
System 6300
Administrator’s Guide

SOFTWARE RELEASE FE02

87601213A

M MOTOROLA
Information Systems

Copyright

Document Number: S6000-50-1A
Stock Number: 87601213A

f’irst Edition: January 1984
B-09-UU410-U1

Issue A: 15 March 1984
Change 1: 15 June 1984

Specifications subject to change.
1984, 1983 by Convergent Technologies, Inc.

Selected Series 6000 Publications

Series 6000 Operating System Reference Manual (Volumes 1 and 2,
S6000-50-6 and S6000-50-7)— Explains hew to use the UNIX-derived
system commands, library routines, and I/O functions.
System 6300 Software Installation Guide (S6000-40-1)— Describes hew to
prepare the System 6300 software for first time use.
System 6300 Hardware Installation and User1s Guide (S6000-22-1)—
Describes how to install the System 6300 hardware.
System 6300 Administrator's Guide (S6000-50-1)— Provides information
can hew to start and step the System 6300, system management, and
system maintenance.
Series 6000 Operating System Programmer's Guide (S6000-50—5)— Explains
hew to use the UNIX-derived ccnmand language, the C programming
language, and the utility features associated with the UNIX-derived
operating system.
Series 6000 UNIVIEW General Functions (S6000-50-2)— Describes hew to
access Series 6000 application software using UNIVIEW menus and
commands.
Series 6000 UNIVIEW Supervisory Functions (S6000-50-3)— Details hew to
implement UNIVIEW supervisory functions such as altering user profiles
and passwords, and configuring the system.
Introduction to UNIVIEW (S6000-50-8)— Provides a survey of UNIVIEW1s
different functions.
Series 6000 UNIVIEK Programmer1s Guide (S6Ö00-50-4)— Provides
information on hew to program UNIX-derived applications programs in
the UNIVIEW environment.
Series 6000 COBOL Programmer' s Guide (S6000-45-1)— Describes hew to
use the COBOL language with the Series 6000 computer system.
Series 6000 COBOL/SIBQL Runtime Manual (S6000—45—2)— Explains hew to
execute a COBOL or SIBOL computer program on the Series 6000 computer
system.
Pascal Programmer’s Manual (S6000-45-6)— Describes the Pascal
programming language.
Series 6000 Pascal Extensions (S6000-45-4)— Explains the differences
between standard Pascal and the Series 6000 Pascal.

PREFACE

This manual describes the responsibilities of the administrator
of a System 6300 Computer System. It gives procedures to be
followed and describes programs and files to be used.

Readers should be familiar with basic operating system
interaction as described in the first part of the Series 6000
Operating System Programmer's Guide.

This manual describes programs and files in simple terms,
sufficient for the administrator's purposes. For detailed
descriptions, refer to the Series 6000 Operating System Reference
Manual.

This manual contains the following sections:
• Section 1, Introduction, explains what an administrator

is and does.
• Section 2, Administrative Interaction, describes the

special operating modes that give the administrator
complete access to the system.

• Section 3, Adding New Peripheral Devices, tells how to
make support terminals and printers.

• Section 4, Using Disks, tells how disks are organized,
how to initialize a disk and divide it into operating
system slices (partitions), and how to create and
maintain a file system.

• Section 5, User Support, tells how allocate and deny
users access to the system and its resources.

• Section 6, Backups and Restores, tells how to efficiently
preserve offline copies of files against accidental loss.

• Appendix A, File System Concepts, explains the data
structures and concepts behind a file system.

• Appendix B, Init and Getty, is a programmer's view of the
two programs that activate a terminal.

i n

a
-T3

• Appendix C, System Accounting, tells how to use user
accounting programs.

• Appendix D, Lp Spooling System, tells how to configure
and maintain lp and its related programs. Lp is a
powerful and flexible alternative to the standard lpr
program.

ortions of this manual are excerpts of AT&T documents that
escribe the UNIX-derived operating system.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in paragraph (b)
(3) (B) of the Rights in Technical Data and Computer
Software clause in DAR 7-104.9 (a).

Motorola, Inc.
10700 North De Anza Boulevard
Cupertino, California 95014

IV

Contents

SECTION 1: INTRODUCTION
SECTION 2: ADMINISTRATIVE INTERACTION

SUPERUSER STATUS ...
The Root User ... 2-2
Example— Changing a Password 2-2
The Su Program.. 2-3
Example— Using the Su Program................................... 2-3

SINGLE-USER MODE 2-4
Taking the Operating System to Single-User Mode 2-4
Automatically Going to Single-User Mode 2-6
Taking the Operating System to Multiuser Mode 2-6

STANDALONE sSHELL .. 2-6

SECTION 3: ADDING NEW PERIPHERAL DEVICES 3-1
CONFIGURING A NEW TERMINAL .. 3-1

The Terminal Number and the Console 3-1
Configuring Getty .. 3-2
Configuring I nit .. 3-4
Configuring Terminal Type .. 3-4
Rereading Terminal Configuration Files 3-5
Example .. 3_->
Removing Terminals ... 3-6
Configuring Modems ... 3-7

PRINTERS .. 3-8
CONFIGURING CALLJUP DEVICES ... 3-10

SECTION 4: USING DISKS ... 4-1
DISK ORGANIZATION

File Systems
Swap Slice
Other Slices

INITIALIZING AND CONFIGURING DISKS
Determining Disk Dimensions .
Planning the Disk
The Disk Description File ...
Example 1
Running Iv

MAKING AND USING A FILE SYSTEM .. .
Creating the File System
Example

4-1
4-2
4-2
4-2
4-3
4-3
4-4
4-4
4-5
4-7
4-7
4-8
4-8

v

Mounting a File System 4-9
Creating the Lost+Found Directory 4-10
Editing the Checklist 4-10

USING THE FIXED DISK 4-11
USING REMOVABLE DISKS 4-11
CHECKING FILE SYSTEM INTEGRITY 4-12

Routine Checks of Fixed Disk File Systems 4-12
Routine Checks of Removable Disk File Systems 4-12
Running Fsck Manually 4-13
Fsck Description 4-14
Rebooting the System 4-18

SECTION 5: USER SUPPORT 5-1

ADDING USERS ... 5-1
Log-In Names .. 5-1
Choosing a File System and Home Directory 5-1
Example 1 ... 5-2
The Password File 5-2
Example 2 ... 5-3
User Home Directory 5-4
Example 3 ... 5-5

BARRING AND DELETING USERS 5-5
Barring a User 5-5
Example 4 .. . , 5-6
Permanently Removing a User 5-6
Example 5 ... 5-7

MOVING USERS ... 5-7
Example 6 .. . „ 5-8

SECTION 6: BACKUPS AND RESTORES 6-1

SCHEDULING BACKUPS 6-1
DOING BACKUPS .. 6-2

Total Backups 6-2
Incremental Backups 6-3
The Backup Log 6-5

RESTORES ... 6-5
Restoring an Entire File System 6-5
Restoring Specific Files 6-7

APPENDIX A: FILE SYSTEM CONCEPTS A-l

ACCESS TO PERIPHERAL DEVICES A-l
SECTORS AND BLOCKS A-l
DIRECTORIES .. A-2
FILE SYSTEM FORMAT A-2
CAUSES OF FILE SYSTEM CORRUPTION A-3
FSCK AND THE FILE SYSTEM A-4

APPENDIX B: INIT AND GETTY B-l

INTRODUCTION .. B-l
INIT .. B-l

vi

The Database: /etc/inittab B-l
Levels ... B-3
Waking Events B-3
Normal Operational Behavior B-4
Setting Tunable Variables B-5
Debugging Features B-6

GETTY ... B-6
Usage ... B-6
The Database: /etc/gettydefs B-7
Operational Behavior B-8

LOGIN ... B-8
WHO ... B-9
OTHER AFFECTED PROGRAMS B-9
UTMP FORMAT .. B-10

APPENDIX C: SYSTEM ACCOUNTING C-l
GENERAL .. C-l
FILES AND DIRECTORIES C-l
DAILY OPERATION ... C-2
SETTING UP THE ACCOUNTING SYSTEM C-2
RUNACCT .. C-3
RECOVERING FROM FAILURE C-4
RESTARTING RUNACCT ... C-5
FIXING CORRUPTED FILES C-5

Fixing WTMP Errors C-6
Fixing TACCT Errors C-6

UPDATING PNPSPLIT .. C-6
DAILY REPORTS ... C-7

Daily Report C-7
Daily Usage Report C-7
Daily Command and

Monthly Total Command Summaries C-8
Last Log-In ... C-9

SUMMARY .. C-9
FORMAT OF WTMP FILES (UTMP.H) C-10
DEFINITIONS (ACCTDEF.H) C-ll
FORMAT OF PACCT FILES (ACCT.H) C-12
FORMAT OF TACCT FILES (TACCT.H) C-12
FORMAT OF CTMP FILE (CTMP.H) C-13
DAILY REPORT EXAMPLE .. C-14
FILES IN THE /USR/ADM DIRECTORY C-19
FILES IN THE /USR/ADM/ACCT/NITE DIRECTORY C-19
FILES IN THE /USR/ADM/ACCT/SUM DIRECTORY C-20
FILES IN THE /USR/ADM/ACCT/FISCAL DIRECTORY C-20

APPENDIX D: LP SPOOLING SYSTEM D-l
OVERVIEW OF LP FEATURES D-l

Definitions ... D-l
Commands ... D-l

Commands for General Use D-l
Commands for LP Administrators D-2

BUILDING LP ... D-2

vi i

CONFIGURING LP — THE "LPADMIN" COMMAND D-3
Introducing New Destinations D-3
Modifying Existing Destinations D-4
Specifying the System Default Destination D-5
Removing Destinations D-5

MAKING AN OUTPUT REQUEST — THE "LP" COMMAND D-6
FINDING LP STATUS — LPSTAT D-7
CANCELING REQUESTS — CANCEL !!!!!! D-7
ALLOWING AND REFUSING REQUESTS — ACCEPT AND REJECT D-7
ALLOWING AND INHIBITING PRINTING —

ENABLE AND DISABLE D-8
MOVING REQUESTS BETWEEN DESTINATIONS — LPMOVE ! 1 .* D-9
STOPPING AND STARTING THE SCHEDULER —

LPSHUT AND LPSCHED D-9
PRINTER INTERFACE PROGRAMS
SETTING UP HARDWIRED DEVICES AND

LOGIN TERMINALS AS LP PRINTERS D-ll
Hardwired Devices D-ll
Login Terminals .. D-12

SUMMARY ...d -13
APPENDIX E: SYSTEM ACTIVITY PACKAGE E-l

SYSTEM ACTIVITY COUNTERS E_i
SYSTEM ACTIVITY COMMANDS!.!.!..!!. E-3

The "Sar" Command E-3
The "Sag" Command E-3
The "Timex" Command E-4
The "Sadp" Command E-4

DAILY REPORT GENERATION E-4
FACILITIES ... E-4
SUGGESTED OPERATIONAL SETUP !!!” !!!!! E-5
SOURCE FILES ... „...!!!] E-6
THE SYSINFO STRUCTURE,!!!!!!.* E-7
DERIVATION OF BASIC STATISTICS ’ E-9

INDEX

vi i i

CONFIGURING LP — THE "LPADMIN" CDOTAND D-3
Introducing New Destinations j> 3
Modifying Existing Destinations D-4
Specifying the System Default Destination........................ D-5
Removing Destinations ..

MAKING AN OUTPUT REQUEST — THE "II»" COMMAND D-6
FINDING LP STATUS — LPSTAT
CANCELING REWUESTS — CANCEL .. D-7
ALLOWING AND REFUSING REQUESTS — ACCEPT AND REJECT D-7
ALLOWING AND INHIBITING PRINTING

ENABLE AND DISABLE ... D -8
MOVING REQUESTS BETWEEN DESTINATION — LPMOVE D-9
STOPPING AND STARTING THE SCHEDULER —

LPSHUT AND IPSCHED ... D-9
PRINTER INTERFACE PROGRAMS ... D-10
SETTING UP HARDWIRED DEVICES AND

LOGIN TERMINALS AS IP PRINTERS EKL1
Hardwired Devices ... D-ll
Login Terminals ... D-12

SUWAKY .. D-13

APPENDIX E: SYSTEM ACTIVITY PACKAGE E-l

SYSTEM ACTIVITY COUNTERS ... E-l
SYSTEM ACTIVITY C30M4ANDS ... E-3

The "Sar" Ccmnand .. E-3
The "Sag" Catmand .. E-3
The "Timex" Carmand .. E-4
The "Sadp" Ccmnand ... E-4

DAILY REPORT GENERATION ... E-4
FACILITIES ... E-4
SUGGESTED OPERATIONAL SETUP ... E-5
SOURCE FILES .. E-6
THE SYSINFO STRUCTURE ... E-7
DERIVATION OF BASIC STATISTICS .. E-9

APPENDIX F: TM30 KEYBOARD TRANSLATION TABLE A-l
INDEX.. 1-1

viii

SECTION 1: INTRODUCTION

The System 6300 administrator configures and allocates System
6300 operating system resources. The administrator accesses the
system in ways other users can't and controls the way other users
use the system.
The administrator has the following specific responsibilities:

• Giving and denying other users access to the system.
• Specifying what disks and disk files users can access.

• Preparing new disks for use by the system
• Telling the system how to use new terminals and printers.
• Performing routine backup of disk files to prevent

accidental loss of data. •
• Starting the system running and turning the system off.

1-1

SECTION 2: ADMINISTRATIVE INTERACTION

The System 6300 administrator uses the operating system in ways
that ordinary users can't. This is necessary so that the
administrator can manage the system and its resources.

The administrator has three special ways to interact with the
operating system. Note that the first is not exclusive of the
other two.

• Superuser status. When using the operating system as
superuser, you can ignore restrictions on file access and
allowable commands.

• Single-user mode. When the operating system is in this
mode, only one terminal is usable. Single-user mode is
used for procedures that require an absence of normal
disk activity. The single user in single-user mode has
superuser status.

• Standalone shell. This is a program that provides some
administrative commands when the operating system is not
running. The single user running the standalone shell
has superuser status.

WARNING
Do not halt, reset, or turn off a System 6300 Computer
System unless the operating system is not running or is
running in single-user mode.

SUPERUSER STATUS

Superuser status removes important operating system restrictions.
The administrative commands in this manual require superuser
status. The operating system gives the superuser three
exemptions from normal restrictions: •

• File read and write permissions do not apply to the
superuser. The superuser can write to or read from any
ordinary or special file. The superuser can create a
file in or delete a file from any directory.

2-1

Administrative Interaction

• Certain commands are executable only by the superuser.
• Some commands have built in safeguards or restrictions on

the way they are used. Some safeguards and restrictions
do not apply to the superuser.

When the operating system is running normally, there are two ways
to obtain superuser status.

• Log in as user "root.”
• Use the superuser program, su.

Both accesses to superuser status require knowledge of root's
user password. Consider root's password sensitive information.
Change it regularly.

When the operating system is not running normally (single;-user
mode or the standalone shell), the sole user normally has
superuser status.

The shell changes its prompt to remind you that you are
superuser. Normally the default prompt is a dollar sign ($).
When the superuser runs the shell, the default prompt is a pound
sign (#) .

The Root User

In the password file, /etc/passwd, the user called root has
numeric user ID 0; this identifies root as the superuser. Under
no circumstances change the name, numeric user ID, or numeric
group ID of this user. Root should be the first user in the
file.

Root's password is a sensitive piece of information: anyone who
knows it can become superuser. When your system is first booted,
root has no password and anyone can become superuser. To provide
an initial or changed password, run passwd:

passwd
Passwd prompts for the old password once (if there is one) and
the new password twice.

Root's home directory is /, but this directory should not have
any more files in it than necessary.

2-2

Administrative Interaction

Example — Changing a Password

A user has changed his own password, then forgotten the new
password. There is no way to reverse password encryption, so the
valid password is lost forever. The only solution is for the
user to get a new password, but only the user himself can change
his own password and even then only if he knows his existing
password. Fortunately, these restrictions don't apply to the
superuser.
The administrator's input is in bold, the computer's responses in
normal type, ### indicates unechoed input, and f_ indicates
Control-D.

$ passwd waiter
permission denied
$ login waiter
password: ♦##
login incorrect
login: root
password: ###
passwd waiter
Changing password for waiter
New password: #♦#
Retype new password: ###
#

The Su Program

To become superuser while logged in as an ordinary user, use the
superuser program:

su
Su will prompt for a password; enter root's password. If the
password is verified, su runs the shell with its numeric user ID
set to 0, giving the shell the same status as a shell run by
root.
To return to normal user status, terminate the su shell with
Control-D . You can also return to normal user status by using
su with your own (or any other) user name, but this doesn't
terminate execution of the superuser shell.

Example — Osing the Su Command

A system administrator changes root's password while logged in as
an ordinary user. The administrator's input is in bold, the
computer's responses in normal type, #♦# indicates unechoed
input, and f_ indicates Control-D.

2-3

Administrative Interaction

$ su
Password: ## #
passwd
Changing password for root
Old password: ###
New Password: ###
Retype new password: ###
f

SINGLE-USER MODE

Single-user mode prevents ordinary users from communicating with
the system. This prevents normal activity that might interfere
with disk backup and maintenance.
There are two ways the operating system can go to its single-user
mode.

• By commands from the system administrator.

• Automatically on start up if the operating system decides
it is not safe to go to multiuser mode.

Both methods indirectly use the telinit command, a command that
sends signals to the process initialization process, init. Do
not change to single-user mode by using telinit directly:
telinit does not give user programs a chance to terminate
cleanly.
When the operating system is in single-user mode, only one
terminal is usable: the terminal that was used to take the
system to single-user mode. The user using this terminal has
superuser status.

Taking the Operating System to Single-User Mode

To take the operating system to its single-user mode:

1. Make / your working directory.

2. Run shutdown:
/etc/shutdown grace

where grace is the number of seconds the users get to
log out by themselves; if grace is omitted, the users
get 60 seconds. Shutdown runs wall to warn the users,
killall to terminate the users, and init to change the
system mode; this process takes about a minute. See the
Introduction_to System 6300 Operating System.

2-4

Administrative Interaction

Here's an example of going to single-user mode. A system
administrator logged in as an ordinary user takes the system to
single-user mode, giving the users two minutes to log out. The
administrator's input is in bold, the computer's responses in
normal type, ### indicates unechoed input, and f indicates Control-D. ~

$ su
Password:###
cd /
/etc/shutdown 120
SHUTDOWN PROGRAM
Aug 20 09:02 1983

Do you want to send your own message? (y or n): y
Type your message followed by Ctrl d....

Taking system down for weekly backups. You have 2 minutes to log out.
f
Broadcast message from adm....

Taking system down for weekly backups. You have 2 minutes
to log out.
Broadcast message from adm....

SYSTEM BEING BROUGHT DOWN NOW ! ! !
Busy out (push down) the appropriate
phone lines for this system.
Do you want to continue? (y or n) : y
Process accounting stopped
Error logging stopped

All currently running processes will now be killed,
unmounting /dev/fp003

Wait for 'INIT: SINGLE-USER MODE' before halting.
INIT: SINGLE-USER MODE
#

There is a two-minute delay after the first broadcast message and
a one-minute delay after the second.

2-5

Administrative Interaction

Automatically Going to Single-Oser Mode

The operating system has a start up sequence that is executed
whenever the system is turned on or reset. The start up sequence
includes a check of the file systems. The file system check can
have three outcomes.

• Nothing is wrong with any file system. The operating
system goes to multiuser mode.

• One or more file systems is corrupt, but it is possible
to fix them without destroying any data. The? operating
system fixes the corrupt file systems, then goes to
multiuser mode. (However, if it had to fix the root file
system, the operating system reboots itself, starting all
over.)

• One or more file systems is so corrupt that no automatic
fix is evident. The operating system goes to
administrator mode.

When the operating system is in administrator mode, designated
terminals prompt for the administrator to log on. If an ordinary
user logs in, the system promptly logs him or her off. If root
logs in, the system switches to single-user mode. The? single
working terminal in single-user mode is the terminal on which
root logged in.
The system administrator specifies which terminals are? to be
active in administrator mode when he configures the terminals.
See the section on adding new peripheral devices.

Taking the Opeating System to Multiuser Mode

To return to normal multiuser mode, terminate the shell. Press
Control-D in response to a shell prompt. The system will prompt
"Run level?" Enter 2 and press the RETURN key.

STANDALONE SHELL

The standalone shell provides a limited operating system
environment when you cannot or should not boot the system. All
commands are implemented on a diskette, so access to the fixed
disk is avoidable.
There are three restrictions on standalone shell command:

• No files can be written to. Existing files can be read.

2-6

Administrative Interaction

• No input/output redirection, is allowed. The |, <, and >
constructs are illegal.

• Only the following commands are implemented:

To run the standalone shell:

1. Take the operating system to single-user mode, if it is
running.

2. Insert the standalone diskette or cartridge in the
drive.

3. Reset the system.

cat
dd
f sck

fsdb
Is
mkf s

IV
volcopy

2-7

SECTION 3: ADDING NEW PERIPHERAL DEVICES

This section describes the operating system changes required by
new peripheral devices. This consists of changing certain
configuration files that the operating system uses and of making
sure that the operating system responds to the change.

CONFIGURING A NEW TERMINAL

Each new terminal requires the following actions:

1. Determine the new terminal's number.
2. Create an entry in the configuration file for the init

program.

3. Create an entry in the file that lists terminal types.

4. Make sure that init rereads its configuration file.

It is important to distinguish between RS-232 terminals and
RS-422 terminals. Those terms actually describe the kind of
communication link between the terminal and the System 6300
Computer System. Each RS-232 line supports a single terminal.
The RS-422 line supports up to eight terminals. Most terminals
can only be used on an RS-232 line. Motorola TM30 Workstations
and graphics terminals can be used on either kind of line.

The Terminal Number and the Console

Each terminal has a three-digit decimal number. Terminal numbers
start from 000. Note that a terminal number is always expressed
in three digits, even though the terminal numbers do not
currently exceed 027. Numbers are expressed this way so that
system programs can be the same on System 6600 and System 6300
systems.
Terminal numbers 000 through 010 designate RS-232 terminals. The
terminal number indicates the line used.

3-1

Adding New Peripheral Devices

Terminal numbers 020 through 027 designate RS-422 terminals. An
RS-422 terminal does not automatically get a certain number: the
number is assigned when you turn the terminal on. Turning the
terminal on gives it the lowe?st RS-422 terminal number not
already in use. Turning the terminal off frees its number; this
number may then be appropriated by some other terminal. Thus the
only way to make sure that an RS-422 terminal gets a specific
number is to control the order in which the RS-422 terminals are
turned on. Normally it is not necessary to make sure that a
terminal has a specific terminal number. But note how many
RS-422 terminals are in use so you will know what terminal
numbers will be allocated.
Certain important system messages are sent to the system console,
/dev/console. This is simply a link to terminal 000.

Configuring Getty

The text file /etc/gettydefs is used by getty, the operating
system's terminal initializer. Each entry specifies a set of
communication options and a log-in message. Each set of similar
terminals connected to the system requires two entries: one for
multiuser mode and one for administrator mode.

As distributed, /etc/gettydefs contains three entries:
• The 9600 entry, which defines communication options

suitable for an RS-232 9600 baud terminal and a multiuser
mode log-in message.

• The C9600 entry, which defines communication options
suitable for an RS-232 9600 baud terminal and an
administrator mode log-in message. •

• The RS422 entry, which defines communication options
suitable for an RS-422 terminal and a multiuser mode log­
in message.

Each entry in /etc/gettydefs is a line of the form
label# iopt ions#foptions#message#next

where

label identifies the entry. The only strict rule is
that label be unique in the file. A common
convention labels a multiuser mode entry with its
baud rate and an administrator mode entry with C
followed by the baud rate; use this convention
only if it's convenient.

3-2

Configuring System Expansion

is a list of communications options for getty to
apply when it first opens the terminal. Specify
options with the symbolic constants described
under termio(7) in the Series 6000 Operating
System Reference Manual. Symbolic constants are
separated from each other by spaces or tabs.

is a list of communications options for getty to
apply before calling login (that is, after a user
first enters a log-in name). Foptions contains
the same kind of information as does loptions.

is text to print when the terminal is first
opened. The text should end with "login: ".

indicates another entry to use if getty receives a
break while it's using this entry. If you don't
know one or more of a terminal's communication
options in advance (most often the speed), use the
next fields to form a circular linked list of
entries. A user can then select the right entry
by pressing the BREAK key until a log-in message
appears.

To include nongraphic characters in the entry, use one of the
following sequences:

\n newline
\t tab
\v vertic al tab (Control-K)
\b backspace
\r carriage return
\f form feed
\xxx where xxx is a 1- to 3-digit octal number

A backslash (\) followed by any character not mentioned above
just stands for the second character. Thus you enter \\ to get a
\.
There should be only one difference between a multiuser mode
entry and the corresponding administrator mode entry. The
administrator mode entry should have a message that reminds the
user that the system is in administrator mode.
Check the correctness of the new /etc/gettydefs after modifying
it. The following command finds errors:

/etc/getty -c /etc/gettydefs

ioptions

foptions

message

next

3-3

Configuring System Expansion

Configuring Init

The text file /etc/inittab is used by init, the master process
spawner. Each new terminal requires that the init table be
modified so that the operating system monitors the terminal for
attempted log ins. Use a text editor to modify /etc/initab.
Each terminal requires a line in /etc/inittab of the form

ttt:23:respawn:/etc/getty ttyttt def
where

ttt is the terminal number.

def indicates a multiuser mode definition in
/etc/gettydefs.

Each terminal that is to be active in administrator mode requires
a line in /etc/inittab of the form

C ttt:6:respawn;/etc/getty ttyttt def
where

ttt is the terminal number.

def indicates an administrator mode definition in
/etc/gettydefs.

Normally, only terminal 000 (the console) is active in
administrator mode. If you need any RS-422 terminals to be
active in administrator mode, make all RS-422 terminals active:
you cannot know in advance which specific RS-422 terminal gets
which specific terminal number.

Configuring Terminal Type

The terminal type file, /etc/ttytype, lists the kind of terminal
represented by each terminal number. Use an editor to modify
this file.

Each entry in /etc/ttytype is a line of the form
type ttynnn

where

type is a terminal type. A TM30 Workstation is pt. For
other codes, search the file /etc/termcap. To add
new terminals to this file see the discussion of

3-4

Configuring System Expansion

termcap(4) in the Series 6000 Operating System
Reference Manual.

nnn is the three-digit terminal number.

Rereading Terminal Configuration Files

Modification of /etc/gettydefs or /etc/inittab does not require a
reboot of the operating system. For /etc/inittab, it is only
necessary to make init reread it. For /etc/gettydefs, it may be
necessary to kill getty instances made obsolete by the change.
When the operating system is running normally, init rereads
/etc/inittab every time a user logs off and every five minutes.
If this is not soon enough and it is inconvenient to reboot, the
following command tells init to reread /etc/inittab.

telinit q

WARNING
Use the telinit command carefully and precisely. The
wrong parameter will stop the operating system suddenly
and painfully.

Getty uses new entries in /etc/gettydefs without any prompting,
but an instance of getty acting on an obsolete /etc/gettydefs
entry can tie up a terminal. If a terminal remains unusable
after a change to /etc/gettydefs try the following two steps.

1. Discover the process number of the getty monitoring the
terminal:

ps -txxx
where xxx is the three-digit terminal number.

2. Terminate getty:
kill n

where n is the process number displayed by ps.

Example

A System 6300 Computer System currently has a single terminal: a
TM30 Workstation connected to an RS-232 line. The system
administrator adds four new terminals: a Datamedia 2500,

3-5

Configuring System Expansion

connected to an RS-232 line; and three TM30 Workstation
terminals, connected to the RS-422 line.

In the following example, the system administrator has just
connected the new terminals and has logged in as root. All new
terminals are on the RS-422 line or run at 9600 baud, so there is
no need to modify /etc/gettydefs. None of the new terminals are
to be active in administrator mode. The administrator does not
know the terminal type that corresponds to the new RS-232
terminal, so he checks /etc/termcap.

fgrep datamedia /etc/termcap
D 0
D1
D2
D3
D4
D 5
D6
ed
32

dml520
dml521
dm2 500
dm3025
3045
dt80
dt80

dml521|152111520
1521|datamedia
datamedia2500|
datamedia

dm3045
dmdt80

|dmdt80132

0 Idatamedia
1521:\

1520:\

32
/etc/mi ttab

i 2500|datamedia 2500:\
3025a:is=\EQ\EU\EV:\

datamedia 3045a:is=\EU\EV:\
dm80|datamedia dt80/l:\

datamedia dt80/l in 132 char

1#$P
000:23:respawn:/etc/getty
C000:6:respawn:/etc/getty
$a
001:23:respawn:/etc/getty
020:23:respawn:/etc/getty
021:23:respawn:/etc/getty
022:23:respawn:/etc/getty

tty000 9600
tty000 C9600

tty001 9600
tty020 RS422
tty021 RS422
tty022 RS422

mode:\

w
610
e /etc/ttytype
6
$P
pt 000
$a
dm2500 001
pt 020
pt 021
pt 022
w
34
q
/etc/telinit q
#

Removing Terminals

Be absolutely sure that /etc/inittab does not refer to any
terminal numbers not in use. Init may experience difficulties

3-6

Adding New Peripheral Devices

bringing the system to multiuser state if it tries to open
nonexistent terminals.
Note that removing an RS-422 terminal always abandons the highest
terminal number. It does not matter which RS-422 terminal you
remove.

Configuring Modems

Modems require special treatment because they allow two kinds of
communication: dial in connections, and dial out connections.
Dial in connections are established from outside the system.
Dial out connections are established by the operating system.
To permit dial in connections, the line must be monitored by
getty, just like the directly connected terminals. When the
modem responds to another modem, getty wakes up and starts the
log in process.
When there is a dial out connection, a user program such as cu,
ct, or uucp opens the terminal line and uses the modem to
establish a communication link. When the user program begins,
getty must not be monitoring the line, or it will interfere with
the user program.

To establish this kind of dual use, do not give the modem a
normal multiuser mode entry in /etc/inittab. Instead, make the
following entry in /etc/inittab.

ttt:3:respawn:/etc/qetty ttyttt def
where

ttt is the terminal number of the modem's line.
def indicates a multiuser mode definition in

/etc/gettydefs.
No reboot or message to init is necessary initially. Dial out
connections are possible; dial in connections are not. To allow
dial in connection, do

telinit 3
To banish dial in connections again, follow the following
procedure.

1. Look at your list of users to make sure no one is logged
in over the modem lines:

who

3-7

Adding New Peripheral Devices;

2. Tell the system to banish getty from the modem lines:
telinit 2

WARNING
Use the telinit command carefully and precisely. The
wrong parameter will stop the operating system suddenly
and painfully.

Note that when the operating system is booted, dial in connection
are impossible until you allow them.

If you lose track of which telinit you issued last, do
who -r

The number printed after "run level" is the number you passed to
telinit.

PRINTERS

The operating system provides two incompatible print spooling
programs: lp and lpr. Lp supports multiple printers and has
advanced features. Lpr is simple but adequate for a system with
a single printer. Appendix D tells how to configure lp; the
remainder of this subsection tells how to configure lpr.
Lpr can use two kinds of printers:

• Centronics-compatible parallel printer. This is
connected to the special parallel printer line.

• Serial printer. This is connected to any RS-232 terminal
line.

The parallel printer line is associated with the special file
/dev/plp.
An RS-232 line used by a receive-only printer must not be
monitored for log ins. Examine /etc/inittab and verify the
absence of any reference to the line you intend to use. Terminal
line usage is discussed earlier in this section.

To make lpr use ^he correct line, associate the special file
/dev/lp with the correct line. If the printer is connected to
the parallel printer line, do

In /dev/plp /dev/lp

3-8

Adding New Peripheral Devices

If the printer is connected to an RS-232 terminal line, do

In /dev/ttyttt /dev/lp
where

ttt is the three-digit terminal number.

As shipped, the System 6300 operating system has /dev/lp
associated with the parallel printer line.

Use Is to verify that a /dev/lp is associated with the correct
line. Two special files are associated with the same line if
they have they same i-number. To see if /dev/lp has the same i-
number as /dev/plp, do

Is -li /dev/plp /dev/lp
This produces a listing like this:

3438 crwxrwxrwx 2 root root 6, 0 /dev/plp
3438 crwxrwxrwx 2 root root 6, 0 /dev/lp

Only the i-number (first item on each line) and the special file
name (last item on each line) are of interest. Verify that the
two i-numbers are identical; if they aren't, /dev/lp is not
associated with /dev/plp.
To see if /dev/lp has the same i-number as an RS-232 terminal
line do

Is -li /dev/ttyttt /dev/lp
where

ttt is the three-digit terminal number.

This produces a listing much like that of the other version of
the Is command. Again, compare i-numbers: they must be the same
or /dev/lp is not associated with the indicated line.
If a serial printer is used and the printer's communication
requirements do not match the operating system's defaults,^you
must arrange for the operating system to set and hold terminal
options. To do that, add the following two lines at the end of
/etc/rc:

sleep 2000000 > /dev/lp &
stty options < /dev/lp

where options is a list of valid stty options: see stty(l) in
the Series 6000 Operating System Reference Manual.

3-9

Adding New Peripheral Devices

CONFIGURING CALL-UP DEVICES

Wien your system calls a remote system, nuucp opens the terminal line and
makes a carmunications link between the two systems. To enable nuucp to
establish this link, you must first alter the /etc/inittab file for tty001 on
each system. For the initiating systsn, create or alter the line for tty001 so
that it looks like this:

001:4:respawn:/etc/getty tty001 9600
For the responding system, create or alter the line for tty001 so that it
appears this way:

001:2:respawn:/etc/getty -t 30 tty001 9600
If you wish to attach a password to the nuucp utility type

passwd nuucp

and enter the password you want to use for tliis utility. When the password
prompt appears the second time, reenter the password to make certain you
spelled it correctly the first time.

For both the initiating and responding systems you must set the permission
modes to read and write permission for owner, group, and others. For each
system then, write

chmod 0666 /dev/ttyxxx
where xxx is the number of the terminal that you are using for carmunication.

3-10

SECTION 4: USING DISKS

This section describes use of the System 6300 disks. It
describes how disks are organized and how the system
administrator makes the disk's storage capacity available to
users.

There are two basic kinds of disks: fixed, and removable
(diskettes). Fixed and removable disks are organized in a very
similar way; except where noted, the following information
applies to both kinds.

The procedure that installs the operating system initializes the
fixed disk and installs the reserved area (slice 0), the root
file system (slice 1), and the swap slice (slice 2). Thus you do
not initialize the fixed disk or create the root file system
unless you accidentally undo some part of their configuration.

This section discusses use of the iv command. For a complete
reference on this command, see the the Series 6000 Operating
System Reference Manual.

DISK ORGANIZATION

This subsection explains how disks are organized. A few concepts
are introduced here that express how the disk is divided into
manageable units and what purposes the units serve.

A disk is divided into 1 to 16 slices. A slice is simply a
section of the disk that is used as a unit. Slices are numbered
0 to 15. Slice 0, also called the Reserved Area, is preassigned
to hold data required to manage the disk; there is normally at
least one additional slice.

If a disk is used to boot the operating system (as is the fixed
disk), slices 1 and 2 also have preassigned purposes. Slice 1
contains the root file system (see below). Slice 2 provides swap
space; the size of this slice places a practical limit on the
program size.

4-1

Using Disks

File Systems

An important use of a slice is to contain a file system,. A file
system consists of the files plus the data structures the
operating system kernel requires to support file uses. Normally,
all the slices on the fixed disk except for 0 (the reserved area)
and 2 (the swap area) contain file systems.

To be used, a file system must be mounted to give it a place in
the directory hierarchy. The root file system in slice 1 is
permanently mounted; other file systems are mounted by the mount
command or by an automatic procedure that is executed when the
system is booted.

Users use the mounted file systems as a single hierarchy of
directories and files. For the most part, the division of file
hierarchy into slices is not apparent to users and disk
organization is not an ordinary user's problem.

Be careful not to destroy the root file system. Doing so renders
the system unusable.

Swap Slice

The size of the swap slice determines the total limit on program
memory usage. Slice two on the disk from which the operating
system was booted is always the swap slice; thus the swap slice
on the fixed disk is /dev/fp002. A sign that the swap slice is
too small is the failure of a large number of commands with
messages like "not enough space." Experience will tell you how
much swap space you need, but a good rule of thumb is that each
terminal uses up 1 megabyte. In any case the swap slice should
be a little larger than the system's random access memory (RAM)
so that the RAM is fully utilized.
Do not write a file system or any other data into a swap slice.

Other Slices

A disk, especially a removable disk, can see uses other than
holding file systems or the swap slice. Some data base systems
manage slices directly, without using a file system. Removable
disks are often used for routine file backups and for transfer of
data between systems; such disks contain a single slice with no
file system.

Unlike the swap slice or a file system, which are managed by the
operating system kernel, a plain slice is managed by the programs
that use it.

4-2

Using Disks

INITIALIZING AND CONFIGURING DISKS

This subsection explains procedures that initialize a disk and
divide it into slices. Normally you would use these procedures
on new removable disks.

If you use any of these procedures on a disk already in use (for
example, to adjust the slice sizes on the fixed disk) assume that
all data on the disk will be lost. In the case of the fixed
disk, do a complete backup before adjusting slice sizes or
otherwise changing the disk configuration; see the section on
backups and restores.

Initializing and configuring a disk requires the following steps:

1. Determine the dimensions of the disk.

2. Plan the disk's division into slices and how the slices
are to be used.

3. Create a disk description file.

4. Run the disk initialization utility, iv.
Use this procedure both to initialize a new disk and to specify
new slice boundaries on an old disk.

Before applying this procedure to an old disk, copy or backup the
disk! It is possible to rearrange slice boundaries without
damaging all existing slices, but do not count on your ability to
do this.

After initializing a removable disk, use one of the following
commands just before removing the disk from the drive:

dismount -f
For instruction on using dismount, see "Using Removable Disks,"
below.

Determining Disk Dimensions

The prototype disk description files in /usr/lib/iv describe the
various disks commonly used with the System 6300. Use cat or
some other text file utility to examine the file for your disk.

cat file
where

file is the prototype description file name.

4-3

Using Disks

The prototype description file gives physical characteristics of
the disk. Of interest are heads, cylinders, and sectors. If
sectors is an odd number, the disk has a sector on each track
reserved as a bad block alternate: subtract one from sectors
before using it. Calculate the total number of 1024-byte logical
blocks the disk can contain:

heads x cylinders x sectors / 2 = disk size in logical blocks
Also calculate the number of logical blocks per track (call this
value bpt):

sectors / 2 = bpt

Finally, calculate total number of tracks:

heads x cylinders = number of tracks on the disk
Some commands described below require values expressed in numbers
of logical blocks. Others, however, require values expressed in
physical sectors. One logical block equals two physical sectors.

Planning the Disk

In planning the size of the disk's slices, consider the
applications or users who are likely to use the disk. How many
1024-byte logical blocks is each application or user likely to
require? If you have a lot of users who will create a Lot of
small files, they can share a file system, provided none of_them
is careless about using up extra space. What's a rough estimate
of their total requirements?
Try to put user files in a file system separate from the root
file system and other file systems that hold system utilities.

Slices always contain a whole number of tracks. Round off your
estimates to the nearest multiple of bpt.

The first and most important slice is the reserved area.
Preparing a reserved area that supports a system boot is beyond
the scope of this manual, but if you reconfigure a disk that
contains an operating system, do not decrease the size of the
reserved area. (See "Reconfiguring Old Disks," below.) A
reserved area that does not support a system boot needs one
track.

The Disk Description File

A disk description file is a text file that gives the disk's
physical characteristics and tells where each slice begins. To
create the disk description file, do the following:

4-4

Using Disks

1. Copy the appropriate prototype description file from
/usr/lib/iv.

2. Use a text editor to add a disk name and slice
information to the copy.

The disk name goes on an existing line. The line is of the form

name name
where

name identifies the name line.

is a tab character, generated by pressing the TAB key
or Control-I.

name is the disk name. Only the first six characters are
used. If the specified name is less than six
characters long, the actual name is padded out to six
with blanks.

Add slice information at the end of the description file. Each
slice is described by a line that contains the track number for
the first track of the slice. The first track number gives the
starting track for slice 0, the second for slice 1, and so on.
The lower numbered slices always begin with lower numbered
tracks. Slice 0, the reserved area, always begins with track 0,
but this slice is still listed explicitly.

It is not absolutely necessary that the disk description file
have any particular name or be in any particular directory.
However, you will find it useful to keep all your disk
description files in a special directory, separate from
/usr/lib/iv, and to name them in a way that indicates their
purposes. For some purposes, such as backup, you will require a
large number of identically initialized disks, so you will reuse
some disk description files.

Example 1

An administrator wants to use diskettes. The description
prototype file that describes his disk is pdl.desc (this name is
for example only). The administrator's input is in boldface, the
system's responses in normal type.

cat /usr/lib/iv/pdl.desc
type FD
name xxxxxx
cylinders 80
heads 2
sectors 8

4-5

Using Disks

steprate 0
$
$
$

Sectors is even, so leave it alone. The capacity of the disk is
2 x 80 x 8 / 2 = 640 logical blocks. There are 8 / 2 = 4 blocks
per track (bpt) and 80 x 2 = 160 total tracks. If the disk
doesn't have an operating system, one track is sufficient for the
the reserved area (Slice 0), leaving 159 tracks (636 logical
blocks) for data.
The system administrator plans two uses for the diskettes:

Backup. Each slice 1 will serve as a "tape reel"' in
backups. The disks only need to be initialized and
configured; the backup programs will manage the slice.

Offline file storage. Users will use these disks to
increase their storage. Slice 1 will contain a file
system; users will create files on the file system.

A single disk description file will initialize disks for both
purposes.

mkdir /usr/lib/iv.work
cd /usr/lib/iv.work
cp /usr/lib/iv/pdl.desc pd.offline
ex pd. of flirte
"pd.off1 ine", 9 lines, 63 characters

» $ #
1 type F0
2 name X X X X X X

3 cylinders 80
4 heads 2
5 sectors 8
6 steprate 0
7 $
8 $
9 $

: 2 s/xxxxxx/off1ine/p
name offline;
: $ append
0
1

1,$ #
1 type FD
2 name offline
3 cylinders 80
4 heads 2
5 sectors 8
6 steprate; 0
7 $

4-6

Using Disks

8 $
9 $

10 0
11 1

: xit
"pd.off1 ine", 11 lines, 73 characters
#

Note that pd.offline will name new disks "offlin": disk names
are always 6 characters long, and specified names are right-
truncated or padded with blanks to fit.

Running Iv * •

The iv program formats a disk and divides it into slices. This
program is used to initialize new disks and rearrange the slice
boundaries on old disks.

The iv command takes one of the following forms:

/etc/iv /dev/rfp0t0 file
/etc/iv -f /dev/rfp0t0 file

where

_t indicates the disk to be formatted or reconfigured:
0 means the fixed disk; 2 means the disk inserted in
the diskette drive.

file is the name of a disk description file.

The second form suppressing formatting, so that slices whose
boundaries do not change should not be damaged. However, it is
not safe too assume that any data will survive application of iv
to a disk: always copy the contents of a disk before using iv on
i t.

MAKING AND USING A FILE SYSTEM

Each file system requires the following steps:

• Create the file system with mkfs.
• Mount the file system and arrange for its automatic

mounting.

• Create a lost+found directory for the file system.

• If the file system is on the fixed disk, add it to the
operating system checklist.

4-7

Using Disks

Creating the File System

Mkfs creates a file system by writing file system structures into
a slice. Labelit puts a label on the slice.

/etc/mkfs /dev/fp0tp size 1 cylsi ze
/etc/labelit /dev/fp0tp Idir vname

where

t indicates the disk that contains the slice;:: 0
means the fixed disk; 2 means the disk inserted in
the diskette drive.

£ is the slice number, in hexadecimal (a through f
stand for "10" through "15"). Do not specify
slice 0 (the reserved area).

size is the number of sectors in the slice. This is
the twice the number of logical blocks in the
si ice.

cylsi ze is the number of sectors per cylinder. This is
the number of heads, times bpt, times 2.

ldir is the local name of the directory on which the
file system is normally mounted or root for the
root file system. Examples: a file system
normally mounted on /a is a; a file system
normally mounted on /usr/src is src.

vname is your name for the disk that holds the file
system. Suggested names: d0 for the fixed disk, d2 for the diskette.

Example

The administrator from the previous example wants a file system
on a diskette. Cylsi ze is 2 x 4 x 2 = 16. The administrator
inserts a blank disk in the drive enters the following commands.
The system administrator's input is in boldface, the computer's
responses in normal type.

/etc/iv /dev/fp020 /usr/lib/iv.work/pd.offline
/etc/mkfs /dev/fp021 1272 1 16

4-8

Using Disks

Mounting a File System

Every file system must be mounted in order to be used; this gives
the file system a place in the file hierarchy. The mount command
mounts a file system:

/etc/mount /dev/fp0dp dir r_
where

d indicates the disk, as in the mkfs command.
£ indicates the slice, as in the mkfs command.
dir is the name of an empty directory. Subsequent

references to dir will actually be to the root
directory of the newly mounted file system; this gives
user normal access to any files on that file system.

This directory can be on the root file system or it
can be on another mounted file system. But the
directory's file system must be already mounted.

r controls access to the file system. If £ is -r, the
— file system is mounted read only: files in the file

system can be read, subject to normal permission
rules, but cannot be modified, created, or deleted by
any user. If r_ is missing, the file system is mounted
read/write: all files in the file system can be read,
modified, created, or deleted, subject to normal
permission rules.

Without any arguments:

/etc/mount
mount displays a list of currently mounted file systems.
A umount undoes a mount:

/etc/umount /dev/fp0dp
where

d̂ indicates the disk, as in the mkfs command.
£ indicates the slice, as in the mkfs command.

The root file system (the file system in slice 1 of the disk from
which operating system was booted) is always accessible without a
mount. Do not apply umount or mount to this file system.
Mounting and unmounting is automatic in some circumstances:

4-9

Using Disks

• The operating system normally mounts fixed disk file
systems automatically when the operating system goes to
multiuser mode. To accomplish this, the system
administrator must add commands to the appropriate
startup file; see "Using Fixed Disks," below.

• Unmounting is implied by the dismount program, which
cleanly disconnects a removable disk from the operating
system. See "Using Removable Disks," below.

• The shutdown program, which takes the system to single-
user mode, unmounts all file systems except the root file
system. See Section 2.

Creating the Lost+Found Directory

Each file system must have a special directory for use by the
file system maintenance program fsck. To create this directory:

1. Make sure that the file system is mounted.

2. Make the file system's root directory your working
d i rectory.

3. Run the program:

/etc/mklost+found

Editing the Checklist

If the file system is on the fixed disk, its integrity should be
checked whenever the System 6300 is booted. To do this, use a
text editor to modify the file /etc/checklist. The first line
must specify the record special file for the root file system:

/dev/fp001
Eaich additional file system must be represented by a line1 that
specifies the file system's character special file:

/dev/rfp00£
where

£ is the partition number in hexadecimal (a through f
stand for "10" through "15").

Make sure that there are no duplicate entries. It is also
important that the root file system be listed first.

4-10

Using Disks

USING THE FIXED DISK

All fixed disk file systems can and should be mounted
automatically when the system is booted. To insure this, put the
correct mount commands in /etc/mountable.

USING REMOVABLE DISKS

After inserting a removable disk in the drive, wait for the disk
to reach full speed. If a removable disk contains file systems,
issue the following command for each file system:

/etc/mount /dev/fp0t£ /mnt/exch£
where

t identifies the kind of disk.

£ is the slice number in hexadecimal (a through f stand
for "10" through "15") .

Users can access the file systems on the removable disk by
referring to the subdirectories of /mnt.
The system administrator must specify who can access the root
directory of a removable disk file system. Since removable disks
are relatively small, one of two possibilities is likely:

• One particular user controls the root directory.

• All users are allowed to use the root directory.

To give a particular user control of the root directory, use the
chown program:

/etc/chown name /mnt/exch£
where

name is a user name.
£ is the slice number in hexadecimal.

The user can then specify access permissions for the directory.
If the user gives only himself write permission, he has the
exclusive ability to create files and subdirectories in /exch£.
To give all users free access to the root directory, and thus to
the file system, use the chmod program:

chmod a+rwx /mnt/exch£

4-11

Using Disks

where

£ is the slice number in hexadecimal.

All users can then create files and subdirectories in /exch£.
Before removing the disk from the drive, use dismount:

dismount -f
Dismount dismounts the disk's file systems, completes
input/output, and tells the operating system kernel that removal
of the disk is safe.

If a disk is removed without a complete dismount, it is marked as
potentially inconsistent. If a potentially inconsistent disk is
inserted in the drive, a warning message will appear on the
console.

CHECKING FILE SYSTEM INTEGRITY

If the operating system stops running for any reason, it is time
to check the integrity of whatever file systems were mounted when
the operating system went down. This is especially true after
unplanned down times (operating system crash, power outage,
accidental reset of the system), but is also mandatory for
planned down times. The fsck program examines the file system
and repairs damage to file system structures.

Routine Checks of Fixed Disk File Systems

The operating system automatically checks fixed disk file systems
whenever it is booted. Fsck is run with an option that performs
most repairs automatically. If file system problems are too
difficult for fsck to handle automatically, the operating system
goes to administrator mode. If this happens, log in as root on
the most convenient terminal and run fsck manually, as described
below.

Routine Checks of Removable Disk File Systems * •

Check the integrity of a removable disk's file systems

• Whenever the disk sees a week's worth of work.

• Whenever the system warns that the disk has been pulled.
This will happen if the disk was in use when the system
was stopped suddenly.

4-12

Using Disks

The operating system must be in single user state. The following
two commands are required:

/etc/umount /dev/fp0tp
/etc/fsck -p /dev/fp0tp

where

t indicates the kind of disk: 2 means diskette.

£ is the slice number, in hexadecimal (a through f stand
for "10" through "15") .

The first command assures that the file system is unmounted; this
is very important.
Fsck should handle most problems automatically. If it cannot,
run it again manually.

Running Fsck Manually

To manually check a file system, run fsck without the -p option:
fsck /dev/fp0tp

where
jt indicates the kind of disk: 0 means the fixed disk, 2

means the diskette.

£ is the slice number, in hexadecimal (a through f stand
for "10" through "15"). Do not specify slice 0 (the
reserved area)!

This form of the fsck command requires your permission before
each action.

Repair the normal root file system (/dev/fp001) first. This
simplifies work on the other file systems. If fsck actually
modified the root file system, it will reboot the operating
system.

If you can't understand fsck's actions, do the following:
1. Familiarize yourself with the following fsck description

and with Appendix A.

2. Continue running fsck, but assume you'll have to run it
again. Grant permission only for minor repairs. Assess
the condition of the file systems. (Examples of minor
repairs: removing a small or unimportant file; linking
a file to lost+found.

4-13

Using Disks

3. For each sick file system, consider how much work would
be lost if the file system were thrown away and restored
from back up. If this loss is not significant, abandon
further work on the file system and restore from back
up.

Fsck Description

These are the messages and suggested actions fsck displays. Run
with the -p option, fsck takes most of its own suggestions,
stopping only when action would mean loss of data.
For a discussion of the terminology employed in this section, see
Appendix A.
These messages each report a disk problem and suggest a standard
fix. These are the standard suggestions:

(CONTINUE) Results may be invalid. Continue anyway?

(CLEAR)
(REMOVE)
(FIX)

Clear this i-node?

Remove this directory entry?

This value is wrong. Replace it with the
right value?

(RECONNECT) We have a good i-node but no directory entry
for it. Make a directory entry for it in
lost+founci?

Initialization

CAN NOT SEEK: BLK B (CONTINUE)
CAN NOT READ: BLK B (CONTINUE)
CAN NOT WRITE: BLK B (CONTINUE)

I/O failed on the file system. If you decide to
continue, do a second run to confirm the results of the
first. Make sure the disk isn't write-protected.

PHASE 1: CHECK BLOCKS AND SIZES

UNKNOWN FILE TYPE I = I_ (CLEAR)
I-node I_ has an invalid type. If you decide to clear
the i-node, its directory entries will be UNALLOCATED
in Phase 2.

LINK COUNT TABLE OVERFLOW (CONTINUE)
An fsck internal table is full. A second fsck run will
be necessary to confirm the results of the first. This

4-14

Using Disks

message will repeat each time fsck encounters an
allocated i-node whose link count is 0.

B BAD 1=1̂
Block B on i-node I_ is bad. You'll get a BAD/DUP
message in Phase 2 and Phase 4.

EXCESSIVE BAD BLKS I=I_ (CONTINUE)
I-node I_ has a large number of bad blocks. If you
choose to continue, fsck will skip to the next i-node.
Run fsck again to verify your results.

B DUP 1=1
I-node I_ claims block B, but this block is already on
fsck's list of allocated blocks. This will cause a
BAD/DUP message in Phase 2 and Phase 4. This error
invokes Phase lb. Be careful if you see this error. A
good procedure is to note the i-numbers with this error
and finish running fsck without changing the file
system. Before running fsck again, run ncheck to
discover the names of the affected files:

/etc/ncheck -i numbers /dev/name
where

numbers is a list of i-numbers. The numbers are
separated from each other by spaces.

name is the same special file name used with
fsck.

EXCESSIVE DUP BLKS I=I_ (CONTINUE)
I-node I_ has a large number of duplicate blocks. If
you choose to continue, fsck will skip to the next
i-node. Run fsck again to verify your results.

DUP TABLE OVERFLOW (CONTINUE)
An fsck internal table is full. A second fsck run will
be necessary to confirm the results of the first. This
message will repeat each time fsck encounters a
duplic ate block.

POSSIBLE FILE SIZE ERROR I=I_
The indicated file has the wrong number of blocks for a
file its size. A file size error does not necessarily
indicate a real error: it can indicate a file that was
written to nonsequentially.

DIRECTORY MISALIGNED 1=1̂
Size of the indicated directory is not a multiple of
16.

4-15

Using Disks

PHASE IB: RESCAN FOR MORE DUPS

B DUP I = J _

I-node I_ claims block B, but this block is already on
fsck's list of allocated blocks.

PHASE 2: CHECK PATHNAMES

ROOT I-NODE UNALLOCATED. TERMINATING
The root directory of a file system is always linked to
i-node 2,. If i-node 2 is not allocated, the file
system is damaged beyond repair.

ROOT I-NODE NOT DIRECTORY (FIX)
I-node 2 must be a directory.

DUPS/BAD IN ROOT I-NODE (CONTINUE)
Some of the duplicate blocks belong to i-node 2. This
will make it very difficult to repair the file system.

I OUT OF RANGE I=I_ NAME=F (REMOVE)
F, a directory entry, refers to a i-node that doesn't
exist.

UNALLOCATED I=I_ OWNER=0 MODE=M SIZE=S MTIME=T DIR=F (REMOVE)
The specified directory entry is a link to an
unallocated i-node.

DUP/BAD I = I_ 0WNER=0 MODE=M SIZE=S MTIME=T DIR=F (REMOVE)
The specified directory entry is a link to a i-node
with bad blocks or blocks duplicated by another file.

BAD BLK B IN DIR I=I_ OWNER=0 MODE=M SIZE=S MTIME=T
You specified the -q option and fsck spotted
inconsistent data in the specified directory.

PHASE 3: CHECK CONNECTIVITY

UNREF DIR I = I_ OWNER=0 MODE=M SIZE=£ MTIME=T (RECONNECT)
The indicated directory is nonempty and uncorrupted but
lacks a directory entry (its former parent has no link
to it) .

SORRY, NO iost+found DIRECTORY
No files can be reconnected until you replace the
missing lost+found directory. If you really need to
reconnect your unreferenced i-nodes: first, finish
this fsck run (being careful not to clear any i-
nodes!); then recreate the missing lost+found directory
(see "Creating the Lost+Found Directory," above); and
finally run fsck on the file system again.

4-16

Using Disks

SORRY, NO SPACE IN lost+found DIRECTORY
No more files can be reconnected until you expand the
lost+found directory. If you really need to reconnect
your unreferenced i-nodes: first, finish this fsck run
(being careful not to clear any i-nodes!); then expand
the lost+found directory (see "Creating the Lost+Found
Directory," above); and finally run fsck on the file
system again.

DIR 1=11 CONNECTED. PARENT WAS 1=12.
The directory whose i-number is I_1 now has a link in
lost+found. Fsck has made the directory's .. entry
refer to lost+found; formerly .. referred to i-node 12.

PHASE 4: CHECK REFERENCE COUNTS

UNREF FILE 1=1̂ 0WNER=0 MODE=M SIZE=S MTIME=T (RECONNECT)
The indicated ordinary file is nonempty and uncorrupted
but lacks a directory entry (the directories that had
links to it lost them).

SORRY, NO lost+found DIRECTORY
SORRY, NO SPACE IN lost+found DIRECTORY

See the lost+found messages in Phase 3.
(CLEAR)

A chance to abandon the last UNREF file without
rerunning fsck. Be absolutely sure you want to clear
this i-node.

LINK COUNT FILE 1=1̂ 0WNER=0 MODE=M SIZE=S^ MTIME=T COUNT =X SHOULD
BE Y (ADJUST)

The link count for the specified ordinary file is X but
Y files actually have links to it.

LINK COUNT DIR I=I_ OWNER=0 MODE=M SIZE=S^ MTIME=T COUNT =X SHOULD
BE Y (ADJUST)

The link count for the directory is X but Y files
actually have links to it.

UNREF DIR I=I_ OWNER =0 M0DE=M SIZE=S MTIME=T (CLEAR)
UNREF FILE 1 = 1 OWNER=0 MODE=M SIZE=S^ MTIME=T (CLEAR)

Ordinarily, unreferenced and empty files and
directories silently disappear. If the -n option is
specified, this prompt appears for empty files and
directories.

BAD/DUP DIR I=I_ 0WNER=0 M0DE=M SIZE=£ MTIME=T (CLEAR)
BAD/DUP FILE I = I_ OWNER=0 MODE=M SIZE=S MTIME=T (CLEAR)

The specified directory or file is unreferenced and has
bad or duplicate blocks.

4-17

I X
I

X
I

!x
!

Using Disks

FREE I-NODE COUNT WRONG IN SUPERBLK (FIX)
Fsck's count of free i-nodes doesn't match the count in
the superblock.

PHASE 5: CHECK FREE LIST

EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE)
EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE)

This is your last chance to avoid reconstructing the
free list.

BAD FREEBLK COUNT
: BAD BLKS IN FREE LIST
r DUP BLKS IN FREE LIST
: BLKS MISSING

Final notes on the dire state of the free list. Any of
these will invoke the BAD FREE LIST message.,

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX)
Fsck's count of free blocks does not match the value in
the superblock.

BAD FREE LIST (SALVAGE)
If the file system is otherwise all right, it's always
a good idea to salvage the free list.

Rebooting the System

The kernel can undo all your painful repair work by writing out
its copies of file system tables. Give the kernel no chance to
do I/O to the file systems until you return to multiuser state or
halt the processor:

• Unmount all file systems (except the root file system, of
course). Keep them unmounted. •

• Under no circumstances run sync from the time you start
repairing the file systems to the time you switch to
multiuser state or halt the processor.

4-18

SECTION 5 USER SUPPORT

ADDING USERS

The following actions give a new user basic access to the the
system:

1. Assign the user a unique log-in name.

2. Choose a file system and home directory to hold the
user 's file.

3. Create an entry for the user in the password file.

4. Create the user's home directory.

Log-In Names

The log-in
must be one
digits. If
lower case.

name uniquely identifies
to eight characters long
the name has letters, at
Two users must not have

the user. The
and consist o
least one of
the same log-

log- in name
f letters or
them must be
in name.

Choosing a File System and Home Directory

Decide which file system will hold the user's permanent files.
If possible, reserve one or more file systems for non-
administrative users. Divide the file systems between users
based on your estimate of the users' storage needs.
Name user home directories in a way that is convenient for you.
One good system follows two conventions:

• The user's home directory is in the root directory of the
user's file system. •

• The simple name of the home directory is the same as the
user's log-in name.

5-1

User Support

Decide on the name of the user's home directory, but don't create
the actual directory yet. This will be easier to do once you
have created the user's password file entry.

Example 1

Suppose four new users choose log-in names "john," "dick,"
"gwen," and "jack." The system administrator decides that there
is room for them on the file system whose special file name is
/dev/fp003. This file system is normally mounted on /a. The new
users' home directories will be /a/john, /a/dick, /a/gwen, and
/a/jack.

The Password File

Each user requires an entry in the Password File, /etc/password.
This file is read by login every time someone tries to log in. To
add a new user to the password file:

• Use a text editor to add the user's entry to the file,.

• Use the passwd program to assign a password to the new
user.

Each entry in the password file is a line of the form

name:pass:uid:gid:unused:home:she11

where
name

pass

uid

g id

is the user's log-in name.

is user's encrypted password. Leave this field
blank; it will be filled in when you run the passwd
program.

is the user's numeric user ID. This must be a
decimal number greater than or equal to 100 and
unique for each user.

is the user's initial numeric group ID. To
implement groups, see group(4) in the Series 6000
Operating System Reference Manual. If the user is
not associated with any group, set this field to
100 .

unused is a field without any standard use. It is often
holds the user's name and office location.

home is the name of the user's home directory.

5-2

User Support

shell is the full path name (not the command name) of the
user's shell, the program that is executed when the
user logs in. If this field is empty, login uses
the Bourne shell, /bin/sh.

To specify a password for the new user, run passwd. The form of
the command is

passwd name

where name is the user's log-in name. Passwd prompts for a
password. The password does not appear on the screen. To
prevent error, passwd makes you type the password twice. If you
supply a short password, passwd demands a longer one, but gives
in if you are persistent.

If you fail to supply an encrypted password (leaving that field
of the password file entry blank) the user requires no password
to log in.

Example 2

The system administrator creates password file entries for
"john," "dick," "gwen," and "jack." Each of these users uses the
Bourne shell. The system administrator also invents a user that
exists only to allow people to run sync without logging in. The
administrator's input is in boldface, the computer's response is
in normal type, and ### indicates unechoed input.

ed /etc/passwd
5328
$P
frank:UC0W7.pjZUBcw:115:100::/a/frank:
a
john::116:100::/b/john:
dick::117:100::/b/dick:
gwen::118:100::/b/gwen:
jack::119:100::/b/jack:
sync::120:100::/:/bin/sync
•
w
5460
q# passwd john
new password: ###
retype new password: ###
passwd dick
new password: ###
retype new password: ###
passwd gwen
new password: ###
retype new password: ###

5-3

User Support

passwd jack
new password: ###
retype new password: ###
#

The administrator has kept the password file ordered by numerical
user ID, so it's only necessary to examine the last entry to
determine the next numerical user ID.
The "sync" user requires no password and no home directory of its
own.

User Home Directory

The new user's home directory requires the following steps.

1. Create the directory.

2. Give the user ownership of the directory.

3. Give the user's group group ownership of the directory.

4. Set the protection mode of the directory.

Use mkdir to create the home directory. The command has- the for

mkdir dir
where dir is the home directory name. Actually, any number of
directory names are permitted.
Use chown to give the user ownership of the: home directory. The
command has the form

chown name dir
where

name is the user's log-in name.

dir is the user's home directory.

Use chgrp to give the user's group group ownership of the home
directory. The command has the form

chgrp group dir
where

group is the name of the group or the numerical group ID.

dir is the user's home directory.

5-4

User Support

Use chmod to set the protection mode of the user's home
directory. The command has the form

chmod mode dir
where

mo<36 is a protection mode. 755 gives the owner all access
to the directory, and gives other users read-only
access. 700 gives the owner all access to the
directory and gives other users no access at all.
For other modes, see chmod(1) in the Series 6000
Operating System Reference Manual.

dir is the user's home directory.

Each of these commands can do multiple files or directories.

Example 3

The system administrator provides home directories for "john,"
"dick," "gwen," and "jack." The administrator makes each
directory with all access for the owner and read-only access for
other users. The administrator's input is in boldface, the
computer's response in normal type.

mkdir /b/john /b/dick /b/gwen /b/jack
chown john /b/john
chown dick /b/dick
chown gwen /b/gwen
chown jack /b/jack
chgrp 100 /b/john /b/dick /b/gwen /b/jack
chmod 755 /b/john /b/dick /b/gwen /b/jack
#

BARRING AND DELETING USERS

This section describes procedures for denying users access to the
system. The subsection "Barring a User" tells how to deny access
when the user may not be removed permanently. The subsection
"Permanently Removing a User" tells how to completely undo the
steps that gave the user access and remove the user's files.

Barring a User

To bar a user without permanently removing him or her, invalidate
the user's password file entry. One way to do this is to insert
a % at the beginning of the entry's encrypted password; use a
text editor to do this.

5-5

User Support

When a user's password file entry is invalid, any attempt by that
user to log in is rejected as "incorrect."

To restore the user, remove the %.

Example 4

The system adminstrator bars "jack." The administrator's input
is in bold, the computer's responses in normal type.

ed /etc/passwd
7454
/jack/
jack:wcBUZjp.7W0CU:1 1 9 :1 0 0::/b/jack:
s/ * / •%̂ /p
jack:%wcBUZjp.7W0CU:119:100::/b/jack:
w
7455
q
#

Permanently Removing a User

It is a good idea to postpone permenant removal of a user until
after regular file backups. If this is inconvenient, consider
using the temporary procedure, above, until the next regular
backup.

To remove a user from the system permenantly:
1. Remove the user's password file entry.

2. Remove the user's files.

Use a text editor to remove the password file entry.

Rm will remove the user's home directory and all the files it
contains. The command takes the form

rm -fr dir

where

dir is the user's home directory.

5-6

User Support

CAUTION
The above form of the rm command can remove a large
number of directories quickly. Note that the rm
command does not announce the files it is removing.
Use the above command carefully and precisely.

If a user's file outlasts the user's password file entry, an
Is -1 on the file produces the former user's numeric user ID.
The former user may leave files in places other than his home
directory. The following command does a comprehensive search for
the former user's files, but takes a lot of time to execute:

find / -user x -print
where sc is the user's log-in name or numeric user ID. If the
user's password file entry is gone the log-in name will not work
but the numeric user ID will.

Example 5

The system administrator removes "jack" and that user's files.
ed /etc/passwd
7530
/jack/
jack:%wcBUZjp.7W0CU:119:100::/b/jack:d
w
7490
q
rm -rf /b/jack
#

MOVING USERS

If space runs short on a file system, you may need to move a user
to a new file system. This requires the following steps.

1. Inform the user of his or her new home directory name.

2. Copy the user's files to their new location.
3. Update the user's password file entry.

4. Delete the user's old files.

5-7

User Support

Use the same system for assigning moved home directory names that
you use for assigning new home directory names.

The following command will create the file copies. The copies
will have the same modification dates as the originals; this is
desirable if the user uses make.

(cd old ; find . -depth -print | cpio -pdm new)
where

old is the full name of the old directory.

new is the full name of the new directory.

To remove the old user file?s, use rm:
rm -rf old

where

old is the full name of the old directory.

Example 6

The system administrator from the previous examples wants to move
"frank" from the root file system to file system mounted on /a.
The system administrator's input is in bold; the computer's
responses in normal type.

ed /etc/passwd
7000
/frank/
frank:UC0W7.pj ZUBcw:115:100::/frank:
sA /A /a/p
frank:UC0W7.pjZUBcw:115:100::/a/frank:
w
7000
q
(cd /frank; find . -depth -print | cpio -pdl /a/frank)
rm -r /frank
#

5-8

SECTION 6: BACKUPS AND RESTORES

Offline backup protects fixed disk files from the unexpected.
Backup provides copies of files and file systems against
accident, carelessness, and technical mishap.
Backups require three kinds of chores:

• Scheduling backups.

• Doing backups.

• Restoring files and file systems from backups.

SCHEDULING BACKUPS

The following sample schedule has the basic features of a good
backup schedule.

• Permanent total. Every fourth Friday, each file system
is completely copied. The copies are saved permanently.

• Temporary total. Every Friday, except on days when a
permanent volume backup is done, each file system is
completely copied. The copies are saved for four weeks. •

• Incremental. Every working day, except on days when
volume backups are done, all files created or modified
since the last volume backup are copied. The copies are
saved for a week.

Backups occur at the end of the working day.

Some of the features of this schedule are arbitrary, some are
not. Every four weeks may be too often for you to make permanent
backups; but if you increase the time between permanent total
backups, make the same increase in the time you keep temporary
total backups. Total backups need not occur on Fridays, but
should occur at the same time each week; backups need not occur
at the end of the working day, but the time they do occur should
not change from day to day.

6-1

Backups and Restores

The most important feature of this schedule is that it does not
permit the loss of more than a day's work due to the complete
loss of the fixed disk's files. It also protects files against
accidental removal: the longer a file is left on the fixed disk:,
the harder it is to lose it permanently.

DOING BACKUPS

The following steps are required to backup a file system:

1. Take the system to single-user mode, as described in
Section 2.

2. Prepare enough data diskettes using the procedures in
Section 4. Each diskette should have a minimal slice 0
and a slice 1 that takes up the remainder of the
diskette. Do not create a file system in slice 1.

3. Use the appropriate program to do the actual backup.

4. Print out a log of the files backed up.

5. If this is a total backup, register the time for the
benefit of this week's incremental backups.

There are two distinct backup procedures:

• The total backup. Each fixed disk file system is
separately copied onto a set of diskettes.

• An incremental backup. A list of files modified since
the last total backup is prepared and each file on the
list is copied to a offline archive.

Total Backups

The labelit and volcopy commands accomplish a total backup of a
single file system. To do a total backup, insert the first
backup diskette in the drive and execute the following command:

/etc/labelit /dev/rmtd Idir backup -n
/etc/volcopy -a Id i r /dev/rfp00£3 vname /dev/rmtd backup

where

d_ indicates the drive that holds the backup volume: 1
for diskette.

Idir is the local name of the directory on which the file
system is normally mounted or root for the root file

6-2

Backups and Restores

system. Examples: a file system normally mounted
on /a is a; a file system normally mounted on
/usr/src is src.

ŝ is a slice number of the file system that is to be
backed up. The number is hexadecimal (a through f
stand for "10" through "15").

vname is your name for the disk that holds the file
system.

To generate a log of files backed up, remount the file system and
use ff with Ipr:

/etc/mount /dev/fp00£ dir
/etc/ff -p dir -s -u /dev/fp00£ | lpr

where
dir is the name of the directory on which the file system

is normally mounted.

ŝ is the hexadecimal slice number.

The log will appear shortly on the system printer. Keep it in a
safe place.

In this and other backup commands, the root file system is
considered to be mounted on the / directory.

A file modification time can register the time of the total
backup.

> /TOTAL

Incremental Backups

An incremental backup copies some files from all fixed disk file
systems. This is different from a total backup, which copies all
files from specified file systems. The following steps
accomplish an incremental backup.

1. Remount the mountable file systems in their normal
place.

2. Generate a list of file modified since the last total
backup.

3. Copy every file in the list to an offline archive.

4. Print out the list.

6-3

Backups and Restores

The mountable file systems were unmounted when you took the
operating system to signle-user mode. To remount them, execute
the startup mounting procedure:

sh /etc/mouritable
Use the find command to generate a list of recently modified
files:

find / -newer /TOTAL -print | sort > /INCd
where

d is the number of days since the total backup.

Use the cpio command to copy the recently modified files to the
archive. Insert the first diskette in the drive and do:

cpio -ocvB < /INCd > /dev/rmt_t
where

d is the number of days since the total backup.

t is the type of backup medium; 1 for diskette.

When cpio uses up the diskette, it will print the follow message
Error 6: Can't write output
If you want to on, type device/file name when ready

The "can't write output" error is normal. Remove the diskette
and insert the next one in the set. (This will produce a
"possibly inconsistent" message, which you safely ignore.) Now
type the diskette device name:

/dev/rmt_t
where

t is the type of backup medium; 1 for diskette.

You will continue to get Error 6 messages until all the files ar
copied. Switch diskettes and retype the diskette device name
each time the message appears. Follow this procedure carefully;
if you accidentally terminate cpio, run it again and start over
with the first diskette.

To print out t.ie log of files backed up, do:
xargs Is -Id < /INCd | lpr

where

<3 is the number of days since the last total backup.

6-4

Backups and Restores

Unless you plan to go directly back to multiuser mode, be sure to
unmount the file systems again. The surest way to do this is to
run halt:

/etc/halt

The Backup Log * •

The log printout is different for a total backup and an
incremental backup. The total backup log lists four data on each
file backed up.

• The full file name. The first part of this name is the
name of the directory on which the file's file system is
mounted.

• The file's i-number. The i-number is unique for each
file on a file system, but not for each file name. If
two file names list the same i-number, they are two links
to one file.

• The file's size, in bytes.

• The login name of the file's owner.

The incremental log uses the format of the Is command. See ls(l)
in the Series 6000 Operating System Reference Manual.

RESTORES

A mishap can destroy an entire file system or just a few files.
Restoring an entire file system requires copying the file system
from the last total backup, then copying each of the subsequent
incremental backups. Restoring specific files simply means
copying those files from the latest backups that have them.

Restoring an Entire File System

The following steps completely restore a file system:

1. Take the operating system to single-user mode, as
described in Section 2.

2. Copy the file system from the total backup.

3. Mount the file system on its normal mount directory.

6-5

Backups and Restores

4. Retrieve the file system's files from the incremental
backups.

To restore a total backup, do:

/etc/volcopy Id ir -a /dev/rmtl backup /dev/rfp00s vname
where

Idlr is the local name of the directory on which the file
system is normally mounted or root for the root file
system. Examples: a file system normally mounted
on /a is a; a file system normally mounted on
/usr/src is src.

s. is the slice number of
backed up. The number
stand for "10" through

vname is your name for the d
system.

the file system that is to be
is hexadecimal (a through f
"15") .

sk that holds the file

Note the reversal in parameters from the command that backed up
the file system.

Restoring a file system this way completely rewrites file system
data structures, using the version on the backup disks. If the
file system was sick before the restore, volcopy cures it of its
current problems, but restores any problems it had at the time of
the total backup.

To completely restore the incrementally backed up files, restore
each incremental backup for the file system. Restore the oldest
backup first, but do not restore any backup made before the last
total backup.

This procedure restores an incremental backup. Insert the first
disk in the incremental set in the drive and type

cpio -iBcduvm 'dir/*1 < /dev/rmtj:
where

dir is the name of the directory on which the file; system
is normally mounted.

_t is the type of backup medium; 1 for diskette.

When cpio reads through the diskette, it will print the follow
message:

Error 6: Can't read input
If you want to on, type device/file name when ready

6-6

Backups and Restores

The "can't read input" error is normal. Remove the diskette and
insert the next one in the set. (This will produce a "possibly
inconsistent" message, which you safely ignore.) Now type the
diskette device name:

/dev/rmtjt
where

t. is the type of backup medium; 1 for diskette.

You will continue to get Error 6 messages until all the files are
copied. Switch diskettes and retype the diskette device name
each time the message appears. Follow this procedure carefully;
if you accidentally terminate cpio, run it again and start over
with the first diskette.

Restoring Specific Files

Backup disks made with volcopy require a different restoration
procedure than backup disks made with cpio. Having the system in
single user mode is not absolutely necessary, but will avoid
collisions with users. In any case, the file systems must be
mounted; in single user mode the simplest way to make sure that
all file systems are mounted is to type:

sh /etc/mnttable
The free command restores individual files from backup disks made
by volcopy.

/etc/frec /dev/rmtl i:name ...
where

i_ is the i-number for the file.

name is the name the file will have when it is restored.
This is normally the same name it had when it was
backed up, but need not be.

... indicate additional files for recovery. Each
argument takes the i:name form and is separated from
other parameters by spaces.

Free will prompt you to insert the backup disks.

Do all recoveries from a single set of backup disks with one free
run. If a large number of files are to be recovered, use this
procedure:

6-7

Backups and Restores

1. Use a text editor to create a file that lists all the
files to be recovered. Each line in the file must be of
the form

i;name

where _i and name mean the same thing they do in a free
parameter.

2. Run free:

/etc/frec -f file

where file is the name of the file created in step 1.
If a missing file or directory to be restored was in a directory
that is also missing, restore the parent directory also. If you
fail to do this, free will recreate the missing directory, but it
will be a new directory and may not have the same ownership and
modes as the original.

Restoring specific files from incremental backup is very similar
to restoring an entire file system from incremental backup.
Insert the first disk in the set in the drive and type:

cpio -iBcduvm list < /dev/rmt_t
where

list is a list of files to be recovered.

t indicates the backup medium; 1 stands for diskette.

If you need to recover a large number of specific files, create a
text file with all the file names in it, and use this form of the
cpio command instead of the; one above.

cpio -iBcduvm 'cat file' < /dev/rmt_t
where

file is the file that contains a list of files to be
recovered.

_t indicates the backup medium; 1 stands for diskette.

Note that the second form of the cpio command uses accents grave.
Do not confuse them with single quotes (*).

As with recovering the entire incremental backup, recovering
specific files will requires intervention each time cpio reads
through a diskette. See above.

6- 8

USER'S COM M ENTS

System 6300 Administrator’s Guide
S6000-50-1A HELP!
Help us help you! Please take the time to complete this form and send it to us. If you do, you may see some of
vour own contributions in the next manual you obtain from us.

• Does this manual provide the information you need? iZYes lZNo
— What is missing?

• Is the manual accurate? _JYes l̂ No
— What is incorrect? (Be specific.)

• Is the manual written clearly? ZiYes ^No
— What is unclear?

• What other comments can you make about this manual?

• What do you like about this manual?

• On a scale of 1 to 10, how do you rate this manual? Low |— |— |— |— |— |— |— |— |— | High
1 2 3 4 5 6 7 8 9 10

• Was this manual difficult to obtain? Z Yes INo

Please include your name and address if you would like a reply.

Name _ __________________________
Company _____ ___________________
Address__________________________

No postage required if mailed within the USA.

1

• What is your occupation?

G Programmer
' Systems Analyst
G Engineer

— Operator
~ Instructor
A Student

• How do you use this manual?

Manager
Customer Engineer
Other _________

□ Reference Manual
□ In a Class
□ Self Study

G Introduction to the Subject
G Introduction to the System
G Other______________

fold fold

FIRST CLASS
Permit No. 194
Cupertino,
California

BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States

Postage will be Paid by . ..
MOTOROLA, INC.
10700 North De Anza Blvd.
Cupertino, CA 95014

(

Attention: Technical Services, MS 42-1C8

fold fold

Staple Here

APPENDIX A: FILE SYSTEM CONCEPTS

ACCESS TO PERIPHERAL DEVICES

The opeating system provides a standard way for programs to use
peripheral devices. Each special file represents a particular way
to access a particular peripheral. A special file appears on the
file system (by convention, in /dev) and ordinary input/output
operations on special files have standard meanings standard for
the peripheral.
Special files are either block or character. Block special files
identify kernel routines that are most efficient with input/
output operations precisely 1024 bytes long. Character special
files identify kernel routines that don't prefer any particular
size operation. Some kinds of peripherals are represented by
both block special files and character special files.

The System 6300 operating system is normally set up with 32
special files for each disk drive, providing a block special file
and a character special file for each possible slice. The name
of a disk's special files takes the form

/dev/rfp0tp
where

r_ is missing on block special files and is r (for "raw")
on character special files.

t indicates the particular drive: 0 for fixed disk, 1 for
cartridge disk, 2 for diskette.

£ is the slice number in hexadecimal.

If a disk has fewer than 16 slices, it is an error to use the
special files for the nonexistent slices.

SECTORS AND BLOCKS

A block is the basic unit of disk input/output. There are two
kinds of block:

A—1

File System Concepts

• Physical sector. This is a physical entity 512 bytes
long. A disk drive's basic access to the disk reads or
writes a physical sector.

• Logical block. This is a conceptual entity 1024 bytes
long. An input/output operation involves 1 or more
(never a fraction) logical blocks. Using dcuble-size
logical blocks improves performance.

The utilities that initialize the disk, create the file* systems,
and report on disk sizes consider blocks synonymous with physical
sectors. But most programs, including fsck, consider the basic
unit to be the logical block. In the remainder of this appendix,
a "block" is a logical block.

DIRECTORIES

A directory is simply a file that only the operating system
kernel can write to. Each directory entry consists of the file
name and the file's i-number. A file can have more than one
directory entry (link). The number of directory entries that
refer to a file is that file's link count.

FILE SYSTEM FORMAT

File system is a storage area (normally a disk sliced with the
following structures.

• A block reserved for use in booting the operating system.

• The super block, containing data structures that describe
the file system.

• The i-1ist. This is a sequence of records, called i-
nodes, that describe the operating system files. The
size of the i-list is fixed when the file system is
created. Each i-node has an i-number that gives the i-
node's place in the i-list. All file status information
is in the i-node, as are the direct and indirect pointers
to the file's data blocks.

• The free list. This is a linked list of blocks not used
by any file. Each element of the free list is a block
that contains pointers to 50 additional blocks.

The program that creates these structures also creates a
directory that is the first file on the file system. This
directory is the root of the file system.

A-2

File System Concepts

Two structures in an i-node are important to the administrator:
the link count and the disk addresses.

The link count is an integer value. It is 0 when the i-node is
not in use. Creating a file sets the link count to 1. Each
additional directory entry (link) for the file increments the
link count; each removal of a directory entry decrements the link
count. If the link count returns to 0, the file's blocks are
returned to the free list -- the file is removed.

There are 13 disk address in the i-node. The first 10 point to
the first 10 blocks of the file (the direct blocks). If the file
is more than 10 blocks long, the 11th address points to a block
that has pointers to the next 256 blocks of the file (the
indirect blocks). If the file is more than 266 blocks long, the
12th address points to a block that points to up to 256 blocks
containing pointers to the next 65,536 blocks of the file (the
double-indirect blocks). If 65,802 blocks isn't enough, the 13th
address provides access to triple-indirect blocks.

These data structures can become inconsistent through incomplete
input/output operations, usually those caused by a power failure
or through halting the system while the operating system is
running full tilt. One of the administrator's jobs is to repair
file system data structures using the maintenance programs in
described in Section 4.

A mount places a file system on the file system hierarchy. A
mount specifies an empty directory and the special file that
holds the mountable file system. A mount tells the operating
system that any reference to the specified directory is really a
reference to the root directory of the file system. The
directory on which a file system is mounted itself be on a
mounted file system, but naturally the parent file system must be
mounted first.

The root file system (the file system whose root is /) is, in
effect, always mounted. It is the only file system that has no
parent file system.

The term file system actually has two uses, both of them the same
on the operating system as on UNIX System V. The documents refer
to a file system both as the organization imposed on a single
slice ("the file system mounted on /a") and the whole disk
hierarchy of files ("the operating system file system"). Context
should make clear which is meant.

CAUSES OF FILE SYSTEM CORRUPTION

File system corruption is caused by incomplete or garbled input/
output instructions. That can be the result of any of the
following:

A-3

File System Concepts

• Improper shutdown. In particular, all input,/output must
be complete before the processor is halted. To assure
completeness of input/output, kill all user processes and
perform two syncs. All these procedures are contained in
the shell script /etc/shutdown.

• Use of a corrupt file system. This causes further errors
because of the incorrect file system structures.

• Hardware failure.

FSCK AND THE FILE SYSTEM

Fsck detects errors in three areas:

• The superblock.

• The i-nodes.

• Directory data.

Fsck checks the following in the superblock:

• File system size and i-list size. The file system must
be bigger than the superblock plus the i-list. There
must not be more than 65,534 i-nodes

Fsck relies heavily on these two data. Except to check
that they are reasonable values, there is no way to
confirm their correctness. All other checks depend on
the correctness of the file system and i-list sizes.

• Free block list. The first block in the list is in the
superblock. Each block in this list contains pointers to
additional free blocks. Each block's count of pointed-to
blocks must not be less than 0 or greater than 50. Each
block pointer must not point past the end of the file
system or before the first data block. No block in the
free list can be in fsck's list of blocks claimed by the
i-nodes.

If fsck finds errors in the free list, or if it can't
account for every block in the file system, it will ask
for permission to reconstruct the free list. The new
free list will include all blocks not claimed by any i-
node. In the absence of any other serious errors,
rebuilding the free list is always safe. •

• Free block count. If this does not agree with the actual
number of free blocks, fsck asks permission to reset the
count.

A-4

File System Concepts

• Free i-node count. If this count is not the same as the
size of the i-list minus the number of i-nodes in use,
fsck asks for permission to reset the count.

Fsck checks the following fields in each i-node:

• Format and type. These fields specify the kind of file
(ordinary, directory, block special, character special)
and the i-node status (allocated or unallocated).
Invalid values indicate that bad data has been written
into the i-list. Fsck will prompt for permission to
clear the i-node; this is always unavoidable.

• Link count. This value must equal the number of
directories that actually list the i-node. An
inconsistency here indicates a failure to update a
directory or the i-node; this is always a minor error.

If the i-node's link count and the number of links are
nonequal and both are nonzero, fsck asks permission to
correct the i-node link count.

If the i-node link count is nonzero and the actually link
count is zero, fsck asks permission to provide a link in
the file system's lost+found directory.

• Duplicate blocks. These are blocks claimed by more than
one i-node. Fsck spots duplicate blocks as it builds its
list of allocated blocks; this condition requires a
second pass of the i-list to find the first i-node. Then
fsck tries to suggest which i-node should be cleared;
usually this is the one with the earlier modify time.

A large number of duplicate blocks probably indicates
that the operating system failed to physically write out
a block of pointers to indirect blocks. Fsck asks for
permission to clear both i-nodes.

• Bad blocks. These are blocks that cannot be found
because their addresses are invalid.

If an i-node has a large number of bad blocks, the
operating system probably failed to write out a block of
pointers to indirect blocks. Fsck asks for permission to
clear the i-node.

• File size. Two kinds of errors can appear here: block
allocation consistency and proper directory size.

Fsck computes the number of blocks required to
accommodate a file of the indicated size. If this value
doesn't match the number of block the file actual has
allocated, fsck prints a warning. Note that this
condition may be the result of a program seeking past the

A-5

File System Concepts

end of a file before writing to the file, a perfectly
valid action.

If the file is a directory, the file size should be a
multiple of 16. If it is not, fsck prints a warning but
takes no action.

Fsck looks for the following error in directory data:

• Reference to unallocated i-nodes. This probably is the
result of the operating system's failure to write out a
modified i-node. Fsck request permission to remove the
directory entry.

• Invalid i-number. This probably is the result of bad
data output to the directory. Fsck requests permission
to remove the directory entry.

• Incorrect . and .. entries: . must be the first entry in
the directory and have an i—number equal to the i—number
for the directory itself; .. must be the second entry in
the directory and be a link to the directory's parent
directory. If these entries are incorrect, fsck asks for
permission to correct them.

A-6

APPENDIX B: INIT AND GETTY

1. Introduction

In the UNIX* system environment, the initial process spawning is controlled and overseen by the
first process forked by the UNIX operating system as it comes up at boot time. This process is
known as init. One of the major jobs of init is to fork processes which will become the getty-login-
sh sequence. This sequence of processes allows users to login and takes care of setting up the initial
conditions on the outgoing terminal lines so that the speed and the other terminal related states are
correct. Init and these other processes also keep an accounting file /etc/wtmp that is available to
processes on the system. With these files it is possible to determine the state of each process that
init has spawned, and if it is a terminal line, who the current user is. One program in particular,
>v/io(l), provides a means of examining these files.

This document describes the capabilities of each program used in this new implementation, the
databases involved, and how to create and maintain these databases. In addition, the debugging
features designed into both init and getty are described in the event remedial action is required or
modifications are attempted.

2. Init

Init is driven by a database, its previous internal level, its current internal level, and events which
cause it to wake up.

2.1 The Database: /etc/inittab

Init's database, kept in the file /etc/inittab, consists of any number of separate entries, each with the
form:

id:level:type:process

id The id is a one to four letter identifier which is used by init internally to label entries in
its process table. It is also placed in the dynamic record file, /etc/utmp, and the history
file, /etc/wtmp. The id should be unique.

level The level specifies at which levels init should be concerned with this entry. Level is a
string of characters consisting of [0-6a-c], Anytime that init's internal level matches a
level specified by level, this entry is active. If init's internal level does not match any of
the levels specified, then init makes certain that the process is not running. If the level
field is empty it is equivalent to the string "0123456".

type The type specifies some further condition r /aired for or by the execution of an entry.

off The entry is not to run even if the levels match.

once The entry is to be run only if init is entering ä level. This means if init
has been awakened by powerfail or because a child died this entry will not
be activated. Only when a user signal requests a change of init's internal
state to a state which is different from its current state, and this new state
is one in which this entry should be active, will this entry be activated.

UNIX is a Trademark of Bell Telephone Laboratories. Incorporated.

Init and Getty

wait

respawn

boot

bootwait

Wait has all the characteristics of once, plus it causes init to wait until the
process spawned dies before reading anymore entries from its database.
This allows for initialization actions to be performed and completed before
allowing other processes which might be affected to start running It is
common in the OSS environment for shared memory segments to be
initialized this way and semaphores to be conditioned.
Respawn requests that this entry continue to run as long as init is running
in a level which is in this entry's level field. Most processes spawned by
init fall into this category. All getty processes are marked as respawn.
Whenever init detects the death of a process that was marked respawn, it
spawns a new process to take its place.
Boot entries have the execution behavior of once entries. They are started
only when init is switching to a numeric run state for the first time. Most
commonly boot entries have an empty level string, meaning that no matter
which level init switches to the first time, the boot entry will be run.
Should there be a more specific level string, for example "01", then the
boot entry would only be run if init switched to either the 0 or 1 run state
as its first numeric level.
Bootwait entries have the execution behavior of wait entries and they, like
boot entries, are only run as init switches to a numeric level for the first
time.

power Power entries act like once entries and are activated if init receives a
SIGPWR signal (19) and is in a state which matches the active states for
the entry.

powerwait Powerwait entries act like wait entries and are activated if init receives a
SIGPWR signal and is in a state which matches the active states for the
entry.

initdefault Initdefault is a non-standard entry in that it does not specify some process
to be spawned. Instead it only specifies which level init is to go to initially
when it is coming up at boot time. This allows the system to be rebooted
without an operator having to make entries at the system console if so
desired. If there is no initdefault entry, then init will ask at the system
console, /dev/syscon, for the initial run state. In addition to specifying the
numbered states, the single-user state [s] may also be specified.

process The process field is the action that init will ask a sh to perform whenever the entry is
activated. The string in the process field is given a prefix of "exec " so that each entry
will only generate one process initially. Init then forks and execs

sh -c "exec process"

This means that the process string can take full advantage of all sh syntax. The only
peculiarities arise from the string "exec ", which was prefixed to the string, and because
initially there is no standard input, output, or error output. The addition of "exec " to
the string means that if the user wants to have a single entry generate more than one
process, for example making a list of the people on the system at the time of a powerfai!
and mailing it to root by the command "who | mail root", it would have to be put in as

pf::powerwait:sh -c "who | mail root"

to work. If it was put in simply as "wno | mail root", it would be executed as "exec who j
mail root", and only the who process would be created before the sh disappeared. The

R--2

Init and Getty

lack of standard input and output channels must be addressed by explicitly specifying
them. An example is the blog program that many OSS s run as a bootwait entry as the
system comes up. Since it requires the operator to supply input, it appears as

bl::bootwait:/etc/blog </dev/syscon >/dev/syscon 2>&1

in /etc/inittab.

2.2 Levels

A level is one of seven numeric levels, denoted 0, 1, 2, 3, 4, 5, or 6, three temporary levels, denoted
a, b, or c, or the single-user level, s. Normally init runs in a numeric level. Precisely how a
particular level is used depends' entirely on the database and the system administrator. The
temporary levels allow certain entries to be started on demand without affecting any processes that
were started at a particular level. The temporary levels immediately revert to the previous numeric
level once all entries in the database have been scanned to see if they should be started at the
temporary level. When an entry is started by a switch to a temporary level, it becomes independent
of future level changes by init, except a change to the single-user level. The only way to kill a
process that was started as a respawnable demand process, without going to the single-user level, is
to modify the database, declaring the entry to be off.

The single-user level is the one level independent of the database. For this reason it is not a level in
the normal sense. In the single-user level init spawns off a su process on the system console, and
that is the only process that it maintains while at the single-user level. The single-user level can be
entered at two different places in init. If it is entered at boot time it allows the operator to look
over the file systems without having init attempt to do any file I/O, which might cause further
problems. Init will not attempt to recreate /etc/utmp or access /etc/wtmp until after it has left this
initial single-user level. If the single-user level is entered at any other time, init does do the
bookkeepping in the record files.

The system administrator requests init to change levels by running a secondary copy of init itself,
/etc/in it is linked to /bin/telinit, and it is usually through the telinit name that this is accomplished.
Init can only be run by root or a privileged group. Whenever init starts running and finds that its
process id is not 1, it assumes that it is a user initiated copy, which is supposed to send a signal to
the real init. The usage is:

telinit [0123456sSqQabcl
and the single character argument specifies the signal to be sent to init. If the request is to switch
to the single-user level, ‘S’ or ‘s’, then init also relinks /dev/syscon to the terminal originating the
request so that it becomes the virtual system console, thus insuring that future messages from init
will be directed to the terminal where the operator is located. When it does this relinking it also
sends a message to /dev/systty, saying that the console is being relinked to some other terminal so
that there is a record of the fact at the physical system console.

2.3 Waking Events

There are four events which will wake init: boot, a powerfail, death of a child process, or a user
signal.
boot Init operates in the boot state until it has entered a numeric state for the first time.

It is not possible for init to reenter the boot state a second time. Commands labeled
boot and bootwait are executed when changing to a numeri.: state for the first time,
if the levels match.

powerfail Any time power fails, the operating system sends a SIGPWR signal to all processes.
Init will execute commands with types of power and powerfail.

child death Any time a child process of init dies, init receives a SIGCLD signal (18). The dead
child process may be one of two types, a direct decendent of init, or a process whose
own parent process died before it did. The parent of a process automatically

B-3

Init and Getty

becomes in i t , if its real parent should die before it does.. I n i t determines
immediately if the defunct process was one of its own children or an o r p h a n . If it
was one o f its own, it performs the necessary bookkeepping on its internal process
table to note that the process died. If m i t was busy at the time it received the
SIGCLD signal, it then returns to complete whatever action it was performing. If
i n i t was asleep, it then scans its database to determine if any other actions should be
taken, such as respawning the process.

user signal I n i t catches all signals that it is possible for a process to catch. Most signals have
specific meaning to i n i t, usually requesting it to change its current state in some
way. There is one signal, the ‘Q’ signal, which is used just to waken in i t arid cause
it to scan its database. This is often issued after a change has been made to the
database so that in i t will put the new; change into effect immediately. If this was
not done, the change would not become effective until in i t had wakened for some
other reason. Other than during the initialization phase, it is solely with signals
that the system administrator controls the internal level at which in i t is running.

2.4 Normal Operational Behavior
I n i t scans /etc/inittab once or twice for each event which wakes it up. If it is in the h o o t or
p o w e r f a i l state, it scans the table once, looking for entries of these types, and then switches itself
back to a n o r m a l state and scans again.
Its first action in the normal state is to scan /etc/inittab and remove all processes which are
currently active and should not be at the current level. In i t employs one of two methods when
killing its child processes depending on whether it is changing levels or net. If in i t is not changing
levels, it forks a child process for each child that needs to be killed, and has that child precess send
the signals to the process targeted for extinction. Killing a process involves sending it two signals.
First a S1GTERM signal (15), is sent so that it can clean up after itself and die gracefully . After
waiting the amount of time defined as TWARN (the default value is 20 seconds), a SIGKILL signal
(9), is sent, which guarantees that the child will die. if it hasn't done so already. Forking a child to
do the killing has the advantage that the main in i t process need not wait for all the processes it is
killing to die before beginning the spawning of new processes. The disadvantage is that if many
processes were being killed this way, there would be a very real chance of the operating system
process table filling up, which causes the f o r k system cal! to fail. This in turn would upset in i t at
the very least and cause it to have to wait anyway. For this reason, when i n i t is changing .evels, it
assumes that it may have many processes to terminate and so it sends the signals itself, waits for the
required 20 seconds, and sends the final termination signals, before continuing. Once the old
processes have been removed, in i t makes an entry in its accounting files if it is changing levels. At
this point it either enters the single-user level or rescans its database looking for processes that need
to be spawned at the current level and in the current state. In the normal state of operation i n n is
looking for entries whose types are o f f , o n c e , w a i t , or r e s p a w n .

With the completion of the scan of the database in the normal state, in i t is ready to wait for another
event. To ensure that a user w ho just logged off has had his or her files updated to the disk and to
insure that the bookkeepping is also updated to the disk, in i t perform; a s y n c system call and then
pauses until it is awakened again for some new reason.
If in i t finds that it is being requested to sv,itch to the single-user level when it wakens from the
pause, it saves all the to c t l information about the system console in the file l e tc f io c t i . s y sc o r . before
proceeding to remove all its other children. It does this so that if the system is being taken down,
the new in i t process wi Know how to set up the system console to talk to it. It is a convenient
feature to not have to change the baud rate a.nd terminal specifications if you are rebooting a system
remotely. Because in i t preserves the ioctl state of the system console across system reboots,
messages coming out during reboots are legible to the operator, no matter where the system console
happens to be linked.

B - 4

Init and Getty

All written messages from i n i t are sent to / d e v / s y s c o n . In reality, i n i t itself does not send the
message, but forks a child to send the message. This is because i n i t must never open a terminal line
or it will be assigned a controlling terminal Since i n i t has no controlling terminal, it can spawn
g e t t y processes which initially have no controlling terminal. When such a g e t t y opens its assigned
terminal, the terminal becomes the controlling terminal for it and its children. In the one instance
i n i t needs input from the system administrator during the initialization phase. In this case, the child
process which is asking for the run level opens / d e v / s y s t t y , which is always the physical system
console, before opening / d e v / s y s c o n , the virtual system console. This causes /dev/systty to be the
child’s controlling terminal. Thus, should the computer be coming up, / d e v / s y s c o n not be linked to
/ d e v / s y s t t y , and / d e v / s y s c o n be down (perhaps because the datalink went down during the reboot), it
is possible for a person at / d e v / s y s t t y to regain control by typing a <D EL> character. This causes
a SIGINT signal (2) to be sent to the child process, which will relink / d e v / s y s t t y to / d e v / s y s c o n and
ask again for a run level, this time at the physical system console.

2.5 Setting Tunable Variables

I n i t has several tunable timing constants that can be adjusted when it is compiled.

SLEEPTIME I n i t guarantees that it will awaken occasionally even if the system is quite inactive.
It does this by setting an alarm timer before going to sleep. The length of that
timer is defined by SLEEPTIME, and is initially five minutes. Since i n i t does a
s y n c system call each time it wakes, this guarantees that there will be a sync at
least once every SLEEPTIME seconds.

TWARN TWARN is the number of seconds between the SIGTERM signal and the S1GKILL
signal, when i n n is removing processes. It should be set long enough so that all
processes who want to, can die gracefully on receipt of the SIGTERM signal It is
initially 20 seconds.

NPROC This is the size of the internal process table i n i t uses to keep track o f its child
processes. It currently defaults to 100, though it can be passed in during
compilation with the -D option. I recommend you set it to the size of the system’s
process table.

WARNFREQUENCY To prevent i n i t from flooding the system console with error messages when it
own internal process table is full, i n i t only generates an error message once each
WARNFREQUENCY times that it is unable to find a slot. Proper sizing of the
internal process table should prevent this condition from ever occurring.

I n i t cannot directly tell if there is something wrong when it tries to fork and exec a command. It
assumes that there is something wrong if it has to respawn a particular entry too often. There are
three related defines controlling this feature. SPAWN_L1MIT. SPAWNJNTERVAL, and INHIBIT.
SPAWN_LIMIT SPAWNJLIMIT is the number of times a process may respawn in a certain interval

of time before further respawrs are inhibited.
SPAWNJNTERVAL SPA'A '■ •* " "A • ;r : r v of time in seconds that SPA WNJIVsi

number c " rcspawn;, c.usr occur to ca--se inhibition of an entry. If a ; entry should
respawn too often, a message is generated on the system console indicating which
line in /etc/inittab is at fault

INHIBIT INHIBIT is the number of seconds of inhibition that will be applied to a process
which has respawned too often.

SPAWN JJMIT and SPAWNJNTERVAL should be set so that it is possible for init to respawn a
process fast enough to cause inhibition, but not so low that it is possible to have a iega! death of a
process happen so rapidly that it is inhibited. The current limits are ten respawns in two tr laues.
The real problem is that when something like getty disappears, init becomes active trying to res pawn
many processes and never gets to respawn a single process often enough to set off the alarm. The
INHIBIT limit is five minutes. Once an entry is inhibited, it is possible to restart it scones than

i t .

Init and Getty

INHIBIT seconds later by sending in i t the ‘Q’ signal. The normal problem is a typo in /etc /in ittab ,
and the normal procedure is to correct the typo and then do a "telinit Q" to cause in i t to attempt the
spawning entry again.
2.6 Debugging Features

I n i t has some debugging features built in. There are three conditional debug flags, which allow
various flavors of debugging to be enabled.
UDEBUG This flag causes in i t to be compiled in a form that can be run as a normal user process

instead of as process 1. This allows a person to use s d b on it in a normal fashion and to
not disturb the rest of the system while debugging or modifications are made and tested.
There are differences in this user version of in i t . It assumes that utmp, wtmp, inittab.
ioctl.syscon, and debug are all in the local directory instead of /etc. It also writes to
/dev/sysconx and /dew'systtyx. instead of /de>/syseon and /dev/svstty It does not
process all signals in the same fashion that the real in i t does. Signals SIGINT, SIGQUTT,
SIGIOT, and SIGTERM, which correspond to the signals to change to levels. 2, 3, 4. and
ignore are left in their default modes, so that it is possible to terminate the user "init"
from a terminal. Signals SIGL'SRI and SIGUSR2, which are normally ignored by the
real in i t are set to cause an a b o r t for capturing cores of the debug in i t . The UDEBUG
flag automatically sets the DEBUG flag, meaning that the first level of debug will be
generated by the in i t and written into the file d e b u g in the current directory.

DEBUG This flag causes a version of in i t to be produced that can be run as the real m i t, but
which generates diagnostic messages about process removal, level changes, and
accounting and writes them in the file /etc/debug.

DEBUG 1 DEBUG 1 causes the diagnostic output generated by DEBUG 1 to be increased
substantially Specifically it produces messages about each process being spawned from
ini t tab.

3. Getty
G e t t \ is responsible for making appropriate setting of terminal characteristics and baud rate so that
a user can communicate with the UNIX system. The most important of those features is the choice
of a baud rate so that input and output make sense. In the old version of g e t t y . there was a
hardwired table in g e t t y which controlled the search for the correct speed. The starting point in the
search is specified by the arguments passed to g e t t y . If there was some reason to change the baud
rate search, g e t t y had to be modified itself, and recompiled. In the new g e t t y, the search is
controlled by an ascii file, /etc/gettydefs, and changing or augmenting the search behavior only
requires that the file be edited.
3.1 Usage

G e t t y is normally started from /etc/inittab by in i t . G e t t y takes from one to six arguments:
getty !-hi !-t timel line Ispeed label] [term type] [line disci
— h This switch tells g e t t y that it should not drop the Data Terminal Ready signal

before resetting the line. This switch currently only works in the CB-UNTX system
environment. Normally g e t t y ensures that DTR goes down so that connections to
the Develcon dataswitch will be disconnected everytime. The El 3 protocol requires
that a dataset see DTR drop and be reasserted before answering another ca 1. It is
possible for g e t t y to come back on a line before all the processes spun off by the
previous user have died and closed their connections to the line. In this case, DTR
would not drop if g e t t y didn’t insure it This switch is required for programs like
c l , which initiate a call from the computer to a user (instead of the user calling the
computer), putting a g e t t y on the resulting connected line. Without the -h switch,
the g e t t y would immediately disconnect the user again.

B-6

Init and Getty

-t This switch specifies that the g e t t y should die after the specified number of seconds
if nothing is typed. This prevents datasets from being tied up if someone isn’t
actually logging in after they’ve gotten connected.

line L i n e is the name of the terminal line, which g e t t y is to open and set up. It is
minus /dev/ since g e t t y does a c h d i r to the /dev directory and expects to find it in
that directory.

speedjabel The s p e e d l a b e l is usually something like "1200" or "9600", which appears to
directly specify a baud rate, but in reality can be anything since it really is a label
of an entry in /etc/gettydefs for which g e t t y looks. It specifies the entry g e t t y will
start with when trying to find an appropriate speed to for the terminal. It defaults
to "300" if there is none given.

term_type The t e r m t y p e specifies which terminal discipline is to be used. If this is specified,
the virtual terminal protocol becomes immediately effective on the line. Typical
types might be "vtlOO", "hp45", or "tek". Whatever type is specified, it must be a
terminal handler that has been compiled into the operating system to be effective.
This argument is given for lines that are hardwired to the computer.

line_disc The l i n e d i s c i p l i n e is the last thing that can be specified. The most common is
"hair or "half duplex", when there is a half duplex terminal coming into the
computer. This causes the appropriate line discipline to be associated with the
line.

3.2 The Database: /etc/gettydefs
Whenever g e t t y is invoked it references its database to determine certain information about how to
set up the line. Each entry in the database has a fixed format.
label# initial flags # final flags # login msg #nextlabel
Gerry .matches its s p e e d J a b e l argument against the "label" field. It stops searching when it finds an
entry with a label that matches. The entry specifies how the terminal is supposed to be setup during
the initial phase, the phase when g e t t y prints out the "login msg" and reads in the user’s login name,
and the final phase, when g e t t y exec’s the l o g i n program to continue to the l o g i n process. The baud
rate is specified as an i o c t l flag in both the initial and final flags fields.
The flags themselves are strings matching the define variables found in /usr/include/termio.h. It
should be noted that these flags may be partially or totally overridden if there is a terminal type
specified. When a terminal type is enabled, it resets various flags to suitable conditions
automatically.
During the initial phase, g e t t y always puts the terminal into a non-echoing raw mode. This allows it
to take each character as it comes in and infer certain things about the terminal. For instance, if it
sees upper case alphabetic characters, but no lower case, it then assumes that the terminal is upper
case only and sets it up in the final configuration so that the upper to lower case conversions are
made. Also if the speed is wrong it will get a <NULL> character (or <ESC><NULL>
character if a terminal type is set) if there is a framing or parity error. This means that the speed
is wrong and another speed should be tried.
The typical "initial flags" would only include the speed, for example "B1200 CS7 PARENB HUPCL".
"CS7 PARENB" sets the line for 7 bits, even parity characters. "HUPCL sets the line to hangup on
close. Typical final flags would be "B1200 SANE IXANY TAB3". "SANE" is not a real flag found in
the header file, but a collection of i o c t l flags used for normal terminal behavior. "IXANY" permits
the use of any character to restart output. "TAB3" says to expand tabs on output.
The "login msg" field is the message that g e t t y will print before waiting for the user to enter his or
her login name. It may contain anything desired and g e t t y understands normal special character
conventions so that "\n" means <lf> as does "\012". On systems that are not using the terminal

B—7

In it and Getty

handlers and where lines are hardwired, people have been known to make up special entries for
different terminal types, for example:

vt 100-2400# B240Ü # B2400 SANE TAB? 7953DG1N #vt 100-1200
33[H 33[2JAMACCS System B

where the “login msg" contains the special vtlOO characters required to clear the screen. Notice also
that the entry can take more than one line. Entries are delimited by a blank line. Lines that begin
with a pound sign (#) are ignored so that comments may be acted to the file.

The "next latte!" field tells g e t t y which entry to try next :f it get-, an indication that the sneed is
wrong In the above example it would look for an er-tr v nh he name "vt 100-! 200" if this one
wasn't at the p- oner speed. Normal!» the entr-c» dor': ■ ■ n a n tenn tut! tpecinc information, and
the various speed choices are linked together in a closed mroic of same sort For example it is
common to have 9600 -> 4800 -> 2400 -> 1200 -> 300 -> 9600. In this way, no matter where
you enter the circle, sooner or later you should be able tc get to the speed that is correct for your
terminal.

To enable the system administrator to check the database for readability by g e t t y , there is a
checking mode m which g e t t y can be run.

getty -c getiydefs_litce_file

When g e t t y is run in this mode, it scans the entire input rile specified and deciphers each entry,
printing out the resulting modes that it will set. If it finds a line that it cannot read, it prints an
appropriate message, which allows the administrator to correct the entry. By this mechanism it is
possible to avoid installing a misformatted gettydefs file and have it tie up the system.

Also as a safety measure, should g e t t y be unable to find /etc/gettydefs. it does have a one fallback
entry built in. Should g e t t y d e f s disappear for some reason, a user could still log in at 300 baud,
since this is the default setting in the built-in entry .

3.3 Operational Behavior

As has been shown earlier, g e t t y sets up a line as specified by an entry from /etc/gettydefs and from
any additional arguments, outputs the "login msg" field, and then tries to read the user's login name
from the line. During the input of the login name, getty checks for speed mismatches that the
operating system will report as a < M 'L L > character if such a mismatch occurs, g e t t y tries the
next speed specified by the current entry, and repeats the whole sequence. Also while reading in the
login name, g e t i y makes a guess whether the terminal is upper case only. If it sees some upper case
characters, but no lower case characters, it assumes that the terminal is upper case only and sets the
io c t l state of the line to translate upper case letters to lower case on input and lower to upper case
on output.

An addition has been made to g e t t y and l o g i n , which allows for environmental variables to be set up
at the time a user enters his or her login name. This allows users to control the behavior of their
.p r o f i l e at the time they spec.fy their login names. G e t t y executes the l o g i n program by passing all
the separate words given it in response to the login message as arguments to l o g i n if for example,
the user responded with "jIs F, then g e t t y would execute "login jls F as its final action. See the
lo g in section to see how this modifies the commands behavior.

4. login

E'-fife c i ' y e f i v . l o g i n did not require a great dftb of nodihc.uiun The only required -./hange
was tit o -,Fuiiü w-ue to /etc/utmp and /etc/wtmp m the new format. This change was minor.
At the t"" lb:- charge was made, a change visible to bit usm •» as also made: the ability to add to
the t-o This change was added as a co:ivcoo.-:-.: It allows the user to modify the
boh.-. : ho to her p r o f i l e by having e in re n n e -’! r . rr- bks set which the p r o f i l e script knows
ab-::,!,;:

Init and Getty

The basic change was that any additional words provided in response to the basic "login:" query are
placed in the environment of the sh executed by login as its last act in the following way. If the
word does not contain an a shell variable of the type "Ln~word" is created, "n" is a number
starting at 0 and for each new environment variable it is incremented by one. If the word does
contain an w , then the whole string is passed in the environment unchanged. For example,
TERM™2621" would be placed in the environment unchanged and the shell variable STERM
would be defined as "2621".

To preserve security, there are a couple of exceptions. It is not possible to change the shell variables
SPATH or SSHELL by this mechanism. That means that a restricted shell will remain restricted
and that the user cannot gain access to commands that might allow him to avoid the usual
restrictions of rsh.

5. who

IVhoil) is the program that reads the history files maintained by init, getty, and login. Since the
format of these files was changed substantially, it was necessary to change who. In the process
some additional features where added to who so that it would convey more useful information to
users. The standard usage for who is:

who 1-uTlpdbrtasl [[am il or [utmpjikejile]]

u This returns a listing of useful information for all the users. This information includes login
time, activity, pid and comment from inittab file.

T Report the writability state of the terminal for that entry.

1 Report all entries that are living getty processes.

p Report all entries for living children of init excluding getty and decendents of getty.

d Report all the entries for processes that have died.

b Report the boot time entries that init has made. In /etc/utmp there is only one such entry.

r Report the run level entries that init has made. In /etc/utmp there is only one such entry, the
current run level entry. The current state, the number of times in that state, and the previous
state are also reported.

t Report the change of date entries that have been made by the dateil) command when the
clock was reset. These are required in the history file, /etc/wtmp, if accounting is to be done.

a Report all the entries.

s Report information for all users in short form, this is the default.
If no file is specified, then /etc/utmp is assumed. The who am i sequence returns the entry for the
user typing the command.

There are various output formats for the different kinds of entry. In particular, entries for users and
getty processes list the amount of time since output to the terminal occurred. This is often of
interest since it shows other users whether someone is actually working at a terminal or not. The
comment field at the end of the entry from /etc/inittab is also included, which can conveniently be
set up to be the location of the terminal. Dead entries report the exit status for the process that
died. This can be of use, since it shows whether the process terminated abnormally or not.

6. Other Affected Programs

All programs accessing the accounting files were affected by the new utmp structure. In particular,
dateil) makes two entries indicating the old time and new time, whenever it changes the system
clock. Also affected are the commands in /usr/lib/acct, which produces reports based on the
information in /etc/wtmp.

B-9

Init and Getty

7. utmp format
A major change in going to the new in i t was that it uses a different format in writing out its records
in /etc/utmp and /etc/wtmp. The new format is:
/* <sys/types.h> must be included. */

#define UTMP FILE "/etc/utmp"
#define WTMP_F1LE "/etc/wtmp”
#define ut name ut_user

struct utmp
{

char ut_user[8] ;
char ut_id[4] ;
char utJine[12] ;
short ut_pid ;
short ut_type ;
struct exit status

/* User login name */
/* /etc/lines id(usually line #) */

/* device name (console, lnxx) */
/* process id */

/* type of entry */

short ejermination ; /* Process termination status */
short e exit ; /* Process exit status */

ut_exit ; /* The exit status of a process
* marked as DEAD PROCESS.
•/

timej utjime ; /* time entry was made */

/* Definitions for ut_type */

#define EMPTY 0
#define RUNJLVL
#define BOOT TIME 2
#define OLD TIME 3
#define NEW TIME 4
#define INIT_PROCESS 5
#define LOGIN PROCESS
#define USER PROCESS7
#define DEAD PROCESS
#define ACCOUNTING 9

1

/* Process spawned by "init" */
6 /* A "getty" process waiting for login */
/* A user process * /
8

#define UTMAXTYPE ACCOUNTING /* Largest legal value of ut_type */

/* Special strings or formats used in the "utjine" field when */
/* accounting for something other than a process.
/* No string for the utjine field can be more than 11 chars +
/* a NULL in length.

#define RUNLVL MSG "run-level %c"
#define BOOT MSG "system boot"
#define OTIME MSG "old time"
#define NTIME MSG "new time"
The utjype field completely identifies the type of entry, the u tjd field only contains the "id" as
found in the "id" field of /etc/inittab. The utjine field was expanded and freed so that it can

V
V
V

Init and Getty

contain things like console or other things that are not of the form /dev/Iiur*. Finally u tjx i t
contains the exit status of processes that init has spawned and that have subsequently died.

B - l 1

APPENDIX C: SYSTEM ACCOUNTING

The UNIX System Accounting provides methods to collect per-process resource utilization data, record con­
nect sessions, monitor disk utilization, and charge fees to specific logins. A set of C language programs and shell
procedures is provided to reduce this accounting data into summary files and reports. This section describes
the structure, implementation, and management of this accounting system, as well as a discussion of the reports
generated and the meaning of the columnar data.

GENERAL

The following list is a synopsis of the actions of the accounting system:

• At process termination, the UNIX system kernel writes one record per process in /usr/adm /pacct in
the form of acct.h. (See Attachment 7.1 for a description of data files.)

• The login and init programs record connect sessions by writing records into /etc/wtmp. Date changes,
reboots, and shutdowns are also recorded in this file.

• The disk utilization program acctdusg breaks down disk usage by login.

• Fees for file restores, etc., can be charged to specific logins with the chargefee shell procedure.

• Each day the runacct shell procedure is executed via cron to reduce accounting data and produce sum­
mary files and reports. (See Attachment 7.2 for a sample report output.)

• The monacct procedure can be executed on a monthly or fiscal period basis. It saves and restarts sum­
mary files, generates a report, and cleans up the sum directory. These saved summary files could be used
to charge users for UNIX system usage.

FILES A N D DIRECTORIES

The /usr/lib/acct directory contains all of the C language programs and shell procedures necessary to run
the accounting system. The adm login (currently user ID of four) is used by the accounting system and has the
directory structure shown in Fig. 7.1.

/usr/adm
acct

nite H— i
sum fiscal

Fig. 7.1— Directory Structure of the "adm" Login

The /usr/adm directory contains the active data collection files. (For a complete explanation of the files
used by the accounting system, see Attachment 7.3.) The nite directory contains files that are reused daily by
the runacct procedure. The sum directory contains the cumulative summary files updated by runacct. The
fiscal directory contains periodic summary files created by monacct.

C - l

System Accounting

DAILY OPERATION

When the UNIX system is switched into multiuser mode, /usr/lib/acct/startup is executed which does the
following:

1. The acctwtm p program adds a “boot” record to /usr/adm/wtmp. This record is signified be using the
system name as the login name in the wtmp record.

2. Process accounting is started via turnacct. Turnacct on executes the accton program with the argu­
ment /usr/adm/pacct.

3. The remove shell procedure is executed to clean up the saved pacct and wtmp files left in the sum direc­
tory by runacct.

The ckpacct procedure is run via cron every hour of the day to check the size of / usr/adm/pacct. If the
file grows past 1000 blocks (default), turnacct sw itch is executed. While ckpacct is not absolutely necessary,
the advantage of having several smaller pacct files becomes apparent when trying to restart runacct after a
failure processing these records.

The chargefee program can be used to bill users for file restores, etc. It adds records to / usr/adm■ fee
which are picked up and processed by the next execution of runacct and merged into the total accounting
records.

Runacct is executed via cron each night. It processes the active accounting files, /usr/adm. pacct,
/usr/adm/wtmp, /usr/adm/acct/nite/disktacct, and /usr/adm /fee. It produces command summaries and usage
summaries by login.

W’hen the system is shut down using shutdown, the shutacct shell procedure is executed. It writes a shut­
down reason record into usradm /w tm p and turns process accounting off.

After the first reboot each morning, the computer operator should execute / usr/lib/acct/prdaily to print
the previous day’s accounting report.

SETTING UP THE ACCOUNTING SYSTEM

In order to automate the operation of this accounting system, several things need to be done:

1. If not already present, add this line to the /e tc/rc file in the state 2 section:

/bin, su -adm -c /usr/lib/acet/startup

2. If not already present, add this line to /etc/shutdown to turn off the accounting before the system is
brought down:

/ usr/lib/'acct/shutacct

3. For most installations, the following three entries should be made in ■ usr lib/crontab so that cron will
automatically run the daily accounting.

"0 4 * * 1-6 /bin/su -adm —c " /usr/lib/acct/runacct
2> /usr/adm/acct/nite/£d21og"

0 2 * * 4 /usr/lib/acct/dodisk
5 * * * * /bin/su -adm -c " /usr/lib/acct/ckpacct"

Note that dodisk is invoked with superuser privileges of root so that directory searching is not road
blocked.

C--2

System Accounting

4. To facilitate monthly merging of accounting data, the following entry in crontab will allow monacct to
clean up all daily reports and daily total accounting files and deposit one monthly total report and one
monthly total accounting file in the fiscal directory.

15 5 1 * * /b in /su -ad m -c /usr/lib/acct/monacct

The above entry takes advantage of the default action of monacct that uses the current month’s date
as the suffix for the file names. Notice that the entry is executed at such a time as to allow runacct suffi­
cient time to complete. This will, on the first day of each month, create monthly accounting files with
the entire month’s data.

5. The PATH shell variable should be set in / usr/adm/.profile to:

PATH=/usr/lib/acct:/bin:/usr/bin

RUNACCT

Runacct is the main daily accounting shell procedure. It is normally initiated via cron during nonprime
time hours. Runacct processes connect, fee, disk, and process accounting files. It also prepares daily and cumu­
lative summary files for use by prdaily or for billing purposes. The following files produced by runacct are
of particular interest:

nite/lineuse Produced by acctcon, which reads the wtmp file, and produces usage statistics for each
terminal line on the system. This report is especially useful for detecting bad lines. If the
ratio between the number of logoffs to logins exceeds about 3/1, there is a good possibility
that the line is failing.

nite/dayacct

sum/tacct

sum/daycms

sum/cms

This file is the total accounting file for the previous day in tacct.h format.

This file is the accumulation of each day’s nite/daytacct which can be used for billing pur­
poses. It is restarted each month or fiscal period by the monacct procedure.

Produced by the acctcm s program, it contains the daily command summary. The ASCII
version of this file is nite/daycms.

The accumulation of each day’s command summaries. It is restarted by the execution of
monacct. The ASCII version is nite/cms.

sum/loginlog Produced by the iastlogin shell procedure, it maintains a record of the last time each login
was used.

sum/rprt.MMDD Each execution of runacct saves a copy of the output of prdaily.

Runacct takes care not to damage files in the event of errors. A series of protection mechanisms are used
that attempt to recognize an error, provide intelligent diagnostics, and terminate processing in such a way that
runacct can be restarted with minimal intervention. It records its progress by writing descriptive messages
into the file active. (Files used by runacct are assumed to be in the nite directory unless otherwise noted.) All
diagnostics output during the execution of runacct is written into fd ‘21og. To prevent multiple invocations, in
the event of two crons or other problems, runacct will complain if the files lock and lockl exist when invoked.
The lastdate file contains the month and day runacct was last invoked and is used to prevent more than om
execution per day. If runacct detects an error, a message is written to / dev/console, mail is sent to root and
adm, the locks are removed, diagnostic files are saved, and execution is terminated.

In order to allow runacct to be restartable, processing is broken down into separate reentrant states. This
is accomplished by using a case statement inside an endless w hile loop. Each state is one case of the case

C-3

System Accounting

statement. A file is used to remember the last state completed. When each state completes, s tatefile is updated
to reflect the next state. In the next loop through the while, statefile is read and the case falls through to the
next state. When runacct reaches the CLEANUP state, it removes the locks and terminates. States are exe­
cuted as follows:

SETUP The command turnacct sw itch is executed. The process accounting files,
/usr/adm/pacct?, are moved to /usr/adm/Spacct?.MMDD. The / usr/adm/wtmp file is
moved to /usr/adm/acct/nite/wtmp.M M DD with the current time added on the end.

WTMPFIX The wtmp file in the mte directory is checked for correctness by the wtm pfix program.
Some date changes will cause acctcon l to fail, so wtm pfix attempts to adjust the time
stamps in the wtmp file if a date change record appears.

CONNECT1 Connect session records are written to ctm pm the form of ctmp.h. The lineuse file is cre­
ated, and the reboots file is created showing all of the boot records found in the wtmpiWe.

CONNECT2 Ctmp is converted to ctacct.MMDD which are connect accounting records. (Accounting
records are in tacct.h format.)

PROCESS The acctprcl and acctprc2 programs are used to convert the process accounting files,
/ usr/adm/Spacct ?.MMDD, into total accounting records in ptacct°.MMDD. The Spacct
and ptacct files are correlated by number so that if runacct fails, the unnecessary
reprocessing of Spacct files will not occur. One precaution should be noted; when restarting
runacct in this state, remove the last ptacct file because it will not be complete.

MERGE Merge the process accounting records with the connect accounting records to form
daytacct.

FEES Merge in any ASCII tacct records from the file fee into daytacct.

DISK On the day after the sdisk procedure runs, merge disktacct with daytacct.

MERGETACCT Merge daytacct with sum /taccf the cumulative total accounting file. Each day, daytacct
is saved in sum/tacctMMDD, so that sum/ tacct can be recreated in the event it becomes
corrupted or lost.

CMS Merge in today’s command summary with the cumulative command summary file
sum/cms. Produce ASCII and internal format command summary files.

USEREXIT Any installation dependent (local) accounting programs can be included here.

CLEANUP Clean up temporary files, run prdaily and save its output in sum, rprtMMDD. remove the
locks, then exit.

RECOVERING FROM FAILURE

The runacct procedure can fail for a variety of reasons: usually due to a system crash, , usr running out
of space, or a corrupted wtmp file. If the activeMMDD file exists, check it first for error messages. If the active
file and lock files exist, check fd21og for any mysterious messages. The following are error messages produced
by runacct, and the recommended recovery actions:

ERROR: locks found, run aborted

The files lock and lockl were found. These files must be removed before runacc t can restart.

C--4

System Accounting

ERROR: acetg already run for d a te: check /usr/adm/acct/nite/lastdate
The date in lastdate and today’s date are the same. Remove lastdate.

ERROR: turnacct switch returned rc=?
Check the integrity of turnacct and accton. The accton program must be owned by root and
have the setuid bit set.

ERROR: Spacct?.MMDD already exists
File setups probably already run. Check status of files, then run setups manually.

ERROR: /usr/adm /acct/nite/w tm p .MMDD already exists, run setup manually

Self-explanatory.

ERROR: wtmpfix errors see /usr/adm /acct/nite/w tm perror

Wtmpfix detected a corrupted wtmp file. Use fw tm p to correct the corrupted file.

ERROR: connect acctg failed: check /usr/adm /acct/nite/log

The acctcon l program encountered a bad wtmp file. Use fw tm p to correct the bad file.

ERROR: Invalid state, check /usr/adm /acct/nite/active

The file statefile is probably corrupted. Check statefile and read active before restarting.

RESTARTING RUNACCT

Runacct called without arguments assumes that this is the first invocation of the day. The argument
MMDD is necessary if runacct is being restarted and specifies the month and day for which runacct will rerun
the accounting. The entry point for processing is based on the contents of statefile. To override statefile, include
the desired state on the command line. For example:

To start runacct:

nohup runacct 2> /usr/adm/acct/nite/fd21og&

To restart runacct:

nohup runacct 0601 2> /usr/adm/acct/nite/fd21og&

To restart runacct at a specific state:

nohup runacct 0601 WTMPFIX 2> /usr/adm/acct/nite/fd21og&

FIXING CORRUPTED FILES

Unfortunately, this accounting system is not entirely fool proof. Occasionally, a file will become corrupted
or lost. Some of the files can simply be ignored or restored from the file save backup. However, certain files
must be fixed in order to maintain the integrity of the accounting system.

C-5

System Accounting

A. Fixing W T M P Errors

The wtmp files seem to cause the most problems in the day to day operation of the accounting system. When
the date is changed and the UNIX system is in multiuser mode, a set of date change records is written into
/usr/adm/wtmp. The wtm pfix program is designed to adjust the time stamps in the wtmp records, when a date
change is encountered. Some combinations of date changes and reboots, however, will slip through wtmpfix
and cause acctconl to fail. The following steps show how to patch up a wtmp file.

cd /usr/adm /acct/nite
fwtmp < wtmp.MMDD > xwtmp
ed xwtmp

delete corrupted records or
delete all records from beginning up to the date change

fwtmp -ic < xwtmp > wtmp .MMDD

If the wtmp file is beyond repair, create a null wtmp file. This will prevent any charging of connect time.
A cctprcl will not be able to determine which login owned a particular process, but it will be charged to the
login that is first in the password file for that user id.

B. Fixing TACCT Error*

If the installation is using the accounting system to charge users for system resources, the integrity of
sum/tacct is quite important. Occasionally, mysterious tacct records will appear with negative numbers, dupli­
cate user IDs, or a user ID of 65,535. First check sum/tacctprev with prtacct. If it looks all right, the latest
sum/tacct.MMDD should be patched up, then sum/tacct recreated. A simple patchup procedure would be:

cd /usr/adm /acct/sum
acctmerg -v < tacct.MMDD > xtacct
ed xtacct

remove the bad records
write duplicate uid records to another file

acctmerg - i < xtacct > tacct .MMDD
acctmerg tacctprev < tacct.MMDD > tacct

Remember that the monacct procedure removes all the facet. MMDD files; therefore, sum/tacct can be rec­
reated by merging these files together.

UPDATING PNPSPLIT

The pnpsplit subroutine is used by acctcon l and acctp rcl to determine the difference between prime
and nonprime time. Prime time is defaulted from 9:00 am to 5:00 pm, Monday through Friday. Nonprime time
is considered to be all other hours and the entire day for those days listed in the holidays structure in
pnpsplit.c. The holidays listed are accurate for Bell Laboratories New Jersey locations for the year the operating
system was released. Every year on the day after Christmas (the last holiday of the calendar year), the following
message will be printed on the system console terminal and appear in /og

*** RECOMPILE pnpsplit WITH NEW HOLIDAYS ***

This message will continue to be sent each time the accounting is run until pnpsplit, acctcon l, and
acctprcl are recompiled. The following steps should be taken to successfully recompile these programs.

1. Edit pnpsplit.c to change the thisyear variable to the new year. Update the holidays structure to reflect
the new holidays. The numeric entry in the structure is the day of the year, less one. For example. New
Year’s Day (January 1) is entered as 0. Pnpsplit.c is in /usr/src/cmd/acct/lib.

C-6

System Accounting

2. Update the accounting library a.a and recompile acctprcl, and acctcon l by:

superuser to root
ARGS= " acctconl acctprcl " /usr/src/:mkcm d acct

DAILY REPORTS

Runacct generates five basic reports upon each invocation. Samples of these reports are shown in Attach­
ment 7.2. They cover the areas of connect accounting, usage by person on a daily basis, command usage reported
by daily and monthly totals, and a report of the last time users were logged in.

The following paragraphs describe the reports and the meanings of their tabulated data.

A. Daily Report

In the first part of the report, the from/to banner should alert the administrator to the period reported
on. The times are the time the last accounting report was generated until the time the current accounting report
was generated. It is followed by a log of system reboots, shutdowns, power fail recoveries, and any other record
dumped into /usr/adm /w tm p by the acctw tm p program [see acct(lM) in the UNIX System Administrator’s
Manual].

The second part of the report is a breakdown of line utilization. The TOTAL DURATION tells how long the
system was in multiuser state (able to be accessed through the terminal lines). The columns are:

The terminal line or access port.

The total number of minutes that line was in use during the accounting period.

The total number of MINUTES the line was in use divided into the TOTAL DURATION.

The number of times this port was accessed for a login! 1) session.

This column does not have much meaning anymore. It used to give the number of times
that the port was used to log a user on; but since login) 1) can no longer be executed explic­
itly to log a new user in, this column should be identical with SESS.

This column reflects not just the number of times a user logged off but also any interrupts
that occur on that line. Generally, interrupts occur on a port when the getty(8) is first
invoked when the system is brought to multiuser state. These interrupts occur at a rate
of about two per event; therefore, it is not uncommon to see in excess of twice the amount
of OFF than ON or SESS. Where this column does come into play is when the * OFF
exceeds the # ON by a large factor. This usually indicates that the multiplexer, modem or
cable is going bad, or there is a bad connection somewhere. The most common cause of this
is an unconnected cable dangling from the multiplexer.

During real time, /usr/adm /w tm p should be monitored as this is the file that the connect accounting is
geared from . If it grows rapidly, execute acctcon l to see which tty line is the most noisy. If the interrupting
is occurring at a furious rate, general system performance will be effected.

B. Daily Usage Report

This report gives a by-user breakdown of system resource utilization. Its data consists of:

UID The user ID.

LINE

MINUTES

PERCENT

* SESS

* ON

* OFF

C-7

System Accounting

LOGIN NAME The login name of the user; there can be more than one login name for a single user ID,
this identifies which one.

CPU (MINS) This represents the amount of time the user’s process used the central processing unit.
This category is broken down into PRIME and NPRIME (nonprime) utilization. The ac­
counting system’s idea of this breakdown is located in the accounting library function
pnpsplit where the holidays array, which also determines nonprime time, is also de­
fined. As delivered, prime time is defined to be 0900-1700 hours. The ho lidays array is
correct for Bell Laboratories New Jersey locations for the year of the release.

KCORE-MINS This represents a cummulative measure of the amount of memory a process uses while run­
ning. The amount shown reflects kilobyte segments of memory used per minute. This mea­
surement is also broken down into PRIME and NPRIME amounts.

CONNECT (MINS) This identifies “Real Time” used. What this column really identifies is the amount of time
that a user was logged into the system. If this time is rather high and the later column
called # OF PROCS is low, this user is what is called a “line hog”. That is, this person logs
in first thing in the morning and does not hardly touch the terminal the rest of the day.
Watch out for these kind of users. This column is also subdivided into PRIME and
NPRIME utilization.

DISK BLOCKS When the disk accounting programs have been run, their output is merged into the total
accounting record (tacct.h) and shows up in this column. This disk accounting is accom­
plished by the program acctdusg.

§ OF PROCS This column reflects the number of processes that was invoked by the user. This is a good
column to watch for large numbers indicating that a user may have a shell procedure that
runs amock. The most common example of this is for a crontab entry to try to execute
a user’s .profile via su- that unfortunately prompts for a terminal type and sits in an end­
less loop trying to read from the terminal (there is not one when cron is executing a pro­
cess). Preventive coding is encouraged in the .profile.

OF SESS This is how many times the user logged onto the system.

DISK SAMPLES This indicates how many times the disk accounting was run to obtain the average number
of DISK BLOCKS listed earlier.

FEE An often unused field in the total accounting record, the FEE represents the total accumu­
lation of widgets charged against the user by the chargefee shell procedure [see
acctsh(lM)]. The ch argefee procedure is used to levy charges against a user for special
services performed such as file restores, tape manipulation by operators, etc.

C. Daily C o m m a n d and Monthly Total C o m m a n d Summaries

These two reports are virtually the same except that the Daily Command Summary only reports on the cur­
rent accounting period while the Monthly Total Command Summary tells the story for the start of the fiscal
period to the current date. In other words, the monthly report reflects the data accumulated since the last invo­
cation of monacct.

The data included in these reports gives an administrator an idea as to the heaviest used commands; and
based on those commands’ characteristics of system resource utilization, a hint as to what to weigh more heavily
when system tuning.

These reports are sorted by TOTAL KCOREMIN which is an arbitrary yardstick, but often a good one for
calculating “drain” on a system.

C-8

System Accounting

COMMAND NAME This is the name of the command. Unfortunately, all shell procedures are lumped together
under the name sh since only object modules are reported by the process accounting sys-

NUMBER CMDS

tern. The administrator should monitor the frequency of programs called a.out or core
or any other name that does not seem quite right. Often people like to work on their favor­
ite version of backgammon only they do not want everyone to know about it. Acctcom is
also a good tool to use for determining who executed a suspiciously named command and
also if superuser privileges were used.

This is the total number of invocations of this particular command.

TOTAL KCOREMINThe total cummulative measurement of the amount of kilobyte segments of memory used
by a process per minute of run time.

TOTAL CPU-MIN The total processing time this program has accumulated.

TOTAL REAL-MIN The total real-time (wall-clock) minutes this program has accumulated. This total is the

MEAN SIZE-K

actual “waited for” time as opposed to kicking off a process in the background.

This is the mean of the TOTAL KCOREMIN over the number of invocations reflected by
NUMBER CMDS.

MEAN CPU-MIN This is the mean derived between the NUMBER CMDS and TOTAL CPU-MIN.

HOG FACTOR This is a relative measurement of the ratio of system availability to system utilization. It
is computed by the formula

(total CPU time) / (elapsed time)

This gives a relative measure of the total available CPU time consumed by the process
during its execution.

CHARS TRNSFD This column, which may go negative, is a total count of the number of characters pushed
around by the read(2) and write(2) system calls.

BLOCKS READ A total count of the physical block reads and writes that a process performed.

D. Last Login

This report simply gives the date when a particular login was last used. This could be a good source for find­
ing likely candidates for the tape archives or getting rid of unused logins and login directories.

SUMMARY
The UNIX System Accounting was designed from a UNIX system adm inistrator’s point of view. Every possi­

ble precaution has been taken to ensure that the system will run smoothly and without error. It is important
to become familiar with the C programs and shell procedures. The manual pages should be studied, and it is
advisable to keep a printed copy of the shell procedures handy. The accounting system should be easy to main­
tain, provide valuable information for the administrator, and provide accurate breakdowns of the usage of sys­
tem resources for charging purposes.

C-9

System Accounting

Format of wtmp files (utmp.li):

/* V

/* <sys/types.h> must be included.
«define UTMP_FILE "/etc/utmp"
«define WTMP_FILE "/etc/wtmp"
«define ut_name ut_user

struct utmp
[

char ut_user[8] ;
char ut_id[4] ;
char ut_line[12] ;
short ut_pid ;
short ut_type ;
struct exit_status

{
short e_termination ;
short e_exit ;

}
ut_exit ;

time_t ut,_time ;

/* User login name */
/* /etc/lines id(usually line #) */
/* device name (console, lnxx) V
/* process id */
/* type of entry V

/* Process termination status V
/* Process exit status V

/* The exit status of a process
* marked as DEAD_PROCESS.
V

/* time entry was made */

Definitions for ut_type V
«define EMPTY 0
«define RUN_LVL 1
? define BOOT TIME 2
»define OLD TIME 3
»define NEW TIME 4
•»define INIT.PROCESS 5 /* Process spawned by "mir." */
■»define LOGIN.PROCESS 6 /* A "getty" process waiting for login V
»define USER_PROCESS 7 /* A user process */
»define DEAD_PROCESS 8
‘(define ACCOUNTING 9

«'define UTMAXTYPE ACCOUNTING /* Largest legal value of ut_:ype

/*/ Special strings or formats used in the "utjine" field when */
/ accounting for something other than a process. */
<*

i No string for the ut_line field can be more than 11 chars + V
/* a NULL in length. V

«‘define RUNLVLJV1SG "run- level %c"
«‘define BOOT MSG "system boot"
«define OTIME_MSG "old time"
«define NTIME_MSG "new time"

* //

C-10

System Accounting

Definitions (ccctdef.h):

/* %W% of %G% */
/*

* defines, typedefs, etc. used by acct programs
V

/*
* acct only typedefs
V

typedef unsigned short uid_t;

#ifdef u3b
Mefine HZ 100
#else
Mefine HZ 60
lendif

Mefine LSZ 12 /* sizeof line name V
Mefine NSZ 8 /* sizeof login name */
Mefine P 0 /* prime time */
Mefine NP 1 /* nonprime time V

/*
* limits which may have to be increased if systems get larger
V

Mefine SSIZE 1000 /* max number of sessions in 1 acct run V
Mefine TSIZE 100 /* max number of line names in 1 acct run */
Mefine USIZE 500 /* max number of distinct login names in 1 acct run V

Mefine EQN(sl, s2) (strncmp(sl, s2, sizeof(sl)) == 0)
Mefine CPYN(sl, s2) strncpy(sl, s2, sizeof(sl))

Mefine SECSINDAY 86400L
Mefine SECS(tics) ((double) tics)/HZ
Mefine MINS(secs) ((double) secs)/60
Mefine MINT(tics) ((double) tics)/(60*HZ)

#ifdef pdpll
Mefine KCORE(clicks)
#endif
#ifdef vax

((double) clicks/16)

Mefine KCORE(clicks)
Mndif
#ifdef u3b

((double) clicks/2)

Mefine KCORE(clicks)
Mndif

((double) clicks*2)

C - l l

System Accounting

Format of pacct files (acct.h):
/*
* Accounting structures
“/

typedef ushort comp_t; /* "floating point" */
/* 13-bit fraction, 3-bit exponent */

struct acct

char ac_flag; /"“Accounting flag */
char ac_stat; / “Exit status V
ushort ac_uid; / “Accounting user ID */
ushort ac_gid; / “Accounting group ID */
dev_t ac_tty; / “control typewriter */
time_t ac_btime; / “Beginning time */
comp_t ac_utime; / “acctng user time in clock ticks */
comp_t ac_stime; / “acctng system time in clock ticks
comp_t ac_etime; / “acctng elapsed time in clock ticks
comp_t ac_mem; / “memory usage */
comp_t ac_io; /'“chars transferred */
comp_t ac_rw; / “blocks read or written */
char ac_comm[8]; / “command name “/

extern struct acct acctbuf;
extern struct inode *acctp; / “inode of accounting file */'
»defineAFORK 01 / “has executed fork, but no exec */
»defineASU 02 ./“used superuser privileges */
-defineACCTF 0300 / “record type: 00 = acct */

Format of tacct files (tacct.h):

* total accounting (for acct period), also for day
*)

struct tacct
uid_t ta_uid;
char ta_name[8];
float ta_cpu[2];
float ta_kcore[2];
float ta_con[2];
float ta_du;
long ta_pc;
unsigned short ta_sc;
unsigned short ta_dc;
unsigned short ta_fee;

/*userid */
/ “login name “/
/ “cum. cpu time, p/np (mins) */
/*cum kcore-minutes, p/np */
/*cum. connect time, p/np, mins
/ “cum. disk usage */
/*count of processes */
/ “count of login sessions */
/ “count of disk samples */
/*fee for special services “/

System Accounting

Format of ctmp file (ctmp.h):
/*

* connect time record (various intermediate files)
V

struct ctmp
dev_t ct_tty;
uid_t ct_uid;
char ct_name[8];
long ct_con[2];
time_t ct_start;

/*major minor */
/*userid V
/*login name */
/^connect time (p/np) secs */
/*session start time */

C-13

System Accounting

from Thu Jun 7 06:00 48 1979

to Fri Jun 8 04:00 28 1979

2 shutdown

2 pw*

Jun 8 01:14 1979 DAILY REPORT FOR pwba Page 1

TOTAL DRATION IS 1320 MINUTES
L I N E M I N U T E S P E R C E N T # S E S S * O N
U y 0 4 479 3 6 9 9
t t y 4 7 341 26 4 4
t ty 4 4 298 23 3 3
t ty 4 6 336 25 9 9
c o n s o l e 1 100 83 14 14
tty Ö 5 448 34 3 3
t t y 0 6 439 33 9 9
t t y 0 7 421 32 6 6
t t y 4 2 5 3 4 5 5
t t y 0 9 385 29 11 11
t t y 10 336 2 5 10 10
U y 0 8 464 3 5 2 2
t t y 2 6 544 41 6 6
t t y l 2 2 5 2 19 5 5
t t y 13 2 5 8 20 3 3
t t y 14 156 12 6 6
t t y 17 145 11 1 1
t t y 18. 39 3 5 5
t t y 15 228 17 5 5
t t y 2 5 704 5 3 6 6
t t y 21 0 0 0 0
t t y 19 10 1 1 1
t t y » 2 5 2 2 2
t t y 2 2 0 0 0 0

t t y 2 3 0 0 0 0

t t y 24 0 0 0 0

t t y 2 7 481 36 3 3
t t y 2 8 426 3 2 5 5
t t y 2 9 302 2 3 6 6

t t y 3 0 257 2 0 11 11
t t y 40 380 29 5 5
t ty 4 1 343 26 3 3

t t y 4 5 0 0 0 0

t t y 11 3 6 5 2 8 7 7

t t y 4 3 3 0 1 I

t t y 16 2 1 3 16 3 3

t t y 31 2 5 0 19 4 4

t t y 0 2 62 5 1 1

T O T A L S 10544 174 174

O F F

3 0

3 3

2 9

33

21
22
31

24

20
33

31
19

24

2321
26

16

24

2 5

2 5

16

17

18

15

15
16

20
24

2 5

28

21
21
15
2 5
17

20
18

3

S46

C-14

System Accounting

Jun 8 04:14 197» DAILY USAGE REPORT FOR pwb» Page 1

L O G IN C P U (M I N S) K C O R E -M 1 N S C O N N E C T (M I N S) D I S K 0 O F * O F 0 D IS K F E E

U I D N A M E P R I M E N P R I M E P R I M E N P R I M E P R I M E N P R I M E B L O C K S P R O C S S E S S S A M P L E S

0 T O T A L 3 8 8 103 12414 '2934 9251 1056 0 16164 174 0 0

0 r o o t 47 41 100 3 924 67 30 0 2 3 6 0 8 0 0

4 a d m 27 19 48 652 0 0 0 842 0 0 0

19 K a rn es 0 0 4 0 0 0 0 2 8 0 0 0

22 m h b 0 0 1 1 l 1 0 14 2 0 0

37 a b s 0 0 4 0 0 0 0 3 0 0 0

3 7 a b s j r k 14 0 284 0 423 0 0 1588 4 0 0

68 r j e 3 3 24 21 0 0 0 179 0 0 0

71 •> 0 0 0 0 0 0 0 12 0 0 0

150 j a c 7 0 156 5 281 2 0 5 1 0 13 0 0

173 •> 0 0 0 0 0 0 0 16 0 0 0

180 * 0 0 0 0 0 0 0 4 0 0 0

185 f 0 0 0 0 0 0 0 2 0 0 0

2 1 7 d e n i s e 0 0 2 0 31 0 0 3 2 3 0 0

2 1 7 k o f 0 0 2 0 1 0 0 7 1 0 0

219 0 0 0 0 0 0 0 12 0 0 0

1001 h s m 5 0 189 0 179 0 0 9 2 2 0 0

2C01 s y s t s t 0 1 5 28 4 7 6 64 0 9 9 5 0 0

2 0 0 2 m f p 1 0 7 5 ‘2 7 0 6 2 0 9 3 3 0 0

200 3 a l s 1 0 23 0 100 0 0 99 3 0 0

2 0 0 5 e r ic 0 0 3 0 13 0 0 21 1 0 0

200 6 h o o t 0 0 2 0 16 0 0 8 1 0 0

2 a » a g p 47 0 ‘2 040 0 444 0 0 492 2 0 0

200 9 f s r e p l 2 0 60 0 3 6 0 0 9 5 I 0 0

2011 p d w 0 0 1 0 4 0 0 11 1 0 0

2 0 1 2 p w b s t 0 0 1 0 2 8 0 0 9 1 0 1)

2 0 1 4 c a t h 0 0 1 0 1 0 0 7 1 0 0

2 0 2 2 re m 3 2 1 1227 91 5 7 6 4 0 2 2 6 3 0 0

2 0 2 5 fld 5 5 23 2 1 7 6 8 6 2 3 3 6 9 8 0 7 5 0 7 0 0

2 0 2 7 k r b 14 2 365 51 .547 24 0 3 7 2 8 0 1)

2 0 2 8 t e x t 0 0 1 0 3 0 0 13 1 0 0

203 0 a r f 8 0 288 0 3 1 7 0 0 3 1 5 3 0 0

2031 d p 12 0 480 3 4 5 9 6 0 2 2 0 6 0 0

2 0 3 2 g r a f 2 0 4 9 0 2 3 0 0 118 1 0 0

203 3 e c p 3 0 74 0 3 5 5 0 0 115 4 0 0

2 0 4 0 le a p 15 0 308 0 5 1 3 l 0 5 0 5 2 0 0

2041 d a n 3 0 9 3 3 149 2 0 117 8 0 0

2051 d s 5 2 2 2 19 40 3 7 5 601 0 611 8 0 0

2 0 5 5 n u u c p 0 0 15 9 17 1 0 10 3 0 0

2 0 5 7 e c h 1 0 28 0 6 3 0 0 68 2 0 (1

2061 jc w 4 3 99 7 0 37 34 0 8 6 9 4 0 0

2064 m j r 18 0 443 0 176 0 0 2 0 6 5 3 0 0

•2065 r r r 0 0 6 0 7 0 0 23 1 0 0

206 8 t r c 0 0 7 0 10 0 0 29 1 0 0

2 0 7 5 h e r b 2 9 0 1178 1 3 8 4 •> 0 249 5 0 0

2 0 8 6 p a u l 1 0 14 0 152 9 0 2 8 1 0 0

2 0 8 7 p r i s 0 0 0 10 0 •> 0 13 1 0 0

2111 pwvCS 2 3 60 8 5 6 4 86 0 185 1 0 0

2 1 1 6 rbj 1 0 16 0 4 0 8 0 0 2 2 2 1 0 • 0

2121 te a c h 0 0 3 0 5 3 0 0 50 2 0 0

2 1 2 ? msb 0 0 3 0 5 0 0 24 1 0 0

212 4 r n t 2 0 4 2 0 66 0 0 2 6 0 3 0 0

2 1 2 6 d a l 0 0 5 0 121 0 0 17 1 0 0

2 1 2 7 m 2 15 0 495 11 3 9 0 2 0 6 0 2 10 0 0

Jur 8 04:14 1979 DAILY USAGE REPORT FOR pwb« Page 2

2 1 2 8 je t 14 0 492 9 422 14 0 5 2 3 8 0 0

2 1 3 0 s l 0 0 5 1 16 0 0 42 2 0 0

2 1 3 0 s3 0 0 0 0 0 2 0 9 1 0 0

2 1 3 5 j f n 0 1 0 12 0 11 0 3 3 2 0 0

2 1 3 6 m 2 c la s s 0 0 5 0 2 0 0 18 1 0 0

2 1 4 0 s t a r 4 0 213 12 9 0 3 0 170 7 0 0

2141 reu- . 5 0 245 2 5 4 7 0 4 0 181 1 0 0

2 1 9 9 ilc 0 0 1 0 10 0 0 7 1 0 0

2 9 9 9 s to c k 0 0 1 0 1 0 0 17 1 0 0

3001 w h m 5 0 93 0 * 2 5 3 0 0 414 3 0 0

3 3 3 2 v j f 0 0 4 0 8 0 0 3 9 1 0 0

C-15

System Accounting

Jun 8 04:07 1979 DAILY COMMAND SUMMARY Page 1

COMMAND NUMBER TOTAL TOTAL TOTAL MEAN MEAN HOG CHARS BLOCKS
NAME CMDS KCOREM1N CPU-MIN REAL-MIN SIZE-K CPU-MIN FACTOR TRNSFD READ

TOTALS 16164 15332.89 490.72 37463.98 31.25 003 0.01 322183844 1097670

nroff 119 3958.68 93.21 569.83 42.47 0.78 0.16 67070052 1.30284
tro ff 26 2483.38 51.63 342.70 48.10 L.99 0.15 37869304 48989
xnroff 20 732.03 1674 111.05 43.73 0.84 0.15 13885248 22659
a.out 31 623.53 10.52 142.77 59.26 0.34 0.07 332435 2758
egrep 185 574.83 13.96 34.53 41.18 0.08 0.40 170625 8249
m2fin3 •232 555.79 9.93 155.11 55.96 0.04 0.06 5155937 30994
cl 150 519.04 13.57 48.89 38.25 0 09 0.28 1285724 16032
cO 165 413.10 9.19 35.16 44.93 0.061 0.26 3827309 12170
m2edit 33 340.92 4.63 148.27 73.62 0.14 0.03 1074914 144 92
Id 87 317.38 7.94 38.48 39.97 0.09 0.21 176-40896 45797
acctcms 17 294.75 6.49 14.15 45.41 0.38 0.46 25:254127 5515
c2 112 289.69 9.13 34.61 31.72 0.08 0.26 36*57050 9681
sh 1834 276.98 26.77 20444.24 10.35 0.01 0.00 3496613 71979
ed 524 253.13 14.46 2029.89 17.50 0.08 0.01 130:58108 56039
acctprcl 3 231.28 6.67 19.45 34.67 .2.22: 0.34 2577344 2926
du 145 219:35 19.91 39 08 11.02 0.14. 0.51 7168189 23695
d iff 49 175,53 6.0-1 25.78 29.05 0.12 0.23 3740887 11351
get 151 152.96 4.28 25.23 35.74 0 03 0.17 3634042 24917
adb 22 148.10 4.07 202.35 36.37 0.19 0.02 2313718 9813
tbl 24 143.43 2.44 210.65 58.71 0.10 0 01 1536210 3433
dd 9 139.24 10.15 51.05 13.72 1.13 0.20 25006848 294
as2 155 129.33 9.82 42.25 1.3,17 0.061 0.23 10590835 30165
aed 397 115.46 4.19 36.23 27.57 .0.01 0.12 7:33825 24497
ps 51 109.69 5.92 41.55 18.54 0.12 0.14 2278056 8310
make 89 102.94 2.87 203.32 35.81 0.03 0.01 1018461 8664
delta 25 90.23 2.27 17.80 39.70 0.09 0.13 29)9269 9321
cpp 172 89.37 2.69 11.32 33.19 0.02 0.24 3519054 12155
fsck 16 86.94 1.30 10.57 66.8-5 0.08 0.12 27671849 2927
find 52 86.64 5.05 63.87 17.15 0.10 0.08 5*551.25 11161
19 706 82.47 5.78 62.85 14.26 0.01 0.09 1811882 29659
xck 2 79.44 10.49 47.89 7.57 5.25 0.22 108016 21995
awk 22 78.83 1.37 5.24 57.72 0.061 0.26 355466 3769
uucico 60 75.55 1.42 632.50 53.27 0.02 0 00 398693 6377
acc t com 9 75.21 2.8» 11.49 26.75 0.31 0.24 1233776 3771
echo 2814 66.10 7.08 91.80 9.33 0.00 0.08 1'58651 24253
K«d 3 57 27 0.82 7.51 70.16 0.27' 0 11 51832 426
dc 284 56.92 2.42 9 43 23.48 0.01 0.26 14283 20329
450 7 48.03 6.80 84.45 7.06 .0.97 0.08 279451 1700
cat 749 45.49 5.69 478.54 8.00 0.01 0.01 8959500 27903
ntd 6 41.52 1.55 7.55 26.87 0.26 0.20 598388 478
mail 202 39.95 2.05 532.98 19.53 0.01 0.00 427217 14377
acctprc2 3 38.95 1.43 19.45 27.24 0.48 0 07 537336 87
sort 94 38.72 1.09 9 73 35 41 0.0.1 0.11 375876 4433
pr 104 34.89 2.47 214.50 14.10 0 o-2 0 01 1060989 6572
haspmam 7 33.20 5.28 1244.54 6 29 0 75 u.oo 63064 36635
ex 17 31.69 0.62 41.04 50.9? 0.04 11 02 514624 3593
grep 213 28,73 298 21.01 9.64 001 0 14 21')0229 1429?

C-16

System Accounting

Jun 8 04:07 1979 MONTHLY TOTAL SUMMARY Pige 1

COMMAND NUMBER TOTAL TOTAL TOTAL MEAN MEAN HOG CHARS BLOCKS
NAME CMDS KCOREMIN CPU-MIN REAL-MIN SIZE-K CPU-MIN FACTOR TRNSFD READ

TOTALS 553286 297698.78 10916.09 742924.94 27.27 0.02 0.01 820472546 26253312
nroff 1687 44681.55 995.92 5737.25 44.86 059 0.17 613403153 1089180
tro ff 1351 25692.15 • 583.69 4356.05 44.02 0.43 0.13 413163589 646243
spell pro 6466 17298.41 294.16 1893.79 58.81 0.05 0.16 334572640 853901
m2edit 654 13526.69 164.62 4238.58 82.17 0.25 0.04 54940426 4'27924
xnroff 397 10408.44 203.72 1496.32 51.09 0.51 0.14 215221419 301967
sort 7983 9292.34 226.01 2298.05 41.11 0.03 010 80108304 355963
d 6139 8949.86 236.45 861.09 37.85 0.04 0.27 79897995 489661
Id 3244 8852.96 223.19 1128.09 39.67 0.07 020 493701995 1278119
sed 53134 8126.71 313.85 2241.78 25.89 0.01 0.14 23035033 1692990
m2find 2982 7984.45 140 18 1698.25 56.96 0.05 0.08 111330040 449604
cO 6586 7866.42 185.16 725.47 42.49 0.03 0.26 72595655 389426
ed 20083 7822.78 425.90 41898.18 18.37 002 0.01 483425634 1541326
tbl 660 7766.69 113.95 2458.55 68.16 0.17 0.05 50760094 83887
sh 40476 7499.67 635.00 383786.53 11.81 0.02 0.00 70525236 1421194
du 1941 6730.54 553.04 1128.44 12.17 0.28 0.49 20848359 628324
a.out 1483 5658.46 126.87 1868.87 44.60 009 0.07 16158675 80260
egrep 4801 5573.51 139.86 460.25 39 85 0.03 0.30 6823696 237298
lin t l 793 5325.66 71 23 425.67 74.76 009 017 9599001 131592
cat 21170 465753 236.59 4354.24 19.69 0.01 0 05 239180412 1023965
acctprcl 42 3837.84 110.88 291.34 34.61 2.64 0.38 43954136 61123
c2 4067 3807.25 144.86 477.28 26.28 0.04 0.30 57519376 213521
«rep 21212 3204.86 300 44 2727.87 1067 0.01 0 11 139340583 899415
epp 7469 3060.72 94.12 647.79 32.52 0.01 0 15 91471956 159882
getty 35556 2948.71 853.53 101107 45 3.45 0.02 0.01 34704751 263866
m2editD 83 2707.27 28.79 361 84 94.02 0.35 0.08 2852202 33949
as2 6454 2698.74 218.96 910.59 12.33 0.03 0.24 213336016 705690
make 1858 2449.10 64.69 4388.86 37.86 003 0.01 24116259 175544
ps 1034 2384.14 128.29 1207.87 18..58 0.12 0.11 54873792 204172
acctcms 294 2288.36 51.99 116.06 44.01 0.18 0.45 36124940 80523
uucico 815 2226.75 40 42 11729.01 55.08 0.05 000 11086105 162558
ls 18876 2170.01 152.76 1538.09 14.20 0.01 010 32418106 691028
find 1705 2114.18 114.35 920.75 18 49 0.07 0.12 94631199 338600
ged 72 2026.43 28.54 317.21 71.01 0.40 0.09 1648636 10374
echo 84710 2018.23 190.14 1138.49 10.61 0.00 017 2926992 649200
epio 127 1956.60 77 03 391.45 25.40 061 0.20 190822346 296302
maze 8 1620.42 44.80 128.25 36.17 5.60 035 120399 212
mail 4735 1474.38 76.92 14262.62 19.17 0.02 0.01 25719618 163748
get 1085 1358.03 37.59 234.97 36.13 0.03 0.16 31.540008 178623
acctcom 165 1253.99 47.06 339.34 26.64 0.29 0.14 57405662 68949
yacc 58 1187.17 15.36 36.90 77 31 0.26 0.42 4096070 12093
col 638 1064.40 49.01 2199.00 21.72 0.08 0.02 23835395 16903
line 27184 1036.03 93.14 1941.33 11.12 0.00 0.05 925447 296142
nroff 1.2 29 909.83 17.71 .56.97 51 38 0.61 031 11459920 18802
delta ‘264 904.54 23.07 254.06 39.21 0.09 009 24219141 87164
td 175 886.19 25.74 159.73 34.43 0 15 0.16 1990177 15792
ar 1434 872.65 61.87 309.07 U 11 0.04 0.20 189858731 128871
m2findD 144 864.29 12.54 344.13 68 94 0.09 0.04 1184947 28576
rm 15319 857.97 85 65 754 20 10.02 0.01 011 153479 133903
acctdusg 1 819.77 39.30 170.10 20.86 39.30 023 1812480 39744
fHpassi 155 779.13 7.97 29.09 97.70 0.05 0.27 990027 34702
d iff 786 767.31 32.77 260.27 23.41 0.04 0.13 22940094 97214

C-17

System Accounting

Jun 8 04:07 1979 LAST LOGIN Page 1

00-00-00 dii 00-00-00 rudd 79-06-08 adm
00-00-00 absadm 00-00-00 slO 79-06-08 a«p
00-00-00 absafr 00-00-00 s2 79-06-08 als
00-00-00 ab sc as 00-00-00 s4 79-06-08 arf
00-00-00 absjew 00-00-00 s5 79-06-08 cath
00-00-00 abspvg 00-00-00 s6 79-06-08 dal
00-00-00 abstbm 00-00-00 s8 79-06-08 dan
00-00-00 adm94 00-00-00 s9 79-06-08 dem»
00-00-00 apb 00-00-00 sebsa 79-06-08 dp
00-00-00 archive 00-00-00 sjm 79-06-08 ds52
00-00-00 asc 00-00-00 srb 79-06-08 ech
00-00-00 badt 00-00-00 sys 79-06-08 eep
00-00-00 btb 00-00-00 tgp 79-06-08 eric
00-00-00 bvl 00-00-00 tld 79-06-08 fld
00-00-00 bwk 00-00-00 ussc 79-06-08 fsrepl
00-00-00 chicken 00-00-00 uuepa 79-06-08 games
00-00-00 class 00-00-00 uvac 79-06-08 graf
00-00-00 deary 00-00-00 vav 79-06-08 herb
00-00-00 cs 00-00-00 wdr 79-06-08 hoot
00-00-00 dbs 00-00-00 willa 79-06-08 hsm
00-00-00 de by 00-00-00 zoom a 79-06-08 jac
00-00-00 dec 79-06-04 dws 79-06-08 jew
00-00-00 demo 79-06-04 ewb 79-06-08 jel
00-00-00 dlt 79-06-04 kas 79-06-08 jfn
00-00-00 dmr 79-06-04 sau 79-06-08 kof
00-00-00 docs 79-06-04 uuep 79-06-08 krb
00-00-00 dug 79-06-05 bem 79-06-08 leap
00-00-00 eiiie 79-06-05 Iprem 79-06-08 Uc
00-00-00 fsrep2 79-06-05 s7 79-06-08 m2
00-00-00 gas 79-06-05 sees 79-06-08 m2class
00-00-00 graphics 79-06-06 conv 79-06-08 mfp
00-00-00 hjK 79-06-06 dek 79-06-08 rnhb
00-00-00 hlb 79-06-06 dmt 79-06-08 m jr
00-00-00 inst 79-06-06 emp 79-06-08 imsb
00-00-00 jfm 79-06-06 pah 79-06-08 nuuep
00-00-00 jrh 79-06-06 sync 79-06-08 paul
00-00-00 ken 79-06-06 tad 79-06-08 pdw
00-00-00 Ico 79-06-07 ams 79-06-08 pris
00-00-00 learn 79-06-07 bin 79-06-08 pwbcs
00-00-00 Ippdw 79-06-07 dgd 79-06-08 pwbst
00-00-00 Irbb 79-06-07 haight 79-06-08 rbj
00-00-00 maj 79-06-07 hasp 79-06-08 reg
00-00-00 mar 79-06-07 Jgw 79-06-08 rem
00-00-00 mash 79-06-07 leb 79-06-08 rje
00-00-00 meq 79-06-07 ijk 79-06-08 rn t
00-00-00 mifi 79-06-07 mep 79-06-08 root
00-00-00 mlc 79-06-07 nhg 79-06-08 rrr
00-00-00 mmr 79-06-07 nws 79-06-08 sl
00-00-00 mpf 79-06-07 qtroff 79-06-08 s3
00-00-00 plan 79-06-07 tbm 79-06-08 star
00-00-00 plum 79-06-07 train 79-06-08 stock
00-00-00 pvg 79-06-07 whr 79-06-08 systst
00-00-00 rakesh 79-06-07 W W f 79-06-08 teach
00-00-00 rfg 79-06-03 * 79-06-08 text
00-00-00 rlc 79-06-06 abs 79-06-08 tre
00-00-00 rrc 79-06-06 absjrk 79-06-08 vjf

79-06-08 whm

C-18

System Accounting

Files in the / u t t / a d m directory:
diskdiag
dtmp
fee

diagnostic output during the execution of disk accounting programs

output from the acctdusg program

output from the chargefee program, ASCII tacct records
pacct

pacct?
Spacct?.MMDD

active process accounting file
process accounting files switched via turnacct
process accounting files for M M D D during execution of runacct

wtmp active wtmp file for recording connect sessions
File* in the /usr/adm/aect/nite directory:

active used by runacct to record progress and print warning and error mes-

cms
sages; active M M D D same as active after runacct detects an error
ASCII total command summary used by prdaily

ctacct.MMDD connect accounting records in tacct.h format
ctmp
daycms
dayacct
disktacct

output of acctconl program, connect session records in ctmp.h format
ASCII daily command summary used by prdaily
total accounting records for one day in tacct.h format

disk accounting records in tacct.h format, created by dodisk procedure
fd21og diagnostic output during execution of runacct

(see cron entry)
lastdate last day runacct executed in date + % m % d format
lock lockl used to control serial use of runacct
lineuse tty line usage report used by prdaily
log
logMMDD
reboots

diagnostic output from acctconl
same as log after runacct detects an error
contains beginning and ending dates from wtmp, and a listing of
reboots

statefile used to record current state during execution of runacct
tmpwtmp
wtmperror
wtmperrorMMDD
wtmp.MMDD

wtmp file corrected by wtmpfix
place for wtmpfix error messages
same as w tm perror after runacct detects an error
previous day's wtmp file

0 1 9

System Accounting

Files in the /usr/adm/acct/sum directory:
cms total command summary file for current fiscal in internal summary

format

cmsprev
daycms
loginlog
pacct.MMDD

command summary file without latest update
command summary file for yesterday in internal summary format
created by lastlogin
concatenated version of all pacct files for MMDD, removed after
reboot by remove procedure

rprt.MMDD saved output of prdaily program

tacct cumulative total accounting file for current fiscal

tacctprev
tacct.MMDD

same as tacct without latest update

total accounting file for M M D O
wtmp.MMDD saved copy of wtmp file for MMDD, removed after reboot by remove

procedure

Files in the /usr/adm/acct/fiscal directory:
cms? total command summary file for fiscal ? in internal summary format

fiscrpt?
tacct?

report similar to prdaily for fiscal ?
total accounting file for fiscal ?

C-20

APPENDIX D: LP SPOOLING SYSTEM

The LP system of commands performs diverse spooling functions
under the operating system. LP allows administrators to
customize the system to spool to a collection of printers of any
type and to group printers into logical classes in order to
maximize the throughput of the devices. Users can queue and
cancel print requests, prevent and allow queueing to and print on
specific devices, start and stop LP processing requests, change
configuration of printers, and find the status of the LP system.
This section describes how the Administrator performs restricted
functions and oversees LP operation.
OVERVIEW OF LP FEATURES

A. Definitions

Several terms must be defined before presenting a brief summary of LP commands. The LP was designed
with the flexibility to meet the needs of users on different UNIX systems. Changes to the LP configuration are
performed by the lpadmin(lM) command.

LP makes a distinction between printers and printing devices. A device is a physical peripheral device or
a file and is represented by a full UNIX system pathname. A printer is a logical name that represents a device.
At different points in time, a printer may be associated with different devices. A class is a name given to an
ordered list of printers. Every class must contain at least one printer. Each printer may be a member of zero
or more classes. A destination is a printer or a class. One destination may be designated as the system default
destination. The Ip(l) command will direct all output to this destination unless the user specifies otherwise.
Output that is routed to a printer will be printed only by that printer, whereas output directed to a class will
be printed by the first available class member.

Each invocation of lp creates an output request that consists of the files to be printed and options from the
lp command line. An interface program which formats requests must be supplied for each printer. The LP sched­
uler, lpsched(lM), services requests for all destinations by routing requests to interface programs to do the
printing on devices. An LP configuration for a system consists of devices, destinations, and interface programs.

B. Commands

Commands for General Use

The lp(1) command is used to request the printing of files. It creates an output request and returns a request
id of the form

dest-seqno

to the user, where seqno is a unique sequence number across the entire LP system, and dest is the destination
where the request was routed.

Cancel is used to cancel output requests. The user supplies request ids as returned by lp or printer names,
in which case the currently printing requests on those printers are canceled.

D-l

LP Spooling System

D isable prevents lpsched from routing output requests to printers.

Enable(l) allows lpsched to route output requests to printers.

Commands for LP Administrators

Each LP system must designate a person or persons as LP administrator to perform the restricted functions
listed below. Either the superuser or any user who is logged into the UNIX system as lp qualifies as an LP Ad­
ministrator. All LP files and commands are owned by lp, except for lpadm in and lpsched which are owned
by root. The following commands will be described in more detail later in this section.

Lpadmin(lM)

Lpsched(lM)

Lpshut

Accept(lM)

Reject

Lpmove

BUILDING LP

Modifies LP configuration. Many features of this command cannot be used when lpsched
is running.

Routes output requests to interface programs which do the printing on devices.

Stops lpsched from running. All printing activity is halted, but other LP commands may
still be used.

Allows lp to accept output requests for destinations.

Prevents Ip from accepting requests for destinations.

Moves output requests from one destination to another. Whole destinations may be moved
at once. This command cannot be used when lpsched is running.

All LP commands are built from source code that resides in the /usr/src/cm d/lp directory including th
make file, lp.mk Unless some of the definitions in lp.mk are changed, LP may be installed only by the superuser.
Before installing a new LP system, make sure there is a login called Ip on your system and that the spool directo­
ry, /usr/spool/lp, does not exist. To install LP, perform the following:

cd /usr/src/cm d/lp
make - f lp.mk install

This builds all LP commands and creates an initial LP configuration consisting of no printers, classes, or default
destination. LP must be configured by an LP administrator using the lpadm in command in order to create r- ■
useful spooler.

In addition, add the following code to / etc/rc:

rm - f /usr/spool/lp/SCHEDLOCK
/usr/lib/lpsched
echo " LP scheduler started "

This starts the LP scheduler each time that the UNIX system is restarted.

Several variables in lp.mk may be changed before installing LP to customize the system:

Variable Default Value Meaning

SPOOL /usr/spool/lp spool directory
ADMIN lp logname of LP Administrator

D-2

LP Spooling System

GROUP bin group owning LP commands/data
ADMDIR /usr/lib commands of administrator
USRDIR /usr/bin user commands reside here

If an existing LP spool directory is corrupted (but not the LP programs) or if it needs to be rebuilt from
scratch, make sure that lpsched is not running and perform the following as superuser:

1. Make copies of any interface programs that are not standard LP software. DO NOT make these copies
underneath the spool directory. The pathname for printer “p” is /usr/spool/lp/interface/p.

2. rm - f r /usr/spool/lp

3. Make - f lp.mk new. (This recreates the bare LP configuration described above.)

PRECAUTIONS:

1. Some LP commands invoke other LP commands. Moving them after they are built will cause some com­
mands to fail.

2. The files under the SPOOL directory should be modified only by LP commands.

3. All LP commands require set-user-id permission. If this is removed, the commands will fail.

CONFIGURING LP— THE "lpadmin" C O M M A N D

Changes to the LP configuration should be made by using the Ipadmin command and not by hand.
Lpadmin will not attempt to alter the LP configuration when lpsched is running, except where explicitly
noted below.

A. Introducing N e w Destinations

The following information must be supplied to lpadmin when introducing a new printer:

1. The printer name (- p printer) is an arbitrary name which must conform to the following rules:

e It must be no longer than 14 characters.

e It must consist solely of alphanumeric characters and underscores,

e It must not be the name of an existing LP destination (printer or class).

2. The device associated with the printer (- v device). This is the pathname of a hardwired printer, a login
terminal, or other file that is writable by lp.

3. The printer interface program. This may be specified in one of three ways:

• It may be selected from a list of model interfaces supplied with LP (-m model).

• It may be the same interface that an existing printer uses (- e printer).

• It may be a program supplied by the LP administrator (- i interface).

Information which need not always be supplied when creating a new printer includes:
1. The user may specify -h to indicate that the device for the printer is hardwired or the device is the name

of a file (this is assumed by default). If, on the other hand, the device is the pathname of a login terminal,

D-3

LP Spooling System

then -1 must be included on the command line. This indicates to Ipsched that it must automatically dis­
able this printer each time Ipsched starts running. This fact is reported by Ipstat when it indicates printer
status:

$ Ipstat -pa
printer a (login terminal) disabled Oct 31 11:15—

disabled by scheduler: login terminal

This is done because device names for login terminals can be (and usually are) associated with different
physical devices from day to day. If the scheduler did not take this action, somebody might log in and
be surprised that LP is spooling to his/her terminal!

2. The new printer may be added to an existing class or added to a new class (-celass). New class names
must conform to the same rules for new printer names.

EXAMPLES

The following examples will be referenced by further examples in later sections.

1. Create a printer called prl whose device is /dev/printer and whose interface program is the model hp
interface:

$ /usr/lib/lpadmin -p p r l -v/dev/printer -m hp

2. Add a printer called pr2 whose device is /dev/tty22 and whose interface is a variation of the model prx
interface. It is also a login terminal:

$ cp /usr/spool/lp/model/prx xxx
< edit xxx >

$ /usr/lib/lpadmin -ppr2 -\7dev7tty22 -ixxx -1

3. Create a printer called pr3 whose device is /dev/tty23. The pr3 will be added to a new class called cl 1 and
will use the same interface as printer pr2:

$ /usr/lib/lpadmin -ppr3 -v/dev/tty23 -epr2 -cell

B. Modifying Existing Destinations

Modifications to existing destinations must always be made with respect to a printer name p printer).
The modifications may be one or more of the following:

1. The device for the printer may be changed (- v device). If this is the only modification, then this may
be done even while Ipsched is running. This facilitates changing devices for login terminals.

2. The printer interface program, may be changed (-m model, - e printer, i interface).

3. The printer may be specified as hardwired (- h) or as a login terminal (-1).

4. The printer may be added to a new or existing class (—cclass).

5. The printer may be remo\ .d from an existing class (-r class). Removing the last remaining member of
a class causes the class to be deleted. No destination may be removed if it has pending requests. In that
case, Ipmove or cancel should be used to move or delete the pending requests.

D-4

LP Spooling System

EXAMPLES
These examples are based on the LP configuration created by those in the previous section.

1. Add printer pr2 to class cl 1:

$ /usr/lib/lpadmin -ppr2 -cell

2. Change pr2’s interface program to the model prx interface, change its device to /dev/tty24, and add it
to a new class called cl2:

$ /usr/lib/lpadm in -ppr2 -m prx -v/dev/tty24 -ccl2

Note that printers pr2 and pr3 now use different interface programs even though pr3 was originally cre­
ated with the same interface as pr2. Printer pr2 is now a member of two classes.

3. Specify printer pr2 as a hardwired printer:

$ /usr/lib/lpadm in -ppr2 -h

4. Add printer prl to class cl2:

$ /usr/lib/lpadm in -p p r l -ccl2

The members of class cl2 are now pr2 and prl, in that order. Requests routed to class cl2 will be serviced
by pr2 if both pr2 and prl are ready to print; otherwise, they will be printed by the one which is next
ready to print.

5. Remove printers pr2 and pr3 from class ell:

$ /usr/lib/lpadm in -ppr2 - rc ll
$ /usr/lib/lpadm in -ppr3 - rc ll

Since pr3 was the last remaining member of class cl 1, the class is removed.

6. Add pr3 to a new class called cl3.

$ /usr/lib/lpadm in — ppr3 -ccl3
C. Specifying the System Default Destination

The system default destination may be changed even when lpsched is running.

EXAMPLES

1. Establish class ell as the system default destination:

$ /usr/lib/lpadm in -d e ll

2. Establish no default destination:

$ /usr/lib/lpadm in -d

D. Removing Destinations

Classes and printers may be removed only if there are no pending requests that were routed to them. Pend­
ing requests must either be canceled using cancel or moved to other destinations using lpm ove before destina­
tions may be removed. If the removed destination is the system default destination, then the system will have

D - 5

LP Spooling System

no default destination until the default destination is respecified. When the last remaining member of a class
is removed, then ihe class is also removed. The removal of a class never implies the removal of printers.

EXAMPLES

1. Make printer prl the system default destination:

$ /usr/lib/lpadm in -d p rl

Remove printer prl:

$ /usr/lib/lpadmin -x p rl

Now there is no system default destination.

2. Remove printer pr2:

$ /usr/lib/lpadm in -xpr2

Class cl2 is also removed since pr2 was its only member.

3. Remove class cl3:

$ /usr/lib/lpadm in -xc:13

Class cl3 is removed, but printer pr3 remains.

MAKING A N OUTPUT REQUEST — THE "Ip" C O M M A N D

Once LP destinations have been created, users may request output by using the lp command. The request
id that is returned may be used to see if the request has been printed or to cancel the request.

The LP program determines the destination of a request by checking the following list in order:

• If the user specifies -d dest on the command line, then the request is routed to dest.

• If the environment variable LPD EST is set, the request is routed to the value of LPDEST.

• If there is a system default destination, then the request is routed there.

• Otherwise, the request is rejected.

EXAMPLES

1. There are at least four ways to print the password file on the system default destination:

lp /etc/passwd
lp < /etc/passwd
cat /etc/passwd I Ip
lp - c /etc/passwd'

The last three ways cause copies of the file to be printed, whereas the first way prints the file directly.
Thus, if the file is modified between the time the request is made and the time it is actually printed, then
the changes will be reflected in the output.

D-6

LP Spooling System

2. Print two copies of file abc on printer xyz and title the output "my file”:
pr abc i lp —dxvz — n‘2 - t " my file "

3. Print file xxx on a Diablo* 1640 printer called zoo in 12-pitch and write to the user's terminal when print­
ing has completed:

Ip -dzoo -o l2 -w xxx

In this example, “12” is an option that is meaningful to the model Diablo 1640 interface program that
prints output in 12-pitch mode [see lpadmin(lM)].

FINDING LP STATUS— LPSTAT

The Ipstat command is used to find status information about LP requests, destinations, and the scheduler.

EXAMPLES

1. List the status of all pending output requests made by this user:

Ipstat

The status information for a request includes the request id, the logname of the user, the total number
of characters to be printed, and the date and time the request was made.

2. List the status of printers pi and p2:

Ipstat -ppl,p2

CANCELING REQUESTS— CANCEL
The LP requests may be canceled using the cancel command. Two kinds of arguments may be given to the

command —request ids and printer names. The requests named by the request ids are canceled and requests that
are currently printing on the named printers are canceled. Both types of arguments may be intermixed.

EXAMPLE

Cancel the request that is now printing on printer xyz:

cancel xyz

If the user that is canceling a request is not the same one that made the request, then mail is sent to the owner
of the request. LP allows any user to cancel requests in order to eliminate the need for users to find LP adminis­
trators when unusual output should be purged from printers.

ALLOWING A N D REFUSING REQUESTS— ACCEPT A N D REJECT

When a new destination is created, lp will reject requests that are routed to it. When the LP administrator
is sure that it is set up correctly, he or she should allow Ip to accept requests for that destination. The accept
command performs this function.

Sometimes it is necessary to prevent lp from routing requests to destinations. If printers have been removed
or are waiting to be repaired or if too many requests are building for printers, then it may be desirable to cause

* Trademark of Diablo Systems, Inc.

D-7

LP Spooling System

lp to reject requests for those destinations. The reject command performs this function. After the condition
that led to the rejection of requests has been remedied, the accept command should be used to allow requests
to be taken attain.

The acceptance status of destinations is reported by the - a option of Ipstat.

EXAMPLES

1. Cause lp to reject requests for destination xyz:

/usr/lib/reject - r " printer xyz needs repair " xyz

Any users that try to route requests to xyz will encounter the following:

$ lp -dxyz file
lp: can not accept requests for destination " xyz "

— printer xyz needs repair

2. Allow lp to accept requests routed to destination xyz:

/usr/lib/accept xyz

ALLOWING A N D INHIBITING PRINTING — ENABLE A N D DISABLE

The enab le command allows the LP scheduler to print requests on printers. That is, the scheduler routes
requests only to the interface programs of enabled printers. Note that it is possible to enable a printer but to
prevent further requests from being routed to it.

The disable command cancels the effects of the enable command. It prevents the scheduler from routing
requests to printers, independently of whether or not lp is allowing them to accept requests. Printers may be
disabled for several reasons including malfunctioning hardware, paper jams, and end of day shutdowns. If a
printer is busy at the time it is disabled, then the request that it was printing will be reprinted in its entirety
either on another printer (if the request was originally routed to a class of printers) or on the same one when
the printer is reenabled. The - c option causes the currently printing requests on busy printer s to be canceled
in addition to disabling the printers. This is useful if strange output is causing a printer to behave abnormally.

EXAMPLE

Disable printer xyz because of a paper jam:

$ disable - r " paper jam " xyz
printer " xyz " now disabled

Find the status of printer xyz:

$ Ipstat -pxyz
printer M xyz" disabled since Jan 5 10:15 —

paper jam

Now, reenable xyz:

$ enable xyz
printer "xyz" now enabled

D-8

LP Spooling System

MOVING REQUESTS BETWEEN DESTINATIONS— LPMOVE
Occasionally, it is useful for LP administrators to move output requests between destinations. For instance,

when a printer is down for repairs, it may be desirable to move all of its pending requests to a working printer.
This is one way to use the Ipmove command. The other use of this command is to move specific requests to
a different destination. Lpmove will refuse to move requests while the LP scheduler is running.

EXAMPLES

1. Move all requests for printer abc to printer xyz:

$ /usr/lib/lpmove abc xyz

All of the moved requests are renamed from abc-nnn to xyz-nnn. As a side effect, destination abc is no
longer accepting further requests.

2. Move requests zoo-543 and abc-1200 to printer xyz:

$ /usr/lib/lpmove zoo-543 abc-1200 xyz

The two requests are now renamed xyz-543 and xyz-1200.

STOPPING A N D STARTING THE SCHEDULER— LPSHUT A N D LPSCHED

Lpsched is the program that routes the output requests that were made with lp through the appropriate
printer interface programs to be printed on line printers. Each time the scheduler routes a request to an inter­
face program, it records an entry in the log file, /usr/spool/Ip/log. This entry contains the logname of the user
that made the request, the request id, the name of the printer that the request is being printed on, and the date
and time that printing first started. In the case that a request has been restarted, more than one entry in the
log file may refer to the request. The scheduler also records error messages in the log file. When lpsched is
started, it renames / usr/spool/Ip/Iog to /usr/spool/Ip/oldlog and starts a new log file.

No printing will be performed by the LP system unless lpsched is running. Use the command

lpstat - r

to find the status of the LP scheduler.

Lpsched is normally started by the /etc/rc program as described above and continues to run until the
UNIX system is shut down. The scheduler operates in the /usr/spool/lp directory. When it starts running, it
will exit immediately if a file called SCHEDLOCKexists. Otherwise, it creates this file in order to prevent more
than one scheduler from running at the same time.

Occasionally, it is necessary to shut down the scheduler in order to reconfigure LP or to rebuild the LP soft­
ware. The command

/usr/lib/lpshut

causes lpsched to stop running and terminates all printing activity. All requests that were in the middle of
printing will be reprinted in their entirety when the scheduler is restarted.

To restart the LP scheduler, use the command

/usr/lib/lpsched

D-9

LP Spooling System

Shortly after this command is entered, lpstat should report that the scheduler is running. If not., it is possible
that a previous invocation of lpsched exited without removing S C H E D L O C K , so try the following:

rm - f /usr/spool/lp/SCHEDLOCK
/usr/lib/lpsched

The scheduler should be running now.

PRINTER INTERFACE P R OGRAMS

Every LP printer must have an interface program which does the actual printing on the device that is cur­
rently associated with the printer. Interface programs may be shell procedures, C programs, or any other exe­
cutable programs. The LP model interfaces are all written as shell procedures and can be found in the / usr/
spool/Ip/model directory. At the time lpsched routes an output request to a printer P, the interface program
for P is invoked in the directory /usr/spool/lp as follows:

interface/P id user title copies options file ...
where
id is the request id returned by lp
user is logname of user who made the request
title is optional title specified by the user
copies is number of copies requested by user
options is a blank-separated list of class or
printer-dependent options specified by user
file is the full pathname of a file to be printed

EXAMPLES
The following examples are requests made by user “smith” with a system default destination of printer

“xyz”. Each example lists an lp command line followed by the corresponding command line generated for
printer xyz’s interface program:

1. lp /etc/passwd /etc/group
interface/xyz xyz-52 smith " " 1 " " /etc/passwd /etc/group

2. pr/etc/passw d I l p - t " users" — n5
interface/xyz xyz-53 smith users 5
/ usr/spool/lp/request/xyz/dO-53

3. lp /etc/passwd -o a -ob
interface/xyz xyz-54 smith " " 1 " a b " /etc/passwd

When the interface program is invoked, its standard input comes from /d ev /nu lland both the standard out­
put and standard error output are directed to the printer’s device. Devices are opened for reading as well as

D—10

LP Spooling System

writing when file modes permit. In the case where a device is a regular file, all output is appended to the end
of the file.

Given the command line arguments and the output directed to a device, interface programs may format
their output in any way they choose. Interface programs must ensure that the proper stty modes (terminal char­
acteristics such as baud rate, output options, etc.) are in effect on the output device. This may be done as follows
in a shell interface only if the device is opened for reading:

stty mode ... <&1

That is, take the standard input for the stty command from the device.

When printing has completed, it is the responsibility of the interface program to exit with a code indicative
of the success of the print job. Exit codes are interpreted by lpsched as follows:

CODE

zero

1 to 127

greater than 127

MEANING TO LPSCHED

The print job has completed successfully.

A problem was encountered in printing this particular request (e.g., too many nonprintable
characters). This problem will not affect future print jobs. Lpsched notifies users by mail
that there was an error in printing the request.

These codes are reserved for internal use by lpsched. Interface programs must not exit
with codes in this range.

When problems that are likely to affect future print jobs occur (e.g., a device filter program is missing),
the interface programs would be wise to disable printers so that print requests are not lost. When a busy printer
is disabled, the interface program will be terminated with signal 15.

SETTING UP HARDWIRED DEVICES A N D LOGIN TERMINALS AS LP PRINTERS

A. Hardwired Devices

As an example of how to set up a hardwired device for use as an LP printer, let us consider using tty line
15 as printer xyz. As superuser, perform the following:

1. Avoid unwanted output from non-LP processes and ensure that LP can write to the device:

$ chown lp /dev/ttyl5
$ chmod 600 /dev/ttyl5

2. Change /etc/inittab so that ttyl5 is not a login terminal. In other words, ensure that / etc/getty is not
trying to log users in at this terminal. Change the entries for line 15 to:

l:15:o:
2:15:o:

Enter the command:

$ init 2

If there is currently an invocation of /e tc /ge tty running on tty 15, kill it. Now, and when the UNIX system
is rebooted, tty 15 will be initialized with default stty modes. Thus, it is up to LP interface programs to
establish the proper baud rate and other stty modes for correct printing to occur.

D-l 1

LP Spooling System

3. Introduce printer xyz to LP using the model prx interface program:

$ /usr / l ib / lpadmin -pxyz - v / d e v / t t y l 5 - m p r x

4. When xyz is created, it will initially be disabled and lp will be rejecting requests routed to .t. If it is de­
sired, allow lp to accept requests for xyz:

/usr / l ib /accept xyz

This will allow requests to build up for xyz, and to be printed when it is enabled at a later time.

5. When it is desired for printing to occur, be sure that the printer is ready to receive output. For several
printers, this means that the top of form has been adjusted and that the printer is on-line. Enable p r in t ­
ing to occur on xyz:

enable xyz

When requests have been routed to xyz, they will begin printing.

B. Login Terminals

Login terminals may also be used as LP printers. To do this for a Diablo 1 6 4 0 terminal c a l l e d abc. p e r f o r m
the following:

1. Introduce printer a be to LP using the model 1640 interface program:

$ /usr / l ib / lpadmin -pabc - v , dev/null -m l6 4 0 -1

Note that d e v . n u l l is used as abe's device because we will specify the actual device each time t h a t a I n ­

is enabled. This device may be different from day to day. When abc is created, it will initial!’» be disabled;
and lp will be rejecting requests routed to it. If it is desired, allow Ip to accept requests f- >r abc:

usr, lib/accept abc

This will allow requests to build up for abc and to be printed when it is enabled at a later time. It is not
advisable to enable abc for printing, however, until the following steps have been taken.

2 Log terminal in if this has not already been done.

3 Assuming the tty (1) command reports tha t this terminal is d e v ityOd. a s s o c i a t e t his d e \ i c e w i t h orinter
abc:

$ /us r / l ib / lpadmin -pabc -v/ 'dev/ t ty02

Note that lpadmin may be used only by an LPA. If it is desired for other users to routinely perform this
step, then an LPA may establish a program owned by lp or by root with set-user-id permiss on that per­
forms this function.

4. When it is desired for print ing to occur, be sure that the printer is ready to receive output For several
printers, this means that the top of form has been adjusted. Enable [minting to occur on abc:

enable abc

When requests have been routed to abc, they will begin printing.

D — 1 2

LP Spooling System

5. When all printing has stopped on abc or when you want it back as a regular login terminal, you may pre­
vent it from printing more output:

$ disable abc
printer " abc " now disabled

If abc is enabled when the UNIX system is rebooted or when lpsched is restarted, it will be disabled
automatically.

S U M M A R Y

The administrative functions of the LP administrator have been described in detail. These functions include
configuring and reconfiguring LP; maintaining printer interface programs; accepting, rejecting, and moving
print requests; stopping and starting the LP scheduler; and enabling and disabling printers. LP offers adminis­
trators the following advantages over other centrally supported printer packages:

• Printers may be grouped into classes.

• LP may be configured to meet the needs of each site.

• Administrators may supply interface programs to format output in any way desirable.

• LP functions are performed by simple commands and not by hand.

D-13

APPENDIX E: SYSTEM ACTIVITY PACKAGE

This section describes the design and implementation of the UNIX System Activity Package. The UNIX op­
erating system contains a number of counters that are incremented as various system actions occur. The system
activity package reports UNIX system-wide measurements including Central Processing Unit(CPU) utilization,
disk and tape Input/Output(I/0) activities, terminal device activity, buffer usage, system calls, system switch­
ing and swapping, file-access activity, queue activity, and message and semaphore activities. The package pro­
vides four commands that generate various types of reports. Procedures that automatically generate daily
reports are also included. The five functions of the activity package are:

• sar(l) command—allows a user to generate system activity reports in real-time and to save system ac­
tivities in a file for later usage.

• sag(lG) command—displays system activity in a graphical form.

• sadp(1) command—samples disk activity once every second during a specified time interval and reports
disk usage and seek distance in either tabular or histogram form.

• tim ex (l)—a modified tim e(l) command that times a command and also reports concurrent system ac­
tivity.

• system activity daily reports—procedures are provided for sampling and saving system activities in a
data file periodically and for generating the daily report from the data file.

The following subsections describe the system activity counters
located in the operating system kernel; the commands in the system
activity package, the procedure for generating daily reports, source
file descriptions, and an explanation of some statistics.

SYSTEM ACTIVITY COUNTERS

The system activity counters provide the basis for the system activity
reporting system. Most of these counters are described by the sysinfo
data structure in /usr/include/sys/sysinfo.h. The system table
overflow counters are in the _syserr structure. The device activity
counters are extracted from the device status tables. The I/O
activity of all disk devices is recorded.

In the following paragraphs, the system activity counters that are sampled by the system activity package
are described.

Cpu tim e counters: There are four time counters that may be incremented at each clock interrupt 60 times
per second. Exactly one of the cpu[] counters is incremented on each interrupt, according to the mode the CPU
is in at the interrupt; idle, user, kernal, and wait for I/O completion.

L rea d and lw rite: The lread and Iwrite counters are used to .count logical read and write requests issued
by the system to block devices.

B rea d and bw rite : The bread and bwrite counters are used to count the number of times data is trans­
ferred between the system buffers and the block devices. These actual I/Os are triggered by logical I/Os that

E - l

System Activity Package

cannot be satisfied by the current contents of the buffers. The ratio of block I/O to logical I/O is a common mea­
sure of the effectiveness of the system buffering.

P h r e a d a n d p h w r i te : The phread and phwrite counters count read and write requests issued by the
system to raw devices.

Swapiia and Swapout: The swap in and swapout counters are incremented by each system
request initiating transfer from or to the swap device, including virtual memory page
transfers . Frequently used programs are kept on the swap device and swapped in ra ther
than loaded from the file system. The swapin counter ref lects these initial loading oper ­
ations as well as resumptions of act ivi ty, while the swapout counter reveals the level of
actual "swapping." The amount of data t ransferred between the swap device and memory
is measured in blocks and counted by bswapin and bswapout.

P s w itc h a n d s y s c a ll: These counters are related to the management of multiprogramming. Svscail is in­
cremented every time a system call; is invoked. The numbers of invocations of read(2), write(2), fork(2), and
execU) system calls are kept in counters sysread, syswnte, sysfork, and sysexec, respectively. Pswitch counts
the times the switcher was invoked, which occurs when:

a. a system call resulted in a road block

b. an interrupt occurred resulting in awakening a higher priority process

c. 1-second clock interrupt.

I g e t , n a m e i, a n d d ir b lk : These counters apply to file-access operations. Iget and name/, in particul ar, are
the names of UNIX operating system routines. The counters record the number of times that the respective rou­
tines are called. Namei is the routine that performs file system path searches. It searches the various directory
files to get the associated i-number of a file corresponding to a special path. Iget is a routine called to locate
the inode entry of a file (i-number). It first searches the in-core inode table. If the inode entry is not in the table,
routine iget will get the inode from the file system where the file resides and make an entry in the in-core inode
table for the file. Iget returns a pointer to this entry. Namei calls iget, but other file access routines also call
iget. Therefore, counter iget is always greater than counter namei.

Counter dirblk records the number of directory block reads issued by the system. It is noted that the direc­
tory blocks read divided by the number of namei calls estimates the average path length of files.

R u n q u e , ru n o cc , s w p q u e , a n d s w p o c c : These counters are used to record queue activities. They are im­
plemented in the clock.e routine. At every 1 second interval, the clock routine examines the process table to see
whether any processes are in core and in ready state. If so, the counter runocc is incremented and the number
of such processes are added to counter runque. While examining the process table, the clock routine also checks
whether any processes in the swap device are in ready state. The counter swpocc is incremented if the swap
queue is occupied, and the number of processes in swap queue is added to counter swpque.

R e a d c h a n d w r i te c h : The readch and writech counters record the total number of bytes (characters)
transferred by the r ead and w r i te system calls, respectively.

M o n ito r in g t e r m in a l d e v ic e a c t iv i t ie s : There are six counters monitoring terminal device activities.
Rcvmt, xmtint, and mdmint are counters measuring hardware interrupt occurrences for receiver, transmitter,
and modem individually. Rawch, canch, and outch count number of characters in the raw queue, canonical
queue, and output queue. Characters generated by devices operating in the rooked mode, such as terminals, are
counted in both rawch and (as edited) in canch, but characters from raw devices, such as commun ication proces­
sors, are counted only in rawch.

M s g a n d s e m a c o u n te r s : These counters record message sending and receiving activities and semaphore
operations, respectively.

E - 2

System Activity Package

M o n i t o r i n g I / O a c t i v i t i e s : As to the I/O activity for a disk or tape device, four counters are kept for each
disk or tape drive in the device status table. Counter io_ops is incremented when an I/O operation has occurred
on the device. It includes block I/O, swap I/O, and physical I/O. Io_bcnt counts the amount of data transferred
between the device and memory in 512 byte units. Io_act and io_resp measure the active time and response time
of a device in time ticks summed over all I/O requests that have completed for each device. The device active
time includes the device seeking, rotating and data transferring times, while the response time of an I/O opera­
tion is from the time the I/O request is queued to the device to the time when the I/O completes.

I n o d e o v f , f i l e o v f , t e x t o v f , a n d p r o c o v f : These counters are extracted from _syserr structure. When an
overflow occurs in any of the inode, file, text and process tables, the corresponding overflow counter is incre­
mented.

System Activity Commands

The system activity package provides three commands for generating various system activity reports and
one command for profiling disk activities. These tools facilitate observation of system activity during

• a controlled stand-alone test of a large system

e an uncontrolled run of a program to observe the operating environment

• normal production operation.

Commands sar and sag permit the user to specify a sampling interval and number of intervals for examin­
ing system activity and then to display the observed level of activity in tabular or graphical form. The tim ex
command reports the amount of system activity that occurred during the precise period of execution of a timed
command. The sadp command allows the user to establish a sampling period during which access location and
seek distance on specified disks are recorded and later displayed as a tabular summary or as a histogram.

The "sar" command

The sar command can be used in the following ways:

• When the frequency arguments t and n are specified, it invokes the data collection program sadc to
sample the system activity counters in the operating system every t seconds for n intervals and gener­
ates system activity reports in real-time. Generally, it is desirable to include the option to save the sam­
pled data in a file for later examination. The format of the data file is shown in sar(8>. In addition to
the system counters, a time stamp is also included. It gives the time at which the sample was taken.

• If no frequency arguments are supplied, it generates system activity reports for a specified time interval
from an existing data file that was created by sar at an earlier time.

A convenient usage is to run sar as a background process, saving its samples in a temporary file but sending
its standard output to /dev/null. Then an experiment is conducted after which the system activity is extracted
from the temporary file. The sar(l) manual entry describes the usage and lists various types of reports. Attach­
ment 11.3 gives formula for deriving each reported item.

The "sag" command

Sag displays system activity data graphically. It relies on the data file produced by a prior run of sar after
which any column of data or the combination of columns of data of the sar report can be plotted. A fairly simple
but powerful command syntax allows the specification of cross plots or time plots. Data items are selected using
the sar column header names. The sar(lG) manual entry describes its options and usage. The system activity

E-3

System Activity Package

graphical program invokes graphics(lG) and tplot(lG) commands to have the graphical output displayed on
any of the terminal types supported by tplot.

The "timex" command

The timex command is an extension of the time(l) command. Without options, timex behaves exactly like
time. In addition to giving the time information, it also prints a system activity report derived from the system
counters. The manual entry timex(l) explains its usage. It should be emphasized that the user and sys times
reported in the second and third lines are for the measured process itself including all its children while the
remaining data (including the cpu user % and cpu sys %) are for the entire system.

While the normal use of timex will probably be to measure a single command, multiple commands can also
be timed; either by combining them in an executable file and timing it, or more concisely, by typing:

timex sh - c " cmdl; cmd2; ... ; "

This establishes the necessary parent-child relationships to correctly extract the user and system times con­
sumed by cmdl,cmd2, . . . (and the shell).

The "sadp" command

Sadp is a user level program that can be invoked independently by any user. It requires no storage or extra
code in the operating system and allows the user to specify the disks to be monitored. The program is reawak­
ened every second, reads system tables from /dev/kmem, and extracts the required information. Because of the
1 second sampling, only a small fraction of disk requests are observed; however, comparative studie s have shown
that the statistical determination of disk locality is adequate when sufficient samples are collected.

In the operating system, there is an iobuf for each disk drive. It contains two pointers which are head and
tail of the I/O active queue for the device. The actual requests in the queue may be found in three buffer header
pools—system buffer headers for block I/O requests, physical buffer headers for physical I/O requests, and
swap buffer headers for swap I/O. Each buffer header has a forward pointer which points to the next request
in the I/O active queue and a backward pointer which points to the previous request.

Sadp snapshots the iobuf of the monitored device and the three buffer header pools once every second dur­
ing the monitoring period. It then traces the requests in the I/O queue, records the disk access location, and
seeks distance in buckets of 8 cylinder increments. At the end of monitoring period, it prints out the sampled
data. The output of sadp can be used to balance load among disk drives and to rearrange the layout of a particu­
lar disk pack. The usage of this command is described in manual entry sadp(l).

Daily Report Generation

The previous part described the commands available to users to initiate activity observations. It is probably
desirable for each installation to routinely monitor and record system activity in a standard way for historical
analysis. This part describes the steps that a system administrator may follow to automatically produce a stan­
dard daily report of system activity.

Facilities

e sadc— The executable module of sadc.c (see Attachment 11.1) which reads system counters from /d e v /
kmem and records them to a file. In addition to the file argument, two frequency arguments are usually
specified to indicate the sampling interval and number of samples to be taken. In case no frequency a r­
guments are given, it writes a dummy record in the file to indicate a system restart. •

• s a l— The shell procedure that invokes sadc to write system counters in the daily data file /u s r /
adm/sa dd where dd represents the day of the month. It may be invoked with sampling interval and
iterations as arguments.

E—4

System Activity Package

• sa2— The shell procedure that invokes the sar command to generate daily report /usr/adm /sa /sardd
from the daily data file /usr/adm /sa/sa dd. It also removes daily data files and report files after 7 days.
The starting and ending times and all report options of sar are applicable to sa2.

Suggested Operational Setup

It is suggested that the cron(lM) control the normal data collection and report generation operations. For
example, the sample entries in /usr/lib/crontab:

0 * * * 0,6 su sys -c " /u sr/lib /sa /sa l "
0 18- * * 1-5 su sys - c " /u sr/lib /sa /sa l "
0 8-17 * * 1-5 su sys — c " /u sr/lib /sa /sa l 1200 3 "

would cause the data collection program sadc to be invoked every hour on the hour. Moreover, depending on
the arguments presented, it writes data to the data file one to three times at every 20 minutes. Therefore, under
the control of cron(lM), the data file is written every 20 minutes between 8:00 and 18:00 on weekdays and hourly
at other times.

Note that data samples are taken more frequently during prime time on weekdays to make them available
for a finer and more detailed graphical display. It is suggested that s a l be invoked hourly rather than invoking
it once every day; this ensures that if the system crashes data collection will be resumed within an hour after
the system is restarted.

Because system activity counters restart from zero when the system is restarted, a special record is written
on the data file to reflect this situation. This process is accomplished by invoking sadc with no frequency argu­
ments within /e tc/rc when going to multiuser state:

su adm -c " /usr/lib /sa/sadc /usr/adm /sa/sa 'date +%d' "

Cron(lM) also controls the invocation of sar to generate the daily report via shell procedure sa2. One may
choose the time period the daily report is to cover and the groups of system activity to be reported. For instance,
if:

0 20 * * 1-5 su sys - c " /usr/lib /sa/sa2 - s 8:00 - e 18:00 - i 3600 -uybd "

is an entry in /usr/lib/crontab, cron will execute the sar command to generate daily reports from the daily
data file at 20:00 on weekdays. The daily report reports the CPU utilization, terminal device activity, buffer us­
age, and device activity every hour from 8:00 to 18:00.

In case of a shortage of the disk space or for any other reason, these data files and report files can be re­
moved by the superuser. The manual entry sar(8) describes the daily report generation procedure.

E-5

System Activity Package

SOURCE FILES

When s o u r c e c o d e i s p r o v i d e d , t h e f o l l o w i n g s o u r c e f i l e and s h e l l
p r o g r a m s a r e i n t h e d i r e c t o r y / u s r / s r c / c m d / s a .

sa.h The system activity header file defines the structure of data file and device information
for measured devices. It is included in sadc.c, sar.c, and timex.c.

sadc.c: The data collection program that accesses /dev/km em to read the system activity counters
and writes data either on standard output or on a binary data file. It is invoked by the sar
command generating a real-time report. It is also invoked indirectly by entries in /u sr /lib /
crontab to collect system activity data.

sar.c The report generation program invokes sadc to examine system activity data, generates
reports in real-time, and saves the data to a file for later usage. It may also generate sys­
tem activity reports from an existing data file. It is invoked indirectly by c ron to generate
daily reports.

saghdr.h The header file for saga.c and sagb.c. It contains data structures and variables used by
saga.c and sagb.c.

saga.c & sagb.c The graph generation program that first invokes sar to format the data of a data file in
a tabular form and then displays the sar data in graphical form.

sa l . sh The shell procedure that invokes sadc to write data file records. It is activated by entries
in /usr/lib/crontab.

sa2.sh The shell procedure that invokes sar to generate the report. It also removes the daily data
files and daily report files after a week. It is activated by an entry in /usr/lib/crontab on
weekdays.

timex.c The program that times a command and generates a system activity report.

sadp.c The program that samples and reports disk activities.

E-6

System Activity Package

THE SYSINFO STRUCTURE

Feb 3 15:46 1984 sysinfo.h Page 1

/* Convergent Technologies - System V - May 1983
/* (i)sysinfo.h 1.2" */

iifndef sysinfo_h
idefine sysinfo_h

♦include <sys/types.h>

struct sysinfo {
time_t c p u [4];

idefine CPU IDLE 0
idefine CPU USER 1
idefine CPU KERNAL 2
idefine CPU_WAIT 3

time t wa i t [3] ;
idefine . W 10 0
idefine W SWAP 1
idefine W_PI0 2

long bread;
long bwri te;
long lread;
long lwri te;
long phread;
long phwrite;
long swapin;
long swapout;
long bswapin;
long bswapout;
long pswitch;
long syscall;
long sysread;
long syswrite;
long sysfork;
long sysexec;
long runque;
long runocc;
long swpque;
long swpocc;
long iget;
long namei;
long dirblk;
long readch;
long writech;
long rev int;
long xmti nt;
long mdm int;
long rawch;
long canch;
long outch;
long ms g ;
long sema;

r

V

E-7

System Activity Package

extern struct sysinfo sysinfo;

struct syswait {

Feb 3 15:46 1984 sysinfo.h Page

short iowait;
short swap;
short

};
physio;

extern struct syswait syswait •
f

struct syserr {
long inodeovf;
long fileovf;
long tex tovf;
long procovf;
long sb i [5];

#define SBI SILOC 0
♦define SBI CRDRDS 1
♦define SBI ALERT 2
♦define SBI FAULT 3
♦define SBI_TIMEO 4
};

extern struct
♦ end if

syserr syserr;

E-8

System Activity Package

DERIVATION OF BASIC STATISTICS

Here is how the basic system activity statistics are derived. Each
item discussed below is the data difference sampled at two distinct
times, t2 and tl.

CPU Utilization

%-of-cpu-x = cpu-x / (cpu-idle + cpu-user + cpu-kernel + cpu-wait) * 100

where cpu-x is cpu-idle, cpu-user, cpu-kernel (cpu-sys), or cpu-wait.

Cached Hit Ratio

%-of-cached-I/O = (logical-I/O - block-I/O) / logical-I/O * 100

where cached I/O is cached read or cached write.

Disk or Tape I/O Activity

%-of-busy = I/O-active / (t2 — tl) * 100;
avg-queue-length = I/O-resp / I/O-active;
avg-wait = (I/O-resp — I/O-active) / I/O-ops;
avg-service-time = I/O-active / I/O-ops.

Queue Activity

avg-x-queue-length = x-queue / x-queue-occupied-time;
%-of-x-queue-occupied-time = x-queue-occupied-time / (t2 — t l);

where x-queue is run queue or swap queue.

The Rest of System Activity

avg-rate-of-x = x / (t2 — tl)

where x is swap in/out, blks swapped in/out, terminal device activities, read/write characters, block read/write,
logical read/write, process switch, system calls, read/write, fork/exec, iget, namei, directory blocks read, disk/
tape I/O activities, message or semaphore activities.

E-9

Appendix F
TM30 Keyboard Translation Table

Table F-l shows the ASCII character set for the TM30. The characters in the
left column are hexadecimal digits frcm 0 (zero) to F. The middle" column shows
the keystrokes that generate the ASCII code. The column on the right gives the
characters, if any, that appear on screen when you press the key(s) shown in
the middle column.

Table F-l. TM30 Keyboard Translation Table

Hexadecimal
Code

TM30
Keyboard
Keystrokes

Displayable
Characters

00 Ctrl = NO
01 Ctrl A No
02 Ctrl B No
03 Ctrl C No
04 Ctrl D No
05 Ctrl E No
06 Ctrl F No
07 Ctrl G No
08 <— (left arrow, bcksp) No

or Ctrl H No
09 Tab or Ctrl I No
0A Ctrl Accept or Ctrl J No
0B Ctrl K No
0C Ctrl L No
0D Return or Ctrl M No
0E Ctrl N No
0F Ctrl 0 No
10 Ctrl P No
11 Ctrl Q No
12 Ctrl R No
13 Ctrl S No
14 Ctrl T NO
15 Ctrl U No
16 Ctrl V NO
17 Ctrl W NO
18 Ctrl X No
19 Ctrl Y No
1A Ctrl Z No
IB (See "Hex Code/Escape

Sequences," below)
1C Ctrl , (ccmua) No
ID Ctrl (No
IE Ctrl . (period) No
IF Ctrl [No
20 Space bar NO
21 l 1

Table F-l. TM30 Keyboard Translation Table (Gont.)

Hexadecimal
Code

TM30
Keyboard
Keystrokes

Displayable
Characters

52 Shift R R
53 Shift S S
54 Shift T T
55 Shift U U
56 Shift V V
57 Shift W W
58 Shift X X
59 Shift Y Y
5A Shift Z z
5B [L
5C Ctrl / \
5D
5E

] 1

5F (underscore)
60 Ctrl ' T

61 A a
62 B b
63 C c
64 D d
65 E e
66 F f
67 G g
68 H h
69 I i
6A J j
6B K k
6C L 1
6D M m
6E N n
6F 0 o
70 P P
71 Q q
72 R r
73 S s
74 T t
75 U u

76 V V
77 w w
78 X X
79 Y y
7A Z z
7B { l
7C 1 1
7D } }
7E A A
7F Ctrl - No

Table F-l. TM30 Keyboard Translation Table (Gant.)

Hex Code/
Escape
Sequence

•
TM30
Keyboard
Keystrokes

Displayable
Characters

ESC [% - (Numeric Island) No
ESC [| J5 No
ESC [Sc Ins No
ESC [- — > (Right Arrow) No
ESC [{ F4 No
ESC [} F5 No
ESC [[F9 No
ESC [] Delete No
ESC [' . (Numeric Island) No
ESC [" 4 (Numeric Island) No
ESC [\ Qnd No
ESC C 2 b Shift 1/2 No
ESC [2 g Shift Exit No
ESC [2 h Shift Erase No
ESC [2 i Shift 1 (Numeric Island) No
ESC [2 j Shift 2 (Numeric Island) No
ESC [2 k Shift 3 (Numeric Island) No
ESC [2 1 Shift Accept NO
ESC [2 n Shift Copy No
ESC [2 o Shift 0 (Numeric Island) No
ESC [2 r Shift Char Attr No
ESC [2 s Shift Undo No
ESC [2 t Shift Hone No
ESC [2 u Shift Up Arrow No
ESC [2 v Shift Help No
ESC [2 w Shift Windo No ;
ESC [2 x Shift Print No
ESC [2 y Shift FI No !
ESC [2 z Shift E3 No 1
ESC [2 I Shift F2 No i
ESC [2 0 Shift 18 No i
ESC [2 Q Shift Reset No 1
ESC [2 R Shift <— (Lft Arrw, Bsp) No
ESC [2 U Shift Slot No
ESC [2 V Shift Move No
ESC [2 W Shift 7 (Numeric Island) No
ESC [2 X Shift 8 (Numeric Island) No
ESC [2 Y Shift 9 (Numeric Island) No
ESC [2 Z Shift Alt No !
ESC [2 Shift Down Arrow No
ESC [2 ~ Shift F7 No
ESC [2 # Shift 5 (Numeric Island) No
ESC [2 $ Shift 6 (Numeric Island) No
ESC [2 % Shift - (Numeric Island) No
ESC [2 I Shift F5 No
ESC [2 & Shift Ins No
ESC [2 - Shift — > No
ESC [2 { Shift F4 No

t

USER S COM M ENTS

System 6300 Administrator’s Guide
S6000-50-1A HELP!
Help us help you! Please take the time to complete this form and send it to us. If you do, you may see some of
your own contributions in the next manual you obtain from us.

• Does this manual provide the information you need? □ Yes □No
— What is missing?

• Is the manual accurate? □ Yes l]No
— What is incorrect? (Be specific.)

• Is the manual written clearly? □ Yes UNo
— What is unclear?

• What other comments can you make about this manual?

• What do you like about this manual?

• On a scale of 1 to 10, how do you rate this manual? Low |— |— |— |— |— |— |— |— | High
1 2 3 4 5 6 7 8 9 10

• Was this manual difficult to obtain? □ Yes GNo

Please include your name and address if you would like a reply.

Name____________________________
Company_________________________
Address__________________________

No postage required if mailed within the USA.

• What is your occupation?
□ Programmer □ Operator
□ Systems Analyst □ Instructor
□ Engineer □ Student

How do you use this manual?

□ Reference Manual □ Introduction
□ In a Class Hi Introduction
lI Self Study H Other

fold

II Manager
III Customer Engineer
ZI O ther___________

to the Subject
to the System

fold

FIRST CLASS
Permit No. 194

Cupertino,
California

BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States

Postage will be Paid by . . .

MOTOROLA INC.
10700 N. De Anza Blvd.
Cupertino, CA 95104

e

O

Attention: Technical Services, MS 42-1C8

fold fold

Staple Here

EJ1847A,

(M) MOTOROLA
Information Systems

10700 North De Anza Blvd., Cupertino, California 95014 • (408) 255-0900

	System 6300 Administrator’s Guide
	Selected Series 6000 Publications
	PREFACE

	Contents
	SECTION 1: INTRODUCTION
	SECTION 2: ADMINISTRATIVE INTERACTION
	SECTION 3: ADDING NEW PERIPHERAL DEVICES
	SECTION 4: USING DISKS
	SECTION 5: USER SUPPORT
	SECTION 6: BACKUPS AND RESTORES
	APPENDIX A: FILE SYSTEM CONCEPTS
	APPENDIX B: INIT AND GETTY
	APPENDIX C: SYSTEM ACCOUNTING
	APPENDIX D: LP SPOOLING SYSTEM
	APPENDIX E: SYSTEM ACTIVITY PACKAGE
	APPENDIX F: TM30 Keyboard Translation Table

