~ SYSTEM
PROGRAMMER’S
GUIDE .

for the

TRS-80° Model 4/4P :

using

ersion 2.2x

Montezum% Micro CP/M* 2.2

TABLE OF CONTENTS

1. INTRODUCGCTION ..ccoitteiinieeeecreecececcenceccsosessosscssssasesssssssscsssessscsssens 1
2. THE SYSTEM PARAMETER BLOCKoiiiiiiitiieercccecnicenncesscsancs ¢
3.I/O USING THE JOBY TE...ccciitiiiitiiietiieeeieiieesnsccscccssccsesssesssassansons b
4. THE KEYBOARD DRIVER........ feeeeseceensecrncenesnascrsssersottraserssnntonerenas 9
5. THE VIDEO DISPLAY DRIVERcccriiiiiiiiientcreciercsscsccersscssscnss 11
6. THE PARALLEL PRINTER DRIVERcccetiiiiiericrrecncccoscccsscnns 13
7. THE SERIAL PORT DRIVERccouiiiieriiiirenienccnncees ceeeevesesaces voeees 1D
8. THE MEMORY DISK DRIVEriiiieiiiireectererrccsessecessssssosconsss 17
D, DISK I/ uuitiiieeiiinteiiiiceneerencecrsccaseresscosssssessssscassssssccsssssessessssssssens 19
9.1. The Floppy Disk DrIivVer.... . cciiiiiieieiiieiiireceisnsceccesnescsssssossssss 19
9.2. DPB Extensions teeeeectatetenesntansonsarererenrsensnsseserenrensensensraass 19
9.3. DCB Definitions....c.ccccccveveeiienneicncnnen. tevessesseertonnsansesrasssansrsosans 21
9.4. USINE the DiSK DIIVer ..ccciiiiiiiiinnnenenssciensssscoscccscssssssasssacesssss 22
9.5. EXBIOS - EXtending the BIOS ...uuiiiiiiiiiiriirecrseosesscesccssnsenses 23
9.6. The Hard DisKk DrIVer ..cccvieiiiiiiiiiiiiiiiiiiietiecsccsacenconsssvesscssses 23
LO. CP/M BOO T S...ceiiiiiiiiiiiiiietiiittetectesaseseessesscesssesssesssssesssessesassnssons 25
10.1. The Cold BOOUteiiiiiiiiiiititetirereseeesecseesssssesscessesssonssas 25
10.2. The Warm Booteeeiiiiiiiiiiiiiieeeeieieesesscesssesasssossocsssssssrans 25
11. PITFALLS AND TR AP .t tiiiiiiiitttittrtittittesstsessoessssossssessoesccnsas 27
11.1. INTERRUPTS ...coiiiiiitiiitiiietiiitttieresiessresecssssssssssssossensssne 27
11.2. FEATURES UNIQUE TO THE Z80.....ccccectvveercrerconcsnsscensses 27
11.3. RAM USAGE ...ciiiiiiiiiittteteiecsteessesosssssescsssssccssassssassssnss 28
12, IN D E X ..ooiiiiiiiiiiricetrerereeceiercrescesessessssssessesassesecssssensssessossssesnsss 29

e m EF o+ et st i Sl ——————r— - A . - & -

Montezuma Micro CP/M’ System Programmer’s Manual

1. INTRODUCTION

All of the information in this manual is copyrighted by Montezuma Micro, including the source code
listings. The purpose of this manual is to provide you with the information necessary to modify the
BIOS of your own copy of CP/M". Much like the service manual for a car, this document will show
you how the BIOS works, and how you can use your own options with it. It will NOT teach you how
to use CP/M and it will NOT teach you how to write assembly language programs for use with CP/
M. If you bought it for that purpose you will be frustrated and confused. Let us state from the outset
that this manual is for experienced programmers! We absolutely cannot and will not provide any
telephone or written support for any modifications made to CP/M. In short, youare ON YOUR OWN
and if the information you need can’t be found in this manual it simply is not available from us.

Furthermore this manual is applicable to Montezuma Micro CP/M BIOS version 2.2x, where x is the
patch level. When future versions of our CP/M are released the listings and possibly some of the
information will no longer be valid. We make no promises of any kind as to the availability of a similar
manual for future versions, and offer no “upgrades” of any kind on this document.

The BIOS listing which accompanies this manual was created using the 2500 A.D. Z80 Macro As
sembler. This assembler uses Z80 mnemonics, unlike the ASM assembler provided with CP/M which
uses only 8080 codes. Without apology the author admits to a strong bias for the Zilog Z80 mnemonics,
and a strong distaste for the Intel 8080 mnemonics. Only Zilog mnemonics will be used in this manual.

The 2500 A.D. assembler is available from Montezuma Micro, and is highly recommended for Z80
programming.

Well, now that we have the preliminaries out of the way let’s proceed!

©(p) Copyright 1985 by Montezuma Micro/JBO - Pagel

Montezuma Micro CP/M" System Programmer’s Manual

2. THE SYSTEM PARAMETER BLOCK

MOVCPM is a very handy utility which makes it possible to change the size of CP/M so as to reserve
space a the top of memory. Unfortunately this creates a major headache for the programmer who
wants to write utilities to run under CP/M, since it is not possible to know exactly where in memory
each individual copy of CP/M resides. Furthermore some parts of the BIOS may be relocated in the
event of an update, necessitating the up date of all related utility programs.

To solve these problems we have collected all of the “need to know” information into a section of
memory called the System Parameter Block (SPB). The relative location of this block within the
BIOS is guaranteed not to change from one version of the BIOS to the next. Further, any additions
to it will be made to the end so that relative offsets within the SPB will be good in future versions.

AW T LA M AT VT O T A A e mm e s

Location of the SPB within CP/M is very simple. Il is always 48 bytes (0030H) past the Warm Boot
vector in the BIOS. Since the address of the Warm Boot vector always follows the JMP instruction
at memory location 0 the SPB can be found using this simple routine:

LD HL,(0001H) ‘Get Warm Boot vector address
LD BC,0030H :Set up offset to SPB
ADD H1L.,BC :HL: now points to SPB

The remainder of this chapter will deal with the various fields of the SPB. All offsets are gwen in
decimal. Conversion to hex is left as an exercise to the reader.

Offset O '
The first field of the SPB is a single byte which contains the standard system IOBYTE value set by
the CONFIG utility. At each warm boot the contents of this byte are copied to location 3.

Offset 1

Acting as a flag, the contents of this byte tell the BIOS whether to display the CP/M banner after
booting. Any non-zero value will cause the banner to be displayed, while zero suppresses it.

Offset 2

In this byte is stored the total number of disk drives, as set by CONFIG. It is never used by the BIOS,
but may be of use to external utilities.

Offset 3

The current version of the CP/M BIOS is stored here as two BCD digits packed in a single byl;e The
first digit is the release number, which changes only upon a complete rewrite. The second is the
revision level, which changes upon reassembly of the BIOS. In a fit of optimism the BIOS programmer
set this byte to 20H, meaning 2.00. By the time release 2 was ready the revision level had crept up to

2, but the byte was left at 20H. Thus a value of 20H in this byte should be treated as being synonymous
with 22H.

A

Offset 4 '

Access to disk drives in the BIOS is done using a data structure known as the Disk Parameter Header.
It 1s discussed fully 'in the manual provided with your CP/M. To allow for the maximum 16 drives
possible within CP/M (A: through P:) we have built a 32 byte table of DPH addresses within the
BIOS. Whenever a drive is selected via BIOS call XX 1BH its corresponding address in this table is

©(p) Copyright 1985 by Montezuma Micro/JBO - Page3

Montezuma Micro CP/M" System Programmer’s Manual

returned. Unused entries are set to 0000H. The two byte address contained in this offset of the SPB
is the actual base address of the DPH table, i.e. the address of the address of the DPH for A:. By using
relative offsets to this address utility programs may add logical drives to the DPH table. Simply store
the address of the DPH of your logical drive at the corresponding entry in the table. Use extreme
caution with drive M:, however. The BIOS disk read/write routines test for drive M: and transfer
control to special driver coding for that case. Storing the DPH for any other drive in the M: slot will
cause problems.

At boot time the DPH table is filled with zeroes and the slots for A:, B:, C:, and D: are filled with the
addresses of the four DPHs resident within the BIOS. If the system has 128k of RAM the DPH for
drive M: is also added to the table. When the system is booted from a hard disk a patch in the disk
boot causes this table to be overwritten with the configuration specified when the hard disk driver
was installed.

Offsets 6, 8, 10, and 12

These four offsets contain the two-byte addresses of the disk Device Control Blocks (DCB) for each
of four possible floppy disk drives 0 through 3 respectively. The disk DCB, which will be discussed in
depth in the DISK I/0 section, is used to access a particular floppy drive and contains all the physical
characteristics of that drive.

Offset 14

At this offset in the SPB 1s a two-byte address which points to the base of a table of device driver
addresses. This table is used by the BIOS for all I/O except for disk and has been designed to simplify
the installation of custom drivers. See I/0 USING THE IOBYTE for full details.

Offset 16 | |
The base address of the Keyboard Device Control Block (DCB) is found at this offset. See THE
KEYBOARD DRIVER: for information regarding the Keyboard DCB.

Offset 18
'Here is the base address of the Video Display DCB. This data structure is fully explained in THE .
VIDEQO DISPLAY DRIVER . One item of interest in this DCB is the current cursor location.

Offset 20

The base address of the Parallel Printer Port DCB is stored here. For a full explanation of the DCB
see THE PARALLEL PRINTER DRIVER.

™ -.22

3ot contains the base address of the Serial Port DCB. See THE SERIAL PORT DRIVER for
te details.

This is the end of the SPB, at least for now. Any extensions made in future versions of our CP/M
BIOS will be made starting at offset 24, thereby retaining compatibility with programs written for
earlier versions. You are encouraged to use this structure whenever you must “peek”, “poke”, or
othen'vise farkle with the BIOS. Doing so will make your life easier and could help to remove unsightly
warts! -

Page4 - ©(p)Copyright 1985 by Montezuma Micro/JBO

i
1

i
{
¥

Montezuma Micro CP/M" System Progranimer’s Manual

3. 1/0 USING THE IOBYTE

One of the optional features of CP/M 2.2 that we have implemented is the IOBYTE. The IOBYTE
is a set of four two-bit (literally!) fields that can be manipulated to change the assignment of real
devices (Keyboard, Serial Port, etc.) to logical devices (CONSsole, Line PrinTer, etc.). By convention
it resides in memory at location 3 (0003H for hard-core hexaphiles) and is structured like this:

Logical Device ---> LST: PUN: RDR: CON:

Bits Used ---> 7,6 5 4 3,2 1,0
Decimal Binary Physical Device
0 00 TTY: TTY: TTY: TTY:
| 01 CRT: PTP: PTR: CRT:
2 10 L upPt: URL BA'T:
3 11 UL1l:: UP2: UR2: UCI:

The logical devices referenced above are as follows:

LST:The LiS'T device, typically used in CIP/M for hardcopy, is output only. Usually it is assigned to
a printer.

PUN:The PUNch device reveals the origins of CP/M, back when a paper tape reader/punch was the
norm for microcomputers. While such hardware is now relegated mainly to museums and junk yards
we still have this output (only) device to use as we see [it. '

RDR:Like PUN:, the ReaDeR device is a throwback to those golden days of 1k RAM boards and
Tiny BASIC. Use it as you wish for input (only) operations.

CON: Perhaps the most important device from an operational standpoint is the CONsole. It is the
device from which CP/M gets its commands and to which it sends its output. You must be very careful

in making assignments to this device, since mistakes can cause you to be unable to communicate with
CP/M at all!

Now let’s look at the case of physical devices, as defined within our CP/M:

TTY: Another relic from the Neanderthal age of computing is the TeleTYpe. This was a large, noisy
machine consisting of a keyboard and a printer. 1t was able to send and receive data at the blazing
speed of 10 characters per second. We have assigned this device to the Serial Port of the Model 4,
since the original T'T'Y was serial and you could actually connect one to this device if you really wanted
to.

CRT: CRT stands for Cathode Ray Tube and as come to stand for just about any kind of terminal

using video output. We have defined the CRT to be the Keyboard of the Model 4 on input and the
Video Display on output.

PTP:Since there is no Paper Tape Punch on the Model 4 we have assigned this device to the Video

Display. You could, of course attach a true paper tape punch to that port, but if you think about this
sort of thing often you really ought to get professional help.

©(p) Copyright 1985 by Montezuma Micrc, BO - Pageb

Montezuma Micro CP/M" System Programmer’s Manual

- PTR:The Paper Tape Reader falls in the same category at the PTP. Since there (thankfully) is no |
such device on the Model 4 we use the Keyboard.

LPT:This device is the Line PrinTer, which could be either a serial or a parallel device. Since we
already have T'T'Y: for serial output LPT: is assigned to the parallel port. It is, by nature, output only.

UP1:UP2: UP1 and UP2 are user-defined punch devices. The BIOS maps both of these devices to a
null driver which does nothing, but is never busy and will not hang up the system if used. Both of
these devices are available for user- written drivers.

UR1:UR2: Like UP1 and 2 the UR1 and UR2 drivers are user-defined, but these are reader devices.
The BIOS, as shipped, has both devices assigned to a null driver which provides only the end-of-file
character Z as input, but will not hang up the system. Both are available for use with user-written
drivers.

UL1: The UL1 device is a user-defined line printer. It is, by nature, output only and is assignable
only to the LST: logical device. Interfacmg of special output devices, e.g. a plotter can be done using
this device. As shipped this device is assigned to a null driver.

UC1:UC1 is the user-defined console device. If implemented it must provide both input and output
capability. Unlike other user-defined devices, this one is preassigned to the Keyboard driver for input
and the Video Display driver for output. This was done so that there would be no nasty loss of control
should the device be accidentally assigned.

BAT:In olden times when computers were slow and 1/0 devices were even slower it was common to
set up a ‘“‘batch” of instructions for the machine, start it up, and leave for a two- week vacation. We
have implemented the BATch device faithful to its original use. When input is taken from BAT: it
actually comes from whatever is assigned to the RDR: device. Output to BAT: actually goes to the

LST: device. As you can see BAT:is not a physical device, but merely a switch to change the assign
ment of CON:.

Now that we have seen just what devices are available, how do we go about actually installing a driver
for one? Obviously you must first write the driver. What it does it up to you, but there are some
conventions that must be followed if the driver is to work properly in CP/M. At minimum it must
provide the following four functions:

Input Status

No parameters are required. If the device has input avallable it should return OFFH in the A register,
otherwise return 0.

Input Data

A byte of input is read from the device and returned in the A register. If no input is available this
routine must wait until it is.

Output Data

The C register contains the byte of data to be output to the device. No value is returned to the caller
after output.

Page6 - ©(p) Copyright 1985 by Montezuma Micro/JBO

Montezuma Micro CP/M" System Programmer’s Manual

Output Busy |
The output device is tested for a busy condition. If it is busy a value of 0 is returned in the A register.
Ready is indicated by a return of OFFH in the A register.

Of course your device may not actually need all of the above routines, especially if it is input-only or |

output-only. Unused routines should be replaced with null driver code, so as to prevent problems
should a calling routine do something stupid. A sample null devmé driver can be found in the BIOS
listing.

" Installation of a driver is not difficult. First you need to find a plaé_ce in RAM to hold the driver. If it

replaces an existing CP/M driver you may want to load it over the existing driver. Be sure that you
don’t overwrite other code if you do this! The safest method is t6 locate the driver either above or
below CP/M. To load it above CP/M use MOVCPM to create a smaller system. This is preferable to
loading it below CP/M, since that method makes the driver vulnerable to being destroyed by programs
which use all of available memory. Once you have located the driver in RAM it is necessary only to
install the addresses of the above four routines in the proper place within the Device Driver Address
Table in the BIOS. The base address of this table can be obtained from offset 14 in the System
Parameter Block (SPB) discussed previously. Each entry in this table consists of four two-byte ad
dresses arranged in the following order:

Address of Input Status routine
Address of Input Data routine

Address of Output Data routine
Address of Output Busy routine

Each device holds a particular entry in the table. The devices and their respective offsets are as follows:

Device Offset Device Offset Device Offset
TTY: 0 CRT: 8 UC1: 16
LPT: 24 UL1; 32 PTR: 40
URI: 48 1IR2: 56 PTP: 64
UP1: 72 tiP2: 8()

These offsets will be held constant in future versions of CP/M. It is unlikely that any new devices
will be added, but should that happen the new devices would be added after all existing ones.

©(p) Copyright 1985 by Montezuma Micro/JBO - Page?7

P iy, gl | iyl Mt s ekt - - C el e

Montezuma Micro CP/M" System Programmer’s Manual

4. THE KEYBOARD DRIVER

The console device CON: is CP/M'’s main source of input other than disk. Most of the time the Model

4 keyboard serves as the primary input device for CON:.

At first glance the keyboard looks like a fairly simple device to interface with. Just scan the rows and
see which key is being pressed, then return the ASCII value for that key. Unfortunately the problem
is not that simple since you have to contend with SHIFT, CTRL, rollover, repeating keys, function
keys, debounce, and a whole lot of other annoying stuff. Our methods for dealing with this chaos may
be found in the keyboard driver portion of the BIOS listing. The purpose of this section of the manual
is not to explain how the driver works, but rather to discuss the Keyboard Device Control Block
(DCB)

The various fields of the Keyboard DCB will be discussed using the field name as shown on the BIOS
listing, as well as the decimal offset that the field has from the base of the DCB.

KBDBUF - Offset O

When the Keyboard driver is called to check for pending input it must scan the keyboard to see if a
key 1s depressed. Since the status routine does not return the actual key value, but only a flag, it is
possible that the key will no longer be depressed when the input routine is called to read it. To prevent
that from happening any key that is found will be stored in this buffer. On future calls to the status
routine if anything is in the buffer a OFFH will be returned without doing another keyboard scan.
Likewise the input routine always checks the buffer before scanning the keyboard for input. It is
important to note that his buffer is for only one character and is not in any sense a type-ahead buffer.

KBDFKP - Offset 1
The function keys can be set up to deliver from 0 to 8 characters when pushed. Since only one char-
acter is transmitted on each call to the driver a way is needed for the driver to “remember’ what the

rest of the characters are. This is done using this two-byte pointer, which contains the address of the
next character to be used as input.

On every call to the keyboard input routine KBDFKP is checked for a non-zero value. If it is found
to be non-zero then a character is loaded from the address in KBDFKP. As long as the loaded char-
acter is not zero it is returned to the calling program just as though it had been typed. When a zero
value 18 read KBDFKP 1s set Lo zero and the driver resumes keyboard scanning.

Although the function keys are located within the Keyboard Driver in the BI1OS, it is possible to set
KBDFKP to point Lo strings of “key input” in other parts of memory. This is exactly the technique
used by Monte’s Window to return Calculator results as keyboard input. There is no limit to the
length of the pseudo keyboard input, but the last byte must be 0.

KBDHST - Offset 3
This 8 byte field is used to hold the results of previous scans of each of the 8 keyboard row lines. The
information is used to lock out keys that were depressed on previous calls to the driver. Since these

fields are necessary for the correct implementation of rollover and repeat it is strongly recommended
that you don’t mess with them!

©(p) Copyright 1985 by Montezuma Micro/JBO - Page9

Montezuma Micro CP/M° System Programmer’s Manual

KBDPKR - Offset 11

KBDPKI - Offset 12

KBDDLY - Offset 14

KBDRPT - Offset 16

These fields are all used in controlling the automatic repeat of a key held down more than a few
seconds. Tweaking and other perverse manipulation is likely to have bad results!

KBDCLF - Offset 18 ,

'The Caps Lock Flag is used by the driver to remember whether the keyboard is locked into all upper
case or not. Only bit 0 of this byte is actually used but care should be used to keep the other 7 bits set
to 0. A value of 0 in this byte indicates that the keyboard is operating in normal upper/lower case,
while a value of 1 says that it is locked into all-caps. This flag may be changed so long as the only
values used are 0 and 1.

KBDCOD - Offset 19

All of the alpha keys are decoded “on the fly ” using the scan information to generate ASCII codes
immediately. This technique is not easily applied to the numeric and special function keys, so those
are decoded using a table. The Keyboard Decode Table is divided into three entries of 24 bytes each.
Each entry defines the following keys in this order:

0 ! 2 3 4 fy 6 7
8 9 : : . - . /
ENTER CLEAR BREAK UP DOWN LEFI' RIGH'T SPACE

The first entry defines the above keys used alone, i.e. without either SHIFT key or the CTRL key.
Definitions for SHIFT in combination with these keys are in the second entry, and the last entry is
for CTRL definitions. Obviously you can change these key definitions te virtually anything you want.
We do offer a few recommendations. The ENTER key should produce a carriage return whether
SHIFTed. CTRLed, or used alone. That’s why our utilities don’t allow it to be changed. It would
probably also be a good idea for the normal and SHIFTed keys to produce the character inscribed on
the keytop. Beyond that, have fun!

KBFKD - Offset 91 -

The Fusictiun Key Definition table contains the strings to be issued when any of the nine possible
function key combinations is selected. This table has nine entries of nine bytes each. The first three
correspond to unshifted F1, F2, and F3, while the next three are used for SHIFT/ F1, SHIFT/F2,
and SHIFT/F3. CTRL/F1, CTRL/F2, and CTRL/F3 are defined in the last three entries. Each def-

inition string may be from 0 to 8 characters long, but the last byte in the string MUST be 0. That’s
the signal for the Keyboard driver to stop.

This concludes the Keyboard DCB. Since this data structure is used only by the BIOS Keyboard
driver it need not be present for Keyboard drivers that you may write yourself. However the last two
fields (KBDCOD and KBFKD) must be present at those offsets if the CONFIG utility is to be used
with your driver. Field KBDFKP must be present for Monte’s Window to work, and that product
may not work at all if your Keyboard driver is not physically located in the BIOS memory space.

Page 10 - ©(p) Copyright 1985 by Montezuma Micro/JBO

rocd

\\w

Montezuma Micro CP/M’ System Programmer’s Manual

5. THE VIDEO DISPLAY DRIVER

The Video Display driver uses the Model 4 memory-mapped Video Display to emulate a Lear-Siegler
ADM-3A terminal. Most CP/M compatible software expects the CON: device to be an ASCII terminal
and the ADM-3A is one of the more common terminals in use, so this arrangement works well. At all
times except when it is actually beig updated the Video Display RAM is kept switched out of the
memory map. This allows BIOS code to occupy the same spaqe and reduces the overall memory
overhead on the system. |

Operation of the Video Display Driver is uncomplicated and should be easy to follow in the BIOS
listing. The main purpose of this section is to explain the Video Display Device Control Block (DCB).
This discussion will use the field names from the listing and their offsets from the base of the DCB.
As mentioned earlier the address of the Video Display DCB can be obtained from the System Param-
eter Block (SPB).

VDDCHR - Offset O

Depending on the state of the Video Display the cursor character may be either an inverse-video form
of the character under it or a wedge-shaped character. This field keeps the character under the cursor
so that the driver may easily replace it when moving the cursor.

VDDROW - Offset 1

In this byte is stored the current cursor row address, which will have a value varying from 0 to 23.
The top line of the screen is row 0. Programs may interrogate this field to “find” the cursor on the
screen, but should not write to it as a means of moving the cursor. If you do the Video Display driver
will not be able to erase the old cursor and you will soon have a display full of cursors with only one
of them being real.

VDDCOL - Offset 2
The current cursor column address is stored in this byte. It will range from 0 to 79 with 0 being the
leftmost column on the screen. As with VDDROW this field should be considered “read only”.

VDDINYV - Offset 3 :
Data may be displayed in normal video (white characters on black background) or inverse video (black
characters on white background). The current video mode is kept in bit 7 of this byte. A value of 0

means normal video, while 1 (80 hex) means inverse. No other value should ever be put in this byte
except 0 and 80H.

VDDESC - Offset 4

VDDESX - Offset 5 .

These fields are used in processing the ESCape sequence used for cursor positioning. They provide
no useful information to external programs and should never be modified.

VDCXAT - Offset 6

This table is a series of 32 byte entries that correspond to the control codes from 0 to 31 (00H to
1FH). Originally the table consisted of two-byte addresses of service routines to process the various
control codes. During the final stages of implementing release 2.00 of CP/M, though, the bytes got
very scarce and this table was converted to 32 one-byte offsets in a desperate attempt to recover space.
'This makes it somewhat unstable for future versions, since it cannot span a 256 byte RAM boundary,
and it should not be counted on in subsequent releases.

©(p) Copyright 1985 by Montezuma Micro/JBO - Pagell

Montezuma Micro CP/M° System Programmer’s Manual

The reason for using the table was so that any unused video control codes could be assigned as du-
plicates of existing codes to possibly provide compatibility with other computers. In particular the
Kaypro series can be closely emulated in this way. When using this table the offsets which are defined
should be considered read-only, while the others may be modified as needed. Don’t bank on this table
working the same in future generations.

This concludes the Video Display DCB. You may replace the entire Video Display driver with one of
your own design, but be advised that Monte’s Window may not function correctly if the driver is not
located in BIOS RAM space. Since part of the BIOS code resides in the Video RAM space you must
also switch the Video RAM in and out of the map as the existing driver does.

Page 12 - ©(p) Copyright 1985 by Montezuma Micro/JBO

o B ¢ R el A —TE—————

a4 R 4 o — A ————— — =

Montezuma Micro CP/M" System Programmer’s Manual

6. THE PARALLEL PRINTER DRIVER

The Model 4 computer is equipped with a Centronics-compatible parallel printer port. Our CP/M
BIOS provides a driver for this port with some options that are contained in a Device Control Block
(DCB). Operation of the driver is quile simple and should be apparent from the BIOS listing. The
purpose of this section is to describe the DCB used for this port. Each field of the DCB and its offset
follows.

PPDPRYV - Offset 0

The character last output to the printer is kept here. This is needed whenever a linefeed is output,
since we may not wish to output it at all depending on what went before. Manipulating this byte
probably serves no useful purpose to an external program.

PPDOPT - Offset 1

All options set by the CONFIG utility are stored here. At present there are only two options. Bit 0,
if set to 1, indicates that linefeeds which follow carriage returns are not to be output. Setting this bit
to O causes all linefeeds Lo be output normally. Bit 1 is used to control the simulation of the formfeed
character (OCH). For printers which do not recognize that code setting this bit to 1 will cause it to
he simulated by repeated linefeeds. T'o do this the page length in lines must be know, along with a
count of how many lines have been printed already. T'hat information is kept in the followmg two
fields. Bits 2 through 7 of this byte are not, as yet, used but are reserved for future use.

PPDLCT - Offset 2
This contains the count of the number of lines left to print on the current page. It is decremented
each time a linefeed is sent to the driver, even if the linefeed was not actually performed. Unless bit

1 of PPDOPT is set this field serves no purpose. It is reset to the value in the next field after each
Warm Boot.

PPDPGL - Offset 3

The number of lines on one page is kept in this byte. Unless changed by CONFIG the default is 66,

which is a standard eleven inch page at six lines per inch. At Warm Boot and end of page time this
value is loaded into PPDLCT.

There are no more fields in the Parallel Printer DCR I you choose to replace this driver you may
choose to use the existing DCB just so you can have access to the CONFIG settings.

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 13

Montezuma Micro CP/M’ System Programmer’s Manual

7. THE SERIAL PORT DRIVER

The Serial Port on the Model 4 provides a standard RS-232C interface for external devices. Unfor-
tunately the only thing standard about RS-232C seems to be which lines are used for data and ground.
All others tend to change from one manufacturer to another. We have attempted,to create a driver
that will deal with as many different configurations as possible, but it is by no means comprehensive.
In this section we will describe how the DCB is used. Operation of the driver, which is quite short,
should be apparent from the BIOS listing. As with all the other drivers in this manual, each field is
listed by name and offset.

SPDINT - Offset O

This three-byte field is actually an executable Z-80 instruction. It contains a JuMP (opcode C3H) to
a routine which will initialize the Serial Port and return. We had to provide for this capability since
a change in Serial Port parameters almost always requires that the port be reinitialized. At this time
this routine is used by CONFIG and MODEM?7 (version 7.31). The initialization routine must end
with a RET instruction (C9H).

SPDOPT - Offset 3

All of the options for the serial port driver are contained in this byte as bit flags. Bit 0, if set, tells the
driver not to output data until the CTS (Clear To Send) line goes true. Similarly bit 1 is used to
suspend output until DSR (Data Set Ready) becomes true. Bits 2-7 are reserved, but not in use at
this time. The CTS and DSR lines of the Serial Port have presented somewhat of a problem for many
users. On output the RT'S (Request To Send) and DTR (Data Terminal Ready) lines must be inverted
by the software. Since CTS and DSR are essentially the same signals coming from the other end of
the RS-232 link we also inverted them before testing. This caused problems for many users, especially
those with serial printers that use the lines for handshaking. To correct the problem we came out
with version 2.22. The only change in this version from 2.21 was the removal of the XOR 80H fol
lowing SPBSY in the Serial Port driver, as well as the XOR 40H following SPBSY1. These two -
instructions were removed by storing two bytes of zero (the NOP instruction) over the XORs.

SPBBDR - Offset 4
A single byte containing the code Lo be output to the baud rate generator is stored here. It is actually

output when SPDINT is called. See the Model 4 Technical Reference Manual (any version) for
a list of the codes. -

SPDCFG - Offset 5

When SPDINT is called the byte' in this field is output to the UART control register to configure it.
As with SPBBDR you can get the codes from the Model 4 Technical Reference Manual.

That’s all there 1s to the Serial Port DCB. Although we do have the hardware handshake problem
addressed with this driver, it does not handle the common XON-XOFF software protocol used by

many devices. In any future revision this option would have a high priority. It was omitted due to
RAM constraints.

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 15

<‘; v a

Monteiuma Micro CP/M’" System Programmer’s Manual

8. THE MEMORY DISK DRIVE

One of the features added in release 2 of the CP/M BIOS was the enabling of the Memory Disk (Drive
M:) automatically at boot time. In release 1 the driversfor the Memory Disk were not part of the -
BIOS, but were loaded externally below the CCP. This was a messy implementation since the CCP
then had to remain resident, resulting in a smaller TPA, and the system configuration could not be
saved using CONFIG. By moving the drivers into the BIOS both problems were solved.

During a CP/M Cold Boot (RESET button) a test is made to see if the system has 128k of memory
installed. If it does the 64k expansion RAM is filled with E5H bytes to make it appear to CP/M as a
blank disk, and the DPH for drive M: is installed in the DPPH table. When no extra RAM is present
the entry in the DPH table for drive M: is simply left zero-filled.

Several users have.requested the ability to leave drive M: in an uninitialized state, so that data could
be preserved from one boot to another, or even from one DOS to another. Of course this can only
happen if power has been constantly turned on between boots. By patching a RET instruction (C9H)
into BOOT2 in the BIOS you can prevent drive M: from being initialized. However this leaves no
way to ever get it initialized, which must be done when the system is first powered up. In future
revisions we will probably provide for drive M: to be preserved if we can establish that it contains a
‘flag showing that it was set up correctly.

Other users have asked that drive M: be permanently disabled and not initialized at all. This can be
done simply by changing the JR NZ (opcode 20H) at location EAS8BH on the BIOS listing to JR
(opcode 18H). Here, too, we will consider implementing this capability on future versions.

Although the actual drivers for reading and writing to drive M: are quite short they may not be readily
understandable. The problem is the “magic” that occurs when the expansion RAM is switched in and
out of the memory map. We used a special 128 byte buffer in the BIOS to hold records on their way
to or from drive M:. After calculating the expansion bank and RAM address of the desired ‘“sector”
the required bank is switched into the map at location 0000H. The transfer is made using the BIOS
buffer, and the bank is switched back out. Because the first 32k is involved in this the BIOS can

NEVER reside in any part below address 8000H. In other words it must always be in the top 32k of
RAM.

This section on the RAM disk has been included mainly for the curious. It is not recommended that
any tinkering be done on this driver. Those who choose to do so anyway should be warned that some
products, notably Monte’s Window, may fail miserably if the RAM disk is farkled.

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 17

Montezuma Micro CP/M’ System Programmer’s Manual

9. DISK 1/O

The code to control the disk drives is one of the main parts of the BIOS. CP/M is a disk-based
operating system and makes frequent use of disk drives. Floppy disks are standard on the Model 4/
4P, and you may also optionally attach a hard disk drive. Code for the floppy disk is an integral part
of the BIOS, but hard disk drive require the installation of a separate driver. Since this driver takes

1k of space it is necessary to reduce the Temporary Program Area (TPA) of CP/M by 1k with
MOVCPM to make room for the additional code.

Although both types of disk drivers will be discussed in this section primary emphasis will be on the
floppy driver. No listing is provided for the hard disk driver since the code is very much unique to
the type of hard disk drive used. The hard disk drive DCB will be explained in full.

9.1. The Floppy Disk Driver .

The standard disk Model 4/4P comes with two 40 track, single- sided disk drives, and can be equipped
with two more external drives. One of the primary goals of the BIOS was to support any combination
of disk drives and as many CP/M disk formats as possible. In this section we will describe the data
structures used for disk I/O as well as the operation of the Floppy Disk driver 1itself.

Access to disk drives in' CP/M is made using the Disk Parameter Header (DPH) and the Disk Pa
rameter Block (DPB). Both of these structures are explained fully in David Cortesit’s book Inside
CP /M, which you got with your copy of CP/M. Our version of CP/M adds a few bytes to the end of
the DPB and creates a new data structure called the Disk Device Control Block (DCB).

9.2. DPB Extensions

The standard CP/M DPB is 15 bytes long. Our additions fields follow the standard ones, preserving
the original offsets. The added fields are:

DPBSPT - Offset 15

This byte contains the number of real sectors per track, NOT the number of 128 byte CP/M sectors

per track. It is used mainly by external programs such as DUP who need to know this value for
formatting purposes.

DPBSSZ - Offset 16

In this byte is stored a code which indicates the true size of a physical disk sector. Only the four IBM
standard sizes are supported, using the following values:

00 = 128 bytes per sector
01 = 256 bytes per sector
02 = 512 bytes per sector
03 = 1024 bytes per sector

The value in this field is used both externally, mainly for formatting, and internally, in sector
deblocking.

©(p) Copyright 1985 by Montezuma Micro/JBO - Pagel9

Montezuma Micro CP/M’" System Programmer’s Manual

DPBDCB - Offset 17 ,

This two-byte address points to the Device Control Block (DCB) of the physical disk drive assigned
to this logical disk drive. By using a pointer, instead of putting the actual drive parameters in the
DPB, we can assign two or more to the same physical drive. This saves trips to CONFIG when you
need to use several different disk formats at the same time.

DPBOPT - Offset 19 |
A collection of bit flags is stored in this byte. These lags are normally set by CONFIG when estab
lishing a format. Bit assignments are as follows: '

7: Drive dengity
0=Single, 1=Double
6: Drive sides
0=Single sided, 1=Double sided
5: Drive stepping
O=Normal, 1=Double step (on 80 track drive)
4: Data status
0=Normal, 1=Inverted (Superbrain)
3: Sector numbering on double-sided drive
O0=Same numbers on each side of disk
1=Side 1 continues where side 0 left off
2: I'rack numbering on double-sided drive
O="Track numbers sanie on each side
1=Even tracks on side 0, odd tracks on side 1
1: Side selection on double-sided drives
O0=Tracks map on alternating sides
1=Tracks map first on side 0, then on side 1
0: Track usage on side Vi bit Uis set Lo)
O="I"racks run ifron: track 0 to inneraost track
I =Tracks run from innermost irack back to track O

1 is our hope that these bits provide the means to aveess e oo, toosodter how strange. Bits O
and Lwere imitially unused, due oo s Doty foavibe o oL OS5 crammer that all double-
sided formats alternated froro sidc 1o e P00 oy e s hesher toel Thas was particularly
ernbarrassing since one of our carbor coeia,e 0 PO o aioong the oces that didn’t follow this
paticrn, As a result the necessary codde o0 B0 b B condion g e i o of the BIOS and had to

L ol

P
-
i

bhe added later using a patceh prop e cailoa 707740

L}
ey

Most of the bits in the byte are used b the cosi drovee i the 81 IS, Ulse evtreme care in setting them,

e the driver does not blindly o VO o o cbcted teacks cead cctors, bue eather makes decisions
bhased on the parameters passed to b and i 500 b v tha b

DPBDID - Offset 20

This last byte of the DPB 1s used to keep track of what format has been assigned to a drive. A value
of zero is used to signal that the drive is not a tloppy disk. although the floppy disk driver pays no
attention to this field. Values from 1 to 128 refer to entries in the DISK.FDF file. Since that file is
subject to change this bylte may become unexpectedly obsolete and point to the wrong format defi-
nition. However BIOS space is very tight, and thi- byte is used by DUP and CONFIG only to extract
the format description for the drive, so the danger is small.

Page 20 - ©(p) Copyright 1985 by Montezuma Micro/JBO

SRR ———

Montezuma Micro CP/M’ System Programmer’s Manual

9.3. DCB Definitions

There are four Disk DCBs, one for each of four possible physical éirives on the Model 4. Conceivably
one could add more, but it would serve no practical purpose. Since the DCB is assigned to a logical
drive by a pointer in the DPB it is possible for one DCB to serve:multiple logical drives.

DKDDVR - Offset O '_

This first field in the DCB is actually a 3 byte Z80 JP instruction. The first byte is 0C3H, the opcode
for JP, followed by the address of the disk driver. We used this technique so that it would be relatively
easy to add other drives to the system, such as hard disk drives.

DKDSEL - Offset 3

Each of the drives on the Model 4 has a unique select address, indicated by setting one of the four

low order bits. Only one bit should be set in this byte, corrésponding to the physical address of the
drive.

DKDATT - Offset 4
In this byte we use bit flags to keep track of the physical attributes of the drive. Bit assignments are:

7: 0=Single sided drive

1=Double sided drive
: 0=5 1/4 inch drive

1=8 inch drive
: Reserved
: Reserved
: Reserved
: Reserved
1,0: Drive step rate code

0=6 ms, 1=12 ms, 2=20 ms, 3=30 ms

=

DO QO o, O

'These bits are normally set by the CONFIG utility.

DKDSTD - Offset 5

This byte contains the start-up delay time for the drive in quarter seconds. It is arbitrarily set at 2,
which gives 1/2 second of delay. This byte cannot be set by CONFIG, but must be set using DDT.

DKDSTL - Offset 6

After a seek operation it is necessary to give the head time to settle before attempting to read or write.
The required settle time i milliseconds is stored here, initially set at 15. This byte cannot be changed
except by direct patch.

DKDNTK - Offset 7

The number of tracks that a drive can physically access is stored he;'e. The driver will not step to any
track beyond this limit.

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 21

Montezuma Micro CP/M*® System Programmer’s Manual

DKDPTO - Offset 8

Since the disk controller in the Model 4/4P has write precompensation controlled by software the
driver must know when to turn it on. The value is not arrived at scientifically, but more by divine
inspiration. In his experience the author has not had any problems using half the number of tracks
plus 2, so that “magic”’ number is used here. :

DKDCTK - Offset 9
With the potential for up to four drives in the system it is necessary for the driver to reset the current

track in the disk controller when changing drives. The current track value is stored here, and is -

normally not written to. One exception is at cold boot time when OFFH is written in this field for
each DCB. A value of OFFH forces the driver to restore the drive prior to doing any disk 1/0.

DKDCSL - Offset 10

In addition to selecting a disk drive the hardware drive select register also sets the density, write
precompensation, and side for the drive being accessed. Once all this information has been collected
it is stored here for “refreshing ”’ the drive select register. '

DKDLTK - Offset 11

Most of the time the track number recorded on the disk will correspond to the track number that the
drive read/write head is positioned over. On those occasions where this is not the case, e.g. an 80 track
drive used with a 40 track format, this byte holds the logical track that is expected on the disk.

Although this DCB is used only by the BIOS Floppy Disk Driver and the CONFIG utility, it should
not be changed. For other disk drivers you may want to create a DCB which meets the requirements
of the drive. This was done when adding hard disk drives to CP/M.

9.4. Using the Disk Driver

It is quite possible to use the BIOS Floppy Disk Driver in external programs. The driver is capable
of reading or writing a sector, but does not contain code for more exotic functions such as format.
The calling setup is as follows:

A Contains function code
1 = Read sector
2 = Write sector

BC Contains track number (B should always be 0)

DE Contains sector number (D should always be 0)
This is the actual sector, 1.e. interleave must
already be figured before calling the driver.

HL Contains address of data buffer

IX Contains address of DCB for selected drive

IY Contains address of DPB for selected drive

On return the A register contains the status read from the 17xx disk controller status register. All
non-error bits are masked off so only error conditions need be checked for.

Page 22 - ©(p) Copyright 1985 by Montezuma Micro/JBO

@

&

Montezuma Micro CP/M’ System Programmer’s Manual

When using this driver on double-sided disk drives you must be aware that the controller will deter-
mine for itself what track, sector, and side to access. This decision will be based on the rules established

in field DPBOPT of the DPB pointed to by the IY register. Study this field carefully and set your
track and sector numbers accordingly.

9.5. EXBIOS - EXtending the BIOS

As mentioned earlier all possible methods of accessing a disk in CP/M were not handled in the original
BIOS. When this fact became known it was not possible to fix the problem with a simple patch due
to the fact that the BIOS filled all but 3 bytes of the two tracks originally reserved for the system.
The idea of adding another reserved track was rejected, due to the potential problems that it could
cause for existing users. Therefore we decided to create a small program that would install the fix into
BIOS memory after the system was booted, since it would remain in place until the next full reset.

The instruction where EXBIOS is “hooked” in is shown in the listing of the Floppy Disk Driver,
after the label FDBEGN. At the end of the listing the code for the BIOS extension is given. Note that
the CONFIG utility knows about EXBIOS and will remove it before saving the configuration to disk.
This must be done since the portion of memory that the extension resides in will never be saved in
the two reserved tracks. In the next revision this code will be absorbed back into the BIOS where it
belongs. 1

9.6. The Hard Disk Driver

As good as CP/M is, the use of a hard disk drive makes it even better. With disk space in the millions
of bytes instead of thousands you can have all of your favorite software available at once. Even better,
programs load many times faster and all disk 1/0 is generally faster.

Like all good things, this convenience carries a price. Since a hard disk drive is not a part of the
standard Model 4/4P computer it must be purchased separately. There are dozens of possible config-
urations, so the code to access the hard disk cannot be economically contained in the BIOS.
MOVCPM is used to make a smaller CP/M (no larger than 63k) so that the extra space at the top of
memory can be used for the hard disk driver code.

Montezuma Micro offers hard disk drivers for a broad range of hard disk drives, and the code varies
according to the type of controller and drive used. For the convenience of external programs we have
kept the DPB for hard drives the same as for floppies. The only real difference is in the DPBDID

field, which is always set to O for a hard disk. Only the memory disk, drive M:, can have a format ID
of 0. .

The fields of the hard disk drive DCB are unique to that device, although the first field must be the

same as that of the floppy disk drive. This is the only link that the BIOS has to the device driver.
Here are the fields:

DKDDVR - Offset O

Like the floppy disk driver, this field is actually a 3 byte JP instruction to the driver routine. The

first byte contains 0C3H, and the last two contain the address of the entry point of the hard disk
driver. ' '

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 23

Montezuma Micro CP/M’ System Programmer’s Manual

DKDSEL - Offset 3
This byte contains the drive select bits for the hard disk drlve The actual bit usage will vary from
one controller to another, and is of jmportance only to the driver itself.

DKDCYL - Offset 4

This is a two-byte field containing the 16-bit count of cylinders on the hard disk. CP/M is oblivious
to the cylinder concept and works only with tracks. Head positioning on hard disk drives, however,
is done by cylinders. Some drivers use this field, others don’t. We recommend that it be kept at this
locatidn in the DCB for the convenience of external utilities that may need such information.

DKDOFF Offset 6

In this two-byte field is kept the 16-bit count of CP/ M tracks that precede this logical drive on the
physical hard drive. At first glance this might appear to be the same thing as field DPBOFF, but that
field cannot be used if drive A: is to be located on any track but the very first track of the hard drive.
To avoid such restrictions we let CP/M think that each logical hard drive is an entity all to itself, and
use the DCB to sort out who lies where.

The above fields are more or less standard for our drivers. Some drivers may have additional fields
in the DCB, but these are for driver use only. Any drivers of your own creation should include these
standard fields as a minimum. Also your driver MUST use the same calling sequence as the floppy
driver, with regard to registers, etc. If it doesn’t the BIOS will not be able to call it correctly.

Page24 - ©(p) Copyright 1985 by Montezuma Micro/JBO

-

-

Montezuma Micro CP/M’~ System Programmer’s Manual

10. CP/M BOOTS

In addition to providing I/0 drivers for CP/M the BIOS performs one other critical function, that of
bootstrap loading the operating system. The term “boot” comes from the phrase “pulling yourself up
by your own bootstraps.” When the Model 4/4P is first powered up there is no software in RAM. The
first level of boot is the ROM, which reads track 0, sector 1, of disk drive 0 into RAM beginning at
4300H. This sector must be in double density. It may be any length, although the 4P will insist on
first loading the ROM image for any ize other than 256 bytes.

In CP/M there are two boot processes generally referred to as the Cold Boot and the Warm Boot. The
Cold Boot is so named because it is activated when the machine is first turned on, i.e. is still “cold.”
At other times,usually between programs, a Warm Boot is performed. While the Cold Boot loads the
entire CP/M operating system, including the BI1OS, the Warm Boot loads only the CCP and the
BDOS. The remainder of this section will discuss each of these two routines.

10.1. The Cold Boot

~ Once fhe boot sector has been loaded it will proceed to load the CCP, BDOS, and BIOS into their

designated locations. Control is then given to the first BIOS vector, which in turn transfers to the

label BOOT in the listing. The system stack is established at address 0000H. At first glance this may

appear strange, but in fact when the stack is written to it is first decremented. This results in the

stack pointer “wrapping around” to the top of memory so that the data is actually written t OFFFFH
downward. |

The first order of business is do a complete reset of all I/O devices, mainly to initialize the associated
DCBs, as well as to clear the RAM work areas used by the BIOS. Next drive A: is made the current
drive, and the current track number is set invalid on all floppy drives. Drives A:, B:, C:, and D: are
set up in the DPH table.

The next routine has been subject to some criticism by CP/M users. It first tests for the presence of
the 128k RAM option. If found all 64k of the expansion RAM is set to 0OE5H and drive M: is entered
into the DPH table. Many users have requested that the RAM drive be formatted (i.e. filled with
OE5H bytes) ONLY if it is found to be corrupt. At present such a-test would require a major change

in the BIOS and more memory than is currently available. However we will consider this in the next
revision.

Finally, if configured for it, the Cold Boot displays the opening “banner” announcing the CP/M size
and version. Control then passes to the. CCI?, whichiissues the “A>" prompt and begins CP/M op
eration. If the system was booted fronma hard drive tModel 4P with Radio Shack hard disk only) the
jump to the CCP is patched to return to-the hard drive boot. ‘TThere the DPH table is modified to
reflect the drive configuration, both floppy-and hard. and then the jump is made to the CCP.

10.2. The Warm Boot

Like the Cold Boot, the first thing the Warm Boot must do is to establish a stack. However this stack
runs from 0080H to 00FFH. It cannot reside in high memory due to the use of the last 128 bytes by
the disk I/0 routines for internal stack space.

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 25

Montezuma Micro CP/M" System Programmer’s Manual

Next it clears the BIOS disk buffer. This step is very important, since different sizes of disk sectors
are used. It is possible for a program to terminate with a write operation pending on the sector cur-
rently in the disk buffer. By making this call the Warm Boot can be sure that all pending writes have

been serviced.

Next a “warm’ ’ reset is done. Essentially this just resets the device drivers.

The remainder of the Warm Boot code reloads the CCP and the BDOS from drive A:. Loading begins
at track 0, CP/M sector 2, using the assumption that the DPB for A: contains valid information for
deblocking. Some CP/Ms access the system tracks in a different manner from the rest of the disk
(including version 1.xx of ours), but we have chosen to be consistent throughout the disk. It makes
utility writing so much easier.

Page26 - ©(p) Copyright 1985 by Montezuma Micro/JBO

Montezuma Micro CP/M" System Programmer’s Manual

11. PITFALLS AND TRAPS

After examining what we have done in the BIOS you may be filled with an urge to improve on it.
Before you go wading in with a flailing text editor we’d like to tip you off to a few things.

11.1. INTERRUPTS

Interrupts are truly wonderful things. With interrupts one computer can be made to appear to be
doing several things at once. Then again they can also cause disasters of truly epic proportions, as
well as introduce bugs that are tougher to kill than a New York Cockroach.

We have chosen not to implement interrupts in the BIOS. Why not? Well the first reason is the Model
/4P hardware. It dictates that maskable interrupts will generate a ReSTart to location 38H. Coin-
cidentally this is also RST 7 on the 8080, and it is used by some CP’/M software, most notably DDT
and other debug utilities. While we could release our CP’/M with a modified version of DDT it is
certain that other programs out there also use RST 7. One of the main goals for our CP/M was to be

compatible with the rest of the world, and a conflict over a ReSTart address would make that goal
unallainable.

A second reason for not interrupting has to do with memory management. The Model 4/4P has all
sorts of memory map possibilities. Interrupting when the wrong map was in could create disaster, so
elaborate locking schemes would be necessary Lo keep them turned off at critical times. This would
mean a much larger BIOS, one which was not as robust.

What do we lose by not having interrupts? A keyboard type-ahead buffer is more difficult to do (but
not impossible). A steady blinking cursor is real tough, and background 1/0 such as serial commu
nications is all but impossible. This is only a partial list. There may be other things, too. Systems
software is a constant trade-off situation. We are happy with the choices we have made.

11.2. FEATURES UNIQUE TO THE Z80

While thumbing through the listing you Z80 gurus may begin thinking “Hey, I could shorten this
code up by using the IX register here, and the alternate registers there.” No doubt you are right, but
we have tried to avoid using Z80 features just because they are there.

In the early days of CP/M all programs were written for the 8080 and it was perfectly safe to use Z80
features without fear of overlap. This is no longer true. Newer programs, such as Turbo Pascal, use
ALL of the Z80 features. Using them in the BIOS could lead to surprise crashes on a massive scale.
Help stamp out unscheduled Cold Boots and be very conservative in your code.

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 27

Montezuma Micro CP/M" System Programmer’s Manual

11.3. RAM USAGE

While perusing CP/M literature you may notice the odd bit of RAM that is reserved for, but not used

by, our BIOS. One example of this is locations 0040H through 004FH. It is reserved for the BIOS,
but not referenced at all by ours.

Using this area would be unwise, however, because Monte’s Window uses the fool out of it. There are
other little cracks and crevices in the RAM above and below the BIOS. Enhancement architects are
always looking for little crannies to stick their constructions into. Be very, very careful about using

these since we sometimes need RAM, too, and we don’t know or care what you have used a RAM
“hole” for. |

Page 28 - ©(p) Copyright 1985 by Montezuma Micro/JBO

Montezuma Micro CP/M" System Programmer’s Manual

A
Assembler: 1

B

BIOS: 1,3,4,6,7,9, 10, 11, 12, 13, 15, 17, 19, 20,

22, 23, 24, 25, 26, 27, 28, 31

Boot: 3, 4, 13, 17, 22, 23, 25, 26, 27

Cold: 17, 22, 25, 26, 27
Warm: 3, 133, 25, 26

D

DCB:4,9,10, 11,12, 13, 15, 19, 20, 21, 22, 23, 24,
25
Device control block: 4, 9, 13, 19, 20

Device driver: 4, 7, 23

Device driver address table: 4

Device Parameter Block: 19

DPB: 19, 20, 21, 22, 23, 24, 26

Device Parameter Header: 3
DPH: 3, 4, 17, 25
Disk 1/0: 4, 19, 23, 26

E .
EXBIOS: 20, 23

F
Floppy disk driver: 19, 22, 23
Function keys: 9, 10

H
Hard disk driver: 4, 19, 23

|

Inmitialization: 15
Installation: 4, 7, 19
Interrupts: 27
IOBYTE: 3, 4, 5

12. INDEX

K

Keyboard driver: 4, 6, 9, 10
CAPS lock: 10
Key definitions: 10

L
Logical device: 5, 6

M
Memory disk: 17, 23

P

Parallel printer driver: 13
Physical device: 5, 6

S
Serial port driver: 15
SPB: 3,4, 7,11, 15
System Parameter Block: 3
BIOS version: 1
Boot display: 25
Disk DCB: 4, 21
DPH table: 4, 17, 25

\Y

Video Display DCB: 11
Control codes: 11, 12
Cursor: 4, 11, 27

Y/
72,80 features: 27
Z80 mnemonics: 1

©(p) Copyright 1985 by Montezuma Micro/JBO

Page 29

Montezuma Micro CP/M" System Programmer’s Manual

13. THE LISTING

If you're a true System Programmer you’ve probably already been through the listing of the BIOS
before reading the text. You may have noticed that there are some routines missing. For the most
part these are mundane little service routines that are not significant to the operation of the BIOS
as a whole. Our intent with this manual was not to give you every last byte of source code, but rather
a tool with which you could interact with the B10S.

The bottom line is “This is it!”’. Please don 't write or call us with sad stories about why you need
this unpublished routine or that undocumented code. You won’t get it. We have a lot of time and
money invested in bringing our CP/M this far. Modesty tells us that it could be improved, but good
business sense tells us that we should reserve the first option for making those improvements.

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 31

EAQD

TRS-8@ Model 8 BIOS Version 2.@@g+

g9 D4
9@ D4
g6 DC
@9 EA
49 09

gp 0p
03 09
g4 0P
80 00
2C 99

84 pp
90 0
EQ 90
E4 00
E8 @0
£E9 0P
EA @0
EB 20
EC 09
Fo 00
F1 @@
F2 0§
F3 90
F4 00
F8 @

8E @0
8F @9

LIPP NJV. LOP

FTEWLINLY FIOJDLTTL LI FE.SWF AVJIN Fa st

. S SIS BE SN D WL M S anv Al UEE GEh Al i EER D IR WA G sk i ML A D I G A W W D S W e . e S A e e e

INPUT FILENAME :
OUTPUT FILENAME :

BIOS.ASM
BI0S.0BJ

General Definitions

»

Copyright (c) (p) 1984
Montezuma Micro

P. 0. Box 76303¢9
Dallas, TX 75376-3009

+ This BIOS is written for Montezuma Micro CP/M 2.2.

o khkkkhkkhkhkhkkhkhkkhkhkkhkkkkhkhkkhkhkihkkikkhkkhkhkhkkikkhhkihhkikkkkkikhkhkkiikk

; A1l rights reserved
; * (CP/M address constants *

e khkhkhkhkhkhkkhkkhkhkhkkhkhkhkkkkkkhkkhkhkhhkhkkhkhkkkhkkkhkhkkkhhkkhkkkhkkkkkkikk

BASE EQU DAGPH .Base for 64K system
CCP EQU BASE :Base of CCP

BDOS EQU CCP+806H ;Base of BDOS |
BIOS © EQU CCP+1600H ;Base of BIOS
MSIZE EQU (BIOS+120@H)/1924+1 ;Memory size in K bytes

’

; >>=+~> WARNING: BIOS must be 8@@@H or higher!

WBJP EQU PROPH
I0BYTE EQU PP@3H
CDISK EQU PPPAH
DEFBUF EQU PP8EH :Default disk buffer
NRECS EQU

(BIOS-CCP)/128 ;Number of warm boot recs

: e e 3 e de e e ke de de de do ke e e e e e e K e e de de de I e de e de e de e kv de de g e g de e e de e de de e e e o e dede e

; * Model 4 port addressess *
: Jede ke KKk K ke ke kg kg e dekode kg ke kodk kode g kode de kg ke de kede ke ke de ke kokeode dodokokokode ke ke ke k ke ok ki
MEMCTL EQU 84H
SOUND EQU 99H
INTCTL EQU PEQH
NMICTL EQU PE4H

;BI0OS Warm boot vector
;System I/0 byte
;System current disk drive

;Memory mapping port

;Sound control port

; Interrupt control port
;Non-maskable interrupt ctri

SERRST EQU PESH ;oerial port reset
SERBRG EQU AE9H ;Serjal port baud rate gen.
SERURT EQU @QEAH ;Serial port UART ctl/status

SERDAT EQU gEBH
MISCTL EQU BECH
FOCCTL. EQU BFgH
FOCTRK FQU @F1H
FDCSEC. EQU @F2W
FOCOAT EQU PF3H
FOCSEL EQU BF4H
PARSDT EQU @F8H

;oerial port data .
sMiscellaneous function port
;Disk command/status

;Disk track

;Disk sector

;Disk data

;Disk select

;Parallel port status/data

’
: *AhAkAAAkAAkkhhkhkhkkkkkhkhkhkkkkhkkkkkhkkkkkkkkkkkkkhkkkhkhkhkkkkhkkkikkkk

; * Model 4 data constants *
: *********************************#************************
KVMIN EQU 8EH ;Keyboard/Video mapped in
KVMOUT EQU 8FH ;Keyboard/Video mapped out

TRS-88 Model 4 BIéS Version 2.88+ Entry vectors & configuration data

?

ORG BIOS ;Start BIOS code

*hkdkdkkhkhkkhkkhkhhikhikikkikikhkhkkhkikkihkhdkikhkhkihhhkikihikikihkikikikkkikk

* Standard BIOS jump vectars *
hhkhkkhkhkkhkhkkkhkhkkkikkhkhkkkhkdhkhkhkhkhhkkhhkhhkhkikkhkkkhkhkkhkhkkkkkkiikkkikkik

W e P B

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 33

SLOIG SLarti

:Warm start

;Console status
;Console character 1in
;Console character out
;List character out
;Punch: character out
;Reader character in
;Restore disk drive
;Select disk drive
;oet track number
;5et sector number
;5et DMA address
;Read disk

sWrite disk

;List status

;Sector translation

K % Fo e Fe I s Ie Fo K ke dede dede e ek e ke e de dedeke ke ek ke dedekekode dekede dodokedeok dodekk ke de ke ke deokkkkk

*

This block is used to contain configuration data of *
general nature that is required by the BIOS and

*

need to modify it. *

K 3 de g e e Fe e e e de e de de dedo dede o de ke de e de kg s de 3 de ke dede o e kedoho ke dede v Kotk o e de ke dede de ke ke keok ke

; IOBYTE: LPT,TTY,TTY,CRT +@
;Display sign-on at boot +1

;Total # of disk drives +2
:BIOS version number +3
;DPH table address +4
;Disk DCB @ address +6
;Disk DCB 1 address +8
;Disk DCB 2 address +10
:Disk DCB 3 address +12
;Device Driver Address +14
; Keyboard DCB +16
;Video Display DCB +18
;Parallel Port DCB +2§
;Serial Port DCB +22

oK dededeke dede Jode ke kekedede ke ke ke deke g do ke ek ke de ke e e ke ke g koke ke kodede ke ke de ke ke ke de ke ke ke de ke ke ok k

EAYY L3 4B EA JV 1V VR
EAG3 T35 61 EB JP WBOOT
EAG6 C3 D@ EB JP CONST
EAG9 C3 F2 EB JP CONIN
EABC C3 92 EC JP CONOUT
EAGF C3 1A EC JP LIST
EA12 C3 3E EC JP PUNCH
EA1S5 C3 52 EC JP READER
EA18 C3 ES5 F1 JP HOME
EA1IB C3 78 Fl JP SELDSK
EAIE C3 93 F1 JP SETTRK
EA21 C3 9C F1 JP SETSEC
EA24 C3 DD F1 JP SETDMA
EA27 C3 ED F1 JP READ
EA2A C3 24 F2 JP WRITE
EA2D C3 2C EC JP LISTST
EA3 C3 E2 F1 JP SECTRN
; * System Parameter Block
T
. % g
; * external routines that may
33 EA SPB EQU $
EA33 81 SPBIOB DEFB 81H
EA34 FF SPBSOM DEFB @FFH
EA3S @2 DEFB 2
EA36 22 DEFB 22H
EA37 FD F6 DEFW DPHTBL
EA39 55 F6 DEFW DADCB
EA3B 61 F6 DEFW D1DCB
EA3D 6D F6 DEFW D2DCB
EA3F 79 F6 DEFW D3DCB
EA41 73 EC DEFW DDATBL
EA43 9A EE DEFW KBDCB
EA45 8D F@ DEFW VDDCB
EA47 24 F1 DEFW PPDCB
EA49 72 F1 DEFW SPDCB
TRS-8@ Model 4 BIOS Version 2.9@+ Boot routines
; * BIOS Cold Start entry
; * Input: None,
; * QOutput:
EA4B 31 09 09 BOOT LD SP,PP0AH
EA4E CD D3 EC CALL CRESET
EA51 AF XOR A
EAS2 32 04 @0 LD (CDISK),A
EASS 32 3F EB LD (BANNRM) ,A
EAS8 3D DEC A
EAS9 32 5t F6 LD (D@DCB+DKDCTK) ,A
EASC 32 6A F6 LD (D1DCB+DKDCTK) ,A
EASF 32 76 F6 LD (D2DCB+DKDCTK) ,A
EA62 32 82 F6 LD (D3DCB+DKDCTK) ,A
EAGS 21 9C F5 LD HL ,DPHA
EAG8 01 10 00 LD BC, 16
EA6B 22 FD F6 LD (DPHTBL) ,HL
EAGE @99 ADD HL,BC
EAGF 22 FF F6 LD (DPHTBL+2),HL
EA72 @9 ADD HL,BC

Page 34 - ©(p) Copyright 1985 by Montezuma Micro/JBO

None ~ System loaded into RAM

o T dedo e o dede o de g do e o de ek de e e vk de e de ke ke e e ek kde et ke e ke ek ke ke ok de ke ke e de dede ke ke ke gk

*
*
%*

;oet stack at top of RAM
;00 a complete reset

;Curreni drive/USER=A/@
;Kill drive M message

;Reset drive track history

:Point HL at first DPH
;BC=1ength of DPH
;Set Drive A in DPHTBL

Drive B

»
’

LA/ S
EA76
EA77

EAJA

- EA7D

EATF
EAS1
EA83
EA85S
EAS7
EASS
EASA
EASB
EASD
EASF
EA9]
EA94
EA95
EA97
EA99
EASC
EASE
EAAL
EAAS
EAA7
EAA9

EAAB .

EAAE
EAB1
EAB2
EABS
EAB7

EACA

EABC
EABD
EABF
EACS

EAC2
EACS
EACI
EACD
EAD1
EAD4
EAD6
EADA
EADE
EAE2
EAEb
EAEA
EAEE
EAF2
EAF6
EAFA
EAFE
EBP2
£EBA6
EBP8
EB@B
EB@F
EB13

¢ Yl

99
22
21
3t
D3
36
K13
D3
/E
36
BE
20
3E
D3
CD
29
3E
D3
CD
3E
32
21
22
3t
D3

21
3A
B7
C4
gE
C3

"36

23
CB
Co
18

1A
54
38
6F
20
36
68
2F
65
32
28
28
31
20
69
20
65
68
63
15
42
20
73

g3

09 09
£F

84
3C
8F
84

C3

1E
EF
84
BA

FF
84
BA

@D

DC
15
8F
84

C2
34

@8
80
99

ES
7C
F8

@7
52
30
64
34
34
2P
4D
72
2E
63
70
39
44
74
52
61
20
2E
g0
49
76

20

r/

F7

EA

EA

EB
F5
F7

EA
EA

ED
D4

16
53

20
65

20

43
20
73
32
29
29
38
69
61
65
72
49

gA
4F
65
32

2D
4D
6C

50
76
20
20
20
20
32
67
6C
73
63
6E

53
72
2E

LY
ADD
LD

LD
LD
ouT
LD
LD
ouT
LD
LD
CP
JR
LD
ouT
CALL
ADD
LD
ouT
CALL
LD
LD
LD
LD
LD
ouTt

BOOT1 LD
LD
OR
CALL
LD
JP

BOOT2 LD
INC
BIT
RET
JR

DEFB

DEFB
DEFB

DEFB

DEFB
DEFB

LurnipLTa),nL
HL,BC
(DPHTBL+6) ,HL

HL , 3P@PH

A, KVMOUT +6@H
(MEMCTL),A
(HL), 3CH

A, KVMOUT
(MEMCTL),A
A, (HL)
(HL),@C3H
(HL)
NZ,B0OOT1

A,KVMOUT+6@H

(MEMCTL),A
BOOT2

HL ,HL

A, KVMOUT+7@H
(MEMCTL),A
BOOT?2

A,@DH
(BANNRM) ,A
HL , DPHM
(DPHTBL+24) ,HL
A ;KVMOUT
(MEMCTL),A

HL ,BANNER
A, (SPBSOM)
A .
NZ,DISPLY
C,0

CCP
(HL),@ES5H
HL

7,H

NZ

BOOT2

e A L WS ki S

1AH,@7H,16H

> prive o
: Drive D

:Point to start of RAM

;Switch in expansion bank @

;Plug with inversion of C3H
;Switch back to main RAM

;Get test byte

;Replace in case it changed
;Is it unchanged?

;60 if changed - not 128K
;Switch in expansion bank @

sFi11 32K with E5 bytes
;Set HL back to PP@AGH
;Switch in expansion bank 1

;Fi11 32K with E5 bytes
;Enable drive M message

;5et up DPH for M:

;Restore lower RAM map

;Point to opening banner
;Check the signon flag

;Display 1f requested
;Set default drive to A:
;Go to CP/M

;Store an E5 byte
;Advance pointer

;Check bit 7 of address
;Exit if at 32K

;Keep filling

'TRS-80 Model 4 '

MSI1ZE/19+'@' ,MSIZE.MOD.10+'@"
'k CP/M vers 2.2 '

'(c) (p) 1982 Digital Research Inc.'

15H,0DH , PAH

'BIOS vers 2.20 '

© (p) Copyright 1985 by Montezuma Micro/JBO - Page 35

L1/

EB1A
EBIE
EB22
EB26
EBZA
EBZE
EB32
EB36
EB3A
EB3E
EB3F
EB4Q
EB44
EBAS8
EBAC
EB5SP
EB54
EBS8
EB5SC
EB5D

£EB61

EB64
EB6/

EB6A
EB6C
EB6F
EB72
EB73
EB74
EB75
EB76
EB77
EB78
EB79
EB7A
EB/B
EB7E
EB81
EB84
EB86
EB89
EBSC
EBSF
EBI1
EBO2
EBY6
EB99
EBID
EBAQ
EBA3
EBA4
EBAG
EBAY
EBAC
EBAF
EBB2
EBB3

JJ

28
28
31
20
/74
6D
69
2F
15
PA
g9
3E
4D
72
/2
20
16
42
16

g0

31

CD
CD

13
CD
gl
g9
/E
23
66
6F
/E
23
66
6F
22
21
22
2E
22
21
22
p6
C5
ED
CD
ED
CD
CD
B7
2P
21
CD
2A
g1
99
22

Sl

63
70
39
4D
65
61
63
4A
16

3t
65
79
69
4D
45
4C

BA

g0

g7
E@

gp
78

PA

34
g
30
P2
32
2P
25
2C

48
93
4B
9C
ED

BB
30
9
25
80

25

cy

29
29

38

6F
7A
20
72
42
gD

3E
60

20
76

3A

4E
45

pA

g1

F3
EC

F1
o9

F7

20
20
34
6E
75
4D
6F
4F
PA

20
6F
44
65
20
41
44

20

09

F7

F7
D4
F7

30
F1
32
Fl
F1

F7
F2
F7

9@
F7

F7
F7

BANNRM

E\" WME W N P g

DEFB

DEFB

DEFB
DEFB

DEFB

DEFB

'(c) (p) 1984 Montezuma Micro/JBO'

15H,16H,@DH, @AH, BAH

@

'>>> Memory Drive M:

'

16H, '"ENABLED' , 16H

@DH, PAH, BAH, P

khkkkhkhkhkkhkkhkhkhkkkhkkkkkhkkkkkhkhkhkhkhkhkkhkhkkkhkkhkhkkkkhkkkkikkkkikkkkkk
* BIOS Warm Start entry

*

* Input: None *
* Qutput: None - System reloaded into RAM *
hhkhkkkkkkkhkhkkkkkhkkkkhkhkkkkkhkkhkkkkkkkkkkhkhkkkkkkhkkkkkkkkhkkkkk
BOOT LD SP,DEFBUF+128 ;Use buffer for stack
CALL CLBUF ;Clear the BIOS disk buffer
CALL WRESET D0 a warm reset
LD c,g° ;Select drive A:
CALL SELDSK ,
LD BC,DPHDPB ;Point HL at DPB
ADD HL,BC
LD A, (HL)
INC HL
LD H, (HL)
LD L,A
LD A, (HL) ;Records/track to HL
INC HL
LD H, (HL)
LD L,A
LD (DSBRPT) ,HL ;Save it
LD HL , 0 ;5et starting track
LD (DSBNTK) ,HL
LD L,2 ;9et up starting sector
LD (DSBNSC) ,HL
LD HL,CCP ;S5et beginning DMA
LD (DSBDMA) ,HL
LD B,NRECS ;5et record counter
WBOOT1 PUSH BC ;59ave record counter
LD BC, (DSBNTK) ;Set the track
CALL SETTRK
LD BC, (DSBNSC) ;Set the sector
“CALL SETSEC
CALL READ ;Read the record
OR A ;Any error?
JR NZ,WB00T ;If so start all over
LD HL ,DSBNTK ;Update sector #
CALL NXTSEC
LD HL, (DSBDMA) ;Update DMA
LD BC,128
ADD HL,BC
LD (DSBDMA) ,HL

Page 36 - ©(p) Copyright 1985 by Montezuma Micro/JBO

@

EBB6
EBB7
£BBY
EBBC
EBBE
EBBF
EBC2
EBC3
EBC4
EBC6
EBCI
EBCC
EBCD

" EBD@

EBD3
EBDS
EBD8
EBDA

EBDC .

EBDE
EBEQ
EBE3
EBE4
EBES

- EBE7

EBEA

- EBEC

EBEE
EBFQ

EBF2

EBFS

EBF7
EBFA
EBFC
EBFE

ECP0

£C@2
EC@5
EC@7
ECPA
ECAC
ECOE
EC1Q

Cl
10
JA
E6
4F
CD
7C
B5
20
32
JA
4F
C3

D8
94
@F

78
93
P4
g4

@3

09

F1

p0
99

D4

WBOOT3

POP
DJNZ
LD
AND
LD
CALL
LD
OR
JR
LD
LD
LD
JP

BC - ;Restore record counter
WBOOT1 ;Loop until complete
A,(CDISK) ;:Get current drive #
@FH ;Mask off user code

C,A ;Drive # to C

SELDSK :Select it (validate)
A,H ;Check for validity

L

NZ,WBOOT3 :Go if valid drive
(CDISK),A :Reset to USER @, A:
A,(CDISK) :Set User/Default Drive
C,A

CCP+3 ;:Go to CCP

TRS-8@ Model 4 BIOS Version 2.8@+ 1/0 routines for CON: device

CD
28
CD
73
/8B
CB
83
3A
gF
PF
E6
CD
73
9B
A3
AB

CD

- 28

CD

75

/D

cD

85

CD
28
CD
17
/F
CC
87

12
gB
64
EC
EC
EC
EC

@3

@3
64
EC
EC
EC
EC

12
5B
64
EC
EC
EC
EC

12
13
64
EC
EC
EC
EC

EC
EC

29

EC

EC

EC

EC
EC

*
*
*

[T I BT Y N Y N

CONST

CONST1

c >U' W Pt Y P B

Input:

Qutput:

CALL
JR
CALL

DEFW

DEFW
DEFW
DEFW
LD

RRCA
RRCA

AND -

CALL
DEFW
DEFW
DEFW
DEFW

»
o oo dode gk dede v de e ke kg e de de e e ke e ke e ke ke e e de e e de e ek de ek de s de ok e ke ke ke de de e de ke ke ke ke ke

* Report console status
None

A=FFH if input present *
~ @PAH if no input

khkhkhkkikkhkkhkkhkkikhkhkkhkkhkkkhkkkhkhkkhkkhkhkkhhkhikhkkhhkhkhkhkhkhkhhkhkhkhkhkhkiik

CONIOB

Z,CONST1

10DSP

TTYSTS
CRTSTS
NULSTS
UC1STS

A,(IOBYTE)

B3H
10DSP

TTYSTS
PTRSTS
URISTS
UR2STS

* .

%*

present *

:Get CON IOBYTE

;Go if BAT status

;Call I/0 dispatcher

; TTY status

. CRT status

; BAT status (Dummy entry)
; UC1 status

:Get the IOBYTE

;Isolate RDR bits

;Call I/0 dispatcher
;. TTY status
PTR status
UR1 status
UR2 status

W W g

kkkkkkkkhkkkhkhkkkkkkkkkhkhkhkhkkhkkkkkhkkhkkhkhkkhkkkhkkkhhkkhkhkhkkkkihikk
* Console input

*

* Input: None x
* Qutput: A=Character input from console *
khkkkkkkhkkkhkkkkhhkkkkkhkhkkkhkkkhkkkkkkkkkkkkkkkkhkkikhkkkkhkkhkkkkk
ONIN . CALL CONIOB ;Get CON IOBYTE

JR 7 ,READER" ;Go if BAT

CALL. I0DSP ;Call I/0 dispatcher

DEFW TTYINP ; TTY input

DEFW CRTINP s CRT input

DEFW NULINP ; BAT input (Dummy entry)

DEFW UC1INP ; UC1 input

ok e g de dedo de ke Kbk kde ke dodeode ke ko ok keokookokodededk dodedede ke ke ke ke kek ke ke dede ke ke ko ke vk ko ko koke kokokodke ke
* Console output

%

* Input: C=Character to be output to console *
* Qutput: None *
%3 de ko do ke g e ke ke Aok dodedde ke koK ko ke e de ke kekededede ke ke ke ke hedekedede ke ke de ke kede g ke de ke ke ke ke g ko ke de ki
ONOUT CALL CONIOB ;Get CON IOBYTE

JR Z,LIST ;Go if BAT

CALL I10DSP ;Call I/0 dispatcher

DEFW TTYOUT 3 TTY output

DEFW CRTOUT ; CRT output

DEFW NULOUT ; BAT output (Dummy entry)

DEFW UC10UT ; UC1 output

"©(p) Copyright 1985 by Montezuma Micro/JBO - Page 37

CE e

— e —————.

EC12
EC15
EC17
EC19

EC1A
EC1D
EC1E
ECLF
EC21
EC24
EC26
ECZ8
EC2A

- EC2C
EC2F
EC3¢
EC31
EC33
EC36
EC38
EC3A
EC3C

EC3E
EC41
EC42
EC43
EC44
EC45
EC47
EC4A
EC4C
ECAE
EC50

AAEAKAKKKARARRKRAkRAkAkAkkAhkhkkhhkkkhkhkhkhkkkhkhkhkhkkkhkhkhkkhkhkkhkhkhkhkhkhkhkkkkk

; * Return CON IOBYTE value *
; ¥ Input: None *
; * OQutput: A=CON iobyte value, Z flag set if BAT *
: **

3A 83 @9 CONIOB LD A,(IOBYTE) ;Get the I0BYTE

£E6 P23 AND A 3H , ;Isolate CON bits

FE @2 CP A2H .Check for BAT

C9 . RET

TRS-88 Model 4 BIbS Yersion 2.8+ 1/0 routines for LST: device

’
J & o do I dededode Kk Ko dede Kok Kok kekedo ke kede deokokedede ke de s kedoke dede dede ke de o ke ke ke ke ke e ke kekekek ke kok

; * Qutput character to LST device *
; * Input: C=character to be output *
; * Output: None *
; % e Jo gk ke ke ke kok ke ke ko gk ke de ke ek e s de skeke de e de de g ke ke e ke ke e ke g ke do gk ke ke ke gk e ke ke ke ke ok kedkeokeok

3A 03 99 LIST LD A,(IOBYTE) ;Get the IOBYTE

@7 RLCA :Isolate LST bits

@7 RLCA

E6 @3 AND @3H

CD 64 EC CALL 10DSP ;Call I/0 dispatcher

77 EC DEFW TTYOUT ; 11Y output

7F EC DEFW CRTQUT ; CRT output

8F EC DEFW LPTOUT ; LPT output

97 . EC DEFW UL10UT ; UL1 output
; khkkkkkhkhkkkkkkkhkkkkkhkhkkkkkkkkkkkkkkkkkkhkhkhkkkhkkhkkhkikhkhkkdkkkk
; ¥ Return LST status _ *
s * Input: None *
3 * Qutput: A=LST status *

‘ : khkhkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkkkihkkkkkkkkkikhkkkikikikk

3A 03 90 LISTST LD A,(IOBYTE) ;Get the IOBYTE

@7 RLCA ;Isolate LST bits

@7 RLCA

E6 @3 AND @3H

CD 64 EC CALL 10DSP ;Call I/0 dispatcher

79 EC ' DEFW TTYBSY ; TTY busy

81 EC DEFW CRTBSY ; CRT busy

91 EC DEFW LPTBSY s LPT busy

99 EC DEFW UL1BSY ; UL1 busy

TRS-8@ Model 4 BIOS Version 2.@@+ I/0 routines for PUN: device

)
o Kk Kk gk Kok sk gk dodkodk deok ke kok ok kek ek ke ek gk ek kv ke vk ke s g de s e e de e g ke ke ke e e ke ke ke ke ke

; * Output character to PUN device *
; * Input: C=chardcter to output *
; ¥ Output: None *
: Kk Kok koo deode ok ok kokokk ok kokdkeokokok ok dok ke Kk dok ok dkodkok ok ok ok kok dkededk ke dedkdedkk ke dok ok dkkkkdkkk

3A 83 09 | PUNCH LD A,(IOBYTE) ;Get the IOBYTE

@7 RLCA ;Isolate PUN bits

@7 RLCA

@7 RLCA

g7 RLCA

E6 03 AND @3H

CD 64 EC CALL I0DSP ;Call I/0 dispatcher

77 EC DEFW TTYOUT ; TTY output

B7 EC DEFW PTPOUT ; PTP output

BF EC DEFW UP10UT s UP1 output

C7 EC DEFW UP20UT ; UP2 output

Page 38 - ©(p) Copyright 1985 by Montezuma Micro/JBO

EC52
EC55
EC56
ECS/
EC59

EC5C

ECSE
EC6P
EC62

EC64
EC65
EC66

EC67

EC69
EC6A
EC6B
EC6C
EC6D
EC6E
ECOF
EC7Q
EC71

EC72

EC73
EC/75
EC77
EC79

EC/8B
EC7D
EC7F
EC81

EC83
EC85
EC87
EC89

TRS-8§ Model 4 BIOS Version 2.¢¢+

3A
@F
gF
E6
CD
75
9D
AS
AD

g3 9@

@3
64 EC
EC
EC
EC
EC

b4

*
. %

b
>
L
b
b
>
R

Input:

Output:

RRCA
RRCA
AND

CALL
DEFW
DEFW
DEFW
DEFW

A,(I0BYTE) ;

@ 3H

I0DSP
TTYINP
PTRINP
URTINP
URZ2INP

b

;Call 1/0 dispatcher

>

wt W g .

I/0 routines for RDR: device

Get the IOBYTE
Isolate RDR bits

TTY 1input
PTR input
UR1 input
UR2 input

TRS-8§ Model 4 BIéS Version 2.8+ General BIOS subroutines

El
87
5F
16
19
5E
23
56
EB
5E
23
56
EB
E9

73

28
30
3B
44

51
61
46

D@

51
61
46

D@

09

EC

Fl
Fl
F1
F1

ED
ED
EF
EC

ED
ED
EF

EC

>

1
o Fedede e dede ok e e e ok Kk vk v ok % e g 3k e e vk ok e e de A ke ok e ke e de vk e de e e gk e ke gk e e v e e de e e e sk e ek

; * Input from RDR device
None

A=character input
e KAKAEKAKAAKRKAAk AR khkkkhkhkhkhkhhkhkikhkhkhkhkhkhkhkhhkhkhkdhhkhkhkkdkhkkikihkk

EADER LD

*
*
*

o Fededodedodededo o de ko de g e de o I do e g g e e ke e e de e e e e e de e vk e v de e I e g e e i e ok K de v e v ke e ok
; ¥ I/0 dispatch routine

*
*

A=Device code (§-3)
(SP)=pointer to address table
goes to device routine

*
*
*
x

o ReRededededodededede Rk ke ok kode g ke ok ke dedeked e gk keok ok ok de vk o ke e e do ko do ke dodo ke de e keokede ke ke ke ke e ke ke ke

’
’
>
>
- %
’
’
I

0DSP

WeE W Pe Yh

Input:

Qutput: None -~
POP HL
ADD A,A
LD E,A
LD D,
ADD HL ,DE
LD £,(HL)
INC HL
LD D, (HL)
EX DE,HL
LD E,(HL)
INC HL
LD D, (HL)
EX DE ,HL
JP (HL)

DDATBL EQU $

; TTY definitions
TTYSTS DEFW SPSTS
TTYINP DEFW SPINP
TTYOUT DEFW SPOUT
TTYBSY DEFW SPBSY
; CRT definitions
CRTSTS DEFW KBSTS
CRTINP DEFW KBINP
CRTOUT DEFW VDOUT
CRTBSY DEFW NULBSY
; UC1l definitions
UCISTS DEFW KBSTS
UCIINP DEFW KBINP
UCIOUT DEEW VDOUT
UCIBSY DEFW NULBSY

;Table pointer to HL

3
3
b

>

-
b

-
b

[
’

:Exit to device driver

;oerial port status

b

;9erial port output

?
L]
3
L]
3

3

b]
3
b

»
3

Compute offset
Move offset to DE

Point to address
DE=vector pointer

HL=vector pointer
Vector to DE

HL=driver address

Serial port input

Serial port busy

Keyboard status
Keyboard input
Video output
Null busy

4

Keyboard status
Keyboard input
Video output
Null busy

Fe e dede koo ket do ke e de e do ke ke ke ke ke ke de ke e kede e de ke ke keoke dede e ke ke ke de kek kot ke ke ke kede dedeoke ke de ke e ke

* Device Driver Address Table
**

*

«(p) Copyright 1985 by Montezuma Micro/JBO - Page 39

EC8B
EC8D
EC8F
ECI91

EC93
EC95
ECY7
EC99

EC9B
EC9D
ECOF
ECAl

ECA3
ECAS
ECA7
ECAS

ECAB
ECAD
ECAF
ECB1

ECB3
ECB5
ECB7
ECBY

ECBB
ECBD
ECBF
ECC]

ECC3
ECCS
ECC7
ECCI

ECCB
ECCC
ECCD
ECCF
ECD@

Page 40 - ©(p) Copyright 1985 by Montezuma Micro/JBO

CB
CD
BF
B3

C8
CD
BF
B3

51
61
CC
D@

28
30
3B
44

28
30
3B
44

CB
CD
46

D@

28
3@
3B
44

28
30
38
44

AF
C9
K13
C9
3t

EC
EC
Fo
F@

EC
EC
Fo
F@

ED
ED
EC
EC

Fl
F1
F1
F1

F1
Fl
Fl
F1

EC
EC

EF-

EC

F1
Fl
Fl
F1

F1
F1
F1
F1

1A
FF

ok (ER O e P G GRS M o B D R R e

LPTSTS
LPTINP
LPTOUT
LPTBSY

NULSTS
NULINP
PPOUT
PPBSY

CUL1INP

UL10UT
UL1BSY

?

DEFW
DEFW
DEFW
DEFW

NULSTS

NULINP

PPOUT

. PPBSY

: PTR definitions

PTRSTS
PTRINP
PTROUT
PTRBSY

DEFW
DEFW
DEFW
DEFW

KBSTS
KBINP
NULOUT
NULBSY

UR1INP
URIOUT
UR1BSY

L

DEFW
DEFW
DEFW
DEFW

SPSTS
SPINP
SPOUT

SPBSY

; URZ2 definitions

s g G Sy G S . g S EE e S

UR2STS
UR2INP
UR20UT
URZ2BSY

b I Sy G S s igel EEL M el Sk M

PTPSTS
PTPINP
PTPOUT
PTPBSY

DEFW
DEFW
DEFW
DEFW

NULSTS
NULINP
vDOUT

NULBSY

. UP1 definitions

-y AN iy i T s g dmm ey miv B wmy e SN el

UP1S5TS
UP1INP
UP10UT
UP1BSY

. UP2 definitions

UP2STS
UP2INP
UP20UT
UP2BSY

; * Input: None expected
; * Qutput: None
NULSTS XOR A
NULOUT RET
NULINP LD A,1AH
RET
NULBSY LD A,BFFH

;Null status

;Null input

;Parallel port output
;Parallel port busy

;Null status

:Null input

;Parallel port output
;Parallel port busy

;Keyboard status
;Keyboard input
;Null output
;Null busy

;Serial port status
;oerial port input
;5erial port output
;Serial port busy

;S5erial port status
;oerial port input
;derial port output
;oerial port busy

;Null status
;Null input
;Video output
;Null busy

;oerial port status
;oerial port input

;derial port output
;Serial port busy -

;Serial port status
;S5erial port input
soerial port output
;oerial port busy

o ek de kR ke ok ke k ok kododdok ok ek de ke ke kokedeke ok ke koo dekeo ke kok deok dede ke ko de ke ke de ke ek ke ke de ke ke kk
* Null device drivers

KA de g dede ke de ke e dede e dedede ke do ke g ke dede ke ke dede dedeke dede ke de ke ke ke de ke ek kede ke ke ke ke ke ke ke ok ke ke ke ke k

;Null status
sNull output
;Null input

sNull busy

-
—
E ’

ECD2

ED51
ED54
ED55
ED57
ED5SA
EDSB
ED5SE
ED6O

ED61
£ED64
ED65
ED67
ED68
ED69
ED6C
ED6E

EDGF
ED79
ED72
ED74
ED77
ED/A
ED7D
ED7F
ED&2
ED43
LD#4
LD85

L0386

£Dg7
EDE9
EDGA
EDSB
ED8D
ED9Y
£ED93
EDS4

conr
PNy W e

ED96
EDY9
EDSA
EDSB
EDSD
ED9F
EDAZ2
EDAS
EDA8
EDAA

C9

RET

TRS-88 Model 4 BIOS Qersion 2.9+ Device driver for Keyboard

3A
B7
20
CD
C8
32
F6

C9

21
/t
36
B7
Co
CD
28
CS

F3
3E
D3
co
2
11
06
21
1A
AF
AE
/1
Al
20
@4
23
CB
F2
3A
5F
1A
4F
2A
7E
Al
29
ED
22
21
22
18
AF

9A

@7
6F

9A
FF

9A
PP

6F
FB

8E
84
24
1C
g1
ol

30

@3
82
AS

Ab

gD
62
AA
20
A8
72

EE

ED
EE

EE

ED

EE
EE
F4

LE

ED
LE

EE

EE

g8
EE

b

e AAAkEAAAKRAAIAAARATAAAkAKRAkARkAhkhkhrkkrkhkhkhhkhkhkhkhkhkkhkhhkkhkhkhkrkhkhkkkkikhkkk

*
*
*

o ok K gk ek ok kT ke s ok ke ek ke ke ek e o e o e ek R o e ke ok ke ke e e e ke e de ek e ek ke ok e de e de ke

;Check key buffer

;6o 1f key there
;Scan the keyboard
;Ex1t if no key
;Save the key found

; ¥ Keyboard device drivers
; ¥ Input: None
; ¥ QOutput: Dependent on functiodn
. Return koeyboard < latus in A
KBSTS LD A, (KBDBUF)
- O0OR A

JR NZ,KBSTS1

CALL KBSCAN

RET l

LD (KBDBUF) ,A
KBSTS1 OR OFFH

RET

:Set status

; Input from keyboard & return key in A

KBINP LD HL ,KBDBUF
LD A, (HL)
LD (KL),8
OR A
RET NZ
KBINP1 CALL KBSCAN
JR Z,KBINP1
RET
KBSCAN DI
.D A, KVMIN
out (MEMCTL) ,A
CALL KBFKC
JP N, KBSCNX
KBSCNT LD Dt A TH
LD B,
P D Hi L ERDHS
FReonr o in ALUInD
P) B
X P
Li Pive 1,0
Al ‘.
ST N7 LKBOONA
INC B
INC bl
RYC Lo
JP P,KBSCNZ
LD A, {KBDPKR)
LD E,A
LD A, (DE)
LD C,A
LD HL, (KBDPKI)
LD A, (HL)
AND C
JR NZ,KBSCN3
SBC HL ,HL
LD (KBDRPT) ,HL
LD HL , #80A0H
LD (KBDDLY),HL
JR KBSCNX

KBSCN3 XOR A

;Point to key buffer
;Empty it

;Check for key
;Exit if found
;Scan the keyboard
;Loop 1f no key

; General keyboard scan - key returned in A if found

L B R R

;No interrupts!
;owitch Keyboard into RAM

;Check function keys

;60 1f key found

Point to first row
sInitialize row #

Puint DE at history table
-Strobe the keyboard
SSave strobe in C

Mavk ol prior keys
yhdve current scan

;Mask released keys

;6o 1f any key pressed
;Update row #

;Update history pointer
;Move to next key row
sLoop 1f any rows left
;Point DE at Prv Key Row

;Scan the row again

;Save the scan

;Point HL at Prv Key Image
;Get previous image

;Key still down?

;60 1f yes

;Clear Repeat Counter

;Reset Delay Counter

sExit with no key
;Clear carry & A

©{(p) Copyright 1985 by Montezuma Micro/JBO - Page 41

EURD (ol »! LA UL , 1L

EDAC 2A AA EE D - HL.(KBDRPT)
EDAF 23 INC HL

EDBP 22 AA EE LD (KBDRPT) , HL
EDB3 ED 4B A8 EE LD BC, (KBDDLY)
EDB7 ED 42 SBC HL.BC

EDBY 38 61 JR C, KBSCNX
EDBB 12 LD (DE), A

EDBC 22 AA EE LD (KBORPT) , HL
EDBF 2E 80 LD L,8@H

EDC1 22 A8 EE LD (KBDDLY), HL
EDC4 18 B4 JR KBSCN1

EDE6 4F KBSCN4 LD C,A

E0C7 CD 84 EE CALL KBDBN

EDCA 28 50 JR 7, KBSCNX
EDCC 7B LD AE

EDCD 32 A5 EE LD (KBDPKR) ,A
EDD@ 22 A6 EE LD (KBDPKI) . HL
EDD3 CB 20 SLA B

EDD5 CB 20 SLA B

EDD7 CB 20 SLA B

EDDS @5 DEC B

EDDA §4 KBSCN5 INC B

EDDB CB 39 SRL C

EDDD 3¢ FB JR NC, KBSCNS
EDDF 21 A4 EE LD HL . KBDHST+7
EDE2 78 LD A,B

EDE3 FE 2¢ cP 32

EDE5S 3¢ 1B JR NC,KBSCNG
EDE7 CB 56 BIT 2. (HL)

EDEQ 29 31 JR NZ,KBSCNX
EDEB CB F@ SET 6,B

EDED B7 OR A

EDEE 28 2B JR 7 ,KBSCN9
EDF§ 3A AC EE LD A. (KBDCLF)
EDF3 B7 OR A

EDF4 20 25 JR NZ,KBSCN9
EDF6 CB E8 SET 5,B

EDFS 3t @3 LD A.3

EDFA A6 AND (HL)

EDFB 28 1E JR 7,KBSCN9
EDFD 3E 2¢ LD A. 20H

EDFF A8 XOR B

EEPP 18 1A JR KBSCNX
EE@2 D6 20 KBSCN6 SUB 32

EE@4 AF LD C,A

EEGS 96 9P LD B. @

EE@7 11 AD EE LD DE , KBDCOD
EEGA EB EX DE . HL

EE@B 99 ADD HL . BC

EEGC ¢1 18 99 LD BC. 24

EEGF 1A LD A, (DE)

EE1¢ E6 @7 AND @7H

EE12 28 @6 JR 7 ,KBSCNS
EE14 @9 ADD HL,BC

EE1S E6 g4 AND 4

EE17 28 @l JR 7, KBSCNS
EE19 @9 ADD HL,BC

EEIA 46 KBSCNS LD B, (HL)

EE1B 78 KBSCN9 LD A.B

EEIC 4F KBSCNX LD C.A

EEID 3E 8F T A KVMOUT
EEIF D3 84 ouT (MEMCTL) , A
EE21 79 LD A,C

EE22 B7 OR A

EE23 (9 RET

Page 42 - ©(p) Copyright 1985 by Montezuma Micro/JBO

»I1ISLOTY pPOoinLer LU Ve
;Repeat counter to HL

; Increment the count
;Save the counter

;Get the delay value
;Delay long enough?

;Exit if no time-out
;Clear history for rescan
;Save zeroed counter

;5et short delay

;GO scan again
;True 'scan to C

_3Do debounce delay

;Exit 1f no key
;Saveirow bit

;oave image pointer
;Multiply row # by 8 -

;Precomp for shift

;Update char position
3ohift strobe bit left 1
;Loop till it falls off
;Point HL at control image
;Get table offset

;In alpha keys?

;G0 i1f not

;Control pressed?

sExit if yes ,
;Convert offset to ASCII
;Is this '@' key?
;Exit 1f yes

;Get CAPS Lock Flag
;CAPS locked?

;G0 1f yes

;Make lower case
;Check SHIFT keys
:Is either one down?
;6o if not

;Invert bit 5

;EXIt with key
;Calculate offset
:Put in BC

;Decode table base to DE
;Move to HL, KBDHST to DE
;Point to standard table
;Table length to BC
;Isolate CTRL,SHIFT keys

;G0 if neither down
;Move to SHIFT table
;Isolate CTRL key

;G0 if only SHIFT
sMove to CTRL table
;6et decoded key in B
;Return key to A
;Store character in C
;Switch out keyboard

;Restore the key, if any
;0et Z if no key found

PR

i A

EE24
EE27
EEZ28
EE29
EEZB
EE2E
EE2F
EE3Q
EE3]
EE33
EE35
EE38
EE39
EE3A
EE3B
EE3C
EE3D
EE3E
EE3F
EE4Q
EE4]
EE44
EE4S5
EE47
EE49
EE4C

EE4E

EES]
EES2
EES4
EEST
EESS
EESA
EESB
EESC
EESD
EESE
EE6G]
EE64
EE66
EE67
EE69
EE6B
EE6C
EEGE
EE7Q
EE71
EE73
EE75
EE76

- EE77

EE7S8
EE7S
EE7A
EE7D
EE/E
EE7F
EE8P
EE83

EEB4
EE86

2A
7C
B5
20
11
4B
1A
B/
28
gE
21
1C
1A
Al
4F
AE
/1
Al
C8
4F
CD
c8
CB
28
3A
EE
32
C5
gE
C4
Cl
3E
Al
C8
B7
EB
21
g1
ED
@7
30
OE
1A
E6
20

1A

E6
28
99
g9
/E
23
B7
22
CP
67
6F
22
€9

3E
CD

9B

4C
7F

g2
g7
A4

84

59
BF

AC.

g1
AC

28
EE

70

10
@9

FB
1B

g3
p6

g4
g2

9B

98

PF

14 ED

EE

F4

EE

EE

EE
EE

EF

EF

7

EE

EE

. Scan function keys

KBFKC1 LD

LD
AND
RET
LD
CALL
RET
BIT
JR
LD
XOR
LD
PUSH
LD
CALL
POP
KBFKC2 LD
AND
RET
RLCA
EX
LD
LD
KBFKC3 SBC
RLCA
JR
1.D
LD
AND
JR
LD
AND
JR
ADD
KBFKC4 ADD .
KBFKC5 LD,
INC
OR
LD
RET
LD
LD
LD
RET

-
’

O S G S wRs s A A R AR R

HL, (KBDFKP)
A,H

L

NZ,KBFKCS
DE,@F47FH
C,E

A, (DE)

A

Z,KBFKC1
C,07/H

HL , KBDHST+7

Z,KBFKC?2
A, (KBDCLF)
@1H
(KBDCLF),A
BC

C,40
NZ,VDBEL1
BC

A,70H

C

L

DE,HL
HL ,KBDCOD+99
BC,9
HL,BC

NC,KBFKC3
C,27.

A, (DE)

@3H
NZ,KBFKC4
A,(DE)

4

Z ,KBFKC5
HL,BC

HL ,BC

A, (HL)

HL

A

(KBDFKP) ,HL
NZ

H,A

L,A
(KBDFKP) ,HL

s Debounce a key

G TED SN SNW SEE LS Sun snhk Sl s de B

KBDBN LD
CALL

A,15
MSDELY

;Get Function Key Pointer
;Is a key active?

;Go 1f yes

;:Set DE for rows P-6
;Preset key mask
;Strobe rows @-6
;Anything down?

;60 1f not

;Must ignore F1,F2,F3,CAPS
;Point HL at rbw 7 image
;Set DE for row 7
;Strobe row 7 3
:Mask off if necessary
;Result in C

;Set changed bits
:Save current scan
;Mask released keys
;Exit 1f no key down
;Corrected scan to C
;00 debounce delay
;Exit if no key down
;CAPS key down?

;Go if not

;Toggle the flag

;Save registers
;Set counter for short beep
;Beep 1f locking

;Check function keys

;Exit 1f none down
;Prepare to position
sHistory pointer to DE
;Point HL at Decode table
;9et BC to 1 entry length
;Back up table pointer
;Check next F key bit
;Loop until found
;Preload for next round
;Get key scan from KDBHST
;Check the SHIFT keys

;G0 1f either down

;Get key scan again
;Check the CTRL key

;Go if not pressed

;Move down one group
;Move down one group

;Get next keystroke
;Update pointer

;End of definition?

;Save def pointer

;Exit if valid key

;Clear the pointer

sEXit with key

;Set time (app. 15ms)
;00 the delay

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 43

EE89 1A ' LD A, (DE) ;Scan keyboard again

EEBA Al AND C ;Mask off released keys
EEBB (9 | RET
. Initialize Keyboard DCB -y
EESC CD 23 ED EBINIT CALL CLRMEM ;Clear DCB fields
EESF 9A EE 12 09 DEFW KBDCB,KBDCLF-KBDCB
EE93 21 0@ 08 LD HL , #800H ;Reset repeat counter
EE96 22 A8 EE . LD (KBDDLY) ,HL

EE99 (€9 RET
. ; Keyboard Device Control Block

9A EE KBDCB EQU $

EE9A @9 KBDBUF DEFB g ;Character buffer

EE9B @9 90 KBDFKP DEFW @ ;Function Key Pointer

EESD @0 99 00 09 KBDHST DEFB 3,0,0,0,0,0,0,80 ;History for 8 rows

EEA1 00 09 00 00 -

EEAS @0 KBDPKR DEFB) :Previous Key Row bit

EEA6 00 PP KBDPKI DEFW @ ;Previous.Key Image pointer

EEA8 (9 @8 - KBDDLY DEFW P8AGH ;Delay before repeating

EEAA 00 09 KBDRPT DEFW 9 | ;:Delay between repeats

EEAC @1 KBDCLF DEFB 1 ;CAPS Lock Flag

AD EE KBDCOD EQU " $;Keyboard Decode table

s Unshifted keys

EEAD 30 31 32 33 DEFB '91234567"° ;01234567

EEBT 34 .35 36 37

EEBS 38 39 3A 3B ‘ DEFB '89:;,-./" 89 : 5, - ./

EEB9 2C 2D 2t 2F

EEBD @D 18 @93 @B DEFB PDH, 18H,03H,8BH ;ENTER CLEAR BREAK UP

EEC1 pA $8 99 20 DEFB PAH,P8H,09H,20H ;DOWN LEFT RIGHT SPACE

- : Shifted keys

EECS5 3@ 21 22 23 DEFB ‘gL ESRE ! 1234567

EEC9 24 25 26 27

EECD 28 29 2A 2B DEFB ()R> 389, , - ./

EED1 3C 3D 3E 3F

EEDS5 @D 1B 93 @B DEFB PDH,1BH,P3H,ABH ;ENTER CLEAR BREAK UP

EED9 QA 08 9 20 DEFB PAH,P8H,09H,20H ;DOWN LEFT RIGHT SPACE
3 Control keys

EEDD 39 7C 32 7t DEFB '0>24%6¢ " 1234567

EEE] 34 S5E 36 68 '

EEES 58 5D 3A 3B DEVE "L]:s¢ ¢ B9 o, - ./

EEEQ 7B 5F 7D 5C -

EEED @D 7F 93 @B DEFRB @DH,7FH,@3H,ABH ENTER CLEAR BREAK UP

EEF1 OA 98 99 20 DEFB PAH,P8H,0P9H, 20H. ; DOWN LEFT RIGHT SPACE
; Function Key Def1n1t|un table (9 bytes per entry)

EEFS 46 31 20 28 KBFFD DEFB 'Fl" .0

EEF9 20 20 20 29

EEFD 99

EEFE 46 32 20 29 DEFB 'F2 'SP

EFp2 20 20 20 20

EFg6 @9

EF@7 46 33 20 20 : DEFB 'F3 ',P

EFGB 20 20 20 20

EFQF @9

Egig gz gg 22 g? DEFB 'SHIFT/F1',0 ,

EF18 9P \

EF19 53 48 49 46 DEFB 'SHIFT/F2',0

EF1D 54 2F 46 32

Page 44 - ©(p) Copyright 1985 by Monteiuma Micro/JBO

EF21
EF22
EF26
EF2A

EF2B
EF2F
EF33
EF34
EF38
EF3C
EF3D
EF41
EF45

EF46
EF47
EF49
EF4B
EF4E
EF51
EF54
EF57
EF5A
EF5C
EFSE
EF6P
EF62
EF65
EF67
EF69

EF6A
EF6D
EF6E

EF6F
EF72
EF73

EF74

EF77
EF78
EF/79
EF7C
EF7D
EF7E

g9
53 48

54 2F
o0

43 54
2F 46
],

43 54
2F 46
]

43 54
2F 46

99

49
46

52
31

52
32

52
33

46
33

4C
20

4C
20

4cC
29

DEFB

DEFB
DEFB

DEFB

'SHIFT/F3',0

'CTRL/F1 ',P
'CTRL/F2 ',@

'CTRL/F3 ',0

TRS-88 Model 4 BIéS Version 2.8+ Device driver for Video Display

F3
3E SE
D3 84
3A 8D
CD 6F
CD 8B
CD 6A
32 8D
CB 7F
28 @2
3E 9B
F6 8P
CD 6F
3E 8F
D3 84
c9

CD 74
7E
C9

CD 74
77
C9

2A 8E

C5
D5

21 99

5D
4c

F@
EF
EF
EF

F@

EF

EF

EF

F@

F8

>

: e J¢ e e e e e e e e e de de Je I 7 3k e de e I K e de de e e e e e ok v e de e de e e e e e ok de e e ek ok e e de e e de e
; * Video Display drivers *

; * Input:

s * Output:

Dependent on function *
None returned to caller *

o Fededoded e dedk dodede g dede i ke ok o de e de e ok e de de de o ke e K e e de dededkedede ke dededeke dekeke kedekok ok ke k

VDOUT1 OR
CALL
LD
ouT
RET

; Output character in C to Video Display
v

;No interrupts

A,KVMIN ;Switch Video into RAM
(MEMCTL),A

A, (VDDCHR) ;Get character at cursor
VDPUT ;Replace it in Video RAM
VDPROC ;Process input character
VDGET ;Get character at cursor
(VDDCHR) ,A ;Save in DCB

7,A :Is character inverted?
Z,VDOUT1 ;Go if not

A,9BH ;Set in alternate cursor
80H - ;Insure reverse video
VDPUT ;Output cursor

A, KVYMOUT ;Switch out Video
(MEMCTL),A

; Get a character from Video RAM at cursor

VDGET CALL
LD
RET

VDCSR ;Point HL at cursor position
A, (HL) ;Get the character

; Put a character into Video RAM at cursor

LD
REY

VDPUT CALL

VDCSR ;Point HL at cursor position
(HL),A ;Output the character

; Point HL at cursor position in Video RAM

gg ;dave work registers
BC,PF8AGH ;Video RAM base to BC
D,C ;Row # to DE

E,L

C,H. ;Column # to C

. ©(p) Copyright 1985 by Montezuma Micro/JBO - Page 45

v m—

EF7F
EF8P
EF81
EF82
EF83
EF84
EF85
EF86
EF87

EF88
EF89
EF8A

EF8B
EF8E
EF8F
EF91
EF92
EF94
EF96
EF99
EF9A
EF9D
EFAQ

EFA3
EFAS
EFA7
EFA9
EFAA
EFAC
EFAE
EFBQ
EFB1
EFB3
EFB6
EFB7
EFB8
EFBA
EFBC
EFBE
EFCQ
EFC1
EFC4
EFC5
EFCY
EFC8
EFCA
EFCC
EFCE
EFDQ
EFD3
EFDS
EFD8

EFD9
EFDC
EFDE
EFDF
EFEQ

62
29
29
19
29
29
29
29

99

D1
Cl
c9

3A
B7
20
79
FE
38
3A
Bl
CD
2A
C3

FE

38
28
79
FE
3t
28
AF
18
3A
6F
79
D6
FE
38
3E
67
22
AF
18
/9
D6
FE
38
K14
32
3E
32
C9

21
96
g9
/E
B7

91
12

20
43

99

6F
8E
24

92
1E

3D

92
25

22
92

20
50
g2
4F

8E
1

20
18
B2
17
92
Pl
91

93
2P

F@

F@

EF
Fo
Fo

F@

FP

Fo
Fg

F@

LD H,0

ADD HL,HL
ADD HL ,HL
ADD HL,DE
ADD HL ,HL
ADD HL,HL
ADD HL,HL
ADD HL,HL
ADD HL,BC
POP DE
POP BC
RET

b

:Row # also in HL
:HL=Row # * 4

sHL=Row # * 5 (4+1)
sHL=Row # * 8@ (8@=5*16)

;Add video base, Column #
;Restore registers

; Process Video output characters

. W AEy IR SEL AL AN EED SN A L GED SER EED SEE AEE e AN IR AL SN W VRGN SR GNP MRA A

A, (VDDESC)

~ OR A

JR NZ,VDESH

LD A,C

CP 20H

JR C,VDCTL

LD A, (VDDINV)

OR C

CALL VDPUT

LD HL , (VDDROW)

JP VDCRT .

;Get ESC sequence control
;In ESC sequence?

;6o if yes

;Get the character
;Control code?

;Go if yes

;:Get inverse video mask
;Combine with character
;Output to Video Display
:Cursor Column,Row to HL
;Cursor right & exit

; Video Display ESC Sequence Handler

VDESH CP 2
JR C,VDESH1
JR Z,VDESHZ2
LD A,
CP l=l
LD A,2
JR Z ,VDESHX
XOR A
JR VDESHX
VDESH1 LD A, (VDDESX)
LD L,A
LD A,C
SUB 20H
CP 80
JR C,$+4
LD A,79
LD H,A
LD ~ (VDDROW) ,HL
XOR A
JR VDESHX
VDESHZ2 LD A,C ,
SUB 20H
cp 24
JR C,$+4
LD A,23
LD (VDDESX) ,A
LD A,1
VDESHX LD (VDDESC) ,A
RET

W M - L A S W I I A I G I D A I G S A A S TR S W e Sl SR

;Check state of ESC
1Go if state 1

;Go if state 2

;6et input character
:Must be ‘=

:Set next state in A
;60 1f valid

;Clear state variable
; and exit

:Get saved Row

;Put it in L

;Get input Column
;Convert to actual
;Is column # valid?
;9kip next if so
:Move to last column
;Put it in H

;Store as new cursor
;Clear state variable
 and exit

;Get the input character
;Convert to actual Row
:Is it valid?

;Skip next if it is
;Move to last row
;Store in DCB

;50et next state in A
:Save state variable
;. and exit

; Video Display Control Code processing

VDCTL LD HL, VDCXAT
LD B, 0
ADD HL ,BC
LD A, (HL)
OR A

Page 46 - ©(p) Copyright 1985 by Montezuma Micro/JBO

S ki SR R W R SRR TEE Gk ks Sk S R W SN TED WIS W SN Sl Al A dmp S ek D% ODR W D

;HL=Code Address Table
;Table offset in BC

: Index to routine offset
;Pick up routine offset
;Is the code defined?

\.-‘;

EFE]
EFE2
EFES
EFEG
EFE7
EFES
EFEB

EFEC
EFEE
EFFQ
EFF2
EFF4
EFF6
EFF7
EFF9
EFFB
EFFD
EFFE
Fogg

Fpg1
Fo@2
F@93
FO@5
FAP6
FBP9
Fo@B

F@BD
FOQE
FO19
FP12
F@13
FA15
F@17

F@19
FA1A

FR1C
Fa1D
F@2
F@22

F@24
F@25
F@26
F@28
FB2A
F@2C

C8
21
4F
P9
ES
2A
C9

OE
3E
@6
D3
10
AF
P6
D3
19
gD
29
c9

7C
B5
28
25
F2
26
18

/C
E6
C6
67
FE
38
26

2C
18

2D
F2
2E
18

24
7C
FE
38
26
18

E2 EF

8t

99
g1
64

99
FC

64

99
FC

EE

2D

32
4F

gF

F8
@8

50
1B

g9

16

32

89
P

F@

F@

F@

VDCTL1

VDBEL1
VDBEL?2

VDBEL3

- S S G

- . e A

RET Z ;Ignore if not

LD HL,VDCTL1 ;Point HL at base address
LD C,A ';Add offset for this code
ADD HL ,BC

PUSH HL | ;Routine address to stack
LD HL, (VDDROW) ;Cursor Column,Row to HL

RET :Go to it

the built-in speaker

LD C,0 ;Set duration counter

LD A,l ;5et bit @ on

LD B,100 ;5et pitch counter

ouT (SOUND) ,A
DJNZ VDBEL?2
XOR A ;furn bit @ off

LD ., B,100 ;Reset pitch counter
ouUT (SOUND),A :Let the wave die
DINZ VDBEL3 :
DEC C ;Count down duration
JR NZ,VDBEL1 ;Loop until timeout

;Crank up a wave

the cursor left 1 position

W el e g e S e S ae e sk de e M S SmE e e S G S B S

LD A,H ;At top of screen?
OR L

JR Z,VDCSCK ;60 if yes

DEC H ;Back up 1 position
JP P,VDCSCK ;Exit if no wrap

LD H,79 ;Move to end of line
JR VDVT ; and back up 1 row
cursor to next tab stop

LD A,H ;Column # to A

AND @F8H ;Make it @ mod 8

ADD A,8 ;Move to next tab stop
LD H,A

CP 80 ;Line overflow?

JR C,VDCSCK ;Exit if not

LD H,9 ;Move down 1 line

A S - kW W B e Ve e

INC L sIncrement the row #
JR VDCSCK

cursgr up 1 line

. Sl S A ek s e s A e g s e W g e

DEC L ;Back up 1 row

JP P,VDCSCK ;G0 if not negative
LD L,@ ;Hold on top line
JR VDCSCK .

cursor right 1 position

A e MR S e ol W U WS D SR S A S S e G S S N e

INC H ;Advance 1 column
LD A,H ;Get the new column
CP 8@ :Still on line?

JR C,VDCSCK ;G0 if yes

LD H,B ;Move to next line

JR VDLF

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 47

FB2E
Fp3p

Fp32
FP33
FB35
F@38
F@39
FO3B
FP3E
F@41
F@44
F@47
F@49
F@4C

FOAE
FO4F
F@51
F@54
F@55
F@56

F@58
F@5B

FOSE
F@61
F@64
FB65
F@68
FP6A
FP6C
F@6D
FO6E

F@71
F@72

F@74
F@75

F@77
FA7A
FB7C
F@7F

Page 48 - ©(p) Copyright 1985 by Montezuma Micro/JBO

2E

- 26

/D
FE
22
D8
2E
22
21
11
Pl
ED
21
18

ES
26
CD
EB

"E1

18

21
22

11
CD
EB
3A
Fb
ED
44
4D
C3

AF
18

3A
EE
32
C9

po

1Y

18
8t

17
8E
50
90
3P
BP
17
19

50
77

@9

go
8E

8¢
17

9
29
52

2E

g8

g3

90
80

90

F@

F@
F8
F8

@7
il

EF

9o
Fo

FF
EF

Fo

ED

F@
F@

; Perform Cursor Home

S M aleh AR M ML e A W S M e b mls S S dne vam G e T R TR AR e

VDCSCK LD A,L
CP 24
LD (VDDROW),HL
RET C

" LD (VDDROW) ,HL

LD HL ,F8PPH+80
LD DE , AF8PAGH
LD BC,8p*23
LDIR
LD HL,23
JR VDEOS

. Erase to end of cutrent line

S . A W A AR TER TP AN mmp Smm s s e S G AL ML gl dmp s e S S S S S N

LD H, 80
CALL VDCRA
EX DE,HL
POP HL

JR VDEOQS1

VD(LS LD HL , BB@BH
LD (VDDROW) ,HL

; Erase to end of screen

. e ey dem e S e el de S e e Smh wi Al gep e gEn

VDtOS LD DE,@OFF8@H
VDEOS1 CALL VDCRA

EX DE,HL

LD A,(VDDINV)

OR 2PH

SBC - HL,DE

LD B,H

LD C,L

JP MFILL

-
b |

'; Turn inverse video OFF

VDIVQ XOR A
JR VDINVZ

. Turn inverse video ON

VDIVl XOR A
JR VDINV1

; loggle state of inverse video

O S W O W S R Smb S A G e da e A S B Sin Gk Wl SRR O I AN A

VDINV LD A,(VDDINV)

VDINV1 XOR 8pH

VDINVZ LD (VDDINV),A
RET

;:Set row # to @

N e

:Get the cursor Row #
;:Is it on-screen?

;Save?the cursor

;Exit if on screen

;Stay on line 23

;Save the cursor

;Point HL at second line
;Point DE at top of screen
;Move 23 lines of video
;Scroll Video RAM

;5et Row=23, Column=@
;Clear new line & exit

;Save cursor position
;Set to end of line + 1
;Calculate RAM address
;Put in DE

;Restore cursor

;G0 clear

screen
;S5et cursor at 4,0
;Save it in DCB

;Set end address

;Calc start address
;Start to DE, end to HL
;Get inverse video mask
;Create a blank
;Compute clear length
;Move length to BC

;F111 memory & exit

;Clear the flag
;G0 store it

;Clear the flag
;1oggle & store it

;Get inverse video mask
;Reverse it
‘sReplace in DCB

- e e,

FP8p
F@82

F@85
FP88

FR8C

F@8D
FOSE
FOSF
FP9P
F@91
F§92

F@93
FP94
FA95
FB96
F@97
F@98
F@99
F@9A

F@9B

FB9C
FA9D
FPOE
FROF
FOAQ
FOAL
FBA2
FPA3
FPA4
FOAS
FBAG
FOA7
FOAS
FBA9
FPAA
FOAB
FOAC
FPAD
FPAE
FOAF
F@BY
FPB1
FPB2

F@B3
F@B5

3E 93

C3 D5 EF

CD 23 ED
8E FP 05 0§

C9

8D FP

93 F@

e ranp——————— e B R

VDESC LD A,3 :Set ESC state variable
JP VDESHX & exit

Z Initialize Video Display DCB fields

VDINIT CALL CLRMEM .Clear DCB fields
DEFW VDDROW,VDCXAT-VDDROW
RET

: Video Display Device Control Block
VDDCB EQU $
VODCHR DEFB v
VDDROW DEFB 2
vDDCOL DEFB @
VODINV DEFB P
VDDESC DEFB 9
0
$

;:Character under cursor
:Cursor row (@-23)
:Cursor column (@g-79)

s Inverse video mask
;Escape Sequence Control

VDDESX DEFB ;Escape Sequence Storage

VDCXAT EQU ;Control code address table
DEFB pPH ;Code @@ - ignored
DEFB @@gH ;Code 1 - ignored
DEFB PoH ;Code P2 - ignored
DEFB @PH ;Code @3 - ignored
DEFB PgH ;Code #4 - ignored
DEFB gPH ;Code @5 - ignored
DEFB PPH ;Code- #6 - 1ignored
DEFB VDBEL-VDCTL1 ;Code @7 - Sound bell
DEFB VDCLT-VDCTL1 ;Code @8 - Backspace
DEFB VDTAB-VDCTL1 ;Code @9 - Tab
DEFB VDLF-VDCTL1 ;Code PA - Linefeed

DEFB VDVT-VDCTL1 ;Code PB
DEFB VDCRT-VDCTL1 ;Code @C
DEFB VDCR-VDCTL1 ;Code §D
DEFB VDIV@-VDCTL] ;Code QE
DEFB VDIV1-VDCTL1 ;Code @F

Vertical tab
Cursor right
Carriage return
Inverse video QFF
Inverse video ON

DEFB PgH ;Code 19 - ignored
DEFB @PH ;Code 11 - ignored
DEFB PPH ;Code 12 - ignored
DEFB PPH ;Code 13 - ignored
DEFB PPH ;Code 14 - ignored

DEFB VDEOL-VDCTL1 ;Code 15
DEFB VDINV-VDCTL1 ;Code 16
DEFB PPH ;Code 17
DEFB pPH ;Code 18
DEFB VDEQS-VDCTL] ;Code 19
DEFB VOCLS-VDCTL1. ;Code 1A

Erase to EOL
Toggle inverse
~ignored
ignored

Erase to EOS
Home & clear

,lllllllllllll!Illllllllllllllll

DEFB ~ VDESC-VDCTLI1 ;Code 1B - Start ESC
DEFB PPH ;Code 1C - ignored
DEFB PPH ;Code 1D - ignored
DEFB VDHOM-VDCTL] ;Code 1E - Home cursor
DEFB @pH ;Code 1F - ignored

TRS-8¢ Model 4 BIOS Version 2.@@+ Parallel Printer Port device driver

DB F8
E6 F@

’
: Je g e de Je e e dede dede dode dodede o koo de e dede e dede e de de e do e dede ek e de dode de e dedo ke de v kedo ke de ke e ke ke kv

; ¥ Parallel Port device drivers *
s * Input: Dependent on function . *
s ¥ Qutput: Dependent on function *

’
’
’
d K dekdedededodokok ko dokkeokodokodekok okodkokodkekhkek dodeodk kokodokododek ke do ke kkdode ke Rodeok kekdeodkekdokkk
’
>

Check port for busy &/or error - return in A

Lol R R R I B R R R e ————

PPBSY

IN
AND

A, (PARSDT)
ﬂFﬂH

;Read port status \
s;Isolate status bits

© (p) Copyright 1985 by Montezuma Micro/JBO - Page 49

FPB7 EE 3¢ XOR 3pH ;Invert negative logic bits |

F@B9 28 92 JR - Z,PPBSY1 ;Go if ready T
FgBB 3t @1 LD A,l ;Preset for zero return |
F@BD 3D PPBSY1 DEC A ;5et A to PPH or FFH N
F@BE C9 . RET ;

- O i el S . S e A A L Sk BN P GEE WD WA S A vy e e el

FEBF 21 25 Fl PPOUT LD HL,PPDOPT ;Point at option bits

FgC2 79 LD A,C ;Get ‘character to print

FOC3 FE 20 CP 2@H ;Is it a control code? é

FOC5 30 2D JR NC,PRINT ;Go if not ’ |

FAC7 FE QA Cp PAH ;Is 1t linefeed? g

FBCo 20 @D JR NZ,PPOUT1 ;6o 1f not |

FACB CB 46 BIT @, (HL) ;Suppress linefeeds?

FOCD 28 25 JR Z,PRINT ;G0 if not

FOCF 3A 24 F1 LD A, (PPDPRV) ;Check previous character

FpD2 FE @D CP @DH ;Was it carriage return?

FAD4 28 26 JR Z,PPCLF sExit if so

FaD6 18 1C JR PRINT ;G0 print the linefeed

FAD8 FE @C PPOUT1 CP @CH - ;Is this a formfeed?

FODA 20 18 JR NZ,PRINT ;Go if not

FADC CB 4E BIT 1,(HL) ;Simulate formfeeds?

FADE 28 14 = JR Z,PRINT ;Go if not

FPE@ 3A 26 F1 LD A, (PPDLCT) ;Get 1ine counter

FAE3 B7 OR A ;Anything left on page?

FOE4 28 22 JR Z,PPRLC ;Exit if not

FOE6 47 LD B,A ;Set up loop counter

FOE7 CD B3 F@ PPOUT2 CALL PPBSY ;Wait for printer ready

FOEA 28 FB JR L,PPOUT?2

FOEC 3E A LD A,PAH ;0utput a linefeed

FOEE D3 F8 ouT (PARSDT),A

FAFQ 10 F5 DJINZ PPOUT?2 ;Loop through the page @

FPF2 18 1A JR PPRLC1 JExit -l
; Print the character in C

FBF4 CD B3 F@ - PRINT CALL PPBSY ;Wait for printer ready

FOF7 28 FB JR Z,PRINT |

FAF9 79 LD A,C ;Print the character 5

FBFA D3 F8 0UT (PARSDT),A |

- Check for linefeed, count down if so |

FPFC 3E PA | PPCLF LD A,@AH ;Set A to linefeed !
FAFE B9 CP C ;Did we just do one? ;
FBFF 2@ 97 JR NZ,PPRLC sExit if not I
F1p1 3A 26 F1 LD A, (PPDLCT) ;Decrement line counter

F194 3D DEC A

F1p5 32 26 F1 LD (PPDLCT),A

. Reset Tine counter if zero, exit

A S L S Sk Gl sy W YR IR IR AR TR EER WL R A Ad S S T A I A . W e

F108 3A 26 F1 PPRLC LD A, (PPDLCT) ;Get line counter
F108B 87 OR A sIs it zero?
F10C 20 06 JR NZ,PPOQUTX ;Exit if not
FIBE 3A 27 F1 | PPRLC1 LD A, (PPDPGL) ;Reset line counter
F111 32 26 F1 . LD (PPDLCT),A
; Save character and exit
F114 79 PPOUTX LD AC ;Save character in DCB
F115 32 24 F1 LD (PPDPRV),A
F118 C9 RET

Page 50 - ©(p) Copyright 1985 by Montezuma Micro/JBO

A e L elg e ny d—— ey

F119
F11C
F11F
F120
F123

F124
F125

F126
F127

F128
F12A
F12C
F12D
F12F

F13@
F132
F134
F136
F138
F13A

F138
F13E
F149
F141
F143

F144
F146
F148
F149
F14C
F14E
F150
F152
F154

F156
F157

3A

32
AF
32
€9

0P
42

27 Fl
26 F1

24 F1

F1l

— amn amm dem UES S amm ks AER e G mme ARF Gy SRR EE EE EW W e R S S S S s

A, (PPDPGL) :Reset line counter
LD (PPDLCT),A
XOR A ;Kill previous character
LD (PPDPRV),A
RET

. Parallel port DCB

PPDCB EQU $

PPDPRV DEFB @
PPDOPT DEFB 1

;Previous character
;0ption bits

; s P=Suppress LF after CR
; ; 1=Simulate formfeeds

: 2-7=Reserved
:Line counter
;Page length

PPDLCT DEFB ¢
PPDPGL DEFB 66

TRS-88 Model 4 BIéS Yersion 2.p@+ Serial Port device driver

DB
E6
C8
F6
C9

DB
E6
28
DB
E6
C9

CD
28
79
D3
C9

DB
E6
C8
21
CB
28
DB
E6
EE

C8
CB

EA
89

FF

EA
89
FA
EB
/F

44
FB

EB

EA
49

75
46
@7
E8
89
89

4t

F1

Fl

y

. khkkkkhkkhkhkkhkkhkkhkhkhkkhkhkkhkkhkhkhkkhkkhkkhkkhkhkkhkhkkhkhhhkhkhkhkkhkhkhkhkhkhkhkkkhk

;- * Serial Port device drivers
; ¥ Input: Dependent on function
s * Qutput: Dependent on function

*
*
x

. khkhkkkkkkkkkhkkkhkhkkkhkkkhkkkhkhkhkkhkkkhkkkkkkkkkhhkhkhkhkhhkkikkkhkkkkk

W e s W S SIS W EEE IR SEN AES EEE W A AER SIS TER S SN NN S L M AN SR PSS wal WA A U G Gl A TR G AN W W AR SR L AR TRR AN W R gk e e ey

; Check for input at Serial Port, return status in A
SPSTS IN . A, (SERURT)

:Get UART status

AND 8@H ;Isolate data received bit
RET z ;€Exit if nothing

OR PFFH ;5et status to show input
RET

; Input a byle from the Serial Port

L L T R T R I R R s B I ———

SPINP IN A, (SERURT) ;Get UART status
AND LOH ;Anything received?
JR Z,SPINP sLoop 1f not
IN A, (SERDAT) ;Read data byte
ggg 7FH sMask off parity bit

; OQutput & byte to the Serial Port

ke A e S A el e s e G TR WS SER MR R TR L G D SN EED e WS WA M SRR e W e o w

»]

SPOUT CALL SPBSY ;1s the port busy?

JR Z,SPOUT ;Loop until ready
LD A,C ;Get output byte
ouT (SERDAT),A ;O0utput it

RET

; Check Serial Port for busy

Ny mim ommy Gmly WL BN Sk i e b i WA R PER AR TR T G Eab G S G AR W TR

SPBSY IN A, (SERURT) ;Get UART status
AND 4@gH ;Ready to Xmit?
RET VA ;Exit if not
LD HL,SPDOPT ;Point to options byte
BIT @,(HL) ;Wait for CTS enabled?
JR Z,S5PBSY1 ;Go if not
IN A, (SERRST) ;Get secondary status
AND 8PH ;Check CTS input bit
XOR 804 ; Invert state of CTS *
; ; Above changed to NOP in 2.22
RET Z ;Exit if no CTS

SPBSY1 BIT 1,(HL) ;Wait for DSR enabled?

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 51

— ——

o ——— e e ke e g

F159
F15B
F15D
F15F

F161
F162
F164

F165
F168
F16A
F16C
-F16F
F171

F172
F175

F176
F177

F3B5
F 388
F3BB
F3BF

F3C2
F3C5
F3C7

F3C8
F3CB
F3CE
F3D1
F3D4
F3D5

28
DB
E6
EE

C8
F6
C9

3A
D3
D3

- 3A

D3
C9

72
C3

2P

55
6C

7
E8

49
49

FF

76

Fl

E9 -

ES
17
EA

Fl
65

Fl

F1

S

b

S
S
S
S
S

JR Z,SPBSY?2 ;Go 1f not

IN A, (SERRST) ;Get secondary status
AND AQH ;Isolate DSR bit
XOR 40H ;Invert state of DSR *
; Above changed to NOP in 2.22

RET Z ;Exit if no DSR

PBSY2 OR AFFH ;Indicate ready state
RET

; Initialize Serial Port

PINIT LD A, (SPDBDR) :Set the baud rate
ouT (SERBRG) ,A '
ouT (SERRST),A ;Reset the UART
LD A, {SPDCFG) ;Configure primary UART reg
ouT (SERURT) ,A
RET

Serial Port Device Control Block
PDCB EQU $

PDINT JP SPINIT
PDOPT DEFB g

;Initialization vector
;Serial Port Options

; Bit @#=Wait for CTS
; Bit 1=Waijt for DSR
;Baud rate code

;UART configuration

PDBDR DEFB 55H
PDCFG DEFB 6CH

TRS-8¢ Model 4 BIOS Version 2.@@+ I/0 routines for drive M:

CD
CD
ED
21

g1
ED
C9

2A
11
CD
CD
EB

10

D7
ED
5B
DB

80
B@

25
DB
C2
D7

16

F3
F3
25
F9

PP

F7
F9
F3
F3

s .
o ededededododododedek g gk ok ke kokodkede dedeode ke do ke de ok de g g kedekeokode ke dokeokekeokokodedodeokokodede ke ok kokokkok

; * Memory drive read routine *
; * Input: Select parameters in Select Control Block *
; * OQOutput: Record moved to (DSBDMA) *
3 khkkkkhkhkkkkhkkkkhkkhkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkhkhkhkkkkkkkhkhkk
MDREAD CALL MDADDR ;9et up addresses

CALL MDMOVE ;Move data to work buffer

F7 LD DE, (DSBDMA) ;Point DE at destination

LD HL ,WKBUF ; & HL at source
; kkkkkkkkr wikkkhkihkkkiikdkikikikhkikkkkkhkikiikdkikdkkikiikkikkkikikikkkiikk
; * Move a record | *
; * Input: HL=Source record address | *
; * DE=Destination record address *
; ¥ Output: None - record moved to new location x
: KKtk k kekkk Kk Kk ok dokokkokkk bk kod kX gk ke deokodekekeke ko dede ke okekodede doke ke kv de de ke Je de ke koke
MOVREC LD BC,128 ; for 1 record length

LDIR ;Move the record

RET .
; khkhkkhkkhkhkhkkkhkhkhkkhkhdhkhkhkhkkhkhkhkkkhAhkhkhkkkhkkhkhkkkkkkkhkkkdkhkkkikkkikk
; * Memory drive write routine *
; * Input: Select parameters in Select Control Block *
; * QOutput: Record moved from (DSBDMA) *
: %ok de g ke ke Je ke ke ke ke ke ok de ke ke de ke ke kede ke de ke dode de ke ke ke de ke de Fe de e de dode ke de ke de e de e de do ke dedekekedede kv ke
MDWRIT LD HL, (DSBDMA) ;Point HL at record

LD DE ,WKBUF ; & DE at work buffer

CALL MOVREC ;Move record to work buffer

CALL MDADDR ;Set up addresses

EX DE,HL
JR MDMOVE

;Switch for write
;Write record & exit

| Page 52 - ©(p) Copyright 1985 by Montezuma Micro/JBO

u/

9

s a—— ..

F3D7
F3DA
F3DB
F3DC
F3DD
F3DF
F3E1
F3E3
F3ES
F3E6
F3E7
F3E8
F3E9
F3EC

F3ED
F3EE
F3FQ
F3F2
F3F5
F3F7
F3F9
F3FA

F3FB
F3FC
F3FD
F3FF

FAQP

F4p2
Fag4
F4g5

21 23
/E
2B
66
2E PP
CB 3C
CB 1D
F6 @6
a7
g7
g7
@7
11 DB
€9

F3
F6 8F
D3 84
CD C2
3t 8F
D3 84
AF
C9

F7

F9

F3

**

, ¥ Memory drive address setup routine *
; * Input: Information in Select Control Block *
s * Qutput: A=Map address select bits *
;¥ DE=Internal record buffer address *
; ¥ HL=Record address in alternate memory map *
: AhkAkAAAkAAhkkkhkhkkhkAkhkkkkhkhkkhkhkhkkhkhkhkhkkhkhkhkhkkkkkhkhkkkhkkkdhkhkkhkkk
MDADDR LD HL,DSBSEC+1 3;Point HL at sector #

LD A, (HL) ;Page # to A (@ or 1)

DEC HL Point to 1s byte of sector

LD H, (HL) ;Memory address * 256 to HL

LD L,9

SRL H ;Divide by 2 to get true -

RR L : record address

OR 6 ;Set FXUPMEM, MBITI

RLCA ;Rotate into bits 6-4

RLCA , 7

RLCA

RLCA

LD DE ,WKBUF ;Point to internal buffer

RET

e e Jo e Jede o de Jedo e dede e o de de dode e do de de e do dede e dode dede do dodede e dedede de e dededodededode ke de e ke dede ke ke

* Memory drive data move routine

* Input: A=Address select bits for move
HL=Source address for move
DE=Destination address for move

Qutput: 128 bytes moved as requested
**

* * %
* % % * %

gvc WM WP B WP P P P

DMOVE DI ;No interrupts now!
OR KVMOUT ;Set mapping bits
ouT (MEMCTL),A ;Select alternate map
CALL MOVREC ;Move the record
LD A, KVMOUT ;Set normal map bits
ouT (MEMCTL),A ;Restore normal map
éE? A ;Clear status for good 1/0

TRS-8¢ Model 4 BIOS Version 2.8+ 1/0 routines for Floppy Drives

F3
3D
28 @7

28 3A

3E 10
C9

’
Kk Je dodedoedehokodede ko kodedede ke keodededede de dedede dedededk odkede g dododede ke ke kede ke ke dedededoke ke kededeok ke ke k

* Floppy Disk I/0 Driver

. *
3 * Input: A=Function code *
. * 1 - Read a sector *
. ¥ 2 - Write a sector *
g * BC=Track number (B should always be @) *
; * DE=Sector number (D should always be @) *
; X HL=Buffer address *
3 x IX=DCB for selected drive *
; ¥ IY=DPB for selected drive *
; ¥ Qutput: A=Status of operation *
; ¥ Bits match WD 1791 FDC conventions *
: **********?***
FDD DI sNo interrupts

DEC A ;Check function code

JR Z,FDREAD ;1 = Read

DEC A

JR Z,FDWRIT ;2 = Write

Return INOP status for Floppy Disk Drive

—-------------------‘------‘-“-_--------

FDINOP LD A,10H ;:Return RNF error
gET A ;Clear Z to set error status

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 53

;. Read a sector trom disk

g e e S W N TR A S e W D S e ek e A e S e e

Fap6 CD 83 F4 FDBEGN
F499 C RET NZ.
FApA CD 19 F4 CALL FDRD3
F4pD C8 RET /A

F4PE F8 RET M

FAF CD 16 FS CALL FDJOG
F412 CD 19 F4 CALL FDRD3
F415 (C8 RET /A

F416 CD @D F5 CALL FDRST

; Read a sector with 3 attempt

- pEm e gEh S Gl B S SR B S A T AR W ey dme W P SRR A B G g AR S

-
, .

F419 CD 22 F4 FDRD3 CALL FDRDSC
F41C C8 RET Z
F41D F8 RET M
FAIE CD 22 F4 CALL FDRDSC
F421 C8 RET Z

L R

FDRDSC PUSH HL

F422 ES

F423 06 89 LD 8,80H
F425 CD 4A F5 CALL FDSET
F428 38 F4 DEFW FDRDS3
F42A DB F@ FDRDS1 IN A, (FDCCTL)
F42C A3 AND E

F42D 28 FB JR Z,FDRDS1
F42F ED A2 INI

F431 7A LD A,D

F432 D3 F4 FDRDS2 OQUT (FDCSEL),A
F434 ED A2 INI

F436 18 FA JR FDRDS?2
F438 E1 FDRDS3 POP HL

F439 E6 9C AND 9CH

F438 (9 RET

; Write a sector to disk

F43C CD 83 F4 FDBEGN
F43F C@ RET. NIZ
F449 ~ CD 51 F4 CALL. FDWT3
' F443 (8 RET 7

F444 E6 CP AND PCPH
F446 CP RET N7
F447 CD 16 F5 CALYL FDJOG'
F44A CD 51 F4 CALL. FDWI3
F44D (8 REF Z
F44E CD @D F5 TALL FDRST

;Start the I/0 operation
sExit 1f ervor

;Try to read 3 times
1Exit 1f successful
;Exit if inoperative
;Jog the head

:Try 3 more times

;Exit if read 0K
;Restore the drive

:Try to read the sector
sExit if it worked
;Exit if inoperative
;Iry again

;Exit if 0K

;Save buffer address
;Set up read command
;Start the command

; Termination address
:Read the status

;Got a DRQ yet?

;Loop 1f not

;Read first byte
;Establish wait states
:Go into wait state
;Read a byte

;Keep reading

;Restore buffer address
;Any errors?

;Exit with status

;Start the I/0 operation
;Exit i1f error

;Try to write 3 times
;Exit if successful
;Exit 1f inop or w/p

:Jog the head

,Iry 3 more times
;Exit if write 0K
:Restore the drive

; Write a <octor with 3 attempis

Ak e o e -

F451 CD 5C F4 FDNT3 CALL

FDWTSC
F454 (C8 RET Z

F455 E6 CP AND @CPH
F457 C@ — RET NZ

F458 CD 5C F4 CALL FDWTSC
F458 C8 RET Z

; Write a sector

FOWTSC PUSH HL

F45C ES

F45D0 @6 AP LD B,AQH

FASF CD 4A F5 CALL FDSET

F462 7F F4 . DEFW FDWTS4

Page 54 - ©(p) Copyright 1985 by Montezuma Micro/JBO

Trw S A TEE A e R R B G W S N SR Y W

;Iry to write the sector
sExit if it worked
;Exit if inop or w/p

;Try again
;Exit if OK

;Save buffer address
;5et up write command
;Start the command

s lermination address

»

FA64 DB F@ FOWTS1 IN A,(FDCCTL) ;Read the status

F466 A3 AND E ;Got a DRQ yet?
F467 28 FB JR Z,FDWTS1 ;Loop 1f not
F469 ED A3 OuUTl ;0utput first byte
F46B 7E LD A, (HL) ;Get the next byte in A
F4a6C 23 INC HL |
F46D QE FP . LD C,FDCCTL ;Poine C at status reg
FA6F ED 58 FDWTS2 IN E,(C) ;Loop for second DRQ
F471 E2 6F F4 JP PO,FDWTS2 -
F4a74 D3 F3 ouT (FDCDAT),A ;0utput the byte
F476 PE F3 LD C,FDCDAT ' ;Restore C to data port
F478 7A LD A,D ;Establish wait states
F479 D3 F4 FOWTS3 OUT (FDCSEL),A :Go into wait state
F478 ED A3 OUTI ;Write a byte
F47D 18 FA JR FDWTS3 ; Keep writing
F47F E1 FOWTS4 POP HL ;Restore buffer address
Fa84 E6 FC AND @FCH ;Any errors?
Fag2 (9 RET ;Exit with status
; Select the disk & wait for speed
FA83 FD 7E 13 FDBEGN LD A,(IY+DPBOPT) ;Get drive option bits
F486 E6 89 AND 80H ;Isolate density
F488 DD B6 @3 OR (IX+DKDSEL) :Combine with select bits
FA8B DD 71 @B LD (IX+DKDLTK),C ;Save logical track #
F4B8E FD CB 13 76 BIT 6,(1Y+DPBOPT) ;Double-sided disk?
>> NOTE %---- EXBIOS ‘replaces the above instruction with this:
>> NOTE CD 89 FE 99 CALL BIOSEX ;Call BIOS patch
F492 28 1C JR L,FDBEG2 ;Go if not
' r4avg CB 39 SRL C ;Divide track # by 2
. FA96 FD CB 13 56 BIT 2,(1Y+DPBOPT) ;Side 1 same track #?
d! ? FASA 20 @3 JR NZ,FDBEG1 ;6o if not
FAQC DD 71 0B LD (IX+DKDLTK),C :Save new track #
F49F 30 OF FDBEG1I JR NC,FDBEG2 ;Go if on side @
F4A1 F6 10 OR 10H ;Turn on side 1 select
FAA3 FD CB 13 5E BIT 3,(1Y+DPBOPT) ;Side 1 sectors biased?
F4A7 28 @7 JR Z,FDBEG2 ;Go if not
F4AS F5 PUSH AF ;5ave select bits
FAAA 7B LD AE ;Get sector #
FAAB FD 86 @F ADD A,{IY+DPBSPT ;Add side 1 bias
FAAE 5F LD E,A ‘ ;Restore sector #
FAAF F1 POP AF ;Restore select bits
FABY) DD 77 @A FDBEG2 LD (IX+DKDCSL),A ;Save select bits
F4B3 79 LD A,C ;Get track #
F4aB4 FD CB 13 6E BIT 5,(1Y+DPBOPT) ;Double stepping drive?
FAB8 28 @1 JR Z,FDBEG3 ;6o if not
F4BA 87 ADD A,A - ;Compute true track #
FABB DD BE @8 FDBEG3 CP (IX+DKDPTO) ;Precomp needed yet?
FABE 38 @4 JR C,FDBEG4 ;6o if not
FACO DD CB @A EE SET 5, (IX+DKDCSL) ;turn it on
F4C4 57 FDBEG4 LD D,A s;True track # to D
FAC5 DB F@ IN A,(FDCCTL) ;Get controller status
F4C7 @7 RLCA ;Ready bit to C flag
F4C8 CD 3C F5 CALL FDSEL ;Select the drive
F4CB 3E D@ : LD A,PDPH ;Reset the FDC
FACD D3 F@ ouT (FDCCTL),A
FACF 39 @D | JR NC,FDBEG6 ;G0 if drive- running
F4D1 DD 46 @5 LD B, (IX+DKDSTD) ;Start-up delay to B
F4D4 3E FA FDBEGS LD A,250 ;:Delay for 1/4 second
/ FAD6 CD 14 ED CALL MSDELY
(\ . F4AD9 CD 3C F5 CALL FDSEL ;oelect again
b FADC 19 F6 DJNZ FDBEGS ;Wait for speed
FADE 7B FDBEG6 LD A.E ;Get the sector #
FADF D3 F2 ouT (FDCSEC),A ;Give to controller

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 55

AR AN NN iy Sy G L S SRS T W W e P W e S e e

FAE1 DD 7E @9 FDSEEK LD A, (IX+DKDCTK) ;Get current track
F4E4 D3 F1 ouT (FDCTRK),A :Give to controller
FAE6 3C INC A :First access (=FFH)?
F4E7 CC 1D F5 ' CALL Z,FDSTEP :Restore’ the drive if so
FAEA 7A LD A,D ;Get desired track
FAEB DD BE @7 , CP (IX+DKDNTK) ;I1s it legal?
FAEE D2 @2 F4 JP NC,FDINOP ;Return INOP if so
FAFl D3 F3 ouT (FDCDAT),A ;Output track to FDC
F4F3 DD 77 99 LD (IX+DKDCTK),A ;:Save also in DCB
FAF6 CD 3C F5 CALL FDSEL :Re-select the drive
FAF9 DB F1 IN A, {(FDCTRK) ;Get the track #
FAFB 92 SUB D ;Any seek required?
F4FC 28 99 JR Z,FDSEK?2 ;6o if not
FAFE 7A LD A,D ;Target track # to A
F4FF B7 OR A s Is it zero?
F500 28 @2 JR Z,FDSEK1 ;Go if yes
F502 3E 19 LD A,19H ;5et up seek command
F504 CD 1D FS FDSEK1. CALL FDSTEP ;Seek the track
F5¢7 DD 7E 0B FDSEKZ2 LD A, (IX+DKDLTK) ;Get logical track #
F56A D3 F1 ouT (FDCTRK),A :Give it to controller
F58C €9 RET
s Restore the head for I/0 retry
F5pD DD 56 @9 FDRST LD D,(IX+DKDCTK) ;Current track # to D
F519 DD 36 @9 FF LD (I1X+DKDCTK),@FFH ;Force restore
F514 18 CB JR FDSEEK ;Restore, seek & exit
; Jog the head for 1/0 retry
F516 3E 58 ~ FDJOG LD A,58H ;Step the head in 1 track
F518 CD 1D F5 CALL FDSTEP
F51B 3t 68 LD A,68H ;Now step out 1 track
; Perform a step operation
F510 C5 FOSTEP PUSH BC ;Save BC
F51E 4F LD C,A ;Save step command
F51F 3t @2 LD A,2 ;Wait 2 ms to be sure
F521 CD 14 ED CALL MSDELY ; erase turned off
F524 DD 7E 94 | LD A, (IX+DKDATT) ;Get drive attributes
F527 E6 @3 AND 3 ;Isolate step rate
F529 Bl OR C ;Combine with command
F52A C1 POP BC | ;Restore BC
F52B CD 42 F5 CALL FOCMD ;Issue step command
F52E CD 3C F5 FDSTP1 CALL FDSEL ;Reselect the drive
F531 DB F¢ IN A,(FDCCTL) :Get the status
F533 1F RRA 3Still busy?
F534 38 F8 JR C,FDSTP1 sLoop if yes
F536 DD 7E @6 LD A, (IX+DKDSTL) ;Settle time to A
F539 €3 14 ED JP MSDELY :Delay & return
; Keep disk selected until not busy
F53C DD 7E PA - FDSEL LD A, (IX+DKDCSL) ;Select the drive
F53F D3 F4 ouT (FDCSEL),A
F541 C9 RET
; Issue a command to the disk controller
F542 D3 F@ FOCMD 0QUT (FDCCTL),A ; Issue the command
F544 3E 14 LD A,20 ;Set delay counter
F546 3D FDCMD1 DEC A ;Count down 16 usec
F547 20 FD JR NZ,FDCMD1 ;Loop if not zero

" Page 56 - ©(p) Copyright 1985 by Montezuma Micro/JBO

F54A
F548
F54E
F551
F554
F557
F559
F55C
F55F
F562
F563

F564

F565
F566
F567
F568
F569
F56A
F568B
F56E
F570
F572
F574
F577
F57B
F57D
F57F
F580
F583
F585
F587

F588
F589
F58A
F58C
F58F
F592
F595
F598
F59A
F59B

F59C
F5AQ
F5A4
F5A8

FS5AC
F5B9

~ro

9D

F588

F5BC
F5CQ

ES
3A
32
2A
22
3E
32
21
22
El
E3
5t
23
56

66 PP
58 F9
67 9
59 F9
C3

66 20
88 F5
67 99

23

EB
E3
D5
DD
CB
1E
OE
CD
DD
28
CB
78
CD

3t

D3
C9

E3
AF
D3
3A
32
2A
22
DB
El
C9

TRS-89 Model 4 BIOS Version 2.@@+

85
2o

D8

A3

00
5B

F8

C1
9o

56 @A

F2

92

F3

3C F5

CB f§4 76

g2
D8.

42 F5
CP
E4

E4
58 F9
66 @0
59 F9
67 00
F@

F6 PO PO

29 99 09
F9 EC F5

F8 49 F7

F6 00 00
0o 00 0P
F9 @1 F6
F8 A4 F7

F6 00 00
98 99 00

. Set up for 1/0 to FOC

LD
POP
EX
LD
INC
LD
INC
EX
EX
PUSH
LD
SET
LD
LD
CALL
BIT
JR
SET

FDSET1 LD

| CALL
LD
ouT
RET

XOR
ouT
LD
LD
LD
LD
IN
POP
RET

.
3

A SN Ak amk e R En Gy g emm gk ey

HL
A, (PP66H)
(NMITMP), A
HL, (§@67H)
(NMITMP+1) ,HL
A,@BC3H
(P66H) ,A

HL , FDNMI
(@@67H) ,HL

HL

(SP),HL
E,(HL)

HL

D, (HL)

HL

DE ,HL

(SP),HL

DE.

D, (IX+DKDCSL)
6,D

E,2

C,FDCDAT
FDSEL

6, (IX+DKDATT)
Z,FDSET1

3,B

A,B

FDCMD

A,@BCPH

" (NMICTL),A

(SP),HL

A

(NMICTL)
(NMITMP)

| (9P66H) A

HL, (NMITMP+1)
(ﬂﬁﬁ?H),HL

A, (FDCCTL)

HL

;Save buffer address
;Save NMI vector

;5et up new NMI vector

;6et buffer address
;Swap with return
:Get termination address

sTermination to HL

;Put on stack

;Replace return address
:Set D=Select + bit 6

;5et £ to DRQ mask
;5et C to Data port
;Re-select the drive
;Is this 8 inch drive?
:Go if not

;Enable HLT delay
;Command to A
;Give it to the control]er

sEnable NMI from disk

Non-maskable interrupt service routine

- N T D D S S W IR D R D S SR by IR A R AR W . G Em e Mmoo gy i S ol

. FDNMI EX ;Discard return, save HL

;Turn off NMI enable |

;Restore NMI vector

;Read final status
;:Restore HL

Disk tables & parameters

o Fedekkdkodkekekdokodkodkkok ko dkodek kok dodedeodkokodkedododokokokokeokeodk kedeodededeoke kode ek dekokodeke kok ke dekokok

b]

s * Disk Parameter Headers (DPH) for drives A-D & M *
: de de Kk ok Kdekededkodkdodke ke deke ok ok kkddedededek ke kkkdk kA hkkkkkkkhkkkikhkkikkhhkikhkik

DPHA DEFW
DEFW
DEFW
DEFW

DPHB DEFW
DEFW
DEFW
DEFW

DPHC DEFW
DEFW

XLT0,900PH

0PPPH , ARRGH
DBUF,DPBP

CHK@,ALLD

XLT1,P000H
PAPOH , PBARH
DBUF ,DPB1
CHK1,ALL1

XLT2,PB0pPH
PRAGH , 3PAGH

;Drive A parameter header

;Drive B parameter header

;Drive C parameter header

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 57

roul4
F5C8

F5CC
F5D@
F5D4
F508

F5DC
F5E0
FSE4

- F5E8

FSEC
FSEE
FSEF
FSF@
F5F1
F5F3
F5F5
F5F6
FSF7
F5F9
FSFB
FS5FC
FS5FD
FSFF

F6a0

F6@1
F6@3
Fop4
F6@5
Fop6
Fo@8
FOPA

- FopB

F6@C
F6QE
F610
F611
F612
F614
F615

F616
F618
F619
F61A
F618
F61D
FO1F
F620

Page 58 - ©(p) Copyright 1985 by Montezuma Micro/JBO

ob Y 10

18 F9

g8

DF F6 99
P9 90 90
58 F9 2B

38 F9

00 0p
20 99
5B F9

gp 0P

po 9P
g8 B9
gA 99
gC 09
gE 9P

EC F5

24 9P
pa
@F
g1

7F 09
Co
09
20 29
g2 9@
12
g1
55 F6
80
g1
g1 F6
24 Pg
g4
@F
g1
54 90
7F 99
Co
09
20 0P
92 99
12
g1
61 F6
89
g1

16 F6

24 00
g4
PF
g1
54 09
1F 99
CP
0

54 0@

6C

20

40
D@

ro

F8

20
20

F8

20

20
F6

F8

DPHD

DPHM

ULCTW

DEFW

DEFW
DEFW
DEFW
DEFW

DEFW
DEFW
DEFW
DEFW

UDUT L, UTIDCL

- CHK2,ALLZ

XLT3,PPR0H

POP03H , P0PPH
DBUF ,DPB3

CHK3,ALL3
PAOOH , 0PAAH

PPOPH , PBPBH

DBUF , DPBM
PRBAH ,ALLM

;Drive D parameter header

;Drive M parameter header

: Offsets used to address Disk Parameter Header fields
;Skew translation table
;Directory buffer address
;Disk Parameter Block
;:Check vector address
;Allocation vector address

DPHKLT
DPHBUF
DPHDPB
DPHCSV
DPHALV

»
?

EQU
EQU

19
12
14

: Ahkkhkhkhkkhkhkrkhkhkkhkhkkrkhkhkrhhkhkkkhkkkkkhkhkirkhkkhkkhhkhkhhkhkkhkhkhkhkkihkkkikhkkk

: * Disk Parameter Blocks (DPB) for drives A-D & M *

: Xk hkhkkhkkkhhkhkkikikkikhkhkikkhkkhkkkkkhkkhkkikkkkhkkhkkkkkkikkkhkhkhkhkhkhkkkk

DPB@

DPB1

DPB2

EQU

DEFW
DEFB
DEFB
DEFB
DEFW
DEFW
DEFB
DEFB
DEFW
DEFW
DEFB
DEFB
DEFW
DEFB
DEFB
EQU

DEFW
DEFB
DEFB
DEFB
DEFW
DEFW
DEFB
DEFB

- DEFW

DEFW
DEFB
DEFB
DEFW
DEFB
DEFB

EQU
DEFW
DEFB

DEFB

DEFB
DEFW
DEFW
DEFB
DEFB

$
36

4
15

1

84
127
192

)

32

2

18

1
D@DCB
80H

1

$

36

4

15

1

84
127
192

9

32

2

18

1
D1DCB
8¢H

1

$
36
4
15
1
84
127
192

9

P T Y T N Y T N T N ' E RN E B LN 'L B

W ME B N B Y P B B

WY WBE P Y P P B Yt W B PR Y e W g

Dr1ve @ parameter block
Records per track
Block shift count
Block mask
Extent mask count
Highest allocation block
Highest directory #
Initial allocation @
Initial allocation 1
Directory check size
Reserved track count
Sectors per track
Sector size code
Drive DCB Address
Drive option bits
Drive format ID code
Dr1ve 1 parameter block
Records per track
Block shift count
Block mask
Extent mask count
Highest allocation block
Highest directory #
Initial allocation §
Initial allocation 1
Directory check size
Reserved track count
Sectors per track
Sector size code
Drive DCB Address
Drive option bits
Drive format ID code

Drive 2 parameter block
Records per track
Block shift count
Block mask
Extent mask count
Highest allocation block
Highest directory #
Initial allocation @
Initial allocation 1

TJvo a

F623
F625
F626
F627
F629
F62A

F628
F62D
F62E
F62F
F630
F632
F634
F635
F636
F638
F63A
F63B
F63C
F63t
F63F

F64f
F642
F643
F644
F645
F647
F649
F64A
F64B
F64D
Fo4F
F650
F651
F653
F654

&V FF
g2 99

6D F6

2B Fb
24 99

7F 99

290 g
g2 9p

79 F6

49 F6
gp @2

3F 0P
1F 90

0 00
0o 09

o0 0

9o 00
g2 9
93 0
g4 09
85 69
97 09
89 9
gA 00
g8 9p

gD 09

gF @0
19 99
11 29
13 99

14 39

54 09

Wt Pr Bt B gt

VVIJ T 40 Yt BN .

Reserved track count
Sectors per track
Sector size code
Drive DCB Address
Drive option bits
Drive format ID code

;Drive 3 parameter block

Y P Y X R I R N R R Y N I L B K" A Y X

(TR T TRV I E AN T E BT E R R NI A LA B B

Records per track
Block shift count
Block mask

Extent mask count
Highest allocation block
Highest directory #
Initial allocation @
Initial allocation 1
Directory check size
Reserved track count
Sectors per track
Sector size code

.Drive DCB Address

Drive option bits
Drive format ID code

Drive M parameter bilock

Records per track
Block shift count
Block mask

Extent mask count
Highest allocation block
Highest directory #
Initial allocation @
Initial allocation 1
Directory check size
Reserved track count
Sectors per track
Sector size code
Drive DCB Address
Drive option bits
Drive format ID code

address Disk Parameter Block (DPB) fields

;Records Per Track
;Block Shift factor
:Block Mask

sExtent Mask

;Drive capacity
;Directory Maximum
;Initial Allocation @
;Initial Allocation 1
;Check area size
;Reserved track count
:Sectors Per Track
;Sector Size code
;Drive DCB address
;Drive option bits

DEFW 2
DEFB 18
DEFB |
DEFW D2DCB
DEFB 8@QH
DEFB 1
DPB3 EQU $
DEFW 36
DEFB 4
DEFB 15
DEFB 1
DEFW 84
DEFW 127
DEFB 192
DEIB 9
DEFW 32
DEFW 2
DEFB 18
DEFB 1
DEFW D3DCB
DEFB 8QH
DEFB 1
DPBM EQU $
DEFW 512
DEFB 3
DEFB 7
DEFB g
DEFW 63
DEFW 31
DEFB 128
DEFB /
DEFW @
DEFW)/
DEFB @
DEFB @
DEFW POARH
DEFB)/
DEFB 1)
; Offsets used to
DPBRPT EQU @
DPBBSH EQU 2
DPBBLM EQU 3
DPBEXM EQU 4
DPBDSM EQU 5
DPBDRM EQU 7
DPBAL@® EQU 9
DPBAL1 EQU 10
DPBCKS EQU 11
DPBOFF EQU 13
DPBSPT EQU 15
DPBSSZ EQU 16
DPBDCB EQU 17
DPBOPT EQU 19
DPBDID EQU 20

*

[YE BTN INYE BN BN Y R 2)

7=Density (@#=S, 1=D)
6=Sides (@=S, 1=D)

5=Step (@=Norm, 1=2 x;
4=Data (@=Norm, 1=Inv
3=Side 1 §ﬂ=Norm, 1=Bias;
2=Track #(@=Norm, 1=Bias
1-@=Reserved

:Disk format ID #

©(p) Copyright 1985 by Montezuma Micro/JBO - Page 59

.’ AAK KK AAAKARAAATKEIE AR EAREAKAAKARAAARRARARAAARKRARAAAARAAAhkhkhkkhkkkkhkhhk
: * Disk Device Control Blocks (DCB) for drives #-3 & M *
: dkAAhkhkhkkkhkkkkhkkhkhkkhkkkkkkhkhkhkhkkkhkkkkkkkkkkkkkkihkkikikkkkkkikk
55 F6 D@DCB EQU $ | ;0rive @ DCB
F655 C3 FB F3 JP FDD ; Driver vector o
F658 @1 DEFB A1H ; Drive select bits v
F659 0@ DEFB @PH ; Drive attribute bits
F65A @2 | DEFB 2 ; Start up delay in 1/4 sec
F658 @F DEFB 15 ; Settle time in Ms |
F65C 28 DEFB 40 ; Number of tracks
F65D0 16 DEFB =~ 22 ; Precomp turn-on track
F6S5E FF DEFB 255 ; Current track
F65F 0f DEFB @ . ; Current select bits
Feop @0 DEFB 2 ; Logical track #
61 Fo6 ‘D1DCB EQU $;Drive 1 DCB
F661 C3 FB F3 JP FDD ; Driver vector
F664 @2 DEFB @2H ; Drive select bits
F665 pp DEFB PeH ; Drive attribute bits
F666 @2 DEFB 2 ; Start up delay in 1/4 sec
F667 @F DEFB 15 ; Settle time in Ms
F668 28 DEFB 49 ; Number of tracks
F669 16 DEFB 22 ; Precomp turn-on track
F66A FF - DEFB 255 ; Current track
F66B 0@ DEFB) ; Current select bits
F66C 09 DEFB) ; Logical track #
6D F6 D2DCB EQU $;Drive 2 DCB
F66D C3 FB F3 | JP FDD 5 Driver vector
F670 @4 DEFB P4H ; Drive select bits
F671 @9 DEFB @aH ; Drive attribute bits
F672 @2 DEFB 2 ; Start up delay in 1/4 sec
F673 @F DEFB 15 ; Settle time in Ms
F674 28 - DEFB 40 ; Number of tracks _ |
F675 16 DEFB 22 . Precomp turn-on track ot
F676 FF DEFB 255 ; Current track
F677 90 . DEFB 4] ; Current select bits
F678 9@ DEFB)/ ; Logical track #
79 F6 D3DCB EQU $;Drive 3 DCB
F679 C3 FB F3 JP FDD ; Driver vector
F6/C @8 DEFB A8H ; Drive select bits
F67/7D @9 DEFB @aH ; Drive attribute bits
F6/7E 92 ' DEFB 2 ; Start up delay in 1/4 sec
F67F @F | DEFB 15 ; Settle time in Ms
F680 28 | DEFB 49 ; Number of tracks
F681 16 DEFB 22 ; Precomp turn-on track
F682 FF DEFB 255 ; Current track
F683 90 | DEFB g ; Current select bits
F684 0P DEFB) ; Logical track #
; Offsets used to access Disk DCB fields
g0 0@ DKDDVR EQU @ ;Driver address
p3 00 DKDSEL EQU 3 sDrive select bits
24 90 DKDATT EQU 4 ;Drive attribute bits
3 ; 7=Sides (§=S, 1=D)
; | ; 6=Type (=5, 1=8)
: s 5-2=Reserved
: ; 1-P§=Step rate (p-3)
@5 0¢ DKDSTD EQU 5 ;Drive start-up delay in Ms
g6 99 DKDSTL EQU 6 ;Drive settle time in Ms
g7 08 ‘ DKDNTK EQU 7 sNumber of tracks
g8 @o DKDPTO EQU 8 ;Precomp turn-on track
g9 99 DKDCTK EQU 9 ;Current track
oA 00 DKDCSL EQU 14 ;Current select bits
Page 60 - ©(p) Copyright 1985 by Montezuma Micro/JBO

N

F685
F689
F68D
F68F
F693
F697
F699
F69D
F6A1

FO6A3
F6A7
F6AB
F6AD
F6B1
F6B5
F6B7
F6BB
F6BF

F6C1
F6C5

F6C9 -

F6CB
F6CF
F6D3
F6D5
F6D9
F6DD

F6DF
F6E3
FO6E7
F6E9
FOED
F6F1
F6F3
F6F7
F6FB

FE8P

FE8Q
FE84
FE8S
FE86
FE87
FE8SB
FESD
FE9Q
FES]
FE93

P8 90

1 93 95 @/
g9 9B @D @F
11 @2
g4 96 08 PA
gC gE 19 12
g 0P
0p 00 00 09
0p 00 99 99
g9 99

g1 93 95 @7
@9 98B @D PF
11 92
g4 06 P8 PA
gC PE 19 12
gp 99
gp 09 00 00
0p 00 90 0P
g9 09

@1 93 p5 97
g9 9B @D @F
11 92
g4 96 P8 PA
@gC @E 19 12
20 89
09 02 9 00
00 9P 99 90
ge @9

g1 93 B85 97
@9 pB @D @F
11 p2
g4 §6 98 PA
@gC PE 19 12
g9 00
09 00 00 00
00 00 90 99
99 00

DKDLTK EQU 11 ;Logical track #

. Fededede ook e g Kok ok sk ke e g e e ek e g ke e e e e ek ok e e ok e ke ke e ok de ke de e de e v ok dede ke ke kel ke

* Disk sector translation tables *

. * Space reserved for 3 sectors per track maximum *
. dedededede ko ok ok ok ok % Kk A ek ke ke de ke ke e ke ok ek Ak ke ke ke e e de e e ke ke e ek e de ek ke e ek ke ke ke ek

XLT@ DEFB 1,3,5,7,9,11,13,15,17,2
DEFB 4.6,8,10,12,14,16,18,0,0

DEFB 9.0,0,0,0,0,0,0,0,9

XLTl DEFB 1,3,5,7,9,11,13,15,17,2
DEFB 4.,6,8,10,12,14,16,18,0,0

DEFB g’g’g)g’g’g’g’g’g’g

XLT2 DEFB 1,3,5,7,9,11,13,15,17,2
DEFB 4,6,8,10,12,14,16,18,0,0 ?

DEFB 8.9.0.0,0.9,0,0.9,0

XLT3 DEFB 1,3,5,7,9,11,13,15,17,2
DEFB 4,6,8,1¢,12,14,16,18,8,0

DEFB 9.9,0.0.9,0,0,0.,0,0

; >>--=> End of disk resident portion of BIOS <---<K

9

TRS-88 Model 4 BIOS Version 2.89+ BIOS extension for CP/M 2.2 version 2.2x

FD CB 13 76
C8

D5

57

FO CB 13 4t
28 24

DD 5E @/

/B

FE 28

20 98

3 o de ke e de K do ke o e dedo I dedede ke dede de ke de o dode dededo ke &gk g e hedo e ke ke ke do ke de de ke ke ek e de ke keoke e e ke ok

; * Patch code loaded by EXBIOS *
: khkhkkkhkkhkhkhkhkhkhkkhkhkkhkhkkhkkhkhkhkhkhkhkkhkhkhhkkhkihkhkkhkkkkkkhhkkkkihkkik
ORG CCP+2A80H ;Patch area

BIOSEX BIT 6,(1Y+DPBOPT) :Double-sided disk?

RET Z sExit if not
PUSH . DE . ;Save DE
LD D,A ;Save drive select
BIT 1,(IY+DPBOPT) ;Alternate sides?
' JR Z,BI0SX4 ;Return to BIOS if not
LD E,(IX+DKDNTK) ;Track count to E
LD A,E ;Check track size
CP 40 ;Is it other than 48?
JR NZ,BIOSX1 ;Go if yes

©(p) Copyright 1985 by Moniezuma Micro/JBO - Page 61

Y+DPBOPT) ;Is this 35T SuperBrain?

FE95 FD CB 13 66 BIT 4,(I
- FE99 28 @2 JR Z,BI0SX1 ;6o if not
FE9B 1E 23 LD £,35 ;Set track count to 35
FEQD 79 : BIOSX1 LD A,C :Get track #
FE9E 93 SuB £ ;At end of side @7? v
FEOF 30 93 JR NC,BIOSX? ;6o if yes
FEA1 AF XOR A ;Set Z flag
FEA2 18 @F JR BIOSXS5 :Return to BIOS
FEA4 FD CB 13 46 BIOSX2 BIT @, (1Y+DPBOPT) ;Going inside out?
FEA8 28 @4 , JR Z,BI0SX3 1Go if not
FEAA ED 44 NEG ;Compute correct track #
FEAC 83 ADD AE
FEAD 3D DEC A
FEAE 87 BIOSX3 ADD A,A :Double track # &
FEAF 3C INC A ; force side 1
FEBA 4F ' LD C,A ;Save new track #
FEB1 F6 FF BIOSX4 OR @FFH ;Reset Z flag for return
FEB3 /A BIOSXS5 LD - A,D ;Restore drive select
FEB4 DIl POP DE . ;Restore registers
FEB5 (C9 RET ;:Back to BIOS

; >>--=> End of BIOQS patch

Page 62 - ©(p) Copyright 1985 by Montezuma Micro/JBO

