
)

)

Microsoft (TM) BASIC

Reference Manual

Microsoft Corporation

Information in this document is subject to change without
notice and does not represent a commitment on the part of
Microsoft Corporation. The software described in this
document is furnished under a license agreement or
non-disclosure agreement. The software may be used or
copied only in accordance with the terms of the agreement.
'It is against the law to copy Microsoft (TM) BASIC on
magnetic tape, disk, or any other medium for any purpose
other than the purchaser's personal use.

(Cl Microsoft Corporation 1979, 1982

Microsoft Corporation
Microsoft Building
10700 Northup Way
C-97200
Bellevue, Washington 98004

CP/M is a registered trademark of Digital Research, Inc.

Microsoft, Microsoft 'BASIC Interpreter, Microsoft
Compiler, Microsoft FORTRAN Compiler, and Microsoft
Compiler are trademarks of Microsoft Corporation.

BASIC
COBOL

Teletype is a registered trademark of Teletype Corporation.

Document no. 8101-530-11
Part no. 00F14RM

Contents

Introduction

Chapters 1 General Information about Microsoft BASIC

)

1.1 Initialization

1.2 Modes of Operation

1.3 Line Format

1.4 Character Set

1.5 Constants

1.6 Variables

1.7 Type Conversion

1.8 Expressions and Operators

1.9 Input Editing

1.10 Error Messages

2 Microsoft BASIC Commands and Statements

)

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25

AUTO
CALL
CHAIN
CLEAR
CLOAD
CLOSE
COMMON
CONT
CSAVE
DATA
DEF FN
DEFINT/SNG/DBL/STR
DEF USR
DELETE
DIM
EDIT
END
ERASE
ERR and ERL Variables
ERROR
FIELD
FOR •.• NEXT
GET
GOSUB ..• RETURN
GOTO

2.26 IF ... THEN[..• ELSE] and IF .•. GOTO
2.27 INPUT
2.28 INPUTi!
2.29 KILL
2.30 LET
2.31 LINE INPUT
2.32 LINE INPUTi!
2.33 LIST
2.34 LLIST
2.35 LOAD
2.36 LPRINT and LPRINT USING
2.37 LSET and RSET
2.38 MERGE
2.39 MID$
2.40 NAME
2.41 NEW
2.42 NULL
2.43 ON ERROR GOTO
2.44 ON ••. GOSUB and ON ... GOTO
2.45 OPEN
2.46 OPTION BASE
2.47 OUT
2.48 POKE
2.49 PRINT
2.50 PRINT USING
2.51 PRINTi! and PRINTi! USING
2.52 PUT
2.53 RANDOMIZE
2.54 READ
2.55 REM
2.56 RENUM
2.57 RESTORE
2.58 RESUME
2.59 RUN
2.60 SAVE
2.61 STOP
2.62 SWAP
2.63 TRON!TROFF
2.64 WAIT
2.65 WHILE ..• WEND
2.66 WIDTH
2.67 WRITE
2.68 WRITE!i

3 Microsoft BASIC Functions

3.1 ABS
3.2 ASC
3.3 ATN
3.4 CDBL
3.5 CHR$
3.6 CINT
3.7 COS
3.8 CSNG
3.9 CVI, CVS, CVD
3.10 EOF

)

3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43

EXP
FIX
FRE
HEX$
INKEY$
INP
INPUT$
INSTR
INT
LEFT$
LEN
LOC
LOG
LPOS
MID$
MIK$, MKS$, MKD$
OCT$
PEEK
POS
RIGHT$
RND
SGN
SIN
SPACE$
SPC
SQR
STR$
STRING$
TAB
TAN
USR
VAL
VARPTR

)

Appendices A

B

C

D

Index

Error Codes and Error Messages

Mathematical Functions

ASCII Character Codes

Microsoft BASIC Reserved Words

)

)

)

In troduction

Microsoft(TM) BASIC is the most extensive implementation of
BASIC available for microprocessors. Microsoft BASIC meets
the ANSI qualifications for BASIC, as set forth in document
BSRX3.60-l978. Each release of Microsoft BASIC is
compatible with previous versions.

How to Use this Manual-- ----

This manual is a reference for all implementations of
Microsoft BASIC and for the Microsoft(TM) BASIC Compilers.

The manual is divided into three chapters plus three
appendices. Chapter 1 covers a variety of topics, largely
pertaining to data representation in Microsoft BASIC.
Chapter 2 describes the syntax and semantics of every
command and statement in Microsoft BASIC, ordered
alphabetically. Chapter 3 describes all Microsoft BASIC
intrinsic functions, also ordered alphabetically. The
appendices contain a list of error messages and codes, a
list of mathematical functions, and a list of ASCII
character codes.

Additional information about programming Microsoft BASIC is
covered in the Microsoft BASIC User's Guide. The User's
Guide describes the features of Microsoft BASIC that are
implemented for your machine. It also contains information
relevant to your operating system and helpful hints about
such matters as data I/O and assembly language subroutines.

Syntax Notation
Wherever the format for a statement or command is given, the
following rules apply:

CAPS Items in capital letters must be input as shown.

< > Items in lower case letters enclosed in angle
brackets « » are to be supplied by the user.

[l- Items in square brackets ([1) are optional.

Items followed by an ellipsis (•••) may be repeated
any number of times (up to the length of the line).

Vertical bars separate the choices within braces. At
least one of the entries separated by bars must be
chosen unless the entries are also enclosed in square

)

{ } Braces indicate that the user has a choice
two or more entries. At least one of the
~nclosed in braces must be chosen unless the
are also enclosed in square brackets.

between
en tr ies
entries

brackets.

All punctuation except angle brackets and square
brackets (i.e., commas, parentheses, semicolons,
hyphens, equal signs) must be included where shown.

)

Chapter 1 General Information about Microsoft BASIC

1.1 Initialization

1.2 Modes of Operation

1.3 Line Format

1.3.1 Line Numbers

1.4 Character Set

1.4.1 Control Characters

1. 5 Cons tan ts

1.5.1 Single and Double Precision Form
for Numeric Constants

1.6 Variables

1. 6.1
1.6.2
1. 6.3

Variable Names and Declaration Characters
Array Variables
Space Requirements

) 1.7 Type Conversion

1.8 Expressions and Operators

1.8.1 Arithmetic Operators

1.8.1.1
1.8.1.2

Integer Division and Modulus Arithmetic
Overflow and Division by Zero

)

1.8.2 Relational Operators

1.8.3 Logical Operators

1.8.4 Functional Operators

1.8.5 String Operators

1.9 Input Editing

1.10 Error Messages

)

CHAPTER 1

GENERAL INFORMATION ABOUT MICROSOFT BASIC

1.1 INITIALIZATION

The procedure for initialization will vary with different
implementations of Microsoft BASIC. Check the Microsoft
BASIC User's Guide for your machine to determine how
Microsoft BASIC is initialized with your operating system.

)
1.2 MODES OF OPERATION

When Microsoft BASIC is initialized, it displays the
"Ok". "Ok" indicates Microsoft BASIC is at command
that is, it is ready to accept commands. At this
Microsoft BASIC may be used in either of two modes:
mode or indirect mode.

prompt
level;
point,
direct

)

In direct mode, Microsoft BASIC statements and commands are
not preceded by line numbers. They are executed as they are
entered. Results of arithmetic and logical operations may
be displayed immediately and stored for later use, but the
instructions themselves are lost after execution. Direct
mode is useful for debugging and for using Microsoft BASIC
as a "calculator" for quick computations that do not require
a complete program.

Indirect mode is used for entering programs. Program lines
are preceded by line numbers and are stored in memory. The
program stored in memory is executed by entering the RUN
command.

1.3 LINE FORMAT

Microsoft BASIC program lines have the following format
(square brackets indicate optional input):

nnnnn BASIC statement[:BASIC statement •..] <carriage return>

GENERAL INFORMATION ABOUT MICROSOFT BASIC Page 1-2

More than one BASIC statement may be placed on a line, but
each must be separated from the last by a colon.

A Microsoft BASIC program line always begins with
number and ends with a carriage return. A line may
a maximum of 255 characters.

a line
contain

It is possible to extend a logical line over more than one
physical line by using the <line feed> key. <line feed>
lets you continue typing a logical line on the next physical
line without.entering a <carriage return>.

1.3.1 Line Numbers

Every Microsoft BASIC program line begins with a line
number. Line numbers indicate the order in which the
program lines are stored in memory. Line numbers are also
used as references in branching and editing. Line numbers
must be in the range 0 to 65529.

A period (.) may be used in EDIT, LIST, AUTO, and DELETE
commands to refer to the current line.

)

GENERAL INFORMATION ABOUT MICROSOFT BASIC

1.4 CHARACTER SET

Page 1-3

The Microsoft BASIC character set consists of alphabetic
characters, numeric characters, and special characters.

The alphabetic characters in Microsoft BASIC are the upper
case and lower case letters of the alphabet.

The Microsoft BASIC numeric characters are the digits 0
through 9.

In addition, the following special characters and terminal
keys are recognized by Microsoft BASIC:

Character Action

)

)

=
+

*
/
A

(
)
%
i
$
!
[

1

.,
:
&
?
<
>
\
@

<rubout>
<escape>

<tab>

<line feed>
<carriage

return>

Blank
Equals sign or assignment symbol
plus sign
Minus sign
Asterisk or multiplication symbol

Slash or division symbol
Up arrow or exponentiation symbol

Left parenthesis
Right parenthesis
Percent

Number (or pound) sign
Dollar sign

Exclamation point
Left bracket
Right bracket
Comma
Period or decimal point
Single quotation mark (apostrophe)
Semicolon
Colon

Ampersand
Question mark

Less than
Greater than

Backslash or integer division symbol
At sign

Underscore
Deletes last character typed.
Escapes edit mode subcommands.

See Section 2.16.
Moves print position to next tab stop.

Tab stops are set every eight columns.
Moves to next physical line.

Terminates input of a line.

GENERAL INFORMATION ABOUT.MICROSOFT BASIC

1.4.1 Control Characters

Page 1-4

Microsoft BASIC supports the following control characters:

Control Character Action

Control-A Enters edit mode on the line being typed.

Control-C

Control-G

Control-H

Control-I

Interrupts program execution and returns
to BASIC command level.

Rings the bell at the terminal.

Backspaces. Deletes the last character
typed.

Tabs to the next tab stop. Tab stops are
set every eight columns.

Control-O Halts program
continues. A
output.

output while execution
second Control-O resumes

Control-R

Control-S

Lists the line that is currently being
typed.

Suspends program execution.

Control-Q Resumes program
Control-So

execution after a

Control-U

1.5 CONSTANTS

Deletes the line that is currently being
typed.

Constants
execution.
numeric.

are the
There

values Microsoft BASIC uses during
are two types of constants: string and

A string constant is a sequence of up to 255 alphanumeric
characters enclosed in double quotation marks.

Examples:

"HELLO"
"$25,000.00"
"Number of Employees"

Numeric constants are positive or negative numbers.
Microsoft BASIC numeric constants cannot contain commas.
There are five types of numeric constants:

GENERAL INFORMATION ABOUT MICROSOFT BASIC Page 1-5

)

1 •. Integer constants

2. Fixed-point
constants

3. Floating-point
constants

4. Hex constants

Whole numbers between -32768 and
32767. Integer constants do not
contain decimal points.

positive or negative real numbers,
i.e., numbers that contain decimal
points.
positive or negative numbers repre­
sented in exponential form (similar
to scientific notation). A
floating-point constant consists of
an optionally signed integer or
fixed-point number (the mantissa)
followed by the letter E and an
optionally signed integer (the
exponent). The allowable range for
floating-point constants is 10-38
to 10+38.

Examples:

235.988E-7 = .0000235988
2359E6 = 2359000000

(Double precision floating-point
constants are denoted by the letter
D instead of E. See Section
1.5.1.)

Hexadecimal numbers, denoted by the
prefix &H.

Examples:

&H76
&H32F

5. Octal constants Octal numbers, denoted
prefix &0 or &.

Examples:

&0347
&1234

by the

)

Note The 8K version of Microsoft BASIC does not support
hexadecimal or octal constants.

GENERAL INFORMATION ABOUT MICROSOFT BASIC Page 1-6

1.5.1 Single And Double Precision Form For Numeric Constants

Numeric constants may be either single precision or double
precision numbers. Single precision numeric constants are
stored with 7 digits of precision, and printed with up to 6
digits of precision. Double precision numeric constants are
stored with 16 digits of precision and printed with up to 16
dig its.

A single precision constant is any numeric constant that has
one of the following characteristics:

1. Seven or fewe r dig its.

2. Exponential form using E.

3. A trailing exclamation point (!).

Examples:

46.8
-1.09E-06

3489.0
22.5!

A double precision constant is any numeric constant that has
one of these characteristics:

1. Eight or more digits.

2. Exponential form using D.

3. A trailing number sign (i).

Examples:

345692811
-1.09432D-06

3489.0i
7654321.1234

1.6 VARIABLES

Variables are names used to represent values used
program. The value of a variable may be assigned
by the programmer, or it may be assigned as the
calculations in the program. Before a variable
a value, its value is assumed to be zero.

in a BASIC
explicitly
result of

is assigned

GENERAL INFOR~ATION ABOUT MICROSOFT BASIC

1.6.1 Variable Names And Declaration Characters

Page 1-7

Microsoft BASIC variable names may be any
characters are significant. Variable
letters, numbers, and the decimal point.
character must be a letter. Special
characters are also allowed--see below.

length. Up to 40
names can contain
However, the first

type declaration

A variable name
reserved words
Microsoft BASIC
operator names.
to be a call to

may not be a reserved word, but embedded
are allowed. Reserved words include all

commands, statements, function names, and
If a variable begins with FN, it is assumed

a user-defined function.

variables may represent either a numeric value or a string.
String variable names are written with a dollar sign ($) as
the last character. For example: A$ = "SALES REPORT". The
dollar sign is a variable type declaration character; that
is, it "declares" that the variable will represent a string.

Numeric variable names may declare integer, single
precision, or double precision values. The type declaration
characters for these variable names are as follows:

% Integer variable

) Single precision variable

i Double precision variable

The default type for a numeric variable name is single
precision.

Examples of Microsoft BASIC variable names:

PH
MINIMUM!
LIMIT%
N$
ABC

Declares a double precision value.
Declares a single precision value.
Declares an integer value.
Declares a string value.
Represents a single precision value.

)

There is a second method by which variable types may be
declared. The Microsoft BASIC statements DEFINT, DEFSTR,
DEFSNG, and DEFDBL may be included in a program to declare
the types for certain variable names. These statements are
described in detail in Section 2.12.

1.6.2 Array Variables

An array is a group or table of values referenced by the
same variable name. Each element in an array is referenced
by an array variable that is subscripted with an integer or
an integer expression. An array variable name has as many

GENERAL INFORMATION ABOUT MICROSOFT BASIC Page 1-8

subscripts as there are dimensions in the array. For
example V(lO) would reference a value in a one-dimension
array, T(1,4) would reference a value in a two-dimension
array, and so on. The maximum number of dimensions for an
array is 255. The maximum number of elements per dimension
is 32,767.

1.6.3 Space Requirements

The following table lists only the number of bytes occupied
by the values represented by the variable names. Additional
requirements may vary according to implementation.

Variables Type Bytes

Integer 2
Single Precision 4
Double Precision 8

Arrays

Strings

Type

Integer
Single Precision
Double Precision

Bytes

2 per element
4 per elemen t
8 per elemen t

3 bytes overhead plus the present contents of the string.

1.7 TYPE CONVERSION

When necessary, Microsoft
constant from one type to
examples should be kept in

BASIC will
another. The
mind.

convert a numeric
following rules and

1. If a numeric constant of one type is set equal to a
numeric variable of a different type, the number
will be stored as the type declared in the variable
name. (If a string variable is set equal to a
numeric value or vice versa, a "Type mismatch"
error occurs.)

Example:

10 A%=23.42
20 PRINT A%
RUN

23

GENERAL INFORMATION ABOUT MICROSOFT BASIC Page 1-9

)

)

2. During expression evaluation, all of the operands
in an arithmetic or relational operation are
converted to the same degree of precision, i.e.,
that of the most precise operand. Also, the result
of an arithmetic operation is returned to this
degree of precision.

Examples:

10 D#=6i/7 The arithmetic was performed
20 PRINT Di in double precision and the
RUN result was returned in Di

.8571428571428571 as a double precision
value.

10 D=6i/7 The arithmetic was performed
20 PRINT D in double precision and the
RUN result was returned to D (single

.857143 precision variable), rounded, and
printed as a single precision
value.

3. Logical operators (see Section 1.8.3) convert their
operands to integers and return an integer result.
Operands must be in the range -32768 to 32767 or an
"Overflow" error occurs.

4. When a floating-point value is converted to an
integer, the fractional portion is rounded.

Example:

10 C%=55.88
20 PRINT C%
~N

56

5. If a double precision variable is assigned a single
precision value, only the first seven digits
(rounded) of the converted number will be valid.
This is because only seven digits of accuracy were
supplied with the single precision value. The
absolute value of the difference between the
printed double precision number and the original
single precision value will be less than 6.3E-8
times the original single precision value.

Example:

10 A=2.04
20 Bi=A
30 PRINT A;Bi
~N

2.04 2.039999961853027

GENERAL INFORMATION ABOUT MICROSOFT BASIC

1.8 EXPRESSIONS AND OPERATORS

Page 1-10

An expression may be a string or numeric constant, a
variable, or a combination of constants and variables with
operators which produces a single value.

Operators perform mathematical or logical
values. The Microsoft BASIC operators may
four categories:

1. Ar i thmetic

2. Relational

3. Logical

4. Functional

operations on
be divided into

Each category is described in the following sections.

1.8.1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator

*,j

+,-

Operation

Exponen tia tion

Negation

Multiplication, Floating­
point Division

Addition, Subtraction

Sample Expression

-X

X*y
XjY

X+Y

To change the order in which the operations
use parentheses. Operations within
performed first. Inside parentheses, the
operations is maintained.

are performed,
parentheses are
usual order of

GENERAL INFORMATION ABOUT MICROSOFT BASIC Page 1-11

Here are some sample algebraic expressions and
Microsoft BASIC counterparts.

Algebraic Expression BASIC Expression

X+2Y X+Y*2

X- X-Y/Z

X*Y/Z

(X+Y)/Z

their

(X

X

X(-Y) X*(-Y) Two consecutive
operators must
be separated by
parentheses.

)
1.8.1.1 Integer Division And Modulus Arithmetic -

Two additional operators are available in Microsoft BASIC:
integer division and modulus arithmetic.

Integer division is denoted by the
operands are rounded to integers
-32768 to 32767) before the division
quotient is truncated to an integer.

Example:

10\4=2
25.68\6.99=3

backslash (\). The
(must be in the range

is performed, and the

)

Integer division follows multiplication and floating-point
division in order of precedence.

Modulus arithmetic is denoted by the operator MOD. Modulus
arithmetic yields the integer value that is the remainder of
an integer division.

Example:

10.4 MOD 4=2 (10/4=2 with a remainder 2)
25.68 MOD 6.99=5 (26/7=3 with a remainder 5)

Modulus arithmetic follows integer division in order of
precedence.

GENERAL INFORMATION ABOUT MICROSOFT BASIC Page 1-12

1.8.1.2 Overflow And Division ~ Zero -

If, during the evaluation of an expression, division by zero
is encountered, the "Division by zero" error message is
displayed, machine infinity with the sign of the numerator
is supplied as the result of the division, and execution
continues. If the evaluation of an exponentiation operator
results in zero being raised to a negative power, the
"Division by zero" error message is displayed, positive
machine infinity is supplied as the result of the
exponentiation, and execution continues.

If overflow occurs, the "Overflow" error message is
displayed, machine infinity with the algebraically correct
sign is supplied as the result, and execution continues.

1.8.2 Relational Operators

Relational
result of
(0). This
regarding
2.26.)

operators are used to compare two values. The
the comparison is either "true" (-1) or "false"

result may then be used to make a decision
program flow. (See "IF" statements, Section

The relational operators are:

Operator Relation Tested Example

= Equality X=Y

<> Inequality x<>y

< Less than x<y

> Greater than x>y

<= Less than or equal to X<=Y

>= Greater than or equal to X>=Y

(The equal sign is also used to assign a value to a
variable. See "LET," Section 2.30.)

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For
example, the expression

X+Y< (T-l) /Z

is true if the value of X plus Y is less than the value of
T-l divided by z.)

GENERAL INFORMATION ABOUT MICROSOFT BASIC

More examples:

IF SIN(X)<O GOTO 1000
IF I MOD J<>O THEN K=K+l

Page 1-13

)

)

1.8.3 Logical Operators

Logical operators perform tests on multiple relations, bit
manipulation, or Boolean operations. The logical operator
returns a bitwise result which is either "true" (not zero)
or "false" (zero). In an expression, logical operations are
performed after arithmetic and relational operations. The
outcome of a logical operation is determined as shown in
Table 1. The operators are listed in order of precedence.

GENERAL INFORMATION ABOUT MICROSOFT BASIC Page 1-14

Table 1. Microsoft BASIC Relational Operators Truth Table

NOT
X NOT X
1 0
o 1

AND

OR

XOR

EQV

IMP

X
1
1
o
o

X
1
1
o
o

X
1
1
o
o

X
1
1
o
o

X
1
1
o
o

y

1
o
1
o

Y
1
o
1
o

Y
1
o
1
o

Y
1
o
1
o

Y
1
o
1
o

X AND Y
1
o
o
o

X OR Y
1
1
1
o

X XOR Y
o
1
1
o

X EQV Y
1
o
o
1

X IMP Y
1
o
1
1

Just as the relational operators can be used to make
decisions regarding program flow, logical operators can
connect two or more relations and return a true or false
value to be used in a decision (see "IF" statements, Section
2.26).

Example:

IF D<200 AND F<4 THEN 80
IF 1>10 OR K<O THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to

)

GENERAL INFORMATION ABOUT MICROSOFT BASIC Page 1-15

)

)

16-bit, signed, two's complement integers in the range
-32768 to 32767. (If the operands are not in this range, an
error results.) If both operands are supplied as 0 or -1,
logical operators return 0 or -1. The given operation is
performed on these integers in bitwise fashion, i.e., each
bit of the result is determined by the corresponding bits in- .
the two operands.

Thus, it is possible to use logical operators to test bytes
for a particular bit pattern. For instance, the AND
operator may be used to "mask" all but one of the bits of a
status byte at a machine I/O port. The OR operator may be
used to "merge" two bytes to create a particular binary
value. The following examples will help demonstrate how the
logical operators work.

63 AND 16=16 63=binary 111111 and 16=binary
10000, so 63 AND 16=16.

15 AND 14=14 15=binary 1111 and 14=binary 1110,
so 15 AND 14=14 (binary 1110).

-1 AND 8=8 -l=binary 1111111111111111 and
8=binary 1000, so -1 AND 8=8.

4 OR 2=6 4=binary 100 and 2=binary 10,
so 4 OR 2=6 (binary 110).

10 OR 10=10 10=binary 1010, so 1010 OR 1010=
1010 (decimal 10).

-lOR -2=-1 -l=binary 1111111111111111 and
-2=binary 1111111111111110,
so -lOR -2=-1. The bit
complement of sixteen zeros is
sixteen ones, which is the
two's complement representation of -1.

NOT X=-(X+l) The two's complement of any integer
is the bit complement plus one.

1.8.4 Functional Operators

A function is used in an expression to call a predetermined
operation that is to be performed on an operand. Microsoft
BASIC has "intrinsic" functions that reside in the system,
such as SQR (square root) or SIN (sine). All Microsoft
BASIC intrinsic functions are described in Chapter 3.

Microsoft BASIC also allows "user-defined" functions that
are written by the programmer. See "DEF FN," Section 2.11.

GENERAL INFORMATION ABOUT MICROSOFT BASIC

1.8.5 String Operations

Strings may be concatenated by using +.

Example:

10 A$="FILE" : B$="NAME"
20 PRINT A$+B$
30 PRINT "NEW "+A$+B$
RUN
FILENAME
NEW FILENAME

Page 1-16

Strings may be compared using the same relational operators
that are used with numbers:

= <> < > <= >=

String comparisons are made by taking one character at a
time from each string and comparing the ASCII codes. If all
the ASCII codes are the same, the strings are equal. If the
ASCII codes differ, the lower code number precedes the
higher. If during string comparison the end of one string
is reached, the shorter string is said to be smaller.
Leading and trailing blanks are significant.

Examples:

"AA"<"AB"
"FILENAME"="FILENAME"
"X&">"X#II
"CL ">"CL"
"kg">"KG"
"SMYTH" <" SMYTHE"
B$<"9/l2/78" where B$="8/12/78"

Thus, string comparisons can be used to test string
or to alphabetize strings. All string constants
comparison expressions must be enclosed in quotation

1.9 INPUT EDITING

values
used in
marks.

If an incorrect character is entered as a line is being
typed, it can be deleted with the <RUBOUT> key or with
Control-H. Rubout surrounds the deleted character(s) with
backslashes. Control-H has the effect of backspacing over a
character and erasing it. Once a character(s) has been
deleted, simply continue typing the line as desired.

To delete a line that is in the process of being typed, type
Control-U. A carriage return is executed automatically
after the line is deleted.

)

GENERAL INFORMATION ABOUT MICROSOFT BASIC Page 1-17

)

)

To correct program lines for a program that is currently in
memory, simply retype the line using the same line number.
Microsoft BASIC will automatically replace the old line with
the new line.

More sophisticated editing capabilities are provided. See
"EDIT," Section 2.16.

To delete the entire program currently residing in memory,
enter the NEW command. (See Section 2.41.) NEW is usually
used to clear memory prior to entering a new program.

1.10 ERROR MESSAGES

If an error causes program execution to terminate, an error
message is printed. For a complete list of Microsoft BASIC
error codes and error messages, see Appendix A.

)

Chapter 2 Microsoft BASIC Commands and Statements

Introduction
2.1 AUTO
2.2 CALL
2.3 CHAIN
2.4 CLEAR
2.5 CLOAD
2.6 CLOSE
2.7 COMMON
2.8 CONT
2.9 CSAVE
2.10 DATA
2.11 DEF FN
2.12 DEFINT/SNG/DBL/STR
2.13 DEF USR
2.14 DELETE
2.15 DIM
2.16 EDIT
2.17 END
2.18 ERASE
2.19 ERR and ERL Variables
2.20 ERROR
2.21 FIELD
2.22 FOR... NEXT
2.23 GET
2.24 GOSUB ••. RETURN
2.25 GOTO

) 2.26 IF .•. THEN[... ELSE] and IF •.. GOTO
2.27 INPUT
2.28 INPUT*
2.29 KILL
2.30 LET
2.31 LINE INPUT
2.32 LINE INPUT*
2.33 LIST
2.34 LLIST
2.35 LOAD
2.36 LPRINT and LPRINT USING
2.37 LSET and RSET
2.38 MERGE
2.39 MID$
2.40 NAME
2.41 NEW
2.42 NULL
2.43 ON ERROR GOTO
2.44 ON •.• GOSUB and ON ••. GOTO
2.45 OPEN
2.46 OPTION BASE
2.47 OUT
2.48 POKE
2.49 PRINT
2.50 PRINT USING
2.51 PRINT# and PRINT* USING

) 2.52 PUT

GENERAL INFORMATION ABOUT MICROSOFT BASIC

2.53 RANDOMIZE
2.54 READ
2.55 REM
2.56 RENUM
2.57 RESTORE
2.58 RESUME
2.59 RUN
2.60 SAVE
2.61 STOP
2.62 SWAP
2.63 TRON!TROFF
2.64 WAIT
2.65 WHILE .•.WEND
2.66 WIDTH
2.67 WRITE
2.68 WRITEi!

)

)

CHAPTER 2

MICROSOFT BASIC COMMANDS AND STATEMENTS

Microsoft BASIC commands and statements are described in
this chapter. Each description is formatted as follows:

Format Shows the correct form~t for the instruction.
See the "Introduction" to this manual for syntax
notation.

Purpose Tells what the instruction is used for.

Remarks Describes in detail how the instruction
is used.

Example Shows sample programs or program segments
that demonstrate the use of the instruction.

)

Note Describes special cases or provides additional
pertinent information.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.1 AUTO

Page 2-2

Format

Purpose

Remarks

AUTO [<line number> [,<increment>]]

To generate a line number automatically after
every carriage return.

AUTO begins numbering at <line number> and
increments each subsequent line number by
<increment>. The default for both values is 10.
If <line number> is followed by a comma but
<increment> is not specified, the last increment
specified in an AUTO command is assumed.

If AUTO generates a line number that is already
being used, an asterisk is printed after the
number to warn the user that any input will
replace the existing line. However, typing a
carriage return immediately after the asterisk
will save the line and generate the next line
number.

AUTO is terminated by typing Control-C. The
line in which Control-C is typed is not saved.
After Control-C is typed, Microsoft BASIC
returns to command level.

Example AUTO 100,50

AUTO

Generates line numbers 100,
150, 200 .•..

Generates line numbers 10,
20, 30, 40

)

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.2 CALL

Page 2-3

Format

Purpose

CALL <variable name>[«argument list»]

To call an assembly language subroutine.

Remarks: The CALL statement is one
program flow to an external
also the USR function, Section

way to transfer
subroutine. (See
3.41)

)

Example

<variable name> contains an address that is the
starting point in memory of the subroutine.
<variable name> may not be an array variable
name. <argument list> contains the arguments
that are passed to the external subroutine.
<argument list> may contain only variables.

The CALL statement generates the same calling
sequence used by Microsoft (TM) FORTRAN,
Microsoft (TM) COBOL, and Microsoft (TM) BASIC
Compilers.

110 MYROUT=&HDOOO
120 CALL MYROUT(I,J,K)

)

Note In a Microsoft BASIC Compiler program,
is not required because the address
will be assigned by the linking loader
time.

line no
of MYROUT
at load

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.3 CHAIN

Page 2-4

Format

Purpose

Remarks

Example 1

Example 2

CHAIN [MERGE]<filename>[,[<line number exp>]
[,ALL] [,DELETE <range>]]

To call a program and pass variables to it from
the current program.

<filename> is the name of the program that is
called.

The COMMON statement may be used to pass
variables (see Section 2.7).

10 REM THIS PROGRAM DEMONSTRATES CHAINING USING
COMMON TO PASS VARIABLES.
20 REM SAVE THIS MODULE ON DISK AS "PROGl"
USING THE A OPTION.
30 DIM A$(2),B$(2)
40 COMMON A$(),B$()
50 A$(l)="VARIABLES IN COMMON MUST BE ASSIGNED"
60 A$(2)="VALUES BEFORE CHAINING."
70 B$(l)="": B$(2) =""
80 CHAIN "PROG2"
90 PRINT: PRINT B$(l): PRINT: PRINT B$(2):
PRINT
100 END

<line number exp> is a line number or an
expression that evaluates to a line number in
the called program. It is the starting point
for execution of the called program. If it is
omitted, execution begins at the first line.

10 REM THE STATEMENT "DIM A$ (2) ,B$ (2)"
MAY ONLY BE EXECUTED ONCE.
20 REM HENCE, IT DOES NOT APPEAR IN THIS
MODULE.
30 REM SAVE THIS MODULE ON THE DISK AS "PROG2"
USING THE A OPTION.
40 COMMON A$() ,B$()
50 PRINT: PRINT A$ (1) ;A$ (2)
60 B$(l)="NOTE HOW THE OPTION OF SPECIFYING
A STARTING LINE NUMBER"
70 B$(2)="WHEN CHAINING AVOIDS THE DIMENSION
STATEMENT IN 'PROGl'."
80 CHAIN "PROGl",90
90 END

)

)

MICROSOFT BASIC COMMANDS AND STATEMENTS Page 2-5

<line number exp> is not affected by a RENUM
command.

With the ALL option, every variable in the
current program is passed to the called program.
If the ALL option is omitted, the current
program must contain a COMMON statement to list
the variables that are passed. See Section 2.7.

The MERGE option allows a subroutine to be
brought into the BASIC program as an overlay.
That is, a MERGE operation is performed with the
current program and the called program. The
called program must be an ASCII file if it is to
be MERGEd.

After an overlay is
desirable to delete
be brought in. To
option.

brought in, it
it so that a new
do. this, use

is usually
overlay may
the DELETE

)

)

Example 3

Note

10 REM THIS PROGRAM DEMONSTRATES CHAINING USING
THE MERGE AND ALL OPTIONS.
20 REM SAVE THIS MODULE ON THE DISK AS
"MAINPRG" •
30 A$="MAINPRG"
40 CHAIN MERGE "OVRLAY1",1010,ALL
50 END

1000 REM SAVE THIS MODULE ON THE DISK AS
"OVRLAY1" USING THE A OPTION.
1010 PRINT A$; " HAS CHAINED TO OVRLAY1."
1020 A$="OVRLAY1"
1030 B$="OVRLAY2"
1040 CHAIN MERGE "OVRLAY2",1010,ALL,
DELETE 1000-1050
1050 END

1000 REM SAVE THIS MODULE ON THE DISK AS
"OVRLAY2" USING THE A OPTION.
1010 PRINT A$; " HAS CHAINED TO "; B$:". "
1020 END

The line numbers in <range> are affected by the
RENUM command.

The CHAIN statement with MERGE option leaves the
files open and preserves the current OPTION BASE
setting.

If the MERGE option is omitted, CHAIN does not
preserve variable types or user-defined

MICROSOFT BASIC COMMANDS AND STATEMENTS Page 2-6

functions for use by the chained program. That
is, any DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFFN
statements containing shared variables must be
restated in the chained program.

The Microsoft BASIC Compiler does not support
the ALL, MERGE, DELETE, and <line number exp>
options to CHAIN. Thus, the statement format is
CHAIN <filename>. If you wish to maintain
compatibility with Microsoft BASIC Compiler, it
is recommended that COMMON be used to pass
variables and that overlays not be used. The
CHAIN statement leaves the files open during
CHAINing.

When using the MERGE option, user-defined
functions should be placed before any CHAIN
MERGE statements in the program. Otherwise, the
user-defined functions will be undefined after
the merge is complete.

)

)

MICROSOFT BASIC COMMANDS AND STATEMENTS Page 2-7

2.4 CLEAR

Format CLEAR [,[<expressionl>] [,<expression2>]]

Purpose To set all numeric variables to zero, all string
variables to null, and to close all open files;
and, optionally, to set the end of memory and
the amount of stack space.

Remarks <expressionl> is a memory location which, if
specified, sets the highest location available
for use by Microsoft BASIC.

space for
512 bytes or
whichever is

aside stack
The default is

available memory,

<expression2> sets
Microsoft BASIC.
one-eighth of the
smaller.

Note Microsoft . BASIC allocates string space
dynamically. An "Out of string space" error
occurs only if there is no free memory left for
Microsoft BASIC to use.

)
Microsoft BASIC Compiler supports the CLEAR
statement with the restriction that
<expressionl> and <expression2> must be integer
expressions. If a value of 0 is given for
either expression, the appropriate default is
used. The default stack size is 512 bytes, and
the default top of memory is the current top 'of
memory. The CLEAR statement performs the
following actions:

Closes all files.
Clears all COMMON and user variables.
Resets the stack and string space.
Releases all disk buffers.

Examples CLEAR

CLEAR ,32768

CLEAR, ,2000

CLEAR ,32768,2000

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.5 CLOAD

Page 2-8

the
the
the
the

Formats

Purpose

Remarks

CLOAD <filename>

CLOAD? <filename>

CLOAD* <array name>

To load a program or an array from cassette tape
into memory.

CLOAD executes a NEW command before it loads
program from cassette tape. <filename> is
string expression or the first character of
string expression that was specified when
program was CSAVEd.

CLOAD? verifies tapes by comparing the program
currently in memory with the file on tape that
has the same filename. If they are the same,
Microsoft BASIC prints "Ok". If not, Microsoft
BASIC prin ts "NO GOOD".

CLOAD* loads a numeric array that has been saved
on tape. The data on tape is loaded into the
array called <array name> specified when the
array was CSAVE*ed.

CLOAD and CLOAD? are always entered at command
level as direct mode commands. CLOAD* may be
entered at command level or used as a program
statement. Make sure the array has been
DIMensioned before it is loaded. Microsoft
BASIC always returns to command level after a
CLOAD, CLOAD?, or CLOAD* is executed. Before a
CLOAD is executed, make sure the cassette
recorder is properly connected and in the play
mode, and the tape is positioned correctly.

See also "CSAVE," Section 2.9.

)

Note

Example

CLOAD and CSAVE are not included
implementations of Microsoft BASIC.

CLOAD "MAX2"

Loads file "MAX2" into memory.

in all

)

MICROSOFT BASIC COMMANDS AND STAT~lENTS

2.6 CLOSE

Page 2-9

Format

Purpose

CLOSE [[*]<file number>[,[*]<file number ... >]]

To conclude I/O to a disk file.

Remarks <file number> is
was OPENed. A
all open files.

the number under which the file
CLOSE with no arguments closes

)

)

Example

The association between a particular file and
file number terminates upon execution of a CLOSE
statement. The file may then be reOPENed using
the same or a different file number; likewise,
that file number may now be reused to OPEN any
file.

A CLOSE for a sequential output file writes the
final buffer of output.

The END statement and the NEW command always
CLOSE all disk files automatically. (STOP does
not close disk files.)

See "Microsoft BASIC Disk I/O," in the Microsoft
BASIC User's Guide.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.7 COMMON

Page 2-10

Format

Purpose

Remarks

Example

COMMON <list of variables>

To pass variables to a CHAINed program.

The COMMON statement is used in conjunction with
the CHAIN statement. COMMON statements may
appear anywhere in a program, though it is
recommended that they appear at the beginning.
The same variable cannot appear in more than one
COMMON statement. Array variables are specified
by appending" ()" to the variable name. If all
variables are to be passed, use CHAIN with the
ALL option and omit the COMMON statement.

100 COMMON A,B,C,D() ,G$
110 CHAIN "PROG3",10

Note Microsoft BASIC Compiler supports
version of the COMMON statement.
statement must appear in a program
executable statements. The
nonexecutable statements are:

COMMON
DEFDBL, DEFINT, DEFSNG, DEFSTR
DIM
OPTION BASE
REM
$INCLUDE

a modified
The COMMON

before any
current

Array variables used in a COMMON statement must
be declared in a preceding DIM statement.

The standard form of the COMMON statement is
referred to as blank COMMON. Microsoft FORTRAN
Compiler-style named COMMON areas are also
supported; however, the variables are not
preserved across CHAINs. The syntax for named
COMMON is:

COMMON /<name>/ <list of variables>,

where <name> consists of 1 to 6 alphanumeric
characters starting with a letter. This is
useful for communicating with Microsoft FORTRAN
Compiler and assembly language routines without
having to explicitly pass parameters in the CALL
statement.

MICROSOFT BASIC COMMANDS AND STATEMENTS Page 2-11

)

)

The blank COMMON size and order of variables
must be the same in the CHAINing and CHAINed
programs. With Microsoft BASIC Compiler, the
best way to insure this is to place all blank
COMMON declarations in a single include file and
use the $INCLUDE statement in each program.

For example:

MENU.BAS
10 $INCLUDE COMDEF

1000 CHAIN "PROGl"

PROGl.BAS
10 $INCLUDE COMDEF

2000 CHAIN "MENU"

COMDEF.BAS
100 DIM A(lOO) ,B$ (200)
110 COMMON I,J,K,A()
120 COMMON A$,B$(),X,Y,Z

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.8 CONT

Page 2-12

Format

Purpose

Remarks

Example

CONT

To continue program execution after a Control-C
has been typed or a STOP or END statement has
been executed.

Execution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the repr in ting of the prompt ("?" or prompt
str ing) .

CONT is usually used in conjunction with STOP
for debugging. When execution is stopped,
intermediate values may be examined and changed
using direct mode statements. Execution may be
resumed with CONT or a direct mode GOTO, which
resumes execution at a specified line number.
CONT may be used to continue execution after an
error has occurred.

CONT is invalid if the program has been edited
dur ing the break.

See "STOP," Section 2.61.)

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.9 CSAVE

Page 2-13

)

Formats

Purpose

Remarks

CSAVE <string expression>

CSAVE* <array variable name>

To save the program or an array currently in
memory on cassette tape.

Each program or array saved on tape is
identified by a filename. When the command
CSAVE <string expression> is executed, Microsoft
BASIC saves the program currently in memory on
tape and uses the first character in <string
expression> as the filename. <string
expression> may be more than one character, but
only the first character is used for the
filename.

When the command CSAVE* <array variable name> is
executed, Microsoft BASIC saves the specified
array on tape. The array must be a numeric
array. The elements of a multidimensional array
are saved with the leftmost subscript changing
fastest. For example, when the 2-dimensional
array specified by DIM A{2,2) is saved (see
"DIM," Section 2.15), the array elements are
saved in the following order:

0,0
1,0
2,0
0,1
1,1
2,1
0,2
1,2
2,2

CSAVE may be used as a program statement or as a
direct mode command.

Before a CSAVE or CSAVE* is executed, make sure
the cassette recorder is properly connected and
in the record mode.

See also "CLOAD," Section 2.5.

)
Note CSAVE and CLOAD are not included

implementations of Microsoft BASIC.
in all

MICROSOFT BASIC COMMANDS AND STATEMENTS Page 2-14

Example CSAVE "TIMER"

Saves the program currently in memory
on cassette under filename "TIMER".

)

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.10 DATA

Format DATA <list of constants>

Page 2-15

)

Purpose

Remarks

To store the numeric and string constants that
are accessed by the program's READ statement(s).
(See "READ," Section 2.54.)

DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA
statement may contain as many constants as will
fit on a line (separated by commas). Any number
of DATA statements may be used in a program.
READ statements access DATA statements in order
(by line number). The data contained therein

may be thought of as one continuous list of
items, regardless of how many items are on a
line or where the lines are placed in the
program.

<list of constants> may contain numeric
constants in any format; i.e., fixed-point,
floating-point, or integer. (No numeric
expressions are allowed in the list.) String
constants in DATA statements must be surrounded
by double quotation marks only if they contain
commas, colons, or significant leading or
trailing spaces. Otherwise, quotation marks are
not needed.

The variable type (numeric or
the READ statement must
corresponding constant in the

string) given in
agree with the

DATA statement.

)

Example

DATA statements may be reread from the beginning
by use of the RESTORE statement (Section 2.57).

See "READ," Section 2.54.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.11 DEF FN

Page 2-16

Format DEF FN<name>[«parameter list»]=<function definition>

Purpose To define and name a function that is written by
the user.

Remarks <name> must be
name, preceded
function.

a legal variable name. This
by FN, becomes the name of the

<parameter list> consists of those
names in the function definition that
replaced when the function is called.
in the list are separated by commas.

variable
are to be
The items

<function definition> is an expression that
performs the operation of the function. It is
limited to one line. Variable names that appear
in this expression serve only to define the
function, they do not affect program variables
that have the same name. A variable name used
in a function definition mayor may not appear
in the parameter list. If it does, the value of
the parameter is supplied when the function is
called. Otherwise, the current value of the
variable is used.

The variables in the parameter list represent,
on a one-to-one basis, the argument variables or
values that will be given in the function call.

This statement may define either numeric or
string functions. If a type is specified in the
function name, the value of the expression is
forced to that type before it is returned to the
calling statement. If a type is specified in
the function name and the argument type does not
match, a "Type mismatch" error occurs.

A DEF FN statement must be executed before the
function it defines may be called. If a
function is called before it has been defined,
an "Undefined user function" error occurs. DEF
FN is illegal in the direct mode.

)

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

Example

410 DEF FNAB(X,Y)=X~3/Y~2

420 T=FNAB(I,J)

Page 2-17

)

)

Line 410 defines the function
function is called in line 420.

FNAB. The

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.12 DEFINT/SNG/DBL/STR

Format DEF<type> <range(s) of letters>

where <type> is INT, SNG, DBL, or STR

Page 2-18

Purpose

Remarks:

Examples

To declare variable types as integer, single
precision, double precision, or string.

Any variable names beginning with the letter(s)
specified in <range of letters> will be
considered the type of variable specified in the
<type> portion of the statement. However, a
type declaration character always takes
precedence over a DEFtype statement. (See
"Var iable Names and Declara tion Characte rs, "
Section 1.6.1.)

If no type declaration statements are
encountered, Microsoft BASIC assumes all
variables without declaration characters are
single precision variables.

10 DEFDBL L-P All variables beginning with
the letters L, M, N, 0, and P
will be double precision
variables.

)

10 DEFSTR P. All variables beginning with
the letter A will be string
v-ar iable s.

10 DEFINT I-N,W-Z
All variable beginning with
the letters I, J, K, L, M,
N, W, X, Y, Z will be integer
variables.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.13 DEF USR

Format DEF USR[<digit>]=<integer expression>

Page 2-19

)

)

Purpose

Remarks

Example

To specify the starting address of an assembly
language subroutine.

<digit> may be any digit from 0 to 9. The digit
corresponds to the number of the USR routine
whose address is being specified. If <digit> is
omitted, DEF USRO is assumed. The value of
<integer expression> is the starting address of
the USR routine. See "Assembly Language
Subroutines," in the Microsoft BASIC User' s
Guide.

Any number of DEF USR statements may appear in a
program to redefine subroutine starting
addresses, .thus allowing access to as many
subroutines as necessary.

•

200 DEF USRO=24000
210 X=USRO(Y~2/2.89)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.14 DELETE

Format DELETE [<line number>] [-<line number>]

Page 2-20

Purpose To delete program lines.

Remarks

Examples

Microsoft
after a
does not
occurs.

DELETE 40

BASIC always returns to command level
DELETE is ey.ecuted. If <line number>

exist, an "Illegal function call" error

Deletes line 40.

DELETE 40-100

DELETE -40

Deletes lines 40 through
100, inclusive.

Deletes all lines up to
and including line 40.

)

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.15 DIM

Format DIM <list of subscripted variables>

Page 2-21

)

)

Purpose

Remarks

Example

To specify the maximum values for array variable
subscripts and allocate storage accordingly.

If an array variable name is used without a DIM
statement, the maximum value of the array's
subscript(s) is assumed to be 10. If a
subscript is used that is greater than the
maximum ·specified, a "Subscript out of range"
error occurs. The minimum value for a subscript
is always 0, unless otherwise specified with the
OPTION BASE statement (see Section 2.46).

The DIM statement sets all the elements of the
specified arrays to an initial value of zero.

Theoretically, the maximum number of dimensions
allowed in a DIM statement is 255. In reality,
however, that number would be impossible, since
the name and punctuation are also counted as
spaces on the line, and the line itself has a
limit of 255 characters. The number of
dimensions is further limited by the amount of
available memory.

10 DIM A(20)
20 FOR I=O TO 20
30 READ A(I)
40 NEXT I

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.16 EDIT

Format EDIT <line number>

Page 2-22

Purpose

Remarks

To enter edit mode at the specified line.

In edit mode, it is possible to edit portions of
a line without retyping the entire line. Upon
entering edit mode, BASIC types the line number
of the line to be edited, then it types a space
and waits for an edit mode subcommand.

Edit Mode Subcommands

Edit mode subcommands are used to move the cursor or to
insert, delete, replace, or search for text within a line.
The subcommands are not echoed. However, most of the edit
mode subcommands may be preceded by an integer which causes
the command to be executed that number of times. When an
integer is not specified, it is assumed to be 1.

Edit mode subcommands may be categorized according to the
following functions:

l. Moving the cursor.

2. Inserting text.

3. Deleting text.

4. Finding text.

S. Replacing text.

6. Ending and restarting edit mode.

7. Entering edit mode from a syntax error.

Note In the descriptions that follow, <ch> represents
any character, <text> represents a string of
characters of arbitrary length, [i] represents
an optional integer (the default is 1), and $
represents the Escape (or Altmode) key.

MICROSOFT BASIC COMMANDS AND STATEMENTS

1. Moving the Cursor

Space bar

Use the space bar to move the cursor
right. [i]Space bar moves the cursor
to the right. Characters are printed
space over them.

Page 2-23

to the
i spaces
as you

Rubout In edit mode, [i]Rubout moves the cursor i
spaces to the left (backspaces). Characters are
printed as you backspace over them.

2. Inserting Text

)

I I<text>$ inserts <text> at the current cursor
position. The inserted characters are printed
on the terminal. To terminate insertion, press
Escape. If a <carriage return> is typed during
an Insert command, the effect is the same as
pressing Escape and then <carriage return>.
During an Insert command, the Rubout, Delete, or
Underscore key on the terminal may be used to
delete characters to the left of the cursor.
Rubout will print out the characters as you
backspace over them. Delete and Underscore will
print an Underscore for each character that you
backspace over. If an attempt is made to insert
a character that will make the line longer than
255 characters, a bell (Control-G) sounds and
the character is not printed.

X The X subcommand extends the line. X moves the
cursor to the end of the line, enters. insert
mode, and allows insertion of text as if an
Insert command had been given. When you are
finished extending the line, press Escape or
carriage return.

3. Deleting Text

)

D

H

[i]D deletes i characters to the right of the
cursor. The deleted characters are echoed
between backslashes, and the cursor is
positioned to the right of the last character
deleted. If there are fewer than i characters
to the right of the cursor, iD deletes the
remainder of the line.

H deletes all characters to the right of the
cu·rsor and then automatically enters insert
mode. H is useful for extending a line or
replacing statements at the end of a line.

MICROSOFT BASIC COMMANDS AND STATEMENTS

4. Finding Text

Page 2-24

S The subcommand [ilS<ch> searches for the ith
occurrence of <ch> and positions the cursor
before it. The character at the current cursor
position is not included in the search. If <ch>
is not found, the cursor stops at the end of the
line. All characters passed over during the
search are printed.

K The subcommand [ilK<ch> is similar to [ilS<ch>,
except all the characters passed over in the
search are deleted. The cursor is positioned
before <ch>, and the deleted characters are
enclosed in backslashes.

5. Replacing Text

C The subcommand C<ch> changes the next character
to <ch>. If you wish to change the next i
characters, use the subcommand iC, followed by
as many characters as are specified by i. After
the ith new character is typed, change mode is
exited and you will return to edit mode.

6. Ending and Restarting Edit Mode

<cr> Typing a <carriage return> prints the remainder
of the line, saves the changes you made, and
exits edit mode.

E The E subcommand
<carriage return>,
line is not printed.

has the same effect as
except the remainder of the

Q The Q subcommand returns to Microsoft BASIC
command level, without saving any of the changes
that were made to the line in edit mode.

L The L subcommand lists the remainder of the line
(saving any changes made so far) and repositions
the cursor at the beginning of the line, still
in edit mode. L is usually used to li~t the
line when you first enter edit mode.

A The A subcommand lets you begin editing a
over again. It restores the original line
repositions the cursor at the beginning.

line
and

Control-A

To enter edit mode on the line you are currently
typing, type Control-A. Microsoft BASIC
responds with a <carriage return>, an
exclamation point (!), and a space. The cursor

)

MICROSOFT BASIC COMMANDS AND STATEMENTS Page 2-25

will be positioned
line. Proceed
subcol1)llland.

at the first character in the
by typing an edit mode

Remember, if you have just entered a line and
wish to go back and edit it, the command "EDIT."
will enter edit mode at the current line. (The
line number symbol "" always refers to the
current line.)

If an unrecognizable command
character is input to Microsoft
edit mode, BASIC sends a Control-G
terminal, and the command or
ignored.

7. Entering Edit Mode from a Syntax Error

or illegal
BASIC while in

(bell) to the
character is

When a syntax error is encountered
execution of a program, Microsoft
automatically enters edit mode at the line
caused the error. For example:

during
BASIC

that

)

)

10 K=2 (4)
RUN
?Syntax error in 10
10

When you finish editing the line and press
<carriage return> (or the E subcommand),
Microsoft BASIC reinserts the line. This causes
all variable values to be lost. To preserve the
variable values for examination, first exit edit
mode with the Q subcommand. Microsoft BASIC
will return to command level, and all variable
values will be preserved.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.17 END

Format END

Page 2-26

Purpose

Remarks

Example

To terminate program execution, close all files,
and return to command level.

END statements may be placed anywhere in the
program to terminate execution. Unlike the STOP
statement, END does not cause a "Break in line
nnnnn" message to be printed. An END statement
at the end of a program is optional. Microsoft
BASIC always returns to command level after an
END is executed.

520 IF K>lOOO THEN END ELSE GOTO 20

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.18 ERASE

Format ERASE <list of array variables>

Page 2-27

)

)

Purpose

Remarks

Example

To eliminate arrays from a program.

Arrays may be redimensioned after they are
ERASEd, or the previously allocated array space
in memory may be used for other purposes. If an
attempt is made to redimension an array without
first ERASEing it, a "Redimensioned array" error
occurs.

Microsoft BASIC Compiler does not support ERASE.

450 ERASE A,B
460 DIM B(99)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.19 ERR AND ERL VARIABLES

Page 2-28

When an error handling routine is entered, the
variable ERR contains the error code for the
error and the variable ERL contains the line
number of the line in which the error was
detected. The ERR and ERL variables are usually
used in IF... THEN statements to direct program
flow in the error handling routine.

If the statement that caused the error was a
direct mode statement, ERL will contain 65535.
To test whether an error occurred in a direct
statement, use IF 65535=ERL THEN
Otherwise, use

IF ERR=error code THEN .•.

IF ERL=line number THEN

If the line number is not on the right side_ of
the relational operator, it cannot be renumbered
with RENUM. Because ERL and ERR are reserved
variables, neither may appear to the left of the
equal sign in a LET (assignment) statement.
Microsoft BASIC error codes are listed in
Appendix A.

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.20 ERROR

Format ERROR <integer expression>

Page 2-29

)

Purpose

Remarks

Example 1

To simulate the occurrence of a BASIC error, or
to allow error codes to be defined by the user.

The value of <integer expression> must be
greater than 0 and less than 255. If the value
of <integer expression> equals an error code
alre ady ·in use by BASIC (see Append ix A), the
ERROR statement will simulate the occurrence of
that error and the corresponding error message
will be printed. (See Example 1.)

To define your own error code, use a value that
is greater than any used by Microsoft BASIC
error codes. (It is preferable to use the
highest available values, so compatibility may
be maintained when more error codes are added to
Microsoft BASIC.) This user-defined error code
may then be conveniently handled in an error
handling routine. (See Example 2.)

If an ERROR statement specifies a code for which
no error message has been defined, Microsoft
BASIC responds with the "Unprintable error"
error message. Execution of an ERROR statement
for which there is no error handling routine
causes an error message to be printed and
execution to halt.

LIST
10 S=lO
20 T=5
30 ERROR S+T
40 END
Ok
RUN
String too long in line 30

Or, in direct mode:

)

Ok
ERROR 15
Str ing too long
Ok

(You type this line.)
(BASIC types th is li ne.)

MICROSOFT BASIC COMMANDS AND STATEMENTS

Example 2

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET";B
130 IF B>5000 THEN ERROR 210

Page 2-30

400 IF ERR=210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL=130 THEN RESUME 120

)

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.21 FIELD

Page 2-31

Format FIELD [#l<file number>,<field width> AS <string variable>.

Purpose

Remarks

To allocate space for variables in a random file
buffer.

Before a GET statement or PUT statement can be
executed, a FIELD statement must be executed to
format the random file buffer.

<f ile number>
was OPENed.
characters to
For example,

is the number under which the file
<field width> is the number of

be allocated to <string variable>.

)

)

Note

Example 1

FIELD 1,20 AS N$,lO AS ID$,40 AS ADD$

allocates the first 20 positions (bytes) in the
random file buffer to the string variable N$,
the next 10 positions to ID$, and the next 40
positions to ADD$. FIELD does NOT place any
data in the random file buffer. (See
"LSET/RSET," Section 2.37, and "GET," Section
2.23.)

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was OPENed.
Otherwise, a "Field overflow" error occurs.
(The default record length is 128 bytes.)

Any number of FIELD statements may be executed
for the same file. All FIELD statements that
have been executed will remain in effect at the
same time.

Do not use a FIELDed variable name in an INPUT------ ---
or LET statement. Once a variable name is
FIELDed, it points to the correct place in the
random file buffer. If a subsequent INPUT or
LET statement with that variable name is
executed, the variable's pointer is moved to
str ing space.

FIELD 1,20 AS N$,lO AS ID$,40 AS ADD$

Allocates the first 20 positions (bytes) in the
random file buffer to the string variable N$,
the next 10 positions to ID$, and the next 40
positions to ADD$. FIELD does NOT place any
data in the random file buffer. (See also
"GET," Section 2.23, and "LSET/RSET," Section
2.37.)

MICROSOFT BASIC COMMANDS AND STATEMENTS Page 2-32

Example 2

Example 3

10 OPEN "R,"ll,"A:PHONELST",35
15 FIELD 11,2 AS RECNBR$,33 AS DUMMY$
20 FIELD 11,25 AS NAMES,lO AS PHONENBR$
25 GET U
30 TOTAL=CVI(RECNBR)$
35 FOR I=2 TO TOTAL
40 GET U, I
45 PRINT NAMES, PHONENBR$
50 NEXT I

Illustrates a multiple defined FIELD statement.
In statement 15, the 35 byte field is defined
for the first record to keep track of the number
of records in the file. In the next loop of
statements (35-50), statement 20 defines the
field for individual names and phone numbers.

10 FOR LOOP%=O TO 7
20 FIELD 11, (LOOP%*16) AS OFFSETS,16 AS
A$ (LOOP%)
30 NEXT LOOP%

Shows the
using an
result is

construction of a FIELD statement
array of elements of equal size. The

equivalent to the single declaration:

Example 4

FIELD 11,16 AS A$(0),16 AS A$(1), ..• ,16 AS
A$(6),16 AS A$(7)

10 DIM SIZE% (NUMB%): REM ARRAY OF FIELD SIZES
20 FOR LOOP%=O TO NUMB%:READ SIZE%
(LOOP%): NEXT LOOP%
30 DATA 9,10,12,21,41

120 DIM A$(NUMB%): REM ARRAY OF FIELDED
VARIABLES
130 OFFSET%=O
140 FOR LOOP%=O TO NUMB%
150 FIELD 11,OFFSET% AS OFFSET$,SIZE%(LOOP%)
AS A$ (LOOP%)
1600FFSET%=OFFSET%+SIZE%(LOOP%)
170 NEXT LOOP%

)

Creates a
However,
elemen t.

field in the same manner as Example 3.
the element size varies with each
The equivalent declaration is:

FIELD Il,SIZE%(O) AS A$(O),SIZE%(l) AS A$(l), •..
SIZE%(NUMB%) AS A$(NUMB%)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.22 FOR... NEXT

Format FOR <variable>=x TO y [STEP z]

NEXT [<variable>] [,<variable> •..]

Page 2-33

)

Purpose

Remarks

where x, y, and z are numeric expressions.

To allow a series of instructions to be
performed in a loop a given number of times.

<variable> is used as a counter. The first
numeric expression (x) is the initial value of
the counter. The second numeric expression (y)
is the final value of the counter. The program
lines following the FOR statement are executed
until the NEXT statement is encountered. Then
the counter is adjusted by the amount specified
by STEP. A check is performed to see if the
value of the counter is now greater than the
final value (y). If it is not greater,
Microsoft BASIC branches back to the statement
after the FOR statement and the process is
repeated. If it is greater, execution continues
with the statement following the NEXT statement.
This is a FOR .•. NEXT loop.

If STEP is not specified, the increment is
assumed to be one. If STEP is negative, the
final value of the counter is set to be less
than the initial value.. The counter is
decreased each time through the loop. The loop
is executed until the counter is less than the
final value.

The counter must be an integer or
precision numeric constant. If a
precision numeric constant is used, a
mismatch" error will result.

single
double

"Type

The body of the loop is skipped if the
value of the loop times the sign of
exceeds the final value times the sign
STEP.

Nested Looos

initial
the STEP
of the

)

FOR ••• NEXT loops may be nested; that is, a
FOR...NEXT loop may be placed within the context
of another FOR... NEXT loop. When loops are
nested, each loop must have a unique variable
name as its counter. The NEXT statement for the

MICROSOFT BASIC COMMANDS AND STATEMENTS Page 2-34

inside loop must appear before that for
outside loop. If nested loops have the same
point, a single NEXT statement may be used
all of them.

the
end
for

Example 1

Example 2

The variable(s) in the NEXT statement may be
omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT
statement is encountered before its
corresponding FOR statement, a "NEXT without
FOR" error message is issued and execution is
terminated.

10 K=lO
20 FOR I=l TO K STEP 2
30 PRINT I;
40 K=K+IO
50 PRINT K
60 NEXT
RUN

1 20
3 30
5 40
7 50
9 60

Ok

10 J=O
20 FOR I=l TO J
30 PRINT I
40 NEXT I

)

In this example, the
because the initial
the final value.

loop does not execute
value of the loop exceeds

Example 3 10 I=5
20 FOR I=l TO I+5
30 PRINT I;
40 NEXT
RUN

1 2 3 4 5 6 7 8 9 10
Ok

In this example, the loop executes ten times.
The final value for the loop variable is always
set before the initial value is set.

Note Previous versions of Microsoft
initial value of the loop
setting the final value; i. e.,
would have executed six times.

BASIC set the
variable before
the above loop

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.23 GET

Format GET [#]<file number>[,<record number>]

Page 2-35

)

)

Purpose

Remarks

Example

Note

To read a record from a random disk file into a
random buffer.

<file number> is the number under which the file
was OPENed. If <record number> is omitted, the
next record (after the last GET) is read into
the buffer. The largest possible record number
is 32767.

See "Microsoft BASIC Dis k I/O," in the Microsoft
BASIC User's Guide.

After a GET statement has been executed, INPUT#
and LINE INPUT# may be executed to read
characters from the random file buffer.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.24 GOSUB ..• RETURN

Format GOSUB <line number>

RETURN

Page 2-36

Purpose To branch to and return from a subroutine.

Remarks· <line number> is the first
subroutine.

line of the

Example

A subroutine may be called any number of times
in a program. A subroutine also may be called
from within another subroutine. Such nesting of
subroutines is limited only by available memory.

The RETURN statement(s) in a subroutine cause
Microsoft BASIC to branch back to the statement
following the most recent GOSUB statement. A
subroutine may contain more than one RETURN
statement, should logic dictate a return at
different points in the subroutine. Subroutines
may appear anywhere in the program, but it is
recommended that the subroutine be readily
distinguishable from the main program. To
prevent inadvertent entry into the subroutine,
precede it with a STOP, END, or GOTO statement
that directs program control around the
subroutine.

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END
40 PRINT "SUBROUTINE";
50 PRINT " IN";
60 PRINT" PROGRESS"
70 RETURN
RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.25 GOTO

Format GOTO <line number>

Page 2-37

Purpose

Remarks

To branch unconditionally out of the normal
program sequence to a specified line number.

If <line number> is an executable statement,
that statement and those following are executed.
If it is a nonexecutable statement, execution
proceeds at the first executable statement
encountered after <line number>.

)

)

Example LIST
10 READ R
20 PRINT "R =" iR,
30 A=3.14*R A 2
40 PRINT "AREA =" ;A
50 GOTO 10
60 DATA 5,7,12
Ok
RUN
R = 5 AREA = 78.5
R = 7 AREA = 153.86
R = 12 AREA = 452.16
?Out of data in 10
Ok

MIC~OSOFT BASIC COMMANDS AND STATEMENTS Page 2-38

Format

Format

Purpose

Remarks

IF <expression> THEN {<statement(s»I<line number>}

[ELSE {<statement(s»I<line number>}]

IF <expression> GOTO <line number>

[ELSE {<statement(s»!<line number>}]

To make a decision regarding program flow based
on the result returned by an expression.

If the result of <expression> is not zero, the
THEN or GOTO clause is executed. THEN may be
followed by either a line number for branching
or one or more statements to be executed. GOTO
is always followed by a line number. If the
result of <expression> is zero, the THEN or GOTO
clause is ignored and the ELSE clause, if
present, is executed. Execution continues with
the next executable statement. A comma is
allowed before THEN.

Nesting of IF Statements

IF•.. THEN ... ELSE statements
Nesting is limited only
line. For example,

may be nested.
by the length of the)

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C"

will not print "A<>C" when A<>B.

If an IF••. THEN statement is followed by a line
number in direct mode, an "Undefined line" error
results, unless a statement with the specified
line number had previously been entered in
indirect mode.

)

MICROSOFT BASIC COMMANDS AND STATEMENTS Page 2-39

)

)

Note

Example 1

Example 2

Example 3

When using IF to test equality for a value that
is the result of a floating-point computation,
remember that the internal representation of the
value may not be exact. Therefore, the test
should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value
1.0, use:

IF ABS (A-l.0)<1.OE-6 THEN ...

This test returns true if the value of A is 1.0
with a relative error of less than 1.OE-6.

200 IF I THEN GET*l,I

This statement GETs record number I if I is not
z·ero.

100 IF(I<20)*(I>10) THEN DB=1979-1:GOTO 300
110 PRINT "OUT OF RANGE"

In this example, a test determines if I is
greater than 10 and less than 20. If I is in
this range, DB is calculated and execution
branches to line 300. If I is not in this
range, execution continues with line 110.

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go
either to the terminal or the line printer,
depending on the value of the variable IOFLAG.
If IOFLAG is zero, output goes to the line
printer: otherwise, output goes to the
terminal.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.27 INPUT

Page 2-40

Format

Purpose

Remarks

INPUT[;] [<"prompt string">:]<list of variables>

To allow input from the terminal during program
execution.

When an INPUT statement is encountered, program
execution pauses and a question mark is printed
to indicate the program is waiting for data. If
<"prompt string"> is included, the string is
printed before the question mark. The required
data is then entered at the terminal.

A comma may be used instead of a semicolon after
the prompt string to suppress the question mark.
For example, the statement INPUT "ENTER
BIRTHDATE" ,B$ will print the prompt with no
question mark.

If INPUT is immediately followed by a semico~on,

then the carriage return typed by the user to
input data does not echo a carriage return/line
feed sequence.

The data that is entered is assigned to
variable(s) given in <variable list>.
number of data items supplied must be the
as the number of variables in the list.
items are separated by commas.

the
The

same
Data

)

The variable names in the list may be numeric or
string variable names (including subscripted
variables). The type of each data item that is
input must agree with the type specified by the
variable name. (Strings input to an INPUT
statement need not be surrounded by quotation
marks.)

Responding to INPUT with too many or too few
items or with the wrong type of value (numeric
instead of string, etc.) causes the messsage
"?Redo from start" to be printed. No assignment
of input values is made until an acceptable
response is given.

)

MICROSOFT BASIC COMMANDS AND STATEMENTS Page 2-41

by the user
question mark.)

x
X "SQUARED IS" XA 2

10 INPUT
20 PRINT
30 END
RUN
? 5 (The 5 was typed in

in response to the
5 SQUARED 'Is 25

Ok

Examples

LIST ,
10 PI=3.14
20 INPUT "WHAT IS THE RADIUS"; R
30 A=PI*R A 2
40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT
60 GOTO 20
Ok
RUN
WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
etc.

)

)

MICROSOFT BASIC COMMANDS AND STATlliENTS

2.28 INPUTji

Format INPUTji<file number>,<variable list>

Page 2-42

Purpose

Remarks

Example

To read data items from a sequential disk file
and assign them to program variables.

<file number> is the number used when the file
was OPENed for input. <variable list> contains
the variable names that will be assigned to the
items in the file. (The variable type must
match the type specified by the variable name.)
with INPUTji, no question mark is printed, as
with INPUT.

The data items in the file should appear just as
they would if data were being typed in response
to an INPUT statement. With numeric values,
leading spaces, carriage returns, and line feeds
are ignored. The first character encountered
that is not a space, carriage return, or line
feed is assumed to be the start of a number.
The number terminates on a space, carriage
return, line feed, or comma.

If Microsoft BASIC is scanning the sequential
data file for a string item, leading spaces,
carriage returns, and line feeds are also
ignored. The first character encountered that
is not a space, carriage return, or line feed is
assumed to be the start of a string item. If
this first character is a quotation mark ("),
the string item will consist of all characters
read between the first quotation mark and the
second. Thus, a quoted string may not contain a
quotation ma"rk as a character. If the first
character of the string is not a quotation mark,
the string is an unquoted string, and will
terminate on a comma, carriage return, or line
feed (or after 255 characters have been read).
If end-of-file is reached when a numeric or
string item is being INPUT, the item is
terminated.

See "Microsoft BASIC Disk I/O," in the Microsoft
BASIC User's Guide.

)

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.29 KILL

Format KILL <filename>

Page 2-43

Purpose To delete a file from disk.

Remarks If a KILL
currently
occurs.

statement is given for a file that is
OPEN, a "File already open" error

KILL is used
program files,
data files.

for all types of disk files:
random data files, and sequential

)

)

Example 200 KILL "DATA1.DAT"

See also "Microsoft BASIC Dis k I/O," in the
Microsoft BASIC User's Guide.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.30 LET

Format [LET]<variable>=<expression>

Page 2-44

Purpose To assign the value of an expression to a
variable.

Remarks

Example

Notice the word LET is optional; Le.,
equal sign is sufficient for assigning
expression to a variable name.

110 LET D=12
120 LET E=lY2
130 LET F=12 A 4
140 LET SUM=D+E+F

or

110 D=12
120 E=12~2

130 F=12 A 4
140 SUM=D+E+F

the
an

)

)

MICROSOFT BASIC COMMANDS A..'<D STATEMENTS

2.31 LINE INPUT

Page 2-45

Format LINE INPUT[; 1 [<"prompt string">;] <string variable>

Purpose To input an entire line (up to 254
to a string variable, without
delimiters.

characters)
the use of

)

)

Remarks

Example

<"prompt string"> is a string literal that is
printed at the terminal before input is
accepted. A question mark is not printed unless
it is part of <"prompt string">. All input from
the end of <"prompt string"> to the carriage
return is assigned to <string variable>.
However, if a line feed/carriage return sequence
(this order only) is encountered, both
characters are echoed; but the carriage return
is ignored, the line feed is put into <string
variable>, and data input continues.

If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the
user to end the input line does not echo a
carriage return/line feed sequence at the
terminal.

A LINE INPUT statement may be aborted by typing
Control-C. Microsoft BASIC will return to
command level and type "Ok". Typing CONT
resumes execution at the LINE INPUT.

See "LINE INPUT'," Section 2.32.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.32 LINE INPUT#

Page 2-46

Format LINE INPUT#<file number>,<string variable>

Purpose To read
without
file to

an entire line (up to 254 characters),
delimiters, from a sequential disk data

a string variable.

Remarks <file number> is the number under which the file
was OPENed. <string variable> is the variable
name to which the ·line will be assigned. LINE
INPUT# reads all characters in the sequential
file up to a carriage return. It then skips
over the carriage return/line feed sequence.
The next LINE INPUT# reads all characters UP to
the next carriage return. (If a - line
feed/carriage return sequence is encountered, it
is pre se rved.)

LINE INPUT# is especially useful if each line of
a data file has been broken into fields, or if a
Microsoft BASIC program saved in ASCII format is
being read as data by another program. (See
"SAVE," Section 2.60.)

Example 10 OPEN "O",l,"LIST"
20 LINE INPUT "CUSTOMER INFORMATION? ";C$
30 PRINT U, C$
40 CLOSE 1
50 OPEN "I",l,"LIST"
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1
RUN
CUSTOMER INFORMATION? LINDA JONES 234,4
LINDA JONES 234,4 MEMPHIS
Ok

MEMPHIS

)

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.33 LIST

Page 2-47

)

Format 1

Format 2

Purpose

Remarks

LIST[<line number»

LIST [<line number>] [-[<line number»)

To list all or part of the program currently in
memory at the terminal.

Microsoft BASIC always returns to command level
after a LIST is executed.

Format 1

If <line number> is omitted, the program is
listed beginning at the lowest line number.
(Listing is terminated either when the end of
the program is reached or by typing Control-C.)
If <line number> is"included, only the specified
line will be listed.

Format 2

This format allows the following options:

1. If only the first <line number> is
specified, that line and all higher-numbered
lines are listed.

2. If only the second <line number> (Le.,
[-[<line number»)) is specified, all lines
from the beginning of the program through
that line are listed.

3. If both <line number(s)> are specified, the
entire range is listed.

MICROSOFT BASIC COMMANDS AND STATEMENTS Page 2-48

Examples Format 1

LIST

LIST 500

Format 2

Lists the program currently
in memory.

Lists line 500.

LIST 150- Lists all lines from 150
to the end.

LIST -1000 Lists all lines from the
lowest number through 1000.

LIST 150-1000 Lists lines 150 through
1000, inclusive.

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.34 LLIST

Page 2-49

Format LLIST [<line number> [-[<line number>]]]

Purpose

Remarks

To list all or part of the program currently in
memory at the line printer.

LLIST assumes a 132-character-wi~e printer.

Microsoft
after an
LLIST are

BASIC always returns to command level
LLIST is executed. The options for

the same as for LIST, Format 2.

)

)

Note

Example

LLIST and LPRINT are not included in
implementations of Microsoft BASIC.

See the examples for "LIST," Format 2.

all

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.35 LOAD

Format LOAD <filename> [,R]

Page 2-50

Purpose

Remarks

Example

To load a file from disk into memory.

<filename> is the name that was used when the
file was SAVEd. (Your operating system may
append a default filename extension if one was
not supplied in the SAVE command. Refer to
"Microsoft BASIC Disk I/O," in the Microsoft
BASIC User's Guide, for information about
possible filename extensions your operating
system.)

The R option automatically runs the program
after it has been loaded.

LOAD closes all open files and deletes all
variables and program lines currently residing
in memory before it loads the designated
program. However, if the R option is used with
LOAD, the program is RUN after it is LOADed, and
all open data files are kept open. Thus, LOAD
with the R option may be used to chain several
programs (or segments of the same program).
Information may be passed between the programs
using their disk data files.

LOAD "STRTRK", R

LOAD "B:MYPROG"

)

MICROSOFT BASIC COM..~ANDS AND STATEMENTS

2.36 LPRINT AND LPRINT USING

Format LPRINT [<list of expressions>]

Page 2-51

Purpose

LPRINT USING <string exp>;<list of expressions>

To print data at the line printer.

Remarks Same as PRINT and
goes to the line
Section 2.50.

PRINT USING, except output
printer. See Section 2.49 and

)

)

Note

LPRINT assumes a 132-character-wide printer.

LPRINT and LLIST are not included in
implementations of Microsoft BASIC.

all

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.37 LSET AND RSET

Page 2-52

Format LSET <string variable>=<string expression>
RSET <string variable>=<string expression>

Purpose

Remarks

Examples

To move data from memory to a random file buffer
(in preparation for a PUT statement) .

If <string expression> requires fewer bytes than
were FIELDed to <string variable>, LSET
left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to
pad the extra positions.) If the string is too
long for the field, characters are dropped from
the right. Numeric values must be converted to
strings before they are LSET or RSET. See
"MKI$, MKS$, MKD$," Section 3.26.

150 LSET A$=MKS$(AMT)
160 LSET D$=DESC($)

See also "Microsoft BASIC Disk I/O,"
in the Microsoft BASIC User's Guide.

Note LSET or RSET may also be used with
string variable to left-justify or
a string in a given field. For
program lines

110 A$=SPACE$(20)
120 RSET A$=N$

a nonfielded
r ight-j ustify
example, the)

right-justify the string N$ in a 20-character
field. This can be very handy for formatting
printed output.

)

MICROSOFT BASIC CO~~ANDS AND STATEMENTS

2.38 MERGE

Format MERGE <filename>

Page 2-53

)

)

Purpose

Remarks

Example

To merge a specified disk file into the program
currently in memory.

<filename> is the name used when the file was
SAVEd. (Your operating system may append a
default filename extension if one was not
supplied in the SAVE command. Refer to
"Microsoft BASIC Disk I/O," in the Microsoft
BASIC User's Guide, for information about
possible filename extensions under your
operating system.) The file must have been SAVEd
in ASCII format. (If not, a "Bad file mode"
error occurs.)

If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory. (MERGEing may be
thought of as "inserting" the program lines on
disk into the program in memory.)

Microsoft BASIC always returns to command level
after executing a MERGE command.

MERGE "NUMBRS"

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.39 MID$

Format MID$«string expl>,n[,m])=<string exp2>

Page 2-54

where nand
<string expl>
expressions.

m are integer expressions and
and <string exp2> are string

Purpose

Remarks

Example

To replace a portion of one string with another
string.

The characters in <string expl>, beginning at
position n, are replaced by the characters in
<string exp2>. The optional "m" refers to the
number of characters from <string exp2> that
will be used in the replacement. If "m" is
omitted, all of <string exp2> is used. However,
regardless of whether "m" is omitted or
included, the replacement of characters never
goes beyond the original length of <string
expl>.

10 A$="KANSAS CITY, MO"
20 MID$(A$,14)="KS"
30 PRINT A$
RUN
KANSAS CITY, KS

MID$ is also a function that returns a substring
of a given string. See Section 3.25.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.40 NAME

Format NAME <old filename> AS <new filename>

Page 2-55

)

)

Purpose

Remarks

Example

To change the name of a disk file.

<old filename> must exist and <new filename>
must not exist; otherwise, an error will
result. After a NAME command, the file exists
on the same disk, in the same area of disk
space, with the new name.

Ok
NAME "ACCTS" AS "LEDGER"
Ok

In this example, the file that was
formerly named ACCTS will now be named LEDGER.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.41 NE'il

Format NEW

Page 2-56

Purpose To delete the program currently in memory and
clear all variables.

Remarks NEW is entered at command level
before entering a new program.
always returns to command level
executed.

to clear memory
Microsoft BASIC

after a NEW is

Example NEW

)

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.42 NULL

Format NULL <integer expression>

Page 2-57

)

).

Purpose

Remarks

Example

To set the number of nulls to be printed at the
end of each line.

For 10 character-per-second tape punches,
<integer expression> should be >=3. When tapes
are not being punched, <integer expression>
should be 0 or 1 for Teletype(R) and
Teletype-compatible terminal screens. <integer
expression> should be 2 or 3 for 30 CPS hard
copy printers. The default value is o.

Ok
NULL 2
Ok
100 INPUT X
200 IF X<50 GOTO 800

Two null characters will be printed after each
line.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.43 ON ERROR GOTO

Format ON ERROR GOTO <line number>

Page 2-58

Purpose

Remarks

Note

Example

To enable error handling and specify the first
line of the error handling routine.

Once error handling has been enabled, all errors
detected, including direct mode errors (e.g.,
syntax errors), will cause a jump to the
specified error handling routine. If <line
number> does not exist, an "Undefined line"
error results.

To disable error handling, execute an ON ERROR
GOTO O. Subsequent errors will print an error
message and halt execution. An ON ERROR GOTO 0
statement that appears in an error handling
routine causes Microsoft BASIC to stop and print
the error message for the error that caused the
trap. It is recommended that all error handling
routines execute an ON ERROR GOTO 0 if an error
is encountered for which there is no recovery
action.

If an error occurs during execution of an error
handling routine, that error message is printed
and execution terminates. Error trapping does
not occur within the error handling routine.

10 ON ERROR GOTO 1000

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.44 ON .•• GOSUB AND ON ..• GOTO

Page 2-59

Format ON <expression> GOTO <list of line numbers>

ON <expression> GOSUB <list of line numbers>

specified line
returned when an

Purpose

Remarks

To branch to one of several
numbers, depending on the value
expression is evaluated.

The value of <expression> determines
number in the list will be used for
For example, if the value is three,
line number in the list will be the
of the branch. (If the value is a
the fractional portion is rounded.)

which line
branching.
the third

destination
noninteger,

)

)

Example

In the ON ... GOSUB statement, each line number in
the list must be' the first line number of a
subroutine.

If the value of <expression> is zero or greater
than the number of items in the list (but less
than or equal to 255), Microsoft BASIC continues
with the next executable statement. If the
value of <expression> is negative or greater
than 255, an "Illegal function call" error
occur s.

100 ON L-l GOTO 150,300,320,390

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.45 OPEN

Page 2-60

Format OPEN <mode>,[i]<file number>,<filename>[,<reclen>]

Purpose

Remarks

To allow I/O to a disk file.

A disk file must be OPENed before any disk
operation can be performed on that file.
allocates a buffer for I/O to the file
determines the mode of access that will be
wi th the buffe r.

I/O
OPEN

and
used

<mode> is a string expression whose
character is one of the following:

o Specifies sequential output mode.

I Specifies sequential.input mode.

fir st

R Specifies random input/output mode.

<file number> is an integer expression whose
value is between 1 and 15. The number is then
associated with the file for as long as it is
OPEN and is used to refer other disk I/O
statements to the file.

<filename> is a string expression containing a
name that conforms to your operating system's
rules for disk filenames.

)

<reclen> is an integer expression
included, sets the record length
files. The default record length is

which, if
for random

128 bytes.

Note

Example

A file can be OPENed for sequential input or
random access on more than one file number at a
time. A file may be OPENed for output, however,
on only one file number at a time.

10 OPEN "I" ,2 ,"INVEN"

See also "Microsoft BASIC Disk I/O," in the
Microsoft BASIC User's Guide.

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.46 OPTION BASE

Format OPTION BASE n

where n is 1 or 0

Page 2-61

Purpose To declare the
subscripts.

minimum value for array

)

)

Remarks

Example

The default base is O. If the statement

OPTION BASE 1

is executed, the lowest value an array subscript
may have is 1.

OPTION BASE 1

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.47 OUT

Format OUT I,J

Page 2-62

Purpose

where I and J are integer expressions in the
range a to 255.

To send a byte to a machine output port.

Remarks

Example

The integer expression I
The integer expression
transmitted.

100 OUT 32,100

is the per t number.
J is the data to be

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.48 POKE

Format POKE I,J

where I and J are integer expressions.

Page 2-63

Purpose

Remarks

To write a byte into a memory location.

I and J-are integer expressions. The expression
I represents the address of the memory location
and J is the data byte. I must be in the range
-32768 to 65535. (For interpretation of
negative values of I, see "VARPTR," Section
3.43 •)

The complementary function to POKE is PEEK.
argument to PEEK is an address from which a
is to be read. See Section 3.28.

The
byte

)

)

Example

POKE and PEEK are useful for storing data
efficiently, loading assembly language
subroutines, and passing arguments and results
to and from assembly language subroutines.

10 POKE &H5AOO,&HFF

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.49 PRINT

Format PRINT [<list of expressions>]

Page 2-64

Purpose

Remarks

To output data at the terminal.

If <list of expressions> is omitted, a blank
line is printed. If <list of expressions> is
included, the values of the expressions are
printed at the terminal. The expressions in the
list may be numeric and/or string expressions.
(Strings must be enclosed in quotation marks.)

Print Positions

The position of each printed item is determined
by the punctuation used to separate the items in
the list. Microsoft BASIC divides the line into
print zones of 14 spaces each. In the list of
expressions, a comma causes the next value to be
printed at the beginning of the next zone. A
semicolon causes the next value to be printed
immediately after the last value. Typing one or
more spaces between expressions has the same
effect as typing a semicolon.

If a comma or a semicolon terminates the list of
expressions, the next PRINT statement begins
printing on the same line, spacing accordingly.
If the list of expressions terminates without a
comma or a semicolon- a carriage return is
printed at the end of the line. If the printed
line is longer than the terminal width,
Microsoft BASIC goes to the next physical line
and continues printing.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space.
Negative numbers are preceded by a minus sign.
Single precision numbers that can be represented
with 6 or fewer digits in the unsealed format no
less accurately than they can be represented in
the scaled format, are output using the unsealed
format. For example, lE-7 is output as .0000001
and lE-S(-7) is output as IE-OS. Double
precision numbers that can be represented with
16 or fewer digits in the unsealed format no
less accurately than they can be represented in
the scaled format, are output using the unsealed
format. For example, lD-15 i~ output as
.0000000000000001 and ID-16 is output as lD-16.

A question mark may be used in place of the word
PRINT in a PRINT statement.

)

)

MICROSOFT BASIC COMHANDS AND STATEMENTS Page 2-65

)
Example 1 10 X=5

20 PRINT X+5,X-5,X*(-5),X A 5
30 END
RUN

10 0 -25
Ok

3125

In this
statement
beginning

example, the commas in the
cause each value to be printed

of the next print zone.

PRINT
at the

)

Example 2 LIST
10 INPUT X
20 PRINT X "SQUARED IS" X

A 2 "AND";
30 PRINT X "CUBED IS" XA 3
40 PRINT
50 GOTO 10
Ok
RUN
? 9

9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

?

In this example, the semicolon at the end of
line 20 causes both PRINT statements to be
printed on the same line. Line 40 causes a
blank line to be printed before the next prompt .

•
Example 3 10 FOR X=l TO 5

20 J=J+5
30 K=K+IO
40 ?JiKi
50 NEXT X
Ok
RUN

5 10 10 20 15 30 20 40 25 50
Ok

In this example, the semicolons in the PRINT
sta temen t cause each value to be pr in ted
immediately after the preceding value. (Don't
forget, a number is always followed by a space,
and positive numbers are preceded by a space.)
In line 40, a question mark is used instead of
the word PRINT.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.50 PRINT USING

Page 2-66

Format PRINT USING <string exp>;<list of expressions>

Purpose

Remarks
and
Examples

To print strings or numbers using a specified
format.

<list of expressions> is comprised of the string
expressions or numeric expressions that are to
be printed, separated by semicolons. <string
exp> is a string literal (or variable) composed
of special formatting characters. These
formatting characters (see below) determine the
field and the format of the printed strings or
numbers.

String Fields

When PRINT
of three
format the

USING is used to print
formatting characters
string field:

strings, one
may be used to

"!" Specifies that only the first character in the
given string is to be printed.

"\n spaces\"Specifies that 2+n characters from the string
are to be printed. If the backslashes are typed
with no spaces, two characters will be printed;
with one space, three characters will be
printed, and so on. If the string is longer
than the field, the extra characters are
ignored. If the field is longer than the
string, the string will be left-justified. in the
field and padded with spaces on the right.

Example:

10 A$="LOOK" :B$="OOT"
30 PRINT USING "!"; A$; B$
40 PRINT USING "\ \" ;A$;B$
50 PRINT USING "\ \";A$;B$;"!!"
RUN
LO
LOOKOUT
LOOK OUT !!

)

MICROSOFT BASIC COMMANDS AND STATEMENTS Page 2-67

"&" Specifies a variable length string field. When
the field is specified with "&", the string is
output without modification.

Example:

10 A$="LOOK" :B$="OOT"
20 PRINT USING "!"; A$;
30 PRINT USING "&" ;B$
RUN
LOUT

Numeric Fields

When PRINT
following
format the

USING is used to print numbers, the
special characters may be used to
numeric field:

)

)

+

A number sign is used to represent each digit
position. Digit positions are always filled.
If the number to be printed has fewer digits
than positions specified, the number will be
right-justified (preceded by spaces) in the
field.

A decimal point may be inserted at any position
in the field. If the fermat string specifies
that a digit is to precede the decimal point,
the digit will always be printed (as 0, if
necessary). Numbers are rounded as necessary.

PRINT USING "iHi. iH!" ; .78
0.78

PRINT USING "##LH";987.654
987.65

PRINT USING "iHi.## ";10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted
at the end of the format string to separate the
printed values on the line.

A plus sign at the beginning or end of the
format string will cause the sign of the number
(plus or minus) to be printed before or after
the number.

MICROSOFT BASIC COMMANDS AND STATEMENTS Page 2-68

A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign.

PRlllT USING "+H.## ",-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90

PRlllT USING "##.##- ",-68.95,22.449,-7.01
68.95- 22.45 7.01-

** A double asterisk at the
string causes leading
field to be filled with
specifies positions for

beginning of the format
spaces in the numeric

asterisks. The ** also
two more digits.

PRlllT USING "**#.# ",12.39,-0.9,765.1
*12.4 *-0.9 765.1

$$ A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $$ specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be used with $$.
Negative numbers cannot be used unless the minus
sign trails to the right.

PRlllT USING "$$###.##",456.78
$456.78

**$ The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be asterisk-filled and a
dollar sign will be printed before the number.
**$ specifies three more digit positions, one of
which is the dollar sign.

PRlllT USING "**$H.##",2.34
***$2.34

A comma that is to the left of the decimal point
in a formatting string causes a comma to be
printed to the left of every third digit to the
left of the decimal point. A comma that is at
the end of the format string is printed as part
of the string. A comma specifies another digit
position. The comma has no effect if used with
the exponential () format.

PRlllT USING "H##,.1I#",1234.5
1,234.50

PRlllT USING "##H.##,",1234.5
1234.50,)

MICROSOFT BASIC COMMANDS AND STATEMENTS Page 2-69

Four carets (or up-arrows) may be placed after
the digit position characters to specify
exponential format. The four carets allow space
for E+xx to be pr in ted. Any dec imal poin t
position may be specified. The significant
digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or ­
is specified, one digit position will be used to
the left of the decimal point to print a space
or a minus sign.

PRrnT USING "U.H AAAA ";234.56
2.35E+02

PRrnT USING ".*H*AAAA_";888888
.8889E+06

PRrnT USING "+.**AAAA,, ;123
+.12E+03

An underscore in
next character
character.

the format string
to be output as

causes the
a literal

PRrnT USING" !##.IHI !";12.34
!12.341

) The literal character
underscore by placing "

itself may be an
" in the format string.

% If the number to be
specified numeric
printed in front of
causes the number to
sign will be printed
number.

printed is larger than the
field, a percent sign is
the number. If rounding
exceed the field, a percent
in front of the rounded

)

PRrnT USING "## .##" ;111.22
%111. 22

PRrnT USING ".##";.999
%1. 00

If the number of digits specified exceeds 24, an
"Illegal function call" error will result.

MICROSOFT BASIC COMM&~DS AND STATEMENTS

2.51 PRINT# AND PRINT# USING

Page 2-70

Format

Purpose

Remarks

PRINT#<file number>, [USING <string exp>;l<list
of expressions>

To write data to a sequential disk file.

<file number> is the number used when the file
was OPENed for output. <string exp> consists of
formatting characters as described in Section
2.50, "PRINT USING." The expressions in <list of
expressions> are the numeric and/or string
expressions that will be written to the file.

PRINT# does not compress data on the disk. An
image of the data is written to the disk, just
as it would be displayed on the terminal screen
with a PRINT statement. For this reason, care,
should be taken to delimit the data on the disk,
so that it will be input correctly from the
disk.

In the list of expressions, numeric
should be delimited by semicolons.

PRINT#l,A;B;C;X;Y;Z

expre ss ions
For example:

(If commas are used as delimiters, the
blanks that are inserted between print
will also be written to the disk.)

extra
fields

String expressions must be separated by
semicolons in the list. To format the string
expressions correctly on the disk, use explicit
delimiters in the list of expressions.

For example, let A$="CAMERA" and B$="93604-1".
The statement

PRINT#l ,A$; B$

would write CAMERA93604-1 to the disk. Because
there are no delimiters, this could not be input
as two separate strings. To correct the
problem, insert explicit delimiters into the
PRINT# statement as follows:

PRINT#l,A$;",";B$

The image written to disk is

CAMERA,93604-1

which can be read back into two string
)

MICROSOFT BASIC COMMANDS AND STATEMENTS

variables.

Page 2-71

If the strings themselves contain
semicolons, significant leading blanks,
returns, or line feeds, write them
surrounded by explicit quotation
CHR$ (34) •

commas,
carriage
to disk

marks,

For
B$="

example, let A$="CAMERA, AUTOMATIC"
93604-1". The statement

and

PRINTU ,A$; B$

would write the following image to disk:

CAMERA, AUTOMATIC

And the statement

INPUTU ,A$,B$

93604-1

PRINT#l,CHR$ (34) ;A$;CHR$ (34) ;CHR$(34) ;B$;CHR$ (34))

would input "CAMERA" to
"AUTOMATIC 93604-1" to B$. To
strings properly on the disk,
quotation marks to the disk
CHR$(34). The statement

A$. and
separa te these

wr i te double
image using

writes the following image to disk:

"CAMERA, AUTOMATIC""

And the statement

INPUTU ,A$,B$

93604-1 "

would input "CAMERA, AUTOMATIC" to
" 93604-1" to B$.

A$ and

)

The PRINT# statement may also be used with the
USING option to control the format of the disk
file. For example:

PRINT#l,USING"$$###.##,";J;K;L

For more examples using PRINT#, see "Microsoft
BASIC Disk I/O," in the Microsoft BASIC User's
Guide.

See also "WRITE.," Section 2.68.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.52 PUT

Format PUT [*]<file number>[,<record number>]

Page 2-72

Purpose

Remarks

Example

Note

To write a record from a random buffer to a
random disk file.

<file number> is the number under which the file
was OPENed. If <record number> is omitted, the
record will assume the next available record
number (after the last PUT). The largest
possible record number is 32,767. The smallest
record number is 1.

See "Microsoft BASIC Disk I/O," in the Microsoft
BASIC User's Guide.

PRINT*, PRINT* USING, and WRITE# may be used to
put characters in the random file buffer before
executing a PUT statement.

In the case of WRITE#, Microsoft BASIC pads the
buffer with spaces up to the carriage return.
Any attempt to read or write past the end of the
buffer causes a "Field overflow" error.

)

)

MICROSOFT BASIC COMMANDS AND STATDIENTS Page 2-73

2.53 RANDOMIZE

Format RANDOMIZE [<expression>]

Purpose To reseed the random number generator.

Remarks If <expression>
suspends program
by printing

is omitted, Microsoft BASIC
execution and asks for a value

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

If the random number generator is not reseeded,
the RND function returns the same sequence of
random numbers each time the program is RUN. To
change the sequence of random numbers every time
the program is RUN, place a RANDOMIZE statement
at the beginning of the program and change the
argument with each RUN.

to 32767)? 4
sequence)

.292443 .322921

(-32768
for new
.929364

10 RANDOM I ZE
20 FOR I=l TO 5
30 PRINT RND;
40 NEXT I
RUN
Random Number Seed (-32768 to 32767)? 3

(user types 3)
.88598 .484668 .586328 .119426 .709225

Ok
RUN
Random Number Seed

(user types 4
.803506 .162462

Ok
RUN
Random Number Seed (-32768 to 32767)? 3

(same sequence as first RUN)
.88598 .484668 .586328 .119426 .709225

Ok

Example

)

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.54 READ

Format READ <list of variables>

Page 2-74

Purpose

Remarks

Example 1

To read values from a DATA statement and assign
them to var iables. (See "DATA," Section 2.10.)

A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign variables to DATA statement
values on a one-to-one basis. READ statement
variables may be numeric or string, and the
values read must agree with the variable types
specified. If they do not agree, a "Syntax
error" will result.

A single READ statement may access one or more
DATA statements (they will be accessed in
order), or several READ statements may access
the same DATA statement. If the number of
variables in <list of variables> exceeds the
number of elements in the DATA statement(s), an
"Out of data" error message is printed. If the
number of variables specified is fewer than the
number of elements in the DATA statement(s),
subsequent READ statements will begin reading
data at the first unread element. If there are
no subsequent READ statements, the extra data is
ignored.

To reread DATA statements from the start, use
the RESTORE statement (see "RESTORE;" Section
2.57)

80 FOR I=l TO 10
90 READ A(I)
100 NEXT I
110 DA.TA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment READs the values
DATA statements into the array
execution, the value of A(l) will be
so on.

from the
A. After
3.08, and

MICROSOFT BASIC COMMANDS AND STATEMENTS Page 2-75

)

)

Example 2 LIST
10 PRINT "CITY", "STATE", " ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,", COLORADO, 80211
40 PRINT C$,S$,Z
Ok
RUN
CITY STATE ZIP
DENVER, COLORADO 80211
Ok

This program READs string and numeric data from
the DATA statement in line 30.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.55 REM

Format REM <remark>

Page 2-76

Purpose

Remarks

To allow explanatory remarks to be inserted in a
prog ram.

REM statements are not executed but are output
exactly as entered when the program is listed.

REM statements may be branched into from a GOTO
or GOSUB statement. Execution will continue
with the first executable statement after the
REM statement.

Remarks may be
preceding the
mark instead of

added to
remark
:REM.

the end of a line by
with a single quotation

Important

Example

Do not use this in a data statement, because it
would be considered legal data.

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I=l TO 20
140 SUM=SUM + V(I)

or

120 FOR I=l TO 20
130 SUM=SUM+V(I)
140 NEXT I

'CALCULATE AVERAGE VELOCITY

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.56 RENUM

Page 2-77

)

Format

Purpose

Remarks

Note

RENUM [[<new number>] [,[<old number>] [,<increment>]]]

To renumber program lines.

<new number> is the first line number to be used
in the new sequence. The default is 10. <old
number> is the line in the current program where
renumbering is to begin. The default is the
first line of the program. <increment> is the
increment to be used in the new sequence. The
default is 10.

RENUM also changes all line number references
following GOTO, GOSUB, THEN, ON ••. GOTO,
ON ••. GOSUB, and ERL statements to reflect the
new line numbers. If a nonexistent line number
appears after one of these statements, the error
message "Undefined line number in xxxxx" is
printed. The incorrect line number reference is
not changed by RENUM, but line number yyyyy may
be changed.

RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30 when the
program has three lines numbered 10, 20 and 30)
or to create line numbers greater than 65529.
An "Illegal function call" error will result.

Examples RENUM

RENUM 300" 50

Renumbers the entire program.
The first new line number
will be 10. Lines will be
numbered in increments of 10.

Renumbers the entire pro­
gram. The first new line
number will be 300. Lines
will be numbered in
increments of 50.

)

RENUM 1000,900,20 Renumbers the lines from
900 up so they start with
line number 1000 and are
numbered in increments of 20.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.57 RESTORE

Format RESTORE [<line number>]

Page 2-78

Purpose

Remarks

Example

To allow DA~ statements to be reread from a
specified line.

After a RESTORE statement is executed, the next
READ statement accesses the first item in the
first DA~ statement in the program. If <line
number> is specified, the next READ statement
accesses the first item in the specified DATA
sta temen t.

10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 79

)

)

MICROSOFT BASIC COMMkNDS AND STATD1ENTS

2.58 RESUHE

Page 2-79

Formats

Purpose

Remarks

RESUME

RESUME 0

RESUME NEXT

RESUME <line number>

To continue program execution after an error
recovery procedure has been performed.

Anyone of the four formats shown above may be
used, depending upon where execution is to
resume:

RESUME
or

RESUME 0

RESUME NEXT

Execution resumes at the
statement which caused the
error.

Execution resumes at the
statement immediately fol­
lowing the one which
caused the error.

) RESO}lE <line number> Execution resumes at
<line number>.

Example

A RESUME statement that
handling routine causes a
message to be printed.

10 ON ERROR GOTO 900

is not in an
"RESUME wi thou t

error
error"

)

900 IF (ERR=230) AND (ERL=90) THEN PRINT "TRY
AGAIN" :RESUME 80

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.59 RUN

Page 2-80

Format 1

Purpose

Remarks

Example

Format 2

Purpose

Remarks

RUN [<line number>]

To execute the program currently in memory.

If <line number> is specified, execution begins
on that line. Otherwise, execution begins at
the lowest line number. Microsoft BASIC always
returns to command level after a RUN is
executed.

RUN

RUN <filename> [,R]

To load a file from disk into memory and run it.

<filename> is the name used when the file was
SAVEd. (Your opera ting ,system may append a
default filename extension if one was not
supplied in the SAVE command. Refer to
"Microsoft BASIC Disk I/O," in the Microsoft
BASIC User's Guide for information about
possible filename extensions 'under your
operating system.)

Example

RUN closes all open
current contents of
designated program.
option, all data files

RUN "NEWFIL",R

files and deletes
memory before loading
However, with the
rema in OPEN.

the
the
"R"

Note

See also "Microsoft BASIC Disk I/O," in the
Microsoft BASIC User's Guide.

Microsoft BASIC Compiler supports the RUN and
RUN <line number> forms of the RUN statement.
Microsoft BASIC Compiler does not support the
"R" option with RUN. If you want this feature,
the CHAIN statement should be used.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.60 SAVE

Format SAVE <filename>[{,A!,P}]

Page 2-81

)

I

Purpose

Remarks

Examples

To save a program file on disk.

<filename> is a quoted string that conforms to
your operating system's requirements for
filenames. (Your operating system may append a
default filename extension if one was not
supplied in the SAVE command. Refer to
"Microsoft BASIC Disk I/O," in the Microsoft
BASIC User's Guide for information about
possible filename extensions under your
operating system.) If <filename> already exists,
the file will be written over.

Use the A option to save the file in ASCII
format. Otherwise, Microsoft BASIC saves the
file in a compressed binary format. ASCII
format takes more space on the disk, but some
disk access requires that files be in ASCII
format. For instance, the MERGE command
requires an ASCII format file, and some
operating system commands such as LIST may
require an ASCII format file.

Use the P option to protect the file by saving
it in an encoded binary format. When a
protected file is later RUN (or LOADed), any
attempt to list or edit it will fail.

SAVE "COM2" ,A
SAVE "PROG" , P

See also "Microsoft BASIC Disk I/O,"
in the Microsoft BASIC User's Guide.

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.61 STOP

Format STOP

Page 2-82

Purpose

Remarks

Example

To terminate program execution and return to
command level.

STOP statements may be used anywhere in a
program to terminate execution. When a STOP is
encountered, the following message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement
does not close files.

Microsoft BASIC always returns to command level
after a STOP is executed. Execution is resumed
by issuing a CONT command (see Section 2.8).

10 INPUT A,B,C
20 K=A~2*5.3:L=B~3/.26

30 STOP
40 M=C*K+IOO:PRINT M
RUN
? 1,2,3
BREAK IN 30
Ok
PRINT L

30.7692
Ok
CONT

115.9
Ok

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.62 SWAP

Format SWAP <variable>,<variable>

Page 2-83

Purpose

Remarks

To exchange the values of two variables.

Any type variable may be SWAPped (integer,
single precision, double precision, string), but
the two variables must be of the same type or a
"Type mismatch" error results.

)

)

Example LIST
10 A$=" ONE " : B$=" ALL "
20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$
RUN
Ok

ONE FOR ALL
ALL FOR ONE

Ok

C$=" FOR"

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.63 TRON/TROFF

Format TRON

TROFF

Page 2-84

Purpose

Remarks

Example

To trace the execution of program statements.

As an aid in debugging, the TRON statement
(executed in either direct or indirect mode)
enables a trace flag that prints each line
number of the program as it is executed .. The
numbers appear enclosed in square brackets. The
trace flag is disabled with the TROFF statement
(or when a NEW command is executed).

TRON
Ok
LIST
10 K=lO
20 FOR J=l TO 2
30 L=K + 10
40 PRINT J;K;L
50 K=K+lO
60 NEXT
70 END
Ok
RUN
[10) [20] [30) [40] 1 10 20
[50) [60) [30) [40) 2 20 30
[50] [601 [70)
Ok
TROFF
Ok

)

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.64 WAIT

Format WAIT <port number>,I[,J]

where I and J are integer expressions.

Page 2-85

)

)

Purpose

Remarks

Important

Example

To suspend program execution while monitoring
the status of a machine input port.

The WAIT statement causes execution to be
suspended until a specified machine input port
develops a specified bit pattern. The data read
at the port is exclusive ORled with the integer
expression J, and then AND'ed with I. If the
result is zero, Microsoft BASIC loops back and
reads the data at the port again. If the result
is nonzero, execution continues with the next
statement. If J is omitted, it is assumed to be
zero

It is possible to enter an infinite loop with
the WAIT statement, in which case it will be
necessary to manually restart the machine. To
avoid this, WAIT must have the specified value
at <port number> during some point in the
program execution.

100 WAIT 32,2

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.65 WHILE ... WEND

Format WHILE <expression>

[<loop statements>]

WEND

Page 2-86

Purpose

Remarks

Exa'llple

To execute a series of statements in a loop as
long as a given condition is true.

If <expression> is not zero (Le., true), <loop
statements> are executed until the WEND
statement is encountered. Microsoft BASIC then
returns to the WHILE statement and checks
<expression>. If it is still true, the process
is repeated. If it is not true, execution
resumes with the statement following the WEND
statemen t.

WHILE/WEND loops may be nested to any level.
Each WEND will match the most recent WHILE. An
unmatched WHILE statement causes a "WHILE
without WEND" error, and an unmatched WEND
statement causes a "WEND without WHILE" error.

90 'BUBBLE SORT ARRAY A$
100 FLIPS=l 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS
115 FLIPS=O
120 FOR I=l TO J-l
130 IF A$(I»A$(I+l) THEN

SWAP A$(I),A$(I+l) :FLIPS=l
140
150 WEND

NEXT I

MICROSOFT BASIC COMMANDS AND STATEMENTS

2.66 WIDTH

Format WIDTH [LPRINT J<integer expression>

Page 2-87

Purpose

Remarks

To set the printed line width in number of
characters for the terminal or line printer.

If the LPRINT option is omitted, the line width
is set at the terminal. If LPRINT is included,
the line width is set at the line printer.

<integer expression>
range 15 to 255.
characters.

must have a
The default

value in the
width is 72

)

)

Example

If <integer expression> is 255, the line width
is "infinite"; that is, Microsoft BASIC never
inse rts a carr iage return. However, the
position of the cursor or the print head, as
given by the POS or LPOS function, returns to
zero after position 255.

10 PRINT "ABCDEFGHI JKLMNOPQRSTUVWXYZ"
RUN
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ok
WIDTH 18
Ok
RUN
ABCDEFGHIJKLMNOPQR
STUVWXYZ
Ok

MICROSOFT BASIC CO~~ANDS AND STATEMENTS

2.67 WRITE

Format WRITE [<list of expressions>]

Page 2-88

Purpose

Remarks

To output data at the terminal.

If <list of expressions> is omitted, a blank
line is output. If <list of expressions> is
included, the values of the expressions are
output at the terminal. The expressions in the
list may be numeric and/or string expressions.
They must be separated by commas.

When the printed items are output, each item is
separated from the last by a comma. Printed
strings are delimited by quotation marks. After
the last item in the list is printed, Microsoft
BASIC inserts a carriage return/line feed.

WRITE outputs numeric
forma t as the PRINT
2.49.)

values using the same
statement. (See Section

Example 10 A=80:B=90:C$="THAT'S ALL"
20 WRITE A,B,C$
RUN

80, 90 , "THAT'S ALL"
Ok

)

MICROSOFT BASIC COMMANDS AND STATEMENTS

2 .68 WRITE?,

Page 2-89

Format WRITE#<file number>,<list of expressions>

)

)

Purpose

Remarks

Example

To write data to a sequential file.

<file number> is the number under which the file
was OPENed in "0" mode (see "OPEN," Section
2.45). The expressions in the list are string
or numeric expressions. They must be separated
by commas.

The difference between WRITE# and PRINT# is that
WRITE# inserts commas between the items as they
are written to disk and delimits strings with
quotation marks. Therefore, it is not necessary
for the user to put explicit delimiters in the
list. A carriage return/line feed sequence is
inserted after the last item in the list is
written to disk.

Let A$="CAMERA" and B$="93604-1"

The statement:

WRITE#! ,A$,B$

writes the following image to disk:

"CAMERA", "93604-1"

A subsequent INPUT# statement, such as

INPUT#! ,A$,B$

would input "CAMERA" to A$ and "93604-1" to B$.

)

)

)

Chapter 3 Microsoft BASIC Functions

Introduction
3.1 ABS
3.2 ASC
3.3 ATN
3.4 CDBL
3.5 CHR$
3.6 CINT
3.7 COS
3.8 CSNG
3.9 CVI, CVS, CVD
3.10 EOF
3.11 EXP
3.12 FIX
3.13 FRE
3.14 HEX$
3.15 INKEY$
3.16 INP
3.17 INPUT$
3.18 INSTR
3.19 INT
3.20 LEFT$
3.21 LEN
3.22 LOC
3.23 LOG
3.24 LPOS
3.25 MID$
3.26 MIK$, MKS$, MKD$
3.27 OCT$
3.28 PEEK
3.29 POS
3.30 RIGHT$
3.31 RND
3.32 . SGN
3.33 SIN
3.34 SPACES
3.35 SPC
3.36 SQR
3.37 STR$
3.38 STRING$
3.39 TAB
3.40 TAN
3.41 USR
3.42 VAL
3.43 VARPTR

)

CHAPTER 3

MICROSOFT BASIC FUNCTIONS

Microsoft BASIC
chapter. The
without further

intrinsic functions
functions may be
definition.

are described in this
called from any program

Arguments to functions are always enclosed in
In the formats given for the functions in this
arguments have been abbreviated as follows:

paren theses.
chapter, the

)

X and Y

I and J

X$ and Y$

Represent any numeric expressions.

Represent integer expressions.

Represent string expressions.

If a floating-point value is supplied where an integer is
required, Microsoft BASIC will round the fractional portion
and use the resulting integer.

)

Note With Microsoft BASIC Interpreter,
single precision results are returned by
precision functions are supported only
BASIC Compiler.

only in teg e rand
functions. Double
by the Microsoft

MICROSOFT BASIC FUNCTIONS

3.1 ABS

Page 3-2

Format

Action

Example

3.2 ASC

Format

Action

Example

ABS(X)

Returns the absolute value of the expression X.

PRINT ABS(7*(-5»
35

Ok

ASC(X$)

Returns a numerical value that is the ASCII code
for the first character of the string X$. (See
Appendix C for ASCII codes.) If X$ is null, an
"Illegal function call" error is returned.

10 X$="TEST"
20 PRINT ASC (X$)
RUN

84
Ok

See the CHR$ function, Section 3.5, for details
on ASClI-to-string conversion.

MICROSOFT BASIC FUNCTIONS

3.3 ATN

Page 3-3

)

/

Format

Action

Example

3.4 CDBL

Format

Action

Example

ATN (Xl

Returns the arctangent of X in radians. Result
is in the range -pi/2 to pi/2. The expression X
may be any numeric type, but the evaluation of
ATN is always performed in single precision.

10 INPUT X
20 PRINT ATN (Xl
RUN
? 3
1.24905

Ok

CDBL (X)

Converts X to a double precision number.

10 A=454.67
20 PRINT A;CDBL (A)
RUN

454.67 454.6700134277344
Ok

MICROSOFT BASIC FUNCTIONS

3.5 CHR$

Page 3-4

Format

Action

Example

3.6 CINT

Format

Action

Example

CHR$(I)

Returns a string whose one character is ASCII
character I. (ASCII codes are listea in
Appendix C.) CHR$ is commonly used to send a
special character to the terminal. For
instance, the BEL character (CHR$(7)) could be
sent as a preface to an error message, or a form
feed (CHR$(12» could be sent to clear a
terminal screen and return the cursor to the
home position.

PRINT CHR$ (66)
B
Ok

See the ASC function, Section 3.2, for details
on ASClI-to-numeric conversion.

CINT (X)

Converts X to an integer by rounding the
fractional portion. If X is not in the range
-32768 to 32767, an "Overflow" error occurs.

PRINT CINT(45.67)
46

Ok

See the CDBL and CSNG functions for details on
converting numbers to the double precision and
single precision data type, respectively. See
also the FIX and INT functions, both of which
return integers.

)

)

MICROSOFT BASIC FUNCTIONS

3.7 COS

Page 3-5

Format

Action

COS (Xl

Returns the
calculation
precision.

cosine of
of COS (Xl

X
is

in radians. The
performed in single

)

)

Example

3.8 CSNG

Format

Action

Example

10 X=2*COS {. 4 l
20 PRINT X
RUN

1.84212
Ok

CSNG (Xl

Converts X to a single precision number.

10 Ai = 975.3421#
20 PRINT A#: CSNG(A#)
RUN

975.3421 975.341
Ok

See the CINT and CDBL functions for converting
numbers to the integer and double precision data
types, respectively.

MICROSOFT BASIC FUNCTIONS

3 .9 CVI, CVS, CVD

Page 3-6

Format

Action

-Example

3.10 EOF

CVI«2-byte string»
CVS«4-byte string»
CVD«8-byte string»

Convert string values to numeric values.
Numeric values that are read in from a random
disk file must be converted from strings back
into numbers. CVI converts a 2-byte string to
an integer. CVS converts a 4-byte string to a
single precision number. CVD converts an 8-byte
string to a double precision number.

70 FIELD 11,4 AS N$, 12 AS B$, ...
80 GET 11
90 Y=CVS (N$)

See also nMKI$, MKS$, MKD$," Section 3 .26 and
"Microsoft BASIC Disk I/O," in the Microsoft
BASIC User's Guide.)

Format EOF«file number»

Action

Example

Returns -1 (true) if the end of a sequential
file has been reached. Use EOF to test for
end-of-file while INPUTting, to avoid "Input
past end" errors.

10 OPEN "I",l,"DATA"
20 C=O
30 IF EOF(l) THEN 100
40 INPUT Il,M(C)
50 C=C+l:GOTO 30

)

MICROSOFT BASIC FUNCTIONS

3.11 EXP

Format EXP(X)

Page 3-7

Action Returns e (base of natural logarithms) to the
power of X. X must be <=87.3365. If EXP
overflows, the "Overflow" error message is
displayed, machine infinity with the appropriate
sign is supplied as the result, and execution
continues.

Example

3.12 FIX

10 X=5
20 PRINT EXP(X-l)
RUN

54.5982
Ok

Format FIX (X)

)

)

Action

Examples

Returns the truncated integer part of X. FIX(X)
is equivalent to SGN(X)*INT(ABS(X)). The major
difference between FIX and INT is that FIX does
not return the next lower number for negative X.

PRINT FIX(58.75)
58

Ok

PRINT FIX(-58.75)
-58
Ok

MICROSOFT BASIC FUNCTIONS

3.13 FRE

Format FRE(O)
FRE(UU)

Page 3-8

Action Arguments to FRE are dummy
returns the number of bytes in
used by Microsoft BASIC.

arguments. FRE
memory not being

FRE (U U) forces
returning the
patient: garbage
minutes.

a garbage collection before
number of free bytes. Be
collection may take 1 to 1-1/2

Microsoft BASIC will
collection until all
up. Therefore, using
result in shorter
collection.

not initiate garbage
free memory has been used

FRE(U") periodically will
delays for each garbage

Example

3.14 HEX$

PRINT FRE(O)
14542

Ok

Format HEX$(X)

Action Returns a
hexadecimal
rounded to
evaluated.

string which represents
value of the decimal argument.

an integer before HEX$(X)

the
X is

is

Example 10 INPUT X
20 A$=HEX$ (X)
30 PRINT X "DECIMAL IS U A$ U HEXADECIMAL u

RUN
? 32

32 DECIMAL IS 20 HEXADECIMAL
Ok

See the OCT$ function, Section 3.27, for details
on octal conversion.

MICROSOFT BASIC FUNCTIONS

3.15 INKEY$

Format INKEY$

Page 3-9

Action Returns either a one-character string containing
a character read from the terminal or a null
string if no character is pending at the
terminal. No characters will be echoed. All
characters are passed through to the program
except for Control-C, which terminates the
program. (With Microsoft BASIC Compiler,
Control-C is also passed through to the
program.)

)

Example

3.16 INP

Format

1000 'TIMED INPUT SUBROUTINE
1010 RESPONSE$=""
1020 FOR 1%=1 TO TIMELIMIT%
1030 A$=INKEY$: IF LEN(A$)=O THEN 1060
1040 IF ASC(A$)=13 THEN TIMEOUT%=O : RETURN
1050 RESPONSE$=RESPONSE$+A$
1060 NEXT 1%
1070 TIMEOUT%=l : RETURN

INP (I)

Action Returns the
the range
function to

byte read from port I. I must be in
o to 255. INP is the complementary
the OUT statement, Section 2.47.

)

Example 100 A=INP(255)

MICROSOFT BASIC FUNCTIONS

3.17 INPUT$

Format INPUT$(X[,[#]Y])

Page 3-10

Action Returns a string of X characters, read from the
terminal or from file number Y. If the terminal
is used for input, no characters will be echoed.
All control characters are passed through except
Control-C, which is used to interrupt the
execution of the INPUT$ function.

Example 1

Example 2

5 'LIST THE CONTENTS OF A SEQUENTIAL FILE IN
HEXADECIMAL
100PEN"I",1,"DATA"
20 IF EOF(l) THEN 50
30 PRINT HEX$(ASC(INPUT$(l,#l)));
40 GOTO 20
50 PRINT
60 END

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
no X$=INPUT$ (1)
120 IF X$="P" THEN 500
130 IF X$="S" THEN 700 ELSE 100)

)

MICROSOFT BASIC FUNCTIONS

3.18 INSTR

Format INSTR ([I, 1X$, Y$)

Page 3-11

Action Searches for the first occurrence of string Y$
in X$, and returns the position at which the
match is found. Optional offset I sets the
position for starting the search. I must be in
the range 1 to 255. If I is greater than the
number of characters in X$ (LEN(X$», or if X$
is null or Y$ cannot be found, INSTR returns O.
If Y$ is null, INSTR returns I or 1. X$ and Y$
may be string variables, string expressions, or
string literals.

)

)

Example

Note

10 X$="ABCDEB"
20 Y$="B"
30 PRINT INSTR(X$,Y$) ;INSTR(4,X$,Y$)
RUN

2 6
Ok

If I=O is specified, the "Illegal function call"
error message will be returned.

MICROSOFT BASIC FUNCTIONS

3.19 INT

Forma t INT (X)

Action Returns the largest integer <=X.

Page 3-12

Examples PRINT INT(99.89)
99

Ok

PRINT INT(-12.11)
-13
Ok

See the CINT and FIX
3.12, respectively,
values.

functions, Sections 3.6 and
which also return integer

3.20 LEFT$

Format LEFT$(X$,I)

Action Returns a string comprising the leftmost I
characters of X$. I must be in the range 0 to
255. If I is greater than the number of
characters in X$ (LEN (X$), the en tire str ing
(X$) will be returned. If 1=0, the null string
(length zero) is returned.

Example 10 A$="BASIC"
20 B$=LEFT$(A$,5)
30 PRINT B$
BASIC
Ok

Also see the MID$ and RIGHT$ functions, Sections
3.25 and 3.30, respectively.

)

MICROSOFT BASIC FUNCTIONS

3.21 LEN

Format LEN (X$)

Page 3-13

Action Returns the number of characters in X$.
Nonprinting characters and blanks are counted.

Example

3.22 LOC

10 X$=" PORTLAND, OREGON"
20 PRINT LEN (X$)

16
Ok

Format LOC«file number»

where <file number> is the number under which
the file was OPENed.

)

)

Action

Example

With random disk files, LOC returns the record
number just read or written from a GET or PUT
statement. If the file was opened but no disk
I/O has been performed yet, LOC returns a O.
With sequential files, LOC returns the number of
sectors (128-byte blocks) read from or written
to the file since it was OPENed.

200 IF LOC(1»50 THEN STOP

MICROSOFT BASIC FUNCTIONS

3.23 LOG

Format LOG (X)

Page 3-14

Action

Example

3.24 LPOS

Returns the natural logarithm of X. X must be
greater than zero.

PRINT LOG (45/7)
1.86075

Ok

Format LPOS(X)

Action Returns the current position of the line printer
print head within the line printer's buffer.
Does not necessarily give the physical position
of the print head. X is a dummy argument.

Example 100 IF LPOS(X»60 THEN LPRINT CHR$(13)

)

MICROSOFT BASIC FUNCTIONS

3.25 MID$

Format MID$(X$,I[,J))

Page 3-15

)

)

Action

Example

Returns a string of length J characters from X$,
beginning with the Ith character. I and J must
be in the range 1 to 255. If J is omitted or if
there are fewer than J characters to the right
of the Ith character, all rightmost characters
beginning with the Ith character are returned.
If I is greater than the number of characters in
X$ (LEN(X$)), MID$ returns a null string.

LIST
10 A$="GOOD "
20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,9,7)
Ok
RUN
GOOD EVEN ING
Ok

Also see the LEFT$ and RIGHT$ functions,
Sections 3.20 and 3.30, respectively.

If I=O is spes: if ied, the "Illegal function call"
error message will be returned.

MICROSOFT BASIC FUNCTIONS

3.26 MKI$, MKS$, MKD$

Format MKI$«integer expression»
MKS$«single precision expression»
MKD$«double precision expression»

Page 3-16

Action Convert numeric values to string values. Any
numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKI$ converts an integer
to a 2-byte string. MKS$ converts a single
precision number to a 4-byte string. MKD$
converts a double precision number to an 8-byte
s tr il'\g .

Example 90 AMT= (K+T)
100 FIELD *1,8 AS D$,20 AS N$
110 LSET D$=MKS$(AMT)
120 LSET N$=A$
130 PUT U

See also "CVI, CVS,
"Microsoft BASIC Disk
BASIC User's Guide.

CVD,I1

I/O, "
Section 3.9 and

in the Microsoft

MICROSOFT BASIC FUNCTIONS

3.27 OCT$

Format OCT$(X}

Page 3-17

Action

Example

3.28 PEEK

Returns a string which represents the octal
value of the decimal argument. X is rounded to
an integer before OCT$(X) is evaluated.

PRINT OCT$ (24)
30

Ok

See the HEX$ function, Section 3.14, for details
on hexadecimal conversion.

Format PEEK(I}

)

.J

Action

Remarks

Example

Returns the byte read from the indicated memory
location (I).

The returned value is an integer in the range 0
to 255. I must be in the range -32768 to 65535.
(For the interpretation of a negative value of
I, see "VARPTR," Section 3.43.)

PEEK is the complementary function of the POKE
sta temen t.

A=PEEK (&H5AOO)

MICROSOFT BASIC FUNCTIONS

3.29 POS

Format POS(I)

Page 3-18

Action Returns the current cursor position. The
leftmost position is 1. X is a dummy argument.

Example IF POS(X»60 THEN PRINT CHR$(13)

Also see the LPOS function, Section 3.24.

3.30 RIGHT$

Format RIGHT$(X$,I)

Action Returns the rightmost I characters of string X$.
If I is equal to the number of characters in X$
(LEN(X$)), returns X$. If I=O, the null string
(length zero) is returned.

Example 10 A$="DISK BASIC"
20 PRINT RIGHT$(A$,5)
~N

BASIC
Ok

Also see the LEFT$ and MID$ functions, Sections
3.20 and 3.25, respectively.

)

MICROSOFT BASIC FUNCTIONS

3.31 RND

Forma t RND [(X) 1

Page 3-19

Action Returns a random number between 0 and 1. The
same sequence of random numbers is generated
each time the program is RUN unless the random
number generator is reseeded (see "RANDOMIZE,"
section 2.53). However, X<O always restarts the
same sequence for any given X.

X>O or
number
number

X omitted generates the next random
in the sequence. X=O repeats the last

generated.

Example

Note

)

3.32 SGN

Format

Action

. Example

)

10 FOR I=l TO 5
20 PRINT INT(RND*lOO);
30 NEXT
RUN

24 30 31 51 5
Ok

The values produced by the RND function
may vary with different implementations of
Microsoft BASIC.

SGN (X)

If X>O, SGN(X) returns 1.
If X=O, SGN(X) returns O.
If X<O, SGN(X) returns -1.

ON SGN(X)+2 GOTO 100,200,300

branches to 100 if X is negative, 200 if X is 0,
and 300 if X is positive.

MICROSOFT BASIC FUNCTIONS

3.33 SIN

Format SIN (X)

Page 3- 20

Action

Example

Returns the sine of X in
calculated in
COS(X)=SIN(X+3.14159/2) .

PRINT SIN(1.5)
.997495

Ok

radians.
single

SIN (X) is
prec is ion.

See also the COS (X) function, Section 3.7.

3.34 SPACE$

Format SPACE$(X)

Action Returns a string of spaces of length X. The
expression X is rounded to an integer and must
be in the range 0 to 255.

Example 10 FOR I=l TO 5
20 X$=SPACE$(I)
30 PRINT X$; I
40 NEXT I
RUN

1
2

3
4

5
Ok

Also see the SPC function, Section 3.35.

)

)

MICROSOFT BASIC FUNCTIONS

3.35 SPC

Format SPC(I)

Page 3-21

Action Prints I blanks on the terminal. SPC may only
be used with PRINT and LPRINT statements. I
must be in the range 0 to 255. A'; I is assumed
to follow the SPC(I) command.

Example

3.36 SQR

PRINT "OVER" SPC (15) "THERE"
OVER THERE
Ok

Also see the SPACES function, Section 3.34.

Format SQR(X)

Action Returns the square root of X. X must be >=0.

)

)

Example 10 FOR X=lO
20 PRINT X,
30 NEXT
RUN

10
15
20
25

Ok

TO 25 STEP 5
SQR (X)

3.16228
3.87298
4.47214
5

MICROSOFT BASIC FUNCTIONS

3.37 STR$

Format STR$(X)

Page 3-22

Action

Example

Returns a string representation of the value of
X.

5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER"; N
20 ON LEN(STR$(N) GOSUB 30,100,200,300,400,500

Also see the VAL function, Section 3.42.

3.38 STRING$

Formats

Action

Example

STRING$ (I ,J)
STRING$ (I ,X$)

Returns a string of length I whose characters
all have ASCII code J or the first character of
X$.

10 X$=STRING$ (10 ,45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN
----------MONTHLY REPORT---------­
Ok

)

MICROSOFT BASIC FUNCTIONS

3.39 TAB

Format TAB(Il

Page 3-23

Action Spaces to position I on the terminal. If the
current print position is already beyond space
I, TAB goes to that position on the next line.
Space 1 is the leftmost position, and the
rightmost position is the width minus one. I
must be in the range 1 to 255. TAB may only be
used in PRINT and LPRINT statements.

Example 10 PRINT "NAJ1E" TAB (25 1 "AMOUNT" : PRINT
20 READ A$,B$
30 PRINT A$ TAB(25l B$
40 DATA "G. T. JONES", "$25 .00"
RUN
NAME AMOUNT

)
3.40 TAN

Format

G. T. JONES
Ok

TAN (X)

$25.00

)

Action

Example

Returns the tangent of X in radians. TAN (Xl is
calculated in single precision. If TAN
overflows, the "Overflow" error message is
displayed, machine infinity with the appropriate
sign is supplied as the result, and execution
continues.

10 Y=Q*TAN(Xl/2

MICROSOFT BASIC FUNCTIONS

3.41 USR

Format USR[<digit>l (X)

Page 3-24

Action Calls the user's assembly language subroutine
with the argument X. <digit> is in the range 0
to 9 and corresponds to the digit supplied with
the DEF USR statement for that routine. If
<digit> is omitted, USRO is assumed. See
"Assembly Language Subroutines," in the
Microsoft BASIC User's Guide.

Format VAL(X$)

Example

3.42 VAL

Action

40 B=T*SIN (Y)
50 C=USR (B/2)
60 D=USR(B/3)

Returns the numerical value of string X$.
VAL function also strips leading blanks,
and linefeeds from the argument string.
example,

VAL (" -3")

returns -3.

The
tabs,

For

)

Example 10 READ NAME$,CITY$,STATE$,ZIP$
20 IF VAL(ZIP$)<90000 OR VAL(ZIP$»96699

THEN PRINT NAME$ TAB(25) "OUT OF STATE"
30 IF VAL(ZIP$»=90801 AND VAL(ZIP$)<=90815

THEN PRINT NAME$ TAB (25) "LONG BEACH"

See the STR$ function, Section 3.37, for details
on numeric-to-string conversion.

)

MICROSOFT BASIC FUNCTIONS

3.43 VARPTR

Page 3-25

)

)

Format 1

Format 2

Action

Note

Example

VARPTR«variable name»

VARPTR{#<file number»

Format 1

Returns the address of the first byte of data
identified with <variable name>. A value must
be assigned to <variable name> prior to
execution of VARPTR. Otherwise an "Illegal
function call" error results. Any type variable
name may be used (numeric, string, array). For
string variables, the address of the first byte
of the string descriptor is returned (see "BASIC
Assembly Language Subroutines," in the Microsoft
BASIC User's Guide for discussion of the strlng
descriptor). The address returned will be an
integer in the range 32767 to -32768. If a
negative address is returned, add it to 65536 to
obtain the actual address.

VARPTR is usually used to obtain the address of
a variable or array so it may be passed to an
assembly language subroutine. A function call
of the form VARPTR(A{O) is usually specified
when passing an array, so that the
lowest-addressed element of the array is
re turned.

All simple variables should be assigned before
calling VAR?TR for an array, because the
addresses of the arrays change whenever a new
simple variable is assigned.

Format 2

For sequential files, returns the starting
address of the disk I/O buffer assigned to <file
number>. For random files, returns the address
of the FIELD buffer assigned to <file number>.

100 X=USR{VARPTR{Y»)

)

)

)

)

MICROSOFT BASIC FUNCTIONS

Appendices

A Error Codes and Error Messages
B Mathematical Functions
C ASCII Character Codes
D Microsoft BASIC Reserved Words

)

)

Code

NF

APPENDIX A

Error Codes and Error Messages

Number Message

I NEXT without FOR

SN 2

A variable in a NEXT
correspond to any
unmatched FOR statement

Syntax error

statement
previously
variable.

does not
executed,

)

RG 3

A line is encountered that contains some
incorrect sequence of characters (such as
unmatched parenthesis, misspelled command or
statement, incorrect punctuation, etc.).
Microsoft BASIC automatically enters edit
mode at the line that caused the error.

Return without GOSUB

00 4

A RETURN statement is encountered for
there is no previous, unmatched
statement.

Out of data

which
GOSUB

FC 5

A READ statement is executed when there are
no DATA statements with unread data remaining
in the program.

Illegal function call

A parameter that is out of range is passed to
a math or string function. An FC error may
also occur as the result of:

)

1. A negative
subscript.

or unre asonably large

OV

OM

UL

BS

6

7

8

9

Page A-2

2. A negative or zero argument with LOG.

3. A negative argument to SQR.

4. A negative mantissa with a noninteger
exponen t.

5. A call to a USR function for which the
starting address has not yet been given.

6. An improper argument to MID$, LEFT$,
RIGHT$, INP, OUT, WAIT, PEEK, POKE, TAB,
SPC, STRING$, SPACE$, INSTR, or
ON ... GOTO.

Overflow

The result of a calculation is too large to
be represented in Microsoft BASIC number
format. If underflow occurs, the result is
zero and execution continues without an
error.

Out of memory

A program is too large, or has too many FOR
loops or GOSUBs, too many variables, or
expressions that are too complicated.

Undefined line

A nonexistent line is referenced in a GOTO,
GOSUB, IF ... THEN ..• ELSE, or DELETE statement.

Subscript out of range

An array element
subscript that
the array or
subscripts.

is referenced either with
is outside the dimensions

with the wrong number

a
of
of

DD

/0

10

11

Redimensioned array

Two DIM statements are given for the same
array; or, a DIM statement is given for an
array after the default dimension of 10 has
been established for that array.

Division by zero

A division by zero is encountered in an
expression; or, the operation of involution
results in zero being raised to a negative
power. Machine infinity with the sign of the
numerator is supplied ~s the result of the

)

ID 12

division, or positive
supplied as the result
execution continues.

Illegal direct

Page A-3

machine infinity is
of the involution, and

)

TM

as

LS

ST

13

14

15

16

A statement that is illegal in direct mode is
entered as a direct mode command.

Type mismatch

A string variable name is assigned a numeric
value or vice versa; a function that expects
a numeric argument is given a string argument
or vice versa.

Out of string space

String variables have caused BASIC to exceed
the amount of free memory remaining.
Microsoft BASIC will allocate string space
dynamically, until it runs out of memory.

String too long

An attempt is made to create a string more
than 255 characters long.

String formula too complex

CN 17

A string expression is
complex. The expression
into smaller expressions.

Can't continue

too long or too
should be broken

UF 18

An attempt is made to continue a program
that:

1. Has halted due to an error.

2. Has been modified during a break in
execution.

3. Does not exist.

Undefined user function

A USR function is called before the function
definition (DEF statement) is given.

)

19 No RESUME

An error handling routine is entered but
contains no RESUME statement.

Page A-4

20 RESUME without error

A RESUME statement is encountered before an
error handling routine is entered.

21 Unprintable error

An error message is not available for the
error condition which exists.

22 Missing operand

An expression contains an operator with no
operand following it.

23 Line buffer overflow

An attempt has been made to input a line that
has too many characters.

26 FOR without NEXT

A FOR statement was encountered without a
matching NEXT.

29 WHILE without WEND

A WHILE statement does not have a matching
WEND.

30 WEND without WHILE

A WEND statement was encountered without a
matching WHILE.

Disk Errors

50 Field overflow

A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a random file.

51 Internal error

)

An internal malfunction
Microsoft BASIC. Report
conditions under which the

52 Bad file number

has occurred in
to Microsoft the

message appeared.

A statement or command references a file with
a file number that is not OPEN or is out of
the range of file numbers specified at

)

53

Page A-5

initialization.

File not found

A LOAD, KILL, or OPEN statement references a
file that does not exist on the current disk.

54 Bad file mode

An attempt is made to use PUT, GET, or LOF
with a sequential file, to LOAD a random
file, or to execute an OPEN statement with a
file mode other than I, 0, or R.

55 File already open

A sequential output mode OPEN statement is
issued for a file that is already open; or a
KILL statement is given for a file that is
open.

57 Disk I/O error

)

)

An I/O error occurred on a disk
operation. It is a fatal error; i.e.,
operating system cannot recover from
error.

I/O
ilie
ilie

Page A-6

58 File already exists

The filename specified in a NAME statement is
iden tical to a filename already in use on the
disk.

61 Disk full

All disk storage space is in use.

62 Input past end

An INPUT statement
data in the file
null (empty) file.
the EOF function to

63 Bad record number

is executed after all the
has been INPUT, or for a

To avoid this error, use
detect the end-of-file.

In a PUT or
is either
(32 ,767) or

GET statement, the record
greater than the maximum
equal to zero.

number
allowed

64 Bad file name

An illegal form is used for the filename with
a LOAD, SAVE, KILL, or OPEN statement (e.g.,
a filename with too many characters).

66 Direct statement in file

)

A direct statement is
LOADing an ASCII-format
terminated.

67 Too many files

encountered while
file. The LOAD is

An attempt is made to create a new file
(using SAVE or OPEN) when all 255 directory
entries are full.

)

APPENDIX B

Mathematical Functions

Derived Functions

Functions that are not intrinsic to Microsoft BASIC may be
calculated as follows.

Function Microsoft BASIC Equivalent

)

)

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC
SINE
INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECA."lT
INVERSE HYPERBOLIC
COSECANT
INVERSE HYPERBOLIC
COTANGENT

SEC (X) =l/COS (X)
CSC (X) =l/SIN (X)
COT(X)=l/TAN(X)
ARCSIN (X)=ATN(X/SQR(-X*X+l»
ARCCOS(X)=-ATN(X/SQR(-X*X+l»+l.5708
ARCSEC(X)=ATN(X/SQR(X*X-l»

+SGN(SGN(X)-l)*l.5708
ARCCSC(X)=ATN(X/SQR(X*X-l»

+(SGN(X)-l)*l.5708
ARCCOT(X)=ATN(X)+l.5708
SINH(X)=(EXP(X)-EXP(-X»/2
COSH(X)=(EXP(X)+EXP(-X»/2

TANH(X)=(EXP(X)-EXP(-X»/
(EXP(X)+EXP(-X))

SECH(X)=2/(EXP(X)+EXP(-X»
CSCH(X)=2/(EXP(X)-EXP(-X»

COTH(X)=(EXP(X)+EXP(-X»/
(EXP(X)-EXP(-X»

ARCSINH(X)=LOG(X+SQR(X*X+l»

ARCCOSH(X)=LOG(X+SQR(X*X-l)

ARCTANH(X)=LOG«l+X)/(l-X»/2

~~CSECH(X)=LOG«SQR(-X*X~l)+l)/X)

ARCCSCH(X)=LOG«SGN(X)*SQR(X*X+l)+l)/X)

ARCCOTH(X)=LOG«X+l)/(X-l»/2

)

)

APPENDIX C

ASCII Character Codes

Dec Hex CHR Dec Hex CHR Dec Hex
CHR

000 OOH NUL 043 2BH + 086 56H
V

001 OlH SOH 044 2CH 087 57H
W

002 02H STX 045 2DH 088 58H
X

003 03H ETX 046 2EH 089 59H
y

004 04H EaT 047 2FH I 090 5AH

) Z
005 OSH ENQ 048 30H 0 091 5BH

[
006 06H ACK 049 31H 1 092 5CH

\
007 07H BEL 050 32H 2 093 SOH

1
008 08H BS 051 33H 3 094 5EH

A

009 09H HT 052 34H 4 095 5FH

010 OAB LF 053 35H 5 096 60B

011 OBB VT 054 36H 6 097 61H
a

012 OCH FF 055 37H 7 098 62H
b

013 ODH CR 056 38H 8 099 63H
c

014 OEH SO 057 39H 9 100 64H
d

015 OFH SI 058 3AB 101 65H
e

016 10H DLE 059 3BH 102 66B
f

017 llH DCl 060 3CH < 103 67H

) g
018 12H DC2 061 3DH = 104 68H

h

019 l3H DC3 062 3EH > 105 69H
i

020 14H DC4 063 3FH ? 106 6AH
j

021 15H NAK 064 40H @ 107 6BH
k

022 16H SYN 065 41H A lOB 6CH
1

023 17H ETB 066 42H B 109 6DH
m

024 1BH CAN 067 43H C 110 6EH
n

025 19H EM 068 44H D 111 6FH
0

026 1AH SUB 069 45H E 112 70H
P

027 1BH ESCAPE 070 46H F 113 7lH
q

028 1CH FS 071 47H G 114 72H
r

029 IDH GS 072 48H H 115 73H
s

030 1EH RS 073 49H I 116 74H
t

031 1FH US 074 4AH J 117 75H
u

032 20H SPACE 075 4BH K 118 76H)v
033 21H 076 4CH L 119 77H

w
034 22H n 077 4DH M 120 78H

x
035 23H 4! 078 4EH N 121 79H

Y
036 24H $ 079 4FH a 122 7AH

z
03·8 26H & 0.81 51H Q 124 7CH

I
039 27H 082 52H R 125 7DH

)
040 28H 083 53H S 126 7EH

041 29H 084 54H T 127 7FH
DEL

042 2AH * 085 55H U

Dec=decima1, Hex=hexadecima1 (Hl , CHR=character,
LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout

)

APPENDIX D

MICROSOFT BASIC RESERVED WORDS

The following is a list of reserved words used in Microsoft
BASIC.

ABS ER.ll,.SE LOF RIGHT$
AND ERL LOG RND
ASC ERR LPOS RSET
ATN ERROR LPRINT RUN
AUTO END LSET SAVE
CALL EXP MERGE SBN
CDBL FIELD MID$ SIN

) CHAIN FILES MKD SPACE
CHR$ FIX MKI$ SPC
CINT FOR M.T<S$ SQR
CLEAR FRE MOD STOP
CLOSE GET NA."lE STR$
COMl'ION GOSUB NEW STRING$
CONT HEX$ NOT SWAP
COS IF OCT$ SYSTEl-1
CSNG nIP ON TAB
CVD INP OPENON TAN
CVI INPUT OPTION THEN
CVS INKEY$ OR TO
DATA INPUTi,' PEEK TROFF
DEFDBL INPUT$ POKE TRON
DEFINT INSTR POS
DEFSNG INT PPRINT USR
DEFSTR KILL PRINT;1 USING VAL
DEF FN LEFT$ PUT VARPTR
DEF USR LEN R.ll,.NDOMIZE WAIT
DELEI'E LEI' READ WEND
DIM LINE REM WHILE
EDIT LIST RENIDI WRITE
ELSE LLIST RESET WRITEi,'
END LOAD RESTORE XOR
EOF LOC RESUME

)

)

)

INDEX

ABS 3-2
Addition 1-10
ALL 2-4, 2-10
Arctangent 3-3
Array variables 1-7, 2-10, 2-21
Arrays · · · 1-7, 2-8, 2-13, 2-27
ASC · · · · 3-2
ASCII codes 3-2, 3-4
ASCII format 2-5, 2-53, 2-81
Assembly language subroutines 2-3, 2-19, 2-63, 3-24 to 3-25
ATN · · · · · · . 3-3
AUTO · · · · · · . 1-2, 2-2

Boolean operators 1-13

CALL · · · · · · 2-3
Carriage return 1-3, 2-40, 2-45 to 2-46,

2-87 to 2-89
Cassette tape 2-8, 2-13
CDBL · · · · · 3-3
CHAIN · · · 2-4, 2-10

) Character set 1-3
CHR$ · 3-4
CINT · 3-4
CLE.l>,R 2-7
CLOAD 2-8
CLOAD* 2-8
CLOAD? 2-8
CLOSE 2-9
Command level 1-1
COMMON · · · · 2-4, 2-10
Concatenation 1-16
Constants 1-4
CONT · · · · · 2-12, 2-45
Control characters 1-4
Control-A 2-24
COS 3-5
CSAVE 2-13
CSAVE* 2-13
CSNG 3- 5
CVD 3-6
CVI 3-6
CVS 3-6

)

DATi'.
DEF FN
DEF USR
DEFDBL
DEFINT
DEFSNG

2-15, 2-78
2-16
2-19, 3-24
1-7, 2-18
1-7, 2-18
1-7, 2-18

DEFSTR
DELETE
DIM
Direct mode
Division ..
Double precision

EDIT . . .
Edit mode
END
EOF
ERASE
ERL
ERR
ERROR
Error codes
Error handling
Error messages
Error trapping
Escape . • . •
EXP •
Exponentiation
Expressions

FIELD
FIX
FOR ...NEXT
FRE . . .
Functions

GET
GOSUB
GOTO

HEX$
Hexadecimal

IF ..• GOTO
IF •.. THEN
IF •.. THEN .•. ELSe
IN •
Indirect mode
INKEY$
INP
INPUT
INPUT#
INPUT$
INSTR
INT
Integer
Integer division
ISIS-II

KILL . •

1-7, 2-18
1-2, 2-4, 2-20
2-21
1-1, 2-38, 2-58
1-10
1-6, 2-18, 2-64, 3-3

1-2, 2-22
1-4, 2-22
2-9, 2-12, 2-26, 2-36
3-6
2-27
2-28
2-28
2-29
1-17, 2-28 to 2-29, A-l
2-28, 2-58
1-17, A-l
2-29, 2-79
1-3, 2-22
3-7
1-10, 1-12
1-10

2-31
3-7
2-33
3-8
1-15, 2-16, 3-1, B-1

2-31, 2-35
2-36
2-36 to 2-37

3-8
1-5, 3-8

2-38
2-28, 2-38
2-38
3-12
1-1
3-9
3-9
2-12, 2-31, 2-40
2-42
3-10
3-11
3-7
3-4, 3-7, 3-12
1-11
2-80

2-43

)

)

)

LEFT$
LEN
LET
Line feed

LINE INPUT
LINE INPUT#
Line numbers
Line printer
Lines
LIST •
LLIST
LOAD
LOC
LOG
Logical operators
Loops
LPOS . • • •
LPRINT . • •
LPRINT USING
LSET •

MERGE
MID$
MKD$
MKI$
HKS$
MOD OPERATOR
Modulus arithmetic
Multiplication

NA!-lE • •
Negation
NEW
NULL ••
Numeric constants
Numeric variables

OCT$ • • • • •
Oc tal • • • •
ON ERROR GOTO
ON •.. GOSUB
ON ... GOTO
OPEN . • •
Operator s
OPTION BASE
OUT
Overflow
Overlay

Paper tape
PEEK
POKE .
pas
PRINT
PRINT USING
PRINT# . • .
PRINT# USING

3-12
3-13
2-31, 2-44
1-2, 2-40, 2-45 to 2-46,
2-88 to 2-89
2-45
2-46
1-1 to 1-2, 2-2, 2-77
2-49, 2-51, 2-87, 3-14
1-1
1-2, 2-47
2-49
2-50, 2-81
3-13
3-14
1-13
2-33, 2-86
2-87, 3-14
2-51, 2-87
2-51
2-52

2-4, 2-53
2-54, 3-15
3-16
3-16
3-16
1-11
1-11
1-10

2-55
1-10
2-9, 2-56
2-57
1-4
1-7

3-17
1-5,3-17
2-58
2-59
2-59
2-9, 2-31, 2-60
1-10, 1-12 to 1-13, 1-15 to 1-16
2-61
2-62
1-12, 3-7, 3-23
2-4

2-57
2-63, 3-17
2-63, 3-17
2-87, 3-18
2-64
2-66
2-70
2-70

Protected files
PUT •••

2-81
2-31, 2-72

2-43,-2-52,
3-13, 3-16

2-35,
2-72,
3-19
3-19
2-78

2-31,
2-60,
2-73,
2-73,
2-74,
1-12
2-76
2-5, 2-28, 2-77
D-l
2-78
2-79
2-36
3-18
2-73, 3-19
2-52
1-3, 1-16, 2-23
2-80 to 2-81

Randan files

Random numbers
RANDOMIZE
READ • • •
Relational operators
REM
RENUM
Reserved words
RESTORE
RESUME
RETURN
RIGHT$
RND
RSET •
Rubout
RUN

SAVE
Sequential files

SGN .•.••
SIN • • •
Single preclslon
Space requirements for
SPACE$
SPC
SQR
STOP
STR$
String constants
Str ing functions

Str ing opera tor s
Str ing spac e • •
String variables
STRING$
Subroutines
Subscripts •
Subtraction
SWAP

2-50, 2-80 to 2-81
2-42 to 2-43, 2-46, 2-60,
2-70, 2-89, 3-6, 3-13
3-19
3-20
1-6, 2-18, 2-64, 3-5

variables 1-8
3-20
3-21
3-21
2-12, 2-26, 2-36, 2-82
3-22
1-4
3-6, 3-11 to 3-13, 3-15,
3-18, 3-22, 3-24
1-16
2-7, 3-8
1-7, 2-18, 2-45 to 2-46
3-22
2-3, 2-36, 2-59
1-8, 2-21, 2-61
1-10
2-83

)

TAB
Tab
TAN
TROFF
TRON

USR

VAL
Variables

3-23
1-3 to 1-4
3-23
2-84
2-84

2-19, 3-24

3-24)
1-6

)

)

VARPTR

WAIT .
WEND.
WHILE
WIDTH
WIDTH LPRINT
WRITE .
WRITE# . • •

3-25

2-85
2-86
2-86
2-87
2-87
2-88
2-89

	Table of Contents

	1. General Information

	2. BASIC Commands and Statements

	3. BASIC Functions

	A. Error Codes and Error Messages

	B. Mathematical Functions

	C. ASCII Character Codes

	D. Reserved Words

	Index

