
rNrRo (2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
finclude (errno.h)

DESCRIPTION
This section describes all of the system calls. Most of these calls have one or more error returns.Al error condition is indicated by an otherwise impossible returned value. This is almost always
-1; the individual deseriptions specify the details. An error number is also made available in the
external variable errno. Errno is not eleared on successful calls, so it should be tested only after
an error has been indicated.
Each system call description attempts to list all possible error numbers. The following is a com-
plete list of the error numbers and their names as defined in (errno.h).
1 EPERM Not owner

Typically this error indicates an attempt to modify a file in some way forbidden
its owner or super-user. It is also returned for attempts by ordinary users to
allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name
when one of the directories in a path

3 ESRCH No such process
No process can be found corresponding to that specified by pid in ßrll or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch,
occurred during a system call. If execution is resumed after processing the signal, it will
appear as if the interrupted system call returned this error condition.

5 EIO I/O error
Some physicalllO error has occurred. This error may in some cases occur on a call fol-
lowing the one to which it actually applies.

6 ENDCO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond the limits of the
device. It may also occur when, for example, a tape drive is not on-line or no disk pack is
loaded on a drive. On local terminals, it may indicate that the host terminal lacks the
specified channel; for example, opening tp2033, when ttyO33 refers to a TM31 Terminal.

7 E2BIG Arg list too Iong
An argument list longer than 10,240 bytes is presented to a member of the exec family.

8 ENOED(EC Exec format error
A request is made to execute a file which, although it has the appropriate permissions,
does not start with a valid magic number (see a.out(4)).

I EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respectively, write) request is
made to a file which is open only for writing (respectively, reading).

10 ECHILD No child processes
Await was executed by aprocess that had no existing or unwaited-for child processes.

11 EAGAIN No more processes
A fork failed because the system's process table is full or the user is not allowed to create
any more processes.

except to
do things

is specified and the file should exist but doesn,t, or
name does not exist.

l-

rNTRo (2)

12 ENOMEM Not enough spacr,
During an etec, brk, cr sbrk, a program asks for more space than the sysiem is able to
supply. The maximum allocation is 3.5 megabytes; a program that gets this condition
with a smaller allocati<>n may work at another time *'hen ot,her large pro6;rams alen't
hogging the swap file. If this problem recurs, the system administrator may want to con-
sider enlarging the swap file.
The error may also occur if the arrangemeni of text, data, and stack segrrients reqr.rires
too many segmentation registers, or if there is not, enough swap space during it, forl;.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden b1' the protection s.ysterrr. F'rom
locking, an attempt to lock bytes already under a checking lock.

14 EFATILT Bad a,ldress
The system encountere«l a hardware fault in attempting to use a,n argumenrb of a. syriiem
call.

15 ENOTBLK Block device required
A non-block file was me'ntioned where a biock device was required, e.g., in m,ount.

16 EBUSY Device or resource b,usy
An attempt, was made to mount a device that was already mounted or an attempt was
made to dismount a device on which there is an active file (open file, current direcl.ory,
mounted-on file, active text segment). It, will also occur if an attempb is rrra.de tc, enable
accounting when it is already enabled. The device or resource is currently un:lvailrable.

17 EE)CST File exists
An existing file was mentioned in an inappropriate context, e.g., link.

18 E)OEV Cross-device link
A link to a file on anottrer device was attempbed.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device: e.g., rerld a
write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a pat,h prefix
or as an argument to ch,dir(2).

21 EISDIR Is a directory
An attempt, was made to write on a directory.

22 EINVAL Invalid argument
Some invalid argumenl, (".g., dismounting a non-mounted device; mentioning a,n unde-
fined signal in signal , or kill; reading or writing a file for which /see# ha"li generated a
negative poinier). Also set by the math functions described in the (3M) entries of this
manual.

23 ENFILE File table overflow
The system file table is full, and temporarily no more opens can be accepted.

24 EMFILE Too many open files
No process may have rrrore than 20 file descriptors open at a time.

25 ENOTTY Not :r. character ilevice
An attempt, was made 1,o ioctl(2) a file that is not a special character device,

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program that is currer,tly oper.r for
writing. Also an attempt to open for writing a pure-procedure program ihal, is being exe-
cuted.

_r-

rNTRo (2)

27 EFBIG File too large
The size of a file exceeded the maximum file size (1,082,201,088 bytes) or ULIMIT; see
ulimit(2).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device. This can
occur on a PILF file when the file system lacks unallocated clusters as big as the file's
cluster size. On System 6600 tape files, it indicates a read past the end of the tape.

29 ESPIPE Illegal seek
An lseek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of links (1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the data. This condition normally
generat,es a signal; the error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the domain of the func-
tion.

34 ERANGE Result too large
The value of a function in the math package (3M) is not representable within machine
precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that does not exist on the specified
message queue; see msgop(2).

36 EIDRM Identifier Removed
This error is returned to processes that resume execution due to the removal of an identif-
ier from the file system's name space (see megctl(2), aemctl(2), and oÄrnctI(2)).

50 EBADE Invalid exchange
Use of an invalid Inter-CPU Comrnunication exchange descriptor.

51 EBADR Invalid request descriptor
Use of an invalid Inter-CPU Communication request descriptor.

52 EIOUI L Exchange full
An Inter-CPU Communication request failed because an exchange is full. The exchange
might be the request's response exchange or the service exchange.

53 ENOANO No anode
The Application Processor has as many files open a^s it can handle.

54 EBA-DRQC Invalid request code
No operating system or RTOS process is servicing the specified request code.

56 EDEA-DLOCK Deadlock error
Call cannot be honored because of potential deadlock or because lock table is full. See
lockins(2).

DEFINITIONS
Process ID

Each active process in the system is uniquely identified by a positive integer called a process ID.
The range of this ID is from I to 30,000.

-3-

rNTRo (2)

Parent, Process ID
A new process is created by a currently active process; see fork(2). The parent procoss ID of a
process is the process ID of its creator.

Process Group ID
Each active process is a rnember of a process group that is identified by a positive int,:ger called
the process group ID. TlLis ID is the process ID of the group leader. This grc,uping permits ttre
signaling of related processes; see ßdl(2)"

Tty Group ID
Each active process cäD b,€ a member of a terminal group that is identified b'y a positive integer
called the tty group ID. This grouping is used to terminate a grollp of related processeri upc,n ter-
mination of one of the prc,cesses in the group; see edt(2) and signal(2).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer called a rea[user iD.
Each user is also a memt,er of a group. The group is identified by a positivr: integer called the
real group ID.

-.An active process has a real user ID and real group ID that are set to the real user ID and real
group ID, respect,ively, of r,he user responsible for the creation of the process.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group ID that are us,gd to determi:ne filie
access permissions (see below). The effective user ID and effective group I1) are equal l;o thLe
process's real user ID ancl real group ID respectively, unless the process or orre of its, ancestors
evolved from a file that had the set-user-ID bit or set-group ID bit set; see etec,!r2).

Super-user
A process is recognized as a Euper-user process and is granted special privileges if its eff'ectil'e
user ID is 0.

Special Processes
The processes with a process ID of 0 and a process ID of I are special processes and zrre referred 1,o

as proc) and procl.
Proc0 is the scheduler. Procl is the initialization process (init). Procl is the ancestor of every
other process in the systern and is used bo control the process structure.

File Descriptor
A file descriptor is a smatrl integer used to do I/O on a file. The value of a file descripbor is from
0 to 19. A process may have no more than 20 file descriptors (G19) open simultaneously. A file
descriptor is returned by system calls such x open(2), or pipe(2). The file descriptor is used as a,n
argument by calls such as read\2), write(2), ioctl(2), ard close(2)

File Name
Names consisting of 1 to 14 characters may be used to name an ordinary file, :special file or direc-
tory.
These characters may be selected from the set of all character values excluding \0 (null) and the
ASCII code for / (slash).

Note that it is generally unwise to use *, ?, [,or] as part of file names be«:ause of the t;pecial
meaning attached to these characters by the shell. See sä(1). Although permitted, it irr advisable
to avoid the use of unprin.table characters in file names.

Path Name and Path Prefix
A path name is a null-berminated character string starting with an optional siash (/), follovred by
zero or more directory names separated by slashes, optionally followed by a file name.
More precisely, a path name is a null-terminated character string constructed as follows:

- 4-

rNrRo(2)

(path-name) :::(file-name)>l (path-prefix) (file-name> l/(path-prefix) :::(rtprefix)l / <rtprefix >(rtprefix) ::: (dirname)/l (rtprefix) (dirname> f
where (file-name> is a string of 1 to 14 characters other than the ASCII slash and null, and
(dirname) is a string of 1to 14 characters (other than the ASCII slash and nult) that names a
directory.
If a path name begins with a slash, the path search begins at the root directory. Otherwise, the
search begins from the current working directory.
A slash by itself names the root directory.
Unless specifically stated otherwise, the null path name is treated as if it named a non-existent
file.

Directory
Directory entries are called links. By convention, a directory contains at least two links, . and ..,
referred lo as dot a,nd d,ot-dot respectively. Dot refers to the directory itself and dot-dot refers to
its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current working directory
for the purpose of resolving path name searches. The root directory of a process need not be the
root directory of the root file system.

File Access Permissions
Read, write, and execute/search permissions on a file are granted to a process if one or more of
the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of the owner of the file and the
appropriate access bit of the "owner" portion (0700) of the file mode is set.

The effective user iD of the process does not match the user ID of the owner of the file,
and the effective group ID of the process matches the group of the file and the appropri-
aie access bit of the "group" portion (070) of the file mode is set.

The effective user ID of the process does not match the user ID of the owner of the file,
and the effective group ID of the process does not match the group ID of the file, and ühe
appropriate access bit of the "obher" portion (07) of the file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier
A message queue identifier (msqid) is a unique positive integer created by a msgget(2) system call.
Each msqid has a message queue and a data structure associated with it. The data structure is
referred Lo x msqid_ds and contains the following members:

struct ipc-perm msgJerm; /* operation permission struct */
ushort msg-qnum; /* number of msgs on q */
ushort msg-qbytes; l* ** number of bytes on q */
ushort msg lspid; /* pid of Iast msgsnd operation */
ushort msg lrpid; /* pid of last msgrcv operation */
time-t msg-stime; /* last msgsnd time */
time-t msg-rtime; /* last msgrcv time */
time-t msg-ctime; /* Iast change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. l, l97O * f

Msg3erm is an ipcjerm sLructure that specifies the message operation permission (see below).
This structure includes the following members:

-5-

rNrRo(2)

usirort cuid; /* creator user id */
ushort cgid; /* creator group id *,/
ushort uid; /* user id */
ushort gid; /* group id */
ushort mode; l* ,l* permission */

Msg_qnurn is the numbel of messages cumently on the queue. Msg_qbytes is thre nraxirnum
number of bytes allowed otr the queue. Msg_lspid is the process id of the last proc€:ss bhat per-
formed a msgsnd operatior:r. Msg-lrpid is the process id of the last process that perlbrmr:d a
msgrca operation. Msg stirne is the time of the last msgsnd operation, rnsg--;rtirne is the 'time
of the last msgrca operati,>n, and rnsg_ctirne is the time of the last msgctl(Z) operat.ion that
changed a member of the above structure.

Message Operation PermissionLs
In the msgop(2) and msgctl(2) system call descriptions, the permission required fc)r an opr:rati<>n is
given as "{token}", where "token" is the type ol perrnission needed interpreted eis foliows:

00400 Read by user
00200 Write by user +
00060 Read, Write by group
00{)06 Read, Write by others

Read and Writ,e permissiorrs on a msqid are granted to a process if one or more of the lollo'wing
are true:

The effective user lD of the process is super-user.

The eflective user]D of the process matches rnsg-perrn.[c]uid in the d:r,ia struct.ure asso-
ciated with msqid and the appropriate bit of the "user" p<>rtion (0600i of
rnsg--1)erm.rnode is set.

The effective user ID of the process does not match rrsg-perm.[c]uid and the effer:tive
group ID of the process maiches msgJerm.[c]gid and the appropriate bit of the
"group," portion (OOO) of msgJerm.mode is sei.
The effective user ID of the process does not match msgJerm.[c]uid and the effe,:tive
group tD of the process does not match msgJerm.[c]gid and the apprnrpriate bit o:l the
"other" portion (Oti) of msg-perrn.rnode is set.

Ot,herwise, the corresponding permissions are denied.
Semaphore Identifier

A semaphore identifier (semid) is a unique positive integer created by a semg,ef (2) system call.
Each semi,l has a sei of selnaphores and a data structure associated with it. The data str:ucttLre is
referred to as semid_ds and contains the following members:

strucl ipcaerm sem3erm; /* operation permission struct *,/
ushort sem_nserrs; 7/* number of sems in set */
tirne-t sem-otime; /* last operation time *,/
tirne-t sem-ctime; /* Iast change time *,/

7/* Times measured in secs since *7'

i * 00:00:00 GNIT, Jan. 1, 1970 *7',

Sernperm is an ipc-perm structure that specifies the semaphore operation permission (see
belou'). This structure includes the following members:

ushort cuid; /* creator user id */
ushort cgid; ,/* creator group id *,/
ushort uid; /* user id */
ushort gid; /* group id */
ushort mode; l* ,lu permission *,/

-6-

rNrRo (2)

The value of sem-nsems is equal to the number of semaphores in the set. Each semaphore in
the set is referenced by a positive integer referred to as a setn_num. Sem_num values run sequen-
tially from 0 to the value of sem-nsems minus 1. Sem-otirne is the time of the last semop(2)
operation, and sem-ctime is the time of the last semctl(2) operation that changed a member of
the above structure.
A semaphore is a data structure that contains the following members:

ushort semvall /* semaphore value */
short, sempid; /* pid of last operation */
ushort semncnt; f* ff awaiting semval) cval*f
ushort semzcnt; f* $ awaiting semval : C *l

Sernval is a non-negative integer. Sernpid is equal to the process ID of the last process that per-
formed a semaphore operation on this semaphore. Semncnt is a count of the number of
processes that are currently suspended awaiting this semaphore's semval to become greater than
its current value. Sernzcnt is a count of the number of processes that are currently suspended
awaiting this semaphore's semval to become zero.

Semaphore Operation Permissions
In the semop(2) and semctl(2) system call descriptions, the permission required for an operation is
given as "{token}", where "token" is the type of permission needed interpreted as follows:

Read by user
Alter by user
Read, Alter by group
Read, Alter by others

Read and Alter permissions on a semid are granted to a process if one or more of the following are
true:

The effective user ID of the process is super-user.

The effective user ID of the process matches semJerrn.[c]uid in the data structure asso-
ciated with semid and the appropriate bit of the "user" portion (0600) of
semJerm.mode is set.

The effective user ID of the process does not match semJerm.[c]uid and the effective
group ID of the process matches semJerm.[c]gid and the appropriate bit of the
"group" portion (060) of eemJerm.mode is set.

The effective user ID of the process does noü match aemJerm.[c]uid and the efl'ective
group ID of the process does not match aemJerm.[c]gid and the appropriate bit of the
"other" portion (06) of semJerm.mode is set.

Otherwise, the corresponding permissions are denied.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer created by a shmget(2) system
call. Each shmid has a segment of memory (referred to as a shared memory segment) and a data
structure associated with it. The data structure is referred to as shmid-ds and contains the fol-
Iowing members:

struct ipcjerm shm3erm; /* operation permission struct */
int shm-segsz; f * size of segment */
ushort shm-cpid; /* creator pid */
ushort shm lpid; /* pid of last operation */
short shm-nattch; l* number of current attaches */
time-t shm-atime; f * last attach time */
time-t shm-dtime; /* last detach time */
time-t shm-ctime; /* last change time */

,/* Times measured in secs since */

00400
00200
00060
00006

-7 -

rNrRo (2)

/* 00:00:00 GMT, Jan. L, lg70 * f
Shmjerm is an ipc-pr:rm structure that specifies the shared memory operar,ion per:nission (see
below). This structure includes the following members:

ushort cuid; ,/* creator user id *,/
ushort cgid; /* creator group id *,/
ushort uid; /* user id *7'

ushort Sid; /* group id */
ushc,rt mode; l* ,l*'permission */

Shrn-segsz specifies the size of the shared memory segment. Shrn_cpid is the proce:ss id. of t,he
process that created the shared memory identifier. Shrn_lpid is the process.id of t,he last process
that perfornted a.shmop,(2) operation. Shrn-nat,tch is the number of pror:r:sses th:rt cu.rrently
have this segment attached. Shm_atime is the time of the last shmat opera,1,ion, shrn_d'bime, is
rhe time of the lasL shmdt operation, and shm_ctime is the time of the last shmctl(l)) operation
that changed one of the members of the above strr,Lcture.

Shared Memory Operation lPermissions
In the shmogt(2) and sämctl(2) system call descriptions, the permission requirecl for an operatiorL is
given as "{token}", where "token" is the type of permission needed interpreted * f6ll6,ws:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write t»y others

Read and \\'rite permissions on a shmid are grant;ed to a process if one or more of the followi,ng
are true:

The effective user ID of the process is super-user.
The effective usr:r ID of the process match,:s shmperrn.[e]uid in the data structu:re asso-
ciated with shmid and the appropriate bit of the "user" portion (0600) of
shrn-;>erm.mode is set.

The effective user ID of the process does not match shrnjerm.[c]uid and the elfective
group ID of the process matches shm-perrn.[c]gid and the appropriate bit of t,he

. "grc,up" portion (O0O) of shmjerrn.mocle is set.

The effective user ID of the process does not match shrn-perrn.[c]trid and the effective
group ID of the process does not match shm-perm.[c]gid and the approprial,e bir; of t;he --\
"otlLer" portion (06) of shm3erm.mode is set.

Otherwise, the corresponding permissions are denied.
StrE AISO

close(2), ioctl(2), open(2), pipe(2), read(2), write(2), intro(3).

-8-

ACCESS (2)

NAME
access - deiermine accessibility of a file

SYNOPSIS
int aceess (path, amode)
char *path;
int amode;

DESCRIPTION
Poülr points to a path name naming a file. Access checks the named file for accessibility accord-
ing to the bit pattern contained in amode, using the real user ID in place of the effective user ID
and the real group ID in place of the effective group ID. The bit pattern contained in amode is
constructed as follows:

04 read
02 write
0l execute (search)
00 check exisüence of file

Access to the file is denied if one or more of the following are true:
[nNOtOfn] A component of the path prefix is not a directory.
[fXoeNf] Read, write, or execute (search) permission is

requested for a null path name.
[fUOONf] The named file does not exist.
[eeCCnS] Search permission is denied on a component of the

path prefix.
IEROFS] Write access is requested for a file on a read-only

file system.
[ffXfnSV] Write access is requested for a pure procedure

(shared text) file that is being executed.
[neCCfSS] Permission bits of the file mode do not permit

the requested access.
IEFAULT] Patä points outside the allocated address

space for the process.

The owner of a file has permission checked with respect to the "owner" read, write, and execute
mode bits, members of the file's group other than the owner have permissions checked with
respect to the "group" mode bits, and all others have permissions checked with respect to the
"other" mode bits.

RETI'RN VALI]E
If the requested access is permitted, a value of 0 is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

SEE AISO
chmod(2), stat(2).

-1-

ACCr(2)

NAME
acct - enable or disabl«: process accounting

SYNOPSIS
int acct (path)
char *path;

DESCRIPTION
Acct is used to enable or disable the system process accounting routine. U the routirre is enabled,
an accounting record will be written on an accounting file for each process that t;ernrinat,es. Ter-
mination can be caused by one of two things: an erit call or a signal; see ezif (2) a.nd signal(Z).
The effective user ID of the calling process must be super-user to use this call.
Pctä points to a path name naming the accounting file. The accounting file format is given in
acct(4).
The accounting routine is enabled if path is non-zero and no errors occur d.uring thr: system call.
It is disabled if path is zero and no errors occur during the system call.
Acct will fail if one or more of the following are true:

IEPERM] The effective user of the calling process is not super-user.

IEBUSY] An attempt, is being made to enable accounting when it is :rlready e::rabled.

IENOT'DIR] A conrponent of the path prefix is not a directory.

IENOENT] One c,r more components of the accounting file path name do nob er:ist.

IEACCES] A component of the path prefix denies search permission.

IEACCES] The file named by path is not an ordinary file.

IEACCES] Mode permission is denied for the named accounting file.

IEISDIR] The named file is a directory.

IEROFS] The rramed file resides on a read-only file system.

IEFAULT] Patä points to an illegal address.

RETIIRN VAIT]E
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicater the error.

SEE AISO
exit(2), signal(2), acct(4).

-1-

ArÄRM(2)

NAME
alarm - set a process alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned secl

DESCRIPTION
Alarm instructs the alarm clock of the calling process to send the signal SIGALRM to the calling
process after the number of real time seconds specified by e ec have elapsed; see signal(2).
Alarm requests are not stacked; sueeessive ealls reset the alarm clock of the calling process.

If sec is 0, any previously made alarm request is canceled.
RETIIRN VAIUE

Alarm returns the amount of time previously remaining in the alarm clock of the calling process.

SEE ALSO
pause(2), signal(2).

-1-

BRK(2)

NAME ^
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
char *enddsl

char *sbrk (incr)
int incr;

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space alliocated frtr the cralling
process's data segment; see erec(2). The change is made by resetting thr: process's break value
and allocating the aptr>ropriate amount of space. The break value is the a,ldress of the first loca-
tion treyond the end of the data segment. The amount of allocated space increasers as the break
value increases. The newly allocated space is set to zero.

Brft sets the break value to endds and changes the allocated space accordingly.
S0rt adds incr bytes lo the break value and changes the allocated space accordingly. Incr canbe
negative, in which case the amount of allocated space is decreased.

Brk and särß will fail without making any change in the allocated space il one or rrrore ,rf the fol-
lowing are true:

Such a change would result in the process exceeding its allocati,cn limit. This can be
imposed by the system administrator (see ulimit (2)); otherwise it is the ava"ilable space is
the processor's swap file, with an absolute maximum of about 3.5 megabytes. [ENOI/[EM]
Such a change would result in the break value being greater than or equal to the start,
address of an1' attached shared memory segment (see shmop(2)).

RETURN VALUE
Upon successful completion, brk returns a value of 0 and särrt returns the old break valu,e. Crther-
wise, a value of -1 is returned and errno is set to indicate the error.

SEE AISO
exec(2).

-1-

crrDrR(2)

NAME
chdir - cha.nge working directory

SYNOPSIS
int chdir (path)
char *path;

DESCRIPTION
Potä points to the path name of a directory. Cädlr causes the named directory to become the
current working directory, the starting point for path searches for path names not beginning with
/
Chdir will fail and the current working directory will be unchangid if one or more of the follow-
ing are true:

IENOTDIR] A component of the path name is not a directory.

IENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any component of the path name.

IEFAULT] Potä points outside the allocated address space of the process.

RETURN VAIIIE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chroot(2).

-1-

cHMoD(2)

NAME
chmod - change mode cf file

SYNOPSIS
int chmod (path, mode)
char *path;
int rnode;

DESCRIPTION
Patä points to a path name naming a file. Chmod sets the access permission portio.n of the
named file's mode according to the bit pattern contained in mode.
Access permission bits are interpreted as follows:

04000 Set user ID on execution.
020m Set group ID on execution.
01000 Save text image after execution.
00400 Read by owner.
00200 Write by owner.
00100 Execute (search if a directory) by o'wner.
00070 Read, write, execute (search) by group.
00007 Read, write, execute (search) by otherii.

The effecbive user ID of the process must match the owner of the file or be super-us,er to change
the mode of a file.
If the effective user ID of the process is not super-user, mode bit 01000 (save text imzrge on execu-
tion) is cleared.
If the effective user ID of ihe process is not super-user and the effective group ID ol the process
does not match the group ID of the file, mode bit 02000 (set group ID on execution) is cleared.
If an executable file is prepared for sharing then mode bit, 01000 prevents the systenr from aban-
doning the swap-space image of the program-text portion of the file when iü; last user terminzrtes.
Thus, when the next user of the file executes it, the text need not be read from the file system
but can simply be swapped in, saving time.
Chmod will fail and the file mode will be unchanged if one or more of the fol.lowing ale trr:e:
IENOTDIR] A component of the path prefix is not a directory.
IENOENT] The named file does not exist.

[EACCES] search, permission is denied on a component of the path prefx.
IEPERM] The effective user ID does not match the owner of the file and the t:ffective rrser

ID is not super-user.

lERoFSl

IEFAULT]

The named file resides on a read-only file system.
Potä points outside the allocated address space of the process.

RETTIRN YAIUE
Upon successful compl:tion, a value of 0 is returned. Otherwise, a value ,rf -1 is returned and
errno is set to indicate the error.

SEE AISO
chown(2), mknod(2).

1-

cHowN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path; owner, group)
char *pathl
int owner, group;

DESCRIPTION
Patä points to a path name naming a file. The owner ID and group ID of the named file are set
to the numeric values contained in owner and group respectively.

Only processes with effective user ID equal to the file owner or super-user may change the owner-
ship of a file.
If chown is invoked by other than the super-user, the set-user-lD and set-group-lD bits of the file
mode, 04000 and 02000 respeciively, will be cleared.

Chown will fail and the owner and group of the named file will remain unchanged if one or more
of the following are true:

[ENOTDIR] A component of the paüh prefix is not a directory.

IENOENT] The named file does not, exist.

IEACCES] Search permission is denied on a component of the path prefix.

IEPERM] The effective user ID does not match the owner of the file and the effective user
ID is not super-user.

IEROFS] The named file resides on a read-only file system.

IEFAULT] Patä points outside the allocated address space of the process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chown(t), chmod(2).

-l-

CHROOT (2)

NAME
chroot -- change root directory

SYNOPSIS
int chroot (path)
char *pathl

DESCRIPTION
Pafä points to a path name naming a directory. Chroot causes the named directorll to becc,me
the root directory, the starting point for path searches for path names beginning v;ith /. lthe
user's working directory is unaffected by the chroot system call.
The effective user ID of the process must be super-user to change the root dir,actory.
The .. entry in the root directory is interpreted to mean the root direcüory itself. Thus, .. cannot
be used to access files outside the subtree rooted at the root directory.
Chroot will fail and the root directory will remain unchanged if one or more of the follovring are
true:

IENOTDIR] Any component of the path name is not a directory.

IENOENT] The named directory does not exist.

IEPERM] The effective user ID is not super-user.

IEFAULT] Potä points outside the allocated address space of the process.

RETURN VAIUE
Upon successful compleLion, a value of 0 is returned. Otherwise, a value c,f -1 is returned and
errno is set to indicate the error.

SEE ALSO
chdir(2).

-l-

cl,osE(2)

NAME
close - close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
Fildea is a file descriptor obtained from a creat, open, dup, fcntl, or prpe system call. Close
closes the file descriptor indicated by fildes.

IEBADF] Clooe will f.all1l fildes is not a valid open file descriptor.

RETI]RN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -l is returned and
errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2), open(2), pipe(2).

-1-

CREAT(2)

NAME ^
creat - create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char *path;
int rnode;

DESCRIPTION
Creat creaLes a new ordinary file or prepares to rewrite an existing file nanred b;r the pa,th name
pointed to by path.
If the file exists, the length is truncated to 0 and the mode and owner are unchang:ecl; if a I'ILF
file, the cluster size exponent is also unchanged. Otherwise, the file's owner ID is set to the effec-
tive user ID, of the process the group ID of the process is set to the effecüiver group ID, of the pro-
cess and the low-order 12 bits of the file mode are set to the value of mode modified a.s follows:

All bits set in t.he process's file mode creation mask are cleared. See urna.s/c(2r).

The "save text image after execution bit" of the mode is cleared. See chrnod(2). .

The process's default cluster size exponent determines the cluster size of fikrs createcl c,n PILF file
systems. See syslocal(2:).

Upon successful completion, the file descriptor is returned and the file is open for writing, even if
the mode does not permit writing. The file pointer is set to the beginning of the lile. The file
descriptor is set to rernain open across erec system calls. See lcntl(2).)\lo process m:ay have
more than 20 files open simultaneously. A new file may be created r*-ith a rrrode that forbids writ-
ing'
Creat will fail if one or more of the following are true:

[ENOTDIR] A component, of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EACCES] SearctL permission is denied on a component of the path prefix.

IENOENT] The path name is null.

[EACCES] The file does not exist and the directory in which the file is to be created does
not permit writing.

IEROFS] The named file resides or would reside on a read-only file system.

IETXTI]SY] The file is a pure procedure (shared text) file that is being execut,ed.

[EACCES] The file exists and write permission is denied.

[EISDIRI The named file is an existing directory.

[EMFILE] Twenty (ZO) file descriptors are currently open.

[EFAULT] Potlr points outside the allocated address space of the process.

IENFILEI The s1.s1qm file table is full.
IEDEADLOCK] A side effect of a previous locking(2) call.

RETURN VALUE
Upon successful completion, a non-negative integer, namely the file descript.or, is returned. Oth-
erwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod('2), close(2), dupti2), fcntl(2), locking(2), lseek(2), open(2), read(2), urna^sk(2), write(2).

-1-

DUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int düp (fildes)
int fildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fcntl, or plpe system call. Drp
returns a new file deseriptor having the following in common with the original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file pointer).
Same access mode (read, write or read/write).

The new file descriptor is set to remain open across ecec system calls. See fcntl(2).
The file descriptor returned is the lowest one available.
Dup wlll fail if one or more of the following are true:

[enaOf] Fildes is not a valid open file descriptor.

{EMFILE] Twenty (20) file descriptors are currently open.
RETIIRN VALI'E

Upon successful completion a non-negative integer, namely the file descriptor, is returned. Other-
wise, a value of -1 is returned and enno is set to indicate the error.

SEE ALSO
creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2).

-1-

EXCALL(2) (System 6600 Only)

NAME
exCall - Send a request and wait for the response

SYNOPSIS
finclude (exch.h)

exCall(reqbl);
struct reqheader *reqbl;

DESCRIPTION
ExCall sends a request and waits for the response. ,Begbl must point to a request block r;hat
describes the message. The request block has four parts: a request header, control information,
request PbCbs, and response PbCbs.

The ICC user include file defines a requesü header thus:
struct rqheader {

unsigned short r-sCntlnfo;
unsigned char r-nReqPbOb;
unsigned char r-nRespPbCb;
unsigned short r-userNum;
unsigned short r-exchResp;
unsigned short r*ercRet;
unsigned short r-rqCode;

);
The client sets the following fields: r-sCntlnfo (which must be even), r-nBt:qPbt)ü, and
r_nRespPbCä, specify bhe size of the rest of the request block; r_exchResp, specifies where the
response must be sent; and r_rqCode, specifies the destination of the request. The kernel and
server ignore any values in r-userNum or r-ercRet. Each request code requiires specific v,aluesi for
r_sCntlnfo, r_nReqPbC)ö, and r_nRespPbCb.
The client, uses the control information to send fixed-length data fields to the server.
A PbCb has the following structure:
struct PbCb {

char *pc-offset;
unsigned shorü pc-count;

);
The client uses Requesb PbCbs to send blocks of data to the server. Each PbCb gives t,he loca-
tion (pc-offset) and size (pc-coant) of a data block.
The client, uses Response PbCbs to pass response data areas (pc-offset) and maxi:mum lenlgths
(pc-count) to the server and kernel. If the server ignores the restrictic,rrs, the kernel righr
truncates the offending fields.
The memory containing the variable-length fields need not immediately follow the requ,est blo«:k.

SEE ÄLSO
Operating System Programmer's Guide, Section 22.

RBTURN VALUE
-1 indicates error, with an emor code in emno. See perror(3).

WARNINGS
If the service is provided byRTOS, integer data must have Intel byte ordering. See shortswap(3).
Lint(l) may complain that erCall argument types are inconsistent, especially if th.e client uses
more than one kind of request block. To suppress these complaints, cast the argument to its offi-
cial type:

-1-

EXCALL(2) (System 6600 Only)

exCall((strucü rqheader x) reqbl);

Use of this cast does not affect the object code.

-9_

EXCIIANGES(2) (SYstem 6600 OnlY)

NAME
exQueryDfltRespExch, ,exAllocExch, exDeallocExch - obtain and abandon exr:hanges

SYNOPSIS
finclude (exch.h)

unsigned char exQueryDfltRespExchQ;

unsigned char exAllocExchQ;

exDeallocExch(ex)
unsigned char ex;

DESCRIPTION
A process that wants to receive messages must own exchanges. Each excha,nge has an excha.nge

descriptor, unique only to the exchange's owner'

EtQueryDfltRespErch:returns the descriptor of the caller's default response ,exchange. Every pro-
cess has a default response exchange as soon as it is forked. A process must referen,:e its default
response exchange explicitly. A process ean use its default response exchange to recej.ve both
requests and responses.

ErAllocErch allocates a new exchange and returns its exchange descriptor. The czrlling process
can use this exchange to receive both requests and responses.

EtDeallocErcÄ deallocates the specified exchange. Any requests still waitirlg or on th,eir: way to
the exchange are rejected with a return code of OxFF. Any responses still waitinl5 or on their
way to the exchange are discarded.

A process's death deallocates all its exchanges, but an erec has no affect on ,:xchanges.

SEE AISO
Operating System Programmer's Guide, Section 22.

RETURN YAIUE
-1 indicates error, with an error code in errno. See perror(3).

-1-

EXCPREQITEST(2) (System 6600 Only)

NAME
exCpRequest, exReject - remove a request from an exchange

SYNOPSIS
Sinclude <exch.h)

exCpRequest(reqdes, reqst)
unsigned short reqdesl
struct rqheader *reqstl

exReject(reqdes, r-ercRet)
unsigned short reqdes;
unsigned short r_ercRet;

DESCRIPTION
EzCpRequeat and etReject both remove a request from a seryer's exchange. A server that wants
to examine the request :uses erCpRequestl a server that has no interest in the messages's contents
uses etReject.

. EcCpRequest copies.the message indicated by the request describtor, reqdes. The kernel places
the request block and request data blocks together at the location pointed to by reqst. Reqst
must be an even address; each data block appears at an even address. (The amount of memory
the message requires is returned by a check on the message queue; see ezWait(2l).) The kernel
sets the request PbCbs to point to the server's copies of the data blocks.
ExReject discards the contents of the indicated message. It sends the response, with the return
code (m-ercRet in the request block header) set to r_ercRet.

FILES
/usr/include/exch.h - ICC user include file

SEE ALSO
Operating System Programmer's Guide, Section 22.

RETI'RN VALUE
-1 indicates error, with an error code in errno. See perror(3).

-1-

EXCPRESPONSE(2) (System 6600 Only)

NAME
exCpResponse, exDisc:lrd - remove a response from an exchange

SYNOPSIS
finclude (exch.h)'

exCpResponse(reqdes, reqst)
unsigned char reqdesl
struct rqheader *reqstl

exDiscard(reqdes)
unsigned char reqdesl

DESCRIPTION
ErCpResponse and erDiscard both remove a response from an exchange. A client that warLts to
examine the response uses erCpResponse; a client that has no interest in the rnessage's, contents
tses erDiscard.
ExCpResponse copies the message indicated by the request descriptor reqiles. Th,e kr:rnel uses
the request block point,ed to by reqst to place the parts of the response:

o The error code goes in lhe r-ercRet field of the request block header.
. The kernel exanrines each response PbCb in the request block. The pc-offse,l field should

be set to the location reserved for the data; pc_count should be set 1;o the nurnbe:r of bytes
available at that location. If the server provided more than pc-c'cunt bytes. the kerrrel
right-truncates the data to fit. The kernel overwrites pc-count with the nunrlcer of bytes
actually transferred.

ErDiscard discards the contents of the indicaüed message. It returns the message's return code
field (m-ercRet in the request block header).

FILES
/usr/include/exch.h - ICC user include file

SEE AISO
Operating System Progrummer's Guide, Section 22.

RETURN YALUE
-1 indicates emor, with an error code in errno. See perror(3).

WARNINGS
If the service is provided by RTOS, integer data must have Intel byte ordering. See,shartsutap(3\.

-l-

E)(EC(2)

NAME
execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int execl (path, argO, arg1, ..., argn, O)
char *path, *argo, *argl, ..., *argnl
int execv (path, argv)
char *path, *argv[];
int execle (path, argo, argl, ..., argn, O, envp)
char *path, *ergo, *argl, ..., *argn, *envp[];
int execve (path, argv, envp)
char *path, *argv[], *envp[];
int execlp (file, arg0, arg1, ..., argn, O)
char *file, *arg0, *argl, ..., *argnl
int execvp (file, argv)
char *file, *argv[];

DESCRIPTION
Ecec in all its forms transforms the calling process into a new process. The new process is con-
structed from an ordinary, executable file called the new procesa file. This file consists of a
header (see o. out()), a text segment, and a data segment. The data segment contains an initial-
ized portion and an uninitialized portion (bss). There can be no return from a successful erec
because the calling process is overlaid by the new process.

When a C program is executed, it is called as follows:

rnain (argc, argv, envp)
int argcl
char **ergv, **envpl

where argc is the argument count and argo is an array of character pointers to the arguments
themselves. As indicated , argc is conventionally at least one and the first member of the array
points to a string containing the name of the file.
Pati points to a path name that identifies the new process file.

Fr'le points to the new process file. The path prefix for this file is obtained by a search of the
directories passed as the enabonment line "PATH :' (see enairon(5)). The environment is sup-
plied by the shell (see sä(l)).
Arg0, arg1, ..., argn are pointers to null-terminated character strings. These strings constitute
the argument list available to the new process. By convention, at least arg? must be present and
point to a string that is the same as path (or its last component).

Arga is an array of character pointers to null-terminated strings. These strings constitute the
argument list available to the new process. By convention, argu must have at least one member,
and it must point to a string that is the same as path (or its last component). Argtt is terminated
by a null pointer.
Enop is an array of character pointers to null-terminated strings. These strings constitute the
environment for the new process . Enap is terminated by a null pointer. For ececl and, execa, t'he

C run-time start-off routine places a pointer to the environment of the calling proce§§ in the glo'
bal cell:

extern char **environ;
and it is used to pass the environment of the calling process to the new process.

File descriptors open in the calling process remain open in the new process, except for those whose
close-on-exec flag is set; see fcntl(2). For those file descriptors that remain open, the file pointer

-l-

E)(EC(2)

is unchanged.
Signals set to terminate the calling process will be set to t,erminate the nerv process. Sign:lls set
to be ignored by the calling process will be set to be ignored by the new process. Signals set tr: tre
caught by the calling process vrill be set to terminate the new process; see signal(2).
If the set-user-lD mode bit of t;he new process file is set (see chmod(2)), erec sets the effer:tive,user
ID of the new process to the owner ID of the new process file. Similarly, if the set-group-lD rrLod.e
bit of the new process file is sr:t, the effective group ID of ühe new process is set to the group, ID of
the new process file. The real user ID and real group ID of the new process remain the sam,e as
those of the calling process.

The shared memory segments attached to the calling process will not be attached to the ne\v lprG.
cess (see shmop(z)).
Profiling is disabled for the new process; see profil(2).
The new process also inherits t;he following attributes from the calling process:

nice value (see nfce(Z))
process ID
parenb process ID
process group ID
ICC exchanges, together with unremoved messages addressed to them
semadj va,lues (see seraop(2))
tty group ID (see eilt(Z) and signal(2))
trace flag (see ptrace(2) request 0)
time left until an alarm clock signal (see alarm(2))
currerrt working directory
root directory
file mode creation mask (see amask(2))
file size limit (see ulirnit(2))
utime, stime, cutime, and cstime (see tlrnes(2))
PILF cluster size exponent for this process

.Ecec will fail
lENoENrl
[ENorDrR]
IEACCESI

IEACCES]

IEACCES]

IENoE)GCl

lErxrBSYl

IENOMEMI

lE28rGl

lEFArrLTl
IEFAULT]

and return to the calling process if one or more of the following are true:
One or more components of the new process path name of the file do noi e>lisb.

A component of the new process path of the file prefix is not a dirr:ctory.
Search permission is denied for a directory listed in the new process file':; p,ath
prefix.
The new process file is not an ordinary file.
The new pro(:ess file mode denies execution permission.
The exec is rrot an ereclp or erecap, and the new process file ha,:s the app,ropri-
ate access permission but an invalid magic number in its header.
The new process file is a pure procedure
for writing by some process.

The new process requires more memory
maximum MIDß{EM
The number of bytes in the new process's argument list is grr:ater than the
system-imposed limit of 10,240 bytes.
The new process file is not as long as indicat,ed by the size values irr its hea,:ler.
Path, argo, or enap point to an illegal address.

(shared text) file that is currently open

than is allowed by the system-imposed

-,

E)(EC(2)

RETURN VALI]E
If etec returns to the calling process an error has occurred; the return value will be -1 and errno
will be set to indicate the error.

SEE AISO
sh(1), alarm(2), exit(z), fork(2), nice(2), ptrace(2), semop(2), signal(2), times(2), ulimit(2),
umask(2), a.out(4), environ(5).

-3-

E)(FINAI(2) (System 6600 Only)

NAME
exSendOnDealloc, exCnxSendOnDealloc * make final requests

SYNOPSIS
finclude (exch.h>.

unsigned char exSendOnDealloc(reqblk)
struct rqheader *reqblk;

exCnx SendOnDealloc(req)
unsigned char reql

DESCRIPTION
ErSendOnDealloc specifies a request and returns a request descriptor in precis,:lrr the same
manner x erRequest. But where erRequest dispatches the request immedtiately , etsenilOn,Deal-
/oc puts a hold on the request. When the client process deallocates the request':; response ex-
change, either by dying or by a call to erDealloc (see ezchanges(2)), the kernel delive,rs the mes-
sage.

ErCnrSendOnDealloe cancels the specified message. req must be a value returne<ll by a czrll to
etSendOnDealloc .

FILES
/usr/include/exch.h - [CC user include file

SEE AISO
Operating System Programmer's Guide, Section 22.

RETI]RN YAIUE
-1 indicates error, wittr an emor code in errno . See perror(l).

WARNINGS
The server must respond to the message, even though there's no one to read the respr>nse.

1-

Exrr(2)

NAME
exit, _exit - terminate process

SYNOPSIS
void exit (status)
int statusl
void -exit (status)
int status;

DESCRIPTION
Ecft terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, it is notified of the calling
process's termination and the low order eight bits (i.e., bits 0377) of stafus are made
available to it; see wait(2).
If the parent process of the calling process is not executing a wait, the calling process is
transformed into a zombie process. A zombie process is a process that only occupies a
slot in the process table. It has no other space allocated either in user or kernel space.
The process table slot that it occupies is partially overlaid with time accounting informa-
tion (see (sys/proc.h>) to be used by times.

The parent process ID of all of the calling process's existing child processes and zombie
processes is set to 1. This means the initialization process (see fntro(2)) inherits each of
these processes.

All ICC exchanges are deallocated. (Process termination is the only way to deallocate the
default response exchange.)

Each attached shared memory segment is detached and the value of shrn-nattach in the
data structure associated with its shared memory identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj value (see sernop(2)),
that semadj value is added to the semval of the specified semaphore.

An accounting record is written on the accounting file if the system's accounting routine
is enabled; see acct(2).
If the process ID, tty group ID, and process group ID of the calling process are equal, the
SIGHUP signal is sent to each process that has a process group ID equal to thaü of the
calling process.

The C function edt may cause cleanup actions before the process exits. The function -eilt cir-
cumvents all cleanup.

SEE ALSO
acct(2), intro(2), exchanges(2), semop(2), signal(2), wait(2).

WARNING
See }/,{ßNING in signal(2).

-1

E)(REQIIEST(2) (System 6600 Only)

NAME
exRequest - Send a message to a server

SYNOPSIS
finclude <exch.h)

unsigned char exRequest(reqbl);
struct reqheader *reqbl;

DESCRIPTION
ErRequest sends a message to a server. regöl must point to a request blo,:[1[66 clescrjLbes the
message. erRequest ret,urns a request descriptor; this descriptor appears in r;ubsequer:Lt r.eferences
to the request by the client or the kernel.
The request block has four parts: a request header, control information, request PbCbs, and
response PbCbs.
A request header has the following structure.
struct rqheader { -unsigned short r'_sCntlnfo;

unsigned char r_nReqPbCb;
unsigned char r_nRespPbCb;
unsigned short r_userNum;
unsigned shorü r_exchResp;
unsigned short r_ercRet;
unsigned short r_rqCode;

);
The client sets the following fields: r-sCntlnfo(whichmustbeeaen), r_nReqPbrlli, and
r-nRespPbCb, specify t,he size of the rest of the request block; r-erchResp, specifies vyhLere the
response must be sent; and r-rqCode, specifies the destination of the request. The kernel and
server ignore any values in r-aserNum or r-ercRet. Each request code requires specific yalues for
r_aCntlnfo, r_nReqPbCä, and r_nRespPbCb.
The client uses the control information to send fixed-length data fields to the server.
A PbCb has the following structure:
struct PbCb {

char *pc_offset;
unsigned short pc_count;

);
The client uses Request, PbCbs to send request data blocks to the server. Ilach PbCb gives the
Iocation (pc_offcet) and size (pc_count) of a dara block.
The client uses Response PbCbs to pass response data-length restrictions to the server. 'llhe client,
sets the pc-count field of each response PbCb to the maximum length for tha.t, data blocll.
The locations containing the client's request data need not immediaiely follovr the reqr.resb blocl<.
The kernel copies the complete message immediately: once erRequest returns, it is sal'e 1;o moclify
the message.

After the client has serrt the request, it must watch for the corresponding response (ttdYai1i,,2))
and specify the response's disposition (erCpResponse(Z)).

SEE ALSO
Operating St,stem Programmer's Guide, Section 22.

RETURN VAIUE
-1 indicates error, with an error code in errno. See perror(3).

-l-

E)(REQUEST(2) (Svstem 6600 OnlY)

WARNINGS
Use of eoRegueat requires more client-kernel interaction t,han is neces§ary for most requests'
Compare efiall(l),
If the service is provided by RTOS, integer data has Intel byte ordering' See sftorfsuop(3).

tint(l) may complain that etRcqueet argument types are inconsistent, especially if the client uses

more than one kind of request biock. t-o .rrppru.r these complaints, cast the argument to its offi-

cial type:

exRequest((struct rqheader *) reqbl);

Use of this cast does not affect the object code'

6

E)GESPOND(2) (System 6600 Only)

NAME
exRespond - send a message to a client

SYNOPSIS
finclude (exch.h)

exRespond(reqdes, reqbl)
unsigned char reqdesl
struct rqheader *reqbl;

DESCRIPTION
ErRespond issues a rersponse to a specific request. The request descript,or reqdes :;pecifies that
request. regöl points to a request block that describes the response. This request l:rlor:k has the
same format as the request block that described the request (see exRequestl2)). The.server only
sets the error return code fields and each of the response PbCbs.

The kernel copies the complete message immediately: once exRespond returns, it is; safe to
modify the message.

The memory containing the server's variable-length response fields need n.ot directly fc»llow the
request block.

SEE A]-SO
Operating System Progra',nmer's Guide, Section 22.

RETIIRN VALI.IE
-1 indicates error, with an emor code in errno. See perror(3).

-1-

EXSERYERQ(z) (System 6600 Only)

NAME
exServeRq - appropriate a request code

SYNOPSIS
finclude (exch.h)

exServeRq(exch, code);
unsigned char exchl
unsigned short code;

DESCRIPTION
A server (a process that receives requests) must own a request code for use by clients (processes
that send requests). erSerueRq appropriates cod,e as a request code and assigns the request to the
exchange specified by emh. If exch is zero, the process gives up cod,e , which can then be
appropriated by another server.

Arry process can appropriate a request code, but only one can own it at a time.
Codes 0 through OxBFFF (49151) are reserved for Motorola system services. Each installation should
reserve additional codes for local system services. User services must not use reserved codes, even if
they do not currently identify a service.

SEE ALSO
Operating System Programmer's Guide, Section 22.

RETIIRN VALI]E
-1 indicates error, with an error code in enno. See perror(3).

-l-

ExwAIT(2) (System 6600 Only)

NAME
exWait, exCheck - examine an ICC message queue

SYNOPSIS
ffinclude (exch.h>

exCheck(ex, rnstat);
unsigned char exl
struct, msgret *mstat;

exWait(ex, mstat);
unsigned char exl
struct rnsgret *mstatl

DESCRIPTION
Each call to ecWait or ecChecle returns wit,h information on the oldest unnoticed mess:rge waiting
at the exchange whose descriptor is er. An unnoticed message is one that erWrzit arul, erC,\eci
have not reported on since the last time a message was removed from i,he exchanpr;e. Ily'hetr an
exchange's owner removes a message, all messages still waiting become "unnoticerl,, algain; see
etcpre.spon§e(2) and emprequest(2). Etcalt(2) never affects the "noticed" st,atus of an1.ni...rg..
EtWatt attd etChect rvrite a report to the memory point,ed Lo by mstat. lihe report lra:; the fol-
lowing structure:

süruct msgret {
unsigned short m_rqOode;
unsigned short m_reqdes;
int m_size;
char m_flag;
unsigned short m_ercRet;
unsigned char m_cputype;
unsigned char m_slot;
struct request * m_offset;

);
When the process takes further action on this message (copying it from the message qrreue; il'it,s
a request, sending a response) it, passes the kernel m-reqtles to identify the specific messafJe.
exWait, and exChecß differ only in their "no messages" action. If no unrrol;iced mesrsages wait at
the specified exchange, etWait waits for a new one to arrive; esCheck reLurns irnm,:diat;ely .with
an error code.

The calling process must still specify some
excprequest(2).

action on each message. Siee excpresponse(2) and

SEE ALSO
Operating System Progratnmer's Guide, Section 22.

RETURN VALUE
Error returns -1 with a,n error code in errno. See perror(3).

-1-

rcNrl(2)

NAME
fcntl - file control

SYNOPSIS
ffinclude (fcntl.h)
int fcntl (fildes, cmd, arg)
int fildes, cmd, argl

DESCRIPTION
F'cntl provides for control over open files. Fildes is an open file descriptor obtained from a creat,
open, dup , fcntl, or pipe system call.
The commands available are:
F_DUPFD Return a new file descriptor as follows:

Lowest, numbered available file descriptor greater than or equal to crg.
Same open file (or pipe) as the original file.
Same file pointer as the original file (i.e., both file descriptors share one file
pointer).
Same access mode (read, write or read/write).
Same file status flags (i.e., both file descriptors share the same file status flags).
The close-on-exec flag associated with the new file descriptor is set to remain
open across erec(2) system calls.

F-GETFD Get the close-on-exec flag associated with the file descriptor filttea. If the low-
order bit is O the file will remain open across etec, othertrise the file will be
closed upon execution of ecec.

F-SETFD Set the close-on-exee flag associated with fildea to the low-order bit of org (0 orI as above).
F_GETFL Get file status flags.
F-SETFL Ser lile status flags to arg. Only certain flags can be set; see /cntl(b).
Fcntl will fail if one or more of the following are true:

[EBADF] Fildcs is not a valid open file descriptor.

'--* IEMFILE] Cmd isF-DIJPFD and 20 file descriptorc are currently open.
IEMFILE] Cmd is F-DITPFD and arg is negative, greater than 20, or greater than the larg-

est unallocated descriptor.
RETURN VALI'E

Upon successful completion, the value returned depends on crnd as follows:F_DUPFD A new file descriptor.
F_GETFD Value of flag (only rhe low-order bit is defined).
F_SETFD Value other than -1.F-GETFL Value of file flags.
F-SETFL Value other than -1.

Otherwise, a value of -1 is returned and cftno is set to indicate the emor.
SEE ALSO

close(2), exec(2), open(2), fcnrl(S).

-1-

roRK(2)

NAME
fork - create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Forß causes creation oli a new process. The new process (child process) is an exact copy of the
calling process (parent process). This means the child process inherits th,: following attributes
from the parent process:

environment
close-on-exec flag (see emc(2))
signal handling settings (i.e., SIG-DFL, SIG-ING, function address)
set-user-lD mode bit
set-group-ID mode bit
profiling on/off status
niee value (see nrce(2))
all attached shared memory segments (see sämop(2))
process group ID
tty group ID (see ezit(2) and srgnal(2))
trace flag (see ptrace(2) request 0)
time left until an alarm elock signal (see alarm(2))
current working directory
root directory
file mode creation mask (see umask(2))
file size limit, (see ulimit(2))
PILF cluster size exponent (System 6600 only; see prl/(5)).

The child process differs from the parent process in the following ways:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the procesr; ID of thre parent pro'
cess).

The child process has its own copy of the parent's file descriptors. Each of l,he child's file
descriptors shares a common file pointer with the corresponding file descriptor of the
Parent.
All semadj values are cleared (see semop(2)).
The child process's utime , stime, cutime, arld cstime are set to 0. The tim,: left until an
alarm clock signal is reset to 0.

On System 6600 systems, che child inherits no Inber-CPU Communi<:aüion exchanges from
the parent. Initially, the child's only exchange is the default response excha:lrge.

For& will fail and no child process will be created if one or more of the follorving are true:

IEAGAIN] The system-imposed limit on the total number of proeesses under execution
woul«l be exceeded.

[EAGAIN] The system-imposed limit on the total number of processes under <:xe,griLtion by a
single user would be exceeded.

RETURN YALUE
Upon successful completion, lork returns a value of 0 to the child process and returns the process
ID of the child process to the parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, ar,d errno is set to indicate the error.

-l-

FoRK(2)

SEE AISO
exchanges(2), exec(2), nice(2), plock(2), ptrace(2), semop(2), shmop(2), signal(2), times(2)'

ulimit(2), umask(2), wait(2).

-2-

GETPTD(2)

NAME
getpid, getpgrp, getppid - get process, process group, änd parent process IDs

SYNOPSIS
int getpid ()
int getpgrp ()
int getppid ()

DESCRIPTION
Getpid ret,urns the process ID of the calling process.
Getpgrp returns the process group ID of the calling process.
Getppid returns the parent process ID of the calling process.

SEE AISO
exec(2), fork(2), intro(2), serpgrp(2), signal(2).

-1-

GETUTD (2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real group, and effective group IDs

SYNOPSIS
unsigned short getuid ()
unsigned short geteuid ()
unsigned short getgid ()
unsigned short getegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.
SEE AISO

intro(2), setuid(2).

-l-

rocrl(2)

NAME
ioctl - ,:ont,rol device

SYNOPSIS
ioctl (fildes, request, arg)
int fildes, requestl

DESCRIPTION
locfl performs a variety of functions on character special files (devices). 1lhe write-ups,cf various
devices in Section 7 disr:uss how ioctl applies to them.

Ioctl will fail if one or rnore of the following are true:

IEBADFI Fildes is not a valid open file descriptor.

IENOT'T1'] Fildes is not associated with a character special device.

ItrINlrAI] Request or arg is not valid. See Section 7.

IEINTIi] A signal was caught during lhe ioctl system call.

RETURN VALUE
If an error has occurred, a value of -1 is returned arrd errno is set to indicate the errc,r.

SEE AISO
termio(7).

-1-

Krrr(2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
int kill (pid, sig)
int pid, aig;

DESCRIPTION
Kill sends a signal to a process or a group of processes. The process or group of processes to
which the signal is to be sent is specified by pid. The signal that is to be sent is specified by sig
and is either one from the Iist given in signal(2), or 0. If srg is 0 (the null signal), error checking
is performed but no signal is actually sent. This can be used to check the validity ol pid.

The real or effective user ID of the sending process must match the real or effective user ID of the
receiving process, unless the effective user ID of the sending process is super-user.

The processes with a process ID of 0 and a process ID of I are special processes (see intro(2)) and
will be referred to below as proc} and procl, respectively.

If pid is greater than zero, otg will be sent to the process whose process ID is equal to pid,. Pid
may equal 1.

lf pid is 0, srg will be sent to all processes excluding proc1 and procl whose process group ID is
equal to the process group ID of the sender.

lf pid is -l and the effective user ID of the sender is not super-user, sig will be sent to all
processes excluding proc7 and procl whose real user ID is equal to the effective user ID of the
sender.

ll pid is -1 and the effective user ID of the sender is super-user, sig will be sent to all processes
excluding proc1 and procl.
lf pid. is negative but not -1, sig will be sent to all processes whose process group ID is equal to
the absolute value of pfd.

Kill will fail and no signal will be sent if one or more of the following are true:

Sig is not, a valid signal number.

^9ig is SIGKILL and pid is L (procl).
No process can be found corresponding to that specified by pid.

The user ID of the sending process is not super-user, and its real or effective user
ID does not match the real or effective user ID of the receiving process.

RETI'RN YAII]E
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE AISO
kill(1), setpid(2), setpsrp(2), signal(2).

[ETNVAL]
lErNVArl
IESRCH]

IEPERM]

-l-

LrNK(2)

NAME
Iink - link to a file

SYNOPSIS
int link (pathl, path2)
char +pathl, *pathZ;

DESCRIPTION
Pathl poirfis to a pattr name naming an existing file. Path? poinl,s to a path naml: na:aing the
new directory entry to be created. Link creates a new link (direct,ory entryllor the e:xir;ti::rg file.
.L'rnß will lail and no link will be created if one or more of the following ar. Lrue:

IENOTDIRI A conrponent of either path prefix is not a directory.
IENOENTI A corrrponent of either path prefix does not exist.

IEACCES] A corrLponent of either path prefix denies search pennission

IENOENTI The file named by pathl does not exist,.

IEE)ASTI The link named by path? exists.

IEPERM] The file named by pathl is a directory and the effective user ID is nc,t, super-
user.

{E}OEV] The link named by path? and the file named by pathl are on diflerent log;ical
devices (file systems).

IENOENT] Path? points to a null path name.

IEACCES] The requested link requires writing in a directory rvith a mode that denies t'rite
Perml§islon.

{EROFS] The requested link requires writing in a directory on a read-only file system.

lEFAtIl,Tl PotA points outside the allocated address space of the process.

IEN{LINK] The maximum number of links to a file would be exceeded.

RETURN YAJ,UE
Upon successful complt:tion, a value of 0 is returned. Otherwise, a yalue of -1 is returned and
enno is set. to indicate the error.

SEtr AI,SO
unlink(2).

-l-

LOCKING (2)

NAME
locking - exclusive access to regions of a file

SYNOPSIS
int locking (filedes, mode, size);
int fildes, model
long sizel

DESCRIPTION
Locking places or removes a kernel-enforced lock on a region of a file. The calling process has

exclusive access to regions it has locked. If another process :uses read(2), write(2), creat(2), ot
open(2) (with O_TRUNC) in a way that reads or modifies part of the locked region, the second

process's system call does not return until the lock is released, unless deadlock or some other emor
is detected. A process whose execution is suspended in such a manner is said to be blocked.

Parameters specify the file to be locked or unlocked, the kind of Iock or unlock, and the region
affected:

Filedes specifies the file to be locked or unlock ed; fitedes is a file desmiptor
returned by an open, create, PiPe, fcntl, ot dup system call'

Mode speclfies the action: 0 for lock removal; 1 for blocking lock; 2 for checking
lock. Blocking and checking locks differ only if the attempted lock is itself
locked out: a blocking lock waits until the existing lock or locks are removed; a

checking lock immediately returns an emor.

The region affected begins at the current file offset associated with filedes and is

sfze bytes long. If size is zero, the region affected ends at the end of the file.

Locking imposes no structure on an operating system file. A process can arbitrarily lock any unlocked byte
and unlock any Iocked byte. However, creating a large number of noncontiguous locked regions
can fill up the system's lock table and make further locks impossible. It is advisable that a
program's use of locking segment the file in the same way as does the program's use of read and
write .

A process is said to be deadlocked if it is sleeping until an unlocking which is indirectly prevented
by that same sleeping process. The kernel will not, permit a tead, write, creat, open with
O_TRUNC, or blocking locking if such a call would deadlock the calling process. Errno is set to
EDEADLOCK. The standard response to such a situation is for the program to release all its
existing locked areas and try again. If a locking call fails because the kernel's table of locked
areas is full, again, errno is set to EDEADLOCK and, again, the calling Program should release

its existing locked areas.

Special files and pipes can be locked, but no input/output is blocked.

Locks are automatically removed if the process that placed the lock terminates or closes the file
descriptor used to place the lock.

SEE ALSO
create(2), close(2), dup(Z), open(2), read(2), write(2).

RETURN VALUE
A return value of -_l indicates an error, with the error value in effno.

IEACCESI A checking lock on a region already locked.

[EDEADLOCK] A lock that would cause deadlock or overflow the system's lock table'

WA-RNING
Do not, apply any standard input/output library function to a locked file: this [brary does not
know about locking.

-l-

LSEEK (2)

NAME
lseek -- move read/write file pointer

SYNOPSIS
long lseek (fildes, offset, whence)
int fildes;
long offset;
int whencel

DESCRIPTION
Fildes is a file descriptor returned from a creat, open, dup, or /cnl/ sysierrr call. l.,sru eI: sets the
file pointer associaüed with fildes as follows:

lf whence is 0, the pointer is seü to offset bytes.
Il whence is 1, the pointer is set to its current location plus offset
lf whence is 2, the pointer is sei to the size of the file plus offset.

Upon successful completion, the resulting pointer location, as measured in bytes fr<.rm the begin-
ning of the file, is returned.
Lseek will fail and the file pointerwill remain unchanged if one or more c,f r;he follov,irLg are true:
IEBADF] Fildes is not an open file descriptor.

IESPIPE] Fitdes is associated wirh a pipe or fifo.
ItrINVAI and SIGSYS signal]

Whence is not 0, 1, or 2.

IEINVAI] The resulting file poinrer would be negative.
Some devices are incaf)able of seeking. The value of the file pointer associated v'ith such a dr:vice
is undefined.

RETURN VAI,UE
Upon successful completion, a non-negative integer indicating the file poirrrer valur: iii.returned.
Otherwise, a value of -l is returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2).

-1-

MKNoD(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dev)
char *path;
int mode, devl

DESCRIPTION
Mknod creates a new file named by the path name pointed to by path. The mode of the new file
is initialized from mode. Where the value of mode is interpreted as follows:

0170000 file type; one of the following:
00f0000 fifo special
0020000 character special
0040000 directory
0060000 block special
01m000 or 0000000 ordinary file

0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the following

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of the process. The group ID of the file is
set to the effective group ID of the process.

Values of mode other than those above are undefined and should not be used. The low-order g
bits of mode are modified by the process's file mode creation mask: all bits set in the process's file
mode creation mask are cleared. See umask(2). lf mode indicates a block or character special
file, dea is a configuration-dependent specification of a character or block I/O device. If mode
does not indicate a block special or character special device, deu is ignored.
Mknod may be invoked only by the super-user for file types other than FIFO special.
Mknod will fail and the new file will not be created if one or more of the following are true:

IEPERM] The effective user ID of the process is not super-user.

[ENOTDIR] A component of the path prefix is not a directory.
IENOENT] A component of the path prefix does not exist.

IEROFS] The directory in which the file is to be created is located on a read-only file sys-
tem.

[EE)AST] The named file exists.

IEFAULT] Potä points outside the allocated address space of the process.
RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno \s set to indicate the error.

SEE AISO
mkdir(1), chmod(2), exec(2), umask(2), fs(4).

-1-

MoUNT(2)

NAMtr
mouni - mount a file sYstem

SYNOPSIS
int mount (sPec, dir, rwflag)
char *spec, *dir;
int rwflag;

DESCRIPTION
Iv[ount requests that a removable file system contained on the block special fi]e idenl;ified by spec

be mounted on the directory identified by dir . Spec and ilir are pointers tc' path names.

Upon successful com;rletion, references to the file dir will refer üo the root dirt:ctory on the

mounLed file system.

The low-order bit of rwflag is used to control write permission on the rnounted file syst;em; if 1,

writing is forbidden, otherwise writing is permitted according üo individual I'ile accessibilily.

Mount may be invoke,l only by the super-user'

Mount will fail if one ,rr more of the following are irue:

IEPERMI The effective user lD is not super-user'

[ENOI]NT] Any of the named files does not exist.

IENOTDIR] A cornponent of a path prefix is not a directory'

IENOTBLK] Spec is not a block special device.

[EN)qo] The device associated with spec does not exist'

IENOTDIR] Dfr is not a directorY,

IEFAL]LTI Spec or dfr points outside bhe allocated address space of t]re process.

[EBUSy] Dir is current]y mounted on, is someone's current working; directory, 'cr is ot,her-
wise busy.

IEBUSY] The «ievice associated with spec is currently mounted.

IEBUSY] Ther,: are no more mount table entries'

IEROpS] The]ow-order bit of rullag is zero and the volurne con0aining the file system is
physic ally write-protected.

RETURN VAI,UE
Upon successful completion a value of 0 is returned. Otherwise, a value of -l is rerl,urned and
errno is set to indicate the error,

SEE ALSO
umount(2).

-1-

Msccrl,(2)

NAME
msgctl - message control operations

SYNOPSIS
ffinclude (sys/types.h)
finclude <sys/ipc.h)
finclude <sys/msg.h)
int msgctl (msqid, cmd, buf)
int rnsqid, cmd;
struct msqid-ds *buf;

DESCRIPTION
Msgctl provides a variety of message control operations as specified by cmd. The following cmds
are available:
IPC-STAT Place the current value of each member of the data structure associated with

msqid into the structure pointed to by buf . The contents of this structure are
defined in intro(2). {READ}

IPC-SET Set the value of the following members of the data structure associated with
msqid to the corresponding value found in the structure pointed to by buf :

msgjerm.uid
msg3erm.gid
msgJerm.mode /* only low 9 bits */
msg_qbytes

This crnd can only be executed by a process that has an effective user ID equal to
either that of super user or to the value of msE perm.uid in the data structure
associated with rnsgld. Only super user can raise the value of msg-qbytes.

IPC-RMID Remove the message queue identifier specified by maqid from the system and
destroy the message queue and data structure associated with it. This and can
only be executed by a process that has an effective user ID equal to either that of
super user or to the value of rnsg-perrn.uid in the data structure associated
with rnsqrd.

Magctl will
IEIN\rAr]
IETTYVAL]

IEACCESI

IEPERMI

IEPERMI

IEFAULT]
RETIIRN VAIUE

Upon successful completion, a value of 0
errno is set to indicate the error.

SEE AISO
intro(2), msgget(2), msgop(2).

fail if one or more of the following are true:
Msqid is not a valid message queue identifier.
Cmd is not a valid command.
Cmd is equal to IPC-STAT and {READ} operation permission is denied to the
calling process (see rntro(2)).
Cmd is equal to IPC-RMID or IPC-SET. The effective user ID of the calling
process is not equal to that of super user and it is not equal to the value of
rnsg-perm.uid in the data structure associated with nrsgdd.

Cmd is equal to IPC-SET, an attempt is being made to increase to the value of
msg_qbytes, and the effective user ID of the calling process is not equal to that
of super user.

Bu/ points to an illegal address.

is returned. Otherwise, a value of -1 is returned and

1-

MsccET(2)

NAME
msgget _ get message queue

SYNOPSIS
finclude (sys/üypes.hy
finctude <eyEli;;.hj
ffinclude q"y"i*"g.;>
irt *"gg.t (key, msgflS)key_ü key;
int msgflg;

DESCRIPTION
Msgget returns the message queue identifier associated with Aeg.

}"ffiäi::-äi'"11':l'[:,ffiim;:'ff.,i,3*.'r. ,u.," and dara s*,*ure (see rnrro(!)) srs10 Key is equal to IpC_pRfvATE

,xä* '*)i'.':i1l"l""e a messase queue idenrifier associated wiüh ir,

Xrrä,$"r:tron,
the dara srrucüure associared wirh the new message queue identilier is initialized

a\d (msgfls &,

Msg3erm.cuid, msq
, o,rJ. ü..1;; ;.;J ; ;"#lä;ä1* ä::ffi:Iffi i,?i,,i JTf;*:ilil,*ii", I:'.' ",,u ",The low-order g bits of msgperm'mode are set equal to the low-o.,er g bit,s of msgftg.Msg-qnum, msg-rspid, msg rrpid, msg_stime, and msg_rtime are set equal to 0.Msg_ctime is set equal to the current time.Msg;qbytes is set equal to the system limit.Msgget will fail if one or more of the following are true:IEACCES] A message queue identifier exists tor rcey,but operation permission ,,see intro{2))as sper:ified by the low-order s tir. ;r'_r;&;;ü ä,,ol"J."nr.o.IENoENT] *r#]:*t queue identifier does nor exisr .or rcey una @osyts& Ipc-cREAT) is[ENosPcJ A message queue identifier is to be created buü the system-imp.sed limit on theä:::ä"T number of alro*'d ;;;; <1ueue identiii"o'q.rt.* wide wourcr be

*"r,,ooluilf,l *,ffi;?ä5§Jfil';l':;;:" ror kev but ((msstts & rpc-o,.EAr) & (

Upon successful compleüion, a n

,u, *lä'rned'
other*u'ä ""r*'"r"-i'?r;::::l'ä "#"r,.:;, xä?1" ?,jl;T:r;"ä:,1: idenrifier, is

intro(2), msgctl(2), msgop(Z).

-1-

MSGoP (2)

NAME
msgop - me§sage operations

SYNOPSIS
finclude (sys/types.h>
finclude (sys/ipc.h)
Sinclude (sys/msg.h)
int msgsnd (msqid, msgpr msgsz, msgflg)
int msqid;
struct msgbuf **"gp;
int msgsz, msgflg;
int msgrcv (msqid, msgpr rnsgsu, msgtyp, msgflg)
int msqid;
struct msgbuf **"gp;
int msgsz;
long msgtyp;
int msgflg;

DESCRIPTION
Msgsnd is used to send a message to the queue associated with the message queue identifier speci-
fied by msqid. {WRITE} Msgp points to a structure containing the message. This structure is
composed of the following members:

long mtype; /* message typ" * Ichar mtext,[]; /* message text * f
Mtype is a positive integer that can be used by the receiving process for message selection (see
nxsgrcu below/. Mtect is any text of length nrsgsz bytes. Msgsz can range from 0 to a system-
imposed maximum.
MsCflC specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to rnsg-qbytes (see fntro(2)).
The total number of messages on all queues system-wide is equal to the system-imposed
limit.

These actions are a.s follows:
lf (msgflg & IPC-NOWAIT) is "true", the message will not be sent and the calling pro-
cess will return iurmediately.
If (msgflg & IPC-NOWAIT) is "false", the calling process will suspend execution until
one of the following occurs:

The condition responsible for the suspension no longer exists, in which case the
message is sent.

Msqid is removed from the system (see msgctl(2)). When this occurs, errno is
set equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be caught. In this case the mes-
sage is not sent and the calling process resumes execution in the manner
prescribed in signal {2)).

Msgsnd will fail and no message will be sent if one or more of the following are true:

IEINVAL] Msqid is not a valid message queue identifier.

IEACCES] Operation permission is denied to the calling process (see intro(2)).

IEINVAL] Mtype is less than 1.

-1-

MSGoP(2)

IEAGAIN] The message cannot be sent for one of the reasons cited above ernd (msg.flg &;
IPC-NOWAIT) is "true".

IEINVAL] Msgsz is less than zero or greater than the system-imposed limit.
IEFAIILT] Msgp points to an illegal address.

Upon successful completion, tLre following actions are taken with respect to the <lata s;tructurt:
associated with msqid (see intro (2)).

Msg_qnum is incremr,nted by 1.

Msg_lspid is set equal to the process ID of the calling process.

Msg_stime is set equal to the current time.
Msgrca reads a message from l;he queue associated with the message queue identifier spe,:ified by,
msqid and places it in the strtLcture pointed to by msgp. {READ} This structure irs composed of
the following members:

Iong mtype; /* message type *l
char mtext[]; /* message text * f

Mtype is the received message's type as specified by the sending process. Mtett is t,he text c,f the
messaBe. Msgaz specifies the size in bytes of mteü. The received message is trunca,ted l.,o rnsgsz:
bytes if it is larger than rnsgsz and (msgflg & MSG-NOERROR) is "true". The trunca,ted parr:
of the message is lost and no indication of the t,runcation is given to the calling process.

Msgtyp specifies the type of message requested as follows:
lf msgtyp is equal to 0, the first message on the queue is received.
lf msgtyp is greater than 0, the first message of type msgtyp is received.
lf msgtyp is Iess than 0, the first message of the Iowest type that is less than or equal to
the absolute value of msgtyp is received.

MICIIC specifies the action to be taken if a message of the desired type is not on the queue. 'lhese
are as follows:

If (msgflg & IPC-NO,WAIT) is "true", the calling process will return immecliately v,ith a
return value of -1 and errno set to ENOMSG.
Il (msgflg & IPC-NOWAIT) is "false", the calling process will suspend execution until
one of the following occurs:

A message of the desired type is placed on the queue.

lfsqid is removed from the system. When this occurs, errno i:; set equal io
EIDRM, and a value of -1 is returned.
'Ihe calling process receives a signal that is to be caught. In this case a rn€.ssagr-.
is not received and the calling process resumes execution irr the manner
presoibed in si g n al (2)).

Msgrca will fail and no message will be received if one or more of the following are t,rue:

[EI]WAf] Msqid is not a valid message queue identifier.
[EACCES] Operation permission is denied to the calling process.

IEINVAL] lvfsgaz is less than 0.

[E2BIG] Jvltext is greater than msgsz and (msgflg & MSG_NOERROR) is "false".
IENOMSG] The queue does not contain a message of the desired type and (m.sgtyp 8r

IPC_NOWA-I T) is "true".
[EFAULT] ,{fsgp points to an illegal address.

-r_

MSGOP(2)

Upon successful completion, the following actions are taken with respect to the data structure
associated with rnsgid (see intro (2)).

Msg-qnum is decremented bY l.
Msg-lrpid is set equal to the process ID of the calling process'

Msg-rtime is set equal to the current time'

RETURN VALUES
ll msgsnd ot msgrcu return due to the receipt of a signal, a value of -1 is returned to the calling
p.o..i. a.61d errno is set to EINTR. If they return due to removal of msqid from the system, a

value of -1 is returned and ertno is set to EIDRM.

Upon successful completion, the return value is as follows:

Msgsnd returns a value of 0.

Msgrca returns a value equal to the number of bytes actually placed into mtert.

Otherwise, a value of -1 is returned ar,d errno is set to indicate the error.

SEE AISO
intro(2), msgctl(2), msgget(2), signal(2).

-3-

NrcE(2)

NAME
nice - change priority of a process

SYNOPSIS
int nice (incr)
int incr;

DESCRIPTION
ly'fce adds the value of incr to the nice value of the calling process. A process's ntice ualue is a
positive number for which a more positive value results in lower CPU prioril;y.
A maximum nice value of 39 and a minimum nice value of 0 are imposed b;' the system.
Requests for values above or below these limits result in the nice vzrlue bein.g sert tc, the
corresponding limit.
[EPERM] l/ice will fail and not change the nice value if incr is negative or gr:eater than 40

and the effective user ID of the calling process is not super-user.
RETURN VA-LUE

Upon successful completion, nice returns the new nice value minus 20. Or;herwise, a va,lue 9f -lis returned and errno :is set to indicate the error.
SEE AISO

nice(1), exec(z).

-1-

oPEN(2)

NAME
open - open for reading or writing

SYNOPSIS
Sinclude (fcntl.h>
int open (Rath, oflag [, rnode])
char *path;
int oflag, model

DESCRIPTION
Potä points to a path name naming a file. Open opens a file descriptor for the named file and
sets the file status flags according to ihe value of oflag. Oflag values are constructed by or-ing
flags from the following list (only one of the first three flags below may be used):

O-RDONLY Open for reading only.
O-\MRONLY

Open for writing only.
O-RDWR Open for reading and writing.
O-NDELAY This flag may affect subsequent reads and writes. See read(2) and write(2).

When opening a FIFO with O-RDONLY or O-WRONLY set:

If O-NDELAY is set:

An open for reading-only will return without delay. An open for writing-
only will return an error if no process currently has the file open for read-
ing.

If O-NDELAY is clear:

An open for reading-only will block until a process opens the file for writ-
ing. An open for writing-only will block until a process opens the file for
reading.

When opening a file associated with a communication line:
If O-NDELAY is set:

The open will return without waiting for carrier.
If O-NDELAY is clear:

The open will block until carrier is present.

O-APPEND If set, the file pointer will be set to the end of the file prior to each write.
O-CREAT If the file exists, this flag has no effect. Otherwise, the owner ID of the file is set to

the effective user ID of the process, the group ID of the file is set to the effective
group ID of the process, and the low-order 12 bits of the file mode are set to the
value of mode modlfied as follows (see creot(2)):

All bits set in the file mode creation mask of the process are cleared. See
umask(2).

The "save text image after execution bit" of the mode is cleared. See
chmod(2).

The process's default cluster size exponent determines the cluster size of files
created on PILF file systems.

O-TRUNC If the file exists, its length is truncated to 0 and the mode and owner are
unchanged.

O-EXCL If O-EXCL and O-CREAT are set, open will fail if the file exists.

-l-

oPEN(2)

O-DIRECT (MegaFrame only.) I/O is direct between the process's addresis spa,ce :rnd r;he clisk,
bypassing the kernel's buffer cache. See pif(s).

The file pointer used t,o mark the current position within the file is set to the beginning of the
file.
The new file descriptor is set to remain open across erec system calls. See fcntl(2').
The named file is opened unless one or more of the following are true:

IENOTDIR] A corrrponent of the path prefix is not a directory.
IENOENT] O-CRIDAT is not set and the named file does noi exist.

IEACCES] A corrrponent of the path prefix denies search permission.

|EACCES] Oflag permission is denied for the named file.
IEISDIR] The named file is a directory and otlag is write or read/wri1;r:.

IEROFS] The Iramed file resides on a read-only fi]e system arL«l ollag is .arrite or
read/rvrite.

IEMFII,E] Twenty (20) file descriptors are currently open.

IEN)AO] The named file is a character special or block special file, :end the clevice ass;oci-
ated with this special file does not exist.

IETXTBSY] The file is a pure procedure (shared text) file that is being executed and oflag is
write ,or read/write.

IEFAU,TI Potä poinbs outside the allocated address space of the process.

[EE)AST] O_CREAT and O_EXCL are set, and the named file exists.

[EN)«O] O-N'DELAY is set, the named file is a FIFO, O-WRONLY :is set, and nc process
has the file open for reading.

IEINTR] A signal was caught during the open syst,em call.

IENFILE] The system file table is full.
[EDEADLOCK] A side effect of a previous locking(2) call, when applying O--TRUNC, .

RETURN VAIUE
Upon successful compl:tion, the file descriptor is returned. Otherwise, a v,a.lue of -1 is returned
and errno is set to indicate the error.

SEE AISO
chmod(2), close(2), crr:at(2), dup(2), fcntl(2), locking(2), lseek(2), read(2), umaskti2), write(2),
pilf(5).

o

oPENr(2)

NAME
openi - open a file specified by i-node

SYNOPSIS
finclude <sys/types.h>
finclude (fcntl.h)

int openi (dev, inode, oflag)
dev-t dev;
ino-t inode;
int of'lag;

DESCRIPTION
Openi permits access to a file without reference to any of its directory links. Because it doesn't
use the directory hierarchy, openi doesn't require any access permission except from the file itself.
Use of openi mrst be authorized in advance by syslocal(2).

Deu specifies the device number of the file system that contains the file. Inode is the i-number of
the file. Oftag is a set of open flags, identical to those used with open(2). The return value is a
file descriptor, Iike that returnedby open.

A file descriptor returned by openi has the same properties as one returned by open. It counts
against the per-process limit of 20 file descriptors.

The specified file is opened unless one or more of the following are true:
The specified inode is not allocated. [ENOENT]
Ollag permission is denied for the named file. [EACCES]
The named file is a directory. [EISDIR]
The named file resides on a read-only file system ar.d oflag is write or read/write.
lERoFSl
Twenty (20) file descriptors are currently open. [EMFILE]
The named file is a character special or block special file. [ENXIO]
The file is a pure procedure (shared text) file that is being executed and oflag is write or
read/write" IETXTBSY]
Patä points outside the process's allocated address space. [EFAULT]
O*CREAT and O-EXCL are set, and the named file exists. IEE)ilST]
O-NDELAY is set, the file is a FIF O, O-WRONLY is set, and no process has the file open
for reading. IEN)ilO]
The specified file system is not mounted. [EN]XIO]

RETURN VAIIIE
On success, returns a file descriptor, a nonnegative integer. On failure, returns -1 and sets errno.

SEE AISO
creat(2), open(2), syslocal(2).

-1-

PAUSE(2)

NAME
pause .- suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
Pause suspends the calling process until it receives a signal. The signal urust be orLe that is not
currently set to be ignc,red by the calling process.

If the signal causes terrnination of the calling process, pause will not return.
If the signal is caught by the calling process and control is returned from thr: sign:ll-catch1ng func-
tion (see signal(2)), the calling process resumes execution from the point of susperrsion; with a
return value of -1 from. pause and errno set to EINTR.

SEE AISO
alarm(2), kill(2), signal(2), wait(2).

-1-

PrPE(2)

NAME
pipe _ create an inüerprocess channel

SYNOPSIS
int pipe (fildee)
inr fitdes[2];

DESCRIPTION
Pipe create,l-r/o mechanism called a pipe and returns two fire descrifildes[1]' Fitrtest,l'ir op;;.;iä.'.."oir* Äi,irrriir ,.'lo"n.d for wririns. 'ptors, ritdeof.] and

Yir'i,i""o'.j{l-": "t -9.u.'u.ult buffered P, ,.h" pipe before the. wriring process is brocked. A readbasis. ----rtptor fildes[o] accesses th; dara';.iir.J'r. I;tdes[1] Z;l]iär_*-r,rst_our (FrFo)

IEMPTLEj

IENFTLEI
RETURN VAIUE

Pipe will fail if Ig or
The sysüem fire rabre ,ffi:"

des*iptors are currenülv open'

H: iJ:äT:ff:äij*";,ioJru. of 0 is rerurned oüherwise, a varue of _r
SEE AISO

sh(t), read(2), wrire(Z).

is returned and

-1-

PROFTL(2)

NAME
profil - execution time profile

SYNOPSIS
void profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION
Bul/ points to an area of core whose length (in bytes) is given by bufsiz . Afler this :all, the user's
program counter (pc) is examined each clock tick (60th second); olfset is srubtracte,l from it, and
the result multiplied by scale. If the resulting number corresponds to a word inr;ide äu//, that
word is incremented.
The scale is interpretr:d as an unsigned, fixed-point fraction with binary point al; ühr: left,: Ol',77777
(octal) gir.es a 1-1 mapping of pc's to words in buff; 077777 (octal) maps each p,air of instru.ction
words together. O2(octal) maps all instructions onto ihe beginning o1' l,uff (pro,lucirrg a non-
interrupting core clocl<).

Profiling is turned off by giving a Ecale of 0 or 1. It is rendered ineffecbive by giving a, bufsiz of
0. Profiling is turned off when ^n etec is executed, but remains on in child and parent both after
a lork. Profiling will be turned off if an update in bufl would cause a memc,ry fault.

RETURN VAIUE
Not defirred.

SEE AISO
prof(1), monitor(3C).

-1-

PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid, addr, data;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execution of a child process.
Its primary use is for the implementation of breakpoint debugging; see sdä(f). The child process
behaves normally until it encounters a signal (see signal(2) for the list), at which time it enters a
stopped state and its parent is notified via wait(2). When the child is in the stopped state, its
parent can examine and modify its "core image" using ptroce. Also, the parent can cause the
child either to terminate or continue, with the possibility of ignoring the signal that caused it to
stop.
The request argument determines the precise action to be taken by ptrace and is one of the fol-
lowing:

O This request must be issued by the child process if it is to be traced by its parent.
It turns on the child's trace flag that stipulates that the child should be left in a
stopped state upon receipt of a signal rather than the state specified by /unc; see

signal(2). The pld, ailtlr, and dafo arguments are ignored, and a return value is not
defined for this request. Peculiar results will ensue if the parent does not expect to
trace the child.

The remainder of the requests can only be used by the parent process. For each, pid is the pro'
cess ID of the child. The child must be in a stopped state before these requests are made.

1, 2 With these requests, the word at location addr in the address space of the child is
returned to the parent process. If I and D space are separated (as on PDP-11s),
request 1 returns a word from I space, and request 2 returns a word from D space.
If I and D space are not separated (as on Motorola Series 6000'family
processors, the 38 20S computer, and VAX-1U780), either request 1 or request 2
may be used with equal results. The ilata argument is ignored. These two requests
will fail if add,r is not the start address of a word, in which ca§e a value of -1 is
returned to the parent process and the parent'§ errno is set to EIO.

3 With this request, the word at location addr in the child's USER area in the
system's address space (see (sys/user.h>) is returned to the parent process.
Addresses in this area range from 0 to 8192 on Motorola Series 6000-
family processors, 0 to 7024 on the PDP-11s and 0 to 2048 on the 38 20 computer
and VAX. The data argument is ignored. This request will fail if addr is not the
start address of a word or is outside the USER area, in which case a value of -l is
returned to the parent process and the parent's emno is set to EIo.

4, 5 With these requests, the value given by the doto argument is written into the
address space of the child at location ad.dr. lf I and D space are separated (as on
PDP-11s), request 4 writes a word into I space, and request 5 writes a word into D
space. If I and D space are not separated (as on Motorola Series 6000-
family processors, the 3B 20 computer, and vAx), either request 4 or request 5 may
be used with equal results. Upon successful completion, the value written into the
address space of the child is returned to the parent. These two requests will fail if
atfulr is a locat,ion in a pure procedure space and another process is executing in that
space, or adilr is not the start address of a word. Upon failure a value of -1 is
returned to the parent process and the parent's errno is set to EIO.

E With this request, a few entries in the child's USER area can be written. Data gives
the value that is to be written and addr is the location of the entry. The few

-l-

PTRACE(2)

entries that can be written are:

the general registers (i.e., registers 0-15 on Motorola Series t30O0.family prr:cessors,
registers 0-11 on the 38 20S computer, registers 0-7 on PDIr-11s, and registers
0-15 on the VAX)
the condition codes of the Processor Status Word on bhe SB 20 computen
the floating point status register and six floating poinü registers on PDP-Ils
certain bits of the Processor Status Word on PDp-Ils (i.e, bits 0-4., and
8-l 1)

certain bits of the Processor Status Longword on the VAX (i.e., bits O-Z ,
16-20, and 30-3f).
Motorola Series 6000-family processors: all processor status blts except 8, 9, 10,
and 13.

7 This request causes the child to resume execution. II the d'ata argumenli is t], all
pending signals including the one that caused the child to stop are canceled before
it resurrres execution. If the data argtment is a valid signal numlcer, the child
resumes execution as if it had incurred that signal, and any other pending signals
are canceled. The addr argtment must be equal to I for this reque:it. (Jpon suc-
cessful completion, the value of data is returned to the parent. This rerluesl, will
fall if dota is not 0 or a valid signal number, in which case a value of -1 is returnecl
to the p:rrent process and the pa,rent's errno is set to EIO.

8 This request causes the child to terminate with the same cons,equences as e;rit(2).
I This request sets the trace bit in the hocessor Status Word of the ch:ild (i.e., bit 15

on Motorola Series 6000-family processors, bit 4 on PDP-11s;bit 30 on
the VAX) and then executes the same steps as listed above for request 7. 'Ihe trace
bit causes an interrupt upon completion of one machine inLstruction,. This r:ffec-
tively allows single stepping of the child. On the 3B 20S computer there isi no l;race
bit and l;his request returns an error.
Note: the trace bit remains set after an interrupt on PDP-lls but is ttrrned off after
an interrupt on the VAX.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent etec(2) calls. If a
traced process calls etec, it will stop before executing the first instruction c,f the nely image show-
ing signal SIGTRAP.

GENERAL ERRORS
Ptrace will in general fail if one or more of the following are true:

[EIO] Request is an illegal number.

IESRCH] Pfd identifies a child that does not exist or has not e:cecuted it" ptrace wilh
request O.

SEE ALSO
exec(2), signal(2), wait(2).

-r_

READ(2)

NAME
read - read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int fildes;
char *bufl
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe system call.
Read altempts to read nbyte bytes from the file associated wi|h fildes into the buffer pointed to
bY buf.

On devices capable of seeking, the read starts at a position in the file given by the file pointer
ssociated with fildes. Upon return from reail , the file pointer is incremented by the number of

bytes actually read.

Devices that are incapable of seeking always read from the current, position. The value of a file
pointer associated rvith such a file is undefined.
Upon successful completion, reail returns the number of bytes actually read and placed in the
buffer; this number may be less than nbyte if the file is associated with a communication line (see
ioctl(z) and termio(7)), or if the number of bytes left in the file is less than nbyte bytes. A value
of 0 is returned when an end-of-file has been reached.

When attempting to read from an empty pipe (or FIFO):

If O-NDELAY is set, the read will return a 0.

If O-NDELAY is clear, the read will block until data is written to the file or the file is no
Ionger open for writing.

When attempting to read a file associated with a tty that has no data curently available:

If O-NDELAY is set, the read will return a 0.

If O-NDELAY is clear, the read will block until data becomes available'
Read wrll fail if one or more of the following are true:

[EBADF'] Fildes is not a valid file descriptor open for reading.

IEFALILT] Bu/ points outside the allocated address space.

IEINTR] A signal was caught during the read system call.

IEDEADLOCK] A side effect of a previous locking(2) call.

! RETURNYAIUE
Upon successful completion a non-negative integer is returned indicating the number of byt,es
actually read. Otherwise, a -1 is returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcntl(2), ioctl(2), locking(2), open(2), pipe(2), termio(7).

-l-

SEMCTL (2)

NAME
semctl - sernaphore conbrol operations

SYNOPSIS
f include < sys/types.h >
finclude (sys/ipc.h;
finclude (sys/sern.h)
int sernctl (sernid, sernnurn, crnd, arg)
int sernid, crnd;
int semnuml
union semun {int val;

st,ruct semid_ds *buf;
ushort *arrayl

) t"g;
DESCRIPTION

Semctl provides a variety of semaphore control operations as specified by cmLl .

The follou'ing crnds are executed with respect to the semaphore specified by ,semid anJ sernnum:
GETVAL ll.eturn the value of semval (see intro(Z)). {READ}
SETVAL Set the value of semval to arg.ual . {AITERi When this cm,l is succ,:,ss-

I'ully executed, the semadj value corresponding to t,he specifie,l sernaph{}re
in all processes is cleared.

GETPID ll.eturn the value of sempid. {READ}
GETNCNT ll.eturn the value of semncnt. {READ}
GETZCNT Ileturn the value of semzcnt. {READ}

The following cmds retttrn and set, respectively, every semval in the set of seroaphorer;.
GETALL Place semvals into array pointed to by arg.array. {READ}
SETAIL Set semvals according to the array pointed to by arg.arrt,lt. {AfTER}'\Iy'hen this cmd is successfully executed the semadj val.ues corrr:sporrdinp; to

each specified semaphore in all processes are cleared.
The followirrg cmds are also available:

IPC-STAT Place the current value of each member of the data structure associaLed
rvith semid into the structure pointed to by arg.buf . The contents of 1;his
s;tructure are defined in intro(2). {READ}

IPC-SET §iet the value of the following members of the data structure asr;ociat;ed
rvith semid to the corresponding value found in the struciure pointed to by
urg .b uf :

sern_perrn.uid
sem_perrn.gid
sern_perrrr.rnode f * only Iow g bits */
llhis cmd can only be executed by a process that har; an effe<:tive user ID
e'qual to either that of super-user or to the value of sr:m-perrn.ui{ in t;he
clata structure associated with semid .

IPC-RMID Itemove the semaphore identifier specified by semid from the system and
clestroy the set of semaphores a,nd data structure associated $ith it. T'his
cmd can only be executed by a process that has an effectil.e r-iser ID eqrral
to either that of super-user or to the value of sem_p,erm.uid in the data
structure associated wiLh ,semid.

-1-

SEMCTL(2)

Semctl will fail if one or more of the following are true:

IEINVAL] Semid is not a valid semaphore identifier.

IEINVAf] Semnum is less than zero or greater than sem-nsems.

IEINVAII Cmd is not a valid command.

IEACCES] Operation permission is denied to the calling process (see intro(2)).

IERANGE] Cmd is SET\/AI or SETAI-L and the value to which semval is to be set
is greater than the system imposed maximum.

[EPERM] Cmd is equal to IPC_RMID or IPC-SET and the effective user ID of the
calling process is not equal to that of super-user and it is not equal to
the value of sern-perrn.uid in the data structure associated with semid.

IEFAULT] Arg.buf potnts to an illegal address.

RETURN VAI,UE
tlpon successful completion, the value reüurned depends on cmd as follows:

GETVAI The value of semval.
GETPID The value of sempid.
GETNCNT The value of semncnt.
GETZCNT The value of semzcnt.
All others A value of 0.

Otherwise, a value of -1 is returned and errno is set to indicate the error.
SEE ALSO

intro(2), semget(2), semop(2).

o

SEMGET(2)

NAMtr
semget - gct set of serna.phores

SYNOPSIS
finclude (sys/types.h2
finclude (sys/ipc.h)
finclude (sys/sem.h)
int sernget (key, nserns, sernflg)
key_t key;
int nserns, sernflg;

DESCRIPTION
Semget returns the semaphore identifier associated with Äey.

A semaplicre identifier and associated data structure and set containing ntiem,s semaphc,res (see +
intro(2';) are created for key if one of the following are true:

/(ey is equa,l to IPC_PRIVATE
Key does not already have a sema,phore identifier associated rvittr it, an<l (semflg fiz
IPC_CREAT) is "true".

Upon creation, the data structure associated with the neu'semaphore identifier is initializecl as
follows:

Sern3errn.cuid, sem-perm.uid, sern-perrn.cgid, and sern-perm.gid are set equal to
the effective ust:r ID and effect,ive Broup ID, respeccively, of the caliing pro(les§,.
The lorl'order g bits of sern-perrn.mode are set equal to the low-order g bitr; of t;emfl',g.
Sem_nsems is set equal to the value of nsents
Sern-otirne is set equal to 0 and sern-ctirne is set equal to the current ti me.

Semget will fail if one or more of the follot,ing are true:
[EINvAr-] Alsems is either less than or equal to zero or greater than the sysrlem-i:mpo,sed

limit.
[EACCES] A semaphore identifier exists for key, brt operation permission (see intro(2)'l as

specifie d by the low-order g bits of semflg would not be grant,ed.

IEINYAL] A semaphore identifier exists lor key, but the number ol' semaphor,:s in the set
associabed with it is less than nsems and nsems is not equal t,o zero.

IENOENT] A semaphore identifier does not exist for key and, (semflg & II,C__CRIfAT) is
'
tfalse'

' .

IENOSPC] A sema,phore identifier is to be creaLed but the system-impo:v:d lirnit on tltre m,ax-
imum Ilumber of allowed semaphore identifiers system wide woul«l be excr:eded..

IENOSPC] A semaphore identifier is to be created but the system-imposr:d lirnit on the mäx-
imum number of allou'ed semaphores system *'ide *'ould t,e excee,led.

IEEXIST'J A sema,phore identifier exists for ,tey but ((semftg & IPC._CIIEAT') and (, sentflg
& IPC-_EXCI,)) is "rrue".

RETURN VAIUE
Upon strccessful completion, a non-negative integer, namely a semaphore iclentifier, is rerturn.ed,
Othenvise, zr value of -1 is returned and errno is set to indicate the error.

SEE AISO
intro(2) semctl(2), semop(2).

-1-

sEMoP (2)

NAME
semop - §emaphore operations

SYNOPSIS
ffinclude (sys/types.h)
finclude <sys/ipc.h)
finclude (sys/sem.h)
int sernop (sernid, sops, nsops)
int semid;
struct sembuf **sops;
int nsopsl

DESCRIPTION
Semop is used to atomically perform an array of semaphore operations on the set of semaphores
associated with the semaphore identifier specified by semid. ^9ops is a pointer to the array of
semaphore-operation structures. Nsopc is the number of such structures in the array. The con-
tents of each structure includes the following members:

short sem-num; /* semaphore number */
short sem-op; /* semaphore operation */
short sem-flg; /* operation flags */

Each semaphore operation specified by aem-op is performed on the corresponding semaphore
specified by semid and sem-num.
Sem-op specifies one of three semaphore operation§ as follows:

lf sem_op is a negative integer, one of the following will occur: {AITER}
If semval (see intro(2)) is greater than or equal to the absolute value of senx-op,
the absolute value of sem-op is subtracted from semval. Also, if (sem-fl7 &.

SEM_UNDO) is "true", the absolute value of sem-op is added to the calling
process's semadj value (see erit(2)) for the specified semaphore. All processes
suspended waiting for semval are rescheduled.

If semval is less than the absolute value of sem-op and (sem-fig &'

IPC-NOWAIT) is "true" t sernop will return immediately'

If semval is less than the absolute value of sern-op and (sem;flg &.

IPC-NOWAIT) is "false", sernop will increment the semncnt associated with
the specified semaphore and suspend execution of the calling process until one of
the following conditions occur.

Semval becomes greater than or equal to the absolute value of $ern-op. When
this occurs, the value of semncnt associated with the specified semaphore is
decremented, the absolute value of sem-op is subtracted from semval and, if
(sem_ftg & SEM-UNDO) is "true", the absolute vaiue of senx-op is added to
the calling process's semadj value for the specified semaphore, and all the
operations are tried again.

The semid for which the calling process is awaiting action is removed from the
system (see sernctl(2)). When this occurs, emno is set equal to EIDRM, and a
value of -1 is returned.
The calling process receives a signal that is to be caught. When this occurs, the
value of semncnt associated with the specified semaphore is decremented, and
the calling process resumes execution in the manner prescribed in signal(2)-

lf aem_op is a positive integer, the value of sem-op is added to semval and, if (semJg
& SEM_UNDO) is "true", the value of sem-op is subtracted from the calling process's

semadj value for the specified semaphore. {ALTER}

1-

SEMOP (2)

lf sem_op is zero, one of the followirrg will occur: {READ}
If sem'ral is zero, semop will return immediately.
If semval is not equal to zero and (sem-fig & Ipc_NowÄJT) is ,,1,rue,", Eenxop
will return immediately.
If sem'val is not equal to zero and (cem_llg & Ipc_NowAIT) is ,,false,', Eernop
will increment the semzcnt associated with the specified semaphore and suspt:nd
execution of the calling process until one of the following occurs:
semval becomes zeto, at which time the value of semzcnb associar,ed rvith rhe
specified semaphore is decremented.
The semid for which the calling process is awaiting action is remoyed from the
systern. When this occurs, errno is set equal to EIDRN{. and a v:rlue of -1 isreturned.
The calling process receives a signal that is to be caught. lil/hen this occurs, r;he
value of semzcnt associated with the specified semaphore is decrernented, a,nci
the calling process resumes execution in ihe manner prescribed in sional(2).

Semop will fail if one or more of the following are true for any of the semaphore operationLs sp,r,ci-
fied by sop.s:

IETN]/A],]

IEFBTG]

lE2Brcl
IEACCES]

lEAcArNl

lENosPCl

[ErNVAI,]

IERANGEI

IERANGE]
IEFAULT]

The operation would result in suspension of the calling process but (ser,ajg k

request:ing an SEM_.UNDO

Semid is not a valid semaphore identifier.
sem-n'um is less than zero or greater than or equal to the number of semaphc,res
in the set associated with semid.
Nsops is greater ühan the system-imposed maximum.
Operation permission is denied to ühe calling process (see intro(2)).

IPC_NO.WAIT) is "true".
The limit on the number of individual processes
would be exceeded.

The ntrmber of individual semaphores for which the calling procesrr requestr-. a
SEM_IINDO would exceed the limit.
An operation would cause a semval to overflow the system-imposed limit.
An operation would cause a semadj value to overflow the sy:;l;em-imp,csed limit.
^9ops points to an illegal address.

Upon successful completion, the value of sempid for each semaphore specified in t,he array poinredto by oopo is set equal to the process ID of the calling process.
RETI'RN YAIIIE

lf e emop returns due to the receipt of a signal, a value of -1 is returned to the calling process a.nd
errno is set to EINTR. If it returns due to the removal of a semiil from the s,].stem, a valu,e of -1is returned and errno is set to EIDRM.
Upon successful completion, the value of semval at the time of the call for the last r>peration inthe amay pointed to by eops is returned. Otherwise, a value of -1 is returned and er,"no is set toindicate the error.

SEE AISO
exec(2), exit(2), fork(2), :intro(2), semctl(2), semget(2).

o

SETPGRP (2)

NAME
setpgrp - set process group ID

SYNOPSIS
int setpgrp ()

DESCRIPTION
Setpgrp sets the process group ID of the calling process to the process ID of the calling process and
returns the new process group ID.

RETURN VAI,UE
Setpgrp returns the value of the new process group ID.

SEE AI,SO
exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2).

-1-

SETUTD (2)

NAME
setuid, setgid - set usel: and group IDs

SYNOPSIS
int setuid (uid)
int uid;
int setgid (gid)
int gid;

DESCRIPTION
Setuid (setgid) is used to set the real user (group) ID and effective user (group) ID of the ca,[ing
proc es;i.

If the effective user ID'of the calling process is super-user, the real user (group) ID and effe,rtive
user (group) ID are set to uid (gid).
If the effective user ID of the cailing process is not super-user, but its real user (g1oup) ID is equal
to uid (g,d), the effecbive user (group) ID is set Lo uid (gid).
If the effective user ID, of the calling process is not super-user, but the savr:d set-ulier (group) ID
from erect2) is equal L<> uid (gfd), the effective user (group,) ID is set to uid(gid).
Setuid (setgid) will fail if the real user (group) ID of the calling process is rrot equal to uid (gid)
and its effective user ID is not super-user. [EPERM]
The uid is ouü of range. IEINVAI]

RETURN YA],UE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE AISO
getuid(2), intro(2).

-1-

SHMCTL(2)

NAME
shmctl - shared memory control operations

SYNOPSIS
finclude <sys/types.h>
finclude (sys/ipc.h)
finclude (sys/shrn.h>
int shrnctl (shrnid, crnd, buf)
int shrnid, crnd;
struct shrnid-ds *buf;

DESCRIPTION
Shmctl provides a variety of shared memory control operations as specified by cmd. The follow-
ir,g cmds are availabie:

IPC_STAT Place the current value of each member of the data structure associated
with shmid into the structure pointed Loby buf . The contents of this struc-
ture are defined h intro(2). {READ}

IpC_SET Set the value of the following members of the data structure associated with
shmidto the corresponding value found in the structure pointed to by Öuy':

shm-perm.uid
shm-perm.gid
shm-perm.mode /* only low 9 bits */
This crnd can only be executed by a process that has an effective user ID
equal to either that of super-user or to the value of shrn3erm.uid in the
data structure associated with sämid.

IpC_RMID Remove the shared memory identifier specified by shmid from the system
and destroy the shared memory segment and data structure associated with
it. This cmd car. only be executed by a process that has an effective userlD
equal to either that of super-user or to the value of shm3erm.uid in the
data structure associated with shmid .

Shmctt will fail if one or more of the following are true:

[EINVAL] Shmid is not a valid shared memory identifier'

IBINVAf] Cmd is not a valid command.

IEACCES] Cmd.is equal to IPC-STAT and {READ} operation permission is denied
to the calling process (see intro(2)).

IEPERM] Cmd is equal to IPC-RMID or IPC-SET and the effective user ID of the
calling process is noi equal to that of super-user and it is not equal to
the value of shm3erm.uid in the data structure associated with
shmid.

IEFAULT] Bu/points to an illegal address'

RETURN VAIUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -l is returned and
errno is set to indicate the error.

SEtr AI,SO
intro(2), shmget(2), shmop(2).

-1-

SHMGET(2)

NAME
shmget - get shared memory segment

SYNOPSIS
finclude (sys/types.h)
ffinclude <sys/ipc.nr)
Sinclude <sys/shm.h)
int shmget (key, size, shrnl'lg)
key-t key;
int size, shmflg;

DESCRIPTION
Shmget returns the shared memory ideniifier associated with key.
A shared memory identifier and associated data structure and shared memory segment of size srze
bytes (see intro(2)) are created for key if one of the following are true:

K'ey is equal [c, IPC-PRwATE
1(ey does not already have a shared memory identifier associated rvith it, and (shmtlg 8d

IPC-CREAT) is "ürue".
Upon creation, the data structure associated with the new shared memory i,ientifier is initialized
as follows:

Shm-perm.cuid, shml>erm.uid, shm-perm.cgid, and shrn_perm.gid are set erlual
to the effective, user ID and effective group ID, respectively, of the czrlling process.

The low-order 9 bits of shrn3errn.mode are set equal to the low-order g bits ol shmllg .

Shrn_segsz is set equal to the value of size.

Shm-lpid, shm_nattch, shm_atime, and shm_dtime are set equal to 0.

Shrn_ctirne is set equal to the current time.
Shmget will fail if one or more of the following are true:

IEINVALI Size is less than the system-imposed minimum or grear:er than the system-
imposed maximum.

IEACCES] A shared memory identifier exists for ,teg but operaiion permission (see rntro(2))
as specified by the low-order 9 bits of shmflg would not be granted.

IEINVAI] A shared nemory identifier exists for ,tey but the size of the segmenb associated
with it is less than size and stz e is not equal to zero.

IENOENT] A shared memory identifier does not exist for key and (shrnftg & II'C-CREAT)
is "false".

IENOSPC] A shaled memory identifier is to be created but the system-imposed limit on the
maximum number of allowed sha,red memory identifiers system wide v''oulcl be
exceed ed.

IENON{EM] A shared memory identifier and associated shared mento:y segment are to be
create,l but the amouni of available physical memory is not sufficie nt to fill the
request.

IEEXISTI A shar:ed memory identifier exists for /cey but ((shnilg & IPC-CFIEAT) arrd (
shmflg & IPC-EXCI-)) is "true".

-1-

SHMGET (2)

RETURN VAIUE
Upon successful completion, a non-negative integer, na,mely a shared memory identifier is

reburned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE AISO
intro(2), shmctl(2), shmop(2).

r

srrMoP (2)

NAME
shmop - shared memory operations

SYNOPSIS
finclude (sys/types.h>
finclude lsys/ipc.h)
finclude (sys/shm.h)
char *shmat (shmict, shrnaddr, shmflg)
int shrnid;
char *shrnaddr
int shrnflg;
int shrndt (shmaddr)
char *shmaddr

DESCRIPTION
Shntat attaches the shared memory segment associated with the shared nl{lmory identifier speci-
fied by sh,mid to the data segmenL of fhe calling process. The segment is attached at the ad,lress
specified by one of the following criteria:

ll shmaddr is equal to zero, the segment is att,ached at the first, available addrer;s as
selected by the system.

lf shmaddr is not equal to zero and (shmflg & SHM-RND) is "true", the segmerri is
att,ached at thr: address given by (shmaddr - (shm,addr modulus SI-II\4LBA)).

lf shmaddr is not equal to zero and (shmflg & SHM-RND) is "llalse", the segmerrb is
at,rached ai thr: address given by shmaddr.

The segment, is attacht:d for reading rf (shmtlg & SHM-RDONLY) is "true" {RE,{D), ot}rerwi.se it
is attacherl for reading and writing {RtrAD/\&RITE}.
Shntat u'ill fail and nc,t attach the shared memory segment if one or rnore of the follox,ing; are
true i

[ElN1r..\Il Shmia!is not a valid shared memory identifier.

fEACCtrS] Opera.tion permission is denied to the calling process (see intro(2)).

IENON{EN{] The ilvailable data space is not large enough to accc,rnmodat,: the shared
memory segment.

[EIN1'AI] Shma,ldr is not equal to zero, and the value of (shrnaddr - (shmt.ddr mod.ulus
SIIMLBA)) is an illegal address.

iEIN\r.\f] Shma,ldr is not equal to zero, (shnilg & SHM-RND) is "fzrlse", ancl the value of
'shmaddr is an illegal address.

[E\IFII,E] The number of shared memory segmenl,s attached to t]re,:alling l)rocess would
exceed the system-imposed limit.

IEINVAI] Shmdt detaches from the calling process's dat,a segment the, sha,red memory seg-
nrent located at the address specified by shmaddr.

[EIN1,'AL] Shmdt *'ill fail and not detach the shared memory segment, tf shmaCdr iri nol; the
data segment start address of a shared memory segmenL.

RETURN VAIUES
Upon successful complr'tion, the return value is as follorvs:

-1-

sHMoP (2)

Shmat returns the data segment start address of the attached shared memory segment'

Shmdt returns a value of 0.

Otherwise, a value of -1 is returned ar.d errno is set to indicate the error.

SEE AISO
exec(2), exit(2), fork(2), intro(2), shmctl(2), shmget(2).

r

STGNAL(2)

NAME
signal - specify p.hat to do upon receipt of a signal

SYNOPSIS
finclude lsignal.h.)
int (*signal (sig, fu.nc))()int sig;
void (*func)();

DESCRIPTION
Signal allows the calllng process to choose one of three ways in which it, ir; posslble to trandl e t,he
receip,t ol a specific signal. Sfg specifies the signal and, f,unc specifies the choice.
,Sig c:rn be assigned any one of the follol+,ing except, SIGI{ILL:

SIGIIUP 01 hangup
SIGiNT 02 interrupt
SIGQIJIT 03* quit
SIGIILL 04* illegal instruction (not reset when caught)
SIG'TRAP 05* trace trap (not reset when caught)SIGIOT 06* IOT instruction
SIG.EMT 07* EMT instruction
SIGF'PE 08* floating point exception
SIGKILL 0S kill (cannot be caught or ignored)SIGIBUS 10* bus error
SIGSEGV 11* segmentation violation
SIGISYS L2* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it,SIG,{LRM 14 alarm clock
SIG'IERM 15 software termination signal
SIGUSRT 16 user-defined signal I
SIGUSR2 17 user-defined signal 2
SIGCLD 18 death of a child

(see I,lzAr?l//NG below)
SIGPWR 19 power fail

(see I7,4r?l/1NG b elow)
see belo* for the significance of the asterisk (*) in the above list.
Func is assigned one of three values: SIG-DFL, SIG IGN, or a function address. The act;ionsprescribed by these values are as follows:

SIG_DFL - terminate process upon receipt of a signal
Upon receipt of the signal sfg, the receiving process is to be terrninated ,vith all of the
consequences outlined in erit(2). In addition a "core image'' will be ma6e irr the
current working directory of the receiving process if sig is one for whi<:h an astr;pi5|.
appears in the above list ond the following conditions are met:

The effective user ID and the real user ID of the receiving process are equal.
An ordinary file named core exists and is writable or can tre c::eaterl. Il'thefile must be created, it will have the follorving properties:

a mode of 0666 modified by the file creation nrask (see umask(2'.1)
a file owner ID that is the same as the effect,i,e user ID of the rer:eiv-
ing process.

a file group ID that is the sarne as the effect,ive grc>up ID of the
receiving process

-1

STGNAL(2)

SIG-IGN - ignore signal
The signal ofg is to be ignored.

Note: the signal SIGKILL cannot be ignored.

tunction address - catch signal
Upon receipt of the signal slg, the receiving process is to execute the signal-catching
function pointed to by func. The signal number sqg will be passed as the only argument
to the signal-catching function. Before entering the signal-catching funct,ion, the value
of func for the caught signal will be set to SIG-DFL unless the signal is SIGILL,
SIGTRAP, OT SIGPWR.
Upon return from the signal-catching function, the receiving process will resume execu-
tion at the point ii was intemupted.
When a signal that is to be caught occurs during a read, a write, art open, or at ioctl
system call on a slow device (like a terminal; but not a file), during a pause system call,
or during a wait system call that does not return immediately due to the existence of a
previously stopped or zombie process, the signal catching function will be executed and
ühen the interrupted system call may reüurn a -1 to the calling process with errno set to
EINTR,
Note: The signal SIGKILL cannot, be caught.

A call Lo signal cancels a pending signal sig except for a pending SIGICLL signal.
Signal will fail if sig is an illegal signal number, including SIGKILL. IEINVAL]

RETURN VAJ.UE
Upon successful completion, signal returns the previous value of lunc lor the specified signal arg.
Otherwise, a value of -1 is returned arrd errno is set to indicate the emor.

SEE AI,SO
kill(1), kill(2), pause(2), ptrace(2), wait(2), setjmp(3C).

WARNING
Two other signals that behave differently than the signals described above exist in this release of
the system; t,hey are:

SIGCLD 18 death of a child (reset when caught)
SIGPWR 19 power fail (not reset when caught)

There is no guarantee that, in future releases of the operating system or UNIX system, these signals
will continue to behave as described below;they are included only for compatibility with some
versions of the UNIX system. Their use in new programs is strongly discouraged by Motorola and
AT&T.
For these signals, /unc is assigned one of three values: SIG-DFL, SIG-IGN, or a lunction
address. The actions prescribed by these values of are as follows:

SIG-DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sfg is SIGCLD, the calling process's child
processes will noü create zombie processes when they terminate; see ezit(2).

function address - catch signal
If the signal is SIGPWR, the action to be taken is the same as that described above
for func equal to function addrees. The same is true if the signal is SIGCLD except,
that while the process is executing the signal-catching function, any received SIGCLD

i,illi.Jii* l*::L;nd
the signal-catchins function will be continually reentered

o

srcNAr(2)

The SIGCLD affecl;s trvo other system calls (raaft(2), and exit(2)) in the following ways:

wait If the /unc value of SIGCLD is set to SIG-IGN and a wait is r:xecuted, the uaif will
block until all of the calling process's child processes terminat(,; iü will then return a
value of -1 with errno set to ECHILD.

ecit If in the exiting process's parent process lhe fu,nc value of SIGCLD is seL to SIG--IGN,
the exiting process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline the parent of the
proceeding processes. A process that may be piped inrLo in this manner (ancl thus brecorne the
parent of other processes) should take care not to set SIGCLD to be caught.

BUGS
A user process connot catch a signal caused by an invalid memory reference dur.ing a partialll,
completed instruction. Thus SIGSEGV can be ignored or be allowed to terminal,e the process,
but cannot be caught. This bug is due to a temporary implementation problem.

-3-

NAME
stat, fstat - get file status

SYNOPSIS
finclude (sys/types.h)
finclude (sys/stat.h)
int stat (path, buf)
char *path;
struct stat *buf;
int fstat (fildes, buf)
int fildes;
struct stat *buf;

DESCRIPTION
Polä points to a path name naming a file. Read, write, or execute permission of the named file isnot required, but all directories listed in the path name leading to the file must be searchable,
'9,4, obtains information about the named file. .9ra, works *ittr att files, but does not obtaininformation peculiar to ptLE files (see syslocal(2) and p//(S)).
Similarly, lstat ob|ains information about an open file known by the file descript or fildea,obtained from a successfur open, creat, dup, fcntr,-or pipe system cail.
Bul is a pointer to a stat structure inüo which information is placed concerning the file.
The contents of the structure pointed to by buf include the following members:ushort st_mode; /* File mode; see mknod(2) */ino_t st_ino; /* Inode number */

dev_t st_dev; f* IO of device containing */
/* a directory entry for this file * Idev_t st_rdev; l* lD of device */
/* This entry is defined only for */
/* character special or block special files */short st_nlink; /* Number of links */

ushorc st_uid; /* User ID of the file,s owner */ushort st_gid; /* Group ID of the file,s group */off_t st_size; /* File size in bytes */
time_t sü_atime; /* Time of last access */
time_t st_mtime; /* Time of last data modific ation * ftime_t st_cbime; /* Time of last file status change */

/* Times measured in seconds since */
/* 00:00:00 GIr{T, Jan. l,lgTo *f

sTA?(2)

st_atirne Time when file data was last accessed. Changed
creat(2), mknod(2), pipe(2), utime(2), arrd read(2).

st_mtime Time when data was last modified. Changed by the
mknod(2), pipe(2), utime(2), and write(2).

by the following system calls:

following system calls creat(2),

st-ctime Time when file status was last changed. Changed by the following system calls:
chmod(2), c,houn(Z), creat(2), lintc(2), mknod(2), pipe(2), untink(2), utime(2), and,
wr;te(2).

Sro, will fail if one or more of the following are true:
IENOTDIRJ A eomponent of the path prefix is not a directory.
IENOENT] The named file does not exist.

IEACCESI search permission is denied for a component of the path prefix.

l-

srAr(2)

IEFAULTI Buf or potlr points to an invalid address.

Fsfol will I'aii if one or more of the following are true:

IEBADF] Fildes is not a valid open file descriptor.

IEFAUf-T] Bu/ p,>ints to an inr.alid address.

RETURN VAIUE
Upon successful completion a value of 0 is returned. Otheru'ise, a value ,cf -1 is returned and
errno is set to indicate the error.

SEE AISO
chmod(2), chown(2), creat(2), Iink(2), mknod(2), pipe(2), read(2), syslocal(:2), tirne(2), unlink(2),
utime(2), write(2).

o

srrME(2)

NAME
stime - set tinie

SYNOPSIS
int stirne (tp)
long *tp;

DESCRIPTION
,5trme sets the system's idea of the time and date. ?p points to the value of time as measured in
seconds from 00:00:00 GMT January 1, 1970.

IEpERM] Stime wlll fail if the effective user ID of the calling process is not super-user.

RETURN VAIUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SBE ALSO
time(2).

-1-

swRrrE (2)

NAME
swrite -- synchronous wl'ite on a file

SYNOPSIS
int swrite (fildes, buf, nbyte)
int fildes;
char *'buf;
unsigned nbyte;

DESCRIPTION
Surite has the same purpose and conventions as write(Z). The two differ solely in their Jhandling
of disk input/output. ,iwrite, unlike write , does not give zr normal return b,t:fore ph'ysical ou1pui
is complete. A program that executes an sturile can assrrme that the <iata is 6n 1,he clisk, not
waiting in a buffer pool.

SEE ALSO
creat(2), dup(2), lseek(2), open(2), pipe(2), ulimit(2).

-1-

SYNC(2)

NAME
sync - update super-block

SYNOPSIS
void sync ()

DESCRIPTION
^9ync causes all information in memory that should be on disk to be written out. This includes
modified super blocks, modified i-nodes, and delayed block I/O.
It should be used by programs which examine a file system, for example fsck, df , etc. It is man-
datory before a boot.
The writing, although scheduled, is not necessarily complete upon return from syn c.

-1-

SYSLOCAT (2)

NAME
syslocal - special systent requests

SYNOPSIS
finclude (syslocal.h)
int sysloca.l (crnd I , u.g] ...)
int crrrd;

DESCRIPTION
Syslocal executes certain special system calls. The specific call is indicate<l b'y the first argum,:rnt.

System Type
inr sysloc al(sYSL-SYSTEM);

Return SYSL-MINI for lMiniFrame, SYSL-II{EGA for System 6600.

Superblock Synchroniz atic,n

int syslocal(SYSL-RESYNC, devnum)
short devnum

Preserve cument contents of superblock. Deunum specifie's the file systern: the hig;h order byte
contains the major device number of the character special device; the low order t,yte contains the
minor devi«:e number. The action taken differs on System 6300 and Sl,stem 6600: on System 6300,
the syst;em is rebooted; on System 6600, the superblock is reread, replacing the currerrt in-ll.Al,I
copy of the superblock. Both actions have the effect of p,reventing the s1'r;tern frorn u,riting orit
the superblock, undoing, for example, the effects of file sysr[em repair.

Enable Openi

sysloc al(sYSL-,IIPENI, flag)
int {lag

Enables or disables tlrc openi systerrr call. F/og is 1 for enabling, 0 for disablirrg. t)nly the
superuser can execute l,his call, which affects every user on the system.

Application Processor Nu.mber (System 6600 Only)

sy sloc al(SYSL_APNL\4)
Returrr the, processor number of the Application Processor on which this process is executing.

Total Application Processors (System 6600 Only)

sy'sloc al(sYSL_ToTAPS)
Return the total number of Application Processors currentl.y running.

Console Control (System 6600 Only)

sl,slocal(SYSL-CONSOLE, type, action)
ir,t type, action;

N4anage Application I'rocessor console. A-ffects Application Processor,rn which this process ir;
runnirrg. ?ype specifies the type of action, action the specific action. .\'zJues

<>f type are 0 t,cr

query console status, I to associate the t,erminal with a terminal, 2 to cont,r<>l kernel prints. zind 3
to control entry to the kernel debugger.

ll typt: is 0 and action 1, the return value indicates the ter.minal associatit»r of the ccnsolr: a posi-
tive value is the terminal number of the associated terminal; and -1 indica,tes th.at no termir:al is
associated with the console;

-1-

SYSLOCAT (2)

If type is 0 and action is 2, the return value gives the status of kernel diagnostic prints: 0 for off,
1 for on.
It type is 0 and action is 3, the return value tells whether entry to the kernel debugger is enabled:
0 for no, 1 for yes.

If type is 0 and action is 4, the contents of the console's circular buffer are written to standard
output.
If tyyte is l, action indicates a new terminal association for the console. If action is 0, terminal
assocation is removed. lf action is -1, the console is associated with the UART ludge port. If
ac.tion is positive, it must be the file descriptor for an open terminal special file; the console is
associated with that terminal. If the terminal is under window managment, then the file descrip-
tor refers to one of the windows in that terminal; the console is associated with that particular
*'indow. A return value of 0 indicates a successful association, a -1 an unsuccessful association,
with the error value in emno .

If type is 2, action controls kernel diagnostic prints: 0 disables, any other value enables.

lf type is 3, action controls access to the kernel debugger: 0 disables, I enables, any other value
must be a process group whose terminal/window is to have kernel prints enabled. When access to
the kernel debugger is enabled, entering a Control-B or Code-B on the console terminal enters the
kernel debugger.

Maximum Number of l]sers

sysl o c al (sYSL-N,IAxusERS)

Returns maximum number of concurrent Iogins on the processor on which this process is execut-
i.rg.

PILF File Status (System 6600 Only)

finclude (types.h)

sysloc aI(SYSL-PSTAT, name, st-buf)
char *name;
struci p-stat *st-buf;

sysloc al(SYSL-PFSTAT, fd, st-buf)
int fd;
struct p-stat *st-buf;

struct p_slat
{ dev-i st-dev;

ino-t st-ino;
ushort st-mode;
short st-nlink;
ushort st-uid;
ushort st3id;
dev-t st-rdevl
off_t st-size;
time-t st-atime;
time-t st-mtime;
time-t st-ctime;
char st-cluster;

)

o

SYSLOCAT(2)

These calls work exactl .y like stat and fstat (see slat(2)), except that the sta,t,us structure has one
additional field, st-clucter, which gives the cluster size exponent of the file.

Get Process's Cluster Size Exponent (System 6600 Only)

sysloc al(sYSL_G ETCLUS)

sysloc al(SYSL-SETCLUS, c luster)
int cluster;

A process's cluster size exponent sets the cluster size expon,ent of any files the proceris cr,eatesi on
PILF file systems. A process's cluster size exponent can be -1, indicating tha.t the new file's clus-
ter size exponent should be taken from the file system's default cluster size exponent. A new pro.
cess inheriis its parent's e.Kponent.

Syslocal SYSL-GETCLUS returns the process's cluster size exponent.

Syslocal SYSL-SETCLUS sets the process's cluster size exponent to cluster.
SEE AJ-SO

SYSL-CONSOLE
console(1M), console(7).

SYSL-OPENI
openi(2).

SYSL-APNUM
SYSL_TOTAPS

apnum(1M). S:tstem 6600 Administrator's Guide.

SYSL_R-ESYNC
fsck(lM).

SYSL_PSTAT
SYSL-PFSTAT
SYSL-CIETCLUS
SYSL_SETCLUS

pilf(s).
WARNINGS

Kernel prints and the kernel debugger syslocal calls that support them may disappear witlrout
notice. Use of kernel p,rints degrades system performance. Use of the kernr:i debugg;er halts Iror-
mal processing.

-3-

TrldE(2)

NA.T,IE
time _ get time

SYNOPSIS
long time ((tong *) o)
Iong time (tloc)
Iong *tloc;

DESCRIPTION
Time rcttrns the varue of time in seconds since 00:00:00 GMT, January r, 1970.Li?l?i"n a§ an integer) is non-zero, the return varue is arso süored in rhe rocarion to which

IEFAULT] Time will fall if tloc points ro an illegal address.RETURN VALUE

YJ.":ä';::'i:l rxj#d['.#:'*s rhe varue of rime. otherwise, a varue of -r is rerurnedSEE ALSO
stime(2).

l-

TrMEs(2)

NAME
times - get process ancl child process times

SYNOPSIS
finclude (sys/types.h>
finclude <sys/times.h>
long times (buffer)
struct, tms *bufferl

DESCRIPTION
Times fills the structure pointed to by bufler with time-accounting information. llhe I'ollov/ing
are the contents of this structure:
struct tms {

time_t tms_utime;
time_t tms_stime;
time_t tms_cutime;
time_t tms_cstime;

i;
This information comes from the calling process and each of its terminated child processes; for
which it has executed a, wait. All times are in 60ths of a second.
Tms-wtime is the CPU time used while executing instructions in the user space ,o[the calling prc>
c e§s.

Tms-stimc is the CPU time used by the system on behalf of the calling prrf,c,ess.

Tms-cutime is the sum of the trns-utimes and, tms-cutimes of the child processers.
Tms-cstirne is the sum of the trns-strmes and tms-cstimes of the child processe$.

IEFAUI,T] Tirnea will fail if bulfer poinrs to an illegal address.
RETI'RN VALUE

Upon successful completion, times returns the elapsed real time, in 60ths (fOt)ühs) of a, sec6nd,
since an arbitrary point in the past (e.g., system start-up time). This point does not change from
one invocation of tirnes to another. lf times fails, a -1 is returne d and, ey,nc, is set t6, ind:icate the
error.

SEE AISO
exec(2), fork(2), time(2)r, wait(2).

-l-

r.rLrMrT(2)

NAME
ulimit - get and set user iimits

SYNOPSIS
long ulirnit (cmd, newlirnit)
int crndl
long newlimit;

DESCRIPTION
This function provides for control over process limits. The cmd values available are:

1 Get the file size limit of the process. The limit is in units of 512-byte blocks and is inher-
ited by child processes. Files of any size can be read.

2 Set the file size limit of the process to the value of newlimit. Any process may decrease this
Iimit, but only a process with an effective user ID of super-user may increase the limit.
Ulimit will fail and the limit will be unchanged if a process with an effective user ID other
than super-user attempts to increase its file size limit. IEPERMI

3 Get the maximum possible break value. See ärß(2).

RETIIRN VALI.IE
Upon successful cömpletion, a non-negaüive value is returned. Otherwise, a value of -1 is
ret,urned and errno is set to indicate the error.

SEE AISO
brk(2), write(2).

-1-

UMASK(2)

NAME
umask - set and get file creation mask

SYNOPSIS
int urnask (crnesk)
int cmaskl

DESCRIPTION
{Jmask sets the process's file mode creation mask to cmask and returns the previout; val,ue ol'the
mask. Only the low-order g bits of cmaslc and the file mode creation mask :rre used.

RETURN VAITIE
The previous value of t,he file mode creation mask is returned.

SEE AISO
mkdir(1), sh(1), chmod(2), creat(2), mknod(2), open(2).

-1-

t MouNT(2)

NAME
umount - unmount a file system

SYNOPSIS
int umount (spec)
char *specl

DESCRIPTION
Umount requests that a previously mounted file system contained on the block special device
identified by spec be unmounted. Spec is a pointer to a path name. After unmounting the file
system, the directory upon which the file system was mounted reverts to its ordinary interpreta-
tion.
Umount may be invoked only by the super-user.

Umount will fail if one or more of the following are true:

IEPERM] The process's effective user ID is not super-user.

IEN)AO] Spec does not exist.

IENOTBLK] .9pec is not a block special device.

IEINVAI] Spec is not mounted.

[EBUSY] A file on spec is busy.

IEFAULT] Spec points to an illegal address.

RETIIRN VAIUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
mount(2).

-1-

UNAME(2)

NAME
uname - Bet name of currenL operating system

SYNOPSIS
finclude (sys/utsn ame.h)
int unarne (narne)
struct utsnarne *na:me;

DESCRIPTION
Uname'stores information identifying the current operating system in the structure poinl;ed tc, by
name.

[Jnamtt uses ihe structrrre defined in (sys/utsnarne.h> u'hose members a.re:

clLar sysnanrefg];
char nodename[9] ;

char release [9];char versionfg];
char machirre [9];

Uname returns a null-terrninated character string naming the current operating syste:m in the charac-
ter array sysname. Similarly, nodename contains the name that the system is known. by on a

communications network, Release and uersion further identify the operating systerr.. Mochin,,,
contains a standard name that identifies the hardware that the operating system is ruinning on.

IEFAULT] Uname will fail if name points to an invalid address.

RETURN VAIUE
Upon successful completion, a non-negative value is returned. Otherwise, -1 is returned arrd
errno is sr:t to indicate the error.

SEtr ALSO
uname(1).

-1-

UNLTNK(2)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink (path)
char *path;

DESCRIPTION
Untink removes the directory entry named by the path name pointed tobe path.

The named file is unlinked unless one or more of the following are true:

IENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

IEACCES] Search permission is denied for a component of the path prefix.

IEACCES] Write permission is denied on the directory containing the link lo be removed.

IEpERM] The named file is a directory and the effective user ID of the process is not
super-user.

IEBUSy] The entry to be unlinked is the mount point for a mounted file system.

IETXTBSy] The entry to be unlinked is the last link to a pure procedure (shared text) file
that is being executed.

IEROFS] The directory entry to be unlinked is part of a read-only file system.

[EFAULT] Pofä points outside the process's allocated address space.

When all links to a file have been removed and no process has the file open, the space occupied
by the file is freed and the file ceases to exist. If one or more processes have the file open when
the last link is removed, the removal is postponed until all references to the file have been closed.

RETURN VAI,UE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
rm(t), close(2), Iink(2), open(2).

-1-

USTAT(2)

NAME
ustat .- get file system statistics

SYNOPSIS
ffinclude <sys/types.h>
finclude (ustat.h)>

int ustat (dev, buf)
int dev;
struct ustat *buf;

DESCRIPTION
[/staf returns information about a mounted file system. Deo is a device number iderLtifying a
device containing a mounted file system. Bul is a pointer to a ustat strurcture thrlt includes to
following elemenis:

daddr_t f_tfree; f * Total free blocks */
ino_t f_tinode; /* Number of free inodes */
char f_fname[6]; /* Filsys name */
char f_fpack[6]; /* Filsys pack name */

[/stot will fail if one or more of the following are true:
[EINVAL] Deo is not the device number of a device containing a mountecl file systr:m.
IEFAULT] Bu/ points outside the process's allocated address space.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -l is returned and
errno is set to indicate the error.

SEE AISO
stat(2), fs(a).

-1-

urrME(2)

NAME
utime - set file access and modification times

SYNOPSIS
finclude (sys/types.hl
int utirne (path, tirnes)
char *path;
struct utimbuf *times;

DESCRIPTION
Potä points to a path name naming a file. (Jtime sets the access and modification times of the
named file.
If times is NULL, the access and modification times of the file are set to the current time. A pro-
cess must be the owner of the file or have write permission to use utime in this manner.

If times is not NULL , times is interpreted as a pointer tn a utimbul structure and the access and
modification times are set to the values contained in the designated structure. Only the owner of
the file or the super-user may use utime thisway.
The times in the following structure are measured in seconds since 00:00:00 GMT, Jan. 1, 1970.

struct utimbuf {
time-t actime; /* access time */
time-t modtime; /* modification time */

i;
Utime wlll fail if one or more of the following are true:

IENOENT] The named file does not exist.

IENOTDIR] A component of the path prefix is not a directory.

IEACCES] Search permission is denied by a component of the path prefix.

IEpERM] The effective user ID is not super-user and not the owner of the file and trrnes is
not NULL.

IEACCES] The effective user ID is not super-user and not the owner of the file and times is
NULL and write access is denied'

IEROFS] The file system containing the file is mounted read-only.

IEFAULT] Times is not NULL and points outside the process's allocated address §pace'

IEPAULT] Pofä points outside the process's a]located address space.

RETIIRN VAIUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
stat(2).

-1-

wAJr(2)

NAME
wait - wait for child process üo si;op or terminate

SYNOPSIS
int wait (stat-loc)
int *stat--loc;
int wait ((int *)o)

DESCRIPTION
Woft suspends the calling process until one of the immediate ehildren terminates or until a child
that is being traced sr,ops because it has hit a break point. The wait slrstem call will ret;urn
premal,urely if a signal is received and if a child process stopped or terminated prior io the call on
uoff , return is immediate.
lf stat_loc (taken as an integer) is non-zero, 16 bits of information called statusr are stored in the
Iow order 16 bits of the location pointed to by stat-loc. Status can be used to differentiate
between st,opped and tr:rminated child processes and if the child process terrninated, statu.s identi-
fies the cause of termination and passes useful information to the parent,. This is accomplished in
the following malrner:

If the child process stopped, the high order 8 biüs of status will contain the number of the
signal that caused the process to stop and the low order 8 bits will be sel; equal to 017',1 .

If the child process terminated due to an edt call, the low order 8 bitsr of statu;s will be
zero and the hlgh order 8 bits will contain the low order 8 bits of the a.rgunrent that the
child process pi»sed to etit; see erit(2).
If the child process terminated due to a signal, the high order 8 bits of status will be zero
and the low order 8 bits will contain the number of the signal that cairsed the [ermina-
tion. In addition, if the low order seventh bit (i.e., bit 200) is set, a "core image" will
have been produced; see signal(2).

If a parent process terminates without waiting for its child processes to terminate, th,e parent 1>ro-
cess ID of each child process is set to 1. This means the initialization proc:ess inherits the child
processes; see tztro(2).
Wait will fail and return immediately if one or more of the following are true:

IECHILD] The calling process has no existing unwaited-for child procersses.

[EFAULT] Stat-loc points to an illegal address.

RETIIRN VALUE
lf wait returns due to l;he receipt of a signal, a value of -l is returned to the calling; process and
errno is set to EINTR If roolü returns due to a stopped or terminated child process, the process
ID of the child is returned to the calling process. Otherwise, a value of -1 jis returnr:d and errno
is set to indicate the en'or.

SEE A-LSO
exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2).

WARNING
See }flÄßNiNG in aignal(2).

-1-

wRrrE(2)

NAME
write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, tlup, fcntl , or pipe system call.
Write attempts to write nbyte bytes from the buffer pointed to by buf to the file associated with
the lildes.
On devices capable of seeking, the actual writing of data proceeds from the position in the file
indicated by the file pointer. Upon return from write, the file pointer is incremented by the
number of bytes actually written.
On devices incapable of seeking, writing always takes place starting at the current position. The
value of a file pointer associated with such a device is undefined.
If the O-APPEND flag of the file status flags is set, the file pointer will be set to the end of the
file prior to each write.
Write will fail and the file pointer will remain unchanged if one or more of the following are true:
[EBADF] Fildes is not a valid file descriptor open for writing.
[EPIPE and SIGPIPE sisnal]

An attempt is made to write to a pipe that is not open for reading by any pro-
cess.

lEFBrcl An attempt was made to write a file that exceeds the process's file size limit or
the maximum file size. See ulimit(2).

IEFAULT] Bu/ points outside the process's allocated address space.

IEINTR] A signal was caught during the write system call.

IENOSPC] Additional blocks cannot be allocated to the file becasue the file system has no
free blocks or because a PILF file's cluster size exceeds the size of all unallocated
clusters.

[EDEA-DLOCK] A side effect of a previous locking(2) call.
If a write requests that more bytes be wriüten than there is room for (e.g., the ulirnit (see
ulimit(2)) or the physical end of a medium), only as many bytes as there is room for will be writ-
ten. For example, suppose there is space for 20 bytes more in a file before reaching a limit. A
write of 512 bytes will return 20. The next write of a non-zero number of bytes will give a
failure return (except as noted below).
If the file being written is a pipe (or FIFO) and the O-NDELAY flag of the file flag word is set,
then write to a full pipe (or FIFO) will return a count of 0. Otherwise (O_NDELAY clear), writes
to a full pipe (or FIFO) will block until space becomes available.

RETURN VALUE
Upon successful completion the number of bytes actually written is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

SEE AISO
meat(2), dup(2), lseek(2), locking(2), open(2), pipe(2), ulimit(2).

-1

