
rNrRo ( 3 )

NÄME
intro - introduction to subrouüines and libraries

SYNOPSIS
ffinclude <stdio.h)
ffinclude (math.h)

DESCRIPTION
This section describes functions found in various libraries, other than those functions that directly
invoke operating system primitives, which are described in Section 2 of ihis volume. Certain major
collections are identified by a letter after the section number:
(3C) These functions, üogether with those of Section 2 and those marked (3S), constitute the

Standard C Library /iäc, which is automatically loaded by the C compiler, cc(1). The link
editor ld(1) searches this library under the -lc option. Declarations for some of these func-
tions may be obtained from finclude files indicated on the appropriate pages.

(3M) These functions constitute the Math Library, fiörn. They are not automatically loaded by
the C compiler, cc(1); however, the Iink editor searches this library under the -lrn option.
Declarations for these functions may be obtained from the finclude file (rnath.h).

(3S) These functions constitute the "standard I/O package" (see stdio(3S)). These functions are
in the library lföc, already mentioned, Declarations for these functions may be obtained
from the finclude file <stdio.h).

(3X) Various specialized libraries. The files in which these libraries are found are given on the
appropriate pages.

Two groups of entries represent direct communication with RTOS. Functions whose names begin
with of ("outside file system") provide RTOS-style input/output. Functions whose names begin
with qu ("queue") provide access to RTOS queue management.

DEFINITIONS
A character is any bit pattern able to fit into a byte on the machine. The null character is a
character with value 0, represent,ed in the C language ar '\0'. A character array is a sequence of
characters. A null-terminated character amay is a sequence of characters, the last of which is the
null character. A atring is a designation for a null-terrninated character array. The null string is
a character array containing only ihe null character. A NULL pointer is the value that is
obtained by casting O into a pointer. The C language guarantees that this value will not match
that of any legitimate pointer, so many functions that return pointers return it to indicate an
error. MILL is defined as O in (stdio.h); the user can include his own definition if he is not
using (stdio.h>.

FILES
/lib/libc.a
/lib/libm.a

SEE ALSO
ar(1), cc(1), ld(1), nm(l), intro(2), stdio(3S).

DIAGNOSTICS
Functions in the Math Library (3M) may return the conventional values O or HUGE (the largest
single-precision floating-point number) when the function is undefined for the given arguments or
when the value is not representable. In these cases, the ext,ernal variable errno (see fztro(2)) is
set to the value EDOM or ERANGE.

WAB,NING
Many of the functions in the libraries call and/or refer to other functions and external variables
described in this section and in section 2 (system Calls). If a program inadvertantly defines a
function or external variable with the same name, the presumed library version of the function or
external variable may not be loaded. The lfnt(1) program checker reports name conflicts of this
kind as t'multiple declarations" of the names in question. Definitions for sections 2,3C, and 3S

-l-



INTRo ( 3 )

are checked automatically. Other definitions can be included by using the -l ':pt:ion (l'or e:<ample

-lrn includes definitions for the Math Library, section 3M). Use ol lint is highly recorrrmended'

i)



A64L( 3C )

NAME
a641, l64a - convert between long integer and base-64 AscII stringSYNOPSIS
Iong aOat (s)
char *s;

ehar *t64a (l)
Iong l;

DESCRIPTION
These functions are used to maintain numbers stored in base-6| ASCII characters. This is a nota-
ä,ll ;T'lrffrfffH#" be represented bv up to six chara"t"*; ".Ä .haracter represents a

älu*::Tä',Ti1":äTl:.11_;1':its" are . ror 0, / ror t,o rhrough s ror 2-il, A rhrough Z
A6ll takes a pointer to a null'terminated.base-64 representation and returns a corresponding longvalue' If the string pointed to by c contains more than six characte rc, a6ll will use the first six.L6la takes a long argument and returns a pointer üo the co,esponding base-64 representation.If the argument is 0, ldf a reburns a pointer to a null string.

BUGS

#:;.il;eturned 
by l6la is a pointer inüo a static buffer, rhe contents of which are overwri*en

-t-



ABoRr(3c )

NAME
abort - generate an IOT' fault,

SYNOPSIS
int abort ( )

DESCRIPTION
Abort first closes all open files if possible, then causes an IOT signal to b,e sent to the process.
This usually results in termination with a core dump.

It is possible for abort to return control if SIGIOT is caught or ignored, in which crase the value
returned is that of the ,tr'll(2) system call.

SEE AISO
adb(l), sdb(1), exit(2), kill(2), sisnal(Z).

DIAGNOSTICS
If SIGIOT is neither caught nor ignored, and the current directory is wribabl:, a ,rore dum.p is
produced and the message "abort - core dumped" is written by the shell.

-l-



ABs( 3c )

NAME
abs - return integer absolute value

SYNOPSIS
int abs (i)
int i;

DESCRIPTION
Aös returns the absolute value of its integer operand.

BUGS
In two's-complement representation, the absolute value of the negative integer with largest mag-
nitude is undefined. Some implementations trap this error, but others simply ignore it.

SEE ALSO
floor(eM).

-1-



ASSERT( 3X)

NAME
ässert - verify prograrn assertion

SYNOPSIS
finclude (assert.h)
assert (expression)
int expression;

DESCRIPTION
This rnacro is useful fr:r putting diagnostics into programs. When it is exe<:ute'd, if erpressirrn is
false (zerc,), ossert prints

".Assertion failed: etpression, file xyz, line nnn"
on the standard error output and aborts. In the error message, xyz is the namr: of l,he s,curcr: file
and nnn the source line number of the assert statement.
Compiling with the preprocessor option -DNDEBUG (see cpp (f)), or with the preprocessor con-
trol st,aternent "fdefine NDEBLIG" ahead of thettffinclude (assert,.h)" statement, will stop
assertions from being compiled into the program.

SEE ALSO
cpp(1), abort(3C).

-t-



Aror ( 3c )

NAME
atof - convert ASCII string to floaüing-point number

SYNOPSIS
double atof (nptr)
char *nptrl

DESCRIPTION
Atof converts a character string pointed to by nptr to a double-precision floating-point number.
The first unrecognized character ends the conversion. Atof rccoglizes an optional string of
while-space characters, then an optional sign, then a string of digits optionally containing a
decimal point, then an optional e or E followed by an optionally signed integer. If the string
begins with an unrecognized character, ato/ returns the value zero.

DIAGNOSTICS
When the comect value would overflow, ato/returnsHUGE, and sets errno to ERANGE. Zero is
returned on underflow.

SEE ALSO
scanf(3S).

-l-



BESSEL(3M )

NAME
j0, j1, jn, y0, yl, yn - Bessel functions

SYNOPSIS
ffinclude (math.h.>
double jo (*)
double x;
double jr (*)
double x;
double jn (n, x)
int n;
double x;
double y0 (*)
double x;
double yl (x)
double x;
double yn (n, x)
int n;
double x;

DESCRIPTION
J0 and 7) return Bessel functions of c of the first kind of orders 0 and l respectively. Jn rellurns
the Bessel function of c of the first kind of order n.
Y0 and yl return Bessel functions of c of the second kind of orders 0 arrd I resfrectively. yn
returns the Bessel function of t of the second kind of order n. The value ol'c noust be positive.

DIACNOSTICS
Non-positive arguments cause g0, yl and yn to return the value -HUGII and to set cnno toEDOM. In addition, a message indicating DOMAIN error is printed on the stanclard ,error output.
Argumenl,s too large in magnitude cause j0, il, y0 and. y.l to return zero arLd to set errna taERANGE In addition, a message indicating TLOSS error is printed on the standard error ouliput.
These error-handling procedures may be changed with the function matherr(3M.1.

SEE AI,SO
matherr(SM). .--.

-1-



BSEARCH( 3C )

NAME
bsearch - binary search a sorted table

SYNOPSIS
Sinclude (search.h)
char *bsearch ((char *) k.y, (char *) base, nel, sizeof (*k"y), compar)
unsigned nell
int (*comp""X );

DESCRIPTION
Bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It returns a
pointer into a table indicating where a datum may be found. The table must be previously sorted
in increasing order according to a provided comparison function. Key points to a datum instance
to be sought in the table. Bose points to the element at the base of the table. ly'el is the number
of elements in the table. Compar is the name of the comparison function, which is called with
two arguments that point to the elements being compared. The function must return an integer
less than, equal to, or greater than zero as accordinly the first argument is to be considered less
than, equal to, or greater than the second.

EXAMPLE
The example below searches a table containing pointers to nodes consisting of a string and its
length. The table is ordered alphabetically on the string in the node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node and prints out the
string and its length, or prints an error message.

#include <stdio.h)
finclude <search.h)

ffdefine TABSIZE 10m

struct node { l* these are stored in the table */
char *string;
int length;

);
struct node table[TABSIZE]; /* table to be searched */

struct node *node3tr, node;
int node-compare( ); /* routine to compare 2 nodes */
char str spacefzo]; /* space to read string into */

node.string : §tr:sPace;
while (scanf("Vor", node.string) !: EOF) {

node-ptr : (struct node *)bsearch((char *)(&node),
(char *)table, TArlslZE,
sizeof(struct node), node-compare);

if (node-ptr !: N'IILL) {
(void)printf("string : Voz\s, length : /sd\n",

node-ptr-)string, node-ptr-) length);
) else {

(void)printf('not found: Vos\n", node.string);

-1-



BSEARCTT( 3C )

This routine compares two nodes based on an
alphabetical ordering of the string field.*l

irrt
node_compare(node1, node2)
struct node *node1, *node2;

{
return strcmp(nodel-)string, node2-)string);

)
NOTES

The pointers to the key and the element at the base of the table should be of type pointr:r-t,o-
element, and cast to type pointer-to.character.
The comparison function need not compare every byte, so arbitrary data m.ay be contairred irr tht:
elements in addition t«: the values being compared.
Although declared as type pointer-to.character, the value returned should be cast .into type
pointer-to-element.

SEE AISO
hsearch(3C), lsearch(3C), qsort(3C), tsearch(3C).

DIAGNOSTICS
A NULL prointer is returned if the key cannot be found in the table.

)

-2-



cl,ocK( 3c )

NAME
clock * report CPU time used

SYNOPSIS
long clock ( )

DBSCRIPTION
C/oc& returns the amount of CPU time (in microseconds) used since the first, call to clocle . The
time reported is the sum of the user and system times of the calling process and its terminated
child processes for which it has executed wait(Z) or systern(3S).
The resolution of the clock is 16.667 milliseconds on operating system Processors.

SEE AISO
times(2), wait(2), system(3S).

BUGS
The value returned by clock is defined in microseconds for compatibility with systems that have
CPU clocks with much higher resolution. Because of this, the value returned will wrap around
after accumulating only 2147 seconds of CPU time (about 36 minutes).

-1-



coNv(3c)

NAME
toupper, iolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS
finclude (ctype.h)
int toupper (c)
int c;
int tolower (c)
int c;
int -toupper (c)
int c;
int _tolower (c)
int c;
int toascii (c)
int c;

DESCRIPTION
Toupper ar,d tolower have as domain the range of getc(3S): the integers from -1 ttLroug;h 255. If
the argurnent of toupper represents a lower-case letter, the result is the corresponding upper.case
letter, If the argument of tolower represents an upper-case letter, the resuLlt is the corrr:sponding
Iower-case letter. AII ot,her arguments in the domain are returned unchanggd.
The macros -toupper and -tolower, are macros that accomplish the samer thing a; tsu:2per and,
tolower but have restricted domains and are faster. -toupper requires a lower-case let,ter as its
argument; its result is the corresponding upper-case letter. The macro _tolower require,s an
upper-ca§e letter as its argument; its result is the corresponding lower-case )[etter. Arguments out-
side the domain cause undefined results.
Toascii yields its argument with all bits turned off that are not part of a stan,Card ASCI charac-
ter; it is intended for compatibility with other systems.

SEE AISO
ctype(3C), getc(3S).

-l-



CRYPT( 3C )

NAME
crypt, setkey, encrypt - generate DES encryption

SYNOPSIS
char *crypt (key, salt)
char *key, *salt;

void setkev (kev)
char *key;

void encrypt (block, edflag)
char *block;
int edflag;

DESCRIPTION
Crypt is the password encryption function. It is based on the NBS Data Encryption Standard
(»OS), with variaiions intended (among other things) to frustrate use of hardware implementa-
tions of the DES for key search.

Key is a user's typed password. Salt is a two-character string chosen from the set, la-zA-ZO-9./);
this string is used to perturb the DES algorithm in one of 4096 different ways, after which the
password is used as the key to encrypt repeatedly a constant string. The returned value points to
the encrypted password. The first two characters are the salt itself'
The setkey and encrypt entries provide (raüher primitive) access to the actual DES algorithm.
The argument of setkey is a character array of length 64 containing only the characters with
numerical value 0 and 1. If this string is divided into groups of 8, the low-order bit in each group
is ignored; this gives a 56-bit key which is set into the machine. This is the key that will be used
with the above mentioned algorithm to encrypt or decrypt the string älocfr with the function
encrypt.
The argument to the encrypt entry is a character array of length 64 containing only the charac-
ters with numerical value 0 and 1. The argument array is modified in place to a similar array
representing the bits of the argument after having been subjected to the DES algorithm using the
key set by setkey . ß edflag is zero, the argument is encrypted; if non-zero, it is decrypted.

SEE AISO
login(1), passwd(1), getpass(3C), passwd(4).

BUGS
The return value points to static data that are overwritten by each call.

-1-



CTERMTD ( 35 )

NAME
ctermid - generate file name for terminal

SYNOPSIS
ffinclude (stdio.h).
char *ctermid(s)
char *s;

DESCRIPTION
Ctermid generates the path name of the controlling terminal for the currenl; prc)cess, and stores it
in a string.
If s is a NIILL pointer', the string is stored in an internal static area, the cont,ents of u,hich are
overwritten at the ne::t call to ctermid, and the address of which is returned. Ol;hervrise, s is
assumed to point to a ,:haracter array of at least L-ctermid elements; the path name is place'd in
this array and the value of s is returned. The constanL L-cterrnid is defined irL the ( stdio h)
header file, ,

NOTES -\\
The difference between ctermiil ard ttyname(3c) is Lhat ttyname must be h:ende,d a I'ile descriptor
and returns the actual name of the terminal associated with that file desr:riptor, lrhile ctermiil
returns a string (/dev/tty) that will refer to the terminal if used as a file name. Thrrs t1ynante is
useful only if the process already has at least one file open to a terminal.

SEE AISO
ttyname(3C).

-1-



cqrl.tTTllY\. - : | \ ,,r,,

'l 4 '1li
ssin j t. - initl al iz'e n charaef or-s-ot t'rans'l at'ion t'able

qY},'1PS I S
rrr.rofino cs"1nYSl7. 1

/li nclude (e s . h)
'rinclr;de (etyne.h)
llinel rrde (stdio.h)

st rrret csttbl n

csini t (f i lenane, si -1 ent, st.atus )
reflist,er ehar *f i-r enare;
reqister int si'l ent i
register int *status;

nq_qcq I PTrO ll
Csini t{ 1X) eonstrrroLs r character-set t.ransl ation dat:r slrtroture frorn a
eharaeter-set transl atj on sc:rroe f i1e. Csinj.t reads t,he so';rce file
na:'ner! hv its (fj. lename) rrfirrrnent, eonverts it t.o a est1,bl" eharact-er-set
trans'lat.ion t;tG; änri ret.urns a pointer lo lhat struel;ure. Validati,on
of the eharact,er-set tr:nslation sorrree fi1e is perforr:ed. The P'llTURll
rra''! rte of esinit. is )lULL if t.he eonvorsion operat,ion wes unstrccessful.
"lhe osttbl str uct-rrre i.s shown in Fipt:re csinit-1.

1\4 Ch:rraeter set t.rans'l-ation t?b1e argttment,.
l* The llser proqrarn shoulrj riefine CS''IAXSIZ as t.he naxirlun translaticn
{ t.able size it is orepared to handle and set es tnax to that value.

IIifrJef cSl'14ISrZ
strl.ret. estt.trl. {

int cs-trnex; /r shoul'd be set t'o csl^lAXStZ */
un'i on {

strrtet estt,hdr cs_hdr;
char es tbl l'CSr'ltlxSTZ r ;

]es u:
1.
/re n,r i I

Eigrrre Csinit-1. fs1;t,bl Struet.tlre

I



iqIrlIrGx)

lsinit. rpqrlqnpl,5 3ps3

(li. lpnar.e) \lr:no of t.\e clrarret.ar-set lransl-ation sosree fite.
(silent) trl ng to sel oel or rlesel.eet. .rintins of error nessages. Tf'

rhe (si t ent) arclrmenr. is FtLSt, then diagnosties are rrritt,en
on t-he s'Lan'lar.'l error f il-e.

(stat.us) St.atus word Lo ref I eet. co:rrl eLj.on siat.rrs. 1'alues f cr
eornL+tion stat.us rre def ined in the es.h hea:ier f i1e.

-his ror.rtine resides in tlre fi,re /rrsr/1ih/1ihes.a. The prrop; r:rn rnrrst, he
]-oarJe:l r+it,h the orrject-fi1e, aceess-rcutine, library 1,ibcs.a.

lT 4 i'rOSf 11;q
'rhen tho (silent) arsr.lnent is tr{LSFI , esinit, trites error ness?gr?s of the
fo11c,,,irq--j6;;ft; its stanriarrl error Tlte- The ?r'l repres,ent,s tlre line
nunhtr of the t,rarsl at ion t.ahl e at nhieh the error oceurred ; 7,n

reDrosont.s t.ho eharacter-set, nunber.

line arl - reJecla.atiorr of c\araeter set. 4n
line {rl - r.tndelined eharaeter set nu'n'5er 7n
r j ne 'd - f ornat.T St,at.?rent unexfrected
lino o4 - inboun.l sLaternent'.tnexpeete'l
line'd - or.rtborrnr-i steterrent. trrt?xnected
line 'd - nu,n}rer r>f ent.ries does not nateh defined range
lino'1 - transla",e.stat4npnt nissing aceent valrre
l.ine qd - trans'l T l.e stat,ement nissinq e\araet.er set nunber
I ine 'd - t.ransl ale slat:rrlent. nissing hiph ranEe value
li.ne dd - translatn st:rtenent mi.ssinq innut sequenee
I ine dd - trans]-ate staterrent rrissinc 1ow ranqe value
line 7d - no prinarv eharacter set, defined
I ine 'd - t,rans lat.e st,::tenent. rnissing ranqe lcev..vord
l.ine drJ - syntax error

SEE lLSO
estrans ( ?Y \ , esternio (7 )



tqTP a r:s ( "Y )

NA'!E
cstrans - perform chareeter-Set. LrrlnS:l ation

SYNNPS IS
Jf inelude (sys,/esintern.h )
/tinclu<Je (cs.h)

cstrans (esdn)
register Cq!''LTP es,lp;

DESCRI PTTC}!
Cst,rans t,ranslates chareet.ers fron one br.rlfer t.o.another throlrgh a
t,ransl.at.ion t"able. .it t-ranslales eharaeters unt-il, either t.he orrt,nrlt,
buf fer hecones frrl I or thp I np1t. llrrf fer i s enpt y.

rts arr',rrncnt,, (esdn), i.s lhe adrlress cf a 'lata strrrctrrro that. ooints t,o
an innttt buf fer, a t.ranslation tarrle, and an out pttt brrf f cr, anii eont.ains
lnformation:leserihing the eurrent stat,e of +-he !:.ranstation.

This suhrcutine p::ckage hanrlles t.ranslatj.on of data ttrat nev he
represent.e4 as XSTS 05q414 Strin11S, externer, deviee eo.les, or -nternal 1r.,-
bit eharaeters. Tnput rJata is in a huffer of rrnsiqneC char or short.
Tha outpltt, rlata i s plaeerl into a slrniLar tsrulfer. For orr'iboun:l ch:tr:eters
that are not. in interne ! eharaeter-set 0 "rn.i lhat, har.re no .ltre'l.ared .nt!'y
in the translation'iahle, est.rans(3)') srrhst.itrr+-3s a question narr<
eharaeter ( ?) .

There are five translation rodes, ,'ll'l of whieh irse nn internal 1fi-bit
charaetor innr:t or orrtpr-lt hrrtrer, wit.h +-ho other hr:ffer being eit!:er o-
bj-t. eharaet.ers or int,ernal'l r:-bjl eh3raet.rs. T;hl,e estrilns-l rieserj.hes
these node s .

TalrLe Cst.rans-1. Character Translat'ton rr6rles

Llode Fttnetion

0 Transl ate fron internaf 16-hit to intqrnal. 16-bit, r;.sing an
int,ernal t,ranslat ion labIe. Thi. s node ei.t.her enforees t.hei'lotoro.l a prirrate eharaeter-set or avoids th: ehar:reter s^t-s
for lroLorola ppivat.e, ) iqatrtre, anC aecent,od eharacters.

1 Transl.at.e {'ro:n ext.ernal.-rieviee eharaeter eode to internal j5-
hit eharaeters t.hror,rqh an external-rJerrice trans'l...rt.ion'-ahIe.

a



i5'rq 1.1. ( ?y )

Ta\l e Cst,rans-2 . n\tr:eter Transl.ation ,1odes (Continued )

"ode Errncticn

2 Tran,ql,at.q oro:r lrternel 15-hi t- ch:raeters to YSrS 0Ic4{l,l
st.rinqs with ont j cns ror 15-lrit st.ringlet.s or for 7-trit;
represent,at.ions.

3 Trans-l.a!r: fron Y--.1 13 05ql04.sr_rinc!s to internal l{-bit
eharaeters.

\ ' Transl at.' frorl int.erna.l. l5-Ir j t, ehlr:ret.ers to ext.ernal-rletrice
eharaet.ot- eorlrs t-hro:rh an externa.'l--device transl.ati.3n tab1e.

ls 'tn otJtDllt ri l t.er, t,hreo t.r::nsr'etici'rs v,ror:1d i"le aprlie d irr seqrrer,-rce:

'lrlrJe a l'ode 0 rtsi nq e,s tost,d ^1ole ll r-rsinq a de:vice-.'^pgif i6:
r,ransl ation t:lh1e.'

To refornat xsrs 0qa'ln,J s+_rings, forrr t.ranslat,ions eorrl,l he appl j.ecl . For
exrrnol e, to refornat ther to 'fcLorol.;r, lriv"t,e, eh:rr.rqlgp-5str rltl []
strinos, r15q lh.e follorvino s^qllpnce:

"ode ' '!9r! s 1 ,sing cs_tost,l lrodr, 0 usinq es_f.olrri i'oC,l 2

Oth-r eorhinat.ions of t.r,.rnslnt,ion no.ies c'ln b? used. The onl y
reqrii.rerrenl: is ih.,:t. eaeh otrt-Jrlrt Srllfer r:l.i.st bc in t-he lorn exfiect.eC for
t,he next. transl .t j on r s j nDrrt. r.rrrf ler .

The external, .leviee-trarr slation jnput sr,ltions nrrst. pt^orr j-ce ,:f.eraet,rrs
i n +-he strn.iard int;erna l eharaetor sel;s, avoiding sets l'10, 360, anC?61. lhp, nay as,srjre t.hrt t.heir- inn,rt con?s fron tl:at s:re s.L;:n,rarcforn. Thq es tosl.i translation tahl.e rs an.oliod to innrrt strinss t.o
enstt!'e tho stin.larr innrrt forn.
This eorrvention merrns 1--h,.tt, ortt,nut l,ransl ation t.:b.l es .,!o no.f h,:rro t,ohandle a'l I +.he differ^nt- for.s t,hat are leqat. For exarnpl,:, Lhe a.

rj ieresi.s iynhol ( ) c,cn he !-e)re.sent.,.rl in t.hree dii.ferent .irrternal l:rn:;:
.10n><1'l t> <.).r0><'1 01> standar^ forn: dieresi.s anr] ilN.w
(3rr1)(n'17> t,he eeecrrted e heract.r ren,jr:rinri
(n40><2ll 1> t.he t'o1-.orol,e nrivale forrn

{'lsor cor devieos tlret aeentrt tire TSI forns, no t.ranslati.on is requireri.tror sone r.ardcooy der,rie:s thet ,iol., tt :eeeDt the I3C forr, 1th3 äcee.ltls c;rn
st j.,l I he :ranlre.:l t.o (aceent.) i"rci /heel,en.ee).



csTnd\'s ( tx )

This rorrt.ine resides in th+ file /rrsr/1ib/'!.ibcs.a. The progran rnust be
I carle.i vrit.h t,he ot-. ject,-fi1.e, ac"eEtiilEFffiräry 1ihc.s. a.

SEE AI.SO
esirr it ( ?Y )
Series 5000 Internat.iona l Support. Paekaße Feference l''lanuaI

-1-



cTrME ( 3c )

NAME
ctime, Iocaltime, gmtirrre, asctime, tzset - convert date and time to string

SYNOPSIS
finclude (time.h)
char *ctirne (clock)
Iong *clockl
struct trrr +localtime (clock)
long *clockl
struct trn *grntime (clock)
long *clockl
char *asctirne (trn)
struct trn *trnl
extern long tirnezonel
extern int daylight;
extern char *tzname[2];

void tzset ( )
DESCRIPTION

Ctime converts a long integer, pointed Lo by clock, representing the time in seconds since
00:00:00 CIMT, January 1, 1970, and returns a pointer to a 26-character string; in r;he folloll.ing
form. All the fields have constant width.

Sun Sep 16 01:tl3:52 1973\n\0
Localtime and qmtime return pointers to "tm" structures, descritred belovr. Localt.ime corrects
for the time zone and possible Daylight Savings Time;gmtime converts directly to Green,wich
Mean Time (GMT), which is the time the operating system uses.

Asctime converts a "tln" structure to a 26-charact,er string, as shown in the above r:xample, ,and
returns a pointer to the string.
Declarations of all the functions and externals, and the "tm" structure, zrle in th,: ( tiime.h)
header file. The structure declaration is:

struct tm {
int tm_sec; /* seconds (0 - 59) ./
int tm_min; /* minutes (0 - 59) */
int tm_hcur; /* hours (0 - ß) * I
int tm_nrday; l* day of month (1 - 31) */
int tm_mon; /* month of year (0 - 11) */
int tm3ear: f* year - 1900 */
int tm_t'day; l* duy of u'eek (Sunday : 0) */
int tm3day; l* day of year (0 - 365) */
int tm_isdst;

);
Tm_isdst is non-zero if Daylight Savings Time is in effect.
The external long vari able timezone contains the difference, in seconds, betrver:n GIvIT eund local
standard time (in F,ST, timezone is 5*60*60); the external variable daylight is non-zero if :rnd,:rnly
if the standard U SA. Daylight Savings Time conversion should be applied. Ttre pr,rgrarn knows
about the peculiariLies of this conversion in 1974 and 1975; if necessary. a table for these years
can be extended.
If an environment variable named TZ is present, asctirne uses the contents of the variable to
override the default tirne zone. The value of TZ must be a three-letter tim,: zone na.me, followed

-l-



cTrME( 3c )

by a number representing the difference between local time and Greenwich Mean Time in hours,
followed by an optional three-lebter name for a daylight time zone. For example, the setting for
New Jersey would be trSTSEDT The effects of setting TZ are thus to change the values of the
external variables timezone and daylight; in addition, the time zone names contained in the exter-
nal variable

char *tzname[z] : { "EST", "EDT" };
are set from the environment variable TZ, The function tzset sets these external variables from
TZ, tzaet is called by asctime and may also be called explicitly by the user.

Note that in most installaiions, TZ is set by defauli when the user logs on, to a value in the local
/etc/profile file (see prolile(a)).

SEE -AISO
time(2), getenv(3C), profile(4), environ(5).

RIIGS
The return values point to static data whose content is overwritten by each call.

o



crYPE( 3c )

NAME
isalpha,, isr.lpper, islo*'er, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, isascii
- classify r:haracters

SYNOPSIS
ffinclude {ctype.h)'
int isalpha (c)
int c;

DESCRIPTION
These macros classify <:haracter-coded integer values by table lookup. Each is a preclicat,: return-
ing nonzero for true, zero for false. Isascii is defined on all integer valuesi; the rest are defined
only u'herr: isascii is true and on the single non-ASCII value EOF (-1 - see .st,/io(3S)).
is ttlpha c is a letter.
isupper c is atr upper-case letter.
islower c is a lower-case letter.
isdigit c is a digi-, [0-9].
isrdisit c is a hexadecimal digit [G9], lA-F] or [a-f].
isalnum c is an alphanumeric (letter or digit).
isspace c is a space, tab, carriage return, new-iine, vertical tab, or form.-feei..
isprLnct c is a punctuation character (neither control nor alphanum,:ric).
isprint c is a printing character, code 040 (space) through 0176 (tilde).
isgraph c is a printing character,Iike isprint except false for space.
iscntrl c is a delete character (0177) or an ordinary control charact,er (tess than 040)
isascit c is an ÄSCII character. code less than 0200.

DIAGNOSTICS
If the argument to an1'of these macros is not in t,he domain of the function, the result is unde-
fined.

SEE AISO
ascii(5 ).

-1-



CURSES ( 3X)

NAME
curses - CRT screen handling and optimization package

SYNOPSIS
ffinclude (curses.h)
cc I flags ] files -tcurses I libraries ]

DtrSCRIPTION
These routines give the user a method of updating screens with reasonable optimization. In order
to initialize the routines, the routine initscr( ) must be called before any of the other routines that
deal with windows and screens are used. The routine endwin( ) should be called before exitiirg.
To get character-at-a-time input without echoing, (most interactive, screen oriented-programs
want this) after calling initscr( ) you should call "nonl( ); cbreak( ); noecho( );,,
The full curses interface permits manipulation of data structures called wintlotos which can be
thought of as two dimensional amays of characters representing all or part of a CRT screen. A
default vrindow called stdscr is supplied, and others can be created with newwin. Windows are
referred to by variables declared "WINDOW *", the type WINDOW is defined in curses.h to be a C
structure. These data structures are manipulated with functions described below, among which
the most basic are move, and addch. (More general ver'sions of these functions are included
with names beginnihg with 'w', allowing you to specify a window. The routines not beginning
with 'w' affect stdscr.) Then refresh( ) is called, telling the routines to make the users CRT
screen look like stdscr.
Mini-Curses is a subset of curses which does not allow manipulation of more than one window.
To invoke this subset, use -DMINICURSES as a cc option. This level is smaller and faster than
full curses.

If the environment variable TERMINFO is defined, any program using curses will check for a local
terminal definition before checking in the standard place. For example, if the standard place is
/wr/lib/terminfo, and TERM is set to "vt100", then normally the compiled file is found in
/rl'sr/lib/te*ninfofvfvtloo. (The "v" is copied from the first letter of "vt100" to avoid crea-
tion of huge directories.) However, if TERMINTO is set to /usr/mark/myterms, curses will firstcheck /opusr/mark/mytermsf v f vtLOO, and if that fails, will then check
/t*/lib/teminfofvfvtl0o. This is useful for developing experimental definitions or when
write permission in /:usr/lib/tarminfo is not available.

SEE AISO
terminfo(4).

FUNCTIONS
Routines listed here may
may be called when using
addch(ch)*

addstr(str)*
attrofl( attrs)*
aitron( attrs)*
attrse( attrs)*
baudrate( )*
beep( )*
box(win, vert, hor)

clear( )
clearok(win, bf)

be called when using the full curses. Those marked with an asterisk
Mini-Curses.

add a character to stdscr
(like putchar) (wraps to next
line at end of line)
calls addch with each character in str
turn off attributes named
turn on attributes named
set current attributes lo attrs
current terminal speed
sound beep on terminal
draw a box around edges of urn
uert and, hor are chars to use for verl.
and hor. edges of box
clear std.scr
clear screen before next redraw of rlrn

-1



clrtobo( )
clrtoeol( )
cbreak( )*
delay-outPu(ms)*
delch( )
deleteln( )
delwin(win)
doupdate( )
echo( )+
endr,r,in( )*
erase( )
erasechar( )
fixterm( )
flash( )
IlushinP( )*
cetch( )r
getstr(str)
g,ettmode( )
getyx('*in, Y, x)
has-ic( )
has-il( )

idlok(win, bf)*
inch( )
initso( )r
insch(c)
insertln( )
intrflush(win, bf)
keyPad(win, bf)
killchar( )
leaveok(u'in, flag)

longname( )
rneta{n'in, flag)*
move(Y, x)*
mvaddch(Y, x, ch)
mvaddstr(Y, x, str)
mvcur(oldrow, oldcol, nevrrow'

mvdelch(Y, x)
mvgetch(Y, x)
mvgetstr(Y, x)
mvinch(Y, x)
mvinsch(Y, x, c)
mvprintw(Y, x, fmt, args)
mvscanw(Y, x, fmt, args)
mvwaddch(wrn, Y, x, ch)

mvuaddstr(win, Y, x, sir)
mvvrdelch(wiq, Y, x)
mvwgetch(win, Y, x)
mvwgetstdwin, Y, x)
mvwin(win, bY, bx)
mvwinch(win, Y, x)

CURSES(3x)

clear to bottom of sfdscr
clear to end of )ine on stdscr
set cbreak mode
insert ms millisecond pause in output
delete a character
delete a line
delete uda
updale screen from all wnooutrefresh
set echo mode
end window modes
erase stdscr
return user's erase character
restore tbY to "in curses" state
Ilash screen or beeP

throw auray anY tYPeahead
get a char from ttY
get a string through sfdscr
establish current tt'Y modes
get (Y, x) co'ordinates
true if terminal can do insert characLer

true if terminal can do insert line

use terminal's inserb/delete line if bl l-' 0

get char at curreni (y' x) co-ordinates
initialize screens
insert a char
insert a line
interrupts llush output if bf rs TRUE
enable keYPad inPut
return curren[ user's kill charaet'er

OK to leave cursor anywhere after refresh if

flag!:O lor win, ot'herwise cursor must be lefi
at curreni Position'
return verbose name of terminal
allow meta characters on input rf llag !:' 0

move to (Y, x) on otdscr
move(Y, x) then addch(ch)
similar'

newcol)
lour level cursor molion
Iike delch, but move(Y' x) first
etc

.)_



CURSES(3X)

mvwinsch(win, y, x, c)
mvwprintw(win, y, x, fmt, args)
mvwscanw(win, y, x, fmt, args)
newpad(nlines, ncols) create a new pad with given dimensions
newterm(type, fd) set up new terminal of given type to output on fd
newwin(lines, cols, begin3, begin-x)

create a new window
nl( )* set newline mapping
nocbreak( )* unset cbreal< mode
nodelay(win, bf) enable nodelay input mode through getch
noech{ )+ unset echo mode
nonl( )* unset newline maPPing
noraw( )* unset raw mode
overlay(winl, win2) overlay winl on win2
overwrite(winl, win2) overwrite winl on top of win2
pnoutrefresh(pad, pminrow, pmincol, sminrow,
smincol, smaxrow, smaxcol)

like prefresh but with no output until doupdate called
prefresh(pad, pminrow, pmincol, sminrow,
smincol, smaxrow, smaxcol)

refresh from pad sta.rting with given upper left
corner of Pad with outPut to given
portion of screen

printw(fmt, argl, arg2, ...)
Printf on stdscr

raw( )* set raw mode
refresh( )* make current screen look like stdscr
resetterm( )* set tty modes to "out of curses" state
resetty( )* reset tty flags to stored value
saveterm( )* save current modes as "in curses" state
savetty( )* store current tty flags
scanw(fmt, argl, arg2, ...)

scanf through stdscr
scroll(win) scroll uin one line
scrollok(win, flag) allow terminal to scroll if flag !: 0
set-term(new) now lalk to terminal new
setscrreg(t, b) set user scrolling region to lines t through b
setterm(type) estabiish terminal with given type
sebupberm(term, f ilenum, errret)
standenri( )* clear standout mode abtribute
standout( )* set standout mode attribute
subwin(win, lines, cols, begin3, begin-x)

create a subwindow
touchwin(win) change all of urn
traceoff( ) turn off debugging Lrace output
traceon( ) turn on debugging trace output
typeahead(fd) use file descriptor fd to check typeahead
unctrl(ch)* printable version of cä

waddch(win, ch) add char to urn
waddstr(win, slr) add string to utn
wattroff(win, abtrs) turn off attrs in win
watiron(uin, attrs) turn on attrs it win
rraitrse(win, attrs) set attrs in win tn attrs

-3-



crrRSES ( 3X )

wclear(win) clear udn
wclrtobo(win) clear to bottom of uiz
wclrioeol(win) clear to end of Ine on urrn
wdelch(win, c) delete char from uiz
wdelet,eln(win) delete line from u,iz
r.r erase(win) erase ?riz
wgetch(win) get a char through a;in
wgetst,r(win, str) get a string through urn
winch(win) get char at current (y, x) in uiz
winsch(win, c) insert char into z,rz
winsertln(win) insert line into uiz
wmove(win, y, x) set current (y, x) cc'ordinates on u'in
wnout,refresh(win) refresh but no screen output
wprint,w(win, fmt, argl, arg2, ) --

printf on uiz
wrefresh(win) make screen look like urzl
wscanw(win, fmt, argI, arg2, ...)

scanf through uiz
wsetscrreg(win, t, b) set scrolling region of urz
wstandend(win) clear standout attribute in a-iz
wstandout(win) set standout attrrbute in zin

TERMINTO LEVEL ROUTINES
These routines should be called by programs wishing to deal directly wit,h the bermj.nfo ,Catabasre.
Due t.o the Iow level of this interface, it is discouraged. Initially, setupt'.crm shorrld be czrlled.
This will define the set of terminal dependent variables defined in terminf,c(4). The include files
(curses.h) and (term.h> should be included to get the definitions for these stri:ngs, numbers,
and flags. Parmeterized strings should be passed through tparmlo instantizrte them. AII terntinfo
strings (including the <>utput of tparm) should be printed with tput.s or putp. Before exiti:rg, reset-
term should be called to restore the tty modes. (Programs desiring shell escarpes r)r suspeniding
with control Z can call re.setterm before the shell is called artd fiüerm after returtring fronr the
shell. )

fixterrn( ) restore tty modes for terminfo use
(called by setupterm)

resetterm( ) reset tly modes to state before progranl entry
setupterm(term, fd, rc) read in database Terminal type is the

character striag term, all output is to operating system
file descriptor /d. A status value is
returned in the infeger pointed lo by rc: I -..-
is normal The simplest call would be
setupterm(0, -1, 0/ which uses all default;s

[parm{str, pl p2 pgJ
instantiate string str with parms p,.

tput{str, affcnt, putc) apply padding info to st,ring sfr
allcnt rs the number of lines aff ected,
or I if not applicable Putc is a
putchar-like function to which the charzlcters
are passed, one at a time.

putp(str) handy functron that calls tputs
(str, 1, putchar)

vidputs(attrs, putc) output the string to put terminal in video
attribute mode attrs which is any
combination of the attributes listed below
Chars are passed to putchar-like

- 4-



crrRsES(3x)

function putc.
vidattr(attrs) Like vidpubs but outputs through

putchar
TERMCAP COMPATIBILITY ROUTINES

These routines were included as ä conversion aid for programs that use termcap. Their parame-
ters are the same as for termcap. They are emulated using the terminfo database. They may go
away at a later date.
tgetent(bp, name) look up termcap entry for name
tgetflag(id) get boolean entry for id
tgetnum(id) get numeric entry for id
tgetstr(id, area) get string entry for id
tgoto(cap, col, row) apply parms to given cap
tputs(cap, affcnt, fn) apply padding to cap calling fn as putchar

ATTRIBUTES
The following video attributes can be passed to the functions attron,attrolf ,attrset.A-STANDOUT Terminal's best highlighting mode
A-UNDERLINE Underlining
A_REVERSE Reverse video
A_BLINK Blinking
A_DIM Half bright
A-BOLD Extra bright or bold
A-BLANK Blankins (invisible)
A-PROTECT Protected
A-ALTCIIARSET Alternate character set

FUNCTION KEYS
The following function keys might be returned by getch if keypad has been enabled. Note that
not all of these are currently supported, due to lack of definitions it terminfo or the terminal not
transmitting a unique code when the key is pressed.
Name Value Key name
KEY-BREAK 0401 break key (unreliable)
KEY-DOIVN O4O2 The four arrow keys ...
KEY-IJP O4O3

KEY_LEF'T O4O4
KEY-RIGHT O4O5

KEY-HOME 0406 Home key (upward+left arrow)
KEY-BACKSPACE o4o7 backspace (unreliable)
KEY_FO 0410 Function keys. Space for 64 is reserved.
KEY-F(n) (KEY-Fo+(n)) Formula for fn
KEY-DL 0510 Delete line
KEY-IL 0511 Insert line
KEY-DC 0512 Delete character
KEY-IC 0513 Insert char or enter insert mode
KEY-EIC 0514 Exit insert char mode
KEY-CLEAR 0515 Clear screen
KEY_EOS 0516 Clear to end of screen
KEY-EOL 0517 Clear to end of line
KEY-SF 0520 Scroll 1 line forward
KEY-SR 0521 Scroll 1 line backwards (reverse)
KEY-NPAGE 0522 Next page
KEY-PPAGE 0523 Previous page
KEY-STAB 0524 Set tab
KEY-CTAB 0525 Clear tab

-5-



CURSES ( 3X )

KEY_CATAB 0526 Clear all tabs
KEY-ENTER 0527 Enter or send (unreliable)
KEY-SRESET 0530 soft (partia)) reset (unreliable)
KEY-RESET 0531 reset or hard reset (unreliable)
KEY-PRINT 0532 print or copy
KEY-LL 0533 home down or bottom (lower left)

WAR,NING
The plotting library p/ot(3X) and the curses library curses(3X) both use the names, erase( ) and
move( ). The curses versions are macros. If you need both libraries. put the p/ot(3X) code in a
different source file than t,he curses(3X) code, and/or fundef move( )and erase( )in the p/otl'3ll)
code.

-6-



cusERrD ( 3s)

NAME
cuserid - get character login name of t,he user

SYNOPSIS
finclude (stdio.h)
char *cuserid (s)
char *s;

DESCRIPTION
Cuserid gets the user's Iogin name as found in f etcfrutrnp. If the login name cannot be found,
cuserid gets the login name corresponding to ihe user ID of the process. If s is a NTILL pointer,
this representation is generated in an internal static area, the address of which is returned. Oth-
erwise, s is assumed to point to an array of at least L_cuserid characters; the representation is
left in this array. The constant L-cuserid is defined in the (stdio.h) header file.

DIAGNOSTICS
If the login name cannot be found and the process's owner lacks a password file entry, cuserid
returns aNtILl, pointer; if s is not aNIILL pointer, a null character (\O) will be placed at s[0] .

SEE AISO
getlogin(3C), getpwent(3C).

-1-



DrAL( 3c )

NAMtr
dial - establish an out-13oing terminal Iine conuection

SYNOPSIS
finclude (dial.h)
int dial (call)
CALL call;
void undial (fd)
int fd;

DESCRIPTION
Dial returns a file-descripior for a terminal line open for read/write. The argument to dlol:is a
CAI-L structure (define<l in the ( dial.h) header file).
When finished with the, terminal line, the calling program must invoke undial to rele:se the serna,-
phore that has been set during the allocation of the terminal device,
The definition of CAI-L in the ( dial.h> header file is:
typedef struct {

struct termio *altr; /* pointer to termio attribute strucb */
int baud; /* transmission data rate * fint sp,eed; l* 2L2A modem: low:300, high:_t200 */char *line; /* device name for out-going line */
char *telno; /* pointer to tel-no digits string */
int modem; /* specify modem control for direct; lines *,/
char *clevice; /* Will hold the name of the device used

to make a connection */
int de,v_len; /* The length of the device used to

make connection * /
) celt;
The CAIL elemeni speed is intended only for use with an outgoing dialed call, in which case its
value should be either 300 or 1200 to identify the 113A modem, or the high- or low-r;peed setting
on the 212A modem. Note that the ll3A modem or the low-speed setting of the 2t2A. modem will
transrrrit at any rate between 0 and 300 bits per second. However, the high-speed setting of the
2124 rnodem transnrits and receivers at 1200 bits per secound only. The CALL ele:nent bau,l is
for the desired transmission baud rate. For example, one might seL baud to 1.10 and spee,C to ,30,J
(or 1200). However, if speed set to 1200 baud must be set to high (1200).
If the desired terminal Iine is a direct line, a string pointer to its device-namLe should be p,lace4 in
lhe line element in the CA-LL structure. Legal values for such terminal device rramei! are kept in
tb,e L-deuices flle. In this case, the value of lhe baud element need not be specified as it will be
determined from the L-deaices flle.
The telno element is for a pointer to a character string representing the telephone number t6 be
dialed. Numbers consist of the following symbols:

O-9 dial 0-9*or: dial *
#ori dialff
eor

4-second delay for second dial tone

w or : wait for secondary
f fla^sh off hook for 1

On a smart modem, these symbols are
tion in / wr / lib / uucp/modemcap.

dial tone
second

translated to modem commands using the modem descnip-

1-



DrAL( 3C )

The CAIL element modem is used to specify modem control for direct lines. This element should
be non-zero if modem control is required. The CAJ,L element attr is a pointer to a tcrrnro struc-
ture, as defined in the termio.ä header file. A NTILL value for this pointer element may be passed
to the dral function, but if such a structure is included, the elements specified in it will be set for
the outgoing terminal line before the connection is established. This is often imporiant for cer-
tain attributes such as parity and baud-rate.
The CALL element ileaice is used to hold the device name (cul..) that establishes the connection.
The CAIL element deo-len is the length of the device name that is copied into the array device.

FILES
/usr/lib/uucp/modemcap
/usr/lib/uucp/L-devices
/usr/spool/u wp f tct<.. tty- d eai c e

SEE AISO
uucp(tC), alarm(2), read(2), \,rite(2) modemcap(b), termio(7).

DIAGNOSTICS
On failure, a negative value indicating the reason for the failure will be returned. Mnemonics for
these negative indices as listed here are defined in the ( dial.h) header file.

/* interrupt occurred */
/* dialer hung (no return from write) */
/* no answer within 10 seconds */
/* illegal baud-rate */
f* aclu problem (open() failure) */
/* line problem (openQ failure) */
f* can't open LDEVS file */
/* requested device not available */
/* requested device not known */
/* no device available at requested baud */
/* no device known at requested baud */

WARNINGS
Including the (dial.h) header file automatically includes the (termio.h> header file.
The above routine uses (stdio.h), which causes it to increase the size of programs, not other-
wise using standard I/O, more than might be expected.

BUGS
An alarm(2) system call for 3600 seconds is made (and caught) within the dial module for the
purpose of "touching" the LCK.. file and constitutes the device allocation semaphore for the ter-
minal device. Otherwise, uucp(tC) may simply delete the LCK.. er'try on its 90-minute clean-up
rounds. The alarm may go off while the user program is in a read(2) or write(2) system call,
causing an apparent error return. If the user program expects to be around for an hour or more,
error returns from reods should be checked for (errno::EINTR), and the reod possibly reis-
sued.

INTRPT _1
D-HUNG _2
NOJNS _3
ILL-BD 4
A_PROB -5
L-PROB _6
NOJdv -7DV_NTJ -8
DV-NT-K _9
NO-BD-A _10
NO-BD-K _11

-2-



DRAND4s( 3C )

NAME
drand48, erand48, Irand48, nrand48, mrand48, jrand48. srand48, seed48, Icong48 - generate uni-
formly' distributed pseuLdo-random numbers

SYNOPSIS
double drand4s ( )
double erand48 (xsubi)
unsigned short xsubi[3];
long lrand48 ( )
long nrandaS (xsubi)
unsigned short xsubi[3];
long rnrand4S ( )
long jrand4s (xsubi)
unsigned short xsubi[3];
void srand48 (seedval) ^long seedvall
unsigned short *seed48 (seedl8v)
unsigned short seedlSv[3] ;

void lcong4S (pararn)
unsigned short param[7];

DESCRIPTION
This family of functiorrs generates pseudo-random numbers using the well-known lin,:ar eongruen-
tial algorithm and 48-L,it integer arithmetic.
Functions drandlS and erandlS return non-negative double-precision floating-point values uni-
formly distributed over the interval lO.O, t.O).

Functions lrandlS and nrand|8 return non-negative long integers uniformly distributed over the
interval [0, Z").
Functions mrandlS and jrandlS return signed long integers uniformly distribul,ed over the inter-
val l-231,231).
Functions srandfS, seedlS and lconglS are initializat,ion entry points, one ol'which shoui,l be
invoked before eiLher drandlS, lrandlS or mrandfS is called. (Although it is nor ::ecornmer:rdt:d
practice, constant default initializer values will be supplied automatically il' rlrandfS, lrandf,g or
mrand,lS is called without a prior call to an initialization entry point.'l Functions eran.df8,
nrandlS and jrandlS <1o not require an initialization entry point to be called firr;t,.

A,ll the routines work by generating a sequence of 48-bit integer values, X;, acc,rrding to, the
Iinear congruential formula

Xr+r:(aXr+ c)modm n)0.
The parameter m :248; hence 48-bit integer arithmetic is performed. I-lnless lconglS has ber,n
invoked, the multiplier value o and the addend value c are given by

o : 5DEtrCE66D 16 : 273673L63155 8
- - 

D 
- 

r,16-rd8.
The value returned by any of the functions drandlS, erandlS, lrandlS. nra',odf8, mrondfig ,x
jrandlS is computed by first generating the next 48-bit .Yi in the sequence. Then the appropliate
number of bits, according to the type of data it,em to be returned, are copi,:d from the high-order
(leftmost) bits of X; and transformed into the returned value.
The functiots drandf,9, lrandlS and mrandfS store the last 48-bit,Yi generated in an intr:rnal
buffer; bhat is why they must be initialized prior to being invoked. The lunct,ions erartd/18,

-1-



DRAND4s( 3C )

nrandlS and jrandlS require the calling program to provide storage for the successive X; values
in the amay specified as an argument when the functions are invoked. That is why these routines
do not have to be initialized; the calling program merely has to place the desired initial value of
X; into the array and pass it as an argument. By using different arguments, functions erandfS,
nrandlS and jrandlS allow separate modules of a large program to generate several independent
streams of pseudo.random numbers, i.e., the sequence of numbers in each stream will not depend
upon how many times the routines have been ealled to generate numbers for the other streams.

The initializer function srandlS sets the high-order 32 bits of X; to the 32 bits contained in its
argument. The low-order 16 bits of -{. are set to the arbitrary value 330E16.

The initializer function seedtS sets the value of X; to the 48-bit value specified in the argument
array. In addition, the previous value of X; is copied into a 48-bit internal buffer, used only by
seedfS, and a pointer to this buffer is the value returned by seedlS. This returned pointer, which
can just be ignored if not needed, is useful if a program is to be restarted from a given point at
some future time - use the pointer to get at and store the last X; value, and then use this value
to reinitializ e via aeedlS when the program is restarted.

The initialization function lconglS allows the user to specify the initial X,', the multiplier value
o , and the addend value c. Argument array elements param[}-Zf specify Xi , pararn[9-5/ specify
the multiplier o , and param[6] specifies the l6-bit addend c. After lconglS has been called, a
subsequent call to eilher srandlS or seedlS will restore the "standard" multiplier and addend
values, o and c , specified on the previous page.

NOTES
The versions of these routines for the VAX-l1 and PDP-II are coded in assembly language for
maximum speed. It requires approximately 80 psec on a VAX-lt/780 and 130 trrsec on a PDP-
lll70 fo generate one pseudo-random number. On other computers, the routines are coded in
portable C. The source code for the portable version can even be used on computers which do
not have floating-point arithmetic. In such a situation, functions drandlS and erandlS do not
exist; instead, they are replaced by the two new functions below.

long irand48 (m)
unsigned short m;
long krand4S (xsubi, m)
unsigned short xsubi[3], m;
Functions irandlS and krandlS return non-negative long integers uniformly distributed over the
interval [0, m -f].

SEE ALSO
rand(3C).

_r-



ECvr(3c )

NAME
ecvt, fcvt, gcvt - conv€rrL floating-point, number to slring

SYNOPSIS
char *ecvt (value, ndigit, decpt, sign)
double valuel
int ndigit, *decpt, *signl
char *fcvt (value, ndigit, decpt, sign)
double valuel
int ndigit, *decpt, *signl
char *gcvt (value, ndigit, buf)
double valuel
int ndigit;
ehar *buf;

DESCRIPTION
Ecut converts ualue to a null-terminated string of ndigit digits and returns a point,er thereto. llhe
high-order digit is non-zero, unless the value is zero. The lo*"-order digit is ror.rnde,l. I'he trros1-tion ol'the decimai point relative to the beginning of the string is stored inclirectly t)rrough dr:cpt
(negative means to the left of the returned digits). The decimal point is nor include«l in the
return,:d string. If the sign of the result is negative, the rvord pointed to by sign is non-2,:ro,,othL-
erwise it is zero.

-Fcul is identical to ecut, except that the correct digit has been rounded l'or printf "(%f,, (FOR:.-
TRAN F-format) outpur; of the number of digits specified I>y ndigit.
Gcut converts the aalae lo a null-terminated string in the array pointecl to by buJ and returns
buf . It; attempts to pr<>duce ndigit significant digits in FoRTRAN F-format if possible, other.*ise
E-format, ready for printing. A minus sign, if there is one, or a decimal point, ,*.ill be includerl as
part ol'the returned string. Trailing zeros are suppressed.

SEE AISO
printf(3S).

BUGS
The values returned by ecut and fcut point to a single static data array whose contenr; is c,veru,rit-
ten by each call.

1-



END(3c)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern endl
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address of
etect is the first address above the program lext, eilata above the initialized data region, and, end
above the uninitialized data region.
When execution begins, the program break (the first location beyond the data) coincides with
end, but ühe program break may be reset by ühe routines of brk(2), rnatto'c(JC), standard
input/output (stdio(3S)), the profile (-p) option of cc(1), and so on. 'ihus, the current value of
the program break should be determined by sbrk(O) (see brk(Z)).

SEE AJ.SO
brk(2), malloc(3C).

-l-



ERF(3M)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
finclude (math.h).
double erf (x)
double x;
double erfc (x)
double x;

DESCRIPTION

,Er/ reLurns the error function of c, defined * +i r.'at.
V7t-o

Erfc, which returns 1.0 - erf(t) , is provided because of the extreme loss ol' relativ,: accuracy .if
erf(t)is called for large e and the result subtracted from 1.0 (e.g., for c:5, t2 places are lostj.

SEE AISO
exp(3lvl).

-l-



E)(P( 3M)

NAME
exp, log' logl0, pow, sqrt - exponential, logarithm, power, square root functions

SYNOPSIS
finclude <math.h)
double exp (x)
double x;
double log (x)
double x;
double logl0 (x)
double x;
double pow (x, y)
double x, y;
double sqrt (x)
double x;

DESCRIPTION
Erp returns e'.
Zog returns the natural logarithm of c. The value of e must be positive.
Log10 returns the logarithm base ten of c. The value of c must be positive.
Pour returns cg. lf z is zero, y must be positive. If e is negative, y must be an integer.
,Sgrt returns the non-negative square root of c. The value of , may uot be negative.

DIAGNOSTICS
.Ecp returns HUGE when the correct value would overflow, or 0 when the correct value would
underflow, and sets etno to ERANGE.
Log and, log10 return -HUGE and set errno to EDOM when c is non-positive. A message indi-
cating DOMAIN error (or SING error when e is 0) is printed on the standard error output.
Potu returns 0 and sets errno to EDOM when e is 0 and y is non-positive, or when c is negative
and y is not an integer. In these cases a message indicating DOMAIN error is printed on the stan-
dard error output. When the correct value for pour would overflow or underflow, poro returns
+HUGE or 0 respectively, and sels errno to ERANGE.
Sgrl returns 0 and sets errno to EDOM when r is negative. A message indicating DOMAIN error
is printed on the standard error output.
These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
hypot(3M), marhem(3M), sinh(3M).

-1-



FCLoSE( 3S )

NAME
fclose. fflush - close or flush a stream

SYNOPSIS
finclude (stdio.h).
int fclose (stream)
FILE *stream;
int fflush (strearn)
F ILE *streaml

DESCRIPTION
Fclose causes any buffered data for the named stream to be written out, and the strectm t<> lte
closed.

Fclose is performed automatically for all open files upon calling erit(2).
Fflush causes any buffered data for the named stream to be written to that file. Th<> stre.am
remains open.

DIAGNOSTICS
These functions return 0 for success, and EOF if any error (such as trying to vrrite to a file r,hat
has not been opened for writing) was detected.

SEE ALSO
close(2), exit(2), fopen(eS), setbuf(BS).

-1-



FERROR( 35 )

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
finclude (stdio.h)
int ferror (streem)
FILE *streaml
int feof (stream)
FILE *strearnl

void clearerr (strearn)
FILE *streaml
int fileno (stream)
FILE *streaml

DESCRIPTION
Ferror returns non-zero when an I/O error has previously occurred reading from or writing to the
named stream, otherwise zero.

Feo/ returns non-zero when EOF has previously been detected reading the named input strearn
otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the named stream.

Fileno returns the integer file descriptor associated with the named stream; see open(2).

NOTE
All these functions are implemented as macros; they cannot be declared or redeclared.

SEE AISO
open(2), fopen(3S).

-1-



PLOOR( 3M )

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions

SYNOPSIS
finclude (mcth.h)
double floor (x)
double x;
double ceil (x)
double x;
double fmod (x, y)
double x, y;
double fabs (x)
double x;

DESCRIPTION
F'loor returns the largest integer (as a double-precision number) not greater ttran c.
Ceil returns the smallest integer not less than c.
Fmod rcttrns the float,ing-point remainder of the division of c by yt zero if y is z,lrct ctr if r/.y
would overflow; otherr,vise the number / with the same sign as c, such that e == iy + /lbr s,rmeintegeri,andl/l<lyl.
Faöe returns the absolute value of x, I r | .

SEE AISO
abs(rC).

-1-



roPEN(35)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
finclude (stdio.h)
FILE *fopen (file-name, type)
char *file-name, *typ";
FILE *freopen (frlename, type, stream)
char *file-name, *typu;
FILE *strearn;
FILE *fdopen (frldes, type)
int fildes;
char *typel

DESCRIPTION
Fopen opens the file named by file-name and associates a stream with it. Fopen returns a
pointer to the FILE structure associated with the stream.
File-name points to a character string that contains the name of the file to be opened.

Type is a character string having one of the following values:
»r)' open for reading
"w» truncate or create for writing
» a" append; open for writing at end of file, or create for writing
'r*' open for update (reading and writing)
'r,v*' truncate or create for update

'al" append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream. The original stream is closed,
regardless of whether the open ultimately succeeds. Freopen returns a pointer to the FILE struc-
ture associated with stream.
Freopen is typically used to attach the preopened atreams associated with stdin, stdout and
stderr to other files.
Fdopen associates a stream with a file descriptor obtained from open, dop, creat, or pipe(Z),
which will open files but not return pointers to a FILE structure stream which are necessary input
for many of the section 35 library routines. The type of stream must agree with the mode of the
open file.
When a file is opened for update, both input, and output may be done on the resulting stream.
However, output, may not be directly followed by input without an intervening fseek or rewind,
and input may not be directly followed by output without an intervening lseek, rewind, or an
input operation which encounters end-of-file.
When a file is opened for append (i.e., when type is 'a'or "a*"), it is impossible to overwrite
information already in the file. .Feeeß may be used to reposition the file pointer to any position
in the file, but when output is written to the file the current file pointer is disregarded. All out-
put is written at the end of the file and causes the file pointer to be repositioned at the end of the
output. If two separate processes open the same file for append, each process may write freely to
the file wiihout fear of destroying output, being written by the other. The output from the two
processes will be intermixed in the file in the order in which it is written.

SEE A],SO
open(2), fclose(35).

-1-



FoPEN( 3s )

DIAGNOSTICS
Fopen and freopen return a NULL pointer on failure.

o



FREAD ( 3s )

NAME
fread, fwrite - binary input/output

SYNOPSIS
finclude (stdio.h>
int fread (Ptr, size, nitems, stream)
char *ptrl
int size, nitems;
FILE *streaml
int fwrite (ptr, size, niterns, strearn)
char *ptrl
int size, nitems;
FILE *strearnl

DESCRIPTION
Fread. copies, into an array pointed to by ptr, nitems items of data from the named input
stream, where an item of data is ^..q,r.rr.u of byt.. (not necessarily terminated by a null byte)
of Iength sfze. Fread stops appending bytes if an end-of-file or error condition is encountered
while ieadin g stream, or if nitems items have been read. Fread leaves the file pointer in stream,
if defined, pJi.,ti.rg to the byte following the last byte read if there is one. Freail does not change

the contents of stream.
Fwrite appends at most nitems items of data from the array pointed to by ptr to the named out-
p..l stream. Fwrite stops appending when it has appended nitems items of data or if an error
condition is encounter ed. on stream. Fwrite does not change the contents of the array pointed to
by ptr.
The argume11t size is typically sizeof(*ptr) where the pseudo-function sizeof specifies the length
of an item pointed to by ptr. If ptr foints to a data type other than clror it should be cast into a

pointer to char.

SEE ALSO
read(2), write(2), fopen(3S),

DIAGNOSTICS

getc(3S), gets(33), printf(3S), putc(3S), puts(3S), scanf(3S)'

Freatl and fwrite return the number of items read
characters are read or written and 0 is returned by

or written. lf size or nitems is non-positive, no
bot\ lread and lwrite.

1-



FRE)(P(3c)

NAME
frexp, Idexp, modf - manipulate parts of floating-point numbers

SYNOPSIS
double frexp (value, eptr)
double valuel
int +eptr;

double ldexp (value, exp)
double valuel
int exp;
double modf (value, iptr)
double Yelue, *iptr;

DESCRIPTION
Every non-zero number can be written uniquely as r * 2', where the "mant,issa" (fraction) c ir; ir
the range 0.5 S l z | < 1.0, and the "exponent" n is an integer. Frecp returns the urantissa of a

double ualue, and stores the exponent indirectly in the location pointed toby eptr. If ,"'alue ir >'\
zero, both results returned by lrerp are zero.

Ld.erp returns the quantity ualue * Z"rP .

Modl rettrns the signed fractional part of oalue and, stores the integral part indirectly in the loca-
tion pointed to by iptr.

DIAGNOSTICS
lf ldexp would cause overflow, +IilJGE is returned (according to the sign ol' aalute,), and, errno is
set to ERANGE.
lf ldetp would cause unclerflow, zero is returned ald errno is set to ERANGET.

-1-



FSEEK(35 )

NAME
fseek, rewind, ftell - reposition a file pointer in a stream

SYNOPSIS
ffinclude <stdio.h)
int fseek (stream, offset, Ptrneme)
FILE *streaml
long offset;
int ptrnemel
void rewind (stream)
FILE *stream;

long ftell (stream)
FILE *strearnl

DESCRIPTION
Pseelc sets the position of the next input or output operation on the stream. The new position is
at the signed distance olfset bytes from the beginning, from the current position, or from the end

of the file, according as ptrname has the value 0, l, or 2'

Rewind(stream) is equivalent to fseek(stream, OL,0), except that no value is returned.

Fseele and rewind undo any effects ol ungetc(35)-

Alter fseek or rewinil , the next operation on a file opened for update may be either input or out-
put.
Ftell returns the offset of the current byte relative to the beginning of the file associated with the
named stream.

SEE AISO
lseek(2), fopen(3S).

DTAGNOSTICS
Fseeß returns non-zero for improper seeks, otherwise zero. An improper seek can be, for example,
an fseek done on a file that has not been opened via fopen; in particular, fseek may not be used

on a terminal, or on a file opened via popen(3S).

WARNING
On this operating system and other systems derived from the UNIX System, the value returned by ftell is a

number of bytes, and a program can use this value to seek relative to the current offset. Such
programs are not portable to systems where file offsets are not measured in bytes.

-1-



Frw(3c )

NAME
ftw - walk a file tree

SYNOPSIS
ffinclude (ftw.h)
int ftw (path, fn, depth)
char *path;
int (*fn) ( );int depth;

DESCRIPTION
-Ffu rr:cursively descen,Cs the directory hierarchy rooted in path. For each olcjecl, in the hierarchl,,,
/ttl calls /n, passing it a pointer to a null-terminated character string containinlg the nrame of the
object, a pointer to a stat structure (see stot(2)) containing information about ttre object, and an
integer. Possible values of the integer, defined in the (ftw.h) header file, are I'T\&'-F for a [iL:,
FTW-D for a directory. FTW-DNR for a directory that cannot be read, and FT\{'-NS for an object
for which stat could nc,t successfully be executed. If the integer is FTW-DMI, descendants of tha't
directory will not be processed. If the integer is FTW-NS, the stat structure wilI contain garbag(j.
An example of an object that would cause FTW-NS to be passed to /z woul<l br: a file in a di recr-
tory with read but without execute (search) permission.

Ftu visits a directory t,efore visiting any of its descendants.
The tree traversal continues until the tree is exhausted, an invocation of. ln retur:rs a nonz;ero
value, or some error is detected within /tu (such as an I/O error). If the bree is exhausted, /trr
returns zero. If /n returns a nonzero value, ltw stops its tree traversal and r,:burns whatever v,alue
was returned by /n . lf ftw detects an error, it returns -1, and sets the error bype in err*o.
-Ftu uses one file descriptor for each level in the tree. The d.epth argument limits the numben c,f
file descriptors so used. If depth is zero or negative, the effect is the same as if it were l. Dept,h
must not be greater thran the number of file descriptors currently available f,rr use. Ftto will run
more quickly if depth is at least as large as the number of levels in the tree.

SEE ALSO
stat(2), malloc(3C).

BUGS
Because ltw is recursive, it is possible for it, to terminate with a memory l'ault when ap,plied t,c
very deep file structures.
It could be made to run faster and use less storage on deep structures at the corst of considera,ble
complexity.
.Ftu uses malloc(3C) to allocate dynamic storage during its operation. If /ao is foncibly Ler-
minated, such as by longjmp being executed by /n or an interrupt routine, /tar will nrot, hal-e ,a

chance to free that storage, so it will remain permanently allocated. A safe way to .handle inl;er-
rupts is to store the facü that an interrupt has occurred, and arrange to have /n return a noni,er,)
value at its next invocation.

1-



GAMMA( 3M )

NAME
gamma - log gamma function

SYNOPSIS
ffinelude (meth.h)
double gamma (x)
double x;
extern int signgem;

DESCRIPTION a
Gamma rerurns ln( lr( c) l), where I( c) is defined u !^r'' t"-rdt' The sign of I( r)

0

returned in the ext,ernal integer eigngom, The argument o may not, be a non.positive integer,

The following C program fragment might be used t'o calculate I:
if ((Y : gamma(x)) > LN-M§ooI'BLE)

error( );y: signgam * "*P(Y);
where LN-MAXDOUBLE is the least value that
defined in the (uclaca.h> header file'

causes crp(aM) to return a range error, and is

DTAGNOSTICS
For non-negative integer arSuments HUGE is returned, and' crtno is set to EDOM' A message

indicatingSINGerrorisprintedonthestandarderroroutput.
If the correct value would overflow, gafnma returns HUGE and sets crrno ta ERANGE'

These error-handling procedures may be changed with the function mathfir(}M)'

SEE ALSO
exp(3M), matherr(3M), values(6)'

-1-



GETC( 35 )

NAME
getc, getchär, fgetc, getw - get characüer or word from a stream

SYNOPSIS
Sinclude <stdio.h)
int getc (stream)
FILE *stream;

int getchar ( )
int fgetc (stream)
FILE *streaml
int getw (stream)
FILE *stream;

DESCRIPTION
Getc returns the next r:haracier (i.e., byte) from the named inptL stream,.ns arn integer. It als,r
moves the file pointer, if defined, ahead one character in stream. ()etchar is del'ined as
getc(std,in) . Getc and getchor are macros.

Fgetc behaves like getc, b.ul is a function rather than a macro. Fgefc runs more slo'r,r,ly than
getc, brt it takes less space per invocaüion and its name can be passed as arr argume.rt to a func-
tion.
Gefu returns the nexü word (i.e., integer) from the named input streom. Geho in<remr-'nts fh,:
associated file poinüer, if defined, to point to the next word. The size of a'rvord is the size of arr
integer and varies from machine to machine. Getto assumes no special alignnlent in the file.

SEE AISO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S).

DTAGNOSTICS
These functions return l,he constant, EOF at end-of-file or upon an error. Becausie EOF is a valicl
integer, fenor(39) should be used to detect gefur enors.

WARNING
If the integer value returned by getc, getchdr, or fgetc is stored into a character l'ariable arrd then
compared against the integer constant EOF, the comparison may never sui<:ceed, because sign-
extension of a character on widening to inieger is machine-dependent.

BUGS
Because it is implemented as a macro, getc fiezits incorrectly a streant argument with side effects.
In particular, getc(*f+*) does not work sensibly. Fgetc should be used inste'ad.
Because of possible differences in word length and byte ordering, files written usirtg pudtrr ,are

machine-dependent, and may not be read using getw on a different processor.

-1-



GETCWD(3C)

NAME
getcwd - get path-name of current working directory

SYNOPSIS
char *getcwd (buf, size)
char *buf;
int sizel

DESCRIPTION
Getcwd returns a pointer to the current directory path-name. The value of size must be at least
two greater than the length of the path-name to be returned.
lf bulis a NULL pointer, getcwd will obtain srze bytes of space :using malloc(3C). In this case, the
pointer returned by getcwd may be used as the argument in a subsequent call to free.
The function is implemented by tsing popen(SS) to pipe the output of the pwd(l) command into
the specified string space.

EXAMPLE
char *cwd, *getcwdQ;

if ((cwd : setcwd((char *)NULL, 64)) :: NULL) {
perror("pwd");
exit(1);

)
printf("%s\n", cwd);

SEE ALSO
pwd(1), malloc(3C), popen(SS).

DIAGNOSTICS
Returns NULL with errno set if size is not large enough, or if an error ocurrs in a lower-level
function.

-l-



cErErw( 3C )

NAME
getenv _ ret

S'NO,SIS 
,urn value for environment name

char *getenv (name)char *nsmsl
DESCRIPTION

Getent. searches the environmentreturns a poi
mr.ri. p.rnlI'ot'" io;.;,';ä'::l'#:'..;f#ffil.!'ll:äi,:::Tf 

;llI:J:::: 1a_me=:aytue, an<rsEE ALso -- vsu' a surrl8 is present, ottr*.*iuä'*
exec(2), putenv(3C), en,,-iron(5).

-t-



GETGRENT( 3C )

NAME
.- getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group file entry

SYNOPSIS
finclude (grp.h)
struct group *getgrent ( )
struct group *getgrgid (gid)
int gid;
struct group *getgrnam (name)
char *narnel

void setgrent ( )
void endgrent ( )
struct group *fgetgrent (f)
FILE *f;

DESCRIPTION
\ Getgrent, getgrgid and getgrnam each return pointers to an object with the following structure

containing the broken-out fields of a line in the f etc/grortp file. Each line contains a "group"
structure, defined in the ( grp.h) header file.

struct group {char *gr-name; f * the name of the group */
char *grjasswd; /* the encrypted group password */
int gr3id; /* the numerical group ID */
char **gr-mem; /* vector of pointers to member names */

);
Getgrent when first called returns a pointer to the first group structure in the file; thereafter, it
returns a pointer to the next group structure in the file; so, successive calls may be used to search
the entire file. Getgrgid searches from the beginning of the file until a numerical group id match-
ing gid is found and returns a pointer to the particular structure in which it was found. Get-
grr,Lam searches from the beginning of the file until a group name matchirrg name is found and
returns a pointer to the particular structure in which it was found. If an end-of-file or an error is
encountered on reading, these functions return a NULL pointer.
A call to cetgrent has the effect of rewinding the group file to allow repeated searches. Endgrent
may be called to close the group file u'hen processing is complete.-- 
Fgetgrent returns a pointer to the next group structure in the stream /, which matches the format
of fetcfgroup.

FILES
/etc/group

SEE AISO
getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING

Iiilt:J:J:t.'Jff.ä'i.'ll1?;i,i;H'*ff:ä:Hä'increase 
the size or prosrams' not oth-

RI]GS
All information is contained in a static area, so it must be copied if it is to be saved.

-1-



GETLOGIN( 3C )

NAME
getlogin - get login name

SYNOPSIS
char *getlogin ( );

DESCRIPTION
Getlogin returns a pointer to the login name as found in f etc/ttrnp. It may be used in c,onjurrc-
tion with getpwnanx to .locate the comect password file entry when the same user ID i.s sh:rred by
several login names.

If getlogin is called within a process that is not attached to a terminal, it returns a NttLL point,er.
The correct procedure for determining the Iogin name is to call cuserid, or t,c call gellogin: and iI
it fails to call getpwuid.

FILES
f eLcf utmp

SEE AISO
cuserid(35), getgrent(3C,), getpwent(3C), utmp(4).

DIAGNOSTICS
Returns the NULL pointer if name is not found.

BUGS
The return values point to static data whose content is overwritten by each call.

-1-



GETOPT( 3C )

NAME
getopt - get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char **argv, *opstringl
extern char *optarg;
extern int optind, opterrl

DESCRIPTION
Getopt returns the next option letter in argu Lhat matches a letter it optstring. Optstring is a
string of recognized option letters; if a letter is followed by a colon, the option is expected to have
an argument that may or may not be separated from it by white space. Optarg is set to point to
the start of the option argument on return from getopt.

Getopt places in optind the arga index of the next argument to be processed. Because optind is
external, it is normally initialized to zero automatically before the first call to getopt.
When all options have been processed (i.e., up to the first non-option argument), getopt returns
EOF The special option be used to delimit the end of the options; EOF will be
returned, and __ will be skipped.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a question mark (?) when it encounters an
option letter not included in optstring. This error message may be disabled by setting opten to a
non-zero value.

EXAMPLE
The following code fragment shows how one might process the arguments for a command that can
take the mutually exclusive options a and b, and the options f and o, both of which require argu-
ments:

main (argc, argv)
int argc;
cha.r **argvl
{

int c;
extern char *optargl
extern int optind;

*frit" 11. - getopt(argc, argv, "abf:o:')) !: EOF)
switch (c) {
case ' a' :

if (bflg)
errflg*-F;

else
aflg*t;

break;
case ' b' :

if (aflg)
errflg*-l;

else
bproc( );

break;

-1-



)
SEE AI-SO

setopt( 1).

cEroPT( 3c )

case'l':
ifile : optarg;
break'

case ' of :

ofile : optarg;
break'

case ' ?' :

errflg**;
)if (errfls) {
fprintf(stderr, "usage: ");
exit (2);

)
for ( ; r:ptind ( argcl optind++) {

(access(argvloptind], 4)) {

o



GETPASS(3C)

NAME
getpass - read a password

SYNOPSIS
char *getpass (prompt)
char *promptl

DESCRIPTION
Cetpass reads up to a newline or EOF from the file f devftty, after prornpting on the standard
emor output with the null-terminated string prompt and disabling echoing. A pointer is returned
to a null-terminated string of at most 8 characters . lf /dev /tty cannot be opened, a NULL
pointer is returned. An interrupt will terminate input and send an interrupt signal to the calling
program before returning.

PILtrS
I dev ltty

SEE AISO
crypt(3C).

WARNING
The above routine uses (stdio.h), which causes it to increase the size of programs, not other-
wise using standard I/O, more than might be expected.

BUGS
The return value points to static data whose content is overwritten by each call.

-1-



GETPW(3C)

NAME
getpw - get name from UID

SYNOPSIS
int getpw (uid, buf)
int uid;
char *buf;

DESCRIPTION
Getpw searches the passiword file for a user id number that equals uid, copies the, line of tlhe pass-
word file in which uid wx found into the array pointed toby buf , and returns 0. G,ztpw returns
non-zero if uid cannot be found.
This routine is inciuded only for compatibility with prior systems and should not be used; see
getpwent(}C) for routinr:s to use instead.

PILES
/etc/passwd

SEE AISO
getpwent(3C), passwd(4 ).

DIAGNOSTICS
Getpw returns non-zero on error.

WARNING
The above routine uses (stdio.h), which causes it to increase the size of prog;ramr;, not other-
wise using standard I/O, more than might be expected.

-1-



GETPWENT(3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - get password file entry

SYNOPSIS
finclude (pwd.h)
struct passwd *getpwent ( )
struct passwd *getpwuid (uid)
int uid;
struct passwd *getpwnam (name)
char *narnel

void setpwent ( )
void endpwent ( )
struct passwd *fgetpwent (f)
FILE *f;

DESCRIPTION
Getpwent, getpwaid and getpwnarn each returns a pointer to an object with the following struc-
ture containing the broken-out fields of a line in fhe f etefpasswd file. Each line in the file con-
tains a "passwd" structure, declared in the (purd.ä> header file:

struct passwd {char *pw-namel
char *pwjasswd;
int pw-uid;
int pw-gid;
char *pw-age;
char *pw-comment;
char *pw gecos;
char *pw-dir;
char *pw-shell;

);
This structure is declaredin 1pwd,.h) so it is not necessary to redeclare it.
The pw_comrnent field is unused; the others have mea.nings described in passrod(4).

Getpwent when first called returns a pointer to the first passwd structure in the file; thereafter, it
returns a pointer to the next pa,sswd structure in the file; so successive calls can be used to search
the entire file. Getpwuid searches from the beginning of the file until a numerical user id match-
ing uid. is found and returns a pointer to the particular structure in which it was found.
Gitpwnam searches from the beginning of the file until a login name matching name is found,
and returns a pointer to the particular structure in which it was found. If an end-of-file or an
error is encountered on reading, these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the password file to allow repeated searches'

Endpwent may be called to close the password file when processing is complete.

Fgetpwent returns a pointer to the next passwd structure in the stream /, which matches the for-
mat of /etc/passwd.

FILES
/etc/passwd

SEE ALSO
getlogin(3C), getgrent(3C), passwd(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

-1



GETPWENT(3C)

WARNING
The above routines use (stdio.h>, which causes them üo increase the size of programs, not oth-
erwise using standard l/O, more than might, be expected.

BUGS
All information is contained in a static area, so it must be copied if it is to be sa,ved.

_o-



GETS(35)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
Sinclude (stdio.h>
char *gets (s)
char *s;

char *fgets (s, n, stream)
cher *s;
int n;
FILE *stream;

DF]SCRIPTION
Gefs reads characters from the standard input stream, std,in, into the array pointed to by s, until
a new-line character is read or an end-of-file condition is encountered. The new-line character is
discarded and the string is terminated with a null character'

Fgets reads characters from the ctream into the array pointed to by s, until z-1 character§ are
read, or a new-line character is read and transferred to 8, or an end-of-file condition is encoun-
tered. The string is then terminated with a null character.

SEE ALSO
ferror(35), fopen(3S), fread(3S), getc(3S), scanf(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no characters are transferred to o

and a NULL pointer is returned. If a read error occurs, such as trying to use these functions on a
file that has not been opened for reading, a NULL pointer is returned. Otherwise c is returned.

-1-



GETUT( 3C )

NAME
getutent, getutid, Setutline, pututline, setutent, endutent, utmpname - accesis utrnp file entry

SYNOPSIS
finclude (utmp.h)
struct utmp *getutent ( )
struct utmp *getutid (id)
struct utmp *id;
struct utmp *getutline (line)
struct utmp *line;
void pututline (utrnp)
struct utmp *utmpl
void setutent ( )
void endutent ( )
void utrnpnarne (file)
char *file;

DESCRIPTION
Getutent, getutid and getutline each return a pointer to a structure of the following t1 pe:

struct utmp {
char
char

char

short ut4id;
short ut_type;
struct exit status {short e_termination;

short e_exit;
) ut-exit;

time_t uü_trme;
);

Gctutent reads in the next eniry from a utmp-llke file. If the fiie is not already open, it opens it,If it reaches the end of t,he file, it fails.
Getutid searches forward from the current point in the utntp file unt,il it finds an r.ntry witrr eLut-type matching id-) ut-type if the type specified is RtrN-LW, BOoT_'T'llvlll, OI-D_TIME or
NEW-TIME. If the type specified in rd is INIT_PROCESS, LoGIN_pRocESSr, usER_pRo(_IESS or
DEAD-PROCESS, then yTetutid r+'ill return a pointer to the first entry whose type is ,one of thesrr
four and whose ut-id field matches id-)ut-id. If the en,l of file is reache,l rvithout a match. il
fails.
Getutline searches forward from the current point in the utmp file until rt find:; an entrv of t,httype LOGIN-PROCESS or USER-PROCESS which also has a ut_line s.trin13 matching thtline-)ut-line string. If the end of file is reached.w'ithout a mat,ch, it fails.
Pututline writes out the supplied utmp structure into the utmp file. It uses gel,2.d t<> search licr-
ward for the proper pla<:e if it finds that it is not already at, the proper place. It is expected t.hatnormally the user of pututline will have searched for the proper entry using cne of the geilut rou-tines. lf so, pututline will not search. lf puttttline does not find a matching slot for the nern
entry, it will add a new entry to the end of the file.

ut userl8l :

ut idl4l:

ut line[12]:

/* User login name */'
l* fetclinittab id* (usually line ff) * I
/* device name (console,
* lnxx) */
/* process id */,
/* type of entry */

/* Pro«:ess termination staius */
/* Process exit status *,/
/* The exit, status of a process* marked as DEAD_PROCBSS. */
/* time entry u'as made */

1-



GETUT( 3C )

Setutent resets the input stream to the beginning of the file. This should be done before each

search for a new entry if it is desired that the entire file be examined'

End,utent closes the currently open file'
Utmpname allows the user to change the name of the file examined, from f etcf wtrnp to any

orher file. It is most often expected that this other file will be f etcfwtmp. If the file does not
exist, this will not be apparent until the first attempt to reference the file is made. Utmpname
does not open the file. It just closes the old file if it is currently open and saves the new file
name.

FILES
/etc/utmp
f erc f wtrnp

SEE ALSO
ttyslot(3C), utmp(a).

DIAGNOSTICS
A NULL pointer is returned upon failure to read, whether for permissions or having reached the
end of file, or upon failure to write.

COMMENTS
The most current entry is saved in a static structure. Multiple accesses require that it be copied
before further accesses are made. Each call to either getutid or getutline sees the routine examine
the static structure before performing more I/O. If the contents of the stat"ic structure match
what it is searching for, it looks no further. For this reason to use getutline to search for multiple
occurrences, it would be necessary to zero out the static after each success, ot getutline would just
return the same pointer over and over again. There is one exception to the rule about removing
the structure before further reads are done. The implicit read done by pututline (if it finds that it
is not already at the correct place in the file) will not hurt the contents of the static structure
returned by the getutent, getutid or getutline routines, if the user has just modified those contents
and passed the pointer back to pututline.
These routines use buffered standard I/O for input, but pututline uses an unbuffered non-standard
write to avoid race conditions between processes trying to modify the utmp and rotmp files.

-2-



HSEARCH(3C )

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
finclude (search.h)
ENTRY *hsearch (item, action)
ENTRY item;
ACTION actionl
int hcreate (nel)
unsigned nel;
void hdestroy ( )

DESCRIPTION
Hsearch is a hash-table sea.rch routine generalized from Knuth (6.a) Algorithm D. It retums a
pointer into a hash table indicating the location at which an entry can be fc,und. Item is a str:uc-
ture of iype ENTRY (clefined in the lsearch.h)> header file) containing two pointers: item.key
points to the comparison key, and item.data points to any other data to be ass,ociated with t,hat .-
key. {Pointers to types other than character should be cast to pointer-to-chara,cter.) Action is a
menrber of an enumeration type ACTION indicating the disposition of the entry if it czrnnot. be
found in the table. ENTER indicates that the item should be inserted in the üable at an
appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution is indi-
cated by the return of a, NIILL pointer.
Hcreate allocates sufficient space for the table, and must be called before haearch is used. Nr.I is
an estimate of the maximum number of entries that the table will contain. This number mali be
adjusted upward by the algorithm in order to obtain certain mathematicaliy f:rvorable cir-
cumstances.

Hdestroy destroys the search table, and may be followed by another call to htreate.
NOTES

Hsearch uses open addressing wiih a multiplicat;ae hash function, However, its source r:ode has
many ,rther options available which the user may select by compiling the hsearch source with the
following symbols defined to the preprocessor:

Dfv Use the rernainder moilulo table size as the hash function instead of the mr,alti-
plicative algorithm.

USCR Use a User Supplied Comparison Routine for ascertaining ta.ble membership
The routine should be named hcompar and should behav'r: in a mannrLer simi-
lar to strcmr (see sfrrag(3C)).

CTIAINED
Use a linked list to resolve collisions. If this option is selected, the f,cllowing
other options become available.
START Place new entries at the beginning of the lirrked list idefault i:; at

the end).
SORTUP Keep the linked list sorted by key in ascending ,crder.

SOR,TDO\vN
Keep the linked list sorted by key in descending orde.r.

Additionally, there are preprocessor flags for obtaining debugging printout (.-DDEBUG) and for
including a test driver in the calling routine (-DDRTVER). The source code should be consul te<l
for further details.

EXAMPLE ^
The following example will read in strings followed by two numbers and store them in a hrxh

-1-



HSEARCT{( 3C )

table, discarding duplicates. It will then read in strings and find the matching entry in the hash
t,able and print it out.

Sinclude (stdio.h>
finclude <search.h>

struct info { l* this is the info stored in the table */
int age, room; /* other than the k.y. */

);
ffdefine NIIN'I-EMPL 5000 l* # "f elements in search table * f
main( )
t

/* space to store strings */
char string-space[NUM EMPL*2O];
/* space to store employee info */
struct info info space[NUM-EMPL];
/* next avail space in string-space *f
char *str3tr : string-space;
/* next avail space in info-space */
struct info *info3tr : info-space;
ENTRY item, *found item, *hsearch( );
/* name to look for in table */
char name-to-find[30] ;

inti:0;

f* create table */
(void) hcreate(NtrM-EMPL);
while (scanf(" 96s%d%od", strjtr, &info3tr-)age,

&infojtr-)room) !: EoF && i+-L < NUM-EMPL) {
/* put info in structure, and structure in item */
item.keY : strJtr;
item.data : (char *)infojtr;
str3tr +: strlen(strjtr) * 1;
info3tr**;
/* prrt item into table */
(void) hsearch(item, ENTER);

)

/* access table */
item.key : name-to-find;
while (scanf("%t"", item.key) !: EOF) {

if ((found item : hsearch(item, FIND)) !: NIILL) {
/* if item is in the table */
(void)printf("found %as, age : %od, room .: %od\n",

found_item- ) key,
((struct info *)found-item->data)-)age,
((struct info *)found-item->data)->room);

) else {
(void)printf("no such employee %s\n",

name-to-find)
)

)

-2-

)



TTSEARCH( 3C )

SEE ALSO
bsearch(3C), lsearch(3C), malloc(3C), malloc(3X), string(lCl), tsearch(3C).

DIAGNOSTICS
Hsearch returns a NIILL pointer if eiiher the action is FIND and the item coulld not be fourrd or
the action is ENTER and the table is full.
Hcreate returns zero if it cannot allocate sufficient space for ihe table.

WARNING
Hsearch and hcreate :use malloc(3C) to allocate space.

BUGS
Only one hash search table may be active at any given time.

-3-



rrrPor( 3M )

NAME
hypot - Euclidean distance function

SYNOPSIS
Sinclude (math.h)
double hypot (*, y)
double x, y;

DESCRIPTION
Hypot returns

sqrt(x*x+y*y),
taking precautions against unwarranted overflows'

DIÄGNOSTICS
When the correct value would overflow, äypof returns HUGE and sets errno lo ERANGE.

These error-handling procedures may be changed with the function motherr(}M).

SEE ALSO
matherr(3M), exp(sM).

-1-



L3TOL( 3c )

NAME
I3tol, ltolS - convert between 3-byte integers and long integers

SYNOPSIS
void lStol (lp, cp, n)
long *lp;
char *cp;
int n;
void ltolS (cp, lp, n)
char *cp;
long *lp;
int n;

DESCRIPTION
L|tol c<>nverts a list of n three-byte integers packed into a character string p,<»inted to by cp ittto
a list of Iong integers pointed to by lp.

LtolS performs the reverse conversion from long integers (/p)to three-byte integers (cp).

These functions are useful for file-system maintenance where the block nurrLbers; are three byt,es
long.

StrE AISO
f'(4).

BUGS
Because of possible difl'erences in byte ordering, ühe numerical values of the long integ;ers ,are

ma,chine-dependeut.

-1-



LDATTREAD ( 3X)

NAME
ldahread - read the archive header of a member of an archive file

SYNOPSIS
ffinclude (stdio.h)
finclude (ar.h)
ffinclude (filehdr.h>
finclude <ldfcn.h)

int ldahread (ldptr, arhead)
LDFILE *ldptr;
ARCHDR *arheadl

DESCRIPTION
If TYPE(rdptr) is the archive file magic number, ldahread reads the archive header of the com-
mon object file currently associated with ldptr into the area of memory beginning at arhead.
Ldahread returns SUCCESS or FAILURB. Ld.ahread will fail if TYPE(ldptr) does not represent
an archive file, or if it cannot read the archive header.
The program must be loaded with the object file access routine library tibld.a.

SEtr AI,SO
Idclose(3X), ldopen(3X), ldfcn(a), ar(4).

-l-



LDCLOSE( 3X)

NAME
Idclose, ldaclose - close a, common object file

SYNOPSIS
ffinclude (stdio.h)
finclude (filehdr.h)
finclude <ldfcn.h)

int Idclose (ldptr)
LDFILE *ldptr;
int ldaclose (ldptr)
LDFILFI *ldptr;

DESCRIPTION
Ldopen(3X) arrd ldclose are designed to provide uniform access to both simple object files and
object files that are members of archive files. Thus an archive of common object files can be pro-
cessed as if it were a series of simple common objecü files.

If TYPE(rdptr) does nor represent an archive file, ldclose will close the file eund llree the memory
allocated to the LDFILE structure associated with ldptr. If TYPE(/dpfr) is the rnagi<: nurnber of
an archive file, and if there are any more files in the archive, ldclose will reinLitialize
OFFSET(/dptr) to the file address of the next archive member and return ITAILURE. T'he
LDFILE structure is prepared for a subsequent /dopen(3X). In all other cases, /dclose reLur:ns
SUCCESS.
Ldaclose closes the file and frees the memory allocated to the LDFILE struct,trre associal;ed with
ldptr regardless of the value of TYPF (ldptr). Lilaclose always returns SUCOESiS. T'he lunction
is often used in conjunction with ldaopen.

The program must be loaded with the object file access routine library libld.ar.

SEE ALSO
fclose(3S), ldopen(3X), ldfcn(a).

-1-



LDFHREAD ( 3X)

NAME
Idfhread - read the file header of a common object file

SYNOPSIS
finclude (stdio.h>
ffinclude (filehdr.h>
Sinclude <ldfcn.h)

int Idlhread (ldptr, filehead)
LDFILE *ldptr;
FILHDR *filehead;

DESCRIPTION
Ldfhread reads the file header of the common object file currently associated with ldptr into the
area of memory beginning at lilehead.
Ldfhread returns SUCCESS or FA-ILURE. Ldfhread will fail if it cannot read the file header.
In most cases the use of ldfhread can be avoided by using the macro HEADER(/dptr) defined in
ldfcn.h (seeldfcn(a)). The information in any field, lieldname , of the file header may be accessed
using HEAD EPt(l dp tr). li el dn ame.

The program must be loaded with the object file access routine library tibld.a.
SEE AISO

ldclose(3X), ldopen(3X), ldfcn(a).

-1-



LDGETNAME(3X)

NAME
ldgetname - retrieve symbol name for common object file symbol table entry

SYNOPSIS
ffinclude (stdio.h>
finclude (filehdr.h)'
finclude (syms.h)
finclude (ldfcn.h)
char *ldgetnarne (ldptr, symbol)
LDFILE *ldptr;
SYMENT *syrnbol;

DESCRIPTION
Ldgetname returns a pointer to the name associated with symbol as a strin6;. T'he sl,ring is con-
tained in a static buffer local to ldgetname that is overwritten by each cal.l to ldgetna'me, a'nd
therefore must be copied by the caller if the name is to be saved.

As of L-INIX system release 5.0, which corresponds to the fint release of the operating syst«lm, tlte co:mmotr
object file format has been extended to handle arbitrary length symbol names with thr: addlition of a.

"string table". Lilgetname will return the symbol name associated with a symbol tat,le entry lior
either a pre-UND( systenn 5.0 object file or a UNX system 5.0 object 61.. fhus, ldgetname' can be

used to retrieve names from object files without any backward compatibility problt,ms. Ldg'et'
name will return NTILL (defined in stdio.h) for a UNIX system 5.0 object fil,: if the name canrLot
be retrieved. This situabion can occur:

- if the "string table" cannot be found,

- if not enough memory can be allocated for the string table,

- if the string table appears not to be a string table (for example, if an auxiliar/ ,entry 15;

handed to ldgetname that looks like a reference to a name in a non-r:xistent string; table)
or

- if the name's offset into the string table is past the end of the string uable.

Typically, ldgetname will be called immediately after a successful call to ldtbrea,d. to ret.rjLeve l,ht:
name associated with the symbol table entry filled by ldtbread.
The program must be loaded wit,h the object file access routine library libld.ra.

SEE AISO
ldclose(3X), ldopen(3X), Idtbread(3X), ldtbseek(3X), ldfcn(a).

-1-



LDLREAD ( 3X)

Idlread, ldlinit, ldlitem - manipulate line number entries of a common object file function
NAME

SYNOPSIS
ffinclude
finclude
Sinclude
finclude

(stdio.h)
(filehdr.h)
(linenum.h)
(ldfcn.h>

int ldlread(ldptr, fcnindx, linenum, linent)
LDFILE *ldptr;
Iong fcnindx;
unsigned short linenuml
LINENO linent;
int ldlinit(ldptr, fcnindx)
LDFILE *ldptr;
Iong fcnindx;
int ldlitem(ldptr, linenum, linent)
LDFILE *ldptr;
unsigned short linenurn;
LINENO linent;

DESCRIPTION
Ldlread searches the line number entries of the common object file currently associated with
ldptr. Ldlread begins its search with the line number entry for the beginning of a function and
confines its search to the line numbers associated with a single function. The function is identi-
fied by fcnindx, the index of its entry in the object file symbol table. Ldtread reads the entry
with the smallest line number equal to or greater Lhan linenum into linent.
Ldlinit and ldlitem together perform exactly the same function as ldlread. After an initial call to
ld.lread or ldlinit, ldlitem may be used to retrieve a series of line number entries associated with a
single function. Ld,linit simply locates the line number entries for the function identified by
fcninh. Ldlitem finds and reads the entry with the smallest line number equal to or greater than
linenum into linent.
Ldlread, ldlinit, and ltllitem each return either SUCCESS or FAILURE. Ldtreadwill fail if there
are no line number entries in the object file, if fcnindu does not index a function entry in the sym-
bol table, or if it finds no line number equal to or greater than linenum. Ldtinit will fail if there
are no line number entries in the object file or if fcnindx does not index a function entry in the
symbol table. Ldlitern will fail if it finds no line number equal to or greater than linenam .

The programs must be loaded with the object file access routine library libld.a.
SEE AISO

ldclose(3X), ldopen(3X), ldtbindex(BX), ldfcn(a).

-l-



LDLSEEK(3X)

NAME
Idlseek,idnlseek - seek to line number entries of a section of a common object file

SYNOPSIS
finclude (stdio.h)
finclude <filehdr.h),
finclude (ldfcn.h)
int ldlseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;
int ldnlseek (ldptr, sectname)
LDFILE *ldptr;
char *sectnarne;

DESCRIPTION
Ldlseek seeks to the line number entries of the section specified by sectinfu of th,e conrmc,n objr:ct
file currently associated with ldptr.
Ld,nlseek seeks to the line number entries of the section specified by sectname.

Ldlseek and, ldnlseek return SUCCESS or FAILURE. Ldlseek will fail if sectind't is 3reat,er bharL

the number of sections in the object file; Idnlseeß will fail if there is no section name correspotld-
ing with *sectname. Either function will fail if the specified section has no liine number e'ntries or
if it, cannoi seek to the specified Iine number entries.

Note that the first section has an index of one.

The program must be loaded with the object file access rout,ine library libld.s.
SEE ALSO

ldclose(3X), ldopen(3X), Idshread(3X), Idfcn(a).

-1-



LDOHSEEK(3X)

NAME
Idohseek - seek to the optional file header of a common object file

SYNOPSIS
finclude <stdio.h>
finclude (filehdr.h)
#include (ldfcn.h)
int ldohseek (ldPtr)
LDFILE *ldPtr;

DESCRIPTION
Ldohseek seeks to the optional file header of the common object file currently associated with
ldptr.
Ld.ohseek returns succESS or FATLURE. Ldohseek will fail if the object file has no optional
header or if it cannot seek to the optional header'

The program must be loaded with the object file access routine library libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldfhread(3X), ldfcn(a)'

-l-



LDOPEN(3X)

NAME
ldopen, ldaopen - open a common object file for reading

SYNOPSIS
finclude <stdio.h>
finclude (filehdr.h)
finclude <ldfcn.h),
LDFILE *ldopen (filename, ldptr)
char *filename;
LDFILE *ldptr;
LDFILE *ldaopen (filename, oldptr)
char tfrlenamel
LDFILE *oldptr;

DESCRIPTION
Ldopen and ldclose(3X) are designed to provide uniform access to both s,imple object files and
object files that are members of a^rchive files. Thus an archive of common object filr:s can be pro. -cessed as if it were a sr:ries of simple common object files.

If ldptr has the value NULL, then ldopen will open lilename and allocate and initialize the
LDFILE structure, and return a pointer to the structure to the calling program.

lf ldptr is valid and jif TYPE;(ldptr) is the archive magic number, ldopen will reinit,ialize the
LDFILE structure for the next archive member of lilename .

Ldopen and ldclose(3X) are designed to work in concert. Ldclose will return FAILUITE o:nly rt'hen
TYP-}i,(ldptr) is the archive magic number and there is another file in the arr:hive to be procer;sed.
Only t,hen should ldopen be called with the current value of ldptr. h all other cases, in partic:ular
whenever anew lilenarne is opened,lilopen should be called with aNULL /dntra.rgunrent,.

The following is a prototype for the use of ldopen and ldclose(3X).

/* for each filename to be processed */
ldptr: NULL:
do
{

if ( (ldptr : ldopen(filename, Idptr)) !: NULL )
{

/* check magic number */ +
/* process the file */

)
) while (ldclose(ldptr) :: FAILURE ); -.-

If the value of oldptr is not NULL, lilaopen will open filename anew and allocate and initialize a
new LDFILE structure, copying the TYPE, OFFSET, and HEADER fields fron oldlttr. Ldaopcn
reLurns a pointer to the new LDFILE structure. This new pointer is indepe,ndent of the old
pointer, oldptr. The two pointers may be used concurrently to read separate parts of the ob,,lect
file. lror example, one pointer may be used to step sequentially through t]re relocai;ion informa.-
tion, rvhile the other is used to read indexed symbol table entries.

BoLh ldopen and ldaopen open lilename for reading. Both lunctions return I.IULL if ,filen,ume ,:arL-
not be opened, or if memory for the LDFILE structure cannot be allocated. .A. su,:cessful open
does not insure that thr: given file is a common object file or an archived object Iile.
The program must be loaded with the object file access routine library libld.a.

SEE AISO
fopen(3S), Idclose(3X), tdfcn(a).

-1-



LDRSEEK(3X)

NAME.- ldrseek, ldnrseek - seek to relocaüion entries of a section of a common object file
SYNOPSIS

finclude (stdio.h)
finclude (filehdr.h)
finclude <ldfcn.h)
int ldrseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;
int ldnrseek (ldptr, sectname)
LDFILE *ldptr;
char *sectnamei

DESCRIPTION
Ldrseek seeks to the relocation entries of the section specified by sectindx of the common object
file currently associated with ldptr.
Ldnraeek seeks to the relocation entries of the section specified by sectname.

Ldrseek and ldnrseek return SUCCESS or FAILURD. Ldrseek will fail if aectind.x is greater than
lhe number of sections in the object file; ldnrseet will fail if there is no section name correspond-
ing with sectname. Either function will fail if the specified section has no relocation entries or if
it cannot seek to the specified relocation entries.

Note that the first section has an index of oze.

The program must be loaded with the object file access routine library libld.a.
SEE ALSO

ldclose(3X), ldopen(3X), ldshread(3X), ldfcn( ).

-1-



LDSHREAD(3X)

NAME
ldshrerad, ldnshread - read an indexed/named section header of a common object file

SYNOPSIS
ffinclude (stdio.h>,
finclude <frlehdr.h)
Sinclude (scnhdr.ir)
finclude <ldfcn.h),
int Idshread (ldptr, sectindx, secthead)
LDFILE *ldptr;
unsigned short sectindx;
SCNIIDR *sectheadl

int ldnshread (ldptr, sectname, secthead)
LDFII-E *ldptr;
char *sectnemei
SCNHDR *secthead;

DESCRIPTION
Ldshread reads the secLion header specified by sectindr of t,he common objecl, file currenr;ly associ-
ated with ldptr into the area of memory beginning at sectheail .

Ldnshread reads the section header specified by sectname into the area ol' memory beE;inning zit
secthead.

Ldshread and ldnshread return SUCCESS or FAILURE. Ldshread will fail. if sectütdr irs greatr:rthan the number of sections in the object frle; ldnshread will fail if there is no r;ectio, ,r,rrr.
comesponding with sectname. Either function will fail if it cannot reacl the spe,:ifiec[ section
header.

Note t,hat the first section header has an index of one.
The program must be loaded with the object file access routine Iibrary libld,a.

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(a).

-1-



LDSSEEK(3X)

NAME
Idsseek, ldnsseek - seek to an indexed/named section of a common object file

SYNOPSIS
finclude (stdio.h)
finclude (filehdr.h)
finclude <ldfcn.h)
int ldsseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;
int ldnsseek (ldptr, sectname)
LDFILE *ldptr;
char *sectnamei

DESCRIPTION
Ldsseek seeks to the section specified by sectindr of the common object file currently associated
with ldptr.
Ldnsseek seeks to the section specified by scctname.
Ld.sseek and lilnsseek return SUCCESS or FAILURE. Ldeaeek will fail if aectindc is greater than
the number of sections in the object flJe; ldncseek will fail if there is no section name correspond-
ing with sectname. Either function will fail if there is no section data for the specified section or
if it, cannot seek to the specified section.

Note that the first section has an index of oae.

The program must be loaded with the object file access routine library libld.e.
SEE AISO

ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(a).

-1-



LDTBTNDEX(3X)

NAME
ldtbindex - compute the index of a symbol table entry of a common object file

SYNOPSIS
finclude <stdio.h)
ffinclude (filehdr.h)
finclude (syms.h)
finclude <ldfcn.h)
trong Idtbindex (ldptr)
LDFILE *ldptr;

DESCRIPTION
Ldtbinder returns the (long) index of the symbol table entry at the currenl, poriition of the conr-
mon object file associat,ed wilh ldptr.
The index returned by ldtbinder may be used in subsequent calls to ldtbread'lBX). H6wever, since
ldtbindet returns the index of the symbol table entry that begins at the crsrent pc,siti,)n of theobject file, if ldtbindn is called immediately after a particular symbol table entry hils been reacl, nit will return the index of the next entry.
Ldtbindet will fail if tliere are no symbols in the object file, or if the object, file is n,ct p,ositic»ned
at bhe beginning of a s1'mbol table entry.
Note that the first symbol in the symbol table has an index of zero.
The program must be loaded with the object file access rouiine library libld,a.

SEtr AISO
ldclose(3X), ldopen(3X), ldtbread(3X), Idtbseek(3X), Idfcn(a).

-1-



LDTBREAD ( 3X)

NAME
Idtbread - read an indexed symbol table entry of a common object file

SYNOPSIS
ffinclude (stdio.h)
finclude <frlehdr.h)
ffinclude (syms.h)
ffinclude (ldfcn.h)
int ldtbread (ldptr, symindex, symbol)
LDFILE *ldptr;
long symindex;
SYMENT *syrnbol;

DESCRIPTION
Ldtbread, reads the symbol table entry specified by symindex of the common object file cumently
associated with ld,ptr into the area of memory beginning at symbol .

Ldtbread returns SUCCESS or FAILURE. Ldtbread will fail il symindex is greater than the
number of symbols in the object file, or if it cannot read the specified symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library libld.e'
SEE ALSO

ldclose(3X), ldopen(3X), ldtbseek(3X), ldfcn(a).

-1-



LDTBSEEK(3X)

NAME
Idtbseek - seek to the symbol table of a common object file

SYNOPSIS
finclude (stdio.h)'
finclude (filehdr.h)
finclude (ldfcn.h>'
int ldtbseek (ldptr)
LDFILE *ldptr;

DESCRIPTION
Ldtbseek seeks to the symbol table of the object file curently associated with ltlptr.
Ldtbseek returns SUCCESS or FAILURE. Ldtbseek will fail if the symbol tzrble has been strippr:d
from the object file, or if it cannot seek to the symbol table.
The program must be ioaded with the object file access routine library libld..a.

SEE ALSO
ldclose(3X), Idopen(3X), Idtbread(3X), ldfcn(4).

-1-



LOGNAME( 3X)

NAME
lognäme - return login name of user

SYNOPSIS
char *lognerne( )

DESCRIPTION
Logname returns a pointer to the null-terminated login name; it extracts the $LOGNAME vari-
able from the user's environment.
This routine is kept in /lib/libPw.a.

FILES
/etc/profile

SEE AISO
env(1), login(1), profile(+), environ(S).

BUGS
The return values point to static data whose content, is overwritten by each call.

This method of determining a login name is subject to forgery.

-1-



LSEARCH( 3c )

NAME
Isearch, Ifind - linear sr:arch and update

SYNOPSIS
finclude <stdio.h)
finclude (search.h)
char *lsearch ((char *)k.y, (char *)base, nelp, sizeo(*key), compa'r)
unsigned *nelp;
int (*cornp""X );
char *lfind ((char *,lkey, (char *)base,
unsigned *nelpl
int (*comp"")( );

nelp, sizeo(*k.y), cornpar)

DESCRIPTION
Lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S. It returns a. poirnter
into a table indicating where a datum may be found. If the datum does nol; oc(:ur, ib is addedl at
the end of the table. Key points to the datum to be sought in the table. Base points to thefirst element in the tat,le. Nelp points to an integer containing the current number of elem.ntsin the table- The integer is incremented if the datum is added to the talcle. Cornp11r is the
name of the compariso:n function which the user must supply (strcmp, for example). It is calle,lwith two arguments that point to the elements being compared. The function mLust letunn zero if
the elements are equal :rnd non-zero otherwise.
Lfind is the same as lsearch except that, if the datum is not found, it is no,t added to ttre table.
Instead, a NULL pointer. is returned.

NOTES
The pointers to the key and the element at the base of the table should t,r: ol'type poiinter-to-
element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data may be conl,ained in bh,::
elements in addition to the values being compared.
Although declared as type pointer-to-character, the value returned should be cait i:nto typr:
pointer-to.element.

EXAMPLE
This fragment will read in < TABSIZE strings of length < ELSIZE and st,ore thenr in a table,
eliminating duplicates.

finclude (stdio.h>
finclude (search.h>

ffdefine TABSI;ZE 50
ffdefine ELSIZE 120

char line[ELSTZE], rabITABSTZE]IELSIZE], *lsearch( 
);

unsigned nel : 0;
int strcmp( );

while (fgets(line, ELSIZE, stdin) !: NTILL &&
nel ( TABSIZE)

(void) Isearch(line, (char *)tab, &nel,
ELSIZE, strcmp);

SEE AISO
bsearch(3C), hsearch(BC ), tsearch(3C).

l-



LSEARCH( 3C )

DIAGNOSTICS
If the searched for datum is found, both lseorcä and $ind return a pointer to it. Otherwise, $ind
returns NULL and lsearch returns a pointer to the newly added element.

BUGS
Undefined results can occur if there is not enough room in the table to add a new item.

_r-



MALLoc ( 3C )

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char *malloc (size)
unsigned sizel
void free (ptr)
char *ptrl
char *realloc (ptr, size)
char *ptrl
unsigned sizel
char *calloc (nelem, elsize)
unsigned nelern, elsize;

DESCRIPTION
Malloc and free provide a simple general-purpose memory allocation packa.6;e. Mall'oc returns a
pointer to a block of at least size bytes suitably aligned for any use.
The argument to tree is a pointer to a block previously allocated by mall'oc; after /rce: is;oer-
formed this space is made available for further allocation, but its contents are left unclistlr:bed,
Undefined results will occur if the space assigned by malloc is overrun or if rsomr: randonr nunrber
is handed to lree.
Malloc allocates the first big enough contiguous reach of free space found. in a circullr seeLrch
from the last block allocated or freed, coalescing adjacent free blocks as it searches. It <:alls s,ärrb
(see Örlc(2)) to get more memory from the system when there is no suitable space already free.
Realloc changes the size of the block pointed to by ptr to size bytes and rel;urns a pointerr to the
(possibly moved) block. The contents will be unchanged up to the lesser of l;he new z,nd old sizes.If no free block of slzr: fy1,6s is available in the storage arena, lhen reallctc will ar;k malloc t<t
enlarge the arena by size bytes and will then move the data to the new space,
Realloc also works if ptr points to a block freed since the last call of mallttc, realloc, <>.t: calloc;
thus sequences of lree, malloc and realloc can exploit the search strategy ol malloc to d,c storag,:
compaction.

i:,!:: 
allocates space l'or an amay of nelem elements of size elsize. The r;pace is initia,lizecl t<r

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer
coercion) for storage of any type of object.

SEE AI,SO
brk(2), malloc(3X).

DIAGNOSTICS
Malloc, realloc artd calloc return a NULL pointer if there is no available memory or if the aren:l
has been detectably corrupted by storing outside the bounds of a block. Wtren this hap,pens thr:
block pointed to by ptr may be destroyed.

NOTE
Search time increases *'hen many objects have been allocated; that is, if a program sllor:6tes bul
never frees, then each successive allocation t,akes longer. For an alternate, more flqxible im;rle-
mentation, see mol/oc (3X).

-l-



MALLOC(3X)

NAME
malloc, free, realloc, calloc, mallopt, malrinfo - fast main memory allocator

SYNOPSIS
finclude (malloc.h>
char *malloc (size)
unsigned size;
void free (ptr)
char *ptr;
char *realloc (ptr, size)
char *ptrl
unsigned sizel
char *calloc (nelem, elsize)
unsigned nelem, elsize;
int mallopt (cmd, value)
int cmd, valuel
struct mallinfo mallinfo (max)
int max;

DESCRIPTION
Malloc ar.d fre_e provide a simple general-purpose memory allocation package, which runs consid-erably faster than the rnaltoc(3O) package. It, is found in the library ,,mal*loc,,, and is loaded ifthe option "-lmalloc,, is used with cc(l) or td(l).
Malloc returns a pointer to a block of at least orze bytes suitably aligned for any use.
The argument to lree is a pointer to a block previously allocated by malloc; after free is per-formed this space is made available for further allocation, and its contenüs have been destroyed(but see mallopt below for a way to change ühis behavior).
Undefined results will oecur if the space assigned by malloc is overrun or if some random numberis handed to free.
Realloc changes the size of the block pointed to by ptr to sr'ze bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old sizes.
Calloc allocates space for an array of nelem elements of size elsize. The space is initialized to
zero§.

Mallopt provides for control over the allocaüion algorithm. The available values lor cmd are:
M-I'DGAST Set maxlast to oalue. The algorithm alloeates all blocks below the size of marfastin large groups and then doles them out very quickly. The default value for moc-

/cct is 0.

M-NLBLKS Set numlblka to aalue. The above mentioned "large groups" each contain numlbtks
blocks. Numlblks must be greater than 0. The default, vaiue for numlblks is 100.

M-GRAIN Set' grain to ualue. The sizes of all blocks smaller Lhan ma{ast are considered to
be rounded up to the nearest multiple of grain. Grain must be greater than 0.The default, value of grain is the smallest number of bytes which wlill allow align-
ment of any data type. Value will be rounded up to a multiple of the default whengrolr is set.

M-KEEP Preserve data in a freed block until the next malloc, realloc, or calloc. This option
is provided only for compatibility with the old vercion of malloc and is not recom-
mended.

-1-



MÄLLoc( 3X)

These values are definerl in the {malloc.h ) header file.
llfallopt may be called repeatedly, but may not be cal]ed after the first small blocl< is a,lloca,ted.
Mallinlo provides instrumentation describing space usage. It returns the struciurr::
struct rnallinfo {

inb arena; l" totul space in arena*/
int, ordblks; /* number of ordinary blocks */
int smblks; /* number of small blocks */
int hblkhd; /* space in holding block headers */'
int hblks; /* number of holding blocks */
int usmblks; 1,, space in small blocks in use *i'
int fsmblks; ,/* space in free small blocks */
irrt uordblks; l* space in ordinary blocks in use */
int fordblks; l* space in free ordinary blocks */
int keepcost; l* space penalty if keep option *,/

/* is used */
)
This stnucture is defined. in the {.malloc.h) header file.
Each of the allocation routines returns a pointer to space suitably aligned (after possibb poin.ter
coerciorr) for storage of any type of object.

SEtr ALSO
brk(2), malloc(3C).

DTAGNOSTICS
Malloc, realloc and calloc return a NLrLL pointer if there is not enough available menror1.. Wher1
realloc returns NLILL, the block pointed Lo by ptr is left intact . l! mallopt is call:d afber ,any allo-
cation or lf cmd or ualue are invalid, non-zero is reiurned. Otherwise, it, returns rzero.

WARNINGS
This package usually uses more data space than matloc(BC).
The corle size is also bigger than mal/oc(3C).
Note that unlike malloc.(3C), this package does not preserve the contents c,f a blocl< when it; isi
freed. unless the M_KEEP option of mallopt is used.
Undocumented features of malloc(3C) have not been duplicated.

-2-



MATTTERR( 3M )

NAME
matherr - error-handling function

SYNOPSIS
Sinclude (meth.h>
int matherr (x)
struct exception *x;

DESCRIPTION
Mathen is invoked by functions in the Math Library when errors are detected. Users may define
their own procedures for handling errors, by including a function nämed mathem in their pro-
grams. Matherr must be of the form described above. When an error occurs, a pointer to the
exception structure c will be passed to the user-supplied matherr function. This structure, which
is defined in the (matä.ä) header file, is as follows:

struct exception {
int type;
char *name;
double argl, arg2, retval;

);
The element type is an integer describing the type of error that has occumed, from the following
list of constants (defined in the header file):

DOMAIN argument domain emor
SING argument singularity
OYERFLOW overflow range emor
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function that incurued the error.
The variables argl and arg? are the arguments with which the function was invoked. Retual is
set to the default value that will be returned by the function unless the user's matherr sets it to a
different value.
If the user's matherr function returns non-zero, no error message will be printed, and errno will
not be set.

lf matherr is not supplied by the user, the default error-handling procedures, described with the
math functions involved, will be invoked upon error. These procedures are also summarized in
the table below. In every case, errno is set to EDOM or ERANGE and the program continues.

EXAMPLE
finclude (math.h)

int
matherr(x)
register struct exception *x;

t
switch (x->type) {
case DOMAIN:

/* change sqrt to return sqrt(-argl), not 0 */
if (lstrcmp(x-)name, "sqrt")) {

x_) retval : sq11(_x_) argl);
return (O); /* priut message and set errno */

)
case SING:

/* all other domain or sing errors, prinb message and abort */

-1-



MATHERR(3M)

fprintf(stderr, "domain error in %s\n", x-),name);
abort( );

case PLOSS:
/* print detailed emor message */
fprintf(stderr, "loss of significance h %os(%og) : %B\n",

x->name, x-) argl, x-) retval);
return (t); l* take no other action */

)
return (0); l'* all other emors, execute default procedure */

DEF,A.fILT ERROR HANDLING PROCEDI'RES
es of Errors

ERANGE

BESSEL

o, v1,
EXP:

LOG, LOCl0:
(arg < 0)
(arg : o)

POW:
neg ** non-ini

0 ** non-pos

SQRT:

}I\?OT
SINH:

SIN, COS, TAN: _

ASIN, ACOS, ÄTAN2: M, O

ABBRE\rIATIONS* As much a,s possitrle of the value is returned.
M Message is printeii (EDOM error).
H HUGE is returned
-H -HUGE is returned.
+H HUGE or -HUGE is returned.
0 0 is returned.

O\ERFLOW TINIDERFLOW

o



MEMoRY( 3C )

NAME
- memccpy, memchr, memcmp, memcpy, memset - memory opera,tions

SYNOPSIS
finclude (memory.h)
char *memccpy (s1, a2, c, n)
char *s1, *s21

int c, n;
char *memchr (s, c, n)
char *s;
int c, n;
int rrerncmp (s1, s2, n)
char *s1, *s2;

.- int n;
char *rnemcpy (s1, s2, n)
char *s1, *s21
int n;
cha,r *rnemset (s, c, n)
char *s;
int c, n;

DESCRIPTION
These functions operaüe efficiently on memory areas (amays of characters bounded by a count,
not terminated by a null character). They do not check for the overflow of any receiving memory
area.

Memccpy copies characters from memory area sP into s-l , stopping after the first occurreuce of
character c has been copied, or after n characters have been copied, whichever comes first. It
returns a pointer to the character afüer the copy of c in sl , or a N{.ILL pointer if c was not found
in the first n characters of c2.
Memchr returns a pointer to the first occurrence of character c in the first, n characters of

. memory area 6, or a NI.ILL pointer if c does noü occur.
Memcmp compares its arguments, looking at the first n characters only, and returns an integer
less than, equal to, or greater than 0, according as o,l is lexicographically less than, equal to, or
greaüer than s2.
Memcpy copies n characters from memory area sP to s1. It returns s-l .

Memset sets the first n characters in memory area s to the value of character c. It returns s .

NOTE
For user convenience, all these functions are declared in the optional <memory.ä) header file.

BUGS
Memcmp uses native character comparison, which is signed on some machines but not on others. ASCII
values are always positive, so programs that compare only ASCII values are portable.

Overlapping moves may yield surprises.

-1-



MKTEMP(3c)

NAME
mktemp - make a unique file name

SYNOPSIS
char *mktemp (ternplate)
char *template;

DtrSCRIPTION
Mktemp replaces the contents of the string pointed to by template by a unirlue file name, aad
returns the address of template. The string in template should look like a I'ile name with, six r,rail-
ing Xs; mktemp will .replace the Xs with a letter and the current process lD. The lett,er will be
chosen so that the resrrlting name does not duplicate an existing file.

SEE ALSO
getpirl(2), tmpfile(3S), tmpnam(3S).

BUGS
It is possible to run out of letters.

-1-



MONTTOR(3C)

NAME
monitor - prepare execution profile

SYNOPSIS
finclude <rnon.h)
void rnonitor (lowpc, highpc, buffer, bufsize, nfunc)
int (*lowpc)( ), (*highp"X );
WORD 'buffer;int bufsize, nfuncl

DESCRIPTION
An executable program created by cc -p automatically includes calls for monitor with default
parameters; monitor needn't be called explicitly except to gain fine control over profiling.
Monitor is an interface Lo proJil(2). Lowpc and highpc are the addresses of two functions; äu//er
is the address of a (user supplied) array of bufaize WORDs (defined in the {mon.h) header file).
Monitor arranges to record a histogram of periodically sampled values of the program counter,
and of counts of calls of certain functions, in the buffer. The lowest address sampled is that of
lowpc and the highest is just below highpc. Lowpc may not equal 0 for this use of monitor. At
most nfunc call counts can be kept; only calls of functions compiled with the profiling option -p
of cc(l) are recorded. (The C Library and Math Library supplied when cc -p is used also have
call counts recorded.)
For the results to be significant, especially where there are small, heavily used routines, it is sug-
gested that the buffer be no more than a few times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext;

monrtor ((int (*)0)2, etext, buf, bufsize, nfunc);
Etext lies just above all the program text; see cnd(}C).
To stop execution monitoring and write the results on the file mon.out, use

monitor ((int (*)0)0, 0, 0, 0, 0);

Prol(L) can then be used to examine the results.

FILES
mon.out
/lib/libp/libc.a
/lib/libp/libm.a

SEE ALSO
cc(1), prof(l), profil(2), end(3C).

-1-



NLrST(3C )

NAME
nlist - get entries from name list

SYNOPSIS
finclude (nlist.h)
int nlist (file-name, nl)
char *file-name;
struct nlist *nl;

DESCRIPTION
Mfst examines the name list in the executable file whose name is pointed Lo l>y fiie-name, xnd
selectively extracts a list of values and puts them in the array of nlist structures pointed t,o by' n,l.
The name list nl consists of an array of structures containing names of variables, types and
values. The list is terminated with a null name; that is, a null string is in the name p,csition of
the structure. Each variable name is looked up in the name list of the file. [f t.he nzrme is founci,
the type and value of the name are inserted in the next two fields. The typ,e field will be set t,o 0
unless the file was compiled with the -g option. If the name is not found, both entries ilre set to
0. See a.out{4) for a discussion of the symbol table structure.
This function is useful for examining the system name list kept in the file /unix. In t,his rvay
programs can obtain system addresses that are up to date.

NOTES
The ( nlist.h> header file is automatically included by .ar. out.h) for corrLpatia,bility. Flowever,
if the only information needed from (a.out.h) is for use of nlist, then including <1 a.r,rrt.ä-, is
discouraged. If < a.out.h) is included, the line "fundef n_name" may need to follow it.

SEE ALSO
a.out(4).

DIAGNOSTICS
A-ll value entries are set, to 0 if the file cannot be read or if it does not contain a'valid nalrte list.
Misf returns -l upon error; otherwise it returns 0.

-1-



ocuRSE( 3X)

NAME
ocurse - optimized screen functions

SYNOPSIS
ffinclude (ocurse.h>

DESCRIPTION
Ocurse is the old Berkeley curses library that uses termcap (l).
These functions optimally update the screen.

Each curoes program begins by calling initscr and ends by calling endwin.
Before a program can change a screen, it must specify the changes. It stores changes in a variable
of type WINDO.W by calling curEeE functions with the variable as argument. Once the variable
contains all the changes desired, the program calls wrefresä to write the changes to the screen.

Most programs only need a single WINDOW variable. Curses provides a standard WINDOW
variable for this case and a group of functions that operate on it. The variable is called stdscr;
its special functions have the same name as the general functions minus the initial w.

FILtrS
/usr/include/ocurse.h - header file
/usr/lib/libocurse - curses library
/usr/lib/libtermcap - termcap library, used by curses

SEE ALSO
Ken Arnold, Screen Updating anil Cursor Moaement Optimization: A Library Package. Available
from Computer Center Library, University of California at Berkeley.
stty(2), setenv(3), termcap(4)

FUNCTIONS
addch(ch) Add a character to stdscr.
addstr(str) Add a string to stdscr.
box(win,vert,hor) Draw a box around a window.
crmode$ Set cbreak mode.
clearfl Clear stdscr.
clearok(scr,boolf) Set clear flag for scr.
clrtobot$ Clear to bottom on stdscr'
clrtoeol$ Clear to end of line on stdscr'
delchQ Delete a character.
deletelnQ Delete a line.
delwin(win) Delete ufn.
echofl Set echo mode.
endwin$ End window modes.
erase$ Erase stdscr.
getchQ Get a char through stdscr.
getcap(name) Get terminal capability name.
getstr(str) Get a string through stdscr.
gettmodefl Get ttY modes.
getyx(win,y,x) Get (y,x) co'ordinates.
inchQ Get char at current (y,x) co-ordinates.
initscrfl Initialize screens.
insch(c) Insert a char.
insertln$ Insert a line.
leaveok(win,boolf) Sei leave flag for win.
Iongname(termbuf,name) Get long name from termbuf.
move(y,x) Move to (Y,x) on stdscr-

-1-



ocuRsE(3X)

mvc ur(lasty,lastx, newy,newx)
newwin(lines, cols,begin3,begin_x)

"10nocrmode0
noecho0
nonl0
noraw0
overlay(winl,win2)
overwrite(winl,win2)
printw(fmt,arg1,arg2,... )
raw0
refresh0
reseüty()
savetty0
scanw(fmt,argl,arg2,.,.)
scroll(win)
scrollok(win,boolf)
setterm(name)
standend0
standout0
subwin(win,lines,cols,begin3,begin_x)
touchwin(win)
unctrl(ch)
waddch(win,ch)
waddstr(win,str)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win,c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win,str)
winch(win)
winsch(win,c)
winsert,ln(win)
wmove(win,y,x)
wprin tw(win,fmt, argl,arg2,... )wrefresh(win)
wscanw(win,fmt, argl,arg2,... )
wstandend(win)
wstandout(win)

Actually move cursor.
Create a new window.
Set newline mapping.
Unset cbreak mode.
Unset echo mode.
Unset newline mapping.
Unset raw mode.
Overlay winl on win2.
Overwrite winl on top of wirr2.
Printf on atdscr.
Seü raw mode.
Make current screen look like stilscr.
Reset tty flags to stored value.
Stored current tty flags.
Scanf through stdscr.
Scroll ulz one line.
Set scroll flag.
Set term variables for name,
End standout mode.
Start standout mode.
Create a subwindow.
change all of rorn.
Printable version of crl.
Add char to win.
Add string to win.
Clear uln.
Clear to bottom of win.
Clear to end of line on tain.
Delete char from rodn.
Delete line from u;in.
Erase uln.
Get a char through tom.
Get a string through raiz.
Get ehar at current, (y,x) in urz.
Insert char into torn.
Insert line into urn.
Set current (y,x) co-ordinates on torn,
Printf on win.
Make screen look like urin.
Scanf through win.
End standout mode on urz.
Start standout mode orr win.

o



OFCREATE ( aX ) (System 6600 Only)

NAME
ofCreate, ofChangeFileLength, ofDelete - Allocate RTOS files

SYNOPSIS
ofCreaüe(pbFileSpec, cbFileSpecl pbPaseword, cbPassword, lfaFileSize)
cha,r *pbFileSpec;
shortcbFileSpec;
char *pbPasswordl
shortcbPassword;
long lfaFileSize;

ofChangeFilelength(Ih, lfaNewFileSize)
shortfh;
long lfaNewFileSize;

ofDelete(Ih)
shortftr;

V DESCRIPTION

?"**"";!;,;::,::::#,"äää;li:ffiT:::;:""H,::ffi:J:::.op",,,i.gsys,em
processes lack a RTOS default path, so the name must begin with a volume name in
square brackeüs, [..], and a directory name in angle brackets, (...]. The specified
volume and directory must already exisü. The file name that follows the volume and
directory specifications can be up to 50 characters: uppercase a.nd lowerca^se letters,
digits, periods (.), hyphens (-), and right angle brackets ()), Here is an example with
everything:

[sys] < sys > Bigl.subd > doc-Old

OfCreate fails if the specified directory already has a file with the specified name. RTOS
does not consider two file names distinct if they differ only in the case of their letters.
However, a RTOS directory preserves the case of letters as specified by ofCreate.

PbPacaword and, cbPasaword specify the location and size of the password that authorizes
creation of the file. This password must match the volume or direetory password. If
volume or directory lacks a password, no password is needed; set cüPceeroord tn 0 and
PbPaaaword to anything. (To give the file itself a password, see see o/ototuo(3X).)v 

o LfuFileSize isthe initial size of the file. The size must be a multiple of 512.
See ofopenfilc(3X)to provide a file handle for a newly-ereated file.
Of1hangeFileLength calls the RTOS ChangeFileLength service, which resets the length of a file.

:t"*1ti * , r,a handle rerurned by ofopcn.
. LfaNewFileSize is the new size of the file. The size must be a multiple of 512.

OlDelete calls the RTOS DeleteFile service, which deletes a file. Fä is a file handle returned by
an ofOpen in modify mode.
The program must be loaded with the library flag -lctos.

SEE ALSO
RTOS Operating System Manual, "File Management."

o f o p e n lil e (3X), o fr e a d (3X), o/drr ( 3X), o/s tc tu o ( 3X), o fr e n am e (3X).

_ RETURN VALTE
0 indicates success. OfCreate reburns 224 if the file already exists. For other errors, see

-1-



OFCREATE( sX) (System 6600 Only)

Appendix A in the RTOS Operating System Manual.
WARNING

Frequent calls to OlOp,sn and CloseFile on a nearly full volume result, in liles.rvhost: contents are
scattered about the disk. RTOS must add addit,ional hea,ler blocks to rhe disl< t,o keep trar:k of
the fra.gments. Frequent calls to ofChangeFiteLength can have Lhe same efli:,:t.



oFDIR ( 3x ) (System 6600 Only)

NAME
ofCrDir, ofDIDir, ofReadDirSector - RTOS directory functions

SYNOPSIS
ofCrDir(pbDirSpec, cbDirSpec, pbVolPassword, cbVolPassword,

pbDirPassword, cbDirPassword, cSectors,
defaultF ileP rotectionLevel)

char *pbDirSpec;
short cbDirSpec;
char *pbVolPasswordl
short cbVolPassword;
char *pbDirPasswordl
short cbDirPassword;
short cSectorsl
short defaultFileProtectionlevel;

ofDlDir(pbDirSpec, cbDirSpec, pbPassword, cbPassword)
char *pbDirSpec;
short cbDirSpec;
char *pbPasswordl
short cbPasswordl

olReadDirSector(pbDirSpec, cbDirSpec, pbPassword, cbPassword,
iSector, pBufferRet)

char *pbDirSpec;
short cbDirSpec;
char *pbPasswordl
short cbPasswordl
short iSector;
char *pBufferRet;

DescRrpuoN
OfCrDir calls the RTOS CreateDir service, which creates a RTOS direciory. It takes the follow-
ing arguments:
o PbDirSpec and cbDirSpec specify the location and size of the directory name. Operating system

processes lack a RTOS default path, so the name must begin with a volume name in
square brackets (l ]) Angle brackeis around lhe directory name (<. .>) are opiional.
The specified volume must already exist. The directory name that follorvs the volume
specification can be up to 12 characters: uppercase and lowercase Ietters, digits, periods
(.), and hyphens (-). Here is an example with everything:

[sys]<PM.M-Changes]

OfCrDir fails if the specified volume already has a directory with the specified name.
RTOS does not consider two directory names as distincb if they differ only in the case of
their letters. However, the RTOS volume control structures preserves the case of letters
as specified by ofCrDir.

c PbVolPassword and cbVolPassword specify the location and size of a password to be
compared with the volume passu.ord. If the volume lacks a password, set cbVolPassword
to 0 and pbVolPassword Lo anything.

o PbDirPassworil and cbDirPassword specify the location and size of the password to be
assigned to the directory. If the directory is to have no password, set cbDirPassworil to 0
and pbDirPassword to anything.

-1-



OFDIR ( eX ) (System 6600 Only)

o Csectors is the size of the directory in sectors. In general, one sector can rstore inforrna- +
tion on 15 files, but this depends on the length of the file names.

o DelaultFileProtectionLeoel indicates the initial protection of files in the dire,:tory.
OfDlDir calls the RTOS DeleteDir service, which deletes an empty directory. Delete or move all
files from a directory before deleting the directory. OIDlDir takes the follo'n,ing arguments:
o PbDirSpec and cbDirSpec specify the location and size of the direcfory name. This r:rarne

follows the same conventions used by olCrDir.
o PbPassword and cäPossurord specify the location and size of the pa^ssword t.hat a.uthorizes

the deletion of the directory. This password must mateh the vc,lume paiswo.rd or ühe
directory password. If volume or directory lack a password, no password is required io
delete the directory: set cbPasaword lo 0 and päPassword to anything.

OlReadDirSector calls the RTOS ReadDirSector service, which reads a single 512Jryte directory --
sector. It takes the fo.tlowing arguments.
o PbDirSpec an,l cbDirSpec specify the location and size of the direciory name. 'f'his narLre

follows the same conventions used by ofCrDir.
o PbPassword and cäPossu.,ord specify the location and size of the password t,hat authorizes

access of the directory. This password must match the volume password or the directory
password. If volume or directory lark a password, no password is required to delete the
directory: sel cbPassword to O and pbPassword to anything.

o lSector specifies which sector to read. Sectors are numbered from Cl.

o PBulferßet points to a 512-byte area that will receive the sector.

The program must be loaded with the library flag -lctos.
SEE AISO

RTOS Operating System Manual, "File Management."
o f c r e a t e (3X) of o p e nli I e (3X) o/r e a d ( 3X) o ls t o t u e (3X) o lr e n o rn e (3X)

RETURN VAIUE
0 indicates success. OfCrDir returns 240 ("Directory already exists") if the specifiedl volunre
alread has a directory with the specified name. OlDlDir returns 241 ("Directory n')t empty") if
the directory still has filer; in it. For other erors, see Appendix A. in the RTOS Opero,ting syst,?m
Manual.

-2-



oFoPENT'rLE( 3C )

NAME
ofOpenFile, ofCloseFile, ofCloseAllFiles - Access RTOS files

SYNOPSIS
ofOpenFile(pFhRet, pbFileSpec, cbFileSpec,
short*pFhRet;
char *pbFileSpec;
shortcbFileSpecl
char *pbPassword;
shortcbPasswordl
shortmode;

pbPassword, cbPassword, rrode)

ofCtoseFile(fh)
shortfh;

ofCloseAllFilesQ
DESCRIPTION

OfOpenFite calls the RTOS OpenFile service, which
takes the following arguments'

opens alr existing RTOS file. OfOpenFile

o pFh.Bet specifies where ofOpenFite is to return the file handle. This value is similar in
use to a CTD( file descriptor. Functions that do I/O, reallocate, and delete files require a

valid file handle.
o pbFileSpec ail, cbFileSpec specify the location and length of the file name. Operating system

pro.""r". lack a RTOS defauli path, so the name must begin with a volume name in
square brackets, [...] , and a directory name in angle brackets, (...). The remainder of
the name must malch a name in the specfied directory, except that letters in the two
names can differ in case. (See ofcteate(aC)')

o pbpassword and cbPacsword specify the location and size of a password that authorizes
access to the file. The password required depends on the protection level of the file; see

Table 14-1 in the ß?O§ Operating System Manual. (Level 15 requires no password.) If no

password is needed, set cüPossrrord to O arld PbPassword to anything.

o Mode specifies the access mode: 'mr' for reading, 'mm' for modifying.

A process that has file open in modify mode is the only process that can have the file open at all'
An attempt to open a fiie in modily mode will lailif any other process already has that file open'

An attempt to open a file in any mode will fail if another process already has that file open in
modify mode.

Suppose we want to open for reading a file on volume "sys" and directory "sys" called
,,jonah.user,,. The following example works if no password is required.

fnmp : "[sys] (sYs)jonah.user";
if ((erc : tiO'p."pile(&jhandle, fnmp, strlen(fnmp), 0, 0, 'mr'))

!: 0)
printf("CTOS oPen error Zod\n", erc);

OfCtoseFile calls the RTOS service CloseFile which closes a file. Fä is a file handle previously

provided bY ofOPenFile.

olCloseAltFiles closes all the process's RTOS files'

FILES
SEE ALSO

RTOS Operating System Manual, "File Management'"
o I c r e at e' (3C) dr e a d (3c) o f dir (3c) o I s t a tua (3c) o lr en a m e (3C) o I dir (3c)

1-



oFoPENETLE( 3C )

RETURN CODE
0 indicates success. If a modify mode ofOpenFile returns 220 ("File in use"), some other proce:5s
has the file open for reading or modifying. If a read mode olOpenFile reiurns 220, some cibh,:r
proces,s has the file open lor modifying. For other enors, see Appendix A irr the, R?,rS O.oerat,ing
System Manual.

o



OFREAD ( 3X ) (System 6600 Only)

NAME
ofRead, ofWrite - Input/output on a RTOS file

SYNOPSIS
ofRead(fh, pBufferRet, sBufferMax, lfa, psDataRet)
shortfh;
char *pBufferRet;
shortsBufferMaxl
long lfa;
char *psDataRet;

ofWrite(fh, pBuffer, sBuffer, lfa, psDetaRet)
shortfh;
char *pBufferl
shortsBuffer;
long lfa;
char *psDataRet;

DESCRIPTION
OlRead calls the RTOS service Read which inputs one or more sectors from a RTOS file. It takes
the following arguments:
. Fh is a file handle previously returned by ofOpen(3X).
o PBulfer-Bet points to a region large enough to hold the sector(s) read. The region must

be on an even address; a union with a short int will force this.
o SBulferMac is the number of bytes desired. This must be a multiple of 512.

o Lla is the offset, from the beginning of the file, of the first byte to be read. This must be
a multiple of 512.

. PsDataRet Indicates where olRead is to return the number of bytes actually read.

ofWrite calls the RTOS service Write , which ouputs one or more sectors. It takes the following
arguments:
. Fh is a file handle previously returned by OpenFile.
o PBuffer points to the data to be output. The data must begin at an even address.

o SBuffer indicates the number of bytes to be output. This must be a multiple of 512.

o indicates the offset, from the beginning of the file, to which the data is to be written.
This must be a multiple of 512.

o PsDataRet indicates where olWrire is to return the number of bytes actually written.
The program must be loaded with the library flag -lctos.

SEE ALSO
RTOS Operating System Manual, "File Management."

o f c r e at e (3X) of o p e n (3X) o t di r (3X) o/s to tus ( 3X) of r e n a m e (3X)
RETURN CODE

0 indicates success. OlWrite returns 2 ("End of medium") if you attempt to write past the end
of the file. For other errors, see Appendix A in the ß?OS Operating System Manual.

WARNING
If a RTOS process has written (or will read) binary iniegers to (from) the file, it stored (expects)
them with Intel byte-ordering. See suopsäort(3).

-1-



OFRENAME(eX) (System 6600 Only)

NAME
ofRename - rename a RTOS file

SYNOPSIS
ofRerrame(fh, pbNewFileSpec, cbNewFileSpec, pbPessword, cbPasswo,rd)
shortlh;
char *pbNewFileSpec;
shortcbNewFileSpec;
char *pbPasswordl
shortcbPasswordl

DtrSCRIPTION
OlRename calis the RltoS service RenarneFile, which renames a RTOS file. It, takes the follovr-
ing arguments:

o Fä is a file hand,le returned by a OpenFile in modify mode. This indicates t,he file to t,e
renamed.

o Pbl{ewFileSpec irnd cbNewFileSpec specify the location and size of the file's n,:w nam,-.. -'fhe file name mtrst include the volume and director)' names. The filerrarrLe convenbions, are
l,he same as those, for CreateFile(l).

o PbPassword and cbPassword specify the location and size of a password t,hat authorizes thLe
insertion of a file in the specified directory. This password must matc.h th,e volume: or direr:-
tory password. If volume or directory lacks a password, no password is nr:edecl; set cäI'os.s-
word to 0 and PbPassworil to anything.

The program must be loaded with the library flag -lctos.
SEE ,\LSO

RTOS Operating System Manual, "File Management."
o f c r e a t e (3X) of o p e nfil e (3X) o fr e a d (ZX) o/dfr ( 3X) o/s r a tus ( 3X)

DIAGNOSTICS
0 indir:ates success. For errors, see Appendix A in the .R?OS Operating Systent Manual.

WARNING
A rename to a new dirr:ctory is meaningfull a rename to a new volume is not,.

-1-



OFSTATUS ( 3X ) (System 6600 Only)

NAME
ofGetFileStatus, ofSetFileStatus - RTOS File Status

SYNOPSIS
ofGetFileStatus({h, statusCode, pStatus, sStatus)
shortf'h;
shortstatusCode;
char *pStatus;
shortsStatus;

ofEetF ileStatus(ftr, statusCode, pStatus, sStatus)
shortftr;
shortstatusCode;
char *pStatusl
shortsStatusl

DESCRIPTION
OfGetFileStatus and ofSetFileStatus call the RTOS GetFileStatus and SetFileStatus services,
which get and set file information. They take the following arguments:

o Fä is a file handle returned by an OpenFile in modify mode. StatusCode specifies the
information to be obtained or changed. StatusCode must be one of the following codes.
OlSetFileStatus only sets the items marked as settable.

Code
0
1
I
3
4
l)
6

8
I

10

Size
4
1

1

13
4
4
4

512
256
100
64

Item
File length
File type
File protection level
Password
Date/time of creation
Date/time last modified
End-of-file pointer
File Header Block
Volume Home Block
Device Control Block
FIIB Application Field

Setable?
No
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
Yes

o Pstatus and s,grctus specify the location and size of the area that holds, or is to receive, the
data. If the area isn't big enough, ofGetFileStatus right truncates the data to fit. When
setting the password, use sStatus to indicate the password length. When getting the pass-
word, get the password length from the first byte in the data area.

A RTOS time is represented by the following formula:

(d * 0x20000) + (t" * 0x10000) + s

where d is the number of days since the beginning of March, 1952 (in the local time zone); rn is 0
for midnighrf AN| 1 for noon/PM; s is the number of seconds since the last midnight or noon.

The program must be loaded with the library flag -lctos.
SEE AISO

RTOS Operating System Manual, "File Management'"
o f c r e at e (3X) o f o p entil e (3X) o fr e a d (3X) o/dfr (3X) o f r e n a m e (3X) o/df r (3X)

RETURN VAIIIE
0 indicates success. For errors, see Appendix A in the fi?OS Operating System Manual.

-1-



PERROR ( 3C )

NAME
perror, errno, sys-errlisi, sys-nerr - system emor messages

SYNOPSIS
void pemor (s)
char *s;

extern int errnol
extern char *sys-errlist[ ];
extern int sys-nerrl

DBSCRIPTION
Perror produces a message on the standard error output, describing the la-st error enrl,)untered
during a call to a system or library function. The argument string s is printed first, therr a colon
and a blank, then the message and a new-line. To be of most, use, the argurnent strirrg sh,ruld -include the name of the program that incurred the error. The error number is ial<en l'rom the
external variable errno, which is seb when errors occur but not cleared when non-enoneous ,3al[s
are made.
To simplify variant for:matting of messages, the array of message strings sys_emlisl is providerl;
errno cau be used as an index in this table to get the message string 'without bhe new-[in,:.
Sys-nerr is the largest message number provided for in the table; it should be checkerl bec,ausie
new error codes may be added to the system before they are added to the ta,ble.

SEE ALSO
intro(2).

-1-



NAME
plot - graphics interface subroutines

SYNOPSIS
openpl ( )
er&se ( )
label (s)
char *s;

Iine (x1, yt, x2, y2)
int x1, yl, x2, y2;
circle (*, y, ")int x, y, r1

arc (x, yr x0r yO, xl, yl)
int x, yr x0r yO, xl, y1;
rnove (*, y)
int x, y;
cont (x, y)
int x, y;
point (*, y)
int x, y;
linemod (s)
char *s;

spa,ce (xO, yO, x1, y1)
int xO, yO, xl, yl;
closepl ( )

DESCRIPTIoN
These subroutines generate graphic output in a relatively device-independent manner. Space
must be used before any of these functions to declare the amount of space necessary. See plot(4).
Openpl must be used before any of the others to open the device for writing. Closepl flushes the
output.
Circle draws a circle of radius r with center at the point (r, y).
Lrc draws an arc of a circle with center at the point (x, y/ between the points fu7, y0) and (t1,

PLoT(3x)

yl).
String arguments to label and linemod are terminated by nulls and do not contain new-lines
See p/ot(4) for a description of the effect of the remaining functions.
The library files listed below provide several flavors of these routines.

/usr/lib/libplot.a producesoutputfortplot(tG)filters
/usr/lib/lib300.a for DASI 300
/usr/lib/lib300s.a for DASI 300s
/usr/lib/liba50.a for DASI 450
/usr/lib/liba01a.a for TEKTRONX 4014

WARNINGS
In order to compile a program containing these funcüions in file.c it is necessary to use "ce file.c
-lplot".
In order to execute it, it is necessary to use "a.out I tplot".

1-

FILES



PLOr(3X)

The above routines use (stdio.h), which causes them to increxe the sizr: of prog::ams, not, ot,h-
erwise using standard I/O, more than might be expected.

SEE AISO
graph(1G), star(rG), tplor(1G), plot(a).

o



PoPEN(3s)

NAME
popen, pclose - initiate pipe to/from a process

SYNOPSIS
finclude <stdio.h)
FILE *popen (command, type)
char *comrnand, *typ.;
int pclose (stream)
FILE *streaml

DESCRIPTION
The arguments to popen aire pointers to null-terminated strings containing, respect,ively, a shell
command line and an IIO mode, either r for reading or w for writing. Popen creates a pipe
between the calling program and the command to be executed. The value returned is a stream
pointer such that one can write to the standard input of the command, if the I/O mode is w, by
writing to the file atream; and one can read from the standard output of the command, if the I/O
mode is r, by reading from the file stream.

A stream opened by popen should be closed by pclose, which waits for the associated process to
terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter and a type w as
an output filter.

SEE A-I-SO
pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

DIAGNOSTICS
Popen returns a NULL pointer if files or processes cannot be created, or if the shell cannot be
accessed.

Pclose returns -l if stream is not associated with a"popen ed" command.

BUGS
If the original and "popened" processes concurrently read or write a common file, neither should
use buffered I/O, because the buffering gets all mixed up. Problems with an output filter may be
forestalled by careful buffer flushing, e.g. with fllush; see /clooe(3S).

-l-



PRTNTF ( 35 )

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
finclude (stdio.h)'
int printf (format l, arg ] . . . )char *formatl
int fprintf (strearn, forrnat [, arg ] . . . )FILE *stream;
char *formatl
int sprintf (s, format l, arg ] . . . )char *s, format;

DESCRIPTION
Printf places outpub on the standard output stream stdout. Fprintf places output r>n ttre nzLmed
output stream. Sprintf places "output," followed by the null character (\O), in conr;ecutive bytes
starting at *s; it is tht: user's responsibility to ensure thaü enough storage is availab|:. Il:ach l,unc-
tion returns the number of characters transmitted (not including the \O in the,case of sprintJ'), or
a negaiive value if an output error was encountered.
Each of these functions converts, formats, and prints its args under control ofthe forntat. T[e
format is a character string that contains two types of objects: plain characters, which are simply
copied to the output stream, and conversion specifications, each of which resrr..rlts in f,:tchirLg- cf
zero or more orgs. The results are undefined if there are insufficient args for the forma.t. Ill t[e
format is exhausted while orgs remain, the excess args are simply ignored.
Each conversion specification is introduced by the character Vo. After the %, the flollorvirrg
appear in sequence:

Zero or more Jlags, which modify the meaning of the conversion specification.
Al opiional dt,cimal digit string specifying a minimum fietd width. If the conver:r,ed value
has fewer characters than the field width, it will be padded on the le:lt, (or rig;ht, if' the
left-adjust,menl flag'-', described below, has been given) to the field width. Il the l'ield
width for an s conversion is preceded by a 0, the string is right ad.justr,d rvith 2er,>
padding on the left.
A precision that gives the minimum number of digits to appear for th,: d., ,o, r.r., x, or -K
conversions, the number of digits to appear after the decimal point for the e a1d f
conversions, the maximum number of significant digits for the g conversion, or the r1a:<-
imum number of characters to be printed from a string in s conversion. 'Ihe precii,sic,n
takes the form of a period (.) followed by a decimal digit string; a rLull cligit strirLg is
treated as zero.

An optional I (ell) specifying that a following d, o. u, x, or X conversj.on charerctr:r
applies to a long integer arg. A I before any ofher conversion char:rcter is ignore,d.
A character that indicates the type of conversion to be applierJ.

A field u'idth or precision may be indicated by an asterisk (*) instead of :e digit string. In this
case, an integer arg strpplies the field width or precision. The arg rhat is actually converted is
not fetched until the conversion letter is seen, so t,he orgs specilying field wi,lth or precision rnurit
appear before Lhe arg Li{ any) to be converted.
The flag characters and their meanings are:

+
blank

The result of the conversion will be left-justified *'irhin the field.
The result of a signed conversion will aiways begin wilh a sign (1- or -).If the first character of a signed conversion is not a sign, a blank lv'iil be pr,efixe<l to
the result. This implies t,hat if the blank and * flags both appear. t,he blanh flag u,ill

1-



PRTNTF ( 3S )

be ignored.
# This flag specifies that the value is to be converted to an "alternate form." For c, d,

s, and u conversions, the flag has no effect. For o conversion, ic increases the preci-
sion to force the first digit of the result to be a zero. For x or X conversion, a non-
zero result will have Ox or OX prefixed to it. For e, E, f, g, and G conversions, the
result will always contain a decimal point, even if no digits follow the point (normally,
a decimal point appears in the result of these conversions only if a digit follows it).
For g and G conversions, trailing zeroes will not be removed from the result (which
they normally are).

The conversion characters and their meanings are:

d,o,tlrx,x The integer arg is converted to signed decimal, unsigned octal, decimal, or hexade-
cimal notation (x and X), respectively; the letters abcdef are used for x conversion
and the letters ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be represented in fewer
digits, it will be expanded with leading zeroes. (For compatibility with older versions,
padding with leading zeroes may alternatively be specified by prepending a zero to the
field width. This does not imply an octal value for the field width.) The default preci-
sion is 1. The result of converting a zero value with a precision of zero is a null string.
The float or double org is converted to decimal notation in the style "[-]ddd.ddd,"
where the number of digits after the decimal point is equal to the precision specifica-
tion. If the precision is missing, six digits are outputl if the precision is explicitly 0, no
decimal point appears.
The float or double org is converted in the style "[-]d.dddeidd," where there is one
digit before the decimal point and the number of digits after it is equal to the preci-
sion; when the precision is missing, six digits are produced; if the precision is zero, no
decimal point appears. The E format code will produce a number with E instead of e
introducing the exponent. The exponent always contains at least two digits.
The float or double org is printed in style f or e (or in style E in the case of a G for-
mat code), with the precision specifying the number of significant digits. The style
used depends on the value converted: style e will be used only if the exponent result-
ing from the conversion is less than -4 or greater than the precision. Trailing zeroes
are removed from the result; a decimal point appears only if it is followed by a digit.
The character arg is printed.
The arg is taken to be a string (character pointer) and characters from the string are
printed until a null character (\0) is encountered or the number of characters indi-
cated by the precision specification is reached. If the precision is missing, it is taken
to be infinite, so all characters up to the first null character are printed. A NULL
value for arg will yield undefined results.
Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is simply expanded to contain the conversion
result. Characters generated by printf and lprintf are printed as if putc(3S) had been called.

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02," where ueeßday and month are
pointers to null-terminated strings:

printf(,,%os, %s Vod, Vod:Vo.zd, weekday, month, day, hour, min);
To print, zr to 5 decimal places:

Printf('Pi : %.5f", 4 * atan(1.0));
SBE AISO

ecvt(3C), putc(3S), scanf(35), stdio(35).

erE

8,G

%

,'t



PUTC(3s)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
ffinclude <stdio.h)
int putc (c, strearn)
int c;
FILE *streaml

int putchar (c)
int c;
int fputc (c, stream)
int c;
FILE *streaml
int putw (w, stream)
int w;
FILE *stream; 

-
DESCRIPTION

Putc writes the character c onto the output stream (at the position wherr: th,e file poi:nter, if
defined, is pointing). Patchar(c) is defined as putc(c, stdout). Putc and putchar are roactos.

Fputc behaves like pufc, but is a function rather than a macro. Fputc runs rnore rslowly than
putc , but it takes less space per invocation and its name can be passed as an ,rrgument to a func-
tion.
Putur writes the word (i.e. integer) , to the output stream (at the position at which rl,he l'ile
pointer, if defined, is pointing). The size of a word is the size of an integer and vari es from
machine to machine. Puttr., neither assumes nor causes special alignment in ttre file.
Output streams, with the exception of the standard error stream stilerr, are b,y default, bufferecl if
the output refers to a file and line-buffered if the output refers to a terminal. Thre sta"ndard error
output stream stderr is by default unbuffered, but use of lreopen (see lopen(3S)') will car-rse it to
become buffered or line-buffered. When an output stream is unbuffered, inLfornnation is queued
for writing on the destirration file or terminal as soon as written; when it is buffered, ma:ny char-
acters are saved up and written as a block. When it is line-buffered, each linr: of outprrt iri queued
for writ,ing on the destination terminal as soon as the line is completed (that is, as so('n as a new-
Iine character is written or terminal input is requested). Setäu/(3S) may be, userd to ch:r:nge the
stream's buffering strategy.

SEE A-LSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts(35), setbuf(35).

DIAGNOSTICS
On success, these functions each return the value they have written. On failure, they return t,her

constant EOF This wiil occu .f the file stream is not open for writing or ill the out'put file can-
not be grown. Because EOF is avalid integer, ferror(3S) should be used to detect putru errors.

BUGS
Because it is implemerrted as a macro, putc treats incorrectly a stream argumerrt wj,th side
effects. In particular, putc(c, *f+t); doesn't work sensibly. Fputc should bre usied irLstead.
Because of possible differences in word length and byte ordering, files wr:ittenr usil)g p'utw are
machine-dependent, and may not be read using getw on a different processor.

-1-



PUTENV(3c)

NAME
putenv - change or add value to environment

SYNOPSIS
int putenv (string)
char *string;

DESCRIPTION
String points to a string of the form ttnqlns:pslue." Putenu makes the value of the environment
variable name equal to oalue by altering an existing variable or creating a new one. In either
case, the string pointed to by strlng becomes part of the environment, so altering the string will
change the environment. The space used by string is no longer used once a new string-defining
name is passed to putenu.

DIAGNOSTICS
Putena returns non-zero if it was unable to obtain enough space via malloc for an expanded
environment, otherwise zero.

SEE ALSO
exec(2), getenv(3C), malloc(3C), environ(5).

WARNINGS
Putenu manipulates the environment pointed toby enairon, and can be used in conjunction with
geteno. However, enup (the third argument ta main) is not changed.
This routine uses rnalloc(3C) to enlarge the environment.
Alter puteno is called, environmental variables are not in alphabetical order.
A potential emor is to call puteno with an automatic variable as the argument, then exit the cal-
ling function while strung is still part of the environment.

-l-



PUTPWENT(3C )

NAME
putpwent - write password file entry

SYNOPSIS
finclude (pwd.h)
int putpwent (p, f)
struct passwd *p;
FILE *f;

DESCRIPTION
Putpwent is the inverse ol getpwent(3C). Given a point,er to a passwd structure cre,ated l;y
getpwent (or getpwuid or getpwnam), putpuent writes a line on the stream /, rvhich rnat«:hes the
format of /etc/passwd.

DIAGNOSTICS
Putpwent returns non-zero if an emor was detected during ics operation, otheru'ise zero

SEE ALSO
getpwent(3C).

WA]RNING
The above routine uses (stdio.h), which causes it to increase the size of programs, not other-
wise using standard I/O, more than might, be expected.

-1-



PUTS ( 3s )

NAME
puts, fputs - put a string on a stream

SYNOPSIS
Sinclude <stdio.h>
int puts (s)
char *s;

int fputs (s, stream)
char *s;
FILE *stream;

DESCRIPTION
Puüs writes the null-terminated string pointed to by s, followed by a new-line character, to the
standard output stream stdout.

Fpuüs writes the null-terminated string pointed to by s to the named output stream.

Neither function writes the terminating null character.

DIAGNOSTICS
Both routines return EOF on error. This will happen if the routines try to write on a file that ha.s

not been opened for writing.
SEE ALSO

ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S).

NOTES
Puts appends a new-line character while /puts does not.

-1-



QSoRr( 3c )

NAME
qsort - quicker sort

SYNOPSIS
void qsort ((char *) base, nel, sizeof (*base), compar)
unsigned int nel;
int (*compar)( );

DESCRIPTION
Qsort is an implementa,tion of the quicker-sort algorithm. It sorts a table of data in place.
Bose points to the elernent at the base of the table. Ne/ is the number of elerrrents in bhe tauble.
Compar is the name of the comparison function, which is called with two arguments thab poin.t to
the elements being compared. The function must return an integer Iess tha:1, equal 1;o, <>r greaterr
than zero according as the first argument is to be considered less than, equal to, or greater t,.han
the second.

NOTES
The poinüer to the bar.se of the table should be of type pointer-to-element, and cast to 1ype
pointer-to- character.
The comparison function need not compare every byte, so arbitrary data mauy be contained in the
elemerrts in addition to the values being compared.
Although declared as type pointer-tocharacter, the value returned should be cast irrto t,ype
pointer-to.element.

SEE ALSO
sort(1), bsearch(3C), Isearch(3C), string(3C).

-1-



QUADD ( aX ) (System 6600 Only)

NAME
quAdd - add a new entry to a RTOS queue

SYNOPSIS
quAdd(pbQueueName, cbQueueNarne, fQueuelfNoServer, priority,

queueType, pEntry, sEntry, pDeteTirne, repeetTime)
char *pbQueueName;
short cbQueueName;
char fQueuelfNoServerl
ehar priority;
short queueType;
char *pEntry;
short sEntry;
unsigned long*pDateTime;
short repeatTime;

DESCRIPTION
QuAdd calls the RTOS AddQueueEntry service. An operating system process that wants to submit a

request to a RTOS queue server creates a queue entry with quAdd. QuAdd takes the following
arguments.

. PbQueueName and cbQueucName describe the location and length of of a queue name.
This must be one of the queues mentioned in the RTOS file [sys] (sys]queue.index.

o FQueuelfNoSeraer determines the action if the queue manager finds that no servers are
active for the specified queue. OxFF means to queue the entry anyway. O means abort
the queue entry.

o Priorlty sets the queue entry's priority. O is the highest priority, 0 is the lowest.

o QueueType is the type of queue. This must match the number given in the fourth field
of the queue's entry is the queue index file.

o PEntry and aEntry describe the size and location of entry data. The size and layout of
this data area is conventional for each queue.

c PDateTime points to the service time. A server will serve the request no sooner than the
service time.
The service time must be in RTOS format:

(d * 0x20000) + (- * Ox10000) + s

where d is the number of days since the beginning of March, 1952 (in the local time
zone); m is 0 for midnight/AM, 1 for noon/PM; o is the number of seconds since the last
midnight or noon.

A service time of 0 means "undated"; the queue manager provides serYers for all undated
requests before it provides servers for any dated requests.

o RepcatTime specifies a repeat interval. Unless this value is 0, the queue manager resub-
mits the request RepeatTime minutes after a queue server deletes it. Thus the request
repeats forever, with at least RepeatTime minutes between repetitions. An operating system process

can terminate this loop witb quRemoue(3X).

Queue servers run under RTOS and thus expect integers to have Intel byte-ordering. QuAd.d
translates queueType, the date, and repeatTirne, but does nothing about entry data. To translate
entry data, see swapshort(3).
The program must be loaded with the library flag -lctos.

-t-



QUADD ( 3x ) (System 6600 only)

FILES
fsysl <.sys)queue.index - master queue index

SEE AISO
qu r em o u e (3X), qur e a d l3X).
RTOS Operating System .Manual, "Queue Management."

RETURN VAI-UE
0 indicates success. 254 ("Queue not served") if lQueuelfNoSeruer is 0 and no servers are a«:tive
on the specified queue.

o



QIIREAD ( sX ) (System 6600 Only)

NAME
quReadNext, quReadKeyed - examine RTOS queue

SYNOPSIS
structQueueStatusBlock {

long qehRet;
char priority;
char padding;
short ServerUserNumber I
long qehNextRet;
);

quReadNext(pbQueueNarne, cbQueueNarne, qeh,
pEntryRet, sEntryRet, p StatusBlock, sStatusBlock)

char *pbQueueNamel
short cbQueueNamel
long qeh;
char *pEntrYRet;
short sEntryRet;
structQueueStatusBlock *pStatusBlock;
short sStatusBlock;

quReadKeyed(pbQueueName, cbQueueName, pbKeyl, cbKeyl, oKeyl,
pbKey2, ebKey2, oKey2, pEntryRet, sEntryRet,
pStatusBlock, sStatusBlock)

char *pbQueueNamel
short ebQueueNarnel
char *pbKeyl;
short cbKeyl;
short oKeyl;
char *pbKey2;
short cbKey2;
short oKey2;
char *pEntryRet;
short sEntryRet;
structQueueStatusBlock *pStatusBlock;
short sStatusBlock;

DESCRIPTION
QuRead.Next and QuReadKeyed call the RTOS services ReadNextQueueEntry and Read-
I(eyedQueueEntry. A queue client uses quReailNext or quReadKeyeil to examine a RTOS

queue. Each call returns information on a single queue entry . QuReadNeof and quReadKeyed
have the following arguments in common.

. PbQueueName and cbQueueName describe the location and size of a queue name.

o PEntryRet and sEntryRet describe the location and size of an area that is to receive
entry äata. Size and layout of entry data is specific to each queue. If the area is smaller
than an entry's data, the data is right-truncated to fit'

o PstatusBlock and s,StarusBloc& describe the location and size of an area that is to receive
the entry's status block. If the area is smaller than sizeof(QueueStatusBlock) the
block is right-truncated to fit.

QuReadNert ar,d quReadKeyed reiurn the following values in the status block.

o Qehfiet is the queue entry handle. This integer value is unique for each entry in the
queu.

-1



QLTREAD ( 3X) (System 6600 Only)

o Priority is the priority of the entry.
c Seruer(JserNunl is the RTOS user number of t,he queue server that tras appr,crpria,t,ed

(marked) the request and plans to service it. If no server has appropriated the requr:st,
seruerUserNum. is -1.

o QehNextRet is the queue entry handle for the next entry in the qrreue. Ii th,: current
entry is the last entry in the queue. QehNettRet is -L.

The following argumenl, is specific to quReadNert.
o Qeh specifies the queue entry io be read. 0 indicates the first queue entry; a.rry ol,her

value must be :r queue entry handle.
This example passes the data for each entry in SPL to prentryQ.

qnl : strlen(qns :'SPL");
for (handle : 0; handle !: -l; handle : starus.QehNextRet) {

quReadNexr(qnl, qns, handle, &data,
sizeof(data), &status, sizeof(status)'l;

prentry(&status);
)

The following arguments are specific Lo quReadKeyed.
o PbKeyl and cbKeyl describe the location and size of the first search kr:y. If there is, nr>

first search key, set cblieyl to O.

o OKeyl is the offset of the first search string. This is the offset, frorrr thg
entry data, of a string that is to be compared with the first search key..
a§sumes that the first byte of this string gives the size of the remai.nder
there is no first search key, the function ignores oKeyl .

o PbKeyP and cbKey? describe the location and size of the second se,arch

The
first
first
The

beginning of bh,:
. QuReudKeyetl
of the srtring, Il

k.y. Iti therr: is
no second search key, set cbKey? Lo O.

OKey2 is the offset of the second search sfring. llhis is the offset, I'rom the beginning of
the entry data, of a siring that is bo be compared with the second sr:arch key. ()uRc:ad-
Keyed a§sumes that the first byte of this string gives the size of ihe remaind,:.r of lh,:
string. If there is no second search key, the function ignores oKeyp.

client that calls quReadKeyed must supply I or 2 search keys. Qu\c'odk'eyed ret,urns th,:
errtry that rnatches both search keys. If only one key is given, QuRc,odß'eyed ret,urns the
entry that matches that single key.
pr,cgram must be l<»aded with the library ilag -lctos.

FILES
fsys] <syslqueue.index - master queue index

SEtr AISO
q u r e m o u e (3X) q u a d d (3\,)

RETURN VAITIE
0 indicates success. QuReadNert returns g04 ("Entry deleted") if another clienb del,:tes a qugue
entry between the time you get the entry's handle and the time you try to read it.

o



QLTREMOVE( 3x) (System 6600 Only)

NAME
quRemove - take back a RTOS queue request

SYNOPSIS
quRemove(pbQueueNarne, cbQueueName, pbKeyl, cbKeyl, oKeyl,

pbKey2, cbKey2, oKey2)
char *pbQueueNamei
shortcbQueueNamel
char *pbKeyl;
shortcbKeyl;
shortoKeyl;
char *pbKey2;
shortcbKey2;
shortoKey2;

DESCRIPTION
QuRemooe calls the RTOS service RemoveKeyedQueueEntry. A queue client uses quRemoue
to delete entries from a RTOS queue . quRemoue uses search keys to identify the requeust. It
takes the following arguments.
o PbQueueName and cbQueueName describe the location and size of a queue name.
. PbKeyl and cbKeyl describe the location and size of the first search key. If there is no

first search key, set cbKeyl to O.

o OKeyl is the offset of the first search string. This is the offset, from the beginning of the
entry data, of a string that is to be compared with the first search key. quRemoae
assumes that the first byte of this string gives the size of the remainder of the string. If
there is no first search key, the function ignores oKeyl .

" PbKey? and cbKey? describe the location and size of the second search key. If there is
no second search key, set cbKey2 to O.

o OKeyP is the offset of the second search string. This is the offset, from the beginning of
the entry data, of a string that is to be compared with the second search key. quRemoue
assumes that the first byte of this string gives the size of the remainder of the string. If
there is no second search key, the function ignores

The client that calls quRemoue must supply I or 2 search keys. quRemoae deletes the first entry
that matches both search keys. If only one key is given, quRemoae deletes the first entry that
matches that single key, oKey?.
The program must be loaded with the library flag -lctos.

FILtrS
fsys] <syslqueue.index - master queue index

SEE ALSO
r e a d q u e u e (3X) a d d qu e u e (3X)

-1-



RAND ( 3C )

NAME
rand, srand - simple random-number generator

SYNOPSIS
int rand ( )
void srond (seed)
unsigned seedl

DESCRIPTION
Band uses a multiplic:rtive congruential random-number qenerator with per:iod. 232 tha.t returns
successive pseudo-random numbers in the range from 0 to 2'o-1.
Srand can be called at any time to reset the random-number generator lo a ranCorrr starl;ing
point. The generator is initially seeded with a value of 1.

NOTE
The spectral properties of ranil leave a great deal to be desired. DrandlS(3C) provides a ntuch
better, though more elaborate, random-number generator.

SEE AISO
dranda8(3C).

-1-



REGCMP(3X)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
char *regcmp (etringl [, string?, .. ,7, (char *)0)
ehar *stringl, *string2, . . .i
char *regex (re, subject[, ret0, ...])
char *re, *subject, *reto, ...1
extern char *--loel;

DESCRIPTION
Regcmp compiles a regular expression and returns a pointer to the compiled form. Malloc(fC) is
used to create space for the vector. It is the user's responsibility to free unneeded space so allo-
cated. A NIILL return from regcmp indicates an incomect argument. Regcmp(l) has been written
to generally preclude the need for this routine at execution time.
Reger executes a compiled pattern against the subject string. Additional arguments are passed to
receive values back. Reger returns NTILL on failure or a pointer to the next unmatched character
on success. A global character pointer -_locl points to where the match began. Regcmp and
regex wete mostly borrowed from the editor, ed(1); however, the syntax and semantics have been
changed slightly. The following are the valid symbols and their associated meanings.

[] . .^ These symbols retain their current meaning.

$ Matches the end of the string; \n matches a new-line.
Within brackets the minus means through. For example, [a-z] is equivalent to
[abcd...xyz]. The - can appear as itself only if used as the first or last character.
For example, the character class expression []-] matches the characters ] and -.

+ A regular expression followed by * means one or more times. For example, [O-O]+ is
equivalent to [0-s] [o-g]*.

{rrr} {*,} {*,.}
Integer values enclosed i" { } indicate the number of times the preceding regular
expression is to be applied. The value m is the minimum number and u is a number,
less than 256, which is the maximum. If only m is present (".S., {*}), it indicates the
exact number of times the regular expression is to be applied. The value {m,} is anale
gous to {m,infinity}. The plus (*) and star (*) operations are equivalent to {1,} and
{0,} respectively.

( . . . )$" The value of the enclosed regular expression is to be returned. The value will be stored
in the (n+l)th argument following the subject argument. At most ten enclosed regular
expressions are allowed. Reget makes its assignments unconditionally.

(... ) Parentheses are used for grouping. An operator, e.g., *, +, { }, .r., work on a single
character or a regular expression enclosed in parentheses. For example, (a*(cb+)*)$0.

By necessity, all the above defined symbols are special. They must, therefore, be escaped to be
used as themselves.

EXAMPLES
Example 1:

char *cursor, *newcursor, *pt";

n.*.u.ro. : regex((ptr : regcmp('^\r", 0)), cursor);
free(ptr);

This example will match a leading new-line in the subject string pointed at by cursor.

-1-



REGCMP(3X)

Example 2:
char retO[9];
char *newcurs,or, *name;

name : regc rnp(,, ( [A -Za-z][A-za-20-9_] {0, 7 } )$0,, 0);
newcursor : .regex(name,,l23Testing32lr, ret0);

This example will match through the string "Testing3" and will return the add.ress of the chara,c-ter after the last mal,ched character (cursor*11). The string "Testing3,, wil.t be copir:d t6 thecharacter arrav ret}.
Example 3:

ffinclude 'file.i"
char *string, *newcursor;

n.*.,rr.o. : ..g.*(nu*e, string);
This example applies a precompiled regular expression in file.i (see regcmp(t)) againr;t st:r.ing.
This routine is kept in /lib/libpw.a.

SEE AISO
ed(1), regcmp(f ), malkrc(3C).

BUGS
The user program ma)' run out of memory if regcmp is called iteratively withorrt freeing the vec-tors no Ionger requirecl. The following user-supplied replacement for maltoc(BO) relseslbh" r,amevector saving time and space:

/* user's program */

char *
malloc(n)
unsigned n;
{

static ,:har rebuf[bf 2];
return (n (: sizeof rebuf) ? rebuf : NULL;

)

-2-



scANT ( 3s )

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
finclude (stdio.h)
int scanf (format [ , pointer ]
char *formatl
int fscanf (stream, format [ ,
FILE *stream;
char *formatl

)

pointer]... )

int sscanf (s, format [, pointer ] . . . )
char *s, *forrnatl

DESCRIPTION
Scon/ reads from the standard input stream stdln. Fscanf reads from the named input sfreorn'
Sscanf reads from the character string s. Each function reads characters, interprets them accord-
ing io a format, and stores the results in its arguments. Each expects, as arguments, a control
string /orrnot described below, and a set of pointer arguments indicating where the converted
input should be stored.
The control string usually contains conversion specifications, which are used to direct interpreta-
tion of input sequences. The control string may contain:

l. White-space characters (blanks, tabs, new-lines, or form-feeds) which, except in two cases

described below, cause input to be read up to the next non-white-space character.
2. An ordinary character (not ?5), which must match the next character of the input stream.
B. Conversion specifications, consisting of the character ?5, an optional assignment suppressing

character *, an optional numerical maximum field width, an optional I (ell) or h indicating the
size of the receiving variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the
variable pointed to by the corresponding argument, unless assignment suppression was indicated
by *. The suppression of assignment provides a way of describing an input field which is to be
skipped. An input field is defined as a string of non-space characters; it extends to the next inap-
propriate character or until the field width, if specified, is exhausted. For all descriptors except

"[" and "c", white space leading an input field is ignored.

The conversion code indicates the interpretation of the input field; the corresponding pointer
argument must usually be of a restricted type. For a suppressed field, no pointer argument is
given. The following conversion codes are legal:

% a single Vo is expected in the input at this point; no assignment is done.
d a decimal integer is expected; the corresponding argument should be an integer pointer.
u an unsigned decimal integer is expected; the corresponding argument should be an

unsigned integer Pointer.
o an octal integer is expected; the corresponding argument should be an integer pointer.
x a hexadecimal integer is expected; the corresponding argument should be an integer

pointer.
e,f,g a floating point number is expected; the next field is converted accordingly and stored

through ih. .orr..ponding argument, which should be a pointer to a float. The input for-
mat for floating point numbers is an optionally signed string of digits, possibly containing
a decimal point,-follo*ed by an optional exponent field consisting of an E or an e, fol-
lowed by an optional *, -, or §pace, followed by an integer.

s a character string is expected; the corresponding argument should be a character pointer
pointing to an array of characters large enough to accept the string and a terminating \O,
which will be added automatically. The input field is terminated by a white'space char-
acter.

-1-



scANT'( 35 )

c a character ir; expected; the corresponding argument, should be a, character pointer. l'he
normal skip over whibe space is suppressed in this case; io read t,he next non-space char-
acter, rtse 761s. If a field width is given, the corresponding argLunent, sh,rulcl referr t():i
character array; the indicated number of characters is read.

I inaicates string data and the normal skip over leading white space is srrppre,sse«i. The left
bracket is followed by a set of characters, which we will call tlLr: scanset, a,rrd a righr
bracket; the input field is the maximal sequence of input character,s eonsisting entirely of
charact,ers in the scanset. The circumflex (^ ), when it appears as the first character in
the scanset, $erves as a complement operator and redefines Lhe scanset as the set <:f all
characters nof contained in the remainder of the scanset string. llhere are sorne corrv()n-
tions used in the construction of the scanset. A range of charactr:rs may 1ce represenled
by the construct first-last, thus [0123456739] may be expressed [0--9]. Using t]ris conven-
Lion, first must be lexically less than or equal to last, or else the d:uh rvill scan<l for itsclf.
The dash will also stand for itself whenever it is the first or che lasl chilracter iu the sczLn-
set. To include the right square bracket as an element of the scanset, it nrust appe,ar as
the first character (possibly preceded by a circumflex) of the scanset, and in this ca,se it
will not, be syntactically interpreted as the closing bracket. The c'crrer;ponding argument
must point to a character array large enough to hold the data fiell and ttLe tr:rminating
\O, which will be added automatically. At }east one character must nratclL for this
conversion to be considered successful.

The conversion characters d, u, o, and x may be preceded by I or h üo ind.icate tha,t a pointer to
long or to short rather than to int is in the argument list. Similarly, the conversion chara,ctr:rs
e, f, and g may be preceded by I to indicate that a pointer to double rather than to :Eloat is in
the argument list. The I or h modifier is ignored for other conversion characters.
Seanl corersion terminates at EOF, at the end of the control string, or *'hen an input character
conflicts with the control string. In the latter case, the offending character is lefü unr,ead in the
input stream.

^9con/ returns t,he number of successfully matched and assigned input it,ems; this nr.rmtrr:r can be
zero in the event of an early conflict betr*'een an input character and the control rstrin;g, Il' the
input ends before the first conflict or conversion, EOF is returned.

EXAMPLES
The call:

int i, n; float x; char name[50];
n : scanf ("96d%,fVos" , &i, &.x, name);

with the input line:
25 54.32E_l thompson

will assign to n the value 3, to i the value 25, to e the value 5.432, and rtame will conr:ain
thompson\O. Or:

int i; float x; char nameISO];
(void) scanf ("97a2dVofVc*d%10-9)", &i, &x, name);

with input:
56789 0123 56a72

will assign 56 to i,789.O to c, skip O123, and place the,string 56\O in narne. The next cal l t,c
getchar (see getc(3S)) will return a.

SEE AISO
getc(35), printf(35), strtod(3C), strtol(3C).

NOTtr
Trailing whit,e space (including a new-line) is left unread unless matched in t,he control string.

o



scANT ( 3s )

DTAGNOSTICS
These functions return EOF on end of input and a short count for missing or illegal data items

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

-3-



SETBUT ( 35 )

NAME
setbuf. setvbuf - a-ssign buffering to a stream

SYNOPSIS
ffinclude (stdio.h)
void setbuf (strearn, buf)
FILE *strearn;
char *buf;
int setvbuf (stream, buf, type, size)
FILE *strearn;
char *buf;
int type, size;

DESCRIPTION
Setbuf may be used afLer a stream has been opened but before it is read or written. It <::rusesr ttLe
array pointed to by buf to be used instead of an automatically allocabed buffer. If iiu/ is ttLe
NLLL pointer input/output will be completely unbuffered.
A constant BUFSIZ' defined in the (stdio.h) header file, tells how big an array is needed:

char buflewstZ];
Setubul may be used a:lter a stream has been opened but before it is read or wri'bten. Type d,eter-
mines how stream will be buffered. Legal values for type (defined in stdio.h) arr::
_IOFBF causes input/output to be fully buffered.

-IOLBF causes output to be line buffered; the buffer will be flushed when a newlirLe is rvrir|,-
ten, the buffer is full, or input is requested.

_IONBF causes input/output to be completely unbuffered.
If bul is not the NULL pointer, the array it points to will be used for bu.l'fering, instr::rd of an
automatically allocated buffer. Size specifies the size of the buffer to be used. 'lhe const,arLt
BUFSIZ in (stdio.h), is suggested as a good buffer size. If input/output is unbufferect, äu/and
size are ignored.
By default, output to a terminal is line buffered and all ot,her input/output is fully bqffered.

SEE AISO
fopen(3S), getc(35), malloc(3C), purc(3s), stdio(35).

DTAGNOSTICS
If an illegal value for type or slze is provided, setobuf returns a non-zero valuLe. Otherrvise, th.e
value returned will be zero.

NOTE
A common source of error is allocating buffer space as an "automatic" variabl,: in re cc,de bloclc,
and then failing to close the stream in the same block.

-1-



SETJMP ( 3C )

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
finclude qsetjmp.h)
int setjmp (env)
jrnp_buf env;
void longjrnp (env, val)
jmp-buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in a low-level sub-
routine of a program.
Setjmp saves its stack environment in ena (whose type, jmp_bu/, is defined in the <setjmp.h)
header file), for later use by longjmp. It returns the value 0.

Longjmp restores the environment saved by the last call of setjmp with the corresponding eno
argument. /Jter longjm,p is completed program execution continues as if the corresponding call of
setjmp (which must not itself have returned in the interim) had just returned the value oal .

Longjmp cannot cause eetlrnp to return the value 0. If longjm,p is invoked with a second argu-
ment of O, eetjmp will return l. All accessible data have values as of the time longjmp was
called.

SEE AISO
signal(2).

WARNING
If longjmp is called when eno was never primed by a call to setjmp , or when the last such call is
in a function which has since returned, absolute chaos is guaranteed.

-1-



srNH( 3M)

NAME
sinh, cosh, tanh - hypenbolic funciions

SYNOPSIS
ffinclude (math.h>
double sinh (x)
double x;
double cosh (x)
double x;
double tanh (x)
double x;

DESCRIPTION
Sinh, cosh, and tanh return, respectively, the hyberbolic sine, cosine and tangent of th,:ir argu-
ment.

DIAGNOSTICS
,Srnä and cooä return HUGE (and elnä may return -HUGE for negative z) when the correct
value would overflow and set ercno to ERANGE.
These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
matherr(3M).

-1-



SLEEP( 3c )

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of aeconils specified by the argu-
ment. The actual suspension time may be less than that requested for two rea§ons: (1) Because

scheduled wakeups occur at fixed l-second intervals, (on the second, according to an internal
clock) and (2) because any caught signal will terminate the sleep following execution of that
signai,s catcLing routine. Also, the suspension time may be longer tha.n requested by an arbitrary
amount due to-the scheduling of other activity in the system. The value returned by sleep will
be the ,,unslept" amount (the requested time minus the time actually slept) in case the caller had

an alarm set io go off eariier than the end of the requested. cleep time, or premature arousal due

to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or some other signal)

occurs. The previous state of the alarm signal is saved and restored. The calling program may
have set ,rp an ,la.* signal before calling aleep;lf the sleep time exceeds the time till such alarm
signal, the process sleeps only until the alarm signal would have occuued, and the caller's alarm
catch routine is executed just before the oleep routine returns, but if the sleep time is less than
the time till such ala.rm, ihe prior alarm time is reset to go off at the same time it would have

without the intervening aleeP.

SEE ALSO
alarm(2), pause(2), signal(2).

-l-



SPAWN ( 3X ) (System 6600 Only)

NAME
spat'nip, spa\rn\rp - execute a pl'ocess on a specific Application Processor

SYNOPSIS
int
spawnlp(apnurn, di:rectory, narne, argo, argl, ..., argn, O)
int apnum;
char r.directoryl
char r.name, *argo, *argl, ..., *argn;
int
spawnvp(apnum, directory, name, argv)
int apnurn;
char *directoryl
char *name, *argv[];
extern char'r*environ;

DESCRIPTION
Tlre spau,n fulrctions, spawnlp and spawna'p, executr: a file on the specifiecl Sysrtem 6600 Applica-
tion Processor, creating a new process on that Processor. The pract,ic:rl effect is that r>f a

fork f ttrec sequence rr'ith the follorving differences:
o Spau,n will create the ne\r, process on any Applicaüion Processor. F'ork f erec ahva;{s

creates the nerv process on t,he parent process's Application Processc,r'.

o A spalln proc€rss is not a child of the process that called lpa..un; it is a,:]rild of 1;he sp,3,s'n
seryer on the designa,ted Application Processor (spaurrzsrtr(t\{)). 'lhuri the pro,ress that
called spawn t:annot wait(2) for the new process's death; use spu'aft(3X) instead. Also,
not all the attribr"rtes that are inherited accross a fork are inherited across ^ $par,un

o A fork f erec is less expensive than a 6pdun.
The sp,arvn server passes the follorving attributes to the new process, based part,ially on the a.ttri-
butes of the calling process:

o File descriptors 0, 1, and 2 (standard input, or.rtput, and error) oll the ners pr:ocess are
open to /dev/null. None of the calling process's file descriptors are available to the new
proces§.

r Signals caugirü by the caliing process terminate Lhe nerv process. Other signak; (ignored
by or eausing l.ermirration of the calling process) have the same effect on thr,ne$/ prc,cess
they had on the calling process.

o The new process inherits the following from the calling process, uncl:Lzrn{4,:d: enlironn-LerLt
parameters (variables); file creation mask (urnaoß(2)); effective user ID and group ID.

o If the calling process's effective user ID is 0, the new process inherits the calling process's
real user ID an,i group ID. Otherwise, the nerv process's real ]Ds are the $ame as its ellfec-
tive IDs.

The calling convent,ionii for spaunlp and spawnup are the same as for ereclp and erecup'r'zreci2)),
but u'ith t'vvo additional parameters at the beginning:
«pnun7 The nurnber c,f the Applica,tion Proeessor that is to run the nerv process. Applica,tion

Processors are numbered from 0. Vierved from behind, Appiica;on Proc,:ssors in the
rightmost enclos;ure are counted first, working left; within an enclosure, count left-to-
right. See the S:vstem 6600 Administrator's Guide..

directory
A pointer to a null-terminated string identifying the new process's r','orking directory. If
directory is (char *) O, (NULL in (stdio.h>) the nerv plocess's rvolkin€; directorlr is
the same as t.he calling process's. (Use of NIILL is expensive: ii causes,a. call t,r

-1-



SPAWN ( 3X ) (System 6600 OnlY)

cu,d (3).)

RETURN VALUE
Both functions return -1 on elror; othenvise they return the process number of the new process.

SEE AISO
apnum(1), prvd(1), sparvn(1), apnum(2), fork(2), signal(2), getcrvd(3c), spwait(eX), environ(S).

EXA}'[PLES
The follotving runs "myprog" in the same directory as the current process, but runs it on AP 01:

fdefine NULL ((char *) o)
spawnlp(Ol, NULL, "myprog", "myprog", "arg1", NULL);

The following runs a shell on the other AP:

spawnlp(01, " f"," fbinf sh", "-sh" ,"-"", "cd $HoME; exec myprog", NULL);



SPUTL(3X)

NAME
sputl, sgetl - access long integer data in a machine-independent fashion.

SYNOPSIS
void sputl (value, bufTer)
long value;
char *buffer;
long sgetl (bufTer)
char *buffer;

DESCRIPTION
Sputl Lakes the four b'ytes of the long integer aalue and places them in memory sl,arting at the
address pointed to by buffer. The ordering of the bytes is the same across a,ll machirres.

Sgetl retrieves the four bytes in memory starting at the address pointed ro'by bafler and returns
the long integer value in the byte ordering of the host machine.
The combination of sputl and sgetl provides a machine-independent way of stc,ring lontg numeric
data in a file in binary form without conversion to characters.
A program which uses these functions must be loaded with the object-file access rr>utine lib,rary
libld.a.

-1-



SPWAIT ( 3X ) (System 6600 Only)

NAME
spwait, - wait for spawned process to terminate

SYNOPSIS
spwait(pid, status)
int Pid' *status;

DESCRIPTION
Spwait suspends the calling process until a signal is received or the process specified by process ID
pfd terminates. The specified proeess must have been previously spawned (opoun(3X)) by the
calling process.

If. status is not equal to (int *) O, the word it points to receives two data:
o The high byte gets the low byte of the specified process's edt(2) parameter.
o The low byte get the specified process's termination status {signal(2)). I[ the termination

status's 0200 bit is set, the process produced a core image when it terminated.
SEE ALSO

spawn(1), exit(2), fork(2), signal(2), spawn(3x).

RETURN YALUE
lf spwait returns due to the receipt of a signal, a value of -l is returned to the calling process and
errno is set to EINTR If tooit returns due to a terminated spawn process, the process ID of the
child is returned to the calling process. Otherwise, a value of -l is returned ar,d errno is set üo
indicate the error.

-l-



ssrGNAI( 3C )

NAM!]
ssignal, gsignal - soft'ivare signals

SYNOPSIS
fincnude (signal.h)
int (*ssignal (sig, a,:tion))( )int sig, (*action)( );
int gsignal (sig)
int sig;

DESCRIPTION
Ssigna.l and gsignal implement a software facility sinrilar to signal(2). This facility is us,ed b1' the
Standard C Library tr> enable users to indicate the disposition of emor condi.ti6n5,, and is also
made avaiiable to userrs for their own purposes.

Softwrare signals made available to users are associated with integers in the inclusiv,: ranlJe 1

through 15. A call to ssignal associates a procedure, action, with the sofbwa.re signal sfg; tlie
softwerre signal, sig, is raised by a call to geignal . Raising a sofbware signal causes ttre acbion
established for that signal to be taken.

The first argumenb to ssignol is a nurnber identifying the type of signal for which an a<:t,ion is lo
be established. The se<:ond argument defines the action; it is either the nanre of a (user-defirretl)
action function or one of the manifest constants SIG-DFL (default) or SIG-I[GN (igncre). Ssign«l
returns the action previously established for that sigrral type; if no action has been establisherl or
the si6nal number is illegal, ssignal returns SIG-DFL
Gsignol raises the signzr,l identified by its argument, sig:

If an action lunction has been established for srg, then that action is reset to SIG_.DFL and
t,he action function is entered with argument sig. Gsignal returns the value returned t,o it
by the action fun,:tion.
If the action for oig is SIG-IGN , gs,ignal returns the value I and takes no c,ther actji<ln.

If the action lor sfg is SIG-DFL , gaignal reiurns the l'alue 0 and takes rro other action.
If slg has an illegal value or no action was ever specified for org, gsignal returnrs the valu.e 0
and takes no other action.

SEE AISO
signal(2).

NOTES
There are some additiorral signals with numbers outside the range 1 througtr X5 rvhich arr: usedi b'r
the Standard C Library to indicate emor conditions. Thus, some signal numbers outside lhe ra.nge
I through 15 are legal., although their use may interfere with the operatiorr of the Stzundarrl C
Library.

-1-



srDro ( 3s )

NAME
stdio - standard buffered input/output package

SYNOPSIS
ffinclude <stdio.h)
FILE *stdin, *stdout, *stderrl

DESCRIPTION
The functions described in the entries of sub-'class 35 of bhis manual constitute an efficient, user-
level IiO buffering scheme. The in-line macros getc(3S) and putc(SS) handle characters quickly.
The macros getchar ar,d putchar, and the higher-level routines Igetc, fgets, fprintf , fputc,lputs,
fread, lscanf , fwrite, gets, getw, printf , puts, putw, and scanf all use or act as if they tse getc
and putc; they can be freely intermixed.
A file with associated buffering is calied a stream and is declared to be a pointer to a defined
type FILE. Fopen(31) creates certain descriptive data for a stream and returns a pointer to
designate the stream in all further transactions. Normally, there are three open streams with con-
stant pointers declared in the (stdio.h> header file and associated with the standard open files:

stdin standard inPut file
stdout standard outPut file
stderr standard emor file

A constant NULL (0) designates a nonexistent pointer.

An integer-constant EOF (-l) is returned upon end-of-file or error by most integer functions that
deal with streams (see the individual descriptions for details).

An integer constant BIIFSIZ specifies the size of the buffers used by the particular implementa-
tion.
Any program that uses this package must include the header file of pertinent macro definitions,
as follows:

ffinclude <stdio.h)
The functions and const,ants mentioned in the entries of sub-class 35 of this manual are declared
in that header file and need no further declaration. The constants and the following "functions"
are implemented as macros (redeclaration of these names is perilous): getc, getchar, putc,
putchar, lerror, feo!, clearerr, and fileno.

SEE AISO
open(2), close(2), lseek(2), pipe(2), read(2), write(2), ctermid(35), cuserid(3S), fclose(3S), ferror(3S),
rop."1äs1, rr"rä1as;, iseek(3S), getc(3§), gets(35), popen(3S), printf(3s), putc(3s), puts(3s),
scanf(bS), setbuf(3S), system(3S), tmpfile(3S), tmpnam(35), ungetc(3S)'

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly including Program termination.
Individual function descriptions describe the possible emor conditions.

-1-



STDTPC ( 3c )

NAME
stdipc - standard interprocess communication package (ftok)

SYNOPSIS
f include ( sys/types.h)
finclude (sys/ipc.hr>
key_t ftok(path, id)
char *path;
char id;

DESCRIPTION
All interprocess comrlunication facilities require the user to supply a key t,c be usr:«l by the
msgget(2), semget(2), and shmget(2) systern calls to obtain interprocess communicatic,n identif-iers. One suggested rnethod for forming a key is to use lhe ftok subrouline, deseribed belorv.
Another way to comp()se keys is to include the project ID in the most sigrrificant byte zrnd to use
the remaining portion as a sequence number. There are many other rvays lo form }leys, but it is
necessary for each syst,em to define standards for lorming them. If some st,zLndard i,s nc,t adh.ered
to, it will be possible for unrelated processes to unint,entionally interfere *'ith ea,ch 6thqr.,s opera-tion. Therefore, it is strongly suggested that the most significant byte o1i a l<ey in s,rme sen,;"
refer t,o a project so that keys do not conflict across a given system.
Ftofr returns a key based on path and id that is usable in subsequent msgget, s(,.tnget,, at-td, shrnget
system calls. Path must be the path name of an existing file that is a,ccessible to the pr:ocess td
is a character which uniquely identifies a project. Note that /o* wrll return the same ke1.ftrr
linked files when calle,i with the same id and that it will return different ikeys when calied with
the same file name but different ids.

SEE AISO
intro(2), msgget(2), semget(2), shmger(2).

DIAGNOSTICS
F'to* returns (key-t) -L if path does not exist or if it is not accessible 1;o the process.

WanNrxc
If the file whose path is passed to ftok is removed when keys still refer to the file, future calls t,o
ftok wilh the same path and ld will return an error. If the same file is r:ecrea.ted, then /ol. is likely
t9 return a differenü key than it did the original time it was called.

-1-



NAME
Strcat, strncat, strcmp, strncmP, §trcpy, §trncpy, strlen, Strchr, st'rrchr, strpbrk' st'rspn' strcSpn'

strtok - string operations

SYNOPSIS
#include (string.h)
char *strcat (s1, s2)
char *s11 *s21

chsr *strneet (s1, e2, n)
char fs1, *s21
int n;
int strcmp (s1, s2)
char *s1, *s21

int strncmP (s1, s2, n)
char *s1, *s21
int n;
char *strcPY (s1, s2)
char *s1, *s2;

char *strncPY (s1, s2, n)
char *s1, *e21

int n;
int strlen (s)
char's;
char *strchr (sr c)
char *s, c;
char *strrchr (s, c)
char *s, c;
char *strpbrk (s1r s2)
char *s1, *s21

int strsPn (s1, s2)
ehar *s1, *s2;

int strcspn (s1, s2)
char *s1, *s2;

char *strtok (s1, a2)
char *s1, *s21

DESCRIPTION
The arguments el, cp and e point, to strings (arrays of characters terminated by a null character)'

The functions ctrcot, ctrncat, Btrcpy and-strncpy all alter sI. These functions do not check for

overflow of the array pointed to by aI'
Strcat appends a copy of string s2 to the end of string ol . Strncat appends at most n characters'

Each returns a pointer to the null-terminated result'

Strcmp compares its arguments and returns an integer less than, equal to, or greater than 0,

according as sl is lexicographically less than, equal to, or greater than s2. Strncmp makes the

same comparison but looks at at most n characters'

Strcpy copies string sZ to sI, stopping after the null character has been copied . Strncpy copies

exactly ,r characte6, truncating # oiadding null characters to eI if necessary. The result will
not be null-terminated if the length of cP is n or more. Each function returns el '

STRING (3C )

-1-



STRTNG ( 3c )

Strlen rettrns the number of characters in c, not including the terminal;ing null character.

Strchr (strrchr) returns a pointer to the first (last) occurrence of character c in strin5; ,e, c,r it
NULL pointer if c does noü occur in the string. The null character terminating a string is c,cn-
sidered io be part of the string.
Strpbrk returns a pointer to the first occurrence in string sI of any chzrracter frc,rn string: s2, or lt
NULL pointer if no character from s2 exists in sl.
Strspn (strcspn) returns the length of the initial segment of string sI which consists ent,irell, of
characters from (not frc,m) string s2.

Strtok considers the string s-l to consist of a sequence of zero or mor,e text tok.ens r;epa.rated b;r
spans of one or more characters from the separator string s2. The first call (with pr>inter s-l
specified) returns a pointer to the first character of the first token, arrd will have written a :null
character into s-l immediately following the returned token. The function k,:eps track ol'its p,>si-
tion in the string between separate calls, so that on subsequent calls (which must be meude uith
bhe first argument a NIILL pointer) will work through the string sI immediate,ly fc,llovring that
token. In this way subsequent calls will work through the string sl urLtil nc» tokens lemain. 'Ihe
separator string sP may be different from call to call. When no token remains in sl , a N1.ILJ.
pointer is returned.

NOTE
For user convenience, all these functions are declared in the optior,al lstringt ä> heaCer file.

BUGS
Strcmp and. strncmp use native character comparison, which is signed on Motorola
68000-family processors. This means that characters are 8-bit signed values; all ASCII char
acters have values of at least 0; non-ASCII are negative. On some urachinr:s, all charzr,cters are
positive. Thus prograrns that only compare ASCII values are porbable; progra,ms thab ,compare
ASCII with non-ASCII values are not.
Overla,pping moves may yield surprises.

-r-



STRTOD ( 3c )

NAME
strtod, atof - convert string to double-precision number

SYNOPSIS
double strtod (str, ptr)
cher *str, **pt";
double atof (str)
char *strl

DESCRIPTION
Strtod returns as a double-precision floating-point number the value represented by the character
string pointed to by str. The string is scanned up to the first unrecognized character.

Strtod recognizes an optional string of "white-space" characters (as defined by icspace in
ctype(3C)), then an optional sign, then a string of digits optionally containing a decimal point,
then an optional e or E followed by an optional sign or space, followed by an integer.
If the value of ptr is not (char **)NULL, a pointer to the character terminating the scan is
returned in the location pointed toby ptr. If no number can be formed, *ptr is set to str, and
zero is returned.
Atof(str) is equivalent to strtod(etr, (char **)NULL).

SEE ALSO
ctype(3O), scanf(3S), strtol(3C).

DIAGNOSTICS
If the correct value would cause overflow, +HUGE is returned (according to the sign of the value),
and errno is set to ERANGE.
If the correct value would cause underflow, zero is returned and errno is set to ERANGE.

-1-



STRTOL( 3C )

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *str, **pt";
int base;
Iong atol (str)
char *strl
int atoi (str)
char *strl

DESCRIPTION
,9trfol returns as a long integer the value represented by the character string pointerd tc by str.
The string is scanned up to the first character inconsistent with the base. Leading ".whibr:-spa,ce''
characters (as defined by isspace in cfype(3C)) are ignored.
If the value of ptr is not (char **)NULL, a pointer to the characirlr terrninating th,s scarr is -rreturned in the location pointed to by ptr. If no integer can be formed, that location is set to sfr,
and zero is returned.
If base is positive (and not greater than 36), it is used as the base for,:onversion. l\fter a;l
optional leading sign, k:ading zeros äre ignored, and "0x" or "0X" is ignored if ü,rse ir; 16.

If äase is zero, the string itself determines the base thusly: After an optionzul leading sign, a lead-
ing zero indicates octal conversion, and a leading "0x" or "0X" hexadecim:rl cc,nver.ion. Otlher-
wise, decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment or by an explicit ,:,ast.

Atol(str) is equivalent t,o strtol(str, (char ** )NULL, 10) .

Atoi(str) is equivalent 1;o (int) strtol(str, (char **)NIILL, 10).

SEE AISO
ctype(3C), scanf(3S), strtod(3C).

BUGS
Overllow condiiions are ignored.

-1-



swAB( 3C )

NAME
swab - swaP bytes

SYNOPSIS
void swab (from, to, nbytes)
char *from, *to;
int nbytesl

DESCRIPTION
Su,oä copies nbytes bytes pointed to by from to the array pointed toby to, exchanging adjaeent
even and odd bytes. It is useful for carrying binary data between PDP-1ls and other machines.
Nbytes should be even and non-negative. ß nbytes is odd and positive swab uses nÖyfes-l
instead. If nbytes is negative, suaü does nothing.

-1-



SWAPSHORT(3X) (System 6600 only)

NAME
swapshort, swaplong - translate byte orders to Motorola/Intel

SYNOPSIS
swapshort(s)
short s;

swaplong(l)
long l;

DESCRIPTION
Processes that run on a System 6600 Application Processor (operating system processes) do not sto:re integers
the same way as do processes that run on other System 6600 Processors (RTOS processes). OprlratinLg systern
processes use Motorola or«lering;RTOS processes use Intel ordering. Operating systern processe s must
translate integers sent to or received from RTOS processes.

Library functions do this translation whenever they know an integer value is invc,lved. F<>r exam-
ple, AddQueueEntry translates integers that are supplied for all queue entries: the toriority, t,he
queue type, and the data. But AddQueueEntry does not translate any i:nteger:s in the entr1. data.
Swaplong translates to or from Intel four-byte integers . Swaplong returns / .rvith its t,yt,es in
reverse order. For example, if I is 4885001 (OX004A8A09) swaplong rel;urns 1ti0057t156
(0x098AaA00).
Swapshort translates to or from Intel two.byte integers. Swapshort rr:turns, ,9 .with its bytes in
reverse order.
The program must be loaded with the -lctos library flag.

-l-



SYSTEM( 3s )

NAMtr
system - issue a shell command

SYNOPSIS
ffinclude (südio.h>
int system (string)
char *string;

DESCRIPTION
System causes Lhe string to be given to slr(l) as input, as if the string had been typed as a com-
mand at a terminal. The current process waits until the shell has completed, then returns the
exit status of the shell.

FILES
/bin/sh

SEE ALSO
sh(1), exec(2).

DIAGNOSTICS
Syatem forks to create a child process that in turn exec's lbinlah in order to execute string. Il
the fork or exec fails, aystem returns -l and sets errno.

-l-



TERMCAP (3x)

NAME
tgetent, tgetnum, tgetflag. t,getstr, tgot,o, t,puts - terminal inclependent oper:tllons

SYNOPSIS
char PC;
char *BC;
char *UP;
short ospeed;
tgetent(bp, narne)
char *bp, *narnel

tgetnurn(id)
char *id;
tgetflag(id) --
ehar *id;
char *
tgetstr(id, area) ^
char *id, **areal
char *
tgoto(cmstr, destcol, destline)
char *cmstrl
tputs(cp, affcnt, outc)
register char *cp1
int affcnt;
int (*o*6";1;'

DESCRIPTION
These functions extracb and use information from Lerminal descriptions Lha,t, follow th,: cont'ett-
tions in termcap(4). llhe functions only do basic screen manipulation: they finii an,d out,pttt
specified terminal function strings and interpret the cm string. C'urse.s(3X) describes a screen
updating package built on termcap.
Tgetent finds and copies a terminal description. -Ay'ame is the name of t,he «lesr:ription; iip p<»inls
to a buffer to hold the description. Tgetent passes I,p to the oLher termcap fun«:tiotrs; l,he buffr:r
must remain allocated until the program is done u'ith the tenncap functions.

Tgetent uses the TERM and TERMCAP environment variables to locate t,he terr,rinzLl descri1;- 
-.tion.

o If TERMCAP isn't set or is empty, tgetent sear,:ltes tor nan'te'.in ,'elcf lerntcap.

o If TERMCAP contair.rs the full pathname of a file (an1'r;lring t.ha,t beginsr rvith i),
tgetent searches for narne in that file.

o If TERMCAP contains an-v string that does not begin rvith / and TIIRM is not set ,rr
matches name, tgetent copies the TERMCAP st,ring.

o If TERMCAP contains any stling that does not begin rvit,h i and ltEItM does n,>t
matcl.r natne , lgetent. seat'ches for name irL f etcf terncop.

Tgetent returns -1 if it cor.rlcln't open the terrninal ca.pabilitl- file. 0 if it couldn't fin<l an entrv f,)r
nante, and 1 upon success.

Tgetnunt returns the value of the numeric capability rvhose name is id. ]t r't,turns -1. if llre terrrLi-
nal lacks the specified capability or it is not a numeric capability.
Tgetflag returns 1 if tlre terrninal has boolean capability u,hose name is id, Cl \f iI does rrot or it is
not a boolean capability.

-1-



TERMCAP ( 3X )

Tgetstr copies and interprets the value of the stling capability named by
instances in the string of \ and ^. It leaves the expanded string in the buffer
by area and leaves the buffer's direct pointer pointing to the end of the
example,

id. Tgetstr expands
ind,irectly pointed to

expanded string; for

tgetstr(" cl" , &ptr);

where ptr is a character pointer -- not an
beginning of the string.

array name! Tgetstr reiurns a (direct) pointer to the

Tgoto inLerprets the %o escapes in a crn string. It returns cnrstr rvith t\e 9Z sequences changed to
the position indicated by destcol arrd destline. This function must have the external variables BC
and LIP set to the values of the bc and up capabilities; if the terrninal lacks the capability, set
Lhe external variable to null. If tgoto ca.n't interpret ali the Vo sequences in crn, it returns
"ooPS"
Tgoto avoids producing characters that might be misinlerpreted by the Lerminal interface. If
expanding a %o sequence lvould produce a null, control-d, or null, the funcbion rvill, if possible,
send the cursor to the next line or column and use BC or UP to move to the correct locaüion.
Note that tgoto does not avoid producing tabs; a program must turn off the TABS feature of the
terminal interface (ternio(7)). This is a good idea anyrvay: some terminals use the tab character
as a nondestrucbive space.

?pufs directs the output of a string returned by tgetstr or tgoto. This function must have the
external variable PC set to the value of the pc capa,bility; if the terminal lacks the capability, set
the exbernal variable to null. ?puts interprets any delay at the beginning of the string. Cp is the
string to be outputl olfcnt \s the number of lines affected by the action (1 if "number of Iines
affected" doesn't mean anything); and outc points to a function that takes a single char argu-
ment and outputs it, such as putchar.

FII,ES
/usr/lib/libtermcap.a library
/etc/termcap data base

SEE AISO
ex(1), curses(3), termcap(5)

-,



TMPflLE(8S)

NAME
tmpfile - create a temporary file

SYNOPSIS
finclude <stdio.h)
FILE *tmpfile ( )

DESCRIPTION
Tmpfile creates a temporary file using a name generated by tmpnam(3s), and returns a
corresponding FILE pointer. If the file cannot be opened, an errc)r message is prirrrbed 'using
perror(}C), and a NULL pointer is returned. The file will automatically be deleted when the pro
cess using it terminates. The file is opened for update ('*+').

SEE ALSO
creat(2), unlink(2), fopen(8S), mktemp(3O), perror(3C), tmpnam(3S).

-1-



TMPNAM(35)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
ffinclude (stdio.h)
char *tmpnam (s)
char *s;

char *tempnem (dir, pfx)
char *dir, *pfxl

DESCRIPTION
These functions generate file names that can safely be used for a temporary file.
Tmpnam always generates a file name using the path-prefix defined as P-trnpdir in the
{std,io.h> header file. If s is NIILL, tmpnam leaves its result in an internal static area and
returns a pointer to that area. The next call to tmpnam will destroy the contents of the area. If
s is not N1ILL, it is assumed to be the address of an array of at Ieast L-tmpnam bytes, where
L_tmpnam is a constant defined in lstdio.h); tmpnam places its result in that array and
returns s.
Tempnam allows the user to control the choice of a directory. The argument dir points to the
name of the directory in which the file is to be created. If drr is NULL or points to a string which
is not, a name for an appropriate directory, the path-prefix defined as P-trnpdir in the
lstd,io.h) header file is used. If that directory is not accessible, /tmp will be used as a last
resort. This entire sequence can be up-staged by providing an environment variable TMPDIR in
the user's environment, whose value is the name of the desired temporary-file directory.

Many applications prefer their temporary files to have certain favorite initial letter sequences in
their names. Use the p/e argument, for this. This argument may be NULL or point to a string of
up to five characters to be used as the first few characters of the temporary-file name.

Tempnam uses rnolloc(3C) to get space for the constructed file name, and returns a pointer to
this area. Thus, any pointer value returned from tempnam may serve as an argument to free (see
maltoc(3C)). lf tempnam cannot return the expected result for any reason, i.e. malloc(3C) failed,
or none of the above mentioned attempts to find an appropriate directory wa§ successful, a NTILL
pointer will be returned,

NOTES
These functions generate a different file name each time they are called.

Files created using these functions and eilher fopen(3S) or creat(2) are temporary only in the
sense that they reside in a directory intended for temporary use, and their names are unique. It is
the user's responsibility to use unlink (2) to remove the file when its use is ended.

SEE ALSO
creat(2), unlink(2), fopen(35), malloc(3C), mktemp(3C), tmpfile(3S).

BUGS
If called more than 17 ,576 times in a single process, these functions will start recycling previously
used names.
Between the time a file name is created and the file is opened, it, is possible for some other process
to create a file with the same name. This can never happen if that other process is using these
functions or mktemp, and the file names are chosen so as to render duplication by other means
unlikely.

-1-



TRrG(3M)

NAME
sin, cos, tan, asin, acos, atan, aian2 - trigonometric functions

SYNOPSIS
Sinclude (rnath.h),
double sin (x)
double x;
double cos (x)
double x;
double tan (x)
double x;
double asin (x)
double x;
double acos (x)
double x;
double atan (x)
double x;
double atan2 (y, *)
double y, x;

DESCRIPTION
Sin, cos ar,d tan return respectively the sine, cosine and tangent of their a:rgument, r, rneasured
in radians.

Asin returns the arcsine of r, in the range -rl2 to rl2.
,Acoc returns the arccosine of o, in the range 0 to zr.

Aton returns the arctangent of r, in the range -rf2 to rf2.
Atan2 returns the arctangent of yf r, in the range -7r to zr, using the signs of L,oth rarguments to
determine the quadrant, of the return value.

DIAGNOSTICS
Sin, cos, ar,d tan lose accuracy when their argument is far from zero. Por ra.rgumenl,s sul'ficieltly
large, ühese functions return zero when there would otherwise be a complet;e loss of significance.
In this case a message indicating TLOSS error is printed on the stand.ard error output. For le:is
extreme arguments causing partial loss of significance, a PLOSS error ir; generate,d but no mesi.rage
is printed. In both cases, errno is set to ERANGE.
If the magnitude of the argumen| of asin or acos is greater than one, or if both ixrguments of
atan2 are zero, zeto is returned and errno is set to EDOM In addition, a ntessage irrdicating
DOMAIN error is printed on the standard error output.
These error-handling procedures may be changed with the function mariherr(LM).

SEE AISO
matherr(3M).

1-



TSEARCH( 3C )

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
ffinclude (search.h)
char *tsearch ((char *) k"y, (char **) rootp, compar)
int (*comp""X );
char *tfind ((char *) k"y, (char **) rootp, compar)
int (*comparX );
char *tdelete ((char *) k"y, (char **) rootp, compar)
int (*comp""X );
void twalk ((char *) root, action)
void (*action)( );

DESCRIPTION
Tsearch, tfind, tdelete, and twalk arc routines for manipulating binary search trees. They are
generalized from Knuth (6.2.2) Algorithms T and D. All comparisons are done with a user-
supplied routine. This routine is called with two arguments, the pointers to the elements being
compared. It returns an integer less than, equal to, or greater than 0, according to whether the
first argument, is to be considered less than, equal to or greater than the second argument. The
comparison function need not compare every byte, so arbitrary data may be contained in the ele-
ments in addition to the values being compared.

Tsearch is used to build and access the tree. Key is a pointer to a datum to be accessed or
stored. If there is a datum in the tree equal to *key (the value pointed to by key), a pointer to
this found datum is returned. Otherwise, *key is inserted, and a pointer to it returned. Only
pointers are copied, so the calling routine must store the data. Rootp points to a variable that
points to the root of the tree. A NULL value for the variable pointed to by rootp denoies an
empty tree; in this case, the variable will be set to point to the datum which will be at the root of
the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it if found. How-
ever, if it is not found, tfind will return a NULL pointer. The arguments for tfind are the same as
for tsearch.
Td.elete deletes a node from a binary search tree. The arguments are the same as for taearch,
The variable pointed to by rootp will be changed if the deleted node was the root of the tree.
Tdelete returns a pointer to the parent of the deleted node, or a NLILL pointer if the node is not
found.
Twalle fiayerses a binary search tree. Root is the root of the tree to be traversed. (Any node in
a tree may be used as the root for a walk below that node.) Action is the name of a routine to be
invoked at each node. This routine is, in turn, called with three arguments. The first argument
is the address of the node being visited. The second argument is a value from an enumeration
data type typedef enum { preorder, postorder, endord.er, lea! \ VtUf ; (defined in the ( search.h}
header file), depending on whether this is the first, second or third time that the node has been
visited (during a depth-first, left-to-right traversal of the tree), or whether the node is a leaf. The
third argument is the level of the node in the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type pointer-to-element, and cast to
type pointer-to-character. Similarly, although declared as type pointer-to.character, the value
returned should be cast into type pointer-to-element.

EXAMPLE
The following code reads in strings and stores structures containing a pointer to each string and a
count of its length. It then walks the tree, printing out the stored strings and their lengths in
alphabetical order.

-1-



TSEARCH(3C )

ffinclude (search.h)
ffinclude (stCio.h)

struct node { l* pointers to these are stored in ttLe tree *7'

char *'string;
ini length;

);
char string-spacefl00O0l; l* space to store strings */
struct node nodesl50O]; l* nodes Lo store */
struct node *root : NLILL; /* this poinfs to the root *i/

main( )
{

char *strptr : string-space;
struct node *nodeptr : nodes;
void print-node( ), twalk( );
int i ,: 0, node-compare( );

r*'hile (gets(strptr) !: Nl,lLL &.8t, i++ .< 500) {
/* set node */
nodePtr-)string : strptr;
nodeptr-)length : strlen(strptr);
/* p,rt node into the tree */
(void) tsearch((char *)nodeptr, &root,

node-compare);
/* adjust pointers, so we don't overwrite tree */
strptr -l: nodeptr-)length + 1;
nodeptr**;

)
twalk(root, print_node);

This routine compares two nodes, based on an
alphabetical ordering of the string field.

int
node-compare(node1, node2)
struct node *nodel, *node2;

{
return strcmp(node1-)string, node2-)string);

)

This routine prints out a node, the first time
twalk encounters it.

void
print-node(node, order, level)
struct node **node;
VISIT order;
int level;
{ if (order :: preorder ll order :: leaf) {

(void)printf("string : Voz1s, length : %c[\n",

)

-r_



TSEARCH( 3C )

(*node)->string, (*node)-)length);
)

)
SEE AISO

bsearch(3C), hsearch(3C), lsearch(3C).
DTAGNOSTICS

A NULL pointer is returned by taearch if there is not enough space available to create a new
node.
A NULL pointer is returned by tsearch, tfind and tdelete if rootp is NULL on entry.
If the datum is found, both tsearch and tfind return a pointer to it. If not, t/rnd returns N(ILL,
and tsearch returns a pointer to the inserted item.

WARNINGS
The root argument to twalk is one level of indirection less than the rootp arguments to tsearch
and tdelete.
There are two nomenclatures used to refer to the order in which tree nodes are visited. Tsearch
uses preorder, postorder and endorder to respectively refer to visting a node before any of its chil-
dren, after its left child and before its right, and after both its children. The alternate nomencla-
ture uses preorder, inorder and postorder to refer to the same visits, which could result in some
confusion over the meaning of postorder.

BUGS
If the calling function alters the pointer to the root, results are unpredictable.

-3-



TTYNAME( 3C )

NAME
ttyname, isatty * find rrame of a terminal

SYNOPSIS
char *ttyname (fildes)
int fildes;
int isatty (frldes)
int fildes;

DESCRIPTION
Ttynarne returns a pointer to a string containing the null-terminated patlt name of the terrrrinrrl
device associat,ed with liile descriptor fildes .

lsatty returns l if fildes is associated with a terminal device,0 otherwir;e.

FILtrS
ldev l*

DIAGNOSTICS
Ttyna,me returns a NL[,L pointer il lildes does not describe a terminal ,f evi«:e in directorp' /der..

BUGS
The rerturn value points to static data whose content is overwritten by each call.

-1-



TTYSLOT( 3c )

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
int ttyslot ( )

DESCRIPTION
Ttyslot returns the index of the current user's entry in rhe f etc/ttmp file. This is accomplished
by actually scanning the file f etcf utrnp for the name of the terminal associated with the stan-
dard input, the standard output, or the error output (0, I or 2).

FILES
f etcf ümp

SEE AISO
getut(3C), ttyname(3C).

DIAGNOSTICS
A value of 0 is returned if an emor was encountered while searching for the terminal name or if
none of the above file descriptors is associated with a terminal device.

-t-



UNGETC(ss)

NAME
ungetc - push character back into input stream

SYNOPSIS
ffinclude (stdio.h)
int ungetc (c, stream)int c;
FILE *strearn;

DESCRIPTION
ungetc inserts the cha'racter c into the buffer associated with an inp,t stream. Thaü ,charar:ter,;i"::l,n':1.**H the next setc(es) .,li ;;l;;""0',,,o*. tlnsitc."i,Ä, c, and leaves *re
one characte,r of pushback is guaranteed, provided something has a,rready beenstream and the süream is actually buffereä,'ir rh;;; that stream is ofdr.n, onebe pushed back onüo ürre buffer without a previous read statement.If c equals EoF, ungetc does nothing to 

'he 
buffer and returnsEoF.

Foee&(BS) erases all memory of inserted characters.
SEE ALSO

fseek(BS), setc(3S), seübuf(BS).
DI.AGNOSTICS

Ungetc returns EOF if it cannoü insert, the characüer.

read from the
character may

1-



YPRTNTF( 35 )

NAME
vprintf, vfprintf, vsprintf - print formatted output of a varargs argument Iist

SYNOP$S
finclude (stdio.h>
finclude (varergs.h)
int vprintf (format, ap)
char *formatl
va_list ap;
int vfprintf (stream, format, ap)
FILE *streaml
char *format;
va_list ap;
int vsprintf (s, formatr Ep)
char *s, +formatl
va_lisü ap;

DESCRIPTION
aprtntf , ufprintl , and aoprintl are the same as printl, fprintf, and eprintl respectively, except that,instead of being called with a variable number of'arg;ments, they are caltea with an argumentlist as definedby oarargs(6).

EXAMPLE
The following demonstrates how alprintJ could be used to write an error routine.
finclude (stdio.h)
finclude (varargs.h)

*
,ß

error should be ealled like
error(function_name, format, argl, arg2,..);

/*VARARGSo*/
void
error(va_alist)
/* Note that the function-name and format arguments cannot be
: separately declared because of the definition of varargs.

va_dcl
{

va_list args;
char *fmt;

va_start(args);
/* print out name of function causing error */
(void)fprintf(srderr, ,ERROR in Vor, ;, lru_r.j1rrgs, char *));fmt : va_arg(args, char *);
/* print out remainder of message */
(void)vfprintf(fmr, args);
va_end(args);
(void)abort( );

)

-l-



YPRTNTF( 35 )

SEE AISO
printf(35), varargs(5).



WMGETTD ( 3X )

NAME
- wmgetid - get window ID

SYNOPSIS
Sinclude <oa/wm.h>

int wmgetid(frldes);
int fildes;

DESCRIPTION
Wmgetid returns ühe window ID associated with the file descriptor tildea. A window ID is a posi
tive integer that identifies the window associated with the file descriptor. The ID is passed to
other window management library functions to identify the particular window being acted upon.
The only way to get a valid window ID is from a window management library call; do not use a
value obtained any other way.

To get all the window IDs for a terminal, use the layout structure written by wmlayoat(3X) or
wmop(lX). To associate a file descriptor with a different window, use tarnoetrd(3X)
Wmgetid fails if one or more of the following are true:

Fildes is not an open file descriptor. IEBADF]
The indicated file does not represent a terminal, or the terminal cannot support window
manatement. IENOTTY]
The window manager is not running on the terminal. IENOENTI

FILES
ldev f tty*
/usr/lib/libwm.a - window management library

SEE ALSO
wm(t), wmop(3X), wmlayout(3X), wmsetid(3X).

RETURN VALUE
If success, the window ID associated with lildea. Otherwise, -1 is returned and errno is seü.

-1-



WMLAYOUT( 3X)

NAME
wmla),ouü _ get, terminal,s window layout

SYNOPSIS
finclude <oa/wm.h>
int wmloyout(fildea, layout)int fildee;
struct wm_layout *layout;

DESCRIPTION
wmlayoat fetche-s a dtrseription of the.screen layout, of a üerminal under window rranagement.Fildea is a file.descripüor *"".;""a^*iüh ;h; 

.,ä;ij; 
special fire try an creat, d,up, fcntr. oropcn svstem call; the association ol.fitde.o *trh ;;;;ilui--.*irrao*-lär-."ä . Lasoatpoints roan area rhat is to receive the dlscripd;;. -d;#'".rrrn, 

**;r;;;,-l',o"or""* musr serlavout-)macw|o-ay! üo indicate the number of ',rind;; ä.r."i!ri"n.;i- ;; c8, &crrorrdare; the:ili'.T,,H.ffi, ffi: rll"lmber or winio*.'Iii""u, p**irt"li. äiä a""..ie,tion consists
struct wm_layout {int cwindowid;

short maxwcountl
short wcount;

;:ruc 
t wm_wlayoutw [WM_IVfAX] ;

struct, wm_wlayout {.int windowid;
short pwindowid;
short, startrowl
short startcolumn;
short drows;
shorü dcolumns;
short syncrow;
short synccolumn;
short vrows;
short vcolumns;
short crow;
short ccolumn.
char reserv"JiOj; /. musr be 0 */l

Here are the meanings of the fields in a wm_layoutstructure:ctoindowid The window ID of the active window.
maxwcoant 

W"' ":.1':fl"1'Ii'j,:,r"ä:his srrucrure has roc,m for. Normary set
wcount Number of windows cumenüly on terminal.w Array of iudividual window descripüions.
Here are the meanings of ühe fields in a wm-wlayont strueture:windowid The window ID.
pwindowid The physicar window ID. Meanü only for window management internar use.ctartrow starting physical row of the window (the tag line is on th* row t»efore).

-l-



WMLAYoUT( 3X)

startcolumn Starting physical column of the window. Currently this value is always 1.

ilrows The number of displayed rows in the window. Note that the tag line is not counted
in this value.

ilcolumns The number of displayed columns in the window. Currently this value is always 80.

yyncrou Virtual display row that corresponds to the first row of the window.

synccolumn Virtual display column that corresponds to the first column of the window.
Cumently this value is always 1.

l)rous Number of rows in virtual display.

acolumns Number of columns in virtual display. Currently this value is always 80.

crow The current cursor row number.

ccolumn The current cursor column number.

reseraed AlwaYs zeroes.

Rows and columns are numbered from 1.

A window ID is a positive integer that identifies the window associated with the file descriptor.
The ID is passed to other window management library functions to identify the particular window
being acted upon. The only way to get a valid window ID is from a window management library
call; do not use a value obtained any other rtray.

Cumently, physical windows always start in column zero and physical windows and virtual
displays are always 80 columns wide.

Wmlayout will fail if one or more of the following are true:
Fildea is not an open file descriptor. IEBADF]
The indicated file does not represent a terminal, or the terminal cannot support window
management. IENOTTY]
The structure pointed toby windowreqis invalid. [EI]WAL]
The window manager is not running on the terminal. IENOENT] .

FILES
/usr/lib/libwm.a - window management library.
fdev ftty*

SEE AISO
wm(l), wmgetid(3X), wmsetid(3), wmop(aX).

RETIIRN VALI.'E
Success returns 0; failure returns -1 and sets errno to indicate the error.

_., _



wMoP ( 3x )

NAME
wmop - window management operations

SYNOPSIS
finclude (oa/wm.h)

int wmop(fildes, windowreq, Iayout)
int fildes;
struct wm_request *windowreq;
struct wrn_layout *layout;

DESCRIPTION
Wmop manipulates windows on a terminal under window management. It is normally used by"
application programs. Fildes is a file descriptor associated with the terminzul's speci:rl fil,e by anr
creat, dup, fcntl , or open system call; the association of lildes with a partir:ulzr,r windovr is not,
used. Windowreq is a a pointer to a structure that describes the operation. Layout is an <»ptional
pointer to a layout structure of the type used by wmlayout; if present, the st,ructure is filled with
the new description of the window.
The request structure is defined as follows:
struct wm-request {int request;

int windowid;
int (*notifYX)
short startrow;
short, startcolumn;
short drows;
short dcolumns;
short syncrow;
short synccolumn;
short vrows;
short vcolumns;
short crow;
short ccolumn;

);
Only two fields in the request structure are used by all operations:
. Request specifies the operations desired . Request is the bitwisr: or c,f the opr:ration con-

stants described below.
c Windowid specifies a window usually with a window ID returrred b1. a previouft wmtlp,

wmlayout, or u,mgetid. The only way to get a valid window IDr is frorri a .,rrindow
management library call; do not use a value obtained any other way. If the o1>era,tions do
not include WM-CREATE (create a new window), windowid is a window ID that specilies
the single window to which the operations apply. If the opr:rations do include
WM-CREATE, wintlowfd must be either a window ID, indicating thr: window tha.[ yields
space for the new window, or 0, a value with special nLeanin.gs describerl un«ler
WM-CREATE and WM-START; the other operations apply to the new windr>w.

WM-CREATE Create a new window. Other operations describe the new windc,w's charac-

f,liili,i'nl il.',.,H;iJJ:x';:il,fr:,speciried 
with wM -cREArE, b*re new

o The new window occupies the bottom half of the win,row rspecified by
windowid. lf windowid is 0, the new windou, occupies the bofi;om half
of the active window.

-l



WM_DESTROY

\\TN{_DSIZB

\VN,{_DRSIZE

WM-DSTART

WII,{_DRSTART

WM-\TSIZtr

WM-\'RSIZE

WM_VSTART

wMoP ( 3x )

e The new window's virtual display is 28 lines long.
o The cursor is on ühe firsb line of the new window's vir[ual display, which

is also the first line of the new window.
o The user is permitted to split the new window onlv if the old window

permitted user splits. See WM-SPLIT.
Destroy the window. If t,he window is the top window, the destroyed
window's rows go to bhe window below; otherwise the destroyed window's
rows go to the window above. If the destroyed window was the active win-
dow, the window that gets bhe destroyed window's rows is activated.
Change window size. This operation can be modified by MIMDRSIZE; this
description assumes it is not. The window size, which does not include the
window's tag line, can vary from 0 to 26. Drows specifies the new window
size.

If WM_DSIZE is specified with WM_CREATE, drorus specifies the new
window's size.

N.{odifies WI\'{_DSIZE so that drour.s specifies an offset relative the current
value, rather than an absolute size. Drous can be negative.
If WN{-DSIZE and \\W-DRSIZE are specified with WM_CREATE, drous
specifies the new window's size relative to the size of the old window. Thus
in this case, drows must be negative.
Set the starting row of the window (not che tag line, which is automaticaliy
on the row before). This operation may be modified by WM-DRSTART; this
description assumes it is not. Rows are numbered from l, and a window can
start on any row from 2 to 28. Startrou specifies the new starting row.
IF WM_DSTART is specified with WM_CRtrATtr and windowid is 0, startrow
specifies the ne'*'window's starting position on the screen, without reference
to an existing window.
Modifies WM-DSTART so thaü startrow specifies an offset relative t,he
current value, rather than an absolute starting row. Süartrow car, be negative.
If WM-DSTART and WM-DRSTART are specified with WM-CREATE,
slartrow must be non-negativel the new window starts starlrou., rows aft,er the
start of t,he old window. lf startrow is 0, the new window takes the top por-
tion of the old window's rows instead of the bottom. lf. startrou is positive,
WM_DSIZE is ineflective: the size of the new window is dictated by the size
of the old.
Set virtual window size to orous long. The operations can be modified by
WM_\RSIZE. In any case, the virtual display must be 1 to 28 rows long.

If the virtual display is shortened past the cursor, t,he cursor must be moved
to within the new virtual display end. If the WM_CURSOR operation is noü
specified at the same time, the terminal moves the cursor to the new last line
of the vircual display.
Modifies WM-VSIZE so bhat ororrc is an offset to the present value. lrrowa
can be negative.
Synchronize the window and its virtual display by making virtual display row
synerou (numbered from 1) the first row on the window. This operation can
be modified by WM_\'RSTART. The window manager will modify a
WM-VSTART operat,ion as necessary to keep the window from extending
past bhe bottom of the virtual display. If the cursor is visible, the terminal

-2-



wMoP ( 3X )

sol'tware will modify a WM_VST,A,RT operation ars necer;sary to keep the cur-
sor in t,he window.

WN{_\rRSTART Mc»dify \\&,{_VSTART so that syncrou is an offset to t}r,: presenr value. ,9yn-
cr(ru can be negative.

WN'I-SELBCT N{ake the window the active window.
WIV{-DESELECT If t,he window is the active windc,w, make another wind,rw the activr: win,lorv:

if t,he designated window is the top u'indow, the windov"' below; othr:r:wise tl:e
window above.

\\']!'1_CLRSOR Position the cursor on ro$, crou,.
WN.{_SPLIT Enable change of splitting permission. LTs,:d i:n conjunct,ion rvith

WM-NSPLIT. If WM_SPLIT is specified alone: the us;er can s,plit the rvirr-
dow as long as the ierminal can handle another windovr, II \\rNI_SPLIT and
W]'4_NSPLIT are specified toget,her, the SPLIT }:ey is ineflective vrhen the
wirrdow is active.

WN4-NSPLIT Disable window split. Always used in conjunction *'ith WM-SPLIII, which
se e.

\\,An-NOTIFY l,lotfiy is a notify procedure. Set notily to (int (.)0) 0 to disa,ble an exisr:,ing
notify procedure. The calling process will be inter:rupt.e«l and nttilSt called if
an)'other process or the user changes the status of th,e rvindow. Win«lorv
stafus includes window size, location, and whether it is: active, but «loes not
inc,Lude cursor location.

Cunently, all windows and displays must begin in column 0 and be 80 colurnns rvide.

Wmop fails if one or m,)re of the following are true:
Fildes is not an open file descriptor. [EBADF]
The indicated file does not represent a terminal, or the termir.ral ca.nnol suppori windo,,r'
management. IENOTTYI
The structure trrointed to by windowreq is inv:rlid. JEINVAI]
The window manager is not running on the termirral. IENOEN:I]

ITETUII,N VAI,UE
If the operations were successful, t,he window ID of the affected window (th,e n,:w windrtw if ,cne ^
was created) is returned. Other*'ise, -1 is returned and errno is set.

WAIININGS
lJse wmop conservatively and with extreme care. Indescriminat,e use I;y programs c,;mt,eting for
windorv space can resulI in race conditions and screen image instabilit,l'.
The u'indou' manager and terminal software silently enforce basic consistency'. ,{. p'ograrn nrust
not make assumptions about what the window looks iike aft,er a successful t,ltnop'in:tea,:l it nrust
examine the new wnilayout structure to find out r+'hat actually happene,i.

I'ILLIS
l dev r/tty *
i usr/lib/libwm.a - win<low management library

SIiI.) AI,SO
signal(2), wmgetid(3), u,mlayout(3), wmsetid(3).
ferror(:3S) to get file descriptor for terminal accessed u'ith r;tandard input-,'outp,ut package

-J-



WMSETTD (3x)

NAMtr
wmsetid, wmsetids - associate a file descriptor with a window

SYNOPSIS
finclude (oa/wrn.h)

int wmsetid(fildes, windowid)
int windowid;
int fildes;

int wmsetids(fildes, windowid)
int windowid;
int fildes;

DESCRIPTION
Wrnsetid and wmsetids change the window with which a file descriptor is associated. Fildes must
be a file descriptor open to a terminal on which the windo*' manager is running. Fildes becomes
associated r,r'ith the windorv (on the same terminal) indicated by windowid, which must be a win-
dow ID obtained from a previous wmgetid(}X), wmlayout(3X), or u,mop(3X) call.

If a program performs a unrcetid on an inherited file descriptor, all processes that have inherited
and use the same file descriptor and the process they inherited it from are affected. By conven-
tion,0 (equivalent to fileno(stdin)) 1(equivalent to fileno(stdout)) and 2 (equivalent. to
fileno(stderr)) are inherited file descriptors. The follorving code closes and reopens them so that a
wmsetid on them doesn't affect other processes. It should be executed before terminal
input/output, begins.

ttl:t1r""t,Or'
close(0);
close( t );
open(tty. O-RD\\R ):
close(2);
dup(o);
dup(o);

Be sure to cornplete buffered terminal output before su'itching windows. See /c/ose(3S) if you use
the standard input/output package.

lL'ntsetifl and wmsetids are different only *'hen executed by a process gror.rp leader. If the process
group leader calls umsetids and the specified window is not already a controlling window for
another process group, the specified window becomes the process group's controlling window.
(For more details on control windows, see termio(7) and window(7).) Wmsetid never changes the
cont,rolling rvindou' under any circumstances.

lVmsetid arrd wmsetids fail if one or more of the following are true:

Fildes is not an open file descriptor. JEBADF]

IHj;*;: Ä"i,ff:"i,ot 
represenr a terminar, or the rerminal cannot supporr u'indow

The structure pointed to by windowreq is invalid. IEINVAL]
The window manager is not running on the terminal. IENOENT]

I,'ILtrS
/dev /tty *
/usr/lib/libwm.a - window management library

StiI.I AI,SO
wm(1), wmop(3X), wmlayout(3X), wmgetid(3X).
ferror(3S) - fileno function

-1-



WMSETTD(3X)

ttyname(3C), open(2),,:lose(2), dup(2).
RETURN YAIUES

A nonnegative value irrdicates success: 0 if the file descriptor wasn't associated u.i th a win,:low
before the call, the old window ID otherwise. On err<>r. -l is returned,and errno is st,r,.

o


