Microsoft
BASIC-80

Software Reference
Manual

for HEATH/ZENITH 8-bit digital computer systems

595-2538-02
Printed in the United
Copyright © 1981 HEATH COMPANY States of America

Heath Compan
All Rights Reserved BENTON HARBOR, MICHIGAN 49022

Portions of this Manual have been adapted from Microsoft publications or
documents.

COPYRIGHT © by Microsoft, 1979, all rights reserved.

Table of Contents

Chapter One — System Introduction and General Information

(01723 7 1= 1-1
Installation Guidet 1-2
Contents of the Diskettes............o i, 1-3
Sample Output of PLBAS 1-4
Diskette USeoiv it e i e e e e 1-5
Preparing Working Diskettes i il 1-8
System Introduction it 1-9
Manual SCope ...t e 1-9
Hardware Requirements i 1-10
System Software Requirementsooviiiiiiniinneen. 1-10
Preparing the Diskette i, 1-11
Initialization of BASIC-80.........cuuuiitiii i 1-11
General Informationt i e 1-12
Modes of Operationovviiiinniiiinneeeiinneennanen L1412
Line Format i i e e 1-12
Line Numbersot i 1-12
CharacCter Setouuiiiiiie ettt 1-13
Control Charactersc.couviiiiiin i eeinineeennneeennns 1-14
BASIC-80 Programmingouvtumtnetnenneennunenneneuneenns 1-15
Loading the BASIC-80 Interpreterccovviiiiiniinnvenn.. 1-15
Writing a BASIC-80 Program, 1-17
Running a BASIC-80 Programc.oiiiiiniiiiniinninnn.. 1-19
Debugging a BASIC-80 Programouoiriuiiinnnneeeeeennnnn 1-20
Saving a BASIC-80 Programcouuiiiiiineennnnennnnenns. 1-22
Loading a BASIC-80 Programc.cooveiiiinnnnennnenennn. 1-23
Listing a BASIC-80 Program on a Hard Copy Device 1-24

Chapter Two — Expression

(07255 o4 1= 2-1
00 a7: 21 1 £ J U P 2-2
String Constantsc.ooiiiiiiiii i i e 2-2
Numeric Constantsovviiiriii ittt ittt it 2-2
Integer Constantscoiiiiiiiiii it 2-2
Fixed Point Constantsviiiniiniiiininneneeneneaenannn 2-2
Floating Point Constantsoiiiiiiiiiiiin i 2-2
Hex Constantsovviiiniiiii ittt ieie ettt 2-2
Octal Constantsovttrr ittt ettt it e 2-3
Single and Declaration Charactersooviivviii... 2-3
Variables ... e 2-4
Variable Names and Declaration Characters 2-4
Examples of BASIC-80 Variable names S N 2-5
Array Variables 2-5

Type CONVETSIONSottt ittt ittt it in ettt 2-6

Expressions and Operatorsc.cveviiiiiitiiiiiii i 2-8

Arithmetic Operatorscoooiiiiiiiiiiiiiiiiiie... 2-8
Integer Division and Modulus Arithmetic, 2-9
Overflow and Division by Zero i, 2-9

Relational Operators.c.ouuiiiimiiiiieeereeeennnnnnens 2-10

Logical Operatorsc.ouiiiiiiiriiieeeennnn i 2-11
Logical Operators in Relational Expressions 2-14

Functional Operatorsuuuuruurrrrreeeeeeeeeannnnnnns 2-14

Chapter Three — Command Mode Statements

(017751 o7 1= 3-1
Command Mode Statements. ...ttt iiniineennnnn. 3-2
AUT O . o e 3-2
CLE AR . e e e 3-3
CONT . e e 3-4
DELETE . .. e e e e, 3-4
BT .. e e e e 3-5
FILES .o e e 3-6
LIS o e e e 3-7
LIS .o e e e e e 3-7
LOAD .. e e 3-8
MERGE . ..o e e e e 3-9
NEW o e e e e 3-9
RENUM o i e e e e et s et e e et e e e 3-10
3 D T D 3-11
RUN o e e e e e 3-12
SAVE L e 3-13
SY ST EM .o e e e e 3-13

L0)12 14 =) P 4-1
Data Type Definition i 4-2
DEFINT .o i it it e e e 4-2
DEF SN G . .ot e 4-2
DEFDBL ..ot e e 4-3
DEFSTR .ot e e 4-3
Assignment and Allocation Statements 4-4
DM L e 4-4
OPTION BASE ..ottt e e et e 4-4
ERASE .. i e e 4-5
LT oot e e 4-5
REM o e e e e 4-6

Control Statementsc.itiiiiiin ittt 4-7
Sequence of Executioniiiiiiiiiiii i i 4-7
END . e e e e e 4-7
FOR/NEX T ittt e e e e 4-8
Examplesot e 4-9
Nested LoOPpS ..o covtiiii 4-10
GOSUB/RETURN ..ottt ettt e e e 4-11
GOTO ... P 4-12
ON/GOTO and ON/GOSUBttt 4-13
ST O .. e e e e 4-14
Conditional EXeCutionoiiiniiitiiiiie ittt 4-14
IF/THEN/ELSEt e e 4-15
Additional Considerationscciiiiiiiiiniiiinennnnn. 4-16
Nesting of IF Statementsooviiiiinrtiiinnreeennnnann 4-16
WHILE/WEND ..ottt ettt ettt 4-17
I/O Statements (Non-DisK)viiiiiiiiiiiiii e 4-18
DA T A o e e e e e 4-18
INPUT o i e e e et et e et e e e e 4-19
LINE INPUT . i i e e e et et et e e e e 4-20
LPRIN T .t e e e e 4-21
PRINT . e 4-21
Print Positions i i i i e e e 4-21
Exampleso 4-22
READ o i e e e e e 4-23
RESTORE ... e e et e e e i 4-24

WRITE .. i et e 4-25

Chapter Five — Strings

L0)7 74 1= 5-1
String Input/Output ...t e 5-2
String Operationscouiiiiiniiti it it e 5-3
String Functions i i 5-4
ASC . o e e e e 5-5
CHR S ..t e e e e 5-5
HEX G .o e e e e 5-6
INKEY S .ot e et i e e 5-6
INPUT S .. e e e et i e 5-7
INST R .. i e e e 5-8
9 4 O 5-8
LEN o e e e e e 5-9
MDD . .t e s 5-9
Ml o e 5-10
04 1 5-10
RIGHT S ... i e e e e 5-11
SPACES ... e 5-11
ST R . oottt e 5-12
ST RINGS ..ottt e e e e e e 5-12
VAL e e e e 5-13

()12 s 13 AU R 6-1
ATTAYS . v ettt e et ettt e e 6-2
Array Declaratoroiuiiiinneniiii e 6-2
ATTay SUDSCTIPE .« o \vt it 6-3
OPTION BASE Statementuuuuunururnreeeeenanireeeenns 6-3
VErtiCal ATTAYS ..ot ve ettt ettt 6-4
Multi-Dimensional AITAYSovinrreeennnieeniiieranieeeee. 6-5
Matrix Manipulation ... 6-6
Matrix Input Subroutine 6-6
Scalar Multiplicationo e 6-7
Tranposition of a Matrix ... 6-7
Matrix Additiono ee e ettt it 6-8

Matrix Multiplicationcoooiiiiiiiiiiiii e 6-8

|vi

Chapter Seven — Functions

(@A 72 L= P 7-1
Arithmetic FURCHONSo ot e e e e i 7-2
AB S . e 7-3
AN o e e e 7-3
(19412 7-4
CINT oot e e e e 7-4
GO .ot 7-5
GOSN G oottt e e 7-5
D 7-6
FIX oot e 7-6
IN T ot 7-7
LOG oottt 7-7
RN D .ttt e e 7-8
RANDOMIZE ..ottt e e et e et 7-8
OGN o e 7-9
SIN Lt e 7-10
SR oo e 7-10
AN ot e e 7-10
Mathematical Functionsi it 7-11
Special FUNGtionsouiiiiiit i 7-12
FRE .ottt e 7-13
IN P ot 7-13
LPOS oot 7-14
155 P 7-14
PEEK i e e e e e s 7-15
POKE oottt e e e e 7-15
PO .ot e e 7-16
QP C . it e e 7-16
TA B o e e e e e e 7-17
VA RP T R it e 7-18
WAL ot e e e e 7-21
WD TH . oottt e e e e e 7-22
User-Defined FUNCHONS . ..ottt e et it 7-23
DEF FN oo i et ettt e e 7-23
Assembly Language Programs oo i 7-24
DEF USR .ottt e e e e e e 7-24
L5 PP 7-25

Vil

Chapter Eight — Special Features

[0) 7=3 7 =P 8-1
Error Trapping . ..o oottt e e 8-2
ON ERROR GOTO . ittt ettt e e e e e e e 8-2
RESUME ... e 8-3
Error Trap Example i 8-3
ERROR ..t 8-4
ERR and ERL Variables 8-5
EITOr Codes .. oottt e 8-6
Formatted OQutput i 8-8
PRINT USING ...ttt e e i 8-8
String Fields ... 8-8
Numeric Fields i 8-9
Trace Flag 8-14
TRON/TROFF .. e i 8-14
Overlay Managementouurunineninenininnniiiaan.n. 8-15
CHAIN e e e e 8-15
COMMON .. e e e e 8-16

OV T VIR & ottt et e e e et e e 9-1
Moving the Cursorcouiiiiiiii i 9-3
Inserting Texto 9-4
Deleting TeXtttt e 9-6
Finding Text.ottt 9-7
Replacing TeXt 9-8
Ending and Restarting Edit Mode ...l 9-9
Other Edit Mode Features........... ..., 9-11

Chapter Ten — BASIC-80 Disk File Operations

OVEIVIEBW . .. 10-1
File Manipulation Commands o ... 10-2
FILES . e e 10-2
8 0 O 10-2
LOAD . e e 10-2
MERGE .. e e e 10-2
NAME . 10-2
RESET . e e 10-3
RUN o e e e 10-3
SAVE e 10-3

File Management Statements oo 10-4
OPEN o e e e e e i e 10-5
CLOSE ittt e e 10-8
) 10-9
1) 10-9
LOC o ittt 10-10

BASIC-80 Sequential I/Ocoiiiiiiiiiiii i 10-11

Sequential Access Statements ool 10-11
INPU T # . oottt ettt e e e e e 10-11
NumericInput o i 10-12
String Input o 10-14
LINE INPUT# .ottt ettt 10-16
PRINT# and PRINT# USING ...ttt 10-17
WRITE# .ottt e, e 10-19
Sequential Access Techniques ...t 10-21
Creating and Accessing a Sequential File 10-21
Adding Data to a Sequential Filel 10-23
BASIC-80 Random I/O . ..o i ittt 10-25
Random Access Statementsooviiiiiiiiiiiiiiiiie... 10-26
00 0 X 9 10-27
LSOET RSET ..ottt ettt ettt 10-29
GET o e 10-30
PUT o e 10-31
MKI$, MKSS, MKDS$ttt et i 10-32
CVL CVS, CVD ittt ettt 10-33
Random Access Techniquesccooiiiiiiiiiiiin... 10-34
Creating a Random Access File, 10-34
Accessing a Random Access File e 10-36
Additional Featuresc..iviiiiiineeiiiiiniiinnneiann 10-37

Chapter Eleven — Microsoft BASIC-80 Summary

OV T VIBW . . ottt e e 11-1
Abbreviations 11-2
Data Type Declaration Characters............. ..., 11-2
Arithmetic Operatorso ittt 11-3
String Operatoro it e 11-3
Relational Operators.......... ... 11-3
Logical Operatorsiiiiiiiiiiiii i 11-4
Commandsuuti e 11-5
Edit Mode Subcommands and Functions 11-9
Print Using Format Field Specifiers 11-10

Numeric Specifier....... i e 11-10

String Specifier 11-10

Program Statements e 11-11
Data Type Definition i 11-11
Assignment and Allocation i 11-11
Sequence of Execution il 11-12
Conditional EXecutioncovtiirineeininiiinniiineeenns 11-13
Non-Disk I/O Statementscccoeiriiiiiiiiiiiiiannn.. 11-14

String FUnctions 11-16

Arithmetic Functionst i 11-18

Special Functions ... 11-19

Special Featureso 11-20
Error Trappingot 11-20
Trace Flag oot 11-20
Overlay Managementoiuuuuuununnnneneneneneen. 11-21

Disk Input/Output Statementso, 11-22

Disk Input/Output Functions.............. ..o, 11-24

Appendix A — Error Messages

General EITOTS ..o vt e e A-1
Disk Related EITOTS ... oottt e e e e et e et e A-6
Reserved Wordsoit i e e e A-8
Appendix B — ASCII Codes
Decimal to Octal to Hex to ASCII Conversioncoeouvueen.n. B-1
Control Character Definitionscoiiiiiiiii i B-2
Appendix C — New Features in BASIC-80
New Features in BASIC-80 i e C-1
Appendix D — Programming Hints
Conserving Memory SPacec.couuiiniiniieiiiiiiaiieinenen, D-1

Saving Execution Time i D-3

[

Appendix E — Assembly Language Subroutines

Memory AlloGationooi i E-2
User Function Calls ...t i i E-3
Numeric Storage Format i E-5
Integer Storage Format i i E-5
Single-Precision Storage Format E-5
Double-Precision Storage Format, E-5
String Storage Format e E-6
Data Type CONVErSiONSouiiniiiinneiiinneiininn. E-6
CALL Statementuitirtet it it E-7
INtEITUPLS ..ot E-9

Appendix F — Random And Sequential I/O Programming Examples F-1

Index
INdEX .ot I-1
Tables

Table

2-1 Arithmetic Operatorscoiiiiiiiiiiiiiiiininnnnn. 2-8
2-2 Relational Operatorsc.c.oiiiiiiianinninnn, 2-10
2-3 Logical Operatorsooiiiiiiiiiiiiieeneeen .. 2-11
2-4 Truth Table for Logical Operators 2-12
5-1 String Functions i 5-4
6-1 Array Storage Allocation 6-4
6-2 Multi-Dimensional Array Storage Allocation 6-5
7-1 Arithmetic Functionso i 7-2
7-2 Mathematical Functionso e, 7-11
7-3 Special Functions i 7-12
8-1 EITOT COAeS . . oottt ettt e et e i 8-6
10-1 File Management Statementst 10-4
10-2 Sequential Access Statements 10-11
10-3 Random Access Statementsooiiiiiii.. 10-26

E-1 Register Values Used to Specify Data Types E-4

Xil |

INSERT

1-1

System Introduction and General Information

Chapter One

System Introduction and General
Information

OVERVIEW

This Chapter contains an “‘Installation Guide” and general reference information
pertaining to the BASIC-80 Programming Language. BASIC-80 is one of the most
extensive implementations of BASIC available for the 8080 and Z80 micro-
Processors.

The hardware and systems software requirements for BASIC-80 are presented in
this Chapter.

This Chapter also contains a user-oriented explanation of the operating envi-
ronment of BASIC-80.

1'2 | CHAPTER ONE

INSTALLATION GUIDE

for the Microsoft BASIC-80
Interpreter and BASIC Compiler

Technical consultation is available for

any problems you encounter in verifying

the proper operation of these products.

We are not able to evaluate or assist in the

debugging of any programs you may de-

velop. For technical assistance, call:
(616) 982-3860

Consultation is available between 8:00
AM and 4:30 PM on normal business
days.

1-3

System Introduction and General Information

Contents of the Diskettes

The diskettes you have received contain the following files:
Microsoft BASIC-80 Interpreter Diskette

MBASIC.COM
PI.BAS

MBASIC.COM is the BASIC Interpreter. Its commands and functions are dis-
cussed in this Reference Manual. PI.BAS is a sample program written in BASIC
which calculates the value of pi. PLBAS is provided to help familiarize you with
the workings of the interpreter.

Microsoft BASIC Compiler Distribution Disk I

BASCOM.COM
BASLIB.REL

The commands and functions of the BASIC Compiler, which is stored in the file
BASCOM.COM, are documented in the “BASIC Compiler User’s Manual.”
BASLIB.REL is the BASIC Compiler System Library. You may modify this file by
using the Library Manager (LIB.COM, on Compiler Distribution Disk II).

Microsoft BASIC Compiler Distribution Disk II

L80.COM
M80.COM
CREF.COM
LIB.COM
PI.BAS
PIL.REL

Section 2 of the *“Microsoft Utility Manual” defines the use and operation of the
MACRO-80 Assembler (M80.COM). CREF.COM, the Cross-Reference Facility, is
described in Section 3 of the Utility Manual; L80, the Linking Loader, is dis-
cussed in Section 4; and LIB.COM, the Library Manager, is discussed in Section
5.

PI.BAS is a sample program designed to calculate the value of pi. It is provided to
assist you in learning how to compile, link, and execute a program. PL.REL is the
relocatable object file generated by the Compiler from PI.BAS.

Based on the type of distribution media you received, the files mentioned above
may be recorded on one or more disks.

1'4 | CHAPTER ONE

Sample Output of PI.BAS

The listings provided below are sample outputs of the PLBAS program. Note that
the results generated by the Interpreter and Compiler may differ due to the
different algorithms used to manipulate data.

©oONOOOHA~WZ

OCONO O A WZ

N = = ed bk b a4 o
COWwONOUOARWN-=O

SIDES

8

16

32

64

128

256

512
1,024
2,048
4,096
8,192
16,384
32,768
65,536
131,072
262,144
524,288
1,048,576

SIDES

8
16

32
64
128
256

512
1,024
2,048
4,096
8,192
16,384
32,768
65,536
131,072
262,144
524,288

1,048,576

BOUNDS ON PI — DOUBLE PRECISION BIONOMIAL THEOREM VERSION

SIDE LENGTH
0.76536691188812
0.39018064737320
0.19603428244591
0.098135344684 12
0.04908246546984
0.02454307302833
0.01227176748216
0.00613591633737
0.00306796119548
0.00153398059774
0.00076699029887
0.00038349514944
0.00019174757472
0.00009587385284
0.00004793689368
0.00002396846321
0.00001198423161
0.00000599211580

PI-LOWER BOUND
3.06146764755249
3.12144517898560
3.13654851913452
3.14033102989197
3.14127779006958
3.14151334762573
3.14157247543335
3.14158916473389
3.141592264 17542
3.14159226417542
3.141592264 17542
3.14159226417542
3.14159226417542
3.14159440994263
3.14159226417542
3.14159440994263
3.14159440994263
3.14159440994263

Interpreter Results

PI-UPPER BOUND
4.95931573036713
3.87800677621650
3.47739260077205
3.30237067197655
3.22030812114884
3.18054350336212
3.16096780640274
3.15125708966375
3.14641880958168
3.14400368450104
3.14279751177684
3.14219477240231
3.14189348940372
3.14174501554227
3.14166756506744
3.14163205998885
3.14161323485294
3.14160382236958

BOUNDS ON PI — DOUBLE PRECISION BIONOMIAL THEOREM VERSION

SIDE LENGTH
0.76536686473018
0.39018064403226
0.19603428065912
0.09813534865484
0.04908245704582
0.02454307657144
0.01227176929831
0.00613591352593
0.00306796037257
0.00153398063749
0.00076699037514
0.00038349519462
0.00019174759819
0.00009587379921
0.00004793689962
0.00002396844981
0.00001198422491
0.00000599211245

PI-LOWER BOUND
3.06146745892072
3.12144515225805
3.13654849054594
3.14033115695475
3.14127725093277
3.14151380114430
3.14157294036709
3.14158772527716
3.14159142151120
3.14159234557012
3.14159257658487
3.14159263433856
3.14159264877699
3.14159265238659
3.14159265328899
3.14159265351459
3.14159265357099
3.14159265358509

Compiler Results

PI-UPPER BOUND
4.95931523537420
3.87800673496263
3.47739256563251
3.30237081249040
3.22030755454287
3.18054396821973
3.16096827709498
3.15125564133382
3.14641796432625
3.14400376602075
3.14279782442605
3.14219514270746
3.14189387407905
3.14174325781772
3.14166795419967
3.14163030351872
3.14161147846025
3.14160206600152

System Introduction and General Information | 1'5

Diskette Use

DISKETTE LOADING

Refer to Figure 1-1A or 1-1B, open the disk drive door, and insert the diskette(s)
so the diskette label faces the open door. Then carefully close the drive door.

%

A\

N

—
X

5

N
|
/\w N

Figure 1-1A Figure 1-1B

1-6

CHAPTER ONE

DISKETTE HANDLING

Diskettes are easily damaged. Observe the following precautions when handling
diskettes:

1. Keep the diskette in its storage envelope whenever it is not in use.

2. Keep the diskette away from magentic fields, including magnetic paper
clip holders, magnetized scissors or screwdrivers, and heavy electrical
equipment. Magnetic fields can distort the data recorded on the diskette.

3. Replace damaged or excessively worn storage envelopes.

4, Write only on the diskette label, and then only with a felt-tip pen. Do not
usea pencil or ball-point pen, as these may damage the recording surface.

5. Keep the diskettes away from hot or contaminating material.
6. Do not expose the diskette to sunlight, liquids, or smoke.
7. Do not touch the diskette surface. Abrasions can alter stored data.

WRITE-PROTECTION

The diskette can be write-protected so that data cannot be written to it. (All
distribution diskettes are shipped write-protected). How a disk is write-
protected depends on the size of the diskette.

A 5.25-inch diskette has a write-protect notch on the side. When this notch is
covered with a tab or opaque tape, no data can be written on the diskette. Figure
1-2A illustrates a write-protected 5.25-inch diskette. Figure 1-2B depicts a
write-enabled 5.25-inch diskette. ‘

An 8-inch diskette has a write-enable notch on its side. If this write-enable notch
is exposed, no data can be written to the diskette. To write-enable an 8-inch
diskette, cover the write-enable notch with a tab or opaque tape. Figure 1-3A
shows a write-protected 8-inch diskette. Figure 1-3B shows a write-enabled
8-inch diskette.

System Introduction and General Information | 1'7

WRITE-PROTECTED WRITE-ENABLED

Diskette No. -

READ/WRITE \ READ/WRITE
HEAD WRITE-PROTECTED HEAD WRITE-
APERTURE NOTCH APERTURE ENABLED

Figure 1-3A Figure 1-3B

1'8 | CHAPTER ONE

Preparing Working Diskettes

Using the procedure outlined in your CP/M manual, power-up your computer
and boot-up CP/M from CP/M Distribution Disk L.

If you have two or more drives of the same size, duplicate your MBASIC distribu-
tion diskette(s) using DUP.COM. If you do not have two or more drives of the
same size:

1. Initialize the blank diskette(s) to which you will copy using FOR-
MAT.COM.

2. Duplicate the MBASIC distribution disk(s) using PIP.COM.

NOTE: All distribution diskettes are write-protected to ensure that you always
have an accurate copy of the software. Therefore, duplicate the distribution
diskettes and then store them in a safe place. Use your copies for day-to-day use
of the programs.

1-9

System Introduction and General Information

SYSTEM INTRODUCTION

Manual Scope

This BASIC-80 Reference Manual is your reference source for the BASIC-80
language. Its Chapters are organized in a functional manner. If, for example, you
need information about strings, simply refer to Chapter Five, Strings.

Also included with the BASIC-80 package are an Installation Guide and a
Reference Card. The Guide contains the information you needed to create a
working copy of the BASIC-80 Interpreter. Keep the Reference Card handy, as it
contains often needed information.

1'10 | CHAPTER ONE

Hardware Requirements

The hardware required to run the BASIC-80 Interpreter is:
1. 8080 or Z80 microcomputer
2. 48K of RAM.
3. One floppy disk drive.
4. Terminal device.
5. Optionally — a hard copy device
This is the minimum hardware configuration. We recommend that you have

more than one disk drive. If you plan to develop large programs, you will no
doubt need a hard copy device.

System Software Requirements

The BASIC-80 Interpreter is designed to run under CP/M version 2.0 and later.

System Introduction and General Information

Preparing the Diskette

The BASIC-80 Interpreter is distributed on either a 5.25” mini-floppy or an 8"
floppy. The Installation Guide furnished with this product contains the informa-
tion you will need when you create your working diskette.

Never use your distribution copy of BASIC-80 except to make copies for your
own use. Keep your distribution copy in a safe place. The Installation Guide
contains more information about disk handling procedures.

Initialization of BASIC-80

BASIC-80 is distributed in an absolute binary format. BASIC-80 is stored on the
disk with the file name MBASIC.COM. BASIC-80 can be directly loaded into
memory and used. To load BASIC-80, type the following in response to the CP/M
prompt:

MBASIC

This command will load MBASIC into memory. After MBASIC has been loaded

into memory, a sign-on message will be displayed. The message should look
similiar to this:

BASIC-80 Rev. 5.2

[CP/M Version]

Copyright 1977, 78, 79, 80 (C) by Microsoft
Created: 11-Aug-80

15430 Bytes free

Note that the revision number, the creation date, and the number of free bytes
might be different with your system.

A BASIC-80 program can be automatically executed when the file name is
appended to the command string. For example, if you want to load the interpre-
ter and run the program SAMPLE.BAS, you could use the following command
string:

MBASICASAMPLE

The space between MBASIC and SAMPLE is required. (Throughout this manual,
we will use the symbol a to indicate a required space.) The default extension
.BAS will be assumed. If the file name specified can not be found, the message
“File not found” will be displayed, and you will be returned to the CP/M
Command Mode.

1-11

1-12 | crrpren one

GENERAL INFORMATION

Modes of Operation

After you have loaded the interpreter, BASIC-80 will type ““Ok”. This prompt
signifies that BASIC-80 is in the Command Mode.

In the Command Mode, the BASIC-80 Interpreter will execute your instruction
as soon as you terminate the entry with a RETURN. The commands and state-
ments entered in Command Mode should not be preceded by line numbers.
Results of arithmetic and logical operations may be displayed immediately and
stored for later use, but the instructions themselves are lost after execution. This
mode is useful for debugging and for using BASIC-80 as a “‘calculator” for quick
computations that do not require a complete program.

If you begin a program line with a line number, BASIC-80 assumes that you wish
to store this program line for execution at a later date. This is called the Inter-
mediate or Program Mode. The program stored in memory will be executed if
you enter the RUN command.

Line Format

Program lines in a BASIC-80 program have the following format (square brackets
indicate optional):

nnnnn BASIC-80 statement [:BASIC-80 statement...]

At the programmer’s option, more than one BASIC-80 statement may be placed
onaline, but each statement on a line must be separated from the last by a colon.

A BASIC-80 program line always begins with a line number, ends with a carriage
return, and may contain a maximum of 255 characters.

It is possible to extend a logical line over more than one physical line by use of
the terminal’s LINE FEED key. LINE FEED lets you continue typing a logical line
on the next physical line without entering a RETURN.

Line Numbers

Every BASIC-80 program line begins with a line number. Line numbers indicate
the order in which the program lines are stored in memory and are also used as
references for branching and editing. Line numbers must be in the range 0 to
65529. A period (.) may be used in EDIT, LIST, AUTO and DELETE commands to
refer to the current line.

System Introduction and General Information I 1'13

Character Set

The BASIC-80 character set is comprised of alphabetic characters, numeric
characters and special characters. The alphabetic characters are the upper case
and lower case letters of the alphabet. The numeric characters are the digits 0

through 9.

BASIC-80 also recognizes the following special characters and terminal keys:

Character Name

+ -

urﬁ-—%*o\o_«f—\—)*l

® VAN~ -

DELETE
ESC
TAB

Blank

Semicolon

Equal sign or assignment symbol
Plus sign

Minus sign

Asterisk or multiplication symbol
Slash or division symbol

Up arrow or exponentiation symbol
Left parenthesis

Right parenthesis

Percent

Number (or pound) sign

Dollar sign

Exclamation point

Left bracket

Right bracket

Comma

Period or decimal point

Single quotation mark (apostrophe)
Colon

Ampersand

Question mark

Less than

Greater than

Backslash or integer division symbol
At-sign

Underscore

Deletes last character typed.
Escapes Edit Mode subcommands.
Moves print position to next tab stop.
Tab stops are every eight columns.

LINE FEED Moves to next physical line.
RETURN Terminates input of a line.

1'14 I CHAPTER ONE

Control Characters

The following control characters are in BASIC-80:

CTRL-A

CTRL-C

CTRL-G
CTRL-H
CTRL-I

CTRL-O

CTRL-R
CTRL-S
CTRL-Q

CTRL-U

Enters Edit Mode on the line being typed.

Interrupts program execution and returns to BASIC-80 command
level.

Rings the bell at the terminal.
Backspace. Deletes the last character typed.
Tab. Tab stops are every eight columns.

Halts program output while execution continues. A second
Control-O restarts output.

Retypes the line that is currently being typed.
Suspends program execution.
Resumes program execution after a Control-S.

Deletes the line that is currently being typed.

To execute any of these control characters, hold down the CTRL key while
simultaneously typing the letter. Thus, to execute CTRL-G, hold down the CTRL
key while simultaneously typing the letter G.

System Introduction and General Information | 1'15

BASIC-80 PROGRAMMING

This section will tell you how to write a BASIC-80 program and explain the
unique features of the BASIC-80 programming environment. No attempt will be
made to teach the subject of BASIC programming, but enough information will
be provided so that you should be able to successfully use the BASIC-80 Interpre-
ter.

Loading the BASIC-80 Interpreter

The BASIC-80 Interpeter, which must be loaded into your computers’ memory
before you can use it, is an absolute binary file. This means that it is in a form
which can be directly executed by your computer. Before you can perform the
procedures listed below, you must ‘“‘boot-up” your computer. If you are unsure
how to do this, refer to the appropriate operating system manual.

The CP/M file name used to reference the interpreter is: MBASIC.COM. So, to
load the BASIC-80 Interpreter into memory, type the following response to the
prompt from CP/M:

A>MBASIC

(Do not type the A>, as this represents the prompt from CP/M; and remember to
terminate the line by pressing the RETURN key.)

This assumes that the file MBASIC.COM resides on the current default disk. If
the file does not reside on the current default disk, type the drive name and then
the file name. For example, if A: is the current default disk, and the BASIC-80 file
resides on drive B:, you would use the following command to load BASIC-80:

A>B: MBASIC

After BASIC-80 is loaded into memory, a sign-on message will be displayed on
your screen. The amount of free memory, as well as the BASIC-80 version
number, will also be displayed. Take note of the amount of free memory, as this
will no doubt be a crucial issue if you wish to write large, complex programs.

1'16 I CHAPTER ONE

When BASIC-80 is loaded in the manner decribed above, it will make certain
assumptions about the operating environment. BASIC-80 assumes that:

No more than 3 disk files will be open,
All available memory will be used,
Random record size is 128 bytes.

You can change these assumptions by using certain switches.

The number of disk files that can be open can range from 0-15. The /F: switch is
used to specify the maximum number of files. BASIC-80 will establish a file
buffer in memory for each file specified with the /F: switch. This will decrease
the amount of free memory that you have to work with. For example, to set up
five file buffers, you could use the following command:

A>MBASICa/F:5

Note the space that is required between MBASIC and the /F:5. If you do not type
this space, CP/M will assume that the switch is part of the file name.

You can also specify the highest memory location BASIC-80 will use with the
/M: switch. In some cases it is desirable to set the amount of memory well below
the CP/M BDOS to reserve space for assembly language subroutines. In all cases,
the highest memory location should be below the start of BDOS (whose address
is contained in locations 6 and 7). If the /M: switch is omitted, all memory up to
the start of BDOS is used.

NOTE: The number of files and the highest memory location numbers can be
either decimal, octal (preceded by a&O), or hexadecimal (preceded by&H).

You can also change the record size of a random file by using the /S: switch. The
default record size is 128 bytes, and the maximum record size is 256 bytes. For
example, to set the maximum record size to 200 bytes, you could use the
following command:

A>MBASICA/S:200

CHAPTER 1 | 1"17

Any combination of these three switches can be used in a command line. For
example:

A>MBASICAPAYROLL.BAS

Use all memory and 3 files, load and execute PAYROLL.BAS
A>MBASICAINVENT/F:6

Use all memory and 6 files, load and execute INVENT.BAS
A>MBASICA/M:32768

Use first 32K of memory and 3 files.

After the BASIC-80 interpreter has been loaded into memory, a program may be
written.

Writing a BASIC-80 Program

A BASIC-80 program is composed of lines of statements containing instructions
to BASIC-80. Each of these program lines begins with a line number, followed by
one or more BASIC-80 program statements. These line numbers indicate the
sequence of statement execution, although this sequence may be changed by
certain statements.

The format of a BASIC-80 program line is:

line statement statement line
number keyword text terminator
100 LET X =X+1 <RETURN>

Every program line in a BASIC-80 program must begin with a line number,
which must be a positive integer within the range 0 - 65529. This BASIC-80 line
number is a label that distinguishes one line from another within a program.
Thus, each line number in the program must be unique.

Each program line in a BASIC-80 program is terminated with a carriage return,
which you can generate by pressing the RETURN key on your console device.

1'18 I CHAPTER 1

You could use consecutive line numbers like 1,2,3,4. For example:

1X=1
2Y =2
37Z =X+Y
4 END

However, a useful practice is to write line numbers in increments of 10. This
method will allow you to insert additional statements later between existing
program lines.

10X =1
20Y =2
30Z = X+Y
40 END

Another useful practice is to let BASIC-80 automatically generate line numbers
for you. This is accomplished with the AUTO statement. The AUTO statement
tells BASIC-80 to automatically generate line numbers. For example, if you type
AUTO 100,10, then BASIC-80 will generate line numbers beginning with line
number 100 and incrementing each line by 10. Then all you need to dois type the
BASIC-80 program line after the generated line number.

onnpren 1| 1-19

Running a BASIC-80 Program

After a BASIC-80 program has been written, it is usually desirable to execute the
program. The task can be accomplished by the RUN command. The following
statement would tell BASIC-80 to execute the program currently in memory:

RUN

Execution would begin at the lowest number line and continue with the next
lowest number line (unless the sequence of execution was altered with a state-
ment like the GOTO statement). The RUN command can also specify the first line
number to be executed. For example, the following command would cause
execution to begin with line number 100:

RUNA100

The RUN command can also be used to execute a BASIC-80 program that is
currently residing on a disk file. For example, assume the file ALBUM.BAS
resides on the current default disk. The following statement would be used to
execute ALBUM.BAS:

RUN “ALBUM”

Note that no drive specification or file name extension was included in the file
name string. In this case, the current default drive and the extension .BAS are
assumed.

Also make sure that you always use only upper-case letters in the file name
string. BASIC-80 must rely on CP/M to manipulate files for it, and most CP/M
utilities cannot recognize any file whose name is stored in lower-case letters.
Thus, storing a file under a lower-case file name can be very unpleasant, since
CP/M cannot recognize the lower-case file name, and therefore cannot ERAse or
REName the file. Files whose names are stored in lower-case letters can be
deleted only from within BASIC-80. This practice of using only upper-case
lettersin a file name applies to all BASIC-80 statements which require a file name
to be specified.

This is not to say that there is anything intrinsically wrong in using lower-case
letters in a file name; it is just that assigning lower-case file names may produce
an undesirable result. You may want to use a lower-case file name to record a file
in such a way that it cannot be easily renamed or erased. Thus, using lower-case
file names can provide an extra level of protection for important programs.

1'20 I CHAPTER 1

Debugging a BASIC-80 Program

In some cases, a BASIC-80 program will not execute as you expected. This is
usually a result of either a syntax error or a logic error. A syntax error is much
easier to detect, as BASIC-80 will not only detect these syntax errors for you, but
also it will point out the offending program line and invoke the Edit Mode. A
logic error is much harder to detect, but several statements have been provided to
make this a much more pleasant task.

When BASIC-80 detects a syntax error, it will automatically enter the Edit Mode
at the line that caused the error. At this point, you may wish to press the L key in
order to list this line. (L is a command to the BASIC-80 Editor, for more
information about the Editor, see Chapter Nine, “Editing”.)

Syntax errors are usually a result of a misspelled keyword or an incorrectly
structured program line. Remember that BASIC-80 requires all keywords to be
delimited by a space. The easiest way to correct a syntax error is torely heavily on
the Reference Manual.

Anytime you have a syntax error, you should refer to the appropriate page in the
Reference Manual. Use the Index to find the appropriate page. After you discover
and correct your error, remember what you did wrong so you can avoid making
the same mistake again.

Because of the interactive nature of BASIC-80, it is very convenient to debug a
BASIC-80 program. Several statements have been provided to help you debug a
BASIC-80 program. But your first step is to find out the nature of the “bug”.

A program ‘“‘bug” may cause the wrong values to be output. Or maybe a program
is branching to the wrong statement. The results of a calculation may be wrong,
or the results of a calculation may be incomprehensible. A program “bug” might
cause an error condition to be flagged. So you must discover what the program is
doing before you can discover why the program is doing it.

Also keep in mind that, in most cases (99.99%), it is a bug in your program that is
causing a problem. It is highly unlikely that the BASIC-80 Interpreter is at fault.
This Interpreter represents one of the most comprehensive implementations of
BASIC available for the 8080/Z80, and as such is very stable. So, it is best to
always assume that a problem is caused by a user program bug.

CHAPTER 1 | 1"21

Once you have decided what the program is doing, you can take steps to discover
why it is not executing correctly. For example, assume that a program is branch-
ing toaline number different than where you want it to branch. The trace flag has
been provided to trace the flow of a program. To enable the trace, the TRON
statement is used, and to disable the trace, the TROF statement is used.

The trace flag will print each line number as it is being executed. The line
number will be enclosed in square brackets ([]). It is best to generate a hard copy
listing of the program first so you can follow this listing while the trace is
running.

Another important technique you can use is to set breakpoints in a program. You
can use the STOP statement to temporarily terminate program execution, and
then enter commands to print the values of various variables. You can also assign
new values to these variables. Then you can continue program execution with a
CONT command or a Command Mode GOTO.

Although you can print and change the values assigned to variables, you must
not change the BASIC-80 program after you interrupted execution with a STOP
statement. If you do change the program, all the previously stored variable
values will be lost, and all open files will be closed.

1-22 | crapren

Saving a BASIC-80 Program

When you have completed a BASIC-80 programming session, you will no doubt
want to save a copy of your most current program on the disk. This is ac-
complished with the SAVE command. The general form of the SAVE command
is:

SAVE “<filename>"

The <file name> must be a valid CP/M file name. If no device specification is
given, the current default drive will be assumed. If no file name extension is
given, the default extension of .BAS will be assumed. For example, if you wish to
save a program called GAME.BAS, you could use the following statement:

SAVE “C:GAME.BAS”

Note that this file will be written on drive C:. The file name extension of .BAS
could have been omitted and then it would have been supplied as the default.
Make sure you always use upper case letters when specifying a file name.
BASIC-80 will usually save files in a compressed binary format. A program can
optionally be saved in ASCII format, but it will take more disk space to store it
this way. To save a program in ASCII format, append an A to the end of the file
name string. For example:

SAVE “C:GAME” A
This will save the file on drive C: in ASCII format with a file name of GAME.BAS.
You can also save a program in a protected format so it can not be listed or edited.
Just append a P to the end of the file name string. For example:

SAVE “C:GAME” P

This file will be saved in an encoded binary format. When this protected file is
later RUN or (LOADed), any attempt to LIST or EDIT this progam will fail.

CHAPTER 1 | 1'23

Loading a BASIC-80 Program

When you begin a BASIC-80 programming session, you may want to load a
program from the disk into memory. This is accomplished with the LOAD
command. The general form of the LOAD command is:

LOAD “<filename>"

For example, if you wanted to load the program PAYROL.BAS, you could use the
command:

LOAD “PAYROL”

Note that the file name extension was omitted. BASIC-80 will assume a file name
extension of .BAS. Also note that the drive specification was omitted. In this
case, the current default drive will be assumed.

You must specify the file name using only upper case letters. This applies to all
string constants or variables that contain file names.

Itis also possible to execute a program with the LOAD command. In this case, an
R is appended to the end of the file name string. For example:

LOAD “PAYROL” R

This form of the LOAD command will load a program into memory and execute it
as if a RUN command had been typed. All currently open files will remain open
for use by the program.

1-24 | ciseren

Listing a BASIC-80 Program to a Hard Copy Device

Atsome point during your programming effort, you may want a hard copy listing
of a BASIC-80 program. A BASIC-80 program is listed to a hard copy device in
much the same manner as it is listed to a console device. Use the LLIST com-
mand.

The general form of the LLIST command is :

LLIST
This will list the current program on the hard copy device. It is also possible to
specify therange of line numbers to be listed. For example in order to list a single
line, you can use the command:

LLIST 100

This will list only the line number 100. A range of line numbers can also be
specified:

LLIST 100-500
This will list line numbers 100 through 500, inclusive.
The LLIST command will direct the output to the CP/M LST: device. This logical

device can be assigned to several different physical devices. Refer to your CP/M
manual for information about this process.

INSERT

Expression | 2'1

Chapter Two

Expressions

OVERVIEW

An expression is a group of symbols to be evaluated by BASIC-80. Expressions
are composed of numeric or string variables, numeric or string constants, and
functions references. These operands can be alone, or they can be combined by
arithmetic, logical, or relational operators. This Chapter explains the various
rules for constructing and evaluating expressions.

2"2 | CHAPTER TWO

CONSTANTS

Constants are the actual values BASIC-80 uses during execution. There are two
types of constants: string and numeric.

String Constants

A string constant is a sequence of up to 255 alphanumeric characters enclosed in
double quotation marks. Examples of string constants:

"HELLO"
"25,000.00"
"Number of Employees"

Numeric Constants

Numeric constants are positive or negative numbers. Numeric constants in
BASIC cannot contain commas. There are five types of numeric constants:

INTEGER CONSTANTS'

Integer constants are whole numbers between —32768 and +32767. Integer
constants can not have decimal points.

FIXED POINT CONSTANTS

Fixed point constants are positive or negative real numbers, i.e., numbers that
contain decimal points.

FLOATING POINT CONSTANTS

Floating point constants are positive or negative numbers represented in expo-
nential form (similar to scientific notation). A floating point constant consists of
an optionally signed integer or fixed point number (the mantissa) followed by
the letter E and an optionally signed integer (the exponent). The allowable range
for floating point constants is 1073 to 1073,

Examples:

235.988E-7 = .0000235988
2359E6 = 2359000000

(Double-precision floating point constants use the letter D instead of E.)

Expression

HEX CONSTANTS
Hexadecimal constants are hexadecimal numbers with the prefix &H.
Examples:

&H76
&H32F

OCTAL CONSTANTS
Octal constants are octal numbers with the prefix &O or &.

Examples:

&0347
&1234

SINGLE AND DOUBLE-PRECISION NUMERIC CONSTANTS

Fixed and floating point numeric constants may be either single-precision or
double-precision numbers. With double-precision, the numbers are stored with
16 digits of precision, and printed with up to 16 digits.

A single-precision constant is any numeric constant that has:
1. Seven or fewer digits, or,
2. Exponential form using E, or,
3. A trailing exclamation point (!).

A double-precision constant is any numeric constant that has:
1. Eight or more digits, or,

2. Exponential form using D, or,
3. A trailing number sign (#).

Examples:
Single-Precision Constants Double-Precision Constants
46.8 345692811
-7.09E-06 -1.09432D-06
3489.0 3489.0#

22.5! 7654321.1234

2"4 I CHAPTER TWO

VARIABLES

Variables are names which represent values that are used in a BASIC-80 pro-
gram. The value of a variable may be assigned explicitly by the programmer, or it
may be assigned as the result of calculations in the program. Before a variable is
assigned a value, its value is assumed to be zero.

Variable Names and Declaration Characters

BASIC-80 variable names may be any length. However, only the first 40 charac-
ters are significant. The characters allowed in a variable name are letters and
numbers, and the decimal point is also allowed in a variable name. The first
character must be, a letter.

A variable name may not be a reserved word. BASIC-80 will allow embedded
reserved words to be part of a variable name. If a variable begins with FN, it is
assumed to be a call to a user-defined function. Reserved words include all
BASIC-80 commands, statements, function names, and operator names.

Variables may represent either a numeric value or a string. String variable names
are written with a dollar sign ($) as the last character. For example: A$ = “SALES
REPORT”. The dollar sign is a variable type declaration character; that is, it
“declares” that the variable will represent a string.

Numeric variable names may declare integer, single-precision, or double-
precision values. The type declaration characters for these variable names are as
follows:

% Integer variable
! Single-precision variable
Double-precision variable

The default type for a numeric variable name is single-precision.

Expression I 2'5

Examples of BASIC-80 Variable Names:

PI# Declares a double-precision value.
MINIMUM! Declares a single-precision value.
LIMIT% Declares an integer value.

There is a second method by which variable types may be declared. The BASIC-
80 statements DEFINT, DEFSTR, DEFSNG and DEFDBL may be included in a
program to declare the types for certain variable names. These statements are
described in detail in Chapter Four, ‘“Program Statements.”

Array Variables

An array is a group or table of values referenced by the same variable name. Each
element in an array is referenced by an array variable that is subscripted with
integers or integer expresssions. An array variable name has as many subscripts
as there are dimensions in the array.

For example, V(10) would reference a value in a one-dimensional array, T(1,4)
would reference a value in a two-dimensional array, and so on. The maximum
number of dimensions for an array is 255. The maximum number of elements per
dimension is 32767. See Chapter Six, “Arrays,” for more information.

2-6 | CHAPTER TWO

N

TYPE CONVERSIONS

When necessary, BASIC-80 will convert a numeric constant from one type to
another. The following rules and examples illustrate these type conversions.

If a numeric constant of one type is set equal to a numeric variable of a different
type, the number will be stored as the type declared in the variable name. (If a
string variable is set equal to a numeric value or vice versa, a “Type mismatch”
€ITOr OCCUrs.)

Example:
10 A% = 23.42
20 PRINT A%
RUN

23

During expression evaluation, all of the operands in an arithmetic or relational
operation are converted to the same degree of precision; i.e., that of the most
precise operand. Also, the result of an arithmetic operation is returned to this
degree of precision.

Example:
10 D# = 6#/7
20 PRINT D#
RUN

.8571428571428571

In the above example, the arithmetic was performed in double-precision and the
result was returned in D# as a double-precision value.

10 D = 6#/7
20 PRINT D
RUN

.857143

In this example, the arithmetic was performed in double-precision and the result
was returned to D (a single-precision variable); thus rounded and printed as a
single-precision value.

Expression I 2'7

When a fixed point value is converted to an integer, the fractional portion is
rounded.

Example:

10 C% = 55.88
20 PRINT C%
RUN

56

If a double-precision variable is assigned a single-precision value, only the first
seven digits, rounded, of the converted number will be valid. This is because
only seven digits of accuracy were supplied with the single-precison value.

The absolute value of the difference between the printed double-precision
number and the original single-precision value will be less than 6.3E-8 times the
original single-precision value.

Example:

10 A = 2.04
‘20 B# = A
30 PRINT A;B#
RUN
2.04 2.039999961853027

2-8 ' CHAPTER TWO

EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or a variable, or it may
combine constants and variables with operators to produce a single value.

Operators perform mathematical or logical operations on values. The operators
provided by BASIC-80 may be divided into four categories:

Arithmetic.
Relational.
Logical.
Functional.

W N e

Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator Operation Sample Expression
. Exponentiation XAY
- Negation -X
) Multiplication, Floating X*Y
Point Division XY
+,— Addition, Subtraction X+Y
Table 2-1

Arithmetic Operators.

To change the order in which the operations are performed, use parentheses.
Operations within parentheses are performed first. Inside parentheses, the usual
order of operations is maintained.

Thus, the expressions:

A*{(Z—((Y+R)/T)) *J+VAL

is evaluated in the following sequence:

Y4+R = el
(e1/T) = e2
Z—-e2 = e3
e31d = e4d
A*e4 = €5

eb+VAL = e6

Expression

INTEGER DIVISION AND MODULUS ARITHMETIC

Two additional arithmetic operators are available in BASIC-80, integer division
and modulus arithmetic.

Integer division is denoted by the backslash (\). The operands are rounded to
integers (must be in the range -32768 to 32767) before the division is performed,
and the quotient is truncated to an integer. For example:

10\4 =2
25.68\6.99=3

The precedence of integer division is just after multiplication and floating point
division.

Modulus arithmetic is denoted by the operator MOD. It gives the integer value
that is the remainder of an integer division. For example:

10.4 MOD 4 = 2 (10\4=2 with a remainder 2)
25.67 MOD 6.99 = 5 (26\7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer division.

OVERFLOW AND DIVISION BY ZERO

If, during the evaluation of an arithmetic expression, a division by zero is
encountered, the ‘“Division by zero” error message is displayed, machine infin-
ity (i.e., 1.70141E +38) with the sign of the numerator is supplied as the result of
the division, and execution continues.

If the evaluation of an exponentiation results in zero being raised to a negative
power, the “Division by zero” error message is displayed, positive machine
infinity is supplied as the result of the exponentiation, and execution continues.

If overflow occurs, the “Overflow” error message is displayed, machine infinity
with the algebraically correct sign is supplied as the result, and execution
continues.

2'10 | CHAPTER TWO

Relational Operators

Relational operators are used to compare two values. The result of the compari-
son is either “true” (—1) or “false” (0). This result may then be used to make a
decision regarding program flow.

Operator Relation Tested Expression
= Equality X=Y
<> Inequality X<>Y
< Less than X<Y
> Greater than X>Y
<= Less than or equal to X<=Y
>= Greater than or equal to X>=Y

Table 2-2

Relational Operators.

(The equal sign is also used to assign a value to a variable.)

When arithmetic and relational operators are combined in one expression, the
arithmetic is always performed first. For example, the expression

X+Y < (T-1)/Z
is true if the value of X plus Y is less than the value of T-1 divided by Z.

Examples:

IF SIN (X)<O0 GOTO 1000
IF I MOD J <> 0 THEN K=L+1

Logical Operators

Logical operators perform tests on multiple relations, bit manipulation, or Boo-
lean operations. The logical operator returns a bitwise result which is either
“true” (not zero) or “false” (zero). In an expression, logical operations are

performed after arithmetic and relational operations. Logical operators convert,

their operands to integers and return an integer result. Operands must be in the
range —32768 to 32767* or an “Overflow” error occurs.

The outcome of a logical operation is determined as shown in the following
table. The operators are listed in order of precedence.

OPERATOR EXAMPLE EXPLANATION
NOT NOT A The logical negative of A. If A is true,

NOT A is false.

AND A AND B The logical product of A and B. A AND
B has the value true only if A and B
are both true. A AND B has the value
false if either A or B is false.

OR AORB The logical sum of A and B. A OR B has

the value true if either A or B or both is true.
A OR B has the value false only if both A and

B are false.

XOR A XOR B The logical exclusive OR of A and B.

A XOR B is true if either A or B (but not both)

is true. Otherwise, A XOR B is false.

IMP A IMP B The logical implication of A and B.
A IMP B is false if and only if A is true

and B is false; otherwise the value is true.

EQV A EQVB A is logically equivalent to B. A EQV
B is true if A and B are both true or
both false. Otherwise, A EQV B is false.

Table 2-3

Logical Operators

*When you use variables with any of the logical operators, declare the variable as type integer by using either
the “%" type declaration character or the DEFINT statement (See Page 4-2 for a discussion of DEFINT).

2-11

2'12 I CHAPTER TWO

Not AND
X NOT X X Y XANDY
1 0 1 1 1
0 1 1 0 0
0 1 0
0 0 0
OR XOR
X Y XORY X Y XXORY
1 1 1 1 1 0
1 0 1 1 0 1
0 1 1 0 1 1
0 0 0 0 0 0
IMP EQV
X Y XIMPY X Y XEQVY
1 1 1 1 1 1
1 0 0 1 0 0
0 1 1 0 1 0
0 0 1 0 0 1
Table 2-4

Truth Table for Logical Operators.

Logical operators work by converting their operands to sixteen bit, signed,
two’s-complement integers in the range +32768 to +32767. (If the operands are
not in this range, an error results.) If both operands are supplied as 0 or —1,
logical operators return 0 or —1. The given operation is performed on these
integers in bitwise fashion; i.e., each bit of the result is determined by the
corresponding bits in the two operands. In binary arguments, bit 15 is the most
significant bit and bit 0 is the least significant bit.

Expression

Thus, it is possible to use logical operators to test bytes for a particular bit
pattern. For instance, the AND operator maybe used to “mask” all but one of the
bits of a status byte at a machine I/O port. The OR operator may be used to
“merge” two bytes to create a particular binary value. The following examples
will help demonstrate how the logical operators work. (In all of the examples
below, leading zeros on binary numbers are not shown.)
Examples:

63 AND 16=16

63 = binary 111111 and 16 = binary 10000, so 63 and 16 = 16

15 AND 14=14

15 = binary 1111 and 14 = binary 1110, so 15 AND 14 = 14 binary 1110)

—1 AND 8=8

—1 = binary 1111111111111111 and 8 = binary 1000, so -1 AND 8 = 8

4 OR 2=6

4 = binary 100 and 2 = binary 10, so 4 OR 2 = 6 (binary 110)

10 OR 10=10

10 = binary 1010, so 1010 OR 1010 = 1010 (10)

-1 0R —2=-1

—1 = binary 1111111111111111 and -2 = binary 1111111111111110,

so —1 OR —2 = —1. The bit complement of sixteen zeros is sixteen ones,
which is the two’s complement representation of —1.

NOT X=—(X+1)

The two’s complement of any integer is the bit complement plus one.
6 IMP 2 =-5

6 = binary 110 and 2 = binary 10, so 6 IMP 2 = -5

3EQV 4 = —8

3 = binary 11 and 4 = binary 100, so 3 EQV 4 = binary —8.

2-13

2'14 | CHAPTER TWO

LOGICAL OPERATORS IN RELATIONAL EXPRESSIONS

Just as the relational operators can be used to make decisions regarding program
flow, logical operators can connect two or more relations and return a true or
false value to be used in a decision.

Examples:

IF D<200 AND F<4 THEN 80
IF I>10 OR K>0 THEN 50
IF NOT P THEN 100

The result of evaluating the relational expression will be either true (—1) or false
(0). This result will then be used as the operand for the logical operator.

Functional Operators

A functionis used in an expression to call a predetermined operation that is to be
performed on an operand. BASIC-80 has “intrinsic” functions that reside in the
system, such as SQR (square root) or SIN (sine). All of BASIC-80’s intrinsic
functions are described in Chapter Three, ‘“Functions.”

BASIC-80 also allows ‘“user-defined” functions that are written by the program-
mer. The proper format for constructing and referencing user-defined functions
is described in Chapter Seven, ‘“‘Functions.”

INSERT

Command Mode Statements | 3'1

Chapter Three

Command Mode Statements

OVERVIEW

Whenever the “Ok” prompt is displayed on the console, BASIC-80 is in the
Command Mode. In this Mode, BASIC-80 will respond to a command as soon as
it is entered.

Several commands are useful in Command Mode. These are:

AUTO EDIT LOAD RESET
CLEAR FILES MERGE RUN
CONT LIST NEW SAVE
DELETE LLIST RENUM SYSTEM

All of the commands (except CONT) may also be used within a program.

3'2 I CHAPTER THREE

COMMAND MODE STATEMENTS

AUTO (enable automatic line numbering)
Form: AUTOa<line number>,<increment>

The AUTO command will turn on the automatic line numbering function. The
AUTO command allows you to enter only the actual program text, as the line
numbers will automatically be generated.

AUTO begins numbering at <line number> and increments each subsequent
line number by <increment>. If no line number or increment is specified, the
default value of 10 is supplied. If <line number> is followed by a comma but
<increment> is not specified, the last increment specified in an AUTO com-
mand is assumed.

If AUTO generates a line number that is already being used, an asterisk is printed
after the number to warn the user that any input will replace the existing line.
However, typing a carriage return immmediately after the asterisk will save the
line and generate the next line number.

AUTO s terminated by typing CTRL-C. The line in which CTRL-C is typed is not
saved. After CTRL-C is typed, BASIC-80 returns to the Command Mode.

Examples:
AUTO 100,50 Generates line numbers 100,150,200 ...
AUTO Generates line numbers 10,20,30,40 ...

AUTO 500 Generates line numbers 500,510,520 ...

3-3

Command Mode Statements

CLEAR (initialize varibles)

Form: CLEAR,<expression1>,<expression2> .

The CLEAR command will set all numeric variables to zero and all string
variables to null. The CLEAR command can optionally be used to set the high

memory limit and the amount of stack space that is available to BASIC-80.

<expression1> is a memory location (expressed in decimal) which, if specified,
sets the highest memory location available for use by BASIC-80.

<expression2> sets aside stack space for use by BASIC-80. The default is 256
bytes or one-eighth of the available memory, whichever is smaller.

NOTE: In previous versions of Microsoft BASIC, <expression1> specified the
amount of memory to be used for string storage and <expression2> set the end of
memory. BASIC-80 release 5.0 allocates string space dynamically, so there is no
need to specify the amount of memory for string storage. An “Out of string
space” error occurs only if there is no free memory left for use by BASIC-80.
Examples:
CLEAR
Sets all numeric variables to zero and all strings to null.
CLEAR , 32768
Sets 32768 as the highest memory location for use by BASIC-80.
CLEAR , , 2000
Allocates 2000 bytes for stack space.

CLEAR, 32768,2000

Sets 32768 as the highest memory location for use by BASIC-80 and allocates
2000 bytes for stack space.

3'4 | CHAPTER THREE

CONT (continue program execution)

Form: CONT

The CONTinue statement is used to resume execution of a program after a
CTRL-C has been typed, or a STOP or END statement has been executed. The
CONTinue statement can also be used to resume execution after an error.
Execution will resume at the line after the break. If the break occurred after a
prompt from an INPUT statement, execution continues with the reprinting of the
prompt (? or prompt string).

CONT is usually used in conjunction with STOP for debugging. When execution
is stopped, variable values may be examined and changed using Command
Mode statements. Execution may be resumed with CONT or a Command Mode
GOTO, which resumes execution at a specified line number.

CONT is invalid if the program has been edited during the break. CONT is also
invalid if any changes were made to the program during the break. If any changes

are made to the program during the break, the error message ‘“‘Can’t continue”
will appear on your screen.

DELETE (delete program lines)
Form: DELETEa<line number>-<line number>
The DELETE statement is used to delete program lines from memory.

BASIC-80 will always return to Command Mode after a DELETE is executed. If
<line number> does not exist, an “Illegal function call” error occurs.

Examples:
DELETE 40 deletes line 40
DELETE 40-100 deletes lines 40-100, inclusive

DELETE —40 deletes all lines up to and including line 40

Command Mode Statements l 3"5

EDIT (enter Edit Mode)

Form: EDITa<line number>

The EDIT statement will enter the Edit Mode at the specified line number.

In Edit Mode, it is possible to edit portions of a line without retyping the entire
line. Upon entering Edit Mode, BASIC-80 types the line number of the line to be

edited. Then it types a space and waits for an Edit Mode subcommand.

The Edit Mode subcommands may be categorized according to the following
functions:

1. Moving the cursor.

2. Inserting text.

3. Deleting text.

4. Finding text.

5. Replacing text.

6. Ending and restarting Edit Mode.
The Edit Mode subcommands are not displayed on the terminal device. Some of
the Edit Mode subcommands may be preceded by an integer which causes the
command to be executed that number of times. When a preceding integer is not

specified, it is assumed to be one.

The Edit Mode subcommands are explained in Chapter Nine, “Editing.”

3'6 I CHAPTER THREE

FILES (list names of files)
Form: FILES “<filename>"
The FILES command is used to list the names of files residing on the disk.
‘“<filename>"" must follow the normal CP/M naming conventions. If
<filename> is omitted, all the files on the current default drive will be listed.
“<filename>"" is a string which may contain question marks (?) to match any
character in the file name or extension. An asterisk (*) can be used to match any
file name or extension.
Examples:

FILES list all file names on current default disk

FILES "*.BAS" list all file names with extension .BAS

FILES "B:*.*" list all file names on drive B:
Note that, in the last example, the drive specification is given in upper case. All

references to disk drives from within MBASIC must be given in upper case.
Specifying a drive name in lower case will generate a ““‘Bad File Name” error.

Command Mode Statements

LIST (list program on terminal)
Form: LISTa<line number>-<line number>

The LIST command is used to list all or part of the program currently in memory.
The listing will be displayed on the terminal device.

BASIC-80 will always return to Command Mode after a LIST is executed.
If the line numbers are omitted, the entire program is listed beginning at the
lowest line number. The listing is terminated by either typing CTRL-C or by

reaching the end of the program.

If one line number is specified, then only this line will be displayed on the
terminal device.

Examples:
LIST List the entire program.
LIST 500 List line number 500.
LIST 150- List all lines from 150 to the end of the program.
LIST -100 List all lines from the lowest number through 100.

LIST 150-400 List lines 150 through 400, inclusive.

LLIST (list program on line printer)
Form: LLISTa<line number>-<line number>
The LLIST command will list all or part of the program currently in memory. The

listing will be printed on the line printer. The options for LLIST are the same as

LIST. BASIC-80 will always return to the Command Mode after an LLIST is
executed.

LLIST will assume a 132-character wide printer.

Examples: See the examples for LIST

3-7

3"8 | CHAPTER THREE

LOAD (load program file from disk)
Form: LOAD “<filename>"" R
The LOAD command is used to load a file from the disk into memory.

“<filename>"" is the CP/M file name associated with the program file. The
default extension .BAS will be supplied.

LOAD closes all open files and deletes all variables and program lines currently
residing in memory before it loads the designated program.

The R option can be used to RUN the program after it has been LOADed. If the R
option is used, all open files will be left open.

The R option may be used to chain several programs (or segments of the same
program). Information may be passed between the programs using temporary
disk data files.

Example:

LOAD "STARTRK",R

LOAD "B:GAME1 .BAS"

NOTE: BASIC-80 will not map a file name to upper case. Thus, all of the
statements which specify a CP/M file name should have the file name expressed
in upper case letters. If a lower case file name is created in the directory, it can
then only be accessed with BASIC-80.

Command Mode Statements

MERGE (merge program)
Form: MERGE “<filename>"’

The MERGE command will merge a disk program file into the program currently
in memory.

“<filename>" is the CP/M file name associated with the disk program file. The
default file name extension .BAS will be supplied. The file must have been saved
in ASCII format. If the fileis not in ASCII format, a ‘‘Bad file mode” error occurs.

If any lines in the disk file have the same line numbers as lines in the program in
memory, the lines from the file on the disk will replace the corresponding lines
in memory. Merging may be thought of as “inserting” the program lines on the
disk into the program in memory.

BASIC-80 will always return to the Command Mode after executing a MERGE
command.

Examples:
MERGE "PROG1" Insert PROGR1.BAS
MERGE "B:TEST.BAS" Insert B:TEST.BAS

NEW (delete current program)

Form: NEW

The NEW command is used to delete the program currently in memory and clear
all variables. Aftera NEW command has been executed, all numeric variables are

set to zero and all string variables to null.

BASIC-80 will always return to Command Mode after a NEW is executed.

3-9

3'10 | CHAPTER THREE

RENUM (renumber program lines)
Form: RENUMa<new number>,<old number>,<increment>
The RENUM command will renumber program lines.

<new number> is the first line number to be used in the new sequence. The
default is 10. <old number> is the line in the current program where renumber-
ing is to begin. The default is the first line of the program. <increment> is the
increment to be used in the new sequence. The default increment is 10.

The RENUM command will also change all line number references following
GOTO, THEN, ON/GOTO, ON/GOSUB and ERL statements to reflect the new
line numbers. If a nonexistent line number appears after one of these statements,
the error message “‘Undefined line xxxxx in yyyyy” is printed. The incorrect line
number reference (xxxxx) is not changed by RENUM, but line number yyyyy
may be changed.

RENUM can not be used to change the order of program lines or to create line
numbers greater than 65529. In these cases, an “Illegal function call” error will
result.

Examples:

RENUM

Renumber the entire program. The first new line number will be 10. The
line numbers will be incremented by 10.

RENUM 300, , 50

Renumber the entire program. The first new line number will be 300. Lines
will increment by 50.

RENUM 1000, 900, 20

Renumber the lines from 900 up so they start with line number 1000 and
increment by 20.

3-11

Command Mode Statements

RESET (change diskette)

Form: RESET

The RESET command enables you to exchange a new disk for the disk in the
current default drive. RESET cannot be used with a drive name argument. Any
attempt to supply a drive name argument will generate a ‘‘Syntax error”.
The RESET command should be issued only after you replace the old default
disk with the new default disk. If you issue a RESET command before switching
disks, BASIC-80 will read the directory information off of the old disk.

The only effect of the RESET command is to read the directory information off of
the new disk and into memory. RESET does not close open files.

Example:

RESET

3'12 | CHAPTER THREE

RUN (execute program)

Form 1: RUNa<line number>

Form 1 of the RUN command is used to execute a program currently in memory.
If <line number> is specified, execution begins on that line. A RUN command

without the <line number> will start execution at the lowest line number.
BASIC-80 will always return to Command Mode after a RUN is executed.

Example:
RUN 10 Executes the program currently in memory.
Execution starts at line number 10.
RUN ' Executes the program currently in memory.
Execution starts at the lowest numbered line.
Form 2: RUN “<filename>"",R

Form 2 of the RUN command is used to load a BASIC-80 program from disk into
memory and run it. The R is optional and if used will leave all data files open.

“<filename>"" is the name of the file on the disk. The default extension is .BAS.
“<filename>" must be a valid CP/M file name enclosed in quotation marks.

RUN closes all open files and deletes the current contents of memory before
loading the designated program. However, with the R option, all data files will
remain open.

Example:

RUN "PROG1" Loads and executes PROG1.BAS

RUN "B:GAME" ,R Loads and executes B:GAME.BAS leaving all data files
open.

Command Mode Statements 3'13

SAVE (write program to disk)

Form: SAVE “<filename>"",A
SAVE “<filename>"",P
SAVE “<filename>"

The SAVE command will write to a disk file the program that is currently in
memory.

“<filename>" is a string enclosed in quotes that conforms to the CP/M require-
ments for file name construction. The default extension .BAS is supplied. If
<filename> already exists, the file will be written over.

The A option will save the file in ASCII format. Otherwise, BASIC-80 will
assume the compressed binary format. ASCII format takes more space on the
disk, but some disk commands require that the files be in ASCII format. For

example, the MERGE command requires an ASCII format file.

The P option will protect the file by saving it in an encoded binary format. When
a protected file is later RUN or (LOADed), any attempt to list or edit it will fail.

Examples:
SAVE"COM2", A

SAVE"PROG", P

SYSTEM (perform CP/M warm start)
Form: SYSTEM
The SYSTEM command will close all files and then perform a CP/M warm start.
Because CTRL-C will always return to BASIC-80 Command Mode, the SYSTEM
command must be used to return to CP/M.
Example:

SYSTEM

A> [prompt from CP/M]
(assumming A: is the current default disk)

3-14 | crapren rrmee

INSERT

Program Statements | 4"1

Chapter Four

Program Statements

OVERVIEW

The program statements available to the BASIC-80 programmer can be divided
into four functional groups: Data type definition, Assignment and allocation,
Control, and I/O (Non-disk). This Chapter will explain the various program
statements in these four groups.

Note: These program statements can also be used as Command Mode statements.

4-2

CHAPTER FOUR

DATA TYPE DEFINITION

A DEF statement declares that the variable name beginning with a certain range
of letters is of the specified data type. However, a type declaration character
always takes precedence over a DEF statement.

If no data type declaration statements are encountered, BASIC-80 assumes all
variables without declaration characters are single precision variables.

DEFINT (declare variable as integer)
Form: DEFINTa<letter range>

The DEFINT statement is used to declare a range of variable names as integer
data types.

An integer data type will take up less memory than a single-precision or
double-precision data type. However, a variable declared as an integer data type

can only be assigned values in the range —32768 and +32767 inclusive.

Example:

DEFINT I-N All variables beginning with the letters I,],K,L,M,N will be
integer variables.

DEFSNG (declare variable as single-precision)
Form: DEFSNGa<letter range>

The DEFSNG statement is used to declare a range of variable names as single-
precision data types.

Single-precision variables are stored with seven digits of precision and they are
printed with six digits of precision.

Example:

DEFSNG A-D All variables beginning with the letters A,B,C, and D will
be single-precision variables.

Program Statements

" DEFSTR (declare variable as string)
Form: DEFSTRa<letter range>

The DEFSTR statement is used to declarea range of variable names as string data
types.

Double-precision variables are stored with 17 digits of precision and they are
printed with 16 digits of precision.

Examples:

DEFDBL X-Z, A All variables beginning with the letters X, Y, Z and A will
be double precision variables.

DEFSTR (declare variable as string)
Form: DEFSTRa<letter range>

The DEFSTR statement is used to declare a range of variable names as string data
types.

A string is a sequence of characters — letters, blanks, numbers, and special
characters — up to 255 characters long.

Example:

DEFSTRS . All variables beginning with the letter S will be string
variables.

4-3

4-4

CHAPTER FOUR

ASSIGNMENT AND ALLOCATION STATEMENTS

DIM (set-up array)
Form: DIM <list of subscripted variables>

The DIMension statement is used to set up the maximum values for array
variable subscripts and allocate storage accordingly.

If an array variable name is used without a DIM statement, the maximum value of
its subscript(s) is assumed to be 10. If a subscript is used that is greater than the
maximum specified, a ‘“‘Subscript out of range” error occurs. The minimum
value for a subscript is always 0, unless otherwise specified with the OPTION
BASE statement.

The DIM statement sets all the elements of the specified arrays to an initial value
of zero.

Example:

10 DIM A(20)

20 FOR I = 0 TO 20
30 A(I) = I+1

40 NEXT I

OPTION BASE (set minimum value for array subscript)

Form: OPTIONABASEAan

The OPTION BASE statement is used to declare the minimum value for array
subscripts. The default base is 0. This may be changed to 1. The OPTION BASE
statement must be executed before the DIM statement is executed. If an OPTION
BASE statement appears after an array has been DIMensioned, a ‘“Duplicate
definition” error will result.

Example:

OPTION BASE 1

For more information on array storage allocation, see Chapter Six, ‘“Arrays.”

4-5

Program Statements

ERASE (remove array from program)

Form: ERASEa<list of array names>

The ERASE statement is used to remove an array from a program. Arrays may be
redimensioned after they are ERASEd, or the previously allocated array space in
memory may be used for other purposes.

If an attempt is made to redimension an array without first ERASEing it, a
“Duplicate Definition” error occurs. If an attempt is made to ERASE an array that
has not been defined in a DIM statement, an ““Illegal function call” error will
result.

Example:

10 DIM A(40)
20 ERASE A
30 DIM A(50)

LET (assign value to a variable)
Form: LETa<variable> = <expression>
The LET statement is used to assign the value of an expression to a variable.

Note that the word LET is optional, as the equal sign is sufficient when assigning
an expression to a variable name.

Example:

10 LET D = 12
20 LET SUM =X + Y + 2

or

10 D = 12
20 SUM =X +Y + 2

4'6 | CHAPTER FOUR

REM (insert remark)
Form: REM <remark>
The REM statement allows explanatory remarks to be inserted in a program.

REM statements are not executed but are output exactly as entered when the
program is listed.

REM statements may be branched into (from a GOTO or GOSUB statement), and
execution will continue with the first executable statement after the REM state-
ment.

Remarks may also be added to a line by preceding the remark with a single
quotation mark.

Example:

10 REM THIS IS A REMARK
20 ' THIS IS ALSO A REMARK

SWAP (exchange variable values)
Form: SWAPa<variable>,<variable>
The SWAP statement is used to exchange the values of two variables.

Any type variable may be swapped (integer,single-precision, double-precision,
string), but the two variables must be of the same type or a “Type mismatch”
error results.

Example:

10 A$=" ONE ":B$="FOR":C$="ALL"
20 PRINT A$;B$;C$

30 SWAP A$,C$

40 PRINT A$;B$;C$

RUN

ONE FOR ALL

ALL FOR ONE

Ok

Program Statements l 4'7

CONTROL STATEMENTS

Two types of control statements are available to the BASIC-80 programmer. One
type affects the sequence of execution, and the other type is used for conditional
execution. '

Sequence of Execution

The sequence of execution statements are used to alter the sequence in which the
lines of a program are executed. Normally, execution begins with the lowest
numbered line and continues, sequentially, until the highest numbered line is
reached.

The sequence of execution statements allow the BASIC-80 programmer to exe-
cute the lines in any sequence the program logic dictates.

END (terminate program execution)
Form: END

The END statement will terminate program execution, close all files, and return
to Command Mode.

END statements may be placed anywhere in the program to terminate execution.
Unlike the STOP statement, END does not cause a BREAK message to be dis-
played. An END statement at the end of a program is optional. BASIC-80 will
always return to Command Mode after an END is executed.

Example:

520 IF K>1000 THEN END

4'8 | CHAPTER FOUR

FOR/NEXT (repetitive execution loop)

Form: FOR <variable> = X TO Y [STEP Z].

NEXT [<variable>j '

where X,Y and Z are constants, variables, or numeric expressions.

The FOR/NEXT statement will allow a series of instructions to be performed in a
loop a given number of times.

<variable> is used as the loop counter. The first numeric expression (X) is the
initial value of the counter. The second numeric expression (Y) is the terminal
value of the counter. The third numeric expression (Z) is the incremental value
for the loop counter.

Before the FOR/NEXT loop is executed, these three numeric values are
evaluated. First, the terminal value is evaluated. Then the initial value is
evaluated. The loop counter is then set equal to the initial value.

Any attempt to change these three values during the execution of the loop will
have no effect. However, the loop counter must not be changed or the loop will
not operate as expected.

After the numeric values are evaluated, a check is performed to see if the initial
value of the loop exceeds the terminal value. If the initial value of the loop
exceeds the terminal value, the loop will not be executed. (If the STEP value is
negative, the initial value must be greater than the terminal value or the loop will
not be executed.)

The program lines following the FOR are executed until the NEXT statement is
encountered. Then the loop counter is incremented by the amount specified by
STEP. A check is performed to see if the value of the loop counter is now greater
than the terminal value.

If it is not greater, BASIC-80 branches back to the statement after the FOR
statement and the process is repeated. If the value of the loop counter is greater
than the terminal value, execution continues with the statement following the
NEXT statement. The statements between the FOR and the NEXT statements
constitute the range of the FOR/NEXT loop.

If STEP is not specified, the incremental value is assumed to be one. If STEP is a
negative value, the loop counter is decremented each time through the loop. The
loop is executed until the loop counter is less than the final value.

Program Statements | 4'9

Examples:

10 FOR J = 5 TO 1 STEP —-1°
20 PRINT J;
30 NEXT J
RUN
54321
Ok

The statement in the range of this loop will be executed five times. In this
example, 5 is the initial value, 1 is the terminal value, and —1 is the incremental
value. Note that the initial value is greater than the terminal value. This is valid
because the incremental value is negative. Also note that the variable] could
have been omitted from the NEXT statement in line 30.

10 FOR J = 5 TO 1
20 PRINT J;

30 NEXT J

RUN

Ok

In this example, the statement in the range of the loop will not be executed
because the initial value is greater than the terminal value. The STEP value has
been omitted, so it is assumed to be 1.

10 I =5
20 FOR I = 1 TO I+5
30 PRINT I;
40 NEXT
RUN
1 2 3 4 5 6 7 8 9 10
Ok

In this example, the loop executes 10 times. The terminal value for the loop is
evaluated first. The terminal value (I+5) is 10. Next, the initial value is
evaluated. The initial value is 1. The loop counter is then set equal to the initial
value. Because the STEP value has been omitted, the incremental value is

assumed to be 1.

4-10

CHAPTER FOUR

Nested Loops

FOR/NEXT loops may be nested. That is, a FOR/NEXT loop may be placed
within the range of another FOR/NEXT loop.

When loops are nested, each loop must have a unique variable name as its
counter. The NEXT statement for the inside loop must appear before the NEXT
for the outside loop. If nested loops have the same end point, a single NEXT
statement may be used for all of them.

The variable in a NEXT statement may be omitted, in which case the NEXT
statement will match the most recent FOR statement. If a NEXT statement is
encountered before its corresponding FOR statement, a “NEXT without FOR”
error message is issued and execution is terminated.

Valid Nesting Invalid Nesting

FOR J = 1 TO 10 FOR J = 1 TO 10
F‘ORI=1TO>5‘ FORI =1TO 5

[NEXT I NEXT J

NEXT J NEXT I

Note that with the valid nesting, the range of the inner loop is completely
contained within the range of the outer loop.

4-11

Program Statements

GOSUB/RETURN (branch to subroutine)

Form: GOSUB <line number>

RETURN

The GOSUB/RETURN statement is used to branch to and return from a sub-
routine.

<line number> is the first line of the subroutine.

A subroutine may be called any number of times in a program, and a subroutine
may be called from within another subroutine. Such nesting of subroutines is
limited only by available memory.

The RETURN statement in a subroutine causes BASIC-80 to branch back to the
statement following the most recent GOSUB statement. A subroutine may con-
tain more than one RETURN statement.

Subroutines may appear anywhere in the program, but it is good programming
practice to separate the subroutine from the main program. To prevent inadver-
tant entry into the subroutine, it may be preceded by a STOP, END, or GOTO
statement that directs program control around the subroutine.

Example:

10 GOSUB 40

20 PRINT "BACK FROM SUBROUTINE"
30 END

35 REM .

40 REM THIS IS THE SUBROUTINE
45 REM

50 PRINT "SUBROUTINE";

60 PRINT " IN ";

70 PRINT "PROGRESS"

80 RETURN

RUN

SUBROUTINE IN PROGRESS

BACK FROM SUBROUTINE

Ok

4"12 I CHAPTER FOUR

GOTO (unconditional branch)
Form: GOTO <line number>

The GOTO statement will branch unconditionally out of the normal program
sequence and continue execution at the specified line number.

If <line number> is an executable statement, that statement and those following
are executed. If it is a nonexecutable statement, execution proceeds at the first
executable statement encountered after <line number>.

If <line number> has not been previously defined, an ‘““‘Undefined line number”
error will be displayed.

Example:

10 GOTO 30

20 PRINT "LINE 20"
30 PRINT "LINE 30"
40 END

RUN

LINE 30

Ok

Program Statements

ON/GOTO and ON/GOSUB (evaluate and branch)
Forms: ON <expression> GOTO <list of line numbers>
~ ON <expression> GOSUB <list of line numbers>

The ON/GOTO and the ON/GOSUB statements are used to branch to one of
several specified line numbers, depending on the value returned when an
expression is evaluated. The result of evaluating <expression> must be positive
and less than 255. If the value of <expression> is non-integer, the fractional
portion is rounded.

The value of <expression> determines which line number in the list will be
used for branching. For example, if the value of the expression is three, the third
line number in the list will be the destination of the branch.

If the value of <expression> is zero or greater than the number of line numbers
in the list, BASIC-80 will continue with the next executable statement. If the
value is negative or greater than 255, an “Illegal function call” error occurs.

In the ON/GOSUB statement, each line number in the list must be the first line
number of a subroutine.

Example:

10 L=4

20 ON L GOTO 50,60,70,80
30 END

50 PRINT "LINE 50":GOTO 90
60 PRINT "LINE 60":GOTO 90
70 PRINT "LINE 70":GOTO 90
80 PRINT "LINE 80":GOTO 90
90 STOP ’

RUN

LINE 80

Ok

In this example, L=4, thus causing a branch to the fourth line number in the list.
The fourth line number in the list is 80. If . >4 or if L=0, then the program would
have branched to line number 30.

4-13

4"14 I CHAPTER FOUR

STOP (suspend execution)
Form: STOP

The STOP statement is used to terminate program execution and return BASIC-
80 Command Mode.

STOP statements may be used anywhere in a program to terminate execution.
When a STOP is encountered, the following message is printed:

Break in line nnnnn
Unlike the END statement, the STOP statement does not close any files.

BASIC-80 will always return to the Command Mode after a STOP is executed.
Execution can be resumed by issuing'a CONT command.

Example:

10 PRINT "LINE 10"
20 STOP

30 PRINT "LINE 30"
40 END

RUN

LINE 10

BREAK IN 20

Ok

CONT

LINE 30

Ok

Conditional Execution

The conditional execution statements are used to optionally execute a statement
or series of statements. The statement or series of statements will be executed ifa
certain condition is met.

Program Statements | 4‘1 5

IF/THEN/ELSE (conditional execution)

Form:

IF <expression> THEN <statement(s)> ELSE <statement(s)>
IF <expression> GOTO <line number> ELSE <statement(s)>

The IF/THEN/ELSE statement is used to make a decision regarding program flow
based on the result returned by an expression.

If the result of <expression> is true (i.e. not zero), the THEN clause is executed.
THEN may be followed by either a line number for branching or one or more
statements to be executed. If multiple statements are to be executed, they must be
separated by colons ().

If the result of <expression> is false (i.e. zero), the THEN clause is ignored and
the ELSE clause, if present, is executed. ELSE may be followed by either a line
number for branching or one or more statements to be executed. If multiple
statements are to be executed, they must be separated by colons (:).

The keyword THEN can optionally be replaced with a GOTO statement. In this
case, if the result of the expression is true, the program will branch to the
statement number specified in the GOTO statement.

Examples:

IF I THEN PRINT "I IS NOT ZERO" ELSE PRINT "I IS ZERO"

This statement will print “IIS NOT ZERO” if the value of I is not zero. If the
value of I is zero, the message “1 IS ZERO” will be printed.

IF X=A GOTO 100 ELSE PRINT "NOT EQUAL"

This statement will branch to line number 100if X = A. If Xisnot equal to A,
the message “NOT EQUAL” will be printed.

IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go either to the terminal or the line
printer depending upon the value of a variable (IOFLAG). If IOFLAG is zero,
output goes to the line printer. If IOFLAG is not zero, output goes to the
terminal.

4'16 I CHAPTER FOUR

Additional Considerations

When an IF/THEN statement is followed by a line number in the Command
Mode, an “Undefined line number” error results unless a statement with the
specified line number had previously been entered in the Indirect Mode.

When using IF to test equality for a value that is the result of a floating point
computation, remember that the internal representation of the value may not be
exactly the same as the printed value. Therefore, the test should be against the
range over which the accuracy of the value may vary. For example, to test the
single-precision variable A against the value 1.0, use:

IF ABS (A-1.0)<1.0E-06 THEN . . .

This test returns TRUE if the value of A is 1.0 with a relative error of less than
1.0E-6.

Nesting of IF Statements

IF/THEN/ELSE statements may be nested, but make sure that the same number of
IF’s and ELSE’s are used. Each ELSE will be matched with the closest unmatched
THEN. In the following example, the operator was able to include the ELSE
statements in line 20 by using line feeds.

Example:

10 INPUT A
20 IF A=C THEN IF A=B THEN PRINT "A=B A=C"
<operator-typed LINE FEED>
ELSE PRINT "A NOT = B"
<operator-typed LINE FEED >
ELSE PRINT "A NOT = C"
30 PRINT A

This nested IF will first test to see if A=C. If A does not equal C, the second ELSE
will be executed. If A does not equal C, the message ‘““A NOT = C” will be printed
and execution will be continued at line 30.

If A=C, the first THEN will be executed. This will result in another test. This
time, A will be compared to B. If A does not equal B, the first ELSE will be
executed. So, if A does not equal B, the message “A NOT = B”’ will be printed and
execution will continue with line 30.

If A=B, the second THEN will be executed, resulting in the message “A=B
A=C” being printed on the terminal. After printing this message, execution will
be continued at line 30.

Program Statements | 4'17

WHILE/WEND (conditional execution)
Form: WHILE <expression>
<loop statements>

WEND

The WHILE... WEND statement is used to execute a series of statements in a loop
as long as a given condition is true.

If <expression> is not zero (i.e. true), <loop statements> are executed until the
WEND statement is encountered. BASIC-80 then returns to the WHILE statement
and checks <expression>. If it is still not zero (true), the process is repeated. If
the value of the expression is zero (false), execution resumes with the statement
following the WEND statement.

WHILE/WEND loops may be nested to any level. Each WEND will match the
most recent WHILE. An unmatched WHILE statement causes a “WHILE without
WEND” error, and an unmatched WEND statement causes a “WEND without
WHILE” error.

Example:

10 I =1

20 WHILE I

30 PRINT "WHILE/WEND LOOP"
40 I =20

50 WEND

60 END

RUN

WHILE/WEND LOOP

Ok

4'18 l CHAPTER FOUR

I/O Statements (Non-Disk)

DATA (store constants)
Form: DATA <list of constants>

The DATA statement is used to store numeric and string constants. These
constants are assigned to variables by using the READ statement.

DATA statements are nonexecutable and they may be placed anywhere in the
program. A DATA statement may contain as many constants as will fit on a
logical line. Any number of DATA statements may be used in a program.

The READ statement will access the DATA statement in line number sequence
and the data contained therein may be thought of as one continous list of items,
regardless of how many items are on a line or where the lines are placed in the
program.

<list of constants> may contain numeric constants in any format, .i.e., fixed
point, floating point or integer. (No numeric expressions are allowed in the list.)

String constants in DATA statements must be surrounded by double quotation
marks only if they contain commas, colons or significant leading or trailing
spaces. Otherwise, quotation marks are not needed.

The variable type (numeric or string) given in the READ statement must agree
with the corresponding constant in the DATA statement.

DATA statements may be reread from the beginning by use of the RESTORE
statement.

Example:

10 DATA 12.3, HELLO, "GOOD,BYE", 34
20 DATA 1,2,3,4,5

Program Statements | 4'1 9

INPUT (input from terminal)
Form: INPUT [<“prompt string”’>;] <list of variables>

The INPUT statement is used to input data from the terminal during program
execution.

When an INPUT statement is encountered, program execution pauses and a
question mark is printed to indicate the program is waiting for data.

If <*‘prompt string”’> is included, the string is printed before the question mark.
The required data is then entered at the terminal. (The question mark can be
suppressed by putting a comma instead of a semicolon between the prompt
string and the list of variables.)

If the keyword INPUT is immediately followed by a semicolon, then the carriage
return typed by the user does not echo a carriage return/line feed sequence.

The data that is entered is assigned to the variable(s) given in the variable list.
The number of data items supplied must be the same as the number of variables
in the list. The data items input must be separated by commas.

The variable names in the list may be numeric or string variable names (includ-
ing subscripted variables). The type of each data item that is input must agree
with the type specified by the variable name. Strings input to an INPUT state-
ment need not be surrounded by quotation marks.

Responding to INPUT with too many or too few items, or with the wrong type of
data (numeric instead of string, etc.) causes the message “?Redo from start” to be
printed. No assignment of input values is made until an acceptable response is
given.

NOTE: Previous versions of Microsoft BASIC handled illegal INPUT in a some-
what different manner.

Example:

10 INPUT"ENTER VALUE" ;X
20 PRINT X

30 END

RUN

ENTER VALUE? [you type] 5
5
Ok

4'20 I CHAPTER FOUR

LINE INPUT (input entire line)
Form: LINE INPUT [< ; > <'‘prompt string”’>;] <string variable>

The LINE INPUT statement is used to input an entire line (up to 255 characters)
to a string variable, without the use of delimeters.

The <“prompt string”’> is a string literal that is printed at the terminal before
input is accepted. A question mark is not printed unless it is part of the prompt
string. All input from the end of the prompt string to the carriage return is
assigned to <string variable>.

If the key words LINE INPUT are immediately followed by a semicolon, then the
RETURN typed by the user to end the input line does not echo a carriage
return/line feed sequence at the terminal.

A LINE INPUT may be escaped by typing CTRL-C. BASIC-80 will return to the
Command Mode and type *“‘Ok”. A CONT command will resume execution at the
LINE INPUT.

Example:

10 LINE INPUT"NAME?—-";J$

20 PRINT J$

30 STOP

RUN

NAME?——[you type] JONES,JACK L.
JONES, JACK L.

Ok

Program Statements | 4'21

LPRINT (output data to line printer)
Form: LPRINT <list of expressions>
The LPRINT statement is used to print data on the line printer.

The LPRINT statement is the same as the PRINT statement, except output goes to
the line printer.

LPRINT defaults to a 132-character wide printer.

PRINT (output data at terminal)
Form: PRINT <list of expressions>

The PRINT statement is used to output data to the terminal. (A question mark
may be used in place of the keyword PRINT in a PRINT statement.)

If <list of expressions> is omitted, a blank line is printed. If <list of expres-
sions> is included, the values of the expressions are printed at the terminal. The
expressions in the list may be numeric and/or string expressions. String con-
stants must be enclosed in quotation marks.

Print Positions

The position of each printed item is determined by the punctuation used to
separate the items in the list. BASIC-80 divides the line into print zones of 14
spaces each.

In the list of expressions, a comma (,) causes the next value to be printed at the
beginning of the next zone. A semicolon (;) causes the next value to be printed
immediately after the last value. Typing one or more spaces betweeen expres-
sions has the same effect as typing a semicolon.

If a comma or a semicolon terminates the list of expressions, the next PRINT
statement begins printing on the same line, spacing accordingly. If the list of
expressions terminates without a comma or a semicolon, a carriage return is
inserted at the end of the line. If the printed line is longer than the terminal
width, BASIC-80 goes to the next physical line and continues printing.

4"22 | CHAPTER FOUR

Printed numeric values are always followed by a space. Positive numbers are
preceded by a space. Negative numbers are preceded by a minus sign.

Single-precision numbers that can be accurately represented with 6 or fewer
digits in the unscaled format are output using the unscaled format. For example,
10~(—6) is output as .000001 and 10~(—7) is output as 1E-7.

Double-precision numbers that can be accurately represented with 16 or fewer
digits in the unscaled format are output using the unscaled format. For example,

1D-16 is output as .0000000000000001 and 1D-17 is output as 1D-17.

Examples:

10 X=5
20 PRINT X+5,X-5,X*(-5),X»5
30 END
RUN
10 0 -25 3125
Ok

In this example, the commas in the PRINT statement cause each value to be
printed at the beginning of the next print zone.

10 FOR X =1 TO 5
20 J = J +5
30 K=K+10
40 ?J;K;
50 NEXT X
RUN
5 10 10 20 15 30 20 40 25 50
Ok

In this example, the semicolons in the PRINT statement cause each value to be
printed immediately after the preceding value. (Don’t forget, a number is always
followed by a space and positive numbers are preceded by a space.) In line 40, a
question mark is used instead of the word PRINT.

Program Statements

READ (read values from DATA statement)
Form: READ <list of variables>

The READ statement is used to read values from a DATA statement and assign
them to variables.

A READ statement must always be used in conjunction with a DATA statement.
READ statements assign the constant values contained in a DATA statement to
the variables contained in the READ statement.

The assignment of values is on a one-to-one basis. READ statement variables may
be numeric or string, and the values read must agree with the variable types
specified. If data types do not agree, a ‘“Syntax error”’ will result.

A single READ statement may access one or more DATA statements (they will be
accessed in order), or several READ statements may access the same DATA
statement.

If the number of variables in <list of variables> exceeds the number of data
constants in the DATA statement, an ‘“Out of data” error will result.

If the number of variables specified is fewer than the number of elements in the
DATA statement, subsequent READ statements will begin reading data at the
first unread element. If there are no subsequent READ statements, the extra data
is ignored.

To reread DATA statements from the start, use the RESTORE statement.

Example:

10 FOR I = 1 TO 10
20 READ A(I)

30 NEXT I

40 DATA 3,4,5,6,7,8,9,10,11,12

This program segment READs the values from the DATA statement into the array
A. After execution, the value of A(1) will be 3, and so on.

4-23

4'24 I CHAPTER FOUR

RESTORE (reset data pointer)
Form: RESTORE <line number>

The RESTORE statement is used to reset the data pointer ina DATA statement so
that the data may be reread.

After a RESTORE statement is executed, the next READ statement accesses the
first item in the first DATA statement in the program. If <line number> is
specified, the next READ statement will access the first item in the specified
DATA statement.

Example:

10 READ A,B,C

20 RESTORE

30 READ D,E,F

40 DATA 57,68,79

This program segment will assign the constants 57,68,79 to the variables A,B,C.
The RESTORE statement in line 200 will reset the DATA pointer so that the
READ statement in line 30 will assign the constants 57,68,79 to the variables
D.EF.

Program Statements I 4'25

WRITE (output data to terminal)
Form: WRITE <list of expressions>
The WRITE statement is used to output data to the terminal.

If <list of expressions> is omitted, a blank line will be output. If <list of
expressions> is included, the values of the expressions are output to the termi-
nal. The expressions in the list may be numeric and/or string expressions, and
they must be separated by commas.

When the printed items are output, each item will be separated from the last by a
comma. Printed strings will be delimited by quotation marks. After the last item
.in the list is printed, BASIC-80 will insert a carriage return/line feed.

The WRITE statement outputs numeric values using the same format as the
PRINT statement.

Example:

10 A=80:B=90:C$="BASIC-80"
20 WRITE A,B,C$
RUN
80,90, "BASIC-80"
Ok

4'26 | CHAPTER FOUR

INSERT

Strings

Chapter Five

Strings

OVERVIEW

A string is a sequence of characters — letters, blanks, numbers, and special
characters — up to 255 characters long. A string constant is constructed by
enclosing these characters in a set of double quotation marks. A string variable
can be declared by simply adding the string declaration character, $, to the
variable name. A variable can also declare a variable a string variable by using
the DEFSTR statement.

Microsoft BASIC-80 provides complete facilities for manipulating strings. A
string can be compared, PRINTed, concatenated with other strings , etc. Several
functions for manipulating strings are also available to the BASIC-80 program-
mer.
This Chapter will cover the following subjects:

“String Input/Output”

“String Operations”

“String Functions”

o-1

CHAPTER FIVE

STRING INPUT/OUTPUT

String constants can be input to a program in the same manner as numeric
constants. The INPUT statement can be used. The string can be usually typed

without quotes.

10 INPUT "YOUR NAME";J$

20 PRINT "HELLO ";J$

RUN

YOUR NAME? [you type] JOHN
HELLO JOHN

Ok

However, if you wish to input a string constant which contains commas, colons,
or leading or trailing blanks, the string must be enclosed in quotes. (When the

INPUT statement is used.)

10 INPUT "YOUR NAME";J$

20 PRINT J$

RUN

YOUR NAME? [you type] "JONES, JOHN"
JONES, JOHN

Ok

The LINE INPUT statement can be used to input strings containing commas,
colons, and leading or trailing blanks. The string does not have to be enclosed in

quotes with the LINE INPUT statement.

10 LINE INPUT "YOUR NAME";J$

20 PRINT J$

RUN

YOUR NAME [you type] JONES, JOHN
JONES, JOHN

Ok

Strings I 5"3

STRING OPERATIONS

Strings may be concatenated using the + . For example:

10 X$="FIRST"

20 Y$=" AND "

30 Z$="LAST"

40 PRINT X$+Y$+Z$
RUN

FIRST AND LAST
Ok

Strings may be compared using the same relational operators that are used with
numbers:

= <> < > <= >=

The strings are compared character-for-character from left to right. The ASCII
codes for the character are compared, and the character with the lower ASCII
value is considered to precede the other character.

For example, the string “Z$”’ precedes the string “Z*” because “$”’ (ASCII code -
decimal 36) has a lower value than does “*”” (ASCII code - decimal 42).

When strings of different lengths are compared, the shorter string is considered
to precede the longer string. Every character, including blanks and any non-
printing character is significant in a string comparision. For example, the string
“AB” will precede the string “AB ”’ because of the trailing blank in the string
“AB”.

A string constant must also be enclosed in double quotes whenever it is used in
an assignment statement or in a comparison expression.

Example:

Z$="STRING CONSTANT"
IF Z$="NUMERIC CONSTANT" THEW GH.N Z§

5‘4 | CHAPTER FIVE

STRING FUNCTIONS

The string functions avaliable to the BASIC-80 programmer are:

Function
ASC(X$)
CHRS$(I)
HEX$(X)
INKEY$
INPUT$(X,Y)
INSTR(LXS$,Y$)
LEFT$(X$,I)
LEN(X$)

MID$(X$,1,))
MID$(X$,1,))=Y$

OCTS$(X)
RIGHT$(X$.1)
SPACES$(X)
STR$(X)

STRINGS(L))
STRINGS$(L,X$)

VAL(X$)

Definition

string to ASCII value conversion
ASCII value to string conversion
decimal to hexadecimal conversion
read one character from terminal
read characters

search for substring

return leftmost characters

length of string

return substring
replace portion of string

convert decimal to octal
return rightmost characters
return string of spaces
return string representation
build string

return numerical representation
of the string

Table 5-1

String Functions

Strings | 5'5

ASC (convert string to ASCII value)
Form: ASC(X$)

The ASC function will return a numerical value that is the ASCII decimal code of
the first character of the string X$. If X$ is a null string, an “‘Illegal function call”
error is returned.

Example:

10 X$="TEST"
20 PRINT ASC(X$)
RUN
84
Ok

In the above example, the first letter of the string X$ isa T. The ASCII code for T is
84.

CHRS (convert ASCII value to string)
Form: CHR$(I)

The CHRS$ function will return a string whose one element has ASCII decimal
code 1. (ASCII codes are listed in “Appendix B.”’) CHR$ is commonly used to
send a special character to the terminal. For instance, the BEL character could be
sent; PRINT CHR$(7).

Example:

PRINT CHR$(66)
B
Ok

5‘6 I CHAPTER FIVE

HEXS$ (convert decimal to hexadecimal)
Form: HEX$(X)

The HEX$ function will return a string which represents the hexadecimal value
of the decimal argument. X isrounded to an integer before HEX$(X) is evaluated.

Example:

10 INPUT X
20 A$ = HEX$(X)

30 PRINT X;" DECIMAL IS ";A$;" HEXADECIMAL"
RUN

? 32

32 DECIMAL IS 20 HEXADECIMAL

INKEYS$ (read one character from keyboard)
Form: INKEY$

The INKEY$ function will return either a one-character string containing a
character read from the terminal or a null string if no character is pending at the
terminal. No character is echoed and all characters are passed through the
program except for CTRL-C which terminates the program and returns BASIC-80
to the Command Mode.

Example:

10 X$ = INKEY$
20 IF X$=CHR$(32) THEN STOP
30 GO TO 10

This example would read from the keyboard until a space (ASCII decimal-32)
was typed.

Strings

INPUTS$ (read characters)
Form: INPUT$(X,Y)

The INPUTS$ function will return a string of X characters, read from the terminal
or from file number Y. If the terminal is used for input, no characters will be
echoed and all control characters are passed through except CTRL-C, which is
used to interrupt the execution of the INPUT$ function.

Example:

10 OPEN "I",1,"DATA.DAT"
20 IF EOF(1) THEN 50

30 PRINT INPUT$(1, 1)

40 GOTO 20

50 END

The above example will print all the characters in the file DATA.DAT

10 X$=INPUT$ (1)
20 IF X$="P" THEN 500
30 IF X$="S" THEN 700 ELSE 10

This example would read one character from the keyboard. If the characterisaP,
program control would be transferred to line number 500. If the characterisan S,
control would be transferred to line number 700. If the characteris notan S or P,
control would be transferred back to line number 10.

o-7

5'8 I CHAPTER FIVE

INSTR (search for substring)
Form: INSTR(1,X$,Y$)

The INSTR function will search for the first occurrence of string Y$ in X$ and
return the position at which the match is found. Optionally, the offset I sets the
position for starting the search. Imust be in therange 1-255. IfI>LEN(X$) orif X$
isnull orif Y$ can not be found, INSTR will return 0. If Y$ is null, INSTR returns |

or 1.

X$ and Y$ may be string variables, string expressions or string literals.

Example:

10 X$ = "ABCDEB"
20 Y$ = "B"
30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
RUN
2 6
Ok

LEFTS$ (return leftmost characters)

Form: LEFT$(X$.I)

The LEFT$ function will return a string comprised of the leftmost characters of
X$. I must be in the range 0 to 255. If I is greater than the length of X$, the entire
string (X$) will be returned. If I equals 0, the null string (length zero) is returned.

Example:
10 A$ = "BASIC-80"
20 B$ = LEFT$(A$,5)
30 PRINT B$
RUN
BASIC

Ok

Strings I 5'9

LEN (return length of a string)
Form: LEN(XS$)

The LEN function will return the number of characters in X$. Non-printing
characters and blanks are counted.

Example:

10 X$ = "ABC DEF"
20 PRINT LEN(X$)
RUN

7

Ok

MID$ (return substring)
Form: MID$(X$,1,])

The MID$ function will return a string of length] characters from X$ beginning
with the Ith character. I and] must be in the range 0 to 255. If] is omitted or if
there are fewer than J characters to the right of the Ith character, all right-most
characters beginning with the Ith character are returned. If I is greater than the
length of string X$, MID$ will return a null string.

Example:

10 A$="GOOD"

20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$.8.8)

RUN

GOOD EVENING

Ok

5'10 | CHAPTER FIVE

MIDS$ (replace portion of string)
Form: MID$(X$,1,))=Y$

This form of the MID$ function will replace a portion of one string with another
string.

The characters in string X$, beginning at position I, are replaced by the charac-
ters in string Y$. The value, which is optional, refers to the number of characters

from string Y$ that will be used in the replacement.

However, regardless of whether] is omitted or included, the replacement of
characters never goes beyond the original length of X$.

Examples:

A$="1234567" at the beginning of each example

Statement Resultant A$
MID$ (A$,3,4)="ABCDE" 12ABCD7
MID$ (A$,5)="ABCDE" 1234ABC
MID$ (A$,1,2)="A" A234567

OCTS$ (convert decimal to octal)
Form: OCT$(X)

The OCT$ function will return a string which represents the octal value of the
decimal argument. X is rounded to an integer before OCT$(X) is evaluated.

Example:

PRINT OCT$(24)
30
Ok

Strings I 5‘11

RIGHTS$ (return rightmost chraracters)
Form: RIGHT$(X$.])

The RIGHT$ function will return the right-most I characters of string X$. If I
equals the length of the string X$, the function will return the entire string. If I
equals 0, the null string (length zero) will be returned.

Example:

10 A$="DISK BASIC-80"
20 PRINT RIGHT$(A$,.8)
RUN

BASIC-80

Ok

SPACES (return string of spaces)
Form: SPACE$(X)

The SPACES$ function will return a string of spaces of length X. The expression X
is rounded to an integer and must be in the range 0-255.

Example:

10 FOR I =1 TO 5
20 X$ = SPACE$(I)
30 PRINT X$;I

40 NEXT I

RUN

Ok

5"12 I CHAPTER FIVE

STRS (return string representation)
Form: STR$(X)

The STR$ function will return the string representation of X. For example, if X =
45.3, then STR$(X) equals the string “ 45.3”. A leading blank will be inserted
before “'45.3" to allow for the sign of X. Arithmetic operations may be performed
on X, but not on the string STR$(X).

Examples:

PRINT STR$(100)
100

PRINT STR$(-100)
—-100

STRINGS (build string)
Form: STRING$(L])
STRINGS$(1,X$)

The STRINGS$ function will return a string of length I composed of the ASCII
code J or the first character of X$. I and] must be expressed in decimal and their
values must be in the range 0-255.

Examples:

PRINT STRINGH(10,"*'")

KKK KKK KKK

PRINT STRING$(15,65)
AAAAAAAAAAAAAAA

Strings | 5"13

VAL (return numerical representation)
Form: VAL(X$)

The VAL function will return the numerical representation of the string X$. The
VAL function will strip all leading blanks, tabs, and line feeds from the argument
string.

If the first valid character of X$ is not +, - ,&, ora digit, then VAL(X$) = 0. The & is
used to specify an octal value. The VAL function will convert this octal value to
decimal when VAL(X$) is evaluated. If the string X$ contains both numeric and
alphanumeric characters, only the leading numeric characters will be used in
evaluating X$.

Examples:

PRINT VAL("100 FEET")
100

PRINT VAL ("FEET 100")
0

PRINT VAL('"&100")
64

PRINT VAL(" -3")
-3

5'14 I CHAPTER FIVE

INSERT

Arrays | 6‘1

Chapter Six

Arrays

OVERVIEW

This Chapter explains the methods used to create and reference an array, which
is simply an ordered list of data items. This list of data items can be a one-
dimensional vertical array, or it can be a table of data items consisting of rows
and columns.

These data items may be either string or numeric. Each one is referred to as an
“element”. To help illustrate the concept of arrays, an example is included in
this Chapter.

This Chapter also contains several sample routines which can be used to man-
ipulate arrays. These sample routines can be used to add, multiply, transpose
and perform other useful operations on numeric arrays.

6"2 | CHAPTER SIX

ARRAYS

Array Declarator

Before an array is referenced, it should be ‘“declared”” by use of an array de-
clarator. The DIM statement is used to establish the maximum number of ele-
ments in an array. The general form of the DIM statement is:

DIM <name>(<integer expression>)
where:
<name> is a valid BASIC-80 symbolic name

<integer expression> is any valid integer expression which when evaluated,
will be rounded to a positive integer value. This positive integer value will then
become the maximum number of elements associated with that specific array
name. The maximum number of dimensions is 255. The maximum number of
elements per dimension is 32767.

Examples:

DIM A(3),D$(2,2,2)
DIM Q1 (R+T)
DIM Z#(100)

An array can also be declared without the use of the array declarator. When
BASIC-80 encounters a subscripted variable that has not been defined with a
DIM statement, it will assume a maximum subscript of 10. Thus, an array can be
established without the use of the DIM statement.

Arrays

Array Subscript

Each element of an array can be uniquely referenced by having an array subscript
appended to end of the array name. This array subscipt is an integer expression
which references a unique element of the array.

Examples:

A(1),D$(I,J.K)
Q1(2)
Z#(55)

Any attempt to reference an array element with a subscript that is negative will
result in an “Illegal Function Call” error. References to subscripts which are
larger than the maximum value established by a DIM statement and references
which contain too many or too few subscripts will generate a “Subscript Out of
Range” error.

OPTION Base Statement

The minimum subscript for an array element is assumed to be 0. The array
declarator A(10) actually establishes an 11-element array, A(0) - A(10). The
OPTION BASE statement can be used to change this default minimum array
subscript to 1. The following example illustrates the use of the OPTION BASE
statement.

Example:

OPTION BASE 1
DIM A(10)

This program segment will establish a 10 element array, A(1) - A(10). The
OPTION BASE statement must appear before any DIM statement or before any
subscripted variable is referenced. An attempt to use the OPTION BASE state-
ment after an array has already been established will result in a “Duplicate
Definition” error.

6'4 I CHAPTER SIX

Vertical Arrays

A vertical array is a 1-dimensional array. This type of array is established if the
DIM statement is used, or by letting BASIC-80 establish the default array size.
Assuming that the default array size of 11 elements has been established for the
array A, BASIC-80 would allocate storage as follows:

Array element Subscripted variable
Element #1 A(0)
Element #2 A1)
Element #3 A(2)
Element #4 A(3)
Element #5 A(4)
Element #6 A(5)
Element #7 A(6)
Element #8 A(7)
Element #9 A(8)
Element #10 A(9)
Element #11 A(10)

Table 6-1

Array Storage Allocation.

The variable A(9) would reference the tenth element of this vertical array.
(Although, the OPTION BASE statement could be used to set the minimum
subscript to 1, then A(9) would reference the ninth element of the array.)

Arrays I 6'5

Multi-Dimensional Arrays

A multi-dimension array is declared in the same manner as a vertical array,
except that both row and column size are declared. For example, to declarea 3 X
3 array, the following sequence of statements could be used:

OPTION BASE 1
DIM A(3,3)

After this program segment is executed, BASIC-80 would reserve nine storage
locations for the array. (Note that the minimum subscript value was set to 1 with

the OPTION BASE statement.)

Storage for the array would be allocated as follows:

Column 1 2 3_

Row 1 A(1,1) A(1,2) A(1,3)

2 A(2,1) A(2,2) - A(2,3)

3 A(3,1) A(3,2) A(3,3)
Table 6-2

Multi-Dimensional Array
Storage Allocation.

When reading from left to right, note that the second array subscript varied most
rapidly. This is because BASIC-80 allocates array storage such that the right-
most subscript varies the fastest.

String arrays can also be established in the same manner as numeric arrays. A
string array is declared when the DIM statement is used.

DIM A$(100)

This statement will establish a 101 element string array. To access an element of
the array, append an array subscript to the end of the variable name.

A$(20)="A STRING ARRAY"

6'6 I CHAPTER SIX

MATRIX MANIPULATION

The following is a collection of subroutines which are very useful for manipulat-
ing a matrix. The subroutine line numbers may have to be changed to be
compatible with your main program.

Matrix Input Subroutines

5000 'SUBROUTINE NAME —— MATIN2

5010 'ENTRY I% = # OF ROWS, J% = # OF COLUMNS
5020 DIM MAT(I%,J%)

5030 FOR K% = 1 TO I%

5040 PRINT "INPUT ROW #";K%

5050 FOR L% = 1 TO J%

5060 INPUT MAT(KZ,L%Z)

5070 NEXT LZ,K%

5080 RETURN

The above subroutine will accept data from the terminal and assign this data to
the 2-dimensional array named MAT. Upon entry into this subroutine, the
integer variable 1% must contain the number of rows in the matrix and J% must
contain the number of columns.

5000 'SUBROUTINE NAME —— MATIN3

5010 'ENTRY I} = SIZE OF DIMENSION #1
5020 ' J% = SIZE OF DIMENSION #2
5030 ' . K% = SIZE OF DIMENSION #3

5040 DIM MAT(I%,J%.K%)

5050 FOR L% = 1 TO I%

5060 FOR M% = 1 TO J%

5070 FOR N7 = 1 TO K%
5080 READ MAT(L%,M%,N%)

5090 NEXT N%,M%,L%

6000 RETURN

This subroutine is used to read data from a DATA statement and assign this data
to the 3-dimensional array named MAT. Upon entry into this subroutine, the
integer variable I% must contain the number of elements for dimension 1, J%
must contain the number of elements for dimension 2, and K% must contain the
number of elements for dimension 3. The data must also be contained in a valid
DATA statement.

6-7

Arrays

Scalar Multiplication (multiplication by a
single variable)

5000 'SUBROUTINE NAME —— MATSCALE

5010 'ENTRY —- 1% = SIZE OF DIMENSION #1
5020 ' J% = SIZE OF DIMENSION #2
5030 ' K% = SIZE OF DIMENSION #3
5040 ' A——ORIGINAL ARRAY
5050 ' X-—-SCALAR FACTOR

1

5060 B—-NEW ARRAY
5070 FOR L% = 1 TO K%
5080 FOR M% = 1 TO J%

5090 FOR NZ = 1 TO I%
6000 B(N%,M%,L%) = A(N%,M%,L%)*X
6010 NEXT N%

6020 NEXT M%
6030 NEXT L%
6040 RETURN

This subroutine will multiply each element in the 3-dimensional array A by the
value assigned to X and produce a new 3-dimensional array B. Upon entry into
this subroutine, I% must contain the size of dimension #1, J% must contain the
size of dimension #2, K% must contain the size of dimension #3, X must be
assigned the value to multiply by (scalar factor). Both arrays A and B must also
have previously been defined by a DIM statement.

Transposition of a Matrix

5000 'SUBROUTINE NAME —— MATTRANS

5010 'ENTRY I% = # OF ROWS, J% = # OF COLUMNS
5020 'TRANSPOSE A INTO B

5030 FOR K% = 1 TO I%

5040 FOR L% = 1 TO J%

5050 B(L%,K%Z) = A(K%,L%)

5060 NEXT L%

5070 NEXT KZ

5080 RETURN

This subroutine will transpose the 2-dimensional matrix A into the
2-dimensional matrix B. Upon entry into the subroutine, 1% must contain the
number of rows and % must contain the number of columns. The arrays A and B
both must have previously been defined by a DIM statement.

6'8 | CHAPTER SIX

ta,,

iy,

Matrix Addition

5000 'SUBROUTINE NAME —— MATADD

5010 'ENTRY — IZ = SIZE OF DIMENSION #1

5020 J% = SIZE OF DIMENSION #2
5030 ' K% = SIZE OF DIMENSION #3
5040 'ARRAY A+B = C

5050 FOR LE = 1 TO K%

5060 FOR M% = 1 TO J%

5070 FOR NZ = 1 TO I%
5080 C(N%,M%,L%) = B(N%,M%,L%) + A(N%,M%,L%)
5090 NEXT N%

6000 NEXT M%
6010 NEXT L%
6020 RETURN

This subroutine will add the elements of arrays A and B to produce a new array C.
A.B, and C must have previously been defined by a DIM statement.

Matrix Multiplication

5000 ' SUBROUTINE NAME —— MATMULT
5010 'ENTRY — ARRAY A MUST BE D1% BY D3% ARRAY

5020 ARRAY B MUST BE D3% BY D2% ARRAY
5030 ARRAY C MUST BE D1% BY D2% ARRAY
5040 FOR I% = 1 TO D1%

5050 FOR J% = 1 TO D2%

5060 C(I%,J%) =0

5070 FOR KZ=1 TO D3%

5080 C(I%,J%)=C(I%,J%)+A(I%,K%)*B(K%,I%)
5090 NEXT K%

6000 NEXT J%
6010 NEXT I%

This subroutine will multiply the 2-dimensional array A by the 2-dimensional
array B and produce C.

INSERT

Functions

Chapter Seven

Functions

OVERVIEW

BASIC-80 provides a full set of intrinsic functions for use by the BASIC-80
programmer. One group of intrinsic functions is the arithmetic functions. These
functions are referenced by a symbolic name; when invoked, they return a single
value. This single value will be either an integer or single-precision data type.
The arguments to the arithmetic functions are enclosed in parentheses.

The BASIC-80 programmer also has a group of special functions that he may use.
These special functions each have their own unique requirements for referenc-
ing.

Complete facilities for constructing and referencing user-written functions have
also been included in BASIC-80.

7-1

7'2 | CHAPTER SEVEN

ARITHMETIC FUNCTIONS

Several arithmetic functions are available for use by the BASIC-80 programmer.
These arithmetic functions are:

FUNCTION

ABS(X)
ATN(X)
CDBL(X)
CINT(X)
COS(X)
CSNG(X)
EXP(X)
FIX(X)
INT(X)
LOG(X)
RND(X)
SGN(X)
SIN(X)
SQR(X)

TAN(X)

DEFINITION

absolute value

arctangent

convert to double-precision
round to integer

cosine

convert to single-precision
e to the power of X
truncate supplied argument
largest integer <= X
natural log of X

random number between 0 and 1
sign (+,- or 0) of X

sine of X

square root of X

tangent of X

Table 7-1

Arithmetic Functions.

Functions I 7"3

ABS (absolute value)
Form: ABS(X)
The ABS function returns the absolute value of the expression X.

Example:

PRINT ABS(7*(-5))
35
ok

ATN (arctangent)
Form: ATN(X)

The ATN function will return the arctangent of X. X must be expressed in
radians. The result will be in the range —pi/2 to pi/2. The expression X may be
any numeric type, but the evaluation of ATN is always performed in single-
precision.

Example:

10 X =3
20 PRINT ATN(X)
RUN
1.24905
Ok

7-4 I CHAPTER SEVEN

CDBL (convert to double-precision)
Form: CDBL(X)
The CDBL function will convert X to a double-precision number.

Example:

10 X = 454.67
20 PRINT X;CDBL(X)
RUN
454 .67 454.6700134277344
Ok

'CINT (convert to integer)
Form: CINT(X)

The CINT function will convert X to an integer. The fractional portion of X will
be rounded to the nearest integer. If this function returns aresult that is not in the
range —32768 to 32767, an “Overflow” error will occur.

Example:

PRINT CINT(45.67)
46
Ok

Functions | 7'5

COS (cosine)
Form: COS(X)

The COS function will return the cosine of X. X must be expressed in radians.
The calculation of COS is performed in single-precision.

Example:

10 X =2 * COS(.4)
20 PRINT X
RUN
1.84212
Ok

CSNG (convert to single-precision)
Form: CSNG(X)
The CSNG function will convert X to a single-precision number.

Example:

10 A# = 975.34214
20 PRINT A#;CSNG(A#)
RUN

975.3421 975.342
ok

NOTE: The # is used to declare the values as double-precision data types.

7'6 I CHAPTER SEVEN

EXP (e raised to a power)
Form: EXP(X)
The EXP function will return e raised to the power of X. e is the natural

logarithm’s base value (2.71828...). X must be <= 87.3365. If EXP overflows, the
“Overflow” error message is displayed.

Example:
10 X =5
20 PRINT EXP(X-1)
RUN
54 .5982
Ok

FIX (truncate supplied argument)
Form: FIX(X)

The FIX function will return the truncated integer part of X. The major difference
between FIX and INT is that FIX simply removes any decimal portion of a
number. INT will round a negative number to the next lowest number.

Examples:

PRINT FIX(58.75)
58
0k

PRINT FIX(-58.75)
-58
Ok

Functions I 7"7

INT (round to integer)
Form: INT(X)

The INT function will return the largest integer <=X. When a negative value is
rounded, it will be rounded to the next smallest value.

Examples:

PRINT INT(99.89)
929

PRINT INT(-12.11)
-13

LOG (natural logarithm)
Form: LOG(X)

The LOG function will return the natural logarithm of the supplied argument. X
must be greater than zero. IF X is less than or equal to zero, an ““Illegal function
call” error message will be displayed.

Example:

PRINT LOG(45/7)
1.86075

7'8 I CHAPTER SEVEN

RND (random number generator)
Form: RND(X)

The RND function will return a random number between 0 and 1. The same
sequence of random numbers is generated each time the program is executed
unless therandom number generator is reseeded. The RANDOMIZE statement is
used to reseed the random number generator.

If X<0, the sequence of numbers will be restarted. X>0 or X omitted will
generate the next random number in the sequence. X=0 will repeat the last
number generated.

Example:

10 RANDOMIZE PEEK(11)
20 FOR I = 1 TO 5
30 PRINT INT(RND*100);

40 NEXT

RUN

24 30 31 51 5
OK

NOTE: The sequence of numbers generated will be different every time this
example program is executed.

RANDOMIZE (reseed random number generator)

Form RANDOMIZE <expression>

The RANDOMIZE statement is used to reseed the random number generator.

<expression> is used as the random number seed value. If <expression> is

omitted, BASIC-80 suspends program execution and asks for a value by printing:
Random Number Seed (-32768 to 32767)?

The value input is used as the random number seed.

If the random number generator is not reseeded, the RND function returns the
same sequence of random numbers each time the program is executed.

To change the sequence of random numbers every time the program is executed,
place a RANDOMIZE statement at the beginning of the program and change the
argument with each run.

Functions

SGN (sign of expression)
Form: SGN(X)
The SGN function returns a result based on the numeric value of X.

If X<0, SGN(X) will return —1. If X=0, SGN(X) will return 0. If X>0, SGN(X) will
return 1.

You can create an arithmetic IF statement using this function:
ON SGN(X)+2 GOTO 100,200, 300

If X is negative, the program will branch to 100. If X is zero, the program will
branch to 200. If X is positive, the program will branch to 300.

Example:

10 INPUT X

20 ON SGN(X)+2 GOTO 50,60,70
50 PRINT"NEGATIVE":GOTO 10
60 PRINT"ZERO":GOTO 10

70 PRINT"POSITIVE":GOTO 10
RUN

? —-10

NEGATIVE

? 0

ZERO

? 10

POSITIVE

Ok

7-9

7'10 | CHAPTER SEVEN

SIN (sine)
Form: SIN(X)

The SIN function will return the sine of X. X must be expressed in radians.
SIN(X) is calculated in single-precision.

Example:

PRINT SIN(1.5)
.997495
Ok

SQR (square root)
Form: SQR(X)

The SQR function will return the square root of X. X mustbe >=0.If X is less than
zero, an ‘Illegal function call” error will be displayed.

Example:

10 X = 25
20 PRINT X,SQR(X)
RUN
25 5
Ok

TAN (tangent)
FORM: TAN(X)

The TAN function will return the tangent of X. X must be in expressed in radians.
TAN(X) will be calculated in single-precision. If TAN overflows, the “Overflow”
error message will be displayed.

Example:

PRINT TAN(10)
.64836
ok

Functions I 7'11

MATHEMATICAL FUNCTIONS

Some functions that are not intrinsic to BASIC-80 may be calculated as follows:

Function

SECANT

COSECANT
COTANGENT

INVERSE SINE

INVERSE COSINE
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT

HYPERBOLIC COTANGENT

BASIC-80 Equivalent

SEC(X) = 1/COS(X)

CSC(X) = 1/SIN(X)

COT(X) = 1/TAN(X)

ARCSIN(X) = ATN(X/SQR(-X*X+1))
ARCCOS(X) = -ATN(X/SQR(-X*X +1))+1.570796
SINH(X) = (EXP(X)-EXP(-X))/2

COSH(X) = (EXP(X)+EXP(-X))/2

TANH(X) = (EXP(X)-EXP(-X))/EXP(X) +EXP(-X)
SECH(X) = 2/(EXP(X)+EXP(-X))

CSCH(X) = 2/(EXP(X)-EXP(-X))

COTH(X) = (EXP(X)+EXP(-X))/(EXP(X)-EXP(-X))

Table 7-2

Mathematical Functions

7'12 I CHAPTER SEVEN

SPECIAL FUNCTIONS

Several special functions are available for use by the BASIC-80 programmer.

These special functions are:

Function
FRE(X)
INP(I)
LPOS(X)
NULL(X)
OUT L]
PEEK(I)
POKE L]
POS(X)
SPC(X)
TAB(I)
VARPTR(X)
WAIT I,J,K
WIDTH 1

WIDTH LPRINT I

Definition

free memory space
input from port
position of print head
set number of nulls
output to port

read byte from memory
write byte to memory
current cursor position
print spaces

tab carriage

variable pointer

status of port

set terminal line width
set printer line width

Table 7-3

Special Functions.

7-13

Functions

FRE (return amount of free memory)
Form: FRE(0) FRE(X$)

The FRE function will return the number of bytes in memory that are not being
used by BASIC-80. The arguments to FRE are dummy arguments.

FRE(* ") forces some system housekeeping before returning the number of free
bytes. The housekeeping will take 1 to 2 minutes. BASIC-80 will not initiate
housekeeping until all free memory has been used.

Example:

PRINT FRE(O)

INP (input byte from I/O port)
Form: INP(I)

The INP function will return the byte read from port I. I must be in the range 0 to
255. INP is the complementary function to OUT.

Example:

10 A = INP(255)

1-14

CHAPTER SEVEN

LPOS (return position of print head)

Form: LPOS(X)

The LPOS function will return the current position of the line printer print head
within the line printer buffer. This does not necessarily correspond to the actual
physical position of the print head. X is a dummy argument.

Example:

100 IF LPOS(X)>60 THEN LPRINT CHR$(13)

OUT (output byte to I/O port)

Form: OUT L]

The OUT statement will send a byte to an output port. I and] must be integer
expressions in the range 0 to 255. The integer expression I is the port number,
and the integer expression | is the data to be transmitted.

Example:

100 OUT 32, 100

Functions | 7'15

PEEK (examine contents of memory location)
Form: PEEK(I)

The PEEK function will return the byte read from memory location I. The value
returned will be a decimal integer in therange 0 to 255. Imust be in therange 0 to
65536. PEEK is the complimentary function to the POKE function.

Example:

PRINT PEEK (34000)
234
Ok

Note: You may not get the same result if you PEEK memory location 34000.

POKE (change contents of memory location)
Form: POKE 1,J

The POKE function will change the contents of a memory location. I and] must
be integer expressions.

The integer expression I is the address of the memory location to be changed. I
must be in the range 0 to 65535.

The integer expression J is the value to be placed into memory location I.] must
be in the range 0 to 255.

POKE and PEEK are useful for efficient data storage, loading assembly language
subroutines, and passing arguments and results to and from assembly language
subroutines.

Example:

POKE 34000, 1
Ok

7'16 | CHAPTER SEVEN

POS (return current cursor position)
Form: POS(I)

The POS function will return the current cursor position. The left-most position
is 1. I is a dummy argument.

Example:

IF POS(I) > 60 THEN PRINT CHR$(13)

SPC (print blanks)
Form: SPC(I)

The SPC function is used to print blanks on the terminal or the line printer. The
integer argument I specifies how many blanks are to be printed. I must be in the
range 0 to 255. The SPC function may only be used with PRINT and LPRINT
statements.

Example:

PRINT "OVER";SPC(15);"THERE"
OVER THERE
Ok

Functions

TAB (tab carriage)
Form: TAB(I)

The TAB statement is used to space to position I on the terminal or line printer. If
the current print position is already beyond space I, TAB goes to position I on the
next line.

Position 1 is the left-most position, and. the right-most position is the width
minus one. I must be an unsigned integer expression in the range 1 to 255. TAB
may only be used with PRINT and LPRINT statements.

Example:

10 PRINT "NAME'";TAB(10);"AMOUNT"
20 READ A$,B$%

30 PRINT A$;TAB(10);B$

40 DATA "WILLIAMS","$20.00"

RUN

NAME AMOUNT

WILLIAMS $20.00

1-17

7'18 | CHAPTER SEVEN

VARPTR (variable pointer)

Form#1: VARPTR (<variable name>)
Form#2: VARPTR (#<file number>)

Form #1 of the VARPTR function is used to return an address-value which can
be used to locate where the variable <variable name> is stored in memory. A
value must have been previously assigned to <variable name> or an “Illegal
function call” error will result.

Any type variable name may be used (numeric, string, array). The result returned
will be an integer in the range -32768 to 32767. If a negative address is returned,
add itto 65536 to obtain the actual address. This returned address (which we will
refer to as A) has a different meaning depending upon on the data type of
<variable name>.

NOTE: The results from these examples may vary depending on how much
memory your system has, how much memory is being used for BASIC-80, etc.

If <variable name> is a string value:

A — Contains the length of the string.

A+1 — Contains the LSB (least significant byte) of the actual string start-
ing address.

A+2 — Contains the MSB (most significant byte) of the actual string
starting address. -

The actual address where the string value is stored can be calculated by:
actual address = (A+2)*256 + (A+1)

This address will most likely be in high RAM where the string values are stored.
If the string value is a constant (a string literal), this address will represent the
area of memory where the program line containing the string is stored.

(Remember, A is only the address of this information, you must PEEK(A) to
obtain the actual value.)

Example:

X$="ABC" [you type]

Ok)

PRINT VARPTR(X$) [you type]
-23927

Ok

Functions

If <variable name> is an integer value:

A — Contains the LSB of the 2-byte integer
A+1 — Contains the MSB of the 2-byte integer

To display this information (in two’s complement decimal representation),
execute a PRINT PEEK(A) and a PRINT PEEK(A+1).

Example:

1% = 1000

Ok

[you type]

PRINT VARPTR(I%) [you type]

-29121

Ok

If <variable name> is a single-precision value:

A
A+1
A+2

A+3

Contains the LSB of value.

Contains next MSB of value.

MSB (most significant byte) with implied leading one.
Most significant bit is the sign of the number.
Exponent of value in excess 128 notation

(128 is added to the exponent).

If <variable name> is a double-precision value:

A

A+1
A+2
A+3
A+4
A+5
A+6

A+7

Contains the LSB of value.

Next MSB.

Next MSB.

Next MSB.

Next MSB.

Next MSB.

MSB (most significant byte) with implied leading one.
Most significant bit is the sign of the number.
Exponent of value in excess 128 notation.

7-19

7'20 CHAPTER SEVEN

The double and single-precision numbers are stored in a normalized exponent
form, so that a decimal is assumed before the MSB. The exponent is stored in
excess 128 notation (128 isadded to the exponent). The high order bit of the MSB
isused asasign bit. It is 0 if the number is positive or 1 if the number is negative.

Example:

10 A = 23.4

20 B#=23.12345678

30 PRINT VARPTR(A),VARPTR(B)
RUN

-23888 -23880

Form#2 of the VARPTR function is used toreturn the address of the FIELD buffer
for the specified random file.

Example:

10 OPEN "R",1,"OUT.DAT"
20 FIELD#1, 128 AS JUNK$
30 PRINT VARPTR(#1)

RUN

-2345

Ok

Functions

WAIT (monitor port)
Form: WAIT LJ,K

whereIis the integer decimal number of the port being monitored and K and J are
integer expressions. The WAIT function is used to suspend program execution
while monitoring the status of a machine input port.

The WAIT function causes execution to be suspended until a specified machine
input port develops a certain bit pattern. The data read at the port is XOR’ed with
the integer expression K, and then AND’ed with the integer expression J.

If the result is zero, BASIC-80 loops back and reads the data at the port again. If
theresult is non-zero, execution resumes with the next executable statement. IfK
is omitted, it is assumed to be zero. I,], and K must be in the range 0-255.
(Remember, all numbers are decimal unless preceded by&H,&O, or&.)
Example:

WAIT 20,6

Execution stops until either bit 1 or bit 2 of port 20 are equal to 1. (Bit 0 is least
significant, bit 7 is most.) Execution resumes at the next statement.

WAIT 10,255,7
Execution stops until any of the most significant five bits of port 10 are equal to 1,

or any of the least significant three bits are 0. Execution resumes at the next
statement.

1-21

7'22 | CHAPTER SEVEN

WIDTH (set line width)
Form: WIDTH [LPRINT] <integer expression>

The WIDTH function is used to set the printed line width for the terminal or line
printer. The LPRINT option is used for the line printer width.

<integer expression> is the number of characters in the printed line. The default
line width for the terminal is 72 and the default line width for the line printer is
132.

IF <integer expression> is 255 the line width is “infinite”, that is, BASIC never
inserts a carriage return. However, the position of the cursor or print head, as
given by the POS or LPOS function, returns to zero after position 255.
Example

WIDTH 80 set terminal width at 80 characters.

WIDTH LPRINT 96 set printer width at 96 characters.

Functions

USER-DEFINED FUNCTIONS

Sometimes it is necessary to execute the same sequence of program statements or
mathematical formulas in several different places. BASIC-80 allows the prog-
rammer to define his own functions and then reference these functions in the
same manner as the standard system functions, such as ABS, SIN, or SQR.

At times it may also be necessary to code a specific portion of a program in
assembly language. Facilities have been provided for the BASIC-80 programmer
to reference assembly language programs from a BASIC-80 program.

DEF FN (define function)
Form: DEF FN<name>(<variable list>) = expression
The DEF FN statement is used to define an implicit function.

<name> must be a legal variable name. This name, preceded by the FN becomes
the function name. The entries in the variable list are “dummy”’ variable names.
The dummy variables represent the argument variables or values in the function
call.

Any number of arguments are allowed, and any valid expression may appear on
theright side of the.equal sign. The length of the function definition is limited to
one logical line (255 characters).

User-defined functions may be of any type. The type of a function is specified by
inserting one of the type declaration characters (%,!,#,or $) after the function
name. If a type declaration character is not used, the definition (DEFSTR,
DEFSNG, etc.) for that letter applies. If you have made no unique DEF’s, then a
numeric variable is assumed to be a single-precision data type.

If a type is specified for the function, the value of the expression is forced to that
type before it is returned to the calling statement. If a type is specified in the
function name and the argument type does not match, a “Type mismatch’ error
occurs. DEF FN is illegal in the Command Mode.

Example:

10 DEF FNAB(X,Y)=X+Y
20 SUM = FNAB(10,20)
30 PRINT SUM

RUN

30

Ok

1-23

7"24 I CHAPTER SEVEN

ASSEMBLY LANGUAGE PROGRAMS

It is possible to invoke an assembly language program in either of two methods.
The first method is to use the USR function, and the other method is with the
CALL statement.

For more information, see Appendix E, ‘“Assembly Language Subroutines.”

DEF USR (define entry address for USR subroutine)
Form: DEF USR< digit>=<expression>

The DEF USR statement is used to define the entry points for up to 10 assembly
language subroutines.

The <digit> is the number of the assembly language subroutine. <digit> may
be any number from 0-9. If <digit> is omitted, it is assumed to be 0.

The value of expression is the starting address of the assembly language sub-
‘routine in decimal, unless the number is preceded by a special base specification
character. A hexadecimal number is specified with the prefix &H and an octal
number is specified with the prefix &0 or &.

Examples:

DEFUSR1=&H22
DEFUSR2=45000
DEFUSR5=ADDRESS

Functions

USR (invoke assembly language subroutine)
Form: USR<digit>(X)

The USR function is used to invoke an assembly language subroutine. <digit>
must be in the range 0-9 and corresponds to the digit supplied with the DEF USR
statement. If <digit> is omitted, it is assumed to be zero. X is the argument to be
passed to the assembly language subroutine.

Example:
Z =USR1(B/2)
A =USR2(1.23)

C = USR5 (ARG1)

NOTE: A detailed description of how to define and reference USR functions is
contained in Appendix E.

CALL (call assembly language subroutine)
Form: CALL<variable name>[(argument list)]
The CALL statement is used to call an assembly language subroutine.

<variable name> is assigned an address that is the starting point, in memory, of
the assembly language subroutine. The address should be assigned before a
CALL statement is executed. <variable name> may not be an array variable
name. <argument list> contains the arguments that are passed to the assembly
language subroutine.

The CALL statement generates the same calling sequence used by Microsoft’s
FORTRAN, COBOL and BASIC Compilers. This calling sequence is explained in
Appendix E, “Assembly Language Subroutines.”

Example:

110 MYROUT = &HDOOO
120 CALL MYROUT(I,J,.K)

1-25

7'26 CHAPTER SEVEN

