
Seminar-
Unterlagen

B-Bit Systeme

KONTRON
ELEKTRONIK

GRUPPE
KONTRON
ELEKTRONIK



8-Bit Systeme



KURS Z80 EINFÜHRUNG

Inhaltsverzeichnis

1 . Überblick über ein Z80-Mikroprozessorsystem
1.1 Z80-Bus-0rganisation

2. Beschreibung Z80-CPU
2.1 Interner CPU-Aufbau
2.2 Registersatz der Z80-CPU
2.3 Hauptregistersatz
2.4 Zweitregistersatz
2.5 I-Register
2.6 R-Register
2.7 IX und IY-Register
2.8 SP-Register
2.9 PC-Register
2.10 Anschlüsse der Z80-CPU
2.11 Zeitverhalten

3. Einführung in den Z80-Befehlssatz

4. Periphere Bausteine des Z80-Systems
4.1 Prinzipschaltung eines Z80-Systems
4.2 Allgemeines Funktionsprinzip der I/O-Bausteine
4.3 PIO
4.4 CTC
4.5 SIO
4.6 DMA

5. Interrupttechnik in Z80-Systemen
5.1 Definition
5.2 Nicht maskierbarer Interrupt 
5*3 Maskierbarer Interrupt

5-3*1 Mode 0
5-3-2 Mode 1
5.3.3 Mode 2

5-4 Verlassen einer ISR
5.5 Prioritäten
5*6 Abarbeiten eines Interrupts

REL. 2.0, MÄRZ 1984V_______________________



KUES Z80 EINFÜHRUNG

7.

8. 

9-

10. 

11 .

Vorgehensweise bei der Programmerstellung
6.1 Hauptpunkte bei der Programmentwicklung
6.2 Problemanalyse
6.3 Erarbeitung eines Lösungsweges
6.4 Kodierung

Techn. Manual CPU 

Techn. Manual PIO 

Techn. Manual CTC 

Techn. Manual SIO 

Beispielprogramme

REL. 2.0, MÄRZ 1984



KUES Z80 EINFÜHRUNG

1. Überblick über ein Z80-Mikroprozessorsystem

Speicher

Z80

1
t
t

1
!
! Z80

CPU |
f
!

t
| Bus

Z80 I/O

Die Zentraleinheit besteht aus einer universellen Logikschaltung, 
die vorher definierte Befehle einziehen, verstehen und ausführen 
kann.
Die I/O-Einheiten übernehmen die Kommunikation mit der Außenwelt.
CPU und I/O-Bausteine sind architektonisch aufeinander abgestimmt 
und können nur zusammen ihre volle Leistungsfähigkeit (Interrupt) 
entwickeln.
Der Speicher kann im Gegensatz dazu aus Bausteinen der ver­
schiedensten Hersteller aufgebaut sein, sofern eine geschwindig­
keitsmäßige (Zugriffszeit), sowie pegelmäßige Anpassung sicherge­
stellt ist.
Der Bus stellt die Summe aller Verbindungsleitungen zwischen den 
drei Elementen dar.

REL. 2.0, MÄRZ 1984 Z80/1-1



KUES Z80 EINFÜHRUNG

's

1.1 Z80-Bus-0rganisation

Alle Teilnehmer liegen über Tristate-Puffer parallel am Datenbus.

! ! !
1 ! 
f I 
! 1 
! t
! Tristate- !

! ! I t 
j i
! ! 
! Tristate- !

i f 
! t 
f I 
I f
! Tristate- !

! Steuerltg.!t ; ! Steuerltg.!i t ! Steuerltg.!i ;
! Daten- ! ! Daten- ! ! Daten- !
! sender I ! ! sender II ! ! empfang !
! (CPU) ! 
! !

! (Speicher)! 
! !

!(Speicher) ! 
! !

Nur je zwei Einheiten dürfen am Datenverkehr teilhaben, alle 
anderen müssen abgeschaltet (im hochomigen Zustand) sein.

a) Adreßbus
Die CPU gibt die Adresse der Einheit aus, mit der sie in Verbindung 
treten will 
(Unibus)

b) Datenbus
Auf ihm erfolgt der Datenverkehr zwischen CPU, Speichern und I/O- 
Einheiten.
(Bidirektionaler Bus).

c) Steuerbus
Die CPU beeinflußt die angesprochene Einheit durch Steuerbus- 
Signale (RD, WR etc.). Die CPU wird beeinflußt durch Steuerbus- 
Signale (RESET, WAIT, INT, NMI etc.).

REL. 2.0, MÄRZ 1984 Z80/1-2



KUES Z80 EINFÜHRUNG

2. Beschreibung der Z80-CPU

Wesentliche Merkmale:

* 8 Datenleitungen D0....D7 -- > 8-Bit-Maschine
* 16 Adreßleitungen -- > Speicher bis 64k (65536)
* Alle Steuersignale 'aktiv low', dadurch höhere Treiber­

leistung und bessere Störfestigkeit
* single-5V-Versorgung
* alle Anschlüsse TTL-kompatibel
* zwei Interrupteingänge NMI/INT
* Refreshlogik für dynam. Speicher im Prozessor integriert
* 5V Einphasentakt

2.1 Interner Aufbau

t i
i
t Steuerwerk !

i
; i
! RegistersatzI Rechenwerk i

i

Steuerwerk: Holt, decodiert und führt die Befehle aus
Rechenwerk: Führt Verknüpfungen arithm. und logischer

Art durch
Registersatz: Dient der Zwischenspeicherung von Werten

in der CPU -- > dadurch schneller Zu­
griff möglich.

REL. 2.0, MÄRZ 1984v_____ Z80/2-1
______________________ ____



2.2 Eegistersatz der Z80-CPU

Hauptreg. Satz --

Interrupt-Register

! A | F ! A* F ’ t
! B ! C ! B ’ C ! -- Zweitreg.-»
! D t E ! D ’ E ’ j
! H J L ! H ’ L' 1

— 1 I ! R — Refresh-Register
J IX
f IX
I SP
! PC

2.3 Hauptregistersatz

besteht aus acht 8-Bit-Registern
das Register A (Akkumulator) nimmt eine Sonderstellung ein. 
Bei Verknüpfungen logischer (AND OR usw.) oder arithmetischer 
(AND SUB usw.) Art steht sowohl ein Operand als auch das 
Ergebnis im Register A (Einadreßmaschine!).
Das R-Register enthält die Flags, die je nach Ausgang des 
vorhergegangenen Befehls gesetzt bzw. rückgesetzt worden 
sind.

! S ! Z ! ! H ! ! PV ! N ! C !

NB: Nicht jeder Befehl beeinflußt die Flags!
Von den acht zur Verfügung stehenden Bits werden nur sechs 
bentutz.

REL. 2.0, MÄRZ 1984 Z80/2-2



KURS Z80 EINFÜHRUNG

Kurz- Flagname Bedeutung
Bezeichnung
Z

C

S

H

N

P/V

Zero-Flag Ist gesetzt, wenn eine 
Operation das Ergebnis 0 
hat.

Carry/Link-Flag

Sign-Flag

Half-Carry-Flag

Add/Subtract-Flag

Ist gesetzt bei Entstehen 
eines Übertrages bezüglich 
des höchstwertigen Bits.
Ist gesetzt, wenn das Er­
gebnis einer Operation im 
höchstwertigen Bit eine 1 
aufweist. (Rechnen mit 
Vorzeichen).
Ist gesetzt, wenn eine 
Addition oder Subtraktion 
einen Übertrag bzeüglich 
Bit 4 des Akkumulators 
erzeugt hat.
(BCD-Rechnung).
Ist gesetzt, wenn die 
vorausgegangene Operation 
eine Subtraktion war.

Parity/Overflow- 
Flag
log. Operationen: 

Parity-Flag
Ist gesetzt, wenn das 
Resultat einer logischen 
Verknüpfung 'even' ist.

arithm. Operationen:
Overflow-Flag Ist gesetzt, wenn ein

Übertrag bezüglich Bit 6 
stattgefunden hat (Vor­
zeichenrechnung) .

Das F-Register kann nicht durch direktes Eingeben eines Wertes 
beeinflußt werden. Die Beeinflussung erfolgt nur durch den Aus­
gang bestimmter Befehle.

Die Register B, C, D, E, H und L sind frei verwendbar.

Um auch mit 16-bit-Einheiten möglichst einfach operieren zu 
können (z.B. Adressen!), ist es möglich, je zwei Register zu 
einem Registerpaar zusammenzufassen und als eine Größe zu be­
handeln. Zusammenfaßbar sind so B und C, D und E, sowie H und L.

REL. 2.0, MÄRZ 1984 Z80/2-3



KUES Z80 EINFÜHRUNG

2.4 Zweitregistersatz (gestrichener Registersatz)

besitzt den gleichen Aufbau wie der Hauptregistersatz 
kann nicht direkt benützt werden

- mit zwei Befehlen kann der Inhalt des Zweitregistersatzes 
gegen den Inhalt des Hauptregistersatzes getauscht werden
dient in erster Linie zur superschnellen Rettung der Haupt­
registerwerte bei dringenden, zeitkritischen Programmunter­
brechungen (Interrupts).

3

2.5 I-Register

Das Interrupt-Vektorregister dienst zur Auffindung der Ein­
sprungadresse der entsprechenden Interrupt-Service-Routine 
(siehe 'Interrupt in Z80-Systemen').
Hier liegt das höherwertige Byte einer Adresse, die in die 
sog. Interrupttabelle zeigt, in der dann die Startadresse der 
entsprechenden Interrupt-Service-Routine zu finden ist.

2.6 R-Register

Das Refresh-Register enthält die jeweilige aktuelle 7-Bit- 
Refreshadresse.
In jedem Befehlsholzyklus wird der Refresh in einer der 
insgesamt 128 mögliche Zeilen durchgeführt.
Der Refresh wird während der Decodierphase durchgeführt (Takt 
3 und 4); dadurch kein Zeitverlust! Nach jeder Refresh-Aktion 
wird das R-Register automatisch inkrementiert. Nach Erreichen 
des maximalen Wertes (= 127) wird das R-Register automatisch 
wieder auf 0 gesetzt (Ringzähler).
Selbst bei Verwendung längstmöglicher Befehle bleibt der 
Refresh gesichert.
Im HALT-Zustand führt die CPU automatisch NOP-Befehle aus und 
sichert somit den Refresh.

REL. 2.0, MÄRZ 1984 Z80/2-4
y



lll
lll

lll
ll

TA
£1 KUES Z80 EINFÜHRUNG

2.7 IX und IX-Register

IX und IY sind zwei 16-Bit-Register, die vornehmlich zur 
indizierten Adressierung verwendet werden.
IX bzw. IY enthält dabei eine (feste) Basisadresse, die durch 
einen, im Befehl enthaltenen Offset ergänzt wird.

2.8 SP-Register

Das SP-Register enthält den aktuellen Stackpointer.

2.9 PC-Register

Das PC-Register enthält den aktuellen Befehlszählerstand.

REL. 2.0, MÄRZ 1984
V_______________

Z80/2-5
_______________________



KURS Z80 EINFÜHRUNG

2.10 Anschlüsse der Z80-CPU

-i
MREQ

SYSTEM J !£.RQ 
CONTROL j R0 

WR

CPU 
CONTROL

RFSH

HALT

WAIT

^  INT
NMI

\RlSET
fH / §üsra
BUS <  ______
CONTROL \  Bü SAK

27

19
20

21
22
28

18

24

16
17

26

25

2-80 CPU

30
31

33
34
35
36

39
40

*0 A1 
*2 
A3 
A4

*6
A7
AS
A9
A.

14
15
12

10
13

°5

10 

A11 
*12 
*13 
*14 

*15 /

ADDRESS
BUS

V DATA 
/  BUS

°7  '

a) Adreßleitungen: 16 Bit Breite, maximal ansprechbarer
Speicherbereich = 64 kByte lineare
Adressierung.
Unidirektional

b) Datenleitungen: 8 Bit breite (8-Bit-Prozessor!) 
Bidirektional

REL. 2.0, MÄRZ 1984 Z80/2-6



KUES Z80 EINFÜHRUNG

c) Steuerleitungen:

System-
steuer-

CPU-
Steuer-
Leitungen

CPU-
BUS-
Steuer-
leitungen

M1 Während der Befehlshol)
phase (Takt 1 und 2) )
aktiv

MREQ ) Unterscheidung von Spei-
IORQ ) eher- und Kanal-Zugriffen
RD ) Unterscheidung von Lese-
WR ) und Schreibzugriffen
RPSH während der Befehls­

holphase (Takt 3 und 4) 
aktiv

HALT Anzeige des HALT-Zu-
WAIT S ta n d e s

Möglichkeit zur Ver­
zögerung der Programm- 
Verarbeitung 
Der zweite Takt eines 
Befehls wird so lange 
wiederholt, so lange
WAIT aktiv ist.
ACHTUNG REFRESH!

INT Interruptleitung, wird
durch Ein-/Ausgabekanäle 
aktiviert

NMI Interruptleitung des
Nicht Maskierbaren Inter­
rupts
Ein Aktivieren dieser 
Leitung führt in jedem 
Fall zum sofortigen Ein­
sprung in die ent­
sprechende Interrupt­
routine .
Ein Plus von mindestens 
3 Taktlängen.

RESET Setzt den PC auf Wert
0000 und bringt das 
Steuerwerk in den Grund­
zustand.
Dazu:
Reg. R u I = 00
Inter.Mode = 0
Interrupt = disabled

BUSRQ Möglichkeit, der CPU die 
Kontrolle über den BUS 
zu entziehen (z.B. DMA). 
CPU schaltet sich in den 
hochohmigen Zustand.

BUSACK Rückmeldung für den er­
folgten Übergang in den 
hochohmigen Zustand

REL. 2.0, MÄRZ 1984 __________ ___________ Z80/2-7



2.11 Zeitverhalten

Z80-CPU Z80A-CPU Z80B-CPU
Taktfrequenz 2,5 MHz 4 MHz 6 MHz
Taktzeit 400 ns 250 ns 167 ns
Dauer M1 Zyklus 1 .6 us 1 US 0.67 us
Dauer Mem. Read 1.2 us 0.75 us 0.5 us
Dauer Mem. Vrite 1.2 us 0.75 us 0.5 us

REL. 2.0, MÄRZ 1984
______________ ________________________________

Z80/2-8
J



KUES Z80 EINFÜHRUNG

3. Einführung in den Z80-Befehlssatz

Befehlsaufbau des Mikroprozessors Z80

8bit ! 8bit ! 8bit ! 8bit

<—  ANWEISUNGSTEIL — > <—  OPERANDENTEIL — >

kann 1 oder 2 Byte umfassen.
Bei Befehlen mit zwei kann kein, ein oder zwei
Anweisungsteilen treten zwei Byte umfassen.
M1-Zyklen hintereinander 
auf.

Folgende Befehle sind möglich :

1 Byte-Befehle besteht nur aus einem 
Anweisungsteil

z.B• LD A ,B
SUB A etc.

2 Byte-Befehle kann aus einem Doppel­
anweisungsteil oder aus 
einem Einfachanweisungs­
teil + einem Operanden 
bestehen

z.B. RLC B 
SRL H

z.B. LD A,n 
ADD A,n

3 Byte-Befehle kann aus einem Doppel­
anweisungsteil + einem 
Operanden oder aus 
einem Einfachanweisungs­
teil + zwei Operanden 
bestehen

z.B. ADD A,(iX+d) 
LD(lX+d),C

z.B. CALL nn 
LD A,n

4 Byte-Befehle besteht aus einem 
Doppelanweisungsteil 
+ zwei Operanden

z.B. RLC (IX+d) 
BIT b,(iY+d)

REL. 2.0, MÄRZ 1984 Z80/3-1



KUES Z80 EINFÜHRUNG

----- -----------V

4« Periphere Bausteine des Z80-Systems

Aufgaben:
Ermöglichung der Kommunikation zwischen Computer (MC) und 
dessen Umgebung. Zeitliche Koordination der Verbindung. 
Umgebung = Maschine, Mensch

Beispiele: Tastatur für Eingabe, Bildschirm oder Drucker für 
Ausgabe.

Enlastung der CPU durch spezifische Hardware in den 
Peripheriebausteinen; dezentrale technische Intelligenz.
Beispiel: Parallel- ---- > Serienwandler im SIO

Entlastung der CPU durch die Interruptfähigkeit der 
Peripheriebausteine
(Unterschied: Polling -----  Interrupt)

Entlastung der CPU durch Übernahme spezieller Aufgaben 
Beispiel: Ereigniszählung

REL. 2.0, MÄRZ 1984
V_______________ 1_______________

Z80/4-1___________________________



lll
lll

lll
lI JA

KURS Z80 EINFÜHRUNG

4.1. Prinzipschaltung eines Z80-Systems

PIO

CPU

MEM

*__

* __

* __

SIO

CTC

DMA

REL. 2.0, MÄRZ 1984 Z80/4-2



KURS Z80 EINFÜHRUNG

4.2 Allgemeines Funktionsprinzip der I/O Bausteine

Unterschied: Peripheriebaustein <---- > konventionelle Hard­
ware

konventionelle Hardware = starre Hardware 
Peripheriebaustein = programmierte Hardware,

d. h., kann für mehrere Aufgaben (z.B. INPUT, OUTPUT, 
ETC.) verwendet werden.

Folge: a. Unterscheidung zwischen Anweisung und eigentlichen
Daten notwendig!

b. Programmierung muß vor Funktionsbeginn erfolgen!
(Initialisierung)

Z80 !------ ! DEC ! . !
CPU JA2..A7 ! 6:64! ____  2° Ausgänge!

• ““““™“ • • • •
: • • • •
! ! ! -------------- >! CS
; I

A1 ! -----------------------------  ! C/D
AO ! -----------------------------  ! B/A

--------------------------  ! z.B.
RD, IORQ, M1 ! Z80--------------------------  j pio

D O .... D7

INTERRUPT
i I

REL. 2.0, MÄRZ 1984 Z80/4-3



KUES Z80 EINFÜHRUNG

4-3 Z80-PI0 (parallel I/O)

*
*
*

2 Kanäle A und B in einem Baustein (40 Pins) 
je 8 Datenleitungen und 2 Handshakeleitungen 
Betriebarten
- Output-Mode
- Input-Mode
- bidirektionaler-Mode (nur Kanal A)
- Bit-Mode

REL. 2.0, MÄRZ 1984 Z80/4-4



KUES Z80 EINFÜHRUNG

Beispiele:
Anschluß einer Tastatur (Input-Mode) oder eines Druckers (Output- 
Mode).

<
>

REL. 2.0, MÄRZ 1984 Z80/4-5
________________________________



Ill
lll

lll
ll

4«5 Z80-CTC (counter-timer-circuit)

* 4 Kanäle pro Baustein (28 Pin)
* je ein vorsetzbares Zählregister von 8 Bit, das durch den 

Systemtakt oder durch externe Impulse dekrementiert wird.
* je ein Zähl-/Start-Eingang, sowie ein Zerocount-Ausgang
* Betriebsarten: - Zähler-Mode

- Zeitgeber-Mode

Beispiele:

Zählen extern erzeugter Pulse 
Erzeugen eines Zeitrasters

—

REL. 2.0, MÄRZ 1984 Z80/4-6
J



KUES Z80 EINFÜHRUNG

4.4 Z80-SI0

2 Kanäle (A und B) in einem Baustein (40 Pin)
je zwei Übertragungsleitungen (full duplex), sowie 4 Hand­
shakeleitungen
automatische Wandlung seriell/parallel und parallel/seriell
Betriebsarten:
a.) asynchron (wortweise)

Beispiel:
Anschluß eines seriellen Datensichtgerätes

Uo<+ C *■,>! o d e v S "& t-)

TW-y

joro
VO O'rl-

REL. 2.0, MÄRZ 1984
V_______________ ________________

Z80/4-7
______________________



b.) synchron (blockweise)

monosync 
bisync

DATENFELD *

Synchronisations­
wort (2,1 oder 0 Byte)

CR-Wort1 CR-Wort2
(1 Byte) (1 Byte)

Rahmen für 
jeden Block

SDLC
HDLC

! ! ! i * i * i
r ! __i _ DATENFELD

f f
! * It

I
* i_ t____

t
* ! 

_f___f
! I
! Adresse 

Beginn (iByte) 
Zeichen 
(IByte = 
OIIIIIIO)

i
CRC Vortl 
(1 Byte)

CRC
(1

t
!
1
t
¥ort2
Byte)

i
j
1
j
»

Ende
Zeichen 

(1 Byte = 
OIIIIIIO)

Rahmen für 
jeden Block

REL. 2.0, MÄRZ 1984 Z80/4-8



4*5 Z80-DMA (direct memory access)

* 1 Kanal pro Baustein (40 Pin)
* Anschlüsse zur Übernahme von Adreß-, Daten- und 

Steuerbusleitungen
* Handshake-Anschlüsse WAIT und RDY für evtl.

Destination Port
* Funktionsweisen:

* Betriebsarten:

Beispiel:
Ausgabe Speicherblock auf Peripheriegerät (z.B. Magnetplatte)

KURS Z80 EINFÜHRUNG

- Übertragung
- Suche
- Übertagung und Suche

- Byte at a time
- Burst
- Continuous

REL. 2.0, MÄRZ 1984 __________ '__________ Z80/4-9______________________



KUES Z80 EINFÜHRUNG

5. Interrupttechnik in Z80-Systemen

5.1. Definition

Ein Interrupt ist ein asynchron zum laufenden Programm auftreten­
des Ergebnis.
Die reguläre Ausführung eines Interrupts bedeutet:

- Unterbrechen des laufenden Programms nach Abschluß des 
gerade in Ausführung begriffenen Befehls

- Retten des aktuellen Befehlszählerstandes auf den Stack
- Anlauf eines anderen Programms der Interrupt-Service- 

Routine (ISR).

5.2. Nicht-maskierbarer Interrupt

Der Z80 verfügt über einen Eingang NMI (activ low): Non-maskable 
Interrupt.
Dieser Interrupteingang kann nicht gesperrt (maskiert) werden und 
dient zur Meldung von Katastrophen, wie z.B. Netzausfall.
Die CPU unterbricht nach der Ausführung des gerade aktuellen 
Befehls die Abarbeitung des Programms, rettet den aktuellen PC 
auf den Stack, lädt PC mit der Adresse 066H und fährt mit dem 
dort hinterlegten Befehl fort.
Die Wirkung des NMI ist demnach fast identisch mit einem 

CALL 066h
-Befehl.

5.3. Maskierbarer Interrupt

Der Eingang INT (activ low) wird für alle anderen Unter­
brechungsanforderungen, herkommend z.B. von Peripherieelementen 
wie PIO, CTC, SIO, DMA, verwendet. Er kann gesperrt (maskiert) 
werden durch den Befehl DI (Disable Interrupt) oder durch den 
Hardware-RESET. Der Befehl EI (Enable Interrupt) hebt die 
Maskierung wieder auf.

REL. 2.0, MÄRZ 1984
_______________ 1_______________

Z80/5-1



VA
KURS Z80 EINFÜHRUNG

Durch die Befehle IMO, IM1, IM2 wird die Betriebsart (Interrupt 
Mode) ausgewählt.

5.3-1. Mode 0

8080-kompatible Betriebsart. Die CPU sendet die Signale M1 und 
IORQ aus. Diese Signale werden in der Peripherie UND-verknüpft 
(M1 u IORQ = INTA, Interrupt Acknowledged).
Die CPU erwartet in diesem Zyklus ein Byte auf dem Datenbus, das 
sie als Befehl interpretieren wird. Üblicherweise sendet die 
Peripherie die Codierungen RST p (Restart auf Adresse p 8, 1-
Byte-Befehl) oder CALL (Aufruf eines Programms, 3-Byte-Befehl) 
aus.
Nach Erhalt des vollständigen Befehls wird dieser von der CPU 
ausgeführt.
Bei CALL erfolgen 1 INTA-Zyklus und 2 Memory-Read-Zyklen, auf die 
jedoch die Peripherie reagiern muß (zusätzliche Hardware!).

5.3.2. Mode 1

Einfachste Interruptart. Diese Betriebsart entspricht dem Vorgang 
beim nicht-maskierbaren Interrupt; es wird ein RST 038H ausge­
führt.

REL. 2.0, MÄRZ 1984 Z80/5-2



KURS Z80 EINFÜHRUNG

5.3.3- Mode 2

Z80-Standard-Betriebsart. Es wird mit einem Vektor über eine 
Tabelle von ISR-Anfangsadresse verzweigt.

Im einzelnen:
Der Programmierer hinterlegt im Speicher eine Tabelle mit den 
Einsprungstellen seiner Interrupt-Service-Routinen (ISR):

! Low Byte ! ------------------
Tabellenanfang->! !— > High BytelLow Byte

! High Byte ! -------- 1---------
Adresse 
der ISR"0"

!j
Adresse der ISR "1" 

Adresse der ISR "2"

!) Adresse der ISR "3’

Adresse der ISR "n"

Desweiteren hinterlegt der Programmierer (im Rahmen der System 
initialisierung) das High-Byte der Adresse des Tabellenanfangs im 
CPU-Register I (Interrupt Vektor - High-Byte). Damit ist es 
möglich, die Tabelle in jeden beliebigen Speicherbereich zu 
legen, sie darf nur nicht über eine 256-Byte-Grenze hinausragen.
Zur Vervollständigung des Interruptvektors wird in den Interrupt- 
vektor-Registern der Z80-Peripheriebausteine ein Low-Byte der 
Einsprungstelle hinterlegt und zwar für jede Interruptmöglichkeit 
ein spezifischer Wert.

REL. 2.0, MÄRZ 1984 Z80/5-3
J



KURS Z80 EINFÜHRUNG

Das I-Register der CPU und ein Vektorregister eines Peripherie­
bausteins werden zusammengesetzt und bilden dann einen Zeiger auf 
die Stelle, in der die Anfangsadresse der zugehörigen ISR steht:

Adr.
ISR "3"

CPU: Peripherie:
! I-Reg. ! ! V-Reg. !
15
! Zeiger "3'

0
i

Damit ist die Adresse der Stelle bestimmt, aus der bei einem 
Interrupt der PC mit der Anfangsadresse der ISIj geladen werden 
kann:

Alten PC-Inhalt auf 
Stack retten

I Adr.
! ISR "3"

i

! PC !

ISR ! 1. Befehl!i ;
t zur CPU zwecks Ausführung

REL. 2.0, MÄRZ 1984
V___________________ ____________________

Z80/5-4_____________________ J



KUES Z80 EINFÜHRUNG

Bei einem Interrupt, von einem Z80-Peripheriebaustein ausgelöst, 
(INT geht "low") arbeitet die CPU den laufenden Befehl noch bis 
zu seinem Ende ab und erkennt dann die Interrupt-Anforderung. Die 
CPU reagiert mit den Aussenden der Signale M1 und IORQ.
Der Peripheriebaustein (mit der höchsten Priorität), der einen 
Interrupt ausgesendet hat, erkennt M1 IORQ = INTA und reagiert 
mit dem Aussenden seines Vektors, des Low Bytes, auf den Daten­
bus.
Die CPU rettet den aktuellen PC, liest den Low-Byte-Vektor, setzt 
ihn mit dem Inhalt ihres I-Registers zusammen und transferiert 
die durch den Interruptvektor adressierte Zelle in den PC und 
maskiert den Interrupteingang INT.
Es schließt sich eine normale Befehlsholphase an: Die CPU 
arbeitet die ISR ab.

REL. 2.0, MÄRZ 1984 __________ ___________ Z80/5-5_________________ ___^



5.4. Verlassen einer ISR

Die Interrupt-Service-Routine arbeitet in der Art eines Unter­
programms und muß deswegen mittels RETURN verlassen werden. Da­
durch wird der vorher gerettete PC vom Stack geholt und wieder 
als neuer PC-Inhalt installiert: die Verarbeitung des unter­
brochenen Programms wird nahtlos fortgesetzt.
Neben der RETURN-Punktion ist jedoch noch der intern und zum Teil 
auch extern gespeicherte Interruptzustand rückzusetzten.
Da bei einem Non-Maskable-Interrupt (NMl) nur die CPU betroffen 
ist, genügt hier der Return über RETN. Neben der Stackfunktion 
stellt dieser den Maskierungszustand des INT Eingangs wieder auf 
den vor Eintritt von NMI vorhandenen Zustand (durch NMI war INT 
maskiert worden).
Bei einer über INT aufgerufenen ISR erfolgt der Return über RETI.
Die zusätzliche Punktion von RETI ist das Zurücksetzen des 
Peripherieelementes, dessen Interrupt gerade abgearbeitet worden 
ist: Der in der Priorität höchste interruptaktive Baustein (IEI = 
high, IEO = low) wartet auf das Erscheinen des Codes RETI (ED,40) 
während einer Befehlsholphase. Mit der Bedingung RETI M1 MREQ 
RD verläßt der Peripheriebaustein mit IEI = high und IEO = low 
den Interruptzustand und meldet seinerseits IEO = high.
Damit ist dieser Interrupt bedient und es wird zum unterbrochenen 
Programm verzweigt, das selbst wieder eine ISR niederer Priorität 
sein kann.

REL. 2.0, MÄRZ 1984 Z80/5-6



KUES Z80 EINFÜHRUNG

5«5* Prioritäten

Höchste Priorität in der CPU hat der Hardware-"Interrupt" BUS­
REQUEST, der allerdings ein reiner Hardware-Vorgang ist.
Von den echten Interrupteingängen dominiert RESET über NMI und 
BMI über INT.
In der Peripherie werden Interrupts nach dem Daisy-Chain-Prinzip 
gekettet:
Die Bausteine sind bezüglich der Priorität in Serie geschaltet 
über die Signale

;

! t
; ;

IEI und IEO
+ 5V

zum INT- 
Eingang 
der CPU

! P1 ! ! P2 ! ! P3 !
! IEI IEO ! — ----»IEI IEO!— — !IEI IEO!
! INT ! ! INT ! ! INT !

1 | f
I f 1

Peripheriebaustein P1 ist in der Prioritätskette über P2 und P3, 
P2 ist über P3*

Beispiel siehe Bild "Abarbeitung von Interrupts"

REL. 2.0, MÄRZ 1984 __________ ___________ Z80/5-7



KURS Z80 EINFÜHRUNG

5*6. Abarbeitung von Interrupts

1. Kein Interrupt aktiv.
Die CPU arbeitet im Programm ANWENDER

Stackt
I E O  i 

-(H) !

i ;

2. P3 hat Interrupt gemeldet und seinen Vektor ausgesandt. Die 
CPU hat ANWENDER verlassen und arbeitet in der ISR 3

Stack
IEI ! ! IEO ! !IEl(H)
(H) — ! P1 !----- ! P2 !------

IEO(L)!
!PC-An­
wender
; ;

3. P1 hat Interrupt gemeldet und seinen Vektor ausgesandt. Die 
CPU hat ISR 3 verlassen und arbeitet in ISR 1.

( H ) ~
( L )

P2 (L) (L)

Stack
PC
ISR3
PC-An-
wender

REL. 2.0, MÄRZ 1984 Z80/5-8



4. P1 hat RETI erkannt. Die CPU hat ISR 3 wieder aufgenommen.

Stack

00 - -

1 1 I ! (H) ! j (L)
i pi i —t t ---! P21

f t 
! t |

5« P3 hat RETI erkannt. Die CPU hat ANWENDER wieder aufgenommen

Stack

00 -

; ; ? ; ! ! (H)i pi i—i t -- ! P2 !---; i -- ! P3 !--- !
! ! !

i i

REL. 2.0, MÄRZ 1984 Z80/5-9



KUES Z80 EINFÜHRUNG

6. Vorgehensweise bei der Programmerstellung

6.1 Hauptpunkte der Programmentwicklung

Man muß sich bei einer Programmentwicklung darüber klar sein, daß 
es sich dabei nicht nur um das "Notieren" handelt, d.h. um das 
Niederschreiben des Programmes auf Papier. Vielmehr besteht eine 
solche Entwicklung aus folgenden Hauptkomponenten:

Problemanalyse
Erarbeitung eines Lösungsvorschlages (Ablaufplan) 
Codieren in der gewünschten Sprache 
Eingeben und Übersetzen (Entwicklungssystem) 
Testen (Entwicklungssystem)

6.2 Problemanalyse

Einer der wichtigsten Punkte ist die Problemanalyse, mit der ein 
vorliegendes Problem bis in die Einzelheiten ausgeleuchtet wird. 
Versäumnisse die hier durch mangelnde Sorgfalt oder Vorausplanung 
entstehen, sind zu einem späteren Zeitpunkt in vielen Fällen nur 
noch unter unvertretbarem Aufwand korrigierbar.
Speziell die fehlende Betrachtung von Randwertbedingungen kann 
einen Lösungsvorschlag im nachhinein als ungeeignet und damit als 
unbrauchbar qualifizieren. Bei einer Entwicklung sollte deshalb 
diesem Stadium besondere Beachtung geschenkt werden!

REL. 1.0, MÄRZ 1984
___________________ 1___________________

Z80/6-1
__________________________ /



KUES Z80 EINFÜHRUNG

6.3 Erarbeitung eines Lösungsweges

Kaum weniger wichtig ist die "professionelle" Erarbeitung eines 
Lösungsweges. Die Erfahrung zeigt jedoch, daß in vielen Fällen 
dieser Punkt schmählich vernachlässigt wurde.
Verständlich wird dies aus dem Drang, möglichst bald "Vorzeig­
bares" in Form von möglichst vielen Statements (= Befehlszeilen) 
zu produzieren. Logische Fehler, uneffiziente Programme und ein 
Mangel an Übersicht sind die nahezu unausweichliche Folge.
Bedenkt man, daß bei einer Programmentwicklung bis zu 50 % der 
Kosten beim Testen und korrigieren entstehen, gewinnt gerade 
diese Entwicklungsphase (zusammen mit der Problemanalyse) an 
Bedeutung. Die Erarbeitung eines Lösungsweges sollte unbedingt 
mit Hilfe von Flußdiagrammen bzw. Struktogrammen bei strukturier­
ter Programmierung durchgeführt werden. Letzteres sind Programm­
ablaufpläne, die nicht nur den Programmfluß festlegen, sondern 
auch seinen Aufbau (Struktur).
Eine Erleichterung ergibt sich weiterhin durch schrittweise 
Verfeinerung des Lösungsentwurfs: Man konzentriert sich zunächst 
auf die "große Linie" oder den "Rahmen", dann auf die Details.
Von Fall zu Fall, und in Abhängigkeit des Problems und des 
Programmierens kann die Detaillierung so weit gehen, daß ein 
direktes eins-zu-eins-mäßiges Übertragen des Programmflußplanes 
in die entsprechenden Befehle möglich wird.

Wesentliche Vorteile der geschilderten Methode sind:

Verringerung des Zeitbedarfs zur Kodierung auf ein Minimum 
Große Übersichtlichkeit des Programmes 
Größtmögliche Vermeidung von logischen Fehlern 
Exakte Dokumentation 
Optimale Nachprüfbarkeit

6 . 4  Kodierung
Die Kodierung des Lösungsweges, d.h. die Umsetzung des Programm­
flußplanes in entsprechende Befehle sollte auf die Verwendung 
optimaler Befehle bzw. Befehlsfolgen ausgerichtet sein. Der Er­
folg dieser Bemühung ist ein Programm, das bezüglich Speicherbe­
darf und Laufzeit ein Optimum darstellt. Eine möglichst weit­
gehende Detaillieferung des Programmablaufplanes erleichtert 
dabei die Kodierung, da zusätzliche Denkprozesse zur Aufstellung 
von Teilabläufen entfallen.
Zusammenfassend kann festgehalten werden, daß im Hinblick auf die 
Verringerung der Software-Erstellungs-Kosten der Problemanalyse, 
sowie der Erarbeitung des Lösungsweges größte Bedeutung zuge­
messen werden sollte. Investitionen in diese Entwicklungsphasen 
ergeben ein Mehrfaches an Zeitgewinn durch Verkürzung der Test­
phase .

REL. 1.0, MÄRZ 1984 Z80/6-2 ________J



KUES Z80 EINFÜHRUNG

Beispiel: - Differenzwertanzeige 

Geplante Vorgehensweise:

1. Probleraanalyse a) Problem definieren
b) Randbedingungen festlegen

2. Erarbeitung Lösungsvorschlag a) Entwurf eines Rahmen-Ablauf-
Planes

b) Herauslösen von Einzel­
problemen

c) Aufstellung von Flußplänen 
pro Teilaufgabe

d) Verfeinerung der Ablaufpläne

3« Codieren (in Assembler) a) Umsetzung in Assembler­
befehle

b) Bildung eines Gesamt­
programmes

zu 1a Problemstellung:
Zwei Meßwerte A und B, die im binären (8bit) Format 
statisch vorliegen, sollen über zwei parallele I/O-Schnitt­
stellen abgefragt und voneinander subtrahiert werden (C=A- 
B). Das Ergebnis wird anschließend über eine, das Vor­
zeichen über eine weitere parallele I/O-Schnittstelle aus­
gegeben.

zu 1b Randbedingungen:
- Wert A Eingabe über PORT 1 (Adr. 08/0A)
- Wert B Eingabe über PORT 2 (Adr. 09/0B)
- Wert C Ausgabe über PORT 3 (Adr. 2C/2E)
- Vorzeichen Ausg. über PORT 4 (Adr. 2D7/F)
- 10malige Wiederholung des Vergleich-Vorgangs
- Abstand von Messung zu Messung ca. 1 Sek.
- Erste Messung ca. 1 Sek. nach dem Einschalten
- Start durch RESET
- Ende durch Auflaufen auf HALT
- Anzeige des letzten Ergebnisses bis zum nächsten START
- Stackbereich beginnend bei 2000H

REL. 1.0, MÄRZ 1984_____________ .____________ Z80/6-3
_________________________ /



KUES Z80 EINFÜHRUNG

zu 2a Gesamtablaufplan:

! START !
i

! Initialisierung des Systems !

>

! Zeitverzögerung ca. 1 Sek.

! Werte A und B einziehen !
! Ergebnis bilden und ausgeben !

;
i

! Schleifenzähler decrement. !

nein
Schleifenzähler
--  = o? --

HALT

REL. 1.0, MÄRZ 1984 Z80/6-4



zu 2B Rerauslösung von Einzelproblemen aus dem Rabmenplan:

Initialisierung
- Zeitverzögerung
- Wertmanipulation

zu 2C Aufstellung von Ablaufplänen pro Teilbereich:

- Initialisierung

! Stackpointer setzen

! Port 1 und 2 auf INPUT !

! Port 3 und 4 auf OUTPUT !

! Anzeige löschen

! Schleifenregister setzen !

REL. 1.0, MÄRZ 1984 Z80/6-5



KURS Z80 EINFÜHRUNG

- Wertmanipulation

i
t

! Wert A einziehen !
i
i

! Wert B einziehen !
»
!

! Subtraktion !
j ausführen !

t
t

-- j a ------- Ergebnis > 0 ? -- ----nein---

! Vorzeichen-! 
! reg. auf 0 ! 
! setzen !

j
;

> < I 
?

!
f Ergebnis 

(= Wert C)
?
I

f ausgeben f
1
t

! Vorzeichen­ t
|
! register

ausgeben
1
»

! Vorzeichen- 
! reg. auf 1 
! setzen

i
I

REL. 1.0, MÄRZ 1984 Z80/6-6V________________________________________________________________________/



KUES Z80 EINFÜHRUNG

- Zeitverzögerung

I
!

! Zählreg. 1 laden !

>

! Zählreg. 2 laden !

>

! Zählreg. 2 
! decrementieren

i
I

nein
Zählreg. 2 --

—  = 0 ? -------

! Ja

! Zählreg. 1 
! decrementieren

i
I

nein --  Zählreg. 1
------- --  = 0 ? --

ja

REL. 1.0, MÄRZ 1984
V _______________________________________

Z80/6-7
__________________________ /



KURS Z80 EINFÜHRUNG

zu 3a Umsetzung in Assemblerbefehle •

- Initialisierung

LD SP, 2000H 
LD A, 7FH

Stackpointer laden
OUT (OAH),A Port 1 auf Input
OUT (OBH),A 
LD A, OFH

Port 2 auf Input
OUT (2EH),A Port 3 auf Output
OUT (2FH),A 
LD A, 0

Port 4 auf Output
OUT (2CH), A Anzeige löschen
OUT (2DH), A Anzeige löschen

- Wertmanipulation

IN A, (09H) Wert B lesen
LD B,A Wert B ins Reg. B
IN A, (08H) Wert A lesen
SUB B Wert A - Wert B = Wert C
JRNC, PLUS wenn Ergebnis > 0
LD D, 1 
JR WEITER

wenn Ergebnis < 0
Vorzeichen = negativ

PLUS: LD, D,0 Vorzeichen = positiv
WEITER: OUT (2CH)?A 

LD A,D
Ausgabe Ergebnis

OUT (2DH),A Ausgabe Vorzeichen

- Zeitverzögerung

LD B,OFFH Zählregister 1 laden
MARKE1: PUSH BC Zählregister 1 retten

LD B,80H Zählregister 2 laden
MARKE2: DJNZ MARKE2 Zählregister 2 decrementieren 

falls = 0 zurück zu MARKE2
POP BC sonst Zählreg. 1 zurückholen
DJNZ MARKE1 Zählreg. 1 decrementieren, 

falls = 0 zurück zu MARKE1

REL. 1.0, MÄRZ 1984 Z80/6-8
______ /



KURS Z80 EINFÜHRUNG

zu 3b Zusammenfassung:

LD SP.2000H 
LD A,7FH 
OUT (OAH),A 
OUT (OBH),A 
LD A,OFH 
OUT (2FH),A 
OUT (2FH),A 
LD A,0 
OUT (2CH),A 
OUT (2DH),A 
LD E,10

NEU:
LD B,OFFH

MARKE1:
PUSH BC 
LD B,80H

MARKE2:
DJNZ MARKE2 
POP BC 
DJNZ MARKE 1 
IN A,(09H) 
LD B,A 
IN A,(08H) 
SUB B 
IRNC PLUS 
LD D, 1 
JR REITER

PLUS:
LD D,0

WEITER: OUT (2CH),A 
LD A,D 
OUT (2DH),A 
DEC E 
JP NZ,NEU 
HALT

REL. 1.0, MÄRZ 1984 Z80/6-9



Zilog

Z80-CPU
Z80Ä-CPU
Technical Manual



Copyright© 1977 by Zilog, Inc. All rights reserved. No part of this 
publication may be reproduced, stored in a retrieval system, or transmitted, 
in any form or by any means, electronic, mechanical, photocopying, 
recording, or otherwise, without the prior written permission of Zilog.

Zilog assumes no responsibility for the use of any circuitry other than 
circuitry embodied in a Zilog product. No other circuit patent licenses 
are implied.

TM: 280 is a trademark of Zilog, Inc.



TABLE OF CONTENTS

Chapter Page

1.0 In tro d u c tio n ...................................................................................................................................1

2.0 Z80-CPU A rc h ite c tu re .................................................................................................................... 3

3.0 Z80-CPU Pin D escrip tion ................................................................................................................7

4.0 CPU Timing ..................................................................................................................................11

5.0 Z80-CPU Instruction S e t .............................................................................................................. 19

6.0 F la g s .................................................................................................................................................. 39

7.0 Summary of OP Codes and Execution T im es ...............................................................................43

8.0 Interrupt R esponse...........................................................................................................................55

9.0 Hardware Implementation E x am p les ............................................................................................. 59

10.0 Software Implementation E x a m p le s .............................................................................................63

11.0 Electrical Specifications...................................................................................................................69

12.0 Z80-CPU Instruction Set Summary............................................................................ ....  . . . 73



1.0 INTRODUCTION

The term “microcomputer” has been used to describe virtually every type of small computing device 
designed within the last few years. This term has been applied to everything from simple “microprogram­
med” controllers constructed out of TTL MSI up to low end minicomputers with a portion of the CPU 
constructed out of TTL LSI “bit slices.” However, the major impact of the LSI technology within the last 
few years has been with MOS LSI. With this technology, it is possible to fabricate complete and very power­
ful computer systems with only a few MOS LSI components.

The Zilog Z-80 family of components is a significant advancement in the state-of-the art of micro­
computers. These components can be configured with any type of standard semiconductor memory to 
generate computer systems with an extremely wide range of capabilities. For example, as few as two LSI 
circuits and three standard TTL MSI packages can be combined to form a simple controller. With additional 
memory and I/O devices a computer can be constructed with capabilities that only a minicomputer could 
previously deliver. This wide range of computational power allows standard modules to be constructed by a 
user that can satisfy the requirements of an extremely wide range of applications.

The major reason for MOS LSI domination of the microcomputer market is the low cost of 
these few LSI components. For example, MOS LSI microcomputers have already replaced TTL logic in 
such applications as terminal controllers, peripheral device controllers, traffic signal controllers, point of 
sale terminals, intelligent terminals and test systems. In fact the MOS LSI microcomputer is finding its way 
into almost every product that now uses electronics and it is even replacing many mechanical systems such 
as weight scales and automobile controls.

The MOS LSI microcomputer market is already well established and new products using them are 
being developed at an extraordinary rate. The Zilog Z-80 component set has been designed to fit into 
this market through the following factors:

1. The Z-80 is fully software compatible with the popular 8080A CPU offered from several sources. 
Existing designs can be easily converted to include the Z-80 as a superior alternative.

2. The Z-80 component set is superior in both software and hardware capabilities to any other micro­
computer system on the market. These capabilities provide the user with significantly lower hardware 
and software development costs while also allowing him to offer additional features in his system.

3. For increased throughput the Z80A operating at a 4 MHZ clock rate offers the user significant speed 
advantages over competitive products.

4. A complete product line including full software support with strong emphasis on high level languages 
and a disk-based development system with advanced real-time debug capabilities is offered to enable 
the user to easily develop new products.

Microcomputer systems are extremely simple to construct using Z-80 components. Any such system 
consists of three parts:

1. CPU (Central Processing Unit)
2. Memory
3. Interface Circuits to peripheral devices

The CPU is the heart of the system. Its function is to obtain instructions from the memory and perform 
the desired operations. The memory is used to contain instructions and in most cases data that is to be 
processed. For example, a typical instruction sequence may be to read data from a specific peripheral 
device, store it in a location in memory, check the parity and write it out to another peripheral device. Note 
that the Zilog component set includes the CPU and various general purpose I/O device controllers, while a 
wide range of memory devices may be used from any source. Thus, all required components can be 
connected together in a very simple manner with virtually no other external logic. The user’s effort then 
becomes primarily one of software development. That is, the user can concentrate on describing his prob­
lem and translating it into a series of instructions that can be loaded into the microcomputer memory. Zilog 
is dedicated to making this step of software generation as simple as possible. A good example of this is our

1



assembly language in which a simple mnemonic is used to represent every instruction that the CPU can 
perform. This language is self documenting in such a way that from the mnemonic the user can understand 
exactly what the instruction is doing without constantly checking back to a complex cross listing.



2.0 Z-80 CPU ARCHITECTURE

A block diagram of the internal architecture of the Z-80 CPU is shown in figure 2.0-1. The diagram 
shows all of the major elements in the CPU and it should be referred to throughout the following 
description.

Z-80 CPU BLOCK DIAGRAM 
FIGURE 2.0-1

2.1 CPU REGISTERS

The Z-80 CPU contains 208 bits of R/W memory that are accessible to the programmer. Figure 2.0-2 
illustrates how this memory is configured into eighteen 8-bit registers and four 16-bit registers. All Z-80 
registers are implemented using static RAM. The registers include two sets of six general purpose registers 
that may be used individually as 8-bit registers or in pairs as 16-bit registers. There are also two sets of 
accumulator and flag registers.

Special Purpose Registers
1. Program Counter (PC). The program counter holds the 16-bit address of the current instruction being 

fetched from memory. The PC is automatically incremented after its contents have been transferred 
to the address lines. When a program jump occurs the new value is automatically placed in the PC, 
overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current top of a stack located 
anywhere in external system RAM memory. The external stack memory is organized as a last-in first- 
out (LIFO) tile. Data can be pushed onto the stack from specific CPU registers or popped off of the 
stack into specific CPU registers through the execution of PUSH and POP instructions. The data 
popped trom the stack is always the last data pushed onto it. The stack allows simple implementation 
of multiple level interrupts, unlimited subroutine nesting and simplification of many types of data 
manipulation.

3



MAIN REG SET ALTERNATE REG SET

ACCUMULATOR FLAGS ACCUMULATOR FLAGSA F A' F'
B C B' C'
D E D' E'
H L H' L'

\
GENERAL > PURPOSE REGISTERS

/

8 ¾ ^ INTERRUPTVECTOR MEMORYREFRESHR
INDEX REGISTER IX
INDEX REGISTER IY
STACK POINTER SP
PROGRAM COUNTER PC

SPECIAL > PURPOSE REGISTERS

2-80 CPU REGISTER CONFIGURATION 
FIGURE 2.0-2

3. Two Index Registers (IX & IY). The two independent index registers hold a 16-bit base address that 
is used in indexed addressing modes. In this mode, an index register is used as a base to point to a 
region in memory from which data is to be stored or retrieved. An additional byte is included in 
indexed instructions to specify a displacement from this base. This displacement is specified as a two’s 
complement signed integer. This mode of addressing greatly simplifies many types of programs, 
especially where tables of data are used.

4. Interrupt Page Address Register (I). The Z-80 CPU can be operated in a mode where an indirect call 
to any memory location can be achieved in response to an interrupt. The I Register is used for this 
purpose to store the high order 8-bits of the indirect address while the interrupting device provides the 
lower 8-bits of the address. This feature allows interrupt routines to be dynamically located anywhere 
in memory with absolute minimal access time to the routine.

5. Memory Refresh Register (R). The Z-80 CPU contains a memory refresh counter to enable dynamic 
memories to be used with the same ease as static memories. This 7-bit register is automatically incre­
mented after each instruction fetch. The data in the refresh counter is sent out on the lower portion 
of the address bus along with a refresh control signal while the CPU is decoding and executing the 
fetched instruction. This mode of refresh is totally transparent to the programmer and does not slow 
down the CPU operation. The programmer can load the R register for testing purposes, but this 
register is normally not used by the programmer.

Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators and associated 8-bit flag registers. The accumu­
lator holds the results of 8-bit arithmetic or logical operations while the flag register indicates specific 
conditions for 8 or 16-bit operations, such as indicating whether or not the result of an operation is equal 
to zero. The programmer selects the accumulator and flag pair that he wishes to work with with a single 
exchange instruction so that he may easily work with either pair.

4



General Purpose Registers
There are two matched sets of general purpose registers, each set containing six 8-bit registers that 

may be used individually as 8-bit registers or as 16-bit register pairs by the programmer. One set is called 
BC, DE and HL while the complementary set is called BC\ DE' and HLL At any one time the programmer 
can select either set of registers to work with through a single exchange command for the entire set. In 
systems where fast interrupt response is required, one set of general purpose registers and an accumulator/ 
llag register may be reserved for handling this very fast routine. Only a simple exchange commands need be 
executed to go between the routines. This greatly reduces interrupt service time by eliminating the require­
ment for saving and retrieving register contents in the external stack during interrupt or subroutine process­
ing. These general purpose registers are used for a wide range of applications by the programmer. They also 
simplify programming, especially in ROM based systems where little external read/write memory is 
available.

2.2 ARITHMETIC & LOGIC UNIT (ALU)

The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU. Internally the ALU 
communicates with the registers and the external data bus on the internal data bus. The type of functions 
performed by the ALU include:

Add
Subtract 
Logical AND 
Logical OR 
Logical Exclusive OR 
Compare

Left or right shifts or rotates (arithmetic and logical)
Increment
Decrement
Set bit
Reset bit
Test bit

2.3 INSTRUCTION REGISTER AND CPU CONTROL

As each instruction is fetched from memory, it is placed in the instruction register and decoded. The 
control sections performs this function and then generates and supplies all of the control signals necessary 
to read or write data from or to the registers, control the ALU and provide all required external control 
signals.



3.0 Z-80 CPU PIN DESCRIPTION

The Z-80 CPU is packaged in an industry standard 40 pin Dual In-Line Package. The I/O pins are shown 
in figure 3.0-1 and the function of each is described below.

/

MREQ
SYSTEM ) CONTROL S

IORQ
RD
WR
RFSH

\

^ HALT 
WAIT

CPU jCONTROLS 

CPU 1

INT
NMI
 ̂RESET
1 3USRQ8US <CONTROL 1! BUSAK

4>
+5V
GND

27
19
20

2 1

22

28
18
24

30
31
32
33
34
35
36
37
38
39
40

2-80 CPU

Cl

A0
A1
A2
A3A4
A5
A6
A7
A8
A9
A 10

\

k ADORESS f BUS

A11
A 12

A13
A14
A15 /

V OATA f BUS

/

Z-80 PIN CONFIGURATION 
FIGURE 3.0-1

V A 15 
(Address Bus)

D0 'D7 
(Data Bus)

M
(Machine Cycle one)

MREQ
(Memory Request)

Tri-state output, active high. Aq-Aj  ̂ constitute a 16-bit address bus. The 
address bus provides the address for memory (up to 64K bytes) data 
exchanges and for I/O device data exchanges. I/O addressing uses the 8 lower 
address bits to allow the user to directly select up to 256 input or 256 output 
ports. Aq is the least significant address bit. During refresh time, the lower 
7 bits contain a valid refresh address.

Tri-state input/output, active high. DQ-D7 constitute an 8-bit bidirectional 
data bus. The data bus is used for data exchanges with memory and I/O 
devices.

Output, active low. M j indicates that the current machine cycle is the OP 
code fetch cycle of an instruction execution. Note that during execution 
of 2-byte op-codes, Ml is generated as each op code byte is fetched. These 
two byte op-codes always begin with CBH, DDH, EDH or FDH. Ml also 
occurs with IORQ to indicate an interrupt acknowledge cycle.

Tri-state output, active low. The memory request signal indicates that the 
address bus holds a valid address for a memory read or memory write 
operation.

7



IORQ
(Input/Output Request)

Tri-state output, active low. The IORQ signal indicates that the lower half of 
the address bus holds a valid I/O address for a I/O read or write operation. An 
IORQ signal is also generated with an Ml signal when an interrupt is being 
acknowledged to indicate that an interrupt response vector can be placed on 
the data bus. Interrupt Acknowledge operations occur during Mj time while 
I/O operations never occur during Mj time.

RD
(Memory Read)

Tri-state output, active low. RD indicates that the CPU wants to read data 
from memory or an I/O device. The addressed I/O device or memory should 
use this signal to gate data onto the CPU data bus.

WR
(Memory Write)

Tri-state output, active low. WR indicates that the CPU data bus holds valid 
data to be stored in the addressed memory or I/O device.

RFSH
(Refresh)

Output, active low. RFSH indicates that the lower 7 bits of the address 
bus contain a refresh address for dynamic memories and the current MREQ 
signal should be used to do a refresh read to all dynamic memories.

HALT
(Halt state)

Output, active low. HALT indicates that the CPU has executed a HALT soft­
ware instruction and is awaiting either a non maskable or a maskable inter­
rupt (with the mask enabled) before operation can resume. While halted, the 
CPU executes NOP’s to maintain memory refresh activity.

WAIT
(Wait)

Input, active low. WAIT indicates to the Z-80 CPU that the addressed 
memory or I/O devices are not ready for a data transfer. The CPU continues 
to enter wait states for as long as this signal is active. This signal allows 
memory or I/O devices of any speed to be synchronized to the CPU.

INT
(Interrupt Request)

Input, active low. The Interrupt Request signal is generated by I/O devices. A 
request will be honored at the end of the current instruction if the internal 
software controlled interrupt enable flip-flop (IFF) is enabled and if the 
BUSRQ signal is not active. When the CPU accepts the interrupt, an acknowl- 
edge signal (IORQ during M j time) is sent out at the beginning of the next 
instruction cycle. The CPU can respond to an interrupt in three different 
modes that are described in detail in section 5.4 (CPU Control Instructions).

NMI
(Non Maskable 
Interrupt)

Input, negative edge triggered. The non maskable interrupt request line has a 
higher priority than INT and is always recognized at the end of the current 
instruction, independent of the status of the interrupt enable flip-flop. NMI 
automatically forces the Z-80 CPU to restart to location 0066pj. The program 
counter is automatically saved in the external stack so that the user can return 
to the program that was interrupted. Note that continuous WAIT cycles can 
prevent the current instruction from ending, and that a BUSRQ will override 
a NMI.

8



RESET Input, active low. RESET forces the program counter to zero and initializes 
the CPU. The CPU initialization includes:

1) Disable the interrupt enable flip-flop
2) Set Register I = 00^
3) Set Register R = OOjj

4) Set Interrupt Mode 0

During reset time, the address bus and data bus go to a high impedance state 
and all control output signals go to the inactive state.

BUSRQ 
(Bus Request)

Input, active low. The bus request signal is used to request the CPU address 
bus, data bus and tri-state output control signals to go to a high impedance 
state so that other devices can control these buses. When BUSRQ is activated, 
the CPU will set these buses to a high impedance state as soon as the current 
CPU machine cycle is terminated.

BUSAK
(Bus Acknowledge)

Output, active low. Bus acknowledge is used to indicate to the requesting 
device that the CPU address bus, data bus and tri-state control bus signals 
have been set to their high impedance state and the external device can now 
control these signals.

$ Single phase TTL level clock which requires only a 330 ohm pull-up resistor 
to +5 volts to meet all clock requirements.

9



4.0 CPU TIMING

The Z-80 CPU executes instructions by stepping through a very precise set of a few basic operations. 
These include:

Memory read or write 
I/O device read or write 
Interrupt acknowledge

All instructions are merely a series of these basic operations. Each of these basic operations can take from 
three to six clock periods to complete or they can be lengthened to synchronize the CPU to the speed of 
external devices. The basic clock periods are referred to as T cycles and the basic operations are referred to 
as M (for machine) cycles. Figure 4.0-0 illustrates how a typical instruction will be merely a series of 
specific M and T cycles. Notice that this instruction consists of three machine cycles (Ml, M2 and M3). The 
first machine cycle of any instruction is a fetch cycle which is four, five or six T cycles long (unless length­
ened by the wait signal which will be fully described in the next section). The fetch cycle (M l) is used to 
fetch the OP code of the next instruction to be executed. Subsequent machine cycles move data between 
the CPU and memory or I/O devices and they may have anywhere-from three to five T cycles (again they 
may be lengthened by wait states to synchronize the external devices to the CPU). The following para­
graphs describe the timing which occurs within any of the basic machiile cycles. In section 10, the exact 
timing for each instruction is specified.

Krni_n-^h-ru^iu^^
T Cycle I

Machine Cycle
M1 M2 M3(OP Code Fetch) (Memory Read) (Memory Write)

Instruction Cycle __________J

BASIC CPU TIMING EXAMPLE 
FIGURE 4.0-0

All CPU timing can be broken down into a few very simple timing diagrams as shown in figure 4.0-1 
through 4.0-7. These diagrams show the following basic operations with and without wait states (wait states 
are added to synchronize the CPU to slow memory or I/O devices).

4.0- 1. Instruction OP code fetch (Ml cycle)
4.0- 2. Memory data read or write cycles
4.0- 3. I/O read or write cycles
4.0- 4. Bus Request/Acknowledge Cycle
4.0- 5. Interrupt Request/ Acknowledge Cycle
4.0- 6. Non maskable Interrupt Request/Acknowledge Cycle
4.0- 7. Exit from a HALT instruction

11



INSTRUCTION FETCH

Figure 4.0-1 shows the timing during an Ml cycle (OP code fetch). Notice that the PC is placed on the 
address bus at the beginning of the Ml cycle. One half clock time later the MREQ signal goes active. At this 
time the address to the memory has had time to stabilize so that the falling edge of MREQ can be used 
directly as a chip enable clock to dynamic memories. The RD line also goes active to indicate that the 
memory read data should be enabled onto the CPU data bus. The CPU samples the data from the memory on 
the data bus with the rising edge of the clock of state T3 and this same edge is used by the CPU to turn off 
the RD and MRQ signals. Thus the data has already been sampled by the CPU before the RD signal becomes 
inactive. Clock state T3 and T4 of a fetch cycle are used to refresh dynamic memories. (The CPU uses this 
time to decode and execute the fetched instruction so that no other operation could be performed at this 
time). During T3 and T4 the lower 7 bits of the address bus contain a memory refresh address and the RFSH 
signal becomes active to indicate that a refresh read of all dynamic memories should be accomplished. Notice 
that a RD signal is not generated during refresh time to prevent data from different memory segments from 
being gated onto the data bus. The MREQ signal during refresh time should be used to perform a refresh read 
of all memory elements. The refresh signal can not be used by itself since the refresh address is only guaran­
teed to be stable during MREQ time.

INSTRUCTION OPCODE FETCH 
FIGURE 4.0-1

Figure 4.0-1 A illustrates how the fetch cycle is delayed if the memory activates the WAIT line. Dur- 
ing T2 and every subsequent Tw, the CPU samples the WAIT line with the falling edge o f$ . If the W’AIT 
line is active at this time, another wait state will be entered during the following cycle. Using this technique 
the read cycle can be lengthened to match the access time of any type of memory device.

12



INSTRUCTION OP CODE FETCH WITH WAIT STATES 
FIGURE 4.0-1 A

MEMORY READ OR WRITE

Figure 4.0-2 illustrates the timing of memory read or write cycles other than an OP code fetch (M l 
cycle). These cycles are generally three clock periods long unless wait states are requested by the memory 
via the WAIT signal. The MREQ signal and the RD signal are used the same as in the fetch cycle. In the case 
of a memory write cycle, the MREQ also becomes active when the address bus is stable so that it can be 
used directly as a chip enable for dynamic memories. The WR line is active when data on the data bus is 
stable so that it can be used directly as a R/W pulse to virtually any type of semiconductor memory. 
Furthermore the WR signal goes inactive one half T state before the address and data bus contents are 
changed so that the overlap requirements for virtually any type of semiconductor memory type will be met.

h

___  ____n ___________

h

-----------------\  |

- i v i e m o r y  n c d u  v*y 

T 2 T 3 T l

tv ic m v n  v  u m c  

T 2 T3
' \ ' \  J' \  I

____ _

AO -  A15 MEMORY ADDR. MEMORY ADOR.
i I

!MREQ
1 _ r I L . ‘ /

1

RD \_ 1 /
1

WR
DATA BUS ! /  i m  y

\ S /

| /  ! DATA OUT
j ) -(DO- 07) : 1 111 / \ !

WAIT i ; j

1 !

1 r
 

1 
1

MEMORY READ OR WRITE CYCLES 
FIGURE 4.0-2



Figure 4.0-2A illustrates how a WAIT request signal will lengthen any memory read or write opera­
tion. This operation is identical to that previously described for a fetch cycle. Notice in this figure that a 
separate read and a separate write cycle are shown in the same figure although read and write cycles can 
never occur simultaneously.

<l>
Tl t2

f---\ ,
T„ t3 Tl

L_ ' \ \ i
AO - A15 1 MEMORY ADDR. I
MREQ \ r
RD
DATA BUS

\
IDO - 07) [ m 1

WR
DATA BUS

\ r
/— DATA OUT(DO - 07) 1 1 /

WAIT "\ rz 1 /_ ,- J  \___
[

I READ J CYCLE

[writeJ CYCLE

MEMORY READ OR WRITE CYCLES WITH WAIT STATES 
FIGURE 4.0-2A

INPUT OR OUTPUT CYCLES

Figure 4.0-3 illustrates an I/O read or I/O write operation. Notice that during I/O operations a single 
wait state is automatically inserted. The reason for this is that during I/O operations, the time from when 
the IORQ signal goes active until the CPU must sample the WAIT line is very short and without this extra 
state sufficient time does not exist for an I/O port to decode its address and activate the WAIT line if a wait 
is required. Also, without this wait state it is difficult to design MOS I/O devices that can operate at full 
CPU speed. During this wait state time the WAIT request signal is sampled. During a read I/O operation, 
the RD line is used to enable the addressed port onto the data bus just as in the case of a memory read. For 
I/O write operations, the WR line is used as a clock to the I/O port, again with sufficient overlap timing 
automatically provided so that the rising edge may be used as a data clock.

Figure 4.0-3A illustrates how additional wait states may be added with the WAIT line. The operation 
is identical to that previously described.

BUS REQUEST/ACKNOWLEDGE CYCLE

Figure 4 .04  illustrates the timing for a Bus Request/Acknowledge cycle. The BUSRQ signal is 
sampled by the CPU with the rising edge of the last clock period of any machine cycle. If the BUSRQ 
signal is active, the CPU will set its address, data and tri-state control signals to the high impedance state 
with the rising edge of the next clock pulse. At that time any external device can control the buses to 
transfer data between memory and I/O devices. (This is generally known as Direct Memory Access [DMA] 
using cycle stealing). The maximum time for the CPU to respond to a bus request is the length of a machine 
cycle and the external controller can maintain control of the bus for as many clock cycles as is desired. 
Note, however, that if very long DMA cycles are used, and dynamic memories are being used, the external 
controller must also perform the refresh function. This situation only occurs if very large blocks of data are 
transferred under DMA control Also note that during a bus request cycle, the CPU cannot be interrupted 
by either a NM1 or an INT signaL

14



<l>
AO - A7 
IORQ
DATA’BÜS
RD
wait

OATA BUS 
WR

«1»
T1 T2 Tw* T3 Tl

' l i \ \ ' l_
AO - A7 J PORT ADDRESS I
IORQ r
RÖ \ r |\DATA BUS 
WAIT

\ Irj)
—

WR \_ /
OUT 1

\ ! / }

ReadCycle

WriteCycle

INPUT OR OUTPUT CYCLES 
FIGURE 4.0-3

)

)

READCYCLE

WRITECYCLE

INPUT OR OUTPUT CYCLES WITH WAIT STATES 
FIGURE 4.0-3A

15



Ti
<l>

Last T State Tx Tx
\

BUSRQ "1 /Sample -.— ** Sample ̂
BUSAK /

Floating

AO — A15 T “ -(
DO — D7 > -(
MREQ, RD, )— H....WR. IORQ, RFSH

BUS REQUEST/ACKNOWLEDGE CYCLE 
FIGURE 4.0-4

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

Figure 4.0-5 illustrates the timing associated with an interrupt cycle. The interrupt signal (INT) is 
sampled by the CPU with the rising edge of the last clock at the end of any instruction. The signal will not be 
accepted if the internal CPU software controlled interrupt enable flip-flop is not set or if the BUSRQ signal 
is active. When the signal is accepted a special Ml cycle is generated. During this special Ml cycle the IORQ 
signal becomes active (instead of the normal MREQ) to indicate that the interrupting device can place an 
8-bit vector on the data bus. Notice that two wait states are automatically added to this cycle. These states 
are added so that a ripple priority interrupt scheme can be easily implemented. The two wait states allow 
sufficient time for the ripple signals to stabilize and identify which I/O device must insert the response 
vector. Refer to section 8.0 for details on how the interrupt response vector is utilized by the CPU.

Last M Cyde 
of Instruction

0

»NT

AO - A15 
M?
MREQ
IORQ
DATA BUS
WAIT
RD

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE 
FIGURE 4.0-5

16



Figures 4.0-5 A and 4.0-5B illustrate how a programmable 
acknowledge time. (Configured as shown to add one wait state)

counter can be used to extend interrupt

EXTENDING INTERRUPT ACKNOWLEDGE TIME WITH WAIT STATE
FIGURE 4.0-5A

REQUEST/ACKNOWLEDGE CYCLE WITH ONE ADDITIONAL WAIT STATE
FIGURE 4.0-5B

17



NON MASKABLE INTERRUPT RESPONSE

Figure 4.0-6 illustrates the request/acknowledge cycle for the non maskable interrupt. This signal is 
sampled at the same time as the interrupt line, but this line has priority over the normal interrupt and it can 
not be disabled under software control. Its usual function is to provide immediate response to important 
signals such as an impending power failure. The CPU response to a non maskable interrupt is similar to a 
normal memory read operation. The only difference being that the content of the data bus is ignored while 
the processor automatically stores the PC in the external stack and jumps to location 0066^. The service 
routine for the non maskable interrupt must begin at this location if this interrupt is used.

HALT EXIT

Whenever a software halt instruction is executed the CPU begins executing NOP’s until an interrupt is 
received (either a non maskable or a maskable interrupt while the interrupt flip flop is enabled). The two 
interrupt lines are sampled with the rising clock edge during each T4 state as shown in figure 4.0-7. If a non 
maskable interrupt has been received or a maskable interrupt has been received and the interrupt enable 
flip-flop is set, then the halt state will be exited on the next rising clock edge. The following cycle will then 
be an interrupt acknowledge cycle corresponding to the type of interrupt that was received. If both are 
received at this time, then the non maskable one will be acknowledged since it has highest priority. The 
purpose of executing NOP instructions while in the halt state is to keep the memory refresh signals active. 
Each cycle in the halt state is a normal Ml (fetch) cycle except that the data received from the memory is 
ignored and a NOP instruction is forced internally to the CPU. The halt acknowledge signal is active during 
this time to indicate that the processor is in the halt state.

NON MASKABLE INTERRUPT REQUEST OPERATION 
FIGURE 4.0-6

IS RECEIVED DURING THIS MEMORY CYCLE
HALT EXIT 

FIGURE 4.0-7

18



5.0 Z-80 CPU INSTRUCTION SET

The Z-80 CPU can execute 158 different instruction types including all 78 of the 8080A CPU.
The instructions can be broken down into the following major groups:

•  Load and Exchange
•  Block Transfer and Search
•  Arithmetic and Logical
•  Rotate and Shift
•  Bit Manipulation (set, reset, test)
•  Jump, Call and Return
•  Input/Output
•  Basic CPU Control

5.1 INTRODUCTION TO INSTRUCTION TYPES

The load instructions move data internally between CPU registers or between CPU registers and exter­
nal memory. All of these instructions must specify a source location from which the data is to be moved 
and a destination location. The source location is not altered by a load instruction. Examples of 
load group instructions include moves between any of the general purpose registers such as move the data 
to Register B from Register C. This group also includes load immediate to any CPU register or to any 
external memory location. Other types of load instructions allow transfer between CPU registers and 
memory locations. The exchange instructions can trade the contents of two registers.

A unique set of block transfer instructions is provided in the Z-80. With a single instruction a 
block of memory of any size can be moved to any other location in memory. This set of block moves 
is extremely valuable when large strings of data must be processed. The Z-80 block search instructions 
are also valuable for this type of processing. With a single instruction, a block of external memory 
of any desired length can be searched for any 8-bit character. Once the character is found or the end of the 
block is reached, the instruction automatically terminates. Both the block transfer and the block search 
instructions can be interrupted during their execution so as to not occupy the CPU for long periods of time.

The arithmetic and logical instructions operate on data stored in the accumulator and other 
general purpose CPU registers or external memory locations. The results of the operations are placed 
in the accumulator and the appropriate flags are set according to the result of the operation. An 
example of an arithmetic operation is adding the accumulator to the contents of an external memory 
location. The results of the addition are placed in the accumulator. This group also includes 16-bit 
addition and subtraction between 16-bit CPU registers.

The rotate and shift group allows any register or any memory location to be rotated right or left 
with or without carry either arithmetic or logical. Also, a digit in the accumulator can be rotated right 
or left with two digits in any memory location.

The bit manipulation instructions allow any bit in the accumulator, any general purpose register 
or any external memory location to be set, reset or tested with a single instruction. For example, 
the most significant bit of register H can be reset. This group is especially useful in control applications 
and for controlling software flags in general purpose programming.

The jump, call and return instructions are used to transfer between various locations in the user’s 
program. This group uses several different techniques for obtaining the new program counter address 
from specific external memory locations. A  unique type of call is the restart instruction. This instruction 
actually contains the new address as a part of the 8-bit OP code. This is possible since only 8 separate 
addresses located in page zero of the external memory may be specified. Program jumps may also 
be achieved by loading register HL, I X  or IY directly into the PC, thus allowing the jump address to 
be a complex function of the routine being executed.



The input/output group of instructions in the Z-80 allow for a wide range of transfers between 
external memory locations or the general purpose CPU registers, and the external I/O devices. In 
each case, the port number is provided on the lower 8 bits of the address bus during any I/O 
transaction. One instruction allows this port number to be specified by the second byte of the instruction 
while other Z-80 instructions allow it to be specified as the content of the C register. One major ad­
vantage of using the C register as a pointer to the I/O device is that it allows different I/O ports to 
share common software driver routines. This is not possible when the address is part of the OP code 
if the routines are stored in ROM. Another feature of these input instructions is that they set the 
flag register automatically so that additional operations are not required to determine the state of 
the input data (for example its parity). The Z-80 CPU includes single instructions that can move 
blocks of data (up to 256 bytes) automatically to or from any I/O port directly to any memory location. 
In conjunction with the dual set of general purpose registers, these instructions provide for fast 
I/O block transfer rates. The value of this I/O instruction set is demonstrated by the fact that the 
Z-80 CPU can provide all required floppy disk formatting (i.e., the CPU provides the preamble, address, 
data and enables the CRC codes) on double density floppy disk drives on an interrupt driven basis.

Finally, the basic CPU control instructions allow various options and modes. This group includes 
instructions such as setting or resetting the interrupt enable flip flop or setting the mode of interrupt 
response.

5.2 ADDRESSING MODES

Most of the Z-80 instructions operate on data stored in internal CPU registers, external memory 
or in the I/O ports. Addressing refers to how the address of this data is generated in each instruction. 
This section gives a brief summary of the types of addressing used in the Z-80 while subsequent sections 
detail the type of addressing available for each instruction group.

Immediate. In this mode of addressing the byte following the OP code in memory contains the 
actual operand.

OP Code 

Operand
}one or 2 bytes

Examples of this type of instruction would be to load the accumulator with a constant, where the constant 
is the byte immediately following the OP code.

immediate Extended. This mode is merely an extension of immediate addressing in that the two 
bytes following the OP codes are the operand.

one or 2 bytes 

low order 

high order

Examples of this type of instruction would be to load the HL register pair ( 16-bit register) with 
16 bits (2 bytes) of data.

OP code

Operand

Operand

20



Modified Page Zero Addressing. The Z-80 has a special single byte call instruction to any of 8 locations 
in page zero of memory. This instruction (which is referred to as a restart) sets the PC to an effective 
address in page zero. The value of this instruction is that it allows a single byte to specify a complete 
16-bit address where commonly called subroutines are located, thus saving memory space.

OP Code one byte

Effective address is (b^ b^ b^ 000)2

Relative Addressing. Relative addressing uses one byte of data following the OP code to specify a 
displacement from the existing program to which a program jump can occur. This displacement is 
a signed two’s complement number that is added to the address of the OP code of the following instruction.

OP Code 

Operand

Jump relative (one byte OP code)
8-bit two’s complement displacement added to Address (A+2)

The value of relative addressing is that it allows jumps to nearby locations while only requiring two 
bytes of memory space. For most programs, relative jumps are by far the most prevalent type of 
jump due to the proximity of related program segments. Thus, these instructions can significantly 
reduce memory space requirements. The signed displacement can range between +127 and -128 
from A + 2. This allows for a total displacement of + 129 to -126 from the jump relative OP code address. 
Another major advantage is that it allows for relocatable code.

Extended Addressing. Extended Addressing provides for two bytes (16 bits) of address to be included 
in the instruction. This data can be an address to which a program can jump or it can be an address 
where an operand is located.

OP Code

Low Order Address or Low order operand 

High Order Address or high order operand

}one or two bytes

Extended addressing is required for a program to jump from any location in memory to any other location, 
or load and store data in any memory location.

When extended addressing is used to specify the source or destination address of an operand, 
the notation (nn) will be used to indicate thecontent of memory at nn, where nn is the 16-bit address 
specified in the instruction. This means that the two bytes of address nn are used as a pointer to a memory 
location. The use of the parentheses always means that the value enclosed within them is used as a 
pointer to a memory location. For example, ( 1200) refers to the contents of memory at location 1200.

Indexed Addressing. In this type of addressing, the byte of data following the OP code contains 
a displacement which is added to one of the two index registers (the OP code specifies which index 
register is used) to form a pointer to memory. The contents of the index register are not altered by this 
operation.

^  two byte OP code

Operand added to index register to form a pointer to memory.

OP Code 

OP Code 

Displacement

21



An example of an indexed instruction would be to load the contents of the memory location 
(index Register + Displacement) into the accumulator. The displacement is a signed two’s complement 
number. Indexed addressing greatly simplifies programs using tables of data since the index register 
can point to the start of any table. Two index registers are provided since very often operations require 
two or more tables. Indexed addressing also allows for relocatable code.

The two index registers in the Z-80 are referred to as IX and IY.To indicate indexed addressing the 
notation:

(IX+d) or (IY+d)

is used. Here d is the displacement specified after the OP code. The parentheses indicate that this 
value is used as a pointer to external memory.

Register Addressing. Many of the Z-80 OP codes contain bits of information that specify which 
CPU register is to be used for an operation. An example of register addressing would be to load the 
data in register B into register C.

Implied Addressing. Implied addressing refers to operations where the OP code automatically 
implies one or more CPU registers as containing the operands. An example is the set of arithmetic 
operations where the accumulator is always implied to be the destination of the results.

Register Indirect Addressing. This type of addressing specifies a 16-bit CPU register pair (such as HL) 
to be used as a pointer to any location in memory. This type of instruction is very powerful and 
it is used in a wide range of applications.

OP Code }one or two bytes

An example of this type of instruction would be to load the accumulator with the data in the memory 
location pointed to by the HL register contents. Indexed addressing is actually a form of register indirect 
addressing except that a displacement is added with indexed addressing Register indirect addressing 
allows for very powerful but simple to implement memory accesses. The block move and search commands 
in the Z-80 are extensions of this type of addressing where automatic register incrementing, decrementing 
and comparing has been added. The notation for indicating register indirect addressing is to put 
parentheses around the name of the register that is to be used as the pointer. For example, the symbol

(HL)

specifies that the contents of the HL register are to be used as a pointer to a memory location. Often 
register indirect addressing is used to specify 16-bit operands. In this case, the register contents 
point to the lower order portion of the operand while the register contents are automatically incremented 
to obtain the upper portion of the operand.

Bit Addressing. The Z-80 contains a large number of bit set, reset and test instructions. These 
instructions allow any memory location or CPU register to be specified for a bit operation through 
one of three previous addressing modes (register, register indirect and indexed) while three bits in the OP 
code specify which of the eight bits is to be manipulated.

ADDRESSING MODE COMBINATIONS

Many instructions include more than one operand (such as arithmetic instructions or loads). In 
these cases, two types of addressing may be employed. For example, load can use immediate addressing 
to specify the source and register indirect or indexed addressing to specify the destination.



5.3 INSTRUCTION OP CODES

This section describes each of the Z-80 instructions and provides tables listing the OP codes for every 
instruction. In each of these tables the OP codes in bold type are identical to those offered in the 8080A 
CPU. Also shown is the assembly language mnemonic that is used for each instruction. All instruction OP 
codes are listed in hexadecimal notation. Single byte OP codes require two hex characters while double 
byte OP codes require four hex characters. The conversion from hex to binary is repeated here for 
convenience.

Hex Binary Decimal Hex Binary Decimal
. 0 = 0000 = 0 8 = 1000 = 8

1 = 0001 = 1 9 = 1001 = 9
2 = 0010 = 2 A = 1010 = 10
3 = 0011 = 3 B = 1011 = 11
4 = 0100 = 4 C = 1100 = 12
5 = 0101 = 5 D = 1101 = 13
6 = 0110 = 6 E = 1110 = 14
7 = 0111 = 7 F = m i = 15

Z-80 instruction mnemonics consist of an OP code and zero, one or two operands. Instructions in 
which the operand is implied have no operand. Instructions which have only one logical operand or those in 
which one operand is invariant (such as the Logical OR instruction) are represented by a one operand 
mnemonic. Instructions which may have two varying operands are represented by two operand mnemonics.

LOAD AND EXCHANGE

Table 5.3-1 defines the OP code for all of the 8-bit load instructions implemented in the Z-80 CPU. 
Also shown in this table is the type of addressing used for each instruction. The source of the data is found 
on the top horizontal row while the destination is specified by the left hand column. For example, load 
register C from register B uses the OP code 48H. In all of the tables the OP code is specified in hexadecimal 
notation and the 48H (=0100 1000 binary) code is fetched by the CPU from the external memory during 
Ml time, decoded and then the register transfer is automatically performed by the CPU.

The assembly language mnemonic for this entire group is LD, followed by the destination followed 
by the source (LD DEST., SOURCE). Note that several combinations of addressing modes are possible. For 
example, the source may use register addressing and the destination may be register indirect; such as load 
the memory location pointed to by register HL with the contents of register D. The OP code for this 
operation would be 72. The mnemonic for this load instruction would be as follows:

LD (HL), D
The parentheses around the HL means that the contents of HL are used as a pointer to a memory location. 
In all Z-80 load instruction mnemonics the destination is always listed first, with the source following. The 
Z-80 assembly language has been defined for ease of programming. Every instruction is self documenting 
and programs written in Z-80 language are easy to maintain.

Note in table 5.3-1 that some load OP codes that are available in the Z-80 use two bytes. This is an 
efficient method of memory utilization since 8 , 16, 24 or 32 bit instructions are implemented in the Z-80. 
Thus often utilized instructions such as arithmetic or logical operations are only 8-bits which results in 
better memory utilization than is achieved with fixed instruction sizes such as 16-bits.

.All load instructions using indexed addressing for either the source or destination location 
actually use three bytes of memory with the third byte being the displacement d. For example a load 
register E with the operand pointed to by IX with an offset of +8 would be written:

LD E, (IX + 8)

23



The instruction sequence for this in memory would be:

Address A 

A+l 

A+2

DD

5 F

08

OP Code

Displacement operand

The two extended addressing instructions are also three byte instructions. For example the instruction to 
load the accumulator with the operand in memory location 6F32H would be written:

LD A, (6F 32H)
and its instruction sequence would be:

Address A 

A+l 

A+2

3A

32

6F

OP Code

low order address 

high order address

Notice that the low order portion of the address is always the first operand.

The load immediate instructions for the general purpose 8-bit registers are two-byte instructions. The 
instruction load register H with the value 36H would be written:

LD H, 36H
and its sequence would be:

Address A 

A+l

26

36

OP Code 

Operand

Loading a memory location using indexed addressing for the destination and immediate addressing for the 
source requires four bytes. For example:

LD (IX - 15), 21H
would appear as:

Address A 

A+l 

A+2 

A+3

OP Code

displacement (-15 in 
signed two’s complement) 
operand to load

Notice that with any indexed addressing the displacement always follows directly after the OP code.

Table 5.3-2 specifies the 16-bit load operations. This table is very similar to the previous one. Notice 
that the extended addressing capability covers all register pairs. Also notice that register indirect operations 
specifying the stack pointer are the PUSH and POP instructions. The mnemonic for these instructions is 
k‘PUSH” and “POP.’’ These differ from other 16-bit loads in that the stack pointer is automatically decre­
mented and incremented as each byte is pushed onto or popped from the stack respectively. For example 
the instruction:

24



PUSH A F

is a single byte instruction with the OP code of F5H. When this instruction is executed the following 
sequence is generated:

Decrement SP 
LD (SP), A 
Decrement SP 
LD (SP), F

Thus the external stack now appears as follows:

IMPLIED REGISTER REG INOIRIECT INDEXED
EXT.
ADDR. IMME.

1 R A 3 C 0 E H L (HL) (BC) (DE) (IX *d) (IY *d) (nn) n

REGISTER

A ED
57

ED
5F

7F 78 79 7A 78 7C 70 7E OA 1A
00
7E
d

FD
7E
d

3A
n
n

36
n

3 47 40 47 42 43 44 45 48
00
46
d

FO
46
d

06
n

C 4 F 48 49 4A 48 4C 40 4E
00
4E
d

FD „
4E
d

OE
n

D 57 50 51 52 53 54 55 56
00
56
d

FO
56
d

16
"

E 5F 58 59 5A 5B 5C 5D 5E
00
56
d

FO
5E
d

!

! “

H 67 60 61 62 63 64 65 66
00
56
d

FO
66
d

26
n

L 6F 68 69 6A 68 6C 60 6E
00
6E
d

FO
6E
d

2E
n

REG
INDIRECT

(HU 77 70 71 72 73 74 75 36
n

(8 0 02

(DE) 12

INDEXED

< IX-t-d)
00
77
d

00
70
d

00
71
d

DO
72
d

00
73
d

00
74
d

00
75
d

00
36
d
n

(IY+d)
FD
77
d

FO
70
d

FO
71
d

FO
72
d

FO
73
d

FO
74
d

FO
75
d

.-0
36
d
0

EXT. ADOR (nn)
32
n
n

IMPLIED

1 ED I 
47

R ED
5F

8 BIT LOAD GROUP 
'LD'

TABLE 5.3-1



The POP instruction is the exact reverse of a PUSH. Notice that all PUSH and POP instructions utilize a 
16-bit operand and the high order byte is always pushed first and popped last. That is a:

PUSH BC is PUSH B then C 
PUSH DE is PUSH D then E 
PUSH HL is PUSH H then L 
POP HL is POP L then H

The instruction using extended immediate addressing for the source obviously requires 2 bytes of data 
following the OP code. For example:

will be:
LDDE.0659H

Address A 11 

A+l 59 

A+2 06

OP Code

Low order operand to register E 

High order operand to register D

In all extended immediate or extended addressing modes, the low order byte always appears first after the 
OP code.

Table 5.3*3 lists the 16-bit exchange instructions implemented in the Z-80. OP code 08H allows the 
programmer to switch between the two pairs of accumulator flag registers while D9H allows the pro­
grammer to switch between the duplicate set of six general purpose registers. These OP codes are-only one 
byte in length to absolutely minimize the time necessary to perform the exchange so that the duplicate 
banks can be used to effect very fast interrupt response times.

BLOCK TRANSFER AND SEARCH

Table 5.3-4 lists the extremely powerful block transfer instructions. All of these instructions operate 
with three registers.

HL points to the source location.
DE points to the destination location.
BC is a byte counter.

After the programmer has initialized these three registers, any of these four instructions may be used. The 
LDI (Load and Increment) instruction moves one byte from the location pointed to by HL to the location 
pointed to by DE. Register pairs HL and DE are then automatically incremented and are ready to point to 
the following locations. The byte counter (register pair BC) is also decremented at this time. This instruc­
tion is valuable when blocks of data must be moved but other types of processing are required between each 
move. The LDIR (Load, increment and repeat) instruction is an extension of the LDI instruction. The same 
load and increment operation is repeated until the byte counter reaches the count of zero. Thus, this single 
instruction can move any block of data from one location to any other.

Note that since 16-bit registers are used, the size of the block can be up to 64K bytes (IK = 1024) 
long and it can be moved from any location in memory to any other location. Furthermore the blocks can 
be overlapping since there are absolutely no constraints on the data that is used in the three register pairs.

The LDD and LDDR instructions are very similar to the LDI and LDIR. The only difference is that 
register pairs HL and DE are decremented after every move so that a block transfer starts from the highest 
address of the designated block rather than the lowest.

26



SOURCE

DESTINATION

PUSH
INSTRUCTIONS ^

REGISTER
IMM.
EXT.

EXT.
ADDR.

REG.
INDIR.

AF BC DE HL SP IX IY nn (nn) (SP)

AF F1

o r ED
BC n 48

n C1
n n
n ED

R DE 5B D1
E
G 1 it nn
Ic HL 21 2A ET

T a - n it
£ n n
R SP

• : a t -
F9 DO FD 31 ED78• F9 F9 n n

n n
DO DO

IX 21 2A DO
n n E1
n n
FD FD

IY 21 2A FDn n El
n n

ED ED 22 ED DO FD
EXT. (nn) 43 53 73 22 22
ADDR. n n n n n

n n n n n n
- - • V**..

REG. <SP) F T C5 D5 E5 DO FD
I NO. E5 E5

t
NOTE: The Push & Pop Instructions adjust 

the SP after every execution
POP
INSTRUCTIONS

16 BIT LOAD GROUP 
'LD'

'PUSH' AND 'POP' 
TABLE 5.3-2

IMPLIED ADDRESSING

a f ' BC, DE' & HL' HL IX IY

IMPLIED

AF 08

BC.
DE
&
HL

D9

DE EB

REG.
INDIR.

(SP) E3 DO
E3

FD
S3

EXCHANGES 
'EX' AND 'EXX' 
TABLE 5.3-3

27



SOURCE

REG.
INDIR.

(HU

ED 'LDT -  Load (DE)-«---- (HL)
AO Inc HL & DE, Dec BC

ED 'LO IR / -  Load (DE)-«— (HL)
BO Inc HL & DE, Dec BC, Repeat until BC *  0

REG. (DE)INDIR.
ED 'LDD' -  Load (DE)-«— (HL)
A8 Dec HL & DE, Dec BC

ED 'LDDR' -  Load (DE)-«-----(HL)
B8 Dec HL & DE, Dec BC, Repeat until BC = 0

Reg HL points to source 
Reg OE points to destination 
Reg BC is byte counter

BLOCK TRANSFER GROUP 
TABLE 5.3—4

Table 5.3-5 specifies the OP codes for the four block search instructions. The first, CPI (compare and 
increment) compares the data in the accumulator, with the contents of the memory location pointed to by. 
register HL. The result of the compare is stored in one of the flag bits (see section 6.0 for a detailed expla­
nation of the flag operations) and the HL register pair is then incremented and the byte counter (register 
pair BC) is decremented.

The instruction CPIR is merely an extension of the CPI instruction in which the compare is repeated 
until either a match is found or the byte counter (register pair BC) becomes zero. Thus, this single instruc­
tion can search the entire memory for any 8-bit character.

The CPD (Compare and Decrement) and CPDR (Compare, Decrement and Repeat) are similar 
instructions, their only difference being that they decrement HL after every compare so that they search 
the memory in the opposite direction. (The search is started at the highest location in the memory block).

It should be emphasized again that these block transfer and compare instructions are extremely 
powerful in string manipulation applications.

ARITHMETIC AND LOGICAL

Table 5.3-6 lists all of the 8-bit arithmetic operations that can be performed with the accumulator, 
also listed are the increment (INC) and decrement (DEC) instructions. In all of these instructions, except 
INC and DEC, the specified 8-bit operation is performed between the data in the accumulator and the 
source data specified in the table. The result of the operation is placed in the accumulator with the excep­
tion of compare (CP) that leaves the accumulator unaffected. All of these operations affect the flag 
register as a result of the specified operation. (Section 6.0 provides all of the details on how the flags are 
affected by any instruction type). INC and DEC instructions specify a register or a memory location as 
both source and destination of the result. When the source operand is addressed using the index registers 
the displacement must follow directly. With immediate addressing the actual operand will follow directly. 
For example the instruction:

AND 07H
would appear as:

Address A 

A+l

E6 OP Code 

07 Operand

28



SEARCH
LOCATION

REG.
INDIR.

(HL)

ED 'CPI'
A1 Inc HL, Dec BC

ED 'CPIR', Inc HL. Dec BC
81 repeat until BC * 0 or find match

ED
A9

CPD' Dec HL& BC

ED 'CPDR' Dec HL & BC
B9 Repeat until BC 3 0 or find match

HL points to location in memory 
to be compared with accumulator 
contents

BC is byte counter

BLOCK SEARCH GROUP 
TABLE 5.3-5

Assuming that the accumulator contained the value F3H the result of 03H would be placed in the 
accumulator:

Acc before operation 1111 0011 = F3H 
Operand 0000 0111 = 07H
Result to Acc 0000 0011 = 03H

The Add instruction (ADD) performs a binary add between the data in the source location and the 
data in the accumulator. The subtract (SUB) does a binary subtraction. When the add with carry is specified 
(ADC) or the subtract with carry (SBC), then the carry flag is also added or subtracted respectively. The 
flags and decimal adjust instruction (DAA) in the Z-80 (fully described in section 6.0) allow arithmetic 
operations for:

multiprecision packed BCD numbers 

multiprecision signed or unsigned binary numbers 

multiprecision two’s complement signed numbers

Other instructions in this group are logical and (AND), logical or (OR), exclusive or (XuK.) and compare (CP).

There are five general purpose arithmetic instructions that operate on the accumulator or carry flag. 
These five are listed in table 5.3-7. The decimal adjust instruction can adjust for subtraction as well as add­
ition, thus making BCD arithmetic operations simple. Note that to allow for this operation the flag N is used. 
This tlag is set if the last arithmetic operation was a subtract. The negate accumulator (NEG) instruction 
forms the two’s complement of the number in the accumulator. Finally notice that a reset carry instruction 
is not included in the Z-80 since this operation can be easily achieved through other instructions such as a 
logical AND of the accumulator with itself.

Table 5.3-8 lists all of the 16-bit arithmetic operations between 16-bit registers. There are five groups 
of instructions including add with carry and subtract with carry. ADC and SBC affect all of the flags. These 
two groups simplify address calculation operations or other 16-oit arithmetic operations.

29



SOURCE

REGISTER ADDRESSING
REG.

INDIR. INDEXED IMMED.

A B C D E H L (HL) (IX+d) tlY+d) n

DD FD
'ADD' 87 80 81 82 83 84 85 86 86 86 C6

d d n

DD FD
ADD w CARRY 8F 88 89 8A 88 8C 8D 8E 8E 8E CE

'ADC* d d n

DD FD
SUBTRACT 97 90 91 92 93 94 95 96 96 96 D6

'SUB' d d n

DD FD
SUB w CARRY 9F 98 99 9A 9B 9C 9D 9E 9E 9E DE

'SBC' d d n

DD FD
'AND' A7 AO A1 A2 A3 A4 A5 A6 A6 A6 E6

d d n

DD FD
'XOR' AF A8 A9 AA AB AC AD AE AE AE EE

: , , ¾ -..., .- , . , . , d d n

DD FD
'OR' B7 BO B1 B2 B3 B4 B5 B6 B6 B6 F6

d d n

DD FD
COMPARE BF B8 B9 BA BB BC BD BE BE BE FE

‘CP* d d D

DD FD
INCREMENT 3C 04 0C 14 1C 24 2C 34 34 34

'INC' d d

DD FD
DECREMENT 3D 05 00 15 ID 25 2D 35 35 35

'DEC' d d

8 BIT ARITHMETIC AND LOGIC 
TABLE 5.3—6

Decimal Adjust Acc, 'DAA' 27

Complement Acc, 'CPL' 2F

Negate Acc, 'NEG' ED
(2's complement) 44

Complement Carry Flag, 'CCF' 3F

Set Carry Flag, 'SCF' 37

GENERAL PURPOSE AF OPERATIONS 
TABLE 5.3-7

30



a u

REGISTER AOORESSING
REG.

INOIR. IN0EX6D

A 3 C 0 E H L (HU (IX+d) (IY+d).

TEST
'BIT

0 CB
47

C8
40

C8
41

CS
42

C8
43

CS
44

C8
45

CS
46

00
C8
d
46

FO
CS
d
46

1 CS
4F

C8
48

C8
49

CS
4A

C8
48

C8
4C

CB
40

C8
46

00
C8
d
4E

FO
C8
d
46

2 CS
57

C8
50

ca
51

CB
52

C8
53

CS
54

C8
55

CS
56

00
C8
d
56

FO
CB
d
56

3 C8
5F

CS
58

CS
59

CS
5A

CS
SB

C8
5C

CS
50

CS
56

00
CS
d
5E

FO
cs
d
5E

4 CS
37

C8
30

CS
61

CS
32

C3
S3

CS
54

CS
55

CS
36

00
CS
d
66

FO
ca
d
66

5 CS
SF

CS
58

CS
69

ca
SA

CS
68

CB
8C

C8
60

C8
66

00
CS
d
5E

FO
C8
d
6E

6 C3
77

ca
70

C8
71

CS
72

CS
73

CS
74

SS
75

CS
76

00
ca
d
76

FO
c s
d
76

7 CS
7F

C8
78

CS
79

CS
7A

CS
78

CS
7C

CS
70

CS
76

00
ca
d
7E

FO
C8
d
76

RESET
BIT
'RES'

0 CS
87

CS
30

ca
31

CB
32

CB
33

ca
34

C8
35

ca
36

DO
cs
d
36

FO
C3
d
36

1 CB
8F

C8
38

c s
39

C8
3A

C8
88

CS
3C

CS
30

CS
3E

00
ca
d
3E

FO
C8
d
8E

2 CS
97

C8
90

CS
91

C8
92

ca
93

C8
94

C8
95

CS
96

00
C8
d
96

FD
C8
d
96

3 CS
9F

C8
98

C8
99

C8
9A

C8
98

CB
9C

CS
90

CB
96

00
CB
d
96

FO
C8
96

4 CS
A7

CS
AO

C8
A1

CS
A2

C8
A3

CB
A4

CS
A5

C8
A6

00
ca
d
A6

FO
C3
d
A6

5 CS
AF

CB
A8

C3
A9

CB
AA

C8
A8

C8
AC

C8
AO

CS
AE

00
CB
d
X E

FO
C3
d
AE

3 CS
87

C8
BO

CS
31

CS
82

C8
33

CS
84

C8
BS

C8
86

00
C8
d
36

FO
C8
d
86

7 CS
3F

C8
38

CS
39

CS
3A

C3
38

CS
3C

CS
30

ca
3E

00
C3
d
3E

FO
ca
d
BE

SET
BIT
'SET'

0 ca
C7

ca
CO

C8
C1

CB
C2

C8
C3

CB
C4

ca
cs

CS
CS

00
03
d
CS

FO
CS
d
CS

1 CB
CF

C8
cs

CS
C9

CS
CA

ca
C8

CS
c c

C8
CO

CB
CE

00
cs
d
CE

FO
ca
d
CS

2 CS
07

cs
DO

CS
01

CS
02

cs
03

cs
04

C8
05

ca
06

00
CS
d
06

FD
CS
d
06

3 C3
OF

ca
08

C8
09

CS
DA

ca
08

c s
oc

ca
00

ca
06

00
CS
d
06

FO
CS
d
OE

4 CS
E7

C8
EO

ca
El

C8
E2

cs
E3

cs
E4

cs
E5

| 00  
c s  ca
£S I dE5

FO
CS
d
E6

5 CB
EF

C8
E8

CB
E9

CB
EA

CB
E3

CB
EC

CS
EO

CS
EE

00
C3
d
EE

FD
ca
d
EE

S C8
F7

CS
FO

CB
Fl

CS
F2

C3
F3

C8
F4

CS
F5

CS
F6

00
C8
d
F5

FO
C8
d
F6

7 CS
FF

CS
F8

C8
F9

CS
FA

ca
FB

CS
FC

CS
FO

CS
FE

00
CB
d
FE

FO
CS
d
FE

BIT MANIPULATION GROUP 
TABLE 5.3-10

i

33



Disable Interrupt — prevent interrupt before
routine is exited.

LD A, n — notify peripheral that service
OUT n, A routine is complete

Enable Interrupt

Return

This seven byte sequence can be replaced with the one byte El instruction and the two byte RETI instruction 
in the Z80. This is important since interrupt service time often must be minimized.

To facilitate program loop control the instruction DJNZ e can be used advantageously. This two byte, 
relative jump instruction decrements the B register and the jump occurs if the B register has not been decre­
mented to zero. The relative displacement is expressed as a signed two's complement number. A simple ex­
ample of its use might be:

Address Instruction Comments
N, N + 1 LD B, 7 ; set B register to count of 7

N + 2 to N + 9 (Perform a sequence 
of instructions) ; loop to be performed 7 times

N + 10, N + 11 DJNZ -8 ; to jump from N + 12 to N + 2

N+ 12 (Next Instruction)

CONDITION

UN- NON NON PARITY PARITY SIGN SIGN REG
COND. CARRY CARRY ZERO ZERO EVEN ODD NEG POS B*0

C3 DA D2 CA C2 EA E2 FA F2
JUMP \)P' IMMED. nn n n n n n n n n n

EXT. n n n n n n n n n

JUMP \JR' RELATIVE PC+e 18 38 30 28 20
e-2 e-2 e-2 e-2 e-2

JUMP 'JP' (HL) E9

JUMP 'JP' REG. (IX) DD
INDIR. E9

JUMP 'JP' (IY) FD
E9

CD DC D4 CC C4 EC E4 FC F4
'CALL' IMMED. nn n n n n ~n n Ji : n ft

EXT. n n n n n n n n n

DECREMENT B, 
JUMP IF NON RELATIVE PC+e 10
ZERO 'DJNZ' e-2

RETURN REGISTER (SP) C9 D8 DO C8 CO E8 EO F8 FO
'RET' INDIR. (SP+1)

RETURN FROM REG. (SP) ED
INT 'RETI' INDIR. (SP+1) 4D

RETURN FROM 
NON MASKABLE REG. (SP) ED
INT'RETN' INDIR. (SP+1) 45

NOTE-CERTAIN  
FLAGS HAVE MORE 
THAN ONE PURPOSE.

6.0 FOR DETAILS JUMP, CALL and RETURN GROUP
TABLE 5.3-11

34



SOURCE

BC DE HL SP IX IY

HL 09 19 29 39

'ADO' IX DO DO DO DD
09 19 39 29

IY FD FD FD FD
09 19 39 29

ADD WITH CARRY AND HL ED ED ED ED
SET FLAGS 'ADC' 4A 5A 6A 7A

SUB WITH CARRY AND HL ED ED ED ED
SET FLAGS SBC' 42 52 62 72

INCREMENT 'INC' 03 13 23 33 DD FD
23 23

DECREMENT 'DEC r. 08 1B 2B 38 DD FD
2B 2B

16 BIT ARITHMETIC 
TABLE 5.3-8

ROTATE AND SHIFT

A major capability of the Z-80 is its ability to rotate or shift data in the accumulator, any general pur­
pose register, or any memory location. All of the rotate and shift OP codes are shown in table 5.3-9. Also 
included in the Z-80 are arithmetic and logical shift operations. These operations are useful in an extremely 
wide range of applications including integer multiplication and division. Two BCD digit rotate instructions 
(RRD and RLD) allow a digit in the accumulator to be rotated with the two digits in a memory location 
pointed to by register pair HL. (See figure 5.3-9). These instructions allow for efficient BCD arithmetic.

BIT MANIPULATION

The ability to set, reset and test individual bits in a register or memory location is needed in almost 
every program. These bits may be flags in a general purpose software routine, indications of external con­
trol conditions or data packed into memory locations to make memory utilization more efficient.

The Z-80 has the ability to set, reset or test any bit in the accumulator, any general purpose register 
or any memory location with a single instruction. Table 5.3-10 lists the 240 instructions that are available 
for this purpose. Register addressing can specify the accumulator or any general purpose register on which 
the operation is to be performed. Register indirect and indexed addressing are available to operate on 
external memory locations. Bit test operations set the zero flag (Z) if the tested bit is a zero. (Refer to 
section 6.0 for further explanation of flag operation).

JUMP, CALL AND RETURN

Figure 5.3-11 lists all of the jump, call and return instructions implemented in the Z-80 CPU. A jump 
is a branch in a program where the program counter is loaded with the 16-bit value as specified by one of the 
three available addressing modes (Immediate Extended, Relative or Register Indirect). Notice that the jump 
group has several different conditions that can be specified to be met before the jump will be made. If 
these conditions are not met, the program merely continues with the next sequential instruction. The 
conditions are all dependent on the data in the flag register. (Refer to section 6.0 for details on the flag 
register). The immediate extended addressing is used to jump to any location in the memory. This in­
struction requires three bytes (two to specify the 16-bit address) with the low order address byte first 
followed by the high order address byte.

31



Sou ret and Destination

A B C D E H L (HL) (IX *d) (IV +d)

'RLC' CB CB CB CB CB CB CB CB
DD
CB

FD
CB

07 00 01 02 03 04 06 06 d
06

d
06

■RRC' CB CB CB CB CB CB CB CB
DD
CB

FD
CB

OF 08 09 OA OB oc OD OE d
OE

d
OE

'RL' CB CB CB CB CB CB CB CB
DD
CB

FD
CB

17 10 11 12 13 14 15 16 d
16

d
16

'RR' CB CB CB CB CB CB CB CB DD
CB

FD
CB

IF 18 19 1A IB 1C 1D 1E d
1E

d
IE

•SLA' CB CB CB CB CB CB CB CB
DD
CB

FD
CB

27 20 21 22 23 24 25 26 d
26

d
26

*SRA‘ CB CB CB CB CB CB CB CB
DD
CB

FD
CB

2F 28 29 2A 2B 2C 2D 2E d
2E

d
2E

■SRI’ CB CB CB CB CB CB CB CB
OD
CB

FD
CB

3F 38 39 3A 3B 3C 3D 3E d
3E

d
3E

■RLD* ED
6F

■RRD’ ED
67

A

RLCA 07

RRCA OF

RLA 17

RRA IF

Route 
Lett Circular

Rotate
Right Circular

Route
Lett

H e ü  sr
& -------1 ---------  h ~ °  L-et^arithm etic

P
H —- HI
0 i-----

I

Shift
Right Arithmetic

Shift
Right Logical

J i _ J
Rotate Digit 
Left

. Rotate Digit 
,H U  Right

ROTATES AND SHIFTS 
TABLE 5.3-9

For example an unconditional Jump to memory location 3E32H would be:

Address A 

A+l 

A+2

C3

32

3E

OP Code

Low order address 

High order address

The relative jump instruction uses only two bytes, the second byte is a signed two’s complement dis­
placement form the existing PC. This displacement can be in the range of + 129 to -126 and is measured 
from the address of the instruction OP code.

Three types of register indirect jumps are also included. These instructions are implemented by loading 
the register pair HL or one of the index registers IX or IY directly into the PC. This capability allows for 
program jumps to be a function of previous calculations.

A call is a special form of a jump where the address of the byte following the call instruction is 
pushed onto the stack before the jump is made. A return instruction is the reverse of a call because the 
data on the top of the stack is popped directly into the PC to form a jump address. The call and return 
instructions allow for simple subroutine and interrupt handling. Two special return instructions have been 
included in the Z-80 family of components. The return from interrupt instruction (RETI) and the return 
from non maskable interrupt (RETN) are treated in the CPU as an unconditional return identical to the OP 
code C9H. The difference is that (RETI) can be used at the end of an interrupt routine and all Z-80 peripheral 
chips will recognize the execution of this instruction for proper control of nested priority interrupt handling. 
This instruction coupled with the Z-80 peripheral devices implementation simplifies the normal return from 
nested interrupt. Without this feature the following software sequence would be necessary to inform the 
interrupting device that the interrupt routine is completed:



Table 5.3-12 lists the eight OP codes for the restart instruction. This instruction is a single byte call to any 
of the eight addresses listed. The simple mnemonic for these eight calls is also shown. The value of this in­
struction is that frequently used routines can be called with this instruction to minimize memory usage.

OP
CODE

oooo* C7

0008* CF

c
A
L

0010H D7

L

A
0018* DF

D
0
R
E
S

0020h E7

s
0028h EF

0°30„ F7

0O38h FF

RST O' 

'RST 8*

'RST 16* 

'RST 24' 

'RST 3T  

'RST 40' 

'RST 48' 

'RST 56'

RESTART GROUP 
TABLE 5.3-12

INPUT/OUTPUT

The Z-80 has an extensive set of Input and Output instructions as shown in table 5.3-13 and table 
5.3-14. The addressing of the input or output device can be either absolute or register indirect, using the C 
register. Notice that in the register indirect addressing mode data can be transferred between the I/O devices 
and any of the internal registers. In addition eight block transfer instructions have been implemented. These 
instructions are similar to the memory block transfers except that they use register pair HL for a pointer to 
the memory source (output commands) or destination (input commands) while register B is used as a byte 
counter. Register C holds the address of the port for which the input or output command is desired. Since 
register B is eight bits in length, the I/O block transfer command handles up to 256 bytes.

In the instructions IN A, n and OUT n, A the I/O device address n appears in the lower half of the add­
ress bus ( Aq-A^) while the accumulator content is transferred in the upper half of the address bus. In all reg­
ister indirect input output instructions, including block I/O transfers the content of register C is transferred 
to the lower half of the address bus (device address) while the content of register B is transferred to the 
upper half of the address bus.

35



PORT ADDRESS

INPUT
DESTINATION

IMMED. REG.
INDIR.

(n) (C)

INPUT 'IN '

R
E
G

A
D
D
R
E
S
S
1
N
G

A DB ED
78

B ED
40

C ED
48

D ED
50

E ED
58

H ED
60

L ED
68

'IN I' -  INPUT & 
Inc HL, Dec B

REG,
IND1R

(HL)

ED
A2

'IN IR '-IN P , Inc HL, 
Dec B, REPEAT IF B^O

ED
B2

'IN D '-  INPUT & 
Dec HL, Dec B

ED
AA

'IN D R '-IN P U T, DecHL, 
Dec B, REPEAT IF B=#>

ED
BA

BLOCK INPUT 
COMMANDS

INPUT GROUP 
TABLE 5.3-13

CPU CONTROL GROUP

The final table, table 5.3-15 illustrates the six general purpose CPU control instructions. The NOP is a do- 
nothing instruction. The HALT instruction suspends CPU operation until a subsequent interrupt is received, 
while the DI and El are used to lock out and enable interrupts. The three interrupt mode commands set the 
CPU into any of the three available interrupt response modes as follows. If mode zero is set the interrupting 
device can insert any instruction on the data bus and allow the CPU to execute it. Mode 1 is a simplified 
mode where the CPU automatically executes a restart (RST) to location 0038H so that no external hardware 
is required. (The old PC content is pushed onto the stack). Mode 2 is the most powerful in that it allows for 
an indirect call to any location in memory. With this mode the CPU forms a 16-bit memory address where 
the upper 8-bits are the content of register I and the lower 8-bits are supplied by the interrupting device.
This address points to the first of two sequential bytes in a table where the address of the service routine is 
located. The CPU automatically obtains the starting address and performs a CALL to this address.

Address of interrupt 
service routine

Pointer to Interrupt table. Reg.
I is upper address,
Peripheral supplies lower address

36



SOURCE

REG.
REGISTER IND.

A B C D E H L (HL)

'O U T

IMMED. (n) 03

REG. (C) ED ED ED ED ED ED ED
IND. 79 41 49 51 59 61 69

'OUTI' -  OUTPUT REG. (C) ED
Inc HL, Dec b IND. A3

'OTIR' — OUTPUT, Inc HL, REG. (C) ED
Dec B, REPEAT IF B^O IND. 83

'OUTD' -  OUTPUT REG. (C) ED
Dec HL & B IND. AB

'OTDR' -  OUTPUT, Dec HL REG. (C) ED
& B, REPEAT IF B*=0 IND. BB

\

BLOCK 
> OUTPUT 

COMMANDS

/1
N. N/“

PORT
DESTINATION
AOORESS

OUTPUT GROUP 
TABLE 5.3-14

'NOP' 00

'HALT* 76

DISABLE INT'(DD* F3

ENABLE INT MED' FB

SET INT MODE 0 ED
'1M0* 46

SET INT MODE 1 ED
'IM V 56

SET INT MODE 2 ED
MM2' 5E

8080A MODE

CALL TO LOCATION 0038H

INDIRECT CALL USING REGISTER 
I AND 8 BITS FROM INTERRUPTING 
DEVICE AS A POINTER.

MISCELLANEOUS CPU CONTROL 
TABLE 5.3-15



6.0 FLAGS

Each of the two Z-80 CPU Flag registers contains six bits of information which are set or reset by 
various CPU operations. Four of these bits are testable; that is, they are used as conditions for jump, call or 
return instructions. For example a jump may be desired only if a specific bit in the flag register is set. The 
four testable flag bits are:

1) Carry Flag (C) — This flag is the carry from the highest order bit of the accumulator. For example, the 
carry flag will be set during an add instruction where a carry from the highest bit of the accumulator 
is generated. This flag is also set if a borrow is generated during a subtraction instruction. The shift 
and rotate instructions also affect this bit.

2) Zero Flag (Z) -  This flag is set if the result of the operation loaded a zero into the accumulator. Other 
wise it is reset.

3) Sign Flag (S) — This flag is intended to be used with signed numbers and it is set if the result 
of the operation was negative. Since bit 7 (MSB) represents the sign of the number (A negative 
number has a 1 in bit 7), this flag stores the state of bit 7 in the accumulator.

4) Parity/Overflow Flag (P/V) — This dual purpose flag indicates the parity of the result in the accumulator 
when logical operations are performed (such as AND A, B) and it represents overflow when signed 
two’s complement arithmetic operations are performed. The Z-80 overflow flag indicates that the 
two’s complement number in the accumulator is in error since it has exceeded the maximum pos­
sible (+127) or is less than the minimum possible (-128) number than can be represented in two’s 
complement notation. For example consider adding:

+ 120 = 01111000
+ 105 = QUO 1001

C = 0 1110 0001 = -95 (wrong) Overflow has occured

Here the result is incorrect. Overflow has occurred and yet there is no carry to indicate an error.
For this case the overflow flag would be set. Also consider the addition of two negative numbers:

-5 = 1111 1011
-16 = 1111 0000

C = 1 1110 1011 = -21 correct

Notice that the answer is correct but the carry is set so that this flag can not be used as an over­
flow indicator. In this case the overflow would not be set.

For logical operations (AND, OR, XOR) this flag is set if the parity of the result is even and it is 
reset if it is odd.

There are also two non-testable bits in the flag register. Both of these are used for BCD arithmetic. They are:

1) Half carry (H) — This is the BCD carry or borrow result from the least significant four bits of operati» 
When using the DAA (Decimal Adjust Instruction) this flag is used to correct the result of a 
previous packed decimal add or subtract.

2) Subtract Flag(N) -  Since the algorithm for correcting BCD operations is different for addition or 
subtraction, this flag is used to specify what type of instruction was executed last so that the 
DAA operation will be correct for either addition or subtraction.

The Flag register can be accessed by the programmer and its format is as follows:

z X H X P/V N c
X means flag is indeterminate.

39



Table 6.0-1 lists how each flag bit is affected by various CPU instructions. In this table a *•’ indicates 
that the instruction does not change the flag, an ‘X? means that the flag goes to an indeterminate state, a ‘0’ 
msans that it is reset, a ‘1’ means that it is set and the symbol fct ’ indicates that it is set or reset according to 
the previous discussion. Note that any instruction not appearing in this table does not affect any of the flags.

Table 6.0-1 includes a few special cases that must be described for clarity. Notice that the block search 
instruction sets the Z flag if the last compare operation indicated a match between the source and the 
accumulator data. Also, the parity flag is set if the byte counter (register pair BC) is not equal to zero. This 
same use of the parity flag is made with the block move instructions. Another special case is during block 
input or output instructions, here the Z flag is used to indicate the state of register B which is used as a byte 
counter. Notice that when the I/O block transfer is complete, the zero flag will be reset to a zero (i.e. B=0) 
while in the case of a block move command the parity flag is reset when the operation is complete. A final 
case is when the refresh or I register is loaded into the accumulator, the interrupt enable flip flop is loaded 
into the parity flag so that the complete state of the CPU can be saved at any time.

40



Instruction C z s N H Comments
A D D  A , s; A D C  A,s t X V X 0 X 8-bit add or add w ith  carry
SUB s; SBC A ,s , CP s, N E G X X V X 1 X 8-bit su b tract, subtract w ith  carry, com p are and 

negate accum ulator

A N D  s 0 X p X 0 1 J Logical op eration s
O R  s; X O R  s 0 X p X 0 0 A nd se t’s d ifferen t flags
IN C s • X V X 0 X 8-bit in crem en t
D EC m • X V X 1 X 8-bit decrem en t
A D D  D D, ss X • • • 0 X 16-bit add
A D C H L , ss X X V X 0 X 16-bit add w ith  carry
SBC H L , ss X X V X 1 X 16-bit subtract w ith  carry
RLA ; R LC A, R R A , R R C A X • • • 0 0 R otate  accu m u lator
R L m; R LC  m; RR m; R RC m 

S L A  m; SR A  m; S R L m
X X p X 0 0 R otate  and sh ift lo ca tio n  s

R L D , R R D • X p X 0 0 R otate  digit le ft  and right
D A A X X p X • X D ecim al adjust accum ulator
CPL • • • • 1 1 C om p lem en t accum ulator
SCF 1 • • • 0 0 Set carry
CCF X • • • 0 X C om p lem en t carry
IN  r, (C ) • X p X 0 0 Input register in d irect
IN I; IN D ; O U TI; O U TD • X X X 1 X B lock input and o u tp u t
IN IR ; IN D R ; OTIR; O T D R • 1 X X 1 X Z 3  0  i f  B ^  0  otherw ise  Z = 1
L D L  LD D • X X X 0 0 B lock  transfer in stru ctions
L D IR , L D D R • X 0 X 0 0 , P /V  = 1 i f  BC ^  0 , otherw ise  P /V  = 0
C P I,C P IR , C P D , C PD R • X X X 1 X B lock search in stru ction s .

Z = 1 i f  A = (H L ), otherw ise  Z 3  0  
P /V  = 1 i f  BC 9= 0 , otherw ise  P /V  = 0

LD A , I; LD  A , R • X IFF; x 0 0 The co n ten t o f  the interrupt enable flip -flop  (IF F )  
is co p ied  in to  the P /V  flag

BIT b , s • X X X 0 1 The state o f  b it b o f  lo ca tio n  s is co p ied  in to  the Z fl

N E G t t V $ 1 t N egate a ccu m u la tor

The following notation is used in this table:
Symbol Operation

C Cany/link flag. C 3 1 if the operation produced a cany from the MSB of the operand or result.

Z Zero flag. Z 3 1 if the result of the operation is zero.

S Sign flag. S*1 if the MSB of the result is one.

P/V Parity or overflow flag. Parity (P) and overflow (V ) share the same flag. Logical operations affect this flag
with the parity of the result while arithmetic operations affect this flag with the overflow of the result. If  P/V
holds parity, P/V3 1 if the result of the operation is even, P/V30 if result is odd. If P/V holds overflow, P/V3 1
if the result of the operation produced an overflow.

H Half-carry flag. H 3 1 if the add or subtract operation produced a cany into or bo no w  from into bit 4 of the accumulator.

N Add/Subtract flag. N 3 1 if the previous operation was a subtract.

H and N flags are used in conjunction with the decimal adjust instruction (D A A ) to properly correct the re­
sult into packed BC D  format following addition or subtraction using operands with packed BCD format

X The flag is affected according to the result of the operation.
• The flag is unchanged by the operation.
0 The flag is reset by the operation.
1 The flag is set by the operation.
X  The flag is a “ don’t care.”
V  P/V flag affected according to the overflow result of the operation.
P P/V flag affected according to the parity result of the operation.

r .Any one of the CPU registers A , B, C, D, E, H, L .
s Any 8-bit location for all the addressing modes allowed for the particular instruction. .
ss Any 16-bit location for all the addressing modes allowed for that instruction,
ii Any one of the two index registers IX  or IY .
R Refresh counter,
n 8-bit value in range O ,  2 5 5 >

1111 16-bit value in range < 0 , 66535>

m Any 8-bit location for all the addressing modes allowed for the particular instruction.

SUMMARY OF FLAG OPERATION 
TABLE 6,0-1

41



7.0 SUMMARY OF OP CODES AND EXECUTION TIMES

The following section gives a summary of the Z-80 instructions set. The instructions are logically arranged 
into groups as shown on tables 7.01 through 7.011. Each table shows the assembly language mnemonic 
OP code, the actual OP code, the symbolic operation, the content of the flag register following the execu­
tion of each instruction, the number of bytes required for each instruction as well as the number of memory 
cycles and the total number of T states (external clock periods) required for the fetching and execution of 
each instruction. Care has been taken to make each table self-explanatory without requiring any cross refer­
ence with the test or other tables.

w

43



3
9

3
9 

3 
99 

9 
3

3
 

3 
9

9
3 

9
9

9

Notes: r, r' means any of the registers A , B, C , D , E, H, L

IF F  the content of the interrupt enable flip-flop (IF F )  is copied into the P/V flag

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X  = flag is unknown, 

t = flag is affected according to the result of the operation.

8-BIT LOAD GROUP
TABLE 7.0-1

44



Mnemonic
Symbolic
Operation

- Flags Op-Code No.
of
Bytes

No. 
of M 
Cycles

No.
o fT
States Commentsc z V S N H 76 543 210

LD dd, nn dd — nn 00 ddO 001 3 3 10 dd Pair
- n — 00 BC
- n — 01 DE

LD IX, nn I X - n n 11 O il 101 4 4 14 10 HL
00 100 001 11 SP
- n —
- a —

LD IY, nn IY — nn 11 111 101 4 4 14
00 100 001
- n —
- n —

LD HL, (nn) H — (nn+l) 00 101 010 3 5 16
L -  (nn) - 0 —

LD dd, (nn) id y  — (nn+l) 11 101 101 4 6 20
dd^ — (nn) 01 ddl O il

- 0 -
- n —

LD IX, (nn) IXy -  (nn+l) 11 011 101 4 6 20
IXL -  (nn) 00 101 010

- o —
- 0 —

LD rY, (nn) IY y — (nn+l) 00 101 010 4 6 20
IYl  -  (nn) 00 101 010

- 0 —
- 0 —

LD (nn), HL (nn+l) — H 00 100 010 3 5 16
(nn) -  L - n —

— 0 —
LD (nn), dd (nn+l) - d d y 11 101 101 4 6 20

(nn) — dd^ 01 ddO O il
- a —
- n —

LD (nn), IX (nn+l) — IX y 11 O il 101 4 6 20
(nn) — IX^ 00 100 010

- n —
- n —

LD (nn), IY (nn+l) — IY y 11 111 101 4 6 20
(nn) -  IYl 00 100 010

- n —
- n —

LD SP, HL S P -H L 11 111 001 1 1 6
LD SP, IX S P - I X 11 O il 101 2 2 10

11 111 001
LD SP. IY SP — IY 11 111 101 2 2 10

11 111 001 qq Pair
PUSH qq (SP-2) - q q L 11

01

1 3 11 00 BC
( S P - l ) - q q H 01 DE

PUSH IX ( S P -2 ) - lX L 11 O il 101 2 4 15 10 HL
(S P -1 )- IX H 11 100 101 11 AF

PUSH IY (SP-2) -  IYl 11 111 101 2 4 15
(SP-1) — IYy 11 100 101

POP qq qqH - (S P + l) 11 qqO 001 l 3 10
qqL -(S P )

POP IX IXH — (SP+1) 11 O il 101 2 4 14
IXL -  (SP) 11 100 001

POP IY IYH -(S P + 1 ) 11 111 101 2 4 14
IYL -(S P ) 11 100 001

Notes: 4d is any ot' the reamer pairs BC, DE, HL. SP
qq is any ot the register pairs AF. BC, DE, HL
(PAlR)u. (PAIR)t refer to high order and low order eiaht bits of the register pair respectively.

E.g. b c l  -  C, a f h * A

Rag Notation: • * flag not affected. 0 * flag reset. I * flag set, X * flag is unknown. 
i flag is affected according to the result of the operation.

16-BIT LOAD GROUP
TABLE 7.0-2

45



Flags Op-Code
No.
of
Bytes

No. 
of M 
Cycles

No.
o f T
StatesMnemonic

Symbolic
Operation C Z

P/
V s N H 76 543 210

E X  D E. H L D E - H L 11 101 O il 1 1 4

E X  A F . A F ’ A F  -  A F ’ 00 001 000 1 1 4

E X X ©€) 11 011 001 1 1 4

E X  (SP), H L H ~ (S P * H ) 

L -  (SP)
11 100 O il 1 5 19

EX (SP), IX IX H-(S P + 1 ) 11 011 101 2 6 23

IX L ~ (S P ) 11 100 O il

E X  (SP), IY IY h -(S P + 1 ) 11 111 101 2 6 23

I Y l - ( S P )

©
11 100 O il

LDI ( D E ) - ( H L ) • • l • 0 0 11 101 101 2 4 16

D E - D E - H  

H L -  H L-H  

BC -  BC* 1

10 100 000

LD IR ( DE > —  (H L ) • • 0 • 0 0 11 101 101 2 5 21

D E - D E + I  

H L -  HL**-! 

BC -  BC-l 

Repeat until 

BC = 0
©

10 no 000 2 4 16

LD D (D E ) —  (H L ) • • I • Ü 0 I] 101 101 2 4 16

DE —  D K -1 

H L - H L - 1  

BC' — B C -1

10 101 000

LD D R (D E ) -  (H L ) • • 0 • 0 0 11 101 101 2 5 21

D E - D E - l

H L - H L - 1

10 111 000 2 4 16

BC - B C - l

Repeat until 

BC = 0
© ©

CPI A - (H L ) • t X X 1 l 11 101 101 2 4 16

H L - H L + 1  

BC -  B C - 1

© ©

10 100 001

CP1R A -  (H L ) • t t : l X 11 101 101 2 5 21

H L - H L + l  

BC — B C -1 

Repeat until 

A = (H L ) or 

BC = 0
© ©

. 10 110 001 2 4 16

CPD A -  (H L ) • t t : 1 X 11 101 101 2 4 16

H L - H L - 1 10 101 001

BC -  BC-l

© ©
CPDR A -  (H L ) • ; X : 1 X 11 101 101 2 5 21

H L - H L - 1  

BC -  BC-l 

Repeat until 

A = (H L ) or 

BC = 0

10 111 001 2 4 16

Comments

Notes: ®  P/V flag is 0 if the result of B C -l = 0, otherwise P/V = 1

®  Z flag is 1 if A = (H L ), otherwise Z = 0.

Flag Notation: • = flag not affected, 0 s flag reset. 1 = flag set, X = flag is unknown, 

l -  flag is affected according to the result of the operation.

Register bank and 
auxiliary register 
bank exchange

Load (H L ) into 
(D E ), increment the 
pointers and 
decrement the byte 
counter (BC)

IfBC* 0 
If  BC = 0

If  BC *  0 

If BC * 0

If BC *  0 and A *  (H L ) 

If  BC s 0 or A  s (H L )

If  BC *  0 and A *  (H L ) 

If BC = 0 or A s (H L )

EXCHANGE GROUP AND BLOCK TRANSFER AND SEARCH GROUP
TABLE 7.0-3

46



A D D  A ,r  

A D D  A , n

A D D  A , (H L )  

A D D  A , (IX + d )

Mnemonic

A D D  A , (IY + d )

A D C  A , s 

SUBs 

SBC A , s 

A N D s  

OR s 

X O R s  

CPs 

INC r 

IN C (H L ) 

INC (IX+d)

INC (lY + d )

D EC m

Flags Op-Code

Symbolic
Operation

p/
V 76 543 210

No.
of
Bytes

No. 
of M 
Cycles

No.
o f T
States

A <- A + r 

A « - A  + n

t x v : o t
t t V t 0 X

10 [öool r l

u Ega no 2
1
2

4
7

A -  A + (H L ) 

A — A + (IX+d)

A «-A + (IY + d )

: t v t o

t t v t 0

t t V t 0

t io m  
: n  oi l 

io (ööö]
-  d

: u  in  
io m \
-  d

110 1
101 3

110

101 3

no

2 7

5 19

5 19

Comments

r Reg.
000 B
001 C
010 D
O il E
100 H
101 L
111 A

A A  + s + C Y  t t 

a  ■*- a  -  s :  t

A -  A -  s - C Y  t :  

A A A S  0 t 

A « -  A v s 0 : 

A -  A es 0 t

a - s : :
r -  r + l • t

(H L ) —  (H L )+  1 • r

(IX + d) —  • t
(IX+d )+1

(IY + d ) -  • :
(!Y + d )+  1

V  :

V t

v : 
p t 

p t 

p : 
v t
V :

v : 
v :

v :

0
1 
i
0 
0 
0
1
0
0
0

0

: ß » i ]

: EBD
t s m
1 liool
o m
o ann
: (H D
:  00 r 1IQOl

: oo ilofiool 
: u on loi 

on 11 o 11 oo]
d

: n in loi 
oo no! lool
-  d

3

s is any ot' r, n, 
(H L ). (IX + d), 
(IY + d ) a> shown for 
A D D  instruction

The indicated bits 
replace the 000 in 
the A D D  set above.

I 4
3 l I

6 23

6 23

• : V t 1 : CUD m is any of r, (H L ) ,  
(IX + d), (IY + d ) as 
shown for INC
Same format and 
states as INC. 
Replace 100 with 
101 m OP code.

Notes: The V symbol in the P/V flag column indicates that the P'V  Hag contains the overflow of the result ot the
operation Similarly the P symbol indicates parity. V = I means overflow. V * 0 means not overflow. P = I 
means parity of the result is even, P s 0 means parity of the result is odd.

Flag Notation: • = flag not affected. 0 s flag reset, I s flag set. X s flag is unknown, 
t s flag is affected according to the result of the operation.

S-BIT ARITHMETIC AND LOGICAL GROUP
TABLE 7.04

47



Flags Op-Code
No.
of
Bytes

No. 
of M 
Cycles

No.
o f T
StatesMnemonic

Symbolic
Operation C z p/

V s N H 76 543 210 Comments

D A A Converts acc. 
content into 
packed BCD 
following add 
or subtract 
with packed 
BCD  operands

X p X • X 00 100 111 1 1 4 Decimal adjust 
accumulator

CPL A  *- A • • • • 1 1 00 101 111 1 1 4 Complement 
accumulator 
(one’s complement)

N E G > t 0 1 > X X V X 1 X 11 101 101 

01 000 100

2 2 8 Negate acc. (tw o ’s 
complement)

CC F C Y  - C Y X • • • 0 X 00 111 111 1 1 4 Complement carry 
flag

SCF C Y  <- 1 1 • • • 0 0 oo n o  i n " l 1 4 Set carry flag

NOP No operation 00 000 000 1 1 4

H A L T CPU halted oi n o  n o 1 1 4

DI IF F  « -  0 n  n o  o n 1 1 4

El I F F - 1 n  i n  o n 1 1 4

IM O Set interrupt 
mode 0

11 101 101 

01 000 n o

2 2 8

IM 1 Set interrupt 
mode 1

11 101 101 

o i o io  n o

2 2 8

IM2 Set interrupt 
mode 2

11 101 101 

01 O i l  n o

2 2 8

Notes: IF F  indicates the interrupt enable flip-flop
C Y  indicates the carry flip-flop.

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X  = flag is unknown, 

X = flag is affected according to the result of the operation.

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS
TABLE 7.0-5

48



Mnemonic
Symbolic
Operation

Flags Op-Code No.
of
Bytes

No. 
of M 
Cycles

No.
o f T
States CommentsC 1 Tv s N H 76 543 210

A D D  H L , ss H L « -  HL+ss X • • • 0 X 00 ssl 001 1 3 11 ss Reg.

00 BC

A D C  H L , ss H L «-H L + s s+ C Y X : V X 0 X 11 101 101 2 4 15 01 DE
10 H L

01 ssl 010 11 SP
SBC H L , ss H L «-H L -s s -C Y X X V X I X 11 101 101 2 4 15

01 ssO 010

A D D  IX , pp IX  -  IX  + pp X • • • 0 X 11 011 101 2 4 15 pp Reg.

00 ppi 001 00 BC
01 DE
10 IX
11 SP

A D D  IY ,r r I Y - I Y +  rr X • • • 0 X 11 111 101 2 4 15 rr Reg.

00 r i l 001 00 BC
01 DE
10 IY
11 SP

IN C ss ss -  ss + 1 00 ssO O il 1 I 6

INC IX IX -  IX  + I 11 O il 101 2 2 10

00 100 o n

INC IY IY  -  IY  + l 11 i l l 101 2 2 10

00 100 O il

D EC ss ss -  ss * 1 00 ssl O il 1 1 6

D EC IX IX  -  IX  . 1 11 O il 101 2 2 10

00 101 O il

DEC IY IY  -  IY  - l 11 i l l 101 2 2 10

00 101 O il

Notes: ss is any of the register pairs BC, DE, HL, SP
pp is any of the register pain BC, DE, IX , SP 
rr is any of the register pairs BC, DE, IY , SP.

Flag Notation: • = Hag not affected, 0 3 tlag reset, 1 3 flag set, X 3 flag is unknown. 
X 3 flag is affected according to the result of the operation.

16-BIT ARITHMETIC GROUP
TABLE 7.0-6



Mnemonic
Symbolic
Operation

Flags Op-Code

76 543 210

No.
of
Bytes

No. 
of M 
Cycles

No.
o f T
States Comments

R L C A

R L A

R R C A

R R A

R L C r  

R L C  (H L ) 

R L C  (IX + d )

R L C  (IY + d )

R L s

R R C s

R R s

S L A  s

S R A s

S R Ls

R LD

R R D

ohJ
A

A

U  —-  oĥ FI
A

L»̂7 -

’ FHH7 ^-T fJ
t. (HL). (IX*4), <IY*d)

L R * -T“•*— oĤ
S » i, (HU. (IX+d(. (IY-Nl)

oj-U^j
S ■ r, (HL). (IX+d), (IY*d> 

of—
S ■ I, (HL). (IX+4), <IY«d)

|cy)*—|? «•— “̂ o
S •  f. i .............................

d x
S « I .  I

—-«► o|—»fcT]
S * i. (H U.UX +d). (IY*d>

S »  I, (HL). (IX«d). (IY*d)

^ oj—4cy]
■“sTi.mD.dx-Hj). dY*d)

A. j*? 4jj o| }? 4j3 o|(HL)

tZ__j TZj

n n  ,3 EZ30<hu

oo 000 111

00 010 111

00 001 111

00 O i l  111

11 001 O i l  

0 0 |0 0 0| r 

11 001 O i l  

OOfÖÖÖll lO  

11 O i l  101 

11 001 O i l  

« -  d -

oolo o o h io 
11 111 101 
11 001 o n
v- d -

oolooo ln o
foTol

focal

fo u l

(Tool

nön

n m

11 101 101 
01 101 111

11 101 101 
01 100 111

1 1

8

15

23

23

18

18

Rotate left circular 
accumulator

Rotate left 
accumulator

Rotate right circular 
accumulator

Rotate right 
accumulator

Rotate left circular 
register r

000
001
010
Oil
100
101
111

R*g.
B
C
D
E
H
L
A

Instruction format and 
states are as shown 
for RLC,s. To  form 
new O P-co de replace 
lOOOl of RLC,s with 
shown code

Rotate digit left and 
right between the 
accumulator 
and location (H L ). 
The content of the 
upper half of the 
accumulator is 
unaffected

Flag Notation: • = tlag not affected, 0 = flag reset, 1 = flag set, X  = flag is unknown, 
$ = flag is affected according to the result of the operation.

ROTATE AND SHIFT GROUP
TABLE 7.0-7

50



Op-Code

Notes: The notation indicates bit b (0 to 7) or location s.

Flag Notation: • = flag not affected, 0 3 flag reset, I 3 flag set, X 3 flag is unknown, 

t 3 flag is affected according to the result of the operation.

BIT SET, RESET AND TEST GROUP
TABLE 7.0-8

51



Mnemonic
Symbolic
Operation

Flags Op-Code
No.
of
Bytes

No. 
of M 
Cycles

No.
o f T
States CommentsC Z

pi
V s N H 76 543 210

JP nn PC —  nn 11 000 011 3 3 10

« - n -

- n - cc Condition

JP cc, nn If condition cc 11 cc 010 3 3 10 000 NZnon zero
is true PC — nn, > n 001 Z zero
otherwise 010 NCnon carry
continue n O il C carry

100 PO parity odd
101 PE parity even
no P sign positive

JR e PC —  PC + e • • • • • • 00 O il 000 2 3 12 111 M sign negative

- e -2 -

JR C, e I f C * 0 , 00 111 000 2 2 7 If condition not met
continue - e -2 —

I f C *  1, 2 3 12 If condition is met
PC -  PC+e

JR  NC, e If C = 1, 00 110 000 2 2 7 If condition not met
continue - e -2 -

If C = 0, 2 3 12 If condition is met
PC —  PC + e

JR Z, e If  Z = 0 00 101 000 2 2 7 If condition not met
continue *- e -2 -

I f Z  = 1, 2 3 12 If condition is met
PC —  PC + e

JR  N Z, e If  Z -  1, 00 100 000 2 2 7 If condition not mt
continue - e -2 -

l f Z  = 0, 2 3 12 If condition met
PC -  PC + e

J P (H L ) PC —  H L 11 101 001 1 1 4

JP (IX ) PC' - I X 11 011 101 2 2 8

11 101 001

JP ( I Y ) , PC —  IY 11 111 101 2 2 8

11 101 001

DJNZ,e B - B - l 00 010 000 2 2 8 If  B == 0
If  B = 0, e -2
continue

If  B * 0 , 2 3 13 IF  B *  0
PC —  PC + e

Notes: e represents the extension in the relative addressing mode.

e is a signed two’s complement number in the range < -1 2 6 , 129>

e-2  in the opcode provides an effective address of pc +e as PC is 
incremented by 2 prior to the addition of e.

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X s flag is unknown, 

t -  flag is affected according to the result of the operation.

JUMP GROUP
TABLE 7.0-9

52



Mnemonic

c a l l  nn 

C A L L  c c , nn

R E T  

R E T  cc

R E T I

R E T N

R S T p

Flag Notation:

Flags Op-Code

Symbolic
Operation C Z

v,
V s N H 76 543 210

(S P -1 )-P C H

(S P -2 )-P C l

P C -n n

11 001 101

—  n —

—  n —

If condition 
cc is false 
continue, 
otherwise 
same as 
C A L L  nn

11 cc 100 

« -  n 

n

p c l k s p )

PCH -{S P + 1 )

11 001 001

If condition 
cc is false 
continue, 
otherwise 
same as 
R E T

11 cc 000

Return from 
interrupt

Return from
non maskable
interrupt
(S P -iM » C H

(SP-2)«-PCt

PCh - 0
PCL - P

11 101 101 

01 001 101 

11 101 101 
01 000 101 

11 t 111

No.
of
Bytes

No. 
of M 
Cycles

No.
o f T
States Comments

3 5 17

3 3 10 If  cc is false

3 5 17 If cc is true

1 3 10

1 1 5 If cc is false

1 3 11 If cc is true
cc Condition

000 N Z  non zero
001 Z zero
010 NC non carry

2 4 14 011 C carry
100 PO parity odd

A 1 <1 101 PE parity even4m *T no P sign positive
111 M sign negative

1 3 11

t P

000 00H
001 08H
010 10H
Oil 18H
100 20H
101 28H
110 30H
111 38H

• = flag not affected, 0 = flag reset, 1 s Hag set, X  s flag is unknown 
t ~  flag is affected according to the result of the operation.

CALL AND RETURN GROUP
TABLE 7.0-10



Flags Op-Code
No. No. No.p

Symbolic ?i of of M o f T
Mnemonic Operation C Z V s N H 76 543 210 Bytes Cycles States Comments

IN  A ,  (n ) A - ( n ) n O il 011 2 3 11 n to A q ^

- n - ACC to Ag -  A ]5

C to A 0 -  A 7IN  r, <C) r —  ( C ) • t p t 0 X 11 101 101 2 3 12

if r = 110 only 
the flags will 
be affected

©

01 r 000 B t o A g - A 15

IN I (H L ) -  (C ) • X X X 1 X 11 101 101 2 4 16 C  to A q -  A ?

B —  B * 1 

H L  —  H L  + 1

10 100 010 ß t o A g - A j j

IN IR ( H L ) - ( C ) • 1 X X 1 X 11 101 101 2 5 21 C to  A 0 -  A7

B —  B * 1 10 110 010 (If B *  0) B to A g -  A ]S

H L  —  H L  + 1 2 4 16
Repeat until 
B = 0

©

(If  B * 0)

IND

GTGX

• t X X 1 X 11 101 101 2 4 16 C i o A q - A ,

B B - 1 

H L - H L -  1

10 101 010 B t° Ag -  A j j

IN D R (H L ) —  (C ) • 1 X X 1 X 11 101 101 2 5 21 C to A y -  A^ 

B to  A g - A 15B —  B - 1 10 111 010 (If  B #  0)

H L - H L - 1
2 4 16

Repeat until 
B = 0

(If B s 0)

O U T  (n ) ,  A (n ) —  A 11 010 O il 2 3 11 n to Ay -  A^

• n -— ¥ Acc to Ag -  A j^  

C to  A q -  A ?O U T  (C ), r (C ) —  r 11 101 101 2 3 12

©

01 r 001 B t° Ag ~ a 15

O U T I (C ) « - ( H L ) • X X X 1 X 11 101 101 2 4 16 C to  A0 ~ A?
B — B - 1 10 100 on B to Ag -  A j ^

H L — H L  + 1

O TIR (C ) -  (H L ) • i X X 1 X 11 101 101 2 5 21 C to Ay — Ay 

B to  Ag - A 15B - B -  1 

H L  -  H L  + 1

10 110 O il (if  B # 0)

162 4
Repeat until 
B * 0

©

w it o

O U T D (C ) -  (H L ) • ; X X 1 X 11 101 101 2 4 16 C to Ay -  Ay

B - B -  1 

H L — H L - l

10 101 O il B to Ag '  A j5

O TD R ( C ) - ( H L ) • i X X 1 X 11 101 101 2 5 21 C to A y ~ Ay

B —  B * 1 

H L  —  H L  -1

10 111 O il (If  B # 0)

16

B to  A g - A 15

2 4
Repeat until 
B = 0

(If  B s 0)

Notes: (T )  If the result of B -1  is zero the Z flag is set, otherwise it is reset •

Flag Notation: • s flag not affected, 0 = flag reset, 1 * flag set, X = flag is unknown, 
t s  flag is affected according to the result of the operation.

INPUT AND OUTPUT GROUP
TABLE 7.0-11

54



8.0 INTERRUPT RESPONSE

The purpose of an interrupt is to allow peripheral devices to suspend CPU operation in an orderly 
manner and force the CPU to start a peripheral service routine. Usually this service routine is involved with 
the exchange of data, or status and control information, between the CPU and the peripheral. Once the 
service routine is completed, the CPU returns to the operation from which it was interrupted.

INTERRUPT ENABLE -  DISABLE

The Z80 CPU has two interrupt inputs, a software maskable interrupt and a non maskable interrupt. 
The non maskable interrupt (NM1) can not be disabled by the programmer and it will be accepted when­
ever a peripheral device requests it. This interrupt is generally reserved for very important functions that 
must be serviced whenever they occur, such as an impending power failure. The maskable interrupt (INT) 
can be selectively enabled or disabled by the programmer. This allows the programmer to disable the inter­
rupt during periods where his program has timing constraints that do not allow it to be interrupted. In the 
Z80 CPU there is an enable flip flop (called IFF) that is set or reset by the programmer using the Enable 
Interrupt (El) and Disable Interrupt (DI) instructions. When the IFF is reset, an interrupt can not be 
accepted by the CPU.

Actually, for purposes that will be subsequently explained, there are two enable flip flops, called IFF, 
and IFF2.

IFF, IFF-,1

Actually disables interrupts Temporary storage location
from being accepted. for IFF .̂

The state of IFF2 is used to actually inhibit interrupts while IFF2 is used as a temporary storage location 
for IFF2. The purpose of storing the IFF  ̂ will be subsequently explained.

A reset to the CPU will force both IFFj and IFF2 to the reset state so that interrupts are disabled. 
They can then be enabled by an El instruction at any time by the programmer. When an El instruction is 
executed, any pending interrupt request will not be accepted until after the instruction following El has 
been executed. This single instruction delay is necessary for cases when the following instruction is a return 
instruction and interrupts must not be allowed until the return has been completed. The El instruction sets 
both IFF i and IFF2 to the enable state. When an interrupt is accepted by the CPU, both IFF \ and IFF2 
are automatically reset, inhibiting further interrupts until the programmer wishes to issue a new El instruc­
tion. Note that for all of the previous cases, IFF \ and IFF2 are always equal.

The purpose of IFF2 is to save the status of IFF j when a non maskable interrupt occurs. When a non 
maskable interrupt is accepted, IFFj is reset to prevent further interrupts until reenabled by the pro­
grammer. Thus, after a non maskable interrupt has been accepted, maskable interrupts are disabled but the 
previous state of IFF j has been saved so that the complete state of the CPU just prior to the non maskable 
interrupt can be restored at any time. When a Load Register A with Register I (LD A, I) instruction or a 
Load Register A with Register R (LD A, R) instruction is executed, the state of IFF7 is copied into the 
parity flag where it can be tested or stored.

A second method of restoring the status of IFF  ̂ is thru the execution of a Return From Non 
Maskable Interrupt (RETN) instruction. Since this instruction indicates that the non maskable interrupt 
service routine is complete, the contents of IFF2 are now copied back into IFF j , so that the status of IFF j 
just prior to the acceptance of the non maskable interrupt will be restored automatically.

55



Figure 8.0-1 is a summary of the effect of different instructions on the two enable flip flops.
Action EFFj IFF2

CPU Reset 0 0
DI 0 0
El 1 1
LD A, I • • IFF2 “^Parity flag
LD A, R • • IFF2 Parity flag
Accept NMI 0 •

RETN i f f 2 •

indicates no change 

FIGURE 8.0-1

IFF2 "►IFFj

INTERRUPT ENABLE/DISABLE FLIP FLOPS

CPU RESPONSE 

Non Maskable

A nonmaskable interrupt will be accepted at all times by the CPU. When this occurs, the CPU ignores 
the next instruction that it fetches and instead does a restart to location 0066H. Thus, it behaves exactly as 
if it had received a restart instruction but, it is to a location that is not one of the 8 software restart loca­
tions. A restart is merely a call to a specific address in page 0 of memory.

Maskable

The CPU can be programmed to respond to the maskable interrupt in any one of three possible 
modes.

Mode 0

This mode is identical to the 8080A interrupt response mode. With this mode, the interrupting device 
can place any instruction on the data bus and the CPU will execute it. Thus, the interrupting device pro­
vides the next instruction to be executed instead of the memory. Often this will be a restart instruction 
since the interrupting device only need supply a single byte instruction. Alternatively, any other instruction 
such as a 3 byte call to any location in memory could be executed.

The number of clock cycles necessary to execute this instruction is 2 more than the normal number for the 
instruction. This occurs since the CPU automatically adds 2 wait states to an interrupt response cycle to 
allow sufficient time to implement an external daisy chain for priority control. Section 5.0 illustrates the 
detailed timing for an interrupt response. After the application of RESET the CPU will automatically enter 
interrupt Mode 0.

Mode 1

When this mode has been selected by the programmer, the CPU will respond to an interrupt by 
executing a restart to location 0038H. Thus the response is identical to that for a non maskable interrupt 
except that the call location is 0038H instead of 0066H. Another difference is that the number of cycles 
required to complete the restart instruction is 2 more than normal due to the two added wait states.

56



Mode 2
This mode is the most powerful interrupt response mode. With a single 8 bit byte from the user an 

indirect call can be made to any memory location.

With this mode the programmer maintains a table of 16 bit starting addresses for every interrupt 
service routine. This table may be located anywhere in memory. When an interrupt is accepted, a 16 bit 
pointer must be formed to obtain the desired interrupt service routine starting address from the table.
The upper 8 bits of this pointer is formed from the contents of the I register. The I register must have been 
previously loaded with the desired value by the programmer, i.e. LD I, A. Note that a CPU reset clears the I 
register so that it is initialized to zero. The lower eight bits of the pointer must be supplied by the interrupt­
ing device. Actually, only 7 bits are required from the interrupting device as the least significant bit must be 
a zero. This is required since the pointer is used to get two adjacent bytes to form a complete 16 bit service 
routine starting address and the addresses must always start in even locations.

Interrupt
Service
Routine
Starting
Address
Table

✓

/ low order
X high order

X

desired starting address 
pointed to by:

I REG 7 BITS FRO M n
C O N T E N T S P E R IP H E R A L

u

The first byte in the table is the least significant (low order) portion of the address. The programmer must 
obviously fill this table in with the desired addresses before any interrupts are to be accepted.

Note that this table can be changed at any time by the programmer (if it is stored in Read/Write 
Memory) to allow different peripherals to be serviced by different service routines.

Once the interrupting devices supplies the lower portion of the pointer, the CPU automatically pushes 
the program counter onto the stack, obtains the starting address from the table and does a jump to this 
address. This mode of response requires 19 clock periods to complete (7 to fetch the lower 8 bits from the 
interrupting device, 6 to save the program counter, and 6 to obtain the jump address.)

Note that the Z80 peripheral devices all include a daisy chain priority interrupt structure that auto­
matically supplies the programmed vector to the CPU during interrupt acknowledge. Refer to the Z80-PIO, 
Z80-SIO and Z80-CTC manuals for details.

57



9.0 HARDWARE IMPLEMENTATION EXAMPLES

This chapter is intended to serve as a basic introduction to implementing systems with the Z80-CPU. 

MINIMUM SYSTEM

Figure 9.0-1 is a diagram of a very simple Z-80 system. Any Z-80 system must include the following 
five elements:

1) Five volt power supply
2) Oscillator
3) Memory devices
4) I/O circuits
5) CPU

OUTPUT INPUT
DATA DATA

FIGURE 9.01
MINIMUM Z80 COMPUTER SYSTEM

Since the Z80-CPU only requires a single 5 volt supply, most small systems can be implemented using 
only this single supply.

The oscillator can be very simple since the only requirement is that it be a 5 volt square wave. For 
systems not running at full speed, a simple RC oscillator can be used. When the CPU is operated near the 
highest possible frequency, a crystal oscillator is generally required because the system timing will not 
tolerate the drift or jitter that an RC network will generate. A crystal oscillator can be made from inverters 
and a few discrete components or monolithic circuits are widely available.

The external memory can be any mixture of standard RAM, ROM, or PROM. In this simple example 
we have shown a single 8K bit ROM (IK bytes) being utilized as the entire memory system. For this 
example we have assumed that the Z-80 internal register configuration contains sufficient Read/Write 
storage so that external RAM memory is not required.

59



Every computer system requires I/O circuits to allow it to interface to the “ real world.” In this simple 
example it is assumed that the output is an 8 bit control vector and the input is an 8 bit status word. The 
input data could be gated onto the data bus using any standard tri-state driver while the output data could 
be latched with any type of standard TTL latch. For this example we have used a Z80-PIO for the I/O 
circuit. This single circuit attaches to the data bus as shown and provides the required 16 bits of TTL 
compatible I/O. (Refer to the Z80-PIO manual for details on the operation of this circuit.) Notice in this 
example that with only three LSI circuits, a simple oscillator and a single 5 volt power supply, a 
powerful computer has been implemented.

ADDING RAM

Most computer systems require some amount of external Read/Write memory for data storage and to 
implement a “stack.” Figure 9.0-2 illustrates how 256 bytes of static memory can be added to the previous 
example. In this example the memory space is assumed to be organized as follows:

Address 
0000H

03FFH 
0400H

04FFH

IK bytes 
ROM

256 bytes 
RAM

ADDRESS BUS

FIGURE 9.0-2
ROM & RAM IMPLEMENTATION EXAMPLE

In this diagram the address space is described in hexidecimal notation. For this example, address bit A jq 
separates the ROM space from the RAM space so that it can be used for the chip select function. For 
larger amounts of external ROM or RAM, a simple TTL decoder will be required to form the chip selects.

MEMORY SPEED CONTROL

For many applications, it may be desirable to use slow memories to reduce costs. The WAIT line on 
the CPU allows the Z-80 to operate with any speed memory. By referring back to section 4 you will notice 
that the memory access time requirements are most severe during the Ml cycle instruction fetch. All other 
memory accesses have an additional one half of a clock cycle to be completed. For this reason it may be 
desirable in some applications to add one wait state to the Ml cycle so that slower memories can be used. 
Figure 9.0-3 is an example of a simple circuit that will accomplish this task. This circuit can be changed to 
add a single wait state to any memory access as shown in Figure 9 .0-4 .

60



WAIT

-M 1-

I T1 I T2 I Tw | T3 | T4 | 

_______________ /------------------------

ADDING ONE WAIT STATE TO AN M1 CYCLE

4>

M R lQ

WAIT

FIGURE 9.0-4
ADDING ONE WAIT STATE TO ANY MEMORY CYCLE

INTERFACING DYNAMIC MEMORIES

This section is intended only to serve as a brief introduction to interfacing dynamic memories. Each 
individual dynamic RAM has varying specifications that will require minor modifications to the description 
given here and no attempt will be made in this document to give details for any particular RAM. Separate 
application notes showing how the Z80-CPU can be interfaced to most popular dynamic RAM’s are 
available from Zilog.

Figure 9.0-5 illustrates the logic necessary to interface 8K bytes of dynamic RAM using 18 pin 4K 
dynamic memories. This figure assumes that the RAM’s are the only memory in the system so that A^  ls 
used to select between the two pages of memory. During refresh time, all memories in the system must be 
read. The CPU provides the proper refresh address on lines Aq through A^. To add additional memory to 
the system it is necessary to only replace the two gates that operate on A ^  with a decoder that operates 
on all required address bits. For larger systems, buffering for the address and data bus is also generally 
required.

61



PAGE 0 
(0000 to O F F F )

FIGURE 9.0-5
INTERFACING DYNAMIC RAMS

62



10.0 SOFTWARE IMPLEMENTATION EXAMPLES

10.1 METHODS OF SOFTWARE IMPLEMENTATION

Several different approaches are possible in developing software for the Z-80 (Figure 10.1). First of 
all, Assembly Language or PL/Z may be used as the source language. These languages may then be trans­
lated into machine language on a commercial time sharing facility using a cross-assembler or cross-compiler 
or, in the case of assembly language, the translation can be accomplished on a Z-80 Development System 
using a resident assembler. Finally, the resulting machine code can be debugged either on a time-sharing 
facility using a Z-80 simulator or on a Z-80 Development System which uses a Z80-CPU directly.

SOURCE
LANGUAGE TRANSLATION DEBUGGING

FIGURE 10.1

In selecting a source language, the primary factors to be considered are clarity and ease of program­
ming vs. code efficiency. A high level language such as PL/Z with its machine independent constructs is 
typically better for formulating and maintaining algorithms, but the resulting machine code is usually 
somewhat less efficient than what can be written directly in assembly language. These tradeoffs can often 
be balanced by combining PL/Z and assembly language routines, identifying those portions of a task which 
must be optimized and writing them as assembly language subroutines.

Deciding whether to use a resident or cross assembler is a matter of availability and short-term vs. 
long-term expense. While the initial expenditure for a development system is higher than that for a time­
sharing terminal, the cost of an individual assembly using a resident assembler is negligible while the same 
operation on a time-sharing system is relatively expensive and in a short time this cost can equal the total 
cost of a development system.

Debugging on a development system vs. a simulator is also a matter of availability and expense com­
bined with operational fidelity and flexibility. As with the assembly process, debugging is less expensive on 
a development system than on a simulator available through time-sharing. In addition, the fidelity of the 
operating environment is preserved through real-time execution on a Z80-CPU and by connecting the I/O 
and memory components which will actually be used in the production system. The only advantage to 
the use of a simulator is the range of criteria which may be selected for such debugging procedures as trac­
ing and setting breakpoints. This flexibility exists because a software simulation can achieve any degree ot 
complexity in its interpretation of machine instructions while development system procedures have hard­
ware limitations such as the capacity of the real-time storage module, the number of breakpoint registers 
and the pin configuration of the CPU. Despite such hardware limitations, debugging on a development 
system is typically more productive than on a simulator because of the direct interaction that is possible 
between the programmer and the authentic execution of his program.

63



10.2 SOFTWARE FEATURES OFFERED BY THE Z80-CPU

The Z-80 instruction set provides the user with a large and flexible repetoire of operations with which 
to formulate control of the Z80-CPU.

The primary, auxiliary and index registers can be used to hold the arguments of arithmetic and logical 
operations, or to form memory addresses, or as fast-access storage for frequently used data.

Information can be moved directly from register to register; from memory to memory; from memory 
to registers; or from registers to memory. In addition, register contents and register/memory contents can 
be exchanged without using temporary' storage. In particular, the contents of primary and auxilary' registers 
can be completely exchanged by executing only two instructions, EX and EXX. This register exchange 
procedure can be used to separate the set of working registers between different logical procedures or to 
expand the set of available registers in a single procedure.

Storage and retrieval of data between pairs of registers and memory can be controlled on a last-in 
first-out basis through PUSH and POP instructions which utilize a special stack pointer register, SP. This 
stack register is available both to manipulate data and to automatically store and retrieve addresses for 
subroutine linkage. When a subroutine is called, for example, the address following the CALL instruction 
is placed on the top of the push-down stack pointed to by SP. When a subroutine returns to the calling 
routine, the address on the top of the stack is used to set the program counter for the address of the next 
instruction. The stack pointer is adjusted automatically to reflect the current “ top” stack position during 
PUSH, POP, CALL and RET instructions. This stack mechanism allows pushdown data stacks and sub­
routine calls to be nested to any practical depth because the stack area can potentially be as large as 
memory space.

The sequence of instruction execution can be controlled by six different flags (carry, zero, sign, 
parity/overflow, add-subtract, half-carry) which reflect the results of arithmetic, logical, shift and compare 
instructions. After the execution of an instruction which sets a flag, that flag can be used to control a 
conditional jump or return instruction. These instructions provide logical control following the manipula­
tion of single bit, eight-bit byte (or) sixteen-bit data quantities.

A full set of logical operations, including AND, OR, XOR (exclusive - OR). CPL (NOR) and NEG 
(two’s complement) are available for Boolean operations between the accumulator and 1) all other eight-bit 
registers, 2) memory locations or 3) immediate operands.

In addition, a full set of arithmetic and logical shifts in both directions are available which operate 
on the contents of all eight-bit primary registers or directly on any memory location. The carry flag can be 
included or simply set by these shift instructions to provide both the testing of shift results and to link 
register/register or register/memory shift operations.

10.3 EXAMPLES OF USE OF SPECIAL Z80 INSTRUCTIONS

A . Let us assume that a string of data in m e m o r y  starting at location “ D A T A ”  is to b e  moved into
another area of memory starting at location “ BUFFER” and that the string length is 737 bytes. This 
operation can be accomplished as follows:

LD H L . DATA
LD DE . BUFFER
LD BC . 737
LDIR

; START ADDRESS OF DATA STRING 
: START ADDRESS OF TARGET BUFFER 
; LENGTH OF DATA STRING
: MOVE STRING -  TRANSFER MEMORY POINTED TO 
: BY HL INTO MEMORY LOCATION POINTED TO BY DE 
: INCREMENT HL AND DE, DECREMENT BC 
: PROCESS UNTIL BC = 0.

11 bytes are required for this operation and each byte of data is moved in 21 clock cycles.

64



B. Let’s assume that a string in memory starting at location ‘’DATA” is to be moved into another area 
of memory starting at location “BUFFER” until an ASCII $ character (used as string delimiter) is 
found. Let’s also assume that the maximum string length is 132 characters. The operation can be 
performed as follows:

LD HL , DATA
LD DE , BUFFER
LD BC , 132
LD A ,T

LOOP:CP (HL)
JR Z , END
LDI

JP PE , LOOP
END:

STARTING ADDRESS OF DATA STRING 
STARTING ADDRESS OF TARGET BUFFER 
MAXIMUM STRING LENGTH 
STRING DELLMITER CODE
COMPARE MEMORY CONTENTS WITH DELIMITER 
GO TO END IF CHARACTERS EQUAL 
MOVE CHARACTER (HL) to (DE)
INCREMENT HL AND DE, DECREMENT BC 
GO TO “LOOP” IF MORE CHARACTERS 
OTHERWISE, FALL THROUGH 
NOTE: P/V FLAG IS USED 
TO INDICATE THAT REGISTER BC WAS 
DECREMENTED TO ZERO.

19 bytes are required for this operation.

C. Let us assume that a 16-digit decimal number represented in packed BCD format (two BCD digits/ 
byte) has to be shifted as shown in the Figure 10.2 in order to mechanize BCD multiplication or 
division. The operation can be accomplished as follows:

LD HL , DATA
LD B , COUNT
XOR A

ROTAT: RLD

INC HL
DJNZ ROTAT

ADDRESS OF FIRST BYTE
SHIFT COUNT
CLEAR ACCUMULATOR
ROTATE LEFT LOW ORDER DIGIT IN ACC
WITH DIGITS IN (HL)
ADVANCE MEMORY POINTER 
DECREMENT B AND GO TO ROTAT IF 
B IS NOT ZERO, OTHERWISE FALL THROUGH

11 bytes are required for this operation.

65



D. Let us assume that one number is to be subtracted from another and a) that they are both in packed
BCD format, b) that they are of equal but varying length, and c) that the result is to be stored in the
location of the minuend. The operation can be accomplished as follows:

LD H L , ARG1 ADDRESS OF MINUEND
LD DE , ARG2 ADDRESS OF SUBTRAHEND
LD B , LENGTH LENGTH OF TWO ARGUMENTS
AND A CLEAR CARRY FLAG

SUBDEC: LD A , (DE) SUBTRAHEND TO ACC
SBC A , (HL) SUBTRACT (HL) FROM ACC
DAA ADJUST RESULT TO DECIMAL CODED VALUE
LD (H L ), A STORE RESULT
INC HL ADVANCE MEMORY POINTERS
INC DE
DJNZ SUBDEC ;

)
, DECREMENT B AND GO TO “ SUBDEC” IF B 
, NOT ZERO, OTHERWISE FALL THROUGH

17 bytes are required for this operation.

10.4 EXAMPLES OF PROGRAMMING TASKS

A. The following program sorts an array of numbers each in the range (0,255) into ascending order using 
a standard exchange sorting algorithm.

66



01/22/76 11:14:37 BUBBLE LISTING
LOC OBJ CODE STMT SOURCE STATEMENT

PAGE 1

1
2
3
4
5
6
7
8 
9

10
11
12

; *** STANDARD EXCHANGE (BUBBLE) SORT ROUTINE ***

; AT ENTRY: HL CONTAINS ADDRESS OF DATA
C CONTAINS NUMBER OF ELEMENTS TO BE SORTED
(1<C<256)

AT EXIT: DATA SORTED IN ASCENDING ORDER 

USE OF REGISTERS 

REGISTER CONTENTS

13 ; A TEMPORARY STORAGE FOR CALCULATIONS
14 ; B COUNTER FOR DATA ARRAY
15 ; C LENGTH OF DATA ARRAY
16 ; D FIRST ELEMENT IN COMPARISON
17 ; E SECOND ELEMENT IN COMPARISON
18 ; H FLAG TO INDICATE EXCHANGE
19 ; L UNUSED
20 ; IX POINTER INTO DATA ARRAY
21 ; IY UNUSED
22 ;

0000 222600 23 SORT: LD (DATA), HL SAVE DATA ADDRESS
0003 CB84 24 LOOP: RES FLAG,H INITIALIZE EXCHANGE FLAG
0005 41 25 LD B, C INITIALIZE LENGTH COUNTER
0006 05 26 DEC B ADJUST FOR TESTING
0007 DD2A2600 27 LD IX, (DATA) INITIALIZE ARRAY POINTER
000B DD7E00 28 NEXT: LD A, (IX) FIRST ELEMENT IN COMPARISON
000E 57 29 LD d , a TEMPORARY STORAGE FOR ELEMENT
000F DD5E01 30 LD M IX +1) SECOND ELEMENT IN COMPARISON
0012 93 31 SUB E COMPARISON FIRST TO SECOND
0013 3008 32 JR NC, NOEX IF FIRST > SECOND. NO JUMP
0015 DD7300 33 LD (IX), E EXCHANGE ARRAY ELEMENTS
0018 DD7201 34 LD (IX+1), D
00 IB CBC4 35 SET FLAG, H RECORD EXCHANGE OCCURRED
00 ID DD23 36 NO EX: INC IX POINT TO NEXT DATA ELEMENT
00 IF 10EA 37 DJNZ NEXT COUNT NUMBER OF COMPARISONS

38 REPEAT IF MORE DATA PAIRS
0021 CB44 39 BIT FLAG,H DETERMINE IF EXCHANGE OCCURRED
0023 20DE 40 JR NZ, LOOP CONTINUE IF DATA UNSORTED
0025 C9 41

42
43

RET OTHERWISE. EXIT

0026 FLAG: EQU 0 . DESIGNATION OF FLAG BIT
0026 44 DATA: DEFS 2 •.STORAGE FOR DATA ADDRESS

45 END

67



B. The following program multiplies two unsigned 16 bit integers and leaves the result in the HL register 
pair.

01/22/76 11:32:36 MULTIPLY LISTING
LOC OBJ CODE STMT SOURCE STATEMENT

PAGE 1

0000

3
4
5
6
7
8 
9

MULT:; UNSIGNED SIXTEEN BIT INTEGER MULTIPLY. 
ON ENTRANCE: MULTIPLIER IN DE.

MULTIPLICAND IN HL.

ON EXIT: RESULT IN HL.

REGISTER USES:

10 H HIGH ORDER PARTIAL RESULT
11 •L LOW ORDER PARTIAL RESULT
12 D HIGH ORDER MULTIPLICAND
13 E LOW ORDER MULTIPLICAND
14 B COUNTER FOR NUMBER OF SHIFTS
15 C HIGH ORDER BITS OF MULTIPLIER
16 A LOW ORDER BITS OF MULTIPLIER

0000 0610
1 / 
18 LD B, 16; NUMBER OF BITS- INITIALIZE

0002 4A 19 LD C, D; MOVE MULTIPLIER
0003 7B 20 LD A. E;
0004 EB 21 EX DE, HL; MOVE MULTIPLICAND
0005 210000 22 LD HL, 0; CLEAR PARTIAL RESULT
0008 CB39 23 MLOOP: SRL C; SHIFT MULTIPLIER RIGHT
000A IF 24 RR A; LEAST SIGNIFICANT BIT IS

25 IN CARRY.
000B 3001 26 JR NC, NOADD IF NO CARRY. SKIP THE ADD.
000D 19 27 ADD HL. DE. ELSE ADD MULTIPLICAND TO

28 ) PARTIAL RESULT.
000E EB 29 NOADD: EX DE. HL: SHIFT MULTIPLICAND LEFT
000F 29 30 ADD HL, HL; BY MULTIPLYING IT BY TWO.
0010 EB 31 EX DE, HL;
0011 10F5 32 DJNZ MLOOP REPEAT UNTIL NO MORE BITS
0013 C9 33 RET;

34 END:

68



Absolute Maximum Ratings
Temperature Under Bias 
Storage Temperature 
Voltage On Any Pin

with Respect to Ground 
Power Dissipation

Specified operating range. 
-65°C to +150°C 

-0.3V to +7V

1.5W

•Comment

Stresses above those listed under “ Absolute 
Maximum Rating“ may cause permanent 
damage to the device. This is a stress rating 
only and functional operation of the device 
at these or any other condition above those 
indicated in the operational sections of this 
specification is not implied. Exposure to 
absolute maximum rating conditions for 
extended periods may affect device reliability.

Z80-CPU D.C. Characteristics
T A * 0°C to 70°C. V cc * 5V t  5% unless otherwise specified

Symbol Parameter Min. Typ. Max. Unit Test Condition

V ILC Clock Input Low Voltage -0.3 0.45 V

V IHC Clock Input High Voltage Vcc-6 V  +.3 cc
V

V IL Input Low Voltage -0.3 0.8 V

V IH Input High Voltage :.o V cc V

-1o>

Output Low Voltage 0.4 V l0 L *l.8m A

Xo>

Output High Voltage :.4 V !0H  * “250yA

'cc Power Supply Current 150 mA

'L l Input Leakage Current 10 p A V IN = 0 .° V ce

' l o h Tri-State Output Leakage Current in Float 10 p A V OUT= 2 .4 to V c c

' lO L Tri-State Output Leakage Current in Float -10 p A V O U T * ° 4V

!l d
Data Bus Leakage Current in Input Mode ±10 P A 0 < V l N < V cc

Note: For Z80-CPU all AC and DC characteristics remai.  ̂
same for the military grade parts except Icc.

L„ * 200 mA cc

Capacitance
Ta  = 25°C, f = 1 MHz,
u n m easu red  p in s returned  to  grou n d

Symbol Parameter Max. Unit

Clock Capacitance 35 ?F

C IN Input Capacitance 5 pF

CO U T Output Capacitance 10 pF

Z80-CPU
Ordering Information
C -  Ceramic 
P -  Plastic
S -  Standard 5V ±5% 0° to 703C 
E -  Extended 5V ±5% -4 0 3 to 8SaC 
M -  Military SV ± 1 0 % -5 5 °  to 12S°C

Z80A-CPU D.C. Characteristics
T ^  s 0°C to 70°C. V cc « 5V ± 5'7 unless otherwise specified

Symbol Parameter Min. Typ- Max. Unit Test Condition

V ILC Clock Input Low Voltage -0.3 0.45 V

V 1HC Clock Input Higii Voltage V  . .6CC ’ vcc*-3 V

V IL Input Low Voltage -0.3 0.8 V

V lt. input High Voltage :.o V .Cv. V

c>

Output Low Voltage 0.4 V 'O L * ' 8mA

V OH Out pm High Voltage :.4 V 'o n  ‘  - :?0wA

'c c Power Supply Cuirent 90 :oo mA

'L l input Leakage Current 10 P A V ,N- 0 U , V CC

'loh Tri-State Outpui Leakage Current in Float 10 p A V0Uf; 4 "'Va

‘ l.OL Tri-Slate Outpui Leakage Current in Float -10 P A V0UT=°4V

'L l ) Data Bus Leakage Current m Input Mode ±10 p A

Capacitance
T a  = 2 5 °C , f  = 1 M Hz. 
u n m easured  p ins returned to  ground

Symbol Parameter Max. Unit

C ,p Clock Capacitance 35 PF

C IN Input Capacitance 5 PF

COU1 Output Capacitance 10 PF

Z80A-CPU
Ordering Information
C -  Ceramic 
P -  Plastic
S -  Standard 5V ±5% 0° to 7QaC

69



A.C. Characteristics Z80-CPU

Ta = 0°C 10 70°C, Vcc = +5V ± 5%, Unless Otherwise Noted.

Signal Symbol Parameter Min Max Unit Test Condition

Clock Period .4 1121 usee
tw (‘PH) Clock Pulse Width, Clock High 180 (El nsec
tw (d>L) Clock Pulse Width. Clock Low 180 2000 nsec
lr, 1 Clock Rise and Fall Time 30 nsec

l D(AD) Address Output Deiay 145 nsec
lF (AD) Delay to Float 110 nsec

*0-15
lacm Address Stable Prior to MRF.Q (Memory Cycle) III nsec CL -  50pF
laci Address Stable Prior to IORQ. RD or WR (I/O Cycle) 11121 nsec
lca Address Stable from RE), WR, 1ÖRQ or Mr £,Q 13) nsec
lcaf Address Stable From RD or WR During Float U! nsec

’D (D) Data Output Delay 230 nsec
'F(D ) Delay to Float During Write Cycle 90 nsec
*S4> (D) Data Setup Time to Rising Edge of Clock During Ml Cycle 50 nsec

°0-7 lS4> (D) Data Setup Time to Falling Edge of Clock During M2 to M5 60 nsec CL * 50pF
ldcm Data Stable Prior to WR (Memory Cycle) 151 nsec
ldci Data Stable Prior to WR (I/O Cycle) i6l nsec
lcdf Data Stable From WR 17)

lH Any Hold Time for Setup Time 0 nsec

lDL?(MR) MREQ Delay From Falling Edge of Clock, MREQ Low 100 nsec

m rEq
lDH4> (MR) 
lDH4> (MR)

MREQ Delay From Rising Edge of Clock, MREQ High 100 nsec
MREQ Delay From Falling Edge of Clock, MREQ High 100 nsec CL = 50pF

lw (MRL) Pulse Width, MREQ Low 181 nsec
lw (MRH) Pulse Width, MREQ High 19) nsec

*DL4> (IR) IORQ Delay From Rising Edge of Clock, IORQ Low 90 nsec

IORQ lDL*(IR) IORQ Delay From Falling Edge of Clock, IORQ Low IIÖ nsec CL * 50pF
lDH4> (IR) IORQ Delay From Rising Edge of Clock, IORQ High 100 nsec
lDH*(IR) IORQ Delay From Falling Edge of Clock, IORQ High IIÖ nsec

lDL<*> (RD) RD Delay From Rising Edge of Clock, RD Low 100 nsec

RD lDL4> (RD) RD Delay From Falling Edge of Clock, RD Low 
RD Deiay From Rising Edge of Clock, RD High

” ■ 1½ nsec CL * 50pF
lDH<t> (RD) RE nsec
lDH4> (RD) RD Deiay From Falling Edge of Clock, RD High 11Ö nsec

lDL4> (WR) WR Delay From Rising Edge of Clock, WR Low 80 nsec

WR lDL4> (WR) WR Delay From Falling Edge of Clock, WR Low 90 nsec CL *50pF
lDH^(WR) WR Delay From Falling Edge of Cock, WR High IW nsec
lw (WRL) Pulse Width, WR Low 1101 nsec

W\ lDL (Ml) Ml Delay From Rising Edge of Cock, M l  L o w 130 nsec CL * 5 0 p F
lDH (Ml) Ml Delay From Rising Edge of Clock, Ml High 130 nsec

RFSH lDL(RF) RFSH Deiay From Rising Edge of Clock. RFSH Low 180 nsec r_  at (̂VnP
lDH (RF) RFSH Delay From Rising Edge of Clock, RFSH High 150 nsec

WAIT 4  (WT) WAIT Setup Time to Falling Edge of Clock 70 nsec

HÄLT lD (HT) HALT Delay Time From Falling Edge of Dock 300 nsec CL «50pF

Int l* (IT) INT Setup Time to Rising Edge of Clock 80 nsec

nmT lw (NML) Pulse Width, NM1 Low 80 nsec

BUSRQ ls(B0) BUSRQ Setup Time to Rising Edge of Clock 80 nsec

BUSAK lDL(BA) BUSAK Delay From Rising Edge of Clock. BUSAK Low 120 nsec
CL = 50pF

lDH (BA) BUSAK Delay From Falling Edge of Clock, BUSAK High 110 nsec

RESET 4 (RS) RESET Setup Time to Rising Edge of Clock 90 nsec

lF(C) Delay to Boat (MREQ, IORQ, RD and WR) 100 nsec

lmr MI Stable Prior to IORQ (Interrupt Ack.) (111 nsec

1121 ' c , l w(*H )f l w W  + !r M f

Ml lacm *etw<OH)*lf - 75

(2) 4ci * tc -80

[3] lca * 1w(4>L) * lr " 40

I«1 w lw(<t>L) * 4 ~ 60

(5] l dcm * t c -2 1 0

H l d c is lw(<l>L) + tr “ 210

[7] W

f8) lw(MRL) * lc ” 40

(91 lw(MRH) * lw(<t>H) * 4 "  30

w  y m r v 40

I " l  l« n r " 2tc + tM ^ H )  + ,r 80

NOTES:

A Data should be enabled onto the CPU data bus when RD is active. During interrupt acknowledge data
should be enabled when MI and IORQ are both active. output

UMOf A TEST
B. All control signals are internally synchronized, so they may be totally asynchronous with respect

to the clock.
C. The RESET signal must be active lor a minimum of 3 clock cycles.
D Output Deiay vs. Loaded Capacitance

TA = 70°C Vcc = +5V ±57

Add lOnsec deiay for each 50pf increase in load up to a maximum of 200pf for the data bus lOOpf for 
address & control lines Load circuit for Output

Although static by design, testing guarantees t ^ « ^ )  200 usee maximum

70



A.C. Timing Diagram

Timing measurements are made at the following
voltages, unless otherwise specified: “r  “°”

CLOCK VCC-.6V .45V
OUTPUT 2.0 V .8 V

71



A.C. Characteristics Z80A-CPU

Ta = 0°C to 70°C. Vcc = +5V ± 5%. Unless Otherwise Noted.

Signal Symbol Parameter Min Max Unit Test Condition

4>
lc
tw (♦H) 
tw (4>L)
*r, f

Clock Period
Clock Pulse Width, Gock High 
Clock Pulse Width, Clock Low 
Clock Rise and Fall Time

.25 1121 usee
no IE). nsec
110 2000 nsec

30 nsec

V l 5

lD (AD)
lF(AD)
lacm
laci
tca
lcaf

Address Output Delay 
Delay to Float
Address Stable Prior to MREQ (Memory Cycle) 
Address Stable Prior to IÖRQ, RÜ or WR (I/O Cycle) 
Address Stable from RÜ. WR. IORQ or fclREQ 
Address Stable From RD or WR During Float

1 10 nsec

CL * 50pF

90 nsec
111 nsec
121 nsec
(31 nsec
(41 nsec

D0-7

lD(D)
lF(D)
lS4> (D)
lS<*> (D)
ldcm
ldci
lcdf

Data Output Delay
Delay to Float During Write Cycle
Data Setup Time to Rising Edge of Clock During Ml Cycle
Data Setup Time to Falling Edge of Clock During M2 to M5
Data Stable Prior to WR (Memory Cycle)
Data Stable Prior to WR (I/O Cycle)
Data Stable From Wr

150 nsec

CL «50pH

90 nsec
35 nsec
50 nsec
151 nsec
161 nsec
[71

lH Any Hold Time for Setup Time 0 nsec

MR£Q

lDL*(MR) 
lDH<t> (MR) 
lDH«t> (MR) 
lw(MRL) 
^(M R H )

MREQ Delay From Falling Edge of Clock, MREQ Low 
MREQ Delay From Rising Edge of Clock, MREQ High 
MREQ Delay From Falling Edge of Clock, MREQ High 
Pulse Width, MREQ Low 
Pulse Width, MREQ High

85 nsec

CL * 50pF
85 nsec
85 nsec

181 nsec
141 nsec

Iorq
lDL4> (IR) 
lDL4> (IR) 
lDH4> (IR) 
lDH4> (IR)

IORQ Delay From Rising Edge of Clock, IORQ Low 
IORQ Delay From Falling Edge of Clock, IORQ Low 
IORQ Delay From Rising Edge of Gock, IORQ High 
IORQ Delay From Falling Edge of Gock. IORQ High

75 nsec

CL * 50pF85 nsec
85 nsec
85 nsec

RD
lDLd> (RD) 
lDL4> (RD) 
lDH4> (RD) 
lDH4> (RD)

RD Delay From Rising Edge of Clock, RD Low 
RD Delay From Falling Edge of Clock. RD Low 
RD Delay From Rising Edge of Gock, RD High 
RD Delay From Falling Edge of Clock. RD High

85 nsec

CL * 50pF95 nsec
&5 nsec
85 nsec

WR
lDLd> (WR) 
lDL4> (WR) 
lDH^(WR) 
lw (WRL)

WR Delay From Rising Edge of Clock, WR Low 
WR Delay From Falling Edge of Gock, WR Low 
WR Delay From Falling Edge of Gock, WR High 
Pulse Width, WR Low

65 nsec

CL *50pF80 nsec
80 nsec

TTo] nsec

mT tDL(Ml) 
lDH (Ml)

Ml Delay From Rising Edge of Gock, Ml Low 
Ml Delay From Rising Edge of Gock, Ml High

100 nsec = 50pF100 nsec

RFSH lDL(RF) 
lDH (RF)

RFSH Delay From Rising Edge of Gock, RFSH Low 
RFSH Delay From Rising Edge of Gock, RFSH High

130 nsec Cj^= 50pF120 nsec

WAIT ls (WT) WAIT Setup Time to Falling Edge of Gock 70 nsec

HÄLT lD(HT) HALT Delay Time From Falling Edge of Clock 300 nsec CL * 50pF

INT l*(IT) INT Setup Time to Rising Edge of Gock 80 nsec

nmT lw (NML) Pulse Width, NMl Low 80 nsec

BUSRQ *»(BQ) BUSRQ Setup Time to Rising Edge of Gock 50 nsec

BUSAK lDL(BA) 
lDH(BA)

BUSAK Delay From Rising Edge of Clock, BUSAK Low 100 nsec CL * 50pFBUSAK Delay From Falling Edge of Gock, BUSAK High 100 nsec

RESET >s(RS) RESET Setup Time to Rising Edge of Clock 60 nsec

‘F (C) Delay to Boat (MREQ, IORQ. RD and WR) 80 nsec

lmr Ml Stable Prior to IORQ (Interrupt Ack.) (III nsec

[12} tc * + ♦ tr ♦ tf

m lacm 1’ lw(4>H) *f • 65

(2) laci * <c -70

[3] t._ = ca V ,*'L) + tt " 50

f*l lcaf * y * L )* 'r -45

15} ^dem

II
r>

i vi o

(6] td c is= V ^ L )  + ‘ r * 170

m l cdf *= ‘ w(<t>L) + ‘ r -  70

(81 lw(MRL)*lc ~ 30

(91 V M R H ) * V * H )  + lf ~ 20

1,01 lw(WRL) * l c ~30

( 11) lm r* 2tc* lw(*H) + tf ' 65

NOTES:

A. Data should be enabled onto the CPU data bus when RD js active. During interrupt acknowledge data 
should be enabled when Ml and 1ÖÄQ are both active.

B. All control signals are internally synchronized, so they may be totally asynchronous with respect 
to the clock.

C. The Rfe&ET signal must be active for a minimum of 3 clock cycles.
D. Output Delay vs. Loaded Capacitance

TA = 70°C Vcc * +5V ±S%
Add lOnsec delay for each 50pf increase in load up to maximum of 200pf for data bus and lOOpf for 
address &. control lines.

E. Although static by design, testing guarantees y  <j>h ) 200 maxunum
Load circuit for Output

72



12.0

Z80-CPU 
Z ilog  INSTRUCTION SET

ADC HL, ss Add with Carry Reg. pair ss to HL

ADC A, s Add with carry operand s to Acc.

ADD A, n Add value n to Acc.

ADD A, r Add Reg. r to Acc.

ADD A, (HL) Add location (HL) to Acc.

ADD A, (IX+d) Add location (IX+d) to Acc.

ADD A, (I Y+d) Add location (I Y+d) to Acc.

ADD HL, ss Add Reg. pair ss to HL

ADD IX, pp Add Reg. pair pp to IX

ADD IY, rr Add Reg. pair it  to IY

AND s Logical 'AND' of operand s and Acc.

BIT b, (HL) Test BIT b of location (HL)

BIT b, (IX+d) Test BIT b of location (IX+d)

BIT b, (IY+d) Test BIT b of location (IY+d)

Test BIT b of Reg. rBIT b, r 

CALL cc, nn

CALL nn

Call subroutine at location nn if 
condition cc if true

Unconditional call subroutine at 
location nn

CCF

CPs

CPD

CPDR

CPI

CP1R

CPL 

DAA 

DEC m

Complement carry flag

Compare operand s with Acc.

Compare location (HL) and Acc. 
decrement HL and BC

Compare location (HL) and Acc. 
decrement HL and BC, repeat 
until BC=0

Compare location (HL) and Acc. 
increment HL and decrement BC

Compare location (HL) and Acc. 
increment HL, decrement BC 
repeat until BC=0

Complement Acc. (1's comp)

Decimal adjust Acc.

Decrement operand m

DEC IX Decrement IX

DECss

Dl

DJNZe

El

EX (SP), HL 

EX (SP), IX 

EX (SP), IY 

EX AF, AF'

EX DE, HL

EXX

HALT 

IM 0 

IM 1 

IM 2 

IN A,(n)

IN r, (C>

INC (HL) 

INC IX 

INC (IX+d) 

INC IY

INC (lY+d) 

INC r 

INCss 

IND

INDR

INI

DEC IY

Decrement Reg. pair ss

Disable interrupts

Decrement 8 and Jump 
relative if B/0

Enable interrupts

Exchange the location (SP) and HL

Exchange the location (SP) and IX

Exchange the location (SP) and IY

Exchange the contents of AF 
and AF'

Exchange the contents of DE 
and HL

Exchange the contents of BC, DE, 
HL with contents of BC', DE', HL' 
respectively

HALT (wait for interrupt or reset)

Set interrupt mode 0

Set interrupt mode 1

Set interrupt mode 2

Load the Acc. with input from 
device n

Load the Reg. r with input from 
device (C)

Increment location (HL)

Increment IX 

Increment location (IX+d) 

Increment IY

Increment location (IY+d)

Increment Reg. r

Increment Reg. pair ss

Load location (HL) with input 
from port (C), decrement HL 
and B

Load location (HL) with input 
from port (C), decrement HL and 
decrement B, repeat until B=0

Load location (HL) with input 
from port (C); and increment HL 
and decrement B

Decrement IY

73



INI R Load location (HL) with input 
from port (C), increment HL 
and decrement B, repeat until 
B=0

JP (HL) Unconditional Jump to (HL)

JP(IX) Unconditional Jump to (IX)

JP (IY) Unconditona! Jump to (IY)

JP cc, nn Jump to location nn if 
condition cc is true

JP nn Unconditional jump to location 
nn

JP C, e Jump relative to PC+e if carry=1

JR e Unconditional Jump relative 
to PC+e

JP NC, e Jump relative to PC+e if carry=0

<R NZ, e
_

Jump relative to PC+e if non 
zero (Z=0)

JR Z, e Jump relative to PC+e if zero (Z=1)

LD A, (BC) Load Acc. with location (BC)

LD A, (DE) Load Acc. with location (DE)

LD A. 1 Load Acc. with 1

LD A, (nn) Load Acc. with location nn

LD A, R Load Acc. with Reg. R

LD (BC), A Load location (BC) with Acc.

LD (DE), A Load location (DE) with Acc.

LD (HL), n Load location (HL) with value n

LD dd, nn Load Reg. pair dd with value nn

^ D  HL, (nn) Load HL with location (nn)

LD (HL), r Load location (HL) with Reg. r

LD 1, A Load 1 with Acc.

LF IX, nn Load IX with value nn

LD IX, (nn) Load IX with location (nn)

LD (IX+d), n Load location (IX+d) with value n

LD (IX+d), r Load location (IX+d) with Reg. r

LD IY, nn Load IY with value nn

LD IY, (nn) Load IY with location (nn)

LD (lY+d), n Load location (lY+d) with value n

LD (lY+d), r Load location (lY+d) with Reg. r

LD (nn), A Load location (nn) with Acc.

LD (nn), dd Load location (nn) with Reg.

LD (nn), HL Load location (nn) with HL

LD (nn), IX Load location (nn) with IX

LD (nn). IY Load location (nn) with IY

LD R, A Load R with Acc.

LDr, (HL) Load Reg. r with location (HI

LD r, (IX+d) Load Reg. r with location (l>

LD r, (lY+d) Load Reg. r with location (h

LD r, n Load Reg. r with value n

LD r, r' Load Reg. r with Reg. r'

LD SP, HL Load SP with HL

LD SP, IX Load SP with IX

LD SP, IY Load SP with IY

LDD Load location (DE) with Iocs 
(HL), decrement DE, HL and

LDDR Load location (DE) with loci 
(HL), decrement DE, HL and 
repeat until BOO

LDI Load location (DE) with loci 
(HL), increment DE, HL, 
decrement BC

LDIR Load location (DE) with loci 
(HL), increment DE, HL, 
decrement BC and repeat um 
BC=0

NEG Negate Acc. (2's complement

NOP No operation

ORs
OTDR

Logical 'OR' or operand s and 
Load output port (C) with la 
(HL) decrement HL and B, re 
until B=0

OTIR Load output port (C) with loc 
(HL), increment HL, decreme 
repeat until B=0

OUT (C), r Load output port (C) with Re

OUT (n), A 
OUTD

Load output port ( n) with Ac: 
Load output port (C) with loc 
(HL), decrement HL and B

OUTI Load output port (C) with loc 
(HL), increment HL and decre 
B



POP IX Load IX with top of stack

POP IY Load IY with top of stack

POP qq Load Reg. pair qq with top of stack

PUSH IX Load IX onto stack

PUSH IY Load IY onto stack

PUSH qq Load Reg. pair qq onto stack

RES b, m Reset Bit b of operand m

RET Return from subroutine

RET cc Return from subroutine if condition 
cc is true

RETI Return from interrupt

RETN Return from non maskable interrupt

RL m Rotate left through carry operand m

RLA Rotate left Acc. through carry

RLC (HL) Rotate location (HL) left circular

RLC (IX+d) Rotate location (IX+d) left circular

RLC (lY+d) Rotate location (lY+d) left circular

RLC r Rotate Reg. r left circular

RLC A Rotate left circular Acc.

RLD Rotate digit left and right between 
Acc, and location (HL)

RR m Rotate right through carry operand m

RRA Rotate right Acc. through carry

RRC m Rotate operand m right circular

RRCA Rotate right circular Acc.

RRD Rotate digit right and left between 
Acc. and location (HL)

RST p Restart to location p

SBC A, s Subtract operand s from Acc. with 
carry

SBC HL. ss Subtract Reg. pair ss from HL with 
carry

SCF Set carry flag (O D

SETb, (HL) Set Bit b of location (HL)

SET b, (IX+d) Set Bit b of location (IX+d)

SET b, (lY+d) Set Bit b of location (IY+d)

SET b, r Set Bit b of Reg. r

SLA m Shift operand m left arithmetic

SRA m Shift operand m right arithmetic

SRL m Shift operand m right logical

SUBs Subtract operand s from Acc.

XORs Exclusive 'OR' operand s and Acc.

75



Mnemonic Comparison between S y stem  Z80 and. S y s tem  8080A

Opcode 8080A Z80 Opcode 8080A Z80

00 NOP NOP 30 ............ DR NCydisp
01 LX I B,dddd LD BC.dddd 31 LXI SPydddd LD SP,dddd
02 STAX 8 LD (BC),A 32 STA adr LD (adr),A
03 INX B INC BC 33 INX SP INC SP
04 INR 8 INC B 34 INR M INC (HL)
05 OCR B DEC B 35 DCR M DEC (HL)
06 MVI B,dd LD 8,dd 36 mvi M,dd LD (HL),dd
07 RLC RLCA 37 STC SCF
00 EX AF,AF‘ 38 — — DR Cydisp
09 OAO 8 ADD HL,BC 39 DAD SP ADO HLySP
0A LDAX B LD A,(BC) 3A LDA adr LD A,(adr)
0B OCX B DEC BC 3B DCX SP DEC SP
OC INR C INC C 3C INR A INC A
00 DCR C DEC C 3D DCR A DEC A
OE MVI C,dd LD C,dd 3E IWI Aydd LD Aydd
OF RRC RRCA 3F cmc CCF

10 -  I . . . DDNZ disp 40 mov ByB LD ByB
11 LXI D,dddd LD DE,dddd 41 MOV B,C LD ByC
12 STAX D LD (DE)fA 42 MOV 8,0 LD B,D
13 INX D INC DE 43 MOV B,E LD B,E
14 INR D INC D 44 MOV B,H LD B,H
15 OCR D DEC D 45 MOV B,L LD B,L
16 mvi D,dd LD D,dd 46 MOV B,M LD B,(HL)
17 RAL RLA 47 MOV 8, A LD 8,A
18 — DR disp 48 MOV CyB LD CyB
19 DAD D ADD HL,DE 49 MOV C,C LD C,C
1A LDAX D LD A,(DE) 4A MOV CyD LD CyD
10 DCX D DEC DE 4B MOV C,E LD C,E
1C INR E INC E 4C MOV C,H LD C,H
10 OCR E DEC E 4D MOV C,L LD C,L
1E mvi E,dd LD E,dd 4E MOV C,M LD Dy(HL)
1F RAR RRA 4F MOV CyA LD CyA

20 — DR NZ'disp 50 MOV D,B LD D,B
21 LXI H,dddd LD HL,dddd 51 MOV D,C LD DyC
22 SHLD adr LD (adr),HL 52 MOV D,D LD D,D
23 INX H INC HL 53 MOV D,E LD D,E
24 INR H INC H 54 MOV D,H LD DyH
25 DCR H DEC H 55 MOV D,L LD D,L
26 IWI H,dd LD H,dd 56 MOV D,M LD d ,(h l)
27 DAA DAA 57 MOV DyA LD DyA
28 - - DR Z,disp 58 MOV E,B LD EyB
29 DAD H ADD HL,HL 59 MOV E,C LD E,C
2A LHLD adr LD HL,(adr) 5A MOV E»D LD E,D
28 DCX H DEC HL 58 MOV E,E LD E,E
2C INR L INC L 5C MOV E,H LD E,H
2D DCR L DEC L 5D MOV E»L LD E,L
2E IWI L,dd LD L,dd 5E MOV E,M LD E,(HL)
2F CMA CPL 5F MOV E,A LD E,A



60
61
62
63
64
65
66
67
68
69
6A
68
6C
60
6E
6F

70
71
72
73
74
75
76
77
78
79
7A
78
7C
70
7E
7F

80
81
82
83
84
85
86
87
88
89
8A
88
8C
80
8E
8F

8080A Z80 Opcode 8080A
dov H,B LD H,B 90 SUB 8
m \i H,C LD H,C 91 SUB C
(10 V H,D LD H,D 92 SUB D
dov H,E LD H,E 93 SUB E
dov H,H LD H,H 94 SUB H
dov H,L LD H,L 95 SUB L
dov H,d LD H»(HL) 96 SUB d
dOV H,A LD H,A 97 SUB A
dOV L,B LD L,B 98 SBB B
dOV L,C LD L»C 99 S88 C
dOV L,0 LD L,D 9A SBB D
dOV L.E LD 98 SBB E
dOV L,H LD L,H 9C SBB H
dOV L,L LD L,L 90 SBB L
dOV L,d LD l ,(h l) 9E SBB d
dOV L,A LD LfA 9F SBB A

dOV d,B LD (HL),8 AO ANA B
dOV d,C LD (HL),C A1 ANA C
dOV d,D LD (h l ),d A2 ANA D
dOV d,E LD (h l),e A3 ANA E
dOV d,H LD (h l ),h A4 ANA H
dOU d,L LD (h l ),l A5 ANA L
HUT HALT A6 ANA d
dOV d,A LD (HL),A A7 ANA A
dOV A,8 LD A,B A8 XRA B
dOV A,C LD A,C A9 XRA C
dOU A,D LD A,D AA XRA D
dOV A,E LD A,E A8 XRA E
dOV A,H LD A,H AC XRA H
dOU A,L LD A,L AD XRA L
dOV A,d LD a ,(h l) AE XRA ii
dOV A,A LD A,A AF XRA A

ADD 8 ADD A,8 BO ORA B
ADO C ADD A,C B1 ORA C
ADO D ADO A,D 82 ORA D
ADO E AOO A,E B3 ORA E
AOD H ADD A,H 84 ORA H
ADO L ADD A,L 85 ORA L
ADD d AOD a ,(h l) 86 ORA d
ADD A AOD A,A 87 ORA A
ADC 8 ADC A,B 88 CdP B
ADC C AOC A,C 89 CdP C
ADC D ADC A,D BA CdP D
ADC E ADC A,E 88 CdP E
ADC H ADC A,H BC CdP H
ADC L ADC A,L BD CdP L
ADC d AOC a ,(h l) BE CdP d
ADC A ADC A,A BF CdP A



Opcode 8080A Z80 Opcode 8080A Z80

CO RNZ RET NZ FO RP RET P
C1 POP B POP BC F1 POP PSW POP AF
C2 DNZ adr DP NZ,adr F2 DP adr DP P,adr
C3 DMP adr DP adr F3 DI DI
C4 CNZ adr CALL NZ,adr F4 CP adr CALL P,adrC5 PUSH B PUSH BC F5 PUSH PSW PUSH AF
C6 ADI dd ADD A,dd F6 ORI dd OR dd
C7 RST 0 RST 0 F7 RST 6 RST 30HC8 RZ RET Z F8 RM RET MC9 RET RET F9 SPHL LD SP,HLCA DZ adr DP Z,adr FA DM adr DP M,adtCB — see below FB El El
CC cz adr CALL Z,adr FC CM adr CALL M,adrCD CALL adr CALL adr FD — see Ibelow
CE ACI dd ADC A,dd FE CPI dd CP dd
CF RST 1 RST 8 FF RST 7 RST 38H
DO
D1
D2
D3
D4
D5
DS
D7
DS
D9
DA
DB
DC
DD
DE
DF

RET
POP
DP
OUT
CALL
PUSH
SUB
RST
RET
EXX
DP
IN
CALL

NC
DE
NC,adr
port,A
NC,adr
DE
dd
10H
C

C,adr 
A,port 
C,adr

see below 
SBC A,dd 
RST 18H

EO
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF

adr

adr

adr

RET PO 
POP HL 
DP PO,adr 
EX (SP),HL 
CALL P0,adr 
PUSH HL 
AND dd 
RST 20H 
RET PE 
DP (HL)
DP PE,adr 
EX DE,HL 
CALL PE,adr 
see below 
XOR dd 
RST 28H



The following instructions are unique to Z80 
Opcode

:

C800 RLC 8
CB01 RLC C
C802 RLC D
C803 RLC E
C804 RLC H
CB05 RLC L
C806 RLC (HL)
C807 RLC A
C808 RRC 8 C838 SRL B
CB09 RRC C C839 SRL C
C80A RRC 0 C83A SRL 0
C80B RRC E C83B SRL E
C80C RRC H C83C SRL H
CBOD RRC L C830 SRL L
C80E RRC (HL) C83E SRL (HL)
C80F RRC A C83F SRL A

C810 RL 8 C840 8IT Of B
CB11 RL C C841 BIT 0,C
CB12 RL D C842 BIT 0,0
C813 RL E CB43 BIT 0,E
C814 RL H CB44 BIT 0, H
CB15 RL L C845 BIT 0,L
C816 RL (HL) CB46 BIT 0 ,(H L )
C817 RL A C847 - BIT 0, A
C818 RR B C848 BIT 1 , B
CB19 RR C C849 BIT 1,C
C81A RR D C84A BIT 1,0
C818 RR E C84B BIT 1,E
C81C RR H C84C BIT 1,H
C810 RR L CB40 BIT 1 ,L
CB1E RR (HL) C34£ BIT 1»( hl)
CB1F RR A CB4F BIT 1,A

C820 SLA B C850 BIT 2,B
C821 SLA C C851 BIT 2,C
C322 SLA D CB52 BIT 2,0
CS23 SLA E CD53 BIT 2, E
C824 SLA H CD54 BIT 2, H
C825 SLA L C055 OIT 2,L
C826 SLA (HL) C05C □ IT 2 ,(H L )
CB27 SLA A CB57 BIT 2,A
C828 SRA B CQ58 BIT 3,8
C829 SRA C C859 BIT 3,C
C82A SRA D C85A BIT 3,0
C82B SRA E C85B BIT 3,£
C82C S r a H C85C BIT 3,H
C82D SRA L C850 BIT 3,L
CB2E SRA (HL) C85E BIT 2 * (HL)
C82F SRA A CB5F BIT 3,A



Opcode Opcode

C860 BIT 4,B CB90 RES 2,B
CB61 BIT 4,C CB91 RES 2,0
CB62 BIT 4,0 CB92 RES 2,0
CB63 BIT 4,0 CB93 RES 2,0
CB64 BIT 4,H CB94 RES 2,H
CB65 BIT 4,L CB95 RES 2,L
CB66 BIT 4 » (HL) CB96 RES 2,(HL)
CB67 BIT 4,A CB97 RES 2,A
CB6B BIT 5,B CB98 RES 3,B
CB69 BIT 5,C CB99 RES 3,C
CB6A BIT 5.0 CB9A RES 3,0
CB6B BIT 5,E CB9B RES 3,E
CB6C BIT 5,H CB9C RES 3,H
CB6D BIT 5,L CB9D RES 3,L
CBSE BIT 5,(HL) CB9E RES 3,(HI)
CB6F BIT 5,A CB9F RES 3,A

CB70 BIT 6,B CBAO RES 4,B
CB71 BIT 6,C CBA1 RES 4,0
CB72 BIT 6,0 CBA2 RES 4,0
CB73 BIT 6,E CBA3 RES 4,0
CB74 BIT 6,H CBA4 RES 4,H
CB75 BIT 6,1 CBA5 RES 4,L
CB76 BIT 6,(HL) CBA6 RES 4 , (HL)
CB77 BIT 6,A CBA7 RES 4,A
CB78 BIT 7,8 CBAB RES 5,B
CB79 BIT 7,C CBA9 RES 5,C
CB7A BIT 7,D CBAA RES 5,0
CB7B BIT 7,e CBAB RES 5,0
CB7C BIT 7,H CBAC RES 5,H
CB7D BIT 7,L CBAO RES 5,L
CB7E BIT 7,(HL) CBAE RES 5,(HL)
CB7F BIT 7,A CBAF RES 5,A

CB80 RES 0,B CBBO RES 6,B
CB81 RES 0,C CBB1 RES 6,C
CB82 RES 0,0 CBB2 RES 6,0
CB83 RES o ,E CBB3 RES 6,0
CB84 RES 0,H CBB4 RES 6,H
CB85 RES 0,L CBB5 RES 6,L
CB86 ' RES Of(HL) CBB6 RES 6 , (HL)
CB87 RES 0, A CBB7 RES 6,A
CB88 RES 1,B CBB8 RES 7,B
CB89 RES 1,C CBB9 RES 7,0
CB8A RES 1,D CBBA RES 7,0
CB8B RES 1,0 CBBB RES 7,0
CB8C RES 1,H CBBC RES 7,H
CB8D RES 1,L CBBO RES 7,L
CB8E RES 1*(HL) CBBE RES 7 ,(HL)
CB8F RES 1,A CBBF RES 7,A



CBCO
CBC1
C8C2
CBC3
CBC4
CBCS
CBC6
C8C7
C8C8
CBC9
CBCA
cbcb
CBCC
CBCO
CBCC
C8CF

CBOO
CBD1
CBD2
CB03
C8D4
CBD5
CBD6
CBD7
CB08
C8D9
C8DA
CBOB
CBOC
CBOO
C8DE
C80F

CBCO
CBE1
C8E2
CBE3
CBE4
CBE5
COES
CBE7
CBE8
CBE9
CBEA
CBEB
C8EC
C8ED
CBEE
CBEF

Opcode Opcode

SET 0,B C8F0 SET 6,8
SET 0,C CBF1 SET 6,C
SET 0,0 CBF2 SET 6,0
SET 0,E C8F3 SET 6,E
SET 0,H CBF 4 SET 6 ,H
SET 0,L CBF5 SET 6»L
SET 0,(HL) CBF6 SET 6,(HL)
SET 0, A C8F7 SET 6,A
SET 1,B CBfS SET 7»B
SET 1»C CBF9 SET 7»C
SET 1,D CBF A SET 7,0
SET 1,E CBFB SET 7,E
SET 1*H CBFC SET 7,H
SET 1,L CBFo SET 7,L
SET 1,(HL) CBFE SET 7»(HL)
SET 1.A C8FF SET 7,A

SET 2,B 0009 A 00 IX,BC
SET 2,C
SET 2,0 0019 A 00 IX,DE
SET 2,E
SET 2,H 0021 LO IX,dddd
SET 2,L 0022 LD (adr),IX
SET 2,(HL) 0023 INC IX
SET 2, A 0029 ADO IX,IX
SET 3,B 002A LD IX,(adr)
SET 3,C 0028 DEC IX
SET 3,0
SET 3,C 0034 INC (iX+offaat)
SET 3,H 0035 DEC (IX+offset)
SET 3,L 0036 LD (IX+offset),dd
SET 3,(HL) 0039 ADO IX,SP
SET 3,A 0046 LD 8,(IX+offset)
SET 4,B 004E LD C,(IX+offaat)
SET 4,C
SET 4,0 0056 LD 0,(IX+offset)
SET 4,E D05E LD E,(IX+offaat)
SET 4,H
SET 4,L D0G6 LD H,(IX+offont)
SET 4,(HL) none LD L,(IX+offnnt)
SET 4,A
SET 5,0 I )1)7( I LD (IX+off nut ),11
SET 5,C UU71 LO (IX+offniit),C
SET 5#D 0072 LD (IX+offont),0
SET 5.E 0073 LD (IX+off aot),E
SET 5tH 0074 LD (IX+offaat),H
SET 5,L 0075 LD (IX+offset),L
SET 5,(HL) 0077 LD (IX+offset), A
SET 5,A DD7E LD A,(IX+offset)

0086 AOO A,(IX+offset)
008E AOC A,(IX+offaat)



Opcode Opcode
DD96 SUB (iX+offset) DDE1 POP IXDD9E SBC A,(IX+offset) DDE3 EX (SP),IX

DDE5 PUSH IXDDA6 AND (IX+offset) DDE9 DP (IX)DDAE XOR (IX+offset)
DDF9 LD SP,IXDDB6 OR (IX+offset)

DDBE CP (IX+offset) ED40 IN B, (C)
ED41 OUT (C),BDDCBof06 RLC (IX+offset) ED42 SBC HL,BCDDCBofOE RRC (IX+offset) ED43 LD (dddd),BC
ED44 NEGDDCBof16 RL (IX+offset) ED45 RETNDDCBof1E RR (IX+offset) ED46 in 0
ED47 LD I,ADDCBof26 SLA (IX+offset) ED48 IN F

c .  (c )DDCBof2E SRA (IX+offset) ED49 OUT (C),C
ED4A ADC HL,BCDDCBof3E SRL (IX+offset) ED4B LD BC,(adr)
ED4D RETIDDCBof46 BIT 0,(IX+offset)

DDCBof4E BIT 1,(IX+offset) ED50 IN D,(C)
DDCBof56 BIT 2,(IX+offset) ED51

ED52
OUT
SBC

(C),D
HL,DEDDCBofSE BIT 3,(IX+offset) ED53 LD (adr),DE

ED56 in 1DDCBof66 BIT 4,(IX+offset) ED57 LD A,IDDCBof6E BIT 5,(IX+offset) ED58 IN E,(C)
DDCBof76 BIT 6,(IX+offset) ED59

ED5A
OUT
ADC

(C),E
HL,DEDDCBof7E BIT 7,(IX+offset) ED5B LD DE,(adr)

ED5E in 20DCBof86 RES 0,(IX+offset)
DDCBof8E RES 1,(IX+offset) ED6D IN H, (C)

ED61 OUT (C) ,HDDCBof96 RES 2,(IX+offset) ED62 SBC HL,HLDDCBof9E RES 3,(IX+offset) ED67 RRD
DDCBofA6 RES 4,(IX+offset) ED60

ED69
IN
OUT

L,(C)
(C),LDDCBofAE RES 5,(IX+offset) ED6A ADC HL,HL

ED6F RLDDDCBofB6 RES 6,(IX+offset)
DDCBofBE RES 7,(IX+offset) ED72 SBC HL,SP

ED73 LD (adr),SPDDCBofC6 SET 0,(IX+offset) ED78 IN A,(C)DDCBofCE SET 1,(IX+offset) ED79 OUT (C) ,A
DDCBofD6 SET 2,(IX+offset) ED7A

ED7B
ADC
LD

HL,SP 
SP,(adr)DDCBofDE SET 3,(IX+offset)

EDAO LDIDDCBofE6 SET 4,(IX+offset) EDA1 CPIDDCBofEE SET 5,(IX+offset) EDA2 INI
EDA3 OUTIDDCBofF6 SET 6,(IX+offset) EDA8 LDDDDCBofFE SET 7,(IX+offset) EDA9 CPD
EDAA IND
EDAB OUTD



Opcode Opcode

EDBO LOIR FDCBofOS RLC (IY+offset)
EDB1 CPIR FDCBofOE RRC (IY+offset)
EDB2 INIR
ED83 OTIR FDCBof16 RL (IY+offset)
EDS8 LDOR FOCBoflE RR (IY+offset)
EDB9 CPDR
EDBA INOR FDCBof26 SLA (IY+offset)
EOBB OTDR FDCBof2E SRA (IY+offset)

FD09 ADO IYtBC FDCBof3E SRL (IY+offset)

FD19 ADO IY,DE FDCBof46 BIT 0,(IY+offset)
•FDCBof4E BIT 1,(IY+offset)

FD21 LD IY,dddd
FD22 LD (adr),IY FDCBof56 BIT 2,(IY+offset)
FD23 INC IY FDCBofSE BIT 3,(IY+offset)
FD29 ADO IY,IY
FD2A LD IY,(adr) FDCBof66 BIT 4,(IY+offset)
FD2B DEC IY FDCBof6E BIT 5,(IY+offset)

FD34 INC (iY+offset) FDCBof76 BIT 6,(IY+offset)
FD35 DEC (IY+offset) FDC8of7E BIT 7,(IY+offset)
FD36 LD (lY+offset),dd

0,(IY+offset)FD39 ADO IY,SP FDCBof86 RES
FDCBof8E RES 1,(IY+offset)

FD46 LD B,(IY+offset)
2,(IY+offset)FD4E LD C,(IY+offset) FDC8of96 RES

FD56 LD D,(IY+offset) FDCBof9E RES 3,(IY+offset)
FD5E LD E,(IY+offset) FDCBofA6 RES 4,(IY+offset)
FD66 LD H,(IY+offset) FDCBofAE RES 5,(IY+offset)
FD6E LD L,(IY+offset) FDCBofBö RES 6,(IY+offset)
FD70 LD (IY+offset),B FDCBofBE RES 7,(IY+offset)
FD71
FD72
FD73

LD
LD
LD

(IY+offset),C 
(IY+offset),0 
(IY+offset),E

FDCBofCS
FDCBofCE

SET
SET

0, (IY+offset)
1, (IY+offset)

FD74
FD75
FD77

LD
LD
LD

(IY+affset),H 
(IY+offset),L 
(IY+offset),A

FDCBofD6
FDCBofOE

SET
SET

2, (IY+offset)
3, (IY+offset)

FD7E LD A,(IY+offset) FDCBofES SET 4,(iY+offont)
FD86 ADO A,(IY+offset) FDCBofEE SET 5,(IY+affant)
FD8E ADC A,(IY+offset) 

(IY+offsot)
FDCnofFS
FUCBofFE

SET
SET

f>,( IY+of font) 
7,(lYl-of fnot)F096 SUB

FD9E SBC A,(IY+offset) FDE1 POP IY
(IY+offset) FDE3 EX (8P),IY

FDA6 AND FDE5 PUSH IY
FOAE XOR (iY+offsot) FDE9 3P (IY)
FDB6 OR (IY+of f seO FDF9 LD 9P,IY
FOSE CP (IY+offsot)



Z80-PIO
Z80Ä-PIO
Technical Manual

8057 Eching b. München 
Breslauer Straße 2 
Tel. (0 8 9)319 01-377 
Telex 05 22122 
Telefax (0 89) 319 01-311

TECHNISCHE BÜROS:
8500 Nürnberg 20 
Rennweg 60/62 
Tel.(0911)53 33 06 
Telex 06 26 391

7000 Stüttgen 30 
MaybachetraOe 39 a
Tel.(0711)814621 
Telex 07 23 061

6000 Frankfurt 70 
Kennedy-Allee 34 
Tel.(0611)636061 
Telex 0414 881

4000 Düsseldorf 1 
Ron »dort er Str. 145 
Tel.(0211)73314 53 
Telex 08 582 675

2000 Hamburg 70 
Konlgereihe 2 
Tel. (040) 6 82 95-0 
Telex 0211998

1000 Benm41 
Aibrechtstrafte 34 
Tel (030)792 3031-3 
Telex 01 65 484



Copyright © 1 9 7 7  by Zilog. All rights reserved. No part 
of this publication may be reproduced, stored in a retrieval 
system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording, or otherwise, 

thout the prior written permission of Zilog.

Zilog assumes no responsibility for the use of any 
circuitry other than circuitry embodied in a Zilog product.
No other circuit patent licenses are implied.



Z80- PIO TECHNICAL MANUAL 
TABLE OF CONTENTS

1.0 In tro d u c tio n .............................................................................................  1

2.0 A rc h ite c tu re .............................................................................................  3

3.0 Pin D e sc r ip tio n .........................................................................................  5

4.0 Programming the P I O ................................................................................  9
4.1 R e s e t ..............................................................................................  9
4.2 Loading the Interrupt V e c to r .....................................................  9
4.3 Selecting an Operating M o d e ..........................................................10
4.4 Setting the Interrupt Control W ord.................................................11

5.0 Timing............................................................................................................... 13
5.1 Output Mode T im in g .......................................................................13
5.2 Input Mode T im ing........................................................................... 13
5.3 Bidirectional Mode T im in g .............................................................. 14
5.4 Control M o d e .................................................................................... 14

6.0 Interrupt Control............................................................................................. 15

7.0 A p p lic a tio n s ..................................................................................................17
7.1 Interrupt Daisy C h a in ....................................................................... 17
7.2 I/O Device I n t e r f a c e ....................................................................... 18
7.3 Control Interface................................................................................19

8.0 Programming S u m m a ry ............................................................................... 21
8.1 Load Interrupt V ector.......................................................................21
8.2 Set M ode.............................................................................................21
8.3 Set Interrupt C o n tro l .......................................................................21

9.0 Electrical Specifications ................................................................................ 23
9.1 Absolute Maximum Ratings..............................................................23
9.2 D.C. Characteristics...........................................................................23
9.3 Clock D r i v e r ....................................................................................23
9.4 A.C. Characteristics........................................................................... 24
9.5 Capacitance........................................................................................ 24

10.0 Timing C h a r t ................................................................................................. 25



1.0 INTRODUCTION

The Z-80 Parallel I/O (PIO) Circuit is a programmable, two port device which provides a TTL 
compatible interface between peripheral devices and the Z80-CPU. The CPU can configure the Z80-PIO 
to interface with a wide range of peripheral devices with no other external logic required. Typical peripheral 
devices that are fully compatible with the Z80-PIO include most keyboards, paper tape readers and 
punches, printers, PROM programmers, etc. The Z80-PIO utilizes N channel silicon gate depletion load 
technology and is packaged in a 40 pin DIP. Major features of the Z80-PIO include:

•  Two independent 8 bit bidirectional peripheral interface ports with ‘handshake’ data transfer 
control

•  Interrupt driven ‘handshake’ for fast response
•  Any one of four distinct modes of operation may be selected for a port including:

Byte output 
Byte input
Byte bidirectional bus (Available on Port A only)
Bit control mode

All with interrupt controlled handshake
•  Daisy chain priority interrupt logic included to provide for automatic interrupt vectoring without 

external logic
•  Eight outputs are capable of driving Darlington transistors
•  All inputs and outputs fully TTL compatible
•  Single 5 volt supply and single phase clock are required.

One of the unique freatures of the Z80-PIO that separates it from other interface controllers is that all 
data transfer between the peripheral device and the CPU is accomplished under total interrupt control. The 
interrupt logic of the PIO permits full usage of the efficient interrupt capabilities of the Z80-CPU during I/O 
transfers. All logic necessary to implement a fully nested interrupt structure is included in the PIO so that 
additional circuits are not required. Another unique feature of the PIO is that it can be programmed to 
interrupt the CPU on the occurrence of specified status conditions in the peripheral device. For example, 
the PIO can be programmed to interrupt if any specified peripheral alarm conditions should occur. This 
interrupt capability reduces the amount of time that the processor must spend in polling peripheral status.

1



2.0 PIO ARCHITECTURE

A block diagram of the Z80-PIO is shown in figure 2.0-1. The internal structure of the Z80-PIO 
consists of a Z80-CPU bus interface, internal control logic, Port A I/O logic, Port B I/O logic, and interrupt 
control logic. The CPU bus interface logic allows the PIO to interface directly to the Z80-CPU with no 
other external logic. However, address decoders and/or line buffers may be required for large systems. The 
internal control logic synchronizes the CPU data bus to the peripheral device interfaces (Port A and Port B) 
The two I/O ports (A and B) are virtually identical and are used to interface directly to peripheral devices.

*5¥ GND 4>

v v

CPUINTERFACE
DATA BUS
PIO CONTROL LINES

CPUBUS
I/O c

INTERNALCONTROLLOGIC

INTERNAL BUS

INTERRUPTCONTROL

INTERRUPT CONTROL LINES

PORT
I/O ft1

3— / ■ > DATA OR CONTROL

PORTB
I/O

HANDSHAKE

q— / frOATA OR CONTROL
0— w ̂ HANDSHAKE

PERIPHERALINTERFACE

FIGURE 20 1  . 
PIO BLOCK DIAGRAM

The Port I/O logic is composed of 6 registers with “handshake” control logic as shown in figure 2.0-2. 
The registers include: an 8 bit data input register, an 8 bit data output register, a 2 bit mode control 
register, an 8 bit mask register, an 8 bit input/output select register, and a 2 bit mask control register.

FIGURE 2 0 2
PORT I/O BLOCK DIAGRAM

3



The 2-bit mode control register is loaded by the CPU to select the desired operating mode (byte 
output, byte input, byte bidirectional bus, or bit control mode). All data transfer between the peripheral 
device and the CPU is achieved through the data input and data output registers. Data may be written into 
the output register by the CPU or read back to the CPU from the input register at any time. The handshake 
lines associated with each port are used to control the data transfer between the PIO and the peripheral 
device.

The 8-bit mask register and the 8-bit input/output select register are used only in the bit control 
mode. In this mode any of the 8 peripheral data or control bus pins can be programmed to be an input or 
an output as specified by the select register. The mask register is used in this mode in conjunction with a 
special interrupt feature. This feature allows an interrupt to be generated when any or all of the unmasked 
pins reach a specified state (either high or low). The 2-bit mask control register specifies the active state 
desired (high or low) and if the interrupt should be generated when all unmasked pins are active (AND 
condition) or when any unmasked pin is active (OR condition). This feature reduces the requirement for 
CPU status checking of the peripheral by allowing an interrupt to be automatically generated on specific 
peripheral status conditions. For example, in a system with 3 alarm conditions, an interrupt may be 
generated if any one occurs or if all three occur.

The interrupt control logic section handles all CPU interrupt protocol for nested priority interrupt 
structures. The priority of any device is determined by its physical location in a daisy chain configuration. 
Two lines are provided in each PIO to form this daisy chain. The device closest to the CPU has the highest 
priority. Within a PIO, Port A interrupts have higher priority than those of Port B. In the byte input, byte 
output or bidirectional modes, an interrupt can be generated whenever a new byte transfer is requested by 
the peripheral. In the bit control mode an interrupt can be generated when the peripheral status matches a 
programmed value. The PIO provides for complete control of nested interrupts. That is, lower priority 
devices may not interrupt higher priority devices that have not had their interrupt service routine com­
pleted by the CPU. Higher priority devices may interrupt the servicing of lower priority devices.

When an interrupt is accepted by the CPU in mode 2, the interrupting device must provide an 8-bit 
interrupt vector for the CPU. This vector is used to form a pointer to a location in the computer memory 
where the address of the interrupt service routine is located. The 8-bit vector from the interrupting device 
forms the least significant 8 bits of the indirect pointer while the 1 Register in the CPU provides the most 
significant 8 bits of the pointer. Each port (A and B) has an independent interrupt vector. The least 
significant bit of the vector is automatically set to a 0 within the PIO since the pointer must point to two 
adjacent memory locations for a complete 16-bit address.

The PIO decodes the RETI (Return from interrupt) instruction directly from the CPU data bus so 
that each PIO in the system knows at all times whether it is being serviced by the CPU interrupt service 
routine without any other communication with the CPU.

4



3.0 PIN DESCRIPTION

A diagram of the Z80-PIO pin configuration is shown in figure 3.0-i. This section describes the 
function of each pin.

D-y-Dg Z80-CPU Data Bus (bidirectional, tristate)
This bus is used to transfer all data and commands between the Z80-CPU and the Z80-PIO. 
Dq is the least significant bit of the bus.

B/A Sei Port B or A Select (input, active high)
This pin defines which port will be accessed during a data transfer between the Z80-CPU and 
the Z80-PIO. A low level on this pin selects Port A while a high level selects Port B. Often 
Address bit Aq from the CPU will be used for this selection function.

C/D Sei Control or Data Select (input, active high)
This pin defines the type of data transfer to be performed between the CPU and the PIO. A 
high level on this pin during a CPU write to the PIO causes the Z-80 data bus to be inter­
preted as a command for the port selected by the B/A Select line. A low level on this pin 
means that he Z-80 data bus is being used to transfer data between the CPU and the PIO. 
Often Address bit Aj from the CPU will be used for this function.

CE Chip Enable (input, active low)
A low level on this pin enables the PIO to accept command or data inputs from the CPU 
during a write cycle or to transmit data to the CPU during a read cycle. This signal is 
generally a decode of four I/O port numbers that encompass port A and B. data and control.

$  System Clock (input)
The Z80-PIO uses the standard Z-80 system clock to synchronize certain signals internally. 
This is a single phase clock.

Ml Machine Cycle One Signal from CPU (input, active low)
This signal from the CPU is used as a sync pulse to control several internal PIO operations. 
When Ml is active and the RD signal is active, the Z80-CPU is fetching an instruction from 
memory. Conversely, when M1 is active and IORQ is active, the CPU is acknowledging an 
interrupt. In addition, the Ml signal has two other functions within the Z80-PIO.

1. Ml synchronizes the PIO interrupt logic.

2. When Ml occurs without an active RD or IORQ signal the PIO logic enters a reset 
state.

IORQ Input/Output Request from Z80-CPU (input, active low)
The IORQ signal is used in conjunction with the B/A Select, C/D Select, CE, and RD signals 
to transfer commands and data between the Z80-CPU and the Z80-PIO. When CE, RD’and 
IORQ are active, the port addressed by B/A will transfer data to the CPU (a read operation). 
Conversely, when CE and IORQ are active but RD is not active, then the port addressed by 
B/A will be written into from the CPU with either data or control information as specified 
by the C/D Select signal. Also, if IORQ and Ml are active simultaneously, the CPU is 
acknowledging an interrupt and the interrupting port will automatically place its interrupt 
vector on the CPU data bus if it is the highest priority device requesting an interrupt.

RD Read Cycle Status from the Z80-CPU (input, active low)
If RD is active a MEMORY READ or I/O READ operation is in progress. The RD signal is 
used with B/A Select, C/D Select, CE, and IORQ signals to transfer data from the Z80-PIO 
to the Z80-CPU.



IEI Interrupt Enable In (input, active high)
This signal is used to form a priority interrupt daisy chain when more than one interrupt 
driven device is being used. A high level on this pin indicates that no other devices of higher 
priority are being serviced by a CPU interrupt service routine.

IEO Interrupt Enable Out (output, active high)
The IEO signal is the other signal required to form a daisy chain priority scheme. It is high 
only if IEI is high and the CPU is not servicing an interrupt from this PIO. Thus this signal 
blocks lower priority devices from interrupting while a higher priority device is being 
serviced by its CPU interrupt service routine.

INT interrupt Request (output, open drain, active low)
When INT is active the Z80-PIO is requesting an interrupt from the Z80-CPU.

Aq ■ A-y Port A Bus (bidirectional, tristate)
This 8 bit bus is used to transfer data and/or status or control information between Port A 
of the Z80-P10 and a peripheral device. Aq is the least significant bit of the Port A data bus.

A STB Port A Strobe Pulse from Peripheral Device (input, active low)
The meaning of this signal depends on the mode of operation selected for Port A as follows:

1) Output mode: The positive edge of this strobe is issued by the peripheral to 
acknowledge the receipt of data made available by the PIO.

2) Input mode: The strobe is issued by the peripheral to load data from the peripheral 
into the Port A input register. Data is loaded into the PIO when this signal is active.

3) Bidirectional mode: When this signal is active, data from the Port A output register 
is gated onto Port A bidirectional data bus. The positive edge of the strobe 
acknowledges the receipt of the data.

4) Control mode: The strobe is inhibited internally.

A RDY Register A Ready (output, active high)
The meaning of this signal depends on the mode of operation selected for Port A as follows:

1) Output mode: This signal goes active to indicate that the Port A output register has 
been loaded and the peripheral data bus is stable and ready for transfer to the 
peripheral device.

2) Input mode: This signal is active when the Port A input register is empty and is 
ready to accept data from the peripheral device.

3) Bidirectional mode: This signal is active when data is available in the Port A output 
register for transfer to the peripheral device. In this mode data is not placed on the 
Port A data bus unless A STB is active.

4) Control mode: This signal is disabled and forced to a low state.

Bq - B-, Port B Bus (bidirectional, tristate)
This 8 bit bus is used to transfer data and/or status or control information between Port B 
of the PIO and a peripheral device. The Port B data bus is capable of supplying 1.5ma @
1.5 V to drive Darlington transistors. Bq is the least significant bit of the bus.

B STB Port B Strobe Pulse from Peripheral Device (input, active low)
The meaning of this signal is similar to that of A STB with the following exception:

In the Port A bidirectional mode this signal strobes data from the peripheral device 
into the Port A input register.

B RDY Register B Ready (output, active high)
The meaning of this signal is similar to that of A Ready with the following exception:

In the Port A bidirectional mode this signal is high when the Port A input register is 
empty and ready to accept data from the peripheral device.

6



CPU
DATA < 
BUS

19
20

40
39
38

PORT B/A SEL - 
CONTROL/DATA SEL*

P10 /
CONTROL N CHIP ENABLE 

Mlrrr 37
36

=  35

+5V - 

GND -

26

11

25

INTERRUPT )  
CONTROL S

INT
INT ENABLE IN 

INT ENABLE OUT

23
24
22

15
14
13
12
10

Z80 • P10

18

16

7

* A RDY 

■ A STB

27

28
29
30
31
32
33
34

21
17

• 8 RDY 
- B STB

FIGURE 3.0-1
PIO PIN CONFIGURATION

L PORT A
(  I/O

l PORT B
(  I/O

7



4.0 PROGRAMMING THE PIO

4.1 RESET

The Z80-PIO automatically enters a reset state when power is applied. The reset state performs the 
following functions:

1) Both port mask registers are reset.
2) Port data bus lines are set to a high impedance state and the Ready “handshake” signals are 

inactive (low).
3) The vector address registers are not reset.
4) Both port interrupt enable flip flops are reset.
5) Both port output registers are reset.

In addition to the automatic power on reset, the PIO can be reset by applying an Ml signal without 
the presence of a RD or IORQ signal. If no RD or IORQ is detected during Ml the PIÖ will enter the reset 
state immediately after the Ml signal goes inactive. The purpose of this reset is to allow a single external 
gate to generate a reset without a power down sequence. This approach was required due to the 40 pin 
packaging limitation.

Once the PIO has entered the internal reset state it is held there until the PIO receives a control word 
from the CPU.

4.2 LOADING THE INTERRUPT VECTOR

The PIO has been designed to operate with the Z80-CPU using the mode 2 interrupt response. This 
mode requires that an interrupt vector be supplied by the interrupting device. This vector is used by the 
CPU to form the address for the interrupt service routine of that port. This vector is placed on the Z-80 data 
bus during an interrupt acknowledge cycle by the highest priority device requesting service at that time. 
(Refer to the Z80-CPU Technical Manual for details on how an interrupt is serviced by the CPU). The 
desired interrupt vector is loaded into the PIO by writing a control word to the desired port of the PIO with 
the following format:

D7 D6 D5 D4 D3 D2 D1 DO

V7 V6 V5 V4 V3 V2 VI
£ ____

vector

DO is used in this case as a flag bit which when low causes V7 thru VI to be loaded into the vector register. 
At interrupt acknowledge time, the vector of the interrupting port will appear on the Z-80 data bus exactly 
as shown in the format above.

9



4.3 SELECTING AN OPERATING MODE

Port A of the PIO may be operated in any of four distinct modes: Mode 0 (output mode). Mode 1 
(input mode). Mode 2 (bidirectional mode), and Mode 3 (control mode). Note that the mode numbers have 
been selected for mnemonic signilicance: i.e. 0=0ut, l=In. 2=Bidirectional. Port B can operate in any of 
these modes except Mode 2.

The mode of operation must be established by writing a control word to the PIO in the following 
format:

D7 D6 D5 D4 D3 d : D1 DO

Ml MO X X 1 1 1 1

mode word signifies mode word
to be set

X=unused bit

Bits D7 and D6 from the binary code for the desired mode according to the following table:

D7 D6 Mode

0 0 0 (output)

0 1 1 (input)

1 0 2 (bidirectional)

1 1 3 (control)

Bits D5 and D4 are ignored. Bits D3-D0 must be set to 1111 to indicate “Set Mode” .

Selecting Mode 0 enables any data written to the port output register by the CPU to be enabled onto 
the port data bus. The contents of the output register may be changed at any time by the CPU simply by 
writing a new data word to the port. Also the current contents of the output register may be read back to 
the Z80-CPU at any time through the execution of an input instruction.

With Mode 0 active, a data write from the CPU causes the Ready handshake line of that port to go 
high to notify the peripheral that data is available. This signal remains high until a strobe is received from 
the peripheral. The rising edge of the strobe generates an interrupt (if it has been enabled) and causes the 
Ready line to go inactive. This very simple handshake is similar to that used in many peripheral devices.

Selecting Mode 1 puts the port into the input mode. To start handshake operation, the CPU merely 
performs an input read operation from the port. This activates the Ready line to the peripheral to signify 
that data should be loaded into the empty input register. The peripheral device then strobes data into the 
port input register using the strobe line. Again, the rising edge of the strobe causes an interrupt request (if 
it lias been enabled) and deactivates the Ready signal.

Mode 2 is a bidirectional data transfer mode which uses all four handshake lines. Therefore only Port 
A may be used foi Mode 2 operation. Mode 2 operation uses the Port A handshake signals for output 
control and the Port B handshake signals for input control. Thus, both A RDY and B RDY may be active 
simultaneously. The only operational difference between Mode 0 and the output portion of Mode 2 is that 
data from the Port A output register is allowed on to the port data bus only when A STB is active in order 
to achieve a bidirectional capability.

Mode 3 operation is intended for status and control applications and does not utilize the handshake 
signals. When Mode 3 is selected, the next control word sent to that port defines which of the port data bus 
lines are to be inputs and which are outputs. The format of the control word is shown below:

D7 Do D5 D4 D3 D2 D 1 DO

i/o 7 v o 6 I/O 5 l/0 4 I/°3 i /o 2 I/Oj oO

10



If any bit is set to a one, then the corresponding data bus line will be used as an input. Conversely, if the bit 
is reset, the line will be used as an output.

During Mode 3 operation the strobe signal is ignored and the Ready line is held low. Data may be 
written to a port or read from a port by the Z80-CPU at any time during Mode 3 operation. When reading 
a port, the data returned to the CPU will be composed of input data from port data bus lines assigned as 
inputs plus port output register data from those lines assigned as outputs.

4.4 SETTING THE INTERRUPT CONTROL WORD

The interrupt control word for each port has the following format:

D 7 D 6 D 5 D 4 D 3 D 2 D 1 DO

E nable
Interrupt

A N D /
OR

H igh/
Low

M asks
fo llo w s 0 1 1 1

v /  1 ____________ /\ _____________ \ S
y

used in Mode 3 only signifies interrupt control word

If bit D7=l the interrupt enable flip flop of the port is set and the port may generate an interrupt. If bit 
D7=0 the enable flag is reset and interrupts may not be generated. If an interrupt is pending when the 
enable flag is set, it will then be enabled onto the CPU interrupt request line. Bits D6 . D5, and D4 are used 
only with Mode 3 operation. They are disregarded for ail other modes. These three bus are used to allow for 
interrupt operation in Mode 3 when any group of the I/O lines go to certain defined states. Bit D6 (AND/ 
OR) defines the logical operation to be performed in port monitoring. If bit D6=l an AND function is 
specified and if D6=0, an OR function is specified. For example, if the AND function is specified, all bits 
must go to a specified state before an interrupt will be generated while the OR function will generate an 
interrupt if any specified bit goes to the active state.

Bit D5 defines the active polarity of the port data bus line tobe monitored. If bit D5=l the port data 
lines are monitored for a high state while if D5=0 they will be monitored for a low state.

If bit D4=l the next control word sent to the port will be interpreted as a mask as follows:

D7 D6 D5 D4 D3 D2 D1 DO

m b 7 m b 6 m b 5 m b 4 m b 3 m b 2 M B j MBq

Only those port lines whose mask bit is zero will be monitored for generating an interrupt.

11



5.0 TIMING
5.1 OUTPUT MODE (MODE 0)

Figure 5.0-1 illustrates the timing associated with Mode 0 operation. An output cycle is always started 
by the execution of an output instruction by the CPU. A WR* pulse is generated by the PIO during a CPU 
I/O write operation and is used to latch the data from the CPU data bus into the addressed port’s (A or B) 
output register. The rising edge of the WR* pulse then raises the Ready flag after the next falling edge of 4> 
to indicate that data is available for the peripheral device. In most systems the rising edge of the Ready signal 
can be used as a latching signal in the peripheral device if desired. The Ready signal will remain active until: 
(1) a positive edge is received from the strobe line indicating that the peripheral has taken the data, or (2) 
if already active, Ready will be forced low 1½ $  cycles after the leading edge of IORQ if the port’s output 
register is written into. Ready will return high on the First falling edge of after the trailing edge of IORQ. 
This guarantees that Ready is low when port data is changing. The Ready signal will not go inactive until a 
falling edge occurs on the clock ($) line. The purpose of delaying the negative transition of the Ready signal 
until after a negative clock transition is that it allows for a very simple generation scheme for the strobe 
pulse. By merely connecting the Ready line to the Strobe line, a strobe with a duration of one clock period 
will be generated with no other logic required. The positive edge of the strobe pulse automatically generates 
an INT request if the interrupt enable flip flop has been set and this device is the highest priority device 
requesting an interrupt.

If the PIO is not in a reset state, the output register may be loaded before mode 0 is selected. This allows 
the port output lines to become active in a user defined state.

WR* « RO • CE C/D- IORQ
FIGURE 5.01

MODE 0 (OUTPUT) TIMING

5.2 INPUT MODE (MODE 1)

Figure 5.0-2 illustrates the timing of an input cycle. The peripheral initiates this cycle using the strobe 
line after the CPU has performed a data read. A low level on this line loads data into the port input register 
and the rising edge of the strobe line activates the interrupt request line (INT) if the interrupt enable is set 
and this is the highest priority requesting device. The next falling edge of the clock line (3>) will then reset 
the Ready line to an inactive state signifying that the input register is full and further loading must be 
inhibited until the CPU reads the data. The CPU will in the course of its interrupt service routine, read the 
data from the interrupting port. When this occurs, the positive edge from the CPU RD signal will raise the 
Ready line with the next low going transition of <£, indicating that new data can be loaded into the PIO.
If already active, Ready will be forced low one and one-half 4> periods following the leading edge of IORQ 
during a read of a PIO port. If the user strobes data into the PIO only when Ready is high, the forced state 
of Ready will prevent input register data from changing while the CPU is reading the PIO. Ready will go 
high again after the trailing edge of the IORQ as previously described.

STR08E
PORT INPUT 
(8 BITS)
READY
INT

RO*
RO* »RO CS' C/D IORQ FIGURE 5.02 

MODE 1 (INPUT) TIMING

13



5.3 BIDIRECTIONAL MODE (MODE 2)

This mode is merely a combination of Mode 0 and Mode 1 using all four handshake lines. Since it 
requires all four lines, it is available only on Port A. When this mode is used on Port A, Port B must be set 
to the Bit Control Mode. The same interrupt vector will be returned for a Mode 3 interrupt on Port B and 
an input transfer interrupt during Mode 2 operation of Port A. Ambiguity is avoided if Port B is operated 
in a polled mode and the Port B mask register is set to inhibit all bits.

Figure 5.0-3 illustrates the timing for this mode. It is almost identical to that previously described for 
Mode 0 and Mode 1 with the Port A handshake lines used for output control and the Port B lines used for 
input control. The difference between the two modes is that, in Mode 2, data is allowed out onto the bus 
only when the A strobe is low. The rising edge of this strobe can be used to latch the data into the peripheral 
since the data will remain stable until after this edge. The input portion of Mode 2 operates identically to 
Mode 1. Note that both Port A and Port B must have their interrupts enabled to achieve an interrupt driven 
bidirectional transfer.

WR* »  RD • CE ■ C75 • IORQ

FIGURE 5.0-3
PORT A, MODE 2 (BIDIRECTIONAL) TIMING

The peripheral must not gate data onto a port data bus while A STB is active. Bus contention is avoided 
if the peripheral uses B STB to gate input data onto the bus. The PIO uses the B STB low level to latch this 
data. The PIO has been designed with a zero hold time requirement for the data when latching in this mode so 
that this simple gating structure can be used by the peripheral. That is, the data can be disabled from the bus 
immediately after the strobe rising edge.

5.4 CONTROL MODE (MODE 3)

The control mode does not utilize the handshake signals and a normal port write or port read can be 
executed at any time. When writing, the data will be latched into output registers with the same timing as 
Mode 0. A RDY will be forced low whenever Port A is operated in Mode 3. B RDY will be held low whenever 
Port Bis operated in Mode 3 unless Port A is in Mode 2. In the latter case, the state of B RDY will not be affected.

When reading the PIO, the data returned to the CPU will be composed of output register data from those 
port data lines assigned as outputs and input register data from those port data lines assigned as inputs. The 
input register will contain data which was present immediately prior to the falling edge of RD. See Figure 5.0-4.

* j n j i j n j T i x n l r u ^ ^
\  DATA WORD 1 f  DATA W Q R o T T

U,N T  R A TA  14 ATT* 14 \
OCCURS HERE

IO R Q  ' r
RD <3 r
D0-D 7 ----- — ■ — — - .......... .................... { DATA In) ......-

* Timing Diagram Rafar» to Bit Mode Raad DATA WORD 1 PLACED ON BUS

FIGURE 5.0-4

14



An interrupt will be generated if interrupts from the port are enabled and the data on the port data lines 
satisfies the logical equation defined by the 8-bit mask and 2-bit mask control registers. Another interrupt will 
not be generated until a change occurs in the status of the logical equation. A Mode 3 interrupt will be gener­
ated only if the result of a Mode 3 logical operation changes from false to true. For example, assume that the 
Mode 3 logical equation is an “OR” function. An unmasked port data line becomes active and an interrupt is 
requested. If a second unmasked port data line becomes active concurrently with the first, a new interrupt will 
not be requested since a change in the result of the Mode 3 logical operation has not occurred.

If the result of a logical operation becomes true immediately prior to or during Ml, an interrupt will be 
requested after the trailing edge of Ml.

6.0 INTERRUPT SERVICING

Some time after an interrupt is requested by the PIO, the CPU will send out an interrupt acknowl­
edge (Ml and IORQ). During this time the interrupt logic of the PIO will determine the highest priority 
port which is requesting an interrupt. (This is simply the device with its Interrupt Enable Input high and 
its Interrupt Enable Output low). To insure that die daisy chain enable lines stabilize, devices are inhibited 
from changing their interrupt request status when Ml is active. The highest priority device places the con­
tents of its interrupt vector register onto the Z80 data bus during interrupt acknowledge.

Figure 6.0-1 illustrates the timing associated with interrupt requests. During Ml time, no new 
interrupt requests can be generated. This gives time for the Int Enable signals to ripple through up to four 
PIO circuits. The PIO with IEI high and IEO low during INT A will place the 8-bit interrupt vector of the 
appropriate port on the data bus at this time.

IO R Q  A N D  M 1 I N D I C A T E  ____
I N T E R R U P T  A C K N O W L E D G E  ( I N T A )

FIGURE 6.0-1
INTERRUPT ACKNOWLEDGE TIMING

If an interrupt requested by the PIO is acknowledged, the requesting port is ‘under service’. IEO of 
this port will remain low until a return from interrupt instruction (RETI) is executed while IEI of the port 
is high. If an interrupt request is not acknowledged, IEO will be forced high for one Ml cycle after the PIO 
decodes the opcode ‘ED’. This action guarantees that the two byte RETI instruction is decoded by the proper 
PIO port. See Figure 6.0-2.

Figure 6.0-3 illustrates a typical nested interrupt sequence that could occur with four ports connected 
in the daisy chain. In this sequence Port 2A requests and is granted an interrupt. While this port is being 
serviced, a higher priority port (IB) requests and is granted an interrupt. The service routine for the higher 
priority port is completed and a RETI instruction is executed to indicate to the port that its routine is 
complete. At this time the service routine of the lower priority port is completed.

15



»  \________ /-------------- \

55 \  /  \_______[

IEO

FIGURE 6.0-2
RETURN FROM INTERRUPT CYCLE

1. PRIORITY INTERRUPT DAISY CHAIN BEFORE ANY INTERRUPT OCCURS.

2. PORT 2A REQUESTS AN INTERRUPT AND IS ACKNOWLEDGED.

UNDER SERVICE SERVICE SUSPENDED

3. PORT 1B INTERRUPTS, SUSPENDS SERVICING OF PORT 2A.

SERVICE COMPLETE SERVICE RESUMED

4. PORT 1B SERVICE ROUTINE COMPLETE, "R ETI" ISSUED, PORT 2A SERVICE RESUMED.

SERVICE COMPLETE

5. SECOND "R ETI" INSTRUCTION ISSUED ON COMPLETION OF PORT 2A SERVICE ROUTINE.

FIGURE 6.0-3
DAISY CHAIN INTERRUPT SERVICING

16



7.0 APPLICATIONS

7.1 EXTENDING THE INTERRUPT DAISY CHAIN

Without any external logic, a maximum of four Z80-PIO devices may be daisy chained into a priority 
interrupt structure. This limitation is required so that the interrupt enable status (IEO) ripples through the 
entire chain between the beginning of M l, and the beginning of IORQ during an interrupt acknowledge 
cycle. Since the interrupt enable status cannot change during Ml, the vector address returned to the CPU 
is assured to be from the highest priority device which requested an interrupt.

If more than four PIO devices must be accommodated, a “look-ahead” structure may be used as 
shown in figure 7.0-1. With this technique more than thirty PIO’s may be chained together using standard 
TTL logic.

7.2 I/O DEVICE INTERFACE

In this example, the Z80-PIO is connected to an I/O terminal device which communicates over an 
8 bit parallel bidirectional data bus as illustrated in figure 7.0-2. Mode 2 operation (bidirectional) is selected 
by«sending the following control word to Port A:

D7 D6 D5 D4 D3 D2 D1 DO

1 0 X X 1 1 1 1

Mode Control

17



A RDV 

A STB

B RDV

B STB ■ O

Z80-
CPU

< " d a t a  b u s  >
IORQ

Z80-
PtO

D D D D 
S R R A 
T Q c  V 
B V 

DMl <  PORT DATA BUS

Tn t I/O
TERMINALB/A C/D

---------------- ADDRESS
ADDRESS BUS>iBUS

DECODER

I
FIGURE 7.0*2

EXAMPLE I/O INTERFACE

Next, the proper interrupt vector is loaded (refer to CPU Manual for details on the operation of the 
interrupt).

V7 V6 V5 V4 V3 V2 VI 0

Interrupts are then enabled by the rising edge of the first Ml after the interrupt mode word is set unless 
that M 1 defines an interrupt acknowledge cycle. If a mask follows the interrupt mode word, interrupts are 
enabled by the rising edge of the first Ml following the setting of the mask.

Data can now be transferred between the peripheral and the CPU. The timing for this transfer is as 
described in Section 5.0.

18



7.3 CONTROL INTERFACE

A typical control mode application is illustrated in figure 7.0-3. Suppose an industrial process is to be 
monitored. The occurrence of any abnormal operating condition is to be reported to a Z80-CPU based 
control system. The process control and status word has the following format:

D7 D6 D5 D4 D3 D2 D1 DO

Sp ecia l
T est

T urn
On
P ow er

Power
Failure
Alarm

Halt
P rocess­
ing

T em p .
Alarm

T urn
H eaters
On

Pressur­
ize
S y stem

Pressure
Alarm

PORT A 
BUS

Z80-CPU

A0-A15

A7 SPEC. TEST
Z80P10 A6

>
TURN ON PWR._

m A5 PWR. FAIL ALM.

A4

>
HALT INDUSTRIAL

TEMP. ALM.
PROCESSING
SYSTEM

A2
>

HTRS. ON

A1 PRESS. SYS.

_ Ao PRESS. ALM.
B/A C/D C l

1  ,

AODRESS
D6COOER

FIGURE 7.0-3
CONTROL MODE APPLICATION

The PIO may be used as follows. First Port A is set for Mode 3 operation by wnting the following control 
word to Port A.

D7 D6 D5 D4 D3 D2 D1 DO

1 1 X X 1 1 1 1

Whenever Mode 3 is selected, the next control word sent to the port must be an I/O select word. In this 
example we wish to select port data lines A5, A3 and AO as inputs and so the following control word is 
written:

D7 D6 D5 D4 D3 D2 D1 DO

0 0 1 0 1 0 0 1

Next the desired interrupt vector must be loaded (refer to the CPU manual for details);

D7 D6 D5 D4 D3 D2 D1 DO

V7 V6 V5 V4 V3 V2 VI 0

19



An interrupt control word is next sent to the port:
D7 D6 D5 D4 D3 D2 D 1 DO

1 0 1 1 0 1 1 1

Enable OR A ctiv e Mask S__________ -  y

In terrupts L ogie High F o llo w s in terru p t co n tro l

The mask word following the interrupt mode word is:

D7 D6 D5 D4 D3 D2 D 1 DO

1 1 0 1 0 1 1 0

Selects A5, A3 and AO to be monitored

Now, if a sensor puts a high level on line A5, A3, or AO. an interrupt request will be generated. The mask 
word may select any combination of inputs or outputs to cause an interrupt. For example, if the mask 
word above had been:

D7 D6 D5 D4 D3 D2 D1 DO

0 1 0 1 0 1 1 0

then an interrupt request would also occur if bit A7 (Special Test) of the output register was set.

Assume that the following port assignments are to be used:
E0h = Port A Data 
E1H= Port B Data 
E2r = P°rt A Control 
E3r = P°rt B Control

All port numbers are in hexadecimal notation. This particular assignment of port numbers is convenient 
since A q of the address bus can be used as the Port B/A Select and A j of the address bus can be used as 
the Control/Data Select. The Chip Enable would be the decode of CPU address bits Ay thru Ay (1110 00). 
Note that if only a few peripheral devices are being used, a Chip Enable decode may not be required since 
a higher order address bit could be used directly.

20



8.0 PROGRAMMING SUMMARY

8.1 LOAD INTERRUPT VECTOR

V7 V6 V5 V4 V3 V2 VI 0

8.2 SET MODE

Ml MO X X 1 1 1 1

M q

0 0

0 1

1 0

1 1

Mode

Output
Input
Bidirectional 
Bit Control

When selecting Mode 3, the next word must set the I/O Register:

i /o 7 I /0 6 I /0 5 I/o 4 I /o 3 I/0 2 I/O, I/O0

I/O = 1 Sets bit to Input 
I/O = 0 Sets bit to Output

8.3 SET INTERRUPT CONTROL

Int
Enable

A N D /
OR

H igh / 
L ow

Mask
F o llo w s 0 1 1 1

' --------------------s , ---------------------'
Used in Mode 3 only

If the “mask follows” bit is high, the next control word written to the port must be the mask:

m b7 m b6 m b5 m b4 m b3 MB-, MB, m b0

MB = 0, Monitor bit
MB = 1, Mask bit from being monitored

Also, the interrupt enable flip flop of a port may be set or reset without modifying the rest of the interrupt 
control word by using the following command:

Int
Enable X X X 0 0 1 1

21



Absolute Maximum Ratings
Temperature Under Bias 
Storage Temperature 
Voltage On Any Pin With 

Respect To Ground 
Power Dissipation

Specified operating range.
-05" C to ♦ I 50: C

-0.3 V to *7 V .
<> W

Z80-PIO and Z80A-PIO 
D.C. Characteristics

‘ Comment
Stresses above those listed under " Absolute Maximum 
Rating'* may cause permanent damage to the device.
This is a stress rating only and functional operation of 
the device at these or any other condition above those 
indicated in the operational sections of this specifica­
tion is not nnpl.ed. Exposure to absolute maximum 
rating conditions for extended periods may affect 
device reliability.

Note: All A C  and DC characteristics remain the same for 
the military grade parts except lcc.

Icc * 130 mA

TA - 0° C* to ~03 ( . Vcc = 5 V t  >' > unless otherwise specified

Symbol Parameter Min. Max. Unit Test Condition

VILC Clock input Low Voltage -0 3 .45 V

Iq L 3 :.0 mA 

mA

V,N = 0 to Vcc

v 0 U T  * 2 4 10 Vcc 

v OL'T = 0 4 v
0 <  VIN < Vcc

VIHC Cluck Input High Voltage Vcc-.6 Vcc* 3 V

VIL Input Low Voltage -0.3 OH V

VIH Input High Voltage :.o Vcc V

V0L Output Low Voltage 0 4 V

Xc>

Output High Voltage :.4 V

lc c Power Supply Current TO mA

lLl Input Leakage Current 10 MA

!lo h Tri-State Output Leakage Current m Float 10 ^A

!l o l Tri-State Output Leakage Current in Float -1 0 MA

!ld Data Bus Leakage Current in Input Mode ±10 mA

‘OHD Darlington Drive Current -1.5 3.8 mA V0 H = I 5 V  

R ^ ^ j  s adQ f2 

Port B Only

Package
Configuration

Package Outline

2.Q0Q2 .020 M A X  
.5.0802 .0601

110 (.279» 
TYP.

100 M AX. I.2S4»

-In ?
045 * .015 M IN u u 

(.1142.0381

j d ü U J J a J Ü 'J - J U j d Ü_

N O TE : Dimensions in parentheses are for metric system (cm).

23



A.C. Characteristics Z 8 0 -P I O

TA -  0° C to 70° C, Vcc -  +5 V ± 5%, unless otherwise noted

SIGNAL SYMBOL PARAMETER MIN MAX UNIT COMMENTS
V Clock Period 400 ID nsec

•I* 'W (4>H) Clock Pulse Width. Clock High 170 2000 nsec
'W l‘l>L) Clock Pulse Width, Clock Low 170 2000 nsecV- tf Clock Rise and Fall Times 30 nsec
tH Any Hold Time for Specified Set-Up Time 0 nsec

CS. CE 'S‘P (OS' Control Signal Set-Up Time to Rising Edge of ‘1* During Read 280 nsecETC. or Write Cycle
'DR (D) Data Output Delay from Falling Edge of RD 430 nsec [2)'S4> (D) Data Set-Up Time to Rising Edge of ‘PDurmg Write or M1 50 nsecd0*d7 Cycle C|_ - 50 pF
'Dl (D) Data Output Delay from Falling Edge of IORQ During INTA Cycle 340 nsec 13)
'F (D) Delay to Floating Bus (Output Buffer Disable Time) 160 nsec

IEI 'S (IEI) IEI Set-Up Time to Falling Edge of IORQ During INTA Cycle 140 nsec
lDH (10) IEO Delay Time from Rising Edge of IEI 2 1 0 nsec 15)IEO 'DL (10) IEO Delay Time from Falling Edge of IEI 190 nsec 15] CL*50pF
'DM (10) IEO Delay from Falling Edge of M1 (Interrupt Occurring Just Prior to Ml) See Note A. 300 nsec 15)

IORQ 'S4> (IR) IORQ Set-Up Time to Rising Edge of 4> During Read or Write 250 nsecCycle
Ml 'S4> (Ml) M1 Set-Up Time to Rising Edge of 4> During INTA or M1 Cycle. See Note B. 2 1 0 nsec

RD 'S4> (RD) RD Set-Up Time to Rising Edge of <t> During Read or M1 Cycle 240 nsec

'S (PD) Port Data Set-Up Time to Rising Edge of STROBE (Mode 1) 260 nsec
'DS (PD) Port Data Output Delay from Falling Edge of STROBE 230 nsec 15)A0-A7, (Mode 2)

b0-b7 'F (PD) Delay to Floating Port Data Bus from Rising Edge of STROBE (Mode 2) 200 nsec CL * 50 pF
'01 (PD) Port Data StaDle from Rising Edge of IORQ During WR Cycle (Mode 0) 20 0 nsec 15]

ÄSTB, 'W (ST) Pulse Width, STROBE 150 nsecBSTB (4) nsec
Tnt 'D (IT) INT Delay Time from Rising Edge of STROBE 490 nsec

'0 (IT3) INT Delay Time from Data Match During Mode 3 Operation 420 nsec
ARDY, 'DH (RY) Ready Response Time from Rising Edge of IORQ 'c+ nsec 151BRDY 460 CL = 50 pF

'DL (RY) Ready Response Time from Rising Edge of STROBE V nsec 15)400
NOTES:
A 2.5 tc>(N-2) t0 L (IQ} + tDM (10) + 'S (IEI) 4 TTL Buffer Delay, if any B. M1 must be active for a minimum of 2 clock periods to reset the PI0.
O u tp u t  load c irc u it.

FROM OUTPUT UNDER TEST CR.,

Hl tc * tw (4>H) + 'W (4>L) + V * tf[2] Increase tQR (Q| by 10 nsec for each 50 pF increase in loading up to 200 dF max. 
{3] Increase tQI (D) bv 10 nsec tor each pF ,ncrease ,n '©«ding up to 200 pFmax
[4] For Mode 2 tw (ST)>'S (PD)(5) Increase these values by 2 nsec for each 10 pF increase in loading ud to 100 pF max.

-C R 4 IN914 0 R  E Q U IV A L E N T  
C L * 50 pF ON D q - D ?

* 50 pF O N A L L  O TH E R S

Capacitance
TA = 25° C, f = l MHz

Sym bol
---------------------------------------------------------------- -- -------------1

Parameter Max. Unit Test Condition

C<j) C l o c k  C a p a c i t a n c e 10 P F U n m e a s u r e d  P in s  

R e t u r n e d  t o  G r o u n d
C IN

I n p u t  C a p a c i t a n c e 5 P F

C 0 U T
O u t p u t  C a p a c i t a n c e 10 p F

24



A.C. Timing Diagram

Timing measurements are made at the following voltages, unless otherwise specified: "1" "0“
CLOCK Ycc- .6 45 VOUTPUT 2.0V 0.8V
INPUT 2.0V 0.8VFLOAT AV * -KL5V

-tn, (RY)

MODE 3) 3CZXZ
-t0(IT3)-

- t0 IIT)-

25



A.C. Characteristics Z80A-PIO

TA = 0° C to 70° C, Vcc = +5 V ± 5%, unless otherwise noted

SIGNAL SYMBOL PARAMETER MIN MAX UNIT COMMENTS
*c Clock Period 250 II] nsec

4> lW (4>H) Clock Pulse Width, Clock High 105 20 0 0 nsec
lW (4>L) Clock Pulse Width, Clock Low 105 20 0 0 nsec
tr.tf Clock Rise and Fall Times 30 nsec
'h Any Hold Time tor Specified Set-Up Time 0 nsec

CS.CE lS4> (CS) Control Signal Set-Up Time to Rising Edge of «P During 145 nsecETC. Read or Write Cycle
*DR (D) Data Output Delay From Falling Edge of RD 380 r.sec 1 2]
lS4> (D) Data Set-Up Time to Rising Edge of ‘l> During Write or 50 nsec

Do-D? Ml Cyde CL = 50pF
XD\ (D) Data Output Delay from Falling Edge of IORQ During INTA 250 nsec (3]Cyde
lF (D) Delay to Floating Bus (Output Buffer Disable Time) no nsec

IEI *S (IEI) IEI Set-Up Time toFaiiingedge of IORQ During INTA Cycle 140 nsec
lDH (10) IEO Delay Time from Rising Edge of IEI 160 nsec 15]
lDL 00) IEO Delay Time from Falling Edge of IEI 130 nsec [5] C(_ = 50pFIEO lDM 00) IEO Delay from Falling Edge of M1 (Interrupt Occurring Just 190 nsec 15]Prior to M1) See Note A.

IORQ 'S4> OR) IORQ Set-Up Time to Rising Edge of During Read or 115 nsecWrite Cyde.
Ml TS4> (Ml) Ml Set-Up Time to Rising Edge of 4> During INTA or Ml 90 nsecCycle See Note B
RD lS4> (RD) RD Set-Up Time to Rising Edge of 4> During Read or Ml 115 nsecCyde

*S (PD) Port Data Set-Up Time to Rising Edge of STROBE (Mode 1) 230 nsec
lDS (PD) Port Data Ourput Delay from Falling Edge of STROBE .2 10 nsec (5]Ao-A7. (Mode 2)

Bq '®7 *F (PD) Delay to Floating Port Data Bus from Rising Edge of STROBE 180 nsec CL * 50 pF(Mode 2)
lDI (PD) Port Data Stable from Rising Edge of IORQ During WR 180 nsec 15)Cyde (Mode 0)

ÄSTB, lW (ST) Pulse Width, STROBE 150 nsecBSTB (4] nsec
In t *D (IT) INT Delay time from Rising Edge of STROBE 440 nsec

'D 0T3) INT Delay Time from Data Match During Mode 3 Operation 380 nsec
ARDY, lDH (RY) Ready Response Time from Rising Edge of IORQ V nsec 15]BRDY 410 CL = 50 pF

*DL (RY) Ready Response Time from Rising Edge of STROBE V nsec 15]360

NOTES:
A. 2.5 lc>(N*2) t0L (IQ) ♦ tow (io) ♦ tg (IEI) ♦ TTL Buffer Delay, if any
B. M1 must be active for a minimum of 2 clock periods to reset the PIO. {1) *c * lW (<t>H) ♦ (<t>L) * lr + V12] Increase tpp (qj by 10 nsec tor each 50 pFincrease in loading up to 200 pFmax

(3] Increase toi (D) hY nsec f°r each 50 pF increase in loading up to 200 pFmax.
(4] For Mode 2: tyy (ST)>lS (PD)(5] Increase these values by 2 nsec for each 10pF increase in loading up to 100 pFmax.

26



Z8Ö-CTC
Z80A-CTC

Technical Manual



Copyright © 1977 by Ziiog, Inc. Ail rights reserved. No part of this 
publication may be reproduced, stored in a retrieval system, or transmitted, 
in any form or by any means, electronic, mechanical, photocopying, 
recording, or otherwise, without the prior written premission of Ziiog.

Ziiog assumes no responsibility for the use of any circuitry other than 
circuitry embodied in a Ziiog product. No other circuit patent licenses 
are implied.

TM: Z30 is a trademark of Ziiog, Inc.



TABLE OF CONTENTS

1.0 In tr o d u c t io n ..........................................................

2.0 CTC A rc h i te c tu re .................................................
2.1 Overview.......................................................
2.2 Structure of Channel L ogic ......................

2.2.1 The Channel C o n t r o l ..................
2.2.2 The P re sc a le r ...............................
2.2.3 The Time Constant Register. . .
2.2.4 The Down C o u n te r......................

2.3 Interrupt Control L o g ic ...........................

3.0 CTC Pin D e sc r ip tio n .............................................

4.0 CTC Operating M odes..............................................
4.1 CTC Counter M ode.....................................
4.2 CTC Timer M ode........................................

5.0 CTC P rogram m ing..................................................
5.1 Loading the Channel Control Register . .
5.2 Loading the Time Constant Register . .
5.3 Loading the Interrupt Vector Register. .

6.0 CTC Timing......................................... ....
6.1 CTC Write C y c le ........................................
6.2 CTC Read C y c le ........................................
6.3 CTC Counting and T im in g ......................

7.0 CTC Interrupt S e rv ic in g .........................................
7.1 Interrupt Acknowledge C y c le ..................
7.2 Return from Interrupt C y c l e ..................
7.3 Daisy Cham Interrupt Servicing . . . .

8.0 Absolute Maximum Ratings....................................
8.1 D.C. Characteristics......................................
8.2 Capacitance.................................................
8.3 A.C. Characteristics....................................
8.4 A.C. Timing D iag ram ................................
8.5 A.C. Characteristics....................................
8.6 Package Configuration and Package Outline

1

0
1

J
J>
4
4
4
5

6
9
9

10

1 1
11
14
15

16
16
17
18

19
19
20
21

22

00
23
24
25
26



1.0 INTRODUCTION

The Z80-Counter Timer Circuit (CTC) is a progammabie component with four independent channels 
that provide counting and timing functions for microcomputer systems based on the Z30-CPU. The CPU 
can configure the CTC channels to operate under various modes and conditions as required to interface with 
a wide range of devices. In most applications, little or no external logic is required. The Z80-CTC utilizes 
N-channel silicon gate depletion load technology and is packaged in a 28-pin DIP. The Z80-CTC requires 
only a single 5 volt supply and a one-phase 5 volt clock. Major features of the Z80-CTC include:

•  All inputs and outputs fully TTL compatible.

•  Each channel may be selected to operate in either Counter Mode or Timer Mode.

•  Used in either mode, a CPU-readable Down Counter indicates number of counts-to-go until zero.

•  A Time Constant Register can automatically reload the Down Counter at Count Zero in Counter and 
Timer Mode.

•  Selectable positive or negative trigger initiates time operation in Timer Mode. The same input is 
monitored for event counts in Counter Mode.

•  Three channels have Zero Count/Timeout outputs capable of driving Darlington transistors.

•  Interrupts may be programmed to occur on the zero count condition in any channel.

•  Daisy chain priority interrupt logic included to provide for automatic interrupt vectoring without 
external logic.

1



2.0 CTC ARCHITECTURE

2.1 OVERVIEW

A block diagram of the Z80-CTC is shown in figure 2.0-1. The internal structure of the Z80-CTC con­
sists of a Z80-CPU bus interface, Internal Control Logic, four sets of Counter/Timer Channel Logic, and 
Interrupt Control Logic. The four independent counter/timer channels are identified by sequential numbers 
from 0 to 3. The CTC has the capability of generating a unique interrupt vector for each separate channel 
(for automatic vectoring to an interrupt service routine). The 4 channels can be connected into four con­
tiguous slots in the standard Z80 priority chain with channel number 0 having the highest priority. The CPU 
bus interface logic allows the CTC device to interface directly to the CPU with no other external logic. 
However, port address decoders and/or line buffers may be required for large systems.

DATA 

C ONTROL «

+5V GNI) ‘I*

111
CPU
BUS
10

INTERNAL
CONTROL

LOGIC

INTERNAL BUS

£ z _
/

r - " i

INTERRUPT
CONTROL

LOGIC

-

> /

"3

INTERRUPT CONTROL 
LINES

FIGURE 2.0-1 
CTC BLOCK DIAGRAM

► ZERO COUNT/TIMEOUT 0

■ CLOCKTRIGGER O

ZERO COUNT TIMEOUT I 

CLOCKTRIGGER l

ZERO COUNT/TIMEOUT 2 

CLOCk/TRIGGER 2

CLOCKTRIGGER 3



2 .2  STRUCTURE OF CHANNEL LOGIC

The structure of one of the four sets of Counter/Timer Channel Logic is shown in figure 2.0-2. This logic 
is composed of 2 registers, 2 counters and control logic. The registers are an 8-bit Time Constant Register and 
an 8-bit Channel Control Register. The counters are an 8-bit CPU-readable Down Counter and an 8-bit 
Prescaler.

FIGURE 2.0-2
CHAMNEL BLOCK DIAGRAM

2.2.1 THE CHANNEL CONTROL REGISTER AND LOGIC

The Channel Control Register (8-bit) and Logic is written to by the CPU to select the modes and 
parameters of the channel. Within the enure CTC device there are four such registers, corresponding to the 
four Counter/Timer Channels. Which of the four is being written to depends on the encoding of two channel 
select input pins: CSO and CS1 (usually attached to AO and A1 of the CPU address bus). This is illustrated in 
the truth table below:

CS1 CSO

Ch 0 0 0

Ch 1 0 l

Ch 2 1 0

Ch 3 l 1

3



2.2.1 CONTINUED

In the control word written to program each Channel Control Register, bit 0 is always set, and the other 
7 bits are programmed to select alternatives on the channel’s operating modes and parameters, as shown in the 
diagram below. (For a more complete discussion see section 4.0: “CTC Operating Modes” and section 5.0: 
“CTC Programming.” )

CHANNEL CONTROL REGISTER

D? d 6 D5 D4 D3 d 2 D1 DO

INTERRUPT
ENABLE MODE RANGE SLOPE TRIGGER

LOAD
TIME

CONSTANT
RESET 1

USED IN
TIMER MODE ONLY

2.2.2 THE PRESCALER

Used in the Timer Mode only, the Prescaler is an 8-bit device which can be programmed by the CPU via 
the Channel Control Register to divide its input, the System Clock (¢), by 16 or 256. The output of the Pre­
scaler is then fed äs an input to clock the Down Counter, which initially, and every time it clocks down to 
zero, is reloaded automatically with the contents of the Time Constant Register. In effect this again divides 
the System Clock by an additional factor of the time constant. Every time the Down Counter counts down to 
zero, its output, Zero Count/Timeout (ZC/TO), is pulsed high.

2.2.3 THE TIME CONSTANT REGISTER

The Time Constant Register is an 8-bit register, used in both Counter Mode and Timer Mode, programmed 
by the CPU just after the Channel Control Word with an integer time constant value of 1 through 256. This 
register loads the programmed value into the Down Counter when the CTC is first initialized and reloads the 
same value into the Down Counter automatically whenever it counts down thereafter to zero. If a new time 
constant is loaded into the Time Constant Register while a channel is counting or timing, the present down 
count will be completed before the new time constant is loaded into the Down Counter. (For details of how 
a time constant is written to a CTC channel, see section 5.0: “CTC Programming.”)

2.2.4 THE DOWN COUNTER

The Down Counter is an 8-bit register, used in both Counter Mode and Timer Mode, loaded initially, 
and later when it counts down to zero, by the Time Constant Register. The Down Counter is decremented 
by each external clock edge in the Counter Mode, or in the Timer Mode, by the clock output of the Pre- 
scaler. At any time, by performing a simple I/O Read at the port address assigned to the selected CTC channel, 
the CPU can access the contents of this register and obtain the number of counts-to-zero. Any CTC channel 
may be programmed to generate an interrupt request sequence each time the zero count is reached.

In channels 0, 1, and 2, when the zero count condition is reached, a signal pulse appears at the corres­
ponding ZC/TO pin. Due to package pin limitations, however, channel 3 does not have this pin and so may 
be used only in applications where this output pulse is not required.

4



2.3 INTERRUPT CONTROL LOGIC

The Interrupt Control Logic insures that the CTC acts in accordance with Z30 system interrupt protocol 
for nested priority interrupting and return from interrupt. The priority of any system device is determined by 
its physical location in a daisy chain configuration. Two signal lines (IEI and IEO) are provided in CTC devices 
to form this system daisy chain. The device closest to the CPU has the highest priority; within the CTC. inter­
rupt priority is predetermined by channel number, with channel 0 having highest priority down to channel 3 
which has the lowest priority. The purpose of a CTC-generated interrupt, as with any other peripheral device, 
is to force the CPU to execute an interrupt service routine. According to Z80 system interrupt protocol, lower 
priority devices or channels may not interrupt higher priority devices or channels that have already interrupted 
and have not had their interrupt service routines completed. However, high priority devices or channels may 
interrupt the servicing of lower priority devices or channels.

A CTC channel may be programmed to request an interrupt every time its Down Counter reaches a 
count of zero. (To utilize this feature requires that the CPU be programmed for interrupt mode 2.) Some time 
after the interrupt request, the CPU will send out an interrupt acknowledge, and the CTCs Interrupt Control 
Logic will determine the highest-priority channel which is requesting an interrupt within the CTC device. Then 
if the CTCs IEI input is active, indicating that it has priority within the system daisy chain, it will place an 
8-bit Interrupt Vector on the system data bus. The high-order 5 bits of this vector will have been written to 
the CTC earlier as part of the CTC initial programming process; the next two bits will be provided by the 
CTCs Interrupt Control Logic as a binary code corresponding to the highest-priority channel requesting an 
interrupt; finally the low-order bit of the vector will always be zero according to a convention described 
below.

INTERRUPT VECTOR

D? D6 D5 D4 □3 d 2 D1 DO

V7 V6 V5 V4 V3 X X 0

0 0 CHANNEL 0
0 1 CHANNEL 1
1 0 CHANNEL 2
1 1 CHANNEL 3

This interrupt vector is used to form a pointer to a location in memory where the address of the interrupt 
service routine is stored in a table. The vector represents the least significant 8 bits, while the CPU reads the 
contents of the I register to provide the most significant 8-bits of the 16-bit pointer. The address in memory 
pointed to will contain the low-order byte, and the next highest address will contain the high-order byte of an 
address which in turn contains the first opcode of the interrupt service routine. Thus in mode 2, a single 8-bit 
vector stored in an interrupting CTC can result in an indirect call to any memory location.

Z80 16-BIT POINTER (INTERRUPT STARTING ADDRESS)

I REG 7 BITS FROM n
CONTENTS PERIPHERAL U

\
VECTOR

There is a Z80 system convention that ail addresses in the interrupt service routine table should have 
their low-order byte in an even location in memory, and their high-order byte in the next highest location in 
memory, which will always be odd so that the least significant bit of any interrupt vector will always be even. 
Hence the least significant bit of any interrupt vector will always be zero.

The RETI instruction is used at the end of any interrupt service routine to initialize the daisy chain 
enable line IEO for proper control of nested priority interrupt handing. The CTC monitors the system data 
bus and decodes this instruction when it occurs. Thus the CTC channel control logic will know when the CPU 
has completed servicing an interrupt, without any further communication with the CPU being necessary.

5



3.0 CTC PIN DESCRIPTION

A diagram of the Z80-CTC pin configuration is shown in figure 3.0-1. This section describes the function 
of each pin.

D 7-D 0
Z80-CPU Data Bus (bi-directional, tri-state)

This bus is used to transfer all data and command words between the Z80-CPU and the Z80-CTC. There 
are 8 bits on this bus, of which DO is the least significant.

CS1-CS0
Channel Select (input, active high)

These pins form a 2-bit binary address code for selecting one of the four independent CTC channels for 
an I/O Write or Read. (See truth table below.)

CS1 cso
ChO 0 0
Ch 1 0 1
Ch 2 1 . 0
Ch 3 l 1

CE
Chip Enable (input, active low)

A low level on this pin enables the CTC to accept control words, Interrupt Vectors, or time constant data 
words from the Z80 Data Bus during an I/O Write cycle, or to transmit the contents of the Down Counter to 
the CPU during an I/O Read cycle. In most applications this signal is decoded from the 8 least significant bits 
of the address bus for any of the four I/O port addresses that are mapped to the four Counter/Timer Channels.

Clock (¢)
System Clock (input)

This single-phase clock is used by the CTC to synchronize certain signals internally.

Ml
Machine Cycle One Signal from CPU (input, active low)

When M~1 is active and the RD signal is active, the CPU is fetching an instruction from memory. When 
Ml is active and the IORQ signal is active, the CPU is acknowledging an interrupt, alerting the CTC to place an 
Interrupt Vector on the Z80 Data Bus if it has daisy chain priority and one of its channels has requested an 
interrupt

IORQ
Input/Output Request from CPU (input, active low)

The IORQ signal is used in conjunction with the CE and RD signals to transfer data and Channel Control 
Words between the Z80-CPU and the CTC. During a CTC Write Cycle, IORQ and CE must be true and RD 
false. The CTC does not receive a specific write signal, instead generating its own internally from the inverse 
of a valid RD signal. In a CTC Read Cycle, IORQ, CE and RD must be active to place the contents of the Down 
Counter on the Z80 Data Bus. If IORQ and Ml are both true, the CPU is acknowledging an interrupt request, 
and the highest-priority interrupting channel will place its Interrupt Vector on the Z80 Data Bus.

6



3.0 CTC PIN DESCRIPTION (CONTO)

RD
Read Cycle Status from the CPU (input, active low)

The RD signal is used in conjunction with the IORQ and CE signals to transfer data and Channel Control 
Words between the Z80-CPU and the CTC. During a CTC Write Cycle, IORQ and CE must be true and RD false. 
The CTC does not receive a specific write signal, instead generating its own internally from the inverse of a 
valid RD signal. In a CTC Read Cycle. IORQ, CE and RD must be active to place the contents of the Down 
Counter on the Z80 Data Bus.

IEI
Interrupt Enable In (input, active high)

This signal is used to help form a system-wide interrupt daisy chain which establishes priorities when 
more than one peripheral device in the system has interrupting capability. A high level on this pin indicates 
that no other interrupting devices of higher priority in the daisy chain are being serviced by the Z80-CPU.

IEO
Interrupt Enable Out (output, active high)

The IEO signal, in conjunction with IEI, is used to form a system-wide interrupt priority daisy chain. 
IEO is high only if IEI is high and the CPU is not servicing an interrupt from any CTC channel. Thus this sig­
nal blocks lower priority devices from interrupting while a higher priority interrupting device is being serviced 
by the CPU.

INT
Interrupt Request (output, open drain, active low)

This signal goes true when any CTC channel which has been programmed to enable interrupts has a zero- 
count condition in its Down Counter.

RESET
Reset (input, active low)

This signal stops all channels from counting and resets channel interrupt enable bits in ail control 
registers, thereby disabling CTC-generated interrupts. The ZC/'TO and INT outputs go to their inactive states, 
IEO reflects IEI, and the CTC’s data bus output drivers go to the high impedance state.

CLK/TRG3 -  CLK/TRGO
External Clock/Timer Trigger (input, user-selectable active high or low)

There are four CLK/TRG pins, corresponding to the four independent CTC channels. In the Counter 
Mode, every active edge on this pin decrements the Down Counter. In the Timer Mode, an active edge on this 
pin initiates the timing function. The user may select the active edge to be either rising or failing.

ZC/T02-AC/TOO
Zero Count/Timeout (output, active high)

There are three ZC/TO pins, corresponding to CTC channels 2 through 0. (Due to package pin limitations 
channel 3 has no ZC/TO pin.) In either Counter Mode or Timer Mode, when the Down Counter decrements to 
zero an active high going pulse appears at this pin.

7



3,0 CTC PIN DESCRIPTION

CPU
DATA BUS

CTC
CONTROL

INTERRUPT
CONTROL

r Do

D r

d 2 -

d3 *

d 4 -

d 5^

d6 "

CSq-

csr

ENABLE
rvn-

IORQ“

RD-

RESET-

+5V-

GND-

4>“ 

FnT -

^BLE.
IN

Ö.BLE.
OUT

r » -
^ 3 _

7----
27

* 22
1 8

■ »»

3 21----- -

18»*
20

19*

Z80-CTC

r 16 Z80A-CTC

14^

10̂

. 17

r 24^

15------

<12
13^

11.'■«----

CLK/TRG-j

ZC/T01

z c /t o 2

• CLK/TRG3 )

CHANNEL
SIGNALS

FIGURE 3.0-1
CTC PIN CONFIGURATION

8



4.0 CTC OPERATING MODES

At power-on, the Z80-CTC state is undefined. Asserting RESET puts the CTC in a known state. Before 
any channel can begin counting or timing, a Channel Control Word and a time constant data word must be 
written to the appropriate registers of that channel. Further, if any channel has been programmed to enable 
interrupts, an Interrupt Vector word must be written to the CTC’s Interrupt Control Logic. (For further 
details, refer to section 5.0: “CTC Programming.”) When the CPU has written ail of these words to the CTC 
ail active channels will be programmed for immediate operation in either the Counter Mode or the Timer 
Mode.

4.1 CTC COUNTER MODE

In this mode the CTC counts edges of the CLK/TRG input. The Counter Mode is programmed for a 
channel when its Channel Control Word is written with bit 6 set. The Channel’s External Clock (CLK/TRG) 
input is monitored for a series of triggering edges; after each, in synchronization with the next rising edge of 
4>(the System Clock), the Down Counter (which was initialized with the time constant data word at the start 
of any sequence of down-counting) is decremented. Although there is no set-up time requirement between the 
triggering edge of the External Clock and the rising edge of ¢ , (Clock), the Down Counter will not be decre­
mented until the following pulse. (See the parameter ts(CK) in section 8.3: “ A.C. Characteristics.”) A 
channels’s External Clock input is pre-programmed by bit 4 of the Channel Control Word to trigger the decre­
menting sequence with either a high or a low going edge.

In any of Channels 0, 1, or 2, when the Down Counter is successively decremented from the original 
time constant until Finally it reaches zero, the Zero Count (ZC/TO) output pin for that channel will be pulsed 
active (high). (However, due to package pin limitations, channel 3 does not have this pin and so may only be 
used in applications where this output pulse is not required.) Further, if the channel has been so pre-programmed 
by bit 7 of the Channel Control Word, an interrupt request sequence will be generated. (For more details, see 
section 7.0: “CTC Interrupt Servicing.”)

As the above sequence is proceeding, the zero count condition also results in the automatic reload of 
the Down Counter with the original time constant data word in the Time Constant Register. There is no inter­
ruption in the sequence of continued down-counting. If the Time Constant Register is written to with a new 
time constant data word while the Down Counter is decrementing, the present count will be completed before 
the new time constant will be loaded into the Down Counter.

FIGURE 4.1-0
CHANNEL-COUNTER MODE

9



4.2 CTC TIMER MODE

ln this mode the CTC generates timing intervals that are an integer value of the system cWl0&, The 
Timer Mode is programmed for a channel when its Channel Control Word is written with bit 6 fhe chan­
nel then may be used to measure intervals of time based on the System Clock period. The System is fed 
through two successive counters, the Prescaler and the Down Counter. Depending on the pre-prmed bit 5 
in the Channel Control Word, the Prescaler divides the System Clock by a factor of either 16 orfhe out­
put of the Prescaler is then used as a clock to decrement the Down Counter, which may be pre-j^med 
with any time constant integer between 1 and 256. As in the Counter Mode, the time constant imatically 
reloaded into the Down Counter at each zero-count condition, and counting continues. Also at 0unt, the 
channel’s Time Out (ZC/TO) output (which is the output of the Down Counter) is pulsed, result a uni­
form pulse train of precise period given by the product.

tc * P * TC

where tc is the System Clock period, P is the Prescaler factor of 16 or 256 and TC is the pre-pro^ed time 
constant.

Bit 3 of the Channel Control Word is pre-programmed to select whether timing will be autQcallv 
initiated, or whether it will be initiated with a triggering edge at the channel’s Timer Trigger (CLJtG) input. 
If bit 3 is reset the timer automatically begins operation at the start of the CPU cycle following tlO Write 
machine cycle that loads the time constant data word to the channel. If bit 3 is set the timer begiperation 
on the second succeeding rising edge of 4> after the Timer Trigger edge following the loading of thne 
constant data word. If no time constant data word is to follow then the timer begins operation on second 
succeeding rising edge of $  after the Timer Trigger edge following the control word write cycle. B of the 
Channel Control Word is pre-programmed to select whether the Timer Trigger will be sensitive to sing or 
failing edge. Although there is no set-up requirement between the active edge of the Timer Triggerd the nex’ 
rising edge of 4>. If the Timer Trigger edge occurs closer than a specified minimum set-up time to trising edr 
of ¢ , the Down Counter will not begin decrementing until the following rising edge of $. (See therameter 
ts(TR) in section 8.3: “ A.C. Characteristics” .)

If bit 7 in the Channel Control Word is set, the zero-count condition in the Down Counter, bcdes 
causing a pulse at the channel’s Time Out pin, will be used to initiate an interrupt request sequence.Tor 
more details, see section 7.0: “ CTC Interrupt Servicing.” .)

10



5,0 CTC PROGRAMMING

Before a Z80-CTC channel can begin counting or timing operations, a Channel Control Word and a Time 
Constant data word must be written to it by the CPU. These words will be stored in the Channel Control 
Register and the Time Constant Register of that channel. In addition, if any of the four channels have been 
programmed with bit 7 of their Channel Control Words to enable interrupts, an Interrupt Vector must be 
written to the appropriate register in the CTC. Due to automatic features in the Interrupt Control Logic, one 
pre-programmed Interrupt Vector suffices for all four channels.

5.1 LOADING THE CHANNEL CONTROL REGISTER

To load a Channel Control Word, the CPU performs a normal I/O Write sequence to the port address 
corresponding to the desired CTC channel. Two CTC input pins, namely CSO and CS1, are used to form a 2-bit 
binary address to select one of four channels within the device. (For a truth table, see section 2.2.1: ,4The 
Channel Control Register and Logic” .) In many system architectures, these two input pins are connected to 
Address Bus lines AO and A l, respectively, so that the four channels in a CTC device will occupy contiguous 
I/O port addresses. A word written to a CTC channel will be interpreted as a Channel Control Word, and loaded 
into the Channel Control Register, its bit 0 is a logic 1. The other seven bits of this word select operating 
modes and conditions as indicated in the diagram below. Following the diagram the meaning of each bit will 
be discussed in detail.

FIGURE 5.1-0
CHANNEL BLOCK DIAGRAM

11



5.1 LOADING THE CHANNEL CONTROL REGISTER (CONT'D)

Bit 7=1

The channel is enabled to generate an interrupt request sequence every time the Down Counter reaches a 
zero-count condition. To set this bit to 1 in any of the four Channel Control Registers necessitates that an 
Interrupt Vector also be written to the CTC before operation begins. Channel interrupts may be programmed 
in either Counter Mode or Timer Mode. If an updated Channel Control Word is written to a channel already in 
operation, with bit 7 set, the interrupt enable selection will not be retroactive to a preceding zero-count 
condition.

Bit 7 = 0

Channel interrupts disabled.

Bit 6 = 1

Counter Mode selected. The Down Counter is decremented by each triggering edge of the External Clock 
(CLK/TRG) input. The Prescaler is not used.

Bit 6 = 0

Timer Mode selected. The Prescaler is clocked by the System Clock $ , and the output of the Prescaler in 
turn clocks the Down Counter. The output of the Down Counter (the channel’s ZC/TO output) is a uniform 
pulse train of period given by the product

tc * P * TC

where tc is the period of System Clock 4>, P is the Prescaler factor of 16 or 256, and TC is the time constant 
data word.

Bit 5 = 1

(Defined for Timer Mode only.) Prescaler factor is 256.

Bit 5 = 0

(Defined for Timer Mode only.) Prescaler factor is 16.

12



5,1 LOADING THE CHANNEL CONTROL REGISTER (CONTD)w

Bit 4 = 1

TIMER MODE — positive edge trigger starts timer operation.
COUNTER MODE — positive edge decrements the down counter.

Bit 4 -  0

TIMER MODE -  negative edge trigger starts timer operation.
COUNTER MODE -  negative edge decrements the down counter.

Bit 3=1

Timer Mode Only -  External trigger is valid for starting timer operation after rising edge of T-> of the 
machine cycle following the one that loads the time constant. The Prescaler is decremented 2 clock cycles 
later if the setup time is met, otherwise 3 clock cycles.

Bit 3 = 0

Timer Mode Only — Timer begins operation on the rising edge of T? of the machine cycle following the 
one that loads the time constant.

Bit 2=1

The time constant data word for the Time Constant Register will be the next word written to this 
channel. If an updated Channel Control Word and time constant data word are written to a channel while it is 
already in operation, the Down Counter will continue decrementing to zero before the new time constant is 
loaded into it.

Bit 2 = 0

No time constant data word for the Time Constant Register should be expected to follow. To program 
bit 2 to this state implies that this Channel Control Word is intended to update the status of a channel already 
in operation, since a channel will not operate without a correctly programmed data word in the Time Constant 
Register, and a set bit 2 in this Channel Control Word provides the only way of writing to the Time Constant 
Register.

Bit 1 = 1

Reset channel. Channel stops counting or timing. This is not a stored condition. Upon writing into this 
bit a reset pulse discontinues current channel operation, however, none of the bits in the channel control reg­
ister are changed. If both bit 2 = 1 and bit 1 = 1 the channel will resume operation upon loading a time 
constant.

Bit 1=0

Channel continues current operation.

13



5.2 LOADING THE TIME CONSTANT REGISTER

A channel may not begin operation in either Timer Mode or Counter Mode unless a time constant data 
word is written into the Time Constant Register by the CPU. This data word will be expected on the next I/O 
Write to this channel following the I/O Write of the Channel Control Word, provided that bit 2 of the Channel 
Control Word is set. The time constant data word may be any integer value in the range 1-256. If all eight bits 
in this word are zero, it is interpreted as 256. If a time constant data word is loaded to a channel already in 
operation, the Down Counter will continue decrementing to zero before the new time constant is loaded from 
the Time Constant Register to the Down Counter.

TIME CONSTANT REGISTER

d7 D6 D5 d4 D3 d2 D1 DO

tc7 tc6 TC5 TC4 tc3 tc2 TC1 TCq

MSB LSB

ZERO COUNT/TIMEOUT

V  \ T l  RN \L I L O i  k/T IM ER TRIliOfc R

FIGURE 5.2-0
CHANNEL BLOCK DIAGRAM

14



5.3 LOADING THE INTERRUPT VECTOR REGISTER

The Z80-CTC has been designed to operate with the Z80-CPU programmed for mode 2 interrupt response. 
Under the requirements of this mode, when a CTC channel requests an interrupt and is acknowledged, a 16-bit 
pointer must be formed to obtain a corresponding interrupt service routine starting address from a table in 
memory. The upper 8 bits of this pointer are provided by the CPU's I register, and the lower 8 bits of the 
pointer are provided by the CTC in the form of an Interrupt Vector unique to the particular channel that 
requested the interrupt. (For further details, see section 7.0: “CTC Interrupt Servicing” .)

MODE 2 INTERRUPT OPERATION

INTERRUPT 
SERVICE 
ROUTINE /

/
Desired starting address pointed to by:

LOW ORDER \ 1 REG 7 BITS FROM n
STARTING S HIGH ORDER / CONTENTS PERIPHERAL u

ADDRESS
TABLE

\

The high order 5 bits of this Interrupt Vector must be written to the CTC in advance as part of the 
initial programming sequence. To do so, the CPU must write to the I/O port address corresponding to the CTC 
channel 0, just as it would if a Channel Control Word were being written to that channel, except that bit 0 of 
the word being written must contain a 0. (As explained above in section 5.1, if bit 0 of a word written to a 
channel were set to 1, the word would be interpreted as a Channel Control Word, so a 0 in bit 0 signals the 
CTC to load the incoming word into the Interrupt Vector Register.) Bits 1 and 2, however, are not used when 
loading this vector. At the time when the interrupting channel must place the Interrupt Vector on the Z80 
Data Bus, the Interrupt Control Logic of the CTC automatically supplies a binary code in bits 1 and 2 identi­
fying which of the four CTC channels is to be serviced.

INTERRUPT VECTOR REGISTER 

INTERRUPT VECTOR REGISTER

D 7 De 05 D4 °3 02 01 DO

V7 ve V5 V4 V3 X X 0

SUPPLIED BY g 
USER g 0 CHANNEL 0 (Highest Priority)

1 CHANNEL 1
1 0 CHANNEL 2
1 1 CHANNEL 3 (Lowest Priority)
\ _____/

AUTOMATICALLY INSERTED 
BY Z80-CTC

15



6.0 CTC TIMING

This section illustrates the timing relationships of the relevant CTC pins for the following types of 
operation: writing a word to the CTC, reading a word from the CTC, counting, and timing. Elsewhere in this 
manual may be found timing diagrams relating to interrupt servicing (section 7.0) and an A.C. Timing Diagram 
which quantitatively specifies the timing relationships (section 8.4).

6.1 CTC WRITE CYCLE

Figure 6.0-1 illustrates the timing associated with the CTC Write Cycle. This sequence is applicable to 
loading either a Channel Control Word, an Interrupt Vector, or a time constant data word.

In the sequence shown, during clock cycle T j , the Z80-CPU prepares for the Write Cycle with a false 
(high) signal at CTC input pin RD (Read). Since the CTC has no separate Write signal input, it generates its 
own internally from the false RD input. Later, during clock cycle T% the Z80-CPU initiates the Write Cycle 
with true (low) signals at CTC input pins IORQ (I/O Request) and CE (Chip Enable). (Note: Ml must be false 
to distinguish the cycle from an interrupt acknowledge.) Also at this time a 2-bit binary code appears at CTC 
inputs CS1 and CSO (Channel Select 1 and 0), specifying which of the four CTC channels is being written to, 
and the word being written appears on the Z80 Data Bus. Now everything is ready for the word to be latched 
into the appropriate CTC internal register in synchronization with the rising edge beginning clock cycle T3. No 
additional wait states are allowed.

CTC WRITE CYCLE

CS0 _ V CE

IORQ

C H A N N E L  A D D R E S S

\
X

/

RD

Ml

D A T A

♦AUTOM ATICALLY INSERTED BY Z80-CPU

IN

16



6.2 CTC READ CYCLE

Figure 6.0-2 illustrates the timing associated with the CTC Read Cycle. This sequence is used any time 
the CPU reads the current contents of the Down Counter. During clock cycle T^. the Z80-CPU initiates the 
Read Cycle with true signals at input pins RD (Read), IORQ (I/O Request), and CE (Chip Enable). Also at 
this time a 2-bit binary code appears at CTC inputs CSl and CSO (Channel Select l and 0), specifying which 
of the four CTC channels is being read from. (Note: Ml must be false to distinguish the cycle from an inter­
rupt acknowledge.) On the rising edge of the cycle T3 the valid contents of the Down Counter as of the rising 
edge of cycle T2 will be available on the ZSO Data Bus. No additional wait states are allowed.

CTC READ CYCLE

c s 0_ 1f CE

IORQ

RD

C HA N N E L  A D O R E S S X

/

/

M1

D A T A  --------------------------------------------------

•AUTOM ATICALLY INSERTED BY 230-CPU

17



6.3 CTC COUNTING AND TIMING

Figure 6.0-3 illustrates the timing diagram for the CTC Counting and Timing Modes.

In the Counter Mode, the edge (rising edge is active in this example) from the external hardware con­
nected to pin CLK/TRG decrements the Down Counter in synchronization with the System Clock ¢. As 
specified in the A.C. Characteristics (Section 9 .1 ) this CLK/TRG pulse must have a minimum width and the 
minimum period must not be less than twice the system clock period. Although there is no set-up time require­
ment between the active edge of the CLK/TRG and the rising edge of <£> if the CLK/TRG edge occurs closer 
than a specified minimum time, the decrement of the Down Counter will be delayed one cycle of 4>. Immed­
iately after the decrement of the Down Counter, 1 to 0, the ZC/TO output is pulsed true.

In the Timer Mode, a pulse trigger (user-selectable as either active high or active low) at the CLK/TRG 
pin enables timing function on the second succeeding rising edge of ¢. As in the Counter Mode, the triggering 
pulse is detected asynchronously and must have a minimum width. The timing function is initiated in syncroni 
zation with ¢ , and a minimum set-up time is required between the active edge of the CLK/TRG and the next 
rising edge of <£>. If the CLK/TRG edge occurs closer than this, the initiation of the timer function will be 
delayed one cycle of 4>.

18



7.0 CTC INTERRUPT SERVICING

Each CTC channel may be individually programmed to request an interrupt every time its Down Counter 
reaches a count of zero. The purpose of a CTC-generated interrupt, as for any other peripheral device, is to 
force the CPU to execute an interrupt service routine. To utilize this feature the ZSO-CPU must be programmed 
for mode 2 interrupt response. Under the requirements of this mode, when a CTC channel requests an inter­
rupt and is acknowledged, a 16-bit pointer must be formed to obtain a corresponding interrupt service routine 
starting address from a table in memory. The lower S bits of the pointer are provided by the CTC in the form 
of an Interrupt Vector unique to the particular channel that requested the interrupt. (For further details, refer 
to chapter 8.0 of the Z80-CPU Technical Manual.)

The CTC’s Interrupt Control Logic insures that it acts in accordance with Z80 system interrupt protocol 
for nested priority interrupt and proper return from interrupt. The priority of any system device is determined 
by its physical location in a daisy chain configuration. Two signal lines (IEI and IEO) are provided in the CTC 
and ail Z80 peripheral devices to form the system daisy chain. The device closest to the CPU has the highest 
priority; within the CTC, interrupt priority is predetermined by channel number, with channel 0 having highest 
priority. According to ZSO system interrupt protocol, low priority devices or channels may not interrupt higher 
priority devices or channels that have already interrupted and not had their interrupt service routines completed. 
However, high priority devices or channels may interrupt the servicing of lower priority devices or channels.
(For further details, see section 2.3: Interrupt Control Logic'’.)

Sections 7.1 and 7.2 below describe the nominal timing relationships of the relevant CTC pins for the 
Interrupt Acknowledge Cycle and the Return from Interrupt Cycie. Section 7.3 below discusses a typical 
example of daisy chain interrupt servicing.

7.1 INTERRUPT ACKNOWLEDGE CYCLE

Figure 7.0-1 illustrates the timing associated witli the Interrupt Acknowledge Cycle. Some time after an 
interrupt is requested by the CTC, the CPU will send out an interrupt acknowledge (M l and IORQ). To 
insure that the daisy chain enable lines stabilize, channels are inhibited from changing their interrupt request 
status when Mi is active. Ml is active about two clock cycles earlier than IORQ, and RD is false to distinguish 
the cycle from an instruction fetch. During this time the interrupt logic of the CTC will determine the highest 
priority channel requesting an interrupt. If the CTC Interrupt Enable Input (IEI) is active, then the highest 
priority interrupting channel within the CTC places its Interrupt Vector onto the Data Bus when IORQ goes 
active. Two wait states (T\y*) are automatically inserted at this time to allow the daisy chain to stabilize. 
Additional wait states may be added.

INTERRUPT ACKNOWLEDGE CYCLE 

T1 T2 TW* ____ ] V  ____ J 3 ____

$

D A T A  ----------------------------------------------------------------------------------------- (  V E C T OR

•AUTOMATICALLY INSERTED SY ZSO-CPU

19



7.2 RETURN FROM INTERRUPT CYCLE

Figure 7.0*2 illustrates the timing associated with the RETI Instruction. This instruction is used at the 
end of an interrupt service routine to initialize the daisy chain enable lines for proper control of nested pri­
ority interrupt handling. The CTC decodes the two-bvte RETI code internally and determines whether it is 
intended for a channel being serviced.

When several Z80 peripheral chips are in the daisy chain IEI will become active on the chip currently 
under service when an EDH opcode is decoded. If the following opcode is 4DH, the peripheral being serviced 
will be re-initialized and its IEO will become active. Additional wait states are allowed.

20



7.3 DAISY CHAIN INTERRUPT SERVICING

Figure 7.0-3 illustrates a typical nested interrupt sequence which may occur in the CTC. In this example, 
channel 2 interrupts and is granted service. While this channel is being serviced, higher priority channel 1 
interrupts and is granted service. The service routine for the higher priority channel is completed, and a RET1 
instruction (see section 7.2 for further details) is executed to signal the channel that its routine is complete.
At this time, the service routine of the lower priority channel 2 is resumed and completed.

DAISY CHAIN INTERRUPT SERVICING

1. PRIORITY INTERRUPT DAISY CHAIN 3EF0RE ANY INTERRUPT OCCURS.
UNDER SERVICE

2. CHANNEL 2 REQUESTS AN INTERRUPT ANO IS ACKNOWLEDGED.
UNDER SERVICE SERVICE SUSPEN0E0

3. CHANNEL 1 INTERRUPTS, SUSPENOS SERVICING OF CHANNEL 2.
SERVICE COMPLETE SERVICE RESUMED

4. CHANNEL 1 SERVICE ROUTINE COMPLETE, RETI" ISSUED, CHANNEL 2 SERVICE RESUMEO.
SERVICE COMPLETE

5. SECONO "RETI" INSTRUCTION ISSUED ON COMPLETION OF CHANNEL 2 SERVICE ROUTINE.

21



8.0 ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias 
Storage Temperature 
Voltage On Any Pin With 

Respect To Ground 
Power Dissipation

0° C to 7 0° C 
-65° C to + 150° C

-0.3 V to +7 V 
0.8  W

^Comment
Stresses above those listed under “ Absolute Maximum  
Rating” may cause permanent damage to the device.
This is a stress rating only and functional operation o f  
the device at these or any other condition  above those 
indicated in the operational sections o f  this specification  
is not im plied. Exposure to absolute m axim um  rating 
conditions for extended periods may affect device re­
liability. *

8.1 D.C. CHARACTERISTICS

TA = 0°C to 70°C , Vcc = 5V i  5% unless otherwise specified

Z80-CTC
Symbol Parameter Min Max Unit Test Condition

V ILC Clock Input Low Voltage -0.3 .45 V

Iq l  = 2 mA 

l0 H ä -250 mA 
Tq = 400 nsec 

V jn » 0 to V qc 

v OUT *  2.4 to V qq 

v OUT *  0.4V

V IHC Clock Input High Voltage [1] VCc " ”6 VCC + -3 V

V|L Input Low Voltage -0.3 0.8 V

V|H Input High Voltage 2.0 Vcc V

VOL Output Low Voltage 0.4 V

v OH Output High Voltage 2.4 V

'cc Power Supply Current 120 mA

'Ll Input Leakage Current 10 mA

' l o h Tri-State Output Leakage Current in Float 10 mA

' l o l Tri-State Output Leakage Current in Float -10 mA

'OHD Darlington Drive Current -1.5 mA V 0 H s 1.5V 

r EXT = 390ft

Z80A-CTC
Symbol Parameter Min Max Unit Test Condition

v l LC Clock Input Low Voltage -0.3 .45 V

Iq l  * 2 mA 

Iq H ä -250 mA 

T q -  250 nsec 

V|j\j = 0 to Vcc  

v OUT = 2.4 to V qc 

V0 U7 *  0.4V

V IHC Clock Input High Voltage [1] V qc - -6 Vqc + -3 V

VlL Input Low Voltage -0.3 0.8 V

V|H Input High Voltage 2.0 Vcc V

v OL Output Low Voltage 0.4 V

v OH Output High Voltage 2.4 V

'cc Power Supply Current 120 mA

'Ll Input Leakage Current 10 mA

' lo h Tri-State Output Leakage Current in Float 10 uA

' l o l Tri-State Output Leakage Current in Float -10 uA

'OHD Darlington Drive Current -1.5 mA V OH = 1.5V

r e x t  *  39on

8.2 CAPACITANCE

TA = 25° C, f = 1 MHz

Sym bol Parameter Max. Unit Test C ondition

C<j> Clock C apacitance 20 pF U nm easured Pins 

R eturned to G roundClN Input Capacitance 5 PF

c O UT O utput C apacitance 10 pF



8,3 A.C. CHARACTERISTICS Z80-CTC

T/*-* 0° C to 70° C, Vcc = +5 V ± 5%, unless otherwise noted

Signali Symbol Parameter Min
!-----------------------

Max Unit Comments

*C Clock Period 400 Mi ns I
tWl<t>H) Clock Pulse Width, Clock High 170 2000 ns

Clock Puise Width, Clock Low 170 2000 ns
f̂ Clock Rise and Fall Times 30 ns

'H Any Hold Time for Specified Setup Time 0 ns

CS, CE. etc. 'SO (cs) Control Signal Setup Time to Rising Edge of During Read 
or Write Cycle

160 ns

6 D O Data Output Delay from Rising Edge of RD During Read 
Cycle

480 ns ; 21

tso>(D) Data Setup Time to Rising Edge of 4* During Write or iV11 60 ns

0 0 - ° 7
t 0 | ( 0 )

Cycle
Data Output Delay from Falling Edge of IORQ During 
INTA Cycle

340 ns 12!

t p ( 0 ) Delay to Floating 8us (Output Buffer Disable Time) 230 ns

IF ’ ts (IE I) IEI Setup Time to Falling Edge of IORQ During INTA 200 ns
Cycle

tDH U 0  > IEO Delay Time from Rising Edge of IEI 220 ns (31

IEO tQL(,0) IEO Delay Time from Falling Edge of IEI 190 ns (31
toM^O) IEO Delay from Falling Edge of M1 (Interrupt Occurring 

just Prior to M l)
300 ns (31

IORQ ts<j>(lR> IORQ Setup Time to Rising Edge of During Read or 
Write Cycle

250 ns

m
ts<j>(Ml) M1 Setup Time to Rising Edge of <t> During INTA or M1 210 ns

Cycie

RD t$<j>(RD) RD Setup Time to Rising Edge of <P During Read or M1 240 ns
Cycle

Jn t 'DCK( i t > INT Delay Time from Rising Edge of CLK/TRG 2 x q {<\>) + 200 Counter Mode
tD<t>(IT) INT Delay Time from Rising Edge of <P t c (‘1*) + 200 Timer Mode

tc <CK) Clock Period 2t(M<(>) Counter Mode
tf. tf Clock and Trigger Rise and Fall Times 50
tg(CK) Clock Setup Time to Rising Edge of <1> for Immediate Count 210 Counter Mode
ts(TRI Trigger Setup Time to Rising Edge of 4> for Enabling of 210 Timer Mode

C L K /T R G o - 3
tw(CTH)

Prescaler on Following Rising Edge of 
Clock and Trigger High Pulse Width 200 Counter and

tw (CTU Clock and Trigger Low Pulse Width 200
Timer Modes 
Counter and 
Timer Modes

2C/TO0_2

tO H <2C )

tQL'ZC)

ZC/TO Oelay Time from Rising Edge of <P, ZC/TO High 190 Counter and 
Timer Modes

ZC/TO Delay Time from Falling Edge of 1>, ZC/TO Low 190 Counter and 
Timer Modes-

Notes: (1 j Zq = tw (#H) + tw (4>U + tr + tf .
[2] Increase delay by 10 nsec for each 50 pF increase in loading, 200 pF maximum for data lines and 100 pF for control iines.
[3] Increase delay by 2 nsec for e3Ch 10 pF increase in loading, 100 pF maximum
[4] RESE i must be active for a minimum of 3 clock cycles.

OUTPUT LOAD CIRCUIT

TEST POINT O vcc
? > R, 5 2.1 KL1PROM OUTPUT Q d ▲UNOen TEST w f ^ CR,-CR4 1N914 OR EQUIVALENT

1 Cft, 'sT f Cr2 ' Cu = 50 pF ON ALL PINS
_ JL

T  c’- (J) 250 V Cft3
JL 1 Y  CR4

~ _L
23



5

8.4 A.C. TIMING DIAGRAM
"1"

CLOCK VCC - .6V 
OUTPUT 2.0V

riming measurements are made at the following voltages, unless otherwise specified: INPUT 2 0V

FLOAT AV

"0" 
.45V 
.8V 

.8 V 

±0.5V



8,5 A.C. CHARACTERISTICS Z80A-CTC

T/ 0° C to 70° C, Vcc =+5 V i  5%, unless otherwise noted

Signal Symbol Parameter Min Max Unit Comments

*C Clock Period 250 (11 ns

4>
tw (<t>H) Clock Pulse Width, Clock High 105 2000 ns

Clock Pulse Width, Clock Low 105 2000 ns
W f Clock Rise and Fall Times 30 ns

tH Any Hoid Time for Specified Setup Time 0 ns

CS, CE, etc t$ (p[C S ) Control Signal Setup Time to Rising Edge of <t> During Read 
or Write Cycle

60 ns *

tDR<DI Data Output Delay from Falling Edge of RO During Read 
Cycle

380 ns (2]

t$<t)(D) Data Setup Time to Rising Edge of <X> During Write or M1 50 ns
o o -o 7

t0 ,(D)
Cycle
Data Output Delay from Falling Edge of IORG During 
INTA Cycle

160 ns (2]

tp(D) Delay to Floating 8us (Output Buffer Disable Time) 110 ns

IEI tg(IEI) IEI Setup Time to Falling Edge of IORQ During INTA 
Cycle

140 ns

tDH^O) IEO Delay Time from Rising Edge of IEI 160 ns (3]
IEO IEO Oelay Time from Falling Edge of IEI 130 ns (3]

t o u \ ( \ 0 ) IEO Delay from Falling Edge of M1 (Interrupt Occurring 190 ns (3]
just Prior to M1)

IORQ t$<t)(IR) IORQ Setup Time to Rising Edge of <t> During Read or 115 ns
Write Cycle

Ml t$<t>(M1) M1 Setup Time to Rising Edge of <t> During INTA or M1 90 ns
Cycle

RD t$<j)(RD) RD Setup Time to Rising Edge of <t> During Read or M1 115 ns
Cycle

\N T tDCK(IT) INT Delay Time from Rising Edge of CLK/TRG 2tc<<t>) + 140 Counter Mode
to<j>(IT) INT Delay Time from Rising Edge of <t> ;C<4>) + 140 Timer Mode

tC(CK) Clock Period 2 t£(<t>) Counter Mode
tr. tf Clock and Trigger Rise and Fall Times 30
tS<CK) Clock Setup Time to Rising Edge of <t> for Immediate Count 130 Counter Mode
ts(TR) Trigger Setup Time to Rising Edge of for enabling of 130 Timer Mode

CLK/TRGq- 3
tw <CTH)

Prescaler on Following Rising Edge of <t> 

Clock and Trigger High Pulse Width 120 Counter and

tvy(CTL) Clock and Trigger Low Pulse Width 120
Timer Modes 
Counter and 
Timer Modes

tDH(ZC) ZC/TO Delay Time from Rising Edge of ¢ , ZC/TO High 120 Counter and

2C /T00—2 tDL<2C) ZC/TO Delay Time from Rising Edge of <t>, ZC/TO Low 120
Timer Modes 
Counter and 
Timer Modes

Notes: (1] = tw ($H) + tw (4>D + tf + tf .
(2] Increase delay by 10 nsec for each 50 pF increase in loading, 200 pF maximum for data lines and 100 pF for control lines.
(3] Increase delay by 2 nsec for each 10 pF increase in loading, 100 pF maximum.
(4] RESET must be active for a minimum of 3 clock cycles.

OUTPUT LOAD CIRCUIT

Cfl1 - CR4 1N914 OR E Q U IV A LE N T  
C L * 50 pF  ON A L L  PINS

25



Ordering Information

C -  Ceramic Example:
P -  Plastic
S -  Standard 5V±5%, 0° to 70°C Z80-CTC CS (Ceramic-Standard Range)
E -  Extended 5V±5%, -40° to 85°C Z80A-CTC PS (Plastic-Standard Range, 4 MHz)
M -  Military 5V±10%, -55° to 125°C

ZILOG Z80 MICROCOMPUTER SYSTEM COMPONENT FAMILY

•  Z80. Z80A-CPU CENTRAL PROCESSOR UNIT

•  Z80. Z80A-PIO PARALLEL I/O

•  Z80. Z80A-CTC COUNTER/TIMER CIRCUIT

•  Z80. Z80A-DMA DIRECT MEMORY ACCESS

•  Z80. Z80A-SIO SERIAL I/O

•  Z6104 4K x 1 STATIC R.AM

• Z6116 16K x 1 DYNAMIC RAM

—



10460 Bubb Road 
Cupertino, California 95014 
Telephone (408) 446-4666 

TWX 910-338-7621



Z-80’ SIO
TECHMCAL MANUAL

f



Z80-SIO Technical Manual

Contents

General Information .......................................................... 1
Pin D escription....................................................................  2

Architecture ............................................................................  5
The Data P a th ......................................................................  5
Functional Description........................................................  7

Asynchronous O peration ....................................................  9
Asynchronous Transm it......................................................  9
Asynchronous Receive..........................................................10

Synchronous Operation..........................................................13
Synchronous T ransm it..........................................................14
Synchronous Receive ............................................................17

SDLC(HDLC) Operation ......................................................... 21
SDLC Transmit....................................................................... 21
SDLC Receive......................................................................... 25

Z80-SIO Programming......................................................... 29
Write Registers....................................................................... 29
Read Registers....................................................................... 34

Applications............................................................................. 59
Timing..................................................  41

t Copyright !9?8 by Ziiog Inc. All rights reserved.



General In fo rm ation

The Z80-SIO (Serial Input/Output) is a dual-channel 
multi-function peripheral component designed to satisfy 
a wide variety of serial data communications require­
ments in microcomputer systems. Its basic function is a 
serial-to-parallel, parallel-to-serial convener/controller, 
but—within that role—it is configurable by systems 
software so its “ personality” can be optimized for a 
given serial data communications application.

The Z80-SIO is capable of handling asynchronous 
and synchronous byte-oriented protocols such as IBM 
Bisync, and synchronous bit-oriented protocols such as

hdlc and IBM 5DLC. This versatile device can also be 
used to support virtually any other serial protocol for 
applications other than data communications (cassette 
or floppy disk interfaces, for example).

The Z80-SIO can generate and check CRC codes in 
any synchronous mode and can be programmed to 
check data integrity in various modes. The device also 
has facilities for modem controls in both channels. In 
applications where these controls are not needed, the 
modem controls can be used for general-purpose

STRUCTURE

-channel silicon-gate depietion-load technology

■ 40-pin dip

■ Single 5 V power supply

■ Single-phase 5 V clock

■ All inputs and outputs ttl compatible

FEATURES

■ Two independent full-duplex channels

■ Data rates in synchronous or isosynchronous modes:

• 0-530K bits/second with 2.5 MHz system clock 
rate

• 0-880K bits/second with 4.0 MHz system clock 
rate

■ Receiver data registers quadruply buffered; trans­
mitter doubly buffered.

■ Asynchronous features:
• 5, 6, 7 or 8 bits/character
• 1, 1 Vi or 2 stop bits
• Even, odd or no parity
• x 1, x 16, x32  and x64  clock modes
• Break generation and detection
• Parity, overrun and framing error detection

-

DATA

C O N T R O L

- 5V C M O S '
i ! i

/ /
IN T E R N A L C H A N N E L  A
C O N TR O L REA O /W RITE

LO G IC R E G IS T E R S

V*__________4 L.

/
/ 1 s

IN T E R R U P T
C O N T R O L

LO G IC

/

C H A N N E L  B 
REA O /W RITE 
R E G IS T E R S

T 7

T T
IN T E R R U P T

C O N TR O L
U N E S

V i

O IS C R ETE
C O N T R O L  k

STATU S
(C H . A)

7

7
O IS C R ETE 

C O N T R O L k 
STATU S 
(C H . B)

7

S E R IA L  OA TA  

C H A N N E L  C LO C X S  
SYNC
WÄJT7SSÄÜY

M O D EM  OR 
O T H ER  C O N TR O LS

M O D EM  OR 
O T H ER  C O N TR O LS

S E R IA L  OATA

C H A N N E L  C LOCXS 
SYNC
W A IT R E A O Y

Z80-S1O BLOCK DIAGRAM

1



■ B inary synchronous features:
• Internal or external character synchronization
• One or two sync characters in separate registers
• Automatic sync character insertion
• CRC generation and checking

■ hdlc  and IBM SDLC features:
• Abort sequence generation and detection
• Automatic zero insertion and deletion
• Automatic flag insertion between messages
• Address field recognition
• I-field residue handling
• Valid receive messages protected from overrun
• CRC generation and checking

■ Separate modem control inputs and outputs for both 
channels

■ CRC-16 or CRC-CCITT block check

■ Daisy-chain priority interrupt logic provides auto­
matic interrupt vectoring without external logic

■ Modem status can be monitored

Pin Description

D0-D 7. S ystem  D a ta  B us  (bidirectional, 3-state). The 
system data bus transfers data and commands between 
the CPU and the Z80-SIO. Do is the least significant bit.

B /A . C han n el A  O r B  S elect (input, High selects Chan­
nel B). This input defines which channel is accessed

during a data transfer between the CPU and the 
Z80-SIO. Address bit Ao from the CPU is often used for 
the selection function.

C /D . C o n tro l O r D a ta  Select (input, High selects Con­
trol). This input defines the type of information trans­
fer performed between the CPU and the Z80-SIO. A 
High at this input during a CPU write to the Z80-SIO 
causes the information on the data bus to be interpreted 
as a command for the channel selected by B/X. A L o w  at 
c /D  means that the information on the data bus is data. 
Address bit Ai is often used for this function.

CE. C h ip  E n ab le  (input, active Low). A Low level at 
this input enables the Z80-SIO to accept command or 
data inputs from the CPU during a write cycle, or to 
transmit data to the CPU during a read cycle.

S ystem  C lo ck  (input). The Z80-SIO uses the stand­
ard Z80A System Clock to synchronize internal signals. 
This is a single-phase dock.

M l. M ach in e  C ycle  O ne  (input from Z80-CPU, active 
Low). When Ml is active and RD is also active, the 
Z80-CPU is fetching an instruction from memory; when 
mi is active while IORQ is active, the Z80-SIO accepts Ml 
and IORQ as an interrupt acknowledge if the Z80-SIO is 
the highest priority device that has interrupted the 
Z80-CPU.

IORQ. Input/OutputRequest (input from CPU, active
Low). IORQ is used in conjunction with B/X, c /D , CE 
and RD to transfer commands and data between the CPU 
and the Z80-SIO. When CE, RD and IORQ are all active,

CPU 
O A T A  <aus

sio
CONTROL.PROM
CPU

r
I R E S E T

D A IS Y  f  
chain J  .,,
i n t e r r u p t  ^  111
CONTROL k  IEO

> C H - A

R T SS  
CTS 8 L  M O D E M  
Q T R g  C C O N T R O L  
0 C 0 8

Figure 1. 280-SIO/O Pin Configuration

2



the channel selected by B/Ä transfers data to the CPU (a 
r r A operation). When CE and IORQ are active, but RD is 
itw tive, the channel selected by B/Ä is written to by the 
CPU with either data or control information as specified 
by c/D. As mentioned previously, if IORQ and mi are ac­
tive simultaneously, the CPU is acknowledging an inter­
rupt and the Z80-SIO automatically places its interrupt 
vector on the CPU data bus if it is the highest priority 
device requesting an interrupt.

R D .R e a d C yc le  S tatus, (input from CPU, active Low). 
If RD is active, a memory or I/O read operation is in pro­
gress. RD is used with b/ a , ce and IORQ to transfer data 
from the Z80-SIO to the CPU. * II

RESET. R ese t (input, active Low). A Low reset dis­
ables both receivers and transmitters, forces TxDA and 
TxDB marking, forces the modem controls High and dis­
ables all interrupts. The control registers must be re­
written after the Z80-SIO is reset and before data is 
transmitted or received.

II In te rru p t E nable In  (input, active High). This sig- 
naTis used with IEO to form a priority daisy chain when 
there is more than one interrupt-driven device. A High 
on this line indicates that no other device of higher pri­
ority is being serviced by a CPU interrupt service routine.

IEO. In te rru p t E n ab le  O u t (output, active High). IEO 
is High only if IEI is High and the CPU is not servicing an 
interrupt from this Z80-SIO. Thus, this signal blocks 
lower priority devices from interrupting while a higher 
priority device is being serviced by its CPU interrupt ser­
vice routine.

INT. In te rru p t R eq u est (output, open drain, active

Low). When the Z80-SIO is requesting an interrupt, it 
pulls int Low.

W /RDYA, W /RDYB. W ait/R W a it/R e a d y  B  
(outputs, open drain when programmed for Wait func­
tion, driven High and Low when programmed for 
Ready function). These dual-purpose outputs may be 
programmed as Ready lines for a DMA controller or as 
Wait lines that synchronize the CPU to the Z80-SIO data 
rate. The reset state is open drain.

CTSA, CTSB. C lear To S en d  (inputs, active Low). 
When programmed as Auto Enables, a Low on these 
inputs enables the respective transmitter. If not pro­
grammed as Auto Enables, these inputs may be pro­
grammed as general-purpose inputs. Both inputs are 
Schmitt-trigger buffered to accommodate slow-risetime 
inputs. The Z80-SIO detects pulses on these inputs and 
interrupts the CPU on both logic level transitions. The 
Schmitt-trigger inputs do not guarantee a specified 
noise-level margin.

DCDA, DCDB. D ata  C arrier D e te c t (inputs, active 
Low). These signals are similar to the cts inputs, except 
they can be used as receiver enables.

RxDA. RxDB. R ece ive  D a ta  (inputs, active High).

TxDA, TxDB. T ran sm it D a ta  (outputs, active High).

RxCA, RxCB.* R ece iver  C lo ck s  (inputs). See the fol­
lowing section on bonding options. The Receive Clocks 
may be 1, 16, 32 or 64 times the data rate in asynchro­
nous modes. Receive data is sampled on the rising edge 
of RxC.
•See footnote on next page.

s

$10
CONTROL
FROM
CPU

r
<'

DAISY <  
CHAIN J  
INTERRUPT s  
CONTROL k

01
o?
03
0«
°5
0«
07

_5
RESET

Ml
IORQ

RO

- 5V 
GNO

<t>
INT
IEI

IEO

1 40 ■ 12
1 ( 13

15 (
2

280*510/1

14
38 ( 11

10 x
*  37 *

174 "

35 B

t  18
18 ,
1*

21

( 2*
5 (

36
32 L ( 27

9 f
25 ,
25

31 B 4 25 (

n  » 30 (

t  5 24 f
5 | 23
7

j  22

A A

RlOA
RfCA
TlOA
TiCA
STNCA
W/ROYA

RTSA ^
CTSA l MODEM
QTRA r CONTROL
OCDA !

Rx08
RxCB
TiOB
TiCB
STNCB
W/ROYB

RTS8 >  
CTS8 >  
OCOI J

MOOEM
CONTROL

"I

N

>  CH-8

33

C/D 8/Ä

Figure 2. Z80-SIO/1 Pin Configuration

3



TxCA. TxCB.* T ran sm itter C lo ck s  (inputs). See sec­
tion on bonding options. In asynchronous modes, the 
Transmitter clocks may be 1 , 16, 32 or 64 times the data 
rate. The multiplier for the transmitter and the receiver 
must be the same. Both the T xC  and RxC inputs are 
Schmitt-trigger buffered for relaxed rise- and fail-time 
requirements (no noise margin is specified). T xD  changes 
on the falling edge of T x C .

RTSA, RTSB. R eq u est To S (outputs, active Low). 
When the RTS bit is set,, the RTS output goes Low. When 
the RTS bit is reset in the Asynchronous mode, the out­
put goes High after the transmitter is empty. In Syn­
chronous modes, the RTS pin strictly follows the state of 
the RTS bit. Both pins can be used as general-purpose 
outputs.

DTRA, DTRB. D a ta  T erm inal R ea d y  (outputs, active 
Low). See note on bonding options. These outputs fol­
low the state programmed into the D T R  bit. They can 
also be programmed as general-purpose outputs.

SYNC A, SYiNC B. S yn ch ron iza tion  (inputs/outputs, 
active Low). These pins can act either as inputs or out­
puts. In the Asynchronous Receive mode, they are in­
puts similar to crs  and d c d . In this mode, the transi­
tions on these lines affect the state o f the Sync/Hunt 
status bits in r r o . In the External Sync mode, these lines 
also act as inputs. When external synchronization is 
achieved, s y n c  must be driven Low on the second rising 
edge of R xC  after that rising edge o f R xC  on which the 
last bit o f the sync character was received. In other 
words, after the sync pattern is detected, the external 
logic must wait for two full Receive Clock cycles to acti­
vate the s y n c  input. Once s y n c  is forced Low, it is wise

to keep it Low until the C P U  informs the external sync 
logic that synchronization has been lost or a n e w  mes­
sage is about to start. Character assembly begins on the 
rising edge of RxC that immediately precedes the falling 
edge of s y n c  in the External Sync mode.

In the Internal Synchronization mode (Monosync 
and Bisync), these pins act as outputs that are active 
during the part o f the receive clock (R xC ) cycle in which 
sync characters are recognized. The sync condition is 
not latched, so these outputs are active each time a sync 
pattern is recognized, regardless of character bounda­
ries.

BONDING OPTIONS

The constraints of a 40-pin package make it impossible 
to bring out the Receive Clock, Transmit Clock, Data 
Terminal Ready and Sync signals for both channels. 
Therefore, Channel B must sacrifice a signal or have 
two signals bonded together. Since user requirements 
vary, three bondings options are offered:

• Z80-SIO/0 has all four signals, but T xC B  and R xC B  

are bonded together (Fig. 1).
• Z80-SIO/1 sacrifices D T R B  and keeps T x C B , R xC B  

and s y n c b  (Fig. 2).
• Z8Q-SIO /2 sacrifices s y n c b  and keeps T x C B , R xC B  

and d t r b  (Fig. 3).

CPU
DATA
BUS

<
i

r
S10
CONTROL
FROM
CPU

<;
l

OAIST f  
CHAIN > 
INTERRUPT >  
CONTROL 's.

DO
»1
°2
°3
0|

0?

cl
REsrr

Ml
IORQ

R0
5V

GNO

INT
IEI
IEO

i 40 r

z»-sio/2

12
1 i 13

1 39 | 15 B
2 14

4 31 | . 11 .
i 3 ■ 1 1° j
1 37 M

17*

35 %

■ 1116 f
• 19

21

i  29
i  m

36 B
32 B l 28
9 r

- 28 »27 "
31 B * 30 *
20 B

24 r
J 5 ,  n  _

6 % 25 w
7 22

33 I 34

RiOA
RiCA
TiOA
T»CA
SYNCA
W/ROYA

RTSA I
ctsa  L mooem
ÖTRÄ r  CONTROL
DCOA !

RiQ8
RxCI
TxM
TxC8
WiROY*

RTSl "1
CTSI L mooem
QTRg r  CONTROL 
0C08 I

j
i!
J> CH*A

N

I
I

C/O B.Ä

Figur# 3. Z80-SIO/2 Pin Configuration

•T h e se  d o c k s  m ay be d irectly  driven by the Z 80-C T C  (C ou n ter T im er C ircu it) for  fu lly  p rogram m ab le  baud rate gen eration .

4



Architecture

The device internal structure includes a Z80-CPU inter­
face, internal control and interrupt logic, and two full- 
duplex channels. Associated with each channel are read 
and write registers, and discrete control and status logic 
that provides the interface to modems or other external 
devices.

The read and write register group includes five 8-bit 
control registers, two sync-character registers and two 
status registers. The interrupt vector is written into an 
additional 8-bit register (Write Register 2) in Channel B 
that may be read through Read Register 2 in Channel B. 
The registers for both channels are designated in the text 
as follows:

W R O -W R ?  —  Write Registers 0 through 7
rro- rr;  — Read Registers 0 through 2 

V '
The bit assignment and functional grouping of each 
register is configured to simplify and organize the pro­
gramming process. Table 1 illustrates the functions 
assigned to each read or write register.

WRO Register pointers. CRC initialize, initialization 
mands for the various modes, etc.

com-

WR1 Transmit/Receive interrupt and data transfer 
definition.

mode

WR2 Interrupt vector (Channel B only)

WR3 Receive parameters and controls

WR4 Transmit/Receive miscellaneous parameters 
modes

and

WR5 Transmit parameters and controls

WR6 Sync character or SDLC address field
- '7 Sync character or SDLC flag

(a) Write Register Functions

RRO Transmit/Receive buffer status, interrupt status and 
external status

RR1 Special Receive Condition status

RR2 Modified interrupt vector (Channel 3 only)

(b) Read Register Functions

Table 1. Functional Assignments of Read and Write Registers

The logic for both channels provides formats, svn- 
c inization and validation for data transferred to and 
frttm the channel interface. The modem control inputs 
Clear to Send (CTS) and Data Carrier Detect (DCD) are 
monitored by the discrete control logic under program

control. All the modem control signals are general pur­
pose in nature and can be used for functions other than 
modem control.

For automatic interrupt vectoring, the interrupt con­
trol logic determines which channel and which device 
within the channel has the highest priority. Priority is 
fixed with Channel A assigned a higher priority than 
Channel B; Receive, Transmit and External/ Status in­
terrupts are prioritized in that order within each chan­
nel.

Data Path

The transmit and receive data path for each channel is 
shown in Figure 4. The receiver has three 8-bir buffer 
registers in a FIFO arrangement (to provide a 3-byte 
delay) in addition to the 8-bit receive shift register. This 
arrangement creates additional time for the CPU to ser­
vice an interrupt at the beginning of a block of high­
speed data. The receive error FIFO stores parity and 
framing errors and other types of status information for 
each o f the three bytes in the receive data FIFO.

Incoming data is routed through one o f several paths 
depending on the mode and character length. In the 
Asynchronous mode, serial data is entered in the 3-bit 
buffer if it has a character length of seven or eight bits, 
or is entered in the 8-bit receive shift register if it has a 
length of five or six bits.

In the Synchronous mode, however, the data path is 
determined by the phase of the receive process currently 
in operation. A Synchronous Receive operation begins 
with the receiver in the Hunt phase, during which the 
receiver searches the incoming data stream for a bit pat­
tern that matches the preprogrammed sync characters 
(or flags in the SDLC mode). If the device is programmed 
for Monosync Hunt, a match is made with a single sync 
character stored in wr7. In Bisync Hunt, a match is 
made with dual sync characters stored in W R 6  and w r t .

In either case the incoming data passes through the 
receive sync register, and is compared against the pro­
grammed sync character in W R 6  or w r 7 . In the Mono­
sync mode, a match between the sync character pro­
grammed into WR7 and the character assembled in the 
receive sync register establishes synchronization.

In the Bisync mode, however, incoming data is 
shifted to the receive shift register while the next eight 
bits of the message are assembled in the receive sync 
register. The match between the assembled character in 
the receive sync registers with the programmed sync 
character in w r ö  and w r t  establishes synchronization. 
Once synchronization is established, incoming data by-



CPU I/O

Figure 4. Transmit and Receive Data Path

passes the receive sync register and directly enters the 
3-bit buffer.

In the sdlc  mode, incoming data first passes through 
the receive sync register, which continuously monitors 
the receive data stream and performs zero deletion when 
indicated. Upon receiving five contiguous l ’s, the sixth 
bit is inspected. If the sixth bit is a 0, it is deleted from 
the data stream. If the sixth bit is a 1, the seventh bit is 
Inspected. If that bit is a 0, a Flag sequence has been 
received; if it is a 1, an Abort sequence has been re­
ceived.

The reformatted data enters the 3-bit buffer and is 
transferred to the receive shift register. Note that the 
SDLC receive operation also begins in the Hunt phase, 
during which the Z80-S1O tries to match the assembled 
character in the receive shift register with the flag pat­
tern in WR7. Once the first flag character is recognized, 
all subsequent data is routed through the same path, 
regardless o f character length.

Although the same CRC checker is used for both SDLC 
and synchronous data, the data path taken for each 
mode is different. In Bisync protocol, a byte-oriented 
operation requires that the CPU decide to include the 
data character in CRC. To allow the CPU ample time to 
make this decision, the Z80-SIO provides an 8-bit 
deiay for synchronous data. In the SDLC mode, no delay 
is provided since the Z80-SIO contains logic that deter­
mines the bytes on which CRC is calculated.

The transmitter has an 8-bit transmit data register 
that is loaded from the internal-data bus and a 20-bit 
transmit shift register that can be loaded from wr6, wr7 
and the transmit data register. WR6 and WR7 contain 
sync characters in the Monosync or Bisync modes, or 
address field (one character long) and flag respectively 
in the SDLC mode. During Synchronous modes, infor­
mation contained in WR6 and WR7 is loaded into the 
transmit shift register at the beginning of the message 
and, as a time filler, in the middle of the message if a 
Transmit Underrun condition occurs. In the SDLC 
mode, the flags are loaded into the transmit shift regis­
ter at the beginning and end of message.

6



Asynchronous data in the transmit shift register is 
formatted with start and stop bits and is shifted out to 
thi ansmit multiplexer at the selected clock rate. Syn­
chronous (Monosync or Bisync) data is shifted out to 
the transmit multiplexer and also to the CRC generator 
at the x 1 clock rate.

sdlc / hdlc  data is shifted out through the zero inser­
tion logic, which is disabled while the flags are being 
sent. For all other fields (address, control and frame 
check) a 0 is inserted following Five contiguous 1 ’s in the 
data stream. The CRC generator result for sdlc data is 
also routed through the zero insertion logic.

Functional Description

Th functional capabilities of the Z80-SIO can be 
described from two different points o f view: as a data 
communications device, it transmits and receives serial 
data, and meets the requirements of various data com­
munications protocols; as a Z80 family peripheral, it 
interacts with the Z80-CPU and other Z80 peripheral 
circuits, and shares their data, address and control 
busses, as well as being a part of the Z80 interrupt struc­
ture. As a peripheral to other microprocessors, the 
Z80-SIO offers valuable features such as non-vectored 
interrupts, polling and simple handshake capabilities.

The first part o f the following functional description 
describes the interaction between the CPU and Z80-S1O; 
the second p an  introduces its data communications 
capabilities.

I/O CAPABILITIES

Th Z80-SIO offers the choice o f Polling, Interrupt 
(vtfttored or non-vectored) and Block Transfer modes to 
transfer data, status and control inform ation to and 
from the CPU. The Block Transfer mode can be 
implemented under CPU or dma control.

Polling. The Polled mode avoids interrupts. Status 
registers RRO and rri are updated at appropriate times 
for each function being performed (for example, CRC 
Error status valid at the end of the message). All the in­
terrupt modes of the Z80-SIO must be disabled to 
operate the device in a polled environment.

While in its Polling sequence, the CPU examines the 
status contained in rro for each channel; the RRO status 
bits serve as an acknowledge to the Poll inquiry. The 
two rro status bits Do and D; indicate that a receive or 
transm it data transfer is needed. The status aiso in­
dicates Error or other special status conditions (see 
“ Z80-SIO Program m ing” ). The Special Receive Condi­
tio’* *tatus contained in rri does not have to be read in a 
POw*ig sequence because the status bits in rri are ac­
companied by a Receive Character Available status in 
RRO.

Interrupts. The Z80-SIO offers an elaborate interrupt 
scheme to provide fast interrupt response in real-time 
applications. As mentioned earlier, Channel B registers 
WR2 and RR2 contain the interrupt vector that points to 
an interrupt service routine in the memory. To service 
operations in both channels and to eliminate the neces­
sity of writing a status analysis routine, the Z80-SIO can 
modify the interrupt vector in RR2 so it points directly to 
one of eight interrupt service routines. This is done 
under program_control by setting a program bit ( w r i , 

D2) in Channel B called “ Status Affects V ector.”  When 
this bit is set, the interrupt vector in wr2 is modified 
according to the assigned priority of the various inter­
rupting conditions. The table in the Write Register 1 
description (Z80-SIO Programming section) shows the 
modification details.

Transmit interrupts, Receive interrupts and E xternal/ 
Status interrupts are the main sources of interrupts 
(Figure 5). Each interrupt source is enabled under pro­
gram control with Channel A having a higher priority 
than Channel B. and with Receiver, Transmit and Ex- 
ternal/S tatus interrupts prioritized in that order within 
each channel. When the Transmit interrupt is enabled, 
the CPU is interrupted by the transmit buffer becom ing  
empty. (This implies that the transm itter must have had 
a data character written into it so it can become empty.) 
When enabled, the receiver can interrupt the CPU in one 
of three ways:

• Interrupt on first receive character
• Interrupt on all receive characters
• Interrupt on a Special Receive condition

Interrupt On First Character is typically used with the 
Block Transfer mode. Interrupt On All Receive Charac­
ters has the option of modifying the interrupt vector in 
the event of a parity error. The Special Receive Condi­
tion interrupt can occur on a character or message basis 
(End Of Frame interrupt in SDLC, for example). The 
Special Receive condition can cause an interrupt only if 
the Interrupt On First Receive Character or Interrupt 
On All Receive Characters mode is selected. In Inter­
rupt On First Receive Character, an interrupt can occur 
from Special Receive conditions (except Parity Error) 
after the first receive character interrupt (example: 
Receive Overrun interrupt).

The main function of the External/Status interrupt is 
to m onitor the signal transitions of the cts, dcd and 
SYNC pins; however, an External/Status interrupt is also 
caused by a Transmit Underrun condition or by the 
detection of a Break (Asynchronous mode) or Abort 
(SDLC mode) sequence in the data stream. The interrupt 
caused by the Break/A bort sequence has a special 
feature that allows the Z80-SIO to interrupt when the 
B reak/A bort sequence is detected or terminated. This 
feature facilitates the proper termination of the current 
message, correct initialization of the next message, and 
the accurate timing of the Break/A bort condition in 
external logic.

7



CPU/DM A Block Transfer. The Z80-SIO provides a 
Block Transfer mode to accommodate CPU block trans­
fer functions and DMA controllers (Z80-DMA or other 
designs). The Block Transfer mode uses the wait/  
ready output in conjunction with the W ait/R eady bits 
of Write Register 1. The wait/ ready output can be 
defined under software control as a wait line in the CPU 
Block Transfer mode or as a ready line in the dma 
Block Transfer mode.

To a dma controller, the Z80-SIO ready output 
indicates that the Z80-SIO is ready to transfer data to or 
from memory. To the CPU, the wait output indicates 
that the Z80-SIO is not ready to transfer data, thereby 
requesting the CPU to extend the I/O cycle. The pro­
gramming of bits 5, 6 and 7 of Write Register 1 and the 
logic states of the wait/ ready line are defined in the

Write Register 1 description (Z80-SIO Programming 
section.)

DATA COMMUNICATIONS CAPABILITIES

In addition to the I/O capabilities previously discussed, 
the Z80-SIO provides two independent full-duplex 
channels as well as Asynchronous, Synchronous and 
sdlc (HDLC) operational modes. These modes facilitate 
the implementation of commonly used data communi­
cations protocols.

The specific features of these modes are described in 
the following sections. To preserve the independence 
and completeness of each section, some inform ation 
common to all modes is repeated.

RECEIVE CHARACTER .

PARITY ER R O R  - 
RECEIVE OV ER R U N  ER R O R  * 
FRAM ING ER R O R  ■
END O F FR AM E (S D LC )-

INTERR U PT ON A L L  
‘ RECEIVE C HARACTERS

I SPEC IAL RECEIVE 
CONDITION IN T E R R U P T ;

FIRST DATA CHARACTER *
FIRST NON-SYNC  CHARACTER (SYNC) • 
V A U D  AD D R ES S BYTE (S D L C )----------

INTERR UPT ON 
FIRST CHARACTER

OCD TRANSITION 
CTS TRANSITION 
SYNC TRANSITION 
Tz U NO ERRUN/EOM  - 
BREAK/ABORT DETECTION -

E X T ER N A L STATUS 
IN TERR UPT

B U FFER  BECOMING EM PTY

Figure 5. Interrupt Structure

8



Asynchronous Operation

To receive or transmit data in the Asynchronous mode, 
the Z80-SIO must be initialized with the following pa­
rameters: character length, clock rate, number of stop 
bits, even or odd parity, interrupt mode, and receiver or 
transmitter enable. The parameters are loaded into the 
appropriate write registers by the system program. WR4 
parameters must be issued before w r i , WR3 and w rj 
parameters or commands.

If the data is transmitted over a modem or RS232C 
interface, the req u est  to  send  (RTS) and data  t e r - 
m in a l  ready  (DTR) outputs must be set along with the 
Transmit Enable bit. Transmission cannot begin until 
the Transmit Enable bit is set.

The Auto Enables feature allows the programmer to 
se*"1 the first data character o f the message to the 
Z w S IO  without waiting for c ts . If the Auto Enables 
bit is set, the Z80-SIO will wait for the cts pin to go 
Low before it begins data transmission. CTS, dcd  and 
SYNC are general-purpose I/O lines that may be used for 
functions other than their labeled purposes. If crs  is 
used for another purpose, the Auto Enables Bit must be 
programmed to 0.

Figure 6 illustrates asynchronous message formats; 
Table 2 shows WR3, w r4 and w rj with bits set to indi­
cate the applicable modes, parameters and commands in 
asynchronous modes. wr2 (Channel B only) stores the 
interrupt vector; w ri defines the interrupt modes and 
data transfer modes, wrö and WR7 are not used in asyn­
chronous modes. Table 3 shows the typical program 
steps that implement a full-duplex receive/transmit 
operation in either channel.

Asynchronous Transmit

The Transmit Data output (TxD) is held marking (High) 
when the transmitter has no data to send. Under pro­
gram control, the Send Break (w r j , d*) command can 
be issued to hold TxD spacing (Low) until the command 
is cleared.

The Z80-SIO automatically adds the start bit, the 
programmed parity bit (odd, even or no parity) and the 
programmed number of stop bits to the data character 
to be transmitted. When the character length is six or 
seven bits, the unused bits are automatically ignored by 
the Z80-SIO. If the character length is five bits or less, 
refer to the table in the Write Register 5 description 
(Z80-SIO Programming section) for the data format.

Serial data is shifted from TxD at a rate equal to 1, 1 /1 6th, l/32nd or l/64th  of the clock rate supplied to 
the Transmit Clock input (TxC). Serial data is shifted 
out on the falling edge of ( TxC).

If set, the External/Status Interrupt mode monitors 
the status of d c d , cts and sync  throughout the trans­
mission of the message. If these inputs change for a 
period o f time greater than the minimum specified pulse 
width, the interrupt is generated. In a transmit opera­
tion, this feature is used to monitor the modem control 
signal CTS.

ASYNCHRONOUS FORMAT

M ES S A G E F L O W  
-----------------------------------------

_

Figure 6. Asynchronous Message Format

9



Asynchronous Receive

An Asynchronous Receive operation begins when the 
Receive Enable bit is set. If the Auto Enables option is 
selected, DCD must be Low as well. A Low (spacing) 
condition on the Receive Data input (RxD) indicates a 
stan bit. If this Low persists for at least one-half o f a bit 
time, the start bit is assumed to be vaiid and the data in­
put is then sampled at mid-bit time until the entire 
character is assembled. This method of detecting a stan 
bit improves error rejection when noise spikes exist on 
an otherwise marking line.

If the x 1 dock mode is selected, bit synchronization 
must be accomplished externally. Receive data is sam­
pled on the rising edge of RxC. The receiver inserts l ’s 
when a character length of other than eight bits is used. 
If parity is enabled, the parity bit is not stripped from 
the assembled character for character lengths other than 
eight bits. For lengths other than eight bits, the receiver 
assembles a character length of the required number of 
data bits, plus a parity bit and l ’s for any unused bits. 
For example, the receiver assembles a 5-bit character 
with the following format: 11 p D4 Dj D; D] Do-

Since the receiver is buffered by three 8-bit registers 
in addition to the receive shift register, the CPU has 
enough time to service an interrupt and to accept the 
data character assembled by the Z80-SIO. The receiver 
also has three buffers that store error flags for each data 
character in the receive buffer. These error flags are 
loaded at the same time as the data characters.

After a character is received, it is checked for the 
following error conditions:

• When parity is enabled, the Parity Error bit (r r i , 
D4) is set whenever the parity bit of the character 
does not match with the programmed parity. Once 
this bit is set, it remains set until the Error Reset 
Command (wro) is given.

• The Framing Error bit (r r i , d^) is set if the char­
acter is assembled without any stop bits (that is, a 
Low level detected for a stop bit). Unlike the Parity 
Error bit, this bit is set (and not latched) oniy for 
the character on which it occurred. Detection of  
framing error adds an additional one-half of a bit 
time to the character time so the framing error is 
not interpreted as a new stan bit.

• If the CPU fails to read a data character while more 
than three characters have been received, the Re­
ceive Overrun bit (r r i , D5) is set. When this oc­
curs, the founh character assembled replaces the 
third character in the receive buffers. With this ar­
rangement, only the character that has been writ­
ten over is flagged with the Receive Overrun Error 
bit. Like Parity Error, this bit can oniy be reset by 
the Error Reset command from the CPU. Both the 
Framing Error and Receive Overrun Error cause 
an interrupt with the interrupt vector indicating a 
Special Receive condition (if Status Affects Vector 
is selected).

Since the Parity Error and Receive Overrun Error 
flags are latched, the error status that is read reflects an 
error in the current word in the receive buffer plus any 
Parity or Overrun Errors received since the last Error 
Reset command. To keep correspondence between the 
state of the error buffers and the contents o f the receive 
data buffers, the error status register must be read 
before the data. This is easily accomplished if vectored

BIT 7 Brr 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

WR3

00 = Rx 5 BITS/CHAR
10 *  Rx 6 BITS/CHAR
01 = Rx 7 BITS/CHAR
11 = Rx 8 BITS/CHAR

AUTO
ENABLES 0 0 0 0

Rx
ENABLE

WR4

00 = x l CLOCK MODE
01 = x 16 CLOCK MODE
10 = x32 CLOCK MODE
11 » x 64 CLOCK MODE

0 0

00 = NOT USED
01 = 1 STOP BIT/CHAR
10 = 1 Vi STOP BITS/CHAR
11 -  2 STOP BITS/CHAR

EVEN/ÖDD
PARITY

PARITY
ENABLE

WRS

00 = Tx 5 BITS (OR 
nTB LESSVCHAR

10 » Tx 6 BITS/CHAR
01 = Tx 7 BITS/CHAR
11 -  Tx 8 BITS'CHAR

SEND
BREAK

Tx . 
ENABLE “ RTS 0

Table 2. Contents of Write Registers 3, 4 and 5 in Asynchronous Modes

10



FUNCTION TYPICAL PROGRAM STEPS COMMENTS

REGISTER: INFORM ATION LOADED:

WRO CHANNEL RESET R eset SIO

WRO POINTER 2 '

WR2 INTERRUPT VECTOR Channel B only

WRO POINTER 4. RESET EXTERNAL STATUS INTERRUPT

WR4 ASYNCHRONOUS MODE. PARITY INFORMATION. STOP SITS 
INFORMATION. CLOCK RATE INFORMATION

Issue parameters

INITIALIZE WRO POINTER 3

WR3 RECEIVE ENABLE. AUTO ENABLES. RECEIVE CHARACTER 
LENGTH

WRO POINTER 5

WR5 REQUEST TO SENO, TRANSMIT ENABLE. TRANSMIT 
CHARACTER LENGTH. OATA TERMINAL READY

Receive and Transmit both fully initial­
ized. Auto Enaotes will enacie Trans­
mitter if cT5 is active ana Receiver if 
DCD is active.

WRO POINTER 1. RESET EXTERNAL STATUS INTERRUPT

WR1 TRANSMIT INTERRUPT ENABLE. STATUS AFFECTS VECTOR. 
INTERRUPT ON ALL RECEIVE CHARACTERS. DISABLE WAIT/ 
READY FUNCTION, EXTERNAL INTERRUPT ENABLE

Transmit/Receive interrupt mode se ­
lected. External interrupt monitors the 
status of the CTS, DCD and §yn£ inputs 
and detects the Break seauence. Status 
Affects Vector in Channel B oniy.

TRANSFER FIRST DATA BYTE TO SIO This data byte must be transferred or no 
transmit interrupts will occur.

IDLE MODE EXECUTE HALT INSTRUCTION OR SOME OTHER PROGRAM Program is waiting for an interrupt from 
the SIO.

Z80 INTERRUPT ACKNOWLEDGE CYCLE TRANSFERS RR2 TO CPU

IF A CHARACTER IS RECEIVED:
• TRANSFER DATA CHARACTER TO CPU
• UPOATE POINTERS AND PARAMETERS
• RETURN FROM INTERRUPT

When the interrupt occurs, the interrupt 
vector is modified by: 1. Receive Char­
acter Available: 2. Transmit Buffer Emp­
ty; 3. Extem ai/Status change: and 4. 
Special Receive condition.

DATA TRANSFER AND 
ERROR MONITORING

IF TRANSMITTER BUFFER IS EMPTY-
• TRANSFER DATA CHARACTER TO SIO
•  UPDATE POINTERS AND PARAMETERS
• RETURN FROM INTERRUPT

IF  EXTERNAL STATUS CHANGES:
•  TRANSFER RRO TO CPU
• PERFORM ERROR ROUTINES (INCLUDE BREAK DETECTION)
• RETURN FROM INTERRUPT

Program control is transferred to one of 
the eignt interrupt service routines.

If used with processors other than the Z30. 
the modified interrupt vector (RR2) should 
be returned to the CPU in the Interrupt Ac­
knowledge sequence.

IF  SPECIAL RECEIVE CONDITION OCCURS:
• TRANSFER RR1 TO CPU
• DO SPECIAL ERROR {E.G. FRAMING ERROR) ROUTINE
• RETURN FROM INTERRUPT

TERMINATION

REDEFINE RECEIVETRANSMIT INTERRUPT MODES 

DISABLE TRANSMIT/RECEIVE MODES

When transmit or receive data transfer is 
complete.

UPOATE MODEM CONTROL OUTPUTS (E.G. RTS OFF) in Transmit, the Ail Sent status bit indi­
cates transmission is complete.

Table 3. Asynchronous Mode

11



interrupts are used, because a special interrupt vector is 
generated for these conditions.

While the External/Status interrupt is enabled, break 
detection causes an interrupt and the Break Detected 
status bit (rro, D7) is set. The Break Detected interrupt 
should be handled by issuing the Reset Extemai/Status 
Interrupt command to the Z80-SIO in response to the 
first Break Detected interrupt that has a Break status of 
1 (RRO, D7). The Z80-SIO monitors the Receive Data in­
put and waits for the Break sequence to terminate, at 
which point the Z80-SIO interrupts the CPU with the 
Break status set to 0. The CPU must again issue the Reset 
Extemai/Status Interrupt command in its interrupt ser­
vice routine to reinitialize the break detection logic.

The Extemai/Status interrupt also monitors the 
status o f DCD. If the DCD pin becomes inactive for a 
period greater than the minimum specified pulse width, 
an interrupt is generated with the DCD status bit (rro, 
D3) set to 1. Note that the DCD input is inverted in the 
rro status register.

If the status is read after the data, the error data for 
the next word is also included if it has been stacked in 
the buffer. If operations are performed rapidly enough 
so the next character is not yet received, the status regis­

ter remains valid. An exception occurs when the Inter­
rupt On First Character Only mode is selected. A specia' 
interrupt in this mode holds the error data and the char-'""' 
acter itself (even if read from the buffer) until the Error 
Reset command is issued. This prevents further data 
from becoming available in the receiver until the Reset 
command is issued, and allows CPU intervention on the 
character with the error even if dma or block transfer 
techniques are being used.

If Interrupt On Every Character is selected, the inter­
rupt vector is different if there is an error status in RRi.
If a Receiver Overrun occurs, the most recent character 
received is loaded into the buffer; the character pre­
ceding it is lost. When the character that has been writ­
ten over the other characters is read, the Receive Over­
run bit" is set and the Special Receive Condition vector is 
returned if Status Affects Vector is enabled.

In a polled environment, the Receive Character 
Available bit (rro, Do) must be monitored so the 
Z80-CPU can know when to read a character. This bit i? 
automatically reset when the receive buffers are read.'w  
To prevent overwriting data in polled operations, the 
transmit buffer status must be checked before writing 
into the transmitter. The Transmit Buffer Empty bit is 
set to 1 whenever the transmit buffer is empty.

12



Synchronous Operation
^  ____________________

Before describing synchronous transmission and recep­
tion, the three types of character synchronization— 
Monosync, Bisync and External Sync—require some ex­
planation. These modes use the x 1 clock for both 
Transmit and Receive operations. Data is sampled on 
the rising edge of the Receive Clock input (RxC). Trans­
mitter data transitions occur on the falling edge of the 
Transmit Clock input (TxC).

The differences between Monosvnc, Bisync and Ex­
ternal Sync are in the manner in which initial character 
synchronization is achieved. The mode of operation 
must be selected before sync characters are loaded, 
because the registers are used differently in the various 
modes. Figure 7 shows the formats for all three o f these 
synchronous modes.

Mo ync. In a Receive operation, matching a single 
svnd-Pharacter (8-bit sync mode) with the programmed 
sync character stored in w r t  implies character synchro­
nization and enables data transfer.

Bisync. Matching two contiguous sync characters 
(16-bit sync mode) with the programmed sync charac­
ters stored in wrö and w r t  implies character synchroni­
zation. In both the Monosvnc and Bisync modes, SYNC 
is used as an output, and is active for the part of the 
receive clock that detects the sync character.

External Sync. In this mode, character synchronization 
is established externally; sync  is an input that indicates 
external character synchronization has been achieved. 
After the sync pattern is detected, the external logic 
must wait for two full Receive Clock cycles to activate 
the SYNC input. The SYNC input must be held Low until 
character synchronization is lost. Character assembly 
begins on the rising edge of RxC that precedes the falling 
edge of sy n c .

In all cases after a reset, the receiver is in the Hunt 
phase, during which the Z80-SIO looks for character 
synchronization. The hunt can begin only when the 
receiver is enabled, and data transfer can begin only 
when character synchronization has been achieved. If 
character synchronization is lost, the Hunt phase can be 
re-entered by writing a control word with the Enter 
Hunt Phase bit set (WR3 , d4). In the Transmit mode, the 
transmitter always sends the programmed number of 
sync bits (8 or 16). In the Monosvnc mode, the trans­
mitter transmits ‘from WR6; the receiver compares 
against wr7.

In the Monosync, Bisync and External Sync modes, 
assembly o f received data continues until the Z80-SIO is 
reset, or until the receiver is disabled (by command or 
by dcd in the Auto Enables mode), or until the CPU sets 
the Enter Hunt Phase bit.

M E S S A G E  FLO W

BEGINNING
■ n SNO

L C

SYNC CTC CRC
CHARACTER DATA FIELD CHARACTER CHARACTER

•  2

3 » ___________________ IS 1 7 0

^  -------------------- « -------- ---------------
(A) M O N O S Y N C  M E S S A G E  F O R M A T  ( IN T E R N A L  S Y N C  O E T EC T )

BEGINNING EMO

SYNC
CHARACTER

0

SYNC
CHARACTER

*2

0 7

U

DATA FIELD
CTC

CHARACTER

IS S

CRC
CHARACTER

• l

7 0

L C  '

(B) B IS YN C  M E S S A G E  F O R M A T  ( IN T E R N A L  S Y N C  O E T EC T )

BCCJNMNG ________________________________________________________________________________  ENO

--------------------------------------------- C C ----------------------------------------------- ]

CTC CTC
DATA FIELD CHARACTER CHARACTER

»1 • 2

________________________ 0 2 ________________________ !
115 J T 0

ZC---------------------------------------

(C) E X T E R N A L  S Y N C  O E T E C T  FO R M A T

F i g u r e  7 .  S y n c h r o n o u s  F o r m a t s

13



After initial synchronization has been achieved, the 
operation of the Monosync, Bisync and External Sync 
modes is quite similar. Any differences are specified in 
the following text.

Table 4 shows how WR3, wra and wrj are used in 
synchronous receive and transmit operations, wro 
points to other registers and issues various commands, 
WRi defines the interrupt modes, wrz stores the inter­
rupt vector, and WR6 and wrt store sync characters. 
Table 5 illustrates the typical program steps that imple­
ment a half-duplex Bisync transmit operation.

Synchronous Transmit

INITIALIZATION

The system program must initialize the transmitter with 
the following parameters: odd or even parity, x 1 clock 
mode, 8- or 16-bit sync character(s), CRC polynomial, 
Transmitter Enables, Request To Send, Data Terminal 
Ready, interrupt modes and transmit character length. 
WR4 parameters must be issued before w r i , w r 3, w r j , 
wr6 and wr7 parameters or commands.

One of two polynomials—C R C -1 6 ( X 16 +  X 15 +  X 2 +  1) 
or s d l c  ( X 16 +  X 12 +  X 5 +  1)— may be used with syn­
chronous modes. In either case ( s d l c  mode not 
selected), the CRC generator and checker are reset to all 
0 ’s. In the transmit initialization process, the CRC 
generator is initialized by setting the Reset Transmit 
CRC Generator command bits (w r o ). Both the trans­
mitter and the receiver use the same polynomial.

Transmit Interrupt Enable or Wait/Ready Enable

can be selected to transfer the data. The Extemal/Status 
interrupt mode is used to monitor the status of the _  
c l e a r  t o  s e n d  input as well as the Transmit Under- 
run/EOM latch. Optionally, the Auto Enables feature 
can be used to enable the transmitter when c t s  is active.
The first data transfer to the Z80-SIO can begin when 
the Extemal/Status interrupt occurs (CTS status bit set) 
or immediately following the Transmit Enable com­
mand (if the Auto Enables modes is set).

Transmit data is held marking after reset or if the 
transmitter is not enabled. Break may be programmed 
to generate a spacing line that begins as soon as the Send 
Break bit is set. With the transmitter fully initialized and 
enabled, the default condition is continuous transmis­
sion of the 8- or 16-bit sync character.

DATA TRANSFER AND STATUS MONITORING

In this phase, there are several combinations of inter­
rupts and Wait/Ready.

Data Transfer Using Interrupts. If the Transmit Inter­
rupt Enable bit (w r i , D j ) is set, an interrupt is generated 
each time the transmit buffer becomes empty. The inter­
rupt can be satisfied either by writing another character 
into the transmitter or by resetting the Transmitter In­
terrupt Pending latch with a Reset Transmitter Pending 
command (w r o , CM D 5). If the interrupt is satisfied with 
this command and nothing more is written into the 
transmitter, there can be no further Transmit Buffer 
Empty interrupts, because it is the process of the buffer 
becoming empty that causes the interrupts and the buf­
fer cannot become empty when it is already empty. This 
situation does cause a Transmit Underrun condition, 
which is explained in the “ Bisvnc Transmit Underrun” 
section.

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT0

WR3
00 =* Rx 5 BITS/CHAR
10 =* Rx 6 BITS/CHAR
01 = Rx 7 BITS/CHAR
11 = Rx 8 BITS/CHAR

AUTO
ENA8 LES

ENTER
HUNT
MODE

Rx CRC 
ENABLE 0

SYNC
CHAR
LOAD

INHIBIT

RX
ENABLE

WR4 0 0

00 -  8-8 IT SYNC CHAR
01 »  16-BIT SYNC CHAR
10 = SDLC MODE
1 1  = EXT SYNC MODE

0 0 
SELECTS SYNC 

MODES

EVEN/ÖDD
PARITY

PARITY
ENABLE

WR5

00 = Tx 5 BITS (OR
LESSVCHAR

DTR 10 = Tx 6 BITS/CHAR
01 = Tx 7 BITS/CHAR

SEND
BREAK

Tx
ENABLE

1
SELECTS 

CRC-16
RTS Tx CRC 

ENABLE

1 1  = Tx 3 BITS/CHAR

Table 4. Contents of Write Registers 3, 4 and 5 in Synchronous Modes

14



Data Transfer Using w ait/ ready . To the CPU, the 
a—ivation of w a i t  indicates that the Z80-SIO is not 
i^ J y  to accept data and that the CPU must extend the 
output cycle. To a dma controller, ready indicates that 
the transmit buffer is empty and that the Z80-SIO is 
ready to accept the next data character. If the data 
character is not loaded into the Z80-SIO by the time the 
transmit shift register is empty, the Z80-SIO enters the 
Transmit Underrun condition.

Bisync Transmit Underrun. In Bisync protocol, filler 
characters are inserted to maintain synchronization 
when the transmitter has no data to send (Transmit 
Underrun condition). The Z80-SIO has two program­
mable options for solving this situation: it can insen 
sync characters, or it can send the CRC characters gener­
ated so far, followed by sync characters.

These options are under the control of the Reset 
Transmit Underrun/EOM command in wro. Following a 
c’"'"' or channel reset, the Transmit Underrun/EOM 
si*-us bit (rro, D$) is in a set condition and allows the 
insertion o f sync characters when there is no data to 
send. CRC is not calculated on the automatically inserted 
sync characters. When the CPU detects the end of mes­
sage, a Reset Transmit Underrun/EOM command can be 
issued. This allows CRC to be sent when the transmitter 
has no data. In this case, the Z80-SIO sends CRC, 
followed by sync characters, to terminate the message.

There is no restriction as to when in the message the 
Transmit Underrun/EOM bit can be reset. If Reset is 
issued after the first data character has been loaded the 
16-bit CRC is sent and followed by sync characters the 
first time the transmitter has no data to send. Because of  
the Transmit Underrun condition, an Extemal/Status 
interrupt is generated whenever the Transmit Under­
run/EOM bit becomes set.

' the case o f sync insertion, an interrupt is generated 
on*y after the first automatically inserted sync character 
has been loaded. The status indicates the Transmit 
Underrun/EOM bit and the Transmit Buffer Empty bit 
are set.

In the case of CRC insertion, the Transmit Underrun/ 
EOM bit is set and the Transmit Buffer Empty bit is reset 
while CRC is being sent. When CRC has been completely 
sent, the Transmit Buffer Empty status bit is set and an 
interrupt is generated to indicate to the CPU that another 
message can begin (this interrupt occurs because CRC 
has been sent and sync has been loaded). If no more 
messages are to be sent, the program can terminate 
transmission by resetting RTS, and disabling the 
transmitter ( w r j , D3).

Pad characters may be sent by setting the Z80-SIO to 
8 bits/transmit character and writing FF to the transmu­
te- hile CRC is being sent. Alternatively, the sync char­
acters can be redefined as pad characters during this 
time. The following example is included to clarify this 
point.

The Z80-SIO interrupts with the Transmit Buffer Empty bit 
set.

The c p u  recognizes that the last character ie t x i  of the 
message has already been sent to the Z80-SIO by examining 
the internal program status.

To force the Z80-SIO to send c p c . the c p u  issues the Reset 
Transmit Underrun/EOM Latcn command i w r o i  and satisfies 
the interrupt with the Reset Transmit Interrupt Pending 
command. (This command prevents the Z80-SIO from re­
questing more data.) Because of the transmit underrun 
caused by this command, the Z80-SIO starts sending c r c . 
The Z80-SIO also causes an Extemal/Status interrupt with 
the Transmit Underrun/EOM latch set.

The c p u  satisfies this interrupt by loading pad characters in­
to the transmit buffer and issuing the Reset Externai/Status 
Interrupt command.

With this sequence, c r c  is followed by a pad character in­
stead of a sync character. Note that the Z80-SIO will inter­
rupt with a Transmit Buffer Empty interrupt when c r c  is 
completely sent and that the pad character is loaded into 
the transmit shift register.

From this point on t h e  c p u  can send more oad characters or 
sync characters.

Bisync CRC Generation. Setting the Transmit CRC 
enable bit (wrs, Do) initiates CRC accumulation when 
the program sends the first data character to the 
Z80-SIO. Although the Z80-SIO automatically trans­
mits up to two sync characters (16-bit sync), it is wise to 
send a few more sync characters ahead of the message 
(before enabling Transmit CRC) to ensure synchroniza­
tion at the receiving end.

The transmit CRC Enable bit can be changed on the 
fly any time in the message to include or exclude a par­
ticular data character from CRC accumulation. The 
Transmit CRC Enable bit should be in the desired state 
when the data character is loaded from the transmit 
data buffer into the transmit shift register. To ensure 
this bit is in the proper state, the Transmit CRC Enable 
bit must be issued before sending the data character to 
the Z80-SIO.

Transmit Transparent Mode. Transparent mode (Bi­
sync protocol) operation is made possible by the ability 
to change Transmit CRC Enable on the fly and by the 
additional capability o f inserting 16-bit sync characters. 
Exclusion of dle characters from CRC calculation can 
be achieved by disabling CRC calculation immediately 
preceding the dle character transfer to the Z80-SIO.

In the case of a Transmit Underrun condition in the 
Transparent mode, a pair o f ' dle-SYN characters are 
sent. The Z80-SIO can be programmed to send the dle- 
syn sequence by loading a DLE character into WR6 and a 
sync character into WR7.

Transmit Termination. The Z80-SIO is equipped with a 
special termination feature that maintains data integrity 
and validity. If the transmitter is disabled while a data 
or sync character is being sent, that character is sent as 
usual, but is followed by a marking line rather than CRC 
or sync characters. When the transmitter is disabled, a

15



FUNCTION TYPICAL PROGRAM STEPS COMMENTS w

REGISTER: INFO RM ATION LOADED:

WRO CHANNEL RESET. RESET TRANSMIT CRC GENERATOR Reset SIO, initiiize CRC generator.

WRO POINTER 2

WR2 INTERRUPT VECTOR Channel 3 only

WRO POINTER 3

WR3 AUTO ENABLES Transmission begins only after CTS is 
detected.

WRO POINTER 4

WR4 PARITY INFORMATION, SYNC MODES INFORMATION, x1 
CLOCK MODE

Issue transmit parameters.

WRO POINTER 6

WR6 SYNC CHARACTER 1

WRO POINTER 7, RESET EXTERNAL'STATUS INTERRUPTS

INITIALIZE WR7 SYNC CHARACTER 2

WRO POINTER 1, RESET EXTERNALSTATUS INTERRUPTS •

WR1 STATUS AFFECTS VECTOR. EXTERNAL INTERRUPT ENABLE. 
TRANSMIT INTERRUPT ENABLE OR WAIT/READY MODE ENABLE

External Interrupt mode monitors the 
status of and DCD input pins as well 
as the status of Tx Underrun/EOM latch. 
Transmit Interrupt Enable interrupts 
when the Transmit buffer becomes 
empty; the Wait/Ready mode can be used 
to transfer data using dma or CPU Block 
Transfer.

WRO POINTER 5 Status Affects Vector (Channel B only).

WR5 REQUEST TO SEND. TRANSMIT ENABLE, BISYNC CRC, 
TRANSMIT CHARACTER LENGTH

Transmit CRC Enable should be set when 
first non-sync data is sent to Z80-SIO.

FIRST SYNC BYTE TO SiO Need several sync characters in the be­
ginning of message. Transmitter is fully 
initialized.

IDLE MODE EXECUTE HALT INSTRUCTION OR SOME OTHER PROGRAM Waiting for interrupt or Wait/Reaay output 
to transfer data.

DATA TRANSFER AND 
STATUS MONITORING

WHEN INTERRUPT (WAIT!READY) OCCURS:
• INCLUDE/EXECLUDE DATA BYTE FROM CRC 

ACCUMULATION (IN SIO).
• TRANSFER DATA BYTE FROM CPU (OR MEMORY) TO SIO.
• DETECT AND SET APPROPRIATE FLAGS FOR CONTROL 

CHARACTERS (IN CPU).
• RESET Tx UNDERRUN/EOM LATCH (WRO) IF LAST CHARACTER 

OF MESSAGE IS DETECTED.
• UPDATE POINTERS AND PARAMETERS (CPU).
• RETURN FROM INTERRUPT.

Interrupt occurs (Wait/Ready becomes 
active) when first data byte is being sent. 
Wait mode allows CPU block transfer 
from memory to SIO: Reaay mode allows 
DMA block transfer from memory to SiO. 
The DMA chip can be programmed to cap­
ture special control characters (by ex­
amining only the bits that specify ascii or 
EBCDIC control characters), and interrupt 
CPU.

IF ERROR CONDITION OR STATUS CHANGE OCCURS:
• TRANSFER RRO TO CPU.
• EXECUTE ERROR ROUTINE.
• RETURN FROM INTERRUPT.

Tx Underrun/EOM indicates eitner trans­
mit underrun (sync character Demg sent) 
or end' of message (CRC-16 being 
sent).

REDEFINE INTERRUPT MODES.

TERMINATION UPDATE MODEM CONTROL OUTPUTS (E.G.. TURN OFF RTS). 

DISABLE TRANSMIT MODE

Program should gracefully terminate 
message.

Table 5. Bisync Transmit Mode

16



character in the buffer remains in the buffer. If the 
tr? m iner is disabled while CRC is being sent, the 16-bit 
tra^m ission  is completed, but sync is sent instead of 
CRC.

A programmed break is effective as soon as it is writ­
ten into the control register; characters in the transmit 
buffer and shift register are lost.

In all modes, characters are sent with the least signifi­
cant bits first. This requires right-hand justification of 
transm itted data if the word length is less than eight 
bits. If the word length is five bits or less, the special 
technique described in the Write Register 5 discussion 
(Z80-SIO Programming section) must be used for the 
data format. The states of any unused bits in a data 
character are irrelevant, except when in the Five Bits Or 
Less mode.

If the Externai/Status Interrupt Enable bit is set, 
transm itter conditions such as “ starting to send CRC 
characters,”  “ starting to send sync characters,” and 
C Tw /ianging state cause interrupts that have a unique 
vector if Status Affects Vector is set. This interrupt 
mode may be used during block transfers.

All interrupts may be disabled for operation in a 
Polled mode, or to avoid interrupts at inappropriate 
times during the execution of a program .

Synchronous Receive

IN ITIALIZATION

The system program initiates the Synchronous Receive 
operation with the following parameters: odd or even 
p a ^ ,  8- or 16-bit sync characters, x l  clock mode, 
CRC polynomial, receive character length, etc. Sync 
characters must be loaded into registers WR6 and w r7. 
The receivers can be enabled only after all receive pa­
rameters are set. w r a  parameters must be issued before 
WRi, WR3 , WR5, WR6 and WR- parameters or commands.

After this is done, the receiver is in the Hunt phase. It 
remains in this phase until character synchronization is 
achieved. Note that, under program control, all the 
leading sync characters of the message can be inhibited 
from loading the receive buffers by setting the Sync 
Character Load Inhibit bit in w r3.

DATA TRANSFER AND STATUS M ONITORING

After character synchronization is achieved, the as­
sembled characters are transferred to the receive data 
FIFO. The following four interrupt modes are available
to isfer the data and its associated status to the CPU. 

_
No Interrupts Enabled. This mode is used for a purely 
polled operation or for off-line conditions.

Interrupt On First Character Only. This mode is norm ­
ally used to start a polling loop or a Block Transfer in­
struction using w a it / ready  to synchronize the CPU or 
the dma  device to the incoming data rate. In this mode, 
the Z80-SIO interrupts on the first character and there­
after interrupts only if Special Receive conditions are 
detected. The mode is reinitialized with the Enable In­
terrupt On Next Receive Character command to allow 
the next character received to generate an interrupt. 
Parity errors do not cause interrupts in this mode, but 
End O f Frame (SDLC mode) and Receive Overrun do.

If E x tem al/S ta tus interrupts are enabled, they may 
interrupt any time dcd  changes state.

Interrupt On Every Character. Whenever a character 
enters the receive buffer, an interrupt is generated. 
Error and Special Receive conditions generate a special 
vector if Status Affects Vector is selected. Optionally, a 
Parity Error may be directed not to generate the special 
interrupt vector.

Special Receive Condition Interrupts. The Special 
Receive Condition interrupt can occur only if either the 
Receive Interrupt On First Character Only or Interrupt 
On Every Receive Character modes is also set. The 
Special Receive Condition interrupt is caused by the 
Receive Overrun error condition. Since the Receive 
Overrun and Parity error status bits are latched, the 
error status—when read—reflects an error in the current 
word in the receive buffer in addition to any Parity or 
Overrun errors received since the last Error Reset com­
mand. These status bits can only be reset by the Error 
reset command.

CRC Error Checking and Termination. A CRC error 
check on the receive message can be performed on a per 
character basis under program control. The Receive 
CRC Enable bit (WR3 , D3) must be set/reset by the pro­
gram before the next character is transferred from the 
receive shift register into the receive buffer register. This 
ensures proper inclusion or exclusion of data characters 
in the CRC check.

To allow the CPU ample time to enable or disable the 
CRC check on a particular character, the Z80-SIO calcu­
lates CRC eight bit times after the character has been 
transferred to the receive buffer. If CRC is enabled 
before the next character is transferred, CRC is calcu­
lated on the transferred character. If CRC is disabled 
before the time of the next transfer, calculation pro­
ceeds on the word in progress, but the word just trans­
ferred to the buffer is not included. When these require­
ments are satisfied, the 3-byte receive data buffer is, in 
effect, unusable in Bisync operation. CRC may be enabl­
ed and disabled as many times as necessary for a given 
calculation.

In the M onosync, Bisync and External Sync modes, 
the CRC/Framing Error bit (r r i, D$) contains the com ­
parison result o f the CRC checker 16 bit times (eight bits 
delay and eight shifts for CRC) after the character has 
been transferred from the receive shift register to the 
buffer. The result should be zero, indicating an error-

17



free transmission. (Note that the result is vaiid only at 
the end o f CRC calculation. If the result is examined 
before this time, it usually indicates an error.) The com­
parison is made with each transfer and is valid only as 
long as the character remains in the receive F IF O .

Following is an example of the CRC checking opera­
tion when four characters (A, B, C and D) are received 
in that order.

Character A loaded into buffer 
Character 3 loaded into buffer

If CRC is disabled before C is in the buffer, CRC is not 
calculated on B.

Character C loaaed  into buffer

A fter C is loaded, the CRC/Framing E rror bit shows the 
result of the comparison through character A.

Character 0  loaded into buffer

A fter D is in the buffer, the C R C  Error bit shows the 
result of the comparison through character B whether or 
not B was included in the C R C  calculations.

Due to the serial nature of C R C  calculation, the 
Receive Clock (R xC ) must cycle 16 times (8-bit delay plus 
8-bit C R C  shift) after the second C R C  character has been 
loaded into the receive buffer, or 20 times (the previous 
16 plus 3-bit buffer delay and 1-bit input delay) after the 
last bit is at the R xD input, before C R C  calculation is 
complete. A faster external clock can be gated into the 
Receive Clock input to supply the required 16 cycles. 
The Transm it and Receive Data Path diagram (Figure 4) 
illustrates the various points of deiay in the C R C  path.

The typical program steps that implement a half­
duplex Bisync Receive mode are illustrated in Table 6 . 
The complete set of command and status bit definitions 
are explained under ‘‘Z80-SIO Program m ing.”

FUNCTION TYPICAL PROGRAM STEPS COMMENTS

REGISTER: INFORMATION LOADED

WRO CHANNEL RESET, RESET RECEIVE CRC CHECKER R eset SIO; initialize Receive CRC checker.

WRO POINTER 2

WR2 INTERRUPT VECTOR Channel 3  only

WRO POINTER 4

WR4 PARITY INFORMATION, SYNC MODES INFORMATION, x1 
CLOCK MODE

Issue receive parameters.

WRO POINTER 5. RESET EXTERNAL STATUS INTERRUPT

WR5 SISYNC CRC-16, DATA TERMINAL READY

WRO POINTER 3

INITIALIZE WR3 SYNC CHARACTER LOAD INHIBIT. RECEIVE CRC ENABLE; 
ENTER HUNT MODE, AUTO ENABLES. RECEIVE CHARACTER 
LENGTH

Sync character load inhibit strips all thew ' 
leading sync characters at the beginning 
of the m essage . Auto Enaoles enables 
the receiver to accept data only after the 
SÜ5  input is active.

WRO POINTER 6

WR6 SYNC CHARACTER 1

WRO POINTER 7

WR7 SYNC CHARACTER 2

WRO POINTER 1, RESET EXTERNAL'STATUS INTERRUPT *

WR1 STATUS AFFECTS VECTOR. EXTERNAL INTERRUPT ENABLE. 
RECEIVE INTERRUPT ON FIRST CHARACTER ONLY

In this interrupt mode, only the first non­
sync data character is transferred to the 
CPU. All suoseauent data is transferred 
on a OMA basis; however Spedal Re­
ceive Condition interruots will interruo' 
the CPU. Status Affects Vector used in 
Channel B only.

Table 6. Bisync Receive Mode w

18



FUNCTION TYPICAL PROGRAM STEPS COMMENTS

INITIALIZE
(CONTINUED)

wro pointer  3. ENABLE interrupt  on next RECEIVE character  Resetting this interruot mode provides
simple program loopback entry for the 
next transaction.

WR3 RECEIVE ENABLE. SYNC CHARACTER LOAD INHIBIT. ENTER 
HUNT MODE. AUTO ENABLE. RECEIVE WORD LENGTH

WR3 is reissued to enable receiver. Re­
ceive CRC Enable must be set after re­
ceiving SOH or STX character.

Receive mode is fully initialized and the
IDLE MODE EXECUTE halt INSTRUCTION OR SOME OTHER PROGRAM system is waiting for interrupt on first

character.

DATA TRANSFER AND 
STATUS MONITORING

WHEN INTERRUPT ON FIRST CHARACTER O CCURS . THE CPU DOES THE 
FOLLOWING:

• TRANSFERS DATA BYTE TO CPU
• DETECTS AND SETS APPROPRIATE FLAGS FOR CONTROL CHAR- 

ACTERS (IN CPU)
• INCLUDES/EXCLUOES DATA BYTE IN CRC CHECKER
• UPDATES POINTERS AND OTHER PARAMETERS
• ENABLES WAIT/READY FOR DMA OPERATION
• ENABLES DMA CONTROLLER
• RETURNS FROM INTERRUPT

During the Hunt mode, the SIO d e te a s  
two contiguous charaaers to establish 
synchronization. The CPU establishes the 
DMA mode and ail subsequent data char­
a a ers are transferred by the DMA con­
troller. The controller is also programmed 
to capture special charaaers (by exam ­
ining only the bits that specify ascii or 
EBCDIC control charaaers) and interrupt 
the CPU upon deteaion. In resDonse. 
the CPU exam ines the status or control 
cnaraaers and takes appropriate aaion  
(e.g. CRC Enable Update).

WHEN WAITIREADY BECOMES ACTIVE, THE DMA CONTROLLER DOES THE 
FOLLOWING .

•  TRANSFERS DATA BYTE TO MEMORY
• INTERRUPTS CPU IF A SPECIAL CHARACTER IS CAPTURED BY THE 

DMA CONTROLLER
• INTERRUPTS THE CPU IF THE LAST CHARACTER OF THE MESSAGE 

IS DETECTED

FOR M ESSAGE TERMINATION. THE CPU DOES THE FOLLOWING:
•  TRANSFERS RR1 TO THE CPU
• SETS ACK/NAK REPLY FLAG BASED ON CRC RESULT
• UPOATES POINTERS AND PARAMETERS
• RETURNS FROM INTERRUPT

The SIO interrupts the CPU for error con­
dition, and the error routine aborts the 
present m essage , clears the error condi­
tion. and repeats the operation.

REDEFINE INTERRUPT MODES AND SYNC MODES 

TERMINATION UPDATE MODEM CONTROLS

DISABLES RECEIVE MODE

T a b le  6. B i s y n c  R e c e iv e  M o d e  ( C o n t in u e d )

19



s d l c  (HDLC) Operation

The Z80-SIO is capable of handling both High-level 
Synchronous Data Link Control (H D L C )  and IBM Syn­
chronous Data Link Control (S D L C ) protocols. In the 
following text, only s d l c  is referred to because of the 
high degree of similarity between S D L C  and H D L C .

The S D L C  mode is c o n s i d e r a b l y  different than Syn­
chronous Bisync protocol because it is bit oriented 
rather than character oriented and, therefore, can natu­
rally handle transparent operation. Bit orientation 
makes S D L C  a flexible protocol in terms of message 
length and bit patterns. The Z80-SIO has several built-in 
features to handle variable message length. Detailed in­
formation concerning S D L C  protocol can be found in 
literature published on this subject, such as IBM docu­
ment GA27-3093.

~he s d l c  message, called tne frame (Figure 8), is 
otw ied and closed by flags that are similar to the sync 
characters in Bisync protocol. The Z80-SIO handles the 
transmission and recognition of the flag characters that 
mark the beginning and end of the frame. Note that the 
Z80-SIO can receive shared-zero flags, but cannot trans­
mit them. The 8-bit address field of an s d l c  frame con­
tains the secondary station address. The Z80-SIO has an 
Address Search mode that recognizes the secondary sta­
tion address so it can accept or reject the frame.

Since the control field of the SDLC frame is transpar­
ent to the Z80-SIO, it is simply transferred to the CPU. 
The Z80-SIO handles the Frame Check sequence in a 
manner that simplifies the program by incorporating 
features such as initializing the CRC generator to all 1 ’s, 
resetting the CRC checker when the opening flag is 
detected in the Receive mode, and sending the Frame 
Check/Flag sequence in the Transmit mode. Controller 
hardware is simplified by automatic zero insertion and 
d^ 'n ion  logic contained in the Z80-SIO.
_
Table 7 shows the contents of w r s , wra and w r j  dur­

ing S D L C  Receive and Transmit modes, w r o  points to 
other registers and issues various commands, w r i  

defines the interrupt modes. wr2 stores the interrupt 
vector, w r  stores the flag character and w r6 the sec­
ondary address.

SDLC Transmit

INITIALIZATION

Like Synchronous operation, the s d l c  Transmit mode 
must be initialized with the following parameters: S D L C  

mode, S D L C  polynomial, Request To Send, Data Ter­
minal Ready, transmit character length, transm it inter­
rupt modes (or W ait/R eady function), Transmit En­
able, Auto Enables and E xtem al/S tatus interrupt.

Selecting the s d l c  mode and the s d l c  polynomial 
enables the Z80-SIO to initialize the C R C  Generator to 
all l ’s. This is accomplished by issuing the Reset 
Transmit C R C  Generator command (w r o ).  Refer to the 
Synchronous Operation section for more details on the 
interrupt modes.

After reset, or when the transm itter is not enabled, 
the Transmit Data output is held marking. Break may 
be programmed to generate a spacing line. With the 
transm itter fully initialized and enabled, continuous 
flags are transm itted on the Transmit Data output.

An abort sequence may be sent by issuing the Send 
Abort command (w r o , c m D ] ) .  This causes at Feast eight, 
but less than fourteen, 1 ’s to be sent before the line 
reverts to continuous flags. It is possible that the Abort 
sequence (eight l ’s) could follow up to five continuous 1 
bits (allowed by the zero insertion logic) and thus cause 
up to thirteen 1 ’s to be sent. Any data being transm itted 
and any data in the transm it buffer is lost when an abort 
is issued.

When required, an extra 0 is autom atically inserted 
when there are five contiguous l ’s in the data stream. 
This does not apply to flags or aborts.

DATA TRANSFER AND STATUS MONITORING

There are several combinations of interrupts and the 
W ait/R eady function in the S L D C  mode.

3EGIWWWG ^  SNO

U *

o w n in g

91111110

AOORESS 
3 SITS

OATA MELD 
OR

l-flEU)

CTC
• l

CRC
*2

CLOSING
F U G

01111110

__________________________2 2 ________________________
15 8 7 0

ZC
MESSAGE FLOW

-
Figure 8. Transmit/Receive SOLC/HDLC Message Format

21



Data Transfer Using Interrupts. If the Transmit Inter­
rupt Enable bit is set, an interrupt is generated each time 
the buffer becomes empty. The interrupt may be satis­
fied either by writing another character into the trans­
mitter or by resetting the Transmit Interrupt Pending 
latch with a  Reset Transmitter Pending command ( w r o , 
CMD5). If the interrupt is satisfied with this command 
and nothing more is written into the transmitter, there 
are no further transmitter interrupts. The result is a 
Transmit Underrun condition. When another character 
is written and sent out, the transmitter can again 
become empty and interrupt the CPU. Following the 
flags in an s d l c  operation, the 8-bit address field, con­
trol field and information field may be sent to the 
Z80-SIO using the Transmit Interrupt mode. The 
Z80-SIO transmits the Frame Check sequence using the 
Transmit Underrun feature.

When the transmitter is first enabled, it is already 
empty and obviously cannot then become empty. There­
fore, no Transmit Buffer Empty interrupts can occur 
until after the first data character is written.

When the transmitter is first enabled, it is already 
empty and cannot then become empty. Therefore, no 
Transmit Buffer Empty interrupts can occur until after 
the first data character is written.

Data Transfer Using Wait/Ready. If the Wait/Ready 
function has been selected, w a i t  indicates to the CPU 
that the Z80-SIO is not ready to accept the data and the 
C P U  must extend the 1/0  cycle. To a d m a  controller, 
READY indicates that the transmitter buffer is empty and 
that the Z80-SIO is ready to accept the next character. If 
the data character is not loaded into the Z80-SIO by the 
time the transmit shift register is empty, the Z80-S1O 
enters the Transmit Underrun condition. Address, con­
trol and information fields may be transferred to the 
Z80-SIO with this mode using the Wait/Ready func­
tion. The Z80-SIO transmits the Frame Check sequence 
using the Transmit Underrun feature.

SDLC Transmit Undemm/End Of Message. SDLC-like 
protocols do not have provisions for fill characters with­
in a message. The Z80-SIO therefore automatically ter­
minates an s d l c  frame when the transmit data buffer 
and output shift register have no more bits to send. It 
does this by first sending the two bytes o f CRC and 
following these with one or more flags. This technique 
allows very high-speed transmissions under d m a  or CPU 
block 1/0 control without requiring the CPU to respond 
quickly to the end o f message situation.

The action that the Z80-SIO takes in the underrun sit­
uation depends on the state o f the Transmit Underrun/ 
EOM command. Following a reset, the Transmit Under- 
run/EOM status bit is in the set state and prevents the in­
sertion o f CRC characters during the time there is no 
data to send. Consequently, flag characters are sent. 
The Z80-SIO begins to send the frame as data is written 
into the transmit buffer. Between the time the first data 
byte is written and the end o f the message, the Reset 
Transmit Underrun/EOM command must be issued. 
Thus the Transmit Underrun/EOM status bit is in the 
reset state at the end of the message (when underrun oc­
curs), which automatically sends the CRC characters. 
The sending o f CRC again sets the Transm it/U nderrun/ 
eom status bit.

Although there is no restriction as to when the Trans­
mit Underrun/EOM bit can be reset within a message, it 
is usually reset after the first data character (secondary 
address) is sent to the Z80-SIO. Resetting this bit allows 
CRC and flags to be sent when there is no data to send 
which gives additional time to the CPU for recognizing 
the fault and responding with an abort command. By re­
setting it early in the message, the entire message has the 
maximum amount of CPU response time in an uninten­
tional transmit underrun situation.

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

WR3
00 = Rx 5 BITS/CHAR 
10 = Rx S BITS/CHAR AUTO

ENTER HUNT 
MODE (IF 
INCOMING 
DATA NOT 
NEEDED)

Rx CRC ADDRESS o Rx
01 = Rx 7 BITS/CHAR ENABLES ENABLE SEARCH u ENABLE
11 = Rx 8 BITS/CHAR MODE

1 0
WR4 0 0 SELECTS SDLC 0 0 0 0

MODE

00 = Tx 5 BITS (OR n

WR5
LESS)/CHAR

DTR 10 = Tx 6 BITS/CHAR 
01 = Tx 7 BITS/CHAR

0
Tx

ENABLE

u
SELECTS

SDLC
CRC

RTS Tx CRC 
ENABLE

11 = Tx 8 BITS/CHAR

T a b le  7 .  C o n t e n t s  o f  W r ite  R e g is te r s  3 , 4 a n d  5 in S D L C  M o d e s

22



When the External/Status interrupt is set and while 
CR'" is being sent, the Transmit Underrun/eom bit is set 
an^-he Transmit Buffer Empty bit is reset to indicate 
that the transmit register is full of CRC data. When CRC 
has been completely sent, the Transmit Buffer Empty 
status bit is set and an interrupt is generated to indicate 
to the CPU that another message can begin. This inter­
rupt occurs because CRC has been sent and the flag has 
been loaded. If no more messages are to be sent, the 
program can terminate transmission by resetting rts, 
and disabling the transmitter.

In the sdlc  mode, it is good practice to reset the 
Transmit Undemin/EOM status bit immediately after 
the first character is sent to the Z80-SIO. When the 
Transmit Underrun is detected, this ensures that the 
transmission time is filled by CRC characters, giving the 
CPU enough time to issue the Send Abort command. 
This also stops the flags from going on the line prema­
turely and eliminates the possibility of the receiver ac­
cepting the frame as valid data. The situation can hap­
pen because it is possible that—at the receiving end—the 
dz pattern immediately preceding the automatic flag 

insertion could match the CRC checker, giving a false 
CRC check result. The External/Status interrupt is gen­
erated whenever the Transmit Undemin/EOM bit is set 
because of the Transmit Underrun condition.

The transmit underrun logic provides additional pro­
tection against premature flag insertion if the proper 
response is given to the Z80-SIO by the CPU interrupt 
service routine. The following example is given to clar­
ify this point:

The Z80-SIO raises an interrupt with the Transmit Buffer 
Empty status bit set.

The c?u aoes not respond in time and causes a Transmit 
Underrun condition.

The Z80-SIO starts sending crc characters (two bytes).

"''e cpu eventually satisfies the Transmit Buffer Empty in- 
^ ru p t  with a data character that follows the crc character 
being transmitted.

The Z80-SIO sets the External/Status interrupt with the 
Transmit Underrun/EOM status bit set.

The cpu recognizes the Transmit Underrun/EOM status and 
determines from its internal program status that the inter­
rupt is not for "end of message".

The cpu immediately issues a Send Abort Command (wro) to 
the Z80-SIO.

The Z80-SIO sends the Abort sequence by destroying what­
ever data (crc. data or flag) is being sent.

This sequence illustrates that the CPU has a protec­
tion of 22 minimum and 30 maximum transmit clock 
cycles.

SDLC CRC Generation. The CRC generator must be 
res'" to all 1 ’s at the beginning of each frame before crc 
acis^nulation can begin. Actual accumulation begins 
when the program sends the address field (eight bits) to 
the Z80-SIO. Although the Z80-S1O automatically

transmits one flag character following the Transmit 
Enable, it may be wise to send a few more flag charac­
ters ahead of the message to ensure character synchroni­
zation at the receiving end. This can be done by exter­
nally timing out after enabling the transmitter and 
before loading the first character.

The Transmit CRC Enable ( w r s , Do) should be en­
abled prior to sending the address field. In the SDLC 
mode all the characters between the opening and closing 
flags are included in CRC accumulation, and the CRC 
generated in the Z80-SIO transmitter is inverted before 
it is sent on the line.

Transmit Termination. If the transmitter is disabled 
while a character is being sent, that character (data or 
flag) is sent in the normal fashion, but is followed by a 
marking line rather than CRC or flag characters.

A character in the buffer when the transmitter is dis­
abled remains in the buffer; however, a programmed 
Abort sequence is effective as soon as it is written into 
the control register. Characters being transmitted, if 
any, are lost. In the case of CRC, the 16-bit transmission 
is completed if the transmitter is disabled; however, 
flags are sent in place of CRC.

In all modes, characters are sent with the least-signifi­
cant bits first. This requires right-hand justification of 
data to be transmitted if the word length is less than 
eight bits. If the word length is five bits or less, the 
special technique described in the Write Register 5 sec­
tion (“ Z80-SIO Programming” chapter; “ Write Regis­
ters” section) must be used.

Since the number o f bits/character can be changed 
on the fly, the data field can be filled with any number 
of bits. When used in conjunction with the Receiver 
Residue codes, the Z80-SIO can receive a message that 
has a variable I-field and retransmit it exactly as re­
ceived with no previous information about the character 
structure of the 1-fieid (if any). A change in the number 
of bits does not affect the character in the process of 
being shifted out. Characters are sent with the number 
of bits programmed at the time that the character is 
loaded from the transmit buffer to the transmitter.

If the External/Status Interrupt Enable is set, trans­
mitter conditions such as “ starting to send CRC charac­
ters,” “ starting to send flag characters,” and cts 
changing state cause interrupts that have a unique vec­
tor if Status Affects Vector is set. All interrupts can be 
disabled for operation in a polled mode.

Table 8 shows the typical program steps that imple­
ment the half-duplex sdlc  Transmit mode.

23



FUNCTION TYPICAL PROGRAM STEPS COMMENTS

INITIALIZE

REGISTER: INFO RM ATION LOADED:

WRO CHANNEL RESET Reset SiO.

WRO POINTER 2

WR2 INTERRUPT VECTOR Channel B only

WRO POINTER 3

WR3 AUTO ENABLES Transmitter sends data only after cT§ is 
detected.

WRO POINTER 4, RESET EXTERNAL'STATUS INTERRUPTS

WR4 PARITY INFORMATION. SDLC MODE, x 1 CLOCK MODE 

WRO POINTER 1. RESET EXTERNAL7STATUS INTERRUPTS

The External InterruDt mode monitors the 
status of the CT$ and DÜÜ) inputs, as well 
as the status of Tx Unaerrun/EOM latch. 
Transmit Interrupt interrupts when the 
Transmit Duffer becomes empty; the 
Wait/Ready mode can be used to transfer 
data on a DMA or Block Transfer basis. 
The first interrupt occurs wnen ST3 
becomes active, at which point flags are 
transmitted by the Z80-SIO. The first data 
byte (address field) can be loaded in the 
Z80-SIO after this interrupt. Rags cannot 
be sent to the ZSO-SIO as data. Status 
Affects Vector used in Channel 3 only.

WRO POINTER 5

WR5 transm it  CRC ENABLE, REQUEST TO SENO, SDLC-CRC, SDLCCRC mode must be defined before
TRANSMIT ENA8L£. TRANSMIT WORD LENGTH, DATA initializing transmit CRC generator.
TERMINAL READY

WRO RESET TRANSMIT CRC GENERATOR Initialize CRC generator to all 1 ’s.

WR1 EXTERNAL INTERRUPT ENABLE. STATUS AFFECTS VECTOR. 
TRANSMIT INTERRUPT ENABLE OR WAIT/READY 
MODE ENABLE

IDLE MODE EXECUTE HALT INSTRUCTION OR SOME OTHER PROGRAM Waiting for Interrupt or Wait/ Ready output 
to transfer data.

DATA TRANSFER AND 
STATUS MONITORING

WHEN INTERRUPT (WAIT/READY) OCCURS, THE CPU DOES  
THE FOLLOWING:

• CHANGES TRANSMIT WORD LENGTH (IF NECESSARY)
•  TRANSFERS DATA 3YTE FROM CPU (MEMORY) TO SIO
• RESETS Tx UNDERRUN/EOM LATCH (WRO)

Flags are transmitted by the SIO as soon 
as Transmit Enabie is set and STS be­
comes active. The CTS status change is 
the first interrupt that occurs and is fol­
lowed by transmit buffer empty for 
subsequent transfers.

IF  LAST CHARACTER O F THE i-FIELD IS SENT. THE SIO DOES  
THE FOLLOWING:

•  SENDS CRC
• SENDS CLOSING FLAG
• INTERRUPTS CPU WITH 3UF*ER EMPTY STATUS 

CPU DOES THE FOLLOWING:
•  ISSUES RESET Tx INTERRUPT PENDING COMMAND TO THE Z80-SIO
• UPDATES NS COUNT
• REPEATS THE PROCESS FOR NEXT MESSAGE, ETC.

IF THE VECTOR INDICATES AN ERROR, THE CPU DOES THE FOLLOWING:
•  SENDS ABORT
•  EXECUTES ERROR ROUTINE
• UPDATES PARAMETERS. MOOES. ETC.
•  RETURNS FROM INTERRUPT

Word length can be changed “on the fly" 
for variable I-field length. The data byte 
can contain address, control, or l-fieid 
information (never a flag). It is a good 
practice to reset Tx Unaerrun/EOM latch 
in the beginning of the message to avoid a 
false end-of-trame detection at the 
receiving end. This ensures that, when 
underrun occurs, CRC is transmitted and 
underrun interrupt (Tx Underrun/EOM 
latch active) occurs. Note that “Send 
Abort” can be issued to the SiO in re­
sponse to any interrupting continuing to 
abort the1 transmission.

REDEFINE INTERRUPT MODES Terminate gracefully.

TERMINATION UPDATE MODEM CONTROL OUTPUTS

DISABLE TRANSMIT MODE

Table 8, SDLC Transmit Mode

24



SDLC Receive

INITIALIZATION

The SDLC Receive mode is initialized by the system with 
the following parameters: SDLC mode, x 1 clock mode, 
sdlc  polynomial, receive word length, etc. The flag 
characters must also be loaded in wrt and the secondary 
address field loaded in wrö. The receiver is enabled only 
after all the receive param eters have been set. A fter all 
this has been done, the receiver is in the Hunt phase and 
remains in this phase until the first flag is received. 
While in the SDLC mode, the receiver never re-enters the 
Hunt phase, unless specifically instructed to do so by 
the program. The WR4 parameters must be issued prior 
to the w R i, w r3, WR5, WR6 and w r? parameters.

Under program control, the receiver can enter the 
Address Search mode. If the Address Search bit (w r3. 
D-, set, a character following the flag (first non-flag 
character) is compared against the programmed address 
in WR6 and the hardwired global address (11111111). If 
the sdlc  frame address field matches either address, 
data transfer begins.

Since the Z80-SIO is capable of matching only one 
address character, extended address field recognition 
must be done by the CPU. In this case, the Z80-SIO 
simply transfers the additional address bytes to the CPU 
as if they were data characters. If the CPU determines 
that the frame does not have the correct address field, it 
can set the H unt bit, and the Z80-SIO suspends recep­
tion and searches for a new message headed by a flag. 
Since the control field o f the frame is transparent to the 
Z80-SIO, it is transferred to the CPU as a data character. 
Extra zeros inserted in the data stream are autom atically 
deleted; flags are not transferred to the CPU.

D A f A TRANSFER AND STATUS MONITORING

A fter receipt of a valid flag, the assembled characters 
are transferred to the receive data FIFO. The following 
four interrupt modes are available to transfer this data 
and its associated status.

No Interrupts Enabled. This mode is used for purely 
polled operations or for off-line conditions.

Interrupt On First Character Only. This mode is nor­
mally used to stan  a software polling loop or a Block 
Transfer instruction using w ait / ready to synchronize 
the CPU or dma  device to the incoming data rate. In this 
mode, the Z80-SIO interrupts on the first character and 
thereafter only interrupts if Special Receive conditions 
are detected. The mode is reinitialized with the Enable 
Interrupt On Next Receive Character Command.

e first character received after this command is 
isstred causes an interrupt. If External/Status interrupts 
are enabled, they may interrupt any time the dcd input 
changes state. Special Receive conditions such as End

O f Frame and Receiver Overrun also cause interrupts. 
The End Of Frame interrupt can be used to exit the 
Block Transfer mode.

Interrupt On Every Character. An interrupt is genera­
ted whenever the receive FIFO contains a character. 
Error and Special Receive conditions generate a special 
vector if Status Affects Vector is selected.

Special Receive Condition Interrupts. The Special 
Receive Condition interrupt is not, as such, a separate 
interrupt mode. Before the Special Receive condition 
can cause an interrupt, either Interrupt On First Receive 
Character Only or Interrupt On Every Character must 
be selected. The Special Receive Condition interrupt is 
caused by a Receive Overrun or End Of Frame detec­
tion. Since the Receive Overrun status bit is latched, the 
error status read reflects an error in the current word in 
the receive buffer in addition to any errors received 
since the last Error Reset command. The Receive Over­
run status bit can only be reset by the Error Reset com­
mand. The End Of Frame status bit indicates that a 
valid ending flag has been received and that the CRC 
Error and Residue codes are also valid.

Character length may be changed on the fly. If the 
address and control bytes are processed as 8-bit charac­
ters, the receiver may be switched to a shorter character 
length during the time that the first inform ation charac­
ter is being assembled. This change must be made fast 
enough so it is effective before the number of bits speci­
fied for the character length have been assembled. For 
example, if the change is to be from the 8-bit control 
field to a 7-bit inform ation field, the change must be 
made before  the first seven bits of the I-field are 
assembled.

SDLC Receive CRC Checking. Control of the receive 
CRC checker is autom atic. It is reset by the leading flag 
and CRC is calculated up to the final flag. The byte that 
has the End Of Frame bit set is the byte that contains the 
result of the CRC check. If the CRC/Framing Error bit is 
not set, the CRC indicates a valid message. A special 
check sequence is used for the SDLC check because the 
transm itted CRC check is inverted. The final check must 
be 0001110100001111. The 2-byte CRC check characters 
must be read by the CPU and discarded because the 
Z80-SIO, while using them for CRC checking, treats 
them as ordinary data.

SDLC Receive Termination. If enabled, a special vec­
tor is generated when the closing flag is received. This 
signals that the byte with the End Of Frame bit set has 
been received. In addition to the results of the CRC 
check, rri has three bits of Residue code valid at this 
time. For those cases in which the number of bits in the 
I-field is not an integral multiple of the character length 
used, these bits indicate the boundary between the CRC 
check bits and the I-field bits. For a detailed description 
of the meaning of these bits, see the description of the 
residue codes in rri under “ Z80-SIO Program m ing.”

Any frame can be prematurely aborted by an Abort 
sequence. Aborts are detected if seven or more l ’s occur

25



and cause an Externai/Status interrupt (if enabled) with 
the B reak/A bort bit in rro set. After the Reset Exter­
nai/S tatus interrupts command has been issued a sec­
ond interrupt occurs when the continuous 1 ’s condition 
has been cleared. This can be used to distinguish be­
tween the Abort and Idle line conditions.

Unlike the synchronous mode, CRC calculation in 
SDLC does not have an 8-bit delay since all the charac­

ters are included in CRC calculation. When the second 
CRC character is loaded into the receive buffer, CRC 
calculation is complete.

Table 9 shows the typical steps required to implement 
a half-duplex sdlc  receive mode. The complete set of 
command and status bit definitions is found in the next 
section.

FUNCTION TYPICAL PROGRAM STEPS COMMENTS

REGISTER: INFORMATION LOADED:

WRO CHANNEL 2 Reset SIO

WRO POINTER 2

WR2 INTERRUPT VECTOR Channel 3 only

WRO POINTER 4

WR4 PARITY INFORMATION, SYNC MODE, SDLC MODE. x1 CLOCK 
MODE

WRO POINTER 5, RESET EXTERNAL'STATUS INTERRUPTS •

WR5 SDLC-CRC, DATA TERMINAL READY

WRO POINTER 3

WR3 RECEIVE CRC ENABLE. ENTER HUNT MODE, AUTO ENABLES, 
RECEIVE CHARACTER LENGTH, ADDRESS SEARCH MODE

‘Auto Enables’ enables the receiver to 
accept data only after DÜD becomes 
active. Address Search Mode enables 
SIO to match the message address with 
the programmed address or the global 
address.

WRO POINTER 6

INITIALIZE WR6

WRO

SECONDARY ADORESS FIELD 

POINTER 7

This address is matched against the mes­
sage address in an SDLC poll operation.

WR7 SDLC FLAG 01111110 This flag deteas the start and end of 
frame in an SDLC operation.

WRO

WR1

POINTER 1, RESET EXTERNAUSTATUS INTERRUPTS

STATUS AFFECTS VECTOR, EXTERNAL INTERRUPT ENABLE. 
RECEIVE INTERRUPT ON FIRST CHARACTER ONLY.

In this interrupt mode, only the Address 
Fieid (1 charaaer only) is transferred to 
the CPU. All subsequent fields (Control, 
Information, etc.) are transferred on a 
DMA oasis. Status Affeas Vector in 
Channel B only.

WRO POINTER 3, ENABLE INTERRUPT ON NEXT RECEIVE 
CHARACTER

Used to provide simple loop-back entry 
point for next transaction.

WR3 RECEIVE ENABLE, RECEIVE CRC ENABLE, ENTER HUNT MODE. 
AUTO ENABLES. RECEIVER CHARACTER LENGTH. ADDRESS 
SEARCH MODE

WR3 reissued to enable receiver.

IDLE MODE e x e c u t e  h a l t  in s t r u c t io n  o r  s o m e  o t h e r  p r o g r a m

SDLC Receive Mode is fully initialized 
and SiO is waiting for the opening flag 
followed by a matching address fieid to 
interrupt the CPU.

Table 9. SDLC Receive Mode

26



FUNCTION TYPICAL PROGRAM STEPS COMMENTS

WHEN INTERRUPT ON FIRST CHARACTER OCCURS, THE CPU  
DOES THE FOLLOWING:

• TRANSFERS DATA BYTE (ADDRESS 3YTE) TO CPU
• DETECTS AND SETS APPROPRIATE FLAG FOR EXTENDED 

ADDRESS FIELD
• UPDATES POINTERS AND PARAMETERS
• ENABLES DMA CONTROLLER
• ENABLES WAIT/READY FUNCTION IN SIO
• RETURNS FROM INTERRUPT

During the Hunt phase, the SIO interrupts 
when the programmed address matches 
the message address. The CPU estao- 
lisnes the cma mode and ail subsequent 
data characters are transferred by the 
DMA controller to memory.

WHEN THE READY OUTPUT BECOMES ACTIVE, THE DMA CONTROLLER  
DOES THE FOLLOWING:

• TRANSFERS THE DATA BYTE TO MEMORY
• UPDATES THE POINTERS

Dunng the DMA operation, the SIO 
monitors the DCD input and the Abort 
sequence in the data stream to interrupt 
the CPU with External Status error. The 
Special Receive condition interrupt is 
caused by Receive Overrun error.

DATA TRANSFER AND 
STATUS MONITORING

WHEN END O F FRAM E INTERRUPT OCCURS, THE CPU DOES  
THE FOLLOWING:

• EXITS DMA MODE (DISABLES WAIT/READY)
• TRANSFERS RR1 TO THE CPU
• CHECKS THE CRC ERROR BIT STATUS AND RESIDUE CODES
• UPDATES NR COUNT
• ISSUES ‘ERROR RESET COMMAND TO SIO

Detection of End of Frame (Flag) causes 
interruot and deactivates the Wait/Ready 
function. Residue codes indicate the bit 
structure of the last two bytes of the 
message, wmch were transferred to 
memory under DMA. 'Error Reset’ is 
issued to clear the soedai condition.

WHEN 'ABORT SEQUENCE DETECTED '  INTERRUPT OCCURS.
THE CPU DOES THE FOLLOWING:

♦ TRANSFERS RRO TO THE CPU
• EXITS DMA MODE
♦ ISSUES THE RESET EXTERNAL STATUS INTERRUPT COMMAND 

TO THE SIO
• ENTERS THE IDLE MODE

Abort sequence is detected when seven 
or more 1 ’s are found in the data stream.

CPU is waiting for Abort Sequence to 
terminate. Termination clears the Break/ 
Abort status bit and causes interrupt.

WHEN THE SECOND ABORT SEQUENCE INTERRUPT OCCURS.
THE CPU DOES THE FOLLOWING:

• ISSUES THE RESET EXTERNAL STATUS INTERRUPT COMMAND 
TO THE SIO

At this point, the program proceeds to 
terminate this message.

TERMINATION REDEFINE INTERRUPT MODES, SYNC MODE AND SDLC MODES 
DISABLE RECEIVE MODE

Table 9. SOLC Receive Mode (Continued)

W

27



Z80-SIO Programming

To program the Z80-SIO, the system program first 
issues a series of commands that initialize the basic 
mode of operation and then other commands that qual­
ify conditions within the selected mode. For example, 
the Asynchronous mode, character length, clock rate, 
number of stop bits, even or odd parity are first set, 
then the interrupt mode and, finally, receiver or 
transm itter enable. The WR4 parameters must be issued 
before any other parameters are issued in the initializa­
tion routine.

Both channels contain command registers that must 
be programmed via the system program prior to opera­
tion. The Channel Select input (B/X) and the C ontro l/ 
Data input (C/D) are the command structure addressing 
controls, and are normally controlled by the CPU ad­
dress bus. Figure 14 illustrates the timing relationships 
for -ogramming the write registers, and transferring 
datV and status.

C/D 8 /A Function
0 0 Channel A Data
0 1 Channel S Data
1 0 Channel A Commands/Status
1 1 Channel B Commanas/Status

Write Registers

The Z80-SIO contains eight registers (WR0-WR7) in each 
channel that are programmed separately by the system 
program to configure the functional personality of the 
ch; els. With the exception of wro, programming the 
writ?"registers requires two bytes. The first byte contains 
three bits (Do-D?) that point to the selected register; the 
second byte is the actual control word that is written 
into the register to configure the Z80-SIO.

Note that the programmer has complete freedom, 
after pointing to the selected register, of either reading 
to test the read register or writing to initialize the write 
register. By designing software to initialize the Z80-SIO 
in a modular and structured fashion, the program mer 
can use powerful block wo  instructions.

wro is a special case in that all the basic commands 
(CMDo-CMDj) can be accessed with a single byte. Reset 
(internal or external) initializes the pointer bits Do-Dj to 
point to wro.

The basic commands (CMDo-CMDi) and the CRC con­
trols (CRCo, CRC]) are contained in the first byte of any 
wri register access. This maintains maximum flexibil- 
ityi-wid system control. Each channel contains the fol­
lowing control registers. These registers are addressed as 
commands (not data).

WRITE REGISTER 0

wro is the command register; however, it is also used for 
CRC reset codes and to point to the other registers.

D7 Dg D5 D4 D3 0¾ D1 Do

CRC CRC CMD CMD CMD PTR PTR PTR
Reset Reset 2 1 0 2 1 0
Code Code

1 0

Pointer Bits (D0-D2). Bits Do-D? are pointer bits that 
determine which other write register the next byte is to 
be written into or which read register the next byte is to 
be read from. The first byte written into each channel 
after a reset (either by a Reset command or by the exter­
nal reset input) goes into wro. Following a read or write 
to any register (except wro), the pointer will point to 
wro.

Command Bits (D3-D5). Three bits. D3-DJ, are encoded 
to issue the seven basic Z80-SIO commands.

Command CMO2 CMD3 CMDq

0 0 0 0 Null Command (no effect)
1 0 0 1 Send Abort (SOLC Mode)
2 0 1 0 Reset External/Status 

Interrupts
3 0 1 1 Channel Reset
4 1 0 0 Enable Interrupt on next 

Rx Character
5 1 0 1 Reset Transmitter Inter­

rupt Pending
6 1 1 0 Error Reset (latches)
7 1 1 1 Return from Interrupt 

(Channel A)

C o m m a n d  0 (Null). The Null command has no effect. 
Its normal use is to cause the Z80-SIO to do nothing 
while the pointers are set for the following byte.

C o m m a n d  1 (Send  A bort). This command is used only 
with the SDLC mode to generate a sequence of eight to 
thirteen l ’s.

C o m m a n d  2 (Reset E x te rn a l/S ta tu s  Interrupts). After 
an External/Status interrupt (a change on a modem line 
or a break condition, for example), the status bits of rro 
are latched. This command re-enables them and allows 
interrupts to occur again. Latching the status bits cap­
tures short pulses until the CPU has time to read the 
change.

C o m m and  3 (C hannel Reset). This command performs 
the same function as an External Reset, but only on a 
single channel. Channel A Reset also resets the interrupt 
prioritization logic. All control registers for the channel 
must be rewritten after a Channel Reset command.

29



W R ITE R EG IS TER  0 W R ITE R EG IS TER  4

0 7  I D6 ! 05 ! 0 4  ! 03 0 2  iI « DO I
I
0 0

I
0 R E G IS T E R  0

0 0 1 R E G IS T E R  1
0 1 0 R E G IS T E R  2
0 1 1 R E G IS T E R  3
1 0 0 R E G IS T E R  4
1 0 1 R E G IS T E R  5
1 1 0 R E G IS T E R  6
1 1 1 R E G IS T E R  7

N U L L  C O D E  
S E N D  A B O R T  (S O L C )
R E S E T  E X T / S T A T U S  IN T E R R U P T S  
C H A N N E L  R E S E T
E N A B L E  IN T  O N  N E X T  R z  C H A R A C T E R  
R E S E T  T x IN T  P E N O IN G  
E R R O R  R E S E T
R E T U R N  F R O M  IN T  (C H -A  O N L Y )

N U L L  C O D E
R E S E T  Rx C R C  C H E C X E R  
R E S E T  Tx C R C  G E N E R A T O R  
R E S E T  T x  U N O E R R U N / E O M  L A T C H

| 07 I D6 T 05 ! 04 ! 03 I 02 i 01 DO

- P A R IT Y  E N A B L E __
• P A R I T Y  E V E N / 0 0 0

S Y N C  M O O E S  E N A B L E
1 S T O P  B IT / C H A R A C T E R  
1 ½  S T O P  B IT S / C H A R A C T E R
2 S T O P  B IT S / C H A R A C T E R

8 B IT S Y N C  C H A R A C T E R  
16  BIT S Y N C  C H A R A C T E R  
S D L C  M O O E  ( 0 1 1 1 1 1 1 0  F L A G )  
E X T E R N A L  S Y N C  M O O E

X 1 C L O C X  M O D E  
X 1 6  C L O C X  M O O E  
X32 C L O C X  M O D E  
X 6 4 C L O C X  M O O E

JA %  %•

W RITE REGISTER 1 WRITE REGISTER 5

0 7  j 06 I 0 5  0 4  03 0 2  0 1  00

------- — E X T  IN T  E N A B L E
--------—  T x  IN T  E N A B L E
■-------------- -- S T A T U S  A F F E C T S  V E C T O R

(C H . 3 O N L Y )

0 0 R x IN T  D IS A B L E
0 1 R x IN T  O N  F IR S T  C H A R A C T E R  I
1 0 IN T  O N  A L L  R x C H A R A C T E R S  ( P A R IT Y  A F F E C T S  V E C T O R )  *
1 1 IN T  O N  A L L  R x C H A R A C T E R S  (P A R IT Y  O O E S  N O T  A F F E C T  )

V E C T O R )

• W A IT / R E A D Y  O N  R/T 
■ O T T / R E A O Y  F U N C T IO N  
= W A IT / R E A O Y  E N A B L E

O R  O N
S P E C IA L
C 0 N 0 IT 1 0 N

0 7

I
06 i 05 ! 0 4  i 03 ; 0 2  : 01 i o o

- O T R

Tx 5 B IT S  (O R  L E S S V C H A R A C T E R  
T x  7  B IT S / C H A R A C T E R  
Tx 6 B IT S / C H A R A C T E R  
Tx 8 B IT S / C H A R A C T E R

* Tx C RC  E N A B L E. RTs
* S Ü L Ü / C R C -1 6
* Tx E N A B L E
■ S E N D  B R E A K

WRITE REGISTER 2 (C H A N N EL B O NLY)

0 7  j 06 i 05 T 04 ; 0 3 i D2 ! 0 1  i 00

- VO \
-VI 
* V 2  /
“ ■ V3 l  I N T E R R U P T  
“  V4 /  V E C T O R  I  
•V3 l 
- V 6  
- V 7  /

WRITE REGISTER 6

! 0 7  |  06 ! D5 I 0 4  | 0 3 I 0 2  I 0 1 00  j

j j  | j
i ! i i

1 i !
i

;

- A L S O  S O L C  A O O R E S S  F I E L D

WRITER REGISTER 3 W RITE REGISTER 7

0 1 Rx 7 B IT S / C H A R A C T E R
1 0 Rx 6 B IT S / C H A R A C T E R
1 1 Rx 8 8 IT S / C H A R A C T E R

R x  E N A B L E
S Y N C  C H A R A C T E R  L O A O  IN H IB IT  
A O O R E S S  S E A R C H  M O O E  (S O L C )  
R x C R C  E N A B L E  
E N T E R  H U N T  P H A S E  
A U T O  E N A B L E S

07 j 06 i 05 I 04 j 03 i 02 S 01 I 00 j
I I j I T " 7  ! ! I

! ! I — ----------- S Y N C  BIT 8 \
! I -------------------------- S Y N C  BIT 9 j

;--------------- — ---------------- S Y N C  BIT 10 /
1----------------------  --------- S Y N C  8 IT 1 1  \

1------- ------------— --------— --------------------—  S Y N C  BIT 12 (  m
1------------------— — — --------------— --------------* S Y N C  8IT 13 \

........................................— ------------ — -----— — ------------* S Y N C  BIT 14
—  .......................................................... ........................................................— -------* S Y N C  BIT 15 '

“ F O R  S O L C  IT M U S T  B E P R O G R A M M E D  
T O  ' * 0 1 1 1 1 1 1 0 ' '  F O R  F U G  R E C O G N IT IO N

F i g u r e  9 . W r it e  R e g is t e r  B it F u n c t i o n s

30



After a Channel Reset, four extra system dock cycles 
sh üd be allowed for Z80-SIO reset time before any 
ao-itional commands or controls are written into that 
channel. This can normally be the time used by the CPU 
to fetch the next op code.

C o m m a n d  4 (Enable In terrup t On N ex t R eceive C harac­
ter). If the Interrupt On First Receive Character mode 
is selected, this command reactivates that mode after 
each complete message is received to prepare the 
Z80-SIO for the next message.

C o m m a n d  5 (Reset Transm itter In terrup t Pending). The 
transm itter interrupts when the transmit buffer becomes 
empty if the Transmit Interrupt Enable mode is se­
lected. In those cases where there are no more characters 
to be sent (at the end of message, for example), issuing 
this command prevents further transm itter interrupts 
until after the next character has been loaded into the 
transm it buffer or until CRC has been completely sent.

C o m m a n d  6 (Error Reset). This command resets the 
e tw  latches. Parity and Overrun errors are latched in 
RRi until they are reset with this command. With this 
scheme, parity errors occurring in block transfers can be 
examined at the end of the block.

C o m m a n d  7 (R eturn  F rom  Interrupt). This command 
must be issued in Channel A and is interpreted by the 
Z80-SIO in exactly the same way it would interpret an 
r e t i  command on the data bus. It resets the interrupt- 
under-service latch of the highest-priority internal 
device under service and thus allows lower priority 
devices to interrupt via the daisy chain. This command 
allows use o f the internal daisy chain even in systems 
with no external daisy chain or RETI command.

D3 D2 D i Dq

R eceive S tatu s Transmit External
Interrupt A ffects Interrupt Interrupts
M ode 0 Vector Enable Enable

External/Status Interrupt Enable (Do). The External/ 
Status Interrupt Enable allows interrupts to occur as a 
result of transitions on the dcd, cts or sync  inputs, as 
a result of a Break/Abort detection and termination, or 
at the beginning of CRC or sync character transmission 
when the Transmit Underrun/EOM latch becomes set.

Transmitter Interrupt Enable (Dj). If enabled, inter­
rupts occur whenever the transmitter buffer becomes 
empty.

Status Affects Vector (Dj). This bit is active in Channel 
B only. If this bit is not set, the Fixed vector program ­
med in WR2 is returned from an interrupt acknowledge 
sequence. If this bit is set, the vector returned from an 
interrupt acknowledge is variable according to the fol­
lowing interrupt conditions:

V3 V2 Vi

0 0 0 Ch B Transmit Buffer Empty

Ch B ® 0 1 Ch B E xternal/Status C hangeo n  0 Q 1 0 Ch B R eceive Character Available
0 1 1 Ch B Special R eceive Condition*
1 0 0 Ch A Transmit Buffer Empty

Ch A 0 1 Ch A External/Status C hangeOf 1 M ^
1 0 Ch A R eceive Character Available

1 1 1 Ch A Special R eceive Condition*

'S p ec ia l R eceive C onditions: Parity Error, Rx Overrun Error, 
Framing Error, End Of Frame (SOLO.

CRC Reset Codes 0 and 1 (D$ and D7). Together, these 
bits select one o f the three following reset commands:

C R C  R e s e t  O R C  R e s e t  
i d e  1 C o d e  0

1
1

0 Null Code (no affect)
1 R eset R eceive CRC C hecker •
0 R eset Transmit CRC G enerator
1 R eset Tx Underrun/End Of M essa g e

latch

The Reset Transmit CRC Generator command nor­
mally initializes the CRC generator to all 0 ’s. If the sd l c  
mode is selected, this command initializes the CRC gen­
erator to all l ’s. The Receive CRC checker is also in­
itialized to all l ’s for the sd l c  mode.

WRITE REGISTER 1

Receive Interrupt Modes 0 and 1 (D3 and D4). Together 
these two bits specify the various character-available 
conditions. In Receive Interrupt modes 1, 2 and 3, a 
Special Receive Condition can cause an interrupt and 
modify the interrupt vector.

0 4 & 3
R e c e iv e R e c e iv e

In te r r u p t In te r r u p t
M o d e  1 M o d e  0

0 0 0. R eceive interrupts D isabled
0 t 1 . R eceive Interrupt On First Character 

Only
1 0 2. Interrupt On All R eceive C haracters— 

parity error is a Special R eceive  
condition

1 1 3. Interrupt On All R eceive C haracters—
parity error is not a Special 
R eceive condition

WRi contains the control bits for the various interrupt 
and W ait/R eady modes.

D7 Dß D5 D4

jit/R eady Wait Or W ait/Ready R eceive
“* • ’ Enable Ready On R eceive/ Interrupt

Function Transmit Mode 1

W ait/R eady Function Selection (D5-D 7). The Wait and 
Ready functions are selected by controlling D5, D$, and 
D7 . W ait/R eady function is enabled by setting W ait/ 
Ready Enable (w r i, D7) to 1. The Ready function is 
selected by setting Dg (W ait/Ready function) to 1. If this 
bit is 1, the w ait / ready output switches from High to 
Low when the Z80-SIO is ready to transfer data. The 
Wait function is selected by setting D$ to 0. If this bit is

31



0, the wait/ready output is in the open-drain state and 
goes Low when active.

Both the Wait and Ready functions can be used in 
either the Transmit or Receive modes, but not both 
simultaneously. If D; (Wait/Ready on Receive/Trans- 
mit) is set to 1, the Wait/Ready function responds to the 
condition of the receive buffer (empty or full). If D5 is 
set to 0, the Wait/Ready function responds to the condi­
tion of the transmit buffer (empty or full).

The logic states of the wait/ ready output when ac­
tive or inactive depend on the combination of modes 
selected. Following is a summary of these combinations:

if D 7 * o
And 0;s1 And Dg = 0

READY Is High WAIT is floating______

if d7« i
And D5 * 0 And D5 * 1

READY is High wnen transmit READY
____  buffer is full.
w a it  Is Low when transmit WAIT

buffer is full and an 
SIO data port is

_____ selected. ______
REAOY is Low when transmit READY
. buffer is empty. _ _
w a it  Is floating when w a it

transmit buffer is 
empty.

The wait output High-to-Low transition occurs with 
the delay time toiC(WR) after the 1/0 request. The Low- 
to-High transition occurs with the delay tßH0(WR) from 
the falling edge o f ¢. The ready output High-to-Low 
transition occurs with the delay tpL^WR) from the rising 
edge of ¢. The ready output Low-to-High transition 
occurs with the delay iDiC(WR) after IÖRQ falls.

The Ready function can occur any time the Z80-SIO 
is not selected. When the ready output becomes active 
(Low), the DMA controller issues IORQ and the corre­
sponding b/ a and c/D inputs to the Z80-SIO to transfer 
data. The ready output becomes inactive as soon as 
IORQ and cs  become active. Since the Ready function 
can occur internally in the Z80-SIQ whether it is ad­
dressed or not, the ready output becomes inactive 
when any CPU data or command transfer takes place. 
This does not cause problems because the dma con­
troller is not enabled when the CPU transfer takes place.

The Wait function—on the other hand—is active 
only if the CPU attempts to read Z80-SIO data that has 
not yet been received, which occurs frequently when 
block transfer instructions are used. The Wait function 
can also become active (under program control) if the 
CPU tries to write data while the transmit buffer is still 
full. The fact that the wait output for either channel 
can become active when the opposite channel is ad­
dressed (because the Z80-SIO is addressed) does not 
affect operation of software loops or block move in­
structions.

WR2 is the interrupt vector register; it exists in Channel 
B oniy. V4-V 7 and V0 are always returned exactly as 
written; V 1-V 3 are returned as written if the Status A f­
fects Vector ( w R i ,  D2) control bit is 0. If this bit is 1, 
they are modified as explained in the previous section.

D7 Dg D5 D4 D3 D2 D1 Do

V7 V6 V5 V4 V3 V2 Vi V0

WRITE REGISTER 2

WRITE REGISTER 3

WR3 contains receiver logic control bits and parameters.

D7 De Ds d4
Receiver Receiver Auto Enter

Bits/ Bits/ Enables Hunt
Char 1 Char 0 Phase

d3 d2 Di DO
Receiver Address Sync Char Receiver

CRC Search Load Enable
Enable Mode Inhibit

Receiver Enable (Do). A 1 programmed into this bit 
allows receive operations to begin. This bit should be set 
only after all other receive parameters are set and 
receiver is completely initialized.

Sync Character Load Inhibit (Di). Sync characters pre­
ceding the message (leading sync characters) are not 
loaded into the receive buffers if this option is selected. 
Because CRC calculations are not stopped by sync char­
acter stripping, this feature should be enabled only at 
the beginning o f the message.

Address Search Mode (D2). If sdlc  is selected, setting 
this mode causes messages with addresses not matching 
the programmed address in WR6 or the global (11111111) 
address to be rejected. In other words, no receive inter­
rupts can occur in the Address Search mode unless there 
is an address match.

Receiver CRC Enable (D3). If this bit is set, CRC calcu­
lation starts (or restarts) at the beginning o f the last 
character transferred from the receive shift register to 
the buffer stack, regardless o f the number of characters 
in the stack. See “ SDLC Receive CRC Checking”  
(SDLC Receive section) and “ CRC Error Checking”  
(Synchronous Receive section) for details regarding 
when this bit should be set.

Enter Hunt Phase (D4). The Z80-SIO automatically 
enters the Hunt phase after a reset; however, it can be 
re-entered if character synchronization is lost for any 
reason (Synchronous mode) or if the contents o f an in­
coming message are not needed (sdlc  mode). The Hunt 
phase is re-entered by writing a l into bit D4. This sets 
the Sync/Hunt bit (D4) in rro.

Is High when receive 
buffer Is empty.

Is Low when receive 
buffer is empty and 
an SIO data port is 
selected.

Is Low when receive 
buffer is full.

Is floating when 
receive buffer is full.

32



Auto Enables (D5). If this mode is selected, dcd and 
c r  ecome the receiver and transm itter enables, respec- 
tivtty. If this bit is not set, dcd and cts are simply in­
puts to their corresponding status bits in rro.

Receiver Bits/Characters 1 and 0 (D7 and Dg). To­
gether, these bits determine the number of serial receive 
bits assembled to form a character. Both bits may be 
changed during the time that a character is being as­
sembled, but they must be changed before the number 
o f bits currently programmed is reached.

D7 Dg Bits/Character

0 0 5
0 1 7
1 0 6
1 1 8

WRITE REGISTER 4

WRwcontains the control bits that affect both the 
receiver and transmitter. In the transmit and receive in­
itialization routine, these bits should be set before issu­
ing WRi, WR3, wrs, WR6, and WR7.

D7 Dg D5 D4 D3 D2 D1 Do

Clock Clock Sync Sync Stop Stop Parity Parity
Rate Rate Modes Modes Bits Bits Even/

1 0  1 0 1 0  Odd

Parity (Do). If this bit is set, an additional bit position 
(in addition to those specified in the bits/character con­
trol) is added to transmitted data and is expected in 
receive data. In the Receive mode, the parity bit received 
is transferred to the CPU as part of the character, unless 
8 b its/character is selected.

Parity Even/O dd (Dj). If parity is specified, this bit 
determines whether it is sent and checked as even or odd 
(1 • ven).

Stop Bits 0 and 1 (D  ̂and D3). These bits determine the 
number o f stop bits added to each asynchronous char­
acter sent. The receiver always checks for one stop bit. 
A special mode (00) signifies that a synchronous mode is 
to be selected.

D3 D2
Stop  Bits 1 Stop  B its 0

0 0 Sync modes
0 1 1 stop bit per character
1 0 1* 1/2 stop bits per character
1 1 2 stop bits per character

Sync Modes 0 and 1 (D4 and D5). These bits select the 
various options for character synchronization.

Sync Sync
M ode 1 M ode 0

1 0 8-bit programmed sync
'w 0 1 16-bit programmed sync

1 0 SDLC mode (01111110 flag pattern)
1 1 External Sync mode

Clock Rate 0 and 1 (Dg and D7). These bits specify the 
multiplier between the clock (TxC and RxC) and data 
rates. For synchronous modes, the x 1 clock rate must 
be specified. Any rate may be specified for asynchro­
nous modes; however, the same rate must be used for 
both the receiver and transm itter. The system clock in 
all modes must be at least 4.5 times the data rate. If the 
x 1 clock rate is selected, bit synchronization must be 
accomplished externally.

Clock Rate 1 Clock Rate 0

0 0 Data Rate x 1 = Clock Rate
0 1 Data Rate x 16 = Clock Rate
1 0 Data Rate x 32 = Clock Rate
1 1 Data Rate x 64 = Clock Rate

WRITE REGISTER 5

wrs contains control bits that affect the operation of 
transmitter, with the exception of Di, which affects the 
transmitter and receiver.

D7 Dg D5 D4 D3 D2 D1 Do

DTR Tx Tx Send Tx CRC-16/ RTS Tx
Bits/ Bits/ Break Enable SDLC CRC

Char 1 Char 0 Enable

Transmit CRC Enable (Dg). This bit determines if CRC 
is calculated on a particular transm it character. If it is 
set at the time the character is loaded from the transmit 
buffer into the transmit shift register, CRC is calculated 
on the character. CRC is not automatically sent unless 
this bit is set when the Transmit Underrun condition 
exists.

Request To Send (Dj). This is the control bit for the 
RTS pin. When the RTS bit is set, the RTS pin goes Low; 
when reset, RTS goes High. In the Asynchronous mode, 
RTS goes High only after all the bits o f the character are 
transm itted and the transm itter buffer is empty. In Syn­
chronous modes, the pin directly follows the state of the 
bit.

CRC-16/SDLC (Dj). This bit selects the CRC poly­
nomial used by both the transm itter and receiver. When 
set, the CRC-16 polynomial ( X i6 + X i5 t X : + 1 )  is used; 
when reset the SDLC polynomial (X 16 + X l2 + X5-!-1) is 
used. If the sdlc  mode is selected, the CRC generator 
and checker are preset to all 1 ’s and a special check se­
quence is used. The SDLC CRC polnomial must be 
selected when the SDLC mode is selected. If the SDLC 
mode is not selected, the CRC generator and checker are 
preset to ail 0 ’s (for both polynomials).

Transmit Enable (D3). Data is not transmitted until this 
bit is set, and the Transmit Data output is held marking. 
Data or sync characters in the process of being trans­
mitted are completely sent if this bit is reset after trans­
mission has started. If the transm itter is disabled during 
the transmission of a CRC character, sync or flag char­
acters are sent instead of CRC.

33



Send Break (D4). When set, this bit immediately forces 
the Transmit Data output to the spacing condition, 
regardless of any data being transmitted. When reset, 
TxD returns to marking.

Transmit Bits/Characters 0 and 1 (D5 and Dg). To­
gether, Dg and D; control the number o f bits in each byte 
transferred to the transmit buffer.

06  ° 5
T r a n s m i t  B its / T r a n s m i t  B its /

C h a r a c t e r  1 C h a r a c t e r  0 B i ts / C h a r a c t e r

0 0 Five or le s s
0 1 7
1 0 6
1 1 3

Bits to be sent must be right justified, least- 
significant bits first. The Five Or Less mode allows 
transmission of one to five bits per character; however, 
the CPU should format the data character as shown in 
the following table.

0 7 06 Os 04 03 d 2 Di Do

1 1 1 1 0 0 0 D S en d s o n e  data bit1 1 1 0 0 0 D D S en d s tw o data b its1 1 0 0 0 D D D S en d s three data  bits1 0 0 0 D D D D S en d s four data bits0 0 0 D D D D D S e n d s  five data bits

Data Terminal Ready (D7).. This is the control bit for 
the DTR pin. When set, DTR is active (Low); when reset, 
DTR is inactive (High).

WRITE REGISTER 6

This register is programmed to contain the transmit sync 
character in the Monosync mode, the first eight bits of a 
16-bit sync character in the Bisync mode, or a transmit 
sync character in the External Sync mode. In the sdlc 
mode, it is programmed to contain the secondary ad­
dress field used to compare against the address field of 
the sdlc  frame.

O7 Dg D5 O4 D3 D2 D-t Do

Sync 7 Sync 6 Sync 5 Sync 4 Sync 3 Sync 2 Sync 1 SyncO

WRITE REGISTER 7

This register is programmed to contain the receive sync 
character in the Monosync mode, a second byte (last 
eight bits) of a 16-bit sync character in the Bisync mode, 
or a flag character (01111110) in the SDLC mode, w r ? is 
not used in the External Sync mode.

D7 Dg D5 D4 D3 D2 D1 Do

Sync 15 Sync 14 Sync 13 Sync 12 Sync 11 Sync 10 Sync 9 Sync 8

Read Registers

The Z80-SIO contains three registers, RR0-RR2 (Figure 
10), that can be read to obtain the status information 
for each channel (except for RR2—Channel B only). The 
status information includes error conditions, interrupt 
vector and standard communications-interface signals.

To read the contents of a selected read register other 
than RR0, the system program must first write the 
pointer byte to wro in exactly the same way as a write 
register operation. Then, by executing an input instruc­
tion, the contents of the addressed read register can be 
read by the CPU.

The status bits of rro and rri are carefully grouped 
to simplify status monitoring. For example, when the 
interrupt vector indicates that a Special Receive Condi­
tion interrupt has occurred, ail the appropriate error 
bits can be read from a single register (RRi).

READ REGISTER 0

This register contains the status o f the receive and trans­
mit buffers; the d c d , cts and sync  inputs; the Trans­
mit Underrun/EOM latch; and the Break/Abort latch.

0 7 ° 6 Os 0 4 0 3 0 2 °1 Do

Break/ Trans­ CTS Sync / DCD Trans­ Inter­ R eceive
Abort mit Hunt mit rupt C harac­

Under- Buffer P en d ­ ter
run/ Empty ing Avail­
EOM (Ch. A able

only)

Receive Character Available (Do). This bit is set when 
at least one character is available in the receive buffer; it 
is reset when the receive FIFO is completely empty.

Interrupt Pending (Dj). Any interrupting condition in 
the Z80-S1O causes this bit to be set; however, it is read­
able only in Channel A. This bit is mainly used in appli­
cations that do not have vectored interrupts available. 
During the interrupt service routine in these applica­
tions, this bit indicates if any interrupt conditions are 
present in the Z80-SIO. This eliminates the need for 
analyzing all the bits o f rro in both Channels A and B. 
Bit D] is reset when all the interrupting conditions are 
satisfied. This bit is always 0 in Channel B.

Transmit Buffer Empty (Dj). This bit is set whenever 
the transmit buffer becomes empty, except when a crc 
character is being sent in a synchronous or SDLC mode. 
The bit is reset when a character is loaded into the trans­
mit buffer. This bit is in the set condition after a reset.

Data Carrier Detect (D3). The DCD bit shows the state 
of the dcd  input at the time of the last change of any of 
the five Extemal/Status bits (d c d , cts, Svnc/Hunt, 
Break/Abort or Transmit Underrun/EOM). Any transi­
tion of the dcd  input causes the dcd  bit to be latched

34



and causes an External/Status interrupt. To read the 
c ent state of the dcd bit, this bit must be read im­
mediately following a Reset External/Status Interrupt 
command.

Sync/Hunt (D4). Since this bit is controlled differently 
in the Asynchronous, Synchronous and sdlc modes, its 
operation is somewhat more complex than that of the 
other bits and therefore requires more explanation.

In asynchronous modes, the operation of this bit is 
similar to the dcd status bit, except that Sync/Hunt 
shows the state o f the sync input. Any High-to-Low 
transition on the sync pin sets this bit and causes an Ex- 
temal/Status interrupt (if enabled). The Reset External/ 
Status Interrupt command is issued to clear the inter­
rupt. A Low-to-High transition clears this bit and sets 
the External/Status interrupt. When the External/ 
Status interrupt is set by the change in state of any other 
input or condition, this bit shows the inverted state of 
the sync pin at the time of the change. This bit must be 
re' " 1 immediately following a Reset External/Status In- 
te-_^pt command to read the current state of the sync 
input.

In the External Sync mode, the Sync/Hunt bit oper­
ates in a fashion similar to the Asynchronous mode, ex­
cept the Enter Hunt Mode control bit enables the exter­
nal sync detection logic. When the External Sync Mode 
and Enter Hunt Mode bits are set (for example, when 
the receiver is enabled following a reset), the sync input 
must be held High by the external logic until external 
character synchronization is achieved. A High at the 
sync input holds the Sync/Hunt status bit in the reset 
condition.

When external synchronization is achieved, sync 
must be driven Low on the second rising edge o f E3Ü 
after that rising edge of RxC on which the last bit of the 
sync character was received. In other words, after the 
sync pattern is detected, the external logic must wait for 
twr* full Receive Clock cycles to activate the sync input. 
0 ^ ,  SYNC is forced Low, it is a good practice to keep it 
Low until the CPU informs the external sync logic that 
synchronization has been lost or a new message is about 
to start. Refer to Figure 18 for timing details. The High- 
to-Low transition of the sync input sets the Sync/Hunt 
bit, which—in turn—sets the External/Status interrupt. 
The CPU must clear the interrupt by issuing the Reset 
External/Status Interrupt command.

When the sync input goes High again, another Ex- 
temal/Status interrupt is generated that must aiso be 
cleared. The Enter Hunt Mode control bit is set when­
ever character synchronization is lost or the end of mes­
sage is detected. In this case, the Z80-SIO again looks 
for a High-to-Low transition on the sync input and the 
operation repeats as explained previously. This implies 
the CPU should also inform the external logic that char­
acter synchronization has been lost and that the 
Z80-SIÖ is waiting for sync to become active.

the Monosync and Bisync Receive modes, the 
Sync/Hunt status bit is initially set to 1 by the Enter 
Hunt Mode bit. The Sync/Hunt bit is reset when the 
Z80-SIO establishes character synchronization. The

R EAO  R EG IS TER  0

I 0 7  i D6 i 05  i 0 «  i 0 3 I 0 2  ' 0 1 I DO j
I I i I j | j

1------------------R x  C H A R A C T E R  A V A I L A B L E
------------------------------IN T  P E N 0 I N G  ( C H . A  O N L Y )

1------------------------------------------ T x  B U F F E R  E M P T Y
1------------------------------------------------------ 0 C D

1------------------------------------------------------------------ S Y N C / H U N T
-------------------------------------------------------------------------------  C T S

-------------------------------------------------------------------------------------------- T x  U N 0 E R R U N / E 0 M
1------------------------------------------------------------------------- -----------------------------  8 R E A K / A 8 0 R T

*  U S E D  W IT H  " E X T E R N A U S T A T U S  
I N T E R R U P T '  M 0 0 E

READ REGISTER 1 1

0 7  T 06 I O S  I 0 4  j 0 3 i 0 2  l 0 1 ! D 0

- A L L  S E N T

I F I E L D  B IT S  
IN  P R E V IO U S  

B Y T E
0
00

- P A R I T Y  E R R O R  
- R x  O V E R R U N  E R R O R  
-C R C / F R A M I N G  E R R O R  
- E N 0  O F  F R A M E  (S D L C )

I F I E L D  B IT S  IN  
S E C 0 N 0  P R E V IO U S  

B Y T E
3
4
5

a s
0 T
0 81 8
2 8

' R E S I D U E  D A T A  F O R  E I G H T  
R x B IT S / C H A R A C T E R  P R O G R A M M E D

t U S E D  W IT H  S P E C I A L  R E C E I V E  C 0 N 0 I T 1 0 N  M 0 0 E

READ REGISTER 2

07 | 06 1 05 j 04 . 03 1 02 ) 01 TOOT
-VO
-V1+
- V2* 
- V 3 t  
- V 4  
- V 5  
-V6
-  V 7

I N T E R R U P T
V E C T O R

^ V A R I A B L E  I F  " S T A T U S  A F F E C T S  
V E C T O R "  IS P R O G R A M M E D

Figure 1 0 . Read Register Bit Functions

35



High-to-Low transition of the Sync/Hunt bit causes an 
Extemal/Status interrupt that must be cleared by the 
CPU issuing the Reset Extemai/Status Interrupt com­
mand. This enables the Z80-SIO to detect the next tran­
sition of other External/Status bits.

When the CPU detects the end o f message or that 
character synchronization is lost, it sets the Enter Hunt 
Mode control bit, which—in turn—sets the Sync/Hunt 
bit to 1. The Low-to-High transition o f the Sync/Hunt 
bit sets the External/Status interrupt, which must also 
be cleared by the Reset Extemal/Status Interrupt com­
mand. Note that the sync pin acts as an output in this 
mode and goes Low every time a sync pattern is detected 
in the data stream.

In the sdlc  mode, the Sync/Hunt bit is initially set 
by the Enter Hunt mode bit, or when the receiver is dis­
abled. In any case, it is reset to 0 when the opening flag 
of the first frame is detected by the Z80-SIO. The Exter- 
nai/Status interrupt is also generated, and should be 
handled as discussed previously.

Unlike the Monosync and Bisync modes, once the 
Sync/Hunt bit is reset in the SDLC mode, it does not 
need to be set when the end of message is detected. The 
Z80-SIO automatically maintains synchronization. The 
only way the Sync/Hunt bit can be set again is by the 
Enter Hunt Mode bit, or by disabling the receiver.

Clear To Send (D5). This bit is similar to the PCD bit, 
except that it shows the inverted state o f the crs  pin.

Transmit Undemm/End Of Message (Dg). This bit is 
in a set condition following a reset (internal or external). 
The only command that can reset this bit is the Reset 
Transmit Underrun/EOM Latch command (wro, d$ and 
D7). When the Transmit Underrun condition occurs, 
this bit is set; its becoming set causes the External/ 
Status interrupt, which must be reset by issuing the 
Reset External/Status Interrupt command bits (WRO). 
This status bit plays an important role in conjunction 
with other control bits in controlling a transmit opera­
tion. Refer to “ Bisync Transmit Underrun” and 
“ SDLC Transmit Underrun” for additional details.

Break/Abort (D7). In the Asynchronous Receive mode, 
this bit is set when a Break sequence (null character plus 
framing error) is detected in the data stream. The Exter­
nal/Status interrupt, if enabled, is set when Break is 
detected. The interrupt service routine must issue the 
Reset Extemal/Status Interrupt command (wro, CMD2) 
to the break detection logic so the Break sequence ter­
mination can be recognized.

The Break/Abort bit is reset when the termination of 
the Break sequence is detected in the incoming data 
stream. The termination of the Break sequence also 
causes the Extemal/Status interrupt to be set. The Reset 
Extemal/Status Interrupt command must be issued to 
enable the break detection logic to look for the next 
Break sequence. A single extraneous null character is

present in the receiver after the termination of a break; 
it should be read and discarded.

In the SDLC Receive mode, this status bit is set by the 
detection of an Abort sequence (seven or more 1 ’s). The 
Extemal/Status interrupt is handled the same way as in 
the case of a Break. The Break/Abort bit is not used in 
the Synchronous Receive mode.

READ REGISTER 1

This register contains the Special Receive condition 
status bits and Residue codes for the I-field in the sdlc 
Receive Mode.

D7 Dg D5 D4 D3 D2 D1 Do

End Of CRC/ Receiver Parity Residue Residue Residue All
Frame Framing Overrun Error Code 2 Code 1 Code 0 Sent
(SDLC) Error Error

All Sent (Do). In asynchronous modes, this bit is set 
when all the characters have completely cleared the 
transmitter. Transitions of this bit do not cause inter­
rupts. It is always set in synchronous modes.

Residue Codes 0 ,1  and 2 (D1-D3). In those cases o f the 
SDLC receive mode where the I-field is not an integral 
multiple of the character length, these three bits indicate 
the length o f the I-field. These codes are meaningful on­
ly for the transfer in which the End Of Frame bit is set 
(SDLC). For a receive character length o f eight bits per 
character, the codes signify the following:

1 - F ie ld  B i t s  1 - F ie ld  B i ts
R e s id u e  R e s i d u e  R e s i d u e  In P r e v io u s  In S e c o n d
C o d e  2 C o d e  1 C o d e  0 B y t e P r e v io u s  B y t e

1 0 0 0 3
0 1 0 0 4
1 1 0 0 5
0 0 1 0 6
1 0 1 0 7
0 1 1 0 8
1 1 1 1 8
0 0 0 2 8

1-Field bits are right-justified in all cases.

If a receive character length different from eight bits 
is used for the I-field, a table similar to the previous one 
may be constructed for each different character length. 
For no residue (that is, the last character boundary coin­
cides with the boundary of the I-fieid and CRC field), the 
Residue codes are:

R e s id u e  R e s id u e  R e s id u e  
B i ts  p e r  C h a r a c t e r  C o d e  2 C o d e  1 C o d e  0

8 Bits per Character 0 1 1
7 Bits per Character 0 0 0
6 Bits per Character 0 1 0
5 Bits per Character 0 0 1

36



Parity Error (D<). When parity is enabled, this bit is set 
f< :hose characters whose parity does not match the 
programmed sense (even/odd). The bit is latched, so 
once an error occurs, it remains set until the Error Reset 
command (w r o ) is given.

Receive Overrun Error (D5). This bit indicates that 
more than three characters have been received without a 
read from the CPU. Only the character that has been 
written over is flagged with this error, but when this 
character is read, the error condition is latched until 
reset by the Error Reset command. If Status Affects 
Vector is enabled, the character that has been overrun 
interrupts with a Special Receive Condition vector.

CRC/Framing Error (D$). If a Framing Error occurs 
(asynchronous modes), this bit is set (and not latched) 
for the receive character in which the Framing Error 
occurred. Detection of a Framing Error adds an addi­
tional one-half o f a bit time to the character time so the 
Framing Error is not interpreted as a new start bit. In 
sy hronous and sdlc modes, this bit indicates the 
result of comparing the CRC checker to the appropriate 
check value. This bit is reset by issuing an Error Reset 
command. The bit is not latched, so it is always updated 
when the next character is received. When used for CRC 
error and status in synchronous modes, it is usually set 
since most bit combinations result in a non-zero CRC 
except for a correctly completed message.

End Of Frame (D7). This bit is used only with the sdlc 
mode and indicates that a valid ending flag has been 
received and that the crc Error and Residue codes are 
also valid. This bit can be reset by issuing the Error 
Reset command. It is also updated by the First character 
of the following frame.

READ REGISTER 2 (Ch. B Only)

This register contains the interrupt vector written into 
WR2 if the Status Affects Vector control bit is not set. If 
the control bit is set, it contains the modified vector 
shown in the Status Affects Vector paragraph of the 
Write Register I section. When this register is read, the 
vector returned is modified by the highest priority inter­
rupting condition at the time o f the read. If no inter­
rupts are pending, the vector is modified with V3=0, 
V2= l  and V] = 1 . This register may be read only 
through Channel B.

O7 Dg Dg D4 D3 O2 0 -| Do

V7 V6 V5 V4 V3 V2 V-, V0
Variable if Status 
Affects Vector is 

enabled

37



Applications
v

The flexibility and versatility of the Z80-SIO make it 
useful for numerous applications, a few of which are in­
cluded here. These examples show several applications 
that combine the Z80-SIO with other members o f the 
Z80 family.

Figure 11 shows simple processor-to-processor com­
munication over a direct line. Both remote processors in 
this system can communicate to the ZSO-CPU with dif­
ferent protocols and data rates. Depending on the com­
plexity of the application, other Z80 peripheral circuits 
(Z80-CTC, for example) may be required. The unused 
channel of the Z80-SIO can be used to control other 
peripherals or they can be connected to other remote 
processors.

•—gure 12 illustrates how both channels of a single 
Z80-SIO are used with modems that have primary and 
secondary, or reverse channel options. Alternatively, 
two modems without these options can be connected to 
the Z80-S1O. A suitable baud-rate generator (ZSO-CTC) 
must be used for asynchronous modems.

Figure 13 shows the Z80-SIO in a data concentrator, 
a relatively complex application that uses two ZSO-SIOs 
to perform a variety of functions. The data concen­
trato r can be used to collect data from many terminals

over low-speed lines and transmit it over a single high­
speed line after editing and reform atting.

The Z80-DMA controller circuit is used with 
Z80-SIO #2 to transmit the reform atted data at high 
speed with the required protocol. The high-speed 
modem provides the transmit clock for this channel. 
The Z80-CTC counter-timer circuit supplies the trans­
mit and receive clocks for the low-speed lines and is also 
used as a time-out counter for various functions.

Z80-SIO #1 controls local or remote terminals. A 
single intelligent terminal is shown within the dashed 
lines. The terminal employs a Z80-S1O to communicate 
to the data concentrator on one channel while providing 
the interface to a line printer over its second channel. 
The intelligent terminal shown could be designed to 
operate interactively with the operator.

Depending on the software and hardware capabilities 
built into this system, the data concentrator can employ 
store-and-forward or hold-and-forward methods for 
regulating inform ation traffic between slow terminals 
and the high-speed remote processor. If the high-speed 
channel is provided with a dial-out option, the channel 
can be connected to a number of remote processors over 
a switched line.

Figure 11. Synchronous/Asynchronous Processor-to-Proeessor Communcation (Direct Wire to Two Remote Locations)

D ATA LIN K  TO 
R E M O T E  P R O C ES S O R

Figure 12. Synchronous/Asynchronous Processor-to-Processor Communication (Using Telephone Line)

39



Figure 13. Data Concentrator

40



Timing

READ CYCLE

The timing signals generated by a Z80-CPU input in­
struction to read a Data or Status byte from the 
Z80-SIO are illustrated in Figure 14a.

T 1 t 2 t W  t 3 t 1

WRITE CYCLE

Figure 14b illustrates the timing and data signals gener­
ated by a Z80-CPU output instruction to write a Data or 
Control bvte into the Z80-SIO.

T 1 t 2 t W  t 3 t 1

IORQ v \  /

no

Ml

“ T* X  /

Figure 14a. Read Cycle Figure 14b. Write Cycle

INTERRUPT ACKNOWLEDGE CYCLE

After receiving an Interrupt Request signal (in?  pulled 
Low), the Z80-CPU sends an Interrupt Acknowledge 
signal (Mi and IORQ both Low). The daisy-chained in­
terrupt circuits determine the highest priority interrupt 
requestor. The IEI of the highest priority peripheral is 
terminated High. For any peripheral that has no inter­
rupt pending or under service, IEO = IEI. Any peripheral 
that does have an interrupt pending or under service 
forces its IEO Low.

D insure stable conditions in the daisy chain, all in- 
terfupt status signals are prevented from changing while 
m! is Low. When IORQ is Low, the highest priority inter­
rupt requestor (the one with IEI High) places its inter­
rupt vector on the data bus and sets its internal 
interrupt-under-service latch.

RETURN FROM INTERRUPT CYCLE

Normally, the Z80-CPU issues a reti (RETurn from in­
terrupt) instruction at the end of an interrupt service 
routine, reti is a 2-byte opcode (ED-4D) that resets the 
intemipt-under-service latch to terminate the interrupt 
that has just been processed. This is accomplished by 
manipulating the daisy chain in the following way.

The normal daisy chain operation can be used to 
detect a pending interrupt; however, it cannot distin­
guish between an interrupt under service and a pending 
unacknowledged interrupt of a higher priority. When­
ever ‘•ED” is decoded, the daisy chain is modified by 
forcing High the IEO of any interrupt that has not yet 
been acknowledged. Thus the daisy chain identifies the 
device presently unaer service as the only one with an IEI 
High and an IEO Low. If the next opcode byte is “4D,” 
the interrupt-under-service latch is reset.

<i>

M l

iÖRQ

R Ö

IEI

T 1 t 2 t W T W T 3 T 4

__________ /

\ _________/

O A T ’ <  V E C T O R  >

M l

RD

0q- ° 7

IEI

IEO

T 1 t 2 T "  T 4 T 1 t 2 T 3 T 4 t 1

- \ / - - - - - - - - - s_ _ _ _ _ r

l

Figure 14c. Interrupt Acknowledge Cycle Figure Return from Interrupt Cycle

41



The ripple time o f the interrupt daisy chain (both the 
High-to-Low and the Low-to-High transitions) limits 
the number of devices that can be placed in the daisy 
chain. Ripple time can be improved with carry-look­
ahead, or by extending the interrupt acknowledge cycle. 
For further inform ation about techniques for increasing 
the number of daisy-chained devices, refer to Zilog 
Application Note 03-0041-01 {The Z80 F am ily Program  
In terrup t Structure).

DAISY CHAIN INTERRUPT NESTING

Figure 15 illustrates the daisy chain configuration o f in­
terrupt circuits and their behavior with nested interrupts 
(an interrupt that is interrupted by another with a higher 
priority).

Each box in the illustration could be a separate exter­
nal Z80 peripheral circuit with a user-defined order of 
interrupt priorities. However, a similar daisy chain 
structure also exists inside the Z80-SIO, which has six 
interrupt leveis with a Fixed order of priorities.

The case illustrated occurs when the transm itter of 
Channel B interrupts and is granted service. While this 
interrupt is being serviced, it is interrupted by a higher 
priority interrupt from Channel A. The second interrupt 
is serviced and-—upon completion— a reti instruction is 
executed or a reti command is written into the 
Z80-SIO, resetting the interrupt-under-service latch of 
the Channel A interrupt. At this time, the service rou­
tine for Channel B is resumed. When it is completed, 
another RETI instruction is executed to complete the in­
terrupt service.

CHANNEL A CHANNEL S
CHANNEL A CHANNEL A EXTERNAL' CHANNEL 8 CHANNEL B EXTERNAL'
RECEIVER TRANSMITTER STATUS RECEIVER TRANSMITTER STATUS

1. PRIORITY INTERRUPT DAISY CHAIN BEFORE ANY INTERRUPT OCCURS.

4» UNDER SERVICE

2, CHANNEL B TRANSMITTER INTERRUPTS AND IS ACKNOWLEDGED.

*  UNDER SERVICE SERVICE SUSPENDED

3. EXTERNAL/STATUS OF CHANNEL A INTERRUPTS SUSPENDING SERVICE OF CHANNEL B 
TRANSMITTER.

+ SERVICE COMPLETED SERVICE RESUMED

4c CHANNEL A EXTERNAL/STATUS ROUTINE COMPLETE. RETI ISSUED, CHANNEL B 
TRANSMITTER SERVICE RESUMED.

+ SERVICE COMPLETED

5. CHANNEL B TRANSMITTER SERVICE ROUTINE COMPLETE, SECOND RETI ISSUED.

Figure 15. Typical Interrupt Sequence

42



V
AC Characteristics
Ta = 0*C to 7 0 ®C, Vc c  = + 5V, ±  5%

ZS0-S10 Z80A-SIO
S ig n al Sym bol P aram e te r MHi M ax M in M ax U nit

tc(*) Clock Period 400 4000 250 4000 ns
U*H) Clock Pulse Width, clock HIGH 170 2000 105 2000 ns

<0 Clock Pulse Width, dock LOW 170 2000 105 2000 ns
u  t. Clock Rise and Fail Times 0 30 0 30 - ns
t* Any Unspecified Hold Time for setup times 

soeafieo Detow
0 0 ns

cl. 37Ä \U (CS) Control Signal Setup Time to nsmg edge of 160 145 ns
CD, IORQ <t> during Read or Write Cycle

W O ) Data Output Delay from nsmg edge of <t ounng 
Read Cyae

240 220 ns

W O ) Data Setup Time to nsmg edge of <* ounng 50 50 ns

0,-0,
WO)

Write or M1 Cycle
Data Output Delay from falling edge of IORQ 340 160 ns
during I NT A Cycle

WO) Delay to Floating Bus (output Duffer otsaoie time) 230 110 ns

IEI wie» IEI Setup Time to failmg edge of iSTO Ounng 
I NT A Cycle

200 140 ns

W O ) IEO Delay Time from nsmg eoge of IEI 
latter ED' decode)

150 100 ns

IEO W O ) IEO Delay Time from falling edge of IEI 150 100 ns
W O ) IEO Delay Time from falling edge of Ml (interruot 

occurnng just prior to M1)
300 190 ns

Mt WM1) Mi Setup Time to nsmg eoge of <6 dunng INTA 
or M1 Cycle

210 90 ns

RD U*(R0) SB Setuo Time to nsmg edge of <b during Read 
or M1 Cyae

240 115 ns

* If WAIT from the SIO is to be used, CE, IORQ, C D  and Ml must be valid for as long as the Wait condition is to persist.

43



AC Characteristics (Continued)

C TS. 0 C 0 . SYNC 1
- t w ( P U — ■— ► ! . 

_ l c(T x C)---------

T iC

TiO

inT

j
■WiU'

J L_
- t w (T C H )-------- H

> :

W ,T) '

l,(RxC) th(RxC)

N O T E S *
1. The input must be driven Low on the risiof edge of RxC delayed rwo complete dock cycle« from the last bit of the 

«yoc character,2. Data character assembly begins on the neat Receive Clock cycle after the last bit of the sync character is received.

Z 8 0 - S I O  Z S O A o S lO

S ignal Sym bol P aram e te r M in M ax M in M ax Unit

u m INT Delay Time from nsmg ecge of RxC 10 13 10 13 0 oenoas
INT IN? Delay Time from transition of Xmit Data Bit 5 9 5 9 <t> penoos

WPH) Minimum HIGH Pulse Width tor iatcnmg state 200 200 ns
CTSÄ. CTSS, into register ana generating interrupt
DCDA. DCD9. U P U Minimum LOW Pulse Width for latching state 200 200 ns
SVNCA. SYNCS into register and generating interruot

WSY» Sync Pulse Delay Time from rising eage of RxC, 4 7 4 7 0 oenoas

SYNCA. SYNCS
W (S Y )

Cutout Mooes
Sync Pulse Delay Time from nsing edoe of RxC 
external Sync Mode

100 100 ns

tZa T̂ s tc<TxC) Transmit Clock Penod 400 X 400 X ns
WTCH) Transmit Clock Pulse Width, clock HIGH 180 X 180 . X ns
W TCU Transmit Clock Pulse Width, clock LOW 180 X 180 X ns

TxDA. TxOB* to(TxO) TxO Outout Delay from falling £oge of TxC 
(xi Clock Mode)

400 300 ns

tciRxCl Receive Clock Period 400 X 400 X ns
RxCA. RxCB WRCH) Receive Clock Pulse Width, clock HIGH 180 X 180 X ns

WRCU Receive Clock Pulse Width, etoex LOW 180 X 180 X ns

RxOA RxOB+ t,(RxC) Setuo Time to nsing edge of RxC. xi mooe 0 0 ns
URxC) Hold Time from nsing sage of RxC. xi mooe 140 140 ns

f In all modes, the system clock (<f>) rate must be at least 4.5 times the maximum data rate. 
RESET must be active a minimum of one complete 6 cycle.

44



AC Characteristics (Continued)

-

s-

ZBO-SIO ZBOA-SIO
Signal Symbol Paramatar Min Max Min Max Unit

to<#m inT Daiav Tima from nsmg aoga of a 200 200 ns

olCiW/R) WAIT R£AOY Daisy Tima from ORQ or C£ m 180 IX ns
Wait Mooa

L,HO(W/R) WAIT REAOY Daily Tima from falling aoga of O. 150 :X ns
WAIT/REAÖY HIGH. Wait Mooa

WAIT/RE AO Y loRxtW/R) W A lt Ae a OY Daiav Tima from nsmg aoga of RxC 10 13 10 13 4  paooos
Data Bit. Raaoy Mooa

loTilW/R) WAIT REAOY Daisy Tima from can tar of T ransrmt 5 9 5 9 a  panoos
Data 8<t. Ready Mooa

loLötW/R) WAIT READY Daily Tima from nsmg aoga of <t>. 120 120 ns
WAlT/REAOY LOW. R a « *  Mod#

DC Characteristics
Ta = 0#C to 70®C, VCC= +5V, ±5%

Symbol Paramatar Min. Max. Unit Tast Condition

Vice Ciock inout Low Voltage -0.3 -  0.45 V

V.HC Clock Input High voltage Vcc-0 .6 + 5.5 V

Viu input Low Voltage -0.3 ^0.8 V

V,H Input High Voltage + 2.0 + 5.5 V

VOL Output Low Voltage + 0.4 V I<X = 2.0 mA

VOH Output Hign Voltage + 2.4 V low» -250  uA

>u Inout Leakage Current -  10 + 10 mA 0 < v,N < V ,-

»Z 3-State Output/Data Bus input Leakage Current -  10 *  10 wA 0 < VIN < Vcc

■ uSYl SYNC Pin LeaKage Current -4 0 -  10 uA

•cc Power Supply Current 100 mA

Capacitance
Ta = 25°C, f = 1 MHz

Symbol Paramatar Min. Max. Unit Teat Condition

C Ciock Caoaatance 40 OF Unmeasured
C,N Input Capacitance 5 pF pins returned

^OUT Output Capacitance 10 PF to ground

-

t e s t  POINT
0

PROM
O UTPUT«  1 -

9 ¾

UN0ER ~ '  ; ' •  M
TEST i[ 2=K ) O j  250 - A 2

i X 2

Cl = 50 pF. Increase aeiay by 10 ns for each 50 pF in­
crease in CL, up to 200 pF maximum.

45



Package Configurations

Package Outlines

£ = 1  m T r m m a J—£e !;a ^ a ä a  "n;
U U u

40-Pin Plastic 40-Pin Ceramic

Ordering Information

C — Ceramic 
P — Plastic
S — Standard 5V ±5%, 0° to 70 °C 
E — Extended 5V ±5%, - 4 0 °  to 85°C 
M — Military 5V ±10%, - 5 5 °  to 125 °C 
/0  — Type 0 Bonding 
/1 — Type 1 Bonding 
/2  — Type 2 Bonding

E xam ple:

Z80-SIO/1 CS (Ceramic—Standard Range—Type 1 
Bonding)

Z80-SIO/0 PS (Plastic — Standard Range — Type 0 
Bonding)

46



READER’S COMMENTS

Your feedback about this document is important to us: only in this way can we ascertain your 
needs and fu lfill them in the future. Please take the time to fill out this questionnaire and return 
it to us. This information will be helpful to us, and, in time, to the future users of Zilog systems. 
Thank you.

Your Name:____________________

Company Name:________________

Address: _______________________

Title of this document:___________

What software products do you nave?.

What is your hardware configuration (including memory size)?.

Does this publication meet your needs? QYes Q N o 
If not, why not?________________________________

How do you use this publication? (Check all that apply)
□  As an introduction to the subject?
□  As a reference manual?
Q  As an instructor or student?

How do you find the material?
Excellent Good Poor

Technicality □ □ □
Organization □ □ □
Completeness □ □ □

What would have improved the material?

Other comments, suggestions or corrections:

If you found any mistakes in this document, please let us know what and where they were:



KUES Z80 EINFÜHRUNG

11. BEISIELPROGRAMME

REL. 2.0, MÄRZ 1984 Z80/11-1



KUES Z80 EINFÜHRUNG

VORFÜHRUNGSPROGRAMM LAMPENSTEUERUNG

Datenfluß

Akkumulator
! ]( ]I | ]f ]I ]I 1 Y

Bit: 7 6 5 4 3 2 1 0

CPU-CHIP
Akku Carry
! ! ! !

8bit
Daten-
Bus

Control-
Bus

carry Flag-Bit
t t

P IO -
Chip

! ! ! ! ! ! ! !
! ! ! ! ! ! ! !
x x x x x x x x
! ! ! ! ! ! ! !
I I I ! I ! i i

REL. 2.0, MÄRZ 1984 __________ ___________ Z80/11-1



KURS Z80 EINFÜHRUNG

VORFÜHRUNGSPROGRAMM LAMPENSTEUERUNG

Datenmanipulation in der CPU

Output/Akkumulator Carry
* 1. Ausgabe ! 0 ! 0 ! 0 ! 0 ! 0 ! 0 ! 0 ! 0 !  ! 0 !

Carry-Flag setzen ----
! 1 !

Akku links rotieren

* 2. Ausgabe --------------------------------- ----
! 0 ! 0 ! 0 ! 0 ! 0 ! 0 ! 0 ! 1  ! ! 0 !

Carry-Flag setzen ----
! 1 !

Akku links rotieren

* 3. Ausgabe
! 0 ! 0 ! 0 ! 0 ! 0 ! 0 ! 1 ! 1 ! ! 0 !

usw.

! 1 !

* 6. Ausgabe
! 0 ! 0 ! 0 ! 1 ! 1  ! 1  ! 1  ! 1  ! ! 0 !

REL. 2.0, MÄRZ 1984 Z80/11 -2



KURS Z80 EINFÜHRUNG

VORFÜHRUNGSPROGRAMM LAMPENSTEUERUNG

Programm Flußdiagramm

I
j

! Ausgabe-Modus 
! für PIO festlegen

!START! <-
j

Lampenzähler setzen 
Reg. B

1. Output setzen 
im Akkumulator

----- > lALDBIT!
i

! Akku, zum Pio ausgaben!
i

! DELAY !

Carryflag setzen 
in den Akku rotieren 
Lampenzähler (Reg. B)

<---- nein—  ! Zähler! -------- j a ----
! = 0 ? !

REL. 2.0, MÄRZ 1984v___________1___________ Z80/11-3
_______________________  J





















































21.04.1982 S e ite  1-1

.COMMENT ?
asynchrone, in te r ru p tg e s teu e rte  S10-Übertragung

Bei dem vorliegenden Programmbeispiel handelt es s ich  um eine 
s e r i e l l e  Übertragung, bei der n ich t nur der re in e  D a ten tran sfe r, 
sondern auch das H e rs te llen  bzw. Lösen der Verbindung in te r ru p t­
g e s te u e rt v e r lä u f t .

Folgende Schaltung l i e g t  zugrunde:

Sender Empfänger

Die Verbindung TxD (Transm it Data)__RxD (Receive Data) s t e l l t  
d ie  D atenleitung dar, auf der d ie  Übertragung a b lä u f t.
Das Handshake-Signal RTS (Request To Send) d ien t dazu, den 
Wunsch Daten zu senden zu s ig n a lis ie re n . Dazu wird RTS m it 
DCD (Data C arrie r D etect) verbunden.
Seine B e re itsc h a ft zun Empfang g ib t der Empfänger durch Setzen 
des DTE-Signals (Data Terminal Ready) zu verstehen , weiches 
m it CTS (C lear To Send) verbunden i s t .

PAGE

REL. V 1.0 Jannuar 1984



Der Ablauf im vorliegenden B e isp ie l kann wie fo lg t  beschrieben 
werden:

1) Setzen des RTS-Signals durch das Hauptprcgramm

2) —> In te r ru p t beim Empfänger wegen Änderung der DCD-
Leitung:
d ie  DTH-Leitung weird g e se tz t ( In te r ru p t Service 
Routine 1).

3) —> In te r ru p t beim Sender wegen Änderung der DTS-Leitung:
e rs te s  Zeichen wird dem Sender übergeben (ISR 2 ).

4) —•> In te r ru p t beim Empfänger wegen Ankunft e ines Zeichens
und In te r ru p t beim Sender wegen Leerwerden des Sende­
p u ffe rs :
empfangenes Zeichen wird abgeholt und gespeichert 
(ISR 3 ) , neues Zeichen wird in  den Sendepüffer ge­
b rach t (ISR 4 ) .

S c h r i t t  4) wird nun so lange w iederho lt, b is  a l l e  
Zeichen der Sendung übertragen worden s in d . An­
schließend wird das S ignal RTS zurückgesetz t (in n er­
halb ISR 2 ! ) .

5) —> In te r ru p t beim Empfänger wegen Änderung der DCD-
Leitung:
Rücksetzen des DTR-Signals (ISR 1 ).

5) —> In te rru p t beim Sender wegen Änderung der CTS-Leitung: 
Ausgabe der Endeneidung (ISR 2 ) .

PAGE

V .

REL. V 1 .0  Jannuar 1984
j



|UUUUUUUUUU|

21.04.1982 S e ite  3

Insgesamt werden bei fe h le r f re ie n  Ablauf v ie r  verschiedene 
In te r ru p ts  verwendet, d ie  auf folgende Ursachen zurückzuführen 
sind :

-  Sendepuffer le e r

-  Zeichen Im Empfangspuffer verfügbar

-  Zustandsänderung der DCD-Leitung (Empfänger)

-  Zustandsänderung der CTS-Leitung (Sender)

Dies g i l t  fü r  eine u n d irek tio n a le  Verbindung, wie s ie  in  
diesem B e isp ie l verwendet wurde. Bei einen b id ire k tio n a le n  
B etrieb  erhöht s ich  d ie  Zahl der insgesamt möglichen I n te r ­
ru p ts  entsprechend.

Das vorliegende V erhalten wird durch d ie  F äh igkeit des .
ZS0-S.I0 erm öglicht, auf verschiedene S itua tionen  m it ver­
schieden m o d ifiz ie rten  In te rru p tv ek to ren  zu reag ie ren . Bei 
der I n i t ia l i s ie r u n g  i s t  dafü r das B it " s ta tu s  a f fe c ts  vektor*’ 
zu se tzen .

Pro Kanal sind folgende v ie r  in te rru p tau slö sen d e  S itu a tio n en  
u n tersche idbar:

a) -  Sendepuffer le e r

b) -  änderung auf den Handshake-Leitungen (CTS oder
DCD)

c) -  Zeichen im Empfänger verfügbar

d) -  S ondersitua tion  beim Empfang (Fehler)

Im vorliegenden B e isp ie l wurden fü r den Sender d ie  S itua tionen
a) und o) zugelassen , fü r  den Empfänger d ie  S itua tionen  c) und
b )  , wobei bezüglich b) jew eils  nur d ie  änderung von CTS bzw. 
DCD zum Tragen kcmmt.

Als Voprbereitung fü r den b id ire k tio n a le n  B etrieb  ( f u l l  
duplex) wurden d ie  beiden In te r ru p t Service P.outinen 1 und 2 
so ausgeleg t, dajä sowohl eine änderung des CTS-Signals a ls  
auch das DT?.-Signals erkannt w ird.
Bei Aufträgen e in e r noch n ich t im plem entierten S itu a tio n  wird 
jedoch le d ig lic h  eine entsprechende Meldung ausgegeben.

?
PAGE

REL. V 1 .0  Jannuar 1984
















































