
iwm j

You should already have read the Beginner's Manual that
describes the way that the Colour Genie works and how it
should be connected up to the TV and tape recorder. If you
have not already read this booklet, or think that you know it
all, then quickly read it now. There are things in there that
are very important to know!

This book goes through most of the BASIC commands
available on the Colour Genie and give examples of the
syntax and sample programs. The commands themselves
are given in alphabetical order, grouped in a logical order,
by their operating mode. Consequently some jumping around
within the text will be necessary and no attention has been
taken of the order in that the commands come.

A third book is being written to complement these
two. This will contain all the system information and a lot of
the detail that w ill let serious programmers and hardware
engineers have all the information that they need.

This book is no t a BASIC programing manual. It is a
reference book, and should be treated as such. There are
many fine books on the market that can teach you how to
program in BASIC and if you are not familiar with the
language then one of these should be read along with this
manual.

INTRODUCTION

1

VARIABLE TYPES
The Colour Genie accepts variable names which are longer
than two characters; however, only the first two characters
are used by the computer to distinguish between other
variables. Variable names must begin with a letter (from A
to Z) and followed by another letter or a digit (from 0 to 9).
The following are valid and distinct variables:

A, AA, AB, AC, AO, A1, BN, BZ, B7, ZZ, Z1

Note: The user should not use any variable name which
contains words with special meaning (or reserved words) in
the BASIC language. For example, "C IF " cannot be used as
a variable name, since it contains the BASIC keyword " IF " .

A list of reserved words is in Appendix A.

There are four types of variables used with the Colour Genie:
integer, single precision, double precision, and string variables.
The first three types are used to store numeric values, whereas
the last type is used only for character storage.

1. %: integer (whole numbers within the range
-3 2 7 68 to +327 67)

Example:

A% = -3 0
BB% = 8 000

2. !: single precision (6 significant digits)

Example:

A! = -50 .3
D4! = .123 456

3. #: double precision (16 significant digits)

Example:

A# = 3.141 592 653 589
A2# = - 4 567.890 123 4

2

4. $: string (maximum length: 255 characters)

Example:

A$ = "COLOUR GENIE"
M2$ = "THE RESULT OF

(A * B + 15)/2.5 IS :"

Though A%, A !, A#, A$ all have the same variable name "A " ,
their types are different, that is %, !, #, $: they are considered
to be distinct variables by the computer.

The Colour Genie uses normal arithmetic symbols:

+ for addition, — for subtraction, * for multiplication, /
for division, and the t key for exponentiation.

For example, the result of 5 x 12(1 /3) is equivalent to the
result of 5 * 12[(1/3) in Colour Genie BASIC (Note: you will
find no [key on the keyboard, it is represented by the t key).

3

Whenever a decision has to be made within a program, a
relational operator is needed. The acceptable operators are:

< (less than) < = (less than or equal to)
> (greater than) > = (greater than or equal to)
< > (not equal) = (equal to)

Example:

120 IF A < B THEN PRINT "B IS GREATER
THAN A "

When the computer executes this statement, if the content of
B is greater than the content of A (i.e., A < B is true), the
sentence "B IS GREATER THAN A " will be printed on the
screen. Otherwise the computer will just go to the next
statement.

RELATIONAL OPERATORS

4

LOGICAL OPERATORS
AND, OR, and NOT are the only logical operators accepted
by the Colour Genie.

Example:

10 IF A = 1 and B = 5 GOTO 50

The computer branches to line 50 if A = 1 and B = 5,
otherwise the computer goes to the next statement following
line 10.

20 A = (B = 2) AND (C > 10)

A has the value of —1, if both B = 2 and C > 10 are true.
Otherwise A has the value of 0.

40 A = (D < 2) OR (E < 20)

A has the value of —1 if either D < 2 or E < 20 is true.
When both D > 2 and E > 20 are true, then A has the value
of 0.

70 A = NOT (F > 5)

Try the following 2 programs for yourself:

PROGRAM 1

5 REM "A N D " DEMO
10 REM PASSWORD ROUTINE
20 INPUT "ENTER FIRST PASSWORD": PI $
30 INPUT "ENTER SECOND PASSWORD"; P2$
40 INPUT "ENTER THIRD PASSWORD": P3$
50 IF P1$ = "SOOTY" AND P2$ = "SWEEP" AND

P3$ = "SUE" THEN 70 ELSE 60
60 PRINT "YOU DO NOT KNOW ALL PASSWORDS TRY

AG AIN ": GOTO 20
70 PRINT "YOU KNOW THE PASSWORDS :::: ENTER ...

5

PROGRAM 2

5 REM OR DEMO. PROGRAM
10 INPUT "ENTER 3 NUMBERS"; A, B, C
20 PRINT "THE SMALLEST NUMBER IS";
30 IF A > B OR A > C THEN IF B > C THEN PRINT C

ELSE PRINT B ELSE PRINT A
40 PRINT "THE LARGEST NUMBER IS";
50 IF A < B OR A < C THEN IF B < C THEN PRINT C

ELSE PRINT B ELSE PRINT A

6

ln string operations, the relational operators are used to
compare the precedence of two strings.

STRING OPERATORS

[Mote that the following operations are all true.

"B " < "C " (THE CODE FOR B IS
LESS THAN THE CODE
FOR C)

"JOHN" > "JAC K" (SAME REASON AS
ABOVE)

"STRING" = "STRING"
"LETTERS " < > "LETTERS"(SPACE ALSO COUNTS)
A$ = "B O " + "A T " (AS W ILL HAVE THE

VALUE: BOAT)

7

Operations in the innermost level of parentheses are
performed first, then evaluation proceeds to the next level,
etc. Operations on the same level are performed according
to the following precedence rules.

ORDER OF OPERATORS

1. Exponentiation A [B
2. Negation -C
3. Multiplication and Division A * B, C/D
4. Addition and Subtraction C + D, E - F
5. Relational Operators A < B, "C " = "C "

15 < > 16 , 1 > 0
6. Logical Operators NOT, AND, OR

For example, we have a formula.

10 ANS = A + B * C * D/2 + E [2

The computer will evaluate in the following sequence. If

A = 2
B = 3
C = 4
D = 5
E = 6

Then apply to the formula above

2 + 3 * 4 * 5/2 + 6 [2

12

60 / 2

30

32L 36J
68

Therefore the answer should be 68.

The fol lowing program il lustrates the use of these arithmetical
operators:

10 REM POUNDS TO KGS CONVERT
20 INPUT "ENTER WEIGHT IN STONES, POUNDS,

OUNCES"; S, P, 0
30 W = S * 14 + P + 0/16: REM WEIGHT IN POUNDS
40 KG = INT (W/2.2)
50 G = W/2.2 - KG
60 G1 = G * 1 000
70 PRINT "YOU WEIGHT"; KG; "KILOGRAMS AND";

G1; "GRAMS"

9

CHAPTER 1 :
“ACTIVE” COMMANDS
When the computer is initially switched on the screen has a
"MEM SIZE?" message. Once the RETURN key has been
pressed the Colour Genie goes into "active" command mode.

The normal indication is the word "COLOUR BASIC
READY" followed by a " > " sign which appears on the
next line at the upper left corner on the display (monitor or
TV screen). For convenience we will call this indication the
"ready message".

A t this point, the user should hit the RETURN key before
entering one of the following commands through the
keyboard.

1. AUTO 6. CSAVE 11. RUN
2. CLEAR 7. DELETE 12. SYSTEM
3. CLOAD 8. EDIT 13. TROFF
4. VERIFY 9. LIST 14. TRON
5. CONT 10. NEW 15. LLIST

Everything inside the brackets is optional. For example:
AUTO (line number, increment). All the user has to do is
type in the underlined portion:

AUTO 10,5

or any numeric value to replace "line number" and
"increment". In case the option is not taken, just type in:

LIST

The computer will perform certain specified actions
automatically. Notice: Every command should be followed
by pressing the RETURN key.

10

AUTO (1, n)

This command automatically sets the line numbers before
each source line is entered. 1 specifies the beginning line
number and n the increment desired between lines. If the
user only types in AUTO followed by the RETURN key,
the beginning line number will be set at 10, with each
increment of 10. The user may enter his program
statement right after the line number.

Example:

30 PRINT "THIS IS LINE 30"

Everytime the user hits the RETURN key, the computer
will increment the line number. Until the BREAK key is hit,
the AUTO command will remain in operation. (Note that
whenever AUTO brings up a line that has been used
previously, there will be an asterisk appear right next to the
line number. If the user does not want to alter that line, hit
the BREAK key to turn o ff the AUTO function).

11

Example:

READY
> AUTO 1, 2
1 LINE 1
3 LINE 3
5 LINE 5
7 LINE 7
9 m

BREAK

READY
> AUTO 2, 2
2 SECOND LINE
4 FOURTH LINE
6 SIXTH LINE
8 B

BREAK

READY
> AUTO
10 LINE 10
20 LINE 20
30 LINE 30
40 m m

BREAK

READY
> AUTO 1, 1
1*

2*

3*
4*
5*

RETURN

RETURN

RETURN

RETURN

12

CLEAR

The CLEAR command will clear a specific number of bytes
for strings storage. If the option is not used i.e., type in
CLEAR followed by the RETURN key, the computer will
reset all numeric variables to zero, and all string variables to
null. When the option is taken, the command will perform,
in addition to the first function, a second function: that is
to clear a specified number of bytes for string storage. Note
that when the user turns on the computer, a CLEAR 50
command is performed automatically.

Example:

CLEAR 100

Reset all numeric variables to zero, and all string variables to
null. Then clears 100 bytes of memory for string storage.

CLOAD " f "

CLOAD " f " will load a specified program according to the
file name, " f " to the computer from a cassette. Before using
this command, the user should re-wind the cassette tape,
check the cables and connectors (consult the Beginner's
Manual). If everything is ready, type in, for example CLOAD
"A ” then hit the RETURN key. Now press the PLAY button
of the cassette recorder and the computer will search until the
file named "A " is found. If the file is found, a stable and a
blinking asterisks w ill appear at the top right corner of the
display to indicate loading is carrying out. Once the entire
program has been loaded in the computer, the READY
message will appear on the display.

Example:

CLOAD "3 "

Load from cassette the file named "3 " . Note that only the
first character of the file name is used for CLOAD, CSAVE
and VERIFY commands.

13

CONT

This command continues the program execution, at the point
where the execution has been stopped by the BREAK key or
a STOP statement within the program.

CSAVE

This command transfers the program with file name " f " in
the computer's main memory onto cassette tape. The file name
must be accompanied with this command. Any alphanumeric
character other than double quotes (") will be acceptable as a
file name. Again, before using the command, the cassette tape
must be in a proper starting location (not overlapped with any
useful program location). Check the cables and connectors,
press the PLAY and REC buttons of the cassette at the same
time, then start typing the command accordingly.

Example:

CSAVE "C "

Saves a program with label "C " on the cassette recorder from
the main memory. Warning: keep account of the locations of
the saved programs on tape. Find an empty space for the new
program to be loaded, unless you want to erase the old
programs. Erased programs are not recoverable.

DELETE n l (—n2)

This command will clear the memory location that contains
the specified line(s).

Example:

DELETE 5
DELETE 7 - 1 0

DELETE -1 2

DELETE.

Clear line 5
Clear line 7, line,10 and any line in
between
Clear from the first line of the
program, up to and including line 12.
Clear the line currently entered, or
edited.

14

EDIT n

This command will cause the computer to shift from the
active command mode to the editing mode. In the editing
mode, the user is allowed to examine and modify the
program statements in the main memory, by using a set of
sub-commands. There must be a valid line number following
the EDIT command, otherwise the command may not be
accepted. See Chapter 2.

Example:

EDIT 20

Turns the computer from active command mode to editing
mode — then examines line 20.

LIST (n1—n2)

LIST tells the computer to display any specified program
lines stored in the main memory. If the options are not used,
the computer will scroll the entire program onto the display.
In order to pause and examine the text, the user should hit
the SHIFT key together with the @ key. The scrolling will continue
by hitting any key.

Example:

LIST 3
LIST 10 - 20

LIST -5 0

LIST 20 -
LIST .

LIST

display line 3
display line 10, line 20 and any line in
between
display from the first line up to and
include line 50
display line 20 and all following lines
display the current line just entered or
edited
display all lines in the memory.

15

LLIST

Lists a program onto the printer. This command functions in
a very similar way as the LIST command. If the Line printer
is not properly connected, the computer will enter a dead
loop and waits to print the first character. This situation can
only be resolved by turning the printer on or hitting the
RESET buttons.

NEW

This command will clear all program lines; reset numeric
variables to zero and string variables to null. It does not
change the memory size previously set by the CLEAR
command.

RUN (n)

RUN instructs the computer to start executing (or RUN) the
user's program stored in main memory. If a line number is
not specified, the computer will start executing from the
lowest line number. However, if a line number is provided,
the computer will execute from the given line number to
higher order lines. Note that an error will occur if an
invalid line number is used.

Everytime a RUN is executed, a CLEAR command is also
executed automatically before it.

Example:

RUN 50 start executing at line 50
RUN start executing at the lowest number line.

RUN can also be included as part of a program line and has
the effect of restarting the program from the appropriate
line number.

16

SYSTEM

This command turns the computer into the monitor mode.
Within this mode, the user may load his own program or
data file in machine code format. To load an object file
from tape, type in SYSTEM and RETURN; the " * ? " symbol
will be displayed. Then type in the file name. The tape will
begin loading. When loading is completed, another " * ? " will
appear. Type in a slash " / " symbol followed by the entry
point address (in decimal) where the user wants the
execution to start. If the user does not type in the entry
address, execution will begin at the address specified by the
object file.

TROFF

This command will turn o ff the Trace function. Usually
follows the TRON command.

TRON

This command will turn on a Trace function that allows
the user to keep track of the program flow for debugging
and execution analysis. Everytime the computer executes a
new program line, the line number will be displayed inside
a pair of brackets.

Example: Consider the following program:

10 PRINT " * * PROGRAM 1 * * "
20 A = 1
30 IF A = 3 THEN 70
40 PRINT A
50 A = A + 1
60 GOTO 30
70 PRINT "END PROGRAM 1"
80 END

17

Type in

> TRON RETURN
> RUN RETURN

< 10 > * * PROGRAM 1 * *
< 20 > < 30 > < 40 > 1
< 50 > < 60 > < 30 > < 40 > 2
< 50 > < 60 > < 30 > < 70 > END PROGRAM 1
< 80 >

In order to pause execution before its natural end, the
SHIFT @ keys must be pressed. To continue, just press any
key. To turn o ff the Trace function, enter TROFF.

TRON and TROFF are available for use within user programs
to check if a given line is executed

Example:

90 IF A = B THEN 160
100 TRON
110 A = B + C
120 TROFF

In this portion of a program, if A happens to be not equal to
B, the line 110 should be executed. By using TRON and
TROFF inside the program, the user can see precisely
whether line 110 has been executed or not. The computer
will display < 110 > < 120 > if these lines were executed.
TRON and TROFF can be removed after a program is
debugged.

18

VERIFY "f

This command will compare a specific program stored on
cassette tape with the one in the computer's main memory.
Usually, this command is used right after the CSAVE
command which stores a program from the computer's main
memory to a cassette. The VERIFY command allows the
user to examine whether the copying (CSAVE) operation is
successful.

It is good practice to include the file name in this command,
since the computer will search for that file, or program,
before comparison starts. Otherwise the first file encountered
on the cassette will be compared. During the operation, the
program on tape and the program in memory are compared
byte by byte. If any part does not match, the message “ BAD"
will be displayed. In this case, the user should repeat the
CSAVE command again. Same as CLOAD Command, the
cassette must be re-wound, cables and connectors checked,
press the RETURN key, prior pressing the PLAY button on the
cassette recorder.

19

CHAPTER 2 : EDITING
The purpose of editing in the Colour Genie BASIC is to help
you modify programs. With the Editor, you need not type in
the entire program every time you make a programming
mistake or typing error. The need for an editor becomes
more critical when programs are long and complex.

In this chapter we discuss every editing function including
subcommands, that are available in Genie BASIC. A substantial
amount of descriptive examples are presented with each
command. You are advised to try out each editing command
before entering your first program into the system.

EDIT n

EDIT shifts the computer from the Active Command mode to
the Editing. The user must specify which line he wants to
edit. If the line number is not provided, an UL error will
occur (see Appendix B).

Example:

EDIT 100 (allow to edit line 100)
EDIT. (allow to edit the current line just entered).

RETURN Key

If you press the RETURN key while in the EDIT mode, the
computer will record all the changes made in that line, and
return back to the Active Command mode.

n Space-bar Key

In the EDIT mode, pressing the space-bar will move the
cursor one space to the right and display any character
stored in the preceding position. You may type in the value
of n before hitting the Space-bar, then the cursor will move
n spaces to the right side.

20

Suppose you have entered a line into the computer by the
command:

> AUTO 100
100 IF A = B THEN 150 : A = A + 1 : GOTO 100

If you want to edit this line, you should type in EDIT 100
followed by the RETURN key, like the following.

RETURN

then the display will become:

100 _
By pressing the Space-bar 12 times, the cursor will move to
the right side by 12 spaces. The display should look like:

100 IF A = B THE _

You may also use the option to display more characters at
once. That is, enter the number of cursor spaces desired,
before hitting the Space-bar Example

Type in 8 followed by the Space-bar key:

100 IF A = B THE _

The display w ill become

100 IF A = B THEN 150 : _

If you want to display the next 20 positions, you may type
20 then the Space-bar again. The outcome should be:

100 IF A = B THEN 150 : A = A + 1 : GOTO 100 _

21

K E Y

This action w ill move the cursor back to the left by n spaces.
Everything behind the cursor will disappear from the
display; however, it is not erased from the memory.

Example:

100 IF A = B THEN 150 : A = A + 1 : GOTO 100

Hit the 5
H
■ ■ key, the display w ill look like this:

100 IF A = B THEN 150 : A = A + 1 : GOT

Then type 10 and the display changes to:

100 IF A = B THEN 150 : A = A

After this sequence of operations, if the user hits the
RETURN key, the display will look like:

100 IF A = B THEN 150 : A = A + 1 : GOTO100
> -

That means the computer has returned back to the Active
Command mode. If any further change is desired in line
100, the user must enter the Edit mode again.

SHIFT t KEY

By pressing the SHIFT and t keys simultaneously, the
computer will escape from any of the following Insert
subcommands: H, I, X. After escaping from an Insert
subcommand, you remain in the Editing mode, while
the current cursor position is unchanged. Another way,
to escape from these Insert subcommands, is by pressing
the RETURN key, which will shift the computer back
to the Active Command mode.

22

H
K E Y

"H " represents Hack and Insert; that is to delete
remainder of the line and to let you insert materials at
the current cursor position.

Example:

Consider this line:

100 IF A = B THEN 150 : A = A + 1 : GOTO 100

If you want to replace A = A + 1 by A = A + B, and to
delete GOTO 100, you should first enter the editing mode,
type in 25 followed by pressing the Space-bar (move 25
spaces from the beginning of the line). The display should
look like:

100 IF A = B THEN 150 : A = A

Now hit the H key, type in + B then hit RETURN (back to
the Active Command mode). Or h it SHIFT and t
simultaneously to return to editing mode, then hit L to
display the entire line, as below:

100 IF A = B THEN 150 : A = A + B
100 _

with anything not displayed being deleted.

I
— KEY

" I " for Insert; that is to allow insertion of characters
starting at the current cursor position, w ithout altering any
other part of the line.

23

You want to insert the statement "PRINT A " between
"A = A + 1" and "GOTO 100" in line 100. Line 100 looks
like this:

100 IF A = B THEN 150 : A = A + 1 : GOTO 100

By using the EDIT mode and the Space-bar Move the
cursor to:

100 IF A = B THEN 150 : A = A + 1 :

Now hit the I key, type in "PRINT A :", then press the
SHIFT and t keys to escape from the subcommand level.
A t this point you can type L to list the current line. And
the display should look this:

100 IF A = B THEN 150 : A = A + 1: PRINT A :
GOTO 100
100 _

or you can hit the RETURN key to return to the
Active Command mode.

E xam ple:

KEY

"X " represents Insert at End of Line. The command moves
the ourc^r nosition to the end of the line, and shifts the

'nsert subcommand. You can insert new
' the line, or delete part of the

Example:

Get into the Edit mode:

> EDIT 100
100 _

24

Type in X without hitting RETURN. The line displayed
should be

100 IF A = B THEN 150 : A = A + 1 : PRINT A :
GOTO 100

A t this point you may add some new material, or delete part
of the existing line, before hitting SHIFT and t.

25

L
K E Y

" L " Stands for List. While the computer is in the editing mode,
and is not currently executing one of the subcommands H, I,
X, the L command will list the remaing part of the line onto
the display.

Example:

> EDIT 100
100 _

Hit L (without hitting RETURN), the display should be:

100 IF A = B THEN 150 : A = A + 1 : PRINT A :
GOTO 100
100 _

The second line allows you to edit while referencing the first
line.

A
KEY

"A " represents Cancel and Restart. In the editing mode this
command moves the cursor back to the beginning of the line,
cancels all editing changes previously made on that line, and
restores the former content of the line.

E
KEY

This command shifts the computer from editing mode back to
the Active Command mode, and saves all the changes
previously made. Make sure the computer is not executing
any subcommand before entering E.

26

Q
K E Y

This command shifts the computer from editing mode back to
the Active Command mode but cancels all the changes made
in the current edit mode. Just type in Q to cancel the changed
made and return to the Active Command mode.

D
n KEY

"D " represents delete; the command will delete n numbers of
characters right after the current cursor position. The deleted
characters will be enclosed in exclamation marks " ! " to show
you which characters are being affected.

Example:

Consider the following line:

100 IF A = B THEN 150 : A = A + 1 : PRINT A :
GOTO 100

First enter into the editing mode and move the cursor to the
following position:

100 IF A = B THEN 150 : A = A + 1 _

Now type in 15D (to delete 15 characters); the display
should look like:

100 IF A - B THEN 150 : A = A + 1! : PRINT A : GO!

Then use L to list the entire line. The display should become:

100 IF A = B THEN 150 : A = A + 1! : PRINT A : GO!
TO 100
100 _

List again:

100 IF A = B THEN 150 : A = A + 1 TO 100
100 _

27

Now use the X key and the I
the final outcome should be:

key to delete "TO 100".

100 IF A = B THEN 150 : A = A + 1

c
n M B KEY

"C " means change; this command allows you to change n
number of characters right after the current cursor position.
If the number n is not specified the computer assumes that
you only want to change a single character.

Example:

Consider the line:

100 IF A = B THEN 150 : A = A + 1

If you want to change 150 to 230, you should enter the edit
mode and move the cursor to the following position:

100 IF A = B THEN _

Now type in 2C (change the next 2 characters), followed by
23 (new data), and h it the SHIFT and t keys. List the line
by hitting L:

100 IF A = B THEN 230 : A = A + 1
100 _

n c

This command searches for the n th occurrence of the
character c on that line and moves the cursor to that
position. If the n value is not provided, the computer will
search for the first occurrence of the character specified and
stop the cursor there. In case the specified character is not
found, the cursor will move to the end of the line. As
usual, the computer w ill start searching from the current
cursor position towards the right end of the line.

28

100 IF A = B THEN 230 : A = A + 1

After entering the edit mode, the display should look like
this:

C onsider th e fo llo w in g exam ple :

100 _
Now type in 2S =. to inform the computer to search for
the second occurrence of the equal sign " = " , and the final
display should be

100 IF A = B THEN 230 : A _

Now you can enter one of the subcommands at the current
position. For example:

Type in H (hack and insert) followed by "= A + 2 " (new
data). Then the line w ill become:

100 IF A = B THEN 230 : A = A + 2 _

n
K

C

This command deletes all characters up to the n th
occurrence of character C, and moves the cursor to that
position. Consider the following example:

100 IF A = B THEN 230 : A = A + 2

Enter the edit mode:

100 _
Now type in 1 K :f to inform the computer to search for the
first occurrence of the colon " : " symbol, then delete
everything in front of it on that line. The display should
become

100! IF A = B THEN 230!

29

The " : " should also be deleted so type in D. The display
will become:

100! IF A = B THEN 230!! : !

Then h it the L key to list the line on the display. The line
should look like this:

100 A = A + 2
100 _

30

CHAPTER 3 :
BASIC PROGRAMMING
STATEMENTS
In this chapter we are going to discuss the program
statements of Colour Genie BASIC.

The main part o f this chapter concerns various functions of
all the programming statements in BASIC which are
acceptable to the Colour Genie. Since it is a very large set
of statement, and each statement had its own unique and
characteristics in programming, the users are advised to
study, each statement with the help of the examples provided.

CLEAR n

This statement sets all variables to zero. If number n is
specified, the computer sets n bytes of space for string
storage. Everytime the Colour Genie is turned on, 50 bytes
of space are automatically cleared and reserved for strings.

The CLEAR statement becomes critical during program
execution, because an Out of String Space error will occur,
if the amount o f string storage cleared is less than the greatest
number of characters stored in string variables.

Example:

10 CLEAR 1000

Clear 1000 bytes of memory space for string storage.

DATA

The DATA statement allows you to store data inside the
program and to access them through READ statements. The
item list will be assessed by the computer sequentially,
starting with the first item in the first DATA statement, and
ending with the last item in the last DATA statement. Each
item in the item list may be a string or a simple numeric
value. Just like entering data from the keyboard, any string

31

value consisting o f blanks, colons, commas, must be enclosed
in a pair of quotes. For those strings having no commas or
colons, quotes are not necessary. The order of values in a
DATA statement must match up with the variable types in
the READ statements. DATA statements may appear
anywhere in a program.

For example:

5 REM READ DATA DEMO
10 FOR N = 1 TO 4
20 READ A$
30 PRINT A $; " ",
40 NEXT N
50 DATA THIS, IS, THE, DATA

Strings, and other types of data, can be mixed.

Example:

10 READ A$, B$, C, D
20 PRINT A$; B$; C; D
30 DATA "CHARACTERS ", "A LONG SENTENCE "
40 DATA 20, 137. 54
50 END

When this program is run you should see the following on
the screen:

CHARACTERS A LONG SENTENCE 20 137.54

DEFINT

Variable names that begin with letters specified within the
letter range, w ill be treated and stored as integers. However,
a type declaration character (refer to the Introduction) can
over-ride type definition. Defining a variable name as an
integer not only saves nemory space, but also saves computer
time, because integer calculation is faster than single or
double precision calculation. Note that integers can only
take on values between -32,768 + 32,767 inclusive.

32

10 DEFINT X, Y, Z

After the computer has executed line 10, all variables
beginning with the letters X, Y or Z will be treated as
integers. Therefore X2, X3, YA, YB, ZI, ZJ will become
integer variables. Except that X1 #, X2 #, YB #, will be
still double precision variables, because type declaration
characters always over-ride DEF statements.

For example:

10 DEFINT A - D

Causes variables beginning with letter A, B, C or D to be
integer variables. Note that DEFINT can be placed anywhere
in a program, but it may change the meaning of variable
reference without type declaration characters. Therefore, it
is normally placed at the beginning of a program.

Exam ple :

DEFSNG letter range

Variable names that begin with those letters specified within
the ietter range, will be treated and stored as single precision
variables. However, a type declaration character can over-ride
this type definition. Single precision variables and constants
are stored with 7 digits of precision and printed out with 6
digits of precision. All numeric variables are assumed to be
single precision unless otherwise specified. The DEFSNG
statement is primarily used to re-define variables which have
previous been defined as double precision or integer.

For,example:■>

• 10 DEFSNG A - D, Y

Causes variables beginning with the letter A through D, or Y
to become single precision. However, A # would still be a
double precision variable and Y% will still be an integer
variable.

33

5 REM DEFSNG DEMO
10 DEFSNG N
20 N = 0 : M = 0
30 N = N+. 1 : M = M+. 1
40 PRINT M, N
50 IF N > 10 THEN STOP
60 GOTO 30

DEFDBL letter range

Variable names that begin w ith those letters specified within
the letter range, will be treated and stored as double
precision. However, a type declaration character can over
ride this type definition. Double precision allows 17 digits
of precision, while only 16 digits are displayed when a
double precision variable is printed.

For example:

10 DEFDBL M - P, G

Causes variables beginning with one of the letters M
through P, or G to become double precision.

5 REM DEFDBL DEMO
10 DEFDBL N
20 N = 0 : M = 0
30 N = N+. 1 : M = M+. 1
40 PRINT M, N
50 IF N > 10 THEN STOP
60 GOTO 30

DEFSTR letter range

Variables that begin with those letters specified within the
letter range, w ill be treated and stored as string.

However, a type declaration character can over-ride this type
definition. Each string can store up to 255 characters, if
there is enough string storage space cleared.

34

F o r exam ple :

10 DEFSTR A - D

Causes variables beginning with any letter A through D to be
string variables, unless a type declaration character is added.
Therefore, after the execution of line 10, the assignment
B3 = "A STRING'' is valid.

DIM name (dim 1, dim 2 , , dim n)

The statement defines the variable name to be an array or
list of arrays. The number o f elements in each dimension
may be specified through dim 1, dim 2, etc. If dim n is not
specified, 11 elements in each dimension is assumed in each
array. The number of dimensions is limited only by the
memory size available.

Example:

10 DIM A(5), B(3, 4), C(2, 3, 3)

This statement defines the one dimensional array w ith 6
elements (from 0 to 5); the two dimensional array B with
20 elements (4 x 5); the three dimensional array C with 48
elements (3 x 4 x 4).

DIM statements may be placed anywhere in a program, and
the number of subscripts may be an integer or an expression.

Example:

10 INPUT "NUMBER OF ITEMS", N
20 DIM A (N + 2, 4)

The number of elements in array A may vary according to N.
To re-dimension an array, you must use a CLEAR statement
either with or without the argument n. Otherwise an error
will occur.

35

Exam ple:

10 X (2) = 13.6
20 PRINT "THE SECOND ELEMENT IS: " ; X (2)
30 DIM X (15)
40 PRINT X (2)
50 END

if you run the above program an error, type DD (see
ERROR codes) will occur.

END

This statement causes a normal termination of program
execution. The END statement is primarily used to cause
execution to terminate at some point other than the logical
end of the program.

Example:

5 B = 3 : C = 14
10 A = C + B
20 GOSUB 70
30 D = X + Y
40 PRINT "THE RESULTS ARE:";
50 PRINT A, D
60 END
70 X = 50
80 Y = A * X
90 RETURN

When RUN you should get:

THE RESULTS ARE: 17 900

The END statement in line 60 prevents the computer from
executing into line 70. Therefore the subroutine that starts
at line 70 can be accessed only by line 20.

ERR . . ERL

These commands are used to return the error code relating
to the displayed error.

36

ERR returns the code of the error and ERL the line number
in which the error occurs.

These commands are usually used with the BASIC
statement ON . . ERROR . . GOTO, (viz)

1 REM ERL DEMO
5 ON ERROR GOTO 50
10 INPUT “ ENTER TWO NUMBERS” ; A, B
20 C = A/B
30 PRINT C
40 END
50 IF ERL = 20 THEN PRINT "DIVISION BY ZERO":

RESUME 10
60 IF ERL = 10 THEN PRINT "YOUR NUMBERS

CAUSED AN OVERFLOW": RESUME 10

ERROR CODE

This statement is used for testing an ON ERROR GOTO
routine. When the ERROR code statement is encountered,
the computer will proceed exactly as if that kind of error
has occurred.

Example:

30 ERROR 1
?NF ERROR IN 30

EXPLANATION OF ERROR MESSAGES

Code Abbreviation Error

1 NF NEXT without FOR: NEXT is used
without a matching FOR statement.
This error also occurs if NEXT
variable statements are reversed in
a nested loop.

2 SN Syntax Error: This usually is the
result o f incorrect punctuation, open
parenthesis, an illegal character or a
mis-spelled command.

37

33 RG RETURN without GOSUB: A
RETURN Statement was
encountered before a matching
GOSUB was executed.

4 OD Out of Data: A READ or INPUT #
statement was executed with
insufficient data available. DATA
statement may have been left out or
all data may have been read from
tape or DATA.

5 FC Illegal Function Call: An attempt
was made to execute an operation
using an illegal parameter. Examples:
square root o f a negative argument,
negative matrix dimension,
negative or zero LOG arguments,
etc. Or USR call without first
POKEing the entry point.

6 OV Overflow: The magnitude of the
number input or derivative is too large
for the Computer to handle. NOTE:
There is no underflow error. Numbers
smaller than ±1.701 411 E-38 single
precision or ±1.701 411 834 5
445 56E-38 double precision are
rounded to 0 . See/0 below.

7 OM Out of Memory: All available memory
has been used or reserved. This may
occur with very large matrix
dimension, nested branches such as
GOTO, GOSUB, AND FOR-NEXT
Loops.

8 UL Undefined Line: An attempt was made
to refer or branch to a non-existent
line.

9 BS Subscript out of Range: An attempt
was made to assign a matrix element
with a subscript beyond the
DIMensioned range.

38

10 DD

11 /0

12 ID

13 TM

14 OS

15 LS

16 ST

17 CN

18 NR

19 RW

Redimensional Array: An attempt was
made to DIMension a matrix which
had previously been dimensioned by
DIM or by default statements. It is a
good idea to put all dimension state
ments at the beginning of a program.

Division by Zero: An attempt was
made to use a value of zero in the
denominator. NOTE: If you can't
find an obvious division by zero check
for division by numbers smaller than
allowable ranges. See OV above and
RANGES.

Illegal Direct: The use of INPUT as a
direct command.

Type Mismatch: An attempt was made
to assign a non-string variable to a
string or vice-versa.

Out of String Space: The amount of
string space allocated was exceeded.

String Too Long: A string variable was
assigned a string value which exceeded
255 characters in length.

String Formula Too Complex: A
string operation was too complex to
handle. Break up the operation into
shorter steps.

Can't Continue: A CONT was issued
at a point where no continuable
program exists eg. after program was
ENDed or EDITed.

No RESUME: End of program
reached in error-trapping mode.

RESUME without ERROR: A
RESUME WAS encountered before
ON ERROR GOTO was executed.

39

20 UE

21 MO

22 FD

Unprintable Error: An attempt was
made to generate an error using an
ERROR statement with an invalid
code.

Missing Operand: An operation was
attempted without providing one of
the required operands.

Bad File Data: Data input from an
external source (i.e. tape) was not
correct or was in improper sequence,
etc.

FKEY

This function programs the user definable keys F1 to F4.
Eight possible functions are available with the use of the
SH I FT key. A string o f up to seven characters can be stored
for future use.

Format 1 :FKEY n = "string"
Format 2 : FKEY n = "string

The second format is treated as direct command.
There are eight default functions preprogrammed into the
keys that are available after power on. (See Beginner's manuar

Fn Function

1 LIST
2 RUN
3 AUTO
4 EDIT
5 RENUMber
6 DELETE
7 CLOAD
8 CSAVE

Key functions 5 to 8 are accessed by the SHIFTed keys 1 to
4 respectively. The preprogrammed functions take effect
only after the RETURN key has been pressed.

40

FOR TO STEP NEXT

These statements form an interactive loop so that a sequence
of program statements may be executed over a specified
number of times.

The general form is:

For counter = initial value TO final value STEP increment.

Statements

NEXT counter

In the FOR statement, initial value, final value and
increment can be constants, variables or expressions. The
first time the FOR statement is executed, these three are
evaluated and the values are saved; if these values are changed
inside the loop, they will have no effect on the loop's
operation. However, the counter value must not be changed
or the loop will not operate normally.

The FOR-NEXT loop works as follows: the first time the
FOR statement is executed, the counter is set to the
"in itia l value". Execution proceeds until a NEXT
statement is encountered. A t this point, the counter is
incremented by the amount specified in the STEP increment.
If STEP increment is not used, an increment of 1 is assumed.
However, if the increment has a negative value, then the
counter is actually decremented.

The counter is then compared with the final value specified
in the FOR statement. If the counter is greater than the
final value, the loop is completed and execution continues
with the statement following the next statement, (if
increment was a negative number, loop ends when counter
is less than the final value).

If the counter has not yet reached the final value, control is
passed back to the first statement after the FOR statement.

41

E xam ple:

10 FOR K = 0 TO 1 STEP 0.3
20 PRINT "THE VALUE OF K :"; K
30 NEXT K
40 END

When run we get:

THE VALUE OF K: 0
THE VALUE OF K: .3
THE VALUE OF K: .6
THE VALUE OF K: .9

When K = 1.2, it is greater than the final value 1, therefore
the loop ends without ever printing 1.2.

If we now try counting "backwards".

Example:

10 FOR N = 5 TO 0
20 PRINT "THE VALUE OF N :"; N
30 NEXT N
40 END

All we get is the first value

THE VALUE OF N: 5

We need to tell the computer how much to step "dow n" by.

10 FOR N = 5 TO 0 STEP - 1
20 PRINT "THE VALUE OF N :"; N
30 NEXT N
40 END

This will now give:

THE VALUE OF N: 5
THE VALUE OF N: 4
THE VALUE OF N: 3
THE VALUE OF N: 2
THE VALUE OF N: 1
THE VALUE OF N: 0

42

Since no STEP was specified, so STEP 1 is assumed. N is
incremented the first time, and its value becomes 6.
Because 6 is greater than the final value 0, the loop ends.
This is remedied by adding STEP-1, as you can see.

Example:

10 FOR A = 0 TO 3
20 PRINT "THE VALUE OF A :" ; A
30 NEXT
40 END

This gives:

THE VALUE OF A: 0
THE VALUE OF A: 1
THE VALUE OF A: 2
THE VALUE OF A: 3

Note here that instead of using NEXT A in line 30, you may
simply write NEXT. However, this can lead to trouble if
you have nested FOR-NEXT loops.

Here is an example of nested loops, showing how it is
advisable to identify the counter variable in each NEXT
statement:

10 I = 1
20 J = 2
30 K = 3
40 FOR N == 1 + 1 TO J + 1
50 PRINT " FIRST LOOP"
60 FOR M == I TO K
70 PRINT " SECOND LOOP"
80 NEXT M
90 NEXT N

100 END

43

This gives:

FIRST LOOP
SECOND LOOP
SECOND LOOP
SECOND LOOP

FIRST LOOP
SECOND LOOP
SECOND LOOP
SECOND LOOP

GOTO

This statement transfers program control to the specified
line number. If used independently, an unconditional
branch will result. However, test statements may precede
the GOTO statement to create a conditional branch.

Example:

10 A = 10
20 B = 45
30 C = A + B
40 C = C * 3.4
50 GOTO 100
60
70
80
90

100 PRINT "A = "; A, "B ="; B, "C C
110 END

When run we should get:

A = 10 B = 45 C = 187

When line 50 is executed, control will unconditionally
jump to line 100, and lines 60, 70, 80 and 90 are ignored.

Example:

10 IF A = 2 GOTO 120

44

When line 10 is under execution, if A equals to 2 then
control will jump to line 120, otherwise it w ill just go
to the next statement. You may use GOTO in the Active
Command mode as an alternative to RUN.GOTO line
number causes execution to begin at the specified line
number, but w ithout the automatic CLEAR.

GOSUB

GOSUB transfers program control to the specified line
number where a subroutine starts. Only if the computer
encounters a RETURN statement will it then jump back
to the statement that immediately follows the GOSUB.
Just like GOTO, GOSUB may be preceded by a test
statement such as:

IF A = B THEN GOSUB 100

Example:

10 PRINT “ MAIN PROGRAM."
20 GOSUB 50
30 PRINT “ END OF PROGRAM."
40 END
50 PRINT "SUBROUTINE."
60 RETURN

This should give:

MAIN PROGRAM.
SUBROUTINE.
END OF PROGRAM.

IF

This statement instructs the computer to test a logical
or relational expression. If the expression is False, control
will jump to the matching ELSE statement (if there is one)
or down to the next program line. In numerical terms, if
the expression has a non-zero value, it is always
equivalent to a logical true.

45

E xam ple:

10 INPUT "ENTER A VALUE (MAX. 20)” ; A
20 IF A > 20 GOTO 60
30 A = A * 3. 1416 * 2
40 PRINT "THE CIRCUMFERENCE IS:"; A
50 END
60 PRINT "NUMBER TOO BIG! (MAX 20)": GOTO 10

When RUN we get:

ENTER A VALUE (MAX. 20)? 24
NUMBER TOO BIG! (MAX. 20)
ENTER A VALUE (MAX. 20)? 18
THE CIRCUMFERENCE IS: 113.098

In this example if A is greater than 20 then a warning is
printed and another input is expected. However, if A is equal
to or less than 20, the computer will go to the next line and
compute the value of A, w ithout passing through the
warning message and the GOTO statement.

Example:

120 INPUT A: IF A = 10 AND A > B THEN 160
120 INPUT A: IF A = 10 AND A > B GOTO 160

The two statements above have the same effect.

IF . . . THEN

Initiates the "action clause" of an IF — THEN type
statement. THEN is optional except when it is used to
specify a branch to another line number, as in IF A > D
THEN 100. THEN should be used in IF — THEN — ELSE
statements.

46

IF . . . THEN . . . ELSE

This statement must be used after the IF statement, and
acts as an alternative action in case the IF test fails.

Example:

10 IF A = 1 THEN 60 ELSE 40

In this example, if A = 1 then control branches to line 60,
otherwise it branches to line 40. If the ELSE clause is not
used and A is not equal to 1, the computer w ill go to the
next statement instead of branching to line 40.

IF-THEN-ELSE statements may be nested, but the number
of IFs and ELSEs must match with each other.

Example:

10 INPUT "ENTER THREE NUMBERS"; X, Y, Z
20 PRINT "THE LARGEST NUMBER IS:";
30 IF X < Y OR X < Z THEN IF Y < Z THEN

PRINT Z ELSE PRINT Y ELSE PRINT X
40 END
READY
> RUN
ENTER THREE NUMBERS ? 30, 75, 73
THE LARGEST NUMBER IS: 75

This program accepts three numbers and prints out the one
that has the highest value.

47

Another use of the IF . . . THEN . . . ELSE command is
shown below:

5 REM IF THEN ELSE DEMONSTRATION
10 PRINT "SET TIME OF CLOCK TO START"
20 INPUT "HRS, MINS, SECS"; H, M, S
30 CLS
40 PRINT @ 400, "HRS", "M INS", "SECS"
50 PRINT @> 440, H, M, S
60 FORD = 1 TO 320: NEXT D
70 IF S = 59 THEN I F M = 59 THEN 90 ELSE 100

ELSE 80
80 S = S + 1: GOTO 50
90 H = H + 1: M = 0: S = 0: GOTO 50

100 M = M + 1: S = 0: GOTO 50

RUN this, and follow the screen instructions!

IN K EY $

This command makes the computer scan the keyboard
and returns a one character string determined by the key
pressed. If no key is pressed during execution of the
command then a null string is returned.

5 REM INKEY$ DEMO
10 CLS
20 AS = INKEYS
30 PRINT <g> 460, AS;
40 IF A$ = "? " THEN STOP
50 GOTO 10

INPUT

This statement causes the computer to suspend execution
of a program and wait until you input the specified
number and type values through the keyboard. Input
values can be string or numeric according to the variable
type. The items (if more than one) in the list must be
separated by commas.

48

10 INPUT A$, B$, A, B

This statement permits you to input two string values,
followed by two numeric values. The input sequence
must be consistent. When the computer executes this
statement, it sends a signal onto the display:

And waits for the inputs. You may enter all four values at
once (separated by commas). In this case, the inputs could
be as follows:

orange, apple, 59, 47 RETURN

The computer then assigns the values accordingly.

A$ = "ORANGE"
B$ = "APPLE"
A = 59
B = 47

The other way to input those values would be by entering
the items on separate lines. In this way, the computer will
remind you to input the next data for the remaining
variables by displaying:

??

Until all variables are set, the computer then advances to
the next statement. Input must be compatible to the
variable type specified. In other words, you should not
input a string value to a numeric variable. If such an
invalid entry occurs, the computer will send the message:

? REDO
?

This indicates that input does not match with the current
variable type. However, the computer gives you a second
chance to input the correct data starting with the first
value expected by the INPUT statement.

E xam ple:

49

E xam ple:

10 INPUT A$, A
20 PRINT A$, A
30 END

We then get:

? STRING, 10
STRING 10

or even:

? THIS IS A STRING, 13.5
THIS IS A STRING 13.5

or even:

? ABCD, UK
? REDO
? ABODE
?? 25
ABODE 25

If an input string consists of blanks, the entire string must be
enclosed by quotes.

In order to provide a clearer indication to the operator, the
user may include a "prompting message" in the INPUT
statement. This helps to input correct data type to each
variable. The prompting message must immediately follow
INPUT, enclosed in quotes, and followed by a semi-colon.

Example:

100 INPUT "INPUT ITEM NAME AND QUANTITY";
N$, Q

When RUN the screen will display :

INPUT ITEM NAME AND QUANTITY?

50

Try RUNning these 3 programs to see how INPUT works.

Program 1

5 REM INPUT DEMO #1
10 INPUT "HOW MANY NUMBERS"; T
20 PRINT "ENTER YOUR NUMBERS ONE BY ONE"
30 C = 0
40 FOR D = 1 TO T
50 INPUT N
60 C = N + C
70 NEXT D
80 PRINT "AVERAGE EQUALS"; C/T

Program 2

5 REM INPUT DEMO #2
10 INPUT "LENGTH (CM)"; L
20 INPUT "WIDTH (CM)"; W
30 INPUT "HEIGHT (CM)"; H
4 0 V = L * W * H
50 PRINT "THE VOLUME IS"; V
60S = 2 * (L * W + L * H + H * W)
70 PRINT "THE SURFACE AREA IS"; S

Program 3

5 REM INPUT DEMO #3
10 PRINT "INPUT NO. OF";
20 INPUT "DEGREES F"; F
30 C = (5/9) * (F - 32)
40 PRINT F; "DEGREES F IS"; C; "DEGREES C"

INPUT # - cassette number, item list

This statement tells the computer to input the specified
number of values stored on the cassette tape and to assign
them to the variables. You must specify the cassette drive
number from which data is expected.

51

10 INPUT # - 1, A$, B, C, D$

This statement inputs data from cassette drive number 1.
The first value is assigned to A$, the second value to B, etc.
The cassette deck must be in PLAY mode. If a string is
encountered when a numeric- value is expected by the
INPUT statement, a bad file data error will occur. An
Out-of-Data error will also occur if there is not enough data
on the tape for all the variables in an INPUT statement.

E xam ple:

LET

This statement is used to assign a value to a variable. The
word LET is not required in assignment statements by the
Colour Genie BASIC interpreter. However, you may use
the word LET in order to make program compatible with
other systems.

Example:

10 LET A = 5.67
20 B% = 20
30 S$ = "CHARACTERS”
40 LET D% = D% + 1
50 PRINT A, B%, S$, D%
60 END

This gives:

5.67 20 CHARACTERS 1

In all the assignments above, the variable on the left o f the
equal sign is assigned with the value of the constant or
expression on the right side. All these statements are
acceptable.

52

LPRINT

LPRINT prints a file onto the printer. This command (and
statement) functions in a similar way to a PRINT statement
(print on the display). If the line printer is not properly
connected, the computer will enter a dead loop and will
wait to print the first character. This situation can only be
resolved by turning the printer on or hitting the RESET
buttons.

10 FOR X = 1 TO 0 STEP -0 .25
20 LPRINT "THE VALUE OF X :" ; X
30 NEXT X
40 END

If a printer is connected then it will print.

THE VALUE OF X: 1
THE VALUE OF X: .75
THE VALUE OF X: .5
THE VALUE OF X: .25
THE VALUE OF X: 0

ON ERROR GOTO

This statement allows you to set up an error-trapping
routine to recover a program from an error and to
continue, without any break in execution. W ithout this
statement, the computer will stop execution and print out
an error message, once it encounters any kind of error in
the user's program. Normally, you have a particular type
of error in mind when an ON ERROR GOTO statement
is used.

For example, suppose that a program performs some
division operations and the user has not ruled out the
possibility of division by zero. You could write a routine
to handle a division by-zero error, and then use ON ERROR
GOTO to branch to that routine when such an error occurs.

53

E xam ple :

5 B = 15: C = 0
10 ON ERROR GOTO 120
20 A = B/C
30 PRINT A, B, C
40 END

120 PRINT "D IV IDED BY ZE R O 'l"
130 END

When RUN the screen shows:

DIVIDED BY ZERO!!

In this example, C has a value of zero, so a divide-by-zero
error will occur when the computer attempts to execute
line 20. But because of line 10, the computer will simply
ignore line 20 and branch to the error-handling routine
beginning at line 120. Please note that the ON ERROR
GOTO statement must be executed before the error occurs,
otherwise it has no effect. Note also that the error handling
routine must be terminated by a RESUME statement.

The following programs illustrate the use of error values
with ON . . . ERROR . . . GOTO:

Program 1

5 REM ON ERROR GOTO DEMO. # 1
10 ON ERROR GOTO 60
20 INPUT "ENTER TWO NUMBERS": A, B
30 C = A/B
40 PRINT C
50 GOTO 10
60 IF ERR = 20 THEN PRINT "DIVISION BY ZERO":

RESUME 20
70 IF ERR = 10 THEN PRINT "YOU NUMBERS

CAUSED AN OVER FLOW": RESUME 20

54

Program 2

5 REM ON ERROR GOTO DEMO #2
10 FOR C = 1 TO 10
20 ON ERROR GOTO 70
30 READ A
40 PRINT A
50 NEXT C
60 END
70 READ A$
80 PRINT A$
90 RESUME 50

100 DATA THE, NUMBERS, ARE, 1, 2, 3, 4, IS,
THAT, OK

ON n GOSUB

This works like On n GOTO, except control branches to
one of the subroutines specified by the line numbers in
the line number list.

Example:

10 PRINT " * * FUNCTION SUBROUTINES * * "
20 PRINT "1 . FUNCTION A "
30 PRINT "2. FUNCTION B"
40 PRINT "3. FUNCTION C"
50 INPUT "ENTER 1, 2, OR 3 "; N
60 ON N GOSUB 150, 100, 250
70 END

100 PRINT "THIS IS FUNCTION B": RETURN
150 PRINT "THIS IS FUNCTION A ": RETURN
250 PRINT "THIS IS FUNCTION C": RETURN

If this is RUN once, let's choose 2.

** FUNCTION SUBROUTINES **

1. FUNCTION A
2. FUNCTION B
3. FUNCTION C

ENTER 1, 2, OR 3 ? 2
THIS IS FUNCTION B

55

Now 1

** FUNCTION SUBROUTINES **

1. FUNCTION A
2. FUNCTION B
3. FUNCTION C

ENTER 1, 2, OR 3 ? 1
THIS IS FUNCTION A

Try RUNning this program:

5 REM ON GOSUB DEMO
10 INPUT "ENTER A NUMBER BETWEEN 1 AND 4";

N
20 ON N GOSUB 100, 200, 300, 400
30 GOTO 10

100 PRINT "YOU ENTERED ONE": RETURN
200 PRINT " YOU ENTERED TWO": RETURN
300 PRINT "YOU ENTERED THREE": RETURN
400 PRINT "YOU ENTERED FOUR": RETURN

ON n GOTO

This statement allows multi branching to the line numbers
specified according to the value o f n. The general format for
ON n GOTO is:

ON expression GOTO 1st line number, 2nd line number,
. . . , mth line number. The value of the expression must
be between 0 and 255 inclusive.

When an ON-GOTO statement is executed, first, the expression
is evaluated and the integer position, that is I NT (expression)
is obtained. Then the computer assigns this integer to N, and
counts over to the Mth element in the line number list, and
then branches to the line number specified by that element.
If N is greater than the available line number M, the control
falls through to the next statement in the program. If the
expression or number is less than zero, an error w ill occur.

The line number list may contain any number of items.

56

E xam ple:

10 INPUT "ENTER COMMAND": C
20 ON C GOTO 100, 120, 130, 150, 130
30 PRINT "END OF PROGRAM": END
100 PRINT "THIS IS LINE 100": GOTO 10
120 PRINT "THIS IS LINE 120": GOTO 10
130 PRINT "THIS IS LINE 130": GOTO 10
150 PRINT "THIS IS LINE 150": GOTO 10

Let's RUN this a few times

ENTER COMMAND ? 5
THIS IS LINE 130
ENTER COMMAND ? 4
THIS IS LINE 150
ENTER COMMAND ? 1
THIS IS LINE 100
ENTER COMMAND ? 2
THIS IS LINE 120
ENTER COMMAND ? 3
THIS IS LINE 130
ENTER COMMAND ? 0
END OF PROGRAM

Now RUN again.

ENTER COMMAND ? 4
THIS IS LINE 150
ENTER COMMAND ? 6
END OF PROGRAM

The ON-GOTO statement is a more elegant way of achieving
the same result than the equivalent IF GOTO statements.

10 IF C = 1 GOTO 100
20 IF C = 2 GOTO 120
30 IF C = 3 GOTO 130
40 IF C = 4 GOTO 150
50 IF C = 5 GOTO 130
60 IF C < 1 OR C > 5 GOTO 70: REM GO TO THE

NEXT STATEMENT.

57

PRINT

The command prints an item or a list of items on'the display.
An item may be any o f the following:

a) Numeric constants (numbers such as 0.368 72,
0.2, -3 4)

b) Numeric variables (names representing numeric
values, such as X, Y, Z, etc.)

c) String constants (characters enclosed in quotes, such
as “ HOME COMPUTER", "3003", etc.)

d) String variables (names representing string or
character values, such as A$, B$, etc.)

e) Expressions (a sequence of any combination o f the
above, such as (X + 10)/Y, "B A L L " + "PEN", etc.)

Items in the item list may be separated by commas or semi
colons. If commas are used, the cursor automatically advances
to the next printing zone before printing the next item. If
semi-colons are used, no space is inserted between alphabetic
items before printing on the display, but one space is inserted
before each numeric item.

Example:

10 N = 25 + 7
20 PRINT "25 + 7 IS EQUAL TO "; N
30 END

This prints on the screen.

25 + 7 IS EQUAL TO 32

Example:

10 H$ = " HOME "
20 C$ = "COMPUTER"
30 PRINT "TRY OUR"; H$; C$
40 END

This displays:

TRY OUR HOME COMPUTER

58

When commas are used to separate items, 4 columns are
acceptable per line. Each column consists of a maximum of
10 characters. Any string beyond this bound will be printed
on the next line.

Example:

10 PRINT "COLUMN 1", "COLUMN 2", "COLUMN 3",
"COLUMN 4", "COLUMN 5"
20 END

When RUN gives:

COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4
COLUMN 5

If two or more commas are applied together, each comma will
still occupy 10 characters. (Blank spaces).

Example:

10 PRINT "COLUMN 1 " „ "COLUMN 2"
20 END

This gives:

COLUMN 1 COLUMN 2

Note the following examples:

10 PRINT "LINE ONE"
20 PRINT "LINE TWO"
30 END

This program gives:

LINE ONE
LINE TWO

10 PRINT "LIN E ONE",
20 PRINT "LINE TWO"
30 END

This one:

LINE ONE LINE TWO

59

PRINT @

This Statement print out items in the item list at the screen
location specified. The "<§>" sign must follow PRINT
immediately, and the location specified must be a number
of value from 0 to 959. For more details on the display
map, please refer to the Beginner's Manual

Example:

20 PRINT @100 "LOC 100"

If you construct a PRINT @ statement to print on the
bottom line of the display, there will be an automatic
line feed, causing everything display to move up one line.

To suppress this action, add a semi-colon at the end of the
statement.

Example:

10 PRINT @ 959, "BOTTOM LINE";

For use of PRINT @ with graphics characters refer to
Chapter 6.

PRINT TAB

This allows you to print at any specified cursor position
within a line. More than one TAB in a PRINT statement is
acceptable. Flowever, the value in the expression should be
between 0 and 39 inclusive.

Example:

10 PRINT TAB (101 "POSITION 10" TAB (30)
"POSITION 30"

20 END

The screen displays:

POSITION 10 POSITION 30

60

E xam ple:

10 N = 4
20 PRINT TAB (N) "POS."; N TAB (N + 10)

"P O S "; N + 10 TAB (N + 20) "POS"; N + 20
30 END

This displays:

POS. 4 POS. 14 POS. 24

Example:

5 REM TAB DEMO
10 T = 38
20 PRINT TAB (T);
25 IF T = 2 THEN STOP
30 T = T - 2
40 GOTO 20

PRINT USING

This statement allows you to print the data with a
pre-defined format. The data can be numeric or string
values.

The format and item list in PRINT USING statement can be
expressed as variables or constants. The statement prints the
item list according to the format specified.

The following specifiers may be used in the format field.

This sign represents the proper position of each digit in
the item list (for numeric value). The number of # signs
used forms the format desired. If the format field is
greater than the numeric value (in the item list), the
unused field positions to the left o f the number will be
displayed as spaces and those to the right of the
decimal point w ill be displayed as zeros.

The decimal point can be placed anywhere in the format
field established by the # signs. Rounding o ff w ill take
place if the digits to the right of the decimal point are
suppressed.

61

The comma — when it is placed at any position
between the first digit and the decimal point, a comma
will be displayed to the right of every three digits.

Let us consider the following examples:

10 REM PRINT USING DEMO.
20 INPUT "ENTER FORMAT"; F$
30 IF F$ = "STOP" THEN STOP
40 INPUT "ENTER A NUMBER"; N
50 PRINT USING F$; N
60 GOTO 10

This program requests inputs for the format field and item
list (in this case with numeric value). The program will stop
only if the user inputs the word "STOP" as the value for F$.

Now RUN this program.

ENTER FORMAT ? # # . # #
ENTER A NUMBER ? 12.34
12.34

ENTER FORMAT ? * * #. # #
ENTER A NUMBER ? 12.34
12.34

ENTER FORMAT ? # # . # #
ENTER A NUMBER ? 123.45
%123.45

ENTER FORMAT ? STOP

The % sign will be automatically printed out if the field is
not large enough to contain the number of digits found in
the numeric value. The entire number to the left of the
decimal point will be displayed after the % sign.

Now RUN the program again.

ENTER FORMAT ? * # . # #
ENTER A NUMBER ? 12.345
12.35

ENTER FORMAT ? STOP

62

Since only two decimal places were specified, the numeric
value will be rounded-off before displaying to the screen.

(i) * * Two asterisks placed at the beginning of the
format field will cause all unused positions to the
left of the decimal point to be filled with
asterisks. The two asterisks will establish two
more positions in the field.

(ii) $$ Two dollar signs placed at the beginning o f the
field will act as a floating dollar sign. That is: A
dollar sign will occupy the first position
preceding the number.

(iii) * *$ Combines the effects of * * and $$. Any empty
position to the left o f the number will be filled
by the * sign and the $ sign will also occupy
the first position preceding the number.

Let us use the same example as before:

ENTER FORMAT ? * * # #. # #
ENTER A NUMBER ? 12.3
**12.30

ENTER FORMAT ? $ # # . # #
ENTER A NUMBER? 12.34
$12.34

ENTER FORMAT ? * * $ # # # . # #
ENTER A NUMBER ? 12.34
***$12.34

ENTER FORMAT? STOP

(iv) + When a sign is placed at the beginning or at
the end of the format field, the computer will
print a + sign for a positive number or a — sign
for a negative number at the specific position
accordingly.

(v) — When a sign is placed at the end of the format
field, it will cause a negative sign to be printed after
any negative number, and will display as a blank for
positive numbers.

63

Examples (using the same program as above):

ENTER FORMAT ? + # # . # #
ENTER A NUMBER ? 12.34
+12.34

ENTER FORMAT ? + # # . # #
ENTER A NUMBER ? -12.34
-12.34

ENTER FORMAT ? # # . # # +
ENTER A NUMBER ? -12.34
12.34-

ENTER FORMAT ? # # . # #
ENTER A NUMBER ? 12.34
12.34

ENTER FORMAT ? # # . # # #
ENTER A NUMBER ? 123 456
% 123 456.000

ENTER FORMAT ? STOP

(vi) % space %
To define a string field o f more than one character. The
length of the format field will be 2 plus the number of
spaces between the percentage signs. An exclamation
mark (!) informs the computer to use only the first
character of the current string value.

Consider the following program example:

10 INPUT "ENTER FORMAT"; F$
20 IF F$ = "STOP" END
30 INPUT "ENTER A STRING"; C$
40 PRINT USING F$; C$
50 GOTO 10

This program performs similarly to the ones we just used.
The only difference is that, the user has to input a string
value instead of a numeric value for the second data entry.
This is, the variable C$.

Now let us run the program and test its function.

64

ENTER FORMAT ?!
ENTER A STRING ? ABODE
A
ENTER FORMAT ?% %
ENTER A STRING ? ABODE
ABC

ENTER FORMAT ?% %
ENTER A STRING ? ABCDEF
ABODE

ENTER FORMAT ? STOP

(viii) I By using the I sign we can also concatenate, or join
strings together.

Example:

10 INPUT "ENTER THREE STRINGS"; A$ B$ C$
20 PRINT "THE RESULT IS: " PRINT USING

"H I" ; AS; B$;C$;
Now run the program.

ENTER THREE STRINGS ? ABC, XYZ, UK
THE RESULT IS: AXI

ENTER THREE STRINGS ? A, COMPUTER,
PROGRAM

THE RESULT IS: ACP

By using more than one " I " signs the first letter of each
string will be printed with spaces inserted corresponding
to the space inserted between the " ! " signs.

Try to follow this example:

10 INPUT "ENTER THREE STRINGS"; A$, B$, C$
20 PRINT "THE RESULT IS: " PRINT USING

" I I I ", A$; B$; C$ •
30 END

65

We now get:

ENTER THREE STRINGS ? XYZ, FGH, ABC
THE RESULT IS: X F A

and again:

ENTER THREE STRINGS ? A, COMPUTER,
PROGRAM

THE RESULT IS: A C P

The following program shows how the DEFDBL command
and PRINT USING command can be used to overcome the
problems inherent in Colour Genie BASIC.

Example:

5 REM DEFDBL & PRINT USING DEMO
10 DEFDBL N
20 N = 0: M = 0
30 N = N T .1: M = M + .1
40 PRINT M, U S IN G "###. # # # # # " ; N
50 IF N > 10 THEN STOP
60 GOTO 30

PRINT # - CASSETTE NUMBER, ITEM LIST

This statement prints the value of the specified variables
onto cassette tape. The recorder must be properly set
in record mode before executing this statement.

Example:

10 AS = "BEGIN TAPE"
20 B = 3.141 6
30 C = 50
40 D$ = "D A T A "
50 PRINT # -1 , AS, B, C, D$, "END OF FILE"
60 END

66

This program assigns various data to variables AS, B, C,
and D$ respectively, then PRINT these data on tape
through cassette drive No. 1. Note that the string constant
"END OF FILE", can be printed on tape as well as
variables. Once the data are stored on tape, you may
input these data into the computer again, just like playing
music tapes with a cassette. Please note that the INPUT
statement must be identical to the PRINT statement in
terms of number and types of variables. However, the
variable names may be different in any case.

Important:

The total number of characters represented in all the
variables mentioned in the "item list" must not exceed
255; otherwise anything after the 255th character will be
truncated or lost.

Example:

10 PRINT # - 1 , A$, B$, C$, D$, E$

If the total number of characters in AS, B$, C$, D$, are 250
and E$ has a length of 35 characters, then E$ will not be
saved on tape. And if you try to INPUT the value of E$, an
Out-of-Data error will occur.

READ

This statement instructs the computer to read in a value
from a DATA statement and assign that value to the
specified variable. The values in the DATA statement will
be read sequentially by the READ statement. After all the
times in the first DATA statement have been read, the next
READ statement encountered will access the second DATA
statement for the next variable. If there is no more value
in the DATA statement available for a READ statement an
Out-of-Data error will occur.

67

Consider the following example.

16 READ C$
20 IF C$ = "E O F" GOTO 60
30 READ Q
40 PRINT C$, Q
50 GOTO 10
60 PRINT; PRINT "END OF LIST.": END
70 DATA BOOKS, 4, PENCILS, 12
80 DATA BALL PENS, 5, COMPASSES, 2
90 DATA GLASSES, 5, EOF

This program when RUN displays:

BOOKS 4
PENCILS 12
BALL PENS 5
COMPASSES 2
GLASSES 5
END OF LIST

RESTORE

RESTORE allows the next READ statement to access the
first item in the first DATA statement, and the subsequent
items.

Example:

10 READ AS, A
20 PRINT AS, A
30 RESTORE
40 READ B$, B
50 PRINT A$, A, B$, B
60 DATA "JOHN W HITE", 25, "JOE HUDSON",

32, "B IL L ADAMS", 30
70 END

We get:

JOHN WHITE 25
JOHN WHITE 25
JOHN WHITE 25

68

This program shows that the RESTORE statement not
only allows the READ statement to access the first item
in the first DATA statement, but also it has no effect on
the previous assignments.

RETURN

This statement ends a subroutine and returns control to
the statement that immediately follows the GOSUB. An
error will occur if RETURN is encountered without
execution of a matching GOSUB.

RESUME

This statement terminates an error handling routine by
specifying where normal execution is to resume.

RESUME 0 or RESUME without a line number causes the
computer to return to the statement in which the error
occurred. IF RESUME is followed by a line number, it
causes the computer to branch to the line number
provided.

RESUME NEXT causes the computer to branch to the
statement following the point at which the error occurred.

Example:

10 ON ERROR GOTO 80
20 PRINT "SIMPLE DIVISION.”
30 INPUT "ENTER TWO NUMBERS” : A, B
40 IF A = 0 THEN END
50 C = A/B
60 PRINT "THE QUOTIENT IS” ; C
70 GOTO 20
80 PRINT "ATTEMPT TO DIVIDE BY ZERO!”
90 PRINT "TRY AGAIN . . ."

100 RESUME 20

69

Let's RUN this

SIMPLE DIVISION
ENTER TWO NUMBERS ? 6, 2
THE QUOTIENT IS 3
SIMPLE DIVISION
ENTER TWO NUMBERS ? 7, 3
THE QUOTIENT IS 2.333 33
SIMPLE DIVISION
ENTER TWO NUMBERS ? 5, 0
ATTEMPT TO DIVIDE BY ZERO!
TRY AGAIN . . .
SIMPLE DIVISION
ENTER TWO NUMBERS ? 9, 4
THE QUOTIENT IS 2.25
SIMPLE DIVISION
ENTER TWO NUMBERS? 0, 0

REM

REM represents remarks. This statement informs the
computer that the rest of the line only consists of comments,
and should be ignored. The statement also allows you to
have more comments in your program for better documenta
tion. If REM is used in a multi-statement program line, it
must be the last statement.

Example:

10 REM * VARIABLE REPRESENTATIONS *
20 REM * A = AMOUNT
30 REM * B = NUMBER OF ITEMS
40 REM * C = UNIT COST
50 REM *
60 A = B * C: REM * * AMOUNT = NO. OF ITEMS x

UNIT COST '

70

STOP

This statement is essentially a debugging aid. It sets a break
point in a program during execution, and allows you examine
or modify variable values. A message will be printed out as
"BREAK IN line number" once the computer executes the
STOP statement. The active command CONT can then be
used to re-start execution at the point where it breaks.

Example:

5 INPUT B, C
10 A = B + C
20 STOP
30 X = (A + D1/0.74
40 IF X < 0 GOTO 70
50 PRINT A, B, C
60 PRINT X
70 END

Let's enter some numbers:

? 2, 4

The STOP statement allows the user to examine the value of
A before line 30.

BREAK in 20
READY
> PRINT A
6
READY
> CONT
6 2 4
8.10811

71

CHAPTER 4 :
ARRAYS AND STRINGS
DIM ARRAY (dim 1......... dim n)

This dimensions any arrays used. Colour Genie BASIC allows
you to use arrays with up to 11 dimensions without declaring
their size. Any more than 11 they must be declared. It is
a good idea to dimension arrays all the time as this brings
that array to the users' attention each time the program is
listed.

Default dimensioning is dynamic so that no array space is
lost by not declaring them.

Example:

Let us write a program that allows you to enter up to 45
names in a class list and then PRINT them out when it is
RUN. It could be something like this!

5 CLEAR 1000: REM CLEAR 1000 BYTES FOR
STRING STORAGE

10 DIM AR$ (44): REM ARRAY AR$ HAS 45
ELEMENTS

15 REM * * INPUT ARRAY SECTION **
20 FOR N = 0 TO 44: REM LOOPS 45 TIMES
30 INPUT "ENTER THE NAME OF THE STUDENT":

AR$(N)
40 REM ASSIGN THE NAMES TO EACH ELEMENT

IN THE ARRAY
50 NEXT N
55 REM * * PRINT ARRAY SECTION **
60 FOR N = 0 TO 44: REM LOOPS 45 TIMES
70 PRINT AR$(N): REM PRINTS THE N TH

ELEMENT OF THE ARRAY
80 NEXT N
90 END

72

STRINGS

String operations are the essence in data processing and
Colour Genie BASIC allows many useful string operations
in addition to arithmetic operations.

STRING COMPARISON

By using a relational operator, two strings may be compared
for equality or alphabetic precedence. If they are checked
for equality, every character, including any leading or
trailing blanks, must be identical otherwise the test fails.

Example:

100 IF A$ = "YES" THEN 250

Strings are compared character by character from left to
right. In Colour Genie BASIC the ASCII code representations
for the characters are compared. A character with the lower
code number is considered to precede the other character. In
other words, "A B ” precedes "A C ". When strings of different
lengths are compared, the shorter string is given precedence
even if its characters are identical as those in the longer
string. Therefore, "B " precedes "B ". The following relational
operators may be used to compare strings.

< ,0, >=,>, = ,<>

STRING OPERATION

There is really only one string operation that is concatenation
which is represented by the plus sign "+ ".

Example:

10 S1$ = "THE SUN IS"
20 S2$ = " SHINING"
30 S3$ = " , "
40 C$ = S1$ + S2$ + S3$ + S2$
50 PRINT C$
60 END

This program gives us: THE SUN IS SHINING, SHINING.

73

ASC (STRING)

This Statement returns the ASCII code (in decimal) for the
first character of the specified string. The string specified
must be enclosed in parentheses. A null-string will cause an
error to occur.

100 PRINT ASCII CODE FOR 'H ' IS:” ; ASC ("H ")
105 S$ = "HOME” : PRINT "THE STRING IS :"; S$
110 PRINT "THE ASCII CODE FOR THE FIRST

LETTER IS :"; ASC (S$)
120 END

giving:

THE ASCII CODE FOR 'H ' IS: 72
THE STRING IS: HOME
THE ASCII CODE FOR THE FIRST LETTER IS: 72

Both lines will print the same number.

A complete set of control, graphics, and ASCII codes is listed
in Appendix C.

CHR$

This statement is essentially the inverse of the ASC function.
It returns the character of the specified ASCII, control or
graphics code. The argument may be any number from 0 to
255, or any variable expression with a value within that range.
The argument must be enclosed in parentheses.

So to print an exclamation mark (code 33) enter:

100 PRINT CHR$ (33)

Example:

5 REM CHR$ DEMO
10 FOR G = 30 TO 255
20 PRINT CHR$ (G);
30 PRINT " ";
40 NEXT G

This program points out all the Colour Genie BASIC
characters.

74

FRE (STRING)

This function returns the amount o f available memory for
string storage. The string is a dummy variable.

5 REM FRE DEMO
10 CLEAR 75
20 PRINT STRINGS (60, "# ")
30 PRINT FRE ("# ")

LEFTS (STRING, n)

This statement returns the first n characters of the
specified string. The argument must be enclosed in
parentheses. The string may be a constant or an expression,
and n may be a numeric expression.

Example:

10 AS = "ABCDEFG"
20 B$ = LEFTS (AS, 4)
30 PRINT B$
40 END

If RUN we get: ABCD

RIGHTS (STRING, n)

This returns the last n characters of a string and n must be
enclosed in parentheses. String may be a string constant or
variable, and n may be a numerical constant or variable. If
the length of the string is less than or equal to n, the entire
string is returned.

Example:

10 AS = "ABCDEFG"
20 B$ = RIGHTS (AS, 3)
30 PRINT B$
40 END

This program prints the right hand letters: EFG.

75

LEN (STRING)

This returns the length of the specified string. The string
may be a variable, expression or constant and must be
enclosed in parentheses.

Example:

5 REM LEN DEMO.
10 A$ = "UVW XYZ"
20 FOR C = 1 TO LEN (AS)
30 S$ = LEFTS (AS, C)
40 PRINT S$
50 NEXT C

MIPS (STRING, p, n)

This statement returns a substring of string starting at
position p, with length n. The string, position and length
must be enclosed in parentheses. String may be a constant
or an expression, p and n may be numeric expressions or
constants.

Example:

10 AS = "ABCDEFG"
20 BS = MIDS (AS, 3, 4)
30 PRINT "THE NEW STRING IS: B$
40 END

When RUN gives: THE NEW STRING IS: CDEF

STR$ (EXPRESSION)

This converts a constant or numeric expression into a string
of characters. The expression or constant must be enclosed
in parentheses.

Example:

5 REM STRING DEMO
10 A = 12
20 BS = STR$ (A)
30 CS = BS+ " STONE”
40 PRINT C$

76

STRINGS (n, CHARACTER OR NUMBER)

This returns a string which is composed of n (number) of
the specified characters.

Example:

10 PRINT STRINGS (10, " * ")
20 END

which displays;

In this statement the character may be a number from 0-255.
In the next example it w ill be treated as an ASCII, control
or graphics code.

10 PRINT STRINGS (10, 33)
20 END

33 is the ASCII code for an exclamation mark so we get:

! ! ! ! ! ! ! ! ! !

VAL (STRING)

This is the inverse of the STRS function. It returns the
numeric value o f the characters in a string argument.

Example:

10 AS = "5 6 "
20 B$ = "2 3 "
30 C = VAL (AS + + B$)
40 PRINT "THE RESULTS AR E:"; C; " , " ; C + 100
50 END

which displays:

THE RESULTS ARE: 56.23, 156.23

77

Here are some more programs illustrating the string functions
discussed above:

Example 1:

10 REM BINARY TO DEC. CONVERT; VAL DEMO
20 F = 0: E = 0
30 PRINT "ENTER BINARY NUMBER WITH

LEADING ZEROS INCLUDED."
40 INPUT "EIGHT DIGITS ARE REQUIRED"; B$
50 FOR D = 1 TO 8
60 READ A
70 E = VAL (MlD$ (B$, D, 1))
80 F = F + E * A
90 NEXT D

100 PRINT F
110 RESTORE
120 DATA 128, 64, 32, 16, 8, 4, 2, 1
130 GOTO 10

Example 2:

10 REM MlD$ DEMO. ONES COMPLEMENT
20 INPUT "ENTER BINARY NUMBER"; B$
30 C$ = " "
40 FOR N = 1 TO LEN (B$)
50 IF Ml D$ (B$, N, 1) = "1 " THEN D$ = "0 "

ELSE D$ = "1 "
60 C$ = C$ + D$
70 NEXT N
80 PRINT C$

78

CHAPTER 5 :
DOING ARITHMETIC
In this chapter, we dicuss the built-in functions available in
Colour Genie BASIC. In most cases, it is necessary to pass
an argument (initial value) to the function, before a desired
value (result) is returned. The argument may be a constant,
a numeric variable, or an expression. The general format is:

result = function (argument)

Example:

10 A = RND (3)
20 B = INT (C)/D
30 E = SQR (F * G - H)

ABS (X)

Returns the absolute value of the argument X.

ATN (X)

Returns the arctangent function (in radians) of the argument.
To get the arctangent in degrees, multiply ATN (X) by
57.295 78.

CDBL (X)

Returns the double-precision representation o f the argument.
The value returned contains 17 digits, however, only the
digits contained in the argument will be significant.

CINT (X)

Returns the largest integer that is not greater than the
argument. The argument must be within the range of
—32 768 + 32 767. For example, CINT (2.6) returns 2;
CINT (-2 .6) returns -3 .

79

COS (X)

Returns the cosine function of the argument (in radians).
In order to obtain the cosine of X when X is in degrees, use
COS (X * .017 453 3).

CSIMG (X)

Returns a single-precision representation of the argument. It
returns a 6 significant digit number with 4/5 rounding for
a double precision argument.

EXP (X)

Returns the "natural exponential" of X, that is e *. This is
the inverse of the LOG function.

FIX (X)

Returns a truncated representation of the argument with
all digits on the right of the decimal point being truncated
or chopped off. For example, FIX (1.5)returns 1, FIX (—1.5)
returns —1.

INT (X)

Returns an integer representation of the argument, using the
largest integer that is not greater than the argument. The
argument is not limited to the range —32 768 to +32 767.
For example, INT (3.5) returns 3, INT (-3 .5) returns -4 .

5 REM INT DEMO
10 X = 10 * 192.6
20 Y = INT (10 * 192.6)
30 PRINT X
40 PRINT Y
50 PRINT X - Y

80

LOG (X)

Returns the natural logarithm of the argument, that is
loge (X). To find the logarithm of a number of another
base b, use the formula logb (X) = loge (X)/loge (b).

RANDOM

This function causes the computer to generate a new set
of random numbers every time when the computer is
turned on and runs a program which has RND functions.
No argument is needed in this function.

RND (X)

Returns a pseudo random using the current pseudo-random
number (generated internally and has not access to the user).
RND (0) returns a single-precision value between 0 and 1,
RND (X) returns an integer between 1 and X inclusive.
However, X must be positive and less than 32 768.

SGN (X)

The "sign" function, that is to return —1 if X is negative,
0 is X is zero, and +1 if X is positive.

SIN (X)

Returns the sine function of the argument (in radians).
To obtain the sine of X when X is in degrees use
SIN (X*. 0174533)

SQR (X)

Returns the square root of the argument.

81

TAN (X)

Returns the tangent function of the argument (in radians).
To obtain the tangent of X and X is in degree, use
TAN (X * .017 453 3).

82

CHAPTER 6 :
GRAPHICS
The Colour Genie is able to do some quite amazing things
with graphics. As you saw in the Beginner's Manual
there are two pages that can be used with this computer.
One is referred to as the low graphics page, or LGR, and is
used for text and the standard graphics characters. The
other page is for fu ll graphics and is called FGR. It is not
possible to use text or the keyboard graphics on the FGR
page nor the graphics commands on the LGR page. They
are two distinct entities and must be treated as such.

This chapter will look at each page in turn. It is possible
to switch between the two pages both from the keyboard
and within a program. It is recommended that you
familiarise yourself with the graphics section of the
Beginner's Manual before going any further in this
one!

LGR PAGE

This page is divided into 960 sections, or pixels, on a
24 by 40 matrix. The LGR screen is 40 columns wide
and 24 rows high. It is possible to address each one of
the pixels individually and place characters from the
Colour Genie grahpics set into one of these positions. They
are numbered 0 to 959 as shown on the diagram in the
Beginner's Manual.

It is possible to supplement the Colour Genie characters
with another 128 programmable ones. As there are 128
upper and lower case characters in the ASCII character
set, and another 64 graphics characters available from
the keyboard some method must be used to allow us to
tell the computer what set to use.

83

CHAR

CHAR defines the character set being used. The Colour
Genie has four character sets so n can have a value 1 to 4.
That appropriate set is given by the following table:

n 1 2 3 4

ASCII
code
0 - 1 2 7
128 - 191
192 - 255

alpha
prog
prog

alpha
prog
spec

alpha
graph
prog

alpha
graph
spec

alpha -— These are alphanumeric characters and are shown
on the Keytops.

prog — These are user definable graphics.

spec — These are the graphics characters shown on the
front of the Keys.

graph — These are special graphics characters and are used
for non English alphabets.

The CHAR n command is mainly for use with system
commands although it can be used within a program. If it is
then do not count on the default character set i.e.
alphanumeric to be available when the program is finished.

CLS

CLS clears the screen both when used directly from the
keyboard or within a program. It is especially useful when
used at the beginning of a program using graphics.

The cursor is returned to the top left hand corner of the
display.

84

COLOUR n

The Colour Genie has the ability to show up to 8 colours
on the LGR page. This is the one that is normally used
for text entry. These colours are indicated on the keys
and the n refers to the key used to get that colour.

Format: COLOUR n

where n has a value between 1 and 8

n colour

1 white
2 green
3 red
4 yellow
5 orange
6 blue
7 cyan
8 magenta

Colour can be changed within programs. The system stays in
the last colour used even if this was in a program.

It is possible to change the colour of the LGR page directly
from the keyboard. If the CTRL key is pressed before one
of the number keys then the following text or graphics
characters will be in the appropriate colour. They will stay
in that colour until changed.

Example 1:

1 REM COLOUR DEMONSTRATION
5 CLS

10 FOR L = 1 T012
20 C = RND (8)
30 COLOUR C
40 READ D$
50 PRINT @ 400 + L, D$
60 NEXT L
70 DATA C, 0 , L, 0 , U, R, , Gf E, N, I, E
80 RESTORE
90 GOTO 10

85

Example 2:

5 REM ANOTHER COLOUR DEMO
10 FOR C = 1 TO 8
20 COLOUR C
30 PRINT STRINGS (10, C
40 NEXTC

LGR

This command is usually used within a program and
instructs the computer to revert to displaying the LGR
page.

POS (DUMMY ARGUMENT)

This command returns the current cursor position, between
0 and 39. The dummy argument is usually 0.

Example:

10 FOR X = 1 TO 20
20 PRINT STRINGS (X,
30 PRINT POS(0)
40 NEXT X

PRINT @ n, ITEM

PRINT @ n, item or even? @ n, item, can be used in
conjunction with FOR . . . NEXT loops to give something
equivalent to the PLOT command available on the FGR
page.

'Item ', if a variable can be left as that variable but if text
must be within quotation marks. Other rules of printing
also apply to this command i.e. ' , ' and ' ; ' .

86

Example:

10 REM GROWTH, PRINT @ DEMO
20 CLS
30 P = RND (900)
40 PRINT @ P, " # "
50 D = RND (5)
60 ON D GOTO 70, 80, 90, 100, 110
70 N = -4 0 : GOTO 120
80 N = -1 : GOTO 120
90 N = 0: GOTO 120

100 N = 1: GOTO 120
110 N = 40: GOTO 120
120 IF P < 40 THEN N = 40
130 IF P > 800 THEN N - -4 0
140 P = P + N
150 PRINT @ P, " # "
160 GOTO 50

Run this program and the # sign is printed at random locations.

PROGRAMMABLE GRAPHICS CHARACTERS

The Colour Genie can have up to 128 graphics characters
that can be programmed by the user. A fairly complicated
shape table needs to be drawn up that involves rather
complex use of POKEing and Octal to decimal conversion.
To make life easier we have developed the following
BASIC program that lets you create your characters in a
simple way!

The graphics on the LGR page are made up of a matrix of
dots which are 8 dots wide and 8 dots high. To create a
graphics character draw a diagram on an 8 x 8 grid. Put
ones in the squares where you want a dot to appear on
the screen and zeros where you want the screen dark.

This data will be transfered to the conversion program. The
example on page 88 shows the character PI.

87

When the program is RUN it will ask you for the data for the
first line. Just enter the ones and zeros when reading from
the left for each row. So for the pi character this would be:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 1 1 1 0 0
0 1 0 1 0 1 0 0
0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0

DIAGRAM TO CREATE 'PI'

COLUMN
1 2 3 4 5 6 7 8

1

2

3

4
ROW

5

6

7

8

You also need to have decided what code you are going to
allocate this character to. The program line 30 is where this
data is entered and you need to know that ASCII code for
that character. The ASCII code number must be between
128 and 255. The ensuing character will not be available
from the keyboard and must be called up using the CHR$
command. The program displays the character as it is
being formed.

88

Let's allocate the code 128 for it. To access it we then
type

PRINT CHR$ (128)

and the graphic character of PI will be displayed.

Example:

10 CLS: CHAR1
20 REM PROG. GRAPHICS PROGRAMMER
30 REM BY D.C. EVENDEN
40 S = - 3 072: L = 8: C = 128: N = 1
50 PRINT "ENTER ASCII CODE REQUIRED"
60 INPUT "BETWEEN 128 AND 255"; A
70 PRINT "ENTER DATA FOR CHARACTER"; A;

" " ; CHR$ (A)
80 S1 = S + (A - C) * 8
90 FOR ADDR = S1 TO SI + 7

100 PRINT "ENTER DATA FOR LINE"; N;
110 INPUT D$
120 GOSUB 200
130 POKE ADDR, D
140 N = N + 1
150 NEXT ADDR
160 PRINT "THE CHARACTER AT ASCII CODE";

A; "IS "; CHR$ (A)
170 INPUT "PRESS ANY KEY TO CONTINUE"; F$
180 GOTO 10
190 REM BINARY TO DECIMAL
200 D = 0
210 FOR P = 1 TO 8
220 READ B
230 D = D + B * VAL (MID$ (D$, P, 1))
240 NEXT P
250 DATA 128, 64, 32, 16, 8, 4, 2, 1
260 RESTORE
270 RETURN

89

FULL GRAPHICS PAGE FGR

The full graphics page FGR is accessed from the keyboard
by pressing CTRL and MODSEL at the same time. It can
be accessed from within a program by the FGR command.

The FGR page has a resolution o f 160 columns by 96
rows. Each point, or pixel, is accessed on an x, y grid as
shown in the diagram on page 12 of the Beginner's
Manual. All drawing and other similar commands make
use of this grid and it is very useful if you become
familiar with the boundaries of the FGR area before you
go much further. A t the start of any program that uses
the FGR page the various parameters referring to that
page must be set up. These include background colour,
the fact that the FGR page is to be used etc. These
commands are described and illustrated below.

BGRD

When used in a program this command automatically colours the
high resolution display background PINK. The following example
shows a blue circle on a pink background:

10 FCLS : FGR
20 BGRD
30 FCOLOUR 2
40 CIRCLE 80, 47, 30
50 GOTO 50

NBGRD

This command disables the BGRD command; when used in a
program, the PINK background colour reverts back to a black (or
blank) background. Let's use this command in the previous
example — by pressing any Key, the background colour is
changed from PINK to BLACK.

90

Example:

10 FC LS : FGR
20 BGRD
30 FCOLOUR 2
40 CIRCLE 80, 47, 30
50 IF INKEYS = " " THEN 50
60 NBGRD
70 GOTO 70

CIRCLE x, y, r

This command draws circles on the FGR page x, y are the
coordinates of the centre of the circle and r the radius, x
has a value between 0 and 159 and y a value between 0
and 95.

Ilustration: CIRCLE 40, 40, 40

draws a circle in the top left hand corner o f the FGR
screen.

CPOINT (x, y)

This is a useful programming tool as it allows you to read the
colour of any point (X, Y) in the high resolution display by the
following code relationship:

CODE COLOUR
0 BLACK
1 BLUE
2 RED
3 GREEN

Example:

10 F IL L 3
20 A = CPOINT (30, 30)
30 PRINT A

Run this program and you will see that A = 2
i.e. the colour of A (POINT 30, 30) is RED.

91

FCOLOUR (n)

This command sets the colour of any graphics drawn on the
FGR page, n can have a value between 1 and 4. The colour
defaults to black if a value o f n is not specified.

n colour

1 black
2 blue
3 red
4 green

This command is usually used within a program and with
the FILL command too.

Illustration: 5 FCLS: FGR
10 FOR R = 1 TO 46
20 FCOLOUR (RIMD (4))
30 CIRCLE 79, 47, R
40 NEXT R
50 GOTO 10

FCLS

FCLS clears the FGR page and is usually used within a
program.

FGR

FGR switches the display to the full graphics page (FGR).

This command is used with FCLS and FCOLOUR
within a program as illustrated below.

5 REM FCOLOUR DEMONSTRATION
10 FCLS: FGR
20 FOR R = 1 TO 46
30 FCOLOUR (RND (4))
40 CIRCLE 79, 47, R
50 NEXT R
60 GOTO 10

92

FILL n

FILL fills the FGR screen with background colour, n has
a value between 1 and 4.

22 coloui

1 black
2 blue
3 red
4 green

When using FILL and FCOLOUR the user must remember
not to have the background and graphics colour the same!
FILL1 defaults to black, which is the background colour
when the computer is powered up.

Example:

10 FCLS : FGR
20 FOR N = 1 TO 4
30 FILL N
40 IF INKEY$= " " THEN 40
50 NEXT
60 GOTO 20

Run this program and by pressing any Key, the colour of the
screen display will change to the 4 different colours.

NPLOT x, y

This command is similar to PLOT x, y except it unplots
the line drawn with PLOT x, y.

93

NSHAPE

This command is functionally similar to the SHAPE command
except that NSHAPE will blank the picture or a drawn by SHAPE.

Example:

10 FCLS : FGR
20 A = 7F00
30 FOR S = 0 TO 3
40 READ D
50 POKE A + S, D
60 NEXT
70 SCALE 3
80 SHAPE 30, 30
90 IF INKEY$= " " THEN 90

100 NSHAPE 30, 30
110 GOTO 110
120 DATA 3, 68, 119, 68

PAINT x, y, c, b

The PAINT command fills in simple shapes created by
CIRCLE or PLOT for example. Complex shapes are not
easily filled in with a single PAINT command and may
take a number of repeated uses, x and y represent a
point somewhere inside the shape to be PAINTed. The
shape itself must be a closed area. If it is not some very
strange things happen! c is the colour that is to fill the
shape as defined in the FCOLOUR command, b is the
boundary colour taken from the same table. It is possible
to have b and c the same.

94

The example below shows how the PAINT command can
be used. Concentric circles, for example, must be drawn
by "superimposing" one on top of the other. This
command w ill not f ill the "donu t" area in one go. It is
not advisable to have the starting point on the boundary
of the shape to be PAINTed.

5 REM PAINT DEMO.
10 PGR: FCLS: FCOLOUR 3,
20 CIRCLE 50, 50, 20
30 PAINT 50, 50, 4, 3
40 GOTO 40

PLOT x1, y l TO x2, y2 TO x3, y3, . . . xn, yn

The PLOT command draws a line between the
coordinates specified. These can be joined with
the TO command. The line is plotted in the colour
defined in the FCOLOUR statement.

Try RUNning the following programs to get the hang
of the commands:

Program 1:

5 REM FGR PAGE COLOUR DEMO
10 FCLS: FGR
20 FCOLOUR (RND (3) + 1)
30 FORX = 0 TO 159 STEP 4
40 PLOT A, B TO X, 0
50 PLOT A, B TO X, 95
60 NEXT X
70 FOR Y = 0 TO 95 STEP 3
80 PLOT A, B TO 0, Y
90 PLOT A, B TO 159, Y

100 NEXT Y
110 A = RND (128)
120 B = RND (90)
125 FOR D = 1 TO 300: NEXT
130 GOTO 10

95

Program 2:

5 REM WRITING "COLOUR" ON FGR PAGE
10 FGR: FCLS
20 FCOLOUR (RND (31 + 1)
30 CIRCLE 20, 50, 10
40 FCOLOUR (1)
50 FOR P = 2 TO 0 STEP -1
60 PLOT 27 + P, 40 TO 27 + P, 60
70 NEXT P
80 FCOLOUR (RND (3) + 1)
90 CIRCLE 40, 50, 10

100 FCOLOUR (RND (3) + 1)
110 PLOT 56, 40, TO 56, 60 TO 65, 60
120 FCOLOUR (RND (3) + 1)
130 CIRCLE 79, 50, 10
140 FCOLOUR (RND (3) + 1)
150 CIRCLE 97, 45, 5
160 PLOT 94, 40 TO 94, 60
170 PLOT 94, 50 TO 104, 60
180 FOR F = 3 TO 1 STEP -1
190 FCOLOUR (1)
200 PLOT 94 - F, 40 TO 94 - F, 50
210 NEXT F
220 GOTO 20

96

Here is a rather good program that shows the FGR page off
to effect. It plots a three dimensional pattern on the screen.
Be patient as it takes a few minutes to finish!

10 REM, 3D, PLOT
20 FGR: FCLS: FCOLOUR 3
30 H = 159
40 V = 95
50 D1 = H/2
60 D2 = D1 * D1
70 El = V/2
80 E2 = V/4
90 FOR D = 0 TO D1

100 D4 = D * D
110 M = —El
120 A = SQR (D2 - D4)
130 FOR I = - A TO A STEP 5
140 S = SQR (D4 + I * l)/D1
160 E = I / 5 + F * E2
170 IF E < = M THEN GOTO 1 000
180 M = E
190 E = El + E
200 X = D1 - D
210 Y = (3 * E) - 75
220 GOSUB 2 000
230 X = D1 + D
240 GOSUB 2 000
1 000 NEXT I
1 010 NEXT D
1 020 END
2 000 PLOT X, 96 - (Y/2)
2010 RETURN

97

There are lots of other things that you can do with SIN
and COS, like draw spirals and other interesting shapes.
Try RUNning the next few programs.

5 REM SPIRAL
10 FCLS: FGR
20 FOR X = 0 TO 50 STEP .15
30 IF COS (X) > .9 GOSUB 70
40 PLOT 20 * COS (X) + 65, X * SIN (X) + 50
50 NEXTX
60 GOTO 20
70 FCOLOUR (RND (3) + 1)
80 RETURN

This one also does some interesting things!

Program 1

10: FCLS: FGR
20 FCOLOUR 3
30 PLOT 0, 0 TO 0, 96
40 PLOT 0, 48 TO 157, 48
50 FOR X = 0 TO 15.8 STEP .1
60 LET X1 = X * 10
70 Y = 40 * SIN (-X) + 48
80 Z = -4 0 * COS (X) + 48
90 FCOLOUR 2

100 PLOT X I, Y
110 FCOLOUR 4
120 PLOT X1, Z
130 NEXT X
140 GOTO 140

Program 2

5 r e m p l o t d e m o .
10 FGR: FCLS
20 FOR A = 1 TO 60 STEP 2
30 FCOLOUR (RND (3) + 1)
40 FOR X = 0 TO 20 STEP .1
50 PLOT 5 * X + A, 10 * SIN (X) + 10 + A
60 NEXT
70 NEXT
80 GOTO 80

Program 3

5 REM PLOT & RND DEMO.
10 FCLS: FGR
20 M = 0: N = 0
30 X = RND (159)
40 Y = RND (95)
45 FCOLOUR (RND (3) + 1)
50 PLOT M, N TO X, Y
60 M = X: N = Y
70 GOTO 30

Program 4

5 REM DAMPED OSC. DEMO
10 FGR: FCLS
20 FOR A = 0 TO 20 STEP 2
30 FCOLOUR (RND (3) + 1)
40 FOR X = 0 TO 30 STEP .2
50 PLOT 5 ♦ X + A, X » SIN (X) + 35 + A
60 NEXT X
70 NEXT A
80 GOTO 80

SCALE n

SCALE is used with the SFIAPE command to define the
scale at which the shape created should be plotted. For
example SCALE 2 produces a shape that is twice the size
of SCALE 1. When power-on, the system defaults SCALE
to 1. SCALE 0 will cause FC error.

SHAPE x, y

This command defines a shape which can be used on the
FGR page. As text from the alphanumeric character set
cannot be used on the FGR page this is one means of
overcoming the problem.

99

The shape itself has to be stored at memory location 32 512
for 16 K memory system (or —.16 640 for 32 K system) in
the computer memory. This involves the use of the POKE
command. Unfortunately there is no simple way of using
this command and we hope that the example will make
things clear!

The numbers that are stored in the memory tell the
computer a number of things. First the colour of the pixel
to be saved at the starting point defined by the coordinates
x, y and then the direction to move in to plot the next
pixel. This only takes four out of the eight bits of
information that can be stored at each memory location,
so it is repeated again to f ill up the full eight bits available.
If you're getting lost at this point jump to the program,
enter it, and just sit back and enjoy what happens when
you RUN it!

As each byte, or group of eight bits, consists of two four
bit nibbles, we will consider these in turn. The first two
bits in the first nibble define the colour the second two
the direction of movement. The actual number to be
entered into the memory is easily worked out from the
table below:

UPPER NIBBLE LOWER NIBBLE

colour direction colour direction

00 00 = 0 0 right
00 01 = 16 1 black < down
00 10 = 32 2 left
00 11 = 48 3 UP
01 00 = 46 4 right
01
01

01
10 = 72

96
5
6 blue • down

left
01 11 = 112 7 up
10 00 = 128 8 right
10 01 = 144 9 red down
10 10 = 160 10 left
10 11 = 176 11 up
11 00 = 192 12 right
11 01 = 208 13 green < down
11 10 = 226 14 left
11 11 = 240 15 up

100

To use this table decide from the left hand columns the
effects that you want e.g. if you want the pixel to be green
and the next pixel to be to its right enter 192 + 12, or 204,
into the memory. Diagonal directions are achieved by painting
a pixel in the background colour as you move, say, up and
then left.

Here's the example. The length of the shape table is stored at
32 512 (or -1 6 640) and the shape from 32 513 (or -1 6 639)
upwards.

This first program draws a simple square on the FGR page and
then uses the SCALE command to increase its size.

10 FCLS: FGR
20 FOR N = 32 512 TO 32 517
30 READ D
40 POKE N, D
50 NEXT N
60 SCALE 1
70 SHAPE 50, 50
80 GOTO 80
90 DATA 5, 136, 153, 170, 187, 204

Now let's play with the SCALE command; enter this into the
computer a number o f times with different values after SCALE.

101

SCALE 2: SHAPE 50, 50

The next program is slightly more complicated and puts up
the EACA logo (EACA are the people who make the Colour
Genie!)

10 FCLS: FGR
20 FOR I = 0 TO 56
30 READ A
40 POKE 32 512 + I, A
50 NEXT I
60 SCALE 1
70 SHAPE 112, 16
80 GOTO 80
90 DATA 57, 170, 170, 170, 170, 170, 170, 170

170, 146, 153, 41, 146, 153, 41, 146, 153, 152
100 DATA 136, 136, 136, 136, 136, 136, 136, 136

136, 131, 118, 102, 102, 102, 102, 102, 102,
102, 103, 112, 119

110 DATA 68, 68, 68, 68, 68, 68, 68, 67 ,51 ,1 18 ,
102, 102, 102, 102, 102, 102, 82, 85

It is possible to POKE into the colour memory directly. This
is explained in detail in the Technical Manual.

102

XSHAPE

This command changes the colour of the picture drawn by the
SHAPE command according to this relationship:

Picture Picture
by SHAPE by XSHAPE

Colour PINK/BLANK
BLUE
RED
GREEN

GREEN
RED
BLUE
PINK/BLANK

Example:

10 FCLS : FGR
20 A = &HF00
30 FOR S = 0TO 3
40 READ D
50 POKE A + S,D
60 NEXT
70 SCALE 3
80 SHAPE 30, 30
90 IF INKEY$=" " THEN 90

100 XSHAPE 30, 30
110 GOTO 110
120 DATA 3, 68, 119, 68

103

SOUND
The Colour Genie has a programmable sound generator, or
PSG. This is a very complex chip inside the computer and
handles not only sound but also the parallel output
facilities of the system. A full explanation of the PSG is
given in the Technical Manual so we are only going to
show you how to use the most straight forward facilities
in this chapter. These will allow you to generate quite
interesting sound effects for use with games, for example:
We have also included a program which shows you how to
play some rather sweet music.

The sound comes through the television loudspeaker so
it is necessary to have your tv correctly tuned in so that
both sound and vision are possible at the same time.
Although the computer has been designed for most tvs
on the market it is possible that you may have one of the
few that will not give sound and vision together. If this is
the case then see your local tv dealer or rental company
to have it tuned properly. If a bit of judicious twiddling
with the knobs on the front don't work,then it needs
getting at inside and this should be done by a technical
qualified person.

There are two basic sound commands; PLAY and SOUND.

CHAPTER 7 :

PLAY (ch #, oct, note, amp)

PLAY is by far the most powerful of the two commands
and the simplest to use. The PSG has three sound channels
when used with the PLAY command. These are turned on
by the use of the channel number, ch#. This has a value
between 1 and 3. There are eight octaves available for
each channel, with the.value of 'oct' being between 1 and
8. A value of 4 will give a note in the octave containing
middle C. The value of 'note' is between 1 and 12 as
shown in the table below. The amplitude, 'amp', is
between 1 and 15.

104

All these parameters can be put into, and read from,
DATA statements as shown in the program below. The
relationship between the value of 'note' and the actual
note is:

value note

0 rest
1 C
2 D
3 E
4 F
5 G
6 A
7 B
8 C-
9 D *

10 F#
11 G =
12 A=

105

The program below uses two of the sound channels and
assumes that each channel keeps playing until it is told
to play a new note. This gives the effect of two part
harmony.

10 REM MUSIC
20 FOR X = 1 TO 34
30 READ C, 0, N, V
40 PLAY (C, 0 , N, V)
50 FOR D = 1 TO 150: NEXT D
60 NEXT X
70 DATA 1,4 , 1, 10
80 DATA 2, 4, 3, 12
90 DATA 1, 4, 5, 10

100 DATA 1, 4, 6, 12
110 DATA 1, 3, 3, 10
120 DATA 2, 2, 6, 12
130 DATA 2, 4, 7, 12
140 DATA 1, 3, 4, 8
150 DATA 2, 3, 6, 10
160 DATA 2, 3, 1, 12
170 DATA 1, 4, 1, 10
180 DATA 2, 4, 3, 12
190 DATA 1, 4, 5, 10
200 DATA 2, 4, 6, 12
210 DATA 1,4 , 1, 10
220 DATA 2, 4, 3, 12
230 DATA 1, 3, 4, 8
240 DATA 2, 3, 6, 10
250 DATA 2, 3, 1, 12
260 DATA 1,4 , 1, 10
270 DATA 2, 4, 3, 12
280 DATA 1, 4, 5, 10
290 DATA 2, 4, 7, 12
300 DATA 1, 2, 3, 10
310 DATA 2, 2, 6, 10
320 DATA 1, 4, 6, 10
330 DATA 2, 4, 2, 12
340 DATA 1, 4, 5, 10
350 DATA 2, 4, 7, 12
360 DATA 1, 3, 5, 10
370 DATA 2, 3, 7, 12
380 DATA 2, 3, 1, 10
390 DATA 1, 2, 2, 0
400 DATA 2, 3, 3, 0

106

SOUND R, N

The PSG has sixteen registers which can be individually
programmed to give different types of sound. The actual
attributes of each register, and how to program them, are
given in the Technical Manual. The registers are listed
below for reference, and some programs using the more
commonly used registers listed.

Register Attribute

R0 Tone period 1-fine tune
R1 Tone period 1-coarse tune
R2 Tone period 2-fine tune
R3 Tone period 2-coarse tune
R4 Tone period 3-fine tune
R5 Tone period 3-coarse tune
R6 Noise period
R7 Enable R8, R9, R10
R8 Channel 1 amplitude
R9 Channel 2 amplitude
R10 Channel 3 amplitude
R11 Envelope period-fine tune
R12 Envelope period-coarse tune
R13 Envelope shape/cycle

Registers 14 and 15 are used for parallel I/O control and do
not affect the sound generator directly.

Most of the following programs, and most sound effects, use
registers 6, 7, 8, 9, 10, 11, and 13. R0 and R1 are
occasionally used to change the time period of one channel.
As stated before full details of the PSG are available in the
Technical Manual.

As R7 is the most important register at this level of
programming a short explanation of how it works is useful
here. The number appearing in the SOUND statement when
R has the value 7 tells the PSG what sound channels to
enable. These are dependent on the last three bits of the
number held in register 7. The table below shows you how
each channel is turned on.

107

Number in R7 Effect

248 #1 on, #2 on, #3 on
249 #1 off, #2 on, =3 on
250 = 1 on, =2 off, #3 on
251 = 1 off, #2 off, #3 on
252 = 1 on, #2 on, =3 off
253 #1 off, #2 on, #3 o ff
254 #1 on, -2 off, #3 o ff
255 = 1 off, =2 off, =3 o ff

Numbers in R7 below 248 do Strange and interesting things
with the noise generator!

The programs below show how SOUND R, n works.

Program 1

5 REM CIRCLE AND SOUND DEMO
10 FCLS: FGR: FCOLOUR 3
20 SOUND 7, 254: SOUND 8, 15
30 FOR I = 1 TO 30
40 SOUND 1, I
50 CIRCLE 80 - I, 70 - I , I
60 CIRCLE 80 + I, 40 + I, I
70 NEXT I
80 GOTO 10

Program 2

10 REM SIREN
15 CLS
20 SOUND 0, 254
30 SOUND 1, 0
40 SOUND 7, 248
50 SOUND 8, 15
60 FOR D = 1 TO 100: NEXT D
70 SOUND 0, 86
80 SOUND 1, 1
90 FOR T = 1 TO 100: NEXT T

100 GOTO 10

108

Program 3

10 REM GUNSHOT
15 CLS
20 SOUND 6, 15
30 SOUND 7, 7
40 SOUND 8, 16
50 SOUND 9, 16
60 SOUND 10, 16
70 SOUND 12, 16
80 SOUND 13, 0
90 INPUT "PRESS RETURN TO FIRE"; F$

100 GOTO 10

Program 4

10 REM EXPLOSION
15 CLS
20 SOUND 6, 0
30 SOUND 7, 7
40 SOUND 8, 16
50 SOUND 9, 16
60 SOUND 10, 16
70 SOUND 12, 56
80 SOUND 13, 0
90 INPUT "PRESS RETURN TO DETONATE"; F$

100 GOTO 10

Program 5

10 FOR X = 48 TO 192
20 SOUND 7, 254
30 SOUND 8, 20
40 SOUND 0, X
50 NEXT X
60 SOUND 6, 0
70 SOUND 7, 7
80 SOUND 8, 30
90 SOUND 9, 30

100 SOUND 10, 30
110 SOUND 12, 56
120 SOUND 13, 0
130 FOR X = 0 TO 1 000: NEXT X
140 SOUND 7, 255

109

Program 6

5 REM BEAT GENERATOR
10 DIM R (20)
20 CLS
30 FOR D = 1 TO 20
40 PRINT @400, "ENTER BEAT VALUE FOR

LOCATION"; D
50 INPUT V
60 R (D) = V
70 PRINT @80 + S, V
80 S = S + 4: REM DISPLAYING DATA
90 NEXT D

100 SOUND 7, 247
105 CLS
110 FOR P = 1 TO 20
120 SOUND 8, R (P)
130 FOR D = 1 TO 10: NEXTD
140 IF INKEYS < > " " THEN 170
150 NEXT P
160 GOTO 110
170 SOUND 7, 255

Program 7

10 FOR X = 48 TO 192
20 SOUND 0, X
30 SOUND 1, 0
40 SOUND 2, 0
50 SOUND 3, 0
60 SOUND 4, 0
70 SOUND 5, 0
80 SOUND 6, 0
90 SOUND 7, 254

100 SOUND 8, 15
110 SOUND 9, 0
120 SOUND 10, 0
130 SOUND 11 ,0
140 SOUND 12, 0
150 SOUND 13, 0
160 FORC = 0 TO 20: NEXT C
170 NEXT X
180 SOUND 7, 255

110

CHAPTER 8 :
OTHER GOODIES
There are some other commands that the Colour Genie
executes, although these are not fu lly applicable until you
have some other bits and pieces to plug into the computer.
You may have noticed some sockets on the side o f the
machine. These are for extra keypads and joysticks. The
Technical Manual has full details of how to use these and
the keypad, joystick and light pen available from your
supplier will have instructions included. However, to
accomodate the inquisitive we have included a brief summary
of the commands below:

CALL

This command provides a direct linkage between BASIC and
the machine language. Calling a four digit Hex address will
execute the subroutine at the address and return to BASIC.

KEYPAD n

n = 1 or 2

There are-two keypads with twelve keys each. These are
software controlled through the two i/o register of the PSG.

JOY n N

n = 1 or 2, N = X or Y

There are two joysticks available. The BASIC command
JOY n N, where n is 1 or 2, will return the x, y position
of the joystick.

in

INP (port — number)

This inputs an 8-bit value from the specified port. The
Colour Genie is capable of handling 256 ports, numbered
from 0 to 255. Usually this function is used only when
the expansion box is installed.

Example:

10 A = INP (124)

OUT (port — number, value)

Outputs an 8-bit value to the specified port. This statement
requires two arguments: port-number and the value. The
Colour Genie is capable of handling 256 ports, numbered
from 0 to 255.

Example:

30 OUT 14, 240

This outputs the value 240 to port 14. Both arguments are
limited to single byte values, that is 0 — 255.

PEEK (address)

This function returns the 8-bit value stored at the
specified decimal address in the computer's memory, and
displays the value in decimal form. The value will be
between 0 — 255.

Example:

20 B = PEEK (30000)

Returns the value stored at location 30 000 and assign that
value to the variable B.

112

POKE (address value)

This statement sends a 8-bit value to the specified (decimal)
memory address location. It requires two arguments:
address and value. The value must be between 0 — 255.

Example:

10 A = 250
20 POKE 19000, A
30 B = PEEK (19000)
40 PRINT “ THE RESULT IS :", B
50 END

This program sends the value of A to address 19 000 and
then prints the value at that memory location. When RUN
we get: THE RESULT IS: 250.

MEM

Returns the number of unused and unprotected bytes in
memory.

Example:

200 IF MEM = 180 THEN 700

When used as a command, it must be accompanied with the
PRINT command. That is PRINT MEM, to find out the
amount of memory not being used to store program,
variables, strings, arrays, etc.

113

USR (argument)

This calls a machine language subroutine and passes the
argument to the subroutine. Such a subroutine could be
loaded from tape or created by POKEing Z80-machine code
into the memory. Users who are not familiar with machine
language programming are not recommended to use this
command.

The subroutine entry address should be POKEd into
location 16 526 — 16 527. The last significant byte should
be in location 16 526.

To pass the argument to the subroutine, the subroutine
should immediately execute a CALL 0A7FH (2 687 dec.).
The argument will then be placed in registers HL.

To return to your BASIC program without passing any
value back, a RET instruction should be executed.

To return a value, load the value into the HL register
pair as a two-byte signed integer and execute a JP 0A9AH
(0A9AH = 2 714 Decimal).

USR routine reserves 8 stack levels for the users' subroutine.

Example:

10 INPUT 1%: REM * INPUT ARGUMENT *
15 REM * PREPARE ENTRY ADDRESS *
20 POKE 16 526, 0: POKE 16 527, 120
30 A = USR (1 %): REM * RETURN ARGUMENT A *

The subroutine should place on top of the memory map. To
protect that region of memory, the user should input the
highest location available for his BASIC program storage when
the machine asks READY? at power up.

Further details of this, and other machine code routines, can
be found in the Technical Manual.

114

VARPTR (variable name)

An address — value of the variable name will be returned.

If K is the returned address, the variables will be stored in
the following structures: —

(i) 2 = byte integer
*(K) = LSB

(K + 1) = MSB

(ii) single precision variable
(K)= LSB
(K + 1) = Next MSB
(K + 2) = MSB
(K + 3) = Exponent value

(iii) double precision value
(K) = LSB
(K + 1) = Next MSB

(K + 6) = MSB
(K + 7) = Exponent value

(iv) string variable
(K) = length of string
(K + 1) = LSB of string starting address
(K + 2) = MSB of string starting address

Note: *(K) signifies "contents of address K"

& H — hex number

This command returns the decimal equivalent of a
hexadecimal number in the range 0H to 7 FFFH. Flex
numbers between 8000H and FFFFH are returned as
the signed complement i.e., 4000H = 16 384 and
FFFFH = -1 .

115

Example:

10 A = &H3FFF
20 PRINT A

When RUN gives:

16 383

& O — octal number

This command returns the decimal equivalent of an octal
number between 0 and 255.
(i.e. octal number between 000 and 377)

Example:

PRINT &O101

gives: 65.

116

APPENDIX A
COLOUR GENIE BASIC RESERVED WORDS

None of these words can be used inside a variable name.

ABS DIM
AND EDIT
ASC ELSE
ATN END
AUTO ERL
BGRD ERR
CALL ERROR
CLOAD EXP
CDBL FCLS
CHAR FCOLOUR
CSAVE FGR
CSNG FILL
CHR$ FKEY
CINT FIX
CIRCLE FOR
CLEAR FRE
CLOSE GOSUB
CLS GOTO
COLOUR IF
CONT INKEYS
COS INP
CPOINT INPUT
DATA INT
DEFDBL JOY
DEFINT KEYPAD
DEFSNG LEFTS
DEFSTR LET
DELETE LGR

LEN RESUME
LIST RETURN
LLIST RIGHTS
LOG RND
LPRINT RUN
MEM SCALE
MID$ SGN
NBGRD SHAPE
NEW SIN
NEXT SOUND
NOT SQR
NPLOT STEP
NSHAPE STOP
ON STRINGS
OR STRS
OUT SYSTEM
PEEK TAB
PAINT TAN
PLAY THEN
PLOT TROFF
POKE TRON
POS TO
PRINT USING
RANDOM USR
READ VAL
RENUM VARPTR
REM VERIFY
RESTORE XSHAPE

117

APPENDIX B
PROGRAM LIMITS AND MEMORY OVERHEAD

Ranges

Integers -3 2 768 + 32 767 inclusive
Single Precision —1.701 411E + 38 to +1.701 411E + 38

inclusive
Double Precision -1.701 411 834 544 556E + 38 to

+ 1.70 141 183 454 455 6E + 38 inclusive

String Range Up to 255 characters
Line Numbers Allowed 0 to 65 529 inclusive
Program Line Length Up to 240 characters

Memory Overhead

Program lines require 5 bytes minimum, as follows:

Line Number — 2 bytes
Line Pointer — 2 bytes
Carriage Return — 1 byte

In addition, each operator, variable name, special character and
constant character requires one byte.

However the reserved word requires one or two bytes.

118

DYNAMIC (RUN TIME) MEMORY ALLOCATION

Integer variables
(2 for value, 3 for variable name)

5 bytes each

Single-precision variables
(4 for value, 3 fo r variable name)

7 bytes each

Double-precision variables
(8 for value, 3 for variable name)

11 bytes each

String variables 6 bytes minimum
(3 for variable name, 3 for stack and variable pointers, 1
for each character)

(3 for variable name, 2 for size, 1 for number of
dimensions, 2 for each dimension, and 2, 3, 4, or 8
(depending on array type) for each element in the array)

Each active FOR-NEXT loop requires 16 bytes.

Each active (non-returned) GOSUB requires 6 bytes.

Each level of parentheses requires 4 bytes plus 12 bytes
for each temporary value.

Array variables 12 bytes minimum

119

APPENDIX C
ASCII
CODE

GRAPHICS ASCII
CODE

GRAPHICS ASCII
CODE

GRAPHICS ASCII
CODE

GRAPHICS

128 T 146 r 164 n 182 1
129 r 147 i 165 u 183 ©
130 j 148 > 166 ♦ 184 u
131 L 149 < 167 ■u 185

132 * 150 K 168 ii 186 1
133 h 151 i 169 m 187

134 * 152 m 170 * 188

135 S 153 * 171 i 189 ■

136 — 154 •m- 172 □ 190
■

137 I 155 L 173 c 191 ■

138 I 156 J 174 t
139 157 A 175 p.
140 I 158 V 176 L'
141 □ 159 M. 177 ■
142 r 160 178 ■J
143 ■ 161 ■ 179 f l

144 i 162 c 180

145 ■i 163 1 181

120

ASCII
CODE

GRAPHICS KEY ASCII
CODE

GRAPHICS KEY
(SHIFT)

193 m < 198 m i

194 m = 199 @ -

195 > 200 m
196 ü ? 201 sa /

197 IS + 192 B 5

202 ■ @ 229 B '

203 u A 230 ■ a

204 MD B 231 m b

205 a C 232 c

206 5 D 233 □ d

207 □ E 234 H e

208 a F 235 O f

209 B G 236 Q g

210 H H 237 □ h

211 n I 238 a i

212 a J 239 □ j

213 c K 240 k

214 PS L 241 0 1

215 M 242 m m

121

ASCII
CODE

GRAPHICS KEY

216 H N

217 B 0

218 □ P

219 □ Q

220 R

221 f f S

222 T

223 0 U

224 G V

225 QD w

226 E X

227 S Y

228 a z

GRAPHICS KEY
(SHIFT)

n

H 0

E P

H q

H r

n s

□ t

m u

EB V

a w

H X

y

a z

ASCII
CODE

243

244

245

246

247

248

249

250

251

252

253

254

255

122

National Colour Genie Users' Group free cassette to new Subscribers

This is a brief set of instructions to get you using your free cassette
tape. The tape consists of:

TCQPY - Machine language tape copier SYSTEM
CGEIN - Character Generator Editor / Saver Basic
PLATO - An "OTHETjIO" type'game Basic
1 MAGIC CARPE7T - A High Res demonstration program Basic
DEM01 - A Demonstration program Basic
DEMD2 - " " " Basic
DEM03 - " " " Basic

There is no need to explain hew the later six programs work because they
either have the instructions built in or they are demonstration programs for
you to watch and enjoy. Feel free to manipulate the programs yourself si!

TCOPY is a program which will backup most machine language program tapes."
Please note: this program is intended for backup purposes only. Do not give
away programs away to your friends. NCGUG is attempting to get dealers to
lower their software prices. You can help by paying for your programs.

To load TCOPY, you must type SYSTEM followed by pressing the Return key.
Then type T followed by the return key. The program will load both graphics
and letters on the screen. After a successful load, most of the screen will
clear and two lines of text will be displayed on the top of the screen. If
this did not happen, then try again with a different volume setting on the .
tape recorders

To load a system tape into TCOPY, press the L key. Then put a system
(Machine Language like TCOPY) into the tape recorder and press the Play
button. Then press the Return button on the Computer. The tape will then
load in. If an error was discovered, then try again at a different volime
rate. To write a tape, prepare a blank tape into the tape recorder. Press
the W key, then press Play and Record on the tape recorder. Then, press the
Return key on the computer. A new copy will be written to the tape. Copies
can be tested by using the V catmand which will test a system tape with what
is contained in memory.

CCEN is the character generator editor. CLQAD this program in. This
program is extränely useful for designing pictures or characters with the
programmable character generator.

The seven programs on the free cassette tape may not be sold.

TCOPY, PLATO and MAGIC CARPET were written by Marc J. Leduc of Nottingham
CGEN was written by Tony Parkin of Nottingham
DEMD1, DEMD2 and DEMD3 were written by Dave Doohan of Nottingham

This cassette was prepared and distributed by GUMBOOT SOFTWARE/ the
software house of the National Colour Genie Users' Group.

COLOUR GENIE ROM ENHANCEMENTS

All the enhancements are upward compatible with the existing

R.OJvLS.

The following features have been either added or improved:-

1. The text screen is now 40 characters by 25 lines.

2. The Graphics screen is now 160 by 102. To keep compatible with Text Screen.

3. SHIFT-F2 now equals SYSTEM

4. SHIFT-F4 now equals CSAVE "

5. The Paint command has been vastly improved to cope with

difficult shapes. There is also now 3 modes of operation

as follows:

PAINT X, Y, C

PAINT X, Y, C, B

PAINT X. Y, C, JB, B

Where X and Y = the start co-ordinates

C = the colour to paint in

B = the Boundry colour

6. The play command can now be used with expressions/commands within it,

i.e. PLAY (1, KEYPAD1, KEYPAD2, (JOYIX-1) AND 15).

To be able to take advantage of the various envelope shapes, you

can now use the Play command with the volume equal to 16 which will

allow whatever envelope shape has been set up to be used.

E.G. SOUND 13, 8 : set envelope to 8

PLAY (1, 5, 8, 16)

Further by adding 16 to the old note number a better C-Major scale

can be produced.

Cont'd

- 2 -

7. The Plot command has been speeded up.

8. The Verify command can now be used with a program name,

i.e. VERIFY "N"

9. The &H and &0 now allow spaces to follow the number

within statements. Also it is now valid to use any Hex

or Octal number without leading zeros, i.e. &HF.

10. The FILL command is now replaced with FCLS n. n = 1 to 4.

11. The SOUND command can now be used to read back the contents

of the PSG chip, i.e. PRINT SOUND (n) where n = 0 - 15.

12. The KEYPAD command can now be used with a variable, i.e.

A.= 1 : PRINT KEYPAD (A).

13. Scale now returns the scale factor in use, i.e. PRINT SCALE

All the following are new commands added to the Colour Genie.

The latter three are involved with Bit manipulation.

14. SWAP var, var: allows you to swap variables, which is

especially useful for strings for use in sorts, etc. and

doesn't cause tiny string "hangups", usually known as the

"GARBAGE Collection Cycle".

E.G. (the normal way to swap) = TEMP$=A$: A$=B$: B$ = TEMPS

(using the Swap command) = SWAP A$, B$

15. SET b. addr Sets bit b in address addr

16. RESET b, addr Resets "

17. CHECK(b, addr)Checks if bit b is set in address addr returns - 1

as true or set and 0 as false or reset.

P le a s e n o te t h a t som e e r r o r s a r e i n th e m a n u a l,
c o r r e c t e d a s f o l l o w s :

T h e y a re

P a ge 14

E r r o r : > (2 + 3) *4

C o r r e c t : > PR IN T (2 + 3) *4

P age 20

E r r o r : 30 COLOR N : PR IN T A , N*N

C o r r e c t : 30 COLOUR N : PRINT N , N*N

P age 27

E r r o r : CYAN

C o r r e c t : BLUE

P age 28

E r r o r : FC LS: PLOT

C o r r e c t : FC LS: PLOT

0 TO 0 ,1 5 9 TO 9 5 ,1 5 9 TO 9 5 ,0 TO 0 ,0

0 TO 1 5 9 ,0 TO 1 5 9 ,9 5 TO 0 ,9 5 TO 0 ,0

	Cover
	INTRODUCTION
	VARIABLE TYPES
	RELATIONAL OPERATORS
	LOGICAL OPERATORS
	STRING OPERATORS
	ORDER OF OPERATORS
	CHAPTER 1 : “ACTIVE” COMMANDS
	CHAPTER 2 : EDITING
	CHAPTER 3 : BASIC PROGRAMMING STATEMENTS
	CHAPTER 4 : ARRAYS AND STRINGS
	CHAPTER 5 : DOING ARITHMETIC
	CHAPTER 6 : GRAPHICS
	CHAPTER 7 : SOUND
	CHAPTER 8 : OTHER GOODIES
	APPENDIX A - COLOUR GENIE BASIC RESERVED WORDS
	APPENDIX B - PROGRAM LIMITS AND MEMORY OVERHEAD
	APPENDIX C - ASCII <-> GRAPHICS

