REGISTRATION NUMBER

NEWDOS/80

FOR THE TRS-80

MODELI/III/4

MICRO COMPUTER

Apparat Incorporated takes pleasure in presenting NEWDOS/80, Version 2.5. Above
is the registration number of your NEWDOS/80. This registration number must be
the same as the registration number you find on your diskette label and the enclosed
registration card. If they are not, return them to the dealer from whom you purchased
your NEWDOS/80 to be reissued. This registration Number is your assurance of
receiving any corrections or minor revisions to NEWDOS/80 that may be released.
The registration card should be completed and returned to Apparat at your earliest
convenience. PLEASE RETURN THE CARD IT IS IMPORTANT! It our only method
of determining who has purchased this copy of the system. This number should be
included in all correspondence with Apparat.

i‘—\Apparat, IncC

4401 So. Tamarac Parkway * Denver, Colorado 80237

00000001






HELPFUL HI NTS I N USI NG YOUR NEWDOS/ 80 VERSION 2.5

We suggest using the follow ng checklist as a guide to setting up software on
your Hard Di sk System

1. Carefully read through all related docunentation.

2. Make hardware installation as directed by instructions supplied with
your Hard Drive Unit.

3. Boot on your NEWDOS/ 80 Version 2.5 original master diskette and nake
backup copy or copies. Refer to Chapter 1, Section 1.4 of the NEWDOS/ 80 Version
2.0 manual for details if unfamiliar with the procedure.

4. Designate one of your backups as a working copy an d boot (or reset) on
it. Use this diskette for the remmi nder of this procedure.

5. Use HDFMIAPP/ CMD. Refer to Section 4 in the NEWOS/ 80 Version 2.5 nmnual
(Appendi x C).

6. Set up your PDRIVE definitions for the Hard Drive Vol umes according to
Section 3 & 6 of the NEWDOS/ 80 Version 2.5 nanual .

7. Use DOS command FORMAT on each defined volune of the Hard Di sk. This has
not been very clear to some of our users. HDFMIAPP/CMD is only a "media format"
utility that allows the hard drive to be used with NEWQOS/ 80 (or other DOS
systen). DOS conmand FORMVAT, al though does not prepare the nedia as
HDFMTAPP/ CVMD, is inportant for checking the nedia and preparing the directory
(DI R/ SYS) and the boot sectors (BOOI/SYS) on the hard drive volumes. |If the
vol ume was not prepared with FORMAT, it will seemto operate correctly with
COPY, OPEN, and CLCSE (ie. nornal file operations), but HDBACKUP/ CMD and
DI RCHECK/ CVMD wi | | not functi on.

8. (Optional) Move NEWDOS/ 80 Version 2.5 to Hard Disk Volume. Refer to
Section 5 of the NEWDOS/ 80 Version 2.5 manual. Don't forget to nove your PDRIVE
definitions to appropriate new slots. Follow procedure to create Boot Diskette.

9. Install application software and related data files.






Tabl e of Contents

Chapter 1. | NTRODUCTI ON

1.1. Regi strati On. . ... ... 1-1
1.2. Trademark Credits. ... 1-1
1.3. What |s Apparat's DOS/80 Version 22....... . ... 1-1
1. 4. Duplicate and Specify the System ........... ... .. .. ... ... ...... 1-2
1.5. Apply Qutstandi NG ZapsS. .. ..ttt 1-4
1.6. Conmence Using NEWDOS/ 80. . ... .ttt e e 1-5
1.7. Apparat Thanks Its Beta Testers. ........... ... 1-5

Chapter 2. DOS LI BRARY COMVANDS

2. 1. Not ati on Conventions and General Information. .................. 2-1
2. 2. APPEND Append one file onto the end of another. ............. 2-2
2. 3. ATTRI B Assign attributes to a file. ..... ... ... .. ... .. . ... ... 2-3
2.4, AUTO Define the DOS conmand to be executed at reset. ...... 2-5
2.5. BASI C2 Activate non-disk BASIC (Model | only). .............. 2-5
2. 6. BLI NK Enabl e/ di sabl e cursor blinking. ...................... 2-5
2.7. BOOT Reset the computer. ..... ... ... .. ... 2-6
2.8. BREAK Enabl e/ di sable the BREAK key. ........ .. ... ... ... ..... 2-6
2.9. CHAI N Shift to keyboard input fromdisk. ................... 2-6
2.10. CHNON Alter chaining state. ........... .. .. .. 2-7
2. 11. CLEAR Cl ear user menory routes, tiner and | ogi cal enqueues. 2-8
2.12. CLOCK Display the time every second. ....................... 2-9
2.13. CLS Clear the display. ...... ... i, 2-9
2.14. CcopPY Copy single or nultiple files or a full diskette ..... 2-9
2.15. CREATE Pre-allocate a disk file. ...... .. ... ... . . . . . ... 2-18
2.16. DATE Set conputer's current date. ............ ... .. ... .. ... 2-19
2.17. DEBUG enabl e or disable the DEBUG facility. ................ 2-20
2.18. D R Di splay a diskette's directory information. .......... 2-20
2.19. DO Shift to keyboard input fromdisk. ................... 2-22
2. 20. DUMVP Dump nenory contents to disk. ........................ 2-22
2.21. ERROR Display DOS €rror mBSSaAQe. ... v v ittt 2-24
2.22. FORMAT Format a diskette for use with the NEWDOS/ 80 system . 2-24
2.23. FORMS (Model 11l only) Set printer parameters. ............. 2-26
2.24. FREE Di splay free granul e count of each nounted di skette .. 2-27
2. 25. H MEM Set DOS's high nenory value. ......................... 2-27
2. 26. JKL Send current contents of display to the printer. ..... 2-27
2.27. Kl LL delete a file. ... 2-28
2.28. LC Set keyboard a-z toggle switch to specified state. ... 2-29
2. 29. LCDVR (Model | only) Lower case driver. .................... 2-29
2. 30. LIB Di splay NEWDOS/ 80 |ibrary commands. .................. 2-30
2. 31. LI ST List a text file on the display. ..................... 2-30
2.32. LQAD Load a Z-80 machine language file into RAM .......... 2-31
2.33. VDBORT Term nate M N -DOS and go to DOS READY. .............. 2-31
2. 34. VDCOPY Copy a file while under MNI-DCS. .................... 2-32
2. 35. VDRET Exit fromMN -DOS and return to main program ....... 2-32
2. 36. PAUSE Di spl ay nessage and pause waiting on ENTER .......... 2-33
2.37. PDRI VE Assign default attributes to a physical drive. ....... 2-33
2. 38. PRI NT List a text file on the printer. ..................... 2-39
2. 39. PROT Alter some diskette control data. .................... 2-40



2. 40. PURGE Selectively kill files froma diskette. ..............
2.41. R Repeat the previous DOS command. .....................
2.42. RENAME Rename a file. ... .. . . .
2.43. ROUTE Route one device to or fromanother ..................
2. 44, SETCOM (Model 111 only) Set RS-232 interface paraneters.

2. 45, STMT Display specified nmessage. .............c ..
2. 46. SYSTEM Change systemoptions. ......... ... ...
2.47. TI ME Set the real time clock. ...... .. .. ... .. . . . .. . . . . ...
2.48. VERI FY Require verify read after every disk wite. ..........
2.49. V\RDI P Wite directory sectors protected. ...................
Chapter 3. DOS ROUTI NES

3. 1. Specifications Defined ........ ... . . . . .. .
3. 2. 402DH No- Error EXit . ... ...
3.3. 4030H Error-already-di splayed DOS Error Exit ...............
3. 4. 4400H No-Error Exit. Perforns identical to 402DH. ..........
3.5. 4405H Enter DOS and execute a command ......................
3. 6. 4409H DOS Error EXit ... e
3.7. 440DH Enter DEBUG .. ... .. e
3. 8. 4410H Enquene a user tinmer interrupt routine. ..............
3.9. 4413H Dequeue a user tinmer interrupt routine. ..............
3. 10. 4416H Keep drives rotating ............ ...
3. 11. 4419H DOS- CALL Execute a DOS command and return. ..........
3.12. 441CH Extract a filespec ....... . ...
3.13. 4420H pen a FCB to a new or existing disk file ............
3. 14. 4424H OPEN a FCB to an existing file .......................
3. 15. 4428H CLOSE a FCB. Conditions 3.1.A, Band Chold ..........
3. 16. 442CH Kill the FCB's associated file ......... ... ... ... ....
3.17. 4430H Load a programfile ... ... . .. .. .
3. 18. 4433H Load and conmence execution of a programfile ........
3. 19. 4436H Read sector or logical record fromdisk ..............
3. 20. 4439H Wite sector or logical record todisk ...............
3. 21. 443CH Wite sector or logical record to disk with verify ...
3.22. 443FH Position FCB to start of file ......... ... ... ... .......
3. 23. 4442H Position FCB to a specified file record ..............
3. 24, 4445H Position FCB back one record .........................
3. 25. 4448H Position FCB to EOF .. ... ... .. . . i
3. 26. 444BH Allocate file space ....... .. . i
3. 27. 444EH Position FCB to the specified RBA ....................
3. 28. 4451H Wite the EOF value fromthe FCB to the directory ....
3. 29. 445BH Sel ect and power up the specified drive ..............
3. 30. 445EH Test for nmounted diskette ........ ... ... ... ... ....
3. 31. 4461H *Nanme routine enquUeUE ... ... ...ty
3. 32. 4464H *name routine dequUeue . .......... ...
3. 33. 4467H Send nessage to the display ..........................
3. 34. 446AH Send nessage to the printer ............ ... .. ... ......
3. 35. 446DH Convert clock time to HH HM SS character format ......
3. 36. 4470H Convert the date to MM DD YY character format ........
3. 37. 4473H Insert default name extension into filespec ..........
3. 38. 0013H Read a byte froma disk file .........................
3. 39. 001BH Wite a byte to a disk file ..........................
3. 40. 447BH Model 111 only (perfornms as Model | 4410H) ...........



Chapert 4. DOS FEATURES

el
oukrwNE

DEBUG Faci ity .. e 4-1
M N - DO . L 4-5
CHAL NI NG . .« .o e e 4-7
DOS- CALL . .t 4-12
B 4-13
Asynchronous EXecution. ... .. ... ... 4-14

Chapter 5. DOS MODULES, DATA STRUCTURES, AHD M SCELLANEQUS | NFORMVATI ON

agoaoaoaaoaoa
CoNoO~wNE

Files required on each diskette used with NEWDOS/80............ 5-1
NEWDOS/ 80 DOS System Modul es .. ... i e 5-1
NEWDOS/ 80 BASI C Modul €S . .. oo 5-2
O her Moddul es on the NEWDOS/ 80 diskette........................ 5-3
Reduced Sized System ....... ... ... 5-4
Diskette Directory Structure........... ... 5-4
FPDE File Primary Directory Entry ............ .. ... .. ...... 5-7
FXDE File Extended Directory Entry ........................ 5-9
FCB File Control Block ........ ... . .. . . . . .. 5-9

Chapter 6. ADDI TI ONAL PROGRAMS SUPPLI ED OP NEWDOS/ 80 DI SKETTE

002020
NogakowbE

SUPERZAP | nspect/Change Disk/Main Menory ...................... 6-1
DI SASSEM Disassenble Z-80 Code ........ ..., 6-5
LMOFFSET Move Module to New Load Position ..................... 6-9
DI RCHECK Inspect and List a Directory ........... ... ... .. ... 6-12
EDTASM Disk Oriented Editor/Assenbler ....................... 6-14
CRAINBLD Create and Modify Chain Files ........................ 6- 16
ASPOOL Automatic Spooler ......... . .. . . . . e 6- 19

Chapter 7. DISK BASIC, NON-I/O ENHANCEMENTS

NNNNNNSNNNSNNNNNNSNSNN

CoNoGOrwWDdE

I NTRODUCTI ON, Requi remBnt S . ... .. e 7-1
General COMTENt S .. ... e 7-1
Activating DISK BASI C. ... ... e e 7-2
Direct Scrolling/Editing Commands .. .......... ... ... ... 7-3
Text Editing Command Truncation............ ..., 7-4
DI and DU text editing functions.......... ... .. .. . .. .. . ... 7-4
RUN and LOAD (optionally retaining variables) .................. 7-4
MERGE Dynam ¢ | oading of overlay program....................... 7-5
RENUM Renunber the Current BASIC Program ...................... 7-5
REF List references to variables, |ine nunbers and keywords.... 7-7
Lower Case Suppression (Mddel | only) ... ... ... .. .. ... ... ... ... 7-8
RUNE ONLY .t e e e 7-8
Comarisons in the use of CVMD between NEWDOS/ 80 and TRSDCS. ... .. 7-8
CVD dOS M . . 7-11
CMD' F=POPS", CMD'POPR' and CMD'F=POPN' . ........ ... ... 7-12
OV oSS . o 7-12
CMD' F=ERASE" and CMD'F=KEEP" . .. ... .. . . i 7-12
CVD' ' DELETE . . . .o e e 7-13



7.19.
7. 20.
7.21.
7.22.

Chapt er

CoNoGORwWDE

© 00 00 00 00000000 0o 0s 000000
e e S
wMh ke o

=
b

Chapt er

9.1.
9. 2.

Chapt er

Chapt er

11.
11.
11.
11.
11.
11.
11.
11.
11.
11.

BHOX®NOOEWNE

Chapt er

VD F= O AP 7-13
OV F=SS L e 7-14
OV O L 7-14
RENEW. . . 7-17

8. BASIC DI SK I/ O ENHANCEMENTS AND DI FFERENCES

LNt rodUCti ON ..ot 8-1
Fil e TYpe . 8-1
File type differences ........ . . .. e 8-2
Conponents of CGET and PUT . ........ . . . . i 8-3
Fixed itemfile characteristics ......... ... .. ... 8-7
Marked itemfile characteristics ........ ... . . ... 8-7
OPEN . . o 8-9
CET . o e 8-12
PUT 8-14
REVMRA and REMBA . . . .. o e 8-16
Pseudo FIELD FUNCEIi ON ... oot e e e e 8-17
LOC FUNCE T ON . ..ttt e e e e e e e e e e e e 8- 18
I/ O Error ReCOVErY ... e e 8- 19
Addi ti onal notes about NEWDOS/80 DISK BASIC I/O................ 8- 20

9. ERROR CODES AND MESSAGES

DCS Error Codes and MESSAQesS . ..ot i vttt ittt e 9-1
Dl SK BASI C Error Codes and MeSSAQgesS ... ...t 9-2
10, GLOSSARY o 10-1

11. ERROR REPORTI NG | NCOVPATI BI LI TY HANDLI NG, AND PATCHI NG

INtroduCti ON ..ot 11-1
Inconmpatibility Handling .......... . ... . .. . . i, 11-1
Reporting of NEWDOS/ 80 Errors and Inconpatibilities............ 11-2
Format of NEWDOS/ 80 ZapsS .. .o ittt e e e e e 11-2
Zapping Procedur e . ... .. e 11-4
NEWDOS/ 80 Zap Distribution........ .. .. ... . . . .. i, 11-5
Initial Installation of Zaps .......... ... .. . i, 11-5
Subsequent Installation of Zaps ....... ... ... . .. .. . . . . .. 11-6
Diskette Update Service ......... . 11-6
Zap Duplication. ... .. .. 11-7

12. CONVERSI ON | NFORVATI ON AND M SCELLANEQUS COMVENTS

RBAs gain in respectability ....... ... .. .. .. . . . . . . . . i, 12-1
Converting fromVer. 1 to Ver. 2 on the Mdel | ................ 12-2

Vi



12. 3.
12. 4.
12. 5.
12. 6.

Chapt er

Converting fromVer. 1 to Ver. 2 on the Mddel II1I. ............. 12-5
NEWDOS/ 80 Ver. 2 inconpatibilities with TRSDOS Version 2.3. ....12-6
NEWDOS/ 80 Ver. 2 inconpatibilities with TRSDOS Version 1.3..... 12-7
M scellaneous COMTBNES .. ... it e e 12-8

13. ZAPS ( PATCHES)

APPENDI X A Di scussion and exanple of NEWOS/ 80 file routines

APPENDI X B Exanple of fixed and marked itemfile usage

APPENDI X C NEWDOS/ 80 Version 2.5 (Hard Di sk Systen)

| ndex






1. | NTRODUCTI ON

1.1. Registration.

As soon as you receive your NEWDOS/ 80, fill out and mail the registration
card. Apparat will limt its assistance and patches (zaps) to registered
owners only. In your conmuni cations with Apparat, always state your nane,
address and your NEWDOS/ 80's regi stration nunber. For Version 1 of NEWOS/ 80
we had many conplaints of not receiving zaps fromusers who had not sent in
the registration card. Apparat does not require the owner to agree to
anything when filling out the NEWDOS/ 80 Version 2 registration card; just |let
us know who you are.

1.2. Trademark Credits.

Thr oughout this manual, certain trademarked names will be used to refer to

t hose tradenmarked products. Since our printers do not have the tm synbol, we
wi | | acknowl edge the tradenmarked nanmes here. If we have missed rendering an
acknow edgenent, please forgive us as we do not nean for any trademarked nane
to be used to refer to anything that the trademark hol der does not nean it to
refer to. In sone cases, such as VTIOS, the primary manual for that system
shows the name trademarked but does not say who it is trademarked to.

TRS-80 is a registered trademark of Radi o Shack, Inc.

TRSDOS is a registered trademark of Radi o Shack, Inc.

VICS is a registered trademark.

LDOS is a registered trademark of Lobo Drives International.
DOUBLER is a registered trademark of Percom Data Conpany, Inc.
SCRIPSIT is a registered tradenmark of Radi o Shack, Inc.

ook wbE

1.3. Wiat |Is Apparat's DOS/ 80 Version 27

Al nost all di sk based conputer systens use a Di sk Operating System (known as
a DOS) to provide a software interface between the user program performn ng
disk 1/0 and the actual disk drives and their controllers. Usually these
operating systens perform nmany other functions as well such as controlling
what user programis executing and the allocation of disk files and file
space. Believe it or not, the prinary function of a DOSis to nake life
easier for the conputer users and programers. NEWOS/ 80 is one of a nunber
of DOSs that operate with the TRS-80; in this case only the Mddel | and Mdel
Il are support ed.

NEWDOS/ 80 Version 2 is the replacenent for NEWDOS/ 80 Version 1 that was
rel eased in June of 1980 and for NEWDOS/ 21 that was rel eased in March of
1979. NEWDOS/ 80 Version 2 is a disk operating system designed to operate on

the TRS-80 Mbdel | and the TRS-80 Mdel 111. A particular NEWOS/ 80 Version 2
master diskette is tailored to operate on only one of the two TRS-80 nodel s;
if you wish to operate on both the Mddel | and the Mdel 111, you nust

purchase different NEWDOS/ 80's for each. The TRS-80 npdel being used mnust

1-1 | NTRODUCTI ON



have at | east 32K of RAM and at |east one 5 inch, single sided, 35 (40 for

the Model 111) track disk drive (mounted on drive 0). Mdel | NEWOGOS/ 80
Version 2 is distributed on a 35 track, single sided, single density
di skette, and Mddel 11 NEWOS/ 80 Version 2 master diskette is distributed on

a 40 track, single sided, double density diskette. You nust have a disk drive
capabl e of handling the master diskette.

NEWDOS/ 80 Version 2 for the Model | and NEWDOS/ 80 Version 2 for the Mdel 111
are nostly downward conpatible with NEWDOS/ 80 Version 1, NEWOS/ 21 and Model

| TRSDCOS 2.3, but it will be necessary to naintain certain prograns with
different copies for all four systens for inconpatibilities do exist.
NEWDOS/ 80 Version 2 is nmore inconpatible with the Model 111 TRSDOS than it is
with the Model | TRSDOS, and nost progranms and files will have to be

mai ntai ned differently in the two systens. In the past, while TRSDOS was
|argely dornmant, attenpts were nade to limt the inconpatibilities between
NEWDOS and TRSDOS, but now that TRSDOS is being actively updated nore and
nore inconpatibilities are appearing between the two systens. TRSDOS i s goi ng
one way; NEWDQOS/ 80 is going another. If this limts and eventually destroys
NEWDOS' s useful ness to the users, so be it.. NEWOS cannot and shoul d not
exist to be a mirror image of TRSDCOS; if the user wants that, then please use
TRSDOS. NEWDOS was accidentally created in the huge vacuum |l eft by Model |
TRSDCS, has al ways incorporated features not in TRSDOS and, in Version 2, has
not inplemented many of the newer features of the Model 111 TRSDOS. Chapter
12, sections 12.1 through 12.5 give some of the inconpatibilities of
NEWDOS/ 80 Version 2 with NEWDOS/ 80 Version 1 and with the Moddel | and 111
TRSDOSs.

The DOS and DI SK BASI C portions of NEWDOS/ 80 are total rewites fromthat

of fered in NEWDOS/ 21. The requirenent that the user purchase TRSDOS as a
precondition of use of NEWDOS/ 21 is not required for NEWDOS/ 80. It is still
recomended that the user purchase TRSDOS, and NEWDOS/ 80 users are expected
to have purchased the TRSDOS manual and be know edgeable of its contents as
use of NEWDQOS/ 80 assunes this user know edge. Users of the EDTASM nodul e are
still required, as a precondition of use of NEWOS/ 80's EDTASM to have
purchased Radi o Shack's tape editor/assenbler.

Though NEWDOS/ 80, Version 2 was tested nore extensively than Version 1, there
will still be errors, and many prograns will require at |l east a zap to work
wi th NEWDOS/ 80 Version 2. Error reporting procedures are discussed in chapter
11, and the outstanding zaps are in chapter 13.

1.4. Duplicate and Specify the System

NEWDOS/ 80 is not a sinple system Wen the NEWDOS/ 80 user is ready to
initially use NEWDOS/ 80, he/ she should spend one to two hours studying the
docunent ati on before doing anything with the NEWOS/ 80 di skette.

When ready, put a wite protect tab on your NEWDOS/ 80 Version 2 master

di skette. Then power up your conputer, place the naster diskette in drive O
and press reset. The NEWOS/ 80 banner shoul d appear optionally followed by
requests for date and tinme. If date and tinme are requested, please give
realistic values. Next, NEWOS/ 80 READY will be displayed to indicate DOS is
waiting for something to do.

| NTRODUCTI ON 1-2



It is good practice to never nount on a disk drive the NEWDQOS/ 80 master

di skette except to make copies of the diskette and to very carefully apply
mandat ory zaps (see chapter 11). \Wen zappi ng, you should first apply the
zaps to a working Version 2 systemdiskette and test them out before applying
themto the master diskette. Keep the naster diskette stored away in a safe
pl ace; do not keep it in your NEWDOS/ 80 nmanual and do not use it in nornal
operations. Apparat will not replace a |ost master diskette though it wll,
under the ternms for the diskette update service offered in section 11.9,

repl ace a damaged di skette.

Enter, via the keyboard, the DOS command:
LI B

Alist of all the DOS library conmands will be displayed to you. These
commands are defined in chapter 2 with exanples.

Enter the DOS conmmand:
DR O, S, |

Alist of all the files on the NEWDOS/ 80 Version 2 master diskette will be
di spl ayed. These files, except for NWDB2V2/ILF and NWDB2V2/ XLF, are discussed
in chapter 5.

Enter the DOS conmmand:
SYSTEM 0

NEWDOS/ 80 of fers the user certain systemoptions, which are specified via the
DOS library command SYSTEM (see section 2.46) and activated during each
conputer reset. The DOS command SYSTEM O you just executed has displayed the
state of all SYSTEM options, and you shoul d conpare these value carefully
agai nst the specifications. You may deci de that your systemis to use

di fferent SYSTEM specifications. You may change them now if absolutely
necessary; otherw se you should wait until after you have made a few backup
copi es of the master diskette. Whenever you decide to update the master

di skette, don't forget to take off the wite protect tab.

Enter the DOS commmand
PDRI VE, 0

NEWDOS/ 80 can operate with a [imted nixture of disk drive and interface
types. The characteristics of each of the physical drives 0 - 3 must be
specified to the systemvia the DOS |ibrary conmand PDRI VE (see section
2.39). These characteristics are then read by DOS during each conputer reset.
The PDRI VE comand you just executed has displayed the existing drive
specifications plus 6 pseudo drive specifications. You may want to change the
specifications for one or nmore drives. You may do so now if absolutely
necessary; otherw se you should wait until you have a few backup copi es of
the nmaster diskette.

Now you nust nake three or nore copies of the NEW)OS/ 80 Version 2 naster

di skette. If possible, performthese initial backups w thout changi ng any of
t he SYSTEM or PDRI VE paraneters. |If not possible, change themthe ninimm

1-3 | NTRODUCTI ON



necessary and do a reset when done. You should carefully study sections 2.14,
2.39 and 2. 46.

NEWDOS/ 80 does NOT have a BACKUP nodul e; format 5 or 6 of DOS library command
COPY (see section 2.14) is used instead. For each of the backups you are
about to do, the naster diskette is both the systemand the source diskette
whil e the destination diskette is the diskette to contain the new worki ng
copy of the NEWDOS/ 80 system Some exanpl es of the COPY comand you will use
to make copies of the NEWDOS/ 80 Version 2 naster diskette are:

COPY, 0,0, , FMT, USD For a single drive system where the naster and copy
di skettes have the sane PDRI VE characteristics.

COPY, 0,1,,FMI,USD For a multiple drive systemwhere the master and copy
(rmounted on drive 1) diskettes have the same PDRI VE characteristics.

COoPY, 0, 0, , FMT, USD, CBF, DPDN=4 For single drive systemwherein the
destination diskette has PDRI VE characteristics different fromthe naster
di skette. You nust have previously altered the nmaster diskette PDRIVE
specification for drive 4 (renenber to use the A option or to reset the
conput er after changing the drive 4 specification).

COPY, 0, 1, , FMT, USD, CBF For a nultiple drive systemwhere the drive 1 drive
will be noved to drive O after the copy and the destination drive has
different PDRIVE characteristics than does the current drive 0. You mnust
have previously altered the naster diskette's PDRI VE specification for
drive 1.

Each system di skette has its own set of SYSTEM and PDRI VE characteristics.
Therefore, for each worki ng copy of NEWDOS/ 80 Version 2 you nake, after the
copy is conpleted, you need to set that systemdiskette's SYSTEM and PDRI VE
characteristics for the operating conditions it is to operate wth.

The NEWDOS/ 80 owner is authorized to nake as nany copies as necessary of the
NEWDOS/ 80 di skette or individual prograns thereon for his/her own persona
use. NEWDOS/ 80 owners and users are specifically prohibited fromcopying the
NEWDOS/ 80 di skette or individual prograns thereon for use by others. See
COPY, formats 2 and 4, in section 2.14.

1.5. Apply CQutstandi ng Zaps.

Bef ore your NEWDOS/ 80 is ready to run user programs, review the outstanding
zaps to both NEWDOS/ 80 nodul es and to other nodul es (such as EDI T/ CVD and
SCRIPSIT) that require patches to work properly with NEWQS/ 80. Chapter 11
expl ains how to apply zaps (patches), and with your NEWOS/ 80 should have
cone a chapter 13, which contains the zaps. If part or all of chapter 13 is
not in the proper place in the nanual please put it there. Mandatory zaps
nmust be applied; optional zaps are at user discretion

Mandat ory zaps to NEWDQOS/ 80 nodul es shoul d be applied to all copies of the
NEWDOS/ 80 Version 2 naster diskette and to the NEWDOS/ 80 Version 2 master

di skette. DO NOT start applying the zaps until you have at least 2 or 3 good
backup copi es made of the NEWOS/ 80 di skette.

| NTRODUCTI ON 1-4



1.6. Commence Usi ng NEWDOS/ 80.

Once all backup copies of the NEWDOS/ 80 Version 2 system are nade, zaps
applied, systemoptions and drive characteristics specified, you are now
ready to use NEWDOS/ 80.

Put away the naster diskette and nount in drive 0 one of the system diskette
just nade. -Then press reset to re-initialize DOS using the new diskette.
NEWDOS/ 80 READY wi |l | then appear. The user may now type in a DOS comand,
which is either a-DOS |ibrary conmand as discussed in chapter 2 or the nane
or nane/ext of a user programto be | oaded and run. If a user program does
not have a nane extension, nanme extension CMVMD is assuned. Exanpl es:

BASI C causes the | oad and execution of program BASI C/ C\VD.
SCRI PSI T/ LC causes the | oad and execution of program SCRIPSI T/LC.

If the DOS Iibrary conmand or the user programrequires or allows for
paranmeters within the DOS command, one or nore spaces or a comma nust follow
t he conmand nane and precede the paraneter(s). Exanples:

BASI C, 5, 65000
DR1A

For virtually all prograns to be executed under NEWDOS/ 80, there are

i nstructions on how to use the programthat usually cones with the program
when you buy it. For NEWDOS/ 80 program nodul es, the instructions are in
chapter 6 except for BASIC, which is covered in chapters 7 and 8.

Those users upgradi ng from NEWDOS/ 80 Version 1, NEWOS/ 21 or TRSDOS to
NEWDOS/ 80 Version 2 should read sections 12.1 through 12.5 careful ly.

1.7. Apparat Thanks Its Beta Testers.

Over forty persons throughout the United States and Canada were involved in
the testing of NEWDOS/ 80 Version 2, finding errors, suggesting enhancenents
and providing criticism Apparat and the NEWOS/ 80 author thank each one of
these beta testers for the | ong hours spent working with the three beta

rel eases that were sent out. It is Apparat's policy that each beta tester
receives a conplinmentary copy of the final rel ease of NEWQOS/ 80 Version 2.

1-5 | NTRODUCTI ON






2. DOs LI BRARY COMVANDS

2. 1. Not ati on Conventi ons and CGeneral |nformation.

All DOS commands terminate with an ENTER |In subsequent specifications, the
ENTER i s not shown, but the user is to supply it.

DOS commands are limted to a total of 80 characters, including the
concl udi ng ENTER.

[1 A set of brackets are used to enclose an optional paranmeter. Wen
using the optional paraneter in a DOS command, the [] are not included.

Exanpl e:

[, PROT=xxx] [, ASE=yn] [ , ASC=yn]
coul d be coded as

, PROT=READ, ASC=N

Uppercase A - Z and non-al phanuneric characters are to be included exactly as
shown. See the above exanple.

Lower case letters or words with or without trailing decimal digits. These
represent prototype values for which the user is to substitute the
appropriate actual values. See the above exanple.

In sone cases where the prototype will be replaced by one and only one
character, the prototype word contains, in |ower case, all the characters

| egal for that value. This hel ps serve as a rem nder of which characters are
| egal replacenent for that prototype value. For exanple, if ASC=Y and ASC=N
are the only two | egal ASC val ues, then the prototype will usually be witten
as ASC=yn.

Where conmas are used in DOS commands, they may be replaced by one or nore
consecutive spaces.

Nuneric values w thout a suffixed H are considered deci mal val ues unl ess
ot herwi se speci fied. Hexadeci mal val ues nust be suffixed with an H unl ess
ot herwi se specified. Exanple:

4000H and 16384 are the sane val ue.

When specifying a disk file, the term'filespec' is used. A filespec is of
the form

nanel[/ext 1] [. passwordl][:dnl]
Par anmet ers nust be specified in the above order

nanel is the file's nanme consisting of 1 - 8 chars of which the first
nmust be A - Z and the others A- Z or 0 -9.

extl is the nane extension (i.e., CVMD, BAS, OBJ, CI'M TXT, DOC, COM

etc.) which classifies a file. Afile need not have a nane extension, but
if it does it nmust be 1 - 3 chars of which the first nmust be A - Z and

2-1 DOS LI BRARY COMVANDS



the others A- Zor 0- 9. If afile has a nane extension, all filespecs
referencing the file must include the name extension, unless a default
nane extension is provided for (i.e., /CM).

passwordl is 1 - 8 chars of which the first nust be A- Z and the others
A- Zor O0- 9. Passwordl is the value given to both the access and
update passwords for a file when it is created. Passwordl is val ue used
i n password checki ng when an existing file is opened. Passwordl is
required in a filespec if passwords are enabled and the file has
passwor ds assi gned; otherwise, it is not.

dnl is the drive # of the drive which has the diskette containing the
file. Exanples:

MYFI LE8O/ BAS. YOURPWB0: 0
MYFI LE: 3
YOURFI LE. YOURPW

NEWDOS/ 80 will accept |owercase in all DOS |ibrary commands and any furt her
i nput that might be queried for

For each DOS library command, the comand keyword is stated along with a
brief definition. Next, if the command is allowed paraneters, a prototype of
the conmand is given, listing all required and optional paraneters. Next
cones expl anations of the conmand, paraneters and options. Lastly, sone
exanpl es of the DOS command are given.

For docunentati on ease, the prototype conmmand i s soneti nes shown spread over
multiple lines in this docunment; however, the user should consider each
command as one contiguous statenent.

Unl ess otherwi se stated, a DOS |ibrary command i s executabl e under M NI - DOS
(see section 4.2).

NEWDOS/ 80 differs from TRSDOS i n NOT using parenthesis to encl ose paraneters.
In NEWDOS/ 80 version 1, parenthesis around the operands were optional for
BREAK, CLOCK, DEBUG DI R, PROT, and VERIFY; they are NOT allowed in version
2.

In the sane vein, version 1 allowed the keywords ON or OFF to be used instead
of Yor Nin the DOS commands BREAK, CLOCK, DEBUG and VERI FY; this is NOT
allowed in version 2.

2.2. APPEND Append one file onto the end of anot her
APPEND, fil especl, [TO ]fil espec2

This conmmand will append the file filespecl onto the end of the file
filespec2. The EOF fromfile filespec2's directory FPDE deternines the point
at which file filespecl is appended. This may be trouble if file fil espec2
had explicit ECOF characters, such as in BASIC programfiles or assenbler
source files.

DOS LI BRARY COMVANDS 2-2



File filespecl is not altered. The original contents of file filespec2 are
not altered; the file is only added to.

APPEND i s not executable under M NI - DCS.
APPEND exanpl es:

1. APPEND, XXX: 1, YYY/ DAT: 0 The contents of file XXX on drive 1 are
appended onto the end of file YYY/DAT which is on drive A

2. APPEND AAA TO BBB The contents of file AAA are appended onto the end
of file BBB. DOS searches the currently nmounted diskettes to find both
files.

2.3. ATTRIB Assign attributes to a file

ATTRI B, fil especl[,INV][, VI §] [, PROT=xxx] [ , ACC=passwor d1] [ , UPD=passwor d2]
[, ASE=e] [, ASC=c] [, UDF=u]

This command assigns attributes to the filespecl file. At |east one of the
optional paraneters nust be specified.

I f passwords are enabled in your system then filespecl nust specify the
exi sting update password, if any, for that file.

INV gives the file the invisible attribute. Unless the | option is specified
in DIR, the file will not be listed by AIR

VIS takes away the invisible attribute, whether the file had it or not.

PROT=xxx specifies the access level to be used during file I/Oif passwords
are enabl ed (see systemoption AA) and the access, not the update, password
was used to open the file. The levels are defined for values of xxx as:

LOCK Level 7. No access allowed to the file at all, except by the
systeni s overlay | oader.

EXEC Level 6. Access allowed only to execute the file as a program
BASIC will require either RUN or LOAD with R option, and will disable the
BREAK key, thereby preventing the user from stopping the RUN and di sal -

| owi ng direct statenment execution.

READ Level 5. Access allowed for execute or to read the file's
contents.
VRI TE Level 4. Access allowed for execute, read or wite of the file.

RENAME or NAME Level 2. Access allowed for execute, read, wite or to
renanme the file.

KI LL Level 1. Access allowed for execute, read, wite, renane or to
kill the file.

2-3 DOS LI BRARY COMVANDS



FULL Level 0. Al operations are allowed on the file.

ACC=passwordl Passwordl is assigned as the access password for the file. If
null, a value of all blanks is assumed; otherw se the value nmust be 1 - 8
characters with the 1st = A - Z and the others A- Z or 0 - 9. Assigning the
access password via this paraneter of ATTRIB is the only way that will enable
use of the PROT=xxx protection and then only if the access password is
different fromthe update password. If a password is specified when the file
is created, it is assumed both the update and the access password, and the
update password has priority at open tine. |If passwords are enabled, the
password specified in the filespec at open tine is not the update password,
and it is the access password, the current protection level is stored into
the FCB for later use by the DOS read, wite, |oad, etc. routines.
Subsequently, if an access is attenpted in violation of the access |evel,

"I LLEGAL ACCESS TRIED TO A PROTECTED FILE error will occur.

UPD=password2 Password2 is assigned as the update password for the file. The
update password is of the sane configuration as the access password. During
file open where passwords are enabl ed, the password specified in the fil espec
is checked first against the file's update password. |If they match, then FULL
access is allowed to the file.

ASE=e where e is either Y or N. This paraneter has been added to allow DOS to
automatically allocate diskette space to a file if ASE=Y or to disallow
further allocation if ASE=N. ASE=Y is the default condition when a file is
created.

ASC=c where c is either Y or N. This paraneter has been added to allow DOS to
automatically deallocate file diskette space beyond the EO-F during a CLOSE
operation if ASC=Y is specified, and to disallow this deallocation if ASC=N
ASC=Y is the default setting when a file is created

UDF=u where u is either Y or N. This paraneter has been added to mark the
file as updated if UDF=Y is specified or to clear the updated mark i f UDF=N
is specified. The DOS systemmarks a file as updated whenever it is about to
update a sector to that file and it finds the file's directory entry not

mar ked as updat ed.

ATTRI B command exanpl es:

1. ATTRI B, XXX/ CVD: 1, UPD=ZXCVB, ACC=NMLKJ, PROT=EXECAssi gns to file

XXX/ Crib | ocated on drive 1 the update password ZXCVB, the access
password NMLKJ and protection |level 6 which allows the programto be
executed but not read or witten to. Since the filespec XXX/CMVD: 1 did not
specify a password, we rnust assune that either password checking was

di sabl ed (SYSTEM option AA=N) or the file did not have an update password
prior to the ATTRI B comuand.

2. ATTRI B YYY/ DAT. QZBV | NV ASE=N ASC=N UDF=N This command tests if
file YYY/ DAT has update password QZBV, and if so, assigns the file the
invisible attribute, flags that extra space allocation and excess space
deal | ocation are not to be allowed, and lastly clears the file's updated
flag.

DOS LI BRARY COMVANDS 2-4



2.4. AUTO Define the DOS command to be executed at reset.
AUTJ , doscnd]

This command all ows the user to specify a 1 - 31 character DOS comand to be
i nvoked automatically at reset tine. This conmand is stored in the |ast 32
bytes of GAT sector of the current system di skette.

If doscnd is not specified, then a null conmand is stored in the GAT sector
to indicate to reset/power-on that no AUTO conmand exi sts.

I f SYSTEM option AB = N and BC = Y, by pressing ENTER during reset, the auto
conmand in the GAT sector will be ignored, and the systemwll go to DCS
READY.

AUTO i s useful to the user who usually executes the sane conmand or chain of
conmands (see CHAIN, sections 2.9 and 4.3, and DO, section 2.19) at reset
time. By setting systemoption AB=Y or BC=N, the user is forced to this
conmand or chain of commands, thus allow ng the persons) controlling a
conputer to restrict the activity of users of the conputer.

AUTO conmand exanpl es:

1. AUTO BASI C RUN' XXX/ BAS" causes subsequent reset/power-ons to
activate BASIC and to start the execution of the BASIC program XXX/ BAS

2. AUTO DO RSACTI ONcauses subsequent reset/power-ons to activate
chaining fromfile RSACTI OV JCL, thus executing the DOS and other program
comands cont ai ned t herein.

3. AUTO causes subsequent reset/power-ons to go to the normal DOS
READY, awaiting the next DOS command to be inputted fromthe keyboard.

2.5. BASIC2 Activate non-di sk BASIC (Mddel | only).

This command puts the systeminto non-di sk BASIC. NEWDOS/80 is no longer in
the system

2.6. BLINK Enabl e/ di sabl e cursor blinking.

BLI NK[ , yn]
BLI NK or BLINK,Y Bl i nki ng of the display cursor is turned on
BLI NK, N Bl i nki ng of the display cursor is turned off.

SYSTEM option BH can be used to set the cursor blinking state at reset/
power - on

2-5 DOS LI BRARY COMVANDS



2.7. BOOr Reset the conputer.

On the Model |, this command desel ects the drives and then executes Z-80 in-
struction HALT, which causes both a hardware and a software reset. For the
Model 111, since HALT does not cause a hardware reset, this instruction

causes a junmp to location O to execute a software reset.

2.8. BREAK Enabl e/ di sabl e t he BREAK key.
BREAK(, yn]
BREAK or BREAK, Y The BREAK key is enabled as a normal input key

(hexadeci mal code 01) until the next nornmal DOS READY, when it is set
according to system option AG

BREAK, N The BREAK key is disabled as a normal input key until the next
normal DOS READY, when it is set according to systemoption AG

The BREAK command is useful for those progranms that want the BREAK key

enabl ed, and enables it via a DOS-CALL (vector 4419H). The sane applies to
prograns that definitely want BREAK di sabl ed. NOTE: Executi ng BREAK from DOS
READY i s usel ess since the imediate return to DOS READY resets the BREAK key
according to system opti on AG

In NEWDOS/ 80 t he BREAK key may al so be enabled by storing a OC9H byte in
Model | location 4312H (Model 111 |ocation 4478H) and may be di sabl ed by
storing a OC3H byte in that location. In NEWDOS/ 80 version 1, the break key
was al so mani pul at ed by changing bit 4 of |ocation 4369H (Mddel | only); in
version 2 for the Mddel I, setting or clearing this bit does nothing and is
harm ess. However, prograns on the Mddel 1l rmust NOT alter that bit, as that
location is nowin the system buffer

2.9. CHAIN Shift to keyboard i nput from disk
CHAI N, fil especl[, sectionid]
DOS command DO perforns exactly the same as CHAIN

The purpose of the CHAIN conmand is to cause a predefined set of characters
to be treated as input fromthe keyboard. This predefined set of characters
has been previously stored in the file filespecl

The CHAIN command pl aces NEWDOS/ 80 in chaining node, if not already there.
The file filespecl is opened. If sectionid is not specified, the file is
positioned at the beginning. If sectionid is specified, the file is searched
for the matching sectionid record, leaving the file positioned at the byte
followi ng the section ID record.

Subsequently, input that is supposed to cone fromthe keyboard conmes fromthe
chain file until chaining is terminated by the encounter of either end of

DOS LI BRARY COMVANDS 2-6



file or end of section or until chaining is tenporarily halted by the
execution of the DOS command CHNON, N

Keyboard data is input fromthe chaining file in one of two nbdes.

I f SYSTEM option AT = N, chaining operates in record node. In this node,
whenever NEWDOS/ 80, BASIC or any programrequests a new record fromthe
keyboard via the standard ROM keyboard record input routine at 05D9H, the
record will come fromthe chain file. Any other requests for keyboard

i nput are honored fromthe keyboard and not the chain file.

| f SYSTEM option AT = Y, chaining operates in byte node. In this node,
all requests for keyboard i nput characters via the standard keyboard
i nput routine are honored fromthe chain file.

The CHAIN command may be issued via DOS-CALL or via BASIC s CWVD function
When so, DOS does not imediately return to the calling program but instead
continues to execute conmands fromthe chain file until either end of file,
end of section, comand CHNON, N or command CHNON, Y i s encount ered.

CHAIN is not |egal under M N - DGCS.

The chain file creator/maintainer is responsible for assuring that chaining
does not create inpossible situations for the system or user prograns.

NEWDOS/ 80 cannot have nore than one chain file active at a tinme. If the new
DOS command fromthe current chain file is itself a CHAIN or DO conmand, pro-
cessing in the current file ceases and the new chain file is opened, becon ng
the new current chain file.

When the system opens a chain file, name extension in the filespec defaults
to JCL if the filespec doesn't give one.

CHAINING i s discussed further in section 4.3.
CHAI N or DO command exanpl es:
1. CHAIN, XXX: 0 Chaining starts at the beginning of file XXX/ JCL:O.

2. DO YYY/CHN: 1, QQQ Chai ning starts at the first byte of the chain
section named QQ within file YYY/ CHN

2.10. CHNON Al'ter chaining state.
CHNON, ynd
The CHNON command is used during chaining. An error will occur if a chain

file is not currently open. A CHNON conmand should not be the last entry in
an unsectioned chain file or the last entry in a chain file section as the
conmmand wi Il be meani ngl ess.

CHNON, N The current position within the chain file is renenbered and chai ni ng
is tenporarily suspended so that subsequent keyboard characters to conme from

2-7 DOS LI BRARY COMVANDS



t he keyboard. If chaining was being done under DOS-CALL, the current DOSCALL
| evel is exited.

CHNON, Y causes subsequent keyboard characters to cone fromthe chain file,
starting at the current position within the chain file. If CHNON, Y was exe-
cuted as a DOS-CALL, the current DOS-CALL |evel is exited.

CHNON, D causes subsequent keyboard characters to cone fromthe chain file,
starting at the current position within the chain file. If CHNON, D was exe-
cuted as a DOS-CALL, DOS remains at that |evel and executes subsequent
comands fromthe chain file until either CHNON,Y or CHNON, N or end of
section or end of file is encountered.

See sections 2.9 and 4.3 for further discussion of chaining.

2.11. CLEAR Cl ear user menory routes, tiner and | ogical enqueues.
CLEAR[ , START=addr 1] [ , END=addr 2] [ , MEM=addr 3]

The CLEAR command perforns the follow ng functions:
1. Perfornms ROUTE, CLEAR DOS command function

2. Dequeues all user routines in the timer interrupt routine chain that
wer e enqueued by the 4410H (Model 1) or 447BH (Model 111) call to DOCS.
This includes turning the clock display off.

3. Dequeues all *name routines that were enqueued by a 4461H call to DCS.
This includes the NEWDOS/ 80 spooler, if active, but not its graceful ter-
m nation. The spooler, if in use, should be fully term nated before
executi ng CLEAR

4. Resets HMEMto addr3 or, if addr3 not specified, to the highest
menory addr ess.

5. Zeroes nmenory fromaddrl or 5200H, which ever is greater, through
addr3 or H MEM whichever is |lower. addrl nust be greater than or equa
to 5200H and |l ess than or equal to addr3.

CLEAR command exanpl es:
1. CLEAR, START=6000H, MEM-ODFFFH All routes are cleared, and all tinmer and
*nane routines dequeued. HHVMEM is set to ODFFFH. The nain nenory between
6000H and oDFFFH i s zer oed.
2. CLEAR All routes are cleared, and all tiner and *nane routines

dequeued. HHMEM is set to the highest nmain nenory |ocation, and al
menory from5200H to HVEM i s zer oed

DOS LI BRARY COMVANDS 2-8



2.12. CLOCK Display the tinme every second.
CLOCK][, yn]

CLOCK or CLOCK,Y The current value of the clock is displayed every
second in positions 53-60 of the display's top line in HH MV SS fornat.

CLOCK, N The di spl aying of the clock ceases.

Users are warned that the clock will continuously |lose tine. There is no
hardware clock in the sense of seconds, minutes and hours. Computation of

clock time is done fromthe 25ns interrupt chain in the Mddel | (in the Mdel
I1l, it is done in the ROMfromthe tinmer interrupt). \Wenever the interrupts
are left off for nore than 25ms (33 or 40 nms on the Model I11), one or nore
interrupts are lost and for each one |lost, the clock |oses 25ms (33 or 40 s
on the Model 111). Lost interrupts are very frequent when disk 1/O is being

done, is massive when tape I/Ois done, and can al so be frequent if other
routines hung off the 25nms chain are nore than a few nmilliseconds |ong.

2.13. CLS Cl ear the display.

CLS sinmply clears the display, resetting it to 64 character node. On the
Model 111, reserved top display lines are not cleared.

2.14. COPY

The COPY command is used to copy a single file, nultiple files or a full
di skette. COPY has 6 formats:

COPY, fil especl], TQ,fil espec2[, SPDN=dn3] [ , DPDN=dn4]
COPY, $fil especl[, TQ,fil espec2[, SPDN=dn3] [ , DPDN=dn4]
COPY, [:]1dnl,fil especl],TQ,fil espec2[, SPDN=dn3] [ ; DPDN=dn4]
COPY, [:]1dnl, $fil especl][, TQ,fil espec2[, SPDN=dn3] [, DPDN=dn4]
COPY, [:]1dn1[=tcl][,TQ,[:]1dn2[=tc2], mm dd/yy[, Y][, N
[, NDMA [, FMT] [, NFMT] [ , SPDN=dn3] [ , DPDN=dn4] [ , SPW:passwor d1]
[, NDPWepasswor d3] [, DDND] [, ODN=namel ][, KDN] [ , KDD] [ , NDN=narne2]
[, SN=nane3] [, USD] [, BDU] [ , UBB]
6. COPY,[:]1dnl[,TQ,[:]1dn2[=tc2], mm dd/yy, CBF[, Y] [, N
[,USR][,/ext][,UPD][,|LF=fil espec3][, XLF=fil especd] [, CF\WJ
[, NDMA [, FMT] [, NFMT] [, SPDN=dn3] [ , DPDN=dn4] [ , SPWpasswor d1]
[, ODPWepasswor d2] [, NDPWepasswor d3] [, DDND] [ , ODN=nanel]
[, KDN] [, KDD] [ , NDN=name?2] [, SN=nane3] [, USD] [ , UBB]
[, DDSL=I n1] [ , DDGA=gc1]

gr®ONE

The COPY command has been significantly changed in NEWDOS/ 80 version 2; all
users, new and old, should carefully read this section.

COPY cannot be executed under M N -DOS; however for sinple single file
copies, DOS library command MDCOPY is avail abl e.

2-9 DOS LI BRARY COMVANDS



dnl and dn2 are drive nunmbers and nmay be equal. The col on preceding dnl
and/ dn2 is optional

Filespecl is the source file's filespec. Filespec2 is the destination file's
filespec.

Fil especl prefixed with $ nmeans that either the source or the destination
file or both are to be on drive 0 and are on diskettes) that either (1) do
not contain a NEWDOS/ 80 systemidentical to the one on drive 0 when COPY was
initiated, (2) do not contain a NEWDOS/ 80 system or (3) contain no system at
all.

During processing for formats 2, 3, 4, 5 and 6, the system nmay ask for
various diskette nmounts; do what the pronpts ask!

1. When pronmpted for the system di skette, mount the NEWDOS/ 80 diskette
that was on drive 0 at the start of the COPY command executi on

2. \Wen pronmpted for the source diskette, nmount the diskette containing
file filespecl (formats 1, 2, 3 and 4) or the data to be copied (formats
5 and 6).

3. When pronpted for the destination diskette, mount the diskette to
contain file filespec2 (formats 1, 2, 3 and 4) or to receive the data
being copied (formats 5 and 6).

SPDN=dn3 Source PDrive Nunber. SPDN=dn3 tells the systemthat for all source
drive /O the systemdiskette's PDRIVE specifications (see DOS comand

PDRI VE, section 2.37) for drive dn3 are to be used instead of the source
drive's normal PDRIVE specifications. dn3 is a value 0 to 9, referring to a
drive nunber listed by the PDRI VE comrmand.

DPDN=dn4 Destinati on PDrive Nunber. DPDN=dn4 tells the systemthat for al
destination drive 1/GCs, the systemdiskette's PDRIVE specifications for drive
dn4 are to be used instead of the destination drive's normal PDRIVE
specifications. dnd4 is a value O to 9 referring to a drive nunber l|isted by

t he PDRI VE comand.

Note that use of SPDN and DPDN for a drive O single drive COPY (formats

4, 5 or 6) neans that three different PDRIVE specifications (one for the
system di skette, one for the source diskette and one for the destination
di skette) will apply during the COPY even though only one drive is used.

Format 1 is the single file copy. It is used to copy the contents of file
filespecl to file filespec2. The diskettes) involved in the COPY nust already
be nmounted; the system gives no nount pronpts. The contents of file filespecl
are not altered. The previous contents of file filespec2, if any, are |lost.

If the leading part of filespec2 equals that of filespecl, fil espec2 may be
shortened by | eaving off the |leading part, the remainder of filespec2
starting with / or . or :. For exanple:

COPY, USERFI LE/ DAT: 0, TO, USERFI LE/ DAT: 1
can be shortened to:

COPY, USERFI LE/ DAT: 0, TO, : 1

DOS LI BRARY COMVANDS 2-10



Remenber, the keyword TO is optional, and spaces may be used instead of
comas. Thus, the conmand could be witten:

COPY USERFI LE/ DAT: 0 :1

Format 2 is the sane as format 1 except that the $ sign prefixed onto
filespecl indicates that a conflict exists with drive 0, the systemdrive,
and DOS will pronpt for the proper diskettes to be nounted on drive 0. If the
source and destination drive numbers are both zero but the source and
destination files are on separate diskettes, use format 4 instead of fornat

2.

Format 3 again is simlar to format 1, except that the user has only 1 drive
avail able for the copy and file filespecl resides on a diskette different
fromthat of file filespec2. Neither filespec can specify a drive nunber. DOS
will pronpt for the mount of the source and destination diskettes as they are
needed. If drive 0 is specified, both the source and destination di skettes
nmust contain a NEWDOS/ 80 systemidentical to the one nounted on drive 0 at
the start of the COPY command; otherw se use format 4.

Format 4 performs similar to format 3 except that either file or both reside
on diskettes with different NEWDOS/ 80 systens, non- NEWDOS/ 80 systens or no
systens at all. DOS will pronpt for the mount of the system source and
destination diskettes as they are needed. Format 4 should only be used when
dnl equal s otherwi se you are wasting tinme with di skette swaps that are not
needed.

Formats 2 and 4 allows suppliers of prograns, whether free or purchased, to
send their program products on di skettes that do not contain NEWOS systens.
Aside fromthe supplier's prograns and/or data files, the diskette need only
contain the directory and the BOOT/ SYS file, both created on each diskette
during formatting. Suppliers nmust not include a NEWDOS system on their disk-
ettes unless they have made explicit arrangenments with Apparat.

NEWDOS/ 80 does not have a di skette BACKUP program |Instead, either formats 5
or 6 is used. Format 5 is a full diskette sector by sector copy w thout con-
cern for the nunber and type of files. Fornmat 6 copies sone or all of the
source diskette's files onto the destination diskette. O the two, for the
sane anount of data transmitted, format 5 is faster while format 6 all ows
greater variation between source and destination diskette types and tries to
reassign files to contiguous space.

Format 5 is a full diskette copy. The default specifications for the two
drives are the PDRIVE specifications currently being used by DOS. The drives
nmust have the same nunmber of sectors per track, granules per lunp and sectors
per granule (five is the current NEWDOS/ 80 standard); otherw se fornmat 6 mnust
be used. The destination diskette may have nmore tracks than the source; if
so, the destination directory is adjusted to account for the extra free
granul es (not done if BDU option specified). Format 5 options are defined as
fol |l ows:

=tcl DOS is to use the value tcl as the source diskette's track count during
the COPY rather than the source drive's default val ue.

=tc2 DOS is to use the value tc2 as the destination diskette's track count
during the COPY rather than the destination drive's default val ue.

2-11 DOS LI BRARY COMVANDS



midd/yy is the date to be placed in the destination diskette date
field. The mdd/yy may be nulls and if so the systemdate is used. The
only time mmdd/yy may be entirely left out of the format 5 COPY conmand
is when the command has only the two drive nunber paraneters (exanpl e:
COPY 0 1 ). Oherwise midd/yy must be the 3rd paraneter even if it is
null or to be overridden by either the KDD or the USD paraneter. If the
mm dd/yy is null, this nust be so indicated by separating conmas (not
spaces)

(exanple: COPY 0 1,,FMI CBF ).

Y The user doesn't care what was previously on the destination
di skette. Y is nmutually exclusive with N, ODN, ODPW DDND, KDN or KDD. Y
is the default (for COPY) if none of its nutual exclusions are specified.

N At the start of the COPY or FORVAT the destination diskette
nmust not contain recognizable data, i.e., should be in a bulk erase
state. COPY will be termnated if the diskette is found to contain data.
Nis nutually exclusive with Y, ODN, ODPW DDND, KDN or KDD.

NDMWV No Di skette Mount Waits. DOS is to assune that all needed di sk-
ettes are already mounted on the specified drives. No nount pronpts or
error pronpts are displayed. If an error occurs that otherw se would have
caused a pronpt, the copy will be terminated. If NDMNVis specified and
nei ther FMI nor NFMI are specified, FMI is assuned. NDMWis intended for
use when COPY (or FORMAT) is invoked via DOS-CALL (i.e., fromBASIC) and
the calling program does not want operator interaction. Since NDMVN causes
the COPY or FORMAT to bypass error and disk nount queries, it is recom
mended that NDMW nornmal |y not be used when the operator is keying in the
COPY (or FORNMAT) comand.

FMT Format. DOS formats the destination diskette before copying
data. FMI is mutually exclusive with NFMI. If neither FMI or NFMI is

speci fied and NDMV was not specified, the operator will be queried

' FORVAT DI SKETTE? (Y OR N'. If neither FMI or NFMI is specified and NDMW
was specified, FMI is assuned.

NFMT No Format. DOS does not format the destination diskette before
copyi ng data. The user must assure that the destination diskette is al-
ready formatted correctly. NFMI is nmutually exclusive with FMI.

SPWepasswordl  Source Password. |f passwords are enabl ed (system option
AA = Y) and systemoption AR = N, then COPY requires a source diskette
mast er password match. |If passwordl does not match the source diskette's
password, the copy function will be terninated.

PDPWepasswor d3 New Destination Password. Password3 nust conformto rules
for passwords and is assigned as the destination diskette's new password.
NDPWis nutually exclusive w th BDU.

DDND Di splay Destination old Nane and Date. The destination disk-
ette's old nanme and date are pronpted to the display, allow ng the opera-
tor to decide whether or not to proceed with the copy. DDND is nutually
exclusive with Y, N and NDMW

ODN=nanel O d Destination Nanme. |If the destination diskette's old
nane is not equal to nanel, then the system pronpts, allow ng the

DOS LI BRARY COMVANDS 2-12



operator to decide whether to proceed with the copy. ODN is nutually
exclusive with Y, N and NDMW

KDN Keep Destination diskette Name. The destination diskette keeps
its old name rather than receive the source diskette's name. KDN is nu-
tually exclusive with Y, N, BDU and NDN.

RDD Keep Destination diskette Date. The destination di skette keeps
its old date rather than receive the mmdd/yy paranmeter fromthe COPY
conmand. KDD is rmutually exclusive with Y, N, BDU and USD.

NDN=nane2 New Desti nati on Nane. The destination di skette takes name2 as
its nanme, rather than receive the source diskette's nanme. Nane2 nust
conformto the specification for diskette names. NDN is nutually exclu-
sive with BDU and KDN.

USD Use Source Date. The destination diskette uses as its date the
source diskette's date, rather than receive the nmidd/yy paraneter from
the COPY command. USD is nutually exclusive with KDD and BDU.

SD=nane3 Source diskette Name. If the source diskette's nane is not
equal to name3, a pronpt is issued, allowi ng the operator to decide
whet her or not to proceed with the copy.

BDU Bypass destination Directory Update. Aside from sinply copying
the source sectors onto the destination diskette, the format 5 COPY al so
updates the boot and PDRIVE data in the destination file BOOI/SYS and, as
necessary, the name, date, password and extra granule information into
file DIR/SYS. There are times, however, when this file updating is not
want ed, and by specifying option BDU t hese updates are bypassed. BDU is
useful when the source diskette has a bad directory, has a non-standard
directory (such as a TRSDOS Model 111 directory) or has no directory at
all or when the user wants a full diskette copy with no alterations. BDU
is mutually exclusive with KDN, NDN, NDPW and USD.

UBB Use Big Buffer in NEWDOS/ 21 and NEWDOS/ 80 version 1, COPY was
restricted to using main nenory bel ow 7000H unless it was a two diskette,
single drive COPY, in which case all of menory to H MEM was used. If a
user wanted to force the usage of all menory to H MEM the UBB paraneter
had to be specified. However, in NEWOS/ 80 version 2, all of main nmenory
to HMEM i s used unl ess the COPY was i nvoked under DOS-CALL (i.e., from
BASIC), in which case only main nenory bel ow 7000H i s used. Thus, in
NEWDOS/ 80 version 2, UBB is a useless paraneter left in existence only
for upward conpatibility from Version 1.

Format 6 is the nultiple file COPY and is distinguished fromformat 5 by the
i nclusion of the CBF (Copy By File) option. Though format 5 is the faster way
to backup a diskette, format 6 offers nore flexibility, allowing files to be
copi ed between di skettes and drives of w dely varying characteristics. The
choice of files to be copied can be Iimted by the conbi ned ef fect of options
USR, /ext, UPD, ILF, XLF and CFWO, if one or nore criteria are specified,
only those files satisfying all the criteria are copied. Format 5's options,
except BDU, are used in format 6 as well as the follow ng additional options.

If NFMT is specified, then none of Y, N, KDN, KDD, NDN, BDU, USD, NDPW
DDSL, DDGA or tc2 may be specified, ODPWmay be required, and system

2-13 DOS LI BRARY COMVANDS



files are not copied unless already existent in the destination file
directory.

If NFMI is not specified, then the destination file is formatted as if
t he conmand was FORMAT, including establishing BOOI/ SYS and Al R/ SYS
Then, before any files are copied, all files to be copied are entered
into the destination diskette's directory. This is necessary as system
files nust occupy the sane directory FPDEs in order for DOS to work at
all.

CBF Copy By File CBF, required for and used only in format 6,
i ndi cates the copy will be done by files rather than in straight
sequential order of diskette sectors.

USR copy user files. Only user files are copied; systemand invis-
ible files are excluded.

/ ext copy files having nane extension ext. Only files with nane ex-
tension ext are copied. ext is a 0 to 3 character name extension
Exanpl es of this paraneter are /CMVMD, /, /BAS, /X

DPD copy updated files. Only files that have the updated flag on in
the source diskette directory are copied. This flag is turned on by the
standard DOS sector wite routine to indicate that at |east one sector
has been witten or re-witten to this file since the last time the
updated flag was cleared. This flag is turned off by specific request via
the PROT or ATTRIB comands and is NOT turned off by COPY. Since the
standard DOS sector wite routine is used to wite the file's sectors to
the destination diskette, the updated flag is turned on for the copied
destination files.

| LF=filespec3 Include List File Filespec3 specifies a file containing a
list of files to be copied. If a fileis not inthe list, it is not
copied. It is not an error if an included file is not on the source disk-
ette. Wthin the list, each file to copied is specified by its nane/ext
followed by a EQOL char ( ODH). If a specification begins with a seni-
colon, it is bypassed as a comment. Each specification, except commrent,
islimted to a maxi num of 13 characters, including the EO.. On reading,
the file's bytes are nodulated into the ASCII range 0 to 127. The file
can be nade using SCRIPSIT, but the user nmust assure that no characters
other than null ( OOH) follow the last EOL character; SCRIPSIT tends to

| eave extraneous characters so a del ete-to-end-of-text should be done.
ILF is mutually exclusive with XLF

XLF=fil espec4 Exclusion List File. The file filespec4 is the sane
structure as specified for ILF above and specifies the files to be ex-
cluded fromthe COPY. It is not an error if an excluded file is not on
the source diskette. XLF is nutually exclusive with ILF

CFWO Check File Wth Cperator. For the qualifying files, DOS asks
the operator, one file at atine, if the file is to be copied to the
destination diskette. Reply Y if the file is to be copied, reply Nif not
to be copied, reply Rif to restart entire CFWD query sequence, or reply
Qif no nore files to be copied. No files are copied until the querying
is conpl eted.

DOS LI BRARY COMVANDS 2-14



ODPWepassword2 O d Destination diskette Password. If NFMI is specified
if passwords are enabled and if systemoption AR = N, then copy requires
a destination diskette password match. |If password2 does not match the
destination diskette's password, the copy is term nated.

DDSL=I n1 Destination diskette Directory Starting Lunp. Formatting
will start the directory on the 1st sector of lunp IS if DDSL is

speci fied; otherw se the default starting |unp nunber for the drive (see
PDRI VE command) will be used: DDSL is mutually exclusive with NFM.

DDGA=gc1 Destination diskette Directory Granule Allocation
Formatting will allocate gcl (value 2 - 6) granules to the directory if
DDGA is specified; otherwise it will assign the default # of granules for
that drive (see PDRIVE command). DDGA is mutually exclusive with NFM.

If during a format 6 COPY, the destination diskette has insufficient space to
contain a file, "D SKETTE FULL = nane/ext" is displayed and the destination
file's EOF is set to 0. Though EOF is set to 0, any space the file may have
allocated to it is not deall ocated.

A single drive format 5 or 6 COPY cannot be executed under DOS-CALL (i.e.
from BASI C) since COPY under DOS-CALL restricts itself to main nenory bel ow
7000H and this woul d necessitate too many di skette swaps.

During a COPY or FORVAT where NDMW was not specified, pressing right arrow at
any time will cause the function to pause, awaiting ENTER to conti nue or up-
arrow to cancel. Pressing up-arrow at any tinme will terminate the function
however, be careful as the state of the destination diskette will be unknown,
especially if the cancel cones during the actual formatting.

The COPY command and standard 40 track, double density, single sided, 5 inch
TRSDOS Model 111 diskettes nay be used to transfer TRSDOS Model 111 diskette
files into or out of the NEWDOS/ 80 system There are a nunber of restrictions
to this operation.

NEWDOS/ 80 cannot be used to format a TRSDOS Model 111 diskette; however,
once the user has a formatted enpty TRSDOS Model 111 diskette, he/she may
duplicate it repeatedly under NEWDOS/ 80 using fornat 5 COPY with the NFMI
and BDU options, thus obtaining a stock of formatted, enpty TRSDOS Mode
11 diskettes.

The user nust assure that where the source and/or destination is a TRSDOS
Model 111 diskette the proper PDRIVE specs are invoked, either inplicitly
or directly by the SPDN and/ or DPDN paraneter (see PDRI VE command exanpl e
3, section 2.37 for the exact PDRIVE specification).

A file need not previously exist on a TRSDOS Model 111 diskette in order
for it to be copied. NEWDOS/80 will allocate the proper directory entry
and di skette space.

Any of COPY formats 1, 2, 3, 4 or 6 nmay be used to copy files to or from
TRSDOS Model 111 diskettes. Renenber, FMI must not be specified. If
format 6 is used and one of the source or destination is a TRSDOS Mde
I1l diskette, then files nmarked as SYSTEM files (FPDE 1st byte, bit 6 =
1) are NOT copi ed.

2-15 DOS LI BRARY COMVANDS



Fil es copi ed between NEWDOS/ 80 and TRSDOS Model 111 are al ways readabl e
t hough not necessarily usable on the receiving system

Exanpl es of COPY:

1. COPY XXX:1 YYY:1 In this format 1 COPY, file XXX on the diskette
al ready nounted on drive one is copied as file YYY on that sanme diskette.

2. COPY, AAA, BBB: 2 In this format 1 COPY, the currently nounted
di skettes are searched for the file AAA. If found, it is copied as file
BBB to the diskette already mounted in drive 2.

3. COPY SUPERZAP/ CMVD: O : 3 In this format 1 COPY, the file nanmed
SUPERZAP/ CMD is copied fromdi skette already mounted in drive 0 to the

di skette already nounted in drive 3. Since the file nane and nane exten-
sion are the same for both files, they were dropped fromthe second file-
spec.

4. COPY XXX:1 2 SPDN=9 In this format 1 COPY, SPDN=9 causes, for the
duration of the COPY only, all source file I/Oto assune that drive 1 has
the characteristics specified for drive 9 in the PDRIVE specifications.

If we assune that the PDRIVE drive 9 specifications were those for a
Model 111 TRSDOS di skette (see PDRI VE example 3, section 2.37), this COPY
will copy file XXX fromthe TRSDOS Model |11 diskette already mounted on
drive 1 to the NEWDOS/ 80 di skette al ready nmounted on drive 2.

5. COPY $XXX: 1,YYY:0 In this format 2 COPY, the destination diskette
to contain file YYY is not the sane diskette as was nmounted on drive O
when the COPY command was initiated. DOS will ask for the nmount of the
destination and the system diskettes as it needs them

6. COPY, $XXX: 0 YYY: 1 In this format 2 COPY, the source diskette
containing file XXX is not the sane diskette as was nounted on drive O
when the COPY command was initiated. DOS will ask for the mount of the

source and system diskettes as it needs them

7. COPY 1 XXX YYY/ DAT In this format 3 COPY, the diskette containing
file XXX is not the sane diskette as the one to contain file YYY/ DAT yet
both the source and destination diskettes are to use drive 1. DOS wi |
ask for the mount of the source and destination diskettes as it needs
them Note that, as required for format 3 and 4, neither fil espec
contai ns a drive nunber.

8. COPY 0 XXX/ DAT / DAT In this format 3 COPY, file XXX/ DAT on one

di skette is to be copied as file XXX/ DAT on another. Both diskettes are
to be nounted on drive 0, and DOS will ask for them as needed. Since
drive O is used and this is format 3 rather than format 4, both the
source and destination diskettes nust contain NEWDOS/ 80 systens identical
to that nmounted on drive 0 when the COPY command was initiated.

9. COPY 0 $XXX/ DAT /DAT This format 4 COPY acconplishes essentially the
same thing as the previous exanple. The difference is that DOS assunes
that neither the source nor the destination diskette contains the proper
NEWDOS/ 80 system so DOS will ask for the nount of the system source and
destination diskettes as it needs them

DOS LI BRARY COMVANDS 2-16



10. COPY 0 $XXX XXX SPDN=9 This format 4 COPY acconplishes the sane
thing as in exanple 4 above excepting that only drive 0 is used. For the
duration of this COPY, drive 0 uses two sets of PDRIVE specifications.
The standard drive O specifications are used for the system and
destination diskette I1/0Cs, and the systemdiskette's PDRIVE s drive 9
specifications are used for the source diskette I/Os. Note, in this
exanpl e, the second fil espec was not foreshortened as there was nothing
to foreshorten.

11. COPY 0 1 06/01/80 FMI This format 5 COPY is an exanple of one
of the sinplest and nost comonly used forns of the full diskette COPY.
Thi s COPY copi es one diskette to another using drive 0 as the source
drive and drive 1 as the destination drive. Default track counts for the
associ ated drives are used as diskette track counts. Both drives, other
than possibly having different track counts (destination nust be greater
than or equal to source), have the sane characteristics. The operator
will be pronpted for diskette nounts and error choices, if errors occur.
Default paraneter Y is in effect, indicating the operator does not care
if the destination diskette previously contained data or not. The
destination diskette will be formatted before the entire source diskette
is copied toit, and it will receive the source diskette's name and
password. Its date will be set to 06/01/80. If the destination diskette
is to have nore tracks than the source, they will be formatted and
properly accounted for in the directory such that the destination

di skette will be ready for use.

12. COPY 0 1,, NFMIr This format 4 COPY is an exanple of an ot her
formof the sinplest and nost comon full diskette copy. The only

di fference between this exanple and the one above is (1) the destination
di skette is assunmed already formatted, and (2) the current system date
wi Il becone the destination diskette's date

13. COPY, 0, 0, 06/ 0l / 80, NFMT, USD, KDN, ODN=WATCHDOG, SN=GOCDDATA

This format 5 COPY is sonewhat the sane as the previous exanpl e except

(1) this is a single drive, two diskette copy, (2) a pronpt will be given
if the source diskette does not have the name specified, (3) a, pronpt
will be given if the destination diskette does not have the nane
specified, (4) the destination diskette will retain its old name, (5) it
will receive its date fromthe source diskette. Being a single drive, two
di skette copy, nore nount pronpts will be necessary than for a two drive
COPY. Al'so, because of the |arge nunber of diskette mounts that woul d be
i nvol ved, this single drive COPY cannot be executed via DOS-CALL (i.e.
fromBASIC).

14. COPY 0,1, , FMI, CBF This format 6 COPY is an exanple of one of the
si mpl est and nmost commonly used forns of multiple file COPY. The
destination diskette (to be nounted on drive 1) is to be formatted, and
it receives its nane and password fromthe source diskette (to be nounted
on drive 0) and its date fromthe systemdate. Next, all of the source

di skette's files, excepting BOOI/SYS and DI R/ SYS, are copied to the
destination diskette.

15. COPY 0,1,,NFMI,CBF This format 6 COPY is an exanple of another of
the sinplest and nostly comonly used forns of nmultiple file COPY. The
di fferences between this and exanple 14 are (1) the destination diskette
is not to be formatted, (2) its name, password and date are not changed,

2-17 DOS LI BRARY COMVANDS



and (3) any source diskette systemfiles (other than BOOT and DI R) that
did not already exist on the destination diskette are not copied.

16. COPY 0 1,, NFMT, CBF, USR This format 6 COPY is sinmlar to the pre-
vi ous exanpl e except that systemand invisible files are not copi ed.

17. COPY, 0, 1,, NFMTI, CBF, USR, UPD This format 6 COPY is similar to

t he previ ous exanple except that the only source files copied are those
mar ked as updated as well as not being either a systemor an invisible
file. In this manner, only the files changed since the |ast backup are
backed up now. Renmenber, COPY does not clear the updated flags on the
source di skette; use DOS conmands PROT or ATTRIB to do this.

18. COPRY, 2, 3=60, 06/ 01/ 80, FMTI, NDMW CBF, DDSL=29, DDGA=4

During this format 6 COPY no di skette nmount pronpts or error choices are
to be displayed; the systemis to assune the diskettes are already pro-
perly nmounted. The destination diskette is to be fornatted with 60
tracks. The directory will start on lunp 29, and will be allocated 4
granul es. Al source diskette files, except BOOI/SYS and DI R/ SYS, will
be copied to the destination diskette.

19. COPY 2 3 06/01/80, CBF, CFWO, NFMI  For this format 6 COPY, the
destination diskette is assuned previously properly formatted and may
contain existing files. For each source diskette file, excluding BOOT/ SYS
and DI R/ SYS, the operator will be asked if the file is to be copied to
the destination diskette. When all queries are done, the selected files
are copi ed, excepting that systemfiles that did not previously exist on
the destination diskette are not copied. If the file already existed on
the destination diskette, the file's old data on the destination diskette
is |lost.

2.15. CREATE Pre-all ocate a disk file.

The CREATE command allows a user to create a file and optionally to wite to
the file a specified nunber of null records, thereby allocating the file's
space as contiguously as possible, given the layout of the free space on the
di skette.

There are tinmes when a user program expects one or nore of the files it uses
to already exist, even though the files may not have any usable data in them
therefore, the user nust create the file prior to the programis first use.
Al'so, there are tinmes when the efficiency of a programis reduced if a file's
di skette space is scattered all over the diskette; to avoid this, the user
shoul d preall ocate the needed file space to reduce this scattering.

CREATE, fil especl[, LRL=I n1] [, REC=count 1] [, ASE=yn] [ , ASC=yn]

The CREATE DOS conmand creates new file filespecl or alters the state of
existing file filespecl

LRL=I n1 specifies the length of each record of the file. Inl
must be a val ue between 1 and 256; the default value is 256.

DOS LI BRARY COMVANDS 2-18



REC=count 1 specifies the nunmber of records to be initially assigned
to a file.

ASE=yn Thi s paraneter indicates whether, subsequent to the
CREATE command, DOS nay automatically allocate nore di skette space to
this file as necessary. ASE=Y allows this; ASE=N disallows this. The
default is ASE=Y.

ASC=yn Thi s paraneter indicates whether the DOS cl ose function
will be allowed to automatically deall ocate excess diskette space. ASC=Y
allows this; ASC=N disallows it. The default is ASC=Y.

Enough diskette space is allocated to the file to provide for countl records
each of length Inl. Inl records of all zeroes are then witten to the file,
establishing the file EOF at the end of those records. If ASE=N is specified,
the file is inhibited against further diskette space allocation, and if ASC=N
the file is inhibited agai nst automati c deal |l ocati on of excess diskette
space.

CREATE conmmand exanpl es:

1. CREATE, XXX: 1, LRL=30, REC=2000 File XXX is created, if it did not
al ready exist, on the drive 1 diskette. The record length is 30 and 2000
of these records, containing all OOH bytes, are witten to the file. The
EOF is left at 60000. Subsequent DOS automatic space allocation and deal -
location for this file are all owed.

2. CREATE, YYY: 2, 200, ASE=N, ASC=N File YYY is created, if it did not
al ready exist, on the drive 2 diskette. The record length is 256 and 200
of these records, containing all OOH bytes, are witten to the file. The
EOF is left at 51200. Subsequent DOS automatic space allocation and deal -
location for this file are not all owed.

3. CREATE, 777Z: 0 File ZzZZ is created, if it did not
al ready exist, on the drive O diskette. The record length is 256, and the
EOF is set to 0. Subsequent DOS automatic space allocation and deal | oca-
tion for this file are all owed.

2.16. DATE Set conputer's current date.
DATE[ , nm dd/ yy]

If no paranmeters are specified, the DATE command di splays the current system
date in mm dd/yy fornat.

If nmdd/yy is specified, the date mm dd/yy becones the systemdate and is
set into the real tine clock. mmis the month (value 01 - 12). dd is the day
(value 01 - 31). yy is the year (value 00 - 99). No check is made on the
validity of the 3 values except to limt themto 2 decimal digits. As the

cl ock reaches 24:00:00, it is reset to 00:00:00 and the date's day within
nonth value is increnented. For the Mddel |, no adjustnent is made for end of
nonth or end of year. For the Moddel I1l, end of nmonth and end of year

adj ustments are done by the ROM

2-19 DOS LI BRARY COMVANDS



At reset tine, the date is set according to SYSTEM opti ons AY or AZ
Dat e command exanpl es:
1. DATE di splay the system date.

2. DATE, 08/1/81 set systemdate to August 1, 1981

2.17. DEBUG enabl e or disable the DEBUG facility.
DEBU] , yn]
DEBUG or DEBUG Y DEBUG i s enabl ed (but not entered). This enabling

causes a DEBUG entry whenever a user program (such as BASIC, SCRIPSIT,
PROFILE, EDIT, etc.) is activated. The DEBUG entry occurs after the program
load is conpleted but just before its first instruction is executed. The
purpose of this pre-execution DEBUG entry is to allow the debuggi ng
programer to change the state of a programor its initialization paraneters
bef ore the program conmences execution

DEBUG, N The above enabling is disabled. At reset/power-on tinme, DEBUG is
di sabl ed.

This conmand has no effect on the operation of '123" (the simultaneous
depressing of the 1, 2 and 3 keys) to enter the DEBUG facility.

Refer to the section 4.1 for the DEBUG facility specifications.

2.18. DR Di splay a diskette's directory information.

DIRC:][dni] [, AI[, ST, HIL. UL, /ext][, Pl

This conmmand displays directory information for the diskette nounted on drive
dnl or if dnl not specified, on the drive specified by system option AN

The first display line contains the drive nunber, the diskette name, its
date, the number of tracks, the nunber of free FDEs and the nunber of free
granul es. The values for track count and free granul es are based on the
current active PDRIVE specification for that drive and if those
specifications are not proper, these displayed values may be in error

The rest of the display contains file information.

If Ais not specified, the files are displayed four to a line, giving for
each its name and nane extension, if any.

If Ais specified, DORw Il list one file per display line with the display
i ne containing:

DOS LI BRARY COMVANDS 2-20



1. The file's nane.

2. The file's nanme extension, if any.

3. The file's EOF value in xxx/yyy format where xxx is the relative
sector nunber within the file and yyy is the relative byte nunmber within
t hat sector.

4. The file's logical record size (LRL) in bytes.

5. The nunber of logical records (RECS) in the file including any parti al
| ast record

6. The nunber of granules (GRAMS) allocated to the file.

7. The nunber of diskette space extents (EXT) allocated where that nunber
di vided by four and rounded up gives the nunber of directory entries used
by the file.

8. 12 flags providing file information, defined as foll ows:

1. S = systemfile.

2.1 = invisible file, see ATTRIB DOS comrand

3. U = file updated since last tine update flags cl eared by PROT
DOS command.

4. E = file will not be allowed to allocate nore space that it

al ready has.

5. C = excess file space beyond EOF is not automatically rel eased
during DOS cl ose.

6. - 9. Reserved for future definition

10. U = non-blank update password exi sts.

11. A = non-blank access password exi sts.

12. L = protection Level, see ATTRIB DOS comand.

System files are not displayed unless S is specified.
Invisible files are not displayed unless | is specified.

If Uis specified, only files nmarked as updated are displayed. Files marked
as updated are those files changed via the standard DOS I/O wite routine
since the last tine the update flags were cleared on the target diskette by
the PROT or ATTRI B DOS command.

If /ext is specified, only those files having the nane extension ext are
di splayed. ext is 0 to 3 characters. Exanple: DIR 1,/CvD will list all files
havi ng extensi on CVD such as EDTASM CMD

If both Uand /ext are specified, then only files satisfying both conditions
are |listed.

When the display screen is full, DIR displays a '?" and waits for the user to
respond ENTER to continue or BREAK to term nate the DI R function.

If Pis specified, the directory information is sent to the printer rather
than to the display. Caution, if the printer is not ready, the systemwil|
hang waiting for it.

If $is specified, DIRw | ask for the nmount of the target diskette before
the listing and will ask for the renpunt of the system diskette before
exiting. $ should only be used when drive dnl = 0. There is no provision for
changi ng the PDRI VE specifications internal to the DIR comrand.

2-21 DOS LI BRARY COMVANDS



The user nust renenber that if dnl is not specified, the default drive nunber
is that specified by SYSTEM option AN which is not necessarily O.

DI R conmand exanpl es:

1. DIRO Di spl ay the nanme and nane extension of all
non-system non-invisible files on the diskette currently nounted in
drive ~. The files will be listed four per display |ine.

2. DORO,S/I,P Sane as the previous exanpl e except that system and

invisible files are also listed and that the listing is sent to the
printer instead of the display.

3. DR 1,/DAT, U Di splay the name and nanme extension of all of the
current drive 1 files that are marked as updated and have nanme extension
DAT.

4. DR 2, A Al of drive 2's non-system non-invisible files are

di spl ayed, one file per display line. This display will usually involve
nore than one display page with the user stepping fromone page to the
next by pressing ENTER and, if desired; terminating the DI R function by
pressi ng BREAK

5. DIR $0 Sane as exanple 1 except the systemw Il ask for the

nmount of the target diskette on drive 0 and when DIR is done, it wll ask
for the renmount of the system di skette.

2.19. DO Shift to keyboard i nput from disk.
DO fil especl|, secti onid]

The DO conmand executes exactly the same as the DOS command CHAI N (see
section 2.9).

2.20. Duwp Dunmp nenory contents to disk.
DUWP, fi |l especl, start-addr, end-addr[,entry-addr[,relloc-addr]]

The DUWMP command writes main nmenory i mage data frommain menory to the file
filespecl, starting with the byte at start-addr and ending with the byte at
end- addr .

Start-addr, end-addr, entry-addr and relloc-addr are each numeric val ues | ess
t han 65536 deci mal or 10000 hex. If the value is hexadecimal, it nmust be
suffixed with a H (i.e. 8000H); otherwi se the value is considered deci mal.
Start-addr and relloc-addr may be any value 0 - OFFFFH.

This conmand operates in two nodes, depending on the entry-addr value. If the
entry-addr value = 65535 (OFFFFH), then an exact image of nmenory i s dunped.

DOS LI BRARY COMVANDS 2-22



The start-value is stored in the file's first 2 bytes, and the rest of the
file is the menory dunmp without any interspersed control bytes. This nenory
dunp file may be displayed or printed via SUPERZAP' s DVDB feature, thus

al | owi ng debuggi ng to occur later or on another TRS-80 conputer.

If entry-addr is |less than 65535 (OFFFFH) or is not specified, then the
specified area of nmenory is assumed to be nmchi ne executable code and is sent
to the file in loader format so that it can be later read back in by the
NEWDOS/ 80 | oader, either for execution or sinply for |oad (see LOAD conmmrand).
If entryaddr is not specified, a value of 402DH (causing return to DOS READY)
i s used.

CAUTIONI'! If the user attenpts to run or load a file whose start-addr is |ess
than 5200H, DOS will be cl obbered.

rell oc-addr specifies where the start-addr to end-addr range of bytes is to
be | caded to by the LOAD command or when the programfile is executed. During
wite of the object file, the value (relloc-addr) - (start-addr) is added to
every | oad address placed in the object file. This value is also added to the
entry-addr if entry-addr is within the start-addr to end-addr range. The
actual object code is NOT altered; only the | oader control information is.

If filespecl does not specify an nanme extension, one is not autonmatically
supplied as is done in TRSDOS.

DUVP comand exanpl es:

1. DUWMP, PROGRAM CMD; 1, 5200H, 9ABCH, 54EDH dunps the contents of nenory
fromand including 5200H to and including 9ABCH to the file PROGRAM CVD
to exist on drive 1's current diskette. The dunp will be in | oader format
with entry address equal to 54EDH Subsequently, the file may be | oaded
back into nenory via the DOS conmand:

LOAD, PROGRAM CND
or executed via DOS conmand:
PROGRAM , par anet er s]

2. For this next exanple, assune that a user programis |ooping for sone
reason or has crashed, the personnel to debug the problemare not inmredi-
ately available, and it is necessary to continue using the conputer for
ot her purposes. If a spare formatted diskette is available with suffi-
cient free space, and if 'DFG can activate MN-DOS or if the computer
is already at DOS READY, then issue the follow ng conmand:

DUMP, TROUBLE/ MEM 2, 0, 65535, 65535

which will dunp 65536 bytes of main nenory, including ROM the display,
and all of RAMto file TROUBLE/ MEM The first 2 bytes of the file will
contai n 0000H which is the dunp start address; the rest of the file is
the menory contents with no interspersed control characters. Once the
dunp is conpl eted, the operator should set aside the dunp diskette for

| ater use by the debuggi ng personnel, optionally press reset, and go on
with other tasks. At sone later tine, debuggi ng personnel can inspect the
probl em usi ng SUPERZAP's DVDB feature to display or print the contents of
file TROUBLEEMEM as if it were actually in nmenory at the current tine.

2-23 DOS LI BRARY COMVANDS



The debugger must renmenber that the DOS areas 4000H - 51FFH were altered
by DOS actions, including DUW, after the error occurred and before the
dunp actually occurred.

2.21. ERROR Di spl ay DOS error nessage.
ERROR, xx

di splays the DOS error nsg associated with the error nunber xx where xx is an
i nteger between 0 and 63. Exanpl e:

ERRCR, 24 will display 'FILE NOT IN DI RECTORY' .

2.22. FORMAT Fornmat a diskette for use with the NEWDOS/ 80 system

Di skettes as they are received fromthe manufacturer cannot be used wth
NEWDQOS/ 80. They nust first be nmagnetically divided into tracks with each
track divided into sectors of 256 bytes each. Between 15 and 30 percent of
the diskette's bytes are used as format control information and are not
avai l able to contain user data.

The DOS command FORMAT does this diskette formatting, setting up the tracks
and sectors properly and building the two system files, BOOT/ SXS and DI R/ SYS,
required on every diskette. \Wen done, the diskette is ready to be used as a
data di skette with NEWDOS/ 80.

Fornmatting can also be done as part of the COPY conmmand, formats 5 and 6 (see
section 2.14).

FORMAT, dn2[ =t c2] , name2, m dd/ yy, password3[, N[, Y] [ , NDMA
[, DDND] [ , ODN=nanel] [, KDN] [ , DDSL=I n1] [ , DDGA=gc1] [ , DPDN=dn4]
[, PFST=t n3[, PFTC=t c3] ]

FORMAT cannot be executed under M NI - DCS.

In NEWDOS/ 80 version 2, a track's sectors are read i mediately after the
track is formatted and before the disk armis stepped to the next track.
Then, after all tracks are formatted, if SYSTEM option BM =Y, the entire

di skette is read during the VER FYlI NG phase. However, if BMEN, this verifying
phase i s skipped. The user can deci de whether or not the verify-at-track
format is sufficient and set option BM accordingly.

FORVAT does not allow the user to specify tracks to be | ocked out, and when
an unverifiable sector is encountered, the associated track's |ockout byte is
not set to FF to indicate | ockout. The [ockout table is in the standard

di skette directory only for conpatibility with TRSDOS; NEWOS/ 80 does not use
it. Renmenber, NEWDOS/ 80 does not account for tracks in the directory, it
accounts for lunps, which can span tracks. NEWDQOS/ 80 operates under the

phi | osophy, however wong, that if a diskette cannot be fully formatted it
shoul d be di scarded.

DOS LI BRARY COMVANDS 2-24



FORVAT requires ail paraneters be specified in the command. It does not
prompt the user for any.

dn2 is the nunber of the destination drive to be used during format. Nanme2 is
the nane to be assigned to the diskette unless KDN is specified to retain the

old name, in which case nane2 nust still be specified but will be ignored
nmm dd/yy is the date to be assigned to the diskette unless KDD is specified
as the diskette date, in which case nm dd/yy rmust still be specified but wll

be i gnored. Password3 is the password to be assigned to the diskette.
Passwor d3 nmust conformto the rules for passwords.

Nul | paranmeters nay be used to invoke default values for diskette nane, date
and password, using the nanme NOTNAMED, the system date and the password
PASSWORD r espectively. Any conbination of the 3 null values nay be used but
where used the null paraneters nust be delinmted by commas, not spaces. See
exanpl es 2, 3 and 4 bel ow.

Si nce FORMAT and COPY share the sane NEWDOS/ 80 code wherever possible, the
specifications for the optional paraneters are nearly the sane as those
specified for COPY, formats 5 and 6, the main difference being that only a
format is done rather than both a format and a copy. The reader should read
the sections for COPY, formats 5 and 6 (see section 2.14) to basically
under stand FORVAT' s optional paraneters. Only the differences and two
addi ti onal options will be given here.

Nis the default if neither it nor any of its mutually exclusive keywords are
speci fi ed.

If =tc2 specified, the diskette will be formatted with tc2 nunber of tracks;
ot herwi se the diskette will be formatted with the default nunber of tracks
for that drive (see PDRIVE command). If =tc2 value is greater than the nunber
of tracks the drive can handle, format will probably hang trying to step to

t he non-exi stent track.

PFST=tn3 and PFTC=tc3 optional paraneters are added to allow the formatting
of a range of tracks rather than the entire diskette. If PFST is specified,
=tc2 nmust not be specified, and if PFTC is specified, PFST nust be specified.
PFST neans Partial Format Starting Track, and tn3 specifies the first track
to format. If PDRIVE Tl flags J or K are applicable for drive dnl, DOS will
add one to tn3. PFTC neans Partial Format Track Count, and tc3 specifies the
nunber of consecutive ascendingly nunbered tracks to format. If PFTC is not
specified and PFST is specified, tc3 is assuned equal to 1. After tc3 nunber
of tracks have been formatted and if SYSTEM option BM =Y, the entire

di skette will be verified. If this full diskette verify is a problem cance
the format after verify starts (by pressing up-arrow); renenber, each track's
sectors were already verified once inmedi ately after the track was formatted.

FORMAT conmand exanpl es:

1. FORMAT, 0, AAAQ, 08/ 01/ 81, PSWD, Y The diskette to be nounted, at
DOS' s request, on drive O will be formatted according to the PDRIVE
specifications current for that drive. DOS does not care whether the
format di skette previously contained data or not. The di skette is naned
AAAO, dated August 1, 1981, and receives PSW as its naster password.

2-25 DOS LI BRARY COMVANDS



2. FORWAT,O,,,,Y This exanple is identical to the previous exanple
except that default values are used for the diskette name, date and
password. The diskette is naned NOTNAMED, is dated with the current
system date and is assigned PASSWORD as its password.

3. FORMAT, 1, XXX, , PSVD, N, NDMW DPDN=4, DDSL=40, DDGA=6 The di skette al -
ready nounted on drive 1 nust not contain recognizable data. It is
formatted according to the system diskette's PDRIVE drive 4
specifications (and not according to the existing drive 1
specifications). It is assigned nane XXX and password PSWD; its date is
taken fromthe current systemdate. The directory starts at the beginning
of lunp 40 and consists of 6 granules (allows for a maxi mum of 222
files). Due to NDWV DOCS does not ask for the mount of the format

di skette nor does it allow error retry.

4. FORMAT, 1,,,,Y, PFST=22, PFTC=2 Suppose a power failure destroyed
the format of tracks 22 and 23 on a diskette. Using SUPERZAP, you have
verified that indeed SECTOR NOT FOUND error occurs on at |east one sector
on each of those tracks and, using the CDS or SCOPY functions of
SUPERZAP, you have saved in free sectors el sewhere, either on this

di skette or another, the readabl e sectors of those two tracks. Executing
this FORMAT conmand wi Il cause only those two tracks to be reformatted;
the rest of the information on the diskette is not affected. Wen done,
you can now nove back the saved sectors and recreate the ones that were
not savabl e.

2.23. FORMB (Model 11l only) Set printer paraneters.
FORMVS[ , W DTH=xxx] [, LI NES=yyy]

The FORMS command optionally changes sonme printer paraneters and always lists
out the printer paraneters.

W DTH=xxx speci fies the nunber of characters per line where xxx must be a
val ue between 9 and 255. If WDTH is not specified, the nunber of characters
per line is not changed.

L1 NES=xxX speci fies the nunber of lines per page, and nust be a val ue

between 1 and 254, where 254 indicates no linit on the lines per page. If
LINES is not specified, the lines per page value is not changed.

FORVMS command exanpl es:

1. FORMS, W DTH=80, LI NES=60 character per line is set to 80 and |ines
per page to 60.

2. FORMS, W DTH=255, LI NES=254 Unlimted characters per line and |ines
per page.

3. FORMB Di spl ays current values for characters
per line and |ines per page.

DOS LI BRARY COMVANDS 2-26



2.24. FREE Di spl ay nunber of free granules and free FDFs for each
di skette currently nounted.

FREE[ , P]
For each drive with a diskette mounted, FREE will display the drive number,
t he di skette nanme, the diskette date, the nunber of tracks for the diskette,

t he nunber of free FDEs and the nunber of free granules.

If Pis specified, the information will be sent to the printer instead of the
di spl ay.

FREE comand exanpl es:

1. FREE For each diskette currently mount the nunber of free
granul es and free directory entries is listed on the display.

2. FREE, P Sane as above except the listing is sent to the printer

2.25. H MEM Set DOS's high nenory val ue.
H MEM , addr 1]

DOS nmi ntains a high nenory address in the two bytes at Model | |ocation
4049H (Model 11 location 4411H). This high menory value is used by COPY,
BASI C, EDTASM DI SASSEM and LMOFFSET as the upper limt of the nenory they
can use. User prograns should also use this 2 byte H MEM val ue as their upper
limts. Caution! The | oader does not use HHMEM as its upper limt during
program | oad.

If no paraneters are specified, the H MEM comand di spl ays i n hexadeci mal the
current high menory val ue.

If addrl is specified, the DOS high nmenory address is set to addrl which nust
be an integer between 28672 and 65535 deci mal (7000H - OFFFFH hexadeci nal ).

H MEM command exanpl es:

1. H MEM Di spl ays the current DOS high nenory address.
2. H MEM 49000 Set DOS' s high nmenory value to 49000 (OBF68H)
2.26. JKL Send the current contents of the display to the printer

JKL has no paraneters. This conmand uses the sanme routine used by the ' JKL'
triple key function (see section 4.5). JKL sinply dunps the display contents
to the printer. If systemoption AK=Y, hex codes >= 80H (which includes the
graphics) will be transmtted unchanged; otherwi se a period will be

2-27 DOS LI BRARY COMVANDS



substituted for them Hex codes < 20H will be displayed as periods. Pressing
BREAK during JKL print will termnate the JKL function

JKL's main use will he either via CMD'JKL" from BASIC or via DOS-CALL from a
user program

2.27. KILL delete a file.

This conmmand deletes a file froma diskette. The file is no |onger accessible
by normal nethods and is no | onger known to DOS.

KILL, fil especl

The file filespecl is deleted fromthe current diskette nounted on the speci-
fied drive. If a drive nunber was not specified, then all nounted di skettes
are searched, starting with the diskette on drive 0, and the delete is done
on the 1st file found having the specified name and nane extension

KILL action is as foll ows:

1. If the file was allocated file space on the diskette, the space is

rel eased, and becones avail abl e for subsequent assignment to other files.
The file's data, if any, on the diskette is not altered by the KILL. This
data, though no longer accessible, is not witten over until the assoc-
iated file space is reassigned to another file and those sectors actually
witten to

2. The file's FPDE and any owned FXDEs are freed by zeroing bit 4 of the
1st byte of each and by zeroing the associated H T sector byte for each
Except for that bit 4, none of the associated FPDE and FXDEs are altered
by normal DOS operation until that FDE is reassigned to another file by
DCS.

If the user has inadvertently killed a file that shouldn't have been, since
neither the associated FDE' s or the diskette space used by the file is
changed by DOCS until DOS has a need to, it is possible to reconstruct the
FPDE and FXDEs and reallocate the space. To do this, you nmust be extrenely
famliar with the workings of the directories; do not call Apparat as this is
a mgj or undertaki ng and not sonething that can be quickly taught. If you
don't know how to do it, forget it!

If you have nore than a fewfiles to delete at one tine froma di skette, use
t he PURGE conmand.

KILL comand exanpl es:

1. KILL XXX/ BAS:1 The file XXX/ BAS on the diskette nounted on drive 1
is killed.

2. KILL YYY Starting with drive 0, nounted di skettes are searched
until file YYY is found on one of them That file is then killed. If

ot her mounted di skettes also contain a YYY file, the other YYY files are
not kill ed.

DOS LI BRARY COMVANDS 2-28



2.28. LC Set keyboard a - z toggle switch to the specified state.

L], yn]

LC or LC,Y sets the keyboard |lower case a - z toggle switch to accept a - z
wi t hout change.

LC, N sets the keyboard | ower case a - z toggle switch to change | ower
case a - z to upper case A - Z

For the Mbdel |, the LC command has no effect unless the |ower case driver is
active (see LCDVR conmand).

2.29. LCDVR (Model | only) Lower case driver
LCOVR(, x[, s]]

In NEWDOS/ 80 version 1, the |lower case driver that processed keyboard | ower
case al phabetics and which sent |ower case displayed characters to the

di splay was a separate programthat executed from high nmenory. In version 2,
the | ower case driver is an integral part of the Mdel | NEWOS/ 80.

If x =Y, the lower case driver routine is activated, and if x = N, the
routine is deactivated. Wien the | ower case driver routine is active:

1. Keyboard input a - z characters are processed according to the a - z
toggl e switch.

2. ASCIl codes 96 - 127 (60H - 7FH) are displayed as their proper charac-
ters and are not changed to 64 - 95 (40H - 5FH) by the ROM di spl ay
routine.

The second paraneter is neaningful only when x =Y, perforns the sanme as the
first paranmeter of LC command, initially setting the a - z toggle switch to
accept a - z (if s =Y) or convert a- zto A- Z (if s =N).

Once the |l ower case driver is activated, pressing shift 0 will switch the
driver back and forth between accepting |ower case letters and converting
| ower case letters to upper case. Further, DOS command LC may be used to
explicitly set one or the other of those states.

To use the | ower case driver, NEWOS/ 80's keyboard and display intercept

routi nes nmust be enabled. Gt her routines (excluding ROUTE) that disable these
NEWDOS/ 80 functions will also disable the | ower case driver (one exanple is
using the circular buffer in the spooler).

If no paraneters are specified, the cormand is assunmed to be LCDVR Y, N.

This | ower case driver operates sonewhat differently than the LCDVR program
supplied with Version 1. In Version 1, if lower case a - z was being
converted to upper case A - Z, then upper case A - Z was al so being converted
to lower case a - z. Version 2 does not convert upper case A - Z to |ower
case a - z; instead a true capital letter lock is done:

2-29 DOS LI BRARY COMVANDS



LCDVR command exanpl es:

1. LCDVR The | ower case driver routine is activated and the
| ower case switch is set to convert |lower case a - z to upper case A - Z.

2. LCDVR Y, Y The | ower case driver routine is activated, and the
| ower case switch is set to accept |lower case a - z w thout nodification.

3. LCDVR N The | ower case driver routine is deactivated.

2.30. LIB Di spl ay NEWDOS/ 80 |i brary comands.

LIB requires no paraneters. It displays the library commands of NEWGOS/ 80.
Commands FORMAT, COPY and APPEND execute in nmenory 5200H and up, and, along
with CHAIN, cannot be executed in M N -DOS. The other commands execute from
the DOS overlay area, 4DOOH 51FFH, and, except for CHAIN, can be executed
under M NI - DCS.

2.31. LIST List a text file on the display.
LI ST, filespecl|[,start-line[,line-count]]

This conmand sends the contents of file filespecl to the display. Though file
filespecl need not be a text file, if it is not, the resulting display wll
not be very neani ngful. Exanples of text files are BASIC progranms saved with
the A option, BASIC files witten using PRINT, assenbler, FORTRAN and COBCL
source text files, SCRIPSIT files saved with the A option and El ectric Pencil
files. To list a non-text file, use SUPERZAP.

No check is nmade on the character representations except to nodul ate
characters whose hexadeci nal val ues are between 80H and FFH into the range
OOH to 7FH and to replace with a period all characters whose hexadeci nal
value is less than 20H or greater than the high ASCI | character val ue
specified by the SYSTEM opti on AX

If start-line (decimal value 1 - 65535) is specified, listing will start with
that line where a line is considered to end with the ENTER or EOL character
ODH.

If Iine-count is specified, then the nunber of lines displayed is limted to
either line-count or the nunber of lines in the file fromthe start point,
whi chever is less. If line-count is specified, start-line nmust also be speci-
fied.

Pressing right arrow will cause a display pause when hex char ODH i s encount -
ered or after 256 bytes have been di splayed, whi chever comes first. Pressing
ENTER wi | | continue the displaying. Pressing up-arrow will termnate LIST.

Aside fromjust listing a file, LIST is useful where text files maintain a
date/tinme stanp near the beginning. If the user has multiple copies of a text

DOS LI BRARY COMVANDS 2-30



file, it may be necessary to look at the file beginning to deternine which
copy is the nobst recent.

LI ST command exanpl es:
1. LI ST, BASEPROG BAS di spl ays the entire contents of file BASEPROG BAS.
2. LIST, XXX, 1,6 displays the first 6 lines of file XXX

3. LIST, YYY: 1,200 displays the contents of file YYY fromthe 200th |ine
to the end of the file.

2.32. LOAD Load a Z-80 machine | anguage file into RAM
LOAD, fil especl

This conmand | oads the Z-80 nmmchine | anguage file filespecl into RAM and
stores its entry address into the two bytes at 4403H (17411 decinmal). The
file must be in proper |oader format, such as created by DUMP or EDTASM The
| oad proceeds using control data fromthe file. If the file | oads over any
part of the resident DOS (4000H - 4CFFH) or its overlay area (4DOOH - 51FFH),
serious and naybe file danaging trouble will occur; with luck, the system

wi | I hang.

LOAD i s used when a programor data is to be loaded into RAM for |ater use by
ot her prograns. An exanple is |oading programs, which will be invoked via
BASIC s USR function. Renenber, the entry address is stored in the two bytes
at 4403H (17411 decinal); this is not done in TRSDCS.

LOAD comand exanpl es:
1. LQAD, OVERLAY/ OBJ: 1 The obj ect code nodul e OVERLAY/ OBJ is | oaded
into main nenory fromthe diskette mounted on drive 1. The | oad control
information within file OVERLAY/ OBJ determnes what is to be | oaded and
where in main nmenory it is to be | oaded.
2. Suppose that BASIC does not use all of high nmenory and that a BASIC
program wi shes to | oad the program USR3PGM OBJ into high nenory and | ater
execute it as the BASIC USR3 function. Executing the BASIC statenents:

CMD' LOAD, USR3PGM OBJ"
DEFUSR3 = (PEEK(17411) + 256 * PEEK(17412) - 65536

will set this up.

2.33. NDBORT Term nate M NI -DOS and go to DOS READY.
MDBORT has no paraneters. It should only be executed when NEWDOS/ 80 is in

M NI -DCS state. M N -DCS state is terninated, the pre-M N -DOS state purged
and the system goes to DOS READY.

2-31 DOS LI BRARY COMVANDS



The purpose of MDBORT is to provide for the situation where the operator does
not want to continue the main programwhich was interrupted by the
si mul t aneous depression of the D, F and G keys (which i nvoked M N - DOS) .

2.34. NDCORY Copy a file while under M NI - DOCS.
MDCOPY, fi |l especl(, TQ,fil espec2

The regul ar COPY conmand cannot be executed under M NI -DOS. MDCOPY gives the
user a restricted and quite slow formof file copy, which does execute under
M NI - DCS.

MDCOPY copi es the contents of file filespecl to the new or existing file
filespec2. File filespecl is not altered, and the previous contents of file
filespec2, if any, are lost. Filespec2 may not be foreshortened as is all owed
for COPY.

MDCOPY command exanpl e:
MDCOPY XXX/ DAT: O YYY/ DAT: 1

The contents of file XXX/ DAT on the diskette currently nounted on drive
is copied as file YYY/ DAT onto the diskette currently mounted on drive 1

2.35. MDRET Exit fromMN -DOS and return to main program

MDRET has no paraneters. The systemexits M N -DOS state and conti nues the
mai n program at the point where it was interrupted by the invocation of MNK
DOS (simul taneous depression of the D, F and G keys). If the cursor was dis-
pl ayed before "DFG, it will be redisplayed. If the 'DFG interruption
occurred while the key input buffer contained a partial input record, that
partial record is still there even though it is no |onger displayed. The user
shoul d continue keying exactly where he/she left off.

If the invocation of MN -DGOS occurred during the timer interrupt rather than
the key intercept, one or nore of D, F or G nmay appear as spurious input keys
after MDRET is executed. The user shoul d backspace over them The user and
DOS have no control over these spurious input chars; therefore DFG shoul d not
be pressed when a programis in text overwite nbde, such as SCRIPSIT or

El ectric Pencil; instead go into conmand node where the spurious characters
can be backspaced over without danage to the text.

DOS LI BRARY COMVANDS 2-32



2.36. PAUSE Di spl ay nessage and pause waiting on ENTER
PAUSE, nsg

The nmessage nmsg i s not redisplayed if the PAUSE comrand itsel f was di spl ayed.
I f the PAUSE comand was not displayed, as occurs if it is executed under
DOS- CALL, the message nsg is displayed. In any event, the nessage PRESS
"ENTER' WHEN READY TO CONTI NUE i s di splayed on the next line. DOS then waits
for the user to press the ENTER key. The PAUSE command is one of the four
ways of causing a pause in chaining, and can al so be used when a series of
conmands in nain nenory are being executed by a series of DOS- CALLS.

PAUSE conmmand exanpl e:
PAUSE, MOUNT DI SKETTE LABELED " PRI MARY" ON DRI VE 1.

This message will appear on the display and will be followed on the next

, display line by the nmessage PRESS "ENTER' WHEN READY TO CONTI NUE. DGCS
waits for the user to press ENTER which presumably he/she will do after

t he proper diskette has been nmounted in drive 1. DOS doesn't check to see
if the user has done what was requested; all DOS does is wait for the
ENTER.

2.37. PDRIVE Assign default attributes to a physical drive.

PDRI VE[ , passwor dl:]dnl, [dn2[ =dn3]][, TI=typel ][, TD=type2] [, TC=t c1]
[, SPT=scq] [, TSR=rcl] [, GPL=gc2] [, DDSL=I n1] [, DDGA=gc1] [, A]

NEWDOS/ 80 has linmited capabilities for operating with a mxture of 5 inch
disk drives and to a lesser extent 8 inch disk drives. PDRIVE is the command
met hod used to inform NEWDOS/ 80 of a particular physical drive's
characteristics.

Each PDRI VE command lists the resulting specifications for 10 drives even

t hough the actual numnber of drives eligible for 1/Ois linmted by the SYSTEM
option AL and in no case exceeds 4. Those drives within the range of SYSTEM
option AL are flagged on the PDRIVE display by an asterisk suffixed to the
drive nunber. The specifications for the 10 drives is naintained on the
system di skette mounted on drive dnl. For efficiency reasons, DOS nornally
uses drive specifications froma table it has in main nmenory. This main
menory PDRIVE table contains specifications for 1 to 4 drives, dependi ng upon
the SYSTEM option AL value, and is automatically reloaded fromthe drive 0

di skette at power on and reset if and only if the specifications for all 10
drives are error free (otherwi se the reset hangs). This table is al so

i medi ately rel oaded by a PDRI VE command specifying the A paraneter (see

bel ow) .

Drive dnl is the drive containing the systemdi skette whose contro
information (in the 3rd sector) is being updated. Drive dn2 indicates which
physical drive of the 10 represented in the control infornation sector on
drive dnl is having its control information updated.

2-33 DOS LI BRARY COMVANDS



For exanple, if the PDRIVE conmand is PDRIVE, 1,4, TC=80 t hen the diskette
on drive 1 is read to obtain the PDRIVE control information and is
updated to contain the new drive 4 specification. Drive 1's PDRI VE
control information contains the specifications for ten drives, dn2
values 0 through 9, and it is the fifth drive's information (for dn2 = 4)
that is changed. The specifications for the other nine drives are not
changed.

I f passwords are enabl ed, then passwordl rmust be specified and be the master
password for the diskette on drive dnl. Otherw se, passwordl nmay be left out
of the command.

Control data is changed only for the paraneters specified; paranmeters not
specified are not changed. If any errors are displayed, the dnl diskette mnust
NOT be used as the system diskette during a reset/power-on until the errors
are corrected.

PDRIVE,dnl will list the 10 PDRIVE specifications contained in the control
data on the system di skette nounted on drive dnl

dn2 nust be specified if any other optional paraneters except A are
specified. If dn2 is specified, it nust be the 1st parameter follow ng dnl

dn2=dn3 causes drive dn2 to assune the PDRI VE specifications of drive dn3.
This is done before any other optional paraneters are interpreted.

Tl=typel specifies the type of disk drive interface. typel consists of one
or nore al phabetic letter flags chosen fromthe |list below For the Mdel I,
one and only one of flags A, B, C or E nmust be chosen. For the Mdel I1l, one
and only one of flags A or D nmust be chosen. The other flags are optiona
dependi ng upon the interface. Certain flags are inter-drive nutually

excl usive nmeaning that for a given drive dnl, if one dn2 drive specifies a
flag that is interdrive nutually exclusive w th another flag, then another
dn2 drive may not specify the excluded flag. For now, flags B, C and E are
interdrive nutually exclusive for the Mdel |

Flag A nmeans the standard disk interface is to be used for diskette I/0O
for this drive. For the Mddel | this interface supports drive types A and
C. For the Model 11l this interface supports drive types A, C, E and G

Flag B (Model | only) means that an OM KRON nmapper type interface is
installed and is to be used for I/Ofor this drive. This interface
supports drive types A, B, C and D

Flag C (Model | only) nmeans that a PERCOM doubl er type interface is
installed and is to be used for I/Ofor this drive. This interface
supports drive types A, C, E and G

Flag D (Model 111 only) neans that an Apparat disk controller type inter-
face is installed and is to be used for I/Ofor this drive. This inter-
face supports drive types A through H (drive types F and Hrequire a
Model 111 speed up nodification).

Flag E (Model | only) means that an LNWtype interface is installed and

is to be used for I/Ofor this drive. This interface supports drive types
A through H.

DOS LI BRARY COMVANDS 2-34



Fl ag H means head settle delay is to be done whenever DOS changes from
another drive to this drive. For Mddel | and Mdel Il 5 inch drives, the
heads for all 5 inch drives are | oaded when the nmotors go on, and this
extra tinme delay is NOT needed. Flag H is needed for 8" drives.

Flag | means the | owest nunbered sector on each track is sector 1. This
is the nornal state for Model |11 TRSDOS diskettes. If flag | is not
speci fied, the | owest nunbered sector on each track is assumed to be O,
which is the state for the Mddel | and for NEWDOS/ 80 on the Mdel 111

Flag J means the track nunbers start from1l. If flag J is not specified,
track nunbers are assunmed to start fromO, which is the standard state
for the Model | and the Model [11.

Flag K means track O is formatted (or is to be formatted) in density
opposite to that of the diskette's other tracks. This nakes track 0O
unavail able for normal 1/O Flag J is inplicitly set by flag K The
purpose of formatting track O in opposite density is to allow a double

density (Moddel 1) or single density (Moddel I111) SYSTEM di skette to be
booted up. The Mddel | ROM nust be able to read the boot sector in single
density, and the Moddel 111 ROM nmust be able to read the boot sector in

doubl e density. Setting flag K causes FORMAT and COPY with format to
format track O in the opposite density and to store the required boot
sector onto that track for the ROVs to use. Wth flag K set, nornmal DOS
I/Oto track actually goes to track 1, 1 to 2, etc. Flag K nmust be
specified for a drive that is to read a double density diskette created
by the PERCOM type doubler interface under NEWDOS/ 80 version 1 or any

ot her DOS except NEWDQOS/ 80 version 2 or higher. For NEWOS/ 80 version 2
Model 1, double density data diskettes do not have to reserve track 0 for
opposite density if those diskettes will never be used on a drive 0 whose
PDRI VE specifies double density. Flag K must NOT be specified for
standard Model 111 diskettes, unless for sone reason the user wants a
single density system diskette on the Model 1l or is naking a double
density diskette to be read on the Mddel | that does not have NEWDOS/ 80
version 2. \Wen flag Kis specified, then TC nust specify one |less track
than woul d be specified if flag were not specified. Further, due to the
di ffering sequence in which consecutive sectors are stored on the

di skettes, double sided, double density diskettes created under the

pat ched NEWDOS/ 80 version 1 are not readabl e under NEWDOS/ 80 version 2
To transfer files on those diskettes to Version 2, they must first be
nmoved (using Version 1) to either single sided (either density) or double
sided, single density diskettes.

Flag L means two step pul ses between tracks. This allows a 35 or 40 track
di skette to be read on an 80 track drive. Witing can also be done in
this manner, but the 35 or 40 track drives have trouble readi ng sone of
the sectors so witing is not recomended.

Flag M nmeans the di skettes are standard TRSDOS Model 111 diskettes. Flag
Minplies flag |. The COPY DOS comand is the only function within
NEWDOS/ 80 that will honor or even notice a TRSDOS Model 111 diskette as
distinct froma NEWOS/ 80 di skette, and even this will not occur unless
flag Mis set.

Flags F through G and N through Z are reserved for future definition

2-35 DOS LI BRARY COMVANDS



TD is the Type of Drive specification. The definitions are:

1. TD=A 5 inch, single density, single sided drive.
2. TD=B 8 inch, single density, single sided drive.
3. TD=C 5 inch, single density, double sided drive.
4. TD=D 8 inch, single density, double sided drive.
5. TD=E 5 inch, double density, single sided drive.
6. TD=F 8 inch, double density, single sided drive.
7. TD=G 5 inch, double density, double sided drive.
8. TD=H 8 inch, double density, double sided drive.

If a CPU speed up nodule is installed in the conputer that reverts to
normal CPU during disk 1/O this reversion must not slow the CPU speed to
I ess than the original rated CPU speed for that nodel. NEWOS/ 80's disk
I/ O | oops, especially for the Model 1 for drive types B, D, E and G can-
not tolerate any reduced CPU speed bel ow the original speed. In linmted
testing and with SYSTEM option BJ properly set, NEWQOS/ 80 Version 2 has
run disk I/0O successfully wi thout the need to turn off the CPU speed,;
however, Apparat does not guarantee such performance.

TD=F and TD=H require a CPU speed up nodul e installed in the computer
whi ch at | east doubles the CPU s speed during disk I/QO

For drive types C, Db Gand H, the current NEWDOS/ 80 interfaces (Tl flags
A, B, C, Dor E) consider a double sided diskette as a single volune
(i.e., only one directory) with each track having its | ower nunbered sec-
tors on the first side and the higher nunbered sectors on the second
side. Pin 32 is used to select the 2nd side (special cables required),
and any drive on the cable that shunts pin 32 over as a drive 3 select
nmust have that shunt wire cut to prevent that drive from being sel ected
when anot her drive's 2nd side is being selected. Double sided, double
density 40 and 80 track drives have been used on the Mddels | and I
under NEWDOS/ 80 Version 2.

One of the reasons Apparat never supported double density in Version 1
was that nost drives did not work reliably in double density. Whether
this was the fault of the drives, the diskettes, the data separator or
the controller was never really ascertained. Over the |last nine nonths,
t hi ngs have i nmproved sonewhat, but double density is still not as
reliable as single density and probably never will be. Apparat was
informed that the two byte pattern 6DB6 is a nmuch better "worst case"
doubl e density pattern than the E5 s used in single density, and indeed
the 6DB6 pattern is such. In fact, it is such a good "worst case"
condition that a good percentage of certified double sided, double
density diskettes will fail format. To many users, this will prove
intolerable and they will want to apply the ZAP that goes back to the E5
pattern, if it is not already applied. However, using the E5 pattern in
doubl e density neans that the user will increase the probability that a
di skette that formats successfully will at sonme future tine fail

TC=tcl specifies the nunber of tracks on the disk, excluding track 0 if TI
flag Kis set. If flag Kis not set, TC=35 for a 35 track drive, TC=40 for a
40 track, etc. If flag Kis set, then TC=34 for a 35 track drive, TC=39 for a
40 track, etc

DOS LI BRARY COMVANDS 2- 36



SPT=scl specifies the nunber of sectors per track. For double sided, single
vol unme di skettes (TD = C, D, Gor H), scl nust be twice what it would be if
single sided diskettes. scl may be any value from1 to the maxi num nunber of
256 bytes sectors the track can physically hold. For each of the above speci -
fied drive types, the naxi mum nunber of sectors per track is: A=10, B=17,
C=20, D=34, E=18, F=26, G=36 and H=52.

TSR=rcl specifies the track stepping pulse time code the controller uses for
this drive. rcl is a value fromO to 3 and becones part of the SEEK, STEP and
RESTORE conmands sent to the controller. For the Mddel | and Ill standard
controllers, TSR=0 gives 5 nms stepping, TSR=1 gives 10ns stepping, TSR=2

gi ves 20nms stepping and TSR=3 gi ves 40ns stepping. TSR=3 was the origina
standard for the Model |, with some users using TSR=2 or TSR=1 for certain
drives. The Moddel 111 appears to use TSR=0 as standard. If you are having
drive trouble, the safest setting is TSR=3 (fastest stepping rate for the
Model | is 12ns).

GPL=gc2 specifies the nunber of granules per |unp where gc2 is a val ue
between 2 and 8. In TRSDOS for the Mddel | and Il and the ol der versions of
NEWDOS, di sk space all ocation was done via granules (5 sectors per granule on
the Model | and 3 per granule on the Mddel 111) and tracks (2 granul es per
track on the Model 1 and 6 granules per track on the Model 111). I n NEWQS/ 80
version 2, for both the Mbdels | and Ill, there are still 5 sectors per
granule, and 2 to 8 granules per lunp (not track). \Werever a track nunber
appeared in the directory (in the GAT sector and in the FDE two byte extent

el ements), it has been replaced with a |unp nunber. Doing so allows a granule
to start in one track and end in another and all ows double density and 8 inch
di skettes to nmaxi m ze the nunber of sectors per track while keeping the sane
directory format. GPL=2 maintains conpatibility with the old 35 track single
density diskettes, as the directories will be exactly the same and
transferabl e back and forth between the Mddel | TRSDOS and NEWDOS versi ons
bef ore NEWDOS/ 80 version 2. However, by going to GPL=8 the directory can now
accommpdate 192 x 8 x 5 = 7680 sectors or 1,966,000 bytes.

DDSL=In1 is the |ogical equivalent of and replacenent for the DDST paraneter
used in NEWDOS/ 80 version 1. IS specifies the nunmber of the lunp at whose
first sector is to contain the directory's 1st sector. This value is stored
in the boot sector 3rd byte during diskette fornat and is used when necessary
to find the directory. It is also used during diskette format to deterni ne
where to put the directory. In the older systens, the 3rd byte of the boot
sector contained the track nunber in whose 1st sector the directory started.
Since tracks are not used in space allocation and control in NEWQOS/ 80
version 2, the 3rd byte of the boot now contains the number of the lunp in
whose 1st sector the directory starts. To deternine the relative sector
nunber of the directory's 1st sector (the GAT sector), access the boot
sector's 3rd byte and nultiply that value by 5 tinmes GPL. DDSL=17 nai ntai ns
conpatibility with the standard 35 track, single sided, single density

di skettes. DDSL should be set to the value used for the DDST paraneter in
NEWDOS/ 80 version 1.

DDGA=gcl specifies the default nunber of granules to be allocated to the
directory when it is created during format, where gcl is a value between 2
and 6. DDGA=2 shoul d be specified for standard 35 track, single density,
single sided conpatibility. gcl > 2 allows the user to have nore than 62
files on a data diskette with the maxi mum bei ng 222 fil es.

2-37 DOS LI BRARY COMVANDS



A specifies that if and only if no errors were found during the checking of
the specifications for all the drives, then the specifications for SYSTEM
option AL nunber of drives is |loaded into the main nenmory PDRIVE table to

i medi ately beconme the controlling data for those drives; this elimnates the
need for a reset. If paraneter Ais specified, dnl nust = O.

PDRI VE i s executabl e under M NI - DCS.

PDRI VE command exanpl es:
1. PDRIVE, dnl, dn2, Tl =A, TD=A, TC=35, SPT=10, TSR=3, GPL=2, DDSL=17, DDGA=2
is the PDRIVE specification for a standard 5 inch, 35 track, single den-
sity, single sided diskette used for conmmunication in the Mdel | world.

This specification can also be used on the Mddel IIl to read the diskette
providing the directory address marks are correct (see SYSTEM option AN).

2. PDRIVE, dnl, dn2, Tl =A, TD=E, TC=40, SPT=18, TSR=3, G°PL=2, DDSL=17, DDGA=2

is the Model 111l specification (Mdel |, use TI=C) for a standard 5 inch
40 track, double density, single sided diskette used for conmunication
t hrough out the NEWDOS/ 80 Model 111 world. Using this specification, this
di skette can also be read on the Mbdel | in a drive other than 0 if a

doubl e density nodification is installed in the expansion interface.

3. PDRIVE, dnl, dn2, TI =AM TD=E, TC=40, SPT=18, TSR=3, GPL=6, DDSL=17, DDGA=2

is the Model 111l specification (Mdel 1, use TI=CMor EM for reading or
witing to a TRSDOS Moddel 1l standard 5 inch, double density, single
sided diskette. A 40 track, double density, single sided 5 inch diskette
is the only type TRSDOS Model |11 diskette that NEWDOS/ 80 can handl e
GPL=6 is mandatory. Since a TRSDOS Mddel 111 diskette cannot be fornatted
by NEWDOS/ 80, DDSL and DDGA are neaningless. I n NEWDOS/ 80 (doubl e density
nod nmust be installed for Model 1), only the COPY DOS comand can be used
with TRSDOS Model [11 diskettes excepting that diskette sectors can be
read/ witten via SUPERZAP by using the DD, DM DTS, VDS, CDS, CDD, etc.
functions that do not refer to files (i.e., don't use DFS)

4. PDRI VE, dnl, dn2, Tl =A, TD=C, TC=80, SPT=20, TSR=2, GPL=8, DDSL=20, DDGA=6

is the specification for a 5 inch, 80 track, single density, double
sided, single volume diskette with 20ns stepping, 8 granules per |unp,
with the directory positioned at the diskette hal fway point and maxi num
size directory. For the Mddel |11, the single density drive 0 restriction
applies.

5. PDRI VE, dng, dn2, Tl =A, TD=G TC=80, SPT=36, TSR=2, G°PL=8, DDSL=35, DDGA=6

is the Model 111 specification (Mdel |, use TI=Cor E) for a 5 inch, 80
track, double density, double sided, single volune diskette to use 20ns
steppi ng, 8 granules per |unp, maxi num size directory positioned at the
di skette hal fway point. For the Mddel I, the double density drive
restriction applies.

6. PDRI VE, dnl, dn2, Tl =CK, TD=E, TC=39, SPT=18, TSR=3, GPL=2, DDSL=17, DDGA=2

is the Mbdel | specification (Mddel 11, use TI=AK) for 5 inch, 40 track
doubl e density, single sided diskette that has track O formatted in
single density, hence only 39 tracks available for regular use. This
specification will handl e double density diskettes formatted by TRSDOS
and NEWDOS/ 80 version 1 running under the PERCOM doubler. This
specification will also be used when generating a double density diskette

DOS LI BRARY COMVANDS 2-38



to be the systemdiskette in drive O for the Model 1. For LNwW Model |
interface, use TI=EK

7. PDRIVE, dnl, dn2, Tl =CK, TD=G, TC=79, SPT=36, TSR=3; GFL=8, DDSL=35, DDGA=6

is the Model | specification (Mddel 111, use TI=AK) for a 5 inch, 80
track, double density, double sided, single volune diskette that has
track formatted single density. For the LNWModel | interface, use TI=EK

Warni ng!!'! Doubl e sided, double density diskettes used on the patched
NEWDOS/ 80, version 1 are not usable on Version 2 (see Tl flag K
di scussi on).

8. PDRI VE, dnl, dn2, Tl =AL, TD=A, TC=35, SPT=10, TSR=3, GPL=2, DDSL=17, DDGA=2

is the specification for a 5 inch, 35 track, single sided, single density
di skette that is to be read on an 80 track drive. The 80 track drives
step only half as far as the 35 and 40s for each data track; setting flag
L causes 2 steps to be taken for each data track stepped.

9. PDRI VE, dnl, dn2, Tl =BH, TD=B, TC=77, SPT=17, TSR=3, GPL=3, DDSL=17, DDGA=6

is the Mbdel | specification for an 8 inch, 77 track, single sided,
single density diskette. Note, NEWDOS/ 80 version 1 used SPT=15 and an
implied GPL=3, and to read those diskettes, SPT=15 and GPL=3 nust be
used. It is reconmended that a COPY be done to convert those diskettes to
SPT=17, thus gaining 12% nore di skette space. Flag H causes head | oad
settle delay to be used, required for nmost 8 inch drives.

10. PDRI VE, dnl, dn2, TI =BH, TD=D, TC=77, SPT=34, TSR=3, GPL=8, DDSL=| 7, DDGA=6
is the Mbdel | specification for an 8 inch, 77 track, single density,
doubl e sided, single volune diskette with head | oad settle del ay
required.

11. PDRI VE, dnl, dn2=dn3 is the specification to cause drive dn2 to
receive as its specifications those of drive dn3.

12. PDRI VE, dnl, dn2=dn3, TC=40, TSR=2 is the specification to cause drive
dn2 to receive as its specifications those of drive dn3 and then to apply
new val ues for TC and TSR

13. PDRIVE, 0, A causes the PDRIVE data for SYSTEM option AL nunber of
drives to be loaded into the main menory PDRIVE table if and only if the
full display of the specifications shows no error

14. PDRIVE, 0,dn2=dn3, A changes drive 0's specifications for dn2 to be
those of dn3, and then perforns as in the above exanple.

2.38. PRINT List a text file on the printer

PRI NT, fil especl[,start-line[,line-count]]

PRI NT executes identical to LIST, excepting the listing goes to the printer
i nstead of the display. Refer to DOS conmand LI ST for specifications and
exanpl es.

2-39 DOS LI BRARY COMVANDS



2.39. PROT Alter sone diskette control data.

PROT, [ passwor d1: ] dnl[, NAVME=nanel] [ , DATE=mm dd/ yy] [ , RUF]
[, P\passwor d2] [, LOCK] [, UNLOCK]

At | east one optional paranmeter nust be specified. The target diskette is
nounted on drive dnl. |If passwords are enabl ed, passwordl nust be specified
and nust equal the diskette's nmaster password.

NAME=nanel The di skette is given the name nanel.
DATE=nmm1 dd/ yy The diskette is given the date mm dd/vyy.
RUF Reset Updated Flags. This option turns off the updated

flags for all files on the diskette. If a user backs up only those files
havi ng the updated flag on (see UPD option of COPY) off, executing PROT with
the RUF option after the copying is completed turns off the updated flags so
the files will not be eligible for a subsequent backup until the file is
subsequently updated. Sinply witing or rewiting one sector of the file,
whet her or not anything was actually changed, causes DOS to turn on a file's
updated fl ag.

PWepasswor d2 Passwor d2 must conformto the rules for passwords, with
null set as all blanks. The diskette receives password2 as its password.

LOCK Al files of the diskette, except systemand invisible
files, are given the diskette master password as both their access and update
passwords. |f password2 specified, it is used. This feature used to be the
only way a user, in a password enabl ed system could get to a file whose
password(s) he/she had forgotten, if the user did know the diskette master
password. It has the unfortunate drawback in that it changes the passwords
for all, except systemand invisible, files on the diskette; thus causing the
user to reassign passwords to all the others as well as to the file whose
passwords he/she forgot. An easier way is available if the user knows the
password of at |east one NEWDOS/ 80 system di skette or better still, has a
NEWDOS/ 80 system di skette with passwords disabled (systemoption AA = N).
Wth passwords disabled, the user can use ATTRIB to, directly reassign new
passwords to the file whose passwords are forgotten without having to affect
other user files on the diskette. Then passwords can be re-enabl ed.

UNLOCK The access and update passwords of all of the diskette's
files, except systemand invisible files, are set to all blanks, neaning no
passwords for those files.

PROT command exanpl es:

1. PROT, 2, RUF The updated flag is cleared for each file on the
di skette currently mounted on drive 2.

2. PROT, OLDPSWD: 1, NAME=AAB3, DATE=07/ 15/ 81, PWNEWPSWD

In this exanple, passwords are enabl ed; therefore the diskette's master
password OLDPSWD was required. The diskette control information for the
di skette nounted on drive 1 is changed such that its name is AAB3, its

date is July 15, 1981 and its new master password is NEWPSWD

DOS LI BRARY COMVANDS 2-40



2.40. PURGE Selectively kill files froma diskette.
PURGE, [ passwordl:]dnl[,/ext] [, USR]

The di skette mounted on drive dnl is used for this conmand. |f passwords are
enabl ed" passwordl nust be specified and nust be equal to the diskette's
mast er password.

For each file, except BOOI/SYS and DIR/ SYS, on the diskette, DOS asks the
operator if the file is to be killed. If the file is to be killed, respond Y;
the file will be imediately killed, as if a KILL command has been issued. |f
the file is NOT to be killed, respond N. Respond Qif you wish to quit the
PURGE function

/ ext If this option is specified, the purge queries are limted to only
those files having nanme extension ext where ext is 0 to 3 characters.

USR If this option is specified, systemand invisible files are not
included in the PURGE function

PURGE command exanpl es:
1. PURGE 1 For each file, except BOOI/SYS and DI R/ SYS, on the
di skette currently mounted on drive 1, DOS asks if the file is to be
killed. If the response is Y, the file is killed.
2. PURGE, 0, / DAT For each file on the diskette currently nounted on
drive 0 that has nane extension DAT, DOS asks if the file is to be killed
and does so if the response is Y.
3. PURGE, 0, USR For each non-system non-invisible file on the

di skette currently mounted on drive 0, DOS asks if the file is to be
killed and does so if the response is Y.

2.41. R Repeat the previous DOS conmand.

This conmmand causes the re-execution of the previous DOS conmand, excl uding
the conmand R Exanpl e:

DR 1 foll owed by:
R

will execute the sanme as if the two DOS conmands had been
DR 1
DR 1

The R conmand can not be executed from BASIC via CVD'doscnmd" as that function
requires that the command, excluding ENTER, nust be 2 or nore characters
| ong.

The R comand has no paraneters and nust be keyed exactly as R fol |l owed by
ENTER. |If nmore than 2 characters are keyed into the buffer and then

2-41 DOS LI BRARY COMVANDS



backspaced so that DOS only sees the R and the ENTER, the previous DOS
command that was residing in the command buffer will still have been altered
and the R conmand will either fail or in rare circunstances, execute

sonet hing different than what the operator expected.

If the previous DOS conmand is no longer intact in the DOS conmand buffer
the results of the R command are unpredictable.

I f SYSTEM option BE = N, the R command does not execute the previous DOS com
mand but instead sinply returns to DOS READY.

2.42. RENAME Renane a file.
RENAME, fi |l especl[, TQ,fil espec2

The file filespecl is renamed to filespec2, where fil espec2 consists of only
a nane and optionally a name extension. If filespecl does not specify a drive
nunber, then all mounted di skettes are searched, and the first file
encountered natching fil especl's nane and nane extension is renaned. RENAME
change only the file's nane and nane extension; nothing else is changed.

RENAME conmmand exanpl e:

RENAME XXX/ DAT: 1 YYY/ OBJ The file XXX/ DAT on the diskette currently
mounted on drive 1 has its nanme changed to YYY and its extension changed
to OBJ.

2.43. ROQUTE

1. ROUTE
2. ROUTE, CLEAR
3. RDUTE, devl[, dev2][,dev3]....

The purpose of the ROUTE conmand is to allow sone flexibility fromwhere the
keyboard and/or RS-232 input is received and to where display, printer and
RS- 232 output is sent.

At the conclusion of a ROUTE command, any existing routes are displayed; if
none, nothing is displayed. ROUTE with no paraneters does nothing except dis-
play the existing routes.

ROUTE, CLEAR clears all routes.
devl specifies the device being routed. dev2, dev3, etc. specify the

device(s) being routed to (the routed-to devices) when devl is an out put
device or routed from (the routed-fromdevices) when devl is an input device.

For the Model |, the device codes are KB for the keyboard, DO for the display
PR for the printer and NL for null (meaning nothing is transferred). For the
Model 111, RI for the RS-232 input and RO for the RS-232 output are added to

t he above 3 codes. An input device (KB or RI) may not be routed to an out put

DOS LI BRARY COMVANDS 2-42



device (DO, PR or RO, and an output device may not be routed to an input
devi ce.

Whenever devl is specified, ROUTE initially clears any previously existing
routes for that device and then establishes the routes specified by dev2,
dev3, etc., if any.

Any of the devices dev2, dev3, etc. nmay al so be of the form MviFaddr where
addr specifies the main menory | ocation of a user routine to which devl is to
be routed. The first 12 bytes of the routine are reserved for use by DOS and
nmust not be altered by the user. Upon routing, the user routine is entered
via a CALL at the 13th byte, and it is the user's responsibility to save and
restore all registers, except AF, used by the routine and routines it calls.
If devl is an input device, the routine returns the new byte in register A
with a zero indicating there is no new input byte fromthat routine. If devl
is an output device, upon entry to the routine, register C contains the byte
bei ng out putted.

If devl is an output device, the output byte is sent to all routed-to devices
in the order given in the ROUTE command.

If devl is an input device, each routed-fromdevice is queried in the order
given in the ROUTE command. If that device supplies a non-zero byte, the
qgueries stop and the byte is used as the input byte for the devl. If no
rout ed-from device has an input byte, a zero is considered devl's current
byt e.

The maxi mum nunber of routes-to and routes-from excluding Maddr types, in
exi stence at one tinme is four for the Mddel | and six for the Mdel III

WARNING !'! No editing of input or output characters is done during routing
This may cause problens (i.e., display control characters causing the
printers to do unpredictable things).

ROUTE conmand exanpl es:

1. RQUTE, PR, DO Printer output does not go to the printer but

i nstead goes to the display.

2. ROUTE, DO DO PR Di spl ay output goes to both the display and the
printer.

3. ROUTE, PR, DO, PR Printer output goes to both the display and the
printer. If the routes of both exanple 2 and 3 are active, the routing is
equi valent to the Model 11 TRSDOS functi on DUAL.

4. ROUTE, KB, Rl (Model 11l only) Keyboard input characters cone

fromthe RS-232 input device and not fromthe keyboard.

5. ROUTE, DO, RO (Model 11l only) Display output is sent to the
RS- 232 out put device and not to the display.

6. ROUTE, PR, MM=OFEBOH Printer output is sent to the routine at main
menory | ocati on OFES8OH (the routine's actual entry point is OFESCH).

2-43 DOS LI BRARY COMVANDS



7. ROUTE, KB, KB, MMEOF800H Keyboard i nput cones fromeither the keyboard
or the routine at main nmenory |ocation OF800A. |nput fromthe keyboard
has precedence.

8. ROUTE, PR, NL Printer output is discarded

9. ROUTE, PR All routing for the printer is dissolved
Printer output goes to the printer.

10. RQUTE, CLEAR All routes are dissolved, and all devices are
returned to their normal paths.

2.44. SETCOM (Model 111 only) Set RS-232 interface paraneters.
SETCOM , OFF] [, WORD=wL1] [ , BAUD=br] [, STOP=sb] [, PARI TY=pp] [, WAI T] [ , NOWAI T]

The SETCOM command optional ly changes the state of the RS-232 interface and
al ways di splays the state. For RS-232 discussion, see chapter 8 of the Mde
I1l Operation and BASI C Language Reference Manual. The SETCOM command affects
only the standard RS-232 control bl ocks and routines.

If OFF is specified, the RS-232 interface is turned off. No other optiona
paraneters nmay be specified.

If any of WORD, BAUD, STOP or PARITY is not specified, the state for that
keyword i s not changed.

WORI =wl specifies the nunber of bits per transm ssion byte. wl nust be one
of 5, 6, 7 or 8.

BAUD=br specifies the transmission rate (the baud rate) for both sending and
recei ving. The 16 all owabl e values for br are 50, 75, 110, 134, 150, 300,
600, 1200, 1800, 2000, 2400, 3600, 4800, 7200, 9600 and 19200.

STOP=sb specifies the nunber of stop bits to be used for each byte transmt-
ted. sbis either 1 or 2.

PARI TY=pp specifies the parity to be used in the transm ssion where 1 = odd
parity, 2 = even parity and 3 = no parity.

VAIT or NOMIT are nmutually exclusive and speci fy whether or not the RS-232
input routine is to wait until an input byte is received and the out put
routine is to wait until the current byte has been sent. If neither WAIT nor
NOWMAI T is specified, the previous wait or no wait state remains.

SETCOM conmmand exanpl es:

1. SETCOM WORD=8, BAUD=30d, STOP=1, PARI TY=1, WAIT  Activates the RS=232
interface, if not already active, and sets the interface for 8 bit bytes.
300 baud rate, one stop bit, odd parity and forces the RS-232 routines,
when called, to wait until an input byte is ready or until the RS-232

out put device will accept an output byte.

DOS LI BRARY COMVANDS 2-44



2. SETCOM NOWAI T, PARI TY=3, WORD=7 Activates the RS-232 interface, if
not already active, and sets the interface for 7 bit bytes, no parity and
causes the RS-232 routines not to wait until an input byte is ready or
the RS-232 output device will accept an output byte. The TRS-80 i nterrupt
routines will handle the actual byte input or output with the RS-232
device. The other paraneters not nentioned in the command are not

changed.

3. SETCOM OFF The RS-232 interface is deactivated. The current
interface specification is renenbered.

2.45. STMr Di spl ay specified nessage.
STMT, nsg

Si nce normal DOS commands are al ways displayed, this command nornal ly has
nothing to do since its function, to display the nessage nsg, has al ready
been done. However, if this comand was i nvoked via DOS- CALL (whi ch does not
di splay the DOS conmand), the nessage nsg i s displayed.

STMI is one of 3 ways in chaining to display a nessage w thout a pause. This
allows nultiple line instructions to be displayed, with the last line being a
PAUSE and the ot hers being STMIs.

STMI' conmand exanpl es:

1. STMI PHASE ONE COWVPLETED This is sinply an announcenent to the
term nal operator that phase one (whatever that was) has been conpl et ed.
DOS does not pause.

2. STMI' DI SMOUNT AND STORE AWAY DI SKETTE XXX
PAUSE AND MOUNT DI SKETTE YYY ON DRI VE 2.

This exanple illustrates the conbined use of the STMI and PAUSE commands
to give instructions and wait until they are carried out.

2.46. SYSTEM Change system opti ons.

SYSTEM [ passwor dl:]dnl[, AA=yn] [, AB=yn] [, AC=yn] [, AD=yn] [, AE=yn]
[, AF=yn] [, AG=yn] [, Al =yn] [, AJ=yn] [, AL=al ][, AMFan] [, AN=an]
[, AC=ao] [, AP=ap] [, AQ=yn] [, AR=yn] [, AS=yn] [, AT=yn] [, AU=yn]
[, Av=av] [, AWraw] [, AX=ax] [, AY=yn] [, AZ=yn] [, BA=yn] [, BB=yn]
[, BC=yn][, BD=yn][, BE=yn] [, BF=yn] [, BG=yn] [, BH=yn] [, Bl =bi ]
[, BI=bj ][, BK=yn][, BMryn] [, BN=yn]

The NEWDOS/ 80 system di skette whose control information is being
updat es/ di spl ayed by this command is nounted on drive dnl. If passwords are
enabl ed, passwordl rmust be specified and be equal to the diskette's master
password. If no optional parameters are specified, then only a display of
existing options is given. The optional paraneters nay be specified in any

2-45 DOS LI BRARY COMVANDS



order, and only those paraneters specified have their values changed in the
di skette's control data (3rd sector on the diskette). Parameters not
speci fied are not changed.

If nany options are being changed, it nmay be necessary to performnultiple
SYSTEM commands as the DOS buffer is linmted to 79 characters per comand.

It is anticipated that additional options will be specified as tine proceeds.

Changes to a system di skette's system options do not affect the computer
operations until that systemdiskette is nounted on drive 0 and a reset done.

AA=yn I f AA=Y, passwords are enabled. If AA=N, passwords are disabl ed.

AB=yn If AB=Y, the systemis to operate in RUN-ONLY node. SYSTEM options
AD=N, AE=N and AF=N are forced at reset tinme, and the pressing of ENTER to
override the auto conmand is disallowed. The user nust have a proper auto
conmand (see AUTO, section 2.4) that will either invoke a user program or
execute a CHAIN file that will eventually invoke a user program In RUN-ONLY
node, if the systemfinds itself at nornal DOS READY or M NI -DOS READY, it
will go into an endl ess | oop after displaying 'RUN ONLY STOPPEDI! PRESS 'R
FOR RESET'. Upon receiving R, the DOS conmand BOOT (see section 2.7) will be
execut ed. BASI C honors RUN-ONLY by di sabling BREAK, treating LOAD without R
or Vas an error, and by not allow ng any direct statenents. |f AB=N, the
systemis in normal comand node.

AC=yn (Model | only) If ACEY and if SYSTEM option AJ=Y, the NEWDQOS/ 80's
debounce routine is used. If AC=N or SYSTEM option AJ=N, the NEWDQOS/ 80's
debounce routine is bypassed.

AD=yn If AD=Y, '"JKL' is enabled, and if AD=N, 'JKL' is disabled.

AE=yn If AE=Y, '123' is enabled as the nethod to i nvoke DEBUG (see section
4.1). If AE=N, '123"' is disabled.

AF=yn If AF=Y, 'DFG is enabled as the method of invoking M NI -DOS (see
section 4.2). If AF=N, 'DFG is disabled.

AG=yn If AGY, BREAK is considered a nornmal input key with code = 01. If
AG=N, the BREAK key is not considered a nornal input key and its occurrence
is changed to the null key code 00. The state of the BREAK key is set
according to option AG at reset and then again every time the systemreturns
to nornmal DOS READY. DOS conmand BREAK nmay be used to enable or disable the
BREAK key until the next normal DOS READY. Al so, prograns nmay enabl e the
BREAK key by storing a OC9H byte in Moddel | |ocation 4312H (Model 111

| ocation 4478H) or disable the BREAK key by storing a OC3H byte in that

| ocati on.

AH=yn Not defined in NEWDOS/ 80, version 2. Formerly, this dealt with de-

laying the disabling of tiner interrupts during disk 1/Oto gain better clock
accuracy. This is no |onger done.

DOS LI BRARY COMVANDS 2-46



Al =yn (Model | only) If A=Y, |ower case nodification has been installed
in the computer and AlI=Nit is not. User progranms may test for bit 4 of 436CH
for this state, 1 if Al=Y and O if Al=N Currently, DEBUG and SUPERZAP use
this flag to deci de whether nenory di splays can display | ower case.

AJ=yn If AJ=Y, NEWDOS/ 80's keyboard intercept routine is active. This
routi ne contains repeat key function, 'debounce’ (Mdel | only) and one of
the nmet hods used to spot 'JKL', '123'" and 'DFG (the other being off the
timer interrupts). If AJ=N, NEWDOS/ 80 does not intercept the keyboard two
byte address vector at 4016H and

1. The repeat key function for the Mddel | is not active regardl ess of
the SYSTEM option AU. The Model |1l reverts to the ROM repeat key
function.

2. 'debounce' (Model | only) is not active regardl ess of SYSTEM option AC
setting.

3. "JKL', '"123" and 'DFG can only be triggered via the interrupts,
resulting in many nore spurious key input characters.

If the up-arrow key is depressed all during the reset/power-on sequence, AJ=N
is forced; this is necessary for those prograns that eventually overlay the
DOS in main nenory.

AK=yn Not defined in NEWDOS/ 80, version 2. Formerly, this option dealt
with allowing 'JKL' to pass graphic characters to the printer. This has been
i ncorporated i nto SYSTEM opti on AX

AL=al al (value 1 - 4) specifies the nunber of physical drives in the sys-
tem |f your systemonly has one drive, setting al = 1 will limt the system
to only checking for that one drive. Though al can be set to 255, it should
never exceed 4.

AMEan am (value 0 - 255 where 0 = 256) is the nunber of tries allowed for
a disk 1/Obefore it is declared in error. The original DGOSS used a val ue of
10.

AN=an an = the default drive nunber for the DIR conmand.

AO=ao When creating a file and when the user lets the system choose the

di skette to contain the file by not specifying a drive nunber in the
filespec, the systemwill first search all the drives for an existing copy of
the file. If it does not find an existing copy, the systemw || start
searching at drive so, and will search that and hi gher nunbered drives until
a free FDE is found. It will not search a drive whose nunber is |ess than ao.

AP=ap ap is a menory address, which if other than 0 and is within the
range of existing nenory, is stored as DOS's H MEM address value in the two
bytes at Model | |ocation 4049H (Model 111 |ocation 4411H).

AQ=yn If AQ=Y, the CLEAR key is enabled, and if AQN, the CLEAR is
di sabl ed i f SYSTEM opti on AJ=Y.

AR=yn If AR=Y, COPY, formats 5 and 6, are allowed wi thout diskette

password checki ng even t hough passwords are enabled. If AR=N, passwords are
required if passwords enabl ed.

2-47 DOS LI BRARY COMVANDS



AS=yn (Model | Only) If AS=Y, BASIC will convert input text character
strings fromlower to upper case. This is useful when | ower case hardware is
not installed or when |l ower case drivers are not used as it is very possible
to input |ower case characters (using the shift key) and have BASI C di spl ay

t hem as upper case even though they are really | ower case. The user can stare
forever at a conpare that |ooks equal on the display, but BASIC conputes as
unequal . If AS =N, BASICwi Il |eave the text character strings alone. This
option does not affect string characters input as data rather than as part of
text.

AT=yn AT=N puts chaining into record node, neaning that only requests for
full records cone fromthe chain file; single char key input request are
honored fromthe keyboard. AT=Y puts chaining in single character node
nmeani ng that all requests for an input key come fromthe chain file.

AU=yn AU=Y turns on the clock driven repeat key function. The first repeat
will delay option AV nunmber of 25 ns intervals. Subsequent repeats will enter
as fast as the program asks for them but not nmore than 12 per second. AU=N
turns off the repeat key function, elimnating repeat keys on the Mdel | and
shifting to the ROM repeat key function on the Mdel 111.

AV=av AV is used when AU=Y. av is the number of 25 ns intervals to pass
bet ween the key depression and the acceptance of the 1st repeat of that char-
acter. Subsequent repeats are as fast as the program wants them but not nore
than 12 per second.

AWav is the number of wite-with-verify disk 1/Otries allowed. This I/O
retry count works in conjunction with option AMkamwi th each retry under AW
taking place only after the sector verify read has fail ed am nunber of tines.
Fornerly, if sector wite encountered no error and the verify read did result
in an error, it was left to the user to retry the wite. Now, if awis
greater than 1, the wite will automatically be retried in the cases where
the wite was apparently good but the verify read fail ed.

AX=ax This is ASCII code of the highest printable character for the
printer. It is used by systemroutines to determ ne when to substitute bl anks
or periods in place of ASCI|I codes higher than this value. This val ue mnust
not exceed 255. This high ASCI| code is stored in the one byte at Model |

| ocation 4370H (Model 111 [ocation 4290H)

AY=yn is used only during resets wherein DOS senses that it was not active
i Mmediately prior to the reset (i.e., reset after power-on or after execution
of non-di sk BASIC). AY=Y causes the operator to be asked for date and tine.
AY=N bypasses this query and causes date and tine to be set to zeroes.

AZ=yn is used only during resets wherein DOS senses that it was active
i Mmediately prior to the reset. AZ=Y causes the operator to asked for date
and time. AZ=N causes date and tine to be left as they were prior to the
reset.

BA=yn BA=Y causes a reset to activate 'ROUTE, DO NL', thus causing all dis-
pl ay output, including the DOS and BASIC banners, to be lost until the
operator or a user program executes either 'ROUTE, CLEAR or 'RDUTE, DO . BA=N
di sabl es this reset action.

BB=yn (Model 11l only) BB=N infornms the systemthat the clock interrupts

DOS LI BRARY COMVANDS 2-48



occur 60 times a second. BB=Y inforns the systemthat the clock interrupts
occur 50 times a second. This option does not set the clock to perform as
such, but only acknow edges that it does.

BC=yn BC=Y neans the operator can manual |y pause or cancel chaining. BC=N
means the operator is not allowed to nmanual |y pause or cancel chaining. RUN
ONLY forces BC=N

BD=yn BD=Y neans the operator can override the AUTO command at reset by
hol di ng down t he ENTER key. BD=N neans he/she can't. RUN ONLY forces BD=N

BE=yn BE=Y enabl es the DOS comand R to repeat the previ ous DOS conmand
(see section 2.41). BE=N causes the R command to sinply return to DOS READY.

BF=yn (Model | only) BF=Y perforns at reset/power-on tine the equival ent
of the DOS command LCDVR, Y (see section 2.29). BF=N performs the equival ent
of LCDVR, N. However, if DOS senses that the | ower case hardware is either not
installed or is not operating, BF=Nis forced.

BG=yn BG=Y perforns at reset/power-on tine the equivalent of the DOS
conmand LC, Y (see section 2.28). BG N perforns the equivalent of LC N

BH=yn At reset/power-on time BH=Y enabl es cursor blinking, and BH=N
inhibits it.

Bl =bi At reset/power-on tinme, the nuneric value bi is set as the cursor
character's value, excepting that if bi = 0, then the standard cursor
character value is used (95 for the Model | and 176 for the Model [11).

BJ=bj Option BJ provides a mininmal control for NEWOS/ 80 when a CPU speed
up nmodification is installed that is to continue operation during di sk
operations. This option multiplies (roughly) by bj the nunber of Z-80

i nstructions executed during certain tining | oops used internal to NEWQOS/ 80.
bj must be an integer greater than 0 and equals the nunber of tines the CPU
has been speeded up. Set bj =1 if the |oops are not to be |engthened. If the
| oops are to be | engthened, bj nust always be rounded up in the cases where
the new CPU speed is not an even nultiple of the original Mdel | or Model

Il speed. Option BJ does NOT performthe actual CPU speed switching.

BK=yn BK=Y al |l ows the DOS command WRDI RP and the Wand C functions of
DI RCHECK to be executed. BK=N causes these functions to be rejected with
' DI SK ACCESS DEN ED .

BMEyn BMEY causes diskette fornatting to verify read sectors in a separate
VERI FYI NG phase after all tracks have been formatted. This verify read is in
addition to the verify read done on a track's sectors imediately after the

i ndi vidual track was formatted. BM:=N bypasses this VERI FYI NG phase, deeni ng
as sufficient the verify sector read done when the individual track was
formatted.

BN=yn (Model | only) BN=N causes the wite of single density diskette
directory sectors to use the address mark readabl e by Mddel | TRSDOS. BN=Y
causes the wite of single density diskette sectors to use the address mark
readabl e by Mbdel 111 NEWOS/ 80. BN=Y should only be used where it is
required that single density diskettes be NEWDOS/ 80 version 2 exchangeabl e
bet ween the Model | and the Mdel I11.

2-49 DOS LI BRARY COMVANDS



Though the information contained in the directories used by Mdel |
TRSDOS, Mddel | NEWDOS/ 80 and Model 111 NEWDOS/ 80 is the same (except for
some additions by NEWDOS/ 80), the address mark byte (part of the magnetic
format and identification bytes that surround each 256 bytes of user data
on the soft sectored diskettes) used to indicate the directory sectors
are 'protected' is different on the Model IIl than it is on the Mdel

for single density diskettes.

The changi ng of SYSTEM option BN does not in itself change the address
mark of any directory sectors. Al this does is set the protected sector
wite routine in DOS to wite the specified address nmark \Whenever a pro-
tected sector is witten or rewitten to disk. To set all sectors of a
single density diskette directory to the proper address mark, use either
DOS command WRDI RP or DIRCHECK with the Woption. Warning!!! If a single
density di skette has been used on the Mddel 111 or has been used on the
Model | where BN=Y and the diskette nust now be used with Mddel | TRSDGCS,
the user nust set BN=N and rewite the directory sector address nmarks
usi ng WRDI RP or DIRCHECK with option W This nmust be done even though

wi th BN=N, SUPERZAP under NEWDQOS/ 80 on the Model | shows the directory
sectors protected; this is because Mbdel | NEWQOS/ 80 accepts either
address mark value as 'protected though it only wites the one val ue
speci fied by option BN

System opti on codes BO and up are reserved for future definition
SYSTEM conmmand exanpl es:

1. SYSTEM 0, AL=4, AA=Y, AU=Y, AV=20, AT=Y The SYSTEM control paraneters
AL, AA AU, AV and AT are changed on the current system di skette nounted
on drive 0. Al the other SYSTEM paraneters are |eft unchanged. The ful
SYSTEM specification is then displayed. These changes are not used to
control NEWDOS/ 80 until the next reset/power-on

2. SYSTEM 2, AP=0FFOAH, AN=1, AX=126 The SYSTEM control paraneters
AP, AN and AX are changed in the control sector of the diskette currently
nounted on drive 2. No other SYSTEM paraneters are changed. The ful
system speci fication contained on that diskette is then displayed. For

t he SYSTEM paraneters contained on that diskette to control NEWOS/ 80,
that diskette nust be a NEWDOS/ 80 version 2 system di skette, nust be

di smounted fromdrive 2 and renpunted on drive 0, and a reset/power-on
nust be done.

2.47. TIME Set the real tine clock
TI ME[, hh: nm ss]

If no paraneters are specified, the current tines is displayed in hh:nmss
format.

If hh:mmss is specified, the clock is set to time hh:mss where hh is a 2
digit hour value, 00 - 23, mmis a two digit mnute and ss is a two digit
seconds value. No check is nade op the validity of the values. Each of the
three values is converted to a single byte value and stored into its byte of

DOS LI BRARY COMVANDS 2-50



the clock. The clock three bytes start at nodel | |ocation 4041H (nodel 111
| ocation 4217H) and are in seconds, mnutes, hours order

At reset/power-on the clock is set according to SYSTEM option AY or AZ. The
clock is updated once a second. The user should not rely upon the clock for
an accurate value as disk I/O frequently and interrupt routines infrequently
run so long with interrupts disabled that one or nore timer interrupts wll
be m ssed, causing the clock to run slow. The real time clock is not a
hardware clock, but instead is naintained by software that is not aware of
the lost tiner interrupts.

TI ME conmand exanpl es:

1. TIME, 15:23: 00 The clock is set to 3:23 PM

2. TIME The current tine is displayed.
2.48. VERIFY Require verify read after every disk wite.
VERI FY[, yn]

NEWDOS/ 80 perforns verify read after all of its directory wites and after
all sector wites when logical record or single byte I/Ois used. It does not
performverify reads when full sector wites are done via the 4439H vect or

VERI FY or VERIFY,Y Di skette wites done via the 4439H vector are verify
read. A verify read neans the sector is read after it is witten. If the
sector was witten illegible or with bad parity, an error will be triggered.

A byte for byte data conpare is not done. However, if the verify read detects
an error and SYSTEM option AWis not equal to 1, the wite and verify read
wi |l be done again since the systemstill has access to the data that should
have been placed into the diskette sector

VERI FY, N Di skette full sector wites done via the 4439H vector
are not verify read

COPY, EDTASM and BASIC SAVE's wite the file conpletely without validity
read, but then read back the entire file as a verify read. Al BASIC disk
data wites to print/input files, marked itemfiles, fixed itemfiles or
field itemfiles (where record length is not 256) performverify read due to
the fact that byte rather than sector 1/Ois used. Field itemfiles with
record |l ength 256 use sector 1/O and are not verify read unless VERIFY is on

2-51 DOS LI BRARY COMVANDS



2.49. VRDI P Wite directory sectors protected.
VRDI RP, dn1l

VWRDI RP causes the directory sectors for the diskette in drive dnl to be read
and rewitten in the currently defined protected state for the current
conput er (see SYSTEM options BN and BK).

This conmmand is used where single density diskettes are to be exchanged under
NEWDOS/ 80 version 2 between the nmodel | and |11

This command enabl es the user to set the directory to the proper read protect
state while under MNI-DOS, since it is nost likely he/she will find out
about the problemwhen in the mddle of doing sonething else (and thus can't
get to DIRCHECK). CAUTION'!! This command uses the directory starting granule
nunber fromthe 3rd byte of the boot sector to find the directory. It then
checks to see if the FPDE' s for BOOI/ SYS and DI R/ SYS are present. If these
checks pass, it then changes what it thinks are the directory sectors all to
protected status. Do NOT use this command unl ess you are sure the only
problemis the different protection status between the nodel | and nodel 111;
i f you have doubts, use the Wfunction of DI RCHECK

I f SYSTEM option BK = N, the DOS command WRDI RP i s di sabl ed.
WRDI RP conmmand exanpl e:
VRDI RP, 1 For the diskette nounted on drive 1, the directory

address nmarks are set for the current conputer and, if Model I, for the
setting specified by SYSTEM opti on BN

DOS LI BRARY COMVANDS 2-52



3. DOs RQUTI NES

3.1. Specifications Defined

This chapter specifies the DOS routines that are available for use by machine
| anguage prograns. |f you are neither a Z-80 programer nor interested in
Z-80 machi ne code, you should bypass this chapter. Readers of this chapter
are assuned to be know edgeabl e of Z-80 nmachi ne code and at |east one
assenbly | anguage for the Z-80.

These DOS routines have entry and exit conditions, and rather than repeat
themin each routine's specification, sone of the conditions are defined here
with the using routine's specification sinply referring to the condition's
code.

A Only register AF is altered by the routine. Any other registers used by
the routine are saved on entry and restored on exit.

B. On exit, Z state is set if no error is encountered during the routine's
execution. NZ state is set if a DOS error is encountered, and register
A contains a DOS error code. The setting of Z and NZ takes precedence
over the setting of other flags such as C and NC

C. On entry, DE points to an open FCB

There are inconpatibilities with TRSDOS in the use of sone of these routines.
They are discussed briefly in the routines where they occur, so study them

carefully. The reader should also be aware of the differences in the way the
FCB fields NEXT and EOF are mai ntained (see FCB specification, section 5.9).

The di scussion of each routine gives its entry address (the address to be
used in the CALL or JP Z-80 instruction), then its title (if one is
appropriate), and then its specification

Unl ess otherwi se specified, the DOS routine uses the invoker's stack. Unless
specified as a dead end routine, the DOS routine exits to the caller.

Many of these routines use a FCB (see section 5.9). NEWQOS/ 80 on both the
Models | and Il and Model | TRSDOS all use a 32 byte FCB while Mdel 11
TRSDOS uses a 50 byte FCB. NEWDOS/ 80 will run with user prograns having the
50 bytes FCB but will only use the first 32 bytes of those FCBs. Prograns
using a 32 byte FCB with Mddel 111 TRSDOS wi Il have probl ens.

The routines listed below are not necessarily in ascendi ng nuneric order

3.2. 402DH No- Error Exit
Dead end routine. Prograns concluding with no error junmp to 402DH. DOS checks
its own state in the follow ng order

If either M N -DOS or DOS-CALL, the stack pointer is set to where it was

before the | ast DOS command; otherwise it is set to DOS's stack area and
t he BREAK key is enabl ed/ di sabl ed according to system option AG

3-1 DOS ROUTI NES



If DOS-CALL and if either not chaining or chaining is not to be continued
at the current DOS level, all registers except AF are restored to as they
exi sted on DOS-CALL entry, Z state is set, and a return is nade to the
DOS- CALL invoker. If this was the outernost DOS-CALL |evel, DOS is taken
out of DOS-CALL state.

If RUNNONLY and if chaining is not active, the nessage ' RUN ONLY
STOPPED!'! KEY 'R FOR RESET.' is displayed, DOS | oops waiting on the
reply, and then executes DOS conmand BOOT (see section 2.7).

If DOS-CALL and if chaining is to continue at the current DOS-CALL |evel,
DOS waits for the next command fromthe chain file.

If MN-DGOS, then M N -NEWOS/ 80 READY is displayed, and DOS waits for
t he next comand.

If chaining is active, DOS waits for the next command fromthe chain
file.

NEWDOS/ 80 READY is di splayed and DOS waits for the next input command.

3.3. 4030H Error-al ready-di spl ayed DOS Error Exit

Dead end routine. Prograns concluding with an error that is either already

di spl ayed or not to be displayed junp to 4030H. DOS action is the sanme as for
402DH except as fol | ows:

If CHAINING chaining is aborted.

I f DOS-CALL, the current DOS-CALL level is exited in the sane nanner as
for 402DH, except that C state is set.

3.4. 4400H No-Error Exit. Perforns identical to 402DH.

3.5. 4405H Enter DOS and execute a command

Dead-end routine. DOS is entered, and the stack pointer is set to DOS's own
area. HL points to a conmand, ternminated by a ODH byte, that DOS is to use as
its next command. DOS noves this comand to its own 8% byte command buffer
and then executes it.

3.6. 4409H DCS Error Exit

Dead end routine if bit 7 of register A equals 0. Prograns terminating with a
DOS error junp to 4409H with the DOS error code in register A and bit 7 of
regi ster A equal 0. Depending upon DOS's state, the foll owi ng actions occur:

I f CHAINING chaining is aborted.

DOS ROUTI NES 3-2



| f DOS-CALL, the current DOS-CALL level is exited in the sane manner as
for 402DH exit, except NZ and NC state is set and the DOS error code is
in register A The error nsg is not displayed.

O herwi se the DOS error nessage is displayed, and an exit is taken to
402DH.

A program may CALL 4409H to display an error nsg by placing the error code in
A and setting bit 7 of register A equal to 1. The appropriate DOS error
message will be displayed. On return, only the F register has been altered.

The Model | TRSDOS will print diagnostics if bit 6 of register A equals O.
The Model 111 TRSDOS displays only the error nunber if that bit equals 0 and
the error nessage if that bit equals 1. NEWDOS/ 80 ignores the value of that
bit.

Debuggi ng hint. By setting the 4 bytes at 4409H equal to CD OD 44 C9, the
error display routine can be made to i nvoke DEBUG i nstead of displaying the
error nessage.

3.7. 440DH Ent er DEBUG

User progranms have two net hods of entering the DEBUG facility: (1) by use of
Z-80 instruction RST 30H and (2) by the Z-80 instruction CALL 440DH. \Wen
done with the DEBUG facility, DEBUG conmand G will return to the instruction
followi ng the RST 30H or the CALL, provided the PC regi ster was not changed.

3.8. 4410H (447BH in Mdel 111) Enquene a user tinmer interrupt routine.
Regi sters AF, BC, DE and HL are altered by this routine. On entry, DE points
to the user interrupt routine, which nust conformto the follow ng format:

1st 2 bytes. Used by DOS as a forward chain pointer. On entry, the two
bytes can be any val ue.

3rd byte. The nunber of 25ns intervals to pass between invocations of the
user's routine. Exanple, if the routine is to be invoked every second,
the 3rd byte must be set = 40 (28H). DOS does not alter this byte.

4t h byte. Count down value to the next invocation. On entry, this byte
shoul d be properly initialized to a value greater than 0 but |ess than or
equal to the value in the 3rd byte. Every 25ns interrupt, DOS decrenents
this value. If the result is non-zero, this routine is bypassed for this
25ms interrupt. If the result = 0, the value fromthe 3rd byte is noved
into the fourth byte, registers HL, DE, BC and AF are saved, and the user
routine is called at its 5th byte. Any other registers used by the
routi ne nmust be saved/restored by it. Interrupts are disabled, and the
user routine nust not re-enable them

VWhile a user interrupt routine is in the interrupt chain, it nust not be

altered in any way except by a routine that runs with interrupts
di sabl ed; the first two bytes nust never be altered.

3-3 DOS ROUTI NES



Model | TRSDOS uses the 4 vectors, 4410H, 4413H, 4416H and 4419H, for its
user interrupt routine handling. NEWOS/ 80 uses only 4410H and 4413H for
non- conpati bl e handling of these routines. Any program using a 25ns
interrupt user routine in TRSDOS nust be nodified to work under

NEWDQOS/ 80. This is a najor inconpatibility between the two Model |
systens.

Model 111 TRSDOS has not yet nade any provision for user timer routines,
usi ng 4410H - 441BH for other purposes, including H MEM

Model 111 NEWDOS/ 80 continues with the user tinmer interrupt routine
mechani sm used on the the Model |, except that 447BH is the routine
enqueue vector instead of 4410H, and in order to continue with 25 s
counting where the Mddel 111 clock actually counts in either 30ths or
25ths of a second, a second pass through the user routine check and

i nvocati on sequence i s done when necessary to bring 25ns counting up with
the real clock. If a user routine is being invoked every 25 ns, the
routi ne nmust be prepared to accept two invocations within the same tiner

i nterrupt.

3.9. 4413H Dequeue a user timer interrupt routine.

Regi sters AF, BC, DE and HL are altered. The user interrupt routine (as
described in section 3.7) pointed to by register DE is taken out of the 25ms
interrupt chain, if it is in the chain. The routine no | onger participates in
the interrupts and nay now be altered at will by the user

See section 3.8 for TRSDOS i nconpatibility.

3.10. 4416H Keep drives rotating

If the disk drives are rotating, reselect the current drive, thereby keeping
the drives rotating for approximately 2.4 seconds nore. Register AF is
altered

This routine does not exist in TRSDOS; see section 3.8 for inconpatibility.

3.11. 4419H DOS- CALL Execute a DOS command and return

This routine is DOS-CALL. DOS does not shift to its own stack area, but
instead renmains with the user's stack. All registers except AF are saved in
the stack and will be restored on return. The command to be executed is
pointed to by HL, nust be Iess than 80 characters, must termnate with byte
ODH, and can be anything legal for the current state DOS is in. DOS sets
DOS- CALL state, if not already set, saves the current stack pointer, and
executes the conmand. The conmand can be the invocation of a user program

DOS- CALL is now | egal under CHAINING where it was not in NEWDOS/ 80 Version 1

DOS ROUTI NES 3-4



DOS- CALL is the way BASIC executes the DOS conmand contai ned within the BASIC
statenment CMD'xx" where xx is the DOS command.

The DOS-CALL caller is responsible for assuring that nenmory conflicts do not
arise and that sufficient stack space is avail able.

Nested calls to DOS-CALL nmay be executed. Upon exiting froma DOS-CALL | evel
the return is nade to the next outer |level. Wien the outernost |evel is
exi ted, DOS | eaves DOCS- CALL st ate.

If the DOS conmand i nvokes a program that program may use its own stack
area, and it nust exit using one of the three exits: 402DH, 4030H or 4409H
On exiting, the programmay store a 2 byte paraneter in 4403H, 4404H (17411,
17412 decinal) for use by the caller

The 4419H vector is used differently in TRSDOS;, see section 3.8 for
i nconmpatibility.

See section 4.4 for further discussion of DOS-CALL.

3.12. 441CH Extract a fil espec

Fromthe text pointed to by HL, extract a filespec, place it in the area
pointed to by DE and ternminate it with the byte 03H Registers AF, BC and HL
are altered.

If the first text character is A- Zor 0- 9, or if the first text character
is * and the next character is A- Zor 0 - 9, text is noved fromthe HL area
to the DE area until a character that is not /, ., :, A- Z or 0- 9is
encountered or until 32 bytes have been transferred. If less than 32 bytes, a
O3H byte is placed after the last byte in the DE area to indicate end of
filespec, and a return is made with Z state set. If the filespec is nore than
31 characters it is considered inproper as discussed in the follow ng

par agr aph

If the first character was inproper, or if the first character was * but the
2nd was inproper, a return is mde with NZ state set.

On exit, if the termnator/inproper byte equals 03 or ODH, then HL points to
that byte; otherwise HL points to the next byte.

The user will notice that NEWDOS/ 80 doesn't check for an exact filespec; it
| eaves this to be done by the OPEN routines, 4420H and 4424H.

3.13. 4420H Open a FCB to a new or existing disk file

Conditions 3.1. A and B hold. The entry requirenents are the sane as for
4424H, which is executed i mediately as a subroutine to this routine. If
4424H i s successful in opening an existing file, no further action is
required here, and an exit is taken with Z and NC states set. If the file was
not found, this routine proceeds to create the file.

If the filespec in the FCB pointed to by register DE specifies an explicit

3-5 DOS ROUTI NES



drive nunber and the diskette nounted on that drive has a free FDE, the file
is created on that diskette whether or not the diskette actually has any free
space. If the filespec did not specify a drive nunber, the systemstarts
searchi ng nmounted di skettes, starting with the drive nunber specified by
SYSTEM opti on AO and precedi ng through hi gher numbered drives until a

di skette with a free FDE is found. If a free FDE is not available, the file
cannot be created, and the error exit is taken

Creating a file consists of converting a free FDE to a FPDE. This entails in-
serting the nane and nanme extension (if any), encoding the password (if any)
as both the update and access passwords, storing the LRECL (0 neans 256) from
register B, setting the EOF equal to O, setting access |evel as FULL, and
marking the file non-system non-invisible. No diskette file space is
assigned to the file at this time; in fact, DOS doesn't even |look to see if
the diskette has any free space. Note, though the LRECL is stored in the FPDE
during file creation, it is never used. Each subsequent open of the file uses
the LRECL provided in register B.

After the file is created, the DOS routine at 4424H is called to performthe
OPEN. On exit after a successful file create and open, Z and C states are
set.

3.14. 4424H OPEN a FCB to an existing file

Conditions 3.1.A and B hold. On entry, register DE points to a FCB contai ni ng
the filespec for the file to be opened, HL points to a 256 byte buffer to be
used during disk sector reads and wites for this FCB, and B contains the
LRECL (0 = 256). If an explicit drive nunber was specified in the fil espec,
the search for the file is linmted to that drive; otherw se the search starts
with drive 0 and proceeds to higher drives until a file with the specified
nane and name extension is found. If no file is found, the error exit is

t aken.

I f passwords are enabled and the file has non-null passwords, then an error
exit is taken if the fil espec does not contain either the update or the
access password. |If passwords are disabled or the file has no passwords or

t he update password is specified, the FCB's access level is set to FULL
otherwi se the access level fromthe FPDE is placed into the FCB to Iimt the
type of access for this file.

The FCB is converted fromcontaining the filespec to containing infornmation
about the file, which will be used while the FCB is open to reduce the anpunt
of directory 1/0O which would otherw se be required. The conversion entails
copying the EOF and the 1st 4 extents fromthe FPDE, storing the LRECL from
register B, setting bit 7 of the FCB's 2nd byte equal to 1 if LRECL is not
equal to O (to indicate logical record processing), setting NEXT equal to O,
storing the drive nunber and the FPDE s DEC code, storing the 256 byte buffer
pointer fromregister HL, setting the access level, setting bit 5 of the
FCB's 2nd byte equal to 1 to indicate that the buffer does not contain the
current, sector and setting bit 7 of the FCB's 1st byte equal to 1 to

i ndicate that the FCB is open

DOS ROUTI NES 3-6



3.15. 4428H CLOSE a FCB. Conditions 3.1.A, B and C hold

This routine dissolves the connection between the FCB and the file. If bit 4
of the FCB's 2nd byte equals 1, the FCB's buffer is witten to disk like a
4439H call. If the FCB's EOF is different fromthat in the FPDE, the FPDE is
updated for the new EOF. If the file has excess granul es beyond EOF and if
autonmati c space deallocation is allowed, the excess granules are rel eased.
The FCB is then converted back to contain a fil espec consisting of the file
nane, name extension (if non-blank) and the drive nunber. This filespec can
be used later to re-open the file, provided a password is not required.

3.16. 442CH Kill the FCB' s associated file

Conditions 3.1.A, B and C hold. The file associated with the FCB is killed in
the sane nmanner as for DOS |ibrary command KILL (see section 2.27). The FCB
is set to all zeroes.

3.17. 4430H Load a programfile

Conditions 3.1. A and B hold except the registers AF, BC and HL are altered
and on exit HL (and 4403H - 4404H (17411 -17412 decinmal)) contain the
programi s entry address. On entry, register DE points to a FCB containing the
programfile's filespec. The load is done the sanme as for DOS |ibrary comand
LOAD (see section 2.32).

3.18. 4433H Load and conmence execution of a programfile

Dead end routine. On entry, DE points to a FCB containing the programfile's
filespec. Registers AF and BC are altered; all other registers are passed on
unchanged to the program when its execution begins. The file open, |oad and
comence execution are done the sane as when DOS executes a command that is
not a library command, excepting that there is no default nane extension. If
an error occurs during the open or |load, DOS exits to 4409H. If DEBUG i s
active (see section 2.17), DEBUG is entered just before the program conmences
execution.

3.19. 4436H Read sector or logical record fromdi sk

READ a di sk sector or nove a logical record fromthe FCB' s buffer to the
caller's buffer. Conditions 3.1.A, B and C hold. If bit 7 of the FCB's 2nd
byte equals 0, the sector represented by the high two bytes of the NEXT field
is read into the FCB' s buffer and, if no error or if error code 6 (sector
read protected), the NEXT field is advanced 256 bytes. If an error other than
code 6 occurs, the NEXT field is not advanced, neaning the user can retry to
read the sane sector.

If bit 7 of the FCB's 2nd byte equals 1, then a | ogical record of length
equal to the FCB's LRECL (where O nmeans 256) is noved fromthe FCB s buffer
to the buffer pointed to by register HL on entry. As each byte is noved, the
NEXT field is incremented. When the FCB's buffer is enpty, the next file
sector is automatically read into it and byte novement continues. If an error

3-7 DOS ROUTI NES



occurs, including error code 6, the logical record nove terninates, |eaving
NEXT advanced for the nunmber of bytes noved.

If bit 1 of the FCB's 1st byte equals 1, the NEXT and EOF fields are
considered RBA's within the diskette rather than within a file, thus giving
the user the capability to read a diskette, rather than a file. The use of
bit 0 of the FCB's first byte is defined in section 3.20 bel ow. DGCS routines
0013H, 001BH, 4439H, 443CH and other routines that indirectly read or wite
sectors also operate as such if any of these two bits are on. The use of
these 2 bits is inconpatible with TRSDCS.

One inconpatibility between NEWDOS and TRSDOS occurs when the program reads
the ECF fromthe FCB to determ ne the nunber of bytes in the file. However,
in many cases the user does not have to know what the EOF is. Instead, for
both TRSDOS and NEWDOS, the user can read the file sector by sector, waiting
for either of the two ECF errors. If the error code is 1CH (END OF FILE
ENCOUNTERED), then the file ends on a sector boundary and the |ast sector
read successfully was the file's last. If the error code was 1DH (PAST END OF
FILE), then the last sector successfully read was also the file's last, but
was only a partial sector with the value in FCB+8 equaling the nunber of
bytes in that sector belonging to the file. Renenber, this is true for both
TRSDOS and NEWDGS; thus the sanme code can work for both.

3.20. 4439H Wite sector or logical record to disk

VWRI TE wi thout verify a sector to disk or nove a logical record fromthe
caller's buffer to the FCB's buffer. Conditions 3.1.A B and C hold. IF bit 7
of the FCB's 2nd byte equals 0, the disk sector as defined by the NEXT field
is witten with the contents of the FCB's buffer. Unless VERIFY is on (see
section 2.48), verify read is not done. If no error, and if the | ower order
byte of NEXT equals 0, the NEXT field is advanced 256 bytes. Wether or not
NEXT was advanced, if NEXT now exceeds EOF or if bit 6 of the FCB' s 2nd byte
equals 0, ECF is set equal to NEXT. If an error occurred, NEXT is not

altered, thus allowing the user to retry to wite the sane sector

If bit 7 of the FCB's 2nd byte equals 1, a logical record of |length equal to
the FCB's LRECL (0 neans 256) is nmoved fromthe caller's buffer, pointed to
by register HL on entry, to the FCB's buffer. Wth each byte's nove, NEXT is
increnented, and if NEXT now exceeds EOF or if bit 6 of the FCB's 2nd byte
equal s

EOF is set equal to NEXT. When the FCB's buffer fills, the buffer is witten
to the appropriate disk sector with verify read and then the |ogical record
nove continues, filling in the FCB's buffer for the next file sector
Whenever an error occurs, the logical record nove term nates, |eaving NEXT
advanced for the number of bytes noved.

Bit 1 of the FCB's 1st byte functions as described in section 3.19. If bit 0
of that byte equals 1, then sectors are witten protected (error code 6 on
sector read).

If a verify read is done after the wite of a protected sector, error code 6
is not returned to the caller as an error

A significant inconmpatibility with TRSDOS lies in the fact that when a sector

DOS ROUTI NES 3-8



is witten to disk in NEWDOS/ 80 and the | ow order byte of NEXT is non-zero,
NEXT i s not advanced by 256 bytes. In this case, NEWOS/ 80 assunes that the
caller is witing the |last sector of the file (though it need not be) that is
only partially full, and that NEXT already is the proper RBA value for EOF
(if EOF is to be updated by the wite).

One inconpatibility between NEWDOS and TRSDOS is in setting the final ECF for
afilethat is witten sector by sector but usually does not end on a sector
boundary. However, if the program knows when it is about to wite the |ast
sector, whether partial or full, and can store the desired | ow EOF byte val ue
in FCB+5 just before witing that |ast sector, both TRSDOS and NEWDOS wi | |
exit fromthat wite with the same EOF. Thus, in this instance, the sane
program code will work for both TRSDOS and NEWDOS, and no inconpatibility

exi sts.

3.21. 443CH Wite sector or logical record to disk with verify read
This routine is identical to 4439H, except that a verify read is always done
after a sector wite.

3.22. 443FH Position FCB to start of file

Conditions 3.1.A B and C hold. If the FCB has a sector awaiting wite (bit 4
of FCB 2nd byte = 1), it is witten as a 4439H call. The FCB NEXT field is
set = 0, Bit 5 of FCB 2nd byte is set = 0 to indicate the buffer does not
contain the current sector.

3.23. 4442H Position FCB to a specified file record

Conditions 3.1.A, B and C hold. The NEXT field is set to the RBA of the

| ogi cal record whose relative record nunber U = the first record) is in
regi ster BC upon entry. If the new NEXT is in the sane sector as the old
NEXT, the status of the current sector is not changed (i.e., the sector is
not witten to disk if bit 4 of the FCB 2nd byte equals 1). If the new NEXT
is not in the same sector as the old NEXT, then (1) if bit 4 of the FCB 2nd
byte equals 1, the old sector is witten back to disk, and (2) bit 5 of the
FCB 2nd byte is set to 1 to indicate that new sector has not yet been read
into the buffer.

3.24. 4445H Positi on FCB back one record
Conditions and performance are the same as 4442H except that the NEXT field
is reduced by the LRECL.

3.25. 4448H Position FCB to EOF
Conditions and perfornmance are the same as 4442H except that the NEXT field
is set equal to the EOF field.

3-9 DOS ROUTI NES



3.26. 444BH Al'locate file space

Conditions 3.1.A B and C hold. If the file sector represented by the two
hi gh order bytes of the FCB's NEXT field is not already allocated to the
file, the granule containing it is allocated along with the granules for any
| ower sectors for the file that are not yet allocated. This allows the
programmer to allocate file space before it is actually needed, and is

especi ally valuable when it is necessary to know that a sector can be witten
before any data is placed in the buffer. If a file's size can be
predet erm ned before being witten (such as is done in COPY), pre-allocating
t he necessary granul es saves considerable tinme over allocating the granul es
as the file wite proceeds.

This address is defined differently i n TRSDCS.

3.27. 444EH Position FCB to the specified RBA

Conditions and perfornmance are the sane as for the 4442H call except the new
NEXT position value is taken fromthe registers H L and C where H contains
the high order and C the | ow order val ues.

This address is defined differently i n TRSDCS.

3.28. 4451H Wite the EOF value fromthe FCB to the directory
Conditions 3.1.A, B and C hold. If the ECF value in the FCB differs fromthat
inthe file's FPDE, the FCB's EOF value is witten into the FPDE on di sk

This address is defined differently i n TRSDCS.

3.29. 445BH Sel ect and power up the specified drive
Conditions 3.1. A and B hold. On entry, register A contains a drive nunber.
That drive becones the current drive, is selected and, if necessary, powered

up.

3.30. 445EH Test for nounted diskette

Conditions and performances is the same as for 445BH excepting that, in
addition, the drive is tested to deternmine if a diskette is nounted and is
rotating. If this rotation test fails, error code 08, DEVICE NOT AVAI LABLE
is returned.

3.31. 4461H *Nanme routine enqueue

Regi ster HL points to a user routine in main nmenory to be chained in the
chain of user logical routines. The first 12 bytes of the routine are defined
as follows:

DOS ROUTI NES 3-10



4 bytes reserved for use by DOS only.

8 byte logical routine nane field containing the 1 - 8 character nane of
the routine, padded on the right wth blanks.

If aroutine with the sane nane already exists in the queue, FlILE ALREADY
EXI STS error code is returned with NZ set. Oherwi se, the routine is
enqueued, and exit taken with Z state set. HL, DE, BC and AF are altered by
this function. This function is new with NEWOS/ 80

Subsequently, whenever a DOS command of the form *namel or *nanel, paraneters
is executed, DOS searches its queue for a routine naned nanel, sets HL point-
ing to the paraneters, if any, and junps to the routine's 13th byte. Wen the
routi ne concludes, it should exit via 402DH, 4409H, or 4030H. The routine may
use all registers, and can use the two bytes at 4403H - 4404H to receive or
pass back a parameter. If the |logical routine namel does not exist in the
gqueue, FILE NOT IN DI RECTORY error code is returned with NZ set.

3.32. 4464H *nane routine dequeue

HL points to a logical routine as defined in section 3.31. If the routine is
not in DOS' s | ogical routine queue, this function exits with FILE NOT IN

DI RECTORY error code in register A and with NZ set. Otherwi se, the routine is
dequeued, neani ng that subsequent *nanmel commands naming it wll abort,

di splaying FILE NOT I N DI RECTORY. Registers HL, DE, BC and AF are altered by
this function. This function is new with NEWOS/ 80.

3.33. 4467H Send nmessage to the display

Condition 3.1. A holds. The nmessage bytes pointed to by HL up to and i ncl udi ng
a ODH byte SOL) or up to but not including a O3H byte (EOM are sent to the
di spl ay.

3.34. 446AH Send nessage to the printer
The sane as 4467H except the nessage is sent to the printer

3.35. 446DH Convert clock time to HH HM SS character format

The current clock value at Mddel | |ocations 4041H - 4043H (Model 111

| ocations 4217H - 4219H) is converted to HH MM SS character format and stored
inthe 8 bytes pointed to by HL. Registers AF, BC, DE and HL are altered. On
exit, HL points to the next byte after the HH MM SS fi el d.

3.36. 4470H Convert the date to MM DD YY character fornmat

This routine is the sane as 446DH, except the date value at Mddel | |ocations
4044H - 4046H (Model 111 |ocations 421AH - 421CH) is converted to MM DD YY
format.

3-11 DOS ROUTI NES



3.37. 4473H Insert default nanme extension into fil espec

If the filespec pointed to by register DE has no name extension, insert the 3
characters pointed to by HL as its name extension. The resulting fil espec
cannot exceed 31 characters. Registers AF and HL are altered.

3.38. 0013H Read a byte froma disk file

This is DOS's single byte read routine even though it starts in ROM
Conditions 3.1.A, B and C hold. If the disk sector containing the NEXT byte
of the file is not in the FCB' s buffer, it is read into there. The byte is
then placed into register A for use by the caller. The FCB's NEXT field is
i ncrement ed.

3.39. 001BH Wite a byte to a disk file

This is DOS' s single byte wite routine, even though it starts in ROM
Conditions 3.1.A B and C hold. If the disk sector corresponding to the FCB s
NEXT position is not in the FCB' s buffer, it is read into the buffer, unless
NEXT is on a sector boundary and is equal to EOF. The byte in register A on
entry is placed into the buffer, and NEXT is increnmented. |If the buffer is

now full, the sector is witten to disk as if a 443CH call

3.40. 447BH Model 111 only (performs as Model | 4410H)

For Model 111 only, perforns the sanme function as call 4410H does for the
Model | (see section 3.8). For the Model |11, 4410H nust not be used.

DOS ROUTI NES 3-12



4. DOS FEATURES

Thi s chapter discusses DEBUG, M NI -DOS, CHAI NI NG DOs-CALL, JKL and
asynchronous execution. DEBUG DOS-CALL and asynchronous execution are
primarily of interest to machi ne | anguage programmers and those interested in
Z-80 code. Ot her users should nmake a quick readi ng of DEBUG and DOS- CALL as
they are frequently referred to el sewhere in the manual. M NI -DOS and JKL can
be used i medi ately by everyone. CHAI NI NG can be very conpl ex; novice users
will want to test out the chaining concept by using the BASIC program

CHAI NBLDY BAS to first inspect the sanple chain file CHAINTST/JCL and then to
create sone elenentary chain files.

4.1. DEBUG Facility

As an aid primarily for the machi ne | anguage programer but al so for use by
hi gher | evel |anguage progranmmrers, NEWOS/ 80 has the DEBUG facility for
interrupting current execution, inspecting nmenory, altering nmenory,

i nspecting disk, altering disk, single step execution, etc.

DEBUG can be entered in three ways:

1. Sinultaneously depressing the three keyboard keys 1, 2 and 3. In order
for this 123 action to work the foll ow conditions nust be net.

1. SYSTEM option AB = N

2. SYSTEM option AE =Y.

3. Either (1) interrupts are enabled or (2) the main programis
awai ti ng keyboard i nput via the standard keyboard input routine and
SYSTEM option AJ = N

4. DOS nust not be currently using its overlay area (nain nenory

| ocati ons 4DOOH - 51FFH

5. DOS nust not have its overlay inhibit enabled.

1. Executing either a RST 30H or a JP 440DH or a CALL 440DH Z- 80
i nstruction.

2. Autonmatically at, but before, a nmachi ne code program comences
execution if DEBUG has been turned on via DOS comand DEBUG (see section
2.17).

Upon entry, the DEBUG facility will (1) save all registers in the interrupted
program s stack, (2) use the next stack locations for its own operations, (3)
di sabl e any stops that may have been set on its last exit, (4) display nenory
usi ng node and | ocations as renmenbered fromits last exit, and (5) display
the cursor in the lower right hand corner of the display to indicate that the
DEBUG facility is awaiting an i nput comand.

Al'l conmands, even the single character comands, to the DEBUG facility mnust

termnate with ENTER If an error is made in keying in a conmand but before
ENTER i s depressed, sinply backspace over the incorrect characters and type

4-1 DOS FEATURES



in the correct ones. If desired, the conmand nmay be purged before ENTER by
keying shift left arrow.

Both the X and S di splays display nemory 16 bytes per display line, both in
hexadeci mal and in character format. If SYSTEM option Al =Y, character for-
mats will include |ower case letters.

When DEBUG encounters an error condition, it displays 'ERROR and waits for
the user to acknowl edge the error which is done by pressing ENTER to cl ear
the error state.

The DEBUG facility comands are as foll ows. Wierever nuneric values are used,
they are al ways hexadeci mal val ues without the suffixed H unless otherw se
speci fi ed.

X The DEBUG facility shifts to X display node, if not already
there. The X display contains 15 lines. The 1st through 4th lines contain
the 1st 64 byte nenory area display. The 5th |ine displays the
interrupted/ replaced contents of Z-80 registers AF, BC, DE and HL. The
6th through 9th lines contain the 2nd 64 byte nenory area display. The
10th Iine contains the interrupted/replaced contents of Z-80 registers
AF, BC, DE and HL'. The 11th through 14th lines contain the Ad 64 byte
menory area display. The 15th line contains the interrupted/replaced
contents of Z-80 registers PC, SP, IX and |Y. The displays for registers
AF and AF' also include a bit nmask for the associated F register, with an
al phabetic character if the bit equals 1 (state set) and a - if the bit
equal s (state not set). The neanings of the bits (7 - 0) are:

m nus sign
zero
unused bit

hal f-carry

unused bit

even parity or overfl ow
subtraction

carry

erdwrOo N

OZTFP,IFEPNO®

Using the X display allows the user to track the registers and three sep-
arate nenory areas at one tine.

S The DEBUG facility shifts to S display node, if not already
there, using X display's 1st nenory area's base address rounded down to a
256 byte page boundary as the S display's base address. The S display

di spl ays 256 bytes of nenory, using 16 display |ines.

[n]Daddr1 1f in S display node, the 256 byte bl ock containing addrl is
displayed; if nis specified, the base address of the specified area is
changed, but the display won't change since DEBUGis in the S display
node. If in the X display nbde, addrl becones the base address for the
specified area: 1 if n not specified, 2 if n equals 2, and 3 if n equals
3. Exanpl es:

1. D7080 displays the contents of |ocations 7000H - 70FFH i f

DEBUG is in S display node. If in X display node, display area 1
wi |l display the contents of |ocations 7080H - 70BFH

DOS FEATURES 4-2



2. 3DFFCO If DEBUG is in X display node, display area 3 will
di splay the contents of locations FFCOH - FFFFH. If in S node,
the new area 3 address is renmenbered, but the display is not
changed.

[n]; If in S display node and n not specified, the S display is ad-
vanced to the next 256 byte block. If in X display node, the specified 64
byte di splay area is advanced 64 bytes: area 1 if n not specified, area 2
if nequals 2, and area 3 if n equals 3.

[n]- If in S display node and n not specified, the S display is re-

tarded to the next |ower 256 byte block. If in X display node, the spec-

ified 64 byte display area is retarded 64 bytes: area 1 if not specified,
area 2 if n equals 2 and area 3 if n equals 3.

Haddr 1 The DEBUG facility shifts to S display node, if not already
there, displays the 256 byte bl ock containing addrl, enters nodify node
and di splays a blinking cursor over the hex digit next to be changed.
Pressing a key 0 - 9 or A- F causes that hex digit to be replaced in
menory and the cursor advanced one position. Pressing right arrow or
space advances the cursor one position without menory change. Pressing
left arrow retards the cursor one position w thout menory change. Pres-
sing shift left arrowretards the cursor 4 hex digits w thout nenory
change, and pressing shift right arrow advances the cursor 4 hex digits
wi t hout nenory change. Pressing up arrow nmoves the cursor up one display
line w thout nmenory change, and pressing down arrow noves the cursor down
one |ine without nenmory change. The cursor cannot be advanced or retarded
outside the current 256 byte page. Pressing ENTER term nates nodi fy node.
Any ot her key term nates nodi fy nbde and rai ses ERROR state. Exanple:

M6314 DEBUG is shifted to S node, if not already there. The con-
tents of 6300H - 63FFH are di splayed, and a blinking cursor is
di spl ayed over the first hexadecinal digit of byte 6314H The
operator may now key in replacenment hexadeci nal digits and/or
nove the cursor around within the di splayed 256 byte page.

F[ addr 1] [, hb1] [, hb2] [, hb3] [, hb4] Starting at main nenory |ocation
addr1, find an occurrence of the specified series of hexadeci mal bytes.
hbl, hb2, hb3 and hb4 are each 2 hex digits representing a hexadeci mal
byte. If any of hbl, hb2, hb3 or hb4 are specified, addrl nust al so be
specified. If none of hbl, hb2, hb3 or hb4 is specified, then the series
of hexadeci mal bytes |last used by an F conmand is used. If addrl is not
specified, then the menory location +1 of the |last F command match is
used, thus allowi ng the user to find successive occurrences of the initi-
ally specified byte string. Main nenory is searched for an occurrence of
the search string of bytes. If found, the address of the first of the

mat chi ng bytes less 20H is made-the X display's 1st area's base address.
Thi s causes the matching byte string to appear at the start of line 3 of
the X display. If not found, X display's 1st area's base address is set =
OFFEOH. Exanpl e:

F5200, CD, 24, 44 will start at nmain menory |ocation 5200H and
search for the first occurrence of the three bytes nentioned.
Subsequently, the conmand F will search for the next occurrence
of the sane three bytes.

4-3 DOS FEATURES



If a match takes places in the current stack area, it is possible that
the matching bytes will be gone fromthe stack before they can be

di spl ayed, thus causing the user to think DEBUG has stopped erroneously.
Furt her, DEBUG stores the conparison copy of the bytes in the 51xxH
region of nenory; so if that area is searched, a natch will be found upon
t he conpare bytes thensel ves.

I Execute the interrupted program s current instruction and then
re-enter the DEBUG facility. This allows the user to single step execute
the interrupted program The user may then observe the changes (or havoc)
wr ought by each instruction. Single stepping has sone pitfalls however:

1. Afull tinmer interrupt sequence may al so execute during the
singl e step.

2. Single stepping is not allowed if the instruction |location is
| ess than 5200H or junps to or returns to a location |less than
5200H.

3. The DEBUG facility uses the Z-80 instruction RST 30H to trap
for the return to DEBUG after the single instruction has been
executed. Therefore, the single stepped instruction should not
branch upon itself and should not refer to the next byte
following itself as the source or destination of data.

C Perforns identical to | except that if the single stepped
instruction is a CALL, the entire called routine is executed during the
so called single step

Rdr eg, val uel Repl aces the interrupted contents of double register dreg
with the val ue val uel. Exanpl es:

RDE, CO00 repl aces the previous contents of register DE with the
hexadeci mal val ue C000.

RHL', 7100 repl aces the previous contents of register H'' with the
hexadeci mal val ue 7100.

Ldni, drsl Rel ati ve sector drsl of the diskette nounted on drive dnl
is read into DOS's system sector buffer (Mddel | |ocations 4200H - 42FFH
Model 111 |ocations 4300H 43FFH). DEBUG t hen shifts into S node and

di spl ays the sector's contents in that buffer. drsl is a deciml (yes,
decimal ) value. The user is responsible for providing correct values for
dnl and drsl as DEBUG nakes no checks. Once the sector's contents are in
the buffer, the user may treat those bytes as nornmal nain nenory, nay
search themusing the F command and may alter them by using the M
conmand. However, altering the sector in the buffer does not alter it on
the diskette; the WR command nust be executed to store the sector back
onto the diskette. Since alnost all NEWOS/ 80 system prograns use the
system sector buffer for their diskette reads and wites, the user should
not use the L or WR commands if the interrupt took place in DOS (in this
case the interrupt address is usually bel ow 5200H but be careful of COPY
FORVMAT, etc.) and he/she intends to continue the interrupted programs
executi on.

Warning!!! If passwords are enabl ed, commands L and WR will be rejected
and ERROR state entered. Exanpl e:

DOS FEATURES 4-4



L1, 150 | oads the 151st sector of the diskette currently nounted
on drive 1 into the system sector buffer

V\Rdnl , dral The contents of the system sector buffer (4200H 42FFH on
the Model |; 4300H 43FFH on the Model 111) are witten to relative sector
drsl of the diskette nounted on drive dnl. The paraneter definitions and
restrictions in the use of command L also apply to command WR. | f the
specified diskette sector is read protected, it is witten read

pr ot ect ed.

Warning!!! If you specify the wong values for dnl and drsl, you will
wite the buffer's data to the wong sector and create for yourself a |ot
of trouble. Be sure you know what you are doing!!! Exanpl e:

WR1, 150 writes the current contents of the system sector buffer
to the 151st sector of the diskette currently mounted on drive 1

Q Exit DEBUG t o DOS READY. The previous programis forgotten. If
the systemwas in DOS-CALL or M N -DCOS, that state is purged.

d addr 1] [, addr 2] [, addr 3] Restore the registers and resune program
execution. If addrl is specified, execution resunes at that |ocation
otherwise it resunes at the nenory address specified in the PC register
If addr2 is specified, a breakpoint is set for that |ocation by replacing
the byte at that location with the single byte Z-80 instruction RST 30H
whi ch when executed will cause the DEBUG facility to be reentered. The
repl aced byte is not lost (it is restored upon DEBUG re-entry), but it is
unavail able during the period fromDEBUG exit until DEBUG entry. Addr3 is
a 2nd breakpoi nt address. Wen addr2 is specified, it is not required
that addrl1l be specified. Addr2 and addr3 nust not be |ess than 5200H
Exanpl es:

Gr000, 8400,8425 wll set a breakpoint at nmain nenmory |ocations
8400H and 8425H, and will restore the registers and conmence
program execution at nain nenory |ocation 7000H

G will restore the registers and comence program execution
at the nain nenory location saved in the PCregister. If the
interrupted programwas awaiting input (such as DOS READY or
BASI C READY) at the time of interrupt, it is still awaiting

i nput. Even though no cursor is re-displayed (as DEBUG does not
renmenber the cursor state), the user may proceed with key input.

4.2. MN -DOS

There are many tinmes when, during the execution of a main program the
operator would like to interrupt the main program execute one or nore of the
DCS library commands and then resune nain program execution without any
change having occurred to the nmain progranmis state during the interruption
NEWDCOS/ 80 provi des such a facility, called M N -DOS.

In order to use M N -DOS the foll owi ng conditions nust be net:

4-5 DOS FEATURES



1. SYSTEM option AB = N.

2. SYSTEM option AF =Y.

3. Either (1) interrupts are enabled or (2) the main programis awaiting
keyboard input via the standard keyboard i nput routine and SYSTEM opti on
Al =Y.

Wth these conditions satisfied, the simultaneous depression of the keys D, F
and Gwill cause the main programto be interrupted, its register state
saved, and M N -DOS state to be entered. M N -NEWOS/ 80 READY wi |l be

di spl ayed. CAUTION, pressing DFGis not recomrended while disk I/Ois in
progress as a fatal error to the diskette is possible; if exit fromM N -DOS
is via MDBORT, then there's no problem

From M NI -DOS state, the operator nay execute any of the DOS |ibrary conmands
except APPEND, CHAIN, COPY and FORMAT. Non-library comands or prograns nay
not be executed under M NI - DCS.

When ready to return to the main program enter the DOS |library conmmand
MDRET. |f the cursor was displayed before DFG it will be redisplayed. The
mai n program s register state is restored, and the main programresunes its
execution. |If the main programwas awaiting keyboard record i nput and a
partial record was already inputted, that partial record is still in the
buf fer even though it is not displayed. If the nain programwas awaiting
keyboard input, whether or not any characters had been entered, upon exit
fromMN -DCS, the main programis still waiting. Don't be tinmd; start
keying. If the main programwas not awaiting keyboard input, it will go on
about its business.

If the main programis not to be resuned, entering the DOS library conmmand
MDBORT will terminate both M N -DOS and the main program with the system
goi ng to nornal DOS READY.

Though COPY may not be used under M N -DGCS, sinple file copies can be done
using DOS |ibrary command NMDCOPY.

NEWDOS/ 80 is unable to elimnate all cases where the triple key depression
results in one or nore of the keys being transmitted as input to the main
program This is especially so when systemoption AJ = N. These spurious keys
usual Iy show up on exit from M N -DOS. The user should back space over them
and should not use triple key depression when the main programis in text
overwite node.

As an exanmple of M N -DOS use, start at DOS READY and execute the foll ow ng:

BASI C
10 PRINT "HELLO': GOTO 10
RUN

The BASIC programis now in an endless loop printing the word HELLO on
the display. Simultaneously press the D, F and G keys. The BASIC
program s execution is interrupted, and the nessage M N - NEWDOS/ 80
READY appears on the display. Now execute the follow ng DOS comands:

DOS FEATURES 4-6



DR O
FREE
CLOCK
CLOCK, N
LI B
SYSTEM 0
PDRI VE, 0
VDRET

The MDRET command caused the exit from M N -DGCOS, and the BASIC program
continued execution where it was interrupted. Now, while we have a test

pr ogram executi ng,
depress the 1, 2 and 3 keys.

by ENTER. DEBUG i s exited,
Now, press DFG again to get

Once agai n,
interrupted. The DEBUG routine is now active,
with either the X or the S DEBUG di splay format.

let's try out the entry to DEBUG Sinultaneously
the BASI C program s execution is

and the display is | oaded
Now type in G fol |l owed

and the BASI C program conti nues execution.
back into M N -DGCS. Once there,

execut e DOS

conmmand MDBORT. This causes DOS to forget about the interrupted program

to exit

4.3. CHAI NI NG

M NI - DOS and go to nor mal

DOS READY

The DOS commands CHAIN and DO are sinply different spellings of the sane com

mand; therefore, in this section,

only the comand word CHAIN wi ||

be used

where in reality either one can be used.

For npost TRS-80 users there are functions which use the sanme series of DOS

conmands and/ or program responses,
save a |l ot of key stroking,

and for
operator time and errors if this keyboard

each of these functions it woul d

character sequence could be saved in a disk file to be called upon when the
operator wi shes to execute a specific function

For exanpl e,
oper at or

H MEM OE800H
PROGRAML

Y

50

PROGRAM2

1

WORKF1

WORKF2

BASI C, RUN' BASPGML/ BAS"
Y

Subsequent

suppose that each tinme a reset/power-on is done,
keys in the followi ng conmands and program responses:

i nput to BASPGML is assunmed to vary fromrun to run
not part of the standard sequence and of no concern here.
is that this sane sequence of keyboard i nput

t he

Execut e DOS command H MEM
Execut e program named PROGRAML
Response to PROGRAML' s 1st query.
Response to PROGRAML' s 2nd query.
Upon PROGRAM S conpl etion, execute
pr ogr am PROGRAMZ

Response to PROGRAMZ' s 1st query
Response to PROGRAMR' s 2nd query
Response to PROGRAMR' s 3rd query
Upon PROGRAMZ2' s conpl etion, enter
and run BASI C program BASPGMVL.
Response to BASPGMVL' s 1st query.

BASI C

is therefore
What is of concern

nmust be keyed in each tine.

DOS FEATURES



However, if this keyboard character sequence was placed in a disk file
naned, for exanple, XXX/JCL, then this keyboard input sequence can be
triggered to occur by executing the DOS command:

CHAI' N, XXX/ JCL

The execution of this CHAIN command (see section 2.9) causes keyboard
input to cone fromthe file XXX/JCL, starting at the file begi nning and
transmitting characters as keyboard i nput when requested by DOS or the
executing program The characters are transmtted upon request until the
end of the file is reached, at which tinme keyboard input is sw tched back
to the normal keyboard. Thus, having keyed in the CHAIN comand, the
operator may sit back and wait until after BASPGML has received its first
response instead of having to key in the various commands and responses
as needed.

Furt her, since this keyboard sequence is to be invoked at reset/power-on,
the operator may avoid even the keying in of the CHAIN command by setting
that conmmand up beforehand as the AUTO command (see section 2.4). This is
done by executing the DOS command:

AUTO, CHAI N, XXX/ JCL

Now, when reset/power-on is done, the CHAIN command is autonatically
executed, and the operator has nothing to do until after program BASPGVL
has received its first response.

Both this process of causing keyboard input to be taken froma disk file and
t he associ ated operational nbpde that NEWDOS/80 is in during that tinme is
called chaining. The files that contain the keyboard character sequences are
called chain files.

NEWDOS/ 80 is not concerned with the creation of chain files; NEWOS/ 80 only
uses themin response to a CHAIN command (see section 2.9). It is up to the
user to deci de what keyboard character sequence is to be contained in a chain
file, and it is left to the user to build the chain files he/she needs.
Probably the sinplest way is to use either SCRIPSIT or PENCIL and store the
resulting file in ASCII node. For users that do not have either SCRIPSIT or
PENCI L, a BASI C program naned CHAlI NBLD/ BAS has been included on the NEWQS/ 80
di skette to create and edit sinple chain files. To build chain files having
ot her than printabl e keyboard characters, some other chain file build program
nmust be used.

Chain file creators nust renenber that, except for any /./ type chaining
control records (discussed below), the chain file must contain exactly the
keyboard character sequence that DOS or the current executing program
expects. Chai ni ng does not guess for you

During the processing of a chain file, NEWQOS/ 80 operates in one of two
nodes, dependi ng upon the setting of SYSTEM option AT.

I f SYSTEM option AT =Y, then all requests for keyboard input via the
standard keyboard routine are honored fromthe chain file. This applies
to both a request for a record (such as I NPUT or LINEINPUT in BASIC) and
for a single character (such as INKEY$ in BASIC

DOS FEATURES 4-8



I f SYSTEM option AT = N, then only requests for full records (such as
I NPUT or LINEINPUT in BASIC) via the standard keyboard routi ne at ROM
| ocati on 0040H are honored fromthe chain file. Requests for a single
byte (such as INKEY$ in BASIC) are honored fromthe keyboard.

On the NEWDOS/ 80 Version 2 diskette the user has been provided with (1) the
BASI C program CHAI NBLD/ BAS wit h which the user can build sinple chain files
and (2) a sanple chain file naned CHAINTST/JCL. The instructions for using
CHAI NBLDY BAS are given in section 6.6. Here, all we want to do is use

CHAI NBLDY BAS to | ook at the chain file CHAINTST/JCL. Wth conputer at DOS
READY, enter the follow responses:

BASI C RUN " CHAlI NBLD/ BAS: 0" start CHAI NBLD/ BAS executi ng

2 chooses file | oad option

CHAI NTST/ JCL: 0 filespec of file to be |oaded into nenory
L ; list first page of chain file

list next page of file
return to edit nenu
return to mai n nenu
exit fromthe program

aQoCT

At each step, study carefully what is displayed. This chain file contains
a good exanpl e of conmands, programresponses, and chai ning control
records. Don't be alarmed at CHAIMBLD s 10 second initialization tine.
Once you have carefully studied the chain file, exit back to DOS and
execute the chain file using the DOS comrand:

CHAI N, CHAI NTST: 0

Since nost chain character sequences are short, usually | ess than 100
characters, it is a shame to allocate a full granule of 1280 bytes for each
such sequence. Therefore, NEWDOS/ 80 allows a chain file to be divided into
sections with the keyboard character sequence naking up each section preceded
by a section identification record (see /./0 discussion bel ow) excepting that
the first section of a chain file need not have a section ID record. If the
chain file section that is to be accessed by a CHAIN command is preceded by a
section ID record, the CHAIN command nust specify the section ID as well as
the file.

During chai ning, when either end of file or end of section is encountered,
NEWDOS/ 80 term nates chaining without notification and sets keyboard i nput
back to the normal keyboard routine. This al so happens if either DOS comrand
CHNON, N or the chaining /./5N function (see /./ below) is executed. If the
current programwas awaiting input, the operator will have no indication of
this change except that all activity will stop. Usually, the operator knows
what will be the first display after chaining term nates; so he/she is ready
for it.

If a DOS recogni zed error occurs during chaining, chaining will be term nated
with the nessage CHAI NI NG ABORT di splayed to informthe operator.

If the DOS command CHAIN i s executed while chaining, chaining sinply forgets
the previous file and starts chaining within the new file, which may well be
the sane file and section as the previous one. CHAIN commands are not nested,
and there is no RETURN function in chaining.

4-9 DOS FEATURES



DOS- CALL is legal during chaining.

During chaining, there are five ways to alter the sequence of keyboard
characters.

1. The current executing program may deci de to execute a CHAIN or CHNON
command via DOS- CALL (CvVD'doscnd" in BASIC)

2. A CHAIN conmmand itself may be part of the chain file. However, for the
conmand to be executed, either DOS nust be awaiting its next comand or
the current program executing nust be clever enough to detect the CHAIN
conmand record in its nornmal record processing and execute the CHAIN
conmand via DOS- CALL (CvVD'doscnd" in BASIC)

3. An easier nethod is by having the chain file contain a /./4 type

chai ning control record (discussed below) at the point where the change
of sequence is to occur. Using the /./ allows the chaining sequence to be
changed regardl ess of whether DOS or a user programis in control and the
sequence change takes place w thout notification on the display. The
limtation of this type of sequence changes is that chaining cannot shift
to a different file.

4. The DOS command CHNON (see section 2.10) rmay be part of a chain file.
Remenber, DOS nmust be awaiting its next conmand. If CHNON, N is specified,
chaining is deactivated (though the chain file is not closed and file
position is renenbered for a subsequent CHNON, Y or CHNON, D conmand), and
keyboard i nput next comes fromthe keyboard. If CHNON,Y is specified and
DOS- CALL is active, chaining continues but the current DOS-CALL |evel is
exited.

5. A/./5 type chaining control record (defined below) nmay be used in the
chain file instead of DOS command CHNON. The /./5 record function is exe-
cuted even if DOS is not awaiting its next command.

If the CHAIN command is executed via DOS-CALL (CMD'doscnd” in BASIC), the
programer nust renenber that DOS renains in DOS-CALL executing DOS conmands
fromthe CHAIN file until either end of file, end of section, command CHNON, N
or conmmand CHNON, Y (see section 2.10) is encountered. Thus, if a program

wi shes to activate chaining but wants to process subsequent chain input
itself, then the first characters of that chain file or chain file section
nmust be either CHNON, Y or CHNON, N

Chai ni ng has six control records that nay be placed within a chain file. Each
of these records nmust start with either a one character or a 4 character
identification sequence and nust end with the EOL (ENTER) character. In
NEWDOS/ 80 Version 1, only the one character record identification was used,;
in Version 2, it is reconmended that the four character record identification
be used, as the four characters are all printable and thus visible during
chain file create or edit. The record ID characters are not displayed during
chai ni ng. These control records cause chaining to performthe action

descri bed for each. For each special record defined below, the four character
record IDis given first followed by the alternative one character |ID val ue.

1. /./0 or one byte = 128 (80 hex). This identifies a section ID record,

whi ch nust be the first record of a chain section, unless the first
section within a file is to be unnamed. The rest of the record is the

DOS FEATURES 4-10



section's ID which is used to natch agai nst a CHAIN conmand' s section | D
if it specifies one, or against the section ID specified in a/./4 chain
control record. Subsequent file characters until ECF or until but not

i ncluding the next section ID record are all considered part of this new
section. Exanpl e:

[ . 1 OXXXXXX i dentifies subsequent characters as belonging to
chai n section XXXXXX.

2. /.11 or one byte = 129 (81 hex). This causes the rest of the record to
be di spl ayed, and then the systemwaits for the user to press ENTER
before continuing. This is a built in pause function. Exanple:

/. IMOUNT WORK DI SKETTE The nessage MOUNT WORK DI SKETTE i s
di spl ayed foll owed by PRESS "ENTER' WHEN READY TO CONTI NUE. DOS then
waits for the ENTER

3. /.12 or one byte w 130 (82 hex). The rest of the record is bypassed
wi thout further action. This allows the chain file creator/mintainer to
pl ace comrent records in the file for docunentation w thout them being
di spl ayed.

4. /./3 or one byte = 131 (83 hex). The rest of the record is displayed,
but no pause is done. This allows the creator/maintainer to display to
t he operator what is happening. Exanple:

/.1 3PHASE TWD COVPLETED The nessage PHASE TWO COVPLETED i s
di spl ayed. DOS does not wait but instead continues processing chain
file input.

5. /.14 or one byte = 132 (84 hex). The rest of the record is a chain
file section ID of 31 characters or less. The current chain file is
searched for a chain section whose section ID natches that specified in
the /./4 record. Wen found, chaining continues with the first character
of. that section. If the section is not found, END OF FI LE ENCOUNTERED
error is displayed and chaining is aborted. Exanple:

[ . [ AXXXXXX Sequential chain character processing shifts within
the current chain file to the chain section named XXXXXX (see /./0
exanpl e above).

6. /./5 or the one byte = 133 (85 hex). The rest of the record is either
the character Y, N or D. Using this one character paranmeter, a CHNON
function is performed. The advantage of using the /./5 function rather
than an actual CHNON command is that DOS does not have to be waiting for
its next conmmand. The disadvantage is that the chaining state change is
nore subtle. The /./5 function is not for the novice. Exanples:

1. /./5N chaining is deactivated though the file is not closed.

2. /.15Y chaining renains active but the current DOS-CALL level, if
any, is exited.

4-11 DOS FEATURES



The novice chain file creator will find it easiest to use none of the

chai ning control records described above. As experience is gained, try using

the /./3 record to display a cooment and the /./1 record to display a nessage
and wait for ENTER Next, try using /./0 records to divide a chain file into

sections and then the /./4 record to cause chaining to branch around within a
chain file.

The chain file creator/maintainer is responsible for assuring that chaining
does not create inpossible situations for the system or user prograns.

During chaining and if SYSTEM option BC = Y, the operator may term nate
chai ni ng by hol ding down the up arrow key, or the operator may force a
chai ni ng pause by holding the right arrow key, and nay resune chai ni ng by
pressi ng ENTER

4.4. DOS- CALL

NEWDOS/ 80 al | ows any nachi ne | anguage programto call the DOS routine at
4419H (see section 3.11) to execute a DOS command or user program This
capability is called DOS-CALL. BASI C uses DOS-CALL to execute the CVD'doscnd"
function.

The calling programbuilds a DOS conmand in a buffer and terminates it with a
ODH byte. Wth HL pointing to the conmand, the DOS routine at 4419H (see
section 3.11) is called to cause DOS to execute the conmand after nmoving it
toits own buffer and converting | ower case to upper

If the DOS-CALL is executing a user program DOS does not check for conflict
between the calling programand .the called program It is the responsibility
of both prograns to avoid conflicts. An exanple of a user program executing
under DOS-CALL is the execution of SUPERZAP under BASI C t hrough the

CMD' SUPERZAP" functi on

Furt hernmore, the registers cannot be used to pass paraneters back and forth
between the calling and the called prograns. On entry to the called program
however, register HL does point to the command paraneters. Also, the two
bytes at 4403H - 4404H nay be used to pass a 2 byte paraneter back and forth.

A user program activated under DOS-CALL nay itself use DOS-CALL (be carefu
not to overflow the stack). DOS-CALLS can be nested, with each cal
activating a new DOS-CALL | evel

Upon return froma DOS-CALL, the calling programnust check for three states.
If Carry is set, an error has occurred that has already been displayed. If
the programis to continue execution, then it nust decide what to do. If the
programis to termnate, it should exit via a junp to 4030H in case this
program was itself invoked by DOS-CALL, which will cause an exit to the next
hi gher calling programwith C state set.

However, if the returned state is NZ and NC, a DOS error has occurred that
has not yet been displayed and the error code is in the right 6 bits of
register A (bits 6 and 7 equal 0). If the calling programis to continue
operation, it can have the error nessage di splayed by calling 4409H with bit

DOS FEATURES 4-12



7 of register A =1; otherwise it should exit via a junp to 4409H with bit 7
of register A = A This latter action will cause the error message to be

di spl ayed and the system goes to DOS READY unl ess the calling program was
itself invoked by DOS-CALL, in which case the error nsg will not be displayed
and an exit will be taken to the next higher calling programwith register A
unchanged and NC and NZ states set.

If the returned state is NC and Z, then the called function conpl eted

normal ly. Since all registers except AF are saved at DOS-CALL entry and
restored at DOSCALL exit, the only way a paraneter may be passed back is by
using the two bytes at 4403H and 4404H (17411 and 17412 decinmal). Actually,

t he hi gher unused bytes of the DOS command buffer, 4318H - 4367H, can be used
for conmuni cation each way in DOS-CALL, but the programrer nust understand
that DOS noves all commands into that buffer before executing them

4.5. JKL

NEWDOS/ 80 has a snmall routine for dunmping the contents of the display screen
to the printer. This feature allows the operator to print information that
woul d ot herwi se be | ost as soon as the display is used for sonething el se.

1. In order to use JKL, the follow ng conditions nust be net.

2. Systemoption AD =Y.

3. Either (1) interrupts are enabled or (2) the main programis awaiting
keyboard input via the standard keyboard i nput routine and system option
Al =Y.

4. DOS must not be currently using its overlay area (nmain nenory

| ocati ons 4DOCH - 51FFH).

5. DOS nust not have its overlay inhibit enabled.

Wth these conditions net, the sinmultaneous depression of the keys J, Kand L
will cause the main programto be interrupted, its state saved, and the con-
tents of the display dunped to the printer without any editing except that
implied by SYSTEM option AX. If the printer is not ready or drops ready, the

systemwi ||l loop waiting for it and no nessage will be displayed to the
operator.
JKL will substitute a period for each display character that is non-printable

as defined by SYSTEM option AX

Pressing the BREAK key will terminate the JKL function, except if the CPU is
hung waiting on the printer.

When the dunp is conpleted, the interrupted programis resunmed. The probl em
of spurious input characters discussed in section 4.2 exists here as well.

In earlier versions of NEWDOS, the JKL routine was al ways resident in main
menory. In Version 2, the JKL routine was very reluctantly noved into a
system overlay program thus making it unusable in certain circunstances
where it was usable before. For exanple, JKL can not be invoked from DEBUG

4-13 DOS FEATURES



4.6. Asynchronous Execution

NEWDOS/ 80, |ike TRSDOS, allows for a very limted form of asynchronous exe-
cution. This is acconplished by inserting a user interrupt routine into DOS s
25nms interrupt chain. The DOS routine (see section 3.8) at Mdel | |ocation
4410H (Model 111 location 447BH) nust be used to insert the routine into the
chain, and the DOS routine 4413H (see section 3.9) nust be used to take the
routi ne out of the chain. Refer to these two sections for the required format
of the user interrupt routine and how it is invoked.

Again, the user is rem nded that the use of user interrupt routines under
NEWDOS/ 80 is inconpatible with that under TRSDCS.

DOS FEATURES 4-14



5. DOS MODULES, DATA STRUCTURES, AHD M SCELLANEOUS | NFORMATI ON

This chapter gives information about the nodul es on the NEWDOS/ 80 di skette,
about diskette directories and about File Control Blocks. The novice user
shoul d read sections 5.1 and 5.4 and | eave the other sections for another
tine.

5.1. Files required on each diskette used with NEWQOS/ 80

Dl R/ SYS 2 - 6 granules. Diskette directory. This file is required
on every diskette used with NEWDOS/ 80 as it contains the control infornma-
tion about all files on the diskette. FORMAT or the format part of COPY
creates this file automatically, and DOS updates this file as necessary
to add, alter, or delete control information about files on that

di skette. The structure of the directory is given in section 5.6. Also
see section 5.6.2 for correction to HT sector code for DI R SYS.

BOOT/ SYS 1 granule. Must occupy the first granule of every

di skette. On data diskettes this file serves only to reject an attenpt to
boot using this diskette in drive 0. On system di skettes, the first
sector contains the machi ne code for |oading the DOS system fromthe
drive 0 diskette when a power on, reset or jump to location 0 occurs. On
NEWDOS/ 80 system di skettes, the 2nd sector is a duplicate of the first
(required for booting on the Mddel I11), and the 3rd sector contains
system control infornation set up by the DOS conmands SYSTEM and PDRI VE.
FORMAT or the format part of COPY creates this file automatically.

5.2. NEWDOS/ 80 DOS Syst em Modul es

The DOS system consists of 14 program nodul es which execute fromthree areas.
The resident nodul e SYSO/SYS resides in all the non-data areas from 4000H to
ACFFH. The nodul es SYS1/ SYS t hrough SYS5/SYS, SYS7/SYS through SYS9/ SYS and
SYS14/ SYS t hrough SYS17/SYS all share the DOS overlay area 4DOOH - 51FFH
(only one nbdule at a time can be in that area). SYS6/SYS executes from both
the overlay area and the 5200H - 6FFFH area.

SYS0/ SYS 3 granul es. DOS' s resident nmodul e | oaded by the
bootstrap routine and remai ns permanently in main nmenory, except for the
DOS initialization routines in the overlay area which are overlai d- when
no | onger needed. SYSO0/SYS handles DOS initialization, disk 1/0Q clock
interrupts, load of other system nodul es, keyboard intercept, etc.

SYS1/ SYS 1 granul e. I nt errogates DOS conmmands.
SYS2/ SYS 1 granul e. Creates files, opens FCBs, allocates file

space, allocates FDEs, encodes passwords and | oads users prograns to be
run. Executor for library commands RENAMVE and LOAD.

5-1 DOS MODULES



SYS3/ SYS 1 granul e. Closes FCBs, kills files, insert/deletes
entries from 25nms chain. Executor for library comrands BLI NK, BREAK,
CLOCK, DEBUG, JKL, LCDVR, LC, VERIFY and npbst of PURGE.

SYS4/ SYS 1 granul e. Di spl ays DOS error nessages.

SYS5/ SYS 1 granul e. DEBUG facility.

SYS6/ SYS 7 granul es. Executes in 4DOOH - 6FFFH Executor for
library conmands FORMAT, COPY and APPEND.

SYS7/ SYS 1 granul e. Executor for library commands TIME, DATE,
AUTO, ATTRI B, PROT, DUWMP, HI MEM and the 1st part of PURGE, SYSTEM and
PDRI VE.

SYS8/ SYS 1 granul e. Executor for library commands DI R and
FREE.

SYS9/ SYS 1 granul e. Executor for |ibrary commands BASI C2,

BOOT, CHAIN, CHNON, MDCOPY, PAUSE and STMI. Enqueues and dequeues user
| ogi cal routines and routes each invocation (see DOS routines 4461H and
4464H in chapter 3).

SYS14/ SYS 1 granul e. Executor for CLEAR, CREATE, ERROR, LI ST,
PRI NT and ROUTE.

SYS15/ SYS 1 granul e. Executor for FORMS and SETCOM

SYS16/ SYS 1 granul e. Executor for nobst of PDRIVE.

SYS17/ SYS 1 granul e. Executor for WRDI RP and nost of SYSTEM

5.3. NEWDOS/ 80 BASI C Modul es

NEWDOS/ 80' s Di sk BASI C enhancenments to the TRS-80's ROM BASI C consi sts of a
mai n resi dent nodul e and 8 overlay nodul es. The nodul es SYS10/ SYS t hr ough
SYS13/ SYS and SYS21/ SYS execute from DOS' s overlay area, 4DO0OH - 51FFH. The
nodul es SYS18/ SYS t hrough SYS20/ SYS execute from BASIC s overlay area, 5200H
-56FFH. A1l of BASIC s nmpdul es, except BASI C CVMD, are | oaded as needed and
must be on the system di skette when needed.

BASI C/ C\VD 4 granul es. Resi dent nodul e residing in 5700H and up.
Executes Disk BASIC s functions. This nodul e need not reside on the
system di skette as it may be invoked froma data diskette (like any other

program), and once invoked, it is not needed again until BASIC is next

i nvoked.

SYS13/ SYS 1 granul e. Di spl ays BASIC s error nessages and
executes 1st part of RENUM Must be on the system di skette whenever BASIC
is active.

SYS12/ SYS 1 granul e. Execut es BASI C direct conmand REF. Must

be on the systemdiskette if REF will be executed.

DOS MODULES 5-2



SYS11/ SYS 1 granul e. Execut es BASI C direct conmand RENUM Must
be on the systemdiskette if RENUMwi Il be executed.

SYS10/ SYS 1 granul e. Executes BASI C statenment's GET and PUT,
and nust be on the systemdi skette if either statenent is to be executed.

SYS18/ SYS 1 granul e. BASI C direct statenent executor. Mist be
on the system di skette whenever BASIC is active.

SYS19/ SYS 1 granul e. Executor for BASIC statenents LOAD, RUN,
MERGE, SAVE and CMD'F"DELETE. Must be on the system di skette whenever
BASIC is active.

SYS20/ SYS 1 granul e. Executor for a nunber of disk BASIC
statenments and usually is the nodul e resident when BASIC is executing a
program Mist be on the system di skette whenever BASIC is active.

SYS21/ SYS 1 granul e. Executor for CMD'O' and nust be on the.
system di skette if CVD'O'" will be executed.

O her Mbdul es on the NEWDCOS/ 80 di skette

DI RCHECK/ CVD A program that checks the directory for errors and |i st
or prints the directory contents. See section 6.4.

EDTASM C\VD An editor/assenbler for Z-80 code-source and object code
fromto disk or tape. See section 6.5.

DI SASSEM CVD A program that di sassenbl es Z-80 nmchi ne code. See
section 6. 2.

LMOFFSET/ CVD A program that reads |oad nodul es fromdisk or tape and
wites themto disk or tape. The program optionally (1) assigns new | oad
addresses, (2) appends a pre-execution nove-programto-execution-|ocation
appendage and (3) prepares the programto run w thout DOS. See section

6. 3.

SUPERZAP/ CND A programthat allows inspection and nodification of
either disk or main nenory. Disk operations are diskette or file
oriented. See section 6.1.

CHAI NTST/ JCL A sanple chain file created by CHAI NBLD/ BAS.

CHAI NBLDY BAS A BASI C programthat creates and edits sinple record
oriented chain files for subsequent use via the DOS conmands CHAIN or DO

See section 6.6.

ASPOOL/ MAS H S. Gentry's autonmatic spooler programas nodified by
Apparat for NEWOS/ 80. See section 6.7.

5-3 DOS MODULES



5.5. Reduced Sized System

Reduced sized systens can be created, if passwords are disabled, by COPYlI NG
the full NEWOS/ 80 di skette onto a new diskette and then KILLING the unwant ed
files. A mnimmsystemto handl e open's and close's will consist of 10 gran-
ules (BOOT, DIR, SYSO-SYS4). If the DEBUG facility is to be used (including
BASIC s CMD'D"'), add SYS5. Section 5.2 indicates which additional nobdul es
nmust be added for the various DOS library conmands. If BASICis to be used,
section 5.3 indicates which BASI C nmodul es nmust be added, and section 5.2

i ndi cates whi ch DOS nodul es nust be added if DOS |ibrary commands are to be
executed via BASIC s CMD'xx" statenent.

If the system nodul e | oader finds the nodule's directory entry inactive or
encounters an error during |oading, then one of the follow ng occurs:

If SYS4 is an active nodule in the system then SYSTEM PROGRAM NOT
FOUND error will be displayed via a junp to 4409H

If the junp to SYS4 via 4409H finds SYS4 not in the system then the

Z-80 HALT instruction is executed which on the Mddel | causes reset and
on the Model 111 stops the conputer (the operator rnust manual ly press
reset).

Modul es included in this category are SYS1/SYS thru SYS21/SYS. |If any of
BASI C overlay nodul es fail | oad, the user nust carefully execute BASIC to
get back the basic programtext.

CAUTIONI'!I'I Once a systemfile has been killed froma system di skette, it
cannot be restored by sinply copying it from another system di skette. The DOS
system | oader requires that systemfile FPDEs be in specific FDE slots in the
directory and that all of a systemfile's space be accounted for in the first
extent element. Further, SYS0/SYS nust occupy the same granules as it did
before kill, and it is recommended for efficient system operation that al
other systemfiles also occupy the same granul es. Once the FPDE has be
properly reconstructed, DOS comand COPY can then be used to copy the file's
contents.

5.6. Diskette Directory Structure

For the Moddel |, NEWOS/ 80 and TRSDOS di skettes are interchangeabl e provi ded
t he NEWDOS/ 80 di skette's directory consists of only 2 granules (see DDGA

par amet er of FORMAT, section 2.22, and COPY, section 2.14), and is set up for
10 sectors/track, 2 granules/lunp and 5 sectors/granule operations (5 sectors
per granule is standard for NEWDQOS/ 80). The files on the diskettes may not be
operationally interchangeabl e between the two systens; system nodul es, BASIC,
ELECTRIC PENCI L, SCRIPSIT, etc., definitely are not though the files they
mani pul ate are.

For the Mddel 111, the directories of NEWDOS/ 80 and TRSDOS di skettes are NOT
conpati ble; a TRSDOS Model 11 diskette may not be used directly with
NEWDOS/ 80 and NEWDOS/ 80 di skettes nmay not be used directly with TRSDOS Mode
[11. If the NEWDOS/ 80 single density diskette has a directory of Mdel
standard position and size, the Mddel |1l TRSDOS has a conversion programto

DOS MODULES 5-4



copy the data to a Model 111 diskette. The COPY function of NEWOS/ 80,
Version 2, also has a way of copying one, sonme or all files of a Mdel 1]
TRSDOS Version 1.3 or higher diskette to or froma NEWOS/ 80 di skette (see
sections 12.1 and 2. 14).

NEWDOS/ 80 makes all FDE' s of a diskette, except those for BOOT/ SYS and

DI R/ SYS, available for use; thus, a 2 granule directory on a newly formatted
data di skette has 62 FDEs avail able. NEWDOS/ 80 allows the directory to be
allocated with up to 6 granules during diskette formatting (see DDGA
paranmeter of PDRIVE, FORMAT and COPY), thereby providing for a maxi mum of 222
avai | abl e FDEs.

A diskette's directory always starts on a |unmp boundary and contains the GAT
sector followed by the HT sector followed by 8, 13, 18, 23 or 28 FDE
sectors, dependi ng upon the nunber of 5 sector granules allocated to the
directory (see the DDGA paraneter of PDRIVE, FORMAT and COPY). The user is
encouraged to study the directory structure by use of program SUPERZAP (see
section 6.1). The starting |lunmp nunber of the directory is always contai ned
as a hexadecimal value in the 3rd byte of each diskette's 1st sector; this
value is used by DOS to find the directory.

5.6.1. The GAT (Granule Allocation Table) Sector

The GAT sector is the first sector in the directory and contains the
followi ng information:

Granul e free/allocated table. Each of relative bytes 00H - 5FH
corresponds to a lunmp and contains the free/allocate status bits for al
of that lump's granules. The nunber of granules per lunp is specified by
the GPL parameter of PDRIVE and is a value between 2 and 8. The lunp's
1st granule's bit is bit 0 (counting fromthe right), the 2nd granule's
bit is bit 1, and so on up to the 8th granule. If the bit equals 0, the
granule is free. If the bit equals 1, the granule is allocated or
non- exi st ent.

Granul e existence table. Relative bytes 60H - BFH correspond to relative
bytes 00 - 5FH. If a bit within a byte equals 0, then the corresponding
granule for that lunp exists and is usable. If the bit equals 1, the
correspondi ng granul e does not exist, nust not be used and the
corresponding bit in 00 - 5FH nust equal 1. Actually, though NEWDQS/ 80
creates these existence bytes during format, it does so only for
conpatibility with the old style TRSDOS di skettes (where- in these bytes
were known as | ockout bytes). Actually, NEWOS/ 80 never sets a granule
non- exi stent. Wien necessary, the granule existence table is discarded
al together to nmake additional GAT sector bytes available to the granule
freel/allocated table.

In order to maxinize the anpbunt of diskette space controlled by the GAT
sector, NEWDOS/ 80 Version 2 allows the free/all ocated section of the GAT
to extend through, and thereby replace, the existence (or |ockout)
portion of the GAT. In this case, the free/allocated status bytes are GAT
relative bytes O0H through BFH i nstead of OOH through 5% as di scussed
above. This extension is automatically done during fornmat if the nunber
of lunmps for the diskette exceeds 60H (96 decinal).

5-5 DOS MODULES



The di skette's encoded password is in relative bytes CEH - CFH
The diskette nanme is in relative bytes DOH - D7H.
The diskette date is in relative bytes D8H - DFH

If a systemdiskette, the AUTO comand to be used at reset is contained
inrelative bytes EOH - FFH If the first byte of this area is ODH (EQL),
then no AUTO conmand exists for this system di skette.

5.6.2. The H T (Hash code I ndex Table) Sector

The HI'T sector is the 2nd sector in the directory. It serves as an index into
the FPDEs for the diskette's files and al so serves to indicate which FDEs are
free and which are in use. If a H T sector byte equals 0, the corresponding
FDE either doesn't exist or is free. If a HT sector byte is non-zero, the
corresponding FDE is in use, and if in use as 'a FPDE, the HI T sector byte's
value is a hash code forned fromthe contents of the FPDE s 6th through 16th
bytes (the nanme and name extension). Thus, when it is necessary to |ook up a
file in the directory, the hash code is conputed and the H T sector searched
for a match. If a match is found, the corresponding FDE sector is read and
the correspondi ng FPDE tested for matchi ng nane and nanme extension. If this
match fails, the H T sector search is continued.

The relative position of the HI'T byte within the HT sector is exactly equa
to the corresponding FDE' s DEC code; for it is by using the DEC code as an
index into the HI'T sector that the system knows which H T byte to set
non-zero when a FDE is allocated and to set to zero when a FDE is freed.

The HI'T sector's 32nd byte is used differently in NEWDOS/ 80 than all the
other HI T sector bytes. This byte contains the count of extra FDE sectors
allocated to the directory; the legal values are 0, 5, 10, 15 and 20. This
value is set up when the diskette is fornatted

On old Model | diskettes the value of the H T sector byte for DIR/ SYS (2nd
byte of the HIT sector) was 2CH which is not the correct value. This

i ncorrect value causes FILE NOT I N DI RECTORY error to appear when the
directory file itself is being accessed. For such diskettes, use SUPERZAP to
put the correct value of C4H into the H T sector 2nd byte.

5.6.3. The FDE (File Directory Entry) Sectors.

The rest of the directory's sectors are FDE sectors, with each 256 byte
sector containing eight 32 byte FDEs. A FDE is free if bit 4 of its 1st byte
equals 0 and in use if the bit equals 1. An in-use FDE is a FPDE if bit 7 of
its 1st byte equals O and a FXDE if the bit equals 1. Wen an FDE is freed,
only the 4th bit of the 1st byte is zeroed and the corresponding H T sector
byte is zeroed. Nothing else is changed. However, the user may zero the
entire 32 bytes of each unused FDE by using the C function of DI RCHECK, thus
obt ai ning a cl eaner |ooking directory.

DOS MODULES 5-6



5.7. FPDE File Primary Directory Entry

Each file, when created

is assigned a directory entry somewhere in the FDE

sectors. This entry contains:

1st byte:

Bi t
Bi t
Bi t
Bi t
Bi t

wh oo~
(TN TRRTRR TR
PPRORPO

@

—

(7]

N
1

0.
section 2.3).

2 byte:

Bit 7
Bit 7

0.

I ndi cat es FPDE, vice FXDE

If a systemfile.

Undef i ned.

I ndicates FDE allocated to a file.

If the file has the invisible attri bute.

Access | evel code (see PROT paraneter of ATTRI B

The file nmay be allocated nore space when necessary.

1 prohibits this. DIR, ATTRI B, CREATE and the DGCS file space

allocation routine use this bit.

Bit 6 = 0.

The DOS file close function may deal | ocate any excess

granul es above the EOF (i.e., apparently not being used by the file).
Bit 6 = 1 prohibits this. DIR, ATTRIB, CREATE and DCS file cl ose use

this bit.

Bit 5= 1.

At | east one sector of the file has been witten to,

either new data or updated data, since the last time this bit was
set to 0. DIR, ATTRI B, CREATE, PROI, COPY and the DOS sector wite
routine use this bit.

Bits 4 to O.

3rd byte = 0.
definition.

4t h byte.

Undefi ned and reserved for future definition

Currently undefined and reserved for future

The | ower order byte of the file's ECOF. This value is

the ECF position within the EOF sector. See FCB 20th byte bel ow.

5th byte.

The | ogical record length (LRECL) (0 = 256) in bytes.

When a file is created via a 4420H vector call, the value fromregister B

is stored here.

When an existing file is opened, even as a new out put

file, this value is not updated. This value is never used i n NEWDOS/ 80
The value stored in FCB+9 at open tine is that fromregister B, not from

t he FPDE

6t h- 13t h bytes.
necessary.

14t h- 16t h bytes.
as necessary.

17t h- 18t h bytes.
19t h- 20t h bytes.

21st byte.

The file nane, padded on right with blanks if

The file nane extension, padded on right wth bl anks

The encode of the update password.
The encode of the access password.

The middl e order byte of the EOF.

5-7 DOS MODULES



22nd byte. The high order byte of the EOF. The 4th, 21st and
22nd bytes are a 3 byte EOF value. This EOF value, instead of being in
RBA format as are the EOF and NEXT fields of the FCB, is maintained in
the old TRSDOS format which has the follow ng rules:

If the lower order byte of the EOF equals 0, the EOF is in RBA
format.

If the |l ower order EOF byte is not $, then the ECF value in the
FPDE i s equal to the actual RBA value plus 255 (the high two
byte value of the EOF is incremented by 1).

NEWDOS/ 80 mai ntains the directory FPDE EOF field in this manner
in order to maintain conpatibility with the old Mddel 1 TRSDCOS
2.3 diskettes (see section 12.1). New EOF values for a file are
pl aced into the FPDE only during file-create, wite-EOF and DOS
close. Thus, if the systemfails requiring reset, the user can
expect that any file open for output at the tine of failure wll
contain the new data but usually not the new EOF.

See section 12.1 for EOF and NEXT inconpatibility with other
DOSs.

23-30th bytes. Four 2 byte pairs (extent el enents), each specifying
a contiguous area of the diskette assigned to this file. The format of an
extent elenent is:

1st

byt e:
255 (OFFH) rnmeans the end of the extent elements for this file.

254 (OFEH) neans the next byte contains the DEC for the first or
next FXDE assigned to this file.

0 - 253 (0 - OFDH) equals the nunber of the diskette's lunp in
which the area starts. Qther considerations including the nunmber
of lunps the GAT sector can handle |limt this value to the range
0 - 191. This value is also the relative location within the GAT
sector of the byte associated with this |unp.

2nd byte (when the 1st byte is |l ess than 254)

31-32nd
254,

DOS MODULES

left 3 bits equals the nunber of granules (0-7) fromthe start
of the lunp to the start of the area.

right 5 bits equals the nunber | ess one of contiguous granul es
assigned to this area

byt es. An extent el ement whose 1st byte is either 255 or

5-8



5.8. FXDE File Extended Directory Entry

When a file has nore than 4 space areas assigned, the additional extent
el ements are contained in FXDE' s assigned to the file. The format of a FXDE
is.

1st byte. Bits 7 and 4 are both 1 to indicate a FXDE;, all other
bits of the byte equal 0.

2nd byte. The DEC for previous FXDE or FPDE of this file. This
is a backward chain. The previous entry's 31st byte will be 254, and the

32nd byte will contain the DEC of this FXDE
Bytes 3-22. Unused and shoul d equa

Bytes 23-32. Are as defined for the FPDE

5.9. FCB File Control Bl ock
Al so known as a DCB (Data Control Bl ock)or an DCB (i nput/output block).

In order that file information be read fromor witten to a diskette, a link
nmust be created between that file and the user program The link is created
by the DOS open function (see sections 3.13 and 3.14) and di ssol ved by the
DOS cl ose function (see section 3.15). During the time the link is in

exi stence, the control information for that link is maintained in a 32 byte
area of main nenory known as a File Control Block. At open tinme, the user
specifies where in user menory this FCBis to be. Wiile this link is in

exi stence, the FCB's area of main nenory nust not be used for any other

pur pose. DOS does not remenber where the FCBs are. The user inforns DOS of
which FCB to use for each function that is to use a FCB. Thus, the link is

ef fectively dissolved by sinply never using the FCB again in a function cal

or by using the FCB in the open of a new |ink. Renenber though, if witing to
a file where the EOF is being changed, either a DOS close or DOS wite-EOF
(see section 3.28) function nust be done to assure the ECF is properly placed
in the FPDE

At open tine (a call to DOS 4420H or 4424H), the caller provides in register
DE the address of a 32 byte main nenory area for use by the systemas a FCB
while the file is open. The user nmust have placed the filespec (term nated by
a ODH or O3H byte) for the desired file into the FCB's 1st bytes, and the DOS
close function will attenpt to put it back there when done. NEWDOS/ 80 will
accept the Model 11l TRSDOS 50 bytes area but only uses the first 32 bytes.
Wiile the FCB is open, the format for the 32 byte FCB is:

1st byte:
Bit 7 = 1. The Iink is in existence (i.e., an open has been
done) .
Bit 7 = 0. The Iink is not in existence (i.e., either an open

has not been done or a close has been subsequently done).

Bits 6-2 = 0. Undef i ned.

5-9 DOS MODULES



Bit 1 =1. The value in the FCB's NEXT and ECF fields are RBAs
within the diskette, rather than the file. This allows the user to
I/Odirectly to diskette sectors, bypassing the file concept
altogether. This bit should never be 1 during byte I/O via the 0013H
or 001BH calls.

Bit 0 = 1. Sectors witten to the file are witten read
protected in the same manner as DOS wites directory sectors. This
bit should never be 1 during byte 1/O via the 0013H or 001BH call s.

2nd byte:

Bit 7 = 1. Ei ther single byte operations or |ogical record
operations (record length in FCB's 10th byte) are bei ng done via
this FCB. NEXT value is nmaintained at the next byte to be read or
witten. This bit is set to 1 at open time if register Bis not O.

It is also set to 1 whenever byte I/Ois done via the 0013H or 001BH
ROM cal | s.

Bit 7 = 0. Read and wite operations are by full 256 byte
sectors with the FCB's NEXT val ue incremented 256 bytes upon the
conpl eti on of each successful I/Q

Bit 6 = 0. The FCB's EOF value is to be set equal to the FCB' s
resulting NEXT val ue on every successful wite operation

Bit 6 = 1. The FCB's EOF value is to be set equal to the FCB' s
resulting NEXT value only for those successful wite operations
resulting in the NEXT val ue exceeding the current EOF val ue.

Bit 5 = 0. The FCB's buffer contains the current file sector's
data. If bit 5 =1, the buffer does not contain the current file
sector's data; if needed, that sector's data nust be read into the
buf f er.

Bit 4 = 0. The FCB's buffer does not contain updated data not
yet sent to the file. If bit 4 = 1, the buffer does contain updated
data not yet sent to the file. During DOS close, if this bit is 1,
the sector data in the buffer is automatically witten to disk. This
updated data is also witten on every 443FH and 4451H call and on
every 4442H, 4445H, 4448H and 444EH call that positions the file
within a different sector.

Bit 3 =1. This FCB is in the NEWDOS/ 80 Version 2 format for the
18th - 32nd bytes. This bit is set to 1 by DOS open. If bit 3 = the
FCB is in the old format and is illegal-in NEWOS/ 80 Version 2

Bits 2 - 0. Access | evel code (see PROT paraneter of
ATTRI B, section 2.3).

3rd byte:
Bits 7 - 5. These bits are defined the sane as those in the FPDE 2nd
byte (see section 5.7). If bit 5 equals 0, the DOS sector wite

routine sets the bit to 1 in both the FCB and the FPDE just before
it actually wites the current sector to disk

DOS MODULES 5-10



Bits 4 - 0. Undefi ned and reserved for future definition

4-5th bytes. The main nenory address of the FCB' s buffer. The user
determ nes where the buffer is to be and puts this address into register
HL before the call to the DOS open routine. Sectors are read from di sk
into this buffer and witten to disk fromthis buffer

6t h byte. The | ow order byte of the FCB's NEXT field. This is
the relative position within sector value. See discussion for FCB 12th
byt e bel ow.

7th byte. The rel ative nunber of the drive containing the
di skette containing the file.

8th byte. The DEC code of file's FPDE. After the FCB is opened,
this DEC code is the |link between the open FCB and the file's directory
information as the FCB itself no |onger contains the fil espec.

9th byte. The | ow order byte of EOF. This is the relative
position within the EOF sector. See discussion of FCB 14th byte bel ow

10t h byte. The | ogical record length (LRECL) (0 = 256) for
records of this file. This value is supplied in register B by the caller
at open tinme. If not O at open tine, bit 7 of the FCB's 2nd byte is set
to 1, and subsequent DOS sector read or wite calls nust contain, in
regi ster HL, the address of the logical record to be noved to the FCB's
buffer (wite) or filled fromthe FCB' s buffer (read).

11t h byte. M ddl e order byte of the NEXT field.

12t h byte. H gh order byte of the NEXT field. The 12th, 11th and
5th bytes forma 3 byte RBAwithin the file of the next byte to be
processed, either input or output.

For single byte and logical record I1/O DOS nmaintains the FCB NEXT
field in exact RBA fornmat.

For full sector 1/O DOS al so maintains the NEXT field as an exact
RBA, but there are subtle actions by DOS that can give trouble if
the user is not aware of them DOS does not change the | ower order
byte of the NEXT field during full sector 1/O Nornmally, this byte
is zero, and that's fine. However, the user can set this byte
non-zero or if the previous I/O done was in single byte or |ogica
record node the | ower order byte will probably be non-zero. The user
nust be aware of the follow ng rules:

During full sector reads, all three bytes of NEXT participate
the ECF check just as for single byte and | ogical record reads.

During full sector wite, when the | ow order byte of the NEXT
field is non-zero, the NEXT field is not advanced 256 bytes upon
the successful conpletion of the wite and ECF, if it is

updat ed, assunmes that non-advanced NEXT val ue. The rationale
here is that if the NEXT field s |ower order byte is zero, the
val ue of NEXT after the successful wite is to be at the first
byte of the next sector, but if the NEXT field s | ower order

5-11 DOS MODULES



byte is non-zero, the value of NEXT after the successful wite
is toremain within the sector just witten.

See section 12.1 for discussion of NEXT and ECF field
i nconpatibility with other DGCSS.

13th byte. M ddl e byte of the ECF field.

14t h byte. The 14th, 13th and 8th bytes form 3 byte RBA within
the file of the end-of-file (the 1st byte beyond the file's |last data
byte). This value is initialized fromthe FPDE at open tine, and is
updated at sector, logical record or byte wite tinme under control of the
FCB 2nd byte, bit 6. See section 12.1 for discussion of NEXT and EOF
field inconpatibility with other DOSS.

15- 22t h bytes. I dentical to 23-30th bytes of FPDE

23-24th bytes. For the current FXDE whose 4 extent elenents are in
the FCB 25th - 32nd bytes, the nunber in this field represents the
relative granul e nunber of that FXDE' s 1lst extent's 1st granule. If that
val ue equal s OFFFFH, then no FXDE is represented in the 25th-32th bytes.

25-32nd bytes. Identical to 23-30th bytes of the current FXDE, if
any.

Di scussi on of FCB bytes 17-32:

The definition for FCB bytes 17 to 32 has changed fromwhat it was
in NEWDOS/ 80 Version | and Model | TRSDOS. It was assuned that very
few user progranms ever referred to these bytes as they serve only to
reduce the nunber of directory accesses done by the resident DOCS.
However, sone users (such as the old SUPERZAP coded in BASIC) have
made use of the old definitions to get around having to open a file
when di skette, rather than file, 1/0 was wanted. NEWDOS/ 80 Versions
1 and 2 have provided a diskette, as opposed to file, I/0O nethod
(see FCB 1st byte, bit 1 definition); that method should be used and
t hose ol d pseudo FCB nethods MJUST be discarded to run w th NEWOS/ 80
Version 2. Failure to do so could be catastrophic; NEWOS/ 80 Version
2 has activated bit 3 of FCB 2nd byte in an attenpt to head off

t hese bad pseudo FCBs.

This change to the FCB 17-32nd bytes allows the FCB to contain al

of a file's extent information for any file having 8 or |ess extents
(DDRwith the A option will display how nmany extents a file has). If
the file occupies contiguous diskette space, 8 extents is enough for
approxi matel y 300, 000 bytes (or 270,000 bytes if the directory is
spanned by the file's space).

If the file has nore than 8 extents, neaning that nore than one dir-
ectory FXDE is assigned to the file, then the FCB contai ns space
information for the file's 1st 4 extents and the 1 to 4 extents of
the FXDE | ast having a sector read or witten. It is quite possible
for large randomy accessed files to require a lot nore directory
accesses than was done under NEWDOS/ 80, Version 1

DOS MODULES 5-12



6. ADDI TI ONAL PROGRAMS SUPPLI ED OP NEWDOS/ 80 DI SKETTE

6.1. SUPERZAP

Pr ogr am SUPERZAP/ CVD provi des the user with the means to read and wite
standard 256 byte di skette sectors or any part of main nenory, except witing
to ROM Learning to use SUPERZAP is strongly recommended for all NEWOGOS/ 80
owners. |If corrections (known as zaps or patches) are to be nmde to your
NEWDOS/ 80, Apparat will distribute themin witten formfor application using
SUPERZAP. You nust know how to us DFS and MODxx. In |earning to use SUPERZAP,
do your learning on a diskette having data that you can afford to lose!!!!!

Certain diskettes are witten in non-standard sector formats and are thus

i naccessi bl e to SUPERZAP. There exist other prograns that read anything that
is on a diskette, but do not have sone of the other SUPERZAP features. The
user, at some time, will probably want to buy one of these other prograns
fromthe vendors that sell them

SUPERZAP operates in both upper and | ower case.

Where nuneric values are inputted and unl ess otherw se specified, SUPERZAP
assunes DECI MAL unl ess the value is suffixed with the character Hto indicate
hexadeci nal .

6.1.1. Function Mdes

The menu di splays the functions available. The user keys in the selected
function's characters and then presses ENTER The SUPERZAP functions are as
fol |l ows:

DD Di splay a Disk sector. SUPERZAP will ask for the drive nunber
and the nunber of the relative sector within the diskette, read the
sector and display it.

DM Di splay a 256 byte page of main nenory. SUPERZAP will ask for a
menory address, truncate it to a 256 byte boundary and di splay the page.

DFS Display a File's Sector. SUPERZAP will ask for the file's file-
spec. Next, SUPERZAP will ask for the relative sector nunber within the
file and will display that sector

DTS Di splay track's sector. SUPERZAP wi |l ask for the drive nunber,
track nunber and the nunber of the relative sector on the track. It wll
then read the sector and display it.

DVDB Di splay Menmory Dunp Bl ock. SUPERZAP will ask for the fil espec
of the nenory dunp file (created by DUWP, see section 2.20). It will

di splay the dunp's base address. Next it will ask for a main nenory
address within the range of the dunp, truncate it to a 256 byte boundary
and di splay the menory page.

VDS Verify Disk Sectors. SUPERZAP will ask if the operator wants a

pause when a read protected sector is encountered. Next, SUPERZAP wi ||
ask for the drive nunber and the nunber of the relative sector on the

6-1 ADDI TI ONAL PROGRAMS



di skette of the 1st sector to be verified. Lastly, it will ask for the
nunber of sectors to be verified. It will then proceed with the verify
whi ch consists sinply of reading each sector within the range specified.
When a protected sector is encountered and if a pause was requested,
SUPERZAP wi | | display the sector's location and wait for the operator to
press ENTER before continuing. VDS is a fast way of finding bad sectors
on a diskette that the user suspects have gone bad. Wiile verifying is
bei ng done, VDS may be cancel |l ed by pressing up-arrow

ZDS Zero Di sk Sectors. SUPERZAP will ask for the drive nunber and
t he nunber of the relative sector on the diskette of the first sector to
be zeroed. Next, it asks for the nunber of sectors to be zeroed. The
zeroing is then done. The read protection status of each sector is not
changed.

CDSs Copy Di sk Sectors. SUPERZAP will ask for the drive nunber and
the nunber of the relative sector on the diskette of the source (where
the data is coning fron) range's 1st sector. Next, it will ask for the
same data for the destination (where the data is going to) range's 1st
sector. Lastly, it will ask the number of sectors to be copied. The copy
is then done. Destination sectors are each assigned the read protection
status of the correspondi ng source sector

CDD Copy Disk Data. This function differs fromCDS in that any
string of diskette bytes may be copied. SUPERZAP will ask for the drive
nunber and the number of the relative sector on the diskette of the
sector containing the source range's 1st byte and then ask for that
byte's offset within the sector. It will ask for the sane infornmation for
the destination range's 1st byte. Lastly, it will ask for the nunber of
bytes (65535 is the maxi mum all owed) to be copied. The copy is then done.
The read protection status of the destination sectors is not changed.

DPWE Di spl ay PassWrd Encode. SUPERZAP wi ||l ask for the password,
encode it and display the resulting encode in hexadecinmal as it would
appear in a directory FPDE

DNTH Di spl ay Nane/ Type hashcode: SUPERZAP will ask first for the
filenane and next for the type (name extension). It will then hash them
and di splay the resulting hashcode in hexadecinal as it would appear in
the directory H T sector.

EXIT End SUPERZAP and exit to 440DH (DOS READY).

Since ZDS, CDS and CDD change diskette data, the user is first asked if
he/she is sure this function is wanted, just in case the wong function was
keyed.

For CDS and CDD, the copy nornally proceeds in ascending byte order for both
the source and destination. However, if the highest source byte is within the
destination range, the copy is in descending byte order to avoid destructive
overl ap.

Al'l disk 1/Os are done through the normal DOS sector 1/O routines. Thus, if
an error occurs, systemoption AMand AWI/O try counts are in effect.

ADDI TI ONAL PROGRAMS 6-2



For VDS, ZDS, CDS and CDD, if a disk I/Oerror results, the operator will be
of fered the choice of retrying, skipping the sector or termnating the
function. In many cases, repeated retrying will eventually work. If the error
sector was a source sector, skip will cause the associ ated destination bytes
to recei ve whatever happens to be in the source's buffer; this should be no
problemas the user is faced with a reclaimjob anyway.

When SUPERZAP is waiting for a numeric value, keying an X as the value will
cause SUPERZAP to terminate the function and return to the nenu. |f SUPERZAP
is waiting for a filespec, a null paraneter will term nate the function.

When any of DD, DM DFS, DTS or DVMDB is suffixed with ', P, the sectors or
menory pages will be printed as well as displayed. For DD, P, DFS,P or DTS, P,
the user will be asked for the nunmber of sectors to be printed. For DM P or
DVDB, P the user will be asked for the number of bytes. If the printer is not
ready or drops ready, SUPERZAP will |oop waiting on it w thout operator
notification. Pressing the P key will cause printing to pause; press ENTER to
continue. Pressing the Hkey will termnate printing.

6.1. 2. Di spl ay Mode

For DD, DM DFS, DTS and DVDB, while a sector or menory page is displayed,
SUPERZAP is in the display node and waits for a display node command. Except
for the F and L commands, the keyed command bytes are not displayed and do
not require termnation with ENTER, the command is executed as soon as all
characters of a display node command have been keyed. The display node
comrands are:

X The current function is term nated and SUPERZAP returns to the
nenu.

g Redi spl ay the sane sector or nenory page.

+ or ; Di spl ay the next higher sector or nenmory page.

- Di splay the next |ower sector or menory page.
J Restart the same function.

R Restart the same function, retaining the 1st paraneter
unchanged.

SCOPY DD and DTS only. The current sector is to be copied to a
speci fied sector. SUPERZAP will ask for the destination sector's drive
nunber and rel ative sector nunber. The destination sector nmay be the sane
as the source sector. SUPERZAP will read the destination sector and
report its status. Then the source sector's contents are witten to the
destination sector. SCOPY is useful when a sector is found to have bad
parity but, with the exception of a few bytes, is intact; by SCOPYing
upon itself, new parity will be generated, and the sector can then be
repaired. It is also useful for altering a sector's read protect status.

When SUPERZAP is in the display node, it has a diskette, file, nain
menory or nenory dunp file search capability. The match is on 1 to 4
hexadeci mal bytes (w thout the suffixed H) which are represented by
aa, bb, cc,dd. Wen the search finds a match, the sector or nmenory bl ock

6-3 ADDI TI ONAL PROGRAMS



containing the first byte of the natch is displayed with a thin vertica
bl i nking cursor to mark its position. That cursor will di sappear as soon
as a key is depressed; however, the associated 'find positionis
remenbered in case the search is to be continued. Wien SUPERZAP is in

di spl ay node, the follow ng commands to perform searching may be keyed
in, termnated by ENTER

F, aa, bb, cc, dd The 1 to 4 hexadeci nal match bytes are stored,
and the search starts at the first byte of the diskette (if DD or
DTS node) or file (if DFS or DVDB npde) or main nmenory (if DM node).

F, The sane as above except the previously established match
bytes are used.

Fxx, aa, bb, cc, dd The 1 to 4 hexadeci nal match bytes are stored,
and the search starts within the current sector or block at the xxth
relative byte where xx is a 2 digit hexadeci nal nunber w thout the
suf fi xed H

Fxx or Fxx, The sane as above except the previously established
mat ch bytes are used.

F The search continues at the first byte follow ng the
position of the first byte of the I ast natch, and the search uses
the previously established natch bytes.

L, aa, bb, cc, dd This command is to be used instead of

F, aa, bb, cc, dd when, in DFS node, the file being searched is standard
| oad nodule (i.e., SUPERZAP/CMD, LMOFFSET/CMD, etc.) and the user
want s SUPERZAP to purge out all except actual object code bytes from
the search. This allows a load nodule file search for two or nore
bytes wi thout the inbedded | oader control infornation interfering
with the match. The resulting display will still contain the | oader
control information; the user nust be prepared to occasionally see
this control information inmbedded within the matching bytes.

Usual Iy, but not always, this control information is 4 bytes |ong
with the first byte being a hexadeci mal 01. Except for purging this
control information fromthe match, L, aa, bb,cc,dd works the sane as
F, aa, bb, cc,dd. The F command nay be used to continue an L type

sear ch.

L, The sane as above except the previously established match
bytes are used.

MODX X DD, DM DFS and DTS only. SUPERZAP enters nodify node and posi -
tions the cursor to the first hex digit of relative byte xx (value O0OH -
FFH) of the current page or sector

EXIT End SUPERZAP and exit to 402DH (DOS READY).

If an error occurs during the keying in of a display node comand, the
partial conmand is ignored and the sector or block is redisplayed again.

6.1.3. Modi fy Mode
SUPERZAP enters nodi fy node upon execution of the display node conmmand MODxX.

ADDI TI ONAL PROGRAMS 6-4



This nmode all ows the changi ng of individual bytes within the current disk
sector or nmenory page. Responses while in nodify node are defined as foll ows:

Hexadeci mal digit character - 9 or A- F. The hex digit at the current
cursor position is replaced by the new hex digit, and the cursor is
advanced one position. If the cursor waps around, an error will occur if
the next character inputted is a hex digit character. Replacenents in a
mai n nenory page are for real while replacenments in a sector are buffered
until the sector is witten or a '@ conmmand cancel s the pendi ng update.

Space or right arrow. The cursor is advanced one position

Left arrow. The cursor is retarded one position.

Shift right arrow. The cursor is advanced 4 positions.

Shift left arrow The cursor is retarded 4 positions.

Down arr ow. The cursor is advanced one display |ine.

Up arrow. The cursor is retarded one display |ine.

ZTXX Thi s sequence is displayed vertically in display colum 7 and

nmust termnate with ENTER. All hex digits fromand including the cursor
position to and including the 2nd hex digit of relative byte xx are
zeroed. The cursor is left positioned to the 1st hex digit foll ow ng
relative byte xx, and if wap around occurs, the next input char nay not
be a hex digit.

RTxx,jk This command is sinilar to ZTxx except that each byte's 1st
digit is replaced with the hex digit j, and each byte's 2nd digit is
replaced with the hex digit k.

Q For sector operations only. Mddify node is termnated, any
changes in the buffer are discarded, and SUPERZAP returns to display
node.

ENTER For menory page operations, nodify node is termnated, and

SUPERZAP returns to di splay node. For sector operations, the operator is
asked if he/she really wants to update the sector now. |f not, SUPERZAP
continues in nodify node. If so, the sector (with any changes) is witten
back to disk, nodify node is term nated, and SUPERZAP returns to display
node.

When nodi fy node encounters an error, it will display 'INVALI D MODI FI CATI ON

MODE CHAR. REPLY '*' TO CONTINUE', Upon receiving * , SUPERZAP returns to
nodi fy node.

6.2. DI SASSEM

Pr ogram DI SASSEM CMVD di sassenbl es Z-80 obj ect code froma standard TRS- 80
| oad nodule or frommain menory. The di sassenbl ed code is sent to the display

6-5 ADDI TI ONAL PROGRAMS



or to the printer. CGenerated source text may be sent to disk and a | ocation
cross reference may be produced.

Responses to the query ' OBJECT FROM MAIN MEMORY OR DI SK?' (M OR D):
1. null or D Object is a disk |oad nodul e

1. Respond to the query 'FILESPEC?" with the filespec of the | oad
nodul e to be di sassenbl ed.

2. Respond to the query ' OFFSET OBJECT VI RTUAL ADDRESSES BY? ( HEX)
with either null (neaning 0) or a 1 to 4 digit hexadeci mal numnber
(without suffixed H) which when added to the | oad addresses within
the I oad nodule will give the proper address where the instructions
bei ng di sassenbl ed woul d be during normal execution of that code.
This paraneter is needed when an object nodule |loads to one place in
mai n nenory, but actually executes from another. Waparound is

al | owed. Exanpl e:

If the object nodule |oads into COOOH - FFFFH but is to execute
in 7000H - AFFFH, applying an offset of BOOO will cause the

di sassenbl er to disassenble as if the | oad was actually done to
7000H - AFFFA.

3. Respond to the query 'VI RTUAL RESTART LOCATION? (HEX)' with
either null (nmeaning start at the file beginning) or a 1 to 4 digit
hexadeci mal nunber (without the suffixed H) which is the |isted

| ocation of any instruction of the disassenbly. This allows restart
of a large disassenbly within the instruction print portion of the
listing, and the location chosen is usually the |ocation value for
the first instruction on the page where printing was interrupted.

2. M The object code is in nain nenory.

1. Respond to the query ' OBJECT VI RTUAL BASE ADDRESS? (HEX)' with
the 1 to 4 digit hexadecimal |ocation value (w thout suffixed H)
where the object code is considered to execute from whether or not
it is actually there now In the listing, this value will be the
first instruction's printed | ocation val ue.

2. Respond to the query ' OBJECT REAL BASE ADDRESS (HEX)?' with nul
(rmeaning the real and virtual locations are the sane) or with the
1-4 digit hexadecinmal main nmenory |ocation (wthout suffixed H)
where the disassenbler will actually find the object code

Responses to the query ' ANY OPTI ONS?' :

1. null No nore options to be specified.
2. PTR The output is sent to the printer instead of the display.
3. BFSP Bypass Full Screen Pauses. In nornmal operation the

di sassenbl er pauses whenever the display screen is full or whenever a
break occurs in the sequential |ocations of the disassenbled file. The
di sassenbler waits for (1) ENTER to continue, (2) X to terminate the
di sassenbly or (3) V (object frommain nmenory only) to restart the

ADDI TI ONAL PROGRAMS 6-6



di sassenbly at a new |l ocati on. The BFSP option bypasses this pausing,
causing display to occur as fast as the disassenbly can proceed. This
option is automatically invoked if option PTR is specified.

The renai nder of the options are | egal only when the object code is from
di sk:

4. NCR The location reference table is not to be built and no
di splay or listing done of it.

5. NP Do not print or display the disassenbled instructions.

6. STD Source To Di sk The di sassenbled code is to be sent to disk
in the format of an EDTASM source text file. See di scussion bel ow.

7. FGAN=xxx First Generated Nane xxx is the 3 al phabetic character nane
of the first name to be assigned during the STP action described bel ow
The default nane is AAA

8. RTD The location reference table is to be stored onto disk
After the reference table is built, the programw |l ask for the

' REFERENCE TABLE FI LESPEC?' . Respond with the filespec of the file to
contain the reference table. Reference table files can be used (by a
user-created program) to nerge the reference tables of two or nore
prograns. See below for file fornmat.

9. REA Enabl e listing of all types of references; this is the
defaul t.
10. RE& Enabl e list of the specified reference type where '& is

one of L, P, R S, T, U V, Wor X Reference types are defined at the
begi nni ng of each location table |isting.

11. RIA Disable list of all types of references.

12. R & Disable listing of the specified reference type where is
one of L, P, R S T, U V, Wor X

The di sassenbl er operates through four phases:

1. If object code fromdisk and option NCR not specified, DI SASSEM

di spl ays ' BUI LDI NG CROSS REFERENCE TABLE' and passes through the object
code building the I ocation reference table. For a large disassenbly this
will take some tinme. If insufficient main nenory for the table, the

di sassenbly will term nate.

2. If RTD option specified, this phase wites the |ocation reference
tabl e to disk.

3. List disassenbled instructions to display or printer. If STD
specified, the resulting text is also witten to disk. On the

di sassenbl ed instruction print lines, colum 1 indicates the nunber of
references to bytes of the instruction; the value is hexadecinmal wth

bl ank neaning and F neaning 15 or nore references. Columm 2 indicates
whi ch bytes of the instruction have been referenced. If blank and col um
1 non-blank, then only the instruction's 1styte is referenced; otherw se

6-7 ADDI TI ONAL PROGRAMS



the hex digit represents a 4 bit binary nask of which bytes, fromthe
left, are referenced.

4. If object is fromdisk and NCR is not specified, the location refer-
ence-table is displayed or printed. The definitions of the reference type
codes are given first. Then, in ascending nuneric order, every referenced
location is listed with the location of every referencing instruction
Suffixed to each referencing location value is the reference type code
for the Z-80 instruction maki ng the reference.

If the disassenbler finds something wong with the object nodule, either
' DI SK OBJECT FI LE FORMAT NOT AS EXPECTED or 'PAST END OF FILE will be
di spl ayed and the disassenbly will term nate.

Whil e the disassenbled instructions are being displayed or printed, holding
down P will cause a pause; press ENTER to continue. Holding down X will term
inate the di sassenbly. At nobst other tines when DI SASSEM is awaiting a user
response, the disassenbly nay be term nated by hol di ng down up-arrow and
pressi ng ENTER

For main menory di sassenblies, the operator may shift the di sassenbly point
at will. Wien the disassenbly is paused, keying V will display the query

" VI RTUAL RESTART LOCATION? (HEX)'. The operator responds a 1 to 4 hexadeci mal
digit value, which is the main menory |ocation where the disassenbly is to
restart.

If the PTR option is specified and after all options have been specified, the
foll owi ng occurs:

Respond to the query Q LINES PER PAGE, EXCLUDI NG TOP AND BOTTOM MARG NS?
(1-255)' with the nunber of printable |ines per page.

Respond to the query '# LINES EACH FOR TOP AND BOTTOM MARA N? (0-10)'
with the nunber of lines the disassenbler is to skip at both the top and
bott om of each page. If 0, the disassenbler does no pagi ng action. \Wat
t he di sassenbl er does for top and bottomnmargins is conpletely

i ndependent and in addition to anything a printer driver nay be doi ng.

Respond ENTER to the query 'REPLY "ENTER' WHEN PRI NTER AT TOP OF PAGE
when the printer is on and at top of page.

Respond to the query 'H GH ASCII CODE FOR PRINTER? (5A - 7F)' with the 2
hexadeci mal digit value (between 5AH and 7FH) for the highest printer
code for your printer.

The STD option causes the disassenbled code to be converted i nto EDTASM t ype
source text code. The resulting STD output (if not too large) can be | oaded
and assenbl ed by EDTASM The outputing of source text via the STD option
works as foll ows:

After the cross reference table build phase and the RTD phase, respond to
the query ' ASSEMBLER SOURCE TEXT OQUTPUT FI LESPEC?' with the fil espec of
the file to contain this generated source code. The file will be opened,
and the generated text sent to it during the main disassenbly phase.

ADDI TI ONAL PROGRAMS 6-8



Al'l nuneric values within the disassenbled code are replaced with a 3
character al phabetic nanme unique to that value. The nanes are assi gned
arbitrarily in ascendi ng al phabetic order with the first nane assi gned
either AAA or the nane specified by the FGN option

If a numeric val ue does correspond to a di sassenbl ed | ocation, the nane
assigned to that value is placed in the location nane field of that
location's instruction when it is sent to disk and displayed or printed.

If a numeric val ue does not correspond to a disassenbled |ocation, an EQU
statenment is generated at the end of the source text to equate the nane
with the val ue.

ORG statenents are generated as necessary, and the END statenent is
generated as the last text statement.

The format of the reference table file created by the RTD option is:

1. 1 byte = COH Backward EOF. Ignore it.
2. 1 or nore entries of the form

1. 2 byte menory location value, 1st byte = | ow value, 2nd = high
2. Control byte, bits 7 - 0 (7 is left nost)

7-6 = 11. Dumry |l ast entry in table. Ignore all other bits and
bytes of the entry.

7-6 = 01. Ref erencee entry. Bits 5-0 = 0. The location is
ref erenced by one or nmore of the subsequent
referencer entries.

7-6 = 00. Ref erencor entry. The instruction at this |ocation

referenced the location of the previous reference
entry. Bits 5-0 contain the references instruction
type: 0=S, 1 =T, 2=U, 3=V, 4=W 5=X 8=
P, 9 =1L, and 10 = R See a reference listing for
definitions.

6.3. LMOFFSET

Pr ogram LMOFFSET/ CVMD reads a tape or disk |oad nodule, displays its |oad

i nformati on, optionally changes the program s | oad area, optionally attaches
an appendage enabling the program at execution tinme to nove itself fromits
|load area to its execution area, optionally prepares the nodule to run under
non-di sk BASIC via SYSTEM and stores the nodule onto disk or tape with a new
nare.

LMOFFSET functions as foll ows:

1. Reads either a tape-type assenbly |oad nodule fromtape or a disk-type
assenbly | oad nodul e from di sk

If fromdisk, LMOFFSET asks for the source fil espec.

6-9 ADDI TI ONAL PROGRAMS



When reading fromtape, a single * will be displayed when LMOFFSET
is ready for the tape. Do rewind (if necessary) fast forward
positioning (if necessary) and press PLAY. *** appears when tape
read synchroni zati on has conpl eted. The character C will be

di spl ayed when a bad checksumis encountered. The character P wll
be di splayed if |eading extraneous data bytes encountered. The
character | will be displayed if inbedded extraneous bytes are
encount er ed

2. Displays (1) the area into which the nodule will |oad, (2) possible
conflicts with systemstorage and (3) the nodule entry point. If an
appendage is scheduled to be applied, the entry point will be into the
appendage.

3. Asks for a new |load point. Reply either with a new | oad point or
sinmply reply ENTER i f satisfied with the current load point. If the user
is sinply transferring the | oad nodul e w thout change, respond ENTER to
the first request for a new |l oad point and LMOFFSET will go directly to
step 7 bel ow.

4. If a new | oad point specified, LMOFFSET asks if the appendage is to be
suppr essed.

If the appendage is to be suppressed, the resulting nodule can only
be used via the DOS library comand LOAD as there is no appendage to
nove the programto its execution area and the entry point is forced
equal to 0. The resulting output |oad nodul e can be used via LOAD
where two or nore | oad nodul es are | oaded into nmain nenory and then
stored as one | oad nmodule via DOS |ibrary conmand DUMP

If the appendage is not to be suppressed, then LMOFFSET wi || append
to the user programeither a DOS enabl ed appendage or a DOS di sabl ed
appendage, dependi ng on whether DOS is to be disabled or not.

5. If a new | oad point was specified, LMOFFSET goes back to 3 above to
di splay the resulting load informati on and ask for a new |load point. If
another load point is given, it cancels the one specified earlier
including its schedul ed appendage, if any.

6. Finally, when the response to 3 above is a null, then if a new | oad
poi nt was specified and the appendage is not suppressed, LMOFFSET asks if
DOS is to be disabled. If so, the DOS di sabl ed appendage is selected; if
not, the DOS enabl ed appendage is sel ected.

7. LMOFFSET next asks if the destination is disk or tape.

If the destination is disk, LMOFFSET asks for the fil espec of the
| oad nodule file to be created.

If the destination is to tape, LMOFFSET asks for the tape nodul e
nane and then which tape speed (L or H. Next it asks for ENTER when
the tape is positioned and in record node.

8. The resulting load nodule is then witten to disk or tape. If a new

| oad point was specified, (1) the | oad address for each object code
record is altered, (2) if the appendage was not suppressed, an extra

ADDI TI ONAL PROGRAMS 6- 10



obj ect code record (the appendage) is inserted before the entry point
record and the entry point is set to the appendage's 1st byte, and (3)
the entry point is set to 0000 if a new | oad address was specified and
t he appendage was suppressed.

9. Wien the destination file wite is conpleted or if an error or other
type of term nation occurs during step 7 or 8 above, LMOFFSET asks if the
same nmodule is to be witten to another file (which may be the sane
file). If so, steps 7 and 8 above are repeated.

10. When all done or if an error or other type of termnation occurs
while not in steps 7 or 8 LMOFFSET asks if another source |oad nodule is
to be processed. If so, execution returns to step 1 above; if not,
LMOFFSET exits back to DOCS.

The up-arrow key may be used at any tine to terminate the current LMOFFSET
function. If LMOFFSET is waiting for a response, hold down the up-arrow key
and press ENTER

A nodul e can end up with nmultiple appendages if the output fromone LMOFFSET
run is made the input to another, but doing this is strongly discouraged; in
t he case where one appendage is a DOCS di sabl e appendage, it must never be
done. LMOFFSET knows nothing of a previously existing appendage appended by a
revi ous execution of LMOFFSET

LMOFFSET does not perform any object code relocation!!!! It only assigns code
to new |l oad | ocations so that DOS can | oad the nodule from di sk w t hout
damage to DOCS.

If the source program | oads into the display area 3CO0H - 3FFFH) without
overflowing it, those object code records will not have their |oad addresses
nodi fi ed.

The appendage added to a nmodul e by LMOFFSET starts with 64 bytes of zeroes.
This area is available to users to patch in special code. The | oad address of
this patch area is the sanme as the nodule's resulting entry address,
providing there is only one appendage. Z-80 code patched into this area will
be the first executed when that program conmences execution. This will be
done before the programis nmoved to its execution |ocations and before DOS is
di sabled, if DOS is to be disabl ed.

When a programis to run in any part of the DOS area, a DOS disabling
appendage must be specified. The DOS di sabling appendage causes the user
programto execute as if it was | oaded fromtape under the non-di sk BASIC
SYSTEM f uncti on
When the resulting user programnodule is executed, the action is as foll ows:
For a DOS enabl ed appendage:

1. Executes any user supplied code in the 64 byte patch area.

2. Moves the nmain programto its execution |ocations.

3. Commences execution of the nmain program

6- 11 ADDI TI ONAL PROGRAMS



For a DOS di sabl e appendage:
1. Executes any user supplied code in the 64 byte patch area.
2. Moves the display screen contents to high nmenory.
3. Displays the follow ng:
RECORD AND THEN PERFORM THE FOLLOW NG | NSTRUCTI ONS
HOLD DOMN BREAK KEY AND PRESS RESET TO ACTI VATE NON- DI SK BASI C.
RELEASE BREAK KEY AND ENTER BASI C I NI TI ALI ZATI ON RESPONSES.

ENTER " SYSTEM'.
ENTER "."

PP

4. \Wen the operator has done the above, the appendage conti nues
executi on.

5. Restores the screen contents from high nenory.
6. Moves the nmamin programto its execution |ocations.

7. Conmences execution of the nmain program

6.4. DI RCHECK

The DI RCHECK/ CVMD nodul e tests and lists the target diskette's directory. If
errors are found in checking the directory, they are listed before the direc-
tory listing. DIRCHECK al so all ows the option of cleaning up (not repairing)
the directory, and, as an aid to noving single density diskettes back and
forth between the Mddels | and Il under NEWDOS/ 80, allows the option of
witing the directory protected.

To the query 'OQUTPUT TO PRINTER , reply Y if output to go to printer and N if
to go to the display

To the query 'WHI CH DRI VE CONTAI NS TARGET DI SKETTE', reply the target drive
nunber, in decinal.

DI RCHECK reads the BOOT sector (the diskette's 1st sector), and tests that
the first 2 bytes are O0H and FEH respectively. If they are, DI RCHECK uses
the 3rd byte as the nunber of the lunp at whose first sector the directory
starts. If the first 2 bytes are not correct, D RCHECK di splays '*****

DI SKETTE 1ST SECTOR NOT "BOOT". ASSUM NG DI RECTORY STARTS ON LUWP 17

DECI MAL. ' .

DI RCHECK proceeds to read the directory. In previous NEWDOS versi ons,

DI RCHECK refused to process a directory that was not wite protected. Because
of the problem of nmoving single density diskettes between the Mddel | and
Model 111 under NEWDOS/ 80, an unprotected directory will now be accepted

with two error messages di splayed, one at this tinme and one after the files
have been |isted. The error nessage is '***** AT LEAST ONE DI RECTORY SECTOR
UNPROTECTED . |If this nmessage appears along with nany other errors, the user

ADDI TI ONAL PROGRAMS 6-12



can assune that DI RCHECK has not found the directory and shoul d NOT execute
the Wfunction described |ater

DI RCHECK uses the drive's PDRIVE (see section 2.37) data to determ ne the
nunber of |unps and granul es accounted for by the directory. If the PDRIVE
data is not correct for the diskette, it is very probable DIRCHECK will |i st
errors that are, not actually present.

Conplaints, if any, about the directory are next listed. If a nunber is
given, it is in hexadecimal for use in directory repair via SUPERZAP. Do not
try to repair a bad directory unless you know what you are doing!!!!!!! The
next best thing is to try to extract valued files via COPY and then re-format
t he di skette having the bad directory.

If the conmplaint is about a directory entry for a file, either the primary or
an extended entry, the hexadecimal code is the DEC for the file's FPDE. Wen
the conplaint deals with a file extended directory entry but does not specify
the file nane/type, the hexadecinal code is the DEC for the FXDE itself. When
the conplaint deals with a H'T sector byte, the hexadecimal code is the rel a-
tive location of that byte in the H T sector. Wen the conplaint deals with a
GAT sector byte, the hexadecimal code is the relative location of that byte
in the GAT sector. Wen the conplaint deals with a granule, the hexadeci mal
value is expressed in bb,r format where bb is both the |unp nunber and the
relative byte location of the lunp's byte within the GAT sector and x is both
the relative granule within the lunmp and the bit nunber, counting from zero
fromthe right, within that GAT byte.

The diskette's nane and date are next |isted.

The files are next listed, with numeric values in decimal and the follow ng
definitions:

S System file.
| File has invisible attribute.

P=nnn File has access |evel nnn, and both update and access
passwor ds are non- bl ank

EOF=sss/ bbb End O File value. ass = the relative sector within the
file. bbb =the relative byte within the sector

nnn EXTS nnn is the nunber of extent el enents, maxi mum of four per
FDE, used to account for this file's disk space.

nnn SECTORS The nunber of sectors allocated to this file.

Lastly, the nunmber of free granules and | ocked out granules for the diskette
are displayed. If the diskette contains nore than 60H (96 decimal) |unps or
if GAT relative byte 60H equal s OFFH, DI RCHECK assumes that there is no

| ock-out (existence) table. Note, NEWOS/ 80 does not nmark granul es as | ocked
out; the lockout table is nmmintained only for conpatibility wth Model
TRSDOCS.

If at | east one directory sector is unprotected, another error nessage
i ndi cating such is displayed.

6- 13 ADDI TI ONAL PROGRAMS



" FUNCTI ON COVPLETED nessage is displayed followed by the query:

REPLY

TO EXIT PROGRAM

| F ANOTHER DI SKETTE FOR SAME SPECS
FOR PROGRAM RE- | NI TI ALl ZATI ON

TO WRI TE DI RECTORY SECTORS PROTECTED
TO CLEAN UP (NOT REPAIR) THE DI RECTORY

0s—<z

Reply with one of the follow ng:
N Programexits to DOS at 402DH

Y Anot her diskette to be checked but with same response to the
printer query.

I Anot her diskette to be checked but with different response to
the printer query.

W The directory sectors are read and re-witten in protected
state. Refer to specifications for DOS conmand WRDI RP (section 2.49) and
option SYSTEM option BN (section 2.46). This function is only mneani ngful
for single density diskettes that are going from Mdel | to Mdel 11l or
vice versa or used interchangeably.
C Al'l unused FDEs within the directory are zeroed. This is a
cosnmetic function only that clears out residual information fromno
| onger used FDEs. Normally, when DOS rel eases FDEs via KILL or autonatic
space deallocation, it only zeroes bit 4 of the first byte of the FDE
| eaving the rest of the information for the renpte possibility that the
sophisticated user will attenpt to reclaimthe file or the sectors it
used to own.

During display or printing, pressing:
BREAK - processing will pause at end of current line or line group.
ENTER - continues processing.

UP- ARROW - term nates displaying or printing.

6.5. EDTASM Di sk Oriented Editor/ Assenbl er

35 nmont hs ago Apparat converted the TRS-80's tape oriented editor/assenbl er
to:

1. Read text fromdisk as well as cassette

2. Wite text and/or object to disk as well as cassette. Disk files are
validity read after all sectors witten.

3. Allow down-arrow scrolling to display up to 15 text lines.

ADDI TI ONAL PROGRAMS 6- 14



4. Prevent the confusing printer output associated with DEEM Only the
1st byte of associated object code is |isted.

5. List symbols in al phabetical order with reference list.
6. Accept and convert |ower case al pha to upper

It was anticipated that Radi o Shack woul d soon come out with a disk oriented
edi tor/assenbl er that would elimnate any need for the Apparat enhancenents.
To a degree that has conme to pass, but not sufficiently to bury the Apparat
enhanced version. Since the Apparat enhanced version is based on the

copyri ghted tape editor/assenbl er, Apparat has always required and stil
requires, as a pre-condition of use of its enhanced version, that the user
purchase a copy of the TRS-80 tape editor/assenbler and thereby pay the
royalty due. In an effort to enforce this, Apparat has al ways refused, and
will continue to refuse, to supply any docunentation for the editor/assenbler
beyond that dealing explicitly with Apparat's enhancenents.

This EDTASM is essentially the sanme as that offered with NEWOS/ 21 and
NEWDOS/ 80 Version 1 except:

1. EDTASM wi || now di splay, as part of the 'A CMD, after the TOTAL
ERRORS di spl ay, the nunmber of bytes left in the text area so the user can
j udge his approach to synbol table overflow or text buffer overflow.

2. (Model 111 only) Object code cannot be outputted to tape. The user
nmust output the object code to disk and then use LMOFFSET to copy it to
t ape.

Suppl emental instructions for the editor-assenbler.

1. To load a text nodule into the text buffer, enter one of the follow ng
commands:

1. L D=filespecl if text fromdisk

2. L T=nnnnnn if text fromcassette

where filespecl is the filespec for the assenbler text nodule to be
| oaded into the text buffer fromdisk and nnnnnn is the nanme of the
assenbl er text nodule to be |oaded into the text buffer fromtape.

Exanpl es:

1. L D=CLDTEXT/SRC:1 | oads the assenbler text file OLDTEXT/ SRC
into the text buffer fromthe diskette currently nounted on
drive 1.

2. L T=OLDTXT | oads the assenbler text file OLDTXT into
the text buffer fromtape.

If the text buffer already contains text, the query ' TEXT I N BUFFER
ARE YOU CONCATENATI NG???' appears. |If you are not concatenating
reply N, the buffer is narked enpty before | oading the specified
text module. If you are concatenating, reply Y to cause the new text
to be appended onto the end of the old. No concern is shown for
over | appi ng sequence nunbers; therefore you should execute a N

6- 15 ADDI TI ONAL PROGRAMS



EDTASM conmand upon conpletion of the load to assure a valid set of
ascendi ng sequence numnbers.

2. To store a text nodul e:

1. WD=filespec2 if text going to disk
2. W T=nnnnnn if text going to cassette

where filespec 2 is the filespec of the disk file to receive the
assenbler text fromthe buffer and nnnnnn is the one to six
character nane given to the text file witten to tape. Exanples:

1. WD=NEWEXT/ SRC. 1 The assenbler text (not the object code)
currently in the text buffer is witten to file NEWEXT/ SRC on
the current diskette nounted on drive 1.

2. W T=NEWIXT The assenbler text currently in the text
buffer is witten to tape and named NEWXT.

3. For A commands with NO option not specified, respond to the query
' OBJECT FILE TO DI SK OR TAPE? REPLY D OR T?':

1. T (Mdel | only) bject code going to cassette. The program nane
will come fromthe A conmand.

2. D (Object code going to disk. Respond to the query ' OBJECT
FI LESPEC?' with the nnnnnnnn/ttt. pppppppp:d fil espec of the object
nodul e. The file will be opened i mediately, but not witten until
end of assenmbly listing. The nanme in the A comand is ignored.

4. \Wen an output text or object disk file is opened, one of the
followi ng is displayed:

1. '"FILE ALREADY EXI STS. USE | T????'. Reply Y if this is your
intention. Oherwise reply BREAK to terninate the Wor A comuand.

2, "RFxxkkkkskkxkskx E| | E NONEXI STENT. REPLY 'C TO CREATE IT'. Reply
Cif this is your intention. therwise reply BREAK to termi nate the
Wor A command.

5. Due to an error in the original DOS, EDTASM runs with interrupts

di sabl ed (except when re-enabled by disk 1/0O in order that use of BREAK

wi |l function properly.

6. This EDTASM can execute in a regular TRSDOS Mddel | environment.

7. This EDTASM uses the standard keyboard, display and printer routines
and control blocks. Users altering the system beware!!!

6.6. CRAINBLD

The BASI C program CHAINBLD/ BAS is a sinple programto allow users to create
and nodify chain files (chaining is discussed in section 4.3).

ADDI TI ONAL PROGRAMS 6- 16



CHAI NBLD operates in record node, requiring that an EOL character (ENTER
character) appear in the file at |east every 240 bytes, and it treats each
occurrence of the EOL character as both the end of a BASIC input line and the
end of a record within a chain file. All inserts, deletions, replacenents,
noves and copies are done in terns of records.

Furt hermore, CHAI NBLD nmakes no provision (except for the old Version 1 hex
codes 80 - 83) for the file to contain special non-printable characters. The
rule is that if the string resulting fromthe BASIC statenment LINEI NPUT C$
does not contain a given character, then that character cannot becone part of
the chain file. The exception is the EOL character, which is automatically
supplied by CHAINBLD. If the user needs special characters in his/her chain
file, some other program nmust be used to build the chain file. As a |ast
resort, there is always SUPERZAP.

The CRAINBLD programstarts off with a 16 second initialization period while
it allocates nmaxi mum space to the string area. Users are warned that if BREAK
is used to interrupt or termnate the CHAI NBLD program they must renenber
that all avail able space has been assigned to the string area and that due to
this lack of space, sone functions will not work. If a CLEAR is done to free
up sone space, be sure to specify .a string area size.

After initialization, the main nmenu is displayed (not to be confused with the
edit nmenu). The choices are:

1. DELETE ALL TEXT LINES Al the text lines in the string area are
deleted and the edit nmenu is displayed. When CHAINBLD starts execution
there are no text lines in the string area.

2. LOAD EXI STI NG TEXT FROM DI SK Use this option to edit an existing chain
file. If the string area already contains text lines, CHAINBLD will ask
if those lines are to be deleted. If not, CHAINBLD returns to the main
menu as it assunes the user wants to do nore with the previous text.

O herwi se the old text lines are del eted.

CHAINBLD wi I I then ask for the existing chain file's filespec. |If the
filespec does not contain a nane extension, the nane extension JCL is
assuned. The file is then |oaded into the string area. The file cannot
exceed the string area capacity and cannot have nore than 1000 |ines. The
file must be segnented into records as discussed above. After the | oad,
CHAI NBLD di spl ays the edit nmenu.

3. SAVE TEXT TO DI SK The user has conpleted the creation and/or editing
of the chain file text and now wants to wite it to disk. If there are no
text lines, the CHAINBLD will ask if a null file is to be witten; if

not, CHAINBLD goes back to the nain nenu.

Next, CHAINBLD asks if the file is to be witten so that it can be
processed by NEWDOS/ 80 Version 1. If so, any /./0 through /./3 chain
control records are changed as they are outputted by substituting the
correspondi ng single byte control code (80H - 83H) in place of the /./x
character sequence. The text in the string area is not changed.

CHAI NBLD t hen asks for the output file filespec. If the filespec does not

contai n a nanme extension, the nane extension JCL is used. The file is
then witten to disk. When done, CHAI NBLD goes back to the nmmi n nenu.

6- 17 ADDI TI ONAL PROGRAMS



When

4., EDIT TEXT This option does nothing except display the edit nenu.

5. EXIT PROGRAM | f the string area contains text that has not yet been
witten to disk, CHAINBLD asks if the user really wants to exit the
program if not, CHAINBLD goes back to the main menu. O herw se CHAI NBLD
deletes all text lines and releases all string space except 50 bytes. The
programthen ends in the nornal manner.

the edit nenu is displayed the user has a nunmber of choices:

1. List text lines. The text lines are inplicitly nunbered in sequenti al
order regardl ess of the changes that take place is the text. Line nunbers
do not belong to individual text lines. Instead a |line nunber indicates
the line's position at the current tine within the file. This neans that
insert, delete, copy and nove all change the line nunbers of some or al

of the text lines. The L and ; edit conmands allow the user to display
the text lines. L; displays the first line. L/ displays the last. L52

di splays the 52nd line. In each case, if any text lines follow the target
line in the text, they are also displayed. The ; edit command al |l ows
forward text paging.

2. The | edit command allows for a one or nore text lines to be inserted
in the text after the specified line. 10 does inserting at the start of
the text. |/ does inserting at the end of the text. 123 does inserting
after line 23. Lines are inserted into the text until, but not including,
aline containing the /.// character sequence is encountered. That
character sequence term nates the line insert node.

3. The Redit command allows a new line to replace an old line. R43
causes text line 43 to be replaced with the new |ine that CHAINBLD wil |
ask for.

4. The D edit conmmand allows one or nore text lines to be del eted. D34
deletes text line 34. D 20 41 deletes text lines 20 through 41.

5. The X edit command allows the specified text line to be added onto.
Not e that CHAI NBLD does not actually allow a line to be edited. The edit
node really refers to editing the entire text.

6. The C edit command allows the specified lines to be duplicated to
anot her part of the text. C 20 30 5 causes a copy of text lines 20
through 30 to be inserted after text line 5. Please note that the old
lines 20 through 40 will now have |ine nunbers 31 through 42.

7. The Medit command allows the specified |lines to be noved to anot her
position in the text. M 20 30 5 causes the text lines 20 through 30 to be
deleted fromthe text and reinserted after text line 5.

8. The U edit comand redisplays the edit menu.

9. The Q edit comand redisplays the main nmenu.

The best way to learn CHAINBLD is to use it. The NEWDOS/ 80 di stribution
di skette comes with a sanple chain file named CHAI NTST/JCL. Load it in and

| ook

at it. Once in the string area, you may nodi fy the text as desired, but

do not store it back out as CHAINTST/JCL; use some ot her nane.

ADDI TI ONAL PROGRAMS 6- 18



6.7. ASPOCL

1. The object npdul e ASPOOL contai ned on the NEWQOS/ 80 diskette is H S.
Gentry's automatic Spooler Program nodified by Apparat to operate with
NEWDOS/ 80 and to self-relocate. This programwi ||l automatically direct your
printer output to the disk, and then automatically print it on the printer.
This spooler programwi ll print in the background while your foreground nain
programis executing provided the main program every second or so either
sends a byte to be spooled or checks the keyboard for a new i nput character.

This spooler programis included on the NEWDOS/ 80 di skette as a free program
to NEWDOS/ 80 owners. It is NOT a fully supported part of NEWDOS/ 80.

The basic operation of NEWDOS/ 80 DOS assumes that output that DOS sends to
the printer will not involve disk /O enroute to the printer. Therefore, the
spool er discards all printer output it senses com ng fromDGOS (such as PRI NT,
JKL, DIRwith P option) with the warning nessage CAN T SPOOL FROM DGCS bei ng
di spl ayed once for each spooled file.

This spool er program does NOT allow a spool file to be printed nultiple
tinmes; once printed, the file EOF is set to 0 and the file closed to reclaim
the file space. This spool er program does NOT renenber spool contents from
one spool activation to the next (this includes a reset). The user is warned
that while the spooler is active, do NOT use reset or DOS |library comand
BOOT to get to DOS ready. Instead, if another way is not avail able, use DFG
to get to MNIDOS and then DOS library command MDBORT to get to DOS READY or
use '123' to get to the DEBUG facility and then use DEBUG conmand Qto get to
DOS READY.

2. INITIAL SETUP. Create a working spool nodul e.

Bef ore the spool system can be used, working program nodul e copy(s) of ASPOCL
nmust be set up. You should set up a working program nodul e for each different
configuration you intend to use. Wen naking a working program nodul e, the

i nput nodule 'filespecl’ nmust ALWAYS be ASPOOL/ MAS or a copy of it, and the
out put nodule 'filespec2' must NEVER be ASPOOL/ MAS. To create a working spool
program nodul e (as opposed to the nmaster), enter the DOS comuand fil especl, |
(exanpl e: ASPOCOL/MAS: 0,1 ). The programwi |l then ask for paraneter specifi-
cations:

The program asks if the software printer driver whose address in is 4026H
- 4027H at the tine of spooler activation is to be used to drive the
printer. Reply Y for yes or Nfor no (the spooler will drive the
printer). If N, then:

The program asks if the printer is parallel or serial. Answer P for
parallel or S for serial. If serial, then:

The program asks if the printer is an Hl14 type. Respond Y for
yes and N for no.

The program asks if the printer output is to be fornmed into pages with a
formfeed between pages. Reply Y for yes and N for no. If Y, then:

The user will be asked for the nunmber of print lines per page. Enter
a nunber between 10 and 99.

6- 19 ADDI TI ONAL PROGRAMS



The program asks if the printer uses a soft or hard formfeed. A soft
formfeed is done by counting the nunber of lines printed and then
printing carriage returns (OUR) (with or without Iine feeds (QAR)) unti
the end of the page is reached. A hard formfeed is a single control
character that causes a formfeed function. If your printer wll
recogni ze a hard formfeed answer H otherw se answer S. If soft form
t hen:

The program asks for the total number of |ines per page. Answer with
a nunmber between 10 and 99.

The programasks if a formfeed is to be done at the end of each print
file. Reply Y for yes and N for no.

The next question concerns automatic |inefeed on each carriage return
Sone printers linefeed on carriage returns and the conmputer shoul d not
output linefeeds. If your printer is of this type (Radi o Shack standard)
answer the question with N. If you want the software to generate

l'i nefeeds then answer with Y.

The program asks for the nunber of the disk drive that will be used to
spool the print data. Answer with a nunber fromO to 3.

The program asks for the nunber of seconds to transpire after the | ast
keyboard key inputted until the spool program can start printing again.
Respond with a 2 digit value 00 - 59. The purpose of a non-zero delay is
to allow t he keyboard to have primacy over the printer. Wen a keyboard
key is depressed and if the spool programis printing a file, printer
action will pause while keys are being inputted and until the required
nunber of seconds have passed since the |ast key.

The program asks if the printer is to be driven by the tiner interrupts
(every 25ms on the Model |; every 33 or 25nms on the Model 111) as well as
via keyboard input and spooler output. Reply Y for yes if the interrupts
are to be used; reply Nfor no. Allowing the interrupts to be used en-

abl es the spooler programto print while a foreground programis
executing that does not frequently check the keyboard or send output to

t he spool er. The di sadvantage of using the interrupts is that for a
buffered printer, interrupts are disabled during the entire outputting of
aline tothe printer. However, the tine delay will probably be no worse
than that associated with disk I1/Q |If the interrupts are used, printing
wi Il nevertheless stop if the foreground program never sends anything to
the spooler or tests the keyboard for input. This is because the disk 1/0
to read the next sector is done only during keyboard checking or main
program out put to the spooler. See circular buffer discussion for an
addi ti onal disadvantage when the interrupts are used.

The program asks if the circular buffer is to be used to buffer keyboard
i nput characters. Reply Y if yes; Nif no. The circular buffer hel ps
prevent | ost keyboard input. If the 25ms interrupt is enabled to drive
the printer (see above option), the circular buffer uses the ROM keyboard
character input routine and therefore disables any drivers (such as
NEWDOS/ 80' s keyboard intercept routine, |ower case driver, etc.)
activated before the spooler is activated. If the 25nms interrupt is not
used to send spool ed output to the printer, then that does not frequently
check the keyboard or send output to the spooler. The di sadvant age of

ADDI TI ONAL PROGRAMS 6- 20



using the interrupts is that, for a buffered printer, interrupts are

di sabl ed during the entire outputting of a line to the printer. However,
the tine delay will probably be no worse than that associated with di sk
I/O If the interrupts are used, printing will nevertheless stop if the
foreground program never sends anything to the spooler or tests the
keyboard for input. This is because the disk 1/Oto read the next sector
is done only during keyboard checking or main program output to the
spool er. See circular buffer discussion for an additional disadvantage
when the interrupts are used

The program asks if the circular buffer is to be used to buffer keyboard
i nput characters. Reply Y if yes; Nif no. The circular buffer hel ps
prevent | ost keyboard input. If the 25ms interrupt is enabled to drive
the printer (see above option), the circular buffer uses the ROM keyboard
character input routine and therefore disables any drivers (such as
NEWDOS/ 80' s keyboard intercept routine, |ower case driver, etc.)
activated before the spooler is activated. If the 25ns interrupt is not
used to send spool ed output to the printer, then the regul ar keyboard
routine(s) (as existed in the 4016H - 4017H vector at spool activation)
is used. This latter also holds if the circular buffer is not used,
regardl ess of whether or not the 25nms interrupt is used.

Now that the spooler has all the initialization paraneters, the

i n-mai n-nmenory programis altered. The programthen asks for the fil espec of
t he wor ki ng program nodul e to be stored on disk. Respond with the fil espec
you will use in the filespec2, A DOS conmand di scussed bel ow; do NOT respond
ASPOOL/ MAS! T T The working programnodule will be witten to disk, and the
spool programexits to DOS via 402DH. HI NT: Use SPOOLER/ CVD for filespec

3. ACTI VATE SPOCLI NG Wen spooling is to be used, enter the DOS comrand
"filespec2, A" (exanmple: SPOOLER A ) where filespec2 is the filespec of one of
t he wor ki ng spool program nodul es you have created. fil espec2 nust NEVER be
ASPOOL/ MAS. If the spooler is already active, 'FILE ALREADY EXI STS' error
nmessage i s di spl ayed.

The nmodule will load into the 5200H - 5FFFH region, relocate itself to
H MEM ar easi zel+1l, and sets H MEM = HI MEM ar easi zel where HMEM i s t he DOS
hi gh nenory address contained in Mbdel | |ocations 4049H - 404AH (Model |1

| ocations 4411H - 4412H) and areasi zel is the anount of menory required by

t he spool er. Then the keyboard vector at 4016H - 4017H and the printer vector
at 4026H -4027H are intercepted to vector to the spooler. If interrupts are
to be used, a routine is entered into NEWDOS/ 80's 25nms interrupt chain of
user interrupt routines. 'SPOOLER ACTIVE is displayed, and the 402DH exit is
taken to DOCS.

The spooler is now active. Al data intended for the printer will be directed
to one of five disk files (POOL1, POOL2, POOL3, POOL4, POOL5). Wy five files
you may ask? Well, when you have "printed" as much data as you w sh and woul d
like that data to be actually printed on the real printer, you send an
end-of-file to ASPOOL. This is done either via DOS comand *ASP, W
(CVD'*ASP, W from BASIC) or by outputting to the spooler a 03 byte in the
normal print stream

(LPRINT CHR$(3) fromBASIC ). The file that was spooling will be closed and

schedul ed for printing. You may now spool to another file by just "printing"
nore data. The data will be placed on the disk while the first data file is

6-21 ADDI TI ONAL PROGRAMS



being printed. This procedure may be repeated five tines. If you try to spoo
a sixth file before the first has been printed on the real printer, the
systemw || display 'SPOOL FULL. WAITING ON PRINTER and will hang until a
fileis printed. All data is printed on the real printer in the background
while the current or another nmain main task is executing or sinply while the
systemis waiting for the user to tell it what to do next. \Wenever *ASP,Wis
executed or a 03 byte is seen in the output to the spooler, the spooler
program considers this an end of file (performng top-of-formif specified)
even though you may be sectioning your spooled output for one report to keep
the printer going and avoi d running out of space.

Warning!!! The Model Il ROMroutine, normally used by the spooler, wll

di scard the current character being sent to the printer if it senses the
printer is not ready (including busy) and the BREAK key is pressed. Since the
executing foreground program nay be using the BREAK key while the spooler is
printing in the background, there will be tines when printer characters will
be | ost, unknown to the spooler. This can serious lint the useful ness of any
spool er on the Mddel I11 that uses the ROM printer driver routine.

You may bring the spool system down gracefully at any tine by the DOS conmand
*ASP, S (CMD'*ASP, S" from BASIC) or by sending a 04 byte in the nornal output
to the spooler (LPRINT CHR$(4) fromBASIC). This procedure will purge the
current spool file, will prevent any new files frombeing created, and will

di splay ' SPOOL STOPPI NG . Mai n program execution then continues, any
characters sent to the spooler will be ignored and the spooler continues to
print any files that have been schedul ed. Wen all files have been printed,
the *ASP, P function is perfornmed. NOTE, if the spooler appears to hang, it is
probably waiting for the main programto check the keyboard. If the nain
programcan't do this, try DFG but wait till the drives stop.

You may bring the spool system down abruptly at any tine by entering DOS com
mand *ASP, P (CMD'*ASP, P" fromBASIC). Al renaining spooled data is lost. If
an interrupt routine was active, it is purged. The keyboard and printer
vectors are restored to what val ues they were when the spooler activated. If
DOS's HHVEM value is the same as that set by the spool er when activated,

H MEMis set back to what it was before the spool er was activated, thus
reclaimng the spooler's main menory. However, it the HHMEMis not the sane,
H MEM i s not changed, and the spooler nenory remains |ost to subsequent nmin
prograns. ' SPOOLER PURGED is displayed, and the DOS 402UH exit taken to DGCS.

You may flush the print queue at any tinme by entering DOS command *ASP, C
(CVD'*ASP, C' from BASIC). The spooler will respond with "CLEAR BACKLOG OR
PRINT (B/P)?". Respond with a B and Enter if you wish to clear the backl og,
or a P and Enter to stop printing the current print file. Clearing the
backl og does not purge the current print file, and clearing the current print
file does not purge the backl og.

The status of the spool system may be determined at any tine by entering the
DOS conmmand *ASP (CVD'*ASP" from BASIC). The systemwill print a list of al
files waiting to be printed (BACKLOG and any file that is open for printing
or spooling. If the system has been stopped but not yet purged, "SPOCL
STOPPING' will be displayed. If the spool er has been purged or not activated,
"FILE NOT IN DI RECTORY' is displayed.

ADDI TI ONAL PROGRAMS 6- 22



7. DI SK BASIC, NON- I/ O ENHANCEMENTS

7.1. | NTRODUCTI ON, Requirenents

For NEWDOS/ 80 nost, but by no nmeans all, of the interface specifications
bet ween BASI C and t he BASIC progranmrer renmain the sane as for DI SK BASIC
under TRSDOS 2.3 on the Model | and for TRSDCS 1.3 on the Moddel 111. The

NEWDOS/ 80 BASI C user is expected to have and be know edgeabl e of both the non
di sk BASI C manual and the di sk BASI C portions of the TRSDOS manual for

whi chever of the two TRS-80 nodels is being used. The current and next
chapters of this NEWDOS/ 80 version 2 docunentation discuss only the
differences fromthe TRS versions. Both the Tandy manuals are excellent; if
they didn't cone with your TRS-80 when you bought it, buy them!!! Apparat
does not, in this manual, duplicate their contents.

7.2. Ceneral conmments

1. When a BASIC syntax error occurs, BASIC does not automatically enter
EDIT on the offending text line, but it does set that line as the current
line. If the operator wishes to edit the line, press conma. This change
is to make it nore difficult for the operator to inadvertently clear

vari abl es that he/she woul d otherwi se want to see to assist in debugging.

2. BASIC prograns may disable the BREAK key via CVD'BREAK, N', and
re-enable it by CVD'BREAK, Y"

3. Because CLOAD does a NEW function between consecutive bytes fromtape
it will | ose synchronization if BASICis running with nore than 3 file
ar eas.

4. Wen a DOS error is encountered by BASIC and if no ONERROR routine is
active, both the DOS error nessage and the BASIC error nessage are
di spl ayed.

5. BASIC now has a total of 8 overlays that it uses. The user will notice
that disk 1/0 occurs whenever RUN i s executed and whenever execution is
interrupted (STOP, error or BREAK) or terminated (END); this is done to
bring in BASIC routines needed for the current or anticipated next
function.

6. NEWDOS/ 80 DI SK BASI C does NOT allow text |ine deletion to be done by

simply typing in the line nunber. The explicit delete conmand, DELETE or
D, nust be used.

7-1 DI SK BASIC NON-1/0O



7.3. Activating DI SK BASIC
DI SK BASIC is activated by keying in one of the follow ng commands to DCS:

BASI C

BASI C

BASI C n

BASI C m
BASI C cnd
BASIC n, m cnd
BASIC mn, cnd
BASIC n, m
BASIC m n
BASI C n, cd
BASI C m cmd

REBox~NoO ko E

=o

wher e:

* means the user wants BASIC to reinstitute the programin the text
buffer, using the sane values for mand n as appear to exist in main
menory. This allows the user to recover froman unwanted 'reset' or to
get back to the same programafter a CVMD'S". If BASIC is able to accom
plish this, it forces '"LIST' as its first conmand. If BASIC is unable to
reinstitute the program it exits to DOS READY. BASIC * will not work if
n was less than 2 or if the programwas |ess than 3 |ines.

n = the nunber of fileareas that BASICis to allocate, default = 3, max-
imum = 15. This is the highest fan (filearea nunber) that will be used in
any statenent during this invocation of BASIC. If the BASIC programis to
use field itemfiles with standard record | ength not equal to 256, then n
nmust be specified and nust be suffixed with the character V (see exanple
4 bel ow).

m = menory size. The value mmnus 1 is the highest nenory |ocation that
BASIC is allowed to use. If mis not specified, the current DOS H MEM
value is used. Al nenory mand above is not used by BASIC and can be
used for other routines such as printer drivers, special code USR

routi nes, etc.

cnd = one line of BASIC text, consisting of one or nore BASIC statenents.
This text line is considered direct keyboard input and will be executed
as soon as initialization is conpleted.

Remenber, the DOS command activating BASICis limted by DOS to a naxi mum of

80 characters, including ENTER, and it is further linmted to 32 characters,

i ncluding ENTER i f invoked via 'AUTO .

Any error encountered during initialization causes a return to DCS.

If DOS is in RUNN-ONLY state, the DOS command activating BASIC nmust contain a
RUN or a LOAD (option R) statenent.

Exanpl es:
1. BASIC Brings up BASIC with 3 file areas, high nenory set to the

current value for HMEM in DOS and displays 'READY', waiting for the
operator's conmmand.

DI SK BASIC NON-1/0O 7-2



2. BASI C, RUN" XXX/ BAS" Brings up BASIC with 3 file areas, high nmenory
set to the current DOS H MEM val ue, | oads BASI C program XXX/ BAS into the
text area and starts its execution

3. BASIC, 9, 48152, LOAD' XXX/ BAS" Brings up BASIC with 9 file areas
hi gh nenory set to 48151 (1 | ess than 48152), | oads BASI C program XXX/ BAS
into the text area and displays 'READY', waiting for the operator's
comand.

4. BASIC, 3V This works the sane as exanple 1 above, except that
each of the 3 files areas is assigned an extra 256 byte buffer. This
extra buffer per filearea is needed if the programw |l be using field
itemfiles with a record | ength other than 256.

5. BASI C, CLEAR3000: A=1: RUN' XXX", V Brings up BASIC with 3 fileareas,
sets its high nenory value to DOS's current H MEM val ue, performs CLEAR
reserving 3000 bytes for the string area, sets nuneric variable A equa

to 1, |oads BASI C program XXX and conmences its execution without
clearing the variables, thus leaving variable A intact for the programto
i nspect.

7.4. Direct Scrolling/Editing Conmands
NEWDOS/ 80 DI SK BASIC allows the followi ng 'direct' commands:

(period) LIST the current text |ine.

down- arr ow LI ST the next text line. If there is no next text |line
performs as /

up- arrow LI ST the text line before the current line. If none
perforns as ;

; or shift-up-arrow LI ST the first text line
/ or shift-down-arrow LIST the last line in text. Users having the
newer ROMwi |l find that shift-down-arrow is no |onger a usable key;

hence the need for /

: Scrol |l one display page toward the start of the text. Wen
done, the previous current text line is now at the bottom of the display
excepting that if the previous conmand was . or @, the previous
display's top line is now the new display's bottomline. The new current
text line is the bottomline on the new display.

@ Scroll one display page toward the end of text. When done
the previous current text line is nowthe at the top of the display, and
the new current text line is the bottomtext |ine on the new display.
, (comma) EDIT the current text line.

Only 1 such command per direct statement line, and the command, to be seen

nmust be the first character of the input line (no |ine nunber or backspacing
al | owed).

7-3 DI SK BASI C NON-1/0O



7.5. Text Editing Command Truncation
NEWDOS/ 80 DI SK BASIC all ows the truncation of the conmands AUTO, DELETE, EDIT
and LIST to A, D, E and L respectively when the followi ng conditions are net:

1. 1st character of the input line.
2. Followed by either a period or a decimal digit.
3. The input line does not contain an =.

7.6. DI and DU text editing functions
DI and DU Two additional BASIC text editing functions are inplenented using
the following forns of direct conmand:

1. DI aaaaa, bbbbb
2. DI ., bbbbb
3. DU aaaaa, bbbbb
4. DU ., bbbbb

aaaaa is the line nunber of the text line to be noved or duplicated, and
bbbbb is the Iine nunber to be given the noved text line or the duplicate
of the text I|ine.

DI neans to delete the line at aaaaa and insert it at bbbbb

DU neans insert at bbbbb a duplicate of the text line at aaaaa, but do
not delete the line at aaaaa.

Text referring to aaaaa is not altered to refer to bbbbb. If this is
desirable, then use RENUMto nove the text |ine.

The use of a period in place of aaaaa causes aaaaa to default to the | ast
line listed, edited or deleted.

7.7. RUN and LOAD (optionally retaining variabl es)
RUN and LOAD may now optionally retain all variables and open fileareas by
using the V option in the followi ng fornats:

RUN "fil especl", V
LOAD'fi | especl", V

where filespecl is the filespec of the programfile being executed. The LOAD
with the V option executes exactly the same as the RUNwith V option. The RUN
with V option preserves all the variables, excepting DEFFN vari abl es, during
the execution of RUN, thus the variables existing before the RUN st at enment
can be used after the RUN statenment. Any fileareas open prior to the RUN are
| eft open for use after the RUN statenment. If the V option is specified, the
R option may not be. See exanple 5 in section 7.3.

DI SK BASIC NON-1/0O 7-4



7.8. MERGE Dynani ¢ | oadi ng of overlay program
The MERGE statenment has been expanded:

MERGE wi |l nerge either an ASCI|I or a packed text file.
MERGE may be executed as a direct statenment or as a program statenent.

If MERGE is executed as a program statenent, the MERGE statenent nust not
be part of a DEFFN statenent, a subroutine or a FOR-NEXT | oop (as a POPS
function is inmplicitly perforned), nust be the |ast statement of the text
line, rmust be followed by the text line where execution will continue
after the MERGE, and the nerge file nust not contain a |line whose nunber
is the same as the nunber of a text line existing at the start of the
execution of the nerge (use CMD'F", DELETE to delete conflicting text
lines before executing the MERGE). The nerge protects all variables. The
user nust assure enough main nmenory space is available for the nmerge as
error recovery is not possible if the nerge fails once actual nerging
conmences. Exanpl e:

100 MERGE" XXX/ BAS"
110 X=1 execution continues here after the MERGE is conpl eted

7.9. RENUM Renunber the Current BASIC Program

RENUM ,
RENUM U
RENUM X
RENUM U, X

The current BASIC programor a part of it may be renunbered while it resides
in the text area. Via the U option, the RENUM does not actually perform
renunmber but only does its text error checking, thus all ow ng the undefined
i ne nunbers and some, but not all, syntax errors to be found. The user may,
by proper choice of the new |line nunber val ues, nove a portion of the program
to a different place in the programwth all references to any of the noved
lines changed to the new |lines nunbers. Lastly, via the X option, RENUM wil |
not declare as an error any undefined line nunber if that |ine nunber lies
out side of the range of lines being renunbered, thus allow ng a programto
have references within it to lines that are intentionally not part of the
program

The basi c renunber comand causes all text |ines whose |line nunbers are
greater than or equal to ppppp and |less than or equal to gqgqgq to be assigned
new | i ne nunbers. sssss is the first new | ine number assigned wi th subsequent

nunbers generated by adding iiiii to the line nunber of the previous text
line. sssss and iiiii must be in the range 1 - 65529 and have default val ue
10. ppppp nust be in the range 1 - 65529, has default value 0. ggqgq nust be
in the range 1 -65529, greater than or equal to sssss, and has default val ue
65529. The range of newly generated |ine nunbers must not enconpass any old
text lines that are not part of the resequenced range ppppp - 9qqdq
inclusive. So long as this rule is observed, the newy generated |ine nunber
range nmay be placed anywhere in the text with the renunbered text noved to

t he proper new text | ocation.

7-5 DI SK BASI C NON-1/0O



At | east one paraneter nust be specified. If the user wants to specify al
defaults and neither X nor U, then use a conma as the only paraneter.

For the series sssss,iiiii,ppppp,dqqqq, if one or nore of the 4 nunbers are
to use the default values, then comas nmust appear in the proper place to

i ndi cate which of the 4 values a given line nunber is for. See exanple 4
bel ow.

If the Uoption is specified, the text is not altered in any way and RENUM
simply searches text for undefined Iine nunbers and for sone errors
associated with BASIC statenments that use |line nunbers. These errors are

di splayed in the followi ng fornat:

sssss/U - there is no text |ine sssss.
sssss/ X - text line sssss has syntax error
sssss/S - text line sssss has a bad |ine nunber.

If the X option is specified, references to non-existent text |lines are not

di spl ayed as errors if that line nunber is also outside of the ppppp to qgqqq
range. The X option is intended as aid to programmers who use a base program
and overlay progranms which refer to text lines in each other

If any error is encountered before text is altered, the conmand reverts to
performing as if the U option had been specified and displays all the errors
it can find. If an error is encountered after text alteration begins, 'FATAL
ERROR. TEXT NOWBAD is displayed and the 4030H exit taken to DOS. The BASI C
text must not be reclainmed (don't use BASIC *).

If either SYS11/SYS or SYS13/SYS are not in the system when RENUM i s
executed, the systemw || exit to DOS READY (see section 5.5).

RENUM wi | | refuse to renunber a program whose first text line's nunber equals
0. Use 'DI' to assign the line a nunber other than 0. Exanples:

1. RENUM U The BASIC text is checked for undefined Iine nunbers and
other errors that would normally be encountered in an actual renunber.
The BASIC text is not altered.

2. RENUM , The entire BASIC text is renunbered using an increnent of
10. The first text line is assigned |ine nunmber 10, the 2nd assigned |ine
nunber 20, and so on

3. RENUM 100, 100 The entire BASIC text is renunbered using an incre-
ment of 100. The first text line is assigned |line nunber 100, the 2nd is
assi gned 200, and so on

4. RENUM 2050, , 2050, 3160 Al'l text lines fromand including any

i ne nunbered 2050 to and including any line nunbered 3160 are renunbered
using an increnment of 10. The first renunbered Iine is assigned |ine
nunmber 205%, the second is assigned 2060, and so on

5. RENUM 30000, 5, 15365, 18112 Al'l text lines fromand including any

I ine nunbered 15365 to and including any |ine nunbered 18112 are
renumbered using an increnent of 5. The first renunbered line is assigned
i ne nunber 30000, the 2nd is assigned 30005, and so on. The renunbered
text lines are noved to the new positions in the text.

DI SK BASIC NON-1/0O 7-6



7.10. REF Li st references to variables, |line nunbers and keywords

The BASI C statenment REF allows the BASIC programmer to find all places in the
program where a |ine nunber, an integer, a variable, a string, a function
code, a packed sequence of characters or an unpacked sequence of characters
is referenced. REF has the follow ng formats:

1. REF* Display full reference list for all |ine nunbers, integers
and vari abl es.

2. REF$ Print on the printer a full reference list for all line
nunbers, integers and vari abl es.

3. REFNnn Display all references to the variable(s) named nn. If nn
is only 1 character, a blank is assuned for the second. nn may not be
nmore than 2 chars and nmust not have a type suffix.

4. REFsssss Display all references to the |ine nunber and/or integer
sssss where sssss is a 1-5 decinmal digit nunber between 0 and 99999.
Hexadeci mal or octal references within the text are not Iisted.

5. REF*nn
6. REF$nn
7. REF*sssss
8. REF$sssss

9. REF Di splay the next text line containing at |east one
reference to the variable or nunber specified by the |ast REFnn or
REFsssss statement executed. If there are no nore referencing text lines,
"TEXT END' will be displayed. If 'REF entered again, the first
referencing text line will be listed. Renenbrance of the search variable
name or nunber and the current search line nunmber within the text is
usual Iy (but not always) |ost when any conmand invol ving DOS i s execut ed.

10. REF=xxx The character sequence xxx is packed by the standard
BASI C text packing routine. The BASIC text is then searched for a match
on the packed xxx value and the line nunbers listed for all lines

contai ning the packed xxx value. If the packed value xxx is nore than 16
bytes long, only the first 16 packed bytes participate in the conpare.
This format of REF is to used when the user wants to know where in the
text a BASIC function code (i.e., PRINT, LPRINT, GOTO, etc) is used. The
text lines containing xxx can be displayed one at a tinme by repeated

i ssuance of the format 9 REF conmand.

11. REF"xxXx This format operates simlar to format 10 except that
XXX is not packed. xxx is considered a string unless xxx itself contains
a". This format allows xxx to be found in strings and conmments.

12. REF@ssss This statenent is simlar to format 9 except that the
search will start with 1st text |line whose |ine nunber is greater than or
equal to sssss.
Press BREAK to pause, ENTER to continue, and up-arrow to term nate the REF
function. Formats 5-8 are the sane as 1 and 2, except listing/printing starts

7-7 DI SK BASI C NON-1/0O



with the specified variable nane or decimal nunmber, if it exists, or the next
hi gher existing nane or nunber, if not.

If SYS12/SYS is not in the systemwhen the REF statenent is executed, the
systemw ||l exit to DOS (see section 5.5).

7.11. Lower Case Suppression (Mdel | only)

Text String Lower Case Suppression (Mdel | only) Users who do not have the
hardware | ower case nodification or those that do but don't use a | ower case
driver to bypass the ROM display routine will occasionally be puzzled why
sone string conpares fail and syntax errors appear in perfect appearing
statenments. This is due to the acceptance of |ower case letters into strings
whi ch di splay as upper, and the acceptance of |ower case @into text
statements. Renenber the ROM swaps | ower case to upper and vice versa before
BASI C sees the characters. In the case of data, there is nothing that can be
done about this problemexcept to renmenber that if it appears equal.on the

di splay, there still may be a | ower case/upper case nmismatch in nenory. For
text input, if systemoption AS = Y, text string |lower case letters, but not
lower case @ will be forced to upper case, elininating many of these

probl ens.

7.12. RUN-ONLY

For DISK BASIC there are two ways BASIC can be forced to run in RUN-ONLY
node: (1) if systemoption AB =Y, and (2) if the BASIC programfile is
password protected, passwords are enabl ed, the access password specified in
the RUN or LOAD (option R) statenent and the access |evel = EXEC

If systemoption AB = Y, the DOS conmand activating BASI C nust contain the
necessary RUN or LOAD (option R) statement to start a program executing as
the operator is not allowed to input any direct comand statenents.

In RUN-ONLY, the BREAK key is disabled and BASIC is inhibited from accepting
direct statenents (data is OK) fromthe operator. The program has full con-
trol, and nust exercise it. A nmenu programcan i ssue RUN or LOAD (option R)
statenments for other BASIC prograns, and those prograns can do the sane to
return to the MENU programor go on to the next program of a sequence. QOp-
tionally, a base programmay remain in menory at all tines, and via CMVMD'F",
DELETE and MERGE, bring in overlay progranms as necessary. Programrers shoul d
careful ly study avail abl e options under RUN, MERGE, LOAD, and CMD'F
functions.

7.13. Comarisons in the use of the function CVD bet ween NEWDOS/ 80 and TRSDCS.
1. CwWrA" Not inpl emented; use CMD'S".

2. Cow'B" Not used on the Moddel | by NEWOS/ 80 nor TRSDOS. TRSDOS
Model 111 use is not inplenented in NEWDOS/ 80; use CMD'BREAK, Y/ N'

3. aw'c This command (1) conpresses out all spaces fromthe program
text, excepting for those within strings, and (2) deletes all remarks

DI SK BASIC NON-1/0O 7-8



fromthe text, including entirely those |ines which are entirely remarks.
The statenent CMD'C', S conpresses out all spaces fromthe programtext,
excepting those within strings and remarks. The statenent CVD'C', R
deletes all remarks fromthe text, including deleting entirely those
lines which were entirely renarks.

In sone cases, GOTO, GOSUB, etc. refer to a text line that is
entirely remarks and the deletion of remarks fromthe text will
cause these referenced lines to disappear. The programs shoul d be
altered to have these GOTGs and GOSUBs refer to text lines that are
not entirely remarks. After remarks have been deleted froma
program execute RENUM U to determine if there are any undefined

[ ine nunbers resulting.

Though BASIC is designed to ignore spaces that are not in text
remarks or character strings, the renoval of spaces fromtext can
still cause confusing situations. For exanple, conpressing

10 FIELD 1,20 AS C$

20 IF F OR D THEN 10
to

10 FI ELD1, 20ASC$

20 | FFORDTHEN1O

wi || cause syntax errors to occur for both lines during execution
after either (1) the program has been stored in ASCI|I and then read
back in or (2) the lines have been edited. To avoid these probl enms
that may exist for weeks or nonths before either of the above two
conditions occur, the CMD'C'" function autonmatically unpacks each
conpressed text line, packs it again and conpares the new packing
with the old that existed before the spaces were conpressed out. For
any text line where the two packings are different in any way, the
spaces are restored into that text line (remarks, if deleted, renain
del eted) and the line's nunber is listed on the display. The user
may then inspect these |ines and renove spaces that won't affect the
program For any given program there should be very few |lines
rejected by CMD'C".

4. CwMD'D TRSDOS' neaning is not inplenmented on the Mddel 111 under
NEWDOS/ 80; use CMD'doscrmd"”. On the Model |, CVMD'D' still invokes DEBUG
t hough 123 is the preferabl e nethod.

5. CVMD'E" Di spl ays the DOS error messaged associated the | atest DOS
error encountered by BASIC.

6. CVD' F Not used in TRSDOS. I n NEWDOS/ 80, there are two formats

1. CVMD'F",fc used when the function code fc nust be findable by
REF, RENUM and ot hers.

2. CVD'F=fc" used when the function code fc is not to been seen by
REF, RENUM etc. or where the specially defined function code could
be confused by the normal text packing routine.

These CMD'F" functions are specified in sections 7.15. thru 7.20

7-9 DI SK BASI C NON-1/0O



7. Qv Not used on the Moddel | by either NEWDOS/ 80 or TRSDCS.
TRSDOS' Model 111 use is not inplemented i n NEWDOS/ 80; use CMD'dos-cmd"”.

8. cvo' " Cal endar Date Conver si on.
CMVMD'J", dat el, dat e2

converts the expression datel to the appropriate format and stores
the result in the string variable date2. If datel is in nmdd/yy
format, date2 is stored in ddd format and if datel is in -yy/ddd
format, date2 is stored in nmdd/yy format where:

nm is atw digit nonth val ue between 01 and 12.

dd is atw digit day-of-the-nonth val ue between 01 and 31.

ddd is a three digit day-of-the-year val ue between 001 and 366.
is atw digit relative year-within-century val ue between 00

and 99. For |eap year conversions, yy is assumed to be in the 20th

century, i.e., from 1900 to 1999.

9. QwD'L" TRSDCOS Model 11 meaning not inplenmented i n NEWDOS/ 80; use
CVD'LOAD, fil espec". This function is not used on the Mdel 1.

10. v O Array Sort; see discussion below (section 7.21.) for
CcVD'O'.

11. CvD'P" Not used on the Model |. TRSDOS' Model I1l neaning is not
i mpl enented i n NEWDOS/ 80; use PEEK(&H37E8) to obtain the 0 - 255 val ue
for the current printer status.

12. CMD'R! TRSDOS' Model 111 meaning is not inplenmented i n NEWDOS/ 80;
use CVD'CLOCK, Y'. On the Mddel I, CMD'R" still reenables the interrupts
as before.

13. CGvD's" Exit BASIC and return to DOS READY state. However, if the
conmand is of the form CVD'S=doscnd”, then the follow ng occur:

1. The DOS conmmand doscnd is noved into the DOS conmand buffer.
2. BASI C exit ed.

3. The DOS comand placed into the DOS buffer is executed inme-
diately without an interveni ng DOS READY.

4. \Wen that command is conpleted, control returns to DOS READY and
not to BASIC

14. CovoD'T" TRSDOS' Model 111 meaning is not inplenmented i n NEWDOS/ 80;
use CVD'CLOCK,N'. On the Model 1, CVMD'T" still disables the interrupts as
bef ore.

15. CowvD' X" Not used on the Mddel | by NEWDOS/ 80. TRSDOS' Model 111
meani ng i s not inplenented; use the REF command.

16. CwpD'zZ" Not used on the Mddel | by NEWDCOS/ 80. TRSDOS' Model 111
meani ng i s not inplenented; use CMD'ROUTE,...".

DI SK BASIC NON-1/0O 7-10



7.14. CVMD'doscnd”

If the string expression associated with the CVMD function has two or nore
characters and does not start with either "S=" or "F=", then the string is
assuned to be a conmmand to be executed by DOS. BASI C noves the command to
DOS' command buffer, sets DOS to M N -DOS node, and calls DOS to execute the
conmand via 4419H, DOS- CALL. Upon return, BASIC turns off DOS M NI -DOS node.
If DOS has rejected the conmmand because it was not |egal under M N - DCS,
BASIC then attenpts to reissue the conmand to DOS under normal node by doing
the foll ow ng:

If approximately 8,000 bytes are not avail able between the top of BASIC s
array areas and the bottom of BASIC s stack (which is i mediately bel ow
the string area), BASIC declares OM (' OUT OF MEMORY') error and

term nates the current statement. |If the space is avail able, BASIC noves
all of nenory from5200H to 70FFH to that free area, sets itself to use
stack area 7000H 71FFH and conputes a checksum over the region from 7100H
to the top of BASIC s nenory (takes about 2 seconds). Then it calls DCS
to execute the DOS command. Upon return from DOS, BASIC noves the saved
regi on back to 5200H 70FFH and reconputes the checksum (agai n, another 2
seconds). If the check fails, this neans that the DOS command execut ed
has altered sone of BASIC s bytes; BASIC cannot continue and exits to DCS
with ' BAD MEMORY' error.

Whi chever way the command was executed, BASIC now checks the return code from
DOS. If an error occurred and the error nessage has al ready been displ ayed,
BASIC terminates the CMD'doscnmd" statement with ' PREVI QUSLY DI SPLAYED ERRCR
error state. If a DOS error occurred, BASIC calls 4409H to display the DOS
error nmessage and termi nates the CMD'doscnd" statement with ' DOS ERROR error
state. If no error occurred, BASIC continues with normal processing.

Any DOS |ibrary command or assenbly | anguage program (that will execute using
only the 5200H - 6FFFH regi on and/or a non-BASIC, non-DCS region of main nmem
ory) can be executed in this fashion. SUPERZAP and DI RCHECK are two programns
that may be executed through CVD'doscnd". FORMAT and nost forns of COPY can
be done; however, single drive, two diskette copies cannot be done as they
requi re the maxi mum amount of menory. Al so, don't specify the UBB paraneter
in COPY.

Remenber, DOS conmands are linmted to 80 characters, including the ENTER
character that BASIC will append to the doscnd string when noved to the DOS
comand buffer.

User progranms are warned to | eave the Mbdel | nenory area 4080H - 41FFH ( Mbdel
1l area 4080H - 41E2H) al one except where alteration is in confornance with
BASI C s current uses.

CMVD'BASI C' shoul d never be executed. If for sone reason the programer wants
to exit BASIC and return, use CMD'S=BASIC'.

Al most all DOS commands may be executed via CVD'doscnd". Exanpl es:

1. CVWO'DR 1" list a directory

2. CMD'COPY XXX:0 YYy:1" copy a file

3. CMD'COPY 0 1 07/10/81 FMI" full diskette copy, with fornmat

4. CMD' SUPERZAP' execut es program SUPERZAP and return to BASIC
5.  CMVD'DO CHAI NFI L™ performchain file functions and return

7-11 DI SK BASIC NON-1/0O



7.15. CVD'F=POPS", CMD'POPR' and CMD'F=POPN'

If the statenment is CVMD'F=POPS", then all returns and FOR-next controls are
purged, leaving BASIC with no outstanding returns or nexts. \Wen done, execu-
tion continues with the next statement. The purpose of this statenent is to
all ow the programmer to 'bail-out' of conplex coding and return to BASIC s
first level. This avoids | eaving residual information in BASIC s control
stack which on recursive returns to the high level wthout CVD'F=POPS" wil Il
eventual |y cause program fail ure.

If the statenent was CMD'F=POPR', then the current GOSUB | evel is purged

al ong with any outstanding FOR-NEXTs for that level. This is the sane as
return except control does not pass to the statenent follow ng the associ ated
GOSUB, but instead passes to the statenent followi ng the CVD'F=POPR"

st at enent.

If the statenent is CVD'F=POPN', then the nobst recently established
FOR-NEXT's control data is purged. This is the same as ' NEXT' where the | oop
limt is exceeded. Execution continues with the statenent follow ng the

CVD' F=POPN" st at enent.

If the statenment is CVMD'F=POPN' vu where vn is a variable nane, the FOR- NEXT
| oop associated with vn is purged along with any other FOR-NEXT | oops estab-
lished while vn's | oop was outstanding. Execution is the sane as for ' NEXT
vn' when the loop is to end. Execution continues with the statenent follow ng
t he CMD'F=POPN' vn statenent. The purpose of CMD'F=POPN' is to allow breaking
out of a loop while not |eaving residual |oop control information that can
confuse the progranmmer if he/she subsequently uses FOR-NEXT variables in
reverse order.

7.16. CWVD'F=SASZ"
Change BASIC s string area size without affecting or clearing the variabl es.

CMD' F=SASZ", expl

allows the string area size to be changed w thout clearing the variables.
expl nust be a value large enough allow the string area to contain the
strings that it contains when the statenment is executed. An error wll be
generated if expl is too small or is too large (i.e., will cause overlap with
the text, scalar and array areas). Exanple:

CMD' F=SASZ" , 4000

7.17. CWVD'F=ERASE' and CMD'F=KEEP"
Sel ective clearing of BASIC vari abl es.

CMVD' F=ERASE", vn1l, vn2, vn3. .. all ows the specified variables to be
cleared. If a specified variable is within an array, the entire array is
cleared. The size of the string area is not changed. This statenent
shoul d be used when an array is no | onger needed or the user w shes to
redimension it by a subsequent DI M statenent. This statenment may be
multi-text |lines as described for CVD'F=KEEP" bel ow.

DI SK BASIC NON-1/0O 7-12



C\VD' F=KEEP", vnl, vn2,vn3... causes all variables to be cleared except
t hose specified and except specially defined variables such as those de-
fined by a DEFFN statenent. The size of the string area is not changed.

If no variable nanes are specified, all variables are cleared, except the
special ones. If a specified variable name is within an array, the entire
array is exenpted fromthe clear. The statenent may specify as nmany var-
fabl e names as desired with overflow fromone text Iine to the next non-
comrent text |ine taking place whenever the |ast variable name of a text
line is followed by a comma. Exanpl e:

CVD' F=KEEP" , A$, B% C, D#, "statenment first |ine
E', F, G3, "statenment 2nd line
REM this line is bypassed

H 'statenment last |ine

7.18. CVD'F", DELETE
Dynami c del etion of text lines:

CMD'F", DELETE | nl1-1n2

This statenment allows the text lines fromand including any line nunbered IS
to and including any line nunbered In2 to be deleted during program
execution. Al variables are retained, excepting that DEFFN variables for
DEFFN statenents in the delete range are cleared. The string area size is not
changed. Any string variable whose current string was actually in the del eted
text area has that string noved to the string area. CVD'F", DELETE nust not be
executed as a direct statement, nmust not be contained in a DEFFN statenment, a
subroutine or a FOR-NEXT | oop has a POPS function is inplicitly perforned),
nmust be the last statenment on its text line and nust be followed by the text
line where execution will continue after the del ete. Exanple:

100 CVD'F", DELETE 10500- 15000
110 X=1 execution continues here after the DELETE is conpl et ed

7.19. CVD'F=SWAP"
Swappi ng of variable contents:

CMD' F=SWAP", vnl, vn2
This function swaps the value of variable vnl with that of variable vn2. Both
vari abl es nmust be of the sane type, i.e., both strings, both single precision

floating point, etc. Exanple:

CVD' F=SWAP", A3, B$

7-13 DI SK BASIC NON-1/0O



7.20. CWVD'F=SS"
BASI C singl e stepping:

1. CMD'F=SS" turn on single stepping
2. CWMD'F=SS",Inl single stepping starts at line |Inl.
3. CMD'F=SS", N turn off single stepping

The BASI C programer may now single step through program execution. Using
either format 1 or 2 above sets BASIC into single step node, though for
format 2, actual single stepping does not start until text line Inl is the
next line to be executed. A single BASIC text line is executed for each step
and between steps the line nunber for the next line to be executed is

di splayed in '@nnnn' format in the display upper right corner to indicate
that BASIC is waiting for the operator to respond. Respondi ng ENTER causes
line nnnnn to be executed and then BASIC waits for user response again.
Respondi ng BREAK causes execution to be broken in the normal manner though it
shoul d be noted that the |ine nunmber the BREAK shows is for the |ine just
executed or being executed while the '@nnnn' display is for the next line to
be executed. If the user does not change text during BREAK, the program may
be continued via CONT; in this case, the '@nnnn' display will imediately
reappear without execution of a line. Pressing ENTER will then execute the
line. Wiile in BREAK, the operator may turn single stepping on or off as
desired without affecting the ability to CONT. |If the BREAK occurs before RUN
or LOAD, R executes one text line, CONT will not work.

Singl e stepping or the scheduling of the single stepping to start when a
particular text line is encountered remains in effect until either
CMD'F=SS",N is executed to turn it off or until a format 2 type stepping
conmand i s executed, wherein stepping goes off until the specified line is
encountered. The execution of RUN, LOAD, NEW etc. does affect single
steppi ng state.

7.21. CvD'O'
The main nenory BASIC array sort has 2 formats:

1. 1. av'0",n,avl[,av2,....1 (direct sort)
2. 2. CGwD'0",n,*iavl,av?2[,av3,...] (indirect sort)

In explaining this sort, the termREN is used and is defined to nean a

Rel ati ve El ement Nunber identifying an array elenment. The el enments within any
BASI C array, regardless of dinension, are integer nunbered fromO up. If an
array has only one dinmension, then an elenent's REN is sinmply the val ue of
its subscript and if you use only single dinmensioned arrays, you can ignore
the rest of this paragraph. However, if you use nulti-di nensional arrays,
then you shoul d know whi ch nethod to use to increnent array subscript val ues
in order to extract elenents in the sorted order. CMD'O' does not care what
di rension the arrays have; it sinply counts off the array elements in the
order BASIC stores themin main nmenory. You, the programmer, do care as you
nmust use subscripts in order to access the array el enents. For

nmul ti-di mensi oned arrays, the rule for conputing the REN is conplex and can
best be illustrated by a three dinension array exanple using two statenents:

DI M A(RL, R2, R3)
Y = A(XL, X2, X3)

DI SK BASIC NON-1/0O 7-14



where the REN of this elenent is conputed as X1+X2*(R1+1) +X3*(R1+1) *( R2+1) .
If the array had only two di mensions, then the REN woul d be X1+X2*(R1+1),
and, of course, if the array had only one dinmension, the REN would sinply be
X1.

If the CVMD'O' statenent specifies nore than one array, excluding iavl, then
the RENs for the first sort itemin each array, excluding iavl, nust be
equal .

The sorting order used has one level for each array specified, excluding the
iavl array, with highest to |lowest level in the order, left to right, of the
array variables in the CVMD statenent. Wthin each level, the nornal sort
order is ascending ASCI| (actually hexadecinal) nureric value for character
string arrays and nost negative to nobst positive value for nuneric arrays.
However, if the array variable in the CVD statenent is prefixed with a ninus
sign (exanple: -A#(0) ), then the order of sort within that level is
descendi ng ASCI| (actually hexadecimal) numeric value for character string
arrays and nost positive to nobst negative value for nuneric arrays. A nul
conpare string character is considered to have a nuneric value |less than

Normal ly in character conpares, the entire string is used in the conpare.
However, if the array variable in the CVMD statenent is suffixed with a field
of the form (x,y) (Exanple: A$(1)(5,4) ), then the conpare starts with the
xth character of the string and conpares using only y characters.

n is the nunber of elements in each of the arrays participating in the sort.
Only n elements fromeach array participate in the sort. Elements of an array
bel ow or above the n elenents specified do not participate. If nis a zero
val ue, then for the sort, nis set to the number of elenents in first array
specified fromand including the el ement specified through and including the
| ast el ement of the array.

If the nunmber of elements in any array fromand including the specified
element to and including the array's last elenment is less than n, FC error is
decl ar ed.

A maxi mum of 9 arrays nay be specified. Al array variable subscripts, except
for the indirect array if specified, nust evaluate to the same REN val ue.

Format 1 is a direct sort neaning that the elements of all 1 to 9 arrays are
noved around to conformto the desired sort order

avl nust be specified; av2 and up are optional

The resulting order of the n elenents in each array is the sane for each
array (i.e., the arrays are not sorted independently). Thus, if the jth
element of array 1 is sorted into the kth elenment slot, then for each of
the other arrays, if any, the jth elenent is also placed into the kth

el enent sl ot.

Format 1 is conpatible with TRSDOS Model |11 BASIC CMD'O' if and only if
only one array variable is specified, it is for a string array and n is
an integer variable.

Format 2 is an indirect sort. In this sort, only the n elenents of array iavl
are altered; the other arrays are not changed in any way. The intent of

7-15 DI SK BASIC NON-1/0O



format 2 is to allow a sorted sequence to be determ ned wi thout actually
changi ng the arrays supplying the sort values. A user may have a group of
data records spread across a number of arrays such that a record consists of
one el enent fromeach array, with the REN of each of those el enments nmaki ng up
the record equaling the record nunber. By using format 2 with the indirect
array, the user may effectively sort the records using a subset of the itens
as the sort criteria and without actually rearranging the order of the
records, thus leaving themin record nunber order

Fornmat 2, as opposed to format 1, is indicated by specifying the iavl
array variable, prefixed by an *

iavl nust be an integer array variable.
av2 nust be specified; av3 and up are optional

The n consecutive elenents starting at iavl are initialized with the RENs
corresponding to the n consecutive elenents of array av2 (which al so
correspond to the RENs for the other arrays, if any).

During sorting only array iavl is altered; , arrays av2 and up are not
altered

Upon conpletion, the n elenents of array iavl are in the desired sorted
order such that by using successive values out of array iavl as sub-
scripts, the user nmay access elenents fromany of the other arrays (that
are single dinmensioned) in that sorted order. Accessing nmulti-dinensioned
arrays is nmore conplex and is left as an exercise for the nore advanced
user.

Exanpl e program usi ng a nunber of sorts:

10 DI M NMB( 200) , AM ( 100), LN$( | 00) , | X% 100) , ZC! (50) , L$( 50)
30 X=150

40 CMD' O, X, NMB( 0)

60 CVD' O, X, - NMB( 25)

70 CMD'O', 0, - AM (1), LN$( 1) (5, 3)

80 CMD'O', 100, *I X% 0) , ZC (1), L$(1)

At line 40 the first 150 elements of array NV (elements NMB(0) to NMB(149) )
are sorted in ascending order. If any of the strings are null, they wll
appear first in the resulting array. The last 51 elenents of array NV

(el enments NMB(150) to NMB(200) ) do not participate in the sort and are |eft
unchanged.

At line 60 el enents NMB(25) through NMB(174) are sorted into descendi ng
order, with null strings, if any, appearing as the end el ements of those 150
el ements. The first 25 and the last 26 elenments of the array do not
participate in the sort.

At line 70 the AM and LN$ arrays are both sorted, both in the sane order
which is first by descending order of AM array val ues and then, where AM
array val ues are equal, by ascending order of LN$ array val ues where only the
5th, 6th and 7th characters of the LN$ array elenents participate in the sort
determi nation. If a LN$ array elenment has |less than 5 characters, it is
considered a null for sort determ nation purposes. AM (0) and LN$(0) do not

DI SK BASIC NON-1/0O 7-16



participate in the sort. Since the nunber of elements to be sorted was
specified as 0, the nunber of elements to be sorted was taken as 100, the
nunber of elenments in the AM array fromand including the AM1) element to
and including the | ast elenent of the array.

Line 80 contains an indirect sort. In this sort, the first 100 | X% array
elements are initialized sequentially with REM nunbers from1 to 100 with

I X%a) = 1 and | X% 99) = 100. These RENs are used as subscripts to index into
the ZC! and L$ arrays. The sort is in ascending order, first by zZCl array

val ues and then, where the ZCl array values are equal, by L$ array val ues.
None of the elements of the LClL and L$ arrays are changed in any way. |nstead
of noving the ZzCl and L$ array elenents, only the corresponding REMin the

| X% array is noved. Upon conpletion of the sort, the RENin I X% O can be
used as a subscript to index the first-in-sorted-order element from each the
ZC' and L$ arrays, and the REN in | X% 99) can be used to index the

| ast-in-sorted-order elenment fromeach the ZC! and L$ arrays. Lastly,

remenber that elements | X% 100), ZC!(0) and L$(0) did not participate in the
sort in any way.

7.22. RENEW
Rei nstate a program del eted by the command NEW

RENEW

The BASI C direct conmand RENEW rei nstates the BASI C programtext ostensibly
deleted by a just given NEWconmand. All that RENEW does is set the first
byte of the text area non-zero, reestablishes the text forward queue pointers
and perfornms CLEAR The previous program should thus be reinstated in the
text area, available for editing and executing. However, if at |east one text
line was created or | oaded since NEW then the previous text is not
reinstated. Furthernore, if, during this BASIC invocation, the text area
never contai ned any text, RENEWw Il never the |l ess assume that there is text
in the text area and attenpt to reinstate it with very disastrous affects to
BASI C.

7-17 DI SK BASIC NON-1/0O






8. BASIC DI SK |/ O ENHANCEMENTS AND DI FFERENCES

8.1. Introduction

This chapter deals with the substantial enhancenents and sonme differences in
the NEWDOS/ 80's BASIC s file handling over that offered by NEWDOS/ 21, TRSDOS
2.3 for the Model | and TRSDOS 1.3 for the Model I11. The statements made in
section 7.1 apply to this chapter as well.

These 1/ 0O enhancenents are nore difficult to understand than they are to use,
something like electricity which few understand and everybody uses. In the

I ong run, the enhancenments will nake |I/O programm ng easier, but the user
nmust renenber that since TRSDOS does not have these enhancenents, your
prograns will no longer run on TRSDCS.

In NEWDOS/ 80 version 1, appendi x A of the docunentation and an execut abl e,
heavi | y docunent ed BASI C program named SAMPLEO1/BAS were included as exanpl es
and non-specification discussions of these I/O enhancenents. In version 2,
SAMPLEO1/ BAS has been dropped fromthe di skette and Appendi x B added

contai ning 18 exanple prograns on narked and fixed itemfile useage.

Chapter 8 is intended as the specifications for these enhancenents;
appendi ces A and B contain suppl enentary di scussion and exanples. If there is
a conflict between chapter 8 and appendi ces A and B, chapter 8 governs.

Many terns used in this chapter are defined in the glossary in chapter 10,
which the user will need to refer to. The reader should read through this
chapter and appendices A and B at |east tw ce before bogging down trying to
under stand any particul ar statenent.

8.2. File Type

To the previously existing DISK BASIC file types, sequential which will be
called print/input, and randomwhich will be called field item two other
file types have been added: marked item which has three subtypes M, MJ and
M, and fixed item which has two subtypes FI and FF

Print/input (sequential) disk files and field item (random) disk files are
wel | specified for the Model | in the TRSDOS nanual, chapter 7 and for the
Model 111 in the TRSDOS nanual, part Il1l. The user is expected to have
studi ed the appropriate section before proceeding further with this chapter
of the NEWDOS/ 80 docunentation. |f necessary, run some test programs to gain
proficiency.

Afielditemfile (known in TRSDOS as a randomfile) has all of its re-
cords the sane length. This length may be from1 to 256 bytes. |f the
record length is other than 256, the BASIC initialization sequence (see
section 7.3) must specify the nunber of fileareas to be allocated and

t hat nunber mnmust be suffixed with the character V. Exanple:

BAS| C, 3V
will cause BASIC to allocate three fileareas with two buffers each, the

first to be used in conjunction with the FIELD statenment and the second
to serve as a full sector buffer. Remenmber, this special V suffix is to

8-1 DISK BASIC I/0O



be used only if the intentionis to use a field itemfile (TRSDOS random
with a record length | ess than 256; otherwi se the extra 256 bytes all oca-
ted to each filearea is wasted. The open statement used where the record
length is I ess than 255 is:

OPEN "R",fan,fil especl,lrecl

where Irecl is the logical record | ength and has a value 1 - 256.

8.3. File type differences
The essential differences between the four file types are as foll ows:

Print/input files can only be used sequentially; field item fixed item
and narked itemfiles can all be used either sequentially or randomy.

Print/input files are stored in all ASCI| character format, converting
all nurmeric data frombinary bits to decinmal characters. Field item
fixed itemand marked itemfiles all store nuneric data in the binary
fornms, thus usually saving di sk space and data conversion tine.

Print/input files are witten to using the PRINT statenment which is
cunbersone to use because of the need to use the 5 character sequence
;","; to separate two string itens. Field item fixed itemand narked
itemfiles are witten to using the PUT statenment with inplied separation
of file items taken care of by the FIELD statenent for field itemfiles,
by the inmplicit or explicit itemlengths specified in the IGEL for fixed

itemfiles and by the itemmarker for marked itemfiles.

Print/input files are read using the INPUT statenment while field item
fixed itemand marked itemfiles use the GET statenent.

Field itemfiles require that data be noved into the record buffer before
execution of the PUT statenent. This is done via the RSET or LSET func-
tion and in the case of nunmeric values, also with MKD$, MK $ or MKS$
function. This explicit conversion is not needed for print/input, fixed
itemand narked itemfiles.

Field itemfiles require that numeric data input fromthe file be
converted fromstring representation to nuneric via the CvD, CVI or CVS
function before it is used. This is not needed for print/input, fixed
itemand narked itemfiles.

Print/input files allow a record length of any size. Field itemfiles
all ow a maxi numrecord | ength of 256. Fixed itemand marked itemallow a
maxi mum record | ength of 4095 bytes.

Print/input file processing transmits strings to the file w thout change,
but truncates |eading spaces fromstring itens when inputted fromthe
file. Strings in field itemfiles are padded on either the left or the
right with spaces as necessary during the associated LSET or RSET.
Strings in fixed itemfiles are padded on the right with spaces as

necessary to fill out the itemto its specified length or are truncated
on the right if the actual string length exceeds the length allowed the
file

DISK BASIC I/0O 8-2



item Strings in marked itemfiles are not padded, though the string may
be truncated on the right if it exceeds the nmaxi mum characters all owed
for that item Except for this truncation, which nust be specified by the
programer, marked itemfile processing is the only one of the 4 that
transmts strings conpletely unchanged fromwhat they were in the
correspondi ng BASI C vari abl e.

8.4. Components of GET and PUT
GET and PUT statenents execute in two distinct phases in the follow ng order

1. File positioning phase. The position within the file is set according
to the file position parameter, the second paraneter, of the GET or PUT
st at enent .

2. Data transfer phase. The data is transferred frommin menory to the
file (PUT statement) or fromthe file to main nmenory (CGET statenent).

Before proceeding, it is necessary to define three terns used within GET and
PUT statenents, one that existed in a nore limted formin field itemfile
GET and PUT statenents and two that are new.

8.4.1. fp File position. For each GET or PUT operation (see sections
8.8 and 8.9), the file is initially positioned according to the fp
specification. fp is one of the follow ng forns:

8.4.1.1. null If REMRA is valid and file record segnented, the
filearea is advanced to the next record; otherwise fp = null perforns as
fp = *. Exanple:

PUT 1,, 1000
8.4.1.2. * The filearea position is unchanged. fp = * cannot be
used to advance fromone record to the next for a record segnmented file.
Exanpl e:

GET 1, *,1000

8.4.1.3. # The filearea is repositioned to REMRA (see section
8.10). This allows the previously processed record to be processed agai n.
Error if REMRA currently invalid. Exanple:

PUT 1, #, 1000
8.4.1.4. $ The filearea is repositioned to REMBA (see section
8.10). This allows a return to the positioning of the previous GET/PUT
with fp =null, * # $, rn, or !rba. Error if REMBA currently invalid.
Exanpl e:

GET 1, %, 1000

8-3 DISK BASIC I/0O



8.4.1.5. 4 See section 8.11 for pseudo FIELD stat enent
di scussi on.

8.4.1.6. & See section 8.9.6 for PUT, fan, & discussion
8.4.1.7. && See section 8.9.7 for PUT fan, &
8.4.1.8. Irba rba is an expression evaluating to a RBA equalling

the desired relative byte position within the file, range to 16,777, 215.
CGET or PUT data transfer starts at the specified location in the file. If
the file is record segnented, !rba is assumed to specify a record start
posi tion. Exanpl e:

GET 1, 11357, 1000

*xxxxkxxxx Use of !rba is extrenmely powerful and when inproperly used,
*xxxxkkx%kx the expression for fp cannot contain a function, such as LOC
that refers to a filearea

8.4.1.9. 1% Sanme concept as !rba except the current EOF value is
used as the RBA. Exanpl e:

GET 1, 1% 1000

8.4.1.10. I$rba Position the file to relative file location rba. No
data transfer is done. See GET di scussion, section 8.8.6. Exanple:

GET 1, 1$1354
8.4.1.11. 1$% Sane concept as ! $rba except the current file EOF
val ue is used as the RBA. Exanple:

GET 1, 1$%
8.4.1.12. I #rba Set the expression rba as the new EOF val ue. See PUT
di scussion, section 8.9.9. Exanpl e:

PUT 1, 1#1354
8.4.1.13. rn An expression that evaluates to an integer in the

range 1 - 32767 representing the target record' s nunber within the file.
The filearea is positioned to the start of the record's first item The

filearea nust be open with m=1, Ror Dand with ft, if specified, = FF
or MF. Exanpl e:

GET 1,30

8.4.2. | GEL Item Group Expression List. A list of expressions
corresponding to a group of file itens. An IGEL is a series, termnated by a
sem col on, of one or nore expressions, separated by commas, corresponding to
successive file items, starting at the current file position which was
established by the GET or PUTS file positioning paranmeter. If, while
searching for a separating comma, the terminating semcolon or the start of

DISK BASIC I/0O 8-4



an expression, a remark or EOL is encountered, the search goes on to the next
BASI C statenent. The purpose of an IGEL is to serve as the |link between a
group of file itens and a group of BASIC vari abl es or expressions during the
execution of a GET or PUT statenment for marked or fixed itemfile processing.
Exanpl es of | GELs (coded in BASIC) are:

1. (30)LNS$, (15) FN$, AM , DT#( X) ;

2. "3", ANY% NM5;

3. (32)A3(X,Y), BH2+X), C', ES, "1st line
K#, FS$; "2nd |ine

If an error is encountered while processing an I GEL, the error |ine nunber
will refer to the line containing the associated GET/ PUT statenment rather
than the actual error line within the | GEL.

8.4.3. | GEL expression One of the expressions of an | GEL. For PUT
statenments, an | CGEL expression specifies the value to be assigned to the
current file item For GET statenments, an | GEL expression specifies the
variable to receive as its value the value of the current file item An |ICGEL
expression is of one of the follow ng forns:

1. exp
2. (len)exp
3. (len)$ fixed itemfiles only
4. (len)#
5. a null expression
wher e:
8.4.3.1. exp is the main portion of the | GEL expression. Normally,

exp names a BASIC variable, but in the case of PUT to a marked itemfile,
exp can be al nost anything legal on the right side of a LET statement.
When exp is a naned variable, either a scalar or an array, it is STRONQLY
recommended, though not required, that the variable nane be suffixed with
one of the 4 type synmbols ($, X, 1, or For exanple, we STRONGY
recomend:

A$, BX( X, Y), C1, D#;
i nst ead of
A B(XY),C D

Thi s reconmendati on does not apply to subscript variables (i.e., X and Y
in the above exanple).

8.4.3.2. (len)exp is a prefixed expression with len itself an
expression evaluating to an integer 0-255. (len)exp nmust be used only for
| GEL expressions that are strings.

1. For marked itemfiles, len is the nmaxi mum nunber of string
characters sent to the file during PUT or received fromthe file
during GET. If the actual nunber of characters is less, then only
the | esser nunber of characters is transferred. For marked item
files, use of the (len)exp format instead of the exp format for
string expressions is optional, though for M- files, use of the
(len)exp is reconended.

8-5 DISK BASIC I/0O



2. For fixed itemfiles, the (len)exp format nust be used for string
expressions in the |GEL as |l en specifies the exact nunber of
characters a string file itemhas or is to have. During PUT
statenment data transfer, if a variable's string has |less than |len
characters, the file item (not the variable) is padded on the right
wi th spaces as necessary. If the variable's string has nore than | en
characters, the excess characters on the right are not transferred
to the file item During GET statenent data transfer, a variable's
string receives len characters fromthe file.

3. Exanple of IGEL using (len)exp expressions:
(30) LN$, (20) FN$, AN% DP#, (2) CD$( X)

8.4.3.3. (len)$ This expression is legal for fixed itemfiles
only. len indicates the nunber of file bytes to be bypassed. For a GET
the specified nunber of file bytes are bypassed. For a PUT on an existing
record, the specified nunber of file bytes are bypassed and are not
altered. For a PUT for a new record, (len)$ defaults to (len)#. Exanple,
inthe following I GEL, the 1st 10 bytes are skipped, the next 12
transmtted, the next 17 are skipped, and the last 8 are transferred.

(10) $, AN% (10) STS$, (17) $, DP#;

8.4.3.4. (len)# For fixed itemfiles, for a GET, (lend operates
the same as (len)$ and for a PUT sends len zero bytes to the file. For
marked itemfiles, for a GET, (lend bypasses the current file item and
for a PUT, sends to the file a character string of len nulls (hex 00
characters). Exanple:

(10) #, AN% ( 10) ST$, (17) #, DP#;

8.4.3.5. A null expression A null expression can only be used in
marked itemfile GET statenent | GELs. A null expression causes bypassing
of the corresponding file item For exanple, the first, second and fourth
items are bypassed in the execution of the statement:

$T111111X!11%;

During the processing of an IGEL, if an error occurs particular to one of the
expressions of the IGEL, the error nessage will be prefixed with the
expression's position within the I GEL. For exanple, if the 4th | GEL
expression is in error, the error nmessage will be prefixed with a 4.

DISK BASIC I/0O 8-6



8.

5.

. 6.

Fixed itemfile characteristics
1. Contains zero or nore itens.
2. The type and length of each itemis deternined by the GET's or PUT' s
associated |GEL, and is not determnable fromthe file itself. This is a
basic difference between fixed itemfiles and marked itemfil es.
3. Afile may be subdivided into records all of the sane | ength.

4. Maxi num length of records is 4095 bytes.

5.  The nunber and characteristics of items of a record is dependent
solely upon record length and the 1 GEL(s) used to GET or PUT the record.

6. An 1/Olink to and/or froma fixed itemfile is created by BASIC
statement OPEN with ft = FI or FF

7. Via the GET statenent, the contents of fixed itemfile itens are
noved into the BASIC variables specified by the | GEL.

8. Via the PUT statenent, fixed itemfile itens are created or replaced
fromthe BASIC variables specified in the | GEL.

9. BASIC statenent CLOSE terminates an I1/O link between the program and
a fixed itemfile.

10. No di sk space is skipped between successive itens of a file or
bet ween the end of one record and the begi nning of the next.

11. Wen an FF file record is created, any unused space at the end of
the record is filled with zero bytes.

Marked itemfile characteristics
1. Contains zero or nore itens.
2. Amarked itemfile itemalways starts with a control (or marker) byte
foll owed by zero or nore additional control bytes followed by zero or

nore data bytes.

3. Marked file items have the followi ng formats, dependi ng upon the
hexadeci mal val ue of the 1st control (or nmarker) byte.

1. 80-FF 0-127 byte binary string foll ows.
2. 70 SOR (start-of-record). Each record of a MJfile (marked
itemfile segnented into records not all of the same |length) starts

with this item

3. 00 Fill item Used as necessary to fill out MF or MJ file
records.

8-7 DISK BASIC I/0O



4. 71 Next byte contains the count (0-255) of binary string bytes
following. This is the only situation (for now) where a second
mar ker byte is used.

5. 72 Next two bytes are a two's conplenent binary integer. This
is BASIC s format.

6. 73 Next four bytes are a binary floating point nunber in
BASIC s format of the form

1. Three bytes of normalized absol ute value mantissa of the
form . nmmm where mmmm i s expressed in these bytes in ascending
order of nmagnitude

1. Inter-byte, left to right.

2. Intro-byte, right to left. Excepting that the highest
ordered nmantissa's bit's position, since it's nantissa
value is always = 1, is used instead to contain the man-
tissa sign, 0 =+ and 1 = -.

2. The 4th byte contains the base two exponent, biased 128,
except if the byte = 0, then the floating point number = regard-
| ess of the contents of the other bytes.

7. 74 Next 8 bytes contain a binary floating point nunber of the
same format as for itemtype '73" excepting that the 1st 7 bytes are
the manti ssa and the exponent is in the 8th byte. This is BASIC s
doubl e precision floating point format.

4. A file may be subdivided into records, either all of the sane |ength
(MF file) or of varying lengths (MJ file).

5. Maximumlength of a file record is 4095 bytes. This includes al
record control, itemcontrol and data bytes.

6. |If the file is divided into records not all of the same length (a MJ
file), then each record of the file starts with the SOR item
automatically supplied by BASIC

7. Successive records in the file nay contain differing nunbers of
items. This will occur where the progranmer has multiple record types
within the file. For files with fixed length records, care nmust be taken
to avoid record overfl ow

8. Relatively positioned itens within records of the file may differ as
to type fromone record to another. This will occur where the programer
has multiple record types within the file.

9. An 1/Olink to and/or froma marked itemfile is created by the
BASI C statenent OPEN with the ft paraneter = M, MJ or M.

10. Via the GET statenent, the contents of marked itemfile itens are
noved into the BASIC variables specified in the | GEL.

DISK BASIC I/0O 8-8



11. Via the PUT statenent, marked itemfile itens are created from BASIC
vari abl es and/ or BASI C expressions specified in the | GEL.

12. BASIC statenent CLOSE terminates an I/O Ilink between the program and
a marked-itemfile.

13. No di sk space is skipped between successive itens or records of a
marked itemfile. However, SOR and fill itenms are inserted as necessary.

8.7. OPEN
DI SK BASI C s OPEN st atenent has been nodified to handl e the

follow ng formats:

1. OPEN mfan,fil espec

2. OPEN mfan,filespec,|len

3. OPEN mfan,filespec,ft

4. OPEN mfan,fil espec,ft,len
wher e:
8.7.1. See glossary for fan and fil espec definitions. Exanples of the four
formts:

OPEN "I ", 1, " XXX/ DAT: 1"

OPEN "R", 2, " XXX/ DAT", 128
OPEN " 0", 1, " XXX/ DAT: 0", " MJ'
OPEN " D", 3, " XXX/ DAT", "M, 71

8.7.2. Format 1 above is used for print/input and field itemfiles. Format
2 is used for field itemfiles. Format 3 is used for FI, M and MJ fil es.
Format 4 is used for MJ, M- and FF files.

8.7.3. m specifies the operational node for the filearea and is an
expression evaluating to a string equal to one of the foll ow ng:

1. | The filearea is open to the file for input operations only (I NPUT
if ft not specified - GET if ft specified). The filearea is positioned to
the start of the file.

2. O If the file does not exist, it is created. The filearea is opened
to the file for output operations only (PRINT if ft not specified - PUT
if ft specified). EOF is set = 0, and the filearea is positioned at ECF

3. E Sane as "O' except EOF is not changed. This allows addition to an
exi sting sequential file.

4, R If the file does not exist, it is created. The filearea is opened
to the file for GET and/or PUT operations. ECF is not changed, file is
positioned as for |I. If a subsequent PUT specifies a record at or beyond
EOF, the file is automatically extended to include that record.

8-9 DISK BASIC I/0O



5. D Sane as R except that the file nust already exist and a PUT for a
record at or beyond EOF is treated as an error condition

8.7.4. ft Specifies the file type and is an expression evaluating to a
string equal to one of the follow ng:

1. FIl Afixed itemfile not record segnented. |en nust not be
speci fi ed.

2. FF A fixed itemfile of fixed length records. |en nmust be specified.

3. M A mrked itemfile not segmented into records. |len nust not be
specified. Items within a M file cannot be updated.

4. MJ A marked itemfile segnented into records of varying | engths,
where the length is determined by searching for either EOF or the next
record's SORitem len is optional and if specified is used as a maxi mum
all owabl e Iength for the MJ file's records. AMJ file record may be
updat ed provided the record length is not increased beyond its origina
value. If the record is shortened, it is filled out with fill itens.

5. M A narked itemfile segnented into fixed length records. |en nust
be specified.
8.7.5. If ft is specified, the foll owi ng apply:

1. If a GET statenment is to actually transfer data fromthe file to BASIC
vari abl es, then the GET statenent nust specify either | GEL or | GELSN

2. If a PUT statenent is to actually transfer data from BASIC vari abl es
or expressions, then the put statement mnust specify either | GEL or

| GELSN.

3. BASIC statenent FIELD nust not be used.

4. The program nust not alter infornmation within the filearea's 1/0

buffer, and nust not rely upon values in that buffer or in the LRECL,
NEXT or EOF fields of the FCB.

8.7.6. If ft is not specified and m= R or D, the follow ng apply:

1. The file is a field item(randon) file with specifications the sane as
for Model | TRSDOS 2.3 (Mddel 111 TRSDOS 1.3) except as otherw se noted.

2. FIELD statenents nust be used for proper overlay of BASIC variabl es
into the filearea's buffer. FIELD can process 256 byte records though any
one string defined thereinis limted in length to 255 characters. The
nunber of bytes defined by a FIELD statenent is normally equal to len
shoul d not exceed | en and nust not exceed 256.

3. CET/PUT statenents nust not specify either | GEL or | CGELSN

4. If len is not specified, len is assumed equal to 256.

DISK BASIC I/0O 8-10



5. len nust be a value from1l to 256. If len is less than 256, then BASIC
nmust have been initialized explicitly specifying the fil earea count
suffixed with the character V (see section 7.3).

8.7.7. I en An expression evaluating to an integer between 1 and 256
for field itemfiles and between 1 and 4095 for fixed itemand marked item
files. For field item FF or NY files, len is the standard | ength for records
of the file. For MJ files, len is the maxi mumlength allowed for records of
the file. Currently, the file's FPDE does not carry the correct | en (LRECL)
val ue; so the len value, explicit or inplied, supplied at OPEN i s al ways
used. Checks on len are done during GET and PUT. For MF and MJ files, the
programer nust allow for the following extra bytes in the len calculations:

1. 1 byte for each item (primary item control byte)
2. 1 byte for each string actually containing nore than 127 chars.

For MJ files, the progranmer nust allow for the SOR item byte at each
record's start.

The nunber of bytes assigned to a marked file item equals the nunber of
mar ker (or control) bytes (1 or 2) plus the nunber of bytes used by BASIC to
contain the string or the nuneric:
1. Strings: one or two narker bytes plus the actual string |ength,
allowing for truncation due to expression prefix. The second marker byte
is used only if the string length is greater than 127 bytes.
2. Integers: 1 marker byte plus 2 bytes.
3. Single precision floating point: 1 nmarker byte plus 4 bytes.
4. Doubl e precision floating point: 1 marker byte plus 8 bytes.

For fixed itemfiles, the number of bytes assigned to each itemis detern ned
fromthe | GEL as:

1. For strings, for (len)$ and for (len)#, the nunmber specified by the
expression prefix.

2. Integers: 2 bytes.
3. Single precision floating point: 4 bytes.
4. Doubl e precision floating point: 8 bytes.
8.7.8. If the EOF in the FCB is nodified by OPEN, a subsequent CLCSE or

PUT, fan, & statenent will update the new EOF into the FPDE even though no
PRI NT or PUT statenent was executed.

8-11 DISK BASIC I/0O



8.8. GET
DI SK BASIC s GET statement has been nodified to handle the follow ng formats:

1. GET fan Up is null)
2. GET fan,fp 3. GET fan,fp, | GELSN 4. GET fan,fp , | GEL

wher e:
8.8.1. fan and | GELSN are defined in the glossary. fp is defined in section
8.4.1

8.
4.1 and IGEL in section 8.4.2. Exanples of the 4 formats above are:

GET 1
GET 1, 30
GET 1,!X, 1000
GET 1,,,X%Y!, Z#, (20) A$;

8.8. 2. On successful conpletion of the GET statenent, the filearea is |eft
positioned at:

1. For marked itemfile ops, the next itemof file.
2. For fixed itemfile ops, the next byte of the file.
3. For field itemfile ops, the next record of the file.

8.8.3. If FOR or EOF encount er ed:

1. For field itemfile ops, the filearea buffer is set to binary zeroes;
thus giving binary zero value to all data subsequently referenced. No
error occurs.

2. For marked itemand fixed itemfile ops, an error occurs.

8.8. 4. If an error is encountered during GET processing, the filearea
control data is reset to the state existing prior to the GET statenent. The
resulting contents of the variables-naned in the IGEL or FIELD are

i ndeterm nate. After error correction, the statenment nay be executed again.

8.8.5. If the CGET statenent specifies IGEL or | GELSN, then successive file
items are processed into successively named variables of the | GEL. For marked
file ops:

1. If an I GEL expression is null, the corresponding file itemis
bypassed.

2. An | GEL expression prefix can be used to linit the nunber of
characters for the string variable. If the file itemhas |ess characters,
the string length is set to the |esser value. If the file itemhas nore
characters, the excess characters on the right are bypassed and are not
passed to the variable.

3. As fill itens are encountered, they are bypassed.

4. Type-mismatch (TM error occurs if the named variable and the file
itemare type inconpatible.

DISK BASIC I/0O 8-12



5. For a record segnented file, a GET for the first items) may be
followed by a PUT for the rest of the items).

6. For a record segnmented file, record overflow error occurs if GET finds
insufficient itens in the record.

7. Except for the linmting effect of the expression prefix, strings are
passed fromthe file to the variable as is. There is no | eading bl ank
suppr essi on.

For fixed itemfile ops:

1. For each naned string variable, the nunber of characters specified in
the expression prefix is transferred fromthe file to the string area.

2. For record segnented files, 'RECORD OVERFLOW error occurs if GET
finds insufficient bytes in the record.

3. CETS and PUTS for successive data may foll ow one another at will
provi di ng:

1. The user keeps good track of the current position within the
record

2. Record boundaries are observed for a record segrmented file.
For marked itemand fixed itemfiles:

The input of a record's itens nay be spread across two or nore CETS.

8.8.6. The GET statenment of the fornms:

GET fan,! $rba
GET fan,!$%

all ows the progranmer to position the file for the next GET, |NPUT, PUT or
PRI NT statenent for that file area. No data transfer is done by this GET
statenment. 1%$% neans the current value of EOF is to be used as the RBA val ue.
Statenments of this formmark REMRA and REMBA invalid. Exanples:

GET 1,!$2550 positions the file to RBA 2550
GET 1,!3$X positions the file to the RBA value in X
GET 2,!%% positions the file to EOF

8-13 DISK BASIC I/0O



8.9. PUT
DI SK BASIC statenent PUT is nodified to handle the follow ng formats:

1. PUT fan (fp = null)

2. PUT fan,fp

3. PUT fan, fp, | GELSN

4. PUT fan,fp,,|GEL
wher e:

8.9.1. fan and | GELSN are defined in the glossary. fp is defined in section
8.4.1 and I CGEL in section 8.4.2. Exanple codings of these 4 fornmats are:
PUT 2
PUT 1, X
PUT 3,, 1060
PUT 1, RN, , (20)A$, B C!, D#;

8.9. 2. On successful conpletion of the PUT statenent, the filearea is |eft
positioned as done for GET

8.9. 3. If an error is encountered during PUT processing, the filearea
control data is reset to the state existing prior to the PUT statenent. The
resulting data in the file is indeterm nate, and will probably cause errors

to occur upon a subsequent GET. This should be a problemonly when updating
exi sting records, and if possible a subsequent PUT for that record should be
i ssued after the error condition has been corrected. To reduce the occasions
of file damage, when the file is opened m= R or D, the IGEL is processed
once init's entirety to catch non-1/O errors and then again to do the actua
file update

8.9. 4. If PUT specifies IGEL or | GELSN, then the val ue of successive | GEL
expressions are sent to successive itens of the file. For marked itemfile
ops:

1. SOR and fill itenms are inserted into the file automatically if and
when necessary.

2. An I GEL expression may be anything legal on the right side of the
equation in a let statement, excepting functions referencing a fil earea.

3. Except for the linting effect of the | GEL expression prefix, the
resulting string is sent to the file as is.

4. Nurmeric literals or expressions are sent to the file as the BASIC
nuneric type they convert to internally in BASIC

5. For fixed length records and updated variable | ength records, each PUT
statement replaces that portion of the record fromthe PUT's file

posi tioning through the end of the record, using fill itenms if and as
necessary. ****** CAUTION Any itens previously existing in relative
position in the record higher than the last itemwitten by the PUT
action are lost, as all of the record s disk space fromthe |ast item of
the PUT to the end of record now contain fill itemns.

DISK BASIC I/0O 8-14



6. The naxi mumtheoretical sumof bytes for a record (the sum of bytes
used for control, for numeric data and for strings) can exceed |en
(defined in OPEN, section 8.7) so long as the actual number of bytes used
during the record's PUT(s) does not exceed | en

For fixed itemfile ops:
For each string variable, the nunber of characters specified in the

required expression prefix is transferred fromthe variable to the file
by padding with blanks or truncating on the right done as necessary.

8.9.5. For marked itemand fixed itemfiles:

1. 1. The output of a record's itens may be spread over two or nore PUT
st at enent s.

2. 2. Data is noved into the filearea's buffer, but is not actually
witten to disk until one of the follow ng occurs:

1. The filearea is closed.

2. The buffer is needed to contain data from another part of the
file.

3. A'PUT fan,& or a 'PUT fan, &' statenent is execut ed.

3. 'RECORD OVERFLOW error occurs if the allowable record length is
exceeded.

4. See OPEN (section 8.7.7) for discussion of the nunber of bytes used by
nurmeric file itens.

8.9.6. The PUT statement of the form
PUT fan, &

all ows the progranmmer to force the wite of the filearea's buffer to disk if
that buffer contains data not yet witten to disk. If the buffer has no such
data, the statenment is ignored. The programer nust renmenber that actual data
wites to disk for marked item fixed itemand field item (where len |ess
than 256) files are not necessarily done at PUT tinme, under the assunption
that nore wite data may yet appear in the buffer. 'PUT fan,& forces this
pendi ng data out to disk, and should be used whenever any of the foll ow ng
condi tions exist:

1. It will be some tine before the file area will be used again, but the
programer does not want to issue CLOSE

2. Proper interaction with other fil eareas depends upon the pending data
bei ng on the di sk.

3. The data is very inportant.

8-15 DISK BASIC I/0O



The file area's file positioning is not affected by the PUT fan, & function.
Exanpl e:

PUT 3, &
8.9.7. The PUT statenment of the form
PUT fan, &&

all ows the programmer to force the wite into the directory of the EOF
currently in the filearea's control data. This special PUT will save the
programer the necessity of doing a LOC(fan)l1l function to renenber the
current file positioning, a CLOSE to cause EOF wite into the directory, an
OPEN to reestablish the link to the file, and a positioning GET or PUT to
position the filearea back to where it was. Before actually witing the EOF
to the directory, the PUT fan, & function perforns a PUT fan, & function. The
filearea's file positioning is not altered by the PUT fan, & function
Exanpl e:

PUT 2, &&
8.9.8. The PUT statenment of the fornmns:

PUT fan, ! $RBA
PUT fan,!$%

function identical to that for CGET (see section 8.8.6). 8.9.9. The PUT
statement of the form

PUT fan, ! #rba

causes the file's EOF to be set to the value of the expression rba, which
must evaluate to a RBA. Nothing else is changed for that filearea. Renenber,
a CLOSE or a PUT fan, & statement mnust be executed to force the wite of the
new EOF into the file's FPDE. Exanpl e:

PUT 2, 1#2000

causes the EOF in filearea 2's control data to be set to 2000.

8.10. REMRA and REMBA
Wthin each filearea's control data, BASIC saves two additional relative file
| ocati on val ues:

1. 1. REMRA Menbered Record Address.
2. 2. REMBA Menbered Byte Address.
wher e:

1. The ONLY places where REMRA is used is (1) to position the file when
the GET or PUT statenent has fp = # (see section 8.4.1.3) and (2) in the
LOC(fan)$, LOC(fan)! and LOC(1)# functions (see section 8.12).

DISK BASIC I/0O 8- 16



2. The ONLY place where REMBA is used is to position the file when the
CGET or PUT statenent has fp = $ (see section 8.4.1.4).

3. Both REMRA and REMBA are in RBA fornmat.

4. Each OPEN statement and each GET or PUT statenent with rp = | RBA or
1 $% mar ks both REMRA and REMBA as invalid.

5. Each I NPUT and PRI NT statenent sets REMRA to the file position
existing at the start of the statement execution. REMBA is not used for
print/ input file ops.

6. Each CGET or PUT statement with fp = null, rn, !rba, !'%or * (for *,
only if REMRAis invalid at statenent start or if the file is not record
segnmented) sets REMRA = to the file positioning resulting fromthat fp
val ue.

N

Each GET or PUT statenent with fp = null, rn, !rba, !%or * sets REMBA
to the file positioning resulting fromthat fp val ue.

8. Don't let the concepts of REMRA and REMBA puzzle you too nuch. As
stated above, there are only two places where REMRA is used (when fp = #
and for the LOC functions) and only one where REMBA is used (when fp =
$). If you never use partial record I/O then REMRA and REMBA are al ways
the sane. The nbst comon use will be in executing a PUT (with fp = #)
for the record just read.

8.11. Pseudo FIELD Function

For fixed itemand marked itemfiles, the FIELD statenment is not | egal
However, there are tines when the progranmrer nay want to set the strings
associated with an IGEL to their specified | engths and keep themthat way by
usi ng LSETs and RSETs. The user could do this by using the STRINGS function.
Another way is to use the pseudo FIELD function having the follow ng formats:

GET fan, % | GELSN
GET fan, %, | GEL
PUT fan, % | GELSN
PUT fan, %, | GEL

PP

wher e:

1. fan and |1 GELSN are defined in the glossary and I1GEL is defined in
section 8.4.2.

2. fan specification is required for text format protocol only. \Wether
the filearea is open or what it is opened for is not of concern to this
pseudo FIELD function; this function is only concerned with the | GEL and
does not alter the filearea in any way.

3. The I CGEL is processed:

1. Nuneric variables are | eft unchanged.

2. Expressions of the form(len)$ and (|l enh are bypassed.

8- 17 DISK BASIC I/0O



3. String variables in the I GEL nmust be prefixed.

4. String variables are assigned length = to the | GEL expression
prefix and either truncated or padded on the right with bl anks as
necessary. Aside fromthe padding or truncation, the string contents
are not changed. However, if the string is not currently in the
string area, it is nmoved there. Subsequently, LSET and RSET may be
used to nove data into these strings.

4. Exanpl e:
PUT 2, %, | X% (30) A$, DP#, ( 10) BS;

causes string A$ and B$ to be nade into strings 30 and 10 characters in

| ength respectively, being padded with spaces or truncated on the right

as necessary. No data is transferred to the file and file positioning is
not changed.

8.12. LCC Function
NEWDOS/ 80 DI SK BASI C has a LOC function defined as foll ows:

1. LOC(fan) where fanis a file area nunber, 1 - 15, of a filearea
opened for field item M- or FF file operations. This function returns an
integer 1 - 32767 = the nunber of the previous record GET/PUT for that
file area. 0 = none or REMRA invalid. Exanple:

PUT 1, 34
X = LOC(1)

results in X have the val ue 34.

2. LOC (fan)$ For record segmented files, this function returns -1
(IF statement true) if the start of the next record (if REMRA valid) or
the current file position (if REMRA invalid) is greater than or equal to
EOF, and returns O (IF statement false) if |less than EOF. For non-record
segnmented files and print/input files, this function returns -1 (IF
statement true) if the current file positioning is greater than or equa
to ECF, and returns O (IF statement false) if less than EOF. LOC (fan)$
differs fromfunction EOF in that EOF tests only for exactly at EOF

Exanpl e:
IF LOC(1)$ THEN END

ends the program execution if the next record is |ocated at or beyond the
file's ECF.

3. LOC (fan)% Returns an RBA equal to the file's EOF. Exanple,
suppose the file contains 3142 bytes:

X = LOC(1) %

will result in X having the value 3142.

DISK BASIC I/0O 8-18



4. LOC (fan)! For record segnmented files, this function returns a
RBA val ue equal to:

1. If REMRA valid, the location of the file's next record.
2. If REMRA invalid, the current file position

For non-record segnented files and print/input files, this function
returns an RBA equal to the current file position

Exanple, if the latest fully or partially processed record for filearea 1

starts at relative file position 1667 and the next record starts at rel a-
tive file position 17$1, then

X = LOC(1)!

will set X equal to 1701

5. LOC(fan)# Ret urns an RBA val ue equal to REMRA. Error if REMRA
currently invalid. Exanple, see above exanpl e:
X = LOC(1) #

will set X = 1667.

Use of LOC(fan)! and/or LOC(fan)# allows the programer to obtain the file
position of a group of itens (non-record segnented file) or a record (record
segnented file), remenber it for future use, and then at a future tine,
reposition the file to that data via either fp = !rba or fp = !'$rba. This
all ows programmers to build index files that index into all types of files
for random accessi ng.

8.13. I/O Error Recovery

The operation of the DI SK BASIC statenents PRI NT, PUT, |INPUT, and GET has
been altered such that if an error occurs during statenent processing, the
filearea control data is left unchanged by that statenent. This allows the
user/ programer nore options when an error occurs. Exanples:

1. The programis outputting to a sequential print/input file. 'DISK
FULL' error occurs. EOF is returned to where it was at the statenent

begi nning; the file can then be closed, and if no other files are open on
that drive, another diskette can be nounted, a new file opened for the
same file area, and then the statenment in error executed again to
continue processing. Later input processing can then process both files,
using EOF on the first to trigger the shift to the 2nd.

2. The programis outputting to a MJfile using two or nore PUTS to out-
put a single record. 'DI SK FULL' error occurs on the 2nd PUT of the cur-
rent record. ECF is reset to where it was at the error statenment's begin-
ning, not to record' s beginning. Before switching to a new file, EOF nust
be set back to the record's beginning via the followi ng two statenents:

X =LOC(fan)#: PUT fan,!#X

8-19 DISK BASIC I/0O



Then the file area nmay be closed, a new diskette nmounted, the filearea
reopened, and processing continued back at the beginning for the record
(not to the beginning of the PUT). Since a MJ file nust always start with
an SORitem if two MJfiles are used in concatenation, the 1st cannot
end with a partial record in anticipation of the next containing the rest
of the record.

**x*xxxkkx%* The user/programrer nust use extreme caution in swapping di skettes
on one drive or in swapping a given diskette to another drive when nore than
the error filearea is open for the original drive.

Also to be renmenbered is that though the filearea control data is restored to
what it was at the statenent beginning, the file data associated with a PUT
is indeternm nate, and the contents of the variables receiving data on a GET

i s also indeterm nate.

In order to facilitate error recovery and coding in general, BASIC uses a
separate control area to performthe GET, PUT or other filearea related
operations, leaving the filearea's control data unchanged until the operation
conpletes without error. In NEWDOS80 there is only one tenmporary contro

area; a function using a filearea CANNOT be nested wi thin another function
using a filearea, even if both file areas are the sane. Fox exanple, the two
statenents given above CANNOT be conbined into one as:

PUT f8n, 1#LOC(f an) #

8. 14. Additional notes about NEWDOS/ 80 DI SK BASIC |/ O

1. For marked itemand fixed itemfiles, the programmer CGETS or PUTS an
itemgroup of data at one tine. The only limtations on the anount of
data transmtted are file size and, if applicable, record size. Logica
records can be any length between 1 and 4095 bytes. The progranmer shoul d
never refer to the filearea buffer(s), as the contents at any time are
unpredi ctabl e, *****x** WARNI NG ******* |f the programalters data in the
filearea's buffer when a file is opened for anything other than field
item operati ons where FIELD was and is legal, the results are unpredic-
tabl e and usual ly disastrous. Extrene caution nmust be used to avoid the
file damagi ng situati ons where FIELD statenents have been | egally used,
then that filearea used for 1/O where FIELD is not |egal but RSET or LSET
functions continue to be used for one or nore FIELD defined strings for
that filearea

2. The special functions designed for field itemfile ops, (MD$, MIS,
MKS$, CVvD, CVI, CVS, LSET, RSET, etc.) work as before. However, the use
of MKD$, MKI$, MKS$, CVD, CVI, and CVS may be dropped for narked item or
fixed itemfile ops as GET and PUT will transmit numeric as well as
string data.

3. For GET or PUT statenments using either | GEL or | GELSN, the programmer
nmust renenber that any errors detected during | GEL processing will be
recorded as an error occurring on the line containing the GET/PUT rat her
than on the actual text line of the |GEL.

DISK BASIC I/0O 8- 20



4. To facilitate error detection for GET or PUT statenents using | GELSN
the GET or PUT should be the only statenment on its text |ine.

5. Afile can be updated only if it can be opened Ror D. M and
print/input files cannot be updated, though of course they may be added
onto. MJfile records can be updated provided the new record | ength does
not exceed the original length of the record. The last record of a MJ
file may be extended without this restriction

6. Fileareas open for print/input files may have GET or PUT statenents
executed for themif the fp type is !$rba, !'$% !#rba, & &% or %.

7. BASIC functions (i.e., EOF, LOC, LOF, etc.) that use fan cannot exi st
within an IGEL or within OPEN, GET, PUT, CLOSE, PRINT (to disk) or |NPUT
(fromdisk) statements. This is a NEWDOS/ 80 restriction not existing in
TRSDOS and is inmposed by the error recovery operations (see section
8.13).

8. For disk files whose records can span two or nore disk sectors (files
whose record | engths are either not standard or do not divide into 256
evenly), the nunber of actual disk I/Os is increased up to 200% (as
conpared with files whose record | engths are standard and do divide into
256 evenly) when a record or itemgroup actually has parts in two or nore
file sectors. The percent overall increase in disk 1/Ois approximtely
(LEN 256) *200 where LEN is the average | ength of records or item groups
processed, and where LEN < 256. No approximation is given for LEN > 256.

8-21 DISK BASIC I/0O






9. 1.

9. ERRCR CODES AND MESSAGES

DOS Error Codes and Messages

The following is a list of DOS error nessages for NEWOQOS/ 80 Version 2
corresponding to error codes placed in register A on a CALL or JP to 4409H
The codes are listed in both deci mal and hexadeci nal

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

00
01
02
03
04
05
06
07
08
09
0A
0B
oC
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
34
25
26
27
28
29
2A
2B
2C
2D

NO ERROR

BAD FI LE DATA

SEEK ERRCR DURI NG READ

LOST DATA DURI NG READ

PARI TY ERROR DURI NG READ

DATA RECORD NOT FOUND DURI NG READ
TRI ED TO READ LOCKED/ DELETED RECORD
TRI ED TO READ SYSTEM RECORD

DEVI CE NOT AVAI LABLE

UNDEFI NED ERROR CCODE

SEEK ERROR DURI NG WRI TE

LOST DATA DURI NG WRI TE

PARI TY ERROR DURI NG WRI TE

DATA RECORD NOT FOUND DURI NG WRI TE
VWRI TE FAULT ON DI SK DRI VE

VWRI TE PROTECTED DI SKETTE

DEVI CE NOT AVAI LABLE

DI RECTORY READ ERROR

DI RECTORY WRI TE ERRCR

| LLEGAL FI LE NAME

TRACK # TOO HI GH

| LLEGAL FUNCTI ON UNDER DOS- CALL
UNDEFI NED ERROR CODE

UNDEFI NED ERROR CCODE

FILE NOT I N DI RECTORY

FI LE ACCESS DEN ED

DI RECTORY SPACE FULL

DI SKETTE SPACE FULL

END OF FI LE ENCOUNTERED

PAST END OF FI LE

DI RECTORY FULL. CAN T EXTEND FI LE
PROGRAM NOT FOUND

| LLEGAL OR M SSI NG DRI VE #

NO DEVI CE SPACE AVAI LABLE

LOAD FI LE FORVAT ERROR

MEMORY FAULT

TRI ED TO LOAD READ ONLY MEMORY

| LLEGAL ACCESS TRI ED TO PROTECTED FI LE
FI LE NOT OPEN

| LLEGAL | NI TI ALI ZATI ON DATA ON SYSTEM DI SKETTE
| LLEGAL DI SKETTE TRACK COUNT

| LLEGAL LOd CAL FI LE

| LLEGAL DOS FUNCTI ON

| LLEGAL FUNCTI ON UNDER CHAI NI NG
BAD DI RECTORY DATA

BAD FCB DATA

ERROR CCDES



46 2E SYSTEM PROGRAM NOT FOUND

47 2F BAD PARAMETERS)

48 30 BAD FI LESPEC

49 31 VWRONG DI SKETTE RECORD TYPE

50 32 BOOT READ ERROR

51 33 DOS FATAL ERROR

52 34 | LLEGAL KEYWORD OR SEPARATOR OR TERM NATOR
53 35 FI LE ALREADY EXI STS

54 36 COMVAND TOO LONG

55 37 DI SKETTE ACCESS DEN ED

56 38 | LLEGAL M NI DOS FUNCTI ON

57 39 OPERATOR/ PROGRAM PARAMETER REQUI RE FUNCTI ON TERM NATI ON
58 3A DATA COVPARE M SNMATCH

59 3B | NSUFFI CI ENT MEMORY

60 3C | NCOVPATI BLE DRI VES OR DI SKETTES

61 3D ASE=N ATTRI BUTE. CAN T EXTEND FI LE

62 3E CAN T EXTEND FI LE VI A READ

If the error code is not defined, UNKNOAN ERROR CODE nessage wi |l be
di spl ayed.

SYS4/ SYS is the DOS error nessage di splay nodul e.

9.2. DISK BASIC Error Codes and Messages

In addition to the standard ROM BASIC LEVEL Il error codes, the follow ng
DI SK BASI C error codes are used:

51 FI ELD OVERFLOW 68 TOO MANY FI LES

52 | NTERNAL ERROR 69 DI SK WRI TE PROTECTED

53 BAD FI LE # 70 FILE ACCESS DEN ED

54 FI LE NOT FOUND 71 SEQ # OVERFLOW

55 BAD FI LE MODE 72 RECORD OVERFLOW

56 FI LE ALREADY OPEN 73 | LLEGAL TO EXTEND FI LE

58 DOS ERRCR 75 PREVI QUSLY DI SPLAYED ERROR
59 FI LE ALREADY EXI STS 76 CAN T PROCESS LI NE

62 DI SK FULL 77 BAD FILE TYPE

63 I NPUT PAST END 78 |1 GEL SYNTAX ERROR

64 BAD RECORD # 79 1 GEL | TEM SYNTAX ERROR

65 BAD FI LE NAME 80 BAD/ I LLEGAL/ M SSI NG | GEL | TEM PREFI X
66 MODE M SNVATCH 82 BAD RECORD LENGTH

67 DI RECT STATEMENT I N FI LE 83 STMI' USES 2 FI LE NAMES

84 BAD FI LE PCSI TI ONI NG PARAM

SYS13/ SYS is the nodul e that displays DI SK BASI C and ROM BASI C error
messages. It is normally not in menory until needed. If an error code is
generated for which there is no message, UNPRI NTABLE ERROR i s di spl ayed.

ERRCR CCDES 9-2



10. GLOSSARY

This chapter contains the definitions of sone of the ternms used throughout
t he NEWDOS/ 80 docunent ati on.

al paha or al pha character
Used when referring to the set of characters A- Z and a - z.

al phanuneri c
Used when referring to the set of characters A- Z a - z and 0 - 9.
bi t
The smal | est accessible unit of nmain or diskette nenory. A bit has a
val ue of either 0 (neaning off) or 1 (nmeaning on). A group of 4
consecutive bits is known as a hexadecinmal (or hex) digit, and a group
of 8 consecutive bits is known as a byte. Whenever the docunentation
refers to a bit within a byte, the convention is bit 7 is the bit on
the left and bit is the bit on the right with the order of bits within
a byte going left toright, 7 to 0. The concept holds for bits within a
hex digit, left toright, 3 to O.

boot see reset/power-on.

BOOT/ SYS
One of the two control files required on every diskette used with
NEWDOS/ 80. See section 5. 1.

buffer
An area of main nenory used to hold the contents of a sector read from
disk or to hold the new contents of a sector being witten to disk.
Each open FCB has a 256 byte buffer assigned for this purpose. Byte
node disk 1/O such as is used for print/input, marked item fixed
item and (if record length less than 256) field itemfiles actually
operates to and fromthe buffer with disk sector reads and wites being
done when necessary, and not on each GET or PUT or PRINT or | NPUT
st at enent execution.

byt e
The smal | est addressable unit of nmamin or diskette nenmory. A byte is
conposed of 8 bits. Wen the value of a byte is given, it is usually
expressed as two hexadecimal digits. In NEWDOS/ 80 docunentation, the
words byte and character are used interchangeably even though character
can have a nore restrictive neaning.

chai ni ng
Used in NEWDOS/ 80 to refer to the process of bringing keyboard i nput
characters froma disk file known as a chain file. See section 4.3.

character

Used i nterchangeably with byte, but also used to refer to a byte
contai ning a printable val ue.

10-1 GLOSSARY



cl ose

In disk 1/O to close a FCB or a filearea neans to dissolve the |ink
bet ween a program and a disk file created by the open function

DEC Directory Entry Code
A one byte code used to specify a particular FDE and used by DOS to
qui ckly locate that FDE in the directory. Wien an FCB is open, its 8th
byte contains the DEC for the file's FPDE. Each FXDE contains in its
2nd byte the DEC for the preceding FDE for the sane file, and each FPDE
or FXDE whose 31st byte = 255 OFEH) contains in its 32nd byte the DEC
of the next FXDE for the file. The format of the 8 bit DEC is:

rrrsssss

where sssss+2 = the relative nunber within the directory of the sector
containing the FDE, and rrr tines 32 (20H) equals the relative byte
address within the sector of the FDE

Dl R/ SYS see sections 5.1 and 5.6

One of the two control files required on every diskette used with
NEWDOS/ 80. DI R/ SYS contains the directory for a diskette.

directory see sections 5.1 and 5. 6.

In DOS, the directory refers to the contents of the file D R SYS that
nmust be present on every diskette used by NEWDOS/ 80. The directory
contains the control information specifying all files and the free or
al l ocated state of all space on the diskette. If the directory is
damaged or destroyed, the rest of the information on the diskette is
usual Iy, but not always, no |longer available to the user.

Di sk Operating System

Though many t housands of programmers are quite capable of witing their
prograns to comunicate directly with the diskette, it is al nost always
preferable to all ow anot her program or collection of prograns, to act
as an internmedi ary between the user programand the disk files the
programuses. This internmediary is commonly called a DOS and serves to
both structure and vastly sinplify a programis 1/Owith the files it
uses. Usually, as in NEWDOS and TRSDOS, the DOS functions are nuch nore
ext ensi ve such that the DOS becones the primary control programin the
conput er and has avail abl e various other functions, other than disk 1/0
control, that it performs in response to conmands, known as DOS
conmmands (specified in chapter 2), or DOS calls (specified in chapter
3). In NEWDOS/ 80, the DCS operates in the 4000 - 51FFH regi on of nmin
menory with sone of its functions using the 5200 - 6FFFH region and the
spool er running out of highest nmenory.

DCS- CALL or dos-cal

Refers to the DOS state entered when a user programcalls the DOS
routine at 4419H (see sections 3.11 and 4.4) to execute a DOS comand
or a user program There can be multi-levels of DOS-CALL state.

DOS conmand or doscnd

Refers to one of the built-in DOS functions described in chapter 2. DOS
conmands can be executed by keying in fromthe keyboard or through
calls fromthe current executing program (see DOS-CALL).

GLOSSARY 10-2



EOF

EQL

EOM

EOR

ECS

End O File

O or pertaining to the end of a file. Sone files have one or nore
specific ECF bytes that mark the end of a file (assenbler source files
use 1AH, BASIC non-ASClI| text uses 3 consecutive bytes of zeroes,
etc.); however, nost files do not and rely entirely upon the EOF within
the FCB or FPDE to indicate where the file ends. If a file is enpty,
EOF equals and if a file has 1324 bytes, the EOF val ue expressed as an
RBA is 1324. Wthin a NEWDOS FCB, EOF is a three byte RBA val ue of the
file's last byte+l. The EOF value stored in a file's FPDE is not in RBA
format. See sections 5.7 (fpde bytes 4, 21 and 22) and 5.9 (FCB 9, 13
and 14).

End O Line

O or pertaining to the end of a line. For input data or a conmand,
this is usually the ENTER character (ODH). For BASIC text, a zero byte
ends a line. If the Iine does not have an explicit EOL character, then
EOL neans the line's last character + 1.

O or pertaining to the end of a nessage. The EOM character code is 03.
EOMis used to end a nessage when that nessage end is not also the end
of the Iine. Wien encountered, the EOM character is not displayed or
printed nor is the display or printer advanced one character.

End O Record
O or pertaining to the end of a record. FORis also the relative byte
address within the file of the record's |ast byte + 1.

End O Statenent
O or pertaining to the end of a statenent. For BASIC text, a colon
ends a statenent.

extent el enent

A two byte control elenent within a FPDE or FXDE specifying a 1 to 32
granul e contiguous area of diskette storage assigned to the file. See
section 5.7, FPDE 23rd-30th bytes.

fan file area numnber
A fan is a BASIC expression evaluating to an integer (range 1 - 15)
specifying which filearea is to be used for the current BASIC function

FCB File Control Bl ock
See section 5.9. A data area containing information controlling an 1/0O
link between a program and a diskette file. The link is created by the
open function, dissolved by the close function, and used by all other
disk 1/0O functions including GET, PUT, PRINT, |INPUT, LOC, etc. The FCB
contai ns the NEXT and EOF fields, the buffer address, security
i nformation, record | ength, etc.

FDE File Directory Entry. See section 5.6.3.
In NEWDOS, each sector of the directory file DI R SYS, except for the
first two, is divided into eight 32 byte control areas called FDEs. A
FDE is either free (available for assignnment) or in use as a FPDE or
FXDE.

FF file

A BASIC fixed itemfile segmented into records all of the sane I ength.

10-3 GLOSSARY



FI file

A BASIC fixed itemfile that is not record segnented.

file or disk file or diskette file

A collection of data on a disk or diskette. A file may contain diskette
control information (as do BOOT/ SYS and DI R/ SYS), a nmchi ne | anguage
execut abl e program (as do SYS0/ SYS, BASI C/ CMD and SUPERZAP/ CMD), a
BASI C program (as does CHAI NTST/ BAS) or user data (such as mailing
lists, payroll, inventory). Control data for all files is contained
within the file DIR/ SYS (see section 5.6) with each file being assigned
one FPDE and zero or nore FXDEs. A file nmust exist entirely on one

di skette. Diskette space is allocated to a file as needed in units
cal l ed granul es.

filearea

field

An area of BASIC s system storage containing control infornmation, a FCB
and a 256 byte buffer. Afilearea is used during disk file operations
to maintain an 1/O link between a file and the BASIC program This 1/0O
link is established by OPEN, used by PRI NT, |NPUT, GET, PUT, FIELD

EOF, LOF, LOC, etc., and dissolved by CLOSE. Wen 2 or nore fil eareas
are open to the sanme file, each acts in ignorance of the others. A
BASI C program may have open at any one time as nmany as 15 fil eareas.
The nunber of fileareas actually available to the BASIC programi s
specified when BASIC is activated (see section 7.2) with the default

bei ng 3.

itemfile

This is a name used in NEWDOS/ 80 for what, in TRSDCS disk BASIC, is
called a randomfile since all three types of files, field item fixed
itemand marked item can be used either randomy or sequentially or
both. Field itemand fixed itemfiles are essentially the sane type of
file; the main difference is in the type of 1/O1link, field itemor
fixed item used. For field itemfiles, the definition of the file
itenms is done solely via the FIELD statenent. Field itemfiles are

al ways segnmented into records all of the sane length, with that |ength
being from1 to 256 bytes.

file item
A unit of file storage zero or nore bytes in length containing a
nuneric value or a character string.

fil espec
This termis used in NEWDOS/ 80 to refer to the conbination of file
nane, name extension, password and drive number used to specify a file
in a DOS conmand, BASIC statenment or an unopen FCB. O the four
el ements, only file nane is required. See section 2.1 for ful
definition of filespec.

fixed itemfile See section 8. 4.
Fixed itemand field itemfiles are essentially the sane type of file.
The difference lies in the type of link, field itemor fixed item used
inthe file I/O For fixed itemfile processing, the definition of the
file items is entirely dependent upon the I GEL used in the GET or PUT
statement. There are two types of fixed itemfiles, FI and FF

f or mat

Asi de from many ot her definitions of the word format, it is also the
word used for the process that prepares a raw diskette for use under
NEWDOS/ 80. This process magnetically structures the diskettes into

tracks which are at the same time further sub-divided into 256 bytes

GLOSSARY 10-4



sectors. Depending on the drive type, the diskette will contain 35, 40,
77 or 80 tracks, and dependi ng upon the drive type and recordi ng

density, each track will contain 10, 17, 18 or 26 sectors.

fp file positioning
See section 8.4.1. fp refers to the second paraneter of a GET or PUT
statenment. fp specifies the file positioning to be done during the file
posi tioni ng phase that precedes the data transfer phase, if any, of a
CET or PUT statenent.

FPDE File Primary Directory Entry
See section 5.7 for FPDE specification. A FPDE is created in the
di skette directory whenever a file is created. If a file exists on a
di skette, there will always be a FPDE for it in the directory. The FPDE
contains the file nane, extension, passwords, protection |evel, EOF
the first 4 extent elenents and other information. Wien a file is
killed, the FPDE and any associ ated FXDEs are dissol ved.

FRDE File Extended Directory Entry
See section 5.8 for FXDE specification. Whenever the nunber of extent
el ements needed to account for a file's diskette space exceeds four
one or nore FXDEs are created in the directory to hold the extra extent
el ements, a naxi mum of four per FXDE. If a file has FXDEs, they are
accessed via the FPDE. As a file's diskette space requirenments change,
FXDEs are created or dissolved as necessary, and when a file is killed,
al | FXDES associated with that file are dissol ved.

GAT Ganule Allocation Table
See section 5.6.1. The GAT is that portion of the directory's 1st
sector (known as the GAT sector) wherein the free or allocated status
of each granule is accounted for

granul e
The smallest unit of diskette storage allocatable to or de-allocatable
froma file. Wen a file needs diskette space, one or nore granules is
al | ocated. For NEWDOS/ 80 a granul e consists of 5 sectors equaling 1280
byt es.

hash code

Hash code as used in the DOS refers to a one byte encode of a file's
nane and extension used during open to rapidly find the file's FPDE in
the directory. Hash codes are stored in the H T sector, see section
5.6.2.

hexadeci nal or hex

A nunbering systemusing 16 digits, rather than 10 used by the deci nal
system The digits are 0, 1, 2, 3, 4, 5, 6, 7, 8 9, A B C, D E and
F. The reason for the use of hexadeci nal as opposed to decimal is that
a hexadecimal digit is an easy way to express the value of 4
consecutive bits, where the follow ng table defines the correspondence
bet ween a hexadeci nal digit and four binary bits.

0 0000 4 0100 8 1000 C 1100
1 0001 5 0101 9 1001 D 1101
2 0010 6 0110 A 1010 E 1110
3 0011 7 0111 B 1011 F 1111

10-5 GLOSSARY



Hexadeci nal representation of disk, file or main menory | ocations and
contents are widely used in the conmputer industry. Though some users
can get by without |earning anything of hexadeciml, we strongly
recommend that users learn the rudinents, at |east enough to understand
t he SUPERZAP and DEBUG di spl ays. Throughout NEWDOS/ 80 and its
docunent ati on a hexadeci mal nuneric value is expressed with a suffixed
H character (i.e., 13 = OH or 256 = 100H) unl ess ot herw se specified.

H MEM
Refers (1) to the address of the highest usable main nenory | ocation
(2) to the 2 byte nain nenory area (Mdel | |ocations 4049H - 404AH and
Model 111 locations 4411H - 4412H) where the HIMEM val ue is stored and

(3) to the nane of a DOS command (see section 2.25). Main menory above
H MEM is either non-existent or is reserved for other uses. Al user
Z-80 code prograns should be coded to observe H MVEM

H'T  Hash code Index Table
See section 5.6.2. That portion of the directory's second sector (also
known as the HI T sector) that contains the hash codes for all files on
the diskette. Instead of searching the entire directory for a file's
FPDE during open, DOS conputes the hash code fromthe file name and
extension, looks it up in the H'T sector and then goes directly to the
sector containing the FPDE

I/O input and/or output

I/O link or 1/0O path
Actual disk 1/0O between a disk file and nain nenory is done via an I/0O
link (al so known as an I/ O path) created by open, dissolved by close,
and used by GET, PUT, PRINT, |INPUT, LCC, ECF, etc. Wile the link is
open, the controlling information for the link is contained in a FCB or
filearea (which contains a FCB). Miultiple links to the sane file can be
open at the sane tinme with each |ink knowi ng nothing of the others. An
I/Olink renenbers the position in the file where it is operating; thus
nmultiple links can be operating on the sane file at the sane tine.
However, be careful as, renenmber, each I/O link knows nothing of the
other's actions.

IGEL Item Group Expression List
See section 8.4.2. An IGEL is a list of BASIC expressions correspondi ng
to a group of file itens during the execution of a GET or PUT statenent
used in fixed itemor marked itemfile processing.

| GEL expression See section 8.2.3.
An | GEL expression (usually but not always a BASIC variable) is that
part of an | GEL corresponding to a file item For each file item
processed in a fixed itemor marked itemfile GET or PUT statenent,
there is a corresponding | GEL expression in the | GEL.

| GELSN | GEL Sequence Nunber
The Iine nunber (al so known as sequence nunber) of the BASIC text |ine
containing the first or only line of the ICGEL to be processed by the
current CGET or PUT statement. If used, the IGELSN is the 3rd paraneter
of the GET or PUT statenment. An IGELSN is used in a fixed itemor
mar ked item GET or PUT statenent whenever the GET or PUT statenent
itself does not contain the IGEL, and this usually occurs when the sane
|GEL is used by two or nmore CGET and/or PUT statenents.

GLOSSARY 10-6



i tem group
A group of zero or nore file itens. In BASIC, an itemgroup is the zero
or nore file items processed by an individual |NPUT, PRINT, GET or PUT
statenment and is nbst comonly equivalent to a |logical record.

I en See section 8.7.7 and see LRECL
The paraneter in a BASIC OPEN statenent that specifies either the
standard or the maxi mumrecord | ength.

| ogi cal record
A group of neaningful related file itens. Though file data is
physically ordered on the diskettes into sectors, the progranmer
usual ly deals with data groupings that are logically related and
grouped, rather than physically related and grouped. Thus, when data is
read fromor witten to a file, it is usually done so in |ogical record
units.

LRECL Logi cal RECord Length
This is the standard or maxi mumlength in bytes for records of a file.
For non-BASIC files LRECL is O - 255 (with O neaning 256) and, is
stored in the FPDE s 4th byte (though never used) and the FCB s 10th
byte. In BASIC, LRECL is equivalent to len (see section 8.7.7).

| unp
refers to a division of diskette space as that space is accounted for
in the diskette directory. Each of the first 192 bytes in the GAT
sector contains either space allocation or |ockout information for one
| unp where, depending on the nunber of granules per |unp, each bit
within the byte is either unused or specifies the allocated/free or
non-exi stent/ existent state of one of the lunp's granules. This
definition was coined for use with NEWDOS/ 80 Version 2 to avoid using
the words track and cylinder. See sections 5.6.1 and 5.7 (23-30th byte
di scussi on).

marked itemfile see section 8.6
Afile in which each file itemis identified as to I ength and type by a
prefixed marker byte. A marked itemfile is distinctly different froma
print/input, field itemor fixed itemfile. The three types of marked
itemfile are M, MJ and M.

M- file
A marked itemfile that is segnented into records all of the sane
length. M file A nmarked itemfile that is not record segnented.

ns mllisecond

MJ file
A marked itemfile that is segnented into records of differing | engths.

nul |
The absence of a paranmeter or expression. \Wen paraneters are separated
by conmas, back to back conmas ( , ) indicate a null.

10-7 GLOSSARY



nul | character

A character or byte with value = 0.

null string

open

A string or an expression evaluating to a string zero characters in
| engt h.

In disk 1/O to open a FCB or a filearea is to establish a link between
the program and a disk file, using the FCB or filearea (which contains
a FCB) to hold the link's control data. Though it is quite comobn to
say that a file is opened, it is nore correct to say that a FCB or
filearea is opened for there is nothing in the disk file indicating
open or closed state or the nunber of |inks opened to it as nore than
one FCB or filearea may be open to a given file at the same tinme. The
link established by open renmmins until dissolved by the close function
It is the link that deternmines the type of 1/0O done with a file and
where in the file. Thus, if differently specified Iinks are established
to the sane file to exist concurrently, the same file data can be used
but interpreted differently by each of the different |inks.

partial record I/O

pat ch

Refers to instances where I/Ois done in partial rather than ful

| ogi cal records. In BASIC, CETS and PUTS for marked-item and fi xed-item
files may operate in this manner though they usually operate in whole
record I/ O node

see zap.

power - on/ r eset See reset/power-on

print/input file

A disk file witten to by PRINT statenents and read by | NPUT
statenents.

record segnented file

REMBA
REMRA
RBA

A type of file that can be broken down into |ogical records by BASIC.
These file types are field item FF, M- and MJ

REMenber ed Byte Address See section 8.10.
REMenber ed Record Address See section 8.10.
Rel ati ve Byte Address

A net hod of addressing within a file, record, control block, etc. where
addressing starts at O rather than 1. The first byte of the unit has
RBA = 0. The nth byte in the unit has RBA value = n-1. In NEWDOS, RBA
is used to express EOF and NEXT in the FCB; this use of RBAs in the FCB
is major difference between NEWDOS and the ol d versions of TRSDOS. In
BASIC, RBA is used in file positioning (see section 8.4.1) where, in fp
= lrba, !'$rba or !#rba, rba is defined to be a BASIC expression

eval uating to a nunmber between 0 and 16, 777,215 and represents a
relative byte position fromthe beginning of the file.

reset/ power-on al so known as boot.

refers to the autonatic conputer execution that occurs whenever the
conputer's reset button is pressed or when the conputer is powered up
In reality, you nust never have diskettes in any drives when you power
up the computer. After the power up, put the system diskette in drive O
and press reset. For the nost part, NEWDOS/ 80 treats a reset after
power-on the sane as a reset at any other tine. There are sone

GLOSSARY 10-8



di fferences, however, with the nost notably being the date and tine
settings that occur.

During a reset/power-on, the ROMs bootstrap routine receives conputer
control fromthe hardware reset logic and reads the first sector of the
di skette nounted in drive O into the DOS system buffer (4200H 42FFH on
the nodel | and 4300H - 43FFH on the nodel 111). That 256 bytes
contai ns NEWDOS' s bootstrap routi ne which receives computer contro
fromthe ROM and then reads into main nenory a fresh copy of
NEWDOS/ 80' s nmai n nenory resident nodul e SYSO/ SYS. Execution control is
then passed to SYSO's initialization routines in the DOS overlay area.
Using the current SYSTEM and PDRI VE specifications, NEWDOS/ 80 is
initialized. Wien this is conpleted, either NEWDOS/ 80 READY is

di spl ayed or DOS comences the execution of the AUTO (see section 2.4)
speci fi ed DOS comuand.

sector
For NEWDOS/ 80, diskette data storage is physically done in groups of
256 bytes called sectors. Actual diskette reads and wites are done by
whol e sectors, usually a single sector at one tine.

SOR Start O Record
O or pertaining to the start of a record. Al records of a MJfile
start with a SORitem a 70H byte

track
The unit of diskette storage a disk drive read/wite head passes over
during one revolution of the diskette. A diskette is divided
magnetically into a nunber of concentric tracks during format (35 is
standard on the nodel |, 40 on the nodel I111). Format al so divides each
track nmagnetically into 256 byte sectors which will subsequently
contain data of any and all kinds.

user segnented file
A type of file which cannot be broken down into |ogical records by
BASIC. These file types are FI and M. If these file types are to be
segnented into records, it is done so solely by the progranmrer without
BASIC s know edge.

vi ce
Means 'instead of or 'in place of'.

whol e record 1/0
Whol e record /O is when an entire logical record is read or witten
during the execution of a single INPUT, PRI NT, GET and PUT statenent.
This is the normal procedure for those statements. See partial record
/0

zap
To alter data or program executabl e code w thout reconpilation. See
section 11.

10-9 GLOSSARY






11. ERROR REPCRTI NG, | NCOWVPATI BI LI TY HANDLI NG AND PATCHI NG

11.1. Introduction

As with previous NEWDOS versions, NEWDOS/ 80 Version 2 will contain errors not
presently known, will receive mnor enhancenents as the nonths pass, and has
i nconpatibilities with other DOSS including earlier versions of NEWOS. Were
possi bl e and econonically feasi ble, patches (zaps) will be issued to correct
the errors, provide the enhancenents and, in selected cases, relieve the

i nconmpatibilities.

Apparat relies heavily on the NEWDOS/ 80 users to find and inform Apparat of
NEWDCS errors and inconpatibilities. Over half of the zaps generated for
NEWDOS/ 80 Version 1 were a direct result of an error properly reported. In
some cases, the user had to report the error nore than once before Apparat
either paid attention or finally found the error. Reported errors may or may
not be fixed, dependi ng upon the seriousness, the magnitude and the anount of
zap area available in the affected nodules. If an error is not to be fixed,
Apparat will, in a coment zap, report the error and announce that it wll
not be fixed.

11.2. Inconpatibility Handling

NEWDOS/ 80 is a different DOS from TRSDOS, VTOS, LDOS, DOSPLUS and ot hers;
therefore many user programs will not operate on NEWDOS/ 80 wit hout sone

nodi fication. For any particular program the best thing is to try that
program out with NEWDOS/ 80; be sure you do not use valued file data in these
tests. In the past, Apparat has tried to create and distribute the necessary
patches to commonly used, commrercially sold prograns, but this proved

unwor kabl e for a nunber of reasons.

1. Apparat was not notified by program manufacturers of a pending rel ease
of a new program and of its actual inconpatibility with NEWQOS/ 80. The

di scovery of the inconpatibility always came fromthe users. This is not
acriticism only a statenent of fact.

2. Apparat did not and does not have the personnel resources to research
each inconpatibility problemand to generate the necessary zaps to the
non- NEWDOS/ 80 pr ogr ans.

3. The mailing of zaps to all registered NEWDOS/ 80 owners was del ayed
until a nunber of zaps were available, a delay usually of nonths, though
Apparat would nail out the latest zaps to individuals on request. It
woul d be nuch better if the necessary inconpatibility zaps were sent out
al ong with the non- NEWDOS/ 80 program Apparat, in the past, did not make
an effort to send the zaps to the manufacturers to include with their
prograns, and for this we apol ogi ze.

For NEWDOS/ 80 Version 2, Apparat will still issue conpatibility zaps for sone
application prograns, but fundamentally Apparat will rely on the creator

and/ or distributors of non- NEWDOS/ 80 prograns to produce and distribute the
zaps necessary, if any, do run those prograns with NEWDOS/ 80. To assist in
this effort, Apparat offers a free copy of NEWDOS/ 80 to business firns that

11-1 ERRCRS, PATCHI NG



produce software products to be used on NEWDOS/ 80, provided these products
are advertised in a major publication (NEWDOS/ 80 need not be nentioned in the
adverti senent).

11. 3. Reporting of NEWDOS/ 80 Errors and |Inconpatibilities

To reduce confusion, frustration, cost and wasted tinme, Apparat requires that
the foll owi ng be done:

1. Read and understand the applicable docunmentation.

2. For errors, assure that |anguage prograns using NEWDOS/ 80 are inter-
facing correctly. Apparat does not check out prograns other than what it
creates.

3. Assure that all outstanding mandatory zaps have been applied to your
NEWDOS/ 80 system or user prograns.

4. Run the circunstances resulting in the NEWDOS/ 80 error or incom
patibility many tines under varying conditions (if possible).

5. Precisely and concisely wite up the error circunstances and send,
along with applicable diskettes, to:

Apparat, Inc.
4401 S. Tamar ac Par kway

Denver, CO 80237
6. I nclude your NEWDOS/ 80 registration nunber.

7. Include copies of the diskettes (as gifts to Apparat) containing the
all the nodules involved in the error or inconpatibility. Apparat will
destroy the diskettes' contents, including any copi es nade of them when
done with the error study.

8. DO NOT PHONE Apparat directly. Phone answering personnel are not
techni cally know edgeabl e of NEWDGCS.

9. DO NOT | NCLUDE product orders or other requests with your error
report.

11. 4. Format of NEWDOS/ 80 Zaps

I n NEWDOS/ 80, zaps (patches) are manually applied by using the program
SUPERZAP di scussed in section 6.1. The user should study section 6.1 to learn
how to use SUPERZAP, but if he/she prefers not to do that, enough information
will be provided in this chapter to scrape hy.

Though SUPERZAP i s a sonewhat cunbersome net hod of applying zaps, this nethod
does have the advantage of forcing the users to |l earn how to use SUPERZAP and

ERRCRS, PATCHI NG 11-2



gi ves them confidence in using that programthey woul d otherw se not have ac-
qui red. Sooner or later, everybody needs to use SUPERZAP to help repair dam

aged disk files, and when this emergency arises, the nore experience the user
has had wi th SUPERZAP, the better

NEWDOS/ 80 zaps are consecutively nunbered and are dated with the date the zap
was nmade available. A zap will be either mandatory or optional, and it is
either for a NEWDOS/ 80 nmodule (i.e., one of the files on the NEWOQOS/ 80 master
system di skette) or for a non-NEWOS/ 80 nodule. If it is mandatory zap to a
NEWDOS/ 80 modul e, and your NEWDOS/ 80 system diskette is dated later than the
zap, the zap will usually, but not always, already have been applied to your
di skette.

Each zap will have a short explanation of the reason for it. Next will follow
one or nore zap areas, wWith each area conposed of three parts:

10. The location on the diskette of the first byte of the area. This
location will consist of 3 paraneters and will be in the foll ow ng
format.

filespecl, relsector,rel byte
wher e
1. filespecl gives the name or nane/ext of the file to be zapped.

2. relsector is the relative sector within the file. relsector is in
deci nal .

3. relbyte is the relative location within the sector of the zap
area's 1st byte. relbyte will be in hexadecimal but will not be
suf fixed with the character H

Exanpl es:

DI R/ SYS, 2, 20
EDTASM CMD, 20, F6
YCOURFI LE, 0, 88

2. The old contents of the zap area. Each byte will be printed as two
hexadeci mal digits, and for readability the bytes will be separated by at
| east one space. If a hex digit position contains a - , then either
Apparat doesn't care or doesn't know what exists in that hex digit before
it is zapped.

3. The new contents to be zapped into the area, printed in the sane
format as for the old contents.

If a zap area covers nore than 24 bytes, the format is changed so that both
the before and after areas will be aligned to appear as the user will see
t hem on the SUPERZAP di splay. This nakes for easier view ng and zappi ng.

Many zaps really do not change the first and/or |ast bytes of the zap area.
These bytes were included to help the user synchronize on the proper area,
both before and after the zap, and to provide nore verification bytes.
However, it is not nandatory that the first and | ast bytes of the zap area be

11-3 ERRCRS, PATCHI NG



used this way, and they usually won't be if the current zap area adjoins or
overflows the area of another zap or if the zap area starts, ends, or
overfl ows a sector boundary.

11.5. Zapping Procedure
To apply a zap, performthe follow ng steps:

1. Make at |east one backup copy of the diskette to be changed. NEVER
NEVER, NEVER, NEVER apply a zap w thout first making a backup copy!!!

2. Execute DOS command SUPERZAP.
3. Mount the diskette containing the file to be zapped.
4, Ent er the SUPERZAP function code DFS.

5. Enter the file's filespec, containing (1) the name or nanme/ext from
the zap area location's 1st paraneter (see section 11.4.1.1.) (if the
file has been renaned, then use the applicable nanme/ext), (2) the access
password, if required, and (3) the drive number.

6. Enter the zap area location's 2nd paraneter (see section 11.4.1.2)
as the relative sector nunber within the file.

7. The sector will be displayed to the user (see step 14 below). Find
the zap area in the display, and verify that the old contents are as they
should be. If they are not, then check if the zap you are about to apply
is already applied; it nay well be. If it is, then skip the current zap
area and go on to the next. If it isn't, then check Apparat.

8. Wien satisfied with the old contents, type MODxx wi thout ENTER xx
is the zap area location's Ad paraneter (see section 11.4.1.3.).

9. The cursor should appear over the first hex digit of relative byte
xx. |If the cursor does not appear, type in MODxx again. If the cursor
appears over the wong digit, check to make sure you are where you think
you are. CAUTION'!! When the cursor appears, SUPERZAP is in nodify
(overwrite) nmode; be careful what keys you press. In nodify node, left,
right, up and down arrows and the space bar nay be used to nove the
cursor.

10. To alter the hex digit in the cursor position, press the proper 0 -
9 or A- F key that represents the replacenment value. The cursor wll
automatically advance to the next hex digit.

11. Type in all the new hex digit val ues.

12. If not satisfied with the changes, press Qto cancel the
nodi fication and return to the display.

13. When satisfied with the changes and ready to update themto the

di skette, press ENTER Then press Y, and when instructed, press ENTER
again. SUPERZAP will exit nodify nbde back to display node.

ERRORS, PATCH NG 11-4



14. \Wen in sector display node (no cursor):

1. Press Kif you wish to display another sector of the sanme file.
Go to step 6.

2. Press J if you wish to go on to another file. Go to step 5.
3. Press Xif you wish to return to the function nenu.

4, Go to step 7 if there is another zap area for this sane sector.

11.6. NEWDOS/ 80 Zap Distribution

Apparat requires registration of all NEWOS/ 80 owners and will limt
distribution of its zaps to registered owners. Please notice that, unlike
other registration forns, the NEWDOS/ 80 registration card does not require
t he NEWDOS/ 80 owner to agree to anything; just |let us know who you are!

Apparat does not guarantee that zaps will be distributed, as such
distribution is a cost to Apparat over and above what the purchaser paid for
NEWDOS/ 80. Apparat reserves the right to institute a charge for the zaps at
some future tine.

Zaps will be distributed by mail. Zaps will NOT be given over the phone.
Distribution of zaps to all registered owners will occur whenever a |arge
nunber of zaps has been accunul ated. However, upon request, the |latest zaps
will be sent to individual registered owers, but please, if you are not
havi ng any trouble with your NEWDOS/ 80, don't ask.

When Apparat receives a registration card, the latest copy of the zaps wll
soon thereafter be nailed to the registered owner. This lets the owner know
t hat Apparat has received the registration card and provides the owner with
any zaps generated since either that manual (containing zaps as chapter 13)
was nmade up or that NEWDOS/ 80 di skette was created.

11.7. Initial Installation of Zaps

When you first receive your NEWDOS/ 80, chapter 13 will contain the zaps out-
standing at the time your manual was made up. Sone of the pages for that
chapter may have been inserted in the front of the nanual at the |ast mnute;
find themand put themin chapter 13.

Next, make sone backups of the NEWDOS/ 80 master diskette.
Now, since your NEWDOS/ 80 manual may or may not have been nade up at the sane
time as your NEWDOS/ 80 di skette, you nust synchronize the diskette with the

zaps, if any, in chapter 13. Most of the nandatory zaps to NEWDQOS/ 80 nodul es
wi |l already have been installed, but you nust still check.

11-5 ERRCRS, PATCHI NG



Usi ng SUPERZAP, test if the highest nunbered nmandatory zap for a NEWOS/ 80
nmodul e has already been installed. If it has, then you may assune all | ower
nunbered mandatory zaps for NEWDQOS/ 80 nmodul es have been installed. This is
not the case for optional zaps to NEWDOS/ 80 and any zaps to non- NEWDOS/ 80
prograns. If this highest nunbered mandatory NEWDOS/ 80 nodul e zap has not
been applied, then check the next |ower nunbered such zap until you reach one
that has been installed. Then, from but not including that zap, start
appl yi ng the hi gher nunbered mandat ory NEWDOS/ 80 nopdul e zaps in ascending
nuneric order. Hi gher nunbered zaps nmay well zap over an area covered by a

| ower nunbered zap

Appar at has recei ved many conplaints fromusers who did not realize that sone
or all of these mandatory zaps were already applied to their diskette. As a
general rule, but you nust still check, a mandatory NEWDOS/ 80 nodul e zap is
installed on your diskette if your diskette is dated later than the zap

As well as applying the mandatory NEWDOS/ 80 nodul e zaps, you nust apply the
mandat ory zaps, if any, to those non- NEWDOS/ 80 nodul es you are going to use
wi th NEWDOS/ 80. You should al so at |east read the optional zaps so you know
t hey exi st.

Finally, though you will probably never knowit, it is possible that your
NEWDOS/ 80 di skette will have sonme nmandatory zaps installed not yet listed in
your chapter 13. This is not commopn, but such a thing has occurred. The zap
sheets you receive in response to sending in your NEWDOS/ 80 registration card
shoul d cover those unknown but neverthel ess already installed zaps.

11. 8. Subsequent Installation of Zaps

When you receive a zap mailing from Apparat, you should apply the new

mandat ory zaps to NEWDOS/ 80 nodul es and to those non- NEWDOS/ 80 nodul es you
are using with NEWDOS/ 80. Once again, you should at |east read through the
new opti onal zaps. There is no need to reread the zaps that you al ready have,
as zaps are seldomupdated and if they are, usually a subsequent zap refers
to the change.

Remenber, your NEWDOS/ 80 naster diskette may al ready have sone of the newer
mandat ory NEWDOS/ 80 nodul e zaps applied; so check the highest nunmbered new
zap and work your way down until you come to a zap that has been installed.
Then start installing higher nunbered zaps in ascendi ng zap nunber order

Never apply a hi gher numbered nmandat ory NEWDOS/ 80 nodul e zap before applying
all | ower nunbered mandatory NEWDOS/ 80 nodul e zaps.

11.9. Diskette Update Service

In NEWDOS/ 80 version 1, due to the |arge nunber of zaps, Apparat instituted a
NEWDOS/ 80 ori gi nal diskette zap update service that is being continued for
Version 2. This service does not replace the zaps but is intended for those
users who woul d prefer Apparat to apply the zaps.

ERRCRS, PATCHI NG 11-6



The user sends a package to Apparat containing his/her original NEWOS/ 80
di skette, $10.00 for service and handling, and a note explaining that the zap
update is wanted. Address the package to:

APPARAT, | NC.

NEWDOS80 Di skette Update Service
4401 S. Tamar ac Par kway

Denver, Co 80237

Do not include any other information or requests in this package. Include in
your note your phone nunber, your NEWDOS/ 80 regi stration nunber and the
return address to be used.

Apparat will performa full diskette COPY (w thout CBF option) fromits then
master onto your diskette, such that all NEWQOS/ 80 nodul e mandat ory zaps then
outstanding will be included on your diskette. Your diskette will then be
returned via UPS if possible (we can trace UPS better than the mail);
otherwise, the mail will be used. Please, if possible, provide us with a
street address.

The original diskette nust still contain its original |abel with the
regi stration nunber, which will be checked agai nst your registration card.

The di skette must also contain the NEWDOS/ 80 system If the registration
nunber is nissing or the diskette does not contain the system the update
wi Il be denied. The $10. 00 service and handling charge applies each tine an
original NEWOS/ 80 diskette is submitted and it nust acconpany the diskette.
Be certain all non-NEWDOS/ 80 nobdul es that you wish to keep have been taken
of f the diskette before sending it. If your original diskette is unchanged,
then you have nothing to take off.

This zap update service includes the mandatory zaps to NEWDOS/ 80 nodul es
only. It does not include optional zaps or zaps to non- NEWDOS/ 80 nodul es
(i.e., SCRIPSIT, EDIT, etc.). This service does NOT include an upgrade to a
new version of NEWDGS, if and when that occurs.

Do NOT send your diskette back to your dealer as dealers are not kept up to
date on the current zaps. Send your diskette only to Apparat.

11.10. Zap Duplication.

Al'l users keep nmany copi es of NEWOS/ 80, and single drive users are forced to
have a NEWDOS/ 80 system on every diskette they use with NEWOS/ 80. Once the
new zaps have been installed correctly on one copy of NEWQOS/ 80 and t hese new
zaps have been checked out, the user is now faced with the task of either
zapping all the other diskettes or with copying the zapped files to those

ot her diskettes. Through use of format 6 COPY (CBF) with the ILF and DFO
paraneters (the DFO paraneters is defined below and not with COPY). Instead
of specifying this procedure, the follow ng exanple will be used instead.

Suppose that the nodul es SYSO/ SYS, SYS2/SYS, SYS17/SYS, SYS14/SYS,

BASI C/ CVMD, and DI RCHECK/ CMD wer e changed by the | atest zaps. The zaps
were applied to one copy of NEWDOS/ 80, and NEWDOS/ 80 was then checked out

11-7 ERRCRS, PATCHI NG



to make sure the zaps were OK. For the rest of this exanple, this
di skette is referred to as the zapped di skette.

An ILF file (which is just like a chain file) is built containing the
foll owi ng records.

SYSO0/ SYS
SYS2/ SYS
SYS17/ SYS
SYS12/ SYS
BASI ¢/ CVD

DI RCHECK/ CVD

This file is named ZAPNAMES/ | LF and is placed on the zapped di skette.
Next, a chain file is built containing one of the foll owi ng two comrands:

COPY, 0, 0, , NFMT, DFQO, CBF, | LF=ZAPNAMES/ | LF: 0 single drive systems
or
COPY, 0, 1, , NFMT, DFQ, CBF, | LF=ZAPNAMES/ | LF: 0 two drive systens

This file is named ZAPDUP/ JCL and is stored on the zapped diskettes. Both
of these files can be built using CHAI NBLD (see section 6.6) or SCRIPSIT.

The zapped diskette will be considered both the SYSTEM and t he SOURCE
di skette and will be mounted on drive 0. The NEWDOS/ 80 di skette to
recei ve the zapped nodules will be considered the destination diskette,
and, in the case of two drive systens, it will be nmounted on drive 1.

Then, for every NEWDOS/ 80 diskette that is to receive the zapped nodul es,
execute the DOS conmand:

DO, ZAPDUP

This DO conmand wi || cause execution of the COPY comrand contained in
file ZAPDUP/ JCL: 0. Since the COPY command specifies an ILF file, only the
files listed in that ILF file will be copied. Further, since the DFO
option was specified, only those of the six files previously existing on
both the destination and source di skettes are copied. For exanple, if

DI RCHECK/ CVMD was not previously on the destination diskette, it is not
copied to it.

Single drive systemusers will have to do a |lot of diskette nounting. It
is best to put a special marking on the zapped diskette to distinguish it
fromall the others.

Two drive systemusers will have only two responses per diskette copy.
Since the DFO (Destination Files only) option was not defined in COPY, it

is defined here to nmean that only files already existing on the both the
destination and the source diskette are copi ed.

ERRCRS, PATCHI NG 11-8



12. CONVERSI ON | NFORVATI ON AND M SCELLANEQUS COMMVENTS

This chapter contains Version 1 to Version 2 conversion information,

nm scel | aneous information and changes to the information contained in other
chapters as those chapters were already sent to the printers before the
changes coul d be nade.

12.1. RBAs gain in respectability

In late July, Apparat becane aware that beginning with the Mdel 1l TRSDOS
Version 1.3, TRSDOS is using RBA (Relative Byte Addressing) as the format for
the ECF field in the directory FPDEs and for the EOF and NEXT fields in the
FCBs. Finally, after 28 nonths, one of the mmjor inconpatibilities between
NEWDOS and TRSDOS, that of the different handling of the FCB NEXT and EOF
fields, will be nostly, if not fully, elimnated.

See section 5.7 for discussion of the FPDE ECF field in the 4th, 21st and
22nd bytes. See section 5.9 for discussion of the FCB ECF field in the 9th,
13th and 14th bytes and the FCB NEXT field in the 6th, 11th and 12th bytes.

See section 12.4 for NEWDOS/ 80 Version 2 inconpatibility with Mddel | TRSDOS
Version 2. 3.

See section 12.5 for NEWDOS/ 80 Version 2 inconpatibility with Mdel 11
TRSDOS Version 1.3.

TRSDOS' s changing of the FPDE ECF field to RBA format is the correct nove to

make, but it has the unfortunate probl em of naking Mddel 11l TRSDCS 1.1 and
1.2 diskettes not directly readable on 1.3 and vice versa. Feeling that the
1.3 directory structure will beconme the Mdel 11 standard despite al
conplaints, the functions of the NEWDOS/ 80 COPY comand (see section 2.14)
that all ow copying of files fromand to Model 111 TRSDOS di skettes will work
with the Model 111 TRSDOS 1.3 diskettes only.

When RBAs were instituted in March, 1979 as the NEWDOS format for the FCB
NEXT and EOF fields, we also wanted to set the directory FPDE EOF fields to
RBA format. Doing so would have nade all NEWOS di skettes inconmpatible with
all existing TRSDOS di skettes and seriously reduced NEWDOS' wusability. Since
there are very few prograns that actually read or wite the directory FPDE
EOF field and since the reason for changing to RBA formats is to elimnate
confusing situations that could occur in FCB processing, Apparat decided to

| eave the directory FPDE EOF field alone. The procedure for converting from
the FPDE ECF format used by NEWDOS and the old TRSDOSs to RBA format and vice
versa is sinple enough and doesn't cause confusion. The rul es are:

To convert fromthe NEWDOS and old TRSDOS fornat to RBA format: if the
| ower order byte of the 3 byte value is non-zero, subtract 256 fromthe 3
byte value (or subtract 1 fromthe high order 2 byte val ue).

To convert from RBA fornmat to the NEWDOS and old TRSDCS format: if the

| ower order byte of the 3 byte RBA value is non-zero, add 256 to the 3
Byte RBA value (or add 1 to the high order 2 byte val ue).

12-1 CONVERSI ON & COWMENTS



Even though at this tinme there are runors of Moddel |11 conpatible TRSDOS

com ng out for the Model | that will use the RBA format in the directory FPDE
EOF field and even t hough Apparat agrees that that field should be in RBA
format, NEWDOS/ 80 for Version 2 will remain with the old format for that
field.

12.2. Converting fromVersion 1 to Version 2 on the Mdel |

1. Most prograns that worked on Mddel | NEWDOS/ 80 Version 1 will work
on the Mddel | NEWOS/ 80 Version 2.

2. The BREAK key enabl e/ di sable can no | onger be controlled via bit 4
of 4369H. User program may continue to toggle this bit, but DOS ignores
it. See section 2.8.

3. FCB changes (see section 5.9):

1. Use of bit 2 (indicating track and sector operations) of FCB's
1st byte has been dropped.

2. New definitions have been created for bit 3 of the FCB' s 2nd
byte and for bits 7 -5 of the FCB's 3rd byte.

3. FCB' s 17th through And bytes have been redefined.
4. Directory changes (see sections 5.6, 5.7 and 5. 8):

1. The GAT sector now accounts for lunps instead of tracks. Each
byte within the 00 - BF range in the GAT now corresponds to a
lunp rather than a track, and granul es per |unp rather than
granul es per track is now used. The first byte of each extent
element within FPDE's and FXDE s is now a |lunp nunber rather than
a track number. The 3rd byte of the diskette's first sector (the
boot sector) is now a |unp nunber rather than a track number.
Provi ded the proper GPL value is specified in PDRIVE, all Version
1 directories and boot sector 3rd bytes are directly usable on
Version 2 and, with greater care, vice versa.

2. Bits 7, 6 and 5 of the FPDE 2nd byte have been defi ned.

3. The granule allocation table can now optionally use the first
192 bytes of the GAT sector. If the diskette's lunp count is
greater than 96 (60H), the granule allocation has overflowed into
and negated the granule existence table (the |ockout table).

5. DEBUG can no | onger be enabl ed/ di sabl ed by the value in 4315H User
prograns can continue to set this location, but DOS ignhores it.

6. DEBUG can no |onger be entered by pressing the BREAK key; only the
123 keys are used (see section 4.1).

7. PDRIVE has been greatly altered. Study section 2.37 carefully. The
foll owi ng PDRI VEs nmust be used to read and write existing Version 1

CONVERSI ON & COWMENTS 12-2



di skettes on Version 2. These specifications nust be used when making a
di skette that will be read on Version 1

1. PDRIVE, dni, dn2, Tl =A, TD=A, TC=35, SPT=10, TSR=3, GPL=2, DDSL=17, DDGA=2
is the specification for standard 5 inch, single density single
sided diskettes. For 40, 77 or 80 track drives, set TC accordingly.

2. PDRI VE, dnl, dn2, Tl =A, TD=C, TC=80, SPT=20, TSR=3, GPL=4, DDSL=17, DDGA=2
Use this PDRIVE setting for 5 inch, single density, double sided
di skettes. For 35, 40 or 77 tracks, set TC accordingly.

3. PDRI VE, dnl, dn2, Tl =BH, TD=B, TC=77, SPT=15, TSR=3, GPL=3, DDSL=17, DDGA=2
is the specification for 8 inch, single density, single sided

di skettes used with the OM KRON i nterface. Version 2 can handl e up
to SPT=17 for this type of diskette; you may want to covert your

exi sting diskettes to gain the extra 12 percent space.

4. PDRI VE, dnl, dn2, TI =BH, TD=D, TC=77, SPT=30, TSR=3, G°PL=6, DDSL=17, DDGA=2
is the specification for 8 inch, double sided, single density

di skettes used with the OM KRON i nterface. Version 2 can handl e up
to SPT=34 for this type of diskette; you may want to convert your

exi sting diskettes to gain the extra 12 percent space.

5. PDRI VE, dnl, dn2, Tl =CK, TD=E, TC=34, SPT=18, TSR=3, GPL=2, DDSL=17, DDGA=2
is the specification for 5 inch, single sided, double density

di skettes with the PERCOM doubl er interface. For 40, 77 and 80 track
drives, set TCto 39, 76 and 79 respectively. If LNWinterface, use
TI=EK; if that doesn't work, try TI=CK

6. NOTE!!! 5 inch, double sided, double density diskettes used on
NEWDOS/ 80 Version 1 cannot be used on Version 2. The files on

t hese di skettes nust be noved, while using NEWDOS/ 80 Version 1,
to either double sided, single density or single sided, double
density diskettes, which can be used with Version 2. Once this is
done, the file may be copied to a Version 2 doubl e sided, double
density diskette.

8. 5 inch double density diskettes are supported in Version 2 for the
PERCOM and LNW doubl e density nodifications.

9. SYSTEM has been greatly expanded. Study section 2.46 carefully.

1. Options AH and AK are dropped. Options AT through BN, except
BL, have been added.

2. Option BN deci des whether NEWDOS/ 80 is to wite single density
directory sectors to be readable by Mddel | TRSDOS or readabl e by
Model 111 NEWDOS/ 80. One or the other is allowed but not both.

3. Option BJ all ows NEWDOS/ 80 disk delay timng | oops to be

i ncreased so that CPU speed up nodifications can be active during
disk 1/O NEWOS/ 80 can handl e nost CPU speed-ups, but it cannot
tol erate any sl owdown of the CPU bel ow the standard 1.772
nmegahertz speed.

10. COPY has been considerably changed. Study carefully section 2.14.

12-3 CONVERSI ON & COWMENTS



1. CBF will work even though the system di skette nust be
di smounted or if all three diskettes will use the sanme drive.

2. If you are using CBF (format 6) to copy the NEWDOS/ 80 Version
2 systemto another diskette, then you MJST specify the FMI
option. If you don't, the BOOI/SYS and DI R/ SYS i nformati on nay be
wong. |If you are sinply copying one or nore of the systemfiles
to an existing systemdiskette (existing in the sense that it can
al ready boot properly on the drive it is supposed to boot on)
then you do not need to specify FMI. This information was not

i ncluded in the CBF docunentation and shoul d have been

3. COPY allows files to be copied back and forth between a
NEWDOS/ 80 Version 2 diskette and a Model 111 TRSDOS Version 1.3
or higher diskette provided the proper PDRIVE setting is used
(see PDRIVE Tl flag M.

11. The DOS system ID fornerly at |ocation 403EH is now shifted to
4427H. In Version 1, 403EH contained either 80 (50H) or 128 (80H). In
Version 2, location 4427H contains 130 (82H) identifying NEWOGOS/ 80
Version 2, and | ocation 442BH contains 01 if Mddel | and 03 if Mbde
[,

12. None of the NEWDOS/ 80 Version 1 nodules, including all the system
nodul es, the BASI C nodul es and all other prograns supplied on the
mast er di skette, can be used with NEWOS/ 80 Version 2. Therefore, the
user files on Version 1 system di skettes nust be copied to Version 2
system di skettes wi thout copying any of the old Version 1 nodul es. For
single drive users, this is a nonunental task, but even nulti-drive
users nmust convert nore than one system di skette. For each such system
di skette, you may use the follow ng procedure to copy your files.

1. Using a copy of the zap updated NEWDOS/ 80 nmaster system

di skette as both the system and source di skette, nake anot her
copy of that diskette using format 5 or fornmat 6 COPY with the
FMT option specified.

2. Kill off NEWDOS/ 80 Version 2 files that you do not want to
keep. You could have effectively done this by using the ILF
paranmeter in the above COPY, if that copy was fornat 6. Your I|LF
file can be built starting with the NAD80V2/ILF file provided on
your NEWDOS/ 80 Version 2 master diskette and, using CHAI NBLD/ BAS
or SCRIPSIT to delete lines for unwanted files. Remenber to save
the resulting file under a different name, which you will refer
toin the ILF paranmeter of the COPY.

3. Using the resulting diskette again as the destination diskette
and the old Version 1 diskette as the source diskette, performa
format 6 copy with the NFMI and the XLF=NWDB0V2/ XLF: 0 paraneters.
This will copy all of your files fromthe Version 1 to the
Version 2 diskette but will not copy any of the NEWDOS/ 80 Version
1 files, since they were all excluded by the XLF file. The file
NWD80V2/ XLF was i ncl uded on the NEWDOS/ 80 Version 2 diskette
exactly for this purpose and can be inspected via SCRIPSIT or

CHAI NBLDY BAS

CONVERSI ON & COWMENTS 12-4



4. If you wish to copy the resulting Version 2 systemdi skette
that now has your files as well back onto the old Version 1

di skette, you should do so using a format 5 or format 6 copy with
the FMT option specified. This gets the Version 2 system and your
files back onto the diskette with the old |abel.

12.3. Converting fromVersion 1 on the Model | to Version 2 on the Mddel 111.

1. Most of section 12.2 applies here; read that section before reading
this one. This section will deal only with Mddel 111 specifics.

2. Most user progranms that were zapped to work with NEWOS/ 80 Version 1
will work on the Model 11 NEWDOS/ 80 Version 2 with the foll ow ng
corrections:

1. Al references to any bytes in the |ocation range 4300H -
43FFH nust be dropped or changed to different appropriate

| ocations. This area is now the system sector buffer instead of
the 4200H - 42FFH area used by Version 1.

2. The use of 4315H to toggl e DEBUG nust be dropped altoget her.

3. The byte at 4312H used to enabl e/ di sabl e the BREAK key has
been shifted to 4478H. The toggling of bit 4 of location 4369H
nust be dropped al t oget her.

4. The location of H MEM has been shifted from 4049H - 404AR to
4411H - 4412H.

5. The location of the CLOCK has been shifted from 4041 - 4043H
to 4217H - 4219H.

6. The location of the DATE has been shifted from 4044H - 4046H
to 421AH - 421 CH.

7. The 25ns one byte cyclic counter has been shifted from 4040H
to 441FH. The user timer interrupt routines still cycle based on
25ms i ncrements even though the interrupts really occur every
1/30th or 1/125th of a second.

8. The 4410H vector used to insert a tinmer interrupt routine into
NEWDOS/ 80' s queue has been changed to 447BH (see section 3.8).

9. The DOS command buffer has been changed fromstarting at 4318H
to start at 4225H.

3. The Model 111 NEWDOS/ 80 Version 2 diskette directories are in Mdel
I NEWDOS/ 80 Version 2 format and are NOT conpatible with Mdel 111
TRSDOS di skettes.

4. The Mddel |11 NEWOS/ 80 Version 2 FCB format is the sanme as for the

Model | NEWDOS/ 80 Version 2 and is NOT conpatible with the Mdel 111
TRSDOS FCB f or mat .

12-5 CONVERSI ON & COWMENTS



5. The foll owi ng PDRIVE specifications nust be used to read and wite

exi sting Version 1 diskettes on Mddel 1l Version 2. These
speci fications rmust be used when making a diskette that will be read on
Version 1.

1. PDRIVE, dnl, dn2, Tl =AK, TD=E, TC=39, SPT=18, TSR=3, GPL=2, DDSL=17, DDGA=2
is the specification for 5 inch, single sided, double density, 40
track diskettes. For 35, 77 or 80 tracks, set TCto 34, 76 and 79
respectively.

2. PDRI VE, dnl, dn2, Tl =A, TDuA, TC=80, SPT=10, TSR=3, GPL=2, DDSL=17, DDGA=2
is the specification of a 5 inch, single sided, single density
di skette. For 35, 40 or 77 track drives, set TC accordingly.

3. PDRI VE, dnl, dn2, Tl =A, TD=C, TC=80, SPT=20, TSR=3, GPL=4, DDSL=17, DDGA=2
is the specification of a 5 inch, double sided, single density, 80
track diskette. For 35, 40 and 77 track drives, set TC accordingly

4. NOTE!!! 5 inch, double sided, double density diskettes used on
NEWDOS/ 80 Version 1 cannot be used directly on the Mddel I11. See
section 12.2.7.6.

12. 4. NEWDOS/ 80 Version 2 inconpatibilities with Model | TRSDOS Version 2. 3.

1. NEWDOS/ 80 maintains the NEXT field of the FCB in RBA format at al
times. TRSDOS 2.3 nmaintains the NEXT field as an RBA whenever the | ower
order byte equals 0 or whenever the current wite positionis within a
buf fer that has been changed but not yet updated. In npost other cases,
TRSDOS tends to maintain the NEXT field equal to the RBA plus 256. At
any one time, there is sone confusion just what the NEXT field really
neans.

2. NEWDGOS/ 80 maintains the EOF field of the FCB in RBA format at al
times, and it updates the FCB ECF field for each byte witten to the
file, if indeed the EOF is to be changed. TRSDOS 2.3 updates the EOF
only when the sector is actually witten, though the |ow order byte is
updat ed conti nuously during single byte or logical record wites. Thus
if the current record would cause a change in EOF, EOF has two possible
val ues, dependi ng upon whet her the current sector has pending data
awaiting wite or the current sector has already be witten. Nornmally
TRSDOS's FCB EOF value is an RBA value if the | ow order byte equals 0
and RBA plus 256 if the |l ow order byte is non-zero.

3. Enabling or disabling of DEBUG in TRSDCS is still done by setting
the byte at 4315H which is ignored in Mdel | NEWOS/ 80 and must not be
done in Model 11 NEWGOS/ 80.

4. Activation and deactivation of tinmer routines is done differently in
the two systens (see sections 3.8 and 3.9 for the NEWDQOS/ 80 net hods).

5. Both Model | TRSDOS and NEWDOS/ 80 use essentially the sane directory
format except that TRSDOS is still Iimted to 35 track diskettes and a

CONVERSI ON & COWMENTS 12-6



12.

5.

two granule directory and that NEWDOS/ 80 uses sone previously unused
bytes and bits.

6. The following is a list of routines defined in chapter 3 that are
conmon to both NEWDOS/ 80 Version 2 and Mbdel | TRSDOS 2.3. Each routine
perforns nearly the same in both systens. The other chapter 3 routines
are either not used in Mddel | TRSDCS or are defined for different
functions. These comon routi nes are:

0013H, 001BH, 402DH, 4030H, 4400H, 4405H, 4409H, 440DH, 441CH, 4420H
4424H, 4428H, 442CH, 4430H, 4433H, 4436H, 4439H, 443CH, 443FH, 4442H
A445H, 4448H, 4467H, 446AH, 446DH, 4470H, 4473H

NEWDOS/ 80 Version 2 inconpatibilities with Model 11 TRSDOS Version 1.3

1. Model 111 TRSDOS diskettes are totally inconpatible wth NEWOS/ 80
Version 2 diskettes. 5 inch, single density, single sided, 35 track

di skettes with a two granule directory starting on lunmp 17 can be
processed with Model 111 TRSDOS' s convert program Also, files can be
copi ed back and forth between NEWDOS/ 80 Version 2 diskettes and Mde
1l TRSDOS Version 1.3 or higher diskettes providing the PDRIVE
specifications for the Mddel Il TRSDOS di skette include the Tl flag M

2. Model Il TRSDOS Version 1.3 has gone to using RBA values in the
NEXT and EOF fields of the FCB and the EOF field of the directory. Wth
this change to the FCB processing, NEWDOS/ 80 and TRSDOS has becone nore
conpati bl e than previously though, at this printing, just how close is
not yet clear.

3. Model Il TRSDOS uses a 50 byte FCB whereas NEWDOS/ 80 Version 2
stays with the old 32 byte format. NEWDOS/ 80 can use the 50 byte FCB
area, but TRSDOS will clobber the 18 bytes following a 32 byte FCB
Users shoul d study the specifications of the FCB' s between the two
systems as the differences are not detailed here.

4. The byte used to enable or disable the BREAK key is at 42AEH for
Model 111 TRSDOS whereas it is as 4478H for Mdel 111 NEWOS/ 80 and
4312H for Model | NEWOS/ 80. If the byte equals OCO9H t he BREAK key is
enabl ed, and if the byte equals OC3H t he BREAK key is disabl ed.

5. The following is a list of the routines defined in chapter 3 that

are common to both NEWDOS/ 8% Version 2 and Model 111 TRSDOS. Each
routine perforns nearly the same in both systens. The other chapter 3
routines are either not used in Mbdel |1l TRSDOS or are defined for

di fferent functions. These commbn routines are:

0013H, 001BH, 402DH, 4030H, 4409H, 440DH, 441CH, 4420H, 4424H, 4428H
442CH, 4430H, 4433H, 4436H, 4439H, 443FH, 4442H, 4445H, 4448H

6. Refer to section 7.13 for conparison of the BASIC CVD functi ons
offered in NEWDOS/ 80 with those offered for Mddel 111 TRSDOCS.

12-7 CONVERSI ON & COWMENTS



7. Routing is handl ed somewhat differently in the two systens.
Straightforward applications should be all right. DUAL is not
i mpl enment ed i n NEWDOS/ 80.

12. 6. M scel | aneous Conments

1. A very few users have coded systemroutines to be | coaded by DOS' system
routine | oader, and these users should be aware that NEWQOS/ 80 Version 2
uses the system FPDE sl ots through SYS21/SYS. \Wereas NEWOS/ 21 and TRSDOS
were limted to 14 system prograns | oadabl e by the system program | oader
NEWDOS/ 80 al lows for 30 with FDE sl ot assignnent continuing the same order
establ i shed by the old TRSDOS. The code to activate a routine in one of
these directory position dependent systemnmodules is sent to the systemin
regi ster A nust be greater than 1FH and in uuubbsss 8 bit fornmat where:

sss+2 = the relative sector in the directory containing the FDE
bb tines 32 (20H) = the offset in the sector to the FDE
uuu = a user defined code greater than O.

A future rel ease of NEWDOS will use system prograns from SYS22/ SYS
and up; users should start from SYS29/ SYS down.

2. Al NEWDOS80 support prograns use H MEM hi gh nenory val ue i n Model

| ocati ons 4049H 404AH (Model 111 |ocations 4411H 4412H) as upper nenory
[imt.
3. (Model | only) During power on, reset or a junp to location control

is passed to the ROM To determine if the disk controller is present,
the ROMtests the contents of | ocation 37ECH, the disk controller
status byte. If the value is either 00 or FFH, ROM assunes a non-di sk
system and proceeds to initialize non-disk |evel Il BASIC However, 00
is avalid disk controller state, nmeaning that the controller has no
status and the drives are ready (the light is on). To avoid this
unwanted entry into non-disk BASIC, wait until the ready |ight goes off
bef ore pressing reset.

4. To speed up di sk operations when additional file space is allocated
to a file, NEWDOS/ 80 allocates up to 4 granules at one tine. There is a
di sadvantage to this, however. If two or nore new files on the sane

di skette are open at the sanme time, it is quite possible to run out of
file space, close all the files and then find out the diskette now has
space, as CLOCSE rel eased the extra granules that files had all ocated
but not yet used.

5. NEWDOS/ 80 currently does not have any check on maxi numtrack nunber
when it noves the diskette arm If the track nunber exceeds the
physical linmts of the drive, the drive armwi |l bang agai nst the stops
for as many tines as the track nunber exceeds the physical nunber of
tracks for the drive. Since DOS retries |I/O a nunber of tines, it can
be as long as one ninute before the I/Ois declared in error. To cut
this interval short when this banging occurs, sinply open the drive

CONVERSI ON & COWMENTS 12-8



door and wait till either the drives stop rotating or the error is
decl ared. Then cl ose the drive door

6. The BASI C single stepping (CMD'F=SS") function does not allow tine
dependent functions such as an I NKEY$ |oop to work. In the case of
INKEY$, if the user inputs a non-null key to INKEY$ along with the
ENTER that steps BASIC, the INKEY$ key is ignored since it is seen
before the ENTER Al so, the single stepping display does not work in 32
character display node.

7. FORMAT correction. Paraneter PFST is nutually exclusive with Y and
with N

8. COPY correction. If format 6 COPY (CBF) is used to copy the
NEWDOS/ 80 systemto a new system di skette, the paranmeter FMI nmust be
specified in order that systemfiles be allocated the required
directory FPDEs, be assigned disk space in the required position
relative to the directory, have the proper information placed into file
BOOT/ SYS. This type of COPY nmust be used whenever a system diskette is
created whose PDRI VE specification is different fromthat of the source
di skette.

12-9 CONVERSI ON & COWMENTS






ACC

al pha

al phanuneri c

APPEND

ASC

ASE

ASPOOL
activation
initial setup

Asychronous Execution

ATTRI B

AUTO

BAS|I C MODULES
BASI C2
BAUD
BDU

bi t

BLI NK
BOOT
BOOT/ SYS
BREAK
buf fer
byt e

CBF
CHAI N
CHAI NBLD
chai ni ng
CHAI NTST
character
CHNON
CFWO
CLEAR
CLOAD
CLOCK
CLGCSE
CLS
C\VD

A

B

BREAK

Mmoo

DELETE
ERASE
KEEP
POPN

I NDEX

DD DNN
PR PR

2-14
2-6,4-7
5-3,6-16

[N

1
NNNWOOOORFROOVODOORLRPFRPROANE, WER

N R
NN T NO GO

POPR 7-12
POPS 7-12
SASZ 7-12

SS 7-14,12-9
SWAP 7-13

I 7-10

J 7-10

L 7-10
O 7-10,7-14

P 7-10

R 7-10

S 7-10

T 7-10
X 7-10

Z 7-10
doscmd 7-11
CcopPY 2-9,12-4,12-9
CREATE 2-18
CvD 8- 20
Cvi 8- 20
Cvs 8- 20

- D -

DATE 2-19,3-11
DDGA 2-15
DDND 2-12
DDSL 2-15
DEBUG - 123 2-20,4-1,3-3,12-2
DEC 10-2
DFG - M NI - DOS 4-6
DFO 11-8
DI 7-4
D R 2-20
DI RCHECK 5-3,6-12
directory 12-2,10-2
Directory Structure 5-4
DI R/ SYS 5-1,10-2
Dl SASSEM 5-3,6-5
DI SK BASI C 7-1,8-1
activating 7-2
conmand truncation 7-4
di rect conmands 7-3
enhancenent s 7-1

I / O enhancenent s 8-1
file types 8-1
nodul e overl ays 7-1
DO 2-22,4-7
DCs 10-2
DCS- CALL 4-12,3-4,10-2
DOS conmand (doscnd) 10-2
DCS RQOUTI NES 3-1
DOS SYSTEM MODULES 5-1
DPDN 2-10
DU 7-4
DUMP 2-22

I NDEX



- E -

EDTASM 5-3,6-14
EDI T direct commands 7-1,7-3
/ or shift up-arrow 7-3
; or shift down-arrow 7-3
7-3
, 7-3
: 7-3
@ 7-3
up- arrow 7-3
down- arr ow 7-3
ECF 10-3
EQL 10-3
EQOM 10-3
EOR 10-3
ECS 10-3
ERROR 2-24,3-2
error nessages 9-1,7-1
DOS 9-1,7-1
BASI C 9-2,7-2
extent el enent 10-3
- F -
fan 10-3
FCB 5-9, 3-9, 3-10, 10-3
FDE 5-6, 10-3
FF FI LE 8-10,10-3, A-39,B-5,B-6,B-7
FI FILE 8-10, 10- 4, A- 45, B-15
FI ELD | TEM FI LE 10-4
file 10-4
file item 10-4
fil earea 10-4
fil espec 10-4
FILE TYPE (ft) 8-10
Fl 8-10, A-45
FF 8-10, A- 39
M 8-10, A-35
MF 8-10, A-30
MJ 8-10, A- 20
FI LE PCSI TI ONI NG (fp) 8-3,10-5,A-1
FI XED | TEM FI LE 8-7,10-4
FMT 2-12
FORMAT 2-24,12-9, 10-4
FORMS 2-26
FPDE 5-7,10-5
FREE 2-27
FXDE 5-9, 10-5
- G -
GAT sector 5-5,12-2,10-5
GET 8-12,A-10
granul e 10-5
— H -
hash code 10-5
hexadeci nmal 10-5

I NDEX

HI MEM 2-27,12-8,10-6
H T sector 5-6,10-6
S
I/ O error recovery 8-19
/O link or path 10-6
| LF 2-14
| GEL 8-4,10-6
| GEL expression 8-5,10-6
| GELSN 10-6
i tem group 10-7
- J -

JKL 2-27,4-13
- K =
KDD 2-13
KDN 2-13
Kl LL 2-28
— L -

LC 2-29
LCDVR 2-29
I en 10-7
LI B 2-30
LI NES 2-26
LI ST 2-30
LMOFFSET 5-3,6-9
LOAD 2-31,3-7,7-4

V option 7-4
LOC 8-18, A- 18
LOCK 2-3,2-40
LOF A 17
| ogi cal record 10-7
Lower Case Suppression 7-8
LRECL 10-7
LRL 2-18
LSET 8- 20
LumP 12-2,10-7

- M-

MARKED | TEM FI LE 8-7,10-7
VDBORT 2-31
MDCOPY 2-32
MDRET 2-32
MERGE 7-5
MF FI LE 8-10,10-7, A-30,B-12,B- 14
M FILE 8- 10, 10- 7, A- 35,

B- 14, B- 15, B- 17
M NI -DOS - DFG 4-5
MKD$ 8- 20
MKI $ 8- 20
MKS$ 8- 20
ns 10-7
MJ FI LE 8-10, 10-7, A-20 , B-2,

B-3,B-4,B-9,B-10,B-11



- N- REF 2-40

nul | 10-7 - S -
nul | character 10- 8
: sect or 10-9
null string 10-8 SETCOM 2. 44
NDNW 2-12
SN 2-13
NDN 2-13
SOR 10-9
NDPW 2-12
SPDN 2-10
NFMT 2-12
T 5. a4 SPW 2-12
STMI 2-45
- 0 - SUPERZAP 5-3,6-1
di spl ay node 6-3
gw 2'2112 functi on node 6-1
) nmodi fy node 6- 4
OPEN 8-9,3-5,3-6,9,10-8,A-6 SCOPY 6-3
- p- SYSTEM 2- 45, 12-
PARI TY 2-44 ﬁg 3232
partial record I/0O 10-8 AC 2. 46
PAUSE 2-33 AD 5. 46
PDRI VE 2-33,12-2 AE 5. 46
A 2-317 AF 2-46
DDGA 2-37
AG 2-46
DDSL 2-37
AH 2- 46
GPL 2-37 Al 2- 47
SPT 2-37 AJ 547
Tc 2- 36 AK 2- 47
TD 2- 36
AL 2-47
TI 2-34
AM 2- 47
TSR 2-37 AN 5. 47
PFST 2-25 A0 547
PFTC 2-25 AP 2- 47
PRI NT 2-39
. . . AQ 2-47
print/input file 10-8 AR 5. 47
PROT 2-3,2-40 AS 2-48
PSEUDO FI ELD 8-17 AT 2-48
PUT 8- 14, A- 13 AV 2-48
"R- AW 2- 48
AX 2-48
R 2-41 AY 2-48
RBA 12-1, 10-8 A7 2. 48
REC 2-18 BA 2-48
REF -7 BB 2-48
REG STRATI ON 1-1 BC 2. 49
RENMBA 8- 16, 10- 8 BD 2. 49
REMRA 8- 16, 10- 8 BE 2-49
RENEW 7-17 BG 5. 49
RENUM 7-5 BH 2. 49
Reporting errors 11-1,11-2 Bl 2-49
reset/ power-on 10-8 BJ 2-49
ROUTE 2-42,12-8 BK 2- 49
RUN /-4 BN 2-49
V option 7-4 SYSTEM Fi | es Requi red 5-1
RUN- ONLY 7-2,7-8 SYSTEM reduced si ze 5-4

3 I NDEX



STOP

track
TI VE
timer interrupts

- U -

uBB

UDF

UNLOCK

UPD

UPDATE SERVI CE

usD

USR

user segnented file

-V -

VERI FY
vi ce

- W=

W DTH

whol e record 1/0O
WORD

V\RDI RP

XLF

ZAP

ZAPS
Di stribution
Duplication
For mat
Install ation
Pr ocedur e
Updat e Service

I NDEX

2- 44

2-13

2-40
2-4,2-14
11-6

2-13
2-14,2-41
10-9

2-51
2-44

2-26
10-9
2-44
2-52

2-14

10-9

11-5
11-7
11-2
1-4,11-5,11-6
11-4
11-6

- SYMBOLS -

[ ext 2-14, 2-41
*nanme routine 3-10, 3-11
123 - DEBUG ,
/ or shift up-arrow

; or shift down-arrow

"

=

©
|

@
up- arr ow
down- ar r ow

NNNNNNNA
WWWwwwwow kK



	Cover
	Table of Contents
	INTRODUCTION
	Registration.
	Trademark Credits.
	What Is Apparat's DOS/80 Version 2?
	Duplicate and Specify the System.
	Apply Outstanding Zaps.
	Commence Using NEWDOS/80.
	Apparat Thanks Its Beta Testers.

	DOS LIBRARY COMMANDS
	Notation Conventions and General Information.
	APPEND	Append one file onto the end of another.
	ATTRIB	Assign attributes to a file.
	AUTO	Define the DOS command to be executed at reset.
	BASIC2	Activate non˚disk BASIC (Model I only).
	BLINK	Enable/disable cursor blinking.
	BOOT	Reset the computer.
	BREAK	Enable/disable the BREAK key.
	CHAIN	Shift to keyboard input from disk.
	CHNON	Alter chaining state.
	CLEAR	Clear user memory routes, timer and logical enqueues.
	CLOCK	Display the time every second.
	CLS	Clear the display.
	COPY
	CREATE	Pre˚allocate a disk file.
	DATE	Set computer's current date.
	DEBUG	enable or disable the DEBUG facility.
	DIR	Display a diskette's directory information.
	DO	Shift to keyboard input from disk.
	DUMP	Dump memory contents to disk.
	ERROR	Display DOS error message.
	FORMAT	Format a diskette for use with the NEWDOS/80 system.
	FORMS	(Model III only) Set printer parameters.
	FREE	Display number of free granules and free FDFs for each diskette currently mounted.
	HIMEM	Set DOS's high memory value.
	JKL	Send the current contents of the display to the printer.
	KILL	delete a file.
	LC	Set keyboard a ˚ z toggle switch to the specified state.
	LCDVR	(Model I only) Lower case driver.
	LIB	Display NEWDOS/80 library commands.
	LIST	List a text file on the display.
	LOAD	Load a Z˚80 machine language file into RAM.
	MDBORT	Terminate MINI˚DOS and go to DOS READY.
	MDCOPY	Copy a file while under MINI˚DOS.
	MDRET	Exit from MINI˚DOS and return to main program.
	PAUSE	Display message and pause waiting on ENTER.
	PDRIVE	Assign default attributes to a physical drive.
	PRINT	List a text file on the printer.
	PROT	Alter some diskette control data.
	PURGE	Selectively kill files from a diskette.
	R	Repeat the previous DOS command.
	RENAME	Rename a file.
	ROUTE
	SETCOM	(Model III only) Set RS˚232 interface parameters.
	STMT	Display specified message.
	SYSTEM	Change system options.
	TIME	Set the real time clock.
	VERIFY	Require verify read after every disk write.
	WRDIP	Write directory sectors protected.

	DOS ROUTINES
	Specifications Defined
	402DH	No˚Error Exit
	4030H	Error˚already˚displayed DOS Error Exit
	4400H	No-Error Exit. Performs identical to 402DH.
	4405H	Enter DOS and execute a command
	4409H	DOS Error Exit
	440DH	Enter DEBUG
	4410H	(447BH in Model III) Enquene a user timer interrupt routine.
	4413H	Dequeue a user timer interrupt routine.
	4416H	Keep drives rotating
	4419H	DOS˚CALL  Execute a DOS command and return.
	441CH	Extract a filespec
	4420H	Open a FCB to a new or existing disk file
	4424H	OPEN a FCB to an existing file
	4428H	CLOSE a FCB. Conditions 3.1.A, B and C hold
	442CH	Kill the FCB's associated file
	4430H	Load a program file
	4433H	Load and commence execution of a program file
	4436H	Read sector or logical record from disk
	4439H	Write sector or logical record to disk
	443CH	Write sector or logical record to disk with verify read
	443FH	Position FCB to start of file
	4442H	Position FCB to a specified file record
	4445H	Position FCB back one record
	4448H	Position FCB to EOF
	444BH	Allocate file space
	444EH Position FCB to the specified RBA
	4451H	Write the EOF value from the FCB to the directory
	445BH	Select and power up the specified drive
	445EH	Test for mounted diskette
	4461H	*Name routine enqueue
	4464H	*name routine dequeue
	4467H	Send message to the display
	446AH	Send message to the printer
	446DH	Convert clock time to HH:HM:SS character format
	4470H	Convert the date to MM/DD/YY character format
	4473H	Insert default name extension into filespec
	0013H	Read a byte from a disk file
	001BH	Write a byte to a disk file
	447BH	Model III only (performs as Model I 4410H)

	DOS FEATURES
	DEBUG Facility
	MINI˚DOS
	CHAINING
	DOS˚CALL
	JKL
	Asynchronous Execution

	DOS MODULES, DATA STRUCTURES, AHD MISCELLANEOUS INFORMATION
	Files required on each diskette used with NEWDOS/80
	NEWDOS/80 DOS System Modules
	NEWDOS/80 BASIC Modules
	Other Modules on the NEWDOS/80 diskette
	Reduced Sized System.
	Diskette Directory Structure
	FPDE File Primary Directory Entry
	FXDE	File Extended Directory Entry
	FCB File Control Block

	ADDITIONAL PROGRAMS SUPPLIED OP NEWDOS/80 DISKETTE
	SUPERZAP
	DISASSEM
	LMOFFSET
	DIRCHECK
	EDTASM Disk Oriented Editor/Assembler
	CRAINBLD
	ASPOOL

	DISK BASIC, NON˚I/O ENHANCEMENTS
	INTRODUCTION, Requirements
	General comments
	Activating DISK BASIC
	Direct Scrolling/Editing Commands
	Text Editing Command Truncation
	DI and DU text editing functions
	RUN and LOAD (optionally retaining variables)
	MERGE	Dynamic loading of overlay program
	RENUM	Renumber the Current BASIC Program.
	REF	List references to variables, line numbers and keywords
	Lower Case Suppression (Model I only)
	RUN˚ONLY
	Comarisons in the use of the function CMD between NEWDOS/80 and TRSDOS.
	CMD"doscmd"
	CMD"F=POPS", CMD"POPR" and CMD"F=POPN"
	CMD"F=SASZ"
	CMD"F=ERASE" and CMD"F=KEEP"
	CMD"F",DELETE
	CMD"F=SWAP"
	CMD"F=SS"
	CMD"O"
	RENEW

	BASIC DISK I/O ENHANCEMENTS AND DIFFERENCES
	Introduction
	File Type
	File type differences
	Components of GET and PUT
	Fixed item file characteristics
	Marked item file characteristics
	OPEN
	GET
	PUT
	REMRA and REMBA
	Pseudo FIELD Function
	LOC Function
	I/O Error Recovery
	Additional notes about NEWDOS/80 DISK BASIC I/O

	ERROR CODES AND MESSAGES
	DOS Error Codes and Messages
	DISK BASIC Error Codes and Messages

	GLOSSARY
	ERROR REPORTING, INCOMPATIBILITY HANDLING, AND PATCHING
	Introduction
	Incompatibility Handling
	Reporting of NEWDOS/80 Errors and Incompatibilities
	Format of NEWDOS/80 Zaps
	Zapping Procedure
	NEWDOS/80 Zap Distribution
	Initial Installation of Zaps
	Subsequent Installation of Zaps
	Diskette Update Service
	Zap Duplication.

	CONVERSION INFORMATION AND MISCELLANEOUS COMMENTS
	RBAs gain in respectability
	Converting from Version 1 to Version 2 on the Model I
	Converting from Version 1 on the Model I to Version 2 on the Model III.
	NEWDOS/80 Version 2 incompatibilities with Model I TRSDOS Version 2.3.
	NEWDOS/80 Version 2 incompatibilities with Model III TRSDOS Version 1.3
	Miscellaneous Comments

	APPENDICES
	Index

