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A Corporate Dedication to
Quality and Reliability

National Semiconductor is an industry leader in the
manufacture of high quality, high reliability integrated
circuits. We have been the leading proponent of driv-
ing down IC defects and extending product lifetimes.
From raw material through product design, manufac-
turing and shipping, our quality and reliability is second
to none.

We are proud of our success. . . it sets a standard for
others to achieve. Yet, our quest for perfection is on-
going so that you, our customer, can continue to rely
on National Semiconductor Corporation to produce
high quality products for your design systems.

A bt

Charles E. Sporck
President, Chief Executive Officer
National Semiconductor Corporation




Wir fuhlen uns zu Qualitdt und
Zuverlassigkeit verpflichtet

National Semiconductor Corporation ist fiihrend bei der Her-
stellung von integrierten Schaltungen hoher Qualitdt und
hoher Zuverléssigkeit. National Semiconductor war schon
immer Vorreiter, wenn es galt, die Zahl von IC Ausfallen zu
verringern und die Lebensdauern von Produkten zu verbes-
sern. Vom Rohmaterial {iber Entwurf und Herstellung bis zur
Auslieferung, die Qualitdt und die Zuverldssigkeit der Pro-
dukte von National Semiconductor sind unibertroffen.

Wir sind stolz auf unseren Erfolg, der Standards setzt, die
fur andere erstrebenswert sind. Auch ihre Anspriiche steig-
en sténdig. Sie als unser Kunde kdnnen sich auch weiterhin
auf National Semiconductor verlassen.

La Qualité et La Fiabilité:

Une Vocation Commune Chez National
Semiconductor Corporation

National Semiconductor Corporation est un des leaders in-
dustriels qui fabrique des circuits intégrés d’une trés grande
qualité et d’une fiabilité exceptionelle. National a été le pre-
mier & vouloir faire chuter le nombre de circuits intégrés
défectueux et a augmenter la durée de vie des produits.
Depuis les matiéres premiéres, en passant par la concep-
tion du produit sa fabrication et son expédition, partout la
qualité et la fiabilité chez National sont sans équivalents.

Nous sommes fiers de notre succés et le standard ainsi
défini devrait devenir I'objectif & atteindre par les autres so-
ciétés. Et nous continuons & vouloir faire progresser notre
recherche de la perfection; il en résulte que vous, qui étes
notre client, pouvez toujours faire confiance a National
Semiconductor Corporation, en produisant des systémes
d’une trés grande qualité standard.

Un Impegno Societario di Qualita e
Affidabilita

National Semiconductor Corporation € un’industria al ver-
tice nella costruzione di circuiti integrati di altd qualitad ed
affidabilitd. National & stata il principale promotore per I'ab-
battimento della difettosita dei circuiti integrati e per I'allun-
gamento della vita dei prodotti. Dal materiale grezzo attra-
verso tutte.e fasi di progettazione, costruzione e spedi-
zione, la qualita e affidabilita National non & seconda a nes-
suno.

Noi siamo orgogliosi del nostro successo che fissa per gli
altri un traguardo da raggiungere. Il nostro desiderio di per-
fezione & d’altra parte illimitato e pertanto tu, nostro cliente,
puoi continuare ad affidarti a National Semiconductor Cor-
poration per la produzione dei tuoi sistemi con elevati livelli
di qualita.

A dgd

Charles E. Sporck

President, Chief Executive Officer
National Semiconductor Corporation
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Introduction

Series 32000 offers the most complete solution to your 32-bit micro-
processor needs via CPUs, slave processors, system peripherals,
evaluation/development tools and software.
We at National Semiconductor firmly believe that it takes a total family
of microprocessors to effectively meet the needs of a system design-
er.
This Series 32000 Databook presents technical descriptions of Series
32000 8-, 16- and 32-bit microprocessors, slave processors, peripher-
als, software and development tools. It is designed to be updated
frequently so that our customers can have the latest technical infor-
mation on the Series 32000.
Series 32000 leads the way in state-of-the-art microprocessor de-
signs because of its advanced architecture, which includes:

© 32-Bit Architecture

® Demand Paged Virtual Memory

 Fast Floating-Point Capability

* High-Level Language Support

® Symmetrical Architecture
When we at National Semiconductor began the design of the Series
32000 microprocessor family, we decided to take a radical departure
from popular trends in architectural design that dated back more than
a decade. We chose to take the time to design it properly.
Working from the top down, we analyzed the issues and anticipated
the computing needs of the 80’s and 90’s. The result is an advanced
and efficient family of microprocessor hardware and software prod-
ucts.
Clearly, software productivity has become a major issue in computer-
related product development. In microprocessor-based systems this
issue centers around the capability of the microprocessor to maximize
the utility of software relative to shorter development cycles, im-
proved software reliability and extended software life cycles.

In short, the degree to which the microprocessor can maximize soft-
ware utility directiy affects the cost of a product, its reliability, and time
to market. It also affects future software modification for product en-
hancement or rapid advances in hardware technology.

Our approach has been to define an architecture addressing these
software issues most effectively. Series 32000 combines 32-bit per-
formance with efficient management of large address space. It facili-
tates high-level language program development and efficient instruc-
tion execution. Floating-point is integrated into the architecture.

This combination gives the user large system computing power at two
orders of magnitude less cost.

But we didn’t stop there. Advanced architecture isn't enough. Our top-
down approach includes the hardware, software, and development
support products necessary for your design. The evaluation board, in-
system emulator, software development tools, including a VAX-11
cross-software package, and third party software are aiso availabie
now for your evaluation and development.

The Series 32000 is a solid foundation from which National Semicon-
ductor can build solutions for your future designs while satisfying your
needs today.

For further information please contact your local sales office.




Key Features of Series 32000

Some of the features that set the Series 32000 family apart
as the best choice for 32-bit designs are as follows:

FAMILY OF MICROPROCESSOR CHIP SETS

Series 32000 is more than just a single chip set, it is a family
of chip sets. By mixing and matching Series 32000 CPUs
with compatible slave processors and support chips, a sys-
tem designer has an unprecedented degree of flexibility in
matching price/performance to the end product.

CLEANEST 32-BIT SUPER MINI COMPUTER
ARCHITECTURE

Series 32000 was designed around a 32-bit architecture
from the beginning. It has a fully symmetrical instruction set
so that all addressing modes and all data types can be oper-
ated on by all instructions. This makes it easy to learn the
architecture, easy to program in assembly language, and
easy to write code-efficient, high-level language compilers.

DEMAND-PAGED VIRTUAL MEMORY MANAGEMENT

Series 32000 provides hardware support for Demand-Paged
Virtual Memory Management. This allows use of low-cost
disk storage to increase the apparent size of main memory,
and is an efficient method of managing very large address
spaces. It is also the same popular memory management
method used by DEC and IBM in their minicomputers and
mainframes.

APPLICATION-SPECIFIC SLAVE PROCESSORS

Series 32000 architecture allows users to design their own
application-specific slave processors to interface with the
existing chip set. These processors can be used to increase
your overall system performance by accelerating custom-
ized CPU instructions that you would otherwise implement
in software. At the same time, software compatibility is
maintained, i.e., it is always possible to subsitute lower-cost
software modules in place of the slave processor.

FLOATING-POINT UNIT

NS32081 Floating-Point Unit provides high-speed arithmetic
computation with high precision and accuracy at low cost.
The NS32081 supports the entire Series 32000 family of
CPUs and complies with the proposed |IEEE standard for
floating-point arithmetic, Task P754.

OPERATING SYSTEM SUPPORT

Series 32000 features such as hardware support for De-
mand-Paged Virtual memory management, user software
protection and modular programming make it much easier
to implement powerful, reliable and efficient operating sys-
tems. These features along with its symmetrical architecture
and powerful instruction set make the Series 32000 the
most efficient and highest performance UNIX engine.

HIGH-LEVEL LANGUAGE SUPPORT

Series 32000 has special features that support high-level
languages, thus improving software productivity and reduc-
ing development costs, For example, there are special in-
structions that help the compiler deal with structured data
types such as Arrays, Strings, Records, and Stacks. Also,
modular programming is supported by special hardware reg-
isters, software instructions, an external addressing mode,
and architecturally supported link tables.
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Series 32000 Component Descriptions
Bus Width
Device Description External Process Package
Internal Type
Address Data
CENTRAL PROCESSING UNITS (CPU’s)
NS32532 Advanced CMOS Central Processing Unit 32 32 32 M2CMOS TBD
NS32332 Advanced Central Processing Unit 32 32 32 XMOS™ 84-pin PGA
(NMOS)
NS32132 Central Processing Unit 32 24 32 XMOS 68-pin LCC
(NMOS) Leadless
Chip Carrier
NS32C032 CMOS Central Processing Unit 32 24 32 CMOS 68-pin LCC
Leadless
Chip Carrier
NS32032 Central Processing Unit 32 24 32 XMOS 68-pin LCC
(NMOS) Leadless
Chip Carrier
NS32C016 CMOS Central Processing Unit 32 24 16 CMOS 48-pin DIP
Dual-in-Line
Package
NS32016 Central Processing Unit 32 24 16 XMOS 48-pin DIP
(NMOS) Dual-In-Line
Package
NS32008 Central Processing Unit 32 24 8 j XMOS 48-pin DIP
| (NMOS) Dual-In-Line
! Package
SLAVE PROCESSORS
NS32382 Advanced Memory Management Unit 32 32 32 XMOS PGA
(NMOS)
NS32082 Memory Management Unit 32 24 16 XMOS 48-pin DIP
(NMOS) Dual-In-Line
Package
NS32310 Intelligent Floating Point Controller 64 — 32 M2CMOS PGA
NS32081 Floating Point Unit 64 — 16 XMOS 24-pin DIP
(NMOS) Dual-In-Line
Package
PERIPHERALS
NS32301 Advanced Timing Control Unit - — — Bipolar 28-pin DIP
NS32C201 CMOS Timing Control Unit — — — CMOS 24-pin DIP
Dual-In-Line
Package
NS32201 Timing Control Unit — — — Bipolar 24-pin DIP
Dual-In-Line
Package
NS32202 Interrupt Control Unit 32 - 16 XMOS 40-pin DIP
(NMOS) Dual-In-Line
Package
NS32203 Direct Memory Access Controller — —_ 16 XMOS 48-pin DIP
(NMOS) Dual-In-Line
Package




Series 32000 Part Numbering
Scheme

Over the past few years, National’s 32-bit Microprocessor
Family has come a long way. The product has met with
unprecedented acceptance in the marketplace—and is well
on its way to being the 32-bit industry standard.

To highlight the completeness of Series 32000, all related
products have a 4-character ‘Series’ prefix which will cause
them to sort together in the following sequence in published
material such as the Price Schedules.

Prefix Product Type
NSP- Technical Publications
NSR- Service

NSS- Development Systems
NSV- Evaluation Tools
NSW- Software

NS32 Components

This scheme applies to order/part numbers only. It should
be noted that certain products may, in addition to their
unique order/part number, also have a marketing name. For
example, we expect you will find it more comfortable to refer
to the Development System as “VR32" rather than VR32-
1001!

Following the 4-character prefix, the remaining 11 charac-
ters specify the product in as intelligible a fashion as possi-
ble.

We have included in the Series 32000 family of microproc-
essors a number of products that a designer most frequent-
ly requires to create a state-of-the-art system.

Among these support devices are Data Communications
and Local Area Network IC’s as well as Disk Control and
Interface and DRAM Interface devices.

These support components are numbered in Series 32000
fashion and are explained on the following page. Take as an
example the NS32965. The NS32 describes a Series 32000
component. The 9 signifies a Data Communication/LAN de-
vice and the 65 are the last two digits in the equivalent
National Semiconductor Interface device.




Components Development Tools
NS32C032E~- 15 NS32 ¢ 0 32 E =15 NSS~VR32 = 1001E NSS- EJZ_-WN _E_

SERIES 32000 COMPONENT / SUPPORT DEVIOE] | SERIES 32000 DEVELOPMENT TOOL ]—
C DENOTES CMOS (IF USED)

PRODUCT TYPE

DESCRIPTOR MODEL
0=FIRST GENERATION COMPUTING CLUSTER Txxx PRODUCT
1= ENHANCED FIRST GENERATION COMPUTING CLUSTER 20xx ADD-ONS
2= SYSTEM SUPPORT AND INTEGRATED COMPUTING CLUSTER 21xx MANUALS
3= SECOND GENERATION COMPUTING CLUSTER 3xxx SOFTWARE
4=DATA COMMUNICATION AND LAN DEVICES
5=THIRD GENERATION COMPUTING CLUSTER E DESIGNATES EUROPEAN POWER (IF USED) =)
6=VIDEO AND GRAPHICS SUPPORT
7=FOURTH GENERATION COMPUTING CLUSTER B1IK11-5

8 =MEMORY AND CACHE SUPPORT
9 =MASS STORAGE SUPPORT

ftware
SERIES 32000 CLUSTER so
08 =EIGHT=BIT EXTERNAL DATA BUS CPU'S NSW = EXEC - 9VMR NSW= EXEC~- B R A4 M
16 = SIXTEEN=-BIT EXTERNAL DATA BUS CPU'S T T
32 =THIRTY=TWO=BIT EXTERNAL DATA BUS CPU'S SERIES 32000 SOFTWARE
8X = SLAVE PROCESSORS
SUPPORT DEVICE DIGITS CORRESPOND TO INTERFACE SOFTWARE NAME
DEVICE LAST TWO DIGITS
B =BINARY
PACKAGE TYPE S = SOURCE

SPEED(N Mkz) MEDIUM IN WHICH SUPPLIED:

BriKt-1 R=REEL TO REEL TAPE
C = CARTRIDGE TAPE
\ D = DISKETTE
Evaluation Tools
HOST ENVIRONMENT
NSV = 32016 = P8T=10 NSV- 32016 P 8 T =10
Vv =VAX
SERIES 32000 EVALUATION TOOL ‘% = :’c';-”z
cPuU TYPE HOST OPERATING SYSTEM
P = POPULATED X=UNIX
M=VMS
8=128k RAM F=SYSTEM V
6= GENIX
T=TDS (TINY DEVELOPMENT SYSTEM) 1K1z

SPEED (IN MHz)

B11K11-3 Publications

NSV = 32032567 = 10 NSV~ 32032 S 6 T =10 NSP = EXEC =M NSP= EXEC -M

SERIES 32000 EVALUATION TQOLJ SERIES 32000 PUBLICATION
SUBJECT

TARGET CPU SUPPLIED WITH BOARD. SOCKETS
PROVIDED FOR NS32016 AND NS32008 CPU'S. TYPE OF PUBLICATION
S =SINGLE PROCESSING MODE M =MANUAL
D=DUAL PROCESSING MODE MS = MANUAL SET

B11K11-4

6=256K RAM

T=TINY DEVELOPMENT SYSTEM

SPEED (IN MHz)

B11K11-6




Hardware Chart

SLAVE
CPUs PROCESSORS PERIPHERALS
NS32382 NS32301
Advanced 32-Bit Memory Timing Control Unit With
Management Unit Su For Burst Access
] ] |
NS32332 NS32082 NS32€201

32-Bit Data Bus/32-Bit CPU

Memory Management Unit

CMOS Timing Control Unit

NS32132 NS32310 NS32201
32-Bit CPU With Inteligent Floating Poirt Tiring Control Unit
Dual Processing Support Controller
| |
NS32081 NS32202
Floeting Point Unit Interrupt Control Unit
| |
NS32032 NS32203
32-Bit Data Bus/32=Bit CPU DMA Conttrolier
] |
NS320016 NS16550
COMOS NS32016 UART
| |
16~-Bit Data Bus/32-Bit CPU Communication Unit

NS32008
8~Bit Deta Bus/32-Bit CPU

Note: Products in the shaded boxes are additional hardware components planned to support the Series 32000 CPUs. Please contact your focal National Sales

Office for further information on their availability.
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Systems and Software Chart
HOST
SYSTEMS AND SOFTWARE DEVELOPMENT DEVELOPMENT
OFM BOARDS BOARDS SOFTWARE EMULATORS ENVIRONMENTS
DB32332 GENIX™V VAX=11™ SERIES
ou-3332 Includes NS32332 OPERATING SYSTEM ISE 32 VNS, UNIX™0.5.
] ] ] | |
CN-3216 232000 SYSTEM V™ / SE16 vR32™ TaRGET/
- SERIES 32000
Includes NS32032 OPEE e DEVELOPMEENT SYSTEM
] t ]
SYS32 /20 PC ADD=IN
DEVELOPMENT SYSTEM

DB32016
Includes NS32016

GENIX
OPERATING SYSTEM

]

GNX™ LANGUAGE TOOLS
C, PASCAL, FORTRAN,
ADA COMPILERS

SERIES 32000 ASSEMBLER

REAL TIME

OPERATING SYSTEMS

VRTX™ , EXEC
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Support Devices Chart

SUPPORT
DEVICES
HPC NS32800~2,/DP8400~2
High Performance oi 35362{9515/ DP:451_ 16-Bit £2C2 Expandable Error
Controllers : 8 Synehronizer Checker/Corrector
1 | |
NS32405/NS405 NS32955/DP8455 NS328024/DP8402A
ROMless TMP Disk Data Synchronizer 52-B% Paralll Ermor
sk 7te Synenront Detector And Corrector (EDAC)
| | |
NS32809A,
NS32490/DP8390 NS32961,/DP8461
LAN Interface Controller Disk Data Separator B4K/256K Mul:n-Mode DRAM
| | |
NS32962/DP8462 NS32812/DP84412
NSs2d01/oraset Disk Date Synchronizer NS32008/16,/32 To DPBADSA17/18/

Serial Network Interface

For 2,7 RLL Code

19/28/29 Interface

NS32963/DP8463B NS32813/DP84512
NS32492/DP8392 >
/ Disk 2,7 RLL Code NS32332 To DP8409A/17/18/
COAX Transceiver Interface Encoder /Decoder 19/28/29 Interia
| |
BB 3270 Bohase Sl NS32964/DPadses MSSZ3S0K b pen R
Encoder/Transmitter isk Fulse Detector Controller/Driver
| | |
NS32441/DP8341 NS32828/DP8428
1BM® 3270 Biphase Serial Dg:sg:gs/szpsgtsw 1 Megabit High Speed DRAM
Decoder /Recsiver pa Controlier /Driver (32-Bit Systems)
] | |
Hih Spoct ot Mareoster NS32966/0P4G6 1 ogain oh Specd ORAM
Encoder/Transmitter Disk Data Controller Controller/Dnverg(m-Bl{ Syst
ystems)
] ]
NS32443/DP8343 NS32968/DP8468
High Speed Manchestsr Pulse Detactor And
Decoder/Receiver Embedded Servo
] |
NS32970/DP8470
T=MAPPED
S APHCS Floppy Data Separator &

Write Precompensation

N532972/74/DP8472/74
Floppy Disk Controfier/
Data Separator
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Data Sheets/Description

Series 32000® information is grouped into one of three cat-
egories depending on the type of information presented.
These categories are:

Advanced Information — This is the first official informa-
tion released about a future Series 32000 device. It contains
very basic information about a product and usually precedes
sample devices by approximately six months. This type of
data sheet is distinguished by the words “Advanced Infor-
mation” appearing in the header of the first page.

Preliminary — This document contains an extensive dis-
cussion of device operation and provides complete para-
metric information such as Maximum Ratings, Thermal
Characteristics, Electrical Characteristics, Bus Timing, and
1/0 Port Timing as applicable. Timing diagrams are included
to support the tabular material. All of the parametric infor-
mation given is the result of early testing of initial product
from the manufacturing process. Values given are subject to
change without notice. This type of data sheet is distin-
guished by the words “Preliminary” appearing in the header
of the first page.

Final Data Sheet — This data sheet evolves from the Pre-
liminary data sheet. It is a result of test information collected
from a fully-implemented manufacturing process. The para-
metric information has been analyzed and approved. Na-
tional Semiconductor considers this a fully characterized de-
vice. This type of data sheet is distinguished by the absence
of any designation appearing in the header of the first page.




Military/Aerospace Programs
from National Semiconductor

This section is intended to provide a brief overview of mili-
tary products available from National Semiconductor. For
further information, refer to our 1986 Reliability Handbook
which is expected to be available by mid 1986.

MIL-M-38510

The MIL-M-38510 Program, which is sometimes called the
JAN IC Program, is administered by the Defense Electronics
Supply Genter (DESC). The purpose of this program is to
provide the military community with standardized products
that have been manufactured and screened to government-
controlled specifications in government certified facilities.
All 38510 manufacturers must be formally qualified and their
products listed on DESC’s Qualified Products List (QPL) be-
fore devices can be marked and shipped as JAN products.

There are two processing levels specified within MIL-M-
38510: Classes S and B. Class S is typically specified for
space flight applications, while Class B is used for aircraft
and ground systems. National is a major supplier of both
classes of devices. Screening requirements are outlined in
Table I

Tables | and 1l explain the JAN device marking system.

Copies of MIL-M-38510, the QPL, and other related docu-
ments may be obtained from:

Naval Publications and Forms Center
5801 Tabor Avenue

Philadelphia, PA 19120

(212) 697-2179

DESC Specifications

DESG specifications are issued to provide standardized ver-
sions of devices which are not yet available as JAN product.
MIL-STD-883 Class B screening is coupled with tightly con-
trolled electrical specifications which have been written to
allow a manufacturer to use his standard electrical tests. A
current listing of National’s DESC specification offerings can
be obtained from our franchised distributors, sales repre-
sentatives, or DESC. DESC is located in Dayton, Ohio.

MIL-STD-883

Although originally intended to establish uniform test meth-
ods and procedures, MIL-STD-883 has also become the
general specification for non-JAN military product. Revision
C of this document defines minimum requirements for a de-
vice to be marked and advertised as 883-compliant. Includ-
ed are design and construction criteria, documentation con-
trols, electrical and mechanical screening requirements,
and quality control procedures. Details can be found in par-
agraph 1.2.1 of MIL-STD-883.

National offers both 883 Class B and 883 Class S product.
The screening requirements for both classes of product are
outlined in Table il

As with DESC specifications, a manufacturer is allowed to
use his standard electrical tests provided that all critical pa-
rameters are tested. Also, the electrical test parameters,
test conditions, test limits, and test temperatures must be
clearly documented. At National Semiconductor, this infor-
mation is available via our RETS (Reliability Electrical Test
Specification) program. The RETS document is a complete
description of the electrical tests performed and is con-
trolled by our QA department. Individual copies are available
upon request.

Some of National’s older products are not completely com-
pliant with MIL-STD-883, but are still required for use in mili-
tary systems. These devices are screened to the same
stringent requirements as 883 product but are marked
“Mil”,

Military Screening Program (MSP)

National’s Military Screening Program was developed to
make screened versions of advanced products such as gate
arrays and microprocessors available more quickly than is
possible for JAN and 883 devices. Through this program,
screened product is made available for prototypes and
brassboards prior to or during the JAN or 883 qualification
activities. MSP products receive the 100% screening of Ta-
ble Ill, but are not subjected to group C and D quality confor-
mance testing. Other criteria such as electrical testing and
temperature range will vary depending upon individual de-
vice status and capability.




TABLE 1. The MIL-M-38510 Part Marking

JM38510/XXXXXYYY

L Lead Finish

A=Solder Dipped

B=Tin Plate

C=Gold Plate

X=Any lead finish ebove
is acceptable

Device Package
(see Table IIt)

Screening Level
<

or
Ss ©, ST O

Device Number on
Slash Sheet

Slash Sheet Number

For radiation hard devices
this slash is replaced by the
Radiation Hardness Assurance
Designator (M,D, R, or H per
paragraph 3.4.1.3 of MiL-M=
38510)

MiL=-M=38510

JAN Prefix

(which may be applied only to
a fully conformant device per
paragraphs 3.6.2.1 and 3.6.7 of

TABLE 1l. JAN Package Codes

38510
Package
Designation

Microcircuit Industry
Description

MIL-N-38510)

B11K15-1

mMmMoOO o>

WON<LXSE<<CANIOUTVZErXe—I06

14-pin 1/4" x 1/4" (metal) flat pack
14-pin 3/16” x 1/4" flat pack
14-pin 1/4” x3/4” dual-in-line
14-pin 1/4" x 3/8” (ceramic) flat pack
16-pin 1/4” x7/8" dual-in-line
18-pin 1/4" x 3/8"

(metal or ceramic) flat pack
8-pin TO-99 can or header
10-pin 1/4” x 1/4” (metal) flat pack
10-pin TO-100 can or header
24-pin 1/2" x 1-1/4" dual-in-line
24-pin 3/8” x5/8" flat pack
24-pin 1/4” x 1-1/4" dual-in-line
12-pin TO-101 can or header
(Note 1)
8-pin 1/4” x3/8" dual-in-line
40-pin 3/16” x 2-1/16" dual-in-line
20-pin 1/4" x 1-1/16" dual-in-line

20-pin 1/4” x1/2" flat pack
(Note 1)
(Note 1)

18-pin 3/8” x 15/16" duakin-line

22-pin 3/8" x 1-1/8" dual-in-line
(Note 1)
(Note 1)

(Note 1)

20-terminal 0.350” x 0.350” chip carrier
28-terminal 0.450” x 0.450"” chip carrier

Note 1: These letters are assigned to packages by individual detail specifi-
cations and may be assigned to different packages in different specifica-

tions.

TABLE {ii. 100% Screening Requirements

Screen Class Class B
Method Reqmt Method Reqmt
1. Wafer Lot Acceptance 5007 All Lots —
2. Nondestructive 2023 o
Bond Pull 100% -
3. Internal Visual (Note 1) 2010, Condition A 100% 2010, Condition B 100%
4. Stabilization Bake 1008, Condition C, o 1008, Condition C, o
Min, 24 Hrs. Min 100% Min, 24 Hrs. Min 100%
5. Temp. Cycling (Note 2) 1010, Condition C 100% 1010, Condition C 100%
6. Constant Acceleration 2001, Condition E (Min) 100% 2001, Condition E (Min) 100%
Y4 Orientation Only i Y4 Orientation Only
7. Visual Inspection (Note 3) 100% 100%
8. Particle Impact Noise 2020, Condition A 100% _
Detection (PIND) (Note 4) °
9. Serialization (Note 5) 100% _
10. Interim (Pre-Burn-In) Per Applicable Device 100% Per Applicable Device _
Electrical Parameters Specification (Note 13) ° Specification (Note 6)
11. Burn-In Test 1015 240 Hrs. at 125°C o 1015, 160 Hrs. at 125°C Min o
Min (Cond. F Not Allowed) 100% 100%




TABLE lil. 100% Screening Requirements (Continued)

Class S Class B
Screen
Method Regmt Method Regmt
12. Interim (Post-Burn-in) Per Applicable Device 100% _
Electrical Parameters Specification (Note 13) °
13. Reverse Bias Burn-In 1015; Test Condition A, C,
(Note 7) 72 Hrs. at 150°C Min 100% —_
(Cond. F Not Allowed)
14. Interim (Post-Burn-In) Per Applicable Device 100% Per Applicable Device 100%
o
Electrical Parameters Specification (Note 13) Specification
: o - o .
15. PDA Calculation 5% Paran]etrlc (Noteo 14) Al Lots 5% Parametric (Note 14) All Lots
3% Functional — 25°C
16. Final Electrical Test Per Applicable Device Per Applicable Device
a) Static Tests Specification Specification
1) 25°C (Subgroup 1, 100% 100%
Table 1, 5005)
2) Max & Min Rated 100% 100%
Operating Temp
(Subgroups 2, 3,
Table |, 5005)
b) Dynamic Tests & 100% 100%
Switching Tests,
25°C (Subgroups 4, 9,
Table |, 5005)
¢) Functional Test, 100% 100%
25°C (Subgroup 7,
Table I, 5005)
17. Seal Fine, Gross 1014 100% 1014 100%
(Note 8) (Note 9)
18. Radiographic (Note 10) 2012 Two Views 100% —
19. Qualification or Quality (Note 11) {Note 11)
Conformance Inspection Samp. Samp.
Test Sample Selection
20. External Visual 2009 o o
(Note 12) 100% 100%

Note 1: Unless otherwise specified, at the manufacturer’s option, test samples for Group B, bond strength (Method 5005) may be randomly selected prior to or
following internal visual (Method 5004), prior to sealing provided aii other specification requirements are satisfied (e.g. bond strength requirements shall apply to
each inspection lot, bond failures shall be counted even if the bond would have failed internal visual).

Note 2: For Class B devices, this test may be replaced with thermal shock method 1011, test condition A, minimurm.

Note 3: At the manufacturer’s option, visual inspection for castastrophic failures may be conducted after each of the thermal/mechanical screens, after the
sequence or after seal test. Catastrophic failures are defined as missing leads, broken packages or lids off.

Note 4: The PIND test may be performed in any sequence after step 9 and prior to step 16. See MIL-M-38510, paragraph 4.6.3.

Note 5: Class S devices shall be serialized prior to interim electrical parameter measurements.

Note 6: When specified, all devices shall be tested for those parameters requiring delta calculations.

Note 7: Reverse bias burn-in is a requirement only when specified in the applicable device specification. The order of performing burn-in and reverss bias burn-in
may be inverted.

Note 8: For Class S devices, the seal test may be performed in any sequence between step 16 and step 19, but it shall be performed after all shearing and forming
operations on the terminals.

Note 9: For Class B devices, the fing and gross seal tests shall be performed separate or together in any sequence and order between step 6 and step 20 except
that they shall be performed after all shearing and forming operations on the terminals. When 100% seal screen cannot be performed after shearing and forming
(e.g. flatpacks and chip carriers) the seal screen shall be done 100% prior to those operations and a sample test (LTPD = 5) shall be performed on each
inspection lot following these operations. If the sample fails, 100% rescreening shall be required.

Note 10: The radiographic screen may be performed in any sequence after step 9.

Note 11: Samples shall be selected for testing in accordance with the spacific device class and lot requirements of Method 5005.

Note 12: External visual shall be performed on the lot any time after step 19 and prior to shipment.

Note 13: Read and Record when post bum-in data measurements are specified.

Note 14: PDA shall apply to all static, dynamic, functional and switching measurements at either 25°C or maximum rated operating temperature.




Series 32000 Programs and Services

Technical Support Engineering
Center (TSEC)

SERVICE CENTER

NSC offers a full 90 day warranty period on each Develop-
ment Systems product that it sells. This warranty can be
enhanced, by purchasing at the time of sale, an added one

coverage. Contact MCS Logistics at the toll-free numbers
listed below for more information.

The Technical Support Engineering Center has highly
trained technical specialists available to assist customers
over the telephone with any Development System prob-
lems. The technical specialists utilize SPIRE, a computer-
ized technical data base designed for rapid search, to solve
customer and technical problems. This data-base can be
made available for customer use and communications to
the technical staff. Contact the SPIRE administrator at the
numbers below for more information.

Depot repair services are available for board and system
products. Our customers can use the toll-free numbers to
contact the service center for immediate solutions.

(800) 538-1866,
(800) 672-1811 for California
(800) 223-3248 for Canada.

When indicated other features of MCS service are used.
These include a service problem report (SPR) that modifies
a customer profile database, a request for engineering ac-
tion (REA) report that aids in product improvement, and an
escalation procedure that is used when necessary to in-
volve applications and design engineering to help bring any
problem to a rapid resolve.

National’s field engineers are located in Santa Ciara, Cana-
da and Europe and are available for dispatch to customer
sites to repair our Development Systems products. Exten-
sive spare parts inventories are maintained for such use.

Special Programs

Series 32000 Consultant Program

The Series 32000 Consultant Program was developed to
create a network of consulting firms throughout the United
States which act as independent agents for National Semi-
conductor’s Series 32000 Family. These agents are avail-
able to help companies design in Series 32000 products.
NSC provides a referral listing of all certified agents and
their area of expertise.

Series 32000 User Society

The charter of the Series 32000 User Society is to advance
the effective utilization of National's microprocessors. The
Society promotes the exchange of information and ideas
between Series 32000 software and hardware users.

The Society newsletter, which discusses design innovations
and new applications for the Series 32000 family, facilitates
the exchange of microprocessing information among Series
32000 users.

The University Program

Begun as merely a concept several years ago, National
Semiconductor’s University Program has now emerged as
one of the company’s most suiccessful programs. The Uni-
versity Program was originally created to establish a rela-
tionship between National and the academic community
that would foster the exchange of information and keep stu-

dents abreast of modern advancements in technology.

Today, the University Program provides a wide variety of
services to universities such as university product kits,
equipment loans, student research aid and on-campus
product demonstrations. Although probably best known for
its Series 32000 product kit, the University Program now
offers equipment from a// departments within National, at
substantial savings.

The University Program catalog provides a complete, up-to-
date list of all student/university services as well as pro-
gram application forms and course materials to guide in-
structors in introducing students to advanced microproces-
SOrs.

Because tomorrow’s technology is dependent upon today’s
nurturing of up-and-coming scientists and engineers, Na-
tional is committed to supporting universities, particularly in
the area of microprocessor technology. Nationai hopes that
more universities will share in this commitment by becoming
a part of the University Program.

For more information on any of these programs, contact
Linda Price, Program Manager, National Semiconductor
Corporation, 2900 Semiconductor Drive, M/S 7C-261, San-
ta Clara, California 95052-8090, 408-733-2600 ext. 463.

Microcomputer Systems Division

The Microcomputer Systems Division’s goal is to become a
leading force in the microcomputer systems marketplace.
To achieve this goal, a total systems approach has been
taken on the Series 32000 program to provide the customer
with the necessary hardware and software support, evalua-
tion and development tools, training, service and technicai
literature.

The focus is on upward migration paths, system integration
at all levels and the preservation of the user’s software in-
vestment.

Four groups (Microprocessor, OEM Board Level Products,
Software Products and Development Systems) offer a
broad capability to solve customer needs at various levels
of performance and integration.
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Introduction to Series 32000 Architecture

Introduction to Series 32000 Architecture

3rd Edition

Chapter 1
Computer Architecture

1.1 Introduction

The architecture of a computer describes what that com-
puter looks like to people who write software for it. More
precisely, the architecture is the complete and detailed
specification of the interface between the computer and
software. The architecture specifies those elementary in-
structions that are decoded and executed directly by the
machine. But it is important to keep in mind that architec-
ture describes only what the computer does, not how it
does it. Two machines are said to have the same architec-
ture if all the software written for one can execute on the
other, even if the actual hardware construction of the two
machines is entirely different. For example, the members
of the IBM System 360-370 family all have basically the
same architecture, but the technology used to implement
that architecture ranges from discrete transistors to Very
Large Scale Integration (VLSI).

QOccasionally, the term architecture is used in a more
general sense as the boundary between different levels of
the whole system. (For example, terms such as *‘operating
system architecture’’ are occasionally employed.) In this
document we will use “architecture” exclusively for the
boundary between the actual machine hardware and the
software.

1.1.1 The Role of the Computer Architect

A computer architect is someone who designs computer
architectures. The terms architecture and architect obvi-
ously have been adapted from their ordinary use in the
building construction industry. The words are apt because
in many ways the job of a computer architect is similar to
that of an ordinary architect. Both are more concerned
with the overall design of a structure and its appearance to
users than to the exact details of the construction, which is
the province of the structural engineer or general contrac-
tor in the buiiding industry and the hardware designer in
the computer industry.

The relationship between computer architect and com-
puter implementor is analogous to the relationship be-
tween an architect and a general contractor. The architect
designs the overall appearance of the building, balancing
a number of conflicting goals (e.g., the desirable view pro-
vided by many large windows and the equally desirable
goal of energy efficiency), always keeping in mind what is
possible with current construction technology (the avail-
ability and cost of materials). The general contractor is re-
sponsible for translating the architect’s vision into a build-
ing. If the contractor discovers that some detail of the
building’s architecture will be too difficult or too expensive
to build, or that it will lead to an unsafe structure, the archi-
tect may have to make changes.

Similarly, the computer architect designs the external ap-
pearance (to software) of the computer, balancing a num-
ber of conflicting goals (e.g., complete protection vs. sim-
plicity of use), and always keeping in mind the current
state of semiconductor technology. The computer imple-
mentor translates this design into silicon. If the implemen-
tor finds that some feature of the computer architecture is
too difficult or too expensive to implement, or if another
feature causes the computer to run significantly slower,
the computer architect may have to make changes.

The role of the architect in both industries is to make an
intelligent compromise among a number of desirable
goals and to balance this against the limitations of current
technology to get a cost-effective design. Architectural
mistakes usually result when one goal is single-mindedly
pursued to the exclusion of other goais, or when a desired
goal is simply not technologically feasible.

A certain amount of controversy currently surrounds a
number of issues associated with computer architecture.
As defined, computer architecture is just the boundary be-
tween the hardware and software. The controversy is
fundamentally over where that boundary should be drawn,
and what trade-offs should be made between various fea-
tures for reasons of performance. Discussion has cen-
tered around three main topics:

¢ What is the best way to support high level languages?

¢ How should memory be organized?

» What protection features should be provided by the
hardware?

In the remaining sections of this chapter we will examine
these three topics, introduce some of the points at issue,
and present the Series 32000 approach to each topic.

1.2 High Level Language Support

All evidence suggests that programming in a high level
language (e.g., Pascal) is more productive than pro-
gramming in assembly language. Some researchers have
found that high level language programmers can produce
the same number of debugged lines of code per day as
can assembly language programmers. Since a line of
code in a high level language usually performs a more
complex operation than a line of code in assembly lan-
guage, the high level programmer is more productive.

Studies have shown that both the time to debug a program
and the difficulty in understanding and maintaining it are
proportional to the number of instructions, with little
dependency on the complexity of each instruction. Since
several instructions might be required for each high level
language statement, the savings in programming time and
cost over an equivalent assembly language program are
obvious.




Before the advent of Series 32000, however, these advan-
tages had been partially offset by the inherent inefficiency
of high level languages as opposed to assembly language
programs. Depending on the compiler, the computer, and
the application, a compiled program might be anywhere
from 0% to 300% longer and slower than the best assem-
bly language program. The basic reason for the inherent
inefficiency of high level languages (we wil! call the HLLs,
occasionally) when they are targeted to contemporary ar-
chitectures is that these architectures were not designed
to support compilers.

1.2.1 Deficiencies of Current Architectures

The shortcomings of current computer architectures are
largely attributable to what Glenford Myers has called the
semantic gap,’ a measure of the difference between the
concepts in high level languages and the concepts in the
computer architecture. The objects and operations re-
flected in these architectures are seldom closely related to
the objects and operations provided in the programming
languages. This semantic gap contributes to software un-
reliability, performance probiems, excessive program
size, compiler complexity, and distortions of the language.

Here are some of the heavily used concepts in high level
languages, along with a few comments on the architec-
tural support for these concepts provided by most com-
puter architectures:

Arrays. The array is one of the most frequently used data
structures in most HLLs. An array is a set of entries, each
with the same data type (thus we speak of arrays of inte-
gers, arrays of characters, etc.). Most languages provide
for multidimensional arrays, performing operations on en-
tire arrays and checking to see that array subscripts do not
exceed the boundary of the array. Most computer archi-
tectures, however, provide very limited architectural fea-
tures to support any of these constructions.

Records. A record consists of a number of components
(usually cailed fields) that can be of different data types.
Thus a record might consist of characters, integers, and
real numbers (for instance, a criminal record). There is
nothing in the architecture of most microprocessors that
supports records.

Strings. Most languages contain the concepts of fixed
and variable sized strings, and of string processing opera-
tions such as concatenation and searching for a specified
substring within a string. Many microprocessor architec-
tures provide no string processing instructions at all.

Procedures. The basic program unitin modern HLLs is
the procedure. A procedure call entails saving the state of
the calling procedure, dynamically allocating and initializ-
ing local storage for the called procedure, passing argu-
ments, and executing the called procedure. Most micro-
processor architectures provide no support for any of
these operations.

1 Glenford J. Myers, Advances in Computer Architecture, Wiley 1978

Modules. Modern HLLs (Pascal, Ada) implement the con-
cept of a software module containing several procedures
and associated data. Each module may be developed in-
dependently of all other modules and combined for final
execution. This modularization reduces software develop-
ment cost and time, increases design flexibility, and sim-
plifies system design. Up to how most processors have not
supported the modular software concept.

One source of current problems is that contemporary ar-
chitectures are asymmeiric, and therefore do not permit
the concepts in HLLs to be efficiently modeled in machine
language. Symmetry is the degree to which all addressing
modes exist for all operands and all required operators ex-
ist for every data type. Chapter 2 discusses symmetry in
detail and also defines the key terms, such as addressing
mode and data type.

1.2.2 The Series 32000 Approach

These deficiencies in contemporary microprocessor ar-
chitectures have been addressed by the designers of
Series 32000. They have made a major effort to bridge the
semantic gap with this new architecture. Series 32000 ar-
chitecture, in fact, is designed specifically to support high
level language compilers; it enables even relatively unso-
phisticated compilers to produce efficient code. Special
addressing modes are provided to access such HLL con-
structions as arrays and records, and new operators are
provided that are specifically tailored for high level
languages.

Addressing Modes. Series 32000 architecture supports
four standard addressing modes (i.e., mechanisms for ac-
cessing operands) common to most processors: register,
immediate, absolute, and register relative. in addition,
Series 32000 introduces four HLL-oriented addressing
modes: top-of-stack mode is very useful for evaluating
arithmetic expressions in high level languages. Scaled
indexing mode can be used to access elements in byte,
word, double-word, or quad-word arrays. Memory relative
mode can be used for manipulating fields in a record. Ex-
ternai mode can be used to access data in separately
compiled modules. (See Chapter 2 for a discussion of ad-
dressing modes.)

New Operators. In addition to the conventional CPU in-
structions, such as data movement, arithmetic logic, and
shifts, the architecture includes advanced instructions
which are very useful in an HLL environment. The CHECK
instruction determines whether an array index is within
bounds. The INDEX instruction implements the recursive
indexing step for multi-dimensional arrays. The STRING
instruction manipulates data strings. ENTER and EXIT in-
structions minimize the overhead in procedure calls by
managing the resources (registers, stack frame) allocated
at the beginning of a procedure and reclaimed at the end.
(See Chapter 2 for more on these instructions.)
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1.2.3 Controversial Topics

The addressing modes and new operators provided by
Series 32000 clearly represent an advance over con-
temporary architectures. Yet two of the issues faced by
Series 32000 designers remain controversial.

¢ Should three operand instructions be provided?
* Should instructions be primarily register-oriented,
memory-to-memory, or top-of-stack?

Three Operand Instructions

1t is occasionally claimed that an architecture must provide
general three operand instructions if it is to truly support a
HLL. (A three operand instruction is, as the name implies,
an instruction which contains two source operands as well
as a destination. For example, an instruction to directly im-
plement the FORTRAN statement,

A=B+C

would be a three operand instruction with operands A, B
and C and the operator +). The reasoning behind this
claim is basically that if three operand statements are
common in high level languages, then presence of three
operand instructions in the architecture will result in
greater code density. The VAX-11, for example, permits
three operand instructions for most arithmetic operations.

However, a study by D.E. Knuth of Stanford University in
19712 showed that in 250,000 lines of FORTRAN code,
80% of all assignments were of the form

AopBorA=B

It follows that three operand HLL statements are ex-
tremely rare, and the need for such a construction in the
architecture is unproven. Moreover, since provision for
three operand instructions imposes a certain burden of its
own (whether in code density or execution speed), the utili-
ty of this instruction category must certainly be
questioned. The designers of Series 32000 felt that the
need for three operand instructions was not great enough
to justify that overhead. In fact, Series 32000 provides
greater code density than the VAX-11,

Registers

Itis also occasionally claimed (for example by Glenford
Myers in his book Advances in ComputerArchitecrurea)
that registers are alien to the concepts in HLLs and should
be done away with in the interests of bridging the semantic
gap. The designers of Series 32000 disagree. The high
level language concept that relates most strongly to regis-
ters is the idea of the set of variables that are local to a
procedure. The modular programming methodology de-
scribed above encourages the use of a number of small
procedures instead of large monolithic programs. Each of
these procedures usually makes use of only a few vari-
ables of its own, but these variables are used over and
over again in that procedure. For instance, a procedure
that manipulates an array must constantly refer to the ar-
ray index.

%pE Knuth, “‘An Empirical Study of FORTRAN Programs," Software Practice and

Experience, 1, 2 (April-June, 1971) 105-133.

3Meyers, op.cit.,p. 23
VAX-11is a trademark of Digital Equipment Corporation.

The chief advantage of registers is that they allow a work-
ing set of variables to be kept close at hand where they
can be accessed quickly. This working set of variables is
stored in the register set. Studies by William Wulf, et al.*
have indicated that five registers are sufficient for almost
all applications. Series 32000 CPUs use 8 (i.e., 2°)
general-purpose registers and several specialized regis-
ters for particuiar pointers. Series 32000 architecture al-
lows memory-to-memory operations, but it does not re-
quire them.

Registers allow the compiler writer to optimize the execu-
tion of HLL statements, whereas a purely memory-to-
memory machine must constantly carry the overhead of
referencing all variables in main memory. A purely stack-
oriented machine (i.e., an architecture where all variables
are assumed to be on the top two locations of the stack) is
essentially equivalent to a machine with two registers.
Many studies have shown that pure stack machines do not
give any significant advantage over a general register
machine.®

1.3 Memory Organization

There are three aspects to memory organization: (1) the
overall memory architecture, which is basically how the
logical memory looks to the computer program; (2)
logical-to-physical address translation (mapping) which
maps the logical structure of memory onto hardware; and
(3) virtual memory mechanisms. Series 32000 has a linear
memory architecture; it supports page-based mapping;
and it provides a number of mechanisms which support a
virtual memory system.

1.3.1 Linear versus Segmented
Memory Architecture

The main memory of a computer is organized as a set of
consecutively numbered storage ceils. In most computers
these memory cells contain eight bits (a byte). The loca-
tion number associated with one of these physical storage
cells is called a physical address, and the set of all phys-
ical addresses is called physical address space. The phys-
ical address space is thus determined by the actual hard-
ware in the computer’s memory system.

On the other hand, a program running on a computer can
generate a set of addresses that is limited only by the
number of bits in an address. This set of addresses is not
necessarily related to the actual amount of physical
memory in the system. For example, consider a computer
with a 16-bit address field in instructions and 4,096 (4K)
bytes of memory. A program on this computer can address
65,536 (64K) locations, for the simple reason that 2'6
(65,536) 16-bit numbers exist. The set of these numbers is
called logical address space; it is the set of logically possi-
ble addresses (even if they are not realized physically); it is
the set of all addresses that can be generated by a pro-
gram. The organization of the logical address space de-
fines the memory architecture. The two main types of
memory architecture are linear and segmented.

‘W. A Waulf, et al., The Design of an Optimizing Compiler, North Holland, 1975

5Meyers, op.cit., p. 49




In a finear address space, addresses start at location zero
and proceed in linear fashion (i.e., with no holes or breaks)
to the upper limit imposed by the total number of bitsin a
logical address. With Series 32000, there can be up to 24
bits in a logical address, resuiting in 16 miilion (224) bytes.
In fact, Series 32000 architecture makes provision for 32-
bit logical addresses, allowing 4 billion (232) bytes of log-
ical memory to be addressed.

The alternative to a linear memory architecture is a so-
caiied “‘segmented’” memory architecture. A segmented
address space is basically a collection of small linear ad-
dress spaces. A rigid distinction is made between the seg-
ment (the particular address space in which adatum is
located) and the displacement of the datum within the seg-
ment (the distance in bytes from the start of the segment
to the location in question). A segmented address is
consequently a two-component value. The first compo-
nent (the segment selector) picks out one of the segments
while the second component specifies the displacement
within the segment. (See Figure 1-1 for a comparison of
linear and segmented memory.)

The advantages of segmented memory center around
protection issues. The claim is made that a segmented
memory better accords with the organization of modern,
modular programs and structured data than does a linear
memory. Consequently, mechanisms for preventing ac-
cess to segments, or preventing segments from being
read or written into can be used to protect meaningful pro-
gram units. In other words, since the structure of the log-
ical address space of a segmented architecture reflects
the logical structure of the program, protection mecha-
nisms provided for segments naturally accrue to meaning-
ful program units.

This is in fact true. However, except for a few processors
(e.g., the MULTICS processor) few segmented machines
have consistently carried out this program. For example,
most current segmented architectures impose a limit of
64K bytes on the length of a segment. But in order for seg-
mentation to realize its protection advantages, segments
should be allowed to have arbitrary size. A 2-megabyte
segment, after all, will be needed to hold a 2-megabyte ar-
ray, if the program organization is to reflect the program
structure. And in modern bit mapped graphics systems (a
typical application for 16-bit microcomputers), 2-megabyte
arrays are common. Moreover, since programs can con-
sist of hundreds or even thousands of modules, it is im-
portant for the architecture to support large numbers of
segments if segmentation is to be used properly. Large
data bases are a typical application that will require either
segments of arbitrary size or a great many segments.

It is unfortunately the case that most segmented architec-
tures allow only small segments (i.e., less than 64K bytes)
and usually support only a limited number of them (typical-
ly, fewer than 128). The size limitation is an artifact of earli-
er days when the entire (linear) address space was only
64K bytes long. The designers of the segmented ma-
chines expanded the address space of their earlier pro-
cessors, while attempting to preserve some measure of
software compatibility, by making the old 64K-byte linear
address space one of the new 64K bytes segments. The
8086 and its relationship to the 8080 is the most painful il-
lustration of this phenomenon.

LINEAR LOGICAL ADDRESS SPACE

OPERAND

SINGLE-COMPONENT
ADDRESS

SEGMENTED LOGICAL ADDRESS SPACE

SEGMENT A
SEGMENT C
" OPERAND |
wo. [ DISPLACEMENT
COMPONENT SEGMENT
ADDRESS > —
SELECTOR SEGMENT B

Figure 1-1. Linear vs. Segmented Address Space

In such segmented architectures, all data structures larger
than the maximum segment size must be broken down to
fit into several segments, since an address pointer cannot
be incremented from the top of one segment to the bottom
of another segment. By contrast, a linear address space
can accommodate data structures of any size up to the
maximum size of memory.

Series 32000 provides the protection advantages of seg-
mentation without the segment-size disadvantages, by
permitting segments to be constructed out of an arbitrary
number of fixed-size memory units. These memory units
are called pages, and they form the basis for Series 32000
mapping, virtual memory, and memory protection mecha-
nisms {see Sections 1.3.2,1.3.3, and 1.4).

Series 32000 permits a form of segmentation—that is, it
lets the operating system keep track of collections of
pages with the same protection attributes—but it does not
require segmentation by building it into the architecture.
Moreover, the segmentation permitted by Series 32000 is
more general than that built into standard segmented ar-
chitectures (for example, segments can have arbitrary
size).
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1.3.2 Page-Based Mapping and Alternatives

Mapping is based on the distinction outlined in Section
1.3.1 between logica! address space and physical address
space. Mapping is basically the process of translating a
logical address into an arbitrary physical address. Without
mapping, logical addresses are simply equated with phys-
ical addresses; by exploiting mapping, a logical address
can be assigned to an arbitrary physical address. Mapping
thus provides a kind of generalized relocation mechanism.

Unmapped memory is adequate for simple, single user,
single-task systems, which is why most microcomputer ap-
plications until now have been unmapped. However, the
large memory and increased power of 16/32-bit microcom-
puters have led to their being employed in multi-user,
multi-task applications. And in these cases mapping is
highly desirable, for without mapping, the different pro-
grams in a multiprogramming system or the different tasks
in a multitasking system must operate within the same log-
ical address space. Consequently, each program or task
must be careful not to access any address outside its as-
signed partition, and in general everyone must be familiar
with the detailed organization of memory in order to make
full use of it.

By contrast, mapping allows each program or task to be
assigned its own logical address space, with the mapping
mechanism responsible for translating these independent
logical address spaces into the same physical address
space. Since the programs and tasks have separate log-
ical address spaces, there is no chance of interference.

Since it is too cumbersome to control the translation of
each logical address individually, mapping is ordinarily
done in blocks of addresses. The simplest and historicaily
the earliest mapping systems mapped the entire logical
address space of a program as one unit. (See Figure 1-2
for a diagram of such a system.)

More recent systems are based on mapping smaller
chunks of memory, rather than the entire logical address
space of a program. There are basically two kinds of ad-
dress translation schemes, differing only in the structure
of the mapping blocks. One form is based on variable-
sized segments, the other is based on fixed-size units
called ““pages.” Series 32000 employs a page-based
mapping system.

With Series 32000, the logical address space is broken up
into 32,768 pages, each with a fixed size of 512 bytes. The
physical address space is broken up into the same num-
ber of pieces, each piece the same size as a page. These
pieces of physical memory into which the pages are
mapped are called page frames. Figure 1-3 shows a part
of Series 32000 mapping scheme.

A page-based mapping system is usually more efficient
than a segment-based mapping system because of the
memory fragmentation problem associated with segment-
based systems. This problem occurs often in segmented
multi-program systems when the available memory space
becomes fragmented into many small pieces and not
enough contiguous physical memory is available to con-
tain one large segment. By contrast, since all pages are
the same size, if any physical page frame is available it
can hoid any page.
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Figure 1-2. Mapping the Entire Address Space

The mapping operation is performed by the NS32082
MMU (Memory Management Unit) and is explained thor-
oughly in Chapter 3. This translation process is performed
automatically, making use of a table in memory that con-
tains the physical address of each page frame.

Each program or task can have its own such table, and
changing the current table is simply a matter of changing
an MMU register that points to the starting address of the
current table. Therefore, each program or task can have
its own map from logical memory to physical memory, and
therefore each program or task can have its own logical
address space.

Entries in the table contain protection bits along with phys-
ical addresses. These protection bits are used to provide
each page with a set of protection attributes (e.g., read
only). The operating system can treat a collection of pages
with the same attributes as a segment in the sense of Sec-
tion 1.3.1. Page based mapping thus provides a mecha-
nism for implementing segmentation.

1.3.3 Virtual Memory

In many computer systems, the logical address space is
far larger than the actual memory hardware. Virtual
memory is amechanism for circumventing the limits on
physical memory size. Under a virtual memory system, it
appears to users as if the entire logical address space
were available for storage. But, in fact, at any given mo-
ment only a few pages of the logical address space are
mapped onto physical space. The other pages are not pre-
sent in main memory at all; instead, the informatidn in
these pages is stored on a secondary storage device, such
as a disk, whose cost-per-bit is more economicai.
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Figure 1-3. Page-Based Mapping

In a virtual memory system, whenever the computer
generates a memory address, the hardware checks
whether that address lies in a page that is actually in
memory. if it does, the address is translated to the appro-
priate physical address, and the memory reference takes
place normally. If the indicated page is not in memory, an
operation called a page swap is performed, and the
operating system software loads the missing page from
disk. If this operation is performed swiftly, the user will
have the illusion of a gigantic physical memory. For effi-
ciency, when the referenced location has to be brought
from the peripheral to the main memory, other locations
likely to be referenced next are also brought in. informa-
tion not currently in use is removed from the main memory
and returned to peripheral storage, thus making reom for
the new material.

Of course the beauty of virtual memory is that the user or
programmer does not have to be aware of the process. He
uses one consistent set of addresses called virtual ad-
dresses. The memory management hardware keeps track
of where the information resides at any given time and
translates the virtual address into a real location in phys-
ical memory. When the CPU finds the requested virtual
address to be unavailable in main memory, it notifies the
operating system which initiates a swap.

When the data to be replaced has not been modified dur-
ing the time it was resident in main memory, there is no
need to write it back to the peripheral device since an up-
to-date copy already exists there. Under such a circum-
stance the old data is simply overwritten with the new
data.

Virtual memory was first implemented on the Atlas com-
puter at Manchester University, using special hardware.
All computers with virtual memory since the Atlas have
also required special hardware functions to implement
virtual memory. Many current microprocessors do not
have adequate mechanisms to support virtual memory
systems. For example, in both the Z8000 and the 68000 no
provision was made for restarting an instruction that
causes a page fault. in Series 32000 virtual memory sys-

tems, this special hardware is provided by the NS32082

MMU (with support from the CPU chip).

1.4 Protection

The last major area of debate about computer architecture
concerns the whole topic of protection: memory protec-
tion, program protection, user protection. The basic issue
is what should be the granularity of the protection mecha-
nisms that are provided. The basic difficulty is that the
finer the granularity, the more the overhead associated
with protection.

Some systems implement a hierarchy of protection levels
from most privileged to least privileged. These levels are
often called rings. Each ring has its own access control
information for a page. Generally, a more privileged ring
has access to all the information in a less privileged ring.
However, because the number of rings is severely limited,
usually to four, and because tasks often do not have a
strictly hierarchical relationship, ring systems are seldom
flexible enough for modern operating systems.

Instead, a capability-based protection system is often pro-
posed as an alternative which allows nonhierarchical
relationships between an arbitrary number of tasks. Ina
capability-based operating system each task has a table of
operations it is allowed to perform that may affect other
tasks in the system. This table is protected from direct
modification by the task. Thus, the only way a task can
perform an operation which could affect another task is if it
has the appropriate capability in its capability table. A task
may give a specific capability to another task. By restrict-
ing the distribution and type of capabilities it gives out, a
task may tightly control access to the services it provides.

One problem with most capability-based systems is that
the concept is carried to such lengths that it interferes with
efficient accessing and processing of information within a
task. Since the cost of protection is always high in these
capability systems, performance suffers.

The designers of Series 32000 felt that a capability based
protection scheme could be implemented at some level in
the system, but that the appropriate level to do this was in
the kernel of the operating system, not in the architecture
itself. The basic reason for leaving capabilities out of the
architecture is twofold: (1) the extra burden should not be
imposed on all programmers who use this architecture or
on every memory reference; (2) the implementation of a
capability-based system is such a new and complex task
that locking such a system into silicon before it is thor-
oughly proven can be very risky. The designers of Series
32000 preferred to work out the bugs in their operating
system before they froze it permanently in silicon.

1-21
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The protection features actually implemented in Series
32000 architecture can be divided into three groups:

1. Supervisor/user mode. A distinction is made between
two operating modes of the CPU: supervisor mode in
which all the power of the instruction set is available,
and user mode in which only a restricted subset of the
instructions are available. Supervisor mode is intended
for operating systems and other trusted programs.
User mode is intended for those programs that are not
trusted.

. Separate address spaces for each task. Each task run-

ning on Series 32000 has its own collection of pages
constituting its address space. Access to another
task’s address space is impossible.

. Protection bits in the page and pointer table entries.

Associated with each page are bits that define whether
that page can be read but not written into, read and
written into, or neither read nor written.

All these protection features are discussed in Chapter 3,
Section 3.4.
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Chapter 2

High Level Language Support

on Series 32000

2.1 introduction

In Chapter 1, it was shown that with conventional architec-
tures, the gain in programming efficiency produced by
writing in high level languages instead of assembly lan-
guage is usually undermined by the larger amount of
memory required to store the code. This phenomenonis a
result of the large number of instructions that must be
generated by the compiler to map HLL concepts onto the
more restricted repertoire of machine instructions. Perfor-
mance is also diminished because of the large number of
memory transactions generated by the instructions. in
addition, when the differences between the abstractions
called for by a problem and the capabilities directly imple-
mented in the computer’s hardware is very great, the code
generation portion of a compiler must be extremely
complex.

A primary design objective for Series 32000 was for the
structure and behavior of the processor’s architecture to
correspond in a reasonable way with the objects and
operations of high level languages. The goal was to devel-
op a symmetrical architecture particularly suited to being
the target for compilers. The architecture of Series 32000
meets that goal; it enables symmetric use of general pur-
pose registers, memory locations, addressing modes,
data types and instructions.

Compilers can easily generate high-performance (very
dense and efficient) code for Series 32000. Series 32000
is particularly well suited to the Pascal high level lan-
guage. Because of Series 32000's general-purpose regis-
ters, the program also executes faster. In addition, the ar-
chitecture avoids special-case instructions and address-
ing modes that compilers have difficulty making use of.

In this chapter we will examine in detail the means by
which the concepts of HLLs are supported by Series
32000 architecture; namely, by a symmetrical archi-
tecture, a sophisticated instruction set, and expanded ad-
dressing capabilities.

2.2 Data Types Supported

The objects and concepts of a high level language include
constants, variables, expressions, and functions, each of
which is of a particular data type, the type determining the
range of values which the constant, variable, expression,
or function can assume in the program.

A data type is said to be supported by a computer if the
computer’s instruction set contains operators that directly
manipulate the data type or else has operators and ad-
dressing modes that facilitate its manipulation. Data types
directly manipulated by the hardware are called primitive
data types. Those data types supported by the hardware,
but not manipulated directly, consist of ordered collections
of primitive types and are called structured data types.

Series 32000 supports the following data types:

* primitive data types (see Figure 2-1)
—integers (signed and unsigned)
—floating point
—booleans
—Binary Coded Decimal {BCD) digits
—bit fields

¢ structured data types
—arrays
—records
—strings
—stacks

2.2.1 Integer Data Types

The integer data type is used to represent integers, i.e.,
whole numbers without fractional parts. Integers may be
signed (negative as well as positive) or unsigned (positive
oniy). integer data types on Series 32000 are availabie in
three sizes: 8-bit (byte), 16-bit (word) and 32-bit (double
word). Signed integers are represented as binary two’s
complement numbers and have values in the range — 27
1027 -1, —2'5t02"% -1, 0r —2%" 10 23" - 1; unsigned in-
tegers have values in the range 0 to 2% _1,0t0216 -1, 0r
010 2% — 1. When integers are stored in memory, the
least-significant byte is stored at the lowest address; the
most significant byte at the highest address.

2.2.2 Floating Point Data Types

The floating point data type is used to represent real num-
bers, i.e., numbers with fractional parts. Floating point
numbers are represented by an encoded version of the fa-
miliar scientific notation:

n=sxfx10°®

where s is the sign of the number, f is called the fraction,
or mantissa, and e is a positive or negative integer called
the exponent. (Figure 2-1 shows how these values are
represented by fields within the number.) Floating point
numbers are available in two sizes: 32-bit (single
precision) and 64-bit (double precision). Double precision
offers both a larger range (larger exponent) and more
precision (larger mantissa). Series 32000 floating point
data type is compatible with the proposed IEEE floating
point standard.

Manipulation of the floating point data type is actually
handled by the NS32081 Floating Point Processor (FPU)
(see Section 4.4, Slave Processors). If an FPU exists in the
system, the user can treat floating point numbers (both
single and double precision) as any other Series 32060
data types and may use any of the Series 32000
addressing modes to reference them. Also, conversion is
provided from every integer and floating format to every
other integer and fioating format. if an FPU is not present,
these functions must be simulated in software.
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INTEGER
BYTE 8BITS
L .
WORD 16 BITS
5
DOUBLE WORD | ae2mms
T 0
FLOATING POINT
Is|  exeonent | FRACTION ] e
3130 23 22 0
64
s EXPONENT | FRACTION o
53 62 52 51 0
BOOLEANS
Pxoooox ] ] fxxooooooooooooc [ ] XXX, |
7 0 15 0 3
BIT
E] 1817
BIT FIELDS
| Darken] | veroazans
BCD DIGITS
piir o] 8 BiTS
7 43 0
[oieir sJoiaim 2| oveir 1{mai o] 16 8i1s
15 1211 87 43 0
[ossir 7|oiair s{oierr s{oiair a[oierr 3{oim 2|oiem 1|oie o] 32 BiTs
31 2827 2423 2019 1615 1211 87 43 0
Figure 2-1. Primitive Data Types
2.2.3 Other Primitive Data Types bits for each decimal digit. The BCD data type is repre-
(Booleans, Bits, BCD Digits) sented on Series 32000 by three formats, consisting of 2,

4, or 8 digits. Two BCD digits may be packed into a byte,
four to a word, or eight to a double word; thus one byte
may represent the values from 0 to 99, as opposed to 0 to
225 for a normal unsigned 8-bit number. Similarly, a word
can represent values in the range 0 to 9999, or a double
word can represent values in the range 0 to 99999999,

The boolean (or logical) data type is a single bit whose
value, 1 or 0, represents the two logic values true and
faise. A boolean data type has many uses in a program,
for example, to save the results of comparisons, to mark
special cases, and in general to distinguish between two
possible outcomes or conditions. Booleans are repre-
sented on Series 32000 by integers (byte, word, or double Though BCD requires more bits to represent a large
word). True is integer 1; false is integer 0. decimal number, it does have certain advantages over
binary. For many business applications, the amount of
actual computing to be done between source input and
output is small, so that converting data from binary to
decimal formats can represent a significant fraction of the
total processing overhead. BCD arithmetic eliminates this
conversion overhead since the computations are actually
performed in decimal. Also of importance for business
applications is the loss of accuracy which can result from
With the binary-coded decimal (BCD) data type, unsigned conversions from decimal to binary and back again, a loss
decimal integers can be stored in the computer, using 4 which is avoided by using decimal arithmetic.

The bit field data type is different from other primitive data
types in that the basic addressable unit is measured in bits
instead of bytes. With Series 32000, bit fields may be 1 to
32 bits long, and located arbitrarily with respect to the
beginning of a byte. They are useful when a data structure
includes elements of nonstandard lengths, since they
allow programs to manipulate fields smaller than a byte.
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2.2.4 Arrays

An array is a structured data type consisting of a number
of components, all of the same data type, such that each
data element can be individually identified by an integer
index. Arrays represent a basic storage mode for all high
level languages.

In Pascal programs, for example, each element of an array

ay value aiving
ey value glving

is referenced by the array name and an ir

the component’s position in the array. Arrays range from
simple one-dimensional vector arrays to more complex
multi-dimensional arrays. The elements of an array may
be integers, floating point numbers, booleans, characters,
or more complex objects built up from these types.

Series 32000 provides special operators that facilitate
calculation of the array index and determination if the
index is outside the limits of the array (see Section 2.3.4,
Block, String and Array Instructions). In addition, certain
Series 32000 addressing modes facilitate quick access to
array elements (see Section 2.5.2).

2.2.5 Records

A record, like an array, is a structured data type with sev-
eral components. However, unlike arrays, the components
of a record may each be of a different data type. In high
level languages, such as Pascal, a component of a record
is selected by using both the name of the record variable
and the name of the component. Usually, records are
grouped into large arrays, called files in COBOL, struc-
tures in PL/L, and record structures in Pascal.

Series 32000 addressing modes facilitate quick access to
record elements (see Section 2.5.2, High Level Language
Addressing Modes).

2.2.6 Strings

A string is an array of integers, all of the same length. The
integers may be bytes, words, or double words. Strings
are common data structures in high level languages. For
example, strings of ASCII characters (i.e., bytes) are com-
monly used to contain alphanumeric text.

With Series 32000, a string is represented by a sequence
of integers stored in contiguous memory. Special opera-
tors exist that facilitate comparison of strings, movement
of strings, and searching strings for particular integer
values (see Section 2.3.4, Block, String and Array
Instructions).

2.2.7 Stacks

A stack is a one-dimensional data structure in which vai-
ues are entered and removed one item at a time at one
end, called the top of stack. It consists of a block of mem-
ory and a variable called the stack pointer.

Stacks are important data structures in both systems and
applications programming. They are used to store return
address and status information during subroutine calls
and interrupt servicing. Also, algorithms for expression
evaluation in compilers and interpreters depend on stacks
to store intermediate results. Biock-structured HLLs such
as Pascal keep local data and other information on a
stack. Parameters of a procedure in a block structured

HLL are usually passed on a stack, and assembly an-
guage programs sometimes use this convention as well.

Series 32000 supports both a User Stack and an interrupt
Stack. Depending on the mode of operation, one of the
two stack pointers (SP, or SP,) contains the memory ad-
dress of the top item on the stack. Instructions exist which
allow for explicit manipulation of the stack pointer, and the
current stack can be used in almost all Series 32000 in-
structions to hold an operand (see Section 2.5.2, High
Level Language Addressing Modes).

For example, an item may be pushed onto the stack by
subtracting the length of the item from the stack pointer
(since stacks, by convention, grow downward in memory),
then moving the item to the address now pointed to by the
stack pointer. An item may be popped off the stack by
moving the item pointed to by the stack pointer to the
destination, then adding the length of the item to the stack
pointer. Both of these operations are performed by select-
ing the Top of Stack Addressing Mode.

Instructions also exist which push or pop the contents of
one or more registers. For example, the Jump to Subrou-
tine instruction causes the Program Counter’s contents to
be pushed on the stack, and the Enter instruction causes
the contents of the Frame Pointer and specified General
Registers to be pushed on the stack. (See Section 2.3.6,
Register Manipulation Instructions, for more details.)

2.3 Instruction Set

One of the most important considerations in evaluating a
computer architecture is the relationship between the ma-
chine’s primitive data types and the instructions that ma-
nipulate those data types.

For example, if a processor has byte, word, and double
word integers, it should have an Add operator that oper-
ates on each of these in a uniform and consistent manner.
Series 32000 architecture provides a complete and com-
prehensive set of instructions for every hardware-
recognized primitive data type. In addition, special instruc-
tions are available that facilitate manipulation of structured
data types.

The instruction set includes over 100 basic instruction
types, chosen on the basis of a study of the use and fre-
quency of specific instructions in various applications;
special-case instructions, which compilers cannot use,
have been avoided. The instruction set is further ex-
panded through the use of special Slave processors, act-
ing as extensions to the CPU.

This instruction set is symmetrical, that is, instructions can
be used with any general addressing mode (see Section
2.3.7), any operand length (byte, word, and double-word),
and can make use of any general purpose register.

Series 32000 instructions are genuine two operand:in-
structions, though many instructions use more (up to five)
operands. This, combined with the consistent and sym-
metric architecture, reduces the code size considerably.
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2.3.1 Integer Instructions

A large set of arithmetic instructions are provided for inte-
ger manipulation: addition and subtraction, multiplication
and division (with various remainder, rounding, modulus
and result-length options), two’s complement, and abso-
lute value. Other instructions include:

* Move operators that allow either zero or sign extension
(a useful feature when the size of the destination ex-
ceeds the size of the source).

Shift operators allowing logical and arithmetic shifts, as
well as rotation left or right, by any amount.

¢ Boolean instructions (And, Or, Exclusive Or, Comple-
ment, and Bit Clear) allowing each bit in a data word to
be manipuiated independently.

* Two BCD arithmetic operators, Add and Subtract, han-
dling up to eight digits at a time.

Extended Multiply and Divide operators which return a
result which is twice the size of the operands which they
read.

2.3.2 Floating Point (FPU) Instructions

The NS32081supports 32-bit and 64-bit precision floating
point calculations, as well as 8-, 16-, and 32-bit fixed point
calculations. In addition to the floating Add, Subtract,
Multiply, Divide, and Compare instructions, there is a
Move instruction that doubles as a conversion instruction
for converting from integer to floating point format. Instruc-
tions are also provided to ROUND off a floating point num-
ber to the nearest integer, to TRUNCate a floating point
number toward zero, and to convert a floating point num-
ber to the largest integer less than or equal to itself (the
FLOOR of that number). For positive floating point num-
bers, these last two operations have the same effect; they
differ, however, for negative numbers. For example,
—3.17 truncates to — 3, but its floor is — 4.

These instructions are implemented by the FPU and dis-
play the same symmetry, addressing modes and flexibility
as the rest of the instruction set. The architecture of Series
32000 makes available to the FPU all Series 32000 ad-
dressing modes, and any instructions can be register-to-
register, memory-to-register or memory-to-memory.

2.3.3 Boolean, Bit, and Bit Field Instructions

Boolean instructions treat a data word as an array of bits,
and allow each bit to be handled independently. Boolean
operators include And, Or, Exclusive Or, Complement,
and Bit Clear.

Series 32000 provides a special Boolean Not instruction
for implementing high level languages which require that
TRUE =1 and FALSE = 0. To simplify the handling of
Boolean expressions in compilers, a Set on condition in-
struction stores a ‘1"’ into its only operand if a condition
code check is satisfied; if not, it storesa ““0"".

Bit instructions allow convenient handling of individual bits
or arbitrarily large bit arrays. In addition to the ability to set,
clear, complement, or test any bit in memory or in a regis-
ter, Series 32000 provides semaphore primitives (test and
set, test and clear) for multiprocessing and multitasking

coordination. Also provided is a Convert to Bit-Field Point-
er Instruction which converts a byte address and a bit off-
set into a bit address. This allows a field address to be con-
verted to an integer and thus passed to a procedure or
function, a facility which is very useful in HLLs. A Find First
Set instruction searches a sequence of bits, either in
memory or in a register and returns the bit number of the
first 1"’ bit it sees.

Two Bit Field instructions can access bit fields up to 32
bits in length anywhere in memory, independent of byte
alignments. The Extract instruction reads a bit field, ex-
pands the result to the length specified in the opcode, and
then stores the expanded result into another operand. An
Insert instruction reads an operand of the length specified
in the opcode and stores the low-order part into a bit field.

2.3.4 Block, String, and Array Instructions

For the many iterative operations which are required in
high level languages, the Block Move and Block Compare
instructions facilitate efficient generation of compiler code.
They are written the same way as the standard memory-
to-memory move and comparison instructions, except for
the addition of a third displacement operand, which speci-
fies how many elements (bytes, words or double words)
are to be moved or compared.

Strings of bytes, words, or double words are easily ma-
nipulated with the Move String, Compare String, and Skip
instructions. To avoid destructive overwriting, move and
compare operations can proceed from low addresses to
high addresses, or vice versa. These operations can pro-
ceed unconditionally, or be terminated when a compari-
son condition is met (when either a specific value is en-
countered or when a value is no longer encountered).
Also, a string of instructions may be interrupted or
aborted, and then restarted where it left off. These string
instructions are comparable in their power to those avail-
able on large minicomputer and mainframe computers.

For array handling, two instructions are provided, Check
and Index. The Check instruction determines whether an
array index is within bounds. It allows the user to specify
both an upper and a lower bound. It also subtracts the
lower bound from the value being checked and stores the
difference in a register, where it can be used in an Index
instruction or in an index addressing mode.

The array Index instruction implements one step of a
multidimensional array-address calculation. The opcode
specifies the length of the second and third operands; the
first operand is a general purpose register. The Index
instruction performs a multiplication and an addition,
leaving the resuit in a register. The result is then used in
another Index instruction for the next dimension, or it is
used in an index addressing mode.

2.3.5 Jumps, Branches, and Calls

A number of different Jumps and Branches are imple-
mented: simple Jump, Jump to Subroutine, simple
Branch, Conditional Branch, and Multiway Branch (a
branch is a PC-relative Jump). Since the displacement in
these instructions can be as large as the memory, there is
no limit to their range. In addition, several different returns
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are supported: return from subroutine, return from trap
and return from interrupt. The latter two are discussed in
more detail in the section covering interrupts and traps
(Section 4.3). Instructions for calls to and returns from ex-
ternal procedures are discussed in Chapter 4, Section
4.2.3 (Programming with Modules).

2.3.6 Register Manipulation Instructions

Any general purpose register (see Section 2.4) can be
accessed via the general addressing modes (see

Section 2.5). Thus any Series 32000 instruction that uses
a general addressing mode to access one of its operands
can manipulate these registers. In addition, several in-
structions are provided explicitly for register manipulation.

The Save and Restore instructions manipulate the general
purpose registers. The instruction format for these opera-
tions includes an immediate field of 8 bits, each bit
specifying which of the eight general purpose registers are
to be stored or fetched from the stack.

Instructions manipulating the special purpose registers al-
low these registers to be loaded and stored; bits in the pro-
gram status register may be set and cleared, and the stack
pointer may be adjusted. Other instructions for these
registers are discussed in Section 2.4.2, CPU Special Pur-
pose Registers.

2.3.7 Instruction Format

Series 32000 has a variable-length instruction format in
which instructions are represented as a series of bytes.
Figure 2-2 shows the general format of a Series 32000
instruction.

OPTIONAL BASIC
EXTENSIONS INSTRUCTION

SCALED[SCALED) GEN | GEN
DiSP2|DISPy
INDEX | INDEX [ADDR. | ADDR. OPCODE

BYT TE | MODE | Mi
IMM2 [ IMM4 ZE BY1 (;D (;DE

e
e \\

IMPLIED
PERAND(S

GEN. ADDR.
MopE | REG- NO.

7 32 0

INCREASING MEMORY

Figure 2-2. General Instruction Format

The Basic Instruction is one to three bytes long and con-
tains the Opcode and up to two 5-bit General Addressing
Mode (““Gen”’) fields. (Addressing modes are discussed in
Section 2.5.) Foliowing the Basic Instruction field is a set
of optional extensions, which may appear depending on
the instruction and the addressing modes selected.

The Opcode specifies the operation to be performed, for
example, ADD, MOV, etc., and the number of operands to
be used in the instruction. The specification of an operand
length (B, W, D, F, or L) is written appended to the opcode.
For example, ADDW, specifies the addition of two word-
long operands, while MOVF specifies a move to a single
precision floating point operand. The length specification
in integer instructions is encoded in the basic instruction
as B=00, W=01, or D = 11; the length specification in
floating point instructions is encoded in the basic opcode
asF=1orL=0.

The General Addressing Mode fields specify the address-
ing mode to be used to access the instruction’s operands.

Index Bytes appear in the instruction format when either or
both Gen fields specify Scaled index mode. In this case,
the Gen field specifies only the Scale Factor (1, 2, 4 or 8),
and the Index Byte specifies which General Purpose Reg-
ister to use as the index, and which addressing mode cal-
culation to perform before indexing.

Following Index Bytes come any displacements (address-
ing constants) or immediate values associated with the se-
lected addressing modes. Each Disp/Imm field may con-
tain one or two displacements, or one immediate value.
The size of a Displacement field is encoded within the top
bits of that field, with the remaining bits interpreted as a
signed (two’s compiement) value. (See Figure 2-3.) The
size of an immediate value is determined from the Opcode
field.

7 0
0 SIGNED DISPLACEMENT
BYTE DISPLACEMENT: RANGE=-64 TO +63
7 0

i
1]0 l\c,“eﬂ o SLACEMEN

WORD DISPLACEMENT. RANGE=-8K TO 8K -1
7 0

DOUBLE WORD DISPLACEMENT: RANGE=1/2GB TO 1/2GB -1

Figure 2-3. Displacement Encodings
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2.3.8 Special Encodings

Two other special encodings, reg and quick, allow the very
compact encoding of frequently used instructions. For
example, there are quick forms of add, move and compare
instructions which encode a small integer operand (range
from —8to +7)in place of a second general addressing
mode.

Some instructions require additional, “‘implied’’ imme-
diates and/or displacements, apart from those associated
with addressing modes. Any such extensions appear at
the end of the instruction, in the order that they appear
within the list of operands in the instruction definition.

2.4 Register Set

Series 32000 architecture supports thirty-seven registers,
grouped into two register sets: sixteen general purpose
registers and twenty-one special purpose registers (see
Figure 2-4). Eight of the general purpose registers are
located on the CPU; the other eight are located on the
FPU. The twenty one special purpose registers include
nine on the CPU, one on the FPU, and ten on the MMU.
Besides storing operands, and the results from arithmetic
operations, these registers may aiso be used for the tem-
porary storage of program instructions and control in-
formation concerning which instruction is to be executed
next.

2.4.1 CPU General Purpose Registers

Internal to the CPU are eight 32-bit general purpose regis-
ters RO through R7, which provide local, high speed stor-
age for the processor. They can be used to store bytes,
words, double words, and quadruple words.

All general purpose registers are available to all instruc-
tions. Thus, the computer has freedom in its use of the
registers and needn’t do much housekeeping. The archi-
tecture also enables general purpose registers to be used
as accumulators, data registers and address pointers.
This represents a great improvement over-machines that
permit only a few registers to serve as address pointers,
creating a bottleneck in address calculations, a very im-
portant function in high level language programming.

2.4.2 CPU Special Purpose Registers

The eight special purpose registers on the CPU chip are
used for storing address and status information. The MOD
register and the Processor Status Register are both 16
bits; the other registers are effectively 24 bits in length,
though an additional eight bits (which in the current imple-
mentation are always set to zero) have been provided to
allow for future expansion.

PC: The Program Counter register is a pointer to the
first btye of the currently executing instruction.
After the instruction is completed, the program
counter is incremented to point to the next in-
struction. Since this register is 24 bits wide, all
16M bytes of memory can be directly addressed
without the need for segmented addresses.

Spo, SP1$

FP:

SB:

INTBASE:

MOD:

PSR:

CFG:

The SP, register points to the lowest address of
the last item stored on the Interrupt Stack. This
stack is normally used only by the operating sys-
tem, primarily for temporary data storage and for
holding return information for operating system
subroutines, and interrupt and trap service rou-
tines. The SP; register points to the lowest ad-
dress of the last item stored on the User Stack.
This stack can be used by normal user programs
formation.

The Frame Pointer register is used by a proce-
dure to access parameters and local variables on
the stack. It is set up when a procedure is
entered, and points to the stack frame of the cur-
rently executing procedure, which contains the
parameters for the currently executing subrou-
tine and aiso the volatile (as opposed to static)
local variables. The procedure parameters are
addressed with positive offsets from the frame
pointer; the local variables of the procedure are
addressed with negative offsets from the frame
pointer.

The Static Base register points to the global vari-
ables of a software module (see Section 4.2,
Modular Software). All references to a module’s
data are relative to this register.

The Interrupt Base register holds the address of
the dispatch table for interrupts and traps (see
Sections 4.3.2 and 4.3.3).

The Module register holds the address of the
Moduie Descriptor of the currently executing soft-
ware module (see Chapter 4, Section 4.2.2).

The Processor Status Register holds the CPU
status and control flags for Series 32000. The
PSR is sixteen bits long, and is divided into two
eight-bit halves. The low-order eight bits are ac-
cessible to all programs, but the high-order bits
are accessible only to programs executing in
Supervisor Mode. Among the bits in the PSR are
the Carry bit, the Trace bit, (which causes a trap
to be executed after every instruction), the Mode
bit (which is set when the processor is in user
mode), the Interrupt Enable bit (which if set will
cause interrupts to be accepted), and several
other bits which can be used by comparison in-
structions.

The | bit indicates the presence of external
interrupt vectoring circuitry (specifically, the
NS32202 Interrupt Controt Unit). If the CFG | bit
is set, interrupts requested through the INT pin
are *‘vectored”’; if it is clear, these interrupts are
*‘non-vectored’’. The F, M and C bits indicate the
presence of the FPU, MMU and Custom Slave
Processors. If these bits are not set, the corre-
sponding instructions are trapped as being
undefined.
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SPECIAL PURPOSE REGISTERS
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Figure 2-4. Register Set
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2.4.3 FPU Registers

The Floating Point Unit registers are located on the
NS32081 FPU slave processor and consist of eight 32-bit
registers and a dedicated Floating Point Status Register.
The eight floating point registers can each store a single
precision operand or half of a double precision operand.
When 64-bit double precision operands are to be operated
upon, the specified register (n) and the next register

(n + 1) are concatenated for the operation. Registern + 1
contains the high-order bits.

The Floating Point Status register (FSR) holds mode con-
trol information, error bits and trap enables. Like the other
registers, the FSR is 32-bits wide. (See Chapter 4, Section
4.4.2, for more about the FPU slave processor.)

2.4.4 MMU Registers

The optional memory management architecture uses the
following 32-bit dedicated registers to control address
translation:

PTBy,
PTB1 :

The Page Table Base registers are controlled by
the operating system and point to the starting
location of the translation tables in physical
memory. All supervisor mode addresses are
translated with the PTB, register. User mode ad-
dresses are translated using this register if the
DS bit in the MSR is one; if this bit is zero, the
PTB, register is used.

ElA: The Error/invalidate Address register is used to
invalidate addresses in the translation buffer.
The translation buffer is a transparent cache of
the most recently used page table entries. When
an entry in a page table is modified in memory,
the copy of it in the translation buffer is deleted
by writing the address of the affected virtual page
into the EIA register. When a PTB register is
modified, all cache entries made using that regis-
ter are deleted. The ElA is also used to store the
address which caused a memory management
exception to occur.

MSR: The Memory Status Register holds fields which
control and examine the memory management
status, and is only accessible in the supervisor
mode. The functions of this register are dis-
cussed in Chapter 4, Section4.4.2and 4.4.3
(MMU and FPU).

Other registers in the MMU provide high level software de-
bug facilities during program execution. These are dis-
cussed in Section 4.5.3.

2.5 Addressing Modes

Information encoded in an instruction includes a specifica-
tion of the operation to be performed, the type of operands
to be manipulated, and the location of these operands. An
operand can be located in a register, in the instryction it-
self (as an immediate operand), or in memory. Instructions
can specify the location of their operands by nine address-
ing modes. Two addressing modes are used to access
operands in registers and in instructions—Register mode
and Immediate mode. The other modes are used to ac-
cess operands in memory. The address of the operand is

calculated in accordance with the desired addressing
mode. The calculation is done by taking the sum of up to
three components:

* adisplacement element in an instruction
e apointer (i.e., an address) in a register or in memory
¢ anindex value in a register

The nine addressing modes may also be divided into
those which are standard for microprocessor
architectures, and those which are particularly suited to
the operations and data structures of high level
languages.

2.5.1 Standard Modes

The following standard addressing modes are supported
by Series 32000 architecture (see Figure 2-5 for a diagram
of each one):

¢ Register

¢ Immediate

¢ Absolute

¢ Register relative

REGISTER: In the Register addressing mode, the
operand is in one of the elght general purpose registers. In
certain Slave Processor instructions, an auxiliary set of
eight registers may be referenced instead.

IMMEDIATE: The immediate mode operand is in the in-
struction. The length of the immediate mode operand is
specified by the operand length or by the basic instruction
length.

ABSOLUTE: With absolute mode, the operand address is
the value of a displacement in the instruction.

REGISTER RELATIVE: The register relative mode com-
putes an effective address (the operand address) by ad-
ding a displacement given in the instruction to a pointer in
a general purpose register.

GP REGISTER

REGISTER] REGISTER
MODE] ADDRESS

OPERAND ADDRESS = GP REGISTER

OPERAND

GP REGISTER
REGISTER &P
RELA’IIVEPISP ges. [ ADDRESS OPERAND
MODE -
OPERAND ADDRESS = GP REGISTER + DISP.
IMMEDIATE

mooe| OPERAND

OPERAND = IMMEDIATE VALUE

ABSOLUTE _
wooel PSP —»{ OPERAND

OPERAND ADDRESS = DISP.

Figure 2-5. Standard Addressing Modes
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2.5.2 High Level Language Modes

In addition to these standard addressing mode types,
Series 32000 employs several addressing mode types
which, in combination with the already powerfui instruc-
tion set, make Series 32000 a superb vehicle for high level
languages. They are listed below and diagrammed in Fig-
ure 2-6:

e Memory Space
e hMemory Reiaiive
e External

e Top of Stack

e Scaled Index

MEMORY SPACE: This addressing mode is identical to
Register Relative, discussed above, except that the regis-
ter used is one of the dedicated registers PC, SP, SB or
FP. These registers point to data areas generally needed
by high level languages.

MEMORY RELATIVE: The Memory Relative mode allows
pointers located in memory to be used directly, without hav-
ing to be loaded into registers (as is required in other micro-
processors). Memory relative mode is useful for handling
address pointers and manipulating fields in a record. When
this addressing mode is used, the instruction specifies two
displacements. The first displacement is added to a speci-
fied special purpose register, and a double word is fetched
from this address. The operand address is the sum of this
value and the second displacement. In accessing records,
the second displacement specifies the location of a field in
the record pointed to by the double word. The exact size of
the contents of this field is programmable.

EXTERNAL.: The External Addressing mode is unique to
Series 32000, and supports the software module concept,
which allows the modules to be relocated without linkage

editing. This mode is used to access operands that are ex-
ternal to the currently executing module. Associated with
each module is a Link Table, containing the absolute ad-
dresses of external variables. The external addressing
mode specifies two displacements: the ordinal number of
the external variable (i.e., the linkage table entry to be
used) and an offset to a sub-field of the referenced vari-
able (e.g., a sub-field of a Pascal record). External
addressing is discussed further in Section 4.2 (Modular
Software).

TOP OF STACK: In this addressing mode, also unique to
Series 32000, the currently selected Stack Pointer (SP, or
SP,) specifies the location of the operand. Depending on
the instruction, the SP will be incremented or decrement-
ed, allowing normal push and pop facilities. This address-
ing mode allows manipulation or accessing of an operand
on the stack by all instructions. For instance, the TOS val-
ue can be added to the contents of a memory location, a
register, or to itself, and the result saved on the stack. On
most other microprocessors, in which top of stack ad-
dressing is limited to a very small number of instructions,
these manipulations would require several instructions to
achieve the same results. The great advantage of this ad-
dressing mode is that it allows quick reference using a
minimum number of bits to intermediate values in arith-
metic computations.

SCALED INDEX: This addressing mode computes the
operand address from one of the general purpose regis-
ters and a second addressing mode. The register value is
multiplied by one, two, four or eight (index byte, index
word, index double, or index quad). The effective address
of the second addressing mode is then added to the multi-
plied register value to form the final operand address. The
Scaled Index mode is used for addressing into arrays,
when the elements of the array are bytes, words, double
words, floating point numbers or long floating point
numbers.
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Figure 2-6. High Level Language Addressing Modes
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Chapter 3
Memory Organization

3.1 Introduction

Microprocessors were first developed when the design of
complex, special-purpose chips became sc expensive that
it was more cost-effective to use a general-purpose pro-
grammable device instead of a special-purpose chip. The
programs for these early microprocessors were very
small, typically requiring 2K to 8K bytes of memory and
rarely exceeding 16K bytes. (This was just as well, since
memory was very expensive.)

Now, almost exactly a decade since the microprocessor
was invented, the memory requirements for typical ap-
plications approach those of minicomputers or even main-
frames. Consequently, the memory organization issues
discussed in Chapter 1 have arisen.

In this chapter, we will cover the memory organization and
memory management mechanisms of Series 32000. The
key topics to be discussed are page based mapping, virtu-
al memory, memory protection, and virtual machines. The
address translation, virtual memory, and memory protec-
tion mechanisms of the Series 32000 architecture are con-
tained in the NS32082 Memory Management Unit (MMU).
The MMU also contains the logic for debugging (see
Chapter 4, Section 4.5) as well as on-chip cache. Special
instructions are provided in the Series 32000 instruction
set to control the MMU.

3.2 Mapping Mechanisms with the Series 32000

Series 32000 has a logical address space of 16 million
bytes divided into 32,768 pages, each with a fixed size of
512 bytes. The physical address space is the same size
and is also divided intc similarly sized page frames. As de-
scribed in Section 1.3.2, address translation (mapping) is
the process of translating a logical address to a physical
address. In Series 32000 architecture, address translation
is done in units of a page. Thus two addresses next to
each other in the same logical page will be next to each
other in the same physical page frame, although two
pages which are contiguous in logical memory may not be
contiguous irf physical memory.

For purposes of implementing the address transiation, the
24 bits of a logical address may be thought of as consist-
ing of two fields: the page selector field, which is the upper
fifteen bits, and the offset field, which is the iower nine
bits. Only the page selector bits are actually translated in
the mapping process. The nine bits of the offset specify a
location within a page and are passed through the map-
ping process unaltered. The mapping process is per-
formed automatically by the MMU.

Basically the mapping operation consists of treating the
page selector field as an index into a table of physical ad-
dresses. Entries in this table hold the upper fifteen bits of
the physical address of a page frame. When a logical ad-
dress is sent to the MMU, its lower 9 bits are appended to
the 15-bit physical address in the table and the resulting
24-bit physical address is actually used to fetch data. (See
Figure 3-1 for a diagram of this operation. This figure
shows an abstract view of the Series 32000 mapping oper-
ation; in reality, a two.level mapping is employed—see
Section 3.2.).

LOGICAL ADDRESS

PROTECTION 23 9 8 0
PABt:;sTABLE _\ Iﬁ I J
(LEVEL 1) —
0
1
2
3
| ANRRNN—
5
6
7
8
T
23 i 98 L 0

PHYSICAL ADDRESS

Figure 3-1. Mapping

3.2.1 Page Tables, Pointer Tables, and Entries

The address translation mechanism is carried out by ta-
bles in memory. The MMU contains a special register
(PTB,) that points to the beginning of the page table. This
table has 256 entries, each of which is 4 bytes wide. Thus
its total size is 1,024 bytes. Each entry in the page table
points to a pointer table. Pointer tables contain 128 entries
of 4 bytes; thus, the pointer tables are each contained in a
page. Each entry in a pointer table points to a physicai
page. (See Figure 3-2 for a diagram of this pointer tree.)
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Each program or task can have its own page table, and
changing the page table is simply a matter of changing an
MMU register that points to the starting address of the cur-
rent page table. Therefore, each program or task can have
its own map from logical memory to physicai memory, and
therefore each program or task can have its own logical
address space.

PAGE TABLE REGISTER

/ N\

PAGE
TABLE

POINTER
TABLES

PHYSICAL
PAGES

Figure 3-2. Hierarchy of Tables

Each entry in the page table or in one of the pointer tables
has the same basic format (see Figure 3-3).

The high order 23 bits contain the starting physical ad-
dress of the specified page frame.

31 30 24 23 9 8 4 2

BANK
SELECT RESERVED| PAGE NUMBER |UNUSED({M |R{PL|V

Figure 3-3. Page or Pointer Table Entry

Bits 0 through 4 contain status bits:

\' The Valid Bit indicates whether the entry specifies a
page that is present in memory. (See Section 5.3.1,
Page Faults and the Valid Bit).

R The Referenced Bit indicates whether the page has
been accessed. This bit is automatically set when
the corresponding page has been accessed for
reading or writing. (See Section 3.3.3, Support for
Page Swapping Algorithms).

M The Modified Bit indicates whether the page has
been modified during its residence in main memory.
This bit is automatically set when the corresponding
page is written to. (See Section 3.3.3, Support for
Page Swapping Algorithms).

PL  The Protection Level field indicates the level of
protection provided for the page. (See Section 3.4,
Protection).

3.2.2 The Complete Mapping Process

The mapping operation shown schematically in Figure 3-1
is actually accomplished by the following process:

The page selector component of the logical address (the
high-order 15 bits), shown in Figure 3-1, actually consists
of two subfields: the high-order 8 bits, which select an en-
try in the page table, and the lower-order 7 bits, which se-
lect an entry in the appropriate pointer table. (The offset
component of a logical address specifies the displacement
from the base of a page to the specified item). Figure 3-4
shows a more complete version of the mapping process
outlined in Figure 3-1.

To speed up the mapping process the MMU provides an
associative cache on the chip itself. The cache contains
the 32 most recently accessed logical addresses along
with their translated physical addresses. Each entry con-
sists of the high-order 15 bits of a logical address and the
high-order 15 bits of the translated physical address (see
Figure 3-5).

When a logical address is passed from the CPU to the
MMU, the MMU first attempts to match that logical ad-
dress with an entry in the cache. If the entry is present, the
physical address portion of the entry is used immediately.
If the entry is not present, the MMU must fetch the page
table and pointer table entries from memory before ad-
dress transiation can be performed.

If the entry is present, address translation requires only
one clock cycle. If the entry is not present, address
translation may take up to approximately 20 clock cycles.
This associative table is transparent to the user and calcu-
lations indicate that it dramatically speeds up address
translation since the hit ratio (the percentage of time the
cache contains the entry) is about 97%.
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Figure 3-4. Table-Driven Mapping
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Figure 3-5. Associative Cache

1-35

2In0a)iyd.ly 0002¢ S3LIS 0} UORINPOLU|




Introduction to Series 32000 Architecture

3.3 Virtual Memory Mechanisms with
Series 32000

Programs share many traits in common with human be-
ings. For example, they obey Parkinson’s Law. Just as
work expands to fill the time available, so programs tend to
expand over their lifetime to fill the physical memory avail-
able to them. Once the memory limits have been reached,
further expansion of the program is difficult and error
prone, usually requiring hard to manage overlays. The ide-
al solution to this problem is to give the program a virtually
infinite (limitless) memory. A program in an infinite memo-
ry can be eniarged without bumping into any barriers.
Unfortunately, memory costs usually preclude enormous
physical memories. Virtual memory, however, gives the
programmer the illusion of a gigantic memory at minimal
cost.

With virtual memory, the user regards the combination of
main and peripheral storage as a single large storage. The
user can write large programs without worrying about the
physical memory limitations of the system. To accompilish
this, the operating system places some of the user pro-
grams and data in peripheral storage and brings them into
main memory only as they are needed.

Series 32000 makes virtual memory operating systems
easy to implement by means of its page based mapping
mechanism. Programs and data are swapped between
main memory and secondary storage units of a page, as
was described in Chapter 1. In addition, the architecture
provides several other mechanisms which support virtual
memory.

Three bits in the page entry are important for virtual
memory systems. These bits were discussed briefly in
Section 3.2.1. In the following three subsections we will
cover in much greater detail the use of these three bits in
virtual memory systems. Also covered will be the instruc-
tion abort and re-execution facility, the other Series 32000
feature specifically designed to support virtual memory.

3.3.1 Page Faults and the Valid Bit

The Valid Bit in a page or pointer table entry indicates
whether the corresponding page is present in main memo-
ry or not. Whenever an address is generated by the CPU
and passed to the MMU for translation into a physical ad-
dress, the MMU checks the valid bit of the table entry
specified by the incoming logical address. If the valid bit is
1, the page is assumed to be present in main memory and
address transiation proceeds in the normal fashion.

If, however, the valid bit is 0, then the page is assumed not
to be in main memory and a page fault occurs. A page
fault is a hardware generated trap that is used to tell the
operating system to bring the missing page in from sec-
ondary storage. The page fault occurs in the MMU, which
generates an ABORT signal to the CPU. The ABORT
signal causes the CPU to immediately halt execution of
the current instruction.

3.3.2 Instruction Abort and Re-execution

When a page fault occurs, for whatever reason, the MMU
sends the ABORT signal to the CPU. At this point the CPU

will stop executing the instruction and return any register
that was altered by the instruction to its condition before
the instruction started. The operating system will then be
called to initiate a page swap. Once the appropriate page
is in memory, the CPU and MMU also must insure that the
aborted instruction can be re-executed.

One of the problems in implementing virtual memory sys-
tems is that an instruction may generate a page fault at
any time during the course of its execution. If the instruc-
tion itself occupies several bytes, it may overlap a page
boundary, and the act of fetching an instruction may itself
cause a page fault. Or the process of fetching the source
or destination operand may cause a page fault.

In order to permit the instruction to be restarted, the
ABORT signal usually causes the CPU to be returned to
its state before the aborted instruction happened. The pro-
gram counter is automatically saved as are the processor
status register, the stack pointer and several other regis-
ters. When the operating system has completed the page
swap, it executes a RETURN FROM TRAP instruction and
execution resumes with the aborted instruction, all regis-
ters being restored to their old values.

String handling instructions require special treatment dur-
ing an abort. Obviously it is not desirable to have a long
string instruction repeated from the beginning if an abort
occurs somewhere in the string. Series 32000 provides for
the aborted instruction to be re-executed from the point
where the problem occurred.

3.3.3 Support for Page Swapping Algorithms

To facilitate virtual memory implementation, two other bits
in the page and pointer table entries are used: the Refer-
enced Bit (R) and the Modified Bit (M).

It has been tacitly assumed that there is a vacant page
frame in which to put the newly loaded page. In general
such will not be the case, and it will be necessary to re-
move some page (i.e., copy it back into the secondary
memory) in order to make room for the new page. Thus an
algorithm that decides which page to remove is needed.

Choosing a page to remove at random is certainly not a
good idea. If the page containing the instruction is the one
chosen, another page fault will bccur as soon as an at-
tempt is made to fetch the next instruction. Most operating
systems try to predict which of the pages in memory is the
least useful, in the sense that its absence would have the
smallest adverse effect on the running program. One way
of doing so is to make a prediction when the next ref-
erence to each page will occur and remove the page
whose next reference lies farthest in the future. In other
words, to try to select the page that will not be needed for a
long time.

One popular algorithm evicts the page least recently used
because that page has a high a priori probability of not be-
ing in the wording set. This algorithm is called the Least
Recently Used algorithm. The Referenced bit can be used
to implement a version of this algorithm.

1-36




The Referenced bit is set by the hardware when the page
is referenced (read or written) by an instruction. By period-
ically checking and clearing this bit in all page and pointer
table entries, the operating system can gain insight into
the frequency with which pages are being used.’ This in-
formation can be used to select pages to be swapped out;
for example, on a least recently used basis.

If a page about to be evicted has not been modified since it
was read in (a likely occurrence if the pragram contains
program rather than data) then it is not necessary to write
it back into secondary memory, because an accurate copy
already exists there. If, however, it has been modified
since it was read in, the copy in secondary storage is no
longer accurate and the page must be rewritten. The
Modified bit is set by the hardware whenever a page is
written to during the time it is resident in main memory.

When the time comes to swap this page the operating sys-
tem can check this bit to see if there is a need for updating
the copy on disc. If the bitis 1 (i.e., the page has been
modified) then the page must be swapped out to sec-
ondary storage. If, however, this bit is 0, then the page has
not been modified since it was last read in and it can sim-
ply be discarded.

3.4 Memory Protection Mechanisms
with Series 32000

The page mechanism can also provide the basis for memo-
ry protection within a logical address space. Each page can
have attributes associated with it that indicate how the page
can be accessed. These attributes can allow reads only,
reads and writes, or they can prevent any access at all. En-
tries in the page and pointer tables contain protection bits
(the PL field) along with physical addresses (see Section
3.2.1). These protection bits define the attribute of that page
(e.g., read only).

The interpretation of the protection bits depends on the
operating mode of the CPU. A given setting of the PL field
will be interpreted differently when the CPU is in Supervisor
mode than when the CPU is in User mode. The bits have the
following interpretation.

PL | SupervisorMode |  UserMode
00 read only ‘ no access
01 read and write | no access
10 | read and write | read only
1 read and write ! read and write

The operating system can treat a collection of pages
with the same attributes as a segment in the sense of
Section 1.3.1. For example, a constants segment might
be a set of pages containing data with the read-only at-
tribute set, so users could not modify the data. Thus,
page-based mapping provides a mechanism for imple-
menting segmentation.

‘PelerJ. Denning, ‘Working Sets Past and Present,"” IEEE Transactions on Software
Engineering, (SE-6, No. 1, 1980)

Intertask protection is accomplished by giving each task its
own set of page tables. Thus each task has its own address
space, providing maximum flexibility and virtugl memory for
each task. By changing the single register that points to the

page table, one can switch to the new task’s address space.

3.5 Virtual Machines

If the virtual memory hardware allows application software
to execute in a different address space from the operating
system, then it is possible to implement virtual machines.
Software running on a virtual machine believes that it is
running on a processorwhose hardware provides the
functions that are in fact provided by the operating system.
In fact, the virtual memory hardware and I/O devices are
simulated by the operating system with the aid of the real
memory management hardware and )/O devices. Thus
software which normally must be run alone (e.g., an
operating system) can be run under the control of another
operating system. This can be very useful for debugging a
new operating system or running several incompatible
operating systems on the same machine.

Figure 3-6 shows a simplified diagram of such a virtual ma-
chine.

Operating system A and operating system B run in differ-
ent address spaces. System A manipulates the actual
Series 32000 hardware, whereas system B manipulates
an illusory machine consisting of Series 32000 hardware
and virtual peripherals simulated by system A. The actual
mechanisms employed to create such a virtual machine
are somewhat technical and are covered in detail in the
Series 32000 instruction Set Reference Manual. Basically,
system A constructs a simulated table onto the real page
table. Virtual l/O devices are simulated similarly.
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Figure 3-6. Virtual Machines
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Chapter 4
Other Features of

Series 32000 Architecture

4.1 Introduction

This chapter will discuss additional architectural features
of Series 32000 that reduce the traditional gap between
the semantics of high level programming languages and
microprocessor architectures. Specifically, these are fea-
tures which support good software design and program-
ming practices. The topics covered include support for
modular software design, input/output implementation,
extension of the instruction set by the means of slave
processors, and software debugging support.

4.2 Modular Software

Modular programming is one of the principle techniques
for the systematic design of well-structured software.
Large programs are among the most complex creations of
human intellect. This complexity has been a major factor
contributing to software unreliability. The concept of
modularity in software design provides a means of over-
coming natural human limitations for dealing with pro-
gramming complexity by specifying the subdivision of
large and complex programming tasks into smaller and
simpler subtasks, or modules, each of which performs
some weli-defined portion of the complete processing
task. Such modules may then be independently designed,
written, tested, and compiled, perhaps by different pro-
grammers working in parallel.

Programs which are written as a set of modules are more
likely to be correct. They are more easily understandable
and therefore more easily modified, maintained and docu-
mented. Also, because communication between modules
is permitted only through well-defined interfaces, the inner
workings of a module need not be known to other
modules. This protects a module’s code and allows design
changes to be done locally to a module without side ef-
fects on other modules or on the use of the system.

Nearly ail HLLs incorporate features to support modular
programming. For example, programs in Ada, the new De-
partment of Defense high-order language, are composed
of one or more program units—subprograms, packages or
tasks—which can be compiled separately. in Pascal,
separately compiled program modules may refer to vari-
ables, functions or procedures declared in another module
by using certain extensions to the language, e.g., Import
and Export directives.

The ultimate extension of the concept of modularity, and
the ultimate simplicity in software design and implementa-
tion, is achieved when the modules are written to be used
in ROM form. Such software modules are simple
hardware-like components and require a minimal amount
of program design overhead.

Up to now, microprocessor architectures have provided
inadequate and cumbersome architecture support for a
modular programming methodology. The following section
will discuss the problems associated with the implementa-
tion of modularity by a microprocessor; the two subse-
quent sections will explain Series 32000’s architectural
solutions to these difficulties.

4.2.1 Overview

The major difficulty limiting the widespread use of libraries
of ROM modules has been the necessity of modifying a
module’s addresses when it is linked with other separately
compiled modules and loaded into memory for execution.
Since addresses in ROM cannot be modified, it has been
difficult to devise a uniform method of employing ROM
modules in programs. Even when the module’s code can
be modified, (e.g., modules on disk), this is a tedious and
often lengthy enterprise.

The problems result from the fact that when several mod-
ules are combined into a single memory image, a
module’s final position can vary widely. Consequently, all
addresses in jumps and calls or in data accesses that are
dependent on knowing the module’s absolute address at
run time must be different according to where the module
is loaded. Similarly, when a module calls another module,
the address of the called module will be dependent on the
relative position of the two modules. Thus, a module’s
code will not be identical for each position it occupies in
memory, and a linkage editor must be used to modify the
addresses in each module according to its assigned posi-
tion in memory.

4.2.2 Support Mechanisms

Software modules which have been compiled and assem-
bled are known as Object Modules and are typically stored
in relocatable object code. The function of a linkage editor
is to merge the object modules into a single linear address
space which may then be loaded into memory for execu-
tion. This requires binding (converting to an absolute val-
ue) all unresolved addresses. Relocation refers to the bin-
ding of the non-sequential addresses within the module
(calls, returns, branches, and non-sequential data refer-
ences), linking is the process of binding the addresses of
subroutines or variables in other modules.

On Series 32000, no editing is required on non-sequential
addresses (jumps) within a module, since Series 32000
assembly language code is position independent (PIC).
This is achieved by the use of addressing modes which




form an effective memory address relative to a base regis-
ter—PC, FP, SP or SB. Since the relative distance be-
tween two non-sequential addresses remains constant,
the same offset relative to the base register can be used in
all positions in memory. This means a program can be
loaded anywhere in memory and run correctly. In addition,
facilities provided by the MMU allow a program to be
moved in memory after it has been linked and loaded. This
is especially important in time-sharing systems where pro-
grams must be swapped in and out of main memory to al-
low sharing of the processor. Also, because the base
register relative addressing mode allows 30-bit signed dis-
placements, which is 6 bits more than any logical address,
no code editing is ever necessary for branching, regard-
less of the amount of code in a module.

Position-independent code combined with the Series
32000 virtual memory mechanism allows a program to be
relocated in the virtual address space as well as the
physical address space. Machines that use paging or a
relocation register, but lack base register relative
addressing, allow programs to be moved in physical
memory but do not allow them to be moved to a different
virtual address after linking.

For references to variables and subroutines in other mod-
ules, Series 32000 provides a sophisticated linkage facility
such that no editing of a moduie’s external addresses is
required.

To begin with, all programs for Series 32000 are organized
as modules. Each module consists of three components:

1. The Program Code component contains the code to be
executed by the processor and the module’s constant
data (or “literals”).

N

The Static Data component contains the module’s gltob-
al variables and data, i.e., data which may be accessed
by all procedures within the module. In a Pascal pro-
gram, for example, this component would contain the
data structures declared in the outermost block.

w

The Link Table contains two types of entries: External
Variable Descriptors and External Procedure Descrip-
tors. The External Variable Descriptor is the absolute
address of a variable located in the static data compo-
nent or program code area of another modutle. This val-
ue is used in the External Addressing mode, in conjunc-
tion with the current Mod Table address (see below), to
compute the effective address of the external variable.
The External Procedure Descriptor is used in the Call
External Procedure (CXP) instruction and will be dis-
cussed in Section 4.2.3 of this chapter. There is one en-
try in the Link Table for each external variable and pro-
cedure referenced by the module.

In a typical system, the linker program (in conjunction with
the loader) specifies the locations of the three components
of a module. The static data and Link Table typically reside
in RAM; the code component can be either RAM or ROM.
The three components can be mapped into noncontiguous
locations in memory, and each can be independently re-
located. Since the Link Table contains the absolute ad-
dresses of external variables, the linker need not assign
absolute memory addresses for these in the module itself;
they may be assigned at load time.

To aliow the transfer of control from one moduie to
another, Series 32000 provides three structures: a Module
Table in memory and two dedicated registers on the CPU.

ey

. The Module Table is set up in random-access memory
starting at virtual address 0 and contains a Module De-
scriptor for each module in the address space of the
program. A Module Descriptor has four 32-bit entries
corresponding to each component of a module: The
Static Base entry contains the base address of the be-
ginning of the module’s static local data area. The Link
Base points to the beginning of the module’s Link
Table. The Program Base is the address of the begin-
ning of the code and constant data for the module; since
a moduie may have muiltipie entry points, this pointer is
used with an offset from the Link Table to find them.
One entry is currently unused but has been allocated to
allow for future expansion.

N

The Mod Register on the CPU contains the address of
the Module Descriptor for the current module.

w

The Static Base Register contains a copy of the Static
Base component of the Module Descriptor of the cur-
rently executing module, i.e., it points to the beginning
of the current module’s static data area.

See Figure 4-1 for a description of a module’s environ-
ment.

With Series 32000, modules need not be linked together
prior to loading. As modules are loaded, a linking loader
simply updates the Module Table and fills the linkage table
entries with the appropriate values. No modification of a
module’s code is required. Thus, modules may be stored
in read-only memory and may be added to a system inde-
pendently of each other, without regard to their individual
addressing. Also, since the pointers in the Module Table
reach any point within the address space, modules can be
located anywhere in memory.

STATIC BASE
REG
_ STATIC DATA
MOD REG MOD TABLE _I
MOD TABLE
$B o
INK TABLE
PROG. COUNTER LB .
Lo
) EXT. VAR.
RESERVED r DESCRIPTION
GLOBAL DATA _
L 5
PROGRAM CODE

Figure 4-1. Module Run-Time Environment
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4.2.3 Programming with Modules

The Call External Procedure (CXP) instruction is used to
execute a procedure residing in another module. Recall
that the Link Table contains two types of entries for each
module in the program’s address space: External Variable
Descriptors and External Procedure Descriptors. The lat-
ter entries each consist of two 16-bit fields. The MODULE
field contains the address of the referenced procedure’s
Module Table entry. The OFFSET field is an unsigned
number giving the position of the entry point relative to the
new module’s Program Base pointer (in called module’s
Mod Table). This allows a calied procedure to be found
automatically, without requiring the calling routine to sup-
ply any addressing information.

Figure 4-2 depicts the execution of the CXP instruction
where Module #2 calls Module #3.

PROG GODE

PC #2 o 0

I 1 cxe [ oisp.

MOD REG #2 MOD TABLE #2
SB ¥

LB o—-»@

PB

| LINK TABLE #2

OFF-
MOD | g7

5

MOD|REG #3 MOD TABLE #3
3 =

LB 1 PC #3

PB - —»@-»r I

. STATIC DATA #3

SB #3

PROG CODE #3

Figure 4-2. CXP Instruction

This instruction automatically performs the following se-
quence of operations:

-

. The External Procedure Descriptor for Module #3 is

found by adding a displacement specified in the instruc-

tion to the Link Table address of Module #2. (In the as-
sembly language program this displacement is repre-
sented by a label name; the actual numerical value of
the displacement is assigned by the assembler).

2. The current status of Module #2 is saved by pushing the
contents of its PC and Mod registers onto the stack.

3. The Module field of the Link Table’s External Procedure
Descriptor for Module #3 is moved into the MOD regis-
ter so that this register now points to the Module Table
for Module #3.

. The Static Base value in the Module Table is placed in
the Static Base Register (this is done to speed up ac-
cesses to the module’s static variables, which would
otherwise be referenced by indexing into the Module
Table).

5. The Offset field in the External Procedure Descriptor is
added to the contents of the Mod Table's Program Base
and this value is placed in the PC. The CPU is now in
the environment of Module #3.

The Call External Procedure With Descriptor (CXPD) in-
struction allows an External Procedure Descriptor to be
passed as a parameter to a called module. The External
Procedure Descriptor from the calling module’s Link Table
is pushed onto the stack, and the called module may then
use this value to call the procedure.

=N

The Enter and Exit instructions minimize the overhead in
procedure calls by automatically managing the resources
that must be allocated at the beginning of a procedure and
reclaimed at the end.

The Enter instruction saves the Frame Pointer (FP) of the
calling module on the stack and loads the Stack Pointer
value into the Frame Pointer register so that they now
point to the same location, i.e., the saved Frame Pointer
value on the stack. Space on the stack is allocated for the
procedure’s local variables, and a specified number of
registers required for use by the procedure are pushed on
the stack. See Figure 4-3 for an example of one procedure
calling another.

Series 32000's use of the Frame Pointer allows the proce-
dure to allocate local variables on the stack and address
them as fixed offsets from the FP. Also, once the local
storage is allocated, the stack can still be used for tempo-
rary storage without affecting the addressing of the locals.
The programmer need not keep track of the changing off-
set between the SP and local storage, which is especially
advantageous for nested procedure calls and recursive
functions.

The Exit instruction automatically restores the registers
saved by the Enter instruction, loads the value of the
Frame Pointer into the Stack Pointer thus deallocating the
procedure variables, and restores the previous Frame
Pointer.

The Return from External Procedure (RXP) instruction re-
stores the Static Base, the Mod Register and the PC of the
calling procedure. In addition, this instruction can be used
to remove the parameters which were passed to the called
procedure.
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Figure 4-3. Stack Flow for Procedure Calls

Data accesses by modules are provided in the following
manner:

1. Parameters and local variables on the stack may be
stored and accessed with the Memory Space address-
ing mode or the Memory Relative addressing mode us-
ing the Frame Pointer register. Parameters are ad-
dressed with positive offsets from the Frame Pointer;
local variables are addressed with negative offsets from
the Frame Pointer.

2. A module’s static data is accessed by using the Memory
Space addressing mode with the Static Base register.
Since displacement fields relative to SB register can be
1, 2 or 4 bytes, no limit is imposed on the amount of stat-
ic data a module may have. Note that on other micropro-
cessors, which handle static data in the same way as
any other external references, no protection is provided
for accesses by other modules. Series 32000 provides
this protection at the hardware level. The Mod Table al-
lows each module to have its own static data area so
that a procedure being executed by a moduie will not
modify that module’s data. in applications requiring two
or more tasks to be executing the same code concur-
rently, this protection is essential to insure re-entrancy.

«

For operands that are external to the currently execut-
ing module, the External addressing mode is used. This
addressing mode specifies two displacements. The first
is added to the Link Base entry in the Mod Table to
obtain the External Variable Descriptor entry in the Link

Table. The second displacement is added to the Ex-
ternal Variable Descriptor to compute the effective ad-
dress of the operand. Since both displacements may be
as large as the logical address space, there is no limit to
the size of the Link Table or to the size of the external
variable (which might be a structure rather than a single
data element).

Indexing by the contents of any one of the CPU’s eight
general purpose registers is an option on all addressing
modes which generate an effective address to memory, so
that a static or external variable can also be an array. For
example, to access an array that has been passed by
reference, the starting address of the array may be found
by using the Memory Space Mode relative to the FP; this
vaiue can then be ioaded into a generai purpose register
and used with the Scaled Index mode.

4.3 Input/Output

The input/output structure defined by a computer’s archi-
tecture provides the interface between the central proces-
sor and the outside world, as well as between the proces-
sor and its secondary storage devices, external support
circuits and slave processors.

The first two sections will discuss one aspect of Series
32000's architectural support for I/O operations, specif-
ically, its sophisticated and efficient exception handling
mechanism.
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4.3.1 Overview

Program exceptions are conditions which alter the normal
sequence of instruction execution, causing the processor
to suspend the current process and call the operating sys-
tem for service. An exception resulting from the activity of
a source external to the processor is known as an
interrupt; an exception which is initiated by some action or
condition in the program itself is cailed a trap. Thus, an
interrupt need have no relationship to the executing pro-
gram, while a trap is caused by the executing program and
will recur each time the program is executed. Series
32000 recognizes twelve exceptions: nine traps and three
interrupts.

The exception handling technique employed by an inter-
rupt-driven processor determines how fast the processor
can perform input/output transfers, the speed with which
transfers between tasks and processes can be achieved,
and the software overhead required for both. Therefore, it
determines to a large extent the efficiency of a processor’s
muitiprogramming and muititasking (including reai-time)
capabilities.

Exception handling on Series 32000 makes use of the
hardware structures provided for external procedure calls
(see Section 4.2.2) and, in addition, establishes a Dispatch
Table in memory whose base address is contained in the
CPU Interrupt Base register. This table contains an Ex-
ternal Procedure Descriptor for each interrupt service
procedure required. See Figure 4-4.

INT BASE

0 NON-VECTORED INTERRUPT
1| Nm |NON-MASKABLE INTERRUPT
2| st |asomt
3| Fru |FPU TRAP
a| L |iLLEGAL OPERATION TRAP
5| sve |suPERVISOR cALL TRAP
6| ovz |owvioe By zero TRAP
7| 6 |rLaG TRAP
8] BPT  |BREAKPOINT TRAP
o] TtRc |TRACE TRAP

10 UNDEFINED INSTRUCTION TRAP

1-15

16| VECTORED
el

Figure 4-4. Dispatch Table

For purposes of addressing the Dispatch Table, each of
the twelve exceptions has been assigned a number. This
exception number (or Interrupt vector) is used to compute
the starting address of the service procedure for the par-
ticular exception required, i.e., the exception number is

multiplied by 4, added to the contents of the Interrupt Base
register, and this value is used as an index into the Dis-
patch Table to obtain the External Procedure Descriptor of
the service routine to call.

When an exception occurs, the CPU automatically pre-
serves the complete machine state of the program imme-
diately prior to the occurrence of the exception. Depen-
ding on the kind of exception, it will restore and/or adjust
the contents of the Program Counter, the Processor Sta-
tus register, and the current Stack Pointer. A copy of the
PSR is made and pushed onto the Interrupt Stack. The
PSR is set to reflect Supervisor Mode and the selection of
the service routine’s Interrupt Stack. The Interrupt excep-
tion number is then used to obtain the address of the Ex-
ternal Procedure Descriptor from the Dispatch Table, and
an External Procedure Call is made. As with any such call,
the Mod register and the Program Counter are pushed
onto the Interrupt Stack. See Figure 4-5.

To return control to the interrupted program, one of two in-
structions is used. The Return From Trap instruction
(RETT) is used for all traps and nonmaskable interrupts. It
restores the PSR, the Mod register, and the PC and SB
registers to their previous contents and, since traps are of-
ten used deliberately as a call mechanism for Supervisor
Mode procedures, it discards a specified number of pa-
rameters from the User’s stack. See Figure 4-6.

DISPATCH TABLE
| INT BASE REG }
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EXCEPTION —
—(x4) 0
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EXCEPTION .
HANDLING  ° .

ROUTINE

Figure 4-5. Non-Vectored Interrupts and Traps
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Figure 4-6. Return from Trap Instruction

For maskabie interrupts, the Return from Interrupt (RETI)
instruction is used. It is basically the same as the Return
From Trap instruction except that any Interrupt Controf
Units (see Section 4.3.3 below) are informed that interrupt
service has completed. Also, since interrupts are generally
asynchronous external events, this instruction does not
pop any parameters.

Series 32000 implements a five level priority system for
scheduling exceptions which occur in the same
instruction. They are ordered as follows:

1. Traps other than trace (highest priority)
2. Abort trap

3. Non-maskable interrupt

4. Maskable interrupts

5. Trace trap (lowest priority)

Maskable interrupts may individually be assigned sepa-
rate relative priorities (see below). Exceptions with the
same priority are serviced in the order received.

This, then, is the basic plan for exception handling on
Series 32000. The specifics of interrupt and traps are dis-
cussed in the following two sections of this chapter.

4.3.2 Interrupts

Series 32000 provides three types of interrupts: Nonmask-
able, Vectored, and Non-vectored.

Non-maskable interrupts cannot be disabled and occur
when catastrophic events (such as imminent power
failure) require immediate handling in order to preserve
system integrity. A non-maskable interrupt also occurs
when a breakpoint condition is met. (See Chapter 4, Sec-
tion 4.5.2).

The Non-vectored interrupt mode may be used by smaller
systems in which an interrupt priority system is not re-
quired. In this case, no index into the Dispatch Table is
needed, and the CPU simply uses a default vector of zero.

For Vectored interrupts, prioritization of interrupt requests
is provided by the NS32202 Interrupt Control Unit. The ba-
sic idea in a priority interrupt mechanism is that each de-
vice along with its interrupt handler is assigned a rank in-

dicating its priority. An interrupt handler can then be inter-

rupted only by devices with a higher priority.

Each interrupt Control Unit can prioritize up to sixteen inter-
rupt requests, eight of which can be from external peripher-
al devices. The ICU provides a vector used as an index into
the Dispatch Table to obtain the address of the service rou-
tine required. In a system with only one ICU, the vectors pro-
vided must be in the range of 0 through 127.

To further expand the interrupt handling capability of a
system, a single NS32202, acting as the Master ICU, can
be cascaded with up to sixteen additional NS32202s,
providing up to 256 levels of hardware or software inter-
rupt. To support the cascaded configuration, a Cascade
Table is established in memory, in a negative direction
from the Dispatch Table. The entries in the table are the
32-bit addresses pointing to the Vector Registers in each
ICU. To address the Cascade Table, the ICU provides a
negative vector number. The fact that it is a negative num-
ber indicates to the CPU that the interrupt vector is from a
cascaded ICU. See Figure 4-7 for a detailed explanation of
cascaded interrupts.

The Interrupt Control Unit can function in either a fixed
priority or an auto-rotate mode. In auto-rotate mode, the
interrupt source, after being serviced, is rotated automat-
ically to the lowest priority position.

Allinterrupts except the non-maskable interrupt may be
disabled by the program with the Bit Clear in PSR instruc-
tion; each of the ICU’s 16 interrupt sources can be indi-
vidually masked by setting a bit in that device’s Mask
Register.

Interrupt handling on Series 32000 provides a number of
features which contribute to efficiency and programming
flexibility. For example, rather than saving all registers
when an interrupt occurs, Series 32000 automatically
saves only the Program Counter, the Program Status
Register and the Mod Register; the other registers are un-
der program control. They may be saved and restored by
specifying the required ones in a single instruction, allow-
ing for extreme flexibility in adjusting interrupt response
speed. Fast context switching for interrupts is facilitated
by the treatment of all memory locations as though they
are internal general purpose registers by virtue of memory
to memory operations. This allows a temporary variable to
be left in memory during a context switch. Also, the use of
an Interrupt Stack allows context switching in a multipro-
gramming or multitasking environment to be done without
having to disable interrupts.
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Figure 4-7. Cascaded Vectored Interrupts

4.3.3 Traps

Series 32000 recognizes nine traps. Three of the traps are
implemented by explicit instructions: the Flag Trap (FLAG)
allows overflow checking in any arithmetic operation and
is enabled by setting the F bit in the PSR; the Supervisor
Call Trap (SVC]} is used to transfer to system mode soft-
ware in a controlled way, typically to access facilities pro-
vided by the operating system. The Breakpoint Trap (BPT)
instruction is used for program debugging and is dis-
cussed in this chapter, Section 4.5.2.

The Abort Trap (ABT) occurs when an attempt is made to
access a protected page in memory or when page swap-
ping is required in the MMU. If the page fault occursin a
string instruction, the processor state is set to reflect the
progress made by the instruction up to the time of the trap;
all other instructions are re-executed from the beginning.

The lllegal Trap (ILL) results when a privileged instruction
occurs while the processor is in the User mode. Traps are
also provided for undefined opcodes (UND), for attempted
division by zero (DVZ), and for the occurrence of an
exceptional condition in an FPU or Custom Slave
instruction (FPU). The Trace Trap is enabled by setting the
T bitin the PSR and is used for program debugging (see
Section 4.5.2).

All traps except the Trace trap occur as an integral part of
the execution of an instruction, and are serviced before
interrupts. The return address pushed by any trap except
the Trace trap is the address of the first byte of the instruc-
tion during which the trap occurred; the return address of
a Trace trap is the address of the next instruction to be
traced. (See Section 4.5.3).

4.3.4 Memory-Mapped 1/O

The architecture of Series 32000 implements a memory-
mapped I/O system, in which peripheral devices are treat-
ed as a specified section of memory. The basic motivation
of a memory-mapped system is to allow the use of the full
range of the microprocessor’s instructions and addressing
modes for I/O operations.

Each device interface is organized as a set of registers (or
ports) that responds to read and write commands to loca-
tions in the normal address space of the microprocessor.
For example, a memory store becomes an /0O write if a pe-
ripheral device is addressed; a load from memory be-
comes an /O read. A compare with memory is a very
powerful instruction that can take a group of input sourced
data and successively compare their magnitude with a val-
ue in aregister. Also, data in an external device register
can be tested or modified directly, without bringing it into
memory or disturbing the general registers.

Memory-mapped 1/0 aliows I/O operations to be performed
directly in a high level language, i.e., an I/O device may be
declared as a data structure and then manipulated with the
use of pointers. In an isolated I/O system, assembly lan-
guage subroutines for I/O must be written and then called
by the HLL. Memory-mapped I/O also insures that the I/O
space is protected by the same memory management facili-
ties that are used to protect critical areas of memory.

4.4 Slave Processors

A slave processor is an auxiliary processing unit that oper-
ates in coordination with Series 32000 CPUs, allowing ar-
chitectural capabilities which, in view of the limitations in




contemporary integration technology, could not otherwise
be provided. Communication between the master CPU
and the slave processors takes place by means of a very
fast, well defined, and self-contained protocol which is
transparent to the programmer.

Series 32000 includes two slave processors: the NS32081
Floating Point Unit (FPU) and the NS32082 Memory
Management Unit (MMU). In addition, the CPUs provide

Lllc bdpdulllly UI buuuuunioaung Wllll a uucl—ueluleu,
generalized “Customn’’ Slave Processor.

4.4.1 Overview

Series 32000 CPUs recognize three groups of instructions
as being executable by external Slave Processors: 1)
Memory Management Instructions, 2) Floating Point In-
structions, and 3) Custom Instructions.

Slave Processor instructions have a three-byte Basic In-
struction field, consisting of an ID byte followed by an
Operation Word. The ID Byte identifies the instruction, as
being a Slave Processor instruction, specifies which Slave
Processor will execute it, and determines the format of the
following Operation Word of the instruction. The Operation
Word specifies the size and number of operands, the ad-
dressing modes used to access them, and the type of
operation to be performed.

In all slave operations, the CPU fetches the instruction,
performs any address calculation that may be needed,
and then routes the instruction with the appropriate data to
the slave processor for execution. The actual data ma-
nipulation is handled by the Slave Processor. If the neces-
sary slave processor chip is not in the system, the CPU
@enerates a software trap, aliowing the instruction to be
emulated with software routines.

Though the slave processor is external to the host CPU, all
of the CPU’s registers and facilities (such as effective ad-
dress calculation, memory bus interface, etc.) can be con-
sidered an integral part of the system.

A four-bit CFG register, located in the control section of all
Series 32000 CPUs, indicates to the CPU the presence of
Slave Processors in the system configuration (see Figure
2-4). The F, M, and C bits indicate the availability of the
FPU, the MMU and a Custom Slave Processor, The | bit in-
dicates the presence of the NS32202 Interrupt Control
Unit (see Section 4.3.2). These four bits must be set by the
user during system initialization with the Set Configuration
Instruction (SETCFG).

There are no restrictions on the number of slaves that can
be used in the system, so long as only one slave of each
kind is on the bus. Thus, four or five slave processors,
each with a different instruction set, could work alongside
the CPU on the same bus.

The slave processor concept has two main advantages for
software development. First, the slave processors are so
designed that when integration technology advances to
the point where slave processor hardware can be in-
corporated within the CPU chip, no software modifications
will be required—the same programs will simply execute
much faster. Secondly, the programmer has the option of

building an entry-level system without slaves by using soft-
ware emulators. Later, higher performance systems can
be built by simply adding the slave chips and removing the
emulators.

4.4.2 MMU

The MMU provides dynamic address translation, virtual
memory management, memory protection, and both hard-
ware and software debugging support.

The MMU address translation and virtual memory mecha-
nisms are described in Chapter 3; Section 4.5 of this chap-
ter covers the debugging facilities of the MMU. In addition,
six instructions are provided for manipulating the MMU’s
status. The Read Address Validate (RDVAL) instruction
and the Write Address Validate (WRVAL) instruction pro-
vide read and write address translation validation for the
user mode. The Load MMU Register (LMR) instruction al-
lows the programmer to store data into any of the MMU
registers. The Store MMU Register (SMR) instruction
aliows any register o be read.

The MOVSU and MOVUS instructions permit the
operating system to transfer data to and from user space.
Without these instructions, the operating system would
have no way of accessing data in the user’s address
space. Many microprocessors that distinguish supervisor
mode from user mode lack this instruction, and the design
of operating systems for these machines is adversely
affected.

4.43FPU

The FPU extends the Series 32000 instruction set with
very high-speed floating-point operations for both single-
and double-precision operands, as well as 8, 16 and 32-bit

fixed-point calculations.

The FPU contains eight 32-bit data registers and a 32-bit
Floating Point Status Register (FSR) which contains mode
control information, the floating point error bits and trap
enables. The data registers contain 32-bit single precision
operands; for 64-bit double precision operands, two regis-
ters are concatenated.

Unlike other microprocessors which support floating point
operations, the architecture of Series 32000 makes avail-
able to the FPU all Series 32000 addressing modes. For
example, the Scaled Index mode permits an array of float-
ing point data elements to be addressed by its logical in-
dex, rather than its physicai address. Also, any instruc-
tions can be register-to-register, register-to-memory, or
memory-to-memory.

The FPU executes 18 instructions which supplement the
integral arithmetic instructions and provide conversion
from one precision type to another. Three separate
processors in the chip manipulate the mantissa, sign, and
exponent, respectively, under the control of microcode
stored on the chip. See Chapter 2, Section 2.3.2 for more
about FPU operators.

Traps are provided for overflow, underflow, divide by zero,
reserved operand, invalid operations, illegal instructions
and inexact results. All traps can be individually enabled
or disabled by the programmer.
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4.4.4 Custom Slaves

The user-defined Custom Slave instruction set can be
used to control any generic external chip. This chip is as-
sumed to need some opcodes for arithmetic-like calcula-
tions, some opcodes for data moves, and some opcodes
for examining and modifying status registers. The instruc-
tion set defines the instruction formats, the operand class-
es and the communication protocol. Left to the user are
the interpretations of the Op Code fieids, the programming
model of the Custom Slave, and the actual types of data
transferred. The protocol specifies only the size of an
operand, not its data type.

4.5 Debugging Facilities

Debugging is one of the most difficult stages in program
development. Though structured design techniques and
modular programming have helped to reduce program de-
bugging time, 20% of software development efiort
remains committed to this enterprise. Clearly, any debug-
ging assistance provided by the hardware is of particular
value. The support provided by Series 32000 is unique for
mMiCroprocessors.

4.5.1 Overiew

Hardware support is provided for two operations that are
crucial to program debugging: flow tracing and break-
pointing. The implementation of these operations uses two
sets of registers on the MMU—the Breakpoint and Flow
Tracing registers—and the Breakpoint Trap instruction.

4.5.2 Breakpoint Trap and MMU Breakpoint
Registers

Setting breakpoints is a technique for halting a program’s
execution at a particular instruction or data access for pur-
poses of examining the program’s state and thereby
determining the cause of improper program behavior.

With Series 32000, breakpoints may be set either when a
specified address is accessed or after a specified number
of such accesses have been made. Also, more than one
breakpoint address may be simultaneously selected, al-
lowing a halt to be implemented after either fork of a condi-
tional branch. These facilities are provided by the Break-
point Trap instruction (BPT) and three dedicated registers
located on the MMU.

The Breakpoint Trap instruction is a one byte instruction
which replaces the first byte of the opcode of the instruc-
tion that is to be breakpointed. To allow breakpoints to be
setin PROM, as well as RAM, two Breakpoint registers,
BPRg and BPR; are provided. These registers hold the
doubleword addresses of two selected breakpoints which
are compared with the contents of the address bus for ev-
ery memory cycle. When a breakpoint address appears in
the program, and when other conditions specified by the
contents of the register are met, a non-maskable interrupt
oceurs.

Because these registers are located in the MMU, they may
be selected to look at either the virtual addresses from the
CPU or the physical addresses from the MMU. In addition,

the Breakpoint registers may be designated to operate
when the indicated address is either written to or read
from, or when there is an instruction fetch.

A third register on the MMU, the Breakpoint Count
register, specifies the number of matches of the BPRq
register breakpoint condition to pass over before a break-
point occurs. This is useful for selecting a particular itera-
tion in a loop instruction. See Figure 4-8 for a schematic
representation of the operation of the three Breakpoint
registers. In this example, the program contains a loop
which will be executed 100 times. For purposes of debug-
ging, the breakpoint is set to occur on the last time through
the loop. This is done by setting BPR, to the address of
the particular instruction, and setting the BC register to 99,
this being one less than the number of times the loop will
be executed in the program.

EXAMPLE PROGRAM

MMU REGISTERS
BPRy
BPRy
BC=99

Figure 4-8. Breakpointing

In most other microprocessors, breakpointing is provided
by a trap or breakpoint instruction which single steps the
CPU. This can resuit in myriad probiems for a virtual
memory system. First and foremost is the fact that all ad-
dresses emanating from the CPU are virtual addresses. It
is often necessary when debugging supervisor-mode soft-
ware to be able to set breakpoints as absolute addresses;
i.e., as addresses in physical memory. This is not possible
with CPU-based debugging techniques, since the CPU
has no concept of the distinction between the two types of
addresses. Also, the setting of breakpoints with special in-
structions that overlay existing code can cause much addi-
tional overhead for the memory manager. For these and
other reasons, the designers of Series 32000 have chosen
to implement debug support on the MMU.
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4.5.3 MMU Flow Tracing Registers

Flow tracing provides a chronicle of the actions and re-
sults of individual steps in a program during its execution.
It allows the program’s recent history to be examined at
specified instructions or breakpoints in order to determine
the reason for any undesired program behavior.

Series 32000 supports program flow tracing with four ded-
icated registers in the MMU and the Trace trap bit in the
CPU’s PSR. if fiow tracing is aciivaied (by means of a bii
in the MSR), two 32-bit Program Flow registers (PFg and
PF,) will always hold the addresses of the last two instruc-
tions which were executed out of sequence. The two 16-bit
Sequential Count registers (SCy and SC+) will keep a
record of the number of sequential instruction fetches be-
tween each change in program flow. All four of these regis-
ters may be cleared by the Load Memory Register (LMR)
instruction. Figure 4-9 shows an example of the use of the
Flow Tracing registers to determine which of two paths
through a program were taken prior to the execution of the
instruction pointed to by Breakpoint Register 0.

The user can select an instruction or series of instructions
to trace by means of the Trace trap, which is enabled by
setting a bit in the PSR. When the Trace trap is enabled at
the beginning of an instruction, a trace trap will occur at
the end of that instruction, and user sofiware may then be
employed to investigate the contents of the CPU registers.
The trap will occur after each instruction, so long as the bit
is set.

This trap is implemented in such a way that one and only
one trace trap has the lowest priority of any exception, any
other trap or interrupt request which occurs during a
traced instruction is allowed to complete its entire service
procedure before the Trace trap occurs. Also, unlike other
traps, where the address of the first byte of the instruction
during which the trap occurred is pushed onto the stack,
the Trace trap insures that the return address to be
pushed is that of the next instruction to be traced.

IF. THEN.ELSE.
CASE 1. A EXECUTED.
ADDR OF C PFg 100
A | iNsTRUC-
ADDROFD ] PRy TIONS
SAIERERE: | —
CASE2. B EXECUTED 150
INSTRUC-] B
ADDR OF C TIONS
ADDR OF 8
D
150 | 50
50
BPRo N INSTRUCTIONS

Figure 4-9. Flow Tracing
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Benefits of Demand Paged Virtual Memory

Benefits of Demand Paged Virtual Memory M

Chapter 1
An overview of the
past, present, and future.

Microprocessors were originally designed as general-
purpose, software-programmable devices that would pro-
vide an alternative to prohibitively expensive special-pur-
pose chips. The limitations of early technology, while equal
to the modest performance requirements of original appli-
cations, generally limited the size of memory to 16K bytes.

1.1 Microprocessor memory architecture was
primitive at first. The address on the micro-
processor’s address bus went directly to
main memory'—an address was an address.

Even today, most microprocessor systems based on this
architecture are either limited to 64K bytes of total memory,
or stuck with a small number of 64K byte segments (typi-
cally, fewer than 128).

In a segmented address space, the address space neces-
sarily consists of a small number of distinct uniform ad-
dress spaces. Since an address pointer can only be incre-
mented from the top of one segment to the bottom of
another segment, all data structures larger than the maxi-
mum segment size must be broken down fo fit into two or
more segments. Consequently, a program that needs
100,000 bytes of data in main memory requires the user to
split the total data into two segments, neither of which can
be larger than 65,536 bytes. And, to allow the system to ac-
cess the data, the user must create complex instructions
that enable the system to figure out where in the two seg-
ments the data it needs actually resides, and how to effi-
ciently access that data when it overiaps both segments.

Altogether, the complications inherent in segmentation
(usually requiring hard-to-manage overlays) present pitfails
to the user. The development of the 8086 from the 8080,
though a heroic attempt to expand address space while
preserving some measure of software compatibility,
resulted in the most striking example of the problems

of segmented architecture.

1.2 Programs share many traits in common with
human beings. For one thing, they follow
Parkinson’s Law.

Just as work expands to fill the time available in which to do
it, programs tend to expand, over their lifetime, to fill the
memory available to them. The memory requirements of
typical applications today commonly strain the capacity of

1 Also called semiconductor, o real memory.

minis and even mainframes. Programs such as high-level
language compilers, or the recently enhanced version of
VisiCalc™, need over 250K bytes of main memory alone;
graphics programs can require over a million bytes of sec-
ondary storage.?

With the advent of extremely fast VLSI (very-large-scale-
integration) technology, it is now possible to close the
performance and capacity gap between a mainframe and
a microprocessor-based system. But for a small micro-
processor-based system to expand to the fuil capability

of a mini or a mainframe, its architecture must optimize
performance without compromising user protection. it must
accommodate the largest applications, yet remain cost-
effective. Also, to put off obsolescence and minimize
development costs, it must be able to utilize the enormous
software inventory available on minis and mainframes.

1.3 Increasingly, systems designers and pro-
grammers are coming to the conclusion that
Series 32000 will be the foundation for the
next generation of high-performance, low-
cost computers.

Why? Because, among its virtues, Series 32000 features a
totally new, totally practical microprocessor architec-
ture—not simply an enhancement of an existing one.

Unlike any other commercial processor (micro, mini, or
mainframe) it is designed to fully support the use of high-
level languages and modular-software programming.

It introduces a powerful, highly symmetrical, instruction set
that includes over 100 genuine two-operand instruction
types, but avoids special-case instructions that compilers
cannot use.

ltis the first commercial microprocessor capable of imple-
menting Demand Paged Virtual Memory as a means of
solving large-memory-management problems. Its architec-
ture also supports uniform addressing—addresses start at
location zero and proceed uniformly until the entire virtual
address space? is filled. As a consequence, the memory
configuration of a Series 32000-based system is com-
pletely flexible. A designer can maximize the use of the
system’s main and virtual memory resources, and achieve
a heretofore-unrealizable level of performance at a min-
imal cost (Figure 1).

2 Also called peripheral, or mass storage.
3 Also cailed the logical address space.
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Figure 1: Uniform vs. segmented architecture
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Chapter 2

With virtual memory, a system
appears to have more memory

than it actually does.

Although memory hardware is becoming less expensive,
few systems can afford to have megabytes of main
memory. A megabyte of secondary disk storage is likely to
remain considerably less expensive than a megabyte of
RAM for some time. To circumvent this practical limitation
on the size of main memory, Series 32000’s sophisticated
architecture was deliberately designed to support the
implementation of virtual memory. This memory strategy
uses a secondary storage device, such as the usually
standard hard disk, as an adjunct to the main memory
under the control of an operating system.

2.1 In a virtual-memory system, every address
used by the CPU is called a virtual address
and each virtual address is subject to
dynamic address translation’*—a mapping
function that translates a virtual address in
virtual memory into a physical address in
main memory.

All virtual addresses are translated into physical addresses
by a common formula, and are all given access protection.
If a datum is not in main memory when an instruction calls
for it, the address translation subsystem must so inform the
CPU by requesting an instruction abort. The CPU then
aborts the current instruction, and transfers control to an
operating system routine that interprets the cause of the
abort. If the abort was caused by a reference to a location
available only in secondary storage, the CPU first transfers
the contents of the page containing the location from sec-
ondary storage to main memory, and then retries the
aborted instruction. This transiation process is called
swapping.

If this process can be done automatically, then as far as the
user is concerned the combination of main memory and
secondary storage becomes one immense, contiguous
memory resource. Consequently, the user is able to take
full advantage of extremely large operating-system soft-
ware and applications programs without worrying about the
actual hardware limitations of the system.

4 Also called memory mapping. or address relocation.

2.2 From the standpoint of system designs and
manufacturing, the price/performance trade-
offs that virtual memory affords are particu-
larly important, and readily apparent.

For example, a small business system may need several
million bytes of memory in order to run word processing,
financial planning, and data-base management programs
efficiently. Yet a manufacturer may wish to ship only 1
Mbyte of main memory in order to keep the price of the
system competitive. Since this hypothetical system proba-
bly includes a hard disk as standard equipment, imple-
menting virtual memory is a viable technique for
expanding the address space. The result is that the user
sees a system which performs like one with, say 5 Mbytes
of main memory, yet pays for only 1 Mbyte.

It must be emphasized that for a memory management
strategy to truly implement virtual memory, the user must
be presented with the illusion that all of the addressable
memory is available for use at any given time. To the extent
that the user is aware of the memory-management strat-
egy, the benefit of “virtual-ness” disappears.

2.3 The first wave of 16-bit microprocessors were
not designed with virtual memory in mind.

As a result, designers must overcome a great many obsta-
cles, to adapt earlier designs for use in virtual memory
systems.

Early 68000-based virtual memory-management systems,
for example, required two 68000s. One executed the pro-
grams, but any time it needed to access a new virtual ad-
dress, the other had to stop the first and repair the “page
fault”.

The designers of the 68010, which attempts to support vir-
tual memory with a single CPU, were forced to interrupt the
internal microcode machine between two microcycles of
the executing instruction, and to save 26 words of “invisi-
ble” internal state on the external stack before freeing the
CPU to perform the memory-management tasks.

Series 32000 eliminates the need for any such “‘kludges.”




Chapter 3
The two predominant approaches
to virtual memory-management:

7 m
segmentation and de

Virtual memory works because programs, instead of ad-
dressing locations in memory at random, tend to stay local-
ized for long periods. If a system has enough main memory
to hold these “locales,” a program will run smoothly.. .for a
while.

Eventually, though, a program wili call for data not present
in main memory. The CPU must then obtain that data by
swapping one of the current physical-memory regions of
data with the desired externally stored region. This swap-
ping task must be accomplished as quickly as possible—
preferably “on demand”—to carry out a program instruc-
tion. However, the swapped region should contain as little
unusabie data as possible.

3.1 In a uniform memory space, the size of the
swap is based on a fixed-sized unit called a
page, which can be any size the system
designer specifies. In a segmented memory
system, the size of the swap is determined
by the size of the segment, which varies.

Segmentation is a comparatively simple form of memory
management. Most segmented systems have few seg-
ments. Each segment must therefore cover a large portion
of the virtual address space. As large segments get
swapped in and out of main memory, the available memory
space tends to become “fragmented” into many smail
pieces, until not enough contiguous main memory is avail-
able to contain one large segment. To avoid this problem,
and eliminate the wasteful allocation of large portions of
main memory to unused virtual addresses, segments are
generally allowed to be of variable size.

i

nd demand paging.

Specific segments of virtual address space are generally
associated with specific aspects of a running task. In an
80286, the four segments are “hard-wired" to be a code
segment, a stack segment, a data segment, and an alter-
nate data segment. This approach allows swapping and
access protection in minimal hardware, but creates havoc
in a virtual memory-management system because the seg-
ments coincide with the pages.

Because of the variable size of segments and their associ-
ation with a running task, the implementation of segmented
virtual-memory management systems is difficult. No matter
how much, or how little, of each segment is needed, all of it
must be swapped; a part of a segment cannot be swapped
independently (Figure 2).

3.21n a Demand Paged Virtual Memory system,
on the other hand, there is no need for the
virtual memory-management strategy to deal
with large, odd-sized blocks of main
memory, or to take into account any
information about how any memory will be
used by the running task.

Series 32000 does provide the protection advantages of
segmentation, without the segment-size disadvantages,
by permitting ‘“segments’’ to be constructed out of an arbi-
trary number of fixed-size pages that can be indepen-
dently swapped. But Series 32000 does not require
segmentation as a built-in feature of its architecture.

The formidable advantage of demand paging over seg-
mentation, in general, is the simplicity with which pages
can be swapped in and out of main memory. The result is a
particularly low-overhead memory allocation algorithm
that improves system performance (Figure 3).

Klowapy fenpip pabed puewa( o syjauag




Benefits of Demand Paged Virtual Memory

SEGMENTED VIRTUAL ADDRESS SPACE

4.5K-BYTE
SEGMENT

PROGRAM

1K-BYTE
SEGMENT

SEGMENTED
PHYSICAL ADDRESS SPACE

* LARGE
SEGMENT IS
REPLACED BY

<:'_\ 1.5K-BYTE SEGMENT

SMALLER SEGMENT

4.5K-BYTE
SEGMENT

[ 1]

UNUSED
SPACE
1.5K-BYTE SEGMENT

(RN

Figure 2: Fragmentation in segmented address space schemes
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Figure 3: Demand Paged Virtual Memory
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Chapter 4

In Series 32000, dynamic address translation
is performed automatically by the NS32082
Memory Management Unit (MMU).

The NS32082 MMU is an auxiliary (slave) processing unit
that operates in coordination with the master Series 32000
CPUs. Communication between the two units takes place
by means of a very fast, well-defined, self-contained proto-
col that is transparent to the user.s Together, the CPU and
MMU allow architectural capabilities that otherwise, be-
cause of the limitations of contemporary integration tech-
nology, would be impossible on a single chip (Figure 4).

The MMU provides a Series 32000-based system with
dynamic address translations, memory management,
memory protection, and both hardware and software
debugging support.

4.1 Series 32000 has a virtual address space of 16
Mbytes divided into 32,768 pages, each with
a fixed size of 512 bytes. The physical
address space is the same size, and is also
divided into similarly-sized pages.

This scheme is an ideal one for managing a virtual-memory
system because the fixed-sized pages are easy to swap
via disk: page numbers can map directly to disk sectors,
and paging is transparent to the user-program. Studies
have also shown that pages of approximately this size ex-
hibit a good tradeoff between “locality” and “graininess.”

4.2 In dynamic address translation, the MMU
keeps track of each virtual address
requested by the CPU and its corresponding
value in main memory at all times.

To do this, it uses two levels of page tables containing
pointers that indicate where to go in main memory.

Among its set of registers, the MMU contains two Page Ta-
ble Base registers: PTB, in Systern mode, and PTB, in
User mode. (A system program can force the MMU to use
PTB, in both modes, if desired.) Either register’s contents
points to a location in main memory that holds a page table.
(It is the job of the operating system to load the PTB regis-
ters and build the corresponding table.)

The total size of the page table that each PTB register
points to is 1,024 bytes, divided into 256 entries, each 32
bits wide. Each one of the 256 entries in each page table
points to a pointer table.

S Because the ofthe MMU is by these in-line
instructions, integrating the MMU's memory management capabilities with
any future CPU in Series 32000 will entait only a few, localized software
modifications.

6 Seesection2.1.

Each pointer table is divided into 128 entries, each 32 bits
wide: thus, each pointer table fits on a 512-byte page. Each
of the 128 entries in a pointer table points to a 512-byte
page in virtual memory.

4.3 Surprisingly, the page and pointer tables do
not require large amounts of memory. Practi-
cally speaking, each program or task can
have its own page table.

An entire 16-Mbyte virtual memory map will use only one
1024-byte page table {resident in main memory) to point to
256 pointer tables, of 512 bytes each, for a maximum of
132,096 bytes devoted to mapping. (The pointer tables
need not be in main memory—they can be brought in from
secondary storage on demand.)

Changing the page table is simply a matter of changing the
MMU register that points to the location in memory that
holds the current page table. Therefore, each program or
task can have its own map from virtual memory to main
memory, and its own virtual address space of 16 Mbytes
(Figure 5).

4.4 Each entry in a page table, or one of the
pointer tables, has the same basic format.

Bits 9 through 23 specify the starting physical address of
the specified page. Bits zero through four contain the fol-
lowing status bits:

0  The Valid bit (V)—indicates whether the entry may be
used for address transtation.

1-2 The Protection Leve! field (PL)—indicates the level of
protection provided for the page.

3  The Referenced bit (R)—indicates whether the page
has been accessed. (it is automatically set when the
corresponding page has been accessed for reading
or writing.)

4 The Modified bit (M)—indicates whether the page has
been modified during its residence in main memory.
(Itis automatically set when the corresponding page
is written to0.)

4.5 To implement dynamic address translation,
the page selector field of an address is used
to index the page and pointer tables.

The 24 bits of a virtual address may be thought of as
consisting of two fields: the page selector field (the high-
order fifteen bits), and the offset field (the lower nine bits).
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The fifteen-bit page selector field is again divided into
subfields: the upper eight bits, which index an entry in the
page table, and the lower seven bits, which index an entry
in the appropriate pointer table.

The lower nine bits of the virtual address become the lower
nine bits of the physical address, and index the location of
a byte within a page.

The result? The 24-bit virtual address becomes a 24-bit
physical address, which is the address actually used to
refer to memory.

4.6 Because the mapping tables are too large to
store in the MMU, they must be stored in main
memory. Reading a table entry from memory
would normally take at least two memory ac-
cesses per memory access generated by a
program—a clearly unacceptable delay.

To speed up the process of dynamic address translation,
the NS32082 MMU utilizes an associative on-chip transla-
tion cache.

The cache contains the 32 most recently accessed virtual
addresses and their translated physical addresses
(Figure 6).
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Figure 6: Associate cache

When the CPU passes a virtual address to the MMU, the
MMU first attempts to match the virtual address with an
entry in the cache. If the address requested by the CPU
matches one of the 32 cache entries, the MMU will then
check the protection level and, if access is permitted, im-
mediately make the physical address available for memory




reference. This virtual-to-physical address translation can
occur in just one clock cycle (100 nanoseconds with a 10-
MHz microprocessor clock).

If, however, the requested address is not present in the
cache, the MMU must fetch both page and pointer table

entries from memory before address translation can be
performed—a process that may take an average of twenty
clock cycles (2 microseconds with a 10-MHz microproces-

sor clock) (Figure 7).
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Figure 7: Memory access through the NS32082 MMU
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4.7 The NS32082 MMU'’s net performance de-
pends directly on the frequency with which
the cache contains the necessary table
entries: observations show that in typical
programs the cache contains the entries
over 98 percent of the time

Therefore, the operation of the MMU is transparent to the
user-program.

When the MMU'’s cache is full, room must be made for a
newly translated page address. To do this efficiently,
however, requires an algorithm that decides which is the
best page address to remove, in the sense that its
absence will have the smallest adverse effect on the
running program. The NS32082 MMU uses what is called
the Least Recently Used (LRU) aigorithm: it evicts the
least recently accessed page address in the cache on the
basis of that page having a high a priori probability of not
being in the running program’s working set.

The MMU's ability to achieve a 98 percent “hit rate” (com-
parable to that of the VAX-11™) is directly related to its use
of this very fast algorithm.

4.8 The powerful Referenced bit (R), in
conjunction with the Modified bit (M) in the
table entries, also directly influence the
MMU’s net performance.

The Referenced bit is set by the hardware when the page
is referenced (read or written) by an instruction. By periodi-
cally checking and clearing this bit in all page and pointer
table entries, the operating system can monitor the fre-
quency with which pages are being used, and select pages
to be swapped out according to the LRU algorithm. If a
page about to be swapped out has not been modified since
it was read in (a likely occurrence if the page contains code
rather than data), it is unnecessary to write it back into sec-
ondary memory, since an accurate copy already exists
there. If, however, the page has been modified since being
read in, the copy in secondary storage is no longer accu-
rate and must be rewritten.

The Modified bit is set to “1” by the hardware whenever a
page is written to while resident in main memory. When the
page is to be released, the operating system can check this
bit to see if the copy on disk must be updated. If the bit is
“1,” the page must be written to secondary storage; if it is
“0,” then the page has not been modified since it was read
in, and can simply be overlaid.

4.9 Two other MMU registers facilitate the interac-
tion of the MMU, QPU, and operating system.

The Erroriinvalidate Address (EIA) register provides a
“window” between the MMU cache and the CPU that al-
lows the software to remove an entry from the cache. (If it
were changed in memory alone, the MMU would continue
to use the old value stored in the cache.) The EIA register
also returns the address that caused an MMU exception,
for use in case of error or a required virtual-memory swap.

7 Motorola's 68451 MMU, for example, which also has 32 on-chip transiation
registers, must interrupt the 68010 CPU if the required informationis not in one of its
registers—a procedure that can easily take 50 to 100 times the less-than-2ps
required by the NS32082 MMU.

The EIA's high-order bit indicates which PTB is being used
for translation. Changing a PTB value automatically re-
moves all cache entries based on that PTB.

The Memory Status Register (MSR) holds the many indica-
tors that allow software to monitor and control the MMU's
actions. It is accessible only in the Supervisor mode.

4.10 The NS32082 MMU can abort an instruction
during execution by the CPU—to load a page
from secondary storage into main
memory—and immediately retry the
instruction.

This feature is unique to Series 32000 and is fully imple-
mented in hardware. No complex restart routine or
externally saved internal state is required’.

After fetching and decoding an instruction, the CPU sends
the virtual address of the operand to the MMU. The Valid
bit (V) in a page or pointer table entry indicates whether or
not the corresponding page is present in main memory.
Whenever an address is generated by the CPU, and
passed to the MMU for translation into a physical address,
the MMU checks the Valid bit of the table entry specified by
the incoming virtual address. If the Valid bit is “1,” the page
is assumed to be present in main memory, and address
translation proceeds directly.

If the Valid bit is “0,” the page is assumed not to be in main
memory, and a page fault occurs. A page fault is a hard-
ware-generated trap that is used to teli the operating sys-
tem to read the missing page in from secondary storage.
The page fault occurs in the MMU, which generates an
ABORT signal to the CPU that immediately halts execution
of the current instruction. (A memory-access abort will also
occur if the CPU tries to access a protected section of
memory.)

One of the problems in implementing virtual memory sys-
tems is that an instruction may generate a page fault at any
time during the course of its execution. If the instruction oc-
cupies several bytes, it may overlap a page boundary, and
the act of fetching an instruction may itself cause a page
fault. The process of fetching the source or destination
operand may cause a page fault as well.

In Series 32000, when a page fault occurs, for any reason,
the MMU sends the ABORT signal to the CPU. 7 0 permit
the instruction to be restarted, the CPU not only halts the
execution of the instruction, it also returns any register
that was altered by the instruction to the state it was in
before the aborted instruction began. At the same time,
the program counter is automatically saved, as are the
processor-status register and the stack pointer, among
other registers, so that, as soon as the operating system
completes the page swap, the CPU automatically retries
the aborted instruction.

4.11 The exception to this process is in the case
of string instructions, which get special
treatment during an abort.

Since it would be extremely undesirable to have a long
string instruction repeated from the beginning if an abort
occurred in the middle of the string, Series 32000 CPUs
aliow an aborted string instruction to be re-executed from
the point at which the page fault occurred.
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Chapter 5

In a Series 32000-based system,

each page can have protection attributes to limit
the ways in which the page can be accessed.

Sl I wW TIwE I Gl W

o N Nt

This provides the basis for memory protection
within the virtual address space.

The protection features actually implemented in Series
32000 architecture can be divided into three groups:

1. 5.1 Supervisor/User mode. The CPU has two operating
modes: Supervisor mode, in which the entire instruction
set is available, and User mode, in which only a re-
stricted subset of instructions are available. Supervisor
mode is intended for operating systems and other
trusted programs, User mode for programs that are not
trusted.

2. 5.2 Separate address spaces for each task.Each task
running on a Series 32000-based system has a unique
collection of pages that constitutes its address space:
access to another task’s address space is impossible.

3. 5.3 Protection bits along with the physical addresses in
the page- and pointer-table entries.

To keep order in today’s multi-tasking, multi-user, and muiti-
processor systems, the protection bits define whether a
page can be read, but not written into; read and written
into; or, neither read nor written. How the protection bits are
interpreted depends on the operating mode of the CPU: a
given setting of the Protection Level (PL) field will be inter-

preted differently in Supervisor mode than in User mode,
as shown below.

PL SUPERVISOR MODE USER MODE
00 read only no access

01 read/write no access

10 read/write read only

1 read/write read/write

As a result, the operating system can treat a collection of
pages with the same protection level as a segment. For
example, a constants segment might be a set of pages
containing data with the read-only protection level, so
users could not modify the data. In this way, page-based
dynamic address translation provides a mechanism for
implementing segmentation.

Inter-task protection is accomplished by giving each task its
own set of page tables, so that each task has its own
address space, which provides flexibility and virtual
memory for each task. By changing the single register that
points to the page table, the user can switch to the new
task’s address space.
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Benefits of Demand Paged Virtual Memory

Chapter 6

At best, debugging is one of the most
difficult stages of program development.
In a virtual memory system,

it could be a nightmare.

The debugging facility provided by the NS32082 MMU is
unique and unsurpassed among microprocessor families.
1t would prove invaluable even if the MMU did nothing else
but provide for the two crucial, program-debugging opera-
tions: breakpointing, and flow tracing.

6.1 In most other microprocessors, breakpoint-
ing is provided by a trap, or breakpoint
instruction.

This can result in a myriad of problems for a virtual memory
system. It is often necessary, when debugging Supervisor-
mode software, to be able to set breakpoints as absolute
addresses, i.e., as addresses in physical memory. This

is not possible with CPU-based debugging techniques,
since all addresses emanating from the CPU are virtual
addresses—the CPU has no concept of the distinction be-
tween the two types of addresses. Moreover, the setting of
breakpoints with special instructions that overlay existing
code can cause a great deal of additional overhead for the
memory manager.

6.2 For these reasons, among others, the
designers of Series 32000 chose to imple-
ment debugging support on the MMU.

To implement breakpointing and flow tracing, the
NS32082 MMU uses two sets of registers—the Breakpoint
and Flow Tracing registers—and one instruction, the
Breakpoint Trap instruction.

6.3 Setting breakpoints is a technique for halting
a program’s execution at a particular instruc-
tion or data access for the purpose of examin-
ing the program’s state, and thereby deter-
mining the cause of improper program
behavior.

With Series 32000, breakpoints may be set either when a
specified address is accessed, after a specified address
ns accessed, or after a specified number of such accesses
have been made. Also, more than one breakpoint address
may be selected simultaneously, allowing a halt to be
implemented after either fork of a conditional branch.
These facilities are provided by the Breakpoint Trap
instruction (BPT) and three dedicated registers located on
the MMU.

The Breakpoint Trap instruction is a one-byte instruction
that replaces the first byte of the opcode of the instruction
that is to be breakpointed. To allow breakpoints to be setin
PROM, as well as RAM, two breakpoint registers, BPR,
and BPR, are provided. These registers hold the double

word addresses of two selected breakpoints, which are
compared with the contents of the address bus at every
memory cycle. When a breakpoint address appears in the
program, and when other conditions specified by the con-
tents of the register are met, a non-maskable interrupt
occurs.

Because these registers are located in the MMU, they may
be set to look at either the virtual addresses from the CPU
or the physical addresses from the MMU. They may also
be set to operate when the indicated address is either writ-
ten to or read from, or when there is an instruction fetch.

A third register on the MMU, the Breakpoint Count register,
specifies the number of matches of the BPR,, register
breakpoint condition to be passed over before a breakpoint
occurs. This is useful for selecting a particular interaction in
a loop instruction.

The breakpointing process occurs parallel to the execution
of the running program, and exacts a negligible perfor-
mance penalty. Consider how a programmer might want to
use software breakpointing or tracing to debug a virtual-
memory system in which the memory area where the
Breakpoint Trap instruction is located might have been
swapped out onto disk. This task would be alt but impossi-
ble without hardware support such as that provided in the
NS32082 MMU (Figure 8).

MMY

BPR,

BC=99

A TL/EE/8666-8
Figure 8: Breakpointing




6.4 Flow tracing provides a chronicle of the
actions and results of individual stepsin a
program during its execution.

It allows the program’s recent history to be examined at
specified instructions or breakpoints in order to determine
the cause of any undesired program behavior.

Series 32000 supports program flow tracing with four
dedicated registers in the MMU, and the Trace trap bit in
the CPU’s PSR. If flow tracing is activated (by means of a
bit in the MSR), two Program Flow registers (PFy and PF)
will always hold the addresses of the last two instructions
which were executed out of sequence. The two 16-bit
Sequence Count registers (SCy and SC,) will keep a
record of the number of sequential instructions executed
between each change in program flow.

The MMU thus performs the foliowing steps every time a
branch, call, return, interrupt, or other non-sequential in-
struction is executed:

—Store PFy into PF,

—Store new program-counter value into PFy
—Store SCy into SC;4

—Clear SCy

6.5 The user can also seilect an instruction, or
series of instructions, to trace by means of
the Trace trap, which is enabled by setting a
bit in the PSR.

When the Trace trap is enabled at the beginning of an in-
struction, a trace trap will occur at the end of that instruc-
tion, and user software may then be empioyed to investi-
gate the contents of the CPU registers. The trap will occur
after each instruction, so long as the bit is set.

In Series 32000, the Trace trap is implemented in such a
way that one and only one Trace trap will be taken for each
instruction. The Trace trap always has the lowest priority
of any exception. Any other trap, or any interrupt request
that occurs during a traced instruction, is allowed to com-

plete its entire service procedure before the Trace trap oc-
curs. Also, unlike other traps, where the address of the
first byte of the instruction during which the trap occurred
is pushed on the stack, the Trace trap insures that the re-
turn address to be pushed is that of the next instruction to
be traced (Figure 9).
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CASE 1. A EXECUTED

ADDR OF C Py 100
A | iNsTRUC-
ADDR OF D PF TIONS
st, 100 50 86,
CASE 2. B EXECUTED 150
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ADDR OF C
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[]
50 50
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o

-

TL/EE/8666-9
Figure 9: Flow tracing
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Benefits of Demand Paged Virtual Memory

Chapter 7
Conclusion.

The simplicity and efficiency of Demand Paged Virtual
Memory, as implemented in Series 32000, offers features
formerly available only in much larger systems—but in a
combination not available on any one system, nor any-
where near microprocessor prices (Figure 10).

VAX-11/780

1BM 4341
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SYSTEM @
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DOLLARS
! ! Ns32016 CPU
10K &

N1 1 1
0.6 e 1
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Figure 10: Comparison, Series 32000 to
minis and mainframes

1-62




SOURCES
“Demand Paged Virtual Memory with Series 32000,
Richard Mateosian.
“Extend pP capabilities with a memory-management iC,”
Robert D. Grappel (Hemenway Corp.). EDN, February 3,
1983.
*‘Introduction to Series 32000 Architecture.”
“Virtual Memory,” Carol Anne Ogdin.
“Virtual memory in microprocessor systems,” Subhash Bal
and Gary Martin. Electronic Products Magazine, Septem-
ber 30, 1982.

Aiowapy lenpiA pabed puewsaq jo smauég

1-63







Section 2
Central Processing Units




Section 2 Contents

NS32332-10, -12, -15 32-Bit Advanced Microprocessor with Virtual Memory................ 2-3
NS32132-8, -8, -10 High-Performance MiCroprocessors ...........co.oveevueieenrvneanenns 2-76
NS32032-6, -8, -10 High-Performance Microprocessors .............ocoevvniiianeennnn.. 2-146
NS32C016-6, -10, -15 High-Performance Microprocessors . .........c..ceviieeniinennenn.. 2-211
NS32016-6, -8, -10 High-Performance MiCroprocessors ...........covvvineviivinnnianenns 2-275
NS32008-6, -8, -10 High-Performance MiCroprocessors ..........c..uveiiinneeiennnneenns 2-339

2-2




National
Semiconductor
Corporation

PRELIMINARY

NS32332-10/NS32332-12/NS32332-15
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Generai Description

The NS32332 is a 32-bit, virtual memory microprocessor
with 4 GByte addressing and an enhanced Series 320009
microarchitecture. it is fully object code compatible with oth-
er Series 32000 microprocessors, and it has the added fea-
tures of 32-bit addressing, higher instruction execution
throughput, cache support, and expanded bus handling ca-
pabilities. The new bus features include bus error and retry
support, dynamic bus sizing, burst mode memory accessing,
and enhanced slave processor communication protocol.
The higher clock frequency and added features of the
NS32332 enable it to deliver 2 to 3 times the performance
of the NS32032.

The NS32332 microprocessor is designed to work with both
the 16- and 32-bit slave processors of the Series 32000
family.

PRy B

reaiures
B 32-bit architecture and implementation
H 4 Gbyte uniform addressing space
m Software compatible with the Series 32000 Family
B Powerful instruction set
— General 2-address capability
— Very high degree of symmetry
— Address modes optimized for high level languages
m Supports both 16- and 32-bit Slave Processor Protocol
— Memory management support via NS32082 or
NS32C382
— Floating point support via NS32081 or NS32310
& Extensive bus feature
— Burst mode memory accessing
— Cache memory support
— Dynamic bus configuration (8-, 16-, 32-bits)
— Fast bus protocol
® High speed XMOS™ technology
B 84 Pin grid array package
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*Shaded areas indicate enhancements from the NS32032.
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1.0 Product Introduction

The Series 32000 Microprocessor family is a new genera-
tion of devices using National’s XMOS and CMOS technolo-
gies. By combining state-of-the-art MOS technology with a
very advanced architectural design philosophy, this family
brings mainframe computer processing power to VLSI proc-
essors.

The Series 32000 family supports a variety of system con-
figurations, extending from a minimum low-cost system to a
powerful 4 gigabyte system. The architecture provides com-
plete upward compatibility from one family member to an-
other. The family consists of a selection of CPUs supported
by a set of peripherals and slave processors that provide
sophisticated interrupt and memory management facilities
as well as high-speed floating-point operations. The archi-
tectural features of the Series 32000 family are described
briefly below:

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubieword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case
instructions that compilers can’t use, the Series 32000 fami-
ly incorporates powerful instructions for control operations,
such as array indexing and external procedure calls, which
save considerable space and time for compiled code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-operand machines with each operand ad-
dressable by all addressing modes. This powerful memory-
to-memory architecture permits memory locations to be
treated as registers for all useful operations. This is impor-
tant for temporary operands as well as for context switch-
ing.

Memory Management. Either the NS32382 or the
NS32082 Memory Management Unit may be added to the
system to provide advanced operating system support func-
tions, including dynamic address transiation, virtual memory
management, and memory protection.

Large, Uniform Addressing. The NS32332 has 32-bit ad-
dress pointers that can address up to 4 gigabytes without
requiring any segmentation; this addressing scheme pro-
vides flexible memory management without added-on ex-
pense.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac-
cess, which allows a significant reduction in hardware and
software cost.

Software Processor Concept. The Series 32000 architec-
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten-
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It aliows software com-
patibility even for future components because the slave
hardware is transparent to the software. With future ad-
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro-
vide three primary performance advantages and character-
istics:

¢ High-Level Language Support
® Easy Future Growth Path
® Application Flexibility

1.1 NS32332 KEY FEATURES

The NS32332 is a 32-bit CPU in the Series 32000 family. It
is totally software compatible with the NS32032, NS32016,
and NS32008 CPUs but with an enhanced internal imple-
mentation.

The NS32332 design goals were to achieve two to three
times the throughput of the NS32032 and to provide the full
32-bit addressing inherent in the architecture.

The basic approaches to higher throughput were: fewer
clock cycles per instruction, better bus use, and higher
clock frequency.

An examination of the block diagram of the NS32332 shows
it to be identical to that of the NS32032, except for en-
hanced bus interface control, a 20-byte (rather than 8-byte)
instruction prefetch queue, and special hardware in the ad-
dress unit. The new addressing hardware consists of a high-
speed ALU, a barrel shifter on one of its inputs, and an
address register. Of the throughput improvement not due to
increased clock frequency, about half is derived from the
new address unit hardware, about 30% from the bus en-
hancements, about 15% from the larger prefetch queue,
and the rest from microcode improvements.

Other important aspects of the enhanced bus interface cir-
cuitry of the NS32332 are a burst access mode, designed to
work with nibble and static column RAMs, read and write
timing designed to support caches, and support for bus er-
ror processing.

An enhanced slave processor communication protocol is
designed to achieve improved performance with the
NS32382 MMU and NS32310 FPC, while still working di-
rectly with the existing NS32082 MMU and NS32081 FPU.

2.0 Architectural Description

2.1 PROGRAMMING MODEL

The Series 32000 architecture has 8 general purpose and 8
dedicated registers. All registers are 32 bits wide except the
STATUS and MODULE register. These two registers are
each 16 bits wide.

2.1.1 General Purpose Registers

There are eight registers for meeting high speed general
storage requirements, such as holding temporary variables
and addresses. The general purpose registers are free for
any use by the programmer. They are thirty-two bits in
length. If a general register is specified for an operand that
is eight or sixteen bits long, only the low part of the register
is used; the high part is not referenced or modified.

2.1.2 Dedicated Registers

The eight dedicated registers of the processor are assigned
specific functions.

PC: The PROGRAM COUNTER register is a pointer to the
first byte of the instruction currently being executed. The PC
is used to reference memory in the program section.

SPO, SP1: The SPO register points to the lowest address of
the last item stored on the INTERRUPT STACK. This stack
is normally used only by the operating system. It is used
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2.0 Architectural Description (continued)
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FIGURE 2-1. The General and Dedicated Registers

primarily for storing temporary data, and holding return infor-
mation for operating system subroutines and interrupt and
trap service routines. The SP1 register points to the lowest
address of the last item stored on the USER STACK. This
stack is used by normal user programs to hold temporary
data and subroutine return information.

In this document, reference is made to the SP register. The
terms “SP register” or “SP" refer to either SPO or SP1,
depending on the setting of the S bit in the PSR register. If
the S bit in the PSR is 0 the SP refers to SPO. If the S bit in
the PSR is 1 then SP refers to SP1.

Stacks in the Series 32000 family grow downward in memo-
ry. A Push operation pre-decrements the Stack Pointer by
the operand length. A Pop operation post-increments the
Stack Pointer by the operand length.

FP: The FRAME POINTER register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pointer.

SB: The STATIC BASE register points to the global vari-
ables of a software module. This register is used to support
relocatable global variables for software modules. The SB
register holds the lowest address in memory occupied by
the global variables of a module.

INTBASE: The INTERRUPT BASE register holds the ad-
dress of the dispatch table for interrupts and traps (Sec.
3.8). The INTBASE register holds the lowest address in
memory occupied by the dispatch table.

MOD: The MODULE register holds the address of the mod-
ule descriptor of the currently executing software module.
The MOD register is sixteen bits long, therefore the module
table must be contained within the first 64K bytes of memo-
ry.

PSR: The PROCESSOR STATUS REGISTER (PSR) holds
the status codes for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all pro-
15 8|7 0
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FIGURE 2-2. Processor Status Register

grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

C: The C bit indicates that a carry or borrow occurred
after an addition or subtraction instruction. It can be
used with the ADDGC and SUBC instructions to perform
multiple-precision integer arithmetic calculations. it may
have a setting of 0 (no carry or borrow) or 1 (carry or
borrow).

T: The T bit causes program tracing. If this bitis a 1, a
TRC trap is executed after every instruction (Sec. 3.8.5).

L: The L bit is altered by comparison instructions. In a
comparison instruction the L bit is set to ““1” if the sec-
ond operand is less than the first operand, when both
operands are interpreted as unsigned integers. Other-
wise, it is set to “0”. In Floating Point comparisons, this
bit is always cleared.

F: The F bit is a general condition flag, which is altered
by many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

Z: The Z bit is altered by comparison instructions. In a
comparison instruction the Z bit is set to “1" if the sec-
ond operand is equal to the first operand; otherwise it is
set to “0”.

N: The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to “1” if the sec-
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to “0”.

U: If the U bit is “1” no privileged instructions may be
executed. If the U bit is “0” then all instructions may be
executed. When U = 0 the processor is said to be in
Supervisor Mode; when U = 1 the processor is said to
be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing cer-
tain registers which could interfere with the operating
system. For example, a User Mode program is prevent-
ed from changing the setting of the flag used to indicate
its own privilege mode. A Supervisor Mode program is
assumed to be a trusted part of the operating system,
hence it has no such restrictions.

S: The S bit specifies whether the SPO register or SP1
register is used as the stack pointer. The bit is automati-
cally cleared on interrupts and traps. It may have a set-
ting of O (use the SPO register) or 1 (use the SP1 regis-
ter).




2.0 Architectual Description (continued)
P: The P bit prevents a TRC trap from occurring more
than once for an instruction (Sec. 3.8.5.). It may have a
setting of O (no trace pending) or 1 (trace pending).

I: If | = 1, then all interrupts will be accepted (Sec. 3.8.).
If 1 = 0, only the NMI interrupt is accepted. Trap en-
ables are not affected by this bit.

2.1.3 The Configuration Register (CFG)*

Within the Control section of the CPU is the CFG Register,
which declares the presence and type of external devices. it
is referenced by only one instruction, SETCFG, which is in-
tended to be executed only as part of system initialization
after reset. The format of the CFG Register is shown in
Figure 2-3.

*The NS32332 CPU has four new bits in the CFG Register, namely P, FC,
FM and FF.

7 0
lp|ec|mmler| c[m[F] 1]
FIGURE 2-3. CFG Register
The CFG | bit declares the presence of external interrupt
vectoring circuitry (specifically, the Interrupt Control Unit). If
the CFG | bit is set, interrupts requested through the INT pin
are “Vectored.” If it is clear, these interrupts are “Non-Vec-
tored.” See Sec. 3.8.
The F, M and C bits declare the presence of the FPU, MMU
and Custom Slave Processors. If these bits are not set, the
corresponding instructions are trapped as being undefined.
The FF, FM, FC bits define the Slave Communication Proto-
col to be used in FPU, MMU and Custom Siave instructions
(Sec. 3.4.9). If these bits are not set, the corresponding in-
structions will use the 16-bit protocol (32032 compatible). If
these bits are set, the corresponding instructions will use
the new (fast) 32-bit protocol.
The P bit improves the efficiency of the Write Validation
Buffer in the CPU. It is set if the Virtual Memory has page
size(s) larger than or equal to 4 Kbytes. It is reset otherwise.
In Systems where the MMU is not present, the P bit is not
used.

2.1.4 Memory Organization

The main memory is a uniform linear address space. Memo-
ry locations are numbered sequentially starting at zero and
ending at 232 - 1. The number specifying a memory location
is called an address. The contents of each memory location
is a byte consisting of eight bits. Unless otherwise noted,
diagrams in this document show data stored in memory with
the lowest address on the right and the highest address on
the left. Also, when data is shown vertically, the lowest ad-
dress is at the top of a diagram and the highest address at
the bottom of the diagram. When bits are numbered in a
diagram, the least significant bit is given the number zero,
and is shown at the right of the diagram. Bits are numbered
in increasing significance and toward the left.

A
Byte at Address A

Two contiguous bytes are called a word. Except where not-
ed (Sec. 2.2.1), the least significant byte of a word is stored
at the lower address, and the most significant byte of the
word is stored at the next higher address. In memory, the
address of a word is the address of its least significant byte,
and a word may start at any address.

15 MSB's 8|7 LSB’s 0]

A+1 A
Word at Address A

Two contiguous words are called a double word. Except
where noted (Sec. 2.2.1), the least significant word of a dou-
ble word is stored at the lowest address and the most signif-
icant word of the double word is stored at the address two
greater. In memory, the address of a double word is the
address of its least significant byte, and a double word may
start at any address.

31 MSB’s 24| 23
A+3

16] 15 8|7 LsB's 0

A+2 A+1 A

Double Word at Address A

Although memory is addressed as bytes, it is actually orga-
nized as double-words. Note that access time to a word or a
double-word depends upon its address, e.g. double-words
that are aligned to start at addresses that are multiples of
four will be accessed more quickly than those not so
aligned. This also applies to words that cross a double-word
boundary.

2.1.5 Dedicated Tables

Two of the dedicated registers (MOD and INTBASE) serve
as pointers to dedicated tables in memory.

The INTBASE register points to the Interrupt Dispatch and
Cascade tables.

The MOD register contains a pointer into the Module Table,
whose entries are called Module Descriptors. A Module De-
scriptor contains four pointers. The MOD register contains
the address of the Module Descriptor for the currently run-
ning module. It is automatically up-dated by the Call Exter-
nal Procedure instructions (CXP and CXPD).

15 0

31 0
STATIC BASE

LINK TABLE ADDRESS

PROGRAM BASE

RESERVED

-~ N
TL/EE/8673-4
FIGURE 2-4. Module Descriptor Format

The format of a Module Descriptor is shown in Figure 2-4.
The Static Base entry contains the address of static data
assigned to the running module. It is loaded into the CPU
Static Base register by the CXP and CXPD instructions. The
Program Base entry contains the address of the first byte of
instruction code in the module. Since a module may have
multiple entry points, the Program Base pointer serves only
as a reference to find them.
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2.0 Architectual Description (continued)

The Link Table Address points to the Link Table for the
currently running module. The Link Table provides the infor-
mation needed for:

1) Sharing variables between modules. Such variables are
accessed through the Link Table via the External ad-
dressing mode.

2) Transferring control from one module to another. This is
done via the Call External Procedure (CXP) instruction.
The format of a Link Table is given in Figure 2-5. A Link
Table Entry for an external variable contains the 32-bit ad-
dress of that variable. An entry for an external procedure
contains two 16-bit fields: Module and Offset. The Module
field contains the new MOD register contents for the mod-
ule being entered. The Offset field is an unsigned number
giving the position of the entry point relative to the new

module’s Program Base pointer.

For further details of the functions of these tables, see the

Series 32000 Instruction Set Reference Manual.

ENTRY |31 LN
0 ABSOLUTE ADDRESS (VARIABLE)
1 ABSOLUTE ADDRESS (VARIABLE)
2 OFFSET MODULE (PROCEDURE)
b ~

TL/EE/B673-5
FIGURE 2-5. A Sample Link Table

2.2 INSTRUCTION SET

2.2.1 General Instruction Format

Figure 2-6 shows the general format of a Series 32000 in-
struction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to two 5-bit General Ad-
dressing Mode (“Gen”) fields. Following the Basic Instruc-
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes se-
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index-
ing. See Figure 2-7.

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select-

GEN. ADDR. MODE REG. NO.

TL/EE/8673-7
FIGURE 2-7. Index Byte Format

ed address modes. Each Disp/Imm field may contain one or
two displacements, or one immediate value. The size of a
Displacement field is encoded with the top bits of that field,
as shown in Figure 2-8, with the remaining bits interpreted
as a signed (two’s complement) value. The size of an imme-
diate value is determined from the Opcode field. Both Dis-
placement and Immediate fields are stored most significant
byte first. Note that this is different from the memory repre-
sentation of data (Sec. 2.1.4).

Some instructions require additional, “implied” immediates
and/or displacements, apart from those associated with ad-
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Sec. 2.2.3).

2.2.2 Addressing Modes

The CPU generally accesses an operand by calculating its
Effective Address based on information available when the
operand is to be accessed. The method to be used in per-
forming this calculation is specified by the programmer as
an “addressing mode.”

Addressing modes are designed to optimally support high-
level language accesses to variables. In nearly all cases, a
variable access requires only one addressing mode, within
the instruction that acts upon that variable. Extraneous data
movement is therefore minimized.

Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen-
eral Purpose Registers. In certain Slave Processor instruc-
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space. Identical to Register Relative above, ex-
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers point to data areas gen-
erally needed by high-level languages.

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
Y M
H
msn}msm mspzlmsm i
)
IMPLIED INDEX INDEX GEN ! GEN
IMMEDIATE DISP Disp ADDR |  ADDR OPCODE
OPERAND(S) BYTE BVTE MOOE | MooE
MM MM !
1

L._)'

11 i
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2.0 Architectual Description (continued)

BYTE DISPLACEMENT: RANGE —64 TO +63
7 0

] SIGNED DISPLACEMENT

WORD DISPLACEMENT: RANGE —8192 TO +8191
7 0

1{0 M

o

DOUBLE WORD DISPLACEMENT:
RANGE "(229 -—224) to + (229 _ 1):

v

TL/EE/8673-8
FIGURE 2-8. Displacement Encodings
*Note: The pattern “11100000” for the most significant byte of the dis-
placement is reserved by National for future enhancements.
Thersfors, it should never be used by the user program. This
causes the lower limit of the displacement range to be
—(228—224) instead of —229,
Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pointer to generate the Effec-
tive Address of the operand.
Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.
Absolute: The address of the operand is specified by a
displacement field in the instruction.
External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis-
placement, vielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode.
Scaled Indexing is an option on any addressing mode ex-
cept Immediate or another Scaled Index. It has the sffsct of
calculating an Effective Address, then multiplying any Gen-
sral Purposs Rsgister by 1, 2, 4 or 8 and adding it into the
total, yielding the final Effective Address of the operand.
Table 2-1 is a brief summary of the addressing modes. For a
complete description of their actions, see the Instruction Set
Reference Manual.

2.2.3 Instruction Set Summary
Table 2-2 presents a brief description of the Series 32000
instruction set. The Format column refers to the Instruction
Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De-
scription column provides a short description of the function
provided by that instruction. Further details of the exact op-
erations performed by each instruction may be found in the
Instruction Set Reference Manual.
Notations:
i = Integer length suffix: B = Byte

W = Word

D = Double Word
f = Floating Point length suffix. F = Standard Floating

L = Long Floating

gen = General operand. Any addressing mode can be
specified.
short = A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).
imm = Implied immediate operand. An 8-bit value append-
ed after any addressing extensions.
disp = Displacement (addressing constant): 8, 16 or 32
bits. All three lengths legal.
reg = Any General Purpose Register: R0O-R7.
areg = Any Dedicated/Address Register: SP, SB, FP,
MOD, INTBASE, PSR, US (bottom 8 PSR bits).
mreg = Any Memory Management Status/Control Regis-
ter.
creg = A Custom Slave Processor Register (Implementa-
tion Dependent).
cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

G1-CEECESN/CL-CEETESN/O0L-CEECESN
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ENCODING
Register
00000
00001
00010
00011
00100
00101
00110
00111
Register Relative
01000
01001
01010
01011
01100
01101
01110
01111
Memory Relative
10000
10001
10010

Reserved
10011
Immediate
10100

Absolute
10101
External
10110

Top of Stack
10111

Memory Space
11000

11001

11010

11011

Scaled Index
11100

11101

11110

11111

MODE

Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7

Register 0 relative
Register 1 relative
Register 2 relative
Register 3 relative
Register 4 relative
Register 5 relative
Register 6 relative
Register 7 relative

Frame memory relative
Stack memory relative
Static memory relative

2.0 Architectual Description (continued)

TABLE 2-1
NS32332 Addressing Modes

ASSEMBLER SYNTAX

RO or FO
R1orF1
R2or F2
R3or F3
R4 orF4
R5 or F5
R6 or F6
R7 or F7

disp(R0)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp2(disp1(FP))
disp2(disp1(SP))
disp2(disp1(SB))

(Reserved for Future Use)

Immediate

Absolute

External

Top of stack

Frame memory
Stack memory
Static memory
Program memory

Index, bytes

Index, words

Index, double words
Index, quad words

value

@disp

EXT (disp1) + disp2

TOS

disp(FP)
disp(SP)
disp(SB)
*+disp

mode[Rn:B]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q]

EFFECTIVE ADDRESS

None: Operand is in the specified
register

Disp + Register.

Disp2 + Pointer; Pointer found at
address Disp1 + Register, “SP”
is either SPO or SP1, as selected
in PSR.

None: Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Disp + Register; “SP” is either
SP0 or SP1, as selected in PSR.

EA (mode) + Rn.

EA (mode) + 2X Rn.

EA (mode) + 4X Rn.

EA (mode) + 8 X Rn.

‘Mode’ and ‘n’ are contained
within the Index Byte.

EA (mode) denotes the effective
address generated using mode.

2-12
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2.0 Architectural Description (continued) @
w
TABLE 2-2 S
Series 32000 Instruction Set Summary 3
MOVES E
Format Operation Operands Description 3
4 MOVi gen,gen Move a value. 8
2 MOVQi short,gen Extend and move a signed 4-bit constant. @
7 MOVMI gen,gen,disp Move Multiple: disp bvtes (1 10 16). Z
7 MOVZBW gen,gen Move with zero extension. g
7 MOVZID gen,gen Move with zero extension. =
7 MOVXBW gen,gen Move with sign extension. 8
7 MOVXiD gen,gen Move with sign extension. 3
4 ADDR gen,gen Move Effective Address. 3
| ]
INTEGER ARITHMETIC b
Format Operation Operands Description
4 ADDI gen,gen Add.
2 ADDQi short,gen Add signed 4-bit constant.
4 ADDCi gen,gen Add with carry.
4 SUBI gen,gen Subtract.
4 SUBCi gen,gen Subtract with carry (borrow).
6 NEGi gen,gen Negate (2’s complement).
6 ABSI gen,gen Take absolute value.
7 MULi gen,gen Multiply
7 QUOI gen,gen Divide, rounding toward zero.
7 REMi gen,gen Remainder from QUO.
.7 Divi gen,gen Divide, rounding down.
7 MODi gen,gen Remainder from DIV (Modulus).
7 MEIi gen,gen Multiply to Extended Integer.
7 DEli gen,gen Divide Extended Integer.
PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands Description
6 ADDPi gen,gen Add Packed.
6 SUBPi gen,gen Subtract Packed.
INTEGER COMPARISON
Format Operation Operands Description
4 CMPi gen,gen Compare.
2 CMPQi short,gen Compare to signed 4-bit constant.
7 CMPMi gen,gen,disp Compare Multiple: disp bytes (1 to 16).
LOGICAL AND BOOLEAN
Format Operation Operands Description
4 ANDi gen,gen Logical AND.
4 ORi gen,gen Logical OR.
4 BICi gen,gen Clear selected bits.
4 XORi gen,gen Logical Exclusive OR.
6 COMi gen,gen Complement all bits.
6 NOTi gen,gen Boolean complement: LSB only.
2 Scondi gen Save condition code (cond) as a Boolean variable of size i.

2-13
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2.0 Architectural Description (continued)

SHIFTS
Format Operation Operands Description
6 LSHi gen,gen Logical Shift, left or right.
6 ASHi gen,gen Arithmetic Shift, left or right.
6 ROTi gen,gen Rotate, left or right.
BITS
Format Operation Operands Description
4 TBITi gen,gen Test bit.
6 SBITi gen,gen Test and set bit.
6 SBITIi gen,gen Test and set bit, interlocked
6 CBITi gen,gen Test and clear bit.
6 CBITIi gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit
BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records
used in Pascal. “Extract” instructions read and align a bit field. “Insert” instructions write a bit field from an aligned
source.

Format Operation Operands Description
8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSi reg,gen,gen,disp Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSI gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to Bit Field Pointer.
ARRAYS
Format Operation Operands Description
8 CHECKi reg,gen,gen Index bounds check.
8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.
STRINGS
String instructions assign specific functions to the Gen- Options on all string instructions are:
eral Purpose Registers: B (Backward):  Decrement string pointers after each step
R4 - Comparison Value rather than incrementing.
R3 - Translation Table Pointer U (Until match):  End instruction if String 1 entry matches
R2 - String 2 Pointer R4.
R1 - String 1 Pointer W (While match): End instruction if String 1 entry does not
RO - Limit Count . match R4.
All string instructions end when RO decrements to zero.
Format Operation Operands Descriptions
5 MOVSi options Move String 1 to String 2.
MOVST options Move string, translating bytes.
5 CMPSi options Compare String 1 to String 2.
CMPST options Compare translating, String 1 bytes.
5 SKPSi options Skip over String 1 entries
SKPST options Skip, translating bytes for Until/While.

2-14




2.0 Architectural Description (continued)
JUMPS AND LINKAGE

Format

- b e ek ke = WD S 2 WNNWO O W

Operation
JUMP
BR
Bcond
CASEi
ACBI
JSR
BSR
CXP
CXPD
SVC
FLAG
BPT
ENTER
EXIT
RET
RXP
RETT
RETI

Operands
gen

disp

disp

gen
short,gen,disp
gen

disp

disp

gen

[reg list] disp
[reg list]

disp

disp

disp

CPU REGISTER MANIPULATION

Format

G WWWN N - -

Operation
SAVE
RESTORE
LPRi

SPRi
ADJSPi
BISPSRi
BICPSRi
SETCFG

FLOATING POINT

Format

1
9

0 © O o

11
11
1
1
1
1
12
12
12
12
12
12
12
12

Operation

MOVf
MOVLF
MOVFL
MOVif
ROUNDfi
TRUNCHi
FLOOR(i
ADDf
suBf
MULf
Divi
CMPf
NEGf
ABSFf
REMf
SQRTf
POLYf
DOTf
SCALBf
LOGBf
ATAN2f
SICOsf
LFSR
SFSR

Operands

[reg list]
[reg list]
areg,gen
areg,gen
gen

gen

gen
[option list]

Operands

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen

gen

Description

Jump.

Branch (PC Relative).

Conditional branch.

Multiway branch.

Add 4-bit constant and branch if non-zero.
Jump to subroutine.

Branch to subroutine.

Call external procedure.

Call external procedure using descriptor.
Supervisor Call.

Flag Trap.

Breakpoint Trap.

Save registers and allocate stack frame (Enter Procedure).

Restore registers and reclaim stack frame (Exit Procedure).

Return from subroutine.

Return from external procedure call.
Return from trap. (Privileged)
Return from interrupt. (Privileged)

Description

Save General Purpose Registers.

Restore General Purpose Registers.

Load Dedicated Register. (Privileged if PSR or INTBASE)
Store Dedicated Register. (Privileged if PSR or INTBASE)
Adjust Stack Pointer.

Set selected bits in PSR. (Privileged if not Byte length)
Clear selected bits in PSR. (Privileged if not Byte length)
Set Configuration Register. (Privileged)

Description

Move a Floating Point value.

Move and shorten a Long value to Standard.
Move and lengthen a Standard value to Long.
Convert any integer to Standard or Long Floating.
Convert to integer by rounding.

Convert to integer by truncating, toward zero.
Convert to largest integer less than or equal to value.
Add.

Subtract.

Multiply.

Divide.

Compare.

Negate.

Take absolute value.

Remainder.

Square Root.

Polynomial Step.

Dot Product.

Binary Scale.

Binary Log.

Arctangent.

Sine and Cosine.

Load FSR.

Store FSR.
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2.0 Architectural Description (continued)

MEMORY MANAGEMENT
Format Operation
14 LMR
14 SMR
14 RDVAL
14 WRVAL
8 MOVSUi
8 MOVUSI
MISCELLANEOUS
Format Operation
1 NOP
1 WAIT
1 DIA
CUSTOM SLAVE
Format Operation
15.5 CCALOc
155 CCAL1c
15.5 CCAL2c
15.5 CCAL3c
16.7 CCAL4c
15.7 CCALSc
15.7 CCAL6¢
15.7 CCAL7c
15.7 CCALS8c
15.7 CCAL9¢
15.5 CMOVoc
16.5 CMOVic
15.5 CMOV2c
155 CMOV3c
15.7 CMOVi4c
15.7 CMOV5c
15.7 CMOVséc
15.7 CMOV7¢
15.5 CCMPc
15.5 CCMP1ic
15.1 CCVOci
15.1 CCVici
15.1 CCVaci
15.1 CCV3ic
156.1 Cccv4DQ
15.1 CCV5QD
15.1 LCSR
151 SCSR
15.0 CATSTO
15.0 CATST1
15.0 LCR
15.0 SCR

Operands

mreg,gen
mreg,gen
gen

gen
gen,gen

gen,gen

Operands

Operands

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

gen
gen
gen
gen

creg,gen
creg,gen

Description

Load Memory Management Register. (Privileged)
Store Memory Management Register. (Privileged)
Validate address for reading. (Privileged)
Validate address for writing. (Privileged)

Move a value from Supervisor

Space to User Space. (Privileged)

Move a value from User Space

to Supervisor Space. (Privileged)

Description

No Operation.

Wait for interrupt.

Diagnose. Single-byte ‘‘Branch to Self” for hardware
breakpointing. Not for use in programming.

Description
Custom Calculate.

Custom Move.

Custom Compare.

Custom Convert.

Load Custom Status Register.
Store Custom Status Register.

Custom Address/Test. (Privileged)
(Privileged)

Load Custom Register. (Privileged)
Store Custom Register. (Privileged)
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3.0 Functional Description

The following is a functional description of the NS32332
CPU.

3.1 POWER AND GROUNDING

The NS32332 requires a single 5-volt power supply, applied
on 7 pins. The Logic Voltage pins (Vocb1 and Vgcl2) sup-
ply the power to the on-chip logic. The Buffer Voltage pins
(Veest to Veces) supply the power to the output drivers of
the chip. The Logic Voltage pins and the Buffer Voltage pins
should be connected together by a power (Vgc) plane on
the printed circuit board.

The NS32332 grounding connections are made on 8 pins.
The Logic Ground pins (GNDL1 and GNDL2) are the ground
pins for the on-chip logic. The Buffer Ground pins (GNDB1
to GNDBS) are the ground pins for the output drivers of the
chip. The Logic Ground pins and the Buffer Ground pins
should be connected together by ‘a ground plane on the
printed circuit board.

In addition to V¢ and Ground, the NS32332 CPU uses an
internally-generated negative voltage. It is necessary to filter
this voltage externally by attaching a pair of capacitors (Fig-
ure 3.7) from ine BBG pin io Ground.

+5V
Veeut, Veer2
OTHER Vee
Vooas -VeooBs | CONNECTIONS
(Vcc PLANE)
N$32332
w1
TT"
GNDL1, GNDL2 1
_1 OTHER GROUND
GNDB1-GNDB6 =& » CONNECTIONS
(GND PLANE)
TL/EE/8673-11
FIGURE 3-1. Recommended Supply Connections
3.2 CLOCKING ’

The NS32332 inputs clocking signals from the Timing Con-
trol Unit (TCU), which presents two non-overlapping phases
of a single clock frequency. These phases are called PHI1
(pin 22) and PHI2 (pin 23). Their relationship to each other is
shown in Figure 3-2.

Each rising edge of PHI1 defines a transition in the timing
state (“T-State”) of the CPU. One T-State represents the
execution of one microinstruction within the CPU, and/or
one step of an external bus transfer. See Sec. 4 for com-
plete specifications of PHI1 and PHI2.

e-ONE r-sm-z#

AN

TL/EE/8673-8
FIGURE 3-2. Clock Timing Relationships

As the TCU presents signals with very fast transitions, it is
recommended that the conductors carrying PHI1 and PHI2
be kept as short as possible, and that they not be connect-
ed anywhere except from the TCU to the CPU and, if pres-
ent, the MMU. A TTL Clock signal (CTTL) is provided by the
TCU for all other clocking.

3.3 RESETTING

The RST/ABT pin serves both as a Reset for on-chip logic
and as the Abort input for Memory-Managed systems. For
its use as the Abort Command, see Sec. 3.5.2.

The DT/SDONE pin is sampled on the rising edge of the
reset signal to select the data timing during write cycles. If
DT/SDONE is sampled high, ADO-AD31 are floated during
state T2 and the data is output during state T3. This mode
must be selected if an MMU is used (Section 3.5). If
DT/SDONE is sampled low, the data is output during state
T2. See Figure 3-7.

The CPU may be reset at any time by pulling the RST/ABT
pin low for at least 64 clock cycles. Upon detecting a reset,
the CPU terminates instruction processing, resets its inter-
nal logic, and clears the Program Counter (PC) and Proces-
sor Status Register (PSR) to all zeroes.

On application of power, RST/ABT must be held iow for at
least 50 psec after Vg is stable. This is to ensure that all

{C

LA
vee

”

UL

(1
L

RST/ABT

£64 CLOCK

CYCLES

TL/EE/8673-10

FIGURE 3-3. Power-on Reset Requirements
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3.0 Functional Description (Continued)

on-chip voltages are completely stable before operation.
Whenever a Reset is applied, it must also remain active for
not less than 64 clock cycles. The rising edge must occur
while PHI1 is high. See Figures 3-3 and 3-4.

The Timing Control Unit (TCU) provides circuitry to meet the
Reset requirements of the NS32332 CPU. Figure 3-5a
shows the recommended connections for a non-Memory-
Managed system. Figure 3-5b shows the connections for a
Memory-Managed system.

=L LTL

}- Z 64 CLOCK i

CYCLES
RST/ABT N ’

F(d
TL/EE/8673-12

i
FIGURE 3-4. General Reset Timing

vee
o TCU CPU
it . $
Vo | === 3 \ . —
| RES >.__‘ > . RSTI  RSTO RST/ABT
! : 1 l i e
Lommmmmmmmmmee 4 i | _
EXTERNAL RESET ! _T_ !
(OPTIONAL) { = | = =50 usec
| I
RESET SWITCH SYSTEM RESET
(OPTIONAL)
TL/EE/8673-13
FIGURE 3-5a. Recommended Reset Connections, Non-Memory-Managed System
vee
o TCU MMU cPU
>
Fo——————————— ) $
1 i —— <
] i r b | \ —_— —_ —
: RESET >>- D,g : ; : ASTI  ASTO ASTI RST/ABT RST/ABT
i (| l [ £
H | i 1 |
S o 1 1
EXTERNAL RESET ! !
(OPTIONAL) } = = 2 50 usec
Le—_J
RESET SWITCH
(OPTIONAL)
TL/EE/8673-14
FIGURE 3-5b. Recommended Reset Connections, Memory-Managed System
3.4 BUS CYCLES difference between them is the 4-bit code placed on the Bus

The NS32332 CPU will perform Bus cycles for one of the

following reasons:

1) To write or read data to or from memory or peripheral
interface device. Peripheral input and output are memory
mapped in the Series 32000 family.

2) To fetch instructions into the 20-byte instruction queue.
This happens whenever the bus would otherwise be idle
and the queue is not already full.

3) To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple-
tion of an interrupt service routine.

4) To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are identi-

cal. For timing specifications, see Sec. 4. The only external

Status pins (STO-ST3). Slave Processor cycles differ in that
separate control signals are applied (Sec. 3.4.6).

For case 1 (only Read) and case 2, 3, the NS32332 sup-
ports Burst cycles which are suitable for memories that can
handle “nibble mode” accesses. (Sec. 3.4.2).

The sequence of events in a non-Slave, non-Burst Bus cy-
cle is shown in Figure 3-6 for a Read cycle, and Figure 3-7
for a Write cycle. The cases shown assume that the select-
ed memory or interface device is capable of communicating
with the CPU at full speed. If it is not, then cycle extension
may be requested through the RDY line (Sec. 3.4.1).

A full speed Bus cycle is performed in four cycles of the
PHI1 clock, labeled T1 through T4. Clock cycles not associ-
ated with a Bus cycle are designated Ti (for idle).
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3.0 Functional Description (continued)
NS$32332 CPU BUS SIGNALS

TIORTi

-
o
(=]
o
=
-
3
-
N
a3
N

~ (LU

[ LT T T [T
: XA?,%,EDSS> OATA e NEXTAD[:

ADC-AD3t

e \/

s \_/
-

-
ST0-ST3 x STATUS VALID NEXT STATUS

DDIN \ NEXT

.B—E_a-iﬁ e . %ﬁ

BWO0-BW1 VALID K
/|

o [ D000 0272

FIGURE 3-6. Read Cycle Timing
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3.0 Functional Description (continued)

N$32332 CPU BUS SIGNALS

I TdORTiI T \ T2 1 T3 ‘ T4 | TIORTI l

~[ LI

PHI 2 l | | I I | I I , l I |
- r--
ADDRESS _—
ADD-AD31 VALID )\- - -( | DATA OUT XNEXT ADDR
=3 -

n [T\ W
= [T\ W,
ST0-ST3 [ :X STATUS VALID X NEXT STATUS
= [ \oer [
BEO-BES : : %% VALID Ezzzx :

BWO-BW1 VALID

= | 2772728 4%

FIGURE 3-7. Write Cycle Timing

TL/EE/8673-16
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3.0 Functional Description (continueq)

During T4 or Ti which preceed T1 of the current Bus cycle,
the CPU applies a Status Code on pins ST0-ST3. It also
provides a low-going pulse on the STS pin to indicate that
the status code is valid.

The ADS signal has the dual purpose of informing the exter-
nal circuitry that a Bus cycle is starting and of providing
control to an external latch for demultiplexing address bits
0-31 from ADO-AD31 pins. (See Figure 3-8.)

During this time, the control signal DDIN, which indicates
the direction of the transfer, and BEO-BE3 which indicate
which of the four bus bytes to be referenced, become valid.
Note that during Instruction Fetch cycles BEO-BE3 are all
active, but in operand Read or Write cycles they indicate the
byte(s) to be referenced.
Note: If a burst cycle occurs during an operand read, all the memory banks
should be enabled, during the burst cycle, regardless of BEn. The
CPU BERn lines, in this case, are valid in the middle of T3 of the burst
cycle—thus, there may not be enough time to selectively enable the
different memory banks, unless a WAIT state is added. See Figure
4-6.
During T2 the CPU floats ADO-AD31 lines unless
DT/SDONE is sampied iow on the rising edge of reset and
the bus cycle is a write cycle. T2 is a time window to be
used for virtual to physical address translation by the Memo-
ry Management Unit, if virtual memory is used in the system.
The T3 state provides for access time requirements and it
occurs at least once in a bus cycle. In the middle of T3 on
the falling edge of PHI1, the RDY line is sampled to deter-
mine whether the bus cycle will be extended (Sec. 3.4.1).

if the CPU is performing a Read cycie, the Data Bus (ADO-
AD31) is sampled on the falling edge of PHI2 of the last T3
state. See Sec. 4. Data must, however, be held at least until
the beginning of T4. The T4 state finishes the Bus cycle.
Data from the CPU during Write cycles remains valid
throughout T4. Note that the Bus Status lines (STO-ST3)
change at the beginning of T4, anticipating the following bus
cycle (if any).

3.4.1 Cycle Extension

To allow sufficient strobe widths and access times for any
speed of memory or peripheral device, the NS32332 pro-
vides for extension of a bus cycle. Any type of bus cycle
except a Slave Processor cycle can be extended.

In Figures 3-7 and 3-8, note that during T3 all bus control
signals from the CPU and TCU are flat. Therefore, a bus
cycle can be cleanly extended by causing the T3 state to be
repeated. This is the purpose of the RDY (Ready) pin.

In the middle of T3 on the falling edge of PHI1, the RDY line
is sampled by the CPU. If RDY is high, the next T-state will
be T4, ending the bus cycle. If RDY is low, then another T3
state will be inserted and the RDY line will again be sampled
on the falling edge of PHI1. Each additional T3 state after
the first is referred to as a “WAIT STATE". See Figure 3-9.
Figure 3-10 illustrates a typical Read cycle, with two WAIT
states requested through the RDY pin.

DDIN
D0-D31
ADO-AD31 BUFFER
NS32332
_ ] 855555
E0-BE3
A58

A2-A31

LATCH

TL/EE/8673-17

FIGURE 3-8. Bus Connections
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3.0 Functional Description (continued)

PHI1

=

-

PHI 2

[ ]

[ ]

%

7008 Y

NEXT NEXT
STATE: STATE:
T3 T4

FIGURE 3-9. RDY Pin Timing

PREV. CYCLE
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ADO-AD23 [
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A58 [
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NS$32332 CPU BUS SIGNALS

ADDR|
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TL/EE/8673-18

NEXT CYCLE
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-( DATA
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NEXT STATUS
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FIGURE 3-10. Extended Cycle Example
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3.0 Functional Description (continued)

3.4.2 Burst Cycles not, then cycle extension may be requested through ihe
The NS32332 is capable of performing Burst cycles in order RDY line (Sec. 3.4.1).

to increase the bus throughput. Burst is available in instruc- A Burst cycle is composed of two parts. The first part is a
tion Feich cycles and operand Read cycles only. Burst is regular cycle (i.e. T1 through T4), in which the CPU outputs
not supported in operand Write cycles or Slave cycles. the new status and asserts all the other relevant control
The sequence of evenis for Burst cycles is shown in Figure signals discussed in Sec. 3.4. In addition, the Burst Out Sig-
3-11. The cases shown assume that the selected memory is nal (BOUT) is activated by the CPU indicating that the CPU
capable of communicating with the CPU at full speed. If it is can perform Burst cycles. If the selected memory allows

| o || B} o6 | WO T LI T O T |

JEEpNpEEEEEEN

[ 1
HARAAAAA"

~ T
-1

§1-CEECESN/CL-CEETESN/O}-ZEEZESN

< o

1dac

~

%

NIBBLE # 1 2 3 4

OO OO0

TL/EE/8673-20

(a) Normal Termination of Burst
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e
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NIBBLE #

e = er 8 Her e

(b) External Termination of Burst
FIGURE 3-11. Burst Cycles (For Read Only)
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3.0 Functional Description (continued)
Burst cycles, it will notify the CPU by activating the burst in
signal (BIN). BIN is sampled by the CPU in the middle of T3
on the falling edge of PHI1. If the memory does not allow
burst (BIN high), the cycle will terminate through T4 and
BOUT will go inactive immediately. If the memory allows
burst (BIN low), and the CPU has not deasserted BOUT, the
second part of the Burst cycle will be performed (see Figure
3-11) and BOUT will remain active until termination of the
Burst.
The second part consists of up to 3 nibbles. In each nibble,
a data item is read by the CPU. The duration of each nibble
is 2 clock cycles labeled T3 and T4.
The Burst chain will be terminated in the following cases:
1. The CPU has reached. a 16 byte boundary i.e. the byte
address of the current nibble is x...x1111 (binary).

Note: In 16-bit bus systems (see Sec. 3.4.7) the Burst chain will be terminat-
ed by the CPU on an 8-byte boundary i.e. address x..x111 (binary) and
in 8-bit bus system on a 4-byte boundary i.e. address x..x11 (binary).

| T | 2 | &

2. BIN, sampled in the current nibble’s last T3, is not active
any more. (See Figure 3.11b).

3. Bus Error or Bus Retry occurs (see Sec. 3.4.8).

Case 2 enables the Burst termination externally.

Any nibble’s T3 may be extended with WAIT states using

the RDY line as described in Sec. 3.4.2.

The control signals BOUT, ST0-ST3, DDIN and BEO-BE3

remain stable during the Burst chain.

BOUT is initially set by the CPU according to the known bus

width. Its state may change in a subsequent T3 as a result

of a change in the bus width. Figure 3-12 shows the result-

ing BOUT timing.

Note: If the selected memory is capable of handling burst transfers, it

should activate BIN regardiess of the state of BOUT.

The reason is that BOUT may be activated by the CPU after the BIN
sampling time. The BOUT signal indicates when the CPU is going to
burst, and should not be interpreted as a ‘Burst Request’ signal.

PHI1 I:__] | | |

M

PHI2 D |

Fiis [—

N

ROY [ \

BWO-1 [

m[ﬂ

(x) é'oﬁ[_ \

(Z)W[

Note 1: CPU deasserts BOUT.
Note 2: CPU asserts BOUT.

TL/EE/8673-88

FIGURE 3-12. BOUT Timing Resulting from a Bus Width Change
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3.0 Functional Description (continueq)
3.4.3 Bus Status
The NS32332 CPU presents four bits of Bus Status informa-
tion on pins STO-ST3. The various combinations on these
pins indicate why the CPU is performing a bus cycle, or, if it
is idle on the bus, then why is it idle.
Referring to Figures 3-6 and 3-7, note that Bus Status leads
the corresponding Bus Cycle, going valid one clock cycle
before T1, and changing to the next state at T4. This allows
the system designer to fully decode the Bus Status and, if
desired, latch the decoded signals before ADS initiates the
Bus Cycle.
The Bus Status pins are interpreted as a four-bit value, with
STO the least significant bit. Their values decode as foliows:
0000 - The bus is idle because the GPU does not yet
need to perform a bus access.
0001 - The bus is idie because the CPU is executing the
WAIT instruction.

0010 ~ (Reserved for future use.)

0011 - The bus is idle because the CPU is waiting for a
Slave Processor to complete an instruction.

0100 - Interrupt Acknowledge, Master.
The CPU is performing a Read cycle. To ac-
knowledge receipt of a Non-Maskable Interrupt
(on NMI) it will read from address FFFFFF001g,
but will ignore any data provided.
To acknowledge receipt of a Maskable Interrupt
(on INT) it will read from address FFFFFF001g,
expecting a vector number to be provided from
the Master Interrupt Control Unit. If the vectoring

- mode selected by the last SETCFG instruction

was Non-Vectored, then the CPU will ignore the
value it has read and will use a default vector
instead. See Sec. 3.4.5.

0101 - Interrupt Acknowledge, Cascaded.
The CPU is reading a vector number from a Cas-
caded Interrupt Control Unit. The address provid-
ed is the address of ICU’s Hardware Vector regis-
ter. See Sec. 3.4.6.

0110 - End of Interrupt, Master.
The CPU is performing a Read cycle to indicate
that it is executing a Return from Interrupt (RET!)
instruction. See Sec. 3.4.6.

0111 - End of Interrupt, Cascaded.
The CPU is reading from a Cascaded Interrupt
Control Unit to indicate that it is returning
(through RETI) from an interrupt service routine
requested by that unit. See Sec. 3.4.6.

1000 — Sequentiai instruction Fetch.
The CPU is reading the next sequential word
from the instruction stream into the Instruction
Queue. it will do so whenever the bus would oth-
erwise be idle and the queue is not already full.
1001 - Non-Sequential Instruction Fetch.

The CPU is performing the first fetch of instruc-
tion code after the Instruction Queue is purged.
This will oceur as a result of any jump or branch,
or any interrupt or trap, or execution of certain
instructions.

1010 - Data Transfer.

The CPU is reading or writing an operand of an
instruction.

1011 - Read RMW Operand.
The CPU is reading an operand which will subse-
quently be modified and rewritten. If memory pro-
tection circuitry would not allow the following
Write cycle, it must abort this cycle.

1100 - Read for Effective Address Calculation.
The CPU is reading information from memory in
order {o determine the Effective Address of an
operand. This will occur whenever an instruction
uses the Memory Relative or External addressing
mode.

1101 — Transfer Slave Processor Operand.

The CPU is either transferring an instruction op-
erand to or from a Slave Processor, or it is issu-
ing the Operation Word of a Slave Processor in-
struction. See Sec. 3.9.1.

1110 - Read Slave Processor Status.
The CPU is reading a Status Word from a Slave
Processor. This occurs after the Slave Processor
has signalled completion of an instruction. The
transferred word tells the CPU whether a trap
should be taken, and in some instructions it pre-
sents new values for the CPU Processor Status
Register bits N, Z, L or F. See Sec. 3.9.1.

1111 - Broadcast Slave ID.
The CPU is initiating the execution of a Slave
Processor instruction. The ID Byte (first byte of
the instruction) is sent to all Slave Processors,
one of which will recognize it. From this point the
CPU is communicating with only one Slave Proc-
essor. See Sec. 3.9.1.
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3.0 Functional Description (continued)
3.4.4 Data Access Sequences

The 32-bit address provided by the NS32332 is a byte ad-
dress; that is, it uniquely identifies one of up to 4 billion
eight-bit memory locations. An important feature of the
NS32332 is that t