
rNTRO(4)

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C struct declarations for the file formats
are given where applicable. Usually, these structures can be found in the directories
/usr/inclu de or f usr f include/sys.

-1-

A.our(4)

NAME
a.out - common assernbler and link editor output

DESCRIPTION
The file name a.out is the output file from the assembler os(t) and the link
programs will make a.ouf executable if there were no errors in asrsembline
unresolved external rc,ferences.

edit,rr /C(1). Both
or linking arrd ncr

a tzible of st:ct orr
'Ihe ordler is gir-err

A common object file consists of a file header, an operating systern hea.<ler,
headers, relocation information, (optional) line numbers, and a symbol table.
belou,.

File header.
Operating System header.
Section 1 header.

äectio.r n l:eader.
Section 1 «lata.

ä..tion n rlata.
Section I I'elocation.

ä..tio., n relocation.
Section 1 line numbers.

ä..tion n line numbers.
Symbol table.
String table.

The .[ast four sections (relocation, line numbers, symbol table and string t,able) ma1- be missing il'
the program was linked with the -s option of /d(1) or if the symbol rable a,nd i'e,location bits were,
removed by strlp(1). Also note that if there were no unresolved external rr:ferences, af1,er linkirrg,
the relocation informa,tion will be absent. The string table exists only if ne,ressary.
The sizes of each segnrent (contained in the header, discussed below) zLre in l>ytes anC a1e,evep.
Wherr an a.out file is loaded into memory for execution, three logi<:al segments are sret up,: thetext segment, the data segment (initialized data followed by unirritializ,ed, the lattt:r actuall-v-
being initialized to all 0's), and a stack. The text segment begins at locat,i,cn 0 in tle cc,re irlage.
The header is never loaded. If the magic number (the first field in ther opera.ting system header) is
407 (octal), il indicates that the text segment is nor to be write-protectecl ,)r sihareC. so the data
segment will be contiguous with the text segment. If the magic nurnber isr 410 (octailr, the 6a,t,a
segment and the text segment are not writable by the program; if other p.o...... are executingthe same a.out fiie, the processes will share a single text segment. .Magic number al:i (octal) isthe same as 410 (octal), except that 413 (octal) permits demand pagin13.
The stack begins at the end of memory and grows tor*,ards lor,r,er a<lclresses. The star:k isautornatically extended as required. The data segment is extenderl on[.y as reqrrested by thr:
ärß(2) system call.
The value of a word in the text or data portions that is not, a reference t,o an undefinecl extr:rrral
symbol is exacbly the value that will appear in memory when the file is exer:ute,l. If av,«rrd in thetext involves a reference to an undefined external symbol, the st,oral3e clasrs of the synrbol-r;alrleentry for that word u'ill be marked as an "external symbol", and th,: section numSer vrill b,e siet,to 0' When the file is processed by the link editor and lhe external r;ymbol becomes defined,, the

-1-

A.OUT(4)

value of the symbol will be added to the word in the file.

File Header
The format of the fflehdr header is

struct filehdr
{

unsigned short f-magic; f * magic number */
unsigned short f-nscns; /* number of sections */
long f-timdat; f * time and date stamp */
Iong f-symptr; /* file ptr to symtab */
Iong f-nsyms; f * S sYmtab entries */
unsigned short f-opthdr; /* sizeof(opt hdr) */
unsigned short f-flags; f* flags * f

);
Operating System Header

The format of the operating system header is

typedef struct aouthdr
{ short magic; /* magic number */

short vstamP; /* version stamP */
Iong tsize; f* text' size in bytes, padded */
Iong dsize; /* initialized data (.data) */
long bsize; /* uninitialized data (.bss) */
long entry; /* entrY Point */
long text-start; /* base of text used for this file */
Iong data-start; /* base of data used for this file */

) eourron;
Section Header

The format of the section header is

struct scnhdr
{ char s-name[SYMNMLEN];/* section name */

long s-paddr; /* physical address */
long s-vaddr; /* virtual address */
Iong s-size; /* section size * f
long s-scnptr; /* file ptr to raw data */
long s-relptr; f * file ptr to relocation */
long s-lnnoptr; /* file ptr to line numbers */
unsigned short s-nreloc; f* ff teloc entries */
unsigned short s-nlnno; l* ff line number entries */
long s-flags; f* flags * f

);

A.our(4)

Relocation
Object files have one relocation entry for each relocatable reference in the texl; or data. [l reloca-
tion information is present, it will be in the following format:

struct reloc
i

long
Iong
short

);
The start of the relocation information is a-relptr from the Section lleader. ll there is no r,eloc6-
tion information, s-relptr is 0.

Symbol Table
The format of the symbol table header is

fdefine SYMNMLEN 8
#define FILNMLEN 14
fdefine SYMESZ 18 /* th. size of a SYMENT */

r-vaddr;
r-symndx;
r_type;

(virtual) address of reference */
index into symbol table */
relocation type */

struct syment
{

union
{

char
struct
{

long
long

) -n-.,;char
i -r;unsigned long
short
unsigned short
char
char

);

fdefine n_name
f define n_zeroes
f define n_offset
fdefine n_nptr

/* all ways to get a symbol name r,r/

_n_name[SYMNMLEN]; /* name of symbol r,/

-n-zeroes; l* ::0L if in string table */
-n-offset; /* location in string table * f
-n-nptr[2]; / allows overlaying */

n-value; /* value of symbol */
n-scnum; /* section number */
n-type; l* typ" and derived typ" * /n-sclass; /* storage class *7'
n-numaux; /* number of aux entries */

_n._n_name
_n._n_n._n_zeroes
_n._n_n._n_offset
n. n notrll]

Some symbols require more information than a single entry; they are follc,wed by auxiliory entrie.s
that are t,he same size as a symbol entry. The format follows.

3-

A ouT(4)

union auxent {
struct {Iong x-tagndx;

union {
struct {

unsigned short x-lnno;
unsigned short x-size;

) x-lnsz;
long x-fsize;

) x misc:
union {

struct { long x-lnnoptr;
long x-endndx;

) x-fcn;
struct {

unsigned short x-dimenf»llrNuu];
) x-ary;

) x fcnarv:
unsigned short x-tvndx;

) x svm:

struct {char x-fname[FILNMLEN];
) x file:

struct {long x-scnlen;
unsigned short x-nreloc;
unsigned short x-nlinno;

) x-scn;

struct {Iong x-tvfill;
unsigned short x-tvlen;
unsigned short, x-tvran[2];

) x-tv;
);

Indexes of symbol table entries begin at zero. The start of the symbol table is f-symptt (from the
file header) bytes from the beginning of the file. If the symbol table is stripped, f-symptr is O.

The string table (if one exists) begins at f-symptr * (f-nsyms x SYMESZ) bytes from the begin-
ning of the file.

SEE ALSO
as(1), cc(1), ld(1), brk(2), filehdr(4), Idfcn(4), linenum(4), reloc(4), scnhdr(4), svms(+)'

- 4-

ACCr(4)

NAME
acct - per-process accounüing file format

SYNOPSIS
ffinclude (sys/acct.h)

DESCRIPTION
Files produced as a rt:sult of calling acct(2) have records in the form defin,:d by (sysy',acct.h.>,
whose contents are:

typedef ushort comp-t; ,/* "floating point" */
/i
* l3-bit fraction, 3-bit exponent */

strucf accL

{ char ac_flag; /* Accounting flag * fchar ac_stat; /* Exit status */
ushort ac_uid;
ushort ac_gid;
dev_t ac_tty;
time_t ac_btime; /* Beginning time */
comp_t ac_utime; f* accLng user time in clock ticks */
comp_t ac_stime; /* acctng system time in clock ticks */
comp_t ac_etime; f * acctng elapsed time in clock ticks *//
comp_t ac_mem; /* memory usage in clicks */
comp_t ac_io; /* chars trnsfrd by read/write */
comp_t ac_rw; /* number of block reads,/writes */
char ac_comm[8]; /* command name *7'

);

extern struct acct
extert struct inode

ffdefine AFORK 01
fdefine ASU 02
ffdefine ACCTF 0300

ln ac;flag, the AI'ORK flag is turned on by each fork{2) and turned oll by an exec{2). The
ac-c(rfiitn field is inherited from the parent process and is reset by arty erc:t. .Each tinr,e the: s1's-
tem charges the process with a clock tick, it also adds to ac-nxem ther resiitent-set size, defined a^s
the total number of p,ages in memory. Note that this differs from the UlilX l3ystem r/ formula,
which is based on the current process size; such a formula is inappr<>priate to a paging envircn-
ment.

accübuf;
acctp; / inode of accounting file * I
/* h^" executed fork, but no exec */
/* used super-user privileges */
/* record type: 00 : acct * I

-1-

AccT(4)

The strueture taect'h, which resides with the source files of the accounting commands, representsthe total accounting format used by the various accouniing command.,

*
,
total accounting (for acct period), also for day*l

struct tacct {
uid_r
char
float
float
float
float
long
unsigned short
unsigned short
unsigned short

);
SEE AISO

ta_uid; /* userid */
ta-name{8]; /* login name */
ta-cpu[2];. /* eum. cpu rime, p/np (mins) */
ta-kcore{2]; /* eum kcore-minutes,'p'1np i1
ta-c.on[2]; /* cum. connect time,-pini, mins */ta-du; /* eum. disk usage */ -'ta3c; /* eount of processes */ta-sc; /* count of login sessions */ta-dc; /* count of disk samples *fta-fee; /* fee for special

"ervices
;/

acct(tM), ac ctcom(I), acct(2), exec(2), fork(2).
BUGS

The ac-mern value for a short-lived command gives little information about the actual size of the
;:ilä::*"i.T1T",fl';ä:1.1u, o" in*emenled while a dinerent command (".s., ir,. ,u.iri'i"

-2-

AR(4)

NAME
ar common archive file format

DESCRIPTION
The archive command or is used to combine several files into one. .Archiyes äre used :mainXy
Iibraries to be searched by the link editor /d(f).
Each archive begins with an archive file header which is made up of the following ccmponents:

fdefine ARMAG " <ar>"
fdefine SARN.{AG 4

struct ar-hdr
char
char
char
char

);

{
ar-masicISARNaAG];
ar_name[16];
ar-date[4];
ar svrns[4]:

Each archive which contains common
This symbol table is r.rsed by the link
loaded during the link edit process.
number of symbol table entries. The
variable. Each symbol table entry has

struct ar sym {char sym name[S];
char symjtr[4];

);

struct arf_hdr {char arf_name [16];char arf_date[4];
char arf_uid[];char arf_gidfa];
char arf_mode [4];char arf_size[4];

);

/* archive header */
/* magic number */
/* archive name */
f * date of last archive modification */
/* number of ar_sym entries */

object files (see a.out(a)) includes an archive symbol t,able.
editor ld(1) to determine which arc.hive menrbersi must be
The archive file header described a,bov,a is lollo,,ved by a
number of symbol table entries is indicated irr the ar_,sylrr.s
the following format:

/* archive symbol table entrl' */
/* symbol name, recognized by ld */
/* archive position of symbol */

/* archive file member header */
f * file member name */
l* file member date * f
l* file member user identifi cafüon 't f
/* file member group identificatiorr */
/* file member mode */
/* file member size * f

The archive symbol table is automatically created and/or updated by the or(l) commancl.
Following the archive header and symbol table are the archive file members. Each file nnember is
preceded by a file member header which is of the following format:

All information in the archive header, symbol table and file merrLber headers is st,6red in a
machine independent fashion. All character data is automatically portable. llhe nume,ric infor-
mation contained in the headers is also stored in a machine independent fashion. All numer:ic
data is stored as four byies and is accessed by the special archive I/O functions de,scribed in
sputl(3X) functions of the lfäld.a library. Common format archives czun be rnoved from systern to
system as long as the portable archive command or(l) is used.
Each archive file mernber begins on a word boundary; a null byte is insert<ld between fites if
necessary. Nevertheless the size given reflects the actual size of the file exclusive of padding.

-1-

AIr({)

Notice there is no provision for empty areas in an archive file.
SEE AISO

ar(1), Id(1), sputl(3X).
BUGS

Strip(l) will remoye all archive symbol entries from the header. The archive symbol entries must
be restored via the s option of the ar(l) command before the archive can be used wi*"h the link
editor ld(l).

o

crrECKLrsT(4)

NAME
checklist - list of file systems processed by fsck

DESCRIPTIC'N
Checklist resides in d.irectory f etc and contains a lisb of at most 15 speciu,l /7e nanres. Each s;pc-
cial file name is coniained on a separate line and corresponds to a file s1-stem. Eerch file sv'st,errr
will then be automati,cally processed by the /ccß(1M) cornmand.

SEE AISO
fsck(tM).

-1-

coRE(4)

NAME
core - format of core image file

DESCRIPTION
The operating system writes out a core image of a terminated proces when any of varlous errors occur. See srgt-

nal(Z) for the list of reasons;the most common are memory violations, illegal instructions, bus
errors, and user-generated quit signals. The core image is called core and is written in the
process's working directory (provided it can be; normal access controls apply). A process with an
effective user ID different from the real user ID will not produce a core image,
The first section of the core image is a copy of the system's per-user data for the process, includ-
ing the registers as they were at the time of the fault. The size of this section depends on the
parameter uslzc, which is defined in /usr/include/sye/para,m.h. The remainder represents the
actual contents of the user's core area when the core image was written. If the text segment is
read-only and shared, or separated from data space, it is not dumped.
The format of the information in the first section is described by the uüer structure of the system,
defined in /usr/include/sys/user.h. The important stuff not detailed therein is the locations
of the registers, which are outlined in /usr/include/sys/reg.h.

SEE ALSO
crash(lM), setuid(2), signal(2).

-1-

cPro(4)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the -c option oI cpio(L) is not used, is:

struct { short h-magic,
h-dev;

ushort h-ino,
h-mode,
h-uid,
hsid;

short h-nlink,
h-rdev,
h-mtime[2],
h-namesize,
h-filesize[2];

char h-name[h-namesize rounded to word];
) Hdr;

Wherr the -c option is used, lhe heoder information is described by:
sscanf (Chdr,"Vo6o%6oVo6oVo6o%o6o%6o%6o%o6o%ltlo%6oVoLllo97os",

&Hdr.h-magic, &Hdr.h-dev, &Hdr.h-ino, &Hdr.h-mode,
&Hdr.h-uid, &Hdr.hgid, &Hdr.h-nlink, &Hdr.h-rdev,
&Longtime, &Hdr.h-namesize,&Longfile,Hdr.h-name);

Longtime and Longlile are equivalentto Hdr.h-mtime and. Hdr.hJileuze, respecti'r'ely,. The con-
tents of each file are recorded in an element of the array of varying length strucbures,, archiue,
together with other items describing the file. Every instance of h-magic contains thrr corrstant
07O7OZ (octal). The items ä-dcu through h-mtime have meanings expJlained in stoil(2). I'he
length of the null-terminated path name h-name, including the null byte, is gil'en by h__nam'esi,ze.

The last record of the arch&tc always contains the name TRAILER!!1. Special files, directories, and
the trailer are recorded wirh hJileaize equal to zero.

In PILF files, h_rdeo contains the cluster size exponent. This should nol; cause any prortabilltl"
problems, re h-rdeo is otherwise ignored, except for device special files.

SEE AISO
cpio(1), find(r), staü(2), pilf(5).

-1-

DrR(4)

NAME
dir - format of directories

SYNOPSIS
ffinclude <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry (see
/o(4)). The structure of a directory entry as given in the include file is:

ffifndef DIRSIZ
fdefine DIRSIZ14
#endif
struct direct
{

ino_t d ino;
char d_name[olnstz];

);
By convention, the first two entries in each directory are for . and . .. The first is an entry for
the directory itself. The second is for the parent directory. The meaning of . . is modified for the
root directory of the master file system; there is no parent, so . . has the same meaning as ..

SEE AISO
fs(a).

-1-

ERRFILE(a) (System 6300 only)

NAME
errfile - error-log file format

DBSCRIPTION
When hardware errors are detected by the system, an error record is genera.ted and pase;ed t,o thLe

error-logging daemon for recording in the error log for later anaiysis. The defaulr, error log is

f usr f adrnferrfile.
The format of an error record depends on the type of emor that was encountered. Ilver;r recortl,
however, has a header with the following format:

struct errhdr {short e-type; /* record tYP" */
short, e-len; /* bytes in record (inc hdr) *7
time-t e-time; /* time of daY */

);
The permissible record types are as follows:

f define E-GOTS 010 f * slatt * f
fdefine E-STOP Ol2 f * stop *f
fdefine E-TCHG 013 /* time change *7'

fdefine E-CCHG 014 /* configuration change */
fdefine E-BLK 020 /* block device error */
fdefine E-STRAY 030 f * stray interrupt */
fdefine E-PRTY 031 /* memory pari|y * f
ffdefine E-CONS 040 /* console string *,/
fdefine E-CONR 041 /* console record */
fdefine E-CONO O42 /* console overflow */

Some records in the error file are of an administrative nature. These include the startup record
that is entered into thr: file when logging is activated, the stop record that is u,ritien if the rllae-
mon is terminated "gra.cefully", and the time-change record that, is used to a<:count for ehanges in
the system's time-of-day. These records have the following formats:

struct estart {short e-cpu; l* CPU typ" * I
struct utsname e-name; /* system names *,/
short e-mmr3; /* boot reason from CDT */
Iong e-syssize; /* system memory size * f
int e-lhole; l* 64K chunks of memory omitted */
short e-bconf; /* block dev configuralion *f
char e-panic; /* if reboot from panic, what was it */
int e-mmcnt; /* kbytes per array * f

fendif
);
fdefine eend errhdr /* record header */
struet etimchg {time-t e-ntime; /* new time *,/
);

Stray int,errupts cause a record with the following format to be logged:

siruct, estray {physadr e-saddr; f* sfiay loc or device addr */
short e-sbacty; f* arlive block devices */

);

-1-

ERRFILE(4) (System 6300 Only)

Memory subsystem error causes the following record to be generated:
struct eparity {

ushort
ushort

);
Error records for block devices have the following format:

struct ebloek {
dev-t
physadr
short
struct iostat {

long
Iong
ushort

)
short
short
daddr_t
ushort
paddr_t
ushort
short
short
short

);
The following values are used in the c_bflaga word:

fdefine E-WRITE 0
fdefine E-READ 1

fdefine E-NOIO 02
fdefine E-PIryS 04
fdefine E-MAP 010
fdefine E-ERROR 020

The error types CONS and CONO are
console log f etcflogl confile.
A bus fault generates the following record.

struct ebusflt {
short e_type;
ushort e_gsr;
uint e-bsr;

/* general status register */
l* ptu for VAD in BSR */

/* 'tru"' major -+ minor dev no */
/* controller address */
/* other block I/O activity */

/* number read/writes */
/* number'other' operations */
/* number unlogged errors */

f * readfwite, error, etc *f
/* logical dev start ttk * f
/* logical block number */
/* number bytes to transfer */
/* buffer memory address */
/* number retries */
/* number device registers */
/* number of heads */
/* number of physical sectors per track */

/* write operation */
f * read operation */
f * nollO pending */
/* physical llo *l
/* Unibus map in use */
l* Uo failed */

flagged by endemon(lM) wrd errdead and written

e_8sr;
e3te;

e-dev;
e-regloc;
e-bacty;

io-ops;
io-misc;
io-unlog;
e_stats;
e-bflags;
e-trkoff;
e-bnum;
e-bytes;
e_memadd;
e rtrv:
e_nreg;
e-trks
e_sec§

to the

ushort e_pre; l* pug" frame of fault */
ushort e_pid; l* pid *l

/* kind of fault */

/* combined bsrO and bsrl */

f * ec at time of fault */
/* Res at time of fault */

uint e_pc;
uint e-rps;

);
uint e-regs[t6]; /* all the registers */

SEE AISO

-2-

errdemon(1M).
FILES

/usr/include/sys/erec.h
f erc flog f conflle
/usr/adm/errfile

ERRPILE(4) (System 6300 Only)

-3-

rrLElrDR(4)

NAME
filehdr - file header for common object files

SYNOPSIS
finclude <filehdr.h)

DESCRIPTION
Every common object file begins with a 20-byte header. The following C struet declaration isused:

struct, filehdr
{

unsigned short f_magic ; /* magic number */
unsigned short f_nscns ; /* number of sections */long f_timdat ; f* time & date stamp */long f-symptr ; /* file ptr to symtab */long f_nsyms ; l* # symtab entries */
unsigned short f_opthdr ; /* sizeof(opt hdr) */

. unsigned short f_flags ; /* Ilags * f);
F-aymptr is the byte offset into the file at which the symbol table can be found. Its value can beused as the offset in /aecß(3S) to position an I/o stream to the symbol table. The operating sys-
term optional header is always 36 bytes. The valid magic numbers are given below. The first
three apply to a System 6600 Application processor.

ffdefine MCG8KWRMAGIC 0520 /* writeable texü segments */
#define MC68KRON4AG_IC 0b21 /* readonly shareable text segments */
fdefine MC6SKPGMAGIC 0522 /* demand paged rext."g-uit, *7

0550 /* 3B20S */
0551 /* 3B2OS*l

fdefine V§0VRMAGIC O57O l* VAX writable text segments */
fdefine v§GoN4AGIc ob75 l* vAX readonly sharable text segments */
The value inf-timdat is obtained from the time(z) system call. Flag bits currently defined are:

fdefine F_RELFLG 0OO0f /* relocarion entries stripped */
fdefine F-E)GC 00002 l* file is executable */
fdefine FJTWO 00004 /* line numbers stripped */
fdefine F_LS\l{S 00010 /* local symbols stripped {/
fdefine F_MINMAL 00020 /* minimal object file * I
fdefine F_IIPDATE 00040 /* update file, ogen produced */
fdefine F-SWABD 00100 /* file is "pre-swabbed, */
fdefine F_AR16WR 00200 /* 16 bir DEC host */
fdefine FJRs2wR 00400 l* 32bit DEC hosr */
fdefine F-eRazw 01000 /* non-DEC host, incruding system 6600 */
fdefine F_PATCH 02000 /* npatch" lisr in opt hdr */

SEE AJ,SO
time(2), fseek(BS), a.our(4).

ffdefine NsBMAGIC
fdefine NTVIV{AGIC

1-

FS(4)

NAME
fs - format of file system

SYNOPSIS
finclude (sys/filsys.h)
finclude (sys/types.h>
finclude (sys/param.h)

DESCRIPTION
Every file system has a common format for certain vital information. Every such lüle systern .is

divided into a certain number of 512-byte long sectors. Sector 0 is unused and isi availabl,: to con-
tain a bootstrap program or other information.
Sector 1 is the super-blocle . The format of a super-block is:

l** Structure of ühe supr:r-block*l
struct filsys
{ ushort s-isize; f* size in blocks of i-list */

daddr-t s-fsize; f* size in blocks of entire file system */
short s-nfree; /* number of addresses in s-free */
daddr-t s-freeftucrRor]; f * free block list */
short s-ninode; /* number of i-nodes in s inode */
ino_t s inode[NICINoD]; /* free i-node list *,/
char s-flock; /* lock during free list manipulation *f
char s-ilock; /* lock during i-list manipulation */
char s-frnod; /* super block modified flag */
char s-ronly; /* mounted read-only llug * Itime-t s-time; /* last super block update */
short s-dinfo[a]; /* device information */
daddr-t s_tfree; f* total free blocks*/
ino-f, s_tinode; /* total free i-nodes */
char s-fname[6]; /* file system name */
char s-fpack[6]; /* file system pack name */
Iong s-fill[ll]; /* ADJUST to make sizeof filsys be 5-t2 *,/
short s_dummy; /* reserved for future use */
short s-cluster; /* cluster size (PILF only) */
long s_bitsize; f * size of free block bit map */'
long s-magic; /* magic number to indicate new file system */
long s_type; /* typ" of new file system *,/

);

fdefine FsMAGIC Oxfrl187e20 /* s_magic number */

ffdefine Fslb I l* 512 byre block */
fdefine Fs2b 2 l* t024 byre block */
fdefine FsPILF 0x10000 /* PILF file system */
The operating system recognizes three kinds of file systems, specified by s type:
o Oriented to 512-byte I/O. Identified by an s_type equal to Fsl.b. 'fhis type is aLso

assumed if s-tnagic is not equal to FsMAGIC. (This type was originaily t,he only t;ype
supported by UNIX Systems; the operating system does not currently support this type.)

o Oriented to 1024-byte I/O. Identified by an s_type equal to Fs2b. This is e,ssent,ialll.the
standard file system for the operating system and UNIX System V.

-l-

rs(4)

. pILF (Performance Improvement In Large Files) file system. Identified by an d-type
equal tt FspILF. A PILF file system can be used like a standard file system, but is sub-
stantially more efficient when used with direct cluster I/O (see piu$».

In the following description, the size of a logical block is determined by the file system type. For
the original ffZ-byte oriented file system, a block is 512 bytes. For the 1024-byte oriented file
system and the PILF file system, a block is 1024 bytes or two sectors. The operating system
takes care of all conversions from logical block numbers to physical sector numbers'

S_isize is the address of the first data block after the i-list; the i-list starts just after the super-
block, namely in block 2; thus the ilist is a-iaize-2 blocks long. SJaize is the first block not
potentially available for allocation to a file. These numbers are used by the system to check for
bad block numbers; if an "impossible" block number is allocated from the free list or is freed, a
diagnostic is written on the on-line console. Moreover, the free amay is cleared, so as to prevent
further allocation from a presumably corrupted free list.

The free list is provided on 512-byte and 1024-byte file systems, but not on PILF file systems. It
is maintained as follows. The sJree array contains, in sJree[1], ..., aJreela-nfree-ll, up to 49
numbers of free blocks. SJree[0] is the block number of the head of a chain of blocks constitut
ing the free list. The first long in each free-chain block is the number (up to 50) of free-block
nqmbers listed in the next 50 longs of this chain member. The first of these 50 blocks is the link
to the next member of the chain. To allocate a block: decrement s-nfrce, and the new block is
e freelc nfreel. If the new block number is 0, there are no blocks left, so give an error. If
a_nfree became 0, read in the block named by the new block number, replace a-nfrce by its first
*oid, ,nd copy the block numbers in the next 50 longs into t'he aJree away. To free a block,
check if s_nfree is 50; if so, copy e-nfree and the aJree array into it, write it out, and set
a_nfree to 0. In any event set aJreela-nfree) to the freed block's number and increment c-nfree.

S-tfree is the total free blocks available in the file system.

S-ninode is the number of free i-numbers in the c-inoile array. To allocate an i-node: if
a_ninorle is greater than 0, decrement, it and return c-inodels-ninodel. If it was 0, read the i.list
,rrd p1... the numbers of all free i-nodes (up to 100) into the s-inode array, then try again. To
free "., i-node, provided a-ninoile is less than 100, place its number inta e-inodeleltinode) and
increment s_ninoile. If. s-ninode is already 100, do not bother to enter the freed i-node into any
table. This list of i-nodes is only to speed up the allocation process; the information as to
whether the i-node is really free or not is maintained in the i-node itself.

S-tinode is the total free i-nodes available in the file system.

SJlock and o-iloc& are flags maintained in the core copy of the file system while it is mounted
and their values on disk are immaterial. The value of cJmod on disk is likewise immaterial; it is
used as a flag to indicate that the super-block has changed and should be copied to the disk dur-
ing the next periodic update of file system information.
S-ronly is a read-only flag to indicate write-protection.
S_time is the last time the super-block of the file system was changed, and is the number of
seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT). During a reboot, the s-trme of the
super-block for the root file system is used to set the system's idea of the time.

SJname is the name of the file system and aJpack is the name of the pack.

On a PILF file system, s-cluater is the default cluster size exponent, used by a process that
creates a file on the file system without specifying a default cluster size (see ayclocal(2)).

I-numbers begin at 1, and the storage for i-nodes begins in block 2. I-nodes are 64 bytes long. I-
node I is reserved for future use. I-node 2 is reserved for the root directory of the file system, but
no other i-number has a built-in meaning. Each i-node represents one file. For the format of an
i-node and its flags, see inode(a\.

_r-

rs(4)

On a PILF file system, the bit map seryes the function of the free list by' sho'wing whi«:h bloclks -
are allocated to files. [t is at the very end of the file system. S_bitsize is the numbe,r of blocks in
the bit map. Each bit in the bit map is 0 if the corresponding lk daüa block is allocz'ted bo a lile.

FILES
/usr/include/sys/filsys h
/ usr/inc Iude/sys/stat.h

SEE ALSO
fsck(lM), fsdb(lM), mkfs(rM), inode(4), pilf(5).

-3-

FSPEC (4)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on the operating system with non-standard tabs, (i.e., tabs with
are not set at every eighth column). Such files must generally be converted to a standard format,
frequently by replacing all tabs with the appropriate number of spaces, before they can be pro-
cessed by operating system commands. A format specification occurring in the first line of a text file specifies
how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and surrounded
by the brackets (: and:). Each parameter consists of a keyletter, possibly followed immedi-
ately by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The value of toüs must be one
of the following:

1. a list of column numbers separated by commas, indicating tabs set at the speci-
fied columns;

2. a - followed immediately by an integer n, indicating tabs at intervals of n
columns;

3. a - followed by the name of a "canned" tab specification.

iffi fl Tl'*ffi :äT['fl H.lT,; äiiä:?"] ;l""l;l'''u'etc rhe canned tabs

asize The s parameter specifies a maximum line size. The value of cize must be an
integer. Size checking is performed after tabs have been expanded, but before the
margin is prepended.

romarsin *:"Tr';::Ht'il1TI';: ,1;:I:'r
of spaces to be prepended to each rine' rhe

d The d parameter takes no value. Its presence indicates that the line containing the
format specification is to be deleted from the converted file.

e The e parameter takes no value. Its presence indicates that the current format is to
prevail only until another format specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are t-E and mO. If the s parame-
ter is not specified, no size checking is performed. If the first line of a file does not contain a for-
mat specification, the above defaults are assumed for the entire file. The following is an example
of a line containing a format specification:

* (:t5,10,15 s72:) *
If a format specification can be disguised as a comment, it is not necessary to code the d parame-
ter.
Several operating system commands correctly interpret the format specification for a file.

SEE ALSO
ed(1), newform(1), tabs(1).

-1-

GETTYDEFS({)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The /etcf gettydefs file contains information used by getty(lM) bo set up the speed a14 terminal
settings for a line' It supplies information on what the /ogfn'prompt shoul,C look lik,e. [t alsq sup-plies the speed to try next if ühe user indicaües the current speed is not correct by typing a<break) character.
Each entry in /etc/gettydefe has the following format:

labelf initial-f'lags f finar-flags ff login-prompr gnexü-raber
Each entry is followed by a blank line. The various fields can contain quoted charac:t;ers 9f r,heform \b, \., \.' etc., as well as \nnn, where nnnis the octal value of the tlesired character. Thevarious fields are:

This is the string against which gettg tries to match its r;econd algurnent. It isoften the speed, such as 12oo, at which the terminal is supposed io run, trut it
need not be (see below).

initial-flags These flags are the initial ioctt(2) settings to which the terminal is to be set if aterminal type is not specified to getty. The frags rhat, getty understan,ls are [hesarre as the ones listed in /usr/include/sys/terrnio.h (see termiol.T)). Nor:mally
only the speed flag is required in the initiat-flaga . Getty iuromaticaliy sets the ter-minal to raw input mode and takes care of most of the othr:r flag.. Th. initiail-flag
settings remain in effect lunlil getty executes login(l).

final-flags These flags take the same values as the i'nitiat-ftag.s and are sert, jusll prior to gcfty
executes /ogin. The speed flag is again required. The composite fla,B SANE;ke;
care of most of the other flags that need to be set so that tLe procesisor a.nd l;ermi-nal are communicating in a rational fashion. The other two commonll. specified
final-fiags are TABB, so that tabs are sent to the terminal res spaces, ancl HU.pcL,
so that the line is hung up on the final close.

login-promp, This entire field is printed as the login-prompt. Unlike bhe above fields rvherewhite space is ignored (a space, tab or new-line), they are incruderr in the rrogin-prompt field.
nest-label If this entry does not specify the desirerl speed, indicatecl by the use' typ,1n5; albreak> character, then getty will search for the entry with nect-lttbelas its Ioüelfield and set up the terminal for those settings. Usually, a sieries of speecls arelinked together in this fashion, into a closed set; for ins,tance , 24oot linkr:d to12o0, which in turn is linked to Boo, which finaily is linked to 24o0r.
It getty is called without a second argument, then the first entry of /etcf Bettydel,s is used, thusmaking t'he first :nlY."f f etc/gettydefs the default entry. Ii is al"o ,rla ir geü,y can not findthe specified label . lf fercf gebtydefs itself is missing, there is one entry built; intc, thr: comr,narndwhich will bring up a terminal at g0OO baud.
It is strongly recomnrended that after making or modifying /etcfgettydefs. it t,e run throughgetty wiLh the check option to be sure there are no errors,

FILES
/etc/geftydefs

SEE AISO
gerty(tM), Iogin(t), ic,ctl(2), termio(7),

lab el

-l-

GROTTP(4)

NAME
group - group file

DESCRIPTION
Group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

This is an ASCII file. The fields are sepa.rated by colons; each group is separated from the next by
a new-line. If the password field is null, no password is demanded.
This file resides in directory /etc. Beeause of the encrypted passwords, it can and does have gen-
eral read permission and can be used, for example, to map numerical group ID's to names.

FILES
f etcfgrotp

SEE AISO
newgrp(1), passwd(1), crypt(3C), passwd(4).

-l-

TNTTTAB(4)

NAMtr
inittab - script for thr: init process

DESCRIPTION
The inittab file supplies the script to init's role as a general process dispatcher. C'n System 6600
systerns, a separate inittab is required for each processor; the last t*'o characters of the name are
the processor number. The process that constitutes the majority of inl'f's process dispatching
activities is the line process letclgetty that initiates individual terminal liner;. Other processes
typically dispatched by init are daemons and the shell.

The inittab file is composed of entries that are position dependenü and have the follc,wing; fornnar;

id:rstate :actio n:process

Each entry is delimited by a newline, however, a backslash (\) precedinp; a newline irrdica,tes a,

continuation of the entry. Up to 512 characters per entry are permitted. Comrnents may be
inserted in the procesE field using the sÄ(1) convention for comments. C,rmments for lines tlLat
spawn gettys are displayed by the uräo(l) command. Ic is expected that they will contain some
inforrnation about the line such as the location. There are no limits (othe.r than maxirnum entry
size) imposed on the number of entries within the in,ittob file. The entry fields are:
id This is one to four characters used to uniquely identify an entry.
rstate This defines the run-leael in which this entry is to be processed. Ran-leuels effect,ively

correspond to a configuration of processes in the system. That is, each pr()cesis, spawned
by init is assigned a run-leuel or run-leoels in which it is allowed to exist. 'The run-leoel.s
are represented by a number ranging from O ührough E. As an examplle, il the syst,em is
in run-leuel tr-, only those entries having a 1 in the rstafe field will be process,ed. \ry'herr
inrl is requested to change run-leoels, all processes which do not, ha.ire arr entry inL the
rstate field for the target run-lcuel will be sent the warning signal (SI<)TIIRM) and
allowed a 20*second grace period before being forcibly terminated by a kil.l signal (SIG-
KILL). The rstate field can define multiple run-leuels for a proeess by s,elect,ing rnore
than one run-lcoel in any combination from 0-E. lf no run-leuel is specified, then the
process is assumed to be valid at all run-leuela O-6. There are three other values, a, b
and c, which can appear in the rotate field, even though they are not true run-le ael,s.
Entries which have these characters in lhe rstate field are processed on.ly w.hen 1,he telinit
(see infr(lM)) process requests them to be run (regardless of the current run-lettel ol'the' system). They differ from run-leaels in lhat init can neyer ent<:r ru.n-lerrel a, b or c..
Also, a request for the execution of any of these processes does rrot crhanp;e tlie culrent,
run-leuel . Furthermore, a process started by an a, b or c command is nc't killed when
inft changes levels. They are only killed if their line in f etcfinittab is marl<ed off in
th,e octton field, their line is deleted entirely lrom f etcfinittab, or init Boes into the
SINGLE USEI? state.

action Key words irr this field tell lnit how to treat the process specified in the process field.
The actions recognized by init are as follows:
respawn If the process does not exist then start the process, rlo not w:rit for its ter-

mination (continue scanning lhe inittab file), and when it dies re,starr; the
process. If the process currently exists then do nothing and continue scan-
ning the inittab file.

wait Upon rnrt's entering the run-leael that matches the entry's rstote, start
the process and wait for its termination. All subsequenl; rea<ls of the rndt.
toä file while rnit is in the same run-leoel will carrse tnrt l,o ignore thris
entry.

once Upon inil's entering a run-leuel that matches the entry's rslate, sbarl the
process, do not wait for its termination. When it dies, do not re,starl the
process. If upon entering a new run-leoel, where the process is still

-1-

TNTTTAB(4)

boot

running from a previous run-leael change, the program will not be res-
tarted.
The entry is bo be processed only at fnit's boot-time read of the inittab
flle. Init is to start the process, not wait for its termination, and 'when it
dies, not restart the process. In order for this instruction to be meaning-
ful, the rsfote should be the default or ii must match init's run-leuel aL
boot time. This action is useful for an initialization function following a
hardware reboot of the system.

bootwait The entry is to be processed only at inft's boot-time read of the inittab
f1le. Init is to start the process, wait for its termination and, when it dies,
not resiart ihe process.

powerfail Execute the process associated with this entry only when fnit receives a
power fail signal (SIGPWR see signal(2)).

powerwait Execute the process associated with this entry only when inrt receives a
power fail signal (SIGPWR) and wait until it terminates before continuing
any processing of inittab.

off If the process associated with this entry is currently running, send the
warning signal (SIGTERM) and wait 20 seconds before forcibly terminat-
ing the process via the kill signal (SIGKILL). If the process is nonexistent,
ignore the entry.

ondemand This instruction is really a synonym for the respawn action. It is func-
tionally identical to respawn but is given a different keyword in order bo
divorce its association with run-leuels. This is used only with the a, b or c
values described in the rstate field.

initdefault An entry with this action is only scanned when init initially invoked. 1ni,
uses this entry, if it exisbs, to determine which run-leuel to enter initially.
It does this by taking the highest run-leuel specified in the rstate field
and using that as its initial state. If the rstate field is empty, this is inter-
preted as O123450 and so fnit will enler run-leuel 6. Also, the initde-
fault entry can use s to specify thaL init start in lhe SINGLE t/SEr? state.
Additionally, if init doesn't find an initdefault entry in f etcf lnittab,
then it will request an i'itial run-leuel from the user at reboot time.

sysinit Entries of this type are executed belore inr, tries to access the console. Ii
is expected that this entry will be only used to initialize devices on which
lnit might try to ask the run-leoel question. These entries are executed
and waited for before continuing.

proLess This is a sä command to be executed. The entire process field is prefixed wilh etec
and passed to a forked sä as sh -c ' exec command' For this reason, any legal sä

syntax can äppear in the process field. Comments can be inserted with the i ffcomment
syntax.

FILtrS
On System 6300: /etc/inittab
On System 6600: /etc/inittab??
(last two characters specify bhe Application Processor)

SEE AISO
getty(lM), init(lM), sh(1), who(1), exec(2), open(2), signal(2).

INoDE(4)

NAME
inode - format of an i-node

SYNOPSIS
finclude (sys/types.hl
Sinclude <sys/ino.h>

DESCRIPTION
An i-node for a plain file or directory in a file system has the followin,g st,ructrre clefin,erd by(sys/ino.h).

/x Inode structure as it appears on a disk block. */
struct dinode
{

ushort di_mode; /* mode and type of file */
short di-nlink; /* number of links to file */
ushort di-uid; f * owner's user id *7'

ushort digid; ,/* owner's group id */
off_t di_size; /* number of bytes in file */
char di-addr[39]; /* disk block addresses */
char di_cl; /* cluster size exponent (plLF only) */
time-t, di-atime; /* time last accessed */
time_t, di_mtime; /* time last modified */
time-t, di_ctime; /* time of last file status change */

i;
l** the 40 address bytes:

* ,n used; l3 addresses
of 3 byles each.*/

For the meaning of the defined types off_t ar,d time_t see types(5).
In a PILF file, addresses are organized as in a standard fK file system, with identiczul ui;e of b,lo,cks
of additional addresses. But data addresses do noc point to individual l.K bltocks; insr[ead, e:rch
poinls to the first block of a contiguous cluster of blocks, each of which is 2" ilK blocks long,
where n is the value in the di cl field.

FILES
/usr,/ins1r4./sys/ino. h

SEE ALSO
stat(2), fs(a), pilf(5), types(5).

-1-

rssuE (4)

NAME
issue - issue identification file

DESCRIPTION
The file fetcfissue contains the lssue or project identification to be printed as a login prompt,.
This is an ASCII file which is read by program getty arr.d. then written to any terminal spawned or
respawned from the ltaee file.

FILES
7i etc/issue

SDE AISO
losin(r).

-1-

LDFCN(4)

NAME
ldfcn - common object file access routines

SYNOPSIS
ffinclude (stdio.h)>
Sinclude (frlehdr.h)
ffinclude (ldfcn.h)

DESCRIPTION
The common object file access routines are a collection of functions for rea,ling an c,bjer:'b file that
is in common object lile form. Although the calling program must know t,he dr:taile,d structure oI
the parts of the object file that it processes, the routines effectively insula,te the cz'lling prograrr
from knowledge of the overall structure of the object file
The interface between the calling program and the object file access routinr:s is based on the
defined type LDFILE, defined as struct ldfile, declared in the header file ldfcn.h. The primary
purpose of this structure is to provide uniform access to both simple object flles and to,rlcject files
that are members of an archive file.
The function ldopen(lX) allocates and initializes the LDFILE structure an.(l returnis a pointer to
the structure to the calling program. The fields of the LDFILE structure rnay be a<:cessed indivi-
dually through macros defined in ldfcn.h and contain the following informa,tion:
LDFILE *ldpir;
TYPE(ldptr) The file magic number, used to distinguish between archive membe.rs and simple

objecü files.
OPTR(ldptr) The file pointer returned by fopen and used by the standard input/ouiput llunc-

t,ions.

OFFSET(ldptr) The I'ile address of the beginning of the object file; the c»:lt'set is ncn-zero iil the
objecr, file is a member of an archive file.

ImADER(ldptr) The file header structure of the object file.
The object file access functions themselves may be divided into four categories:

(1) functions that open or close an object file
ldopen(lX) ar.d ldaopcn

open a common object file
ldclasc (3X) a\d ldacloae

close a common object file
(2) functions that read header or symbol table information

ldahread(3X)
read the archive header of a member of an archive file

ldlhreod,(3X)
read the file header of a common object file

I ds hr e a d (3X) and I dns hr e a d
read a section header of a common object file

ldtbread(3X)
read a symbol table entry of a common object file

(3) functions that position an object file at (seek to) ihe start of the section, relocatiorr,
or line number information for a particular section.

ldohaech(3X)
seek to the optional file header of a common object file

Idssee* (3X) and, ldnsseek

-l-

LDFCN(4)

seek to a section of a common object file
ldrse ek (3X) and I dnra e ek

seek to the relocation information for a section of a common object file
I dl s e e k (3X) and I dnls e ek

seek to the line number information for a section of a common object file
ldtbseek(3X)

seek to the symbol table of a common object file
(l) the function ldtbinder(3X) which returns the index of a particular common object file
symbol table entry

These functions are described in detail in their respective manual pages.

Ail the functions except ldopen, ldaopen and ldtbindec return either SUCCESS or FAILURE,
both constants defined in ldfcn.h. Ldopen and ldaopen both return pointers to a LDFILE strue-
ture.

MACROS
Additional aceess to an object file is provided through a set of macros defined in ldfcn.h. These
macros parallel the standard input/output file reading and manipulating functions, translating a
reference of the LDFILE structure into a reference to its file descriptor field.
The following macros are provided:

LDFILE*ldptr;
GETC(ldptr)
FGETC(ldptr)
GETw(ldptr)
UNGETC(c, ldptr)
FGETS(s, n, ldptr)
FREAD((char *) ptr, sizeof (*ptr), nitems, ldptr)
FSEEK(ldptr, offset, ptrname)
FTELL(ldptr)
REWIND(ldptr)
FEoF(ldptr)
FERROR(ldptr)
FILENO(ldptr)
SETBITF(Idptr, buf)

See the manual entries for bhe corresponding standard input/output library functions for details
on the use of these macros.
The program must be loaded with the object file access routine library libld.a.

. CAVEAT
The macro FSEEK defined in the header file ldfcn.h translates into a call to the standard
input/output function /seeÄ'(3S). FSEEK should nob be used io seek from the end of an archive
file since the end of an archive file may not be the same as the end of one of its object file
members!

SBE ALSO
fseek(3S), ldahread(3X), Idclose(3X), ldfhread(3X), ldlread(3X), ldlseek(3X), ldohseek(3X),
ldopen(3X), ldrseek(3X), ldlseek(3X), ldshread(3X), ldtbindex(3X), Idtbread(3x), ldtbseek(3X).

o

LINENUM(4)

NAME
linenum - line number entries in a common object file

SYNOPSIS
finclude (linenum.h)

DESCRIPTiON
Compilers based on pcc Benerate an entry in the object file for each C sr)urce line on vrhich a
breakpoint is possible l.when invoked with the -g opt.ion; see cc(l)). IJsers can then reference line
numbers when using the appropriate software test system. The structure of these lin.e nurnbr:r
entries appears below.

struct lineno
{

long I symndx ;
long l-paddr ;

) l-addr ;

unsigned shorü l-lnno ;

);
Numbering starts with one for each function. The initial line number enüry for a furrction hurs
l_lnno equal to zero, and the symbol table index of the function's entry is tn l-aymndr. Other-
wise, l-lnno is non'zero, and lgad.dr is the physical address of the code for ttre rel'erence,d [inr:.
Thus the overall süructure is the following:

l-addr

function symtab index
physical address
physical address

l_lnno

function syrntab index 0
physical address line
physical address line

SEE ALSO
cc(1), a.out(4).

union
{t

0
line
line

-1-

MASTER(4)

NAME
master - master device information table

DESCRIPTION
This file is used by the config(lM) program to obtain device information that, enables it to gen-
eraüe the confi6uration files. Do not modify it unless you fully understand its construction. The
file consists of 3 parts, each separated by a Iine with a dollar sign ($) in column l. Part 1 con-
tains device information; part 2 contains names of devices that have aliases; part 3 contains tun-
able parameter information. Any line with an asberisk (*) in column I is treated as a comment.

Part I contains lines consisting of 6 or 7 fields, with the fields delimited by tabs and/or blanks:
Field 1: device name (8 chars. maximum).
Field 2: device mask (octal)-each "on" bit indicates that the handler exists:

00010O initialization handler
000040 power-failure handler
000020 open handler
000010 close handler
000004 read handler
000002 write handler
000001 iocül handler.

Field 3: device type indicator (octal):
000200 allow only one o[these devices
000100 suppress count field in the conf.c file
000040 suppress interrupt vector
000020 required device
000010 block device
000004 character device
000002 floating vector
000001 fixed vector.

Field 4: handler prefix (4 chars. maximum).
Field 5: major device number for block-type device.
Field 6: major deviee number for character-type device.
Field 7: (optional) maximum serial devices on system.

Part 2 contains lines with 2 fields each:
Pield 1: alias name of device (8 chars. maximum).
Field 2: reference name of device (8 chars. maximum; speeified in part l).

Part 3 contains lines with 2 or 3 fields each:

Field 1: parameter name (as it appears in description file; 20 chars. maximum)
Field 2: parameter name (as it appears in the conf.c file; 20 chars. maximum)
Field 3: default parameter value (20 chars. maximum; parameter specification is

required if this field is omitted)
SEE ALSO

config(lM).

-1-

MNTTAB(4)

NAME
mnttab - mounted file system table

SYNOPSIS
finclude (mnttab.h)

DESCRIPTION
Mnttab resides in directory /etc and contains a table of devices, mounted by the ntount{,1\,4'1
command, in the follorving structure as defined by (rnnttab.h):

struct mnttab {char mt-dev[32];
char mt-filsysf 32l;
short mt-ro-flg;
time-.t mt-time;

);
Each entry is 70 bytes in length; the first 32 bytes are t,he null-padded name of thr: place u'here
Lhe special /i/e is mounted; the next 32 bytes represent the null-padded root narne of the mounted
special fiie; the remaining 6 bytes contain the mounted special file's readlwrite per:mir,;s;ic)ns and
the date on which it was mounted.
The maximum number of entries in mnttab is based on the system paramet,er NMOUNT located
in /usr/arcfutsf cf f conf.c, which defines the number of allowable mounted special files.

SEE AISO
mount,(1N{), setmnt(lM).

-1-

PASSWD (4)

NAME
passwd - password file

DESCRIPTION
Passwd contains for each user the following information:

login name
encrypted passrvord
numerical user ID
numerical grouP ID
a field with no standard use
initial working directorY
program to use as Shell

This is an ASCII file. Each field within each user's entry is separated from the next by a colon.
The fifth field exists for historical reasons; it is often used to hold the user's name and address.
Each user is separated from the next by a new-line. If the password field is null, no password is
demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have gen-
eral read permission and can be used, for example, to map numerical user IDs to names.

The encrypted password consists of 13 characters chosen from a 64-character alphabet (., /,O-g'
L-2, a-lzj, except when the password is null, in which case the encrypted password is also null.
Password aging is effected for a particular user if his encrypted password in the password file is
followed by a comma and a non-null string of charact,ers from the above alphabet. (Such a string
must be introduced in the first instance by the super-user.)

The first character of the age, M say, denotes the maximurn number of weeks for which a pass-

word is valid. A user who attempts to login after his password has expired will be forced to sup-
piy a new one. The next character, m say, denotes the minimum period in weeks which must
expire before the password may be changed. The remaining characters define the week (counted
from the beginning of 1970) when the password was last changed. (A null string is equivalent to
zero.) M urrä * have numerical values in the range 0-63 that correspond to the 64-character
alphabet shown above (i.e. / : L week; z :63 weeks). If rn -- M :0 (derived from the string
. Ä. ..) the user will be forced to change his password the next time he logs in (and the "age." will
disappear from his entry in the password file). If m) M (signified, e.8., bY the string ./) only
the super-user will be able to change the password.

FILES
/etc/passwd

SEE AISO
login(1), passwd(1), a6al(3C), oypt(3C), getpwent(3C), group(4)'

1-

PRoFTLE(4)

NAME
profile - setting up an environment at login time

DESCRIPTION
If your login directorl' contains a file named .profile, that file will be executed (via the shell's
exec.profile) before your session begins; .profiles are handy for setting ()xp,crted environrnent,
variables and terminal modes. If the file fetcfprofile exists, it will be executed lbr every user
before the .profile. The following example is typical (except for the comments):

f Make some environment variables global
export MAIL I'ATH TERM
ff Set file creation mask
umask 22
Tell me when new mail comes in
14,41, :/usr/mail/myname
Add my /b,in directory to the shell search sequence
PATH:$PATH:$HOME/bin
f Set terminal type
export TERM
while true
do

echo 'terminal: \c'
read TERM
if tset
then

break
fi

done

FILES
$HOME/.profile
/etc/profile

SEE ALSO
tset(l), env(t), login(l), mail(1), sh(f), stty(l), su(l), environ(5), term(5).

-1-

RELOC(1)

NAME
reloc - relocation information for a common object file

SYNOPSIS
finclude (reloc.h)

DESCRIPTION
Object files have one relocation entry for each relocatable reference in the text or data. If reloca-
tion information is present, iü will be in the followin6 format.

struct reloc
{ long r_vaddr ; l* (virtual) address of reference */long r-symndx ; /* index into symbol table */

short r-type ; /* relocation type * I
);

l** All generics* reloc. already performed to symbol in the same section*l
fdefine RJBS 0

/** 38 generic* 24-bit direct reference* 24-bit'relative' reference* l6-bit optimized 'indirect' TV reference* 24-bit 'indirect' TV reference* 32-bit 'indirect" TV reference*l
fdefine R-DIR24 04
ffdefine R-REL24 05
ffdefine R-OPT16 014
ffdefine R-IND24 015
fdefine R-IND32 016

l** DEC Processors VAX ll/780 and VAX 1ll750
* AIso Motorola Processors 68000, 68010, and 68020

*l
fdefine R-RELBYTE0l7
ffdefine R-RELWORD 020
fdefine R-RELLONG O2l
fdefine R-PCRBYTEO22
fdefine R-PCRWORD 023
f,define R-PCRLONG O24

As the link editor reads each input section and performs relocation, the relocation entries are
read. They direct how references found within the input section are treated.
R-eSs The reference is absolute, and no relocation is nece*sary. The entry will be ignored.

-l-

RELoc (4)

R-DIIi24 A direct, 24-bit reference to a symbol's virtual address.
R-REL24 A "PC-relative", 24bit reference to a symbol's virtual addrerss. .Rejat,ive relferences

occur in instructions such as jumps and calls. The act,ual a,d.<lre:is used is obta,ined
by adding a constant to the value of the program counter ar, the time tlhr: insl;ruc-
tion is executed.

R-oP'T16 An optinrized, indirect, 16-bit reference through a transfer r.ector. The :irrstrur:tir:n
contains the offset into the transfer vector table to the trarrsfer vecr,or vrhere the
actual address of the referenced word is stored.

R-IND24 An indirect, 24-bit reference through a transfer vector. The instmction cc,nitain:; tl[e
virtual address of the transfer vector, whr:re the actual ad,:lress of the referenc,:d
word is stored.

R-li\D32 An indirect, 32-bit reference through a transfer vector. The instrtrction cc,n.tain;:r ühe
virtual address of the transfer vector, where the actual address of the r,ef,erenced
word is sbored.

R_RELBYTE A direct r8-bit reference to a svmbol,s virtual address.
R-RELWORD

A direct 1&bit reference to a symbol's virtual address.
R_RELLONG A direct ,32-bit reference to a symbol,s virtual address.
R-PCIIBYTE A "PC-relative", 8-bit reference to a symbol's virtual address,
R-PCRWORD

A "PC-rerlaüive", 16-bit reference to a symbol's virtual address.
R-PCRLONG A "PC-rt'lative", 32-bit reference io a symbol's virtual address.
On the VAX processors relocation of a symbol index of -1 indicaies that the relative dilTerr:nce
between the current segment's start address and the program's load address is addeC t<:, the rel,r-
catable address.

Other relocation types will be defined as they are needed.
Relocation entries are generated automatically by the assembler and automarically utililed by- t1e
link editor. A link editor option exists for removing the relocation entries frorn an object {i1:.

SEtr AISO
Id(1), strip(1), a.out(4), syms(4).

r

sccsPrl,E(4)

NAME
sccsfile - format of SCCS iile

DESCRIPTION
An SCCS file is an ASCII file. It consisüs of six logical parts: the checksum, the delta tabte (con-
bains information about each delta), uaer namer (contains login names and/or numerical group
IDs of users who may add deltas), flags (contains definitions of internal keywords), comments
(contains arbitrary descriptive information about the file), and lhe body (contains the actual text
lines intermixed with control lines).
Throughout an SCCS file there are lines which begin wiüh the ASCtr SOH (start of heading) char-
acter (octal 001). This character is hereafüer referred to x thc control character and will be
represented graphically as @. Any line described below which is not depicted as beginning with
the control character is prevented from beginning with the control character.
Entries of the form DDDDD represent a five-digit string (a number beüween 00000 and 99999).
Each Iogical part of an SCCS file is described in detail below.
Checksum

The checksum is the first line of an SCCS file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all eharacters, except those of the first line. The
@h provides a magic number of (octal) 064001.

Delta table
The delt,a table consists of a variable number of entries of the form:

@s DDDDD IDDDDDIDDDDD
@d <type> <SCCS ID) yr/mo/da hr:mi:se (pgmr) DDDDD DDDDD
@i DDDDD ...
@x DDDDD ...
@g DDDDD ...
@m (MR number)

@c (comments) ...

The first line (@s) contains the number of lines inserted/deleted/unchanged, respectively.
The second line (@d) contains the type of the delta (currently, normal: D, and removed:
R), the SCCS ID of the delta, the date and time of creation of the delta, the login name
corresponding to the real user ID at the time the delta was created, and the serial
numbers of the delta and its predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included, excluded, and
ignored, respectively. These lines are opiional.

The @m lines (optional) each contain one MR number associated with the delta; the @c
Iines contain comments associated v'ith the delta.

The @e line ends the delta table entry.

@e

-l-

sccsFrl,E(4)

User names
The list of login names andf or numerical group IDs of users who rnay add deltas to the
file, separated by new-lines. The lines containing these login names andfor nurnerical
group IDs are surrounded by the bracketing lines @u and @U. An,3mpby list allovrs a.n1,-
one to make a, delta. Any line starting with a ! prohibits the succeeding €pouf) or userr
from making deltas.

Flags
Keywords used internally (see admin(l) for more information on their use). Each flag line
takes the form:

@f (flag) (optional text)

The following flags are defined:
@f u (type of program)
@f v (program name)
@f i (keyword string)
@fb
@f m (module name>
@f f (floor)
@f c (ceiling)
@f d <default-sid>
@fn
@fj
@f I (lock-releases)
@f q (user defined)
@f zr (reserved for use in interfaces)

The t flag defines the replacement for lhe %oYg5 identification keyword. The v fl,ag con*
trols prompting for MR numbers in addition to comments; if the optional te:<t is present,
it defines an MR number validity checking program. The i flag cont,rols ther
warning/error aspect of the "No id keywords" message. When the i flzrg is not ,prese:nt,
this message is only a warning; when the i flag is present, this message ,rill ca,use ar

"fatal" error (the file will not be gotien, or the delta will not be made). When the b l1.ag
is present the -b keyletter may be used on lbe get command to cause a branch jin ühe
delia tree. The m flag defines the first choice for the replacement text of'Lhe 97olvli.9Z'

identification keyword. The f flag defines the "floor" release; the release below rvhich nc,
deltas may be added. The c flag defines the "ceiling" releasel the release above rvhich no
deltas may be added. The d flag defines the default SID to be used when nr>ne is speci-
fied on a get command. The n flag causes delta to insert a "null" delta (a d,eltzr that
applies no changes) in those releases that are skipped when a delta is macle in a" neu)
release (e.g., when delta 5.1 is made after delta 2.7, releases 3 and + are skippe,d). The
absence of the n flag causes skipped releases to be completely emptv. The j fla.g causes
get Lo allow concurrent edits of the same base SID. The I flag defines a /rsr: ol relea:;es
that are locked against editing ket(t) with the -e keyletter). The q I'lag delii:ne,s Lhe
replacement for ihe %q% identification keyword. The z flag is userl irL cerl;ain rspeciral-
ized interface pr'ograms.

Comments
Arbitrary text is surrounded by the bracketing Iines @t and @T. The comments section
typically will contain a description of the file's purpose.

Body
The body consists of text lines and control lines. Text lines do not begin with the control
characüer, control lines do. There are three kinds of control lines: insert, delete, zt,nd end,

sccsFrl,E(4)

repre§ented by:

@I DDDDD
@D DDDDD
@E DDDDD

respectively. The digit string is the serial number corresponding to the delta for the con-
trol line.

SEE AISO
admin(1), delta(1), get(1), prs(1).
Series 6000 Operating System Programmer's Guide, Section g.

q

SCNHDR (4)

NAME
scnhdr - section header for a common object file

SYNOPSIS
Sinclude (scnhdr"h)

DESCRIPTION
Every common object file has a table of section headers to specify the la1'oui ,cf the dat,a within
the file. Each section within an object file has its own header. The C structure appoars loelorv.

struct scnhdr
{ char s_namelSYMNMLEN] ; /* section name */

long s_paddr; /* physicai address */
Iong s_vaddr; /* virtual address */
Iong s_size; /* section size * flong s_scnptr; /* file ptr to raw data * flong s_relptr; /* file ptr to relocation */
long s_lnnoptr; /* file ptr to line numbers */
unsigned short s_nreloc; f* fi reloc entries */
unsigned short s_nlnno; f

* S line number entries */
long s_flags; l* flags * I

);
File pointers are byte offsets into the file; they can be used as the offset in a call to fteel;(3li). If a
section is initialized, ihe file contains the actual bytes. Arl uninitializecl sect,ion is sornervhrrt
different. It has a size, symbols defined in it, and symbols that refer to it,. But it can h.ave no
relocation entries, Iine numbers, or data. Consequently, an uninitialized section has, nc, raw «larl,a
in the object file, and t,he values for s-scnptr, s-relptr, s-lnnoptr, s_nreloc, and s_nlnn (),are zero.

SIitr AISO
Id(1), fseek(3S), a.out(+).

-1-

SYMS(4)

NAME
syms - common object file symbol table format

SYNOPSIS
finclude (syms.h)

DESCRIPTION
Common object files contain information to support aymbolic software testing. Line number
entries, linenam(), and extensive symbolic information permit testing at the C soarce level.
Every object file's symbol table is organized as shown below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members of the structure hold the name
(null padded), its value, and other information. The C structure is given below.

ffdefine SYMNMLEN 8

ffdefine FILNMLEN 14

struct syment
{ union /* all ways to get symbol name */

{ char -n-name[sYMNMLEN]; /* symbol name */
struct
{ long -n-zeroes; l* :- 0L when in string table */

long -n-offset; /* location of name in table x/
) -r-n;char *-n-nptr[2] ; /* allows overlaying */

) _,;
long n-value; /* value of sYmbol */
short n-scnum; /* section number */
unsigned short n-type; /* typ. and derived type */
char n-sclass; /* storage class */
char n-numaux; /* number of aux entries */

);

#define n-name -n.-n-name

-1-

sYMs(4)

fdefine n_z(:roes _n._n_n._n_zeroes
f define n_offset _n._n_n._n_offset
fdefine n_nptr _n._n_nptr[I]

Meaningful values an<l explanations for them are given in both syms.h and Common t!»b:iect: tr'ile
Format. Aayone who needs to interpret the entries should seek more inlbrmatio:r in thr:se
sources. Some symbols require more information than a single entry; they are followecl by a:.uxili-
ary entries that are the same size as a symbol entry. The format follows.

union auxent
{

struct
{

f;r" x-tagndx;

{
struct
{

unsigned short x_lnno;
unsigned short x_size;

) x-lnsz;
long x_fsize;

) x-misc;

i"to"
struct
{

long x lnnoptr;
long x_endndx;

) x fcn:
struct
{

unsigned shorr x_dimen[oluufru];
) *-rry;

) x_fcnary;

) :':.rtjed
short x-tvndx;

struct
{ char x_fnameIFILNMLEN];
) r:-file;
struct
{

1,,:L" ;-il:l:" ;_,,..,o.,
urrsigned short x_nlinno;

) x,-scn;

struct
i long x_tvfill;

unsigned short x_tvlen;
trnsigned short x_tvran [2] ;

) >:-tv;
);

o

syrr{s({)

Indexes of symbol table entries begin al zero,SEE ALSO
a.out(4), linenum(4).

CAVEATS
c longs are equivalent to ints and are converted to ints in the compiler to minlmize thecomplexity of the compil.,

"oa"g"r"rator. Thus the informatideclared as longs and which, * inÄ, jo", not show up in rhe,;H,tr"l1":tich symbols are

-3-

TERM(4)

NAME
term - format of com;riled term file.

SYNOPSIS
term

DESCRIPTION
Compiled terminfo descriptions are placed under the directory /usr/lib/terrrrinfo. In ordi:r toavoid a Iinear riearch of a huge directory, a two-level schemr: is rrsed:
/r;:sr/lib/terrninfof cfnarne where name is the name of the terminal, arrd c is the fir^st ch;arac-
ter of name. Thus, act4 can be found in the file /usr/lib/berrninfof afact4. Syn,rnyms for tJre
same terminal are implemented by multiple links to the same compiled file.
The f,crmat has been chosen so that it will be the same on all hardware. Ar 8 or more lcit bl-te is
assumed, but no assurrrptions about byte ordering or sign extension are ma1le.

The compiled file is created with the compile program, and read by the routine setnpterm. ..t\o1h

of these pieces of software are part of curses(3X). The file is divided into six partr;: the hea,der,
terminal names, boolean flags, numbers, strings, and string table.
The header section begins the file. This section contains six short integers i:n th,e fonnat ,lescribed
below. These integers are (1) the magic number (octal Oa32); (Z) the size, in b.ytes, of the na,mes
section; (3) the numbe'r of bytes in the boolean section; (+) the number o[short irrtegem in. the
numbers section; (5) the number of offsets (short integers) in the strings secti<»r; (O) the size, [n
bytes, of the string table.
Short integers are stored in two 8-bit bytes. The first byt,e contains the lea-st significa,nr[8 bits ,cf
the value, and the second byte contains the most significant 8 bits. (Thus, the value r(:rpriesented
is 256*second+first.) The value -l is represented by 0377 , Og77 , other negrativr: val,re aure illeger.l.
The -l generally means that a capability is missing from this terminal. Note that this formgt
corresponds to the har,lware of the VAX and PDP-I1. Machines where this rloes not col:e,spond l;o
the hardware read the integers as two bytes and compute the result.
The terminal names section comes next. It contains the first line of the terrrrinfo des;cripr;ion, list-
ing the various names for the terminal, separated by the'l'character. The, section is tr:rminated
with an ASCII NLIL character.
The boolean flags have one byte for each flag. This byte is either 0 or 1 ar; the flag is present or
absent. The capabilities are in the same order as the file (term.h).
Between t,he boolean section and the number section, a null byte will be inr;r:rted, if ne<:ess;ar:rr l,o
ensure that the number section begins on an even byte. All short integers are align,ed rln a short
word boundary.
The numbers section is similar to the flags section. Each capability takes up two byt,es, and is
sbored as a short intege,r. If the value represented is -1, the capability is taken to be mis;sing.
The st,rings section is also similar. Each capability is stored as a short irrteg;er, in the form:rt
above, A value of -1 means the capability is missing. Otherwise, the value is taken ar; an o{'fset
from t,he beginning of the string table. Special characters in ^X or \c notation are sborecl in t;heir
interpreted form, not the printing representation. Padding informat,ion $.<.nn), and p,aranrett-.r
information Vox are stored intact in uninterpreted form.
The final section is thr: string table. It contains all the r.alues of string capabiliiies refrlr,ence,i in
t,he string section. Each string is null terminated.
Note that it is possible for setupterm to expect a different set of capabilities than are actually
present in the file. Either the database may have been updated sinee setup,ternthas been rec,om-
piled (resulting in extra unrecognized entries in the file) or the program may have been rec,onr-
piled more recently than the database was updated (resulting in missing entries). Tht: .rouL[irLe
setupterm must be prepared for both possibilities - this is why the numb,ers a.nd sizles are
included. Also, new ca,pabilities must always be added at the end of rhe list,s of boolean, number,

-1-

TERM(1)

and string capabilities'
As an example, an octal dump of the description for the Microterm ACT 4 is included:

microtermlact4lmicroterm act iv,
cr:^M, cudl:^J, ind:^J, bel:^G, am, cubl:^H,
ed: ^

-, el: ^ ^, clear: ^ L, c\p:^ TVopL%ocVop2Vo c,
colsf8O, linesff24, cufl:^X, cuul:^2, home:^],

000 032 001 \0 025 \0 \b \o 212 \o " \o m i c r
020otermlr.t4lmicro
040 t e r m a c t i v \0 \0m1 \0 \0
060 \o \o \o \o \o \o \o \o \o \o \o \o \o \o \o \o
lm \0 \0 P \0 377 377 030 \0 377 377 377 377 377 377 377 377

tn 377 377 377 377 \0 \0 m2 \o 377 377 377 377 @4 \0 006 \0
140 \b \o 377 s77 377 377 \n \0 026 \0 030 \0 377 377 032 \0
160 377 377 377 377 034 \0 377 377 036 \0 377 377 377 377 377 377

2ffi 977 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

5m 377 377 377 377 \0 377 377 377 377 377 377 377 377 377 377

54o s77 377 s77 377 377 377 N7 \0 \r \0 \f \0 036 \0 037 \0
560024 % p 1 % c % p 2 % c \o \n \0035 \o
6m \b \0 030 \o 032 \o \n \o

Some limitations: total compiled entries cannot exceed 4096 bytes. The name field cannot exceed

128 bytes.

FILES
/usr/lib/terminfo/*/* compiled terminal capability data base

SEE AISO
curses(3X), terminfo(4).

o

TERMCAP(4)

NAME
termeap - terminal capability data base

SYNOPSIS
f etc f termcap

DESCRIPTION
This entry describes terminal-independent programming conventions that originate at IJC Berke-
ley. IJND(System V initially borrowed tertncap but has since changed to the termin.fo(4) conven-
tion. The operating system continues to support termcap so as to be compatible with the Berkele5, version of the
UNIX System. But use terminfo in new programs.

Tcrmcap programs work from information supplied through the TERM and 'IERMCAP
environment variables. The location of the description depends on the value of TER,MöAP:
o If TERMCAP is not set or is empty, TERM is the name of an descr:iption in

f etc f termcap .

o If TERMCAP has a value that begins with a /, TERM is the name of an description
in the file named by TERMCAP.

o If TERMCAP begins with any characüer except /, TERMCAP contains thr: desoip-
tion.

A description begins with a list of its names, separated by vertical bars. The rest ol' the descrip-
tion is a list of capabilities, separated by colons. If you use more than one linb, precede each new-
line except ühe last with :\ Here's a simple example.

dSlvtS0ldec vt50:\
'6"'.6:\EJ'6s,:\EK:cl:\EH\EJ:cof 80:lif I 2 :nd:\EC :pt :up:\Elr.:

There are three kinds of capabilities:
o Boolean. These indicate the presence or absence of a terminal featrrre by t.heir presence

or absence. Boolean capabilities consist of two characters (the capability name).

o Nurneric. These indicate some numeric value for the terminal, such a.s sr:reen. sizr: or
delay required by a standard character. Numeric capabilities consist of tu'o charraclierc
(the capability name), followed by u#, followed by a decimal numb,sr.

o String. These indicate a sequence that is performs some operation on the terminalL.
String capabilil;ies consist of two characters (the capability name), optionally foilowed by
a delay, followed by a string.
The delay is the number of milliseconds the program must wait aft,er using the sequencerl
specify no more than one decimal place. If the delay is proportio:nal r[o the num.ber of
lines affected, end it \ilith a *.

The string is a sequence of characters. The following subsequences are sp,ecially inter.
preted.

\E Escape Character
^ c Control-z
\n Newline
\r Return
\t Tab
\b Backspace
\f Formfeed

\ccc Octal value of trr
\072 : in srring
\200 null (\oO0 doesn't work)

-1-

TERMCAP(4)

Octal numbers musü be three digits long.
Some strings are interpreted further, such as cm. see something below.

You can follow any capability name with an @, to indicate that the terminal lacks the capability.
This is only useful in conjunction with the tc capability; see "Similar Terminals," below.
Here is a list of standard capabilities. (P) indicates a string that might require padding; (P*) indi-
cates a string that might, require proportional padding.

Name Typu Pad? Description
ae str (P) Ends alternate character set.
al str (P*) Adds new blank line.
am bool Terminal has automatic margins.
as str (P) Starts alternate eharacter set.
bc str Backspace if not control-h.
bs bool Terminal can backspace with control-h.
bt srr (P) Back tab.
bw bool Backspace wraps from column 0 to last column.
CC str Command character in prototype if terminal settable.
cd str (P*) Clears to end of display.
ce str (P) Clears to end of line.
ch str (P) Moves cursor horizontally to specified column.
cl str (P*) Clears screen.
cm str (P) Moves cursor to specified row and column.
co num Number of columns in a line.
cr str (P*) Carriage return if not control-m.
cs str (P) Change scrolling region.
cv str (P) Moves cursor vertical§ to specified row.
da bool Display can be retained above.
dB num Delay after backspace, in milliseconds.
db bool Display can be retained below.
dC num Delay after carriage return, in milliseconds.
dc str (P*) Delete character.
dF num Delay after form feed, in milliseconds.
dl str (P*) Deletes line.
dm str Enterc delete mode.
dN num Delay after newline, in milliseconds.
do str Goes down one line.
dT num Delay after tab, in milliseconds.
ed str Ends delete mode.
ei str Ends inserü mode; give an empty string if you've defined ic.
eo str Can erase overstrikes with a blank.
ff str (P*) Hardcopy terminal page eject if not form feed.
hc bool Hardcopy terminal.
hd str Half-line down (forwafi, Ll2linefeed).
ho str Move cursor to upper left corner (home).
hu str Half-line up (reverse l/2 linefeed).
hz str Hazeltine or other terminal that can't print - 's.
ic str (P) Inser0 character.
if str Name of file containing terminal initialization.
im bool Starts insert mode; give an empty string if you've defined ic.
in bool Iasert mode distinguishes nulls on display.
ip str (P*) Pad after insertion.

-2-

TERMCAP(4)

is str Terminal initialization.
k0-kg str Sent by special (usually numeric) function keys. If programmable, set'wich

is, if, vs, or ti,
kb str Sent by backspace key.
kd str Sent by terminal down arrow key.
ke str .Ends keypad transmit, mode.
kh str Sent by home key.
kl sir Sent by terminal left arrow key.
kn num .Number of special function keys.
ko str 'Ierminal capabilities thaü have key's.
kr str Sent, by terminal right arrow key.
ks str Begin keypad transmit mode.
ku str Sent by terminal up arrow key.
10-19 str I-abels on special function keys.
Ii num Number of lines on screen or page.
Il str Last line, first column.
ma str Command key map; used by ex version 2
mi bool Safe to move while in insert mode.
ml str Memory lock on above cursor.
ms bool Safe to move while in standout and underline mode.
mu str Memory unlock (turn off memory lock).
nc bool No correctly working carriage return (DM2500,I{2000).
nd str Non-destructive space (cursor right).
nl str (P*) Begin a new line if not newline.
ns bool .A video terminal that doesn't scroll!
os bool Terminal overstrikes.
pc str Pad characüer if not null.
pt bool [{as hardware tabsl if they need to be set put sequence in is or if.
se str Ends stand out mode.
sf str (P) Soolls forwards.
sg num Number of blank chars left by so or se.
so str Begins stand out mode.
sr str (P) Scroll reverse (backwards).
la str (P) Tab if not control-i or with padding.
tc str Name of terminal that, has some of the same capabilities; te must, be the

last capability.
te str Ends programs that do cursor motion.
ti str Initializes programs that do cursor motion.
uc str l-Jnderscores and moves past one character.
ue str []nds underscore mode,
ug num Number of blank spaces ihat surround underscore mocle.
ul bool Terminal underlines automatically even though it can't overstrike
up str flpline (cursor up).
us str Start underscore mode,
vb str \risible bell (must not move cursor).
ve str E)nds open and visual modes.
vs str Initializes open and visual modes.
xb bool Beehive (fl:escape, f2:ctrl C).
xn bool flerminal ignores newline after wrap (Concept).
xr bool Return clears to end of line and goes to beginning of next J:ine (Delr;a Data).
xs bool Writing on standout mode text produces standout moik: text (HtP :1ti4?).
xt bool Desüructive tabs, magic standout character (Teleray 106l).

-3-

TERMCAP(4)

Poinüers on Preparing Descriptions
. You may want to copy the description of a similar terminal.
o Build up a description gradually, checking partial descriptions with er.
o Be aware that an unusual terminal may expose bugs in ee. limitations in the termcap cou'

vention.
Basic Capabilities

The following capabilities are common to most terminals. The co capability gives the number of
columns per line. The li gives the number of lines on a video terminal. The arn capability indi-
cates that writing off the right edge takes the cursor to the beginning of the next §creen. The cl
capability tells how the terminal clears its screen. The bs indicates that the terminal can back-
space; but if the terminal doesn't use control-h, specify be instead of bs. The os capability indi-
cates that printing a character at an occupied position doesn't destroy the existing character.

A couple of notes on moving off the edge. Programs that use this convention never move the cur-
sor off the top or the left edge of the screen. On the other hand, they a-ssume that moving off the
bottom edge scrolls the display up.

These capabilities suffice to describe hardcopy and very dumb terminals. For example, the Tele-
type Model 33 has this description.

t3 l33 ltty33:coff72:os

This is LSI ADM3 (without the cursor addressing option).
cl I admS l3 llsi adm3:am:bs:cl: ^ Z :li# 24:coff8D

Cursor Addresses and Other Variables
If a string capability includes a variable value, use a Vo escape to indicate the value. By default,
progra*, tak" these values to be zero origin (that is, the first possible value is 0) and that the cm
.rp"Uitity specifies two values: row, then column. Use the ?5t or ?6i capability if either assump-
tion is incorrect.
These are the valid ?5 escapes.

%d print the values as a decimal number
%Z print, the values as a twodigit decimal number
%S print the values as a three-digit decimal number
%. print the value in binary (but see below)
%o+c add ASCII value of c to value, then print in binary
Vo>ry if the next value is greater than the ASCII value of e, add the ASCII value of y before

using the value's Vo escaPe
Vor row is the first value in this cm
%i values are l-origin
%% print aVo
Vol in this capability, exclusive or the values with 01400 before using the values' 96 escapes

(DM25oo)
%B .h"rrg" tire next value to binary coded decimal ((fo*(c/fo)) + (x%tO) where o is the

value) before interpreting it
%D The next value is reverse-coded (x-2*(fio16) where z is the value; Delta Data)

A program should avoid using a crn sequence that includes a tab, newline, control-d, or return,
because the terminal interface may misinterpret these characters. If possible, use the crn
sequence to move to the row or column after the destination, then use local motion to get to the
destination.

4-

TERMCAP(4)

Here are some exampl:s of cm definitions. To position the cursor of an fIP2645 on ::ow ll, colunrrL
12, yr:ru must send th,: terminal "\E&a12c03Y", followed by a 6 miliisec'c,nd delay: the FIP2615
description includes :cm:0\E&VotVoZcVoZYt. To position the cursor ol an ACT'-I\/, you se:rcl
ii a control-t, follow,ed by the row and column in binary; the,,\CT-l'l'dr:scription includes
zcm==^T?6.?6.: The LSI ADN{3a uses the set of printable ASCII characters to represet:tl, r'orl' airil
colurrLn values; its descripLion includes tcrn\E:%-l%* r.

Local and General Cursor Motions
Most ierminals have short strings thai trigger commonly-used eursor motiotrs. A nr>n-deslructive
space (BR nd)movesr the cursor one position right. An upline seqr.lence (up) mor.es the c,lrs,cr
one position up. A home sequence (ho) moves the eursor to the upper left h.and corner l. lc>wer-
left, (ll) goes to the ot,her lefthand corner. The ll capability may be a seqrrence ttal, nroves tire,
cursor home, then up; but otherwise programs never clo this.

Area Clears
Some terminals have short sequences that clear all or part of a display. Clear (cl) clears; the
screen and homes the cursor; if clearing the screen does noc restore the t,ermin:ri's norn:ra.l m,:des,
cl should include the strings t,hat do. Clear to end of line (ce) clea,rs from ihe currr:nt curs,)r
position to the right. Clear to end of display (cd) clears from the current, cursor posit,ion to the
bottorn of the display; programs always move the cursor to the beginning c,f'the line br:fore usirrg
cd.

Insert/Delete Line
Many terminals have st,rings that shift text starting at the current cur$c)r poriition. Progr:anrs
always move ihe cursor to the beginning of the line before using these strinE;:;. t\dd line (alt) shifts
the current line and all below it down a position leaving the cursor on the newly-bla.nked lline.
Delete line (deletes the line the cursor is on without moving the cursor. If zr terminal clescription
has a al capability, yorr do not really need to specify sb.
If deleting a line might; produce a non-blank line at the bottom of the screetr, specify db,. If scrc,l-
ling bzrckwards might produce a non-blank line ai ther top of the screen, specify ,fl6,.

Insert/Delete Character
The tl,rmcap conventic,n recognizes two kinds of terminal insert/delete string.
o The first convention is by far more common. IJsing insert or delete modr:s c,niy a['fe,:t

characters on r;he current line. Inserting a single character shifts all characters, includirrg
all blanks, to the right; the character on the right edge of the screen is losr;. I"lo special
capability is required to describe this kind of terminal.

o The second convention is rarer and more cornplicated. The t;erminal disblnguish,:s
befween blank spaces created by output tabs (011) or spaces (O+O) from all oth,:r bla,:nks;
other blanks are known as nulls. Inserting a character eliminaterr; the first null to tlie
right of the cursor; deleting a character doubles the first null. If th,:re €r.re nr> nulls on the
current line inr;erting a cha,racter inserts the line's rightmo-st charactt:r at the beg:innirLg,'lf
the next line. Use the in capability to describe this kind of terminal .

Notably among the second type are the Concept 100 and Perkin Elmer Owi.
A simple experiment shor+'s what type you have. Set the t,erminal to its "lc,r:al'" mode. Clear't[Le
screen, then type a short sequence of t,ext. Irllove the cursor to the right 'sever:ll spac,:s 'utitltortt
using t,he space or tab characters. Type a second short secluence of text. N{rrvethe crlrs(,)r bacl< to
ihe beginning of the first text. Start the terminal's insert, mode and begin l,appirlg the r:rpace bar.
If you have the first kind of terminal, boih sequences of text will move at once, a.t ll'hate'r'er char-
acter is at the righi edge of the screen will be lost. If you have the secon,l kirnd ol'terminal, at
first only the first sequence of text will move; when t,he first sequence hits the s,e,:on<l sg,quencr:, it
will push the second orLto the next line.
A terminal can have,:ither an insert mode or the abilitv to inser[a single chara"ter. Speci{'y
insert mode with im and ei. To specify that the terminal can insert a single characl,er, specil'y ic

-o-

TERMCAP(4)

ond specify empty strings for im and ei. If you must delay or output more control text after
inserting a single character, specify ip.
If a terminal has both an insert mode and the ability to insert, a single character, it is usually best
not to specify ic.
Some programs operat,e more quickly if they are allowed to move the cursor around randomly
while in insert mode. For example, ui has to delete a character when you insert a character
before a tab. If your terminal permits this, specify move on insert mi. Beware of terminals that
foul up in subtle ways when you do this notably Datamedia's.
Delete mode (drn), end delete mode (ed), and delete character (dc) work like irn, ei, and ic.

Highlighting, Underlining, and Visible Bells
Specify the terminals most distinctive display mode with so ae. Half intensity is usually not a
good choice unless the terminal is normally in reverse video.
The convention provides for underline mode and for single character underlining. Specify under-
Iine mode with us and ue. Specify a way to underline and move past a character with uc; if your
terminal can underline a single character but doesn't automatically move on, add a nondestruc-
tive space to the uc string.
Some terminals can't overstrike but still correctly underline text withoui special help from the
host computer. If yours is one, specify ul.
If your terminal spaces before and after entering standout and underline mode, specify ug.
Programs leave standout and underline mode before moving the cursor or printing a newline.

If the terminal can flash the screen without moving the cursor, specify vb (visual bell).

If the terminal needs to change working modes before entering the open and visual modes of er
and ai, specify ve and ve. respectively. These can be used to change, e.g., from a underline to a
block cursor and back.

If the terminal needs to be in a special mode when running a program that addresses the cursor,
specify ti and te. This may be important if a terminal has more than one page of memory. If
the terminal has memory-relative cursor addressing but not screen relative cursor addressing, use
ti to fix a screen-sized window into the terminal.
If a terminal can overstrike, programs assume that printable spaces don't descroy anything, unless
you specify eo.

Keypad
Some üerminals have keypads that transmit special codes. If the keypad can be turned on and
off, specify ks and ke; if you don't, programs assume that the keypad is always on. Specify the
codes sent by cursor motion keys with kl, kr, ku, kd, and kh. If there are function keys specify
the codes they send with fl, P, ß, f4, f5, fO, frl , f8, and f9. If these keys have labels other
bhan the usual "f0 through" "f9", specify the labels 11, 12, 13, 14, 15, 10, 17, 18, and 19. If there
are other keys that transmit the same code bhat the terminal expects for a function, such as clear
screen, mention the affected capabilities in the ko capability. For example, ":ko:cl,ll,sf,sb:"
says that the terminal has clear, horne down, scroll down, and scroll up keys that transmit the
same thing as the cl, ll, sf, and sb capabilities.

Terminal Initialization
If a terminal must be initialized, on login for example, specify a short string with is or a file con-
taining initialization strings with if. Other capabilities include is, an initialization string for the
terminal, and if, the name of a file containing long initialization strings. If both are given, is is
printed before if. If the terminal has tab stops, these strings should first clear all stops, then set
new stops at the 9 column and every 8 columns thereafter.

Similar Terminals
If a new terminal strongly resembles an existing üerminal, you carr write a description of bhe new

-6-

TERMCAP(4)

terminal that only mentions the old terminal and the capabilities that differ. The tc capability
describes the old terminal; it must be the last capability in the description. If thr, old terrninai
has ca,pabilities that the new one lacks, specify an @ alter the capability narne.

The different, entries 1'ou create with tc need not represent terminals that, are actualll'differerrt,
They can represent different uses for a single terminal, or user preferences as to which terminal
features are desirable.
The following example defines a describes a variant ol the 2621 that never turns; on the lke1,pa.d.

hn | 2621nI:ks@:ke@:tc:2621:
FILES

f eLcf termcap standard data base

SIitr AISO
ex(1), curses(3), termcap(3), tset(1), vi(l), ul(f), more(1)

BUGS
Ee allows only 256 characters for string capabilities, and the routines in termcop(3) do rrot check
for overflow of this bulTer.

The total length of a single description (excluding only escaped newlines) malr not exceed 10?4
characters. If you use tc, the combined description may noü exceed 1024 characters.
The vs, and ve entries are specific to the ui program.

Not all programs support all entries. There are entries that are not supporte,l b:F anl, pr,cgram.

The rna capability is c,bsolete and serves no function in our database; Berkr:ley includes i.t for the
benefit; of systems that cannot run version 3 of ui.

-l-

TERMTNT'o(4)

NAME
terminfo - terminal capability data base

SYNOPSIS
/usr/lib/terminlof * f *

DESCRIPTION
Terminlo is a data base describing terminals, used, c.g.,, by or(f) and curseo(3X). Terminals are
described in terminlo by giving a set of capabilities which they have, and by describing how
operations are performed. Padding requirements and initialization sequences are included in ter-
minfo.
Entries in terminfo consist of a number of ',' separated fields. White space after each ',' is
ignored. The first entry for each terminal gives the names which are known for the terminal,
separated by'l'characters. The first name given is the most common abbreviation for ühe termi-
nal, the last name given should be a long name fully identifying the terminal, and all others are
understood as synonyms for t,he terminal name. Nl names but the last should be in lower case
and contain no blanks; the last name may well contain upper ca^se and blanks for readability.
Terminal names (except for the last, verbose entry) should be chosen using the following conven-
tions. The particular piece of hardware making up t,he terminal should have a root name chosen,
thus "hp262l". This name should not contain hyphens, except that synonyms may be chosen
bhat do not conflict with other names. Modes that the hardware can be in, or user preferences,
should be indicated by appending a hyphen and an indicator of the mode, Thus, a vtl00 in 132
column mode would be vtl00-w. The following suffixes should be used where possible:

Suffix
-w
-am

Meaning Example

-nam Without automatic margins vt100-nam

Wide mode (more than 80 columns) vt100-w
With auto. margins (usually default) vt100-am

Number of lines on the screen aaa-60
No arrow keys (leave them in local) c100-na
Number of pages of memory

-rv Reverse video
cl0G-4p
c10G-rv

CAPABILITIES
The variable is the name by which the programmer (at the terminfo level) accesses the capability.
The capname is the short name used in the text of the database, and is used by a person updaüing
the database. The i.code is the two Ietter internal code used in the compiled database, and
always corresponds to the old termcap capability name.

Capability names have no hard length limit, but an informal limit of 5 characters has been
adopted to keep them short and to allow the tabs in the source file caps to line up nicely. When-
ever possible, names are chosen to be the same as or similar to the ANSI X3.64-1979 standard.
Semantics are also intended to match those of the specification.
(P) indicates that, padding may be specified
(G) indicates that the string is pa^ssed through tparm withparms as given (f i).
(*) indicates t,hat padding may be ba-.ed on ihe number of lines affected
(#) indicates the ith parameLer,

-n
-na
-np

Variable
Booleans

auto-lef t_m argin,

auto_right_margr n,
beehive4,litch,
ceol-standout3litch,

C"p- I. Description
narne Code
bw bw cubl wraps from column 0 to last

column
am
xsb
xhp

am Termrnal has automatic margtns
xb Beehive (f l:escape, f2:ctrl C)
xs Standout nol erased by overwriting

-l-

TERMTNFO (4)

eat_newlrne-glitch

erase_ov erstr ilie,
generic_type,

hard coov
has meLa kev

has-slatus_lin:,
insert-null-gh lch,
memory_abovr:,

memory_belo'r.r,,

m ov e_t nse rt_nrode,
move_standou L_mode,
over_strike,
status_l ine_esc_ok,
teleray_glitch,

tilde-glitch,
transparent_urrderl ine,
xon_xoff.

Numbers:
columns,
init_tabs,
lines.
lines of memorv

m agic_cooki e_111 itch,

padd ing_baud_.rate,

v rrtual_terminal,
width_status_ltne,

Strings:
back_tab.
bell,
c arrr age_re turn ,

ch ange_scroll_r eg ion,

c lear_all_t,abs,
c lear_screen,
clr-eol,
clr-eos,
c o lu m n_ad d re sri,

comm an d_c har ac ter,
cursor_address,

cursor_down,

xenl

eo
gn

hc
km

hs
ln
da

db

mir
msgr
OS

eslok
xt

hz
ul
xon

cols
it
lines
lm

xmc

pb

vt
wsl

cbt
bel
CT

CSI

tbc
clear
el
ed
hpa
cmdch
cup

cud I

hc
km

hs
in
da

db

mi
MS
OS

ES

xt

hz
ul
xo

CO

ir
lr

lm

sg

pb

vt
WS

br
bl
CT

CS

ct
cl
ce

cd
ch
CC
cm

do

eo

(np)
newline ignored after 80 r-",>ls

(Concept)
Can erase overstrikes with a blank
Generic line type ('e g ,, di:rlun,
switch)
Hardcopy terminal
Has a meta key (shift, sel,si parity
bir)
Has extra "status line"
Insert mode distinguishes :rulls
Display may be relarned above the
scleen
Display may be retarned below the

:* i" move while in rns,:rt nrocre
Safe to move in st:rndout, tnodes
Termrnal overstrikes
Escape can be used on the statr:s li.re
Tabs ruin, magic so char (Teleray
1061)
Hazeltine; can not print - 's
underline character oversl;r.rke:;
Terminal uses xon,i'xoff hundsJrrlkin3

Number of columns in a Iine
Tabs initially every f spzrces
Numb,er of lines on screen or page
Lines of memory rf) Iinex;. 0 means
vartes
Number of blank chars lel't, bv s;msc, or
IMSO
Lowest baud where cr/ni padding is;

neederl
Virtual terminal number (UNnt system)
No. cc,lumns in status line

Back tab (P)
Audrble srgnal (bell) (P)
Carriage return (P,+)
r:hange to lines f I through trlt (vt1C0)
(Pc)
Cllear all tab stc,ps (p)
C)lear screen ancl h,rme o.u:_sor ('p*)
C)lear to end of line (P)
Clear to end ol display (P*)
Set crrrsor column (pG)
'Ierm settable cmd char rn prototy,s
Screen rel cursor nrotion row.#l
r:,rl f2 (PG)
l)orvn: one line

o

TERMTNTo (4)

cursor-home, home ho Home cursor (if no cup)
cursor_invisible, civis vi Make cursor invisible
cursor_lefi, cubl le Move cursor lef t one space
cursor_mem_address, mrcup CM Memory relative cursor addressing
cursor-normal, cnorm ve Make cursor appear normal (undo vs/vi)
cursor_right, cufl nd Non-destructive space (cursor right)
cursor-to-ll, ll ll Lasl line, f irst colrrmn (if no cup)
cursor_up, cuul up Upline (cursor up)
cursor-visible, cvvis vs Make cursor very visible
delete_eharacter, dcht dc Delete character (P*)
delete-line, dll dl Delete line (P*)
dis-status-line, dsl ds Disable status line
down-half-line, hd hd Half-line down (forward l/2 linefeed)
enter_alt-charset_mode, smacs as Start alternate character set (P)
enter-blink_mode, blink mb Turn on blinking
enter-bold-mode, bold md Turn on bold (extra bright) mode
enter_ca-mode, smcup ti String to begin programs [hat use cup
enter-delete_mode, smdc dm Delete mode (enter)
enber-dim_mode, dim mh Turn on half-bright mode
enter_insert_mode, smir im Insert mode (enter);
enter_protected_mode, prot mp Turn on protected mode
enter-reverse_mode, rev mr Turn on reverse video mode
enter-secure-mode, invis mk rurn on blank mode (chars invisible)
enter-standout_mode, smso so Begin stand out mode
enter-underline_mode, smul us Start underscore mode
erase-chars ech ec Erase f I characters (PG)
exit-alt-charset-mode, rmacs ae End alternate character set (P)
exit-attribute_mode, sgrO me Turn off all attributes
exit-ca-mode, rmcup te String to end programs that use cup
exil-delete_mode, rmdc ed End delete mode
exit-insert_mode, rmir ei End insert mode
exit-siandout_mode, rmso se End stand out mode
exit-underline_mode, rmul ue End underscore mode
flash-screen, flash vb Yisible bell (may not move cursor)
form-feed, ff ff Hardcopy terminal page eject (P*)
from-status-line, fsl fs Return from status line
init-lstring, isl il Terminal initialization string
init-2string, is2 i2 Terminal initialization string
init-3string, is3 i3 Terminal initialization sbring
init-file, if if Name of file containing rs
insert-character, ichl ic Insert character (P)
insert-line, ill al Add new blank line (P*)
insert-padding, tp ip Insert pad after character inserted

(p*)
key-backspace, kbs kb Sent by backspace key
key_catab, ktbc ka Sent by clear-all-tabs key
key-clear, kclr kC Sent by clear screen or erase key
key-ctab, kctab kt Sent by clear-tab key
key-dc, kdchl kD Sent by delete character key
key-dl, kdll kL Sent by delete line key
key-down, kcudl kd Sent by terminal down arrow key
key-eic, krmir kM Sent by rmir or smir in insert mode
key-eol, kel kE Sent by clear-taend-of-line key

-3-

TERMTNFO(4)

key-eos,
key-i0,
key-f l,
key-f 10,
key-f2
key-f3.
key-f4,
key-f5,
key-f6,
key-f7,
key-f8,
key-f9,
key-home,
key-ic,
key-il,
key-lef t,
key-ll,
key-npage,
kev ooase.
key-right,
key-sf,
key-sr,
key-stab,
key-up,
keypad_local,
keypad-xmit,
lab-fO,
lab-f l,
lab-f10,
lab-f2,
lab-f3,
Iab-f4,
lab-f5,
lab-f6,
lab-f7,
Iab-f8,
lab_I9,
meta_on,
meta-off ,

newline,

pad-char,
parm-dch,
parm-delete-line,
p arm-down-(rursor,
parm-ich,
parm-index,
parm-insert_line,
parm_lef t_cursor.
parm-righb-c,rrsor,
parm-rindex,
parm_up_cursor,
pkey-key,

ked kS
kro k0
kfl kt
kflO ka
kf2k2
klS k3
kf4 k4
kfs ks
kf6 k6
kf7 k7
kf8 k8
kfg ks
khome kh
kich I kI
krll kA
kcubl kl
kil kH
knp kN
kpp kP
kcufl kr
kind kf'
kri kR
khts kT
kcuul ku
rmkx ke
smkx ks
Ifo l0
lfl ll
lfl0 la
ll2 12

tf3 t3
It4 14

lfs l5
lf6 t6
lf7 t7
lf8 18

lfg l9
smm mm
rmm mo
nel nw

pad pc
dch DC
dI DL
cud DO
ich IC
rndn SF
rl AL
cub LE
cuf RI
rin SR
cuu UP
pikey pk

Sent by clear-toend-of-screen key
Sent by functiorr key ft)
Sent by function key fI
Sent by function key f lt)
Sent by function key fil
Sent by lunction key f{t
Sent, by function key f4
Sent, by function key f Ii
Sent by function key fti
Sent, by lunction key i'i'
Sent by function key ftl
Sent by function key f[t
Sent by home key
Sent by ins char/enter ins ntode Key
Sent by insert line
Sent by terminal left arrow key
Senf by home-down kev
Sent by next-page key
Sent by previous-page lley
Sent by terminal right, rrrrovu key
Sent by scroll-forwardT/,lowrr key
Sent by scroll-backward,/up key
Senl by seLtab key
Sent by terminal up arrc,w key
Out of "keypad l;ransmrt," rnode
Put terminal rn "keypa<l transmit" m.ode
Labels on function key I0 if not f0
Labels on function key 1il if not f .t

Labels on f unction key f lO il not f l0
Labels on function key l'2 if not fl)
Labels on f unction key f3 if not fil
Labels on functic,n key l4 if :oot f<l

Labels on function key 15 il not ft;
Labels on function key lti if :n,ct f(i
Labels on function key 17 if not fi'
Labels on function key 18 il rrot f€l
Labels on function key fS if not f€r

Turn on "meta mode" (8th t,it)
Turn off "meta mode"
Newline (behaves like cr followed
by lf)
Pad character (rather than null)
Delete #1 chars (PG*)
Delete f I lines(PG*)
Move cursor down f I lines (PG*)
Insert, f I blank chars (Ptlr)
Scroll forward ffl lines (I,G)
Add #l new blank lines (PG*)
Move cursor lefl f I spa,:es (J?G)
Move cursor nght f I spa,ces (PGr)
Scroll backward f 1 liner; (PG)
Move cursor up fll lines r'PG*)
Prog funct ke1. f I to type string ;f 2

- 4-

TERMTNT'O(4)

pkey_local, pfloc pl Prog funct key #l to execute string f2
pkey-xmib, pfx px Prog funct key gl to xmil sfring f2
print_screen, mcO ps Print contents of the screen
prbr_off , mc4 pf Turn of f the prinier
prtr_on, mcS po Turn on lhe printer
repeat-char, rep rp Repeat char f I f 2 times. (PG*)
reset-lstring, rsl rl Reset terminal completely to sane modes.
reset-2strrng, ß2 12 Reset terminal completely to sane modes.
reset-3string, rs3 13 Reset terminal completely to sane modes.
reset-file, rf rf Name of file conbaining reset string
restore-cutsor, rc rc Restore cursor to position of last sc
row-address, vpa cv Vertical position absolute

(set row)(PG)
save-cursor, sc sc Save cursor position (P)
scroll-forward, ind sf Scroll bext up (P)
scroll-reverse, ri sr Scroll texü down (P)
set-attributes, sgr sa Define the video attributes (PG9)
set-tab, hts st Set a tab in all rows, current column
set-window, wind wi Current window is lines #l-#2

cols ff*ff4
tab, ht la Tab to next 8 space hardware tab stop
to-status-line, tsl ts Go to status line, column f I
underline-char, uc uc Underscore one char and move past it
up-half-line, hu hu Half-line up (reverse 1/2 linefeed)
inib-prog, iprog iP Path name of program for init
key-al, kal Kl Upper left of keypad
key-a3, ka3 K3 Upper right of keypad
key-b2, kb2 K2 Center of keypad
key-cl, kcl K4 Lower left of keypad
key-c3, kc3 K5 Lower right of keypad
prtr-non, mcSp pO Turn on the printer for f 1 bytes

A Sample Entry
The following entry, which describes the Concept-lOO, is among the more complex entries in the
terminfo file as of this writing.

conceptl0O I c1001 concept I c10a I c1m-4p I concept 100,

am, bel:^G, 51an1:\EH, 61;n1:\EC, clear:^L$<2r), cnorm:\Ew,
colsf80, cr:^M$(9), cubl:^H, cudl:^J, cuff:\E:,
cup:\EaVoptVo"%+%c%p2%"Vo+Voc,
cuul:\Ei, ."y1s:\EW, db, dchl:\E"Ä$ < l6* >, dim:\EE, dlr:\E"B$ <3* >,
ed:\E^C$< 161 1', 6l:\E^U$< 16>, *, 1^51:\Ek$ < 20> \EK, hü:\t$ <8>,
ill:\E'R$<3*), in, ind: ^ J, .ind: ^ J$<9>, ip:$< t0*>,
is2: \EU\Ef \E7\E5\E8\EI \ENH\EK\E\200\F,o&\ 2m\F,o\47\E,
kbs:^h, kcubr:\E>, kcudl:\E<, kcufr:\E:, kcuul:\E;,
L11:\E5, 112:\E6, 113:\E7, khome:\E?,
lin esf 24, mir, p b f I 600, p rot: \EI, r ep :\Er% pt%t cVop2%," 9ö +Vo c$ < .2* >,
rev:\ED, rmcup:\Ev $<6>\Ep\r\n, rmir:\E\200, rmkx:\Ex,
1rr1s6:\Bd\Ee, rmul:\Eg, rmul:\Eg, sgrO:\EN\200,
smcup:\EU\Ev 8p\Ep\r, ..i;:\E^P, t.11:\EX, smso:\EE\ED,
rrnu1:\EG, tabs, ul, vtf8, xenl,

Entries may continue onto multiple lines by placing white space at, the beginning of each line
except the first. Comments may be included on lines beginning with "f". Capabilities ir ter-
minfo arc of three types: Boolean capabilities which indicate that the terminal has some particular

-5-

rERMrNro (4)

feaiurr:, numeric capabilities giving the size of the termirral or bhe size of trrarti,cular dr:1 a;ys, arLd
string capabilities, which give a sequence which can be used to perforrn parr,i.cular terminal operrr-
tions.

Types of Capabilities
AJI capabilities have names. For instance, the fact that lhe Cloncept ha.s u'utonttttic maroins (i.<.,
an aut,omatic return and linefeed when the end of a line is reached) is indicated by t,hr: :apability
am, [{ence the description of the Concept includes am. Numeric capabilit;jes are fo.llov,e.d by t}re
charaeter 'f ' and then the value. Thus cols, which indicates the nunrber «:,1'colrrmns thr: ternrinal
has, gives the value '8(l' for the Concept.

Finally, string valued r:apabilities, such a-s el (clear tr: en<1 of line sequence) are giverr by t,tre twr»
character code, an r:', and then a string ending at the next following ','. .{ delay ir, milliseconds
may €rppear anyu'here in such a capability', encloserl in $(..) brackets, as in el==\\El({i<:l>.,
and padding characters are supplied by tpats io provide this dela-v. The clelay can be either a
number, e.g.,'20', or a number followed by an'*', i.e.,'3x'. A'*'indi,:::rtes that, th,l pad,Cing
required is proporl,ional to the number of lines affected by the operation, and ttre amount given i.s

the per-affected-unit pradding required. (In the case of insert character, the factc,r is sl;il1 the
number of lines affected. This is always one unless the terminal has xenl a,nd the :softu.are uses
it.) When a'*'is specified, it is sometimes useful to give a delay of the.f,crm'3.5'to specify a
delay per unit to tenthrs of milliseconds. (Only one decimal place is allowed.)
A nunlber of escape sequences are provided in the string 'r'alued capabilities; for easl' erLco«ling of
characters there. Both \E and \e map to an ESCAPE character, ^x rnaps to a r:ontrc,l-x for any
appropriate x, and the sequences \n \l \r \t \b \f \s give a newline, linel'eed, return, t.ab. b:eck-
space, formfeed, and space. Other escapes include \" lor ^, \\ for \, \, fc,r connma, \: fr>r:,,anC
\O for null. (\0 will produce \200, which does not termirrate a s[ring but behaves ari a null char-
act,er on most terminaL;.) Finally, characters may be given a^s three octal digit,s aft;er a \.
Sometimes individual «:a,pabilities must be commentod out,. To do this, pul, a peric,d trr:fore the
capability name. For example, see the second ind in the example above.

Preparing Descriptions
We now outline how to prepare descriptions of terminalsi. The most effective way io prepa;e a
terminal description is by imitating the description oI a simi]ar terminal in ternz.info andl to buill
up a description gradually, using partial descriptions with ui to check thal, the;ir are correct. Be
aware that a very unur;ual terminal may expose defi,:iencies in the ability ol the fermirl'o file tr:
describe it or bugs in ud. To easily test a new terminal deseription you ca,n set the environnrent
variable TERMINFO to a pathname of a directory containing the cc»mpilr:d derscription you are
working on and prograrns will look ihere rather than in f usrlliblterminlo. 'Ii> get, the pa.dding for
insert line right (if the terminal manufacturer did not document it) a s,evere test ir-r to edit
ietc/passwd at 9600 ba.ud, delete 16 or so lines from the rniddle of the screon, then hit thr:'u'key
severali times quickly. If the terminal messes up, more padding is usually needed. 1. s;i::nilar l;est
can be used for insert character.

Basic Capabilities
The nr,tnrber of columns on each line lor the terminal is given by the cols numerric capa.bility. lf
the t,erminal is a CRT, then the number of lines on the screen is given by t,he lines capa.b,ility. If
the terminal wraps around to the beginning of the next line when it rea,::hes the right, marggin,
then it, should have thr: am capability. If the terminal can clear its licreen, leaving'l,he cu:rsor il
the home position, then this is given by the clear slring capabilit,y. If the terrnina.l orr,-"rst,rike,s
(rather than clearing a position u.hen a charact,er is strucli over) then it shorrld have the os cerpa-
bility. If the termina,l ls a printing terminal, with no soft copy unit, give it; botl:r hc an<il os. (o,s
applies; to storage scope terminals, such as TEKTRONLX 4010 series, as well as hard cc,py and APl,
terminals.) If there is a, code bo move the cursor to the Ielt edge of the current, rorv, gi.it: rlhis as
cr. (lJormally this will be carriage return, control M.) If t.here is a ,:ode to produce an audibl,:
signal (beli, beep, etc) g:ive this as bel.

-6-

TERMTNTO(4)

If there is a code to move the cursor one position to the left (such as backspace) that capability
should be given as eub1. Similarly, codes to move to the right, up, and down should be given as
cufl, cuul, and cud1. These local cursor motions should not alter the text they pass over, for
example, you would noi normally use 'cufl: ' beeause the space would erase the character
moved over-

A very important point here is that the local culsor motions encoded in terminfo are undefined at
the Ieft and top edges of a CRT terminal. Programs should never attempt to backspace around
the left edge, unless bw is given, and never attempt to go up locally off the top. In order to
scroll text up, a protram will go to the bobtom left corner of the screen and send the ind (index)
string.
To scroll text down, a program goes to the top left corner of the screen and sends the ri (reverse
index) string. The strings ind and ri are undefined when not on their respective corners of the
§creen.

Parameterized versions of the scrolling sequences are indn and rin which have the same seman-
tics as ind and ri except that they take one pararneter, and scroll that many lines. They are also
undefined except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at, the right edge of the screen when text is out-
put, but this does not necessarily apply to a cufl from the la.st column. The only local motion
which is defined from the left edge is if bw is given, then a cubl from the left edge will move to
the right edge of the previous row. If bw is not given, the effect is undefined. This is useful for
drawing a box around the edge of the screen, for example. If the terminal has switch selectable
automatic margins, lhe terminfo file usually assumes that ühis is on; i.e., arn. If the terminal has
a command which moves to the first column of the next line, that command can be given as nel
(newline). It does not matter if the command clears the remainder of the current line, so if the
terminal has no cr and lf it may still be possible to craft a working nel out of one or both of
them.
These capabilities suffice io describe hardcopy and glass-tty terminals. Thus the model 33 tele-
type is described as

33 | tty33 | tty I model 33 teletype,
bel:^G, colsff72, cr:^M, cudl:^J, hc, ind:^J, os,

while the Lear Siegler ADM*3 is desoibed as

admSl3llsi adm3,
am, bel:"G, clear:^Z, colsf80, cr:^M, cubl:^H, cudl:"J,
ind: ^ J, linesf 24,

Parameterized Strings
Cursor addressing and obher strings requiring parameters in the termirral are described by a
parameterized string capability, with print!(3S) like escapes Vox in it. For example, to address
the cursor, the cup capability is given, using two parameters: the row and column to address to,
(Rows and columns are numbered from zero and refer to the physical screen visible to the user.
not to any unseen memory.) If the t,erminal has memory relative cursor addressing, that can be
indicated by mrcup.
The parameter mechanism uses a stack and special Vo codes to manipulate it. Typically a
sequence will push one of the parameters onto the stack and then print it in some format. Often
more complex operations are necessary.

The %o encodings have the following meanings:

%%
Vod
%za
%aa

outputs'9ä'
print popfl as in printf
print popQ \ke %oZd
print popQ like VaSd

TERMTNTO(4)

%oza
%osa
"/oc

Vos

%plt-g]
%Pla-z)
%el"-zl
7o'c'
%{nn}

as in printf
print, popfl gives fic
print popQ gives %s

push ith parm
set variable [a-z]
get variable [a-z]
char constanü c
integer constant.

to popQ
and push rt

nn

%+ %- Vo* %,1 Tom
arithmetic (Vom is mod): push(pop() op popQ)

%e %l %^ bit operations: push(popQ op popQ)
%:7o> %< togical operations push(popO op popO)
Vol Vo- unary operations push(op popQ)
Voi add 1 to first two parms (for ANSI terminals)

/e? expr %t thenpart %oe elseparL Vo,
rf-then-else, %rc elseparL is optional
,:lse-if 's are possible ala Algol 68.
t%? crVoLbr%e crVotbr%e crVotbrVoe cnVotbn%n 97c,;

,:. are conditions, b, are bodies.
Binary operations are in postfix form with the operands in the usual order. That is, to g;el; x-5
one would use "%ogx7o{5\%-" .

Consider: the [IP2645, which, to get to row 3 and column 12, needs to be sent \E&a1:2c03'Y pad-
ded for 6 milliseconds.),lote that the order of the rows and columns is inverted her:, a.nd that
the row and column are printed as two digits. Thus its cup cap,ability is
c up : 6\E& % p27o2 d c%p L%zdY .

The Microterm ACT-IV needs the current row and column sent preceded by a ^'I, with the row
and column simply encoded in binary, ctp:^T94plVoc94p27oc. Terminals which use tVoc need l;o
be able to backspace the cursor (cubl), and to move the cursor up one line on the scrr:en (euul).
This is necessary because it is not always safe to transmit \" ^D and \r. as t,he s;ystt:rn ma.y
change or discard them. (The library routines dealing with terminfo set tty modes so ütrat tabs
are never expanded, so \t is safe to send. This turns out to be esseniial for the Ann Arbor 4,0130.)

A final example is the Lfil ADM-3a, which uses row and column offset by a blank character:, thus
cup:\E:%pL94' '%+%',cVop2Vo' 'Vo+%c. After sending '\E:', this pushes the first pariamet(:r,
pushes the ASCII value f,cr a spaee (32), adds them (pushing the sum on the stack in p,lace of thLe
two previous values) and outputs that value as a character. Then the same is <lon,e for the second
parameter. More complex arithmetic is possible using the stack.
If the terminal has row otr column absolute cursor addressing, these can tre givern a:; sing.le parame-
ter capabilities hpa (horizontal position absolute) and vpa (vertical positio:n at,solute). Some-
times these are shorter than the more general two parameter sequence (as with the hp2645) and
can be used in preferenee to cup .If there are parameterized local motions (e.g,, rrrc»ve n sl)zlces to
the right,) these can be given as cud, cub, cuf, and cuu with a single parameter indi,:ating ho'w
many spaces to move. These are primarily useful if the terminal does noü ha.re crup, s,uch ari the
TEKTROND(.1025,

Cursor Motions
If the terminal has a fast, way to home the cursor (to very upper left corner of screen) then this
can be given as home; similarly a fast way of getting to the lower left-hand ,:orner can be give'n
as ll; this may involve gc,ing up with cuul from the home position, bu[a program shoul,l never

-8-

TERMTNT'o (4)

do this itself (unless ll does) because it can make no assumption about the effect of moving up
from the home position. Note that, the home position is the same as addressing to (0,0): to the
top left corner of the screen, not of memory. (Thus, the \EH sequence on IIP terminals cannot be
used for home.)

Area Clears
If the terminal can clear from the cument position to the end of the line, leaving the cursor where
it is, this should be given as el. If the terminal can clear from the current position to the end of
the display, then this should be given as ed. Ed is only defined from the first column o[a line.
(Thus, it can be simulated by a request to delete a large number of lines, if a true ed is not avail-
able.)

Insert/delete line
If the terminal can open a new blank line before the line where the cursor is, this should be given
as il1; this is done only from the first posit,ion of a line. The cursor must then appear on the
newly blank line. If the terminal can delete the line which 0he cursor is on, then this should be
given as dll; this is done only from the first position on the line to be deleted. Versions of il1
and dll which take a single parameter and insert or delete that many lines ean be given as il and
dl. If the terminal has a settable scrolling region (like the vt100) the command to set this can be
described with the csr capability, which takes two parameters: the top and bottom lines of the
scrolling region. The cursor position is, alas, undefined after using this command. It is possible
to get the effect of insert or delete line using this command - the sc and rc (save and restore cur-
sor) commands are also useful. Inserting lines at the top or bottom of the screen can also be done
using ri or ind on many terminals without a true insert/delete line, and is often faster even on
terminals with those features.

If the terminal has the ability to define a window as part of memory, which all commands affect,
it should be given as the parameterized string wind. The four parameters are the starting and
ending lines in memory and the starting and ending columns in memory, in that order.
If the terminal can retain display memory above, then the da capability should be given; if
display memory can be retained below, then db should be given. These indicate that deleting a
Iine or scrolling may bring non-blank Iines up from below or that scrolling back with ri may bring
down non-blank lines.

Insert/Delete Character
There are two basic kinds of intelligent terminals with respect to insert/delete character which
can be described using terminfo. The most common insert/delete character operations affect only
the characters on the current line and shifi characters off the end of the line rigidly. Other termi-
nals, such as the Concept 100 and the Perkin Elmer Owl, make a distinction between typed and
untyped blanks on the screen. shifting upon an insert or delete only to an untyped blank on the
screen which is either eliminated, or expanded to t*'o unty-ped blanks, You can determine the
kind of terminal you have by clearing the screen and then typing text separated by cursor
motions. Type abc def using local cursor motions (not spaces) between the abc and the def.
Then position the cursor before the abc and put the terminal in insert mode. If typing characters
causes the rest of the Iine to shift rigidly and characters to fall off the end, then your terrninal
does not distinguish between blanks and untyped posit.ions. If the abc shifts over to the def which
then move together around the end of the eument line and ont,o the nexi as you insert, you have
the second type of terminal, and should give the capability in, which stands for insert null. While
these are two logically separate atbributes (one line vs. nrultiline insert mode, and special treat-
ment of untyped spaces) rve have seen no terminals *.hose inseri mode cannot be described with
the single attribute.
Terminfo can describe both terminals *'hich have an insert mode, and terminals which send a
simple sequence io open a blank posilion on ihe current line. Give as smir the sequence to get
into insert mode. Give as rmir the sequence to leave insert mode. Now give as ichl any
sequence needed to be senl jusl before sending the character to be inserted. N{ost terminals with

-9-

TERMTNFo (4)

a true insert mode will not gil'e ichl; terminals nhich sen,C a sequence to open a, screen posriti,rn
should give it here. (If your terminal has both, insert mode is usually prreferable t.o ictrl. [)o not
give both urrless the ternrinal actually requires both to b,e used in combination..l If prost insert pari-
ding is needed, give this as a number of milliseconds in ip (a scring opr,ion). :\ny othr:r sequence
which nral' neecl to be sr:nt after an irrsert of a single r:haracter may also be given in :ip. J.f your
terminai needs both to be placed into an'insert, mode'and a, special code to precede each irrsert,:d
characte'r, then both smiir/rrnir and ichl can be given, and both will be use,l. lllhe i,:h ,:::r,pabil-
it1r, with one parameier, n, will repeat the effects of ichl n times.
It is occixionally necessary to move around u'hile in insert mode to delete characLerc on thr: sanle
line (e.g., if there is a tz,b after the insertion position). If your terminal allc,rvs.nroti<>n vuhile in
insert mr>de you can give the capability rnir to speed up inserting in this case. Ornitting rnir will
affect only speed. Some t,ermirrals (notably Datamedia's) must not have mir bec;ause of t,hLe way
their insert mode works.
Finally, :you can sper:ify rlchl to delete a single character, dch with one paranreter, n, to rlr:lete n
characters, and delete m,rde by giving smdc and rmdc to ent,er and exit del.ete mode (any mode
the terminal needs t,o be placed in for dchl to work).
A command to erase n characters (equivalent to outputting n bianks without;;norring [he c,ursor')
can be given as ech with one parameter.

Iligtrlighting, Underlining, and Visible Bells
If your terminal has one r)r more kinds of display attributes, these can be reprr,sented irr a nurnb,:r
of different *'ays. You r;hould choose one display forrn a^s standout mode. r,zpresenti:rg ir goor:[,
high contrast, easy-on-the-eyes, format, for highlighting error messages and othr:r at,t,ention getters.
(If you h,ave a choice, reverse video plus half-bright is good, c,r reverse video alone.'] 'Ihe, se,1uenc,:s
io enter and exit standout mode are given a^s smso and rmso, respectively. If the code to change
into or out of standout ntode leaves one or even two blank rspaces on the scre:on, a^s th.e 1'\r'I 9I2
and Teleray 1061 do, then xmc should be given to tell how many spaces are le[t.
Codes to begin underlining and end underlining can be given as smul and rmul respectively. If
the terminal has a cr>de to r.rnderline the current charact,er and move the curscr one str,ace to tlre
right, such as the Microterm N{ime, this can be given as uc.
Other ca.pabilities to enier various highlighting modes include blink (blinki;rg) bokl (br:Ll or
extra bright) dim (dim or halt-bright) invis (blanking or invisible text) prot (prctr:cted) re'r
(reverse uideo) sgro (turn. o{f all attribute modes) smacs (enter alternate chana,:ter set mo,l,:) an,l
lmacs (exit alternat,e character set mode). Turning on any of these niodes singly rn,a,y ,or may
not turn off other modes.

If there is a sequence to set arbitrary combinations of moäes, this should br: given as sgr (set
atiributes), taking I parameters. Each parameier is either 0 or 1, as the come:ipondin6 at.tribut,e
is on or «rff. The I paranreters are, in order: standout, underline, reverse, blintrr dim, bold, blanll,
protecl, alternate character set. Not all modes need be supported by sgr, orriy those for which
corresponding separat,e attribute commands exist.
Terminals with the "magic cookie" glitch (xrne) deposit special "cookies" rvhen. they n,:ceiv,-'
mode-sebting sequences, u,hich affect the display algorithm rather than havingextra bil;s fr-rr each
eharacter. Some terminals, such as the HP 2621, autornati,:ally leave s[andout; mode 'rhen t;he)r
move to a ne\r'line or the cursor is addressed. Prograrns using standout modr, should exit sbar,-
dout mode before moving; the cursor or sending a newline, unless t,he rnsgr,ra,pability, ass,erting
that it is safe to move in r;tandout mode, is present.
If the terminal has a u'ay of flashing the screen to indicate an error quietll'li;r berll re;rlacr:rnent)
then this can be given as :[lash; it must not move the cursor.
If the cursor needs t,c be made more visible than norrrral when it is nc,t on ttre bottom l:Lne (to
make, for example, a non-blinking underline into an ea.sier to find blo;k or blinking unclerline)
give this sequence as cvvis. If there is a *'ay to make the cursor completely invisible, givr, glrut

- 10-

TERMTNFo (4)

as ci1,is. The capability cnorm should be given which undoes the effects of both of these modes.

If the terminal needs to be in a special mode when running a program that uses these capabilities'
the codes to enter and exit this mode can be given as Bmcup and rmcup' This arises, for exam-
ple, from terminals like the Concept with more than one page of memory. If the terminal has

only memory relative cursor addressing and not screen relative cursor addressing, a one §creen-

sized window must be flxed into the terminal for cursor addressing to work properly. This is also

used for the TEKTRONIX 4025, where srncup sets the command character to be the one used by
terminfo.
If your terminal correctly generates underlined characters (with no special codes needed) even
though it does not overstrike, then you should give the capability ul. If overstrikes are erasable
with a blank, then this should be indicated by giving eo.

I(eypad
If the terminal has a keypad that transmits codes when the keys are pressed, this information can
be given. Note that it, is not possible to handle terminals where the keypad only works in local
(this applies, for example, to the unshifted HP 2621 keys). If the keypad can be set to transmit or
not transmit, give these codes as smkx and rmkx. Otherwise the keypad is assumed to aiways
transmit. The codes sent by the left arrow, right arrow, up arrow, down arrow, and home keys
can be given as kcubl, kcuf1, kcuul, kcudl, and khome respectively. If there are function
keys such as f0, fl, ..., f10, the codes they send can be given as kfl), kf1, ..., kf10" If these keys
have labels other than the default f0 through f10, the labels can be given as IIU, lfl, ..., lf10.
The codes transmitted by certain other special keys can be given: kll (home down), kbs (back-
space), ktbc (clear all tabs), kctab (clear the tab stop in this column), kclr (clear screen or erase

key), kdchl (delete character), kdll (delete line), krmir (exit insert mode), kel (clear to end of
line), ked (clear to end of screen), kichl (insert character or enter insert mode), kill (insert line),
knp (next page), kpp (previous page), kind (scroll forward/down), kri (scroll backward/up),
khts (set, a tab stop in this column). In addition, if the keypad has a 3 by 3 array of keys includ-
ing the four arrow keys, the other five keys can be given as ka1, ka3, kb2, kc1, and kc3. These
keys are useful when the effects of a 3 by 3 directional pad are needed.

Tabs and Initialization
If the terminal has hardware tabs, the command to advance to the next tab stop can be given as

ht (usually control I). A "backtab" command which moves leftward to the next tab stop can be
given as cbt. By convention, if the teletype modes indicate that tabs are being expanded by the
computer rather than being sent to the terminal, programs should not use ht or cbt even if they
are present, since the user may not have the tab stops properly set. If the terminal has hardware
tabs which are initially set every n spaces when the terminal is powered up, the numerie parame-
ter it is given, showing the number of spaces the tabs are set to. This is normally used by the
tset command to determine whether to set the mode for hardware tab expansion, and wheiher to
set the tab stops. If the terminal has tab stops that can be saved in nonvolatile memory, the ter-
minfo description can assume that they are properly set.

Other capabilities include isl, is2, and is3, initialization strings for the terminal, iprog, the path
name of a program to be run to initialize the terminal, and if, the name of a file containing long
initialization sirings. These strings are expected to set the terminal into modes consistent with
the rest of the terminfo description. They are normally sent to the terminal, by the tset program,
each time the user logs in. They will be printed in the following order: is1; is2; setting tabs using
tbc and hts; if; running the program iprog; and finally is3. N{ost initialization is done with is2'
Special terminal modes can be set up without duplicating strings by putting the common
sequences in is2 and special cases in isl and is3. A pair of sequences that does a harder reset
from a totally unknown state can be analogously given as rsl, rs2, rf, and rs3, analogous to is2
and if. These strings are output by the rese, program, which is used when the terminal Sets into
a wedged state. Commands are normally placed in rs2 and rf only if they produce annoying
effects on the screen and are not necessary r,r'hen logging in. For example, the command to set
the vt100 into 8$.column mode would normally be part of is2, but it causes an annoying glitch of

- 11 -

TERMTNT'O (4)

the screen and is not rrormally needed since the t,erminal is usually already ;rn 80 eoluml moder.
If there are commands to set and clear tab stops, they can be given as tbc («:lear all tab stops)
and hts (set a tab stop in the current column of every row). If a more cärrrplex s,e,cluenr:e isr
needed to set, the tabs than can be described by this, the sequence can be pla,ceit in is2 r:,r if.
Delays

Certain capabilities cc,ntrol padding in the teletype
copy terminals, and are used by the tset program
embedded in the capabilities cr, ind, cubl, ff, and
be set in the teletype driver. If pb (padding baud
baud rates below the value of pb.

driver. These are prirrrarily needed by .hard
to set teletype rnodes app:ropriately. Delayr;
tab will cause r,he appropriate delay birs tc,

rate) is given, these values r:an be :ignored at,

Miscellaneous
If the terminal requires other than a null (zero) character as a pad, then this carl be givc,n as pad.
Only the first character of the pad string is used.
If the terminal has an extra "status line" that is not normally used by sofr,',vare, this f,a,:t ca.:n be
indicated. If the status line is viewed as an extra line below the bott,om line, into rvhi«:h one can
cursor address normally (such as the Heathkit h19's 25th line, or the 24th line c,f a vt10r0 vrhich is
set to a 23-line scrolling region), the capability hs should be given. Special strings; to go t6 the
beginning of the status line and to return from the status line can be given as tsl an,l fisl. (f'sl
must leave the cursor position in the same place it was before tsl. If necr:ssa.ry, the sc an«l rc
strings can be included in tsl and fsl io get this effect.) The parameter tsll takes o^e 1:,zrrilmeter,which is the column number of the status line the cursor is to be moved bo. I[escape siequences
and other special commands, such as tab, work while in the status line, bhe flag eslglk can begiven. A string which turns off the status line (or otherwise erases its corrtentrs) J,rul«jt be g;ivsn
as dsl. If the terminal has commands to save and restore the position of the cursor, give thelrn,m
sc anrl rc. The statur; line is normally assumed to be the same width as the rest,>i the screen,
e.g., cols. If the siatus line is a different width (possibly'because the terurinal cloes not; allovr eLn
entire Iine to be loaded) the width, in columns, can be indicated with the nurneric paranre,ter rvslL.
If the terminal can move up or down half a line, this can be indicaterl with hu (hal1'-lirre up) a1dhd (half-line down). lthis is primarily useful for superscripts and subscripts on hardc<,p,y 1.o-i-
nals. If a hardcopy terminal can eject to the next page (form feed), give this as ff (usualiy contr,cl
L).
If there is a command to repeat a given character a given number of t,imes (to szrve t:ime trsnsmiL-ting a large number of identical characters) this can be indicated with thi: parameteriz,ed strirLgrep. The first parameter is the character to be repeated and the second is the number c,f times t.o
repeat it. Thus, tparm(repeat_char, ,x,, 10) is the sarne as ,xxx)o(xxxxx,.

If the terminal has a settable command character, such as; the TEKTRONLX 402i,, thirt ca,n be indi-
cated with cmdch' A prototype command character is chosen which is r::sed in all ca,p,airilirr,ies.
This character is given in the cmdch capability to identify it. The following r:onvention is riul>-
ported on the operating system: The environment is to be searched for a CC variable, ancl if founiL, all
occurrences of the prototype character are replaced with the character in the environ,rnent vari.
able.

Terminal descriptions that do not represent a specilic kind of knou'n terrninal. su,lh uui sw,:itcli,
dialup , patch, and netuork, should include the gn (generic) capability so that progrzrms can conr-plain that they do not know how to talk to the terminal (This capability do"., 1Lt apply to t,ir-
tuol terminal descriptions for which the escape sequences are known.)
If the t,erminal uses xolr/xoff handshaking for flow control, give xon. Paddirrg i:nfornratjon shouldstill be included so thab routines can make better decisions about costs, but, ,ectr:al pad ,::ha,ra«:te1s
will not be transmitted.

t2-

TERMTNFO(4)

If the terminal has a "meta key" which acts as a shift key, setting the 8th bit of any character
transmitted, this fact can be indicated with km. Otherwise, software will assume that the 8üh bit
is parity and it will usually be cleared. If strings exist to turn this "meta mode" on and off, they
can be given as smrn and rmm.
If the terminal has more lines of memory than will fit on the screen at once, the number of lines
of memory can be indicated with lm. A value of lmff0 indicates that the number of lines is not
fixed, but that there is still more memory than fits on the screen.

If the terminal is one of those supported by the UND(virtual terminal protocol, the terminal
number can be given as vt.
Media copy strings which control an auxiliary printer connected to the terminal can be given as
rnco: print the contents of the screen, rnc4: turn off the printer, and rncS: turn on the printer.
When the printer is on, all text sent to the terminal will be sent to the printer. It is undefined
rvhether the text is also displayed on the terminal screen when the printer is on. A variation
mcSp takes one parameter, and leaves the printer on for as many characters as the value of the
pararneter, then turns the printer off. The parameter should not exceed 255. All text, including
rnc4, is transparent,ly passed to the printer while an rnc6p is in effect.
Strings to program function keys can be given as pfkey, pfloc, and pfx. Each of these strings
takes two parameters: the function key number to program (from 0 to 10) and the string to pro-
gram it with. Function key numbers out of this range may program undefined keys in a terminal
dependent manner. The difference between the capabilities is that pfl<ey causes pressing the
given key to be the same as the user typing the given string; pfloc causes the string to be exe-
cuted by the terminal in local; and pfx causes the string to be transmitted to the computer.

Glitches and Braindamage
Hazeltine terminals, which do not allow'- 'characters to be displayed should indicate hz.
Terminals which ignore a linefeed immediately after an am wrap, such as the Concept and vt100,
should indicate xenl.
If el is required to get rid of sbandout (instead of merely writing normal text on top of it), xhp
should be given.

Teleray terminals, where tabs turn all characters moved over to blanks, should indicate xt (des-
tructive tabs). This glitch is also taken to mean that it is not possible to position the cursor on
top of a "magic cookie", that to erase standout mode it is instead necessary to use deleüe and
insert line.
The Beehive Superbee, which is unable to correctly transmit the escape or control C characbers,
has xsb, indicating that, the fl key is used for escape and f2 for control C. (Only certain Super-
bees have this problem, depending on the ROM.)
Other specific terminal problems may be corrected by adding more capabilities of the form xr.

Similar Terminals
If there are two very similar terminals, one can be defined as being just like the other with certain
exceptions. The string capability use can be given with the name of the similar terminal. The
capabilities given before use override those in the terminal type invoked by use. A capability
can be cancelled by placing xx@ to the left of the capability definition, where xx is the capabil-
ity. For example, the entry

2621-nl, smkx@, rmkx@, use:2621,
defines a 2621-nl that does not have the srnkx or rrnkx capabilities, and hence does not turn on
the function key labels when in visual mode. This is useful for different modes for a terminal, or
for different user preferences.

TILtrS
/usr/lib/terminfo/?/t' files containing terminal descriptions

-13-

SEE AISO
curses(3X), printf(35), t,:rm(5)

TERMTNFO (4)

-t4-

TTYTYPE(1)

NAME
ttytype - list of terminal types by terminal number

DESCRIPTION
Ttytype is a text file that contains, for each terminal configured, the terminal type as described in
termcap(4). It is used by tset(f) when that program sets the TERM environment variable.
A line in ttytype consists of a terminal name (one of the abbreviations from the first field of the
termcap entry), followed by a space, followed by the special file name of the terminal without the
initial /dev/.

EXAMPLES
tty000 pt

FILtrS
f etc f ttytype

SEtr AISO
tset(1), termcap(4).

-1-

urMP(4)

NAME
utmp, lvtmp - utmp and wtmp entry formats

S]'}IOPSIS
finclude qsys/types.h>
finclude (utmp.h),

DBSCRIPTION
These files, which hold user and accounting information for such comman,ls, as ruäo(l), writtr(ll,
and login(l). On System 6600 systems, each Application Processor has its; <>rvn rrtnrp 1nd rvl;mp
files; the two digit Application Processor number is alrpended to the fiie narrrs.
The files have the follow.ing structure as defined by <lutmp.h):
f define UTMP_FILE " 7 etc,i.utmp,'
ffdefine WTMP_FILII "/etc/wtmp,,
f define ut_name ut_user

struct utmp {char ut_userl8]; l*char ut_id[a]; l*char ut, line[l2]; l*short utpid; l*short ut_type; l*struct er:it_status {short e_termination; l*shorr e_exit; l*
) ut-exit; l*

User login name */
/etc/inittat, id (usualls' Iine =f:) */
device narne (console. lnxx) i',/
process id */
type of entry */

Process termination stat,us * /
Process exit status */
The exit status of a process
marked as DEAD_PROCESS. */
time enbry' was made */time_t

);
ul._time: l*

/* Definitions for ur_type * /
fdeiine EMPTY O

fdefine RUN_LVL I
fdefine BOOT_TIME 2
ffdefine OLD_TIME B

fdefine NEW_TIME 4
fdefine INIT_PROCESS s
ffdefineLOGIN_PROCESS 6
fdefine LISER_PROCESS 7
fdefine DEAD_PROCESS 8
fdefine ACCOUNTING I
fdefine UTIvIAXTYPE ACCOUNTING

/* Process spawned bV "init" *7

/* A "getty" process waiting f,:rr logrn. */
/+ A user process */

,/* Largest legal value of ul_type */

1* Special strings or formats used in the ,,ut_line,, field when */
/* accounting for something other than a process *7/

/* No string for t,he ut_line field can be more than ll chars * *l
/* a NtiLL in length */
fdefine RUNLVL_N{SG "run-lev el 96c,,
fdefine BOOT_MSG "system boot,,
fdefine OTIIvIE_MSG ,'old time,,
ffdefine NTIME_N{SG "new 1,jps,

FILDS
/usr7'inelude/utmp.h

-1-

urMP(4)

On MiniFrame:
f eLe f utmp
/etc/wtmp
On MegaFrame:
/etc/utmp??
f etcf wtmp??

StrE AI,SO
login(1), who(l), write(1), getut(3C).

-r-

I

