
SYSTEM
PROGRAMMER'S

GUIDE
for the

TRS-80
using

Montezuma Micro CP/M* 2.2
\Zcfc 1*01 stTi O OirV t?roHJIl <£i***JL

4

Model 4/4P

TABLE OF CONTENTS

1. INTRODUCTION 1
2. THE SYSTEM PARAMETER BLOCK 3
3. I/O USING THE IOBYTE ..5
4. THE KEYBOARD DRIVER 9
5. THE VIDEO DISPLAY DRIVER11
6. THE PARALLEL PRINTER DRIVER 13
7. THE SERIAL PORT DRIVER 16
8. THE MEMORY DISK DRIVE 17
9. DISK I/O 19

9.1. The Floppy Disk Driver 19
9.2. DPB Extensions 19
9.3. DCB Definitions . 21
9.4. Using the Disk Driver 22
9.5. EXBIOS - Extending the BIOS 23
9.6. The Hard Disk Driver 23

10. CP/M BOOTS 25
10.1. The Cold Boot 25
10.2. The Warm Boot 25

11. PITFALLS AND TRAPS .27
11.1. INTERRUPTS : 27
11.2. FEATURES UNIQUE TO THE Z80 27
11.3. RAM USAGE 28

12. INDEX 29
13. THE LISTING 31

Montezuma Micro CP/M" System Programmer's Manual

1. INTRODUCTION

All of the information in this manual is copyrighted by Montezuma Micro, including the source code
listings. The purpose of this manual is to provide you with the information necessary to modify the
BIOS of your own copy of CP/M". Much like the service manual for a car, this document will show
you how the BIOS works, and how you can use your own options with it. It will NOT teach you how
to use CP/M and it will NOT teach you how to write assembly language programs for use with CP/
M. If you bought it for that purpose you will be frustrated and confused. Let us state from the outset
that this manual is for experienced programmers! We absolutely cannot and will not provide any
telephone or written support for any modifications made to CP/M. In short, you are ON YOUR OWN
and if the information you need can't be found in this manual it simply is not available from us.

Furthermore this manual is applicable to Montezuma Micro CP/M BIOS version 2.2x, where x is the
patch level. When future versions of our CP/M are released the listings and possibly some of the
information will no longer be valid. We make no promises of. any kind as to the availability of a similar
manual for future versions, and offer no "upgrades" of any kind on this document.

The BIOS listing which accompanies this manual was created using the 2500 A.D. Z80 Macro As
sembler. This assembler uses Z80 mnemonics, unlike the ASM assembler provided with CP/M which
uses only 8080 codes. Without apology the author admits to a strong bias for the Zilog Z80 mnemonics,
and a strong distaste for the Intel 8080 mnemonics. Only Zilog mnemonics will be used in this manual.
The 2500 A.D. assembler is available from Montezuma Micro, and is highly recommended for Z80
programming.

Well, now that we have the preliminaries out of the way let's proceed!

Copyright 1985 by Montezuma Micro/JBO - Page 1

Montezuma Micro CP/M' System Programmer's Manual

2. THE SYSTEM PARAMETER BLOCK

MOVCPM is a very handy utility which makes it possible to change the size of CP/M so as to reserve
space a the top of memory. Unfortunately this creates a major headache for the programmer who
wants to write utilities to run under CP/M, since it is not possible to know exactly where in memory
each individual copy of CP/M resides. Furthermore some parts of the BIOS may be relocated in the
event of an update, necessitating the up date of all related utility programs.

To solve these problems we have collected all of the uneed to know" information into a section of
memory called the System Parameter Block (SPB). The relative location of this block within the
BIOS is guaranteed not to change from one version of the BIOS to the next. Further, any additions
to it will be made to the end so that relative offsets within the SPB will be good in future versions.

Location of the SPB within CP/M is very simple. It is always 48 bytes (0030H) past the Warm Boot
vector in the BIOS. Since the address of the Warm Boot vector always follows the JMP instruction
at memory location 0 the SPB can be found using this simple routine:

i
LD HL,(0001H) ;Get Warm Boot vector address
LD BC,0030H ;Set up offset to SPB
ADD HL,BC ;HL now points to SPB

The remainder of this chapter will deal with the various fields of the SPB. All offsets are given in
decimal. Conversion to hex is left as an exercise to the reader.

Offset 0
The first field of the SPB is a single byte which contains the standard system IOBYTE value set by
the CONFIG utility. At each warm boot the contents of this byte are copied to location 3.

Offset 1
Acting as a flag, the contents of this byte tell the BIOS whether to display the CP/M banner after
booting. Any non-zero value will cause the banner to be displayed, while zero suppresses it.

Offset 2
In this byte is stored the total number of disk drives, as set by CONFIG. It is never used by the BIOS,
but may be of use to external utilities.

Offset 3
The current version of the CP/M BIOS is stored here as two BCD digits packed in a single byte. The
first digit is the release number, which changes only upon a complete rewrite. The second is the
revision level, which changes upon reassembly of the BIOS. In a fit of optimism the BIOS programmer
set this byte to 20H, meaning 2.00. By the time release 2 was ready the revision level had crept up to
2, but the byte was left at 20H. Thus a value of 20H in this byte should be treated as being synonymous
with 22H.

Offset 4
Access to disk drives in the BIOS is done using a data structure known as the Disk Parameter Header.
It is discussed fully'in the manual provided with your CP/M. To allow for the maximum 16 drives
possible within CP/M (A: through P:) we have built a 32 byte table of DPH addresses within the
BIOS. Whenever a drive is selected via BIOS call XXlBH its corresponding address in this table is

Copyright 1985 by Montezuma Micro/JBO - Page 3

Montezuma Micro CP/M' System Programmer's Manual

returned. Unused entries are set to OOOOH. The two byte address contained in this offset of the SPB
is the actual base address of the DPH table, i.e. the address of the address of the DPH for A:. By using
relative offsets to this address utility programs may add logical drives to the DPH table. Simply store
the address of the DPH of your logical drive at the corresponding entry in the table. Use extreme
caution with drive M:, however. The BIOS disk read/write routines test for drive M: and transfer
control to special driver coding for that case. Storing the DPH for any other drive in the M: slot will
cause problems.

At boot time the DPH table is filled with zeroes and the slots for A:, B:, C:, and D: are filled with the
addresses of the four DPHs resident within the BIOS. If the system has 128k of RAM the DPH for
drive M: is also added to the table. When the system is booted from a hard disk a patch in the disk
boot causes this table to be overwritten with the configuration specified when the hard disk driver
was installed.

Offsets 6, 8, 10, and 12
These four offsets contain the two-byte addresses of the disk Device Control Blocks (DCB) for each
of four possible floppy disk drives 0 through 3 respectively. The disk DCB, which will be discussed in
depth in the DISK I/O section, is used to access a particular floppy drive and contains all the physical
characteristics of that drive.

Offset 14
At this offset in the SPB is a two-byte address which points to the base of a table of device driver
addresses. This table is used by the BIOS for all I/O except for disk and has been designed to simplify
the installation of custom drivers. See I/O USING THE IOB YTE for full details.

Offset 16
The base address of the Keyboard Device Control Block (DCB) is found at this offset. See THE
KEYBOARD DRIVER for information regarding the Keyboard DCB.

Offset 18
Here is the base address of the Video Display DCB. This data structure is fully explained in THE >
VIDEO DISPLA Y DRIVER . One item of interest in this DCB is the current cursor location.

Offset 20
The base address of the Parallel Printer Port DCB is stored here. For a full explanation of the DCB
see THE PARALLEL PRINTER DRIVER.

^•~ -122
: -set contains the base address of the Serial Port DCB. See THE SERIAL PORT DRIVER for
te details.

This is the end of the SPB, at least for now. Any extensions made in future versions of our CP/M
BIOS will be made starting at offset 24, thereby retaining compatibility with programs written for
earlier versions. You are encouraged to use this structure whenever you must "peek", "poke", or
otherwise farkle with the BIOS. Doing so will make your life easier and could help to remove unsightly
warts!

Page 4 - ©(p) Copyright 1985 by Montezuma Micro/JBO

Montezuma Micro CP/M" System Programmer's Manual

3. I/O USING THE IOBYTE

One of the optional features of CP/M 2.2 that we have implemented is the IOBYTE. The IOBYTE
is a set of four two-bit (literally!) fields that can be manipulated to change the assignment of real
devices (Keyboard, Serial Port, etc.) to logical devices (CONsole, Line PrinTer, etc.). By convention
it resides in memory at location 3 (0003H for hard-core hexaphiles) and is structured like this:

i <

Logical Device ---> LST: PUN: RDR: CON:
Bits Used —> 7,6 5,4 3,2 1,0

Decimal Binary ——- Physical Device ——
0 00 TTY: TTY: TTY: TTY:
i 01 CRT;: FTP: PTR: CRT:
2 10 LPT: HIM: UR1: BAT:
3 11 UL1: UP2: UR2: UCl:

The logical devices referenced above are as follows:

LSTrThe LIST device, typically used in (!I'/M for hardcopy, is output only. Usually it is assigned to
a printer.

PUNrThe PUNch device reveals the origins of CP/M, back when a paper tape reader/punch was the
norm for microcomputers. While such hardware is now relegated mainly to museums and junk yards,
we still have this output (only) device to use as we see fit.

RDRrLike PUN:, the ReaDeR device is a throwback to those golden days of Ik RAM boards and
Tiny BASIC. Use it as you wish for input (only) operations.

CON: Perhaps the most important device from an operational standpoint is the CONsole. It is the
device from which CP/M gets its commands and to which it sends its output. You must be very careful
in making assignments to this device, since mistakes can cause you to be unable to communicate with
CP/M at all!

Now let's look at the case of physical devices, as defined within our CP/M:

TTY: Another relic from the Neanderthal age of computing is the TeleTYpe. This was a large, noisy
machine consisting of a keyboard and a printer. It was able to send and receive data at the blazing
speed of 10 characters per second. We have assigned this device to the Serial Port of the Model 4,
since the original TTY was serial and you could actually connect one to this device if you really wanted
to.

• •

CRT: CRT stands for Cathode Ray Tube and as come to stand for just about apy kind of terminal
using video output. We have defined the CRT to be the Keyboard of the Model 4 on input and the
Video Display on output.

PTP:Since there is no Paper Tape Punch on the Model 4 we have assigned this device to the Video
Display. You could, of course attach a true paper tape punch to that port, but if you think about this
sort of thing often you really ought to get professional help.

Copyright 1985 by Montezuma Micrc. BO - Page 5

Montezuma Micro CP/M* System Programmer's Manual

PTRrThe Paper Tape Reader falls in the same category at the PTP. Since there (thankfully) is no
such device on the Model 4 we use the Keyboard.

LPTrThis device is the Line PrinTer, which could be either a serial or a parallel device. Since we
already have TTY: for serial output LPT: is assigned to the parallel port. It is, by nature, output only.

UP1:UP2: UP1 and UP2 are user-defined punch devices. The BIOS maps both of these devices to a
null driver which does nothing, but is never busy and will not hang up the system if used. Both of
these devices are available for user- written drivers.

UR1:UR2: Like UP1 and 2 the UR1 and UR2 drivers are user-defined, but these are reader devices.
The BIOS, as shipped, has both devices assigned to a null driver which provides only the end-of-file
character Z as input, but will not hang up the system. Both are available for use with user-written
drivers.

UL1: The UL1 device is a user-defined line printer. It is, by nature, output only and is assignable
only to the LST: logical device. Interfacing of special output devices, e.g. a plotter, can be done using
this device. As shipped this device is assigned to a null driver.

UClrUCl is the user-defined console device. If implemented it must provide both input and output
capability. Unlike other user-defined devices, this one is preassigned to the Keyboard driver for input
and the Video Display driver for output. This was done so that there would be no nasty loss of control
should the device be accidentally assigned.

BATrIn olden times when computers were slow and I/O devices were even slower it was common to
set up a "batch" of instructions for the machine, start it up, and leave for a two- week vacation. We
have implemented the BATch device faithful to its original use. When input is taken from BAT: it
actually comes from whatever is assigned to the RDR: device. Output to BAT: actually goes to the
LST: device. As you can see BAT:»is not a physical device, but merely a switch to change the assign
mentof CON:.

Now that we have seen just what devices are available, how do we go about actually installing a driver
for one? Obviously you must first write the driver. What it does it up to you, but there are some
conventions that must be followed if the driver is to work properly in CP/M. At minimum it must
provide the following four functions:

Input Status
No parameters are required. If the device has input available it should return OFFH in the A register,
otherwise return 0.

Input Data
A byte of input is read from the device and returned in the A register. If no input is available this
routine must wait until it is.

Output Data
The C register contains the byte of data to be output to the device. No value is returned to the caller
after output.

Page 6 - ©(p) Copyright 1985 by Montezuma Micro/JBO

Montezuma Micro CP/M System Programmer's Manual
i\i

Output Busy
The output device is tested for a busy condition. If it is busy a value of 0 is returned in the A register.
Ready is indicated by a return of OFFH in the A register.

Of course your device may not actually need all of the above routines, especially if it is input-only or
output-only. Unused routines should be replaced with null driver code, so as to prevent problems
should a calling routine do something stupid. A sample null devic^ driver can be found in the BIOS
listing. I

»

Installation of a driver is not difficult. First you need to find a plaice in RAM to hold the driver. If it
replaces an existing CP/M driver you may want to load it over thje existing driver. Be sure that you
don't overwrite other code if you do this! The safest method is t6 locate the driver either above or
below CP/M. To load it above CP/M use MOVCPM to create a smaller system. This is preferable to
loading it below CP/M, since that method makes the driver vulnerable to being destroyed by programs
which use all of available memory. Once you have located the driver in RAM it is necessary only to
install the addresses of the above four routines in the proper place within the Device Driver Address
Table in the BIOS. The base address of this table can be obtained from offset 14 in the System
Parameter Block (SPB) discussed previously. Each entry in this table consists of four two-byte ad
dresses arranged in the following order:

Address of Input Status routine
Address of Input Data routine
Address of Output Data routine
Address of Output Busy routine

Each device holds a particular entry in the table. The devices and their respective offsets are as follows:

Device Offset Device Offset Device Offset

TTY: 0 CRT: 8 UCl: 16
LPT: 24 UL1: 32 PTR: 40
UR1: 48 DR2: 56 PTP: 64
UP1: 72 UP2: 80

These offsets will be held constant in future versions of CP/M. It is unlikely that any new devices
will be added, but should that happen the new devices would be added after all existing ones.

Copyright 1985 by Montezuma Micro/JBO - Page 7

Montezuma Micro CP/M' System Programmer's Manual

LM '
4. THE KEYBOARD DRIVER

The console device CON: is CP/M's main source of input other than disk. Most of the time the Model
4 keyboard serves as the primary input device for CON:.

At first glance the keyboard looks like a fairly simple device to interface with. Just scan the rows and
see which key is being pressed, then return the ASCII value for that key. Unfortunately the problem
is not that simple since you have to contend with SHIFT, CTRL, rollover, repeating keys, function
keys, debounce, and a whole lot of other annoying stuff. Our methods for dealing with this chaos may
be found in the keyboard driver portion of the BIOS listing. The purpose of this section of the manual
is not to explain how the driver works, but rather to discuss the Keyboard Device Control Block
(DCB).

»

The various fields of the Keyboard DCB will be discussed using the field name as shown on the BIOS
listing, as well as the decimal offset that the field has from the base of the DCB.

KBDBUF - Offset 0
When the Keyboard driver is called to check for pending input it must scan the keyboard to see if a
key is depressed. Since the status routine does not return the actual key value, but only a flag, it is
possible that the key will no longer be depressed when the input routine is called to read it. To prevent
that from happening any key that is found will be stored in this buffer. On future calls to the status
routine if anything is in the buffer a OFFH will be returned without doing another keyboard scan.
Likewise the input routine always checks the buffer before scanning the keyboard for input. It is
important to note that his buffer is for only one character and is not in any sense a type-ahead buffer.

KBDFKP - Offset 1
The function keys can be set up to deliver from 0 to 8 characters when pushed. Since only one char-
acter is transmitted on each call to the driver a way is needed for the driver to "remember" what the
rest of the characters are. This is done using this two-byte pointer, which contains the address of the
next character to be used as input.

On every call to the keyboard input routine KBDFKP is checked for a non-zero value. If it is found
to be non-zero then a character is loaded from the address in KBDFKP. As long as the loaded char-
acter is not zero it is returned to the calling program just as though it had been typed. When a zero
value is read KBDFKP is set to zero and the driver resumes keyboard scanning.

Although the function keys arc located within the Keyboard Driver in the BIOS, it is possible to set
KBDFKP to point to strings of "key input" in other parts of memory. This is exactly the technique
used by Mante's Window to return Calculator results as keyboard input. There is no limit to the
length of the pseudo keyboard input, but the last byte must be 0.

KBDHST - Offset 3
This 8 byte field is used to hold the results of previous scans of each of the 8 keyboard ro\y lines. The
information is used to lock out keys that were depressed on previous calls to the driver. Since these
fields are necessary for the correct implementation of rollover and repeat it is strongly recommended
that you don't mess with them!

Copyright 1985 by Montezuma Micro/JBO - Page 9

Montezuma Micro CP/M System Programmer's Manual

y
KBDPKR - Offset 1 1
KBDPKI- Offset 12
KBDDLY - Offset 14
KBDRPT - Offset 16
These fields are all used in controlling the automatic repeat of a key held down more than a few
seconds. Tweaking and other perverse manipulation is likely to have bad results!

KBDCLF - Offset 18
The Caps Lock Flag is used by the driver to remember whether the keyboard is locked into all upper
case or not. Only bit 0 of this byte is actually used but care should be used to keep the other 7 bits set
to 0. A value of 0 in this byte indicates that the keyboard is operating in normal upper/lower case,
while a value of 1 says that it is locked into all-caps. This flag may be changed so long as the only
values used are 0 and 1 . •

KBDCOD - Offset 19
All of the alpha keys are decoded "on the fly " using the scan information to generate ASCII codes
immediately. This technique is not easily applied to the numeric and special function keys, so those
are decoded using a table. The Keyboard Decode Table is divided into three entries of 24 bytes each.
Each entry defines the following keys in this order:

0 1 2 ;j '1 -r> (> 7
8 9 : ; , - . /

ENTER CLEAR BREAK UP DOWN LEFT RIGHT SPACE
4

The first entry defines the above keys used alone, i.e. without either SHIFT key or the CTRL key.
Definitions for SHIFT in combination with these keys are in the second entry, and the last entry is
for CTRL definitions. Obviously you can change these key definitions to virtually anything you want.
We do offer a few recommendations. The ENTER key should produce a carriage return whether
SHIFTed, CTRLed, or used alone. That's why our utilities don't allow it to be changed. It would
probably also be a good idea for the normal and SHIFTed keys to produce the character inscribed on
the keytop. Beyond that, have tun!

KBFKD-Offset91
The FuiK.liuii Key Definition table contains the strings to be issued when any of the nine possible
function key combinations is selected. This table has nine entries of nine bytes each. The first three
correspond to unshifted Fl, F2, and F3, while the next three are used for SHIFT/ Fl, SHIFT/F2,
and SHIFT/F3. CTRL/F1, CTRL/F2, and CTRL/F3 are defined in the last three entries. Each def-
inition string may be from 0 to 8 characters long, but the last byte in the string MUST be 0. That's
the signal for the Keyboard driver to stop.

This concludes the Keyboard DCB. Since this data structure is used only by the BIOS Keyboard
driver it need not be present for Keyboard drivers that you may write yourself. However the last two
fields (KBDCOD and KBFKD) must be present at those offsets if the CONFIG utility is to be used
with your driver. Field KBDFKP must be present for Monte's Window to work, and that product
may not work at all if your Keyboard driver is not physically located in the BIOS memory space.

Page 10 - ©(p) Copyright 1985 by Montezuma Micro/JBO

Montezuma Micro CP/M System Programmer's Manual

5. THE VIDEO DISPLAY DRIVER

The Video Display driver uses the Model 4 memory-mapped Video Display to emulate a Lear-Siegler
ADM-3A terminal. Most CP/M compatible software expects the CON: device to be an ASCII terminal
and the ADM-3A is one of the more common terminals in use, so this arrangement works well. At all
times except when it is actually beig updated the Video Display RAM is kept switched out of the
memory map. This allows BIOS code to occupy the same spaqe and reduces the overall memory
overhead on the system. |

Operation of the Video Display Driver is uncomplicated and should be easy to follow in the BIOS
listing. The main purpose of this section is to explain the Video Display Device Control Block (DCB).
This discussion will use the field names from the listing and their offsets from the base of the DCB.
As mentioned earlier the address of the Video Display DCB can be obtained from the System Param-
eter Block (SPB).

VDDCHR - Offset 0
Depending on the state of the Video Display the cursor character may be either an inverse-video form
of the character under it or a wedge-shaped character. This field keeps the character under the cursor
so that the driver may easily replace it when moving the cursor.

VDDROW - Offset 1
In this byte is stored the current cursor row address, which will have a value varying from 0 to 23.
The top line of the screen is row 0. Programs may interrogate this field to "find" the cursor on the
screen, but should not write to it as a means of moving the cursor. If you do the Video Display driver
will not be able to erase the old cursor and you will soon have a display full of cursors with only one
of them being real.

VDDCOL - Offset 2
The current cursor column address is stored in this byte. It will range from 0 to 79 with 0 being the
leftmost column on the screen. As with VDDROW this field should be considered "read only".

VDDINV - Offset 3
Data may be displayed in normal video (white characters on black background) or inverse video (black
characters on white background). The current video mode is kept in bit 7 of this byte. A value of 0
means normal video, while 1 (80 hex) means inverse. No other value should ever be put in this byte
except 0 and 80 H.

VDDESC - Offset 4
VDDESX - Offset 5
These fields are used in processing the ESCape sequence used for cursor positioning. They provide
no useful information to external programs and should never be modified.

•

VDCXAT - Offset 6
This table is a series of 32 byte entries that correspond to the control codes from 0 to 31 (OOH to
1FH). Originally the table consisted of two-byte addresses of service routines to process the various
control codes. During the final stages of implementing release 2.00 of CP/M, though, the bytes got
very scarce and this table was converted to 32 one-byte offsets in a desperate attempt to recover space.
This makes it somewhat unstable for future versions, since it cannot span a 256 byte RAM boundary,
and it should not be counted on in subsequent releases.

Copyright 1985 by Montezuma Micro/JBO - Page 11

Montezuma Micro CP/M" System Programmer's Manual

The reason for using the table was so that any unused video control codes could be assigned as du-
plicates of existing codes to possibly provide compatibility with other computers. In particular the
Kaypro series can be closely emulated in this way. When using this table the offsets which are defined
should be considered read-only, while the others may be modified as needed. Don't bank on this table
working the same in future generations.

This concludes the Video Display DCB. You may replace the entire Video Display driver with one of
your own design, but be advised that Monte's Window may not function correctly if the driver is not
located in BIOS RAM space. Since part of the BIOS code resides in the Video RAM space you must
also switch the Video RAM in and out of the map as the existing driver does.

w

Page 12 - ©(p) Copyright 1985 by Montezuma Micro/JBO

Montezuma Micro CP/M System Programmer's Manual

6. THE PARALLEL PRINTER DRIVER

The Model 4 computer is equipped with a Centronics-compatible parallel printer port. Our CP/M
BIOS provides a driver for this port with some opt ions that are contained in a Device Control Block
(DCB). Operation of the driver is quite simple and should be apparent from the BIOS listing. The
purpose of this section is to describe the DCB used for this port. Each field of the DCB and its offset
follows.

PPDPRV - Offset 0
The character last output to the printer is kept here. This is needed whenever a linefeed is output,
since we may not wish to output it at all depending on what went before. Manipulating this byte
probably serves no useful purpose to an external program.

PPDOPT - Offset 1
All options set by the CONFIG utility are Mured here. At present there are only two options. Bit 0,
if set to 1, indicates that linefeeds which follow carriage returns are not to be output. Setting this bit
to 0 causes all linefeeds to be output normally. Bit 1 is used to control the simulation of the formfeed
character (OCH). For printers which do not recognize that code setting this bit to 1 will cause it to
be simulated by repeated linefeeds. To do this the page length in lines must be know, along with a
count of how many lines have been printed already. That information is kept in the following two
fields. Bits 2 through 7 of this byte are not, as yet, used but are reserved for future use.

PPDLCT - Offset 2
This contains the count of the number of lines left to print on the current page. It is decremented
each time a linefeed is sent to the driver, even if the linefeed was not actually performed. Unless bit
1 of PPDOPT is set this field serves no purpose. It is reset to the value in the next field after each
Warm Boot.

PPDPGL - Offset 3
The number of lines on one page is kept in this byte. Unless changed by CONFIG the default is 66,
which is a standard eleven inch page at six lines per inch. At Warm Boot and end of page time this
value is loaded into PPDLCT.

There are no more fields in the Parallel Printer DCB If you choose to replace this driver you may
choose to use the existing DCB just so you ran have access to the CONFIG settings.

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 13

J>
Montezuma Micro CP/M" System Programmer's Manual

7. THE SERIAL PORT DRIVER

The Serial Port on the Model 4 provides a standard RS-232C interface for external devices. Unfor-
tunately the only thing standard about RS-232C seems to be which lines are used for data and ground.
All others tend to change from one manufacturer to another. We have attempted,to create a driver
that will deal with as many different configurations as possible, but it is by no means comprehensive.
In this section we will describe how the DCB is used. Operation of the driver, which is quite short,
should be apparent from the BIOS listing. As with all the other drivers in this manual, each field is
listed by name and offset.

SPDINT - Offset 0
This three-byte field is actually an executable Z-80 instruction. It contains a JuMP (opcode C3H) to
a routine which will initialize the Serial Port and return. We had to provide for this capability since
a change in Serial Port parameters almost always requires that the port be reinitialized. At this time
this routine is used by CONFIG and MODEM? (version 7.,'H). The initialization routine must end
with a RET instruction (C9H).

SPDOPT - Offset 3
All of the options for the serial port driver are contained in this byte as bit flags. Bit 0, if set, tells the
driver not to output data until the CTS (Clear To Send) line goes true. Similarly bit 1 is used to
suspend output until DSR (Data Set Ready) becomes true. Bits 2-7 are reserved, but not in use at
this time. The CTS and DSR lines of the Serial Port have presented somewhat of a problem for many
users. On output the RTS (Request To Send) and DTR (Data Terminal Ready) lines must be inverted
by the software. Since CTS and DSR are essentially the same signals coming from the other end of
the RS-232 link we also inverted them before testing. This caused problems for many users, especially
those with serial printers that use the lines for handshaking. To correct the problem we came out
with version 2.22. The only change in this version from 2.21 was the removal of the XOR 80H fol
lowing SPBSY in the Serial Port driver, as well as the XOR 40H following SPBSYl. These two
instructions were removed by storing two bytes of zero (the NOP instruction) over the XORs.

SPBBDR - Offset 4
A single byte containing the code to be output to the baud rale generator is stored here. It is actually
output when SPDINT is called. See the Model 4 Technical Reference Manual (any version) for
a list of the codes.

SPDCFG - Offset 5
When SPDINT is called the byte in this field is output to the UART control register to configure it.
As with SPBBDR you can get the codes from the Model 4 Technical Reference Manual.

That's all there is to the Serial Port DCB. Although we do have the hardware handshake problem
addressed with this driver, it does not handle the common XON-XOFF software protocol used by
many devices. In any future revision this option would have a high priority. It was omitted due to
RAM constraints.

Copyright 1985 by Montezuma Micro/JBO - Page 15

Montezuma Micro CP/M" System Programmer's Manual

V.

8. THE MEMORY DISK DRIVE

One of the features added in release 2 of the CP/M BIOS was the enabling of the Memory Disk (Drive
M:) automatically at boot time. In release 1 the driversfor the Memory Disk were not part of the
BIOS, but were loaded externally below the CCP. This was a messy implementation since the CCP
then had to remain resident, resulting in a smaller TPA, and the system configuration could not be
saved using CONFIG. By moving the drivers into the BIOS both problems were solved.

During a CP/M Cold Boot (RESET button) a test is made to see if the system has 128k of memory
installed. If it does the 64k expansion RAM is filled with E5H bytes to make it appear to CP/M as a
blank disk, and the DPH for drive M: is installed in the DPH table. When no extra RAM is present
the entry in the DPH table for drive M: is simply left zero-filled.

Several users have,requested the ability to leave drive M: in an uninitialized state, so that data could
be preserved from one boot to another, or even from one DOS to another. Of course this can only
happen if power has been constantly turned on between boots. By patching a RET instruction (C9H)
into BOOT2 in the BIOS you can prevent drive M: from being initialized. However this leaves no
way to ever get it initialized, which must be done when the system is first powered up. In future
revisions we will probably provide for drive M: to be preserved if we can establish that it contains a
flag showing that it was set up correctly.

Other users have asked that drive M: be permanently disabled and not initialized at all. This can be
done simply by changing the JR NZ (opcode 20H) at location EA8BH on the BIOS listing to JR
(opcode 18H). Here, too, we will consider implementing this capability on future versions.

Although the actual drivers for reading and writing to drive M: are quite short they may not be readily
understandable. The problem is the "magic" that occurs when the expansion RAM is switched in and
out of the memory map. We used a special 128 byte buffer in the BIOS to hold records on their way
to or from drive M:. After calculating the expansion bank and RAM address of the desired "sector"
the required bank is switched into the map at location OOOOH. The transfer is made using the BIOS
buffer, and the bank is switched back out. Because the first 32k is involved in this the BIOS can
NEVER reside in any part below address 8000H. In other words it must always be in the top 32k of
RAM.

»

This section on the RAM disk has been included mainly for the curious. It is not recommended that
any tinkering be done on this driver. Those who choose to do so anyway should be warned that some
products, notably Monte's Window, may fail miserably if the RAM disk is farkled.

Copyright 1985 by Montezuma Micro/JBO - Page 17

Montezuma Micro CP/M' System Programmer's Manual

9. DISK I/O

The code to control the disk drives is one of the main parts of the BIOS. CP/M is a disk-based
operating system and makes frequent use of disk drives. Floppy disks are standard on the Model 4/
4P, and you may also optionally attach a hard disk drive. Code for the floppy disk is an integral part
of the BIOS, but hard disk drive require the installation of a separate driver. Since this driver takes
Ik of space it is necessary to reduce the Temporary Program Area (TPA) of CP/M by Ik with
MOVCPM to make room for the additional code.

Although both types of disk drivers will be discussed in this section primary emphasis will be on the
floppy driver. No listing is provided for the hard disk driver since the code is very much uniq[ue to
the type of hard disk drive used. The hard disk drive DCB will be explained in full.

9.1. The Floppy Disk Driver .

The standard disk Model 4/4P comes with two 40 track, single- sided disk drives, and can be equipped
with two more external drives. One of the primary goals of the BIOS was to support any combination
of disk drives and as many CP/M disk formats as possible. In this section we will describe the data
structures used for disk I/O as well as the operation of the Floppy Disk driver itself.

Access to disk drives in CP/M is made using the Disk Parameter Header (DPH) and the Disk Pa
rameter Block (DPB). Both of these structures are explained fully in David Cortesi's book Inside
CP/M, which you got with your copy of CP/M. Our version of CP/M adds a few bytes to the end of
the DPB and creates a new data structure called the Disk Device Control Block (DCB).

9.2. DPB Extensions

The standard CP/M DPB is 15 bytes long. Our additions fields follow the standard ones, preserving
the original offsets. The added fields are:

DPBSPT - Offset 15
This byte contains the number of real sectors per track, NOT the number of 128 byte CP/M sectors
per track. It is used mainly by external programs such as DUP who need to know this value for
formatting purposes.

DPBSSZ - Offset 16
In this byte is stored a code which indicates the true size of a physical disk sector. Only the four IBM
standard sizes are supported, using the following values:

00 = 128 bytes per sector
01 = 256 bytes per sector
02 = 512 bytes per sector
03 = 1024 bytes per sector

•

The value in this field is used both externally, mainly for formatting, and internally, in sector
deblocking.

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 19

Montezuma Micro CP/M" System Programmer's Manual

DPBDCB - Offset 17
This two-byte address points to the Device Control Block (DOB) of the physical disk drive assigned
to this logical disk drive. By using a pointer, instead of putting the actual drive parameters in the
DPB, we can assign two or more to the same physical drive. This saves trips to CONFIG when you
need to use several different disk formats at the same time.

DPHOPT - Offset 1 9
A collection of bit flags is stored in this byte. These flags are normally set by CONFIG when estab
lishing a format. Bit assignments are as follows:

7: Drive density
0=Single, 1 -Double

6: Drive sides
0=Single sided, 1 = Double sided

5: Drive stepping
0=Normal, l=Double step (on 80 track drive)

4: Data status
0=Normal, l=Inverted (Superbrain)

3: Sector numbering on double-sided drive
0=Same numbers on each side of disk
l^Side 1 continues where side 0 left off

2: Track numbering on double-sided drive
0=Track numbers same on each side
l=Even tracks on side 0, odd tracks on side 1

1: Side selection on double-sided drives
0— Tracks map on alternating sides
l=Tracks map first on side 0, then on side 1

0: Track usage on side 1 if hit I is set to I
0 -Tracks run from t rack 0 to inner . u< >st i n u - k
1 = Tracks run from innermost i r ack back to trad; 0

!{ is our hope that these bits provide the means Jo a»ve>s anv I ' T . ^ - . U , no ; . i . J i « r how strange. Bits 0
a n d) were initially unused, c l u e h . . . ; i - m - - : • < < ' i - • . . M (' ; < >:^r:> . ! : l v) S ; / • - r a m m e r t ha t a l l double-
sidt-d formats alternated I'rom .->id< : > Mt v ; - : - t (» i - ; i » : . : '•>.• •» ! - : r j ; < r n a * - U . Tigs was particularly
embarrassing since one of our f . - i r i i e r \ rsi; ;o ' ' I 'M vv.ir- u n i ^ . ; - »hr < > i « - - s t h a t didn't follow this
i j f i i i r r n . As a result the necessa.rv e- 'd, M *\:- •.•'[> l\\ -, • -, -nd! - u -n ••. . . • ' . ;• -ii * « . { (oi the BIOS and had to
be added later using a patc-h pn > ; / • { ? • < : a i u . - x i ' \ . ' ; : U O ^

Most of the bits in the byte are used i;-y • !u < i * s k J . r i v e r m t he ! <) » *S. I ' se ev< reme care in setting them,
, - in r t l u * dri\ 'er dot's nol b l i n d l y d<> I (> h; . . . : • ^ « Ini i ra ivk:- - : « ; k » i <v!ors, Im- ra lher makes decisions
based o n t h e parameters passed t o i l a n d (I * » ; i - - . • - , • • ! » « » r h i v i - , « ; .

*

DPBDID - Offset 20
This last byte of the DPB is used to keep track of what format has been assigned to a drive. A value
of zero is used to signal that the drive is not a floppy disk, although the floppy disk driver pays no
attention to this field. Values from 1 to 128 refer to entries in the DISK.FDF file. Since that file is
subject to change this byte may become unexpectedly obsolete and point to the wrong format defi-
nition. However BIOS space is very tight, and thi- byte is used by DUP and CONFIG only to extract
the format description for the drive, so the danger is small.

Page 20 - ©(p) Copyright 1985 by Montezuma Micro/ JBO

Montezuma Micro CP/M' System Programmer's Manual

9.3. DCB Definitions

There are four Disk DCBs, one for each of four possible physical drives on the Model 4. Conceivably
one could add more, but it would serve no practical purpose. Since the DCB is assigned to a logical
drive by a pointer in the DPB it is possible for one DCB to serve multiple logical drives.

DKDDVR - Offset 0
This first field in the DCB is actually a H byte Z80 JP instruction. The first byte is OC3H, the opcode
lor JP, followed by the address of the disk driver. We used this technique so thut it would be relatively
easy to add other drives to the system, such as hard disk drives.

DKDSEL - Offset 3
Each of the drives on the Model 4 has a unique select address, indicated by setting one of the four
low order bits. Only one bit should be set in this byte, corresponding to the physical address of the
drive.

DKDATT - Offset 4
In this byte we use bit flags to keep track of the physical attributes of the drive. Bit assignments are:

7: 0=Single sided drive
l=Double sided drive

6: 0=5 1/4 inch drive
1=8 inch drive

5: Reserved
4: Reserved
3: Reserved
2: Reserved

1,0: Drive step rate code
0=6 ms, 1 = 12 ms, 2=20 ms, 3=30 ms

These bits are normally set by the CONFIG utility.

DKDSTD - Offset 5
This byte contains the start-up delay time for the drive in quarter seconds. It is arbitrarily set at 2,
which gives 1/2 second of delay. This byte cannot be set; by CONFIG, but must be set using DDT.

DKDSTL - Offset 6
After a seek operation it is necessary to give the head t ime to settle before attempting to read or write.
The required settle time i milliseconds is stored here, initially set at 15. This byte cannot be changed
except by direct patch.

m

DKDNTK - Offset 7
The number of tracks that a drive can physically access is stored here. The driver will not step to any
track beyond this limit.

Copyright 1985 by Montezuma Micro/JBO - Page 21

Montezuma Micro CP/M" System Programmer's Manual

DKDPTO - Offset 8
Since the disk controller in the Model 4/4P has write precompensation controlled by software the
driver must know when to turn it on. The value is not arrived at scientifically, but more by divine
inspiration. In his experience the author has not had any problems using half the number of tracks
plus 2, so that "magic" number is used here.

DKDCTK - Offset 9
With the potential for up to four drives in the system it is necessary for the driver to reset the current
track in the disk controller when changing drives. The current track value is stored here, and is
normally not written to. One exception is at cold boot time when OFFH is written in this field for
each DCB. A value of OFFH forces the driver to restore the drive prior to doing any disk I/O.

DKDCSL - Offset 10
In addition to selecting a disk drive the hardware drive select register also sets the density, write
precompensation, and side for the drive being accessed. Once all this information has been collected
it is stored here for "refreshing " the drive select register.

DKDLTK - Offset 11
Most of the time the track number recorded on the disk will correspond to the track number that the
drive read/write head is positioned over. On those occasions where this is not the case, e.g. an 80 track
drive used with a 40 track format, this byte holds the logical track that is expected on the disk.

Although this DCB is used only by the BIOS Floppy Disk Driver and the CONFIG utility, it should
not be changed. For other disk drivers you may want to create a DCB which meets the requirements
of the drive. This was done when adding hard disk drives to CP/M.

9.4. Using the Disk Driver

It is quite possible to use the BIOS Floppy Disk Driver in external programs. The driver is capable
of reading or writing a sector, but does not contain code for more exotic functions such as format.
The calling setup is as follows:

A Contains function code
1 = Read sector
2 = Write sector

BC Contains track number (B should always be 0)
DE Contains sector number (D should always be 0)

This is the actual sector, i.e. interleave must
already be figured before calling the driver.

HL Contains address of data buffer
IX Contains address of DCB for selected drive
IY Contains address of DPB for selected drive

On return the A register contains the status read from the 17xx disk controller status register. All
non-error bits are masked off so only error conditions need be checked for.

w

Page 22 - ©(p) Copyright 1985 by Montezuma Micro/JBO

Montezuma Micro CP/M" System Programmer's Manual

(J When using this driver on double-sided disk drives you must be aware that the controller will deter-
mine for itself what track, sector, and side to access. This decision will be based on the rules established
in field DPBOPT of the DPB pointed to by the IY register. Study this field carefully and set your
track and sector numbers accordingly.

9.5. EXBIOS - Extending the BIOS
*

As mentioned earlier all possible methods of accessing a disk in CP/M were not handled in the original
BIOS. When this fact became known it was not possible to fix the problem with a simple patch due
to the fact that the BIOS filled all but 3 bytes of the two tracks originally reserved for the system.
The idea of adding another reserved track was rejected, due to the potential problems that it could
cause for existing users. Therefore we decided to create a small program that would install the fix into
BIOS memory after the system was booted, since it would remain in place until the next full reset.

The instruction where EXBIOS is "hooked" in is shown in the listing of the Floppy Disk Driver,
after the label FDBEGN. At the end of the listing the code for the BIOS extension is given. Note that
the CONFIG utility knows about EXBIOS and will remove it before saving the configuration to disk.
This must be done since the portion of memory that the extension resides in will never be saved in
the two reserved tracks. In the next revision this code will be absorbed back into the BIOS where it
belongs.

9.6. The Hard Disk Driver

As good as CP/M is, the use of a hard disk drive makes it even better. With disk space in the millions
of bytes instead of thousands you can have all of your favorite software available at once. Even better,
programs load many times faster and all disk I/O is generally faster.

Like all good things, this convenience carries a price. Since a hard disk drive is not a part of the
standard Model 4/4P computer it must be purchased separately. There are dozens of possible config-
urations, so the code to access the hard disk cannot be economically contained in the E5IOS.
MOVCPM is used to make a smaller CP/M (no larger than 63k) so that the extra space at the top of
memory can be used for the hard disk driver code.

Montezuma Micro offers hard disk drivers for a broad range of hard disk drives, and the code varies
according to the type of controller and drive used. For the convenience of external programs we have
kept the DPB for hard drives the same as for floppies. The only real difference is in the DPBDID
field, which is always set to 0 for a hard disk. Only the memory disk, drive M:, can have a format ID
of 0.

he fields of the hard disk drive DCB are unique to that device, although the first field must be the
same as that of the floppy disk drive. This is the only link that the BIOS has to the device driver.
Here are the fields:
DKDD VR - Offset 0
Like the floppy disk driver, this field is actually a 3 byte JP instruction to the driver routine. The
first byte contains OC3H, and the last two contain the address of the entry point of the hard disk
driver.

Copyright 1985 by Montezuma Micro/JBO - Page 23

Montezuma Micro CP/M System Programmer's Manual

DKDSEL - Offset 3
This byte contains the drive select bits for the hard disk drive. The actual bit usage will vary from
one controller to another, and is of importance only to the driver itself.

DKDCYL - Offset 4
This is a two-byte field containing the 16-bit count of cylinders on the hard disk. CP/M is oblivious
to the cylinder concept and works only with tracks. Head positioning on hard disk drives, however,
is done by cylinders. Some drivers use this field, others don't. We recommend that it be kept at this
location in the DCB for the convenience of external utilities that may need such information.

DKDOFF - Offset 6 •

In this two-byte field is kept the 16-bit count of CP/M tracks that precede this logical drive on the
physical hard drive. At first glance this might appear to be the same thing as field DPBOFF, but that
field cannot be used if drive A: is to be located on any track but the very first track of the hard drive.
To avoid such restrictions we let CP/M think that each logical hard drive is an entity all to itself, and
use the DCB to sort out who lies where.

•

The above fields are more or less standard for our drivers. Some drivers may have additional fields
in the DCB, but these are for driver use only. Any drivers of your own creation should include these
standard fields as a minimum. Also your driver MUST use the same calling sequence as the floppy
driver, with regard to registers, etc. If it doesn't the BIOS will not be able to call it correctly.

J

Page 24 - ©(p) Copyright 1985 by Montezuma Micro/JBO

Montezuma Micro CP/M System Programmer's Manual

10. CP/M BOOTS

In addition to providing I/O drivers for CP/M the BIOS performs one other critical function, that of
bootstrap loading the operating system. The term "boot" comes from the phrase "pulling yourself up
by your own bootstraps." When the Model 4/4P is first powered up there is no software in RAM. The
first level of boot is the ROM, which reads track 0, sector 1, of disk drive 0 into RAM beginning at
4300H. This sector must be in double density. It may be any length, although the 4P will insist on
first loading the ROM image for any ize other than 256 bytes.

In CP/M there are two boot processes generally referred to as the Cold Boot and the Warm Boot. The
Cold Boot is so named because it is activated when the machine is first turned on, i.e. is still "cold."
At other times,usually between programs, a Warm Boot is performed. While the Cold Boot loads the
entire CP/M operating system, including the BIOS, the Warm Boot loads only the CCP and the
BDOS. The remainder of this section will discuss each of these two routines.

10.1. The Cold Boot

Once the boot sector has been loaded it will proceed to load the CCP, BDOS, and BIOS into their
designated locations. Control is then given to the first BIOS vector, which in turn transfers; to the
label BOOT in the listing. The system stack is established at address OOOOH. At first glance this may
appear strange, but in fact when the stack is written to it is first decremented. This results, in the
stack pointer "wrapping around" to the top of memory so that the data is actually written t OFFFFH
downward.

The first order of business is do a complete reset of all I/O devices, mainly to initialize the associated
DCBs, as well as to clear the RAM work areas used by the BIOS. Next drive A: is made the current
drive, and the current track number is set invalid on all floppy drives. Drives A:, B:, C:, and D: are
set up in the DPH table.

The next routine has been subject to some criticism by CP/M users. It first tests for the presence of
the 128k RAM option. If found all 64k of the expansion RAM is set to OE5H and drive M: is entered
into the DPH table. Many users have requested that the RAM drive be formatted (i.e. filled with
OE5H bytes) ONLY if it is found to be corrupt. At present such a-test would require a major change
in the BIOS and more memory than is currently available. However we will consider this in the next
revision.

Finally, if configured for it, the ('"old Bool, displays .the* opening, "banner" announcing the CP/M size
and version. Control then passes to the.CCP, which , issues the.."A>" prompt and begins CP/M op
eration. If the system was booted from.-a hard drive (Model 4P with Radio Shack hard disk only) the
jump to the CCP is patched to return to the hard drive boot. There the DPH table is modified to
reflect the drive configuration, both floppy and hard, and then the jump is made to the CCP.

10.2. The Warm Boot

Like the Cold Boot, the first thing the Warm Boot must do is to establish a stack. However this stack
runs from 0080H to OOFFH. It cannot reside in high memory due to the use of the last 128 bytes by
the disk I/O routines for internal stack space.

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 25

Montezuma Micro CP/M' System Programmer's Manual

Next it clears the BIOS disk buffer. This step is very important, since different sizes of disk sectors
are used. It is possible for a program to terminate with a write operation pending on the sector cur-
rently in the disk buffer. By making this call the Warm Boot can be sure that all pending writes have
been serviced.

Next a "warm'' reset is done. Essentially this just resets the device drivers.

The remainder of the Warm Boot code reloads the CCP and the BDOS from drive A:. Loading begins
at track 0, CP/M sector 2, using the assumption that the DPB for A: contains valid information for
deblocking. Some CP/Ms access the system tracks in a different manner from the rest of the disk
(including version l.xx of ours), but we have chosen to be consistent throughout the disk. It makes
utility writing so much easier.

Page 26 - ©(p) Copyright 1985 by Montezuma Micro/JBO

(J
Montezuma Micro CP/M System Programmer's Manual

11. PITFALLS AND TRAPS

After examining what we have done in the BIOS you may be filled with an urge to improve on it.
Before you go wading in with a flailing text editor we'd like to tip you off to a few things.

11.1. INTERRUPTS

Interrupts are truly wonderful things. With interrupts one computer can be made to appear to be
doing several things at once. Then again they can also cause disasters of truly epic proportions, as
well as introduce bugs that are tougher to kill than a New York Cockroach.

We have chosen not to implement interrupts in the BIOS. Why not? Well the first reason is the Model
/4P hardware. It dictates that maskable interrupts will generate a ReSTart to location 38H. Coin-
ddentally this is also RST 7 on the 8080, and it is used by some CP/M software, most notably DDT
and other debug utilities. While we could release our CP/M with a modified version of DDT it is
certain that other programs out there also use RST 7. One of the main goals for our CP/M was to be
compatible with the rest of the world, and a conflict over a ReSTart address would make that goal
unattainable.

A second reason for not interrupting has to do with memory management. The Model 4/4P has all
sorts of memory map possibilities. Interrupting when the wrong map was in could create disaster, so
elaborate locking schemes would be necessary to keep them turned off at critical times. This would
mean a much larger BIOS, one which was not as robust.

What do we lose by not having interrupts? A keyboard type-ahead buffer is more difficult to do (but
not impossible). A steady blinking cursor is real tough, and background I/O such as serial commu
nications is all but impossible. This is only a partial list. There may be other things, too. Systems
software is a constant trade-off situation. We are happy with the choices we have made.

11.2. FEATURES UNIQUE TO THE Z80

While thumbing through the listing you Z80 gurus may begin thinking "Hey, I could shorten this
code up by using the IX register here, and the alternate registers there.'' No doubt you are right, but
we have tried to avoid using Z80 features just because they are there.

In the early days of CP/M all programs were written for the 8080 and it was perfectly safe to use Z80
features without fear of overlap. This is no longer true. Newer programs, such as Turbo Pascal, use
ALL of the Z80 features. Using them in the BIOS could lead to surprise crashes on a massive scale.
Help stamp out unscheduled Cold Boots and be very conservative in your code.

Copyright 1985 by Montezuma Micro/JBO - Page 27

Montezuma Micro CP/M" System Programmer's Manual

11.3. RAM USAGE

While perusing CP/M literature you may notice the odd bit of RAM that is reserved for, but not used
by, our BIOS. One example of this is locations 0040H through 004FH. It is reserved for the BIOS,
but not referenced at all by ours.

Using this area would be unwise, however, because Monte's Window uses the fool out of it. There are
otherlittle cracks and crevices in the RAM above and below the BIOS. Enhancement architects are
always looking for little crannies to stick their constructions into. Be very, very careful about using
these since we sometimes need RAM, too, and we don't know or care what you have used a RAM
"hole" for.

Page 28 - ©(p) Copyright 1985 by Montezuma Micro/JBO

Montezuma Micro CP/M" System Programmer's Manual

12. INDEX

A
Assembler: 1

B
BIOS: 1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 15, 17, 19, 20,
22, 23, 24, 25, 26, 27, 28, 31
Boot: 3, 4, 13, 17, 22, 23, 25, 26, 27

Cold: 17,22,25,26,27
Warm: 3, 13,25,2(5

i

D
DCB: 4,9,10,11,12,13,15,19, 20, 21, 22, 23, 24,
25
Device control block: 4, 9, 13, 19, 20
Device driver: 4, 7, 23

Device driver address table: 4
Device Parameter Block: 19

DPB: 19,20,21,22,23,24,26
Device Parameter Header: 3

DPH: 3, 4, 17, 25
Disk I/O: 4, 19, 23, 26

E
EXBIOS: 20, 23

Floppy disk driver: 19, 22, 23
Function keys: 9, 10

H
Hard disk driver: 4,19, 23

Initialization: 15
Installation: 4, 7, 19
Interrupts: 27
IOBYTE: 3, 4, 5

K
Keyboard driver: 4, 6, 9, 10

CAPS lock: 10
Key definitions: 10

Logical device: 5, 6

M
Memory disk: 17,23

Parallel printer driver: 13
Physical device: 5, 6

S
Serial port driver: 15
SPB:3, 4, 7, 11,15
System Parameter Block: 3

BIOS version: 1
Boot display: 25
Disk DCB: 4, 21
DPH table: 4, 17, 25

Video Display DCB: 11
Control codes: 11, 12
Cursor: 4, 11,27

Z80 features: 27
Z80 mnemonics: 1

Copyright 1985 by Montezuma Micro/JBO - Page 29

Montezuma Micro CP/M" System Programmer's Manual

13. THE LISTING

If you're a true System Programmer you've probably already been through the listing of the BIOS
before reading the text. You may have noticed that there are some routines missing. For the most
part these are mundane little service routines that are not significant to the operation of the BIOS
as a whole. Our intent with this manual was not to give you every last byte of source code, but rather
a tool with which you could interact with the BIOS.

The bottom line is "This is it!". Please don 't write.or call us with sad stories about why you need
this unpublished routine or that undocumented code. You won't get it. We have a lot of time and
money invested in bringing our CP/M this far. Modesty tells us that it could be improved, but good
business sense tells us that we should reserve the first option for making those improvements.

I
Copyright 1985 by Montezuma Micro/JBO - Page 31

M.U.

INPUT FILENAME : BIOS.ASM
OUTPUT FILENAME : BIOS.OBJ

TRS-80 Model 4 BIOS Version 2.99+ General Definitions
*

; Copyright (c) (p) 1984
; Montezuma Micro

P. 0. Box 763009
; Dallas, TX 75376-3009
»

J

; All rights reserved
•

; This BIOS is written for Montezuma Micro CP/M 2.2.
• ;. **
; * CP/M address constants *. **

00 D4 BASE EQU 0D400H ;Base for 64K system
00 D4 CCP EQU BASE ;Base of CCP
06 DC BDOS EQU CCP+806H ;Base of BDOS
00 EA BIOS EQU CCP+1600H ;Base of BIOS
40 00 MSIZE EQU (BIOS+1200H)/1024+1 ;Memory size in K bytes

• »---> WARNING: BIOS must be 8000H or higher!

00 00 WBJP EQU 0000H ;BIOS Warm boot vector
03 00 IOBYTE EQU 0003H ;System I/O byte
04 00 CDISK EQU 0004H ;System current disk drive
80 00 DEFBUF EQU 0080H ;Default disk buffer
2C 00 NRECS EQU (BIOS-CCP)/128 ;Number of warm boot recs

. **
; * Model 4 port addressess *
. **

84 00 MEMCTL EQU 84H ;Memory mapping port
90 00 SOUND EQU 90H ;Sound control port
E0 00 INTCTL EQU 0E0H Interrupt control port
E4 00 NMICTL EQU 0E4H ;Non-maskable interrupt Ctrl
E8 00 SERRST EQU 0E8H ;Serial port reset
E9 00 SERBRG EQU 0E9H ;Serial port baud rate gen.
EA 00 SERURT EQU 0EAH ;Serial port UART ctl/status
EB 00 SERDAT EQU 0EBH ;Serial port data
EC 00 MISCTL EQU 0ECH ;Miscellaneous function port
F0 00 FDCCTL EQU 0F0H ;Disk command/status
Fl 00 FDCTRK FQU 0F1H ;Disk track
F2 00 FDCSEC EQU 0F2H ;Disk sector
F3 00 FDCDAT EQU 0F3H ;Disk data
F4 00 . FDCSLL EQU 0F4H ;Disk select
F8 00 PARSDT EQU 0F8H ;Para11el port status/data

. **
; * Model 4 data constants *
. **

8E 00 KVMIN EQU 8EH ;Keyboard/Video mapped in
8F 00 KVMOUT EQU 8FH ;Keyboard/Video mapped out

TRS-80 Model 4 BIOS Version 2.99+ Entry vectors & configuration data

EA00 ' ORG BIOS ;Start BIOS code

/ j **
V ; * Standard BIOS jump vectors *

. **

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 33

EA03
EA06
EA09
EA0C
EA0F
EA12
EA15
EA18
EA1B
EAlE
EA21
EA24
EA27
EA2A
EA2D
EA30

EA33
EA34
EA35
EA36
EA37
EA39
EA3B
EA3D
EA3F
EA41
EA43
EA45
EA47
EA49

EA4B
EA4E

EA51
EA52
EA55

EA58
EA59
EA5C
EA5F
EA62

EA65
EA68
EA6B
EA6E
EA6F
EA72

tA
C3 61 EB
C3 D0 EB
C3 F2 EB
C3 02 EC
C3 1A EC
C3 3E EC
C3 52 EC
C3 E5 Fl
C3 78 Fl
C3 93 Fl
C3 9C Fl
C3 DD Fl
C3 ED Fl
C3 24 F2
C3 2C EC
C3 E2 Fl

JK

JP

OP

JP

JP

JP

JP

JP

JP

JP

JP

JP

JP

JP

JP

JP

JP

DUUI

WBOOT
CONST
CONIN
CONOUT
LIST
PUNCH
READER
HOME
SELDSK
SETTRK
SETSEC
SETDMA
READ
WRITE
LISTST
SECTRN

a start
Warm start
Console status
Consojle character in
Consoile character out
List character out
Punch character out
Reader character in
Restore disk drive
Select disk drive
Set track number
Set sector number
Set DMA address
Read disk
Write disk
List status
Sector translation

**
* System Parameter Block *
* This block is used to contain configuration data of *
* a general nature that is required by the BIOS and *
* external routines that may need to modify it. *
**

33 EA
81
FF
02
22
FD F6
55 F6
61 F6
6D F6
79 F6
73 EC
9A EE
8D F0
24 Fl
72 Fl

SPB
SPBIOB
SPBSOM

EQU
DEFB
DEFB
DEFB
DEFB
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

$
81H
0FFH
2
22H
DPHTBL
D0DCB
D1DCB
D2DCB
D3DCB
DDATBL
KBDCB
VDDCB
PPDCB
SPDCB

IOBYTE: LPT,TTY,TTY,CRT +0
Display sign-on at boot +1
Total # of disk drives +2
BIOS version number +3
DPH table address +4
Disk DCB 0 address +6
Disk DCB 1 address +8
Disk DCB 2 address +10
Disk DCB 3 address +12
Device Driver Address +14
Keyboard DCB +16
Video Display DCB +18
Parallel Port DCB +20
Serial Port DCB +22

TRS-80 Model 4 BIOS Version 2.00+ Boot routines

**
* BIOS Cold Start entry *

Input: None.
Output: None - System loaded into RAM

**

*
*

*
*

31
CD D3 EC

AF
32 04 00
32 3F EB

3D
32 5E F6
32 6A F6
32 76 F6
32 82 F6

21 9C F5
01 10 00
22 FD F6
09
22 FF F6
09

BOOT LD
CALL

XOR
LD
LD

DEC
LD
LD
LD
LD

LD
LD
LD
ADD
LD
ADD

SP,0000H
CRESET

;Set stack at top of
;Do a complete reset

RAM

(CDISK),A
(BANNRM),A

A
(D0DCB+DKDCTK),A
(D1DCB+DKDCTK),A
(D2DCB+DKDCTK),A
(D3DCB+DKDCTK),A

HL.DPHA
BC.16
(DPHTBL),HL
HL.BC
(DPHTBL+2),HL
HL.BC

•

Current drive/USER=A/0

Ki11 drive M message

Reset drive track history

;Point HL at first DPH
;BC=length of DPH
;Set Drive A in DPHTBL

; Drive B

Page 34 - Copyright 1985 by Montezuma Micro/JBO

hA/i
EA76
EA77

EA7A
EA7D
EA7F
EA81
EA83
EA85
EA87
EA88
EA8A
EA8B
EA8D
EA8F
EA91
EA94
EA95
EA97
EA99
EA9C
EA9E
EAA1
EAA4
EAA7
EAA9

EAAB
EAAE
EAB1
EAB2
EAB5
EAB7

EACA
EABC
EABD
EABF
EAC0

Li 101 I-/
09
22 03 F7

EAC2
EAC5
EAC9
EACD
EAD1
EAD4
EAD6
EADA
EADE
EAE2
EAE6
EAEA
EAEE
EAF2
EAF6
EAFA
EAFE
EB02
EB06
EB08
EB0B
EB0F
EB13

1A 07
54 52
38 30
6F 64
20 34
36 34
6B 20
2F 4D
65 72
32 2E
28 63
28 70
31 39
20 44
69 74
20 52
65 61
68 20
63 2E
15 0D
42 49
20 76
73 20

21
3E EF
03 84
36 3C
3E 8F
D3 84
7E
36 C3
BE
20 IE
3E EF
D3 84
CD BA EA
29
3E FF
D3 84
CD BA EA
3E 0D
32 3F EB
21 DC F5
22 15 F7
3E 8F
D3 84

21 C2 EA
3A 34 EA
B7
C4 08 ED
0E 00
C3 00 D4

"36 E5
23
CB 7C
C0
18 F8

BOOT1

BOOT2

LU
ADD
LD

LD
LD
OUT
LD
LD
OUT
LD
LD
CP
JR
LD
OUT
CALL
ADD
LD
OUT
CALL
LD
LD
LD
LD
LD
OUT

t

LD
LD
OR
CALL
LD
JP

LD
INC
BIT
RET
JR

,HL

HL.BC
(DPHTBL+6),HL

HL,0000H
A,KVMOUT+60H
(MEMCTL),A
(HL),3CH
A,KVMOUT
(MEMCTL).A
A,(HL)
(HL),0C3H
(HL)
NZ.BOOT1
A.KVMOUT+60H
(MEMCTL),A
BOOT2
HL.HL
A.KVMOUT+70H
(MEMCTL),A
BOOT 2
A,0DH
(BANNRM).A
HL.DPHM
(DPHTBL+24),HL
A,KVMOUT
(MEMCTL).A

HL,BANNER
A.(SPBSOM)
A •
NZ.DISPLY
C,0
CCP

(HL),0E5H
HL
7,H
NZ
BOOT 2

; urive o

; Drive D

;Point to start of RAM
;Switch in expansion bank 0

;Plug with inversion of C3H
;Switch back to main RAM

;Get test byte
;Replace in case it changed
;Is it unchanged?
;Go if changed - not 128K
;Switch in expansion bank 0

;Fill 32K with E5 bytes
;Set HL back to 0000H
;Switch in expansion bank 1

;Fill 32K with E5 bytes
;Enable drive M.message

;Set up DPH for M:

;Restore lower RAM map

;Point to opening banner
;Check the signon flag

•.Display if requested
;Set default drive to A:
;Go to CP/M

;Store an E5 byte
;Advance pointer
;Check bit 7 of address
;Exit if at 32K
;Keep filling

CP/M signon banner

16
53 2D
20 4D
65 6C
20

43 50
20 76
73 20
32 20
29 20
29 20
38 32
69 67
61 6C
65 73
72 63
49 6E

0A
4F 53
65 72
32 2E

BANNER DEFB
DEFB

1AH.07H.16H
'TRS-80 Model 4 '

DEFB
DEFB

''MSIZE/10+'0' ,MSIZE.MOD.10+'0
'k CP/M vers 2.2 '

DEFB '(c) (p) 1982 Digital Research Inc

DEFB
DEFB

15H,0DH,0AH
'BIOS vers 2.20 '

Copyright 1985 by Montezuma Micro/JBO - Page 35

L.U 1 /

EB1A
EB1E
EB22
EB26
EB2A
EB2E
EB32
EB36
EB3A
EB3E
EB3F
EB40
EB44
EB48
EB4C
EB50
EB54
EB58
EB5C
EB50

28 63
28 70
31 39
20 40
74 65
6D 61
69 63
2F 4A
15 16
0A

3E 3E
40 65
72 79
72 69
20 40
16 45
42 4C
16
00 0A

f-V

29 20
29 20
38 34
6F 6E
7A 75
20 40
72 6F
42 4F
00 0A

3E 20
60 6F
20 44
76 65
3A 20
4E 41
45 44

0A 00

DEFB '(c) (p) 1984 Montezuma Micro/JBO1

EB61 31 00 01

EB64
EB67

EB6A
EB6C
EB6F
EB72
EB73
EB74
EB75
EB76
EB77
EB78
EB79
EB7A
EB7B
EB7E
EB81
EB84
EB86
EB89
EB8C
EB8F
EB91
EB92
EB96
EB99
EB9D
EBA0
EBA3
EBA4
EBA6
EBA9
EBAC
EBAF
EBB2
EBB3

CD 07 F3
CD E0 EC

0E 00
CD 78 Fl
01 0A 00
09
7E
23
66
6F
7E
23
66
6F
22 34 F7
21 00 00
22 30 F7
2E 02
22 32 F7
21 00 D4
22 25 F7
06 2C
C5
ED 4B 30 F7
CD 93 Fl
ED 4B 32 F7
CD 9C Fl
CD ED Fl
B7
20 BB
21 30 F7
CD 90 F2
2A 25 F7
01 80 00
09
22 25 F7

DEFB 15H,16H,0DH,0AH,0AH
*

BANNRM DEFB 0
DEFB '»> Memory Drive M: '

DEFB 16H,1ENABLED',16H

DEFB 0DH,0AH,0AH,0

**
* BIOS Warm Start entry *

Input: None
Output: None - System reloaded into RAM

**

*
*

*
*

WBOOT LD SP.DEFBUF+128 ;Use buffer for stack

WBOOT1

CALL
CALL

LD
CALL
LD
ADD
LD
INC
LD
LD
LD
INC
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
PUSH
LD
CALL
LD
CALL
CALL
OR
JR
LD
CALL
LD
LD
ADD
LD

CLBUF
WRESET

c,0-
SELDSK
BC,DPHDPB
HL,BC
A,(HL)
HL
H,(HL)
L,A
A,(HL)
HL
H,(HL)
L,A
(DSBRPT),HL
HL,0
(DSBNTK),HL
L,2
(DSBNSC).HL
HL.CCP
(DSBDMA).HL
B.NRECS
BC
BC.(DSBNTK)
SETTRK
BC.(DSBNSC)
SETSEC
READ
A
NZ,WBOOT
HL.DSBNTK
NXTSEC
HL.(DSBDMA)
BC.128
HL.BC
(DSBDMA),HL

;Clear the BIOS disk buffer
;Do a warm reset

jSelect drive A:
*

;Point HL at DPB

;Records/track to HL

;Save it
;Set starting track

;Set up starting sector

;Set beginning DMA

;Set record counter
;Save record counter
;Set the track

;Set the sector

;Read the record
;Any error?
;If so start all over
;Update sector #

;Update DMA

Page 36 - ©(p) Copyright 1985 by Montezuma Micro/JBO

EBB6
EBB7
EBB9
EBBC
EBBE
EBBF
EBC2
EBC3
EBC4
EBC6
EBC9
EBCC
EBCD

EBD0
EBD3
EBD5
EBD8
EBDA
EBDC
EBDE
EBE0
EBE3
EBE4
EBE5
EBE7
EBEA
EBEC
EBEE
EBF0

EBF2
EBF5
EBF7
EBFA
EBFC
EBFE
EC00

EC02
EC05
EC07
EC0A
EC0C
EC0E
EC10

Cl
10 D8
3A 04
E6 0F
4F
CD 78 Fl
7C
B5
20 03
32 04
3A 04
4F
C3 03 D4

WBOOT3

POP
DJNZ
LD
AND
LD
CALL
LD
OR
JR
LD
LD
LD
JP

BC
WBOOT1
A.(CDISK)
0FH
C,A
SELDSK
A,H
L
NZ.WBOOT3
(CDISK),A
A.(CDISK)
C,A
CCP+3

-.Restore record counter
;Loop until complete
;Get current drive #
;Mask off user code
;Drive # to C
;Select it (validate)
;Check for validity

;Go if valid drive
;Reset to USER 0, A:
;Set User/Default Drive

;Go to CCP

TRS-80 Model 4 BIOS Version 2.00+ I/O routines for CON: device

**
* Report console status
* Input: None

*
*

* Output: A=FFH if input present *
* 00H if no input present *
**

CD 12 EC
28 0B
CD 64 EC
73 EC
7B EC
CB EC
83 EC
3A 03 00
0F
0F
E6 03
CD 64 EC
73 EC
9B EC
A3 EC
AB EC

CONST CALL
JR
CALL
DEFW
DEFW
DEFW
DEFW

CONST1 LD
RRCA
RRCA
AND
CALL
DEFW
DEFW
DEFW
DEFW

CONIOB
Z,CONST1
IODSP
TTYSTS
CRISIS
NULSTS
UC1STS
A,(IOBYTE)

03H
IODSP
TTYSTS
PTRSTS
UR1STS
UR2STS

;Get CON IOBYTE
;Go if BAT status
;Call I/O dispatcher
; TTY status
; CRT status
; BAT status (Dummy entry)
; UC1 status
;Get the IOBYTE
; Isol ate RDR bits

Call I/O dispatcher
TTY status
PTR status
UR1 status
UR2 status

CD 12 EC
28 5B
CD 64 EC
75 EC
7D EC
CD EC
85 EC

**
* Console input *
* Input: None *
* Output: A^Character input from console *
**

CONIN CALL
JR
CALL
DEFW
DEFW
DEFW
DEFW

CONIOB
Z,READER
IODSP
TTYINP
CRTINP
NULINP
UC1INP

Get CON IOBYTE
Go if BAT
Call I/O dispatcher

TTY input
CRT input
BAT input (Dummy entry)
UC1 input

CD 12 EC
28 13
CD 64 EC
77 EC
7F EC
CC EC
87 EC

**
* Console output
* Input: C=Character to be output to console
* Output: None
**

*
*
*

CONOUT CALL
JR
CALL
DEFW
DEFW
DEFW
DEFW

CONIOB
Z.LIST
IODSP
TTYOUT
CRTOUT
NULOUT
UC10UT

Get CON IOBYTE
Go if BAT
Call I/O dispatcher
TTY output
CRT output
BAT output (Dummy entry)
UC1 output

Copyright 1985 by Montezuma Micro/JBO - Page 37

. **
• * Return CON IOBYTE value *
; * Input: None *
; * Output: A=CON iobyte value, Z flag set if BAT *
. **

EC12 3A 03 00 CONIOB LD A,(IOBYTE) ;Get the IOBYTE
EC15 E6 03 AND 03H , ;Isolate CON bits
EC17 FE 02 CP 02H ;Chock for BAT
EC19 C9 RE!

i

TRS-80 Model 4 BIOS Version 2.00+ I/O routines for LST: device

+

\ * Output character to LST device *
; * Input: C=character to be output *
; * Output: None *

EC1A 3A 03 00 LIST LD A,(IOBYTE) ;Get the IOBYTE
EC1D 07 RLCA ;Isolate LST bits
EC1E 07 RLCA
ECLF E6 03 AND 03H
EC21 CD 64 EC CALL IODSP ;Call I/O dispatcher
EC24 77 EC DEFW TTYOUT ; TTY output
EC26 7F EC DEFW CRTOUT ;' CRT output
EC28 8F EC DEFW LPTOUT ; LPT output
EC2A 97 EC DEFW UL10UT ; UL1 output

**
* Return LST status *
* Input: None *
* Output: A=LST status *
**

EC2C 3A 03 00 LISTST LD A,(IOBYTE) ;Get the IOBYTE
EC2F 07 RLCA ;Isolate LST bits
EC30 07 RLCA
EC31 E6 03 AND 03H
EC33 CD 64 EC CALL IODSP ;Call I/O dispatcher
EC36 79 EC • DEFW TTYBSY ; TTY busy
EC38 81 EC DEFW CRTBSY ; CRT busy
EC3A 91 EC DEFW LPTBSY ; LPT busy
EC3C 99 EC DEFW UL1BSY ; UL1 busy

TRS-80 Model 4 BIOS Version 2.00+ I/O routines for PUN: device

**********************-* ***********************************
* Output character:to PUN device *
* Input: C-character to output *
* Output: None *
**

EC3E 3A 03 00 PUNCH LD A,(IOBYTE) ;Get the IOBYTE
EC41 07 RLCA ;Isolate PUN bits
EC42 07 .RLCA
EC43 07 RLCA
EC44 07 RLCA
EC45 E6 03 AND 03H
EC47 CD 64 EC CALL IODSP ;Call I/O dispatcher
EC4A 77 EC DEFW TTYOUT ; TTY output
EC4C B7 EC DEFW PTPOUT ; PTP output
EC4E BF EC DEFW UP10UT ; UP1 output
EC50 C7 EC DEFW UP2DUT ; UP2 output

Page 38 - ©(p) Copyright 1985 by Montezuma Micro/JBO

TRS-8P Model 4 BIOS Version 2.99+ I/O routines for RDR: device

**

EC52
EC55
EC56
EC57
EC59
EC5C
EC5E
EC60
EC62

* Input from RDR device
* Input: None
* Output: A=character input
**

*
*
*

3A 03 00
0F
0F
E6 03
CD 64 EC
75 EC
90 EC
A5 EC
AD EC

READER LD
RRCA
RRCA
AND
CALL
DEFW
DEFW
DEFW
DEFW

A,(IOBYTE)

03H
IODSP
TTYINP
PTRINP
UR1INP
UR2INP

;Get the IOBYTE
;Isolate RDR bits

Call I/O dispatcher
TTY input
PTR input
UR1 input
UR2 input

TRS-80 Model 4 BIOS Version 2.00+ General BIOS subroutines

EC64
EC65
EC66
EC67
EC69
EC6A
EC6B
EC6C
EC6D
EC6E
EC6F
EC70
EC71
EC72

El
87
5F
16
19
5E
23
56
EB
5E
23
56
EB
E9

* T / f\ s4lie'r\r\'t'r*V\ v*f\ i i •¥• n r» r\ *I/O dispatch routine
* Input: A=Device code (0-3)
* (SP)=pointer to address table
* Output: None - goes to device routine *
**

*
*

IODSP POP
ADD
LD
LD
ADD
LD
INC
LD
EX
LD
INC
LD
EX
JP

HL
A,A
E,A
D,0
HL.DE
E,(HL)
HL
D,(HL)
DE.HL
E,(HL)
HL
D,(HL)
DE.HL
(HL)

;Table pointer to HL
;Compute offset
;Move offset to DE

;Point to address
;DE=vector pointer

;HL=vector pointer
;Vector to DE

;HL=driver address
;Exit to device driver

EC73
EC75
EC77
EC79

EC7B
EC7D
EC7F
EC81

EC83
EC85
EC87
EC89

73 EC

28 Fl
30 Fl
3B Fl
44 Fl

51 ED
61 ED
46 EF
D0 EC

51 ED
61 ED
46 EF
D0 EC

* Device Driver Address Table *
**

DDATBL EQU $

TTY definitions

TTYSTS DEFW
TTYINP DEFW
TTYOUT DEFW
TTYBSY DEFW

SPSTS
SPINP
SPOUT
SPBSY

; CRT definitions

CRTSTS DEFW
CRTINP DEFW
CRTOUT DEFW
CRTBSY DEFW

KBSTS
KBINP
VDOUT
NULBSY

; UC1 definitions

UC1STS DEFW
UC1INP DEFW
UC10UT DEFW
UC1BSY DEFW

KBSTS
KBINP
VDOUT
NULBSY

;Serial port status
;Serial port input
;Serial port output
;Serial port busy

;Keyboard status
•.Keyboard input
;Video output
;Null busy

;Keyboard status
;Keyboard input
;Video output
;Null busy

Copyright 1985 by Montezuma Micro/JBO - Page 39

LPT definitions

EC8B
EC8D
EC8F
EC91

EC93
EC95
EC97
EC99

EC9B
EC9D
EC9F
ECA1

ECA3
ECA5
ECA7
ECA9

ECAB
ECAD
ECAF
ECB1

ECB3
ECB5
ECB7
ECB9

ECBB
ECBD
ECBF
ECC1

ECC3
ECC5
ECC7
ECC9

ECCB
ECCC
ECCD
ECCF
ECD0

CB EC
CD EC
BF F0
B3 F0

CB EC
CD EC
BF F0
B3 F0

51 ED
61 ED
CC EC
D0 EC

28 Fl
30 Fl
3B Fl
44 Fl

28 Fl
30 Fl
3B Fl
44 Fl

CB EC
CD EC
46 EF
D0 EC

28 Fl
30 Fl
3B Fl
44 Fl

28 Fl
30 Fl
3B Fl
44 Fl

AF
C9
3E 1A
C9
3E FF

LPTSTS
LPTINP
LPTOUT
LPTBSY

DEFW
DEFW
DEFW
DEFW

NULSTS
NULINP
PPOUT
PPBSY

; UL1 definitions

UL1STS DEFW NULSTS
UL1INP DEFW NULINP
UL10UT DEFW PPOUT
UL1BSY DEFW . PPBSY
*

; PTR definitions

PTRSTS DEFW
P.TRINP DEFW
PTROUT DEFW
PTRBSY DEFW

KBSTS
KBINP
NULOUT
NULBSY

m

; UR1 definitions

UR1STS
UR1INP
UR10UT
UR1BSY

DEFW
DEFW
DEFW
DEFW

SPSTS
SPINP
SPOUT
SPBSY

UR2 definitions

UR2STS
UR2INP
UR20UT
UR2BSY

DEFW
DEFW
DEFW
DEFW

SPSTS
SPINP
SPOUT
SPBSY

PTP definitions

PTPSTS
PTPINP
PTPOUT
PTPBSY

DEFW
DEFW
DEFW
DEFW

NULSTS
NULINP
VDOUT
NULBSY

UP1 definitions

UP1STS
UP1INP
UP 1 OUT
UP1BSY

DEFW
DEFW
DEFW
DEFW

SPSTS
SPINP
SPOUT
SPBSY

UP2 definitions

UP2STS
UP2INP
UP20UT
UP2BSY

DEFW
DEFW
DEFW
DEFW

SPSTS
SPINP
SPOUT
SPBSY

;Null status
;Nul1 input
;Parallel port output
;Parallel port busy

;Null status
;Null input
;Parallel port output
;Parallel port busy

;Keyboard status
;Keyboard input
;Null output
;Null busy

;Seria1 port status
;Serial port input
;Serial port output
;Serial port busy

;Serial port status
;Serial port input
;Serial port output
;Serial port busy

;Nu11 status
;Nul1 input
;Video output
;Nu11 busy

;Serial port status
;Serial port input
;Serial port output
;Serial port busy -

;Serial port status
;Serial port input
;Serial port output
;Serial port busy

9

• **

; * Null device drivers *
; * Input: None expected *
; * Output: None *
. **
NULSTS XOR
NULOUT RET
NULINP LD

RET
NULBSY LD

A

A.1AH

A,0FFH

;Null status
;Null output
;Nu11 input

;Null busy

Page 40 - ©(p) Copyright 1985 by Montezuma Micro/JBO

ECD2 C9 RET

TRS-80 Model 4 BIOS Version 2.99+ Device driver for Keyboard
•

! ***> .
; * Keyboard device drivers
; * Input: None *
; * Output: Dependent on function *
. **

Return keyboard status in A

ED51
ED54
ED55
ED57
ED5A
ED5B
ED5E
ED60

ED61
ED64
ED65
ED67
ED68
ED69
ED6C
EDGE

ED6F
ED70
ED72
ED74
ED77
ED7A
ED7D
ED7F
ED82
ED?', 3
HL>»4
L:Ucl5
CD36
ED87
ED89
EDSA
ED8B
ED8D
ED90
ED93
ED94
jrnnr
t-u 3 ̂>

ED96
ED99
ED9A
ED9B
ED9D
ED9F
EDA2
EDA5
EDA8
EDAA

3A 9 A EE
B7
20 07
CD 6F ED
C8
32 9A EE
F6 FF
C9

21 9A EE
7E
36 00
B7
C0
CD 6F ED
28 FB
C9

F3
3E 8E
D3 84
CD 24 EE
C2 1C EE
11 01 F4
06 00
21 9D EE
1A
4F
AE
/I
Al
20 3D
04
23
CR cnVx Lx \J ^x

F2 82 ED
3A A5 EE
5F
1A
4F
2A A6 EE
7E
Al
20 0D
ED 62
22 AA EE
21 00 08
22 A8 EE
18 72
AF

KBSTS

KBSTS1

LD
OR
JR
CALL
RET
LD
OR
RET

A,(KBDBUF)
A
NZ.KBSTS1
KBSCAN
Z
(KBDBUF),A
0FFH

;Check key buffer

;Go if key there
;Scan the keyboard
;Exit if no key
;Save the key found
;Set status

Input from keyboard & return key in A

KBINP

KBINP1

LD
LD
LD
OR
RET
CALL
JR
RET

HL,KBDBUF
A,(HL)
(HL),0
A
NZ
KBSCAN
Z,KBINP1

;Point to key buffer
;Empty it

;Check for key
;Exit if found
;Scan the keyboard
;Loop if no key

General keyboard scan - key returned in A if found
y

KBSCAN

KBSCNI

KR'.C'i?

DI
LD
OUT
CALL
JP
LD
LD
1 i)
1 i)
i !)
Xf »K
L!,«

•A,KVMIN
(MEMCTL),A
KBFKC
NZ,KBSCNX
DU0M01H
13,0
Mi .KttmiS'f
A ,-'!?f)
r '
* V

i 1 '••' I

(i-:. j,l

;No interrupts!
; Switch Keyboard into RAM

;Check function keys
;Go if key found
; Point to first row
; In i tial ize row #
; Point DE at history table
;Slrobo tho keyboard
;S,ivo strobe in C
;Mdsk ol 1 prior keys
;bcive current scan

KBSCN3

AND

INC
INC
RLC
JH
LD
LD
LD
LD
LD
LD
AND
JR
SBC
LD
LD
LD
JR
XOR

N/.KBSCNI
B
HI.
r

P.KBSCN2
A,(KBDPKR)
E,A
A,(DE)
C,A
HL,(KBDPKI)
A,(HL)
C
NZ,KBSCN3
HL,HL
(KBDRPT),HL
HL,0800H
(KBDDLY),HL
KBSCNX
A

Mask released keys
Go if any key pressed
Update row #
Update history pointer
Move to next key row
Loop if any rows left
Point DE at Prv Key Row

;Scan the row again
;Save the scan
;Point HL at Prv Key
;Get previous image
;Key still down?
;Go if yes
;Clear Repeat Counter

;Reset Delay Counter

;Exit with no key
;Clear carry & A

Image

(c)(p) Copyright 1985 by Montezuma Micro/JBO - Page 41

tUAB
EDAC
EDAF
EDB0
EDB3
EDB7
EDB9
EDBB
EDBC
EDBF
EDC1
EDC4
EDC6
EDC7
EDCA
EDCC
EDCD
EDD0
EDD3
EDD5
EDD7
EDD9
EDDA
EDDB
EDDD
EDDF
EDE2
EDE3
EDE5
EDE7
EDE9
EDEB
EDED
EDEE
EDF0
EDF3
EDF4
EDF6
EDF8
EDFA
EDFB
EDFD
EDFF
EE00
EE02
EE04
EE05
EE07
EE0A
EE0B
EE0C
EE0F
EE10
EE12
EE14
EE15
EE17
EE19
EE1A
EE1B
EE1C
EE1D
EE1F
EE21
EE22
EE23

tc
2A AA EE
23
22 AA EE
ED 4B A8 EE
ED 42
38 61
12
22 AA EE
2E 80
22 A8 EE
18 B4
4F
CD 84 EE
28 50
7B
32 A5 EE
22 A6 EE
CB 20
CB 20
CB 20
05
04 •
CB 39
30 FB
21 A4 EE
78
FE 20
30 IB
CB 56
20 31
CB F0
B7
28 2B
3A AC EE
B7
20 25
CB E8
3E 03
A6
28 IE
3E 20
A8
18 1A
D6 20
4F
06 00
11 AD EE
EB
09
01 18 00
1A
E6 07
28 06
09
E6 04
28 01
09
46
78
4F
3E 8F
D3 84
79
87
C9

1

KBSCN4

KBSCN5

t

KBSCN6

KBSCN8
KBSCN9
KBSCNX

tA

LD
INC
LD
LD
SBC
JR
LD
LD
LD
LD
JR
LD
CALL
JR
LD
LD
LD
SLA
SLA
SLA
DEC
INC
SRL
JR
LD
LD
CP
JR
BIT
JR
SET
OR
JR
LD
OR
JR
SET
LD
AND
JR
LD
XOR
JR
SUB
LD
LD
LD
EX
ADD
LD
LD
AND
JR
ADD
AND
JR
ADD
LD
LD
LD
LD
OUT
LD
OR
RET

un.nu
HL.(KBDRPT)
HL
(KBDRPT),HL
BC.(KBDDLY)
HL,BC
C,KBSCNX
(DE),A
(KBDRPT).HL
L,80H
(KBDDLY).HL
KBSCN1
C,A
KBDBN
Z,KBSCNX
A,E
(KBDPKR).A
(KBDPKI),HL
B
B
B
B
B
C
NC.KBSCN5
HL.KBDHST+7
A,B
32
NC.KBSCN6
2,(HL)
NZ,KBSCNX
6,B
A
Z.KBSCN9
A.(KBDCLF)
A
NZ,KBSCN9
5,B
A,3
(HL)
Z.KBSCN9
A,20H
B
KBSCNX
32
C,A
B,0
DE,KBDCOD
DE,HL
HL,BC
BC,24
A,(DE)
07H
Z,KBSCN8
HL,BC
4
Z.KBSCN8
HL.BC
B,(HL)
A,B
C,A
A,KVMOUT
(MEMCTL),A
A,C
A

nibiury pointer 10 LIE.
Repeat counter to HL
Increment the count
Save the counter
Get the delay value
Delay long enough?
Exit if no time-out
Clear history for rescan
Save zeroed counter
Set short delay

;Go scan again
;True scan to C
;Do debounce delay
;.Exit if no key
;Savo row bit

;Save image pointer
;Multiply row # by 8

Precomp for shift
Update char position
Shift strobe bit left 1
Loop till it falls off
Point HL at control image
Get table offset
In alpha keys?
Go if not
Control pressed?
Exit if yes
Convert offset to ASCII
Is this '@' key?
Exit if yes
Get CAPS Lock Flag
CAPS locked?
Go if yes
Make lower case
Check SHIFT keys
Is either one down?
Go if not
Invert bit 5

;Exit with key
•.Calculate offset
;Put in BC

;Decode table base to DE
;Move to HL, KBDHST to DE
;Point to standard table
;Table length to BC
;Isolate CTRL,SHIFT keys

•

;6o if neither down
;Move to SHIFT table
;Isolate CTRL key
;6o if only SHIFT
;Move to CTRL table
;Get decoded key in B
;Return key to A
;Store character in C
;Switch out keyboard

;Restore the key, if any
;Set Z if no key found

Page 42 - ©(p) Copyright 1985 by Montezuma Micro/JBO

Scan function keys

EE24
EE27
EE28
EE29
EE2B
EE2E
EE2F
EE30
EE31
EE33
EE35
EE38
EE39
EE3A
EE3B
EE3C
EE3D
EE3E
EE3F
EE40
EE41
EE44
EE45
EE47
EE49
EE4C
EE4E
EE51
EE52
EE54
EE57
EE58
EE5A
EE5B
EE5C
EE5D
EE5E
EE61
EE64
EE66
EE67
EE69
EE6B
EE6C
EEb'E
EE70
EE71
EE73
EE7b
EE76
EE77
EE78
EE79
EE7A
EE7D
EE7E
EE7F
EE80
EE83

2A 9B EE
7C
B5
20 4C
11 7F F4
4B
1A
B7
28 02
0E 07
21 A4 EE
1C
1A
Al
4F
AE
71
Al
C8
4F
CD 84 EE
C8
CB 59
28 0F
3A AC EE
EE 01
32 AC EE
C5
0E 28
C4 EE EF
Cl
3E 70
Al
C8
07
EB
21 10 EF
01 09 00
ED 42
07
30 FB
0E IB
1A
E6 03
20 06
1A
E6 04
28 02
09
09
7E
23
B7
22 9B EE
C0
67
6F
22 9B EE
C9

KBFKC

KBFKC1

KBFKC2

KBFKC3

KBFKC4
KBFKC 5

LD
LD
OR
JR
LD
LD
LD
OR
JR
LD
LD
INC
LD
AND
LD
XOR
LD
AND
RET
LD
CALL
RET
BIT
JR
LD
XOR
LD
PUSH
LD
CALL
POP
LD
AND
RET
RLCA
EX
LD
LD
SBC
RLCA
JR
ID
LD
AND
JR
LD
AND
JR
ADD
ADD
LD
INC
OR
LD
RET
LD
LD
LD
RET

HL.(KBDFKP)
A,H
L
NZ,KBFKC5
DE,0F47FH
C,E
A,(DE)
A
Z, KBFKC 1
C.07H
HL.KBDHST+7
E
A,(DE)
C
C,A
(HL)
(HL),C
C
Z
C,A
KBDBN
Z
3,C
Z.KBFKC2
A.(KBDCLF)
01H
(KBDCLF).A
BC
C,40
NZ.VDBEL1
BC
A.70H
C
Z

DE.HL
HL.KBDCOD+99
BC,9
HL.BC

NC.KBFKC3
C.27
A,(DE)
03H
NZ,KBFKC4
A,(DE)
4
Z, KBFKC 5
HL.BC
HL.BC
A,(HL)
HL
A
(KBDFKP).HL
NZ
H,A
L,A
(KBDFKP).HL

Debounce a key

;Get Function Key Pointer
;Is a key active?

;Go if yes
;Set DE for rows 0-6
;Preset key mask
;Strobe rows 0-6
;Anything down?
;Go if not
;Must ignore F1,F2,F3,CAPS
;Point HL at rbw 7 image
;Set DE for row 7
;Strobe row 7
;Mask off if necessary
;Result in C
;Set changed bits
;Save current scan
;Mask released keys
;Exit if no key down
Corrected scan to C
;Do debounce delay
;Exit if no key down
;CAPS key down?
;Go if not
;Toggle the flag

;Save registers
;Set counter for short beep
;Beep if locking

;Check function keys

Exit if none down
Prepare to position
History pointer to DE
Point HL at Decode table
Set BC to 1 entry length
Back up table pointer
Check next F key bit
Loop until found
Preload for next round
Get key scan from KDBHST
Check the SHIFT keys
Go if either down
Get key scan again
Check the CTRL key
Go if not pressed
Move down one group
Move down one group
Get next keystroke
Update pointer
End of definition?
Save def pointer
Exit if valid key
Clear the pointer

;Exit with key

EE84
EE86

3E 0F
CD 14 ED

KBDBN LD
CALL

A,15
MSDELY

;Set time (app. 15ms)
;Do the delay

Copyright 1985 by Montezuma Micro/JBO - Page 43

EE89
EE8A
EE8B

EE8C
EE8F
EE93
EE96
EE99

EE9A
EE9B
EE9D
EEA1
EEA5
EEA6
EEA8
EEAA
EEAC

EEAD
EEB1
EEB5
EEB9
EEBD
EEC1

EEC5
EEC9
EECD
EED1
EED5
EED9

EEDD
EEE1
EEE5
EEE9
EEED
EEF1

EEF5
EEF9
EEFD
EEFE
EF02
EF06
EF07
EF0B
EF0F

EF10
EF14
EF18
EF19
EF1D

1A
Al
C9

CD 23 ED
9A EE 12
21 00 08
22 A8 EE
C9

9A EE

01
AD EE

30 31 32 33
34 35 36 37
38 39 3A 3B
2C 2D 2E 2F
0D 18 03 0B

08 09 20

30 21 22 23
24 25 26 27
28 29 2A 2B
3C 3D 3E 3F
0D IB 03 0B
0A 08 09 20

30 7C 32 7E
34 5E 36 60
bB 5D 3A 3B
7B 5F 7D 5C
0D 7F 03 0B
0A 08 09 20

46 31 20 20
20 20 20 20

46 32 20 20
20 20 20 20

46 33 20 20
20 20 20 20

53 48 49 46
54 2F 46 31

53 48 49 46
54 2F 46 32

LD
AND
RET

A,(DE)
C

;Scan keyboard again
;Mask off released keys

; Initialize Keyboard DCB
• m mm ̂ ̂ —••»••• ̂ ̂ •» M» mm M» ̂ ̂ *•

KBINIT CALL CLRMEM ;Clear DCB fields
DEFW KBDCB,KBDCLF-KBDCB
LD HL,0800H ;Reset repeat counter

• LD (KBDDLY).HL
RET

•
»

; Keyboard Device Control Block

KBDCB EQU
KBDBUF DEFB
KBDFKP DEFW
KBDHST DEFB

$
0 Character buffer
0 ;Function Key Pointer
0,0,0,0,0,0,0,0 ;History for 8 rows

KBDPKR
KBDPKI
KBDDLY
KBDRPT
KBDCLF
KBDCOD

DEFB
DEFW
DEFW
DEFW
DEFB
EQU

Unshifted keys
DEFB '01234567'

0
0
0800H
0
1

DEFB '89:;,-./1

;Previous Key Row bit
;Previous.Key Image pointer
;Del ay before repeating
;Del ay between repeats
;CAPS Lock Flag
;Keyboard Decode table

;0 1 2 3 4 5 6 7

;8 9 : ; , - .

DEFB 0DH,18H,03H,0BH ;ENTER CLEAR BREAK UP
DEFB 0AH,08H,09H,20H ;DOWN LEFT RIGHT SPACE
Shifted keys
DEFB '0! "#$%&'" ;0 1 2 3 4 5 6 7

DEFB

DEFB
DEFB

'()*+<=>?' ;8 9

0DH,1BH,03H,0BH ;ENTER CLEAR BREAK UP
0AH,08H,09H,20H ;DOWN LEFT RIGHT SPACE

Control keys
DEFB

DEKB

DEFB
DEFB

;0 1 2 3 4 5 6 7

; 8 9 : ; , - . /

0DH,7FH,03H,0BH ;ENTER CLEAR BREAK UP
0AH,08H,09H,20H ;DOWN LEFT RIGHT SPACE

; Function Key Definition table (9 bytes per entry)
•

KBFKD DEFB 'Fl ',0

DEFB

DEFB

'F2

'F3

' ,0

',0

DEFB 'SHIFT/Fl',0

DEFB 'SHIFT/F2',0

Page 44 - ©(p) Copyright 1985 by Montezuma Micro/JBO

EF21
EF22
EF26
EF2A

EF2B
EF2F
EF33
EF34
EF38
EF3C
EF3D
EF41
EF45

EF46
EF47
EF49
EF4B
EF4E
EF51
EF54
EF57
EF5A
EF5C
EF5E
EF60
EF62
EF65
EF67
EF69

EF6A
EF6D
EF6E

EF6F
EF72
EF73

EF77
EF78
EF79
EF7C
EF7D
EF7E

53 48 49 46
54 2F 46 33

DEFB 'SHIFT/F3',0

43 54 52 4C
2F 46 31 20

43 54 52 4C
2F 46 32 20

43 54 52 4C
2F 46 33 20

DEFB 'CTRL/F1 ',0

DEFB 'CTRL/F2 ',0

DEFB 'CTRL/F3 ',0

TRS-80 Model 4 BIOS Version 2.99+ Device driver for Video Display

**
* Video Display drivers *
* Input: Dependent on function *
* Output:. None returned to caller *
**

F3
3E 8E
D3 84
3A 8D F0
CD 6F EF
CD 8B EF
CD 6A EF
32 8D F0
CB 7F
28 02
3E 9B
F6 80
CD 6F EF
3E 8F
D3 84
C9

CD 74 EF
7E
C9

CD 74 EF
77
C9

EF74 2A 8E F0

C5
D5
01 00 F8
51
5D
4C

Output character in C to Video Display

VDOUT DI
LD
OUT
LD
CALL
CALL
CALL
LD
BIT
JR
LD

VDOUT1 OR
CALL
LD
OUT
RET

A.KVMIN
(MEMCTL).A
A.(VDDCHR)
VDPUT
VDPROC
VDGET
(VDDCHR).A
7,A
Z,VDOUT1
A.9BH
80H
VDPUT
A,KVMOUT
(MEMCTL).A

;No interrupts
;Switch Video into RAM

;6et character at cursor
;Replace it in Video RAM
;Process input character
;Get character at cursor
;Save in DCB
;Is character inverted?
;Go if not
;Set in alternate cursor
;Insure reverse video
;0utput cursor
;Switch out Video

; Get a character from Video RAM at cursor

VDGET CALL
LD
RET

VDCSR
A,(HL)

;Point HL at cursor position
;Get the character

; Put a character into Video RAM at cursor

VDPUT CALL
LD
RET

VDCSR
(HL),A

;Point HL at cursor position
;0utput the character

; Point HL at cursor position in Video RAM

VDCSR LD HL.(VDDROW) ;Get cursor column & row
•

^; Compute RAM Address for position (L=Row, H=Col)

VDCRA PUSH
PUSH
LD
LD
LD
LD

BC
DE
BC,0F800H
D,C
E,L
C,H

;Save work registers

; Video RAM base to BC
;Row § to DE

; Column # to C

Copyright 1985 by Montezuma Micro/JBO - Page 45

EF7F
EF80
EF81
EF82
EF83
EF84
EF85
EF86
EF87
EF88
EF89
EF8A

EF8B
EF8E
EF8F
EF91
EF92
EF94
EF96
EF99
EF9A
EF9D
EFA0

EFA3
EFA5
EFA7
EFA9
EFAA
EFAC
EFAE
EFB0
EFB1
EFB3
EFB6
EFB7
EFB8
EFBA
EFBC
EFBE
EFC0
EFC1
EFC4
EFC5
EFC7
EFC8
EFCA
EFCC
EFCE
EFD0
EFD3
EFD5
EFD8

EFD9
EFDC
EFDE
EFDF
EFE0

62
29
29
19
29
29
29
29
09
Dl
Cl
C9

LD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
POP
POP
RET

H,0
HL.HL
HL.HL
HL.DE
HL,HL
HL,HL
HL,HL
HL.HL
HL,BC
DE
BC

;Row # also in HL
;HL=Row # * 4

;HL=Row 1*5 (4+1)
;HL=Row # * 80 (80=5*16)

;Add video base, Column #
;Restore registers

Process Video output characters

3A 91 F0
B7
20 12
79
FE 20
38 43
3A 90 F0
Bl
CD 6F EF
2A 8E F0
C3 24 F0

FE 02
38 0C
28 IE
79
FE 3D
3E 02
28 25
AF
18 22
3A 92 F0
6F
79
D6 20
FE 50
38 02
3E 4F
67
22 8E F0
AF
18 0E
79
D6 20
FE 18
38 02
3E 17
32 92 F0
3E 01
32 91 F0
C9

VDPROC LD
OR
JR
LD
CP
JR
LD
OR
CALL
LD
JP

A,(VDDESC)
A
NZ,VDESH
A,C
20H
C.VDCTL
A,(VDDINV)
C
VDPUT
HL,(VDDROW)
VDCRT •

Video Display ESC Sequence
9

VDESH

•

VDESH 1

VDESH2

t

VDESHX

CP
JR
JR
LD
CP
LD
JR
XOR
JR
LD
LD
LD
SUB
CP
JR
LD
LD
LD
XOR
JR
LD
SUB
CP
JR
LD
LD
LD
LD
RET

2
C.VDESH1
Z.VDESH2
A,C
1 _ 1

A, 2
Z, VDESHX
A
VDESHX
A.(VDDESX)
L,A
A,C
20H
80
C,$+4
A, 79
H,A
(VDDROW).HL

' A
VDESHX
A,C
20H
24
C,$+4
A, 23
(VDDESX).A
A, 1
(VDDESC).A

;Che
;Go
;Go
;Get
;Mus
;Set
;Go
;Cle
; a
;Get
;Put
;Get
;Con
;Is
;Ski
;Mov
;Put
;Sto
;Cle
; a
;Get
;Con
;Is
;Ski
;Mov
;Sto
;Set
;Sav
; a

;Get ESC sequence control
;In ESC sequence?
;Go if yes
;Get the character
;Control code?
;Go if yes
;Get inverse video mask
;Combine with character
;0utput to Video Display
;Cursor Column,Row to HL
;Cursor right & exit

Handler

Check state of ESC
Go if state 1
Go if state 2
Get input character
Must be ' = '
Set next state in A
Go if valid
Clear state variable

and exit
Get saved Row
Put it in L
Get input Column
Convert to actual
Is column # valid?
Skip next if so
Move to last column
Put it in H
Store as new cursor
Clear state variable

and exit
Get the input character
Convert to actual Row
Is it valid?
Skip next if it is
Move to last row
Store in DCB
Set next state in A
Save state variable

and exit

Video Display Control Code processing

21 93 F0
06 00
09
7E
B7

VDCTL LD
LD
ADD
LD
OR

HL.VDCXAT
B,0
HL.BC
A,(HL)
A

;HL=Code Address Table
;Table offset in BC
;Index to routine offset
;Pick up routine offset
;Is the code defined?

Page 46 - ©(p) Copyright 1985 by Montezuma Micro/JBO

C
EFE1
EFE2
EFE5
EFE6
EFE7
EFE8
EFEB

EFEC
EFEE
EFF0
EFF2
EFF4
EFF6
EFF7
EFF9
EFFB
EFFD
EFFE
F000

F001
F002
F003
F005
F006
F009
F00B

F00D
F00E
F010
F012
F013
F015
F017

F019
F01A

F01C
F01D
F020
F022

F024
F025
F026
F028
F02A
F02C

C8
21 E2 EF
4F
09
E5
2A 8E F0
C9

0E 00
3E 01
06 64
D3 90
10 FC
AF
06 64
D3 90
10 FC
0D
20 EE
C9

7C
B5
28 2D
25
F2 32 F0
26 4F
18 0F

7C
E6 F8
C6 08
67
FE 50
38 IB
26 00

2C
18 16

2D
F2 32 F0
2E 00
18 0E

24
7C
FE 50
38 08
26 00
18 EB

VDCTL1
RET
LD
LD
ADD
PUSH
LD
RET

HUVDCTL1
C,A
HL,BC
HL
HL.(VDDROW)

•.Ignore if not
;;Point HL at base address
';Add offset for this code

;Routine address to stack
;Cursor Column,Row to HL
;Go to it

Sound the built-in speaker

VDBEL
VDBEL1

VDBEL2

VDBEL3

LD
LD
LD
OUT
DJNZ
XOR
LD
OUT
DJNZ
DEC
OR
RET

C,0

B.100
(SOUND), A
VDBEL2
A
B.100
(SOUND), A
VDBEL3
C
NZ.VDBEL1

;Set duration counter
;Set bit 0 on
;Set pitch counter
;Crank up a wave

;Turn bit 0 off
;Reset pitch counter
;Let the wave die
•

;Count down duration
;Loop until timeout

; Move the cursor left 1 position
• ^^

VDCLT LD
OR
JR
DEC
JP
LD
JR

A,H
L
Z,VDCSCK
H
P.VDCSCK
H,79
VDVT

;At top of screen?

;6o if yes
;Back up 1 position
;Exit if no wrap
;Move to end of line
; and back up 1 row

; Move cursor to next tab stop

VDTAB LD
AND
ADD
LD
CP
JR
LD

A,H
0F8H
A,8
H,A

C.VDCSCK
H,0

;Column # to A
;Make it 0 mod 8
;Move to next tab stop

;Line overflow?
;Exit if not
;Move down 1 line

i Move cursor down 1 line

VDIF INC
JR

L
VDCSCK

;Increment the row #

; Move cursor up 1 line
•

VDVI DEC
JP
LD
JR

P.VDCSCK
L,0
VDCSCK

;Back up 1 row
;Go if not negative
;Hold on top line

; Move cursor right 1 position
•

VDCRT INC
LD
CP
JR
LD
JR

H
A.H

C.VDCSCK
H,0
VDLF

;Advance 1 column
;6et the new column
;Still on line?
;6o if yes
;Move to next line

Copyright 1985 by Montezuma Micro/JBO - Page 47

F02E 2E

F032
F033
F035
F038
F039
F03B
F03E
F041
F044
F047
F049
F04C

F04E
F04F
F051
F054
F055
F056

F058
F05B

F05E
F061
F064
F065
F068
F06A
F06C
F06D
F06E

F071
F072

F074
F075

F077
F07A
F07C
F07F

F030 26

7D
FE 18
22 8E F0
D8
2E 17
22 8E F0
21 50 F8
11 00 F8
01 30 07
ED B0
21 17 00
18 10

E5
26 50
CD 77 EF
EB
El
18 09

21 00 00
22 8E F0

11 80 FF
CD 77 EF
EB
3A 90 F0
F6 20
ED 52
44
4D
C3 2E ED

AF
18 08

AF
18 03

3A 90 F0
EE 80
32 90 F0
C9

; Perform Cursor Home
* »̂ W* ••» MM •» BM «V M •• ^

VDHOM LD L,0 ;Set row # to 0

; Perform Carriage Return
• ^^ ̂ — m ̂ ^ ̂ _ ̂ ^ ̂^ ̂ ^^ (— ̂ ^ — ̂ -— ̂ ^ ̂^ ̂ ^ ̂ ^ ̂^ ̂ ̂

VDCR LD H,0
•
5

; Check cursor position & scroll if necessary

;Set column # to 0

VDCSCK LD
CP
LD
RET
LD
LD
LD
LD
LD
LDIR
LD
JR

A,L
24
(VDDROW),HL
C
L,23
(VDDROW),HL
HL.0F800H+80
DE.0F800H
BC,80*23

HL.23
VDEOS

Get the cursor Row #
Is it on-screen?
Save the cursor
Exit if on screen
Stay on line 23
Save the cursor
Point HL at second line
Point DE at top of screen
Move 23 lines of video
Scroll Video RAM
Set Row=23, Column=0
Clear new line & exit

; Erase to end of current line

VDEOL PUSH
LD
CALL
EX
POP
JR

HL
H,
VDCRA
DE.HL
HL
VDEOS1

;Save cursor position
;Set to end of line + 1
-.Calculate RAM address
;Put in DE
;Restore cursor
;Go clear

; Home the cursor and clear the screen

VDCLS LD
LD

HL,0000H
(VDDROW).HL

;Set cursor at 0,0
;Save it in DCB

; Erase to end of screen

VDEOS LD
VDEOS1 CALL

EX
LD
OR
SBC
LD
LD
JP

DE,0FF80H
VDCRA
DE,HL
A.(VDDINV)
20H
HL,DE
B,H
C,L
MFILL '

;Set end address
;Calc start address
;Start to DE, end to HL
;Get inverse video mask
;Create a blank
;Compute clear length
;Move length to BC

;Fil1 memory & exit

•; Turn inverse video OFF

VDIV0 XOR
JR

A
VDINV2

;Clear the flag
;Go store it

; Turn inverse video ON

VDIV1 XOR
JR

A
VDINV1

;Clear the flag
;Toggle & store it

; Toggle state of inverse video

VDINV LD
VDINV1 XOR
VDINV2 LD

RET

A.(VDDINV)
80H
(VDDINV).A

;Get inverse video mask
;Reverse it
;Replace in DCB

Page 48 - Copyright 1985 by Montezuma Micro/JBO

F080
F082

F085
F088
F08C

F08D
F08E
F08F
F090
F091
F092

F093
F094
F095
F096
F097
F098
F099
F09A
F09B
F09C
F09D
F09E
F09F
F0A0
F0A1
F0A2
F0A3
F0A4
F0A5
F0A6
F0A7
F0A8
F0A9
F0AA
F0AB
F0AC
F0AD
F0AE
F0AF
F0B0
F0B1
F0B2

3E 03
C3 D5 EF

VDESC LD
JP

A,3
VDESHX

;Set ESC state variable
; & exit

CD 23 ED
8E F0 05 00
C9

0A
IF
2B
37
3A
42
4E
8F
92

6C
95

7C
76
9E

4C

; Initialize Video Display DCB fields

VDINIT CALL CLRMEM ;Clear DCB fields
DEFW VDDROW,VDCXAT-VDDROW
RET

•

»

; Video Display Device Control Block

8D F0
20

93 F0

VDDCB
VDDCHR
VDDROW
VDDCOL
VDDINV
VDDESC
VDDESX
VDCXAT

EQU $
DEFB ' '
DEFB 0
DEFB 0
DEFB 0
DEFB 0
DEFB 0
EQU $
DEFB 00H
DEFB 00H
DEFB 00H
DEFB 00H
DEFB 00H
DEFB 00H
DEFB 00H
DEFB VDBEL-VDCTL1
DEFB VDCLT-VDCTL1
DEFB VDTAB-VDCTL1
DEFB VDLF-VDCTL1
DEFB VDVT-VDCTL1
DEFB VDCRT-VDCTL1
DEFB VDCR-VDCTL1
DEFB VDIV0-VDCTL1
DEFB VDIV1-VDCTL1
DEFB 00H
DEFB 00H
DEFB 00H
DEFB 00H
DEFB 00H
DEFB VDEOL-VDCTL1
DEFB VDINV-VDCTL1
DEFB 00H
DEFB 00H
DEFB VDEOS-VDCTL1
DEFB VDCLS-VDCTL1
DEFB VDESC-VDCTL1
DEFB ' 00H
DEFB 00H
DEFB VDHOM-VDCTL1
DEFB 00H

Character under cursor
;Cursor row (0-23)
;Cursor column (0-79)
;Inverse video mask
;Escape Sequence Control
;Escape Sequence Storage •
;Control code address table
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
; Code
;Code
;Code
;Code
;Code
;Code
;Code

01
02
03
04
05
06
07

09
0A

0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
IB
1C
ID
IE
IF

ignored
ignored
ignored
ignored
ignored
ignored
ignored
Sound bell
Backspace
Tab
Linefeed
Vertical tab
Cursor right
Carriage return
Inverse video OFF
Inverse video ON
ignored
ignored
ignored
ignored
ignored
Erase to EOL
Toggle inverse
ignored
ignored
Erase to EOS
Home & clear
Start ESC
ignored
ignored
Home cursor
ignored

TRS-80 Model 4 BIOS Version 2.99+ Parallel Printer Port device driver

**
* Parallel Port device drivers *
* Input: Dependent on function

Output: Dependent on function

F0B3
F0B5

DB F8
E6 F0

*
*

Check port for busy &/or error - return in A

PPBSY IN
AND

A,(PARSDT)
0F0H

;Read port status
;Isolate status bits

Copyright 1985 by Montezuma Micro/JBO - Page 49

F0B7
F0B9
F0BB
F0BD
F0BE

F0BF
F0C2
F0C3
F0C5
F0C7
F0C9
F0CB
F0CD
F0CF
F0D2
F0D4
F0D6
F0D8
F0DA
F0DC
F0DE
F0E0
F0E3
F0E4
F0E6
F0E7
F0EA
F0EC
F0EE
F0F0
F0F2

F0F4
F0F7
F0F9
F0FA

F0FC
F0FE
F0FF
F101
F104
F105

F108
F10B
F10C
F10E
Fill

F114
F115
F118

EE 30
28 02
3E 01
3D
C9

21 25 Fl
79
FE 20
30 2D
FE 0A
20 0D
CB 46
28 25
3A 24 Fl
FE 0D
28 26
18 1C
FE 0C
20 18
CB 4E
28 14
3A 26 Fl
B7
28 22
47
CD B3 F0
28 FB
3E 0A
D3 F8
10 F5
18 1A

CD B3 F0
28 FB
79
D3 F8

3E 0A
B9
20 07
3A 26 Fl
3D
32 26 Fl

3A 26 Fl
B7
20 06
3A 27 Fl
32 26 Fl

79
32 24 Fl
C9

PPBSY1

XOR
JR
LD
DEC
RET

30H
Z.PPBSYl

A

;Invert negative logic bits
;Go if ready
;Preset for zero return
;Set A to 00H or FFH

+

; Output C to parallel port
• ^ (w ̂

PPOUT

PPOUT1

PPOUT2

LD
LD
CP
JR
CP
JR
BIT
JR
LD
CP
JR
JR
CP
JR
BIT
JR
LD
OR
JR
LD
CALL
JR
LD
OUT
DJNZ
JR

HL.PPDOPT
A,C
20H
NC,PRINT
0AH
NZ.PPOUT1
0,(HL)
Z,PRINT
A.(PPDPRV)
0DH
Z,PPCLF
PRINT
0CH
NZ,PRINT
l.(HL)
Z,PRINT
A,(PPDLCT)
A
Z.PPRLC
B,A
PPBSY
Z,PPOUT2
A.0AH
(PARSDT).A
PPOUT2
PPRLC1

;Point at option bits
;Get character to print
; Is it a control code?
;Go if not
;Is it linefeed?
;Go if not
;Suppress linefeeds?
;Go if not
;Check previous character
;Was it carriage return?
;Exit if so
;Go print the linefeed
;Is this a formfeed?
;Go if not
;Simulate formfeeds?
;Go if not
;Get line counter
;Anything left on page?
;Exit if not
;Set up loop counter
;Wait for printer ready

;0utput a linefeed

;Loop through the page
;Exit

Print the character in C

PRINT CALL
JR
LD
OUT

PPBSY
Z,PRINT
A,C
(PARSDT),A

Wait for printer ready

Print the character

Check for linefeed, count down if so

PPCLF LD
CP
JR
LD
DEC
LD

A.0AH
C
NZ.PPRLC
A,(PPDLCT)
A
(PPDLCT),A

;Set A to linefeed
;Did we just do one?
;Exit if not
;Decrement line counter

; Reset line counter if zero, exit
•

PPRLC

PPRLC1

LD
OR
JR
LD
LD

A.(PPDLCT)
A
NZ.PPOUTX
A,(PPDPGL)
(PPDLCT).A

;Get line counter
;Is it zero?
;Exit if not
;Reset line counter

Save character and exit

PPOUTX LD
LD
RET

A,C
(PPDPRV).A

Save character in DCB

Page 50 - Copyright 1985 by Montezuma Micro/JBO

F119
F11C
F11F
F120
F123

F124
F125

F126
F127

3A 27 Fl
32 26 Fl
AF
32 24 Fl
C9

24 Fl
00
01

PPINIT LD
LD
XOR
LD
RET

PPDPGL)
(PPDLCT) ,A
A
(PPDPRV).A

;Reset line counter

;Kill previous character

; Parallel port DCB

PPDCB EQU
PPDPRV DEFB
PPDOPT DEFB

$
0
1

PPDLCT DEFB
PPDPGL DEFB

0
66

;Previous character
;0ption bits
; 0=Suppress LF after CR
; l=Simulate formfeeds
; 2-7=Reserved
;Line counter
;Page length42

TRS-80 Model 4 BIOS Version 2.00+ Serial Port device driver

. **
; * Serial Port device drivers *
; * Input: Dependent on function *
; * Output: Dependent on function *
. **

F128
F12A
F12C
F12D
F12F

F130
F132
F134
F136
F138
F13A

F13B
F13E
F140
F141
F143

F144
F146
F148
F149
F14C
F14E
F150
F152
F154

F156
F157

DB EA
E6 80
C8
F6 FF
C9

DB EA
E6 80
28 FA
DB EB
E6 7F
C9

CD 44 Fl
28 FB
79
D3 EB
C9

DB EA
E6 40
C8
21 75 Fl
CB 46
28 07
DB E8
E6 80
EE

C8
CB 4E

; Check for input at Serial Port, return status in A
•

SPSTS IN
AND
RET
OR
RET

A,(SERURT)
80H
Z
0FFH

;Get UART status
;Isolate data received bit
;€xit if nothing
;Set status to show input

Input a byte from the Serial Port

,PINP IN
AND
JR
IN
AND
RET

A.(SERURT)
H0H
Z,SPINP
A,(SERDAT)
7FH

;Get UART status
;Anything received?
;Loop if not
;Read data byte
;Mask off parity bit

Output a byte to the Serial Port

SPOUT CALL
JR
LD
OUT
RET

SPBSY
Z,SPOUT
A,C
(SERDAT),A

;Is the port busy?
;Loop until ready
;Get output byte
;0utput it

; Check Serial Port for busy
•

SPBSY IN
AND
RET
LD
BIT
JR
IN
AND
XOR

RET
SPBSY1 BIT

A,(SERURT)
40H
Z
HL.SPDOPT
0,(HL)
Z,SPBSY1
A.(SERRST)
80H
80H

Z
l.(HL)

;Get UART status
;Ready to Xmit?
;Exit if not
;Point to options byte
;Wait for CIS enabled?
;Go if not
;Get secondary status
;Check CTS input bit
; Invert state of CTS *
; Above changed to NOP in 2.22
;Exit if no CTS
;Wait for DSR enabled?

•

Copyright 1985 by Montezuma Micro/JBO - Page 51

F159
F15B
F15D
F15F

F161
F162
F164

F165
F168
F16A
F16C
F16F
F171

F172
F175

F176
F177

F3B5
F3B8
F3BB
F3BF

28 07
DB E8
E6 40
EE 40

C8
F6 FF
C9

3A 76 Fl
D3 E9
D3 E8
3A 77 Fl
D3 EA
C9

72 Fl
C3 65 Fl

55
6C

SPBSY2

JR
IN
AND
XOR

RET
OR
RET

Z,SPBSY2
A,(SERRST)
40H
40H

Z
0FFH

;Go if not
;Get secondary status
;Isolate DSR bit
;Invert state of DSR *
; Above changed to NOP in 2.22
;Exit if no DSR
;Indicate ready state

Initialize Serial Port

SPINIT LD
OUT
OUT
LD
OUT
RET

A,(SPDBDR)
(SERBRG).A
(SERRST).A
A.(SPDCFG)
(SERURT),A

;Set the baud rate
•

;Reset the UART
;Configure primary UART reg

Serial Port Device Control Block

SPDCB
SPDINT
SPDOPT

SPDBDR
SPDCFG

EQU
JP
DEFB

DEFB
DEFB

$
SPINIT
0

55H
6CH

Initialization vector
;Serial Port Options
; Bit 0=Wait for CTS
; Bit l=Wait for DSR
;Baud rate code
;UART configuration

TRS-80 Model 4 BIOS Version 2.99+ I/O routines for drive M

**
Memory drive read routine *

*
*

CD D7 F3
CD ED F3
ED 5B 25 F7
21 DB F9

; * Input: Select parameters in Select Control Block
; * Output: Record moved to (DSBDMA)
. **

MDADDR ;Set up addresses
MDMOVE ;Move data to work buffer
DE,(DSBDMA) ;Point DE at destination
HL.WKBUF ; & HL at source

MDREAD CALL
CALL
LD
LD

F3C2
F3C5
F3C7

F3C8
F3CB
F3CE
F3D1
F3D4
F3D5

01 80 00
ED B0
C9

2A 25 F7
11 DB F9
CD C2 F3
CD D7 F3
EB
1 O
JLO 16

********* ***

* Move a record *
* Input: HL=Source record address *
* DE=Destination record address *
* Output: None - record moved to new location ***

MOVREC LD
LDIR
RET

8C.128 ; for 1 record length
;Move the record

**
* Memory drive write routine *
* Input: Select parameters in Select Control Block *
* Output: Record moved from (DSBDMA) *
**

MDWRIT LD
LD
CALL
CALL
EX
JR

HL,(DSBDMA)
DE.WKBUF
MOVREC
MDADDR
DE,HL
MDMOVE

;Point HL at record
; & DE at work buffer
;Move record to work buffer
;Set up addresses
;Switch for write
;Write record & exit

Page 52 - ©(p) Copyright 1985 by Montezuma Micro/JBO

t
F3ED
F3EE
F3F0
F3F2
F3F5
F3F7
F3F9
F3FA

F3FB
F3FC
F3FD
F3FF
F400

F402
F404
F405

**i
* Memory drive address setup routine *
* Input: Information in Select Control Block *
* Output: A=Map address select bits
* DE=Internal record buffer address
* HL=Record address in alternate memory map *
**

*
*

F3D7
F3DA
F3DB
F3DC
F3DD
F3DF
F3E1
F3E3
F3E5
F3E6
F3E7
F3E8
F3E9
F3EC

21 23 F7
7E
2B
66
2E 00
CB 3C
CB ID
F6 06
07
07
07
07
11 DB F9
C9

MDADDR LD
LD
DEC
LD
LD
SRL
RR
OR
RLCA
RLCA
RLCA
RLCA
LD
RET

HL.DSBSEC+1
A,(HL)
HL
H,(HL)
L,0
H
L
6

;Point HL at sector i
;Page i to A (0 or 1)
;Point to Is byte of sector
;Memory address * 256 to HL

;Divide by 2 to get true
; record address
;Set FXUPMEM, MBIT1
;Rotate into bits 6-4

DE.WKBUF ;Point to internal buffer

F3
F6 8F
D3 84
CD C2 F3
3E 8F
D3 84
AF
C9

**
* Memory drive data move routine *
* Input: A=Address select bits for move *

HL=Source address for move
* DE=Destination address for move
* Output: 128 bytes moved as requested
**

*
*

MDMOVE DI
OR
OUT
CALL
LD
OUT
XOR
RET

KVMOUT
(MEMCTL).A
MOVREC
A,KVMOUT
(MEMCTL).A
A

;No interrupts now!
;Set mapping bits
•.Select alternate map
;Move the record
;Set normal map bits
;Restore normal map
;Clear status for good I/O

TRS-80 Model 4 BIOS Version 2.99* I/O routines for Floppy Drives

F3
3D
28 07
3D
28 3A

**
*
*

* Floppy Disk I/O Driver
* Input: A=Function code
* 1 - Read a sector *
* 2 - Write a sector *
* BC=Track number (B should always be 0) *
* DE=Sector number (D should always be 0) *
* HL=Buffer address *
* IX=DCB for selected drive *
* IY=DPB for selected drive *
* Output: A=Status of operation *
* Bits match WD 1791 FDC conventions ***

FDD DI
DEC
JR
DEC
JR

A
Z.FDREAD
A
Z.FDWRIT

;No interrupts
;Check function code
;1 = Read

;2 = Write

Return INOP status for Floppy Disk Drive

3E 10
B7
C9

FDINOP LD
OR
RET

A,10H
A

;Return RNF error
;Clear Z to set error status

Copyright 1985 by Montezuma Micro/JBO - Page 53

Read a sector trom diSK

F406
F409
F40A
F40D
F40E
F40F
F412
F415
F416

F419
F41C
F41D
F41E
F421

F43C
F43F
F440
F443
F444
F446
F447
F44A
F44D
F44E

F451
F454
F455
F457
F458
F45B

F45C
F45D
F45F
F462

CD 83 F4
C0
CD 19 F4
C8
F8
CD 16 F5
CD 19 F4
C8
CD 0D F5

CD 22 F4
C8
F8
CD 22 F4
C8

F422
F423
F425
F428
F42A
F42C
F42D
F42F
F431
F432
F434
F436
F438
F439
F43B

E5
06 80
CD 4A F5
38 F4
DB F0
A3
28 FB
ED A2
7A
D3 F4
ED A2
18 FA
El
E6 9C
C9

CD 83 F4
C0
CD 51 F4
C8
E6 C0
C0
CD 16 F5
CD 51 F4
C8
CD 0D F5

CD 5C F4
C8
E6 C0
C0
CD 5C F4
C8

E5
06 A0
CD 4A F5
7F F4

3

FDREAD

%

; Read a

FDRD3

; Read a

FDRDSC

FDRDS1

FDRDS2

FDRDS3

9

; Write

FDWRIT

* 'IA! V ' T T O5 •» - v vZ

FDWT3

; Write

FDWTSC

CALL FDBEGN
RET NZ •
CALL FDRD3 ;
RET Z ;
RET M ;
CALL FDJOG ;
CALL FDRD3
RET Z ;
CALL FDRST ;

sector with 3 attempts

CALL FDRDSC ;
RET Z ;
RET M ;
CALL FDRDSC ;
RET Z ;

sector

PUSH HL ;
LD B,80H ;
CALL FDSET :
DEFW FDRDS3 ;
IN A.(FDCCTL) ;
AND E :
OR Z.FDRDS1 :
INI :
LD A,D :
OUT (FDCSEL).A
INI
OR FDRDS2
POP HL
AND 9CH
RET

a sector to disk

CALL FDBEGN
RET. NZ
CALL FDWT3
RFT Z
AND 0C0H
RFT NX.
CAM RjJOG
CALL TOW I 3
Rti Z
CALL FDRST

a ?«rtor. with 3. attempts

CALL FDWTSC
RET Z
AND 0C0H
RET NZ
CALL FDWTSC
RET Z

a sector

PUSH HL
LD B,A0H
CALL FDSET
DEFW FDWTS4

Start the I/O operation
Exit if error
Try to read 3 times
Exit if successful
Exit if inoperative
Jog the head
Try 3 more times
Exit if read OK
Restore the drive

;Try to read the sector
;Exit if it worked
;Exit if inoperative
;Try again
;Exit if OK

Save buffer address
Set up read command
Start the command
Termination address

Read the status
Got a DRQ yet?
Loop if not
Read first byte
Establish wait states
Go into wait state
Read a byte
Keep reading
Restore buffer address
Any errors?
Exit with status

;Start the I/O operation
;Exit if error
;Try to write 3 times
;Exit if successful
;Exit if inop or w/p

;Jog the head
,Try 3 more times
;Exit if write OK
;Restore the drive

;Try to write the sector
;Exit if it worked
;Exit if inop or w/p

;Try again
;Exit if OK

;Save buffer address
;Set up write command
;Start the command
; Termination address

Page 54 - Copyright 1985 by Montezuma Micro/JBO

F464
F466
F467
F469
F46B
F46C
F46D
F46F
F471
F474
F476
F478
F479
F47B
F47D
F47F
F480
F482

DB F0
A3
28 FB
ED A3
7E
23
0E F0
ED 58
E2 6F F4
D3 F3
0E F3
7A
D3 F4
ED A3
18 FA
El
E6 FC
C9

FDWTS1

FDWTS2

FDWTS3

FDWTS4

IN
AND
JR
OUT I
LD
INC
LD
IN
JP
OUT
LD
LD
OUT
OUT I
JR
POP
AND
RET

A.(FDCCTL)
B
Z.FDWTS1

A,(HL)
HL
C,FDCCTL
E,(C)
PO,FDWTS2
(FDCDAT),A
C.FDCDAT
A,D
(FDCSEL).A

FDWTS3
HL
0FCH

;Read the status
;Got a DRQ yet?
;Loop if not
;0utput first byte
;Get the next byte in A

; Point. C at status reg
;Loop for second DRQ

Output the byte
Restore C to data port
Establish wait states
Go into wait state
Write a byte
Keep writing
Restore buffer address
Any errors?
Exit with status

; Select the disk & wait for speed

F483
F486
F488
F48B
F48E

» NOTE
» NOTE

F492
F494
F496
F49A
F49C
F49F
F4A1
F4A3
F4A7

. F4A9
F4AA
F4AB
F4AE
F4AF
F4B0
F4B3
F4B4
F4B8
F4BA
F4BB
F4BE
F4C0
F4C4
F4G5
F4C7
F4C8
F4CB
F4CD
F4CF
F4D1
F4D4
F4D6
F4D9
F4DC
F4DE
F4DF

FD 7E 13
E6 80
DD B6 03
DD 71 0B
FD CB 13 76
h EXBIOS'repl
CD 80 FE 00
28 1C
CB 39
FD CB 13 56
20 03
DD 71 0B
30 0F
F6 10
FD CB 13 5E
28 07
F5
7B
FD 86 0F
5F
Fl
DD 77 0A
79
FD CB 13 6E
28 01
87
,DD BE 08
38 04
DD CB 0A EE
57
DB F0
07
CD 3C F5
3E D0
D3 F0
30 0D
DD 46 05
3E FA
CD 14 ED
CD 3C F5
10 F6
7B
D3 F2

9

FDBEGN LD
AND
OR
LD
BIT

aces the above
CALL
OR
SRL
BIT
JR
LD

FDBEG1 JR
OR
BIT
JR
PUSH
LD
ADD
LD
POP

FDBEG2 LD
LD
BIT
JR
ADD

FDBEG3 CP
JR
SET

FDBEG4 LD
IN
RLCA
CALL
LD
OUT
JR
LD

FDBEG5 LD
CALL
CALL
DJNZ

FDBEG6 LD
OUT

A,(IY+DPBOPT)
80H
(IX+DKDSEL)
(IX*DKDLTK),C
6,(IY+DPBOPT)

;6et drive option bits
; Isolate density
; Combine with select bits
;Save logical track #
;Double-sided disk?

instruction with this:
BIOSEX
Z.FDBEG2
C
2,(IY+DPBOPT)
NZ.FDBEG1
(IX+DKDLTK),C
NC,FDBEG2
10H
3,(IY+DPBOPT)
Z.FDBEG2
AF
A,E
A,(IY+DPBSPT)
E,A
AF
(IX+DKDCSL),A
A,C
5,(IY+DPBOPT)
Z.FDBEG3
A, A
(IX+DKDPTO)
C.FDBEG4
5,(IX+DKDCSL)
D,A
A.(FDCCTL)

FDSEL
A,0D0H
(FDCCTL),A
NC.FDBEG6
B,(IX+DKDSTD)
A, 250
MSDELY
FDSEL
FDBEG5
A,E
(FDCSEC),A

;Call BIOS patch
;Go if not
; Divide track # by 2
;Side 1 same track #?
;Go if not
;Save new track #
;Go if on side 0
;Turn on side 1 select
;Side 1 sectors biased?
;Go if not
;Save select bits
;Get sector #
;Add side 1 bias
;Restore sector #
;Restore select bits
;Save select bits
;Get track #
;Double stepping drive?
;Go if not
;Compute true track #
;Precomp needed yet?
;Go if not
;Turn it on
;True track # to D
;Get controller status
;Ready bit to C flag
;Select the drive
;Reset the FDC

;Go if drive 'running
;Start-up delay to B
;Delay for 1/4 second

;Select again
;Wait for speed
;Get the sector #
;Give to controller

Copyright 1985 by Montezuma Micro/JBO - Page 55

Seek the proper track

F4E1
F4E4
F4E6
F4E7
F4EA
F4EB
F4EE
F4F1
F4F3
F4F6
F4F9
F4FB
F4FC
F4FE
F4FF
F500
F502
F504
F507
F50A
F50C

F50D
F510
F514

F516
F518
F51B

F51D
F51E
F51F
F521
F524
F527
F529
F52A
F52B
F52E
F531
F533
F534
F536
F539

F53C
F53F
F541

F542
F544
F546
F547

DD 7E 09
D3 Fl
3C
CC ID F5
7A
DD BE 07
D2 02 F4
D3 F3
DD 77 09
CD 3C F5
DB Fl
92
28 09
7A
B7
28 02
3E 10
CD ID F5
DD 7E
D3 Fl
C9

FDSEEK LD
OUT
INC
CALL
LD
CP
JP
OUT
LD
CALL
IN
SUB
JR
LD
OR
JR
LD

FDSEK1 CALL
FDSEK2 LD

OUT
RET

A,(IX+DKDCTK)
(FDCTRK).A
A
Z, FDSTEP
A,D
(IX+DKDNTK)
NC.FDINOP
(FDCDAT).A
(IX+DKDCTK),A
FDSEL
A.(FDCTRK)
D
Z.FDSEK2
A,D
A
Z.FDSEK1
A.10H
FDSTEP
A,(IX+DKDLTK)
(FDCTRK),A

Get current track
Give to controller
First access (=FFH)?
Restore the drive if so
Get desired track
Is it legal?
Return INOP if so
Output track to FDC
Save also in DCB
;Re-select the drive
;Get the track #
;Any seek required?
Go if not
;Target track $ to A
Is it zero?
Go if yes
Set up seek command
Seek the track
Get logical track #
Give it to controller

DD 56 09
DD 36 09 FF
18 CB

; Restore the head for I/O retry
• - - _ . xj. -

FDRST
LD

FDSEEK

Jog the head for I/O retry

LD
LD
JR

D»(IX+DKDCTK) ;Current track # to D
(IX+DKDCTK),0FFH ;Force restore

;Restore, seek & exit

3E 58
CD ID F5
3E 68

FDJOG LD
CALL
LD

A.58H
FDSTEP
A.68H

Step the head in 1 track

Now step out 1 track

Perform a step operation

C5
4F
3E 02
CD 14 ED
DD 7E 04
E6 03
Bl
Cl
CD 42 F5
CD 3C F5
DB F0
IF
38 F8
DD 7E 06
C3 14 ED

FDSTEP PUSH
LD
LD
CALL
LD
AND
OR
POP
CALL

FDSTP1 CALL
IN
RRA
JR
LD
JP

BC
C,A
A,2
MSDELY
A,(IX+DKDATT)
3
C
BC
FDCMD
FDSEL
A,(FDCCTL)

C.FDSTP1
A,(IX+DKDSTL)
MSDELY

;Save BC
;Save step command
;Wait 2 ms to be sure
; erase turned off
;Get drive attributes
;Isolate step rate
;Combine with command
;Restore BC
;Issue step command
;Reselect the drive
;Get the status
;Still busy?
;Loop if yes
;Settle time to A
;Del ay & return

DD 7E 0A
D3 F4
C9

Keep disk selected until not busy
•

FDSEL LD A.(IX+DKDCSL) ;Select the driveLD
OUT
RET

A,(IX+DKDCSL)
(FDCSEL),A

Issue a command to the disk controller

D3 F0
3E 14
3D
20 FD

FDCMD OUT
LD

FDCMD1 DEC
JR

(FDCCTL),A
A,20
A
NZ,FDCMD1

;Issue the command
;Set delay counter
;Count down 16 usec
;Loop if not zero

Page 56 - <c)(p) Copyright 1985 by Montezuma Micro/JBO

; Set up for I/O to FDC

F54A
F54B
F54E
F551
F554
F557
F559
F55C
F55F
F562
F563
F564
F565
F566
F567
F568
F569
F56A
F56B
F56E
F570
F572
F574
F577
F57B
F57D
F57F
F580
F583
F585
F587

F588
F589
F58A
F58C
F58F
F592
F595
F598
F59A
F59B

F59C
F5A0
F5A4
F5A8

F5AC
F5B0
FGB4
F5B8

F5BC
F5C0

E5
3A 66
32 58 F9
2A 67 00
22 59 F9
3E C3
32 66 00
21 88 F5
22 67 00
El
E3
5E
23
56
23
EB
E3
D5
DD 56 0A
CB F2
IE 02
0E F3
CD 3C F5
DD CB 04 76
28 02
CB D8
78
CD 42 F5
3E C0
D3 E4
C9

9

FDSET PUSH
LD
LD
LD
LD
LD
LD
LD
LD
POP
EX
LD
INC
LD
INC
EX
EX
PUSH
LD
SET
LD
LD
CALL
BIT
JR
SET

FDSET1 LD
CALL
LD
OUT
RET

HL
A,(0066H)
(NMITMP),A
HL,(0067H)
(NMITMP+lj.HL
A,0C3H
(0066H),A
HL, FDNMI
(0067H),HL
HL
(SP),HL
E,(HL)
HL
D,(HL)
HL
DE.HL
(SP),HL
DE-
D,(IX+DKDCSL)
6,D
E,2
C, FDC DAT
FDSEL
6,(IX+DKDATT)
Z.FDSET1
3,B
A,B
FDCMD
A.0C0H

' (NMICTL),A

;Save buffer address
;Save NMI vector

;Set up new NMI vector

;6et buffer address
;Swap with return
;Get termination address

termination to HL
;Put on stack
;Replace return address
;Set D=Select + bit 6

Set E to DRQ mask
Set C to Data port
Re-select the drive
Is this 8 inch drive?
Go if not
Enable HIT delay
Command to A
Give it to the controller
Enable NMI from disk

E3
AF
D3 E4
3A 58 F9
32 66 00
2A 59 F9
22 67
DB F0
El
C9

; Non-maskable interrupt service routine
• ^̂ ̂ ^

FDNMI EX
XOR
OUT
LD
LD
LD
LD
IN
POP
RET

(SP),HL
A
(NMICTL).A
A.(NMITMP)
(0066H),A
HL,(NMITMP+1)
(0067H),HL
A,(FDCCTL)
HL

;Discard return, save HL
;Turn off NMI enable

*

;Restore NMI vector

;Read final status
;Restore HL

TRS-80 Model 4 BIOS Version 2.00+ Disk tables & parameters

**
* Disk Parameter Headers (DPH) for drives A-D & M *
**

85 F6 DPHA

5B F9
D8 F8

A3 F6

EC F5
40 F7

DPHB

5B F9
F8 F8

Cl F6

01 F6
A4 F7

DPHC

DEFW
DEFW
DEFW
DEFW

DEFW
DEFW
DEFW
DEFW

DEFW
DEFW

XLT0,0000H
0000H,0000H
DBUF.DPB0
CHK0.ALL0

XLT1.0000H
0000H,0000H
DBUF.DPB1
CHK1.ALL1

XLT2,0000H
0000H,0000H

;Drive A parameter header

Drive B parameter header

;Drive C parameter header

Copyright 1985 by Montezuma Micro/JBO - Page 57

.4 -.

F5C8
DB ry ID ro
18 F9 08 F8 DEFW

uour
CHK2,ALL2

F5CC
F5D0
F5D4
F5D8

F5DC
F5E0
F5E4
F5E8

DF F6 DPHD

5B F9 2B F6
38 F9 6C F8

DPHM

5B F9 40 F6
D0 F8

DEFW
DEFW
DEFW
DEFW

DEFW
DEFW
DEFW
DEFW

XLT3.0000H
0000HJ000H
DBUF,DPB3
CHK3.ALL3

0000H,0000H
0000H,0000H
DBUF.DPBM
0000H.ALLM

;Drive D parameter header

;Drive M parameter header

; Offsets used to address Disk Parameter Header fields

0A 00
0C 00
0E 00

DPHXLT
DPHBUF
DPHDPB
DPHCSV
DPHALV

EQU
EQU
EQU
EQU
EQU

0
8
10
12
14

;Skew translation table
; Directory buffer address
;Disk Parameter Block
;Check vector address
;A1 location vector address

* Disk Parameter Blocks (DPB) for drives A-D & M *
**

F5EC
F5EE
F5EF
F5F0
F5F1
F5F3
F5F5
F5F6
F5F7
F5F9
F5FB
F5FC
F5FD
F5FF
F600

F601
F603
F604
F605
F606
F608
F60A
F60B
F60C
F60E
F610
F611
F612
F614
F615

F616
F618
F619
F61A
F61B
F61D
F61F
F620

EC F5
24 00
04
0F
01 •
54 00
7F 00
C0
00
20 00
02 00
12
01
55 F6
80
01
01 F6
24 00
04
0F
01
54 00
7F 00
C0
00
20 00
02 00
12
01
61 F6
80
01

16 F6
24 00
04
0F
01
54 00
7F 00
C0
00

DPB0

DPB1

DPB2

EQU
DEFW
DEFB
DEFB
DEFB
DEFW
DEFW
DEFB
DEFB
DEFW
DEFW
DEFB
DEFB
DEFW
DEFB
DEFB
EQU
DEFW
DEFB
DEFB
DEFB
DEFW
DEFW
DEFB
DEFB
DEFW
DEFW
DEFB
DEFB
DEFW
DEFB
DEFB

EQU
DEFW
DEFB
DEFB
DEFB
DEFW
DEFW
DEFB
DEFB

$
36
4
15
1
84
127
192
0
32
2
18
1
D0DCB
80H
1
$
36
4
15
1
84
127
192
0
32
2
18
1
D1DCB
80H
1

$ '
36
4
15
1
84
127
192
0

Drive 0 parameter block
Records per track
Block shift count
Block mask
Extent mask count
Highest allocation block
Highest directory #
Initial allocation 0
Initial allocation 1
Directory check size
Reserved track count
Sectors per track
Sector size code
Drive DCB Address
Drive option bits
Drive format ID code

Drive 1 parameter block
Records per track
Block shift count
Block mask
Extent mask count
Highest allocation block
Highest directory #
Initial allocation 0
Initial allocation 1
Directory check size
Reserved track count
Sectors per track
Sector size code
Drive DCB Address
Drive option bits
Drive format ID code

Drive 2 parameter block
Records per track
Block shift count
Block mask
Extent mask count
Highest allocation block
Highest directory #
Initial allocation 0
Initial allocation 1

Page 58 - ©(p) Copyright 1985 by Montezuma Micro/JBO

I U<L1

F623
F625
F626
F627
F629
F62A

02 00
12
01
6D F6

01

F62B
F62D
F62E
F62F
F630
F632
F634
F635
F636
F638
F63A
F63B
F63C
F63E
F63F

2B F6
24 00
04
0F
01
54 00
7F 00
C0
00
20 00
02 00
12
01
79 F6
80
01

F640
F642
F643
F644
F645
F647
F649
F64A
F64B
F64D
F64F
F650
F651
F653
F654

3F
IF

DPB3

40 F6
00 02
03
07

DPBM

02
03
04
05
07
09
0A

0D
0F
10
11
13

iy k. i n

DEFW
DEFB
DEFB
DEFW
DEFB
DEFB

EQU
DEFW
DEFB
DEFB
DEFB
DEFW
DEFW
DEFB
DEFB
DEFW
DEFW
DEFB
DEFB
DEFW
DEFB
DEFB

EQU
DEFW
DEFB
DEFB
DEFB
DEFW
DEFW
DEFB
DEFB
DEFW
DEFW
DEFB
DEFB
DEFW
DEFB
DEFB

2
18
1
D2DCB
80H
1

$
36
4
15
1
84
127
192
0
32
2
18
1
D3DCB
80H
1

$
512
3
7
0
63
31
128
0
0
0
0
0
0000H
0
0

Reserved track count
Sectors per track
Sector size code
Drive DCB Address

; Drive option bits
; Drive format ID code

Drive 3 parameter block
Records per track
Block shift count
Block mask
Extent mask count
Highest allocation block
Highest directory #
Initial allocation 0
Initial allocation 1
Directory check size
Reserved track count
Sectors per track
Sector size code
.Drive DCB Address
Drive option bits
Drive format ID code

Drive M parameter block
Records per track
Block shift count
Block mask
Extent mask count
Highest allocation block
Highest directory #
Initial allocation 0
Initial allocation 1
Directory check size
Reserved track count
Sectors per track
Sector size code
Drive DCB Address
Drive option bits
Drive format ID code

7

; Offsets used to address Disk Parameter Block (DPB) fields

14

9

DPBRPT
DPBBSH
DPBBLM
DPBEXM
DPBDSM
DPBDRM
DPBAL0
DPBAL1
DPBCKS
DPBOFF
DPBSPT
DPBSSZ
DPBDCB
DPBOPT
•

DPBDID

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

t

EQU

0
2
3
4
5
7
9
10
11
13
15
16
17
19

i

20

;Records Per Track
;Block Shift factor
;Block Mask
;Extent Mask
; Drive capacity
Directory Maximum
; Initial Allocation 0
;Initial Allocation 1
;Check area size
;Reserved track count
;Sectors Per Track
;Sector Size code
; Drive DCB address
; Drive option bits
; 7=Density (0=S, 1=D)
; 6=Sides (0=S, 1=D)
; 5=Step (0=Norm, 1=2 x)
; 4=Data (0=Norm, l=Inv)
; 3=Side 1 (0=Norm, l=Bias
; 2=Track #(0=Norm, l=Bias
; l-0=Reserved
;Disk format ID #

Copyright 1985 by Montezuma Micro/JBO - Page 59

. **

; * Disk Device Control Blocks (DCB) for drives 0-3 & M *
. **

F655
F658
F659
F65A
F65B
F65C
F65D
F65E
F65F
F660

F661
F664
F665
F666
F667
F668
F669
F66A
F66B
F66C

F66D
F670
F671
F672
F673
F674
F675
F676
F677
F678

F679
F67C
F67D
F67E
F67F
F680
F681
F682
F683
F684

55 F6
C3 FB F3
01

02
0F
28
16
FF

02
0F
28
16
FF

02
0F
28
16
FF

03
04

05
06
07

D0DCB

61 F6
C3 FB F3
02
00
02
0F
28
16
FF

•D1DCB

6D F6
C3 FB F3
04

D2DCB

79 F6
C3 FB F3

D3DCB

EQU
JP
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

EQU
JP
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

EQU
JP
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

EQU
JP
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

$
FDD
01H
00H
2
15
40
22
255
0
0

$
FDD
02H
00H
2
15
40
22
255
0
0

$
FDD
04H
00H
2
15
40
22
255
0
0

$
FDD
08H
00H
2
15
40
22
255
0
0

;Drive 0 DCB
; Driver vector
; Drive select bits
; Drive attribute bits
; Start up delay in 1/4 sec
; Settle time in Ms
; Number of tracks
; Precomp turn-on track
; Current track
; Current select bits
; Logical track #

•Uĵ ^̂ ^̂ ^̂ V̂

Drive 1 DCB
Driver vector
Drive select bits
Drive attribute bits
Start up delay in 1/4 sec
Settle time in Ms
Number of tracks
Precomp turn-on track
Current track
Current select bits
Logical track #

Drive 2 DCB
Driver vector
Drive select bits
Drive attribute bits
Start up delay in 1/4 sec
Settle time in Ms
Number of tracks
Precomp turn-on track
Current track
Current select bits
Logical track #

Drive 3 DCB
Driver vector
Drive select bits
Drive attribute bits
Start up delay in 1/4 sec
Settle time in ,Ms
Number of tracks
Precomp turn-on track
Current track
Current select bits
Logical track #

Offsets used to access Disk DCB fields

DKDDVR
DKDSEL
DKDATT

EQU
EQU
EQU

0
3
4

09
0A

DKDSTD
DKDSTL
DKDNTK
DKDPTO
DKDCTK
DKDCSL

EQU
EQU
EQU
EQU
EQU
EQU

5
6
7
8
9
10'

Driver address
Drive select bits
Drive attribute bits

7=Sides (0=S, 1=D)
6=Type (0=5, 1=8)
5-2=Reserved
l-0=Step rate (0-3)

Drive start-up delay in Ms
Drive settle time in Ms
Number of tracks
Precomp turn-on track
Current track
Current select bits

Page 60 - Copyright 1985 by Montezuma Micro/JBO

DKDLTK EQU 11 ;Logical track

*** .
; * Disk sector translation tables
; * Space reserved for 30 sectors per track maximum *
. **

F685 01 03 05 07 XLT0 DEFB 1,3,5,7,9,11,13,15,17,2
F689 09 0B 0D 0F
F68D 11 02
F68F 04 06 08 0A DEFB 4,6,8,10,12,14,16,18,0,0
F693 0C 0E 10 12
F697 00 00
F699 00 00 00 00 DEFB 0,0,0,0,0,0,0,0,0,0
F69D
F6A1

F6A3 01 03 05 07 XLT1 DEFB 1,3,5,7,9,11,13,15,17,2
F6A7 09 0B 0D 0F
F6AB 11 02
F6AD 04 06 08 0A DEFB 4,6,8,10,12,14,16,18,0,0
F6B1 0C 0E 10 12
F6B5 00 00
F6B7 00 00 00 00 DEFB 0,0,0,0,0,0,0,0,0,0
F6BB
F6BF

F6C1 01 03 05 07 XLT2 DEFB 1,3,5,7,9,11,13,15,17,2
F6C5 09 0B 0D 0F
F6C9 11 02
F6CB 04 06 08 0A DEFB 4,6,8,10,12,14,16,18,0,0
F6CF 0C 0E 10 12
F6D3 00 00
F6D5 00 00 00 00 DEFB 0,0,0,0,0,0,0,0,0,0
F6D9
F6DD

F6DF 01 03 05 07 XLT3 DEFB 1,3,5,7,9,11,13,15,17,2
F6E3 09 0B 0D 0F
F6E7 11 02
F6E9 04 06 08 0A DEFB 4,6,8,10,12,14,16,18,0,0
F6ED 0C 0E 10 12
F6F1 00 00
F6F3 00 00 00 00 DEFB 0,0,0,0,0,0,0,0,0,0
F6F7
F6FB

; »—> End of disk resident portion of BIOS <---«

TRS-80 Hodel 4 BIOS Version 2.00+ BIOS extension for CP/H 2.2 version 2.2x

; * Patch code loaded by EXBIOS *
. **

FE80 ' OR6 CCP+2A80H ;Patch area
•

FE80 FD CB 13 76 BIOSEX BIT 6,(IY+DPBOPT) ;Double-sided disk?
FE84 C8 RET Z ;Exit if not
FE85 D5 PUSH DE ;Save DE
FE86 57 LD D.A ;Save drive select
FE87 FD CB 13 4E BIT 1,(IY+DPBOPT) Alternate sides?
FE8B 28 24 ' JR Z.BIOSX4 ;Return to BIOS if not
FE8D DD 5E 07 LD E,(IX+DKDNTK) ;Track count to E
FE90 7B LD A,E ;Check track size
FE91 FE 28 CP 40 ;Is it other than 40?
FE93 20 08 JR NZ.BIOSX1 ;Go if yes

Copyright 1985 by Montezuma Micro/JBO - Page 61

FE95 FD CB 13 66
FE99 28 02
FE9B IE 23
FE9D 79
FE9E 93
FE9F 30 03
FEA1 AF
FEA2 18 0F
FEA4 FD CB 13 46
FEA8 28 04
FEAA ED 44
FEAC 83
FEAD 3D
FEAE 87
FEAF 3C
FEB0 4F
FEB1 F6 FF
FEB3 7A
FEB4 Dl
FEB5 C9

4,(IY+DPBOPT)
Z.BIOSX1
E,35
A,C
E
NC.BIOSX2
A
BIOSX5
0,(IY+DPBOPT)
Z.BIOSX3

A,E
A
A,A
A
C,A
0FFH
A,D
DE .

»—> End of BIOS patch

BIOSX1

BIOSX2
i

BIOSX3

BIOSX4
BIOSX5

BIT
JR
LD
LD
SUB
JR
XOR
JR
BIT
JR
NEG
ADD
DEC
ADD
INC
LD
OR
LD
POP
RET

Is this 35T SuperBrain?
Go if not
Set track count to 35
Get track #
At end of side 0?
Go if yes
Set Z flag
Return to BIOS
Going inside out?
Go if not
Compute correct track #

;Double track # &
; force side 1
;Save new track #
;Reset Z flag for return
;Restore drive select
;Restore registers
;Back to BIOS

Page 62 - ©(p) Copyright 1985 by Montezuma Micro/JBO

