
Platzhalter, damit als PDF das Dokument
in 2-Seiten Ansicht gelesen werden kann.

Original und zum Druck ab Seite 2.

fritz
Stempel
Platzhalter, damit als PDF das Dokument in 2-Seiten Ansicht gelesen werden kann.

Original und zum Druck ab Seite 2.
--

This page added for reading the document on 2 pages.
Original and for printing is from page 2.

fritz
Stempel

i

Series 32000®
GNX — Version 4.4

Symbolic Debugger (DBUG)
Reference Manual

Customer Order Number 424511103-004
June 1992

REVISION RECORD

VERSION RELEASE DATE SUMMARY OF CHANGES
4.0 May 1990 First Release.

Support for new CPUs and monitors. Pro­
vides partial symbolics mode for very large
executable files. Addition of support for fast
communications via Ethernet.

4.1 Sep 1990 Support for new HP Emulators.
4.2 Feb 1991 Miscellaneous feature updates.
4.3 August 1991 Miscellaneous feature updates.
4.4 June 1992 Miscellaneous feature updates.

MS-DOS support added.

A complete list of National Semiconductor’s international offices may be found on the
inside back cover of this manual.
The information contained in this manual is for reference only and is subject to change
without notice.
No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

GENIX, GNX, ISE, ISE16, ISE32, and SYS32, are trademarks of National Semiconductor
Corporation.
Series 32000 is a registered trademark of National Semiconductor Corporation.
UNIX is a reg istered trad em ark o f AT&T.
OPUS5 is a trademark of OPUS Systems.
IBM PC is a trademarks of International Business Machines Corporation.
SUN is a trademark of Sun Microsystems Corporation.

PREFACE

This is a reference manual for DBUG, National Semiconductor Corporation’s symbolic
debugger. DBUG can be used for symbolic debugging of high-level language programs
generated by the GNX™ optimizing compilers as well as for assembly language pro­
grams generated by the GNX assembler.

DBUG supports two different user interfaces, one for graphic (X-windows) and one for
alphanumeric (ASCII) terminal environments. Mouse, function keys, and menus facili­
tate command entry.
This reference manual provides guidelines for using the debugger.

IV

CONTENTS

Chapter 1 INTRODUCTION AND OVERVIEW
1.1 Introduction... 1-1
1.2 F e a tu re s 1-1
1.3 User In terface .. 1-2
1.4 Documentation Conventions ... 1-3

1.4.1 General Conventions.. 1-3
1.4.2 Conventions in Syntax Description 1-3

1.5 Manual O rganization.. 1-4
1.6 Reference D ocum ents.. 1-4

Chapter 2 INVOKING DRUG
2.1 Invoking D B U G ... 2-1

Chapter 3 THE DBUG INTERFACE
3.1 Introduction... 3-1
3.2 The Graphic Terminal Interface ... 3-2

3.2.1 Invoking Commands and Specifying Parameters 3-3
3.2.2 Using The M ouse... 3-3
3.2.3 The dbug W indows.. 3-4
3.2.4 Command M enu s... 3-14
3.2.5 Function K eys... 3-23

3.3 The Alphanumeric Terminal Interface.. 3-26
3.3.1 Overview of the Alphanumeric Terminal Interface . . . 3-27
3.3.2 The dbug W indows.. 3-29
3.3.3 Function K eys... 3-36

Chapter 4 USING DBUG
4.1 Introduction... 4-1
4.2 DBUG Operating Modes... 4-1

4.2.1 Native Mode.. 4-1
4.2.2 Remote M o d e ... 4-1
4.2.3 DBUG and GNX T o o ls ... 4-3
4.2.4 Initializing DBUG... 4-3
4.2.5 Debugging S ess io n .. 4-3

4.3 Basic T e rm s ... 4-4
4.3.1 Current Environment.. 4-4

CONTENTS v

4.3.2 C onstan ts... 4-4
4.3.3 Symbols and Names.. 4-6
4.3.4 File Names .. 4-6
4.3.5 Registers.. 4-6
4.3.6 Line Numbers... 4-6
4.3.7 A d d ress .. 4-8
4.3.8 Address Range... 4-9
4.3.9 C Block Variables... 4-9
4.3.10 Expressions.. 4-10
4.3.11 Types.. 4-11
4.3.12 Special C harac ters.. 4-13
4.3.13 Debugger Files .. 4-13
4.3.14 Breakpoints and Traces... 4-14

4.4 Ethernet Support .. 4-15
4.4.1 Description of Ethernet Operation................................. 4-15
4.4.2 Exam ple.. 4-15

4.5 Partial Symbolics M ode... 4-16
Chapter 5 DRUG COMMAND SET

5.1 Introduction.. 5-1
5.1.1 ADDMENU - add a menu e n t r y 5-2
5.1.2 ALIAS and UNALIAS - define command aliases 5-4
5.1.3 ASSIGN - assign a value to a variable........................... 5-6
5.1.4 BEGIN - begin debugging an objfile.............................. 5-7
5.1.5 CALL - excecute a procedure.. 5-8
5.1.6 CATCH and IGNORE catch/ignore s ig n a ls 5-9
5.1.7 CLEAR - clear breakpoints... 5-10
5.1.8 CONFIG - configure for remote target system............... 5-11
5.1.9 CONNECT - connect to a remote target system 5-13
5.1.10 CONT - continue program execution.............................. 5-16
5.1.11 CONT UNTIL - continue execution until value in

range... 5-17
5.1.12 DELETE - delete breakpoint and trace events 5-19
5.1.13 DELMENU - removes a menu e n try 5-20
5.1.14 DOWN - move down in call stack 5-21
5.1.15 DUMP - dump procedure variables 5-22
5.1.16 ENV - restore the environment....................................... 5-23
5.1.17 FILE - change current file ... 5-24
5.1.18 FUNC - change current procedure................................. 5-25
5.1.19 HELP - explain dbug commands..................................... 5-26
5.1.20 KDEFINE - bind function key to com m and.................. 5-27
5.1.21 KRESET - reset function keys to default 5-29
5.1.22 LIST - print source code lines 5-30
5.1.23 LOAD - load program to a target s y s te m 5-32

vi CONTENTS

5.1.24 LOG - log a program to the log f ile 5-35
5.1.25 NEXT and NEXTI - execute one line/instruction 5-37
5.1.26 PCPU PMMU ...- print all registers.............................. 5-38
5.1.27 PRINT - print variables and expressions..................... 5-40
5.1.28 PROTECT - set memory protection 5-44
5.1.29 QUIT - terminate debugging session.............................. 5-46
5.1.30 RETURN - return from current procedure..................... 5-47
5.1.31 RUN and RERUN - run the loaded program 5-48
5.1.32 SEARCH - search for patterns in the source file............ 5-50
5.1.33 SET and UNSET - set dbug variab les........................... 5-52
5.1.34 SOURCE - execute command file.................................... 5-54
5.1.35 STATUS - list active breakpoints and t r a c e s 5-55
5.1.36 STEP and STEPI - step over one line/instruction 5-56
5.1.37 STOP - set breakpoints (source le v e l) 5-57
5.1.38 STOPI - set breakpoints (machine level)........................ 5-61
5.1.39 TRACE and TRACEI - trace variables and execution . . 5-63
5.1.40 UP - move up in call s t a c k ... 5-65
5.1.41 USE - set source search p a th .. 5-66
5.1.42 WDELETE - delete a window 5-67
5.1.43 WDISPLAY - display window 5-68
5.1.44 WGO - go to a line in f i l e ... 5-70
5.1.45 WHATIS - describe a symbol.. 5-71
5.1.46 WHERE - print active call s ta c k 5-72
5.1.47 WHEREIS - find all occurrences of a symbol 5-73
5.1.48 WHICH - print symbol qualifier.................................... 5-74
5.1.49 WMOVE - move or resize w indow 5-75
5.1.50 WNEXT - select a w indow ... 5-78
5.1.51 WPOP - pop window ... 5-79
5.1.52 WPUSH - push window.. 5-80
5.1.53 WRESET - reset windows.. 5-81
5.1.54 WSCROLL - scroll window... 5-82

Chapter 6 INTERFACE WITH EMULATORS
6.1 Introduction... 6-1

6.1.1 Downloading A P rog ram ... 6-1
6.1.2 Tracing... 6-2
6.1.3 C o u n te r.. 6-4
6.1.4 Memory m apping... 6-4

6.2 The HP64772 and HP64778 Emulators 6-5
6.2.1 Invocation... 6-5
6.2.2 Virtual PC (V PC)...
6.2.3 Condition option.. 6-6
6.2.4 Traceh Mode.. 6-6
6.2.5 HP64772/8 BREAKH - stop execution........................... 6-7
6.2.6 HP64772/8 CONFIGH - set configuration parameters . 6-8

CONTENTS vii

6.2.7 HP64772/8 CONNECT - connect to a system emulator . 6-11
6.2.8 HP64772/8 COUNTER DEFINE - counts time or

events.. 6-15
6.2.9 HP64772/8 COUNTER STATUS - print counter

qualification.............. 6-17
6.2.10 HP64772/8 LOADMON - load a foreground monitor . . 6-18
6.2.11 HP64772/8 MAP - map emulation m em ory 6-19
6.2.12 HP64772/8 RESETH - reset C P U 6-22
6.2.13 HP64772/8 STOPH - set a hardware breakpoint 6-23
6.2.14 HP64772/8 TRACEH DEFINE - define hardware trace . 6-25
6.2.15 HP64772/8 TRACEH FORMAT - define trace display

format.. 6-30
6.2.16 HP64772/8 TRACEH LIST - display trace buffer 6-31
6.2.17 HP64772/8 TRACEH RESET - reset trace definitions . 6-32
6.2.18 HP64772/8 TRACEH START - start hardware trace . . 6-34
6.2.19 HP64772/8 TRACEH STATUS - display current status

of emulator tra c e .. 6-36
6.2.20 HP64772/8 TRACEH STOP - stop hardware trace . . . 6-37
6.2.21 HP64772/8 UNMAP - delete an emulator map term . . 6-40

6.3 The HP64779 Em ulator... 6-41
6.3.1 Invocation.. 6-41
6.3.2 Condition option... 6-41
6.3.3 HP64779 BREAKH - stop execution............................ 6-42
6.3.4 HP64779 CONFIGH - set configuration parameters . . 6-43
6.3.5 HP64779 CONNECT - connect to a system emulator . . 6-46
6.3.6 HP64779 COUNTER DEFINE - counts time or events . 6-50
6.3.7 HP64779 COUNTER STATUS - print counter

qualification... 6-51
6.3.8 HP64779 LOADMON - load a foreground monitor . . . 6-52
6.3.9 HP64779 MAP - map emulation m em ory 6-53
6.3.10 HP64779 RESETH - reset C P U 6-56
6.3.11 HP64779 STOPH - set a hardware b reakpoin t........... 6-57
6.3.12 HP64779 TRACEH DEFINE - define hardware trace . . 6-59
6.3.13 HP64779 TRACEH FORMAT - define trace display

format.. 6-63
6.3.14 HP64779 TRACEH LIST-display trace b u ffe r.......... 6-64
6.3.15 HP64779 TRACEH RESET - reset trace definitions . . 6-66
6.3.16 HP64779 TRACEH START - start hardware trace . . . 6-68
6.3.17 HP64779 TRACEH STATUS - display current status of

emulator t r a c e ... 6-71
6.3.18 HP64779 TRACEH STOP - stop hardware trace 6-72
6.3.19 HP64779 UNMAP - delete an emulator map term . . . 6-76

6.4 The SPLICE Emulator.. 6-77
6.4.1 Invocation... 6-77
6.4.2 SPLICE CONFIGH MON SB - setting monitor static

b a s e ... 6-78

viii CONTENTS

6.4.3 SPLICE MAP - map SPLICE memory........................... 6-79
6.4.4 SPLICE UNMAP - unmapping SPLICE memory 6-81

Appendix A DBUG TUTORIAL FOR GRAPHIC TERMINALS
A.l Introduction.. A-l
A.2 Organization and Use of the Sample Session.................................. A-2

A.2.1 Organization of the Sample Session............................... A-2
A.2.2 Working with the Sample S ession.................................. A-2
A.2.3 Command Presentation.. A-3

A.3 The Hardware Environment ... A-4
A.4 Beginning the Program Rim.. A-4
A.5 Introduction to the Graphic Interface W indows............................ A-6

A.5.1 Opening Screen Layout.. A-6
A.5.2 Scrolling through the Scroll B a r A-7
A.5.3 Moving Between Windows and Entering Commands . . A-9
A.5.4 Command M enu s... A-15

A.6 Explanation of the Sample P ro g ram .. A-20
A.6.1 The Sample Program Logic.. A-20

A.7 The Sample Program ... A-20
A. 8 The dbug Session.. A-23

A.8.1 Run the Sample Program... A-23
A.8.2 Running dbug and Devising a Debug S tra te g y A-24
A.8.3 First Debug Commands.. A-26
A.8.4 Fixing the First Bug ... A-30
A.8.5 Hanging Menus and Selecting T e x t A-31
A.8.6 Issuing Commands with Predefined K ey s...................... A-39
A.8.7 Scrolling Through the Command Window...................... A-43
A. 8.8 Narrowing Down the P rob lem .. A-44

Appendix B DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS
B. l Introduction.. B-l

B. 1.1 Organization of the Sample Session............................... B-l
B.1.2 Working with the Sample Session.................................. B-l
B.1.3 Command Presentation.. B-2

B.2 The Hardware Environment ... B-3
B.3 Beginning the Program Run... B-3
B.4 Introduction to the Alphanumeric In terface B-4

B.4.1 Opening Screen Layout.. B-4
B.4.2 Moving Between Windows and Entering Commands . . B-7

B.5 Explanation of the Sample P ro g ram .. B-10
B.5.1 The Sample Program Logic.. B-10

CONTENTS ix

B.6 The Sample P ro g ra m .. B -ll
B. 7 The dbug Session... B-13

B.7.1 Run the Sample Program... B-13
B.7.2 Running dbug and Devising a Debug S tra teg y B-14
B.7.3 First Debug Commands... B-16
B.7.4 Fixing the First Bug ... B-20
B.7.5 Finding the Second Bug.. B-22
B.7.6 Scrolling Through the Command Window...................... B-27
B.7.7 Narrowing Down the P rob lem B-28

Appendix C COMMAND LIST BY FUNCTIONAL GROUP
C. l Introduction... C-l
C.2 Execution And Tracing Commands... C-l
C.3 Remote Mode Commands.. C-2
C.4 Printing Variables And Expressions.. C-2
C.5 Window Com mands... C-3
C.6 Menu Commands .. C-3
C.7 Emulator Specific Commands.. C-3
C.8 Accessing Source F iles.. C-4
C.9 Key Definition.. C-4
C.10 Function Key Commands . . : ... C-4
C .ll Assembly Level Commands... C-5
C.12 Command Aliases And V ariables.. C-5
C.13 Miscellaneous Commands.. C-5

Appendix D GLOSSARY
Appendix E GLOSSARY

FIGURES
Figure 3-1. The Opening Dbug Frame for the Graphic In terface................ 3-5
Figure 3-2. Temporary M e n u .. 3-13
Figure 3-3. Marked Text and a Hanging Menu ... 3-15
Figure 3-4. Opening Dbug Frame for an Alphanumeric Interface................ 3-28
Figure 4-1. Operating M od es... 4-2
Figure A-l. Opening Frame of the Graphic Interface A-5
Figure A-2. HELP Window ... A-8

x CONTENTS

Figure A-3. On the Command L in e ... A-10
Figure A-4. wdelete code... A-12
Figure A-5. Temporary M e n u .. A-15
Figure A-6. stop in bubble_sort... A-25
Figure A-7. p s a v e .. A-27
Figure A-8. Marking T e x t .. A-32
Figure A-9. Hanging M enus... A-34
Figure A-10. Marking i .. A-45
Figure B-l. DBUG Frame after the Code Window is Displayed................... B-5
Figure B-2. The HELP W indow... B-6
Figure B-3. Breakpoint M arked... B-15
Figure B-4. p s a v e .. B-17
Figure B-5. stop in bubble_sort... B-21

TABLES
Table 4-1. Register N am es... 4-7
Table 4-2. Recognized Operators.. 4-11
Table 6-1. HP64772/8 Emulator Pin-Group A ssignm ents........................ 6-3
Table 6-2. HP64779 Emulator Pin-Group A ssignm ents........................... 6-3

INDEX

CONTENTS xi

Chapter 1
INTRODUCTION AND OVERVIEW

1.1 Introduction
This manual describes the function, operation and use of the GNX Symbolic Debugger,
DBUG. DBUG is an interactive debugger that can debug programs developed with
National Semiconductor’s GNX Software Development Package.

1.2 Features
DBUG may be used for symbolic debugging of programs compiled with the GNX assem­
bler and the C, Pascal and FORTRAN77 compilers.
DBUG provides the following features:

• Support for two modes of operation: native and remote. In native mode, both
DBUG and the program being debugged run on the host system. Native mode is
available only on Series 32000-based computers (SYS32 development systems)
running under the UNIX Operation System. In remote mode, DBUG runs on the
host system while the program being debugged runs on the Series 32000 based
target system (usually one of the NS development boards).

• Support for the HP64700 family of In-System Emulators (ISE) for the Series
32000 CPUs. DBUG also supports the SPLICE Development Tool for the
NS32CG16 CPU.

• Fast communication between DBUG and development boards via Ethernet.
• Fast communication, via Ethernet, between DBUG and the HP64700 family of

in-system emulators.

• Extensive breakpoint, trace and print capabilities. Breakpoints and traces may be
conditional. General expressions may be specified in high-level language syntax.

• Command files and Log files. DBUG can create and execute a file of debugger
commands. A log of these commands and the responses generated during a debug
session may be saved in a file.

Rev 4 .4 INTRODUCTION AND OVERVIEW 1-1

Symbolic disassembly.

• Command aliasing, to enable command invocation using abbreviations.
In addition, the UNIX and VMS versions of DBUG provide:
• Advanced user interface for both (graphic) terminal (X-windows) environments and

alphanumeric terminal environments.
• Function keys - any DBUG command can be attached to a function key.
• Command history mechanism, as part of the user interface.

1.3 Docum entation Conventions
The following documentation conventions are used throughout the manual.

1.3.1 General Conventions
Character names within brackets < > indicate non-printing characters. For example,
<ctrl/b> indicates that the user should press the keys marked Ctrl and b simultane­
ously.
Constant width letters are used in examples.

1.3.2 Conventions in Syntax D escription
The following conventions are used in syntax descriptions.
Bold letters indicate reserved words. Type them as shown.
Italics indicate inputs supplied by you. The italicized word stands for the actual
operand, which you enter.
Spaces or blanks must be entered as shown. Multiple blanks or horizontal tabs may be
used in place of a single blank.
{ } Large braces enclose two or more items of which one, and only one, must be used.

The items are separated from each other by the vertical bar sign (I).
Large brackets enclose optional item(s).

| Vertical bar sign separates items of which one, and only one, is used.

1-2 INTRODUCTION AND OVERVIEW

Three consecutive periods indicate optional repetition of the preceding item(s). If
a group of items is repetitive, the group is enclosed in large parentheses ().

() Large parentheses enclose items that must be grouped together for optional
repetition. If three consecutive commas or periods follow an item, only that item
may be repeated.

1.4 Manual Organization
The remainder of this manual is organized as follows:
Chapter 2: how to invoke DBUG.
Chapter 3: the user interfaces for both bitmapped (graphic) and alphanumeric termi­
nals. The chapter describes the DBUG windows, menus, and function keys. This
chapter is only for users of the UNIX and VMS versions of DBUG.
Chapter 4: general concepts for using DBUG commands.
Chapter 5: the DBUG command set.
Chapter 6: the ISE and SPLICE interface and specific commands.
Appendix A: a DBUG tutorial for users with bitmapped terminals. The tutorial intro­
duces the DBUG interface and main commands. New users are STRONGLY
ENCOURAGED to work the tutorial. This appendix is only for users of the UNIX and
VMS versions of DBUG.
Appendix B: a DBUG tutorial for users with alphanumeric terminals. The tutorial
introduces the DBUG interface and main commands. New users are STRONGLY
ENCOURAGED to work the tutorial. This appendix is only for users of the UNIX and
VMS versions of DBUG.
Appendix C: DBUG commands, listed in functional groupings.
Appendix D: DBUG glossary.

1.5 Reference Docum ents
• GNX Software Tools Document Set
• GENIX™ V.3 Reference Manuals
• HP64772 Emulator Terminal Interface: NS32532 and NS32GX32 Emulator Users

Guide
• SPLICE III Hardware Reference Manual

Rev 4.4 INTRODUCTION AND OVERVIEW 1-3

Chapter 2
INVOKING DRUG

2.1 Invoking DBUG
Invoke DBUG with the following command:
SYNTAX

dbug [options] [objfile [coredump]]
DESCRIPTION

Objfile is the name of the executable file being debugged. This file must have
been produced by the GNX tools. The objfile’s default name is a.out in native
mode and a32.out in remote mode.
DBUG can examine a core file that was created by a program that terminated
abnormally. The coredump parameter specifies the name of the file containing
the program’s core dump. This feature is only available in native mode.
Upon invocation, DBUG will execute commands in the files .dbuginit (in UNIX)
or dbug.ini (in VMS and MS-DOS), if these files exist in either the current direc­
tory or the user’s home directory, unless you specify the -c or the -noc options
(see invocation options, below).
The invocation line options are described in the table below.
After initialization, DBUG prompts and waits for commands.

Rev 4.4 INVOKING DBUG 2-1

U N IX / M S -D O S V M S D E S C R IP T I O N

-I dir limdir Add d ir to list of directories to search for a source file. (Normally DBUG looks for
source files in current directory and in directory tha t contains objfile.) The direc­
tory search path may also be set with the u se command.

- c file /c-file Execute DBUG commands in file before accepting commands from the user.
Without this option, DBUG attempts to execute commands in .dbuginit file.

-HOC /NOC Do not execute any command file initially (including .dbuginit).

-1 tty name /1 mlinkname Selects a communications link between host and target in remote mode. If
specified, DBUG establishes this connection on invocation.

-c p u cpuname Icpu-cpuname Specifies the CPU name on the target board. Possible names: gx32, cgl6, cgl60,
fx l6 , gx320, 532, 332, 032, 016.

-mmu mmuname /mm ummmuname Specifies Memory Management Unit (MMU) name on target board. Possible
names: 082, 382, onchip or nommu.

- f p u fpuname /fpu mfpuname Specifies Floating Point Unit (FPU) name on target board. Possible names: 081,
381, 181, 580 or nofpu.

-m o n name /m on-nam e Specifies monitor name on target board. Possible names: 16, 32, 332, 332b, 532,
cgl6, gx32, ise532, cgl60, fxl6, gx320, gx32e, fxlßfax, cgl60lx, isefxl6, isecgl6,
isecgl60, isegx32, isegx320.

-L C /LC If specified, DBUG converts each command to lowercase before analyzing it.
(This is useful when debugging Pascal programs, where variable names are con­
verted to lowercase.)

■ws number
-w y number

not available Specifies position of upper lefthand comer of DBUG frame in pixels. Default
values for Hercules display: -wyO and -wxO. For Viking display: -w x l4 3 and
-w y l0 7 . This option is valid only for graphic display environment.

-w h number
•ww number

not available Specifies height and width of DBUG frame. Minimum width and height are 200
pixels. Default is -w h 6 4 0 , -w w853 for Viking display. In Hercules display, the
complete screen is used as the DBUG window. This option is valid only for
graphic display environment.

- n nodename ln-nadename Specifies node name of target board on the local area network.

- P /P Specifies that DBUG should load partial symbolic information. Useful for large
executable files.

- b number / bau d -number B a u d number sets the communication baud rate for stand-aside mode. Possible
values are: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400. The default
baud ra te is 9600. This parameter is ignored if the node option is selected.

- s t x number Istx-num ber S t x number changes the ”stx” character used when communicating with the
development board and protocol B is in use.

2-2 INVOKING DBUG Rev 4.4

Chapter 3
THE DBUG INTERFACE

3.1 Introduction
This chapter describes the DBUG interface for graphic and alphanumeric terminals.
Both interfaces work on the same principles. With few exceptions, commands for mani­
pulating windows and keys are identical for both interfaces. Thus, users familiar with
one interface will have little difficulty learning the other.
The two interfaces are described in the following sections:

• Section 3.2 describes the graphic terminal interface.
• Section 3.3 describes the alphanumeric terminal interface.

THE DBUG INTERFACE 3-1

3.2 The Graphic Terminal Interface
This section describes the DBUG user interface that runs on a graphic terminal with
mouse capabilities. This interface is referred to as the graphic interface.
The DBUG graphic interface consists of the following elements:

• Windows. Multiple windows may be displayed within the DBUG frame, creating a
structured display of the DBUG session information. Window display is controlled
with the window manipulation commands.

• Command Menus. Command menus list DBUG commands. These commands are
executed when selected with the mouse. You can use the menu definition commands
to extend and customize menus to fit your specific needs.

• Function Keys. DBUG commands may also be invoked by function keys. All func­
tion keys are user definable using key definition commands.

For detailed descriptions of windows, menus, or function keys, see the following sections:
"The DBUG Windows" (section 3.2.2)
"Command Menus" (section 3.2.3)
"Function Keys" (section 3.2.4)

3-2 THE DBUG INTERFACE

3.2.1 Invoking Commands and Specifying Param eters
You can invoke a DBUG command in one of three ways: by keyboard, by function key,
or by using a command menu. Many DBUG commands require parameters. The two
most common ways of specifying a parameter are described below:

1. Typing it after the command (example: p r i n t v a r l) ,
2. Marking program text as it appears in the CODE window, and selecting certain

command menu options or function keys. This method requires use of the mouse.

3.2.2 U sing The Mouse
The mouse cursor is represented on the screen by a large "X". A number of important
functions are performed through use of the mouse. These include:

1. Executing commands through the command menu.
2. Marking text or selecting a window as a command parameter.

THE DBUG INTERFACE 3-3

3.2.3 The dbug Windows
The DBUG windows and their functions are listed below:

CODE: displays the program being debugged; displays user-defined break­
points and marks the next line to be executed.
DIALOG: provides a line for entering commands through the keyboard and
a window that echoes all commands and DBUG responses.
HELP: lists DBUG command syntax.
TRACE: displays trace information produced by the HP64772 in-system
emulator.

The DBUG windows are displayed within the DBUG frame.
The DBUG frame is the same, except for some minor differences, in all environments.

3-4 THE DBUG INTERFACE

|Hl »c IjEnvll Viaw ||Run l|sto71|sQ«rchl|u»Br |[~Ulndou« |[sal act 1 on]

podo: b u b b t s . c
1 «include <stdio.h>
2
3 «define ARRAYLEN 10
4
5 int numbersCARRAYLEN] = £2, 4, 17, 13, 7, 5, 2, 6 , 9,
6
7 m a l n <)
0 £
9 int i;

1 0
11 prlntf("The array before the sorting:\n">;
12 for <1 = 0; i < ARRAYLEN; 1 ++)
13 pr i n t f ("Kd ", numbersCl]);
14 pr i n t f <"\n\n">;
15
16 printf("The sorted array after %d exchanges:\n"
17 bubble_sort());

0 1 < 103

Dbug - Version 3 Revision 6 ,
Type 'help' for help.
reading symbolic information ...

_1(dbug) A

Figure 3-1. The Opening Dbug Frame for the Graphic Interface

THE DBUG INTERFACE 3-5

3.2.3.1 The DBUG Frame
A DBUG session begins when the DBUG frame appears on the screen (Figure 3-1). All
work takes place within the DBUG frame. The opening DBUG frame contains three
rectangles and a large empty area on the right side. The uppermost rectangle
stretches horizontally across the frame, and houses nine smaller windows with labels
such as "Misc" and "Env". These are command menus, and they will be discussed later
in this chapter (see "Command Menus," section 3.2.3).
The two remaining rectangles within the frame are windows for displaying information
about the execution state of the debugged program. These two windows appear by
default on the opening DBUG frame. They are called the CODE window and the DIA­
LOG window.
You control the size and location of the DBUG frame and its windows. The windows
may overlap or be located anywhere.
The only time during the debugging session when the mouse cursor should be located
outside the DBUG frame is to enter input to the program being debugged. This is
because the standard I/O of the debugged program is carried out in the shell window
from which DBUG was invoked.

3.2.3.2 The Current Window
When working in a multiwindow environment, you must keep the mouse cursor within
the DBUG frame. You may type in only one window at a time. The window where the
mouse cursor is currently located is called the current window. The current window is
the window that "listens" to the keyboard.
For example, you may enter commands along the command line only when the mouse
cursor is within the DIALOG window.

3.2.3.3 The Selected Window
Some DBUG commands accept a window as a parameter. You can select a window
that will serve as a default window for those commands. This window is called the
selected window. To select a window, move the cursor into that window and press the
select key (<pf3> by default), or execute the wnext command (see chapter 5, section
5.1.48). To unselect a window, put the mouse cursor in the DBUG frame and press the
select key.

3-6 THE DBUG INTERFACE

3.2.3.4 The CODE Window
The CODE window displays the section of your program code that is currently execut­
ing and provides a visual representation of the debugging session. DBUG marks lines
that have breakpoints with an asterisk (*), and marks the next line to be executed
with an arrow (=>).
The header along the upper border displays the window name "Code", and the file
name of the program being debugged.
The program code is displayed in one of two modes:

1. Source. Source mode presents the program source code as originally written.
Line numbers are displayed on the left side of the window.

2. Assembly. Assembly mode presents the disassembly of the target program.
Each instruction’s address is displayed on the left side of the window.

DBUG determines which mode to use. It selects source mode when the current module
has symbolic information (compiled with -g option). Assembly mode is selected in all
other cases.
To scroll through the CODE window, do one of the following:

• Use the cursor. CODE must be the current window. A small cursor (caret)
marks the position in the file. Pressing the up arrow while the caret is adja­
cent to the upper border scrolls the window one line up. Pressing the down
arrow while the caret is adjacent to the bottom border scrolls the window one
line down. (This scrolling method is supported by all DBUG windows.)

• Scroll with the wscroll command. This command scrolls a number of lines
up or down the CODE window.

• Scroll with the wgo or search commands. These commands scroll to a
specific line number in the CODE window.

The CODE window is the only window in which text selection may take place. A full
description of text selection appears later in this chapter.

THE DBUG INTERFACE 3-7

3.2.3.5 The DIALOG Window
The DIALOG window is divided into four areas: the header band, the output area (the largest area in the window), the command line (along the window’s bottom border), and
the scroll bar (the thick black area along the lefthand border of the output area).
Use the command line (identified by the word "(dbug)" in the bottom left corner) to
issue commands. There are two ways to enter a command along the command line.
The first is by typing the command on the keyboard. The mouse cursor must be located
on the command line. When DBUG starts running, the mouse cursor is automatically
placed on this line. You can also bring the cursor there by pressing the commline key
(<kpO> by default), or by moving the mouse.
The second way to enter a command through the command line is to use the history
buffer. The history buffer records all user commands that were issued through the
command line during the debugging session. You can access these commands by align­
ing the cursor on the command line and scrolling through the command line buffer
with the up-down arrows until the appropriate command appears in the line. Press the
return key, and the command is executed. Commands that have been invoked by func­
tion keys or menus are not kept in the history buffer, and thus cannot be accessed by
scrolling.
You can move back and forth along the command line by pressing the left and right
arrows (<-,->). The backspace key or your default erase character will delete charac­
ters.
The output area displays the session history, including user commands and DBUG
prompts and echoes. Lines longer than the window width are wrapped around to the
next line. Echoes of commands issued through a function key are prefixed by "-k-".
Echoes of commands issued through a menu are prefixed by "-m-".
The DIALOG window, even if deleted, continues to log the debugging session in its out­
put area. The window can be redisplayed with the commline command.

3-8 THE DBUG INTERFACE

The scroll bar is used to scroll through the output area. To scroll, put the mouse cursor
in the scroll area (the cursor will become a vertical line with arrows on either side) and
press the appropriate mouse button. Within the scroll bar, mouse buttons function as
follows:

left - scroll towards the end of the file. Pressing the left button causes the
text next to the cursor (inside the scroll bar) to move to the top of the win­
dow.
middle - (for 3-button mouse) scroll to the absolute position in the text by
positioning the cursor within the scroll bar.
right - scroll towards the beginning of the file. Pressing the right button
causes the top line of the window to move to the mouse’s position.

The scroll bar is also found in the DIALOG, HELP and TRACE windows.
Scrolling may also be performed with the up and down arrows on the keyboard.

THE DBUG INTERFACE 3-9

3.2.3.6 The HELP Window
The HELP window provides information on the use of DBUG, window, and function
key commands. The HELP window is manipulated like any other window. But unlike
the other windows, it can be opened by invoking the help command. The HELP win­
dow may be closed with the reset function key. The default reset key is <ESC>.

3-10 THE DBUG INTERFACE

3.2.3.7 The TRACE Window
The TRACE window is used only in an ISE configuration. It displays the results of the
hardware trace output after the traceh list command has been issued.
The default location of the TRACE window is along the righthand border of the DBUG
screen.
Issuing the traceh list command when the TRACE window is not present sends
results to the DIALOG window.

THE DBUG INTERFACE 3-11

3.2.3.8 The Window M anipulation Commands
The DBUG window manipulation commands are listed below. These commands allow
the user to control the display of information on the screen and customize DBUG’s
default appearance.
For a complete description of each command and its syntax, see Chapter 5.

wdisplay - display a window,
wdelete - delete a window,
wgo - go to a line in the file,
wmove - move or resize a window,
wpop - pop a window,
wpush - push a window,
wreset - reset windows,
wscroll - scroll through a window,
wnext - select the next window.

3-12 THE DBUG INTERFACE

I Hl »c | [~Env~l| VI aw | faun) | Stop~| | Saarch 11 U«aeTIu.1 nrlau« il la

Coda; b u b b l o . c
1 »Include <stdio.h>
2
3 »define ARRAYLEN 10
4
5 lnt numbersCARRAYLEN] = (2,6
7 m a i n ()8 {

lnt 1;

w d lsp t ay

u delata

uputh

Wpop

wraiat

lection

7, 5 , 2 . 6, 9,

'tlng:\r, ’);

):

printf("The array b
for (i = 0 ; 1 < ARR

printf("Xd
prlntf<"\n\n">;

printf("The sorted array after Xd exchanges:\n(
bubble_sort());

Dialog
Dbug - Version 3 Revision 8.
Type 'help' for help,
reading symbolic information
(dbug) help keys
(dbug) -k- help k
(dbug) -k- help 1
(dbug) wdelete code
(dbug) wdisplay code
(dbug) wdelete
(dbug) wdisplau code
(dbug) wpop help
(dbug) kdeflne redraw
Press a function key:

(dbug)

Figure 3-2. Temporary Menu

THE DBUG INTERFACE 3-13

3.2.4 Command Menus
DBUG commands may be entered through a menu-driven interface. Command menu
labels are displayed along the upper border of the DBUG frame. To display the com­
mand menus themselves, select the desired label with the mouse cursor.
Command menus may be extended by the user. This feature enables you to tailor the
command menu interface to your needs, or to those of a specific application.

3.2.4.1 Command Menu Labels
The long, narrow rectangle along the upper border of the DBUG frame contains nine
smaller rectangles with labels such as "Misc", "Env" and "View”. These are command
group labels. Command group labels cannot be moved, and their shape is automati­
cally adjusted to the shape of the DBUG frame. Menus that relate to each command
group label are displayed by aligning the mouse cursor within the appropriate rectan­
gle and clicking a mouse button.

3.2.4.2 Temporary vs. Perm anent (Hanging) Menus
Command menus may be temporary (displayed for the duration of a command or
until another menu is selected), or permanent (for as long as you want). Temporary
command menus are displayed from the base of the command menu label (Figure 3-2).
Permanent menus are also known as "hanging menus". You create them by selecting
the <move> option from a temporary menu, moving the mouse cursor to the point
where you want to hang the top of the menu, and pressing any mouse button. You can
remove a temporary menu without selecting an option by pressing the reset key
(<ESC> by default). Hanging menus display a variety of frequently used commands on
screen, all the time. You can remove a hanging menu by selecting the <exit> option.

3-14 THE DBUG INTERFACE

I Hl tc | [~Env~| | v t cu [| Run [| Stop 11S a a r ch~| | U » a r 1 j U t ndow»~|| Sal act l on 1
fode: bubble.c

18 for (i = 0; 1 < 1
19 prlntf (
20 prlntf("\n");
21)
22
23 int IBIlBnn sortO
24 {
25 int 1;
26 int change_count
27 int save;
20
29 total_count *= 0;
30 do
31 {
32 change_ci
33 for (i =
34

ARRAYLEN; 1++)
V.d ", numbersCll >;

0; 1 < ARRAYLEN - 1; 1++)
If (numbers!!] <= numbersCi + 1

□1<103
Dbug - Version 3 Revision 8.
Type 'help' for help.
reading symbolic information ...
(dbug) -k- wscroll d
Click a button to position the menu

print

print h

uhatla

■top at

atop In

clear

< n o v a >

<#xlt>

(dbug) _

Figure 3-3. Marked Text and a Hanging Menu

THE DBUG INTERFACE 3-15

The three types of command menu options are:
1. Options with no parameter specified, or with a parameter known by default.

These options are invoked by clicking the left mouse button on the desired entry
in the corresponding menu.

2. Options with parameters specified through prompt lines that pop onto the screen
when the menu option is selected. (Menu entries with "pop-up” prompts are
highlighted around the edges.) These options are issued after you enter the
parameter along the pop-up line and press <CR>.

3. Options with parameters specified before the option is selected. Such parameters
are specified by marking text with the mouse. Command menu options which
require selected (marked) parameters are found within the SELECTION menu.
They may also be found in the USER menu, if you so define them (see the
addmenu command in Chapter 5). These options are issued by selecting text
before the option is selected. Only text in the CODE window can be selected.

A command created by one of these methods is immediately executed. An echo for the
command is sent to the DIALOG window. The echo is prefixed with ’-m-’ to distinguish
it from commands typed on the command line.

3.2.4.3 Invoking Menu Commands

3.2.4.4 M arking Text With The Mouse
When executing a command through the command menu, you may specify parameters
with the mouse. To mark text, use one of these methods:

1. D r a g g in g th e c u r s o r . Align the cursor over a character that belongs to
text (within the CODE window) from the desired parameter. Depress the
left-hand mouse button and move the mouse over the text to be selected.
Release the mouse button (Figure 3-3).
2. D e l im i t in g th e a r e a to he h ig h l ig h te d . Align the cursor next to the text to
be selected. Click the left button. This spot is marked by a small caret.
Move the mouse cursor to the end of the text to be selected. Click the right
button. The area between the clicks of the left and right buttons is
highlighted.
3. S e le c t in g a w o r d . Align the mouse cursor on the word to be selected.
Rapidly click the left button twice. This selects a string of contiguous non­
blank characters.
4. S e le c t in g a lin e . Align the mouse cursor on the line to be selected.
Rapidly click the left button three times. All text selected in this way is
highlighted. Pressing the left button once u n s e le c ts the text.

3-16 THE DBUG INTERFACE

DBUG can interpret marked text (also known as selected text) in a variety of ways.
The particular interpretation depends on the command issued. The three possible
interpretations are:

1. Text. Interpret the selection literally. The parameter is recognized
exactly as that text which is highlighted, and nothing more. Specify <text>
when defining a command with a text parameter.
2. Expression. This selection is also interpreted literally. However, DBUG
expands the selected material to include the longest string of connected
alphanumeric characters or underscores. Thus a long expression can be
selected simply by marking one character in the expression. When defining
a command with an expression parameter, specify <expr>.
3. Line. Interpret the selection as the line number containing the selected
text. When defining a command with a line parameter, specify <line>.
Note: Only the first line of the marked text is considered if more than one
line is selected.

3.2.4.5 Interpretations of Marked Text

THE DBUG INTERFACE 3-17

3.2.4.6 Menu Definition Commands
Users can define command menu entries. All user-defined entries appear in the menu
beneath the USER menu label. Commands for adding and deleting options to and from
this menu appear below. These commands, which are described in full in Chapter 5,
are:

addmenu - add a menu entry,
delmenu - delete a menu entry.

3-18 THE DBUG INTERFACE

3.2.4.7 The Menus
This section lists the menu labels and the entries within each one. Command parame­
ters that follow the command (example: p r i n t < ex p r>) are entered within pop-up
forms that appear after the command is selected. Command parameters that precede
the command (example: < e x p r > p r i n t) are entered by marking text before invoking
the command. In both cases, DBUG interprets the command by adding the parameter
to the end of the selected command. The commands are described in Chapter 5.
Misc
The command menu behind the MISC label supports several functions not
associated with each other or any of the other labels. Most important of these is the

<command> function. Selecting the <command> function generates a command line
from which commands may be entered. This command line may be used as a substi­
tute for the command line within the DIALOG window.
The MISC menu:

- help
- <command> <comm>
- source <file name>
- quit

Where:
<comm> is a DBUG command.
Env
The ENV menu contains commands for controlling the program’s symbolic environ­
ment
The ENV menu:

- func <function name>
- file <file name>
- up
- down
- env

THE DBUG INTERFACE 3-19

View
The VIEW menu contains commands for checking the value of variables and the status
of the program.
The VIEW menu:

- where
- print <expression>
- status

Run
The RUN menu contains commands for executing the program under DBUG.
The RUN menu:

- step
- next
- cont
- clear
- return
- rerun
- run

Stop
The STOP menu contains commands for setting breakpoints.
The STOP menu:

- stop in <function name>
- stop at <line number>

3-20 THE DBUG INTERFACE

Search
The SEARCH menu gives you information about program symbols (variables, func­
tions, files, ...).
The SEARCH menu:

- whatis <symbol>
- which <symbol>
- whereis <symbol>

Where:
<symbol> is a variable or function name.
User
The USER menu is a user-defined menu. All entries are determined by you. Com­
mands for adding and deleting options to and from this menu are presented later in
this manual (see Chapter 5, "addmenu," "delmenu").
Windows
The WINDOWS menu contains commands for manipulating the DBUG window inter­
face. Note that wdelete, wpush, wpop and wmove operate on the currently selected
window.
The WINDOWS menu:

- wdisplay <window name>
- wdelete
- wpush
- wpop
- wmove
- wreset

THE DBUG INTERFACE 3-21

Selection
The SELECTION menu contains commands for printing and identifying variables, and setting and clearing breakpoints. Parameters for SELECTION menu commands are
identified by marking text.
The SELECTION menu:

- <expr> print
- <expr> print *
- <expr> whatis
- <line> stop at
- <expr> stop in
- <line> clear

Where:
<expr> Expand the selected material to include the longest string of connected
alphanumeric characters or underscores. This selection is interpreted literally. Only a
fraction of the required text needs to be selected, and the system selects the rest
automatically. Note that the first or last letter of the expression must be an
alphanumeric character or an underscore.
<line> Interpret the selection as the line number containing the selected text.
print * Print the reference of a pointer.

3-22 THE DBUG INTERFACE

DBUG commands may be invoked by function keys. All function keys are user
definable. The command attached to the pressed key is immediately executed, and (if it
is not one of the "special function key" commands) is echoed in the DIALOG window.
The echo is prefixed by ”-k-". Commands generated by function keys are not recorded
by the history mechanism.
Like menus, function keys may take marked text as a parameter.
A predefined setup exists for configurations with a numeric keypad. These definitions
may be overridden using the kdefine command. The help keys command displays the
current function key definitions.
A function key is a sequence of one or two key strokes.
Syntax:

[c o lo r] k e y p a d -k e y
c o n tr o l-k e y
c o lo r a lp h a - k e y

Where: c o lo r

3.2.5 Function Keys

k e y p a d -k e y

c o n tr o l-k e y

a lp h a - k e y

A key to use to prefix other function keys.
The two predefined color keys are the
g o l d (<pfl>) and the blue (<pf4>) keys.
Pressing a color key before the function
key changes the function key’s meaning.
This is useful for increasing the number
of available function keys. The blue and
g o l d keys default definitions can be
changed.
One of the keypad keys. These are desig­
nated with the following symbolic form:
<kpO>, <kpl>, <kp3>, <kp5>, <kp7>,
<kp9>, <kpf->, <kpf+>, <kpf.>,
<pfl>..<pf4>
A keyboard key is clicked while the Ctrl
key is depressed. The symbolic represen­
tation for a control key is:
<ctrl/a>.. .<ctrl/z>
One of the alphanumeric keypad keys.
The symbolic representation for a keypad
key is: <a>..<z>, <0>..<9>

THE DBUG INTERFACE 3-23

3.2.5.1 Function Key Definition Commands
The user may customize function keys to fit the needs of a particular application with
the following commands:

kdefine - attach a function key to a command.
kreset - reset function keys to their default value (see Appendix C).

These commands are fully described in Chapter 5.

3-24 THE DBUG INTERFACE

Commands that can be entered from the function keys alone are listed below. These
commands may by specified with the kdefine command. Note that special function
key commands are not echoed in the DIALOG window.

3.2.5.2 Special Function Key Commands

blue
commline

Execute the "blue" prefix.
Move the cursor to the command line. This command causes the

expand
DIALOG window to be redisplayed if necessary.
Expand the current window to full DBUG frame size. Re-
executing the expand command returns the window to its previ­
ous size.

gold
redraw
repeat
reset

Execute the "gold" prefix.
Redraw the DBUG windows.
Repeat the last command issued from the command line.
Remove a temporary menu, pop-up form (if existing), and the
HELP window.

select Define the current window as the selected window. This com­
mand also uncovers the selected window if it is hidden.

The default key definitions for these commands are specified in Appendix C

THE DBUG INTERFACE 3-25

3.3 The Alphanum eric Terminal Interface
This section describes the DBUG user interface that runs on an alphanumeric termi­
nal. It describes all interface features supported by DBUG in this mode. The current
implementation supports the following terminal types: vtlOO , opus-pc and sun.
Select the terminal type by setting the environment variable: TERM.
This description of the alphanumeric interface is divided into three main sections.

1. Overview of the Alphanumeric Terminal Interface
2. The DBUG Windows
3. Function Keys

3-26 THE DBUG INTERFACE

3.3.1 O verview of the Alphanum eric Terminal Interface
The DBUG alphanumeric user interface has the following main features:

• Windows. The debugging session may be monitored and controlled through
a multi-window environment. Window display is user controlled.

• Flexible Command Invocation. Invoke a DBUG command in one of two
ways: type it on the keyboard, or press predefined function keys. Any com­
mand that can be invoked through the command line can also be issued by
pressing a function key. All function keys are user definable (see Chapter 5,
"kdefine").

• Flexible Param eter Specification. Many DBUG commands require
parameters. A parameter is entered on the keyboard as part of a command
(example: stop a t 10). If the parameter is a line number, place the cur­
sor on the desired line and press the function key that executes the appropri­
ate command.

THE DBUG INTERFACE 3-27

Code : bubble .c--
I 1 #include <stdio.h>I 2
I 3 #define ARRAYLEN 10
I 4
I 5 int numbers[ARRAYLEN] = {2, 4, 17, 13, 7, 5, 2, 6, 9, 15};I 6
I 7 main()I 8 {
I 9 int i;
I 10

Dialog-------------------------------------
IDbug - Version 4.4
IType 'help n' for new features help.
I reading symbolic information ...
I(dbug)

Figure 3-4. Opening Dbug Frame for an Alphanumeric Interface

3-28 THE DBUG INTERFACE

3.3.2 The dbug Windows
The DBUG windows and their general functions are listed below:

CODE: displays the program being debugged, including user-defined break­
points and a pointer to the next line to be executed.
DIALOG: provides a prompt for entering commands, and an area for echoing
all commands and displaying the DBUG responses.
PROGRAM: provides an area for the user-program input and output
exchanges.
HELP: lists DBUG command syntax and other help information.
TRACE: displays the trace information produced by the in-system emulator.

3.3.2.1 The Selected Window
The window where the cursor is placed is called the selected window. The selected win­
dow defines where work may take place. Window commands will take the selected
window as a default parameter. Thus, instead of specifying "wdelete code", you can exe­
cute a wdelete function key while the cursor is in the CODE window. Change the
selected window by executing the wnext command, or by pressing a function key
defined as wnext (<ctrl/n> or <kpf.> by default).

3.3.2.2 The DBUG Frame
Each DBUG session begins with the appearance of the DBUG frame on the screen (Fig­
ure 3-4). All work takes place within the DBUG frame. The opening (default) DBUG
frame contains two windows: CODE and DIALOG.
Note that none of the DBUG windows may exceed the screen boundaries. The coordi­
nates of the DBUG frame are:

1. (0, 0) for the upper lefthand comer of the vtlOO, opus-pc and sun.
2. (22, 79) for the lower righthand comer of the vtlOO, and (23, 79) for the opus-

pc. For the sun, the lower righthand comer of the DBUG frame will be the
lower righthand comer of the parent window.

The rest of this section describes the windows supported by DBUG when it is running
on an alphanumeric terminal. These are: CODE, DIALOG, PROGRAM, HELP and
TRACE.

Rev 4.4 THE DBUG INTERFACE 3-29

3.3.2.3 The CODE Window
The CODE window displays the word "CODE" and the name of the current source file
along its upper lefthand comer.
The CODE window displays the section of your program code that is currently execut­
ing and provides a visual representation of the debugging session. DBUG marks lines
that have breakpoints with an asterisk (*), and marks the next line to be executed with
an arrow (=>).
The program code is displayed in one of two modes:

1. Source. Source mode presents the program source code as originally written.
Line numbers are displayed on the left side of the window.

2. Assembly. Assembly mode presents the disassembly of a relevant segment of
your program. Each instruction’s address is displayed on the left side of the win­
dow.

DBUG determines which mode to use. It selects source mode when the current module
has symbolic information (compiled with -g option). Assembly mode is selected in all
other cases.
Lines which exceed the window width are truncated.
To scroll through the CODE window, choose one of the following:

• Use the cursor. CODE must be the current window. Pressing the up arrow
while the cursor is next to the upper border scrolls the window one line up.
Pressing the down arrow while the cursor is next to the bottom border
scrolls the window one line down.

• Use the wscroll command. This command scrolls a number of lines up or
down the CODE window.

• Use the wgo or search commands. These commands scroll to a specific line
number in the CODE window.

The CODE window is the only window in which line selection may take place.

3-30 THE DBUG INTERFACE

3.3.2.4 The DIALOG Window
The DIALOG window displays the word "Dialog" along the upper lefthand border. It
has two logical functions: 1) to provide a line for entering commands, and 2) to display
debugger responses.
The line where the cursor is located is called the command line. The command line is
usually identified by the prompt (dbug).
There are two ways to enter a command. The first is to type the command on the key­
board, with the cursor located on the command line. DBUG puts the cursor on this line
when entering the DIALOG window. You can also move the cursor there by pressing
the function key defined as commline (<kpO> by default), or by pressing a function
key defined as wnext (next window) until the cursor comes around to the DIALOG
window (default <ctrlxn>).
The second way to enter a command is with the aid of the history buffer. All com­
mands entered through the command line are saved in a history buffer. You can
retrieve these commands by pressing up-down arrows (scrolling through the history
buffer) until the appropriate command appears in the line. Press the return, and this
command is executed. Commands that have been invoked using function keys however
are not saved in the history buffer.
The DIALOG window displays the session history, including commands and DBUG
prompts and echoes. Commands entered by function keys are echoed with the "-k-"
prefix.
If the DIALOG window is deleted or covered by other windows, executing the comm-
line command automatically redisplays the DIALOG window.

THE DBUG INTERFACE 3-31

3.3.2.5 The PROGRAM Window
If the PROGRAM window is displayed, all I/O to and from the program being debugged
takes place in this window. Thus, when the PROGRAM window is displayed:

1. Your program’s output is automatically displayed in this window.
2. All inputs to the program should be entered through this window. You can input

data only when the PROGRAM window is the selected window.
When DBUG is invoked, the PROGRAM window is not displayed. Output is displayed
in the DIALOG window. Program input can be entered from the command line by
preceding the text with an escape character
To display the PROGRAM window execute the following DBUG commands:
To display the program window use:
w d i s p l a y p r o g r a m

at this point, parts of the CODE and DIALOG windows are covered by the PROGRAM
window. To shrink the CODE and DIALOG windows use the following commands:
wmove c o d e v r d 120
wmove d i a l o g v r d 120

(NOTE: Don’t confuse the escape character, which is used for passing input to the
debugged program, with the " I" escape, which is used for passing commands to the
remote target monitor.)

3-32 THE DBUG INTERFACE Rev 4.4

3.3.2.6 The HELP Window
The HELP window provides information about DBUG, window, and function key com­
mands. The HELP window is manipulated like any other window. But unlike the
other windows, it can be opened by invoking the help command. The HELP window
may be closed with the reset function key. The default reset key is <ESC>. This com­
mand and its parameters are described in Chapter 5.

THE DBUG INTERFACE 3-33

3.3.2.7 The TRACE Window

The default location of the TRACE window is along the righthand border of the DBUG
screen.
Issuing the traceh list command when the TRACE window is not present sends
results to the DIALOG window.

The TRACE window is used only in an HP64772 ISE configuration. It displays the
results of the hardware trace output after the traceh list command has been issued.

3-34 THE DBUG INTERFACE

3.3.2.8 The Window M anipulation Commands
This section lists the commands for manipulating the DBUG windows. These com­
mands allow the user to control the display of information on the screen and customize
DBUG’s default appearance.
The DBUG window manipulation commands are listed below. A complete description
of each command and its syntax is found in Chapter 5.

wdisplay - display a window.
wdelete - delete a window.
wgo - go to a line in the file.
wmove - move or resize a window.
wpop - pop a window.
wpush - push a window.
wreset - reset windows.
wscroll - scroll through a window.
wnext - go to the next window.

THE DBUG INTERFACE 3-35

DBUG commands may be invoked by specific function keys. All function keys are user
definable. The attached command (unless it is a "special function key" command, sec­
tion 3.3.3.2) is echoed in the DIALOG window. The echo is pi'efixed by "-k-". Com­
mands generated by function keys are not recorded by the history mechanism. Note
that the full power of the function key mechanism is best exploited by a keyboard with
a keypad.
A predefined setup exists for configurations with a numeric keypad. These definitions
may be overridden using the kdefine command. The help keys command displays the
current function key definitions.

3.3.3 Function Keys

A function key is a sequence of one or two key strokes.
Syntax:

[c o lo r] k e y p a d - k e y
c o n tr o l-k e y
c o lo r a lp h a - k e y

Where: c o lo r

k e y p a d -k e y

c o n tr o l-k e y

a lp h a - k e y

A key to use to prefix other function keys.
The two predefined color keys are the
g o l d (<pfl>) and the b lu e (<pf4>) keys.
Pressing a color key before the function
key changes the function key’s meaning.
This is useful for increasing the number
of available function keys.
One of the keypad keys. These are desig­
nated with the following symbolic form:
<kp0>..<kp9>, <kpf->, <kpf,>, <kpf.>,
<pfl>..<pf4>
Actual key assignments for a given host
is described in the Appendix C.
A keyboard key is clicked while the Ctrl
key is depressed. The symbolic represen­
tation for a control key is:
<ctrl/a>.. ,<ctrl/z>
Note that the following keys may not be
defined as function keys: <ctrl/m>,
<ctrl/q>, <ctrl/s>
One of the alphanumeric keypad keys.
The symbolic representation for an
keypad key is: <a>..<z>, <0>..<9>

3-36 THE DBUG INTERFACE

You may customize function keys to fit the needs of your particular application with
the following commands:

kdefine - attach a function key to a command.
kreset - reset function keys to their default value.

Function key commands may require a line number as a parameter (example: stop
a t < l i n e no>). You can bind a function key to a command that requires a line
parameter (see Chapter 5, "kdefine"). To execute function key commands with line
parameters, go to the CODE window, position the cursor on the desired line, and press
the function key. The line number is appended to the end of the command.

3.3.3.1 Function Key Commands

THE DBUG INTERFACE 3-37

Commands that can be entered only from the function keys are listed below. These
commands may be specified with the kdefine command. Note that special function key
commands are not echoed in the DIALOG window.

3.3.3.2 Special Function Key Commands

blue
commline

Execute the "blue" prefix.
Move the cursor to the command line. This command will also

expand
cause the DIALOG window to be displayed if it is not already on
screen (default definition is keypad 0).
Expand the current window to full screen size. Executing the
expand command again returns the window to its previous size.

gold
redraw
repeat
reset

Execute the "gold” prefix.
Redraw the screen.
Repeat the last command issued from the command line.
Remove the HELP window if it is displayed.

These commands’ key definitions are specified in Appendix C.

3-38 THE DBUG INTERFACE

Chapter 4
USING DBUG

4.1 Introduction
This Chapter describes the basic concepts and conventions required to use DBUG com­
mands effectively.
DBUG may be used for symbolic debugging of programs compiled with the GNX assem­
bler and the C, Pascal, and FORTRAN compilers. The symbolic information is pro­
duced for DBUG when the compiler is called with the -g flag (for UNIX and MS-DOS)
or the /debug flag (for VMS).
DBUG may also be used to debug programs compiled without the either the -g or
/debug flags. In this case, only global variables and procedures are recognized by their
names, and no line number or data type information is available.

4.2 DBUG Operating Modes
DBUG supports two operating modes: native mode and remote mode.

4.2.1 Native Mode
DBUG operates in native mode by default. In native mode, both DBUG and the user’s
program are executed on the host computer. DBUG may be used as a native debugger
on the following National Semiconductor development systems using the UNIX Operat­
ing System:

• SYS32/30
• SYS32/50

4.2.2 Remote Mode
In remote mode, DBUG runs on the host computer while the user program is down­
loaded and executed on the Series 32000-based target system. The target system can
be a development board, ISE or SPLICE. Program loading, execution and debugging
are performed by entering DBUG commands from the host terminal. DBUG
cooperates with the target board monitor (the control program for the target board) by
carrying out the downloading and debugging process. DBUG translates debugger com­
mands into monitor commands.

Rev 4.4 USING DBUG 4-1

STAND-ASIDE MODE

LAN MODE
FT-01-0-U

Figure 4-1. Operating Modes

4-2 USING DBUG

The host and target systems can be connected via a serial line or via LAN (ethemet).
When an ethemet connection is used, the target system is considered as another host
on the local area network. Section 4-4 describes in detail DBUG and development
board monitor communications over ethemet.
R e m o te m o d e operation is available with National Semiconductor’s Evaluation Boards,
the SPLICE Development Tool, and the Series HP64000 emulators for the NS32000
family CPUs.

4.2.3 DBUG and GNX Tools
DBUG interacts with other GNX tools such as the assembler, linker and optimizing
compilers.
DBUG also reads the .g n x r c (g n x .in i on VMS and MS-DOS) file, which is usually
created by the GNX Target Setup Utility (GTS). The .g n x r c file specifies default parameters such as the CPU, monitor in use, communication link name, MMU, and
FPU (see the GNX Commands and Operation manual, for details).

4.2.4 In itializing DBUG
On Series 32000-based systems DBUG operates in n a t iv e m o d e by default. In n a t iv e
m o d e , DBUG reads the symbolic debugging information of the executable file, and
prompts for commands.
DBUG operates in r e m o te m o d e when the -1 option is specified in the invocation line, or
when the user issues the connect command from within DBUG. In r e m o te m o d e
DBUG establishes communications with the monitor program on the target board and
prepares the environment for loading the user program onto the target board. Once
the program is loaded onto the target board (using the load command), the debugging
session may proceed.

4.2.5 Debugging Session
A typical debugging session includes setting breakpoints, running the program until breakpoints are reached, stepping, and examining program variables and registers.
The following example illustrates DBUG operating in r e m o te m o d e . Assume the exe­
cutable file a32 . out contains the program to be executed on the target hardware. To invoke DBUG, enter:
% dbug a32.out
DBUG displays the following message:
dbug Version 4.0
reading symbolic in fo rm a tio n ...

Rev 4.4 USING DBUG 4-3

Next, connect to the target hardware using the connect command. Assume the com­munications link with the remote target hardware is / d e v / t t y 5.

(dbug) c o n n e c t l i n k t t y 5 w i t h mon gx32 f p u 381
Note that these parameters can be prespecified using GTS. You may also use the config command to specify configuration before issuing the connect command.
(dbug) c o n f i g mon gx32 f p u 381 s p 0x100000 (dbug) c o n n e c t l i n k t t y s
Load the executable file
(dbug) l o a d w i t h s p 0x100000
l o a d i n g . . .
DBUG prompts when loading is complete. The debugging session can now begin.

4.3 Basic Terms

4.3.1 Current Environm ent
A name in a program may have different meanings, depending on its context and scope. To eliminate any possible ambiguity in the interpretation of a name, DBUG uses
the concept of current environment. The current environment is defined by the combi­
nation of the current file and the current procedure. When the execution of the pro­gram stops for any reason and control returns to DBUG, the procedure at which execu­
tion stopped is called the current procedure. The source file that contains this pro­
cedure is called the current file. The current environment may be changed and
displayed using the func, file or env commands.
The commands that restart program execution (i.e,. cont, step, or next, etc.), continue from the location where the execution halted (i.e. the environment at the halting
point).

4.3.2 Constants
In addition to constants defined in the program (such as enumeration constants),
DBUG recognizesthe following types of constants: numbers, characters, strings and
boolean constants. Constants may be used as part of general expressions in a DBUG
command.
Numbers typed as part of a command may be decimal, hexadecimal (with Ox prefix), or octal (with O prefix).
Examples of legal numbers are:

4-4 USING DBUG

Decimal: 2, - 1 2 3 , 3 2 . 5 , 1 . 2 e 3
Hexadecimal: O x l f , - 0 x 4 3 2 , 0 x 7 f f f f d a 4
Octal: 0123 , 0277
Floating point constants used as part of DBUG commands are interpreted as double precision numbers.
Character constants are enclosed in single quotes. An ASCII character or the octal numeric equivalent may be used if it is preceded by the "\" character.
Examples of legal character constants: ' a ' , ' \ 1 2 1 ' , ' \ 0 3 ' , ' \ 0 1 2 1 '

The character '\1 2 1 ' denotes the ASCII character with the octal value of 121 (corresponds to Q).

Strings are enclosed by double quotes (" "). For example, the following statement
enclosed in quotes is considered a string: " t h i s i s a s t r i n g " . If the " (double quote) character is part of a string, enter it into the string by preceding it with the backslash (\) character (i.e., "this is a Vstring", results in the following: t h i s i s a
" s t r i n g) .

The boolean constants recognized by DBUG are t r u e and f a l s e .

USING DBUG 4-5

4.3.3 Symbols and Names
All program identifiers, such as variables, procedures, type definitions, registers, file and module names are recognized by DBUG. These identifiers are called symbols. A symbol may be qualified by the module or procedure to which it belongs (i.e. variable i of procedure m a in can be referred to as m a i n . i) .
Qualified symbols are called names. The general form of a name is:
module.function l.function2.. .functioni,symbol
Global symbols that do not belong to a particular module are qualified by a period (.). For example, the qualified name of global symbol i is . i . When a symbol with no qualifier is used in DBUG commands, DBUG first searches the static scope to locate the symbol. If the search fails, DBUG searches the dynamic scope (i.e. call stack). If the search fails again, DBUG reports that the symbol is undefined or inactive.

4.3.4 File Names
Internally, DBUG defines a module for each program source file. The module names are used to qualify symbols defined in the specified module (symbols may be pro­
cedures, functions, types, static variables, etc.). For example, file foo .c defines the
module foo. The function f in file fo o . c is accessed by fo o .f.

4.3.5 R egisters
All Series 32000 CPU, FPU and MMU register names are recognized by DBUG when the register name is preceded by a dollar sign ($). Table 4-1 lists the legal register names, register descriptions, and the operating modes in which the registers are recog­
nized.

4.3.6 Line Numbers
The line numbers are used to access source information in the source files. The syntax
of the line number specification is:
["filename~\number
For example, to stop execution when the program arrives at line 50 of file e v a l . c , type: s t o p a t " e v a l . c " : 5 0 . If e v a l . c happens to be the current file, this can
also be accomplished by typing s t o p a t 50.

4-6 USING DBUG

Table 4-1. Register Names Sheet 1 of 2

NAME DESCRIPTION
$ r 0 - $ r 7
$ f p
$ s p
$pc
$ f 0 - $ f 7
$ f s r
$ 1 0 - $ 1 7
$ p s r m o d
$ p s r
$mod
$ s b
$ i s
$us
$ i n
$ c f
$ d c r
$ d s r
$ c a r
$bpc
$msr
$ p t b O - $ p t b l
$ e i a
$ b p r O - $ b p r l
$ b c n t
$ b a r
$bmr
$ b d r
$ b e a r
$ t e a r
$ i v a r O - $ i v a r l

general purpose registersframe pointer
stack pointerprogram counter
floating point registersFPU status registerlong floating registersPSR and MOD registersprogram status register
module table registerstatic base registerinterrupt stack pointeruser stack pointerinterrupt base register
configuration registerdebug condition registerdebug status register
compare address registerbreakpoint program counter
MMU status register
page table base 0 and 1error invalidate addressbreakpoint registers 0, 1
breakpoint count register
breakpoint address registerbreakpoint mask register
breakpoint data registerbus error address register
translation exception address register
invalid virtual address

USING DBUG 4-7

Table 4-1. Register Names Sheet 2 of 2

NAME DESCRIPTION
$ b p c r
$ b p r m r
$ b p l m r
$bpmr
$ b f s r
$ b p c n t r
$ a d c O - $ a d c l
$ a d r O - $ a d r 1
$ b l t c O - $ b l t c l
$ b l t r O - $ b l t r l
$ a d c b O - $ a d c b l
$ a d r b O - $ a d r b l
$modeO-$model
$ c t l O - $ c t l l
$ s t a t
$ im sk
$ d s t a t
$ i v c t
$ i s r v
$ t c 0 - $ t c 2
$ t c r a 0 - $ t c r a 2
$ t c r b 0 - $ t c r b 2
$ t c n t 1 0 - $ t c n t 12
$ y O - $ y l
$ a O - $ a l
$ d p t r O
$ d p t r l
$ c p t r
$ c t l
$ s t
$ c 0 - $ c 9 5

BPU cntrl register BPU right mask register BPU left mask register BPU mask register BPU function select register BPU counter registerDMA channel 0-1 source address counter register
DMA channel 0-1 source address registerDMA channel 0-1 transfer complete registerDMA channel 0-1 block transfer registerGX320 device B source address counter registerGX320 device B source address register
DMA channel 0-1 mode control registerDMA channel 0-1 control registerDMA status registerDMA status registerDMA status registerICU interrupt vector registerICU interrupt in-service registerTimer 0-2 registersTimer 0-2 autoload register A
Timer 0-2 autoload register B
Timer 0-2 control registers
FX16 FAM multiple input register
FX16 FAM accumulator
FX16 complex multiply registers data pointersFX16 complex multiply registers data pointersFX16 coefficient memory vector pointerFX16 FAM control registerFX16 FAM status register
FX16 FAM coefficient RAM array

4-8 USING DBUG

4.3.7 Address
Addresses may be symbolic or absolute. Absolute addresses are numbers, which may be entered as decimal, octal or hexadecimal numbers. Symbolic addresses are specified by an ampersand (&), which must precede the symbol. The plus (+) and minus (-) opera­tors can be used to create an address.
For example, the notation
&main

denotes the address of the symbol main.
&main + 5

denotes the address of the symbol main plus 5.

4.3.8 Address Range
The format for address range is:
address, address or address..address
The first format, where the address range is separated by a comma (,), is used with most DBUG commands.
The second format, where the address range is separated by two periods (..), is only used with the HP64000 In-System Emulator related mapping commands.
For example, the command
(DBUG) &main+0xl7,&main+0x4c/i
disassembles the range of addresses main+0xl7 through ma i n +0 x 4c .
The following DBUG command
(dbug) 0x1000,0 x l 0 2 0 / X
prints the contents of the memory range 0x10 00 through 0x102 0 in hexadecimal for­mat.

4.3.9 C Block Variables
The C programming language allows different variables defined in the same procedure
to have the same name when they are located in different block levels. The variable names, which are defined in the inner blocks, can also be qualified.
DBUG creates a dummy procedure for each block called $bn, where n is a serial
number assigned by the debugger. To find the qualified name of the internal variable,
use the whereis command (see Chapter 5, DBUG Commands).

USING DBUG 4-9

4.3.10 Expressions
General types of expressions can be used as part of DBUG command syntax. The com­mon subset of expressions that are legal for Pascal and C programming languages are supported by DBUG.
Indirection may be specified using either C or Pascal notation, i.e., using the asterisk (*) prefix or the caret (A) suffix.
Array references are specified by using brackets ([]). Array references for multidimen­sional arrays are specified by a r r [i] [j] for programs written in C and Pascal, and by a r r [i , j] for programs written in FORTRAN. The record/structure field reference is specified by either the period (.) or arrow (->).
For instance, the following notations are equivalent: r e c . f l d , r e c - > f l d ,
r e c A. f i d
All of the standard arithmetic operators of Pascal and C are recognized by DBUG. This does not include standard language specific built-in functions (such as sizeof in C, chr
in Pascal, ** in FORTRAN etc.). If a boolean expression includes and or or operators, the arguments of these operators must be enclosed in parentheses. For example:

s t o p i f (i = j) or (k= l)
is legal, where as

s t o p i f i = j o r k = l
is not.

4-10 USING DBUG

The following is the list of the recognized operators:

Table 4-2. Recognized Operators

OPERATOR EXPLANATION
+ add
- subtract
* multiply
/ divide

d i v integer divide
mod modulus (integers only)
& address of

* A t contents of pointer
< less than> greater than<= less than or equal to>= greater than or equal to== or = equal to! = or < > not equal to

. (p e r i o d) structure field reference
an d logical and
o r logical or

The period operator may be used with pointers to records, as well as with records.

4.3.11 Types
DBUG recognizes all the data types defined by your program. These types may be used in expressions (via a typecasting mechanism), in addition to the predefined basic types, such as integers, reals and boolean, which are inherent to DBUG. The predefined basic type names are; $integer, $char, $real, $boolean. $char and $boolean
are 1 byte long, $integer is 4 bytes long, $real is 8 bytes long. DBUG assigns these
types to constants and expressions in DBUG commands.
DBUG performs the required conversions between different languages’ types. It also performs the necessary conversions between types appearing in the same expression within the same language.
DBUG performs all the necessary type checking when evaluating expressions. It also supports a type interpretation mechanism which permits expressions to be treated as if
they were of a particular type.

USING DBUG 4-11

For example, if the debugged program, written in C, contains declarations:

t y p e d e f s t r u c t {
i n t _ c n t ;
c h a r * _ p t r ;
c h a r * _ b a s e ;
c h a r _ f l a g ;
c h a r _ f i l e ;

} F ILE;
c h a r p [8] ;
i n t p t r ;
enter:
(d b u g) p r i n t FILE (p)
to print the contents of p, as if it were a structure of type FILE. Similarly, the com­mand
(d b u g) p r i n t * & F I L E (p t r)
interprets p t r as a pointer to the type FILE. The command prints the variable p t r as if it were of structure type FILE.
(d b u g) p r i n t * & $ i n t e g e r (* & $ i n t e g e r ($ s p)) X
Performs double indirection on $ s p so it prints the value of 0(0(sp)).
If a C structure definition has a tag, then the tag name preceded by $$ is used to iden­
tify the tag. For example, if the C program contains the following type definition:

s t r u c t p e r s o n {
c h a r n a m e [] ;
i n t a g e ;

};

Enter the command
(d b u g) w h a t i s S S p e r s o n
to print the definition of the structure tag p e r s o n . This notation is also used for type
interpretation purposes as described above.
DBUG recognizes and checks the types of your program variables in the following
cases:
When printing variables, DBUG automatically selects the output format according to
their type’s implicit radix. You can over-ride the implicit radix by specifying an

4-12 USING DBUG

e x p l ic i t r a d ix as part of the print command.
When assigning values to program variables, DBUG checks the validity of the assign­ment by comparing the variable types involved. This check may be eliminated by set­
ting the $ u n s a f e a s s ig n built-in variable (see Chapter 5, the set command).
DBUG verifies that the combination of variables in an expression is legal.
DBUG verifies that subscripts do not cross array boundaries. If they do, DBUG issues an error message.

4.3.12 Special Characters
Certain characters have a special meaning to the DBUG command interpreter.
(crosshatch) - The crosshatch character, as the first non-blank character in the line,
denotes a comment line.
\ (backslash) - The backslash character is the continuation character within a com­
mand file. If a command is too long to fit onto one line, use the backslash (\) character
as the last character of a line to indicate that the next line continues the command.
I (vertical bar) - The vertical bar character is used with a monitor escape. When I is
detected as the first non-blank character in the line, the remainder of the line is
passed directly to the monitor.
; (semi-colon) - The semi-colon character is used to enable the multiple command line.
. (period) - The period character is used in the low level print command to indicate the next address.

4.3.13 Debugger Files
DBUG uses the following files:
O b jf i le - contains the COFF program that is being debugged. This file is used as an
input to DBUG.

C o r e f ile - is created when the application program terminated abnormally while run­
ning under UNIX. In the n a t iv e m o d e , DBUG uses this file to view the contents of the
core dump. Core dump analysis is not available in r e m o te m o d e .

S o u r c e f i le s - the debugger uses so u r c e f i le s to access source information.
C o m m a n d f i le s - contain debugger commands that are read and executed by the
debugger. The debugger reads and executes the commands using the source com­
mand. One source file may activate another source file. DBUG sets the nesting level
limit to ten (10). The host system may restrict this to a smaller number.

.d b u g in i t - (d b u g . in i on VMS and MS-DOS) is the initialization file that is executed by
the debugger as a part of the initialization process. If DBUG is invoked with either -c
or -noc, the initialization file is not executed. DBUG will first search for the initiali­
zation file in the current directory. If found, the .dbu g in it file is executed. If it is not found, DBUG will then search the user’s home directory for the initialization file.

Rev 4 .4 USING DBUG 4-13

.gnxrc - (gnx.ini on VMS and MS-DOS) DBUG seeks and reads the target setup file in the current directory, the users’s home directory or in the GNX directory (in that order) to set up the default configuration information.The setup file is created by the GTS - the GNX Target Setup Utility. The following definitions of the setup file are meaningful for DBUG: CPU name, MMU name, FPU name, communications link, monitor name.
Log file - a log file containing a log of the debugging session can be created. The log for­mat may be full or short. In the short format, only the user commands are logged. In the full format, DBUG’s responses are recorded as comments in the log file (see Chapter 5, the log command).

4.3.14 Breakpoints and Traces
DBUG provides users with extensive breakpoint and tracing capabilities. Breakpoints are used to stop debugged program execution at specified places, upon occurrence of
specified conditions, or to examine/modify variables, registers and memory locations.
Your program can be traced without stopping its execution. You can trace variable values, calls to procedures, execution of particular procedures, etc.
You can specify that program execution should stop if the value of a specific variable or
memory location changes. This is true for global and local variables. However, DBUG does not support tracing or stopping on value changes of variables that are allocated in
registers.
When doing conditional tracing or stopping to a particular procedure, DBUG sets all
the necessary breakpoints and removes them internally. For example, if you use the
DBUG command: t r a c e i n p r o c , where p r o c is a procedure in your program,
DBUG will set an internal breakpoint at the entry to the p r o c , turn on the tracing flag (which causes DBUG to report tracing information), and set another breakpoint at
the exit from p r o c . DBUG turns off the tracing flag when it reaches the breakpoint at
p r o c ’s exit. Both internal breakpoints are removed when your program leaves p r o c .
In native mode, there is no limitation on the number of breakpoints you can set. In
remote mode, the number of breakpoints is target dependent. Refer to your target board monitor manual for this information.
NOTE: DBUG assumes that all procedures in your program use e n t e r and e x i t machine instructions for proper frame allocations and removal on the calling stack.
Still, some procedures may use e n t e r and e x i t instructions (e.g. some library rou­
tines). If you set breakpoints or traces in these procedures, DBUG might fail to provide accurate call stack information or fail to set internal breakpoints in correct places.
DBUG supports two forms of program tracing: software and hardware. Software trac­
ing single-steps the debugged program. Hardware tracing executes the debugged pro­
gram in real time (tracing without disturbing program execution). Chapter 6 provides a
detailed description of DBUG’s hardware tracing capabilities.

4-14 USING DBUG Rev 4.4

4.4 Ethernet Support
DBUG supports the ethernet connection between your development board and host sys­tem using the Internet Protocol (IP). This allows you to download and debug your application using a Local Area Network (LAN). A LAN provides for both convenience in linking hosts to targets and greater communication speed.
The packet exchange between DBUG and your development board is done using the User Datagram Protocol (UDP). The message portion of each datagram consists of the string of bytes that the debugger and monitor exchange over a serial link. However, the UDP is not a reliable protocol (i.e. packets can get lost during communications). In order to overcome this problem, DBUG implements a mechanism for lost packet detec­tion and recovery.
The DBUG connect command supports the ethernet connection. The -n invocation flag is used to specify the target board name. The ethernet connection between DBUG and the target board can be lost if the target board is reset. The connect command with the node option is used to re-establish the connection (see Section 5.1.8 for details on the connect command).

4.4.1 D escription of Ethernet Operation
1. DBUG establishes communication with a monitor. Once this communication is established, the monitor does not accept any other communication requests from DBUG or other hosts.
2. The debugging session involves communication between DBUG and your monitor.
3. After the debugging session has finished (issuing the DBUG quit command), the connection with the monitor is terminated by DBUG.

4.4.2 Example
%dbug a 3 2 . o u t
d b ug - V e r s i o n 4 . 0
Type ' h e l p ' f o r h e l p(dbug) c o n n e c t n o d e dbOl w i t h e p u c g l 6 mon c g l 6 f p u n o f p u
c o n n e c t i o n w i t h dbOl [x x . y y . z z . uu] e s t a b l i s h e d
s e t u p i n r e m o t e mode (dbug)

USING DBUG 4-15

In the default mode of operation, DBUG loads all the symbolic information of the exe­cutable file during the startup stage. This provides immediate availability of symbolic information, which in turns enables fast execution of complex symbolic information processing.
For very large executable files, the loading of symbolic information can result in a long startup time and large memory requirements. DBUG therefore provides a partial sym­bolic mode.
The partial symbolics mode is invoked using the -p (/P in VMS) invocation line parame­ter. In this mode the symbolic information is loaded on demand; explicitly by using the file command, or by stopping in or stepping to a new module. Once DBUG stops in a module whose symbolic information is not loaded, dbug loads the information automat­ically. The symbolic information of previously activated modules remains in the symbol
table.

4.5 Partial Symbolics Mode

4-16 USING DBUG

Chapter 5
DBUG COMMAND SET

5.1 Introduction
This chapter contains the command set for DBUG. Commands are presented in alpha­
betical order. For a functional presentation of the commands and the associated com­
mand syntax, see Appendix C.

DBUG COMMAND SET 5-1

ADDMENU - add a menu entry

5.1.1 ADDMENU - add a m enu entry
SYNTAX

addmenu [<text> | <expr> | <line>] command
DESCRIPTION

Addmenu is used to define new command menu entries when using the graphic
terminal interface.
All user-defined entries appear in the USER menu.
The text, expr and line options define how parameters should be interpreted
when selected as text.
<text> Interpret the selection literally.
<expr> Expand the selected material to include the longest string of connected
alphanumeric characters or underscores. Like <text>, this selection is inter­
preted literally. But you need select only a fraction of the required text, and the
system selects the rest automatically. Note that the first or last letter of the
expression must be an alphanumeric character or an underscore.
<line> Interpret the selection as the line number containing the selected text.
Command is a parameterless DBUG command or alias. The alias is only
decoded at execution time, so it is possible to define the alias even after the
addmenu command is issued.

EXAMPLES
(dbug) a l i a s s i " s t o p i a t "
(dbug) addmenu < l i n e > s i

The s i alias is added to the user menu. This entry allows you to interactively
create breakpoints in assembly mode.
(dbug) addmenu w h e r e

Add the w h e r e command to the user menu.

5-2 DBUG COMMAND SET

ADD MENU - add a menu entry (Cont)

SEE ALSO
delmenu

LIMITATION
Not supported in MS-DOS.

Rev 4.4 DBUG COMMAND SET 5-3

ALIAS and UNALIAS - define command aliases

5.1.2 ALIAS and UNALIAS - define command aliases
SYNTAX

alias name [name | "string']
alias nameiparameters) "string'
alias

unalias name
DESCRIPTION

When commands are processed, DBUG determines if the first entered word in a
command line is an alias. If it is an alias, DBUG treats the input as though the
corresponding string (with values substituted for any parameters) were entered.
The parameters must be separated by a comma (,).
If alias is called with no parameters, all the defined aliases are printed. When
only one parameter is specified, alias prints its alias definition.
The debugger has a predefined set of aliases. Use the alias command with no
parameters to print the predefined aliases. You may redefine or delete these
aliases.
The unalias command removes the alias definition for name.
The unalias command should not be used in the same line (after a semicolon) as
begin or load commands.

5-4 DBUG COMMAND SET Rev 4.4

ALIAS and UNALIAS - define command aliases (Cont)

EXAMPLES
(dbug) a l i a s b (x) " s t o p a t x"

Defines an alias called b that sets a breakpoint (stop) at a line x.
b (5 6) is equivalent to the s t o p a t 56 command.
(dbug) a l i a s s t s t o p

This command defines s t to be an alias for the s t o p command.
The following command lists the alias definitions
(dbug) a l i a s
s t s t o p
b (x) s t o p a t x

For example,

DBUG COMMAND SET 5-5

ASSIGN - assign a value to a variable

5.1.3 ASSIGN - assign a value to a variable
SYNTAX

assign [v a r ia b l e | a d d r e s s } = e x p r e s s io n [s i z e]
DESCRIPTION

The assign command sets a specified v a r ia b le or a d d r e s s to the value of an
e x p r e s s io n .

s i z e determines the assignment operation size: b - byte, x (or d or o) - short word,
X (or D or O) - long word.
DBUG performs type-checking when performing assignments. If v a r ia b l e and
e x p r e s s io n types are not compatible, DBUG issues an error message. The type­
checking procedure may be bypassed by setting the DBUG variable $ u n s a f e a s -
s ig n .

EXAMPLES
(dbug) assign to ta l = 123.4
Assigns the floating variable to ta l the value 123.4.
(dbug) assign 0x1000 = 0x200 d
Replaces a short-word at address 0x1000 with the value 0x2 0 0
(dbug) assign array[20] [d] = 2 * array[20] [22] + $r3
Assigns the value of the expression a rray [20] [22] multiplied by 2 and incre­
mented by the contents of CPU register r3 to a rray [20] [d] .
(dbug) assign $r0 = 0x23efbbb
Assigns the hexadecimal value 23efbbb to the CPU register rO.

SEE ALSO
set

5-6 DBUG COMMAND SET

ASSIGN - assign a value to a variable (Cont)

5.1.4 BEGIN - begin debugging an objfile
SYNTAX

begin objfile [corefile]
DESCRIPTION

The begin command starts debugging the objfile. This command is useful if you
want to switch from the file currently being debugged to another file without
leaving the DBUG session. If the optional corefile is specified and exists, then it
may be used for crashed program analysis.

All the breakpoints, traces and any other programmed events are deleted. All
the alias and internal variable definitions are preserved.

EXAMPLES
Suppose you are debugging an object file called a . o u t .

(dbug) b e g i n t e s t

DBUG reads symbolic information of t e s t and returns the prompt "(dbug)".
The file t e s t becomes the file being debugged.

SEE ALSO
run, rerun, load

DBUG COMMAND SET 5-7

CALL - excecute a procedure

5.1.5 CALL - excecute a procedure
SYNTAX

call procedureO
DESCRIPTION

Exeute the procedure. Parameters cannot be passed to the called procedure. The
call command applies to the remote mode only. $callproc must be set.

EXAMPLE

(dbug) s e t $ c a l l p r o c
(dbug) c a l l f o o ()

LIMITATION
This command is not supported when using an ISE.

5-8 DBUG COMMAND SET Rev 4.4

CATCH and IGNORE catch/ignore signals

5.1.6 CATCH and IGNORE catch/ignore signals
SYNTAX

catch [signal number \ signal name]
ignore [signal number \ signal name]

DESCRIPTION
These commands are supported only in the native mode. The catch/ignore
commands advise DBUG to react to, or ignore, a signal trap before the signal is
sent to your program.
When your program reacts to a signal and the signal is caught (by catch),
DBUG gains control before the signal arrives at the program. You are notified
that a specific signal was caught. Signal names are case-insensitive and the
prefix SIG is optional. By default, all signals are trapped except SIGCHILD,
SIGALRM, SIGHUP and SIGKILL. When no parameters are specified, the sig­
nals currently affected by the catch or ignore commands are listed.

EXAMPLE
(dbug) c a t c h SIGINT

The debugger halts the program being debugged when it encounters the SIGINT
signal.

SEE ALSO
cont, signal (2) Unix manual

DBUG COMMAND SET 5-9

CLEAR - clear breakpoints

5.1.7 CLEAR - clear breakpoints
SYNTAX

clear [number]
DESCRIPTION

The clear command clears all breakpoints at the selected source line number or
the selected address. If no parameter is supplied, the current position (line or
address) is used.

Clear is context sensitive. If the current file contains source line information,
the number is interpreted as a source line, otherwise, the number is interpreted
as a memory address.
Clear is particularly useful when working in the graphic environment. With this
command you can remove breakpoints using the mouse.

EXAMPLE
(dbug) c l e a r 19

If the current file has source line information (i.e compiled with -g option), all
breakpoints on line 19 are cleared. Otherwise, all the breakpoints at address 19
are cleared.

SEE ALSO
delete, status, stop

5-10 DBUG COMMAND SET

CONFIG - configure for remote target system

5.1.8 CONFIG - configure for rem ote target system
SYNTAX

config [verbose{on I off}] [b a u d n u m b e r] [c p u n a m e] [mmu n a m e][fpu
n a m e] [mon n a m e] [sp n u m b e r] [load {hex I binary}] [stx n u m b e r]

DESCRIPTION
The config command is used to modify or toggle all items relevant for working
in r e m o te operation mode.
The config parameters are closely related to the DBUG invocation line flags.
When no parameters are specified, the current target system configuration is
printed. The config command may be used both before and after the connect
command has been issued.
load selects the communication protocol for loading programs to the target
board. DBUG has two communication protocols for executable file loading.
These are the binary protocol, in which binary data is sent to the monitor, or
ASCII protocol, in which each byte is downloaded as two bytes of ASCII data.
The binary protocol is appropriate when the communication line between the
host and the target is sensitive to control characters that might otherwise be
sent over the serial line (the default communication protocol is binary).
The sp option specifies the default stack pointer value when downloading pro­
gram to the target system.
The verbose option is used to either enable or disable the verbose communica­
tion mode. In this mode, DBUG displays the messages exchanged by the
debugger and the monitor or the Emulator. The command:
(dbug) c o n f i g v e r b o s e on
may be used to enter the verbose communication mode, even if the connect
command was previously issued.
Baud n u m b e r sets the communication baud rate for s t a n d - a s i d e m o d e . Possible
values are: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400. The
default is 9600. This parameter is ignored if the node option is selected.
Stx n u m b e r changes the "stx" character used when communicating with
development board and protocol B is in use. n u m b e r is the ASCII value of the
desired character. The monitor should be set to use the same character, by
means of the mode control command. (See GNX Development Boards Monitor
Manual.)

DBUG COMMAND SET 5-11

CONFIG - configure for remote target system (Cont)

Cpu specifies the target board CPU name. Valid names are: 016, 032, 332, 532,
gx32, cgl6, gx320, fxl6, cgl60, fxl64, aml60 (fxl6 and cgl6 refer to the same
monitor).
Mmu specifies the target board MMU name. Valid names are: 082, 382, onchip
and nommu.
Fpu specifies the target board floating-point unit name. Valid names are: 081,
181, 381, 580, nofpu.
Mon specifies the version (variant level) of the monitor on the target board. Pos­
sible names are: 16, 32, 332, 332b, 532, cgl6, gx32, gx32e, gx320, cgl60, fxl6
(fxl6 and cgl6 refer to the same monitor), fxl6fax, fxl64, cgl601x, aml60 and
cmon. cmon is a special monitor name that is accepted with any CPU, and allows
you to use cmon specific commands.
The default values for the cpu, mmu and fpu options are described by your
GNX target setup file .gnxrc, the previous connect command, or the invocation
line.

EXAMPLES
(dbug) c o n f i g c p u c g l 6 mon c g l 6 f p u 381

Specifies that the target board has an NS32CG16 CPU, a MONCG16, and an
NS32381 FPU.
(dbug) c o n f i g v e r b o s e on

Specifies that all message exchanges between DBUG and the monitor on the tar­
get system are displayed (stand-aside remote mode). The load protocol will be
binary, which is the default.
(dbug) c o n f i g

Prints the current target system configuration.

SEE ALSO
begin, load, connect

5-12 DBUG COMMAND SET Rev 4.4

CONNECT - connect to a remote target system

5.1.9 CONNECT - connect to a rem ote target system
SYNTAX

connect [link linkname | nod e no dename \ [with { [baud number][cpu name] [mmu name] [fpu name] [mon name]
[nofast] [list] [stx number] }]

DESCRIPTION
When DBUG is initialized, no communciation link is defined. Therefore, you
must select a link before issuing any debugger command that communicates
with the target board.

The connect command is used to switch to the remote operation mode, connect
selects the communications channel, through which DBUG and the target board
communicate, and sets configuration parameters. The connect parameters are
closely related to the DBUG invocation line flags. Several connect commands
may be issued during one DBUG session. When connect is issued for the
second time, it terminates the current connection and establishes a new connec­
tion. A similar version of this command is used to connect with an In-System
Emulator (see Chapter 6 for description).
At least one parameter must be specified when the with clause is used.
link linkname identifies the serial communication line between the host and the
target board. The default linkname is the last name given by the previous con­
nect command, or as selected in the invocation line (-1 parameter), or as
specified in the .gnxrc file. The link parameter cannot be used if the node
parameter is already given.
The node parameter selects the fast communication channel (LAN) between
DBUG and the target development board, nodename is the name of the develop­
ment board, as recognized by the host system. The default nodename is either
the last name given by the previous connect command, the name selected in
the invocation line, or the name specified in the .gnxrc file.
Nofast selects the communication protocol for loading programs to the target
board. DBUG has two communication protocols for executable file loading.
These are the binary protocol, in which binary data is sent to the monitor, or
ASCII protocol, in which each byte is downloaded as two bytes of ASCII data.
The binary protocol is called the fast protocol (and is the default). Nofast option
selects the ASCII protocol. This protocol is appropriate when the communication
line between the host and the target is sensitive to control characters that might

DBUG COMMAND SET 5-13

CONNECT - connect to a remote target system (Cont)

otherwise be sent over the serial line.
The list option is used to enable the verbose communication mode. In this mode,
DBUG displays the messages exchanged by the debugger and the monitor or the
Emulator.
The config command is used to toggle between the fast/nofast and list parame­
ters.
Baud number sets the communication baud rate for stand-aside mode. Possible
values are: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400. The
default baud rate is 9600. This parameter is ignored if the node option is
selected.
Stx number changes the "stx” character used when communicating with
development board and protocol B is in use. number is the ASCII value of the
desired character. The monitor should be set to use the same character, by
means of the mode control command. (See GNX Development Boards Monitor
Manual.)
Cpu specifies the target board CPU name. Valid names are: 016, 032, 332, 532,
gx32, cgl6, gx320, fxl6, cgl60, aml60 and fxl64.
Mmu specifies the target board MMU name. Valid names are: 082, 382, onchip,
and nommu.
Fpu specifies the target board floating-point unit name. Valid names are: 081,
181, 381, 580, nofpu.
Mon specifies the version (variant level) of the monitor on the target board. Pos­
sible names are: 16, 32, 332, 332b, 532, cgl6, gx32, gx32e, gx320, cgl60, fxl6,
fxl6fax, fxl60, cgl601x, aml60, &164 and cmon. cmon is a special monitor name
that allows you to use cmon specific commands.
The default values for the cpu, mmu and fpu options are described by your
GNX target setup file .gnxrc, the previous connect command, or the invocation
line.
Once the connect command has been issued for the first time, and the connec­
tion established, the connect command can be issued any number of times to
toggle the list and nofast parameters. These must be specified each time you
want them enabled. Issuing connect without these parameters will cause them
to be disabled. They are different from other parameters, for which the previ­
ously specified value is in effect unless otherwise specified.

5-14 DBUG COMMAND SET Rev 4.4

CONNECT - connect to a remote target system (Cont)

COMMENT: Although DBUG allows changing links during operation, this exer­
cise is not recommended.

EXAMPLES
(dbug) c o n n e c t n o d e dbOl w i t h c p u c g l 6 mon c g l 6 f p u 381

Selects the board dbOl as the target and specifies that the communications with
the target must be carried out via LAN.
(dbug) c o n n e c t l i n k t t y 7

Selects the channel t t y 7 . The load protocol will be fast since the nofast
parameter is not specified.

(dbug) c o n n e c t

Reconnects the target system using the parameters selected by the previous
c o n n e c t and c o n f i g commands.
(dbug) a l i a s d o _ c o n n e c t (l i n k n a m e) ' c o n n e c t l i n k l i n k n a m e w i t h
b a u d 38400 cp u gx32 f p u 3 8 1 '

Defining an alias/macro makes the connect command easier to use. Issuing the
following command selects t t y 4 as your communication channel. This macro
may be inserted in your .dbuginit file so that it will be recognized each time
DBUG is entered.
(dbug) d o _ c o n n e c t (t t y 4)

SEE ALSO
begin, load, config

DBUG COMMAND SET 5-15

CONT - continue program execution

5.1.10 CONT - continue program execution
SYNTAX

cont [signal number | signal name]
DESCRIPTION

Cont instructs DBUG to resume your program execution. The arguments are
applicable only in the native mode. If an argument is supplied, the debugged
program resumes execution as if it had received the specified signal. The signal
name can be specified by its full name (SIGINT or sigint, etc) or signal number.
The prefix, SIG, is optional.

EXAMPLES
(dbug) c o n t

continues program execution from where it was halted.
(dbug) c o n t 2

(dbug) c o n t INT

These two commands are equivalent. They send signal 2 to the program being
debugged before execution is resumed.

SEE ALSO
catch, ignore, rerun, run

5-16 DBUG COMMAND SET

CONT UNTIL - continue execution until value in range

5.1.11 CONT UNTIL - continue execution until value in range

SYNTAX
cont until (n a m e [and m a s k] [not] in r a n g e) [/size]

DESCRIPTION
Cont until instructs DBUG to resume execution of your program, and to stop
execution if the value of the specified n a m e , (variable or register), is in a
specified range. Cont until is only applicable in r e m o te m o d e , under the GNX
monitor.
r a n g e is e x p r e s s io n . .e x p r e s s io n . The expressions are evaluated before the
debugger starts executing the command. Execution will stop when the value of
the v a r ia b le , or register, is within the evaluated range, when in range is
specified, or when the value is out of this range when not in range is specified.
m a s k can be specified if not all of the bits of the variable or register are to be
used. The keyword and can also be written as &&.
When evaluating the variable and the range, the debugger automatically deter­
mines whether a byte, word or double-word should be tested, according to the
size of the specified variable. This can be changed using s iz e , s i z e is a single
letter parameter which may take the following are values:
b - byte
x (or d or o) - word
X (or D or O) - double word.

EXAMPLES
(dbug) c o n t u n t i l (i i n 1 . . 3)

The debugger will continue execution until i is greater than, or equal to, 1 and
less than, or equal to, 3.
(dbug) c o n t u n t i l (x a n d OxOOOOOOff i n a + 3 . . b + 4)

Execution will continue until the value of the right byte of x is between a +3
and b+4. Both a+3 and b+4 are evaluated once, before the command is

DBUG COMMAND SET 5-17

CONT UNTIL - continue execution until value in range (Cont)

execution.
(dbug) cont u n t i l ($r0 not in -1 7 .. i+3) /b
Execution will stop if the value of the most significant byte of $r0 is outside the
range (-17, i+3).

5-18 DBUG COMMAND SET

DELETE - delete breakpoint and trace events

5.1.12 DELETE - delete breakpoint and trace events
SYNTAX

delete number [number ...]
DESCRIPTION

Delete removes the specified events (e.g. breakpoint, trace) from the active
events list. Number is the number assigned by the stop, stopi, trace, or tracei
commands, as displayed by the status command.
Delete can handle several arguments in one call. The arguments must be
separated by spaces or tabs.

EXAMPLES
(dbug) d e l e t e 3

This command deletes event number 3.

SEE ALSO
clear, status, stop, stopi, trace, tracei

DBUG COMMAND SET 5-19

DELMENU - removes a menu entry

5.1.13 DELMENU - rem oves a m enu entry
SYNTAX

delmenu e n tr y

DESCRIPTION
This command removes the specified entry from the USER menu.

EXAMPLE
(dbug) d e l m e n u w h e r e

Deletes the w h e r e entry from the user menu. The last added entry is deleted if
more than one entry with the same name is present.

SEE ALSO
addmenu

LIMITATION
Not supported in MS-DOS.

5-20 DBUG COMMAND SET Rev 4.4

DOWN - move down in call stack

5.1.14 DOWN - move down in call stack
SYNTAX

down [n]
DESCRIPTION

The down command moves the current procedure down the stack n levels.
If n is not specified, the default is 1 level. This command is intended for viewing
purposes. It does not change the debugged program’s execution state.

EXAMPLES
(dbug) w h e r e

f a c t . f a c t (n = 5) , l i n e 17 i n " f a c t . c "
f a c t . f a c t (n = 6) , l i n e 19 i n " f a c t . c "
f a c t . f a c t (n = 7) , l i n e 19 i n " f a c t . c "
m a i n (a r g c = 2, a r g v = 0 x l f f f f d 3 c) , l i n e 11 i n " f a c t . c "

(dbug) up 2

f a c t . f a c t (n = 7) , l i n e 19 i n " f a c t . c "

(dbug) down

f a c t . f a c t (n = 6) , l i n e 19 i n " f a c t . c "

The w h e r e command displays the program call stack.
The up command moves the current procedure up 2 levels, within the stack.
The down command moves the current procedure down 1 level within the stack.

SEE ALSO
env, file, func, up, where

DBUG COMMAND SET 5-21

DUMP - dump procedure variables

5.1.15 DUMP - dump procedure variables
SYNTAX

dump [procedure]
DESCRIPTION

The dump command prints the names and values of variables in the selected
procedure, or the current procedure, if no procedure is specified. If the selected
procedure is a period (.), then all active variables of the program are dumped.

The procedure must be an active procedure in the calling stack. If there are
several occurrences of procedure in the stack, use the up and down commands
to locate the desired occurrence and then use the dump command.

EXAMPLE
The following example illustrates the dump command:
(dbug) w h e r e

p r o c (a = 1, b = 2, c = 4) , l i n e 65 i n " t e s t f i l e . c "
m a i n (a r g c = 1, a r g v = 0 x l f f f f d 5 8) , l i n e 58 i n " t e s t . c "

(dbug) dump

p r o c (a = 1, b = 2, c = 4) , l i n e 65 i n " t e s t . c "
i = 10
j - 4306052

SEE ALSO
env, func, print, where, file

5-22 DBUG COMMAND SET

ENV - restore the environment

5.1.16 ENV - restore the environm ent
SYNTAX

env
DESCRIPTION

DBUG preserves the environment (current file and current procedure) when the
program execution stops. If you make changes in the environment using the up,
down, file, or func commands, you may use the env command to restore the
environment to what it was.

EXAMPLES
(dbug) en v

c u r r e n t p r o c e d u r e i s b u b b l e _ s o r t
c u r r e n t f i l e i s b u b b l e . c

SEE ALSO
down, file, func, up, where

DBUG COMMAND SET 5-23

FILE - change current file

5.1.17 FILE - change current file
SYNTAX

file [filename]
DESCRIPTION

The file command changes the current source file name to filename. The current
source file is used as a default file name for referring to line numbers in DBUG
commands and listing source lines.

The file command changes the contents of the code window to the selected file.
When DBUG operates in partial symbolic mode, the file command also loads the
symbolic information for the module that was created from the source of filename.
If no filename is specified, the file command prints information about all the
modules in the executable file.

EXAMPLES
(dbug) f i l e b u b b l e . c

(dbug) f i l e

Name A d d r e s s L a n g u a g e
C
C

ASM

Sym bols
y e s
y e s
no

1 m a i n OxeOlO
2 e v a l OxelOO
3 s b r k 0xe210

SEE ALSO
down, env, func, up

5-24 DBUG COMMAND SET

FUNC - change current procedure

5.1.18 FUNC - change current procedure
SYNTAX

func [procedure]
DESCRIPTION

The func command changes the current procedure. If no procedure is specified,
the current procedure name is printed.
Changing the current procedure implicitly changes the current source file to the
file that contains the procedure; it also changes the current scope used for name
resolution. In the partial symbolic mode, func loads the symbolic information of
its module.

The func command changes only the default path for symbol name interpreta­
tions and default source locations. It does not affect the program state.
The func command changes the contents of the code window, which displays the
code associated with the selected function.

EXAMPLE
(dbug) f u n c g e t _ a _ c h a r l

SEE ALSO
down, env, file, up, where

DBUG COMMAND SET 5-25

HELP - explain dbug commands

5.1.19 HELP - explain dbug commands

SYNTAX

help
help e
help c
help k [eys]
help i [nterface]
help command
help n

DESCRIPTION
This command displays a short explanation of the DBUG commands. The help
information is displayed in the HELP window. (It pops up and may be removed
by the reset key).
The keys parameter is used to display the definitions of function keys. The
interface parameter is used to display window manipulation commands. The
keys and interface parameters may be abbreviated to k and i, respectively.
If a command name is specified, information on the command is printed.
help n specifies the new features supported in DBUG Revision 4.4.
help e describes the command-line edit function.
help c provides a list of the most common DBUG commands.

LIMITATION
help k [eys], help e and help i [nterface] are not supported in MS-DOS.

5-26 DBUG COMMAND SET Rev 4.4

KDEFINE - bind function key to command

5.1.20 KDEFINE - bind function key to command
SYNTAX

kdefine [<text> i <expr> | <line>] {command \ "string'} [pfkey]
DESCRIPTION

The kdefine command binds a function key to a DBUG command, alias, or
string.
The DBUG command is then executed each time the key is pressed. Previous
definition’s are overwritten by the kdefine command. Keys defined in this way
cannot be preceded by a color (gold, blue) key specification. To see the updated
key binding, use the help keys command.
Pfkey is the function key to which the command is bound. Pfkey may be specified
directly (see Chapter 3 - "Function Keys"). This is useful in command files. If
pfkey is missing, DBUG will prompt you to press a function key. This command
may be combined with text selection.
<text> Interpret the selection literally. Available only in graphic mode.
<expr> Expand the selected material to include the longest string of connected
alphanumeric characters or underscores. Like <text>, this selection is inter­
preted literally. The difference is that you need only to select a fraction of the
required text, and the system automatically expands the rest to include contigu­
ous text of alphanumerics and underscores. This option is available only in
graphic mode.
<line> In the graphic mode, interpret the selection as the line number contain­
ing the selected text. In the alphanumeric mode, interpret the selection as the
line number along which the cursor is aligned.

EXAMPLES
(dbug) k d e f i n e h e l p

Entering this command on the command line generates a prompt which asks you
to press a function key. This key will subsequently perform the h e l p function.
Pressing <ctrl/h> binds the <ctrl/h> key to the h e l p function.
(dbug) k d e f i n e < l i n e > c l e a r < b l u e > <kp8>

DBUG COMMAND SET 5-27

KDEFINE - bind function key to command (Cont)

Having entered this command, you need only press the < b l u e > key and then
<kp8> in order to perform a breakpoint clear of the selected line.

(dbug) k d e f i n e " p r i n t v a r l " < c t r l > <p>

This command (typed exactly as shown) defines the function key < c t r l / p > to
perform p r i n t v a r l .

(dbug) k d e f i n e < l i n e > " s t o p a t "

Entering this command causes a prompt; pressing a function key defines a func­
tion key that sets a breakpoint in the selected source line. Combining clear and
set breakpoints may be useful in both graphic and alphanumeric mode. Source
line in an alphanumeric terminal environment can be selected by moving the
cursor to the CODE window and placing it on the desired line.

SEE ALSO
kreset

LIMITATION
Not supported in MS-DOS.

5-28 DBUG COMMAND SET Rev 4.4

KRESET - reset function keys to default

5.1.21 KRESET - reset function keys to default
SYNTAX

kreset
DESCRIPTION

The kreset command resets the keys to their initial default definitions.

SEE ALSO
kdefine

LIMITATION
Not supported in MS-DOS.

Rev 4.4 DBUG COMMAND SET 5-29

LIST - print source code lines

5.1.22 LIST - print source code lines
SYNTAX

list [procedure]
list fromline [,toline] [i]

DESCRIPTION
The list command is used to view a range of source lines in the currently active
source file (current file), or a given procedure.
If the toline is specified, its value must be greater than or equal to fromline.
If only fromline is specified, a window of 8 lines, starting at fromline is
displayed. If list is called with no parameters, the listing continues from the last
displayed line, plus one.
If a procedure is specified, a window is formed around the procedure declaration.
If the i parameter is specified, the source lines are listed with embedded
disassembly for the source lines.
The output of the list command is displayed in the DIALOG window.

EXAMPLE
DBUG l i s t 2

Lists lines 2 through 9 in the current file.
(dbug) l i s t 1 , 1 0

Lists lines 1 to 10 in the current file.
(dbug) l i s t

Lists lines 11 to 18 (the last list command stopped at line 10).

(dbug) l i s t 2 5 , 2 7 i

Lists fines 25 to 27 with each fine followed by the corresponding assembly code.

5-30 DBUG COMMAND SET

LIST - print source code lines (Cont)

SEE ALSO
wgo, print

DBUG COMMAND SET 5-31

LOAD - load program to a target system

5.1.23 LOAD - load program to a target system
SYNTAX

load [objfile] [with { [nocode] [nodata] [protect] [zerofill][sp address]}]
DESCRIPTION

The load command downloads objfile and sets up the environment for executing
the objfile. In remote mode, objfile is loaded to the target board memory. This
command cannot be used in native mode.

When working with the emulator you can specify which portions of the objfile to
load to the target board memory, and which portions to load to the emulator
memory. The map command maps memory prior to using the load command.
All memory is assumed to be on the target board by default.
The following registers must be set to initialize the environment for executing
the objfile:
$pc - points to the program’s starting address.
$sb - is set to the value of the static base entry in the main module table.
$mod - points to the entry of the main module in the global module table.
$sp - holds the address specified by the sp parameter or the default value:
0x3ffffc, if sp was not specified.
$fp - is set to 0 (end of call chain indicator).
$intbase - is set to the address of the monitor exception table.
$psr - is set to 0x300 in preparation for execution in user mode.
In remote mode, DBUG sets these registers when the load command is issued.
When working with the emulator, DBUG sets only the psr, pc, sp and fp regis­
ters. The intbase, mod and sb registers are set to the correct values when DBUG
configures the emulator’s foreground monitor immediately after establishing
connection with the emulator. You may change the value of the intbase register,
if necessary, before you issue the run command to start your program. The
dispatch table will be updated so that it will point to the TRC trap and BPT trap
handlers in the emulator’s foreground monitor before execution begins.

5-32 DBUG COMMAND SET

LOAD - load program to a target system (Cont)

The load command also fills the bss (uninitialized data) area with zeros. The run command is required to start program execution, after loading.
Objfile is the executable file to be loaded. The default is the last specified name
from the previous load command or from the invocation line. Default assump­
tion if name is not specified is a. out.
The nocode parameter specifies that the objfile’s code segment is not loaded.
The nodata parameter specifies that the data section not be loaded. The pc, sp,
fp and psr registers are modified in this case, as described above.
The protect parameter is not valid when working with the emulator. When
protect is specified, standard protection is established. The default is no protec­
tion. Standard protection provides for read-only access to the code segment, and
read/write access to the data and stack. The protect option is only effective
when an MMU is present on the target board. The ds bit in the $mmcr register
determines whether the $ptbO or $ptbl is used (default is $ptbO). For table
addresses, see Development Board Monitor Reference Manual - Installation and
Protocol. The protect parameter is ignored if the nocode and nodata parame­
ters are specified.
When zerofill is specified, the general registers $r0 through $r7 are set to zero.
Registers $f0 through $/7 are set to zero if an FPU is present and has been
specified.
The sp option sets the end address of the stack to address. Load is normally
only used with this parameter. The default value 0x3ffffc is assumed if sp is not
specified. The sp value may also be specified by the config command.
A load command may be issued any number of times during a debugging ses­
sion.
A load command deletes all breakpoints and events unless the nocode option is
specified.

EXAMPLES
(dbug) load sample w ith sp OxlfffO
Loads the executable file sample, and sets $sp to OxlfffO.
(dbug) load a32.out w ith p ro te c t

DBUG COMMAND SET 5-33

LOAD - load program to a target system (Cont)

Loads the executable file a32 . o u t and initializes the $pc, $mod, $sb, $psr, and
$sp registers. The p r o t e c t option enables standard protection. This option is
not valid when working with the emulator.

(dbug) l o a d w i t h n o c o d e

Operates on the executable file specified by the previous load command. The
n o c o d e option suppresses the reloading of a code segment of the file.

SEE ALSO
connect, protect, begin, map, run

5-34 DBUG COMMAND SET

LOG - log a program to the log file

5.1.24 LOG - log a program to the log file
SYNTAX

log [logfile]
log [logfile] with append
log [logfile] with save
log [logfile] with full
log [logfile] with full append

DESCRIPTION
The log command starts logging the debugging session on the logfile. The
default file for logfile is dbug.log.

DBUG records all the commands and responses of the debugging session in a
temporary file. You can save the complete recording of a session when quitting
DBUG (the quit command). If you save the session via the log command, the
recording starts from the point where the log command is invoked.
Save specifies that logging to this log file must stop, and logfile is closed. With
this option you record a portion of the debugging session. You can return to that
portion by replaying the logfile using the source command, logfile is immedi­
ately closed after this option is specified. If logfile is specified, it must be the
current log file name.
Full specifies that both the DBUG commands and the debugger responses to the
commands are recorded. Responses are recorded as comments and do not
prevent replaying the file. To record only the commands, omit the Full option.
Append specifies that if a logfile with the same name exists, the new text is appended to
the end of the existing logfile. Otherwise, logfile is overwritten if it exists.
Only one active logfile at a time is permitted.

DBUG COMMAND SET 5-35

LOG - log a program to the log file (Cont)

EXAMPLES
(dbug) l o g h i s t l w i t h f u l l

Logs the full session in the file h i s t l .

(dbug) l o g w i t h s a v e

This command saves the current session in the currently open log file, and then
closes the file.
(dbug) l o g

Starts logging the debugging session on the file d b u g . l o g .

SEE ALSO
quit, source

5-36 DBUG COMMAND SET

NEXT and NEXT! - execute one line/instruction

5.1.25 NEXT and NEXTI - execute one line/instruction
SYNTAX

next
nexti

DESCRIPTION
The next command executes the current source-line and breaks execution when
the next source line is reached. If the current line contains a call to a procedure
or function, the call is executed as part of the source line, without breaking the
execution.

The nexti command executes one machine-level instruction instead of a source­
line level instruction. All branch-subroutine machine instructions (bsr, jsr, exp,
expd) are performed and the execution breaks on the instruction following the
branch subroutine instruction in the source.
The next and nexti commands are sensitive to active breakpoints, and when a
breakpoint is reached, program execution halts.

SEE ALSO
step, stepi

DBUG COMMAND SET 5-37

PCPU PMMU ... - print all registers

5.1.26 PCPU PMMU ... - print all registers
SYNTAX

pcpu
pfpu
pmmu
pbpu
pdma
picu
ptimer
pcompiex [int, int]

DESCRIPTION
The pcpu command prints the contents of CPU registers rO through r7, fp, sp,
pc, psr and mod.

The pmmu command prints the memory management unit (MMU) registers.
The dumped registers depend on the type of MMU (32082, 32382, or onchip).
This command is only available in remote mode.
The pfpu command prints the floating-point unit (FPU) registers.
The dumped registers depend on the FPU type (32081, 32381, 32181 or 32580).
This command is available only in remote mode.
The pbpu command is available only in remote mode. It prints the contents of
all on-chip BPU registers for the NS32CG160. These registers are the bpcr,
bprmr, bplmr, bpmr, bfsr and the bpcntr registers. This option is valid only
when working with the NS32CG160 CPU.
The picu command is available only in remote mode. It prints the contents of
the on-chip interrupt control unit (ICU) registers of the NS32CG160 and the
NS32GX320 CPUs. These registers are the ivct and the isru registers. This
option is valid only when working with the NS32CG160 or the NS32GX320

5-38 DBUG COMMAND SET

PCPU PMMU ... - print all registers (Cont)

CPUs.
The pdma command is available only in r e m o te m o d e . It prints the contents of
the on-chip DMA registers of the NS32CG160 and the NS32GX320 CPUs. For
the NS32CG160 CPU, the printed registers are a d cO , a d d , a d rO , a d r l , b ltcO ,
b l t c l , b ltrO , b l t r l , m o d eO , m o d e l , ctlO , c t l l , s t a t , ie r e g , d s t a t . For the
NS32GX320 CPU, the registers will include in addition the registers a d c b O ,
a d c b l , a d rb O , a d r b l . This option is valid only when working with the
NS32CG160 or the NS32GX320 CPUs.
The ptimer command is available only in r e m o te m o d e . It prints the contents of
the on-chip timer registers of the NS32CG160 and the NS32GX320 CPUs. The
printed registers are tcO, t e l , tc 2 , tcraO , t c r a l , tc r a 2 , tcrbO , t c r b l , tc r b 2 , tcn tlO ,
t c n t l l , t c n t l2 . This option is valid only when working with the NS32CG160 or
the NS32GX320 CPUs.
The pcomplex command is available only in r e m o te m o d e . It prints the con­
tents of the on-chip complex-multiplier registers of the NS32FX16 CPU. The
printed registers are yO , y l , aO, a l , d p trO , d p t r l , c p tr , c tl, s t . If a range is
specified (e.g. pcomplex 0,95), the registers $ c 0 , through $ c 9 5 are also displayed.
Any partial range within 0,95 may be specified.

SEE ALSO
print

DBUG COMMAND SET 5-39

PRINT - print variables and expressions

5.1.27 PRINT - print variables and expressions
SYNTAX

prin t expression ^expression ...] [radix]
DESCRIPTION

The prin t command computes the given expressions, and prints their values.

You may use general types of expressions as part of a command. The common
subset of expressions that are legal for Pascal, Modula-2 and C programming
languages are supported (see Section 4.3.10, "Expressions").
When printing variables, the debugger automatically selects the output format
according to the variable type. This can be changed by the r a d ix parameter,
which specifies the output format. The r a d ix is a single letter parameter. Fol­
lowing are legal values for the r a d ix .

d - print a short word as an unsigned decimal
D - print a long word in decimal
o - print a short word in octal
O - print a long word in octal
x - print a short word in hexadecimal
X - print a long word in hexadecimal
b - print a byte in hexadecimal
c - print a byte as a character
s - print a string of characters terminated by a null byte
f - print a single-precision real number
g - print a double-precision real number
B - print binary (assembly level only)

ASSEMBLY-LEVEL PRINTING
In addition to the high-level print command, DBUG supports assembly-level
printing. The formats for assembly-level print instructions are:
a d d r e s s , a d d r e s s ! [r a d ix] [> f i le]
a d d r e s s ! [c o u n t] [r a d i x] [> f i l e]

5-40 DBUG COMMAND SET Rev 4.4

PRINT - print variables and expressions (Cont)

DESCRIPTION
Assembly-level print commands print memory contents starting at the first
address and continuing up to the second address or until count items are
printed. The output may be redirected to a file.
If the address is . (dot), the address following the address most recently printed
is used. The radix specifies how memory is to be printed (as in print command).
If the radix is omitted, the radix of the previously specified mode is used. The
initial radix is X.
Assembly-level printing disassembles memory locations, using the special radix
i. The list command may also be used for disassembling source lines.
Symbolic addresses for machine-level printing are specified by placing the prefix
& (ampersand) before the symbol.
The B radix instructs the debugger to print in binary mode. When this radix is
specified, you must print only to a file.

EXAMPLES
Print the contents of the array named nu mb ers .

(dbug) p r i n t n u m b e rs
(2, 4 , 17, 13, 7 , 5, 2, 6, 9, 15)

(dbug) p r i n t n u m b e r s x
(00 02 , 00 04 , 0011 , OOOd, 0007 , 0005 , 0002 , 0006 , 0009 , OOOf)

Print a member of two-dimensional array of integer:
(dbug) p r i n t t w o _ d _ a r r a y [2] [4]
12

Print expression value:
(dbug) p r i n t " a v e r a g e = " (t o t a l 7' . n u m b e r + t o t a l 7' . n x t 7' . n u m b e r) / 2 . 0
a v e r a g e = 1 7 . 7

Print boolean expression value:

Rev 4.4 DBUG COMMAND SET 5-41

PRINT - print variables and expressions (Cont)

(dbug) p r i n t (i> =0) o r (i < 0)
t r u e

Print structure variable:
(dbug) w h a t i s s t r v a r
s t r u c t {

c h a r *name;
i n t a g e ;
f l o a t s a l a r y ;
c h a r r a n k ;

} s t r v a r ;
(dbug) p r i n t s t r v a r
(name = " j o h n " , a g e = 35, s a l a r y = 1 2 3 4 . 5 6 , r a n k = ' b ')

(dbug) p r i n t $ f p x
I f f f f d 2 c

EXAMPLES (assembly-level):
To disassemble 6 instructions of m a i n procedure of the b u b b l e . c program, use
(dbug) &main /6 i
m a i n e n t e r [] , 0x4
main+3 movd $ 0 x 4 0 0 f 6 0 , t o s
main+9 b s r p r i n t f
m a in + e a d j s p b $ - 0 x 4
ma in + 1 1 movqd 0x0 , - 0 x 4 (fp)
ma in+ 14 cmpd $ 0 x a , - 0 x 4 (f p)

To disassemble 4 more instructions use:
(dbug) . / 4 i
m a i n + l b : b l e
ma in + 2 0 : movd
ma in+ 23 : movd
m a i n + 2 a : movd

main+ 47
- 0 x 4 (f p) , r l
n u m b e r s [r l : d] , t o s
$ 0 x 4 0 0 f 7 f , t o s

To print the contents of the memory location pointed to by the frame-pointer
register (FP) use:

5-42 DBUG COMMAND SET

PRINT - print variables and expressions (Cont)

(dbug) & $ f p / x
I f f f f d 2 c : 00000000

To print the contents of register relative address (10 double words starting from
4(r0)):
(dbug) & $ r0 + 4 / 10 X
I f f f f d 4 c : I f f f f d b 4 l f f f f d d 2 l f f f f d e l l f f f f d f c
I f f f f d 5 c : I f f f f e l 8 l f f f f e 2 1 l f f f f e 2 f l f f f f e 4 4
I f f f f d 6 c : I f f f f f 8 3 l f f f f f a d

SEE ALSO
list

DBUG COMMAND SET 5-43

PROTECT - set memory protection

5.1.28 PROTECT - set memory protection
SYNTAX

protect address range [{read | write} for (u | s}] [{set | clear} {[v] [r] [m]}] [start address] [on primary] [using {ptbO | ptbl}]
DESCRIPTION

Protect creates protection/translation by writing to the protection and the
translation fields in the primary and secondary page tables.

Protect is allowed only in the remote mode, and if the target board includes an
MMU. The protect command defines the following parameters:
Address range is the address range to be protected. It is rounded outward to
include page boundaries.
{read | write} for {u | s} specifies the protection level for user (u) or for
supervisor (s).
{set | clear} {[v] [r] [m]} specifies which bit should be cleared or set. The
bits are: v for valid, r for referenced, and m for modified. If set or clear are
specified, then v, r or m must also be specified.
start address specifies the address for page translation.
on primary specifies operation on the primary page table. Otherwise, it writes
to the secondary page table(s).
using {ptbO | ptbl} specifies which page table register is used. The default is
PTB1.
The protect command uses the current contents of either the PTBO or PTB1
register, according to the register specified in the using option to access the
page tables. The command does not change the contents of the register.
To create user-defined protection, you must first use the on primary option, i.e.,
you must define the protection level, the bits that are valid, referenced, or
modified, and specify the translation address of the primary page table before
defining the secondary page tables.
If protect address is specified, the address’s protection is printed.

5-44 DBUG COMMAND SET

PROTECT - set memory protection (Cont)

EXAMPLES
(dbug) p r o t e c t & n u m _ o f_ l o o p s c l e a r v

Clears the valid bit in the secondary page table for the page containing the
address of the variable n u m _ o f _ l o o p s . All other fields remain unchanged.
(dbug) p r o t e c t 1 0 2 4 , 2 0 4 7 s e t r m on p r i m a r y

Sets the referenced and modified bits in the primary page table for the pages
containing the address range 1024 through 2047.

(dbug) p r o t e c t 0 , 2 0 0 0 s e t v s t a r t 10000

Sets the valid bit and defines the translation address for the pages containing
the address range 0 through 2 000. The translation table address begins at
address 10000. The address range 0,2 000 is rounded outward (0 to 4k) to
include page boundaries.

SEE ALSO
load

DBUG COMMAND SET 5-45

QUIT - terminate debugging session

5.1.29 QUIT - term inate debugging session
SYNTAX

quit [with save [f i le n a m e]]
DESCRIPTION

The quit command terminates the debugging session. You can save the com­
plete session in a log file by specifying the save parameter.
If no file is specified, d b u g . s a v e (d b u g . s a v on MS-DOS) is assumed.

EXAMPLE
Quit the debugging session
(dbug) q u i t

Quit debugging session and save the history in a file named h i s t o r y

(dbug) q u i t w i t h s a v e h i s t o r y

Quit DBUG session and save the history in a file called d b u g . s a v e .

(dbug) q u i t w i t h s a v e

SEE ALSO
log

5-46 DBUG COMMAND SET Rev 4.4

RETURN • return from current procedure

5.1.30 RETURN - return from current procedure
SYNTAX

return [procedure]
DESCRIPTION

The return command executes the program until the return from the current
procedure. If procedure is specified, the program continues executing until the
procedure's return is executed. The procedure must be on a calling stack (i.e.
must be active), otherwise DBUG issues an error message.

EXAMPLE
(dbug) w h e r e

p r o c 2 (i = 1 7) , l i n e 47 i n f i l e t e s t . c
p r o c l (j = 5 , c = ' x ') , l i n e 85 i n f i l e t e s t . c
m a i n (a r g c = l , a r g 2 = 0 x l f f f f d 5 c) , 23 i n f i l e t e s t . c

(dbug) r e t u r n

(dbug) w h e r e

p r o c l (j = 5 , c = ' x ') , l i n e 85 i n f i l e t e s t . c
m a i n (a r g c = l , a r g 2 = 0 x l f f f f d 5 c) , 23 i n f i l e t e s t . c

SEE ALSO
down, env, up, where

DBUG COMMAND SET 5-47

RUN and RERUN - run the loaded program

5.1.31 RUN and RERUN - run the loaded program
SYNTAX

run [args] [< ifile] [> ofile]
rerun [args] [< ifile] [> ofile]

DESCRIPTION

The run command starts the execution of the loaded program, passing the args
as command line arguments. The parameter ifile can be specified for program
input redirection (Unix shell style). Ofile is used for output redirection.

The rerun command with no parameters rims the same program again using
the arguments from the last run or rerun command. The rerun command with
parameters is equivalent to the last run or rerun command, appending the
arguments of rerun to the previous arguments.
In remote mode, rerun is equivalent to the following sequence:
l o a d w i t h n o c o d e z e r o f i l l
r u n

Args are applicable only in the native mode.

COMMENTS

In the remote mode, the run command should be issued only once for a loaded
program. Subsequent run commands continue execution from the current PC.
Use rerun to run the program again.

EXAMPLE

(dbug) r u n / t m p / x x x < i f i l e
runs the program being debugged with the single argument / t m p / x x x . The
standard input file for the debugged program is i f i l e .

5-48 DBUG COMMAND SET

RUN and RERUN - run the loaded program (Cont)

SEE ALSO

begin, cont, load

DBUG COMMAND SET 5-49

SEARCH - search for patterns in the source file

5.1.32 SEARCH - search for patterns in the source file
SYNTAX

/ r e g u la r e x p r e s s io n

? r e g u la r e x p r e s s io n

DESCRIPTION

The specified r e g u la r e x p r e s s io n can be searched for in the forward direction
using /, or the reverse (backward) direction using ?.
DBUG searches from the current line to the end/start of the current file. If the
search reaches the file start/end without finding the search pattern, the search
continues cyclically (i.e., if DBUG reaches the end of file during forward search
without finding r e g u la r e x p r e s s io n , the search continues from the first line to the
current line).
If no pattern { r e g u la r e x p r e s s io n) is specified, the last pattern expressed is
assumed, and the search continues for the next occurrence of the last pattern.
If search locates the requested r e g u la r e x p r e s s io n , the CODE window is
updated. The line where the e x p r e s s io n is found is located at the top of the
CODE window. Subsequent search commands resume searching from the top
line of the CODE window.

EXAMPLES

(dbug) ? a r r a y l
Searches the current source file for the pattern a r r a y l , from the current line
(backwards) to the beginning of the file.
(dbug) / m a i n
Searches the current source file from the present line to the end of the file for
string main .
(dbug) /
Searches for the occurrence of the string m a i n in the forward direction.

5-50 DBUG COMMAND SET

SEARCH - search for patterns in the source file (Cont)

SEE ALSO

REGEXP (3) U N I X R e fe r e n c e M a n u a l , wgo, wscroll

DBUG COMMAND SET 5-51

SET and UNSET - set dbug variables

5.1.33 SET and UNSET - set dbug variables
SYNTAX

set
set v a r ia b l e [= s t r i n g]
unset v a r ia b l e

DESCRIPTION
Set defines DBUG variables. If no parameter is given, set prints all DBUG set
variables. With v a r ia b l e as the parameter, the debugger variable v a r ia b l e is
defined. These variables are used as flags. If a variable name is specified as
part of the DBUG command, it is substituted by s t r in g . DBUG has a predefined
set of internal variables: $ h e x c h a r s , $ h e x in ts , $ h e x s tr in g s , $ u n s a f e a s s ig n ,
$ f i l e d i s a s m , $ c a l lp r o c , $ c h e c k s ta c k and $ n e w d i s a s m .
Unset deletes the definition of a specified debugger variable.

$ h e x c h a r s - If set, DBUG prints characters in hexadecimal format
$ h e x in ts - If set, DBUG prints integers in hexadecimal format
$ h e x s tr in g s - Normally, if you ask to print a pointer to character, DBUG prints
the character string pointed to by the pointer. If $ h e x s t r in g s is set, DBUG prints
the hexadecimal value of the pointer.
$ u n s a f e a s s ig n - If set, DBUG suppresses the type compatibility check when
assigning values to variables. DBUG also refuses to perform the assignment if
the operand sizes of the source and destination are unequal.
$ f i l e d i s a s m - If set, DBUG uses the data from the object file for disassembly,
instead of memory.
$ c a l lp r o c - If set, a procedure can be excecuted from debugger level using the call
command.
$ c h e c k s ta c k - If set, checks the stack’s consistency during execution. The
debugger verifies that:
All saved pc values point to text area.
All saved fp values point to stack area.
Each saved fp value is smaller than its predecessor.
Last saved fp value is 0.
A warning is issued when one of these conditions is not met.

5-52 DBUG COMMAND SET Rev 4.4

SET and UNSET - set dbug variables (Cont)

$newdisasm - If set, extended disassembly format is used. The command address
is printed as an absolute hexadecimal value. Negative numbers are printed with
a sign.

SEE ALSO

assign

Rev 4.4 DBUG COMMAND SET 5-53

SOURCE - execute command file

5.1.34 SOURCE - execute command file
SYNTAX

source filename
DESCRIPTION

The source command executes the debugger commands in filename.
The command files may be nested. The nesting level is limited by the host
operating system. DBUG does not echo the commands in the command file. The
source command is considered as one DBUG command, i.e. only the command
output, and not the commands in the filename, are echoed.

SEE ALSO
log

5-54 DBUG COMMAND SET

STATUS - list active breakpoints and traces

5.1.35 STATUS - list active breakpoints and traces
SYNTAX

status
DESCRIPTION

The status command displays the currently active trace, tracei, stop, and
stopi commands, and their event number. The numbering is not consecutive.
Other commands, such as delete, may reference the event by their assigned
event numbers.

EXAMPLE
Suppose that, during the debug session of the b u b b l e . c file, you issued the fol­
lowing stop and trace commands:
s t o p i n m a in
s t o p a t 13
t r a c e i i n m a in
s t o p i n m a i n i f (i > 10)

The status command will print:
(dbug) s t a t u s

[1] s t o p i n m a in
[2] s t o p a t " b u b b l e . c " : 13
[3] t r a c e b u b b l e . m a i n . i i n m a i n
[4] s t o p i f b u b b l e . m a i n . i > 10 i n m a in

SEE ALSO
clear, delete, trace, tracei, step, stepi

DBUG COMMAND SET 5-55

STEP and STEPI - step over one line/instruction

5.1.36 STEP and STEPI - step over one line/instruction
Step - step over current source line
Stepi - step over current machine instruction
SYNTAX

step
stepi

DESCRIPTION
Step executes one source line. If the "stepped" source line contains a call to a
procedure, and the called procedure has source line information (compiled with
the -g option on UNIX, or the /debug option on VMS), DBUG stops in the called
procedure.
Stepi steps over one machine instruction. If the instruction being stepped is the
branch-subroutine instruction, DBUG steps into the called subroutine.
The step command is sensitive to active breakpoints. When a breakpoint is
detected, the user is notified.

SEE ALSO
next, nexti

5-56 DBUG COMMAND SET

STOP - set breakpoints (source level)

5.1.37 STOP - set breakpoints (source level)
SYNTAX

stop if condition
stop at source-line-number [if condition]
stop in procedure [if condition]
stop variable [if condition]

DESCRIPTION
The stop command allows you to control target program execution by setting
breakpoints. Breakpoints may be set for a condition, at a selected source-line-
number, on entry to a procedure (function), or on a change of a variable.

In stop if, the execution continues until the specified condition becomes true.
Stop at sets a breakpoint at the specified source line, in the specified source file. The exe­
cution stops before the specified line.
If the stop in procedure is specified, program execution halts before the first line of pro­
cedure is executed. If condition is specified, execution stops any time the condition is
true and procedure is a current procedure. Note that global symbols of an assembler
module are regarded by DBUG as procedures; thus stop in can be applied to them.
If stop variable is specified, the debugged program breaks any time the variable's value
is changed. If the in procedure is not specified, then the stop variable command
remains in effect as long as the procedure/scope containing the variable is active.
If condition is specified, it is checked prior to any action (even sampling the initial value
of variable).
The condition is any valid debugger expression. If condition is specified, the execution
breaks only if the condition evaluation yields true.
In remote mode, the number of the defined breakpoints is limited to 16. No such limita­
tion is imposed in native mode.
Each stop command is assigned an event number. The event number is an identifier for
the status and delete commands.

DBUG COMMAND SET 5-57

STOP - set breakpoints (source level) (Cont)

Each stop command is assigned an event number. The event number is an
identifier for the status and delete commands.

NOTE
Specifying condition in the stop command causes the program to execute single
step. This reduces program execution speed significantly.

EXAMPLES
(dbug) s t o p a t 15

Stop at line 15 in the current file.
(dbug) s t o p a t " b u b b l e . c " : 17

Set a breakpoint at line 17 of file b u b b l e , c.

(dbug) s t o p i n b u b b l e _ s o r t

Stop every time the procedure b u b b l e _ s o r t is entered.
(dbug) s t o p i

Stop every time the variable i changes its value.
(dbug) s t o p i n h a s h i f (v a l > 17) a n d (v a l < 32)

Stop in procedure h a s h if integer variable v a l ’s value is in the range: 18-31.
Note that the condition is checked for each instruction as long as h a s h is active.

FAST MONITOR-LEVEL CONDITIONAL STOP
In addition to the high-level stop command, DBUG supports a monitor-level
stop command. The formats for the monitor-level stop command are:
stop at line / count
stop at line (if name [and mask] [not] in range) [/ [size] count]

5-58 DBUG COMMAND SET Rev 4.4

STOP - set breakpoints (source level) (Cont)

DESCRIPTION
Unlike the other conditional breakpoints, the monitor-level conditional stop
command is executed entirely by the GNX "CMON" monitor code (version 4.4
and up). The program will be stopped, at the specified line when the specified
condition is fulfilled, count indicates the number of times the breakpoint condi­
tion must be true before the program is stopped, name can be an integer variable
or a register.
range is: integer-expression..integer-expression
mask can be used to specify which bits of the variable or register are to be
evaluated.
The range check is performed by the debugger according to the type and size of
the specified variable. This can be changed using size, size is a single letter
parameter which may take the following values:
b - byte
x (or d or o) - word
X (or D or O) - double word
By default the debugger will stop whenever the variable, or the register, is
within the range. If count is specified, the program execution will stop, when the
debugger reaches the specified line, after the value has been within the specified
range count times. The keyword and can also be written as &&.

EXAMPLES
(dbug) s t o p a t 1 5 / 5

Execution will stop after line 15 has been reached five times.
(dbug) s t o p a t 10 (i f i i n 1 . . 3)

The execution will stop at line 10 only if l<i<3.
(dbug) s t o p a t 123 (i f $ r0 n o t i n 0 . . 0)

Execution will stop at line 123 only if the value of the register rO is non zero.

Rev 4.4 DBUG COMMAND SET 5-59

STOP - set breakpoints (source level) (Cont)

(dbug) s t o p a t 150 (i f b i n a + l . . c * 2 5) / 5

Execution will stop when, at line 150, the value of b is greater than, or equal to,
a+1 and less than, or equal to, c* 25 , for the fifth time and for each successive
time. Both a+1 and c*2 5 are evaluated when the breakpoint is set and are not
affected by changes made during execution.
(dbug) s t o p a t 65 (i f x i n 0 x 3 5 . . 0 x 4 5) / b

In this case only the least significant byte of x will be compared to the specified
range.

SEE ALSO
clear, delete, status, stopi, where, trace, tracei
GNX Version 4.4 Development Board Monitor Reference Manual.

5-60 DBUG COMMAND SET Rev 4.4

STOPI - set breakpoints (machine level)

5.1.38 STOPI - set breakpoints (machine level)
SYNTAX

stopi [write] address
stopi address [if condition]
stopi at address [if condition]

DESCRIPTION
The stopi command sets a breakpoint upon different accesses to address. This
is the machine-level equivalent of the stop command.

If write is specified, program execution halts when the specified address is writ­
ten. This option activates CPU debugging features (remote mode only). If stopi
address is specified, execution is stopped when the value of the specified address
is changed. If stopi at address is specified, execution is stopped before executing
the specified address.
If condition is specified, it is checked prior to any action.
Upon reaching a breakpoint, the definition of the stopi command that caused
the breakpoint is printed.
The number of the defined breakpoints in the remote mode is limited to 16
(including the stop command).
Each stopi command has an event number as an identifier for the status and
delete commands.

COMMENTS
The write option uses Series 32000 CPU debug features. Therefore, only one
breakpoint for data may be set with the NS32532 or NS32GX32 CPUs and two
breakpoints for the NS32082 or NS32382 MMUs.
The write breakpoint option is not available for registers or variables that are
allocated in registers.

DBUG COMMAND SET 5-61

STOPI - set breakpoints (machine level) (Cont)

EXAMPLES
(dbug) s t o p i a t 0x124

Sets breakpoint at address 0x124.

(dbug) s t o p i w r i t e &i

Stops on write to variable i.
FAST MONITOR-LEVEL CONDITIONAL STOPI

In addition to the high-level stopi command, DBUG supports a monitor-level
stopi command. The formats for the monitor-level stopi command are:
stopi at address / count
stopi at address (if name [and mask] [not] in range) [/ [size] count]

DESCRIPTION
Unlike the other conditional breakpoints, the monitor-level conditional stopi
command is executed entirely by the GNX "CMON" monitor code (version 4.4
and up). The program will be stopped, at the specified address when the specified
condition is fulfilled.
In all other respects, the stopi command is similar to the stop command. See
the stop command for a detailed description and examples.

SEE ALSO
clear, delete, status, stopi, tracei
GNX Version 4.4 Development Board Monitor Reference Manual.

5-62 DBUG COMMAND SET Rev 4.4

TRACE and TRACEI - trace variables and execution

5.1.39 TRACE and TRACEI - trace variables and execution
SYNTAX

trace [if condition]
trace {line | procedure} [if condition]
trace in procedure [if condition]
trace variable [in procedure] [if condition]
trace expression at line [if condition]
tracei in procedure [if condition]
tracei at address [if condition]
tracei address [if condition]
tracei [if condition]

DESCRIPTION
The trace command prints tracing information while the program is executed.
Each trace command is identified by an event number for use by status and
delete commands. Trace or tracei without parameters reports program pro­
gress for each line or machine instruction in the current scope.

The first argument describes what is to be traced. If it is a line, then the line is
printed immediately before being executed. Source line numbers in a file other
than the current one must be preceded by the name of the file in quotes and a
colon, e.g. "foo.c":17.
If the argument is a procedure name, then whenever it is called, information is
printed stating which routine called it and from what source line it was called.
If the argument is a variable name, then the variable’s value is printed when­
ever it changes. Execution is substantially slower during this form of tracing.
The trace in procedure restricts tracing information to be printed only while
executing inside the given procedure or function.

DBUG COMMAND SET 5-63

TRACE and TRACEI - trace variables and execution (Cont)

Trace at causes DBUG to print the instruction at address immediately before it
is executed.
Condition is a boolean expression and is evaluated prior to executing the tracing
information; if it is false then the information is not printed.
The tracei command is similar to trace except it operates on machine instruc­
tion level instead of source line level.
NOTE: Specifying condition for trace command implies single-step execution of
DBUG. This results in a significant performance degradation.

SEE ALSO
delete, status, stop, stopi

5-64 DBUG COMMAND SET

UP - move up in call stack

5.1.40 UP - move up in call stack
SYNTAX

up [n]
DESCRIPTION

The up command moves the current procedure up the stack n levels. If n is not
specified, the default is 1. This command is intended for viewing purposes. It
does not change the execution state of the debugged program.

EXAMPLES
(dbug) w h e r e

f a c t . f a c t (n = 5) , l i n e 17 i n " f a c t . c "
f a c t . f a c t (n = 6) , l i n e 19 i n " f a c t . c "
f a c t . f a c t (n = 7) , l i n e 19 i n " f a c t . c "
m a i n (a r g c = 2, a r g v = 0 x l f f f f d 3 c) , l i n e 11 i n " f a c t . c "

(dbug) up 2

f a c t . f a c t (n = 7) , l i n e 19 i n " f a c t . c

(dbug) down

f a c t . f a c t (n = 6) , l i n e 19 i n " f a c t . c

The w h e r e command displays the program call stack.
The up 2 command moves the current procedure up 2 levels, within the stack.
The down command moves the current procedure down 1 level within the stack.

SEE ALSO
down, env, file, func, return, where

DBUG COMMAND SET 5-65

USE - set source search path

5.1.41 USE - set source search path
SYNTAX

use d i r [d i r ...]
DESCRIPTION

DBUG assumes that source files and the object file reside in the same direc­
tories. To override this assumption, the use command can select a group of
search directories in which the source file is located. This command is related to
the -I invocation line option, which can set an initial search path for source files.
The directory names must be separated by blanks.

EXAMPLE
(dbug) u s e / u s r / s r c / c m d / u s e r s / s o f t w / j o h n / s r c

Defines / u s r / s r c / c m d and / u s e r s / s o f t w / j o h n / s r c as the current search
path for source information.

5-66 DBUG COMMAND SET

WDELETE - delete a window

5.1.42 WDELETE - delete a window
SYNTAX

wdelete [wname]
DESCRIPTION

The wdelete command removes the window wname. The default window is the
currently selected window.
DBUG keeps track of deleted windows and remembers where they were before
deletion. Specifying wdisplay without specifying a location displays the window
at the location it occupied before deletion.

EXAMPLES
(dbug) w d e l e t e c o d e

This command deletes the CODE window.
(dbug) w d e l e t e

This command deletes the currently selected window.

SEE ALSO
wdisplay

LIMITATION
Not supported in MS-DOS.

Rev 4.4 DBUG COMMAND SET 5-67

WDISPLAY - display window

5.1.43 WDISPLAY - display w indow
SYNTAX

wdisplay wname [at [wloc]]
DESCRIPTION

The wdisplay command creates the window wname, at the location wloc.
If the window is being displayed for the first time, and at wloc is not specified,
then the default placement is used. However, if the window was previously
displayed and then removed by wdelete, and at wloc is not specified, then the
window is displayed at the position it occupied before deletion.
wname is the name of the window to be displayed.
wloc is the location where the window should be placed. There are two ways to
specify window locations: 1) With a mouse. If wloc is not specified, you should
move the mouse cursor to the points where you want the two diagonal comers of
the window. These points determine placement and size of the window. To
identify the points, move the mouse cursor to the desired location and press a
mouse button. This method is available only in graphic mode.
2) Without a mouse. Give the explicit coordinates for locating the two diagonal
comers of the window.
The syntax is:
(row 1,coll), (row2,col2)
Where (rowl>coll) defines the coordinates for one comer of the window, and
(row2ycol2) defines the coordinates for the opposite corner of the window. Both
rowl and row2 must be integers and indicate a legal row number. Both coll and
col2 must be integers and indicate a legal column number. Graphic environ­
ments (with X-windows) interpret the row and column values as pixels, while
alphanumeric environments interpret the row and column values as screen char­
acter positions.

EXAMPLES
(dbug) w d i s p l a y c o d e a t (1 0 0 , 2 0 0) , (4 0 0 , 5 0 0)

Creates and places the code window at the specified coordinates. These parame­
ter values are only valid with a graphic environment.

5-68 DBUG COMMAND SET

WDISPLAY - display window (Cont)

(dbug) w d i s p l a y c o d e a t

Displays the CODE window. DBUG prompts for two points to determine where
and how large the window is to be. This is legal only in systems with a graphic
interface.

(dbug) w d i s p l a y c o d e

Displays the CODE window. If this is the first time the window is displayed, it
appears at its default location, otherwise it is placed in the last position it occu­
pied before it was deleted.

SEE ALSO
wmove, wdelete

LIMITATION
Not supported in MS-DOS.

Rev 4.4 DBUG COMMAND SET 5-69

WGO - go to a line in file

5.1.44 WGO - go to a line in file
SYNTAX

wgo number
DESCRIPTION

The wgo command places the source line number of the current file at the mid­
dle of the CODE window. This command is available only in source mode.

SEE ALSO
func, file, search, wscroll

LIMITATION
Not supported in MS-DOS.

5-70 DBUG COMMAND SET Rev 4.4

WHATIS - describe a symbol

5.1.45 WHATIS - describe a symbol
SYNTAX

whatis {symbol | address}
DESCRIPTION

The whatis symbol command prints the declaration of the specified symbol.
The symbol can be a variable, procedure, module, type definition, or type
definition tag. Array members and record structure variables are not accepted
as parameters.
The whatis address command prints the absolute and symbolic addresses of the
specified address. If address is in the code area, the whatis command prints the
address’ symbolic pc.

EXAMPLES
(dbug) w h a t i s m y _ a r r a y
a d d r e s s = 0x51472 = 0 x 1 6 (b s s) i n t m y _ a r r a y [10]

Displays the absolute address 0x51472, offset 0x16 from the beginning of the bss
area, and the type of the symbol m y _ a r r a y .

(dbug) w h a t i s 0x9000
a d d r e s s = 0x9000 = i n i t . d r i v e r _ i n i t l i n e 432

Displays the absolute address 0x9000 and the symbolic pc i n i t . d r i v e r _ i n i t
l i n e 432 of the address 0x9000. This means that line 432 in module i n i t is
within procedure d r i v e r _ i n i t and mapped to the absolute address 0x9 000.

SEE ALSO
which, whereis

DBUG COMMAND SET 5-71

WHERE - print active call stack

5.1.46 WHERE - print active call stack
SYNTAX

where
DESCRIPTION

The where command displays the currently active call stack. The following
information is provided for each called stack:
procedure name
the procedure argument values
the line or address where the caller routine will resume after return.

EXAMPLE
(dbug) w h e r e

f a c t . f a c t (n = 5) , l i n e 17 i n " f a c t . c "
f a c t . f a c t (n = 6) , l i n e 19 i n " f a c t . c "
f a c t . f a c t (n = 7) , l i n e 19 i n " f a c t . c "
m a i n (a r g c = 2, a r g v = 0 x l f f f f d 3 c) , l i n e 11 i n " f a c t . c "
s t a r t () a t 0 x 01 2 a

SEE ALSO
up, down, env

5-72 DBUG COMMAND SET

WHERE IS - find all occurrences of a symbol

5.1.47 WHEREIS - find all occurrences of a symbol
SYNTAX

whereis s y m b o l

DESCRIPTION

The whereis command displays the qualified names of all the occurrences of
symbol. Enumeration constants or union/structure fields are not displayed.

EXAMPLES
(dbug) w h e r e i s i

m a i n . i b u b b l e _ s o r t . i

SEE ALSO
whatis, which

DBUG COMMAND SET 5-73

WHICH - print symbol qualifier

5.1.48 WHICH - print symbol qualifier
SYNTAX

which s y m b o l

DESCRIPTION
The which command displays a qualified name for the currently active s y m b o l .

EXAMPLE
(dbug) p r i n t i
12

(dbug) w h i c h i
b u b b l e . b u b b l e _ s o r t . i

SEE ALSO
whatis, which

5-74 DBUG COMMAND SET

WMOVE - move or resize window

5.1.49 WMOVE - move or resize w indow
SYNTAX

wmove [w n a m e] w c o r n e r w s h i f t

DESCRIPTION
The wmove command enables you to move a window to a different location or to
resize it.

If w c o r n e r is not specified, or equals v, the window is moved. Otherwise the
command stretches (resizes) the window according to the specified w c o r n e r and
w s h if t .

w n a m e is the name of the window to move.
The selected window is moved when w n a m e is not specified.
w c o r n e r specifies one or more comers on the selected window. The specification
changes the size of the selected window by stretching it from the identified
comer(s). This specification must be used in conjunction with the w s h i f t
specification. Specifying all four corners will move the entire window.
The format for w c o r n e r specification is:
[v[u | d] [1 | r]]
Where:
vu - indicates the upper two corners,
vd - indicates the lower two comers,
vl - indicates the left two comers,
vr - indicates the right two comers,
vul - indicates the upper left comer,
vur - indicates the upper right corner,
vdl - indicates the down left comer,
vdr - indicates the down right comer,
v (or empty) - indicates all corners.

w s h i f t - specifies shift movement.
There are two ways to enter the shift specification:

DBUG COMMAND SET 5-75

WMOVE - move or resize window (Cont)

1) With a mouse. Click a mouse button at two points on the screen: the first
click specifies a point in a window, while the second click specifies the position of
the same point at the new location of the window. The distance between the two
points is automatically translated to the corresponding shift parameter. This
method is available only in graphic mode.
2) Without a mouse. The shift specification is entered alphanumerically in the
following format:
[{u | d)number~\ [{1 | r}number]
Where:
u - indicates up shift,
d - indicates down shift.
1 - indicates left shift,
r - indicates right shift.
number is a positive number, specified in pixels for graphic systems, and charac­
ters for alphanumeric systems.
NOTE: This command’s numeric parameters are interpreted as pixels in the
graphic environment, and as lines and columns in the alphanumeric terminal
environment.

EXAMPLES
(dbug) wmove d i a l o g u5 r l O

Moves the Dialog window up 5 lines, and 10 columns to the right.
(dbug) wmove v l 110

Moves the left side of the selected window 10 columns to the left.
(dbug) wmove v d r dlO 14

Moves the selected window from its lower right-hand comer.
The window is moved down 10 lines and 4 columns to the left.
(dbug) wmove c o d e vu

Moves the upper border of the code window. The shift is entered with the mouse.
Only the vertical shift component is considered. This command is only legal in
graphic mode.

5-76 DBUG COMMAND SET

WMOVE - move or resize window (Cont)

(dbug) wmove

Moves the selected window according to the shift specified by the mouse.
This command is legal only in graphic mode.

SEE ALSO
wdisplay, wreset

LIMITATION
Not supported in MS-DOS.

Rev 4.4 DBUG COMMAND SET 5-77

WNEXT - select a window

5.1.50 WNEXT - select a window
SYNTAX

wnext \wname]

DESCRIPTION

The wnext command changes the selected window to wname.
If wname is not specified, the default window is the window that comes after (in
a predefined cyclic order) the currently selected window.
The command’s effect varies with the mode in which DBUG is operating. In
graphic terminal environments the selected window is popped-up and its border
is highlighted. In alphanumeric terminal environments, the selected window is
popped-up and the cursor moves to it. (This is the only way to move the cursor
between windows in alphanumeric mode.)
wname is a window name.
This command’s default key definition is <ctrl/n>.

EXAMPLES
(dbug) w n e x t t r a c e
Selects the trace window.
(dbug) w n e x t
Selects the next window as defined by a predefined cyclic order.
(dbug) < c t r l / n >
The next window becomes the selected window. In the alphanumeric terminal
environment, the cursor is moved to the next window.

LIMITATION
Not supported in MS-DOS.

5-78 DBUG COMMAND SET Rev 4.4

WPOP - pop window

5.1.51 WPOP - pop window
SYNTAX

wpop [wname]

DESCRIPTION
The wpop command uncovers a specified window that is covered (either in part,
or completely). If no window is specified, the selected window' is popped-up.
wname is the name of the window to be popped-up.

EXAMPLES
(dbug) wpop help
If the HELP window is covered by another wdndow, the wpop help command
brings the HELP window to the top (i.e., no part of it is obstructed from view).
(dhug) wpop
Uncover the selected window.

SEE ALSO
Wrpush

LIMITATION
Not supported in MS-DOS.

Rev 4.4 DBUG COMMAND SET 5-79

WPUSH - push window

5.1.52 WPUSH - push w indow
SYNTAX

wpush [wname]
DESCRIPTION

The wpush command covers the specified window beneath other displayed win­
dows. The default wname is the selected window.
Wname is the name of the window to be pushed.

EXAMPLES
(dbug) wp u sh h e l p

This command pushes the HELP window below any windows it currently sits on.
(dbug) wpu sh

Pushes the selected window.

SEE ALSO
wpop

LIMITATION
Not supported in MS-DOS.

5-80 DBUG COMMAND SET Rev 4.4

WRESET - reset windows

5.1.53 WRESET - reset w indows
SYNTAX

wreset
DESCRIPTION

The wreset command resets the display, by returning the currently displayed
windows to their default sizes and locations.

SEE ALSO
wmove

LIMITATION
Not supported in MS-DOS.

Rev 4.4 DBUG COMMAND SET 5-81

WSCROLL - scroll window

5.1.54 WSCROLL - scroll window

SYNTAX

wscroll [wname] wshift

DESCRIPTION

The wscroll command exercises a vertical scroll on the contents of the specified
window. The scroll size is determined by the vertical component of wshift.

wname is the name of the window to scroll.
Currently, wscroll works only with the CODE window, so CODE is the default
window.
wshift specifies how much the window should be shifted. The shift specification
is typed in the following format:
{u | d} [number]
Where:
u - indicates up shift,
d - indicates down shift.
number indicates number of lines to scroll. If omitted, default is one window
size.

EXAMPLES

(dbug) w s c r o l l c o d e dlO
Scrolls the contents of the CODE window down 10 lines.
(dbug) wscroll u
Scrolls the contents of the CODE window up one page.

5-82 DBUG COMMAND SET

WSCROLL - scroll window (Cont)

SEE ALSO
search, wgo

LIMITATION
Not supported in MS-DOS.

Rev 4.4 DBUG COMMAND SET 5-83

Chapter 6
INTERFACE WITH EMULATORS

6.1 Introduction
DBUG provides an interface for remote debugging with in-system emulators. These
emulators are: the HP64772 emulator for the NS32532 and NS32GX32 CPUs; the
HP64778 emulator for the NS32GX320 CPU; the HP64779 emulator for the
NS32CG16, NS32FX16, NS32FX164 and NS32CG160 CPUs; and the SPLICE Develop­
ment Tool for the NS32CG16 CPU.
The interface includes commands supported by DBUG’s n a t iv e and r e m o te modes.
Additional features support the capabilities of the Series HP64000 In-System Emula­
tors such as real time trace, counters and memory mapping. The SPLICE capability of
memory mapping is also supported.
The rest of this section provides general information on DBUG supported emulators.
Sections 2 and 3 are an overview of the invocation and command set for the
HP64772/HP64778 and HP64779, respectively. Section 4 describes the invocation and
command set for SPLICE.
Further information on the Series HP64000 In-System Emulators can be found in the
U s e r ’s R e fe r e n c e G u id e and the E m u la to r s T e r m in a l I n te r fa c e for each emulator. See
the S P L I C E H a r d w a r e M a n u a l for more information on the SPLICE Development
Tool.

6.1.1 D ow nloading A Program
The first step before executing and debugging a program is to download it to the emu­
lation or target memory. This is done with the load command. Note that if you are
using the emulation memory, the memory map should be initialized before download­
ing (see the map command in this chapter).
When using the SPLICE emulator, programs should be linked so that down-loading to
RAM located on the SPLICE board will not cause overwriting of the monitor wakeup
area. The on-board SPLICE monitor (spmon) uses 2 Kbytes of RAM as its scratch pad,
starting from a location pointed to by the monitor static base register. The monitor
static base register is initially set to 0. You can change the setting of the monitor
static base register by using the configh mon sb command. The new address must be
within the first 64 Kbytes of address space to minimize the impact of the SPLICE
board on the target system.

Rev 4.4 INTERFACE WITH EMULATORS 6-1

The trace function is an important feature provided by the Series HP64000 emulators.
Trace allows you to monitor the status of the CPU pins during each cycle, without
interrupting the execution of the application program. This includes viewing a selected
subset of pins during specified cycles.
You can use the trace mechanism to store the values monitored in each pin-group dur­
ing each cycle. A line composed of the values of the pin-groups is entered into a trace
buffer after each cycle. The trace buffer stores a maximum of 1024 lines.
Begin the trace by issuing the traceh start command. As the trace runs, pin data from
each cycle of program execution is read into the trace buffer until it is full. The user
can control which cycles to store (and thereby maximize storage efficiency) with the
traceh define command. The traceh define command defines which cycles write to
the trace buffer.
You can display entries that have been stored in the trace buffer with the traceh list
command. The traceh format command controls the radix in which the value of each
pin-group in the trace buffer is displayed. Only labels with a recognized radix are
displayed when the traceh list command is issued. It is also possible to specify sym­
bolic disassembly format. This feature is another way to screen out unnecessary infor­
mation. The traceh stop command halts the currently active trace. The traceh reset
command empties the contents of the buffers and resets all definitions and display for­
mats to their default values. The traceh status command prints current definitions
and selected formats.
Traceable CPU pins (channels) are grouped by logical function into pin-groups. Each
group has a matching label known to DBUG. The labels and their pins for each emula­
tor are presented in the following tables:

6.1.2 Tracing

6-2 INTERFACE WITH EMULATORS

Table 6-1. HP64772/8 Emulator Pin-Group Assignments

(for the NS32532, NS32GX32 and NS32GX320 CPUs)
dbug name PIN-GROUP SIGNAL FUNCTION

abus 0..31 ADDR0..ADDR31 processor address bus
stat 32..35 ST0..4 processor status
be 36..39 BE0..BE3 processor byte enables
bw 40..41 BW0..BW1 processor bus width
ddin 42 DDIN processor data direction
us 43 U/S processor user / supervisor
dbus_______________ ft__ 48..79 DAT AO..DAT A 31 processor data bus

Table 6-2. HP64779 Emulator Pin-Group Assignments

(for the NS32CG16, NS32CG160 and NS32FX16 CPUs)
dbug name PIN-GROUP SIGNAL FUNCTION

abus 0..23 ADDR0..ADDR31 processor address bus
stat 24..27 ST0..4 processor status
us 28 BE0..BE3 processor byte enable
bpu 29 BPU processor BITBLT processing cycle
spc 30 SPC processor SLAVE process/control cycle
ias 31 IAS processor internal address strobe
hbe 32 HBE processor high byte enable
ddin 33 DDIN processor data direction
dak 34..35 DAK1..DAK0 DMA channel 1/0 cycle
pfs 36..39 PFS3..PFS0 processor PFS count
dbus 48..63 DAT AO.. DAT A 31 processor data bus

INTERFACE WITH EMULATORS 6-3

6.1.3 Counter
The Series HP64000 emulators contain a counter that is directly connected to the trace
function. This counter can be used as a clock for measuring performance or keeping
track of execution sequences. It can also count user-defined events, such as references
to memory locations, and the occurrence of particular conditions. The counter is
activated by issuing the traceh start command. The counter define command deter­
mines what the counter is used for. The traceh format command enables the user to
control whether counter information is displayed in absolute (accumulative) or relative
(discrete) forms when the output is generated by the traceh list command. The counter status command displays current definitions.

6.1.4 Memory m apping
DBUG provides the ability to map or unmap either target memory or emulation
memory. Memory blocks can be referred to as either part of the target or emulation
memory. The map command can specify which of the target memory address ranges
should be referred to as emulation memory. This feature is especially useful when
debugging code that is in a ROM, because otherwise you cannot set software break­
points.
Memory blocks which have been defined as part of the emulation memory can be
redefined as part of the target memory with the unmap command.

6-4 INTERFACE WITH EMULATORS

6.2 The HP64772 and HP64778 Emulators

6.2.1 Invocation
DBUG is connected to an in-system emulator either by RS-232 or via Ethernet.
There are two ways to invoke DBUG’s interface with the HP64772 and HP64778 In-
System Emulators. One is through the invocation line, and the other is through the
connect or config commands. Both approaches require that you specify the mon
parameter as ise532.
A sample invocation line is as follows:
db ug -mon i s e 5 3 2 - c p u gx32 - f p u 381 -1 t t y 4 a . o u t

This invocation line invokes DBUG, automatically connects to the serial line t t y 4 (the
-1 parameter), and expects to find the HP64772 Series In-System Emulator (the -mon
parameter), with an NS32GX32 CPU and an NS32381 FPU. The executable file is
a . o u t .

If the required parameters do not appear in the invocation line, the connect command
may be used as follows:

(dbug) c o n n e c t l i n k t t y 4 w i t h mon i s e g x 3 2 0 c p u gx320 f p u 381

This command yields the same results as the previous example.

6.2.2 Virtual PC (VPC)
The emulator can trace values of virtual addresses of each executed instruction. These
values are stored in abus. In the trace list (displayed with the traceh list command),
all lines matching a virtual PC have the label VPC appended to them. The traceh
format command allows you to display additional information for these lines, such
AAAAAas disassembly of the instruction matching the line’s PC value, the source line
number and source filename matching that instruction, etc. You may specify that only
addresses of executed instructions be stored, by issuing the appropriate traceh define
command. The emulator uses the stat pin-group to mark the VPC cycles by assigning
it the value 0.
For the HP64778 emulator, the value of 1 on the stat pin-group denotes a lost VPC
cycle during a burst sequence.

Rev 4.4 INTERFACE WITH EMULATORS 6-5

6.2.3 Condition option
Several of the commands relevant in this context allow for an optional specification of a
condition. The condition in these cases is restricted to the following:
pin_group {== | !=} {range \ value}
or
(pin_group {== | !=} {range \ value}) {and | or} (pin_group {== | !=} {range
| value})

Where:
1) pin-group is one of the labels described in Table 6-1.
2) value is any expression that can be expressed as a numeric value.
3) range is an expression of the type: value .. value.
Note that only one range definition may be used at any one time. Respecifying an
existing range will cause the existing range to be overwritten.

6.2.4 Traceh Mode
This mode determines which target cycles are to be sampled by the emulator. The syn­
tax of the traceh jnode specification is:

{bus | vpc | all}
Where bus indicates that only bus cycles should be sampled, vpc indicates that only
executed instruction addresses should be sampled, and all means that all target cycles
will be sampled.
The value of the traceh jnode is set with the traceh define command.
Several commands may be influenced by the traceh jnode value. Among them are: tra­
ceh define, traceh stop, traceh start, counter defined and stoph.

6-6 INTERFACE WITH EMULATORS

HP64772/8 BREAKH - stop execution

6.2.5 HP64772/8 BREAKH - stop execution
SYNTAX

breakh
DESCRIPTION

The breakh command issues a break to the monitor, causing it to stop executing
the user program and to report its position. If the emulator is in the reset state
when the breakh command is issued, it will be released from reset.

EXAMPLE
(dbug) r u n

c c o n t r o l c>
<BREAK>

(dbug) b r e a k h

e m u l a t o r r u n a b o r t e d
s t o p p e d i n m a i n a t l i n e 1 i n f i l e " l o o p . c "
1 main() { int i , j ; f o r (i=l;iclOOOOOOOO;i++) { j = 1 0 ; } }

INTERFACE WITH EMULATORS 6-7

HP64772/8 CONFIGH - set configuration parameters

6.2.6 HP64772/8 CONFIGH - set configuration param eters
SYNTAX

configh [[mon bg | mon fg address]
[wait number] [lock {enable | disable}]
[burst {enable | disable}][realtime {enable | disable}]
[c lo c k {inter | exter}]
[cfg number]
[excp [all | none | exception][dma {u | s}]
[ic {enable | disable}]
[dc {enable | disable}]
[mod address]
[spO address]
[nmi {enable | disable}]
[hold {enable | disable}]
[dbg {enable | disable}]
[target {all | ignore | [dbg | int | nmi | hold]}]

DESCRIPTION
When no parameters are specified, the current configuration is given.
mon bg | mon fg address specifies the type of monitor, mon bg specifies a
background monitor, mon fg specifies a foreground monitor starting at address.
The address can be specified in hex or physical and is aligned by DBUG to a 4k
byte boundary for the 64772 emulator, and to a 32K byte boundary for the 64778
emulator.
wait number selectes the number of wait states during emulation memory access
for the HP64772 emulator, number can be either 0, no wait states, or 1, wait
state. (For information on wait state configuration for the HP64778 emulator,
refer to the map command.)
lock enable | disable locks the emulation memory access to target system
control for the HP64772 emulator. (For information on locking memory for the
HP64778 emulator, refer to the map command.)
burst enable | disable controls the burst mode in emulation memory.
realtime enable | disable controls the real time restrictions. When realtime
is disabled the emulator allows you to issue commands that interfere with the
application, and thus affect its real time. Such commands, e.g. pcpu (print cpu

6-8 INTERFACE WITH EMULATORS Rev 4.4

HP64772/8 CONFIGH - set configuration parameters (Cont)

registers) are not allowed when realtime is enabled.
clock inter | exter determines internal or external emulator clock source
selection. The inter option selects the internal 50 MHz clock. The exter option
selects the clock provided by the target system.
cfg number sets the cfg register when the NS32532, NS32GX32, or NS32GX320
CPUs are reset by the emulator, number must specify a 32 bit value. If no
number is specified the cfg will not be initialized.
target all | ignore | dbg | int | nmi | hold configures the target sys­
tem signal. The all option enables all four target signals. The ignore option dis­
ables all four target signals. Signals can be specified as dbg, int, nmi or hold.
Signals not specified will be disabled. (Valid only for the HP64772 emulator.)
nmi enable | disable controls the target system signal NMI configuration.
(Valid only for the HP64778 emulator.)
hold enable | disable controls the target system signal HOLD configuration.
(Valid only for the HP64778 emulator.)
dbg enable | disable controls the target system signal DBG configuration.
(Valid only for the HP64778 emulator.)
mod address sets the mod register when the CPU is reset by the emulator.
address must be a 16 bit value. The default value is ffTO hex. (Valid only for the
HP64778 emulator.)
spO address sets the spO register when the NS32GX320 CPU is reset by the
emulator, address must be a 32 bit value. (Valid only for the HP64778 emula­
tor.)
excp controls the CPU exception setup. The dispatch table is modified so that
the occurance of specified exceptions will result in an entry into the foreground
monitor. The setup is based on the current exception mode (direct or indirect)
and the contents of the intbase and mod registers. This option is only valid
when the foreground monitor is used, exception is one of the following names:
NVI, NMI, RESERVED, SLAVE, ILL, SVC, DVZ, FLG, BPT, TRC, UND, RBE,
NBE, OVF, DBG; or the numbers 0 through 14. all specifies that all exceptions
will result in an entry into the foreground monitor, none specifies that no excep­
tions will be handled by the foreground monitor. Note however that the BPT
and TRC exceptions are always used by the foreground monitor for breakpoints
and single stepping.

Rev 4.4 INTERFACE WITH EMULATORS 6-9

HP64772/8 CONFIGH - set configuration parameters (Cont)

dma allows you to define the User/Supervisor signal to the emulation memory
during DMA transfers for the NS32GX320 CPU. This signal is not defined dur­
ing DMA transfers, but may be defined by the target system for target system
memory. For the DMA channel, specifying u defines a User signal, specifying s
defines a Supervisor signal. (Valid only for the HP64778 emulator.)
dc causes the processor input CIIN directly to be driven directly by the target
system data transfers (data cache enabled). This is the default value. (Valid
only for the HP64778 emulator.)
ic specifies that the processor input CIIN will be true (instruction cache
enabled). (Valid only for the HP64778 emulator.)

EXAMPLES
(dbug)

(dbug)

c o n f i g h
m o n i t o r f o r e g r o u n d , i
c l o c k i n t e r n a l
r e a l t i m e d i s a b l e d
c f g OxlfO
t a r g e t d b g , i n t , n m i , !
b u r s t e n a b l e d
l o c k d i s a b l e d
w a i t 1

c o n f i g h mon b g b u r s t
m o n i t o r b a c k g r o u n d
c l o c k i n t e r n a l
r e a l t i m e d i s a b l e d
c f g OxlfO
t a r g e t i n t
b u r s t d i s a b l e d
l o c k e n a b l e d
w a i t 1

SEE ALSO
connect

6-10 INTERFACE WITH EMULATORS

HP64772/8 CONNECT - connect to a system emulator

6.2.7 HP64772/8 CONNECT - connect to a system em ulator
SYNTAX

connect [link linkname | node nodename] [with [nofast] [list] [baud
number] [cpu name] [mmu name] [fpunarae] [mon ise532 | isegx320]]

DESCRIPTION

The connect command is used to switch to the remote operation mode. Connect
selects the communications channel through which DBUG and the target board
communicate, and sets configuration parameters. The connect parameters are
closely related to the DBUG invocation line flags. Several connect commands
may be issued during one DBUG session to alter the configuration or communi­
cation parameters.
Once the connect command has been issued for the first time, and the connec­
tion established, the connect command can be issued any number of times.
When the connect command is issued for the second time, it terminates the
current connection and establishes a new one. The config command is used to
toggle the fast/nofast and list parameters. When connect is issued for the
second time it terminates the current connection and establishes a new connec­
tion.
At least one parameter must be specified when the with clause is used.
Link linkname identifies the serial communication line between the host and
the target board. The default linkname is the last name given by the previous
connect command, or as selected in the invocation line (-1 parameter), or as
specified in the GNX target specification file.
When working with the emulator, DBUG supports two types of link interfaces:

1. RS232 link. In this case, under UNIX, the linkname should have the form
ttyxx, where xx is the link identifier (i.e. the device would be:
/dev/ttyxx). Under MS-DOS, the linkname should have the form correcx.

2. The HP64037 high-speed RS422 interface card (referred to as HP COM-
CARD). In this case the linkname should have the form comxx. Comxx is
the name of the IBM PC port in which the HP COMCARD is installed (i.e.
connect lin k com6). The HP COMCARD can be used only with
SYS32/30 or SYS32/50 hosts.

The node parameter selects the fast communication channel (LAN) between
DBUG and the emulator, nodename is the name of the emulator, as recognized
by the host system. The default nodename is either the last name given by the
previous connect command, the name selected in the invocation line, or the

Rev 4.4 INTERFACE WITH EMULATORS 6-11

HP64772/8 CONNECT - connect to a system emulator (Cont)

name specified in the GNX target specification file.
The node parameter is only valid for isegx320.
In the fast protocol (the default value), DBUG uses the HP X Binary file format
and transfer protocol when downloading an executable file to a target system.
The fast protocol should be used with the HP COMCARD, to achieve high baud
rates. Specifying nofast causes DBUG to use the Intel-hex file format download­
ing the executable file to a target system. The nofast option can be used when
the serial communication line is unreliable.
The list option enables the verbose communication mode. In this mode, DBUG
displays the messages exchanged by the debugger and the monitor or the emula­
tor.
The command:
(dbug) c o n n e c t w i t h l i s t

may be used to enter the verbose communication mode, even if the connect
command was previously issued. An additional connect command with no
parameters disables the verbose mode.
Baud number sets the communication baud rate for stand-aside mode. Possible
values for tty communication are: 300, 600, 1200, 2400, 4800, 9600, 19200, and
38400. Possible values for HP COMCARD communication are: 300, 1200, 2400,
4800, 9600, 19200, 38400, 57600, 115200 and 230400. The default baud rate is
9600.
Cpu specifies the target board CPU name. Valid names are gx32, 532 and
gx320.
Mmu specifies the target board MMU name. Valid names are: 382, onchip, and
nommu.
Fpu specifies the target board floating-point unit name. Valid names are: 381,
580, nofpu.
The default values for the cpu, mmu and fpu options are described by your
GNX target specification file, the previous connect command, or the invocation
line.
If the emulator is plugged into a target that has ROM at address 0, you should
first initialize the target and only then issue the connect command. For

6-12 INTERFACE WITH EMULATORS Rev 4.4

HP64772/8 CONNECT - connect to a system emulator (Cont)

example, if the emulator is plugged into NS32GXEB evaluation board, you
should press the RESET button on the evaluation board before issuing the con­
nect command.
When DBUG is initialized, no communication link is defined. Therefore, the user
must select a link before issuing any debugger command that communicates
with the target board.
NOTE: Although DBUG allows you to change links during the debugging ses­
sion, this exercise is not recommended.

EXAMPLES
(dbug) c o n n e c t

Reconnects the target system using the parameters selected by the previous
c o n n e c t command. The list and nofast parameters are disabled because they
are not specified. The fast protocol will be used for downloading the executable
file, and the communication between DBUG and the monitor will not be
displayed.
(dbug) c o n n e c t l i n k t t y 7 w i t h b a u d 38400 mon i s e 5 3 2 cp u gx32

Selects the channel t t y 7 , and communicates with the emulator over a 38400
baud rate serial line. In this case the ISE should be reset to work at 38400 baud.
This is done by setting the dip-switches on the back of the emulator to the
correct value and turning the emulator on.
(dbug) c o n n e c t l i n k com4 w i t h mon i s e g x 3 2 0 b a u d 230400 cpu
gx32 0

Selects your HP COMCARD installed as port COM4 in your IBM PC as your
communication channel. The connection is established with the emulator using
230400 baud rate and the RS422 protocol provided by the emulator and the HP
COMCARD. The load protocol will be fast since the nofast parameter is not
specified.
(dbug) a l i a s d o _ c o n n e c t (l i n k n a m e) ' c o n n e c t l i n k l i n k n a m e w i t h
b a u d 38400 cp u gx32 f p u 381 mon i s e 5 3 2 '

Defining an alias/macro makes the connect command easier to use. Issuing the
following command selects t t y 4 as your communication channel. This macro
may be inserted in your .dbuginit (dbug.ini in VMS/MS-DOS) file so that it will
be recognized each time DBUG is entered.

Rev 4.4 INTERFACE WITH EMULATORS 6-13

HP64772/8 CONNECT - connect to a system emulator (Cont)

(dbug) d o _ c o n n e c t (t t y 4)

(dbug) c o n n e c t n o d e i s e O l w i t h mon i s e g x 3 2 0 c p u g x 3 2 0 .

Selects, and connects to, the ISE whose Ethernet name is i s e O l for use with
the NS32GX320.

SEE ALSO
begin, load

6-14 INTERFACE WITH EMULATORS Rev 4.4

HP64772/8 COUNTER DEFINE - counts time or events

6.2.8 HP64772/8 COUNTER DEFINE - counts tim e or events
SYNTAX

counter define {none | time | condition}
DESCRIPTION

The counter define command qualifies the emulator’s counter to count time or
events.
When counting time, the counter acts as a clock. When counting events, the
counter counts the number of times the specified condition is true. Counting
begins from zero. The counter can only be incremented (cannot be decremented).
The counter is invoked by issuing the traceh start command and can be viewed
with the traceh list command, in either absolute or relative formats. The com­
plete procedure for viewing the counter is discussed in the description of the tra­
ceh format command.
The default setting for the counter is none. The counter is not active during
this setting.
If the counter is defined to count either time or events, the clock rate used by the
emulation analyzer must be reduced accordingly. If time is counted, this clock
rate is set by DBUG to "slow" (less than or equal to 16 MHz). If events are
counted (counter define condition), DBUG sets the clock rate to "fast" (between
16 and 20 MHz). When the counter is defined as none, the clock speed for the
emulation analyzer is set by DBUG to "very fast" (speed between 20 MHz and 25
MHz).
You must use the traceh define command to ignore either bus cycles or vpc
cycles if you define the counter to count either time or events. Otherwise, lines
may be missing at random from the trace buffer, as the emulation analyzer’s
clock speed will not be fast enough to ensure that all cycles are buffered.
For more information, refer to the HP64772/8 Emulator Terminal Interface:
NS32GX32 Emulator User’s Guide.

EXAMPLES
(dbug) c o u n t e r d e f i n e t i m e

Defines the counter to count time.

INTERFACE WITH EMULATORS 6-15

HP64772/8 COUNTER DEFINE - counts time or events (Cont)

(dbug) c o u n t e r d e f i n e (a b u s == O x f f f f f f f f) o r (s t a t == 0x0)

This command causes the counter to count all the events in which either the abus (address bus) equals O x f f f f f f f f , or the s t a t (status) equals 0x0.
SEE ALSO

counter status, traceh start, traceh format, traceh define

6-16 INTERFACE WITH EMULATORS

HP64772/8 COUNTER STATUS - print counter qualification

6.2.9 HP64772/8 COUNTER STATUS - print counter qualification
SYNTAX

counter status
DESCRIPTION

This command prints the counter’s current qualification. This may be none,
time or a c o n d i t io n .

EXAMPLES
(dbug) c o u n t e r s t a t u s

The c o u n t e r d e f i n i t i o n i s :
c o u n t e r d e f i n e (a b u s == O x f f f f f f f f) o r (s t a t == 0x0)

This example indicates that the counter was defined to be incremented each time the
condition: (a b u s == O x f f f f f f f f) o r (s t a t == 0x0) is true.
SEE ALSO

counter define, traceh format, traceh define, traceh start

INTERFACE WITH EMULATORS 6-17

HP64772/8 LOADMON - load a foreground monitor

6.2.10 HP64772/8 LOADMON - load a foreground m onitor
SYNTAX

loadmon filen am e

DESCRIPTION
This commands allows you to load your private version of the foreground moni­
tor into the emulator. The configh command can then be used to specify the
foreground monitor. For more details on modifying and compiling a foreground
monitor, refer to the H P 6 4 7 7 2 / 8 E m u l a t o r T e r m in a l I n te r fa c e : N S 3 2 G X 3 2
E m u l a t o r U s e r ’s G u id e , filen am e is the name of the executable foreground moni­
tor file.
The symbolic information of a debugged program is lost when a new foreground
monitor is loaded. The load command can be used to reread this information.
Using the loadmon command at the beginning of your session can avoid the
need to reread the symbolic information.

EXAMPLES
(dbug) l oa dm o n my_mon

Specifies that my_mon is loaded into the emulator as a monitor program.
(dbug) c o n f i g h mon f g 0x30000

Specifies that my_mon is used as the foreground monitor, mapped to address
30000 hex.
(dbug) l o a d m y _ p ro g

The debugged program m y _ p ro g is now loaded using the new foreground moni­
tor.

SEE ALSO
configh, load

6-18 INTERFACE WITH EMULATORS

HP64772/8 MAP - map emulation memory

6.2.11 HP64772/8 MAP - map em ulation memory
SYNTAX

map [range [rom | ram | trom | tram][lock | wait n u m b e r] [with copy]]
DESCRIPTION

This command maps the specified address range to the emulator’s memory.
range is an address range that is boundary aligned outward to 4-Kbyte boun­
daries for the HP64772 emulator, and to 32-Kbyte boundaries for the HP64778
emulator.
Memory blocks can be referred to as either part of the target or emulation
memory. Memory blocks that are mapped to emulation memory may be charac­
terized as either RAM or ROM. All memory is referred to as target RAM
immediately after the emulator is powered-up. The map command specifies
which of the target memory address ranges should be referred to as emulation
memory, and whether they should be characterized as RAM or ROM.
Memory blocks that have been referred to as part of the emulation memory can
be redefined as part of the target memory with the unmap command.
If rom is specified, the range is treated as part of a ROM (no write to target
ROM is allowed) and mapped to emulator memory. If ram is specified, the
range is treated as part of a RAM. If tram is specified, the range is treated as
target RAM. If trom is specified, the range is treated as target ROM.
If none of the options ram, rom, tram or trom are specified, the default is ram.
If with copy is specified, the contents of the address range in the target
memory are copied to the same location in the emulation memory. Otherwise,
the emulator memory block might not have the same contents as the correspond­
ing target memory block.
To set software breakpoints on part of the program that lies in target ROM, first
map the relevant address range to emulation memory, characterize it as ram,
and specify with copy.
DB1JG assigns a map term to each memory block mapped to emulation memory.
Each term consists of the term number, the mapped address range, and its
RAM/ROM status. Map terms are displayed each time terms are added or
deleted, or when the map command is issued without parameters. The term
numbers will be rearranged in ascending order each time a new term is added or

Rev 4.4 INTERFACE WITH EMULATORS 6-19

HP64772/8 MAP - map emulation memory (Cont)

deleted. The HP64772/8 emulator supports seven map terms and 512 Kbyte
emulation memory.
If range is not specified, the mapping of all mapped address ranges is displayed.
For the HP64778 emulator (NS32GX320 CPU), only addresses in the range
O..Oxfffeffr can be mapped. Memory addresses in the 10 range of
0xffiID000..0xffiIHIF will result in internal processor cycles and are not affected
by the memory map. Therefore, memory commands may be used to access the
10 registers.
Additional attributes for the HP64778 emulator can be specified for the emula­
tion memory terms, lock determines whether the access to the selected address
range is according to target system timing or emulation memory timing
(default). The wait number may be used to specify the number of wait states the
defined memory should emulate. The number of wait states may be 0, 1, 2 or 3.
Note that the emulation memory containing the foreground monitor (if used) is
confgured seperately with the configh command.

EXAMPLES
(dbug) map
[1] 0 x 0 0 0 0 0 0 0 0 . . OxOOOOOff f e m u l a t o r r am
[2] 0 x 0 0 0 0 1 0 0 0 . . 0 x 0 0 0 0 2 f f f e m u l a t o r rom
[3] 0 x 0 0 0 3 0 0 0 0 . . 0 x 0 0 0 3 0 f f f e m u l a t o r r am

Prints the current map. The ranges are in hexadecimal format. Term [3] is the
memory block used for the foreground monitor. It is set by DBUG when the con­
nection with the emulator is established.
(dbug) map 8 8 3 0 . . 8 8 4 0 rom
[1] 0 x 0 0 0 0 0 0 0 0 . . OxOOOOOff f e m u l a t o r r am
[2] 0 x 0 0 0 0 1 0 0 0 . . 0 x 0 0 0 0 2 f f f e m u l a t o r rom
[3] 0 x 0 0 0 0 8 0 0 0 . . 0 x 0 0 0 0 8 f f f e m u l a t o r rom
[4] 0 x 0 0 0 3 0 0 0 0 . . 0 x 0 0 0 3 0 f f f e m u l a t o r r am

Maps the block containing the specified address range to emulator memory. The
address range is considered part of the target ROM. The contents of the address
range on the target board are not copied to the emulator’s memory. Note that
the address range is rounded to 4-Kbyte page boundaries.

6-20 INTERFACE WITH EMULATORS

HP64772/8 MAP - map emulation memory (Cont)

(dbug) map 0 x 9 0 0 0 . . 0 x 9 f f f t r o m
[1] 0 x 0 0 0 0 0 0 0 0 . . OxOOOOOff f e m u l a t o r r am
[2] 0 x 0 0 0 0 1 0 0 0 . . 0 x 0 0 0 0 2 f f f e m u l a t o r rom
[3] 0 x 0 0 0 0 8 0 0 0 . . 0 x 0 0 0 0 8 f f f e m u l a t o r rom
[4] 0 x 0 0 0 0 9 0 0 0 . . 0 x 0 0 0 0 9 f f f t a r g e t rom
[5] 0 x 0 0 0 3 0 0 0 0 . . 0 x 0 0 0 3 0 f f f e m u l a t o r r am

Maps the block containing the specified address to target ROM.
SEE ALSO

unmap

Rev 4.4 INTERFACE WITH EMULATORS 6-21

HP64772/8 RESETH - reset CPU

6.2.12 HP64772/8 RESETH - reset CPU
SYNTAX

reseth
DESCRIPTION

The reseth command resets the emulation CPU. This causes certain registers
to be reset to zero, and others to be reset to an undefined value. Executing this
command also places the emulator in a reset state. You must return system con­
trol to the monitor before attempting to change or print registers. Do this by
issuing the breakh command.

6-22 INTERFACE WITH EMULATORS

HP64772/8 STOPH - set a hardware breakpoint

6.2.13 HP64772/8 STOPH - set a hardware breakpoint
SYNTAX

stoph if stop ̂ condition
DESCRIPTION

This command uses the emulator’s hardware to force your program to halt exe­
cution after the stop condition becomes true. Stop condition is:
pin_group {== | !=} {value \ range}
Only one range definition may be used at one time for all of the emulator com­
mands. In addition, up to 4 hardware breakpoints may be defined with this com­
mand. Each defined hardware breakpoint is assigned an event number. Use the
status command to see a list of the currently defined events.
The hardware trace begins automatically when a hardware breakpoint is
defined. DBUG activates the hardware trace in order to keep the hardware
breakpoints active. You may use the traceh stop command to stop the
hardware trace and disable all the currently defined hardware breakpoints. The
hardware breakpoints will become active again when you issue the traceh start
command or define another hardware breakpoint.
If execution stops because of a hardware breakpoint, the trace buffer contains up
to 512 entries, stored just before execution was halted. DBUG will restart the
hardware trace when you resume execution, in order to keep the hardware
breakpoints active.
The traceh start at and traceh stop at commands may not be used when a
hardware breakpoint is defined. To delete a hardware breakpoint, you must
delete the event associated with it. Use status to see a list of the currently
defined events, and then use delete to delete the appropriate event(s).
Note that hardware breakpoints are sensitive to tracehjnode as defined with the
traceh define command.

EXAMPLES
(dbug) s t o p h i f a b u s = = & a r r a y . . & a r r a y + a r r a y _ s i z e

Causes execution to halt when the array a r r a y is referenced. a r r a y and
a r r a y _ s i z e are assumed to be variables defined in your program.

INTERFACE WITH EMULATORS 6-23

HP64772/8 STOPH - set a hardware breakpoint (Cont)

(dbug) s t o p h i f u s = = l

Causes execution to halt when execution mode is switched to supervisor mode.
(dbug) s t a t u s

The status command displays the previously defined hardware breakpoints with
the matching event numbers. These appear here:
[1] s t o p h i f a b u s = = a r r a y . . a r r a y + a r r a y _ s i z e
[2] s t o p h i f u s = = 1

(dbug) t r a c e h s t a t u s

H a r d w a r e t r a c e i s r u n n i n g
The h a r d w a r e t r a c e d e f i n i t i o n i s :

t r a c e h d e f i n e a l l
The h a r d w a r e t r a c e f o r m a t i s :

t r a c e h f o r m a t a b u s : x d b u s : x

(dbug) d e l e t e 1

Deletes the first hardware breakpoint
(dbug) s t a t u s

[2] s t o p h i f u s = = l

This shows that the first hardware breakpoint has been deleted.
SEE ALSO

stop, traceh start, traceh stop, traceh status, status, delete

6-24 INTERFACE WITH EMULATORS

HP64772/8 TRACEH DEFINE - define hardware trace

6.2.14 HP64772/8 TRACEH DEFINE - define hardware trace
SYNTAX

traceh define [condition] \traceh_mode]
DESCRIPTION

This command performs two functions:
1. Changes the value of traceh jnode. This mode determines which types of

target cycles will be sampled by the emulator.
2. Defines which cycles of the specified type will be stored in the trace buffer.

Traceh jnode specifies which types of target cycles will be sampled by the emula­
tor. Possible values for this parameter are:
bus - only bus cycles will be sampled,
vpc - only execution cycles will be sampled,
all - all cycles will be sampled.
The traceh jnode definition affects all commands that are sensitive to it. These
include: stoph, counter define, traceh stop and traceh start.
Note that only the bus and vpc modes are supported when the emulator’s
counter is active (the counter define time or counter define condition com­
mands have been issued). Otherwise, in all mode, random cycles may be miss­
ing from the trace buffer.
If traceh jnode is not specified, its value remains unchanged. The initial value of
traceh jnode is all.
Condition specifies which cycles should be stored in the trace buffer. Cycles
which match the condition and of traceh jnode type are stored. The default is to
match all cycles.
The traceh define command cannot be issued if a trace is already in progress.
The trace must first be stopped with the traceh stop command.
The traceh list and traceh format command should be used to view the accu­
mulated trace buffer entries.

INTERFACE WITH EMULATORS 6-25

HP64772/8 TRACEH DEFINE - define hardware trace (Cont)

EXAMPLES
(dbug) t r a c e h d e f i n e a b u s = = 0 x 9 0 f f

Defines that only trace entries with the address values 90ff (hexadecimal) are
stored (and therefore, displayed later).
In the following example, only the changes to the variables i and j defined in
m a i n will be of interest. The executable program is assumed to be loaded to
memory.
(dbug) l i s t 1 , 2 0

1 m a i n ()
2 {
3 i n t i == 0 ;
4 i n t j--= 10 ;
5
6 i = 1
7 j = 9
8 i = 2
9 j = 8
10 i = 3
11 j = 7
12 i = 4
13 j = 6
14 i = 5
15 j = 5
16 i = 6
17 j = 4
18 i = 7
19 j = 3
20 i = 8
21 j = 2
22 i = 9
23 j = 1
24 i = 10 ;
25 j = 0;
26 i = 11 ;
27 j = L;
28 f 0
29 }

6-26 INTERFACE WITH EMULATORS

HP64772/8 TRACEH DEFINE - define hardware trace (Cont)

A breakpoint is specified, so that execution will be stopped in the function main , (i
and j are local variables of the function main) .

(dbug) s t o p i n m a i n

[1] s t o p i n m a i n

(dbug) r u n

[1] s t o p p e d i n m a i n a t l i n e 3 i n f i l e " t _ t r a c e . c "
3 i n t i = 0;

Next, the addresses of i and j are printed.
(dbug) p r i n t &j

0 x 2 4 f f 0

(dbug) p r i n t &i

0 x 2 4 f f 4

As the addresses are adjacent, the following definition will capture all the accesses to
these memory locations in user mode.
(dbug) t r a c e h d e f i n e (a b u s = = & j . . & i + 3) a n d (u s = = l)

Since these variables are allocated on the stack, these addresses are only of interest
while we are in function main . The following hardware trace definition will solve this
problem:
(dbug) t r a c e h s t o p a t &f

Now, continue execution
(dbug) c o n t

e x e c u t i o n c o m p l e t e d

It is now easy to follow the values assigned to the variables i, j , and to compare them
to the source listing previously displayed. The value 2 4 f f 4 in the a b u s column is the
address of the variable i and the value 2 4 f f 0 is the address of j . the values
assigned to these variables are the values displayed in the d b u s column. First i is
assigned 0, then j is assigned Oxa etc.

INTERFACE WITH EMULATORS 6-27

HP64772/8 TRACEH DEFINE - define hardware trace (Cont)

(dbug) t r a c e h l i s t - 2 4 , - 1 5

l i n e a b u s d b u s

-24 0 0 0 2 4 f f 4 00 000000
-23 0 0 0 2 4 f f 0 0 0 0 0 0 0 0 a
-22 0 0 0 2 4 f f 4 00 000001
-2 1 0 0 0 2 4 f f 0 00 000009
-2 0 0 0 0 2 4 f f 4 00000002
-19 0 0 0 2 4 f f 0 00 000008
-1 8 0 0 0 2 4 f f 4 00000003
-17 0 0 0 2 4 f f 0 00000007
-1 6 0 0 0 2 4 f f 4 00 000004
-1 5 0 0 0 2 4 f f 0 0000 00 06

The format can be changed to allow a different view of the same information, for exam­ple:
(dbug) t r a c e h f o r m a t mnemonic

(dbug) t r a c e h l i s t -2 4 , 0

l i n e mnemonic

-2 4 00 000000 u s r d a t a w r i t e
-23 0 0 0 0 0 0 0 a u s r d a t a w r i t e
-22 0000 00 01 u s r d a t a w r i t e
-2 1 00 000009 u s r d a t a w r i t e
-20 00000002 u s r d a t a w r i t e
-19 0000 00 08 u s r d a t a w r i t e
-1 8 00000003 u s r d a t a w r i t e
-17 00 000007 u s r d a t a w r i t e
-1 6 00 000004 u s r d a t a w r i t e
-15 0000 00 06 u s r d a t a w r i t e
-1 4 0 0 000 00 5 u s r d a t a w r i t e
-13 0 0 000 00 5 u s r d a t a w r i t e
-12 0 0 000 00 6 u s r d a t a w r i t e
-1 1 0 0 000 00 4 u s r d a t a w r i t e
-1 0 00 000007 u s r d a t a w r i t e

-9 00000003 u s r d a t a w r i t e
-8 0000 00 08 u s r d a t a w r i t e
-7 00 000002 u s r d a t a w r i t e
-6 00000 00 9 u s r d a t a w r i t e

6-28 INTERFACE WITH EMULATORS

HP64772/8 TRACEH DEFINE - define hardware trace (Cont)

-5 00 000001 u s r d a t a w r i t e
-4 0 0 00 0 0 0 a u s r d a t a w r i t e
-3 00 000000 u s r d a t a w r i t e
-2 00 00 0 0 0 b u s r d a t a w r i t e
-1 l O O e f f f f u s r d a t a w r i t e

0 V P C ---------
----- f e n t e r CO

i
X

1 oii

Note that the trace was stopped when the function f was about to be entered.
SEE ALSO

traceh format, traceh start, traceh status, traceh stop

INTERFACE WITH EMULATORS 6-29

HP64772/8 TRACEH FORMAT - define trace display format

6.2.15 HP64772/8 TRACEH FORMAT - define trace display format
SYNTAX

traceh format [pin_group.radix ...] [absolute | relative] [lines][disasm] [mnemonic]
DESCRIPTION

The pin_group parameter selects any of the following labels which correspond to
different channels (pin-groups) as found in Table 6-1: abus, dbus, stat, ddin,
be, bw, us. The counter may also be incorporated into the trace listing. This
can be done by specifying either absolute or relative format. The absolute for­
mat displays the cumulative value of the counter (for all trace lines). The rela­
tive format displays the counter’s accumulated value per trace line.
The trace listing columns include pin values that correspond to the selected
labels in the specified format.
If disasm is specified, the disassembly of instructions matching a VPC cycle is
appended to the displayed line (the disassembly of the instructions reside in the
address specified by the abus value in that cycle). If lines is specified, the
source line number and the source file name are appended to each line matching
a VPC cycle. If mnemonic is specified, all the other specified columns are
ignored and a verbal description of their contents is given instead. This descrip­
tion includes the description of the execution cycles. When activated, DBUG
defines the initial trace format as mnemonic.

EXAMPLES
(dbug) t r a c e h f o r m a t a b u s : x d b u s : d

Specifies that the address bus (abus) is displayed in hexadecimal format, and
the data bus (dbus) is displayed in decimal format. No other information is
displayed.

SEE ALSO
traceh define, traceh start, traceh status, traceh stop

6-30 INTERFACE WITH EMULATORS

HP64772/8 TRACEH LIST - display trace buffer

6.2.16 HP64772/8 TRACEH LIST - display trace buffer
SYNTAX

traceh list [number | number, number]
DESCRIPTION

This command displays the trace on the screen. If numbers are specified, only
those entries within the specified range are displayed. If one number is
specified, the current line and the few lines following it are displayed. If no
number is specified, the next few lines are displayed. All lines which correspond
to a virtual PC cycle have the letters VPC appended to them.
The trace is displayed in a format defined by the traceh format command. The
traceh format command makes it possible to redisplay the trace buffer accord­
ing to different formats without having to resume execution.

EXAMPLES
(dbug) t r a c e h l i s t 3 , 9

l i n e a b u s d b u s c o u n t

3 00 000001 1 . 2 4 0 uS VPC
4 00 000000 1 . 4 8 0 uS VPC
5 00 000000 1 2 7 f e a a 2 1 . 8 8 0 uS
6 00 000004 f f 78563 4 2 . 6 0 0 uS
7 00 000001 3 . 1 2 0 uS VPC
8 00 000000 3 . 3 6 0 uS VPC
9 00 000000 1 2 7 f e a a 2 3 . 7 6 0 uS

Lines 3 through 9 of the trace buffer are displayed, according to the specified for­
mat (in this case the default format). The address bus and data bus are
displayed in hexadecimal notation, the counter is displayed in absolute format,
and VPC cycles are noted.

SEE ALSO
traceh format, traceh start, traceh status, traceh stop

INTERFACE WITH EMULATORS 6-31

HP64772/8 TRACEH RESET - reset trace definitions

6.2.17 HP64772/8 TRACEH RESET - reset trace definitions
SYNTAX

traceh reset
DESCRIPTION

This command resets the trace and counter definitions to their initial settings.
Any active trace is halted. The trace definition is reset to its default value,
which specifies that all cycles should be stored. The traceh jnode is set to all.
The trace format is also reset to its default value, which specifies abus and
dbus in hexadecimal notation, and counter definition is reset to none.

EXAMPLES
The following command sequence demonstrates the effect of the traceh reset
command. First the trace status is displayed by the traceh status command,
which shows the current value of the traceh define and traceh format com­
mands. Next the traceh reset command gives new (default) values to the
hardware trace definition and format. These values are displayed by re-issuing
the traceh status command. Finally, the fact that the buffer is now empty is
demonstrated by issuing the traceh list command.
(dbug) t r a c e h s t a t u s

H a r d w a r e t r a c e i s s t o p p e d
The h a r d w a r e t r a c e d e f i n i t i o n i s :

t r a c e h d e f i n e s t a t = = 0 a l l
h a r d w a r e t r a c e f o r m a t i s :

t r a c e h f o r m a t a b u s : x d d i n : d
(dbug) t r a c e h r e s e t

(dbug) t r a c e h s t a t u s

H a r d w a r e t r a c e i s s t o p p e d
The h a r d w a r e t r a c e d e f i n i t i o n i s :

t r a c e h d e f i n e a l l
The h a r d w a r e t r a c e f o r m a t i s :

t r a c e h f o r m a t mnemonic

6-32 INTERFACE WITH EMULATORS

HP64772/8 TRACEH RESET - reset trace definitions (Cont)

(dbug) t r a c e h l i s t

l i n e a b u s d b u s c o u n t

** T r i g g e r n o t i n memory **

SEE ALSO
traceh define, traceh format, traceh start, traceh status, traceh stop

INTERFACE WITH EMULATORS 6-33

HP64772/8 TRACEH START - start hardware trace

6.2.18 HP64772/8 TRACEH START - start hardware trace
SYNTAX

traceh start [at address]
DESCRIPTION

This command starts the emulator’s trace function. Issuing this command first
causes the trace buffer to be reinitialized (all current entries are removed).
Further, all cycles that match the trace definition are stored in the emulator’s
trace buffer once execution resumes.
If an address is specified, trace will start when execution reaches that address.
All previous addresses specified with a traceh start or traceh stop command
are ignored.
The trace buffer contents are displayed using the traceh list command accord­
ing to the format currently specified by the traceh format command. The
buffer size is 1024 entries. Tracing is suspended when the buffer is full. Clear
the buffer using the traceh reset command, or by re-issuing the traceh start
command. A trace in progress should be stopped with the traceh stop com­
mand, before using the traceh start command.
Note that the trace trigger point is affected by the traceh jnode.

EXAMPLES
(dbug) t r a c e h s t a r t

(dbug) t r a c e h l i s t

l i n e a b u s d b u s c o u n t

** T r i g g e r n o t i n memory **

The command resets the trace buffer contents. Only new entries are buffered,
once execution resumes.
The following example will start a hardware trace when the first instruction of a
function f is executed. To demonstrate this fact more clearly, only the execution
(VPC) cycles are stored (using the appropriate traceh define command).

6-34 INTERFACE WITH EMULATORS

HP64772/8 TRACEH START - start hardware trace (Cont)

(dbug) t r a c e h d e f i n e s t a t = = 0

(dbug) t r a c e h s t a r t a t &f

The executable program is assumed to be loaded to memory,
(dbug) r u n

e x e c u t i o n c o m p l e t e d

(dbug) t r a c e h f o r m a t a b u s : x l i n e s d i s a s m

(dbug) t r a c e h l i s t 0

l i n e a b u s

0 0 0 0 0 e 0 6 b VPC " t ._ t r a c e . c " 32 f e n t e r [] , 0x8
1 0 0 0 0 e 0 6 e VPC " t ._ t r a c e . c " 35 f + 0x3 movqd 0x1, - 0 x 4 (fp)
2 00 00 e0 7 1 VPC "t ._ t r a c e . c " 36 f + 0x6 a d d r @0x9 , - 0 x 8 (fp)
3 00 00 e0 7 5 VPC "t ._ t r a c e . c" 37 f + 0 x a movqd 0x2 , - 0 x 4 (f p)
4 0 0 00 e0 7 8 VPC " t ._ t r a c e . c" 38 f+ 0 x d a d d r @0x8 , - 0 x 8 (fp)
5 0 0 0 0 e 0 7 c VPC " t__ t r a c e . c " 39 f +0x11 movqd 0x3 , - 0 x 4 (f p)
6 00 00e 07 f VPC " t ._ t r a c e . c " 40 f +0x14 movqd 0x7, - 0 x 8 (f p)
7 0000e 08 2 VPC " t ._ t r a c e . c" 41 f +0x17 movqd 0x4, - 0 x 4 (fp)
8 LD00O0)OOOO VPC "t ._ t r a c e . c " 42 f + 0 x l a movqd 0x6, - 0 x 8 (fp)
9 00 00 e0 8 8 VPC " t ._ t r a c e . c" 43 f + O x ld movqd 0x5 , - 0 x 4 (f p)
10 0 0 0 0 e 0 8 b VPC "t ._ t r a c e . c " 44 f + 0x2 0 movqd 0x5, - 0 x 8 (f p)

The list shows the addresses, source line numbers and instructions executed. The
trace starts at the entrance to the function f .
SEE ALSO

traceh define, traceh format, traceh start, traceh status, traceh stop

INTERFACE WITH EMULATORS 6-35

HP64772/8 TRACEH STATUS - display current status of emulator trace

6.2.19 HP64772/8 TRACEH STATUS -display current status o f em ulator trace
SYNTAX

traceh status
DESCRIPTION

This command displays the current definition and status of the emulator’s trace.
The first item displayed is the trace status. Status may be: running, stopped
or complete. The next items displayed are the current value of the trace format
and the trace define.

EXAMPLES
(dbug) t r a c e h s t a t u s

H a r d w a r e t r a c e i s s t o p p e d
The h a r d w a r e t r a c e d e f i n i t i o n i s :

t r a c e h d e f i n e s t a t = = 0 v p c
The h a r d w a r e t r a c e f o r m a t i s :

t r a c e h f o r m a t a b u s : x

The trace is stopped because a traceh stop command was issued or the trace
buffer is full. A previous traceh define command specified that only entries
with 0 in the status field should be buffered. Additionally, only VPC cycles are
traced (as set by a previous traceh define command). Other possibilities are
either bus or all. When the buffer is displayed (using the traceh list com­
mand), the abus is displayed for each entry.

SEE ALSO
traceh define, traceh format, traceh start, traceh status, traceh stop

6-36 INTERFACE WITH EMULATORS

HP64772/8 TRACEH STOP - stop hardware trace

6.2.20 HP64772/8 TRACEH STOP - stop hardware trace
SYNTAX

traceh stop [at address]
DESCRIPTION

This command stops the emulator’s trace if it is currently in progress. Execu­
tions following the traceh stop command do not affect the trace buffer, unless a
traceh start command is issued. If an address is specified, the trace is initial­
ized and started. The trace will stop during execution, when the executed
address matches the specified address. The line numbers will start from -512.
Line number zero will be the last number entered. All previously invoked traces
stop before this trace begins. Only one start or stop address can be specified at
one time. All previously issued start and stop addresses are ignored. Trace buffer
contents are displayed (using the traceh list command) according to the format
currently specified by the traceh format command.
Note that the traceh stop command is affected by the tracehjnode.

EXAMPLES
(dbug) t r a c e h s t o p

(dbug) t r a c e h s t a t u s

H a r d w a r e t r a c e i s s t o p p e d
The h a r d w a r e t r a c e d e f i n i t i o n i s :

t r a c e h d e f i n e a l l
The h a r d w a r e t r a c e f o r m a t i s :

t r a c e h f o r m a t a b u s : x d b u s : x a b s o l u t e
(dbug) t r a c e h s t o p
t r a c e h i s n o t r u n n i n g

The first command stops the trace mechanism, so that no more entries are buf­
fered. This is demonstrated by the output of the traceh status command.
Finally, issuing the traceh stop command confirms that the trace has been
halted.
The following example will demonstrate how a hardware trace is stopped when a
function g is called. Currently the hardware trace is stopped.

INTERFACE WITH EMULATORS 6-37

HP64772/8 TRACEH STOP - stop hardware trace (Cont)

(dbug) l i s t 5 2 , 6 6

52 j = 1;
53 i = 10 ;
54 j = 0;
55 i = 11 ;
56 j = - 1 ;
57 g () ;
58 }
59
60 g ()
61 {
62 i n t k , m;
63
64 k = 1;
65 m = 9;
66 k = 2 ;

(dbug) t r a c e h s t o p a t &g

(dbug) p r i n t &g
OxeObf

(dbug) t r a c e h s t a t u s

H a r d w a r e t r a c e i s r u n n i n g
The h a r d w a r e t r a c e d e f i n i t i o n i s :

t r a c e h d e f i n e a l l
The h a r d w a r e t r a c e f o r m a t i s :

t r a c e h f o r m a t a b u s : x , d b u s : x , a b s o l u t e
The h a r d w a r e t r a c e s t o p a d d r e s s i s : OxeObf

The status shows that the trace is now running, and that the stop address is
OxeObf, matching the entrance point to the function g. Note that when an
address is specified for the traceh stop command, it implies that the hardware
trace should be started (as can be seen in the output of the traceh status com­
mand). Entries, however, will not be entered to the trace buffer after the func­
tion g is entered.
(dbug) r u n

e x e c u t i o n c o m p l e t e d

(dbug) t r a c e h f o r m a t r e l a t i v e l i n e s d i s a s m

6-38 INTERFACE WITH EMULATORS

HP64772/8 TRACEH STOP - stop hardware trace (Cont)

(dbug) t r a c e h l i s t - 1 0 , 0

l i n e c o u n t

-10 0 . 2 0 0 uS
-9 0 . 1 6 0 uS
-8 0 . 0 4 0 uS VPC "t _ . t r a c e . c ":55 f +0x44 :: a d d r @0xb, - 0 x 4 (f p)
-7 0 . 2 0 0 uS
-6 0 . 1 6 0 uS
-5 0 . 2 4 0 uS VPC "t _ . t r a c e . c 11:56 f +0x48 :: movqd - 0 x 1 , - 0 x 8 (f p
-4 0 . 1 2 0 uS
-3 0 . 1 2 0 uS VPC "t _ . t r a c e . c ":57 f + 0 x 4 b :: b s r g
-2 0 . 0 8 0 uS
-1 0 . 2 4 0 uS

0 0 . 2 8 0 uS VPC "t _ . t r a c e . c ":61 g : e n t e r [] , 0x8

The example shows that lines 5 5 , 56 and 57 were executed just before function g was
entered at line 61. g is entered.
SEE ALSO

traceh define, traceh format, traceh start, traceh status, traceh stop

INTERFACE WITH EMULATORS 6-39

HP64772/8 UNMAP - delete an emulator map term

6.2.21 HP64772/8 UNMAP - delete an em ulator map term
SYNTAX

unmap [number | all]
DESCRIPTION

The unmap command deletes a specified emulator map term.
Number is the number of the map term as displayed by the map command.
The unmap command can redefine memory blocks (presently defined as part of
emulation memory) as target memory.

EXAMPLES
(dbug) map

[1] 0 x 0 0 0 0 0 0 0 0 . . 0 x 0 0 0 0 0 f f f e m u l a t o r ram
[2] 0 x 0 0 0 0 1 0 0 0 . . 0 x 0 0 0 0 2 f f f e m u l a t o r rom
[3] 0 x 0 0 0 0 8 0 0 0 . . 0 x 0 0 0 0 8 f f f e m u l a t o r rom
[4] 0 x 0 0 0 3 0 0 0 0 . . 0 x 0 0 0 3 0 f f f e m u l a t o r ram

(dbug) unmap 2

[1] 0 x 0 0 0 0 0 0 0 0 . . 0 x 0 0 0 0 0 f f f e m u l a t o r ram
[2] 0 x 0 0 0 0 8 0 0 0 . . 0 x 0 0 0 0 8 f f f e m u l a t o r rom
[3] 0 x 0 0 0 3 0 0 0 0 . . 0 x 0 0 0 3 0 f f f e m u l a t o r ram

The second map term is deleted. Note that the term numbers for the remaining
terms are changed accordingly.

SEE ALSO
map

6-40 INTERFACE WITH EMULATORS

6.3 The HP64779 Emulator

6.3.1 Invocation
There are two ways to invoke DBUG’s interface with the HP64779 In-System Emula­
tor. One is through the invocation line, and the other is through the connect com­
mand. Both approaches require that you specify the mon parameter as isecgl6 isefxlß, isecgl60or isefxl64
A sample invocation line is as follows:
d bug -mon i s e c g l 6 - f p u 381 -1 t t y 4 a . o u t

This invocation line invokes DBUG, automatically connects to the serial line t t y 4 (the
-1 parameter), and expects to find the HP64779 Series In-System Emulator (the -mon
parameter), with an NS32381 FPU. The executable file is a . o u t .

If the required parameters do not appear in the invocation fine, the connect command
may be used as follows:
(dbug) c o n n e c t l i n k t t y 4 w i t h f p u 381 mon i s e c g l 6

This command yields the same results as the previous example.

6.3.2 Condition option
Several of the commands relevant in this context allow for an optional specification of a
condition. The condition in these cases is restricted to the following:
p in _ g r o u p {== | !=} { r a n g e | v a lu e }
or
(p in _ g r o u p {== | !=} {r a n g e \ v a lu e }) {and | or} (p in _ g r o u p {== | !=} {r a n g e
| v a lu e))

Where:
1) p in - g r o u p is one of the labels described in Table 6-1.
2) v a lu e is any expression that can be expressed as a numeric value.
3) r a n g e is an expression of the type: v a lu e .. v a lu e .

Note that only one range definition may be used at any one time. Respecifying an
existing range will cause the existing range to be overwritten.

INTERFACE WITH EMULATORS 6-41

6.3.3 HP64779 BREAKH - stop execution
SYNTAX

breakh
DESCRIPTION

The breakh command issues a break to the monitor, causing it to stop executing
the user program and to report its position. If the emulator is in the reset state
when the breakh command is issued, it will be released from reset.

EXAMPLE
(dbug) r u n

c c o n t r o l c>
<BREAK>

(dbug) b r e a k h

e m u l a t o r r u n a b o r t e d
s t o p p e d i n m a i n a t l i n e 1 i n f i l e " l o o p . c "
1 m a i n () { i n t i , j ; f o r (i = 1 ; i < 1 0 0 0 0 0 0 0 0 ; i++) { j = 1 0 ; } }

6-42 INTERFACE WITH EMULATORS

HP64779 CONFIGH - set configuration parameters

6.3.4 HP64779 CONFIGH - set configuration param eters
SYNTAX

configh [[mon bg | mon fg address [lock]][clock {inter [number] | exter}]
[nmi {enable | disable}]
[hold {enable | disable}]
[realtime {enable | disable}]
[cfg n u m b e r]
[mod a d d r e s s]
[spO a d d r e s s]
[dma {[u | s] [u | s]}]
[excp {all | none | e x c e p tio n }]
[target {piped | buffered}]

DESCRIPTION
When no parameters are specified, the current configuration is given.

mon bg | mon fg address specifies the type of monitor, mon bg specifies a
background monitor, mon fg specifies a foreground monitor starting at address.
The address is aligned by the emulator to a 4k byte boundary. The lock option
specifies that references to the location of the fg monitor in emulation memory
will be based on target board memory signals rather than emulation memory
signals.
clock inter | exter determines internal or external emulator clock source
selection. The inter option selects the internal clock. The internal clock can be
configured for different frequencies by specifying an appropriate number. The
emulator supports a 30, 40 and 50 MHz clock. By default, the NS32CG16 emu­
lator uses an internal 30 MHz clock, the NS32FX16 and NS32CG160 emulators
uses an internal 50 MHz clock. The exter option selects the clock provided by
the target system.
nmi enable | disable controls the target system signal NMI configuration.
hold enable | disable controls the target system signal HOLD configuration.
realtime enable | disable controls the restriction to real time runs. When
disabled, the emulator allows the user to issue commands that effect its applica­
tion timing, while the application is running, e.g. print cpu registers.

Rev 4.4 INTERFACE WITH EMULATORS 6-43

HP64779 CONFIGH - set configuration parameters (Cont)

cfg number sets the cfg register when the CPU is reset by the emulator, number
must be an 8 bit value. If no number is specified the cfg will not be initialized.
mod address sets the mod register when the CPU is reset by the emulator.
address must be a 16 bit value. The default value is flit) hex.
spO address sets the spO register when the CPU is reset by the emulator.
address must be a 32 bit value. If no address is specified the spO register will
not be initialized.
target piped | buffered selects the target interface mode.
excp controls the CPU exception setup. The dispatch table is modified so that
the occurance of specified exceptions will result in an entry into the foreground
monitor. The setup is based on the current exception mode (direct or indirect)
and the contents of the intbase and mod registers. This option is only valid
when the foreground monitor is used, exception is either one of the following
names: NVI, NMI, RESERVED, SLAVE, ILL, SVC, DVZ, FLG, BPT, TRC, UND;
or a number 0 through 14. all specifies that all exceptions will result in an entry
into the foreground monitor, none specifies that no exceptions will be handled
by the foreground monitor. Note however that the BPT and TRC exceptions are
always used by the foreground monitor for breakpoints and single stepping.
dma allows you to define the User/Supervisor signal to the emulation memory
during DMA transfers for the NS32CG160 CPU. This signal is not defined dur­
ing DMA transfers, but may be defined by the target system for target system
memory. For each DMA channel, specifying u defines a User signal, specifying s
defines a Supervisor signal. Note that the User/Supervisor signal seen by the
target is determined by the processor, and is not affected by the configuration.

6-44 INTERFACE WITH EMULATORS Rev 4.4

HP64779 CONFIGH - set configuration parameters (Cont)

EXAMPLES
(dbug) c o n f i g h

m o n i t o r
f o r e g r o u n d , a d d r e s

c l o c k
r e a l t i m e
e x c p
t a r g e t
c f g
spO
mod
nmi
h o l d

(dbug) c o n f i g h mon
m o n i t o r
c l o c k
r e a l t i m e
e x c p
t a r g e t
c f g
spO
mod
nmi
h o l d

s 0x30000
i n t e r n a l
d i s a b l e d
n o n e
p i p e d
0x2
0x3 0c80
Oxf f fO
e n a b l e d
e n a b l e d

bg e x c p s v c
b a c k g r o u n d
i n t e r n a l
d i s a b l e d
5
p i p e d
0x2
0x3 0c80
Oxff fO
e n a b l e d
e n a b l e d

SEE ALSO
connect

INTERFACE WITH EMULATORS 6-45

HP64779 CONNECT - connect to a system emulator

6.3.5 HP64779 CONNECT - connect to a system em ulator
SYNTAX

connect [link linkname | node nodename] [with [nofast] [list] [baud
number] [cpu name] [mmu name][fpu name] [mon monname]]

DESCRIPTION
The connect command is used to switch to the remote operation mode. Connect
selects the communications channel through which DBUG and the target board
communicate, and sets configuration parameters. The connect parameters are
closely related to the DBUG invocation line flags. Several connect commands
may be issued during one DBUG session to alter the configuration or communi­
cation parameters.
Once the connect command has been issued for the first time, and the connec­
tion established, the connect command can be issued any number of times to
toggle the list and nofast parameters. These must be specified each time you
want them enabled. Issuing connect without the parameters will disable them.
This situation is different from that of other parameters, for which the previ­
ously specified value is in effect unless otherwise specified. When connect is
issued for the second time it terminates the current connection and establishes a
new connection.
monname must be one of the following: isecgl6, isecgl60, isefxl6, isfxl64.
At least one parameter must be specified when the with clause is used.
Link linkname identifies the serial communication line between the host and
the target board. The default linkname is the last name given by the previous connect command, or as selected in the invocation line (-1 parameter), or as
specified in the GNX target specification file.
When working with the emulator, DBUG supports two types of link interfaces:

1. RS232 link. In this case the linkname should have the form ttyxx, where
xx is the link identifier (i.e. the device would be: / d e v / t t y r x) .

2. The HP64037 high-speed RS422 interface card (referred to as HP COM-
CARD). In this case the linkname should have the form com**. Coiracx is
the name of the IBM PC port in which the HP COMCARD is installed (i.e.
c o n n e c t l i n k com6). The HP COMCARD can be used only with
SYS32/30 or SYS32/50 hosts.

6-46 INTERFACE WITH EMULATORS Rev 4.4

HP64779 CONNECT - connect to a system emulator (Cont)

The node parameter selects the fast communication channel (LAN) between
DBUG and the emulator, nodename is the name of the emulator, as recognized
by the host system. The default nodename is either the last name given by the
previous connect command, the name selected in the invocation line, or the
name specified in the target specification file.
Dbug uses the intel-hex executable file format to download the executable file
when working with the emulator.
In the fast protocol (the default value), DBUG uses the HP X Binary file format
and transfer protocol when downloading an executable file to a target system.
The fast protocol should be used with the HP COMCARD, to achieve high baud
rates. Specifying nofast causes DBUG to use the Intel-hex file format download­
ing the executable file to a target system. The nofast option can be used when
the serial communication line is unreliable.
The list option enables the verbose communication mode. In this mode, DBUG
displays the messages exchanged by the debugger and the monitor or the emula­
tor.
The command:
(dbug) c o n n e c t w i t h l i s t

may be used to enter the verbose communication mode, even if the connect
command was previously issued. An additional connect command with no
parameters disables the verbose mode.
Baud number sets the communication baud rate for stand-aside mode. Possible
values for tty communication are: 300, 600, 1200, 2400, 4800, 9600, 19200, and
38400. Possible values for HP COMCARD communication are: 300, 1200, 2400,
4800, 9600, 19200, 38400, 57600, 115200 and 230400. The default baud rate is
9600.
Cpu specifies the target board CPU name. Valid names are cgl6, cgl60, fxl6
and fxl64.
Mmu specifies the target board MMU name. If this parameter is specified it
must be as no mmu.
Fpu specifies the target board floating-point unit name. Valid names are: 081,
381, nofpu.

Rev 4.4 INTERFACE WITH EMULATORS 6-47

HP64779 CONNECT - connect to a system emulator (Cont)

The default values for the cpu, mmu and fpu options are described by your
GNX target setup file .gnxrc, the previous connect command, or the invocation
line.
If the emulator is plugged into a target that has ROM at address 0, you should
first initialize the target and only then issue the connect command. For exam­
ple, if the emulator is plugged into NSCG16ED evaluation board, you should
press the RESET button on the evaluation board before issuing the connect
command.
When DBUG is initialized, no communication link is defined. Therefore, the user
must select a link before issuing any debugger command that communicates
with the target board.
NOTE: Although DBUG allows you to change links during the debugging ses­
sion, this exercise is not recommended.

EXAMPLES
(dbug) c o n n e c t

Reconnects the target system using the parameters selected by the previous
c o n n e c t command. The list and nofast parameters are disabled because they
are not specified. The fast protocol will be used for downloading the executable
file, and the communication between DBUG and the monitor will not be
displayed.
(dbug) c o n n e c t l i n k t t y 7 w i t h b a u d 38400 mon i s e c g l ö O

Selects the channel t t y 7 , and communicates with the emulator over a 38400
baud rate serial line. In this case the ISE should be reset to work at 38400
baud. This is done by setting the dip-switches on the back of the emulator to the
correct value and turning the emulator on.
(dbug) c o n n e c t l i n k com4 w i t h mon i s e c g l 6 0 b a u d 230400

Selects your HP COMCARD installed as port COM4 in your IBM PC as your
communication channel. The connection is established with the emulator using
230400 baud rate and the RS422 protocol provided by the emulator and the HP
COMCARD. The load protocol will be fast since the nofast parameter is not
specified.
(dbug) a l i a s d o _ c o n n e c t (l i n k n a m e) ' c o n n e c t l i n k l i n k n a m e w i t h
b a u d 38400 c p u 532 f p u 381 mon i s e c g l 6 0 '

6-48 INTERFACE WITH EMULATORS

HP64779 CONNECT - connect to a system emulator (Cont)

Defining an alias/macro makes the connect command easier to use. Issuing the
following command selects t t y 4 as your communication channel. This macro
may be inserted in your .dbuginit (dbgini in VMS/MS-DOS) file so that it will be
recognized each time DBUG is entered.
(dbug) d o _ c o n n e c t (t t y 4)

(dbug) c o n n e c t n o d e i s e O l w i t h mon i s e f x l 6 4 c p u f x l 6 4

Selects, and connects to, the ISE whose Ethernet name is i s e O l for use with
the NS32FX164.

SEE ALSO
begin, load

Rev 4.4 INTERFACE WITH EMULATORS 6-49

HP64779 COUNTER DEFINE - counts time or events

6.3.6 HP64779 COUNTER DEFINE - counts tim e or events
SYNTAX

counter define {none | time | condition}
DESCRIPTION

The counter define command qualifies the emulator’s counter to count time or
events.
When counting time, the counter acts as a clock. When counting events, the
counter counts the number of times the specified condition is true. Counting
begins from zero. The counter can only be incremented (cannot be decremented).
The counter is invoked by issuing the traceh start command and can be viewed
with the traceh list command, in either absolute or relative formats. The com­
plete procedure for viewing the counter is discussed in the description of the tra­
ceh format command.
The default setting for the counter is none. The counter is not active during
this setting.
For more information, refer to the HP64779 Emulator Terminal Interface: Emu­
lator User’s Guide.

EXAMPLES

(dbug) c o u n t e r d e f i n e t i m e
Defines the counter to count time.
(dbug) c o u n t e r d e f i n e (a b u s == &f) a n d (s t a t == 9)
This command causes the counter to count all the events in which the address of
function f is on the address bus and the status equals 9 (corresponding to a
non-sequential fetch).

SEE ALSO
counter status, traceh start, traceh format, traceh define

6-50 INTERFACE WITH EMULATORS

HP64779 COUNTER STATUS - print counter qualification

6.3.7 HP64779 COUNTER STATUS - print counter qualification
SYNTAX

counter status
DESCRIPTION

This command prints the counter’s current qualification. This may be none, time or a condition.
EXAMPLES

(dbug) counter status
The counter definition is:
c o u n t e r d e f i n e (a b u s == 57451) a n d (s t a t == 0x9)

This example indicates that the counter was defined to be incremented each time
the condition: (a b u s == 57451) o r (s t a t == 9) is true. The number
57451 is the address of the function f () used in the example for the counter
define command.

SEE ALSO
counter define, traceh format, traceh define, traceh start

INTERFACE WITH EMULATORS 6-51

HP64779 LOADMON - load a foreground monitor

6.3.8 HP64779 LOADMON - load a foreground m onitor
SYNTAX

loadmon filen am e

DESCRIPTION
This commands allows you to load your private version of the foreground moni­
tor into the emulator.
The configh command can then be used to specify the foreground monitor. For
more details on modifying and compiling a foreground monitor, refer to the
HP64779 Emulator Terminal Interface: Emulator User’s Guide, filename is the
name of the executable foreground monitor file.
The symbolic information of a debugged program is lost when a new foreground
monitor is loaded. The load command can be used to reread this information.
Using the loadmon command at the beginning of your session can avoid the
need to reread the symbolic information.

EXAMPLES
(dbug) loa dm o n my_mon

Specifies that my_mon is loaded into the emulator as a monitor program.
(dbug) c o n f i g h mon f g 0x30000

Specifies that my_mon is used as the foreground monitor, mapped to address
30000 hex.
(dbug) l o a d m y _p ro g

The debugged program m y _ p ro g is now loaded using the new foreground moni­
tor.

SEE ALSO
configh, load

6-52 INTERFACE WITH EMULATORS

HP64779 MAP - map emulation memory

6.3.9 HP64779 MAP - map em ulation memory
SYNTAX

map [range [rom | ram | trom | tram] [lock | wait number\ [with copy]]

DESCRIPTION
This command maps the specified address range to the emulator’s memory.
range is an address within the range O..Oxfffefff. Memory accesses in the 10
range of Oxffifit)OOO..OxfIfifffir will result in internal processor cycles and are not
affected by the memory map. Therefore memory commands may be used to
access the 10 registers. Addresses in the range Ox1000000..Oxfffefff will be trun­
cated to a 24-bit address before being used.
Memory blocks can be referred to as either part of the target or emulation
memory. Memory blocks that are mapped to emulation memory may be charac­
terized as either RAM or ROM. All memory is referred to as target RAM
immediately after the emulator is powered-up. The map command specifies
which of the target memory address ranges should be referred to as emulation
memory, and whether they should be characterized as RAM or ROM.
Memory blocks that have been referred to as part of the emulation memory can
be redefined as part of the target memory with the unmap command.
If rom is specified, the range is treated as part of a ROM (no write to target
ROM is allowed) and mapped to emulator memory. If ram is specified, the
range is treated as part of a RAM. If tram is specified, the range is treated as
target RAM. If trom is specified, the range is treated as target ROM.
If none of the options ram, rom,tram or trom are specified, the default is ram.
If with copy is specified, the contents of the address range in the target
memory are copied to the same location in the emulation memory. Otherwise,
the emulator memory block might not have the same contents as the correspond­
ing target memory block.
To set software breakpoints on part of the program that lies in target ROM, first
map the relevant address range to emulation memory, characterize it as ram,
and specify with copy.
DBUG assigns a map term to each memory block mapped to emulation memory.
Each term consists of the term number, the mapped address range, and its
RAM/ROM status. Map terms are displayed each time terms are added or

Rev 4.4 INTERFACE WITH EMULATORS 6-53

HP64779 MAP - map emulation memory (Cont)

deleted, or when the map command is issued without parameters. The term
numbers will be rearranged in ascending order each time a new term is added or
deleted. The HP64779 Emulator supports 15 map terms and 512 Kbyte emula­
tion memory.
If range is not specified, the mapping of all mapped address ranges is displayed.
Additional attributes can be specified for the emulation memory terms, lock
determines whether the access to the selected address range is according to tar­
get system timing or emulation memory timing (default). The wait number may
be used to specify the number of wait states the defined memory should emulate.
The number of wait states may be 0, 1, 2 or 3. Note that the emulation memory
containing the foreground monitor (if used) is confgured seperately with the
configh command.
Since the map command resets the emulation CPU, it is recommended that this
command not be used once the debugging of your program has started.

EXAMPLES

(dbug) map
[1] 0 x 0 0 0 0 0 0 0 0 . . 0 x 0 0 0 0 0 f f f e m u l a t o r ram l o c k
[2] 0 x 0 0 0 0 1 0 0 0 . . 0x00002 f f f e m u l a t o r rom n o l o c k
[3] 0 x 0 0 0 3 0 0 0 0 . . 0 x 0 0 0 3 0 f f f e m u l a t o r ram l o c k
Prints the current map. The ranges are in hexadecimal format. Term [3] is the
memory block used for the foreground monitor. It is set by DBUG when the con­
nection with the emulator is established.
(dbug) map 8 8 3 0 . . 8 8 4 0 rom w a i t 2
[1] 0 x 0 0 0 0 0 0 0 0 . . 0 x 0 0 0 0 0 f f f e m u l a t o r ram l o c k
[2] 0 x 0 0 0 0 1 0 0 0 . . 0 x 0 0 0 0 2 f f f e m u l a t o r rom n o l o c k
[3] 0 x 0 0 0 0 8 0 0 0 . . 0 x 0 0 0 0 8 f f f e m u l a t o r rom w a i t 2
[4] 0 x 0 0 0 3 0 0 0 0 . . 0x0003 Of f f e m u l a t o r ram l o c k
Maps the block containing the specified address range to emulator memory. The
address range is considered part of the target ROM. This memory range will
now emulate two wait states. The contents of the address range on the target
board are not copied to the emulator’s memory. Note that the address range is
rounded to 4-Kbyte boundaries.

6-54 INTERFACE WITH EMULATORS

HP64779 MAP - map emulation memory (Cont)

(dbug) map 0 x 9 0 0 0 . . 0 x 9 f f f f r o m
[1] 0 x 0 0 0 0 0 0 0 0 . . OxOOOOOff f e m u l a t o r r am
[2] 0 x 0 0 0 0 1 0 0 0 . . 0 x 0 0 0 0 2 f f f e m u l a t o r rom
[3] 0 x 0 0 0 0 8 0 0 0 . . 0 x 0 0 0 0 8 f f f e m u l a t o r rom
[4] 0 x 0 0 0 0 9 0 0 0 . . 0 x 0 0 0 0 9 f f f t a r g e t rom
[5] 0 x 0 0 0 3 0 0 0 0 . . 0 x 0 0 0 3 f f f e m u l a t o r r am

Maps the block containing the specified address to target ROM.

SEE ALSO
unmap, configh

Rev 4.4 INTERFACE WITH EMULATORS 6-55

HP64779 RESETH - reset CPU

6.3.10 HP64779 RESETH - reset CPU
SYNTAX

reseth
DESCRIPTION

The reseth command resets the emulation CPU. This causes certain registers
to be reset to zero, and others to be reset to an undefined value. Executing this
command also places the emulator in a reset state. You must return system con­
trol to the monitor before attempting to change or print registers. Do this by
issuing the breakh command.

6-56 INTERFACE WITH EMULATORS

HP64779 STOPH - set a hardware breakpoint

6.3.11 HP64779 STOPH - set a hardware breakpoint
SYNTAX

stoph if stop condition

DESCRIPTION
This command uses the emulator’s hardware to force your program to halt exe­
cution after the stopjcondition becomes true. Stopjcondition is:
pin_group {== | !=} {value | range}
Only one range definition may be used at one time for all of the emulator com­
mands. In addition, up to 4 hardware breakpoints may be defined with this com­
mand. Each defined hardware breakpoint is assigned an event number. Use the
status command to see a list of the currently defined events.
The hardware trace begins automatically when a hardware breakpoint is
defined. DBUG activates the hardware trace in order to keep the hardware
breakpoints active. You may use the traceh stop command to stop the
hardware trace and disable all the currently defined hardware breakpoints. The
hardware breakpoints will become active again when you issue the traceh start
command or define another hardware breakpoint.
If execution stops because of a hardware breakpoint, the trace buffer contains up
to 512 entries, stored just before execution was halted. DBUG will restart the
hardware trace when you resume execution, in order to keep the hardware
breakpoints active.
The traceh start at and traceh stop at commands may not be used when a
hardware breakpoint is defined. To delete a hardware breakpoint, you must
delete the event associated with it. Use status to see a list of the currently
defined events, and then use delete to delete the appropriate event(s).
Note that hardware breakpoints are sensitive to traceh_mode as defined with the
traceh define command.

INTERFACE WITH EMULATORS 6-57

HP64779 STOPH - set a hardware breakpoint (Cont)

EXAMPLES
(dbug) s t o p h i f a b u s == & a r r a y . . & a r r a y + a r r a y _ s i z e

Causes execution to halt when the array a r r a y is referenced. a r r a y and
a r r a y _ s i z e are assumed to be variables defined in your program.
(dbug) s t o p h i f u s = = l

Causes execution to halt when execution mode is switched to supervisor mode.

(dbug) s t a t u s

The status command displays the previously defined hardware breakpoints with
the matching event numbers. These appear here:
[1] s t o p h i f a b u s = = a r r a y . . a r r a y + a r r a y _ s i z e
[2] s t o p h i f u s ==1

(dbug) t r a c e h s t a t u s

H a r d w a r e t r a c e i s r u n n i n g
The h a r d w a r e t r a c e d e f i n i t i o n i s :

t r a c e h d e f i n e a l l
The h a r d w a r e t r a c e f o r m a t i s :

t r a c e h f o r m a t a b u s : x d b u s : x

(dbug) d e l e t e 1

Deletes the first hardware breakpoint
(dbug) s t a t u s

[2] s t o p h i f u s = = l

This shows that the first hardware breakpoint has been deleted.
SEE ALSO

stop, traceh start, traceh stop, traceh status, status, delete

6-58 INTERFACE WITH EMULATORS

HP64779 TRACEH DEFINE - define hardware trace

6.3.12 HP64779 TRACEH DEFINE - define hardware trace
SYNTAX

traceh define [condition] [all]
DESCRIPTION

This command defines which cycles of the specified type will be stored in the
trace buffer.
Condition specifies which cycles should be stored in the trace buffer. Cycles
which match the condition are stored. The default is to match all cycles.
The traceh define command cannot be issued if a trace is already in progress.
The trace must first be stopped with the traceh stop command.
The traceh list and traceh format command should be used to view the accu­
mulated trace buffer entries. However, if non-sequential fetches are ignored
(e.g., by the command t r a c e h d e f i n e s t a t ! = 9) , the traceh list command
will not display disassembly of instructions when the traceh format is specified
as mnemonic, disasm or lines.

EXAMPLES
(dbug) t r a c e h d e f i n e a b u s = = 0 x 9 0 f f

Defines that only trace entries with the address values 90ff (hexadecimal) are
stored (and therefore, displayed later).
In the following example, only the changes to the variables i and j defined in
m a i n will be of interest. The executable program is assumed to be loaded to
memory.
(dbug) l i s t 1 , 2 0

1 m a i n ()
2 {
3 i n t i = 0;
4 i n t j =10;
5
6 i = 1 ;
7 j = 9;
8 i = 2;
9 j = 8;

INTERFACE WITH EMULATORS 6-59

HP64779 TRACEH DEFINE - define hardware trace (Cont)

10 i =
11 j =
12 i =
13 j =
14 i =
15 j =
16 i =
17 j =
18 i =
19 j =
20 i =
21 j =
22 i =
23 j =
24 i =
25 j =
26 i =
27 j =
28 f ()
29 }

A breakpoint is specified, so that execution will be stopped in the function main , (i
and j are local variables of the function main) .

(dbug) s t o p i n m a in

[1] s t o p i n m a i n

(dbug) r u n

[1] s t o p p e d i n m a i n a t l i n e 3 i n f i l e " t _ t r a c e . c "
3 i n t i = 0;

Next, the addresses of i and j are printed.
(dbug) p r i n t &j

0 x 2 4 f f 0

(dbug) p r i n t &i

0 x 2 4 f f 4

3 ;
7;
4;
6 ;
5;5;
6 ;
4;
7 ;
3 ;
8;
2;
9;
1;
10;
0;
11;

- 1 ;

6-60 INTERFACE WITH EMULATORS

HP64779 TRACEH DEFINE - define hardware trace (Cont)

As the addresses are adjacent, the following definition will capture all the accesses to
these memory locations in user mode.
(dbug) t r a c e h d e f i n e (a b u s = = & j . . & i + 3) a n d (u s = = l)

Since these variables are allocated on the stack, these addresses are only of interest
while we are in function main . The following hardware trace definition will solve this
problem:
(dbug) t r a c e h s t o p a t &f

Now, continue execution
(dbug) c o n t

e x e c u t i o n c o m p l e t e d

It is now easy to follow the values assigned to the variables i, j , and to compare them
to the source listing previously displayed. The value 2 4 f f 4 in the a b u s column is the
address of the variable i and the value 2 4 f f 0 is the address of j . the values
assigned to these variables are the values displayed in the d b u s column.
(dbug) t r a c e h f o r m a t a b u s : x d b u s : x

(dbug) t r a c e h l i s t - 2 4 ,

l i n e a b u s d b u s

-2 4 0 2 4 f f 4 0006
-23 0 2 4 f f 6 0000
-22 0 2 4 f f 0 0004
-21 0 2 4 f f 2 0000
-20 0 2 4 f f 4 0007
-19 0 2 4 f f 6 0000
-1 8 0 2 4 f f 0 0003
-17 0 2 4 f f 2 0000
-1 6 0 2 4 f f 4 0008
-15 0 2 4 f f 6 0000

The format can be changed to allow a different view of the same information, for exam­
ple:
(dbug) t r a c e h f o r m a t mnemonic

INTERFACE WITH EMULATORS 6-61

HP64779 TRACEH DEFINE - define hardware trace (Cont)

(dbug) t r a c e h l i s t - 2 4 , 0

l i n e mnemonic

-2 4 0006 u s r d a t a w r i t e
-23 0000 u s r d a t a w r i t e
-22 0004 u s r d a t a w r i t e
-2 1 0000 u s r d a t a w r i t e
-2 0 0007 u s r d a t a w r i t e
-19 0000 u s r d a t a w r i t e
-1 8 0003 u s r d a t a w r i t e
-17 0000 u s r d a t a w r i t e
-1 6 0008 u s r d a t a w r i t e
-1 5 0000 u s r d a t a w r i t e
-1 4 0002 u s r d a t a w r i t e
-13 0000 u s r d a t a w r i t e
-12 0009 u s r d a t a w r i t e
-1 1 0000 u s r d a t a w r i t e
-10 0001 u s r d a t a w r i t e

-9 0000 u s r d a t a w r i t e
-8 000a u s r d a t a w r i t e
-7 0000 u s r d a t a w r i t e
-6 0000 u s r d a t a w r i t e
-5 0000 u s r d a t a w r i t e
-4 000b u s r d a t a w r i t e
-3 0000 u s r d a t a w r i t e
-2 f f f f u s r d a t a w r i t e
-1 f f f f u s r d a t a w r i t e

0 f e n t e r

Note that the trace was stopped when the function f was about to be entered.
SEE ALSO

traceh format, traceh start, traceh status, traceh stop

6-62 INTERFACE WITH EMULATORS

HP64779 TRACEH FORMAT - define trace display format

6.3.13 HP64779 TRACEH FORMAT - define trace display format
SYNTAX

traceh format \pin_group.radix ...] [absolute | relative] [mnemonic]
DESCRIPTION

The pin_group parameter selects any of the following labels which correspond to
different channels (pin-groups) as found in Table 6-1: abus, dbus, stat, ddin,
us, bpu, spc, ias, hbe, dak, pfs. The counter may also be incorporated into the
trace listing. This can be done by specifying either absolute or relative format.
The absolute format displays the cumulative value of the counter (for all trace
lines). The relative format displays the counter’s accumulated value per trace
line.
The trace listing columns include pin values that correspond to the selected
labels in the specified format.
If mnemonic is specified, all the other specified columns are ignored and a ver­
bal description of their contents is given instead. This description includes the
description of the execution cycles. When activated, DBUG defines the initial
trace format as mnemonic.

EXAMPLES
(dbug) t r a c e h f o r m a t a b u s : x d b u s : d

Specifies that the address bus (abus) is displayed in hexadecimal format, and
the data bus (dbus) is displayed in decimal format. No other information is
displayed.
(dbug) t r a c e h f o r m a t d i s a s s m l i n e s r e l a t i v e
Specifies that for lines corresponding to execution cycles, the disassembly of the
executed instruction is displayed. The corresponding source file and source line
number are also displayed; and for each line in the trace buffer, the counter is
displayed in its relative format.

SEE ALSO
traceh define, traceh start, traceh status, traceh stop

INTERFACE WITH EMULATORS 6-63

HP64779 TRACEH LIST - display trace buffer

6.3.14 HP64779 TRACEH LIST - d isplay trace buffer
SYNTAX

traceh list [number \ number, number \
DESCRIPTION

This command displays the trace on the screen.
If numbers are specified, only those entries within the specified range are
displayed. If one number is specified, the current line and the few lines follow­
ing it are displayed. If no number is specified, the next few lines are displayed.
The trace is displayed in a format defined by the traceh format command. The
traceh format command makes it possible to redisplay the trace buffer accord­
ing to different formats without having to resume execution.

EXAMPLES
(dbug) t r a c e h l i s t 0 , 2 2

l i n e mnemonic
— s t a r t o f l i s t -------

0 0400 s u p f e t c h : s e q
1 1 0 8 f s u p f e t c h : s e q
2 eOOO s u p d a t a r e a d
3 0000 s u p d a t a r e a d
4 a252 s u p f e t c h : s e q
5 0000 s u p d a t a r e a d
6 0300 s u p d a t a r e a d
7 4100 u s r d a t a r e a d
8 0000 u s r d a t a r e a d
9 s t a r t : j s r m a i n

10 OOcO u s r f e t c h : s e q
11 lOeO u s r f e t c h : s e q
12* s t a r t + 0 x 6 : movd r 0 , t o s
13* s t a r t + 0 x 8 : j s r e x i t
14 OOcO u s r f e t c h : s e q
15 m a i n : e n t e r [] , 0x8
16 ma in+ 0x 3 : movqd 0 x 0 , - 0 x 4 (fp)
17 e006 u s r d a t a w r i t e
18 0000 u s r d a t a w r i t e
19 7 cc 0 u s r f e t c h : s e q

6-64 INTERFACE WITH EMULATORS

HP64779 TRACEH LIST - display trace buffer (Cont)

20 0000 u s r d a t a w r i t e
21 0000 u s r d a t a w r i t e
22 ma in + 0 x 6 : a d d r @0xa, - 0 x 8 (f p)

This command displays the first 22 lines of the trace buffer.
Note that lines corresponding to fetches aligned to instructions are disassembled
(lines 9, 11, 12, 15, 16, 22). DBUG also concluded that lines 12 and 13
correspond to a sequential fetch that was not executed, and therefore these lines
are marked with a ’*’.
It is possible to change the display format of the buffer. The following definition
will instruct DBUG to display only disassembly and source information for the
relevant lines in the buffer.
(dbug) t r a c e h f o r m a t l i n e s d i s a s m r e l a t i v e

(dbug) t r a c e h l i s t 0 , 1 7
line count

---- start of list ----
8 0.160 US
9 0.520 uS start : j sr main

10 0.160 uS
11 0.160 US
12* 0.160 uS start+0x6 : movd rO, tos
13* 0.160 uS start+0x8 : jsr exit
14 0.160 uS
15 0.520 uS "t_trace.c":2 main : enter [], 0x8
16 0.160 uS “t_trace.c" : 3 main+0x3 : movqd 0x0, -0x4(fp
17 0.160 uS
18 0.160 uS
19 0.520 uS
20 0.160 uS
21 0.160 uS
22 0.160 uS "t_trace.c “:4 main+0x6 : addr @0xa, -0x8(fp)

SEE ALSO
traceh format, traceh start, traceh status, traceh stop

INTERFACE WITH EMULATORS 6-65

HP64779 TRACEH RESET - reset trace definitions

6.3.15 HP64779 TRACEH RESET - reset trace definitions
SYNTAX

traceh reset
DESCRIPTION

This command resets the trace and counter definitions to their initial settings.
Any active trace is halted. The trace definition is reset to its default value, which
specifies that all cycles should be stored.
The trace format is also reset to its default value (mnemonic) and counter
definition is reset to none.

EXAMPLES
The following command sequence demonstrates the effect of the traceh reset
command. First the trace status is displayed by the traceh status command,
which shows the current value of the traceh define and traceh format com­
mands. Next the traceh reset command gives new (default) values to the
hardware trace definition and format. These values are displayed by re-issuing
the traceh status command. Finally, the fact that the buffer is now empty is
demonstrated by issuing the traceh list command.
(dbug) t r a c e h s t a t u s

H a r d w a r e t r a c e i s s t o p p e d
The h a r d w a r e t r a c e d e f i n i t i o n i s :

t r a c e h d e f i n e s t a t = = 8
h a r d w a r e t r a c e f o r m a t i s :

t r a c e h f o r m a t a b u s : x d d i n : d

(dbug) t r a c e h r e s e t

(dbug) t r a c e h s t a t u s

H a r d w a r e t r a c e i s s t o p p e d
The h a r d w a r e t r a c e d e f i n i t i o n i s :

t r a c e h d e f i n e a l l
The h a r d w a r e t r a c e f o r m a t i s :

t r a c e h f o r m a t mnemonic

6-66 INTERFACE WITH EMULATORS

HP64779 TRACEH RESET - reset trace definitions (Cont)

(dbug) t r a c e h l i s t

l i n e a b u s d b u s c o u n t

** T r i g g e r n o t i n memory **

SEE ALSO
traceh define, traceh format, traceh start, traceh status, traceh stop

INTERFACE WITH EMULATORS 6-67

HP64779 TRACEH START - start hardware trace

6.3.16 HP64779 TRACEH START ■ start hardware trace
SYNTAX

traceh start [at address]
DESCRIPTION

This command starts the emulator’s trace function.
Issuing this command first causes the trace buffer to be reinitialized (all current
entries are removed). Further, all cycles that match the trace definition are
stored in the emulator’s trace buffer once execution resumes.
If an address is specified, trace will start when that address is first fetched by
the CPU. All previous addresses specified with a traceh start or traceh stop
command are ignored.
The trace buffer contents are displayed using the traceh list command accord­
ing to the format currently specified by the traceh format command. The
buffer size is 1024 entries. Tracing is suspended when the buffer is full. Clear
the buffer using the traceh reset command, or by re-issuing the traceh start
command. A trace in progress should be stopped with the traceh stop com­
mand, before using the traceh start command.
Note that the trace trigger point is affected by the traceh,jnode.

6-68 INTERFACE WITH EMULATORS

HP64779 TRACEH START - start hardware trace (Cont)

EXAMPLES
(dbug) traceh start
(dbug) traceh list
l i n e a b u s d b u s c o u n t

** Trigger not in memory **

The command resets the trace buffer contents. Only new entries are buffered
once execution resumes.

The following example will start a hardware trace when the first instruction of a
function f is executed. First, select only those cycles corresponding to a sequen­
tial or non-sequential fetch to be stored.
(dbug) t r a c e h d e f i n e (s t a t = = 8) o r (s t a t = = 9)

Next, define the counter to count the sequential fetches.
(dbug) c o u n t e r d e f i n e s t a t = = 8

(dbug) t r a c e h s t a r t a t f

(dbug) r e r u n

l o a d i n g . . .
l o a d e d 0 b y t e s o f c o d e , 3556 b y t e s o f d a t a
t o t a l o f 3556 b y t e s _ l o a d e d

execution completed

INTERFACE WITH EMULATORS 6-69

HP64779 TRACEH START - start hardware trace (Cont)

(dbug) t r a c e h l i s t 0 , 2 5
line count

---- start of list ----0 ---
1 1
2 1
3 0 start : jsr main
4 1
5 1
6* 1 start+0x6 : movd rO, tos
7* 1 start+0x8 : jsr exit
8 1
9 0 "t_trace.c":2 main : enter[], 0x8

10 1 "t_trace.c " :3 main+0x3 :: movqd 0x0, -0x4(fp)
11 1
12 1 "t_trace.c " :4 main+0x6 :: addr @0xa, -0x8(fp)
13 1
14 1 "t_trace.c " :6 main+0xa :: movqd 0x1, -0x4(fp)
15 1 "t_trace.c” :7 main+0xd :: addr @0x9, -0x8(fp)
16 1
17 1 “t_trace.c ":8 main+Oxll : movqd 0x2, -0x4(fp)
18 1
19 1 “t_trace.c":9 main+0xl4 :: addr @0x8, -0x8(fp)
20 1
21 1 "t_trace.c " :10 main+0xl8 : movqd 0x3, -0x4(fp)
22 1 “t_trace.c " :11 main+Oxlb : movqd 0x7, -0x8(fp)
23 1
24 1 "t_trace.c":12 main+Oxle : movqd 0x4, -0x4(fp)
25 1 "t_trace .c'1 :13 main+0x21 : movqd 0x6, -0x8(fp)

(dbug) t r a c e h l i s t 4 6 , 5 5
46 l “t_trace.c":26 main+0x4b : addr @0xb, -0x4(fp)
47 l
48 l "t_trace.c":27 main+0x4f : movqd -0x1, -0x8(fp)
49 l
50 l "t_trace.c ":28 main+0x52 : bsr f
51 l
52* l ”t_trace.c":29 main+0x57 : exit []
53* l main+0x59 : ret 0x0
54* l "t_trace.c":32 f : enter [], 0x8
55 0 "t_trace.c " :32 f : enter [], 0x8

The list shows the addresses, source line numbers and instructions executed.
SEE ALSO

traceh define, traceh format, traceh start, traceh status, traceh stop

6-70 INTERFACE WITH EMULATORS

HP64779 TRACEH START - start hardware trace (Cont)

6.3.17 HP64779 TRACEH STATUS -display current status of em ulator trace
SYNTAX

traceh status

DESCRIPTION
This command displays the current definition and status of the emulator’s trace.
The first item displayed is the trace status. Status may be: running, stopped
or complete. The next items displayed are the current value of the trace format
and the trace define.

EXAMPLES
(dbug) t r a c e h s t a t u s

H a r d w a r e t r a c e i s s t o p p e d
The h a r d w a r e t r a c e d e f i n i t i o n i s :

t r a c e h d e f i n e s t a t = = 1 0
The h a r d w a r e t r a c e f o r m a t i s :

t r a c e h f o r m a t a b u s : x

The trace is stopped because a traceh stop command was issued or the trace
buffer is full.
A previous traceh define command specified that only entries with 0 in the
status field should be buffered. When the buffer is displayed (using the traceh
list command), the abus is displayed for each entry.

SEE ALSO
traceh define, traceh format, traceh start, traceh status, traceh stop

INTERFACE WITH EMULATORS 6-71

HP64779 TRACEH STOP - stop hardware trace

6.3.18 HP64779 TRACEH STOP - stop hardware trace
SYNTAX

traceh stop [at address]
DESCRIPTION

This command stops the emulator’s trace if it is currently in progress.
Executions following the traceh stop command do not affect the trace buffer,
unless a traceh start command is issued. If an address is specified, the trace is
initialized and started. The trace will stop during execution, when the address
fetched by the CPU matches the specified address. The line numbers will be
negative. Line number zero will be the last number entered.
All previously invoked traces stop before this trace begins. Only one start or
stop address can be specified at one time. All previously issued start and stop
addresses are ignored. Trace buffer contents are displayed (using the traceh list
command) according to the format currently specified by the traceh format
command.
Note that the traceh stop command is affected by the tracehjnode.

EXAMPLES
(dbug) t r a c e h s t o p

(dbug) t r a c e h s t a t u s

H a r d w a r e t r a c e i s s t o p p e d
The h a r d w a r e t r a c e d e f i n i t i o n i s :

t r a c e h d e f i n e a l l
The h a r d w a r e t r a c e f o r m a t i s :

t r a c e h f o r m a t a b u s : x d b u s : x a b s o l u t e

(dbug) t r a c e h s t o p

t r a c e h i s n o t r u n n i n g

The first command stops the trace mechanism, so that no more entries are buf­
fered. This is demonstrated by the output of the traceh status command.
Finally, issuing the traceh stop command confirms that the trace has been
halted.

6-72 INTERFACE WITH EMULATORS

HP64779 TRACEH STOP - stop hardware trace (Cont)

The following example will demonstrate how a hardware trace is stopped when a
function g is called. Currently the hardware trace is stopped.
(dbug) l i s t 5 2 , 6 6

52 j = 1;
53 i = 10
54 j = 0;
55 i = 11
56 1 = -1
57 g () ;
58 }
59
60 g()
61 {
62 i n t k , m;
63
64 k = 1;
65 m = 9 ;
66 k = 2;

(dbug) t r a c e h s t o p a t &g

(dbug) p r i n t &g

OxeObf

(dbug) traceh status
H a r d w a r e t r a c e i s r u n n i n g
The h a r d w a r e t r a c e d e f i n i t i o n i s :

t r a c e h d e f i n e a l l
The h a r d w a r e t r a c e f o r m a t i s :

traceh format abus:x, dbus:x, absolute
The hardware trace stop address is: OxeObf

The status shows that the trace is now running, and that the stop address is
OxeObf, matching the entrance point to the function g. Note that when an
address is specified for the traceh stop command, it implies that the hardware
trace should be started (as can be seen in the output of the traceh status com­
mand). Entries, however, will not be entered to the trace buffer after the func­
tion g is entered.

INTERFACE WITH EMULATORS 6-73

HP64779 TRACEH STOP - stop hardware trace (Cont)

(dbug) r u n

e x e c u t i o n c o m p l e t e d

(dbug) t r a c e h s t o p a t &g

(dbug) r e r u n
l o a d i n g . . .
l o a d e d 0 b y t e s o f c o d e , 3556 b y t e s o f d a t a
t o t a l o f 3556 b y t e s _ l o a d e d

(dbug) t r a c e h f o r m a t mnemonic

(dbug) t r a c e h l i s t - 5 0 , 1

l i n e mnemonic

-50 d f 7 c u s r f e t c h
-49 78c7 u s r f e t c h
-4 8 c002 u s r f e t c h
-47 0000 u s r f e t c h
-4 6 9209 u s r f e t c h
-4 5 1200 u s r f e t c h
-4 4 8200 u s r f e t c h
-43 f :
-42 0800 u s r f e t c h
-4 1 f+0x 3 :
-4 0 f+ 0 x 6 :
-39 0 9 a e u s r f e t c h
-3 8 f+Oxa :
-37 7 c c l u s r f e t c h
-36 f+Oxd :
-35 7808 u s r f e t c h
-3 4 f +0x11 :
-33 f +0x14 :
-32 78c3 u s r f e t c h
-3 1 f +0x17 :
-3 0 f + 0 x l a :
-29 78c3 u s r f e t c h
-2 8 f + 0 x l d :
-27 f + 0 x 20 :
-2 6 78c2 u s r f e t c h
-25 f +0x23 :
-24 f +0x26 :

: s e q
: s e q
: s e q
: s e q
: s e q
: s e q
: s e q
e n t e r o X 00

s e q
movqd 0 x 1 , - 0 x 4 (f p)
a d d r @0x9, - 0 x 8 (f p)
s e q
movqd 0x2 , - 0 x 4 (fp)
s e q
a d d r @0x8, - 0 x 8 (f p)
s e q
movqd 0x3 , - 0 x 4 (f p)
movqd 0x7, - 0 x 8 (f p)
s e q
movqd 0x4 , - 0 x 4 (f p)
movqd 0 x 6 , - 0 x 8 (f p)

: s e q
movqd 0 x 5 , - 0 x 4 (f p)
movqd 0x5, - 0 x 8 (fp)

: s e q
movqd 0 x 6 , - 0 x 4 (fp)
movqd 0x4, - 0 x 8 (fp)

6-74 INTERFACE WITH EMULATORS

HP64779 TRACEH STOP - stop hardware trace (Cont)

-23 78c2 u s r f e t c h : s e q
-22 f + 0x2 9 : movqd 0x7, - 0 x 4 (fp)
-21 f + 0 x 2 c : movqd 0x3 , - 0 x 8 (fp)
-20 7 8 c l u s r f e t c h : s e q
-19 f + 0x2 f : a d d r @0x8, - 0 x 4 (fp
-1 8 7c08 u s r f e t c h : s e q
-17 f +0x33 : movqd 0x2, - 0 x 8 (fp)
-1 6 f + 0x3 6 : a d d r @0x9, - 0 x 4 (fp
-1 5 0 9 ae u s r f e t c h : s e q
-1 4 f + 0 x 3 a : movqd 0 x 1 , - 0 x 8 (f p)
-13 78c0 u s r f e t c h : s e q
-12 f + 0 x 3 d : a d d r @0xa, - 0 x 4 (fp
-11 7 c 0 a u s r f e t c h : s e q
-10 f +0x41 : movqd 0x0, - 0 x 8 (f p)

-9 f +0x44 : a d d r @0xb, - 0 x 4 (f p
-8 Obae u s r f e t c h : s e q
-7 f +0x48 : movqd - 0 x 1 , - 0 x 8 (fp
-6 78c7 u s r f e t c h : s e q
-5 f + 0 x 4 b : b s r g
-4 0000 u s r f e t c h : s e q
-3* f +0x50 : e x i t []
-2* f +0x52 : r e t 0x0
-1* g : e n t e r [] , 0x8

0 g : e n t e r [] , 0x8
1 0800 u s r f e t c h : s e q

-------e n d < cf l i s t -------

Note that lines -3, -2, -1 were fetched but not executed, and are therefore marked with
a function g was entered at line 61. g is entered.
SEE ALSO

traceh define, traceh format, traceh start, traceh status, traceh stop

INTERFACE WITH EMULATORS 6-75

HP64779 UNMAP - delete an emulator map term

6.3.19 HP64779 UNMAP - delete an em ulator map term
SYNTAX

unmap [number | all]
DESCRIPTION

The unmap command deletes a specified emulator map term.

Number is the number of the map term as displayed by the map command.
The unmap command can redefine memory blocks (presently defined as part of
emulation memory) as target memory.

EXAMPLES
(dbug) map

[1] 0 x 0 0 0 0 0 0 0 0 . . 0 x 0 0 0 0 0 f f f e m u l a t o r ram w a i t 2
[2] 0 x 0 0 0 0 1 0 0 0 . . 0 x 0 0 0 0 2 f f f e m u l a t o r rom
[3] 0 x 0 0 0 0 8 0 0 0 . . 0 x 0 0 0 0 8 f f f e m u l a t o r rom w a i t 0
[4] 0 x 0 0 0 3 0 0 0 0 . . 0 x 0 0 0 3 0 f f f e m u l a t o r ram l o c k

(dbug) unmap 2

[1] 0 x 0 0 0 0 0 0 0 0 . . 0 x 0 0 0 0 0 f f f e m u l a t o r ram n o l o c k
[2] 0 x 0 0 0 0 8 0 0 0 . . 0 x 0 0 0 0 8 f f f e m u l a t o r rom w a i t 0
[3] 0 x 0 0 0 3 0 0 0 0 . . 0 x 0 0 0 3 0 f f f e m u l a t o r ram l o c k

The second map term is deleted. Note that the term numbers for the remaining
terms are changed accordingly.

SEE ALSO
map

6-76 INTERFACE WITH EMULATORS

6.4 The SPLICE Emulator
The SPLICE Development Tool provides a communication link between a Series 32000
target and a development system host. This connection allows you to download and
map software onto target memory and then debug this software using DBUG.
Currently DBUG supports the SPLICE board with the NS32CG16 Development Board.

6.4.1 Invocation
There are two ways to invoke DBUG interface with the SPLICE board: through the
invocation line or by the connect command. Both approaches require that you specify
the mon parameter as spmon and the cpu parameter as cgl6
A sample invocation line is:
d bug -mon spmon - c p u c g l 6 - f p u 381 -1 t t y 4 a . o u t

This invocation line invokes DBUG, automatically connects it to the serial line t t y 4
(the -1 parameter), and specifies that the target system is NS32CG16 SPLICE with the
NS32381 FPU. The executable file is a . o u t .

The connect command may be used as follows (see Section 5.1.8 for more details):
(dbug) c o n n e c t l i n k t t y 4 w i t h f p u 381 mon spmon cp u c g l 6

This command yields the same results as the invocation example above.

INTERFACE WITH EMULATORS 6-77

SPLICE CONFIGH MON SB - setting monitor static base

6.4.2 SPLICE CONFIGH MON SB - setting m onitor static base
SYNTAX

configh mon sb address
DESCRIPTION

This command allows you to set the monitor-time static base register of SPLICE
to address. The register is set by default to 0. SPLICE uses 2 Kbytes for the
module table scratch pad and interrupt stack, relative to the static base register.
This command should be used before you down-load your program, address
must be located in a 4-Kbyte boundary within the first 64-Kbytes of the address
space.
The current value of the Monitor Static Base is displayed as part of the output of
the map command.

EXAMPLE
(dbug) c o n f i g h mon s b 0x1000

This example sets the Monitor Static Base register to 0x1000.
SEE ALSO

map, unmap

6-78 INTERFACE WITH EMULATORS

SPLICE MAP - map SPLICE memory

6.4.3 SPLICE MAP - map SPLICE memory
SYNTAX

map [a d d r e s s [b n jb lo c k s] p n _p a r t i t i o n]
DESCRIPTION

This command is used to map blocks from the target address space to the
SPLICE memory.
a d d r e s s specifies the starting address of the target address space to be mapped
to RAM. a d d r e s s must be at a block boundary and cannot overlap addresses
already mapped.
The b n jb lo c k s option specifies the number of blocks to be used in mapping.
The default is 1 block. A block is the smallest mappable unit. Currently it is 64
Kbytes for SPLICE.
The p n p a r t i t i o n option specifies the partition number of the mappable
SPLICE memory to which the target address space will be mapped. N p a r t i t i o n
must be a number between 1 and the number of blocks in a partition.
If no parameter is given, map prints the SPLICE memory-mapping information
(i.e., the sizes of starting partitions and blocks, how the SPLICE memory map­
ping is used). The address of the monitor static base is also displayed.

EXAMPLES
(dbug) map

This example prints out the SPLICE memory-mapping information. Partition 0
is mapped to target address range 0x0 to Oxffflf. Partition 2 is mapped to target
address range 0x300000 to 0x30ffff. Partitions 1 and 3 are not mapped.

SPLICE m o n i t o r s t a t i c b a s e a d d r e s s : 0x0
SPLICE M ap pin g Memory:

P a r t i t i o n s i z e = 0x10000 B l o c k s i z e = 0x10000
P a r t i t i o n

0
1
2
3

Mapped t o t a r g e t a d d r e s s s p a c e
0x0..Oxffff
n o t u s e d
0x300000. .0x3 Offff
n o t u s e d

INTERFACE WITH EMULATORS 6-79

SPLICE MAP - map SPLICE memory (Cont)

(dbug) map 0x3 0000 b 1 p 1

This example maps 1 block starting at 0x30000 into partition 1.
(dbug) map 0x10000 p 3

This example maps an address range starting from 0x10000,and of a size equal
to the SPLICE memory partition, into partition 3.

SEE ALSO
unmap, configh

6-80 INTERFACE WITH EMULATORS

umnap.com

6.4.4 SPLICE UNMAP - unm apping SPLICE memory
SYNTAX

unmap n

DESCRIPTION
This command will undo the mapping for SPLICE memory partition n.

The target address space that is currently mapped into memory partition n will be mapped
back to the target. Unmapping a partition necessary for the operation of SPLICE (e .g ., a
partition containing the address space pointed to by the monitor static base register when
the corresponding address space on the target board is not writable) is not allowed, and
attempts to do so will result in an error message.

EXAMPLE
(dbug) unmap 2

This example unm aps partition 2.

SEE ALSO
map, configh

INTERFACE WITH EMULATORS 6-81

Appendix A
DBUG TUTORIAL FOR GRAPHIC TERMINALS

A.1 Introduction
This sample session shows how to use DBUG in a graphic environment to debug a sim­
ple sort program.
The purpose of the sample session is to give all levels of users, a clear understanding of
the basics of debugging with DBUG in an X-windows and a mouse environment.
Readers with an alphanumeric terminal environment should work through the exam­
ple in Appendix B.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-l

A.2 Organization and Use of the Sample Session

A.2.1 O rganization of the Sample Session
The sample session is divided into a number of logical modules. These are:

1. The Hardware Environment
2. Beginning the Program Run
3. Introduction to DBUG Windows
4. Explanation of the Sample Program
5. The DBUG Session

While each module builds on the previous, a you may skip those topics with which you
are already familiar, without disrupting the complete session. Each module is further
divided into subsections which describe elements of the major topic area.

A.2.2 W orking w ith the Sample Session
The sample session is designed to be worked through on a "live" system. You are
presented with the commands you must execute along with an explanation of what has
and what should happen. Reading through the chapter and executing the commands
as they are described will give you a strong foundation on which to build your DBUG
expertise.

A-2 DBUG TUTORIAL FOR GRAPHIC TERMINALS

A.2.3 Command Presentation
Commands and explanations are presented through a tabular structure. Session logic
progresses from left to right, top to bottom. Text in the left column are commands.
There are three types of commands: those that are entered by typing on the keyboard
and pressing enter, those that are entered by pressing a function key and those that
are entered by selecting a menu option with the mouse cursor. The sample table below
describes what you should do when you see some typical commands.
COMMAND EXPLANATION
wreset Type "wreset" and press return.
<kpO> Press the keypad key labeled with the number 0.
<ESC> Press the key labeled "ESC”.
<pf3> Press the key labeled "£3”.
middle button Press the middle button on the mouse.
<pfl> <pf2> Press the function key labeled "fl", then press the

function key labeled "£2".
<ctrlxl> Press the key marked Ctrl (control) and the key

marked ”L" simultaneously.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-3

A.3 The Hardware Environm ent
This example runs on a bitmapped (graphic) terminal environment with a mouse, on
SYS32/20 or SYS32/30 development systems.
NOTE: before running this session, please make sure that the application keypad on
your terminal setup is active.

A.4 B eginning the Program Run
The following commands are used to begin the program nm.
COMMAND EXPLANATION

dbug bubble

Copy the sample program and its source to your
directory. Both files reside in the same directory
where DBUG was installed. The command for this
is:
c p g n x d i r / u s r / b i n / b u b b l e * .

The sample program is called b u b b l e , and is writ­
ten in C. The program was compiled earlier with
the command:
c c - g b u b b l e . c - o b u b b l e
using the GNX C compiler.
For subsequent compilations, please make sure
that you are using the GNX C compiler.
Begin the DBUG sample session.

A-4 DBUG TUTORIAL FOR GRAPHIC TERMINALS

Figure A-l. Opening Frame of the Graphic Interface

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-5

A.5 Introduction to the Graphic Interface Windows

A.5.1 O pening Screen Layout
COMMAND EXPLANATION

The DBUG session begins with the appearance of the DBUG frame on the screen (Figure A-l). The
opening DBUG frame contains three major rectan­
gles, and a large empty area on the right side. The
first rectangle stretches along the upper border of
the frame, and houses nine smaller windows with
labels like "Misc" and "Env". These are known as
command menus, and will be discussed a little later
in this section.
The second and third major rectangles are windows
for displaying information about the run. These
windows are divided into a number of areas. Both
windows contain a narrow band along their upper
border. This band displays the name of the win­
dow. Notice that the upper window is called the
CODE window and the lower window is called the
DIALOG window. The CODE window contains the
currently executing code of the program under
debug. Notice, too, that this program is
b u b b l e . c.

The CODE window displays the code of the current
program under debug. As expected, this code
belongs to the program: b u b b l e . c.

Unlike the CODE window, the DIALOG window is
divided into four separate areas: the header band,
the output area (the largest area in the window),
the command line (along the window’s bottom
border), and the scrolling area (the thick black bar
along the lefthand border of the output area).
The output area displays the session history,
including user commands and DBUG prompts and
echoes. The command line (denoted by the word
"(dbug)" in the left corner) is used to type com­
mands into the debugger.

A-6 DBUG TUTORIAL FOR GRAPHIC TERMINALS

A.5.2 Scrolling through the Scroll Bar
COMMAND EXPLANATION

Finally, the scroll bar is used to scroll through the
output area. Scrolling is accomplished by placing
the mouse cursor in the scroll area (the cursor will
become a vertical line with arrows at either end)
and clicking the appropriate mouse button. The
left button is used to scroll forward, the right but­
ton to scroll backward, and the middle button to
scroll to an absolute position in the text. Let’s scroll
to absolute positions.
Place the mouse cursor on the lowermost point of
the scroll bar.

middle button To scroll to the bottom of the DIALOG window.
Place the mouse cursor on the uppermost point of the scroll bar.

middle button To scroll to the top of the DIALOG output area.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-7

| hi »c | j~Env~l| VI on] | Run | [stop || Search 11 liter] | Ul ndou» || Sal act t on 1
£oda: bubbiB.c

1 «include <stdio.h>
2
3 «define ARRAYLEN
<1
5 lnt numbersCARRAYLEN]

Select Mode Name Command

6
7 m a l n ()
B {
9 lnt 1;

10
1 1. pr l n t f ("The ar
12 for (1 = 0; 1
13 prints
14 pr l n t f ("\n\n"
15
16 p rlntf("The sc
17 bubble_sort<

D l »1 OS_________________________________
Dbug - Version 3 Revision 8
Type 'help' for help,
reading symbolic lnformatlor
(dbug) help keys

[(dbug)

<blue> <pfl> null
<gold> <pfl> gold

<pfl> gold
<blue> <pf2> help k
<goid> <pf2> help 1

<pf2> help
<pf 3> select

<blue> <pf 4> blue
<gold> <pf 4 > null

<pf 4> blue
<E5C> reset
<kp7> cont

<gold> <kpl > next
<kpl > step

<gold> <kp5> wpush
<kp5> wpop
<kp0> commllne
<kpf.> wnext
<kp9> wscroll u

<blue> <kp3> status
<gold> <kp3> where

<kp3> wscroll d
<kpf+> repeat
<kpf«> expand
<kpf-> redraw

Press <ESC> to delete the window..v

Figure A-2. HELP Window

A-8 DBUG TUTORIAL FOR GRAPHIC TERMINALS

A.5.3 Moving Between Windows and Entering Commands
COMMAND EXPLANATION

move the mouse

When working in a multiwindow environment, you
must be sure that the mouse cursor is within the
DBUG frame. From within the DBUG frame, you
may only write or do work in one window at a time.
The window where you currently working is known
as the current window. The current window is
defined when the mouse cursor (identified by the
large X) is placed within its area.
Control the placement of the mouse cursor by mov­
ing the mouse.

<kpO> Press the keypad key marked with a zero (0). This
key has been defined to execute a command which
brings the mouse cursor into the command area.
Let’s enter a command. A valuable command at
this point would be one which describes the various
previously defined function keys.

help keys If you’ve done everything right (like align the
mouse cursor in the command line of the DIALOG
window), typed without errors and pressed return,
then a new window has appeared on the screen
(Figure A-2). This window is called the HELP win­
dow, and lists the power of various predefined func­
tion keys. Let’s look through the list and execute a
few of these functions right now.

<ESC> Reset. The help screen disappears.
<pf4> <pf2> Display the help keys once again, this time by

pressing function keys.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-9

| M l »c 1 [~Env~| | VIbh | f Run |lstop~}|so«rch~||u«or ifZllndom | fsc l act Ion]

g o d a ; b u b b l e . c
1 «include <stdlo.h>
2
3 «define ARRAYLEN
4
5 int numbersCARRAYLEN]
6
7 m a l n ()
B C
9 int i;

10
11 pr l n t f <"The ar
12 for (i » 0; 1
13 prlnt-f

p r intf("\n\n":14
15
16 prlntf("The sc
17 bubble_sort'

J H a l p
Interface line commands

addmenu [<sel>] <entry>
delmenu <entry>
kdefine [<sel>] <comm> <key>-
kreset
wdisplay <name> Cat [<loc>]]-
wdelete [<name>]
wmove C<name>3 <ver> <shlft>-
wnext C<name>]
wpop/wpush C<name>3
uiscroll <shlft>
wgo <llne>
wreset

Interface nonline commands

add a user menu entry
delete a user menu entry
defi-c a r--ctlc- key
reset key definitions
display a window
delete a window
move or resize a window
select the next window
pop/push a window
scroll the code window
scroll code window to line
reset window configuration

D i a l o g
Dbug - Version 3 Revision B.
Type 'help' for help.
reading symbolic information ...
(dbug) help keys
(dbug) -k- help k
(dbug) -k- help 1

[(dbug) ^ x"

3 the command line
pointed window

command
ration

Figure A-3. On the Command Line

A-10 DBUG TUTORIAL FOR GRAPHIC TERMINALS

COMMAND EXPLANATION
<pfl> <pf2> List the commands for manipulating the DBUG

windows. Note that the window is divided into two
parts. The top half, called interface line commands,
lists those commands that must be entered along a
command line via the keyboard. The bottom half is
called interface nonline commands, these are com­
mands that are entered through predefined func­
tion keys.

<kpO> Go to the command line. Notice that the DIALOG
window overlaps part of the HELP window (Figure
A-3).

wdelete code Delete the CODE window
wdisplay code Display the CODE window.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A -ll

|Hlic 1 rEnv~l| Vtbw 11Run 11Stop~]|Soarch~||u»cr ifutndoH» ifsal action"!

äHqI p

| p l « l o j

Interface line commands

addmenu [<sel>] <entry>
delmenu <entry>
kdeflne [<sel>] <comm> <key>-
kreset
wdisplay <name> Cat t<loc>]]-
wdelete [<name>]
wmove [<name>] <ver> <shift>-
wnext [<name>]
wpop/wpush [<name>3
wscroli <shlft>
wgo <llne>
wreset

Interface nonline commands

add a user menu entry
delete a user menu entry
define a function key
reset key definitions
display a window
delete a window
move or resize a window
select the next window
pop/push a window
scroll the code window
scroll code window to line
reset window configuration

to the command line
" pointed window

Dbug - Version 3 Revision 8 .
Type 'help' for help,
reading symbolic information
(dbug) help keys
(dbug) -k- help k
(dbug) -k- help i
(dbug) wdelete code
(dbug) wdisplay code
(dbug) wdelete

command
»ration
»nt window

[(dbug)'

Figure A-4. wdelete code

A-12 DBUG TUTORIAL FOR GRAPHIC TERMINALS

COMMAND EXPLANATION

<pf3>

The selected window is that window on which a
particular command will be executed by default.
Thus, instead of specifying move code", or ' wdelete
code", you may, when CODE is the selected win­
dow, simply invoke "wdelete" (for example) to see
the CODE window disappear from the face of the
screen. A window is selected by moving the mouse
cursor into the area of the window and pressing
<pf3>.
Move the cursor into the code window now.
Let’s execute the wdelete command once again.

<kpO> Go to the command line.
wdelete There is no need to specify CODE, because it is

already the selected window (Figure A-4).
wdisplay code Redisplay the CODE window.
wpop help Lay the overlapping part of the help menu over the

CODE and DIALOG windows. Read the HELP
window.
Now that you’re familiar with all the options
described in the HELP window (a small, but very
handy subset of the complete range of commands
available to you), you can define a function key that
can carry out one of these commands. The ability
to define function keys will save you countless
seconds of typing time. So, let’s define <ctrlxy> as
our function key for executing the redraw com­
mand (a command for clearing any garbage from
the screen).

<kpO> Go to the command line. From here we’ll define a
function key.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-13

COMMAND EXPLANATION
kdefine redraw Begin the procedure for defining a function key to

have the command redraw.
The message "Press a function key:" appears in the
output area of the DIALOG window. Simultane­
ously, the "(dbug)" prompt disappears from the
command line.

<ctrlxy> Press <ctrlxy>. The "(dbug)" prompt reappears on
the command line. <ctrlxy> now has the function:
redraw.

<ctrlxy> Redraw the screen. Note that the ability to define
keys is one of DBUG’s strengths, for it allows you
to define functions that are important for your par­
ticular application, and in a manner that is easy to
use.

<ESC> Reset. The help screen disappears.

A-14 DBUG TUTORIAL FOR GRAPHIC TERMINALS

A.5.4 Command M enus

|HI sc 11Env 11Vlbm | | Run11St op11Search11 Use J11.1 J rnlnuft 1 l.Se l e c t 1 on I
wdl sp l ay

p o d s: b u b b l e . c
wdel e t e1 «include <stdio.h>2

3 «define ARRAYLEN 10
4
5 int numbersCARRAYLEN] = (2,6
7 m a l n ()
B {
9 int 1;10

11 prlntf("The array b
12 for (1 = 0; 1 < ARR
13 printf("Xd
14 pr i n t f ("\n\n");
15
16 printf("The sorted
17 bubble_sort<)>;

7, 5, 2. 6, 9,

'tlng:\ n ");

I);

«push

wpop

wnove

wreset

<hove>

array after Xd excha n g e s :\n"

D i a l o g
Dbug - Version 3 Revision B.
Type 'help' for help,
reading symbolic information ...
(dbug) help keys
(dbug) -k- help k
(dbug) -k- help i
(dbug) wdelete code
(dbug) wdlsplay code
(dbug) wdelete
(dbug) wdlsplay code
(dbug) wpop help
(dbug) kdeflne redraw
Press a function key:

j < d b u g) ~

Figure A-5. Temporary Menu

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-15

COMMAND EXPLANATION

left button

Until now, we’ve discussed two ways to enter a
command: by typing it in, and by pressing
predefined keys. Yet there is a third way: by select­
ing a menu option.
Menus are placed in the narrow rectangle along the
top border of the DBUG frame. Inside this rectan­
gle are nine small windows. Each window is labeled
with words like "Misc", "Env", and "View". Each of
these small windows holds a menu list of com­
mands which relate to the label. The window
labeled "Windows", for instance, holds commands
which are used to manipulate the windows in the
DBUG frame.
Move the mouse cursor to the rectangle
labeled "Windows". Notice that its border is
highlighted in bold when the mouse cursor is
within its realm. Let’s look at the contents of this
window.
Assuming you’ve pressed the left button on the
mouse while the cursor was positioned in the "Win­
dows" window, you now see before you a list of
menu options. This is called a "temporary menu",
and should contain words like "wdisplay" "wdelete",
"wreset" and "<move>" (Figure A-5).
Commands are executed from this temporary menu
by the following procedures: 1) a window is selected
2) the mouse cursor is placed on the desired com­
mand, and 3) the mouse’s left key is pressed. You
can remove the temporary menu by pressing
<ESC> (but DONT do it now).
We’ll execute this procedure with the "wmove" as
an example. The wmove command is used to move
a window within the DBUG frame. Let’s move the
DIALOG window.
Position the mouse cursor in the DIALOG window.

A-16 DBUG TUTORIAL FOR GRAPHIC TERMINALS

COMMAND EXPLANATION
<pf3> Select the DIALOG window. Note that it is now

outlined. Move the mouse cursor to the
"wmove" menu option.

left button The "Windows" hanging menu disappears. A
prompt appears in the DIALOG window. The
prompt reads:
"Click a button to enter the first point".
This point, together with a second point to be
entered defines how the window will shift. Place
the mouse cursor on the lower righthand corner
of the DIALOG window.

left button The prompt reads:
"Click a button to enter the second point".
Move the cursor to the lower righthand corner
of the dbug frame. This point, together with the
previous point, defines the DIALOG window shift.

left button The DIALOG window shifts to the right.
Let’s clean the screen by pressing our recently
defined redraw key.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-17

COMMAND EXPLANATION
<ctrlxy> Press the redraw key to refresh DBUG frame.

It is possible to prevent the temporary menu from
disappearing with the execution of a command by
moving it to to another location before executing a
command. Once it’s been moved it won’t disappear
unless you ask it to. Such menu is called a "hang­
ing" menu. Let’s try it now.
Move the mouse cursor to the rectangle
labeled Windows.

left button Displays the temporary menu. Position the
mouse cursor in the option titled: <move>.

left button The <move> option is highlighted. The DIALOG
window prompts:
"Click a button to position the menu”
Move the cursor to a location to the right of the
CODE window and towards the top of the DBUG
frame.

middle button The menu is hung at the point you identified with
the click of the mouse key.
This feature, allows you to display commands
without obstructing any other windows. You can
remove the hanging menu by selecting the <exit>
option. Note that the <exit> option does not appear
on the menu until it has been moved.
Position the mouse cursor on the <exit> option.

left button Press the left button. This causes the hanging
menu to disappear.

A-18 DBUG TUTORIAL FOR GRAPHIC TERMINALS

COMMAND EXPLANATION

left button

Another interesting menu is the "Misc" menu.
Position the cursor on the "Misc" window
(until it is outlined in bold).
Three interesting commands in this menu are
"help” - to display the HELP window, "quit" - to
quit DBUG, and <command>. <command> gen­
erates a command line that can be used for enter­
ing commands through the keyboard. This line may
be used instead of the command line in the DIA­
LOG window.
Align the mouse cursor on the <command>
option from the "Misc" menu.

left button Causes the command line to appear. Align the
mouse cursor on the command line from the Misc
menu.

quit Leave DBUG
We are now ready for debugging the sample pro­
gram.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-19

A.6 Explanation of the Sample Program
This section describes the sample program to be debugged during the sample session.

A.6.1 The Sam ple Program Logic
The program is designed to execute a bubble sort. The bubble sort algorithm reorders a
set of given numbers in descending order by comparing two adjacent numbers, and
exchanging them if the number to the right is greater than the number to the left. The
sorter compares every pair in the set until it reaches the end of the list. The sorter con­
tinues to make passes on the set until all numbers appear in descending order.
The following table displays bubble sort algorithm applied to a set with four values
ordered as follows: 14 2 3.

NUMBER SET PROGRAM OPERATION
14 2 3 (0) Original state of set
4 12 3 (1) Pass 1, values 1 and 4 compared and exchanged.
4 2 13 (2) Pass 1, values 1 and 2 compared and exchanged.
4 2 3 1 (3) Pass 1, values 1 and 3 compared and exchanged.
4 2 3 1 (4) Pass 2, values 4 and 2 compared but not

exchanged.
4 3 2 1 (5) Pass 2, values 3 and 2 compared and exchanged.
4 3 2 1 (6) Pass 2, values 2 and 1 compared but not

exchanged.
4 3 2 1 (7, 8, 9) Pass 3, values 4 and 3, 3 and 2, and 2 and 1

compared, but not exchanged. Bubble sort com-
plete.

A.7 The Sample Program
The C language program that implements this algorithm is found in a file called
b u b b l e . c . The contents of this file appears on the following page.
Program variables include n u m b e r s , t o t a l _ c o u n t , c h a n g e _ c o u n t and s a v e .
ARRAYLEN equals the number of values in the list, n u m b e r s is an array of length
ARRAYLEN which holds the numbers in the set. t o t a l _ c o u n t counts the total
number of times an exchange takes place between two adjacent array cells.
c h a n g e _ c o u n t also counts exchanges, but is reset to zero each time the sorter begins a
new pass on the set. s a v e is a temporary variable which acts as a holding area for
exchanges between two adjacent array cells.
The first program activity is to print the array before it is sorted. The program then
calls a routine called b u b b l e _ s o r t which performs the bubble sort logic. The routine
is exited when a pass is completed without any exchanges taking place
A-20 DBUG TUTORIAL FOR GRAPHIC TERMINALS

(c h a n g e _ c o u n t = 0) or when the total number of passes exceeds the theoretical max­
imum (t o t a l _ c o u n t >= ARRAYLEN squared). The program then prints the result of
the run.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-21

10# d e f i n e ARRAYLEN

i n t n u m b e r s [ARRAYLEN] = {2, 4, 17, 13, 7, 5, 2 , 6, 9, 15} ;

m a in ()
{

i n t i ;

p r i n t f C ’The array b e f o r e t h e s o r t i n g : \ n ") ;
f o r (i = 0; i < ARRAYLEN; i++)

p r i n t f (" % d " , n u m b e r s [i]) ;
p r i n t f (" \ n \ n ") ;

p r i n t f C ' T h e s o r t e d a r r a y a f t e r %d e x c h a n g e s : \ n " ,
b u b b l e _ s o r t ()) ;

f o r (i = 0; i < ARRAYLEN; i++)
p r i n t f (" % d " , n u m b e r s [i]) ;

p r i n t f (" \ n ") ;
}

i n t b u b b l e _ s o r t ()
{

i n t i ;
i n t c h a n g e _ c o u n t , t o t a l _ c o u n t ;
i n t save;

t o t a l _ c o u n t = 0;
do
{

c h a n g e _ c o u n t = 0;
f o r (i = 0; i < ARRAYLEN; i++)

i f (n u m b e r s [i] <= n u m b e r s [i + 1])
{

s a v e = n u m b e r s [i + 1] ;
n u m b e r s [i + 1] = n u m b e r s [i]

n u m b e r s [i] = s a v e ;
c h a n g e _ c o u n t + + ;
t o t a l _ c o u n t + + ;

}
}
w h i l e (c h a n g e _ c o u n t > 0 && t o t a l _ c o u n t <= ARRAYLEN * ARRAYLEN)
r e t u r n (t o t a l _ _ c o u n t) ;

}

i n c l u d e < s t d i o . h >

A-22 DBUG TUTORIAL FOR GRAPHIC TERMINALS

A.8 The dbug Session

A.8.1 Run the Sample Program
COMMAND EXPLANATION
bubble Run b u b b l e and look at the results. The program

prints:
The a r r a y b e f o r e s o r t i n g : 2 4 17 13 7 5
2 9 6 15

The s o r t e d a r r a y a f t e r 101 e x c h a n g e s :
5 4 3 5 1 6 7 5 6 17 15 13 9 7 6 5 4 2

Notice anything strange about the output? For one
thing, the number 543516756 (or something simi­
lar) was not part of our original input set, and for
another, the program carried out 101 exchanges
(more than the theoretical maximum) before exit­
ing.
Let’s use DBUG to find the problem.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-23

A.8.2 Running dbug and D evising a Debug Strategy
COMMAND EXPLANATION
dbug bubble Run DBUG

Let’s turn our attention to the DBUG frame. More
specifically, let’s examine b u b b l e , c in the CODE
window.

cursor in CODE Place the mouse cursor in the display area of the
CODE window.

up-down arrows Scroll through b u b b l e . c by pressing the up and
down arrows. You may also scroll by using the pg-
up, pg-down keys. Notice that the small "window
cursor" (looks like an upside down "v") marks your
place in the window.
The first question we must address as we examine
b u b b l e . c is where to look for the bug. If we
glance at the output we see that the first bug
appears only after we’ve called the routine called
b u b b l e s o r t . So our first task will be to run the
program until we reach the b u b b l e s o r t routine
in line 23, then examine different variables in order
to determine where and how the problem occurs.

<kpO> Go to command line.

A-24 DBUG TUTORIAL FOR GRAPHIC TERMINALS

|Ml «c |[Tnv~l| View11Run |[stop || SeerchlluierDul ndow«~| [Sal act 1 on 1

lode: bubble.c
IB for (i = 0; 1 < ARRAYLEN; 1 ++)
19 prlntf("Xd ", numbersCi]>;20 pri n t f ("\n");21)22
23 int bubble_sort()
24 {
25 lnt i;
26 lnt change_count, totai_count;
27 lnt save;
2B

•« 29 total_count = 0;
30 do
31 {
32 change_count = 0;
33 for <1 = 0; 1 < ARRAYLEN; 1 ++)
34 if (numbersCi] <= n u m b e r e d + 1

□Itlos
Dbug - Version 3 Revision B.
Type 'help' for help.
reading symbolic Information ...
(dbug) -k- wscroll u
(dbug) -k- wscroll d
(dbug) -k- wscroll d
(dbug) -k- wscroll u
(dbug) stop In bubble_sort
Cl] stop In bubble_sort

(dbug)

Figure A-6. stop in bubble_sort

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-25

A.8.3 First Debug Commands
COMMAND EXPLANATION
stop in bubble_sort Set a flag which tells the program to halt when it

reaches the first executable command in
b u b b l e s o r t . Notice that this command is
t o t a l c o u n t = 0 in line 29, and that it is now
marked by an asterisk (*) along the lefthand border
of CODE window (Figure A-6).

<kpO> Go to command line.
run Execute b u b b l e . c

Notice that an arrow appears on the left side of the
CODE window screen and points to the current
program line under execution. This is line 29, the
first executable line of b u b b l e s o r t , and is also,
the point where we told the program to stop.
Notice that this information is also displayed in the
output area of the DIALOG window.

step Continue to execute the program one executable
instruction at a time. Notice that the arrow moves
to the current line under execution.

step Execute the next line. You may find it boring to
type "step" over and over. One short cut available
to you is to type "s", the alias for step.

s Step one more line by executing the alias for step.
p numbers We can also print the value of different variables,

"p" is the alias for print, n u m b e r s , of course, is the
array where our set is stored. Notice that the array
is in its original state. No exchanges have taken
place.

alias This command prints a list of all available aliases.

A-26 DBUG TUTORIAL FOR GRAPHIC TERMINALS

[m 1 »c I (~Env~| | V t aw 11 Run | [stop ||S8«rch~||Uiar | |ül ndowt~]l Sal action

fodo: bubblB.c
27 lnt save;
28

M 29 total_count = 0 ;
30 do
31 {
32 change_count = 0 ;
33 for (1 = 0; i < ARRAYLEN; i++)
34 if (numbersCil <= numbersCi + 1
35 {
36 save = numbers!i+ 1];

= > 37 numbersCi+1] = numbersC
3B numbersCi] = save;
39 change_count++;
40 total_count++;
41 }
42 }
43 while (change_count > 0 && total_count <= ARRAY

□ 1 alos
c cont
(dbug) 8
stopped in bubble_sort at line 36 in file "bubble.c"

36 save = numbersCi+1];
(dbug) stop if save>17
[3] stop if save > 17 in bubble_sort
(dbug) status
Cl] stop in bubble_sort
C33 stop if save > 17 in bubble_sort
(dbug) cont
stopped in bubble_sort at line 37 in file "bubble.c"

37 numbersCi+1] =
numbers C i];
(dbug) p save
543516756

| (dbug)

Figure A-7. p save

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-27

COMMAND EXPLANATION
s Step. This process of single stepping, while poten­

tially fruitful, is also time consuming, and perhaps
not really appropriate for our current needs. Let’s
try another approach.
Notice that all exchanges go through the temporary
variable called s a v e (line 36). That is, when
n u m b e r s [i] <= n u m b e r s [i + 1] then s a v e =
n u m b e r s [i + 1] and n u m b e r s [i] = s a v e .

Thus, if we can identify the first time s a v e
receives an erroneous value, we’ll be well on our
way to discovering the bug.

stop if save > 17 Set a breakpoint if s a v e gets a value that’s greater
than 17, the largest known number in our set.
Unlike our earlier breakpoint, this one is not
identified by an asterisk (*) because it doesn’t have
a specific location in the program. On the other
hand, its scope does not extend beyond the
b u b b l e s o r t routine.

status List all of the currently declared breakpoints.
There are two. The number to the left has been
assigned by DBUG and is called event number.

cont Continue program execution until the "stop if"
breakpoint is reached.
Notice that the program stops after a few moments.
This is an indication that the value of s a v e
exceeds 17.

p save Print the value of s a v e . It equals 543516756 (or
something equally wrong) (Figure A-7).
Let’s examine the array index to determine when
this occurred.

A-28 DBUG TUTORIAL FOR GRAPHIC TERMINALS

COMMAND EXPLANATION
P i The "print i" command yields the information that

the array index equals 9 when s a v e gets the
erroneous value. This means that s a v e gets the
erroneous value in line 36, from the assignment:
s a v e = n u m b e r s [i + 1] (or in others words:
s a v e = n u m b e r s [10]).
How could array index 10 receive such a value?
The answer is clear. According to C language con­
ventions, array indices begin from 0 and continue
to n-1 (where n equals the size of the array). This
means an array of size 10 would have the indices:
0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. Our array is also of
size 10 (ARRAYLEN = 10). This means that array
n u m b e r s is composed of variables n u m b e r s [0] ,
n u m b e r s [1] ,... . numbers [9] . Variable
n u m b e r s [10] is not even part of the array.
Our problem comes from the fact that we’ve refer­
enced an invalid variable (n u mb er s [10]) .

The solution is to prevent array index i from
exceeding 8, then the maximum value attainable
by i + 1 will be 9 (instead of 10, as is currently).
Let’s fix the program.

q Quit DBUG.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-29

A.8.4 Fixing the First Bug
COMMAND EXPLANATION

cc -g bubble.c -o bubble

Edit b u b b l e . c .

Go to line 33 where the loop b u b b l e s o r t is
defined. Replace the line:

f o r (1=0; i < ARRAYLEN; i++)

with:
f o r (1=0; i < ARRAYLEN - 1; 1++)

This ensures that the loop continues from 0 to 8,
instead of from 0 to 9. Save the change.
Recompile the program. Be sure you are using the
GNX C compiler.

bubble Let’s run the program again to see if it runs
correctly. The numbers seem to be in the right
order, but the output message states:

The sorted array after 101 exchanges.
This is theoretically impossible - even if the array
were completely backwards, for the program to
need more than 100 exchanges to sort it correctly.
Something is wrong, and we should use DBUG
again.

dbug bubble Run the debugger.

A-30 DBUG TUTORIAL FOR GRAPHIC TERMINALS

A.8.5 Hanging Menus and Selecting Text
COMMAND EXPLANATION

Unlike last time, we want to make the way we
enter our commands as efficient as possible. Let’s
begin by selecting certain command windows, and
posting their hanging menus in locations where
they’re easy to access.
Position the mouse cursor on the "Selection"
menu.

left button Display the temporary menu by pressing the left
key on the mouse.
Move the mouse cursor to the <move> option.

left button Press the left button on the mouse. The <move>
option should now be highlighted.
Move the mouse cursor to a point to the right of
the CODE window, not far from the upper border
of the DBUG frame.

left button Press the left button on the mouse. The "Selection"
hanging menu should now be displayed to the
right of the CODE window .
Position the mouse cursor in the CODE window.
Once again we want to begin by setting a break­
point in the b u b b l e _ s o r t routine with the com­
mand stop in bubble_sort. We take this action
because we want to determine why the variable
t o t a l _ c o u n t returned the value 101 after exiting
b u b b l e _ s o r t . Unlike in the past, we will issue
the command by selecting text from the program,
and then execute the "stop in" command from the
hanging menu.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-31

|m»c 1 fErnTl 1Vt cu]|Run | [~Stpp 11 Search ||u»Br1|ulndoH«~l|S8lQctlon 1
print

print m

what I ■

atop at

atop In

claar

<nowa>

<axlt>

Figure A-8. Marking Text

A-32 DBUG TUTORIAL FOR GRAPHIC TERMINALS

COMMAND EXPLANATION
kp3 (pg dn) Scroll through the display of bubble.c until line 23:

i n t b u b b l e s o r t () is in view.
Position the mouse cursor on the word:
bubble_sort.

Hold down left button Press the left button on the mouse and move the cursor to the right. Notice that the line begins to
be highlighted as you move. Ensure that at least
one or two characters are highlighted. This process
is used to select the name b u b b l e s o r t (Figure
A-8).

Release left button Notice that the highlighting remains even after you
release the left button.
Now move the cursor to the hanging menu stop in
option.

left button The stop in bubble_sort command is issued. An
asterisk (*) appears next to line 29, the first execut­
able code in the b u b b l e s o r t function.
Note what we just did. We selected a couple of
characters from a function name and then selected
the command name we wanted executed with it.
The complete command was issued without having
to touch a single key on the keyboard.
Now let’s display the command menu labeled
"Run". Move the mouse cursor to the command
window labeled Run.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-33

{H1 ac Ifinv || Vtqm~}[Run 11Stop || Sairch 1 [Ü7ärl|lltndow« | | solBct ton |

Figure A-9. Hanging Menus

A-34 DBUG TUTORIAL FOR GRAPHIC TERMINALS

COMMAND EXPLANATION
left button Display the hanging menu by pressing the left key

on the mouse.
Move the mouse cursor to the <move> option.

left button. The <move> option should now be highlighted.
Move the mouse cursor to a point just below where the Selection menu is hanging. Some­
where to the right of the DIALOG window (Figure
A-9).
Notice the prompt in the DIALOG output window
which reads: "Click a button to position the
menu.".

left button The "Run" hanging menu should now be displayed
to the right of the DIALOG window.
Align the mouse cursor on the "run" option on the
hanging menu.

left button Run the program.
Notice that execution stops to the side of the first
executable command in the b u b b l e s o r t func­
tion. This is line 29 which states t o t a l c o u n t =
0.
Now move the mouse cursor into the CODE win­
dow. From here we may take a closer look at the
program code, and decide what to do next.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-35

COMMAND EXPLANATION
up - down arrows

hold down left button

Gently scroll through the CODE window. Keep in
mind, as we scroll, that the evidence of the bug
comes from the fact that the value of
t o t a l _ c o u n t is too high, at least by one.
Since checking each and every exchange would be
too clumsy and time consuming, we would be
advised to put in a breakpoint after each complete
pass on the number set. Then we could check the
array n u m b e r s after it had undergone a complete
pass of the sorter.
To do this, position the mouse cursor over a
character in line 33, the line which reads: f o r
(i = 0; i < ARRARYLEN-1; i + +) .

Press the left button on the mouse and move the
cursor to the right for a couple of characters.

A-36 DBUG TUTORIAL FOR GRAPHIC TERMINALS

COMMAND EXPLANATION
release the left button

left button

left button

<kpO>
p numbers

Notice that the highlighting remains even after the
mouse key is released.
Position the mouse cursor over the "stop at" option
displayed on the hanging menu.
Issue the "stop at" line 33 command.
Position the mouse cursor over the "cont" option.
Issue the "cont" command.
The program run continues until it reaches line 33,
where we placed the breakpoint. Let’s print the
contents of the array numbers to determine if its
values are in the correct order before beginning the
first pass.
Go to command line.
Print the contents of numbers.
Look in the DIALOG window. The array prints
out the following numbers in the following order:

2,4, 17, 13, 7, 5, 2, 6, 9, 15
This is the order they should be in before sorting.
Let’s now continue following the same procedure
we just executed: continue the run, stop at the
breakpoint and print the value of n u m b er s . We’ll
do this until a problem is detected.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-37

COMMAND EXPLANATION

left button

Continue the run by aligning the mouse cursor on
the "cont" option.
Issue the "cont" option. Wait for the program to
reach the breakpoint.

<kpO> Go to the command line.
p numbers Print the value of the array n u m b e rs . Notice that

after the first pass on the number set, the number
which had previously been in the second position is
now in the first position (4), and the number which
had previously been in the first position, is now in
the last position (2). This is evidence that at least
until now, the sorting is proceeding correctly.

A-38 DBUG TUTORIAL FOR GRAPHIC TERMINALS

A.8.6 Issuing Commands with Predefined Keys
COMMAND EXPLANATION

At this point, let’s define a function key that exe­
cutes the repeat command, repeat re-executes
the last command issued from the command line.
Note that it does NOT re-execute commands issued
from the hanging menu, keypad keys or function
keys, even if they were issued more recently than
the last command from the command line.
The distinction of how a command is issued is also
made in the output area of the DIALOG window
where the program conversation is displayed, and
all commands are echoed. Echoes of commands
issued from the command line are preceded by the
indicator "(dbug)" (example: (dbug) p nu mbers) ,
while echoes of commands issued through a keypad
key or function key are preceded by the indicator ”-
k-", while echoes of commands issued through the
menu are preceded by the indicator "-m-" (example:
-m- c o n t) .

<kpO> Go to command line
kdefine repeat Define a key which executes the repeat function.

Look in the DIALOG output area. DBUG now asks
that you press a function key. This key will hold
the function repeat.

<kp5> Give keypad 5 the function repeat
Align the mouse cursor on the "cont" option.

left button Issue the "cont" option. Wait for the program to hit
the breakpoint.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-39

COMMAND EXPLANATION
<kpO> Go to the command line.
p numbers Print numbers. We can’t use our repeat key just

yet because the last command issued from the com­
mand line was "kdefine repeat".
Notice that the sorting mechanism seems to be
proceeding normally, as higher numbers gravitate
towards the front, and lower numbers move
towards the back.
Align the mouse cursor on the "cont" option.

left button Issue the "cont" option. Wait for the program to hit
the breakpoint.

<kp5> Issue the "print numbers" command by pressing
the key defined as repeat.
Let’s continue with this pattern (pressing cont and
the repeat function key), until something suspi­
cious comes up.

left button
Align the mouse cursor on the "cont" menu
option.
Execute the "cont" option by pressing the left but­
ton on the mouse.

<kp5> Repeat the print numbers command.

A-40 DBUG TUTORIAL FOR GRAPHIC TERMINALS

COMMAND EXPLANATION
Until now everything seems to be ok. It could be,
however, that our problem lies with t o t a l _ c o u n t
- that it is receiving an incorrect value. Let’s print
its value. However, instead of going to the com­
mand line and issuing the command there, let’s
select it graphically and issue the command from
one of our hanging menus.
Go to the where the program is displayed in the
CODE window. Position the cursor on total_count (line 40).

Depress left button Move the cursor to the right until a couple of
characters in the word t o t a l c o u n t are
highlighted.

Release the left button The highlighting remains.
Now move the mouse cursor to the hanging menu
"print" option.

left button Execute the "print" option. The value of
t o t a l c o u n t is 25. This seems reasonable, so
let’s simply continue.
Align the mouse cursor on the cont menu option.

left button Execute the "cont” option by pressing the left but­
ton on the mouse.

<kp5> Repeat the print numbers.
Align the mouse cursor on the cont menu option.

left button Execute the "cont" option by pressing the left but­
ton on the mouse.

<kp5> Repeat the print numbers.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-41

COMMAND EXPLANATION
This mode too, you may have noticed, can become a
little tedious. It turns out that, DBUG provides
you with still another way for entering commands.
This option allows you scroll through the history of
commands issued through the command area, and
re-issue those commands that are of interest to you,
by pressing return.
Before going to the exact details of how to do this,
let’s first execute a couple of key commands
through the command window.

<kpO> Go to the command line.
cont Continue the run.

A-42 DBUG TUTORIAL FOR GRAPHIC TERMINALS

A.8.7 Scrolling Through the Command Window
COMMAND EXPLANATION
p numbers print numbers. Now let’s execute the same com­

mand series by scrolling through the command
window (with the up-down arrows) and pressing
return.

up arrow (2 times) Scroll back through the history of the command
line until the cont command appears.

press enter Execute the continue command.
up arrow (2 times) Scroll back until the print numbers command

appears.
press enter Execute the print numbers command.

At this point everything looks all right. The
number set has been reordered. As designed, the
program should now end. Let’s see what happens if
we execute cont again.

up arrow (2 times) Scroll back through the history of the command
line of the command line until the cont command
appears.

press enter Execute the continue command.
up arrow (2 times) Scroll back until the print numbers command

appears.
press enter Execute the print numbers command.

Watch the result! The set remains in the same
"correct" order, but the program fails to exit. Let’s
look at total_count, to determine if it’s still making
exchanges.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-43

A.8.8 Narrowing Down the Problem
COMMAND EXPLANATION
p total_count T o t a l c o u n t equals 36. The program continues

making exchanges even after the number set has
been reordered. Let’s try to find out why it contin­
ues executing b u b b l e s o r t .

Let’s put a breakpoint at the point where the
exchange occurs. Go to the program display in the
CODE window. Align the mouse cursor on the word s a v e in line 36.

Depress left button Press the left mouse key, move the cursor to the
right for a character or two until you see the word
begin to be highlighted.

Release the left button s a v e is highlighted.
stop at Select "stop at" from the hanging menu.

Next, clear the earlier breakpoint. Align the cur­
sor on some text from line 33.

Depress left button Press the left mouse key, move the cursor to the
right for a character or two, until you see that
some of the text is highlighted

Release the left button The selected text remains highlighted.
Align the mouse cursor on the clear option
from the hanging menu.

left button Execute the clear command.
A message appears in the DIALOG window:
1 b r e a k p o i n t d e le ted a t b u b b l e . c :33.
Align the mouse cursor on the "cont" option from
the hanging menu.

left button Execute the continue command.
Now that the program has executed another pass,
let’s examine the numbers it is trying to exchange.

A-44 DBUG TUTORIAL FOR GRAPHIC TERMINALS

|m«c ifTnvllVisu |[Run |jstop~||s««rch~]|u»T Iflllndem [fsclact 1 on'

pods: bubbls.c
28

H 29 total_count = 0 ;
30 do
31 c
32 change_count = 0 ;
33 for (1 = 0 ; i < ARRAYLEN - 1; 1 ++)
34 if (numbered] <* n u m b e r e d + 1
35 {

~ = > 36 save = numbersCl+ 1];
37 number6 d + l] = numberaC
38 numbersCß] = save;
39 change_count++;
40 total_count++;
41)
42 }
43 while (change_count > 0 &6 total_count <= ARRAY
44 return (total_count);

OlitOS

i

(dbug) p total_count
36
(dbug) -m- stop at 36
[4] stop at "bubble.c":36
(dbug) -m- clear 33
1 breakpoint deleted at bubble.c:33
(dbug) -m- cont
C4] stopped in bubble_«ort at line 36 in file "bubble.c"

36 save = numbersC1+1]j
(dbug) p numbersCl+1]2
(dbug) p n u m b e r e d]2
(dbug) -m- print i+1
9

d b u g) __

Figure A-10. Marking i

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-45

COMMAND EXPLANATION
<kpO> Go to command line.
p numbers [i+1] The value of n u m b e r s [i + 1] is 2.
p numbers [i] The value of n u m b e r s [i] is 2. This means that

the program is exchanging equal values. Let’s
examine value of i when it does this.
Go to line 37 and place the mouse cursor on i from the expression: i+1.

Depress left button Hold the left button down as you highlight the
complete expression: i+1.

Release left button i + 1 is highlighted.
Align the mouse cursor on the "print" menu option.

left button Select the "print" menu option, i + 1 equals 9.
Go to the following line. Position the mouse cursor
over the i in n u m b e r s [i] (Figure A-10).

Depress left button Hold the button down until just the i is
highlighted.

A-46 DBUG TUTORIAL FOR GRAPHIC TERMINALS

COMMAND EXPLANATION
Release left button The i is highlighted.

Align the mouse cursor on the print menu option. The value of i is 8.
It would seem that our program works fine when it
compares two inequalities, but just doesn’t stop
when it compares two equal numbers.
Look at the "if’ statement which calls for the
exchange in line 34: i f (n u m b er s [i] <=
n u m b e r s [i + 1]) . Here is our problem. We don’t
want the program to execute the exchange if the
values of two neighboring numbers are equal. We
must fix the errant line to read:

i f (n u m b e r s [i] < n u m b e r s [i + 1])

<kpO> Go to command line.
quit Quit DBUG

Edit b u b b l e . c . Make the change.
cc -g bubble.c -o bubble Compile the program.
bubble Run the program.

The program generates the following message:
The array before sorting: 2 4 17 13 7 5 2 9 6 15
The sorted array after 27 exchanges: 17 15 13 9 7 6
5 4 2 2
Everything looks good. This terminates the
tutorial session of DBUG, but by no means did we
cover the full range of DBUG’s capabilities. Please
refer to the previous chapters of this reference
manual for the description of many additional com­
mands and advanced options.

DBUG TUTORIAL FOR GRAPHIC TERMINALS A-47

Appendix B
DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS

B .l Introduction
This sample session shows how to use dbug in an alphanumeric terminal environment
to debug a simple sort program.
The purpose of the sample session is to give all levels of users, a clear understanding of
the basics of debugging with dbug in an alphanumeric terminal environment.

B.1.1 O rganization of the Sample Session
The sample session is divided into a number of logical modules. These are:

1. The Hardware Environment
2. Beginning the Program Run
3. Introduction to the Alphanumeric Interface
4. Explanation of the Sample Program
5. The dbug Session

While each module builds on the previous, you may choose to skip those topics with
which you are already familiar, without disrupting the complete session. Each module
is further divided into subsections which describe elements of the major topic area.

B.1.2 Working w ith the Sample Session
The sample session is designed to be worked through on a "live" system. You are
presented with the commands you must execute along with an explanation of what has
and what should happen. Reading through the chapter and executing the commands
as they are described will give you a strong foundation on which to build your exper­
tise.

DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS B-1

B.1.3 Command Presentation
Commands and explanations are presented through a tabular structure. Session logic
progresses from left to right, top to bottom. Text in the left column are commands.
There are two types of commands: those that are entered by typing on the keyboard
and pressing enter, and those that are entered by pressing a function key. The sample
table below describes what you should do when you see some typical commands.
COMMAND EXPLANATION
wreset Type "wreset" and press return.
<kpO> Press the keypad key labeled with the number 0.
<ESC> Press the key labeled "ESC".
<pf3> Press the function key labeled "£3".
<pfl> <pf2> Press the function key labeled "fl", then press the

function key labeled "f2".
<ctrlxl> Simultaneously press the key marked "ctrl" (con­

trol) and the key marked "L”.

B-2 DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS

B.2 The Hardware Environm ent
This example runs on an alphanumeric terminal environment, on SYS32/20 or
SYS32/30 development systems.
NOTE: Make sure that the applications keypad on your terminal setup is active before
running this session.

B.3 Beginning the Program Run
The following commands are used to begin the program run.
COMMAND EXPLANATION

dbug bubble

Copy the sample program and its source to your
directory. Both files reside in the same directory
where dbug was installed.
The sample program is called b u b b l e
(b u b b l e . e x e in VMS), and is written in C. The
program was compiled using the GNX C compiler.
For subsequent compilations, please make sure
that you are using the GNX C compiler.

Begin the dbug sample session.

DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS B-3

B.4 Introduction to the Alphanumeric Interface

B.4.1 O pening Screen Layout
COMMAND EXPLANATION

wdisplay program

The dbug session begins with the appearance of
the dbug frame on the screen (Figure 3-4). The
dbug frame contains two windows.
The two windows appear one above the other. The
upper window is called the CODE window and the
lower window is called the DIALOG window. The
CODE window displays the code of the current pro­
gram under debug. This code belongs to the pro­
gram: b u b b l e . c .

The DIALOG window supports two logical func­
tions: 1) to provide a line for entering commands,
and 2) to provide an area for echoing commands
and displaying debugger messages.
The line where the cursor is located is called the
command line. The command line usually is
identified by the prompt "(dbug)". dbug displays
the prompt after a command completes execution.
One way to enter a command along the command
line is by typing the command through the key­
board.
The output area of the DIALOG window displays
the session history, including user commands and
dbug prompts and echoes.
Display the PROGRAM window. See Chapter 3 for
a description of this window.

wmove code vrd 120 Shrink the CODE window.
wmove dialog vrd 120 Shrink the DIALOG window.

B-4 DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS Rev 4.4

Code: bubble.c Program
1 1 «include <stdio.h>
1 2
1 3 «define ARRAYLEN 10
1 A
1 5 int numbers!ARRAYLEN] = C2, A , 17, 1 6
1 7 mainO
1 8 £
1 9 int i;
1 10 1

1 1
1 1
1 1
1 113, 7, 5, 2, 6 1 1
1 1
1 1
1 1
1 1 1 1

11
1
11
1
1
1
1
11Dialog .. . 1 1IDbug - Version A Revision A .

IType 'help' for help.
1 reading symbolic information ...
1(dbug) |
1
1
1
1
1

1 1
1 1
1 1
1 1
1 1
1 1
1 1 1 1
1 1 1 1

1
1
1
11
11
1
11

Figure B-l. DBUG Frame after the Code Window is Displayed

DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS B-5

Hein
1 Select ModeI _ Name Command 1I
1 <ctrl> <1> redraw 1
1 <ctrl> <n> wnext 1
1 <ESC> reset 1
i <enter> repeat 1
1 <pfl> gold 1
1 <gold> <pf2> help i 1
1 <blue> <pf2> help k 1
1 <pf2> help 1
1 <blue> <pf4> blue 1
1 <gold> <pf4> null 1
1 <pf4> blue 1
1 <kpf,> expand 1
i <kpf-> redraw 1
1 <kpf.> wnext 1
1 <kpO> commline !
1 <kp3> wscroll d 1
11 <kp9> wscroll u 1|
1 Press <ESC> to delete 1 the window...| 11

Figure B-2. The HELP Window

B-6 DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS

B.4.2 M oving B etw een Windows and Entering Commands
COMMAND EXPLANATION

From within the dbug frame, you may only write
or do work in one window at a time. The window
where the cursor is currently placed is known as
the selected window. The selected window defines
where work may take place. For example, you may
only scroll through the DIALOG or CODE windows
when the cursor is within their borders. In some
cases, a command parameter will be a window.
Window commands will take the selected window
as a default parameter if nothing else is specified.
It is possible to change the selected window by exe­
cuting the wnext command, or by pressing a func­
tion key defined as wnext (<ctrl> <n> or <kpf.> by
default).

<ctrl> <n> Move the cursor from the DIALOG to the CODE
window.

<ctrl> <n> Move the cursor from the CODE to the PROGRAM
window.

<kpO> Press the keypad key marked with a zero (0). This
key has been defined to execute a command which
brings the cursor directly to the command line from
wherever its current position may be. Let’s enter a
command. A valuable command at this point
would be one which describes the power of various
previously defined function keys.

help keys If you’ve done everything right, like typed without
spelling errors and pressed return, then a new win­
dow has taken over the screen (Figure B-2). This
window is called the HELP window, and lists the
power of various predefined function keys. Let’s
look through the list and execute a few of these
functions right now.

<ESC> Reset. The help screen disappears.
<pf4> <pf2> Display the help keys once again, this time by

pressing function keys.

DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS B-7

COMMAND EXPLANATION
<pfl> <pf2> List the commands for manipulating the dbug win­dows. Note that the window is divided into two

parts. The top half, called interface line commands,
lists those commands that must be entered along a
command line via the keyboard. The bottom half is
called interface nonline commands, these are com­
mands that are entered through predefined func­
tion keys.

<ESC> Reset the screen.
wdelete code Delete the CODE window.
wdisplay code Display the CODE window.

Now that you’re familiar with all the options
described in the HELP window (a small, but very
handy subset of the complete range of commands
available to you), we can define a function key that
can carry out one of these commands. The ability
to define function keys will save you countless
seconds of typing time. So without any further ado,
let’s define <ctrlxd> as our function key for exe­
cuting the "wdelete" command (a command for
removing a window from the screen).

kdefine wdelete Begin the procedure for defining a function key to
have the value wdelete (window delete).
The message "Press a function key:" appears in the
output area of the DIALOG window. Simultane­
ously, the "(dbug)" prompt disappears from the
command line.

<ctrlxd> Press <ctrlxd>. The "(dbug)" prompt reappears on
the command line. <ctrlxd> now has the function:
wdelete.

B-8 DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS

COMMAND EXPLANATION
We mentioned before that the selected window is
that window on which a particular command will
be executed by default. Thus, instead of specifying
"move code”, or "wdelete code", you may, when code
is the selected window, simply invoke wdelete (for
example) to see the CODE window disappear from
the face of the screen.

<ctrl> <n> Move the cursor from window to window (press the
<ctrlxn> command as often as necessary) until
the cursor is in the CODE window. Let’s execute
the wdelete command once again.

<ctrlxd> Execute the wdelete function key. There is no
need to specify CODE, because it is already the
selected window.

wdisplay code Redisplay the CODE window.
Now that you’re familiar with the basics of the
dbug interface, we can turn our attention to
debugging the sample program.
The first thing we must do is leave dbug, learn a
few things about the sample program, run the pro­
gram, and see if we, in fact, need to debug it.

quit Leave dbug.

DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS B-9

B.5 Explanation of the Sample Program
This section describes the sample program to be debugged during the sample session.

B.5.1 The Sample Program Logic
The program is designed to execute a bubble sort. The bubble sort algorithm reorders a
set of given numbers in descending order by comparing two adjacent numbers, and
exchanging them if the number to the right is greater than the number to the left. The
sorter compares every pair in the set until it reaches the end of the list. The sorter con­
tinues to make passes on the set until all numbers appear in descending order.
The following table displays bubble sort algorithm applied to a set with four values
ordered as follows: 1 4 2 3.

NUMBER SET PROGRAM OPERATION
14 2 3 (0) Original state of set
4 12 3 (1) Pass 1, values 1 and 4 compared and exchanged.
4 2 13 (2) Pass 1, values 1 and 2 compared and exchanged.
4 2 3 1 (3) Pass 1, values 1 and 3 compared and exchanged.
4 2 3 1 (4) Pass 2, values 4 and 2 compared but not

exchanged.
4 3 2 1 (5) Pass 2, values 3 and 2 compared and exchanged.
4 3 2 1 (6) Pass 2, values 2 and 1 compared but not

exchanged.
4 3 2 1 (7, 8, 9) Pass 3, values 4 and 3, 3 and 2, and 2 and 1

compared, but not exchanged. Bubble sort com­
plete.

B-10 DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS

The C language program that implements this algorithm is found in a file called
b u b b l e . c . The contents of this file appears on the following page.
Program variables include n u m b e r s , t o t a l _ c o u n t , c h a n g e _ c o u n t and s a v e .
ARRAYLEN equals the number of values in the list, n u m b e r s is an array of length
ARRAYLEN which holds the numbers in the set. t o t a l _ c o u n t counts the total
number of times an exchange takes place between two adjacent array cells.
c h a n g e _ c o u n t also counts exchanges, but is reset to zero each time the sorter begins a
new pass on the set. s a v e is a temporary variable which acts as a holding area for
exchanges between two adjacent array cells.
The first program activity is to print the array before it is sorted. The program then
calls a routine called b u b b l e _ s o r t which performs the bubble sort logic. The routine
is exited when a pass is completed without any exchanges taking place
(c h a n g e _ c o u n t = 0) or when the total number of passes exceeds the theoretical max­
imum (t o t a l _ c o u n t >= ARRAYLEN squared). The program then prints the result of
the run.

B.6 The Sample Program

DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS B -ll

#include <stdio.h>

t d e f i n e ARRAYLEN 10

i n t n u m b e r s [ARRAYLEN] = {2, 4 , 17, 13, 7, 5, 2 , 6, 9, 1 5 } ;

m a in ()
{

i n t i ;

p r i n t f (" T h e a r r a y b e f o r e t h e s o r t i n g : \ n ") ;
f o r (i = 0; i < ARRAYLEN; i++)

p r i n t f (" % d " , n u m b e r s [i]) ;
p r i n t f (" \ n \ n ") ;

p r i n t f ("The s o r t e d a r r a y a f t e r %d e x c h a n g e s : \ n " ,
b u b b l e _ s o r t ()) ;

f o r (i = 0; i < ARRAYLEN; i++)
p r i n t f (" % d " , n u m b e r s [i]) ;

p r i n t f (" \ n ") ;
}
i n t b u b b l e _ s o r t ()
{

i n t i ;
i n t c h a n g e _ c o u n t , t o t a l _ c o u n t ;
i n t s a v e ;

t o t a l _ c o u n t = 0;
do
{

c h a n g e _ c o u n t = 0;
f o r (i = 0; i < ARRAYLEN; i++)

i f (n u m b e r s [i] <= n u m b e r s [i + 1])
{

s a v e = n u m b e r s [i + 1] ;
n u m b e r s [i + 1] = n u m b e r s [i] ;
n u m b e r s [i] = s a v e ;
c h a n g e _ c o u n t + + ;
t o t a l _ c o u n t + + ;

}
}
w h i l e (c h a n g e _ c o u n t > 0 && t o t a l _ c o u n t <= ARRAYLEN * ARRAYLEN)
r e t u r n (t o t a l _ c o u n t) ;

}

B-12 DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS

B.7 The dbug Session

B.7.1 Hun the Sample Program
COMMAND EXPLANATION
bubble Run b u b b l e from the system shell and look at the

results. The program prints:
The array before sorting: 2 4 17 13 7 5 2 9 6 15
The sorted array after 101 exchanges: 543516756
17 15 13 9 7 6 5 4 2
Notice anything strange about the output? For one
thing, the number 543516756 (or a similar unreal­
istic number) was not part of our original input set,
and for another, the program carried out 101
exchanges (more than the theoretical maximum)
before exiting.
Let’s use dbug to find the problem.

DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS B-13

B.7.2 Running dbug and D evising a Debug Strategy
COMMAND EXPLANATION
dbug bubble Run dbug

Let’s turn our attention to the dbug frame. More
specifically, let’s examine b u b b l e , c in the CODE
window.

<ctrlxn> Place the cursor in the display area of the CODE window.
up-down arrows Scroll through b u b b l e . c by pressing the up and

down arrows. You may also scroll by using the pg-
up, pg-down keys (default setup for pg-up is <kp9>,
and for pg-down is <kp3>).
The first question we must address as we examine
b u b b l e . c is where to look for the bug. If we
glance at the output we see that the first bug
appears only after we’ve called the routine called
b u b b l e s o r t . So our first task will be to run the
program until we reach the b u b b l e s o r t routine
in line 23, then examine different variables in order
to determine where and how the problem occurs.

<kpO> Go to the command line.

B-14 DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS

Code: bubble.c Program1 21 } 1 1 11 22 1 1 11 23 int bubble_sort() 1 1 11 24 C 1 1 11 25 int i; 1 1 11 26 int change_count, total_count; 1 1 11 27 int save; 1 1 11 28 1 1 11* 29 total_count = 0; 1 1 11 30 do
1 1 1 1 1 11Dialog 1 1IType 'help' for help. 1 1 11 reading symbolic information ... 1 1 11(dbug) stop in bubble_sort 1 1 1III] stop in bubble_sort 1 1 11(dbug) -k- wscroll d 1 1 1l(dbug) -k- wscroll u 1 1 1l(dbug) -k- wscroll d 1 1 11(dbug) -k- wscroll d 1 1 11(dbug) | 1 1 1 II 11

Figure B-3. Breakpoint Marked

DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS B-15

B.7.3 First Debug Commands
COMMAND EXPLANATION
stop in bubble_sort

•
Set a flag which tells the program to halt when it
reaches the first executable command in
b u b b l e s o r t . Notice that this command is
t o t a l c o u n t = 0 in line 29, and that it is now
marked by an asterisk (*) along the lefthand border
of CODE window (Figure B-3).

run Execute b u b b l e . c

Notice that an arrow appears on the left side of the
CODE window screen and points to the current
program line under execution. This is line 29, the
first executable line of b u b b l e s o r t , and is also,
not coincidently, the point where we told the pro­
gram to stop. Notice that this information is also
displayed in the DIALOG window. Also notice that
the b u b b l e . c program message is displayed in
the PROGRAM window.

step Continue to execute the program one executable
instruction at a time. Notice that the arrow moves
to the current line under execution.

step Execute the next line. You may find it boring to
type "step" over and over. One short cut available
to you is to type "s", the alias for step.

s Step one more line by executing the alias for step.
p numbers We can also print the value of different variables,

"p" is the alias for print, n u m b e r s , of course, is the
array where our set is stored. Notice that the array
is in its original state. No exchanges have taken
place.

alias This command prints a list of all available aliases.

B-16 DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS

Code: bubble.c__ Program____________
I 34 if (numbers!!] <= numbersCi + 1]) I I The array before t
I 35 C I I he sorting:
I 36 save = numbersCi+1]; 1124 17 13 7 5 2 6
I => 37 numbersCi+1] = numbersCi]; 119 15
I 38 numbersCi] = save; I I
I 39 change_count++; I I
I 40 total_count++; I I
1 4 1 } I I
I 42 } II
I 43 while (change_count > 0 && total_count <= ARR
I__
Dialog__
I Cl] stop in bubble_sort
I C3] stop if save > 17 in bubble_sort I(dbug) cont
Istopped in bubble_sort at line 37 in file "bubble.c"
I 37 numbersCi+1] = num
IbersCi];
I (dbug) p save
1543516756
I(dbug) |
I __

Figure B-4. p save

DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS B-17

COMMAND EXPLANATION
s Step. This process of single stepping, while poten­

tially fruitful, is also time consuming, and perhaps
not really appropriate for our current needs. Let’s
try another approach.
Notice that all exchanges go through the temporary
variable called s a v e (line 36). That is, when
n u m b e r s [i] <= n u m b e r s (1-+-1] then s a v e =
n u m b e r s [i + 1] and n u m b e r s [i] = s a v e .

Thus, if we can identify the first time s a v e
receives an erroneous value, we’ll be well on our
way to discovering the bug.

stop if save > 17 Set a breakpoint if s a v e gets a value that’s greater
than 17, the largest known number in our set.
Unlike our earlier breakpoint, this one is not
identified by an asterisk (*) because it doesn’t have
a specific location in the program. On the other
hand, its scope does not extend beyond the
b u b b l e s o r t routine.

status List all of the currently declared breakpoints.
There are two. The number to the left has been
assigned by dbug and is called the event number.

cont Continue program execution until the "stop i f
breakpoint is reached.
Notice that the program stops after a few moments.
This is an indication that the value of s a v e
exceeds 17.

p save Print the value of s a v e . It equals the sinister
543516756 (or something equally wrong) (Figure
B-4).
Let’s examine the array index to determine when
this occurred.

B-18 DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS

COMMAND EXPLANATION
p i The "print i" command yields the information that

the array index equals 9 when s a v e gets the
erroneous value. This means that s a v e gets the
erroneous value in line 36, from the equation:
s a v e = n u m b e r s [i + 1] (or in others words:
" s a v e = numbers[10]") .

How, could array index 10 receive such a value?
The answer is clear. According to C language con­
ventions, array indices begin from 0 and continue
to n-1 (where n equals the size of the array). This
means, an array of size 10 would have the indices:
0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. Our array is also of
size 10 (ARRAYLEN = 10). This means that array
n u m b e rs is composed of variables numbers [0] ,
nu mb ers [l] , . . . numbers [9] . Variable numb ers [lO]
is not a part of the array.
Our problem comes from the fact that we’ve refer­
enced an invalid variable (n u m b e r s [l 0]).

The solution is to prevent array index i from
exceeding 8, then the maximum value attainable
by i + 1 will be 9 (instead of 10, as is currently).
Let’s fix the program.

q Quit dbug.

DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS B-19

B.7.4 Fixing the First Bug
COMMAND EXPLANATION

cc -g bubble.c -o bubble

Edit b u b b l e . c .

Go to line 33 where the loop b u b b l e s o r t is
defined. Replace the line:

f o r (i = 0 ; i < ARRAYLEN; i++)

with:
f o r (i = 0 ; i < ARRAYLEN - 1/ i++)

This ensures that the loop continues from 0 to 8,
instead of from 0 to 9. Save the change.
Recompile the program. Be sure you are using the
GNX C compiler.

bubble Let’s run the program again to see if it runs
correctly. The numbers seem to be in the right
order, but the output message states:

The sorted array after 101 exchanges.
Can it be that the program successfully carried out
the sort after 101 exchanges? This can’t be. It is
theoretically impossible - even if the array were
completely backwards, for the program to need
more than 100 exchanges to sort the program
correctly. Something is wrong, and we should use dbug again.

dbug bubble Run the debugger.

B-20 DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS

Code: bubble .c ____ ____ _ . Program
1 26 int change_count, total_count; 1 1 The array before t
1 2? int save; 1 1 he sorting:
1 28 112 4 17 13 7 5 2 6
l*=> 29 total_count = 0; 1 19 15
1 30 do 1 1
1 31 C 1 1
1 32 change_count = 0; 1 1
1 33 for (i = 0; i < ARRAYLEN - 1; i++) 1 1
1 34 if (numbers[i3 <= numbers[i + 13) 1 11 35 1 C 1 1

1 1Dialog 1
Ireading symbolic information ... 1 1
I(dbug) -k- wscroll d 1 1
1 (dbug) -k- wscroll d 1 1
1(dbug) stop in bubble_sort 1 1
1[13 stop in bubble_sort 1 1
1 (dbug) run 1 1
1 [13 stopped in bubble_sort at line 29 in file "bubble.c" 1 1
1 29 total_count = 0; 1 1
1(dbug) |
1

1 1 1 1

Figure B-5. stop in bubble_sort

DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS B-21

B.7.5 Finding the Second Bug
COMMAND EXPLANATION

Once again we want to begin by setting a break­
point in the b u b b l e s o r t routine with the com­
mand stop in bubble_sort. We take this action
because we want to determine why the variable
t o t a l c o u n t returned the value 101 after exiting
b u b b l e _ s o r t .

<ctrlxn> Position the cursor in the CODE window.
<kp3> (pg dn) Scroll through the display of b u b b l e . c until line

23: int b u b b l e s o r t () is in view.
<kpO> Go to the command line.
stop in bubble_sort An asterisk (*) appears next to line 29, the first

executable code in the b u b b l e s o r t function.
run Run the program. Notice that execution stops to

the side of the first executable command in the
b u b b l e s o r t function. This is line 29 which
states t o t a l c o u n t = 0 (Figure B-5).

<ctrlxn> Now move the cursor into the CODE window.
From here we may take a closer look at the pro­
gram code, and decide what to do next.

up - down arrows Gently scroll through the CODE window. Keep in
mind, as we scroll, that the evidence of the bug
comes from the fact that the value of
t o t a l c o u n t is too high, at least by one (and it
would seem that performing even 100 exchanges is
too much).
Since checking each and every exchange would be
too clumsy and time consuming, we would be
advised to put in a breakpoint after each complete
pass on the number set. Then we could check the
array numbers after it had undergone a complete
pass of the sorter.

<kpO> Go to the command line.

B-22 DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS

COMMAND EXPLANATION
stop at 33 Issue the stop at line 33 command.
cont Issue the cont command.

The program run continues until it reaches line 33,
where we placed the breakpoint. Let’s print the
contents of the array n u m b e r s to determine if its
values are in the correct order before beginning the
first pass.

Look in the DIALOG window. The array prints
out the following numbers in the following order:

2, 4, 17, 13, 7, 5, 2, 6, 9, 15
This is the order they should be in before sorting.
Let’s consider a strategy. Continue the same pro­
cedure just executed: continue the run, stop at the
breakpoint and print the value of n u m b er s . We’ll
do this until the problem is detected.

DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS B-23

p numbers Print the contents of n u m b er s .

COMMAND EXPLANATION

kdefine cont

But first, let’s make our job a little easier by
defining a couple of function keys to carry out some
of the more tedious commands.
Begin the procedure for defining a function key to
have the value cont (continue).
The message "Press a function key:" appears in the
output area of the DIALOG window. Simultane­
ously, the "(dbug)" prompt disappears from the
command line.

<ctrlxo> Press <ctrl> (control) o. The "(dbug)" prompt reap­
pears on the command line. <ctrlxo> now has the
function: cont.
Now let’s define a key to invoke the command
"print numbers". This is a more complex command
than before (we have to take the parameter
n u m b e r s into account). We’ll do the job in two
stages. First, we’ll create an alias for 'print
numbers" and next, we’ll assign that alias to a
function key.

alias pr "print numbers" Give the alias "pr" the value "print numbers".
kdefine pr Begin the procedure for defining a function key to

have the value "pr" (print numbers).
The message "Press a function key:" appears in the
output area of the DIALOG window. Simultane­
ously, the "(dbug)" prompt disappears from the
command line.

<ctrlxp> Press <ctrl> (control) p. The "(dbug)" prompt reap­
pears on the command line. <ctrlxp> now has the
function: print numbers.

B-24 DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS

COMMAND EXPLANATION
<ctrlxo> Invoke the cont command. Wait for the program

to reach the breakpoint.
Note that the DIALOG window makes a distinction
between how a command is issued when it echoes
the program conversation. Echoes of commands
issued from the command line are preceded by the
indicator "(dbug)" (example: (dbug) p numb ers) ,
while echoes of commands issued through a keypad
key or function key are preceded by the indicator
k-”.

<ctrlxp> Print the value of the array n u m b e rs . Notice that
after the first pass on the number set, the number
which had previously been in the second position is
now in the first position (4), and the number which
had previously been in the first position, is now in
the last position (2). This is evidence that at least
until now, the sorting is proceeding correctly.

<ctrlxo> Issue the cont command. Wait for the program to
reach the breakpoint.

<ctrlxp> Print n u m b er s .

Notice that the sorting mechanism seems to be
proceeding normally, as higher numbers gravitate
towards the front, and lower numbers move
towards the back.

<ctrlxo> Issue the cont command. Wait for the program to
reach the breakpoint.

<ctrlxp> Print n u m b er s .

<ctrlxo> Issue the cont command. Wait for the program to
reach the breakpoint.

DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS B-25

COMMAND EXPLANATION
<ctrlxp> Execute the print numbers command.

Until now everything seems to be ok. It could be,
however, that our problem lies with t o t a l _ c o u n t
- that it is receiving an incorrect value. Let’s print
its value.

p total_count Execute the print total_count command. The
value of t o t a l c o u n t is 25. This seems reason­
able, so let’s simply continue.

<ctrlxo> Execute the cont command.
<ctrlxp> Repeat the print numbers command.
<ctrlxo> Execute the cont command.
<ctrlxp> Print numbers.

This mode too, you may have noticed, can become a
little tedious. Dbug provides you with still another
way for entering commands. This option allows you
scroll through the history of commands issued
through the command area, and re-issue those com­
mands that are of interest to you, by pressing
return.
Before going to the exact details of how to do this,
let’s first execute a couple of key commands
through the command prompt. We do this because
the command area buffer only saves those com­
mands issued through the keyboard.

cont Continue the run.

B-26 DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS

B.7.6 Scrolling Through the Command Window
COMMAND EXPLANATION
p numbers Print numbers. Now let’s execute the same com­

mand series by scrolling through the command
prompt buffer (with the up-down arrows) and
pressing return.

up arrow (2x) Scroll back through the history of the command
line of the command line until the cont command
appears.

press return Execute the cont command.
up arrow (2x) Scroll back until the print numbers command

appears.
press return Execute the print numbers command.

At this point everything looks all right. The
number set has been reordered. As designed, the
program should now end. Let’s see what happens if
we execute cont again.

up arrow (2x) Scroll back through the history of the command
line of the command line until the cont command
appears.

press return Execute the cont command.
up arrow (2x) Scroll back until the print numbers command

appears.
press return Execute the print numbers command.

Watch the result! The set remains in the same
"correct" order, but the program fails to exit. Let’s
look at t o t a l c o u n t , to determine if it’s still
making exchanges.

DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS B-27

B.7.7 Narrowing Down the Problem
COMMAND EXPLANATION
p total_count T o t a l c o u n t equals 36. The program continues

making exchanges even after the number set has
been reordered. Let’s try to find out why it contin­
ues executing b u b b l e s o r t .

First we put a breakpoint at the point where the
exchange occurs.

<ctrlxn> Go to the program display in the CODE window.
Scroll to line 36. Let’s set a breakpoint.

<kpO> Go to the command line.
stop at 36 Now we can stop and examine the contents of

n u m b e r s [i + 1] and n u m b e r s [i] when they trade
values.
Next, let’s clear the earlier breakpoint.

clear 33 Execute the clear command.
A message appears in the DIALOG window:
1 b r e a k p o i n t d e l e t e d a t b u b b l e . c :33 .

<ctrlxo> Execute the cont command.
Now that the program has executed another pass,
let’s examine the numbers it is trying to exchange.

p numbers[i+l] The value of n u m b e r s [i + 1] is 2.

B-28 DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS

COMMAND EXPLANATION
p numbers [i] The value of n u m b e r s [i] is 2. This means that

the program is exchanging equal values. Let’s
examine value of i when it does this.

p i+1 i + 1 equals 9.

P i The value of i is 8.

It would seem that our program works fine when it
compares two inequalities, but just doesn’t stop
when it compares two equal numbers.
Look at the "if' statement which calls for the
exchange in line 34: i f (n u m b er s [i] <=
n u m b e r s [i + 1]) . Here is our problem. We don’t
want the program to execute the exchange if the
values of two neighboring numbers are equal. We
must fix the errant line to read:

i f (n u m b e r s [i] < n u m b e r s [i + 1])

quit Quit dbug
Edit bubble.c. Make the change.

cc -g bubble.c -o bubble Compile the program.
bubble Run the program.

The program generates the following message:
The array before sorting: 2 4 17 13 7 5 2 9 6 15
The sorted array after 27 exchanges: 17 15 13 9 7 6
5 4 2 2
Everything looks good. This terminates the
tutorial session of dbug, but by no means did we
cover the full range of dbug’s capabilities. Please
refer to the previous chapters of this reference
manual for the description of many additional com­
mands and advanced options.

DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS B-29

Appendix C
COMMAND LIST BY FUNCTIONAL GROUP

C.l Introduction
This appendix lists all available commands by functional group.

C.2 Execution And Tracing Commands
C O M M A N D E X P L A N A T I O N
begin objfile [corefile] Begin debugging of a new file
run [args] [< ifile] [> ofile] Run the loaded program
rerun [args] [< ifile] [> ofile] Rerun the loaded program
stop if condition
stop at source-line-number [if condition]
stop in procedure [if condition]
stop variable [if condition]
stop at line
(i f name [and mask]
[not] in range)
[/ [size] count]

trace [if condition]
trace {line \ procedure} [if condition]
trace in procedure [if condition]
trace variable [in procedure] [if condition]
trace expression at line [if condition]
status [> filename]
clear [number]
delete number [number ...]
cont [signal number | signal name]
step
next
return [procedure]
cont until (name [and mask]
[not] in range) [/size]

Set breakpoints (source level)

Traces variables and execution

List active breakpoints and traces
Clear breakpoints
Delete breakpoint and trace events
Continue program execution
Step over current source line
Step over current source line (skip proc. call -
Return from procedure to procedure !1Continue execution until value in range, i

Rev 4.4 COMMAND LIST BY FUNCTIONAL GROUP C-l

C.3 Remote Mode Commands
C O M M A N D E X P L A N A T I O N
config [link linkname I node nodename][verbose {on I off)][baud number] [cpu name]

[fpu name] j mmu name][mon name] [load {hex I binary}]
connect [link tty] [with I node nodename]

[baud number] [cpu name]
[mmu name] name][mon name]] Connect to a target

load [objfile] [with [nocode] [nodata] [protect]
[zerofill] [sp address]] Load executable file to target

C.4 Printing Variables And E xpressions
C O M M A N D E X P L A N A T I O N
assign [variable | add) - exp [radix]up [number]
down [number]
dump [procedure] [> filename]
pcpu
pfpu
pmmu
pbpu
picu
pdma
ptimer
pcomplex
print expression [, expression ...] [radix]
whatis symbol
where
whereis symbol
which symbol
address, address! [radix] [> file]
address! [count] [radix] [> file]

Assign a value to a variable or address
Move up in call stack
Move down in call stack
Dump procedure variables
Print all cpu registers
Print all fpu registers
Print all mmu registers
Print all on-chip BPU registers
Print on-chip ICU registers
Print on-chip DMA registers
Print on-chip timer registers
Print on-chip complex-multiplier registers
Print on-chip registers
Describe a symbol
Print active call stack
Find all occurrences of a symbol
Print symbol qualifier
Assembly level printing

C-2 COMMAND LIST BY FUNCTIONAL GROUP Rev 4.4

C.5 Window Commands
COMMAND
wdelete [wname\
wdisplay wname [at [wloc] wgo number
wmove [wname] wcorner wshiftwnext [wname]wpop [wname]wpush [wname]
wreset
wscroll [wname] wshift

EXPLANATION
Delete a window
Display a window
Go to a line in file
Move or resize window
Select a window
Pop window
Push window
Reset windows
Scroll window

C.6 Menu Commands
COMMAND EXPLANATION
addmenu [<text> | <expr> | <line>] command Add a menu entry
delmenu entry Removes a menu entry

C.7 Emulator Specific Commands
COMMAND EXPLANATION
configh [[mon bg I mon ig ,a d d r e s s]
[wait number] [lock {enable I disable)]
[burst {enable I disable)]
[realtime {enable I disable)]
[clock {int I ext)]
[cfg number]
[target {all I ignore I [dbg I int I nmi I hold)]

connect [link tty | node nodename] [with
[baud number] [cpu name]
[mmu name] [fpu name]
[monname]}

counter define {none | time | condition)
counter status
map [range [rom | ram | tram | trom]
[with copy]]
reseth
stoph if stop condition
traceh define [condition] [bus | vpc | all]
traceh format [pin_group:radix ...]

[absolute | relative]
[lines] [disasm] [mnemonic]

traceh list [number | number, number]

Connect to a target.
Counts time or events
Print counter qualification
Map emulation memory
Reset the emulation CPU
Set a hardware breakpoint
Define hardware trace

Define trace display format
Display trace buffer

COMMAND LIST BY FUNCTIONAL GROUP C-3

traceh reset
traceh start [at address] traceh status
traceh stop [at address]
unmap number

Reset trace definitions
Start hardware trace
Display current status of emulator trace
Stop hardware trace
Delete an emulator m a p term

C.8 A ccessing Source Files
C O M M A N D
/ regular expression [/]
? regular expression [?]
file [filename]
func [procedure]
list [procedure]
list fromline [, toline] [i]
use dir [d ir ...]

E X P L A N A T I O N
Search forward for patterns in source file
Search backward for patterns in source file
Select current file
Select current procedure or function
Print source code lines of a procedure
Print source code lines with optional disassembly
Set source search path

C.9 Key Definition
C O M M A N D E X P L A N A T I O N
kdefine [selection] command [pfkey] Attach function key to command
kreset Resets function key to default

C.10 Function Key Commands

GRAPHIC
COMMAND EXPLANATION DEFAULT

reset Remove temporary displays <ESC>
repeat Repeat last typed command <kpf+>
redraw Redraw the screen <kpf->
gold "gold" key <pfl>
blue "blue" key <pf4>
expand Expand the current window <kpf*>
com m line Move to the command line <kpO>
select Select a window <pf3>

OPUS-PC
DEFAULT

VT100
DEFAULT

SUN
DEFAULT

<ESC> <ESC> <ESC>
<pf7> <enter> <R15>
<pf8> <kpf-> <ctrlx l>
<pfl> <pfl> <R1>
<pf4> <pf4> <R4>
<pf5> <kpf,> <R5>
<pf9> <kpO> <R13>

C-4 COMMAND LIST BY FUNCTIONAL GROUP

C .ll Assem bly Level Commands
C O M M A N D E X P L A N A T I O N
stepi
nextistopi [{read | write | access}] a d d r e s s] stopi a d d r e s s [if c o n d i t io n] stopi at a d d r e s s [if c o n d i t io n]
stopi at a d d r e s s (i f n a m e [and m a s k] [not]
in r a n g e) [/ [s i z e] c o u n t]
tracei in p r o c e d u r e [if c o n d i t io n]
tracei at a d d r e s s [if c o n d i t io n]
tracei a d d r e s s [if c o n d i t io n]
tracei [if c o n d i t io n]

Execute next instruction
Execute next instruction (skip subr. calls)
Set breakpoints
Set breakpoint on change of address contents
Set breakpoint at address

Trace program execution

C.12 Command Aliases And Variables
C O M M A N D E X P L A N A T I O N
alias name [name | "strings']
alias nameiparameters)"strings' Define command aliases
alias Print aliases
set [v a r ia b le] Set dbug variables
unalias n a m e
unset v a r ia b le

Remove alias definition
Unset debugger variable

C.13 M iscellaneous Commands
C O M M A N D E X P L A N A T I O N
config [config p a ra m eter]
env
help
help k [eys]
help i [nterface]
catch {s ig n a l n u m b e r \ s i g n a l n a m e)
ignore { s ig n a l n u m b e r \ s i g n a l n a m e)

log [lo g f i l e]
log [lo g f i le] with append
log [lo g f i le] with save
log [lo g f i le] with full
log [lo g f i le] with full append

Rev 4.4

Set/Print the configuration parameters
Restore the environment
Explain debug commands
Explain key bindings
Explain window manipulation commands
Catch signals
Ignore signals
Save debugging session log

COMMAND LIST BY FUNCTIONAL GROUP C-5

quit [with save [f i le n a m e]] Terminate debugging session
protect a d d r e s s r a n g e [{read | write}
for {u | s}]
[{set | clear) { [v][r] [m]}] [start a d d r e s s][on primary] [using {ptbO | ptbl}] Set memory protection

source f i le n a m e Execute command file

C-6 COMMAND LIST BY FUNCTIONAL GROUP

Appendix D
GLOSSARY

.dbuginit (dbug.ini on VMS and MS-DOS) The default command file that is exe­
cuted by the debugger as a part of the DBUG invocation.
.gnxrc (gnx.ini on VMS and MS-DOS) A GNX target specification file that is used
by GNX tools to obtain the CPU, FPU, MMU, system bus-width, and OS target
specifications.
Address In the DBUG command syntax, addresses may be symbolic or absolute.
Absolute addresses are numbers, which may be entered as decimal, octal or hexade­
cimal numbers. Symbolic addresses are specified by an ampersand (&), which must
precede the symbol. The plus (+) and minus (-) operators can be used to create an
address.
Analyzer pin-group assignment Assignment of symbolic names by DBUG of those
CPU pins traced by the HP Emulator.
Assembly mode Assembly mode presents the disassembly of the target program.
Each instruction’s address is displayed on the left side of the DBUG code window. This
mode is activated when compiling without the -g option (/debug on VMS).
Background monitor A monitor operation mode for HP Emulator firmware. In this
mode the entire address space of the CPU is available. System exception processing is
disabled (including software breakpoints).
Breakpoint Breakpoint is the mechanism used to stop debugged program execution
at specified places and upon occurrence of specified conditions. Breakpoints are defined
by the STOP or STOPI commands. Reaching a breakpoint allows for the
examination/modification of variables, registers and memory locations.
CODE window One of 5 DBUG windows, which displays the section of your pro­
gram code that is currently executing and provides a visual representation of the
debugging session.
COFF Acronym for the Common Object File Format. This is the standard object file
format for the Unix System V operating system, and for the GNX software tools. A
COFF file contains machine code and data and additional information for relocation
and debugging purposes.
Command files Contain debugger commands that can be read and executed by
DBUG.
Rev 4.4 GLOSSAKY D-l

Commline key Moves the cursor to the command line. This command causes the
DIALOG window to be redisplayed if necessary.
Compilation flag The flag -g (/debug) is used to produce symbolic information for
the debugging of programs compiled with the GNX assembler and the C, Pascal and
FORTRAN compilers.
Corefile The file that is created when the application program is terminated abnor­
mally while running under UNIX.
Current environment Defined in DBUG as the combination of the current file and
the current procedure.
Current file The source file that contains the current procedure.
Current procedure The procedure at which execution stops and control is returned
to DBUG.
Current window The window in which the mouse cursor is currently located.
DBUG frame In the graphic environment, the window in which DBUG executes.
When an ASCII terminal is used, it is the full screen.

dbug.save file (d b u g . s a v on MS-DOS) The default file in which the history of a
debug session can be saved.
DBUG windows DBUG supports five windows: code, dialog, help, trace and pro­
gram. The code window displays the program being debugged. The dialog window is
for command entry. The help window lists DBUG command syntax. The trace window
displays trace information produced by emulators. The program window is available
only when using an ASCII terminal.
DIALOG window One of 5 DBUG windows, which displays user commands and
DBUG responses. All commands to DBUG are entered in the dialog window.
Disassembly The presentation of program memory as assembly commands.
Events Breakpoints and traces. Created by the stop and trace commands and
displayed by the status command.
Executable file The file that contains the COFF program being debugged. This file
is used as input to DBUG. Also referred to as an ob j f i l e .

Expand key Expands the current window to full DBUG frame size.
Expressions General types of expressions can be used as part of DBUG command
syntax. The common subset of expressions that are legal for Pascal and C
D-2 GLOSSARY Rev 4.4

programming languages are supported by DBUG.
Foreground monitor A monitor operation mode for HP Emulator firmware. In this
mode the monitor occupies a portion of CPU address space and some entries in the
interrupt table. This permits system exception processing.
HELP window One of 5 DBUG windows, which provides information on the use of
DBUG, window, and function key commands.
HP Emulator The HP64772 In-System Emulator for the NS32532, NS32GX32 and
the NS32GX320; the HP64779 In-System Emulator for the NS32FX16, NS32CG160,
NS32CG16 and NS32FX164 CPUs.
These emulators can be plugged into a target board to provide features such as real­
time trace, breakpoint, counters, and memory mapping.
Hanging menu A permanent menu which displays a variety of frequently used com­
mands.
Log file Consists of a log of the debugging session.
Marked text Text in the code window is marked by using the following methods:
dragging the cursor, delimiting the area to be highlighted, selecting a word, selecting a
line.
Memory blocks Memory blocks can be referred to as either part of the target or
emulation memory. Memory blocks that are mapped to emulation memory may be
characterized as either RAM or ROM.
Native mode In native mode both DBUG and the program being debugged run on
the host system. Native mode is available only on Series 32000-based computers
(SYS32/20/30/50) running under the UNIX Operation System.
Node name The name of the target system as recognized by the host. Used with
ethemet communications.
Option The UNIX term for a parameter, specified on the command line, that is used
to control the utility.
Qualifier The VMS term for a parameter, specified on the command line, that is
used to control the utility.
Radix parameter The radix parameter specifies the output format of the print com­
mand.
Redraw key Redraws the DBUG window.
Remote mode In remote mode DBUG runs on the host system while the program
being debugged runs on the Series 32000 based target system.
Rev 4.4 GLOSSARY D-3

Repeat key Repeats the last command issued from the command line.
Reset key Removes temporary menus and the HELP window.
Scroll bar The scroll bar is used to scroll through the output area (dialog or trace
window).
Selected window A window that is selected as a default parameter for DBUG com­
mands.
Selection menu The selection menu contains commands for printing and identifying
variables, and setting and clearing breakpoints.
Select key Defines the current window as the selected window.
Serial link The RS232 line that connects the host running DBUG with the target
board.
Shift specification Changes the size of the selected window by stretching it from
the identified comer(s). Specifying all four comers will move the entire window.
Source file The file containing the program code. Can be either an HLL or assembly
file. DBUG uses source files to access source information.
Source mode Source mode presents the program source code as originally written.
Symbol Symbols are defined as program identifiers. These include: variables, pro­
cedures, type definitions, registers, and file and module names.
TRACE window One of 5 DBUG windows, which is used with ISE configuration. It
displays the results of the hardware trace output.
Target board (system) The Series 32000 based system that runs user applications.
Trace This capability allows you to trace your program without stopping its execu­
tion. You can trace variable values, calls to procedures, and execution of particular
procedures.
Virtual PC A virtual address that is executed by the 532 and GX core CPUs and
appears on specific CPU pins. The HP Emulator can display these pins.

D-4 GLOSSARY

INDEX

A Clear command 5-10, C-l
Code segment 5-33

Access option 5-61 Code window
Accessing source file commands C-4 alphanumeric interface 3-30
Addmenu command 5-2, C-3 graphic interface 3-7
Address 4-9 scrolling 3-7
Address Range 4-9 COFF 4-13
Alias command 5-4, C-5 Color keys 3-23, 3-36
Alphanumeric interface Command aliasing 1-2

overview 3-26 Command file 1-1, 4-13, 5-54
Alphanumeric terminal 1-2 Command history 1-2
Arithmetic operators 4-10 Command invocation 3-3
Arrays 4-10 menu driven 3-16
Assembler, global symbols 5-57 Command line 3-8, 3-31, 4-13
Assembly level commands C-4 Command lists by functional group C-l
Assembly level printing 5-40 Command menus 3-14
Assembly mode 3-7, 3-30 Commands, accessing source files
Assign command 5-6, C-2 file 5-24, C-4
Assignments, analyzer channel 6-3 func 5-25, C-4

list 5-30, C-4
search backward 5-50, C-4

B search forward 5-50, C-4
use 5-66, C-4

Basic terms 4-4 Commands, aliases and variables
Basic types 4-11 alias 5-4, C-5
Baud option 5-11, 5-14, 6-12, 6-47 set 5-52, C-5
Begin command 5-7, C-l unalias 5-4, C-5
Bitmapped terminal 1-2 unset 5-52, C-5
Blue key 3-23, 3-25 , 3-36, 3-38, C-4 Commands, assembly level
Boolean constants 4-5 nexti 5-37, C-5
Boolean expression 4-10 stepi 5-56, C-5
$boolean type 4-11 stopi 5-61, C-5
Bpu 5-38 stopi at 5-61
Breakh 6-7, 6-42 tracei 5-63, C-5
Breakh command 6-7, 6-42 Commands, emulator specific
Breakpoint 4-14, 5-57, 5-61 configh 6-8, 6-43
Breakpoint capabilities 1-1 connect 6-11, 6-46, C-3
Bss area 5-33 counter define 6-15, 6-50, C-3
Bus option 6-6, 6-25 counter status 6-17, 6-51, C-3

map 6-19, 6-53, C-3
reseth C-3

C stoph if 6-23, 6-57, C-3
traceh define 6-25, 6-59, C-3

C block variables 4-9 traceh format 6-30, 6-63, C-3
C Language 1-1 traceh list 6-31, 6-64, C-3
Call command 5-8 traceh reset 6-32, 6-66, C-4
Call stack 5-21, 5-65, 5-72 Traceh start 6-34, 6-68, C-4
$callproc variable 5-52 traceh status 6-36, 6-71, C-4
Casting 4-11 traceh stop 6-37, 6-72, C-4
Catch command 5-9, C-5 unmap 6-40, 6-76, C-4
$char type 4-11 Commands, execution and tracing
Character constants 4-4 begin 5-7, C-l
$checkstack 5-52 clear 5-10, C-l
$checkstack variable 5-52 cont 5-16,C-l

INDEX 1

delete 5-19, C-l wgo 3-12, 5-70, C-3next 5-37, C-l wmove 3-12, 5-75, C-3rerun 5-48, C-l wnext 3-12, 5-78, C-3return 5-47, C-l wpop 3-12, 5-79, C-3run 5-48, C-l wpush 3-12, 5-80, C-3status 5-55, C-l wreset 3-12, 5-81, C-3step 5-56, C-l wscroll 3-12, 5-82, C-3stop 5-57, C-l Comment line 4-13trace 5-63, C-l Commline 3-8, 3-31Commands, function key Commline key 3-25, 3-38, C-4kdefine 3-24, 3-37, 5-27, C-4 Complex 5-39kreset 3-24, 3-37, 5-29, C-4 Concepts and conventions 4-1Commands, menu definition Condition 6-25, 6-59addmenu 3-18, 5-2, C-3 Config command 5-11, 6-78, C-2, C-5delmenu 3-18, 5-20, C-3 Configh command 6-8, 6-43Commands, miscellaneous Connect command 5-13, 6-11, 6-46, C-2, C-3catch 5-9, C-5 Constantsconfig C-5 Character constants 4-4env 5-23, C-5 Decimal 4-4help 5-26, C-5 Floating point constants 4-4ignore 5-9, C-5 Hexadecimal 4-4log 5-35, C-5 Octal 4-4protect 5-44, C-6 Strings 4-4quit 5-46, C-6 Cont command 5-16,C-lsource 5-54, C-6 Continuation character 4-13Commands, printing expressions Coredump 2-1assign 5-6, C-2 Corefile 4-13, 5-7down 5-21, C-2 Counter 6-4dump 5-22, C-2 Counter define command 6-15, 6-50, C-3pbpu 5-38, C-2 Counter status command 6-17, 6-51, C-3pcomplex 5-38, C-2 Cpu 5-12, 5-14, 5-38, 6-12, 6-47
pcpu 5-38, C-2 Current environment 4-4pdma 5-38, C-2 Current file 4-4, 5-23, 5-24, 5-30pfpu C-2 changing 5-23pi cu 5-38, C-2 Current procedure 4-4,5-21, 5-22, 5-23, 5-65pmmu 5-38, C-2 changing 5-25print 5-40, C-2 Current window 3-6ptimer 5-38, C-2
up 5-65, C-2
whatis 5-71, C-2 D
where 5-72, C-2
whereis 5-73, C-2 Dbug files
which 5-74, C-2 dbug.ini 4-13Commands, remote mode .dbuginit 2-1, 4-13config C-2 dbug.log 5-35connect 5-13, C-2 dbug. save 5-46load 5-32, C-2 gnx.ini 4-14Commands, special function key .gnxrc 4-3, 4-14, 5-12, 5-14, 6-12, 6-48blue 3-25, 3-38, C-4 log 4-14commline 3-25, 3-38, C-4 Dbug frame 3-6, 3-29expand 3-25, 3-38, C-4 Dbug interface 3-1gold 3-25, 3-38, C-4 Dbug variablesredraw 3-25, 3-38, C-4 $callproc 5-52repeat 3-25, 3-38, C-4 $checkstack 5-52reset 3-25, 3-38, C-4 $filediasm 5-52select 3-25, 3-38, C-4 $hexchars 5-52Commands, window manipulation $hexints 5-52wdelete 3-12, 5-67, C-3 $hexstrings 5-52wdisplay 3-12, 5-68, C-3 newdisasm 5-53

2 INDEX

1-2, 3-23, 3-36, 5-27$unsafeassign
Dbug windows
dbug.ini file
.dbuginit file
dbug.log file
dbug. save file
Debugger files
Debugger, introduction to
Debugger variable
Decimal constants
Delete a window
Delete command
Delmenu command
Dialog window

alphanumeric interface
command line
graphic interface
history buffer
output area

Disassembly

5-6
3-4, 3-29

4- 13
2-1, 4-13

5- 35
5-46
4- 13

1-1
5- 52

4-4
5-67

5-19,C-l
5-20, C-3

Function keys

G
2-1, 4-1, 5-10

1-1
4-1, 4-3, 4-14

4-14

3-31
3-8, 3-31

3-8
3-8, 3-31

3-9
5-30, 5-40, 5-42, 5-52, 6-30, C-3

-g, compilation flag
GNX Assembler
GNX Tools
gnx.ini file
.gnxrc file 4-3, 4-14, 5-12, 5-14, 6-12, 6-48
Go to a line 5-70
Gold key 3-23, 3-25, 3-36, 3-38, C-4
Graphic interface 3-2
Graphic terminal interface

overview 3-2
GTS 4-3,4-14

H
Dispatch table 5-32 Hanging menu 3-14
Display window 5-68 Hardware tracing 4-14
Dma 5-39 Help command 5-26, C-5
Double precision numbers 4-4 Help window
Down command 5-21, C-2 alphanumeric interface 3-33
Dump command 5-22, C-2 graphic interface 3-10

Hexadecimal constants 4-4
$hexchars variable 5-52

E $hexints variable 5-52
$hexstrings variable 5-52

Emulator specific commands C-3 History buffer 3-8, 3-31
Emulators 6-1 HP COMCARD 6-12, 6-47
Env command 5-23, C-5 HP64772 emulator 6-5
Env menu 3-19 HP64779 emulator 6-41
Ethernet support 4-15
Event number 5-19, 5-55, 5-58
Events list 5-19 I
Executable file 2-1
Execution and tracing commands C-l I cu 5-38Expand key 3-25, 3-38, C-4 Ignore command 5-9, C-5
Explicit radix 4-12 Implicit radix 4-12
Expressions 4-10 Indirection 3-22, 4-10, 4-12

Initialization 4-3
$integer type 4-11

F Interface, bitmapped terminal 1-2
Interface,advanced user 1-2

Fast protocol 5-13 Internal breakpoints 4-14
File command 5-24, C-4 Invocation 6-5, 6-41
File names 4-6 Invoking command 2-1
$filedisasm 5-52 I/O, program 3-6
Files, log 1-1 I/O program 3-32
Floating point constants 4-4 ISE 6-1
FORTRAN 1-1 Condition option 6-5, 6-41
Fpu 5-12, 5-14, 5-38, 6-12, 6-47 Counter 6-4
Frame Downloading 6-1

alphanumeric interface 3-29 memory mapping 6-4
graphic interface 3-6 tracing 6-1

Func command 5-25, C-4 Virtual PC 6-5
Function key commands 3-24, 3-37, C-4

INDEX 3

K O
kdefine 3-36 Objfile 2-1, 4-13, 5-7
Kdefine command 3-23, 5-27, C-4 Octal constants 4-4
Key definition commands 5-27, C-4 Operating modes 1-1
Kreset command 5-29, C-4 Operators

* A 4-11
& 4-11

L -> (arrow) 4-11
. (period) 4-6, 4-11

Languages supported 1-1, 4-10 and 4-11
Line numbers 4-6 div 4-11
Line selection 3-30 mod 4-11
Link option 5-11, 5-13, 6-11, 6-46 or 4-11
List command 5-30, C-4 Opus-pc 3-26, 3-29
List option 5-14, 6-12, 6-47
Load command 5-32, C-2
Local variables 4-14 P
Log command 5-35, C-5
Log file 4-14, 5-35, 5-46 Page translation 5-44

Partial symbolics 4-16
Pascal 1-1

M Pbpu command 5-38, C-2
Pcomplex command 5-38, C-2

Map command 6-19, 6-53, 6-79, C-3 Pcpu command 5-38, C-2
Map emulation 6-19, 6-53 Pdma command 5-38, C-2
Map term 6-19, 6-40, 6-53, 6-76 Pfpu command C-2
Mark text 3-16 Pi cu command 5-38, C-2
Marked text 3-23, 3-24 Pmmu command 5-38, C-2
Memory mapping 6-4 Pointer 4-12
Menu commands C-3 Pop-up window 5-78
Menus 3-19 Primary page table 5-44
Misc menu 3-19 Print * 3-22, 4-10, 4-12
Miscellaneous commands C-5 Print capabilities 1-1
Mmu 5-12, 5-14, 5-38, 6-12, 6-47 Print command 5-40, C-2
Modular table 5-32 Printing variables and expressions com-
Module definition 4-6 mands 4-12, C-2
Mon 5-12, 5-14 Program I/O 3-6, 3-32
Monitor escape 4-13 Program window
Mouse buttons 3-9 alphanumeric interface 3-32
Mouse cursor 3-3, 3-14 Protect command 5-44, C-6
Multiple command 4-13 Protect option 5-33

Protection level 5-44
Protocol, fast 5-13

N Ptimer command 5-38, C-2
Native mode 1-1

description 4-1 Q$newdisasm 5-53
$newdisasm variable 5-53 Quit command 5-46, C-6
Next address 4-13
Next command 5-37, C-l
Nexti command 5-37, C-5 R
Nocode option 5-33
Nofast option 5-13 Radix
Null key 3-25, 3-38, C-4 b 5-40

c 5-40
D 5-40
explicit 4-12

4 INDEX

f 5-40 $sp 4-6
g 5-40 $st 4-6
implicit 4-12 $stat 4-6
0 5-40 $tlcntl-$t3cntl 4-6
s 5-40 $tlra-$t3ra 4-6
X 5-40 $tlrb-$t3rb 4-6

Ram option 6-19, 6-53 $tl-$t3 4-6
Read option 5-61 $tcc0-$tccl 4-6
$real type 4-11 $tcr0-$tcrl 4-6
Record type 4-11 $tear 4-6Recording 5-35 $us 4-6
Redraw key 3-25, 3-38, C-4 $vect 4-6
Register names $y0-$yl 4-6

$bar 4-6 Registers 4-6
$bcnt 4-6 Remote mode 1-1, 5-11, 5-13, 6-11, 6-46
$bdr 4-6 description 4-1
$bear 4-6 monitor 4-1
$bfsr 4-6 Repeat key 3-25, 3-38, C-4
$bmr 4-6 Replaying 5-35
$bpc 4-6 Rerun command 5-48, C-l
$bpcr 4-6 Reset emulation 6-7, 6-22, 6-56
$bplmr 4-6 Reset key 3-10, 3-14, 3-25, 3-33, 3-38, 5-26, C-4
$bpmr 4-6 Reseth command 6-7, 6-22, 6-56, C-3
$bprO 4-6 Resizes window 5-75
$bprl 4-6 Return command 5-47, C-l
$bprmr 4-6 Rom option 6-19, 6-53
$c0-$c63 4-6 RS232 1-1, 6-12, 6-47
$car 4-6 RS422 6-12, 6-13, 6-47, 6-48
$cfg 4-6 Run command 5-48, C-l
$cptr 4-6 Run menu 3-20
$ctl 4-6
$ctl0-$ctll 4-6
$dcr 4-6 S
$dmaptr 4-6
$dsr 4-6 Scroll bar 3-9
$dstat 4-6 Search backward command (?) 5-50, C-4
$eia 4-6 Search forward command (/) 5-50, C-4
$f0-$f7 4-6 Search menu 3-21
$fp 4-6 Search path 5-66
$fsr 4-6 Search pattern 5-50
$iereg 4-6 Secondary page table 5-44
$in 4-6 Select key 3-25, 3-38, C-4
$is 4-6 Selected text 3-16, 5-2, 5-27
$isrv 4-6 Selected window 3-6, 3-29, 5-78
$ivarO-$ivarl 4-6 Selection menu 3-22
$10-$17 4-6 Session history 3-8, 3-31
$mod 4-6 Set command 5-52, C-5
$modeO-$model 4-6 Shift specification 5-75, 5-82
$msr 4-6 Signal 5-9,5-16
$pO-$pl 4-6 Single step execution 5-58, 5-64
$pc 4-6 Software tracing 4-14
$psr 4-6 Source command 5-54, C-6
$psrmod 4-6 Source files 4-13, 5-66
$ptbO 4-6 Source mode 3-7, 3-30
$ptbl 4-6 Sp option 5-11
$r0-$r7 4-6 Special Characters 4-13
$sacc-$sacc 4-6 Special function key commands 3-25, 3-38
$sarO-$sarl 4-6 SPLICE 6-1, 6-77
$sb 4-6

INDEX 5

SPLICE commands predefined 4-11config 6-78 Type definition 5-71map 6-79 Types, predefinedunmap 6-81 $boolean 4-11
Stand-aside mode 4-1, 5-14 $char 4-11
Static base 5-32 $integer 4-11
Status command 5-55, C-l $real 4-11
Step command 5-56, C-l $string 4-11
Stepi command 5-56, C-5
Stop command 5-57, C-l
Stop condition 5-57, 5-61 U
Stop menu 3-20
Stoph command 6-23, 6-57, C-3 Unalias command 5-4, C-5
Stopi command 5-61, C-5 Uncover window 5-79
Strings constants 4-4 Unmap command 6-40, 6-76, 6-81, C-4
Structure 4-12 Unmap emulator map 6-40, 6-76
Stx 5-11, 5-14 $unsafeassign 5-6, 5-52
Sun 3-26, 3-29 Unset command 5-52, C-5
Symbol 4-6, 5-71, 5-73, 5-74 Up command 5-65, C-2
Symbolic addresses 4-9, 5-41 Use command 5-66, C-4
Symbolic debugging 1-1 User menu 3-16, 3-18, 3-21, 5-2, 5-20
Symbolic disassembly 1-2

T
Verbose communication mode 5-11, 5-14, 6-12,

Tag 4-12 6-47
Target board 5-32, 5-44 Verbose option 5-11
Temporary menu 3-14 View menu 3-20
Text selection 3-7 Virtual PC 6-5, 6-30
Timer 5-39 Vpc option 6-25
Trace buffer 6-6, 6-25 VtlOO 3-26, 3-29
Trace capabilities 1-1
Trace command 5-63, C-l
Trace condition item 5-63 W
Trace window

alphanumeric interface 3-34 Wdelete command 5-67, C-3
graphic interface 3-11 Wdisplay command 5-68, C-3
traceh list 3-11, 3-34 Wgo command 5-70, C-3

Traceh define command 6-25, 6-59, C-3 Whatis command 5-71, C-2
Traceh format command 6-30, 6-63, C-3 Where command 5-72, C-2
Traceh list command 3-34, 6-31, 6-64, C-3 Whereis command 5-73, C-2
Traceh reset command 6-32, 6-66, C-4 Which command 5-74, C-2
Traceh start command 6-34, 6-68, C-4 Window commands C-2
Traceh status command 6-36, 6-71, C-4 Window location 5-68, 5-81
Traceh stop command 6-37, 6-72, C-4 Window manipulation commands 3-12
Traceh_mode 6-6, 6-25 Window move 5-75
Tracei command 5-63, C-5 Window selection
Traces 4-14 alphanumeric 3-29
Tracing capabilities 4-14 graphic 3-6
Translation table 5-45 Windows menu 3-21
Transparent mode 4-1, 5-14 Wmove command 5-75, C-3
Tutorial for alphanumeric terminals B-l Wnext command 5-78, C-3
Tutorial for graphic terminals A-l Wpop command 5-79, C-3
Type Wpush command 5-80, C-3

basic 4-11 Wreset command 5-81, C-3
casting 4-11 Write option 5-61
checking 4-11 Wscroll command 5-82, C-3
conversion 4-11

6 INDEX

z
Zerofill option 5-33

INDEX 7

	TOP
	GNX - Version 4.4 Symbolic Debugger (DBUG) Reference Manual
	REVISION RECORD
	PREFACE

	CONTENTS
	Chapter 1 INTRODUCTION AND OVERVIEW
	Chapter 2 INVOKING DBUG
	Chapter 3 THE DBUG INTERFACE
	Chapter 4 USING DBUG
	Chapter 5 DBUG COMMAND SET
	Chapter 6 INTERFACE WITH EMULATORS
	Appendix A DBUG TUTORIAL FOR GRAPHIC TERMINALS
	Appendix B DBUG TUTORIAL FOR ALPHANUMERIC TERMINALS
	Appendix C COMMAND LIST BY FUNCTIONAL GROUP
	Appendix D GLOSSARY
	Appendix E GLOSSARY (missing)
	INDEX
	BOTTOM

