INTRO(5)

NAME
intro - introduction to miscellany
DESCRIPTION

This section describes miscellaneous facilities such as macro packages, character set tables, etc.

ASCII(5)

NAME
ascil — map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION
Ascit is a map of the ASCII character set, giving both octal and hexadecimal equivalents of each
character, to be printed as needed. It contains:
{000 nul [001 soh {002 stx {003 etx |004 eot |005 enq |006 ack |007 bel |
[010 bs |01l ht [012 nl |013 vt |[014 np |015 cr [016 so |017 si |
|020 dle |021 dcl |022 dc2 {023 dc3 |024 dc4 |025 nak |026 syn |027 etb |
1030 can {031 em [032 sub |033 esc [034 fs |035 gs [036 rs |037 us |
1040 sp 041 | [042 ” |043 # [044 $ 1045% |046 & |047 ’ |
1050 (|051) 052 *+ |053 + |054 , |055 - [056 . |057 / |
1060 0 |061 1 062 2 063 3 [064 4 [0655 [0666 |067 7 |
070 8 071 9 [072 : 073 ; |0T4 < |075= [076 > |077 ? |
/100 @ 101 A [102 B [103C |104 D [1056E |106 F [107 G |
110 H (1111 112 J (113K |114 L [115M J[116 N [117 O |
[120 P {121 Q [122 R 123 S 124 T [125U [126V [127W |
|130 X |181Y [132 Z [133 | 134 \ |135 | 136 ° [137 _ |
{140 ~ |141 a |142 b [143 ¢ |144 d |145 e |146 f [147 g |
150 h 151 i [152 j |153 k [154 1 [155m |156 n |157 o |
{160 p 161 q |162 r [163 s [164 t [165 u [166 v |167 w |
(170 x |171y 172 z [178 { 174 | [175 } 176 ~ [177 del |
00 nul	01 soh	02 stx	03 etx	04 eot	05 enq	06 ack	07 bel
08 bs	09 ht	Oa nl	Ob vt	Oc np	0d cr	Oe so	Of si
10 dle	11 dcl	12 dc2	13 de3	14 dc4	15 nak	16 syn	17 etb
18 can	19 em	la sub	1b esc	lc fs	1d gs	le rs	1f us
\20sp	21!	22"	23#	248%	25%	26&	27 -
28 (29)	2 %	2b+	2 ,	2d-	2 .	2f/
300	311	322	33	844	355	36	377
1388	399	3 :	38,	8&<	38=	3>	37
490@	41 A	42B	43C	44D	45E	46 F	47 G
48 H	491	4aJ	4bK	4cL	4dM	4e N	4f O
50P	51Q	52R	53S	54T	55U	5V	57W
58X	59Y	5aZ	[s5b		5c\	5d]	5"
60~	61a	62b	63c	64d	65¢e	661	67¢g
68h	691	6aj	6bk	[6c1l	6dm	6en	6f o
70p	71 q	72r	73s	74t	75	76v	177w
78 x	79y	7az	76 {	Tc		7d}	Te~

FILES
/usr/pub/ascii

NAME

ENVIRON(5)

environ — user environment

DESCRIPTION

An array of strings called the “environment” is made available by ezec(2) when a process begins.
By convention, these strings have the form ‘“‘name=value”. The following names are used by
various commands:

PATH The sequence of directory prefixes that sk(1), time(1), nice(l), nohup(1), etc., apply in
searching for a file known by an incomplete path name. The prefixes are separated by
colons (:). Login(1) sets PATH=:/bin:/usr/bin.

HOME Name of the user’s login directory, set by login(1) from the password file passwd(4).
TERM The kind of terminal for which output is to be prepared. This information is used by
commands, such as mm(1), which may exploit special capabilities of that terminal.

TZ Time zone information. The format is xxxngzz where xxx is standard local time zone
abbreviation, n is the difference in hours from GMT, and zzz is the abbreviation for the
daylight-saving local time zone, if any; for example, ESTSEDT.

Further names may be placed in the environment by the ezxport command and “name=—=value”
arguments in sh(1), or by ezec(2). It is unwise to conflict with certain shell variables that are fre-
quently exported by .profile files: MAIL, PS1, PS2, IFS.

SEE ALSO

env(1), login(1), sh(1), exec(2), getenv(3C), profile(4), term(5).

EQNCHAR(5)

NAME -
eqnchar — special character definitions for eqn and neqn

SYNOPSIS
eqn /usr/pub/eqnchar | files | | troff | options |
neqn /usr/pub/eqnchar | files | | nroff | options]

DESCRIPTION

Egnchar contains troff(1) and nroff character definitions for constructing characters that are not
available on the Wang Laboratories, Inc. C/A/T phototypesetter. These definitions are primarily
intended for use with eqn(1) and negn; egnchar contains definitions for the following characters:

ciplus &) | | |

| square
citimes (V%) langle < circle O
wig ~ rangle > blot -
-wig ~ hbar r bullet °
> wig = ppd 4 prop A~ .
<wig = <-> “ empty ¢
=wig = <=> <> member €
star % | < 4 nomem &
bigstar X | > P cup U
=dot == ang L cap N
orsign \/ rang R tnel C
andsign /\ 3dot subset -
=del é thf supset D
oppA Y quarter W lsubset C -
oppE = Squarter Isupset ®
angstrom A degree ’ serL (
—=< < —=> >
FILES
/usr/pub/eqnchar
SEE ALSO
eqn(1), nroff(1), troff(1).
-~

FCNTL(5)

NAME
fentl — file control options

SYNOPSIS
#include <fentl.h>

DESCRIPTION

The fentl(2) function provides for control over open files. This include file describes requests and
arguments to fentl and open(2).

/* Flag values accessible to open(2) and fcntl(2) */

/* (The first three can only be set by open) */

#define O_RDONLY 0

#define O_WRONLY 1

#define O_RDWR 2

#define O_NDELAY 04 /* Non-blocking 1/0 */

#define O_APPEND 010 /* append (writes guaranteed at the end) */
#define O_DIRECT 0100000 /* Direct 1/0 */

/* Flag values accessible only to open(2) */

#define O_CREAT 00400 /* open with file create (uses third open arg)*/
#define O_TRUNC 01000 /* open with truncation */

#define O_EXCL 02000 /* exclusive open */

/* fentl(2) requests */
#define F_DUPFD
#define F_GETFD
#define F_SETFD
#define F_GETFL
#define F_SETFL

SEE ALSO
fentl(2), open(2).

/* Duplicate fildes */
/* Get fildes flags */
/* Set fildes flags */
/* Get file flags */
/* Set file flags */

N = O

MAN (5)

NAME

man — macros for formatting entries in this manual
SYNOPSIS

nroff —man files
DESCRIPTION

These troff(1) macros are used to lay out the format of the entries of this manual. A skeleton
entry may be found in the file /usr/man/u_man/man()/skeleton. These macros are used by
the man(1) command.

Any text argument below may be one to six “words”. Double quotes (””) may be used to include
blanks in a “word”. If tezt is empty, the special treatment is applied to the next line that con-
tains text to be printed. For example, .I may be used to italicize a whole line, or .SM followed by
B to make small bold text. By default, hyphenation is turned off for nroff, but remains on for

troff.

Type font and size are reset to default values before each paragraph and after processing font-
and size-setting macros, e.g., .I, .RB, .SM. Tab stops are neither used nor set by any macro
except .DT and .TH.

Default units for indents in are ens. When in is omitted, the previous indent is used. This
remembered indent is set to its default value (7.2 ens in troff, 5 ens in nroff-this corresponds to
0.5 ' in the default page size) by .TH, .P, and .RS, and restored by .RE.

UTH ¢ s ¢ n Set the title and entry heading; t is the title, s is the section number, ¢ is extra com-
mentary, e.g., ‘“local”’, n is new manual name. Invokes .DT (see below).

.SH text Place subhead tezt, e.g., SYNOPSIS, here.

.SS text Place sub-subhead tezt, e.g., Options, here.

.B text Make text bold.

J text Make text italic.
.SM text Make text 1 point smaller than default point size.
RIab Concatenate roman e with italic &, and alternate these two fonts for up to six argu-

ments. Similar macros alternate between any two of roman, italic, and bold:
JR .RB .BR .IB .BI

.P Begin a paragraph with normal font, point size, and indent. .PP is a synonym for .P.

.HP in Begin paragraph with hanging indent.

TP n Begin indented paragraph with hanging tag. The next line that contains text to be
printed is taken as the tag. If the tag does not fit, it is printed on a separate line.

JP tin Same as .TP in with tag t; often used to get an indented paragraph without a tag.

.RS in Increase relative indent (initially zero). Indent all output an extra in units from the
current left margin.

.RE k Return to the kth relative indent level (initially, k=1; k=0 is equivalent to k=1); if

k is omitted, return to the most recent lower indent level.

PM m Produces proprietary markings; where m may be P for PRIVATE, N for NOTICE,
BP for BELL LABORATORIES PROPRIETARY, or BR for BELL LABORA-
TORIES RESTRICTED.

.DT Restore default tab settings (every 7.2 ens in troff, 5 ens in nroff).

PD v Set the interparagraph distance to v vertical spaces. If v is omitted. set the inter-
paragraph distance to the default value (0.4v in troff, 1v in nroff).

The following strings are defined:

*R “in troff, (Reg.) in nroff.
*S Change to default type size.
*(Tm Trademark indicator.

The following number registers are given default values by .TH:

MAN(5)

IN Left margin indent relative to subheads (default is 7.2 ens in troff, 5 ens in nroff).
LL Line length including IN.
PD Current interparagraph distance.

CAVEATS

In addition to the macros, strings, and number registers mentioned above, there are defined a
number of internal macros, strings, and number registers. Except for names predefined by troff
and number registers d, m, and y, all such internal names are of the form XA, where X is one of
),], and }, and A stands for any alphanumeric character.

If a manual entry needs to be preprocessed by cw(1), egn(1) (or negn), and/or tbi{1), it must
begin with a special line (described in man(1)), causing the man command to invoke the appropri-
ate preprocessor(s).

The programs that prepare the Table of Contents and the Permuted Index for this Manual
assume the NAME section of each entry consists of a single line of input that has the following
format:

name[, name, name ... \- explanatory text

The macro package increases the inter-word spaces (to eliminate ambiguity) in the SYNOPSIS sec-
tion of each entry.

The macro package itself uses only the roman font (so that one can replace, for example, the bold
font by the constant-width font-see cw(1)). Of course, if the input text of an entry contains
requests for other fonts (e.g., .I, .RB, \fI), the corresponding fonts must be mounted.

FILES
/usr/lib/tmac/tmac.an
/usr/lib/macros/cmp.[nt}.[dt].an
/usr/lib/macros/ucmp.[nt].an
/usr/man/[ua]_man/man0/skeleton
SEE ALSO
man(1), nroff(1).
BUGS

If the argument to .TH contains any blanks and is not enclosed by double quotes ("”), there will
be bird-dropping-like things on the output.

MATH(5)

NAME -
math — math functions and constants

SYNOPSIS
#include <math.h>>

DESCRIPTION
This file contains declarations of all the functions in the Math Library (described in Section 3M),
as well as various functions in the C Library (Section 3C) that return floating-point values.

It defines the structure and constants used by the matherr(3M) error-handling mechanisms,
including the following constant used as an error-return value:

HUGE The maximum value of a single-precision floating-point number.
The following mathematical constants are defined for user convenience:
M_E The base of natural logarithms (e). -
M_LOG2E The base-2 logarithm of e.
M_LOGIOE The base-10 logarithm of e. -
M_LN2 The natural logarithm of 2.
M_LN10 The natural logarithm of 10.
M_PI The ratio of the circumference of a circle to its diameter. (There are also
several fractions of its reciprocal and its square root.)
M_SQRT2 The positive square root of 2.
M_SQRTI1_2 The positive square root of 1/2.
For the definitions of various machine-dependent “constants,” see the description of the —
< wvalues.h> header file.
FILES
/usr/include/math.h
SEE ALSO
intro(3), matherr(3M), values(5).
—~

MM(5)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
mm | options | | files]
nroff —mm [options | [files |
nroff —em [options | [files |

DESCRIPTION
This package provides a formatting capability for a very wide variety of documents. It is the
standard package used by the BTL typing pools and documentation centers. The manner in
which a document is typed in and edited is essentially independent of whether the document is to
be eventually formatted at a terminal or 1s to be phototypeset. See the references below for
further details.
The —mm option causes nroff and troff(1) to use the non-compacted version of the macro pack-
age, while the —em option results in the use of the compacted version, thus speeding up the pro-
cess of loading the macro package.

FILES
/usr/lib/tmac/tmac.m pointer to the non-compacted version of the package
/usr/lib/macros/mmint] non-compacted version of the package
/usr/lib/macros/cmp.[nt].[dt].m compacted version of the package
/usr/lib/macros/ucmp.[nt].rn initializers for the compacted version of the package

SEE ALSO

mm(1), mmt(1), nroff(1).
MM-Memorandum Macros by D. W. Smith and J. R. Mashey.
Typing Documents with MM by D. W. Smith and E. M. Piskorik.

MODEMCAP (5)

NAME —
modemcap — smart modem capability data base

SYNOPSIS
/usr/lib/uucp/modemcap

DESCRIPTION

Modemecap describes the call placing protocol of smart modems. Operating system uucp (1C) and dial (3C)
accept a reference to a modemcap entry in place of an automatic call unit reference In
/usr/lib/uucp/L-devices. Each entry describes a single modem in a specific configuration.

Modemecap is a text file. Lines that begin with a pound sign (#) are ignored. Other lines make
up descriptions.

Each description begins on a new line. The beginning of the description is a list of its names,
separated by vertical bars (|). Any of the names, which must not begin with cua, can be used in —
place of the call unit name in /usr/lib/uucp/L—devices.

The rest of the description is a list of capabilities, separated by colons (:). If a description extends

over more than one line, each line except the last must end with a backslash (\). (The continua-~ ~
tion is normally entered as colon-backslash-newline-tab-colon: this produces a single invalid capa-

bility, which is ignored.) Here is an example:

bizcomp 1012 - option switch 9 down

bz | bizcomp bizcomp 1012:
:al=NO ANSWER:b1=NO DIAL TONE:b2=NO ANSWER:c1=1:¢2==2:\
:¢7="7:d1#1:d5#5:eh=\r:;ph=\02D:ps=\02:pw= 72:\
sa=A:sq=Q:sv=Visx=X:sz=Z:wp=\r:\
:pl=szd5wpdlsvwpsqwpsxwpdlphwpc7blwpc2alcl1b2dl:

Each capability has three parts: -
1. The two-character name of the capability.

2. An pound sign (#) or equals sign (=). A pound sign indicates a numeric capability.
An equals sign indicates a string capability.

3. The capability value. For a numeric capability, the value is the number that
immediately follows the pound sign. For a string capability, the value is the string of
characters, including blanks, between the equals sign and the colon that ends the
capability. (If a colon is part of the value, it must be expressed as an octal sequence;
see below.) In a string capability, the following sequences stand for single characters: -

\zzz (where zzz is one to three octal
digits) the character whose octal -~
value is zzz

\072 colon (:)

\200 null (\000 doesn’t work)

\E escape (\033)

\n newline (\012)
\r return (\015)

\t tab (\011)

\b backspace (\010)
\f formfeed (\014)

r control-z

There are four kinds of capabilities: the place call capability, basic features capabilities, the send

phone number capability, and send/receive capabilities. Only the place call capability is manda-
tory. —

MODEMCAP (5)

Place Call Capability
pl String capability. Controls the use of the other capabilities. The value of the string is a
procedure made up of the other capabilities. A communication program works through pl’s
value, using each capability as it is encountered; a limited control of execution flow is pro-
vided by some special capabilities.
Basic Features Capabilities

Basic features capabilities specify strings used to command basic features of the modem. These
capabilities never appear in the pl value, but are implied by other capabilities. The capability
descriptions indicate which capabilities use basic features capabilities and what happens when
basic features capabilities are undefined.

ps Primary command start; string capability. The ps capability specifies the characters that

precede modem commands, if required. Used by sz capability.

e,
25 Primary command end; string capability. The ﬁgcapability specifies the characters that

must follow modem commands, if required. Used by sz capability.
eh End phone number; string capability. Used by ph capability.
— pa Pause in phone number; string capability. Used by ph capability.
pw Pause in phone number and wait for dial tone; string capability. Used by ph capability.

Send Phone Number Capability
rh String capability. In a single write(2}, send a string with three parts:

1. The ph’s capability’s own value.

2. The phone number as ASCII digits. Whenever the modem should pause, send the value
of the pa capability, if defined. Whenever the modem should pause and wait for a dial
tone, send the value of the pw capability, if defined.

— 3. The value of the eh capability, if defined.

Send/Receive Capabilities
Send/receive capabilities are different from other capabilities in their naming convention. The
first character of the capability name tells the kind of capability. The second character of the
name is chosen arbitrarily from the lowercase letters and digits and identifies the particular capa-
bility from others of the same kind.

tz String capability. Send the value to the modem.

sz String capability. In a single write, send a command to the modem. The command has
L three parts:

1. The value of the ps capability, if defined.

2. The sz’s cpability’s own value.

3. The value of the pe capability, if defined.

dz Numeric capability. Delay for the number of seconds specified in the value.

wz String capability; value must be a single character. Wisk through input from modem until
the value 1s read. Put input, up to but not including the terminating character, in the wisk
buffer, replacing the previous contents.

cz String capability. Compare value with contents of the wisk buffer. Set the comparison flag
to EQUAL if they match, NOT_EQUAL otherwise. Do not modify the comparison flag
until you execute another cz.

mz Numeric capability. Skip ¢cn EQUAL. If the comparison flag is EQUAL the next n instruc-
tions in the pl value are skipped, where n is the value of maz.

. nz Numeric capability. Skip on NOT_EQUAL. If the comparison flag is NOT_EQUAL the

next n instructions in the pl value are skipped, where n is the value of nz.

ar

bz

EXAMPLE

SEE

The

ALSO

MODEMCAP(5)

String capability. Abort on EQUAL. If the comparison flag is EQUAL abort the phone
call. If debug output is specified, print the value of the az capability.

String capability. Abort on NOT_EQUAL. If the comparison flag is NOT_EQUAL abort
the phone call. If debug output is specified, print the value of the bz capability.

Bizcomp 1012 example above assumes that the modem’s switch 9 (configuration:
TERMINAL/COMPUTER) is down (COMPUTER). With this setting, the modem has the fol-
lowing characteristics:

Commands to the modem must be preceded by an STX (\002) and followed by a
CR (\r). This prevents normal data transmissions from being taken for modem
commands.

The modem’s messages to the computer are terse. The following two-character
sequences are diagnostics.

1 CR connection made

2 CR no connection or no answer
7 CR dial tone detected

A CR is a command prompt. A communication program that uses the Bizcom 1012
modemcap entry follows the following procedure:

(szd5wpd1) Send an STX-Z-CR, resetting the modem. Wait five seconds, then
read the resulting CR. Wait another one second.

(svwpsqwpsxwpdl) Send an STX-V-CR (select tone dialing); read the resulting
CR. Send an STX-Q-CR (toggle busy detection); read the resulting CR. Send
an STX-X-CR (select transparent data mode); read the resulting CR. Wait one
second.

(ph) Send an STX-D, then the phone number. The phone number should
include a colon (:) whenever the modem should pause to listen for another dial
tone. The description lacks a pa capability, so there is no way to pause
without waiting for a dial tone.

(wpc7bl) Read until the next CR. If the input isn’t “7”, abort with the debug
message ‘“NO DIAL TONE”.

(wpc2alclb2) Read until the next CR. If the input is “2”, abort with the
debug message “NO ANSWER”. Otherwise, if the input isn't “1”, abort with
the debug message “NO ANSWER”.

(d1} Wait one second. The connection is established.

dial(3C), uuep(1C).

NAME

mptx — the macro package for formatting a permuted index
SYNOPSIS

nroff —mptx | options | [files | [options | [files]
DESCRIPTION

This package provides a definition for the .xx macro used for formatting a permuted index as
produced by ptr(1). This package does not provide any other formatting capabilities such as
headers and footers. If these or other capabilities are required, the mpfr macro package may be
used in conjuction with the MM macro package. In this case, the —mptx option must be invoked
after the —mm call. For example:

nroff —cm —mptx file
or
mm -mptx file

FILES
/usr/lib/tmac/tmac.ptx pointer to the non-compacted version of the package
" /usr/lib/macros/ptx non-compacted version of the package
SEE ALSO

mm(1), nroff(1), ptx(1), mm(5).

mv — a troff macro package for typesetting view graphs and slides

SYNOPSIS

mvt | —a | [options | [files |

troff [—a | [-rX1 | —mv [options | [files]

DESCRIPTION

This package makes it easy to typeset view graphs and projection slides in a variety of sizes. A
few macros (briefly described below) accomplish most of the formatting tasks needed in making
transparencies. All of the facilities of troff(1), cw(1), eqn{l), and tbl(1) are available for more dif-
ficult tasks.

The output can be previewed on most terminals, and, in particular, on the Tektronix 4014, as
well as on the Versatec printer. For these two devices, specify the —rX1 option (vhis option s
automatically specified by the muvt command-q.v.-when that command is invoked with the
—T4014 or —Tvp options). To preview output on other terminals, specify the —a option.

The available macros are:

VS

=R

r—ﬁ,——..—w-—‘?ﬁ——,v——w—‘

B

t >$2gg<<<<

ST

RCH

3

=3 .3.83.3.3,
—— e

- . o 2 Ao I o I

3 3

=y

-~

[m [s]]

d

RS S S

A B

Foil-start macro; foil size is to be 77! X7' ' ; n is the foil number, ¢ is the
foil identification, d is the date; the foil-start macro resets all parameters
{(indent, point size, etc.) to initial default values, except for the values of ¢ and
d arguments inherited from a previous foil-start macro; iv also invokes the .A
macro (see below).

The naming convention for this and the following eight macros is that the first
character of the name (V or S} distinguishes between view graphs and slides,
respectively, while the second character indicates whether the foil is square (S),
small wide (w), small high (h), big wide (W), or big high (H). Slides are
“skinnier’”’ than the corresponding view graphs: the ratio of the longer dimen-
sion to the shorter one is larger for slides than for view graphs. As a result,
slide foils can be used for view graphs, but not vice versa; on the other hand,
view graphs can accommodate a bit more text.

wide X 5' !
X7
X541 .
Xgl ! .
><5I ! .
X7I ! .

Same as .VS, except that foil size is 7' '
Same as .VS, except that foil size is 5 '
Same as . VS, except that foil size is 7' '
Same as .VS, except that foil size is 7' '
Same as .VS, except that foil size is 7' '
Same as .V S, except that foil size is 5' '
Same as .VS, except that foil size is 7/ ' X5.4' ' .

Same as .VS, except that foil size is 7/ ' X9 ' .

Place text that follows at the first indentation level (left margin): the presence
of z suppresses the line spacing from the preceding text.

Place text that follows at the second indentation level; zext is preceded by a
mark; m is the mark (default is a large bullet); s is the increment or decrement
to the point size of the mark with respect to the prevailing point size (default
is 0); if s is 100, it causes the point size of the mark to be the same as that of
the default mark.

Same as .B, but for the third indentation level; default mark is a dash.

Same as .B, but for the fourth indentation level; default mark is & small bullet.
String is printed as an over-size, centered title.

Change the current text indent {does not affect titles); in is the indent (in
inches unless dimensioned, default is 0); if in is signed, it is an increment or
decrement; the presence of a invokes the .A macro (see below) and passes z (if
any) to it.

high.

MV (5)

.S [p] 1] Set the point size and line length; p is the point size (default is “previous”); if
p 1s 100, the point size reverts to the indtial default for the current foil-start
macro; if p is signed, it is an increment or decrement (default is 18 for .VS,
.VH, and .SH, and 14 for the other foil-start macros); { is the line length (in
inches unless dimensioned; default is 4.2' ! for .Vh, 3.8 ' for .Sh, 5' ! for
-SH, and 6' ' for the other foil-start macros).

Define font positions; may not appear within a foil’s input text (i-e., it may
only appear after all the input text for a foil, but before the next foil-start
macro); n is the position of font f; up to four “n f pairs may be specified;
the first font named becomes the prevailing font; the initial setting is (His a
synonym for G):

DF 1 H213B4S

DV [d] [b] [¢] [d] Alter the vertical spacing between indentation levels; a is the spacing for .A, b
is for .B, ¢ is for .C, and d is for .D; all non-null arguments must be dimen-
sioned; null arguments leave the corresponding spacing unaffected; initial set-
ting is:

DV .5v 5v .5v Ov
U strl[str2] Underline strl and concatenate str2 (if any) to it.

The last four macros in the above list do not cause a break; the .I macro causes a break only if it
is invoked with more than one argument; all the other macros cause a break.

The macro package also recognizes the following upper-case synonyms for the corresponding
lower-case troff requests:
.AD .BR .CE .FI .HY .NA .NF .NH .NX .80 .SP .TA .TI

The Tm string produces the trademark symbol.
The input tilde (7) character is translated into a blank on output.

See the user’s manual cited below for further details.

FILES

/usr/lib/tmac/tmac.v

/usr/lib/macros/vmca
SEE ALSO

cw(1), eqn(1), mmt(1), tbl(1), troff(1).

A Macro Package for View Graphs and Slides by T. A. Dolotta and D. W. Smith.
BUGS

The .VW and .SW foils are meant to be 9 ' wide by 7' ' high, but because the typesetter
paper is generally only 8 ' wide, they are printed 7 ' wide by 5.4' ! high and have to be
enlarged by a factor of 9/7 before use as view graphs; this makes them less than totally useful.

PILF(5) (MegaFrame Only)

NAME
pilf, dio — performance improvement in large files and direct I/O

DESCRIPTION
A PILF file system supports the input or output of large amounts of data with a single physical
read or write. This requires special strategies for I/O; when standard I/O operations are applied
to a PILF file system, it behaves like a standard 1K file system. A PILF file system is created
with the —P option of mkfs(1M).

A file on a PILF file system is allocated by clusters, each of which is equal in size and consists of

contiguous blocks. Performance improvement is seen when the DIO (Direct Input/Outpur)
mechanism is used and no read or write crosses a cluster boundary.

A field in the i-node determines the file’s cluster size. A cluster consists of 2¢ 1K blocks, where ¢
is the value in the i-node. The process that creates a PILF file specifies its cluster size using syslo-
cal(2); if a process has not yet specified a cluster size, the default cluster size, in the superblock, is
used. A file’s cluster size is determined when it is created and cannot be changed.

DIO transfers data directly between the process’s address space and the disk, bypassing the kernel

buffer cache. It is specifically meant to be used on PILF files. DIO is specified with open or fentl.
SEE ALSO

ep(1), mkfs(1M), fsck(1M), fsdb(1M), fentl(2), fork(2), open(2), syslocal(2), fs(4), inode(4), fentl(5).
WARNING

A buffer used for DIO must be on an even address. This is the same degree of alignment as a
short.

PROF (5)

NAME

prof — profile within a function
SYNOPSIS

#define MARK

#include <prof.h>

void MARK (name)

DESCRIPTION

MARK will introduce a mark called name that will be treated the same as a function entry point.
Execution of the mark will add to a counter for that mark, and program-counter time spent will

be accounted to the immediately preceding mark or to the function if there are no preceding
marks within the active function.

Name may be any combination of up to six letters, numbers or underscores. Each name in a sin-
gle compilation must be unique, but may be the same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined before the header file <profh> is

included. This may be defined by a preprocessor directive as in the synopsis, or by a command
line argument, i.e:

cc —~p -DMARK foo.c

If MARK is not defined, the MARK (name) statements may be left in the source files containing
them and will be ignored.

EXAMPLE

In this example, marks can be used to determine how much time is spent in each loop. Unless
this example is compiled with MARK defined on the command line, the marks are ignored.

#include <prof.h>

foo()
{

int 1, Jj;

- MARK(loop1);
for (i = 0; i < 2000; i++) {

MARK(loop2);
for (j = 0; j < 2000; j++) {

}
}

SEE ALSO
prof(1), profil(2), monitor(3C).

NAME

REGEXP (5)

regexp — regular expression compile and match routines

SYNOPSIS

#define INIT < declarations>

#define GETC() <getc code>

#define PEEKC() < peeke code>

#define UNGETC(¢) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>

#include <regexp.h>

char *compile (instring, expbuf, endbuf, eof)
char *instring, *expbuf, *endbuf;

int eof;

int step (string, expbuf)
char *string, *expbuf}

extern char *locl, *loc2, *locs;

extern int ciref, sed, nbra;

DESCRIPTION

This page describes general-purpose regular expression matching routines in the form of ed(1),
defined in /usr/include/regexp.h. Programs such as ed(1), sed(1), grep(1), bs(1), expr(1), etc.,
which perform regular expression matching use this source file. In this way, only this file need be
changed to maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include this file must have the
following five macros declared before the ‘‘#include <regexp.h>" statement. These macros are
used by the compile routine.

GETC()

PEEKC()

UNGETC(c)

RETURN(pointer)

ERROR(val)

Return the value of the next character in the regular expression pattern.
Successive calls to GETC() should return successive characters of the regu-
lar expression.

Return the next character in the regular expression. Successive calls to
PEEKC() should return the same character (which should also be the next
character returned by GETC()).

Cause the argument ¢ to be returned by the next call to GETC() (and
PEEKC()). No more that one character of pushback is ever needed and
this character is guaranteed to be the last character read by GETC(). The
value of the macro UNGETC(¢) is always ignored.

This macro is used on normal exit of the compile routine. The value of the
argument potnter is a pointer to the character after the last character of
the compiled regular expression. This is useful to programs which have
memory allocation to manage.

This is the abnormal return from the compéle routine. The argument val
is an error number (see table below for meanings). This call should never
return.

REGEXP (5)

ERROR MEANING

11 Range endpoint too large.

16 Bad number.

25 “\digit”’ out of range.

36 llegal or missing delimiter.

41 No remembered search string.

42 \(\) imbalance.

43 Too many \(.

44 More than 2 numbers given in \{ \}.
45 } expected after \.

46 First number exceeds second in \{ \}.
49 [] imbalance.

50 Regular expression overflow.

The syntax of the compile routine is as follows:
compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile routine but is useful for pro-
grams that pass down different pointers to input characters. It is sometimes used in the INIT
declaration (see below). Programs which call functions to input characters or have characters in
an external array can pass down a value of ((char *) 0) for this parameter.

The next parameter ezpbuf is a character pointer. It points to the place where the compiled regu-
lar expression will be placed.

The parameter endbuf is one more than the highest address where the compiled regular expression

may be placed. If the compiled expression cannot fit in (endbuf-expbuf) bytes, a call to
ERROR(50) is made.

The parameter eof is the character which marks the end of the regular expression. For example,
in ed(1), this character is usually a /.

Each program that includes this file must have a #tdefine statement for INIT. This definition
will be placed right after the declaration for the function compile and the opening curly brace ({).
It is used for dependent declarations and initializations. Most often it is used to set a register
variable to point the beginning of the regular expression so that this register variable can be used
in the declarations for GETC(), PEEKC() and UNGETC(). Otherwise it can be used to declare

external variables that might be used by GETC(), PEEKC() and UNGETC(). See the example
below of the declarations taken from grep(1).

There are other functions in this file which perform actual regular expression matching, one of
which is the function step. The call to step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be checked for a match. This
string should be null terminated.

The second parameter ezpbuf is the compiled regular expression which was obtained by a call of
the function compile.

The function step returns non-zero if the given string matches the regular expression, and zero if
the expressions do not match. If there is a match, two external character pointers are set as a
side effect to the call to step. The variable set in step is locZ. This is a pointer to the first char-
acter that matched the regular expression. The variable loc2, which is set by the function
advance, points to the character after the last character that matches the regular expression.
Thus if the regular expression matches the entire line, locz will point to the first character of
string and loc2 will point to the null at the end of string.

Step uses the external variable circf which is set by compile if the regular expression begins with
". If this is set then step will try to match the regular expression to the beginning of the string

-92.

REGEXP (5)

only. If more than one regular expression is to be compiled before the first is executed the value
of circf should be saved for each compiled expression and ¢ircf should be set to that saved value
before each call to step.

The function advance is called from step with the same arguments as step. The purpose of step
is to step through the string argument and call advance until advance returns non-zero indicating
a match or until the end of string is reached. If one wants to constrain string to the beginning of
the line in all cases, step need not be called; simply call advance.

When advance encounters a * or \{ \} sequence in the regular expression, it will advance its

pointer to the string to be matched as far as possible and will recursively call itself trying to
match the rest of the string to the rest of the regular expression. As long as there is no match,
advance will back up along the string until it finds a match or reaches the point in the string that
initially matched the * or \{ \}. It is sometimes desirable to stop this backing up before the ini-
tial point in the string is reached. If the external character pointer locs is equal to the point in
the string at sometime during the backing up process, advance will break out of the loop that
backs up and will return zero. This is used by ed(1) and sed(1) for substitutions done globally
(not just the first occurrence, but the whole line) so, for example, expressions like s/y*//g do not
loop forever.

The additional external variables sed and nbra are used for special purposes.

EXAMPLES
The following is an example of how the regular expression macros and calls look from grep(1):

#define INIT register char *sp = instring;
#define GETC() (*sp++)

#define PEEKC() (*sp)

#define UNGETC(c) (—sp)

#define RETURN(c) return;

#define ERROR(c) regerr()

#include <regexp.h>
{void) compile(*argv, expbuf, &expbuf[ESIZE], ' \0');

if (step(linebuf, expbuf))
succeed();

FILES

/usr/include/regexp.h
SEE ALSO

bs(1), ed(1), expr(1), grep(1), sed(1).
BUGS

The handling of ciref is kludgy.

The actual code is probably easier to understand than this manual page.

STAT(5)

NAME
stat — data returned by stat system call
SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
DESCRIPTION
The system calls stat and fstat return data whose structure is defined by this include file. The
encoding of the field st_mode is defined in this file also.
/*
* Structure of the result of stat

&y

struct stat

{

dev_t st_dev;

— ino_t st_ino;
ushort st_mode;
short st_nlink;

ushort st_uid;
ushort st_gid;
dev_t st_rdev;
off_t st_size;
time_t st_atime;
time_t st_mtime;
time_t st_ctime;

_ &

#define S_IFMT 0170000 /* type of file */
#define S_IFDIR 0040000 /* directory */
#define S_IFCHR 0020000 /* character special */
#define S_IFBLK 0060000 /* block special */
#define S_IFREG 0100000 /* regular */
#define S_IFIFO 0010000 /* fifo */
#define S_ISUID 04000 /* set user id on execution */
#define S_ISGID 02000 /* set group id on execution */
~ #define S_ISVTX 01000 /* save swapped text even after use */
#define S_IREAD 00400 /* read permission, owner */
#define S_IWRITE 00200 /* write permission, owner */
— #define S_IEXEC 00100 /* execute/search permission, owner */

FILES
/usr/include/sys/types.h
/usr/include/sys/stat.h
SEE ALSO
stat(2), types(5).

TERM (5)

term - conventional names for terminals

DESCRIPTION

These names are used by certain commands (e.g., tabs(1), man(l) and are maintained as part of
the shell environment {see sh(1), profile(4), and environ(5)) in the variable $TERM:

pt T™31

freedom Liberty Freedom 100

1520 Datamedia 1520

1620 DIABLO 1620 and others using the HyType II printer
1620-12 same, in 12-pitch mode

2621 Hewlett-Packard HP2621 series

2631 Hewlett-Packard 2631 line printer

2631-¢ Hewlett-Packard 2631 line printer - compressed mode
2631-e Hewlett-Packard 2631 line printer - expanded mode
2640 Hewlett-Packard HP2640 series

2645 Hewlett-Packard HP264n series (other than the 2640 series)
300 DASI/DTC/GSI 300 and others using the HyType I printer
300-12 same, in 12-pitch mode

300s DASI/DTC/GSI 300s

382 DTC 382

300s-12 same, in 12-pitch mode

3045 Datamedia 3045

33 TELETYPE Model 33 KSR

37 TELETYPE Model 37 KSR

40-2 TELETYPE Model 40/2

404 TELETYPE Model 40/4

4540 TELETYPE Model 4540

3270 IBM Model 3270

4000a Trendata 4000a

4014 TEKTRONIX 4014

43 TELETYPE Model 43 KSR

450 DASI 450 (same as Diablo 1620)

450-12 same, in 12-pitch mode

735 Texas Instruments TI735 and TI725

745 Texas Instruments TI745

dumb generic name for terminals that lack reverse

line-feed and other special escape sequences;
likely to work when the real terminal type is
not known to the program

sync generic name for synchronous TELETYPE
4540-compatible terminals

hp Hewlett-Packard (same as 2645)

Ip generic name for a line printer

tn1200 User Electric TermiNet 1200
tn300 User Electric TermiNet 300

Up to 8 characters, chosen from [-a-z0-9], make up a basic terminal name. Terminal sub-models
and operational modes are distinguished by suffixes beginning with a —. Names should generally
be based on original vendors, rather than local distributors. A terminal acquired from one vendor
should not have more than one distinct basic name.

Comimands whose behavior depends on the type of terminal should accept arguments of the form
—Tterm where term is one of the names given above; if no such argument is present, such

TERM(5)

commands should obtain the terminal type from the environment variable $TERM, which, in
turn, should contain term.

SEE ALSO
man(1), mm(1), nroff(1), sh(1), stty(1), tabs(1), profile(4), environ(5).

BUGS

This is a small candle trying to illuminate a large, dark problem. Programs that ought to adhere
to this nomenclature do so somewhat fitfully.

TYPES(5)

NAME
types — primitive system data types

SYNOPSIS
#include <sys/types.h>
DESCRIPTION

The data types defined in the include file are used in operating system code; some data of these types are
accessible to user code:

typedef struct {int r[1}; } * physadr;
typedef long daddr_t;
typedef char > caddr_t;

typedef unsigned int uint;
typedef unsigned short ushort;

typedef ushort ino_t;
typedef short ent_t;
typedef long time_t;
typedef int label_t[10];
typedef short dev_t;
typedef long off_t;
typedef long paddr_t;
typedef long key_t;

The form daddr_t is used for disk addresses except in an i-node on disk, see fs(4). Times are
encoded in seconds since 00:00:00 GMT, January 1, 1970. The major and minor parts of a device
code specify kind and unit number of a device. Offsets are measured in bytes from the beginning
of a file. The label_t variables are used to save the processor state while another process is run-
ning.

SEE. ALSO

fs(4).

NAME

VALUES(5)

values — machine-dependent values

SYNOPSIS

#include <values.h>

DESCRIPTION

This file contains a set of manifest constants, conditionally defined for particular processor archi-

tectures.

The model assumed for integers is binary representation (one’s or two’s complement), where the
sign 1s represented by the value of the high-order bit.

BITS(type)
HIBITS

HIBITL
HIBITI
MAXSHORT
MAXLONG

MAXINT

The number of bits in a specified type (e.g., int).

The value of a short integer with only the high-order bit set (in most
implementations, 0x8000).

The value of a long integer with only the high-order bit set (in most imple-
mentations, 0x80000000).

The value of a regular integer with only the high-order bit set (usually the
same as HIBITS or HIBITL).

The maximum value of a signed short integer (in most implementations,
Ox7FFF = 32767).

The maximum value of a signed long integer (in most implementations,
Ox7FFFFFFF = 2147483647).

The maximum value of a signed regular integer (usually the same as MAX-
SHORT or MAXLONG).

MAXFLOAT, LN_MAXFLOAT The maximum value of a single-precision floating-point number,

and its natural logarithm.

MAXDOUBLE, LN_MAXDOUBLE The maximum value of a double-precision floating-point

number, and its natural logarithm.

MINFLOAT, LN_MINFLOAT The minimum positive value of a single-precision floating-point

number, and its natural logarithm.

MINDOUBLE, LN_MINDOUBLE The minimum positive value of a double-precision floating-

FSIGNIF
DSIGNIF

FILES
/usr/include/values.h

SEE ALSO
intro(3), math(5).

point number, and its natural logarithm.

The number of significant bits in the mantissa of a single-precision
floating-point number.

The number of significant bits in the mantissa of a double-precision
floating-point number.

VARARGS(5)

NAME

varargs — handle variable argument list
SYNOPSIS

#include <varargs.h>

va_alist

va_decl

void va_start(pvar)
va_list pvar;
type va_arg(pvar, type)
va_list pvar;
void va_end(pvar)
va_list pvar;
DESCRIPTION
This set of macros allows portable procedures that accept variable argument lists ro be written.

Routines that have variable argument lists (such as printf(3S)) but do not use wvarargs are
inherently nonportable, as different machines use different argument-passing conventions.

va_alist is used as the parameter list in a function header.

va_dcl is a declaration for va_alist. No semicolon should follow va_del.
va_list is a type defined for the variable used to traverse the list.
va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar. Type is the type the argu-
ment is expected to be. Different types can be mixed, but it is up to the routine to know what
type of argument is expected, as it cannot be determined at runtime.

va_end is used to clean up.
Multiple traversals, each bracketed by va_start ... va_end, are possible.

EXAMPLE
This example is a possible implementation of ezec!(2).

#include <varargs.h>
#define MAXARGS 100

/* execl is called by
execl(file, argl, arg2, ..., (char *)0);
*/

execl(va_alist)
va_dcl
{
va_list ap;
char *file;
char *args[MAXARGS];

int argno = 0;

va_start(ap);
file == va_arg(ap, char *);
while ((argsargno++] = va_arg(ap, char *)) != (char *)0)

va_end(ap);
return execv(file, args);

VARARGS (5)

SEE ALSO

BUGS

exec(2), printf(3S).

It is up to the calling routine to specify how many arguments there are, since it is not always pos-
sible to determine this from the stack frame. For example, execl is passed a zero pointer to signal
the end of the list. Printfcan tell how many arguments are there by the format.

It is non-portable to specify a second argument of char, short, or float to va_arg, since arguments
seen by the called function are not char, short, or float. C converts char and short arguinents to
int and converts float arguments to double before passing them to a function.

