INTRO(7)

NAME
intro — introduction to special files

DESCRIPTION
This section describes various special files that refer to specific hardware peripherals and
operating system device drivers. The names of the entries are generally derived from names for the
hardware, as opposed to the names of the special files themselves. Characteristics of both the
hardware device and the corresponding device driver are discussed where applicable.

NAME

CONSOLE(7)

console — console terminal

DESCRIPTION

The special file console designates a standard destination for system diagnostics. The kernel
writes its diagnostics to this file, as does any user process with messages of systemwicde impor-
tance. If console is associated with a physical terminal, than console messages also appear on
that terminal; but it is quite standard not to have console associated with a physical terminal.

Note that inittab(4) does not normally post a getty on console. This is because consocle might
become associated with a terminal that already is a login terminal.

Console conventions differ between System 6300 and System 6600 Systems.

MiniFrame

Console messages are saved in a circular buffer. Reading console retrieves the messages and
removes them from the buffer.

If the operating system is configured with the kernel debugger (see config(1M), then tty000 is associated with
the console. This means that console messages also go to tty000 and that a Control-B on

tty000 starts the kernel debugger.

The size of the console circular buffer is configured with the config(1M) parameter cbufsize. The
default is 512 bytes.

The following {octl/(2) commands are acceptd:

ioctl(fd, CONERRY);
Fd must be open to console. All console output is to be duplicated in the error
message queue. See err (7).

ioctl(fd, CONBUF);
Fd must be open to console. No console output is to be duplicated in the error
message queue. This is the initial condition.

MegaFrame

FILES

Each Application Processor has its own console, which can be associated with any terminal or
with no terminal at all. Whether or not the console is associated with a terminal, the most recent
console output is saved in a circular buffer.

Input /output operations on console by a process running on an Application Processor affect the
console for that Application Processor. The exact meaning depends on whether or not the consocle
is associated with a terminal.

e If the console is associated with a terminal, all input/output operations to console, includ-
ing ioctl(2), have the same effect as if applied directly to the terminal, except that output is
duplicated in the console buffer.

e If the console isn’t associated with a terminal, all attempts to read the console return an end
of file condition, all writes to the console go only to the console buffer, and toct/ operations
have no affect on any terminal.

If the kernel debugger is enabled, a Control-B or Code-B on the terminal associated with the con-
sole activates the kernel debugger. The command “go” to the kernel debugger resumes normal
processing.

The console(IM) command and syslocal(2) system calls control terminal association and print the
buffers of System 6600 Application Processor consoles.

/dev /console

SEL ALSO

conlocate(1M), console(1M), syslocal(2).

CONSOLE(7)

WARNING

The kernel debugger is not a supported product and may disappear without warning. Normal
system processing is suspended while the kernel debugger is active.

ERR(7) (System 6300 Only)

NAME
err — error-logging interface

DESCRIPTION
Minor device 0 of the err driver is the interface between a process and the system’s error-record
collection routines. The driver may be opened only for reading by a single process with super-
user permissions. Each read causes an entire error record to be retrieved and removed; the record
is truncated if the read request is for less than the record’s length.

An appropriate command to the console sends console information to the error record queue. See
console(7).

FILES
/dev/error special file

SEE ALSO
errdemon(1M), console(7).

CETERMIO(T)

NAME

estermio - terminal T/0 character seot interface

NESCRIPTTOM
Terminal input—character secquences can be translated from device-
dependent character codes to internal character-set rapresentations (XSIS
NSAUNY character-code standard, including Motorola private character-set
O40) prior to receipt hy a user process. Similarly, outhound characters
destined for a terminal can be translated from internal character-set
represantations to device-despendent output sequences. Such character-set
tremslations are handled by the terminal driver,

There are two aspacts to terminal I/0 character-set handling:
. Managing terminal 1/0 translation tahles at the system-wide level.

. Controlling terminal T/0 character-set translation options for
each active terminal,

"anagine terminal 7/0 translation tables is a superuser responsibility
and c¢an he done through tha itt (1) command., An interface to translation
tahle management is also provided through the ioctl(?) system call.
Toetl(2) accommodates status requests and changes to data and option
settin?s.

Cstthl Structure:

The ioctl(?2) system cnlls that apply to managing terminal I/0 character-
set translation tables use the structure shown in Figure Cstermio-1 and
tha structures pointed to therein. A1l of thess structures are defined
in <estty.h>. The fields in this structure are explained in Table
Cstermio-1.,

/*

Character set translation table argument for CSGETTT and CSSETTT.
The user nrogram should define OSMAXSIZ as the maximum translation
tahle size it is prepared to handle and set ¢s_tmax to that value.

2 3R 5

*/

Figure Cstermio-1. Cstthl Structure (Page 1 of 2)

I

fifdef CSMAYSTY
struct eostthl |

ram

STERMIO(7)

/* shculd be set to CSMAXSIZ */

struect cstthdr ¢s_hdr;

int cs tmax;
union { -
char
lcs_u;
Y
flfendif

cs thl[CSMAYSTZI;,

/% description of a character set translation table haader */

struct estthdr f
ushort cs tnur;g
ushart cs tlen;

asttnome os_tname;
nshort cs_nref;
ushort CS _resc)
ushort cs:nesc;

ushort ns pchset;
ushort ¢S nchset;
ushort 2s ptrechar;
nshort 2s nextess

ushort cs_pextes;

ushort cs ttflar;
1. -

L]
typedef struect !
char deviols
char lang"77;
v esttnemes

/*
/*

/*

fif TWERMEL 1! defined io
/¥

* Character set ontion flag
%/
fdefine CSEYTOD 1
#dofine CATHTERM 2

Yondif defined io

“ipure Tstermio-1.

table number ¥/

length of the complete translatior %able
in bytes */

name of the translation table */
number of open file references ¥/
position of the escane prefix index */
number of escape sequence prefixes ¥/
position of the character set index */
numbher of character sats ¥/

position of tha table of 16-hit
translated characters */

numbar of external character sets %/
nosition of the table of escape
sequences used to select the external
character sets %/

translation ftable flag bits */

terminal or printer device name ¥/
name of the lansuage ¥/

bits for cs ttflag

/* if the external device codes use S0
and SI to indicate that bit 7 is on
3
/
/¥ set for internal XSTIS 052404 to
XSTS N5840U translation tables */

Csttbl Structure (Page 2 of 2)

Fiald
es_tnunm
~ es tlen
cs_tname
~ cs nref
cs pesc
CS nesc

CSTFRMTO(7)

Tahle Cstermio-1, Cstthl Structure Fields
Nescrintion

Mimber of this translation table., Tdentifies the
translation table slot in kernel space for *“his
translation table. The first slot is cs tnum == 0.

CSCETTT with a es tnum of a translation tahle
hat currently occupies a slot returns a copy of
he translation tahle from that slot.

° A
£
t

° A CSGFTTT with 2 es tnum of an erntyv slot sets
errno == SNYID,

® A CSSETTT with a cs_tnum of an occupied slot
vurites over the franslation table in that slot
unless th2 table is currently in use, in which
case errno == ERISY is set,

'Y A CSSETTT with a es_tnurm of an ernty slot results
in the translation tnable filling that slot.

Instuiceess®ul ioctl CSGETTT and CSSETTT e2lls set the
value of the pointer to the eosttbl structure to -1, and
errno is set appropriately.

Size of the cstthl structure in bytes. See tha CSMAYST?
comment in Fisure 4-2.

Mame of thz translation tnable festtbl structure), The
values for dev and lang in the structure type csttname
are MILL-terminated strings representins TERY (terminal
type) and LAMG (user-lansuage identifier), usually as
contained in th2 execution environrent,

Number of nsers of the translation tahle., S2t hy the
terminal driver to indicate whethar or not the
translation table is in use.

Offset of the first index structure of the esescix
ascapa prefix in the astthl.es thl character array.

Mumber of csescix escape prefix index structures in the
cstthl.es thl character array.

CSTERMIO(T)

Tzhle Cstermic-1. Cstthl Structure Fields (Continued)

Field Neserintion

es_pchset Nffset of the first ecsnesix charncter-set index structure
in the cstthl.es thl character array.

cs_nchset Mimber of esesix character-set index structures in the
asttbl.es thl character array.

es_ptrehar Offset of th= Char1ffode translated characters table in
the csttbl.es thl character array.

¢S nextes Mumber of charanster sets declered as supported by the
device to which this translation tahle applies. Ejual to
the nurber of entries in the as paxtas ushort array.

©s pextes Qffset of a ushort array of indexes to VULL-terminated
strinss that contain cutput sequences for device
charanter-set selection.

cs_ttflag es thflag == CSFXTSC indicates that the device uses 7-bit
rodes with the ASSTI 80 (N14) code to designate that the
lozical “th bit is set on ersuing hyftes until an ASCII ST
(017) code is received,

es_ttflag == CSTNTERM indicates that tha translnation
operation is hetween internal character-set
representations, not device-denendent code sequences,

fsnscix Structure:

The csescix structure is used in mapping device-depandent inbound codes

to Charl16Code internal codes. This structure is shown in Figure Usterrio-
2. Descriptions of the fields in the csescix structure are given in

Table Cstermio=2.

/* description of an escape prefiy index ¥/
struct csescix
unsipgned char as escil: /¥ escan~ sequenne nrafix */
unsigned char cs:esclo; /¥ lowast valid eharacter after
prefix ¥/

unsigned char c¢s eschig /* highnst valid character ¥/
ushort cs escht; /* position of the translation table

tahle */

Fipure Cstermio=", Csesnix Structure

CSTERMTIO(T)
Tahle Cstermio-2. Csescix Structure Fields
Field Neserintion

cs esclll] NULL=-terminated string of characters constituting a
device-dapendent escaps sequence that precedes a
character to be translated., An example of such 2
sequence is FEST M x, where ESC N is the escape sequence
prefix, and x is a variable value.

cs_esclo Lownst value of a range of characters subject to
translation that follows the escape sequence prefix
da€ined by es_ascll], An example of this value is the
lowest value for x in the sequence F°C M x.

os_eschi Highast value of a range of characters subject to
translation that follows th=2 escape s=quence prefix
defined by cs esclld], An example of this value is the
highest value for ¥ in the sequence ESC M x,

cs_esctt Nffset of the csttent translation-=table entry in the
estthl.es_tbl character array associated with this escape
sequence prefix.

Csesix Structure:

The ecscesix structure, shown in Figure Cstermio-3, is used in mapping
Char1fCode internal codas to device~dependent outbound codes. The fields
in the escsix structure are described in Table Cstermio-3.

/* description of a character set index ¥/
struct csesix {
unsigned char c¢s_csnun; /* character set number ¥/
unsisned char es aspfx!?1; /* possible prefix character(s)
- (character set 000) for
accented characters and
ligatures ¥/

unsigned char cs_nlist; /% number of list entries ¥/

ushort, cs_plist; /¥ position of list entries */

ushort cs cstt /* position of the translation
- table */

Figure Cstermio-3. Cscsix Stucture (Page 1 of 2)

~5-=

#iF rvoeNT]

CSTERMIN(T)

v defined io

/* used if es nlist == 9, so »all values between cs_cslo and cs_cshi
have translation tahles. Otherwise, cs_plist points to a list of
the valid codes,

*/

#4afine os_nslola) (((e)=>es plist)>>8) /* lowest valid char. */

#4efine os_cshi(e) (((e)=>es_plist)&Nxff) /¥ highest valid char. */

ftendif defined io

Figure Cstermio-?, Csesix Structure (Pare 2 of 2)

Field

s nNsnun

cs espfxln2?

cs nlis*t

¢s nlist

os_cstt

Tahle fMstermio-?, Osecsix Structure Fields
Neseription

TharSet® value designatine the character set to which
this esesix structure applies, Lesal values defined by
the charactar-code standard are 000, 040 throuph 174,
and 201 throuch 376,

Contains (in c¢s espfxlN]) 2 sharacter-set 000 accent
character.,

Mumher of entries in the list of code sequences for
outhound characters in the esttbl.cs_thl character
array, See the above definitions of c¢s e¢slo and ¢s ashi
for the special meaning of cs_nlist == 0. -

Nffset of the list of valid accented letters and code
sequences for outhound characters in the cstthl.cs_tbl
character array associated with this character-set index
when os_nlist !'= 0,

Nffset of the csttent translation table entry in the
cestthl.cs_thl character array associated with this
character-set index.

~.

SSTRRMTIQ(T)
Csttent Structure:

The csttent structure and field descriptions are shown in Fipure
Cstermio=H.

/¥ description of translation table entry ¥/
struct csttent f

ushort es_tttyp:l; /* entry type code ¥/
ushort es_ttval:l12; /% 1ow hits of accent

charactor Y/
1e

i

#if 'YERNEL 1] defined_io

/¥ the cs_tttyp values are: */

fdefine €3 NOCUG n /* value uncharced hv translation */

/¥ 1-7 numher of 16=hit characters in entry */

#define £S-CSO 9 /¥ ¢cs ttehar in character set 000+cs ttnib

* s - -

fdefine £S CSUQ e /¥ cs ttehar in character setn ON0+es ttnib
_ ¥ = -

#define CS ACC 14 /¥ Cl+es ttnih plus e¢s thtehar in character

set 000 */
#defina CS FRR 15 /¥ invalid character ¥/

/* the cs ttval field may he redefined as: ¥/

“define cs_ttnib(e) ((e)=>es_ttval >> ?)
#define cs_ttchar(e) ((e)->es_ttval % NxOff)

fendif defined io

/* For es_tttyn values of 1 through 7, the es ttval field contains a
subscript into the array of ushort translated character
sequences. These 16=hit entries contain an %-hit external
character set number and an 8=-hit character value (whan ns_nextes
is oreater than zero}, 2an °?=hit character set number and an 9-hit
character value (whan CSINTFRM is set in es_ttflag), or an 2?=bit
escape sequence prefix number and an 2=hit char suffix.

For cs tttyp values of £S £SO, CS CS40 and ©S_ACT, es_ttchar
contains z character value in the indicated character set. For Cs_
ACC, es_ttnib contains the low four hits of the accent character.
For exaﬁb]e, the csttent value Oxe?'! represents a dieresis
(0xN0cf) followed by an uppercase A (0x00U1),

x/

Fipgure fstermio~-¥., Csttent Structure

CRTERMTIN(T)

A complete charantar-sat, translatiorn tahle is shoun in Figure Cstermio-b,

G RV

Header
struct astthdr

Fxternal charaaster set index
ushort

Strings

Fscape prefix index=s
{sorted hy nrefix>
struct osescix 0

striuect csesciy m-1

Fscape senuence indexes
<sorted by character set, then accent>
struct cscsix ?

struct csesix n=1
Strinrs

Translation table entries

{in each array ‘rom low to “igh character>
struct csttentl? for csescix 9
struct asttentll for rsescix m-1
struct csttentl1 for esesix N

struct csttent”! for acsesix n-=1

Translated charanter seqguences
ushort 7

Strings

(nsed for character-set index lists and
extarnal character-s~at esaaps senuances)

Figure Ostermio-", Character-2et Translation Tahle Structure

CSTERMIO(7)
Control of Terminal Character=Sat Ontions:

Thare are two ways to control terminal T/0 character-set translation
options. You can use the cstty(1) command or the interface provided
throush the ioctl(?) system calls. Figure Cstermio-6 shows the
structure, defined in <cstty.hd>, that these calls usea,

/*
¥ Character set option arsument for CSGETO and CRSETO/OW/0F
*/
struct csopt |
ushort cs_options; /¥ option bits */
esttname cs_name; /* name of the character set
translation tahvle ¥/

tynedef struct f
char devinTl; /* terminal or printer device name %/
char langl71; /% name of the language */

! asttname;

Fipgure Cstermio-f. Csopt Structure

The cs ontions values have the following meanings, which are defined in
<ecstty.h>, See the description of cstty(1) options for more information
on thase options,

fdafine OSTRANS nni /* Select translation %/

fdefine C2NUD nnn2 /* Select character set 040 ¥/
"define CSFMT7 nnoy /¥ Select T-hit SO/ST+SUR codes */
#define CST16 antn /* Select 16=~bit defined strings %/

The values for dev and lane in the structure type csttname are NULL-
terminated strings representing TFRM (terminal type) and LANG (user
language identifier), usually as contained in the execution environment.

Toctl(2) e211s to manace torminal T/0 character-set translation tables
have the form:

ioetl (fildes, command, arp)
cstthl *arg:

CSTERMIN(T)
The nommands usineg this f“orm are:

CSAETTT Get the character-set translation table parameters associated
with the esttbl structure referenced by <argd.

CSSETTT Set the character-set translation tahle parameters associated
Wwith the structure raferenced by <argd.

Toctlf?) ealls to aontrol terminal I/D character-set translation options
for each active terminal have the form:

ioct? (“ildes, command, arg)
TS xetl *arg;

The comrands using this form are:

NEGETD et the parnameters associated with character-set translation for

the terminal and store them in the T3 xetl structure referenced
hy <are>,
CE|ETA let. the character-set translation parameters for the terminal

from the structure referenced hy <are>., The change is immediate.

CRSFTOW 'Iait for the output to Arsin before setting the new parameters,
'se this form when you change parameters that will affect output.

TSSETOT Meit for the outnut to drain, then flush the input queue, and
set the new parameters.

TTLES
/dev/tty* terminal or terminal-=like device character special
file
/ete/os ferm/¥ terminal character-set franslation source files
installed at hoot time
/usr/lin/es, term/¥® terminal character-set translation source files
arT ALSO

stey (1), 1ttt (1), esttyl(1), io0ctl(?), termio(7)
Series 400N Tnternationnl Supnort Package Reference Manual

NAME
fp — winchester, cartridge, and floppy disks

SYNOPSIS
/* MiniFrame only */
#include <sys/types.h>
#include <sys/gdisk.h>
#include <sys/gdioctl.h>

DESCRIPTION
The files fp000 through fp84F and rfp000 through rfp64F refer to slices on winchester, car-
tridge, and floppy disks. An r in the name indicates the character (raw) interface. On
System 6600 the three hexadecimal digits are the file processor number, disk number, and slice
number. The cartridge drive is disk 0 on file processor 0. On System 6300 the first digit is always
0, the second is the disk number (see below for standard disk number meanings) and the third is
the slice number. At the lowest level, System 6600 handles disks quite differently from System
6300.
System 6600
—~ System 6600 architecture greatly simplifies the operating system disk interface: RTOS manages disk initializa-
tion and low-level input/output; the operating system only accesses the disks to store and retrieve data. A disk
special file is a reference to a RTOS disk file set aside specially for operating systems use. The RTOS file is
called a file system partition and is created by crup(1M). The relationship between file system
partitions and operating system special files is controlled by the RTOS file system configuration file,
[sys] <sys>configufs.sys. It is described in the System 6600 Administrator’s Guide.
System 6300
On System 6300, the operating system provides all disk facilities.

The disk numbers have the following standard meanings. Disk 0 is the winchester with the

— operating system. If there is a disk 1, it is either the second winchester or the removable hard
disk cartridge drive (currently a System 6300 never has both). If there is a disk 2, it is the floppy
drive.

It is worth discussing alien disks first. An alien disk is a disk not formatted by the System 6300;

this means both disks formatted by other kinds of systems and disks never formatted at all. Slice

0 includes the entire disk, there is no bad block handling, and 512-byte sectors are assumed.
Read and write the disk with the character special file only. To select a sector, seek to 1024
times the sector number. Use toct! to describe the disk’s format if it has one; see below. The tv
utility uses this kind of interaction to format new disks.

System 6300 formats a disk with 512-byte physical sectors. Winchester and cartridge disks have 17
physical sectors per track. Floppies have 8 physical sectors on track 0, which is recorded in single
density, and 16 physical sectors on all other tracks, which are recorded in double density.

Block input/output uses 1024-byte logical blocks. Winchester and cartridge disks have 8 logical
blocks on each track, with the leftover physical block available as an alternate for a bad block.
Floppies have 8 logical blocks on each track, with no bad block handling.

Logical block zero contains the Volume Home Block, which describes the disk. The following
structure defines the volume home block.

struct vhbd {
uint magic; /* magic number */
int chksum; /* logical block checksum */
struct gdswprt dsk; /* description of this disk */
struct partit partabMAXSLICE]; /* slice table */
struct resdes { /* reserved area special files */
daddr_t blkstart;/* start logical blocks */
ushort nblocks;/* length in logical blocks */

FP(7)

} resmap|8); /* reserved area files */
char fpulled; /* pulled flag */
long time /* time last came on line */
short rwewpceceyl /* reduced write current/
/*write precompensation value */
char minires|74]; /* reserved */
char sysres|292];
struct mntnam mntname[MAXSLICE}; /* reserved */
char userres|256]; /* reserved */

ks

struct gdswprt {

char name[6]; /* disk name */

ushort cyls; /* cylinders */

ushort heads; /* heads */

ushort psectrk; /* physical sectors/track */

/%

ushort pseccyl; /* physical sectors/cylinder */
char flags; /* disk type flags */

char step; /* stepper motor rate */
ushort sectorsz; /* physical sector size/bytes */

}s

struct partit {
union {
uint strk;
struct {

/*partition table*/

/* start track number (new style) */

ushort strk /* start track # */
ushort nsecs;/* # logical blks available to user */

} old;
} sz;

}

struct mntnam {
char name[MNAMSIZ];
}

If a volume home block is valid, magic is equal to VHBMAGIC and the 32-bit sum of the volume
home block’s bytes is OXFFFFFFFF (-1); chksum is the adjustment that makes the sum come out

right.

Dsk describes the peculiarities of the disk, including deliberate deviations from the System 6300
standard. Dsk.flags the bitwise or of zero or more of the following constants:

FPDENSITY
FPMIXDENS

HITECH
NEWPARTTAB

RWCPWC

EXCHANGEABLE

If on the disk is double density; if off the disk is single density.

If off, FPDENSITY specifies the density of the first track; if on, the
first track is single density regardless of FPDENSITY.

If on, head select bit 3 is valid; if off, reduced write current is valid.

If off, the old stype slice {partition) table is in use; if on, the new
style slice table is in use.

If on, set reduced write current/write precompensation. HITECH
selects write precompensation.

If on, the disk is a floppy or removable hard disk cartridge. If off,
the disk is a winchester.

FP(7)

Dsk.step specifies a stepper motor rate; currently this field must be 0.
Partab divides the disk into slices (partitions).

Fpulled indicates whether an exchangeable disk was properly removed from the drive. The sys-
tem sets this field to 1 when the disk is inserted in the drive. To clear fpulled, run dismount(1M);
see that entry.

Mntname, mintres, and userres are reserved for future use.

Resmap describes the files that share Slice 0 with the Volume Home Block. Provision is made for
eight such files, but only five have been assigned slots in resmap. Each resmap entry gives the
starting location (logical block number) and length (logical blocks). A length of zero indicates
that the file is not provided. The first five entries in resmap describe:

1. The loader. When System 6300 is reset or turned on, the boot prom loads the loader into
address 0x70000 and jumps execution to it. The function of the loader is to search for
and load a program that will boot the system. The loader searches the floppy, the car-
tridge disk, and the winchester, in that order. On each disk, the loader first checks for a
standalone program. If the disk lacks a standalone program, the loader checks for an operating system
kernel, which must be an operating system executable object file called /unix in the file system in
slice 1. When the loader locates an appropriate program, it preserves the crash dump
table (0x70000 — 128), loads the program it found at the address it was linked at (0x0 if
unknown) and executes it. If no disk contains an appropriate file, the loader continues
searching until an appropriate disk is inserted.

2. The bad block table, which always begins at logical block 1 of the disk. Each logical
block in the bad block table consists of a four-byte checksum followed by 127 bad block
cells. The checksum is a value that makes the 32-bit sum of the logical block be
OxFFFFFFFF (-1). A bad block cell is defined by the following structure.

struct bbeell {
ushort cyl;
ushort badblk;
ushort altblk;
ushort nextind;

}

A single sequence of numbers, starting from zero, identifies the checksums and cells. In
each cell in use, cyl identifies a cylinder that contains the bad block; badblk physical
block offset within the cylinder of the bad block; altblk identifies the cylinder that con-
tains the alternate block; nextind identifies the next cell for a bad block on the same
cylinder or is zero if this is the last one.

3. The dump area. After Reset or Suicide, the Boot prom dumps processor registers, the
memory map, a crash dump block, and the contents of physical memory, until it runs out
of room in the dump area.

4. The down load image area. The down load images are described by a table at the begin-
ning of the area. The area is described by the following array.

struct dldent {
short d_strt;
short d_sz;
} dldent[DLDSZ];

The image number is the index for dldent. D_sitrt is the offset in bytes of the image
from the beginning of the down load image area; d_sz is the size in bytes of the image.
Image number xxx is the same as the System 6600 RTOS file

SEE

FP(7)

[sys] <sys>wszzz >sysimage.sys, where zzz must be expressed in three digits.

5. A bootable program, usually a diagnostic. This is the program the loader considers a sub-
stitute for the /unix file. The program must be in a.out(4) format with magic number
407 or be a simple memory image.

If the fifth entry in resmap has a zero address but a nonzero length, the loader looks at
the beginning of slice 1 for the program.

Slice 0 is called the Reserved Area. Only the volume home block and the files described by
resmap can be in the Reserved Area. A System 6300-formatted disk used by a working system cer-
tainly has at least one more slice.

System 6300 toct! system calls use the following structure.

struct gdetl {
unsigned short status;
struct gdswprt params;
short dsktype;

}

Status is the bitwise or of the following constants.

VALID_VHB A valid Volume Header Block has been read.

DRV_READY The disk is on line.

PULLED Last removal of disk from drive was not preceded by proper dismount.
Params is a gdswprt structure, the same type used in the volume header block.
Dsktype is equal to GD_WIN (winchester), GD_SYQ (cartridge), or GD_FLP (floppy).
System 6300 operating system understands the following disk ioctl calls.

ioctl(fd, GDIOCTYPE, 0)
Returns GDIOC if fd is a file descriptor for a disk special file.

ioctl{fd, GDGETA, gdctl_ptr)
Gdetl_ptr is a pointer to a gdetl structure. Joctl fills the structure with information
about the disk.

ioct](fd, GDSETA, gdctl_ptr)
Gdctl_ptr is a pointer to a gdctl structure. Joctl passes the description of the disk to the
disk driver. This is primarily meant for reading disks created by other kinds of comput-
ers.

loctl(fd, GDFORMAT, ptr)
Ptr points to formating information. The disk driver formats a track.

ioctl(fd, GDDISMNT)
Ioetl informs the driver that the user intends to remove the disk from the drive. When
this system call successfully returns, the driver has flushed all data in the buffer cache
and waited for all queued transfers to complete. The last transfer is to write out the
Volume Home Block with the fpulled flag cleared. Once this call returns the drive is
inaccessible until a new disk is inserted.

ALSO

crup(1M), mknod(1M), ofcopy(1M), ioctl(2).

NAME

LP(7)

lp — parallel printer interface

DESCRIPTION

Lp is an interface to the parallel printer channel. Bytes written are sent to the printer. Opening
and closing produce page ejects. Unlike the serial interfaces (termio(7)), the lp driver never
prepends a carriage return to a new line (line feed). The Ip driver does have options to filter out-
put, for the benefit of printers with special requirement. The driver also controls page format.
Page format and filter options are controlled with ioct!(2):

#include <sys/lprio.h>
ioctl(fildes, command, arg)

where command is one of the following constants:

LPRSET

LPRGET

LPRSOPTS

Set the current page format from the location pointed to by arg; this loca-
tion is a structure of type lprio, declared in the header file:

struct lprio {
short ind;
short col;
short line;

}

Arg should be declared as follows:
struct lprio *arg;

Ind is the page indent in columns, initially 4. Col is the number of
columns in a line, initially 132, Line is the number lines on a page, initially
66. A newline that extends over the end of a page is output as a formfeed.
Lines longer than the line length minus the indent are truncated.

Get the current page format and put it in the lprio structure pointed to
by arg.

Set the filter options from arg, which must be of type int. Arg should be
the logical or of one or more of the following constants, defined in the
header file:

Constant Value Meaning

LPNOBS 4 No back space. Set this bit if the printer cannot
properly interpret backspace characters. The
driver uses carriage return to produce equivalent
overstriking.

LPRAW 8 Raw output. Set this bit if the driver must not
edit output in any way. The driver ignores all
other option bits in the minor device number.

LPCAP 16 Capitals. This option supports printers with a
“half-ASCII”” character set. Lowercase is
translated to uppercase. The following special
characters are translated: { to £, } to }; ~ to
Ziltod; ™ tol

LP(7)

LPNOCR

()
o

No Carriage Return. This option supports
printers that do not respond to a carriage return
(character 0D hexadecimal). Carriage returns
are changed to newlines. If No Newline is also
set, carriage returns are changed to form feeds.

LPNOFF 64 No Form Feed. This opticn supports printers
that do not respond to a form feed (character 0C
hexadecimal). Form Feeds are changed to new-
lines. If No Newline is also set, form feeds are
changed to carriage returns.

LPNONL 128 No Newline. This option supports printers that
do not respond to a newline (character 0A hexa-
decimal). Newlines are changed to carriage
returns. If No Carriage Return is also set, new-
lines are changed to form feeds.

Setting all three of No Carriage Return, No New Line, and No Form Feed
has the same effect as setting none of them.

LPRGOPTS Get the current state of the filter options and put them in arg, which must
be an int.

On System 6300, the device’s minor device number can also be used to set and get filter options.
The values are the same as for the LPRSOPTS and LPRGOPTs calls. This convention does not
work on System 6600 because that system can have more than one parallel printer.

FILES
/dev/lp

SEE ALSO
ipr(1), lpset(1).

MEM(7)

NAME
mem, kmem — core memory

DESCRIPTION
Mem is a special file that is an image of the core memory of the operating system-based processor board. It
may be used, for example, to examine, and even to patch the system.

Byte addresses in mem are interpreted as memory addresses. References to non-existent locations
cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results when read-only or
write-only bits are present.

The file kmem is the same as mem except that kernel virtual memory rather than physical
memory is accessed.
FILES
On System 6300, /dev/mem, /dev/kmem.
On System 6600 /dev/memazz, /dev/kmemzz, where zz is the two-digit processor number.

BUGS
Memxx is not currently implemented on System 6600.

MT(7)

NAME
mt — interface for magnetic tape
DESCRIPTION

This interface provides access to all magnetic tape drives. The naming conventions on

System 6600 and System 6300 differ in the following ways:

. On System 6600, mtzx is the block device with rewind on close for drive . To get the
no-rewind device, prepend n; to get the raw (character) device, prepend r; and to get the
no-rewind on close, raw device, prepend nr.

There can be up to four drives, any of which can be built-in QIC (quarter-irich cartridge)
drives or external drives controlled by a Storage Processor. The connection between
drives and drive numbers is in the file system configuration file, under RTOS: see the

System 6600 UNIX-Derived Operating System Administrator’s Guide.

. A System 6300 system has at most a single QIC drive. There are currently no block dev-
ices. To get the raw, rewind on close device, use rmt0. To get the raw, no-rewind on
close device, use rmt4.

Tape files are separated by tape marks, also known as EOFs. Closing a file open for writing

writes one tape mark on a QIC drive and two tape marks on other drives; if the device was no-

rewind, the tape is left positioned just after the single QIC tape mark or between the two marks.

If the file was a no-rewind file, reopening the drive for writing overwrites the second mark, if

there is one, and creates another tape file. Thus on a QIC drive, a single tape mark separates the

tape files and ends the tape; on other drives, a single tape mark separates the tape files and a

double mark ends the tape.

Here are summaries of block and character device features:

) The block devices read and write only 1024-byte physical blocks; reads and writes of
other sizes are resolved into 1K physical I/O. Seeks are ignored on QIC drives. On other
drives seeks are allowed, but once the file is opened, reading is restricted to between the
last write and the next tape mark. Reading the tape mark produces a zero-length read
and leaves the tape positioned after the tape mark; if the file is a no-rewind file, the pro-
gram can access the next tape file by closing the device and then reopening or opening
another device for the same drive.

. On the raw devices, each read or write reads or writes the next physical block. A read
must match the size of a normal tape block. The size of a write determines the size of
the next block; Write sizes must be a multiple of 512 on QIC drives, a multiple of 2 on
other drives. Read/write buffers must begin on an even address; this is the same align-
ment as short. Seeks are ignored. Reading a tape mark produces a zero-length read and
leaves the tape positioned after the mark; the program can, withcut closing the device,
read the next tape file.

FILES

/dev/mt?

/dev/nmt?

/dev/rmt?

/dev/nrmt?

WARNING

A nondata error cannot be recovered from except by closing the device.

A QIC tape has no special mark for end of tape, as opposed to end of file.

NAME
null - the null file

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev /null

TERMIO (7)

NAME
termio — general terminal interface

DESCRIPTION
Operating systems use a single interface convention for all RS-232 and cluster (RS-422) termirals,
although cluster terminals do not use all the features of the convention. The convention is almost
completely taken from the UNIX System V interface for asynchronous terminals.

Three kinds of terminals use this convention:
° RS-232 terminals connected to channels on the System 6600 or System 6300 itself.

. Cluster terminals. Generally a cluster channel supports more than one terminal and some
terminals are indirectly connected through other terminals. Cluster terminals use the
same interface as directly connected RS-232 terminals, except that hardware control
operations are meaningless on cluster terminals.

. Local RS-232 terminals. These are connected to RS-232 channels on cluster terminals.
They actually use the cluster terminal’s RS-422 channel to communicate with the host
computer system, but work like regular RS-232 terminals. Currently, they only work on
System 6300.

A single naming convention applies to regular RS-232 and cluster terminals; a second, related,
convention applies to local RS-232 terminals. A direct RS-232 or cluster terminal has a name of
the form ttyzzz, where zzz is the terminal’s number expressed in three digits. A local R$-232 ter-
minal has a name of the form tpeczzr where ¢ is the RS-232 channel number (1 or 2), and zzz is
the accomodating cluster terminal’s terminal number expressed in three digits.

When a terminal file is opened, it normally causes the process to wait until a conrection is esta-
blished. In practice, users’ programs seldom open these files; they are opened by getty and
become a user’s standard input, output, and error files. The very first terminal file opened by the
process group leader of a terminal file not already associated with a process group becomes the
control terminal for that process group. The control terminal plays a special role ir. handling quit
and interrupt signals, as discussed below. The control terminal is inherited by a child process
during a fork(2). A process can break this association by changing its process group using
setpgrp(2).

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters
may be typed at any time, even while output is occurring, and are only lost when the system’s
character input buffers become completely full, which is rare, or when the user has accumulated
the maximum allowed number of input characters that have not yet been read by some program.
Currently, this limit is 256 characters. When the input limit is reached, all the szaved characters
are thrown away without notice.

Normally, terminal input is processed in units of lines. A line is delimited by a newline (ASCH
LF) character, an end-of-file (ASCII EOT) character, or an end-of-line character. This means that
a program attempting to read will be suspended until an entire line has been tvped. Also, no
matter how many characters are requested in the read call, at most one line will be returned. It is
not, however, necessary to read a whole line at once; any number of characters may be requested
in a read, even one, without losing information.

During input, erase and kill processing is normally done. By default, the character generated by a

TM6000 Terminal BACK SPACE key (ASCII BS, Control-H on most terminals) erases the

last character typed, except that it will not erase beyond the beginning of the line. By default,
the character @ kills (deletes) the entire input line, and optionally outputs a newline character.
Both these characters operate on a key-stroke basis, independently of any backspacing or tabbing
that may have been done. Both the erase and kill characters may be entered literally by preced-
ing them with the escape character (\). In this case the escape character is not read. The erase

TERMIO(7)

and kill characters may be changed.

Certain characters have special functions on input. These functions and their default character
values are summarized as follows:

INTR (Rubout or ASCII DEL; generated by a TM6000 Terminal DELETE key) generates
an interrupt signal which is sent to all processes with the associated control terminal.
Normally, each such process is forced to terminate, but arrangements may be made
either to ignore the signal or to receive a trap to an agreed-upon location; see signal(2).

QUIT (Control- or ASCII FS; generated by a TM6000 Terminal CODE-CANCEL key)
generates a quit signal. Its treatment is identical to the interrupt signal except that,
unless a receiving process has made other arrangements, it will not only be terminated
but a core image file (called core) will be created in the current working directory.

ERASE (Control-h or ASCII BS; generated by a TM6000 Terminal BACKSPACE key)
erases the preceding character. It will not erase beyond the start of a line, as delimited
by a NL, EOF, or EOL character.

KILL (@) deletes the entire line, as delimited by a NL, EOF, or EOL character.

EOF (Control-d or ASCII EOP; generated by a TM6000 Terminal CTRL-EXIT key) may be
used to generate an end-of-file from a terminal. When received, all the characters wait-
ing to be read are immediately passed to the program, without waiting for a newline,
and the EOF is discarded. Thus, if there are no characters waiting, which is to say the
EOF occurred at the beginning of a line, zero characters will be passed back, which is
the standard end-of-file indication.

NL (ASCII LF) is the normal line delimiter. It can not be changed or escaped.
EOL (ASCII NUL) is an additional line delimiter, like NL. It is not normally used.

STOP (Control-s or ASCII DC3) can be used to temporarily suspend output. It is useful with
CRT terminals to prevent output from disappearing before it can be read. While output
is suspended, STOP characters are ignored and not read.

START (Control-q or ASCII DC1) is used to resume output which has been suspended by a STOP
character. While output is not suspended, START characters are ignored and not read.
The start/stop characters can not be changed or escaped.

The character values for INTR, QUIT, ERASE, KILL, EOF, and EOL may be changed to suit indivi-
dual tastes. The ERASE, KILL, and EOF characters may be escaped by a preceding \ character, in
which case no special function is done.

When the carrier signal from the data-set drops, a hangup signal is sent to all processes that have
this terminal as the control terminal. Unless other arrangements have been made, this signal
causes the processes to terminate. If the hangup signal is ignored, any subsequent read returns
with an end-of-file indication. Thus programs that read a terminal and test for end-of-file can
terminate appropriately when hung up on.

When one or more characters are written, they are transmitted to the terminal as soon as
previously-written characters have finished typing. Input characters are echoed by putting them
in the output queue as they arrive. If a process produces characters more rapidly than they can
be typed, it will be suspended when its output queue exceeds some limit. When the queue has
drained down to some threshold, the program is resumed.

Several oct/(2) system calls apply to terminal files. The primary calls use the following structure,
defined in <termio.h>:

#define NCC 8

struct termio {
unsigned short c_iflag; /* input modes */
unsigned short c_oflag; /* output modes */

TERMIO(7)

unsigned short c_cflag; /* control modes */
unsigned short c¢_lflag; /* local modes */
char c_line; /* line discipline */

unsigned char ¢_cc[NCC]; /* control chars */
K
The special control characters are defined by the array ¢_cc. The relative positions for each
function are as follows:
INTR
QUIT
ERASE
KILL
EOF
EOL
reserved
7 reserved

DG W~ O

The c_tflag field describes the basic terminal input control:

IGNBRK 0000001 Ignore break condition.

BRKINT 0000002 Signal interrupt on break.

IGNPAR 0000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.

INPCK 0000020 Enable input parity check.

ISTRIP 0000040 Strip character.

INLCR 0000100 Map NL to CR on input.

IGNCR 0000200 Ignore CR.

ICRNL 0000400 Map CR to NL on input.

IUCLC 0001000 Map upper-case to lower-case on input.
IXON 0002000 Enable start/stop output control.
IXANY 0004000 Enable any character to restart output.
XOFF 0010000 Enable start/stop input control.

If IGNBRK is set, the break condition (a character framing error with data all zeros) is ignored,
that is, not put on the input queue and therefore not read by any process. Otherwise if BRKINT
is set, the break condition will generate an interrupt signal and flush both the input and output
queues. If IGNPAR is set, characters with other framing and parity errors are ignored.

If PARMRK is set, a character with a framing or parity error which is not ignored is read as the
three character sequence: 0377, 0, X, where X is the data of the character received in errcr. To
avold ambiguity in this case, if ISTRIP is not set, a valid character of 0377 is read as 0377, 0377.
If PARMRK is not set, a framing or parity error which is not ignored is read as the character NUL
(0).

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity checking is
disabled. This allows output parity generation without input parity errors.

If ISTRIP is set, valid input characters are first stripped to 7-bits, otherwise all 8-bits are pro-
cessed.

If INLCR is set, a received NL character is translated into a CR character. If IGNCR is sef, a
received CR character is ignored (not read). Otherwise if ICRNL is set, a received CR character is
translated into a NL character.

If IUCLC is set, a received upper-case alphabetic character is translated into the corresponding
lower-case character.

If IXON is set, start/stop output control is enabled. A received STOP character will suspend out-
put and a received START character will restart output. All start/stop characters are ignored and
not read. If IXANY is set, any input character, will restart output which has been suspended.

TERMIO (7)

If IXOFF is set, the system will transmit START/STOP characters when the input queue is nearly
empty /full.

The initial input control value is all bits clear.
The c_oflag field specifies the system treatment of output:

OPOST 0000001 Postprocess output.

OLCUC 0000002 Map lower case to upper on output.
ONLCR 0000004 Map NL to CR-NL on output.
OCRNL 0000010 Map CR to NL on output,

ONOCR 0000020 No CR output at column 0.
ONLRET 0000040 NL performs CR function.

OFILL 0000100 Use fill characters for delay.
OFDEL 0000200 Fill is DEL, else NUL.

NLDLY 0000400 Select new-line delays:

NLo 0

NL1 0000400

CRDLY 0003000 Select carriage-return delays:
CRO 0

CR1 0001000

CR2 0002000

CR3 0003000

TABDLY 0014000 Select horizontal-tab delays:
TABO 0

TAB1 0004000

TAB2 0010000

TAB3 0014000 Expand tabs to spaces.
BSDLY 0020000 Select backspace delays:
BSo 0

BS1 0020000

VTDLY 0040000 Select vertical-tab delays:
VTo 0

VT1 0040000

FFDLY 0100000 Select form-feed delays:
FFo 0

FF1 0100000

If OPOST is set, output characters are post-processed as indicated by the remaining flags, other-
wise characters are transmitted without change.

If OLCUC is set, a lower-case alphabetic character is transmitted as the corresponding upper-case
character. This function is often used in conjunction with ITUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If OCRNL is set,
the CR character is transmitted as the NL character. If ONOCR is set, no CR character is
transmitted when at column O (first position). If ONLRET is set, the NL character is assumed to
do the carriage-return function; the column pointer will be set to 0 and the delays specified for CR
will be used. Otherwise the NL character is assumed to do just the line-feed function; the column

pointer will remain unchanged. The column pointer is also set to 0 if the CR character is actually
transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In all cases a value of 0 indicates no delay. If
OFILL is set, fill characters will be transmitted for delay instead of a timed delay. This is useful
for high baud rate terminals which need only a minimal delay. If OFDEL is set, the fill character
is DEL, otherwise NUL.

TERMIO(7)

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

new-line delay lasts about 0.10 seconds. If ONLRET is set, the carriage-return delays are used
instead of the new-line delays. If OFILL is set, two fill characters will be transmitted.

Carriage-return delay type 1 is dependent on the current column position, type 2 is about 0.10
seconds, and type 3 is about 0.18 seconds. If OFILL is set, delay type 1 transmits one or two fill
characters, and type 2 and 3 two fill characters.

Horizontal-tab delay type 1 is dependent on the current column position. Type 2 is about 0.04
seconds. Type 3 specifies that tabs are to be expanded into spaces. If OFILL is set, delay tvpe 1
transmits zero or two fill characteres and delay type 2 transmits 1 fill character.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

The ¢_cflag field describes the hardware control of the terminal (not used on cluster terminals):
CBAUD 0000017 Baud rate:

BO 0 Hang up
B50 0000001 50 baud
B75 0000002 75 baud
B110 0000003 110 baud
B134 0000004 134.5 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud

B1200 0000011 1200 baud
B1800 0000012 1800 baud
B2400 0000013 2400 baud

B4800 0000014 4800 baud
B9600 0000015 9600 baud
EXTA 0000016 19200 baud
EXTB 0000017 External clock.
CSIZE 0000060 Character size:
CS5 0 5 bits

CS6 0000020 6 bits

CS7 0000040 7 bits

CSs8 0000060 B bits

CSTOPB 0000100 Send two stop bits, else one.
CREAD 0000200 Enable receiver.

PARENB 0000400 Parity enable.

PARODD 0001900 Odd parity, else even.
HUPCL 0002000 Hang up on last close.
CLOCAL 0004000 Local line, else dial-up.

The CBAUD bits specify the baud rate. The zero baud rate, BO, is used to hang up the conrec-
tion. If BO is specified, the data-terminal-ready signal will not be asserted. Normally, this will
disconnect the line. For any particular hardware, impossible speed changes are ignored. EXTB
specifies external clocking.

The CSIZE bits specify the character size in bits for both transmission and reception. This size
does not include the parity bit, if any. If CSTOPB is set, two stop bits are used, otherwise one
stop bit. For example, at 110 baud, two stops bits are required.

TERMIO(7)

If PARENB is set, parity generation and detection is enabled and a parity bit is added to each

character. If parity is enabled, the PARODD flag specifies odd parity if set, otherwise even parity
is used.

If CREAD is set, the receiver is enabled. Otherwise no characters will be received.

If HUPCL is set, the line will be disconnected when the last process with the line open closes it or
terminates. That is, the data-terminal-ready signal will not be asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection with no modem control.
Otherwise modem control is assumed.

The initial hardware control value after open is B9600, CS8, CREAD, HUPCL.

The c_Iflag field of the argument structure is used by the line discipline to control terminal func-
tions. The basic line discipline (0) provides the following:

ISIG 0000001 Enable signals.

ICANON 0000002 Canonical input (erase and kill processing).
XCASE 0000004 Canonical upper/lower presentation.
ECHO 0000010 Enable echo.

ECHOE 0000020 Echo erase character as BS-SP-BS.

ECHOK 0000040 Echo NL after kill character.

ECHONL 0000100 Echo NL.

NOFLSH 0000200 Disable flush after interrupt or quit.

If ISIG is set, each input character is checked against the special control characters INTR and
QUIT. If an input character matches one of these control characters, the function associated with
that character is performed. If ISIG is not set, no checking is done. Thus these special input
functions are possible only if ISIG is set. These functions may be disabled individually by chang-
ing the value of the control character to an unlikely or impossible value (e.g. 0377).

If ICANON is set, canonical processing is enabled. This enables the erase and kill edit functions,
and the assembly of input characters into lines delimited by NL, EOF, and EOL. If ICANON is not
set, read requests are satisfied directly from the input queue. A read will not be satisfied until at
least MIN characters have been received or the timeout value TIME has expired. This allows fast
bursts of input to be read efficiently while still allowing single character input. TheVMIN and

VTIME values are stored in the position for theVEOF andVEOL characters respectively. The time
value represents tenths of seconds.

If XCASE is set, and if ICANON is set, an upper-case letter is accepted on input by preceding it
with a \ character, and is output preceded by a \ character. In this mode, the following escape
sequences are generated on output and accepted on input:

for: use:

N \,

: \-
{ \(
} \)
\ W\

For example, A is input as \a, \n as \\n, and \N as \\\n.
If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible. If ECHO and ECHOE are set, the
erase character is echoed as ASCII BS SP BS, which will clear the last character from a CRT screen.
If ECHOE is set and ECHO is not set, the erase character is echoed as ASCII SP BS. If ECHOK is
set, the NL character will be echoed after the kill character to emphasize that the line will be
deleted. Note that an escape character preceding the erase or kill character removes any special
function. If ECHONL is set, the NL character will be echoed even if ECHO is not set. This is

FILES

TERMIO(7)

useful for terminals set to local echo (so-called half duplex). Unless escaped, the EOF character is
not echoed. Because EOT is the default EOF character, this prevents terminals that respond to
EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output queues associated with the quit and
interrupt characters will not be done.

The initial line-discipline control value is all bits clear.
The primary toctl(2) system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this form are:

TCGETA Get the parameters associated with the terminal and store in the termio
structure referenced by arg.

TCSETA Set the parameters associated with the terminal from the structure refer-
enced by arg. The change is immediate.

TCSETAW Wait for the output to drain before setting the new parameters. This form
should be used when changing parameters that will affect output.

TCSETAF Wait for the output to drain, then flush the input queue and set the new
parameters.

Additional toctl(2) calls have the form:

ioctl (fildes, command, arg)
int arg;

The commands using this form are:

TCSBRK Wait for the output to drain. If arg is 0, then send a break (zero bits for
0.25 seconds).

TCXONC Start/stop control. If arg is 0, suspend output; if 1, restart suspended out-
put; if 2, transmit XOFF; if 3, transmit XON.

TCFLSH If arg is O, flush the input queue; if 1, flush the output queue; if 2, flush
both the input and output queues.

/dev/tty??? /dev/tp????

SEE ALSO

stty(1), ioctl(2), tp(7), tty(7).

WARNING

BUGS

The default value for ERASE is backspace rather than the historical #.

Local RS-232 terminals do not currently provide hangup (B0), draining, flushing, or delay.

NAME
tp — controlling terminal’s local RS-232 channels

DESCRIPTION
The tp devices accesses the RS-232 channels on the controlling terminal. The terminal must be a
cluster terminal configured to permit use of the local RS-232 channels (see termio(7). Just as
/dev /tty permits a process to conveniently access its process group’s controlling terminal (see
tty(7)), /dev/tpl and /dev/tp2 access the controlling terminal’s RS-232 channels without refer-
ence to the terminal number. This is convenient for accessing the user’s local hardware, such as a
telephone with an RS-232 interface.

SEE ALSO
tty (7).

TTY(7)

NAME
tty — controlling terminal interface

DESCRIPTION
The file /dev/tty is, in each process, a synonym for the control terminal associated with the pro-
cess group of that process, if any. It 1s useful for programs or shell sequences that wish to be sure
of writing messages on the terminal no matter how output has been redirected. It can also be
used for programs that demand the name of a file for output, when typed output is desired and it
is tiresome to find out what terminal is currently in use.

If the terminal is under window management, a process group is controlled by a specific window
and [/O on /dev/tty is directed to that window. A terminal can control one process group in
each window. See window(7).

FILES
/dev /tty

SEE ALSO
tp(7), window(7).

NAME

WINDOW (7)

window — window management primitives

SYNOPSIS

#include <sys/window.h>

DESCRIPTION

Window managment (wm(1)) provides a superset of windowless terminal features. This entry
describes terminal file features special to window management. Window management features are
designed not to interfere with programs that do not know about window management. Such
design includes simple extensions to the UNIX System’s standard coincepts of file descriptor and
control terminal.

) Each terminal file descriptor has an associated window number, a small positive integer
that identifies a window. A window number is the most primitive way to refer to a win-
dow, and should not be confused with the window ID used by window management sub-
routines. A new window gets the smalled window number not already in use. Closing a
window frees its number for possible assignment to a later window. Output and control
calls on the file descriptor apply only to the descriptor’s window; input calls succeed only
when the window is active.

A file descriptor created by a dup(2) or inherited across a fork(2) inherits the original
descriptor’s window number. All the file descriptors in such a chain of inheritance, pro-
vided they belong to processes in the same process group, are affected when foct/ changes
the window number of any of them.

) When a process group’s control terminal is under window managment, the process group
is actually controlled by a particular window. Such can have more than one process
group, each controlled by a different window. Keyboard-generated signals (interrupt and
quit) go to the process group controlled by the active window.

When the user creates a new window by using the RESET key, the window manager forks a process
for that window. The new process inherits file descriptors for standard input (0), standard out-

put (1), and standard error (2) that are associated with the new window. The new process is
leader of a process group controlled by the new window.

Programs that create and use windows use window management foct/(2) calls. Such calls take the
form

ioctl (fildes, command, arg)
struct wioctl *arg;

Fildes is a file descriptor for terminal and window affected, command is a window management
command (see below) arg is a pointer to the following structure, declared in <sys/window.h>:

#define NWCC 2

struct wioctl {
wndw_t wi_dfltwndw;
wndw_t wi_wndw;
slot_t wi_mycpuslot;
slot_t wi_destcpuslot;
port_t wi_bport;
char wi_dummy;
unsigned char wi_cc[NWCC];

b
Window management ioct! calls get (WIOCGET) and set (WIOCSET and WIOCSETP) terminal
attributes described in the wioct! structure:

FILES

wi_dfltwndw

wi_wndw

wi_mycpuslot

wi_destcpuslot

wi_bport

wi_cc

WINDOW (7)

The window number for the process’s default window. If the process
does an open on /dev/tty, the new file descriptor is associated with the
default window.

The window number for the window that fildes (ioct!’s first parameter}
1s associated with.

The slot number of the process’s host processor. (Not settable. Not

meaningful on System 6300.)

The slot number of the processor that drives the terminal. (Not settable.
Not meaningful on System 6300.)

The terminal’s Cluster Processor or Terminal Processor channel number
(Not settable. Not meaningful on System 6300.)

Not used by the operating system kernel. A value supplied by a WIOCSET or
WIOCSETP is stored in a place associated with window wp_wndw. A
subsequent WIOCGET on the same window retrieves the information.

Here are the window management Zoct! commands:

WIOCGET Get information on calling process and file descriptor fildes. Fill in
arg.

WIOCSET Set, values for calling process and file descriptor fildes from informa-
tion in arg. Has no effect on process group-control terminal rela-
tionship.

WIOCSETP Set values for calling process and file descriptor fildes from informa-
tion in arg. The window specified in arg->wi_wndw becomes the
process’s group’s controlling terminal provided the following:

. The calling process is the process group leader.

) The process group is not currently controlled by another win-

dow on this or any other terminal.
e The specified window is not already a control window.
WIOCLRP Only valid executed by process group leader. The process group ceases to

have a control terminal or window and the control terminal/window ceases
to control any process group. The process group is free to find another
control terminal/window, and the old control terminal/window is free to
become the control terminal/window for another process group.

WIOCCLUSTER

Toctl returns 1 if and only if the terminal is a cluster terminal.

WIOCDIRECT (System 63000nly.) Enable direct sending of terminal IPC requests.
WIOCUNDIRECT

(System 6300 0nly.) Disable direct sending of terminal IPC requests.

An open on a terminal special file other than /dev/tty (for example, /dev/tty000) produces a
file descriptor for the lowest-numbered open window. Jloct! can move this file descriptor to any

window.

An open can also obtain a controlling terminal/window. The requirements are the same as for

WIOCSETP.

/dev/tty — control terminal
/dev/tty??? — terminals

WINDOW (7)

SEE ALSO
stty(1), wm(1), dup(2), fork(2), ioctl(2), open(2), wmgetid(3X), wmlayout(3X), wmop(3X),
wmsetid(3X), termio(7), tty(7).

WARNINGS
WIOCDIRECT and WIOCUNDIRECT are required by the operating system. Their use by user pro-
grams is inadvisable.

Use these features in as standard and conservative a way as possible. The best way to enforce
standards is to use window management through the library calls described in Section 3.

USER’'S COMMENTS

Series 6000 Operating System Reference Manual, Volume II

Stock Number: 87601845C 44209-02

HELDP!

Help us help you! Please take the time to complete this form and send it to us. If you do, you may see some of
your own contributions in the next manual you obtain from us.

Does this manual provide the information you need? —Yes INo
— What is missing?

Is the manual accurate? [J1Yes ZNo
— What is incorrect? (Be specific.)

Is the manual written clearly? T Yes INo
— What is unclear?

What other comments can you make about this manual?

What do you like about this manual?

On a scale of 1 to 10, how do you rate this manual? Low

L l l | L 1 L | 1

7 T T T g i T T T T

1 234561789 10
Was this manual difficult to obtain? “Yes [JNo

Please include your name and address if you would like a reply.

Name
Company
Address

No postage required if mailed within the USA.

What is your occupation?

" Programmer " Operator ~ Manager
[Systems Analyst _J Instructor "~ Customer Engineer
 Engineer C Student — Other

How do you use this manual?

(] Reference Manual - Introduction to the Subject
(0 In a Class [0 Introduction to the System
0 Self Study _ Other
fold fold
| || || | FIRST CLASS
Permit No. 194
Cupertino,
California

BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States

[]
Postage will be Paid by . . . T N R
MOTOROLA INC. L e ————
10700 N. De Anza Blvd. A N N
Cupertino, CA 95014
T I B
Attention: Technical Services, MS 32-2G2 i i
fold fold
Staple Here

B1847A

Cut Along Here

)

N

€,

-

