INTRO (3)

NAME

intro — introduction to subroutines and libraries
SYNOPSIS

#include <stdio.h>

#include <math.h>
DESCRIPTION

This section describes functions found in various libraries, other than those functions that directly

invoke operating system primitives, which are described in Section 2 of this volume. Certain major

collections are identified by a letter after the section number:

(3C) These functions, together with those of Section 2 and those marked (3S), constitute the
Standard C Library libe, which is automatically loaded by the C compiler, cc(1). The link
editor /d(1) searches this library under the —le option. Declarations for some of these func-
tions may be obtained from #include files indicated on the appropriate pages.

(3M) These functions constitute the Math Library, libm. They are not automatically loaded by
the C compiler, cc(1); however, the link editor searches this library under the —lm option.
Declarations for these functions may be obtained from the #include file <math.h>.

(3S) These functions constitute the “standard 1/O package’ (see stdio(3S)). These functions are
in the library libe, already mentioned. Declarations for these functions may be obtained
from the #include file <stdio.h>.

(3X) Various specialized libraries. The files in which these libraries are found are given on the
appropriate pages.

Two groups of entries represent direct communication with RTOS. Functions whose names begin

with of (“‘outside file system’’) provide RTOS-style input/output. Functions whose names begin

with qu (“queue’) provide access to RTOS queue management.

DEFINITIONS

A character is any bit pattern able to fit into a byte on the machine. The null character is a

character with value 0, represented in the C language as \0’. A character array is a sequence of

characters. A null-terminated character array is a sequence of characters, the last of which is the
null character. A string is a designation for a null-terminated character array. The null string 1s

a character array containing only the null character. A NULL pointer is the value that is

obtained by casting O into a pointer. The C language guarantees that this value will not match

that of any legitimate pointer, so many functions that return pointers return it to indicate an
error. NULL is defined as 0 in <stdio.h>>; the user can include his own definition if he is not
using <stdio.h>.

FILES
/lib/libc.a
/lib/libm.a

SEE ALSO
ar(1), cc(1), 1d(1), nm(1), intro(2), stdio(3S).

DIAGNOSTICS

Functions in the Math Library (3M) may return the conventional values 0 or HUGE (the largest

single-precision floating-point number) when the function is undefined for the given arguments or

when the value is not representable. In these cases, the external variable errno (see intro(2)) is
set, to the value EDOM or ERANGE.
WARNING

Many of the functions in the libraries call and/or refer to other functions and external variables
described in this section and in section 2 (System Calls). If a program inadvertantly defines a
function or external variable with the same name, the presumed library version of the function or
external variable may not be loaded. The lin{(1) program checker reports name conflicts of this
kind as “multiple declarations” of the names in question. Definitions for sections 2, 3C, and 3S

INTRO(3)

are checked automatically. Other definitions can be included by using the ~I option (for example,
—lm includes definitions for the Math Library, section 3M). Use of lint is highly recommended.

NAME

A64L(3C)

ab4l, 164a - convert between long integer and base-64 ASCII string

SYNOPSIS

long a64l (s)
char *g;

char *164a (1)
long I;

DESCRIPTION

BUGS

These functions are used to maintain numbers stored in base-64 ASCII characters. This is a nota-
tion by which long integers can be represented by up to six characters; each character represents a
“digit” in a radix-64 notation.

The characters used to represent ‘“‘digits” are . for 0, /forl,0 through 9 for 2-11, A through Z
for 12-37, and a through z for 38-63.

A64l takes a pointer to a null-terminated base-64 representation and returns a corresponding long
value. If the string pointed to by s contains more than six characters, a64! will use the first six.

L64a takes a long argument and returns a pointer to the corresponding base-64 representation.
If the argument is 0, l64a returns a pointer to a null string.

The value returned by l64a is a pointer into a static buffer, the contents of which are overwritten
by each call.

ABORT (3C)

NAME
abort — generate an 10T fault

SYNOPSIS
int abort ()

DESCRIPTION
Abort first closes all open files if possible, then causes an IOT signal to be sent to the process.
This usually results in termination with a core dump.

It is possible for abort to return control if SIGIOT is caught or ignored, in which case the value
returned is that of the kdll(2) system call.

SEE ALSO
adb(1), sdb(1), exit(2), kill(2), signal(2).

DIAGNOSTICS

If SIGIOT is neither caught nor ignored, and the current directory is writable, a core dump is
produced and the message “abort — core dumped” is written by the shell.

ABS(3C)

NAME
abs — return integer absolute value
SYNOPSIS
int abs (i)
int i
DESCRIPTION
Abs returns the absolute value of its integer operand.
BUGS
In two’s-complement representation, the absolute value of the negative integer with largest mag-
nitude is undefined. Some implementations trap this error, but others simply ignore it.
SEE ALSO

floor(3M).

ASSERT (3X)

NAME
assert — verify program assertion

SYNOPSIS
#include < assert.h>

assert (expression)
int expression;

DESCRIPTION

This macro is useful for putting diagnostics into programs. When it is executed, if ezpression is

false (zero), assert prints
“Assertion failed: ezpression, file zyz, line nnn”

on the standard error output and aborts. In the error message, zyz is the name of the source file
and nnn the source line number of the assert statement.

Compiling with the preprocessor option -DNDEBUG (see cpp (1)), or with the preprocessor con-
trol statement “#define NDEBUG” ahead of the ‘““#include <assert.h>' statement, will stop
assertions from being compiled into the program.

SEE ALSO
cpp(1), abort(3C).

——

ATOF (3C)

NAME
atof — convert ASCII string to floating-point number

SYNOPSIS
double atof (nptr)
char *nptr;

DESCRIPTION
Atof converts a character string pointed to by nptr to a double-precisior floating-point number.
The first unrecognized character ends the conversion. Atof recognizes an optional string of
white-space characters, then an optional sign, then a string of digits optionally containing a
decimal point, then an optional e or E followed by an optionally signed integer. If the string
begins with an unrecognized character, atof returns the value zero.

DIAGNOSTICS
When the correct value would overflow, atof returns HUGE, and sets errno to ERANGE. Zero is
returned on underflow.

SEE ALSO
scanf(3S).

BESSEL (3M)

NAME
30, j1, jn, y0, y1, yn — Bessel functions
SYNOPSIS
#include <math.h>
double jO (x)
double x;
double j1 (x)
double x;
double jn (n, x)
int n;
double x;
double y0 (x)
double x;
double y1 (x)
double x;
double yn (n, x)
int n;
double x;

DESCRIPTION
JO and jI return Bessel functions of z of the first kind of orders 0 and 1 respectively. Jn returns
the Bessel function of z of the first kind of order n.

Y0 and yI return Bessel functions of z of the second kind of orders 0 and 1 respectively. Yn
returns the Bessel function of z of the second kind of order n. The value of z must be positive. -

DIAGNOSTICS
Non-positive arguments cause y0, yI and yn to return the value ~HUGE and to set errno to
EDOM. In addition, a message indicating DOMAIN error is printed on the standard error output.

Arguments too large in magnitude cause jO, jI, y0 and y! to return zero and to set errmo to
ERANGE. In addition, a message indicating TLOSS error is printed on the standard error output.

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
matherr(3M). -

p—

—

BSEARCH (3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
#include <search.h>

char *bsearch ((char *) key, (char *) base, nel, sizeof (*key), compar)
unsigned nel;
int (*compar)();

DESCRIPTION

Bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It returns a
pointer into a table indicating where a datum may be found. The table must be previously sorted
in increasing order according to a provided comparison function. Key points to a datum instance
to be sought in the table. Base points to the element at the base of the table. Nel is the number
of elements in the table. Compar is the name of the comparison function, which is called with
two arguments that point to the elements being compared. The function must return an integer
less than, equal to, or greater than zero as accordinly the first argument is to be considered less
than, equal to, or greater than the second.

EXAMPLE
The example below searches a table containing pointers to nodes consisting of a string and its
length. The table is ordered alphabetically on the string in the node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node and prints out the
string and its length, or prints an error message.

#include <stdio.h>
#include < search.h>

#define TABSIZE 1000

struct node { /* these are stored in the table */
char *string;
int length;

};

struct node table[TABSIZE]; /* table to be searched */

struct node *node_ptr, node;
int node_compare(); /* routine to compare 2 nodes */
char str_space[20]; /* space to read string into */

node.string = str_space;
while (scanf(”%s”, node.string) !== EOF) {
node_ptr = (struct node *)bsearch((char *)(&node),
(char *)table, TABSIZE,
sizeof(struct node), node_compare);
if (node_ptr !'= NULL) {
(void)printf(”string = %?20s, length = %d\n”,
node_ptr—>>string, node_ptr—>>length);
} else {

(void)printf(’not found: %s\n”, node.string);

BSEARCH(3C)

This routine compares two nodes based on an
alphabetical ordering of the string field.

nt
node_compare(nodel, node2)
struct node *nodel, *node2;

{
}

return stremp(nodel->>string, node2->>string);

NOTES
The pointers to the key and the element at the base of the table should be of type pointer-to-
element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be contained in the
elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be cast into type
pointer-to-element.

SEE ALSO
hsearch(3C), lsearch(3C), gsort(3C), tsearch(3C).

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

—

CLOCK (3C)

NAME
clock ~ report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
Clock returns the amount of CPU time (in microseconds) used since the first call to clock. The
time reported is the sum of the user and system times of the calling process and its terminated
child processes for which it has executed wait(2) or system(3S).

The resolution of the clock is 16.667 milliseconds on operating system Processors.

SEE ALSO
times(2), wait(2), system(3S).

BUGS
The value returned by clock is defined in microseconds for compatibility with systems that have
CPU clocks with much higher resolution. Because of this, the value returned will wrap around
after accumulating only 2147 seconds of CPU time (about 36 minutes).

CONV (3C)

NAME
toupper, tolower, _toupper, _tolower, toascii — translate characters

SYNOPSIS
#include <ectype.h>

int toupper (c)
int c¢;

int tolower (¢)
int ¢;

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascii (¢)
int c;

DESCRIPTION
Toupper and tolower have as domain the range of getc(3S): the integers from -1 through 255. If
the argument of toupper represents a lower-case letter, the result is the corresponding upper-case
letter. If the argument of tolower represents an upper-case letter, the result is the corresponding
lower-case letter. All other arguments in the domain are returned unchanged.

The macros _toupper and _tolower, are macros that accomplish the same thing as toupper and
tolower but have restricted domains and are faster. _toupper requires a lower-case letter as its
argument; its result is the corresponding upper-case letter. The macro _tolower requires an
upper-case letter as its argument; its result is the corresponding lower-case letter. Arguments out-
side the domain cause undefined results.

Toascii yields its argument with all bits turned off that are not part of a standard ASCII charac-
ter; it is intended for compatibility with other systems.

SEE ALSO
ctype(3C), getc(3S).

—

CRYPT(3C)

NAME

crypt, setkey, encrypt — generate DES encryption
SYNOPSIS

char *crypt (key, salt)

char *key, *salt;

void setkey (key)

char *key;

void encrypt (block, edflag)

char *block;

int edflag;
DESCRIPTION

Crypt is the password encryption function. It is based on the NBS Data Encryption Standard

- (DES), with variations intended (among other things) to frustrate use of hardware implementa-
tions of the DES for key search.

_ Key is a user’s typed password. Salt is a two-character string chosen from the set [a-zA-Z0-9./];
this string is used to perturb the DES algorithm in one of 4096 different ways, after which the
password is used as the key to encrypt repeatedly a constant string. The returned value points to
the encrypted password. The first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access to the actual DES algorithm.
The argument of setkey is a character array of length 64 containing only the characters with
numerical value 0 and 1. If this string is divided into groups of 8, the low-order bit in each group
is ignored; this gives a 56-bit key which is set into the machine. This is the key that will be used
with the above mentioned algorithm to encrypt or decrypt the string block with the function
encrypt.
The argument to the encrypt entry is a character array of length 64 containing only the charac-
ters with numerical value 0 and 1. The argument array is modified in place to a similar array
representing the bits of the argument after having been subjected to the DES algorithm using the
key set by setkey. If edflag is zero, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO
login(1), passwd(1), getpass(3C), passwd(4).

BUGS
The return value points to static data that are overwritten by each call.

CTERMID (38)

NAME
ctermid — generate file name for terminal

SYNOPSIS
#include <stdio.h>

char *ctermid(s)
char *s;

DESCRIPTION
Ctermid generates the path name of the controlling terminal for the current process, and stores it
in a string.

If s is a NULL pointer, the string is stored in an internal static area, the contents of which are
overwritten at the next call to ctermid, and the address of which is returned. Otherwise, s is
assumed to point to a character array of at least L_ctermid elements; the path name is placed in
this array and the value of s is returned. The constant L_ctermid is defined in the < stdio.h>>
header file.

NOTES
The difference between ctermid and ttyname(3C) is that ttyname must be handed a file descriptor
and returns the actual name of the terminal associated with that file descriptor, while ctermid
returns a string (/dev /tty) that will refer to the terminal if used as a file name. Thus ttyname is
useful only if the process already has at least one file open to a terminal.

SEE ALSO
ttyname(3C).

-

NAME
asinit -

IYMAPSTS
#dafine
#include
*inalude
#include

CSTHNTT(IX)

/

initialize a charactear-set translation table

CMAXST? 1
{ns. hd

{otyne hd>
{stdio.h>

struct asttHl ¥
asinit (filen=me, silent, status)

register
recister
register

NESCRIPTINN

char ¥filename;
int silent;
int ¥status;

Csinit(jﬁ) construets » character—-set translation data structure from a
charanter-set translation source file, Csinit reads the source file

named hy

its <filename> argument, converts it to =2 cstthl character-saet

translation table, and returns a pointer to that structure. Validation
of the character-set translation source file is performed. The RETURHN

value of

esinit is MULL if the conversion operation was unsuccessful,

Tha estthl structure is shown in Fipure ecsinit-1.

/*
*

¥ The

Character set translation tesble argument.

user program should define CSMAXSIZ as the maximum translation

* table size it is nrepared to handle and set cs_tmax to that value.

*/
Fifdef
struct

fondif

CSMANSTZ

cstthl |
int cs tmaxg /¥ should be set to CIMAXSIZ */
union { -
struect cstthdr c¢s hdrg
char cs_thl[OSMAXSTZY;
les_us

Figure Csinit-1., Cstthl Structure

-1

SSTNTT(3x)

—_
Csinit ~rouments are:
ZFilenared> Name of the nharactar-set translation source file,
{silent> Tlag to select or desemlect rrinting of error messages. If
the <silent> argument is FALSF, then diagnostics are written
on the standard error file,
{status> Status word to reflect comnletion status. Values for
comnletion status rre defined in the cs.h header file.
This routine resides in the file /usr/lib/lihes.a. The program must he
1naded with the ohjeat-file, access-routine, library libes.a. =3
NTASMNSTTAS ey
‘Men th= <silent> argument is FALSF, esinit writes error messages of the
folloring form on its standard arror file. The iﬁ represents the line
nurber of tha translation tahle at which the error occurred; %n
represents the character-set number.
line 74 - redecle-ation of character set %n
line %4 - undefined character set number %
line ?d - format7 staterent unexpected
line "4 - inbound statement unexpected "
line “d = outhound statement unsxnected
line 7d - number of entries does not match defined range
line "4 - translz-e statement missing accent value
line %4 -~ translate statement missineg character set number
line 74 - translate statament missing hieh range value
line 7d - translate staterment missing input sequence
line 74 - ftranslate statement missing low rance value
line 7d - no primary character s=2t defined
line "4 - translate statement missing range keyword
line 7d - syntax error -
SFEE ALSO —
estrans (YY), cstermio(7)
-

CSTRANS(2Y)

NAME

cstrans - perform charncter-set translation
SYNOPSTIS

#include <sys/ecsintern.h>

finclude <ecs. o

estrans (esdp)

register CSPDATD csip;

DESCRIPTTINON

Cstrans translates characters from one buffer to annther throush a
translation table. Tt translates characters until either the outnut
huffer hecomes full or tha input huffer is ampty.

Tts arpument, <ecsdp>, is the address of a data structure that noints to
an input buffer, a translation table, and an output »Huffer, and contains
information deserihing the current state of the translation.

This subroutine package handles translation of data that mav be
represented as XSTS 052404 strings, external device codes, or .nternal 14-
bit characters. TInput data is in a buffer of unsisned char or short,

The output data is placed into a similar »uffer. For outhouns characters
that are not in internal character-set Q0 and that have no declared ontry
in the translation table, cstrans(2Y) substitutes a question mark

character (?).
There are five translation modes, 21l of which use an internal 15-bit
character input or output huffer, with the other huffer heing either -
bit characters or internal 14-hit charactors. Tzhle estrans-1 describes
these modes.
Tahle Cstrans-1. Charaacter Translation Modes
Mode Function
S .
N Translate from internal 1A-hit to internal 1€6-hit using an

internal translation table, This mode either enforaes the
Motorola private character-set or avoids thz character sots
for Motorola private, ligature, and accented characters.,

1 Translate from external-device character code to internal 16-
bit characters throush an external-device translation tabhle,

TITRANS (V)

Tahle Cstrans-2, Tharncter Translation “odes (Continued)

L3

ode Function

2 Translate “rom internal 16=hit characters to YSTS 05840k
strinas with options for 15-hit stringlets or for 7-hit
representations.

? Translate from YSIS 052U04 strings to internal 14-hit
characters.

4 "Translate from internal 1A=hit charzcters tn external-device
character codas throurh an axternal-devics translation table.

As an output filter, threes translations would he apnlied in sequence:

Yoda 2 Mode 0 usino cs tostd YMode U usineg a device-snecific
translation tahle

To reformat ¥STS 0852404 strings, four translations could be applied. For
exarmpnle, to reformat them to "otorola, nrivate, character-set 040
strinegs, use the ‘ollowine sequence:

o

Yode orde 0 using cs tostAd Mode O using os topri Modae 2

——
Othor rcomhinations of translation modes can he used, The only
requirement is that each outnut huffer must be in the form expected for
the next translation's input buffer,

The external, Adevice-transletion innut seations must nrovide charactars
in the standard internal character sets, avoiding sats 010, 369, and
W1, Thev may assume that their inpnt comes from that sams standard
form. The ecs tostd translation *table is annlied to input strines to
ensure the standard input form.

This convention mesns that output translation tables 4o not have to

Wandle all the different forms that are leoal, For example, the A

dieresis symhol () can ne repnressnted in three different internal Torms: -
CANNSLRTINS NN LCINT standard form: dieresis and "AY
CRH1>CONT> th=a aceentad character renderineo
AOU0><2U 1> the Yotorola nrivate form

Also, for devices that nceept the TS0 forps, no translation is required,
For some hardcopy devicnas that don't aceept the ISC form, the accents zan
still he mapned to <accent> and <hagksnaced,

CITRANS (7X)

This routine resides in the file /usr/1lib/lihes.a. The program must be
1oaded with the object-file, access-routine library libes.a.

SFE ALSO
esinit (2X)
Series 5000 Tnternational Support Paclage Reference Manunl

.

NAME

CTIME (3C)

ctime, localtime, gmtime, asctime, tzset — convert date and time to string

SYNOPSIS

#include <time.h>

char *ctime (clock)
long *clock;

struct tm *localtime (clock)
long *clock;

struct tm *gmtime (clock)
long *clock;

char *asctime (tm)
struct tm *tm;

extern long timezone;
extern int daylight;
extern char *tzname[2];

void tzset ()

DESCRIPTION

Ctime converts a long integer, pointed to by clock, representing the time in seconds since
00:00:00 GMT, January 1, 1970, and returns a pointer to a 26-character string in the following
form. All the fields have constant width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to “tm’ structures, described below. Localtime corrects
for the time zone and possible Daylight Savings Time; gmtime converts directly to Greenwich
Mean Time (GMT), which is the time the operating system uses.

Asctime converts a “tm’ structure to a 26-character string, as shown in the above example, and
returns a pointer to the string.

Declarations of all the functions and externals, and the “tm’’ structure, are in the < time.h>
header file. The structure declaration is:

struct tm {
int tm_sec; /* seconds (0 - 59) */
int tm_min; /* minutes (0 - 59) */
int tm_hour; /* hours (0 - 23) */
int tm_mday; /* day of month (1 - 31) */
int tm_mon; /* month of year (0 - 11) */
int tm_year; /* year — 1900 */
int tm_wday; /* day of week (Sunday = 0) */
int tm_yday; /* day of year (0 - 365) */
int tm_isdst;

b

T'm_tsdst is non-zero if Daylight Savings Time is in effect.

The external long variable fimezone contains the difference, in seconds, between GMT and local
standard time (in EST, timezone is 5*60*60); the external variable daylight is non-zero if and only
if the standard US A Daylight Savings Time conversion should be applied. The program knows

about the peculiarities of this conversion in 1974 and 1975; if necessary, a table for these years
can be extended.

If an environment variable named TZ is present, asctime uses the contents of the variable to
override the default time zone. The value of TZ must be a three-letter time zone neme, followed

-

—

o~

CTIME (3C)

by a number representing the difference between local time and Greenwich Mean Time in hours,
followed by an optional three-letter name for a daylight time zone. For example, the setting for
New Jersey would be ESTSEDT. The effects of setting TZ are thus to change the values of the

external variables timezone and daylight; in addition, the time zone names contained in the exter-
nal variable

char *tzname[2] = { "EST”, "EDT” };
are set from the environment variable TZ. The function tzset sets these external variables from
TZ; tiset is called by asctime and may also be called explicitly by the user.

Note that in most installations, TZ is set by default when the user logs on, to a value in the local
Jete/profile file (see profile(4)).

SEE ALSO
time(2), getenv(3C), profile(4), environ(5).
BUGS
The return values point to static data whose content is overwritten by each call.

isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, isascii

These macros classify character-coded integer values by table lookup. Each is a predicate return-
Isascii 1s defined on all integer values; the rest are defined

CTYPE(3C)

only where dsascii is true and on the single non-ASCII value EOF (-1 — see stdio(3S)).

If the argument to any of these macros is not in the domain of the function, the result is unde-

¢ Is a letter.

an upper-case letter.

a lower-case letter.

a digit [0-9].

a hexadecimal digit [0-9], [A-F] or [a-f].

an alphanumeric {letter or digit).

a space, tab, carriage return, new-line, vertical tab, or form-feec.

a punctuation character (neither control nor alphanumeric).

a printing character, code 040 (space) through 0176 (tilde).

a printing character, like isprint except false for space.

a delete character (0177) or an ordinary control character (less than 040).

an ASCII character, code less than 0200.

NAME
— classify characters
SYNOPSIS
#include <ctype.h>
int isalpha (c¢)
int c;
DESCRIPTION
ing nonzero for true, zero for false.
isalpha
wsupper ¢ is
wslower c1s
isdigut ¢ is
wsxdigit ¢ is
tsalnum ¢ is
tsspace ¢ is
wspunct ¢ 1s
tsprint ¢ is
isgraph ¢ is
isentrl ¢ is
tsascit ¢ 1s
DIAGNOSTICS
fined.
SEE ALSO
ascii(5).

—

oy

—_——

.

r—

NAME

CURSES (3X)

curses — CRT screen handling and optimization package

SYNOPSIS

#include <curses.h>
ce [flags | files —lcurses [libraries |

DESCRIPTION

These routines give the user a method of updating screens with reasonable optimization. In order
to initialize the routines, the routine initscr() must be called before any of the other routines that
deal with windows and screens are used. The routine endwin{) should be called before exiting.
To get character-at-a-time input without echoing, (most interactive, screen oriented-programs
want this) after calling initscr() you should call “nonl(); cbreak(); noecho();”’

The full curses interface permits manipulation of data structures called windows which can be
thought of as two dimensional arrays of characters representing all or part of a CRT screen. A
default window called stdsecr is supplied, and others can be created with newwin. Windows are
referred to by variables declared “WINDOW *”, the type WINDOW is defined in curses.h to be a C
structure. These data structures are manipulated with functions described below, among which
the most basic are move, and addch. (More general versions of these functions are included
with names beginning with ‘w’, allowing you to specify a window. The routines not beginning
with ‘w’ affect stdscr.) Then refresh() is called, telling the routines to make the users CRT
screen look like stdscr.

Mini-Curses is a subset of curses which does not allow manipulation of more than one window.
To invoke this subset, use -DMINICURSES as a cc option. This level is smaller and faster than
full curses.

If the environment variable TERMINFO is defined, any program using curses will check for a local
terminal definition before checking in the standard place. For example, if the standard place is
/usr/lib/terminfo, and TERM is set to “vt100”, then normally the compiled file is found in
/usr/lib/terminfo/v/vt100. (The ‘“v” is copied from the first letter of “vt100” to avoid crea-
tion of huge directories.) However, if TERMINFO is set to /usr/mark/myterms, curses will first
check /opusr/mark/myterms/v/vt100, and if that fails, will then check
/usr/lib/terminfo/v/vt100. This is useful for developing experimental definitions or when
write permission in /usr/lib/terminfo is not available.

SEE ALSO

terminfo(4).

FUNCTIONS

Routines listed here may be called when using the full curses. Those marked with an asterisk
may be called when using Mini-Curses.

addch(ch)* add a character to stdscr
(like putchar) (wraps to next
line at end of line)

addstr{str)* calls addch with each character in str
attroff(attrs)» turn off attributes named
attron(attrs)* turn on attributes named
attrset(attrs)+ set current attributes to attrs
baudrate()* current terminal speed

beep()* sound beep on terminal

box{win, vert, hor) draw a box around edges of win

vert and hor are chars to use for vert.
and hor. edges of box

clear() clear stdscr

clearok({win, bf) clear screen before next redraw of win

clrtobot()
clrtoeol()
cbreak()*
delay_output{ms)*
delch()

deleteln()
delwin(win)
doupdate()
echo()*

endwin()*

erase()
erasechar()
fixterm{)

flash()

flushinp()*
geteh()*
getstr(str)
gettmode()
getyx(win, ¥, X)
has_ic()

has_il()
idlok(win, bf)*
inch()

initser()*
insch(c)

insertIn()
intrflush(win, bf)
keypad(win, bf)
killehar()
leaveok(win, flag)

longname()

meta(win, flag)*

move(y, X)*

mvaddch(y, x, ch)

mvaddstr(y, %, str)

mvcur{oldrow, oldcol, newrow, newcol)

mvdelch(y, x)

mvgetch(y, X)
mvgetstr(y, X)

mvinch(y, X)

mvinsch(y, %, ¢)
mvprintw(y, x, fmt, args)
mvscanw(y, X, fmt, args)
mvwaddch(win, ¥, X, ch)
mvwaddstr(win, ¥, X, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr{win, ¥, X)
mvwin(win, by, bx)
mvwinch(win, y, X)

CURSES (3X)

clear to bottom of stdscr

clear to end of line on stdser

set cbreak mode

insert ms millisecond pause in output
delete a character

delete a line

delete win

update screen from all wnooutrefresh

set echo mode

end window modes

erase stdscr

return user's erase character

restore tty to ”in curses” state

flash screen or beep

throw away any typeahead

get a char from tty

get a string through stdscr

establish current tty modes

get, (y, x) co-ordinates

true if terminal can do insert character
true if terminal can do insert line

use terminal’s insert/delete line 1f bf 1= 0
get char at current (y, x) co-ordinates
initialize screens

insert a char

insert a line

interrupts flush output if bf is TRUE
enable keypad input

return current user’s kill character

OK to ieave cursor anywhere after refresh if
flagl=0 for win, otherwise cursor must be left
at current position.

return verbose name of terminal

allow meta characters on mnput if flag =0
move to (y, X) on stdscr

move(y, x) then addch(ch)

similar...

low level cursor motion
like delch, but move(y, x) first
etc.

mvwinsch(win, y, ¥, ¢)
mvwprintw(win, y, x, fmt, args)
mvwscanw(win, y, x, fmt, args)
newpad(nlines, ncols)

newterm(type, fd)

newwin(lines, cols, begin_y, begin_x)

nl()+

nocbreak()*
nodelay(win, bf)
noecho()*

nonl()*

noraw()*
overlay(winl, win2)
overwrite{winl, win2)

CURSES (3X)

create a new pad with given dimensions
set up new terminal of given type to output on fd

create a new window

set newline mapping

unset cbreak mode

enable nodelay input mode through getch
unset echo mode

unset newline mapping

unset raw mode

overlay winl on win2

overwrite winl on top of win2

pnoutrefresh(pad, pminrow, pmincol, sminrow,

smincol, smaxrow, smaxcol)

prefresh(pad, pminrow, pmincol, sminrow,
smincol, smaxrow, smaxco!)

printw(fmt, argl, arg2, ...)

raw()*

refresh()*

resetterm()*

resetty()*

saveterm()*

savetty()*

scanw(fmt, argl, arg2, ...)

scroll{win)

scrollok(win, flag)

set_term(new)

setscrreg(t, b)

setterm(type)

setupterm(term, filenum, errret)
standend()*

standout()*

subwin(win, lines, cols, begin_y, begin_x)

touchwin(win)
traceoff()

traceon()
typeahead({d)
unctrl(ch)*
waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset{win, attrs)

like prefresh but with no output until doupdate called

refresh from pad starting with given upper left
corner of pad with output to given
portion of screen

printf on stdscr

set raw mode

make current screen look like stdscr
set tty modes to "out of curses” state
reset tty flags to stored value

save current modes as ”in curses” state
store current tty flags

scanf through stdscr

scroll win one line

allow terminal to scroll if flag =0

now talk to terminal new

set user scrolling region to lines t through b
establish terminal with given type

clear standout mode attribute
set standout mode attribute

create a subwindow

change all of win

turn off debugging trace output
turn on debugging trace output
use file descriptor fd to check typeahead
printable version of ch

add char to win

add string to win

turn off attrs in win

turn on attrs in win

set attrs in win to atirs

wclear(win)
welrtobot(win)
welrtoeol(win)
wdelch(win, ¢}
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win, str)
winch(win)
winsch(win, ¢)
winsertin(win)
wmove(win, y, x)
wnoutrefresh(win)
wprintw(win, fmt, argl, arg2,

wrefresh(win)
wscanw(win, fmt, argl, arg2, ..))

wsetscrreg(win, t, b)
wstandend(win)
wstandout(win)

TERMINFO LEVEL ROUTINES

)

CURSES (3X)

clear win

clear to bottom of win

clear to end of line on win
delete char from win

delete line from win

erase win

get a char through win

get a string through win

get char at current (y, x) in win
msert char into win

insert line into win

set current (y, x) co-ordinates on win
refresh but no screen output

printf on win
make screen look like win

scanf through win

set scrolling region of win
clear standout attribute in win
set standout attribute in win

These routines should be called by programs wishing to deal directly with the terminfo database.
Due to the low level of this interface, it is discouraged. Initially, setupterm should be called.
This will define the set of terminal dependent variables defined in terminfo(4). The include files
<curses.h> and <term.h>> should be included to get the definitions for these strings, numbers,
and flags. Parmeterized strings should be passed through fparm to instantiate them. All terminfo
strings (including the output of tparm) should be printed with tputs or putp . Before exiting, reset-
term should be called to restore the tty modes. (Programs desiring shell escapes or suspending
with control Z can call resetterm before the shell is called and fizterm after returning from the

shell.)

fixterm()

resetterm()
setupterm(term, fd, rc)

tparm(str, pl, p2, . ., p9)

tputs(str, affent, pute)

putp(str)

vidputs(attrs, putc)

restore tty modes for terminfo use

(called by setupterm)

reset tty modes to state before program entry
read in database. Terminal type is the
character string term, all output is to operating system
file descriptor fd. A status value is

returned in the integer pointed to by rc: 1

1s normal. The simplest call would be
setupterm(0, 1, 0) which uses all defaults.

instantiate string str with parms p;-

apply padding info to string str.

affent is the number of lines affected,

or 1 if not applicable. Putcis a
putchar-like function to which the characters
are passed, one at a time.

handy function that calls tputs

(str, 1, putchar)

output the string to put terminal in video
attribute mode aftrs, which is any
combination of the attributes listed below.
Chars are passed to putchar-like

CURSES (3X)

function puic.
vidattr(attrs) Like vidputs but outputs through
putchar

TERMCAP COMPATIBILITY ROUTINES

These routines were included as a conversion aid for programs that use termcap. Their parame-
ters are the same as for termcap. They are emulated using the terminfo database. They may go
away at a later date,

tgetent(bp, name) look up termcap entry for name

tgetflag(id) get boolean entry for id

tgetnum(id) get numeric entry for id

tgetstr(id, area) get string entry for id

tgoto(cap, col, row) apply parms to given cap

tputs(cap, affent, fn) apply padding to cap calling fn as putchar
ATTRIBUTES

The following video attributes can be passed to the functions attron,attroff,attrset.

A_STANDOUT Terminal’s best highlighting mode

A_UNDERLINE Underlining

A_REVERSE Reverse video

A_BLINK Blinking

A_DIM Half bright

A_BOLD Extra bright or bold

A_BLANK Blanking (invisible)

A_PROTECT Protected

A_ALTCHARSET Alternate character set

FUNCTION KEYS

The following function keys might be returned by getch if keypad has been enabled. Note that
not all of these are currently supported, due to lack of definitions in ferminfo or the terminal not
transmitting a unique code when the key is pressed.

Name Value Key name

KEY_BREAK 0401 break key (unreliable)
KEY_DOWN 0402 The four arrow keys ...
KEY_UP 0403

KEY_LEFT 0404

KEY_RIGHT 0405 .

KEY_HOME 0406 Home key (upward-+left arrow)
KEY_BACKSPACE 0407 backspace (unreliable)

KEY_Fo0 0410 Function keys. Space for 64 is reserved.
KEY_F(n) (KEY_F0+(n)) Formula for fn.

KEY_DL 0510 Delete line

KEY_IL 0511 Insert line

KEY_DC 0512 Delete character

KEY_IC 0513 Insert char or enter insert mode
KEY_EIC 0514 Exit insert char mode
KEY_CLEAR 0515 Clear screen

KEY_EOS 0516 Clear to end of screen
KEY_EOL 0517 Clear to end of line

KEY_SF 0520 Scroll 1 line forward

KEY_SR 0521 Scroll 1 line backwards (reverse)
KEY_NPAGE 0522 Next page

KEY_PPAGE 0523 Previous page

KEY_STAB 0524 Set tab

KEY_CTAB 0525 Clear tab

CURSES (3X)

KEY_CATAB 0526 Clear all tabs

KEY_ENTER 0527 Enter or send (unreliable)

KEY_SRESET 0530 soft (partial) reset (unreliable)

KEY_RESET 0531 reset or hard reset (unreliable)

KEY_PRINT 0532 print or copy

KEY_LL 0533 home down or bottom (lower left)
WARNING

The plotting library plot(3X) and the curses library curses(3X) both use the names erase() and
move(). The curses versions are macros. If you need both libraries, put the plot(3X) code in a
different source file than the curses(3X) code, and/or #undef move() and erase(} in the plot(3X)
code.

CUSERID(38)

NAME

cuserid — get character login name of the user

SYNOPSIS
#include <stdio.h>

char *cuserid (s)
char *s;

DESCRIPTION
Cuserid gets the user’s login name as found in /ete/utmp. If the login name cannot be found,
cuserid gets the login name corresponding to the user ID of the process. If s is a NULL pointer,
this representation is generated in an internal static area, the address of which is returned. Oth-
erwise, s is assumed to point to an array of at least L_cuserid characters; the representation is
left in this array. The constant L_cuserid is defined in the < stdio.h> header file.

DIAGNOSTICS
If the login name cannot be found and the process’s owner lacks a password file entry, cuserid
returns a NULL pointer; if s is not a NULL pointer, a null character (\0) will be placed at s/0/.

SEE ALSO
getlogin(3C), getpwent(3C).

DIAL (3C)

NAME
dial - establish an out-going terminal line connection

SYNOPSIS
#include <dial.h>

int dial (call)
CALL call;

void undial (fd)
int fd;

DESCRIPTION
Dial returns a file-descriptor for a terminal line open for read/write. The argument to dial is a
CALL structure (defined in the < dial.h> header file).

When finished with the terminal line, the calling program must invoke undial to release the sema-
phore that has been set during the allocation of the terminal device.

The definition of CALL in the < dial.h> header file is:
typedef struct {

struct termio *attr; /* pointer to termio attribute struct */
int baud; /* transmission data rate */
int speed; /* 212A modem: low==300, high=1200 */
char *line; /* device name for out-going line */
char *telno; /* pointer to tel-no digits string */
nt modem,; /* specify modem control for direct lines */
char *device; /* Will hold the name of the device used
to make a connection */
int dev_len; /* The length of the device used to

make connection */
} CALL;

The CALL element speed is intended only for use with an outgoing dialed call, in which case its
value should be either 300 or 1200 to identify the 113A modem, or the high- or low-speed setting
on the 212A modem. Note that the 113A modem or the low-speed setting of the 212A modem will
transmit at any rate between 0 and 300 bits per second. However, the high-speed setting of the
212A modem transmits and receivers at 1200 bits per secound only. The CALL element baud is
for the desired transmission baud rate. For example, one might set baud to 110 and speed to 300
(or 1200). However, if speed set to 1200 baud must be set to high (1200).

If the desired terminal line is a direct line, a string pointer to its device-name should be placed in
the line element in the CALL structure. Legal values for such terminal device names are kept in
the L-devices file. In this case, the value of the baud element need not be specified as it will be
determined from the L-devices file.

The telno element is for a pointer to a character string representing the telephone number to be
dialed. Numbers consist of the following symbols:

0-9 dial 0-9

*or: dial *

or; dial

4-second delay for second dial tone

eor < end-of-number
W or = wait for secondary dial tone
f flash off hook for 1 second

On a smart modem, these symbols are translated to modem commands using the modem descrip-
tion in /usr/lib/uucp/modemcap.

‘DIAL(3C)

The CALL element modem is used to specify modem control for direct lines. This element should
be non-zero if modem control is required. The CALL element attr is a pointer to a termio struc-
ture, as defined in the termio.h header file. A NULL value for this pointer element may be passed
to the dial function, but if such a structure is included, the elements specified in it will be set for

the outgoing terminal line before the connection is established. This is often important for cer-
tain attributes such as parity and baud-rate.

The CALL element device is used to hold the device name (cul..) that establishes the connection.

The CALL element dev_len is the length of the device name that is copied into the array device.

FILES
/usr/lib/uucp/modemcap
/usr/lib/uucp/L-devices
/usr/spool/uucp/LCK..tty-device
SEE ALSO
uucp(1C), alarm(2), read(2), write(2) modemecap(5), termio(7).
DIAGNOSTICS
On failure, a negative value indicating the reason for the failure will be returned. Mnemonics for
these negative indices as listed here are defined in the < dial.A> header file.
INTRPT -1 /* interrupt occurred */
D_HUNG -2 /* dialer hung (no return from write) */
NO_ANS -3 /* no answer within 10 seconds */
ILL_BD R /* illegal baud-rate */
A_PROB -5 /* acu problem (open() failure) */
L_PROB -6 /* line problem (open() failure) */
NO_Ldv -7 /* can’t open LDEVS file */
DV_NT_A -8 /* requested device not available */
DV_NT_K -9 /* requested device not known */
NO_BD_A -10 /* no device available at requested baud */
NO_BD_K -11 /* no device known at requested baud */
WARNINGS
Including the <dial.h> header file automatically includes the <termio.h> header file.
The above routine uses <stdio.h>, which causes it to increase the size of programs, not other-
wise using standard I/O, more than might be expected.
BUGS

An alarm(2) system call for 3600 seconds is made (and caught) within the dia/ module for the
purpose of “touching’ the LCK.. file and constitutes the device allocation semaphore for the ter-
minal device. Otherwise, uucp(1C) may simply delete the LCK.. entry on its 90-minute clean-up
rounds. The alarm may go off while the user program is in a read(2) or write(2) system call,
causing an apparent error return. If the user program expects to be around for an hour or more,

error returns from reads should be checked for (errno==EINTR), and the read possibly reis-
sued.

DRAND48(3C)

NAME
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lccng48 — generate uni-
formly distributed pseudo-random numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v{3];

void lcong48 (param)
unsigned short param|7];

DESCRIPTION

This family of functions generates pseudo-random numbers using the well-known linear congruen-
tial algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision floating-point values uni-
formly distributed over the interval (0.0, 1.0).

Functions lrand48 and nrand48 return non-negative long integers uniformly distributed over the
interval [0, 2°1).

Functions mrand48 and jrand48 return signed long integers uniformly distributed over the inter-
val [-231 231)

Functions srand48, seed48 and lcong48 are initialization entry points, one of which should be
invoked before either drand48, Irand48 or mrand48 is called. (Although it is not recommended
practice, constant default initializer values will be supplied automatically if drand48, lrand4{8 or
mrand48 is called without a prior call to an initialization entry point.) Functions erand{8,
nrand48 and jrand48 do not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, X;, according to the
linear congruential formula

Xn +1 — ((an + ¢)mod m n ZO

The parameter m == 2%, hence 48-bit integer arithmetic is performed. Unless lcong48 has been
invoked, the multiplier value ¢ and the addend value ¢ are given by

a = S5DEECES66D |, — 273673163155 &
C = B 18 — 13 8-

The value returned by any of the functions drand48, erand48, lrand48, nrand48, mrand{3 or
jrand48 is computed by first generating the next 48-bit X; in the sequence. Then the appropriate
number of bits, according to the type of data item to be returned, are copied from the high-order
(leftmost) bits of X; and transformed into the returned value.

The functions drand48, Irand48 and mrand48 store the last 48-bit X; generated in an internal
buffer; that is why they must be initialized prior to being invoked. The functions erand{s,

DRAND48(3C)

nrand48 and jrand48 require the calling program to provide storage for the successive X; values
in the array specified as an argument when the functions are invoked. That is why these routines
do not have to be initialized; the calling program merely has to place the desired initial value of
X; into the array and pass it as an argument. By using different arguments, functions erand48,
nrand48 and jrand48 allow separate modules of a large program to generate several independent
streams of pseudo-random numbers, i.e., the sequence of numbers in each stream will not depend
upon how many times the routines have been called to generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of X; to the 32 bits contained in its
argument. The low-order 16 bits of X; are set to the arbitrary value 330E .

The initializer function seed48 sets the value of X; to the 48-bit value specified in the argument
array. In addition, the previous value of X; is copied into a 48-bit internal buffer, used only by
seed48, and a pointer to this buffer is the value returned by seed48. This returned pointer, which
can just be ignored if not needed, is useful if a program is to be restarted from a given point at
some future time — use the pointer to get at and store the last X; value, and then use this value
to reinitialize via seed48 when the program is restarted.

The initialization function lcong48 allows the user to specify the initial X;, the multiplier value
a, and the addend value ¢. Argument array elements param/0-2/ specify X;, param/3-5/ specify
the multiplier ¢, and param/6] specifies the 16-bit addend ¢. After lcong48 has been called, a
subsequent call to either srand48 or seed48 will restore the “standard” multiplier and addend
values, ¢ and c, specified on the previous page.

NOTES
The versions of these routines for the VAX-11 and PDP-11 are coded in assembly language for
maximum speed. It requires approximately 80 psec on a VAX-11/780 and 130 usec on a PDP-
11/70 to generate one pseudo-random number. On other computers, the routines are coded in
portable C. The source code for the portable version can even be used on computers which do
not have floating-point arithmetic. In such a situation, functions drand48 and erand48 do not
exist; instead, they are replaced by the two new functions below.
long irand48 (m)
unsigned short m;
long krand48 (xsubi, m)
unsigned short xsubi[3], m;
Functions irand48 and krand48 return non-negative long integers uniformly distributed over the
interval [0, m -1].

SEE ALSO

rand(3C).

ECVT(3C)

NAME
ecvt, fevt, gevt — convert floating-point number to string

SYNOPSIS
char *ecvt (value, ndigit, deept, sign)
double value;
int ndigit, *decpt, *sign;

char *fevt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt (value, ndigit, buf)
double value;
int ndigit;
char *buf;

DESCRIPTION
Ecvt converts value to a null-terminated string of ndigit digits and returns a pointer thereto. The
high-order digit is non-zero, unless the value is zero. The low-order digit is rounded. The posi-
tion of the decimal point relative to the beginning of the string is stored indirectly through decpt
(negative means to the left of the returned digits). The decimal point is not included in the

returned string. If the sign of the result is negative, the word pointed to by sign is non-zero, oth-
erwise it is zero.

Fevt is identical to ecvt, except that the correct digit has been rounded for printf “%f” (FOR-
TRAN F-format) outpur of the number of digits specified by ndigit.

Gevt converts the value to a null-terminated string in the array pointed to by buf and returns
buf. It attempts to produce ndigit significant digits in FORTRAN F-format if possible, otherwise
E-format, ready for printing. A minus sign, if there is one, or a decimal point will be included as
part of the returned string. Trailing zeros are suppressed.

SEE ALSO
printf(3S).

BUGS

The values returned by ecvt and fevt point to a single static data array whose content is cverwrit-
ten by each call.

END (3C)

NAME
end, etext, edata — last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address of
etert is the first address above the program text, edata above the initialized data region, and end
above the uninitialized data region.

When execution begins, the program break (the first location beyond the data) coincides with

end, but the program break may be reset by the routines of brk(2), malloc(3C), standard
input/output (stdio(3S)), the profile (—p) option of cc¢(1), and so on. Thus, the current value of

- the program break should be determined by sbrk(0) (see brk(2)).
SEE ALSO
- brk(2), malloc(3C).

ERF (3M)

NAME

erf, erfc - error function and complementary error function
SYNOPSIS

#include <math.h>

double erf (x)
double x;

double erfc (x)
double x;

DESCRIPTION

z
. . 2 o
Erf returns the error function of z, defined as ch 24,
To

Erfe, which returns 1.0 — erf(z), is provided because of the extreme loss of relative accuracy if
erf(z) is called for large z and the result subtracted from 1.0 (e.g., for z = 5, 12 places are lost)

SEE ALSO
exp(3M).

EXP (3M)

NAME

exp, log, logl0, pow, sqrt — exponential, logarithm, power, square root functions
SYNOPSIS

#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double logl10 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Ezp returns e”.
Log returns the natural logarithm of z. The value of z must be positive.
Log10 returns the logarithm base ten of z. The value of z must be positive.

Pow returns 2¥. If z is zero, y must be positive. If z is negative, y must be an integer.

Sqrt returns the non-negative square root of z. The value of r may not be negative.

DIAGNOSTICS
Ezp returns HUGE when the correct value would overflow, or 0 when the correct value would
underflow, and sets errno to ERANGE.

Log and log10 return ~-HUGE and set errno to EDOM when z is non-positive. A message indi-
cating DOMAIN error (or SING error when z is 0) is printed on the standard error output.

Pow returns 0 and sets errno to EDOM when z is 0 and y is non-positive, or when z is negative
and y is not an integer. In these cases a message indicating DOMAIN error is printed on the stan-
dard error output. When the correct value for pow would overflow or underflow, pow returns
+HUGE or 0 respectively, and sets errno to ERANGE.

Sqrt returns 0 and sets errno to EDOM when r is negative. A message indicating DOMAIN error
is printed on the standard error output.

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

FCLOSE (3S)

NAME
fclose, fflush ~ close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose (stream)
FILE *stream;

int fflush (stream)
FILE *stream;

DESCRIPTION
Felose causes any buffered data for the named stream to be written out, and the stream to be
closed.

Felose is performed automatically for all open files upon calling exit(2).
Fflush causes any buffered data for the named stream to be written to that file. The stream

remains open.

DIAGNOSTICS
These functions return 0 for success, and EOF if any error (such as trying to write to a file that
has not been opened for writing) was detected.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S).

FERROR(3S)

NAME
ferror, feof, clearerr, fileno — stream status inquiries

SYNOPSIS
#include <stdio.h>

int ferror (stream)
FILE *stream;

int feof (stream)
FILE *stream;

void clearerr (stream)
FILE *stream;

int fileno (stream)
FILE *stream;

DESCRIPTION
Ferror returns non-zero when an I/O error has previously occurred reading from or writing to the
named stream, otherwise zero.

Feof returns non-zero when EOF has previously been detected reading the named input stream
otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the named stream.
Fileno returns the integer file descriptor associated with the named stream; see open(2).

NOTE
All these functions are implemented as macros; they cannot be declared or redeclared.

SEE ALSO
open(2), fopen(38S).

FLOOR (3M)

NAME

floor, ceil, fmod, fabs ~ floor, ceiling, remainder, absolute value functions
SYNOPSIS

#include <math.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION
Floor returns the largest integer (as a double-precision number) not greater than z.

Cetl returns the smallest integer not less than z.

Fmod returns the floating-point remainder of the division of z by y: zero if y is zero or if z/y
would overflow; otherwise the number f with the same sign as z, such that z == 1y + ffor some
integer ¢, and | f| < |y |.

Fabs returns the absolute value of z, | z | .

SEE ALSO
abs(3C).

FOPEN(3S)

NAME

fopen, freopen, fdopen — open a stream
SYNOPSIS

#include <stdio.h>

FILE *fopen (file-name, type)

char *file-name, *type;

FILE *freopen (file-name, type, stream)

char *file-name, *type;
FILE *stream;

FILE *fdopen (fildes, type)
int fildes;
char *type;

DESCRIPTION

Fopen opens the file named by file-name and associates a streem with it. Fopen returns a
pointer to the FILE structure associated with the stream.

File-name points to a character string that contains the name of the file to be opened.

Type is a character string having one of the following values:

r open for reading
"w” truncate or create for writing
7a” append; open for writing at end of file, or create for writing
"r4” open for update (reading and writing)
w47 truncate or create for update
Ta+” append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream. The original stream is closed,

regardless of whether the open ultimately succeeds. Freopen returns a pointer to the FILE struc-
ture associated with stream.

Freopen is typically used to attach the preopened streams associated with stdin, stdout and
stderr to other files.

Fdopen associates a stream with a file descriptor obtained from open, dup, creat, or pipe(2),
which will open files but not return pointers to a FILE structure stream which are necessary input

for many of the section 3S library routines. The fype of stream must agree with the mode of the
open file.

When a file is opened for update, both input and output may be done on the resulting stream.
However, output may not be directly followed by input without an intervening fseek or rewind,
and input may not be directly followed by output without an intervening fseek, rewind, or an
input operation which encounters end-of-file.

When a file is opened for append (i.e., when type is ”a” or "a+”), it is impossible to overwrite
information already in the file. Fseek may be used to reposition the file pointer to any position
in the file, but when output is written to the file the current file pointer is disregarded. All out-
put is written at the end of the file and causes the file pointer to be repositioned at the end of the
output. If two separate processes open the same file for append, each process may write freely to
the file without fear of destroying output being written by the other. The output from the two
processes will be intermixed in the file in the order in which it is written.

SEE ALSO
open(2), fclose(3S).

FOPEN(3S)

DIAGNOSTICS
Fopen and freopen return a NULL pointer on failure.

FREAD (3S)

fread, fwrite — binary input/output

SYNOPSIS

#include <stdio.h>

int fread (ptr, size, nitems, stream)
char *ptr;

int size, nitems;

FILE *stream;

int fwrite (ptr, size, nitems, stream)
char *ptr;

int size, nitems;

FILE *stream;

DESCRIPTION

Fread copies, into an array pointed to by pir, nitems items of data from the named input
stream, where an item of data is a sequence of bytes (not necessarily terminated by a null byte)
of length size. Fread stops appending bytes if an end-of-file or error condition is encountered
while reading stream, or if nitems items have been read. Fread leaves the file pointer in streem,
if defined, pointing to the byte following the last byte read if there is one. Fread does not change
the contents of stream.

Fuwrite appends at most nitems items of data from the array pointed to by pir to the named out-
put stream. Fwrite stops appending when it has appended nitems items of data or if an error
condition is encountered on stream. Fuwrite does not change the contents of the array pointed to
by ptr.

The argument size is typically sizeof(*ptr) where the pseudo-function sizeof specifies the length
of an item pointed to by ptr. If ptr points to a data type other than char it should be cast into a
pointer to char.

SEE ALSO

read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S), pute(3S), puts(3S), scanf(3S).

DIAGNOSTICS

Fread and fwrite return the number of items read or written. If size or nitems is non-positive, no
characters are read or written and 0 is returned by both fread and fwrite.

FREXP (3C)

NAME

frexp, ldexp, modf — manipulate parts of floating-point numbers
SYNOPSIS

double frexp (value, eptr)

double value;

int *eptr;

double ldexp (value, exp)

double value;

int exp;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION
Every non-zero number can be written uniquely as z * 2", where the “mantissa” (fraction) z is in
the range 0.5 < | z | < 1.0, and the “exponent” n is an integer. Frezp returns the mantissa of 2
double value, and stores the exponent indirectly in the location pointed to by eptr. If value is
zero, both results returned by frezp are zero.
Ldezp returns the quantity value * 2°°F.

Modf returns the signed fractional part of value and stores the integral part indirectly in the loca-
tion pointed to by iptr.
DIAGNOSTICS

If Idezp would cause overflow, +HUGE is returned (according to the sign of walue), and errno is
set to ERANGE.
If ldezp would cause underflow, zero is returned and errno is set to ERANGE.

FSEEK (3S)

NAME
fseek, rewind, ftell — reposition a file pointer in a stream

SYNOPSIS
#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE *stream;

long offset;

int ptrname;

void rewind (stream)
FILE *stream;

long ftell (stream)
FILE *stream;

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream. The new position is

at the signed distance offset bytes from the beginning, from the current position, or from the end
of the file, according as ptrname has the value 0, 1, or 2.

Rewind(stream) is equivalent to fseek(stream, OL, 0), except that no value is returned.
Fseek and rewind undo any effects of ungete(3S).

After fseek or rewind, the next operation on a file opened for update may be either input or out-
put.

Ftell returns the offset of the current byte relative to the beginning of the file associated with the
named stream.

SEE ALSO
lseek(2), fopen(3S).
DIAGNOSTICS
Fseek returns non-zero for improper seeks, otherwise zero. An improper seek can be, for example,

an fseek done on a file that has not been opened via fopen; in particular, fseek may not be used
on a terminal, or on a file opened via popen(3S).

WARNING
On this operating system and other systems derived from the UNIX System, the value returned by ftell isa

number of bytes, and a program can use this value to seek relative to the current offset. Such
programs are not portable to systems where file offsets are not measured in bytes.

NAME

FTW (3C)

ftw — walk a file tree

SYNOPSIS

#include <ftw.h>

int ftw (path, fn, depth)
char *path;

int (*fn) ();

int depth;

DESCRIPTION

Ftw recursively descends the directory hierarchy rooted in path. For each object in the hierarchy,
ftw calls fn, passing it a pointer to a null-terminated character string containing the name of the
object, a pointer to a stat structure (see stat(2)) containing information about the object, and an
integer. Possible values of the integer, defined in the <ftw.h> header file, are FTW_F for a file,
FTW_D for a directory, FTW_DNR for a directory that cannot be read, and FTW_NS for an object
for which stat could not successfully be executed. If the integer is FTW_DNR, descendants of that
directory will not be processed. If the integer is FTW_NS, the stat structure will contain garbage.
An example of an object that would cause FTW_NS to be passed to fn would be a file in a direc-
tory with read but without execute (search) permission.

Ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a nonzero
value, or some error is detected within féw (such as an I/O error). If the tree is exhausted, ftw
returns zero. If fn returns a nonzero value, ftw stops its tree traversal and returns whatever value
was returned by fn. If ftw detects an error, it returns —1, and sets the error type in errno.

Ftw uses one file descriptor for each level in the tree. The depth argument limits the number of
file descriptors so used. If depth is zero or negative, the effect is the same as if it were 1. Depth
must not be greater than the number of file descriptors currently available for use. Ftw will run
more quickly if depth is at least as large as the number of levels in the tree.

SEE ALSO

BUGS

stat(2), malloc(3C).

Because ftw is recursive, it is possible for it to terminate with a memory fault when applied to
very deep file structures.

It could be made to run faster and use less storage on deep structures at the cost of considerable
complexity.

Ftw uses malloc(3C) to allocate dynamic storage during its operation. If ftw is forcibly ter-
minated, such as by longjmp being executed by fn or an interrupt routine, ftw will not have a
chance to free that storage, so it will remain permanently allocated. A safe way to handle inter-
rupts 1s to store the fact that an interrupt has occurred, and arrange to have fn return a nonzero
value at its next invocation.

GAMMA (3M)

NAME
gamma — log gamma function

SYNOPSIS
#include <math.h>

double gamma (x)
double x;

extern int signgam;
DESCRIPTION

Gamma returns In(|T(z)|), where I'(z) is defined as

o0

fett'dt. The sign of I(z) is
0

ger signgam. The argument z may not be a non-positive integer.

returned in the external inte
The following C program fragment might be used to calculate T
h if ((y = gamma(x)) > LN_MAXDOUBLE)
error();
y = signgam * exp(y);
where LN_MAXDOUBLE is the least value that causes ezp(3M)
defined in the < wvalues.h> header file.

to return a range error, and is

DIAGNOSTICS
For non-negative integer arguments HUGE is returned, and errno is set to EDOM. A message

indicating SING error is printed on the standard error output.
If the correct value would overflow, gamma returns HUGE and sets errno to ERANGE.

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
exp(3M), matherr(3M), values(5).

NAME

GETC(3S)

getc, getchar, fgete, getw — get character or word from a stream

SYNOPSIS

#include <stdio.h>

int getc (stream)
FILE *stream;

int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

DESCRIPTION

Getc returns the next character (i.e., byte) from the named input stream, as an integer. It also
moves the file pointer, if defined, ahead one character in stream. Getchar is defined as
gete(stdin). Gete and getchar are macros.

Fgetc behaves like getc, but is a function rather than a macro. Fgetc runs more slowly than
getc, but it takes less space per invocation and its name can be passed as an argument to a func-
tion.

Getw returns the next word (i.e., integer) from the named input stream. Getw increments the
associated file pointer, if defined, to point to the next word. The size of a word is the size of an
integer and varies from machine to machine. Getw assumes no special alignment in the file.

SEE ALSO

fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S).

DIAGNOSTICS

These functions return the constant EOF at end-of-file or upon an error. Because EOF is a valid
integer, ferror(3S) should be used to detect getw errors.

WARNING

BUGS

If the integer value returned by getc, getchar, or fgete is stored into a character variable and then
compared against the integer constant EOF, the comparison may never succeed, because sign-
extension of a character on widening to integer is machine-dependent.

Because it is implemented as a macro, gete treats incorrectly a stream argument with side effects.
In particular, gete(*f+-+) does not work sensibly. Fgete should be used instead.

Because of possible differences in word length and byte ordering, files written using putw are
machine-dependent, and may not be read using getw on a different processor.

GETCWD (3C)

NAME
getcwd - get path-name of current working directory
SYNOPSIS
char *getcwd (buf, size)
char *buf;
int size;
DESCRIPTION
Getcwd returns a pointer to the current directory path-name. The value of size must be at least
two greater than the length of the path-name to be returned.

If bufis a NULL pointer, getcwd will obtain size bytes of space using mallo¢(3C). In this case, the
pointer returned by getcwd may be used as the argument in a subsequent call to free.

The function is implemented by using popen(3S) to pipe the output of the pwd(1) command into
the specified string space.

EXAMPLE
char *ewd, *getewd();
if ((cwd = getewd((char *)NULL, 64)) == NULL) {
perror(‘‘pwd”);
exit(1);
printf(“%s\n”’, cwd);
SEE ALSO
. pwd(1), malloc(3C), popen(3S).
DIAGNOSTICS
Returns NULL with errno set if size is not large enough, or if an error ocurrs in a lower-level
function.

NAME

e for environment name
SYNOPSIS
char *geteny (name)
char *name;
DESCRIPTION

Geteny searches the environme 1

returns a pointer to the valye ip the current envi
NULL pointer.,

SEE ALSO
exec(2), Putenv(3Q), environ(s),

=value, and
is Present, otherwige 5

GETGRENT (3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent — get group file entry
SYNOPSIS
#include <grp.h>
struct group *getgrent ()
struct group *getgrgid (gid)
int gid;
struct group *getgrnam (name)
char *name;
void setgrent ()
void endgrent ()
struct group *fgetgrent (f)
FILE *f;
DESCRIPTION
Getgrent, getgrgid and getgrnam each return pointers to an object with the following structure
containing the broken-out fields of a line in the /etc/group file. Each line contains a “group”
structure, defined in the <grp.h> header file.
struct group {
char *¢r_name; /* the name of the group */
char *gr_passwd; /* the encrypted group password */
int gr_gid; /* the numerical group ID */
char **gr_mem; /* vector of pointers to member names */
b
Getgrent when first called returns a pointer to the first group structure in the file; thereafter, it
returns a pointer to the next group structure in the file; so, successive calls may be used to search
the entire file. Getgrgid searches from the beginning of the file until a numerical group id match-
ing gi¢d is found and returns a pointer to the particular structure in which it was found. Get-
grnam searches from the beginning of the file until a group name matching name is found and
returns a pointer to the particular structure in which it was found. If an end-of-file or an error is
encountered on reading, these functions return a NULL pointer.
A call to setgrent has the effect of rewinding the group file to allow repeated searches. Endgrent
may be called to close the group file when processing is complete.
Fgetgrent returns a pointer to the next group structure in the stream f, which matches the format
of /etc/group.
FILES
/etc/group
SEE ALSO
getlogin(3C), getpwent(3C), group(4).
DIAGNOSTICS
A NULL pointer is returned on EOF or error.
WARNING
The above routines use <stdio.h>, which causes them to increase the size of programs, not oth-
erwise using standard I/O, more than might be expected.
BUGS

All information is contained in a static area, so it must be copied if it is to be saved.

GETLOGIN(3C)

NAME

getlogin — get login name
SYNOPSIS

char *getlogin ();
DESCRIPTION

Getlogin returns a pointer to the login name as found in /etc/utmp. It may be used in conjunc-
tion with getpwnam to locate the correct password file entry when the same user ID is shared by
several login names.

If getlogin is called within a process that is not attached to a terminal, it returns a NULL pointer.

The correct procedure for determining the login name is to call cuserid, or to call getlogin and if

it fails to call getpwuid.

FILES

/ete/utmp
SEE ALSO

cuserid(38S), getgrent(3C), getpwent(3C), utmp(4).
DIAGNOSTICS

Returns the NULL pointer if name is not found.
BUGS

The return values point to static data whose content is overwritten by each call.

A——

GETOPT(3C)

NAME
getopt — get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char **argv, *opstring;

extern char *optarg;
extern int optind, opterr;

DESCRIPTION
Getopt returns the next option letter in argv that matches a letter in optstring. Optstring is a
string of recognized option letters; if a letter is followed by a colon, the option is expected to have
an argument that may or may not be separated from it by white space. Optarg is set to point to
the start of the option argument on return from getopt.

Getopt places in optind the argv index of the next argument to be processed. Because optind is
external, it is normally initialized to zero automatically before the first call to getopt.

When all options have been processed (i.e., up to the first non-option argument), getopt returns
EOF. The special option — may be used to delimit the end of the options; EOF will be
returned, and — will be skipped.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a question mark (?) when it encounters an
option letter not included in optstring. This error message may be disabled by setting opterr to a
non-zero value.

EXAMPLE
The following code fragment shows how one might process the arguments for a command that can
take the mutually exclusive options & and b, and the options f and o, both of which require argu-
ments:

main (arge, argv)

int arge;

char **argv;

{
int c;
extern char *optarg;
extern int optind;

while ((¢ = getopt(arge, argv, ”abf:0:")) = EOF)
switch (c) {

case ! a! :
if (bflg)
errflg++;
else
aflg++;
break;
case ' b :
if (aflg)
errflg++;
else
bproc();
break;

GETOPT(3C)

case ' ' :
ifile = optarg;
break;

case ' o :
ofile = optarg;
break;

case ' 7 :
errflg++;

if (errflg) {
fprintf(stderr, "usage: . . . ”);

exit (2);

}
for (; optind < argc; optind++) {
if (access(argv[optind|, 4)) {

SEE ALSO
getopt(1).

GETPASS(3C)

NAME
- getpass — read a password

SYNOPSIS
char *getpass (prompt)
char *prompt;

DESCRIPTION
Getpass reads up to a newline or EOF from the file /dev/tty, after prompting on the standard
error output with the null-terminated string prompt and disabling echoing. A pointer is returned
to a null-terminated string of at most 8 characters. If /dev/tty cannot be opened, a NULL
pointer is returned. An interrupt will terminate input and send an interrupt signal to the calling
program before returning.

FILES
/dev /tty

SEE ALSO
crypt(3C).

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of programs, not other-
wise using standard I/O, more than might be expected.

BUGS
The return value points to static data whose content is overwritten by each call.

GETPW (3C)

NAME
getpw — get name from UID
SYNOPSIS
int getpw (uid, buf)
int uid;
char *buf;
DESCRIPTION
Getpw searches the password file for a user id number that equals uid, copies the line of the pass-

word file in which uid was found into the array pointed to by buf, and returns 0. Getpw returns
non-zero if uid cannot be found.

This routine is included only for compatibility with prior systems and should not be used; see
getpwent(3C) for routines to use instead.

FILES
/etc/passwd

SEE ALSO

getpwent(3C), passwd(4).
DIAGNOSTICS

Getpw returns non-zero on error.

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of programs, not other-
wise using standard I/O, more than might be expected.

NAME

GETPWENT(3C)

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent — get password file entry

SYNOPSIS

#include <pwd.h>
struct passwd *getpwent ()

struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

void setpwent ()
void endpwent ()

struct passwd *fgetpwent (f)
FILE *f;

DESCRIPTION

FILES

Getpwent, getpwuid and getpwnam each returns a pointer to an object with the following struc-
ture containing the broken-out fields of a line in the /etc/passwd file. Each line in the file con-
tains a “passwd’’ structure, declared in the <pwd.h> header file:

struct passwd {
char *pw_name;
char *pw_passwd;
int pw_uid;
int pw_gid;
char *pw_age;
char *pw_comment;
char *pw_gecos;
char *pw_dir;
char *pw_shell;
};
This structure is declared in < pwd.h> so it is not necessary to redeclare it.
The pw_comment field is unused; the others have meanings described in passwd(4).

Getpwent when first called returns a pointer to the first passwd structure in the file; thereafter, it
returns a pointer to the next passwd structure in the file; so successive calls can be used to search
the entire file. Getpwuid searches from the beginning of the file until a numerical user id match-
ing uid is found and returns a pointer to the particular structure in which it was found.
Getpwnam searches from the beginning of the file until a login name matching name is found,
and returns a pointer to the particular structure in which it was found. If an end-of-file or an
error is encountered on reading, these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the password file to allow repeated searches.
Endpwent may be called to close the password file when processing is complete.

Fgetpwent returns a pointer to the next passwd structure in the stream f, which matches the for-
mat of /ete/passwd.

/ete/passwd

SEE ALSO

getlogin(3C), getgrent(3C), passwd(4).

DIAGNOSTICS

A NULL pointer is returned on EOF or error.

GETPWENT (3C)

WARNING
The above routines use <stdio.h>, which causes them to increase the size of programs, not oth-
erwise using standard I/O, more than might be expected.

BUGS
All information is contained in a static area, so it must be copied if it is to be saved.

GETS(3S)

NAME
= gets, fgets — get a string from a stream

SYNOPSIS
#include <stdio.h>
char *gets (s)
char *s;
char *fgets (s, n, stream)
char *s;
int n;
FILE *streamn;

DESCRIPTION

Gets reads characters from the standard input stream, stdin, into the array pointed to by s, until
~ a new-line character is read or an end-of-file condition is encountered. The new-line character is
discarded and the string is terminated with a null character.

Fgets reads characters from the stream into the array pointed to by s, until n-1 characters are
= read, or a new-line character is read and transferred to s, or an end-of-file condition is encoun-
tered. The string is then terminated with a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).
DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no characters are transferred to s

and a NULL pointer is returned. If a read error occurs, such as trying to use these functions on a
file that has not been opened for reading, a NULL pointer is returned. Otherwise s is returned.

GETUT(3C)

——
NAME
getutent, getutid, getutline, pututline, setutent, endutent, utmpname — access utmp file entry
SYNOPSIS
#include <utmp.h>
struct utmp *getutent ()
struct utmp *getutid (id)
struct utmp *id;
struct utmp *getutline (line)
struct utmp *line;
void pututline (utmp)
struct utmp *utmp; -
void setutent ()
void endutent ()
void utmpname (file) -
char *file;
DESCRIPTION
Getutent, getutid and getutline each return a pointer to a structure of the following type:
struct utmp {
char ut_user|8]; /* User login name */
char ut_id[4]; /* /ete/inittab id
* (usually line #) */
char ut_line[12]; /* device name (console, .
* lnxx) */
short ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status {
short e_termination; /* Process termination status *f
short e_exit; /* Process exit status */
} ut_exit; /* The exit status of a process
* marked as DEAD_PROQCESS. */
time_t ut_time; /* time entry was made */
Is -
Getutent reads in the next entry from a utmp-like file. If the file is not already open, it opens it.
If it reaches the end of the file, it fails. —
Getutid searches forward from the current point in the utmp file until 1t finds an entry with a
ut_type matching ¢d->uf_type if the type specified is RUN_LVL, BOOT_TIME, OLD_TIME or
NEW_TIME. If the type specified in id is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS or
DEAD_PROCESS, then getutid will return a pointer to the first entry whose type is one of these
four and whose ut_id field matches id—>ut_id. If the end of file is reached without a match, it
fails.
Getutline searches forward from the current point in the utmp file until it finds an entry of the
type LOGIN_PROCESS or USER_PROCESS which also has a wut_line string matching the
line~>uf_line string. If the end of file is reached without a match, 1t fails.
Pututline writes out the supplied utmp structure into the utmp file. It uses getutid to search for-
ward for the proper place if it finds that it is not already at the proper place. It i1s expected that
normally the user of pututline will have searched for the proper entry using one of the getut rou- .

tines. If so, pututline will not search. If pututline does not find a matching slot for the new
entry, it will add a new entry to the end of the file.

FILES

GETUT(3C)

Setutent resets the input stream to the beginning of the file. This should be done before each
search for a new entry if it is desired that the entire file be examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file examined, from /etc/utmp to any
other file. It is most often expected that this other file will be /etc/wtmp. If the file does not
exist, this will not be apparent until the first attempt to reference the file is made. Utmpname

does not open the file. It just closes the old file if it is currently open and saves the new file
name.

/ete/utmp
/ete/wtmp

SEE ALSO

ttyslot(3C), utmp(4).

DIAGNOSTICS

A NULL pointer is returned upon failure to read, whether for permissions or having reached the
end of file, or upon failure to write.

COMMENTS

The most current entry is saved in a static structure. Multiple accesses require that it be copied
before further accesses are made. Each call to either getutid or getutline sees the routine examine
the static structure before performing more 1/O. If the contents of the static structure match
what it is searching for, it looks no further. For this reason to use getutline to search for multiple
occurrences, it would be necessary to zero out the static after each success, or getutline would just
return the same pointer over and over again. There is one exception to the rule about removing
the structure before further reads are done. The implicit read done by pututline (if it finds that it
is not already at the correct place in the file) will not hurt the contents of the static structure
returned by the getutent, getutid or getutline routines, if the user has just modified those contents
and passed the pointer back to pututline.

These routines use buffered standard 1/O for input, but pututline uses an unbuffered non-standard
write to avoid race conditions between processes trying to modify the utmp and wtmp files.

HSEARCH (3C)

NAME
hsearch, hcreate, hdestroy — manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY *hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION

Hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm D. It returns a
pointer into a hash table indicating the location at which an entry can be found. Item is a struc-
ture of type ENTRY (defined in the <search.h> header file) containing two pointers: ttem.key
points to the comparison key, and item.data points to any other data to be associated with that
key. (Pointers to types other than character should be cast to pointer-to-character.) Action is a
member of an enumeration type ACTION indicating the disposition of the entry if it cannot be
found in the table. ENTER indicates that the item should be inserted in the table at an
appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution is indi-
cated by the return of a NULL pointer.

Hereate allocates sufficient space for the table, and must be called before hsearch is used. Nel is
an estimate of the maximum number of entries that the table will contain. This number may be

adjusted upward by the algorithm in order to obtain certain mathematically favorable cir-
cumstances.

Hdestroy destroys the search table, and may be followed by another call to hereate.

NOTES
Hsearch uses open addressing with a multiplicative hash function. However, its source code has

many other options available which the user may select by compiling the hsearch source with the
following symbols defined to the preprocessor:

DIV Use the remainder modulo table size as the hash function instead of the multi-
plicative algorithm.

USCR Use a User Supplied Comparison Routine for ascertaining table membership.
The routine should be named hcompar and should behave in a mannner simi-
lar to stremp (see string(3C)).

CHAINED

Use a linked list to resolve collisions. If this option is selected, the following
other options become available.

START Place new entries at the beginning of the linked list (default is at
the end).

SORTUP Keep the linked list sorted by key in ascending order.

SORTDOWN

Keep the linked list sorted by key in descending order.

Additionally, there are preprocessor flags for obtaining debugging printout (-DDEBUG) and for

including a test driver in the calling routine (-DDRIVER). The source code should be consulted
for further details.

EXAMPLE
The following example will read in strings followed by two numbers and store them in a hash

HSEARCH (3C)

table, discarding duplicates. It will then read in strings and find the matching entry in the hash
table and print it out.

#include <stdio.h>
#include <search.h>

struct info { /* this is the info stored in the table */
int age, room; /* other than the key. */
¥

#define NUM_EMPL 5000 /* # of elements in search table */

main()

{
/* space to store strings */
char string_space[NUM_EMPL*20];
/* space to store employee info */
struct info info_space{NUM_EMPLY;
/* next avail space in string_space */
char *str_ptr = string_space;
/* next avail space in info_space */
struct info *info_ptr == info_space;
ENTRY item, *found_item, *hsearch();
/* name to look for in table */
char name_to_{ind[30};
int 1 = 0

/* create table */

(void) hcreate(NUM_EMPL);

while (scanf(”%s%d%d”, str_ptr, &info_ptr->>age,
&info_ptr->room) != EOF && i++ < NUM_EMPL) {
/* put info in structure, and structure in item */
item.key = str_ptr;
item.data = (char *)info_ptr;
str_ptr += strlen(str_ptr) + 1,
info_ptr++;
/* put item into table */
(void) hsearch(item, ENTER);

/* access table */
item.key = name_to_find;
while (scanf(”%s", item.key) != EOF) {
if ((found_item = hsearch(item, FIND)) != NULL) {
/* if item is in the table */
(void)printf(”found %s, age = %d, room = %d\n”,
found_item->key,
((struct info *)found_item->>data)->age,
((struct info *)found_item->>data)->>room);
} else {
(void)printf(*no such employee %s\n”,
name_to_{ind)

HSEARCH (3C)

SEE ALSO
bsearch(3C), Isearch(3C), malloc(3C), malloc(3X), string(3C), tsearch(3C).

DIAGNOSTICS
Hsearch returns a NULL pointer if either the action is FIND and the item could not be found or
the action is ENTER and the table is full.

Hereate returns zero if it cannot allocate sufficient space for the table.

WARNING
Hsearch and hereate use malloe (3C) to allocate space.

BUGS
Only one hash search table may be active at any given time.

HYPOT (3M)

NAME

hypot — Euclidean distance function
SYNOPSIS

#include <math.h>

double hypot (x, y)

double x, y;

DESCRIPTION
Hypot returns
sqrt(x * x +y *y),
taking precautions against unwarranted overflows.
DIAGNOSTICS
When the correct value would overflow, hypot returns HUGE and sets errno to ERANGE.
These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
matherr(3M), exp(3M).

L3TOL(3C)

NAME
13tol, 1tol3 — convert between 3-byte integers and long integers

SYNOPSIS
void 13tol (lp, ¢p, n)
long *Ip;
char *cp;
int n;
void ltol3 (ep, lp, n)
char *cp;
long *lp;
int n;
DESCRIPTION
L3tol converts a list of n three-byte integers packed into a character string pointed to by cp into
a list of long integers pointed to by Ip.

Ltol8 performs the reverse conversion from long integers (Ip) to three-byte integers (cp).
These functions are useful for file-system maintenance where the block numbers are three bytes
long.
SEE ALSO
fs(4).
BUGS

Because of possible differences in byte ordering, the numerical values of the long integers are
machine-dependent.

LDAHREAD (3X)

NAME
- ldahread — read the archive header of a member of an archive file

SYNOPSIS
#include <stdio.h>
#include <ar.h>
#include <filehdr.h>
#include <ldfen.h>

int ldahread (ldptr, arhead)

LDFILE *ldptr;

ARCHDR *arhead;
DESCRIPTION

If TYPE(ldptr) is the archive file magic number, ldehread reads the archive header of the com-
mon object file currently associated with /dptr into the area of memory beginning at arhead.

Ldahread returns SUCCESS or FAILURE. Ldahread will fail if TYPE(Idptr) does not represent
an archive file, or if it cannot read the archive header.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), 1dopen(3X), 1dfen(4), ar(4).

LDCLOSE (3X)

NAME
ldclose, ldaclose — close a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

int ldclose (1dptr)
LDFILE *ldptr;

int ldaclose (ldptr)
LDFILE *ldptr;

DESCRIPTION
Ldopen(3X) and ldclose are designed to provide uniform access to both simple object files and
object files that are members of archive files. Thus an archive of common object files can be pro-
cessed as if it were a series of simple common object files.

If TYPE(/dptr) does not represent an archive file, ldclose will close the file and free the memory
allocated to the LDFILE structure associated with ldptr. If TYPE(!dptr) is the magic number of
an archive file, and if there are any more files in the archive, Idclose will reinitialize
OFFSET(ldptr) to the file address of the next archive member and return FAILURE. The
LDFILE structure is prepared for a subsequent !dopen(3X). In all other cases, ldclose returns
SUCCESS.

Ldaclose closes the file and frees the memory allocated to the LDFILE structure associated with
ldptr regardless of the value of TYPE(ldptr). Ldaclose always returns SUCCESS. The function
is often used In conjunction with Idaopen.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
fclose(3S), 1dopen(3X), ldfen(4).

LDFHREAD (3X)

NAME
ldfhread - read the file header of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

int ldfhread (ldptr, filehead)
LDFILE *1dptr;
FILHDR *filehead;
DESCRIPTION
Ldfhread reads the file header of the common object file currently associated with ldptr into the
area of memory beginning at filehead.
Ldfhread returns SUCCESS or FAILURE. Ldfhread will fail if it cannot read the file header.

In most cases the use of ldfhread can be avoided by using the macro HEADER(/dptr) defined in
ldfen.h (seeldfen(4)). The information in any field, fieldname, of the file header may be accessed
using HEADER(/dptr).fieldname.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), 1dopen(3X), 1dfcn(4).

LDGETNAME (3X)

NAME
ldgetname — retrieve symbol name for common object file symbol table entry

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfen.h>

char *ldgetname (ldptr, symbol)
LDFILE *ldptr;
SYMENT *symbol;
DESCRIPTION
Ldgetname returns a pointer to the name associated with symbol as a string. The string is con-

tained in a static buffer local to ldgetname that is overwritten by each call to ldgetname, and
therefore must be copied by the caller if the name is to be saved.

As of UNIX system release 5.0, which corresponds to the first release of the operating system, the common
object file format has been extended to handle arbitrary length symbol names with the addition ofa

“string table”. Ldgetname will return the symbol name associated with a symbol table entry for
either a pre-UNIX system 5.0 object file or a UNIX system 5.0 object file. Thus, ldgetname can be
used to retrieve names from object files without any backward compatibility problems. Ldget-
name will return NULL (defined in stdio.h) for a UNIX system 5.0 object file if the name cannot
be retrieved. This situation can occur:

- if the “string table’’ cannot be found,
- if not enough memory can be allocated for the string table,

- if the string table appears not to be a string table (for example, if an auxiliary entry is
handed to ldgetname that looks like a reference to a name in a non-existent string table),
or

- if the name’s offset into the string table is past the end of the string table.

Typically, ldgetname will be called immediately after a successful call to ldtbread to retrieve the
name associated with the symbol table entry filled by Idtbread.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), 1dopen(3X), ldtbread(3X), 1dtbseek(3X), 1dfcn{4).

LDLREAD (3X)

NAME
ldlread, 1dlinit, ldlitem — manipulate line number entries of a common object file function
SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <linenum.h>
#include <ldfcn.h>
int ldlread(ldptr, fenindx, linenum, linent)
LDFILE *ldptr;
long fenindx;
unsigned short linenum;
LINENO linent;
int ldlinit(ldptr, fenindx)
LDFILE *ldptr;
long fenindx;
int ldlitem(ldptr, linenum, linent)
LDFILE *ldptr;
unsigned short linenum;
LINENO linent;
DESCRIPTION
Ldiread searches the line number entries of the common object file currently associated with
ldptr. Ldlread begins its search with the line number entry for the beginning of a function and
confines its search to the line numbers associated with a single function. The function is identi-
fied by fenindz, the index of its entry in the object file symbol table. Ldiread reads the entry
with the smallest line number equal to or greater than linenum into linent.
Ldlinit and ldlitem together perform exactly the same function as Idlread. After an initial call to
ldiread or ldlinst, ldlitem may be used to retrieve a series of line number entries associated with a
single function. Ldlinit simply locates the line number entries for the function identified by
fenindz. Ldlitem finds and reads the entry with the smallest line number equal to or greater than
linenum into linent.
Ldlread, ldlinit, and Idlitem each return either SUCCESS or FAILURE. Ldlread will fail if there
are no line number entries in the object file, if fenindz does not index a function entry in the sym-
bol table, or if it finds no line number equal to or greater than linenum. Ldlinit will fail if there
are no line number entries in the object file or if fenindz does not index a function entry in the
symbol table. Ldlitem will fail if it finds no line number equal to or greater than linenum.
The programs must be loaded with the object file access routine library libld.a.
SEE ALSO

ldclose(3X), 1dopen(3X), ldtbindex(3X), 1dfcn(4).

LDLSEEK (3X)

NAME
ldlseek,ldnlseek — seek to line number entries of a section of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

int ldlseek (ldptr, sectindx)

LDFILE *ldptr;

unsigned short sectindx;

int ldnlseek (ldptr, sectname)

LDFILE *Idptr;

char *sectname;
DESCRIPTION

Ldlseek seeks to the line number entries of the section specified by sectindr of the common object
file currently associated with ldptr.

Ldnlseck seeks to the line number entries of the section specified by sectname.

Ldlseck and ldnlseck return SUCCESS or FAILURE. Ldlseek will fail if sectindz is greater than
the number of sections in the object file; /dnlseek will fail if there is no section name correspond-
ing with *sectname. Either function will fail if the specified section has no line number entries or
if it cannot seek to the specified line number entries.

Note that the first section has an index of one.
The program must be loaded with the object file access routine library libld.a.

SEE ALSO
1dclose(3X), ldopen(3X), ldshread(3X), ldfen(4).

LDOHSEEK (3X)

NAME

ldohseek — seek to the optional file header of a common object file
SYNOPSIS

#finclude <stdio.h>

#include <filehdr.h>

#include <ldfen.h>

int ldohseek (ldptr)
LDFILE *ldptr;

DESCRIPTION
Ldohseek seeks to the optional file header of the common object file currently associated with
ldptr.

Ldohseek returns SUCCESS or FAILURE. Ldohseek will fail if the object file has no optional
header or if it cannot seek to the optional header.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
1dclose(3X), ldopen(3X), 1dfhread(3X), 1dfcn(4).

LDOPEN (3X)

NAME
ldopen, ldaopen — open a common object file for reading

SYNOPSIS
#include <stdio.h>>
#include <filehdr.h>
#include <ldfen.h>>

LDFILE *ldopen (filename, ldptr)
char *filename;
LDFILE *ldptr;

LDFILE *ldaopen (filename, oldptr)
char *filename;
LDFILE *oldptr;

DESCRIPTION
Ldopen and ldclose(3X) are designed to provide uniform access to both simple object files and
object files that are members of archive files. Thus an archive of common object files can be pro-
cessed as if it were a series of simple common object files.

If ldptr has the value NULL, then ldopen will open filename and allocate and initialize the
LDFILE structure, and return a pointer to the structure to the calling program.

If ldptr is valid and if TYPE(/dptr) is the archive magic number, [dopen will reinitialize the
LDFILE structure for the next archive member of filename.

Ldopen and ldclose(3X) are designed to work in concert. Ldclose will return FAILURE only when
TYPE(ldptr) is the archive magic number and there is another file in the archive to be processed.
Only then should Idopen be called with the current value of Idptr. In all other cases, in particular
whenever a new filename is opened, ldopen should be called with a NULL ldptr argument.

The following is a prototype for the use of ldopen and ldclose(3X).
/* for each filename to be processed */
ldptr = NULL;
do
{

if ((1dptr = ldopen(filename, ldptr)) '= NULL)

/* check magic number */
/* process the file */

} while (ldclose(ldptr) === FAILURE);

If the value of oldptr is not NULL, ldaopen will open filename anew and allocate and initialize a
new LDFILE structure, copying the TYPE, OFFSET, and HEADER fields from oldptr. Ldaopen
returns a pointer to the new LDFILE structure. This new pointer is independent of the old
pointer, oldptr. The two pointers may be used concurrently to read separate parts of the object
file. For example, one pointer may be used to step sequentially through the relocation informa-
tion, while the other is used to read indexed symbol table entries.

Both ldopen and ldaopen open filename for reading. Both functions return NULL if filename can-
not be opened, or if memory for the LDFILE structure cannot be allocated. A successful open
does not insure that the given file is a common object file or an archived object file.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
fopen(3S), 1dclose(3X), ldfcn(4).

LDRSEEK (3X)

NAME

ldrseek, ldnrseek — seek to relocation entries of a section of a common object file
SYNOPSIS

#include <stdio.h>

#include <filehdr.h>

#include <ldfen.h>

int ldrseek (ldptr, sectindx)
LDFILE *ldptr;

unsigned short sectindx;

int ldnrseek (ldptr, sectname)
LDFILE *ldptr;

char *sectname;

DESCRIPTION
Ldrseek seeks to the relocation entries of the section specified by sectindz of the common object
file currently associated with ldptr.

Ldnrseek seeks to the relocation entries of the section specified by sectname.

Ldrseek and ldnrseek return SUCCESS or FAILURE. Ldrseek will fail if sectindz is greater than
the number of sections in the object file; ldnrseek will fail if there is no section name correspond-
ing with sectname. Either function will fail if the specified section has no relocation entries or if
it cannot seek to the specified relocation entries.

Note that the first section has an index of one.
The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), 1dopen(3X), ldshread(3X), ldfcn(4).

LDSHREAD (3X)

NAME
ldshread, ldnshread - read an indexed/named section header of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include < senhdr.h>
#include <ldfen.h>-

int ldshread (ldptr, sectindx, secthead)
LDFILE *ldptr;

unsigned short sectindx;

SCNHDR *secthead;

int ldnshread (ldptr, sectname, secthead)
LDFILE *Idptr;

char *sectname;

SCNHDR *secthead;

DESCRIPTION
Ldshread reads the section header specified by sectindz of the common object file currently associ-
ated with Idptr into the area of memory beginning at secthead.

Ldnshread reads the section header specified by sectname into the area of memory beginning at
secthead.

Ldshread and Ildnshread return SUCCESS or FAILURE. Ldshread will fail if seclindz is greater
than the number of sections in the object file; ldnshread will fail if there is no section name
corresponding with sectname. Either function will fail if it cannot read the specified section
header.

Note that the first section header has an index of one.
The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldfen(4).

LDSSEEK (3X)

NAME

ldsseek, ldnsseek — seek to an indexed/named section of a common object file
SYNOPSIS

#include <stdio.h>

#include <filehdr.h>

#include <ldfen.h>

int ldsseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;
int ldnsseek (ldptr, sectname)
LDFILE *ldptr;
char *sectname;
DESCRIPTION
Ldsseek seeks to the section specified by sectindzr of the common object file currently associated
with ldptr.
Ldnsseek seeks to the section specified by sectname.

Ldsseek and ldnsseek return SUCCESS or FAILURE. Ldsseek will fail if sectindz is greater than
the number of sections in the object file; {dnsseek will fail if there is no section name correspond-

ing with sectname. Either function will fail if there is no section data for the specified section or
if it cannot seek to the specified section.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), 1dopen(3X), ldshread(3X), 1dfcn(4).

LDTBINDEX (3X)

NAME
ldtbindex — compute the index of a symbol table entry of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfen.h>

long ldtbindex (ldptr)
LDFILE *ldptr;
DESCRIPTION
Ldtbindez returns the (long) index of the symbol table entry at the current position of the com-
mon object file associated with ldptr.

The index returned by ldtbindez may be used in subsequent calls to Idtbread(3X). However, since
ldthindex returns the index of the symbol table entry that begins at the current position of the
object file, if Idtbindex is called immediately after a particular symbol table entry has been read,
it will return the index of the next entry.

Ldtbindex will fail if there are no symbols in the object file, or if the object file is not positioned
at the beginning of a symbol table entry.

Note that the first symbol in the symbol table has an index of zero.
The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), Idtbread(3X), 1dtbseek(3X), 1dfen(4).

LDTBREAD (3X)

NAME

ldtbread — read an indexed symbol table entry of a common object file
SYNOPSIS

#include <stdio.h>

#include <filehdr.h>

#include <syms.h>

#include <ldfen.h>

int ldtbread (ldptr, symindex, symbol)

LDFILE *ldptr;

long symindex;

SYMENT *symbol;

DESCRIPTION

Ldtbread reads the symbol table entry specified by symindez of the common object file currently

associated with Idptr into the area of memory beginning at symbol.

Ldtbread returns SUCCESS or FAILURE. Ldtbread will fail if symindez is greater than the
- number of symbols in the object file, or if it cannot read the specified symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), Idopen(3X), ldtbseek(3X), 1dfen(4).

LDTBSEEK (3X)

NAME
ldtbseek - seek to the symbol table of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfen.h>

int ldtbseek (ldptr)
LDFILE *ldptr;

DESCRIPTION
Ldtbseek seeks to the symbol table of the object file currently associated with Ildptr.

Ldtbseek returns SUCCESS or FAILURE. Ldtbseek will fail if the symbol table has been stripped
from the object file, or if it cannot seek to the symbol table.

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), 1dopen(3X), ldtbread(3X), 1dfcn(4).

LOGNAME (3X)

NAME
logname — return login name of user
SYNOPSIS
char *logname()
DESCRIPTION
Logname returns a pointer to the null-terminated login name; it extracts the SLOGNAME vari-
able from the user’s environment.
This routine is kept in /lib/libPW.a.
FILES
/etc/profile
SEE ALSO
env(1), login(1), profile(4), environ(5).
BUGS

The return values point to static data whose content is overwritten by each call.

This method of determining a login name is subject to forgery.

LSEARCH(3C)

NAME
Isearch, lfind - linear search and update
SYNOPSIS
#include <stdio.h>
#include < search.h>
char *isearch ((char *)key, (char *)base, nelp, sizeof(*key), compar)
unsigned *nelp;
int (*compar)();
char *Ifind ((char *)key, (char *)base, nelp, sizeof(*key), compar)
unsigned *nelp;
int (*compar)();
DESCRIPTION
Lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S. It returns a pointer
into a table indicating where a datum may be found. If the datum does not occur, it is added at
the end of the table. Key points to the datum to be sought in the table. Base points to the
first element in the table. Nelp points to an integer containing the current number of elements
in the table. The integer is incremented if the datum is added to the table. Compar is the
name of the comparison function which the user must supply (stremp, for example). It is called
with two arguments that point to the elements being compared. The function must return zero if
the elements are equal and non-zero otherwise.
Lfind is the same as Isearch except that if the datum is not found, it is not added to the table.
Instead, a NULL pointer is returned.
NOTES
The pointers to the key and the element at the base of the table should be of type pointer-to-
element, and cast to type pointer-to-character.
The comparison functicn need not compare every byte, so arbitrary data may be contained in the
elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be cast into type
pointer-to-element.
EXAMPLE
This fragment will read in < TABSIZE strings of length < ELSIZE and store them in a table,
eliminating duplicates.
#include <stdio.h>
#include < search.h>
#define TABSIZE 50
#define ELSIZE 120
char line[ELSIZE], tab|TABSIZE|[ELSIZE], *Isearch();
unsigned nel = 0;
int stremp();
while (fgets(line, ELSIZE, stdin) != NULL &&
nel < TABSIZE)
(void) Isearch(line, (char *)tab, &nel,
ELSIZE, strcmp);
SEE ALSO

bsearch(3C), hsearch(3C), tsearch(3C).

LSEARCH (3C)

DIAGNOSTICS
If the searched for datum is found, both lsearch and Ifind return a pointer to it. Otherwise, lfind
returns NULL and lsearch returns a pointer to the newly added element.

BUGS
Undefined results can occur if there is not enough room in the table to add a new item.

MALLOC (3C)

NAME
malloc, free, realloc, calloc — main memory allocator

SYNOPSIS
char *malloc (size)
unsigned size;
void free (ptr)
char *ptr;
char *realloc (ptr, size)
char *ptr;
unsigned size;
char *calloc (nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION
Malloc and free provide a simple general-purpose memory allocation package. Malioc returns a
pointer to a block of at least size bytes suitably aligned for any use.
The argument to free is a pointer to a block previously allocated by malloc; after free is per-
formed this space is made available for further allocation, but its contents are left undisturbed.
Undefined results will occur if the space assigned by malloc is overrun or if some random number
is handed to free.
Malloc allocates the first big enough contiguous reach of free space found in a circular search
from the last block allocated or freed, coalescing adjacent free blocks as it searches. It calls shrk
(see brk(2)) to get more memory from the system when there is no suitable space already free.
Realloc changes the size of the block pointed to by ptr to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old sizes.
If no free block of size bytes is available in the storage arena, then realloc will ask malloc to
enlarge the arena by size bytes and will then move the data to the new space.
Realloc also works if ptr points to a block freed since the last call of malloc, realloc, or calloc;
thus sequences of free, malloc and realloc can exploit the search strategy of malloc to do storage
compaction.
Calloc allocates space for an array of nelem elements of size elsize. The space is initialized to
Z€ros.
Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer
coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3X).

DIAGNOSTICS
Malloc, realloc and calloc return a NULL pointer if there is no available memory or if the arena
has been detectably corrupted by storing outside the bounds of a block. When this happens the
block pointed to by ptr may be destroyed.

NOTE

Search time increases when many objects have been allocated; that is, if a program allocates but
never frees, then each successive allocation takes longer. For an alternate, more flexible imple-
mentation, see malloc(3X).

MALLOC (3X)

malloc, free, realloc, calloc, mallopt, mallinfo — fast main memory allocator

SYNOPSIS

#include <malloe.h>
char *malloc (size)
unsigned sizge;

void free (ptr)

char *ptr;

char *realloc (ptr, size)
char *ptr;

unsigned sige;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int emd, value;

struct mallinfo mallinfo (max)
int max;

DESCRIPTION

Malloc and free provide a simple general-purpose memory allocation package, which runs consid-
erably faster than the malloc(3C) package. It is found in the library “malloc’, and is loaded if
the option “~Imalloc” is used with cc(1) or ld(1).

Malloc returns a pointer to a block of at least size bytes suitably aligned for any use.

The argument to free is a pointer to a block previously allocated by malloc; after free is per-
formed this space is made available for further allocation, and its contents have been destroyed
(but see mallopt below for a way to change this behavior).

Undefined results will occur if the space assigned by malloc is overrun or if some random number
is handed to free.

Realloe changes the size of the block pointed to by ptr to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old sizes.

Calloc allocates space for an array of nelem elements of size elsize. The space is initialized to
Zeros.

Mallopt provides for control over the allocation algorithm. The available values for ¢md are:

M_MXFAST Set mazfast to value. The algorithm allocates all blocks below the size of mazfast

in large groups and then doles them out very quickly. The default value for maz-
fast is 0.

M_NLBLKS Set numlblks to value. The above mentioned “large groups” each contain numlblks
blocks. Numlblks must be greater than 0. The default value for numlblks is 100.

M_GRAIN Set grain to value. The sizes of all blocks smaller than mazfast are considered to
be rounded up to the nearest multiple of grain. Grain must be greater than 0.
The default value of grain is the smallest number of bytes which will allow align-
ment of any data type. Value will be rounded up to a multiple of the default when
grain is set.

M_KEEP Preserve data in a freed block until the next malloc, realloc, or calloc. This option
is provided only for compatibility with the old version of malloc and is not recom-
mended.

MALLOC (3X)

These values are defined in the < malloc.h > header file.

Mallopt may be called repeatedly, but may not be called after the first small block is allocated.

Mallinfo provides instrumentation describing space usage. It returns the structure:

struct mallinfo {
int arena;
int ordblks;
int smblks;
int hblkhd;
int hblks;
int usmblks;
int fsmblks;
int uordblks;
int fordblks;
int keepcost;

}

/*
/*
/*
/*
/*
//*
e
/*
/*
/*
1%

total space in arena */

number of ordinary blocks */
number of small blocks */

space in holding block headers */
number of holding blocks */
space in small blocks in use */
space in free small blocks */
space in ordinary blocks in use */
space in free ordinary blocks */
space penalty if keep option */
is used */

This structure is defined in the <malloc.h > header file.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer

coercion) for storage of any type of object.

SEE ALSO

brk(2), malloc(3C).

DIAGNOSTICS

Malloc, realloc and calloc return a NULL pointer if there is not enough available memory. When
realloc returns NULL, the block pointed to by ptr is left intact. If mallopt is called after any allo-

cation or if ¢emd or value are invalid, non-zero is returned. Otherwise, it returns zero.

WARNINGS

This package usually uses more data space than malloc(3C).
The code size is also bigger than malloc(3C).

Note that unlike malloc(3C), this package does not preserve the contents of a block when it is

freed, unless the M_KEEP option of mallopt is used.
Undocumented features of malloc (3C) have not been duplicated.

MATHERR (3M)

NAME
matherr — error-handling function

SYNOPSIS
#include <math.h>

int matherr (x)
struct exception *x;

DESCRIPTION
Matherr is invoked by functions in the Math Library when errors are detected. Users may define
their own procedures for handling errors, by including a function named matherr in their pro-
grams. Matherr must be of the form described above. When an error occurs, a pointer to the
exception structure z will be passed to the user-supplied matherr function. This structure, which
is defined in the < math.h> header file, is as follows:

struct exception {
int type;
char *name;
double argl, arg2, retval;
};
The element type is an integer describing the type of error that has occurred, from the following
list of constants {defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function that incurred the error.
The variables arg! and arg? are the arguments with which the function was invoked. Retval is
set to the default value that will be returned by the function unless the user’s matherr sets it to a
different value.

If the user’s matherr function returns non-zero, no error message will be printed, and errno will
not be set.

If matherr is not supplied by the user, the default error-handling procedures, described with the
math functions involved, will be invoked upon error. These procedures are also summarized in
the table below. In every case, errno is set to EDOM or ERANGE and the program continues.

EXAMPLE
#include <math.h>

int
matherr(x)
register struct exception *x;
{
switch (x—>type) {
case DOMAIN:
/* change sqrt to return sqrt(-argl), not 0 */
if (!stremp(x—>name, ”sqrt”)) {
x->retval = sqrt(—x—>argl);
return (0); /* print message and set errno */
}
case SING:
/* all other domain or sing errors, print message and abort */

MATHERR (3M)

fprintf(stderr, ”domain error in %s\n”, x->name);
abort();
case PLOSS:
/* print detailed error message */
fprintf(stderr, ”loss of significance in %s(%g) = %g\n”,
x—~>>name, x—>argl, x—>retval);
return (1); /* take no other action */
}
/%

return (0); /* all other errors, execute default procedure */

DEFAULT ERROR HANDLING PROCEDURES

Types of Errors

type DOMAIN SING OVERFLOW UNDERFLOW TLOSS

errno EDOM EDOM ERANGE ERANGE ERANGE
BESSEL: - -~ - - M, 0
v0, y1, yn (arg < 0) M, -H ~ - - _
EXP: - = H 0 _
LOG, LOGI1O0:
(arg < 0) M, -H - - - -
(arg = 0) - M, -H — _ _
POW: - - +H 0 _
neg ** non-int M, 0 - - - -

0 ** non-pos

SQRT: M, 0 - - _ -
GAMMA: - M, H H - -
HYPOT: - - H &=, -
SINH: - = +H _ _
COSH; - - H - _
SIN, COS, TAN: - - — - M, 0 *
ASIN, ACOS, ATAN2: M, 0 - - - - -

ABBREVIATIONS
As much as possible of the value is returned.
Message is printed (EDOM error).
HUGE is returned.
-H -HUGE is returned.
+H HUGE or -HUGE is returned.
0 0 1s returned.

o e

MEMORY (3C)

NAME
memeccpy, memchr, memcmp, memcpy, memset — memory operations
SYNOPSIS
#include <memory.h>
char *memccpy (s1, s2, ¢, n)
char *s1, *s2;
int ¢, n;
char *memchr (s, ¢, n)
char *g;
int ¢, n;
int mememp (s1, s2, n)
char *s1, *s2;
int n;
char *memcpy (sl, s2, n)
char *sl1, *s2;
int n;
char *memset (s, c, n)
char *s;
int ¢, n;
DESCRIPTION

These functions operate efficiently on memory areas (arrays of characters bounded by a count,

not terminated by a null character). They do not check for the overflow of any receiving memory
area.

Memeccpy copies characters from memory area s2 into sl, stopping after the first occurrence of
character ¢ has been copied, or after n characters have been copied, whichever comes first. It

returns a pointer to the character after the copy of ¢ in s, or a NULL pointer if ¢ was not found
in the first n characters of s2.

Memechr returns a pointer to the first occurrence of character ¢ in the first n characters of
memory area s, or a NULL pointer if ¢ does not occur.

Mememp compares its arguments, looking at the first n characters only, and returns an integer

less than, equal to, or greater than 0, according as sI is lexicographically less than, equal to, or
greater than s2.

Memcpy copies n characters from memory area s2 to s1. It returns sI.

Memset sets the first n characters in memory area s to the value of character ¢. It returns s .
NOTE

For user convenience, all these functions are declared in the optional < memory.h> header file.
BUGS

Memcmp uses native character comparison, which is signed on some machines but not on others. ASCII
values are always positive, so programs that compare only ASCII values are portable.

Overlapping moves may yield surprises.

MKTEMP (3C)

NAME
mktemp — make a unique file name

SYNOPSIS
char *mktemp (template)
char *template;

DESCRIPTION
Mktemp replaces the contents of the string pointed to by template by a unique file name, and
returns the address of template. The string in template should look like a file name with six trail-
ing Xs; mktemp will replace the Xs with a letter and the current process ID. The letter will be
chosen so that the resulting name does not duplicate an existing file.

SEE ALSO
getpid(2), tmpfile(3S), tmpnam(3S).

BUGS
It is possible to run out of letters.

MONITOR (3C)

NAME
monitor — prepare execution profile
SYNOPSIS
#include <mon.h>
void monitor (lowpe, highpe, buffer, bufsize, nfunc)
int (*lowpe)(), (*highpe)();
WORD *buffer;
int bufsize, nfunc;
DESCRIPTION
An executable program created by cc —p automatically includes calls for monitor with default
parameters; monitor needn’t be called explicitly except to gain fine control over profiling.
Monitor is an interface to profil(2). Lowpc and highpc are the addresses of two functions; buffer
is the address of a (user supplied) array of bufsize WORDs (defined in the <mon.h> header file).
Monitor arranges to record a histogram of periodically sampled values of the program counter,
and of counts of calls of certain functions, in the buffer. The lowest address sampled is that of
lowpe and the highest is just below highpe. Lowpc may not equal O for this use of monitor. At
most nfunc call counts can be kept; only calls of functions compiled with the profiling option —p
of cc(1) are recorded. (The C Library and Math Library supplied when ce —p is used also have
call counts recorded.)
For the results to be significant, especially where there are small, heavily used routines, it is sug-
gested that the buffer be no more than a few times smaller than the range of locations sampled.
To profile the entire program, it is sufficient to use
extern etext;
monitor {(int (*)())2, etext, buf, bufsize, nfunc);
Etext lies just above all the program text; see end(3C).
To stop execution monitoring and write the results on the file mon.out, use
monitor ((int (*)())0, 0, 0, 0, 0);
Prof(1) can then be used to examine the results.
FILES
mon.out
/lib/libp/libc.a
/1ib/libp/libm.a
SEE ALSO

ce(1), prof(1), profil(2), end(3C).

NLIST(3C)

NAME
nlist — get entries from name list

SYNOPSIS
#include <nlist.h>

int nlist (file-name, nl)
char *file-name;
struct nlist *nl;

DESCRIPTION

Nlist examines the name list in the executable file whose name is pointed to by file-name, and
selectively extracts a list of values and puts them in the array of nlist structures pointed to by n!.
The name list nl consists of an array of structures containing names of variables, types and
values. The list is terminated with a null name; that is, a null string is in the name position of
the structure. Each variable name is looked up in the name list of the file. If the name is found,
the type and value of the name are inserted in the next two fields. The type field will be set to 0
unless the file was compiled with the —g option. If the name is not found, both entries are set to
0. See a.out(4) for a discussion of the symbol table structure.

This function is useful for examining the system name list kept in the file /unix. In this way
programs can obtain system addresses that are up to date.

NOTES
The <nlist.h> header file 1s automatically included by <Ca.out.h> for compatability. However,
if the only information needed from <a.out.h> is for use of nlist, then including < a.cut.h> is
discouraged. If <a.out.h> is included, the line ‘“#undef n_name’’ may need to follow it.

SEE ALSO
a.out(4).

DIAGNOSTICS
All value entries are set to 0 if the file cannot be read or if it does not contain a valid name list.

Nlist returns ~1 upon error; otherwise it returns 0.

—

OCURSE (3X)

NAME
ocurse — optimized screen functions

SYNOPSIS
#include <ocurse.h>

DESCRIPTION
Ocurse is the old Berkeley curses library that uses termcap (4).
These functions optimally update the screen.
Each curses program begins by calling in¢tscr and ends by calling endwin.
Before a program can change a screen, it must specify the changes. It stores changes in a variable
of type WINDOW by calling curses functions with the variable as argument. Once the variable
contains all the changes desired, the program calls wrefresh to write the changes to the screen.
Most programs only need a single WINDOW variable. Curses provides a standard WINDOW
variable for this case and a group of functions that operate on it. The variable is called stdser;
its special functions have the same name as the general functions minus the initial w.

FILES
/usr/include/ocurse.h — header file
/usr/lib/libocurse — curses library
/usr/lib/libtermcap — termcap library, used by curses

SEE ALSO

Ken Arnold, Screen Updating and Cursor Movement Optimization: A Library Package. Available
from Computer Center Library, University of California at Berkeley.

stty(2), setenv(3), termcap(4)
FUNCTIONS

addch(ch) Add a character to stdscr.
addstr(str) Add a string to stdscr.
box(win,vert,hor) Draw a box around a window.
crmode() Set cbreak mode.

clear() Clear stdscr.
clearok(scr,boolf) Set clear flag for scr.
cirtobot() Clear to bottom on stdscr.
clrtoeol() Clear to end of line on stdser.
delch() Delete a character.

deleteln() Delete a line.

delwin(win) Delete win.

echo() Set echo mode.

endwin() End window modes.

erase() Erase stdscr.

getch() Get a char through stdser.
getcap(name) Get terminal capability name.
getstr(str) Get a string through stdser.
gettmode() Get tty modes.

getyx(win,y,x) Get (y,x) co-ordinates.

inch() Get char at current (y,x) co-ordinates.
initser() Initialize screens.

insch(c) Insert a char.

insertln() Insert a line.

leaveok(win,boolf)
longname(termbuf,name)
move(y,x)

Set leave flag for win.
Get long name from termbuf.
Move to (y,x) on stdscr.

mvecur(lasty lastx,newy,newx)
newwin(lines,cols,begin_y, begin_x)
al()

nocrmode()

noecho()

nonl()

noraw()

overlay(winl,win2)
overwrite(winl,win2)
printw(fmt,argl,arg?2,...)
raw()

refresh()

resetty()

savetty()
scanw(fmt,argl,arg2,...)
scroll(win)

scrollok(win,boolf)
setterm(name)

standend()

standout()
subwin(win,lines,cols,beginJ,begin_x)
touchwin(win)

unctrl(ch)

waddch(win,ch)
waddstr{win,str)

wclear(win)

welrtobot(win)

welrtoeol(win)

wdelch(win,c)

wdeleteln(win)

werase(win)

wgetch(win)

wgetstr(win,str)

winch(win)

winsch(win,c)

winsertin(win)
wmove(win,y,x)
wprintw(win,fmt,argl1,arg2,...)
wrefresh(win)
wscanw(win,fmt,argl,arg2,...)
wstandend(win)
wstandout(win)

OCURSE (3X)

Actually move cursor.

Create a new window.

Set newline mapping.

Unset cbreak mode.

Unset echo mode.

Unset newline mapping.

Unset raw mode.

Overlay winl on win2.
Overwrite winl on top of win2.
Printf on stdser.

Set raw mode.

Make current screen look like stdscr.
Reset tty flags to stored value.
Stored current tty flags.

Scanf through stdscr.

Scroll win one line.

Set scroll flag.

Set term variables for name.
End standout mode.

Start standout mode.

Create a subwindow.

change all of win.

Printable version of c¢h.

Add char to win.

Add string to win.

Clear win.

Clear to bottom of win.

Clear to end of line on win.
Delete char from win.

Delete line from win.

Erase win.

Get a char through win.

Get a string through win.

Get char at current (y x) in win.
Insert char into wen.

Insert line into win.

Set current (y,x) co-ordinates on win.
Printf on win.

Make screen look like win.
Scanf through win.

End standout mode on win.
Start standout mode on win.

OF CREATE (3X) (System 6600 Only)

NAME
ofCreate, ofChangeFile Length, of Delete — Allocate RTOS files

SYNOPSIS
ofCreate(pbFileSpec, cbFileSpec, pbPassword, cbPassword, IfaFileSize)
char *pbFileSpec;
shortcbFileSpec;
char *pbPassword;
shortcbPassword;
long IfaFileSize;

ofChangeFileLength(fh, IfaNewFileSize)
shortfh;
long lfaNewFileSize;

ofDelete(fh)
shortfh;
DESCRIPTION

OfCreate calls the RTOS CreateFile service, which creates a RTOS file. Arguments are:

° PbFileSpec and cbFileSpec specify the location and size of the new file’s name. Operating system
processes lack a RTOS default path, so the name must begin with a volume name in
square brackets, [...], and a directory name in angle brackets, <...>. The specified
volume and directory must already exist. The file name that follows the volume and
directory specifications can be up to 50 characters: uppercase and lowercase letters,
digits, periods (.), hyphens (-), and right angle brackets (>). Here is an example with
everything:

[sys] <sys>Bigl.subd >doc-Old

OfCreate fails if the specified directory already has a file with the specified name. RTOS
does not consider two file names distinct if they differ only in the case of their letters.
However, a RTOS directory preserves the case of letters as specified by ofCreate.

) PbPassword and cbPassword specify the location and size of the password that authorizes
creation of the file. This password must match the volume or directory password. If
volume or directory lacks a password, no password is needed; set cbPassword to O and
PbPassword to anything. (To give the file itself a password, see see ofstatus(3X).)

. LfaFileSize is the initial size of the file. The size must be a multiple of 512.
See ofopenfile(3X) to provide a file handle for a newly-created file.

OfChangeFileLength calls the RTOS ChangeFileLength service, which resets the length of a file.
Arguments are:

® Lh is a file handle returned by ofOpen.
o LfaNewFileSize is the new size of the file. The size must be a multiple of 512.

OfDelete calls the RTOS DeleteFile service, which deletes a file. Fh is a file handle returned by
an ofOpen in modify mode.

The program must be loaded with the library flag —lctos.

SEE ALSO
RTOS Operating System Manual, “File Management.”
ofopenfile(3X), ofread(3X), ofdir(3X), ofstatus(3X), ofrename(3X).
RETURN VALUE
0 indicates success. OfCreate returns 224 if the file already exists. For other errors, see

OFCREATE (3X) (System 6600 Only)

Appendix A in the RTOS Operating System Manual.
WARNING

Frequent calls to OfOpen and CloseFile on a nearly full volume result in files whose contents are
scattered about the disk. RTOS must add additional header blocks to the disk to keep track of
the fragments. Frequent calls to ofChangeFileLength can have the same effect.

OFDIR (3X) (System 6600 Only)

NAME
of CrDir, of DIDir, ofReadDirSector — RTOS directory functions
SYNOPSIS

ofCrDir(pbDirSpec, cbDirSpec, pbVolPassword, cbVolPassword,

pbDirPassword, cbDirPassword, cSectors,
defaultFileProtectionLevel)

char *pbDirSpec;

short cbDirSpec;

char *pbVolPassword;

short c¢bVolPassword;

char *pbDirPassword;

short cbDirPassword;

short cSectors;

short defaultFileProtectionLevel;

of DIDir(pbDirSpec, cbDirSpec, pbPassword, cbPassword)

char *pbDirSpec;

~ short cbDirSpec;

char *pbPassword;

short cbPassword;

ofReadDirSector(pbDirSpec, cbDirSpec, pbPassword, cbPassword,

iSector, pBufferRet)

char *pbDirSpec;

short cbDirSpec;

char *pbPassword;

short cbPassword;

- short iSector;
char *pBufferRet;
DESCRIPTION

OfCrDir calls the RTOS CreateDir service, which creates a RTOS directory. It takes the follow-

ing arguments:

L PbDirSpec and cbDirSpec specify the location and size of the directory name. Operating system
processes lack a RTOS default path, so the name must begin with a volume name in
square brackets ([...]). Angle brackets around the directory name (<...>) are optional.

- The specified volume must already exist. The directory name that follows the volume
specification can be up to 12 characters: uppercase and lowercase letters, digits, periods
(), and hyphens (-). Here is an example with everything:

[sys] <PM.M-Changes >

OfCrDir fails if the specified volume already has a directory with the specified name.
RTOS does not consider two directory names as distinct if they differ only in the case of
their letters. However, the RTOS volume control structures preserves the case of letters
as specified by ofCrDir.

° PbVolPassword and c¢bVolPassword specify the location and size of a password to be
compared with the volume password. If the volume lacks a password, set cbVolPassword
to 0 and pbVolPassword to anything.

. PbDirPassword and cbDirPassword specify the location and size of the password to be
assigned to the directory. If the directory is to have no password, set cbDirPassword to 0
and pbDirPassword to anything.

OFDIR (3X) (System 6600 Only)

° CSectors is the size of the directory in sectors. In general, one sector can store informa-
tion on 15 files, but this depends on the length of the file names.

° DefaultFileProtectionLevel indicates the initial protection of files in the directory.

OfDIDir calls the RTOS DeleteDir service, which deletes an empty directory. Delete or move all
files from a directory before deleting the directory. OfDIDir takes the following arguments:

. PbDirSpec and cbDirSpec specify the location and size of the directory name. This name
follows the same conventions used by ofCrDir.

° PbPassword and cbPassword specify the location and size of the password that authorizes
the deletion of the directory. This password must match the volume password or the
directory password. If volume or directory lack a password, no password is required to
delete the directory: set cbPassword to 0 and pbPassword to anything.

OfReadDirSector calls the RTOS ReadDirSector service, which reads a single 512-byte directory
sector. It takes the following arguments.

° PbDirSpec and cbDirSpec specify the location and size of the directory name. This name
follows the same conventions used by ofCrDir.

° PbPassword and cbPassword specify the location and size of the password that authorizes
access of the directory. This password must match the volume password or the directory
password. If volume or directory lack a password, no password is required to delete the
directory: set cbPassword to 0 and pbPassword to anything.

® ISector specifies which sector to read. Sectors are numbered from 0.
° PBufferRet points to a 512-byte area that will receive the sector.
The program must be loaded with the library flag —lctos.

SEE ALSO
RTOS Operating System Manual, ‘‘File Management.”
ofereate(3X) ofopenfile(3X) ofread(3X) ofstatus(3X) ofrename(3X)

RETURN VALUE
0 indicates success. OfCrDir returns 240 (“Directory already exists”) if the specified volume
alread has a directory with the specified name. OfDIDir returns 241 (“Directory not ermpty”’) if
the directory still has files in it. For other errors, see Appendix A in the RTOS Operating System
Manual.

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

OFOPENFILE (3C)

of OpenFile, of CloseFile, ofCloseAllFiles — Access RTOS files

ofOpenFile(pFhRet, pbFileSpec, cbFileSpec, pbPassword, cbPassword, mode)
short*pFhRet;

char *pbFileSpec;

shortcbFileSpec;

char *pbPassword;

shortcbPassword;

shortmode;

ofCloseFile(fh)
shortfh;

ofCloseAllFiles()

OfOpenFile calls the RTOS OpenFile service, which opens an existing RTOS file. OfOpenkFile
takes the following arguments.

PFhRet specifies where ofOpenFile is to return the file handle. This value is similar in
use to a CTIX file descriptor. Functions that do I/O, reallocate, and delete files require a
valid file handle.

PbFileSpec and cbFileSpec specify the location and length of the file name. Operating system
processes lack a RTOS default path, so the name must begin with a volume name in

square brackets, [...], and a directory name in angle brackets, <...>. The remainder of

the name must match a name in the specfied directory, except that letters in the two

names can differ in case. (See ofcreate(3C).)

PbPassword and cbPassword specify the location and size of a password that authorizes
access to the file. The password required depends on the protection level of the file; see
Table 14-1 in the RTOS Operating System Manual. (Level 15 requires no password.) If no
password is needed, set cbPassword to 0 and PbPassword to anything.

Mode specifies the access mode: ’'mr’ for reading, 'mm’ for modifying.

A process that has file open in modify mode is the only process that can have the file open at all.
An attempt to open a file in modify mode will fail if any other process already has that file open.
An attempt to open a file in any mode will fail if another process already has that file open in
modify mode.

Suppose we want to open for reading a file on volume “sys” and directory ‘‘sys” called
“jonah.user”. The following example works if no password is required.

fnmp = ’[sys| <sys>jonah.user”;
if ((erc = ofOpenFile(&jhandle, fnmp, strlen(fnmp), 0, 0, 'mr’))

1= 0)

printf(”’CTOS open error %d\n”, erc);

OfCloseF'ile calls the RTOS service CloseFile which closes a file. Fh is a file handle previously
provided by ofOpenFule.

ofCloseAllFiles closes all the process’s RTOS files.

RTOS Operating System Manual, *‘File Management.”
ofcreate(3C) ofread(3C) ofdir(3C) ofstatus(3C) ofrename(3C) ofdir(3C)

OFOPENFILE (3C)

RETURN CODE
0 indicates success. If a modify mode ofOpenFile returns 220 (“File in use’), some other process

has the file open for reading or modifying. If a read mode ofOpenFile returns 220, some other

process has the file open for modifying. For other errors, see Appendix A in the RTOS Operating
System Manual.

OFREAD (3X) (System 6600 Only)

NAME
ofRead, ofWrite — Input/output on a RTOS file

SYNOPSIS
ofRead(fh, pBufferRet, sBufferMax, Ifa, psDataRet)
shortfh;
char *pBufferRet;
shortsBufferMax;
long Ifa;
char *psDataRet;

of Write(fh, pBuffer, sBuffer, Ifa, psDataRet)
shortfh;

char *pBuffer;

shortsBuffer;

long Ifa;

char *psDataRet;

DESCRIPTION

OfRead calls the RTOS service Read which inputs one or more sectors from a RTOS file. It takes
the following arguments:

° Fh is a file handle previously returned by ofOpen(3X).

° PBufferRet points to a region large enough to hold the sector(s) read. The region must
be on an even address; a union with a short int will force this.

. SBufferMaz is the number of bytes desired. This must be a multiple of 512.

. Lfa is the offset, from the beginning of the file, of the first byte to be read. This must be
a multiple of 512.

o PsDataRet Indicates where ofRead is to return the number of bytes actually read.

ofWrite calls the RTOS service Write , which ouputs one or more sectors. It takes the following

arguments:

. Fh is a file handle previously returned by OpenFile.

° PBuffer points to the data to be output. The data must begin at an even address.

. SBuffer indicates the number of bytes to be output. This must be a multiple of 512.

. indicates the offset, from the beginning of the file, to which the data is to be written.

This must be a multiple of 512.
® PsDataRet indicates where ofWrite is to return the number of bytes actually written.
The program must be loaded with the library flag —lctos.

SEE ALSO
RTOS Operating System Manual, ““File Management.”
ofcreate(3X) ofopen(3X) ofdir(3X) ofstatus(3X) ofrename(3X)
RETURN CODE

0 indicates success. OfWrite returns 2 (“End of medium”) if you attempt to write past the end
of the file. For other errors, see Appendix A in the RTOS Operating System Manual.

WARNING

If a RTOS process has written (or will read) binary integers to (from) the file, it stored (expects)
them with Intel byte-ordering. See swapshort(3).

OFRENAME (3X) (System 6600 Only)

NAME
ofRename — rename a RTOS file

SYNOPSIS
ofRename(fh, pbNewFileSpec, cbNewFileSpec, pbPassword, cbPassword)
shortfh;

char *pbNewFileSpec;
shortcbNewFileSpec;
char *pbPassword;
shortcbPassword;
DESCRIPTION
OfRename calls the RTOS service RenameFile, which renames a RTOS file. It takes the follow-
Ing arguments:

e Fh is a file hancle returned by a OpenFie in modify mode. This indicates the file to be
renamed.

o PbNewFieSpec and cbNewFileSpec specify the location and size of the file’s new name.

The file name must include the volume and directory names. The filename conventions are
the same as those for CreateFile(1).

e PbPassword and cbPassword specify the location and size of a password that authorizes the
insertion of a file in the specified directory. This password must match the volume or direc-
tory password. If volume or directory lacks a password, no password is needed; set cbPass-
word to 0 and PbPassword to anything.

The program must be loaded with the library flag —lctos.

SEE ALSO
RTOS Operating System Manual, *“File Management.”

ofereate(3X) ofopenfile(3X) ofread(3X) ofdir(3X) ofstatus(3X)
DIAGNOSTICS

0 indicates success. For errors, see Appendix A in the RTOS Operating Syster Manual.
WARNING

A rename to a new directory is meaningful; a rename to a new volume is not.

OFSTATUS(3X) (System 6600 Only)

NAME
of GetFileStatus, ofSetFileStatus — RTOS File Status

SYNOPSIS

ofGetFileStatus(fh, statusCode, pStatus, sStatus)
shortfh;

shortstatusCode;

char *pStatus;

shortsStatus;

ofSetFileStatus(fh, statusCode, pStatus, sStatus)
shortfh;

shortstatusCode;

char *pStatus;

shortsStatus;

DESCRIPTION

OfGetFileStatus and ofSetFileStatus call the RTOS GetFileStatus and SetFileStatus services,
which get and set file information. They take the following arguments:

~
e Fh is a file handle returned by an OpenFile in modify mode. StatusCode specifies the
information to be obtained or changed. StatusCode must be one of the following codes.
OfSetFileStatus only sets the items marked as settable.
Code Item Size Setable?
0 File length 4 No
1 File type 1 Yes
2 File protection level 1 Yes
3 Password 13 Yes
“' 4 Date/time of creation 4 Yes
5 Date/time last modified 4 Yes
6 End-of-file pointer 4 Yes
7 File Header Block 512 No
8 Volume Home Block 256 No
9 Device Control Block 100 No
10 FHB Application Field 64 Yes
e Pstatus and sStatus specify the location and size of the area that holds, or is to receive, the
data. If the area isn’t big enough, ofGetFileStatus right truncates the data to fit. When
— setting the password, use sStatus to indicate the password length. When getting the pass-
word, get the password length from the first byte in the data area.
—_ A RTOS time is represented by the following formula:
(d * 0x20000) + (m * 0x10000) + s
where d is the number of days since the beginning of March, 1952 (in the local time zone); m is 0
for midnight/AM, 1 for noon/PM; s is the number of seconds since the last midnight or noon.
The program must be loaded with the library flag —lctos.
SEE ALSO
RTOS Operating System Manual, “File Management.”
ofcreate(3X) ofopenfile(3X) ofread(3X) ofdir(3X) ofrename(3X) ofdir(3X)
RETURN VALUE
0 indicates success. For errors, see Appendix A in the RTOS Operating System Manual.

PERROR (3C)

NAME

perror, errno, sys_errlist, sys_nerr — system error messages
SYNOPSIS

void perror (s)

char *s;

extern int errno;

extern char *sys_errlist| |;

extern int sys_nerr;

DESCRIPTION
Perror produces a message on the standard error output. describing the last error encountered
during a call to a system or library function. The argument string s is printed first, then a colon
and a blank, then the message and a new-line. To be of most use, the argument string should
include the name of the program that incurred the error. The error number is taken from the

external variable errno, which is set when errors occur but not cleared when non-erroneous calls
are made.

To simplify variant formatting of messages, the array of message strings sys_errlist is provided;
errno can be used as an index in this table to get the message string without the new-line.
Sys_nerr is the largest message number provided for in the table; it should be checked because
new error codes may be added to the system before they are added to the table.

SEE ALSO
intro(2).

NAME

PLOT (3X)

plot — graphics interface subroutines

SYNOPSIS

openpl ()
erase ()

label (s)

char *s;

line (x1, y1, x2, y2)
int x1, y1, x2, y2;

circle (x, y, r)
int x, y, r;

arc (x, y, x0, y0, x1, yl)
int x, y, x0, y0, x1, y1;

move (x, y)
int x, y;

cont (x, y)
int x, y;

point (x, ¥)
int x, y;

linemod (s)
char *s;

space (x0, y0, x1, y1)
int x0, yO, x1, y1;

closepl ()

DESCRIPTION

These subroutines generate graphic output in a relatively device-independent manner. Space
must be used before any of these functions to declare the amount of space necessary. See plot(4).
Openpl must be used before any of the others to open the device for writing. Closep! flushes the
output.

Circle draws a circle of radius r with center at the point (z, y).

Arc draws an arc of a circle with center at the point (z, y) between the points (z0, y0) and (z1,
yl).
String arguments to label and linemod are terminated by nulls and do not contain new-lines.

See plot(4) for a description of the effect of the remaining functions.

The library files listed below provide several flavors of these routines.

FILES
/usr/lib/libplot.a produces output for tplot(1G) filters
/usr/lib/1ib300.a for DASI 300
/usr/lib/1ib300s.a for DASI 300s
/usr/lib/1ib450.a for DASI 450
/usr/lib/1ib4014.a for TEKTRONIX 4014

WARNINGS

In order to compile a program containing these functions in file.c it is necessary to use “cc file.c
-Iplot™.

In order to execute it, it is necessary to use “‘a.out | tplot’.

PLOT(3X)

The above routines use <stdio.h>>, which causes them to increase the size of programs, not oth-
erwise using standard I/O, more than might be expected.

SEE ALSO
graph(1G), stat(1G), tplot(1G), plot(4).

NAME

POPEN(3S)

popen, pclose — initiate pipe to/from a process

SYNOPSIS

#include <stdio.h>
FILE *popen (command, type)
char *command, *type;

int pclose (stream)
FILE *stream;

DESCRIPTION

The arguments to popen are pointers to null-terminated strings containing, respectively, a shell
command line and an I/O mode, either r for reading or w for writing. Popen creates a pipe
between the calling program and the command to be executed. The value returned is a stream
pointer such that one can write to the standard input of the command, if the I/O mode is w, by
writing to the file stream; and one can read from the standard output of the command, if the I/0
mode is r, by reading from the file stream.

A stream opened by popen should be closed by pclose, which waits for the associated process to
terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter and a type w as
an output filter.

SEE ALSO

pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

DIAGNOSTICS

BUGS

Popen returns a NULL pointer if files or processes cannot be created, or if the shell cannot be
accessed.

Pclose returns -1 if stream is not associated with a “popen ed”” command.

If the original and “popen ed”’ processes concurrently read or write a common file, neither should
use buffered I/O, because the buffering gets all mixed up. Problems with an output filter may be
forestalled by careful buffer flushing, e.g. with fflush; see fclose(3S).

PRINTF (3S)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
#include <stdio.h>>

int printf (format |, arg | ...)
char *format;

int fprintf (stream, format | , arg | ...)
FILE *stream;
char *format;

int sprintf (s, format | , arg | ...)
char *s, format;

DESCRIPTION
Printf places output on the standard output stream stdout. Fprintf places output on the named
output stream. Sprintf places “output,” followed by the null character (\0), in consecutive bytes
starting at *s; it is the user’s responsibility to ensure that enough storage is available. Each func-
tion returns the number of characters transmitted (not including the \O in the case of sprintf), or
a negative value if an output error was encountered.

Each of these functions converts, formats, and prints its args under control of the format. The
Jormat is a character string that contains two types of objects: plain characters, which are simply
copied to the output stream, and conversion specifications, each of which results in fetching of
zero or more args. The results are undefined if there are insufficient args for the format. If the
format is exhausted while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character 5. After the %, the following
appear In sequence:

Zero or more flags, which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width. If the converted value
has fewer characters than the field width, it will be padded on the left (or right, if the
left-adjustment flag ‘~’, described below, has been given) to the field width. If the field
width for an s conversion is preceded by a 0, the string is right adjusted with zero-
padding on the left.

A precision that gives the minimum number of digits to appear for the d, o, u, x, or X
conversions, the number of digits to appear after the decimal point for the e and f
conversions, the maximum number of significant digits for the g conversion, or the max-
imum number of characters to be printed from a string in s conversion. The precision

takes the form of a period (.) followed by a decimal digit string; a null digit string is
treated as zero.

An optional 1 (ell) specifying that a following d, o. u, x, or X conversion character
applies to a long integer arg. A 1 before any other conversion character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit string. In this
case, an integer arg supplies the field width or precision. The arg that is actually converted is
not fetched until the conversion letter is seen, so the args specifying field width or precision must
appear before the arg (if any) to be converted.

The flag characters and their meanings are:

- The result of the conversion will be left-justified within the field.

+ The result of a signed conversion will always begin with a sign (4 or —).

blank If the first character of a signed conversion is not a sign, a blank will be prefixed to
the result. This implies that if the blank and + flags both appear, the blank flag will

S

PRINTF (39)

be ignored.

This flag specifies that the value is to be converted to an “alternate form.” For ¢, d,
s, and u conversions, the flag has no effect. For o conversion, it increases the preci-
sion to force the first digit of the result to be a zero. For x or X conversion, a non-
zero result will have Ox or OX prefixed to it. For e, E, £, g, and G conversions, the
result will always contain a decimal point, even if no digits follow the point (normally,
a decimal point appears in the result of these conversions only if a digit follows it).
For g and G conversions, trailing zeroes will not be removed from the result (which
they normally are).

The conversion characters and their meanings are:

d,o,u,x,x The integer arg is converted to signed decimal, unsigned octal, decimal, or hexade-

e,E

g.G

%

cimal notation (x and X), respectively; the letters abcdef are used for x conversion
and the letters ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be represented in fewer
digits, it will be expanded with leading zeroes. (For compatibility with older versions,
padding with leading zeroes may alternatively be specified by prepending a zero to the
field width. This does not imply an octal value for the field width.) The default preci-
sion is 1. The result of converting a zero value with a precision of zero is a null string.
The float or double arg is converted to decimal notation in the style ‘‘[~]ddd.ddd,”
where the number of digits after the decimal point is equal to the precision specifica-
tion. If the precision is missing, six digits are output; if the precision is explicitly 0, no
decimal point appears.

The float or double arg is converted in the style “[~]d.ddde+dd,” where there is one
digit before the decimal point and the number of digits after it is equal to the preci-
sion; when the precision is missing, six digits are produced; if the precision is zero, no
decimal point appears. The E format code will produce a number with E instead of e
introducing the exponent. The exponent always contains at least two digits.

The float or double arg is printed in style f or e (or in style E in the case of a G for-
mat code), with the precision specifying the number of significant digits. The style
used depends on the value converted: style e will be used only if the exponent result-
ing from the conversion is less than —4 or greater than the precision. Trailing zeroes
are removed from the result; a decimal point appears only if it is followed by a digit.
The character arg is printed.

The arg is taken to be a string (character pointer) and characters from the string are
printed until a null character (\0) is encountered or the number of characters indi-
cated by the precision specification is reached. If the precision is missing, it is taken
to be infinite, so all characters up to the first null character are printed. A NULL
value for arg will yield undefined results.

Print a 9%; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is simply expanded to contain the conversion
result. Characters generated by printf and fprintf are printed as if putc(3S) had been called.

EXAMPLES

To print a date and time in the form ‘“‘Sunday, July 3, 10:02,” where weekday and month are
pointers to null-terminated strings:

printf(”%s, %s %d, %d:%.2d”, weekday, month, day, hour, min);

To print 7 to 5 decimal places:

SEE ALSO

printf(®pi = %.5(”, 4 * atan(1.0));

ecvt(3C), pute(3S), scanf(3S), stdio(3S).

PUTC(3S)

NAME
pute, putchar, fputc, putw — put character or word on a stream

SYNOPSIS
#include <stdio.h>
int putc (c, stream)
int c;
FILE *stream;
int putchar (c)
int c;
int fputc (c, stream)
int c¢;
FILE *stream;
int putw (w, stream)
int w;
FILE *stream;

DESCRIPTION
Putc writes the character ¢ onto the output stream (at the position where the file pointer, if
defined, is pointing). Putchar(c¢) is defined as putc(c, stdout). Putc and putchar are raacros.
Fpute behaves like putc, but is a function rather than a macro. Fputc runs more slowly than
putc, but it takes less space per invocation and its name can be passed as an argument to a func-
tion.
Putw writes the word (i.e. integer) w to the output stream (at the position at which the file
pointer, if defined, is pointing). The size of a word is the size of an integer and varies from
machine to machine. Putw neither assumes nor causes special alignment in the file.
Output streams, with the exception of the standard error stream stderr, are by default buffered if
the output refers to a file and line-buffered if the output refers to a terminal. The standard error
output stream stderr is by default unbuffered, but use of freopen (see fopen(3S)) will cause it to
become buffered or line-buffered. When an output stream is unbuffered, information is queued
for writing on the destination file or terminal as soon as written; when it is buffered, many char-
acters are saved up and written as a block. When it is line-buffered, each line of output is queued
for writing on the destination terminal as soon as the line is completed (that is, as soon as a new-
line character is written or terminal input is requested). Setbuf(3S) may be used to change the
stream’s buffering strategy.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts(3S), setbuf(3S).

DIAGNOSTICS
On success, these functions each return the value they have written. On failure, they return the
constant EOF. This will occu 'f the file stream is not open for writing or if the output file can-
not be grown. Because EOF is a valid integer, ferror(3S) should be used to detect putw errors.

BUGS

Because it is implemented as a macro, pute treats incorrectly a stream argument with side
effects. In particular, pute(c, *f++); doesn’t work sensibly. Fputc should be used instead.
Because of possible differences in word length and byte ordering, files written using putw are
machine-dependent, and may not be read using getw on a different processor.

PUTENV (3C)

NAME
putenv — change or add value to environment

SYNOPSIS
int putenv (string)
char *string;

DESCRIPTION
String points to a string of the form ‘“‘name=value.’’ Putenv makes the value of the environment
variable name equal to value by altering an existing variable or creating a new one. In either
case, the string pointed to by string becomes part of the environment, so altering the string will
change the environment. The space used by string is no longer used once a new string-defining
name is passed to putenv.

DIAGNOSTICS
Putenv returns non-zero if it was unable to obtain enough space via malloc for an expanded
environment, otherwise zero.

SEE ALSO
exec(2), getenv(3C), malloc(3C), environ(5).

WARNINGS
Putenv manipulates the environment pointed to by environ, and can be used in conjunction with
getenv. However, envp (the third argument to main) is not changed.
This routine uses malloc(3C) to enlarge the environment.
After putenv is called, environmental variables are not in alphabetical order.
A potential error is to call putenv with an automatic variable as the argument, then exit the cal-
ling function while string is still part of the environment.

PUTPWENT (3C)

NAME
putpwent — write password file entry
SYNOPSIS
#include <pwd.h>
int putpwent (p, f)
struct passwd *p;
FILE *f;
DESCRIPTION
Putpwent is the inverse of gefpwent(3C). Given a pointer to a passwd structure created by
getpwent (or getpwuid or getpwnam), putpwent writes a line on the stream f, which matches the
format of /ete/passwd.
DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its operation, otherwise zero.
SEE ALSO
getpwent(3C).
WARNING

The above routine uses <stdio.h>, which causes it to increase the size of programs, not other-
wise using standard I/O, more than might be expected.

PUTS(3S)

NAME

puts, fputs — put a string on a stream
SYNOPSIS

#include <stdio.h>

int puts (s)

char *s;

int fputs (s, stream)
char *s;
FILE *stream;
DESCRIPTION
Puts writes the null-terminated string pointed to by s, followed by a new-line character, to the
standard output stream stdout.
Fputs writes the null-terminated string pointed to by s to the named output stream.

Neither function writes the terminating null character.

DIAGNOSTICS

Both routines return EOF on error. This will happen if the routines try to write on a file that has
not been opened for writing.

SEE ALSO

ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S).
NOTES

Puts appends a new-line character while fputs does not.

QSORT(3C)

NAME
gsort — quicker sort

SYNOPSIS
void gsort ((char *) base, nel, sizeof (*base), compar)
unsigned int nel;
int (*compar)();

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. It sorts a table of data in place.

Base points to the element at the base of the table. Nel is the number of elements in the table.
Compar is the name of the comparison function, which is called with two arguments that point to
the elements being compared. The function must return an integer less than, equal to, or greater
than zero according as the first argument is to be considered less than, equal to, or greater than
the second.

NOTES
The pointer to the base of the table should be of type pointer-to-element, and cast to type
pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be contained in the
elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be cast into type
pointer-to-element.

SEE ALSO
sort(1), bsearch(3C), Isearch(3C), string(3C).

—

NAME

QUADD (3X) (System 6600 Only)

quAdd - add a new entry to a RTOS queue

SYNOPSIS

quAdd(pbQueueName, cbQueueName, fQueuelfNoServer, priority,

char
short
char
char
short
char
short

queueType, pEntry, sEntry, pDateTime, repeatTime)
*pbQueueName;

cbQueueName;

fQueuelfNoServer;

priority;

queueType;

*pEntry;

sEntry;

unsigned long*pDateTime;

short
DESCRIPTION

repeatTime;

QuAdd calls the RTOS AddQueueEntry service. An operating system process that wants to submit a

request to a RTOS queue server creates a queue entry with quAdd. QuAdd takes the following
arguments.

PbQueueName and cbQueueName describe the location and length of of a queue name.
This must be one of the queues mentioned in the RTOS file [sys] <sys>queue.index.

FQueuelfNoServer determines the action if the queue manager finds that no servers are
active for the specified queue. OxFF means to queue the entry anyway. O means abort
the queue entry.

Priority sets the queue entry’s priority. O is the highest priority, 9 is the lowest.

Queue Type is the type of queue. This must match the number given in the fourth field
of the queue’s entry is the queue index file.

PEntry and sEntry describe the size and location of entry data. The size and layout of
this data area is conventional for each queue.

PDateTime points to the service time. A server will serve the request no sooner than the
service time.

The service time must be in RTOS format:
(d * 0x20000) + (m * 0x10000) + s

where d is the number of days since the beginning of March, 1952 (in the local time
zone); m is O for midnight/AM, 1 for noon/PM; s is the number of seconds since the last
midnight or noon.

A service time of 0 means “undated’’; the queue manager provides servers for all undated
requests before it provides servers for any dated requests.

RepeatTime specifies a repeat interval. Unless this value is 0, the queue manager resub-
mits the request RepeatTime minutes after a queue server deletes it. Thus the request
repeats forever, with at least RepeatTime minutes between repetitions. An operating system process
can terminate this loop with quRemove(3X).

Queue servers run under RTOS and thus expect integers to have Intel byte-ordering. QuAdd
translates queueType, the date, and repeatTime, but does nothing about entry data. To translate
entry data, see swapshort(3).

The program must be loaded with the library flag —lctos.

QUADD (3X) (System 6600 Only)

FILES

[sys]<sys>queue.index - master queue index
SEE ALSO

quremove(3X), quread(3X).

RTOS Operating System Manual, “Queue Management.”
RETURN VALUE

0 indicates success. 254 (“Queue not served”) if fQueuelfNoServer is 0 and no servers are active
on the specified queue.

QUREAD (3X) (System 6600 Only)

NAME
quReadNext, quReadKeyed — examine RTOS queue

SYNOPSIS
structQueueStatusBlock {
long gehRet;
char priority;
char padding;
shortServerUserNumber;
long qehNextRet;

}s

quReadNext(pbQueueName, cbQueueName, geh,
pEntryRet, sEntryRet, pStatusBlock, sStatusBlock)

char *pbQueueName;

short cbQueueName;

long qeh;

char *pEntryRet;

short sEntryRet;

structQueueStatusBlock *pStatusBlock;

short sStatusBlock;

quReadKeyed(pbQueueName, cbQueueName, pbKeyl, cbKeyl, oKeyl,
pbKey2, cbKey2, oKey2, pEntryRet, sEntryRet,
pStatusBlock, sStatusBlock)

char *pbQueueName;

short cbQueueName;

char *pbKeyl;

short ¢bKeyl;

short oKeyl;

char *pbKey?2;

short cbKey2;

short oKey2;

char *pEntryRet;

short sEntryRet;

structQueueStatusBlock *pStatusBlock;

short sStatusBlock;

DESCRIPTION
QuReadNext and QuReadKeyed call the RTOS services ReadNextQueueEntry and Read-
KeyedQueueEntry. A queue client uses quReadNest or quReadKeyed to examine a RTOS
queue. Each call returns information on a single queue entry. QuReadNext and quReadKeyed
have the following arguments in common.

° PbQueueName and cbQueueName describe the location and size of a queue name.

) PEntryRet and sEntryRet describe the location and size of an area that is to receive
entry data. Size and layout of entry data is specific to each queue. If the area is smaller
than an entry’s data, the data is right-truncated to fit.

° PStatusBlock and sStatusBlock describe the location and size of an area that is to receive
the entry’s status block. If the area is smaller than sizeof(QueueStatusBlock) the
block is right-truncated to fit.

QuReadNext and quReadKeyed return the following values in the status block.

° QehRet is the queue entry handle. This integer value is unique for each entry in the
queu.

QUREAD (3X) (System 6600 Only)

. Priority is the priority of the entry.

. ServerUserNum is the RTOS user number of the queue server that has approrpriated

(marked) the request and plans to service it. If no server has appropriated the request,
serverUserNum is —1.

. QehNextRet is the queue entry handle for the next entry in the queue. If the current
entry is the last entry in the queue, QehNeztRet is —1.

The following argument is specific to quReadNext.

. Qeh specifies the queue entry to be read. 0 indicates the first queue entry; any other
value must be a queue entry handle.

This example passes the data for each entry in SPL to prentry().

gnl = strlen(gns == "SPL");
for (handle = 0; handle = -1; handle = status.QehNextRet) {
quReadNext(qnl, gns, handle, &data,
sizeof(data), &status, sizeof(status));
prentry{&status);

}

The following arguments are specific to quReadKeyed.

) PbKeyl and cbKeyl describe the location and size of the first search key. If there is no
first search key, set cbKeyl to O.

° OKeyl is the offset of the first search string. This is the offset, from the beginning of ths
entry data, of a string that is to be compared with the first search key. QuReadKeyed
assumes that the first byte of this string gives the size of the remainder of the string, If
there is no first search key, the function ignores oKeyl.

° PbKey?2 and cbKey? describe the location and size of the second search key. If there is
no second search key, set cbKey2 to 0.

° OKey? is the offset of the second search string. This is the offset, from the beginning of
the entry data, of a string that is to be compared with the second search key. QuRead-
Keyed assumes that the first byte of this string gives the size of the remainder of the
string. If there is no second search key, the function ignores oKey?2.

The client that calls guReadKeyed must supply 1 or 2 search keys. QuReadKeyed returns the
first entry that matches both search keys. If only one key is given, QuReadKeyed returns the
first entry that matches that single key.
The program must be loaded with the library flag —lctos.

FILES
[sys] <sys>queue.index — master queue index

SEE ALSO
quremove(3X) quadd(3X)

RETURN VALUE

0 indicates success. QuReadNext returns 904 (“Entry deleted”) if another client deletes a queue
entry between the time you get the entry’s handle and the time you try to read it.

NAME

QUREMOVE (3X) (System 6600 Only)

quRemove — take back a RTOS queue request

SYNOPSIS

quRemove(pbQueueName, cbQueueName, pbKeyl, cbKeyl, oKeyl,
pbKey2, cbKey2, oKey2)

char *pbQueueName;

shortcbQueueName;

char *pbKey1;

shortcbKey1;

shortoKey1;

char *pbKey2;

shortcbKey2;

shortoKey2;

DESCRIPTION

QuRemove calls the RTOS service RemoveKeyedQueueEntry. A queue client uses quRemove
to delete entries from a RTOS queue. gquRemove uses search keys to identify the requeust. It
takes the following arguments.

PbQueueName and cbQueueName describe the location and size of a queue name.

PbKeyl and cbKeyl describe the location and size of the first search key. If there is no
first search key, set cbKeyl to 0.

OKeyl is the offset of the first search string. This is the offset, from the beginning of the
entry data, of a string that is to be compared with the first search key. quRemove
assumes that the first byte of this string gives the size of the remainder of the string. If
there is no first search key, the function ignores oKey!.

PbKey? and cbKey? describe the location and size of the second search key. If there is
no second search key, set cbKey2 to 0.

OKey? is the offset of the second search string. This is the offset, from the beginning of
the entry data, of a string that is to be compared with the second search key. quRemove
assumes that the first byte of this string gives the size of the remainder of the string. If
there is no second search key, the function ignores

The client that calls guEemove must supply 1 or 2 search keys. quRemove deletes the first entry
that matches both search keys. If only one key is given, quRemove deletes the first entry that
matches that single key, oKey2.

The program must be loaded with the library flag ~lctos.

FILES

[sys] <sys>queue.index — master queue index

SEE ALSO

readqueue (3X) addqueue(3X)

RAND (3C)

NAME

rand, srand — simple random-number generator
SYNOPSIS

int rand ()

void srand (seed)
unsigned seed;
DESCRIPTION
Rand uses a multiplicative congruential random-number glenerator with period 2%2 that returns
successive pseudo-random numbers in the range from 0 to 2 1.

Srand can be called at any time to reset the random-number generator to a random starting
point. The generator is initially seeded with a value of 1.

NOTE
The spectral properties of rand leave a great deal to be desired. Drand48(3C) provides a much
better, though more elaborate, random-number generator.

SEE ALSO
drand48(3C).

REGCMP (3X)

regemp, regex — compile and execute regular expression

char *regemp (stringl [, string2, ...], (char *)0)
char *stringl, *string2, ...;

char *regex (re, subject[, ret0, ...])
char *re, *subject, *ret0, .. .;

extern char *__locl;

Regemp compiles a regular expression and returns a pointer to the compiled form. Malloc(3C) is
used to create space for the vector. It is the user’s responsibility to free unneeded space so allo-
cated. A NULL return from regemp indicates an incorrect argument. Regemp(1) has been written
to generally preclude the need for this routine at execution time.

Regex executes a compiled pattern against the subject string. Additional arguments are passed to
receive values back. Regex returns NULL on failure or a pointer to the next unmatched character
on success. A global character pointer __loc! points to where the match began. Regemp and
regex were mostly borrowed from the editor, ed(1); however, the syntax and semantics have been
changed slightly. The following are the valid symbols and their associated meanings.

These symbols retain their current meaning.
Matches the end of the string; \n matches a new-line.

Within brackets the minus means through. For example, [a—z] is equivalent to
[abed .. .xyz]. The — can appear as itself only if used as the first or last character.
For example, the character class expression []-] matches the characters] and —.

A regular expression followed by + means one or more times. For example, [0-9]+ is
equivalent to [0-9][0-9]*.

Integer values enclosed in { } indicate the number of times the preceding regular
expression is to be applied. The value m is the minimum number and u is a number,
less than 256, which is the maximum. If only m is present (e.g., {m}), it indicates the
exact number of times the regular expression is to be applied. The value {m,} is analo-
gous to {m,infinity}. The plus (4) and star (*) operations are equivalent to {1,} and
{0,} respectively.

The value of the enclosed regular expression is to be returned. The value will be stored
in the (n+1)th argument following the subject argument. At most ten enclosed regular
expressions are allowed. Regez makes its assignments unconditionally.

Parentheses are used for grouping. An operator, e.g., *, +, { }, can work on a single
character or a regular expression enclosed in parentheses. For example, (a*(cb+)*)$0.

By necessity, all the above defined symbols are special. They must, therefore, be escaped to be

NAME
SYNOPSIS
DESCRIPTION
[]=."
$
+
{m} {m,} {m,u}
(«..)8%n
used as themselves.
EXAMPLES

Example 1:
char *cursor, *newcursor, *ptr;

newcursor = regex((ptr = regcmp(” “\n”, 0)), cursor);
free(ptr);

This example will match a leading new-line in the subject string pointed at by cursor.

REGCMP (3X)

Example 2:
char ret0[9];
char *newcursor, *name;

name = regcmp(”([A~Za-z|[A-za-20-9_]{0,7})$0”, 0);
newcursor = regex(name, ”123Testing321”, ret0);
This example will match through the string “Testing3” and will return the address of the charac-
ter after the last matched character (cursor+11). The string “‘Testing3” will be copied to the
character array ret0.
Example 3:

#include "file.i”

char *string, *newcursor;

newcursc.)r' — regex(name, string);
This example applies a precompiled regular expression in file.i (see regemp(1)) against string.
This routine is kept in /lib/libPW.a.
SEE ALSO
ed(1), regemp(1), malloc(3C).
BUGS

The user program may run out of memory if regemp 1s called iteratively without freeing the vec-
tors no longer required. The following user-supplied replacement for malloc(3C) reuses the same
vector saving time and space:

/* user’s program */

char *
malloc(n)
unsigned n;
{
static char rebuf[512];
return (n <= sizeof rebuf) ? rebuf : NULL:

1y a—

SCANF (3S)

NAME
scanf, fscanf, sscanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf (format | , pointer | ...)
char *format;

int fscanf (stream, format [, pointer | ...)
FILE *stream;
char *format;

int sscanf (s, format [, pointer | ...)
char *s, *format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from the named input stream.
Sscanf reads from the character string s. Each function reads characters, interprets them accord-
ing to a format, and stores the results in its arguments. Each expects, as arguments, a control
string format described below, and a set of pointer arguments indicating where the converted
input should be stored.

The control string usually contains conversion specifications, which are used to direct interpreta-
tion of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which, except in two cases
described below, cause input to be read up to the next non-white-space character.

2. An ordinary character (not 95), which must match the next character of the input stream.

3. Conversion specifications, consisting of the character %, an optional assignment suppressing
character *, an optional numerical maximum field width, an optional 1 (ell) or h indicating the
size of the receiving variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the
variable pointed to by the corresponding argument, unless assignment suppression was indicated
by *. The suppression of assignment provides a way of describing an input field which is to be
skipped. An input field is defined as a string of non-space characters; it extends to the next inap-
propriate character or until the field width, if specified, is exhausted. For all descriptors except
“[" and ‘“‘c”, white space leading an input field is ignored.

The conversion code indicates the interpretation of the input field; the corresponding pointer
argument must usually be of a restricted type. For a suppressed field, no pointer argument is
given. The following conversion codes are legal:

% a single 2% is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an integer pointer.

u an unsigned decimal integer is expected; the corresponding argument should be an
unsigned integer pointer.

o an octal integer is expected; the corresponding argument should be an integer pointer.

x a hexadecimal integer is expected; the corresponding argument should be an integer
pointer.

ef,g a floating point number is expected; the next field is converted accordingly and stored
through the corresponding argument, which should be a pointer to a float. The input for-
mat for floating point numbers is an optionally signed string of digits, possibly containing
a decimal point, followed by an optional exponent field consisting of an E or an e, fol-
lowed by an optional +, —, or space, followed by an integer.

s a character string is expected; the corresponding argument should be a character pointer
pointing to an array of characters large enough to accept the string and a terminating \0,
which will be added automatically. The input field is terminated by a white-space char-
acter.

SCANF (39)

a character is expected; the corresponding argument should be a character pointer. The
normal skip over white space is suppressed in this case; to read the next non-space char-
acter, use %1s. If a field width is given, the corresponding argument should refer to a
character array; the indicated number of characters is read.

indicates string data and the normal skip over leading white space is suppressed. The left
bracket is followed by a set of characters, which we will call the scanset, and a righs
bracket; the input field is the maximal sequence of input characters consisting entirely of
characters in the scanset. The circumflex (*), when it appears as the first character in
the scanset, serves as a complement operator and redefines the scanset as the set of all
characters not contained in the remainder of the scanset string. There are some conven-
tions used in the construction of the scanset. A range of characters may be represented
by the construct first-last, thus [0123456789] may be expressed [0-9]. Using this conven-
tion, first must be lexically less than or equal to last, or else the dash will stand for itself.
The dash will also stand for itself whenever it is the first or the last character in the scan-
set. To include the right square bracket as an element of the scanset, it must appear as
the first character (possibly preceded by a circumflex) of the scanset, and in this case it
will not be syntactically interpreted as the closing bracket. The corresponding argument
must point to a character array large enough to hold the data field and the terminating
\O, which will be added automatically. At least one character must match for this
conversion to be considered successful.

The conversion characters d, u, o, and x may be preceded by 1 or h to indicate that a pointer to
long or to short rather than to int is in the argument list. Similarly, the conversion characters
e, f, and g may be preceded by 1 to indicate that a pointer to double rather than to float is in
the argument list. The 1 or h modifier is ignored for other conversion characters.

Scanf conversion terminates at EOF, at the end of the control string, or when an input character
conflicts with the control string. In the latter case, the offending character is left unread in the
input stream.

Scanf returns the number of successfully matched and assigned input items; this number can be
zero in the event of an early conflict between an input character and the control string. If the
input ends before the first conflict or conversion, EOF is returned.

EXAMPLES

The call:

int i, n; float x; char name[50];
n = scanf ("%d%f%s”, &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to ¢ the value 25, to z the value 5.432, and name will contain
thompson\0. Or:

int i; float x; char name[50];
(void) scanf (?%2d%f%*d %[0-9)”, &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to 1, 789.0 to z, skip 0123, and place the string 56\0 in name. The next call to
getchar (see getc(3S)) will return a.

SEE ALSO

gete(3S), printf(3S), strtod(3C), strtol(3C).

NOTE

Trailing white space (including a new-line) is left unread unless matched in the control string.

SCANF (3S)

DIAGNOSTICS
These functions return EOF on end of input and a short count for missing or illegal data items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

SETBUF (38)

NAME
setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf (stream, buf)
FILE *stream;
char *buf;

int setvbuf (stream, buf, type, size)
FILE *stream;
char *buf;

int type, size;

DESCRIPTION
Setbuf may be used after a stream has been opened but before it is read or written. It causes the
array pointed to by buf to be used instead of an automatically allocated buffer. If buf is the
NULL pointer input/output will be completely unbuffered.

A constant BUFSIZ, defined in the <stdio.h>> header file, tells how big an array is needed:
char buf{BUFSIZ];

Setvbuf may be used after a stream has been opened but before it is read or written. Type deter-
mines how stream will be buffered. Legal values for type (defined in stdio.h) are:

_IOFBF causes input/output to be fully buffered.

_IOLBF causes output to be line buffered; the buffer will be flushed when a newlire is writ-
ten, the buffer is full, or input is requested.

_IONBF causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used for buffering, instead of an
automatically allocated buffer. Size specifies the size of the buffer to be used. The constant
BUFSIZ in <stdio.h>> is suggested as a good buffer size. If input/output is unbuffered, buf and
size are ignored.

By default, output to a terminal is line buffered and all other input/output is fully buffered.
SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S).
DIAGNOSTICS
If an illegal value for type or size is provided, setvbuf returns a non-zero value. Otherwise, the
value returned will be zero.
NOTE

A common source of error is allocating buffer space as an “automatic’’ variable in a ccde block,
and then failing to close the stream in the same block.

SETJMP (3C)

NAME
setjmp, longjmp — non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp (env)
jmp_buf env;

void longjmp (env, val)
jmp_buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in a low-level sub-
routine of a program.

Setymp saves its stack environment in env (whose type, ymp_buf, is defined in the <setymp.h>
header file), for later use by longjmp. It returns the value 0.

Longjmp restores the environment saved by the last call of setymp with the corresponding env
argument. After longfmp is completed program execution continues as if the corresponding call of
setymp (which must not itself have returned in the interim) had just returned the value wval.
Longjmp cannot cause sefymp to return the value 0. If longjmp is invoked with a second argu-
ment of 0, setymp will return 1. All accessible data have values as of the time longimp was
called.

SEE ALSO
signal(2).

WARNING
If longymp is called when env was never primed by a call to setymp, or when the last such call is
in a function which has since returned, absolute chaos is guaranteed.

SINH(3M)

NAME
sinh, cosh, tanh — hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;
DESCRIPTION

Sinh, cosh, and tanh return, respectively, the hyberbolic sine, cosine and tangent of their argu-
ment.

DIAGNOSTICS
Sinh and cosh return HUGE (and sinhk may return ~-HUGE for negative z) when the correct
value would overflow and set errno to ERANGE.
These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
matherr(3M).

NAME

SLEEP (3C)

sleep — suspend execution for interval

SYNOPSIS

unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION

The current process is suspended from execution for the number of seconds specified by the argu-
ment. The actual suspension time may be less than that requested for two reasons: (1) Because
scheduled wakeups occur at fixed l-second intervals, (on the second, according to an internal
clock) and (2) because any caught signal will terminate the sleep following execution of that
signal’s catching routine. Also, the suspension time may be longer than requested by an arbitrary
amount due to the scheduling of other activity in the system. The value returned by sleep will
be the ‘““unslept” amount (the requested time minus the time actually slept) in case the caller had
an alarm set to go off earlier than the end of the requested sleep time, or premature arousal due
to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or some other signal)
occurs. The previous state of the alarm signal is saved and restored. The calling program may
have set up an alarm signal before calling sleep; if the sleep time exceeds the time till such alarm
signal, the process sleeps only until the alarm signal would have occurred, and the caller’s alarm
catch routine is executed just before the sleep routine returns, but if the sleep time is less than
the time till such alarm, the prior alarm time is reset to go off at the same time it would have
without the intervening sleep.

SEE ALSO

alarm(2), pause(2), signal(2).

SPAWN (3X) (System 6600 Only)

NAME
spawnlp, spawnvp — execute a process on a specific Application Processor

SYNOPSIS
int
spawnlp(apnum, directory, name, arg0, argl, ..., argn, 0)
int apnum;
char *directory;
char *name, *arg0, *argl, ..., *argn;

int

spawnvp(apnum, directory, name, argv)
int apnum;

char *directory;

char *name, *argv|];

extern char **environ;

DESCRIPTION
The spawn functions, spawnlp and spawnvp, execute a file on the specified System 6600 Applica-
tion Processor, creating a new process on that Processor. The practical effect is that of a
fork /exec sequence with the following differences:

. Spawn will create the new process on any Application Processor. Fork/ezec alwayvs
creates the new process on the parent process’s Application Processor.

. A spawn process is not a child of the process that called spawn; it is a child of the spawn
server on the designated Application Processor (spawnsrv(1M)). Thus the process that
called spawn cannot wait(2) for the new process’s death; use spwait(3X) instead. Also,
not all the attributes that are inherited accross a fork are inherited across a spawn.

. A fork /exec is less expensive than a spawn.

The spawn server passes the following attributes to the new process, based partially on the attri-
butes of the calling process:

® File descriptors 0, 1, and 2 (standard input, output, and error) of the new process are
open to /dev/null. None of the calling process’s file descriptors are available to the new
process.

° Signals caught by the calling process terminate the new process. Other signals (ignored

by or causing termination of the calling process) have the same effect on the new process
they had on the calling process.

. The new process inherits the following from the calling process, unchanged: environment
parameters (variables); file creation mask (umask(2)); effective user 1D and group ID.

. If the calling process’s effective user ID is 0, the new process inherits the calling process’s
real user ID and group ID. Otherwise, the new process’s real IDs are the same as its effec-
tive IDs.

The calling conventions for spawnlp and spawnvp are the same as for ezeclp and execvp (ezec(2)),
but with two additional parameters at the beginning:

apnum The number of the Application Processor that is to run the new process. Application
Processors are numbered from 0. Viewed from behind, Application Processors in the
rightmost enclosure are counted first, working left; within an enclosure, count left-to-
right. See the System 6600 Administrator’s Guide,

directory
A pointer to a null-terminated string identifying the new process’s working directory. If
directory is (char *) 0, (NULL in <stdio.h>) the new process’s working directory is
the same as the calling process’s. (Use of NULL is expensive: it causes a call to

SPAWN(3X) (System 6600 Only)

cwd(3).)

RETURN VALUE
Both functions return —1 on error; otherwise they return the process number of the new process.

SEE ALSO
apnum(1), pwd(1), spawn(1), apnum(2), fork(2), signal(2), getcwd(3C), spwait(3X), environ(5).

EXAMPLES
The following runs "myprog” in the same directory as the current process, but runs it on AP 01:

#define NULL ({char *) 0)
spawnlp(01, NULL, "myprog”, ” myprog”, "argl”, NULL);

The following runs a shell on the other AP:

spawnlp(01, ” /7, ” /bin/sh”, 7—sh”, "—¢”, "cd $HOME; exec myprog”, NULL);

SPUTL(3X)

NAME

sputl, sgetl — access long integer data in a machine-independent fashion.
SYNOPSIS

void sputl (value, buffer)

long value;
char *buffer;

long sgetl (buffer)
char *buffer;

DESCRIPTION
Sputl takes the four bytes of the long integer value and places them in memory starting at the
address pointed to by buffer. The ordering of the bytes is the same across all machines.

Sgetl retrieves the four bytes in memory starting at the address pointed to by buffer and returns
the long integer value in the byte ordering of the host machine.

The combination of sput! and sget! provides a machine-independent way of storing long numeric
data in a file in binary form without conversion to characters.

A program which uses these functions must be loaded with the object-file access routine library
libld.a.

SPWAIT(3X) (System 6600 Only)

NAME
spwailt — wait for spawned process to terminate

SYNOPSIS
spwait(pid, status)
int pid, *status;

DESCRIPTION
Spwait suspends the calling process until a signal is received or the process specified by process ID
ptd terminates. The specified process must have been previously spawned (spawn(3X)) by the
calling process.

If status is not equal to (int *) O, the word it points to receives two data:
o The high byte gets the low byte of the specified process’s ezif(2) parameter.

. The low byte get the specified process’s termination status (signal(2)). If the termination
status’s 0200 bit is set, the process produced a core image when it terminated.

SEE ALSO
spawn(1), exit(2), fork(2), signal(2), spawn(3x).

RETURN VALUE
If spwait returns due to the receipt of a signal, a value of —1 is returned to the calling process and
errno is set to EINTR. If wait returns due to a terminated spawn process, the process ID of the
child is returned to the calling process. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SSIGNAL(3C)

NAME
ssignal, gsignal — software signals

SYNOPSIS
#include <signal.h>
int (*ssignal (sig, action))()
int sig, (*action)();
int gsignal (sig)
int sig;
DESCRIPTION
Ssignal and gsignal implement a software facility similar to signal(2). This facility is used by the

Standard C Library to enable users to indicate the disposition of error conditions, and is also
made available to users for their own purposes.

Software signals made available to users are associated with integers in the inclusive range 1
through 15. A call to ssignal associates a procedure, action, with the software signal sig; the
software signal, sig, is raised by a call to gsignal. Raising a software signal causes the action
established for that signal to be taken.

The first argument to ssignal is a number identifying the type of signal for which an action is to
be established. The second argument defines the action; it is either the name of a (user-defined)
action function or one of the manifest constants SIG_DFL (default) or SIG_IGN (ignore). Ssignal
returns the action previously established for that signal type; if no action has been established or
the signal number is illegal, ssignal returns SIG_DFL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is reset to SIG_DFL and
the action function is entered with argument sig. Gsignal returns the value returned to it
by the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1 and takes no other action.
If the action for sig is SIG_DFL, gsignal returns the value 0 and takes no other action.

If sig has an illegal value or no action was ever specified for sig, gsignal returns the value 0
and takes no other action.

SEE ALSO
signal(2).
NOTES

There are some additional signals with numbers outside the range 1 through 15 which are used by
the Standard C Library to indicate error conditions. Thus, some signal numbers outside the range
1 through 15 are legal, although their use may interfere with the operation of the Standard C
Library.

STDIO (38)

NAME
- stdio — standard buffered input/output package
SYNOPSIS
#include < stdio.h>
FILE *stdin, *stdout, *stderr;
DESCRIPTION
The functions described in the entries of sub-class 3S of this manual constitute an efficient, user-
level 1/0 buffering scheme. The in-line macros gete(3S) and putc(3S) handle characters quickly.
The macros getchar and putchar, and the higher-level routines fgetc, fgets, fprintf, fputc, fputs,
fread, fscanf, fwrite, gets, getw, printf, puts, putw, and scanf all use or act as if they use getc
and putc; they can be freely intermixed.
A file with associated buffering is called a stream and is declared to be a pointer to a defined
type FILE. Fopen(3S) creates certain descriptive data for a stream and returns a pointer to
h designate the stream in all further transactions. Normally, there are three open streams with con-
stant pointers declared in the < stdio.h>> header file and associated with the standard open files:
- stdin standard input file
stdout standard output file
stderr standard error file
A constant NULL (0) designates a nonexistent pointer.
An integer-constant EOF (-1) is returned upon end-of-file or error by most integer functions that
deal with streams (see the individual descriptions for details).
An integer constant BUFSIZ specifies the size of the buffers used by the particular implementa-
tion.
- Any program that uses this package must include the header file of pertinent macro definitions,
as follows:
#include < stdio.h>
The functions and constants mentioned in the entries of sub-class 3S of this manual are declared
in that header file and need no further declaration. The constants and the following ‘“functions”
are implemented as macros (redeclaration of these names is perilous): getc, getchar, putc,
putchar, ferror, feof, clearerr, and fileno. ‘
SEE ALSO
open(2), close(2), lseek(2), pipe(2), read(2), write(2), ctermid(3S), cuserid(3S), fclose(3S), ferror(3S),
o fopen(3S), fread(3S), fseek(3S), getc(3S), gets(3S), popen(3S), printf(3S), putc(3S), puts(33),
scanf(3S), setbuf(3S), system(3S), tmpfile(3S), tmpnam(3S), ungetc(3S).
_ DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly including program termination.
Individual function descriptions describe the possible error conditions.
b SES

STDIPC (3C)

NAME
stdipc — standard interprocess communication package (ftok)

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok(path, id)
char *path;
char id;

DESCRIPTION

All interprocess communication facilities require the user to supply a key to be used by the
msgget(2), semget(2), and shmget(2) system calls to obtain interprocess communication identif-
iers. One suggested method for forming a key is to use the ftok subroutine described below.
Another way to compose keys is to include the project ID in the most significant byte and to use
the remaining portion as a sequence number. There are many other ways to form keys, but it is
necessary for each system to define standards for forming them. If some standard is not adhered
to, it will be possible for unrelated processes to unintentionally interfere with each other’s opera-
tion. Therefore, it is strongly suggested that the most significant byte of a key in some sense
refer to a project so that keys do not conflict across a given system.

Ftok returns a key based on path and ¢d that is usable in subsequent msgget, semger, and shmget
system calls. Path must be the path name of an existing file that is accessible to the process. [d
is a character which uniquely identifies a project. Note that ftok will return the same key for
linked files when called with the same ¢d and that it will return different keys when called with
the same file name but different ids.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS
Ftok returns (key_t) —1 if path does not exist or if it is not accessible to the process.

WARNING

If the file whose path is passed to ftok is removed when keys still refer to the file, future calls to
ftok with the same path and id will return an error. If the same file is recreated, then ftok is likely
to return a different key than it did the original time it was called.

STRING (3C)

NAME
strcat, strncat, stremp, strnemp, strepy, strncpy, strlen, strchr, strrchr, strpbrk, strspn, strespn,
strtok — string operations

SYNOPSIS
#include <string.h>

char *strcat (sl, s2)
char *sl, *s2;

char *strncat (sl, s2, n)
char *sl, *s2;
int n;

int stremp (sl, s2)
char *s1, *s2;

int strncmp (sl, s2, n)
char *sl1, *s2;

int n;

char *strcpy (sl, s2)
char *sl, *s2;

char *strncpy (sl1, s2, n)
char *s1, *s2;

int n;

int strlen (s)
char *s;

char *strchr (s, c)
char *s, c;
char *strrchr (s, ¢)
char *s, ¢;

char *strpbrk (sl, s2)
char *s1, *s2;

int strspn (sl, s2)
char *sl1, *s2;

int strespn (sl, s2)
char *sl1, *s2;

char *strtok (sl, s2)
char *s1, *s2;
DESCRIPTION
The arguments sI, s2 and s point to strings (arrays of characters terminated by a null character).

The functions strcat, strncat, strepy and strncpy all alter si. These functions do not check for
overflow of the array pointed to by s1.

Strcat appends a copy of string s2 to the end of string s1. Strncat appends at most n characters.
Each returns a pointer to the null-terminated result.

Stremp compares its arguments and returns an integer less than, equal to, or greater than O,
according as sI is lexicographically less than, equal to, or greater than s2. Strncmp makes the
same comparison but looks at at most n characters.

Strepy copies string s2 to s, stopping after the null character has been copied. Strncpy copies
exactly n characters, truncating s2 or adding null characters to s if necessary. The result will
not be null-terminated if the length of s2 is n or more. Each function returns s1.

NOTE

BUGS

STRING (3C)

Strlen returns the number of characters in s, not including the terminating null character.

Strehr (strrchr) returns a pointer to the first (last) occurrence of character ¢ in string s, or a
NULL pointer if ¢ does not occur in the string. The null character terminating a string is con-
sidered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string s1 of any character from string s2, or a
NULL pointer if no character from s2 exists in s1.

Strspn (strcspn) returns the length of the initial segment of string sI which consists entirely of
characters from (not from) string s2.

Strtok considers the string sI to consist of a sequence of zero or more text tokens separated by
spans of one or more characters from the separator string s2. The first call (with pointer s
specified) returns a pointer to the first character of the first token, and will have written a null
character into sI immediately following the returned token. The function keeps track of its posi-
tion in the string between separate calls, so that on subsequent calls {which must be made with
the first argument a NULL pointer) will work through the string sI immediately following that
token. In this way subsequent calls will work through the string s until no tokens remain. The
separator string s2 may be different from call to call. When no token remains in sI, a NULL
pointer is returned.

For user convenience, all these functions are declared in the optional < string.h> header file.

Stremp and strnemp use native character comparison, which is signed on Motorola
68000-family processors. This means that characters are 8-bit signed values; all ASCII char-
acters have values of at least 0; non-ASCII are negative. On some machines, all characters are

positive, Thus programs that only compare ASCII values are portable; programs that compare
ASCII with non-ASCII values are not.

Overlapping moves may yield surprises.

STRTOD (3C)

NAME
- strtod, atof — convert string to double-precision number

SYNOPSIS
double strtod (str, ptr)
char *str, **ptr;

double atof (str)
char *str;

DESCRIPTION
Strtod returns as a double-precision floating-point number the value represented by the character
string pointed to by str. The string is scanned up to the first unrecognized character.

Strtod recognizes an optional string of ‘‘white-space” characters (as defined by ¢sspace in
ctype(3C)), then an optional sign, then a string of digits optionally containing a decimal point,
then an optional e or E followed by an optional sign or space, followed by an integer.

If the value of ptr is not (char **)NULL, a pointer to the character terminating the scan is
returned in the location pointed to by ptr. If no number can be formed, *ptr is set to str, and
zero is returned.

Atof(str) is equivalent to strtod(str, (char **)NULL).

SEE ALSO
ctype(3C), scanf(3S), strtol(3C).

DIAGNOSTICS
If the correct value would cause overflow, +HUGE is returned (according to the sign of the value),
and errno is set to ERANGE.
If the correct value would cause underflow, zero is returned and errno is set to ERANGE.

STRTOL (3C)

NAME
strtol, atol, atol — convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *str, **ptr;
int base;
long atol (str)
char *str;
int atoi (str)
char *str;

DESCRIPTION
Strtol returns as a long integer the value represented by the character string pointed to by str.
The string is scanned up to the first character inconsistent with the base. Leading ‘“white-space”
characters (as defined by isspace in ctype(3C)) are ignored.
If the value of ptr is not (char **)NULL, a pointer to the character terminating the scan is
returned in the location pointed to by ptr. If no integer can be formed, that location is set to str,
and zero is returned.
If base is positive (and not greater than 36), it is used as the base for conversion. After an
optional leading sign, leading zeros are ignored, and “0x” or “0X”’ is ignored if base is 16.
If base is zero, the string itself determines the base thusly: After an optional leading sign a lead-
ing zero indicates octal conversion, and a leading “0x” or “0X” hexadecimal conversion. Other-
wise, decimal conversion is used.
Truncation from long to int can, of course, take place upon assignment or by an explicit cast.
Atol(str) is equivalent to strtol(str, (char **)NULL, 10).
Atoifstr) is equivalent to (int) strtolfstr, (char ** JNULL, 10).

SEE ALSO
ctype(3C), scanf(3S), strtod(3C).

BUGS

Overflow conditions are ignored.

SWAB(3C)

NAME
= swab — swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the array pointed to by to, exchanging adjacent
even and odd bytes. It is useful for carrying binary data between PDP-11s and other machines.
Nbytes should be even and non-negative. If nbytes is odd and positive swab uses nbytes—1
instead. If nbytes is negative, swab does nothing.

SWAPSHORT (3X) (System 6600 Only)

NAME
swapshort, swaplong - translate byte orders to Motorola/Intel

SYNOPSIS
swapshort(s)
short s;

swaplong(l)
long 1;

DESCRIPTION

Processes that run on a System 6600 Application Processor (operating system processes) do not store integers
the same way as do processes that run on other System 6600 Processors (RTOS processes). Operating system
processes use Motorola ordering; RTOS processes use Intel ordering. Operating system processes must
translate integers sent to or received from RTOS processes.

Library functions do this translation whenever they know an integer value is involved. For exam-
ple, AddQueueEntry translates integers that are supplied for all queue entries: the priority, the
queue type, and the data. But AddQueueEntry does not translate any integers in the entry data.

Swaplong translates to or from Intel four-byte integers. Swaplong returns { with its bytes in

reverse order. For example, if [is 4885001 (0x004A8A09) swaplong returns 160057856
(0x098A4A00).

Swapshort translates to or from Intel two-byte integers. Swapshort returns S with its bytes in
reverse order.

The program must be loaded with the —lctos library flag.

SYSTEM(3S)

NAME

system - issue a shell command
SYNOPSIS

#include <stdio.h>

int system (string)
char *string;

DESCRIPTION
System causes the string to be given to sh(1) as input, as if the string had been typed as a com-
mand at a terminal. The current process waits until the shell has completed, then returns the
exit status of the shell.

FILES
/bin/sh
SEE ALSO
sh(1), exec(2).

DIAGNOSTICS
System forks to create a child process that in turn exec’s /bin/sh in order to execute string. If
the fork or exec fails, system returns —1 and sets errno.

TERMCAP (3X)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs — terminal independent operarions

SYNOPSIS
char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum(id)
char *id;

tgetflag(id)
char *id;

char *

tgetstr(id, area)
char *id, **area;

char *

tgoto(cmstr, destcol, destline)
char *cmstr;

tputs(cp, affent, outc)
register char *cp;

int affent;

int (*outc)();

DESCRIPTION
These functions extract and use information from terminal descriptions that follow the conven-
tions in termcap(4). The functions only do basic screen manipulation: they finc and output

specified terminal function strings and interpret the em string. Curses(3X) describes a screen
updating package built on termcap.

Tgetent finds and copies a terminal description. Name is the name of the description; bp points
to a buffer to hold the description. Tgetent passes bp to the other termcap functions; the buffer
must remain allocated until the program is done with the termecap functions.

Tgetent uses the TERM and TERMCAP environment variables to locate the terrainal descrip-

tion.
° If TERMCAP isn’t set or is empty, tgetent searches for name in /etc/termeap.
. If TERMCAP contains the full pathname of a file {any string that begins with /),

tgetent searches for name in that file.

. If TERMCAP contains any string that does not begin with / and TERM is not set or
matches name, tgetent copies the TERMCAP string.

° If TERMCAP contains any string that does not begin with / and TERM does not
match name, tgetent searches for name in Jete/termeap.

Tgetent returns —1 if it couldn’t open the terminal capability file, 0 if it couldn’t find an entry for
name, and 1 upon success.

Tgetnum returns the value of the numeric capability whose name is éd. It returns -1 if the termi-
nal lacks the specified capability or it is not a numeric capability.

Tgetflag returns 1 if the terminal has boolean capability whose name is ¢d, 0 if it dces not or it is
not a boolean capability.

TERMCAP (3X)

Tgetstr copies and interprets the value of the string capability named by id. Tgetstr expands
instances in the string of \ and *. It leaves the expanded string in the buffer indirectly pointed to

by area and leaves the buffer’s direct pointer pointing to the end of the expanded string; for
example,

tgetstr(”cl”, &ptr);

where ptr is a character pointer -- not an array name! Tgetsér returns a (direct) pointer to the
beginning of the string.

Tgoto interprets the % escapes in a em string. It returns emstr with the % sequences changed to
the position indicated by destcol and destline. This function must have the external variables BC
and UP set to the values of the be and up capabilities; if the terminal lacks the capability, set
the external variable to null. If tgoto can’t interpret all the 9% sequences in em, it returns

“OOPS”

Tgoto avoids producing characters that might be misinterpreted by the terminal interface. If
expanding a % sequence would produce a null, control-d, or null, the function will, if possible,
send the cursor to the next line or column and use BC or UP to move to the correct location.
Note that tgoto does not avoid producing tabs; a program must turn off the TAB3 feature of the
terminal interface (termio(7)). This is a good idea anyway: some terminals use the tab character
as a nondestructive space.

Tputs directs the output of a string returned by tgetsir or tgoto. This function must have the
external variable PC set to the value of the pc capability; if the terminal lacks the capability, set
the external variable to null. Tputs interprets any delay at the beginning of the string. Cp is the
string to be output; affent is the number of lines affected by the action (1 if “number of lines
affected” doesn’t mean anything); and outc points to a function that takes a single char argu-
ment and outputs it, such as putchar.

FILES
Jusr/lib/libtermcap.a library
/ete/termeap data base
SEE ALSO

ex(1), curses(3), termcap(5)

TMPFILE (38)

NAME
tmpfile — create a temporary file

SYNOPSIS
#include <stdio.h>>

FILE *tmpfile ()

DESCRIPTION
Tmpfile creates a temporary file using a name generated by ¢mpnam(3S), and returns a
corresponding FILE pointer. If the file cannot be opened, an error message is printed using
perror(3C), and a NULL pointer is returned. The file will automatically be deleted when the pro-
cess using it terminates. The file is opened for update ("w+").

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), perror(3C), tmpnam(3S).

TMPNAM (35)

NAME
tmpnam, tempnam — create a name for a temporary file

SYNOPSIS
#include <stdio.h>
char *tmpnam (s)
char *s;
char *tempnam (dir, pfx)
char *dir, *pfx;

DESCRIPTION
These functions generate file names that can safely be used for a temporary file.
Tmpnam always generates a file name using the path-prefix defined as P_tmpdir in the
< stdio.h> header file. If s is NULL, tmpnam leaves its result in an internal static area and
returns a pointer to that area. The next call to tmpnam will destroy the contents of the area. If
s is not NULL, it is assumed to be the address of an array of at least L_tmpnam bytes, where
L_tmpnam is a constant defined in <stdio.h>; tmpnam places its result in that array and
returns s.
Tempnam allows the user to control the choice of a directory. The argument dir points to the
name of the directory in which the file is to be created. If dir is NULL or points to a string which
is not a name for an appropriate directory, the path-prefix defined as P_tmpdir in the
< stdio.h> header file is used. If that directory is not accessible, /tmp will be used as a last
resort. This entire sequence can be up-staged by providing an environment variable TMPDIR in
the user’s environment, whose value is the name of the desired temporary-file directory.
Many applications prefer their temporary files to have certain favorite initial letter sequences in
their names. Use the pfz argument for this. This argument may be NULL or point to a string of
up to five characters to be used as the first few characters of the temporary-file name.
Tempnam uses malloc(3C) to get space for the constructed file name, and returns a pointer to
this area. Thus, any pointer value returned from tempnam may serve as an argument to free (see
malloc(3C)). If tempnam cannot return the expected result for any reason, i.e. malloc(3C) failed,
or none of the above mentioned attempts to find an appropriate directory was successful, a NULL
pointer will be returned.

NOTES
These functions generate a different file name each time they are called.
Files created using these functions and either fopen(3S) or creat(2) are temporary only in the
sense that they reside in a directory intended for temporary use, and their names are unique. It is
the user’s responsibility to use unlink (2) to remove the file when its use is ended.

SEE ALSO
creat(2), unlink(2), fopen(3S), malloc(3C), mktemp(3C), tmpfile(3S).

BUGS

If called more than 17,576 times in a single process, these functions will start recycling previously
used names.

Between the time a file name is created and the file is opened, it is possible for some other process
to create a file with the same name. This can never happen if that other process is using these
functions or mktemp, and the file names are chosen so as to render duplication by other means
unlikely.

NAME

TRIG (3M)

sin, cos, tan, asin, acos, atan, atan2 — trigonometric functions

SYNOPSIS

#include <math.h>

double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double y, x;

DESCRIPTION

Sin, cos and tan return respectively the sine, cosine and tangent of their argument, z, measured
in radians.

Asin returns the arcsine of z, in the range -7/2 to /2.
Acos returns the arccosine of z, in the range 0 to 7.
Atan returns the arctangent of z, in the range ~7/2 to m/2.

Atan2 returns the arctangent of y/z, in the range -7 to 7, using the signs of both arguments to
determine the quadrant of the return value.

DIAGNOSTICS

Sin, cos, and tan lose accuracy when their argument is far from zero. For arguments sufficiently
large, these functions return zero when there would otherwise be a complete loss of significance.
In this case a message indicating TLOSS error is printed on the standard error output. For less
extreme arguments causing partial loss of significance, a PLOSS error is generated but no message
is printed. In both cases, errno is set to ERANGE.

If the magnitude of the argument of asin or acos is greater than one, or if both arguments of
atan? are zero, zero is returned and errno is set to EDOM. In addition, a message indicating
DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO

matherr(3M).

e

TSEARCH (3C)

NAME
tsearch, tfind, tdelete, twalk — manage binary search trees

SYNOPSIS
#include <search.h>

char *tsearch ((char *) key, (char **) rootp, compar)
int (*compar)();

char *tfind ((char *) key, (char **) rootp, compar)
int (*compar)();

char *tdelete ((char *) key, (char **) rootp, compar)
int (*compar)();

void twalk ((char *) root, action)
void (*action)();
DESCRIPTION

Tsearch, tfind, tdelete, and twalk are routines for manipulating binary search trees. They are
generalized from Knuth (6.2.2) Algorithms T and D. All comparisons are done with a user-
supplied routine. This routine is called with two arguments, the pointers to the elements being
compared. It returns an integer less than, equal to, or greater than 0, according to whether the
first argument is to be considered less than, equal to or greater than the second argument. The

comparison function need not compare every byte, so arbitrary data may be contained in the ele-
ments in addition to the values being compared.

Tsearch is used to build and access the tree. Key is a pointer to a datum to be accessed or
stored. If there is a datum in the tree equal to *key (the value pointed to by key), a pointer to
this found datum is returned. Otherwise, *key is inserted, and a pointer to it returned. Only
pointers are copied, so the calling routine must store the data. Rootp points to a variable that
points to the root of the tree. A NULL value for the variable pointed to by rootp denotes an

empty tree; in this case, the variable will be set to point to the datum which will be at the root of
the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it if found. How-
ever, if it is not found, tfind will return a NULL pointer. The arguments for tfind are the same as
for tsearch.

Tdelete deletes a node from a binary search tree. The arguments are the same as for tsearch.
The variable pointed to by rootp will be changed if the deleted node was the root of the tree.

Tdelete returns a pointer to the parent of the deleted node, or a NULL pointer if the node is not
found.

Twalk traverses a binary search tree. Root is the root of the tree to be traversed. (Any node in
a tree may be used as the root for a walk below that node.) Action is the name of a routine to be
invoked at each node. This routine is, in turn, called with three arguments. The first argument
is the address of the node being visited. The second argument is a value from an enumeration
data type typedef enum { preorder, postorder, endorder, leaf } VISIT; (defined in the <search.h>
header file), depending on whether this is the first, second or third time that the node has been
visited (during a depth-first, left-to-right traversal of the tree), or whether the node is a leaf. The
third argument is the level of the node in the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type pointer-to-element, and cast to
type pointer-to-character. Similarly, although declared as type pointer-to-character, the value
returned should be cast into type pointer-to-element.

EXAMPLE

The following code reads in strings and stores structures containing a pointer to each string and a

count of its length. It then walks the tree, printing out the stored strings and their lengths in
alphabetical order.

TSEARCH (3C)

#include <search.h>
#include <stdio.h>

struct node { /* pointers to these are stored in the tree */
char *string;
int length;

5

char string_space[10000]; /* space to store strings */

struct node nodes[500]; /* nodes to store */

struct node *root = NULL; /* this points to the root */

main()

{
char *strptr = string_space;
struct node *nodeptr == nodes;
void print_node(), twalk();
int i == 0, node_compare();

while (gets(strptr) !== NULL && i++ < 500) {

/* set node */

nodeptr->>string = strptr;

nodeptr->>length = strlen(strptr);

/* put node into the tree */

{(void) tsearch({char *)nodeptr, &root,
node_compare);

/* adjust pointers, so we don’t overwrite tree */

strptr += nodeptr->length + 1;

nodeptr+-+;

twalk(root, print_node);

}

/%
This routine compares two nodes, based on an
alphabetical ordering of the string field.

*/

int

node_compare(nodel, node2)

struct node *nodel, *node2;

{

}
/*

return stremp(nodel->>string, node2->>string);

This routine prints out a node, the first time
twalk encounters it.

¥/

void

print_node{node, order, level)

struct node **node;

VISIT order;

int level;

{
if (order —= preorder || order === leaf) {

(void)printf(”string — %?20s, length = %d\n”,

TSEARCH(3C)

(*node)->string, (*node}->length);

SEE ALSO

bsearch(3C), hsearch(3C), Isearch(3C).

DIAGNOSTICS

A NULL pointer is returned by tsearch if there is not enough space available to create a new
node.
A NULL pointer is returned by tsearch, tfind and tdelete if rootp is NULL on entry.

If the datum is found, both tsearch and tfind return a pointer to it. If not, tfind returns NULL,
and tsearch returns a pointer to the inserted item.

WARNINGS

BUGS

The root argument to twalk is one level of indirection less than the rootp arguments to tsearch
and tdelete.

There are two nomenclatures used to refer to the order in which tree nodes are visited. Tsearch
uses preorder, postorder and endorder to respectively refer to visting a node before any of its chil-
dren, after its left child and before its right, and after both its children. The alternate nomencla-

ture uses preorder, inorder and postorder to refer to the same visits, which could result in some
confusion over the meaning of postorder.

If the calling function alters the pointer to the root, results are unpredictable.

TTYNAME (3C)

NAME
ttyname, isatty — find name of a terminal
SYNOPSIS

char *ttyname (fildes)
int fildes;

int isatty (fildes)
int fildes;

DESCRIPTION

Ttyname returns a pointer to a string containing the null-terminated path name of the terminal
device associated with file descriptor fildes.

Isatty returns 1 if fildes is associated with a terminal device, O otherwise.

FILES

/dev/*
DIAGNOSTICS

Ttyname returns a NULL pointer if fildes does not describe a terminal device in directory /dev.
BUGS

The return value points to static data whose content is overwritten by each call.

-

TTYSLOT(3C)

NAME

ttyslot — find the slot in the utmp file of the current user
SYNOPSIS

int ttyslot ()
DESCRIPTION

Ttyslot returns the index of the current user’s entry in the /etc/utmp file. This is accomplished
by actually scanning the file /ete/utmp for the name of the terminal associated with the stan-
dard input, the standard output, or the error output (0, 1 or 2).

FILES
/ete/utmp

SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS

A value of 0 is returned if an error was encountered while searching for the terminal name or if
none of the above file descriptors is associated with a terminal device.

UNGETC(3S)

NAME
ungetc — push character back into input stream

SYNOPSIS
#include <stdio.h>

int ungete (c, stream)
int ¢;
FILE *stream;

DESCRIPTION
Ungetc inserts the character ¢ into the buffer associated with an input stream. That character,
¢, will be returned by the next gete(3S) call on that stream. Ungetc returns ¢, and leaves the
file stream unchanged.
One character of pushback is guaranteed, provided something has already been read from the
stream and the stream is actually buffered. In the case that stream is stdin, one character may
be pushed back onto the buffer without a previous read statement,

If ¢ equals EOF, ungete does nothing to the buffer and returns EOF.
Fseek(3S) erases all memory of inserted characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S).

DIAGNOSTICS
Ungetc returns EOF if it cannot insert the character.

VPRINTF (35)

NAME
~ vprintf, vfprintf, vsprintf - print formatted output of a varargs argument list
SYNOPSIS
#include <stdio.h>
#include <varargs.h>
int vprintf (format, ap)
char *format;
va_list ap;

int vfprintf (stream, format, ap)
FILE *stream;
char *format;
va_list ap;
int vsprintf (s, format, ap)
char *s, *format;
va_list ap;
DESCRIPTION
vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and sprintf respectively, except that
instead of being called with a variable number of arguments, they are called with an argument
list as defined by varargs(5).
EXAMPLE
The following demonstrates how vfprintf could be used to write an error routine.

#include <stdio.h>
#include <varargs.h>

/*
* error should be called like
* error(function_name, format, argl, arg2...);
*
/*VARARGS0*/
void
error(va_alist)
— /* Note that the function_name and format arguments cannot be
* separately declared because of the definition of varargs.
*/
—_ va_dcl
{
va_list args;
char *fmt;
va_start(args);
/* print out name of function causing error */
(void)fprintf(stderr, ERROR in %s: ?, va_arg(args, char *));
fmt = va_arg(args, char *);
/* print out remainder of message */
(void)vfprintf(fmt, args);
va_end(args);
(void)abort();
- &

VPRINTF (3S)

SEE ALSO -
printf(3S), varargs(5).

WMGETID (3X)

NAME

wmgetid — get window ID
SYNOPSIS

#include <oa/wm.h>

int wmgetid(fildes);
int fildes;

DESCRIPTION

Wmgetid returns the window ID associated with the file descriptor fildes. A window ID is a posi-
tive integer that identifies the window associated with the file descriptor. The ID is passed to
other window management library functions to identify the particular window being acted upon.

The only way to get a valid window ID is from a window management library call; do not use a
value obtained any other way.

To get all the window IDs for a terminal, use the layout structure written by wmlayout(3X) or
wmop(3X). To associate a file descriptor with a different window, use wmsetid(3X)
Wmgetid fails if one or more of the following are true:

Fildes is not an open file descriptor. [EBADF]

The indicated file does not represent a terminal, or the terminal cannot support window
management. [ENOTTY]
The window manager is not running on the terminal. [ENOENT]
FILES
/dev /tty*
/usr/lib/libwm.a — window management library
_ SEE ALSO
wm(1), wmop(3X), wmlayout(3X), wmsetid(3X).
RETURN VALUE

If success, the window ID associated with fildes. Otherwise, -1 is returned and errno is set.

WMLAYOUT (3X)

NAME
wmlayout ~ get terminal’s window layout

SYNOPSIS
#include <oa/wm.h>

int wmlayout(fildes, layout)
int fildes;
struct wm_layout *layout;

DESCRIPTION

Wmlayout fetches a description of the screen layout of a terminal under window management,
Fildes is a file descriptor associated with the terminal’s special file by an creat, dup, fentl. or
open system call; the association of fildes with a particular window is not used. Layout points to
an area that is to receive the description. Before calling wmlayout, a program must set
layout->mazweount to indicate the number of window descriptions the area can accomdate; the
constant WM_MAX gives the number of windows currently permitted. The description consists

of the following data structures:

struct wm_layout {
int cwindowid;
short maxwcount;
short wecount;
struct wm_wlayoutw[WM_MAX] ;

b

struct wm_wlayout {
int windowid;
short pwindowid;
short startrow;
short startcolumn;
short drows;
short dcolumns;
short syncrow;
short synccolumn;
short vrows;
short vcolumns;
short crow;
short ccolumn;
char reserved[6]; /* must be 0 */

Here are the meanings of the fields in a wm_layout structure:

cwindowid The window ID of the active window.

mazweount Number of window descriptions this structure has room for. Normally set to

WM_MAX, 5o as to get all of them.
wcount Number of windows currently on terminal.
w Array of individual window descriptions.
Here are the meanings of the fields in a wm_wlayout structure:
windowid The window ID.

pwindowid The physical window ID. Meant only for window Mmanagement internal use.

startrow Starting physical row of the window (the tag line is on the row before).

—

startcolumn

drows

dcolumns
syncrow

synccolumn

Vrows
vcolumns
crow
ccolumn

reserved

WMLAYOUT (3X)

Starting physical column of the window. Currently this value is always 1.

The number of displayed rows in the window. Note that the tag line is not counted
in this value.

The number of displayed columns in the window. Currently this value is always 80.
Virtual display row that corresponds to the first row of the window.

Virtual display column that corresponds to the first column of the window.
Currently this value is always 1.

Number of rows in virtual display.

Number of columns in virtual display. Currently this value is always 80.
The current cursor row number.

The current cursor column number.

Always zeroes.

Rows and columns are numbered from 1.

A window ID is a positive integer that identifies the window associated with the file descriptor.
The ID is passed to other window management library functions to identify the particular window
being acted upon. The only way to get a valid window ID is from a window management library
call; do not use a value obtained any other way.

Currently, physical windows always start in column zero and physical windows and virtual
displays are always 80 columns wide.

Wmlayout will fail if one or more of the following are true:

Fildes is not an open file descriptor. [EBADF]

The indicated file does not represent a terminal, or the terminal cannot support window
management. [ENOTTY]

The structure pointed to by windowreq is invalid. [EINVAL]

The window manager is not running on the terminal. [ENOENT].

FILES

/usr/lib/libwm.a — window management library.

/dev /tty*
SEE ALSO

wm(1), wmgetid(3X), wmsetid(3), wmop(3X).

RETURN VALUE

Success returns 0; failure returns —1 and sets errno to indicate the error.

WMOP (3X)

NAME
wmop —~ window management operations

SYNOPSIS
#include <oa/wm.h>

int wmop(fildes, windowreq, layout)
int fildes;

struct wm_request *windowreq;
struct wm_layout *layout;

DESCRIPTION

Wmop manipulates windows on a terminal under window management. It is normally used by
application programs. Fildes is a file descriptor associated with the terminal’s special file by an
creat, dup, fentl, or open system call; the association of fildes with a particular window is not
used. Windowreq is a a pointer to a structure that describes the operation. Layout is an optional
pointer to a layout structure of the type used by wmlayout; if present, the structure is filled with

the new description of the window.
The request structure is defined as follows:

struct wm_request {

E

mt request;

int windowid;
int (*notify)()
short startrow;
short startcolumn;
short drows;
short dcolumns;
short syncrow;
short synccolumn;
short vrows;

short veolumns;
short crow;

short ccolumn;

Only two fields in the request structure are used by all operations:

Request specifies the operations desired. Request is the bitwise or of the operation con-
stants described below.

Windowid specifies a window usually with a window ID returned by a previous wmop,
wmlayout, or wmgetid. The only way to get a valid window ID is from a window
management library call; do not use a value obtained any other way. If the operations do
not include WM_CREATE (create a new window), windowid is a window ID that specifies
the single window to which the operations apply. If the operations do include
WM_CREATE, windowid must be either a window ID, indicating the window that yields
space for the new window, or 0, a value with special meanings described under
WM_CREATE and WM_START; the other operations apply to the new window.

WM_CREATE Create a new window. Other operations describe the new windcw’s charac-

teristics; if no other operations are specified with WM_CREATE, the new
window has the following characteristics:

° The new window occupies the bottom half of the window specified by
windowtd. If windowid is 0, the new window occupies the bottom half
of the active window.

WM_DESTROY

WM_DSIZE

WM_DRSIZE

WM_DSTART

WM_DRSTART

WM_VSIZE

WM_VRSIZE

WM_VSTART

WMOP (3X)

e The new window’s virtual display 1s 28 lines long.

e The cursor is on the first line of the new window’s virtual display, which
is also the first line of the new window.

o The user is permitted to split the new window only if the old window
permitted user splits. See WM_SPLIT.

Destroy the window. If the window i1s the top window, the destroyed
window’s rows go to the window below; otherwise the destroyed window’s
rows go to the window above. If the destroyed window was the active win-
dow, the window that gets the destroyed window’s rows is activated.

Change window size. This operation can be modified by WMDRSIZE; this
description assumes it i1s not. The window size, which does not include the
window’s tag line, can vary from 0 to 26. Drows specifies the new window
size.

If WM_DSIZE is specified with WM_CREATE, drows specifies the new

window’s size.

Modifies WM_DSIZE so that drows specifies an offset relative the current
value, rather than an absolute size. Drows can be negative.

If WM_DSIZE and WM_DRSIZE are specified with WM_CREATE, drows
specifies the new window’s size relative to the size of the old window. Thus
in this case, drows must be negative.

Set the starting row of the window (not the tag line, which is automaticaliy
on the row before). This operation may be modified by WM_DRSTART; this
description assumes it is not. Rows are numbered from 1, and a window can
start on any row from 2 to 28. Startrow specifies the new starting row.

IF WM_DSTART is specified with WM_CREATE and windowid is 0, startrow
specifies the new window’s starting position on the screen, without reference
to an existing window.

Modifies WM_DSTART so that startrow specifies an offset relative the
current value, rather than an absolute starting row. Startrow can be negative.

If WM_DSTART and WM_DRSTART are specified with WM_CREATE,
startrow must be non-negative; the new window starts startrow rows after the
start of the old window. If startrow is 0, the new window takes the top por-
tion of the old window’s rows instead of the bottom. If startrow is positive,
WM_DSIZE is ineffective: the size of the new window is dictated by the size
of the old.

Set virtual window size to vrows long. The operations can be modified by
WM_VRSIZE. In any case, the virtual display must be 1 to 28 rows long.

If the virtual display is shortened past the cursor, the cursor must be moved
to within the new virtual display end. If the WM_CURSOR operation is not
specified at the same time, the terminal moves the cursor to the new last line
of the virtual display.

Modifies WM_VSIZE so that vrows is an offset to the present value. Vrows
can be negative.

Synchronize the window and its virtual display by making virtual display row
syncrow (numbered from 1) the first row on the window. This operation can
be modified by WM_VRSTART. The window manager will modify a
WM_VSTART operation as necessary to keep the window from extending
past the bottom of the virtual display. If the cursor is visible, the terminal

FILES

WM_VRSTART
WM_SELECT

WM_DESELECT

WM_CURSOR
WM_SPLIT

WM_NSPLIT

WM_NOTIFY

WMOP (3X)

software will modify a WM_VSTART operation as necessary to keep the cur-
sor in the window.

Modify WM_VSTART so that syncrow is an offset to the present value. Syn-
¢row can be negative.

Mazke the window the active window.

If the window is the active window, make another window the active window:
if the designated window is the top window, the window below; otherwise tl:e
window above.

Position the cursor on row crow.

Enable change of splitting permission. Used in conjunction with
WM_NSPLIT. If WM_SPLIT is specified alone: the user can split the win-
dow as long as the terminal can handle another window. If WNM_SPLIT and
WM_NSPLIT are specified together, the SPLIT key is ineffective when the
window is active.

Disable window split. Always used in conjunction with WM_SPLIT, which
see.

Notfiy is a notify procedure. Set nofify to (int (*)()) 0 to disable an existing
notify procedure. The calling process will be interrupted and notify called f
any other process or the user changes the status of the window. Window
status includes window size, location, and whether it is active, but does nct
inciude cursor location.

Currently, all windows and displays must begin in column 0 and be 80 columns wide.

Wmop fails if one or more of the following are true:

Fildes is not an open file descriptor. [EBADF]

The indicated file does not represent a terminal, or the terminal cannot support window
management. [ENOTTY]

The structure pointed to by windowreq is invalid. |[EINVAL)|

The window manager is not running on the terminal. |[ENOENT]

RETURN VALUE
If the operations were successful, the window ID of the affected window (the new window if one
was created) is returned. Otherwise, ~1 is returned and errno is set.

WARNINGS

Use wmop conservatively and with extreme care. Indescriminate use by programs competing for
window space can result in race conditions and screen image instability.

The window manager and terminal software silently enforce basic consistency. A program must
not make assumptions about what the window looks like after a successful wmop; instead it must
examine the new wmlayout structure to find out what actually happened.

/dev /tty*

/usr/lib/libwm.a - window management library
SEF ALSO
signal(2), wmgetid(3), wmlayout(3), wmsetid(3).

ferror(3S) to get file descriptor for terminal accessed with standard input/output package.

WMSETID (3X)

NAME
wmsetid, wmsetids — associate a file descriptor with a window
SYNOPSIS
#include <oa/wm.h>
int wmsetid(fildes, windowid)
int windowid;
int fildes;
int wmsetids(fildes, windowid)
int windowid;
int fildes;
DESCRIPTION
Wmsetid and wmsetids change the window with which a file descriptor is associated. Fildes must
be a file descriptor open to a terminal on which the window manager is running. Fides becomes
associated with the window (on the same terminal) indicated by weindowid, which must be a win-
dow ID obtained from a previous wmgetid(3X), wmlayout(3X), or wmop (3X) call.
If a program performs a wmsetid on an inherited file descriptor, all processes that have inherited
and use the same file descriptor and the process they inherited it from are affected. By conven-
tion, 0 (equivalent to fileno(stdin)) 1 (equivalent to fileno(stdout)) and 2 (equivalent to
fileno(stderr)) are inherited file descriptors. The following code closes and reopens them so that a
wmsetid on them doesn’t affect other processes. It should be executed before terminal
input/output begins.
tty=ttyname(0);
close(0);
close(1);
open(tty, O_RDWRY);
close(2);
dup(0);
dup(0);
Be sure to complete buffered terminal output before switching windows. See fclose(3S) if you use
the standard input/output package.
Wmsetid and wmsetids are different only when executed by a process group leader. If the process
group leader calls wmsetids and the specified window is not already a controlling window for
another process group, the specified window becomes the process group’s controlling window.
(For more details on control windows, see termio(7) and window(7).) Wmsetid never changes the
controlling window under any circumstances.
Wmsetid and wmsetids fail if one or more of the following are true:
Fildes is not an open file descriptor. [EBADF]
The indicated file does not represent a terminal, or the terminal cannot support window
management. [ENOTTY]
The structure pointed to by windowreq is invalid. [EINVAL]
The window manager is not running on the terminal. [ENOENT)]
FILES

Jdev /tty*
/usr/lib/libwm.a — window management library

SEE ALSO

wm(1), wmop(3X), wmlayout(3X), wmgetid(3X).
ferror(3S) - fileno function

WMSETID (3X)

ttyname(3C), open(2), close(2), dup(2).
RETURN VALUES

A nonnegative value indicates success: 0 if the file descriptor wasn't associated with a window
before the call, the old window ID otherwise. On error, -1 is returned and errno is set.

