
Platzhalter, damit als PDF das Dokument
in 2-Seiten Ansicht gelesen werden kann.

Original und zum Druck ab Seite 2.

fritz
Stempel
Platzhalter, damit als PDF das Dokument in 2-Seiten Ansicht gelesen werden kann.

Original und zum Druck ab Seite 2.
--

This page added for reading the document on 2 pages.
Original and for printing is from page 2.

fritz
Stempel

Series 32000s
GNX —Version 3

C Optimizing Compiler
Reference Manual

Customer Order Number NSP-C-V3-M NSC Publication Number 424010516-003BMay 1989

REVISION RECORD

REVISION RELEASE DATE SUMMARY OF CHANGES
A Sep 1988 First Release.
B May 1989 miscellaneous bugfixes.fast fp emulation support added.

GX32 support added.

PREFACE

This is a reference manual for National Semiconductor Corporation’s GNX—Version 3
C optimizing compiler. The C optimizing compiler generates high-quality code for the
Series 32000® architecture, therefore improving the performance of the Series 32000
system.
The main difference between the C optimizing compiler and other compilers is the advanced optimizing component of the compiler. The optimizer uses advanced optimi­
zation techniques to improve speed or save space. This reference manual provides
guidelines for using the optimizer as well as a discussion of the compiler’s optimization
techniques. In addition, this reference manual provides information regarding the
compilation process, extensions to the C programming language, and implementation
issues.
This manual corresponds to Version 3 of the C compiler.
A complete list of National Semiconductor’s international offices may be found on the
inside back cover of this manual.
The information contained in this manual is for reference only and is subject to change
without notice.
No part of this document may be reproduced in any form or by any means without the prior written consent of National Semiconductor Corporation.

GENIX, NSX, ISE, ISE16, ISE32, SYS32, and TDS are trademarks of National Semiconductor Corporation.
Series 32000 is a registered trademark of National Semiconductor Corporation.
UNIX is a re g is te re d t r a d e m a rk of AT&T.
VAX, VMS, and DEC are trademarks of Digital Equipment Corporation.

iii Rev. B

CONTENTS

Chapter 1 OVERVIEW
1.1 INTRODUCTION.. 1-1
1.2 AUDIENCE.. 1-2
1.3 FEATURES AND SUPPORTED LANGUAGE EXTENSIONS . . 1-2

1.3.1 Compiler F eatu res.. 1-2
1.3.2 Supported C Language Extensions................................... 1-3

1.4 DOCUMENTATION CONVENTIONS.. 1-3
1.4.1 General Conventions.. 1-3
1.4.2 Conventions in Syntax Descriptions............................... 1-4
1.4.3 Example Conventions.. 1-4

Chapter 2 COMPILATION PROCESS
2.1 INTRODUCTION.. 2-1
2.2 C OPTIMIZING COMPILER STRUCTURE................................... 2-1
2.3 COMMAND LINE OPTIONS... 2-2

2.3.1 UNIX Compilation O ptions... 2-2
2.3.2 VMS Compilation Qualifiers.. 2-9

2.4 TARGET MACHINE SPECIFICATION... 2-13
2.5 THE INTERNAL COMPILER TABLES... 2-14
2.6 FLOATING-POINT EMULATION.. 2-14

2.6.1 Floating-point Emulation — Native H o s t 2-15
2.6.2 Floating-point Emulation — Native Host, Cross Sup­

port .. 2-15
2.6.3 Floating-point Emulation — VAX/UNIX sy stem 2-15
2.6.4 Floating-point Emulation — VAX/VMS System 2-16

2.7 ENVIRONMENT VARIABLES.. 2-16
Chapter 3 EXTENSIONS TO THE C LANGUAGE

3.1 INTRODUCTION.. 3-1
3.2 SINGLE-PRECISION FLOATING CONSTANTS......................... 3-1
3.3 UNSIGNED CONSTANTS... 3-1
3.4 ENUMERATED T Y P E ... 3-2
3.5 STRUCTURE HANDLING.. 3-2
3.6 VOID DATA TYPE.. 3-2
3.7 BITFIELDS... 3_2

CONTENTS v

3.8 VOLATILE AND CONST.. 3-2
3.8.1 V o la tile .. 3-3
3.8.2 C o n s t .. 3-4

3.9 A S M .. 3-5
3.10 IDENT... 3-6

Chapter 4 IMPLEMENTATION ISSUES
4.1 INTRODUCTION.. 4-1
4.2 IMPLEMENTATION ASPECTS... 4-1

4.2.1 Memory Representation.. 4-1
4.2.2 External Linkage... 4-2
4.2.3 Types and Conversions... 4-2
4.2.4 Variable and Structure Alignment................................... 4-2
4.2.5 Structure Returning Functions... 4-9
4.2.6 Calling Sequence... 4-9
4.2.7 Mixed-Language Programming 4-9
4.2.8 Order of Evaluation.. 4-10
4.2.9 Order of Allocation of Memory... 4-10
4.2.10 Register Variables .. 4-10
4.2.11 Floating-Point A rithm etic... 4-11

4.3 UNDEFINED BEHAVIOR... 4-11
Chapter 5 OPTIMIZATION TECHNIQUES

5.1 INTRODUCTION.. 5-1
5.2 THE OPTIMIZER.. 5-2
5.3 THE CODE GENERATOR... 5-8
5.4 MEMORY LAYOUT OPTIMIZATIONS.. 5-9

Chapter 6 GUIDELINES ON USING THE OPTIMIZER
6.1 INTRODUCTION.. 6-1
6.2 OPTIMIZATION F L A G S.. 6-1

6.2.1 Optimization Options on the Command Line — UNIX
S ystem s.. 6-1

6.2.2 Optimization Options on the Command Line — VMS
System s.. 6-3

6.2.3 Turning off Optimization O p tion s................................... 6-3
6.3 PORTING EXISTING C PROGRAMS.. 6-3

6.3.1 Undetected Program E rro rs.. 6-5
6.3.2 Compiling System Code... 6-5
6.3.3 Timing assum ptions.. 6-6
6.3.4 Low-Level Interface.. 6-6
6.3.5 Using Nonstandard Library Routines............................ 6-7

6.4 DEBUGGING OF OPTIMIZED CODE... 6-8
6.5 ADDITIONAL GUIDELINES FOR IMPROVING CODE

QUALITY.. 6-9
6.5.1 Static Functions.. 6-9
6.5.2 Integer V ariables... 6-10
6.5.3 Local V ariab les.. 6-10
6.5.4 Floating-Point Computations... 6-10
6.5.5 Pointer U sage... 6-11
6.5.6 Asm Statements.. 6-13
6.5.7 Register A llocation.. 6-13
6.5.8 setjm pO .. 6-14
6.5.9 Optimizing for S p ace ... 6-14

6.6 COMPILATION TIME REQUIREMENTS.................................... 6-14
Appendix A SERIES 32000 STANDARD CALLING CONVENTIONS

A.l INTRODUCTION... A-l
A. 2 CALLING CONVENTION ELEMENTS.................................. . A-l

Appendix B MIXED-LANGUAGE PROGRAMMING
B. l INTRODUCTION... B-l

B.1.1 Writing Mixed-Language Program s............................... B-l
B.1.2 Compiling Mixed-Language Programs............................ B-6
B.1.3 Compilation on UNIX Operating S y s tem s...................... B-7
B.1.4 Compilation on VAIS Operating S y stem s...................... B-8

B.2 COMPILING THE MIXED-LANGUAGE EXAMPLE................... B-8
B.2.1 Compiling the Example on a UNIX System...................... B-9
B. 2.2 Compiling the Example on a VAIS System B-9

B. 3 PROGRAM MODULE LISTINGS ... B-9
Appendix C ERROR MESSAGES

C. l INTRODUCTION.. C-2
C. 1.1 Warnings .. C-2
C.1.2 E r r o r s ... C-2

C. 2 Error Messages... C-2
Appendix D COMPILER OPTIONS

D. l INTRODUCTION... D-2

FIGURES
Figure 4-1. Bitfield Padding.. 4-6
Figure 4-2. Aignment on B itfie lds.. 4-7

CONTENTS vii

Figure 5-1. Relationship Between Various Optimizations........................... 5-3
Figure 5-2. Flow G ra p h .. 5-4
Figure 5-3. Example of Partial Redundancy Elim ination............................ 5-6
Figure B-l. Cross-Language Pairs... B-2

TABLES
Table 2-1. Filename Conventions.. 2-4
Table 2-2. Target Selection Param eters... 2-14
Table 2-3. Internal Compiler Tables... 2-15
Table 4-1. Variable Alignment.. 4-3
Table 6-1. Optimization Options... 6-2
Table 6-2. Turning off Optimization O ptions.. 6-4
Table 6-3. Recognized Library Routines ... 6-7
Table B-l. Compilers and their Associated L ibraries.................................. B-7
Table D-l. UNIX Operating System O ptions... D-2
Table D-2. VMS Operating System O ptions... D-4
Table D-3. Options Passed to the Preprocessor — UNIX Systems................. D-5
Table D-4. Options Passed to the Preprocessor — VMS Systems................. D-5
Table D-5. Options Recognized and Passed to the Linker............................. D-6

INDEX

viii CONTENTS

Chapter 1
OVERVIEW

1.1 INTRODUCTION
This manual describes National Semiconductor’s GNX—Version 3 C optimizing com­
piler. This compiler is one of a family of compatible optimizing compilers for the
Series 32000 architecture.* The GNX—Version 3 C compiler replaces and obsoletes
the previous GNX—Version 2 C compiler. It implements the C language as described
in the C Programming Language by Kemighan and Ritchie. It is fully compatible with
the System V C compiler, a compiler derived from the portable C compiler (pcc). It is
also enhanced by several features from the draft-proposed ANSI C standard (referred
to throughout this manual as standard C). The GNX—Version 3 C optimizing compiler
is available as a cross-support compiler on VMS™ and UNIX® operating systems as
well as a native compiler on Series 32000 operating systems derived from UNIX System
V, Release 3. A list of related reference documentation (e.g., Series 32000 GNX — Ver­
sion 3 Assembler Reference Manual) are located in the Series 32000 GNX — Version 3
Commands and Operations Manual.
This manual is organized as follows:

• Introduction (Chapter 1)
• Compilation Process (Chapter 2)
• Extensions to Standard C (Chapter 3)
• Implementation Issues (Chapter 4)
• Optimization Techniques (Chapter 5)
• Guidelines on Using the Optimizer (Chapter 6)
• Series 32000 Calling Standard Conventions (Appendix A)
• Mixed-Language Programming (Appendix B)
• Error Messages (Appendix C)
• Compiler Options (Appendix D)

* At this writing, the family consists of a C optimizing compiler, Pascal optimizing compiler, FORTRAN 77 optimizing compiler, and Modula-2 optimizing compiler.

OVERVIEW 1-1

1.2 AUDIENCE
This manual is intended for use as a reference manual by experienced C programmers.
The information provided covers compiler options, extensions to the standard C pro­
gramming language, and implementation issues. Knowledge of optimization tech­
niques is useful but not essential. To aid the user who does not have such knowledge, a
chapter on optimization techniques used by the optimizer is provided. This chapter
supplies the background information necessary to understand and use the compiler
optimization flags. A second optimization chapter provides guidelines to help the pro­
grammer avoid problems that could occur when using the optimizer.
This manual assumes that the reader has a working knowledge of the C language.
Recommended C reference and tutorial books include:

Harbison, Samuel and Steele, Guy. C, A Reference Manual, Second Edition,
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1984.
Kernighan, Brian and Ritchie, Dennis. The C Programming Language, First Edi­
tion. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1978.
Kochan, Stephen. Programming in C. Rochelle Park, New Jersey: Hayden Book
Company, 1983.
Purdam, Jack. C Programming Guide. Indianapolis, Indiana: Que Corporation,
1983.
Plum, Thomas. Learning to Program in C. Philadelphia, Pennsylvania: Plum
Hall Inc., 1983.

1.3 FEATURES AND SUPPORTED LANGUAGE EXTENSIONS

1.3.1 Compiler Features
The following are the main features of the C optimizing compiler:

• pcc compatible.
• Accepts standard C language and many extensions (Section 1.3.2 lists supported

C language extensions).
• Optimizations can be tuned to either improve speed or save space.
• Optimization level is controlled by the user.
• The compiler generates code tuned to the specific target system.
• Full support of mixed-language programming.
• Full support of read-only constants.
• Full support of volatile variables.
• User controlled alignment of variables and structure members.

1-2 OVERVIEW

• Improved structure handling over that defined in The C Programming Language
book by Kernighan and Ritchie.

• Assembly output can be annotated with source lines.

1.3.2 Supported C Language Extensions
The compiler implements the full C language as defined by the “C Reference Manual,”
Appendix A of the C Programming Language book, by Kernighan and Ritchie. In addi­
tion, the following extensions are supported:

• New ANSI C keyword/datatypes:
— const for defining read-only entities
— v o la t i le for sensitive variables

• ANSI C support for the void data type. This includes its use as a cast and
“pointer to void” as the universal pointer.

• Structures may be assigned, passed as arguments and returned from functions.
• Structure/union member names need not be globally unique.
• Structure and union size are not limited.
• Unsigned constants (to save run-time conversions).
• Single-precision floating constants (to save run-time conversions).
• Enumeration datatype, compatible with int type (ANSI).
• Unsigned or signed bitfields.

All of the above extensions are discussed in Chapter 3.

1.4 DOCUMENTATION CONVENTIONS
The following documentation conventions are used in text, syntax descriptions, and
examples in describing commands and parameters.

1.4.1 General Conventions
Nonprinting characters are indicated by enclosing a name for the character in angle
brackets <>. For example, <CR> indicates the RETURN key, <ctrl/B> indicates the
character input by simultaneously pressing the control key and the B key.
Constant-width type is used within text for filenames, directories, command names and
program listings; it is also used to highlight individual numbers and letters. For exam­
ple,

the C preprocessor, cpp, resides in the GNXDIR/lib directory.
OVERVIEW 1-3

The following conventions are used in syntax descriptions:
Constant-width boldface type indicates actual user input.
Italics indicate user-supplied items. The italicized word is a generic term
for the actual operand that the user enters. For example,

cc [[option] ... [filename] . . .] . . .
Spaces or blanks, when present, are significant; they must be entered as
shown. Multiple blanks or horizontal tabs may be used in place of a single
blank.
{} Large braces enclose two or more items of which one, and only one,

must be used. The items are separated from each other by a logical
OR sign “ i ”
Large brackets enclose optional item(s).
Logical OR sign separates items of which one, and only one, may be
used.
Three consecutive periods indicate optional repetition of the preced­
ing item(s). If a group of items can be repeated, the group is
enclosed in large parentheses “().”

,,, Three consecutive commas indicate optional repetition of the preced­
ing item. Items must be separated by commas. If a group of items
can be repeated, the group is enclosed in large parentheses “().”

() Large parentheses enclose items which need to be grouped together
for optional repetition. If three consecutive commas or periods follow
an item, only that item may be repeated. The parentheses indicate
that the group may be repeated.

lj Indicates a space, u is only used to indicate a specific number of
required spaces.

All other characters or symbols appearing in the syntax must be entered as
shown. Brackets, parentheses, or braces which must be entered, are smaller
than the symbols used to describe the syntax. (Compare user-entered [],
with [] which show optional items.)

1.4.2 C on ven tion s in Syntax D escrip tion s

1.4.3 Example Conventions
In interactive examples where both user input and system responses are shown, the
machine output is in constant-width regular type; user-entered input is in constant-

1-4 OVERVIEW

width boldface type. Output from the machine which varies (e.g., the date) is in italic type. For example,
— > g < CR>

Breakpoint 2 reached at filenam e
.3 printf("hello\r\n");

main: .3

OVERVIEW 1-5

Chapter 2
COMPILATION PROCESS

2.1 INTRODUCTION
The GNX—Version 3 C Compiler is a modular language processor consisting of five
separate programs. This chapter describes the five programs, the GNX—Version 3 C
Compiler invocation, options available to the user, and file generation.

2.2 COMPILER STRUCTURE
The GNX—Version 3 C Compiler’s five programs are:

• Driver
• Macro preprocessor
• C language parser (front end)
• Optimizer
• Code generator

The driver is a program that parses and interprets the command line and then sequen­
tially calls each of the other programs, depending on its input programs and the com­
mand line options.
The Macro preprocessor is the standard C preprocessor, cpp. Its input is a program
file optionally containing preprocessing commands.
The C language parser is the compiler’s front end, cc_fe. Its input is a C program.
Its output is the same program in a proprietary intermediate form.*
The optimizer, opt, is a true global, language-independent optimizer that uses
advanced optimization techniques to improve the code. Both its input and output are
in the same intermediate form. See Chapter 5 for more detailed information.

* The intermediate form is language-independent. This allows the same optimizer and code generator
to be used by all National Semiconductor GNX — Version 3 Compilers, i.e., the FORTRAN 77
Compiler, the Pascal Compiler, the C Compiler, and the Modula-2 Compiler.

COMPILATION PROCESS 2-1

The Series 32000 code generator, cgen coff, generates an assembly program from a
program in the intermediate form.
The assembly program produced by the code generator must be assembled by the
Series 32000 assembler to produce an object code program. The assembler is automati­
cally called by the driver program.
The user produces an executable program by running the Series 32000 linker on one or
more object code programs with run-time library archives. On UNIX systems the linker
is automatically called by the driver program. On VMS systems it must be called
separately.

2.3 COMMAND LINE OPTIONS
The GNX—Version 3 C Compiler operation is controlled by a large number of compila­
tion parameters. Many of these parameters, such as the target system specification
can be permanently set by means of the GNX Target Setup (GTS) facility.* All compi­
lation parameters can be specified as command line options which override any previ­
ously existing default values.
Command line options and default values are the same for all supported host systems,
but their syntax varies from host to host. Two host systems are currently supported:
the UNIX operating system (in both cross-support and native variants) and the VMS
operating system (cross-support only). The next two sections provide details on the
various compilation parameters and their syntax on these host systems. The tables in
Appendix D summarize the various compilation options of both operating systems and
can be used as a quick reference.

2.3.1 UNIX Compilation Options
The invocation syntax of the GNX—Version 3 C Compiler under UNIX is:

cc [[option]... [filename]...]... (native configuration)
nmcc [[option]... [filename]...]... (cross-support configuration)

The compiler accepts a variable number of file arguments and compilation options. It
produces an executable file, object file(s), or assembly file(s), according to the options
specified. The files compiled are normally C program sources, but other types of files
are also recognized. A file type is recognized by its suffix. A compilation option is
recognized by the UNIX convention of a minus-sign prefix.

* For details on how to use GTS, see the appropriate Series 32000 GNX — Version 3 Commands and Operations manual.

2-2 COMPILATION PROCESS

Files are identified by the compiler according to their suffix. Files with names ending
with . c or . i are C source programs.
Files ending with . c, pass through the macro preprocessor (cpp) before compilation.
Files ending with . i compile directly and assemble to produce object programs left in
files whose names are those of the source files with . o substituted for the given suffix.
The intermediate . o file is deleted if a C program consisting of a single file is compiled
and linked at the same time.
In support of mixed-language programming, the compiler also recognizes and compiles
appropriate files written in other programming languages. Files with a . s suffix are
assembly source programs and may be assembled (to produce . o files) and linked. Pas­
cal, FORTRAN 77, and Modula-2 source files are also recognized, and compile appropri­
ately if your system includes the National Semiconductor GNX — Version 3 Compiler
for those languages. The suffixes for these files are listed in Table 2-1. See Appendix B
for details on mixed-language programming.
All other files (normally . o or . a files) are compatible object programs, typically pro­
duced by previous runs of the GNX—Version 3 C Compiler, and pass directly to the
linker. The object files link into one executable file with the default name a . out (or
a32 . out in a cross-support environment).

Filenam e Conventions

COMPILATION PROCESS 2-3

Table 2-1. Filenam e Conventions

FILENAME
SUFFIX

FILE TYPE

.c C source file
.i Preprocessed C source file

.f, .for FORTRAN 77 source file
.F, .FOR FORTRAN 77 source with cpp directives
,m, .mod Modula-2 source file

.M, .MOD Modula-2 source with cpp directives
.def Modula-2 definition module source file

.DEF Modula-2 definition module source with cpp directives
.p,.pas Pascal source file
,P, .PAS Pascal source with cpp directives

.s Assembly source file
other (.o, .a, etc.) Object code or library-archive file

Compiler Options
The following is a list of the compilation options which may be specified on the invoca­
tion line.*

-0 (PERFORMS OPTIMIZATIONS)
-Fflags (SPECIFIES OPTIMIZATION FLAGS)
-0flags (PERFORMS OPTIMIZATIONS ACCORDING TO FLAGS)

The -0 option directs the GNX—Version 3 C Compiler to perform glo­
bal optimizations. The optimizer uses a variety of optimization tech­
niques which ensure the fastest possible code. In certain cases, such as
when code density is of greater importance than code speed, it is neces­
sary to specify optimizations. Using the -F option with the

* The GNX—Version 3 C compiler supports the System V Interface Definition (SVID) for C compilers.
Where possible, space is allowed between an option and its following flags, i.e., -oout is the same as
-o out, and -J2 is the same as -J 2.
Similarly, -DHOST is equivalent to -D HOST. The notation in this section follows traditional Unix
conventions.

2-4 COMPILATION PROCESS

Q

a flags

g

i dir

P

c

optimization flags listed in Chapter 6 sets the selected optimization
flags. Using the -F option by itself will do nothing. -0flags is a
shorthand notation for -0 -F flags. A detailed discussion of optimiza­
tion techniques is found in Chapter 5 and Chapter 6.
(COMPILES QUICK, NO CODE)
This option allows for a quick error-checking compilation. No code is
generated.
(GENERATES RUN-TIME CHECKS)
This is only useful when compiling Pascal, FORTRAN 77, and
Modula-2 programs.
(PREPARES SYMBOLIC DEBUGGING INFORMATION)
The -g option instructs the GNX—Version 3 C Compiler to prepare
symbolic debugging information for symbolic debuggers, such as
idbg32. See the discussion on debugging of optimized code in Section
6.4.
(SPECIFIES DIRECTORY TO IMPORT FROM)
This option is useful only when compiling GNX — Version 3 Modula-2
programs.
(PREPARES PROFILE INFORMATION FOR A PROGRAM PRO­
FILER)
This option prepares profile information for a program profiler, such as
prof.
(COMPILES BUT DOES NOT LINK)
The -c option directs the GNX—Version 3 C Compiler to perform the
compilation process up to, but not including, linking. Output is left in
object files whose names end with . o. This option is useful when com­
piling only a portion of a program’s modules. For example,

cc -c sample.c

creates the file sample. o. No executable file is created.
(COMPILES AND LEAVES ASSEMBLY FILES)
The - S option directs the GNX—Version 3 C Compiler to terminate
the compilation process before assembly. The assembly output is left in
files whose names are those of the source, with . s substituted for the
original suffix. For example,

cc -S sample.c utils.c

creates the files sample . s and utils . s. No executable or object file
is created.

COMPILATION PKOCESS 2-5

-n

-C

-R

-o out

-Jwidth

-w

-w66

-T

-A

(IMBEDS C SOURCE LINES AS COMMENTS IN ASSEMBLY)
This option puts the C source lines into the assembly output file as
comments. If the optimizer is enabled, explanatory optimizer com­
ments are also put into the assembly output file. Note that the -n
option is useful only in conjunction with the -S option.
(LEAVES COMMENTS IN)
The preprocessor normally removes the comments from its output. The
-C option prevents this. This option can be useful when cpp’s output
must be examined or when the -n option is used and C comments are
required in the assembly file.
(PUTS LITERAL STRINGS IN READ-ONLY MEMORY)
C literal strings are, by default, writable and are thus allocated in the
writable data space. The - R option allocates literal strings in a read­
only area.

(RENAMES THE OUTPUT FILE)
The -o option redirects the output file from the compilation process to
a file named out. This option renames the executable file, whose
default name is a. out (or a32 . out in a cross-support environment).
For example,

cc sample.c utils.c -o sample

generates the executable file sample from the two source files, and
cc -S sample.c -o new_sample.s

generates the assembly file new_sample. s.
(ALIGNMENT WITHIN STRUCTURES)
This option allows the user to set structure-member alignment on
bytes (width = 1), words (width = 2), or double-words (width = 4).
Default value for width is 4 (double-word-aligned).
(NO WARNING DIAGNOSTICS)
The GNX—Version 3 C Optimizing Compiler normally prints warn­
ings regarding inconsistencies in the input program. The -w option
suppresses these warning diagnostics.
(SUPPRESSES FORTRAN 66 WARNINGS)
This is only useful when compiling FORTRAN 77 programs.
(UNDEFINED VARIABLE TYPE)
This is only useful when compiling FORTRAN 77 programs.
(ALLOCATES VARIABLES AS STANDARD)
This option directs the compiler to adhere to the draft-proposed ANSI
C standard, with respect to the declaration and allocation of global
variables. When this option is used, there must be exactly one declara­
tion of each global variable without the keyword extern within the

2-6 COMPILATION PROCESS

entire program. This declaration is considered the definition of the
variable.

-an (CONFORMS TO EDITION n OF REPORT)
This is only useful when compiling Modula-2 programs, n can be
either 2 or 3.

-m (USES THE m4 PREPROCESSOR)
With this option, the m4 preprocessor is used on assembly and FOR­
TRAN 77 files before assembling and compiling them.

-d (CASE SENSITIVITY)
This is only useful when compiling Pascal and FORTRAN 77 pro­
grams.

-N {parameter} {size} (SET INTERNAL TABLE SIZE)
This option allows the user to change the default size of certain inter­
nal tables of the compiler. The default sizes are sufficient for most
applications, but can be overridden using this option. See Section 2.5
for more details.

-v (VERBOSE)
This option lists the subprograms of the GNX—Version 3 C Compiler
as they are executed by the driver program.

-vn (SHOWS BUT DOES NOT ACTUALLY EXECUTE)
This option lists the compiler subprograms that are called by the
compiler’s driver program, without actually executing them. This
option can be used to verify how other compiler options work.

-Kparameter (SETS TARGET CPU, FPU, OR BUSWIDTH)
The -K option allows the user to “tune” the GNX—Version 3 C Com­
piler by specifying the CPU, the FPU (or absence of), and/or buswidth
of the target system. See Sections 2.4 and 2.6 for more details.
(USES ALTERNATIVE LIBRARY)
This option directs the compiler to link an alternative library and ini­
tialization file, determined by the character which follows the option. For example,

cc -Z2 unix.c

links unix. o with c r t2 .o a n d l ib 2 .a .
(GENERATES MODULAR CODE)
This option directs the compiler to generate code that conforms to the
Series 32000 architectural feature of modularity (which allows the use of external references). For further information see the Series 32000
GNX — Version 3 Language Tools Technical Notes and the Series 32000 Programmer’s Reference Manual.

COMPILATION PROCESS 2-7

-Z C

-X

Rev B

- f (FLOATING-POINT EMULATION)This option tells the compiler driver that there is no FPU on the target and floating-point emulation is desired. See Section 2.6 for a discus­
sion of this option and floating-point emulation.

The compiler accepts the following options and passes them to the C preprocessor.
-Dname[=def] (DEFINES)The -D switch defines name equal to def to the preprocessor. If no explicit value is given, name is defined as having the value 1. The use of this option is equivalent to putting a “#define name def’ at the beginning of each C source file.

For example:
cc -DHOST=VAX sample .c

works as if the following define was at the head of sample. c:
d e f i n e HOST VAX

-E (RUNS cpp ONLY)This option terminates the compilation after preprocessing; only the
cpp preprocessor is invoked, and its output is sent to the standard out­
put, stdout.

- 1 dir (SPECIFIES DIRECTORY FOR INCLUDED FILES)This option tells to use the specified directory as the default directory
for included files. Include files that are called using double quotes, e.g., #include "filename", are sought first in the directory of the compiled file, then in the directories specified by - I , and finally in directories on
a standard list (/usr/include). If the user explicitly names the file to be included by using the complete path, e.g., #include
"/a/mydir/filename", the named file is sought directly. If angle
brackets are used instead of double quotes, e.g.,
#include <filename>, the file is sought in the directories on a stan­
dard list (/usr/include).

-M (RUNS cpp ONLY, GENERATES MAKEFILE DEPENDENCIES)This option runs only the cpp macro preprocessor on the named C pro­
grams, requests it to generate makefile dependencies and then sends the result to the standard output, stdout. For example:

c c -M * . c > n e w .m a k e f i l e

runs cpp on all of the C programs in the current directory and gen­
erates all makefile dependencies. These dependencies are then sent to the file new.makefile.

2-8 COMPILATION PROCESS Rev B

-P (RUNS epp ONLY, REDIRECTS OUTPUT TO .i FILE)This option is similar to -E , except that the output of e p p is sent to a file with a . i extension. For example:
c c -P s a m p l e .c u t i l s . c

creates the files s amp 1 e . i and ut i 1 s . i.
-u name (UNDEFINES)Using this option is equivalent to putting “#undef name” at the begin­ning of each C source file.

In addition, the compiler accepts the following compiler options and passes them to the linker. See the GNX — Version 3 Linker User’s Guide manual for details.
-V
-1 lib
-s

-r
-u symname
-e epname
-x

(LINKER VERSION)
(SPECIFIES A PROGRAM LIBRARY)
(STRIPS THE EXECUTABLE FILE OF SYMBOL TABLE AND
RELOCATION BITS)
(RETAINS RELOCATION)

(UNDEFINES SYMBOL IN SYMBOL TABLE)
(DEFINES ENTRY POINT)
(NO LOCAL SYMBOLS IN OUTPUT SYMBOL TABLE)

The following option can be used as an “escape” to pass additional options (not recog­
nized by the GNX—Version 3 C Compiler) to the C preprocessor, assembler, or linker.

-wx,options (PASSES OPTIONS TO COMPILATION PHASE x)
This option passes options to the C preprocessor (x = p), the assembler
{x = a), or the linker (x = 1). The options must be a single argument (no
imbedded space, unless quoted). For example, the command,

cc -Wl,-mmu382 sample.c
passes the option -mmu382 to the linker.

2.3.2 VMS Compilation Qualifiers
The command line invocation syntax of the GNX—Version 3 C Compiler is as follows:

nmcc [qualifier]... filename
The normal operation of the GNX—Version 3 C Compiler compiles and assembles a
file specified on the command line to create an object file. Command qualifiers (pre­
ceded by a /) are applied as necessary. Most qualifiers can be preceded by NO to
reverse their function. The usual VMS conventions regarding default filename exten­
sions, case insensitivity, qualifier syntax and abbreviation rules apply. The GNX—
Version 3 C Compiler accepts only one C source file as input and produces an object
file with optional intermediate results (such as an assembly file). If the source file has

COMPILATION PROCESS 2-9

no extension, a . C extension is assumed.

The following is a list of the compilation qualifiers which may be specified on the invo­
cation line:

/OBJECT \=filename]
This qualifier directs the compiler to leave the object code in a file
named filename. If filename has no suffix, . OBJ is added as a suffix. If
filename is not specified, the object code is placed in a file with the
source’s filename, with the .OBJ suffix substituted for the original
suffix. Default of this qualifier is /OBJECT. For example,

NMCC/OBJ=NEW_UTILS.OBJ UTILS .C

compiles the file utils.c, and leaves the result in a file called
new_utils. obj.

The command:
NMCC/NOOBJ/ASM/OPT/ANNO SAMPLE .C

results in an annotated, optimized assembly translation of sample . c
and does not generate an object file.
The command NMCC/NOOB J x.c results in a quick compilation of
x . c without producing any output. This is useful for error checking.

/OPTIMIZE [= {flags)]
This qualifier directs the GNX—Version 3 C Compiler to perform glo­
bal optimizations. A detailed discussion of the GNX—Version 3 C
Compiler optimization techniques is located in Chapter 5 and Chapter
6. Default is /NOOPTIMIZE.

/DEBUG
The /debug qualifier instructs the GNX—Version 3 C Compiler to
prepare symbolic debugging information for symbolic debuggers, such
as dbg32. See the discussion on debugging of optimized code in Sec­
tion 6.4. Default is /NODEBUG.

/PROFILE
The /PROFILE qualifier prepares profiling information for a program
profiler, such as prof. Default is /NOPROFILE.

/ASM \=filename]
This qualifier directs the compiler to leave the intermediate assembly
file in a file named filename. If filename has no suffix, .ASM is added
as a suffix. If filename is not given, the source filename is used substi­
tuting the .ASM suffix with the source filename’s suffix. Default of
this qualifier is /NOASM. For example,

2-10 COMPILATION PROCESS

compiles the file U T IL S .C , and produces NEW _UTILS. ASM and
U TILS .O B J.

/ANNOTATE
This qualifier directs the compiler to put GNX—Version 3 C source
lines as comments into the assembly output file. If the optimizer is
enabled, explanatory optimizer comments are also added into the
assembly output. Note that this qualifier is useful only in conjunction
with the /ASM qualifier. Default is /NOANNOTATE.

/ROM_STRINGS
C literal strings are, by default, writable and are thus allocated in the
writable data space. This qualifier directs the compiler to put all
literal strings in read-only memory.

/ALIGN [=width]
This qualifier allows the user to set structure member alignment on
bytes (width = 1), words (width = 2), or double-words (width = 4).
Default value for width is 4 (double-word-aligned). See Section 4.2.4
for details of the GNX—Version 3 C Compiler’s alignment scheme.

/WARNING
The GNX—Version 3 C Compiler prints warnings regarding incon­
sistencies found in the input program. The /NOWARNING qualifier
suppresses these warning diagnostics. Default is /WARNING.

/STANDARD
This qualifier directs the compiler to adhere to the draft-proposed
ANSI C standard, with respect to the declaration and allocation of glo­
bal variables. When /STANDARD is used, there must be exactly only
one declaration of each global variable without the keyword extern
within the entire program. This declaration is considered the
“definition” of the variable. Default is /NOSTANDARD.

/TABLE_SIZE= (table _name=size [, . . .])
This qualifier allows the user to change the default size of certain
internal tables of the compiler. The default sizes are sufficient for
most applications, but can be overridden using this qualifier. See Sec­
tion 2.5 for more details.

NMCC/ASM=NEW_UTILS.ASM UTILS.C

/VERBOSE
This qualifier lists the parts of the GNX—Version 3 C Compiler as
they are called by the driver program. Default is /NOVERBOSE.

/VN
With this qualifier, the compiler lists the subprograms that are called
by the driver program, without actually executing them. This qualifier
can be used to verify how the other qualifiers work. Default is /NOVN.

COMPILATION PROCESS 2-11

/TARGET= (CPU =cpu, FPTJ=fpu, BUSWIDTH=öus)
The /TARGET qualifier allows the user to “tune” the GNX—Version 3
C Compiler by specifying the CPU, the FPU (or absence of), and/or
buswidth of the target system. See Sections 2.4 and 2.6 for more
details.

/MODULAR
This qualifier directs the compiler to generate code that conforms to
the Series 32000 architectural feature of modularity (which allows the
use of external references). For further information see the
Series 32000 GNX — Version 3 Language Tools Technical Notes and
the Series 32000 Programmer’s Reference Manual. Default is /NOMO-
DULAR.

/ERROR [=filename]
The /ERROR qualifier instructs the GNX—Version 3 C Compiler to
direct compilation error messages to an error log file in addition to the
standard output. If filename has no suffix, the suffix . ERR is added. If
no destination file is given, the source filename is used, substituting
. ERR for the source filename’s suffix. Default sends the errors to the
standard output only. For instance,

NMCC /ERROR=FILEl.ERR FILEl.C
creates an error log file named f il e i . err.

/PRE_PROCESSOR
This qualifier causes the source file to be passed to the GNX C prepro­
cessor before the normal processing by the GNX—Version 3 C
language parser. Default is /NOPRE_PROCESSOR.

In addition, the compiler recognizes the following compiler qualifiers and passes them
to the C preprocessor. These qualifiers must be used in conjunction with the
/PRE_PROCESSOR qualifier.

/ define= (name [=def] [, . . .])
The use of this option is equivalent to putting a #define name def at the
beginning of the C source file. The /D E FIN E switch defines name equal to
the value def to the preprocessor. If no explicit value is given, name is defined as having the value 1. For example:

NMCC/PRE_PROCESSOR/DEFINE=("VAX", "TARGET_I S _N S 3 2 0 0 0 ") SAMPLE.C

w o rk s a s i f th e fo llo w in g tw o d e fin e s w e re a t th e h e a d o f SAMPLE. C:
#defi.ne VAX 1
♦define TARGET_IS_NS32000 1

/COMMENT
The preprocessor normally removes the comments from its output. The
/COMMENT qualifier prevents this. This qualifier is useful when c p p ’s out­
put must be examined or when the /ANNOTATE qualifier is used and C

2-12 COMPILATION PROCESS Rev B

comments are required in the assembly file. Default is /COMMENT.
/EXPAND \=filename]

This qualifier controls whether the output of the preprocessor is saved to a
file. If filename has no suffix, the suffix .MAC is added. If filename is not
given, the source file name is used substituting the suffix .MAC for the
source file name’s suffix. (Default is /NOEXPAND.)

/INCLUDE = (include_dir [, . . .])
This qualifier tells the cpp preprocessor to use the specified directory as the
default directory for included files. Include files that are specified using dou­
ble quotes, e.g., #include "filename", are sought first in the directory of
the compiled file, then in the directories specified by INCLUDE, and finally
in directories on a standard list (GNXDIR: INCLUDE). If the user explicitly
names the file to be included by using the complete path, i.e., #include
" [MYDIR] filename", the named file is sought directly. If angle brackets
are used instead of double quotes, e.g., #include <flename>, the file is
sought in the directories on a standard list (GNXDIR: INCLUDE).

/undefine= {name [- • •] >Using this qualifier is equivalent to putting #undef name at the beginning
of each C source file.

2.4 TARGET MACHINE SPECIFICATION
The compiler provides a way for the user to tune the code for a specific target system
by specifying its CPU, FPU and buswidth. This tuning is performed by setting per­
manent defaults using the GNX Target Setup (GTS) facility, or by specifying /TARGET
(-k) on the command line. Table 2-2 lists the flags and the possible settings. The
values for the CPU and FPU can either be the complete device name e.g., NS32332 or
NS32081, or the last characters of the device name, e.g. 332 or cgl6. The absence of
an FPU on the target system can be indicated by specifying /emulation or /nofpu.
See Section 2.6. The buswidth is specified in bytes.

Rev B COMPILATION PROCESS 2-13

Table 2-2. Target Selection Parameters

CPU (C) FPU (F) BUSWIDTH (B)
[NS321008 [NS321081 1
[NS32J016 [NS32J381 2
[NS32]cgl6 [NS321580 4
[NS32J032 emulation
[NS321332 nofpu
[NS32J532
[NS32]gx32

Example: The following example specifies an NS32332 CPU, an NS32081 FPU,
and a buswidth of 4 bytes.
UNIX
cc -KC332 -KF081 -KB4 temp.c
or nmcc -KC332 -KF081 -KB4 temp. c (cross-support)
VMS
NMCC /TARGET=(CPU=332,FPU=081,BUS=4) TEMP.C

2.5 THE INTERNAL COMPILER TABLES
The compiler has a default size for each of its internal static tables. This size is
sufficient for most applications; however, some programs can cause overflow of one or
more of the tables. If this happens, the compiler can be run with the / TABLE_SIZE
qualifier (-N on UNIX systems) to increase the size of the appropriate table.
The compiler gives an error message specifying in which table the overflow occurred
and which option to use to overcome the problem. Table 2-3 shows the options.

2-14 COMPILATION PROCESS

Table 2-3. Internal Compiler Tables

UNIX VMS DEFAULT
FLAG FLAG SIZE

c CONTROL_NESTING 100
i IR_BUFFER 2048
n IDENTIFIERS 1200
t INTERN AL_TREE 5100

The tables can be expected to overflow when:
• CONTROL_NESTING (c)

the program includes deeply-nested compound statements (if/while/do/switch).
• IR_BUFFER (i) and INTERNAL_TREE (t)

there are very complex expressions or compile-time initialization of very large
aggregates.

• IDENTIFIERS (n)
the program uses a very large number of identifiers.

In addition to the flags mentioned, there exist flags that were used in the development
of the compiler. These flags, DIM_TABLE (d), PARAM_STACK (p), MULTI_TABLE
(m), and SWITCH_TABLE (s), should rarely, if ever, be used. In the case of a problem
with one of these internal compiler tables, the user gets an error message describing
the problem and what to do to solve the problem.

2.6 FLOATING-POINT EMULATION
Two different floating point emulation options are available with the GNX—Version 3
C Compiler: Hfp and fpee. Additional information, such as the difference between
these options and the way they are implemented, can be found in Chapter 6 of the
Series 32000 GNX-Version 3 Support Libraries Reference Manual. The use of the Hfp
package is indicated by the -KFemulation compiler option
(/TARGET= (FPU=emulation) on VMS). The use of the fpee package is indicated by
the -f or -KFnofpu compiler option (/TARGET=(FPU=nofpu) on VMS). These
options may also be set permanently by using the GTS facility.

Rev B COMPILATION PROCESS 2-15

2.6.1 Floating-point Emulation — Native Host
There is no way to unconfigure the FPU on the SYS32/30 or SYS32/20, and no
floating-point emulation is therefore required. To use the fpee library you must do
the following:

1. Include asm ("bsr _fpinit_") ; at the beginning of the main module.
2. Include a -lfpe field after the source and object module in the “compile” com­

mand. For example,
cc filel.c -lfpe -lm

where f i l e l . c i s the input source file.

2.6.2 Floating-point Emulation — Native Host, Cross
On a Series 32000/UNIX system, cross-application linking to the floating-point emula­
tion library must be explicitly requested. For example,

cc -c filel.c file2.c
Id GNXDIR/lib/db_fcrt0.o filel.o file2.o -ldb_fpe -db_c

2.6.3 Floating-point Emulation — VAX UNIX system
On a VAXAJNIX system, floating-point emulation is achieved by using either the - f
option on the nmcc invocation line or including a call to the INIT__routine prior to
any floating-point operations and explicitly linking files and libraries.
When - f is used on the nmcc invocation line the cross-compiler driver:

• assumes there is no FPU on the target system
• assumes that the user wants to use floating-point emulation
• generates the correct command line and passes this to the linker

For example:
nmcc -f filel.c

The following is an example of explicitly linking files and libraries:
nmcc -c filel.c
nmeld GNXDIR/lib/fcrt0.o filel.o -lfpe -lm -lc

2-16 COMPILATION PROCESS Rev B

2.6.4 F loa tin g -p o in t E m u lation — VAX/VMS system
Files and libraries must be explicitly linked to achieve floating-point emulation on a
VAX/VMS system. This is a two-step process:

nmcc filel.c
n m e l d g n x d i r :f c r t 0 . o b j , f i l e l . o b j , g n x d i r :l i b f p e . a, g n x d i r :l i b c . a

2.7 ENVIRONM ENT VARIABLES
On UNIX systems, in addition to the command line options, the compiler accepts several
implicit options. These can be set through the environment variables CMDDIR,
TMPDIR, LIBPATH, and INCLUDEPATH which are described below:

CMDDIR
The environment variable CMDDIR can be given the value of a direc­
tory name, in which the driver looks for the indirectly called programs
(cpp, cc_fe, opt, etc.). For example, if CMDDIR
''/usr/nsc/lib'', the driver will look for /usr/nsc/lib/cpp,
/usr/nsc/lib/cc_fe, etc.

TMPDIR
This environment variable redefines the location at which temporary
files are created in the compilation process: Default is /tmp. This
environment variable should be used on small systems with tiny /tmp
partitions, which overflow when compiling huge files.

LIBPATH
The environment variable LIBPATH can be defined to contain one or
more directories (separated by If LIBPATH is defined, then
libraries will be taken from one of these directories. For example, if
LIBPATH = /usr/mylib:/usr/yourlib, then libraries will be in
either /usr/mylib or /usr/yourlib.

INCLUDEPATH
If the INCLUDEPATH variable is defined (in a similar format as LIB­
PATH), the standard include files will be searched for in its directories
(such as <stdio. h> in the C language).

See Section 6.6 for use of the AVAIL_SWAP environment variable.

COMPILATION PROCESS 2-17

Chapter 3
EXTENSIONS TO THE C LANGUAGE

3.1 INTRODUCTION
The GNX—Version 3 C compiler is National Semiconductor Corporation’s implementa­
tion of the UNIX portable C compiler, pcc. The GNX—Version 3 C compiler is fully
compatible with pcc. All pcc extensions to the C language (as defined by Kernighan
and Ritchie) are implemented by the GNX—Version 3 C compiler. In addition, several
features from the draft-proposed ANSI C Standard are implemented. This chapter
lists and describes the extensions implemented by the GNX—Version 3 C compiler.

3.2 SINGLE-PRECISION FLOATING CONSTANTS
Single-precision floating constants allow the explicit specification of constants as
single-precision in order to eliminate wasteful run-time conversions. This is accom­
plished by appending an f suffix to a float constant.

Example: fmax += 17. Of
The same effect can be achieved by casting the constant to float, as in fmax +=
(f lo a t) 17. 0 ;. Without the cast or the suffix, both fmax and the value 17.0 would
have been converted to double-precision for a double-precision addition. The result
then would have been converted back to single-precision.

3.3 UNSIGNED CONSTANTS
Unsigned constants allow the explicit specification of unsigned constants. This is
accomplished by appending a u suffix to a positive integer constant.

Example: 65u
As with single-precision floating constants, unsigned constants eliminate wasteful run­
time conversions.

EXTENSIONS TO THE C LANGUAGE 3-1

3.4 ENUMERATED TYPE
Enumerated types allow the user to name lists of identifiers. They are analogous to the
enumeration type of Pascal and can be used in any place an integer is used. See C, A
Reference Manual, Second Edition, by Harbison and Steele, for more details.

3.5 STRUCTURE HANDLING
The GNX—Version 3 C compiler implements the following improvements to structure
handling:

• implements structure assignment
• allows structures as function arg and return values
• allows structures as function arguments and return values
• allows reuse of structure and union member names
• does not limit structure size

See C, A Reference Manual, Second Edition, by Harbison and Steele, for more details.

3.6 VOID DATA TYPE
The void data type is used as the type mark for a function which returns no result. It
may also be used in any context where the value of an expression is to be discarded to
explicitly indicate that a value is ignored. This is performed by writing a cast to void.
The type void * is used for the generic pointer and is compatible with any other
pointer type.

3.7 BITFIELDS
The GNX—Version 3 C compiler implements signed bitfields as well as unsigned
bitfields. Due to the Series 32000 architecture, the code for unsigned bitfields is more
efficient than the code for signed bitfields.

3.8 VOLATILE AND CONST
The compiler includes a partial implementation of the draft-proposed ANSI C standard
type qualifiers const and volatile. The compiler recognizes the full syntax involv­
ing these new keywords. The semantics are a subset of the semantics of the draft, as
described in the following.

3-2 EXTENSIONS TO THE C LANGUAGE

NOTE: The words volatile and const are reserved keywords. Using
them as identifiers is a syntax error. Existing programs using such
identifiers will have to be modified.

3.8.1 Volatile
This feature is a refinement of the optimizer’s /VOLATILE flag (-Oi on UNIX systems).
Using this keyword, it is possible to be more specific than turning all global variables
and all pointer dereferences to volatile, which is what the /VOLATILE flag does.
Because the programmer can specify what is volatile, better optimization of the code
results.
The semantics of this implementation are as follows:

• All variables declared with the keyword volatile appearing anywhere in its
type are treated as volatile.

• All elements of an array declared with the keyword volatile appearing any­
where in its type are treated as volatile.

• All members of a structure/union declared with the keyword volatile appear­
ing anywhere in its type are treated as volatile.

• Any dereference involving a pointer declared with the keyword volatile
appearing anywhere in its type is treated as volatile.

Note that this is not a full implementation of the draft-proposed ANSI C standard. It
is, however, more conservative and, therefore, safer than the draft-proposed ANSI C
standard requirement. For instance, a nonvolatile pointer to a volatile integer in the
draft-proposed ANSI C standard meaning is not possible by declaration.

Example: In the declaration
volatile int *ptr_to_vol;

the variable ptr_to_vol, as well as the int to which it points, will be
treated as volatile.

In order to have a nonvolatile pointer to a volatile integer, explicit cast operators must
be used. Any lvalue expression may be cast to a type that includes the keyword
volatile. This cast will treat the lvalue, and all expressions including it, as vola­
tile.

EXTENSIONS TO THE C LANGUAGE 3-3

Example: To achieve the effect of a nonvolatile pointer to a volatile integer, use:
int *p;

(volatile) *(p+15) = 237;

Note that expressions involving p may be optimized as nonvolatile expressions. In the
previous example, the result of (p+15) may be kept in a register. The dereference,
i.e., where p+15 is pointing, is treated as volatile.

3.8.2 Const
This feature enables the user to allocate program entities in a read-only area of
memory. The const keyword is useful for two reasons:

1. constants can be made a part of the program code and placed into ROMs for
ROM-based applications. For example, the code to boot a system, together
with any messages to be displayed, can be placed on a ROM.

2. if during run-time an attempt is made to change an intended constant, a
trap will occur.

The keyword const will have an effect only on global or static entities with one of the
following types:

• simple typed objects with const in their type
• pointers with the last (*) asterisk followed by const
• an array of one of the two above allowed types

Such an object, that is declared as const, will be allocated in read-only memory (the
. text area) if it is initialized and is not also declared to be volatile.
No compile-time checks are made to detect attempts to change to value on a const
entity.

Example: const char string [] = "for the snark WAS a boojum, you
see
const int LIMIT = 101;
const short action[] = {

-1, 0, 57, 280, 58, 280,
-2, 0, -1, 61, -1, 71
};

const struct {
int year;
char *name;
} lwork = { 1876, "The hunting of the snark"};

3-4 EXTENSIONS TO THE C LANGUAGE

Assuming these are global declarations, string, actions, LIMIT,
and lwork will be placed in the .text segment of the assembly file (read-only memory).

The following uses of the keyword const will have no effect in the current implemen­
tation:

• static const int i; no initialization
• static volatile const int j = 0773; also volatile
• const int *p = &i; p is declared as pointing to a constant integer. This

currently has no effect. For the pointer itself to be placed in read-only memory,
use int *const p = &i;.

• casts

3.9 ASM
The keyword asm is recognized to enable insertion of assembly instructions directly
into the assembly file generated. The syntax of its use is

asm (constant-string) ;
where constant-string is a double-quoted character string.
Asm can be used inside of functions as a statement and out of functions in the scope of
global declarations. A newline character will be appended to the given string in the
assembly code.

Example: if for the C source:
i + + ;
j += 2;

the assembly code generated is:
addqd $1, _i
addqd $2, _j

then the assembly code generated for:
i++;
asm ("movd
j += 2;

will be:
addqd $1, i
movd i, rO
addqd $2,

EXTENSIONS TO THE C LANGUAGE 3-5

NOTE: The word asm is a reserved keyword. Using asm as an identifier is
a syntax error. Existing programs using such identifiers will have
to be modified.

3.10 IDENT
A new cpp-style directive is recognized for placing strings into the .comment section of
the object file.* Its syntax is

id en t constant-string
where constant-string is a double-quoted character string. The string is passed to the
assembly file with a . ident directive and placed by the assembler in the .comment
section of the object file.

* See the Series 32000 GNX — Version 3 COFF Programmer’s Guide and the Series 32000 GNX — Version 3 Assembler Reference Manual for a description of the .comment section and the . ident directive.

3-6 EXTENSIONS TO THE C LANGUAGE

Chapter 4
IMPLEMENTATION ISSUES

4.1 INTRODUCTION
This chapter describes compiler implementation aspects which may differ from other
compilers and which may affect code portability.
Portability issues are recognized by the C standard as issues that may differ from one
implementation to another. The following two sections discuss portability issues. Sec­
tion 4.2 defines how the GNX—Version 3 C compiler behaves under the listed issues.
Section 4.3 lists issues that cause an undefined behavior of the GNX—Version 3 C com­
piler.

4.2 IMPLEMENTATION ASPECTS
The following cases are aspects of this implementation.

4.2.1 Memory Representation
• The representation of the various C types in this compiler are •

C TYPE SERIES 32000 DATE TYPE
int

long
short
char
float

double

32-bit double-word
32-bit double-word
16-bit word
8-bit byte
32-bit single-precision floating-point
64-bit double-precision floating-point

• The set of values stored in a char object is signed.
• The padding and alignment of members of structures as described in Section

4.2.4.
• A field of a structure can generally straddle storage unit boundaries.
• While signed bitfields are implemented, it is not recommended to use them since

their implementation is slow. Bitfields are not allowed to straddle a double-word
boundary.

IMPLEMENTATION ISSUES 4-1

4.2.2 External Linkage
• There is no limit to the number of characters in external names.
• Case distinctions are significant in an identifier with external linkage.

4.2.3 Types and Conversions
• A right shift of a signed integral type is arithmetic, i.e., the sign is maintained.
• When a negative floating-point number is converted to an integer, it is truncated

to the nearest integer that is less than or equal to it in absolute value. The result
is returned as a signed integer.

• When a double-precision entity is converted to a single-precision entity, it is con­
verted to the nearest representation that will fit in a float with default round­
ing performed to the nearest value.

• The presence of a float operand in an operation not containing double-operands
causes a conversion of the other operand to float and the use of single-precision
arithmetic. If double-operands are present, conversion to double occurs.

4.2.4 Variable and Structure Alignment
The alignment of entities in a program is a trade-off issue. Most Series 32000 CPUs are
more efficient when dealing with entities aligned to a double-word boundary. This nor­
mally makes it necessary to have some amount of padding added to a program. This
padding represents an overhead in storage space.
The GNX—Version 3 C compiler allows the user to tailor the alignment of
structures/unions and their members and, independently, the alignment of other vari­
ables.
Function parameters are always double-word aligned. This allows the calling of func­
tions across modules without dealing with alignment issues.

Alignm ent of Variables
Extern, static, and auto variables are aligned in memory according to their size
and the buswidth setting. Table 4-1 lists variable size, buswidth, and the alignment
determined by these two parameters.
Variables of size 1 are of the C type char, variables of size 2 are of the C type short,
and variables of size 4 or greater are of the C types int, long, float, and double
(size 8).
A buswidth setting of 1 means “align to 1 byte.” Variables start on a byte boundary, in
other words, there is no alignment and no padding. When allocating storage for vari­
ables, bytes are allocated sequentially with no padding between bytes.
4-2 IMPLEMENTATION ISSUES

Table 4-1. Variable Alignment

BUS WIDTH VARIABLE SIZE (BYTES)
1 2 >= 4

1 byte byte byte
2 byte word word
4 byte word double-word

A buswidth setting of 2 means “align to an even byte.” Variables that are larger than 1
byte start on a word boundary. This means that there may be padding of single bytes.
A buswidth setting of 4 means “align to a double-word boundary” (a byte whose address
is divisible by four). Variables that are 2 bytes long start on a word boundary; vari­
ables that are 4 bytes or larger in size start on a double-word boundary. This means
that there may be padding of up to three bytes.
Arrays are aligned as the alignment of their element type. Structures are aligned
according to the alignment of the largest structure members. This is affected by the - J
(/ALIGN) option. See “Structure/Union Alignment” and “Allocation of Bit-Fields” for
more details.

Example: The arrangement of
int i; short si; char c; short s2;

with a buswidth of 2 or 4 is

byte
number:

GX-01-0-U

Note that to align s2 to a word boundary, padding space of one byte is needed after c.
This padding does not exist with a buswidth of 1.

IMPLEMENTATION ISSUES 4-3

Example: The arrangement of

char c; int i;

with a buswidth of 4 is

byte
number: 0

m m m m
GX-02-0-U

With a buswidth of 2, the arrangement is

byte
number: 0 1 2 3 4 5

c 77777/ / / / /
GX-03-0-U

With a buswidth of 1, there is no padding.
It is important to note that the order in memory is the same as the declaration order
only for extern and static variables. The optimizer may reorder auto variables
in order to minimize padding space.
Fastest code is achieved by setting the default alignment to that of the data buswidth of
the CPU (4 for all but the NS32008, the NS32CG16, and the NS32016). This can be
accomplished by setting the BUS parameter in the target specification file, or by
overwriting that file on the command line with the -KB (/TARGET) option.

Structure/Union Alignment
Structure members are aligned within the structure, relative to the beginning of the structure, in the same way that variables are aligned in memory. In order to maintain the alignment of the members relative to memory, the structure itself is aligned in memory according to the alignment of its largest members. This alignment may be controlled by putting - J (/ALIGN) on the command line.
In addition, the total size of a structure is such that it also ends on an alignment boun­dary of its largest member. This maintains the alignment of individual members in arrays of structures. This is illustrated in the FILE struct example at the end of this section.
For unions, there is no padding. The alignment of the union’s largest members deter­
mine the alignment of the union itself.

4-4 IMPLEMENTATION ISSUES

Allocation of Bit-Fields
To understand the way bit-fields are handled, think of the situation where a field is fetched from memory. The number of bits fetched is determined by buswidth. For instance, if a bus is 2-bytes wide, then 2 bytes are fetched, even if only the first few bits are needed. For convenience, the number of bits fetched is called the “fetching unit.”
Note that for the purpose of structure member alignment, the align switch value (1 byte, 2 bytes, or 4 bytes) is taken as a “virtual buswidth,” even if it is different from the actual buswidth.
A complication exists when allocating bit-fields. The complication arises from the fact that different base types for bit-fields (char short, and int) are supported. The maximum length of a bit-field is the size of its base type; therefore, there may be times when a bit-field is larger than the buswidth. When the size of the base type is larger than the buswidth, the size of the fetching unit is considered to be the base-type size.
The precise rules for determining the start of the fetching unit are quite complicated. In general, it is determined by the current position in the allocation of structure members and by the base-type of the first bit-field in a group of consecutive bit-fields.
An attempt is made to pack consecutive bit-fields as much as possible, as long as the bit-fields remain in the same fetching unit. As soon as a field “spills over” into the next fetching unit, the alignment is set to the next memory unit (byte, word, or double-word, according to the align switch value and the base type of the field). A hole of padding
bits remains, and the beginning of the spill-over field determines the start of a new
fetching unit for following bit-fields. Using this method, bit-fields are packed as much as possible while still maintaining the alignment.
If, because of the bit-fields, the structure as a whole does not terminate on a byte boun­
dary, padding bits are added to it to fill up to the end of the last byte it occupies. Addi­tional padding bytes may be needed to fill to the alignment boundary of the largest structure member. This is seen in Figure 4-1. The bit-field does not quite reach the byte boundary; therefore, padding bits are added until the byte boundary is reached.
Additional padding bytes are added to fill to the alignment boundary of the double- word structure member.

Example: struct A {
int i;
unsigned bitfield : 4;

} a;

IMPLEMENTATION ISSUES 4-5

The arrangement of a’s fields in memory will be:

bit number 111 111 11 11 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

i

bitfield 'padding |"
bits pa d d i n g_i_________ b y t e s

____ L .

GX-04-0-U

Figure 4-1. Bitfield Padding

Figure 4-2 is an example of the alignment on bit-fields given the different align switch
settings. To summarize, the - J (/ALIGN) switch affects:

• the alignment and padding used for structure members and the alignment of vari­ables of the structure type.
• the total storage allocated to a structure by determining if, and how many, pad­ding bytes will be added after its last field.

Example: struct X {
char c,d,e;
int i: 24;
};

4-6 IMPLEMENTATION ISSUES

ALIGN = 4

bit number 22 22 22 222 23 333 333333444444444455555555556666
01234567890123456789012345678901 234 56 789 01 23 456 78 90 123 45 67 890 12 3

0 1 2 3 4 5 6 7
byte number

GX-05-0-U

ALIGN = 2/1

bit number 11111111 1 12 22 22 222 22 3333333333444444444455555555556666
01234567890123456789012345678901 234 56 789 01 23 456 78 90 123 45 67 890 12 3

0
byte number

2 3 4 5 6 7

GX-06-0-U

Figure 4-2. Alignment on Bitfields

IMPLEMENTATION ISSUES 4-7

CAUTION
The user must make sure that all parts of the program, including library routines, use the same alignment for the same structures; otherwise, problems result. The following example illustrates this point.
Suppose the example program includes <stdio.h>. The file <stdio.h> contains the following definitions:

extern FILE _iob[_NFILE];
typedef struct {

int
unsigned char
unsigned char
char
char

} FILE;
Note that FILE has two char members at its end. If align=4, any variable declared to
be of type FILE will have two padding bytes added at its end in order to make it
occupy an integral number of double-words. When align=l or align=2, no padding is
performed.
If a module using <stdio. h> is compiled with align=4 and later linked with a module
compiled with align=l or align=2 that tries to use iob[n] where n > 0, the result
will be wrong. This is because the two modules disagree on the size of the elements in
the array. This situation actually does arise if a user module, compiled with align=l or
align=2, is linked with the default library libc, which is compiled with align=4.
The solution to this problem is to make sure all modules are compiled using either the
same alignment setting, including all include files and libraries, or a revised header file
that has been made insensitive to the setting of the alignment switch. This is per­
formed by including the necessary padding to enforce equal sizes and offsets. If the
latter solution is chosen, FILE is revised to look like:

typedef struct {
int
unsigned char
unsigned char
char
char
/* padding */

} FILE;
No padding is added by the compiler, and the size of the structure is the same for all
switch settings.

cnt ;
*_ptr;
*_base;
_f lag;
_ f i l e ;
int:1 6;

cnt;
*_ptr;
*_base;
_flag;
file;

4-8 IMPLEMENTATION ISSUES

4.2.5 Structure Returning Functions
In the GNX—Version 3 C compiler, structure returning functions have a hidden argu­
ment which is the address of an area the size of the returned structure. This area is
allocated by the caller and its address is passed as a first argument to the structure
returning function. Structure returning functions are, therefore, re-entrant and inter­
ruptible.
NOTE: At t h e o p tim iz e r ’s d is c re tio n , sm a ll s t r u c tu r e s (le ss t h a n 5 b y te s)

m a y b e p a s s e d a n d /o r r e tu r n e d in a r e g is te r .

4.2.6 Calling Sequence
The standard Series 32000 calling conventions are used by the GNX—Version 3 C com­
piler for calls to external routines of all languages. It is, therefore, unnecessary to use
the fortran keyword in C programs (if present, the keyword is ignored).
However, local or internal routines (functions which in C are preceded by the s t a t i c
keyword) are called by more efficient calling sequences.
The standard Series 32000 calling conventions are described in Appendix A.
NOTE: Code using the Series 32000 modularity features cannot be mixed

with code not supporting those features. By default, the GNX—
Version 3 tools do not support modularity.

4.2.7 Mixed-Language Programming
Mixed-language programs are frequently used for a couple of reasons. First, one
language may be more convenient than another for certain tasks. Second, code sec­
tions already written in another language (e.g., an already existing library function)
can be reused simply by calling them.
A programmer who wishes to mix several programming languages needs to be aware of
subtle differences between the compilation of the various languages. Appendix B
describes the issues one needs to be aware of when writing mixed-language programs
and compiling and linking such programs successfully.

IMPLEMENTATION ISSUES 4-9

4.2.8 Order of Evaluation
The evaluation order of expressions and actual parameters in the GNX—Version 3 C
compiler differs from those of other compilers. Therefore, programs that rely on a
specific order of evaluation may not run correctly when compiled. In particular, the fol­
lowing orders of evaluation are unspecified:

• The order in which expressions are evaluated.
• The order in which function arguments are evaluated.
• The order in which side effects take place. For instance, a[i + +] = i may be

evaluated as
a [i] = i /
i + + ;

or as
t = i ;
i + +;
a[t] = i;

4.2.9 Order of Allocation of Memory
The order of allocation of local variables in memory is compiler-dependent. After the
optimizer of the GNX—Version 3 C compiler performs register allocation, it reorders
the local variables left in memory. This reordering reduces memory space require­
ments and minimizes displacement length. User programs that rely on any order of
allocation of local variables may not run correctly. See Chapter 6.

4.2.10 Register Variables
By default, register variables, as well as other local variables, are equal candidates for
register allocation. When given complete freedom, the optimizer generally performs a
better job of register allocation than when forced to follow the programmer’s allocation
suggestions.
For programs which make assumptions about variables which reside in specific regis­
ters, an optimization flag (-O u or - 0 - F u on UNIX and U SER_REG ISTERS on VMS) is
available to enforce the p c c allocation scheme for register variables of scalar types
and of type double. See also Section 6.5.7.

4-10 IMPLEMENTATION ISSUES Rev B

4.2.11 Floating-Point Arithmetic
The floating-point arithmetic conversion rules of the GNX—Version 3 C compiler differ from most other C compilers.
In an operation not containing double-operands, if one of two operands is of type
float, the other operand is converted to type float and single-precision arithmetic is
used. The result of the operation is of type float. This behavior differs from previous
compilers which perform such operations in double precision.
In old C compilers, the result of float-returning functions was actually returned in
double-format and placed in the F0-F1 register pair. When compiled by the GNX—
Version 3 C compiler, such functions return the result in float format and place the
result in the F0 register. Note that assembly programs that interface with float-
returning functions may now incorrectly expect a double precision result.
Float parameters, however, are passed as double because the C language semantics do
not require type identity between actual and formal parameters. Code is generated in
the called function to convert these actual double values back to float if necessary.
Floating-point constants are of type double, unless they are typecast to float or are
suffixed by the letter f or F. By preference, constants of type float should be used
in float expressions to avoid the unnecessary casting of other operands to double preci­
sion. For example,

fmax += 17.5f;

is more efficient than
fmax += 17.5;

The following examples are of double constants and float constants.
Example: double constants float constants

14.5e6 14.5e6f
14.5 (float) 14.5

4.3 UNDEFINED BEHAVIOR
In the following cases, the behavior of the GNX—Version 3 C compiler is undefined:

• The value of a floating-point or integer constant is not representable.
• An arithmetic conversion produces a result that cannot be represented in the

space provided.
• A volatile object is referred to by means of a pointer to a type without the volatile

attribute.

IMPLEMENTATION ISSUES 4-11

• An arithmetic operation is invalid, such as division by 0, or produces a result that
cannot be represented in the space provided, such as overflow or underflow.

• A member of a union object is accessed using a member of a different type.
• An object is assigned to an overlapping object.
• The value of a register variable has been changed between a set jmp call and a
longjmp call.

4-12 IMPLEMENTATION ISSUES

Chapter 5
OPTIMIZATION TECHNIQUES

5.1 INTRODUCTION
The main difference between the GNX—Version 3 C compiler and other compilers is
the optimizer. Recompiling and optimizing with the GNX—Version 3 C compiler will
result in a 10 to 200 percent speedup for most programs, with the mean above 30 per­
cent.
This chapter describes some of the advanced optimization techniques used by the
GNX—Version 3 C compiler to improve speed or save space. The most important tech­
niques are:

• Value propagation
• Constant folding
• Redundant-assignment elimination
• Partial-redundancy elimination
• Common-subexpression elimination
• Flow optimizations
• Dead-code removal
• Loop-invariant code motion
• Strength reduction
• Induction variable elimination
• Register-allocation by coloring
• Peephole optimizations
• Memory-layout optimizations
• Fixed frame

The following sections describe these techniques in more detail. Please see Chapter 6,
which discusses coding suggestions and other practical guidelines on how to make best
use of the optimizing aspects of the compiler.

OPTIMIZATION TECHNIQUES 5-1

5.2 THE OPTIMIZER
The optimizer, shared by all the GNX—Version 3 compilers, is based on advanced
optimization theory, developed over the past 15 years. Central to the optimizer is an
innovative global-data-flow-analysis technique which simplifies the optimizer’s imple­
mentation. It allows the optimizer to perform some unique optimizations in addition to
all the standard optimizations found in other compilers. Optimizations are performed
globally on the code of a whole procedure at a time and not just in a local context.
The optimizer can be regarded as a multi-step process. Each step performs its particu­
lar optimizations and provides new opportunities for the optimizations of the next step.

STEP ONE
The first step in the optimization process is to read in the source program one pro­
cedure at a time and to partition this procedure into basic blocks. A basic block is a
straight line sequence of code with a branch only at the entry or exit. Some of the
optimizations performed during this step are:

• Value Propagation
Value propagation (or copy propagation) is the attempt to replace a variable with
the most recent value that has been assigned to it. This optimization is primarily
useful in the special case of constant propagation. It is important because it
creates opportunities for other optimizations. Value propagation can be turned off
by the /CODE_MOTlON optimization flag (-Om on UNIX systems).

• Constant Folding
If an expression or condition consists of constants only, it is evaluated by the
optimizer into one constant, thereby avoiding this computation at run-time. The
optimizer, using algebraic properties such as the commutative, associative and
distributive law, sometimes rearranges expressions to allow constant folding of
part of an expression.
The GNX—Version 3 C compiler also folds floating-point constant expressions.
This feature can be turned off using the /NOFLOAT_FOLD option (-Oc on UNIX
systems) of the optimizer.

• Redundant-Assignment Elimination
The optimizer detects and eliminates assignments to variables which are not used
later in the program or which are assigned again before being used. This optimi­
zation can often be applied as a result of value propagation.
Value propagation, constant folding, and redundant assignment elimination are
illustrated in Figure 5-1.

5-2 OPTIMIZATION TECHNIQUES

The program sequence
a = 4;
if (a*8 < 0) b = 15;
else b = 20;

... c o d e w h i c h u s e s b b u t n o t a ...
is translated by the GNX—Version 3 C compiler front end into the
following intermediate code

a f- 4
if (a*8 >= 0) goto LI
b 15
goto L2

LI: b <- 20
L2: ...

which is transformed by “value propagation” into
a <— 4
if (4*8 >= 0) goto LI
b f- 15
goto L2

LI: b <- 20
L2: ...

which after “constant folding'’ becomes
a <- 4
if (true) goto LI
b 4- 15
goto L2

LI: b e 20
L2: ...

“dead code removal” results in
a <- 4
goto LI

LI: b <- 20
L2: ...

which is transformed by another “flow optimization” into
a <- 4
b i— 2 0

Since there is no further use of a, a <- 4 is a “redundant assignment:”
b <— 2 0

Figure 5-1. Relationship Between Various Optimizations
OPTIMIZATION TECHNIQUES 5-3

STEP TWO
The second step in the optimization process is the construction of the program’s “flow
graph.” This is a graph in which each node represents a basic block. A basic block is a
linear segment of code with only one entry point and one exit point. If there is a path
in the program that leads from one basic block to another, then an “arrow” is drawn in
the graph to represent this path.
Figure 5-2 illustrates a flow graph, representing an "if-then-else" sequence.

Figure 5-2. Flow Graph

During the construction of the flow graph, additional optimizations can be performed:
• Flow Optimizations

Flow optimizations reduce the number of branches performed in the program.
One example is to replace a branch whose target is another branch with a direct
branch to the ultimate target. This often makes the second branch redundant. At
other times, code is reordered to eliminate unnecessary branches. Branches to
“return” are replaced by the return-sequence itself.

• Dead Code Removal
Flow optimizations are also designed to help the optimizer discover code which
will never actually be executed. Removal of this code, called “dead code removal,”
results in smaller object programs.

5-4 OPTIMIZATION TECHNIQUES

STEP THREE
Step three of the optimization process is called “global-data-flow-analysis.” It identifies
desirable global code transformations which speed program execution. Many of these
concentrate on speeding up loop execution, since most programs spend 90 percent or
more of their time in loops. Global-data-flow-analysis is the computation of a large
number of properties for each expression in the procedure.
Unlike most optimizers, which employ unrelated and separate techniques, the optim­
izer centers around one innovative technique which involves the recognition of a situa­
tion called “partial redundancy.” This technique is so powerful that many other optim­
izations turn out to be special cases. The central idea is that it is wasteful to compute
an expression, say a*b, twice on the same path; it is often faster to save the result of
the first computation and then replace the fully redundant second computation with
the saved value. More common, however, is the case in which an expression is partially
redundant; there is one path to an expression, which already contains a computation of
that expression, but another path to that same expression does not.
The following optimizations are performed by a common technique:

• Elimination of Fully Redundant Expressions
This optimization is often called “Common Subexpression Elimination.” It is rela­
tively simple to avoid the recomputation of fully redundant expressions. The
optimizer saves the result of the first computation (usually in a register variable)
and uses the saved value in place of the second computation. Performance­
conscious programmers sometimes do this themselves, but many cases, such as
array index and record number calculations, are recognized only by the optimizer.

• Partial Redundancy Elimination
A partially redundant expression can be eliminated in two steps. First, insert the
expression on the paths in which it previously did not occur; this makes the
expression fully redundant. Second, save the first computations and use the
saved value to replace the redundant computation. An example of this optimiza­
tion is shown in Figure 5-3.
Partial redundancy elimination sometimes results in slightly larger code, but exe­
cution is not harmed, since all inserted expressions are in parallel and only one is
actually executed.

• Loop Invariant Code Motion
If an expression occurs within a loop and its value does not change throughout
that loop, it is called “loop invariant.” Loop invariant expressions are also par­
tially redundant. This can be understood by realizing that there are two paths
into the loop body: one is through the loop entry (the first time the loop is exe­
cuted), and the other is from the end of the loop, while the exit condition is false.
Loop invariant computations are, therefore, removed from the loop in the same
way: the expression is first inserted on the entry path to the loop, and then the
expression is saved on the entry path in a register, while the redundant computa­
tion in the loop is replaced by that register.

OPTIMIZATION TECHNIQUES 5-5

In the following code, a*b is “partially redundant” (computed twice only if C is true):
if (C)

x = a*b;
else

b = b+10;
y = a*b;It is first transformed into a “fully redundant” expression
if C = 1

x <— a*b
else

b <- b+10
temp +- a*b

y <— a*bThen, as in the simple case of “redundant expression elimination,”
this is reduced to

if C - 1
temp +— a*b
x +— temp

else
b +- b+10
temp +— a*b

y +— temp
Now, the expression a*b is computed only once on any path.

Figure 5-3. Example of Partial Redundancy Elimination

• Strength ReductionThis optimization globally replaces complex operations by simpler ones. This is primarily useful for reducing complex array-subscript computations (involving
multiplication into simpler additions).

Example: for (i=0; i<15; i+=l)
a [i] = 0;

is transformed into:
for (i=0, p=a; i<15; i+=l, p+=4)

*P = 0;

5-6 OPTIMIZATION TECHNIQUES

• Induction Variable Elimination
Induction variables are variables that maintain a fixed relation to other variables.
The use of such variables can often be replaced by a simple transformation. For
instance, the example given for strength reduction can be reduced to the follow­
ing:

for (p=a; p<a+60; p+=4)
*P = 0;

STEP FOUR
The fourth optimization step performed by the optimizer, and possibly the most
profitable, is the “register allocation” phase. Register allocation places variables in
machine registers instead of main memory. References to a register are always much
faster and use less code space than respective memory references.
The algorithm used by the optimizer is called the “coloring algorithm.” First, global-
flow-analysis is performed to determine the different live ranges of variables within the
procedure. A live range is the program path along which a variable has a particular
value. Generally, an assignment to a variable starts a new live range; this live range
terminates with the last use of that assigned value.
The optimizer subsequently constructs a graph as follows: each node represents a live
range; two nodes are connected if there exists a point in the program in which the two
live ranges intersect. The allocation of registers to live ranges is now the same as
coloring the nodes of the graph so that two connected nodes have different colors. This
is a classic problem from graph theory, for which good solutions exist. If there are not
enough registers, more frequently used variables have higher priority than less fre­
quently used ones. Loop nesting is taken into account when calculating the frequency
of use, meaning that variables used inside of loops have higher priority than those that
are not.
Most optimizing compilers attempt register allocation only for true local variables, for
which there is no danger of “aliasing.” An alias occurs when there are two different
ways to access a variable. This can happen when a global variable is passed as refer­
ence parameter; the variable can be accessed through its global name, or through the
parameter alias. A common case in C is when the address of a variable is assigned to a
pointer.
The optimizer takes a more general approach by considering all variables with
appropriate data types as candidates for register allocation, including global variables,
variables whose addresses have been taken, array elements, and items pointed to by
pointers. These special candidates cannot reside in registers across procedure calls and
pointer references and, therefore, normally have lower priority than local variables.
However, instead of completely disqualifying the special candidates in advance, the
decision is made by the coloring algorithm.

OPTIMIZATION TECHNIQUES 5-7

Additional important optimizations performed by the register allocator are:
• Use of Safe and Scratch Registers

The Series 32000 machine registers are, by convention, divided into two groups:
registers RO through R2 and F0 through F3, the so-called “scratch” registers
which can be used as temporaries but whose values may be changed by a pro­
cedure call, and the “safe” registers (R3 through R7 and F4 through F7) which are
guaranteed to retain their value across procedure calls. The register allocator
spends a special effort to maximize the use of scratch registers, since it is not
necessary to save these upon entry or restore them upon exit from the current
procedure. The use of scratch registers, therefore, reduces the overhead of pro­
cedure calls.

• Register Parameter Allocation
The register allocator attempts to detect routines, whose parameters can be
passed in registers. This is possible for static routines only, since by definition all
the calls to such routines are visible to the optimizer. Calls to other (externally
callable) routines are subject to the standard Series 32000 calling sequence.
Passing parameters in registers is another way to reduce the overhead of pro­
cedure calls.

STEP FIVE
The last optimization step consolidates the results of all previous steps by writing out
the optimized procedure in intermediate form for the separate code generator. Some
reorganizations take place during this step. Local variables which have been allocated
in registers are removed from the procedure’s activation record (frame), which is reor­
dered to minimize overall frame size.

5.3 THE CODE GENERATOR
The back end (code generator) attempts to match expression trees with optimal code
sequences. It applies standard techniques to minimize the use of temporary registers,
which are necessary for the computation of the subexpressions of a tree. The main
strength of the code generator lies in the number of “peephole optimizations” it per­
forms.
Peephole optimizations are machine-dependent code transformations that are per­
formed by the code generator on small sequences of machine code just before emitting
the code. Some of the most important peephole transformations are listed below:

• The code for maintaining the frame of routines which have no local variables, or
whose variables are all allocated in registers, is removed.

• Switch statements are optimized into binary search, linear search or table-
indexed code (using the Series 32000 CASE instruction), in order to obtain
optimal code in each situation. •

• The stack and frame areas are always aligned for minimal data fetches.
5-8 OPTIMIZATION TECHNIQUES

• Reduction of arithmetic identities, i.e., x*l = x, x+0 = x, etc.
• Use of the ADDR instruction instead of ADD of three operands.
• Some optimizations performed in the optimizer, such as the application of the dis­

tributive law of algebra, i.e., (10 + i) *4 = 40 + 4 *i, provide additional opportuni­
ties to the code generator to fully exploit the Series 32000’s addressing modes.

• Use of ADDR instead of MOVZBD of small constant.
• Strength Reduction Optimizations. Use of MOVD instead of MOVF from memory to

memory; use of index addressing mode instead of multiplication by 2, 4 or 8; use
of combinations of ADDR instructions or shift and ADD sequences instead of mul­
tiplication by other constants up to 200.

• Fixed Frame Optimization. An important contribution of the code generator is its
ability to precompute the stack requirements of a procedure in advance. This
allows the generation of code which does not use (nor update) the FP (frame
pointer), resulting in cheaper calling sequences.
This optimization is most useful when the procedure contains many procedure
calls because it is not necessary to execute code to adjust the stack after every
call. Parameters are moved to the pre-allocated space instead of pushing them on
to the stack using the top-of-stack addressing mode. Note that when using this
optimization, the run-time stack pointer stays the same throughout the pro­
cedure, and all references to local variables are relative to it and not to the FP.
Also note that the evaluation order of parameters is unpredictable because
parameters that take more space to evaluate are treated first to save space.

While most optimizations are beneficial for both speed and space, some optimizations
favor one over the other. The default setting of the optimizer switch favors speed over
space in trade-off situations. The following optimizations are trade-off situations which
are affected by an optimization flag.

• Code is not aligned after branches.
• All returns within the code are replaced by a jump to a common return sequence.
• Certain space-expensive peephole transformations are not performed.

5.4 MEMORY LAYOUT OPTIMIZATIONS
The following memory layout optimizations are performed by the GNX—Version 3 C
compiler:

• Frame variables that are allocated in registers are removed from the frame.
• Internal, static routines whose parameters are passed in registers have smaller

frames.
• The stack alignment is always maintained. Stack parameters are passed in

aligned positions.

OPTIMIZATION TECHNIQUES 5-9

• Frame variables are allocated in aligned positions. The compiler reorders these
variables to save overall frame space.

• Code is aligned after every unconditional jump.

5-10 OPTIMIZATION TECHNIQUES

Chapter 6
GUIDELINES ON USING THE OPTIMIZER

6.1 INTRODUCTION
The following sections are provided as helpful guidelines on using the GNX—Version 3
C compiler. Experienced programmers should understand this compiler’s optimization
techniques in order to:

• Learn how to port programs to the GNX—Version 3 C compiler.
• Understand how to recognize and avoid nonportable code.
• Avoid using programming tricks which rely on the way ordinary compilers gen­

erate code.
• Avoid performing “hand optimizations” that the optimizer does anyway.
• Avoid writing code that may prevent certain optimizations.
• Understand how to select the different command line optimization flags to achieve

optimal performance.
Please read Chapter 5 for a complete description of the optimization techniques.

6.2 OPTIMIZATION FLAGS
Optimization options available to the user are listed in Table 6-1.

6.2.1 Optim ization Options on the Command Line — UNIX Systems
The -0 option enables the optimizer. Specifying -0 on the command line results in
the fastest possible code (-OCFIUMLRS). In special cases, such as when compiling
operating system code, there may be a need to further refine the optimization phase by
specifying optimization flags. Individual optimization flags can be specified either by
using the -F option or by simply appending them to -0. Table 6-2 lists reasons why a
particular option might be turned off.
Even when the optimizer pass is omitted, some local optimizations are performed by
the code generator. Not specifying the optimizer pass is equivalent to entering
-OocflumlrS. Note that specifying the compiler debug option (-g) on the command
line automatically turns off the optimizer fixed frame flag (-OF), unless otherwise
specified by the user.

GUIDELINES ON USING THE OPTIMIZER 6-1

Table 6-1. Optimization Options

UNIX VMS DESCRIPTION
o NOOPT does not invoke the optimizer phase.
c NOFLOAT_FOLD does not compute floating-point constant

expressions at compile time.
C FLOAT_FOLD performs floating-point constant folding.
F FIXED_FRAME uses fixed frame references, avoids use

of the FP register or the Series 32000
ENTER/EXIT instruction.

f NOFIXED_FRAME compiles for debugging: uses slower FP
and TOS addressing modes.

I NOVOLATILE applies all optimizations to all variables
(including global variables).

i VOLATILE compiles system code: assumes that all
global and static memory variables and
pointer dereferences are volatile.

L S TANDARD_LIBRARIES assumes use of standard run-time
library.

1 NO STANDARD_LIBRARIES assumes that all routines have corrupt­
ing side effects.

M CODE_MOTION performs global code motion optimiza­
tions.

m NOCODE_MOTION does not perform global code motion
optimizations.

U NOUSER_REGISTERS ignores user register declarations.
u USER_REGISTERS allocates user-declared register vari­

ables in registers as done by pc.
R REGISTER_ALLOCATION performs the register allocation pass of

the optimizer.
r NOREGIS TER_ALL0CATI ON does not perform the register allocation

pass of the optimizer.
S SPEED OVER_SPACE optimizes for speed only.
s NOSPEED OVER_SPACE does not waste space in favor of speed.
1-9 maximal memory/swap-space available

is 1 through 9 Mbytes (default: 4
Mbytes).

6-2 GUIDELINES ON USING THE OPTIMIZER

Also note that using the compiler target option (-K B 1) favors space over speed by sav­
ing alignment holes normally produced when the buswidth is the default (n = 4).

6.2.2 Optimization Options on the Command Line — VMS Systems
The fastest possible code is generated by specifying /O P T IM IZ E on the command line.
This is equivalent to entering:

/OPTIM IZE=(FIXED_FRAM E, CODE_MOTION, REGISTER_ALLOCATION, FLOAT_FOLD
SPEED_OVER_SPACE, NOVOLATILE, STANDARD_LIBRARIES, NOUSER_REGISTERS)

In special cases, such as when compiling operating-system code, there may be a need to
further refine the optimization phase by specifying optimization flags. Table 6-2 lists
reasons why a particular option might be turned off.
Even when the optimizer pass is omitted, some local optimizations are performed by
the code generator. Therefore, specifying /N O O P T IM IZ E (which is the default for this
qualifier) is equivalent to entering:

/O P T IM IZ E R NOOPT, NOFIXED_FRAME, NOCODE_MOTION, NOREGISTER_ALLOCATION,
NOFLOAT_FOLD, SPEED_OVER_SP ACE, NOVOLATILE,
NOSTANDARD_LIBRARIES , USER_REGISTERS)

Note that specifying the compiler debug option (/DEBU G) on the command line automat­
ically turns off the optimizer fixed frame option (/FIX E D _FR A M E), unless otherwise
specified by the user.
Also note that using the compiler option / TARGET= (BUSW IDTH=1) favors space over
speed by saving alignment holes normally produced when the buswidth is the default
(n = 4).

6.2.3 Turning off Optimization Options
There is normally no reason to turn off any of the optimization options; the default pro­
duces the best results, see Table 6-2. Refer to Chapters 2 and 5 for more on optimiza­
tion options.

6.3 PORTING EXISTING C PROGRAMS
Almost every program which runs when compiled by other C compilers, will compile
and run under the GNX—Version 3 C compiler without any changes in the sources.
However, there might be a few programs which will cease to work in the same manner
as before when compiled by the GNX—Version 3 C compiler. There might be other pro­
grams, which seem to work when compiled without the optimizer, but which cease to
work when optimized. The following sections describe some of the reasons for this
phenomenon.

GUIDELINES ON USING THE OPTIMIZER 6-3

Table 6-2. Turning off Optimization Options

OPTION REASON FOR TURNING OFF
OPTION SEE ALSO

NOFIXED_FRAME (-O f) to debug the program or to com­pile nonportable programs that assume knowledge of the run­time stack.

Sections 6.3.2 and 6.4

VOLATILE (-O i) to compile system programs, such as device drivers, which contain variables that change or are referenced spontaneously.

Section 6.3.2

NO_STANDARD_LIBRARIES (-0 1) to compile programs which re­implement standard functions, in a way which does not agree with the optimizers assumptions (i.e., have side effects).

Section 6.3.5

NOFLOAT-FOLD (-O c) to compile programs whose correct execution depends on the order in which floating-point expressions are evaluated.

Section 6.3.6

NOCODE_MOTION (-Om) to compile programs which con­tain huge functions, which are a drain on the system’s resources and are time consuming to optim­ize.
USER_REGISTERS (-O u) to compile programs which rely on the register allocation scheme

of pcc.
Section 6.5.7

NOREGISTER_ALLOCATION (-O r) to run programs that cease to work when performing register allocation.
Section 6.5.7

NOSPEED_OVER_SPACE (-O s) to compile programs which must fit as tightly as possible in memory.
Section 6.5.9

NOOPT (-O o or use -Fflags without giving - 0)
when the optimizer phase is not required and another flag needs to be turned off as well. For instance, -O oF turns fixed frame on without running the optim­izer, while -O f turns off fixed frame but runs the optimizer.

6-4 GUIDELINES ON USING THE OPTIMIZER

6.3.1 Undetected Program Errors
The single most common reason for a nonfunctioning program is an undetected pro­
gram error, which becomes apparent only when compiling under a different compiler or
only when optimizing. Many of these errors result from the fact that the program
author relied on the way his or her compiler compiled, and thereby created a program
which is clearly nonportable. The following partial list points out some of the most
common problems:

• Uninitialized local variables.
Since the memory and register allocation algorithms of the GNX—Version 3 C com­
piler are very different from those of other compilers, a local variable may end up in
a completely different place. For example, a programmer may fail to initialize a
local variable, with the assumption that, upon program start, it will certainly con­
tain zero. This may become false as a result of the register allocation phase of the
GNX—Version 3 C compiler.

• Relying on memory allocation
One cannot assume that if two variables are declared in a certain order they will
actually be allocated in that order. A program, which uses address calculations to
proceed from one declared variable to another declared variable, might not work.

• Failing to declare a function
A char returning function will return a value in the lower order byte of RO, without
affecting the other bytes. A failure to declare that function where it is used, might
result in an error. For instance, assuming that get_code () is defined to return a
char, then

main() {
int i;
if ((i = get_code()) == 17) do_something();

}
might never execute do_something even if get_code returns 17 since the whole
register is compared to 17, not just the low-order byte.
A similar problem exists for functions which return short or float, or those
which return a structure.

6.3.2 Compiling System Code
System code is distinguished from general “high-level” code by the fact that it is
machine-dependent, often contains real-time aspects and interspersed asm statements,
and is often driven by asynchronous events, such as interrupts. Examples of system
code are interrupt routines, device handlers and kernel code. From the optimizer’s
point of view, ordinary looking global variables can actually be semaphores or
memory-mapped I/O which can be affected by external events not under the optimizer’s
control. Even so, it is still possible to optimize such code by taking some precaution
and by activating some special optimization flags. Some of these aspects are discussed
in the following sections.

GUIDELINES ON USING THE OPTIMIZER 6-5

• Volatile variables
Volatile variables are variables that might be used or changed by asynchronous
events, such as I/O or interrupts. The /VOLATILE (-Oi on UNIX systems) qualifier
treats all global variables, static variables, and pointer dereferences as volatile,
which means that they are not subject to any optimizations. As a result, the
number and nature of memory references to them will not change. Remember that
individual identifiers can be declared as volatile by using the volatile type
modifier. The following examples demonstrate the consequences of volatile vari­
ables and pointer dereferences.
Examples: 1. x = 17; x = 18;

If x is volatile, both of the two assignments to x are executed even
though the first one seems redundant.

2. x = 9;
y = x + 1;

If x is volatile, this program segment is not optimized to y = 10;
3. *p = b + c;

If *p is volatile, then this results in

and not

movd b, REG
addd c, REG
movd REG, 0 (

movd b, 0 (p)
addd c, 0 (p)

The difference stems from the fact that the second sequence, though fas­
ter, makes two references to 0 (p) when the programmer may have
wanted only one.

6.3.3 Timing assum ptions
Optimizing a program changes the timing of various constructs. In particular, delay-
loops might now run faster than before.

6.3.4 Low-Level Interface
• Relying on register order

A program that relies on the fact that a given register variable resides in a
specific register must be compiled with the /USER_REGISTERS flag (-Ou on UNIX
systems) turned on (see Section 6.5.7).

6-6 GUIDELINES ON USING THE OPTIMIZER

• Relying on frame structure
A program that relies on a specific frame structure must be compiled with the
/FIXED_FRAM E flag turned off (- O f on UNIX systems). This includes, in particular,
programs that use the standard all oca () function (which allocates space on the
user’s frame).
Referring to variables on the frame of a different function (such as the caller of
this function) by complex pointer arithmetic may also cease to work. See Appen­
dix A for more details.

• Using asm statements
The code inserted by asm statements may cease to work because the surrounding
code produced by the GNX—Version 3 C compiler will normally differ from
another compiler’s code. See Section 6.5.6.

6.3.5 U sing Nonstandard Library Routines
The GNX—Version 3 C compiler assumes by default that all the C standard
mathematical library routines listed in Table 6-3 are available as a standard run-time
library. These library routines have absolutely no access to global variables. There­
fore, calls to these routines are specially recognized and marked as calls which do not
disturb optimizations of the global variables of the program. This is normally a safe
assumption since it is unusual for a program to redefine (and thereby hide) these stan­
dard routines. In addition, the functions abs, fabs, and ffabs actually compile into
in-line code and do not generate a procedure call at all.

Table 6-3. Recognized Library Routines

abs erf fceil fhypot f sinh jn sqrt
acos erfc fcos flog f sqrt ldexp tan
asin exp f cosh floglO ftan log tanh
at an fabs ferf fmod ftanh loglO yO
atan2 facos ferfc fmodf gamma modf yi
cabs fasin fexp fpow hypot pow yn
ceil f atan f fabs frexp jo sin
cos fatan2 f fmod f sin jl sinh
cosh fcabs ffmodf

The compiler generates a warning message whenever it compiles a program which does
redefine one of these routines. In this case, the user must decide whether the redefined
routine’s behavior is consistent with the previously mentioned assumption of the optim­
izer. If it is not, the user has the choice of renaming the redefined routine (so that calls
to it are not specially recognized), or of using the /N O S TANDARD_LIBRARY flag (- 0
- F I on UNIX), which turns off the recognition of all library routines.

GUIDELINES ON USING THE OPTIMIZER 6-7

Since the optimizer performs floating-point constant folding, i.e. , it rearranges expres­
sions to evaluate constant subexpressions at compile time, some naive algebraic expres­sions are folded away.

Example: do {
a = a*2;

}w hile ((a + 1.0) - 1.0 == a);
is optimized to
do {

a = a*2 ;
}
while (1) ;

which was not the programmer’s intention.

6.3.6 R elia n ce on N aive A lgebraic R elation s

To maintain the program and keep the programmer’s original intention, the program­
mer should use the /NOFLOAT_FOLD (-Oc on UNIX systems) optimization flag to
suppress the folding optimization.

6.4 DEBUGGING OF OPTIMIZED CODE
Most of the time, the user should not need to debug an optimized program. The major­
ity of all bugs can be found before optimization is turned on. However, there are some
very rare bugs which make their appearance only when the optimizer is introduced,
bugs that are difficult to find without a debugger.
The problem is that code motion optimizations and register allocation obsolete most of
the symbolic debugging information generated by the compiler. With this in mind, spe­
cial care must be used when reviewing assembly code generated by the compiler. The
following “rules of thumb” can be employed when using symbolic debug information
together with the optimizer:

• Line number information is correct, but the code performed at the specified lines
may be different from non-optimized code as a result of various code motion
optimizations, such as moving loop invariant expressions out of loops.

• Symbolic information for global variables is normally correct, since global vari­
ables are rarely put in registers. In particular, if a global variable is not refer­
enced within the current procedure, the value in memory is valid and the sym­
bolic information is correct.

6-8 GUIDELINES ON USING THE OPTIMIZER

• Symbolic information for parameters is correct except in the following two cases:
1. When a parameter is allocated a register and there is an assignment to that

parameter, the symbolic information is incorrect.
2. When a parameter of a local procedure is passed in a register as a result of

an optimization, the symbolic information is incorrect. In this case, the sym­
bolic information of all other parameters is incorrect because their offset
within the procedure’s frame is changed.

• Symbolic information of local variables is likely to be incorrect because most of
the local variables are put in registers; the rest of the local variables are reor­
dered into new frame locations.

• Note that if symbolic information is requested, then slightly different code is gen­
erated. This happens because the /FIXED_FRAM E optimizing flag (- O f on UNIX
systems) is automatically disabled when the /DEBUG qualifier (- g on UNIX sys­
tems) is used. Specifically, the ENTER instruction is always generated at the
entry of procedures, and frame variables are referenced by FP-relative rather
than SP-relative addressing mode. Without disabling this flag, symbolic debug­
ging is almost impossible.

It is helpful to have an assembly listing of the program in question which has been
compiled with the /ASM (- S on UNIX systems) and the /ANNOTATE (- n on UNIX sys­
tems) qualifiers. Such a listing contains comments from the optimizer regarding its
actions.

6.5 ADDITIONAL GUIDELINES FOR IMPROVING CODE QUALITY
Using the following programming guidelines results in programs which take advantage
of the GNX—Version 3 C compiler optimizations.

6.5.1 Static Functions
It is not only good software engineering practice, but also good optimization practice
to declare all functions not called from outside the file as “static.” This allows the
optimizer to use a more efficient internal calling sequence upon calls to such routines.
This internal calling sequence uses the BSR instruction instead of the JSR or CXP
instruction and also passes parameters in registers rather than on the stack.
If a program consists of a single file and this is discovered by the GNX—Version 3 C
compiler (by indicating compilation and linking in one step), then all functions within
that file are automatically considered static by the compiler, resulting in the same
advantages.

GUIDELINES ON USING THE OPTIMIZER 6-9

6.5.2 Integer Variables
Many operators, including index calculations, are defined in C to operate on integers
and imply a conversion when given non-integer operands. Therefore, to avoid frequent
run-time conversions from char or short to int, integer variables, particularly
variables which serve as array-indices, should be defined as type int and not short
or char .

6.5.3 Local Variables
Local variables should be used as much as possible, particularly when they are
employed as loop counters or array indices, as they have a better chance of being
placed in registers.

6.5.4 Floating-Point Computations
In programs which do not require double-precision floating-point computations, a
significant run-time improvement can be achieved by paying attention to the following
points:

• define all functions as returning float type, not double
• define all constants to be ’float’ using the f suffix or cast expressions explicitly to

float
• use the single-precision version of the standard floating-point routines such as
ffabs() instead of abs(), fsin() instead of sin (), etc.

6.5.5 Pointer Usage
The following terms are used throughout this section.

• potential definition
A statement potentially defines a memory location if the execution of the statement
may change the contents of that memory location.

Example: 1. A call to a function potentially defines all global variables because
their values many change during the execution of that function.

2. Imagine the following code fragment:
extern int *p, *q;

*P = 8 ;

6-10 GUIDELINES ON USING THE OPTIMIZER

The assignment statement potentially defines the memory location
*q because q may point to the same memory location as p. The
location *p is defined, i.e., given a new value, by the assignment.
Location *q may be changed; therefore, it has the potential
definition.

• potential use
A statement “potentially uses” a memory location if it may reference (read from)
that memory location.

• address taken variable
A variable is considered “address taken” if the address operator (&) is applied to it
within the file or if the variable is a global variable that is visible by other files.

• volatile/nonvolatile registers
By convention, the registers are divided into volatile registers (registers RO through
R2 and F0 through F3) and nonvolatile registers (registers R3 through R7 and F4
through F7). Volatile registers may be changed by a procedure call, whereas nonvo­
latile registers are guaranteed to retain their value across procedure calls. There­
fore, all nonvolatile registers used within a procedure have to be saved at the entry
and restored at the exit of that procedure.

The optimizer does not keep track of the contents of pointers; therefore, it cannot tell,
for any given location in the program, where each pointer is pointing.
Since a pointer can point to any memory location, the optimizer makes the following
assumptions concerning pointer usage:

1. Every assignment to a “pointer dereference,” the location pointed to by a
pointer, potentially defines all other pointer dereferences and all address-
taken variables.

2. Every use of a pointer dereference (i.e, a value read through a pointer)
potentially uses all other pointer dereferences and all address-taken vari­
ables. This is because any accessible memory location is potentially read.

3. Every function call potentially defines and potentially uses all pointer
dereferences, all address taken-variables, and all global variables. This is
because the function’s code may, using pointers, read and/or write any acces­
sible memory location. Of course, any global variable may be used and/or
changed.

It is advisable to keep these assumptions in mind when using pointers. In particular,
using arrays is preferable to using pointers. The following example illustrates this
point. Assume a is an array of char and p is a pointer to char. The two program
segments perform the same function.

GUIDELINES ON USING THE OPTIMIZER 6-11

Example: program segment 1
for (i = 0 ; i != 10 ; i++) {

a[i] = global_var; a[i+l] = global_var + 1;
}
program segment 2
for (p = &a[0] ; p != &a[10] ; p++) {

*p = global_var; *(p+l) = global_var + 1;
}

In program segment 1, global_var can be put in a register. In program segment 2,
however, p may point to global_var. The first statement (*p = global_var)
potentially defines global_var; therefore, it cannot be put in a register.
Another aspect of this same issue is that of common subexpressions. The optimizer
normally recognizes multiple uses of the same expression and saves that expression in
a temporary variable (usually a register). This cannot be performed when worst-case
assumptions are made about potential definition of expressions (as described in the
previous section). Expressions that contain pointer dereferences or global variables are
vulnerable; therefore, if many uses of the same expression span across procedure calls,
it is advisable to save them in local variables. In the following example:

fool(p -> x);
foo2(p -> x);

The expression p -> x cannot be recognized by the optimizer as a common subexpres­
sion because fool () may change its value. The following hand optimization may
help:

t = p -> x; /* t is local, therefore */
fool (t); /* not potentially defined by fool () */
foo2 (t); /* so its value is still valid for foo2() */

The programmer is using his or her knowledge that p -> x is not changed by fool ()
to make this optimization. The optimizer cannot do the same because it assumes the
worst case.

6-12 GUIDELINES ON USING THE OPTIMIZER

6.5.6 Asm Statem ents
Extreme care should be taken if using asm statements. If using asm statements
remember the following:

• The optimizer is not aware of the contents of an asm statement. Therefore, it
assumes that an asm statement potentially defines and potentially uses all of the
variables (including local variables). This means that no common subexpressions
can be recognized across an asm statement.

• In order to allow an asm statement to use a specific register (e.g., asm ("save
[r 0, r 1, r 2] ") ;), the optimizer de-allocates all the registers.

• The compiler usually generates code which differs from the code generated by
other compilers. This applies particularly to allocation of local variables and
parameters of static procedures.

• The code surrounding the asm statement may change as a result of changes in
other parts of the procedure.

• An asm statement that contains a branch instruction or a branch target (label)
may cause the optimizer to generate wrong code.

For the above mentioned reasons, it is strongly advised to look at the generated assem­
bly before and after inserting asm statements into a program.

6.5.7 Register Allocation
The C language is unique in that it allows the programmer to specify (or rather recom­
mend) that some variables be allocated to machine registers. The optimizer normally
ignores these recommendations, since in most cases the optimizer’s own register alloca­
tion algorithms are as good as or superior to the programmer’s recommendations.
There are several reasons for this fact: •

• The user can use a register for one variable only. The optimizer, however, allo­
cates a register along live ranges of variables, making it possible for several vari­
ables with non-conflicting live ranges to use the same register.

• The user can declare as a register only local variables whose addresses are not
taken; whereas, the optimizer allocates global variables as well as variables
whose addresses are taken (where possible).

• The user can allocate variables in safe registers only. Therefore, every register
which is used has to be saved/restored at the entry/exit of the procedure. The
optimizer allocates variables that do not live across procedure calls in unsafe
registers. Therefore, these registers need not be saved/restored.

GUIDELINES ON USING THE OPTIMIZER 6-13

• Because of code motion optimizations, the number of references of variables may
be changed. Therefore, the choice of register variables may not be optimal. In the following example:

in t j ;
r e g is te r in t i ;
i = j;i f (i == 3 M i == 4 | | i == 5)

undesired effects result if optimized with the /USER_REGISTERS flag (-Ou on
UNIX systems). The reason is that j is copy propagated and replaces all
occurrences of i. Therefore, i occupies a register for nothing, while j may end
up in memory (because either the ordinary register allocation of the optimizer is
not invoked or there are no registers left for j).

6.5.8 setjmpO
Calls to se t jmp () are specially recognized by the compiler. Procedures that contain
calls to se t jmp () are only partially optimized because procedure calls may end up in
a call to longjmpO. Code motion optimizations are performed only within linear
code sequences (those sequences not containing branches or branch targets). Register
allocation is limited to optimizer generated temporary variables, register declared vari­
ables, and variables whose live ranges do not contain function calls.

6.5.9 Optim izing for Space
The default behavior of the GNX—Version 3 C compiler optimizes for optimal speed.
There are several things that can be done to improve code density:

• o p t im iz e w ith th e /NOSPEED_OVER_SPACE o n (-Os o n UNIX s y s te m s) .
• s q u e e z e th e d a ta a r e a b y u s in g s m a lle r a l ig n m e n t b e tw e e n v a r ia b le s , i . e . ,
/TARGET= (BUS=1) on VMS s y s te m s or -KB 1 o n UNIX s y s te m s .

• squeeze all record definitions by using the /ALIGN=1 (-J1 on UNIX systems)
switch. See Section 4.2.4.

6.6 COMPILATION TIME REQUIREMENTS
Using the optimizer slows down the compilation process. It is therefore recommended
to use the optimizer only on final production versions of a program. The amounts of
resources (time and memory) vary strongly from program to program and actually
depend on the size of the routines in the compiled program file. The larger a routine,
the more time and memory needed to optimize it. This behavior is more or less qua­
dratic, the optimizer needs about four times the resources to optimize a routine of 1000
lines than to optimize a routine of 500 lines.

6-14 GUIDELINES ON USING THE OPTIMIZER

If time or memory requirements are unacceptable and routines cannot be reduced to
reasonable (500 lines) size, it is possible to turn off some optimizations using the
/NOCODE_MOTION (-Om on UNIX s y s te m s) a n d /o r th e /NOREGISTER_ALLOCATION
(-O r on UNIX s y s te m s) f la g s .

On UNIX host systems, an optimization flag is available to set an upper limit on the
memory requirements of the optimizer to a certain number of megabytes. This can be
useful on host systems without a Memory Management Unit (MMU) or with a limited
swap-space configuration. If necessary, the optimizer then skips certain optimizations
on huge routines only, in order to stay under the chosen limit. In such cases, an
appropriate message is given. This flag is only necessary when compiling modules with
extremely large procedures (over 500 lines in a single procedure), a case when the
optimizer may need a larger swap space than the one currently available. For
instance,

-02

limits the optimizer to 2 Mbytes of swap space.
An alternate method for setting an upper limit on memory requirements, on native sys­
tems, is to use the environment variable AVAIL_SWAP, which sets the maximum swap
space requirement of the optimizer in megabyte units. This environment variable
should be set to the number of megabytes to be used. The user can choose from 1
Mbyte to 16 Mbytes. If the user’s choice is outside of these parameters, the default
value of 4 Mbytes is chosen. For instance,

setenv AVAIL_SWAP 2

makes 2 Mbytes of swap space the default. This can be overridden using the previously
described -Onumber option.

GUIDELINES ON USING THE OPTIMIZER 6-15

Appendix A
SERIES 32000 STANDARD CALLING CONVENTIONS

A.1 INTRODUCTION
The main goal of standard calling conventions is to enable the routines of one program
to communicate with different modules, even when written in multiple-programming
languages. The Series 32000 standard calling conventions support various special
language features (such as the ability to pass a variable number of arguments, which is
allowed in C), by using the different calling mechanisms of the Series 32000 architec­
ture. These conventions are employed only to call “externally visible” routines. Calls
to internal routines may employ even faster calling sequences by passing arguments in
registers, for instance.
Basically, the calling sequence pushes arguments on top of the stack, executes a call
instruction, and then pops the stack, using the fewest possible instructions to execute
at the maximum speed. The following sections discuss the various aspects of the
Series 32000 standard calling conventions.

A.2 CALLING CONVENTION ELEMENTS
Elements of the standard calling sequence are as follows:

• The Argument Stack
Arguments are pushed on the stack from right to left; therefore, the leftmost
argument is pushed last. Consequently, the leftmost arguments are always at the
same offset from the frame pointer, regardless of how many arguments are actu­
ally passed. This allows functions with a variable number of arguments to be
used.
NOTE: This does not imply that the actual parameters are always

evaluated from right to left. Programs cannot rely on the
order of parameter evaluation.

The run-time stack must be aligned to a full double-word boundary. Argument
lists always use a whole number of double-words; pointer and integer values use a
double-word (by extension, if neccessary), floating-point values use eight bytes
and are represented as long values; structures (records) use a multiple of
double-words.

SERIES 32000 STANDARD CALLING CONVENTIONS A-l

NOTE: Stack alignment is maintained by all GNX—Version 3 com­
pilers through aligned allocation and de-allocation of local
variables. Interrupt routines and other assembly-written
interface routines are advised to maintain this double-word
alignment.

The caller routine must pop the arguments off the stack upon return from the
called routine.

NOTE: The compiler uses a more efficient organization of the stack
frame if the FIXED_FRAME (-OF) optimization is enabled. In
that case, programs should not rely on the organization of the
stack frame.

• Saving Registers
General registers RO, Rl, and R2 and floating registers F0, Fl, F2, and F3 are
temporary or scratch registers whose values may be changed by a called routine.
Also included in this list of scratch registers is the long register LI of the
NS32381 FPU. It is not necessary to save these registers on procedure entry or
restore them before exit. If the other registers (R3 through R7, F4 through F7,
and L3 through L7 of the NS32381) are used, their values should be saved (onto
the stack or in temps) by the called routine immediately upon procedure entry
and restored just before executing the return instruction. This should be per­
formed because the caller routine may rely on the values in these registers not
changing.
NOTE: Interrupt and trap service routines are required to

save/restore all registers that they use.
• Returned Value

An integer or a pointer value that returns from a function, returns in (part of)
register RO.
A long floating-point value that returns from a function, returns in register pair
F0-F1. A float-returning function returns the value in register F0.
If a function returns a structure, the calling function passes an additional argu­
ment at the beginning of the argument list. This argument points to where the
called function returns the structure. The called function copies the structure into
the specified location during execution of the return statement. Note that func­
tions that return structures must be correctly declared as such, even if the return
value is ignored.

A-2 SERIES 32000 STANDARD CALLING CONVENTIONS

Example:
int iglob;
m ()
{

int loc;
a = ifunc (loc);}

ifunc (pi)
i nt pi;{

int i, j, k;
j = 0;
for (i = 1; i <= pi; i++)

j = j + f(i);
return (j);}

The compiler may generate the following code:
m;

enter [],4 #Allocate local variable
movd -4 (fp),tos #Push argument
bsr ifunc
adj spb $ (-4) #Pop argument off stack
movd
exit

rO, iglob
[]

#Save return value

ret $ (0)
ifunc:

enter [r3,r4,r5],0 #Save safe registers
movd 8 (fp),r5 #Load argument to temp r<
movqd Uo</> ♦Initialize j
cmpqd $ (1) ,r5
bgt . LL1
movqd $ (1) ,r3 ♦Initialize i

LL2 :
movd r3,tos ♦Push argument
bsr _f
adj spb 1</> ♦Pop argument off stack
addd r0, r4 ♦Add return value to j
addqd $ (1) ,r3 ♦Increment i
cmpd r3, r5
ble . LL2

LL1:
movd r4, rO ♦Return value
exit [r3,r 4,r5] ♦Restore safe registers
ret $ (0)

Rev B SERIES 32000 STANDARD CALLING CONVENTIONS A-3

After the enter instruction is executed by ifu n c () , the stack
will look like this:

HIGH MEMORY
caller’s stack frame
callee’s stack frame

< - fp

< - sp
LOW MEMORY

loc
value of loc

return address
saved fp
saved r3
saved r4
saved r5

A-4 SERIES 32000 STANDARD CALLING CONVENTIONS

After the enter instruction is executed by i f unc () , the stack will look like this:

HIGH MEMORY

loc

value of loc
return address

saved fp
saved R3
saved R4
saved R5

LOW MEMORY

caller's stack frame

callee's stack frame

— fp

-- sp

SERIES 32000 STANDARD CALLING CONVENTIONS A-5

Appendix B
MIXED-LANGUAGE PROGRAMMING

B .l INTRODUCTION
Mixed-language programs are frequently used for a couple of reasons. First, one
language may be more convenient than another for certain tasks. Second, code sec­
tions, already written in another language (e.g., an already existing library function),
can be reused by simply calling them.
A programmer who wishes to mix several programming languages needs to be aware of
subtle differences between the compilation of the various languages. The following sec­
tions describe the issues the user needs to be aware of when writing mixed-language
programs and then compiling and linking such programs successfully.

B.1.1 Writing Mixed-Language Programs
The mixed-language programmer should be aware of the following topics:

• Name Sharing- Potential conflicts including permitted name-lengths, legal char­
acters in identifiers, compiler case sensitivity, and high-level to assembly-level
name transformations.

• Calling Conventions- The way parameters are passed to functions, which regis­
ters must be saved, and how values are returned from functions. See Appendix A
for details.

• Declaration Conventions- The demands that different languages impose when
referring to an outside symbol (be it a function or a variable) that is not defined
locally in the referring source file. Note that this is also true of references to an
outside symbol that is not in the same language as that of the referring source
file.

To help the programmer avoid these potential problems, a set of rules for writing
mixed-language programs has been devised. Each rule consists of a short mnemonic
name (for easy reference), the audience of interest for the rule, and a brief description
of the rule.
Figure B-l summarizes all of the previously defined rules in the context of each possi­
ble cross-language pair.

MIXED-LANGUAGE PROGRAMMING B -l

C Pascal FORTRAN 77 Modula-2 Series 32000
Assembly

Series 32000
Assembly

prefix prefix
include ext
case sensitivity

prefix
suffix

ref args
case sensitivity

prefix
DEF & IMPORT
init code

Modula-2 DEF & IMPORT
init code

DEF & IMPORT
init code
include ext
case sensitivity

suffix
DEF & IMPORT
init code
ref args
case sensitivity

prefix
DEF & IMPORT
init code

FORTRAN 77 suffix
ref args
case sensitivity

suffix
include ext
ref args

suffix
DEF & IMPORT
init code
ref args
case sensitivity

prefix
suffix

ref args
case sensitivity

Pascal include ext
case sensitivity

suffix
include ext
ref args

DEF & IMPORT
init code
include ext
case sensitivity

prefix
include ext
case sensitivity

C include ext
case sensitivity

suffix
ref args
case sensitivity

DEF & IMPORT
init code

prefix

Figure B-l. Cross-Language Pairs

RULE 1 case sensitivity
This rule is of interest to every programmer who mixes programming
languages.
Modula-2, C, and Series 32000 assembly are case sensitive while FOR­
TRAN 77 and Pascal are not (at least according to the standard). Pro­
grammers who share identifiers between these two groups of languages
must take this into account. To avoid problems with case sensitivity,
the programmer can:

1. Take care to use case-identical identifiers in all sources and com­
pile FORTRAN 77 and Pascal sources using the case-sensitive
option (/ C A SE _SE N SITIV E on VMS, - d on UNIX).

2. Use only lower-case letters for identifiers which are shared with
FORTRAN 77 or Pascal, since the FORTRAN 77 and Pascal com­
pilers fold all identifiers to lower-case if not given the case-
sensitive option.

B-2 MIXED-LANGUAGE PROGRAMMING

RULE 2 prefix

RULE 3

RULE 4

This rule is of interest to those who mix high-level languages with
assembly code.
All compilers map high-level identifier names into assembly symbols
by prepending these names with an underscore. This ensures that
user-defined names are never identical to assembly reserved words.
For example, a high-level symbol NAME, which can be a function name,
a procedure name, or a global variable name, generates the assembly
symbol _NAME.
Assembly written code which refers to a name defined in any high-level
language should, therefore, prepend an underscore to the high-level
name. Stated from a high-level language user viewpoint, assembly
symbols are not accessible from high-level code unless they start with
an underscore.

suffix
This rule is of interest to those who mix FORTRAN 77 with C, Pascal,
Modula-2, or assembly code.
The FORTRAN 77 compiler appends an underscore to each high-level
identifier name (in addition to the action described in RULE 1). The
reason for an appended underscore is to avoid clashes with standard-
library functions that are considered part of the language, e.g., the
FORTRAN 77 WRITE instruction. For example, a FORTRAN 77
identifier NAME is mapped into the assembly symbol _NAME_.
Therefore, a C, Pascal, Modula-2, or assembly program that refers to
an FORTRAN 77 identifier name should append an underscore to that
name. Stated from an FORTRAN 77 user viewpoint, it is impossible to
refer to an existing C, Pascal, Modula-2, or assembly symbol from
FORTRAN 77 unless the symbol terminates with an underscore.
ref args
This rule is of interest to those who mix FORTRAN 77 with other
languages.
Any language which passes an argument to a FORTRAN 77 routine
must pass its address. This is because a FORTRAN 77 argument is
always passed by reference, i.e, a routine written in FORTRAN 77
always expects addresses as arguments.
Routines not written in FORTRAN 77 cannot be called from an FOR­
TRAN 77 program if the called routines expect any of their arguments
to be passed by value. Only routines which expect all their arguments
to be passed by reference can be called from FORTRAN 77.

MIXED-LANGUAGE PROGRAMMING B-3

RULE 5

RULE 6

RULE 7

Pascal and Modula-2 programs must declare all FORTRAN 77 routine
arguments using var. C programs must prepend the address operator & to FORTRAN 77 routine arguments in the call.
The C, Pascal, or Modula-2 programmer who wants to pass an unad-
dressable expression (such as a constant) to a FORTRAN 77 routine,
must assign the expression to a variable and pass the variable, by
reference, as the argument.
include ext
This rule is of interest to Pascal programmers who want to share vari­
ables between different source files which may or may not be written in
Pascal.
Pascal sources which share global variables must define these vari­
ables exactly once in an external header (include) file. The external
header file has to be included in all Pascal source files which access the
shared global variable, and its name must have a . h extension.
DEF and IMPORT
This rule is of interest to those who mix Modula-2 with other
languages.
Modula-2 modules which access external symbols must import external
symbols. If external symbols are not defined in Modula-2 modules but
defined in other languages, the programmer must export these symbols
to conform with the strict checks of the Modula-2 compiler.
External symbols can be exported by writing a “dummy” DEFINITION
MODULE which exports all of the foreign language symbols, making
them available to Modula-2 programs.
This export must be nonqualified to prevent the module name from
being prepended to the symbol name.
init code
This rule is of interest to those who mix Modula-2 with other
languages.
Modula-2 modules which import from external modules activate the
initialization code of the imported modules before they start executing.
The initialization code entry-point is identical to the imported module
name.
To avoid getting an “Undefined symbol” message from the linker, the
programmer should define a possibly empty, initialization function for
every imported module. This is in case the implementation part of that

B-4 MIXED-LANGUAGE PROGRAMMING

module is not written in Modula-2. It should be noted that the initiali­
zation code is not necessarily called during run-time. Initialization
code is executed if, and only if, the following two conditions hold true:

1. The main program code is written in Modula-2.
2. The Modula-2 routines which are supposed to activate the intiali-

zation part are not called indirectly through some non-Modula-2
code.

In addition to these rules, a few points should be noted. First, GNX—Version 3 FOR­
TRAN 77 allows identifiers longer than the six character maximum of traditional FOR­
TRAN compilers. Second, the family of GNX—Version 3 compilers allows the use of
underscores in identifiers. Both of these enhancements simplify name sharing.
Importing Routines and Variables
The general conventions of all languages must be kept in mixed-language programs. In
particular, externals must be declared in those program sections which import them.
The following are examples of declarations of external (imported) functions/procedures
and external (imported) variables in each language. The examples are in the form:
caller language: external (imported) functions /procedures or external (imported) variables

Example:
C: extern

or
int func () ;

extern int var name ;

Note that the strict reference C model (draft-proposed ANSI C
standard) is assumed. If the model is relaxed, then the external
declarations are not mandatory.
FORTRAN 77: INTEGER func

or
COMMON /var_name/ local__name

Pascal: function func_ : integer ; external;
procedure proc_ ; external;

or
#include ”var_def.h"

where the file var_def. h contains the following
declaration:

MIXED-LANGUAGE PROGRAMMING B-5

var

Modula-2:

Series 32000:
assembly

var_name_ : integer;

as explained in RULE 5 (include ext).
FROM modula_name IMPORT func_ or
FROM module_name IMPORT var_name

.globl _func_
or

.globl _var_name_

B.1.2 Compiling Mixed-Language Programs
After writing different program parts in different languages, keeping in mind the rules
previously mentioned, the mixed-language programmer must still link and load these
parts to make them run successfully. Three points should be mentioned in conjunction
with the successful linking and loading of programs. These are as follows:

• External library (standard or nonstandard) routines must be bound with the
user-written code that calls them.

• Initialization code which arranges to pass program parameters to the main pro­
gram and then calls the main program, sometimes has to be bound with user-
written code.

• The entry point of the code, i.e., the location where the program starts executing,
should be determined.

In some cases, a standard is not so widely accepted, as with Modula-2. In these cases,
the user must be aware of the libraries that are available and the calling conventions of
the main program used by the operating system.
Libraries:
The following table (Table B-l) lists libraries associated with each compiler. When pro­
gramming with mixed-languages, the libraries associated with the languages used
must be bound with the program during the link phase of compilation.
Initialization Code and Entry-points:
Normally, the entry point of the final executable file is called start. The code that fol­
lows this entry-point is an initialization code that prepares the run-time environment
and arranges parameters to be passed to the user-written main program. The initiali­
zation object file which is linked by default is called crtO . o. The crtO . o file always
calls main.
The assembly-symbol that starts the user main program is _main (the underscore is
prepended by the C compiler) in C programs and _MAIN_ _ in Pascal, FORTRAN 77,
or Modula-2 programs.
B-6 MIXED-LANGUAGE PROGRAMMING

Table B -l. Compilers and their Associated Libraries

COMPILER (DRIVER) NAME LIBRARIES
cc (cross nmcc)
f77 (cross nm77)
pc (cross nmpc)
m2c (cross nm2c)

libc
libF77, libI77, libm, libc
libpas, libm, libc
libmod2, libm, libc

Note that the last three compilers completely ignore the user’s main program name.
Therefore, in C, the user-written code is called directly from crt 0 . o. In Pascal, FOR­
TRAN 77, and Modula-2, _main is located in the respective standard library which
performs additional initializations before calling the user entry-point _MAIN___.

B.1.3 Compilation on UNIX Operating Systems
National Semiconductor’s GNX tools (assember, linker, etc.) on UNIX systems relieve a
user’s concern about external libraries, initialization code, and entry-points. This is
due to the coherency and consistency of the GNX—Version 3 compilers and their
integration through the use of a common driver.
When using a GNX—Version 3 compiler on a UNIX system, the user does not directly
call the compiler front end, optimizer, code generator, assembler or linker. Instead,
the calls are indirectly made through the driver program.
The driver program accepts a variable number of filename arguments and options and
knows how to identify language-specific options. The driver also identifies the
languages in which its filename arguments are written by the names of these argu­
ments. Therefore, the driver can arrange to compile and bind the programs with the
needed libraries in order to run the program successfully.
As mentioned earlier, the driver program used by C, Pascal, FORTRAN 77, and
Modula-2 programmers is exactly the same program on UNIX systems. The respective
driver names are cc, pc, f77, and m2c (nmcc, nmpc, nf77, and nm2c for cross­
support) .
The driver program looks at its own name in order to determine the libraries that are
bound with the program. In addition, the driver links additional libraries according to
the name extensions of any of its filename arguments. For instance, cc also links
libm and libpas when one of the filename arguments is a Pascal source (recognized
by the . p extension).

MIXED-LANGUAGE PROGRAMMING B-7

The -v (verbose) option of the driver verbosely outputs all driver actions. With this
option, the interested user can track problems that might arise (such as undefined sym­bols from the linker).
As mentioned in the previous section, different languages use different initialization
codes that reside in language-specific standard libraries. It is necessary that the
correct language initialization code be linked with a mixed-language program. The
driver program helps do this, but it needs to know in which language the main program
is written.
To ensure that the correct initialization code is linked with a mixed-language program,
the user should call the driver that corresponds to the language of the main program
module within the mixed-language program.
For example, suppose there are five source modules written in five different languages
(c _ u t ils . c written in C, f _ u t i l s . f written in FORTRAN 77, p _ tu ils .p written
in Pascal, m_ut i 1 s . m written in Modula-2, and s_ut i 1 s . s written in assembly), and
there is a sixth module that has already been compiled separately (obj . o, an object
module). Assuming there is a main program written in FORTRAN 77, the f 77 driver
should be used.
f77 main.f c_utils.c f__utils.f p_utils.p m_utils.m s_utils.s obj.o

If the main program is written in C, cc is used, and so on.

B.1.4 Compilation on VMS Operating Systems
Under the GNX tools on VMS systems, the linking phase is separate from the compila­
tion phase; therefore, it demands separate actions from the user.
The interested user should refer to the language tools manuals (assembler, linker, etc.)
for a complete description of how to use them on VMS systems.

B.2 COMPILING THE MIXED-LANGUAGE EXAMPLE
The example listed in Section B.3 consists of a number of program modules written in
languages different from the main program which is written in C.

B.2.1 Compiling the Example on a UNIX System
To compile the program modules on a UNIX system, type the command:

nracc c_main.c\
c_fun.c dmod_fun.def dummy.def f77_fun.f \
imod_fun.m pas_fun.p asm_fun.s

B-8 MIXED-LANGUAGE PROGRAMMING

This assumes that all the program modules are in the same directory. If the program
compiles and links successfully, the result is an executable file that, when run, prints
the line “Passed OK ! ! !”.

B.2.2 Compiling the Example on a VMS System
To compile the modules on a VMS system, type the following commands:

nmcc cjnain.c
nmcc c_fun.c
nm2c dmod_fun.def
nm2c dummy.def
nf77 f77_fun.f
nm2c imod_fun. m
nmpc pas_fun.p
nasm asm_fun.s

After linking, the result is an executable file that, when run, prints the line “Passed
OK ! ! ! ”,

B.3 PROGRAM MODULE LISTINGS
The different program modules are listed in this section.

MIXED-LANGUAGE PROGRAMMING B-9

c_main.c

Example of a C program which communicates with C, Pascal,
Fortran 77, Modula-2 and Assembly external functions, via direct
calls as well as via a global variable.
Parameter passing by reference is accomplished by passing the
addresses of the characters variables 'a', 'b', 'c', 'd' and 'e'.

char str
main() {

char
int

[] = "Passed OK !!!\n"; /* global ('exported') string */
a, b,
three

c, d,= 3; e;
/* FORTRAN must get its parameters by reference
* So we put this constant into a variable ...

if (c_func
pas_func
f 77_func_
mod_func
asm func

(&a,
<&b,
(&c,
(&d,
(&e,

*/0)
2)
&three)
3)
4))

&&&&&&&&
printf("%c%c%c%c%c%s",

/* in C arrays start with 0 */
/* in Pascal they start at 1 */
/* in f77, at 1 */
/* in Modula-2, at 0 */
/* in assembly, at 0 */
a, b, c, d, e, str +5);

/* Should print "Passed OK 7}
/* dummy initialization function for Modula-2
dummy (){}

B-10 MIXED-LANGUAGE PROGRAMMING

c_fun.c

/*
* Declaration of the public character string ' str[]' and definition
* of the C function 'c_func()'.
* Note the appending of an underscore to the external symbol 'str_'
* which is shared with FORTRAN 77.
*/

extern char str_[];
int c_func(c_ptr, index)
char *c_ptr;
int index;

C
C The FORTRAN 77 function:
C
C All parameters are passed by reference
C The COMMON statement aliases the external array 'str' as 'text'
C

LOGICAL FUNCTION f77_func(c, index)
CHARACTER c
INTEGER index
COMMON /str/ text
CHARACTER text (15)
c = text(index)
f77_func = .TRUE.
RETURN

*c_ptr = str_[index];
return 1;

f77_fun.f

END

MIXED-LANGUAGE PROGRAMMING B -ll

dmod_fun.def

DEFINITION MODULE mfunc_module;
EXPORT mod_func;
PROCEDURE mod_func(VAR c: CHAR; index: INTEGER): BOOLEAN;

END mfunc module.

dummy, def

(*
* This definition module was written in order to 'satisfy' Modula-2
* strict conformance checks regarding the foreign language functions
* and in order to define the global character array 'str[]'.
* The external functions are called from the Modula-2 main program,
* so they must be exported from somewhere. ..
*)

DEFINITION MODULE dummy ;
EXPORT

str_, c_func, pas_func, f77_func_, asm_func;
(* external function declarations *)
PROCEDURE c_func (VAR c : CHAR; index : INTEGER) : BOOLEAN ;
PROCEDURE pas_func (VAR c : CHAR; index : INTEGER) : BOOLEAN ;
PROCEDURE f77_func_(VAR c : CHAR; VAR index : INTEGER) : BOOLEAN ;
PROCEDURE asm_func (VAR c : CHAR; index : INTEGER) : BOOLEAN ;
VAR

str_ : ARRAY [0..14] OF CHAR;
END dummy .

B-12 MIXED-LANGUAGE PROGRAMMING

imod_fun.m

(*
* Definition of the Modula-2 function 'mod_func()'
*)

IMPLEMENTATION MODULE mfunc_module;
FROM dummy IMPORT str_;
PROCEDURE mod_func(VAR c: CHAR; index: INTEGER): BOOLEAN;
BEGIN

c := str_[index];
RETURN(TRUE);

END mod_func;
END mfunc module.

pas_fun.p

(*
* The Pascal function 'pas_func()'
*)
(* 'str[]' character-array declaration *)
#include "str_pas.h";
(* make this function visible to outsiders ('export') *)
function pas_func(var c: char; index: integer): boolean; external
function pas_func();
begin

c := str_[index];
pas_func := TRUE;

end;

MIXED-LANGUAGE PROGRAMMING B-13

str_pas.li

a sm _ fu n .s

#
The 32000 Assembly Language Function 'asm_func'#
The function includes an artificial use of r7, to demonstrate the
need to save it upon entry and restore upon exit, as opposed to
rO, rl and r2; fO, fl, f2 and f3 which can be used freely without
saving or restoring. This is according to the Series 32000
standard calling convention.
The function return value is placed in rO, also according to the
standard calling convention.#

.globl _str_ # Import the global str[] array.

.globl _asm_func # Export (make visible) the assembly function,

.align 4
asm func:

enter [r7],0 # Set frame, demonstrate saving of
movb _str_+0(12(fp)),0(8(fp)) # argument 1 «— str[argument_2]
movqd $(1) ,r7 # artificial use of rl
movd r7, rO # return value <— TRUE
exit [r7] # Unwind frame, restore rl
ret $(0) # Return to caller

B-14 MIXED-LANGUAGE PROGRAMMING

Appendix C
ERROR MESSAGES

C.l INTRODUCTION
The GNX—Version 3 C compiler error messages and warnings are listed in this appen­
dix. Error diagnostics are divided into two categories: warnings and errors.

C.1.1 Warnings
An input which conforms to the language, but which the compiler suspects the pro­
grammer may not mean what is written, causes the compiler to invoke a warning mes­
sage. These messages are intended for information only and do not affect the code gen­
erated. Warning messages can be disabled by the /NOWARNING option (-w on UNIX
operating systems).

C.1.2 Errors
Errors are those which the compiler detects but does not know what the user’s inten­
tion is. In this case, together with the error message, code generation is suspended.

C.2 Error M essages
A list of error and warning messages follows:

1. ERRORS
<name> undefined
BCD constant exceeds 6 characters
Compilation aborted, there may be more errors in the file
Ran out of memory
arguments not allowed in function declaration
array of functions is illegal
assignment of different structures
attempted to take address of a register
bad scalar initialization

ERROR MESSAGES C-l

cannot declare <name>(void type)
cannot initialize char/short member with addres
cannot initialize extern or union
case not in switch
constant expected
constant too big for cross-compiler
declared argument <name> is missing
default not inside switch
division by 0
division by zero
duplicate case in switch, <val>
duplicate default in switch
empty character constant
field outside of structure
field too big
fortran declaration must apply to function
fortran function has wrong type
function declaration in bad context
function has illegal storage class
function illegal in structure or union
function returns illegal type
geos BCD constant illegal
illegal break
illegal character: <value>(octal)
illegal class
illegal continue
illegal do control
illegal field size
illegal field type
illegal for control
illegal function
illegal hex constant

C-2 ERROR MESSAGES

illegal if control
illegal indirection
illegal initialization
illegal lhs of assignment operator
illegal pointer subtraction
illegal register declaration
illegal storage class
illegal switch control
illegal type combination
illegal type (array of void)
illegal types in :
illegal use of field
illegal while control
illegal {
maximum string length exceeded
member of structure or union required
nesting too deep for initialization
newline in BCD constant
newline in string or char constant
no automatic aggregate initialization
non-constant case expression
nonunique name demands struct/union or struct/union pointer
null dimension
only const or volatile pointer modifiers
only one storage class allowed
operands of <op> have incompatible types
pointer required
ran out of hash tables
redeclaration of <name>
size is too big for pointer arithmetic
size too big
storage class illegal in cast

ERROR MESSAGES C-3

storage class illegal in structure or union
struct/union is illegal for <op>
structure reference must be addressable
structure too large
syntax error
too many characters in character constant
too many initializers
too many initializers for inner aggregate
too many local variables
too many post-increments/decrements in expression
type clash in conditional
unacceptable operand of &
undefined enumeration
undefined structure
undefined structure or union
undefined union
unexpected EOF
unknown size
void type illegal in expression
yacc stack overflow
zero-sized field
zero-sized storage allocation
zero-sized structure/union

2. ERRORS REGARDING THE-N OPTION
IR buffer full
dimension table overflow
identifier symbol table full
multi hash table full
nesting too deep
out of tree space
parameter stack overflow
switch table overflow

C-4 ERROR MESSAGES

symbol table full
whiles, fors, etc. too deeply nested
whiles, fors, switches, etc. too deeply nested

3. WARNINGS
#ident string too long
<value> overflows destination
& before array or function: ignored
-I overrides -n
-g ignored with -Q
-n ignored with -Q
-p ignored with -Q
<char> is not an octal digit
<name> redefinition hides earlier one
Too many files, file <name> ignored
Took address of setjmp or longjmp, DO NOT OPTIMIZE
a function is declared as an argument
ambiguous assignment: assignment op taken
attempted to take address of a register
combination of different sized arrays
constant argument to NOT
constant in conditional context
empty array declaration
enumeration type clash, operator <op>
float constant cannot fit in float
floating point overflow/underflow
illegal member use: <name>
illegal pointer combination
illegal structure-pointer combination
illegal zero-sized structure/union member: <name>
integer overflow in truncation
loop not entered at top
meaningless comparison(0 always <= unsigned)

ERROR MESSAGES C-5

meaningless comparison(unsigned always >= 0)
meaningless comparison(unsigned always >=0)
missing " in # ident
missing closing " in # ident string
multiple 'const' ignored
multiple 'volatile' ignored
non-null byte ignored in string initializer
old-fashioned assignment operator
old-fashioned initialization: use =
precedence confusion possible: parenthesize!
questionable comparison - unsigned can never be negative,
questionable comparison - unsigneds can never be negative
redeclaration hides formal parameter <name>
redefined standard library routine <name>
sizeof returns 0
statement not reached
struct/union or struct/union pointer required
structure/union member must be named
undeclared initializer name <name>
zero or negative dimension size
zero-sized storage allocation
zero-sized structure/union member

C-6 ERROR MESSAGES

Appendix D
COMPILER OPTIONS

D .l INTRODUCTION
This appendix contains tables for quick reference. These tables list:

• Options to the compiler on UNIX systems
• Options to the compiler on VMS systems
• Options to the compiler that pass to the C preprocessor on UNIX systems
• Options to the compiler that pass to the C preprocessor on VMS systems
• Options to the compiler that pass to the linker

(Options that pass to the linker are relevant only for UNIX systems.)

COMPILER OPTIONS D-l

Table D-l. UNIX Operating System Options
Sheet 1 of 2

OPTION FUNCTION
-A Accept only standard C.
-A2 This option is useful only when compiling Modula-2 programs.
-A3 This option is useful only when compiling Modula-2 programs.
-aflags This option is useful only when compiling

FORTRAN 77, Modula-2 and Pascal programs.
-c Suppress loading, force production of object file in file.o
-d This option is useful only when compiling Pascal and

FORTRAN 77 programs.
-Fflags Set optimization flags but do not call optimizer.
-f Use floating-point emulation library.
-g Prepare symbolic debug information for debugger.
-i dir This option is useful only when compiling Modula-2 programs.
-J width Force alignment boundary within structs to width.
-KC cpu
-KFfpu
-KBbus

Set target CPU.
Set target FPU.
Set target buswidth.

-1 lib Use lib as a program library.
-m This option is useful only when compiling FORTRAN 77

and Assembly language programs.
-n Put C source lines as comments into assembly output file.
-N [flags]nnn Change the size of the compiler’s static tables from its default size

to nnn. This is a FORTRAN 77 and C compiler option.

D-2 COMPILER OPTIONS

Table D-l. UNIX Operating System Options
Sheet 2 of 2

OPTION FUNCTION
-0 flags Perform optimizations according to flags.
-P Prepare profiling information for profiling.
-Q Compile only, verify for syntax errors.
-R Put all literal strings in read-only memory. This is a C compiler

option.
-S Do not assemble, leave assembly in file. s.
-T This option is useful only when compiling FORTRAN 77 programs.
-V Verbose: list the subprograms as actually called by the driver.
-vn List the subprograms to be called, but do not actually execute them.
-Wx, options Pass options to compiler phase x.
-w Suppress warnings.
-w 66 This option is useful only when compiling FORTRAN 77 programs.
-Zc Use an alternate library. This is a C compiler option.

■ /
-A

COMPILER OPTIONS D-3

Table D-2. VMS Operating System Compiler Options

OPTION FUNCTION
/ [NO JOBJECT [^filename] [do not] generate an object file during the compi­

lation process.
/ [NO JOPTIMIZE [=(/7ags [...])] [do not] perform optimizations [according to

flags].
/[NO]DEBUG [do not] prepare symbolic debug information for

debugger
/[NOJPROFILE [do not] prepare profiling information for

profiling.
/ [NO]ASM [=filename] [do not] generate an assembler file during the

compilation process.
/[NO] ANNOTATE [do not] put Pascal source lines as comments

into assembly output file.
/ROMJ3TRINGS put all literal strings in read-only memory. This

is a C compiler option.
/ALIGN [=width] force alignment boundary within structs to

width.
/[NO] WARNING [do not] output warning diagnostics.
/ [NO] STANDARD [do not] use standard C.
/[NO]PRE_PROCESSOR [do not] run the source code through the prepro­

cessor.
/TABLE_SIZE [=size] sets the size of the identifier table to size. This

is a C and FORTRAN 77 compiler option.
/ [NO]VERBOSE [do not] list the compiler subprograms called by

the driver.
/[NO]VN [do not] list the subprograms to be called, but do

not actually call them.
/TARGET=(CPU=cpw)
/TARGET=(FPU=/pzz)
/TARGET=(BUSWIDTH=6ws)

set target CPU.
set target FPU.
set target buswidth.

/ [NO]ERROR [=filename] [do not] generate an error log file during the
compilation process.

D-4 COMPILER OPTIONS

Table D-3. Options P assed to the Preprocessor — UNIX System s

OPTION FUNCTION
-C Prevent the macro preprocessor from removing comments.
-D n a m e = d e f
-D n a m e

Define n a m e to have the value def.
Define n a m e to have the value 1.

-E Run only the preprocessor, send the result to s td o u t .
-I d i r Look for include files in d i r after looking in the current directory.
-M Generate makefile dependencies (cpp option).
-P Run only the preprocessor, send the result to a preprocessed source

file.
-U n a m e Undefine n a m e .

Table D-4. Options Passed to the Preprocessor — VMS Systems

OPTION FUNCTION
/ [NO JCOMMENT [do not] prevent the preprocessor from

removing comments.
/DEFINE=(name [= d e f] [,...]) Define n a m e to the preprocessor.
/ [NO]EXPAND [^ filen a m e] [do not] generate a source file after prepro­

cessing.
/INCLUDE=(mcZ«efe_G^r [,...]) Look for include files in i n c lu d e jd i r after

looking for them in the current directory.
/UNDEFINE=(ftame [,...]) Undefine n a m e to the preprocessor.

COMPILER OPTIONS D-5

Table D-5. O ptions Recognized and P assed to th e L inker

OPTION FUNCTION
-e epname Define epname as entry point.
-o out Name the compilation output file out.
-r Retain relocation.
-s Strip.
-u Default type of variables is undefined.
-V Print linker version information.
-X Do not preserve local symbols in the symbol table.

D-6 COMPILER OPTIONS

INDEX

A Compile leaving assembly files
Compiler options

2-5, 2-10
-A 2-6 -A 2-6
Additional guidelines /ALIGN 2-11

asm statements 6-13 /ANNOTATE 2-11
floating-point computations 6-10 /ASM 2-10
improving code 6-10 -C 2-6
integer variables 6-10 -c 2-5
local variables 6-10 /COMMENT 2-12
optimizing for space 6-14 -D 2-8
pointer usage 6-11 /DEBUG 2-10
register allocation 6-13 /DEFINE 2-12
setjmpO 6-14 -E 2-8
static functions 6-10 -e 2-9

/ALIGN 2-11 /ERROR 2-12
Alignment 2-6, 2-11 /EXPAND 2-13
Allocate variables as standard 2-6, 2-11 -F 2-4
/ANNOTATE 2-11 -f 2-8
ANSI C language draft proposal 3-1 -s 2-5
Asm 3-5 -I 2-8
/ASM 2-10 /INCLUDE 2-13
Asm statements 6-13 -J 2-6
Assembly program 2-2 -K 2-7, 2-13
Audience 1-2 -1 2-9
AVAIL_SWAP 6-15 -M 2-8

-m 2-7
/MODULAR 2-12

B -N 2-7, 2-14
-n 2-6

Bitfields 3-2, 4-1 -O 2-4, 6-3
-0 2-6
/OBJECT 2-10

C /OPTIMIZE 2-10, 6-3
-P 2-9

-c 2-6 -P 2-5
-c 2-5 /PRE.PROCESSOR 2-12
C language extensions 1-3 /PROFILE 2-10
Calling sequence 4-9, 5-8, A-l -Q 2-5
Char 4-1 -R 2-6
CMDDIR 2-17 -r 2-9
Code generator 2-1, 2-2, 5-8 /ROM STRINGS 2-11
Code portability 4-1, 6-5 -S 2-5
Coloring algorithm 5-7 -s 2-9
Command line 2-2 /STANDARD 2-11
.comment 3-6 /TABLE SIZE 2-11, 2-14
/COMMENT 2-12 /TARGET 2-12
Common subexpression elimination 5-1, 5-5 -U 2-9
Common subexpressions 6-12 -u 2-9
Compilation options /UNDEFINE 2-13

UNIX 2-2, 2-4 -V 2-9
VMS 2-9 -V 2-7

Compilation process 2-1 /VERBOSE 2-11
Compilation time requirements 6-15 -vn 2-7
Compile but do not link 2-5, 2-10 /VN 2-11

INDEX 1

-w 2-9 executable 2-2
-w 2-6 object 2-2
/WARNING 2-11 Fixed frame 5-1, 5-8
-X 2-7 Floating-point arithmetic 4-11
-X 2-9 Floating-point computations 6-10
-Z 2-7 Floating-point constants 3-1

Compiler structure 2-1 Floating-point emulation 2-8, 2-15
code generator 2-2 native cross support 2-16
driver 2-1 native host 2-16
front end 2-1 VAX/UNIX system 2-16
language parser 2-1 VAX/VMS system 2-17
macro preprocessor 2-1 Flow optimizations 5-1, 5-4
optimizer 2-1 Front end 2-1

Compiling mixed-language programs B-6
Compiling system code 6-6
Const 3-2, 3-4 G
Constant folding 5-1, 5-2
Copy propagation 5-2 -g 2-5

Generate an error log file 2-12
Generate makefile dependencies 2-8

D Generate modular code 2-7, 2-12
GTS

-D 2-8 target setup 2-2
Data flow analysis 5-2 Guidelines on using the optimizer 6-1
Dead code removal 5-1, 5-4
/DEBUG 2-10
Debugging of optimized code 6-9 I
Define 2-8, 2-12
/DEFINE 2-12 -I 2-8
Define entry point 2-9 .ident 3-6
Driver program 2-1 Imbed source lines as comments 2-6, 2-11

Implementation issues 4-1
Importing routines and variables B-5

E /INCLUDE 2-13
INCLUDEPATH 2-17

-E 2-8 Induction variable elimination 5-1, 5-6
-e 2-9 Integer variables 6-10
Enumerated type 3-2 Intermediate form 2-1
Environment variables 2-17 Internal compiler tables 2-14

AVAIL_SWAP 6-15 Invocation syntax
/ERROR 2-12 UNIX 2-2
Error Detection C-2 VMS 2-9
Error Messages C-2
Errors C-2
Executable filename 2-6 J
Executable program 2-2
/EXPAND 2-13 -J 2-6
Extensions to structures 3-2
Extensions to the C language 3-1

K
F

-F 2-4
-f 2-8
Features 1-2
Filename conventions 2-3
Files 2-3

assembly 2-2

-K 2-7
Keywords

asm 3-5
const 3-4
volatile 3-3

2 INDEX

L Alignment 2-11
allocate variables as standard 2-6, 2-11

-1 2-9 compile but do not link 2-5, 2-10
Language parser 2-1 compile leaving assembly files 2-5, 2-10
Leave comments in 2-6, 2-12 debug information 2-5, 2-10
LIB PATH 2-17 define 2-8, 2-12
Library routines 6-7 define entry point 2-9
Linker 2-2, 2-3 floating-point emulation 2-8

compiler options passed to 2-9 generate error log file 2-12
Linker version 2-9 generate makefile dependencies 2-8
Literal strings in read-only memory 2-6, 2-11 generate modular code 2-7, 2-12
Local variables 6-10 imbed source lines as comments 2-6, 2-11
LongjmpO 6-14 leave comments in 2-6, 2-12
Loop invariant code motion 5-1 linker version 2-9
Loop invariant expressions 5-6 no local symbols in symbol table 2-9
Low-level interface 6-7 optimize 2-4, 2-10

relying on frame structure 6-7 pass options 2-9
relying on register order 6-7 pass to C preprocessor 2-12
using asm statements 6-7 profile information 2-5, 2-10

quick compilation 2-5
read-only memory 2-6, 2-11

M redirect output to .i file 2-9
rename output file 2-6-M 2-8 retain relocation 2-9

-m 2-7 run cpp only 2-8, 2-13
Macro preprocessor 2-1 set identifier table size 2-7, 2-11
Memory allocation 4-10 set target 2-7, 2-12, 2-13
Memory layout optimizations 5-1, 5-9 show do not execute 2-7, 2-11
Memory representation 4-1 specify include file directory 2-8, 2-13
Mixed-language programming 2-3, 4-9, B-l specify program library 2-9

Compilation on UNIX operating systems B-7 strip 2-9
Compilation on VMS operating systems B-8 undefine 2-9, 2-13

/MODULAR 2-12 undefine symbol in symbol table 2-9
use alternative library 2-7
use the m4 preprocessor 2-7

N verbose 2-7, 2-11
warning diagnostics 2-6, 2-11

-N 2-7, 2-14 Order of evaluation 4-10-n 2-6 Overview 1-1
No local symbols in symbol table 2-9

p
O

r
-p 2-9

-0 2-4, 6-3 -p 2-5/OBJECT 2-10 Partial redundancy 5-4
Object code program 2-2 Partial redundancy elimination 5-1
Optimization flags 6-1 Pass options to compilation phase 2-9Optimization options default 6-3 Pass source file to the C preprocessor 2-12
Optimization options on the command line Pcc 3-1UNIX systems 6-3 Peephole optimizations 5-1,5-8VMS systems 6-3 Pointer usage 6-11Optimization techniques 5-1 Portability 4-1, 6-5Optimize 2-4, 2-10 Portable C compiler 3-1/OPTIMIZE 2-10, 6-3 Prepare debug information 2-5, 2-10Optimizer 2-1, 5-2 Prepare profile information 2-5, 2-10Optimizing for space 6-14 Preprocessor 2-1Options 2-4 compiler options passed to 2-8alignment 2-6 m4 2-7

INDEX 3

macro 2-1, 2-8 T
/PRE_PROCESSOR 2-12
/PROFILE 2-10 /TABLE_SIZE 2-11, 2-14
Programming in other languages 4-9 /TARGET 2-12

Target setup 2-2
Timing assumptions 6-7

Q TMPDIR 2-17
Turning off optimization options 6-4

-Q 2-5 Type representations 4-1
Quick Compilation 2-5 Types and conversions 4-2

R U

-R 2-6 -u 2-9
-r 2-6, 2-9 -u 2-9
Recommended reference book 1-2 Undefine 2-9, 2-13
Redirect output to .i file 2-9 /UNDEFINE 2-13
Redundant assignment elimination 5-1, 5-2 Undefine symbol in symbol table 2-9
Register allocation 5-6, 6-13 Undefined behavior 4-11
Register allocation by coloring 5-1 Undetected program errors 6-5
Register parameters 5-7 failing to declare a function 6-5
Register variables 4-10 relying on memory allocation 6-5
Registers uninitialized local variables 6-5

safe 5-7 UNIX
scratch 5-7 invocation syntax 2-2

Reliance on naive algebraic relations 6-8 Unsigned constants 3-1
Rename the output file 2-6 Use alternative library 2-7
Retain relocation 2-9 Use the m4 preprocessor 2-7
Return value 4-11, 6-5, A-2
/ROM_STRINGS 2-11
Run cpp only 2-8, 2-13 V
Run-time library 6-7

-V 2-9
-V 2-7

S Value propagation 5-1, 5-2
Variable and structure alignment 4-2

-S 2-5 Verbose 2-7, 2-11
-s 2-9 /VERBOSE 2-11
Safe registers 5-7 VMS
Scratch registers 5-7 invocation syntax 2-9
Set identifier table size 2-7, 2-11 -vn 2-7
Set target configuration 2-7, 2-12, 2-13 /VN 2-11
SetjmpO 6-14 Void 3-2
Show, but do not execute 2-7, 2-11 Volatile 3-2, 3-3
Specify a program library 2-9 Volatile variables 6-6
Specify directory for included files 2-8, 2-13
Speed over space 5-9
/STANDARD 2-11 W
Standard calling convention A-l
Static functions 6-10 -w 2-9
Strength reduction 5-1, 5-6, 5-8 -w 2-6
Strip 2-9 /WARNING 2-11
Structure returning function 4-9, 6-5 Warning diagnostics 2-6, 2-11
System code 6-6 Warnings C-2

Writing Mixed-Language Programs B-l

4 INDEX

INDEX 5

N ational
Sem iconductor

MICROCOMPUTER
SYSTEMS GROUP

READER’S COMMENT FORM

In the interest of improving our documentation, National Semiconductor invites your comments on this
manual.
Please restrict your comments to the documentation. Technical Support may be contacted at:

(800) 759-0105 - US and Canada
((0)8141) 103-330 - Germany only

Please rate this document according to the following categories. Include your comments below.
EXCELLENT GOOD ADEQUATE FAIR POOR

Readability (style) □ □ □ □ □
Technical Accuracy □ □ □ □ □
Fulfills Needs □ □ □ □ □
Organization □ □ □ □ □
Presentation (format) □ □ □ □ o
Depth of Coverage □ □ □ □ □
Overall Quality □ □ □ □ □
NAME DATE
TITLE __
COMPANY NAME/DEPARTMENT__
ADDRESS___
CITY__ STATE_____________ ZIP
Do you require a response?0 Yes °N o PHONE__________________________________
Comments:

GNX — Version 3 C Optimizing Compiler Reference Manual
FOLD, STAPLE, AND MAIL 424010516-003B

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 409 SANTA CLARA, CA

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

POSTAGE WILL BE PAID BY ADDRESSEE

National Semiconductor Corporation
Microcomputer Systems Division
Technical Publications Dept., M/S E265
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052 - 9968

1.11,,..1.1...1.11,1,.1,1.,.11..1,.1.1...11

NationalSemiconductor MICROCOMPUTERSYSTEMS DIVISION
READER’S COMMENT FORM

In the interest of improving our documentation, National Semiconductor invites your comments on this
manual.
Please restrict your comments to the documentation. Technical Support may be contacted at:

(800) 538-1866 - U.S. non CA
(800) 672-1811-C A only
(800) 223-3248 - Canada only

Please rate this document according to the following categories. Include your comments below.
EXCELLENT GOOD ADEQUATE FAIR POOR

Readability (style) □ □ □ □ □
Technical Accuracy □ □ □ □ □
Fulfills Needs □ □ □ □ □
Organization □ □ □ □ □
Presentation (format) □ □ □ □ □
Depth of Coverage □ □ □ □ □
Overall Quality □ □ □ □ □
NAME DATE
TITLE
COMPANY NAME/DEPARTMENT__
ADDRESS___
CITY___ STATE ______________ ZIP
Do you require a response? □ Yes □ No PHONE___________________________________
Comments:

GNX — Version 3 C Optimizing Compiler Reference Manual
FOLD, STAPLE, AND MAIL 424010516-003A

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 409 SANTA CLARA, CA

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

POSTAGE WILL BE PAID BY ADDRESSEE

53 National Semiconductor Corporation
Microcomputer Systems Division
Technical Publications Dept., M/S 7C261
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052 - 9968

I I i I i i i I i I i I I i i i i I i I i i i I i I I i I i i I i I . i i I I m I i i I i I i i i II

S oftw are
Problem Report

Name:__
Street:__
City:_____________________________________ State:______ Zip:______
Phone:____________________________________ Date:________________
In stru ction s___
Use this form to report bugs, or suggested enhancements. Mail the form to
National Semiconductor. Technical Support may be contacted at:

(800) 538-1866 - U.S. non CA (800) 672-1811 - CA only
(800) 223-3248 - Canada only ((0)8141) 103-330 - West Germany

C ategory__
□ Software Problem □ Request For Software Enhancement
□ Other □ Documentation Problem, Publication # _____________
S o ftw a re D escrip tion
National Semiconductor Product _____________________________________

Version ______________ Registration # ___________________________
Host Computer Information__
Operating System___Rev. __________________ Supplier_______________________________
Problem D escrip tion__
Describe the problem. (Also describe how to reproduce it, and your diagnosis
and suggested correction.) Attach a listing if available.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 409 SANTA CLARA, CA

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

POSTAGE WILL BE PAID BY ADDRESSEE

2 National Semiconductor Corporation
Microcomputer Systems Division
Software Quality Assurance Dept., M/S 7C266
2900 Semiconductor Drive
P.O.Box 58090
Santa Clara, CA 95052-9968

11.1...1.1.11,,..1.1,,,1,11,1,.1,1,,,11,,1,,1,1,,.11

National Semiconductor Use OnlyTech Support ________________________ Date Received
Software Q.A.________________________ Date ReceivedReport Number______________________
Action Taken :

SALES OFFICES

ALABAMA
Huntsville

(205) 837-8960
(205) 721-9367

ARIZONA
Tempe

(602) 966-4563
B.C.

Burnaby
(604)435-8107

CALIFORNIA
Encino

(818)888-2602
Inglewood

(213)645-4226
Roseville

(916) 786-5577
San Diego

(619) 587-0666
Santa Clara

(408) 562-5900
Tustin

(714)259-8880
Woodland Hills

(818)888-2602
COLORADO

Boulder
(303) 440-3400

Colorado Spnngs
(303) 578-3319

Englewood
(303) 790-8090

CONNECTICUT
Fairfield

(203)371-0181
Hamden

(203) 288-1560

INTERNATIONAL
OFFICES

Electronica NSC de Mexico SA
Juventino Rosas No. 118-2
Col Guadalupe Inn
Mexico, 01020 D.F. Mexico
Tel: 52-5-524-9402
National Semicondutorea
Do Brasil Ltda.
Av. Brig. Faria Lima, 1409
6 Andor Salas 62/64
01451 Sao Paulo, SP, Brasil
Tel: (55/11) 212-5066
Telex: 391-1131931 NSBR BR
National Semiconductor GmbH
Industriestrasse 10
D-8080 Fürstenfeldbruck
West Germany
Tel: 49-08141-103-0
Telex: 527 649
National Semiconductor (UK) Ltd.
301 Harpur Centre
Horne Lane
Bedford MK40 ITR
United Kingdom
Tel: (02 34) 27 00 27
Telex: 826 209
National Semiconductor Benelux
Vorstlaan 100
B-1170 Brussels
Belgium
Tel: (02) 6725360
Telex: 61007

FLORIDA
Boca Raton

(305) 997-8133
Orlando

(305) 629-1720
St. Petersburg

(813) 577-1380
GEORGIA

Atlanta
(404) 396-4048

Norcross
(404) 441-2740

ILLINOIS
Schaumburg

(312) 397-8777
INDIANA

Carmel
(317) 843-7160

Fort Wayne
(219) 484-0722

IOWA
Cedar Rapids

(319) 395-0090
KANSAS

Overland Park
(913)451-8374

MARYLAND
Hanover

(301) 796-8900
MASSACHUSETTS

Burlington
(617) 273-3170

Waltham
(617) 890-4000

MICHIGAN
W. Bloomfield

(313) 855-0166

MINNESOTA
Bloomington

(612) 835-3322
(612) 854-8200

NEW JERSEY
Paramus

(201) 599-0955
NEW MEXICO

Albuquerque
(505) 884-5601

NEW YORK
Endicott

(607) 757-0200
Fairport

(716) 425-1358
(716) 223-7700

Melville
(516) 351-1000

Wappinger Falls
(914) 298-0680

NORTH CAROLINA
Cary

(919) 481-4311
OHIO

Dayton
(513) 435-6886

Highland Heights
(216) 442-1555
(216) 461-0191

ONTARIO
Mississauga

(416) 678-2920
Nepean

(404)441-2740
(613) 596-0411

Woodbridge
(416) 746-7120

National Semiconductor (UK) Ltd.
1, Bianco Lunos Alle
DK-1868 Frednksberg C
Denmark
Tel: (01) 213211
Telex: 15179

National Semiconductor
Expansion 10000
28, rue de la Redoute
F-92260 Fontenay-aux-Roses
France
Tel: (01)46 60 81 40
Telex: 250956
National Semiconductor S.pA.
Strada 7, Palazzo R/3
20089 Rozzano
Milanofiori
Italy
Tel: (02) 8242046/7/8/9
National Semiconductor AB
Box 2016
Stensatravagen 13
S-12702 Skarholmen
Sweden
Tel: (08) 970190
Telex: 10731
National Semiconductor
Calle Agustin de Foxa, 27
28036 Madrid
Spain
Tel: (01) 733-2958
Telex: 46133

National Semiconductor
Switzerland
Alte Winterthurerstrasse 53
Postfach 567
Ch-8304 Wallisellen-Zunch
Switzerland
Tel: (01)830-2727
Telex: 59000

National Semiconductor
Kauppakartanonkatu 7
SF-00930 Helsinki
Finland
Tel: (0) 33 80 33
Telex: 126116
National Semiconductor Japan
Ltd.
Sanseido Bldg. 5F
4-15 Nishi Shinjuku
Shinjuku-ku
Tokyo 160 Japan
Tel: 3-299-7001
Fax: 3-299-7000
National Semiconductor
Hong Kong Ltd.
Southeast Asia Marketing
Austin Tower, 4th Floor
22-26A Austin Avenue
Tsimshatsui. Kowloon, H.K.
Tel: 852 3-7243645
Cable: NSSEAMKTG
Telex: 52996 NSSEA HX

OREGON
Portland

(503) 639-5442
PENNSYLVANIA

Horsham
(215) 675-6111

Willow Grove
(215) 657-2711

PUERTO RICO
Rio Piedias

(809) 758-9211
QUEBEC

Dollard Des Ormeaux
(514)683-0683

Lachine
(514)636-8525

TEXAS
Austin

(512) 346-3990
Houston

(713) 771-3547
Richardson

(214)234-3811
UTAH

Salt Lake City
(801)322-4747

WASHINGTON
Bellevue

(206) 453-9944
WISCONSIN

Brookfield
(414) 782-1818

Milwaukee
(414) 527-3800

National Semiconductor
(Australia) PTY, Ltd.
1st Floor, 441 St. Kilda Rd.
Melbourne, 3004
Victory, Australia
Tel: (03) 267-5000
Fax: 61-3-2677458
National Semiconductor (PTE),
Ltd.
200 Cantonment Road 13-01
Southpoint
Singapore 0208
Tel: 2252226
Telex: RS 33877
National Semiconductor (Far East)
Ltd.
Taiwan Branch
P.0 Box 68-332 Taipei
7th Floor, Nan Shan Life Bldg.
302 Min Chuan East Road,
Taipei. Taiwan R.O.C.
Tel: (86) 02-501-7227
Telex: 22837 NSTW
Cable: NSTW TAIPEI
National Semiconductor (Far East)
Ltd.
Korea Office
Room 612,
Korea Fed. of Small Bus. Bldg.
16-2, Yoido-Dong,
Youngdeungpo-Ku
Seoul, Korea
Tel: (02) 784-8051/3 - 785-0696-8
Telex: K24942 NSRKLO

Series 32000

GNX — Version 3
Linker User’s Guide

Customer Order Number 424010506-003 NSC Publication Number 424010506-003A
August 1988

REVISION RECORD

REVISION
A

RELEASE DATE SUMMARY OF CHANGES
08/88 First Release.

Series 32000® GNX - Version 3
Linker User’s Guide
NSC Publication Number 424010506-003A.

ii

PREFACE
The GENIX™ Native and Cross-Support (GNX) Linker is an essential component of any
Series 32000® microprocessor software development tool set.
The Linker can be used to quickly and easily create an executable file for any
Series 32000-based native application or, via the facility of a powerful and flexible
linker directives language, create an executable image for any Series 32000-based
cross-development need.
The information contained in this manual is for reference only and is subject to change
without notice.
No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.
A complete list of National Semiconductor’s international offices may be found on the
inside back cover of this manual.

Genix, NSX, ISE, ISE16, ISE32, SYS32, and TDS are trademarks of National Semiconductor Corporation.
Series 32000 is a registered trademark of National Semiconductor Corporation.
UNIX is a registered trademark of AT&T.
VAX, VMS, and DEC are trademarks of Digital Equipment Corporation.

w

CONTENTS

Chapter 1 OVERVIEW
1.1 INTRODUCTION... 1-1
1.2 MANUAL OVERVIEW.. 1-1
1.3 DOCUMENTATION CONVENTIONS.. 1-2

1.3.1 General Conventions.. 1-2
1.3.2 Conventions in Syntax Descriptions............................... 1-2

Chapter 2 COMMAND LINE INVOCATION
2.1 INTRODUCTION... 2-1
2.2 UNIX ENVIRONMENT INVOCATION.. 2-1

2.2.1 Library Path Environment Variable............................... 2-2
2.3 VMS ENVIRONMENT INVOCATION... 2-2

2.3.1 Logical Names for Library Specification......................... 2-3
2.4 COMMAND LINE OPTIONS... 2-3

2.4.1 Specify Library F ile ... 2-3
2.4.2 Specify Directory for Libraries.. 2-3
2.4.3 Request Output Memory M a p .. 2-6
2.4.4 Specify Output Filename.. 2-6
2.4.5 Strip Symbolic Information... 2-7
2.4.6 Strip Local Symbolic Information.................................. 2-7
2.4.7 Issue Warning for Defined Common D a ta 2-7
2.4.8 Suppress Size Warning for Common D ata 2-8
2.4.9 Suppress Error Messages.. 2-8
2.4.10 Output Linker Version Information............................... 2-8
2.4.11 Retain Relocation Information.. 2-9
2.4.12 Keep Relocation Information in Executable File 2-9
2.4.13 Specify Program Entry Point... 2-9
2.4.14 Specify Fill Value for Section H o le s 2-10
2.4.15 Specify Directives F i l e ... 2-10
2.4.16 Specify Undefined S ym b ol... 2-11
2.4.17 Specify Version S ta m p ... 2-11

Chapter 3 LINKER DIRECTIVES LANGUAGE
3.1 INTRODUCTION... 3-1

3.1.1 How the Directives Language is U sed 3-1
3.2 SPECIFYING CONFIGURED MEMORY..................................... 3-1
3.3 INPUT FILE AND LIBRARY SPECIFICATION............................ 3-2

CONTENTS v

3.3.1 Object F i l e s ... 3-3
3.3.2 Library F iles... 3-3

3.4 SECTION DEFINITION DIRECTIVES.. 3-4
3.4.1 Input Files and Libraries.. 3-5
3.4.2 Input Sections.. 3-6
3.4.3 COMMON and MOD Input Sections............................... 3-7
3.4.4 Binding a Section to a Memory Address......................... 3-8
3.4.5 Aligning a Section to a Value.. 3-8
3.4.6 Blocking a Section to a File Address............................... 3-9
3.4.7 Directing a Section to Memory by Name......................... 3-9
3.4.8 Directing a Section to Memory by A ttributes................ 3-10
3.4.9 Setting the Section Type F lags.. 3-11
3.4.10 Associating Module Names with Sections...................... 3-11

3.5 GROUPING OUTPUT SECTIONS.. 3-12
3.6 CREATING HOLES WITHIN AN OUTPUT SECTION................ 3-14

3.6.1 Specifying the Fill Value of Section H oles...................... 3-14
3.7 CREATING AND DEFINING SYMBOLS AT LINK TIME 3-15
3.8 SPECIFYING OUTPUT FILE OPTIONS 3-16

3.8.1 Native Output File Configuration.................................. 3-16
3.8.2 Optional Header Magic Number..................................... 3-16

3.9 COMMENTS IN A DIRECTIVES F I L E .. 3-16
Chapter 4 DIRECTIVES LANGUAGE EXPRESSIONS

4.1 INTRODUCTION... 4-1
4.2 VALID INTEGER SYNTAX.. 4-1

4.2.1 Decimal Value Syntax ... 4-1
4.2.2 Octal Value S yn tax ... 4-1
4.2.3 Hexadecimal Value Syntax... 4-1

4.3 UNARY OPERATIONS.. 4-2
4.3.1 Logical N eg a tio n .. 4-2
4.3.2 One's Complement... 4-2
4.3.3 Two's Complement... 4-3

4.4 BINARY OPERATIONS.. 4-3
4.4.1 Shift Operations... 4-3
4.4.2 Relational Operations.. 4-3

4.5 ASSIGNMENT OPERATIONS.. 4-5
4.5.1 Current Location Assignments.. 4-5

4.6 SPECIAL FUNCTIONS.. 4-6
4.6.1 Sizeof Function ... 4-7
4.6.2 Memory Address Function... 4-7
4.6.3 File Address Function.. 4-7
4.6.4 Next Address Function... 4-8

vi CONTENTS

4.6.5 Highest Memory Address Function 4-8

Chapter 5 Basic Linker Operations
5.1 INTRODUCTION.. 5-1
5.2 BASIC LINKER OPERATIONS.. 5-1

5.2.1 Linker Allocation Algorithm... 5-2
5.3 OBJECT FILE FORMAT... 5-4

5.3.1 COFF Sections ... 5-4
Appendix A DIRECTIVES LANGUAGE SYNTAX

A. l SYNTAX.. A-l
Appendix B OUTPUT MAP

B. l FORMAT DESCRIPTION.. B-l
Appendix C SECTION TYPE OPTIONS
Appendix D LINKER ERROR MESSAGES

D.l INTRODUCTION.. D-l
D.2 WARNINGS.. D-l
D.3 ERRORS.. D-2
D.4 FATAL ERRORS... D-2
D. 5 INTERNAL ERRORS.. D-4

Appendix E SAMPLE LINKER DIRECTIVE FILES
E. l CROSS APPLICATION... E-l
E.2 NATIVE APPLICATION.. E-2

FIGURES
Figure 3-1. Group L in k ... 3-13
Figure 5-1. Basic Linking Process.. 5-2

TABLES
Table 2-1. Unix Environment Command Line Options................................ 2-4
Table 2-2. VMS Environment Command Line Options................................ 2-5
Table 4-1. Unary O perators.. 4-2
Table 4-2. Binary Operators.. 4-4

CONTENTS vii

Table 4-3. Special Functions... 4-6
Table A-l. Syntax Diagram of Input Directives.. A-l
Table B-l. Linker Output M ap .. B-l
Table C-l. Type O p tion s.. C-l

INDEX

viii CONTENTS

Chapter 1
OVERVIEW

1.1 INTRODUCTION
The GNX Linker is a language support tool used on Series 32000-based development
systems to create executable files. Relocatable object files are inputs to the Linker pro­
duced by either a GNX compiler, assembler, or a previous linker run. To form either a
relocatable or an executable object file, the Linker combines object files, performs relo­
cation, and resolves external references.
The Linker operation is controlled by command line options and a powerful Linker
directives language. Command line options and default linker actions vary depending
on the host operating system.

1.2 MANUAL OVERVIEW
Chapter 2 explains Linker invocation, command line options, and related host-
dependent issues for the UNIX® and VMS™ operating system environments.
Chapter 3 details the syntax and functionality of each Linker directive.
Chapter 4 describes the syntax and use of Linker expressions.
Chapter 5 describes the basic Linker operations controlled by the directives language
and provides a brief overview of the common object file format (COFF) utilized by the
Linker.
Appendix A contains a syntax diagram of input directives.
Appendix B contains a Linker output map.
Appendix C describes section type options.
Appendix D lists Linker error messages.
Appendix E contains a sample directives file.
T h e in fo r m a tio n p r e se n te d in th is m a n u a l is su ffic ie n t for a v a s t m a jo r ity o f a p p lic a ­
t io n s , b u t fa m ilia r ity w ith th e c o n te n ts o f th e Series 32000 GNX—Version 3 COFF
Programmer’s Guide an d th e Series 32000 GNX—Version 3 Assembler Reference
Manual i s a d v ise d .

OVERVIEW 1-1

The following documentation conventions are used in text, syntax descriptions, and
examples in describing commands and parameters.

1.3 DOCUMENTATION CONVENTIONS

1.3.1 GeneralConventions
Nonprinting characters are indicated by enclosing a name for the character in angle
brackets <>. For example, <CR> indicates the RETURN key, <ctrl/B> indicates the
character input by simultaneously pressing the control key and the B key.
Constant-width type is used within text for filenames, directories, command names and
program listings; it is also used to highlight individual numbers and letters. For exam­
ple,

the C preprocessor, cpp, resides in the GNXDIR/lib directory.

1.3.2 Conventions in Syntax D escriptions
The following conventions are used in syntax descriptions:

Constant-width boldface type indicates actual user input.
Italics indicate user-supplied items. The italicized word is a generic term
for the actual operand that the user enters. For example,

cc [[option] ... [filename] ...] ...
Spaces or blanks, when present, are significant; they must be entered as
shown. Multiple blanks or horizontal tabs may be used in place of a single
blank.
{} Large braces enclose a syntactical term which may be repeated-zero

or more times.
Large brackets enclose an optional syntactical term or terms.

() Large parentheses enclose items which must be treated as a single
syntactic term.
Logical OR sign can separate items within large braces, large brack­
ets, or large parentheses. A logical OR within large braces
represents any possible sequence of the enclosed terms. A logical OR
within large brackets requires the choice of either one term or none.
A logical OR within large parentheses requires the choice of one
term.

i_i Indicates a space, lj is only used to indicate a specific number of
required spaces.

1-2 OVERVIEW

All other characters or symbols appearing in the syntax must be entered as
shown. Brackets, parentheses, or braces which must be entered, are smaller
than the symbols used to describe the syntax. (Compare user-entered [],
with [] which show optional items.)

OVERVIEW 1-3

Chapter 2
COMMAND LINE INVOCATION

2.1 INTRODUCTION
This chapter explains Linker invocation, host-specific dependencies, and command line
options for the UNIX and VMS operating system environments.

2.2 UNIX ENVIRONMENT INVOCATION
The Linker invocation name depends on the GNX software development host system.
Currently, the Linker is available for several cross-environment host systems and
several Series 32000-based host systems.
On a cross-development host, such as VAX™/UNIX, the Linker is named nmeld. On a
Series 32000-based host system, such as VR32, SYS32/20, or SYS32/30, the Linker is
named Id, the traditional name for a Linker on UNIX systems.
The Linker is invoked by specifying the appropriate Linker name followed by a list of
command line arguments. These arguments specify a list of object and library files to
link and optional linking actions and functions.
The invocation syntax for the Linker hosted on a Series 32000-based UNIX system is:

Id [{ option | filename }]
The invocation syntax for the Linker hosted on a cross-development (i.e., VAX) UNIX
system is:

nmeld [{ option \ filename }]
Filename is any valid object file. Object filenames must be separated by a space.
Filename must include a complete or relative pathname if the file is not in the user’s
current directory. Option is any valid Linker command line option. All options are
preceded by a (—) dash, and options must be separated by a space.
The syntax does not specify a particular sequential preference between filename and
option, but it is important to remember that libraries specified through the -1 com­
mand line option and directives files specified through the -d command line option are
processed as they are encountered.
Like most UNIX syntax, the Linker invocation syntax is case-sensitive.

COMMAND LINE INVOCATION 2-1

The Linker is invoked either directly by entering the appropriate Linker name at the
system command interface level, or indirectly via a call from a compiler driver. A com­
piler driver invokes the Linker with a predetermined set of Linker options. If the com­
piler driver-chosen Linker options are not suitable due to some special need, the compi­
lation process must be terminated at the end of object file creation, and the Linker
must be invoked directly. The direct Linker invocation includes the compilation object
file as input along with the required special command line options.

2.2.1 Library Path Environm ent Variable
LIBPATH i s th e e n v ir o n m e n t v a r ia b le n a m e w h ic h m a y b e s e t to p o in t to th e d ire c to r ie s
c o n ta in in g lib r a r ie s for l in k in g . I f LIBPATH i s s e t , th e L in k e r u s e s th o s e d ire c to r ie s a s
th e lo c a t io n o f lib r a r ie s to s e a r c h a t lin k -t im e . I f LIBPATH i s n o t s e t , th e L in k er u s e s
th e d e fa u lt lo c a tio n . T h e d e fa u lt lo c a tio n for a U N IX -based c r o ss -d e v e lo p m e n t en v iro n ­
m e n t (e.g., VAX) i s gnxdir/l ib . T h e d e fa u lt lo c a tio n s for a UNIX Series 32000-b a sed
s y s te m (i.e., SYS32/20) a r e gnxdir/u s r /l ib , gnxdir/l ib , /u s r / l ib , a n d / l i b
(w h e r e gnxdir i s th e to p -le v e l d irec to ry o f th e in s ta l le d GNX too ls).

2.3 VMS ENVIRONMENT INVOCATION
The Linker is invoked by specifying the Linker name followed by a list of command line
arguments. These arguments specify a list of object and library files to link and
optional linking actions and functions.
The invocation syntax for the Linker hosted on a VMS system is:

nmeld [{ option | filename [filename] }]
Filename is any valid object file or library filename. Object filenames and library
filenames must be separated by a comma. Filename. OBJ may be entered as filename.
In a list of filenames, object filenames must precede any library filenames that resolve
external references. Object filenames must include a complete or relative pathname if
the file is not in the user’s current directory. Library filenames must include a com­
plete path if the library is not in the user’s current directory or if a VMS logical name
is not defined to that library (see Section 2.3.1).
Option is any valid Linker command line option, and all options start with a slash (/).
The syntax does not specify a particular sequential preference between filename and
option.
Like most VMS syntax, the Linker invocation syntax is not case sensitive. Case-
sensitivity can be achieved by placing strings in double-quotes ("").

2-2 COMMAND LINE INVOCATION

2.3.1 Logical Names for Library Specification
GNX$LIBRARY and GNX$LlBRARY_n are VMS logical names that define libraries for
linking. The definition must consist of the complete path and the library filename.
The logical name definitions must start with GNX$LIBRARY, followed by the numbered
GNX$library_ai definitions. The numbered logical name must start with 1 and
proceed upwards in sequence. The upper limit for n is a system-dependent function.
When a logical name is defined for a library, it does not have to be explicitly mentioned
on the command line. The Linker automatically processes these libraries at the end of
the command line.

2.4 COMMAND LINE OPTIONS
This section describes the Linker command line options for both the UNIX and VMS
environments.
Two tables provide an abbreviated syntax guide for the options. Table 2-1 lists the
UNIX environment command line options. Table 2-2 lists the VMS environment com­
mand line options.
UNIX options begin with a dash (—) and the VMS options begin with a slash (/).

2.4.1 Specify Library File
The specify library file option is used only in the UNIX environment. (In the VMS
environment, the library name is treated as another input object filename.) The com­
mand line option syntax for specifying a system library is

- lx
Where x is the sequence of up to nine characters from a UNIX system library name,
lib * .a . The - lx option must follow the list of object files with external references
resolved in the library. The Linker searches for the library first in the directories
specified through the -L command line option (see Section 2.4.2) and then in the
default library locations. (Refer to Section 2.2.1.)

2.4.2 Specify Directory for Libraries
The specify directory for libraries option is used only in the UNIX environment. (In the
VMS environment, the library name is treated as another input object filename.)

COMMAND LINE INVOCATION 2-3

Table 2-1. Unix Environment Command Line Options

OPTION EXPLANATION SECTION
- lx Specify a library file for linking Section 2.4.1
-L dir Specify a directory to search for libraries Section 2.4.2
-m Request an output memory map Section 2.4.3

-o filename Specify an output filename Section 2.4.4

-s Strip symbolic information Section 2.4.5
-x Strip local symbolic information Section 2.4.6

-M Issue warning for defined common data Section 2.4.7

-t Suppress size warning for common data Section 2.4.8
-s Suppress error messages Section 2.4.9

-V Output Linker version information Section 2.4.10

-r Retain relocation information Section 2.4.11

-k Keep relocation information in executable file Section 2.4.12
-e symbol Specify program entry point Section 2.4.13

- f int Specify fill value for section holes Section 2.4.14

-d filename Specify directives file Section 2.4.15

-u symbol Specify undefined symbol Section 2.4.16

-VS int Specify version stamp Section 2.4.17

2-4 COMMAND LINE INVOCATION

Table 2-2. VMS Environment Command Line Options

OPTION EXPLANATION SECTION
/MAP [^filename] Request an output memory map Section 2.4.3
/OUTPUT=/iZename Specify an output filename Section 2.4.4

/STRIP Strip symbolic information Section 2.4.5
/NOLOCAL Strip local symbolic information Section 2.4.6
/MULDEFS Issue warning for defined common data Section 2.4.7
/NOWARNING Suppress size warning for common data Section 2.4.8
/SILENT Suppress error messages Section 2.4.9
/VERSION Output Linker version information Section 2.4.10
/RETAIN Retain relocation information Section 2.4.11
/KEEP Keep relocation information in executable file Section 2.4.12

/ENTRY=symöoZ Specify program entry point Section 2.4.13
/FILL=mZ Specify fill value for section holes Section 2.4.14

/directives =filename Specify directives file Section 2.4.15
/USYM=symbol Specify undefined symbol Section 2.4.16
/STAMP=int Specify version stamp Section 2.4.17

COMMAND LINE INVOCATION 2-5

The command line option syntax for specifying a library location other than the default
is

-L dir
Where dir is any valid directory pathname containing user libraries. For the -L
option to be effective, it must precede any -1 option. The Linker searches for libraries
specified through the -1 command line option first in dir and then in the default
library locations (refer to Section 2.2.1).

2.4.3 R equest Output Memory Map
The request output memory map option generates a memory map of the output file.
The format and contents of the map are detailed in Appendix B. The command line
option syntax to request a memory map is

-m (UNIX)
/m a p [=map Jilename] (VMS)

In the UNIX environment, by default, the map is sent to standard output. Redirect
standard output to create a map file.
In the VMS environment, by default, the map file is named output Jilename. MAP, where
output Jilename is the name of the Linker output file. If map Jilename is specified, the
map file is named map Jlenam e.MAP.

2.4.4 Specify Output Filename
The command line option syntax to specify the name of the Linker output file is

-o f i le n a m e (UNIX)
/OUTPUT J l e n a m e (VMS)

Specifying the output filename overrides the default output filename.
In a UNIX environment, by default, the Linker output filename is a32 . out on a cross­
development system and a . out on a Series 32000-based system.
In a VMS environment, by default, the Linker output filename is o u tp u t J le n a m e .E X E ,
where o u tp u t J l e n a m e is the name of the first filename encountered on the command
line.

2-6 COMMAND LINE INVOCATION

The strip symbolic information option removes the symbol table and line number infor­
mation from the output file and reduces the size of an executable file. The command
line option syntax to strip symbolic information from the output file is

- s (UNIX)
/STRIP (VMS)

This option should be used only when the output of the Linker is an executable file.

2.4.5 Strip Sym bolic Inform ation

2.4.6 Strip Local Symbolic Information
The strip local symbolic information option removes only the local symbolic information
from the Linker output file, but still allows the output file to be used as input in a sub­
sequent link command. This option is useful in reducing the size of an object file.
The command line option syntax to strip local symbolic information is

- x (UNIX)
/NOLOCAL (VMS)

2.4.7 Issue Warning for Defined Common Data
The term “common data” refers to variables declared by the . comm assembler direc­
tive, uninitialized variables declared outside of any procedure in a C program, and
FORTRAN common data. The Linker treats common data by consolidating all refer­
ences to a common variable and allocating space for it in the .bss section of the file.
If a program contains common data that is later associated with a section and defined
(storage space allocated for it), the Linker uses the defined instance of the variable and
does not allocate space in the .bss section.
The issue warning for defined common data option causes the Linker to issue a warn­
ing whenever a common variable is later defined in a program.
The command line option syntax to issue a warning for defined common data is

-M (UNIX)
/MULDEFS (VMS)

This warning message should not be confused with the multiply defined symbol error
message. In the case of the multiply defined symbol error message, a symbol is defined
more than once in source; this is always an error condition.

COMMAND LINE INVOCATION 2-7

The term common data refers to variables declared by the . comm assembler directive,
uninitialized variables declared outside of any procedure in a C program, and FOR­
TRAN common data. The linker treats common data specially by consolidating all
references to a common variable and allocating space for it in the .bss section of the
file.
If all the references to a common variable indicate data of the same size, the Linker
performs the consolidation process quietly. But if the common variable references indi­
cate data of different sizes, the Linker issues a warning message for every common
variable declaration that is not the same size as the initial common variable declara­
tion. Since this can result in a large number of warning messages, a command line
option is provided to suppress these warnings.
The command line option syntax to suppress the size warning for common data is

- t (UNIX)
/NOWARNING (VMS)

2.4.8 S u p press S ize W arning for Com m on D ata

2.4.9 Suppress Error M essages
A problem encountered during linking might result in several error messages before
the Linker aborts. Only fatal errors stop the Linker. The user may request the Linker
to work silently and suppress any nonfatal error messages.
The command line option syntax to suppress nonfatal error messages is

-S (UNIX)
/SILENT (VMS)

2.4.10 Output Linker Version Information
The output Linker version option produces information regarding the version and revi­
sion numbers of the Linker being executed. By default, this information is sent to the
user’s standard error location.
The command line option syntax to produce version information is

-V (UNIX)
/VERSION (VMS)

2-8 COMMAND LINE INVOCATION

2.4.11 R eta in R elocation Inform ation
The retain relocation information option must be used if the output file is only partially
linked (not all symbolic references resolved) and if the output file is meant for use as
input in a subsequent link. The Linker retains relocation information and does not
issue a fatal linking error for unresolved external references.
The command line option syntax to retain relocation information is

- r (UNIX)
/RETAIN (VMS)

2.4.12 Keep Relocation Information in Executable File
Relocation information is used to calculate the actual address of a data or routine refer­
ence. Normally, executable files do not have relocatable information since the final
addresses have been calculated by the Linker. This option instructs the Linker to keep
the relocation information in a fully relocated executable file. This may be useful on
systems that implement dynamic (load-time) address relocations.
The command line option syntax to keep relocation information in an executable file is

2.4.13 Specify Program Entry Point
The entry point of a program is used by the system loader as the starting point for pro­
gram execution. Entry point information is special information in the COFF object file
and does not necessarily represent the actual beginning of the text (code) section.
By default, the Linker uses the symbol s ta r t as the entry point. If s ta r t is not
found, the Linker uses symbol _main as the entry point. If _main is not found, the
Linker sets the entry point to 0.
The command line option syntax to specify a program entry point is

- e symbol (UNIX)
/ENTRY =symbol (VMS)

To preserve case-sensitivity on VMS, symbol may be enclosed in double-quotes (""). If
symbol is not found, the Linker issues a warning and then sets the entry point by fol­
lowing the above mentioned default procedure.

- k

/KEEP
(UNIX)
(VMS)

COMMAND LINE INVOCATION 2-9

By default, the Linker fills in any holes created in output sections with a zero value.
The command line option syntax to specify a fill value other than zero is

-f int (UNIX)
/FlLL=m£ (VMS)

Int is a 16-bit value; therefore, desired fill values of one byte must be specified twice
(e.g., a desired fill value of OxFF must be specified as OxFFFF). See Section 4.2 for
valid int syntax.

2.4.14 S p ecify F ill V alue for S ection H oles

2.4.15 Specify D irectives File
The specify directives file option specifies the directives file to use to create the Linker
output file. If this option is specified, the Linker will not use the default Linker direc­
tives file.
The command line option syntax to specify a Linker directives file is

-d filename (UNIX)
/DIRECTIVES =filename (VMS)

Filename is any valid Linker directives file. Filename must include a complete path if
the file is not in the user’s current directory.
Because the Linker directives file is processed when it is encountered on the command
line, this option should follow any input object files controlled by the directives.
Specifically, the directive applies only to input object files already seen and pro­
cessed by the Linker.
If a directives file is not specified on the command line, the Linker attempts to use the
directives file specified by the LINKERFILE parameter of the GNX Target Setup (gts)
utility program. Refer to the Series 32000 GNX—Version 3 Commands and Operations
Manual for a detailed discussion of the gts utility program. If LINKERFILE is
undefined, the Linker uses the default directives file linker.def located in gnxdir on
a cross-development system or gnxdir/lib in a Series 32000 environment, where
gnxdir is the top-level directory of the GNX tools. If linker, def does not exist, the
Linker issues a warning message and then follows a predefined trivial link process.
Applications should not depend on the trivial link process to produce meaningful
results.

2-10 COMMAND LINE INVOCATION

The Linker will link object files from libraries only if those object files resolve a
currently undefined external symbol reference. Sometimes, however, it is desirable to
link object files exclusively from a library. By creating an unresolved external refer­
ence to a symbol defined within a library, the user forces the Linker to process the
appropriate object files within that library.
The command line option syntax to specify an undefined symbol is

- u s y m b o l n a m e (UNIX)
/ \J S Y M = s y m b o ln a m e (VMS)

To preserve case sensitivity on VMS, s y m b o l n a m e may be enclosed in double-quotes
(”").

2.4.16 S p ecify U ndefined Sym bol

2.4.17 Specify Version Stamp
A version stamp is a 16-bit decimal value used to identify an output file. The version
stamp is stored in a special field in the optional header of the output file.
The command line option syntax to specify a version stamp value is

-VS i n t (UNIX)
/STAMP- i n t (VMS)

COMMAND LINE INVOCATION 2-11

Chapter 3
LINKER DIRECTIVES LANGUAGE

3.1 INTRODUCTION
This chapter details the syntax and functionality of each directive in the Linker direc­
tives language. Chapter 4 describes the syntax and functionality of Linker expres­
sions.
The directives language dictates the layout of the Linker output file through memory
configuration, section allocation, and section content. The Linker directives language
syntax is case-insensitive, except when reference is made to filenames or symbols.
References to filenames or symbols must obey the rules of the host system (i.e., a
VAX/VMS host is case-insensitive, while a UNIX host is case-sensitive).

3.1.1 How the D irectives Language is Used
The Linker requires a directives file to produce an output image that is significant to
the system on which it will be executed. By default, the Linker looks for a directives
file named lin k e r .d e f in the top-level directory of the GNX tools on a cross­
development system, or in the / l i b directory of the GNX tools on a Series 32000-
based system. The directives in the default file enable the linker to produce an execut­
able image based on the host development system.
On a native host system, the default directives file produces an object file executable on
the host system. On a cross-development system, the default directives file produces
an object file executable on a Series 32000 Development Board.
If the image created by the Linker is to be executed in an environment other than
those mentioned above, any special loading requirements must be specified via Linker
directives, and that directives file must be included as an argument on the Linker com­
mand line. Section 2.4 describes the actual command line syntax to specify a directives
language file.

3.2 SPECIFYING CONFIGURED MEMORY
MEMORY d ir e c t iv e s a r e u s e d to sp e c ify th e co n fig u red a n d u n c o n fig u re d a r e a s o f th e v ir ­
tu a l m em o r y sp a c e a n d th e to ta l s iz e o f th e v ir tu a l m em o r y sp a ce o f th e ta r g e t
m a c h in e .

If a MEMORY directive is not specified, the Linker assumes the maximum amount of
configured virtual address space, 0x0 through OxFFFFFFFF.

LINKER DIRECTIVES LANGUAGE 3-1

If one or more MEMORY directives are specified, the Linker treats all virtual memory not mentioned in the directive as unconfigured. Unconfigured memory is not used in
the Linker allocation process and, therefore, nothing can be assigned to an address
within unconfigured memory. Configuration information is specified in a Linker direc­
tives file using the following syntax:

MEMORY
{
memjiame (attributes) : ORIGIN = int , LENGTH = int
)

The MEMORY directive declares one or more memory ranges. Multiple memory ranges
may be separated by an optional comma. Memory ranges include a memory origin
value, memory length in bytes, optional memory attributes, and a symbolic name for
the declared range.
An area of memory is configured starting at address ORIGIN and containing LENGTH
number of bytes. ORIGIN may be abbreviated to ORG, and LENGTH may be abbrevi­
ated to LEN. Int is any valid integer value. Memjiame is associated with the specified
configured memory and may be referenced symbolically. Any symbolic reference to
memjiame must follow the MEMORY directive which defines it. Any number of
configured memory areas may be declared. If more than one memory area is declared,
conflict (overlap) must not exist among configured memory areas. A memory conflict
causes a Linker error message and then aborts the link process.
The optional memory range attributes, which must be enclosed in parentheses, may be
any of the following single letters or combination of letters:

I - The named memory range is initializable.
R - The named memory range is readable.
w - The named memory range is writable.
X - The named memory range is executable.

3.3 INPUT FILE AND LIBRARY SPECIFICATION
In addition to specifying input object files and libraries on the Linker command line,
object files and libraries may be included in a Linker directives file.

3-2 LINKER DIRECTIVES LANGUAGE

3.3.1 Object Files
Input object filenames may appear anywhere outside the curly braces of a MEMORY or
SECTIONS directive. The placement is significant because the Linker processes these
input files as they are encountered. Specifying input files this way is identical to speci­
fying input files on the Linker command line. For example:

my_input_filename_l
my_input_filename_2
my_input_f ilename_3

MEMORY
{
myjmem : ORG = 0 x 0 , LEN = 0 x 1 0 0
}

All three input files are processed by the Linker in the order in which they are seen in
the directives file. Filename is any valid input object filename. The filename may
include a full or partial pathname. A filename containing special characters may be
enclosed in double-quotes ("") to avoid conflict with Linker directives language syntax.
Section 3.4.1 describes how input files can be specified within a SECTIONS directive to
force input file contents to be placed in a particular output section.

3.3.2 Library Files
Library files may appear anywhere outside the curly braces of a MEMORY or SECTIONS
directive. The placement is significant because the Linker processes these library files
as they are encountered. Specifying library files this way is identical to specifying
library files on the linker command line. Library files are processed only once — at the
time they are encountered. The symbol information within the library file is processed
as many times as is necessary to resolve currently undefined external references. For
this reason, the ordering of object files within a library file is not significant for any­
thing other than efficiency. For example:

LINKER DIRECTIVES LANGUAGE 3-3

my_input_f i lename_l
my_input_f ilename_2
my_input_f ilename_3
my_l ibr ar y_l

After the three input object files are processed, the library my_library_l is searched
to resolve any currently undefined external references. Only those library members
containing symbol definitions which resolve external references are processed by the
Linker and included in the Linker output.
A library name is any valid input library filename and may include a full or partial
pathname. A library name containing special characters may be enclosed in double­
quotes ("") to avoid conflict with Linker directives language syntax. Section 3.4.1
describes how library files can be specified within a SECTIONS directive to force library
contents to be placed in a particular output section.

3.4 SECTION DEFINITION DIRECTIVES
Section definition directives direct input sections into output sections, assign memory
address boundaries and memory start values to sections, and control the ordering of
output sections.
A typical SECTIONS definition directive is

SECTIONS {
secnamel : {

input file,library,and section specifications,
assignment statements

}
secname2 : {

input file,library,and section specifications
assignment statements

}

}

3-4 LINKER DIRECTIVES LANGUAGE

By default, if SECTIONS definition directives are not specified, the Linker associates
input sections with output sections by name. For example, if two input files are linked
containing input sections .text, .data and .bss, the output file will also contain the three
sections .text, .data and .bss which are composed of the input section contents in the
order they have been seen and processed by the Linker.
Details of the various input file and section specifications allowed in a SECTIONS
directive are included in the remaining sections of this chapter. The use of assignment
statements within a SECTIONS definition directive is detailed in Section 3.6.

3.4.1 Input Files and Libraries
A filename within the curly braces of an output section specification causes the Linker
to place all sections from the named file into the specified output section. Specification
of a filename causes the Linker to read and process that file, if it has not already done
so.
Filename is any valid input object filename. The filename may include a full or partial
pathname. A filename containing special characters may be enclosed in double-quotes
("") to avoid conflict with Linker directives language syntax.
An example of using an input filename in an output section specification is as follows:

.text : { myfilel, myfile2 }

All sections in object files myfilel and myfile2 are directed into the .text output
section.
Similarly, a library name may be specified in an output section specification, causing
any sections pulled in from the library for resolution of symbolic references to be
directed into the specified output section.
A library name is any valid input library filename. The library name may include a
full or partial pathname. A library name containing special characters may be
enclosed in double-quotes ("") to avoid conflict with Linker directives language syntax.
An example of using a library name in an output section specification is as follows:

.text : { mylibrary }

All input sections extracted from mylibrary to resolve current external references
will be placed in the .text output section. A .data or .bss section from mylibrary may
be placed in the .text output section.

LINKER DIRECTIVES LANGUAGE 3-5

3.4.2 Input Sections
Input sections may come from the object files specified on the Linker command line or
from object files specified in the directives file. Input sections may be specified in the
SECTIONS directive in several ways. The input sections from a particular input file
may be explicitly referenced by stating the actual filename, or input sections from
groups of files may be implicitly referenced using a wild-card character for filenames.
A particular section of an input file may be specified by enclosing the section name in
parentheses immediately following the filename. An example of a specific filename and
section specification is

SECTIONS
{
.text : { filel (.text) }
.data : { file2 (.data) }
}

The .text section from filel is directed into the .text output section, and the .data
section from f ile2 is directed into the .data output section. Assuming both input files
contained .text and .data sections, the Linker will then place the .text section from
file2 into the .text output section and the .data section from filel into the .data
output section. This results from the Linker’s default action, which directs all unallo­
cated input sections to output sections of like names.
The following example demonstrates the use of the wild-card character:

SECTIONS
{
.text : { * (.text) }
.data : { * (.data) }
.bss : { * (.bss) }
}

The .text output section contains all of the .text sections from all of the input object
files processed by the Linker. Likewise, the .data and .bss output sections contain the
.data and .bss sections from all the input object files, respectively. Wild-cards are
matched only against files already processed by the Linker. For example, files listed on
the UNIX command line after the directives file will not be matched.
Section names may also refer to user-defined sections. User-defined sections have lim­
ited use. User-defined section names are typically used to create an output section only
when linking with the retain command line option. The resulting output file is used as
input for a subsequent link at which point the user-defined section is directed into one
of the normal COFF sections. User-defined section names should only be used if the
system loader supports nonstandard section names.

3-6 LINKER DIRECTIVES LANGUAGE

This process involves at least two invocations of the Linker. The first invocation
directs the COFF sections (.text, .data, etc.) from a compilation or assembly object file
into a user-defined output. The SECTIONS directive looks like this:

SECTIONS
{
my_output_sectionl: { *(.text) 1
my_output_section2: { *(.data) 1
1

This link does not produce an executable image; the Linker needs to be invoked with
the retain command line option to make the output suitable as input for a subsequent
link. The output file contains two sections, my_output_sectionl and
my_output_section2.

The second Linker invocation uses, as input, the output file from the first link plus any
additional necessary object files. The following SECTIONS directive directs the user-
defined section to a standard System V COFF section:

SECTIONS
{
.text : { my_object_file(my_output_sectionl), * (.text) }
.data : { my_object_file(my_output_section2), * (.data) }
}

The final output is executable or useful under a strict COFF convention environment
because there are no more user-defined sections. The remainder of the manual uses
only COFF section names.

3.4.3 COMMON and MOD Input Sections
The [COMMON] and [MOD] input section specifications refer to input sections contain­
ing common data and undefined module symbols, respectively.
Common data refers to variables declared by the . comm assembler directive, uninitial­
ized variables declared outside of any procedure in a C program, and FORTRAN com­
mon data. The Linker consolidates all references to a common variable and allocates
space for it in the .bss section. For example,

.data : { myfilel [COMMON] }

The common data from myfilel is directed into the .data output section rather than
the default .bss output section.
The .module assembler directive associates a symbolic module name with an object
module. The module symbol may be undefined under certain circumstances. By
default, the Linker associates these undefined module symbols with the .mod output

LINKER DIRECTIVES LANGUAGE 3-7

section. The [MOD] option provides a way to associate undefined module symbols with output sections other than .mod. For example,
.data : { myfilel [MOD] }

The undefined module symbols from myfilel are directed into the .data output sec­
tion rather than the default .mod output section. Refer to the Series 32000 GNX - Ver­
sion 3 Language Tools Technical Notes for information on Series 32000 modularity sup­
port.

3.4.4 B inding a Section to a Memory Address
Any output section may be bound to a particular address in memory. The BIND direc­
tive instructs the Linker to assign a particular configured memory address to the out­
put section. The following example demonstrates the use of binding:

SECTIONS
{
.text BIND (0x100) : { * (.text) }
.data BIND (OxfOOO): { * (.data) }
}

The Linker places all the .text sections from all of the input files into a .text output sec­
tion and assigns it a memory address of 0x100. Similarly, the .data sections from all of
the input files are placed in a .data output section and assigned a memory address of
OxFOOO.
The bind value must be within available configured memory. The Linker will report an
error message if the specified bind address is not in available configured memory or if
there is insufficient configured memory to hold the output section.
Binding an output section to a particular memory address overrides aligning the sec­
tion or directing the section to a named configured memory region. A warning is gen­
erated.

3.4.5 A ligning a Section to a Value
Aligning an output section to a value ensures that the output section will be assigned a
memory address that is a multiple of the ALIGN value. The align option may be
specified in the output section specification of a SECTIONS directive.
An example of aligning an output section is

.text ALIGN (0x100) : { *(.text) }

3-8 LINKER DIRECTIVES LANGUAGE

The .text output section begins at the first available memory address which is a multi­
ple of 0x100. If the previous output section ends at 0x101, the .text output section
begins at 0x200.
Aligning an output section and binding an output section are mutually exclusive opera­
tions.

3.4.6 Blocking a Section to a File Address
Blocking an output section to a file address ensures that section will reside at the
specified address in the Linker output file. The block option may be specified in the
output section specification of a SECTION S directive. An example of blocking a section
to a file address follows:

.text BLOCK (5000) : { *(.text) }

The .text output section will reside at address 5000 in the Linker output file.
The block option does not affect binding or aligning; it may be specified along with
b i n d or A LIGN . For example:

.text BLOCK (0x300) BIND (0x2000): { M.text)}

The .text output section starts at byte 0x300 in the output file, but its memory address
is 0x2000.
The specified blocking address must be greater than the size of the COFF header infor­
mation, since header information always resides at the beginning of an output file.
Blocking to an address which overlaps COFF header information results in a Linker
error message. Blocking addresses must be used in ascending order (i.e., the first block
address must be less than any subsequent block address; the second block address
must be greater than the first but less than any subsequent block address, etc.). Block­
ing may cause gaps to appear within the output file.

3.4.7 D irecting a Section to Memory by Name
The MEMORY directive declares a specific configured memory area and associates that
memory with a symbolic name. The output sections defined within a SECTIO N S direc­
tive may be routed to a particular memory area by simple symbolic association. For
example:

LINKER DIRECTIVES LANGUAGE 3-9

MEMORY
{
my_meml : ORIGIN - 0x0 , LENGTH = 0x100
my__mem2 : ORIGIN = 0x100 , LENGTH - Oxfff
}

SECTIONS
{
.text : { * (.text) } >my_meml
.data : { * (.data) } >my_mem2
}

The redirection symbol “>” directs the Linker to assign the output section to a memory
location within the named memory area. In the above example, the Linker assigns the
.text output section a memory address of 0x0 and the .data section a memory address
of 0x100. The memory address assigned to an output section that is directed to a par­
ticular named memory area is allocated on a first-fit basis within the memory area. An
error is generated if the size of the output section exceeds the amount of available
configured memory in the named memory area.

3.4.8 D irecting a Section to Memory by Attributes
A configured memory area declared with the MEMORY directive may optionally have an
associated set of memory attributes. An output section may be redirected to a memory
area specified by name as well as to a memory area of specific memory attributes. For
example:

MEMORY
{
my_meml (RW) : ORIGIN = 0x0 , LENGTH - 0x100
my_mem2 (R) : ORIGIN = 0x100 , LENGTH = Oxfff
}

SECTIONS
{
.text : { * (.text) } > (R)
.data : { * (.data) } > (RW)
}

The redirection symbol “>” directs the Linker to assign the output section a memory
address within a memory area of the specified attributes. In the above example, the
Linker assigns the .text output section a memory address of 0x100 and the .data sec­
tion a memory address of 0x0, based on the attributes of each memory area. The
memory address assigned to an output section that is directed to a memory area of
specific attributes is allocated on a first-fit basis within the memory area. An error is
generated if the size of the output section exceeds the amount of available configured
memory in that memory area.
3-10 LINKER DIRECTIVES LANGUAGE

3.4.9 Setting the Section Type Flags
The type of a section is information stored in the section header of the COFF file to
indicate how the section is to be handled by the Linker and loader and what category of
data is contained within the section. By default, the Linker determines the type of an
output section and its contents based on the input sections comprising it. Two options
are available to override the default action and set the type explicitly. Appendix C
details the effects of each particular output section type. The type that controls how
the output section is processed may be any one of the following:

DSECT | NOLOAD | COPY | INFO | OVERLAY | L IB

The type option that specifies the contents of an output section may be any one of the
following:

TYP_TEXT | TYP_DATA | TY P_LIN K | TY P_B SS | TYP_MOD

An example of using the type option is
. t e x t (IN F O)(T Y P _ T E X T) : {

* (. t e x t) , * (. d a t a) }

The .text output section is processed as an INFO section, and the flags are set to indi­
cate the section contains executable text.

3.4.10 A ssociating Module Names w ith Sections
Module names are declared with the .m o d u l e assembler directive and are associated
with at least a single source file.
Input sections can be combined only if they are associated with the same module or
associated with no module at all.
The MODULE option associates a module name with an output section; therefore, only
input sections of the same module or input sections with no module can be directed into
the output section.
An example o f using the MODULE directive is

. t e x t M OD ULE(m y_m od) : { . t e x t }

The .text output section contains only .text input sections with the m y_m od module
name and .text sections with no module name. Refer to the Series 32000 GNX—
Version 3 Language Tools Technical Notes for information on Series 32000 modularity
support.
The module option may be specified along with any other output section option.

LINKER DIRECTIVES LANGUAGE 3-11

3.5 GROUPING OUTPUT SECTIONS
A g r o u p o f o u t p u t s e c t io n s d e c la r e d w i th th e GROUP d i r e c t iv e is g u a r a n t e e d to r e s id e a t
c o n t ig u o u s a d d r e s s e s i n m e m o r y a n d a p p e a r i n t h e s a m e o r d e r a s t h e y a r e p r e s e n te d
w i th in t h e GROUP d ir e c t iv e .

The GROUP directive must appear within a SECTIO N S directive. An example of using
the GROUP directive follows:

SEC TIO N S {
. text : { * (. text) }
GROUP {

.data : { * (. data) }

.bss : { * (.bss) }
}

}
In this example, the .data and .bss output sections are guaranteed to reside at contigu­
ous areas in memory.
Because the GROUP directive forces output sections to be processed together, options
such as B IN D , A LIG N , and BLOCK must be used with the entire group of output sec­
tions and not with the individual sections themselves. For example:

SEC TIO N S
{
.text BIND (0x1000) : { * (.text) }

GROUP BIND (OxaOOO) :
{
.data : { * (.data) }
.bss : { * (.bss) }
1
}

The .text output section is bound at 0x1000; the data output section starts at OxaOOO
and is followed immediately by the .bss output section. Figure 3-1 illustrates this
example.
The Linker will issue an error message if a group of sections is bound to an address
without enough available configured memory for the entire group of output sections.
A group of output sections may be bound or aligned to the memory address, blocked to
a file address, or redirected to a particular memory area by name or memory attri­
butes.
An individual output section within a GROUP directive may be specified with the type
option only. The six different typejoptions are listed in Section 3.4.9.
3-12 LINKER DIRECTIVES LANGUAGE

EXECUTABLE IMAGE MEMORY MAP

SECTIONS Linking Instructions

{ ----- -----
.text BIND (0x1000): { ‘ (.text)}

GZ-02-0-U

Figure 3-1. Group Link

LINKER DIRECTIVES LANGUAGE 3-13

The Linker normally combines input sections in a contiguous fashion when creating an output section. That is, if an output section is comprised of three input sections, the
raw data from those input sections are placed one immediately after the other in the output section. It is possible to create a “hole” in the output section through the use of a current location (.) assignment. The current location denotes the address in memory to which the Linker is allocating sections. Changing the value of the current location creates a gap of unallocated space. The current location can never be decremented. Because the concept of current memory location is valid only during the allocation phase of the link process, current location assignments must always appear within a
SECTIONS definition directive. An example of a current location assignment to create a hole in an output section is

3.6 CREATING HOLES WITHIN AN OUTPUT SECTION

SECTIONS {
.text : {

}
* (.text) ,
. += 1 0 0 ; }

The .text output section contains the .text input sections from all the input object files,
followed by a 100-byte hole. Similarly, the following example creates a 20-byte hole
between the .data section from filel and the .data section from file2 within the
.data output section.

SECTIONS {
.data : { filel(.data) ,

. += 2 0 ;
file2(. data) }

}

3.6.1 Specifying the Fill Value of Section Holes
By default, the Linker fills the holes created within an output section with zeros. That
is, when the Linker is writing out the raw data of an output section to the output file,
zeros are written out for unallocated areas of memory. The following syntax is used to
specify a fill value other than zero for any specific output section:

SECTIONS {
.text : {

}
* (.text) ,
. += 100; } = OxFFFF

In this case, the 100-byte “hole” in output section .text will be filled with the value
OxFFFF.
The Linker command line option to specify a fill value can be used when a fill value
other than the default is desired for all output section holes. Specifying a fill value
within a SECTIONS directive overrides the fill value specified on the Linker command
line.
3-14 LINKER DIRECTIVES LANGUAGE

3.7 CREATING AND DEFINING SYMBOLS AT LINK TIME
A symbol may be assigned an absolute address at link time through the use of assign­
ment statements.
If the symbol has not already been declared in an input object file, the Linker will
create an external symbol table entry and assign it the specified absolute address.
If the symbol has already been declared in an input object file but remains undefined,
the Linker assigns the symbol the specified absolute address.
If the symbol exists and is already defined as an absolute address, the Linker will
redefine the symbol with the new absolute address. If the symbol exists and is defined
within an input object file as a relocatable address, the Linker issues an error message
and terminates.
The basic syntax for symbol assignment is

symbol = i n t ;
The syntax supports a wide range of operations in addition to “=” and supports expres­
sions in place of int. This syntax usage is explained in detail in Chapter 4.
Care should be used in symbol address assignments to prevent excessive memory frag­
mentation or cause conflict with MEMORY, SECTIONS, or GROUP memory map­
pings. Symbol assignment address conflicts do not cause link-time error messages.
Because symbolic assignments are made at the end of the Linker allocation phase, the
placement of the assignment statement within a Linker directive file is not important.
The assignment may be made anywhere within the directive file.
An example of using an assignment statement to assign an absolute address is

SECTION {
.text : { * (.text) }

}
special_sym = 0x1000;

Special_sym will be assigned the absolute address of 0x1000.

LINKER DIRECTIVES LANGUAGE 3-15

3.8 SPECIFYING OUTPUT FILE OPTIONS
Two output file characteristics may be controlled by Linker directives. These directives
specify the default output filename and set the optional header magic number.

3.8.1 N ative Output File Configuration
By default, the Linker produces an output file named a32 . out that does not have exe­
cute file permissions set. To override this default, the following statement can be
included anywhere within the Linker directives file:

OPTION NATIVE

This results in a Linker output file named a . out with execution file permissions set.
This option is necessary when producing executable files on a Series 32000-based sys­
tem.

3.8.2 Optional Header Magic Number
The optional header magic number in a COFF file provides memory loading informa­
tion to the operating system or loader. The syntax to set the optional header magic
number is

OPTION OMAGIC int
This statement may appear anywhere within a Linker directives file. All default
Linker directives files explicitly set the optional header magic number for that particu­
lar execution environment.

3.9 COMMENTS IN A DIRECTIVES FILE
Comments may be used to document the purpose of the directives file. Comments
begin with a slash and asterisk (/ *) followed by one or more lines of comment text.
The comment is terminated with a asterisk and slash (*/). The comment can either
appear alone on a line or follow a Linker directive statement.

3-16 LINKER DIRECTIVES LANGUAGE

Chapter 4
DIRECTIVES LANGUAGE EXPRESSIONS

4.1 INTRODUCTION
Expressions can be used in two places in the Linker directives language:

• As arguments to the BIND, ALIGN, BLOCK and NEXT directives.
• On the right-hand side of an assignment statement.

The simplest form of an expression is a single integer term (int), while the more com­
plex expression is a sequence of integer terms and/or special function terms separated
by operands and may include nesting.

4.2 VALID INTEGER SYNTAX
The Linker accepts three radices for unsigned integer input: decimal (the default), hex­
adecimal, and octal. Integer input in the Linker directives language is denoted by the
word in t. Unless otherwise noted, in t represents a 32-bit unsigned long integer
value.

4.2.1 Decimal Value Syntax
A decimal value begins with a digit in the range of 1 through 9 followed by optional
digits in the range of 0 through 9.

4.2.2 Octal Value Syntax
An octal value begins with 0 followed by digits in the range of 0 through 7.

4.2.3 Hexadecim al Value Syntax
A hexadecimal value begins with either Ox or OX followed by digits in the range of 0
through 9, and/or letters in the range of A through F (either upper- or lower-case).

DIRECTIVES LANGUAGE EXPRESSIONS 4-1

4.3 UNARY OPERATIONS
A unary expression consists of a single term, which can be either an integer, a symbol
name, or a special function. Single-term expressions may be preceded by one of three
valid unary operators: logical negation, one’s complement, and two’s complement.
A unary operation has the highest precedence in expression evaluation and is always
performed before any other operation. Table 4-1 lists the unary operators.

Table 4-1. Unary Operators

OPERATOR FUNCTION
! Logical negation
- One’s complement
- Two’s complement

4.3.1 Logical Negation
The logical negation operation changes any nonzero value to zero, or changes a zero
value to one. An example of logical negation follows:

!OxffffffeO

The logical negation operation changes the integer value in the example to zero.

4.3.2 One’s Complement
The one’s complement operation is a bit-wise logical negation. All one bits are set to
zero, and all zero bits are set to one. An example of one’s complement operation fol­
lows:

-OxffffffeO

The one’s complement operation changes the integer value in the example to Oxlf.

4-2 DIRECTIVES LANGUAGE EXPRESSIONS

4.3.3 Two’s Complement
The two’s complement operation is the result of a bit-wise logical negation plus one.
All one bits are set to zero, all zero bits are set to one, and then one is added. An exam­
ple of two’s complement operation is

-OxffffffeO

The two’s complement operation changes the integer value in the example to 0x20.

4.4 BINARY OPERATIONS
The Linker supports the following binary operators (listed in order of precedence,
highest to lowest):

• * (multiplication), / (division), and % (modulus)
• + (addition) and - (subtraction)
• » (right shift) and « (left shift)
• > (greater than), < (less than), >= (greater than or equal), and <= (less than or

equal)
• == (equal) and != (not equal)
• & and I (bitwise AND and bitwise OR)
• && and I I (logical AND and logical OR)

Table 4-2 lists the binary operators.

4.4.1 Shift Operations
The shift operators perform a shift on the left unsigned operand by the number of bits
specified by the right operand. For example:

X « 2

The value of X is shifted two bits to the left. If X is one, its value is 4 after the shift.
Vacated bits of right and left shifts are zero-filled.

4.4.2 Relational Operations
The result of a relational operation is either zero (false) or one (true). The Boolean
result of a relational operation is useful in constructing expressions which can control
dependencies. For example:

.text BIND ((sizeof(.data) >= 0x100) * 0x100 + 0x100)

DIRECTIVES LANGUAGE EXPRESSIONS 4-3

Table 4-2. Binary Operators

OPERATOR FUNCTION PRECEDENCE (Highest = 1)
* Multiplication 1
/ Division 1
% Modulus 1
+ Addition 2
- Subtraction 2

» Shift right 3
« Shift left 3
> Greater than 4
< Less than 4

>= Greater than and equal 4

<= Less than and equal 4

== Equal 5
!- Not equal 5
& Bitwise AND 6
1 Bitwise OR 6

&& Logical AND 7
1 1 Logical OR 7

4-4 DIRECTIVES LANGUAGE EXPRESSIONS

If the size of the data section is greater than or equal to 0x100, the relational operation
returns a one, and the resulting multiplication yields 0x100 which is added to 0x100.
In this case, the bind address is 0x200.
If the size of the data section is less than 0x100, the relational operation returns a zero,
and the resulting multiplication yields zero which is added to 0x100. In this case, the
bind address is 0x100.

4.5 ASSIGNMENT OPERATIONS
The value of an expression may be assigned to a symbol in one of five ways:

symbol = expr; (assign the value of expr to symbol)
(equivalent to: symbol = symbol + expr)
(equivalent to: symbol = symbol - expr)
(equivalent to: symbol = symbol * expr)

symbol += expr;
symbol -= expr,
symbol *= expr,
symbol /= expr; (equivalent to: symbol = symbol / expr)

The assignment syntax always requires a semicolon after the expression.

4.5.1 Current Location Assignments
The current location assignment is a special type of assignment which may be used
only within the input section specification of a SECTIONS directive. The current loca­
tion term (.) denotes the current allocation address in memory.
Symbols may be assigned the value of the current memory location within an output
section specification. Unlike other assignment statements, current location assign­
ments are evaluated during the allocation phase of the link process, so positioning of
the current location assignment statement is important.
An example of a current location assignment involving the current location term is

SECTIONS {
. text : { * (. text),

end_text = . ;
}

}
In this example, the symbol end_text is assigned the value of the memory address
following the end of the .text section contents. If the starting address of the .text out­
put section is zero and the size of all the input .text sections is 100 bytes, end_text
will have the value 100.

DIRECTIVES LANGUAGE EXPRESSIONS 4-5

4.6 SPECIAL FUNCTIONS
Five special functions provide useful information about the output sections and Linker
allocation addresses. These functions and the information they return are listed in
Table 4-3.

Table 4-3. Special Functions

FUNCTION RETURNED VALUE
SIZEOF Output section size
ADDR Output section address

FILADDR Output section file offset
NEXT Next memory address multiple (which is a multiple of a specified

value)
HIGHMEMADDR Highest available memory location

The SIZEOF, ADDR, and FILEADDR functions return valid results only for output
sections which have already been created in the output. For example:

SECTIONS {
.text BIND (0) : { * (.text)

.data BIND (SIZEOF (.text)
}

* (.data) }

The SIZEOF(.text) function is used after the directive that creates the .text output sec­
tion. Both output sections are bound to a specific address, but since the .text section
directive precedes the .data section directive, the .text section is created in the output
first; therefore, the SIZEOF request is valid. The .data output section will start at the
next byte after the end of the .text section.

4-6 DIRECTIVES LANGUAGE EXPRESSIONS

4.6.1 S izeo f F un ction
The SIZEOF function returns the number of bytes in the specified output section. The
syntax for the SIZEOF function is

SIZEOF (s e c t io n jn a m e)

The SIZEOF function can return a valid value only for a section which has already
been created in the output. If the section has not yet been created in the output, a zero
is returned.
If more than one section exists with the specified section name, the information
returned will be relevant only to the first section recognized.

4.6.2 Memory Address Function
The memory address function returns the starting address of the specified output sec­
tion. The syntax for the memory address function is

ADDR (s e c t io n j i a m e)

The ADDR function can return a valid value only for a section which has already been
allocated memory space, otherwise it returns zero.
If more than one section exists with the specified section name, the information
returned will be relevant only to the first section recognized.

4.6.3 File Address Function
The file address function returns the file address of a section in the Linker output file.
The syntax for the file address function is

FILEADDR (s e c tio n j i a m e)

The FILEADDR function can return a valid value only for a section which has already
been allocated file space in the Linker output file, otherwise, it returns zero.
If more than one section exists with the specified section name, the information
returned will be relevant only to the first section recognized.

DIRECTIVES LANGUAGE EXPRESSIONS 4-7

4.6.4 N ext A ddress F u n ction
The next address function returns the next available memory address which is a multi­
ple of a specified value. The syntax for the next function is

NEXT (expr)
Expr must evaluate to a value greater than zero.

4.6.5 H ighest Memory Address Function
The highest memory address function returns the next memory address after the
highest address allocated in memory. The syntax for the highest memory address is

HIGHMEMADDR

4-8 DIRECTIVES LANGUAGE EXPRESSIONS

Chapter 5
Basic Linker Operations

5.1 INTRODUCTION
The Linker’s primary goal is to produce executable files which run on a specified target
machine. To accomplish this goal, the executable code must accommodate any special
requirements imposed by the target loader or operating system. The Linker directives
language allows the user to create executable files tailored to any target system.
This chapter provides a description of the basic Linker operations controlled by the
directives language and a brief overview of the COFF object file format utilized by the
Linker.

5.2 BASIC LINKER OPERATIONS
The basic linking process involves combining and/or manipulating the sections of input
object files. Sections from input object files are known as input sections. These input
sections are combined and/or manipulated to create corresponding output sections.
The executable image (Linker output file) is composed of these output sections. The
Linker performs four basic operations when creating an executable file:

• Memory Configuration - Establishes the actual memory range. The Linker can
work with one single contiguous piece of configured memory or with memory seg­
ments. All of this information is specifiable.

• Allocation - The assignment of a starting address to an output section. The
Linker directives language allows a great deal of control over this process. The
ability to map input sections to an output section at a particular address allows
the creation of executable-image memory mapping which meets any need.

• Resolution - The process of matching an external symbolic declaration in one
source file with the symbolic definition in another file.

• Relocation - The process of calculating the actual address of symbolically refer­
enced data or routine.

Figure 5-1 illustrates the basic linking process.

Basic Linker Operations 5-1

COFF FILE 1 COFF FILE 2 COFF FILE n

GZ-01-0-U

Figure 5-1. Basic Linking Process

5-2 Basic Linker Operations

5.2.1 Linker Allocation Algorithm
Consider two slightly different output mappings. In Mapping 1, both the text section and the data section are bound to a specific address and appear at their respective addresses in the output file. In Mapping 2, only the text section is bound and its address is roughly in the middle of the MEMORY declared address range. Therefore, the data section is placed in the first area large enough to accommodate it. If the Linker finds that the first area large enough for the sum of the input data sections is before the text section, that is where the Linker directs the input data sections even though in the SECTIONS directive, data input sections appear after text.

Mapping 1
The directives file for mapping 1 is

SECTIONS {
.text BIND(0x1000) : {* (.text) }
.data BIND(0x3000) : {* (.data) }

}
Which produces the following layout in memory:

0x1000

0x3000

.text

.data

Mapping 2
The directives file for mapping 2 is

SECTIONS {
.text BIND(0x1000) : {* (.text) }
. data :{* (. data) }

Basic Linker Operations 5-3

Which produces the following layout in memory:
0x0

0x1000

.data

.text

Output sections are processed by the Linker according to a simple allocation algorithm:
1. Output sections, or groups of output sections, bound to a specific memory address

are allocated. This guarantees the output section will begin at the bind address.
2. Output sections, or groups of output sections, directed to a particular named

memory area are allocated within the named memory area. The Linker assigns
addresses on a first-fit basis.

3. Output sections, or groups of output sections, directed to a memory area of partic­
ular attributes are allocated. The Linker will assign addresses on a first-fit basis
within any memory area having the specified attributes.

4. All other output sections, or groups of output sections, are allocated addresses on
a first-fit basis from the remaining available configured memory.

Therefore, the order of output sections within a Linker directives file does not neces­
sarily reflect the order of the output sections in memory.

5.3 OBJECT FILE FORMAT
National Semiconductor’s GNX software development environment has adopted as its standard the Common Object File Format (COFF). COFF was first developed by AT&T as the standard format for object files under UNIX System V. This standardization has
many advantages, from portability of object/executable files among all Series 32000- based UNIX systems to the establishment of common data structures for symbolic debugging information.

5.3.1 COFF Sections
A section of an object file is the smallest unit of relocation and must occupy a contigu­ous block of memory. A section is identified by a starting address and a size. Informa­
tion describing all the sections in a file is stored in "section headers" at the start of the file. Sections from input files are combined to form output sections that contain execut­able text, data, or a mixture of both. Although there may be "holes" or gaps between
input sections and between output sections, storage is allocated contiguously within each output section and may not overlap a hole in memory. The "virtual address" of a
section or symbol is the relative offset from address zero of the address space.
5-4 Basic Linker Operations

A COFF object file contains at least three special sections, .text, .data, and .bss.
• The .text section contains executable code. Executable code is segregated to its own section because it is protected against accidental modification. It is write protected by the system.
• The .data section contains initialized data. This data is available at run-time without any explicit assignment statement from the program. An example of this type of data is literal text for a print statement or C language variables initialized at the time of definition. The data section is separated from the text section because data area is readable and writable.
• The .bss section contains uninitialized data and, for efficiency reasons, is separate from the data section. Since this data is uninitialized, the only information

needed for system purposes is the size of this area, and basically the bss section has just that. The values found by the program at run-time depend on the system loader (not the Linker). Most UNIX systems initialize the bss section to zeroes.
Familiarity with the structure of the input file and its basic sections is required in order to control the link process and achieve a specific format for the output.
For a comprehensive account of the COFF object file format, see the Series 32000
GNX-Version 3 COFF Programmer’s Guide and the Series 32000 GNX - Version 3
Assembler Reference Manual.

Basic Linker Operations 5-5

W

Appendix A
DIRECTIVES LANGUAGE SYNTAX

A.1 SYNTAX
The following table provides a quick reference of the directives language syntax.

Table A-l. Syntax Diagram of Input Directives
Sheet 1 of 4

DIRECTIVES -» EXPANDED DIRECTIVES
directives Jile -» { cmd)
cmd —» memory

—> sections
—> assignment
—» filename
—> libname
—» option

memory -» MEMORY {memory_spec
{ [,] memory_spec }}

memory _spec name [attributes] :
origin_spec [,] length_spec

attributes -» ({R 1 W | X | I})
origin_spec -> origin = long
lengthjspec length = long
origin ORIGIN | ORG
length LENGTH | LEN
sections -> SECTIONS {sec_or_group

{ [,] sec_or_group } }
sec_or_group —> section | group
group -> GROUP [groupjoptions) : {

sectionjist} \mem_spec]
sectionJist -> section { [,] section }

DIRECTIVES LANGUAGE SYNTAX A-l

Table A-l. Syntax Diagram of Input Directives
Sheet 2 of 4

DIRECTIVES EXPANDED DIRECTIVES
section section jiame {sec_options} : {statement J is t} [fill] [rae/n_spec]
group_options —» bind_option \ align_optionblock_option
secjoptions -> bind_option \ align_optionblock^option—> typejoption—> module jiptionflags _option
module j>ption moduleimodulejiame)
module —> MODULE
bind_option long | bind {special_expr)
bind -> BIND
align_option —> align (specialjexpr)
align -> ALIGN
blockjoption —> öZocä (expr)
block BLOCK
type_option -> (DSECT) | (NOLOAD) | (COPY) | (INFO) | (OVERLAY) | (LIB)
flags joption —> (TYP TEXT) | (TYP DATA) | (TYP.BSS) | (TYP.LINK) | (TYP_MOD)
fill = long
mem_spec —> >mem jiame-> >attributes
statement_list -> statement { [,] statement}
statement filejname-> file name ((name list) | [COMMON] | [MOD])*((nameJist) | [COMMON] | [MOD])assignment-> dotassign—> libname-» null
namejiist —» section jiame { [,] section jiame }
assignment Iside assign jop expr end
dotassign -> . assign_op specialjexpr endIside assign jop . end

A-2 DIRECTIVES LANGUAGE SYNTAX

Table A-l. Syntax D iagram of In p u t D irectives
S heet 3 of 4

DIRECTIVES —> EXPANDED DIRECTIVES
Iside —> name
assign _op — >

4111*1111+11

end —> ;

special_expr —> expr
expr —» expr binary_op expr

term
binary _op — > * | / | %

— > + 1 -
—> > > | «

—> 11AIIVV

A

_llIIII

- 4 &

—» 1
- > & &

—» 1 1

term —> long
—> name
—> (expr)
—> unary_op term
—> sizeof (section_name)
—> next (expr)
—> addr (section_name)
—» fleaddr (sectionjiame)
-4 highmemaddr

unary _op -4 ! 1 ~ 1 -
sizeof —> SIZEOF
next -4 NEXT
addr -4 ADDR
fleaddr -4 FILEADDR
highmemaddr -4 HIGHMEMADDR

DIRECTIVES LANGUAGE SYNTAX A-3

Table A-l. Syntax D iagram of In p u t D irectives
S heet 4 of 4

DIRECTIVES —> EXPANDED DIRECTIVES
option —> OPTION option_keyword [optionjualue]
option _key word —> NATIVE

—> OMAGIC
optionjualue —» long
mem_name —> Any valid memory specification name.
name —» Any valid symbol name.
long —> Any valid unsigned long integer constant.
filename —> Any valid operating system filename.

This may include a full or partial path­
name. Any filename may be enclosed in
double quotes in order to avoid conflicts
of special characters in the filename with
the directives language syntax.

section _name —> Any valid section name, up to 8 charac­
ters.

libname —> Any valid library name. Any library
name may be enclosed in double quotes
in order to avoid conflicts of special char­
acters in the filename with the directives
language syntax.

modulejxame —> Any valid module name.

A-4 DIRECTIVES LANGUAGE SYNTAX

Appendix B
OUTPUT MAP

B .l FORMAT DESCRIPTION
The Linker output map illustrates the layout of the output file in memory and details
the composition of the output sections.
Table B-l is an example of an output map created when linking a small file myf i l e . o
and a library my lib. a using the default directives file for a cross-development
environment.

Table B-l. Linker Output Map

OUTPUT INPUT MEMORY SIZE SECTION
SECTION SECTION ADDRESS CONTENTS

.text eOOO 40
.text eOOO 34 myfile.o
.text e034 c mylib.a:foo.o
.link e040 0 myfile.o
.link e040 0 mylib.a:foo.o

UNUSED e040 through flOOO
.data fDOO 8

.data fOOO 4 myfile.o

.data £004 4 mylib.a:foo.o

.static £008 0 myfile.o

.static fD08 0 mylib.a:foo.o
.bss f008 4

.bss f008 0 myfile.o

.bss f008 0 mylib.a:foo.o

.bss £008 4 linker_defined
UNUSED fDOc through ffffSff

OUTPUT MAP B-l

The output section column lists each output section of the file in the order it appears in
memory.
The input section column lists each input section name comprising the aforementioned
output section.
The memory address column denotes the address in memory at which a particular
input or output section begins (addresses are in hexadecimal).
The size column contains either the total size of the output section or the individual
sizes of the input sections.
The section contents column details the exact source of the input section. This is either
an object file name or a library name followed by a colon and the particular library
member name. The term “linker_defined” in this column indicates the space the
Linker has defined for certain data (i.e., common symbols in the .bss section).
The term “fill space,” which may appear in the section contents column, indicates the
hole created in the output section through the use of the current location assignment
directive.
UNUSED refers to a hole in memory at the specified address.

B-2 OUTPUT MAP

Appendix C
SECTION TYPE OPTIONS

All COFF output sections have a type associated with them that the Linker uses when
determining how to process that section. This appendix describes the action the Linker
takes for each type of output section.
A combination of the following three actions is performed on every section:

Allocation The Linker allocates available memory for the section.
Relocation The sections base address is updated, relocation is performed on

the raw data of the section, and the section’s symbol values are
updated.

Loading The Linker writes the raw data from the section to the output
file.

Table C-l lists the combination of actions taken by the Linker for each particular sec­
tion type. Only one type may be associated with any particular output section.

Table C-l. Type Options

TYPE DESCRIPTION ALLOCATED RELOCATED LOADED
Default Regular section yes yes yes
DSECT Dummy section no no no
NOLOAD Noload section yes no no
COPY Copy section

(relocation and
line number
entries processed
normally)

no partially (no
symbol reloca­
tion)

yes

INFO Comment section no no yes
OVERLAY Overlay section no yes yes
LIB For .lib section

(shared library),
treated the same
as INFO

no no yes

SECTION TYPE OPTIONS C-l

Appendix D
LINKER ERROR MESSAGES

D .l INTRODUCTION
The Linker produces four categories of error messages:

• Warnings - Provide information which might be important.
• Errors - Indicate a problem which precludes successful linking. The Linker does

not stop but continues and provides additional useful error messages.
• Fatal Error - Linker stops.
• Internal Error - Linker stops. Has detected extreme input file corruption.

D.2 WARNINGS
Binding an output section overrides assigning it to a particular named memory area.
Cannot open default directives file filename. Proceeding with basic, default linker
action.
Entrypoint symboljiame does not exist. Using default entrypoint.
Invalid memory attribute attribute specified. Ignored.
Multiple definition of symbol symboljiame.
Object files being linked are not entirely modular or not entirely relocatable.
Symbol symboljiame multiply defined with differing sizes. Larger size used.
Unknown option option ignored.
Bad line number entry number in file filename.

LINKER ERROR MESSAGES D-l

D.3 ERRORS
Procedure descriptor to a symbol in a non-modular section reference to symbol index
number, reference from section sectionjiame, in filename.
Module address out of range reference to symbol index number, reference from section
sectionjiame, in filename.
pb relative offset out of range reference to symbol index number, reference from section
sectionjiame, in filename.
One byte number too big reference to symbol index number, reference from section
sectionjiame, in filename.
Two byte number too big reference to symbol index number, reference from section
sectionjiame, in filename.
One byte displacement too big reference to symbol index number, reference from sec­
tion sectionjiame, in filename.
Two byte displacement too big reference to symbol index number, reference from sec­
tion sectionjiame, in filename.
Four byte displacement too big reference to symbol index number, reference from sec­
tion sectionjiame, in filename.
One byte immediate too big reference to symbol index number, reference from section
sectionjiame, in filename.
Two byte immediate too big reference to symbol index number, reference from section
sectionjiame, in filename.
Undefined symbol symbol jiam e, first referenced in file filename.
Linkentry offset not divisible by 4 reference to symbol index number, reference from
section sectionjiame, in filename.
Specified undefined symbol symbol jiam e never resolved.

D.4 FATAL ERRORS
Specified bind address, address, not in available configured memory.
Output section sectionjiame does not fit at specified bind address.
Cannot allocate named memory space for output section sectionjiame.

D-2 LINKER ERROR MESSAGES

Cannot allocate memory space of specified attributes for output section section_name.
Cannot allocate configured memory space for output section sectionjiame.
Output section sectionjiame not found when evaluating SIZE, FILEADDR or ADDR
expression.
Symbol symbol jiam e not found.
Symbol symbol jiam e already defined.
Cannot open file filename for reading.
Bad magic number in file filename.
Cannot seek to symbol table in input file filename.
Cannot open archive file filename.
Cannot open directives file filename.
No input object files specified.
Insufficient command line arguments.
Option option requires an argument.
Number exceeds 32 bits.
Ending quote expected near line number in directives file.
Unknown linker OPTION directive near line number in directives file.
Cannot combine sections of type NOLOAD with other input sections.
Cannot combine sections of type LIB with sections of other types.
Input sections of type OVERLAY not allowed.
Multiply defined symbol symbol jiam e. First defined in file filename.
Symbol filename already exists in symbol table.
Cannot access GNX target setup file. Using default directives file.
Archive file filename is missing global symbol information. Use the GNX archive util­
ity with the -s option to restore symbolic information.

LINKER ERROR MESSAGES D-3

number is not a valid integer value.
Specified version stamp number exceeds 16-bit maximum.
Specified fill value exceeds 16-bit maximum.
Input file filename is not in proper COFF format.
Number exceeds 32 bits near line number in directives file.
Error opening output file filename.
Unable to recover from previous errors.
Optional header magic value specified exceeds 16 bits.
Specified MEMORY region filename exceeds 32 bit address range.
Bad magic number in archive member member_name in file filename.
Cannot block section sectionjiame to specified output file address.
Syntax error near line number "number".

D.5 INTERNAL ERRORS
Unable to access symbol_name during relocation phase.
Unable to open filename during relocation phase.
No raw data for created mod section.
Unable to allocate space for a section header.
Unable to locate defining input section for a defined external. Section number number,
symbol index number, symbol name symboljiame, in filename.
Call to callocO failed to allocate number bytes.
Class C_LABEL or C_FCN symbol without a section. Symbol index number in file
filename.
Class C_BLOCK symbol without a section. Symbol index number in file filename.
Bad storage class number, symbol index number in file filename.

D-4 LINKER ERROR MESSAGES

Unable to read string table of filename.
Unable to read section number of filename.
Bad relocation entry number number of section number number in input filename.
Unable to read raw data of section number number in file filename.
Unable to read hole in raw data for relocation entry number number of section number
number in filename.
Unable to open input filename for a module symbol.
Unable to access input filename for a module symbol.
Unable to read section number of input filename for a module symbol.
Unable to read module (+0) symbol symbol jiam e, symbol index number, of filename.
Unable to read module (+4) symbol symboljiame, symbol index number, of filename.
Unable to read module (+8) symbol symboljiame, symbol index number, of filename.
No input section for R_STATIC_SEC relocation reference to symbol index number,
reference from section section jiam e, in filename.
No input section for R_LINK_SEC relocation reference to symbol index number, refer­
ence from section section jiam e, in filename.
No input section for R_TEXT_SEC relocation reference to symbol index number, refer­
ence from section section jiam e, in filename.
Overlapping virtual memory regions.
Floating-point exception.
Bad hash table index generated for symbol filename.
Illegal use of 7 in directives file near line number.
Cannot read symbol table entries in file filename.
Cannot read string of symbols in archive file filename.
Cannot read section headers of file filename.
Cannot seek to start of raw data for section filename in file filename.

LINKER ERROR MESSAGES D-5

Cannot seek to symbol entry position in outputfile.
Bad section number for symbol index number in file filename.
Problem getting symbol name for symbol index number in file filename.
Illegal relocation entry type in relocation entry number of input section number in file
filename.
Problems accessing archive file member containing symbol symboljiame in archive file
filename.

D-6 LINKER ERROR MESSAGES

Appendix E
SAMPLE LINKER DIRECTIVE FILES

E .l CROSS APPLICATION
The following default directives file is provided for linking in a cross-development
environment for execution on a Series 32000 development board.

/*
* db.link 1.3 (National Semiconductor) 3/31/88 18:15:25
* copyrights and other release restrictions may apply
*/

OPTION OMAGIC 0417 /* Set GNX optional header magic number */

MEMORY {
/* Set length to needed value
* Origin set to start of available memory */

db_mem : origin=0xE000, length^ length
}
SECTIONS {
/* mod must be in low memory */

.mod BIND(OxEOOO) : { *(.mod) }

/* Align data to page boundary. Useful if running with MMU */
.text BIND(NEXT(4)) : { *(.text) *(.link) }
.data BIND(NEXT(0x1000)) : { *(.data) *(.static)}
.bss BIND(NEXT(4)) : { *(.bss) }

/* Special symbols used by sbrk routine in libc.a */

_etext = ADDR(. text) + SIZEOF(. text);
etext = ADDR(.text) + SIZEOF (.text);
_edata = ADDR(.data) + SIZEOF(. data);
edata = ADDR(.data) + SIZEOF(. data);
_end = HIGHMEMADDR;
end = HIGHMEMADDR;

SAMPLE LINKER DIRECTIVE FILES E-l

E.2 NATIVE APPLICATION
The following default directives file is provided for linking a Series 32000 development
environment for execution on the same machine (e.g., SYS32/20, SYS32/30).
/*
* sys32_30. link 1.2 (National Semiconductor) 3/28/88 10:05:21
* copyrights and other release restrictions may apply
*/

OPTION NATIVE /* Mark file as executable in native mode */
OPTION OMAGIC 0413 /* Set GNX optional header magic number */
SECTIONS {
/* Mark text section as containing only text */

.text (TYP__TEXT) BIND (NEXT (0x4000 00) + f ileaddr (. text)) : {
*(.init) *(.text) *(.link) *(.mod)}

GROUP BIND (NEXT(0x400000) + ((ADDR(.text) + SIZEOF(.text)) % 0x1000))
.data : { *(.data) *(.static) }
.bss : { * (.bss) }}

/* Bind address aligned to MMU determined boundaries */
.comment : { *(.comment) }}

/* Special symbols used by sbrk routine in libc.a */
_etext = ADDR(. text) + SIZEOF(. text);
etext = ADDR(.text) + SIZEOF(.text);
_edata = ADDR(.data) + SIZEOF(. data);
edata = ADDR(.data) + SIZEOF(. data);
_end = ADDR(.bss) + SIZEOF(.bss);
end = ADDR(.bss) + SIZEOF (.bss);

E-2 SAMPLE LINKER DIRECTIVE FILES

INDEX

user library 2-3
* Wild-card character 3-6 version 2-8

version stamp 2-11
VMS 2-3

A warning message 2-8
Comments 3-16

Addr 4-7 COMMON input sections 3-7
Address function 4-7 Configuration 5-1
Align 3-8 Copy 3-11
Aligning 3-8 Creating holes within output section 3-14
Allocation 5-1 Creating symbols at link time 3-15
Attributes 3-2 Cross application directive files E-l

memory range 3-2 Current location assignments 4-5

B D
Basic Linker Operations 5-1 d Command line option 2-10

allocation 5-1 Data section 5-5
configuration 5-1 Defining symbols at link time 3-15
relocation 5-1 Directives Command line option 2-10
resolution 5-1 Directives file 3-1

Basic linking process, figure of 5-2 samples E -l
Basic operations 5-1 syntax A-l
Binary operators 4-3 Directives language, how used 3-1
Binary operators, table of 4-4 Documentation conventions 1-2
Bind 3-8 Dsect 3-11
Binding 3-8
Block 3-9
Blocking 3-9 E
Bss section 5-5

e Command line option 2-9
Entry Command line option 2-9

C Entry point 2-9
Environment variable for Unix 2-2

COFF file 5-4 Error messages D-l
COFF sections 5-4 Error messages, list of D-2

bss 5-5 Expression 4-1
data 5-5 Expression, simple form of 4-1
text 5-5 Expression

Command line invocation, intro to 2-1 assignment 4-5
Command line options 2-3 single term 4-2

debug info 2-7 special function 4-6
directive file 2-10 use 4-1
entry point 2-9
error message 2-8
hole value 2-10 F
keep relocation information 2-9
local symbolic info 2-7 f Command line option 2-10
memory map 2-6 Fatal errors, list of D-2
output filename 2-6 Fileaddr 4-7
retain relocation information 2-9 Filename 3-5
system library 2-3 Filenames for UNIX 3-1
undefined symbol 2-11 Filenames for VMS 3-1
Unix 2-3 Fill Command line option 2-10

INDEX 1

Fill value of section holes 3-14 Linker, intro to 1-1
Format description B -l Linker operations, intro to 5-1

Linker output map B -l
Linker, def file 2-10

G LINKERFILE 2-10
Logical name for VMS 2-3

General conventions 1-2 Logical negation 4-2
GNX Target Setup - gts 2-10
GNX$LIBRARY 2-3
Group 3-12 M
Group directive 3-12
Group link, figure of 3-13 m Command line option 2-6

M Command line option 2-7
Manual overview 1-1

H Map Command line option 2-6
Memory 3-2

Highest memory address 4-8 Memory address function 4-7
Highmemaddr 4-8 Memory directive 3-1, 3-2

Memory range attributes 3-2
Memory range 3-10

I sections 3-9, 3-10
MOD input sections 3-7

I 3-2 Module 3-11
Info 3-11 Module name 3-11
Input directives, diagram of A-l Muldefs Command line option 2-7
Input file specification 3-2 Multiply defined symbols 2-7
Input files 3-5
Input libraries 3-5
Input sections 3-6 N
Input section, source of 3-6
Input-section statement 3-5 Native 3-16
Integer syntax 4-1 Native application directive files E-2

decimal 4-1 Next 4-8
hexadecimal 4-1 Next function 4-8
octal 4-1 Noload 3-11

Internal errors, list of D-4 Nolocal Command line option 2-7
Invocation 2-1 Nowarning Command line option 2-8

Unix environment 2-1
VMS environment 2-2

O

K o Command line option 2-6
Object file 5-4

k Command line option 2-9 format 5-4
Keep Command line option 2-9 Object files 3-3
Keep relocation information 2-9 Offset function 4-6

Omagic 3-16
one's complement 4-2

L Options 2-3
see command line options 2-3

1 Command line option 2-3 Origin 3-2
Length 3-2 Output Command line option 2-6
Lib 3-11 Output file options, specifying 3-16
LIB PATH 2-2 Output file 3-16
Library files 3-3 characteristics 3-16
Library path environment variable 2-2 magic number 3-16
Library specification 3-2 native environment 3-16
Linker allocation algorithm 5-3 Output filename 2-6
Linker directives, intro to 3-1 default 2-6
Linker error messages D -l Unix 2-6
2 INDEX

VMS 2-6 Typ_data
Output map B -l Type options
Output section option Type options, table of

align 3-8 Typing
bind 3-8 Typ_link
block 3-9 Typ_mod
module 3-11 Typ_text
type 3-11

Overlay 3-11
U

P u Command line option
Unary operator

Partial link 3-7 Unary operators, table of
retain 3-7 Unix options, table of

Program entry point 2-9 Usym Command line option

R V
R 3-2 V Command line option
r Command line option 2-9 Version Command line option
Relational operations 4-3 VMS environment invocation
Relocation 5-1 VMS options, table of
Resolution 5-1 VS Command line option
Retain Command line option 2-9
Retained link 2-9

W
S w

Warning for defined common data
s Command line option 2-7 Warning messages, list of
S Command line option 2-8 Wild card
Sample directives files E-l
Section definition directives 3-4
Section holes 3-14 X
Section names 3-6

user defined 3-6 X
Section type options C-l x Command line option
Sections 3-6
Sections start value 3-8

binding 3-8
Shift operations 4-3
Silent Command line option 2-8
Size function 4-7
SIZEOF 4-6, 4-7
Special functions 4-6
Special functions, table of 4-6
Stamp Command line option 2-11
Strip command line option 2-7
Syntax conventions 1-2

T
t Command line option 2-8
Text section 5-5
Trivial link 2-10
Two's complement 4-3
Typ_bss 3-11

3-11
C-l
C-l

3-11
3-11
3-11
3-11

2-11
4-2
4-2
2-4

2-11

2-8
2-8
2-2
2-5

2-11

3-2
2- 7
D-l
3- 6

3-2
2-7

INDEX 3

NationalSemiconductor MICROCOMPUTER
SYSTEMS DIVISION

READER’S COMMENT FORM
In the interest of improving our documentation, National Semiconductor invites your comments on this
manual.
Please restrict your comments to the documentation. Technical Support may be contacted at:

(800) 538-1866 - U.S. non CA
(800) 672-1811 - CA only
(800) 223-3248 - Canada only

Please rate this document according to the following categories. Include your comments below.
EXCELLENT GOOD ADEQUATE FAIR PO(

Readability (style) □ □ □ □ □

Technical Accuracy □ □ □ □ □

Fulfills Needs □ □ □ □ □
Organization □ □ □ □ □
Presentation (format) □ □ □ □ □
Depth of Coverage □ □ □ □ □

Overall Quality □ □ □ □ □

NAME DATE
TITLE ___
COMPANY NAME/DEPARTMENT__
ADDRESS___
CITY__ STATE______________ ZIP
Do you require a response? D Yes Q No PHONE___________________________________
Comments:

GNX — Version 3 Linker User’s Guide
FOLD, STAPLE, AND MAIL 424010506-003A

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 409 SANTA CLARA, CA

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

POSTAGE WILL BE PAID BY ADDRESSEE

National Semiconductor Corporation
Microcomputer Systems Division
Technical Publications Dept., M/S7C261
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052- 9968

S of tw are
Problem Report

Name: __
Street: __
City:_____________________________________ State:______ Zip:______
Phone:____________________________________ Date:________________
In stru ction s
Use this form to report bugs, or suggested enhancements. Mail the form to National Semiconductor. Technical Support may be contacted at:

(800) 538-1866 - U.S. non CA (800) 672-1811 - CA only (800) 223-3248 - Canada only
((0)8141) 103-330 - West Germany

C ategory__
□ Software Problem □ Request For Software Enhancement□ Other □ Documentation Problem, Publication # _____________
S o ftw a re D escrip tion___
National Semiconductor Product _____________________________________

Version _______________Registration # ___________________________
Host Computer Information__
Operating System___

Rev. __________________ Supplier_______________________________
Problem D escrip tion__
Describe the problem. (Also describe how to reproduce it, and your diagnosis and suggested correction.) Attach a listing if available.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 409 SANTA CLARA, CA

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

POSTAGE WILL BE PAID BY ADDRESSEE

National Semiconductor Corporation
Microcomputer Systems Division
Software Quality Assurance Dept., M/S 7C266
2900 Semiconductor Drive
P.O.Box 58090
Santa Clara, CA 95052-9968

II.1.,.1.1.II.ml,I,.,I,II,1,,1,In.II..1,.1.1.nil

National Semiconductor Use Only
Tech Support ________________________ Date Received
Software Q.A.________________________ Date Received
Report Number______________________
Action Taken :

SALES OFFICES

ALABAMA
Huntsville

(205) 837-8960
(205) 721-9367

ARIZONA
Tempe

(602) 966-4563
B.C.

Burnaby
(604) 435-8107

CALIFORNIA
Encmo

(818)888-2602
Inglewood

(213)645-4226
Roseville

(916) 786-5577
San Diego

(619) 587-0666
Santa Clara

(408) 562-5900
Tustin

(714) 259-8880
Woodland Hills

(818) 888-2602
COLORADO

Boulder
(303) 440-3400

Colorado Spnngs
(303) 578-3319

Englewood
(303) 790-8090

CONNECTICUT
Fairfield

(203) 371-0181
Hamden

(203) 288-1560

INTERNATIONAL
OFFICES

Electronica NSC de Mexico SA
Juventino Rosas No. 118-2
Col Guadalupe Inn
Mexico. 01020 D.F Mexico
Tel: 52-5-524-9402
National Semlcondutorea
Do Brasil Ltda.
Av Bng. Faria Lima, 1409
6 Andor Salas 62/64
01451 Sao Paulo, SP, Brasil
Tel: (55/11)212-5066
Telex: 391-1131931 NSBR BR
National Semiconductor GmbH
Industnestrasse 10
D-8080 Fürstenfeldbruck
West Germany
Tel: 49-08141-103-0
Telex: 527 649
National Semiconductor (UK) Ltd.
301 Harpur Centre
Horne Lane
Bedford MK40 ITR
United Kingdom
Tel: (02 34) 27 00 27
Telex: 826 209
National Semiconductor Benelux
Vorstlaan 100
B-1170 Brussels
Belgium
Tel: (02) 6725360
Telex: 61007

FLORIDA
Boca Raton

(305)997-8133
Orlando

(305) 629-1720
St. Petersburg

(813) 577-1380
GEORGIA

Atlanta
(404) 396-4048

Norcross
(404)441-2740

ILLINOIS
Schaumburg

(312) 397-8777
INDIANA

Carmel
(317) 843-7160

Fort Wayne
(219)484-0722

IOWA
Cedar Rapids

(319) 395-0090
KANSAS

Overland Park
(913) 451-8374

MARYLAND
Hanover

(301) 796-8900
MASSACHUSETTS

Burlington
(617) 273-3170

Waltham
(617) 890-4000

MICHIGAN
W Bloomfield

(313) 855-0166

MINNESOTA
Bloomington

(612)835-3322
(612) 854-8200

NEW JERSEY
Paramus

(201)599-0955
NEW MEXICO

Albuquerque
(505) 884-5601

NEW YORK
Endicott

(607) 757-0200
Fairport

(716) 425-1358
(716) 223-7700

Melville
(516)351-1000

Wappinger Falls
(914)298-0680

NORTH CAROLINA
Cary

(919)481-4311
OHIO

Dayton
(513)435-6886

Highland Heights
(216) 442-1555
(216)461-0191

ONTARIO
Mississauga

(416) 678-2920
Nepean

(404)441-2740
(613) 596-0411

Woodbndge
(416) 746-7120

National Semiconductor (UK) Ltd.
1. Bianco Lunos Alle
DK-1868 Frednksberg C
Denmark
Tel: (01)213211
Telex: 15179
National Semiconductor
Expansion 10000
28, rue de la Redoute
F-92260 Fontenay-aux-Roses
France
Tel: (01)46 60 81 40
Telex: 250956

National Semiconductor S.pJL
Strada 7, Palazzo R/3
20089 Rozzano
Milano fion
Italy
Tel: (02) 8242046/7/8/9
National Semiconductor AB
Box 2016
Stensatravagen 13
S-12702 Skarholmen
Sweden
Tel: (08) 970190
Telex: 10731

National Semiconductor
Calle Agustm de Foxa, 27
28036 Madnd
Spam
Tel: (01) 733-2958
Telex: 46133

National Semiconductor
Switzerland
Alte Winterthurerstrasse 53
Postfach 567
Ch-8304 Wallisellen-Zurich
Switzerland
Tel: (01)830-2727
Telex: 59000

National Semiconductor
Kauppakartanonkatu 7
SF-00930 Helsinki
Finland
Tel: (0) 33 80 33
Telex: 126116

National Semiconductor Japan
Ltd.
Sanseido Bldg. 5F
4-15 Nishi Shinjuku
Shinjuku-ku
Tokyo 160 Japan
Tel: 3-299-7001
Fax: 3-299-7000
National Semiconductor
Hong Kong Ltd.
Southeast Asia Marketing
Austin Tower, 4th Floor
22-26A Austin Avenue
Tsimshatsui, Kowloon, H.K.
Tel: 852 3-7243645
Cable: NSSEAMKTG
Telex: 52996 NSSEA HX

OREGON
Portland

(503) 639-5442
PENNSYLVANIA

Horsham
(215) 675-6111

Willow Grove
(215) 657-2711

PUERTO RICO
Rio Piedias

(809) 758-9211
QUEBEC

Dollard Des Ormeaux
(514)683-0683

Lachme
(514)636-8525

TEXAS
Austin

(512) 346-3990
Houston

(713) 771-3547
Richardson

(214) 234-3811
UTAH

Salt Lake City
(801)322-4747

WASHINGTON
Bellevue

(206) 453-9944
WISCONSIN

Brookfield
(414) 782-1818

Milwaukee
(414) 527-3800

National Semiconductor
(Australia) PTY, Ltd.
1st Floor, 441 St. Kilda Rd.
Melbourne, 3004
Victory, Australia
Tel: (03) 267-5000
Fax:61-3-2677458
National Semiconductor (PTE),
Ltd.
200 Cantonment Road 13-01
Southpoint
Singapore 0208
Tel: 2252226
Telex: RS 33877
National Semiconductor (Far East)
Ltd.
Taiwan Branch
P O. Box 68-332 Taipei
7th Floor, Nan Shan Life Bldg.
302 Min Chuan East Road,
Taipei, Taiwan R.O.C.
Tel: (86) 02-501-7227
Telex: 22837 NSTW
Cable: NSTW TAIPEI
National Semiconductor (Far East)
Ltd.
Korea Office
Room 612,
Korea Fed. of Small Bus. Bldg.
16-2, Yotdo-Dong,
Youngdeungpo-Ku
Seoul, Korea
Tel: (02) 784-8051/3 - 785-0696-8
Telex: K24942 NSRKLO

Series 32000

GNX — Version 3
COFF Programmer’s Guide

Customer Order Number 424010507-003 NSC Publication Number 424010507-003AAugust 1988

REVISION RECORD

REVISION
A

RELEASE DATE SUMMARY OF CHANGES
08/88 First Release.

Series 32000® GNX — Version 3
COFF Programmer’s Guide
NSC Publication Number 424010507-003A.

li

PREFACE

This manual describes the GNX (GENIX™ Native and Cross-Support) implementation
of the Common Object File Format (COFF). The intended audience of this manual is
the implementor of language tools or operating systems for the Series 32000®
microprocessor family. This audience includes writers of compilers, assemblers, link­
ers, debuggers, kernels, or other tools which must create or access object code informa­
tion. This manual aids in understanding the object file format, which lies at the heart
of the implementation of the GNX Language Tools. This manual is also useful for
creating new tools and modifying existing GNX tools.
The information contained in this manual is for reference only and is subject to change
without notice.
No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.
A complete list of National Semiconductor’s international offices may be found on the
inside back cover of this manual.

GENK, NSX, ISE, ISE16 ISE32, SYS32, and TDS are trademarks of National Semiconductor Corporation.
Series 32000 is a registered trademark of National Semiconductor Corporation.
Portions of this document are derived from AT&T copyrighted material and reproduced under license
from AT&T; portions are based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California.
UNIX is a registered trademark of AT&T.
VAX, VMS, and DEC are trademarks of Digital Equipment Corporation.
IBM is a registered trademark of International Business Machines Corporation.

ill

CONTENTS

Chapter 1 OVERVIEW
1.1 INTRODUCTION.. 1-1
1.2 GENERAL... 1-2
1.3 DEFINITIONS AND CONVENTIONS.. 1-3

1.3.1 Sections.. 1-3
1.3.2 H eaders.. 1-3
1.3.3 Physical and Virtual A ddresses...................................... 1-3
1.3.4 Target M achine.. 1-4

Chapter 2 HEADERS
2.1 INTRODUCTION.. 2-1
2.2 FILE H EA DER ... 2-1

2.2.1 Description of the Fields of the File Header................... 2-2
2.2.2 Contents of the File Header F la g s 2-2
2.2.3 Description of the File Header Flags................................ 2-2
2.2.4 Guidelines for Using the File Header F la g s................... 2-2

2.3 OPTIONAL HEADER INFORMATION... 2-4
2.3.1 Guidelines for Using the Optional Header...................... 2-5
2.3.2 The Optional Header Magic Numbers............................ 2-5
2.3.3 The Optional Header Flags... 2-6

2.4 SECTION HEADERS.. 2-8
2.4.1 Use of the Section H ea d er ... 2-9
2.4.2 Section Header F lags... 2-9
2.4.3 .bss Section Header.. 2-10

Chapter 3 SECTIONS
3.1 INTRODUCTION.. 3-1
3.2 LOADING A FILE WITH MODULAR FEATURES...................... 3-1

Chapter 4 RELOCATION INFORMATION
4.1 INTRODUCTION.. 4-1
4.2 RELOCATION ENTRY... 4-1
4.3 COFF RELOCATION ENTRY STRUCTURE................................ 4-2
4.4 SEMANTICS.. 4-4

Chapter 5 LINE NUMBERS
5.1 INTRODUCTION.. 5-1

CONTENTS v

5.2 USING LINE NUMBERS 5-2
Chapter 6 SYMBOL TABLE

6.1 INTRODUCTION... 6-1
6.2 SPECIAL SYMBOLS.. 6-1

6.2.1 Inner Blocks.. 6-4
6.3 SYMBOLS AND FUNCTIONS... 6-6
6.4 SYMBOL TABLE EN TR IES.. 6-7

6.4.1 Symbol N a m e s .. 6-8
6.4.2 Storage C lasses.. 6-9
6.4.3 Storage Classes for Special Symbols................................ 6-11
6.4.4 Symbol Value F ie ld .. 6-11
6.4.5 Section Number Field ... 6-13
6.4.6 Section Numbers and Storage Classes............................ 6-13
6.4.7 Type E n t r y .. 6-15
6.4.8 Symbol Interpretation Environment................................ 6-18
6.4.9 Type Entries and Storage C la sses................................... 6-18
6.4.10 Structure for Symbol Table E n tr ie s 6-20

6.5 AUXILIARY TABLE ENTRIES... 6-20
6.5.1 Filenames... 6-20
6.5.2 Sections.. 6-22
6.5.3 Tagnames... 6-22
6.5.4 Structures, Unions, and Enumerations......................... 6-23
6.5.5 Functions... 6-24
6.5.6 Arrays.. 6-24
6.5.7 End of Blocks and Beginning and End of Functions . . . 6-24
6.5.8 Beginning of Blocks.. 6-25
6.5.9 Auxiliary Entry Declaration.. 6-26

6.6 LINKED LISTS IN THE SYMBOL T A BLE................................... 6-26
6.7 STRING TABLE.. 6-28

FIGURES
Figure 1-1. GNX Common Object File Form at.................................... 1-2
Figure 2-1. File Header Contents.. 2-1
Figure 2-2. Optional Header Contents... 2-4
Figure 2-3. Section Header Contents.. 2-8
Figure 4-1. Relocation Section C ontents.. 4-2
Figure 5-1. Line Number Grouping... 5-1
Figure 5-2. Line Number Structure L in e n o 5-2

Figure 6-1. GNX C OFF Symbol Table .. 6-2
Figure 6-2. Special Symbols (.bb and .eb)... 6-4
Figure 6-3. Nested Blocks.. 6-5
Figure 6-4. Symbol T a b le .. 6-6
Figure 6-5. Symbols for F unctions... 6-6
Figure 6-6. The Special Symbol .target.. 6-7
Figure 6-7. Symbol Table Entry F orm at... 6-8
Figure 6-8. Name F ie ld ... 6-9
Figure 6-9. Auxiliary Entry for Filenam es.. 6-22
Figure 6-10. Auxiliary Entry for Sections... 6-22
Figure 6-11. Auxiliary Entry for Tagnames.. 6-23
Figure 6-12. Auxiliary Entry for Structures, Unions and Enumera­

tions ... 6-23
Figure 6-13. Auxiliary Entry for Functions.. 6-24
Figure 6-14. Auxiliary Entry for Arrays.. 6-25
Figure 6-15. Auxiliary Entry for Beginning of Function and End of

Block/Function.. 6-25
Figure 6-16. Auxiliary Entry for Beginning of B lo c k 6-26
Figure 6-17. Linked List Structures in the Symbol Table..................... 6-27
Figure 6-18. String Table... 6-28

TABLES
Table 2-1. File Header Flags.. 2-3
Table 2-2. Optional Header Magic N um bers.................................... 2-6
Table 2-3. Optional Header F la g s .. 2-7
Table 2-4. Flags for Section Handling.. 2-10
Table 2-5. Flags for Type of Data Contained in Section.................... 2-10
Table 4-1. Relocation Ttype Flag Definitions....................................... 4-3
Table 6-1. Special Symbols in the Symbol Table 6-3
Table 6-2. Storage C lasses... 6-10
Table 6-3. Storage Class by Special Sym bols.................................... 6-11
Table 6-4. Storage Class and V a lu e ... 6-12

Table 6-5. Section Number... 6-13
Table 6-6. Section Number and Storage C la s s 6-14
Table 6-7. Fundamental Types... 6*16
Table 6-8. Derived Types.. 6-17
Table 6-9. Type Entries by Storage C la ss .. 6-19
Table 6-10. Auxiliary Symbol Table E n tr ie s 6-21

INDEX

viii

Chapter 1
OVERVIEW

1.1 INTRODUCTION
This manual describes the GNX Language Tools’ implementation of the Common Object
File Format (COFF) for Series 32000 microprocessor-based systems, and it serves as a
“how to” guide for implementors of language tools. Because National’s GNX COFF is
derived from AT&T’s UNIX® COFF, the word “common” is descriptive and widely
accepted.
There are two kinds of GNX COFF files: relocatable and executable. Relocatable files,
or object files as they are normally called, are produced by the assembler and may con­
tain unresolved external references. One or more object files are combined by the
linker to produce an executable file which has no unresolved references and may con­
tain additional symbolic information for the debugger.
The assembler creates the object file, and assembler directives control the creation of
specific sections in the object files. For example, .text denotes the start of a text section.
Generally, a High-Level Language (HLL) compiler generates the assembly source code.
Thus, there is an extremely strong interaction between the compilers and the assem­
bler and linker which must support the compilers.
Because of compatibility with other operating systems using COFF, some symbols and
fields are included in the format to maintain commonality. GNX COFF allows the use
of all the hardware features of this microprocessor (notably, modular relocation capa­
bilities.)
The content of the object file is determined at compile time with command line options
to the assembler, linker and compiler. These options vary depending on the host
operating system. The examples of options given in this manual are for a UNIX or
UNIX-derived host. For the options to the assembler, linker, and compiler for your
specific host, see the Series 32000 GNX — Version 3 Commands and Operations
Manual.
GNX COFF is structurally general and extensible. This manual describes how to:

• Add system-dependent information to the object file without obsoleting access
utilities. •

• Access symbolic information used for debuggers and other applications.

OVERVIEW 1-1

1.2 GENERAL
The overall structure of a GNX COFF file is shown in Figure 1-1. Sections 1 through n
may be user-defined. Extensive information is included for symbolic software debug­
ging.

FILE HEADER
OPTIONAL HEADER

Section 1 Header

Section n Header
Raw Data for Section 1

Raw Data for Section n
Relocation Info for Section 1

Relocation Info for Section n
Line Numbers for Section 1

Line Numbers for Section n
SYMBOL TABLE
STRING TABLE

Figure 1-1. GNX Common Object File Format

The last three types of information (line numbers, symbol table, and string table) may
be empty if the program is linked with the “strip” option of the linker or if the symbol
table is removed by the “strip” command. The line number information does not appear
unless the program compiles with the compiler option to produce additional symbol
table information (e.g., -g). In addition, if there are no unresolved external references
after linking, then the relocation information is no longer needed and is absent. The
string table may also be absent if the source file does not contain any symbols with
names longer than eight characters.

1-2 OVERVIEW

The term “executable” refers to an object file that contains no errors or unresolved
references. Specific target operating systems may place additional constraints on an
executable file such as requiring the presence of an optional header.

1.3 DEFINITIONS AND CONVENTIONS
Before proceeding, the user should become familiar with the terms and conventions of
sections, physical addresses, virtual addresses and target machines.

1.3.1 Sections
A section is the smallest portion of an object file that is relocated and treated as one
separate and distinct entity. Each section defines raw data, relocation information for
the raw data, and line numbers for the section. Raw data, relocation information, or
line numbers may be absent when not needed. Symbolic information in the symbol
table contains references to sections. In addition to the sections .text, .data, .bss, .mod,
.link, .static, .lib and .comment, user-defined sections are also supported by the assem­
bler and the linker.
NOTE: It is a mistake to assume that every GNX COFF file has a certain

number of sections, or to assume characteristics of sections such as
their order, location in the file, or load address in memory. This
information must be obtained through access of the appropriate
data fields after the GNX COFF file has been created. This informa­
tion is contained in the file and section headers.

1.3.2 Headers
Headers contain file pointers that are used to locate the various components of the
COFF file. File pointers are byte offsets from the beginning of the file that can be used
to directly locate the symbol table, raw data, relocation, or line number information.
File pointers can be used readily with the standard C library function fseek.

1.3.3 Physical and Virtual Addresses
The terms “physical address” and “virtual address” are considered the same in this
document. They both refer to an object’s location in the program’s memory space. For
targets with a Memory Management Unit (MMU), this address is not necessarily the
same as the address of that object in physical memory. The latter is usually known as
the physical address and generates from the virtual address by the MMU. This
address is unknown to the program and is irrelevant to the object file format.
For historical reasons, some of the data structures in the object file contain fields for
both virtual and physical addresses. Usually, they have the same values, but some­
times GNX COFF programs use only one of these fields and the other is invalid.

OVERVIEW 1-3

1.3.4 Target Machine
The term “target machine” refers to the machine on which the object file is destined to
run. For a native set of tools this is the same machine as the one on which the code was
developed. Generally, the GNX cross tools cross-compile when the target and develop­
ment machine differ. This document describes the use of GNX COFF in both cases.

1-4 OVERVIEW

Chapter 2
HEADERS

2.1 INTRODUCTION
Three types of headers describe the overall content of the object file: the file header, the
optional header, and the section headers. The file header describes the style of code
and the number of sections. The optional header describes the attributes, size, and
location of the .text, .data, and .bss sections in memory.* The section headers describe
each section and the data location for the section in the file.

2.2 FILE HEADER
The file header describes the style of code and the number of sections. Figure 2-1
shows the contents of the file header.

Bytes Declaration Name
0-1 unsigned short f_magic
2-3 unsigned short f_nscns
4-7 long int f_timdat
8-11 long int f_symptr
12-15 long int f_nsyms
16-17 unsigned short f_opthdr
18-19 unsigned short f_flags

Description
magic number
number of section headers
time and date stamp
file pointer to the start of the symbol table
number of entries in the symbol table
number of bytes in the optional header
flags (see Table 2-1)

Figure 2-1. File Header Contents

NOTE: The corresponding C structure definition for this file may be found
in the header file filehdr.h. This header file maps correctly to
the structure in Figure 2-1 when it compiles with the GNX C com­
piler.

* The current optional header is specifically for a UNIX or UNIX-derived operating system and may vary for different targets in the future.

HEADERS 2-1

2.2.1 D escription of the Fields of the File Header
• fjnagic — The magic number specifies the style of code for a particular operating

system or down-load program. The mnemonic NS32GMAGIC = 0524 octal is used
for all fully relocatable GNX COFF files; NS32SMAGIC = 0525 octal is used for
GNX COFF files that contain modular code.

• f_nscns — Indicates the number of section headers which equals the number of
sections.

• f_timdat — The time and date stamp indicates when the file was created
expressed in terms of the number of elapsed seconds since 00:00:00 GMT, Janu­
ary 1, 1970. (This value is host operating system dependent.)

• f_symptr — The file pointer contains the starting address of the symbol table.
• f_nsyms — Number of entries in the symbol table (includes symbols and their

auxilliaries).
• f_opthdr — Number of bytes in the optional header. This is used by all referenc­

ing programs that seek to the beginning of the section header table. This ensures
compatibility of a utility across differing target operating systems and future ver­
sions of COFF.

• f_flags — Flags (see Table 2-1). These last 2 bytes (f_flags field) are used by the
linker and the object file utilities.

2.2.2 Contents of the File Header Flags
The last 2 bytes of the file header are flags th a t describe the type of the object file.
Some of these flags are no longer used but are kept to m aintain commonality. The
currently defined flags are given in Table 2-1.

2.2.3 D escription of the File Header Flags
In general, COFF is designed to work with either left-to-right or right-to-left byte ord­
ering. However, Series 32000 COFF files always use the F_AR32WR flag. The flags
F.MINMAL, FJJPDATE, FJ3WABD, F_AR16WR, F_AR32W, and FJPATCH specify
other architectures and are never used by the GNX tools.

2.2.4 Guidelines for U sing the File Header Flags
F_RELFLG — The linker normally strips relocation information from the file after all
references resolve in the linking process. The - r option retains this information for
further linking.
F_EXEC — The linker tu rns this on when it finds no unresolved external references.
F_LNNO and F_LSYMS — The strip utility or the - s linker option strip line numbers
and local symbols from the file.

2-2 HEADERS

Table 2-1. File Header Flags

MNEMONIC FLAG DESCRIPTION
FJtELFLG 00001 Relocation information stripped from the file.
F_EXEC 00002 File is executable (i.e., no unresolved external references).
F_LNNO 00004 Line numbers stripped from the file.
F_LSYMS)c r. ̂c> 00010 Local symbols stripped from the file.
F.MINMAL 00020 Not used by the GNX Language tools.
F_UPDATE 00040 Not used by the GNX Language tools.
F_SWABD /- 0 O U-O 00100 Not used by the GNX Language tools.
F_AR16WR x o ' 00200 File has the byte ordering used by the PDP™-11/70 pro­

cessor. Not used on Series 32000 COFF files.
F_AR32WR 00400 File has the byte ordering used by the VAX™-11/780 and

the Series 32000 (i.e., 32 bits per word, least significant
byte first).

F_AR32W 01000 File has the byte ordering used by the 3B 20S computers
(i.e., 32 bits per word, most significant byte first). Not
used on Series 32000 COFF files.

F_PATCH 02000 Not used by the GNX Language tools.
NOTE: Flags F_MINMAL, FJLFPDATE, F_SWABD, F_AR16WR,

F_AR32W, and F_PATCH are reserved for use by other
implementations. Effects are undefined if set.

HEADERS 2-3

F_AR32WR — File has the byte ordering used by the VAX-11/780 and the Series 32000
{i.e.y 32 bits per word, least significant byte first). Currently, this flag is always used. If the GNX tools port to other host architectures in the future, other values such as
AR32W may be used.

2.3 OPTIONAL HEADER INFORMATION
The optional header contains system-dependent information about the object file.
(Currently all executable object files produced by the linker contain the optional
header.) The fields of the Series 32000 version of the optional header are described in
Figure 2-2.
NOTE: The corresponding C structure definition for this header may be

found in the aouthdr.h header file. This header file maps
correctly to the structure (as shown in Figure 2-2) when it compiles
with the GNX C compiler.

Bytes Declaration Name Description
0-1 short magic magic number (see Section

2.3.2)
2-3 short vstamp version stamp
4-7 long int tsize size of text in bytes
8-11 long int dsize size of initialized data in bytes
12-15 long int bsize size of uninitialized data in

bytes
16-19 long int msize size of module table in bytes
20-23 long int mod_start start address of module table
24-27 long int entry entry point memory address
28-31 long int text_start base address of first text section
32-35 long int data_start base address of first data section
36-37 unsigned short entry_mod memory address of the module

table entry of the module con­
taining the entry point

38-39 unsigned short flags see Section 2.3.3

Figure 2-2. Optional Header Contents

The size entries in the optional header of a section are calculated as the difference
between the starting address of the first section of that name and the ending address of
the last section of that name. If a section of a different type intervenes the sections
2-4 HEADERS

whose addresses are being calculated, the size does include the intervening section.
Therefore, size is most meaningful when sections are grouped (i.e., no intervening sec­
tions).
The field tsize is computed as the difference between the next address following the last
non-empty .text or .link section and the base address of the first such section. Field
dsize is computed as the difference between the next address following the last non­
empty .data or .static section and the base address of the first such section. Fields
bsize and msize are computed similarly based on sections .bss and .mod.

2.3.1 Guidelines for Using the Optional Header
General utility programs such as the symbol table access library functions are not con­
cerned with the contents of the optional header. Such utilities seek past this record by
using the size of optional header information in the file header (the f_opthdr field) or,
preferably, by using the standard access routines to seek to the desired location.
By default, the linker sets Vstamp to zero. A user can set the version number at linker
invocation with -VS version_number, where versionjiumber is a C short (16-bit) value.
See the Series 32000 GNX— Version 3 Linker User’s Guide for details.

2.3.2 The Optional Header Magic Numbers
In general, magic numbers provide a quick way for utilities to check how a file has been
processed. The magic number in the optional header supplies operating system depen­
dent information about the object file. See the aouthdr .h header file for this set of
machine-dependent values. Whereas the magic number in the file header specifies the
type of machine on which the object file runs, the magic number in the optional header
supplies information telling the operating system on that machine how that file should
load. (Specifically, it indicates how the Series 32000 kernel processes a COFF file
when loading it to produce a process image. See Section 3.2 for further details.)
The magic numbers recognized by the operating system are given in Table 2-2.

HEADERS 2-5

Table 2-2. Optional Header Magic Numbers

VALUE DESCRIPTION
0407 The text section is not

write-protected or sharable;
the data section is contigu­
ous with the text section.

0410 The data section starts at
the next segment following
the text section; the text sec­
tion is write protected.

0413 The data section starts at
the next segment following
the text section; the text sec­
tion is write protected. Relo­
cation and alignment within
the file are appropriate for
paging.

0417 Do not use the optional
header for loading; Use sec­
tion headers instead.

0443 The object file is configured
for shared libraries. (GENIX
V.3 only.)

Typical segment sizes are 64-Kbyte or 1-Mbyte. These are controlled by the linker
directives language.

2.3.3 The Optional Header Flags
The flags field of the COFF GNX version records the alignment granularity and the
protections to be assigned sections when loaded. Flags are also reserved for distin­
guishing between system types. Alignment granularity positions the raw data for sec­
tions with respect to the beginning of the containing COFF file. The meaning of the
flags for both alignment granularity and the protections to be assigned sections when
loaded, according to the definitions in Table 2-3.

2-6 HEADERS

Table 2-3. Optional Header Flags

FIELD NAME MNEMONIC FLAG MEANING
U_AL (mask 0x07)

U_AL_NONE 0x00
section alignment
full-word alignment

U_AL_512 0x01 512-byte alignment
U_AL_1024 0x02 1-Kbyte alignment
U_AL_2048 0x03 2-Kbyte alignment
U_AL_4096 0x04 4-Kbyte alignment
U_AL_8192 0x05 8-Kbyte alignment

0x06 reserved
0x07 reserved

U_PR (mask 0x38)
U_PR_DATA 0x08

section protections (“1” if writable
and “0” if it is read only.)
data section

U PR TEXT 0x10 text section
U_PR_MOD 0x20 module section

0x40 reserved
0x80 reserved

U_SYS
U_SYS_5 0x100

system type
(reserved for future expansion;
do not use)

U_SYS_42 0x200 (reserved for future expansion;
do not use)

HEADERS 2-7

2.4 SECTION HEADERS
Every object file has section headers that specify the data layout within the file. There
is one section header for every section in the file. The section header is described in
Figure 2-3.

Bytes Declaration Name Description
0-7 char s_name 8-character null-padded section name
8-11 long int s_paddr physical address of section
12-15 long int s_vaddr virtual address of section
16-19 long int s_size section size in bytes (due to padding,

this value is always a multiple of 4
bytes)

20-23 long int s_scnptr file pointer to raw data
24-27 long int s_relptr file pointer to relocation entries
28-31 long int s_lnnoptr file pointer to line number entries
32-33 unsigned short s_nreloc number of relocation entries
34-35 unsigned short s_nlnno number of line number entries
36-39 long int s_flags s_flags (see Section 2.4.2)
40-43 long int s_modsym symbol table index (if s_modsym is

greater than 0, then this field indicates
the symbol index which contains the
section; if there is no mod symbol, then
s_modsym = -1)

44-45 unsigned short s_modno memory address of the module table
entry associated with this section

46-47 short s_pad padding to 4-byte multiple

Figure 2-3. Section Header Contents

NOTE: The corresponding C structure definition for this header may be
found in the scnhdr.h include file. This header file maps
correctly to the structure shown in Figure 2-3 when compiled with
the GNX C compiler.

2-8 HEADERS

2.4.1 U se o f the S ection H eader
The file pointers in the Section Header are byte offsets from the beginning of the file
that directly locate the start of data, relocation, line number, or symbol table entries
for the section. Because of this definition, they can be readily used with the standard C
library function fseek. For example, fseek may be called with s_scnptr to prepare a
program to read the raw data section of the file.

2.4.2 Section Header Flags
The lower 12 bits of the flags field indicate a section type. The bit definitions are shown
in Tables 2-4 and 2-5. Table 2-4 shows the flags which define the handling of the sec­
tion by the linker; these flags are mutually exclusive. Table 2-5 shows the flags which
specify the data type in a section.
The following three paragraphs define the terms used in Table 2-4.
The term “allocated” indicates that the section does use space in configured memory, is
a unique memory area, and shows up in the linker’s output map.
The term “relocated” indicates that relocation information applies to the section so that
the section symbols appear appropriately updated in the symbol table.
The term “loaded” indicates that the section is included in the linker’s output file and
should load into memory by the operating system or down-load program. The raw data
of nonloaded sections are not included in the linker’s output.
The STYP flags are interpreted by the GNX linker in the following manner:

• GROUP, RELOC, COLLAPSE, PROT, and PAD are not used in GNX.
• REG means that the section is not one of the following: DSECT, NOLOAD, COPY,

INFO, OVER, or LIB. A REG section may be TEXT, DATA, BSS, MOD, or LINK.
• BSS is regular except that its does not have raw data. The pointer to raw data

(s_scnptr) is 0. The BSS flag is mutually exclusive with TEXT, DATA, MOD, or
LINK.

• TEXT means that the section contains code. DATA means that the section con­
tains initialized data. MOD means that the section contains module tables.
LINK means that the section contains link table entries. These flags are not
mutually exclusive.

• A LIB section cannot combine with anything other than a LIB section. NOLOAD
sections cannot combine at all. OVERLAY sections are not allowed as input to the
linker. •

• If a BSS section combines with any other section, its contents become all zeroes
and it changes to a DATA section.

HEADERS 2-9

2.4.3 .bss S ection H eader
The entry for uninitialized data in a .bss section deviates from the normal rule in the
section header table. A .bss section has a size, symbols that refer to it, and symbols that are defined in it. At the same time, a .bss section has no relocation entries, no line
number entries, and no data. Therefore, a .bss section has an entry in the section
header table but occupies no space elsewhere in the file. In this case, the number of
relocation and line number entries, as well as all file pointers in a .bss section header,
is zero.
The section header flag indicating .bss data is mutually exclusive with the other flags in
Table 2-5. If a .bss section combines with any other section, its type becomes
STYP_DATA, and its data is set to all zeroes.

Table 2-4. Flags for Section Handling

MNEMONIC FLAG DESCRIPTION ALLOCATED RELOCATED LOADED
STYP_REG 0x00 regular section yes yes yes
STYP_DSECT 0x01 dummy section no yes no
STYP_NOLOAD 0x02 noload section yes yes no
STYP.COPY 0x10 copy section

(relocation and
line number
entries pro­
cessed normally)

no yes no

STYPJNFO 0x4000 comment section no no no
STYP_OVER 0x8000 overlay section no yes no
STYP.LIB 0x10000 for .lib section

(shared library),
treated the same
as INFO

no no no

Table 2-5. Flags for Type of Data Contained in Section

MNEMONIC FLAG DESCRIPTION
STYPTEXT 0x20 section contains executable text
STYP_DATA 0x40 section contains initialized data
STYP.BSS 0x80 section contains only uninitialized data
STYP.MOD 0x100 section contains module table
STYPLINK 0x200 section contains link table

2-10 HEADERS

Chapter 3
SECTIONS

3.1 INTRODUCTION
The section is the basic unit for defining the contents of an area of memory. Each sec­
tion is described by its section header. Raw data, relocation information, and line
numbers for each section occur after the section headers. Figure 1-1 shows that section
headers are followed by the appropriate number of bytes of text or data. If the optional
header is present, the beginning of the section aligns in the file at the alignment boun­
dary given by the U_AL part of the optional header flags field.
Files produced by the GNX compilers, the assembler, and the linker may contain sec­
tions for code, data, and uninitialized data plus additional sections for Series 32000
modularity. The .text section contains the instruction text (i.e., executable code), the
.data section contains initialized data variables, and the .bss section contains uninitial­
ized data variables. In support of the Series 32000 modularity features, a module table
is contained in a .mod section, link tables are contained in .link sections, and static-
base-relative data are in .static sections.
The linker’s “SECTIONS” directive described in the Series 32000 GNX — Version 3
Linker User’s Guide allows users to:

• Direct the placement of output sections.
If no SECTIONS directives are given, each input section appears in an output section
of the same name. For example, if a number of object files from the compiler link
together, each containing the three sections .text, .data, and .bss, then the output
object file also contains the same three sections.

3.2 LOADING A FILE WITH MODULAR FEATURES
A GNX COFF file normally loads with the information in the section headers. The
loading process may be hastened by the use of the information in the optional header.
However, use of the linker command language or modular features of the Series 32000
architecture may result in section configurations which invalidate the contents of the
optional header. In these cases, the optional header information cannot load the object
file.

SECTIONS 3-1

In addition, various specializations of this general structure are possible.
• If modular software features are not used, the linker can combine files by using traditional relocation, resulting in only one module and a nearly “standard” file

organization.
• The linker can link certain sections to appear consecutively in the resulting

memory image. The operating system can load each such aggregate section as an
undivided whole, obtaining starting addresses and lengths from the optional
header. Many variations of this scheme are possible.

• When the optional header obtains loading information, its magic and flag fields
discriminate among the different possibilities.

3-2 SECTIONS

Chapter 4
RELOCATION INFORMATION

4.1 INTRODUCTION
Since a COFF section may be relocated by a linker, references to symbols of that sec­
tion must also be relocatable. The relocation entries contain sufficient information to
properly update each reference when the referenced section relocates.

4.2 RELOCATION ENTRY
The relocation entries describe a reference and a referenced memory location. The
reference is the area in a section which contains code bytes for accessing the referenced
memory location. The referenced memory location is the (relocatable) memory being
accessed.
The relocation entry describes the reference and its relationship to the referenced
memory location. During the link process, the reference may move, the referenced
memory location may move, or (typically) both may move.
In order to implement this, each section with relocatable references contains a list of
relocation entries. Each relocation entry is composed of: •

• the address of the reference in memory. These addresses always fall within the
boundaries of the section.

• a symbol table index. The value of this symbol defines the address of the refer­
enced memory location.

• the addressing type of this reference.
• the relative addressing mode of the reference to the referenced memory location.
• the data format of the reference.
• the size of the reference.

RELOCATION INFORMATION 4-1

4.3 COFF RELOCATION ENTRY STRUCTURE
Figure 4-1 shows the structure of the 10-byte COFF record representing the relocation
entry. Item 1 is represented by the r_vaddr field. Item 2 is a r_symndx field. Items 3
through 6 are represented in the r_type field.

Bytes Declaration Name Description
0-3 long int r_vaddr (virtual) address of reference
4-7 long int r_symndx symbol table index
8-9 unsigned short r_type relocation type (see below)

10-11 short dummy dummy padding bytes

Figure 4-1. Relocation Section Contents

NOTE: The C structure declaration for this file may be found in the
reloc.h header file.

The relocation entries are actually packed one per 10-byte field in the object. Therefore,
use macro definition RELSZ (which is currently 10) to determine the size of each relo­
cation entry. Do not use sizeof (RELOC) since this returns 12 due to padding field
“dummy.”
In GNX COFF, r_type field is partitioned into four subfields given by the bit-mask
definitions in Table 4-1.

4-2 RELOCATION INFORMATION

Table 4-1. Relocation Type Flag Definitions

FIELD MNEMONIC MASK/VALUE FIELD DESCRIPTION/MEANING
R.ADDRTYPE OxOOOf address type of reference

R NOTHING 0x0000 no relocation to be performed
R ADDRESS 0x0001 normal memory addressing
R LINKENTRY 0x0002 link table index (prescaled by 4)
R STATIC SEC 0x0003 default static section base address
R LINKJ3EC 0x0004 default link section base address
R_TEXT_SEC 0x0005 default text section base address

R.RELTO OxOOfO the addressing mode
R ABS 0x0000 absolute addressing
R PCREL 0x0010 pc relative addressing
R_SBREL 0x0020 static base relative

R.FORMAT OxOfDO the format of the address
R.NUMBER 0x0000 a two’s complement number (low

order to high order)
R.DISPL 0x0100 S eries 3 2 00 0 displacement (high

order to low order with Huffinan
encoding bits)

R_PROCDES 0x0200 S eries 3 2 00 0 procedure descriptor
(16-bit module followed by 16-bit
offset)

R_IMMED 0x0300 a two’s complement number (high
order to low order)

R.SIZESP OxfOOO the size of the reference
R_S_08 0x0000 1 byte long
R S 16 0x1000 2 bytes long
R S 32 0x2000 4 bytes long

RELOCATION INFORMATION 4-3

4.4 SEMANTICS
The R_ADDRTYPE (OxOOOf) subfield specifies the type of addressing for the reference.

R_NOTHING (0x0000) flag indicates that no action is required by the linker.
R_ADDRESS (0x0001) flag is the normal value for any memory reference.
R_LINKENTRY (0x0002) flag is used when the reference is an index off of
the link base. (See the modsym field of the section header.)
This instructs the linker that the reference is scaled by 4 (as is appropriate
for External-addressing mode and the index provided on the CXP instruc­
tion).
If the link base of the referenced memory location changes, the linker
adjusts the reference appropriately. (For R_LINKENTRY, R_RELTO is
always R_ABS).

The R_RELTO (OxOOfO) subfield indicates how the linker must relocate the reference
when one or both of the sections involved are moved.

R_STATIC_SEC (0x0003) flag is used for the default static base of a module.
The symbol is the name of the module. The reference is relocated relative to
the movement of the base of the .static section.
R_LINK_SEC (0x0004) flag is used for the default link base of a module.
The symbol is the name of the module. The reference is relocated relative to
the movement of the base of the .link section.
R_TEXT_SEC (0x0005) flag is used for the default program base of a
module. The symbol is the name of the module. The reference is relocated
relative to the movement of the base of the .text section.
R_ABS (0x0000) indicates that the reference is relative to the beginning of
memory. Therefore, the linker will adjust the reference (up/down) when the
referenced memory location is moved (up/down).
R_PCREL (0x0010) indicates that the reference is the offset from the PC of
the current instruction to the referenced memory location. In this case the
linker adjusts the reference (down) as the PC of the reference moves (up).
The linker also adjusts the reference (up/down) when the referenced memory
location moves (up/down).

4-4 RELOCATION INFORMATION

R_SBREL (0x0020) indicates that the reference is relative to the static base
of the referenced memory location. The linker updates the reference when
the static blase of the referenced memory location changes during linking.
(This occurs when two or more .static sections combine.) The static base of
the reference is known from the current module associated with the
referencing section. (See the modsym field of the section header.)

The R_FORMAT (OxOfOO) subfield indicates the data format for this reference.
R_NUMBER (0x0000) indicates the reference is represented as a two’s com­
plement number with the low-order byte first.
R_DISPL (0x0100) indicates the reference is represented as a Series 32000
displacement with Huffman encoding bits and a signed displacement in high
to low order.
R_PROCEDES (0x0200) indicates the reference is a Series 32000 procedure
descriptor consisting of a 16-bit module number (low byte, high byte) fol­
lowed by a 16-bit procedure offset (low byte, high byte). Both values are
unsigned.
R_IMMEDIATE (0x0300) indicates the address is kept as a Series 32000
immediate value with the most significant byte first.

The RJ3IZE (OxfOOO) subfield indicates the size of reference.
R_S_08 (0x0000) flag indicates a 1-byte reference.
R_S_16 (0x1000) flag indicates a 2-byte reference.
R_S_32 (0x2000) flag indicates a 4-byte reference.

RELOCATION INFORMATION 4-5

Chapter 5
LINE NUMBERS

5.1 INTRODUCTION
When invoked with the proper option, the compilers generate an entry in the object file
for every source line where a breakpoint can be inserted. Users can then reference line
numbers when using a software debugger. All line numbers in a section are grouped by
function, as shown in Figure 5-1.

Line number = 0 and Symbol Index to first function
Line number > 0 and Address
Line number > 0 and Address

Line number = 0 and Symbol Index to second function
Line number > 0 and Address
Line number > 0 and Address

Figure 5-1. Line Number Grouping

As shown in Figure 5-2, the symbol index entry (l_symndx) occupies the same field as
the address entry (l_paddr). What the field actually represents is determined by the
value of the line number field (l_lnno). A line number of zero indicates that the entry is
a Symbol Index. A nonzero line number indicates that the entry is the address of the
beginning of that line in memory. The line numbers are relative to the beginning of the
function.
NOTE: The C declaration for this structure may be found in the

l i n e n u m .h header file. The declaration correctly maps to the
structure in Figure 5-2 when it is compiled with the GNX language
tools.

LINE NUMBERS 5-1

Bytes Declaration Name Description
0-3 long l_symndx symbol table index of the function name

(for l_lnno = 0)
0-3 long l_paddr address of the line number in memory

(for l_lnno > 0)
4-5 unsigned short l_lnno line number (or 0)
6-7 short dummy dummy padding bytes

Figure 5-2. Line Number Structure Lineno

5.2 USING LINE NUMBERS
The line number entries appear in increasing order of address.
The size of these entries is indicated by the macro definition LINESZ (which is
currently 6). Using sizeof (LINENO) returns an inappropriate value (currently 8) due
to the padding of field “dummy.”
The auxiliary entry for the function’s .bf special symbol contains a C-source absolute
line number which may be used with relative line numbers to get absolute line
numbers within the function.

5-2 LINE NUMBERS

Chapter 6
SYMBOL TABLE

6.1 INTRODUCTION
The purpose of the symbol table is two-fold. First, the symbol table contains essential
information about the object file such as names of files, names of sections, and defined
and undefined global symbols. The second optional purpose is to produce the complete
description of the program symbols for symbolic debugging purposes.
This chapter describes the case when the complete symbol information is generated by
the compiler, when invoked by the C compiler’s -g option. The compiler generates
assembly code which directs the creation of the symbol table. Sections 6.1, 6.2, and 6.3
describe the overall structure of the symbol table. Sections 6.4, 6.5, and 6.6 describe
the details of the entry for each symbol.
The symbol table is a sequence of symbols. Because of symbolic debugging require­
ments, the order of symbols in the symbol table is very important. Symbols appear
sequentially as shown in Figure 6-1. Note that some older tools may not adhere strictly
to the standard given; the kernel, for instance is very forgiving.
The word “statics” in Figure 6-1 means static symbols defined “static” outside any func­
tion. Static symbols may be local or external. Local static symbols provide permanent
storage local to that functon, whereas external static symbols allow functions from
separate object files to share information without passing it explicitly. The symbol
table consists of at least one fixed-length entry per symbol, with some symbols followed
by auxiliary entries of the same size. The entry for each symbol is a structure that
holds either the name itself (if the name is short enough) or an offset in the string table
for the name, the value, and other information.

6.2 SPECIAL SYMBOLS
The symbol table contains some special symbols that are generated by the compiler,
assembler and linker. These symbols are given in Table 6-1.
Six of these special symbols occur in pairs. The .bb and .eb symbols indicate the boun­
daries of inner blocks; a .bf and .ef pair brackets each function; and a jcfake and .eos
pair names and defines the limit of structures, unions, and enumerations that were not
named. The .eos symbol also terminates the declaration of named structures, unions,
and enumerations.
When a structure, union, or enumeration has no tag name, the compiler must invent a
name to use in the symbol table. The name chosen for the symbol table is j:fake, where

SYMBOL TABLE 6-1

x is an integer. If there are three unnamed structures, unions, or enumerations in the
source, their tag names are “.Ofake,” “.lfake,” and “.2fake.”
Each of the special symbols has different information stored in the symbol table entry
as well as the auxiliary entry.

filename 1
function 1

local symbols
for function 1

function 2
local symbols
for function 2

statics for file 1

filename n
function m

local symbols
for function m

statics for file n
defined global

symbols
undefined global

symbols

Figure 6-1. GNX COFF Symbol Table

6-2 SYMBOL TABLE

Table 6-1. Special Symbols in the Symbol Table

SYMBOL MEANING
.file filename
.text text section address
.data data section address
.mod module table address
.static static section address
.link link section address
.bss bss section address
.bb start of inner block address
.eb end of inner block address
.bf start of function address
.ef end of function address
.target pointer to the structure or union returned by a function
.xfake dummy tag name for structure, union, or enumeration
.eos end of members of structure, union, or enumeration
.sb sb register initialization value
_etext, etext next available address after the end of the

last text output section
_edata, edata next available address after the end of the

last data output section
_end, end next available address after the end of the

last output section

SYMBOL TABLE 6-3

6.2.1 Inner Blocks
The special symbols .bb and .eb respectively begin and end “blocks” which delineate the
scope of subsequent symbol definitions. All symbol definitions following the .bb special
symbol and before the matching .eb symbol are considered local to that block. For
example, the C language defines a block as a compound statement that begins with a
left brace ({) and ends with a right brace (}). An “inner block” is a block that occurs
within a function (which is also a block).
For each inner block that has local symbols defined, a special symbol .bb is put in the
symbol table immediately before the first local symbol of that block. In addition, a spe­
cial symbol .eb is put in the symbol table immediately after the last local symbol of that
block. The sequence is shown in Figure 6-2.

.bb
local symbols
for that block
.eb

Figure 6-2. Special Symbols (.bb and .eb)

Note that external functions are stored with the local symbols in order to retain local
context. Because inner blocks can be nested by several levels, the .bb-.eb pairs and
associated symbols may also be nested. For a relevant example in C, see Figure 6-3.

6-4 SYMBOL TABLE

{ int i;
char c;

/* block 1 */

{ long a;
/* block 2 */

{ int x;
/* block 3 */

}
} /* block 3 */

/* block 2 */
{ long i;

/* block 4 */

}
}

/* block 4 */
/* block 1 */

Figure 6-3. Nested Blocks

SYMBOL TABLE 6-5

An example of a symbol table is shown in Figure 6-4.
.bb for block 1

i
c

.bb for block 2
a

.bb for block 3
x

.eb for block 3

.eb for block 2

.bb for block 4
i

.eb for block 4

.eb for block 1

Figure 6-4. Symbol Table

6.3 SYMBOLS AND FUNCTIONS
For each function, a special symbol .bf is put between the function name and the first
local symbol of the function in the symbol table. In addition, a special symbol .ef is put
immediately after the last local symbol of the function in the symbol table. The
sequence is shown in Figure 6-5.

function name
.bf

local symbols
.ef

Figure 6-5. Symbols for Functions

6-6 SYMBOL TABLE

If the return value of the function is a structure or union, a special symbol .target is
put between the function name and the .bf. The sequence is shown in Figure 6-6.

function name
.target

.bf
local symbols

.ef

Figure 6-6. The Special Symbol .target

The GNX system compilers invent .target to store the function-returned structure or
union. The symbol .target is an automatic variable with “pointer” type. Its value field
in the symbol table entry is always zero.

6.4 SYMBOL TABLE ENTRIES
All symbols, regardless of storage class and type, have the same format for their
entries in the symbol table. The symbol table entries each contain the following 20
bytes of information. The meaning of each of the fields in the symbol table entry is
described in Figure 6-7.

SYMBOL TABLE 6-7

Bytes Declaration Name Description
0-7 (see Section

6.4.1)
_n these eight bytes contain either

the name of a symbol or the offset
of the symbol name in the string
table

8-11 long int n_ value symbol value; storage class depen­
dent

12-13 short n_ scnum section number of symbol
14-15 unsigned short n_type basic and derived type

specification
16 char n_ sclass storage class of symbol
17 char n_numaux number of auxiliary entries
18 char n_env symbol interpretation environment
19 char n_ dummy currently unused

Figure 6-7. Symbol Table Entry Format

It should be noted that indices for symbol table entries begin at zero and count upward.
Each auxiliary entry also counts as one symbol.

6.4.1 Symbol Names
The first 8 bytes in the symbol table entry are a union of a character array and two
longs. If the symbol name is eight characters or less, the (null-padded) symbol name is
stored there. If the symbol name is longer than eight characters, then the entire sym­
bol name is stored in the string table.
In this case, the 8 bytes contain two long integers; the first is zero, and the second is the
offset (relative to the beginning of the string table) of the name in the string table.
Since there can be no symbols with a null name, the zeroes on the first 4 bytes serve to
distinguish a symbol table entry with an offset from one with a name in the first 8 bytes
as shown in Figure 6-8.

6-8 SYMBOL TABLE

Bytes Declaration Name Description
0-7 char n_name 8-character null-padded symbol name
0-3 long n_ zeroes zero in this field indicates the name

is in the string table
4-7 long n_ offset offset of the name in the string table

Figure 6-8. Name Field

Some special symbols are generated by the compiler and linker as discussed in Section
6.2. The compiler attaches an underscore (_) to all the user-defined symbols it gen­
erates.

6.4.2 Storage Classes
The following discussion of the storage class field assumes that the standard symbol
interpretation environment is in effect (n env == 0). In other environments the type
field may be interpreted differently.
The storage class field has one of the values described in Table 6-2. These “defines”
maybe found in the storclass .h header file.
All of these storage classes except for C_ ALIAS and C_ HIDDEN are generated by the
compiler or assembler. The storage classes C_ ALIAS and C_ HIDDEN are not used by
the GNX language tools.
Some of these storage classes are “dummies ” used only internally by the compiler and
the assembler. These storage classes are C_EFCN, C_EXTDEF, C_ULABEL,
C_USTATIC, and C_LINE.

SYMBOL TABLE 6-9

Table 6*2. Storage Classes

MNEMONIC VALUE STORAGE CLASS
C.EFCN -1 physical end of function
C_NULL 0
C_AUTO 1 automatic variable
C_EXT 2 external symbol
C_ STAT 3 static
C_REG 4 register variable
C_EXTDEF 5 external definition
C_LABEL 6 label
C_ULABEL 7 undefined label
C_MOS 8 member of structure
C_ARG 9 function argument
C.STRTAG 10 structure tag
C_MOU 11 member of union
C_ UNTAG 12 union tag
C_TPDEF 13 type definition
C_USTATIC 14 undefined static
C_ENTAG 15 enumeration tag
C_MOE 16 member of enumeration
C_REGPARM 17 register parameter
C_ FIELD 18 bit field
C_BLOCK 100 beginning and end of block
C_FCN 101 beginning and end of function
C_EOS 102 end of structure
C_FILE 103 filename
C_LINE 104 used only by utility programs
C_ ALIAS 105 duplicated tag
C_ HIDDEN 106 like static, used to avoid

name conflicts

6-10 SYMBOL TABLE

6.4.3 Storage Classes for Special Symbols
Some special symbols are restricted to certain storage classes as given in Table 6-3.

T able 6-3. Storage Class by Special Symbols

SPECIA L SYMBOL STORAGE CLASS
.file C_ FILE
.bb C_BLOCK
.eb C_BLOCK
.bf C_FCN
.ef C_FCN
.target C_AUTO
.xfake C.STRTAG, C_UNTAG, C.ENTAG
.eos C_EOS
.text C_ STAT
.data C_ STAT
.bss C STAT

6.4.4 Symbol Value Field
The meaning of the “value” of a symbol depends on its storage class. This relationship
is summarized in Table 6-4 (note that null has a value of zero).
If a symbol has storage class C_FILE, the value of that symbol equals the symbol table
entry index of the next .file symbol. That is, the .file entries form a one-way linked list
in the symbol table. If there are no more .file entries in the symbol table, the value of
the symbol is the index of the first global symbol.
Relocatable symbols have a value equal to the virtual address of that symbol. When
the linker relocates the section, the value of these symbols changes.

SYMBOL TABLE 6-11

Table 6-4. Storage Class and Value

STORAGE CLASS MEANING OF VALUE
C_AUTO stack offset in bytes
C_EXT relocatable address
C_ STAT relocatable address
C_REG register number
C_LABEL relocatable address
C_MOS offset in bytes from base of structure
C_ARG stack offset in bytes from frame pointer
C.STRTAG null
C_MOU offset in bytes from base of union
C_ UNTAG null
C_TPDEF null
C.ENTAG null
C_MOE enumeration value
C_REGPARM register number
C_ FIELD bit displacement
C_BLOCK relocatable address of executable image
C_FCN relocatable address of executable image
C_EOS size of structure or union which this

symbol terminates
C_FILE see Section 6.4.4
C_ ALIAS tag index
C_ HIDDEN relocatable address

6-12 SYMBOL TABLE

6.4.5 S ection N um ber F ie ld
Section numbers are listed in Table 6-5. A special section number (-2) marks symbolic
debugging symbols, including structure/union/enumeration tag names, typedefs, and
the filename. A section number of -1 indicates that the symbol has a value but is not
relocatable. Examples of absolute-valued symbols include automatic and register vari­
ables, function arguments, and .eos symbols. The .text, .data, and .bss symbols default
to section numbers are positive integers starting at 1.

Table 6-5. Section Number

MNEMONIC SECTION NUMBER MEANING
N_DEBUG -2 special symbolic debugging symbol
N_ABS -1 absolute symbol
N.UNDEF 0 undefined external symbol
N_ SCNUM 1-077767 section number where symbol has

been defined

With one exception, a section number of zero indicates a relocatable external symbol
that is undefined in the current file. The one exception is a multiply-defined external
symbol (i.e., FORTRAN common or an uninitialized variable defined external to a func­
tion in C). In the symbol table of each file where the symbol is defined, the section
number of the symbol is zero and the value of the symbol is a positive number giving
the size of the symbol. When the files are combined, the linker combines all input sym­
bols into one symbol with the .bss section number. The maximum size of all input sym­
bols with the same name allocates space for the symbol, and the value becomes the
symbol’s address. This is the only case in which a symbol has a section number of zero
and a nonzero value.

6.4.6 Section Numbers and Storage Classes
Symbols with certain storage classes are also restricted to certain section numbers.
They are summarized in Table 6-6.

SYMBOL TABLE 6-13

Table 6-6. Section Number and Storage Class

STORAGE
CLASS N.ABS

------ SECTIO
N.UNDEF

N NUMBER---
N.SCNUM N_ DEBUG

C.AUTO yes no no no
C_EXT yes yes yes no
C_ STAT no no yes no
C_REG yes no no no
C_LABEL no yes yes no
C_MOS yes no no no
C_ARG yes no no no
C_ STRTAG no no no yes
C_MOU yes no no no
C_ UNTAG no no no yes
C_TPDEF no no no yes
C_ENTAG no no no yes
C_MOE yes no no no
C_REGPARM yes no no no
C_ FIELD yes no no no
C_BLOCK no no yes no
C_FCN no no yes no
C_EOS yes no no no
C_ FILE no no no yes
C_ ALIAS no no no yes

6-14 SYMBOL TABLE

The type of a symbol determines the meaning of the value found in the value field for
that symbol. The following discussion of the type field assumes that the standard sym­
bol interpretation environment is in effect (n _ e n v == 0). In other environments, the
type field may be interpreted differently.
The type field in the symbol table entry contains information about the basic and
derived type for the symbol. The compiler generates this information only if the option
to produce additional symbol table information is used. Each symbol has exactly one
basic or fundamental type but can have more than one derived type. The format of the
16-bit type entry is as follows:

6.4.7 Type E ntry

d6 d5 d4 d3 d2 dl typ

Bits 0-3, called “typ,” indicate one of the following fundamental types given in Table 6-
7.

SYMBOL TABLE 6-15

Table 6-7. Fundamental Types

MNEMONIC VALUE TYPE
T_NULL 0 type not assigned
T.CHAR 2 character
T_ SHORT 3 short integer
T_INT 4 integer
T_LONG 5 long integer
T_FLOAT 6 floating-point
T_ DOUBLE 7 double-word
T_ STRUCT 8 structure
T_ UNION 9 union
T_ ENUM 10 enumeration
T_MOE 11 member of enumeration
T_UCHAR 12 unsigned character
T.USHORT 13 unsigned short
T_ UINT 14 unsigned integer
T.ULONG 15 unsigned long

6-16 SYMBOL TABLE

Note that T_MOE is redundant, as C_MOE (refer to Table 6-2) will always suffice.
Bits 4-15 are arranged as six 2-bit fields marked “d l” through “d6.” These d fields
represent levels of the derived types given in Table 6-8.

Table 6-8. Derived Types

MNEMONIC VALUE TYPE
DT_NON 0 no derived type
DT_PTR 1 pointer
DT_FCN 2 function
DT.ARY 3 array

The following examples demonstrate the interpretation of the symbol table entry
representing type.

char *func();

Here func is the name of a function that returns a pointer to a character. The funda­
mental type of func is 2 (character), the dl field is 2 (function), and the d2 field is 1
(pointer). Therefore, the type word in the symbol table for func contains the hexade­
cimal number 0x62, which is interpreted as “function that returns a pointer to a char­
acter.”

short *tabptr[10] [25] [3];

Here tabptr is a three dimensional array of pointers to short integers. The fundamen­
tal type of tabptr is 3 (short integer); the dl, d2, and d3 fields each contain a 3 (array),
and the d4 field is 1 (pointer). Therefore, the type entry in the symbol table contains
the hexadecimal number 0x7f3, indicating a “three dimensional array of pointers to
short integers.”

SYMBOL TABLE 6-17

6.4.8 Symbol Interpretation Environment
The meaning of symbol table entries and their auxiliaries is affected by the value of the
symbol interpretation environment field. The environment designated by a zero value
in this field is distinguished as the “standard” environment; the descriptions given else­
where in this document pertain only to this environment. The standard environment is
well-suited for recording symbol information from C programs. Other environments
and corresponding environment-specific symbol table entry formats may be used for
recording symbol information arising from other languages.
The length of symbol table entries and auxiliary entries is independent of the symbol
interpretation environment. Moreover, the partitioning of “main” symbol table entries
into fields is independent of the environment, although the specific meaning assigned to
the value, type, and storage class fields may depend on the environment field.

6.4.9 Type Entries and Storage Classes
Table 6-9 shows the type entries that are legal for each storage class.

6-18 SYMBOL TABLE

Table 6-9. Ttype Entries by Storage Class

STORAGE
CLASS FUNCTION?

TT ENTRY
ARRAY? POINTER?

“TYP” ENTRY
BASIC TYPE

C_AUTO no yes yes Any
C_EXT yes yes yes Any
C_ STAT yes yes yes Any
C_REG no no yes Any
C_LABEL no no no T_NULL
C_MOS no yes yes Any
C_ARG yes no yes Any
C_STRTAG no no no T_ STRUCT
C_MOU no yes yes Any
C_ UNTAG no no no T_ UNION
C_TPDEF no yes yes Any
C_ENTAG no no no T_ENUM
C_MOE no no no T_MOE
C.REGPARM no no yes Any
C_ FIELD no no no T_ENUM,

T.UCHAR,
T.USHORT,
T_ UNIT,
T_ULONG

C_BLOCK no no no T.NULL
C_FCN no no no T_NULL
C_EOS no no no T_NULL
C_FILE no no no T_NULL
C_ ALIAS no no no T_ STRUCT,

T_ UNION,
T_ ENUM

SYMBOL TABLE 6-19

Conditions for the d entries apply to dl through d6, except that it is impossible to have
two consecutive derived “function” types.
Although function arguments can be declared as arrays, they are changed to pointers
by default. Therefore, no function argument can have “array'” as its derived type.

6.4.10 Structure for Symbol Table Entries
The C language structure declaration for the symbol table entry may be found in the
syms . h header file.

6.5 AUXILIARY TABLE ENTRIES
Zero or more auxiliary entries are possible as indicated by the n_numaux field of the
symbol entry.* Auxiliary entries immediately follow the associated symbol table entry.
Each auxiliary table entry contains the same number of bytes as the symbol table
entry. However, unlike symbol table entries, the format of an auxiliary table entry of a
symbol depends on its type, storage class, and the symbol interpretation environment
designated in the main symbol table entry. Auxiliaries for the standard environment
are summarized in Table 6-10.
In Table 6-10, tagname means any symbol name including the special symbol jefake,
and fcname and armame represent any symbol name.
Any symbol that satisfies more than one condition in Table 6-10 should have a union
format in its auxiliary entry. Symbols that do not satisfy any of the following condi­
tions should not have any auxiliary entry.

6.5.1 Filenam es
The format for filenames is shown in Figure 6-9.
If a filename is more than 14 characters long, it has a nonzero x_foff value and is
stored in the string table at the indicated offset. Otherwise, x_foff is zero and the
filename resides in the x_fname field.

* Currently no more than one auxiliary entry is used by any tool. AT&T’s COFF also includes the possibility of more than one auxiliary entry. Earlier tool sets which did not allow this possibility are considered to be in error.

6-20 SYMBOL TABLE

Table 6-10. Auxiliary Symbol Table Entries

NAME STORAGE
CLASS

TYPE
D1

ENTRY
TYP

AUXILIARY
ENTRY FORMAT

.file C_ FILE DT_NON T_NULL filename

.text, .data C_ STAT DT_NON T_NULL section
tagname C_ STRTAG

C_ UNTAG
C_ENTAG

DT_NON T_NULL tagname

.eos C_EOS DT_NON T_NULL end-of-structure
fcname C_EXT

C_ STAT
DT_FCN (See Note.)

any
function

arrname (See Note.) DT_ARY (See Note.)
any

array

.bb C_BLOCK DT_NON T_NULL beginning-of-block

.eb C_BLOCK DT_NON T_NULL end-of-block

.bf, .ef C_FCN DT_NON T_NULL beginning- and
end- of- function

name related
to structure,
union,
enumeration

(See Note.) DT_PTR,
DT_ARR,
DT_NON

T_ STRUCT,
T_ UNION,
T_ ENUM

name related
to structure,
union,
enumeration

NOTE: C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF

SYMBOL TABLE 6-21

Bytes Declaration Name Description
0-13 char[] x_fname filename

14-15 - - unused (filled with zeroes)
16-19 long x_foff string table offset of

filename (when > 14 long)

Figure 6-9. Auxiliary Entry for Filenames

6.5.2 Sections
The auxiliary table entries for sections have the format shown in Figure 6-10.

Bytes Declaration Name Description
0-3 long int x_scnlen section length
4-5 unsigned short x_nreloc number of relocation entries
6-7 unsigned short x_nlinno number of line numbers
8-11 long x_linoptr pointer to line number

entries for this section
12-19 - - unused (filled with zeroes)

Figure 6-10. Auxiliary Entry for Sections

6.5.3 Tagnames
The auxiliary table entries for tagnames have the format shown in Figure 6-11.

6-22 SYMBOL TABLE

Bytes Declaration Name Description
0-5 - - unused (filled with zeros)
6-7 unsigned short x_ size size of struct, union, and

enumeration in bytes
8-11 - - unused (filled with zeroes)
12-15 long int x_endndx index of next entry beyond

this structure, union, or
enumeration

16-19 - - unused (filled with zeroes)

Figure 6-11. Auxiliary Entry for Tagnames

6.5.4 Structures, Unions, and Enumerations
The auxiliary table entries for structure, union, enumeration, and end-of-structure
symbols have the format shown in Figure 6-12.

Bytes Declaration Name Description
0-3 long int x_tagndx tag index (points to the

symbol which names the
structure)

4-5 - - unused (filled with zeroes)
6-7 unsigned short x_ size size of struct, union, or

enumeration
8-19 - - unused (filled with zeroes)

Figure 6-12. Auxiliary Entry for Structures, Unions and Enumerations

SYMBOL TABLE 6-23

6.5.5 Functions
The auxiliary table entries for functions have the format shown in Figure 6-13.

Bytes Declaration Name Description
0-3 long int x_ tagndx tag index (points to a tag for the

return value of the function, e.g.,
a structure)

4-7 long int x_fsize size of function in bytes
8-11 long int x_lnnoptr file pointer to line number entries
12-15 long int x_endndx index of next entry beyond this

function
16-17 unsigned short x_callseq calling sequence information
18-19 unsigned short x_ level function nesting level

Figure 6-13. Auxiliary Entry for Functions

6.5.6 Arrays
tl*»The value of an array is a memory pointer to the 0 entry (i.e., [0, 0, ..., 0]) of the

array, even if the array has negative indices.
The auxiliary table entries for arrays have the format shown in Figure 6-14.

6.5.7 End of Blocks and Beginning and End of Functions
The auxiliary table entries for the end of blocks and the beginning and end of functions
have the format shown in Figure 6-15.
The field x_plude is a prelude for the .bf and a postlude for the .ef special symbol.
Some programming languages require code at the beginning or end of a function to
manipulate the stack. During these manipulations, the contents of the stack are unin­
telligible to the debugger. The x_plude field allows the compiler to tell the debugger
not to access the stack during this prelude or postlude.

6-24 SYMBOL TABLE

Bytes Declaration Name Description
0-3 long int x_tagndx tag index (points to the tag symbol

for the array, if any)
4-5 unsigned short x_lnno line number of declaration
6-7 unsigned short x_ size size of the array in bytes
8-9 unsigned short x_ dimen [0] first dimension (number of elements)
10-11 unsigned short x_ dimen [1] second dimension
12-13 unsigned short x_ dimen [2] third dimension
14-15 unsigned short x_ dimen [3] fourth dimension
16-19 - - unused (filled with zeroes)

Figure 6-14. Auxiliary Entry for Arrays

Bytes Declaration Name
0-3 - -
4-5 unsigned short x_lnno

6-17
18-19 unsigned short x_plude

Description
unused (filled with zeroes)
C-source line number
.bf - line number within the file
.ef or .eb - line number relative
to the corresponding .bf or .bb
unused (filled with zeroes)
prelude or postlude size
(length of code for which stack
is invalid)

Figure 6-15. Auxiliary Entry for Beginning of Function and End of Block/Function

6.5.8 Beginning of Blocks
The auxiliary table entries for the beginning of blocks have the format shown in Figure
6-16.

SYMBOL TABLE 6-25

Bytes Declaration Name Description
0-3 - - unused (filled with zeroes)
4-5 unsigned short x_lnno C-source line number
6-11 - - unused (filled with zeroes)
12-15 long int x_endndx index of next entry past

this block
16-19 - - unused (filled with zeroes)

Figure 6-16. Auxiliary Entry for Beginning of Block

6.5.9 Auxiliary Entry Declaration
The C language structure declaration for an auxiliary symbol table entry may be found
in the syms. h header file.

6.6 LINKED LISTS IN THE SYMBOL TABLE
The following example serves to illustrate the use of the n_value, n_endndx, and
n_tagndx fields in building linked list structures in the symbol table.
The following C fragment has been compiled using the -g and -c flags. Figure 6-17
shows the resulting link list structures in the symbol table of filel.o. The C program
shows examples of tagged and untagged structure declarations and a function return­
ing a structure.

in t global!.;
stru c t foo_tag

{ char a;
in t b;

} foo;
stru ct

{ in t i ;
char ch;

} flop ;
stru c t foo_tag fun ()

{
}

6-26 SYMBOL TABLE

KEY :
n_value field of the
symbol entry

n_endndx of an
auxiliary entry

njagndx of an
auxiliary entry

GG-01-0-U

Figure 6-17. Linked List Structures in the Symbol Table

SYMBOL TABLE 6-27

In general, a tag index points back to a referenced structure or enumeration and an end index points around a structure or function to the next symbol. Occasionally the
n_ value field is used as a tag index or an end index (as shown with the . file symbol in Figure 6-17).

6.7 STRING TABLE
Symbol table names longer than eight characters are stored contiguously in the string table with each symbol name delimited by a null byte. The first four bytes of the string table are the size of the string table in bytes; therefore, offsets into the string table are greater than or equal to four. This size value includes the 4 bytes of the size itself so that the minimum value for an empty string table is size 4.
For example, given a file containing two symbols (with names longer than eight charac­
ters, long_name_ 1 and another_one) the string table has the format as shown in Figure 6-18.
The index of long_name_l in the string table is 4 and the index of another_one is
16.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
28 1 0 n g — n a m e —

14 15 16 17 18 19 20 21 22 23 24 25 26 27
1 \0 a n 0 t h e r — 0 n e \0

Figure 6-18. String Table

6-28 SYMBOL TABLE

INDEX

A E
allocated 2-9 .eb 6-1, 6-4
aouthdr.h 2-4, 2-5 .ef 6-1, 6-6
Arrays 6-24 End index 6-28Auxiliary entry End of blocks 6-24

and enumerations 6-23 End of structures 6-23
end of block/function 6-25 Enumerations 6-23
for arrays 6-25 .eos 6-1
for beginning of block 6-26 Executable 1-3
for beginning of functions 6-25
for filenames 6-22
for functions 6-24 F
for sections 6-22
for structure, unions 6-23
for tagnames 6-23 File header flags

Auxiliary symbol table entries, list of 6-21 contents of 2-2
Auxiliary table entries 6-20 description of 2-2

arrays 6-24 guidelines for use 2-2
blocks, beginning of 6-25 list of 2-3
declaration 6-26 File headers 2-1
end of blocks 6-24 contents of 2-1
end of structures 6-23 fields of 2-2
filenames 6-20 Filenames 6-20
functions 6-24 Flags 2-9functions, beginning of 6-24 Functions 6-24
functions, end of 6-24 beginning of 6-24
sections 6-22 end of 6-24
tagnames 6-22 Fundamental type entries 6-15

Fundamental types, list of 6-16
B

Basic type entries 6-15 G.bb 6-1, 6-4 GNX common object file format 1-2.bf 5-2, 6-1, 6-6
Block 6-4
Blocks, beginning of 6-25 H
.bss section 3-1 Headers 2-1.bss section header 2-10 use of 1-3

C I
.comment 1-3 Inner blocks 6-4

D L.data section 3-1 .lib 1-3declaration 6-26 Line numbers 1-2, 5-1Definitions and conventions 1-3 grouping of 5-1physical address 1-3 structure of 5-2sections 1-3 using 5-2target machine 1-4 lineno, structure of 5-2virtual address 1-3 linenum.h 5-1Derived type entries 6-15 LINESZ 5-2Derived types, list of 6-17 Linker 6-13.link section 3-1
INDEX 1

Linked list structures in the symbol table 6-27 Special symbols 6-1, 6-9, 6-11
figure of 6-27 .bb 6-1, 6-4

Linked lists 6-26 .bf 6-1, 6-6
loaded 2-9 .eb 6-1, 6-4

.ef 6-1, 6-6

.eos 6-1
M in the symbol table 6-3

Magic number 2-2, 2-5 sequence of 6-4, 6-7
MMU 1-3 .target 6-7
.mod section 3-1 .xfake 6-1
Modular features 3-1 .static section 3-1

loading a file with 3-1 statics 6-1
Storage class and value 6-12
Storage classes 6-9, 6-11

N section numbers 6-13
Name field, figure of 6-9 special symbols of 6-11
Nested blocks, figure of 6-5 type entries 6-18
n_value 6-26 value of 6-10

storclass.h 6-9
String table 1-2

O figure of 6-28
Optional header 2-1, 2-4, 3-1 Structure for symbol table entries 6-20
Optional header flags 2-6 Structures 6-23

list of 2-7 Symbol interpretation environment 6-18
Optional header magic numbers 2-5 Symbol name 6-8

list of 2-6 Symbol table 1-2, 6-2, 6-6
Optional header Symbol table entries 6-7, 6-20

contents of 2-4 Symbol table
guidelines for use 2-5 list of entry fields 6-8

Overview 1-1 order of symbols 6-2
Symbol value field 6-11
Symbols and functions 6-6

P Symbols for functions, sequence of 6-6
Physical address 1-3 syms.h 6-20

R T
Relocatable symbols 6-11 Tag index 6-26
relocated 2-9 Tagnames 6-22
Relocation Information 4-1 .target 6-7
Relocation section, contents of 4-2 Target machine 1-4
Relocation type flag definitions 4-3 .text section 3-1
reloc.h 4-2 Type entries 6-15

basic 6-15
derived 6-17

S fundamental 6-16
scnhdr.h 2-8 list by storage class 6-19
Section header flags 2-9 storage classes 6-18

list of 2-10 Type field 6-15
Section headers 2-1, 2-8, 2-10, 3-1

contents of 2-8
use of 2-9 U

Section number and storage classes Unions 6-23
list of 6-14

Section number field 6-13
Section numbers

list of 6-13
storage classes 6-13

Sections 1-3, 3-1, 6-22
SECTIONS directive 3-1
2 INDEX

Virtual address Vstamp
V

1- 3
2- 4

.xfake
X

6-1

INDEX 3

'v=̂ -

National MICROCOMPUTERSemiconductor SYSTEMS DIVISION
READER’S COMMENT FORM

In the interest of improving our documentation, National Semiconductor invites your comments on this
manual.
Please restrict your comments to the documentation. Technical Support may be contacted at:

(800) 538-1866 - U.S. non CA
(800) 672-1811-CA only
(800) 223-3248 - Canada only

Please rate this document according to the following categories. Include your comments below.
E X C E L L E N T GO O D A D E Q U A T E F A IR P O O R

Readability (style) □ □ □ □ □
Technical Accuracy □ □ □ □ □
Fulfills Needs □ □ □ □ □
Organization □ □ □ □ □
Presentation (format) □ □ □ □ □
Depth of Coverage □ □ □ □ □
Overall Quality □ □ □ □ □
NAME DATE
TITLE__
COMPANY NAME/DEPARTMENT__
ADDRESS__
CITY___ STATE _____________ ZIP
Do you require a response? □ Yes □ No PHONE_________________________________
Comments:

GNX — Version 3 COFF Programmer’s Guide
FOLD, STAPLE, AND MAIL 424010507-003A

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 409 SANTA CLARA, CA

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

POSTAGE WILL BE PAID BY ADDRESSEE

23 National Semiconductor Corporation
Microcomputer Systems Division
Technical Publications Dept., M/S 7C261
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052- 9968

lliliiilililliiiililinlilliliililiiilliiliililiiill

S o ftw are Problem Report
Name: __
Street: __
City:____________________________________ _ State:______ Zip:______
Phone:____________________________________ Date:________________
Instructions
Use this form to report bugs, or suggested enhancements. Mail the form to National Semiconductor. Technical Support may be contacted at:

(800) 538-1866 - U.S. non CA (800) 672-1811 - CA only
(800) 223-3248 - Canada only ((0)8141) 103-330 - West Germany

Category__
□ Software Problem □ Request For Software Enhancement
□ Other □ Documentation Problem, Publication # _____________
Software Description
National Semiconductor Product _____________________________________

Version ______________ Registration # ___________________________Host Computer Information__Operating System__Rev. _________________ Supplier_______________________________
Problem Description
Describe the problem. (Also describe how to reproduce it, and your diagnosis and suggested correction.) Attach a listing if available.

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

POSTAGE WILL BE PAID BY ADDRESSEE

2 National Semiconductor Corporation
Microcomputer Systems Division
Software Quality Assurance Dept., M/S 7C266
2900 Semiconductor Drive
P.O.Box 58090
Santa Clara, CA 95052-9968

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 409 SANTA CLARA, CA

11.1...1.1.11....1.1,..1,11.1,.1,1..,11,,1.,1.1...11

National Semiconductor Use Only-Tech Support ________________________ Date Received
Software Q.A.________________________ Date ReceivedReport Number______________________
Action Taken :

SALES OFFICES

ALABAMA
Huntsville

(205) 837-8960
(205) 721-9367

ARIZONA
Tempe

(602) 966-4563
B.C.

Burnaby
(604)435-8107

CALIFORNIA
Endno

(818) 888-2602
Inglewood

(213)645-4226
Roseville

(916) 786-5577
San Diego

(619) 587-0666
Santa Clara

(408) 562-5900
Tustin

(714) 259-8880
Woodland Hills

(818)888-2602
COLORADO

Boulder
(303) 440-3400

Colorado Springs
(303) 578-3319

Englewood
(303) 790-8090

CONNECTICUT
Fairfield

(203) 371-0181
Hamden

(203) 288-1560

INTERNATIONAL
OFFICES

Electronics NSC de Mexico SA
Juventino Rosas No. 118-2
Col Guadalupe Inn
Mexico, 01020 D.F. Mexico
Tel: 52-5-524-9402

National Semlcondutorea
Do Brasil Ltda.
Av. Brig. Faria Lima, 1409
6 Andor Salas 62/64
01451 Sao Paulo, SP, Brasil
Tel: (55/11)212-5066
Telex: 391-1131931 NS8R BR
National Semiconductor GmbH
Industriestrasse 10
D-8080 Fürstenfeldbruck
West Germany
Tel: 49-08141-103-0
Telex. 527 649

National Semiconductor (UK) Ltd.
301 Harpur Centre
Home Lane
Bedford MK40 ITR
United Kingdom
Tel: (02 34) 27 00 27
Telex: 826 209
National Semiconductor Benelux
Vorstlaan 100
B-1170 Brussels
Belgium
Tel: (02) 6725360
Telex: 61007

FLORIDA
Boca Raton

(305)997-8133
Orlando

(305) 629-1720
St. Petersburg

(813) 577-1380
GEORGIA

Atlanta
(404) 396-4048

Norcross
(404)441-2740

ILLINOIS
Schaumburg

(312) 397-8777

INDIANA
Carmel

(317) 843-7160
Fori Wayne

(219) 484-0722
IOWA

Cedar Raptds
(319) 395-0090

KANSAS
Overland Park

(913) 451-8374
MARYLAND

Hanover
(301)796-8900

MASSACHUSETTS
Burlington

(617)273-3170
Waltham

(617) 890-4000
MICHIGAN

W Bloomfield
(313) 855-0166

MINNESOTA
Bloomington

(612)835-3322
(612) 854-8200

NEW JERSEY
Paramus

(201)599-0955
NEW MEXICO

Albuquerque
(505) 884-5601

NEW YORK
Endicott

(607) 757-0200
Fairport

(716) 425-1358
(716) 223-7700

Melville
(516)351-1000

Wappmger Falls
(914)298-0680

NORTH CAROLINA
Cary

(919)481-4311
OHIO

Dayton
(513) 435-6886

Highland Heights
(216) 442-1555
(216)461-0191

ONTARIO
Mississauga

(416) 678-2920
Nepean

(404)441-2740
(613) 596-0411

Woodbndge
(416) 746-7120

National Semiconductor (UK) Ltd.
1, Bianco Lunos Alle
DK-1868 Fredriksberg C
Denmark
Tel: (01)213211
Telex: 15179
National Semiconductor
Expansion 10000
28, rue de la Redoute
F-92260 Fontenay-aux-Roses
France
Tel: (01)46 60 81 40
Telex: 250956
National Semiconductor S.pJL
Strada 7, Palazzo R/3
20089 Rozzano
Milanofion
Italy
Tel: (02) 8242046/7/8/9
National Semiconductor AB
Box 2016
Stensatravagen 13
S-12702 Skarhdmen
Sweden
Tel: (08) 970190
Telex: 10731

National Semiconductor
Calle Agustin de Foxa, 27
28036 Madrid
Spam
Tel: (01)733-2958
Telex: 46133

Rational Semiconductor
dwnzonana
Alte Winterthurerstrasse 53
Postfach 567
Ch-8304 Wallisellen-Zunch
Switzerland
Tel: (01)830-2727
Telex: 59000
Rational Semiconductor
Kauppakartanonkatu 7
SF-00930 Helsinki
Finland
Tel: (0) 33 80 33
Telex: 126116
Rational Semiconductor Japan
Ltd.
Sansetdo Bldg. 5F
4-15 Nishi Shinjuku
Shinjuku-ku
Tokyo 160 Japan
Tel: 3-299-7001
Fax: 3-299-7000
Rational Semiconductor
Hong Kong Ltd.
Southeast Asia Marketing
Austin Tower, 4th Floor
22-26A Austin Avenue
Tsimshatsui, Kowloon, H.K.
Tel: 852 3-7243645
Cable: NSSEAMKTG
Telex: 52996 NSSEA HX

OREGON
Portland

(503) 639-5442
PENNSYLVANIA

Horsham
(215) 675-6111

Willow Grove
(215) 657-2711

PUERTO RICO
Rio Piedias

(809) 758-9211
QUEBEC

Dollard Des Ormeaux
(514) 683-0683

lachine
(514)636-8525

TEXAS
Austin

(512) 346-3990
Houston

(713) 771-3547
Richardson

(214) 234-3811
UTAH

Salt Lake City
(801)322-4747

WASHINGTON
Bellevue

(206) 453-9944
WISCONSIN

Brookfield
(414) 782-1818

Milwaukee
(414)527-3800

National Semiconductor
(Australia) PTY, Ltd.
1st Floor, 441 St. Kilda Rd.
Melbourne, 3004
Victory, Australia
Tel: (03) 267-5000
Fax:61-3-2677458
National Semiconductor (PTE),
Ltd.
200 Cantonment Road 13-01
Southpomt
Singapore 0208
Tel: 2252226
Telex: RS 33877
National Semiconductor (Far East)
Ltd.
Taiwan Branch
P.O. Box 68-332 Taipei
7th Floor, Nan Shan Life Bldg
302 Min Chuan East Road,
Taipei, Taiwan R.O.C.
Tel: (86) 02-501-7227
Telex: 22837 NSTW
Cable: NSTW TAIPEI

National Semiconductor (Far East)
Ltd.
Korea Office
Room 612,
Korea Fed. of Small Bus. Bldg.
16-2, Yoido-Dong,
Youngdeungpo-Ku
Seoul. Korea
Tel: (02) 784-8051/3 - 785-0696-8
Telex: K24942 NSRKLO

Series 32000

GNX — Version 3
Support Libraries
Reference Manual

Customer Order Number 424010508-003 NSC Publication Number 424010508-003BSeptember 1988

REVISION RECORD

REVISION RELEASE DATE SUMMARY OF CHANGES
A 08/88 First Release.

Series 32000® GNX — Version 3
Support Libraries Reference Manual
NSC Publication Number 424010508-003A.

B 09/88 The math library in Chapter 4 has been reor­
ganized for readability. The calling
sequences for the FORTRAN, Modula-2, and
Pascal compilers have been corrected.

ii

PREFACE

This manual describes the GNX (GENIX™ Native and Cross-Support) Libraries and
library routines, which provide run-time support for the development of software for
National Semiconductor’s Series 32000® microprocessor family.
The information contained in this manual is for reference only and is subject to change
without notice.
No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.
A complete list of National Semiconductor’s international offices may be found on the
inside back cover of this manual.

GENIX, NSX, ISE, ISE16, ISE32, SYS32, and TDS are trademarks of National Semiconductor
Corporation.
Series 32000 is a registered trademark of National Semiconductor Corporation.
Portions of this document are derived from AT&T copyrighted material and reproduced under license
from AT&T; portions are based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California.
UNIX is a registered trademark of AT&T.
VAX, VMS, and DEC are trademarks of Digital Equipment Corporation.

CONTENTS

Chapter 1 OVERVIEW
1.1 INTRODUCTION... 1-1
1.2 OPERATING SYSTEM CALL SIMULATION............................... 1-1
1.3 MANUAL ORGANIZATION ... 1-2
1.4 DOCUMENTATION CONVENTIONS... 1-3

1.4.1 General Conventions.. 1-3
1.4.2 Conventions in Syntax Descriptions............................... 1-3
1.4.3 Example Conventions.. 1-4

Chapter 2 SYSTEM CALLS
2.1 INTRODUCTION... 2-1
2.2 DESCRIPTION OF SYSTEM CALLS ... 2-3

2.2.1 Routines that Do Not Require System Calls................... 2-3
2.2.2 Routines that Use Simulated System C a lls 2-3

2.3 SYSTEM CALL SUMMARIES.. 2-3
2.3.1 C lose.. 2-7
2.3.2 Creat.. 2-8
2.3.3 .E x i t .. 2-10
2.3.4 Getdtablesize.. 2-11
2.3.5 Lseek.. 2-12
2.3.6 O pen.. 2-14
2.3.7 R ea d .. 2-16
2.3.8 S b r k .. 2-17
2.3.9 U nlink ... 2-18
2.3.10 Write.. 2-20

Chapter 3 GNX DB SUPPORT LIBRARY ROUTINES
3.1 INTRODUCTION.. 3-1
3.2 ABORT.. 3-2
3.3 A B S .. 3-3
3.4 ATOF... 3-4
3.5 B STRING... 3-5
3.6 CTIM E.. 3-7
3.7 ECVT... 3-9
3.8 E X IT ... 3-10

CONTENTS v

3.9 FCLO SE... 3-11
3.10 FERROR... 3-12
3.11 FLOOR.. 3-13
3.12 FOPEN.. 3-14
3.13 FREAD.. 3-16
3.14 FREX P.. 3-17
3.15 FSE E K .. 3-18
3.16 GETC... 3-19
3.17 G ETS... 3-21
3.18 IN SQ U E ... 3-22
3.19 ISATTY.. 3-23
3.20 MALLOC... 3-24
3.21 MEMORY .. 3-26
3.22 PERROR... 3-28
3.23 PRINTF.. 3-29
3.24 PUTC... 3-32
3.25 P U T S ... 3-34
3.26 QSORT.. 3-35
3.27 RANDOM... 3-36
3.28 REGEX... . 3-38
3.29 SCANF.. 3-40
3.30 SET B U F... 3-44
3.31 SETJM P... 3-46
3.32 STRING ... 3-47
3.33 SWAB... 3-49
3.34 UNGETC... 3-50

Chapter 4 FLOATING-POINT LIBRARY
4.1 INTRODUCTION... 4-1
4.2 DETAILS AND USE OF THE MATH LIBRARY............................ 4-2

4.2.1 Number F orm ats.. 4-2
4.2.2 Integer Formats... 4-2
4.2.3 Floating-point Formats... 4-3
4.2.4 Reserved Operand Values and Operations...................... 4-6
4.2.5 Not a Number (N AN).. 4-7
4.2.6 Infinity... 4-8
4.2.7 Denormalized Numbers... 4-8

vi CONTENTS

4.2.8 Math Environment Control F unction 4-9
4.2.9 Using the Math Environment Functions......................... 4-9
4.2.10 Accessing the Math Library Functions............................ 4-10
FLOATING-POINT LIBRARY FUNCTIONS............................... 4-124.3.1 A c o s ... 4-13
4.3.2 Acosh... 4 -1 4
4.3.3 A s in ... 4 .1 5
4.3.4 Asinh... 4 .1 6
4.3.5 A ta n ... 4 .1 7
4.3.6 Atan2 .. 4 .18
4.3.7 A ta n h .. 4 .1 9
4.3.8 B e s s e l .. 4 -2 0
4.3.9 C a b s ... 4-21
4.3.10 C b r t ... 4-23
4.3.11 C eil.. 4-24
4.3.12 Compound............................... 4-25
4.3.13 Copysign... 4-26
4.3.14 C o s .. 4-27
4.3.15 C o sh ... 4-28
4.3.16 Drem... 4-29
4.3.17 E r f .. 4-30
4.3.18 E xp... 4 -3 1
4.3.19 E x p 2 ... 4-32
4.3.20 E x p m l.. 4 .3 3
4.3.21 F a b s .. 4 .3 4
4.3.22 Finite .. 4 .3 5
4.3.23 F loor.. 4-36
4.3.24 Fmod.................................. 4-3 7
4.3.25 F m o d f... 4-38
4.3.26 Fp_getexptn... 4 -3 9
4.3.27 Fp_getround... 4-40
4.3.28 Fp_gettrap.. 4-41
4.3.29 Fp _gm athenv.. 4-42
4.3.30 Fpgtrpvctr.. 4 -4 4
4.3.31 Fp_procentry.. 4 -4 5
4.3.32 Fp_procexit... 4-46
4.3.33 Fp_setexptn... 4 -4 7
4.3.34 Fp_setround... 4-48
4.3.35 Fp_settrap... 4 -4 9
4.3.36 Fp_smathenv.. 4-50
4.3.37 Fpstrpvctr.. 4-52
4.3.38 Fp_testtrap... 4 -5 3
4.3.39 Fp_tstexptn... 4 -5 4
4.3.40 Gamma .. 4-55
4.3.41 Hypot ... 4-56

CONTENTS vii

4.3.43 L og ... 4_58
4.3.44 LoglO ... 4 .5 9
4.3.45 Loglp ... 4_60
4.3.46 L o g 2 .. 4_61
4.3.47 N eg ... 4-62
4.3.48 Nextfloat... 4 -6 3
4.3.49 P i .. 4-64
4.3.50 Pow ... 4-65
4.3.51 Randomx... 4-67
4.3.52 R elation ... 4-68
4.3.53 R e m ... 4-69
4.3.54 Rint ... 4-71
4.3.55 S i n .. 4-72
4.3.56 S in h ... 4-74
4.3.57 Sqrt ... 4 -7 5
4.3.58 T an.. 4-76
4.3.59 T an h ... 4-77

Chapter 5 FPEE LIBRARY
5.1 INTRODUCTION... 5-1
5.2 FPEE LIBRARY CONFIGURATIONS... 5-2

5.2.1 FPEE Library Creation in a Series 32000/UNIX
Environment... 5-2

5.2.2 Cross-development FPEE Library Creation................... 5-2
5.3 INTEGRATING FPEE WITH AN APPLICATION......................... 5-3

5.3.1 Integrating FPEE with Series 32000/UNIX Applications 5-3
5.3.2 Cross Application FPEE Integration............................... 5-3
5.3.3 FPEE Library and the Math Library Integration 5-4
5.3.4 FPEE Error Handling R ou tines..................................... 5-4

5.4 FPEE OPERATIONAL DETAILS... 5-5
5.4.1 Operational Overview.. 5-5
5.4.2 FPEE Enhancements to the FPU 5-7
5.4.3 NS32081 FPU, NS32381 FPU and F P E E 5-8
5.4.4 FPEE Program Control.. 5-9
5.4.5 FPEE Comparisons.. 5-11
5.4.6 FPEE Exception H andling... 5-12
5.4.7 FPEE Rounding M odes... 5-14

Appendix A SERIES 32000 STANDARD CALLING CONVENTIONS
A.l INTRODUCTION... A-l
A.2 CALLING CONVENTION ELEMENTS.. A-l

viii CONTENTS

FIGURES
Figure 4-1. Maximum and Minimum Values for Floating-point Numbers . 4-5

TABLES
Table 2-1. Routines that Do Not Require System Calls................................ 2-4
Table 2-2. Routines that Use Simulated System C a lls 2-5
Table 4-1. Minimum and Maximum Values.. 4-4
Table 4-2. Global Considerations .. 4-11
Table 5-1. Instruction C odes... 5-6
Table 5-2. FPEE Library-Implemented IEEE 754 Operations.................... 5-8
Table 5-3. Default Return Values for Overflow Exceptions.......................... 5-15

INDEX

CONTENTS ix

Chapter 1
OVERVIEW

1.1 INTRODUCTION
The GNX-Version 3 Support Libraries provide run-time support for the C, Pascal,
Modula-2 and FORTRAN language compilers. The GNX Development Board (DB)
library also facilitates debugging by providing input/output capability with the user
terminal or host system files. Programs linked with these libraries can run on a
SPLICE system connected to a target or on a Series 32000 development board with
monl6, mon32, mon332, mon332b, or mon532 monitors respectively.
The Floating-point Enhancement and Emulation (FPEE) library enhances the
Floating-point Unit (FPU) by providing additional functionality (as recommended b y
the ANSI/IEEE task proposal 754) for binary floating-point arithmetic. The Math
Library when used with the FPEE library, provides a full IEEE 754 math environment.
The location and the names of these libraries may vary with the host operating s y s te m
and are discussed in the Series 32000 GNX — Version 3 Commands and Operations
Manual provided with the GNX tools.
These libraries are similar to the standard C, Pascal, Modula-2, or FORTRAN libraries
of a UNIX® operating system. The GNX libraries and the host libraries differ in that
system calls, such as fork, have been removed from the GNX library because they are
not executable on a development board. Some of the other host system calls have been
replaced by their simulations or implemented using the virtual I/O feature of the moni­
tor and debugger dbg32 (such as open, read, write, etc.) These libraries support
most of the common I/O operations.

1.2 OPERATING SYSTEM CALL SIMULATION
The libraries provide most of the common functions of C, Pascal, Modula-2, and FOR­
TRAN. These libraries are implemented by providing a low-level simulation of some
important UNIX operating system calls. This allows programs to be compiled and
tested without extensive rewriting.
The system calls implemented in this release are open, close, creat, read,
write, _exit, getdtablesize, lseek, sbrk, and unlink. These system calls are
dependent on the development board monitors, dbg32 and the host operating system.
The user may use the routines for debugging during the program development phase
(e.g., writing error messages to the terminal, storing and retrieving results from files,
etc.); however, programs that depend on these system calls will not work in any other
target system.

OVERVIEW 1-1

Several system cans have been given dummy implementations, that is, rather than
asking the host operating system to provide actual data, the calls will always return
the same values. This allows existing user-developed programs to be run on the
development board with less modification but there are some restrictions.
The following is a list of dummy routines:

access geteuid getpid sethostid signal timeexecl gethostid gettimeofday sethostname stat waitfork gethostname getuid setitimer settimeofday
fstat getitimer pause setreuid system

The following is a list of restrictions in the use of dummy calls:
is a t ty Always returns “1” for stdin, stdout and stderror, and a “0” for all

other streams.
time zone Does not look for environment variable TZNAME. The develop­

ment board has no concept of environment variables.

1.3 MANUAL ORGANIZATION
Chapter 1 provides an overview of the GNX support libraries, describes the operating
system call simulation and provides the documentation conventions.
Chapter 2 describes system calls.
Chapter 3 describes the C library routines.
Chapter 4 describes the math library routines.
Chapter 5 describes the floating-point enhancement and emulation library.
Appendix A describes the Series 32000 standard calling conventions.
See the Series 32000 GNX — Version 3 Pascal Optimizing Compiler Reference Manual,
the Series 32000 GNX — Version 3 Modula-2 Optimizing Compiler Reference Manual,
or the Series 32000 GNX — Version 3 FORTRAN 77 Optimizing Compiler Reference
Manual for a description of the functions for Pascal, Modula-2, or FORTRAN.

1-2 OVERVIEW

1.4 DOCUMENTATION CONVENTIONS
The following documentation conventions are used in text, syntax descriptions, and
examples in describing commands and parameters.

1.4.1 General Conventions
Nonprinting characters are indicated by enclosing a name for the character in angle
brackets <>. For example, <CR> indicates the RETURN key, <ctrl/B> indicates the
character input by simultaneously pressing the control key and the B key.
Constant-width type is used within text for filenames, directories, command names and
program listings; it is also used to highlight individual numbers and letters. For exam­
ple,

the C preprocessor, cpp, resides in the GNXDIR/lib directory.

1.4.2 Conventions in Syntax Descriptions
The following conventions are used in syntax descriptions:

Constant-width boldface type indicates actual user input.
Italics indicate user-supplied items. The italicized word is a generic term
for the actual operand that the user enters. For example,

cc [[option] ... [filename] ...] ...
Spaces or blanks, when present, are significant; they must be entered as
shown. Multiple blanks or horizontal tabs may be used in place of a single
blank.
{} Large braces enclose two or more items of which one, and only one,

must be used. The items are separated from each other by a logical
OR sign “ | ”

j] Large brackets enclose optional item(s).
! Logical OR sign separates items of which one, and only one, may be

used.
Three consecutive periods indicate optional repetition of the preced­
ing item(s). If a group of items can be repeated, the group is
enclosed in large parentheses “().”

,,, Three consecutive commas indicate optional repetition of the preced­
ing item. Items must be separated by commas. If a group of items
can be repeated, the group is enclosed in large parentheses “().”

OVERVIEW 1-3

() Large parentheses enclose items which need to be grouped together
for optional repetition. If three consecutive commas or periods follow
an item, only that item may be repeated. The parentheses indicate
that the group may be repeated.

lj Indicates a space. is only used to indicate a specific number of
required spaces.

All other characters or symbols appearing in the syntax must be entered as
shown. Brackets, parentheses, or braces which must be entered, are smaller
than the symbols used to describe the syntax. (Compare user-entered [],
with [] which show optional items.)

1.4.3 Example Conventions
In interactive examples where both user input and system responses are shown, the
machine output is in constant-width regular type; user-entered input is in constant-
width boldface type. Output from the machine which varies (e.g., the date) is in italic
type. For example,

--> g < CR>
Breakpoint 2 reached at f i l e n a m e _main: .3
.3 printf("hello\r\n") ;

1-4 OVERVIEW

Chapter 2
SYSTEM CALLS

2.1 INTRODUCTION
This chapter describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible return value.
This is almost always -1; the individual descriptions contain detailed information.
All return codes and values from functions are of type integer unless otherwise noted.
An error number is also made available in the external variable errno, which is not
cleared on successful calls. Thus, errno should be tested only after the program has
determined that an error has occurred.
The following is a complete list of the errors and their names as given in errno.h and a
description of each error; these errors appear as they would on a UNIX host system:
1 EPERM Not owner

Typically, this error indicates an attempt has been made to modify a file by some­
one other than its owner.

2 ENOENT No such file or directory
This error occurs when a filename is specified and the file should exist but doesn’t,
or when one of the directories in a pathname does not exist.

5 EIO I/O error
A physical I/O error occurs during a read or write. This error may in some
cases occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist or is beyond the lim­
its of the device. It may also occur when, for example, an illegal tape drive unit
number is selected or a disk pack is not loaded on a drive.

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (respectively write) request
is made to a file which is open only for writing (respectively reading).

12 ENOMEM Not enough core
During sbrk, a program asks for more memory than can be supplied by the
development board.

13 EACCES Permission denied
An attempt is made to access a file in a way forbidden by the protection system.

SYSTEM CALLS 2-1

14 EFAULT Bad address
The system encounters a hardware fault in attempting to access the arguments of a system call.

15 ENOTBLK Block device required
A file is mentioned where a block device is required.

16 EBUSY Mount device busy
An attempt to mount a device that is already mounted or an attempt is made to
dismount a device on which there is an active file directory.

17 EEXIST File exists
An existing file is mentioned in an inappropriate context.

19 ENODEV No such device
An attempt is made to apply an inappropriate system call to a device; e.g. , read a
write-only device.

20 ENOTDIR Not a directory
A nondirectory is specified where a directory is required.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument
Some invalid argument: reading or writing a file for which lseek has generated
a negative pointer. Also set by math functions.

23 ENFILE File table overflow
The system’s table of open files is full and temporarily no more opens can be
accepted.

24 EMFILE Too many open files
Limit is 24.

25 ENOTTY Not a typewriter
The file mentioned is not a terminal or one of the other devices to which these
calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writ­
ing (or reading). Also, an attempt to open for writing a pure-procedure program
that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum (about 109 bytes).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

30 EROFS Read-only file system
An attempt to modify a file or directory is made on a device mounted read-only.

33 EDOM Math argument
The argument of a function in the math package is out of the domain of the func­
tion.

2-2 SYSTEM CALLS

62 ELOOP Too many levels of symbolic links
A pathname lookup involved more than 8 symbolic links.

63 ENAMETOOLONG Filename too long
A component of the pathname or an entire pathname that exceeds the host system
limitations.

2.2 DESCRIPTION OF SYSTEM CALLS
As mentioned earlier, the GNX DB support library has dummy implementations of
some GENIX 4.2 system calls. These calls return dummy values within the valid range
for a GENIX 4.2 operating system. For example, the g e tp id O call always returns a
fixed number.
The GENIX 4.2 operating system concept of process ID, group ID, user ID, etc., is main­
tained in the DB support library. However, this document does not attempt to define
these concepts. They are relevant only if a program that runs on UNIX or GENIX
operating system is ported to a development board, in which case the user should con­
sult the corresponding development board manuals for a complete description.

2.2.1 Routines that Do Not Require System Calls
The routines listed in Table 2-1 do not require support from the debugger. They are
self-contained, or at most, call routines that are self-contained.

2.2.2 Routines that Use Sim ulated System Calls
The routines listed in Table 2-2 use at least one simulated system call.

2.3 SYSTEM CALL SUMMARIES
This section describes the simulated system calls in the GNX DB support library.
These calls provide the user with a virtual machine very much like the GENIX 4.2 or
UNIX 4.2/4.3 operating systems, so that many user programs and libraries of these sys­
tems can be directly ported to a development board.
All I/O is performed via file descriptors which are small integer numbers. When a pro­
gram starts, the file descriptor 0 is associated with the console terminal in read mode
(i.e., the keyboard) and the file descriptors 1 and 2 are associated to the console termi­
nal in write mode (i.e., the screen). All other file descriptors are undefined or closed.

SYSTEM CALLS 2-3

Table 2-1. Routines that Do Not Require System Calls

ROUTINE SECTION ROUTINE SECTION ROUTINE SECTION
abort 3.2 abs 3.3 asctime 3.6
atof 3.4 atoi 3.4 atol 3.4
bcopy 3.5 bcmp 3.5 bzero 3.5
ceil 3.11 clearerr 3.10 ctime 3.6
ecvt 3.7 fabs 3.11 fcvt 3.7
feof 3.10 ferror 3.10 ffs 3.5
fileno 3.10 floor 3.11 free 3.20
frexp 3.14 gcvt 3.7 gmtime 3.6
index 3.31 insque 3.18 isatty 3.19
ldepx 3.14 localtime 3.6 longjmp 3.30
memccpy 3.21 memchr 3.21 memcmp 3.21
memcpy 3.21 memset 3.21 modf 3.14
perror 3.22 qsort 3.26 random 3.27
re_comp 3.28 re_exec 3.28 remque 3.18
rindex 3.32 setbuf 3.30 setbuffer 3.30
setjmp 3.31 srandom 3.27 strcat 3.32
strchr 3.32 strrchr 3.32 strcmp 3.32
strcpy 3.32 strlen 3.32 strncat 3.32
strncmp 3.32 strncpy 3.32 swab 3.33
sys_errlist 3.22 sys_nerr 3.22

2-4 SYSTEM CALLS

Table 2-2. Routines that Use Simulated System Calls

ROUTINE SECTION ROUTINE SECTION ROUTINE SECTION
calloc 3.20 exit 3.8 fclose 3.9
fdopen 3.12 fflush 3.9 fgetc 3.16
fgets 3.17 fopen 3.12 fprintf 3.21
fputc 3.22 fputs 3.23 fread 3.13
freopen 3.12 fscanf 3.27 fseek 3.15
ftell 3.15 fwrite 3.13 getchar 3.16
gets 3.17 getw 3.16 initstate 3.25
malloc 3.20 printf 3.21 putchar 3.22
puts 3.23 putw 3.22 realloc 3.20
rewind 3.15 scanf 3.27 setlinebuf 3.28
setstate 3.25 sprintf 3.21 sscanf 3.27
timezone 3.6 ungetc 3.32

SYSTEM CALLS 2-5

Programs open files on the host system by using the open () or creat () system calls.
A file is opened with the aid of the debugger. I/O to the file goes through the debugger.
File descriptors higher than 2 are used. Programs can terminate by doing an exit ()
call, which will close all files. The exit call communicates to the debugger, which in
turn informs the user that the program has ended and waits for the next command.
The simulated system calls allow most of the commonly used C library functions to be
used, though some of them have restrictions.
While these simulated system calls and the libraries built on them provide a very easy
and conceptually clean interface, they may be too bulky for applications which do not
require extensive I/O support. For such applications users must trim the library
according to their needs.
The system calls documented here work only in conjunction with the dbg32, idbgl6,
and idbg32 debuggers. The system calls use the debugger to do I/O on the host file
system. For independent programs, users need to make their own routines for I/O.
They can be used as guide lines for making a system-dependent set of routines for any
system. The rest of the library will function correctly as long as the simulated system
calls are replaced with compatible routines.

2-6 SYSTEM CALLS

Close

2.3.1 Close
NAME

close - closes a file
SYNOPSIS

close(fildes)
int fildes;

DESCRIPTION
The close call closes the file on the host system with a descriptor of fildes.
A close of all of the files is automatic on exit, but since there is a limit to the
number of active files per process (the lower of the value returned by getdta-
blesize and the limitations imposed by the host operating system), close is
necessary for programs which deal with many fildes.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and the global integer variable errno is set to indicate the error.

ERRORS
Close fails if:
[EBADF] Fildes is not an active descriptor.

SEE ALSO
open

SYSTEM CALLS 2-7

Creat

2.3.2 Creat
NAME

creat - creates a new file
SYNOPSIS

creat(name, mode)
char *name;

DESCRIPTION
Creat creates a new file on the host system or prepares to rewrite an existing
file called name, given as the address of a null-terminated string. If the file did
not exist, it is given mode mode.
To construct mode, OR the following:

0x400 read by owner
0x200 write by owner
0x100 execute by owner
0x070 read, write, execute by group
0x007 read write, execute by others

If the file did exist, its mode and owner remain unchanged but it is truncated to
0 length. The file is also opened for writing, and its file descriptor is returned.
Syntax of the name depends on the host system, for example, on a UNIX operat­
ing system enter:

creat("/u/user/test/prog.c", 0x777);

and on a VMS operating system enter:
creat("drO:[user,test]prog.c", 0x777):

RETURN VALUE
The value -1 is returned if an error occurs. Otherwise, the call returns a non­
negative descriptor which permits only writing.

2-8 SYSTEM CALLS

Creat (Cont)

ERRORS
Creat will fail and the file will not be created or truncated if one of the following
occurs:
[EPERM] The argument contains a byte with the high-order bit set.
[ENOTDIR] A component of the path prefix is not a directory.
[EACCES] A needed directory does not have search permission.
[EACCES] The file does not exist and the directory in which it is to be

created is not writable.
[EACCES] The file exists, but it is unwritable.
[EISDIR] The file is a directory.
[EMFILE] There are already too many files open.
[EROFS] The named file resides on a read-only file system.
[ENXIO]

SEE ALSO

The file is a character special or block special file, and the asso­
ciated device does not exist.

open, write and close

SYSTEM CALLS 2-9

Exit

2.3.3 _Exit
NAME

e x it - terminates a process
SYNOPSIS

_exit(status)
int status;

DESCRIPTION
_ e x it terminates a process with the following consequences:
All of the descriptors opened in the calling process are closed.
Most C programs call the library routine e x it (see Section 3.8) which performs
cleanup actions before calling _ ex it.

RETURN VALUE
This call never returns.

SEE ALSO
exit in Chapter 3

2-10 SYSTEM CALLS

Getdtablesize

2.3.4 Getdtablesize
NAME

getdtablesize - gets the size of the descriptor table
SYNOPSIS

nds = getdtablesize()
int nds;

DESCRIPTION
Each process has a fixed-size descriptor table which is guaranteed to have at
least 20 slots. The entries in the descriptor table are numbered with small
integers starting at 0. The call getdtablesize returns the size of this table.

SEE ALSO
close and open

SYSTEM CALLS 2-11

Lseek

2.3.5 Lseek
NAME

lseek - moves the read/write pointer
SYNOPSIS

#define L_SET 0
#define LJENCR 1
#define L XTND 2

/* set the seek pointer */
/* increment the seek pointer */
/* extend the file size */

pos = lseek(fildes, offset, whence)
int pos;
int fildes, offset, whence;

DESCRIPTION
The descriptor fildes refers to a file on the host system or device open for reading
and/or writing. Lseek sets the file pointer of fildes as follows:

If whence is L_SET, the pointer is set to offset bytes.
If whence is L_INCR, the pointer is set to its current location plus offset.
If whence is L_XTND, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured in bytes
from the beginning of the file is returned.

Seeking far beyond the end of a file, then writing, creates a gap or “hole,” which
occupies no physical space and reads as zeros.

RETURN VALUE
Upon successful completion, a non-negative integer, the current file pointer
value, is returned. Otherwise, a value of -1 is returned and errno is set to indi­
cate the error.

NOTES

2-12 SYSTEM CALLS

Lseek (Cont)

ERRORS
Lseek fails and the file pointer remains unchanged if:
[EBADF] Fildes is not an open file descriptor.
[EINVAL] Whence is not a proper value.
[EINVALJ

SEE ALSO
The resulting file pointer will be negative.

open

SYSTEM CALLS 2-13

Open

2.3.6 Open
NAME

open - opens a file for reading or writing or creates a new file
SYNOPSIS

#include < s y s /f i le .h >
open(path, f la g s , mode)
char *path;
in t f la g s , mode;

DESCRIPTION
Open opens the file path for reading and/or writing on the host system, as
specified by the flags argument, and returns a descriptor for that file. The flags
argument may indicate that the file is to be created if it does not already exist
(by specifying the 0_CREAT flag), in which case the file is created with mode
mode as described in creat.
Path is the address of a string of ASCII characters representing a pathname, ter­
minated by a null character. To form the flags specified, OR the following values:

o. rdonly
0_WR0NLY
0_RDWR
O.NDELAY
O.APPEND
O.CREAT
O.TRUNC
0_EXCL

opens for reading only
opens for writing only
opens for reading and writing
does not block on open
appends on each write
creates file if it does not exist
truncates size to 0
error if create and file exists

Opening a file with 0_APPEND set appends each write on the file to the end. If
0_TRUNC is specified and the file exists, the file is truncated to zero length. If
0_EXCL is set with 0_CREAT, and the file already exists, the open returns an
error. This can be used to implement a simple exclusive access-locking mechan­
ism. If the 0_NDELAY flag is specified and the open call blocks the process
(e.g., waiting for carrier on a dialup line), the open returns immediately.
Upon successful completion, a non-negative integer termed a “file descriptor” is
returned. The file pointer used to mark the current position within the file is set
to the beginning of the file.

2-14 SYSTEM CALLS

Open (Cont)

No process may have more than getd tab lesizeO file descriptors open simul­
taneously.

ERRORS
The named file is opened unless one or more of the following are true:
[EPERM] The pathname contains a character with the high-order bit set.
[ENOTDIR1
[ENOENT]

A component of the path prefix is not a directory.
0_CREAT is not set and the named file does not exist.

[EACCES]
[EACCES1

A component of the path prefix denies search permission.
The required permissions (for reading and/or writing) are denied
for the named file.

[EISDIR] The named file is a directory, and the arguments specify it is to
be opened for writing.

[EROFS] The named file resides on a read-only file system, and the file is
to be modified.

[EMFILE1 Too many open files.
[ENXIO] The named file is a character special or block special file, and

the device associated with this special file does not exist.
[ETXTBSY]

[EFAULT]
[EEXIST1

SEE ALSO

The file is a pure procedure (shared text) file that is being exe­
cuted, and the open call requests write access.
Path points outside the process’s allocated address space.
0_EXCL has been specified and the file exists.

close, Iseek, read and write

SYSTEM CALLS 2-15

Read

2.3.7 Read
NAME

read - reads input
SYNOPSIS

cc = read(fildes, buf, nbytes)
int cc, fildes;
char *buf;
int nbytes;

DESCRIPTION
Read attempts to read nbytes of data from the object referenced by the descriptor
fildes into the buffer pointed to by buf.
The read starts at a position given by the pointer associated with fildes, see
Iseek . Upon return from read, the pointer is incremented by the number of
bytes actually read.
Upon successful completion, read returns the number of bytes actually read
and placed in the buffer. The system guarantees to read the number of bytes
requested if the descriptor references a file which has that many bytes remain­
ing before the end-of-file, but in no other cases.
If the returned value is 0, then end-of-file has been reached.

RETURN VALUE
If successful, the number of bytes actually read is returned. Otherwise, a -1 is
returned and the global variable errno is set to indicate the error.

ERRORS
Read fails if one or more of the following are true:
[EBADFj Fildes is not a valid file descriptor open for reading.
[EFAULT] Buf points outside the allocated address space.

SEE ALSO
open

2-16 SYSTEM CALLS

Sbrk

2.3.8 Sbrk
NAME

sbrk - allocates memory in heap
SYNOPSIS

char *sbrk(incr)
int incr;

DESCRIPTION
Sbrk allocates incr bytes of memory from the unallocated memory on the
development board between the data area of the program and its stack pointer
and returns the address of the lowest byte in it. Sbrk assumes that writable
memory is continuous and the stack is at the top of memory. Sbrk allocates
the memory block as long as it stays 1024 bytes below the current stack pointer.
Sbrk checks to see if the memory actually exists by writing two different
numbers on the highest byte and reading them back. There is no way to de­
allocate this memory.

RETURN VALUE
Sbrk returns a pointer pointing to the start of the newly allocated area. A value
of -1 is returned if incr bytes cannot be allocated.

ERRORS
Sbrk fails and no additional memory allocates if the following is true:
[ENOMEM] Insufficient memory existed on the board to support the expan­

sion.
SEE ALSO

malloc

SYSTEM CALLS 2-17

Unlink

2.3.9 Unlink
NAME

unlink - removes directory entry of a file
SYNOPSIS

unlink(path)
char *path;

DESCRIPTION
Unlink removes the file on the host system whose name is given by path.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
The unlink succeeds unless:
[EPERM]
[ENOENT1
[ENOTDIR]
[ENOENT]
[EACCES]
[EACCES]

[EPERM]

[EBUSY]

[EROFS]
[EFAULT]
[ELOOP]

The path contains a character with the high-order bit set.
The pathname is too long.
A component of the path prefix is not a directory.
The named file does not exist.
Search permission is denied for a component of the path prefix.
Write permission is denied on the directory containing the link
to be removed.
The named file is a directory and the effective user ID of the pro­
cess is not the superuser.
The entry to be unlinked is the mount point for a mounted file
system.
The named file resides on a read-only file system.
Path points outside the process’s allocated address space.
Too many symbolic links have been encountered in translating
the pathname.

2-18 SYSTEM CALLS

U nlink (Cont)

SEE ALSO
c lo se

SYSTEM CALLS 2-19

Write

2.3.10 Write
NAME

write - writes on a file
SYNOPSIS

write(fildes, buf, nbytes)
int fildes;
char *buf;
int nbytes;

DESCRIPTION
Write attempts to write nbytes of data to the object referenced by the descriptor
fildes from the buffer pointed to by buf.
The write starts at a position given by the pointer associated with fildes, see
Iseek. Upon return from write, the pointer is incremented by the number of
bytes actually written.

RETURN VALUE
Upon successful completion, the number of bytes actually written is returned.
Otherwise, a -1 is returned and errno is set to indicate the error.

ERRORS
Write fails and the file pointer remains unchanged if one or more of the follow­
ing are true:
[EBADFj Fildes is not a valid descriptor open for writing.
[EFBIG] An attempt is made to write a file that exceeds the process’ file

size limit or the maximum file size.
SEE ALSO

Iseek and open

2-20 SYSTEM CALLS

Chapter 3
GNX DB SUPPORT LIBRARY ROUTINES

3.1 INTRODUCTION
This chapter provides a summary of the GNX DB support library routines in alphabeti­
cal order. Notice that in some cases more than one routine is described in a section.
The location and name of this library may vary with each host operating system. For
the location and name of this library, refer to the Series 32000 GNX — Version 3 Com­
mands and Operations Manual.

GNX DB SUPPORT LIBRARY ROUTINES 3-1

ABORT

3.2 ABORT
NAME

abort - generates a fault
SYNOPSIS

abort ()

DESCRIPTION
Abort executes an instruction which is illegal in User mode. This causes a trap
that normally terminates the program execution and returns control to the
debugger with a message “Flag trap (out of range)...”.

SEE ALSO
exit

3 -2 GNX DB SUPPORT LIBRARY ROUTINES

3.3 ABS
NAME

ABS

abs - integer absolute value
SYNOPSIS

abs(i)
int i;

DESCRIPTION
Abs returns the absolute value of its integer operand.

SEE ALSO
fabs in Section 3.11

CAVEATS
Applying the abs function to the most negative integer generates a result which
is the most negative integer. That is,

"abs(0x80000000)"

returns 0x80000000 as a result.

GNX DB SUPPORT LIBRARY ROUTINES 3-3

ATOF

3.4 ATOF
NAME

at of, atoi, atol - convert ASCII to numbers
SYNOPSIS

double atof(nptr)
char *nptr;

atoi(nptr)
char *nptr;

long atoi(nptr)
char *nptr;

DESCRIPTION
These functions convert a string pointed to by nptr to floating, integer, and long
integer representation respectively. The first unrecognized character ends the
string.
Atof recognizes an optional string of spaces, then an optional sign, then a string
of digits optionally containing a decimal point, then an optional e or E followed
by an optionally signed integer.
Atoi and atoi recognize an optional string of spaces, then an optional sign,
then a string of digits.

SEE ALSO
scanf

CAVEATS
There are no provisions for overflow.

3-4 GNX DB SUPPORT LIBRARY ROUTINES

BSTRING

3.5 BSTRING
NAME

bcopy, bcmp, bzero, ffs - bit and byte string operations
SYNOPSIS

bcopy(bl, b2, length)
char *bl, *b2;
in t length;
bcmp(bl, b2, length)
char *bl, *b2;
in t length;
bzero(b, length)
char *b;
in t length;
f f s (i)
in t i ;

D ESC R IPTIO N

The functions bcopy, bcmp, and bzero operate on variable length strings of
bytes. They do not check for null bytes as the routines in string do.
Bcopy copies length bytes from string hi to the string 62.
Bcmp compares byte string hi against byte string 62, returning zero if they are
identical, nonzero otherwise. Both strings are assumed to be length bytes long.
Bzero places length 0 bytes in the string h i .
Ff s finds the first bit set passed it in the argument and returns the index of that
bit. Bits are numbered starting at 1. A return value of -1 indicates the value
passed is zero.

GNX DB SUPPORT LIBRARY ROUTINES 3-5

BSTRING (Cont)

CAVEATS
The bcmp and bcopy routines take parameters backwards from strcmp and
strcpy.

3-6 GNX DB SUPPORT LIBRARY ROUTINES

CTIME

3.6 CTIME
NAME

ctime, localtime, gmtime, asctime, timezone - convert date and time to
ASCII

SYNOPSIS
char *ctim e(clock)
long *clock;
#include < sys/tim e.h >
stru c t tm * loca ltim e(clock)
long *clock;
stru c t tm *gmtime(clock)
long *clock;
char *asctime(tm)
stru c t tm *tm;
char *timezone(zone, dst)

D ESC R IPTIO N
Ctime converts a time pointed to by clock such as returned by time into ASCII
and returns a pointer to a 26-character string in the following form. All fields
have constant width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to structures containing the broken-
down time. Local time corrects for the time zone and possible daylight-saving
time; gmtime converts directly to Greenwich mean time (GMT), which is the
time UNIX operating systems use. Asctime converts a broken-down time to
ASCII and returns a pointer to a 26-character string.

GNX DB SUPPORT LIBRARY ROUTINES 3-7

CTIME (Cont)

The structure declaration from the include file is:
struct tm {

int tm sec;
int tm min;
int tm hour;
int tm mday;
int tm mon;
int tm year;
int tm wday;
int tm yday;
int tm isdst

These quantities give the time on a 24-hour clock, day of month (1-31), month of
year (0-11), day of week (Sunday = 0), year (19xx), day of year (0-365), and a flag
that is nonzero if daylight-saving time is in effect.
When local time is called for, the program consults the system to determine the
time zone and whether the U.S.A., Australian, Eastern European, Middle Euro­
pean, or Western European daylight-saving time adjustment is appropriate. The
program knows about various peculiarities in time conversion over the past
10-20 years; if necessary, this understanding can be extended.
Time zone returns the name of the time zone associated with its first argument,
which is measured in minutes westward from Greenwich. If the second argu­
ment is 0, the standard name is used; otherwise, the daylight-saving version is
used. If the required name does not appear in a table built into the routine, the
difference from GMT is produced; e.g. , in Afghanistan, time zone (-(60*4+30),0)
is appropriate because it is four hours and thirty minutes (4:30) ahead of GMT,
and the string GMT+4 : 30 is produced.

3-8 GNX DB SUPPORT LIBRARY ROUTINES

ECVT

3.7 ECVT
NAM E

ecvt, fcvt, gcvt - output conversion
SY N O PSIS

c h a r * e c v t (v a l u e , n d i g i t , d e c p t , s i g n)
d o u b l e v a l u e ;
i n t n d i g i t , * d e c p t , * s i g n ;
c h a r * f c v t (v a l u e , n d i g i t , d e c p t , s i g n)
d o u b l e v a l u e ;
i n t n d i g i t , * d e c p t , * s i g n ;
c h a r * g c v t (v a l u e , n d i g i t , b u f)
d o u b l e v a l u e ;
c h a r * b u f ;

D E SC R IPT IO N
Ecvt converts the value to a null-terminated string of ndigit ASCII digits and
returns a pointer to that string. The position of the decimal point relative to the
beginning of the string is stored indirectly through decpt (negative means to the
left of the returned digits). If the sign of the result is negative, the word pointed
to by sign is nonzero, otherwise it is zero. The low-order digit is rounded.
Fcvt is identical to ecvt, except that the correct digit has been rounded for
FORTRAN F format output of the number of digits specified by ndigits.
Gcvt converts the value to a null-terminated ASCII string in buf and returns a
pointer to buf. It attempts to produce ndigit significant digits in FORTRAN F
format if possible (otherwise E format) ready for printing. Trailing zeros may be
suppressed.

SEE ALSO
printf

CAVEATS
The return values point to static data whose content is overwritten by each call.

GNX DB SUPPORT LIBRARY ROUTINES 3-9

EXIT

3.8 EXIT
NAME

exit - terminates a process after flushing any pending output
SY N O PSIS

exit(status)
int status;

D E SC R IPT IO N
Exit terminates a process after calling the library function fflush to flush any
buffered output. Exit never returns.

3-10 GNX DB SUPPORT LIBRARY ROUTINES

3.9 FCLOSE
NAM E

FCLOSE

fclose, f flush - close or flush a stream
SY N O PSIS

i n c l u d e < s t d i o . h >

f c l o s e (s t r e a m)
F I L E * s t r e a m ;

f f l u s h (s t r e a m)
F I L E * s t r e a m ;

D E SC R IPTIO N
Fclose causes any buffers for the named stream to be emptied and the file to be
closed. Buffers allocated by the standard input/output system are freed.
Fclose is performed automatically upon calling exit.
Fflush causes any buffered data for the named output stream to be written to
that file. The stream remains open.

SEE ALSO
fopen and setbuf

DIAG NO STICS
These routines return EOF if stream is not associated with an output file or if
buffered data cannot be transferred to that file.

GNX DB SUPPORT LIBRARY ROUTINES 3-11

FER R O R

3.10 FERROR
NAME

ferror, feof, clearerr, fileno - stream status inquiries
SY N O PSIS

i n c l u d e < s t d i o . h >

f e o f (s t r e a m)
F I L E * s t r e a m ;

f e r r o r (s t r e a m)
F I L E * s t r e a m

c l e a r e r r (s t r e a m)
F I L E * s t r e a m

f i l e n o (s t r e a m)
F I L E * s t r e a m ;

D E SC R IPTIO N
Feof returns nonzero when end-of-file is read on the named input stream , other­
wise it returns zero.
Ferror returns nonzero when an error has occurred reading or writing the
named stream , otherwise it returns zero. Unless cleared by clearerr, the
error indication lasts until the stream is closed.
Clearerr resets the error indication on the named stream .
Fileno returns the integer file descriptor associated with the stream , see open.
These functions are implemented as macros in ldfcn.h; they cannot be rede­
clared.

SEE ALSO

fopen and open

3-12 GNX DB SUPPORT LIBRARY ROUTINES

FLOOR

3.11 FLOOR
NAME

fabs, floor, ceil - absolute value, floor, ceiling functions
SYNOPSIS

#include <math.h>

double floor(x)
double x;

double ceil(x)
double x;

double fabs(x)
double x;

DESCRIPTION
Fabs returns the absolute value I x I.
Floor returns the largest integer not greater than*.
Ceil returns the smallest integer not less than x .

SEE ALSO
abs

GNX DB SUPPORT LIBRARY ROUTINES 3-13

FOPEN

3.12 FOPEN
NAME

fopen, freopen, fdopen - open a stream
SYNOPSIS

#include <stdio.h>

FILE *fopen(filename, type)
char *filename, *type;

FILE *freopen(filename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen(fildes, type)
char *type;

DESCRIPTION
Fopen opens the file named by filename and associates a stream with it. Fopen
returns a pointer to be used to identify the stream in subsequent operations.
Type is a character string having one of the following values:

r opens for reading,
w creates for writing.
a appends: open for writing at end-of-file, or create for writing.

In addition, each type may be followed by a “+” to have the file opened for read­
ing and writing. The r+ positions the stream at the beginning of the file, w+
creates or truncates it, and a+ positions it at the end. Both reads and writes
may be used on read/write streams, with the limitation that an f seek, rewind,
or reading an end-of-file must be used between a read and a write or vice-versa.
Freopen substitutes the named file in place of the open stream. It returns the
original value of stream . The original stream is closed.
Freopen is typically used to attach the preopened constant names, stdin,
stdout, stderr, to specified files.
Fdopen associates a stream with a file descriptor obtained from open, or
creat. The type of the stream must agree with the mode of the open file.

3-14 GNX DB SUPPORT LIBRARY ROUTINES

FOPEN (Cont)

SEE ALSO
fclose

DIAGNOSTICS
Fopen and f reopen return the null pointer if filename cannot be accessed.

GNX DB SUPPORT LIBRARY ROUTINES 3-15

FREAD

3.13 FREAD
NAME

fread, fwrite - buffered binary input/output
SYNOPSIS

#include <stdio.h>

fread(ptr, sizeof(*ptr), nitems, stream)
FILE *stream;

fwrite(ptr, sizeof(*ptr), nitems, stream)
FILE *stream;

DESCRIPTION
Fread reads, into a block beginning at ptr, nitems of data of the type *ptr from
the named input stream . It returns the number of items actually read.
If stream is stdin and the standard output is line buffered, then any partial
output line will be flushed before any call to read to satisfy the fread.
Fwrite appends at most nitems of data of the type *ptr beginning at ptr to the
named output stream. It returns the number of items actually written.

SEE ALSO
fopen, getc, putc, gets, pu ts, printf, scanf

DIAGNOSTICS
Fread and fwrite return 0 upon end-of-file or error.

3-16 GNX DB SUPPORT LIBRARY ROUTINES

FREXP

3.14 FREXP
NAME

frexp, ldexp, modf - split into mantissa and exponent
SYNOPSIS

double frexp(value, eptr)
double value;
int *eptr;

double ldexp(value, exp)
double value;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION
Frexp returns the mantissa of a double value as a double quantity (x) of magni­
tude less than 1 and stores an integer n such that value = x*2n indirectly
through eptr.
Ldexp returns the quantity value * 2exP.
Modf returns the positive fractional part of value and stores the integer part
indirectly through iptr.

GNX DB SUPPORT LIBRARY ROUTINES 3-17

FSEEK

3.15 FSEEK
NAME

fseek, ftell, rewind - reposition a stream
SYNOPSIS

ffinclude <stdio.h>

fseek(stream, offset, ptrname)
FILE *stream;
long offset;

long ftell(stream)
FILE *stream;

rewind (stream)
FILE *stream;

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream . The
new position is at the signed distance offset bytes from the beginning, the current
position, or the end of the file, if ptrname has the value 0, 1, or 2.
Fseek undoes any effects of ungetc.
Ftell returns the current value of the offset relative to the beginning of the file
associated with the named stream . It is measured in bytes.
Rewind(s£reara) is equivalent to fseek {stream, OL, 0).

SEE ALSO
fopen

DIAGNOSTICS
Fseek returns -1 for improper seeks.

3-18 GNX DB SUPPORT LIBRARY ROUTINES

GETC

3.16 GETC
NAME

getc, get char, fgetc, getw - get character or word from stream
SYNOPSIS

#include <stdio.h>

int getc(stream)
FILE *stream;

int getchar()

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE *stream;

DESCRIPTION
Getc returns the next character from the named input stream.

GetcharO is identical to getc (stdin).
Fgetc behaves like getc but is a genuine function, not a macro; it may be used
to save object text.
Getw returns the next word (in a 32-bit integer) from the named input stream .
It returns the constant EOF upon end-of-file or error, but since that is a good
integer value, feof should be used to check the success of getw. Getw
assumes no special alignment in the file.

SEE ALSO
fopen, putc , scanf, fread , ungetc

DIAGNOSTICS
These functions return the integer constant EOF at end-of-file or upon read
error.

GNX DB SUPPORT LIBRARY ROUTINES 3-19

GETC (Cont)

CAVEATS
The end-of-file return from get char is incompatible with that in UNIX editions 1 through 6.
Because it is implemented as a macro, getc treats a stream argument with side
effects incorrectly. In particular, the getc (*f+ +) ; expression is not equivalent
to the ch=*f++;getc(ch) expression.

3-20 GNX DB SUPPORT LIBRARY ROUTINES

3.17 GETS
NAME

GETS

gets, fgets - get a string from a stream
SYNOPSIS

#include <stdio.h>

char *gets(s)
char *s;

char *fgets(s, n, stream)
char *s;
FILE *stream;

DESCRIPTION
Gets reads a string into s from the standard input stream stdin. The string is
terminated by a newline character, which is replaced in s by a null character.
Gets returns its argument.
Fgets reads n -1 characters or up to a newline character, whichever comes first,
from the stream into the string s . The last character read into s is followed by a
null character. Fgets returns its first argument.

SEE ALSO
puts , getc, scanf, and fread,

DIAGNOSTICS
Gets and fgets return the constant null pointer upon end-of-file or error.

CAVEATS
Gets deletes a newline, fgets keeps it.

GNX DB SUPPORT LIBRARY ROUTINES 3-21

INSQUE

3.18 INSQUE
NAME

insque, remque - insert/remove element from a queue
SYNOPSIS

struct qelem
struct
struct
char

};
insque(elem,
struct qelem

remque(elem)
struct qelem

DESCRIPTION
Insque and remque manipulate queues built from double-linked lists. Each
element in the queue must be in the form of struct qelem. Insque inserts
elem in a queue immediately after pred\ remque removes an entry elem from a
queue.

{
qelem *q_forw;
qelem *q_back;
qw data [] ;

pred)
*elem, *pred;

*elem;

3-22 GNX DB SUPPORT LIBRARY ROUTINES

3.19 ISATTY
NAME

ISATTY

is a t ty - finds name of a terminal
SYNOPSIS

isatty(filedes)

DESCRIPTION
Isa tty returns 1 if filedes is associated with a stdin, stdout or stderr; otherwise,
it returns 0.

GNX DB SUPPORT LIBRARY ROUTINES 3-23

MALLOC

3.20 MALLOC
NAME

malloc, free, realloc, ca 11 oc - memory allocator
SYNOPSIS

char *malloc(size)
unsigned size;

free(ptr)
char *ptr;

char *realloc(ptr, size)
char *ptr;
unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION
Malloc and free provide a simple general-purpose memory allocation package.
Malloc returns a pointer to a block of at least size bytes beginning on a word
boundary.
The argument to free is a pointer to a block previously allocated by malloc;
this space is made available for further allocation, but its contents are left undis­
turbed. (Severe disorder will result if the space assigned by malloc is overrun
or if some random number is handed to free.)
Malloc maintains multiple lists of free blocks according to size, allocating space
from the appropriate list. It calls sbrk (see sbrk) to get more memory from
the system when there is no suitable space already free.
Realloc changes the size of the block pointed to by ptr to size bytes and returns
a pointer to the (possibly moved) block. The contents will be unchanged up to
the lesser of the new and old sizes.
For compatibility with older versions, realloc also works if ptr points to a
block freed since the last call of malloc, realloc, or calloc.
Calloc allocates space for an array of nelem elements of size elsize. The space
is initialized to zeros.

3-24 GNX DB SUPPORT LIBRARY ROUTINES

MALLOC (Cont)

Each of the allocation routines returns a pointer to a space suitably aligned
(after possible pointer coercion) for storage of any type of object.

DIAGNOSTICS
Malloc, realloc, and calloc return a null pointer (0) if there is no available
memory or if the arena has been detectably corrupted by storing outside the
bounds of a block. Malloc may be recompiled to check the arena very
stringently on every transaction; those sites with a source code license may
check the source code to see how this can be performed.

CAVEATS
When realloc returns 0, the block pointed to by ptr may be destroyed.

GNX DB SUPPORT LIBRARY ROUTINES 3-25

MEMORY

3.21 MEMORY
NAME

memccpy, memchr, memcmp, memcpy, memset - memory operations
SYNOPSIS

#include <memory.h>

char *memccpy (sl, s2, c, n)
char *sl, *s2;
int c, n ;

char *memchr (s, c, n)
char *s;
int c, n;

int memcmp (sl, s2, n)
char *sl, *s2;
int n;

char *memcpy (sl, s2, n)
char *sl, *s2;
int n;

char *memset (s, c, n)
char *s;
int c, n ;

DESCRIPTION
These functions operate as efficiently as possible on memory areas (arrays of
characters bounded by a count, not terminated by a null character). They do not
check for the overflow of any receiving memory area.
Memccpy copies characters from memory area s2 into sl, stopping after the
first occurrence of character c has been copied, or after n characters have been
copied, whichever comes first. It returns a pointer to the character after the
copy of c in sl, or a null pointer if c has not been found in the first n charac­
ters of s2.
Memchr returns a pointer to the first occurrence of character c in the first n
characters of memory area s, or a null pointer if c does not occur.

3-26 GNX DB SUPPORT LIBRARY ROUTINES

MEMORY (Cont)

Memcmp compares its arguments, looking at the first n characters only, and
returns an integer less than, equal to, or greater than 0, if an s i is lexicographi­
cally less than, equal to, or greater than s2.
Memcpy copies n characters from memory area s2 to si. It returns si.
Memset sets the first n characters in memory area s to the value of character
c. It returns s.
For user convenience, all these functions are declared in the optional
cmemory. h> header file.

GNX DB SUPPORT LIBRARY ROUTINES 3-27

PERROR

3.22 PERROR
NAME

perror, sys_errlist, sys_nerr - system error messages
SYNOPSIS

perror(s)
char *s;

int sys_nerr;
char *sys_errlist[];

DESCRIPTION
On the Standard error file, perror produces a short error message describing
the last error encountered during a call to the system from a C program. First
the argument string s is printed, then a colon, then the message and a new-line.
The argument string is the name of the program which incurred the error. The
error number is taken from the external variable errno, which is set when errors
occur but not cleared when non-erroneous calls are made.
To simplify variant formatting of messages, the vector of message strings
sys_errlist is provided; errno can be used as an index in this table to get the mes­
sage string without the new-line. Sys_nerr is the number of messages provided
for in the table; it should be checked because new error codes may be added to
the system before they are added to the table.

3-28 GNX DB SUPPORT LIBRARY ROUTINES

PRINTF

3.23 PRINTF
NAME

printf, fprintf, sprintf - formatted output conversion
SYNOPSIS

#include <stdio.h>

printf(format [, arg] ...)
char *format;

fprintf(stream, format [, arg] ...)
FILE *stream;
char *format;

sprintf(s, format [, arg] ...)
char *s, format;

DESCRIPTION
Printf places output on the standard output stream stdout. Fprintf
places output on the named output stream. Sprintf places “output” in the
string s, followed by the “\0 ” character.
Each of these functions converts, formats, and prints its arguments after the
first argument under control of the format argument. The format argument is a
character string which contains two types of objects: plain characters, which are
simply copied to the output stream, and conversion specifications, each of which
causes conversion and printing of the next successive arg.
Each conversion specification is introduced by the character %. Following the %,
there may be

• An optional minus sign which specifies left adjustment of the converted
value in the indicated field.

• An optional digit string specifying a field width; if the converted value has
fewer characters than the field width, it will be blank-padded on the left (or
right, if the left-adjustment indicator has been given) to make up the field
width; if the field width begins with a zero, zero-padding will be performed
instead of blank-padding.

GNX DB SUPPORT LIBRARY ROUTINES 3-29

PRINTF (Cont)

In no case does a non-existent or small field width cause truncation of a
field; padding takes place only if the specified field width exceeds the actual
width. Characters generated by print f are printed by putc.

• An optional period which serves to separate the field width from the
next digit string.

• An optional digit string specifying a precision which specifies the number of
digits to appear after the decimal point, for e- and f-conversion, or the max­
imum number of characters to be printed from a string.

• An optional “#” character specifying that the value should be converted to
an alternate form. For c, d, s, and u conversions, this option has no
effect. For o conversions, the precision of the number is increased to force
the first character of the output string to a zero. For x (X) conversion, a
nonzero result has the string Ox (OX) added to the front. For e, E, f, g,
and G conversions, the result will always contain a decimal point, even if
no digits follow the point (normally, a decimal point appears only in the
results of those conversions if a digit follows the decimal point). For g and
G conversions, trailing zeros are not removed from the result as they would
otherwise be.

• The character 1 specifying that a following d, o, x, or u corresponds to a
long integer arg.

• A character which indicates the type of conversion to be applied.
A field width or precision may be instead of a digit string. In this case, an
integer arg supplies the field width or precision.
The conversion characters and their meanings are:

dox The integer arg is converted to decimal, octal, or hexadecimal nota­
tion respectively.

f The float or double arg is converted to decimal notation in the style
“ [-] ddd. ddd” where the number of d’s after the decimal point is
equal to the precision specification for the argument. If the precision
is missing, 6 digits are given; if the precision is explicitly 0, no digits
and no decimal point are printed.

e The float or double arg is converted in the style “ [-] d. ddde±dd”
where there is one digit before the decimal point and the number
after is equal to the precision specification for the argument; when the
precision is missing, 6 digits are produced.

g The float or double arg is printed in style d, in style f, or in style e,
whichever gives full precision in minimum space.

3-30 GNX DB SUPPORT LIBRARY ROUTINES

PRINTF (Cont)

c The character arg is printed.
s Arg is taken to be a string (character pointer), and characters from

the string are printed until a null character or until the number of
characters indicated by the precision specification is reached; how­
ever, if the precision is 0 or missing, all characters up to a null are
printed.

u The unsigned integer arg is converted to decimal and printed (the
result will be in the range 0 through MAXUINT, where MAXUINT
equals 4294967295 on a VAX-11 and 65535 on a PDP-11).

% Print a percent sign; no argument is converted.

Example: To print a date and time in the form Sunday, July 3, 10 :02, where
weekday and month are pointers to null-terminated strings:

printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min);

To print k to 5 decimals:
printf("pi = %.5f", 4*atan (1.0));

SEE ALSO
putc , scanf, ecvt

CAVEATS
Very wide fields (>128 characters) fail.

GNX DB SUPPORT LIBRARY ROUTINES 3-31

PUTC

3.24 PUTC
NAME

putc, putchar, fputc, putw - put character or word on a stream
SYNOPSIS

#include <stdio.h>

int putc(c, stream)
char c;
FILE *stream;

putchar(c)

fputc(c, stream)
FILE *stream;

putw(w, stream)
int w;
FILE *stream;

DESCRIPTION
Putc appends the character c to the named output stream. It returns the char­
acter written.
Putchar (c) is defined as putc (c, stdout) .
Fputc behaves like putc, but is a genuine function rather than a macro.
Putw appends word (that is, int) w to the output stream . It returns the word
written. Putw neither assumes nor causes special alignment in the file.

SEE ALSO
fopen, fclose, getc, puts , printf, fread

DIAGNOSTICS
These functions return the constant EOF upon error.

3-32 GNX DB SUPPORT LIBRARY ROUTINES

PUTC (Cont)

CAVEATS
Because it is implemented as a macro, putc improperly treats a stream argu­
ment with side effects. In particular,

putc(c, *f++);

doesn’t work logically.
Errors can occur long after the call to putc.

GNX DB SUPPORT LIBRARY ROUTINES 3-33

PUTS

3.25 PUTS
NAME

puts, fputs - put a string on a stream
SYNOPSIS

#include <stdio.h>

puts(s)
char *s;

fputs(s, stream)
char *s;
FILE *stream;

DESCRIPTION
Puts copies the null-terminated string s to the standard output stream stdout
and appends a newline character.
Fput s copies the null-terminated string s to the named output stream.
Neither routine copies the terminal null character.

fopen, gets, putc, printf, and fwrite
CAVEATS

Puts appends a newline, fputs does not.

3-34 GNX DB SUPPORT LIBRARY ROUTINES

QSORT

3.26 QSORT
NAME

qsort - quicker sort
SYNOPSIS

qsort(base, nel, width, compar)
char *base;
int nel,width;
int (*compar)();

DESCRIPTION
Qsort is an implementation of the quicker sort algorithm. The first argument is
a pointer to the base of the data, the second is the number of elements, the third
is the width of an element in bytes, and the last is the name of the comparison
routine to be called. Qsort contains two arguments which are pointers to the
elements being compared. The routine must return an integer less than, equal
to, or greater than 0 according to whether the first argument is less than, equal
to, or greater than the second.

GNX DB SUPPORT LIBRARY ROUTINES 3-35

RANDOM

3.27 RANDOM
NAME

random, srandom, initstate, setstate - random number generator; rou­
tines for changing generators

SYNOPSIS
long random ()

srandom(seed)
int seed;

char *initstate(seed, state, n)
unsigned seed;
char *state;
int n ;

char *setstate(state)
char *state;

DESCRIPTION
Random uses a nonlinear additive feedback random number generator employing
a default table of size 31 long integers to return successive pseudo-random
numbers in the range of 0 to 231-1. The period of this random number generator
is very large, approximately 16*(231-1).
All the bits generated by random are usable. For example, random () & 01 will
produce a random binary value.
Random will by default produce a sequence of numbers that can be duplicated by
calling srandom with 1 as the seed.
The initstate routine allows a state array, passed in as an argument, to be ini­
tialized for future use. The size of the state array (in bytes) is used by init­
state to decide how sophisticated a random number generator it should use -
the more state, the better the random numbers will be. (Current “optimal”
values for the amount of state information are 8, 32, 64, 128, and 256 bytes;
other amounts will be rounded down to the nearest known amount. Using less
than 8 bytes will cause an error.) The seed for the initialization (which specifies
a starting point for the random number sequence and provides for restarting at
the same point) is also an argument. Initstate returns a pointer to the pre­
vious state information array.

3-36 GNX DB SUPPORT LIBRARY ROUTINES

RANDOM (Cont)

Once a state has been initialized, the set state routine provides for rapid
switching between states. Set state returns a pointer to the previous state
array; its argument state array is used for further random number generation
until the next call to initstate or setstate.
Once a state array has been initialized, it may be restarted at a different point
either by calling initstate (with the desired seed, the state array, and its
size), or by calling both setstate (with the state array) and srandom (with
the desired seed). The advantage of calling both setstate and srandom is
that the size of the state array does not have to be remembered after it is initial­
ized.
With 256 bytes of state information, the period of the random number generator
is greater than 269, which should be sufficient for most purposes.

DIAGNOSTICS
If initstate is called with less than 8 bytes of state information, or if set-
state detects that the state information has been garbled, error messages are
printed on the standard error output.

GNX DB SUPPORT LIBRARY ROUTINES 3-37

REGEX

3.28 REGEX
NAME

re_comp, re_exec - regular expression handler
SYNOPSIS

char *re_comp(s)
char *s;

re_exec(s)
char *s;

DESCRIPTION
Re_comp compiles a string into an internal form suitable for pattern matching.
Re_exec checks the argument string against the last string passed to re_comp.
Re_comp returns 0 if the string s is compiled successfully; otherwise a string
containing an error message is returned. If re_comp is passed 0 or a null
string, it returns without changing the currently compiled regular expression.
Re_exec returns 1 if the string s matches the last compiled regular expression,
0 if the string s failed to match the last compiled regular expression, and -1 if
the compiled regular expression is invalid (indicating an internal error).
The strings passed to both re_comp and re_exec may have trailing or embed­
ded newline characters; they are terminated by nulls.

DIAGNOSTICS
Re exec returns -1 for an internal error.

3-38 GNX DB SUPPORT LIBRARY ROUTINES

REGEX (Cont)

Re_comp returns one of the following strings if an error occurs:
No previous regular expression,
Regular expression too long,
unmatched \(,
missing],
too many \(\) pairs,
unmatched \).

GNX DB SUPPORT LIBRARY ROUTINES 3-39

SCANF

3.29 SCANF
NAME

scanf, fscanf, sscanf - formatted input conversion
SYNOPSIS

#include <stdio.h>

scanf(format [, pointer] ...)
char *format;

fscanf(stream, format [, pointer] ...)
FILE *stream;
char *format;

sscanf(s, format [, pointer] ...)
char *s, *format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from the
named input stream. Sscanf reads from the character string s. Each func­
tion reads characters, interprets them according to a format, and stores the
results in its arguments. Each expects arguments as a control string format,
described below, and a set of pointer arguments indicating where the converted
input should be stored.
The control string normally contains conversion specifications, which are used to
direct interpretation of input sequences. The control string may contain:

1. Blanks, tabs, or newlines, which match optional white space in the
input.

2. An ordinary character (not %) which must match the next character
of the input stream.

3. Conversion specifications, consisting of the character %, an optional
assignment suppressing character *, an optional numerical max­
imum field width, and a conversion character.

3-40 GNX DB SUPPORT LIBRARY ROUTINES

SCANF (Cont)

A conversion specification directs the conversion of the next input field; the
result is placed in the variable pointed to by the corresponding argument, unless
assignment suppression has been indicated by *. An input field is defined as a
string of nonspace characters; it extends to the next inappropriate character or
until the field width, if specified, is exhausted.
The conversion character indicates the interpretation of the input field; the
corresponding pointer argument must normally be of a restricted type. The fol­
lowing conversion characters are legal:

% a single is expected in the input at this point; no assignment is
performed.

d a decimal integer is expected; the corresponding argument should be
an integer pointer.

o an octal integer is expected; the corresponding argument should be an
integer pointer.

x a hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

s a character string is expected; the corresponding argument should be
a character pointer pointing to an array of characters large enough to
accept the string and a terminating “\ 0 w h i c h will be added. The
input field is terminated by a space character or a newline.

c a character is expected; the corresponding argument should be a char­
acter pointer. The normal skip over space characters is suppressed in
this case; to read the next nonspace character, try “%ls.” If a field
width is given, the corresponding argument should refer to a charac­
ter array, and the indicated number of characters is read.

f or e
a floating-point number is expected; the next field is converted accord­
ingly and stored through the corresponding argument, which should
be a pointer to a float. The input format for floating-point numbers is
an optionally signed string of digits, possibly containing a decimal
point, followed by an optional exponent field consisting of an E or e
followed by an optionally signed integer.

[indicates a string not to be delimited by space characters. The left
bracket is followed by a set of characters and a right bracket; the
characters between the brackets define a set of characters making up
the string. If the first character is not circumflex ("), the input field is
all characters until the first character not in the set between the
brackets. If the first character after the left bracket is ", the input
field is all characters until the first character which is in the

GNX DB SUPPORT LIBRARY ROUTINES 3-41

SCANF (Cont)

remaining set of characters between the brackets. The corresponding
argument must point to a character array.

The conversion characters d, o, and x may be capitalized or preceded by 1 to
indicate that a pointer to long rather than to int is in the argument list.
Similarly, the conversion characters e or f may be capitalized or preceded by
1 to indicate a pointer to double rather than to float. The conversion char­
acters d, o, and x may be preceded by h to indicate a pointer to short rather
than to int.
The scanf functions return the number of successfully matched and assigned
input items. This can be used to decide how many input items have been found.
The constant EOF is returned upon end-of-input; note that this is different from
0, which means that no conversion has been performed; if conversion had been
intended, it has been frustrated by an inappropriate character in the input.
For example, the call

int i; float x; char name[50];
scanf("%d%f%s", &i, &x, name);

with the input line
25 54.32E-1 thompson

will assign to i the value 25, x the value 5.432, and name will contain thomp-
son\0. Or,

int i; float x; char name[50];
scanf("%2d%f%*d%[1234567890]", &i, &x, name);

with input
56789 0123 56a72

will assign 56 to i, 789.0 to x, skip “0123,” and place the string 56\0 in name.
The next call to getchar will return a.

SEE ALSO
atof, getc, printf

3-42 GNX DB SUPPORT LIBRARY ROUTINES

SCANF (Cont)

DIAGNOSTICS
The scanf functions return EOF on end-of-input and a short count for missing
or illegal data items.

CAVEATS
The success of literal matches and suppressed assignments is not directly deter­
minable.

GNX DB SUPPORT LIBRARY ROUTINES 3-43

SETBUF

3.30 SETBUF
NAME

setbuf, setbuffer, setlinebuf - assign buffering to a stream
SYNOPSIS

#include <stdio.h>

setbuf(stream, buf)
FILE *stream;
char *buf;

setbuffer(stream, buf, size)
FILE *stream;
char *buf;
int size;

setlinebuf (streaun)
FILE *stream;

DESCRIPTION
The three types of buffering available are unbuffered, block buffered, and line
buffered. When an output stream is unbuffered, information appears on the des­
tination file or terminal as soon as written; when it is block buffered, many char­
acters are saved up and written as a block; when it is line buffered, characters
are saved up until a newline is encountered or input is read from stdin.
Fflush (see fclose) may be used to force the block out early. Normally all
files are block buffered. A buffer is obtained from malloc upon the first getc
or putc on the file. If the standard stream stdout refers to a terminal, it is
line buffered. The standard stream stderr is always unbuffered.
Setbuf is used after a stream has been opened but before it is read or written.
The character array buf is used instead of an automatically allocated buffer. If
buf is the constant null pointer, input/output will be completely unbuffered. A
manifest constant BUFSIZ tells how big an array is needed:

char buf[BUFSIZ];

3-44 GNX DB SUPPORT LIBRARY ROUTINES

SETBUF (Cont)

Setbuffer, an alternate form of setbuf, is used after a stream has been
opened but before it is read or written. The character array buf whose size is
determined by the size argument is used instead of an automatically allocated
buffer. If buf is the constant null pointer, input/output will be completely
unbuffered.
Setlinebuf is used to change stdout or stderr from block buffered or unbuffered
to line buffered. Unlike setbuf and setbuf fer, it can be used at any time
that the file descriptor is active.
A file can be changed from unbuffered or line buffered to block buffered by using
freopen (see f open). A file can be changed from block buffered or line buffered
to unbuffered by using freopen followed by setbuf with a buffer argument of
null.

SEE ALSO
fopen, getc, putc , malloc, fclose, pu ts , printf, fread

CAVEATS
The standard error stream should be line buffered by default.

GNX DB SUPPORT LIBRARY ROUTINES 3-45

SETJMP

3.31 SETJMP
NAME

set jmp, longjmp - nonlocal goto
SYNOPSIS

i n c l u d e < s e t j m p . h >
s e t j m p (e n v)
j m p _ b u f e n v ;

l o n g j m p (e n v , v a l)
j m p _ b u f e n v ;

DESCRIPTION
These routines are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.
Set jmp saves its stack environment in env for later use by longjmp. It
returns value 0.
Longjmp restores the environment saved by the last call of set jmp. It then
returns in such a way that execution continues as if the call of set jmp had just
returned the value val to the function that invoked set jmp. (Set jmp must not
have returned in the interim.) All accessible data have values as soon as
longjmp is called.

CAVEATS
Set jmp does not save current notion of whether the process is executing on the
user stack or interrupt stack. If set jmp and long jmp are performed while the
process is executing on different stacks, the result will be unpredictable.

3-46 GNX DB SUPPORT LIBRARY ROUTINES

STRING

3.32 STRING
NAME

index, rindex, strcat, strncat, strcmp, strncrap, strcpy, strncpy,
strlen, strchr, strrehr - string operations

SYNOPSIS
#include <strings.h>

char *strcat(sl, s2)
char *sl, *s2;

char *strncat(sl, s2, n)
char *sl, *s2;

strcmp(sl, s2)
char *sl, *s2;

strncmp(sl, s2, n)
char *sl, *s2;

char *strcpy(sl, s2)
c h a r * s l , *s 2 ;

char *rindex(s, c)
char *s, c;

DESCRIPTION
These functions operate on null-terminated strings. They do not check for
overflow of any receiving string.
Strcat appends a copy of string s2 to the end of string s l . Strncat copies at
most n characters. Both return a pointer to the null-terminated result.
Strcmp compares its arguments and returns an integer greater than, equal to,
or less than 0, if an sl is lexicographically greater than, equal to, or less than s2.
Strncmp makes the same comparison but looks at most n characters.
Strcpy copies string s2 to sl, stopping after the null character has been moved.
Strncpy copies exactly n characters, truncating or null-padding s2; the target
may not be null-terminated if the length of s2 is n or more. Both return s l .

char *strncpy(sl, s2, n)
char *sl, *s2;

strlen(s)
char *s;

char *strchr(s, c)
char *s, c;

char *strrchr(s, c)
char *s, c;

char *index(s, c)
c har *s , c;

GNX DB SUPPORT LIBRARY ROUTINES 3-47

STRING (Cont)

Strien returns the number of non-null characters in s.
Strchr (strrchr) returns a pointer to the first (last) occurrence of character c in
string s, or zero if c does not occur in the string. The null character terminating
a string is considered to be part of the string.
Index (rindex) returns a pointer to the first (last) occurrence of character c in
string s, or zero if c does not occur in the string.

3-48 GNX DB SUPPORT LIBRARY ROUTINES

SWAB

3.33 SWAB
NAME

swab - swaps bytes
SYNOPSIS

swab(from, to, nbytes)
char *from, *to;

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the position pointed to by to,
exchanging adjacent even and odd bytes. It is useful for carrying binary data
between PD Pll’s and other machines. Nbytes should be even.

GNX DB SUPPORT LIBRARY ROUTINES 3-49

UNGETC

3.34 UNGETC
NAME

ungetc - pushes character back into input stream
SYNOPSIS

#include <stdio.h>

ungetc(c, stream)
FILE *stream;

DESCRIPTION
Ungetc pushes the character c back on an input stream. That character will be
returned by the next getc call on that stream. Ungetc returns c.
One character of pushback is guaranteed provided something has been read
from the stream and the stream is actually buffered. Attempts to push EOF are
rejected.
Fseek erases all memory of pushed back characters.

SEE ALSO
getc, setbuf, fseek

DIAGNOSTICS
Ungetc returns EOF if it can’t push a character back.

3-50 GNX DB SUPPORT LIBRARY ROUTINES

Chapter 4
FLOATING-POINT LIBRARY

4.1 INTRODUCTION
This chapter describes the single-precision and double-precision math library functions
for the NS32081 and NS32381 floating-point units. The math libraries, libm.a,
libXm.a, lib381m.a, and libX3 81m.a contain the same standard math functions.
The functions in libm.a and libXm.a support the NS32081 floating-point unit. The
functions in lib381m.a and libX381m.a support the NS32381 floating-point unit.
Throughout this manual, the term “math library” refers to libm.a, libXm.a,
lib381m.a, and libX381m.a.
There are separate implementations for single-precision and double-precision floating­
point arithmetic. The names of the double-precision functions are listed below; the
names of the single-precision functions are the same as the double-precision functions
prefixed with an f. For example, the single-precision version of sin is fsin. There
is one exception to this naming convention, next double (double-precision) and
next float (single-precision).

acos cabs drem floor loglp rint
acosh cbrt erf fmod log2 sin
asin ceil exp fmodf neg sinh
asinh compound exp2 hypot Pi sqrt
atan copysign expml inf pow tan
atan2 cos fabs log relation tanh
atanh cosh finite loglO rem

The following functions are common to both the single- and double-precision libraries:

gamma bessel randomx
The following environment access functions are also common to both the single- and
double-precision arithmetic:

fp_getexptn
fp_getround

fp_procentry fp_smathenv
fp_procexit fpstrpvctr

t tf NiP-bj Lli £ illpll
fp_gmathenv fp_setround
fpgtrpvctr fp_settrap

fp_tstexptn

FLOATING-POINT LIBRARY 4-1

See Sections 4.2.10 and 4.3, describing the use of these functions from a program writ­ten in C, Pascal, FORTRAN or Modula-2.
The standard calling conventions as described in Appendix A are used to call math
library functions. This protocol includes the convention of passing only double­
precision floating-point arguments in external procedure and function calls. Because of
this, when a single-precision procedure or function is called, a hardware instruction is
invoked whenever it is necessary to convert an argument from single-precision to
double-precision. If this instruction is executed with a reserved operand, the result is
an immediate invalid-operation trap. It is not possible for the user to disable this trap;
therefore, with the combination of the math library and the floating-point emulation
library, the user may achieve compliance with only the IEEE 754 Standard for
Floating-Point Arithmetic for double-precision arithmetic.
Major problems result when the user is unable to effectively use the single-precision
version of the relation function; frei at ion returns “unordered” when passed a
quiet NAN as an argument, and ffinite returns a zero when passed an infinity or a
NAN as an argument. These routines, if the source code is available, can be included
in a program as local routines to avoid the conversion problem.

4.2 DETAILS AND USE OF THE MATH LIBRARY
This section describes integer and floating-point number formats, reserved operand
values and conditions, and techniques for handling floating-point error situations
according to the ANSI/IEEE “Standard for Binary Floating-point Arithmetic”
(ANSI/IEEE Std 754-1985).

4.2.1 Number Formats
The Series 32000 architecture implements three lengths for integers and two lengths
for floating-point numbers. Reserved operand values are floating-point numbers that
represent values outside the Series 32000 architecturally possible range.

4.2.2 Integer Formats
The most significant bit in the integer format is a sign bit used to implement negative
integers in two’s-complement representation. The math library operates on integers in
three formats.
Byte Format:

4-2 FLOATING-POINT LIBRARY

Byte format represents values from negative 128 through positive 127.
Word Format:

15 8 7 0
...1 L __JL ... 1 I I i 1 , , 1 , 1 I I____I___ I___

Word format represents values from negative 32768 through positive 32767.
Double-word Format:

31 24 23 16 15 CD 7 0----1 1 1

Double-word format represents values from negative 2147483648 through positive
2147483647.

4.2.3 Floating-point Formats
The math library operates on single-precision and double-precision floating-point
numbers. Single-precision and double-precision formats have three parts:

• Sign
• Exponent
• Fraction

Single-precision numbers have a 1-bit sign, an 8-bit exponent (between -126 and +127),
and a 23-bit fraction, as follows:

31 30 23 22 \

Single-precision math functions return a single-precision number as the result.
Double-precision numbers have a 1-bit sign, an 11-bit exponent (between -1022 and
+1023), and a 52-bit fraction, as follows:

Double-precision math functions return a double-precision number as the result.
The math library operates on the valid range of floating-point numbers. All valid
floating-point numbers are normalized numbers. Normalized numbers have two characteristics which distinguish them from invalid floating-point range numbers
(reserved operands). Normalized numbers have an assumed leading 1 in the fraction
part of the format and the exponent is neither all 0’s nor all l ’s. The mantissa of a

FLOATING-POINT LIBRARY 4-3

floating-point number is formed by prefixing a 1 to the fraction. For example, a single­precision floating-point fraction 11000000111011111010010 after prefixing a 1 to the mantissa becomes 1.11000000111011111010010. The binary point is between the assumed first bit and the most significant bit of the fraction. A bias value is added to the exponent before it is stored in the exponent field of the floating-point number. The bias value added to each exponent is:
127 for single-precision 1023 for double-precision

The minimum and maximum decimal and hexadecimal values for single- and double­precision floating-point numbers are given in Table 4-1 and shown on a number line in Figure 4-1.
Though zero is a valid floating-point number, it is not a normalized number. A zero is represented by all 0’s in the exponent and fraction. The sign bit can be either 0 (posi­
tive zero) or 1 (negative zero). Normally, positive and negative zero are equivalent, but in special cases, such as divide by zero, they are distinguishable.

Table 4-1. Minimum and Maximum Values

HEXADECIMAL VALUE DECIMAL NUMBER VALUE
DOUBLE-PRECISION
Max(normal) Min(normal)Min(denormal)

7FEFFFFF FFFFFFFF 00100000 00000000 00000000 00000001
1.797693134862316 E 308 2.225073858507201 E -308 4.940656458412465 E -324

SINGLE-PRECISION
Max(normal)Min(normal)Min(denormal)

7F7FFFFF0080000000000001
-3.4028235 E 38 -1.1754943 E -38 -1.4012984 E -45

NOTE: 1. These values are positive. The sign bit does not affect the absolute magnitude of the limits. The negative limits can be determined by adding a sign bit to the hexadecimal value and affixing a negative sign in front of the floating-point value.
2. The binary exponent is the value of the exponent within the given hexadecimal value. The maximum value is represented by all bits set within the exponent field. For both single-precision and double­precision formats, this value indicates not-a-number or infinity.

4-4 FLOATING-POINT LIBRARY

+oo

3.4028235 E 38

1.1754943 E -38

ZERO

-1.1754943 E -38

-3.4028235 E 38

| OVERFLOW

} UNDERFLOW

| OVERFLOW

PRECISION = 2‘23 = 1.1920929 E -7

SINGLE-PRECISION

4-00

1.797693134862316 E 308
| OVERFLOW

2.225073858507201 E -308 -

ZERO -

2.225073858507201 E -308 -

UNDERFLOW

-1.797693134862316 E 308
| OVERFLOW

PRECISION = 2“52 = 2.2204460492503132 E -52

DOUBLE-PRECISION

HM-01-0-U

F ig u re 4-1. Maximum and Minimum Values for Floating-point Numbers

FLOATING-POINT LIBRARY 4-5

4.2.4 Reserved Operand Values and Operations
Reserved operand values represent values and situations outside the architecturally legal range of floating-point numbers. The architecturally legal range is a function of
the size of both the exponent field and the fraction field. There are three types of reserved operands:

• Not-a-Number (NAN)
• Infinity (plus or minus)
• Denormalized number

For double-precision arithmetic, the math library implements some functions from the ANSI/IEEE-754 Standard for handling reserved operand situations. Full IEEE 754 functionality for double-precision is achieved only when the math library is used in conjunction with Series 32000 Floating-point Enhancement and Emulation Library (FPEE Libraries). The name of the FPEE library varies with host system; see Chapter 5 for the name of the FPEE library for each specific host and to gain a full understand­
ing of GNX floating-point support. The key distinctions and differences between the math library and the FPEE libraries follow the brief description of the IEEE 754
floating-point system.
IEEE 754 requires that exceptions (arithmetic operations on reserved operands) cause
a signal. The signal may be either the setting of an exception status flag, or taking a trap, or both. The exact action must be under control of the application program. For
example, the application program can specify setting the exception status flag, but no trapping, for a specific type of exception. In this case, program execution continues despite the exception, and the numerical result of the operation causing the exception is the appropriate IEEE 754 recommended value, typically either a NAN, or a signed
infinity. If trapping is disabled, the application program can look at the exception
status flags to determine if an exception occurred. The propagation of numerically meaningless values (i.e., NANs or infinities) is strictly for retrospective diagnostic rea­
sons and rarely serves any meaningful purpose for the real world. A finished applica­
tion most likely runs with all traps enabled since any trap is cause for concern, and
program execution stops as soon as possible after the exception. The GNX floating­
point support meets these requirements for double-precision arithmetic.
IEEE 754 defines five types of exceptions: underflow, overflow, divide by zero, inexact
result, and invalid operation. IEEE 754 requires functions to enable/disable each of
the five traps and functions to read/clear each of the five exception status flags. These traps and exceptions called math environment variables are controlled by a series of
functions provided in the math library. These functions are named fp Junction_name,
where function jname is a descriptive phrase.
The Series 32000 FPUs (i.e., NS32081 and NS32381) provide flags only for underflow,
inexact trap enable, and inexact trap status. The FPU always traps for overflow,
divide by zero, and invalid operation exceptions. In no case do the Series 32000 FPUs
handle a trap. A trap halts application program execution.
The math library alone provides the functions to access and control the IEEE 754 math
environment variables, but it is the FPEE libraries which implement the trap handling
functionality. An application that uses only the math library cannot rightfully be con­sidered in compliance with IEEE 754. An application that uses both the math library
4-6 FLOATING-POINT LIBRARY

and an FPEE library for double-precision arithmetic is in compliance with IEEE 754 math environment requirements.
The remainder of this section describes the reserved operand format and pertinent information.

4.2.5 Not a Number (NAN)
Not a Number (NAN) is the result of an invalid operation. Invalid operations include zero multiplied by infinity, division of infinity by infinity, and any arithmetic operation on a NAN.
There are two types of NANs: Quiet and Signaling. The quiet NAN (QNAN) does not cause a trap or set the invalid operation status flag. The QNAN is propagated quietly through floating-point operations and is useful for retrospective diagnosis.
The quiet NAN verses signaling NAN (SNAN) distinction is implemented in the FPEE
library. Many of the math library mathematical functions can return QNANs, but this
value propagates through subsequent calculations only if the FPEE library is used. The FPEE library implements the trap handler which processes QNANs and resumes application program execution after a QNAN causes an FPU trap. QNANs always
cause an FPU trap since the Series 32000 FPUs do not distinguish between QNANs
and SNANs.

Signaling Quiet
sign 0 or 1 0 or 1

exponent All Is All Is

fraction 1 followed by
any combination
of Os and Is

0 followed by any combi­
nation of Os and Is where
at least one of the fol-
lowing bits must be a 1

FLOATING-POINT LIBRARY 4-7

4.2.6 Infinity
Some operations (i.e., those which cause overflow) produce a value representing
infinity. When the FPEE library is used, it allows infinity to be used in operations such as comparison and multiplication. Infinity has the following formats:

Positive Infinity Negative Infinity
sign 0 1

exponent All Is All Is

fraction All Os All OS

The FPEE library supports a number system in which two infinities exist: a positive infinity at the positive end of the number line and a negative infinity at the negative end of the number line.

4.2.7 Denorm alized Numbers
A denormalized number is a value for numbers which are too small to be correctly represented in standard single- or double-precision format. These numbers are pro­duced to avoid underflow (they actually allow a gradual underflow which decreases the
region shown in Figure 4-1). Denormalized numbers are characterized by an assumed 0 instead of 1 at the beginning of the fraction. Operations such as division can gen­
erate denormalized numbers. Denormalized numbers have the following format:

sign 0 or 1
exponent All Os
fraction Any combination of Os and Is but it is read as less than 1

Any operation that causes underflow creates a denormalized number and sets the
underflow status flag. The underflow does not cause a trap unless the underflow trap
enable flag is set. A subsequent operation using the denormalized number causes an invalid operation trap because it is an operation on a reserved operand. The FPEE library exception trap handler normalizes the underflowed number by shifting the frac­
tion to the left and setting the exponent to its minimum, and if the invalid operation
exception trap is disabled, program execution continues with a very small value that is
not a reserved operand and therefore is suitable for floating-point numerical opera­
tions. It is the responsibility of the application program to check the exception flags in
the floating-point status register to determine if underflow and an operation on a
denormalized value (invalid operation) occurred. The FPUs return 0.0 if the underflow
trap enable flag is not set.

4-8 FLOATING-POINT LIBRARY

4.2.8 M ath E nviron m en t C ontrol F un ction
The math library provides a number of math environment control functions which when used in conjunction with the FPEE library, provide the full range of IEEE 754 features. All of the math environment control functions begin with “fp_” followed by a descriptive phrase. These functions provide control over the three basic set of math environment variables:

• Exception trap enable/disable
• Exception status flags
• Rounding mode

The exception trap enable/disable functions provide application program access to the
FPU’s floating-point status register fields which enable or disable traps on exceptions. These functions control trapping for the five exceptions: overflow, underflow, divide by zero, inexact result, and invalid operation. If the FPEE library is not used, only
underflow and inexact result traps are meaningful, but only in a minimal sense since no trap handler is available to handle invalid operation exceptions. Without the FPEE trap handler, the first underflow or inexact result effectively prevents further program
execution irrespective of the trap enable/disable setting, since a subsequent operation in the application program that uses the underflowed or inexact result value causes an
invalid operation trap.
The exception status flag functions provide application program access to the FPU’s floating-point status register fields which report whether an exception has occurred.
These functions can either report the value of the field (i.e. flag status), or set it to
either a 1 or a 0. There are five status flags: one for each of the five exceptions. Once an exception sets its status flag, the flag stays set until explicitly reset by the applica­
tion program.
The FPEE library implements most of the functionality associated with the exception
traps and status fields. The FPEE library uses the software field of the FPU’s floating­point status register to implement the trap enable/disable and exception status for
overflow, divide by zero, and invalid result exceptions.
The functions for rounding mode are applicable whether the FPEE library is used or
not.

4.2.9 U sing the Math Environment Functions
Using math environment functions is not mandatory. If the math environment func­tions are not used, the application program runs with whichever default conditions the
run-time system provides. The default conditions are system dependent and may vary.
Typically, these are minimal and not IEEE 754-based, but are adequate for many
applications.
Mathematically sophisticated applications do require the discipline provided by the
math environment functions. An IEEE 754 math-environment-based application
begins execution by first calling fp_procentry () before any application calculations.
The fp_procentry () function saves the current math environment (exception status
flags, Rounding mode, and trap flags) and sets the FPU’s floating-point status register

FLOATING-POINT LIBRARY 4-9

to the IEEE 754 default (clears all exception status flags, sets Rounding mode to nearest, and disables all traps). The saved math environment is kept for restoration when the application program completes (fp_procexit () is used as the last state­ment in the application program). At critical points along the application program’s execution, checking for exceptions is performed using an appropriate function such as
fp_getexptn (). If an exception is found, application program error functions provide whatever service is necessary.
The fp_procentry () and fp_procexit () functions surround any atomic region of code, and the pair may be used as often as required to simplify or implement any spe­cial error handling functions. Though fp_procentry () s and fp_procexit () s may be linearly nested, this normally complicates tracking the last saved math environ­ment; therefore, this practice is not recommended.
The command summaries provide specific information on all the math environment functions.

4.2.10 A ccessing the Math Library Functions
High-Level Languages (HLL) access the math library functions in one of two ways.
In languages like C or Modula-2, that do not have a predefined list of math function
names, programs call the math library functions directly. C and Modula-2 programs treat a math library function as just another external function. C programmers should
include the math. h file, which declares the functions and constants mentioned in the following paragraphs.
Languages like FORTRAN or Pascal have predefined (intrinsic) lists of math function names and in certain cases must access the math library through the interface library provided with the compiler. The interface library maps the HLL predefined name to
the corresponding math function name in the math library. In FORTRAN’S case, the
compiler and/or the interface library also implement the parameter-passing convention
expected by the math library function. (FORTRAN normally passes all parameters by
address, but recognizes the intrinsic routines and passes their parameters by value, as is expected by the math library).
The following sections provide the Pascal, FORTRAN, Modula-2, and C calling sequence for the math library functions. In the case of FORTRAN intrinsic routines, only the generic function name is mentioned. Refer to the Series 32000 GNX — Ver­
sion 3 FORTRAN 77 Optimizing Compiler Reference Manual for a detailed description of the alternative ways to call these intrinsic functions. Table 4-2 describes global con­siderations, which must be observed in order to use any of the routines described in
this chapter. This information will not be repeated in each sub-section.

4-10 FLOATING-POINT LIBRARY

Table 4-2. Global Considerations

LANGUAGE IN SE R T THE FOLLOWING
TO U SE THE MATH LIBRARY

EXAMPLE
PROGRAM

C #include <math.h> ♦include <math.h>
main() {

double x = 0.0;
printf(sin(x)) ;

}
FORTRAN double precision x

x = 0.0
print *, sin(x)
end

Pascal program try(output);
var x: longreal;
begin

x := 0.0;
writein(sin(x)) ;

end.

Modula-2 FROM libm IMPORT name', MODULE TRY;
FROM libm IMPORT sin;
FROM InOut IMPORT WriteLn;
FROM ReallnOut IMPORT WriteReal;
VAR X: LONGREAL;
BEGIN
X := 0.0;
WriteReal(sin(X),10);
WriteLn;
END TRY.

FLOATING-POINT LIBRARY 4-11

To access nonstandard library routines, refer to Appendix B of the various language reference manuals.

4.3 FLOATING-POINT LIBRARY FUNCTIONS
This section describes all the floating-point library functions. These descriptions include calling sequence, accuracy, and handling for special case requirements. The following notations are used in the description of the library functions:

ULP Unit in the last place of a floating-point number.
NAN Not a Number value. This is any floating-point number with all l ’s in its exponent field and a fraction field not equal to 0.
SNAN Signaling NAN. By convention this is a NAN with the bit after the exponent bit (bit 22 for single-precision, bit 51 for double-precision) set

to 1.
QNAN Quiet NAN. By convention this is a NAN with the bit after the exponent bit (bit 22 for single-precision, bit 51 for double-precision) set

to 0.
oo machine infinity. This is a floating-point number with all l ’s in its

exponent field and a fraction field of 0. It is either +°o or -»=>, depending
on the sign bit.

K 3.14159265358979323...

4-12 FLOATING-POINT LIBRARY

Acos

4.3.1 Acos
This section describes the double-precision and single-precision arccosine functions,
acos and facos, that return in radians the inverse cosine of x in the range of 0 to k .
CALLING SEQ U EN C ES

LANGUAGE SING LE-PRECISION DO UBLE-PRECISIO N
C float x, result;

result = facos(x);
double x, result;
result = acos(x);

FORTRAN real x, result
result = acos(x)

double precision x, result
result = acos(x)

Pascal function facos(n: real):
real; external;

var x, result: real;
result := facos (x);

function acos(n: longreal):
longreal; external;

var x, result: longreal;
result := acos(x);

Modula-2 VAR x, result: REAL;
result := facos (x);

VAR x, result: LONGREAL;
result := acos(x);

ACCURACY
The acos and facos functions are accurate to within 3 ulps.

SPECIAL CASES

X result
QNAN
SNAN 1 x 1 > 1
±0.0
+ 1.0
- 1.0

QNANQNAN with invalid signal QNAN with invalid signal
± k / 2
0.0
TZ

FLOATING-POINT LIBRARY 4-13

Acosh

4.3.2 Acosh
This section describes the double-precision and single-precision arc-hyperbolic cosine functions, acosh and f acosh, that return in radians the inverse hyperbolic cosine of argument x.
CALLING SEQ U E N C E S

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, result;

result = facosh(x);
double x, result;
result = acosh(x);

FORTRAN real x, result, acosh
result = acosh(x)

double precision x, result, dacosh
result = dacosh(x)

Pascal function facosh(n: real):
real; external;

var x, result: real;
result := facosh(x);

function acosh (n: longreal) :
longreal; external;

var x, result: longreal;
result := acosh(x);

Modula-2 VAR x, result: REAL;
result = facosh(x);

VAR x, result: LONGREAL;
result = acosh(x);

ACCURACY
The acosh and facosh functions inherit much of their error from loglp
described in exp. The acosh and facosh functions are accurate to about 3
ulps.

DIAG NO STICS
The acosh and facosh functions return a reserved operand if the argument is
less than 1.

SPECIA L CASES

X result
QNAN QNAN
SNAN QNAN with invalid signal
x < 1 QNAN with invalid signal
+ +
+ 1.0 + 0.0

4-14 FLOATING-POINT LIBRARY

Asin

4.3.3 A sin
This section describes the double-precision and single-precision arc-sine functions,
asin and fasin, that return in radians the arc-sine of argument x in the range of
—tc/2 to k/2.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, result;

result = fasin(x);
double x, result;
result = asin(x);

FORTRAN real x, result
result = asin(x)

double precision x, result
result = asin(x)

Pascal function fasin(n: real):
real; external;

var x, result: real;
result := fasin(x);

function asin(n: longreal):
longreal; external;

var x, result: longreal;
result := asin(x);

Modula-2 VAR x, result: REAL;
result := fasin (x);

VAR x, result: LONGREAL;
result := asin(x);

ACCURACY
The asin and fasin functions are accurate to within 3 ulps.

SPECIAL CASES

X r e s u lt
QNAN
SNAN
1 x 1 > 1
±1.0
±0.0

QNAN
QNAN with invalid signal
QNAN with invalid signal
± k / 2
±0.0

FLOATING-POINT LIBRARY 4-15

A sinh

4.3.4 Asinh
This section describes the double-precision and single-precision functions, as inh and
fa s in h , that return in radians the arc-hyperbolic sine of argument x.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, result;

result = fasinh(x);
double x, result;
result = asinh(x);

FORTRAN real x, result, asinh
result = asinh(x)

double precision x, result, dasinh
result = dasinh(x)

Pascal function fasinh(n: real);
real; external;

var x, result: real;
result := fasinh(x);

function asinh (n: longreal) :
longreal; external;

var x, result: longreal;
result := asinh(x);

Modula-2 VAR x, result: REAL;
result := fasinh(x);

VAR x, result: LONGREAL;
result := asinh(x);

ACCURACY
The asinh and fasinh functions inherit much of their error from loglp
described in exp. The asinh and fasinh functions are accurate to about 3
ulps.

SPECIAL CASES

X result
QNAN
SNAN+ oo
± 0 .0

QNAN
QNAN with invalid signal
+ oo
± 0 .0

4-16 FLOATING-POINT LIBRARY

Atan

4.3.5 Atan
This section describes the double-precision and single-precision functions, atan and
fa tan , that return the arc tangent of x in the range of —tu/2 to t/2.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, result;

result = fatan(x);
double x, result;
result = atan(x);

FORTRAN real x, result
result = atan(x)

double precision x, result
result = atan(x)

Pascal var x, result: real;
result := arctan (x);

var x, result: longreal;
result := arctan (x);

Modula-2 VAR x, result: REAL;
result := fatan(x);

VAR x, result: LONGREAL;
result := atan(x);

ACCURACY
The atan and fat an functions are accurate to within 1 ulp.

SPECIAL CASES

X result
QNAN QNAN
SNAN QNAN with invalid signal

+ oo ± t /2
± 0 .0 ± 0 .0

FLOATING-POINT LIBRARY 4-17

Atan2

4.3.6 Atan2
This section describes the double-precision and single-precision functions, at an2 and
fa tan 2 , that return the arc tangent of y/x in the range of-7t to n.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, y, result;

result = fatan2(y, x);
double x, y, result;
result = atan2(y, x);

FORTRAN real x, y, result
result = atan2(y, x);

double precision x, y, result
result = atan2 (y, x)

Pascal function fatan2(n, m: real):
real; external;

var y, x, result: real;
result := fatan2(y, x);

function atan2 (n, m: longreal) :
longreal; external;

var y, x, result: longreal;
result := atan2(y, x);

Modula-2 VAR x, y, result: REAL;
result := fatan2(y, x);

VAR x, y, result: LONGREAL;
result := atan2(y, x);

ACCURACY
The atan2 and fatan2 functions are accurate to within 3 ulps.

SPECIAL CASES

y X result
(anything) SNAN QNAN with invalid signal

SNAN (anything) QNAN with invalid signal
(anything but SNAN) QNAN QNAN

QNAN (anything but SNAN) QNAN
± 0.0 +(anything but NAN) ± 0 .0
± 0 .0 -(anything but NAN) ± n

±(anything but 0 and NAN) 0 ± 7t/2
±(anything but °° and NAN) + OO ± 0
±(anything but °° and NAN) —oo ± n

+ oo +oo ± n/4
+ oo —oo ± 3tc/4
+ oo (anything but 0, NAN, and °°) ±nJ2

4-18 FLOATING-POINT LIBRARY

A tanh

4.3.7 Atanh
This section describes the double-precision and single-precision functions, atanh and
fatanh, that compute the designated arc-hyperbolic tangent functions for real argu­ments.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, result;

result = fatanh(x);
double x, result;
result = atanh(x);

FORTRAN real x, result, atanh
result = atanh(x)

double precision x, result, datanh
result = datanh(x)

Pascal function fatanh(n: real):
real; external;

var x, result: real;
result := fatanh(x);

function atanh(n: longreal):
longreal; external;

var x, result: longreal;
result := atanh(x);

Modula-2 VAR x, result: REAL;
result := fatanh(x);

VAR x, result: LONGREAL;
result := atanh(x);

ACCURACY
The atanh and fatanh functions inherit much of their errors from loglp
described in exp. The atanh and fatanh functions are accurate to within 3
ulps.

DIAGNOSTICS
The atanh and fatanh functions return a reserved operand if the argument
has an absolute value larger than or equal to 1.

SPECIAL CASES

X result
QNAN
SNAN Ixl > 1 ± 1.0
± 0 .0

QNAN
QNAN with invalid signal QNAN with invalid signal
Hh oo
± 0 .0

FLOATING-POINT LIBRARY 4-19

Bessel

4.3.8 Bessel
This section describes the bessel functions, jO, jl, jn, yO, yl and yn. These func­tions calculate bessel functions of the first and second kinds for real arguments and integer orders. Only double-precision functions are available.
CALLING SEQUENCES

COMPILER y = jO, j l , yO or y l y = jn or yn
C double x, result;

result = y (x) ;
double x, result;
int n;
result = y (n , x);

FORTRAN double precision x, result
double precision y
result = y (x)

double precision x, result, y
integer n
result = y (n, x)

Pascal function y (z : longreal):
longreal; external;

var x, result: longreal;
result := y (x);

function y (f: integer; g:longreal) :
longreal; external;

var x, result: longreal;
n: integer;
result := y (n, x) ;

Modula-2 VAR x, result: LONGREAL;
result := y (x);

VAR x, result: LONGREAL;
n: INTEGER;
result := y (n, x) ;

DIAGNOSTICS
Negative arguments cause the yO, yl, and yn functions to return an erroneous
negative value and set errno to EDOM.

4-20 FLOATING-POINT LIBRARY

Cabs

4.3.9 Cabs
This section describes the double-precision and single-precision complex absolute value
functions, cabs and fcabs, that return ^z.x2+z.y2 . These functions return the correct result if z.x2 or z.y2 is out of range, as long as the result is within range.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C struct { struct {

float x, y; double x, y;
} z; } z;
float result; double result;
result = fcabs(z); result = cabs(z);

FORTRAN complex z double complex z
real result double result
result = abs(z) result = abs (z)

Pascal type complex = record type complex = record
x,y : real; x,y : longreal;

end; end;
function fcabs (c; complex): function cabs(c: complex):

real; external; longreal; external;
var z: complex; var z: complex;

result: real; result: longreal;
result := fcabs(z) ; result := cabs(z);

Modula-2 TYPE complex = RECORD TYPE complex = RECORD
x,y : REAL; x,y : LONGREAL;

END; END;
FUNCTION fcabs(c: complex): FUNCTION cabs(c: complex):

REAL; EXTERNAL; LONGREAL; EXTERNAL;
VAR z: complex; VAR z: complex;

r: REAL; r: LONGREAL;
r := fcabs(z) ; r := cabs (z) ;

ACCURACY
The cabs and fcabs functions are accurate to within 1 ulp. In general, these functions return an integer whenever an integer might be expected.

FLOATING-POINT LIBRARY 4-21

Cabs (Cont)

SPECIAL CASES
X y result

i oo (anything) + oo
(anything) + oo + oo

SNAN (anything but oo) QNAN with invalid signal
(anything but «>) SNAN QNAN with invalid signal

QNAN (anything but °° and SNAN QNAN
(anything but °° and SNAN QNAN QNAN

4-22 FLOATING-POINT LIBRARY

Cbrt

4.3.10 Cbrt
This section describes the doubJ_e-precision and single-precision cube root functions,
cbrt and fcbrt, that return
CALLING SEQUENCES

L A N G U A G E SINGLE-PRECISION DOUBLE-PRECISION
C float x, result;

result = fcbrt(x);
double x, result;
result = cbrt (x);

FORTRAN real x, result, cbrt
result = cbrt(x)

double precision x, result, dcbrt
result = dcbrt(x)

Pascal function fcbrt(m: real):
real; external;

var x, result: real;
result := fcbrt(x);

function cbrt(m: longreal):
longreal; external;

var x, result: longreal;
result := cbrt(x);

Modula-2 VAR x, result: REAL;
result := fcbrt(x);

VAR x, result: LONGREAL;
result := cbrt(x);

ACCURACY
The cbrt and fcbrt functions are accurate to within 1 ulp.

SPECIAL CASES
X result

QNAN
SNAN

+ oo

± 0 . 0

QNAN
QNAN with invalid signal
+ oo

± 0 . 0

FLOATING-POINT LIBRARY 4-23

Ceil

4.3.11 Ceil
This section describes the double-precision and single-precision ceiling functions, ceil and fceil, that return the smallest integer value not less than x.
CALLING SEQUENCES

L A N G U A G E SINGLE-PRECISION DOUBLE-PRECISION
C float x, result;

result = fceil(x);
double x, result;
result = ceil(x);

FORTRAN real x, result, ceil
result = ceil(x)

double precision x, result, dceil
result = dceil(x)

Pascal function fceil (n: real):
real; external;

var x, result: real;
result := fceil(x);

function ceil(n: longreal):
longreal; external;

var x, result: longreal;
result := ceil(x);

Modula-2 VAR x, result: REAL;
result := fceil(x);

VAR x, result: LONGREAL;
result := ceil(x);

SPECIAL CASES
X result

QNAN
SNAN

i o o

± 0 . 0

QNAN
QNAN with invalid signal
+ O O

± 0 . 0

4-24 FLOATING-POINT LIBRARY

Compound

4.3.12 Compound
This section describes the functions, compound and fcompound, that return the com­pound interest factor, (l+r)n.

CALLING SEQUENCES
LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float r, result; double r, result;

int n; int n;
result = fcompound(r, n) ; result = compound(r, n) ;

FORTRAN real r, result, compound double precision r, result, dcompound
integer n integer n
result = compound(r, n) result = dcompound(r, n)

Pascal function fcompound(x: real; function compound(x: longreal;
i: integer): real; external; i: integer): longreal; external;

var r, result: real; var r, result: longreal;
n: integer; n: integer;

result := fcompound(r, n) ; result : = compound(r, n) ;

Modula-2 VAR r, result: REAL; VAR r, result: LONGREAL;
n : INTEGER; n: INTEGER;

result := fcompound(r, n) ; result := compound(r, n) ;

ACCURACY
The compound and fcompound functions are accurate to within 3 ulps.

SPECIAL CASES
r n result

(anything) 0 1QNAN anything QNANSNAN anything QNAN with invalid signal- 1.0 n < 0 +°o with divide by zero signal
+oo n > 0 +oo
-)-oo n < 0 +0.0
— oo n > 0, even +°° with divide by zero signal
— oo n > 0, odd -oo with divide by zero signal
— oo n < 0, even +0.0
— oo n < 0, odd -0.0

FLOATING-POINT LIBRARY 4-25

Copysign

4.3.13 Copysign
This section describes the double-precision and single-precision copy sign functions,
copysign and fcopysign. The returned value for copysign (x, y) and
fcopysign(x, y) has the magnitude of x and the sign of y.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C flo a t x, y, r e su lt;

r e su lt = fcopysign (x, y) ;
double x, y, r e su lt;
r e su lt = copysign(x, y) ;

FORTRAN rea l x, y, r e su lt
r e su lt = s ig n (x , y)

double p rec is io n x, y, r e su lt
r e su lt = s ig n (x , y)

Pascal function fcopysign(m , n: r e a l):
rea l; ex tern al;

var x, y, r e su lt: rea l;
r e su lt := fcopysign (x , y) ;

function copysign(m, n: lo n g r e a l) :
lon greal; ex tern al;

var x, y, r e su lt: longreal;
r e su lt := copysign(x, y) ;

Modula-2 VAR x, y, r e su lt: REAL;
r e su lt := fcop ysign (x , y) ;

VAR x, y, r e su lt: LONGREAL;
r e su lt := copysign(x, y) ;

4-26 FLOATING-POINT LIBRARY

Cos

4.3.14 Cos
This section describes the double-precision and single-precision cosine functions, cos
and fcos, that return the trigonometric cosine function of a radian argument. The
magnitude of the argument should be checked by the caller to make sure the result is
meaningful. For very large arguments the result may have no significance.
CALLING SEQUENCES

LANGUAGE SING LE-PRECISION DO UBLE-PRECISIO N
C float x, result;

result = fcos(x);
double x, result;
result = cos (x);

FORTRAN real x, result
result = cos(x)

double precision x, result
result = cos (x)

Pascal var x, result: real;
result := cos(x);

var x, result: longreal;
result := cos(x);

Modula-2 VAR x, result: REAL;
result := fcos (x);

VAR x, result: LONGREAL;
result := cos(x);

ACCURACY
The cos and fcos functions are accurate to within 1 ulp. The return value is
never greater than 1.0.

DIAGNOSTICS

Extremely large arguments, such that I x I +-̂ ->(231-l)jr, cause fcos to return
value 0; errno is set to EDOM.

SPECIAL CASES

X re su lt
QNAN
SNANi oo

0.0

QNAN
QNAN with invalid signal
QNAN with invalid signal
1.0

FLOATING-POINT LIBRARY 4-27

Cosh

4.3.15 Cosh
This section describes the double-precision and single-precision hyperbolic cosine func­
tions, cosh and f cosh, that return the hyperbolic cosine of argument x.
CALLING SEQUENCES

LANGUAGE SING LE-PRECISION DO UBLE-PRECISIO N
C float x, result;

result = fcosh(x);
double x, result;
result = cosh(x);

FORTRAN real x , result
result = cosh(x)

double precision x, result
result = cosh(x)

Pascal function fcosh(n: real):
real; external;

var x, result: real;
result := fcosh(x);

function cosh(n: longreal):
longreal; external;

var x, result: longreal;
result := cosh(x);

Modula-2 VAR x, result: REAL;
result := fcosh(x);

VAR x, result: LONGREAL;
result := cosh(x);

ACCURACY
The cosh and fcosh functions are accurate to within 3 ulps.

DIAGNOSTICS
If the correct result overflows, an erroneous number of the appropriate sign
returns and errno is set to ERANGE.

SPECIAL CASES

X re s u lt
QNAN
SNANi oo
±0.0

QNAN
QNAN with invalid signal
+ °°
+ 1.0

4-28 FLOATING-POINT LIBRARY

D rem

4.3.16 Drem
This section describes the double-precision and single-precision remainder functions,
drem and fdrem, that return the remainder when x is divided by y. The returned
value is x- *y, where is the nearest integer less than —.y
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, y, result;

result = fdrem(x, y);
double x, y, result;
result = drem(x, y);

FORTRAN real x, y, result, drem
result = dremfx, y)

double precision x, y, result, ddrem
result = ddrem(x, y)

Pascal function fdrem(m, n:real):
real; external;

var x, y, result: real;
result := fdrem(x, y);

function drem(m, n:longreal):
longreal; external;

var x, y, result: longreal;
result := drem(x, y);

Modula-2 VAR x, y, result: REAL;
result := fdrem(x, y);

VAR x, y, result: LONGREAL;
result := drem(x, y);

SPECIAL CASES

! 1 W i l l
SNAN

(anything)oo
(anything but NAN)

QNAN
(anything but SNAN)

(anything)
SNAN

(anything but NAN)
0.0

(anything but SNAN)
QNAN

QNAN with invalid signal
QNAN with invalid signal
QNAN with invalid signal
QNAN with invalid signal
QNAN
QNAN

SEE ALSO
rem

FLOATING-POINT LIBRARY 4-29

E rf

4.3.17 Erf
This section describes the C program for floating-point error functions, erf and ferf.
When called, erf (x) returns the error function of its argument; erf (x) is defined by

2 dt.

CALLING SEQUENCES

LANGUAGE SING LE-PRECISION DO UBLE-PRECISIO N
C float x, result;

result = ferf (x);
double x, result;
result = erf (x);

FORTRAN real x, result, erf
result = erf(x)

double precision x, result, derf
result = derf(x)

Pascal function ferf(m: real):
real; external;

var x, result: real;
result := ferf(x);

function erf(m: longreal):
longreal; external;

var x, result: longreal;
result := erf(x);

Modula-2 VAR x, result: REAL;
result := ferf(x);

VAR x, result: LONGREAL;
result := erf(x);

4-30 FLOATING-POINT LIBRARY

Exp

4.3.18 Exp
This section describes the double-precision and single-precision functions, exp and
fexp, that return the natural exponential of x.
CALLING SEQUENCES

LANGUAGE SING LE-PRECISION DOUBLE-PRECISION
C float x, result;

result = fexp(x);
double x, result;
result = exp (x);

FORTRAN real x, result
result = exp(x)

double precision x, result
result = exp(x)

Pascal var x, result: real;
result := exp(x);

var x, result: longreal;
result := exp(x);

Modula-2 VAR x, result: REAL;
result := fexp(x);

VAR x, result: LONGREAL;
result := exp(x);

ACCURACY
The exp and fexp functions are accurate to within 1 ulp.

DIAGNOSTICS

If the correct result overflows, an erroneous number returns, errno is set to
ERANGE, and 0.0 is returned.

SPECIAL CASES

X re s u lt
QNAN QNAN
SNAN QNAN with invalid signal
+ o o + o o

—oo +0.0
±0.0 1.0

FLOATING-POINT LIBRARY 4-31

Exp2

4.3.19 Exp2
This section describes the double-precision and single-precision base 2 exponential
functions, exp2 and fexp2, that compute 2X.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, result;

result = fexp2(x);
double x, result;
result = exp2(x);

FORTRAN real x, result, exp2
result = exp2(x)

double precision x, result, dexp2
result = dexp2(x)

Pascal function fexp2(n: real):
real; external;

var x, result: real;
result := fexp2(x);

function exp2(n: longreal):
longreal; external;

var x, result: longreal;
result := exp2(x);

Modula-2 VAR x, result: REAL;
result := fexp2(x);

VAR x, result: LONGREAL;
result := exp2(x);

ACCURACY
The exp2 and fexp2 functions are accurate to within 3 ulps and exp2 (N) ,
where N is an integer, is exact.

DIAGNOSTICS

If the correct result overflows, an erroneous number returns, errno is set to
ERANGE, and 0.0 is returned.

SPECIAL CASES

X re s u lt
QNAN QNAN
SNAN QNAN with invalid signal
+ o o + o o

—o o + 0 . 0

± 0 . 0 1.0

4-32 FLOATING-POINT LIBRARY

Expm l

4.3.20 Expm l
This section describes the double-precision and single-precision functions, expml and fexpml, that return ex-l. These functions exist so that the user can deal with numbers such as 1.00000000031597331, without losing significance when biasing by ±1.0.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, result;

result = fexpml(x);
double x, result;
result = expml(x);

FORTRAN real x, result, expml
result = expml(x)

double precision x, result, dexpml
result = dexpml(x)

Pascal function fexpml(n; real):
real; external;

var x, result: real;
result := fexpml(x);

function expml(n: longreal):
longreal; external;

var x, result: longreal;
result := expml(x);

Modula-2 VAR x, result: REAL;
result := fexpml(x);

VAR x, result: LONGREAL;
result := expml(x);

ACCURACY
The expml and f expml functions are accurate to within 3 ulps.

DIAGNOSTICS
If the correct result overflows, an erroneous number returns, _errno is set to
ERANGE, and -1.0 is returned.

SPECIAL CASES
X result

QNAN QNANSNAN QNAN with invalid signal
+ o o + o o

—oo - 1 . 0

± 0 . 0 ± 0 . 0

FLOATING-POINT LIBRARY 4-33

Fabs

4.3.21 Fabs
This section describes the double-precision and single-precision functions, fabs and f fabs, that return the absolute value of x.
CALLING SEQUENCES

L A N G U A G E S I N G L E -P R E C I S I O N D O U B L E - P R E C I S I O N
C float x, result;

result = ffabs (x);
double x, result;
result = fabs(x);

FORTRAN real x, result
result = abs(x)

double precision x, result
result = abs(x)

Pascal var x, result: real;
result := abs(x);

var x, result: longreal;
result := abs(x);

Modula-2 VAR x, result: REAL;
result := ABS(x);

VAR x, result: LONGREAL;
result := ABS(x);

4-34 FLOATING-POINT LIBRARY

Finite

4.3.22 Finite
This section describes the double-precision and single-precision finite predicate func­tions, finite and ffinite, that are recommended by the IEEE standard 754 for floating-point arithmetic. These functions return a 1 if x is finite and a 0 if x is ±°o or NAN.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x;

int result;
result = ffinite(x);

double x;
int result;
result = finite(x);

FORTRAN real x
integer result, finite
result = finite(x)

double precision x
integer result, dfinite
result = dfinite(x)

Pascal function ffinite(n: real):
integer; external;

var x: real;
result: integer;

result := ffinite(x);

function finite(n: longreal):
integer; external;

var x: longreal;
result: integer;

result := finite(x);

Modula-2 VAR x: REAL;
result: INTEGER;

result := ffinite(x);

VAR x: LONGREAL;
result: INTEGER;

result := finite(x);

FLOATING-POINT LIBRARY 4-35

Floor

4.3.23 Floor
This section describes the double-precision and single-precision floor functions, floor and f floor, that return the largest integral value no greater than x.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DO UBLE-PRECISION
C float x, result;

result = ffloor(x);
double x, result;
result = floor(x);

FORTRAN real x, result, floor
result = floor(x)

double precision x, result, dfloor
result = dfloor(x)

Pascal function ffloor(n: real):
real; external;

var x, result: real;
result := ffloor(x);

function floor(n: longreal):
longreal ;external;

var x, result: longreal;
result := floor(x);

Modula-2 VAR x, result: REAL;
result := ffloor(x);

VAR x, result: LONGREAL;
result := floor(x);

SPECIAL CASES
X result

QNAN
SNAN+ oo

± 0 . 0

QNAN
QNAN with invalid signal
+ oo

± 0 . 0

4-36 FLOATING-POINT LIBRARY

Fmod

4.3.24 Fmod
This section describes the fmod and f fmod functions, that return the remainder of x on division by y with the same sign as x, except that if I y I « I x I , it returns 0.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, y, result;

result = ffmod(x, y);
double x, y, result;
result = fmod(x, y);

FORTRAN real x, y, result
result = mod(x, y)

double precision xf y, result
result = mod(x, y)

Pascal function ffmod(m, n: real);
real; external;

var x, y, result: real;
result := ffmod(x, y);

function fmod(m, n: longreal):
longreal; external;

var x, y, result: longreal;
result := fmod(x, y);

Modula-2 VAR x, y, result: REAL;
result := ffmod(x, y);

VAR x, y, result: LONGREAL;
result := fmod(x, y);

FLOATING-POINT LIBRARY 4-37

Fmodf

4.3.25 Fmodf
This section describes the single-precision function, fmodf, that returns the signed fractional part of value and stores the integer part indirectly through whole.
CALLING SEQUENCES

LANGUAGE CALLING SEQUENCE
C float x, whole, fract;

fract := fmodf(x, Swhole);
FORTRAN real x, whole, fract, modf

fract := modf(x, whole)
Pascal function fmodf(value : real; var whole:real):

real; external;
var x, fract, whole:real;
fract := fmodf(x, whole);

Modula-2 VAR x, fract, whole:REAL;
fract := fmodf(x, whole);

4-38 FLOATING-POINT LIBRARY

Fp_getexptn

4.3.26 Fp_getexptn
This section describes the get floating-point exception status flag function,
fp_getexptn, that returns a value indicating which floating-point exception status flags are set. The returned value is the OR’ed value representing the following excep­
tions:

1 = UNDERFLOW
2 = INEXACT 4 = INVALID
8 = DIVIDE_BY_ZERO 16 = OVERFLOW

CALLING SEQUENCES

LANGUAGE CALLING SEQUENCE
C int result;

result = fp getexptn0;
FORTRAN integer result, fp getexptn

result = fp getexptn()
Pascal function fp getexptn: integer; external;

var result: integer;
result := fp getexptn;

Modula-2 VAR result: INTEGER;
result := fp getexptn() ;

SEE ALSO
fpjsetexptn, fpjtstexptn

FLOATING-POINT LIBRARY 4-39

Fp_getround

4.3.27 Fp_getround
This section describes the function, fp_getround, that returns the floating-point rounding direction from the rounding mode field of the Floating-point Status Register. The rounding direction is one of the following:

0 = TO_NEAREST1 = TO ZERO2 = UPWARD3 = DOWNWARD
CALLING SEQUENCES

LANGUAGE CALLING SEQUENCE
C int result;

result = fp getroundO;
FORTRAN integer result, fp getround

result = fp getroundO
Pascal function fp getround: integer; external;

var result: integer;
result := fp getround;

Modula-2 VAR result: INTEGER;
result := fp getroundO;

SEE ALSO
fp_setround

4-40 FLOATING-POINT LIBRARY

Fp_gettrap

4.3.28 Fp_gettrap
This section describes the get floating-point trap enable flag function, fp_gettrap, that returns a value indicating which floating-point exception trap enable flags are set. The returned value is the OR’ed value representing the following exceptions:

1 = UNDERFLOW2 = INEXACT
4 = INVALID
8 = d iv id e_by_zero16 = OVERFLOW

CALLING SEQUENCES

LANGUAGE CALLING SEQUENCE
C int result;

result = fp gettrapO;
FORTRAN integer result, fp gettrap

result = fp gettrapO
Pascal function fp gettrap: integer; external;

var result: integer;
result := fp gettrap;

Modula-2 VAR result: INTEGER;
result := fp gettrapO;

SEE ALSO
fp_settrap, fpjesttrap

FLOATING-POINT LIBRARY 4-41

Fp_gmathenv

4.3.29 Fp_gmathenv
This section describes the function, fp_gmathenv, that gets the math environment from the Floating-point Status Register (FSR). Input argument e is a structure to receive the information from the FSR.
The math environment is defined as a record with the following three fields:

first field: rounding mode (rm)
0 TO_NEAREST
1 TO_ZERO2 UPWARD3 DOWNWARD

second field: trap enable flags (tenable)
third field: exception status flags (estatus)
Tenable and estatus may be any OR’ed value representing the following excep­
tions in the FSR:

1 = UNDERFLOW
2 = INEXACT
4 = INVALID
8 = DIVIDE_BY_ZERO
16 = OVERFLOW

4-42 FLOATING-POINT LIBRARY

Fp_gmathenv (Cont)

CALLING SEQUENCES
LANGUAGE CALLING SEQUENCE
C struct environment {

int rm, tenable, estatus;
} e;
void fp gmathenv();
fp gmathenv(&e);

FORTRAN integer e(3)
integer rm, tenable, estatus

equivalence (e(l),rm), (e(2), tenable), (e (3),estatus)
call fp gmathenv(e)

Pascal type fp status rec=record
rm: integer;
tenable : integer;
estate : integer;

end;
procedure fp gmathenv(var fps:fp status rec);external;
var e:fp status rec;
fp gmathenv(e);

Modula-2 TYPE fp_status=RECORD
rm:INTEGER;
tenable:INTEGER;
estate:INTEGER;

END;
VAR e:fp status;
fp gmathenv(e);

SEE ALSO
fp_smathenv

FLOATING-POINT LIBRARY 4-43

F p g trp v ctr

4.3.30 Fpgtrpvctr
This section describes the function, fpgtrpvctr, that returns the address of the FPU
trap handler function. This function is for execution on a development board only.
CALLING SEQ U EN C ES

LANGUAGE CALLING SEQ UENCE
C void (*v) () ;

v = fpgtrpvctr();
FORTRAN Cannot get user defined trap function

in FORTRAN
Pascal Cannot get user defined trap function

in Pascal
Modula-2 FROM libm IMPORT procedure ptr, fpgtrpvctr;

VAR trap handler:procedure ptr;
trap handler := fpgtrpvctr();

SEE ALSO
fpstrpvctr

4-44 FLOATING-POINT LIBRARY

Fp_procentry

4.3.31 Fp_procentry
This section describes the process entry (save FSR and install IEEE defaults) function,
fp_procentry, that returns the current floating-point math environment. This is the
contents of the Floating-point Status Register (FSR).
The fp_procentry function clears the exception status fields in the FSR and sets the
FSR control fields to IEEE defaults. (The Rounding mode is set to “TO_NEAREST.”
All traps are disabled.)
CALLING SEQ U E N C E S

LANGUAGE CALLING SEQ UENCE
C int result;

result = fp procentryO;
FORTRAN integer result, fp procentry

result = fp procentryO
Pascal function fp procentry: integer; external;

var result: integer;
result : = fp procentry;

Modula-2 VAR result: INTEGER;
result := fp procentryO;

SEE ALSO
fp jprocexit

FLOATING-POINT LIBRARY 4-45

Fp_procexit

4.3.32 Fp_procexit
This section describes the process exit (restore FSR and signal exceptions) function,
fp_procexit, that replaces the current FSR contents with an e. (An e will gen­
erally be the output of an earlier fp_procentry call.) It then signals any exceptions
(underflow or inexact) that are flagged in the stored FSR.
(Surround atomic code with fp_procentry and fp_procexit calls.
FP _P r o c e n t r y installs IEEE default modes; fp_procexit reinstates old modes and then signals any exception which occurred since the last fp_procentry call.)
CALLING SEQ U EN C ES

LANGUAGE CALLING SEQ UENCE
C int e;

fp procexit (e);
FORTRAN integer e

call fp procexit(e)
Pascal procedure fp procexit(x: integer); external;

var e: integer;
fp procexit(e);

Modula-2 VAR e:INTEGER;
fp procexit (e);

SEE ALSO

fp jprocentry

4-46 FLOATING-POINT LIBRARY

Fp_setexptn

4.3.33 Fp_setexptn
This section describes the function, fp_setexptn, that sets or clears exception status flags in the Floating-point Status Register. An e may be any OR’ed value represent­ing the following exceptions:

1 = UNDERFLOW2 = INEXACT
4 = INVALID
8 = d iv id e _by_zer o
16 = OVERFLOW

If s is 0, the FSR status flags corresponding to the exceptions encoded in e are
cleared.
If s is not 0, the FSR status flags for the exceptions encoded in e are set.
CALLING SEQ U EN C ES

LANGUAGE CALLING SEQ UENCE
C int e, s;

fp setexptn(e, s) ;
FORTRAN integer e, s

call fp setexptn(e, s)
Pascal procedure fp setexptn(x, y:integer); external;

var e, s:integer;
fp setexptn(e, s);

Modula-2 VAR e, s:INTEGER;
fp setexptn(e, s);

SEE ALSO
fp_getexpt.n, fpjstexptn

FLOATING-POINT LIBRARY 4-47

Fp_setround

4.3.34 Fp_setround
This section describes the function, fp_setround, that sets the floating-point round­ing mode in the Floating-point Status Register to r, where r is one of the following
rounding directions:

0 = TO_NEAREST
1 = TO_ZERO
2 = UPWARD
3 = DOWNWARD

CALLING SEQ UENCES

LANGUAGE CALLING SEQ UENCE
C int r;

fp setround(r);
FORTRAN integer r

call fp setround(r)
Pascal procedure fp setround(x: integer); external;

var r: integer;
fp setround(r);

Modula-2 VAR r:INTEGER;
fp setround(r);

SEE ALSO
fp_getround

4-48 FLOATING-POINT LIBRARY

Fp_settrap

4.3.35 Fp_settrap
This section describes the function, fp_settrap, that sets or clears trap enable flags
in the Floating-point Status Register. An e may be any OR’ed value representing the
following traps:

1 = UNDERFLOW
2 = INEXACT
4 = INVALID
8 = DIVIDE_BY_ZERO
16 = OVERFLOW

If s is 0, the FSR trap enable flags corresponding to the exceptions encoded in e are
cleared.
If s is not 0, the FSR trap enable flags for the exceptions encoded in e are set.
CALLING SEQ U EN C ES

LANGUAGE CALLING SEQ UENCE
C int e, s;

fp settrap (e, s) ;
FORTRAN integer e, s

call fp settrap(e,s)
Pascal procedure fp settrap(e,s: integer); external;

var e,s:integer;
fp settrap(e, s);

Modula-2 VAR e,s:INTEGER;
fp settrap (e,s);

SEE ALSO
fp_gettrap, fpjesttrap

FLOATING-POINT LIBRARY 4-49

Fp_smathenv

4.3.36 Fp_smathenv
This section describes the function, fp_smathenv, that sets the math environment in
the Floating-point Status Register (FSR). Input argument e is a pointer to a structure containing the information to be written to the FSR.
The math environment is defined as a record with the following three fields:

first field: rounding mode (rm)
0 TO_NEAREST
1 TO.ZERO2 UPWARD
3 DOWNWARD

second field: trap enable flags (tenable)
third field: exception status flags (status)

Tenable and estatus may be any OR’ed value representing the following exceptions:
1 = UNDERFLOW
2 = INEXACT
4 = INVALID
8 = DIVIDE_BY_ZERO
16 = OVERFLOW

4-50 FLOATING-POINT LIBRARY

Fp _sm ath en v (Cont)

CALLING SEQ UENCES
LANGUAGE CALLING SEQ UENCE
C struct environment {

int rm, tenable, estatus;
; e,
void fp smathenv() ;
fp smathenv(&e);

FORTRAN integer e(3)
integer rm, tenable, estatus

equivalence (e(l),rm), (e (2), tenable), (e (3),estatus)
call fp smathenv(e)

Pascal type fp status rec=record
rm: integer ;
tenable : integer ;
estate : integer;

end;
procedure fp smathenv(var fps:fp status rec); external;
var e:fp status rec;
fp smathenv(e);

Modula-2 TYPE fp status=RECORD
rm:INTEGER;
tenable : INTEGER;
estate : INTEGER;

END;
VAR e:fp status;
fp smathenv(e);

SEE ALSO
fp_gmathenv

FLOATING-POINT LIBRARY 4-51

F p strp v c tr

4.3.37 Fpstrpvctr
This section describes the function, fpstrpvctr, that replaces the FPU trap handler
function with function v. The v function is called when any FPU trap occurs. This
function is for execution on a development board only. This routine assumes the caller
is in user mode and reinstates user mode before returning.
CALLING SEQ U EN C ES

LANGUAGE CALLING SEQ UENCE
C void v ();

fpstrpvctr(v);
FORTRAN external v

call fpstrpvctr(v) ;
Pascal procedure fpstrpvctr(procedure p); external;

procedure new handler;
begin

end;
fpstrpvctr(new handler);

Modula-2 FROM libm IMPORT procedure ptr, fpstrpvctr;
PROCEDURE new handler;
BEGIN

END new handler;
fpstrpvctr(ADDR(new handler));

NOTE: Alternatively, v may be declared "void (*v) ()"
and set to the address of the handler function (e.g., v =
fpgtrpvctr ()), before the call to fpstrpvctr.

SEE ALSO
fpgtrpvctr

4-52 FLOATING-POINT LIBRARY

Fp_testtrap

4.3.38 Fp_testtrap
This section describes the test floating-point trap enable flag function, fp_testtrap,
that tests the enable flags in the Floating-point Status Register corresponding to the traps encoded in e. An e may be any OR’ed value representing the following excep­
tions:

1 = UNDERFLOW
2 = INEXACT
4 = INVALID
8 = DIVIDE_BY_ZERO
16 = OVERFLOW

If the FSR trap enable flag for any of the exceptions encoded in e is set, 1 is returned,
otherwise 0 is returned.
CALLING SEQ U EN C ES

LANGUAGE CALLING SEQ UENCE
C int e, result;

result = fp testtrap(e);
FORTRAN integer e, result, fp testtrap

result = fp testtrap(e)
Pascal function fp testtrap (e: integer) : integer; external;

var x, result: integer;
result:=fp testtrap (x) ;

Modula-2 VAR result: INTEGER;
e:INTEGER;
result := fp testtrap (e);

SEE ALSO
fpj*ettrap, fp_settrap

FLOATING-POINT LIBRARY 4-53

Fp_tstexptn

4.3.39 Fp_tstexptn
This section describes the test floating-point exception status flag function,
fp_tstexptn, that tests the status flags in the Floating-point Status Register corresponding to the exceptions encoded in e. An e may be any OR’ed value
representing the following exceptions:

1 = UNDERFLOW
2 = INEXACT
4 = INVALID
8 = DIVIDE_BY_ZERO
16 = OVERFLOW

If the FSR status flag for any of the exceptions encoded in e is set, 1 is returned, other­
wise 0 is returned.
CALLING SEQ U EN C ES

LANGUAGE CALLING SEQ UENCE
C int e, result;

result = fp tstexptn(e);
FORTRAN integer e, result, fp tstexptn

result = fp tstexptn (e)
Pascal function fp tstexptn(e: integer) : integer; external;

var e, result: integer;
result:=fp tstexptn(e);

Modula-2 VAR e, result: INTEGER;
result := fp tstexptn (e);

SEE ALSO
fp_getexptn, fp_setexptn

4-54 FLOATING-POINT LIBRARY

G am m a

4.3.40 Gamma
This section describes the double-precision gamma function (In gamma function).
Gamma (x) returns ln I T(I x I) I . The sign of T(I x I) is returned in the external
integer signgam . The following C program might be used to calculate T:

y = gamma(x);
if (y > 88.0) error();
y - exp(y);
if (signgam) y = -y;

CALLING SEQ U EN C ES

LANGUAGE CALLING SEQUENCE
C double x, result;

result = gamma(x);
FORTRAN common/signgam/signgam

double precision x, result, gamma
result = gamma(x)

Pascal #include "signgam.h"
function gamma(x: longreal): longreal;

external;
var m, result: longreal;
result := gamma(m);

Modula-2 VAR x, result: LONGREAL;
result := gamma(x);

NOTE: In FORTRAN, to use signgam, the user must
declare it in a named common block in the file,
e.g., /signgam/signgam.
In Pascal, the user must declare signgam as an
external integer variable by placing its declara­
tion in an "include" file and referencing the file
in the source file, e.g., #include
"signgam.h".

DIAG NO STICS
A large value is returned for negative integer arguments.

FLOATING-POINT LIBRARY 4-55

H yp ot

4.3.41 Hypot
This section describes the double-precision and single-precision euclidean distance
functions, hypot and fhypot, that return Aix2+y2 . These functions return the correct
result if x2 or y2 is out of range, as long as the results are within range.
ACCURACY

The hypot and fhypot functions are accurate to within 1 ulp.
CALLING SEQ UENCES

L A N G U A G E SINGLE-PRECISION DOUBLE-PRECISION

C float x, y, result;
result = fhypot(x, y);

double x, y, result;
result = hypot(x, y) ;

FORTRAN real x, y, result, hypot
result = hypot(x, y)

double precision x, y, result
double precision dhypot
result = dhypot(x, y)

Pascal function fhypot(m, n; real):
real; external;

var x, y, result: real;
result := fhypot(x, y);

function hypot(m, n: longreal):
longreal; external;

var x, y, result: longreal;
result := hypot(x, y);

Modula-2 V A R x, y, result: REAL;
result := fhypot(x, y);

V A R x, y, result: LONGREAL;
result := hypot(x, y);

SPECIA L CASES

X y re su lt
± oo

(anything)
S N A N

(anything but °°)
Q N A N

(anything but «> and SNAN)

(anything)
± oo

(anything but «=)
SNAN

(anything but =» and SNAN)
Q N A N

+ oo

+ oo

Q N A N with invalid signal
Q N A N with invalid signal
Q N A N
Q N A N

4-56 FLOATING-POINT LIBRARY

In f

4.3.42 Inf
This section describes the double-precision and single-precision functions, inf and
finf, that return machine infinity.
CALLING SEQ UENCES

LANGUAGE SING LE-PRECISIO N DO U BLE-PREC ISIO N
C float result;

result = finf ();
double result;
result = inf ();

FORTRAN real result, inf
result = inf ()

double precision result, dinf
result = dinf()

Pascal function finf: real;
external;

var result: real;
result := finf;

function inf: longreal;
external;

var result: longreal;
result := inf;

Modula-2 VAR result: REAL;
result := finf;

VAR result: LONGREAL;
result := inf;

FLOATING-POINT LIBRARY 4-57

Log

4.3.43 Log
This section describes the double-precision and single-precision functions, log and
flog, that return the natural logarithm of x.
ACCURACY

The log and flog functions are accurate to within 1 ulp.
CALLING SEQ U EN C ES

LANGUAGE SIN G LE-PR EC ISIO N D O U BLE-PR EC ISIO N
C float x, result;

result = flog(x);
double x, result;
result = log(x);

FORTRAN real x, result
result = log(x)

double precision x, result
result = log(x)

Pascal var x, result: real;
result := In(x);

var x, result: longreal;
result := In (x);

Modula-2 VAR x, result: REAL;
result := flog(x);

VAR x, result: LONGREAL;
result := log(x);

SPECIA L CASES

X result
QNAN
SNAN
x < 0.0
± 0 . 0

QNAN
QNAN with invalid signal
QNAN with invalid signal
-oo with divide by zero signal

4-58 FLOATING-POINT LIBRARY

LoglO

4.3.44 LoglO
This section describes the double-precision and single-precision common logarithm
functions, loglO and floglO, that return the base 10 logarithm of x.
CALLING SEQUENCES

LANGUAGE SING LE-PRECISION DOUBLE-PRECISION
C float x, result;

result = floglO(x);
double x, result;
result = loglO (x);

FORTRAN real x, result
result = loglO(x)

double precision x, result
result = loglO(x)

Pascal var x, result: real;
result := loglO(x);

var x, result: longreal;
result := loglO(x);

M odula-2 VAR x, result: REAL;
result := floglO (x);

VAR x, result: LONGREAL;
result := loglO(x);

ACCURACY
The loglO and floglO functions are accurate to within 3 ulp and loglo(10+N)
should be equal to +N.

SPECIAL CASES

X result
QNAN
SNAN
x < 0.0
±0.0

QNAN
QNAN with invalid signal
QNAN with invalid signal
-oo with divide by zero signal

FLOATING-POINT LIBRARY 4-59

Loglp

4.3.45 Loglp
This section describes the double-precision and single-precision functions, loglp and
f loglp, that return the natural logarithm of (1 + x). These functions exist so that the
user can deal with numbers, such as 1.00000000031597331, without losing significance
when biasing by ±1.0.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, result; double x, result;

result = floglp(x); result = loglp(x);

FORTRAN real x, result, loglp double precision x, result, dloglp
result = loglp(x) result = dloglp(x)

Pascal function floglp(n: real): function loglp(n: longreal):
real; external; longreal; external;

var x, result: real; var x, result: longreal;
result := floglp(x); result := loglp(x);

Modula-2 VAR x, result: REAL; VAR x, result: LONGREAL;
result := floglp(x); result := loglp(x);

ACCURACY
The loglp and f loglp functions are accurate to within 3 u lp s .

SPECIAL CASES

X result
QNAN
SNAN
x < -1.0
-1.0 +oo
±0.0

QNAN
QNAN with invalid signal
QNAN with invalid signal
-oo with divide by zero signal+oo
±0.0

4-60 FLOATING-POINT LIBRARY

Log2

4.3.46 Log2
This section describes the double-precision and single-precision functions, log2 and
flog2, that return the base 2 logarithm of x.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, result;

result = flog2(x);
double x, result;
result = log2(x);

FORTRAN real x, result, log2
result = log2(x)

double precision x, result, dlog2
result = dlog2(x)

Pascal function flog2(n: real):
real; external;

var x, result: real;
result := flog2(x);

function log2(n: longreal):
longreal; external;

var x, result: longreal;
result := log2(x);

Modula-2 VAR x, result: REAL;
result := flog2(x);

VAR x, result: LONGREAL;
result := log2(x);

ACCURACY
The log2 and flog2 functions are accurate within 3 ulps.
SPECIAL CASES

X result
QNAN
SNAN
x < 0.0
±0.0

QNAN
QNAN with invalid signal
QNAN with invalid signal

with divide by zero signal

FLOATING-POINT LIBRARY 4-61

Neg

4.3.47 Neg
This section describes the double-precision and single-precision negation functions,
neg and fneg, that return the negative of x. This is identical to -x, but is
guaranteed not to generate a machine exception in case of special operands.
CALLING SEQUENCES

LANGUAGE SING LE-PRECISION DO UBLE-PRECISIO N
C float x, result;

result = fneg(x);
double x, result;
result = neg(x);

FORTRAN real x, result, neg
result = neg(x)

double precision x, result, dneg
result = dneg(x)

Pascal function fneg(n: real):
real; external;

var x, result: real;
result := fneg(x);

function neg(n: longreal):
longreal; external;

var x, result: longreal;
result := neg(x);

Modula-2 VAR x, result: REAL;
result := fneg(x);

VAR x, result: LONGREAL;
result := neg(x);

4-62 FLOATING-POINT LIBRARY

Nextfloat

4.3.48 Nextfloat
This section describes the double-precision neighbor function, nextdouble, and the
single-precision neighbor function, nextfloat, that returns the nearest representable
neighbor of x in the direction of y.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, y, result;

result = nextfloat(x, y) ;
double x, y, result;
result = nextdouble(x, y) ;

FORTRAN real x, y, result, nextfloat
result = nextfloat(x, y)

double precision x, y, result
double precision nextdouble
result = nextdouble(x, y)

Pascal function nextfloat(m, n: real):
real; external;

var x, y, result: real;
result := nextfloat (x, y) ;

function nextdouble(m, n: longreal):
longreal; external;

var x, y, result: longreal;
result := nextdouble(x, y);

Modula-2 VAR x, y, result: REAL;
result := nextfloat (x, y) ;

VAR x, y, result: LONGREAL;
result := nextdouble(x, y);

SPECIAL CASES
X y result

SNAN anything QNAN with invalid signal
QNAN anything but SNAN QNAN

anything SNAN QNAN with invalid signal
anything but SNAN QNAN QNAN

X X X

FLOATING-POINT LIBRARY 4-63

Pi

4.3.49 Pi
This section describes the double-precision and single-precision pi functions, pi and
fp i, that return machine n.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float result;

result = fpi();
double result;
result = pi ();

FORTRAN real result, pi
result = pi ()

double precision result, dpi
result = dpi 0

Pascal function fpi: real;
external;

var result: real;
result := fpi;

function pi: longreal;
external;

var result: longreal;
result := pi;

Modula-2 VAR result: REAL;
result := fpi;

VAR result: LONGREAL;
result := pi;

4-64 FLOATING-POINT LIBRARY

P o w

4.3.50 Pow
This section describes the double-precision and single-precision power functions, pow
and fpow, that return xy.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, y, result; double x, y, result;

result = fpow(x, y) ; result = pow(x, y) ;

FORTRAN use the power operator (**) use the power operator (**)
Pascal var x, y, result: real; var x, y, result: longreal;

result := power(x, y) ; result := power(x, y) ;
Modula-2 V A R x, y, result : REAL; V A R x, y, result: LONGREAL;

result := fpow(x, y) ; result := pow(x, y) ;

ACCURACY
The pow and fpow functions are accurate to within 3 ulps.

DIAGNOSTICS
If the correct result overflows, an erroneous number of appropriate sign is
returned and errno is set to ERANGE.

FLOATING-POINT LIBRARY 4-65

Pow (Cont)

SPECIAL CASES
X y re s u lt

(anything) 0 l
(anything but SNAN) l X

SNAN l QNAN with invalid signal
(anything) SNAN QNAN with invalid signal

(anything but SNAN) QNAN QNAN
SNAN (anything but 0) QNAN with invalid signal
QNAN (anything but 0 and SNAN) QNAN
1 x 1 > 1 +oo 4-oo

Ixl > 1 —oo +0
Ixl < 1 4-00 +0
Ixl < 1 —oo 4-00

±1 4;oo QNAN with invalid signal
+0 -(-(anything but 0 and NAN) +0
-0 -»-(anything but 0, NAN, odd integer) +0
+0 -(anything but 0 and NAN) +oo with divide by zero signal
-0 -»-(anything but 0, NAN, odd integer) +o° with divide by zero signal
-0 (odd integer) -(+0 ** (odd integer))
+oo -»-(anything but 0 and NAN) 4-oo

+oo -(anything but 0 and NAN) +0
—oo (anything) -0 ** (-anything)

-(anything) (integer) (-l)**(integer)*
(+any thing* *integer)

-(anything except 0) (non-integer) QNAN with invalid signal

4-66 FLOATING-POINT LIBRARY

Randomx

4.3.51 Randomx
This section discusses the random number generators, randomx and initrand.
The randomx function generates a sequence of pseudo-random numbers, uniformly
distributed over the interval, 0 to 231 -1. One number in the sequence is generated at
each call to randomx.
The initrand function initializes randomx with a user-supplied seed. The default
seed (if randomx is called without first calling initrand) is 19414. To re-initialize
randomx and produce a different sequence of random numbers, call initrand with a
new seed.
The randomx function uses an algorithm derived from the Data Encryption Standard
developed by the National Security Agency. The generated values repeat with a cycle
length of approximately 16 * 231. This cycle length is suitable for most purposes. More­
over, all bits of the generated values are random, uniformly distributed, and uncorre­
lated.
CALLING SEQ UENCES

LANGUAGE CALLING SEQ UENCE
C int s, result;

initrand(s);
result = randomx();

FORTRAN integer s, result, randomx, initrand
call initrand(s)
result = randomx()

Pascal procedure initrand(seed: integer); external;
function randomx: integer; external;
var s, result: integer;
initrand(s);
result := randomx;

Modula-2 VAR s, result: INTEGER;
initrand(s);
result := randomx();

FLOATING-POINT LIBRARY 4-67

R ela tio n

4.3.52 Relation
This section describes the double-precision and single-precision relation functions,
relation and frelation, that return the relationship between numbers x and y.
The returned value is one of the following:

LT =0 if x < y,EQ =1 X II 'CGT =2 if x > y,
UNORDERED =3 if either x or y is NAN

CALLING SEQ U EN C ES

LANGUAGE SINGLE-PRECISION D OUBLE-PRECISION
C float x, y; double x, y;

int result; int result;
result = frelation(x, y) ; result = relation (x, y) ;

FORTRAN real x, y double precision x, y
integer result, relation integer result, drelation
result = relation(x, y) result = drelation(x, y)

Pascal function frelation(m, n: real): function relation(m, n: longreal):
integer; external; integer; external;

var x, y: real; var x, y: longreal;
result: integer; result: integer;

result := frelation(x, y) ; result := relation(x, y) ;
Modula-2 VAR x, y: REAL; VAR x, y: LONGREAL;

result: INTEGER; result: INTEGER;
result := frelation(x, y) ; result := relation(x, y) ;

SPECIA L CASES

X y r esu lt
NAN

anything
anything

NAN
UNORDERED
UNORDERED

4-68 FLOATING-POINT LIBRARY

Rem

4.3.53 Rem
This section describes the double-precision and single-precision remainder functions,
rem and frem.
The rem and frem functions return the remainder when x is divided by y. The
returned value is x- *y, where is the nearest integer less than —. The rem andy
frem functions also return as quo, the low-order 7 bits of the integer part of the quo­
tient.
CALLING SEQ UENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, y, result;

int quo;
result = frem(x, y, &quo);

double x, y, result;
int quo;
result = rem(x, y, &quo);

FORTRAN real x, y, result, remainder
integer quo
result = remainder(x, y, quo)

double precision x, y, result
double precision dremainder
integer quo
result = dremainder(x, y, quo)

Pascal function frem(m, n: real;
var q: integer): real;
external;

var x, y, result: real;
quo: integer;

result := frem(x, y, quo) ;

function rem(m, n: longreal;
var q: integer): longreal;
external;

var x, y, result: longreal;
quo: integer;

result := rem(x, y, quo);
Modula-2 VAR x, y, result: REAL;

quo: INTEGER;
result := frem(x, y, quo) ;

VAR x, y, result: LONGREAL;
quo: INTEGER;

result := rem(x, y, quo);

FLOATING-POINT LIBRARY 4-69

Rem (Cont)

SPECIA L CASES

X y r e su lt
SNAN (anything) QNAN with invalid signal

(anything) SNAN QNAN with invalid signal
oo (anything but NAN) QNAN with invalid signal

(anything but NAN) 0 . 0 QNAN with invalid signal
QNAN (anything but SNAN) QNAN

(anything but SNAN) QNAN QNAN

NOTE: Quo is undefined in the exception cases.
SEE ALSO

drern

4-70 FLOATING-POINT LIBRARY

R in t

4.3.54 Rint
This section describes the double-precision and single-precision integral value func­
tions, r i n t and f r i n t .

The r i n t and f r i n t functions convert x to the nearest integral value in the direc­
tion indicated by the current rounding mode.
CALLING SEQ U EN C ES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, result;

result = frint(x);
double x, result;
result = rint(x);

FORTRAN real x, result, rint
result = rint(x)

double precision x, result, drint
result = drint(x)

Pascal function frint(n: real):
real; external;

var x , result: real;
result := frint(x);

function rint(n: longreal):
longreal; external;

var x, result: longreal;
result := rint(x);

Modula-2 VAR x , result: REAL;
result := frint(x);

VAR x, result: LONGREAL;
result := rint(x);

SPECIA L CASES
X r esu lt

QNAN
SNAN

i o o

± 0 . 0

QNAN
QNAN with invalid signal
+ OO

± 0 . 0

FLOATING-POINT LIBRARY 4-71

Sin

4.3.55 Sin
This section describes the double-precision and single-precision sine functions, sin and fsin.
The sin and fsin functions return the trigonometric sine function of a radian argu­
ment. The magnitude of the argument should be checked by the caller to make sure
the result is meaningful. For very large arguments, the result may have no
significance.
CALLING SEQ U EN C ES

L A N G U A G E S I N G L E -P R E C I S I O N D O U B L E - P R E C I S I O N
C float x, result;

result = fsin(x);
double x, result;
result = sin (x);

FORTRAN real x, result
result = sin(x)

double precision x, result
result = sin(x)

Pascal var x, result: real;
result := sin(x);

var x, result: longreal;
result := sin (x);

Modula-2 VAR x, result: REAL;
result := fsin(x);

VAR x, result: LONGREAL;
result := sin (x);

ACCURACY

The sin and fsin functions are accurate to within 1 ulp. The return value is
never greater than 1.0.

DIAG NO STICS
Extremely large arguments, such that abs(x) is greater than (231-l)*rc, cause
fsin to return value 0; errno is set to EDOM.

4-72 FLOATING-POINT LIBRARY

Sin (Cont)

SPECIAL CASES

X result
QNAN QNAN
SNAN QNAN with invalid signal

i oo QNAN with invalid signal
± 0 . 0 ± 0 . 0

FLOATING-POINT LIBRARY 4-73

Sinh

4.3.56 Sinh
This section describes the double-precision and single-precision functions, sinh and
fsinh, that return the hyperbolic sine of argument x.
CALLING SEQUENCES

L A N G U A G E S I N G L E -P R E C I S I O N D O U B L E - P R E C I S I O N
C float x, result;

result = fsinh(x);
double x, result;
result = sinh(x);

FORTRAN real x, result
result = sinh (x)

double precision x, result
result = sinh(x)

Pascal function fsinh(n: real):
real; external;

var x, result: real;
result := fsinh(x);

function sinh(n: longreal):
longreal; external;

var x, result: longreal;
result := sinh(x);

Modula-2 VAR x, result: REAL;
result := fsinh (x);

VAR x, result: LONGREAL;
result := sinh(x);

ACCURACY
The sinh and fsinh functions are accurate to within 3 ulps.

DIAGNOSTICS
If the correct result overflows, an erroneous number of the appropriate sign
returns and errno sets to ERANGE.

SPECIAL CASES

X result
QNAN
SNAN+ oo
±0.0

QNAN
QNAN with invalid signal+ oo
±0.0

4-74 FLOATING-POINT LIBRARY

Sqrt

4.3.57 Sqrt
This section describes the double-precision and single-precision square root functions,
sqrt and f sqrt, that return ^x.
CALLING SEQUENCES

L A N G U A G E S I N G L E -P R E C I S I O N D O U B L E - P R E C I S I O N

C float x, result;
result = fsqrt(x);

double x, result;
result = sqrt(x);

FORTRAN real x, result
result = sqrt(x)

double precision x, result
result = sqrt(x)

Pascal var x, result: real;
result := sqrt (x);

var x, result: longreal;
result := sqrt(x);

Modula-2 VAR x, result: REAL;
result := fsqrt(x);

VAR x, result: LONGREAL;
result := sqrt (x);

SPECIAL CASES
X result

QNAN QNAN
SNAN QNAN with invalid signal
x < 0 QNAN with invalid signal
+ °° + 00

±0.0 ±0.0

FLOATING-POINT LIBRARY 4-75

Tan

4.3.58 Tan
This section describes the double-precision and single-precision tangent functions, tan
and ft an, that return the trigonometric tangent function of a radian argument. The
magnitude of the argument should be checked by the caller to make sure the result is
meaningful. For very large arguments the result may have no significance.
CALLING SEQUENCES

L A N G U A G E S I N G L E -P R E C I S I O N D O U B L E - P R E C I S I O N

C float x, result;
result = ftan(x);

double x , result;
result = tan (x);

FORTRAN real x, result
result = tan(x)

double precision x, result
result = tan(x)

Pascal var x, result: real;
result := tan (x);

var x, result: longreal;
result := tan (x);

Modula-2 VAR x, result: REAL;
result := ftan(x);

VAR x, result: LONGREAL;
result := tan(x);

ACCURACY
The tan and ft an functions are accurate to within 2 ulps.

DIAGNOSTICS
At tangent’s singular points x = n * y for n odd, errno to ERANGE.

SPECIAL CASES

X r e s u l t

QNAN
SNAN

+ oo
± 0 . 0

QNAN
QNAN with invalid signal
QNAN with invalid signal
±0.0

4-76 FLOATING-POINT LIBRARY

Tanh

4.3.59 Tanh
This section describes the double-precision and single-precision functions, tanh and
ftanh, that return the hyperbolic tangent of argument x.
CALLING SEQUENCES

LANGUAGE SINGLE-PRECISION DOUBLE-PRECISION
C float x, result;

result = ftanh (x);
double x, result;
result = tanh(x);

FORTRAN real x, result
result = tanh(x)

double precision x, result
result = tanh(x)

Pascal function ftanh(n: real);
real; external;

var x, result: real;
result := ftanh(x);

function tanh(n: longreal):
longreal; external;

var x, result: longreal;
result := tanh(x);

Modula-2 VAR x, result: REAL;
result := ftanh(x);

VAR x, result: LONGREAL;
result := tanh(x);

ACCURACY
The tanh and ftanh functions are accurate to within 3 ulps.

SPECIAL CASES

X result
QNAN
SNAN+ oo
+ 0.0

QNAN
QNAN with invalid signal
± 1.0
±0.0

FLOATING-POINT LIBRARY 4-77

Chapter 5
FPEE LIBRARY

5.1 INTRODUCTION
When a Floating-Point Unit (FPU) is not present, the Floating-Point Enhancement and
Emulation (FPEE) library provides low-cost floating-point support by emulating the
Series 32000 FPU instructions. When an FPU is present, FPEE enhances the
Series 32000 FPU by providing additional functionality as recommended by Draft 10 of
the ANSI/IEEE Task 754 Proposal for Binary Floating-point Arithmetic (IEEE 754).
FPEE meets the IEEE 754 standard for double-precision arithmetic.
To maximize the efficiency of execution of external procedures and function calls, we
have adopted the convention of passing only double-precision floating-point arguments
and results. Because of this, when a single-precision procedure or function is called, a
hardware instruction is invoked whenever it is necessary to convert an argument from
single-precision to double-precision. If this instruction is executed with a reserved
operand, the result is an immediate invalid-operation trap. It is not possible for the
user to disable this trap; therefore, with the combination of the math library and the
floating-point emulation library, the user may achieve compliance only with the IEEE
754 Standard for Floating-Point Arithmetic for double-precision arithmetic.
Major problems result when the user is unable to effectively use the frelation func­
tion; f relation returns “unordered” when passed a quiet NAN as an argument, and
ffinite returns a zero when passed an infinity or a NAN as an argument. These rou­
tines, if the source code is available, can be included in a program as local routines to
avoid the conversion problem.
The FPEE library is provided in source form and as a binary library suitable for its
particular GNX tool-set environment. The source includes a makefile to build the
FPEE library. The FPEE library can be configured to enhance/emulate either the
NS32081 FPU or the NS32381 FPU for either native applications or cross-development
applications.
This chapter describes the FPEE library’s interaction with the NS32081 FPU and the
NS32381 FPU, how to use and integrate the FPEE library with an application pro­
gram, and the basic FPEE library operational details.
Before proceeding, the information presented in Section 4.2 should be reviewed. This
information describes the Series 32000 floating-point number formats and special
values and defines floating-point arithmetic terminology.

FPEE LIBRARY 5-1

5.2 FPEE LIBRARY CONFIGURATIONS
All FPEE binary libraries provided with the GNX development tool-set are configured for the NS32381 FPU by default.

5.2.1 FPEE Library Creation in a Series 32000/UNIX Environment
In a Series 32000/UNIX environment, the GNX tool-set can create either native or
cross-development versions of the FPEE library. To build a native version of the FPEE
library, execute the make command while in the FPEE source directory. Make
creates a native FPEE library named libfpe. a that enhances/emulates the NS32381
FPU. Make creates a cross FPEE library named libdb_fpe.a that
enhances/emulates the NS32381 FPU for target board applications.
To create a NS32081 version of the FPEE library, for either native or cross­
development applications, edit the makefile by commenting the line that defines the
makescript variable PPFLAGS=-DFPU381 and assembler flags to reflect NS32081.
The FPU type does not affect the name of the library.

5.2.2 Cross-development FPEE Library Creation
The GNX cross-development tool-set on VAX/VMS or VAX/UNIX 4.3 systems creates
only cross-development versions of the FPEE library.
To build an FPEE library on a VAX/UNIX system, execute the make command (make
all) while in the FPEE source directory. This creates an FPEE library named
libfpe. a that enhances and emulates the NS32381 FPU.
To create an NS32081 version of the FPEE library, edit the m akefile by uncomment­
ing the line that defines the makescript variable PPFLAGS = -DFPU381 and change
the assembler flags to reflect NS32081.
The FPU type does not affect the name of the library.
The FPEE library built in VAX/VMS environment is implemented in a DCL command
file (i.e., a file named make.com). To build the FPEE library, execute the make.com
file (i.e., @make a l l) while in the FPEE source directory. To create an NS32081 ver­
sion of the FPEE library, edit the file make. com and comment the line that invokes
the assembler with the /DEFINE=(FPU381) command line option and uncomment with
/TARGET=(FPU081).

5-2 FPEE LIBRARY

5.3 INTEGRATING FPEE WITH AN APPLICATION
The integration of the FPEE library imposes two mandatory requirements upon the
application.
First, the application must initialize the FPU’s status register (FSR). See Section 5.3.1
and Section 5.3.2 for details. This is especially critical if the FPEE library is enhanc­
ing the FPU. Initializing the FSR (Floating-point Status Register) synchronizes the
FPU’s hardware FSR with that of the FSR’s software image in the FPEE library.
Second, CPU exception dispatch-table trap-descriptors for FPU (slave) and undefined
instructions must be set to their corresponding entry points in the FPEE library. Use
the fpgtrpvctr and fpstrpvctr functions to fetch and set the FPU trap handler
(see Sections 4.3.30 and 4.3.37).
Only applications that require full FPU emulation (no FPU present) use the undefined
instruction trap. Those applications that use the FPEE library to enhance the FPU
need only the FPU trap, and the undefined trap initialization code may be removed
from the source.

5.3.1 Integrating FPEE with Series 32000/UNIX Applications
The user can link an application program with the FPEE library and execute code in a
GENIX V development environment. This may be of use to customers that want to do
some initial checkup of their application.
Native applications call a special initialization routine provided with the FPEE library
l ib fp e .a . Libfpe . a must be installed in /lib before linking.
In the application program just after declarations, a call is made to fpinit_, an
FPEE initialization routine which sets the GENIX V signals (traps) for both the
undefined instruction and the FPU trap. Upon return from this routine, the FSR is ini­
tialized and then the application program is called. (The source to fpinit_ is in the
fpinitn.c file of the FPEE sources.) Normally, fpinit_ is called with an assembly
instruction (e.g., asm("bsr _fpinit_") ;).

5.3.2 Cross Application FPEE Integration
In cross-development mode, the FPEE library is supported by several functions from
the Series 32000 Development Board Monitors.
On a VAX/UNIX development host, a cross-application must either include a call to the
INIT__routine (in source file fpinitx.s) prior to any floating-point operations or
use the - f flag on the compiler invocation line to link with FPEE. The following two
examples link FPEE to an application program in the file yourprog. c:

FPEE LIBRARY 5-3

nmcc (mif yourprog.c
or

nmcc (mic yourprog.c
nmeld GNXDIR/lib/fcrtO.o yourprog.o -lfpe -lc

On a VAX/VMS development host, the linking is done in the following two steps:
nmcc yourprog.c
nmeld gnxdir:fcrtO. obj,yourprog. obj,gnxdir:libfpe. a,gnxdir:libc. a

On a Series 32000/UNYX system, cross-application linking to FPEE must be explicitly
requested. For example,

cc -c yourprog.c
Id GNXDIR/lib/db_fcrtO.o yourprog.o -ldb_fpe -ldb_c

5.3.3 FPEE Library and the Math Library Integration
The math library routines, when used with the FPEE library, provide a full IEEE 754
math environment. The math library provides many routines that control the FPEE
library actions by providing high-level language routines to manipulate the FPU’s FSR.
Section 4.2.10 completely details the IEEE 754 math environment requirements and its
relationship to the FPEE library.
An important difference between the math library and the FPEE library is the initial
value of the FSR. The FPEE library initialization routine (i.e. INIT__for cross­
development; fpinit for execution under GENIX V) initializes the FSR to a value that
does not assume presence of the FPEE software. This FSR value does not enable the
complete IEEE 754 math environment functionality. To initialize the FSR to the IEEE
754 specified default, use the the fp_procentry function in the math library. This
function assumes the presence of the FPEE software but does not require it for opera­
tion. If FPEE is not used, the only effect is the loss of the FPEE software-supported
features.

5.3.4 FPEE Error Handling Routines
The FPEE library provides the application with five FPU trap-exception routines.
There are routines for the following FPU traps: underflow, overflow, inexact result,
invalid operation, and divide by zero. Application program execution is transferred to
the appropriate routine when the application performs an operation which results in
an exception and that exception’s FSR trap-enable flag is set.
As provided with the FPEE library, these routines simply output an error message and
then halt the application program execution. This is the minimum, generic IEEE 754
requirement; elaboration of these routines is application-specific and the responsibility
5-4 FPEE LIBRARY

of the application program. Typically, an application program elaborates error routine
after determining which type of floating-point operation caused the exception and then
returns a value which allows the application program to continue execution.
The FPEE library implements a technique that allows an application program to
quickly determine the error-causing floating-point instruction. Upon entry to one of
these routines, a coded integer value is available which identifies the offending
floating-point instruction. (Table 5-1 provides the value-mapping code). From this
information, the application program can determine the type of error causing operand
(i.e. byte, word, double-word, single- or double-precision floating-point) and, therefore,
return the correct type of result.
This FPEE error mechanism is implemented in a generic fashion and requires
modification before integration with any special application needs. The default error
routines for native applications are in the source file fperrn.c; the error routines for
cross applications are in the source file fperrx. s.

5.4 FPEE OPERATIONAL DETAILS
Floating-point operations for the Series 32000 family may be implemented with the
Series 32000 FPUs alone or with the FPEE library alone; however, the fastest and
greatest variety of operations are provided when both the FPEE library and the
Series 32000 FPUs are present in a system. The Series 32000 FPUs provide fast execu­
tion but do not fully meet the IEEE 754 requirements. The FPEE library does not have
the speed of the Series 32000 FPUs, but the library does provide additional functional­
ity necessary to fulfill IEEE 754 requirements. Complete IEEE 754 conformance is
achieved for double-precision arithmetic when the application program uses both the
FPEE library and the math library (the math library provides the interface routines to
control the IEEE 754 specified math environment).

5.4.1 Operational Overview
The FPEE library interfaces with the Series 32000 FPU (when present) and a
Series 32000 CPU to execute or enhance floating-point operations. When the CPU
encounters a floating-point instruction, it checks the Configuration register (CFG) and
if the FPU is present, it transfers control to the FPU. If the FPU is not present, control
transfers to the undefined instruction trap handler in the FPEE library. The FPEE
library undefined instruction trap handler emulates the floating-point instruction.
If an FPU is present and a floating-point exception occurs (such as a floating-point
divide-by-zero operation), the CPU generates a floating-point trap and control is
transferred to the floating-point (FPU) trap handler in the FPEE library. The FPEE
FPU trap handler takes appropriate action, such as returning a NAN or infinity as the
result or halting execution at a specified error routine.
The transfer of control between the FPEE library, the Series 32000 CPU, and the
Series 32000 FPU is completely application-program transparent.

FPEE LIBRARY 5-5

Table 5-1. Instruction Codes

INSTRUCTION CODE INSTRUCTION CODE
addf 33 movlf 18addl 32 movwf 17absf 15 movwl 16absl 14 mulf 43cmpf 27 mull 42
cmpl 26 negf 13
divf 29 negl 12
divl 28 polyf 59
dotf 61 polyl 58
dotl 60 roundfb 5
floorfb 9 roundlb 4
floorlb 8 roundfw 21
floorfw 25 roundlw 20
floorlw 24 roundfd 35
floorfd 39 roundld 34
floorld 38 sfsr 3
lfsr 2 scalbf 63
logbf 65 scalbl 62
logbl 64 subf 41
movbf 1 subl 40
movbl 0 truncfb 7
movdf 31 trunclb 6
movdl 30 truncfw 23
movf 11 trunclw 22
movfl 19 truncfd 37
movl 10 truncld 36

5-6 FPEE LIBRARY

5.4.2 FPEE E n hancem en ts to the FPU
IEEE 754 requires that exceptions (arithmetic operations on reserved operands) cause
a signal. The signal may be either setting a status flag, or taking a trap, or both. The
exact action must be under control of the application program. For example, the appli­
cation program can specify setting a flag, but no trapping, for a specific type of excep­
tion. In this case, program execution continues despite the exception, and the numeri­
cal result of the operation causing the exception is the appropriate IEEE 754 recom­
mended value, typically either a NAN or a signed infinity.
IEEE 754 defines five types of exceptions: underflow, overflow, divide by zero, inexact
result, and invalid operation. The NS32081 and NS32381 FPUs provide status flags
only for underflow and inexact result but traps for the other exceptions. In no case
does the FPU allow continued execution after an exception trap.
The FPEE library implements status flags for overflow, invalid operation, and divide by
zero and allows the application program to enable or disable trapping for these excep­
tions by using routines provided in the math library. The implementation is tran­
sparent to the application program because the Series 32000 FPU’s floating-point
status register (FSR) contains bits which are under the FPEE library’s software control
(the FSR’s Software Field Bits). The application program need only consult the value
of the FSR to determine the status of FPEE software-supported flags and FPU
hardware-supported flags.
The IEEE 754 enhancements to the FPU are implemented in the FPU trap handler in
the FPEE library. The FPEE library FPU trap handler examines the trap enable flags
to determine whether application program execution should continue. If the trap for a
specific exception is disabled, the trap handler simply sets the appropriate FSR flag
signaling the exception, makes sure that the correct special value is returned as the
result (typically NAN or a signed infinity), and resumes execution of the application
program.
Table 5-2 lists the functions implemented by the FPEE library.

FPEE LIBRARY 5-7

Table 5-2. F P E E Library-Implemented IE E E 754 Operations

FPEE library implements these required IEEE Standard
operations for double-precision arithmetic:
Special Values

Plus and minus zero
Denormalized numbers
Plus and minus infinity
Signaling and quiet NANs

Special Operations
Infinities
NANs
Denormalized values

Comparisons
Unordered

Exception Handling
Underflow
Overflow
Divide by Zero
Invalid Operand
Inexact Result

5.4.3 NS32081 FPU, NS32381 FPU and FPEE
There are a few differences between the NS32081 FPU and the NS32381 FPU which
require consideration when using the FPEE library. The NS32381 FPU implements
four additional floating-point instructions (scalb, logb, dot, and poly) and a floating­
point register modified bit (RMB) in the FSR. The NS32381 FPU has eight 64-bit
floating-point registers instead of eight 32-bit floating-point registers.
The FPEE library does distinguish between NS32081 FPU instruction emulation and
NS32381 instruction emulation. The distinction is specified when the FPEE library is
created. The FPEE library can be created to enhance/emulate either the NS32081
FPU or the NS32381 FPU instruction set. Applications must be compiled specifying
the exact FPU that the FPEE library enhances/emulates.

5-8 FPEE LIBRARY

Applications must be compiled for the correct FPEE library because the NS32381 FPU
FPEE library implements eight 64-bit registers and supports the RMB bit of the FSR.
The FSR RMB is supported only by the NS32381 FPEE, and applications using this bit
do not work with the NS32081 version of the FPEE library. The 64-bit registers might
cause some problems for assembly language routines written for the NS32081 FPU
that move a 64-bit value from register to memory using two 32-bit move instructions,
rather than the appropriate single 64-bit instruction. This technique does not work
with the NS32381 because the NS32381 does not concatenate two adjacent 32-bit regis­
ters to form a 64-bit register; all eight NS32381 registers are 64-bit. A single 64-bit
move instruction must be used to transfer register contents to memory.

5.4.4 FPEE Program Control
The FPEE software implements the full IEEE 754 math environment by using the
software field in the FSR. Between the FPEE-implemented FSR bits and those of the
FPU, an application can enable or disable any of the five traps (overflow, underflow,
inexact result, invalid operation, and divide by zero) and check any of the five exception
status flags. The FPU maintains the lower nine bits of the FSR while seven higher bits
are implemented by the FPEE software. The remainder of the bits 17-31 are reserved,
bit 16 is used only by the NS32381.
The FPEE library implements the software field FSR bits (9-15) for exception trap
enable and exception status.
The FPEE software-implemented and supported FSR contains:

Bit: Purpose:
0-2 Trap type
3 Underflow trap-enable flag
4 Underflow status flag
5 Inexact-result trap-enable flag
6 Inexact-result status flag
7-8 Rounding mode
9 FPU
10 Invalid-operation trap-enable flag
11 Invalid-operation status flag
12 Division-by-zero trap-enable flag
13 Division-by-zero status flag
14 Overflow trap-enable flag
15 Overflow status flag
16 Register Modified Bit (NS32381 Only)
17-31 Reserved for future use

FPEE LIBRARY 5-9

Trap Type
The Trap type bits indicate the type of floating-point exception which occurred:

000 No trap
001 Underflow
010 Overflow
011 Division-by-zero
100 Illegal-instruction
101 Invalid-operation
110 Inexact-result
111 Reserved for future use

Rounding Mode
Rounding mode bits indicate how floating-point operations are rounded:

00 Toward nearest *
01 Toward zero
10 Toward positive infinity
11 Toward negative infinity

* if two values are equally near, towards the even value
The exception status flags, once set, remain set until explicitly cleared by writing a 0.
The FPU bit selects either FPU (NS32081 or NS32381) compatible mode of operation
or IEEE 754 mode of operation. If the FPU bit is 1, the library emulates the FPU chip
exactly. In IEEE 754 mode (FPU bit is 0) for double-precision arithmetic, the library
operates according to the IEEE 754 Standard. Results of operations and exceptions
when the FPU bit is set or cleared are given in the following paragraphs. In each case,
the value of the FSR is presented with significant bits shown as either 1 or 0; “don’t
care” bits are shown as X.

Underflow exception:
X X X X X X 0 X X X X 1 X X X X
X X X X X X 0 X X X X 1 1 X X X
X X X X X X 1 X X X X 1 0 X X X
X X X X X X 1 X X X X 1 1 X X X

Inexact result exception:
X X X X X X X X X 1 0 X X X X X
X X X X X X X X X 1 1 X X X X X

Return a denormalized number
Underflow trap
Return zero (non-IEEE 754 standard)
Underflow trap

Return an inexact result
Inexact result trap

5-10 FPEE LIBRARY

Invalid operation exception:

X X X X 1 X 1 X X X X X X X X X
X X X X 1 0 0 X X X X X X X X X
X X X X 1 1 0 X X X X X X X X X

Invalid Operation trap
Return NAN **
Invalid-Operation trap

** If the invalid operand is a denormalized number, the FPEE software
returns a normalized value.

Division by zero exception:
X X 1 X X X 1 X X X X X X X X X
X X 1 0 X X 0 X X X X X X X X X
X X 1 1 X X 0 X X X X X X X X X

Overflow signaled:
1 X X X X X 1 X X X X X X X X X
1 0 X X X X 0 X X X X X X X X X
1 1 X X X X 0 X X X X X X X X X

Division by zero trap
Return infinity
Division by zero trap

Overflow trap
Result according rounding mode
Overflow trap

See Section 5.4.7 on rounding mode for results.
Overflow on conversion from float to integer:

X X X X X X 1 X X X X X X X X Xxxxxxooxxxxxxxxx
X X X X X 1 0 X X X X X X X X X

Overflow trap (non-IEEE 754 Standard)
Return -1
Invalid-operation trap

5.4.5 FPEE Comparisons
Floating-point comparisons differ from integer comparisons because there are four pos­
sible results: unordered result, greater than, equal to, and less than. The unordered
result occurs from comparisons of operands such as NANs.

FPEE LIBRARY 5-11

The FPEE software sets bits in the Processor Status Register (PSR) of the Series 32000
CPU to indicate the result of a floating-point comparison. The FPEE library uses the N, Z, and L bits:

Comparison Result Bit Set Bits Cleared
Operands are equal Z N and L
Operandi is less than
Operand2

None Z, N, and L

Operand2 is less than
Operandi

N Z and L

Unordered L Z and N
All comparisons with an unordered result use the FPEE library since the NS32081 and
NS32381 FPUs generate an FPU trap when one of the operands of a comparison is a
reserved operand.

5.4.6 FPEE Exception Handling
The FPEE library implements six exception handling routines:

• Invalid-operation
• Division-by-zero
• Overflow
• Underflow
• Inexact-result
• Illegal-instruction

Library handling of these exceptions is internal and transparent to the application.
These floating-point exceptions lead to a run-time error or to results specified by the
IEEE 754 Standard. Note that the NS32081 and NS32381 FPUs (and emulation in
FPU mode) do not handle exceptions for underflow according to the IEEE standards.
For underflow, the FPUs return zero.
If an exception occurs and its trap enable flag in the FSR is set, application program
execution is transferred to the appropriate error handling routine.
If an exception occurs and its trap enable flag in the FSR is not set, application pro­
gram execution continues after the FPU trap handler services the exception by setting
the exception status flag and returning the IEEE 754 specified result. It is the applica­
tion program’s responsibility to check for set exception status flags in the FSR.
5-12 FPEE LIBRARY

Invalid operation exceptions occur when a floating-point operation (other than a move)
is attempted on a reserved operand. The following are operations which cause an
invalid operation exception:

• An operand which is a NAN
• A result of a remainder operation, x REM y (remainder of x divided byy), where y

is zero or x is infinity
• Infinity plus negative infinity or infinity minus infinity
• Multiplying zero by infinity
• Dividing zero by zero
• Dividing infinity by infinity
• The operand is a denormalized number. If the invalid operation trap is disabled,

the FPEE software returns a normalized number.
• Comparing with “<” or “>” when the relation is unordered

The Division-by-zero exception occurs when the divisor of a floating-point operation is
zero and the dividend is a finite nonzero number.
The Overflow exception occurs when the result of a floating-point operation is finite but
too large to be represented in the given format. Any decimal value whose magnitude is
larger than the following causes the Overflow exception:

• 3.4028235 E 38 for single-precision
• 1.797693134862316 E 308 for double-precision

The Underflow exception occurs when the result of a floating-point operation is not zero
and the exponent is too small to be represented in the given format. This exception may
also occur for denormalized numbers. Any decimal value whose magnitude is smaller
than the following causes the Underflow exception:

• 1.1754943 E -38 for single-precision
• 2.225073858507201 E -308 for double-precision

The Inexact-result exception occurs when the rounded result of a floating-point is not
exact or when an overflow occurs and the overflow trap is not enabled.
Non-implemented operation codes cause the Illegal-Instruction exception.

FPEE LIBRARY 5-13

5.4.7 FPEE Rounding Modes
The rounding modes affect normal calculations which require rounding and the returned result for the overflow exception.
The FPEE library implements overflow-exception-returned results. If the overflow
exception trap is disabled, the results returned are shown in Table 5-3.

5-14 FPEE LIBRARY

Table 5-3. Default Return Values for Overflow Exceptions

ROUNDING MODE
SIGN OF THE

INTERMEDIATE
RESULT

RESULT RETURNED
BY THE FPEE

SUPPORT LIBRARY
Toward Nearest + Positive Infinity

- Negative Infinity
Toward Zero + +3.4028235 E 38

(single-precision)
+1.797693134862316 E 308
(double-precision)
-3.4028235 E 38
(single-precision)
-1.797693134862316 E 308
(double-precision)

Toward Negative Infinity + +3.4028235 E 38
(single-precision)
+1.797693134862316 E 308
(double-precision)

- Negative Infinity
Toward Positive Infinity + Positive Infinity

-3.4028235 E 38
(single-precision)
-1.797693134862316 E 308
(double-precision)

FPEE LIBRARY 5-15

Appendix A
SERIES 32000 STANDARD CALLING CONVENTIONS

A.l INTRODUCTION
The main goal of standard calling conventions is to enable the routines of one program
to communicate with different modules, even when written in multiple programming
languages. The Series 32000 standard calling conventions support various special
language features (such as the ability to pass a variable number of arguments, which is
allowed in C) by using the different calling mechanisms of the Series 32000 architec­
ture. These conventions are employed only to call “externally visible” routines. Calls
to internal routines may employ even faster calling sequences by passing arguments in
registers, for instance.
Basically, the calling sequence pushes arguments on top of the stack, executes a call
instruction, and then pops the stack, using the fewest possible instructions to execute
at the maximum speed. The following sections discuss the various aspects of the
Series 32000 standard calling conventions.

A.2 CALLING CONVENTION ELEMENTS
Elements of the standard calling sequence are as follows:

• The Argument Stack
Arguments are pushed on the stack from right to left; therefore, the leftmost
argument is pushed last. Consequently, the rightmost argument is always at the
same offset from the frame pointer, regardless of how many arguments are actu­
ally passed. This allows functions with a variable number of arguments to be
used.
NOTE: This does not imply that the actual parameters are always

evaluated from right to left. Programs cannot rely on the
order of parameter evaluation.

The run-time stack must be aligned to a full double-word boundary. Argument
lists always use a whole number of double-words; pointer and integer values use a
double-word (by extension, if neccessary), floating-point values use eight bytes
and are represented as long values; structures (records) use a multiple of double-
words.

SERIES 32000 STANDARD CALLING CONVENTIONS A-l

NOTE: Stack alignment is maintained by all GNX — Version 3 com­
pilers through aligned allocation and de-allocation of local
variables. Interrupt routines and other assembly-written
interface routines are advised to maintain this double-word
alignment.

The caller routine must pop the arguments off the stack upon return from the
called routine.
NOTE: The compiler uses a more efficient organization of the stack

frame if the FIXED_FRAME (-OF) optimization is enabled. In
that case, programs should not rely on the organization of the
stack frame.

• Saving Registers
General registers RO, Rl, and R2 and floating registers F0, Fl, F2, and F3 are
temporary or scratch registers whose value may be changed by a called routine.
Also included in this list of scratch registers is the long register LI of the
NS32381 FPU. It is not necessary to save these registers on procedure entry or
restore them before exit. If the other registers (R3 through R7, F4 through F7,
and L3 through L7 of the NS32381) are used, their values should be saved (onto
the stack or in temps) by the called routine immediately upon procedure entry
and restored just before executing the return instruction. This should be per­
formed because the caller routine may rely on the values in these registers not
changing.
NOTE: Interrupt and trap service routines are required to

save/restore all registers that they use.
• Returned Value

An integer or a pointer value that returns from a function, returns in (part of)
register RO.
A long floating-point value that returns from a function, returns in register pair
F0-F1. A float-returning function returns the value in register F0.
If a function returns a structure, the calling function passes an additional argu­
ment at the beginning of the argument list. This argument points to where the
called function returns the structure. The called function copies the structure into
the specified location during execution of the return statement. Note that func­
tions that return structures must be correctly declared as such even if the return
value is ignored.

A-2 SERIES 32000 STANDARD CALLING CONVENTIONS

Example: int iglob;
m ()
{

int loc;
a = ifunc(loc);

}

ifunc(pi)
int pi;
{

int i, j, k;
j = 0;
for (i = 1; i <= pi; i++)

j = j + f (i) ;
return (j);

}
The compiler may generate the following code:

m:
enter □ ,4 »•Allocate local variable
movd -4(fp),tos ;Push argument
bsr ifunc
adjspb i</> ;Pop argument off stack
movd rO, iglob ;Save return value
exit []
ret $ (0)

ifunc:
enter [r3,r4,r5],0 ;Save safe registers
movd 8 (fp),r5 ;Load argument to temp reg:
movqd $ (0) ,r4 »•Initialize j
cmpqd $ (1),r5
bgt . LL1
movqd $ (1),r3 »•Initialize i

LL2 :
movd r3,tos »•Push argument
bsr _f
adjspb $ (-4) »•Pop argument off stack
addd rO, r4 ;Add return value to j
addqd $ (D ,r3 »•Increment i
cmpd r3, r5
ble . LL2

LL1:
movd r4, rO »•Return value
exit [r3, r4, r5] »•Restore safe registers
ret $ (0)

SERIES 32000 STANDARD CALLING CONVENTIONS A-3

After the enter instruction is executed by i f unc (), the stack will look like this:
HIGH MEMORY

caller's stack frame

callee's stack frame

< — fp

< — sp

LOW MEMORY

loc

value of loc
return address

saved fp
saved R3
saved R4
saved R5

A-4 SERIES 32000 STANDARD CALLING CONVENTIONS

INDEX

Arc-hyperbolic sine function
** function, see pow 4-65 asinh 4-16
1 EPERM 2-1 fasinh 4-16
2 ENOENT 2-1 Arc-hyperbolic tangent function
5 EIO 2-1 atanh 4-19
6ENXIO 2-1 fatanh 4-19
9 EBADF 2-1 Arc-sine function
12 ENOMEN 2-1 asin 4-15
13 EACCES 2-1 fasin 4-15
14 EFAULT 2-2 arctan function, see atan 4-17
15 ENOTBLK 2-2 Arctangent function
16 EBUSY 2-2 atan 4-17
17 EEXIST 2-2 atan2 4-18
19 ENODEV 2-2 fatan 4-17
20 ENOTDIR 2-2 fatan2 4-18
21 EISDIR 2-2 asctime 3-7
22 EINVAL 2-2 asin function 4-15
23 ENFILE 2-2 asinh function 4-16
24 EMFILE 2-2 Assign buffering to a stream 3-44
25 ENOTTY 2-2 atan function 4-17
26 ETXTBSY 2-2 atan2 function 4-18
27 EFBIG 2-2 atanh function 4-19
28 ENOSPC 2-2 atof routine 3-4
30 EROFS 2-2 atoi 3-4
32 - bit move instruction 5-9 atol 3-4
33 EDOM 2-3 atoi routine 3-4
62 ELOOP 2-3 atol routine 3-4
63 ENAMETOOLONG 2-3
64 - bit move instruction 5-9

B
A Bad address 2-2

Bad file number 2-1
abort routine 3-2 bcmp routine 3-5
abs function, see cabs 4-21 bcopy routine 3-5
abs function, see fabs 4-34 Bessel function
abs routine 3-3 jo 4-20
Absolute ceiling 3-13 j l 4-20
Absolute floor 3-13 jn 4-20
Absolute value 3-13 yo 4-20
Absolute value function y i 4-20

cabs 4-21 yn 4-20
fabs 4-34 Bias 4-4
fcabs 4-21 Bias value 4-4
ffabs 4-34 Bit and byte string operations 3-5

Accessing math library functions 4-10 Block device required 2-2
acos function 4-13 bstring routines 3-5
acosh function 4-14 bcmp 3-5
Allocate memory in heap 2-17 bcopy 3-5
Arccosine function bzero 3-5

acos 4-13 ffs 3-5
facos 4-13 Buffered binary I/O 3-16

Arc-hyperbolic cosine function Byte format 4-2
acosh 4-14 bzero routine 3-5
facosh 4-14

INDEX 1

c dfloor function, see floor 4-36
dhypot function, see hypot 4-56cabs function 4-21 dinf function, see inf 4-57Calling sequence A -l divide by zero 4-6

calloc routine 3-24 Divide by zero exception 5-13cbrt function 4-23 Division by zero exception 5-11
ceil function 4-24 dloglp function, see loglp 4-60
ceil routine 3-13 dlog2 function, see log2 4-61
Ceiling function dneg function, see neg 4-62

ceil 4-24 Documentation conventions 1-2
fceil 4-24 Double-precision function

clearerr 3-12 acos 4-13
Close a file 2-7 acosh 4-14
Close or flush a stream 3-11 asin 4-15
close system call 2-7 asinh 4-16
compound function 4-25 atan 4-17
Convert ASCII to numbers 3-4 atan2 4-18
Convert date and time to ASCII 3-7 atanh 4-19
copysign function 4-26 cabs 4-21
Copysign function cbrt 4-23

copysign 4-26 ceil 4-24
fcopysign 4-26 compound 4-25

cos function 4-27 copysign 4-26
cosh function 4-28 cos 4-27
Cosine function cosh 4-28

cos 4-27 drem 4-29
cosh 4-28 exp 4-31
fcos 4-27 exp2 4-32
fcosh 4-28 expm l 4-33

CPU generates 5-5 fabs 4-34
creat call 2-6 ffinite 4-35
creat system call 2-8 finite 4-35
Create a new file 2-8 floor 4-36
Cross application FPEE integration 5-3 hypot 4-56
ctime routine 3-7 inf 4-57

asctime 3-7 log 4-58
gmtime 3-7 loglO 4-59
localtime 3-7 loglp 4-60
timezone 3-7 log2 4-61

Cube root function neg 4-62
cbrt 4-23 nextdouble 4-63
fcbrt 4-23 Pi 4-64

pow 4-65
relation 4-68

D rem 4-69
rint 4-71

dacosh function, see acosh 4-14 sin 4-72
dasinh function, see asinh 4-16 sinh 4-74
datanh function, see atanh 4-19 sqrt 4-75
DB library 1-1, 2-3, 3-1 tan 4-76
dcbrt function, see cbrt 4-23 tanh 4-77
dceil function, see ceil 4-24 Double-precision numbers 4-3
dcompound function, see compound 4-25 Double-word format 4-3
ddrem function, see drem 4-29 dpi function, see pi 4-64
Denormalized numbers 4-8 drelation function, see relation 4-68
derf function, see erf 4-30 drem function 4-29
Description of system calls 2-3 dremainder function, see rem 4-69
dexp2 function, see exp2 4-32 drint function, see rint 4-71
dexpml function, see expm l 4-33 dtanh function, see atanh 4-19
dfinite function, see finite 4-35 Dummy call restrictions 1-2
2 INDEX

Dummy implementations 1-2, 2-3 expml function 4-33
Dummy routines, list of 1-2 Exponential function

exp 4-31
exp2 4-32

E expml 4-33
fexp 4-31

ecvt routine 3-9 fexp2 4-32
fcvt 3-9 fexpml 4-33
gcvt 3-9

Environment control functions 4-9
erf function 4-30 F
errno 2-1
Errof function fabs function 4-34

ferf 4-30 fabs routine 3-13
Error function facos function 4-13

erf 4-30 fasin function 4-15
Errors, list of 2-1 fasinh function 4-16
Errors fatan function 4-17

1 EPERM 2-1 fatan2 function 4-18
2 ENOENT 2-1 fatanh function 4-19
5 EIO 2-1 fcabs function 4-21
6 ENXIO 2-1 fcbrt function 4-23
9 EBADF 2-1 fceil function 4-24
12 ENOMEN 2-1 fclose routine 3-11
13 EACCES 2-1 fflush 3-11
14 EFAULT 2-2 fcompound function 4-25
15 ENOTBLK 2-2 fcopysign function 4-26
16 EBUSY 2-2 fcos function 4-27
17 EEXIST 2-2 fcosh function 4-14, 4-28
19 ENODEV 2-2 fcvt routine 3-9
20 ENOTDIR 2-2 fdopen routine 3-14
21 EISDIR 2-2 fdrem function 4-29
22 EINVAL 2-2 feof routine 3-12
23 ENFILE 2-2 ferf function 4-30
24 EM FILE 2-2 ferror routine 3-12
25 ENOTTY 2-2 clearerr 3-12
26 ETXTBSY 2-2 feof 3-12
27 EFBIG 2-2 fileno 3-12
28 ENOSPC 2-2 fexp function 4-31
30 EROFS 2-2 fexp2 function 4-32
33 EDOM 2-3 fexpml function 4-33
62 ELOOP 2-3 ffabs function 4-34
63 ENAMETOOLONG 2-3 ffinite function 4-35

Euclidean distance function ffloor function 4-36
fhypot 4-56 fflush routine 3-11
hypot 4-56 ffmod function 4-37

Exception status flag function ffs routine 3-5
fp_setexptn 4-47 fgetc routine 3-19
fp_tstexptn 4-54 fgets routine 3-21

Exception status flag functions 4-9 fhypot function 4-56
Exception status flags 5-10 file descriptor 2-3
Exception trap functions 4-9 File exists 2-2
Exception traps 4-9 File name too long 2-3
Exceptions 4-6 File table overflow 2-2

checking 4-10 File too large 2-2
exitO call 2-6 fileno 3-12
exit routine 3-10 Find name of a terminal 3-23
_exit system call 2-10 finf function 4-57
exp function 4-31 finite function 4-35
exp2 function 4-32 Floating-point comparisons 5-12

INDEX 3

Floating-point emulation library 1-1
Floating-point enhancement and emulation 5-1
Floating-point exception handling 5-12
Floating-point exceptions 5-12
Floating-point format 4-3
Floating-point library 4-1
Floating-point numbers 4-6

Reserved operand values 4-6
Floating-point range 4-4
Floating-point

divide by zero 4-6
inexact result 4-6
invalid operation 4-6
overflow 4-6
underflow 4-6

flog function 4-58
floglO function 4-59
floglp function 4-60
flog2 function 4-61
floor function 4-36
floor routine 3-13

ceil 3-13
fabs 3-13

fmod function 4-37
ffmod 4-37

frnodf function 4-38
fneg function 4-62
fopen routine 3-14

fdopen 3-14
freopen 3-14

Formatted input conversion 3-40
Formatted output conversion 3-29
FPEE 5-1
FPEE and math library integration 5-4
FPEE enhancements to FPU 5-7
FPEE error handling 5-4
FPEE error mechanism 5-5
FPEE libraries 4-6
FPEE libraries implement 4-6
FPEE library configurations 5-2
FPEE library creation

cross-development 5-2
native 5-2

FPEE library implements 5-7, 5-9, 5-14
FPEE library supports 4-8
FPEE library

cross application 4-6
native application 4-6

FPEE operation, overview of 5-5
FPEE operations 5-5
FPEE program control 5-9
FPEE rounding modes 5-14
FPEE source 5-1
fperrn.c 5-5
fperrx.s 5-5
fp_getexptn() function 4-10
fp_getexptn function 4-39
fp__getround function 4-40
fp._gettrap function 4-41
fp_gmathenv function 4-42

fpgtrpvctr function 4-44
fpi function 4-64
fpinit 5-3
fpinit routine 5-3
fpow function 4-65
fp_procentry() function 4-9
fp_procentry function 4-45, 5-4
fp_procexit function 4-46
fprintf routine 3-29
fp_setexptn function 4-47
fp_setround function 4-48
fp_settrap function 4-49
fp_smathenv function 4-50
fpstrpvctr function 4-52
fp_testtrap function 4-53
fp_tstexptn function 4-54
FPU bit selects 5-10
FPU provides 5-7
FPU Trap 4-6
FPU trap handler 5-5
FPU traps for 4-6
fputc routine 3-32
fputs routine 3-34
Fraction 4-3
fread routine 3-16

fwrite 3-16
free routine 3-24
frelation function 4-68
frem function 4-69
freopen routine 3-14
frexp routine 3-17

ldexp 3-17
modf 3-17

frint function 4-71
fscanf routine 3-40
fseek routine 3-18

ftell 3-18
rewind 3-18

fsin function 4-72
fsinh function 4-74
fsqrt function 4-75
flan function 4-76
ftanh function 4-77
ftell routine 3-18
Functions

acos 4-13
acosh 4-14
asin 4-15
asinh 4-16
atan 4-17
atan2 4-18
atanh 4-19
cabs 4-21
cbrt 4-23
ceil 4-24
compound 4-25
copysign 4-26
cos 4-27
cosh 4-28
drem 4-29

4 INDEX

erf 4-30 ftanh 4-77
exp 4-31 gamma 4-55
exp2 4-32 hypot 4-56
expm l 4-33 inf 4-57
fabs 4-34 jo 4-20
facos 4-13 j l 4-20
fasin 4-15 jn 4-20
fasinh 4-16 log 4-58
fatan 4-17 loglO 4-59
fatan2 4-18 loglp 4-60
fatanh 4-19 log2 4-61
fcabs 4-21 neg 4-62
fcbrt 4-23 nextdouble 4-63
fceil 4-24 nextfloat 4-63
fcompound 4-25 pi 4-64
fcopysign 4-26 pow 4-65
fcos 4-27 randomx 4-67
fcosh 4-14, 4-28 relation 4-68
fdrem 4-29 rem 4-69
ferf 4-30 rint 4-71
fexp 4-31 sin 4-72
fexp2 4-32 sinh 4-74
fexpm l 4-33 sqrt 4-75
ffabs 4-34 tan 4-76
ffinite 4-35 tanh 4-77
ffloor 4-36 yo 4-20
fhypot 4-56 y i 4-20
finf 4-57 yn 4-20
finite 4-35 fwrite routine 3-16
flog 4-58
floglO 4-59
floglp 4-60 G
flog2 4-61
floor 4-36 gamma function 4-55
frnod 4-37 gcvt routine 3-9
fmodf 4-38 Generate a fault 3-2
flieg 4-62 Get a string from a stream 3-21
fp_getexptn 4-39 Get character or word from stream 3-19
fp_getround 4-40 Get descriptor table size 2-11
fp_gettrap 4-41 getc routine 3-19
fp_gmathenv 4-42 fgetc 3-19
fpgtrpvctr 4-44 getchar 3-19
fpi 4-64 getw 3-19
fpow 4-65 getchar routine 3-19
fp_procentry 4-45 getdtablesize 2-7
fp_procexit 4-46 getdtablesizeO 2-15
fp_setexptn 4-47 getdtablesize system call 2-11
fp_setround 4-48 getpidO call 2-3
fp_settrap 4-49 gets routine 3-21
fp_smathenv 4-50 fgets 3-21
fpstrpvctr 4-52 getw routine 3-19
fp_testtrap 4-53 gmtime routine 3-7
fp_tstexptn 4-54 Group ID 2-3
frelation 4-68
frem 4-69
frint 4-71
fsin 4-72
fsinh 4-74
fsqrt 4-75
ftan 4-76

INDEX 5

H L

Hyperbolic sine function ldexp routine 3-17
fsin 4-74 libdb_fpe.a 5-2
sin 4-74 libfpe.a 5-2, 5-3

hypot function 4-56 libfpe.a, installed in 5-3
Library handling of exceptions 5-12
In function, see log 4-58

I localtime routine 3-7
log function 4-58

IEEE 754 5-1, 5-4 loglO function 4-59
IEEE 754 enhancements to FPU 5-7 loglp function 4-60
IEEE 754 4-6 log2 function 4-61

compliance 4-6 Logarithm function
Implemented IEEE 754 operations, list of 5-8 flog 4-58
index routine 3-47 floglO 4-59
inexact result 4-6 floglp 4-60
Inexact result exception 5-11,5-13 flog2 4-61
inf function 4-57 log 4-58
Infinity 4-8 loglO 4-59
Infinity function loglp 4-60

finf 4-57 log2 4-61
inf 4-57 longjmp routine 3-46

INIT__ 5-4 lseek system call 2-12
Initialize random number generator 4-67

initrand 4-67
Initialize the FSR 5-4 M
initrand 4-67
initstate routine 3-36 make.com 5-2
Insert/remove element from queue 3-22 malloc routine 3-24
insque routine 3-22 calloc 3-24

remque 3-22 free 3-24
Instruction codes, list of 5-6 realloc 3-24
Integer absolute value 3-3 Mantissa 4-4
Integer format 4-2 Math argument 2-3
Integer formats Math environment function

byte format 4-2 fp_gmathenv 4-42
double-word format 4-3 fpgtrpvctr 4-44
word format 4-3 fp_smathenv 4-50

Integral value function fpstrpvctr 4-52
frint 4-71 Math environment functions, using 4-9
rint 4-71 Math environment variables 4-6

Introduction, math library 4-1 Math library 1-1
Invalid argument 2-2 math library functions 4-12
invalid operation 4-6 Math library provides 4-6
Invalid operation exception 5-11, 5-13 math library provides 4-9
I/O error 2-1 Math library provides 5-4, 5-5
Is a directory 2-2 Maximum floating-point values 4-4
isatty routine 3-23 memccpy routine 3-26

memchr routine 3-26
memcmp routine 3-26

J memcpy routine 3-26
Memory allocator 3-24

jO function 4-20 Memory routines
j l function 4-20 memccpy 3-26
jn function 4-20 memchr 3-26

memcmp 3-26
memcpy 3-26
memset 3-26

memset routine 3-26
6 INDEX

Minimum floating-point values 4-4 Overflow on conversion from float to integer 5-11
Min/max floating-point values, figure of 4-5 Overflow signaled 5-11
Min/max values, table of 4-4
mod function, see fmod 4-37
modf function, see fmodf 4-38 P
modf routine 3-17
Mount device busy 2-2 Permission denied 2-1
Move read/write pointer 2-12 perror routine 3-28

pi function 4-64
pow function 4-65

N power function, see pow
Power function

4-65
NAN 4-12 fpow 4-65
Native application FPEE integration 5-3 pow 4-65
neg function 4-62 Predicate function
Negation function ffinite 4-35

fneg 4-62 finite 4-35
neg 4-62 printf routine 3-29

Neighbor function fprintf 3-29
nextdouble 4-63 sprintf 3-29

nextdouble function 4-63 Process entry function
nextfloat function 4-63 fp_procentry 4-45
No space left on device 2-2 Process exit function
No such device 2-2 fp_procexit 4-46
No such device or address 2-1 Process ID 2-3
No such file or directory 2-1 Push character back into input stream 3-50
Non-local goto 3-46 Put a string on a stream 3-34
Normalized floating-point number 4-3 Put character/word on a stream 3-32
Not a directory 2-2 putc routine 3-32
Not a Number (NAN) 4-7 fputc 3-32
Not a typewriter 2-2 putchar 3-32
Not enough core 2-1 putw 3-32
Not owner 2-1 putchar routine 3-32
NS32081 andNS32381 differences 5-8 puts routine 3-34
NS32081/NS32381 and FPEE 5-8 fputs 3-34
NS32381 has 5-8 putw routine 3-32
NS32381 implements
NS32381 version FPEE library, creating

5-8
UNIX 5-2 QVMS 5-2

Number formats 4-2 QNAN 4-12
double-precision numbers 4-3 qsort routine 3-35
floating-point format 4-3 Quicker sort 3-35
integer format 4-2 Quiet NAN 4-7
single-precision numbers 4-3

R
Random number generator

0
3-36

Open a file for reading 2-14 randomx 4-67
Open a file for writing 2-14 random routine 3-36
Open a file to create a new file 2-14 initstate 3-36
Open a stream 3-14 setstate 3-36
open call 2-6 srandom 3-36
open system call 2-14 randomx 4-67
Operating system call simulation 1-1 Read input 2-16
Output conversion 3-9 Read mode 2-3
overflow 4-6 read system call 2-16
Overflow exception 5-13 Read-only file system 2-2
Overflow exceptions returned values, list of 5-15 realloc routine 3-24

INDEX 7

re_comp routine 3-38
re_exec routine 3-38
Regex routines

re_comp 3-38
re_exec 3-38

Regular expression handler 3-38
relation function 4-68
rem function 4-69
remainder function, see rem 4-69
Remainder function

drem 4-29
fdrem 4-29
frem 4-69
rem 4-69

Remove directory entry of a file 2-18
remque routine 3-22
Reposition a stream 3-18
Reserved operand values 4-2
Reserved operand values and operations 4-6
Reserved operand values

denormalized numbers 4-8
infinity 4-8
Not a Number (NAN) 4-7

Return codes 2-1
Return Value A-2
rewind routine 3-18
rindex routine 3-47
rint function 4-71
Rounding mode 5-10
Rounding mode function

fp_getround 4-40
fp_setround 4-48

Routines for changing generators 3-36
Routines that use simulated system calls

list of 2-4
Routines

abort 3-2
abs 3-3
asctime 3-7
atof 3-4
atoi 3-4
atol 3-4
bcmp 3-5
bcopy 3-5
bzero 3-5
calloc 3-24
ceil 3-13
clear err 3-12
ctime 3-7
ecvt 3-9
exit 3-10
fabs 3-13
fclose 3-11
fcvt 3-9
fdopen 3-14
feof 3-12
ferror 3-12
fflush 3-11
ffs 3-5
fgetc 3-19

fgets 3-21
fileno 3-12
floor 3-13
fopen 3-14
fprintf 3-29
fputc 3-32
fputs 3-34
fread 3-16
free 3-24
freopen 3-14
frexp 3-17
fscanf 3-40
fseek 3-18
ftell 3-18
fwrite 3-16
gcvt 3-9
getc 3-19
getchar 3-19
gets 3-21
getw 3-19
gmtime 3-7
index 3-47
initstate 3-36
insque 3-22
isatty 3-23
ldexp 3-17
localtime 3-7
longjmp 3-46
malloc 3-24
memccpy 3-26
memchr 3-26
memcmp 3-26
memcpy 3-26
memset 3-26
modf 3-17
perror 3-28
printf 3-29
putc 3-32
putchar 3-32
puts 3-34
putw 3-32
qsort 3-35
random 3-36
realloc 3-24
re_comp 3-38
re_exec 3-38
remque 3-22
rewind 3-18
rindex 3-47
scanf 3-40
setbuf 3-44
setbufifer 3-44
setjmp 3-46
setlinebuf 3-44
setstate 3-36
sprintf 3-29
srandom 3-36
sscanf 3-40
strcat 3-47
strchr 3-47

8 INDEX

strcmp 3-47
strcpy 3-47
strlen 3-47
strncat 3-47
strncmp 3-47
strncpy 3-47
strrchr 3-47
swab 3-49
sys_errlist 3-28
timezone 3-7
ungetc 3-50

s
sbrk system call 2-17
scanf routine 3-40

fscanf 3-40
sscanf 3-40

setbuf routine 3-44
setbuffer 3-44
setlinebuf 3-44

setbuffer routine 3-44
setjmp routine 3-46

longjmp 3-46
setlinebuf routine 3-44
setstate routine 3-36
sign function, see copysign 4-26
Signals 4-6
Simulated system calls 2-6
sin function 4-72
Sine function

fsin 4-72
sin 4-72

Single-precision function
facos 4-13
fasin 4-15
fasinh 4-16
fatan 4-17
fatan2 4-18
fatanh 4-19
fcabs 4-21
fcbrt 4-23
fceil 4-24
fcompound 4-25
fcopysign 4-26
fcos 4-27
fco sh 4-14, 4-28
fdrem 4-29
fexp 4-31
fexp2 4-32
fexpm l 4-33
ffabs 4-34
ffloor 4-36
fhypot 4-56
finf 4-57
flog 4-58
floglO 4-59
floglp 4-60
flog2 4-61

fneg 4-62
fpi 4-64
fpow 4-65
frelation 4-68
frem 4-69
frint 4-71
fsin 4-72
fsinh 4-74
fsqrt 4-75
ftan 4-76
ftanh 4-77
nextfloat 4-63

Single-precision numbers 4-3
sinh function 4-74
SNAN 4-12
Split into mantissa and exponent 3-17
sprintf routine 3-29
sqrt function 4-75
Square root function

fsqrt 4-75
sqrt 4-75

srandom routine 3-36
sscanf routine 3-40
Standard calling convention A -l
Status flag function 4-39

fp_getexptn 4-39
strcat routine 3-47
strchr routine 3-47
strcmp routine 3-47
strcpy routine 3-47
Stream status inquiries 3-12
String operations 3-47
String routines 3-47

index 3-47
rindex 3-47
strcat 3-47
strchr 3-47
strcmp 3-47
strcpy 3-47
strlen 3-47
strncat 3-47
strncmp 3-47
stmcpy 3-47
strrchr 3-47

strlen routine 3-47
strncat routine 3-47
strncmp routine 3-47
strncpy routine 3-47
strrchr routine 3-47
Support libraries 1-1
swab routine 3-49
Swap bytes 3-49
sys_errlist routine 3-28
System call dependencies 1-1
System calls 1-1, 2-1
System calls, summary of 2-3
System calls

close 2-7
creat 2-6, 2-8
description of 2-3

INDEX 9

dummy implementations 1-2
exit() 2-6
_exit 2-10 yO function
getdtablesize 2-11 y l function
implemented 1-1 yn function
lseek 2-12
open 2-6, 2-14
read 2-16
sbrk 2-17
simulated 2-6
unlink 2-18
write 2-20

T
tan function 4-76
Tangent function

ftan 4-76
ftanh 4-77
tan 4-76
tanh 4-77

tanh function 4-77
Terminate a process 2-10
Terminate a process after flushing output 3-10
Text file busy 2-2
timezone 3-7
Too many levels of symbolic links 2-3
Too many open files 2-2
Trap 4-6
Trap enable flag function

fp_gettrap 4-41
fp_settrap 4-49
fp_testtrap 4-53

Trap handler 4-7
Trap type 5-10

U
ULP 4-12
underflow 4-6
Underflow exception 5-10, 5-13
ungetc routine 3-50
unlink system call 2-18
User ID 2-3

V
Values from functions 2-1

W
Without FPEE trap handler 4-9
Word format 4-3
Write mode 2-3
Write on a file 2-20
write system call 2-20
10 INDEX

National
Semiconductor MICROCOMPUTER

SYSTEMS DIVISION
READER’S COMMENT FORM

In the interest of improving our documentation, National Semiconductor invites your comments on this
manual.
Please restrict your comments to the documentation. Technical Support may be contacted at:

(800) 538-1866 - U.S. non CA
(800) 672-1811 - CA only
(800) 223-3248 - Canada only

Please rate this document according to the following categories. Include your comments below.
EXCELLENT GOOD ADEQUATE FAIR POOR

Readability (style) □ □ □ □ □

Technical Accuracy □ □ □ □ □

Fulfills Needs □ □ □ □ □
Organization □ □ □ □ □
Presentation (format) □ □ □ □ □
Depth of Coverage □ □ □ □ □
Overall Quality □ □ □ □ □

NAME DATE
TITLE __
COMPANY NAME/DEPARTMENT__
ADDRESS___
CITY__ STATE______________ ZIP
Do you require a response? 1=1 Yes a No PHONE___________________________________
Comments:

GNX — Version 3 Support Libraries Reference Manual
FOLD, STAPLE, AND MAIL 424010508-003B

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 409 SANTA CLARA, CA

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

POSTAGE WILL BE PAID BY ADDRESSEE

2 National Semiconductor Corporation
Microcomputer Systems Division
Technical Publications Dept., M/S 7C261
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052- 9968

II. In, 1.1. II., „I, I, ,.l. II. I, ,l, I... II, ,1.. I, In, II

Sof tware Problem Report
Name: __
Street: __
City:_____________________________________ State:______ Zip:______
Phone:____________________________________ Date:________________
Instructions
Use this form to report bugs, or suggested enhancements. Mail the form to National Semiconductor. Technical Support may be contacted at:

(800) 538-1866 - U.S. non CA (800) 672-1811 - CA only (800) 223-3248 - Canada only
((0)8141) 103-330 - West Germany

Category__
□ Software Problem □ Request For Sof tware Enhancement
□ Other □ Documentation Problem, Publication # _____________
Software Description__
National Semiconductor Product _____________________________________Version ______________ Registration # ___________________________
Host Computer Information__
Operating System__

Rev. _________________ Supplier_______________________________
Problem Description___
Describe the problem. (Also describe how to reproduce it, and your diagnosis and suggested correction.) Attach a listing if available.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 409 SANTA CLARA, CA

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

POSTAGE WILL BE PAID BY ADDRESSEE

National Semiconductor Corporation
Microcomputer Systems Division
Software Quality Assurance Dept., M/S 7C266
2900 Semiconductor Drive
P.O.Box 58090
Santa Clara, CA 95052-9968

II,1.,,1,1,II,,,.1.1.,,1,11,1,.1,1,,,11,,1..1.1..,II

National Semiconductor Use Only
Tech Support ________________________ Date Received
Software Q.A.________________________ Date Received
Report Number______________________
Action Taken :

SALES OFFICES

ALABAMA
Huntsville

(205) 837-8960
(205) 721-9367

ARIZONA
Tempe

(602) 966-4563
B.C.

Burnaby
(604) 435-8107

CALIFORNIA
Encino

(818) 888-2602
Inglewood

(213)645-4226
Roseville

(916) 786-5577
San Diego

(619)587-0666
Santa Clara

(408) 562-5900
T ustin

(714) 259-8880
Woodland Hills

(818) 888-2602
COLORADO

Boulder
(303) 440-3400

Colorado Springs
(303) 578-3319

Englewood
(303) 790-8090

CONNECTICUT
Fairfield

(203) 371-0181
Hamden

(203) 288-1560

INTERNATIONAL
OFFICES

Electronica NSC de Mexico SA
Juventino Rosas No. 118-2
Col Guadalupe Inn
Mexico, 01020 D.F. Mexico
Tel: 52-5-524-9402
National Semlcondutores
Do Brasil Ltda.
Av. Brig. Faria Lima, 1409
6 Andor Salas 62/64
01451 Sao Paulo, SP, Brasil
Tel: (55/11)212-5066
Telex: 391-1131931 NSBR BR
National Semiconductor GmbH
Industriestrasse 10
D-8080 Fürstenfeldbruck
West Germany
Tel: 49-08141-103-0
Telex: 527 649
National Semiconductor (UK) Ltd.
301 Harpur Centre
Horne Lane
Bedford MK40 ITR
United Kingdom
Tel: (02 34) 27 00 27
Telex: 826 209
National Semiconductor Benelux
Vorstlaan 100
B-1170 Brussels
Belgium
Tel: (02) 6725360
Telex: 61007

FLORIDA
Boca Raton

(305) 997-8133
Orlando

(305) 629-1720
St. Petersburg

(813) 577-1380
GEORGIA

Atlanta
(404) 396-4048

Norcross
(404) 441-2740

ILLINOIS
Schaumburg

(312) 397-8777
INDIANA

Carmel
(317) 843-7160

Fort Wayne
(219) 484-0722

IOWA
Cedar Rapids

(319)395-0090
KANSAS

Overland Park
(913) 451-8374

MARYLAND
Hanover

(301) 796-8900
MASSACHUSETTS

Burlington
(617) 273-3170

Waltham
(617) 890-4000

MICHIGAN
W. Bloomfield

(313) 855-0166

MINNESOTA
Bloomington

(612) 835-3322
(612) 854-8200

NEW JERSEY
Paramus

(201) 599-0955
NEW MEXICO

Albuquerque
(505) 884-5601

NEW YORK
Endicott

(607) 757-0200
Fairport

(716) 425-1358
(716) 223-7700

Melville
(516) 351-1000

Wappinger Falls
(914) 298-0680

NORTH CAROLINA
Cary

(919)481-4311
OHIO

Dayton
(513)435-6886

Highland Heights
(216)442-1555
(216) 461-0191

ONTARIO
Mississauga

(416) 678-2920
Nepean

(404) 441-2740
(613) 596-0411

Woodbridge
(416) 746-7120

National Semiconductor (UK) Ltd.
1, Bianco Lunos Alle
DK-1868 Fredriksberg C
Denmark
Tel: (01)213211
Telex: 15179
National Semiconductor
Expansion 10000
28, rue de la Redoute
F-92260 Fontenay-aux-Roses
France
Tel: (01) 46 60 81 40
Telex: 250956
National Semiconductor S.p.A.
Strada 7, Palazzo R/3
20089 Rozzano
Milanofiori
Italy
Tel: (02) 8242046/7/8/9
National Semiconductor AB
Box 2016
Stensatravagen 13
S-12702 Skarholmen
Sweden
Tel: (08) 970190
Telex: 10731
National Semiconductor
Calle Agustin de Foxa, 27
28036 Madrid
Spain
Tel: (01) 733-2958
Telex: 46133

National Semiconductor
Switzerland
Alte Winterthurerstrasse 53
Postfach 567
Ch-8304 Wallisellen-Zurich
Switzerland
Tel: (01) 830-2727
Telex: 59000
National Semiconductor
Kauppakartanonkatu 7
SF-00930 Helsinki
Finland
Tel: (0) 33 80 33
Telex: 126116
National Semiconductor Japan
Ltd.
Sanseido Bldg. 5F
4-15 Nishi Shinjuku
Shinjuku-ku
Tokyo 160 Japan
Tel: 3-299-7001
Fax: 3-299-7000

National Semiconductor
Hong Kong Ltd.
Southeast Asia Marketing
Austin Tower, 4th Floor
22-26A Austin Avenue
Tsimshatsui, Kowloon, H.K.
Tel: 852 3-7243645
Cable: NSSEAMKTG
Telex: 52996 NSSEA HX

OREGON
Portland

(503) 639-5442
PENNSYLVANIA

Horsham
(215) 675-6111

Willow Grove
(215) 657-2711

PUERTO RICO
Rio Piedias

(809) 758-9211
QUEBEC

Dollard Des Ormeaux
(514)683-0683

Lachine
(514) 636-8525

TEXAS
Austin

(512) 346-3990
Houston

(713) 771-3547
Richardson

(214) 234-3811
UTAH

Salt Lake City
(801)322-4747

WASHINGTON
Bellevue

(206) 453-9944
WISCONSIN

Brookfield
(414) 782-1818

Milwaukee
(414) 527-3800

National Semiconductor
(Australia) PTY, Ltd.
1st Floor, 441 St. Kilda Rd.
Melbourne, 3004
Victory, Australia
Tel: (03) 267-5000
Fax:61-3-2677458
National Semiconductor (PTE),
Ltd.
200 Cantonment Road 13-01
Southpoint
Singapore 0208
Tel: 2252226
Telex: RS 33877
National Semiconductor (Far East)
Ltd.
Taiwan Branch
P.O. Box 68-332 Taipei
7th Floor, Nan Shan Life Bldg.
302 Min Chuan East Road,
Taipei, Taiwan R.O.C.
Tel: (86) 02-501-7227
Telex: 22837 NSTW
Cable: NSTW TAIPEI
National Semiconductor (Far East)
Ltd.
Korea Office
Room 612,
Korea Fed. of Small Bus. Bldg.
16-2, Yoido-Dong,
Youngdeungpo-Ku
Seoul, Korea
Tel: (02) 784-8051 /3 - 785-0696-8
Telex: K24942 NSRKLO

	TOP
	GNX -Version 3 C Optimizing Compiler Reference Manual
	REVISION RECORD
	PREFACE
	CONTENTS
	Chapter 1 OVERVIEW
	Chapter 2 COMPILATION PROCESS
	Chapter 3 EXTENSIONS TO THE C LANGUAGE
	Chapter 4 IMPLEMENTATION ISSUES
	Chapter 5 OPTIMIZATION TECHNIQUES
	Chapter 6 GUIDELINES ON USING THE OPTIMIZER
	Appendix A SERIES 32000 STANDARD CALLING CONVENTIONS
	Appendix B MIXED-LANGUAGE PROGRAMMING
	Appendix C ERROR MESSAGES
	Appendix D COMPILER OPTIONS
	INDEX

	GNX - Version 3 Linker User’s Guide
	REVISION RECORD
	PREFACE
	CONTENTS
	Chapter 1 OVERVIEW
	Chapter 2 COMMAND LINE INVOCATION
	Chapter 3 LINKER DIRECTIVES LANGUAGE
	Chapter 4 DIRECTIVES LANGUAGE EXPRESSIONS
	Chapter 5 Basic Linker Operations
	Appendix A DIRECTIVES LANGUAGE SYNTAX
	Appendix B OUTPUT MAP
	Appendix C SECTION TYPE OPTIONS
	Appendix D LINKER ERROR MESSAGES
	Appendix E SAMPLE LINKER DIRECTIVE FILES
	INDEX

	GNX - Version 3 COFF Programmer’s Guide
	REVISION RECORD
	PREFACE
	CONTENTS
	Chapter 1 OVERVIEW
	Chapter 2 HEADERS
	Chapter 3 SECTIONS
	Chapter 4 RELOCATION INFORMATION
	Chapter 5 LINE NUMBERS
	Chapter 6 SYMBOL TABLE
	INDEX

	GNX - Version 3 Support Libraries Reference Manual
	REVISION RECORD
	PREFACE
	CONTENTS
	Chapter 1 OVERVIEW
	Chapter 2 SYSTEM CALLS
	Chapter 3 GNX DB SUPPORT LIBRARY ROUTINES
	Chapter 4 FLOATING-POINT LIBRARY
	Chapter 5 FPEE LIBRARY
	Appendix A SERIES 32000 STANDARD CALLING CONVENTIONS
	INDEX

	BOTTOM

