer, namely the file descriptor, is returned. Other-
wise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
creat(2), close(2), exec(2), fentl(2), open(2), pipe(2).

EXCALL(2) (System 6600 Only)

NAME
exCall - Send a request and wait for the response
SYNOPSIS
#include <exch.h>
exCall(regbl);
struct reqgheader *reqbl;
DESCRIPTION
EzCall sends a request and waits for the response. Regbl must point to a request block that
describes the message. The request block has four parts: a request header, control information,
request PbCbs, and response PbCbs.
The ICC user include file defines a request header thus:
struct rgheader {
unsigned short r_sCntlnfo;
unsigned char r_nReqPbCb;
unsigned char r_nRespPbCb;
unsigned short r_userNum;
unsigned short r_exchResp;
unsigned short r_ercRet;
unsigned short r_rqCode;
};
The client sets the following fields: r_sCntInfo (which must be even), r_nReqPbCh, and
r_nRespPbCh, specify the size of the rest of the request block; r_ezchResp, specifies where the
response must be sent; and r_rgCode, specifies the destination of the request. The kernel and
server ignore any values in r_userNum or r_ercRet. Each request code requires specific values for
r_sCntinfo, r_nReqPbCb, and r_nRespPbCh.
The client uses the control information to send fixed-length data fields to the server.
A PbCb has the following structure:
struct PbCb {
char *pc_offset;
unsigned short pc_count;
b
The client uses Request PbCbs to send blocks of data to the server. Each PbCb gives the loca-
tion (pe_offset) and size (pc_count) of a data block.
The client uses Response PbCbs to pass response data areas (pc_offset) and maximum lengths
(pe_count) to the server and kernel. If the server ignores the restrictions, the kernel right-
truncates the offending fields.
The memory containing the variable-length fields need not immediately follow the request block.
SEE ALSO

Operating System Programmer’s Guide, Section 22,

RETURN VALUE

-1 indicates error, with an error code in errno. See perror(3).

WARNINGS

If the service is provided by RTOS, integer data must have Intel byte ordering. See shortswap(3).

Lint(1) may complain that ezxCall argument types are inconsistent, especially if the client uses

more than one kind of request block. To suppress these complaints, cast the argument to its offi-
cial type:

EXCALL(2) (System 6600 Only)

exCall((struct rgheader *) reqbl);

Use of this cast does not affect the object code.

EXCHANGES(2) (System 6600 Only)

NAME
exQueryDfltRespExch, exAllocExch, exDeallocExch — obtain and abandon exchanges

SYNOPSIS
#include <exch.h>

unsigned char exQueryDfltRespExch();
unsigned char exAllocExch();

exDeallocExch(ex)
unsigned char ex;
DESCRIPTION
A process that wants to receive messages must own exchanges. Each exchange has an exchange
descriptor, unique only to the exchange’s owner.

ExQueryDfitRespEzch returns the descriptor of the caller’s default response exchange. Every pro-
cess has a default response exchange as soon as it is forked. A process must reference its default
response exchange explicitly. A process can use its default response exchange to receive both
requests and responses.

EzAllocEzch allocates a new exchange and returns its exchange descriptor. The calling process
can use this exchange to receive both requests and responses.

EzDeallocEzch deallocates the specified exchange. Any requests still waiting or on their way to
the exchange are rejected with a return code of OxFF. Any responses still waiting or on their
way to the exchange are discarded.
A process’s death deallocates all its exchanges, but an ezec has no affect on exchanges.

SEE ALSO
Operating System Programmer’s Guide, Section 22.

RETURN VALUE
-1 indicates error, with an error code in errno. See perror(3).

EXCPREQUEST(2) (System 6600 Only)

NAME
= exCpRequest, exReject — remove a request from an exchange

SYNOPSIS
#include <exch.h>

exCpRequest(reqdes, regst)
unsigned short reqdes;
struct rqheader *regst;

exReject(reqdes, r_ercRet)
unsigned short reqdes;
unsigned short r_ercRet;

DESCRIPTION
EzCpRequest and exReject both remove a request from a server’s exchange. A server that wants

to examine the request uses exCpRequest; a server that has no interest in the messages’s contents
uses exKeject.

EzCpRequest copies the message indicated by the request describtor, regdes. The kernel places
the request block and request data blocks together at the location pointed to by regst. Regst
must be an even address; each data block appears at an even address. (The amount of memory
the message requires is returned by a check on the message queue; see exWait(2I).) The kernel
sets the request PbCbs to point to the server’s copies of the data blocks.

EzReject discards the contents of the indicated message. It sends the response, with the return
code (m_ercRet in the request block header) set to r_ercRet.
FILES
/usr/include/exch.h — ICC user include file
e SEE ALSO
Operating System Programmer’s Guide, Section 22,

RETURN VALUE
-1 indicates error, with an error code in errno. See perror(3).

EXCPRESPONSE (2) (System 6600 Only)

NAME
exCpResponse, exDiscard — remove a response from an exchange

SYNOPSIS
#include <exch.h>

exCpResponse(reqdes, regst)
unsigned char reqdes;
struct rqheader *reqst;

exDiscard(reqdes)
unsigned char reqdes;

DESCRIPTION
ExCpResponse and exzDiscard both remove a response from an exchange. A client that wants to
examine the response uses exCpResponse; a client that has no interest in the message’s contents
uses ezDiscard.

EzCpResponse copies the message indicated by the request descriptor regdes. The kernel uses
the request block pointed to by regst to place the parts of the response:

e The error code goes in the r_ercRet field of the request block header.

e The kernel examines each response PbCb in the request block. The pc_offset field should
be set to the location reserved for the data; pc_count should be set to the number of bytes
available at that location. If the server provided more than pc_count bytes. the kernel
right-truncates the data to fit. The kernel overwrites pc_count with the number of bytes
actually transferred.

ExDiscard discards the contents of the indicated message. It returns the message’s return code
field (m_ercRet in the request block header).

FILES

/usr/include/exch.h — ICC user include file
SEE ALSO

Operating System Programmer’s Guide, Section 22.

RETURN VALUE
-1 indicates error, with an error code in errno. See perror(3).

WARNINGS
If the service is provided by RTOS, integer data must have Intel byte ordering. See shortswap(3).

EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp — execute a file

SYNOPSIS
int execl (path, arg0, argl, ..., argn, 0)
char *path, *arg0, *argl, ..., *argn;

int execv (path, argv)
char *path, *argv| |;

int execle (path, arg0, argl, ..., argn, O, envp)
char *path, *arg0, *argl, ..., *argn, *envp[|;

int execve (path, argv, envp)
char *path, *argv|], *envp| |;

int execlp (file, arg0, argl, ..., argn, 0)
char *file, *arg0, *argl, ..., *argn;

int execvp (file, argv)
char *file, *argv| |;

DESCRIPTION
Ezec in all its forms transforms the calling process into a new process. The new process is con-
structed from an ordinary, executable file called the new process file. This file consists of a
header (see a.out(4)), a text segment, and a data segment. The data segment contains an initial-
ized portion and an uninitialized portion (bss). There can be no return from a successful ezec
because the calling process is overlaid by the new process.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char **argv, **envp;

where arge is the argument count and argv is an array of character pointers to the arguments
themselves. As indicated, argc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is obtained by a search of the
directories passed as the environment line "PATH =" (see environ(5)). The environment is sup-
plied by the shell (see sh(1)).

Arg0, argl, ..., argn are pointers to null-terminated character strings. These strings constitute
the argument list available to the new process. By convention, at least arg0 must be present and
point to a string that is the same as path (or its last component).

Argv is an array of character pointers to null-terminated strings. These strings constitute the
argument list available to the new process. By convention, argv must have at least one member,
and it must point to a string that is the same as path (or its last component). Argv is terminated
by a null pointer.

Envp is an array of character pointers to null-terminated strings. These strings constitute the
environment for the new process. Enuvp is terminated by a null pointer. For exzecl and execv, the
C run-time start-off routine places a pointer to the environment of the calling process in the glo-
bal cell:

extern char **environ;
and it is used to pass the environment of the calling process to the new process.

*k

File descriptors open in the calling process remain open in the new process, except for those whose
close-on-exec flag is set; see fentl(2). For those file descriptors that remain open, the file pointer

EXEC(2)

1s unchanged.

Signals set to terminate the calling process will be set to terminate the new process. Signals set
to be ignored by the calling process will be set to be ignored by the new process. Signals set to be
caught by the calling process will be set to terminate the new process; see signal(2).

If the set-user-ID mode bit of the new process file is set (see chmod(2)), exec sets the effective user
ID of the new process to the owner ID of the new process file. Similarly, if the set-group-ID mode
bit of the new process file is set, the effective group ID of the new process is set to the group ID of
the new process file. The real user ID and real group ID of the new process remain the same as
those of the calling process.

The shared memory segments attached to the calling process will not be attached to the new pro-
cess (see shmop(2)).

Profiling is disabled for the new process; see profil(2).
The new process also inherits the following attributes from the calling process:

nice value (see nice(2))

process ID

parent process ID

process group ID

ICC exchanges, together with unremoved messages addressed to them
semad]j values (see semop(2))

tty group ID (see ezit(2) and signal(2))

trace flag (see ptrace(2) request 0)

time left until an alarm clock signal (see alarm(2))
current working directory

root directory

file mode creation mask {see umask(2))

file size limit (see ulimit(2))

utime, stime, cutime, and cstime (see times(2))
PILF cluster size exponent for this process

Ezec will fail and return to the calling process if one or more of the following are true:

[ENOENT!] One or more components of the new process path name of the file do not exist.

[ENOTDIR] A component of the new process path of the file prefix is not a directory.

[EACCES] Search permission is denied for a directory listed in the new process file’s path
prefix.

[EACCES) The new process file is not an ordinary file.

[EACCES] The new process file mode denies execution permission.

[ENOEXEC] The exec is not an ezeclp or ezecvp , and the new process file has the appropri-
ate access permission but an invalid magic number in its header.

[ETXTBSY] The new process file is a pure procedure (shared text) file that is currently open
for writing by some process.

[ENOMEM] The new process requires more memory than is allowed by the system-imposed
maximum MAXMEM.

[E2BIG| The number of bytes in the new process’s argument list is greater than the
system-imposed limit of 10,240 bytes.

[EFAULT] The new process file is not as long as indicated by the size values in its header.

[EFAULT] Path, argv, or envp point to an illegal address.

_—

EXEC(2)

RETURN VALUE
If exec returns to the calling process an error has occurred; the return value will be -1 and errno

will be set to indicate the error.

SEE ALSO
sh(1), alarm(2), exit(2), fork(2), nice(2), ptrace(2), semop(2), signal(2), times(2), ulimit(2),
umask(2), a.out(4), environ(5).

EXFINAL(2) (System 6600 Only)

NAME
exSendOnDealloc, exCnxSendOnDealloc ~ make final requests

SYNOPSIS
#include <exch.h>

unsigned char exSendOnDealloc(reqgblk)
struct rqheader *reqblk;

exCnxSendOnDealloc(req)
unsigned char req;

DESCRIPTION
EzSendOnDealloc specifies a request and returns a request descriptor in precisely the same
manner as ezRequest. But where ezRequest dispatches the request immediately, exSendOnDeal-
loc puts a hold on the request. When the client process deallocates the request’s response ex-
change, either by dying or by a call to ezDealloc (see ezchanges(2)), the kernel delivers the mes-

sage.
EzCnzSendOnDeallos cancels the specified message. req must be a value returned by a call to
ezSendOnDealloc .

FILES
/usr/include/exch.h - ICC user include file

SEE ALSO

Operating System Programmer’s Guide, Section 22.

RETURN VALUE
-1 indicates error, with an error code in errno. See perror(3).

WARNINGS
The server must respond to the message, even though there’s no one to read the response,

NAME

EXIT (2)

exit, _exit — terminate process

SYNOPSIS

void exit (status)
int status;
void _exit (status)
int status;

DESCRIPTION

Ezit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, it is notified of the calling
process’s termination and the low order eight bits (i.e., bits 0377) of status are made
available to it; see wait(2).

If the parent process of the calling process is not executing a wait, the calling process is
transformed into a zombie process. A zombie process is a process that only occupies a
slot in the process table. It has no other space allocated either in user or kernel space.
The process table slot that it occupies is partially overlaid with time accounting informa-
tion (see <sys/proc.h>) to be used by times.

The parent process ID of all of the calling process’s existing child processes and zombie
processes is set to 1. This means the initialization process (see intro(2)) inherits each of
these processes.

All ICC exchanges are deallocated. (Process termination is the only way to deallocate the
default response exchange.)

Each attached shared memory segment is detached and the value of shm_nattach in the
data structure associated with its shared memory identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj value (see semop(2)),
that semadj value is added to the semval of the specified semaphore.

An accounting record is written on the accounting file if the system’s accounting routine
is enabled; see acct (2).

If the process ID, tty group ID, and process group ID of the calling process are equal, the
SIGHUP signal is sent to each process that has a process group ID equal to that of the
calling process.

The C function ezit may cause cleanup actions before the process exits. The function _exst cir-
cumvents all cleanup.

SEE ALSO

acct(2),

WARNING

intro(2), exchanges(2), semop(2), signal(2), wait(2).

See WARNING in signal(2).

EXREQUEST(2) (System 6600 Only)

NAME
exRequest — Send a message to a server
SYNOPSIS
#include <exch.h>
unsigned char exRequest(reqbl);
struct reqheader *reqbl;
DESCRIPTION
FEzRequest sends a message to a server. reqbl must point to a request block that describes the
message. exRequest returns a request descriptor; this descriptor appears in subsequent references
to the request by the client or the kernel.
The request block has four parts: a request header, control information, request PbCbs, and
response PbCbs.
A request header has the following structure.
struct rgheader {
unsigned short r_sCntInfo;
unsigned char r_nReqPbCb;
unsigned char r_nRespPbCb;
unsigned short r_userNum;
unsigned short r_exchResp;
unsigned short r_ercRet;
unsigned short r_rqCode;
5
The client sets the following fields: r_sCntInfo(whichmustbeeven), r_nReqPbCh, and
r_nRespPbCh, specify the size of the rest of the request block; r_ezchResp, specifies where the
response must be sent; and r_rqCode, specifies the destination of the request. The kernel and
server ignore any values in r_userNum or r_ercRet. Each request code requires specific values for
r_sCntinfo, r_nReqPbCl, and r_nRespPbCh.
The client uses the control information to send fixed-length data fields to the server.
A PbCb has the following structure:
struct PbCb {
char *pc_offset;
unsigned short pc_count;
b
The client uses Request PbCbs to send request data blocks to the server. Each PbCb gives the
location (pe_offset) and size (pc_count) of a data block.
The client uses Response PbCbs to pass response data-length restrictions to the server. The client
sets the pc_count field of each response PbCb to the maximum length for that data block.
The locations containing the client’s request data need not immediately follow the request block.
The kernel copies the complete message immediately: once exRequest returns, it is safe to modify
the message.
After the client has sent the request, it must watch for the corresponding response (exWait(2))
and specify the response’s disposition (exCpResponse(2)).
SEE ALSO

Operating System Programmer’s Guide, Section 22.

RETURN VALUE

-1 indicates error, with an error code in errno. See perror(3).

EXREQUEST (2) (System 6600 Only)

WARNINGS
Use of exRequest requires more client-kernel interaction than is necessary for most requests.
Compare ezCall(1).

If the service is provided by RTOS, integer data has Intel byte ordering. See shortswap(3).
lint(1) may complain that ezRequest argument types are inconsistent, especially if the client uses
more than one kind of request block. To suppress these complaints, cast the argument to its offi-
cial type:

exRequest((struct rgheader *) reqbl);

Use of this cast does not affect the object code.

EXRESPOND (2) (System 6600 Only)

NAME
exRespond - send a message to a client

SYNOPSIS
#include <exch.h>

exRespond(reqdes, regbl)
unsigned char reqdes;
struct rqheader *reqbl;

DESCRIPTION
EzRespond issues a response to a specific request. The request descriptor regdes specifies that
request. regbl points to a request block that describes the response. This request block has the
same format as the request block that described the request (see exRequest(2)). The.server only
sets the error return code fields and each of the response PbCbs.

The kernel copies the complete message immediately: once ezRespond returns, it is safe to
modify the message.

The memory containing the server’s variable-length response fields need not directly follow the
request block.

SEE ALSO
Operating System Programmer’s Guide, Section 22,

RETURN VALUE
-1 indicates error, with an error code in errno. See perror(3).

EXSERVERQ(2) (System 6600 Only)

NAME
exServeRq — appropriate a request code

SYNOPSIS
#include <exch.h>

exServeRq(exch, code);
unsigned char exch;
unsigned short code;

DESCRIPTION

A server (a process that receives requests) must own a request code for use by clients (processes
that send requests). exServeRq appropriates code as a request code and assigns the request to the
exchange specified by ezeh. If exch is zero, the process gives up code, which can then be
appropriated by another server.

Any process can appropriate a request code, but only one can own it at a time.

Codes 0 through 0xBFFF (49151) are reserved for Motorola system services. Each installation should
reserve additional codes for local system services. User services must not use reserved codes, even if
they do not currently identify a service.

SEE ALSO
Operating System Programmer’s Guide, Section 22,

RETURN VALUE
-1 indicates error, with an error code in errno. See perror(3).

EXWAIT(2) (System 6600 Only)

NAME
exWait, exCheck — examine an ICC message queue

SYNOPSIS
#include <exch.h>

exCheck(ex, mstat);
unsigned char ex;
struct msgret *mstat;

exWait(ex, mstat);
unsigned char ex;
struct msgret *mstat;

DESCRIPTION
Each call to ezWait or exCheck returns with information on the oldest unnoticed message walting
at the exchange whose descriptor is ez. An unnoticed message is one that exWait and ezCheck
have not reported on since the last time a message was removed from the exchange. When an
exchange’s owner removes a message, all messages still waiting become “unnoticed” again; see
excpresponse(2) and ezcprequest(2). Ezcall(2) never affects the “noticed” status of any message.

EzWait and exCheck write a report to the memory pointed to by mstat . The report has the fol-
lowing structure:

struct msgret {
unsigned short m_rqCode;
unsigned short m_reqdes;
int m_size;
char m_{flag;
unsigned short m_ercRet;
unsigned char m_cputype;
unsigned char m_slot;
struct request *m_offset;
¥;
When the process takes further action on this message (copying it from the message queue; if it’s
a request, sending a response) it passes the kernel m_regdes to identify the specific message.

exWait and exCheck differ only in their “no messages” action. If no unnoticed messages wait at

the specified exchange, ezWait waits for a new one to arrive; exCheck returns immediately with
an error code.

The calling process must still specify some action on each message. See ezcpresponse(2) and
excprequest(2).

SEE ALSO
Operating System Programmer’s Guide, Section 22.

RETURN VALUE
Error returns —1 with an error code in errno. See perror(3).

FCNTL(2)

NAME
fentl — file control

SYNOPSIS
#include <fentlh>

int fentl (fildes, cmd, arg)
int fildes, cmnd, arg;

DESCRIPTION

Fentl provides for control over open files. Fildes is an open file descriptor obtained from a ereat,
open, dup, fentl, or pipe system call.

The commands available are:

F_DUPFD Return a new file descriptor as follows:
Lowest numbered available file descriptor greater than or equal to arg.
Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file descriptors share one file
pointer).

Same access mode (read, write or read/write).
Same file status flags (i.e., both file descriptors share the same file status flags).

The close-on-exec flag associated with the new file descriptor is set to remain
open across ezec(2) system calls.

F_GETFD Get the close-on-exec flag associated with the file descriptor fildes. If the low-
order bit is O the file will remain open across ezec, otherwise the file will be
closed upon execution of ezec.

F_SETFD Set the close-on-exec flag associated with fildes to the low-order bit of arg (0 or
1 as above).

F_GETFL Get file status flags.

F_SETFL Set file status flags to arg. Only certain flags can be set; see fentl(5).

Fentl will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.
[EMFILE] Cmd is F_DUPFD and 20 file descriptors are currently open.
[EMFILE] Omd is F_DUPFD and arg is negative, greater than 20, or greater than the larg-

est unallocated descriptor.

RETURN VALUE
Upon successful completion, the value returned depends on ¢md as follows:

F_DUPFD A new file descriptor.
F_GETFD Value of flag (only the low-order bit is defined).
F_SETFD Value other than —1.
F_GETFL Value of file flags.
F_SETFL Value other than —1.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
close(2), exec(2), open(2), featl(5).

FORK(2)

NAME -
fork — create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an exact copy of the
calling process (parent process). This means the child process inherits the following attributes
from the parent process:

environment

close-on-exec flag (see ezec(2))

signal handling settings (i.e., SIG_DFL, SIG_ING, function address)

set-user-ID mode bit

set-group-ID mode bit

profiling on/off status

nice value (see nice(2))

all attached shared memory segments (see shmop(2)) -
process group ID

tty group ID (see ezit(2) and signal(2))

trace flag (see ptrace(2) request 0)

time left until an alarm clock signal (see alarm(2))

current working directory

root directory

file mode creation mask (see umask(2))

file size limit (see ulimit(2))

PILF cluster size exponent (System 6600 only; see pilf(5)). o,

—

The child process differs from the parent process in the following ways:
The child process has a unique process ID.
The child process has a different parent process ID (i.e., the process ID of the parent pro-

cess).

The child process has its own copy of the parent’s file descriptors. Each of the child’s file
descriptors shares a common file pointer with the corresponding file descriptor of the
parent.

All semadj values are cleared (see semop(2)). -

The child process’s utime, stime, cutime, and cstime are set to 0. The time left until an
alarm clock signal is reset to 0. -

On System 6600 systems, the child inherits no Inter-CPU Communication exchanges from
the parent. Initially, the child’s only exchange is the default response exchange.

Fork will fail and no child process will be created if one or more of the following are true:

[EAGAIN] The system-imposed limit on the total number of processes under execution
would be exceeded.

[EAGAIN] The system-imposed limit on the total number of processes under execution by a
single user would be exceeded.

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the process

ID of the child process to the parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, and errno is set to indicate the error.

FORK(2)

SEE ALSO
exchanges(2), exec(2), nice(2), plock(2), ptrace(2), semop(2), shmop(2), signal(2

ulimit(2), umask(2), wait(2).

), times(2),

GETPID(2)

NAME

getpid, getpgrp, getppid — get process, process group, and parent process [Ds
SYNOPSIS

int getpid ()

int getpgrp ()

int getppid ()
DESCRIPTION

Getpid returns the process ID of the calling process.

Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

GETUID (2)

NAME
getuid, geteuid, getgid, getegid — get real user, effective user, real group, and effective group IDs

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()
unsigned short getgid ()
unsigned short getegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.
Getgid returns the real group ID of the calling process.
Getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

I0CTL(2)

NAME
ioct] — control device

SYNOPSIS
ioctl (fildes, request, arg)
int fildes, request;
DESCRIPTION

Ioctl performs a variety of functions on character special files (devices). The write-ups of various
devices in Section 7 discuss how toct! applies to them.

Toctl will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[ENOTTY] Fildes is not associated with a character special device.
[EINVAL) Regquest or arg is not valid. See Section 7.

[EINTR] A signal was caught during the foct/ system call.

RETURN VALUE
If an error has occurred, a value of —1 is returned and errno is set to indicate the errcr.

SEE ALSO
termio(7).

NAME

KILL (2)

kill - send a signal to a process or a group of processes

SYNOPSIS

int kill (pid, sig)
int pid, sig;

DESCRIPTION

Kill sends a signal to a process or a group of processes. The process or group of processes to
which the signal is to be sent is specified by pid. The signal that is to be sent is specified by sig
and is either one from the list given in signal(2), or 0. If sig is O (the null signal), error checking
is performed but no signal is actually sent. This can be used to check the validity of pid.

The real or effective user ID of the sending process must match the real or effective user ID of the
receiving process, unless the effective user ID of the sending process is super-user.

The processes with a process ID of 0 and a process ID of 1 are special processes (see intro(2)) and
will be referred to below as procO and procl, respectively.

If pid is greater than zero, sig will be sent to the process whose process ID is equal to pid. Pid
may equal 1.

If pid is 0, sig will be sent to all processes excluding proc0 and procl whose process group ID is
equal to the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, sig will be sent to all

processes excluding procO and procl whose real user ID is equal to the effective user ID of the
sender.

If pid is -1 and the effective user ID of the sender is super-user, sig will be sent to all processes
excluding proc0 and procl.

If pid is negative but not -1, sig will be sent to all processes whose process group ID is equal to
the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the following are true:

[EINVAL)] Sig is not a valid signal number.

[EINVAL] Sig is SIGKILL and pid is 1 (procl).

[ESRCH]| No process can be found corresponding to that specified by pid.

[EPERM] The user ID of the sending process is not super-user, and its real or effective user

ID does not match the real or effective user ID of the receiving process.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO

kill(1), getpid(2), setpgrp(2), signal(2).

NAME

LINK (2)

link - link to a file

SYNOPSIS

int link (pathl, path2)
char *pathl, *path2;

DESCRIPTION

Pathl points to a path name naming an existing file. Path2 points to a path nams naming the

new directory entry to be created. Link creates a new link (directory entry) for the existing file.

Link will fail and no link will be created if one or more of the following ar> vrue:

[ENOTDIR]
[ENOENT)
[EACCES)
[ENOENT]
[EEXIST]
[EPERM]

[EXDEV]

[ENOENT]
[EACCES)

[EROFS]

[EFAULT]

[EMLINK]
RETURN VALUE

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.
The file named by pathi does not exist.

The link named by path? exists.

The file named by pathl is a directory and the effective user ID is not super-
user.

The link named by path2 and the file named by pathl are on different logical
devices (file systems).

Path? points to a null path name.

The requested link requires writing in a directory with a mode that denies write
permission.

The requested link requires writing in a directory on a read-only file system.
Path points outside the allocated address space of the process.

The maximum number of links to a file would be exceeded.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
unlink(2).

—

NAME

LOCKING (2)

locking — exclusive access to regions of a file

SYNOPSIS

int locking (filedes, mode, size);
int fildes, mode;
long size;

DESCRIPTION

Locking places or removes a kernel-enforced lock on a region of a file. The calling process has
exclusive access to regions it has locked. If another process uses read(2), write(2), creat(2), or
open(2) (with O_TRUNC) in a way that reads or modifies part of the locked region, the second
process’s system call does not return until the lock 1s released, unless deadlock or some other error
is detected. A process whose execution is suspended in such a manner is said to be blocked.

Parameters specify the file to be locked or unlocked, the kind of lock or unlock, and the region
affected:

° Filedes specifies the file to be locked or unlocked; filedes is a file descriptor
returned by an open, create, pipe, fentl, or dup system call.

. Mode specifies the action: 0 for lock removal; 1 for blocking lock; 2 for checking
lock. Blocking and checking locks differ only if the attempted lock is itself
locked out: a blocking lock waits until the existing lock or locks are removed; a
checking lock immediately returns an error.

° The region affected begins at the current file offset associated with filedes and is
size bytes long. If size is zero, the region affected ends at the end of the file.

Locking imposes no structure on an operating system file. A process can arbitrarily lock any unlocked byte
and unlock any locked byte. However, creating a large number of noncontiguous locked regions

can fill up the system’s lock table and make further locks impossible. It is advisable that a
program’s use of locking segment the file in the same way as does the program’s use of read and
write.

A process is said to be deadlocked if it is sleeping until an unlocking which is indirectly prevented
by that same sleeping process. The kernel will not permit a read, write, creat, open with
O_TRUNC, or blocking locking if such a call would deadlock the calling process. Errno is set to
EDEADLOCK. The standard response to such a situation is for the program to release all its
existing locked areas and try again. If a locking call fails because the kernel’s table of locked
areas is full, again, errno is set to EDEADLOCK and, again, the calling program should release
its existing locked areas.

Special files and pipes can be locked, but no input/output is blocked.

Locks are automatically removed if the process that placed the lock terminates or closes the file
descriptor used to place the lock.

SEE ALSO

create(2), close(2), dup(2), open(2), read(2), write(2).

RETURN VALUE

A return value of —1 indicates an error, with the error value in errno.
[EACCES] A checking lock on a region already locked.
[EDEADLOCK] A lock that would cause deadlock or overflow the system’s lock table.

WARNING

Do not apply any standard input/output library function to a locked file: this library does not
know about locking.

LSEEK (2)

Iseek — move read/write file pointer

SYNOPSIS

long lseek (fildes, offset, whence)
int fildes;

long offset;
int whence;

DESCRIPTION

Fildes is a file descriptor returned from a creat, open, dup, or fentl system call. Lseek sets the
file pointer associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.
If whence is 1, the pointer is set to its current location plus offset.
If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location, as measured in bytes from the begin-
ning of the file, is returned.

Lseek will fail and the file pointer will remain unchanged if one or more of the following are true:
[EBADF] Fildes is not an open file descriptor.
[ESPIPE] Fildes is associated with a pipe or fifo.

[EINVAL and SIGSYS signal]
Whence is not 0, 1, or 2.

[EINVAL) The resulting file pointer would be negative.

Some devices are incapable of seeking. The value of the file pointer associated with such a device
1s undefined.

RETURN VALUE

Upon successful completion, a non-negative integer indicating the file pointer value is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

creat(2), dup(2), fentl(2), open(2).

—

MKNOD (2)

NAME
mknod — make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION
Mknod creates a new file named by the path name pointed to by path. The mode of the new file
is initialized from mode. Where the value of mode is interpreted as follows:
0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
- 0060000 block special
0100000 or 0000000 ordinary file
0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the following
0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of the process. The group ID of the file is
set to the effective group ID of the process.

Values of mode other than those above are undefined and should not be used. The low-order 9
bits of mode are modified by the process’s file mode creation mask: all bits set in the process’s file
mode creation mask are cleared. See umask(2). If mode indicates a block or character special
file, dev is a configuration-dependent specification of a character or block I1/O device. If mode
does not indicate a block special or character special device, dev is ignored.

Mknod may be invoked only by the super-user for file types other than FIFO special.

Mknod will fail and the new file will not be created if one or more of the following are true:

- [EPERM] The effective user ID of the process is not super-user.
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] A component of the path prefix does not exist.
- [EROFS] The directory in which the file is to be created is located on a read-only file sys-
tem.
[EEXIST] The named file exists.
[EFAULT) Path points outside the allocated address space of the process.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
mkdir(1), chmod(2), exec(2), umask(2), fs(4).

NAME -
mount — mount a file system
SYNOPSIS
int mount (spec, dir, rwflag)
char *spec, *dir;
int rwflag;
DESCRIPTION
Mount requests that a removable file system contained on the block special file identified by spec
be mounted on the directory identified by dir. Spec and dir are pointers to path names.
Upon successful completion, references to the file dir will refer to the root directory on the
mounted file system.
The low-order bit of rwflag is used to control write permission on the mounted file system; if 1, —
writing is forbidden, otherwise writing is permitted according to individual file accessibility.
Mount may be invoked only by the super-user.
Mount will fail if one or more of the following are true: -
[EPERM] The effective user ID 1s not super-user.
[ENOENT] Any of the named files does not exist.
[ENOTDIR] A component of a path prefix is not a directory.
[ENOTBLK] Spec is not a block special device.
[ENXIO] The device associated with spec does not exist.
[ENOTDIR] Dir is not a directory.
[EFAULT] Spec or dir points outside the allocated address space of the process. -
[EBUSY] Dir is currently mounted on, is someone’s current working directory, or is other-
wise busy.
[EBUSY] The device associated with spec is currently mounted.
[EBUSY] There are no more mount table entries.
[EROFS] The low-order bit of rwflag is zero and the volume containing the file system is
physically write-protected.
RETURN VALUE —
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.
SEE ALSO -
umount(2).

MOUNT(2)

NAME

MSGCTL(2)

msgct] — message control operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgetl (msqid, emd, buf)
int msqid, emd;
struct msqid_ds *buf;

DESCRIPTION

Msgctl provides a variety of message control operations as specified by emd. The following emds

are available:

IPC_STAT

IPC_SET

IPC_RMID

Place the current value of each member of the data structure associated with
msqid into the structure pointed to by buf. The contents of this structure are
defined in intro(2). {READ}

Set the value of the following members of the data structure associated with
msqid to the corresponding value found in the structure pointed to by buf:
msg_perm.uid
msg_perm.gid
msg_perm.mode /* only low 9 bits */
msg_qgbytes

This ¢md can only be executed by a process that has an effective user ID equal to
either that of super user or to the value of msg_perm.uid in the data structure
associated with msgid. Only super user can raise the value of msg_qgbytes.

Remove the message queue identifier specified by msgid from the system and
destroy the message queue and data structure associated with it. This ¢md can
only be executed by a process that has an effective user ID equal to either that of

super user or to the value of msg_perm.uid in the data structure associated
with msqid.

Msgetl will fail if one or more of the following are true:

(EINVAL]
[EINVAL]
[EACCES]

[EPERM]

[EPERM)|

[EFAULT]
RETURN VALUE

Msqid is not a valid message queue identifier.
Cmd is not a valid command.

Cmd is equal to IPC_STAT and {READ} operation permission is denied to the
calling process (see tntro(2)).

Cmd is equal to IPC_RMID or IPC_SET. The effective user ID of the calling
process is not equal to that of super user and it is not equal to the value of
msg_perm.uid in the data structure associated with msqid.

Cmd is equal to IPC_SET, an attempt is being made to increase to the value of
msg_qbytes, and the effective user ID of the calling process is not equal to that
of super user.

Buf points to an illegal address.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO

intro(2), msgget(2), msgop(2).

MSGGET(2)

NAME
msgget — get message queue

SYNOPSIS
#include <« sys/types.h>
#include <sys/ipc.h>
#include < sys/msg.h>
int msgget (key,
key_t key;
int msgflg;

DESCRIPTION

msgflg)

Msgget returns the message queue identifier assocjated with key.

A message queue identifier and associated message queue and data structure (see intro(2)) are

created for key if one of the following are true:
10 Key is equal to IPC_PRIVATE

Key does not already have a message
IPC_CREAT) is “true’.

queue identifier associated with it, and (msgfly &

and msg_perm.gid are set equal

to the effective user ID and effective group ID, respectively, of the calling process.

to the low-order 9 bits of msgfly.

Msg_qnum, msg_lspid, msg_Irpid, msg stime, and msg_rtime are set equal to 0,

Msg_ctime is set equal to the current time.
Msg_qgbytes is set equal to the system limit.

Msgget will fail if one or more of the following are tryue:

[EACCES] A message queue identifier exists for key, but operation permission (see intro (2))
as specified by the low-order 9 bits of msgflg would not be granted.

(ENOENT] A message queue identifier does not exist for key and (msgflg & IPC_CREAT) is
“false”

[ENOSP(] A message queue identifier is to be created but the System-imposed limit on the
maximum number of allowed message queue identifiers system wide would be
exceeded.

[EEXIST] A message queue identifier exists for key but ((msgfiy & IPC_CREAT) & (

msgflg & IPC_EXCL)) is “true”.
RETURN VALUE

Upon successful completion, 3 hon-negative integer,
returned. Otherwise, a valye of -1 is returned and errno

SEE ALSO
intro(2), msgctl(2), msgop(2).

namely a message queue
is set to indicate the error.

identifier, is

MSGOP (2)

NAME
msgop — message operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)

int msqid;

struct msgbuf *msgp;

int msgsz, msgflg;

int msgrev (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;

struct msgbuf *msgp;

int msgsz;

long msgtyp;

int msgflg;

DESCRIPTION

Msgsnd is used to send a message to the queue associated with the message queue identifier speci-
fied by msqid. {WRITE} Msgp points to a structure containing the message. This structure is
composed of the following members:

long mtype; /* message type */
char mtext(}; /* message text */

Mtype is a positive integer that can be used by the receiving process for message selection (see
msgrcv below). Mtext is any text of length msgsz bytes. Msgsz can range from 0 to a system-
imposed maximum.

Msgflg specifies the action to be taken if one or more of the following are true:
The number of bytes already on the queue is equal to msg_qgbytes (see intro(2)).
The total number of messages on all queues system-wide is equal to the system-imposed
limit.

These actions are as follows:

If (msgfly & IPC_NOWAIT) is ‘“‘true”, the message will not be sent and the calling pro-
cess will return immediately.

If (msgfly & IPC_NOWAIT) is “false”, the calling process will suspend execution until
one of the following occurs:

The condition responsible for the suspension no longer exists, in which case the
message 1s sent.

Msqid is removed from the system (see msgct!(2)). When this occurs, errno is
set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this case the mes-
sage is not sent and the calling process resumes execution in the manner
prescribed in stgnal(2)).

Msgsnd will fail and no message will be sent if one or more of the following are true:

[EINVAL] Msgid is not a valid message queue identifier.
[EACCES] Operation permission is denied to the calling process (see tntro(2)).
[EINVAL] Mtype is less than 1.

MSGOP (2)

[EAGAIN] The message cannot be sent for one of the reasons cited above and (msgfly &
IPC_NOWAIT) is “true”.

[EINVAL] Msgsz is less than zero or greater than the system-imposed limit.

[EFAULT] Masgp points to an illegal address.

Upon successful completion, the following actions are taken with respect to the data structure
associated with msgid (see intro (2)).

Msg_gnum is incremented by 1.
Msg_lspid is set equal to the process ID of the calling process.
Msg_stime is set equal to the current time.

Msgrev reads a message from the queue associated with the message queue identifier specified by
msqid and places it in the structure pointed to by msgp. {READ} This structure is composed of
the following members:

long mtype; /* message type */
char mtext/[]; /* message text */

Mtype is the received message’s type as specified by the sending process. Mtext is the text of the
message. Msgsz specifies the size in bytes of mtezt. The received message is truncated to msgsz
bytes if it is larger than msgsz and (msgfly & MSG_NOERROR) is “true”’. The truncated part
of the message is lost and no indication of the truncation is given to the calling process.

Msgtyp specifies the type of message requested as follows:
If msgtyp is equal to 0, the first message on the queue is received.
If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less than or equal to
the absolute value of msgtyp is received.

Msgflg specifies the action to be taken if a message of the desired type is not on the queue. These
are as follows:

If (msgflg & IPC_NOWAIT) is “true”, the calling process will return immediately with a
return value of ~1 and errno set to ENOMSG.

If (msgfly & TIPC_NOWAIT) is “false”, the calling process will suspend execution until
one of the following occurs:

A message of the desired type is placed on the queue.

Msqid is removed from the system. When this occurs, errno is set equal to
EIDRM, and a value of —1 is returned.

The calling process receives a signal that is to be caught. In this case a message
is not received and the calling process resumes execution in the manner
prescribed in signal(2)).

Msgrev will fail and no message will be received if one or more of the following are true:

[EINVAL] Msqid is not a valid message queue identifier.

[EACCES] Operation permission is denied to the calling process.

[EINVAL] Msgsz is less than 0.

[E2BIG] Mtext is greater than msgsz and (msgfly & MSG_NOERROR) is “false’.

[ENOMSG] The queue does not contain a message of the desired type and (msgtyp &
IPC_NOWAIT) is ““true’’.

[EFAULT] Msgp points to an illegal address,

MSGOP (2)

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqid (see intro (2)).

Msg_qnum is decremented by 1.
Msg_Irpid is set equal to the process ID of the calling process.

Msg_rtime is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal, a value of -1 is returned to the calling

process and errno is set to EINTR. If they return due to removal of msqid from the system, a
value of —1 is returned and errno is set to EIDRM.

Upon successful completion, the return value is as follows:
Msgsnd returns a value of 0.
Msgrev returns a value equal to the number of bytes actually placed into mtext.

Otherwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), msgctl(2), msgget(2), signal(2).

NICE(2)

NAME
nice - change priority of a process
SYNOPSIS

int nice (incr)
int incr;

DESCRIPTION
Nice adds the value of incr to the nice value of the calling process. A process’s nice walue is a
positive number for which a more positive value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed by the system.
Requests for values above or below these limits result in the nice value being set to the
corresponding limit.

[EPERM]| Nice will fail and not change the nice value if incr is negative or greater than 40
and the effective user ID of the calling process is not super-user.

RETURN VALUE
Upon successful completion, nice returns the new nice value minus 20. Otherwise, a value of —1
is returned and errno is set to indicate the error.

SEE ALSO
nice(1), exec(2).

OPEN(2)

NAME
open — open for reading or writing
SYNOPSIS
#include <fentlh>
int open (path, oflag | , mode |)
char *path;
int oflag, mode;
DESCRIPTION

Path points to a path name naming a file. Open opens a file descriptor for the named file and
sets the file status flags according to the value of oflag. Oflag values are constructed by or-ing
flags from the following list (only one of the first three flags below may be used):

O_RDONLY Open for reading only.

O_WRONLY
Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY This flag may affect subsequent reads and writes. See read(2) and write(2).
When opening a FIFO with O_RDONLY or O_WRONLY set:
If O_NDELAY is set:

An open for reading-only will return without delay. An open for writing-
only will return an error if no process currently has the file open for read-
ing.

If O_NDELAY is clear:

An open for reading-only will block until a process opens the file for writ-
ing. An open for writing-only will block until a process opens the file for
reading.

When opening a file associated with a communication line:
If O_NDELAY is set:
The open will return without waiting for carrier.
If O_NDELAY is clear:
The open will block until carrier is present.
O_APPEND If set, the file pointer will be set to the end of the file prior to each write.

O_CREAT If the file exists, this flag has no effect. Otherwise, the owner ID of the file is set to
the effective user ID of the process, the group ID of the file is set to the effective
group ID of the process, and the low-order 12 bits of the file mode are set to the
value of mode modified as follows (see creat(2)):

All bits set in the file mode creation mask of the process are cleared. See
umask(2).

The “save text image after execution bit”” of the mode is cleared. See
chmod(2).

The process’s default cluster size exponent determines the cluster size of files
created on PILF file systems.

O_TRUNC If the file exists, its length is truncated to O and the mode and owner are
unchanged.

O_EXCL If O_EXCL and O_CREAT are set, open will fail if the file exists.

OPEN(2)

O_DIRECT (MegaFrame only.) I/O is direct between the process’s address space and the disk,

bypassing the kernel’s buffer cache. See pilf(5).

The file pointer used to mark the current position within the file is set to the beginning of the

file.

The new file descriptor is set to remain open across ezec system calls. See fent/(2).

The named file is opened unless one or more of the following are true:

[ENOTDIR]
[ENOENT]
[EACCES]
[EACCES)]
[EISDIR]
[EROFS)

[EMFILE]
[ENXIO]

[ETXTBSY]

[EFAULT)
[EEXIST]
[ENXIO]

[EINTR]

[ENFILE|

[EDEADLOCK]
RETURN VALUE

A component of the path prefix is not a directory.

O_CREAT is not set and the named file does not exist.

A component of the path prefix denies search permission.
Oflag permission is denied for the named file.

The named file is a directory and oflag is write or read/write.

The named file resides on a read-only file system and offag is write or
read/write.

Twenty (20) file descriptors are currently open.

The named file is a character special or block special file, and the device associ-
ated with this special file does not exist.

The file is a pure procedure (shared text) file that is being executed and oflag is
write or read/write.

Path points outside the allocated address space of the process.
O_CREAT and O_EXCL are set, and the named file exists.

O_NDELAY is set, the named file is a FIFO, O_WRONLY is set, and no process
has the file open for reading.

A signal was caught during the open system call.
The system file table is full.
A side effect of a previous locking(2) call, when applying O_TRUNC .

Upon successful completion, the file descriptor is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

SEE ALSO

chmod(2), close(2), creat(2), dup(2), fentl(2), locking(2), lseek(2), read(2), umask(2), write(2),

pilf(5).

NAME

OPENI(2)

openi — open a file specified by i-node

SYNOPSIS

#include <sys/types.h>
#include <fentl.h>

int openi (dev, inode, oflag)
dev_t dev;

ino_t inode;

int oflag;

DESCRIPTION

Openi permits access to a file without reference to any of its directory links. Because it doesn’t
use the directory hierarchy, openi doesn’t require any access permission except from the file itself.
Use of opent must be authorized in advance by syslocal(2).

Dev specifies the device number of the file system that contains the file. Inode is the i-number of

the file.

Oflag is a set of open flags, identical to those used with open(2). The return value is a

file descriptor, like that returned by open.

A file descriptor returned by openi has the same properties as one returned by open. It counts
against the per-process limit of 20 file descriptors.

The specified file is opened unless one or more of the following are true:

The specified inode is not allocated. [ENOENT)
Oflag permission is denied for the named file. [EACCES|
The named file is a directory. [EISDIR]

The named file resides on a read-only file system and oflag is write or read/write.
[EROFS]

Twenty (20) file descriptors are currently open. [EMFILE]
The named file is a character special or block special file. [ENXIO]

The file is a pure procedure (shared text) file that is being executed and oflag is write or
read/write. [ETXTBSY)]

Path points outside the process’s allocated address space. [EFAULT]
O_CREAT and O_EXCL are set, and the named file exists. [EEXIST)]

O_NDELAY is set, the file is a FIFO, O_WRONLY is set, and no process has the file open
for reading. {ENXIO]

The specified file system is not mounted. [ENXIO]

RETURN VALUE
On success, returns a file descriptor, a nonnegative integer. On failure, returns —1 and sets errno.

SEE ALSO

creat(2), open(2), syslocal(2).

PAUSE (2)

NAME

pause — suspend process until signal
SYNOPSIS

pause ()
DESCRIPTION

Pause suspends the calling process until it receives a signal. The signal must be ore that is not
currently set to be ignored by the calling process.

If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from the signal-catching func-
tion (see signal(2)), the calling process resumes execution from the point of suspension; with a
return value of -1 from pause and errno set to EINTR.

SEE ALSO
alarm(2), kill(2), signal(2), wait(2).

PIPE(2)

pipe - create an interprocess channel

SYNOPSIS

int pipe (fildes)
int fildes[2];

Pipe creates an I/0 mechanism called a pipe and returns two file descriptors, fildcs[O] and
fildes[1]. Fildes [0] is opened for reading and fildes (1] is opened for writing.

Up to 5120 bytes of data are buffered by the pipe before the Writing process is blocked. A read
only file descriptor fildes [0] accesses the data written to fildes[1] on a first-in-first-out (FIFO)

basis,
[EMFILE] Pipe will fail if 19 or more file descriptors are currently open.
[ENFILE] The system file table js full.

RETURN VALUE

Upon successful completion, a value of is returned. Otherwise
€rrno is set to indicate the error.

SEE ALSO

sh(1), read(2), write(2).

PROFIL(2)

NAME
profil — execution time profile

SYNOPSIS
void profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the user’s
program counter (pc) is examined each clock tick (60th second); offset is subtracted from it, and
the result multiplied by scale. If the resulting number corresponds to a word inside buff, that
word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left: 0177777
(octal) gives a 1-1 mapping of pec’s to words in buff; 077777 (octal) maps each pair of instruction
words together. 02(octal) maps all instructions onto the beginning of buff (producing a non-
interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of
0. Profiling is turned off when an erec is executed, but remains on in child and parent both after
a fork. Profiling will be turned off if an update in buff would cause a memory fault.

RETURN VALUE
Not defined.

SEE ALSO
prof(1), monitor(3C).

PTRACE(2)

NAME
ptrace — process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execution of a child process.
Its primary use is for the implementation of breakpoint debugging; see sdb(1). The child process
behaves normally until it encounters a signal (see signal(2) for the list), at which time it enters a
stopped state and its parent is notified via wa¢t(2). When the child is in the stopped state, its
parent can examine and modify its ‘‘core image’ using ptrace. Also, the parent can cause the

child either to terminate or continue, with the possibility of ignoring the signal that caused it to
stop.

The request argument determines the precise action to be taken by ptrace and is one of the fol-
lowing:

0 This request must be issued by the child process if it is to be traced by its parent.
It turns on the child’s trace flag that stipulates that the child should be left in a
stopped state upon receipt of a signal rather than the state specified by func; see
signal(2). The pid, addr, and data arguments are ignored, and a return value is not
defined for this request. Peculiar results will ensue if the parent does not expect to
trace the child.

The remainder of the requests can only be used by the parent process. For each, pid is the pro-
cess ID of the child. The child must be in a stopped state before these requests are made.

1, 2 With these requests, the word at location addr in the address space of the child is
returned to the parent process. If I and D space are separated (as on PDP-11s),
request 1 returns a word from I space, and request 2 returns a word from D space.
If I and D space are not separated (as on Motorola Series 6000-family
processors, the 3B 20S computer, and VAX-11/780), either request 1 or request 2
may be used with equal results. The date argument is ignored. These two requests
will fail if addr is not the start address of a word, in which case a value of -1 is
returned to the parent process and the parent’s errno is set to EIO.

3 With this request, the word at location addr in the child’s USER area in the
system’s address space (see <sys/user.h>) is returned to the parent process.
Addresses in this area range from 0 to 8192 on Motorola Series 6000-
family processors, 0 to 1024 on the PDP-11s and 0 to 2048 on the 3B 20 computer
and VAX. The data argument is ignored. This request will fail if addr is not the
start address of a word or is outside the USER area, in which case a value of -1 is
returned to the parent process and the parent’s errno is set to EIO.

4,5 With these requests, the value given by the date argument is written into the
address space of the child at location addr. If I and D space are separated (as on
PDP-11s), request 4 writes a word into I space, and request 5 writes a word into D
space. If I and D space are not separated (as on Motorola Series 6000-
family processors, the 3B 20 computer, and VAX), either request 4 or request 5 may
be used with equal results. Upon successful completion, the value written into the
address space of the child is returned to the parent. These two requests will fail if
addr is a location in a pure procedure space and another process is executing in that
space, or addr is not the start address of a word. Upon failure a value of -1 is
returned to the parent process and the parent’s errno is set to EIO.

6 With this request, a few entries in the child’s USER area can be written. Data gives
the value that is to be written and addr is the location of the entry. The few

PTRACE(2)

entries that can be written are:

the general registers (i.e., registers 0-15 on Motorola Series 6000-family processors,

registers 0-11 on the 3B 20S computer, registers 0-7 on PDP-11s, and registers
0-15 on the VAX)

the condition codes of the Processor Status Word on the 3B 20 computer
the floating point status register and six floating point registers on PDP-11s

certain bits of the Processor Status Word on PDP-11s (i.e, bits 0—4, and
8-11)

certain bits of the Processor Status Longword on the VAX (i.e., bits 0-7,
16-20, and 30-31).

Motorola Series 6000-family processors: all processor status bits except 8, 9, 10,
and 13.

7 This request causes the child to resume execution. If the data argument is 0, all
pending signals including the one that caused the child to stop are canceled before
it resumes execution. If the date argument is a valid signal number, the child
resumes execution as if it had incurred that signal, and any other pending signals
are canceled. The addr argument must be equal to 1 for this request. Upon suc-
cessful completion, the value of data is returned to the parent. This request will
fail if data is not 0 or a valid signal number, in which case a value of —1 is returned
to the parent process and the parent’s errno is set to EIO.

This request causes the child to terminate with the same consequences as ezit(2).

9 This request sets the trace bit in the Processor Status Word of the child (i.e., bit 15
on Motorola Series 6000-family processors, bit 4 on PDP-11s; bit 30 on
the VAX) and then executes the same steps as listed above for request 7. The trace
bit causes an interrupt upon completion of one machine instruction. This effec-
tively allows single stepping of the child. On the 3B 20S computer there is no trace
bit and this request returns an error.
Note: the trace bit remains set after an interrupt on PDP-11s but is turned off after
an interrupt on the VAX.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent ezec(2) calls. If a
traced process calls ezec, it will stop before executing the first instruction of the new image show-
ing signal SIGTRAP.

GENERAL ERRORS
Ptrace will in general fail if one or more of the following are true:

[EIO] Request is an illegal number.
[ESRCH] Pid identifies a child that does not exist or has not executed a ptrace with
request 0.
SEE ALSO

exec(2), signal(2), wait(2).

READ (2)

NAME
read — read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;
DESCRIPTION

Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system call.

Read attempts to read nbyte bytes from the file associated with fildes into the buffer pointed to
by buf.

On devices capable of seeking, the read starts at a position in the file given by the file pointer

associated with fildes. Upon return from read, the file pointer is incremented by the number of
bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of a file
pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read and placed in the
buffer; this number may be less than nbyte if the file is associated with a communication line (see
toctl(2) and termio(7)), or if the number of bytes left in the file is less than nbyte bytes. A value
of 0 is returned when an end-of-file has been reached.

When attempting to read from an empty pipe (or FIFO):
If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data is written to the file or the file is no
longer open for writing.

When attempting to read a file associated with a tty that has no data currently available:
If O_NDELAY is set, the read will return a 0.
If O_NDELAY is clear, the read will block until data becomes available.

Read will fail if one or more of the following are true:

[EBADF] Fildes is not a valid file descriptor open for reading.
[EFAULT) Buf points outside the allocated address space.
[EINTR] A signal was caught during the read system call.

[EDEADLOCK] A side effect of a previous locking(2) call.

RETURN VALUE
Upon successful completion a non-negative integer is returned indicating the number of bytes
actually read. Otherwise, a -1 is returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), fentl(2), ioctl(2), locking(2), open(2), pipe(2), termio(7).

SEMCTL(2)

NAME
semctl — semaphore control operations
SYNOPSIS
#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/sem.h>
int semctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
unjon semun {
int val;
struct semid_ds *buf;
ushort *array;
} arg;
DESCRIPTION

Semctl provides a variety of semaphore control operations as specified by emd.

The following ¢mds are executed with respect to the semaphore specified by semid and semnum:

GETVAL
SETVAL

GETPID
GETNCNT
GETZCNT

Return the value of semval (see intro(2)). {READ}

Set the value of semval to arg.val. {ALTER} When this cmd is success-
fully executed, the semad] value corresponding to the specified sernaphore
in all processes is cleared.

Return the value of sempid. {READ)}
Return the value of semnent. {READ}
Return the value of semzent. {READ}

The following emds return and set, respectively, every semval in the set of sernaphores.

GETALL
SETALL

Place semvals into array pointed to by arg.array. {READ}

Set semvals according to the array pointed to by arg.array. {ALTER}
When this cmd is successfully executed the semadj values corresponding to
each specified semaphore in all processes are cleared.

The following ¢mds are also available:

IPC_STAT

IPC_SET

IPC_RMID

Place the current value of each member of the data structure associated
with semid into the structure pointed to by arg.buf. The contents of this
structure are defined in intro(2). {READ}

Set the value of the following members of the data structure associated
with semid to the corresponding value found in the structure pointed to by
arg.buf:

sem_perm.uid

sem_perm.gid

sem_perm.mode /* only low 9 bits */

This ¢cmd can only be executed by a process that has an effective user ID
equal to either that of super-user or to the value of sem_perrn.uid in the
data structure associated with semid.

Remove the semaphore identifier specified by semid from the system and
destroy the set of semaphores and data structure associated with it. This
cmd can only be executed by a process that has an effective user ID equal
to either that of super-user or to the value of sem_perm.uid in the data
structure associated with semad.

SEMCTL(2)

Semetl will fail if one or more of the following are true:

[EINVAL] Semid is not a valid semaphore identifier.

[EINVAL] Semnum is less than zero or greater than sem_nsems.

[EINVAL] Cmd is not a valid command.

[EACCES] Operation permission is denied to the calling process (see tntro(2)).

[ERANGE] Cmd is SETVAL or SETALL and the value to which semval is to be set
is greater than the system imposed maximum.

[EPERM] Cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the

calling process is not equal to that of super-user and it is not equal to
the value of sem_perm.uid in the data structure associated with semid.

[EFAULT] Arg.buf points to an illegal address.

RETURN VALUE
Upon successful completion, the value returned depends on c¢md as follows:

GETVAL The value of semval.
= GETPID The value of sempid.
GETNCNT The value of semnent.
GETZCNT The value of semzcent.
All others A value of 0.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), semget(2), semop(2).

NAME

SEMGET (2)

semget — get set of semaphores

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semflg)

key_t key;

int nsems, semflg;

DESCRIPTION

Semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set containing nsems semaphores (see
intro(2)) are created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a semaphore identifier associated with it, and (semflg &
IPC_CREAT) is “true”’.

Upon creation, the data structure associated with the new semaphore identifier is initialized as

follows:

Sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and sem_perm. gid are set equal to
the effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of sem_perm.mode are set equal to the low-order 9 bits of semfly.

Sem_nsems is set equal to the value of nsems.

Sem_otime is set equal to 0 and sem_ectime is set equal to the current time.

Semget will fail if one or more of the following are true:

[EINVAL)
[EACCES]
[EINVAL]
[ENOENT]
[ENOSPC]
[ENOSPC]
[EEXIST]

RETURN VALUE

Nsems is either less than or equal to zero or greater than the system-imposed
limit.

A semaphore identifier exists for key, but operation permission (see intro(2)) as
specified by the low-order 9 bits of semflg would not be granted.

A semaphore identifier exists for key, but the number of semaphores in the set
assoclated with it is less than nsems and nsems is not equal to zero.

A semaphore identifier does not exist for key and (semfly & IPC_CREAT) is
“false””.

A semaphore identifier is to be created but the system-imposed limit on the max-
imum number of allowed semaphore identifiers system wide would be exceeded.

A semaphore identifier is to be created but the system-imposed limit on the max-
imum number of allowed semaphores system wide would be exceeded.

A semaphore identifier exists for key but ((semflg & IPC_CREAT) and (semflg
& TIPC_EXCL)) is “true”.

Upon successful completion, a non-negative integer, namely a semaphore identifier, is returned.
Otherwise, a value of ~1 is returned and errno is set to indicate the error.

SEE ALSO

intro(2). semctl(2), semop(2).

SEMOP (2)

NAME
semop — semaphore operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf **sops;
int nsops;
DESCRIPTION
Semop is used to atomically perform an array of semaphore operations on the set of semaphores
associated with the semaphore identifier specified by semid. Sops is a pointer to the array of

semaphore-operation structures. Nsops is the number of such structures in the array. The con-
tents of each structure includes the following members:

short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

Each semaphore operation specified by sem_op is performed on the corresponding semaphore
specified by semid and sem_num.

Sem_op specifies one of three semaphore operations as follows:
If sem_op is a negative integer, one of the following will occur: {ALTER}

If semval (see intro(2)) is greater than or equal to the absolute value of sem_op,
the absolute value of sem_op is subtracted from semval. Also, if (sem_flg &
SEM_UNDO) is “true”, the absolute value of sem_op is added to the calling
process’s semadj value (see ezit(2)) for the specified semaphore. All processes
suspended waiting for semval are rescheduled.

If semval is less than the absolute value of sem_op and (sem_flg &
IPC_NOWAIT) is ‘“‘true”, semop will return immediately.

If semval is less than the absolute value of sem_op and (sem_flg &
IPC_NOWAIT) is “false”, semop will increment the semncnt associated with
the specified semaphore and suspend execution of the calling process until one of
the following conditions occur.

Semval becomes greater than or equal to the absolute value of sem_op. When
this occurs, the value of semncnt associated with the specified semaphore 1s
decremented, the absolute value of sem_op is subtracted from semval and, if
(sem_flg & SEM_UNDO) is “true”, the absolute value of sem_op is added to
the calling process’s semadj value for the specified semaphore, and all the
operations are tried again.

The semid for which the calling process is awaiting action is removed from the
system (see semctl(2)). When this occurs, errno is set equal to EIDRM, and a
value of —1 is returned.

The calling process receives a signal that is to be caught. When this occurs, the
value of semnent associated with the specified semaphore is decremented, and
the calling process resumes execution in the manner prescribed in signal(2).

If sem_op is a positive integer, the value of sem_op is added to semval and, if (sem_flg
& SEM_UNDO) is “true”’, the value of sem_op is subtracted from the calling process’s
semad]j value for the specified semaphore. {ALTER}

SEMOP (2)

If sem_op is zero, one of the following will occur: {READ}

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem_flg & IPC_NOWAIT) is “true’, semop
will return immediately.

If semval is not equal to zero and (sem_flg & IPC_NOWAIT) is “false’, semop
will increment the semzent associated with the specified semaphore and suspend
execution of the calling process until one of the following occurs:

Semval becomes zero, at which time the value of semzcnt associated with the
specified semaphore is decremented.

The semid for which the calling process is awaiting action is removed from the
systern. When this occurs, errne is set equal to EIDRM, and a value of -1 is
returned.

The calling process receives a signal that is to be caught. When this occurs, the
value of semzcnt associated with the specified semaphore is decremented, and
the calling process resumes execution in the manner prescribed in signal(2).

Semop will fail if one or more of the following are true for any of the semaphore operations speci-

fied by sops:

[EINVAL]
[EFBIG]

[E2BIG]
[EACCES)
[EAGAIN]

[ENOSPC]
[EINVAL)

[ERANGE]
[ERANGE]
[EFAULT]

Semtd is not a valid semaphore identifier.

Sem_num is less than zero or greater than or equal to the number of semaphores
in the set associated with semid.

Nsops is greater than the system-imposed maximum.
Operation permission is denied to the calling process (see intro(2)).

The operation would result in suspension of the calling process but (sem_flg &
IPC_NOWAIT) is “true”.

The limit on the number of individual processes requesting an SEM_UNDO
would be exceeded.

The number of individual semaphores for which the calling process requests a
SEM_UNDO would exceed the limit.

An operation would cause a semval to overflow the system-imposed limit.

An operation would cause a semadj value to overflow the system-imposed limit.

Sops points to an illegal address.

Upon successful completion, the value of sempid for each semaphore specified in the array pointed
to by sops is set equal to the process ID of the calling process.

RETURN VALUE

If semop returns due to the receipt of a signal, a value of —1 is returned to the calling process and
errno is set to EINTR. If it returns due to the removal of a semid from the system, a value of —1
is returned and errno is set to EIDRM.

Upon successful completion, the value of semval at the time of the call for the last operation in
the array pointed to by sops is returned. Otherwise, a value of -1 is returned and errmo is set to
indicate the error.

SEE ALSO

exec(2), exit(2), fork(2), intro(2), semctl(2), semget(2).

SETPGRP (2)

NAME

setpgrp — set process group ID
SYNOPSIS

int setpgrp ()
DESCRIPTION

Setpgrp sets the process group ID of the calling process to the process ID of the calling process and
returns the new process group ID.

RETURN VALUE

Setpgrp returns the value of the new process group ID.
SEE ALSO

exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2).

NAME

SETUID (2)

setuid, setgid — set user and group IDs

SYNOPSIS

int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPTION

Setuid (setgid) is used to set the real user (group) ID and effective user (group) ID of the calling

process.

If the effective user IC' of the calling process is super-user, the real user (group} ID and effective
user (group) ID are set to uid {gid).

If the effective user ID of the calling process is not super-user, but its real user (group) ID is equal
to uid (gid), the effective user (group) ID is set to uid (gid).

If the effective user ID of the calling process is not super-user, but the saved set-user (group) ID
from ezec(2) is equal to uid (gid), the effective user (group) ID is set to uid (gid).

Setuid (setgid) will fail if the real user (group) ID of the calling process is not equal to uid (gid)
and its effective user ID is not super-user. [EPERM]

The uid is out of range. [EINVAL]

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO

getuid(2), intro(2).

NAME

SYNOPSIS

SHMCTL (2)

shmetl — shared memory control operations

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, buf)

int shmid, cmd;

struct shmid_ds *buf;

DESCRIPTION

Shmetl provides a variety of shared memory control operations as specified by e¢md. The follow-
ing ¢mds are available:

- IPC_STAT Place the current value of each member of the data structure assoclated

IPC_SET

with shmid into the structure pointed to by buf. The contents of this struc-
ture are defined in intro(2). {READ}

Set the value of the following members of the data structure associated with
shmid to the corresponding value found in the structure pointed to by buf:
shm_perm.uid

shm_perm.gid

shm_perm.mode /* only low 9 bits */

This ¢md can only be executed by a process that has an effective user ID

equal to either that of super-user or to the value of shm_perm.uid in the
data structure associated with shmid.

IPC_RMID Remove the shared memory identifier specified by shmid from the system

and destroy the shared memory segment and data structure associated with
it. This ¢md can only be executed by a process that has an effective user ID
equal to either that of super-user or to the value of shm_perm.uid in the
data structure associated with shmid.

Shmetl will fail if one or more of the following are true:

Shmid is not a valid shared memory identifier.
Cmd is not a valid command.

Cmd is equal to IPC_STAT and {READ} operation permission 1s denied
to the calling process (see intro(2)).
Cmd is equal to IPC_RMID or IPC_SET and the effective user ID of the

calling process is not equal to that of super-user and it is not equal to

the value of shm_perm.uid in the data structure associated with
shmid .

Buf points to an illegal address.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and

[EINVAL)
[EINVAL]
| [EACCES]
[EPERM]
[EFAULT]
RETURN VALUE
errno is set to indicate the error.
SEE ALSO
intro(2), shmget(2), shmop(2).

NAME

SHMGET (2)

shmget — get shared memory segment

SYNOPSIS

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)

key_t key;

int size, shmflg;

DESCRIPTION

Shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory segment of size size
bytes (see intro(2)) are created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a shared memory identifier associated with it, and (shmflg &
IPC_CREAT) is “true”.

Upon creation, the data structure associated with the new shared memory identifier is initialized

as follows:

Shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and shm_perm.gid are set equal
to the effective user ID and effective group ID, respectively, of the calling process.

The low-order 9 bits of shm_perm.mode are set equal to the low-order 9 bits of shmflg.
Shm_segsz is set equal to the value of size.

Shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal to 0.

Shm_ctime is set equal to the current time.

Shmget will fail if one or more of the following are true:

[EINVAL)
[EACCES]
[EINVAL)
[ENOENT]

[ENOSPC]

[ENOMEM|

[EEXIST]

Size is less than the system-imposed minimum or greater than the system-
imposed maximum.

A shared memory identifier exists for key but operation permission (see intro(2))
as specified by the low-order 9 bits of shmflg would not be granted.

A shared memory identifier exists for key but the size of the segment associated
with it is less than size and size is not equal to zero.

A shared memory identifier does not exist for key and (shmflg & IPC_CREAT)
1s “false”.

A shared memory identifier is to be created but the system-imposed limit on the

maximum number of allowed shared memory identifiers system wide would be
exceeded.

A shared memory identifier and associated shared memory segment are to be
created but the amount of available physical memory is not sufficient to fill the
request.

A shared memory identifier exists for key but { (shmflg & IPC_CREAT) and (
shmflg & IPC_EXCL)) is ‘“‘true”.

~~—

SHMGET (2)

RETURN VALUE
Upon successful completion, a non-negative integer, namely a shared memory identifier is

returned. Otherwise, a value of ~1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), shmectl(2), shmop(2).

NAME

SHMOP (2)

shmop - shared memory operations

SYNOPSIS

#include <sys/types.h>
#include <sys/ipe.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)

int shmid;

char *shmaddr

int shmflg;

int shmdt (shmaddr)

char *shmaddr

DESCRIPTION

Shmat attaches the shared memory segment associated with the shared memory identifier speci-
fied by shmid to the data segment of the calling process. The segment is attached at the address
specified by one of the following criteria:

If shmaddr is equal to zero, the segment is attached at the first available address as
selected by the system.

If shmaddr is not equal to zero and (shmfly & SHM_RND) is “true”, the segment is
attached at the address given by (shmaddr - (shmaddr modulus SHMLBA)).

If shmaddr is not equal to zero and (shmflg & SHM_RND) is ‘‘false’”, the segment is
atvached at the address given by shmaddr.

The segment is attached for reading if (shmfly & SHM_RDONLY) is “true” {READ}, otherwise it
is attached for reading and writing {READ/WRITE}.

Shmat will fail and not attach the shared memory segment if one or more of the following are

true:
[EINVAL]J
[EACCES]
[ENOMEM|

[EINVAL]
[EINVAL]
[EMFILE]
[EINVAL]
[EINVAL)

RETURN VALUES

Shmid is not a valid shared memory identifier.
Operation permission is denied to the calling process (see inéro(2)).

The available data space is not large enough to accommodate the shared
memory segment.

Shmaddr is not equal to zero, and the value of (shmaddr - (shmeddr modulus
SHMLBA)) is an illegal address.

Shmaddr is not equal to zero, (shmfly & SHM_RND) is ‘“false”, and the value of
shmaddr is an illegal address.

The number of shared memory segments attached to the calling process would
exceed the system-imposed limit.

Shmdt detaches from the calling process’s data segment the shared memory seg-
ment located at the address specified by shmaddr.

Shmdt will fail and not detach the shared memory segment if shmaddr 15 not the
data segment start address of a shared memory segment.

Upon successful completion, the return value is as follows:

SHMOP (2)

Shmat returns the data segment start address of the attached shared memory segment.
Shmdt returns a value of 0.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmetl(2), shmget(2).

SIGNAL(2)

NAME

signal — specify what to do upon receipt of a signal
SYNOPSIS

#include <signal.h>

int (*signal (sig, func))()
int sig;
void (*func)();

DESCRIPTION

Signal allows the calling process to choose one of three ways in which it is possible to handle the
receipt of a specific signal. Sig specifies the signal and fune specifies the choice.

Sig can be assigned any one of the following except SIGKILL:
SIGHUP 01 hangup

SIGINT 02 interrupt

SIGQUIT 03* quit

SIGILL 04+ illegal instruction (not reset when caught)
SIGTRAP ~ 056% trace trap (not reset when caught)
SIGIOT 06* IOT instruction

SIGEMT 07+ EMT instruction

SIGFPE 08+ floating point exception

SIGKILL 09 kill (cannot be caught or ignored)
SIGBUS 10* bus error

SIGSEGV 11* segmentation violation

SIGSYS 12+ bad argument to system call

SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGUSR1 16 user-defined signal 1
SIGUSR2 17 user-defined signal 2
SIGCLD 18 death of a child
(see WARNING below)
SIGPWR 19 power fail
(see WARNING below)

See below for the significance of the asterisk (*) in the above list.

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a function address. The actions
prescribed by these values are as follows:

SIG_DFL - terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to be terminated with all of the
consequences outlined in ezit(2). In addition a “core image’ will be made in the
current working directory of the receiving process if sig is one for which an asterisk
appears in the above list and the following conditions are met:

The effective user ID and the real user ID of the receiving process are equal.

An ordinary file named core exists and is writable or can be created. If the
file must be created, it will have the following properties:

a mode of 0666 modified by the file creation mask (see umask(2))

a file owner ID that is the same as the effective user ID of the receiv-
ing process.

a file group ID that is the same as the effective group 1D of the
receiving process

SIGNAL(2)

SIG_IGN - ignore signal
The signal sig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

function address — catch signal
Upon receipt of the signal sig, the receiving process is to execute the signal-catching
function pointed to by func. The signal number sig will be passed as the only argument
to the signal-catching function. Before entering the signal-catching function, the value
of func for the caught signal will be set to SIG_DFL unless the signal is SIGILL,
SIGTRAP, or SIGPWR.

Upon return from the signal-catching function, the receiving process will resume execu-
tion at the point it was interrupted.

When a signal that is to be caught occurs during a read, a write, an open, or an toctl

system call on a slow device (like a terminal; but not a file), during a pause system call,

or during a watt system call that does not return immediately due to the existence of a

previously stopped or zombie process, the signal catching function will be executed and

then the interrupted system call may return a —1 to the calling process with errno set to
e EINTR.

Note: The signal SIGKILL cannot be caught.
A call to signal cancels a pending signal sig except for a pending SIGKILL signal.
Stgnal will fail if sig is an illegal signal number, including SIGKILL. [EINVAL]

RETURN VALUE
Upon successful completion, signal returns the previous value of func for the specified signal sig.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
kill(1), kill(2), pause(2), ptrace(2), wait(2), setjmp(3C).

WARNING
Two other signals that behave differently than the signals described above exist in this release of
the system; they are:

SIGCLD 18 death of a child (reset when caught)
SIGPWR 19 power fail (not reset when caught)

There is no guarantee that, in future releases of the operating system or UNIX system, these signals
will continue to behave as described below; they are included only for compatibility with some
versions of the UNIX system. Their use in new programs is strongly discouraged by Motorola and
AT&T.

. For these signals, func is assigned one of three values: SIG_DFL, SIG_IGN, or a function
address. The actions prescribed by these values of are as follows:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling process’s child
processes will not create zombie processes when they terminate; see ex?t(2).

Sfunction address - catch signal
If the signal is SIGPWR, the action to be taken is the same as that described above
for func equal to function address. The same is true if the signal is SIGCLD except,
that while the process is executing the signal-catching function, any received SIGCLD
signals will be queued and the signal-catching function will be continually reentered
until the queue is empty.

SIGNAL(2)

The SIGCLD affects two other system calls (wait(2), and exit(2)) in the following ways:

walt If the fune value of SIGCLD is set to SIG_IGN and a wait is executed, the wait will
block until all of the calling process’s child processes terminate; it will then return a
value of -1 with errno set to ECHILD.

exit If in the exiting process’s parent process the func value of SIGCLD is set to SIG_IGN,
the exiting process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline the parent of the
proceeding processes. A process that may be piped into in this manner (and thus become the
parent of other processes) should take care not to set SIGCLD to be caught.

BUGS
A user process connot catch a signal caused by an invalid memory reference during a partially
completed instruction. Thus SIGSEGV can be ignored or be allowed to terminate the process,
but cannot be caught. This bug is due to a temporary implementation problem.

STAT(2)

NAME
stat, fstat — get file status
SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
int stat (path, buf)
char *path;
struct stat *buf;
int fstat (fildes, buf)
int fildes;
struct stat *buf;
DESCRIPTION

Path points to a path name naming a file. Read, write, or execute permission of the named file is
not required, but all directories listed in the path name leading to the file must be searchable.
Stat obtains information about the named file. Stat works with all files, but does not obtain
information peculiar to PILF files (see syslocal(2) and pilf(5)).

Similarly, fstat obtains information about an open file known by the file descriptor fildes,
obtained from a successful open, creat, dup, fentl, or pipe system call.

Buf is a pointer to a stat structure into which information is placed concerning the file.

The contents of the structure pointed to by buf include the following members:

ushort st_mode; /* File mode; see mknod(2) */
ino_t st_ino; /* Inode number */
dev_t st_dev; /* ID of device containing */

/* a directory entry for this file */
dev_t st_rdev; /* ID of device */

/* This entry is defined only for */
/* character special or block special files */

short st_nlink; /* Number of links */

ushort st_uid; /* User ID of the file’s owner */
ushort st_gid; /* Group ID of the file’s group */
off _t st_size; /* File size in bytes */

time_t st_atime; /* Time of last access LY

time_t st_mtime; /* Time of last data modification */
time_t st_ctime; /* Time of last file status change */

/* Times measured in seconds since */
/* 00:00:00 GMT, Jan. 1, 1970 *7

st_atime Time when file data was last accessed. Changed by the following system calls:
creat(2), mknod(2), pipe(2), utime(2), and read(2).

st_mtime Time when data was last modified. Changed by the following system calls: creat(2),
mknod(2), pipe(2), utime(2), and write(2).

st_ctime Time when file status was last changed. Changed by the following system calls:
chmod(2), chown(2), creat(2), link(2), mknod(2), pipe(2), unlink(2), utime(2), and
write(2).

Stat will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied for a component of the path prefix.

STAT(2)

[EFAULT] Buf or path points to an invalid address.
Fstat will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file descriptor.
[EFAULT) Buf points to an invalid address.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chmod{2), chown(2), creat(2), link{2), mknod(2), pipe(2), read(2), syslocal(2}, time(2), unlink(2),
utime(2), write(2).

STIME (2)

NAME
stime — set time

SYNOPSIS
int stime (tp)
long *tp;
DESCRIPTION

Stime sets the system’s idea of the time and date. Tp points to the value of time as measured in
seconds from 00:00:00 GMT January 1, 1970.

[EPERM)] Stime will fail if the effective user ID of the calling process is not super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
time(2).

SWRITE (2)

NAME
swrite - synchronous write on a file

SYNOPSIS
int swrite (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
Swrite has the same purpose and conventions as write(2). The two differ solely in their handling
of disk input/output. Swrite, unlike write, does not give a normal return before physical output
is complete. A program that executes an swrite can assume that the data is on the disk, not
waiting in a buffer pool.

SEE ALSO
creat(2), dup(2), Iseek(2), open(2), pipe(2), ulimit(2).

SYNC(2)

NAME
sync — update super-block

SYNOPSIS
void sync ()

DESCRIPTION
Sync causes all information in memory that should be on disk to be written out. This includes
modified super blocks, modified i-nodes, and delayed block I/O.

It should be used by programs which examine a file system, for example fsck, df, etc. It is man-
datory before a boot.

The writing, although scheduled, is not necessarily complete upon return from sync.

SYSLOCAL(2)

NAME
syslocal — special system requests
SYNOPSIS
#include <syslocal.h>
int syslocal (emd [, arg | ...)
int emd;
DESCRIPTION

Syslocal executes certain special system calls. The specific call is indicated by the first argument.
System Type
inv syslocal(SYSL_SYSTEM);
Return SYSL_MINI for MiniFrame, SYSL_MEGA for System 6600.

Superblock Synchronization

int syslocal(SYSL_RESYNC, devnum)
short devnum

Preserve current contents of superblock. Devnum specifies the file system: the high order byte
contains the major device number of the character special device; the low order byte contains the
minor device number. The action taken differs on System 6300 and System 6600: on System 6300,

the system is rebooted; on System 6600, the superblock is reread, replacing the current in-RAM

copy of the superblock. Both actions have the effect of preventing the system from writing out
the superblock, undoing, for example, the effects of file system repair.

Enable Openi

syslocal(SYSL_OPENI, flag)
int flag

Enables or disables the opent system call. Flag 1s 1 for enabling, O for disabling. Only the
superuser can execute this call, which affects every user on the system.

Application Processor Number (System 6600 Only)

syslocal(SYSL_APNUM)

Return the processor number of the Application Processor on which this process is executing.

Total Application Processors (System 6600 Only)

syslocal(SYSL_TOTAPS)

Return the total number of Application Processors currently running.

Console Control (System 6600 Only)

syslocal(SYSL_CONSOLE, type, action)
int type, action;

Manage Application Processor console. Affects Application Processor on which this process is
running. Type specifies the type of action, action the specific action. Values of type are: 0 to

query console status, 1 to associate the terminal with a terminal, 2 to control kernel prints, and 3
to control entry vo the kernel debugger.

If type is 0 and action 1, the return value indicates the terminal association of the ccnsole: a posi-
tive value is the terminal number of the associated terminal; and -1 indicates that no terminal is
associated with the console;

SYSLOCAL(2)

If type is 0 and action is 2, the return value gives the status of kernel diagnostic prints: 0 for off,
1 for on.

If type is 0 and action is 3, the return value tells whether entry to the kernel debugger is enabled:
0 for no, 1 for yes.

If type is O and action is 4, the contents of the console’s circular buffer are written to standard
output.

If type is 1, action indicates a new terminal association for the console. If action is 0, terminal
assocation is removed. If action is -1, the console is associated with the UART ludge port. If
action is positive, it must be the file descriptor for an open terminal special file; the console is
associated with that terminal. If the terminal is under window managment, then the file descrip-
tor refers to one of the windows in that terminal; the console is associated with that particular
window. A return value of 0 indicates a successful association, a —1 an unsuccessful association,
with the error value in errno.

If type is 2, action controls kernel diagnostic prints: O disables, any other value enables.

If type is 3, action controls access to the kernel debugger: 0 disables, 1 enables, any other value
must be a process group whose terminal/window is to have kernel prints enabled. When access to
the kernel debugger is enabled, entering a Control-B or Code-B on the console terminal enters the
kernel debugger.

Maximum Number of Users

syslocal(SYSL_MAXUSERS)

Returns maximum number of concurrent logins on the processor on which this process is execut-
ing.

PILF File Status (System 6600 Only)
#include <types.h>

syslocal(SYSL_PSTAT, name, st_buf)
char *name;
struct p_stat *st_buf;

syslocal(SYSL_PFSTAT, fd, st_buf)
int fd;
struct p_stat *st_buf;

struct p_stat

{
dev_t st_dev;
no_t st_ino;
ushort st_mode;
short st_nlink;
ushort st_uid;
ushort st_gid,;
dev_t st_rdev;
off t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;
char st_cluster;

SYSLOCAL(2)

These calls work exactly like stat and fstat (see stat(2)), except that the status structure has one
additional field, st_cluster, which gives the cluster size exponent of the file.

Get Process’s Cluster Size Exponent (System 6600 Only)
syslocal(SYSL_GETCLUS)

syslocal(SYSL_SETCLUS, cluster)
int cluster;

A process’s cluster size exponent sets the cluster size exponent of any files the process creates on
PILF file systems. A process’s cluster size exponent can be —1, indicating that the new file’s clus-
ter size exponent should be taken from the file system’s default cluster size exponent. A new pro-
cess inherits its parent’s exponent.

Syslocal SYSL_GETCLUS returns the process’s cluster size exponent.

Syslocal SYSL_SETCLUS sets the process’s cluster size exponent to cluster.

SEE ALSO
SYSL_CONSOLE
console(1M), console(7).

SYSL_OPENI
openi(2).

SYSL_APNUM
SYSL_TOTAPS
apnum({1M). Svstem 6600 Administrator’s Guide.

SYSL_RESYNC
fsck(1M).
SYSL_PSTAT
SYSL_PFSTAT
SYSL_GETCLUS
SYSL_SETCLUS
pilf(5).
WARNINGS
Kernel prints and the kernel debugger syslocal calls that support them may disappear without
notice. Use of kernel prints degrades system performance. Use of the kernel debugger halts nor-
mal processing.

TIME(2)

NAME
time - get time
SYNOPSIS

long time ((long *) 0)

long time (tloc)
long *tloc;

DESCRIPTION
Ttme returns the value of time in seconds since 00:00:00 GMT, January 1, 1970.
If tloc (taken as an integer) is non-zero, the return value is also stored in the location to which
tloc points.
[EFAULT]

Time will fail if tloc points to an illegal address.
; RETURN VALUE

Upon successful com

and errno is set to i
N SEE ALSO

stime(2).

pletion, t/me returns

the value of time.
ndicate the error.

Otherwise, a value of -1 is returned

TIMES(2)

NAME

times - get process and child process times
SYNOPSIS

#include <sys/types.h>

#include <sys/times.h>

long times (buffer)
struct tms *buffer;
DESCRIPTION

Times fills the structure pointed to by buffer with time-accounting information. The following
are the contents of this structure:

struct tms {
time_t tms_utime;
time_t tms_stime;
time_t tms_cutime;
time_t tms_cstime;

}s

This information comes from the calling process and each of its terminated child processes for
which it has executed a wait. All times are in 60ths of a second.

Tms_utsme is the CPU time used while executing instructions in the user space of the calling pro-
cess.

T'ms_stime is the CPU time used by the system on behalf of the calling process.
Tms_cutime is the sum of the tms_utimes and tms_cutimes of the child processes.
Tms_cstime is the sum of the tms_stimes and tms_cstimes of the child processes.
[EFAULT] Times will fail if buffer points to an illegal address.

RETURN VALUE

Upon successful completion, times returns the elapsed real time, in 60ths (100ths) of a second,
since an arbitrary point in the past (e.g., system start-up time). This point does not change from
one invocation of times to another. If times fails, a —1 is returned and errno is set to indicate the
€rror.

SEE ALSO
exec(2), fork(2), time(2), wait(2).

ULIMIT (2)

NAME
ulimit — get and set user limits

SYNOPSIS
long ulimit (cmd, newlimit)
int cmd;
long newlimit;
DESCRIPTION
This function provides for control over process limits. The e¢md values available are:

1 Get the file size limit of the process. The limit is in units of 512-byte blocks and is inher-
ited by child processes. Files of any size can be read.

2 Set the file size limit of the process to the value of newlimit. Any process may decrease this
limit, but only a process with an effective user ID of super-user may increase the limit.
Ulimst will fail and the limit will be unchanged if a process with an effective user ID other
than super-user attempts to increase its file size limit. [EPERM]

3 Get the maximum possible break value. See brk(2).

RETURN VALUE
Upon successful completion, a non-negative value is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
brk(2), write(2).

UMASK (2)

NAME
umask - set and get file creation mask

SYNOPSIS
int umask (cmask)
int emask;

DESCRIPTION
Umask sets the process’s file mode creation mask to ¢mask and returns the previous value of the
mask. Only the low-order 9 bits of ¢mask and the file mode creation mask are used.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
mkdir(1), sh(1), chmod(2), creat(2), mknod(2), open(2).

UMOUNT(2)

NAME

umount - unmount a file system
SYNOPSIS

int umount (spec)

char *spec;
DESCRIPTION

Umount requests that a previously mounted file system contained on the block special device
identified by spee be unmounted. Spec is a pointer to a path name. After unmounting the file

system, the directory upon which the file system was mounted reverts to its ordinary interpreta-
tion.

Umount may be invoked only by the super-user.

Umount will fail if one or more of the following are true:

[EPERM] The process’s effective user ID is not super-user.
[ENXIO)] Spec does not exist.
~ [ENOTBLK] Spec is not a block special device.
[EINVAL] Spec is not mounted.
[EBUSY] A file on spec is busy.
[EFAULT) Spec¢ points to an illegal address.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error. '

SEE ALSO
mount(2).

NAME

UNAME (2)

uname — get name of current operating system

SYNOPSIS

#include <sys/utsname.h>

int uname (name)
struct utsname *name;

DESCRIPTION

Uname stores information identifying the current operating system in the structure pointed tc by

name.

Uname uses the structure defined in <sys/utsname.h> whose members are:

char
char
char
char
char

sysname(9];
nodename(9];
release([9];
version|9];
machine[9];

Uname returns a null-terminated character string naming the current operating system in the charac-
ter array sysname. Similarly, nodename contains the name that the system is known by on a
communications network. Release and version further identify the operating system.. Machine
contains a standard name that identifies the hardware that the operating system is running on.

[EFAULT] Uname will fail if name points to an invalid address.

RETURN VALUE

Upon successful completion, a non-negative value is returned. Otherwise, ~1 is returned and
errno is set to indicate the error.

SEE ALSO
uname(1).

UNLINK (2)

NAME
unlink — remove directory entry

SYNOPSIS
int unlink (path)
char *path;

DESCRIPTION
Unlink removes the directory entry named by the path name pointed to be path.

The named file is unlinked unless one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied for a component of the path prefix.
h [EACCES] Write permission is denied on the directory containing the link to be removed.
[EPERM] The named file is a directory and the effective user ID of the process is not
_ super-user.
[EBUSY] The entry to be unlinked is the mount point for a mounted file system.
[ETXTBSY] The entry to be unlinked is the last link to a pure procedure (shared text) file
that is being executed.
[EROFS] The directory entry to be unlinked is part of a read-only file system.
[EFAULT) Path points outside the process’s allocated address space.

When all links to a file have been removed and no process has the file open, the space occupied
by the file is freed and the file ceases to exist. If one or more processes have the file open when
- the last link is removed, the removal is postponed until all references to the file have been closed.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
rm(1), close(2), link(2), open(2).

USTAT(2)

NAME
ustat — get file system statistics
SYNOPSIS

#include <sys/types.h>
#include <ustat.h>>

int ustat (dev, buf)
int dev;
struct ustat *buf;

DESCRIPTION

Ustat returns information about a mounted file system. Dev is a device number identifying a
device containing a mounted file system. Buf is a pointer to a ustat structure that includes to

following elements:

daddr_t {_tfree; /* Total free blocks */

ino_t f{_tinode; /* Number of free inodes */

char f_fname[6]; /* Filsys name */

char f_fpack(6]; /* Filsys pack name */
Ustat will fail if one or more of the following are true:
[EINVAL] Dev is not the device number of a device containing a mounted file system.
[EFAULT) Buf points outside the process’s allocated address space.

RETURN VALUE

Upon successful completion, a value of O is returned. Otherwise, a value of —1 is returned and

errno is set to indicate the error.

SEE ALSO
stat(2), fs(4).

UTIME(2)

NAME
utime — set file access and modification times
SYNOPSIS
#include <sys/types.h>
int utime (path, times)
char *path;
struct utimbuf *times;
DESCRIPTION
Path points to a path name naming a file. Utime sets the access and modification times of the
named file.

If times is NULL, the access and modification times of the file are set to the current time. A pro-
cess must be the owner of the file or have write permission to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure and the access and
modification times are set to the values contained in the designated structure. Only the owner of
the file or the super-user may use utime this way.

The times in the following structure are measured in seconds since 00:00:00 GMT, Jan. 1, 1970.

struct utimbuf {
time_t actime; /* access time */
time_t modtime; /* modification time */

b

Utime will fail if one or more of the following are true:

[ENOENT] The named file does not exist.
[ENOTDIR] A component of the path prefix is not a directory.
- [EACCES] Search permission is denied by a component of the path prefix.
[EPERM] The effective user ID is not super-user and not the owner of the file and times is
not NULL.
[EACCES)] The effective user ID is not super-user and not the owner of the file and times is
NULL and write access is denied.
[EROFS] The file system containing the file is mounted read-only.
[EFAULT) Times is not NULL and points outside the process’s allocated address space.
— [EFAULT) Path points outside the process’s allocated address space.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
stat(2).

NAME

WAIT(2)

wait — wait for child process to stop or terminate

SYNOPSIS

int wait (stat_loc)
int *stat_loc;

int wait ((int *)0)

DESCRIPTION

Wait suspends the calling process until one of the immediate children terminates or until a child
that is being traced stops because it has hit a break point. The wait system call will return
prematurely if a signal is received and if a child process stopped or terminated prior to the call on
watt, return is immediate.

If stat_loc (taken as an integer) is non-zero, 16 bits of information called status are stored in the
low order 16 bits of the location pointed to by stat_loc. Status can be used to differentiate
between stopped and terminated child processes and if the child process terminated, status identi-
fies the cause of termination and passes useful information to the parent. This is accomplished in
the following manner:

If the child process stopped, the high order 8 bits of status will contain the number of the
signal that caused the process to stop and the low order 8 bits will be set equal to 0177.

If the child process terminated due to an ezit call, the low order 8 bits of status will be
zero and the high order 8 bits will contain the low order 8 bits of the argument that the
child process passed to ezit; see ezit(2).

If the child process terminated due to a signal, the high order 8 bits of status will be zero
and the low order 8 bits will contain the number of the signal that caused the termina-
tion. In addition, if the low order seventh bit (i.e., bit 200) is set, a “‘core image” will
have been produced; see signal(2).

If a parent process terminates without waiting for its child processes to terminate, the parent pro-
cess ID of each child process is set to 1. This means the initialization process inherits the child
processes; see tniro(2).

Wait will fail and return immediately if one or more of the following are true:
[ECHILD] The calling process has no existing unwaited-for child processes.
[EFAULT) Stat_loc points to an illegal address.

RETURN VALUE

If wait returns due to the receipt of a signal, a value of -1 is returned to the calling process and
errno 1s set to EINTR. If wast returns due to a stopped or terminated child process, the process
ID of the child is returned to the calling process. Otherwise, a value of -1 is returned and errno
is set to indicate the error.

SEE ALSO

exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2).

WARNING

See WARNING in signal(2).

WRITE (2)

NAME
write — write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;
DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe system call.

Write attempts to write nbyte bytes from the buffer pointed to by buf to the file associated with
the fildes.

On devices capable of seeking, the actual writing of data proceeds from the position in the file
indicated by the file pointer. Upon return from write, the file pointer is incremented by the
number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the current position. The
value of a file pointer associated with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer will be set to the end of the
file prior to each write.

Write will fail and the file pointer will remain unchanged if one or more of the following are true:
[EBADF] Fildes is not a valid file descriptor open for writing.

[EPIPE and SIGPIPE signal)
An attempt is made to write to a pipe that is not open for reading by any pro-

cess.

[EFBIG] An attempt was made to write a file that exceeds the process’s file size limit or
the maximum file size. See ulim:t(2).

[EFAULT] Buf points outside the process’s allocated address space.

[EINTR] A signal was caught during the write system call.

[ENOSPC] Additional blocks cannot be allocated to the file becasue the file system has no
free blocks or because a PILF file’s cluster size exceeds the size of all unallocated
clusters.

[EDEADLOCK] A side effect of a previous locking(2) call.

If a write requests that more bytes be written than there is room for (e.g., the ulimit (see
ultmit(2)) or the physical end of a medium), only as many bytes as there is room for will be writ-
ten. For example, suppose there is space for 20 bytes more in a file before reaching a limit. A
write of 512 bytes will return 20. The next write of a non-zero number of bytes will give a
failure return (except as noted below).

If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the file flag word is set,
then write to a full pipe (or FIFO) will return a count of 0. Otherwise (O_NDELAY clear), writes
to a full pipe (or FIFO) will block until space becomes available.

RETURN VALUE
Upon successful completion the number of bytes actually written is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), Iseek(2), locking(2), open(2), pipe(2), ulimit(2).

