INTRO (4)

NAME
intro — introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C struct declarations for the file formats
are given where applicable. Usually, these structures can be found in the directories
/usr/include or /usr/include/sys.

A.OUT(4)

NAME
a.out ~ common assembler and link editor output

DESCRIPTION
The file name a.out is the output file from the assembler as(1) and the link editor /4(1). Both

programs will make a.out executable if there were no errors in assembling or linking and no
unresolved external references.

A common object file consists of a file header, an operating system header, a table of section
headers, relocation information, (optional) line numbers, and a symbol table. The order is glven
below.

File header.
Operating System header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table.

The last four sections (relocation, line numbers, symbol table and string table) may be missing if
the program was linked with the —s option of /d(1) or if the symbol table and relocation bits were
removed by strip(1). Also note that if there were no unresolved external references after lin king,
the relocation information will be absent. The string table exists only if necessary.

The sizes of each segment (contained in the header, discussed below) are in bytes and are even.

When an a.out file is loaded into memory for execution, three logical segments are set up: the
text segment, the data segment (initialized data followed by uninitialized, the latter actually
being initialized to all 0’s), and a stack. The text segment begins at location 0 in the core image.
The header is never loaded. If the magic number (the first field in the operating system header) is
407 (octal), it indicates that the text segment is not to be write-protected or shared, so the data
segment will be contiguous with the text segment. If the magic nuraber is 410 (octal), the data
segment and the text segment are not writable by the program; if other processes are executing
the same a.out file, the processes will share a single text segment. Magic number 413 (octal) is
the same as 410 (octal), except that 413 (octal) permits demand paging.

The stack begins at the end of memory and grows towards lower addresses. The stack is

automatically extended as required. The data segment is extended only as requested by the
brk(2) system call.

The value of a word in the text or data portions that is not a reference to an undefined external
symbol is exactly the value that will appear in memory when the file is executed. If a word in the
text involves a reference to an undefined external symbol, the storage class of the symbol-table
entry for that word will be marked as an “‘external symbol”, and the section number will be set
to 0. When the file is processed by the link editor and the external symbol becomes defined, the

A.OUT(4)

value of the symbol will be added to the word in the file.

File Header

The format of the filehdr header is

struct filehdr

{
unsigned short
unsigned short
long
long
long

f_magic;
f_nscns;
f_timdat;
f_symptr;
f_nsyms;

/* magic number */

/* number of sections */
/* time and date stamp */
/* file ptr to symtab */

/* # symtab entries */

unsigned short f_opthdr; /* sizeof(opt hdr) */

unsigned short
b

Operating System Header

f_flags;

/* flags */

The format of the operating system header is

- typedef struct aouthdr

{

short magic;

short vstamp;

long tsize;

long dsize;

long bsize;

long entry;
long text_start;

long data_start;

— } AOUTHDR;

Section Header

The format of the section header is

struct scnhdr
{
char
long
long
. long
long
long
long
unsigned short
unsigned short
long

/* magic number */

/* version stamp */

/* text size in bytes, padded */

/* initialized data (.data) */

/* uninitialized data (.bss) */

/* entry point */

/* base of text used for this file */
/* base of data used for this file */

s_name[SYMNMLEN];/* section name */

s_paddr;
s_vaddr;
s_slize;
s_scnptr;
s_relptr;
s_lnnoptr;
s_nreloc;
s_nlnno;
s_flags;

/* physical address */

/* virtual address */

/* section size */

/* file ptr to raw data */

/* file ptr to relocation */

/* file ptr to line numbers */
/* # reloc entries */

/* # line number entries */
/* flags */

A.OUT(4)

Relocation
Object files have one relocation entry for each relocatable reference in the text or data. If reloca-
tion information is present, it will be in the following format:

struct reloc

{

long r_vaddr; /* (virtual) address of reference */
long r_symndx; /* index into symbol table */
short r_type; /* relocation type */

b
The start of the relocation information is s_relptr from the Section Header. If there is no reloca-

tion information, s_relptr is 0.

Symbol Table
The format of the symbol table header is

#define SYMNMLEN 8
#define FILNMLEN 14
#define SYMESZ 18 /* the size of a SYMENT */

struct syment

{

union /* all ways to get a symbol name */
{
char -n_name[SYMNMLEN]; /* name of symbol */
struct
{
long _n_zeroes; /* === OL if in string table */
long _n_offset; /* location in string table */
} _n_n;
char *_n_nptr(2]; /* allows overlaying */
}-n;
unsigned long n_value; /* value of symbol */
short n_scnum; /* section number */
unsigned short n_type; /* type and derived type */
char n_sclass; /* storage class */
char n_numaux; /* number of aux entries */
5
#£define n_name _D._Dn_name
#define n_zeroes _D._N_Nn._n_zeroes
#define n_offset _n._n_n._n_offset
#define n_nptr _n._n_nptr{l]

Some symbols require more information than a single entry; they are followed by auzidiary entries
that are the same size as a symbol entry. The format follows.

AOUT(4)

union auxent {

struct {
long x_tagndx;
union {
struct {
unsigned short x_lnno;
unsigned short x_size;
} x_lnsz;
long x_fsize;
} x_misc;
union {
struct {
long x_lnnoptr;
long x_endndx;
} x_fen;
struct {
unsigned short x_dimen[DIMNUM];
} x_ary;
} x_fenary;
unsigned short x_tvndx;
} x_sym;
struct {
char x_fname[FILNMLEN};
} x_file;
struct {
long x_scnlen;

unsigned short x_nreloc;
unsigned short x_nlinno;
} x_sen;

struct {
long x_tvfill;
unsigned short x_tvlen;
unsigned short x_tvran[2};
} x_tv;
b
Indexes of symbol table entries begin at zero. The start of the symbol table is f_symptr (from the
file header) bytes from the beginning of the file. If the symbol table is stripped, f_symptr is O.
The string table (if one exists) begins at f_symptr + (f_nsyms * SYMESZ) bytes from the begin-
ning of the file.

SEE ALSO
as(1), cc(1), 1d(1), brk(2), filehdr(4), ldfcn(4), linenum(4), reloc(4), scnhdr(4), syms(4).

ACCT(4)

NAME
acct — per-process accounting file format

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION
Files produced as a result of calling acct(2) have records in the form defined by <sys/acct.h™>,
whose contents are:

typedef ushort comp_t; /* "floating point” */
/* 13-bit fraction, 3-bit exponent */

struct acct

{
char ac_flag; /* Accounting flag */
char ac_stat; /* Exit status */
ushort ac_uid;
ushort ac_gid;
dev_t ac_tty;

time_t ac_ktime; /* Beginning time */

comp_t ac_utime; /* acctng user time in clock ticks */
comp_t ac_stime; /* acctng system time in clock ticks */
comp_t ac_etime; /* acctng elapsed time in clock ticks */
comp_t ac_mem; /* memory usage in clicks */

comp_t ac_io; /* chars trnsfrd by read/write */

comp_t ac_rw; number of block reads/writes */

char ac_comm(8]; /* command name */
};
extern struct acct acctbuf;
extern struct inode *acctp; /* inode of accounting file */
#define AFORK 01 /* has executed fork, but no exec */
#define ASU 02 /* used super-user privileges */
#define ACCTF 0300 /* record type: 00 = acct */

In ac_flag, the AFORK flag is turned on by each fork(2) and turned off by an ezec(2). The
ac_comm field is inherited from the parent process and is reset by any ezec. Each time the sys-
tem charges the process with a clock tick, it also adds to ac_mem the resident-set size, defined as
the total number of pages in memory. Note that this differs from the UNIX System V formula,
which is based on the current process size; such a formula is inappropriate to a paging environ-
ment.

ACCT(4)

The structure tacct.h, which resides with the source files of the accounting commands, represents
the total accounting format used by the various accounting commands:

/*

* total accounting (for acct period), also for day

*/

struct tacct {

uid_t ta_uid; /* userid */

char ta_name([8]; /* login name */

float ta_cpu[2]; /* cum. cpu time, p/np (mins) */
float ta_kcore(2]; /* cum kcore-minutes, p/np */

float ta_con[2]; /* cum. connect time, p/np, mins */
float ta_du; /* cum. disk usage */

long ta_pc; /* count of processes */

unsigned short ta_sc;

unsigned short ta_de;

unsigned short ta_fee;
b

SEE ALSO

/* count of login sessions */
/* count of disk samples * /
/* fee for special services */

acct(1M), acctcom(1), acct(2), exec(2), fork(2).

BUGS

The ac_mem value for a short-lived command gives little information about the actual size of the

command, because ac_mem ma

being executed by the process.

Yy be incremented while a different command (e.g., the shell) is

AR(4)

NAME
ar — common archive file format

DESCRIPTION
The archive command ar is used to combine several files into one. Archives are used mainly as
libraries to be searched by the link editor {d(1).

Each archive begins with an archive file header which is made up of the following ccmponents:

#define ARMAG Y <ar>”
#define SARMAG 4

struct ar_hdr { /* archive header */
char ar_magic[SARMAG]; /* magic number */
char ar_name|[16]; /* archive name */
char ar_date[4]; /* date of last archive modification */
char ar_syms{4]; /* number of ar_sym entries */

k

Each archive which contains common object files (see a.out(4)) includes an archive symbol table.
This symbol table is used by the link editor {d(1) to determine which archive members must be
loaded during the link edit process. The archive file header described above is followed by a
number of symbol table entries. The number of symbol table entries is indicated in the ar_syms
variable. Each symbol table entry has the following format:

struct ar_sym { /* archive symbol table entry */
char sym_name[8]; /* symbol name, recognized by 1d */
char sym_ptr{4]; /* archive position of symbol */

};

The archive symbol table is automatically created and/or updated by the ar(1) command.

Following the archive header and symbol table are the archive file members. Each file member is
preceded by a file member header which is of the following format:

struct arf_hdr { /* archive file member header */
char arf_name[16]; /* file member name */
char arf_date[4]; /* file member date */
char arf_uid[4]; /* file member user identification */
char arf_gid[4); /* file member group identification */
char arf_mode[4]; /* file member mode */
char arf_size[4]; /* file member size */

};

All information in the archive header, symbol table and file member headers is stored in a
machine independent fashion. All character data is automatically portable. The numeric infor-
mation contained in the headers is also stored in a machine independent fashion. All numeric
data is stored as four bytes and is accessed by the special archive I/O functions described in
sputl(3X) functions of the libid.a library. Common format archives can be moved from system to
system as long as the portable archive command ar(1) is used.

Each archive file member begins on a word boundary; a null byte is inserted between files if
necessary. Nevertheless the size given reflects the actual size of the file exclusive of padding.

AR(4)

Notice there is no provision for empty areas in an archive file.

SEE ALSO
ar(1), 1d(1), sputl(3X).

BUGS
Strip(1) will remove all archive symbol entries from the header. The archive symbol entries must
be restored via the s option of the ar(1) command before the archive can be used with the link
editor ld(1).

CHECKLIST (4)

NAME
checklist — list of file systems processed by fsck
DESCRIPTION
Checklist resides in directory /etc and contains a list of at most 15 spectal file names. Each spe-

ctal file name is contained on a separate line and corresponds to a file system. Each file system
will then be automatically processed by the fsck(1M) command.

SEE ALSO
fsck(1M).

NAME

CORE (4)

core — format of core image file

DESCRIPTION

The operating system writes out a core image of a terminated process when any of various errors occur. See sig-

nal(2) for the list of reasons; the most common are memory violations, illegal instructions, bus

errors, and user-generated quit signals. The core image is called core and is written in the
process’s working directory (provided it can be; normal access controls apply). A process with an
effective user ID different from the real user ID will not produce a core image.

The first section of the core image is a copy of the system’s per-user data for the process, includ-
ing the registers as they were at the time of the fault. The size of this section depends on the
parameter usize, which is defined in /usr/include/sys/param.h. The remainder represents the
actual contents of the user’s core area when the core image was written. If the text segment is
read-only and shared, or separated from data space, it is not dumped.

The format of the information in the first section is described by the user structure of the system,
defined in /usr/include/sys/user.h. The important stuff not detailed therein is the locations
of the registers, which are outlined in /usr/include/sys/reg.h.

SEE ALSO

crash(1M), setuid(2), signal(2).

CPIO(4)

NAME
cpio — format of cpio archive
DESCRIPTION
The header structure, when the —c option of ¢pio(1) is not used, is:
struct {
short h_magic,
h_dev;
ushort h_ino,
h_mode,
h_uid,
h_gid;
short h_nlink,
h_rdev,
h_mtime|2],
h_namesize,
h_filesize[2];
char h_name[h_namesize rounded to word];
} Hdr,

When the —c option is used, the header information is described by:

sscanf(Chdr,” %60%60%60%60%60%60%60%60%1110%60%1110%s”
&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,
&Longtime, &Hdr.h_namesize,&Longfile, Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_filesize, respectively. The con-
tents of each file are recorded in an element of the array of varying length structures, archive,
together with other items describing the file. Every instance of h_magic contains the constant
070707 (octal). The items h_dev through h_mtime have meanings explained in stat(2). The
length of the null-terminated path name h_name, including the null byte, is given by h_namesize.

The last record of the archive always contains the name TRAILER!!. Special files, directories, and
the trailer are recorded with A_filesize equal to zero.

In PILF files, h_rdev contains the cluster size exponent. This should not cause any portability
problems, as h_rdev is otherwise ignored, except for device special files.

SEE ALSO
cpio(1), find(1), stat(2), pilf(5).

DIR(4)

NAME
dir - format of directories

SYNOPSIS
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry (see
fs(4)). The structure of a directory entry as given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ14
#endif
struct direct
{
ino_t d_ino;
char d_name[DIRSIZ];
I
By convention, the first two entries in each directory are for . and ... The first is an entry for
the directory itself. The second is for the parent directory. The meaning of . . is modified for the
root directory of the master file system; there is no parent, so . . has the same meaning as ..

SEE ALSO

fs(4).

NAME

ERRFILE (4) (System 6300 Only)

errfile - error-log file format

DESCRIPTION

When hardware errors are detected by the system, an error record is generated and passed to the

error-logging daemon for recording in the error log for later analysis. The default error log s
/usr/adm/errfile.

The format of an error record depends on the type of error that was encountered. Every record,
however, has a header with the following format:

struct errhdr {

short e_type; /* record type */
short e_len; /* bytes in record (inc hdr) */
time_t e_time; /* time of day */

};

The permissible record types are as follows:

#define E_GOTS 010 /* start */

#define E_STOP 012 /* stop */

#define E_TCHG 013 /* time change */
#define E_CCHG 014 /* configuration change */
#define E_BLK 020 /* block device error */
#define E_STRAY 030 /* stray interrupt */
#define E_PRTY 031 /* memory parity */
#define E_CONS 040 /* console string */
#define E_CONR 041 /* console record */
#define E_.CONO 042 /* console overflow */

Some records in the error file are of an administrative nature. These include the startup record
that is entered into the file when logging is activated, the stop record that is written if the dae-
mon is terminated ‘“gracefully’’, and the time-change record that is used to account for changes in
the system’s time-of-day. These records have the following formats:

struct estart {

short e_cpu; /* CPU type */
struct utsname e_name; /* system names */
short e_mmr3; /* boot reason from CDT */
long e_syssize; /* system memory size */
int e_lhole; /* 64K chunks of memory omitted */
short e_bconf; /* block dev configuration */
char e_panic; /* if reboot from panic, what was it */
int e_mmcnt; /* kbytes per array */
#endif

};
#define eend errhdr /* record header */

struct etimchg {
time_t e_ntime; /* new time */

Stray interrupts cause & record with the following format to be logged:

struct estray {
physadr e_saddr; /* stray loc or device addr */
short e_sbacty; /* active block devices */

3

ERRFILE(4) (System 6300 Only)

Memory subsystem error causes the following record to be generated:

struct eparity {
ushort e_gsT; /* general status register */
ushort e_pte; /* pte for VAD in BSR */
b
Error records for block devices have the following format:
struct eblock {

dev_t e_dev; /* ”true” major + minor dev no */
physadr e_regloc; /* controller address */
short e_bacty; /* other block /0 activity */
struct iostat {
long io_ops; /* number read/writes */
long io_misc; /* number "other” operations */
ushort io_unlog; /* number unlogged errors */
} e_stats;
short e_bflags; /* read/write, error, etc */
short e_trkoff; /* logical dev start trk */
daddr_t e_bnum; /* logical block number */
ushort e_bytes; /* number bytes to transfer */
paddr_t e_memadd; /* buffer memory address */
ushort e_rtry; /* number retries */
short e_nreg; /* number device registers */
short e_trks /* number of heads */
short e_secs /* number of physical sectors per track */

b

The following values are used in the e_bflags word:

#define E_WRITE 0 /* write operation */
#define E_READ 1 /* read operation */
#define E_NOIO 02 /* no 1/0 pending */
#define E_PHYS 04 /* physical 1/O */
#define E_MAP 010 /* Unibus map in use */
#define E_ERROR 020 /* 1/0 failed */

The error types CONS and CONO are flagged by errdemon(1M) and errdead and written to the
console log /etc/log/ confile.

A bus fault generates the following record.
struct ebusflt {
short e_type; /* kind of fault */
ushort e_gsr;

uint e_bsr; /* combined bsrO and bsrl */
ushort e_pre; /* page frame of fault */
ushort e_pid; /* pid */

uint e_pc; /* PC at time of fault */
uint e_rps; /* RPS at time of fault */

uint e_regs(16]; /* all the registers */

SEE ALSO

ERRFILE(4) (System 6300 Only)

errdemon(1M).

FILES
/usr/include/sys/erec.h
/ete/log/confile
/usr/adm/errfile

FILEHDR (4)

NAME

filehdr — file header for common object files
SYNOPSIS

#include <filehdr.h>
DESCRIPTION

Every common object file begins with a 20-byte header. The following C struct declaration is
used:

struct filehdr

{
unsigned short f_magic ; /* magic number */
unsigned short f_nsecns; /* number of sections £
long f_timdat ; /* time & date stamp */
long {_symptr ; /* file ptr to symtab */
long f_nsyms; /* # symtab entries * /
unsigned short f_opthdr ; /* sizeof(opt hdr) */
unsigned short f_flags ; /* flags */

b

F_symptr is the byte offset into the file at which the symbol table can be found. Its value can be
used as the offset in fseek(3S) to position an 1/O stream to the symbol table. The operating sys-
term optional header is always 36 bytes. The valid magic numbers are given below. The first

three apply to a System 6600 Application Processor.

#define MC6SKWRMAGIC 0520 /* writeable text segments */
#define MC6SKROMAGIC 0521 /* readonly shareable text segments */
##define MC6SKPGMAGIC 0522 /* demand paged text segments */

#define N3BMAGIC 0550 /* 3B20S */
#define NTVMAGIC 0551 /* 3B20S */

#define VAXWRMAGIC 0570 /* VAX writable text segments */
#define VAXROMAGIC 0575 /* VAX readonly sharable text segments */

The value in f_timdat is obtained from the time (2) system call. Flag bits currently defined are:

#define F_RELFLG 00001 /* relocation entries stripped * /
ffdefine F_EXEC 00002 /* file is executable */

#fdefine F_LNNO 00004 /* line numbers stripped * /
#define F_LSYMS 00010 /* local symbols stripped * /
#define F_MINMAL 00020 /* minimal object file */
#define F_UPDATE 00040 /* update file, ogen produced * /
##define F_SWABD 00100 /* file is ” pre-swabbed” */
ftdefine F_ARI6WR 00200 /* 16 bit DEC host */

#tdefine F_AR32WR 00400 /* 32 bit DEC host */

#define F_AR32W 01000 /* non-DEC host, including System 6600 */
#define F_PATCH 02000 /* "patch” list in opt hdr *]

SEE ALSO
time(2), fseek(3S), a.out(4).

NAME
fs — format of file system

SYNOPSIS
#include <sys/filsys.h>
#include <sys/types.h>
#include <sys/param.h>

DESCRIPTION

FS(4)

Every file system has a common format for certain vital information. Every such file system is
divided into a certain number of 512-byte long sectors. Sector 0 is unused and is available to con-
tain a bootstrap program or other information.

Sector 1 is the super-block. The format of a super-block is:

/*
* Structure of the super-block
¥/

struct filsys

{

ushort s_lsize;

daddr_t s_fsize;

short s_nfree;

daddr_t s_free[NICFREE];
short s_ninode;

ino_t s_inode[NICINOD};
char s_flock;

char s_ilock;
char s_fmod;
char s_ronly;
time_t s_time;
short s_dinfo[4];
daddr_t s_tfree;
ino_t s_tinode;
char s_fname[6];
char s_fpack[6];
long s_fill[11};
short s_dummy;
short s_cluster;
long s_bitsize;
long s_magic;
long s_type;

}s
#define FsMAGIC 0xfd187¢20

#define Fsib 1
#define Fs2b 2
#define FsPILF 0x10000

/* size in blocks of i-list */

/* size in blocks of entire file system */
/* number of addresses in s_free */

/* free block list */

/* number of i-nodes in s_inode */

/* free i-node list */

/* lock during free list manipulation */
/* lock during i-list manipulation */

/* super block modified flag */

/* mounted read-only flag */

/* last super block update */

/* device information */

/* total free blocks*/

/* total free i-nodes */

/* file system name */

/* file system pack name */

/* ADJUST to make sizeof filsys be 512 */
/* reserved for future use */

/* cluster size (PILF only) */

/* size of free block bit map */

/* magic number to indicate new file system */
/* type of new file system */

/* s_magic number */
/* 512 byte block */

/* 1024 byte block */
/* PILF file system */

The operating system recognizes three kinds of file systems, specified by s type:

. Oriented to 512-byte I/O. Identified by an s_type equal to Fslb. This type is also
assumed if s_magic is not equal to FsMAGIC. (This type was originally the only type
supported by UNIX Systems; the operating system does not currently support this type.)

) Oriented to 1024-byte I/O. Identified by an s_type equal to Fs2b. This is essentially the
standard file system for the operating system and UNIX System V.

FS(4)

° PILF (Performance Improvement In Large Files) file system. Identified by an s_type
equal to FsPILF. A PILF file system can be used like a standard file system, but is sub-
stantially more efficient when used with direct cluster I/O (see pilf(5)).

In the following description, the size of a logical block is determined by the file system type. For
the original 512-byte oriented file system, a block is 512 bytes. For the 1024-byte oriented file
system and the PILF file system, a block is 1024 bytes or two sectors. The operating system
takes care of all conversions from logical block numbers to physical sector numbers.

S_isize is the address of the first data block after the i-list; the i-list starts just after the super-
block, namely in block 2; thus the i-list is s_isize—2 blocks long. S_fsize is the first block not
potentially available for allocation to a file. These numbers are used by the system to check for
bad block numbers; if an “impossible’ block number is allocated from the free list or is freed, a
diagnostic is written on the on-line console. Moreover, the free array is cleared, so as to prevent
further allocation from a presumably corrupted free list.

The free list is provided on 512-byte and 1024-byte file systems, but not on PILF file systems. It
is maintained as follows. The s_free array contains, in s_free[l], .. ., s_free[s_nfree—1], up to 49
numbers of free blocks. S_free[0] is the block number of the head of a chain of blocks constitut-
ing the free list. The first long in each free-chain block is the number (up to 50) of free-block
numbers listed in the next 50 longs of this chain member. The first of these 50 blocks is the link
to the next member of the chain. To allocate a block: decrement s_nfree, and the new block is
s_free[s_nfree]. If the new block number is 0, there are no blocks left, so give an error. If
s_nfree became 0, read in the block named by the new block number, replace s_nfree by its first
word, and copy the block numbers in the next 50 longs into the s_free array. To free a block,
check if s_nfree is 50; if so, copy s_nfree and the s_free array into it, write it out, and set
s_nfree to 0. In any event set s_free[s_nfree| to the freed block’s number and increment s_nfree.

S_tfree is the total free blocks available in the file system.

S_ninode is the number of free i-numbers in the s_tnode array. To allocate an i-node: if
s_ninode is greater than 0, decrement it and return s_tnode [s_ninode]. If it was O, read the i-list
and place the numbers of all free i-nodes (up to 100) into the s_inode array, then try again. To
free an i-node, provided s_ninode is less than 100, place its number into s_snode [s_ninode] and
increment s_ninode. If s_ninode is already 100, do not bother to enter the freed i-node into any
table. This list of i-nodes is only to speed up the allocation process; the information as to
whether the i-node is really free or not is maintained in the i-node itself.

S_tinode is the total free i-nodes available in the file system.

S_flock and s_dlock are flags maintained in the core copy of the file system while it is mounted
and their values on disk are immaterial. The value of s_fmod on disk is likewise immaterial; it is
used as a flag to indicate that the super-block has changed and should be copied to the disk dur-
ing the next periodic update of file system information.

S_ronly is a read-only flag to indicate write-protection.

S_time is the last time the super-block of the file system was changed, and is the number of
seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT). During a reboot, the s_time of the
super-block for the root file system is used to set the system’s idea of the time.

S_fname is the name of the file system and s_fpack is the name of the pack.

On a PILF file system, s_cluster is the default cluster size exponent, used by a process that
creates a file on the file system without specifying a default cluster size (see syslocal(2)).

I-numbers begin at 1, and the storage for i-nodes begins in block 2. I-nodes are 64 bytes long. I-
node 1 is reserved for future use. I-node 2 is reserved for the root directory of the file system, but
no other i-number has a built-in meaning. Each i-node represents one file. For the format of an
i-node and its flags, see inode(4).

FS(4)

On a PILF file system, the bit map serves the function of the free list by showing which blocks -
are allocated to files. It is at the very end of the file system. S_bitsize is the number of blocks in
the bit map. Each bit in the bit map is 0 if the corresponding 1k data block is allocated to a file.
FILES
/usr/include/sys/filsys.h
/usr/include/sys/stat.h
SEE ALSO
fsck(1M), fsdb(1M), mkfs(1M), inode(4), pilf(5).
~
—

FSPEC(4)

NAME
fspec — format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on the operating system with non-standard tabs, (i.e., tabs with
are not set at every eighth column). Such files must generally be converted to a standard format,
frequently by replacing all tabs with the appropriate number of spaces, before they can be pro-
cessed by operating system commands. A format specification ocecurring in the first line of a text file specifies
how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and surrounded
by the brackets <: and :>. Each parameter consists of a keyletter, possibly followed immedi-
ately by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The value of tabs must be one
of the following:

1. alist of column numbers separated by commas, indicating tabs set at the speci-
fied columns;

2. a — followed immediately by an integer n, indicating tabs at intervals of n
columns;

3. a — followed by the name of a ‘“‘canned’ tab specification.

Standard tabs are specified by t-8, or equivalently, t1,9,17,25,etc. The canned tabs
which are recognized are defined by the tabs(1) command.

8size The s parameter specifies a maximum line size. The value of size must be an
integer. Size checking is performed after tabs have been expanded, but before the
margin is prepended.

mmargin The m parameter specifies a number of spaces to be prepended to each line. The
value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the line containing the
format specification is to be deleted from the converted file.

e The e parameter takes no value. Its presence indicates that the current format is to
prevail only until another format specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are t-8 and mO. If the s parame-
ter is not specified, no size checking is performed. If the first line of a file does not contain a for-
mat specification, the above defaults are assumed for the entire file. The following is an example
of a line containing a format specification:

* <:t5,10,15 s72:> *

If a format specification can be disguised as a comment, it is not necessary to code the d parame-
ter.

Several operating system commands correctly interpret the format specification for a file.

SEE ALSO
ed(1), newform(1), tabs(1).

NAME

GETTYDEFS (4)

gettydefs — speed and terminal settings used by getty

DESCRIPTION

FILES

The /etc/gettydefs file contains information used by getty(IM) to set up the speed and terminal
settings for a line. It supplies information on what the login prompt should look like. It also sup-
plies the speed to try next if the user indicates the current speed is not correct by typing a
< break> character.

Each entry in /etc/gettydefs has the following format:
label# initial-flags # final-flags # login-prompt #next-label

Each entry is followed by a blank line. The various fields can contain quoted characters of the
form \b, \n, \c, etc., as well as \nnn, where nnn is the octal value of the desired character. The
various fields are:

label This is the string against which getty tries to match its second argument. It is
often the speed, such as 1200, at which the terminal is supposed to run, but it
need not be (see below).

initial-flags These flags are the initial foct/(2) settings to which the terminal is to be set 1if a
terminal type is not specified to getty. The flags that getty understands are the
same as the ones listed in /usr/include/sys/termio.h (see termio(7)). Normally
only the speed flag is required in the initial-flags. Getty automatically sets the ter-
minal to raw input mode and takes care of most of the other flags. The initial-flag
settings remain in effect until getty executes login(1).

final-flags These flags take the same values as the wnitial-flags and are set just prior to getty
executes login. The speed flag is again required. The composite flag SANE takes
care of most of the other flags that need to be set so that the processor and termi-
nal are communicating in a rational fashion. The other two commonly specified
final-flags are TAB3, so that tabs are sent to the terminal as spaces, and HUPCL,
so that the line is hung up on the final close.

login-prompt This entire field is printed as the login-prompt. Unlike the above fields where
white space is ignored (a space, tab or new-line), they are included in the login-
prompt field.

next-label If this entry does not specify the desired speed, indicated by the user typing a
<break> character, then getty will search for the entry with nezt-label as its label
field and set up the terminal for those settings. Usually, a series of speeds are
linked together in this fashion, into a closed set; for instance, 2400 linked to
1200, which in turn is linked to 300, which finally is linked to 2400.

If getty is called without a second argument, then the first entry of /ete/gettydefs is used, thus
making the first entry of /etc/gettydefs the default entry. It is also used if getty can not find
the specified label. If /etc/gettydefs itself is missing, there is one entry built into the command
which will bring up a terminal at 9600 baud.

It is strongly recommended that after making or modifying /etc/gettydefs, it be run through
getty with the check option to be sure there are no errors,

/ete/gettydefs

SEE ALSO

getty(1IM), login(1), ioctl(2), termio(7).

GROUP (4)

NAME
group — group file
DESCRIPTION
Group contains for each group the following information:

group name
encrypted password

numerical group ID

comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each group is separated from the next by
a new-line. If the password field is null, no password is demanded.

This file resides in directory /ete. Because of the encrypted passwords, it can and does have gen-
eral read permission and can be used, for example, to map numerical group ID’s to names.

FILES
/etc/group

SEE ALSO
newgrp(1), passwd(1), crypt(3C), passwd(4).

NAME

INITTAB(4)

inittab — script for the init process

DESCRIPTION

The inittab file supplies the script to init’s role as a general process dispatcher. Cn System 6600
systems, a separate inittab is required for each processor; the last two characters of the name are
the processor number. The process that constitutes the majority of init’s process dispatching
activities is the line process /etec/getty that initiates individual terminal lines. Other processes
typically dispatched by init are daemons and the shell.

The tnittab file is composed of entries that are position dependent and have the follewing format:
id:rstate:action:process

Each entry is delimited by a newline, however, a backslash (\) preceding a newline indicates a
continuation of the entry. Up to 512 characters per entry are permitted. Comments may be
inserted in the process field using the sh(1) convention for comments. Comments for lines that
spawn gettys are displayed by the who(1) command. It is expected that they will contain some
information about the line such as the location. There are no limits (other than maximum entry
size) imposed on the number of entries within the tnittab file. The entry fields are:

id This is one to four characters used to uniquely identify an entry.

rstate This defines the run-level in which this entry is to be processed. Run-levels effectively
correspond to a configuration of processes in the system. That is, each process spawned
by init is assigned a run-level or run-levels in which it is allowed to exist. The run-levels
are represented by a number ranging from 0 through 8. As an example, if the system is
in run-level 1, only those entries having a 1 in the rstate field will be processed. When
init is requested to change run-levels, all processes which do not have an entry in the
rstate field for the target run-level will be sent the warning signal (SIGTERM) and
allowed a 20-second grace period before being forcibly terminated by a kill signal (SIG-
KILL). The rstate field can define multiple run-levels for a process by selecting more
than one run-level in any combination from 0-8. If no run-level is specified, then the
process is assumed to be valid at all run-levels 0—8. There are three other values, a, b
and ¢, which can appear in the rstate field, even though they are not true run-levels.
Entries which have these characters in the rstate field are processed only when the telinit
(see init(1M)) process requests them to be run (regardless of the current run-level of the
system). They differ from run-levels in that init can never enter run-level a, b or c.
Also, a request for the execution of any of these processes does not change the current
run-level. Furthermore, a process started by an a, b or ¢ command is not killed when
intt changes levels. They are only killed if their line in /ete/inittab is marked off in
the action field, their line is deleted entirely from /etc/inittab, or ¢nit goes into the
SINGLE USER state.

action Key words in this field tell init how to treat the process specified in the process field.
The actions recognized by tnit are as follows:

respawn If the process does not exist then start the process, do not wait for its ter-
mination (continue scanning the tnitteb file), and when it dies restart the
process. If the process currently exists then do nothing and continue scan-
ning the inittab file.

wait Upon init’s entering the run-level that matches the entry’s rstate, start
the process and wait for its termination. All subsequent reads of the init-
tab file while nit is in the same run-level will cause init to ignore this
entry.

once Upon init’s entering a run-level that matches the entry’s rstate, start the
process, do not wait for its termination. When it dies, do not restart the
process. If upon entering a new run-level, where the process is still

pProcess

FILES

boot

bootwait

powerfail

powerwait

off

ondemand

initdefault

sysinit

INITTAB(4)

running from a previous run-level change, the program will not be res-
tarted.

The entry is to be processed only at init’s boot-time read of the inittab
file. Init is to start the process, not wait for its termination, and when 1t
dies, not restart the process. In order for this instruction to be meaning-
ful, the rstate should be the default or it must match init’s run-level at
boot time. This action is useful for an initialization function following a
hardware reboot of the system.

The entry is to be processed only at init’s boot-time read of the inittab
file. Init is to start the process, wait for its termination and, when 1t dies,
not restart the process.

Execute the process associated with this entry only when init receives a
power fail signal (SIGPWR see signal(2)).

Execute the process associated with this entry only when init receives a
power fail signal (SIGPWR) and wait until it terminates before continuing
any processing of inittab.

If the process associated with this entry is currently running, send the
warning signal (SIGTERM) and wait 20 seconds before forcibly terminat-
ing the process via the kill signal (SIGKILL). If the process is nonexistent,
ignore the entry.

This instruction is really a synonym for the respawn action. It is func-
tionally identical to respawn but is given a different keyword in order to
divorce its association with run-levels. This is used only with the a, b or ¢
values described in the rstate field.

An entry with this action is only scanned when in:t initially invoked. In:t
uses this entry, if it exists, to determine which run-level to enter initially.
It does this by taking the highest run-level specified in the rstate field
and using that as its initial state. If the rstate field is empty, this is inter-
preted as 0123458 and so init will enter run-level 8. Also, the initde-
fault entry can use s to specify that ¢nit start in the SINGLE USER state.
Additionally, if init doesn’t find an initdefault entry in /ete/inittab,
then it will request an i~itial run-level from the user at reboot time.

Entries of this type are executed before init tries to access the console. It
is expected that this entry will be only used to initialize devices on which
init might try to ask the run-level question. These entries are executed
and waited for before continuing.

This is a sh command to be executed. The entire process field is prefixed with exec

and passed to a forked sh as sh —c¢

! exec command’ . For this reason, any legal sh

syntax can appear in the process field. Comments can be inserted with the ; #comment

syntax.

On System 6300: /etc/inittab
On System 6600: [etc/inittab??
(last two characters specify the Application Processor)

SEE ALSO

getty(1M), init(1M), sh(1), who(1), exec(2), open(2), signal(2).

INODE (4)

NAME
inode — format of an i-node

SYNOPSIS
#include <sys/types.h>
#include <sys/ino.h>

DESCRIPTION
An i-node for a plain file or directory in a file system has the following structure defined by
<sys/ino.h>.

/* Inode structure as it appears on a disk block. */
struct dinode
{
ushort di_mode; /* mode and type of file */
short di_nlink; /* number of links to file */

ushort di_uid; /* owner’s user id */

ushort di_gid; /* owner’s group id */

off_t di_size; /* number of bytes in file */

char di_addr(39]; /* disk block addresses */

char di_cl; /* cluster size exponent (PILF only) */
time_t di_atime; /* time last accessed */

time_t di_mtime; /* time last modified */

time_t di_ctime; /* time of last file status change */

b
/*
* the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.

*/
For the meaning of the defined types off t and time_t see types(5).
In a PILF file, addresses are organized as in a standard 1K file system, with identical use of blocks
of additional addresses. But data addresses do not point to individual 1K blocks; instead, each
points to the first block of a contiguous cluster of blocks, each of which is 2" 1K blocks long,
where n is the value in the di_c! field.

FILES
/usr/include/sys/ino.h

SEE ALSO
stat(2), fs(4), pilf(5), types(5).

ISSUE(4)

NAME
1ssue — issue identification file
DESCRIPTION
The file /etc/issue contains the issue or project identification to be printed as a login prompt.

This is an ASCII file which is read by program gefty and then written to any terminal spawned or
respawned from the lines file.

FILES
/etc/issue

SEE ALSO
login(1).

LDFCN (4)

ldfen — common object file access routines

SYNOPSIS

#include <stdio.h>>
#include <filehdr.h>
#include <ldfen.h>>

DESCRIPTION

The common object file access routines are a collection of functions for reading an cbject file that
is in common object file form. Although the calling program must know the detailed structure of
the parts of the object file that it processes, the routines effectively insulate the calling program
from knowledge of the overall structure of the object file.

The interface between the calling program and the object file access routines is based on the
defined type LDFILE, defined as struct ldfile, declared in the header file ldfen.h. The primary
purpose of this structure is to provide uniform access to both simple object files and to object files
that are members of an archive file.

The function ldopen(3X) allocates and initializes the LDFILE structure and returns a pointer to
the structure to the calling program. The fields of the LDFILE structure may be accessed indivi-
dually through macros defined in ldfen.h and contain the following information:

LDFILE *ldptr;
TYPE(ldptr) The file magic number, used to distinguish between archive members and simple

object files.

OPTR(ldptr) The file pointer returned by fopen and used by the standard input/output func-
tions.

OFFSET(ldptr) The file address of the beginning of the object file; the offset is non-zero if the
object, file is a member of an archive file.

HEADER(ldptr) The file header structure of the object file.
The object file access functions themselves may be divided into four categories:
(1) functions that open or close an object file

ldopen(3X) and ldeopen

open a common object file
ldclose(3X) and ldaclose

close a common object file

(2) functions that read header or symbol table information

ldahread(3X)

read the archive header of a member of an archive file
ldfhread(3X)

read the file header of a common object file
ldshread(3X) and ldnshread

read a section header of a common object file
ldtbread(3X)

read a symbol table entry of a common object file

(3) functions that position an object file at (seek to) the start of the section, relocation,
or line number information for a particular section.
ldohseek(3X)

seek to the optional file header of a common object file
ldsseek(3X) and ldnsseek

LDFCN(4)

seek to a section of a common object file
ldrseek(3X) and ldnrseek

seek to the relocation information for a section of a common object file
ldiseek(3X) and ldniseek

seek to the line number information for a section of a common object file
ldtbseek(3X)

seek to the symbol table of a common object file

(4) the function Idthindez(3X) which returns the index of a particular common object file
symbol table entry

These functions are described in detail in their respective manual pages.

All the functions except ldopen, ldaopen and Idtbinder return either SUCCESS or FAILURE,
both constants defined in ldfen.h. Ldopen and [daopen both return pointers to a LDFILE struc-
ture.

MACROS
Additional access to an object file is provided through a set of macros defined in ldfen.h. These

macros parallel the standard input/output file reading and manipulating functions, translating a
reference of the LDFILE structure into a reference to its file descriptor field.

The following macros are provided:
LDFILE*ldptr;

GETC(ldptr)

FGETC(ldptr)

GETW(ldptr)

UNGETC(c, ldptr)

FGETS(s, n, ldptr)
FREAD((char *) ptr, sizeof (*ptr), nitems, ldptr)
FSEEK(ldptr, offset, ptrname)
FTELL(ldptr)
REWIND(idptr)

FEOF(1dptr)

FERROR(ldptr)
FILENO(ldptr)

SETBUF (ldptr, buf)

See the manual entries for the corresponding standard input/output library functions for details
on the use of these macros.

The program must be loaded with the object file access routine library libld.a.

CAVEAT
The macro FSEEK defined in the header file ldfen.h translates into a call to the standard
input/output function fseek(3S). FSEEK should not be used to seek from the end of an archive
file since the end of an archive file may not be the same as the end of one of its object file
members!

SEE ALSO

fseek(3S), ldahread(3X), ldclose(3X), ldfhread(3X), Idlread(3X), Idlseek(3X), ldohseek(3X),
ldopen(3X), ldrseek(3X), ldlseek(3X), ldshread(3X), 1dtbindex(3X), ldtbread(3X), ldtbseek(3X).

LINENUM (4)

NAME
linenum - line number entries in a common object file
SYNOPSIS
#include <linenum.h>
DESCRIPTION
Compilers based on pce generate an entry in the object file for each C source lins on which a
breakpoint is possible (when invoked with the —g option; see cc(1)). Users can then reference line
numbers when using the appropriate software test system. The structure of these line number
entries appears below.
struct lineno
{
union
{
long l_symndx ;
long I_paddr ;
} _addr ;
unsigned short 1_lnno ;
|
Numbering starts with one for each function. The initial line number entry for a function has
{_Inno equal to zero, and the symbol table index of the function’s entry is in [_symndr. Other-
wise, [_Inno is non-zero, and !_paddr is the physical address of the code for the referenced line.
Thus the overall structure is the following:
l_addr [_Inno
function symtab index 0
physical address line
physical address line
function symtab index 0
physical address line
physical address line
SEE ALSO

cc(1), a.out(4).

MASTER (4)

NAME
master — master device information table

DESCRIPTION

This file is used by the config(1M) program to obtain device information that enables it to gen-
erate the configuration files. Do not modify it unless you fully understand its construction. The
file consists of 3 parts, each separated by a line with a dollar sign ($) in column 1. Part 1 con-
tains device information; part 2 contains names of devices that have aliases; part 3 contains tun-
able parameter information. Any line with an asterisk (*) in column 1 is treated as a comment.

Part 1 contains lines consisting of 6 or 7 fields, with the fields delimited by tabs and/or blanks:

Field 1: device name (8 chars. maximum).
Field 2: device mask (octal)-each “on” bit indicates that the handler exists:
000100 initialization handler
000040 power-failure handler
000020 open handler
000010 close handler
000004 read handler
000002 write handler
000001 ioctl handler.
Field 3: device type indicator (octal):
000200 allow only one of these devices
000100 suppress count field in the conf.c file
000040 suppress interrupt vector
000020 required device
000010 block device
000004 character device
000002 floating vector
000001 fixed vector.

Field 4: handler prefix (4 chars. maximum).
Field 5: major device number for block-type device.
Field 6: major device number for character-type device.
Field 7: (optional) maximum serial devices on system.
Part 2 contains lines with 2 fields each:
Field 1: alias name of device (8 chars. maximum).
Field 2: reference name of device (8 chars. maximum; specified in part 1).

Part 3 contains lines with 2 or 3 fields each:

Field 1: parameter name (as it appears in description file; 20 chars. maximum)
Field 2: parameter name (as it appears in the conf.c file; 20 chars. maximum)
Field 3: default parameter value (20 chars. maximum; parameter specification is
required if this field is omitted)
SEE ALSO
config(1M).

MNTTAB(4)

NAME

mnttab — mounted file system table
SYNOPSIS

#include <mnttab.h>
DESCRIPTION

Mnttab resides in directory /ete and contains a table of devices, mounted by the mount(1M)
command, in the following structure as defined by <mnttab.h>:

struct mnttab {

char mt_dev[32];
char mt_filsys[32];
short mt_ro_flg;
time_t mt_time;

|
Each entry is 70 bytes in length; the first 32 bytes are the null-padded name of the place where
the special file is mounted; the next 32 bytes represent the null-padded root name of the mounted
special file; the remaining 6 bytes contain the mounted special file’s read/write permissions and
the date on which it was mounted.

The maximum number of entries in mnttab is based on the system parameter NMOUNT located
in /usr/src/uts/cf/conf.c, which defines the number of allowable mounted special files.

SEE ALSO
mount(1M), setmnt(1M).

NAME

PASSWD (4)

passwd — password file

DESCRIPTION

FILES

Passwd contains for each user the following information:

login name

encrypted password
numerical user ID

numerical group ID

a field with no standard use
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user’s entry is separated from the next by a colon.
The fifth field exists for historical reasons; it is often used to hold the user’s name and address.
Each user is separated from the next by a new-line. If the password field is null, no password is
demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory /ete. Because of the encrypted passwords, it can and does have gen-
eral read permission and can be used, for example, to map numerical user IDs to names.

The encrypted password consists of 13 characters chosen from a 64-character alphabet (., /, 0-9,
A-Z, a—g), except when the password is null, in which case the encrypted password is also null.
Password aging is effected for a particular user if his encrypted password in the password file is
followed by a comma and a non-null string of characters from the above alphabet. (Such a string
must be introduced in the first instance by the super-user.)

The first character of the age, M say, denotes the maximum number of weeks for which a pass-
word is valid. A user who attempts to login after his password has expired will be forced to sup-
ply a new one. The next character, m say, denotes the minimum period in weeks which must
expire before the password may be changed. The remaining characters define the week (counted
from the beginning of 1970) when the password was last changed. (A null string is equivalent to
zero.) M and m have numerical values in the range 0-63 that correspond to the 64-character
alphabet shown above (i.e. / = 1 week; & = 63 weeks). If m = M = 0 (derived from the string
. or ..) the user will be forced to change his password the next time he logs in (and the ‘“‘age” will
disappear from his entry in the password file). If m > M (signified, e.g., by the string ./) only
the super-user will be able to change the password.

/ete/passwd

SEE ALSO

login(1), passwd(1), a641(3C), crypt(3C), getpwent(3C), group(4).

PROFILE (4)

NAME
profile — setting up an environment at login time

DESCRIPTION
If your login directory contains a file named .profile, that file will be executed (via the shell’s
exec .profile) before your session begins; .profiles are handy for setting exported environment
variables and terminal modes. If the file /etc/profile exists, it will be executed for every user
before the .profile. The following example is typical (except for the comments):

Make some environment variables global

export MAIL PATH TERM

Set file creation mask

umask 22

Tell me when new mail comes in
MAIL==/usr/mail/myname

Add my /bin directory to the shell search sequence
PATH=$PATH:$HOME /bin

Set terminal type

export TERM

while true
do
echo ’terminal: \¢’
read TERM
if tset
then
break
fi
done
FILES
$HOME/ .profile
/ete/profile
SEE ALSO

tset(1), env(1), login(1), mail(1), sh(1), stty(1), su(1), environ(5), term(5).

RELOC(4)

NAME

reloc - relocation information for a common object file
SYNOPSIS

#include <reloc.h>
DESCRIPTION

Object files have one relocation entry for each relocatable reference in the text or data. If reloca-
tion information is present, it will be in the following format.

struct reloc

{

long r_vaddr; /* (virtual) address of reference */
long r_symndx ; /* index into symbol table */
short r_type ; /* relocation type */

}3

%

* All generics

X reloc. already performed to symbol in the same section
*/

#define R_ABS 0

/*

* 3B generic

¥ 24-bit direct reference
* 24-bit "relative” reference
* 16-bit optimized ”indirect” TV reference
* 24-bit "indirect” TV reference
* 32-bit "indirect” TV reference
*
/

#define R_DIR24 04
#define R_REL24 05
#define R_OPTI16 014
#define R_IND24 015
#define R_IND32 016

/*

* DEC Processors VAX 11/780 and VAX 11/750
* Also Motorola Processors 68000, 68010, and 68020

*
*/
#define R_RELBYTEO017

#define R_LRELWORD 020
#define R_RELLONG 021
#define R_PCRBYTE022

#define R_LPCRWORD 023
#define R_PCRLONG 024

As the link editor reads each input section and performs relocation, the relocation entries are
read. They direct how references found within the input section are treated.

R_ABS The reference is absolute, and no relocation is necessary. The entry will be ignored.

RELOC (4)

R_DIR24 A direct, 24-bit reference to a symbol’s virtual address.

R_REL24 A “PC-relative”, 24-bit reference to a symbol’s virtual address. Relative references
occur in instructions such as jumps and calls. The actual address used is obtained
by adding a constant to the value of the program counter at the time the instruc-
tion is executed.

R_OPT16 An optimized, indirect, 16-bit reference through a transfer vector. The instruction
contains the offset into the transfer vector table to the transfer vecror where the
actual address of the referenced word is stored.

R_IND24 An indirect, 24-bit reference through a transfer vector. The instruction contains the
virtual address of the transfer vector, where the actual address of the referenced
word 1s stored.

R_IND32 An indirect, 32-bit reference through a transfer vector. The instruction contains the
virtual address of the transfer vector, where the actual address of the referenced
word is stored.

R_RELBYTE A direct 8-bit reference to a symbol’s virtual address.

R_RELWORD
A direct 16-bit reference to a symbol’s virtual address.

R_RELLONG A direct 32-bit reference to a symbol’s virtual address.
R_PCRBYTE A “PC-relative’, 8-bit reference to a symbol’s virtual address.

R_PCRWORD
A “PC-relative”, 16-bit reference to a symbol’s virtual address.

R_PCRLONG A “PC-relative”, 32-bit reference to a symbol’s virtual address.

On the VAX processors relocation of a symbol index of -1 indicates that the relative difference
between the current segment’s start address and the program’s load address is added to the relo-
catable address.

Other relocation types will be defined as they are needed.

Relocation entries are generated automatically by the assembler and automarically utilized by the
link editor. A link editor option exists for removing the relocation entries from an object file.

SEE ALSO
1d(1), strip(1), a.out(4), syms(4).

SCCSFILE (4)

NAME
sccsfile ~ format of SCCS tile

DESCRIPTION
An SCCS file is an ASCII file. It consists of six logical parts: the checksum, the delta table (con-
tains information about each delta), user names (contains login names and/or numerical group
IDs of users who may add deltas), flags (contains definitions of internal keywords), comments

(contains arbitrary descriptive information about the file), and the body (contains the actual text
lines intermixed with control lines).

Throughout an SCCS file there are lines which begin with the ASCII SOH (start of heading) char-
acter (octal 001). This character is hereafter referred to as the control character and will be
represented graphically as @. Any line described below which is not depicted as beginning with
the control character is prevented from beginning with the control character.

Entries of the form DDDDD represent a five-digit string (a number between 00000 and 99999).
Each logical part of an SCCS file is described in detail below.

Checksum
The checksum is the first line of an SCCS file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except those of the first line. The
@h provides a magic number of (octal) 064001.
Delta table
The delta table consists of a variable number of entries of the form:
@s DDDDD,/DDDDD/DDDDD

@d <type> <SCCSID> yr/mo/da hr:mi:;se <pgmr> DDDDD DDDDD
@i DDDDD ...

@x DDDDD ...

@g DDDDD ...

@m <MR number>

@c <comments> ...

Qe
The first line (@s) contains the number of lines inserted /deleted /unchanged, respectively.
The second line (@d) contains the type of the delta (currently, normal: D, and removed:
R), the SCCS ID of the delta, the date and time of creation of the delta, the login name

corresponding to the real user ID at the time the delta was created, and the serial
numbers of the delta and its predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included, excluded, and
ignored, respectively. These lines are optional.

The @m lines (optional) each contain one MR number associated with the delta; the @c
lines contain comments associated with the delta.

The @e line ends the delta table entry.

SCCSFILE (4)

User names

The list of login names and/or numerical group IDs of users who may add deltas to the
file, separated by new-lines. The lines containing these login names and/or numerical
group IDs are surrounded by the bracketing lines @u and @U. An empty list allows any-
one to make a delta. Any line starting with a ! prohibits the succeeding group or user
from making deltas.

Flags
Keywords used internally (see admin(1) for more information on their use). Each flag line
takes the form:
@f <flag> < optional text>
The following flags are defined:
Qf ¢ < type of program>
@f v <program name >
@f 1 <keyword string >
@fb
@f m < module name>
@f f < floor >
@f ¢ < ceiling>
@f d <default-sid>
@f n
@f
@f 1 <lock-releases >
@f q < user defined >
@f z <reserved for use in interfaces >
The t flag defines the replacement for the 25Y% identification keyword. The v flag con-
trols prompting for MR numbers in addition to comments; if the optional text is present
it defines an MR number validity checking program. The 1 flag controls the
warning/error aspect of the “No id keywords’” message. When the i flag is not present,
this message is only a warning; when the i flag is present, this message will cause a
“fatal” error (the file will not be gotten, or the delta will not be made). When the b flag
is present the —-b keyletter may be used on the get command to cause a branch in the
delta tree. The m flag defines the first choice for the replacement text of the %M%
identification keyword. The f flag defines the “floor’” release; the release below which no
deltas may be added. The ¢ flag defines the “‘ceiling” release; the release above which no
deltas may be added. The d flag defines the default SID to be used when none is speci-
fied on a get command. The n flag causes delta to insert a “‘null’” delta (a delta that
applies no changes) in those releases that are skipped when a delta is made in a new
release (e.g., when delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped). The
absence of the n flag causes skipped releases to be completely empty. The j flag causes
get to allow concurrent edits of the same base SID. The 1 flag defines a list of releases
that are locked against editing (get(1) with the —e keyletter). The q flag defines the
replacement for the %Q% identification keyword. The 2 flag is used in certain special-
ized interface programs.
Comments
Arbitrary text is surrounded by the bracketing lines @t and @T. The comments section
typically will contain a description of the file’s purpose.
Body

The body consists of text lines and control lines. Text lines do not begin with the control
character, control lines do. There are three kinds of control lines: insert, delete, and-end,

SCCSFILE (4)

represented by:

QI DDDDD
@D DDDDD
QE DDDDD

respectively. The digit string is the serial number corresponding to the delta for the con-
trol line.

SEE ALSO
admin(1), delta(1), get(1), prs(1).
Series 6000 Operating System Programmer’s Guide, Section 9.

SCNHDR (4)

NAME

scnhdr - section header for a common object file
SYNOPSIS

#include <senhdr.h>
DESCRIPTION

Every common object file has a table of section headers to specify the layout of the data within
the file. Each section within an object file has its own header. The C structure appears below.

struct senhdr

{

char s_name[SYMNMLEN]; /* section name */
long s_paddr; /* physical address */

long s_vaddr; /* virtual address */

long s_size; /* section size */

long s_scnptr; /* file ptr to raw data */
long s_relptr; /* file ptr to relocation */
long s_lnnoptr; /* file ptr to line numbers */
unsigned short s_nreloc; /* # reloc entries */
unsigned short s_nlnno; /* # line number entries */
long s_flags; /* flags */

¥i
File pointers are byte offsets into the file; they can be used as the offset in a zall to Jseek(3S). If a
section is initialized, the file contains the actual bytes. An uninitialized section is somewhat
different. It has a size, symbols defined in it, and symbols that refer to it. But it can have no
relocation entries, line numbers, or data. Consequently, an uninitialized section has no raw data
in the object file, and the values for s_scnptr, s_relptr, s_innoptr, s_nreloc, and s_nlnno are zero.

SEE ALSO
1d(1), fseek(3S), a.out(4).

SYMS(4)

NAME

syms — common object file symbol table format
SYNOPSIS

#include <syms.h>
DESCRIPTION

Common object files contain information to support symbolic software testing. Line number
entries, linenum(4), and extensive symbolic information permit testing at the C source level.
Every object file’s symbol table is organized as shown below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.
Static externs for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members of the structure hold the name
(null padded), its value, and other information. The C structure is given below.

#define SYMNMLEN 8
#define FILNMLEN 14

struct syment

{

union /* all ways to get symbol name */
{
char _n_name[SYMNMLEN]; /* symbol name */
struct
{
long _D_zeroes; /* === 0L when in string table */
long _n_offset; /* location of name in table */
} _n_n;
char *_n_nptr[2}; /* allows overlaying */
}
long n_value; /* value of symbol */
short n_scnum; /* section number */
unsigned short n_type; /* type and derived type */
char n_sclass; /* storage class */
char n_numaux; /* number of aux entries */
};
#define n_name _n._n_name

#define n_zeroes
#define n_offset
#define n_nptr

SYMS(4)

_N._D_N._n_zeroes
_n._n_n._n_offset
_n._n_nptr(1]

Mearningful values and explanations for them are given in both syms.h and Common Object File

Format.

Anyone who needs to interpret the entries should seek more information in these

sources. Some symbols require more information than a single entry; they are followed by auzili-

ary entries that are

the same size as a symbol entry. The format follows.

union auxent

{

struct

{

long x_tagndx;
union
{
struct
unsigned short x_Inno;
unsigned short x_size;
} x_lInsz;
long x_fsize;
} x_misc;
union
struct
long x_lnnoptr;
long x_endndx;
} x_fen;

struct

{

unsigned short x_dimen[DIMNUM];

} x_ary;
} x_fcnary;
unsigned short x_tvndx;
} X_Sym;
struct
{
char x_fname[FILNMLEN];
} x_file;

struct

{

long x_scnlen;
unsigned short x_nreloc;
unsigned short x_nlinno;

} X_scn;
struct
{
long x_tvfill;

unsigned short x_tvlen;
unsigned short x_tvran[2];
X_tv;

SYMS(4)

Indexes of symbol table entries begin at zero.
SEE ALSO

a.out(4), linenum(4).
CAVEATS

TERM(4)

NAME
term - format of compiled term file.
SYNOPSIS
term
DESCRIPTION
Compiled terminfo descriptions are placed under the directory /usr/lib/terminfo. In order to
avoid a linear search of a huge directory, a two-level scheme is used:

/usr/lib/terminfo/c/name where name is the name of the terminal, and ¢ is the first charac-
ter of name. Thus, actf can be found in the file /usr/lib/terminfo/a/act4. Synonyms for the
same terminal are implemented by multiple links to the same compiled file.

The format has been chosen so that it will be the same on all hardware. An 8 or more bit byte is
assumed, but no assumptions about byte ordering or sign extension are made.

The compiled file is created with the compile program, and read by the routine setupterm. Both
of these pieces of software are part of curses(3X). The file is divided into six parts: the header,
terminal names, boolean flags, numbers, strings, and string table.

The header section begins the file. This section contains six short integers in the format described
below. These integers are (1) the magic number (octal 0432); (2) the size, in bytes, of the names
section; (3) the number of bytes in the boolean section; (4) the number of short integers in the
numbers section; (5) the number of offsets (short integers) in the strings section; (6) the size, in
bytes, of the string table.

Short integers are stored in two 8-bit bytes. The first byte contains the least significant 8 bits of
the value, and the second byte contains the most significant 8 bits. (Thus, the value represented
1s 256*second-+irst.) The value -1 is represented by 0377, 0377, other negative value are illegal.
The -1 generally means that a capability is missing from this terminal. Note that this format
corresponds to the hardware of the VAX and PDP-11. Machines where this does not correspond to
the hardware read the integers as two bytes and compute the result.

The terminal names section comes next. It contains the first line of the terminfo description, list-
ing the various names for the terminal, separated by the ‘|’ character. The section is terminated
with an ASCII NUL character.

The boolean flags have one byte for each flag. This byte is either 0 or 1 as the flag 1s present or
absent. The capabilities are in the same order as the file <term.h>.

Between the boolean section and the number section, a null byte will be inserted, if necessary, to
ensure that the number section begins on an even byte. All short integers are aligned on a short
word boundary.

The numbers section is similar to the flags section. Each capability takes up two bytes, and is
stored as a short integer. If the value represented is -1, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short integer, in the format
above. A value of -1 means the capability is missing. Otherwise, the value is taken as an offset
from the beginning of the string table. Special characters in "X or \c¢ notation are stored in their
interpreted form, not the printing representation. Padding information $< nn> and parameter
information %x are stored intact in uninterpreted form.

The final section is the string table. It contains all the values of string capabilities referenced in
the string section. Each string is null terminated.

Note that it is possible for setupterm to expect a different set of capabilities than are actually
present in the file. Either the database may have been updated since setupterm has been recom-
piled (resulting in extra unrecognized entries in the file) or the program may have been recom-
piled more recently than the database was updated (resulting in missing entries). The routine
setupterm must be prepared for both possibilities — this is why the numbers and sizes are
included. Also, new capabilities must always be added at the end of the lists of boolean, number,

TERM(4)

and string capabilities.

As an example, an octal dump of the description for the Microterm ACT 4 is included:

microterm|act4|microterm act iv,
er="M, cudl="J, ind="J, bel="G, am, cubl="H,
ed="_, el="", clear="L, cup="T%p1%c%p2%sc,
cols#80, lines#24, cufl="X, cuul="Z, home="],

000032001 \0025 \0 \b \0212\0 " \0 m i ¢ r
020 o t er m | a ct 4 | micro

040 t e r m a ¢t i v \0 \ooot \0 \0

060 \0 \0 \0 \0 \0 Y0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

100 \0 \0 P \0377 377 030 \0 377 377 377 377 377 377 377 377
120 377 377 377 377 \0 \0 002 \0 377 377 377 377 004 \0 006 \0
140 \b \0 377 377 377 377 \n \0 026 \0 030 \0 377 377 032 \0
160 377 377 377 377 034 \0 377 377 036 \0 377 377 377 377 377 377
200 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
*

520 377 377 377 377 \0 377 377 377 377 377 377 377 377 377 377
540 377 377 377 377 377 377007 \0 \r \0 \f \0 036 \0037 \0
560024 % p 1 % ¢ % p 2 % ¢ \0 \n \0035\0
600 \b \0030 \0032 \0 \n \0

Some limitations: total compiled entries cannot exceed 4096 bytes. The name field cannot exceed
128 bytes.

FILES
/usr/lib/terminfo/*/* compiled terminal capability data base

SEE ALSO
curses(3X), terminfo(4).

TERMCAP (4)

NAME

termcap — terminal capability data base
SYNOPSIS

/etc/termeap
DESCRIPTION

This entry describes terminal-independent programming conventions that originate at UC Berke-
ley. UNIX System V initially borrowed termcap but has since changed to the terminfo(4) conven-
tion. The operating system continues to support termcap so as to be compatible with the Berkeley version of the
UNIX System. But use terminfo in new programs,

Termcap programs work from information supplied through the TERM and TERMCAP
environment variables. The location of the description depends on the value of TERMCAP:

° If TERMCAP is not set or is empty, TERM 1is the name of an description in
/ete/termeap.

® If TERMCAP has a value that begins with a /, TERM is the name of an description
in the file named by TERMCAP.

o If TERMCAP begins with any character except /, TERMCAP contains the descrip-
tion.

A description begins with a list of its names, separated by vertical bars. The rest of the descrip-
tion is a list of capabilities, separated by colons. If you use more than one line, precede each new-
line except the last with :\ Here’s a simple example.

d5|vt50|dec vt50:\
:bs:cd=\EJ:ce=\EK:cl=\EH\EJ:co#80:li#12:nd=\EC:pt:up=\EA:

There are three kinds of capabilities:

. Boolean. These indicate the presence or absence of a terminal feature by their presence
or absence. Boolean capabilities consist of two characters (the capability name).

. Numertc. These indicate some numeric value for the terminal, such as screen size or
delay required by a standard character. Numeric capabilities consist of two characters
(the capability name), followed by a #, followed by a decimal number.

® String. These indicate a sequence that is performs some operation on the terminal.
String capabilities consist of two characters (the capability name), optionally followed by
a delay, followed by a string.

The delay is the number of milliseconds the program must wait after using the sequence;
specify no more than one decimal place. If the delay is proportional to the number of
lines affected, end it with a *.

The string is a sequence of characters. The following subsequences are specially inter-
preted.

\E Escape Character
z Control-z
\n Newline
\r Return
\t Tab
\b Backspace
\f Formfeed
\zzz Octal value of zzz
\072 :in string
\200 null (\00O doesn’t work)

TERMCAP (4)

Octal numbers must be three digits long.
Some strings are interpreted further, such as em. see something below.

You can follow any capability name with an @, to indicate that the terminal lacks the capability.
This is only useful in conjunction with the tc capability; see “Similar Terminals,” below.

Here is a list of standard capabilities. (P) indicates a string that might require padding; (P*) indi-
cates a string that might require proportional padding.

Name Type Pad? Description

ae str (P) Ends alternate character set.

al str (P*) Adds new blank line.

am bool Terminal has automatic margins.

as str (P) Starts alternate character set.

be str Backspace if not control-h.

bs bool Terminal can backspace with control-h.

bt str (P) Back tab.

bw bool Backspace wraps from column 0 to last column.
CC str Command character in prototype if terminal settable.
cd str (P*) Clears to end of display.

ce str (P) Clears to end of line.

ch str (P) Moves cursor horizontally to specified column.
cl str (P*) Clears screen.

cm str (P) Moves cursor to specified row and column.

co num Number of columns in a line.

cr str (P*) Carriage return if not control-m.

cs str (P) Change scrolling region.

cv str (P) Moves cursor vertically to specified row.

da bool Display can be retained above.

dB num Delay after backspace, in milliseconds.

db bool Display can be retained below.

dC num Delay after carriage return, in milliseconds.

de str (P*) Delete character.

dF num Delay after form feed, in milliseconds.

dl str (Px) Deletes line.

dm str Enters delete mode.

dN num Delay after newline, in milliseconds.

do str Goes down one line.

dT num Delay after tab, in milliseconds.

ed str Ends delete mode.

el str Ends insert mode; give an empty string if you’ve defined iec.
€0 str Can erase overstrikes with a blank.

ff str (P*) Hardcopy terminal page eject if not form feed.
he bool Hardcopy terminal.

hd str Half-line down (forward 1/2 linefeed).

ho str Move cursor to upper left corner (home).

hu str Half-line up (reverse 1/2 linefeed).

hz str Hazeltine or other terminal that can’t print ~ ’s.
ic str (P) Insert character.

if str Name of file containing terminal initialization.
im bool Starts insert mode; give an empty string if you’ve defined ic.
in bool Insert mode distinguishes nulls on display.

ip str (P*) Pad after insertion.

Is
k0-k9

kb
kd
ke
kh
kl
kn
ko
kr
ks
ku
10-19

te

ti

uc
ue
ug
ul

up
us
vb
ve
vs
xb
Xn
Xr
Xs
Xt

str
str

str
str
str
str
str
num
str
str
str
str
str
num
str
str
bool
str
bool
str
bool
str
str
bool
bool
str
bool
str
str
num
str
str
str
str

str
str
str
str
num
bool
str
str
str
str
str
bool
bool
bool
bool
bool

TERMCAP (4)

Terminal initialization.

Sent by special (usually numeric) function keys. If programmable, set with
is, if, vs, or ti.

Sent by backspace key.

Sent by terminal down arrow key.

Ends keypad transmit mode.

Sent by home key.

Sent by terminal left arrow key.

Number of special function keys.

Terminal capabilities that have keys.

Sent by terminal right arrow key.

Begin keypad transmit mode.

Sent by terminal up arrow key.

Labels on special function keys.

Number of lines on screen or page.

Last line, first column.

Command key map; used by ex version 2

Safe to move while in insert mode.

Memory lock on above cursor.

Safe to move while in standout and underline mode.

Memory unlock (turn off memory lock).

No correctly working carriage return (DM2500,H2000).
Non-destructive space (cursor right).

Begin a new line if not newline.

A video terminal that doesn’t scroll!

Terminal overstrikes.

Pad character if not null.

Has hardware tabs; if they need to be set put sequence in is or if.
Ends stand out mode.

Scrolls forwards.

Number of blank chars left by so or se.

Begins stand out mode.

Scroll reverse (backwards).

Tab if not control-i or with padding.

Name of terminal that has some of the same capabilities; tc must be the
last capability.

Ends programs that do cursor motion.

Initializes programs that do cursor motion.

Underscores and moves past one character.

Ends underscore mode.

Number of blank spaces that surround underscore mode.
Terminal underlines automatically even though it can’t overstrike
Upline (cursor up).

Start underscore mode.

Visible bell (must not move cursor).

Ends open and visual modes.

Initializes open and visual modes.

Beehive (fl=escape, f2==ctrl C).

Terminal ignores newline after wrap (Concept).

Return clears to end of line and goes to beginning of next line (Delta Data).
Writing on standout mode text produces standout mode text (FP 264?).
Destructive tabs, magic standout character (Teleray 1061).

TERMCAP (4)

Pointers on Preparing Descriptions

o You may want to copy the description of a similar terminal.

° Build up a description gradually, checking partial descriptions with ez.

. Be aware that an unusual terminal may expose bugs in ez. limitations in the termecap con-
vention.

Basic Capabilities
The following capabilities are common to most terminals. The co capability gives the number of
columns per line. The li gives the number of lines on a video terminal. The am capability indi-
cates that writing off the right edge takes the cursor to the beginning of the next screen. The el
capability tells how the terminal clears its screen. The bs indicates that the terminal can back-
space; but if the terminal doesn’t use control-h, specify be instead of bs. The os capability indi-
cates that printing a character at an occupied position doesn’t destroy the existing character.

A couple of notes on moving off the edge. Programs that use this convention never move the cur-
sor off the top or the left edge of the screen. On the other hand, they assume that moving off the
bottom edge scrolls the display up.

These capabilities suffice to describe hardcopy and very dumb terminals. For example, the Tele-
type Model 33 has this description.

t3 | 33 | tty33:co#72:0s

This is LSI ADM3 (without the cursor addressing option).
cl | adm3|3|lsi adm3:am:bs:cl="Z:li#24:co#80
Cursor Addresses and Other Variables
If a string capability includes a variable value, use a %% escape to indicate the value. By default,
programs take these values to be zero origin (that is, the first possible value is 0) and that the em

capability specifies two values: row, then column. Use the %r or %i capability if either assump-
tion is incorrect.

These are the valid % escapes.

%d print the values as a decimal number

%2 print the values as a two-digit decimal number
%3 print the values as a three-digit decimal number
%. print the value in binary (but see below)

%-+z add ASCII value of z to value, then print in binary
%>zy if the next value is greater than the ASCII value of z, add the ASCII value of y before
using the value’s % escape

%r row is the first value in this em

%i values are 1-origin

%% print a %

%n in this capability, exclusive or the values with 01400 before using the values’ %% escapes
(DM2500)

%B change the next value to binary coded decimal ((16%(z/10)) + (2%10) where z is the
value) before interpreting it

%D The next value is reverse-coded (z-2%(2%16) where z is the value; Delta Data)

A program should avoid using a cm sequence that includes a tab, newline, control-d, or return,
because the terminal interface may misinterpret these characters. If possible, use the em
sequence to move to the row or column after the destination, then use local motion to get to the
destination.

TERMCAP (4)

Here are some examples of cm definitions. To position the cursor of an HP2645 on row 3, column
12, you must send the terminal ‘“\E&al12¢03Y”, followed by a 6 millisecond delay; the HP2645
description includes :em=8\E&%r%2c%2Y:. To position the cursor of an ACT-IV, you send
it a control-t, followed by the row and column in binary; the ACT-IV description includes
:em=="T%.%.: The LSI ADM3a uses the set of printable ASCII characters to represent row and
column values; its description includes :em\E=%+ %+:.

Local and General Cursor Motions
Most terminals have short strings that trigger commonly-used cursor motions. A non-destructive
space (BR nd) moves the cursor one position right. An upline sequence (up) moves the cursor
one position up. A home sequence (ho) moves the cursor to the upper left hand coraer. A lower-
left (I1) goes to the other lefthand corner. The 1l capability may be a sequence that moves the
cursor home, then up; but otherwise programs never do this.

Area Clears
Some terminals have short sequences that clear all or part of a display. Clear (cl) clears the
screen and homes the cursor; if clearing the screen does not restore the terminal’s normal modes,
cl should include the strings that do. Clear to end of line (ce) clears from the current cursor
position to the right. Clear to end of display (cd) clears from the current cursor position to the

bottorn of the display; programs always move the cursor to the beginning of the line before using
cd.

Insert/Delete Line
Many terminals have strings that shift text starting at the current cursor position. Programs
always move the cursor to the beginning of the line before using these strings. Add line (al) shifts
the current line and all below it down a position leaving the cursor on the newly-blanked line.
Delete line (deletes the line the cursor is on without moving the cursor. If a terminal descripticn
has a al capability, you do not really need to specify sb.

If deleting a line might produce a non-blank line at the bottom of the screen, specify db. If screl-
ling backwards might produce a non-blank line at the top of the screen, specify da.

Insert/Delete Character
The termcap convention recognizes two kinds of terminal insert/delete string.

. The first convention is by far more common. Using insert or delete modes cnly affect
characters on the current line. Inserting a single character shifts all characters, including
all blanks, to the right; the character on the right edge of the screen is lost. No special
capability is required to describe this kind of terminal.

® The second convention is rarer and more complicated. The terminal distinguishes
between blank spaces created by output tabs (011) or spaces (040) from all other blanks;
other blanks are known as nulls. Inserting a character eliminates the first null to the
right of the cursor; deleting a character doubles the first null. If there are no nulls on the
current line inserting a character inserts the line’s rightmost character at the beginning of
the next line. Use the in capability to describe this kind of terminal.

Notably among the second type are the Concept 100 and Perkin Elmer Owl.

A simple experiment shows what type you have. Set the terminal to its “‘local’” mode. Clear the
screen, then type a short sequence of text. Move the cursor to the right several spaces without
using the space or tab characters. Type a second short sequence of text. Move the cursor back to
the beginning of the first text. Start the terminal’s insert mode and begin tapping the space bar.
If you have the first kind of terminal, both sequences of text will move at once, at whatever char-
acter is at the right edge of the screen will be lost. If you have the second kind of terminal, at
first only the first sequence of text will move; when the first sequence hits the second sequence, it
will push the second onto the next line.

A terminal can have either an insert mode or the ability to insert a single character. Specify
insert mode with im and ei. To specify that the terminal can insert a single character, specify ic

TERMCAP (4)

and specify empty strings for im and ei. If you must delay or output more control text after
inserting a single character, specify ip.

If a terminal has both an insert mode and the ability to insert a single character, it is usually best
not to specify ie.

Some programs operate more quickly if they are allowed to move the cursor around randomly
while in insert mode. For example, vt has to delete a character when you insert a character
before a tab. If your terminal permits this, specify move on insert mi. Beware of terminals that
foul up in subtle ways when you do this notably Datamedia’s.

Delete mode (dm), end delete mode (ed), and delete character (de) work like im, ei, and ie.

Highlighting, Underlining, and Visible Bells
Specify the terminals most distinctive display mode with so se. Half intensity is usually not a
good choice unless the terminal is normally in reverse video.

The convention provides for underline mode and for single character underlining. Specify under-
line mode with us and ue. Specify a way to underline and move past a character with ue; if your
terminal can underline a single character but doesn’t automatically move on, add a nondestruc-
tive space to the uc string.

Some terminals can’t overstrike but still correctly underline text without special help from the
host computer. If yours is one, specify ul.

If your terminal spaces before and after entering standout and underline mode, specify ug.
Programs leave standout and underline mode before moving the cursor or printing a newline.
If the terminal can flash the screen without moving the cursor, specify vb (visual bell).

If the terminal needs to change working modes before entering the open and visual modes of ez
and vi, specify vs and ve. respectively. These can be used to change, e.g., from a underline to a
block cursor and back.

If the terminal needs to be in a special mode when running a program that addresses the cursor,
specify ti and te. This may be important if a terminal has more than one page of memory. If
the terminal has memory-relative cursor addressing but not screen relative cursor addressing, use
ti to fix a screen-sized window into the terminal.

If a terminal can overstrike, programs assume that printable spaces don’t destroy anything, unless
you specify eo.
Keypad

Some terminals have keypads that transmit special codes. If the keypad can be turned on and
off, specify ks and ke; if you don’t, programs assume that the keypad is always on. Specify the
codes sent by cursor motion keys with kl, kr, ku, kd, and kh. If there are function keys specify
the codes they send with f1, £f2, £3, f4, f5 {8, £7, f8, and f9. If these keys have labels other
than the usual “fO through’ “f9”, specify the labels 11, 12, 13, 14, 15, 18, 17, 18, and 19. If there
are other keys that transmit the same code that the terminal expects for a function, such as clear
screen, mention the affected capabilities in the ko capability. For example, ‘“:ko=clil,sf,sb:”
says that the terminal has clear, home down, scroll down, and scroll up keys that transmit the
same thing as the cl, 11, sf, and sb capabilities.

Terminal Initialization
If a terminal must be initialized, on login for example, specify a short string with is or a file con-
taining initialization strings with if. Other capabilities include is, an initialization string for the
terminal, and if, the name of a file containing long initialization strings. If both are given, is is
printed before if. If the terminal has tab stops, these strings should first clear all stops, then set
new stops at the 9 column and every 8 columns thereafter.

Similar Terminals
If a new terminal strongly resembles an existing terminal, you can write a description of the new

FILES

TERMCAP (4)

terminal that only mentions the old terminal and the capabilities that differ. The tc capability
describes the old terminal; it must be the last capability in the description. If the old terminal
has capabilities that the new one lacks, specify an @ after the capability name.

The different entries you create with tc need not represent terminals that are actually different.
They can represent different uses for a single terminal, or user preferences as to which terminal
features are desirable.

The following example defines a describes a variant of the 2621 that never turns on the keypad.
hn | 2621nl:ks@:ke@:tc=2621:

/etc/termecap standard data base

SEE ALSO

BUGS

ex(1), curses(3), termcap(3), tset(1), vi(1), ul(1), more(1)

Ez allows only 256 characters for string capabilities, and the routines in termcap(3) do not check
for overflow of this buffer.

The total length of a single description (excluding only escaped newlines) may not exceed 1024
characters. If you use te, the combined description may not exceed 1024 characters.

The vs, and ve entries are specific to the vi program.
Not all programs support all entries. There are entries that are not supported by any program.

The ma capability is obsolete and serves no function in our database; Berkeley includes it for the
benefit of systems that cannot run version 3 of vi.

——

NAME

TERMINFO (4)

terminfo — terminal capability data base

SYNOPSIS

/usr/lib/terminfo/* /%

DESCRIPTION

Terminfo is a data base describing terminals, used, e.g.,, by vi(1) and curses(3X). Terminals are
described in terminfo by giving a set of capabilities which they have, and by describing how
operations are performed. Padding requirements and initialization sequences are included in ter-
minfo.

Entries in terminfo consist of a number of ‘ separated fields. White space after each ‘, is
ignored. The first entry for each terminal gives the names which are known for the terminal,
separated by ‘|’ characters. The first name given is the most common abbreviation for the termi-
nal, the last name given should be a long name fully identifying the terminal, and all others are
understood as synonyms for the terminal name. All names but the last should be in lower case
and contain no blanks; the last name may well contain upper case and blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using the following conven-
tions. The particular piece of hardware making up the terminal should have a root name chosen,
thus “hp2621”. This name should not contain hyphens, except that synonyms may be chosen
that do not conflict with other names. Modes that the hardware can be in, or user preferences,
should be indicated by appending a hyphen and an indicator of the mode. Thus, a vt100 in 132
column mode would be vt100-w. The following suffixes should be used where possible:

Suffix Meaning Example
-w Wide mode (more than 80 columns) vt100-w
—am With auto. margins (usually default) vt100-am
-nam Without automatic margins vt100-nam
—-n Number of lines on the screen aaa—60
-na No arrow keys (leave them in local) ¢100-na
-np Number of pages of memory c100-4p
-rv Reverse video ¢100-rv

CAPABILITIES

The variable is the name by which the programmer (at the terminfo level) accesses the capability.
The capname is the short name used in the text of the database, and is used by a person updating
the database. The i.code is the two letter internal code used in the compiled database, and
always corresponds to the old termecap capability name.

Capability names have no hard length limit, but an informal limit of 5 characters has been
adopted to keep them short and to allow the tabs in the source file caps to line up nicely. When-
ever possible, names are chosen to be the same as or similar to the ANSI X3.64-1979 standard.
Semantics are also intended to match those of the specification.

(P) indicates that padding may be specified

(GQ) indicates that the string is passed through tparm withparms as given (#1i).
(*) indicates that padding may be based on the number of lines affected
(#i) indicates the I parameter.
Variable Cap- I Description
Booleans name Code
auto_left_margin, bw bw cubl wraps from column O to last
column
auto_right_margin, am am Terminal has automatic margins
beehive_glitch, xsb xb Beehive (fl1=escape, {2=ctrl C)
ceol_standout_glitch, xhp Xs Standout not erased by overwriting

TERMINFO (4)

(hp)

eat_newline_glitch, xenl XN newline ignored after 80 cols
(Concept)

erase_overstrike, eo eo Can erase overstrikes with a blank

generic_type, gn gn Generic line type (e.g.,, dialup,
switch).

hard_copy, he he Hardcopy terminal

has_meta_key, km km Has a meta key (shift, sets parity
bit)

has_status_line, hs hs Has extra "status line”

insert_null_glitch, n n Insert mode distinguishes nulls

memory_above, da da Display may be retained above the
screen

memory_below, db db Display may be retained below the
screen

move_insert_mode, mir mi Safe to move while in insert mode

move_standout_mode, msgr ms Safe to move in standout modes

over_strike, os os Terminal overstrikes

status_line_esc_ok, eslok es Escape can be used on the status line

teleray_glitch, xt xt Tabs ruin, magic so char (Teleray
1061)

tilde_glitch, hz hz Hazeltine; can not print ~ s

transparent_underline, ul ul underline character overstrikes

xon_xoff, xon X0 Terminal uses xon,/xoff handshaking

Numbers:

columns, cols co Number of columns in a line

init_tabs, it it Tabs initially every # spaces

lines, lines h Number of lines on screen or page

lines_of _memory, Im Im Lines of memory if > lines. 0 means
varies

magic_cookie_glitch, Xme sg Number of blank chars left by smsc or
Tmso

padding_baud_rate, pb pb Lowest baud where cr/ni padding is
needed

virtual_terminal, vt vt Virtual terminal number (UNIX system)

width_status_line, wsl ws No. columns in status line

Strings:

back_tab, cbt bt Back tab (P)

bell, bel bl Audible signal (bell) (P)

caIrlage_return, cr cr Carriage return (P*)

change_scroll_region, csr cs change to lines #1 through #2 (vt100)
(PG)

clear_all_tabs, tbe ct Clear all tab stops (P)

clear_screen, clear cl Clear screen and home cursor (P*)

clr_eol, el ce Clear to end of line (P)

clr_eos, ed cd Clear to end of display (P*)

column_address, hpa ch Set cursor column (PG)

command_character, cmdch CcC Term. settable cmd char in prototype

cursor_address, cup cm Screen rel. curscr motion row #1
col #2 (PG)

cursor_down, cudl do Down one line

cursor_home,
cursor_invisible,
cursor_left,
cursor_mem_address,
cursor_normal,
cursor_right,
cursor_to_lI,
cursor_up,
cursor_visible,
delete_character,
delete_line,
dis_status_line,
down_half_line,

enter_alt_charset_mode,

enter_blink_mode,
enter_bold_mode,
enter_ca_mode,
enter_delete_mode,
enter_dim_mode,
enter_insert_mode,
enter_protected_mode,
enter_reverse_mode,
enter_secure_mode,
enter_standout_mode,
enter_underline_mode,
erase_chars
exit_alt_charset_mode,
exit_attribute_mode,
exit_ca_mode,
exit_delete_mode,
exit_insert_mode,
exit_standout_mode,
exit_underline_mode,
flash_screen,
form_feed,
from_status_line,
init_1string,
init_2string,
init_3string,

init_file,
insert_character,
insert_line,
insert_padding,

key_backspace,
key_catab,
key_clear,
key_ctab,
key_dc,

key_dl,
key_down,
key_eic,
key_eol,

TERMINFO (4)

home
civis
cubl
mreup
cnorm
cufl

1l

cuul
CVVIS
dch1
di1

dsl

hd
smacs
blink
bold
smcup
smdc
dim
smir
prot
rev
Invis
Smso
smul
ech
rmacs
sgr0
rmeup
rmdc
rmir
rmso
rmul
flash
ff

fsl

151

is2

183

ichl
11

kbs
ktbc
kelr
kctab
kdch1
kdi1
kecudl1
krmir
kel

CM

Home cursor (if no cup)

Make cursor invisible

Move cursor left one space

Memory relative cursor addressing
Make cursor appear normal (undo vs/vi)
Non-destructive space (cursor right)
Last line, first column (if no cup)
Upline (cursor up)

Make cursor very visible

Delete character (P*)

Delete line (P*)

Disable status line

Half-line down (forward 1/2 linefeed)
Start alternate character set (P)
Turn on blinking

Turn on bold (extra bright) mode
String to begin programs that use cup
Delete mode (enter)

Turn on half-bright mode

Insert mode (enter);

Turn on protected mode

Turn on reverse video mode

Turn on blank mode (chars invisible)
Begin stand out mode

Start underscore mode

Erase #1 characters (PG)

End alternate character set (P)
Turn off all attributes

String to end programs that use cup
End delete mode

End insert mode

End stand out mode

End underscore mode

Visible bell (may not move cursor)
Hardcopy terminal page eject (P*)
Return from status line

Terminal initialization string
Terminal initialization string
Terminal initialization string

Name of file containing is

Insert character (P)

Add new blank line (P*)

Insert pad after character inserted
(p*)

Sent by backspace key

Sent by clear-all-tabs key

Sent by clear screen or erase key
Sent by clear-tab key

Sent by delete character key

Sent by delete line key

Sent by terminal down arrow key
Sent by rmir or smir in insert mode
Sent by clear-to-end-of-line key

TERMINFO (4)

key_eos, ked kS Sent by clear-to-end-of-screen key -
key_f0, k{0 ko Sent by function key {0
key_f1, kf1 k1 Sent by function key f1
key_f{10, kf10 ka Sent by function key {10
key_f2 k{2 k2 Sent by function key {2
key_{3, k{3 k3 Sent by function key {3
key_f{4, kif4 k4 Sent by function key {4
key_f5, kf5 k5 Sent by function key {5
key_16, kf6 k6 Sent by function key {6
key_{7, kf7 k7 Sent by function key {7
key_f8, k{8 k8 Sent by function key {8
key_f9, kf9 k9 Sent by function key f9
key_home, khome kh Sent by home key
key_ic, kichl kl Sent by ins char/enter ins mode key -
key_lil, kill kA Sent by insert line
key_left, kcubl ki Sent by terminal left arrow key
key_ll, kil kH Sent by home-down kev -
key_npage, knp kN Sent by next-page key
key_ppage, kpp kP Sent by previous-page key
key_right, keufl kr Sent by terminal right arrow key
key_sf, kind kF Sent by scroll-forward/down key
key_sr, kn kR Sent by scroll-backward /up key
key_stab, khts kT Sent by set-tab key
key_up, kcuul ku Sent, by terminal up arrcw key
keypad_local, rmkx ke Out of "keypad transmit” mode
keypad_xmit, smkx ks Put terminal in "keypad transmit” mode —_
lab_fo0, 1fo 10 Labels on function key ‘0 if not f0
lab_f1, If1 11 Labels on function key f1 if not f1
lab_f10, 1f10 la Labels on function key 10 if not (10
lab_f2, 1f2 12 Labels on function key {2 if not {2
lab_f3, 3 13 Labels on function key 13 if not {3
lab_{4, 1f4 14 Labels on function key {4 if not {4
lab_{5, If5 15 Labels on function key {5 if not {5
lab_{6, 1f6 16 Labels on function key {6 if not f6
lab_f{7, H7 17 Labels on function key {7 if not {7
lab_{8, 1f8 18 Labels on function key {8 if not {& m—
lab_f{9, 1f9 19 Labels on function key {9 if not {9
meta_on, smm mm Turn on "meta mode” (8th bit)
meta_off, rmm mo Turn off "meta mode” -
newline, nel nw Newline (behaves like cr followed
by If)
pad_char, pad pc Pad character (rather than null)
parm_dch, dch DC Delete #1 chars (PG#)
parm_delete_line, dl DL Delete #1 lines (PG#)
parm_down_cursor, cud DO Move cursor down #1 lines (PG*)
parm_ich, ich IC Insert #1 blank chars (PGx)
parm_index, indn SF Scroll forward #1 lines (PG)
parm_insert_line, i AL Add #1 new blank lines (PG+)
parm_left_cursor, cub LE Move cursor left #1 spaces (PG)
parm_right_cursor, cuf RI Move cursor right #1 spaces (PG¥)
parm_rindex, rin SR Scroll backward #1 lines (PG)
parm_up_cursor, cuu UP Move cursor up #1 lines (PG#) —=
pkey_key, pfkey pk Prog funct key #1 to type string #2

TERMINFO (4)

pkey_local, pfloc pl Prog funct key #1 to execute string #2
pkey_xmit, pix px Prog funct key #1 to xmit string #2
print_screen, mcQ ps Print contents of the screen
prtr_off, mc4 pf Turn off the printer
prtr_on, meb po Turn on the printer
repeat_char, rep Ip Repeat char #1 #2 times. (PG#*)
reset_lstring, sl rl Reset terminal completely to sane modes.
reset_2string, rs2 r2 Reset terminal completely to sane modes.
reset_3string, rs3 r3 Reset terminal completely to sane modes.
reset_file, rf rf Name of file containing reset string
restore_cursor, rc rc Restore cursor to position of last sc
row_address, vpa cv Vertical position absolute

(set row) (PG)
save_cursor, sc sc Save cursor position (P)
scroll_forward, ind sf Scroll text up (P)
scroll_reverse, ri st Scroll text down (P)
set_attributes, sgr sa Define the video attributes (PG9)
set_tab, hts st Set a tab in all rows, current column
set_window, wind wl Current window is lines #1-#2

cols #3-#4
tab, ht ta Tab to next 8 space hardware tab stop
to_status_line, tsl ts Go to status line, column #1
underline_char, uc uc Underscore one char and move past it
up_half_line, hu hu Hali-line up (reverse 1/2 linefeed)
init_prog, iprog iP Path name of program for init
key_al, kal K1 Upper left of keypad
key_a3, ka3 K3 Ubpper right of keypad
key_b2, kb2 K2 Center of keypad
key_cl, kel K4 Lower left of keypad
key_c3, ke3 K5 Lower right of keypad
prtr_non, me5p pO Turn on the printer for #1 bytes

A Sample Entry
The following entry, which describes the Concept-100, is among the more complex entries in the
terminfo file as of this writing.

concept100 | c100| concept | ¢104 | ¢100—4p | concept 100,
am, bel="G, blank=\EH, blink=\EC, clear="L$<2*>, cnorm=\Ew,
cols#80, cr="M8$<9>, cubl="H, cudl="J, cufl=\E=,
cup=\Ea%p1%’ '%+%%p2% '%+%e¢,
cuul=\E;, cvvis=\EW, db, dch1=\E"A$<16+>, dim=\EE, dl1=\E"'B$<3*>,
ed=\E C$<16+>, el=\E"U$< 16>, eo, flash=\Ek$<20>\EK, ht=\t$<8>,
il1=\E"R$<3*>, in, ind="J, .ind="J$ <9>, ip=3<16+>,
is2=\EU\Ef\E7\E5\E8\El\ENH\EK\E\ 200\ Eo&\ 200\ Eo\47\E,
kbs="h, kcubl=\E>, kcud1=\E<, keufl=\E=, kecuul=\E;,
kf1=\E5, kf2=\ES6, kf3=\E7, khome=\E?,
lines#24, mir, pb#9600, prot=\EI, rep=\Er%p1%c%p2%' '%+%c$ < .2+>,
rev=\ED, rmecup=\Ev $<6>\Ep\r\n, rmir=\E\200, rmkx=\Ex,
rmso=\Ed\Ee, rmul=\Eg, rmul==\Eg, sgro=\EN\200,
smcup=\EU\Ev 8p\Ep\r, smir=\E"P, smkx=\EX, smso=\EE\ED,
smul=\EG, tabs, ul, vt#8, xenl,

Entries may continue onto multiple lines by placing white space at the beginning of each line
except the first. Comments may be included on lines beginning with “#”. Capabilitizs in ter-
minfo are of three types: Boolean capabilities which indicate that the terminal has some particular

TERMINFO (4)

feature, numeric capabilities giving the size of the terminal or the size of particular delays, and
string capabilities, which give a sequence which can be used to perform particular terminal opera-
tions.

Types of Capabilities
All capabilities have names. For instance, the fact that the Concept has automatic margins (i.e.,
an automatic return and linefeed when the end of a line is reached) is indicated by the capability
am. Hence the description of the Concept includes am. Numeric capabilities are followed by the
character ‘#’ and then the value. Thus cols, which indicates the number of columns the terminal
has, gives the value ‘80° for the Concept.

Finally, string valued capabilities, such as el (clear to end of line sequence) are given by the two-
character code, an ‘=", and then a string ending at the next following ‘,’. A delay ir. milliseconds
may appear anywhere in such a capability, enclosed in $<C..> brackets, as in el==\EK$<3>,
and padding characters are supplied by tputs to provide this delay. The delay can be either a
number, e.g., ‘20’°, or a number followed by an ‘*’, 1e., ‘3¥’. A ‘¢’ indicates that the padding
required is proportional to the number of lines affected by the operation, and the amount given is
the per-affected-unit padding required. (In the case of insert character, the factcr is still the
number of lines affected. This is always one unless the terminal has xenl and the software uses
it.) When a ‘%’ is specified, it is sometimes useful to give a delay of the form ‘3.5’ to specify a
delay per unit to tenths of milliseconds. (Only one decimal place is allowed.)

A number of escape sequences are provided in the string valued capabilities for easy encoding of
characters there. Both \E and \e map to an ESCAPE character, "x maps to a control-x for any
appropriate x, and the sequences \n \l \r \t \b \f \s give a newline, linefeed, return, tab, back-
space, formfeed, and space. Other escapes include \" for *, \\ for \, \, for comma, \: for :, and
\O for null. (\0 will produce \200, which does not terminate a string but behaves as a null char-
acter on most terminals.) Finally, characters may be given as three octal digits after a \.

Sometimes individual capabilities must be commented out. To do this, put a pericd before the
capability name. For example, see the second ind in the example above.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective way to prepare a
terminal description is by imitating the description of a similar terminal in terminfo and to build
up a description gradually, using partial descriptions with vt to check that they are correct. Be
aware that a very unusual terminal may expose deficiencies in the ability of the terminjo file to
describe it or bugs in wi. To easily test a new terminal description you can set the environment
variable TERMINFO to a pathname of a directory containing the compiled description you are
working on and programs will look there rather than in /usr/lib/terminfo. To get the padding for
insert line right (if the terminal manufacturer did not document it) a severe test is to edit
/ete/passwd at 9600 baud, delete 16 or so lines from the middle of the screen, then hit the ‘u’ key
several times quickly. If the terminal messes up, more padding is usually needed. A similar test
can be used for insert character.

Basic Capabilities

The number of columns on each line for the terminal is given by the cols numeric capability. If
the terminal is a CRT, then the number of lines on the screen is given by the lines capakility. If
the terminal wraps around to the beginning of the next line when it reaches the right margin,
then it should have the am capability. If the terminal can clear its screen, leaving the cursor in
the home position, then this is given by the clear string capability. If the terminal overstrikes
(rather than clearing a position when a character is struck over) then it should have the os capa-
bility. If the terminal is a printing terminal, with no soft copy unit, give it both he and os. (os
applies to storage scope terminals, such as TEKTRONIX 4010 series, as well as hard copy and APL
terminals.} If there is a code to move the cursor to the left edge of the current row, give this as
cr. (Normally this will be carriage return, control M.) If there is a code to produce an audible
signal (bell, beep, etc) give this as bel.

TERMINFO (4)

If there is a code to move the cursor one position to the left (such as backspace) that capability
should be given as eubl. Similarly, codes to move to the right, up, and down should be given as
cufl, cuul, and cudl. These local cursor motions should not alter the text they pass over, for
example, you would not normally use ‘cufl= ' because the space would erase the character
moved over.

A very important point here is that the local cursor motions encoded in terminfo are undefined at
the left and top edges of a CRT terminal. Programs should never attempt to backspace around
the left edge, unless bw is given, and never attempt to go up locally off the top. In order to

scroll text up, a program will go to the bottom left corner of the screen and send the ind (index)
string.

To scroll text down, a program goes to the top left corner of the screen and sends the ri (reverse
index) string. The strings ind and ri are undefined when not on their respective corners of the
screen.

Parameterized versions of the scrolling sequences are indn and rin which have the same seman-
tics as ind and ri except that they take one parameter, and scroll that many lines. They are also
undefined except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when text is out-
put, but this does not necessarily apply to a cufl from the last column. The only local motion
which is defined from the left edge is if bw is given, then a cubl from the left edge will move to
the right edge of the previous row. If bw is not given, the effect is undefined. This is useful for
drawing a box around the edge of the screen, for example. If the terminal has switch selectable
automatic margins, the terminfo file usually assumes that this is on; i.e., am. If the terminal has
a command which moves to the first column of the next line, that command can be given as nel
(newline). It does not matter if the command clears the remainder of the current line, so if the
terminal has no cr and If it may still be possible to craft a working nel out of one or both of
them.

These capabilities suffice to describe hardcopy and glass-tty terminals. Thus the model 33 tele-
type is described as

33 tty33 | tty | model 33 teletype,
bel="G, cols#72, cr="M, cudl="J, hc, ind="J, os,

while the Lear Siegler ADM-3 is described as

adm3 | 3 | Isi adm3,
am, bel="G, clear="2Z, cols#80, cr="M, cubl="H, cudl="]J,
ind="J, lines#24,

Parameterized Strings
Cursor addressing and other strings requiring parameters in the terminal are described by a
parameterized string capability, with printf(3S) like escapes %%x in it. For example, to address
the cursor, the cup capability is given, using two parameters: the row and column to address to.
(Rows and columns are numbered from zero and refer to the physical screen visible to the user,
not to any unseen memory.) If the terminal has memory relative cursor addressing, that can be
indicated by mrecup.

The parameter mechanism uses a stack and special % codes to manipulate it. Typically a
sequence will push one of the parameters onto the stack and then print it in some format. Often
more complex operations are necessary.

The % encodings have the following meanings:

%% outputs ‘%’

%d print pop() as in printf
%2d print pop() like %2d
%3d print pop() like %3d

TERMINFO (4)

%02d

%03d as in printf

%c print pop() gives %ce

%s print pop() gives %s

%p|[1-9] push ith parm

%P|a-z] set variable [a-z| to pop()
%g|a—z| get variable [a-z] and push it
%'c’ char constant ¢

%{nn} integer constant nn

%+ %- %x %/ %m
arithmetic (%m is mod): push(pop() op pop())

%& %| % bit operations: push(pop() op pop())

%= %> %< logical operations: push(pop() op pop()}

%! % unary operations push(op pop())

%i add 1 to first two parms (for ANSI terminals)

%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional.
else-1f’s are possible ala Algol 68:
%? °) %t b, %e cy %t b, %e cq %t ba %e cy %t by %e %;
¢, are conditions, bi are bodies.

Binary operations are in postfix form with the operands in the usual order. That is, to get x-5
one would use ”%gx%{5}%-".

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent \E&al2¢03Y pad-
ded for 6 milliseconds. Note that the order of the rows and columns is inverted here, and that
the row and column are printed as two digits. Thus its cup capability is

cup==6\E&%p2%2dc%p1%2dY.

The Microterm ACT-IV needs the current row and column sent preceded by a *T, with the row
and column simply encoded in binary, cup="T%p1%c%p2%c. Terminals which use %c need to
be able to backspace the cursor (cub1l), and to move the cursor up one line on the screen (suul).
This is necessary because it is not always safe to transmit \n "D and \r, as the system may
change or discard them. (The library routines dealing with terminfo set tty modes so that tabs
are never expanded, so \t is safe to send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank character, thus
cup=\E=%p1%’ "%+%c%p2%" %+%¢c. After sending ‘\E=", this pushes the first parameter,
pushes the ASCII value for a space (32), adds them (pushing the sum on the stack in place of the
two previous values) and outputs that value as a character. Then the same is done for the second
parameter. More complex arithmetic is possible using the stack.

If the terminal has row or column absolute cursor addressing, these can be given as single parame-
ter capabilities hpa (horizontal position absolute) and vpa (vertical position absolute). Some-
times these are shorter than the more general two parameter sequence (as with the hp2645) and
can be used in preference to cup . If there are parameterized local motions (e.g., move n spaces to
the right) these can be given as cud, cub, cuf, and cuu with a single parameter indicating how
many spaces to move. These are primarily useful if the terminal does not have cup, such as the
TEKTRONIX 4025.

Cursor Motions
If the terminal has a fast way to home the cursor (to very upper left corner of screen) then this
can be given as home; similarly a fast way of getting to the lower left-hand corner can be given
as 1l; this may involve going up with euul from the home position, but a program should never

TERMINFO (4)

do this itself (unless Il does) because it can make no assumption about the effect of moving up
from the home position. Note that the home position is the same as addressing to (0,0): to the
top left corner of the screen, not of memory. (Thus, the \EH sequence on HP terminals cannot be
used for home.)

Area Clears
If the terminal can clear from the current position to the end of the line, leaving the cursor where
it is, this should be given as el. If the terminal can clear from the current position to the end of
the display, then this should be given as ed. Ed is only defined from the first column of a line.

(Thus, it can be simulated by a request to delete a large number of lines, if a true ed is not avail-
able.)

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is, this should be given
as ill; this is done only from the first position of a line. The cursor must then appear on the
newly blank line. If the terminal can delete the line which the cursor is on, then this should be
given as dl1; this is done only from the first position on the line to be deleted. Versions of ill
and dl1 which take a single parameter and insert or delete that many lines can be given as il and
dl. If the terminal has a settable scrolling region (like the vt100) the command to set this can be
described with the esr capability, which takes two parameters: the top and bottom lines of the
scrolling region. The cursor position is, alas, undefined after using this command. It is possible
to get the effect of insert or delete line using this command - the se and re (save and restore cur-
sor) commands are also useful. Inserting lines at the top or bottom of the screen can also be done
using ri or ind on many terminals without a true insert/delete line, and is often faster even on
terminals with those features.

If the terminal has the ability to define a window as part of memory, which all commands affect,
it should be given as the parameterized string wind. The four parameters are the starting and
ending lines in memory and the starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be given; if
display memory can be retained below, then db should be given. These indicate that deleting a
line or scrolling may bring non-blank lines up from below or that scrolling back with ri may bring
down non-blank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to insert/delete character which
can be described using terminfo. The most common insert/delete character operations affect only
the characters on the current line and shift characters off the end of the line rigidly. Other termi-
nals, such as the Concept 100 and the Perkin Elmer Owl, make a distinction between typed and
untyped blanks on the screen, shifting upon an insert or delete only to an untyped blank on the
screen which is either eliminated, or expanded to two untyped blanks. You can determine the
kind of terminal you have by clearing the screen and then typing text separated by cursor
motions. Type abc def using local cursor motions (not spaces) between the abc and the def.
Then position the cursor before the abc and put the terminal in insert mode. If typing characters
causes the rest of the line to shift rigidly and characters to fall off the end, then your terminal
does not distinguish between blanks and untyped positions. If the abec shifts over to the def which
then move together around the end of the current line and onto the next as you insert, you have
the second type of terminal, and should give the capability in, which stands for insert null. While
these are two logically separate attributes (one line vs. multiline insert mode, and special treat-
ment of untyped spaces) we have seen no terminals whose insert mode cannot be described with
the single attribute.

Terminfo can describe both terminals which have an insert mode, and terminals which send a
simple sequence to open a blank position on the current line. Give as smir the sequence to get
into insert mode. Give as rmir the sequence to leave insert mode. Now give as ichl any
sequence needed to be sent just before sending the character to be inserted. Most terminals with

TERMINFO (4)

a true insert mode will not give ichl; terminals which send a sequence to open a screen position
should give it here. (If your terminal has both, insert mode is usually preferable to ichl. Do not
give both unless the terminal actually requires both to be used in combination.| If post insert pad-
ding is needed, give this as a number of milliseconds in ip (a string option). Any other sequence
which may need to be sent after an insert of a single character may also be given in ip. If your
terminal needs both to be placed into an ‘insert mode’ and a special code to precede each inserted
character, then both smir/rmir and ichl can be given, and both will be used. The ich capabil-
ity, with one parameter, n, will repeat the effects of ichl n times.

It 1s occasionally necessary to move arcund while in insert mode to delete characters on the same
line (e.g., if there is a tab after the insertion position). If your terminal allows motion while in
insert mode you can give the capability mir to speed up inserting in this case. Omitting mir will
affect only speed. Some terminals (notably Datamedia’s) must not have mir because of the way
their insert mode works.

Finally, you can specify dehl to delete a single character, deh with one parameter, n, to delete n
characters, and delete mode by giving smnde and rmde to enter and exit delete mode (any mode
the terminal needs to be placed in for dehl to work).

A command to erase n characters (equivalent to outputting n blanks without moving the cursor)
can be given as ech with one parameter.

Highlhighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attributes, these can be represented ir: a number
of different ways. You should choose one display form as standout mode, representing a good,
high contrast, easy-on-the-eyes, format for highlighting error messages and other attention getters.
(If you have a choice, reverse video plus half-bright is good, or reverse video alone.) The sequences
to enter and exit standout mode are given as smso and rmso, respectively. If the code to change
into or out of standout mode leaves one or even two blank spaces on the screen, as the TVI 912
and Teleray 1061 do, then xme should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as smul and rmul respectively. If
the terminal has a code to underline the current character and move the curscr one space to the
right, such as the Microterm Mime, this can be given as uc.

Other capabilities to enter various highlighting modes include blink (blinking) bold (bold or
extra bright) dim (dim or half-bright) invis (blanking or invisible text) prot (protected) rewv
(reverse video) sgr0 (turn off all attribute modes) smacs (enter alternate character set mode) and
rmacs (exit alternate character set mode). Turning on any of these modes singly may or may
not turn off other modes.

If there is a sequence to set arbitrary combinations of modes, this should be given as sgr (set
attributes), taking 9 parameters. Each parameter is either 0 or 1, as the corresponding attribute
is on or off. The 9 parameters are, in order: standout, underline, reverse, blink, dim, bold, blank,
protect, alternate character set. Not all modes need be supported by sgr, only those for which
corresponding separate attribute commands exist.

Terminals with the “magic cookie” glitch (xme) deposit special ‘“‘cookies” when they receive
mode-setting sequences, which affect the display algorithm rather than having extra bits for each
character. Some terminals, such as the HP 2621, automatically leave standout mode when they
move to a new line or the cursor is addressed. Programs using standout mode should exit stan-
dout mode before moving the cursor or sending a newline, unless the msgr capability, asserting
that it i1s safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement)
then this can be given as flash; it must not move the cursor.

If the cursor needs to be made more visible than normal when it is not on the bottom line (to
make, for example, a non-blinking underline into an easier to find block or blinking underline)
give this sequence as cvvis. If there is a way to make the cursor completely invisible, give that

- 10 -

TERMINFO (4)

as civis. The capability enorm should be given which undoes the effects of both of these modes.

If the terminal needs to be in a special mode when running a program that uses these capabilities,
the codes to enter and exit this mode can be given as smcup and rmcup. This arises, for exam-
ple, from terminals like the Concept with more than one page of memory. If the terminal has
only memory relative cursor addressing and not screen relative cursor addressing, a one screen-
sized window must be fixed into the terminal for cursor addressing to work properly. This is also

used for the TEKTRONIX 4025, where smcup sets the command character to be the one used by
terminfo.

If your terminal correctly generates underlined characters (with no special codes needed) even
though it does not overstrike, then you should give the capability ul. If overstrikes are erasable
with a blank, then this should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this information can
be given. Note that it is not possible to handle terminals where the keypad only works in local
(this applies, for example, to the unshifted HP 2621 keys). If the keypad can be set to transmit or
not transmit, give these codes as smkx and rmkx. Otherwise the keypad is assumed to always
transmit. The codes sent by the left arrow, right arrow, up arrow, down arrow, and home keys
can be given as kcubl, kcufl, kcuul, keudl, and khome respectively. If there are function
keys such as f0, f1, ..., {10, the codes they send can be given as kf0, kfl, ..., kf10. If these keys
have labels other than the default fO through f10, the labels can be given as If0, If1, ..., If10.
The codes transmitted by certain other special keys can be given: kll (home down), kbs (back-
space), ktbe (clear all tabs), ketab (clear the tab stop in this column), kelr (clear screen or erase
key), kdchl (delete character), kdll (delete line), krmir (exit insert mode), kel (clear to end of
line), ked (clear to end of screen), kichl (insert character or enter insert mode), kill (insert line),
knp (next page), kpp (previous page), kind (scroll forward/down), kri (scroll backward/up),
khts (set a tab stop in this column). In addition, if the keypad has a 3 by 3 array of keys includ-
ing the four arrow keys, the other five keys can be given as kal, ka3, kb2, kel, and ke3. These
keys are useful when the effects of a 3 by 3 directional pad are needed.

Tabs and Initialization

If the terminal has hardware tabs, the command to advance to the next tab stop can be given as
ht (usually control). A “backtab’ command which moves leftward to the next tab stop can be
given as cbt. By convention, if the teletype modes indicate that tabs are being expanded by the
computer rather than being sent to the terminal, programs should not use ht or cbt even if they
are present, since the user may not have the tab stops properly set. If the terminal has hardware
tabs which are initially set every n spaces when the terminal is powered up, the numeric parame-
ter it is given, showing the number of spaces the tabs are set to. This is normally used by the
tset command to determine whether to set the mode for hardware tab expansion, and whether to
set the tab stops. If the terminal has tab stops that can be saved in nonvolatile memory, the ter-
minfo description can assume that they are properly set.

Other capabilities include is1, is2, and is3, initialization strings for the terminal, iprog, the path
name of a program to be run to initialize the terminal, and if, the name of a file containing long
initialization strings. These strings are expected to set the terminal into modes consistent with
the rest of the terminfo description. They are normally sent to the terminal, by the tset program,
each time the user logs in. They will be printed in the following order: is1; is2; setting tabs using
tbe and hts; if; running the program iprog; and finally is3. Most initialization is done with is2.
Special terminal modes can be set up without duplicating strings by putting the common
sequences in is2 and special cases in isl and is3. A pair of sequences that does a harder reset
from a totally unknown state can be analogously given as rsl, rs2, rf, and rs3, analogous to is2
and if. These strings are output by the reset program, which is used when the terminal gets into
a wedged state. Commands are normally placed in rs2 and rf only if they produce annoying
effects on the screen and are not necessary when logging in. For example, the command to set
the vt100 into 80-column mode would normally be part of is2, but it causes an annoying glitch of

-11 -

TERMINFO (4)

the screen and is not normally needed since the terminal is usually already in 80 column mode.

If there are commands to set and clear tab stops, they can be given as the (clear all tab stops)
and hts (set a tab stop in the current column of every row). If a more complex sequence is
needed to set the tabs than can be described by this, the sequence can be placed in is2 or if.

Delays

Certain capabilities control padding in the teletype driver. These are primarily needed by hard
copy terminals, and are used by the tset program to set teletype modes appropriately. Delays
embedded in the capabilities er, ind, cubl, ff, and tab will cause the appropriate delay bits to
be set in the teletype driver. If pb (padding baud rate) is given, these values can be ignored at
baud rates below the value of pb.

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can be given as pad.
Only the first character of the pad string is used.

If the terminal has an extra “status line” that is not normally used by software, this fact can be
indicated. If the status line is viewed as an extra line below the bottom line, into which one can
cursor address normally (such as the Heathkit h19’s 25th line, or the 24th line of a vt100 which is
set to a 23-line scrolling region), the capability hs should be given. Special strings to go to the
beginning of the status line and to return from the status line can be given as tsl and fsl. (fsl
must leave the cursor position in the same place it was before tsl. If necessary, the se and rec
strings can be included in tsl and fsl to get this effect.) The parameter tsl takes one parameter,
which is the column number of the status line the cursor is to be moved to. If escape sequences
and other special commands, such as tab, work while in the status line, the flag eslok can be
given. A string which turns off the status line (or otherwise erases its contents) should be given
as dsl. If the terminal has commands to save and restore the position of the cursor, give them as
sc and rc. The status line is normally assumed to be the same width as the rest of the screen,
e.g., cols. If the status line is a different width (possibly because the terminal does not allow an
entire line to be loaded) the width, in columns, can be indicated with the nurneric parameter ws).

If the terminal can move up or down half a line, this can be indicated with hu (half-lire up) and
hd (half-line down). This is primarily useful for superscripts and subscripts on hardcopy termi-
nals. If a hardcopy terminal can eject to the next page (form feed), give this as ff (usually control

L).

If there is a command to repeat a given character a given number of times (to save time transmit~
ting a large number of identical characters) this can be indicated with the parameterized string
rep. The first parameter is the character to be repeated and the second is the number of times to
repeat it. Thus, tparm(repeat_char, ’x’, 10} is the same as ‘XxxxxxxXXX’.

If the terminal has a settable command character, such as the TEKTRONIX 4025, this can be indi-
cated with emdch. A prototype command character is chosen which is used in al! capabilities.
This character is given in the emdch capability to identify it. The following convention is sup-
ported on the operating system: The environment is to be searched for a CC variable, and if found, all
occurrences of the prototype character are replaced with the character in the environment vari-

able.

Terminal descriptions that do not represent a specific kind of known terminal, such as switch,
dialup, patch, and network, should include the gn (generic) capability so that programs c¢an com-
plain that they do not know how to talk to the terminal. (This capability does not apply to vir-
tual terminal descriptions for which the escape sequences are known.)

If the terminal uses xon/xoff handshaking for flow control, give xon. Padding information should
still be included so that routines can make better decisions about costs, but actual pad characters
will not be transmitted.

-12-

TERMINFO (4)

If the terminal has a ‘“meta key” which acts as a shift key, setting the 8th bit of any character
transmitted, this fact can be indicated with km. Otherwise, software will assume that the 8th bit
is parity and it will usually be cleared. If strings exist to turn this “meta mode’ on and off, they
can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the number of lines
of memory can be indicated with lm. A value of Im#0 indicates that the number of lines is not
fixed, but that there is still more memory than fits on the screen.

If the terminal is one of those supported by the UNIX virtual terminal protocol, the terminal
number can be given as vt.

Media copy strings which control an auxiliary printer connected to the terminal can be given as
mcO: print the contents of the screen, me4: turn off the printer, and me5: turn on the printer.
When the printer is on, all text sent to the terminal will be sent to the printer. It is undefined
whether the text is also displayed on the terminal screen when the printer is on. A variation
mcdp takes one parameter, and leaves the printer on for as many characters as the value of the
parameter, then turns the printer off. The parameter should not exceed 255. All text, including
mec4, is transparently passed to the printer while an mebp is in effect.

Strings to program function keys can be given as pfkey, pfloc, and pfx. Each of these strings
takes two parameters: the function key number to program (from O to 10) and the string to pro-
gram it with. Function key numbers out of this range may program undefined keys in a terminal
dependent manner. The difference between the capabilities is that pfkey causes pressing the
given key to be the same as the user typing the given string; pfloc causes the string to be exe-
cuted by the terminal in local; and pfx causes the string to be transmitted to the computer.

Glitches and Braindamage

Hazeltine terminals, which do not allow ‘7 ’ characters to be displayed should indicate hs.

Terminals which ignore a linefeed immediately after an am wrap, such as the Concept and vt100,
should indicate xenl.

If el is required to get rid of standout (instead of merely writing normal text on top of it), xhp
should be given.

Teleray terminals, where tabs turn all characters moved over to blanks, should indicate xt (des-
tructive tabs). This glitch is also taken to mean that it is not possible to position the cursor on
top of a “magic cookie”, that to erase standout mode it is instead necessary to use delete and
insert line.

The Beehive Superbee, which is unable to correctly transmit the escape or control C characters,
has xsb, indicating that the f1 key is used for escape and {2 for control C. (Only certain Super-
bees have this problem, depending on the ROM.)

Other specific terminal problems may be corrected by adding more capabilities of the form xaz.

Similar Terminals

FILES

If there are two very similar terminals, one can be defined as being just like the other with certain
exceptions. The string capability use can be given with the name of the similar terminal. The
capabilities given before use override those in the terminal type invoked by use. A capability
can be cancelled by placing xx@ to the left of the capability definition, where xx is the capabil-
ity. For example, the entry

2621-nl, smkx@, rmkx@, use=2621,

defines a 2621-nl that does not have the smkx or rmkx capabilities, and hence does not turn on
the function key labels when in visual mode. This is useful for different modes for a terminal, or
for different user preferences.

/usr/lib/terminfo/?/* files containing terminal descriptions

- 13 -

TERMINFO (4)

SEE ALSO
curses(3X), printf(3S), term(5).

- 14 -

TTYTYPE(4)

NAME
ttytype — list of terminal types by terminal number

DESCRIPTION
Ttytype is a text file that contains, for each terminal configured, the terminal type as described in
termcap(4). It is used by tset{1) when that program sets the TERM environment variable.

A line in ttytype consists of a terminal name (one of the abbreviations from the first field of the
termcap entry), followed by a space, followed by the special file name of the terminal without the
initial /dev/.

EXAMPLES
tty000 pt

FILES
/ete/ttytype

SEE ALSO
tset(1), termcap(4).

UTMP (4)

NAME
utmp, wtmp - utmp and wtmp entry formats

SYNOPSIS
#include <sys/types.h>
#include <utmp.h>

DESCRIPTION
These files, which hold user and accounting information for such commands as who(1), write(1),
and login(1). On System 6600 systems, each Application Processor has its own utmp and wtmp
files; the two digit Application Processor number is appended to the file name.

The files have the following structure as defined by <utmp.h>:

#define UTMP_FILE 7 /etc/utmp”
#define WTMP_FILE 7 /etc/wtmp”
#define ut_name ut_user

struct utmp {

char ut_user(8]; /* User login name */
char ut_id[4]; /* /etc/inittab id (usually line #:) */
char ut_line[12]; /* device name (console, Inxx) */
short ut_pid; /* process id */
short ut_type; /* type of entry */
struct exit_status {

short e_termination; /* Process termination status */

short e_exit; /* Process exit status */
} ut_exit; /* The exit status of a process

* marked as DEAD_PROCESS. */

time_t ut_time; /* time entry was made */

L

/* Definitions for ut_type */
#define EMPTY

#define RUN_LVL
#define BOOT_TIME
#define OLD_TIME
#define NEW_TIME
#define INIT_PROCESS
#define LOGIN_PROCESS
#define USER_PROCESS
#define DEAD_PROCESS
#define ACCOUNTING
#define UTMAXTYPE ACCOUNTING /* Largest legal value of ut_type *i

/* Process spawned by ”init” */
/* A "getty” process waiting for login 2]
/* A user process */

© 00 N O O b W= O

/* Special strings or formats used in the ”ut_line” field when */
/* accounting for something other than a process */

/* No string for the ut_line field can be more than 11 chars + */
/* a NULL in length */

#define RUNLVL_MSG “run-level %¢”

#define BOOT_MSG "system boot”

##define OTIME_MSG ”old time”

#define NTIME_MSG "new time”

FILES
/usr/include/utmp.h

UTMP (4)

On MiniFrame:
/ete/utmp
/ete/wtmp
On MegaFrame:
/etc/utmp??
/ete/wtmp??
SEE ALSO
login(1), who(1), write(1), getut(3C).

